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Preface

"When you ask around and persist fondly
in the Way, you can never find the 71vth.
Maintain your belief. Devote yourself to
the Way. It uriA turn out to be the mighty
7Yvth. I

From "the 42 teachings or Buddha"

One of the subjects in mathematical nature is created by unifying three notions:
complex numbers, coordinate systems, and the related notions of differentiation and
integration. The space Cn of n-tuples of complex numbers is ruled by the coordinate
system (zt,... , zn). If a complex-valued function in a domain in C" is differentiable
in each variable, it can be represented locally as a convergent power series. It has
a natural domain of existence, in which it behaves in its own characteristic way,
i.e., it creates its own mathematical world. We call such a function an analytic
function.

In the case of one complex variable, an analytic function has a distinguishing
property. In this case its real and imaginary parts are harmonic functions which
are conjugate to each other. Namely, if one is considered as a potential, then the
other is the flow which the potential induces. A harmonic function is uniquely
determined by its boundary values; we can construct a harmonic function with
prescribed boundary values and construct locally its conjugate harmonic function,
which is unique up to an additive constant. This makes it easy to construct analytic
functions of one complex variable. The main properties of analytic functions of one
complex variable can be explained from this observation.

When we want to describe concepts in nature by using analytic functions, it
is not enough to use only those of one complex variable. The theory of analytic
functions of several complex variables is quite difficult to treat, compared to the
theory in one complex variable. One reason for this is the freedom of the form of
domains in C' due to the increase in the dimension. Another reason is that both
the real and the imaginary parts of an analytic function are now pluriharmonic
functions, which imposes a stronger restriction than being merely harmonic. For
example, in some cases, a pluriharmonic function is uniquely determined by its
boundary values on some proper subset of the boundary, and we cannot always
construct a pluriharmonic function with prescribed boundary values on a given
portion of the boundary. Therefore, it is difficult to construct analytic functions of
several complex variables. Since function theory in one complex variable generally
proceeds by constructing analytic functions, we cannot simply use the one-variable
approach in the case of several complex variables.

The most particular phenomena in the study of analytic functions in several
complex variables which does not appear in the case of one complex variable is
the fact that the natural domain of an analytic function is not arbitrary, i.e.. it is

ix



x PREFACE

not true that any domain in C" is a natural domain of existence of some analytic
function. This fact is important. We call a domain in C" which is the natural do-
main of existence of some analytic function a domain of holomorphy. The principal
problem in function theory in several complex variables is to study which domains
are domains of holomorphy. and to determine which objects we can construct in a
domain of holomorphy.

This book is all attempt to explain results in the theory of functions of several
complex variables which were mostly established from the late 19th century through
the middle of the 20th century. The focus is to introduce the mathematical world
which was created by my advisor, Kiyoshi Oka (1901-1978). I have attempted to
remain as close as possible to Oka's original work.

Kiyoshi Oka, at the beginning of his research. regarded the collection of prob-
lems which he encountered in the study of domains of holomorphy as large moun-
tains which separate today and tomorrow. Thus, he believed that there could be
no essential progress in analysis without climbing over these mountains.

The work of Oka can be divided into two parts. The first is the study of analytic
functions in univalent domains in C". Here he proved that three concepts: domains
of holomorphy, holomorphically convex domains. and pseudoconvex domains, are
equivalent: and. moreover. that the Poincare problem. the Cousin problems. and the
Runge problem - when stated properly - can be solved in domains of holomorphy
satisfying the appropriate conditions. The second part was to establish a method by
which we can study analytic functions defined in a ramified domain over C" in which
the branch points are considered as interior points of the domain. He proceeded in
this later work under the assumption that the results valid in univalent domains in
C" should similarly hold in a ramified domain over C". However, the true situation
was contrary to his intuition, i.e.. a ramified domain of holomorphy is not always a
holomnorphically convex domain.

Oka's establishment of his method to treat analytic functions in a ramified
domain has proved to be indispensable not only in analysis but also in other fields
of mathematics.

This book consists of parts I and II, according to Oka's earlier and later work
mentioned above. In part I we treat analytic functions in a univalent domain in
C". In part II we treat analytic functions in an analytic space: this is a slight
generalization of a ramified domain over C". The one exception to our adherence
to Oka's program is that the fact that a pseudoconvex univalent domain is a domain
of holomorphy will be proved in part II in a more general setting by modifying Oka's
original ideas.

A mathematical object is abstract and is described by use of words and nota-
tion. We should note that the words and the notation themselves are not really
mathematics. Mathematics can be realized as a flow of the consciousness which
is really creating mathematical nature. After such a process. mathematical nature
lives individually in the mind of each person who has studied it. He seems to hear
a voice coming from the bottom of his mind. or to feel the glow of a living object
within his mind. This process is essential when we study the established works
of the pioneers of a field. If mathematical nature lives correctly within a person's
mind, then when he encounters a certain problem, he may not recall the knowledge
to solve it immediately, but he will be able to understand the problem itself in order
to solve it.
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The difficulty in studying mathematics is the procedure for giving life and
meaning to the mathematics. The first step is to organize and expand upon the
material written by use of words and notation in a concrete form. so that we can
proceed with further steps.

I hope that this book is a worthwhile initial step for the reader in order to
understand the mathematical world which was created by Kiyoshi Oka.

Toshio Nishino
June 22. 1996 at Kyoto





Preface to the English Edition

This book was written, after long consideration, with the intent to make Oka's
original ideas easier to understand. One of the main reasons to pursue this project
was the recommendation of Professor John Wermer. During the time while I was
writing the original version of the book in Japanese, Professor Katsumi Nomizu
had already started urging the AMS to publish an English translation.

Oka's original papers may appear to be difficult to read. However, when we
truly understand his original thoughts, we gain much more than simply mathemat-
ical results. I hope that this book helps the reader to better comprehend Oka's
work.

As for the English translation, Professors Norman Levenberg (Auckland Uni-
versity) and Hiroshi Yamaguchi (Nara Women's University) devoted much time
and effort to translating the Japanese version; they had to overcome the difficulties
caused by the many differences between Western and Japanese culture. I greatly
appreciate their effort. Also, many thanks to the people at the AMS, particularly
Ralph Sizer, for their patience and understanding.

Toshio Nishino
March 3, 2000 at Kyoto
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CHAPTER 1

Holomorphic Functions and Domains of
Holomorphy

1.1. Complex Euclidean Space

1.1.1. Complex Euclidean Space. We let C denote the Euclidean plane
of one complex variable. To emphasize the variable used. e.g.. w, we use the
notation C. For a positive integer n, we let C" denote the n-dimensional complex
Euclidean space generated by the n complex variables zl.... , z". Given a point
z = (zl, ... , z,,) E C", we call zj the j-th coordinate of z and we call C__, the
j-th coordinate plane of C". Then C" is the product of the n complex planes
Cz, (j = 1.... , n). It is sometimes convenient to use the two real-dimensional
plane to model Cz, . To visualize a point z' = (z' ..... z,,) of C'. we imagine n
coordinate planes Cz, (j = 1.... , n) lying on the same plane C: we take the point
z on C2, for j = I.... , n and regard their combination as the point z' in C" (see
Figure 1).

C=,

C":

Cz, C,,

FIGURE 1. Representation of a point in C"

By a linear coordinate transformation we mean a linear transformation of

G: w,=b,+a,iz1+...+a,,,z,, (i=1....,n)
where b,, a,, (i, j = 1,.... n) are complex numbers with det(a,J) 96 0. We refer
to (WI.... ,w") as the new coordinate system of C"; thus if a point P« E C"
has coordinates z° _ (z°..... z;;) in the (old) coordinate system (z1, ... , z"), then
it has coordinates w° _ (w°.... wn) in the new coordinate system (w1.... ,
where w° = G(z°).

1.1.2. Projections, Product Spaces, and Sections. Let r and s be posi-
tive integers and set n = r + s. The space C" of the n variables zl.... , z,, is the
product of C' with variables zl,... , z, and C' with variables z,+1, ... , z". For a
point z' = (z' .... , z;,) E C", we call (z',.... , z') the projection of z' to C' and

3



4 1. HOLOMORPHIC FUNCTIONS AND DOMAINS OF HOLOMORPHY

we call the map sending z' = (zi,.. .z") to (z..... .z;) the projection from C"
to Cr. For a subset E of C", the set consisting of the projections of all points z
in E is called the projection of E to C' and will be denoted E. We define in a
similar manner the projection from C" to C.

Let E1 C Cr and E2 C C3. For any z' = z;.) in Cr and z" _
z;;) in C we consider the ordered pair

(Z,Z ) = (Z1,... ,Zr>Zr+I,... Zn

as a point of C". We denote the set of all such pairs by E, x E2, called the product
set of El and E2. In a similar manner we can define the product set of more than
two sets. Let C" = Cr x C8 and let E C C". For a = (a,.... , ar) E Cr we let
E(a) denote the set of all points of E whose projection to Cr is a, and we call
E(a) the section (or fiber, sometimes) of E over zj = a, (j = 1.... ,r). Note
that the projection of E(a) to the space C8 is one-to-one. Thus we often identify
E(a) C C" with the projection of E(a) to C5, and we consider E as a variation of
the sets E(a) in C8 varying with the parameter a E Cr. In the special case where
E = El x E2, we identify E(a) with E2 for a E El and with 0 for a ¢ El.

Let E C C" and F C Cr. We let E(F) C C" denote the set of all points of E
whose projection to Cr is contained in F; i.e.,

E(F) = U E(a).
aE F

1.1.3. Domains and Product Domains. By a domain in C" we will mean
an open and connected subset of C", although we will have occasion to drop the
connectivity assumption. We let OD denote the boundary of the domain D. In
general, for any subset E of C", we let E denote the closure of E. For a bounded
domain D, we call the closure D = D U OD of D a closed domain.

To represent a domain D in C" more concretely. as described in 1.1.1 we
consider n coordinate planes C,, (j = 1,... , n) on the same plane C. Tak-
ing a point z,' (j = 1,... n - 1) on each coordinate plane C:,, we set z' =

,zit_,) E C"-1. On the coordinate plane C.., we draw the section D(z')
of D over z, = z,' (j = 1,... ,n - 1) (identifying this section with its projection to
C..), so that D(z'), which is a domain in C_.,, varies with the parameter z' E Cn-1.
The totality of these sections D(z'), varying in the complex plane C,,, , gives a real-
ization of the domain D in C". We remark that even if D is connected and simply
connected in C", a section D(z') in C=" is not necessarily connected.

C`I

ZI

. Zn-1

FIGURE 2. Representation of a domain
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Let A, be a domain in the coordinate plane C., (j = 1..... rr). The product
set . = d, x ... x 0 in C" is called a product domain in C", and ,A; C C. is
called the zj component set of A. When n _> 2 and each Jj is connected (but not
necessarily simply connected), the boundary (9A of the product domain A consists
of one connected component. The product domain A is connected and simply
connected if and only if each -j component set ,, (j = 1.....n) is conuect(d and
simply connected. In general, there is no easy way to describe. geometrically or

a domain in C". However. in the case of product domains A. we can
represent the component sets of p on n separate coordinate planes. Often when we
need to choose a neighborhood of a point z in C". we will take a product domain
consisting of one simply connected component.

1.1.4. Complex Hyperplanes, Polydisks, and Balls. Let n and rn (0 <
m < n) be positive integers. We consider the space C" of n complex variables
zl..... z", and the space C"' of m complex variables t I..... t,,,. Let ajk (j =
1.... n: k = 1.....m) be nm complex numbers such that the rank of the matrix
(ajk) is equal to m. and let bj (j = I.... , n) be any n complex numbers. Consider
the mapping T from C"' to C" sending (tI.....t,,,) to (cI.....z,,) by the rule

Zj =a)ltl +...+aj-tn,+bb (j = 1.... .n).

We call the image set L := T(C") an m-dimensional complex hyperplane in
C". In particlar. when in = 1. L is called a complex line. An m.-dimensional
complex hyperplane can also be given as the solution set of a finite number of
simultaneous linear equations for n unknown complex numbers z j .... , s,,.

Let E C C" and let L = T(C"') be an rn-dimensional complex hyperplane in
C". Then E n L is called the section of E in L in C". We often identify E n L
with its pre-image T-I (E n L) in C"'.

REMARK 1.1. We can identify C" with real 2n-dimensional Euclidean space
R2". Under this identification. an in-dimensional hyperplane L in C" is always a
real 2m-dimensional hyperplane. However, not all real 2m-dimensional hyperplanes
can be regarded as complex m-dimensional hyperplanes. For example, given two
distinct points p and q in C". the family of all real two-dimensional hyperplanes
passing through p and q is a (2n - 2)-dimensional real-parameter family. among
which exactly one plane is a complex line.

Let a=(a,.... . a,,) E C" andrj>0(j=1.....n). We call the subset of C"
given by

0 : lcj - ail < rj (j=1.....n).
the (open) polydisk centered at a with polyradius r, (j = 1..... n). This is a
special type of product domain. In particular. when r, = r (j = 1..... n). we call
A a polydisk with radius r. We allow rj = +x. The closure ;1 of . is called a
closed polydisk. If n = 2. A is called a bidisk.

For a polydisk 0 centered at a with polyradius rj (j = 1..... n). we call

e : Iz. - ajI = r, (j=1.....n)
the distinguished boundary of A. The topological boundary J.7 of A in C" is
a real (2n -1)-dimensional set which contains the real n-dimensional distinguished
boundary E.
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Let a = (a1, ... a") E C" and let r > 0. We call the subset of C" given by

B : Iz1 <r2

the open (Euclidean) ball centered at a with radius r and

Q : Iz1 -a1I2+...+Iz,, -a"I2 <r2

the closed ball centered at a with radius r. We often use the simple notation:

flz - all :_ (Jzl - a1I2 + ... + Iz" - a,, I2)1/2

for any z, a E C".

REMARK 1.2. Let Q be the closed ball centered at the origin with radius r in
C" and let L be a complex line passing through the origin in C". Define Q" = QnL.
Then the projection CC of Q" to each coordinate plane C., is a disk centered at
zJ = 0 (possibly of radius 0). Furthermore, if we let rJ (j = 1, .... n) denote the
radius of the disk C. (j = I.... , n), then r2 = :'=1 rf. so that the Euclidean area
irr2 of Q° is equal to the sum 71 .,. rJ of the Euclidean areas of these disks.

1.1.5. Boundary Distance. Let D be a domain in C". For z' = (z .... z;, )
E D, the supremum of r > 0 such that the closed ball

Qr : IzI-zjl2+...+Iz"-z:,I1<rz

centered at z' with radius r is contained in D is called the (Euclidean) boundary
distance from z' to OD and is denoted by dn(z'). Note that ld,,(z') - dt,(z"); <-
11--, - z"II for z'. z" E D. The boundary distance thus defines a positive-valued,
continuous function dD(z) on D called the boundary distance function on D.
For E C D.

dD(E) := inf dr,(z)

is called the boundary distance from E to OD.
We also consider another kind of boundary distance. For z' E D. the supremum

of r > 0 such that the closed polydisk

Or : Izj - z,I < r (j=I....,n)
centered at z' with radius r is contained in D is called the polydisk boundary
distance from z' to OD and is denoted by 6D(z'). For E C D.

6D(E) .= In ,6D(z)

is called the polydisk boundary distance from E to OD.

For D C C" and E C D. P n D is called the closure of E in D. If E n D
is compact, we say E is relatively compact in D and we write E CC D. For
example, if D is a bounded domain in C", and if the Euclidean or poly disk boundary
distance from E to 8D is positive, then E is relatively compact in D. However,
this is not true in general if D is unbounded.
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1.1.6. Compactification. We often want to add ideal boundary points to
C" in such a way that the new space becomes compact. If n = 1, there is a unique
compactification obtained by adding one ideal boundary point to C; this gives the
Riemann sphere C. If n > 2, there are several possible compactifications of C";
we discuss two standard ones.

1. Osgood Space. In C" with coordinates z i ,.... z,,. let C., (j = 1, ... , n) be
the Riemann sphere of the coordinate plane C,,. The product space

C"=C, x...xC
is called n-dimensional Osgood space. Thus. in a sense, n-dimensional Osgood
space C" is constructed by adding n copies of (n - 1)-dimensional Osgood space
an-1 to C-.

The mapping t(zi.... , (w1.... , w"). where

a., z. + bjwJ= (ad. -bjr.J#0, j=1....,tl)
cjzj + dj

are linear fractional transformations, defines an analytic bijection from C" to C".
These transformations are transitive on Cl: i.e.. given any point (z',,... , z;,) E C" ,
there exists 40 as above with 1(z',.... , z;,) = (0..... 0).

2. Projective Space. Let z' z' and r" z" " z") be0 11

points in C"+' \ {0}. We call these points equivalent if there exists c E C \ {0}
such that z" = cz'j (j = 0, 1.... , n). The equivalence classes in C"+I \ {0} form
an n-dimensional space called complex projective space, which we denote by
P". The coordinates z = (zo, z1 , .... z,,) are called homogeneous coordinates
for P" and will be denoted by [zo : zi :...: If n = 1, P' := P is equal to the
Riemann sphere C.

We get a bijective correspondence by sending the point z = [z() : Z, :...: z,,1
in P" with zo 9k 0 to the point w = (w1.... ,w") in C". where

wj=z1/ZO (j=1,...,n).
The set of all points z = [zo : zi : ... : z,,] E P" with zo = 0 can be identified with
the (n - 1)-dimensional complex space consisting of all points with homogeneous
coordinates (zi.... , z") in C" \ {0}. Thus P" is a compactification of C" obtained
by adding the space P"'1 as the set of ideal boundary points to C". We call C"
the finite part of P" and P"--' the hyperplane at infinity; the coordinates
w = (wl, ... , w") are called inhomogeneous coordinates for P" \ P"-

Let m < n be a positive integer and letLet

Lk(Z) = aokZo + alkzl + ... + (Lnk2n (k = 1... , m)

be linear functions of z = [zo : zi ...: The set HL of all points z E P" which
satisfy the equations Li(z) = = L",(z) = 0 is called a complex hyperplane
in P". When the functions Lk(z) (k = 1, .... m) are linearly independent, HL is
(n - m)-dimensional and may be considered as an (n - m)-dimensional projective
space.

Let A = (a, j) be an (n + 1. n + 1) matrix with non-zero determinant. The linear
transformation'I'([zo : zi :...: z,,]) ([wo : wi : where

wj =aojzo+aijzl +...+a,,,,z,, (j =0.1.... ,n).
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is an analytic bijection between P" with homogeneous coordinates z and P" with
homogeneous coordinates w. We call 4' a projective transformation of P".
These transformations are transitive on P": given any point with homogeneous
coordinates [z0 : z1 : ... : E P". there exists 4) as above with (D([--o : zl :...
Z"])_[1:0:...0].

1.2. Analytic Functions

1.2.1. Power Series. Fix a = (a1.... . a power series
centered at a in the n complex variables z1..... z,,:

P(z) = o,,.....j. (z1 -a,)" ... (z - a")J..

Jt.....J..>Il

The set of all points z' in C" such that P(z) converges uniformly in some neigh-
borhood of z' is called the domain of convergence of P(z) and is denoted by
DF. Clearly Dp is open.

REMARK 1.3. If n > 2. there may exist points z' ¢ Dr for which P(z') con-
verges. For example. in C2 with coordinates (zl.z2). consider the power series

P(zz1. z2) = 41 + :1.,2 + Y1-_2 + .. .

centered at (0.0). Then DP is the bidisk (Iz,I < zc) x (Iz2I < 1). while P(z1.z2)
converges at any point on the complex line z1 = 0.

If the domain of convergence Dr of a power series P(z) is not empty, then
P(z) defines a continuous function on Dr that has partial derivatives 82/8zj. j =
1..... n. which are obtained by termwise differentiation of P(z) with respect to
zj, j = 1..... n. Here we define d/dzj in the usual calculus sense: for more on
these differential operators. see Remark 1.6 in section 1.3.2. A complex-valued
function f(z) defined in a domain D in C" is called analytic in D if f(z) can be
represented by a convergent power series in a neighborhood of each point in D.

Let D be a domain in C" and let a = (a1.... E C". If whenever
(z,.... , z;,) lies in D. the entire distinguished boundary

I=J -a,I = Iz' - a,l (j=1,....n)
of the polydisk Izj - a,I < ]zj' - a,I (j = 1..... n) is contained in V. then D is
called a R.einhardt domain centered at a. If. moreover. Z' = (z1.....z;,) E D
implies that the entire closed polydisk

IzJ - a,I IZj - aJI (j = 1..... n)
is contained in D. then the Reinhardt domain D centered at a is said to be com-
plete.

PROPOSITION I.I. The domain of convergence Dp of a power series P(z) cen-
tered at a in C" is a complete Reinharrlt domain centered at a.

PROOF. If z' = (z' ..... z;,) ED-p. then the terms
- j'... ' - J.,

in the series P(z') converge to 0 as j1 + ... + j., zc. Hence it suffices to prove
that if the terms in the series P(z') are bounded, then P(z) converges uniformly
on each compact subset of the polydisk

A : IzJ - a.I < Iz; - a,I (j n).



1.2. ANALYTIC FUNC"rIONS 9

Thus we assume there exists an Al > 0 such that

la.,,.... (zi - a1)n ... (z,, - an)j,.I < AI

for all j1..... jn. Let 0 < p < 1. In the closed polydisk

Izj - ail <_ Plz. - ajl (j=1.....n),
we have

E Ian... J.. (z1 - a1)" ... (3n - a,,)i,

I

(1 -Pyrej,.....j.,>0

Thus P(z) converges absolutely and uniformly on any compact subset of A. Since
z' was an arbitrary point of Dr. it follows that D9 is a complete Reinhardt domain
centered at a.

1.2.2. Associated Multiradius of Convergence. Let r = (r1.... , r,,) be
an n-tuple of positive numbers. Let P(z) be a power series centered at a =

in Cn. If P(z) is convergent in the polydisk

A : Iz,-a,l <r, (j n)

and is divergent in the product domain

l zj -ail >r) (j = 1, ... , n).
then r is called an associated multiradius of convergence of P(z). Note that
we make no assumptions for points on the topological boundary of A.

An associated multiradius of convergence can be determined by the following
formula.

THEOREM 1.1 (Hadamard). If r is an associated multiradius of convergence of
P(z), then

r' ...r;; = 1. (1.1)

PROOF. Let r = (r1.... ,r,,) be an associated multiradius of convergence of

P(z) and let p := ' ' ri . We prove that p = 1
by contradiction. If p < 1. fix p' with p < p' < 1. Then

I ai, .....,.. 1 1
r <

for all but a finite number of n-tuples (j1.... , jn). Then for any z' satisfying

IzJ-aJl=Li (j n),

we have
, j

for all but finitely many terms. Thus, as noted in the proof of Proposition 1.1, P(z)
is convergent in the polydisk I z j - a, I < r, l p' (j = I ..... n). Since 0 < p' < 1. this
contradicts the fact that r is an associated multiradius of convergence of P(z).

On the other hand, if p > 1. fix p' with p > p' > 1. Then
-. , . , ,

Iajt.....,,, > P
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for infinitely many n-tuples (jr.... , Then for any z' satisfying
r

z, - a,1I = p' (j = l..... n).

we have

(zi - a1)!, ... (z'. - a.)", I > 1
for infinitely many terms. Since p' > 1, this again contradicts our assumption that
r is an associated multiradius of convergence of P(z). C

The theorem implies that the power series oP/Oz, obtained by differentiating
each term of P with respect to zj is a power series centered at a having the same
associated multiradius of convergence as P.

REMARK 1.4. We have z0 E Dp if and only if there exist a neighborhood 6 of
z0 in C" and constants Af > 0 and 0 < p < 1 such that

Iah.... "(z1 - a1)l' ... (z" - a")1"I < Afp

for all j = (j1,..., j") and z E 6.

1.2.3. Convexity of Domains of Convergence. Thus far, the theory of
power series of several complex variables has not differed significantly from the
theory in one complex variable. In this section. we will study a type of convexity
occurring in all domains of convergence Vp.

Let D be a complete Reinhardt domain centered at a = (a1.... , a") in C" and
let £(z1, ... , z") := (ul,... , where

uj:=log I z,-aj I (j=1....,n):
thus ,C is a mapping from C" \ (a} into R". We let D denote the image of D under
L. If b is geometrically convex as a subset of R. we say that D is logarithmically
convex in C".

THEOREM 1.2 (Fabry). The domain of convergence Vp of a power series P(z)
centered at a in C" is logarithmically convex in C".

PROOF. Let Dp c R" be the image of Vp under the mapping C. We will use
u1, ... , u" for coordinates in R". Associated to each terns

aj"... j" (zl - a1)J1 ... (z" - a")7"

of the power series P(z), we let H(j) be the half-space in R" defined by

H(1) : j 1 u 1 + + j"u" + log I ai, ,.... j I < 0.

A point u' E R" belongs to Dp if and only if there is a neighborhood V of u'
in R" such that V C H(j) for all but finitely many j = (this follows
from Remark 1.4). Since H(j) is a half-space. it follows that if u' and u" are
contained in Dp, then the segment [u', u"] in R" is also contained in ii,. Thus Dp
is geometrically convex in R". 0

This fact was discovered in 1902 by Fabry [18]; it shows that. the domain of
convergence of a power series in several complex variables has very special prop-
erties. The theorem implies that the zero set of a holomorphic function of it > 2
complex variables does not contain isolated points.
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EXAMPLE 1.1. In C2 with coordinates z1 and z,, let

Z1 eZ2)= a.AZjz2( 2

j.k>o

be a power series about (0.0). If the domain of convergence Dr of P(zt. Z2) contains
the polydisks

Iz1I < 1. IZ2I < ac and IzI I < C. Iz2I < 1,

then Dp is all of C2.

1.2.4. Estimation of Coefficients. We next study the Cauchy estimates for
coefficients of power series. Let

P(z) _ a,,.... (zl - at)" ... (z" -

a power series centered at a E C" and let Dp be the domain of convergence of
P(z). Let

2S:Iz,-a,J5r,3 (j=1.....n)
be a closed polydisk contained in Dr, and fix Al > 0 such that

IP(z)I 5 Al in ;i.

THEOREM 1.3 (Cauchy Estimates). The coefficients of P(z) satisfy

Al
I ... ,.R"

PROOF. Let v = (vl.... , be an n-tuple of integers. Then
2

f(e'81)"f , _ ... (eie.. )v., del ... dga 0,
(2,r)

v
v = (0

(0...... ,.0).
0).o

where i2 = -1. We let E denote the distinguished boundary of A, i.e., E : I z. -aj
r. (j = 1.... , n), and we form the integral

I - r r P(Z) dz1
... dx"

J J (zl - a1))'1 ... (z,, - a")2.,+t

By integrating term by term, we obtain

I =

On the other hand, standard estimates for the integral yield

III <
(2rr)"M

and the result follows. l7

COROLLARY 1.1. If two power series Pt (z) and V2(z) centered at a in C" agree
in a neighborhood of a, then they are identical.
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1.3. Holomorphic Functions

1.3.1. Definition. Let f (z) be a complex-valued function defined on a domain
D in C". If f (z) satisfies the following two conditions:

1. f (z) is continuous in D. and
2. f (z) has partial derivatives Of/8zl (j = 1..... n) in D,

then we say that f (z) is a holomorphic function on D. For a closed subset E of
C". we say f(z) is holomorphic on E if f(z) is holomorphic in a neighborhood
of E. In particular, we often use the terminology that f (z) is holomorphic at a
point a if f (z) is defined and is holomorphic in a neighborhood of a in C".

By this definition, a holomorphic function f (z) is necee arily holomorphic in
each variable zj (j = 1..... n) separately. Thus, many propeties for holomorphic
functions of one complex variable remain valid for holomorphic functions of several
complex variables.

One of the most important properties is the Cauchy integral representation
of holomorphic functions on polydisks. Let 1) be a domain in C" and let a =
(at.... , an) be a point in D. Let

o : Iz, - a, I5rj (j=1,....n)
be a closed polydisk centered at a which is contained in D; as usual we let E be the
distinguished boundary of A.

THEOREM 1.4 (Cauchy Integral Formula). If f (z) is holomorphic on D, then
f (z) has the following integral representation in A:

f(zi,....zn) = 1

,e f ..
d(l...dd,,

(27ri) £ ((1 - zi) ... (fin - Z.)

PROOF. The proof is by induction on the dimension n. For it = 1 this is the
classical Cauchy integral formula. d'i'e now assume the result is true in dimension
n - 1. Fix any point z = (zi.... , in J. Since f (z) is holomorphic in the
complex variable z1, we have from the one-variable case that

f(z )= 1 r f((1.z ....zn)d(i,
(1.2)1, zn

27ri e, (I - zl
where Ei = fizi - ail = rl}. Now fix any point (i on the circle El. Then
f (Si, z2, ... , zn) is a holomorphic function of the n - 1 complex variables z2.... , z
on the closed polydisk W : Iz3 - ail < r, (j = 2, .... n) in C"'. It follows from
the inductive hypothesis that

f((l,z2.... zn) = 1
f((1. 2.... .(n)

(27ri)n-1 J£' (S2 - z2) . ((,, - zn)
where E' denotes the distinguished boundary of A'. We substitute this formula
into (1.2) to obtain an iterated integral. Since f (z) is continuous in D, the iterated
integral can be replaced by the desired integral formula.

REMARK 1.5. This proof also gives a Cauchy integral formula for holomorphic
functions f(z) in D when the polydisk is replaced by any product domain t =
Ai x ... x A contained in D having boundary component sets OA, which consist
of smooth curves in the plane C:, Here, the integration takes place over the it
real-dimensional set OAl x x 8&,,.
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It follows from Theorem 1.4 that any holomorphic function f (z) in D has partial
derivatives of all orders with respect to each variable zJ (j = 1.... . n) at any point
of D and the resulting functions are also holomorphic in D. Furthermore, in any
closed polydisk 2i e D centered at a point a in D. f (z) can be expanded into an
absolutely and uniformly convergent power series P(z): hence f (z) is analytic in
D. Thus the holomorphic functions of several complex variables are also analytic,
just as in the case of one complex variable. By the Cauchy integral formula, we can
write any partial derivative

a,r+...-J., f
z}(az 3 ... (9z",

of f(z) as

j1!... j,! JJ/ I f(C1,... ,(n)
(21ri)n

f
((1 - ZIP" ... ((n - 1

...d(.

It follows that/ if we write

f(Z) = P(z) = Ji.....j.. (z1 - a1)Jr ... (z - an)J..

in A. then the coefficient is given by

I f((1.....(n)
a)I .... J = 1 ...

(ZTrt ), r ((l - ai)Ji+1 ... ((n - an)J..+1

1.3.2. Cauchy-Riemann Equations. In this section we study the real and
imaginary parts of a holomorphic function of it complex variables z = (z1.... , zn).
We write

zJ =xj+:yj (t2=-1: j = 1,... ,n),
where xj and yj are real numbers. For a holomorphic function f (z), we set

f (z) = u(x. Y) + iv(x. Y).

where u(x, y) and v(x, y) are the real and imaginary parts of f (z); x = (xl, ... , xn )
and y = (y1, ... , y,,). From the one-variable Cauchy-Riemann equations for each
z; (j = I.... n), we have

au or on Or
(j = 1.....n). (1.3)

ax;
__

ay; , ay; axJ

By differentiating these equations with respect to xk and yk, we see that both the
real and the imaginary parts of a holomorphic function satisfy the following system
of partial differential equations of second order:

a2 a2
19;

(92,
a2+ =0, - =0 (j.k=L...,n). (1.4)

ax;axk ayjayk axjayk arkay;

A function ,'(x, y) satisfying (1.4) is called pluriharmonic. If u and v satisfy (1.3).
we call v a pluriharmonic conjugate of u.

In general, a real- or complex-valued function y(x. y) defined on a domain D in
C" is said to be of class C2 if it is of class C2 with respect to the 2n real variables
xj and yj.
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For a real-valued function u(x,y) of class C2 on a domain D in C", we define
the 1-form

n 8u is
t9u

w E -dr, j + E dyj
3=1 OY) j=I 8xi

Condition (1.4) for the function u is equivalent to the condition that 4 is locally
exact in D. In this case, if we take v with dv = w, then u and v satisfy condition
(1.3). If D is simply connected and we set

f (z) = u(x, y) + iv(x. Y),

then f (z) is a holomorphic function of zl.... , z,,.

REMARK 1.6. For a complex variable z) = xj + iyj. we define

8 l a a 8 l t3 a
8zj-2 8x,-4ayj 6Tj-2

8x,+idyl

Then condition (1.3) that the complex-valued function f (zl .... , is differentiable
with respect to the variable zj becomes

Of
= U.

i j
Similarly, condition (1.4) that a real-valued function u(z1..... is pluriharmonic
becomes

02u k== 0 i t ,

We will use these conditions for the rest of the book.

I.S.S. Plurlharmonic Functions. From the definition in the previous sec-
tion, it follows that a pluriharmonic function u(z) is a harmonic function with re-
spect to the 2n real variables x1.... , x and yl .... , y,,. namely. F-J"_ I (d2u/8x +
t o/t3y.1) = 0. Moreover, such a function is harmonic with respect to each complex
variable zj = xj + iy,:

02u82u+
_

0 (j=l,...,n8x2 dye )

Indeed, the following stronger condition is valid.

PROPOSITION 1.2. Let V(z) be a real-valued function of class C2 in a domain
D C C". Then 9(z) is pluriharmonic in D if and only if for any complex line L,
the restriction of V(z) to L n D is harmonic as a function of one complex variable
on each component of L fl D.

PROOF. Let L : t - ct + b be a complex line which passes though a point
b = (bl .... , b") E D and has a direction given by c = (Cl , .... c,,) E C" \ {0}. For
any t E C such that ct + b E D. we set

Then
024)

;P(t) = (ct + b)c,ek,
jk=1 7 k

and the result follows. El
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As with Cauchy's integral formula. Poisson's formula in one complex variable
can be generalized to the case of n complex variables. Let D be a domain in C" and
fix a = (a1.... E D. Let 0 be a closed polydisk centered at a and contained
in D:

A : jzj - aJI<rJ (j=1....,n).
Reset

z

r2 - p
rj + p.? - 2rj pj cos(O, -10, )

the one-variable Poisson kernel for jzJ -a, I < rj, where zJ = and define
71

P(r.p.B,19) = fl Pj(rJ, pi,9) .19J).
J=1

the Poisson kernel for A C C". For any z = (z1.... , z") in A; i.e., zJ = aJ+pjeil,
with pJ < rj, a pluriharmonic function p(z) in D can be represented at z using the
Poisson formula

2x

V P(r,p,0.19)V(re's+a)dB1...d8". (1.5)(zl,z") _ (21
...f2w

where we use the notation rei0 + a = (r1 ei0' + al.... , r"e`0^ +a,,).

REMARK 1.7. Poisson's formula (1.5) is valid for any C2 function .p(z) which is
harmonic in each complex variable zJ (j = L... . n). However, a function which is
harmonic in each complex variable z j (j = 1.... , n) is not necessarily pluriharmonic
in the n complex variables z = (x1..... z,,). For example, in C2 with coordinates
zi = x1 + 41, z2 = x2 + iy2, consider the function

1*-1, z2) = X1y1X2Y2

This function is harmonic in each complex variable z1 and z2. but it is not pluri-
harmonic in z = (z1, z2).

If pp(() is any real-valued function of class C2 on the distinguished boundary
of the polydisk A in C". n > 2, the function ,(z) in A defined by the Poisson
integral formula (1.5) is harmonic in each complex variable zJ but is not necessarily
pluriharmonic in z = (zl,... ,z").

1.3.4. Elementary Properties of Holomorphic Functions. We list some
elementary properties of holomorphic functions of several complex variables which
are proved by the same methods as in the case of one complex variable.

1. Liouville's theorem. Let f (z) be an entire function in C"; i.e.. a
holomorphic function in all of C". If If (z)j is bounded in C", then f (z) is
a constant in C". More generally, let A,. : Izj I < r (j = 1,... . n) and let
M(r) = Max{If(z)I I z E &r}. If there exists an integer v > 1 such that

lim M(r)/r" = 0,r-x
then f (z) is a polynomial of degree at most v -- 1 in C".

Contrary to the case of one complex variable, there exist domains D in C". n >
1, with C" \D having non-empty interior but such that every bounded holomorphic
function in D is constant. For example, we will soon see (as a consequence of
Osgood's theorem in section 1.5.2) that the complement of a ball has this property.
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2. Identity theorem. Let f (z) and gg(z) be holomorphic functions in a
domain D in C". If f (z) = g(z) for all z in a non-empty open set 6 in D. then
f (z) __ g(z) in D. Hence, analytic continuation of holomorphic functions in several
complex variables can be performed as in the case of one complex variable.

Contrary to the case of one complex variable. the zero set of a holomorphic
function in a domain D C C". n > 2. contains no isolated points. Thus, even if
f (z) = g(z) in a set with accumulation points in D. it does not necessarily follow
that f (z) = g(z) in D. For example. in Cl with variables z and u'. we can take
f (z. u) = z and g(z. u) = z2.

3. Maximum principle. Let f (z) be a holomorphic function in a domain D
in C". If If (z) I attains its maximum at a point of D. then f (z) is constant in D.

Contrary to the case of one complex variable. in some domains D in C". n > 1.
there exists a proper closed subset e of OD such that any holomorphic function
f (z) in D with continuous boundary values attains its maximum modulus at a
point of e. Given D C C". the smallest set e C 8D with this property is called
the Shilov boundary of D. For example. the Shilov boundary of a polydisk
z , I < r j (j = 1 . . . . , n) is the distinguished boundary 1 z 1 = r., (j = 1.... , n): on

the other hand, the Shilov boundary of an open ball B is the topological boundary,
the sphere 8B.

4. Weierstrass' theorem. Let {f,},=1,2..,. be a sequence of holomorphic
functions in a domain D in C". If If,} converges uniformly on each compact set
in D. then the limit function f (z) is a holomorphic function in D.

Let { fj} be a sequence of holomorphic functions in D which are uniformly
bounded in D; i.e.. there exists A! > 0 such that If, (z) 1 < 111 (j = 1.2....) in D.
Then Stieltjes' theorem holds: if { fi } converges uniformly on a non-empty open set

,} converges uniformly on each compact set in D. However. Vitali's6 in D. then if
theorem does not necessarily hold: if we replace 6 by a set with accumulation points
in D. { f } might not converge uniformly on each compact set in D. For example.
take D to be the unit bidisk centered at the origin in C2 with variables z and w.
and take f,(z,w) := (-1)3z3, j = 1,2,....

5. Montel's theorem. Let F be a family of holomorphic functions in D.
Assume that there exists an M > 0 such that If (z) I < 111 in D for all f E F. Then
Jr is uniformly equicontinuous in D and hence is a normal family. By Picard's
theorem we can replace the uniform boundedness by the condition that there exist
two different complex values a and b such that each f E F omits the values a and
b in D.

0. Rado's theorem. Let f (z) be a complex-valued continuous function in D
and let e be the zero set of f (z). i.e.. e = {z E DI f (z) = 0}. If f (--) is holomorphic
in D \ e. then f (z) is holomorphic in all of D.

REMARK 1.8. Although Rado's theorem is important in t11e theory of functions
in one and several complex variables, its proof is not often given in standard text-
books. Below we give the proof in the case where D is the unit disk in one complex
variable.

PROOF. Let A : (zI < 1 in C. and let f(z) t: 0 be a continuous function in
with If (z)I < 1. We let e denote the zero set of f (z) in A. and we let w denote
the interior of 0 \ e. Let u(z) = tf (z) on A. We form the harmonic function u(z)
on A. where u(z) = u(z) on 8A. by use of the Poisson integral formula. It follows
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from the maximum principle for harmonic functions that for any y > 0.

?log If(z)I 5 u(z) - u(--)< -i log If(z)I, z E A.

Hence u(z) = u(z) on w. Similarly, we have i(z) = v(z) in w for u(z) = 3'f(z).
We set f (z) := 11(z) + i%(z) in A. Since f (z) = f (z) in w. it follows that f (z) is
holomorphic in A. On the other hand, both f(z) and f(z) are continuous on A
and the zero set of f (z) is isolated in ,: hence. e is isolated and f (z) f (z) in
J.

1.3.5. Holomorphic Mappings. We let z = (z,..... z") denote the vari-
ables in C" and w = (w,..... w,,,) those for C'". Let D C C" be a domain and
let fk(z) (k = 1, .... m) be holomorphic functions in D. We call

T : wk = fk(z) (k = 1..... m)
a holomorphic mapping from D into C"'. If T(D) C D' C C"', then T is
called a holomorphic mapping from D into D'.

Let T : wk = fk(z) (k = 1..... m) be a holomorphic mapping from D into D',
and let 9(w,,... , w,,,) be a holomorphic function in D'. Then

G(z) = g(f, (z)..... f, (z))
is a holomorphic function in D which satisfies

aG ag Of, a9 Of,,,
Oz; ow, 8z, +

+
aw" az; (i = 1.... , na).

For a holomorphic mapping T : wk = fk(z) (k = 1.....m), we call the matrix

a(fl .fm) (afkl (1 = 1.....n: k = 1. ...m)

the (complex) Jacobian matrix of T. In the case m = n. the determinant
8U, ..... A)
a(z1... , z") =I \afi/) (3,k=1, .. .n)

is called the (complex) Jacobian determinant of T.

Let T, : wk = fk(z) (k = 1,... , in) be a holomorphic mapping from D, C C"
into D2 C C' and let T2 : irk = gk(w) (k = 1.....1) be a holomorphic mapping
from D2 into D3 C C'. Then the composition T = T2 oT, is a holomorphic mapping
from D1 into D3. If we write T: vk = hk(z) (k = 1.....1), then we have

8(h,.....h,) _ a(91, ... , 91) 3(f,.....fm) (1.6)
0(z,..... z,,) - 0(w, ..... w,,,) 0(z,..... z")

In the case n = m = 1,

a(h,....h,,) _ 0(g, , .... a(f,... .f,.)
a(zl.... , zn) I - I0(w,..... w") I I a(2,.... . zn)

We prove the following.

PROPOSITION 1.3. Let T : wk = fk(z) (k = 1.... n) be a holomorphic map-
ping from D C C" into C". Suppose there exist zo E D and wo = T(zo) such
that

#0 at z=z,,.a(z,..... z")
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Then T is a bijection from a neighborhood 6 of zU onto a neighborhood 6' of wo.
and the inverse mapping T-1 is a holomorphic mapping from 6' onto 6.

We call T a biholomorphic mapping between 6 and 6. and we say that 6
and 6' are biholomorphically equivalent.

PROOF of Proposition 1.3. Let zi := xj + iyj and wk := uk + ivk. From the
Cauchy-Riemann equations.

8(u1.VI... .un.t'n) _
a(t1.tYI.....2n.t,/n) 9(z1.-T1.....Zn.Zn)

=a(fl. ,f,,,f1,. ,fn) a(fl. at 2p.
i

It follows that T is a bijection from a neighborhood 6 of zo onto a neighborhood 6'
of wv.

W e write T-1 : z j =gj(wl,v'1. .w,.u'n) (j = 1.....n). so that

2) = g)(f1(z),fI(z), fn(z),f"(Z)) (j = 1.... . n).
Thus, for each j. k (j. k = 1..... n).

az aft ) + + ag, afn in 6.ask , 04 au &k.
By taking a smaller neighborhood 6 of zo if necessary, we may assume

a(f, .... If.) # 0 in 6.
a(ZI..... Zn)

Then we have ag, Jerk = 0 (k = 1..... n) in 6'. Hence g, (w) (j = 1..... n) are
holomorphic functions in 6'. 0

The converse of Proposition 1.3 is also valid: this may be seen using (1.6):
if T is a biholomorphic mapping from 6 C C" onto 6' C C". then the Jacobian
determinant of T does not vanish in 6. Indeed, using arguments from the next
chapter. we will see that the conclusion is true without the assumption that T-1 is

a holomorphic mapping (see Remark 2.8).

1.3.6. Plurisubharmonic Functions. In the theory of functions of one com-
plex variable, the study of both harmonic and subharmonic functions is important.
In the theory of functions of several complex variables. the study of plurisubhar-
monic and pluriharmonic functions plays a much more important role than the
study of subbarmonic and harmonic functions in the underlying 2n real variables.

Let p (z) be an uppersemicontinuous function defined on a domain D in C"
with -= < p(z) < +x. If the restriction ,p L^n of Y(z) to any complex line
L in D is a subharmonic function of one complex variable on each component of
L fl D, then p(z) is called plurisubharmonic in D. For convenience, the function
,p(z) __ -oc on D is considered to be plurisubharmonic in D.

If -;p(z) is plurisubharmonic in D. .(z) is called plurisuperharmonic in D.
If both V(z) and -,.(z) are plurisubharmonic in D, then ip(z) is pluriharmonic in
D. This is clear from Proposition 1.2 if yp(z) is of class C2 in D.

If f (z) is holomorphic in D, then If (z)) and log If (z) l are plurisubharmonic in
D.

For functions of class Cz in D, we have the following criterion for plurisubhar-
monicity.
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PROPOSITION 1.4. Let W(z) be a real-valued function of class C2 on a domain
D in C". Then ip(z) is plurisubharmonic in D if and only if the complex Hessian
matrix of cp(z),

\ az
i (1.7)

k=l.. ..n.

is positive semidefinite at each point z of D.

PROOF. Fix z = (z1, ... , z") E D and let c = (cl..... c") E C" satisfy jic1j2
2=1. For tECwith ti 1. we let

11(t) := , (c,t+ z,.... z")

be the restriction of , to a small disk centered at z and in the direction of c. Then

&.11
r"

82io
$tat (0) = -+ 8z ilk (`) cock'

).k=1

which proves the proposition. 0
If the complex Hessian matrix (1.7) of (z) is positive definite at zo E D,

then y^,(z) is said to be strictly plurisubharmonic at zo. If +p(z) is strictly
plurisubharmonic at all points of D, we call ;'(z) a strictly plurisubharmonic
function in D.

The following properties of plurisubharmonic functions follow from the analo-
gous properties of subharmonic functions of one complex variable.

1. Let tp(z) be a plurisubharmonic function in D. Let 0 : jz, - aj1 < rj (j =
1, .... n) be a closed polydisk in D and let P(r. p, 0,19) = P3 (r., . P., . 0.7- 19, )

be the Poisson kernel for 0, where z) = a., + pje'u' and

ri - pJP,(rj,pi,B3A):=r+p,2 -2r cos O j
J ,p) (> > )

From the subharmonicity in each variable, we obtain

W(z1,...,z )
(2x)f2w.fw

In particular, setting p; = 0 (j = I.... , n), we have
1 2" fx

4(a) < ip(a,.dd,,.
(2rr)° o

Multiplying each side of this inequality by r, - r and integrating from r; = 0 to
r, (j = 1.... , n), we obtain

v0(a) 5 V J' f r%(zj_..z")dv,
0

where V is the Euclidean volume of 0 and dv denotes the volume element in C".

2. If WI(z) and ip2(z) are plurisubharmonic in D, then so is

iF(z) = maX(01(4'F2(2))-
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Furthermore, let {gyp, },E f be a family of plurisubharmonic functions in D which
are locally uniformly bounded above. Then the uppersemicontinuous regularization

Cz) := Tim
z'_ 'EI

of the upper envelope sup,E, p,(z) is plurisubharmonic in D.

3. Let V(z) be plurisubharmonic in D and let fi(t) be a (real-valued) convex
increasing function on -oo < t < oo. Then T(z) := C(,p(z)) is plurisubharmonic in
D.

4. Let {Vn}n=I.2.... be a sequence of plurisubharmonic functions in D. If {,;"}
converges uniformly on compact subsets of D. or if {Y:." } is monotonically decreasing
in D, then the limit function is plurisubharmonic in D. This last fact, combined
with 2. implies that if {Vn}n=1.2._.. is a sequence of plurisubharmonic functions in
D which are locally bounded above, then

lim[Tim zED.
z' -» z n- x

is a plurisubharmonic function in D.

5. (Invariance under holomorphic mappings) Let p(.-) be plurisubharmorAic in
D and let

T : zj=gj(W) (j=1.....n)
be a holomorphic mapping from a domain D' in C'" with coordinates w = (wI, ...
w,n) into D. Then

G(w) := p(g1(w),... ,gn(w))
is plurisubharmonic in D'.

1.3.7. Hartogs Series. In this section we describe another type of series
representation for holomorphic functions. To simplify the discussion we consider
the product space Cn+t = Cn x C of the n + 1 variables z1.... , zn, w, where
(zI, ... , zn) E Cn and w E C. Let D be a domain in C" and let a be a point in C.
We consider a power series

x
fl(z,w) = Eaj(z)(w-a)- (1.8)

j=0

in the single variable w centered at a, where the coefficents a_, (z) (j = 0, 1, 2.... )
are holomorphic functions in D. We call such a power series a Hartogs series in
w centered at a.

Let DCC", 0={wEC:jw-al <r},andsetG:=DxA. Then any
holomorphic function f (z, w) in G can be represented by a Hartogs series (1.8) in w
centered at a. Each coefficient aj(z) can be obtained as follows: if we fix a radius
ro (0 < ro < r) and a circle -yo : 1w - aj = ro centered at a. then

aj(z)=taiI (Sf(a))+IdC (j=0.1.2,...).

Given a Hartogs series 1-i(z, w), let DH be the set of points (z'. w') E C"+1 such
that ?{(z. w) converges uniformly in a neighborhood of (z', w'). We call Dx the
domain of convergence of fl(z, w). As we now show, the domain of convergence
of a Hartogs series is convex in a sense similar to the logarithmic convexity of the
domain of convergence of a power series.
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Let V be a domain in the product space C"*' of the n complex variables
z1, ... , z,, and the one complex variable w. If (z', w') E V implies

{z'}x{WEC:lw-al=Iw'-al}CD.
then 'D is called a Hartogs domain centered at a. Moreover, if (z', w') E D implies

{z'}x{wEC:Iw-al<Iw'-al }CD.
then the Hartogs domain V is said to be complete. In this case the projection of
D to C" is called the base of D and will be denoted by D.

Let 'D be a complete Hartogs domain in C"+' centered at a. and let D be the
base of D. For any z' E D. the section D(z') of D over zj = z), (j = 1'... , n)
may be identified with an open disk centered at a of radius 1 (z'). Thus 1(z)
defines a positive-valued function on D (which may attain the value +x). We call
R(z) the Hartogs radius of V with respect to a. Since D is open, IZ(z) is a
lowersemicontinuous function on D.

If the function -log R(z) associated to the complete Hartogs domain D is
plurisubharmonic on D. then V is said to be logarithmically convex.

THEOREM 1.5. Let 7l(z. w) be a Hartogs series centered at a such that 7{(z, w)
is holomorphic for (z, w) in D x L1 C C" x C, where D C C" and 0 = {w E C :
lw - a) < r}. Then the domain of convergence DH of 7h(z, w) is a logarithmically
convex and complete Hartogs domain centered at a.

PROOF. We may assume that a = 0 and 7t(z.w) = E' oaj(z)w'. We fix
D'xAocc Dx&, whereD'CCDandAD={wEC:JUJ <rr,}with rO<r. By
our assumption, 7((z, w) is a bounded, holomorphic function on D x Do, so that
there exists an Al > 0 such that Iaj(z)1 < Al/r10 for all j = 0.1.... and z E D'.
Therefore. log Jol(z)J (j = 0,1....) is a plurisubharmonic function in D' with

log la)(z)1 < log At - log ro (j = 0.1.... ), z ED'. (1.9)

For z E D'. we let R(z) denote the radius of convergence of the Taylor series 7{(z. w)
in w, i.e., 1/R(z) =1imj...,c </laj(z)). We set

1/R(z) := 1,m z E D'.

and

u (z. f(z)). where I'(z) = {w E C : Jwi < R(z)}.
-ED'

Using property 4 of plurisubharmonic functions from the last section, under condi-
tion (1.9) we see that - log R(z) is a plurisubharmonic function in D'. It follows
that D is a logarithmically convex and complete Hartogs domain centered at 0.

To prove the theorem, since D' CC D was arbitrary. it suffices to show that
D = D'-K := VN r (D' x C). Clearly 1Y, is contained in f): thus we fix a point
(z', w') E 15 and proceed to show that (z'. w') lies in D'x. Since V is a complete
Hartogs domain centered at w = 0, we can find a product domain 6' x F' CC D.
where F' = {w E C : Iwl < p'}, which contains the point (z', w'). Clearly p' <
R(z) < R(z) for any z E J. Then 71(z, w) is a holomorphic function in 6' x AD.
and, for any fixed z E 6'. the radius of convergence of the Taylor series 1t(z. w) in
w is greater than or equal to p'. From Remark 1.11 at the end of section 1.4.3. it
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follows that 1f(z. w) is a holomorphic function in 6' x F': hence (c'. belongs to
IN- 0

REMARK 1.9. The Hartogs radius R(z) of the domain of convergence of the
Hartogs series 1{(z, w) is not always equal to the radius of convergence of the
power series 1{(z. w) with respect to w for fixed z E D. As an example. in C2 with
variables (z. w), consider the Hartogs series centered at w = 0 given by

1{(z,w) = z+zw+zw2+ .

Then N = C x wI < 1). Hence R(z) _- I on C. while the radius of convergence
R(0) of 11(0. W) is +0C'.

We can also consider a Hartogs-Laurent series centered at a in the w-plane:
i.e., a Laurent series in in of the form

G(z. w) _ aj(z)(w -

a holomorphic function on a domain D in C".

Let D be a domain in C" and let

A' : rI <jw-aI<r2
be an annulus centered at a in C. Set G' = D x A'. Then any holomorphic function
f (z, w) in G' can be represented by a Hartogs-Laurent series (1.10). Furthermore,
if we take a circle 'ye : 1w - al = ro where r1 < ro < r2, then we have

nj(z) = 1 f AZ-0 d( (j = 0.±1.±2.... ).

As in the case of Hartogs series, we can define the domain of convergence DC of
a Hartogs-Laurent series £(z. w); D.C is a Hartogs domain centered at a. Given
z' E D, the section Dr(z') over zj = z,' (j = 1..... n) of D'C is an annulus centered
at a, which may be the entire in-plane C or all of C \ {a}. If we let I Z,(.-) (R;(z))
denote the outer (inner) radius of DC(z) for z E D. then log R,(z) and - log IZp(z)
define plurisubharmonic functions on D.

1.3.8. Riemann's Removable Singularity Theorem. In this last section
of 1.3 we discuss Riemann's theorem concerning removable singularities for holo-
morphic functions. Let f (z) be a non-constant holomorphic function on a domain
D and let E be the zero set of f (--) in D:

E= {zEDIf(z)=0}.
Such sets will be discussed in Chapter 2.

THEOREM 1.6 (Riemann). Let .9(z) be a holomorphic function on D \ E. If
g(z) is bounded in D \ E. then g(z) may be holomorphically extended to all of D.

PROOF. Fix a E E. It suffices to prove that g(z) has a holomorphic extension
to a neighborhood of a in D. By using a suitable linear transformation in C", we
may assume that the section E' C Cz of E over zj = aj (j = 1.... , n -1) consists
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of only one point a,, for z" near a" in C. Furthermore, since E is a closed subset
of D. we can find a closed polydisk A = O x r in D. where

LK : Iz.-aJl<r (j=1.....n-1).
r . Izn - and < p.

with the property that (axOr)nE = 0. Thus g(z) is holomorphic in a neighborhood
of 0 x ar; hence g(z) can be represented by a Hartogs-Laurent series centered at
an:

g(z) _ aj(z1,.... zn-1)(z. - a,+)''.
J=-x

where a,(z1.... , z.-I) (j = 0, t 1, ±2....) are holomorphic functions on A. To
prove the theorem, it suffices to prove that this series reduces to a Hartogs series.
i.e.,

zn-I)=0 for j<0.

To verify this. fix a' E A. and let E(a') be the section of E over z, = a., (j =
1... . n - 1). Since f (a'. zn) # 0 for z" E OF, we see that r n E(a') consists
of a finite number of points in r. Using the fact that g(a', z,) is bounded and
holomorphic as a function of the single variable z,, in r \ E(a'), it follows from
Riemann's removable singularity theorem for holomorphic functions of one complex
variable that g(a', z) extends to be holomorphic in r. Thus aj (a') = 0 for j < 0,
and the theorem is proved.

1.4. Separate Analyticity Theorem

To obtain Cauchy's integral formula in section 1.3.1 we assumed that a holo-
morphic function of n complex variables z = (zl,... , zn) was continuous in z and
had first partial derivatives with respect to each variable zz (j = 1..... n). We now
show that the continuity is implied by the existence of these first partial derivatives.

THEOREM 1.7 (Separate Analyticity Theorem). A complex-valued function of
n complex variables (zl,... ,z,,) which has first partial derivatives with respect to
each variable z', (j = I.... ,n) is holomorphic as a function of n complex variables.

This theorem was discovered in 1906 by Hartogs. We give the proof by induction
on the dimension n, our primary inductive argument. In the case n = 1 the theorem
is trivial. Thus. assuming the theorem is true for n complex variables, we prove it
for n + 1 complex variables (z, w) in Cn;'1 where z E C" and W E C. Since the
argument is local, we let A be a closed polydisk with center at the origin in C"

x r,
2 Iz,I<r, (j =1.....n). r : Iwl<

and we assume that f (z, w) is a complex-valued function defined on A which has
first partial derivatives with respect to each variable zI,... , z,, and w. In this
setting we shall show that f (z, w) is a holomorphic function on A.
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1.4.1. Bounded Case. First we show that f (z. w) is holomorphic in A under
the assumption that f (z, w) is bounded on A; i.e., we assume there exists an Al > 0
such that

If (Z. w)I < Al
for (z. w) E A. Since f (z, w) is holomorphic as a function of w c- r for each fixed
z E A, it follows from the Cauchy estimates for one complex variable that if

x
f(z. w) = E a., (z) w).

then

j=n

Iai(z)I 5 (j=0.1.2,...). (1.11)

By Weierstrass' theorem on locally uniformly convergent sequences of analytic
functions, it suffices to show that each aj (z) ( j = 0.1, ...) is holomorphic for z E A.

1Ve prove this by induction on j, our secondary induction. For j = 0, we
have ao(z) = f (z, 0). Since f (z. 0) is holomorphic in 0 by the primary inductive
assumption, ao(z) is holomorphic in 0. Now let l be any nonnegative integer and
assume that each a, (z) (j = 0.1.... ,1) is holomorphic on A. To prove that a1+1 (z)
is holomorphic in a, we consider the following family of holomorphic functions
{Fw(z)}wer for z E a:

F.-(z) _ f(z.w)-Ej'=oaj(z)ua
w1+ 1

By inequality (1.11) we have
x

<
Al

F, Ia1+k(Z)I Iw'Ik-1

k=1

pl(1 - p ).

Thus {F,,(z)} is uniformly bounded on 2i for IwI < po < p. Since limu._o FF.(z) =
al+1(z) pointwise for z E 0, it follows from Weierstrass' theorem that a1;.1(z) is
holomorphic in a. Hence f (z. w) is holomorphic in A.

REMARK 1.10. We see from the proof that if. under the boundedness assump-
tion, we assume only that f (z, w) is holomorphic as a function of w E I' for any
fixed z E 0. and, in addition, we assume that there exists a sequence {w, } in r with
w. ¢ 0 and lim, _. x wJ = 0 such that each function f (z. w)) is holomorphic as a
function of z E L, then we can conclude that f (z. w) is holomorphic for (z. w) E A.

1.4.2. Use of Baire's Theorem. To prove the general case we will first use
the Baire Category Theorem to show that there exists an open set y in r such that
f (z, w) is holomorphic in 2i x y. For each positive integer v we define

IIf (z.w')I<v for eachz in 2K}.

Since f (z, w) is holomorphic for z in 0 if w E 1' is fixed (by the primary inductive
hypothesis), we have

v=1
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Furthermore, e is a closed subset of F. To see this, let w1 (j = 1.2....) be
a sequence in e which converges to a point wo in f and suppose, for the sake of
obtaining a contradiction, that there exists a point z' E 1 such that if (z', wo)l >
v. By assumption, f (z', w) is holomorphic with respect to w in 1: and hence is
continuous at wo. Thus

slim f(z'.w,) = f(z',wo).

which contradicts if (z', w3) I < v (j = 1.2, ... ).
From Baire's theorem, we deduce that at least one of the sets e,, contains an

interior point. If we let y denote the interior of such a set e,,, then If (z, w) I is
bounded in 0 x y. Using the result in the previous section. we get that f (z, w) is
holomorphic in 2K x y.

1.4.3. General Case. In order to prove that f (z, w) is holomorphic in A in
the general case, we may assume from the previous result that there exists a positive
number po < p such that if we set r' = {w : Iwi < po}. then f (z, w) is holomorphic
and bounded in 0 x r. Thus we can develop f (z, w) into a Hartogs series centered
atw=0:

f (Z' W) = a., (z) w,, (1.12)
=0

where aj(z) (j = 0,1, ...) is holomorphic in 0 and, from the boundedness of f (z, w)
on 2K x r' and the Cauchy estimates, there exists an M > 0 such that for z E

< A (J=0,1,2,...).

Moreover, for any fixed z in 0, f (z, w) is a holomorphic function of to E 17: hence
the radius of convergence of the power series (1.12) in to is greater than or equal to
P.

We will need the following lemma of Hartogs.

LEMMA 1.1. Let 0 : I z., 1:5 r. (j = 1, .... n) be a closed polydisk in C" with
distinguished boundary E and let {uk}k=1,2,... be a sequence of plurisubharmonic
functions on &. Assume that there exist two positive constants I and L with I < L
such that

Sup Uk(Z) < L
k

for all z E 0 and
Inn uk(z) <Ik x

for each z' E 6. Given positive numbers r,' < ri and 1' > 1, if we set 0' : izjt <
r,' (j = I.... , n), then there exists an integer N such that

uk(z) < 1' on a'
forallk> N.

PROOF. We set 1" (1' + l)/2 and a := (1'- 1)/2. For each integer v > 1, we
define

e.,,:={z'E8: uk(z')<l" for all k>v}.
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By assumption we have
x

e C e = E.
i-1

If we let cc
Y

:_ E - e and we let m(e f) be the (real) n-dimensional measure of the
set el C E. then

lim m(e;.) = 0.v-x
We can thus find a positive integer N such that

jn T + r'
fl(rj -ri,)Lm(eV)<F

for all v > N. Let P(r, p, 0. ]9) be the Poisson kernel for A. Since

uv(Pleiti,...

(21r)
12s

. .< P(r, p, 0,19) uv(r]ei°, . d9] ... dg,,,
J2'

it follows that for any positive p, < r and all v > N,
n +r

.

,Pne'6 ) 1" + J1
r;

L m(e') < 1',uv(Ple,)s <
=1 rj - r,

which proves the lemma.

We return to the proof of Theorem 1.7 in the general case. We put

uk(z) = k log IOk(z)I (k = 1.2,... ).

Then each uk(z) is a plurisubharmonic function on 2K which satisfies

uk(z) < - log Po + 109 M on 0 (k=1.2,...).

O

Furthermore, for any fixed z' E A, since the radius of convergence of the power
series (1.12) in w is at least p.

limuk(z') < -log p.k-=
We now apply Lemma 1.1 to the sequence {uk}k=1.2.... Given positive numbers
r'., <r, (j = 1,... , n) and p' <p. we set

W : Iz)I<r,' (j=1,...,n) and

Then there exists a positive integer N such that

I" : IwI <p'.

uk(z) < - log p' on Z'
for all k > N. In other words,

Iak(z)IP'k < 1 on ; (k > N).

It follows that the Hartogs series (1.12) converges absolutely and uniformly on
any compact set in the interior (A')° of A' = 0 x r'. Thus, again applying
the Weierstrass theorem on power series, we see that f (z, w) is holomorphic with
respect to the n + 1 complex variables (z, w) E (A')°. Since rj' < rj and p' < p were
arbitrary, f (z, w) is holomorphic in A. 0
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REMARK 1.11. From the general case of Hartogs theorem, we have the follow-
ing result:

Let f (z, w) = F,' o aj(z)wJ be a holomorphic function for (z, w) E A x y.
where ACC" and y={wEC:JwI<r}CC. Suppose that for any zEA, the
Taylor series of f (z, w) in w has radius of convergence greater than or equal to p
(independent of z E A). Then f (z. w) is holomorphic for (z, w) in A x r. where
r {wEC Iwl<p}.

This fact remains valid under weaker conditions than those stated (cf. T.
Terada (721). To simplify the description we consider C2 with variables z and
w. Let A = 0 x r be a closed bidisk centered at the origin and let f (z, w) be
a complex-valued function on A. Let e C r and assume that f (z,. w) satisfies the
following two conditions:

1. For any fixed z' E a, f (z'. w) is holomorphic with respect to w E r.
2. For any fixed w' E e. f (z, w') is holomorphic with respect to z E :N.

Then f (z. w) is holomorphic with respect to the variables (z, w) E A if the loga-
rithmic capacity of e is positive.

1.5. Domains of Holomorphy

1.5.1. Analytic Continuation. A holomorphic function of several complex
variables can be locally represented by a power series. Hence its analytic continu-
ation is unique as in the case of one complex variable. Indeed, following the ideas
of Weierstrass, there are no qualitative differences between the theory of analytic
continuation in the case of several complex variables and in the case of one complex
variable, as the following two important theorems illustrate.

THEOREM 1.8 (N-lonodromy Theorem). Let D be a simply connected domain
in C" and let P(z) be a power series centered at a point p in D whose domain of
convergence is non-empty. If P(z) can be analytically continued to any point q E D
along any continuous are l in D joining p to q, then the function f (z) obtained by
this continuation is a single-valued holomorphic function on D.

THEOREM 1.9 (Countable Valency Theorem). Let P(z) be a power series cen-
tered at a point p in C" whose domain of convegence is non-empty. If we ana-
lytically continue P(z) along all arcs starting from p for which a continuation is
possible, then for any point q in C", the function f (z) obtained by this continuation
has at most countably many branches over q.

1.5.2. Domains of Holomorphy. Let f (z) be a holornorphic function in
a domain D in C". We analytically continue f (z) to as many points in C" as
possible. This gives us a canonical domain b such that f (z) is holomorphic in D
but f(z) cannot be analytically continued beyond any boundary point of D. Vile
say that D is the natural domain of f (z) or the domain of holomorphy of
f (z). In general, we say that D is a domain of holomorphy if there exists at least
one holomorphic function whose domain of holomorphy coincides with D. Given a
domain D in C", the maximal domain D such that any holomorphic function on
D is necessarily holomorphic on b is called the envelope of holomorphy of D.

REMARK 1.12. In studying analytic continuation, there are problems regarding
multiple-valuedness (multivalency), branch points. and points at infinity. In Part
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I. we will not discuss these problems; hence the term domain refers to a univalent
(or schlicht) domain in C" and the term envelope of holomorphy refers to a one-
sheeted envelope of holomorphy. With respect to points at infinity, we mention
that the analytic continuation to a point at infinity p,, in the Osgood space C" or
in complex projective space P" may be treated as in the case of a point p in C"
by transforming p,,, to the origin 0 with a linear coordinate transformation (cf.,
section 1.1.6).

In the case of one complex variable, every domain in C is a domain of holomor-
phy. On the other hand, in the case of C" with n > 1, determining which domains
are domains of holomorphy is an area of reseach which will be discussed in the forth-
coming chapters. Here we mention a theorem which illustrates the distinguished
character of domains of holomorphy.I

THEOREM 1.10 (Osgood). 2 Let D be a domain in C" and let E be a compact
set in D. Assume that D \ E is connected. Then any holomorphic function f (z)
on D\E can be analytically continued to a (single-valued) holomorphic function on
all of D.

PROOF. We consider C" as the product of C"-I with variables z' := (z1.... .
z"1) and the complex plane Cz with variable z,,. Given a set S C C" and a set
or C C"-1, we use the following notation: S is the projection of S to C". S(a)
is the set of all points (z, z,,) E S such that z' E a; and S° and S°(a) will denote
the interiors of S and S(a). We note that S(a) may be empty. In the case where
a consists of a single point z' in C", we write S(a) = S(z'). N e will identify the
fiber S(z') with the set in CZ consisting of those points z,, with (z'. z") E S.

By assumption, we have f CC D and E(z') CC D(z') for any z' E E. Fix such
a z'. We take a finite number of smooth, closed Jordan curves L in D(z') such that
if U is the closed domain bounded by L, i.e.. L = 8U, then E(z') CC U° CC D(z').
We next take. a sufficiently small neighborhood v of z' in D such that if V := v x U,
then E(v) CC V° CC D(v), where V° = v x U°. We note that f (z) is defined and
holomorphic on D(v) \ V°.

For any z = (z1, ... , z") E V°. we consider the integral

dc.
2Ai

If(z1,.(,..
- Z9('t1, ... , z -1 z,,) =

1

Then g(z) defines a holomorphic function in V°. If we can find a non-empty open
set 8° in v such that f (z) is holomorphic in V(6°) (for example. if E(b(,) = 0), then,
by applying Cauchy's theorem for the complex variable z,,. we get that g(z) = f (z)
on V (6o); hence f (z) has an analytic continuation to the single-valued function g(z)
on V°.

'In the introduction of Oka's paper [LX] there appears the following sentence: "La theorie
generale du prolongement analytique A une seule variable est semblable & Is plaine campagne; lit,
on n'a pu trouver, malgrr les nombreux efforts, aucun fait en dehors des previsions de Is logique
formelle. Au contraire, le cas de plusieurs variables noun apparait comrne un pays montagneux,
tries escarpe."

2This theorem is essentially due to Hartogs. In the textbook of Osgood ]56) there is a proof
which appears to be incomplete. A complete proof may be found in A. B. Brown [4]. The proof
given here is due to the author.
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Cn-1

D

FIGURE 3. Osgood's theorem

Since sF is compact in D, we can find a finite number of points in
E such that if we construct the corresponding sets

V,.:=vvxUu,
and the corresponding functions 9,, (z) for each z,,, and then we set fl := U =1 V°,
we have E cc Cl cc D. We may assume that the Jordan curves L intersect the
curves L with v i4a in at most finitely many points.

The theorem will be a consequence of the following lemma in one complex
variable.

LEMMA 1.2. Let Uj U = 1, 2) be closed domains (not necessarily connected) in
the complex plane C,., each bounded by a finite number of smooth Jordan curves Lj,
i.e., 8Uj = Lj. Suppose that L1 n L2 is a finite set of points. Given a holomorphic
function f (z) on the closed set

U1uU2-(U°nU2)
(here U° denotes the interior of Uj), we define

9i(w) 2iri k f(Cw

for w E Uj (j = 1, 2). Then g, (w) = g2 (w) on U° n U2.

PROOF. We set Ul := U1 \ U2, U2 := U2 \ U° and

Ll :=U1 nL1, L2:=Ui nL2, L2' :=U2nL2, L;:=U2nL1.
Rom the relation U1 U U2 - (U° n U2) = Ul U U2, f (z) is defined on U" (j = 1, 2).
Since 8U1 = L; U (-L2) and 8U2 = LZ U (-Li ), it follows from Cauchy's theorem
that, for any w E U°nU2 ,

1 f f(() __ 1 ( f(()
27i t1 -wd2>ri JL. wu
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and
1 r f(() 1 / f(()

27ri L, (- w dC = 2iri L. C - w

Since Lj = Lj' U Lj' (j = 1, 2), we have gi (w) _- g2(w) on U° fl U20.

To finish the proof of Osgood's theorem, we assume that v n v, ¢ 0 (1 <
v, u < 1) and set 6 := v n vµ. By assumption, f (z) is defined on the closed domain

u V,.(b) - (%' (b) n V, (b)) cc (D \ E)°(b).

It follows from Lemma 1.2 that for any fixed z' E b.

gp(z , z E VOW) n VF;'(z'):

i.e., gp(z) in VVI(b) n V,°(b). This means that is an analytic con-
tinuation of g,(z). Therefore, setting g(z) = in V° (v = 1,....1). we get a
(single-valued) holomorphic function g(z) on f2. On the other hand, some v con-
tains a non-empty open set 6° such that E(b°) = 0; thus g(z) is also the analytic
continuation of f (z) to Q. Since D is connected, D n (1 # 0, and E C Q. f (z) can
thus be analytically continued to the entire domain D.3

We deduce from this theorem that any bounded domain of holomorphy in
C" for n > 2 must have only one boundary component. In general, when we
study holomorphic functions, we consider them to be defined on their domains of
holomorphy.

REMARK 1.13. In C" with n > 1, not all domains are domains of holomorphy.
and it is an important problem to determine the envelope of holomorphy of a
domain. We give two interesting examples.

1. There exists a univalent domain D in C" whose envelope of holomorphy
has infinitely many sheets. For example, in C2 with variables z and w we consider
the sets

EI z = 1, jwj <I and E2 : z=e'', IwI =e' (0<t<oc).
We set E = EI U E2, and construct a univalent domain D in C2 which contains E
and does not intersect {e`t} x {[w1 = e'+(Uk I)x} (0 < t. < x., k = 0.1.... ). Then
the envelope of holomorphy D of D contains the set

E' : z=e", IwI<e' (0<t<30)
in R x C,,,, where R is the Riemann surface of log z over the z-plane, while b is
itself contained in the product set R x C. To verify that E' C D. we need to
appeal to a result of Hartogs (Theorem 4.1) which will be proved later. Let F be
the family of all holomorphic functions on D. Given t > 0, we define the following
subsets of C2:

0(t) := {e''} x (IwI = e'), [al(t) := {e"} x (1wI < c').

and

E'(1) U [al(t)
o<r<t

3In the case when D \ E consists of several connected components G, , ... , G- we set f (z) =
A(s) on Gk (k = 1,... ,m). Then the function g(z) obtained by the above procedure using
f(s) is the analytic continuation of fko(z) on the component Gkp, where DGk contains the outer
boundary of D.
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Define

T := sup{t > 0 1 each f E .F is holomorphic on E'(t') for all t' < t}.

Since E1 C D, we have T > 0. The claim will follow if we can show T = +x. We
prove this by contradiction: hence we assume that T < +x. Choose a neighborhood
U x V of o(T) in D, where U = {1z - e'TI < b}, V = {ef' < 1w[ < eT"} with
b > 0, 0 < T' < T < T", and e'I E U (T' < t < T"). Let f E .F' and take to
with T' < to < T. Then o(to) C U x V, and f (z) is holomorphic on [or] (to) by the
definition of T. Since f is holomorphic on U x V, Theorem 4.1 implies that f is
holomorphic on U x {1w1 < el°}, and hence on U x {Iwi < eT^}. It follows that f
is holomorphic on E' (T"). Since f E F was arbitrary, we have T" < T, which is a
contradiction.

2. Conversely, there exists a multivalent domain whose envelope of holomorphy
is a univalent domain. For example, in C2 with variables z and w we consider the
three domains

r : 1 < Iz12 + IwI2 < 3,

of : Iz-112+Iw12<r, Iz12+Iw12<1

and

A2 : Iz+112+IwI2<r, 1zi2+Iw12<1.
where r is a real number satisfying I < r < f. By gluing 01 and A2 to r along
the sphere Iz12 + Iw12 = 1. we obtain a domain D which is two-sheeted over a
neighborhood of the origin. By Theorem 1.10 any holomorphic function on D can
be analytically continued to a single-valued holomorphic function on the (univalent)
ball B = {Iz12 + 1w12 < 3}; hence the envelope of holomorphy b of D contains B.
Since B is a domain of holomorphy. we have b = B.

1.5.3. Holomorphically Convex Domains. In this section we give an ana-
lytic characterization of domains of holomorphy which is due to Cartan and Thullen.

Let D be a domain in C" with variables z1.... , z,,. Let E be a compact set
in D and let r = ba(E) > 0 denote the polydisk boundary distance from E to
8D. Given p (0 < p < r) and z' = (z' , , ... , z,,) E E. we consider the polydisk
All : Izj - z,'I < p (j = 1, ... , n) centered at z' with radius p. We set

EP := U oP_'.
:'EE

so that E C EP CC D. The sets EP will occur in the Thullen lemma below.
Following Cartan and Thullen, we consider a class IC of holomorphic functions

in D which satisfies the following properties:

1. f E K implies of /0z,, E K. j = I.... , n.
2. For any complex number c and any integer I > 1, f E IC implies c f 1 E K.

We call K a regular class of holomorphic functions in D.
Standard examples are the class of all polynomials in C"; the class of all holo-

morphic functions in D; and the class of all functions which are holomorphic in a
given domain D' which contains D.

We have the following lemma concerning these classes.
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LEMMA 1.3 (Thullen (73)). Let K be a regular class of holomorphic functions
in D and let E be a compact set in D. We let r = 6D(E) > 0 denote the polydisk
boundary distance from E to W. If z° is a point in D at which we have the
inequality

If(z°)I <maFxIf(z)I for all f EK.

then every f E K can be analytically continued to the polydisk A_Q : lz9 - z°I <
r (j = 1,... ,n) centered at z° with radius r.

PROOF. Fix f E K. For any p (0 < p < r), we set

A(p) := max If (z)I <oc.
ZEEP

It follows from the Cauchy estimates that for any z E E
1

jll...jn1

ail+...+h.f

(Z)I < A(p)
4941 z1 ... 8j.. z" pit+ +i"

Since z° E D. we can form the Taylor expansion of f (z) centered at z°:

f(z) = E (1j,.....j"(Zl - z?)j' ... (Zn - Zn)j". (1.13)

By the hypothesis and condition 1 in the definition of a regular class K we obtain
1 A(p)

171.....9"I= 71!...j"lailzl...al"zn I

(Z0) - pi1+...+j"

Therefore, the right-hand-side of (1.13) converges absolutely and uniformly on any
compact set in the polydisk 0_o centered at z° with radius p; hence f can be
analytically continued to A°o. Since 0 < p < r was arbitrary, the lemma is proved.

0
REMARK 1.14. This lemma has meaning for any point z" E D such that the

polydisk boundary distance 6D(z°) from z° to OD is less than r; i.e., even in the
case when O=0 contains points outside of D. The lemma then implies that any
holomorphic function belonging to K extends analytically to these points.

REMARK 1.15. In the proof of the lemma, condition 2 in the definition of a
regular class K was not used. However, using condition 2 we can show that, given
any 0 < p< r, every f E K satisfies

max If(z)I <- max If(z)I.
20

This inequality follows by applying the same method as in the proof of the lemma
to the functions f' E K.

Lemma 1.3 yields an analytic characterization of a domain of holomorphy, as
we will show in the Cartan-Thullen theorem below.

Let D be a domain in C" and let K be a regular class of holomorphic functions
in D. For a compact set E in D, we define the following closed subset of D:

lf(z)I <maFxIf(z)I for all f EK). (1.14)
zC-

We call the set Ex the K-convex hull of E. In particular, in the case when
K coincides with the class of all polynomials, Ex is called the polynomial hull
of E. When K is the class of all holomorphic functions in D. Ex is called the
holomorphic hull of E relative to D.
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We have the following.

COROLLARY 1.2. Let D be a bounded domain of holomorphy in C". Forr > 0.
let D(rl = {z E D : 6D(5) > r}. Then the holomorphic hull of Dlrl relative to D is
equal to Dlr. The same is true for the set D(r) which is obtained by replacing the
polydisk boundary distance dc)(z) by the Euclidean boundary distance dD(z).

PROOF. The first assertion follows directly from Lemma 1.3. For the second
assertion, let A be an n x n unitary matrix so that 5A := Az defines a new Euclidean
coordinate system for C". For p E D. we let &I (p) denote the polydisk boundary
distance from p to OD measured in these new coordinates. For r > 0, we set

= n.aD : bp(p) > r}. Taking r' = r/ 2n, we note that D(r)
where the intersection is taken over all n x n unitary matrices A. From the first
assertion. the holomorphic hull of each D to

is

D the for
in D a K-convex domain. In particular, when K is the class of

all polynomials (resp., all holomorphic functions in D). D is called a polynomially
convex (resp., holomorphically convex) domain.

Let K be the class of all monomials in the variables z1, ... , z,,. We see that a
domain D in C' is K-convex if and only if D is a logarithmically convex complete
Reinhardt domain centered at the origin in C".

Using these notions. we have the following theorem.

THEOREM 1.11 (Cartan-Thullen [131). Let D be a domain of holomorphy in
C" and let K be a regular class of holomorphic functions in D. Assume that K
contains a holomorphic function f whose domain of holomorphy is equal to D, and
that K also contains the coordinate functions z1,... ,z". Then D is K-convex.

PROOF. Since K contains the coordinate functions, it suffices to prove the
theorem for bounded domains D in C". Let E be any compact set in D. We let
r = 3D(E) > 0 denote the polydisk boundary distance from E to 8D. Let z° be any
point in D such that bD(z(') < r. By Lemma 1.3 and the hypothesis that f E K.
there exists a function P E K which satisfies the inequality

maExk,P(z)I < I(2°)I

It follows from the Heine-Borel theorem that D is K-convex.

As a special case of the theorem when K is the class of all holomorphic functions
in D, we have the following corollary.

COROLLARY 1.3. A domain of holomorphy is holomorphically convex.

1.5.4. Analytic Polyhedra. Let D be a domain in C" and let fi (j =
I.... , m) be a finite collection of holomorphic functions in D. We consider the
following closed subset A of D defined by the inequalities:

A = {zEDIIf,(z)I<1, j=1,....m}.
if a (closed) connected component Ao of A is compact in D, we call A0 an analytic
polyhedron in D. A finite union of compact, connected components of A in D
will also be called an analytic polyhedron in C".°

4The notion of analytic polyhedron is due to A. % eil [77].
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We have the following proposition.

PROPOSITION 1.5. Let D be a domain in C" and let K be a regular class of
holomorphic functions in D. Assume that D is K-convex. Then there exists a
sequence of analytic polyhedra Pj (j = 1, 2, ...) defined by holomorphic functions
in K such that

Pj CC P) 1 (j = 1.2,... ), and D = U Pi.j-I
PROOF. It suffices to prove that, given any compact set E in D. we can find

an analytic polyhedron P determined by holomorphic functions in K such that
E C P CC D. By assumption, the )C-convex hull Ex of E is compact in D. Let
r > 0 be the polydisk boundary distance from Ex to 8D. and fix a positive number
p < r. We form the compact subset

v _ U f
:EEK

of D. Given any z' E 8Ex (so that z' it P0. we can find a holomorphic function
g E K such that

max I9(z)I < I < I9(z')I.
zEF.

Thus there exists a neighborhood b: CC D of z' such that the set {z E D I Ig(z)I
1}fo6,- = 0. Since 8E is compact in D. we can find a finite number of these neigh-
borhoods bk (k = I.... , 1) and holomorphic functions gk (k = 1.....1) associated
to bk such that if we set

A= {zEDIlgk(z)I<1, k=1,...,1},
then E CC A and A n 8E. = 0. It follows that a finite union A0 of connected
components of A satisfies E CC AO CC E. Hence Ao is the desired analytic
polyhedron. D

This proposition yields the converse of Theorem 1.11.

THEOREM 1.12. Let D be a domain in C" and let K be a regular class of
holomorphic functions in D. If D is K-convex, then D is a domain of holomorphy.

PROOF. From Proposition 1.5 we can find a sequence of analytic polyhedra
Pj (j = 1,2.... ) in D, each defined by holomorphic functions in K, such that

x
PjCCP°+1 (j=1.2....), and D= UP,.

j=1

Frthermore, we can find a sequence of points {z-1 } in D such that V E 8Pj (j =
1, 2,... ) and whose set of accumulation points in C" is 8D. Then for each zj we
can find a function fj E K such that

I fj(z)I < 1 in Pj, fj(zJ) = 1.

We next take sequences of positive numbers Ej (j = 1, 2...) and positive integers
Ij (j = 1.2... ) such that

Eej < oo, If,(z)II' < ej in P, (j = 1.2... ).
j=I
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The infinite product of holomorphic functions
x

F(z) :_ 11[l - (fi(z))'']
=i

converges uniformly to a holomorphic function on each Pj: hence F defines a holo-
morphic function in D. Clearly, F $ 0 in D. while F(z.) = 0 (j = 1, 2... ). If F
could be analytically continued to a point p E 8D (i.e.. if there exist a neighbor-
hood V C C' of p and a holomorphic function f in V with Flt = f), then 8D nV
would be contained in the set E := {z E V : f(z) = 0}. From the results of the
next chapter, we will see that this forces E = V. i.e.. f = 0 in V. which leads to a
contradiction. Thus F cannot be analytically continued to any point of OD: hence
D is the domain of holomorphy of F. 0

This theorem. together with the corollary of Theorem 1.11. implies the following
result.

THEOREM 1.13. A domain D in C" is a domain of holomorphy if and only if
D is holomorphically convex.





CHAPTER 2

Implicit Functions and Analytic Sets

2.1. Implicit Functions

As shown in the previous section, the set of zeros of a holomorphic function
f (z) of n > 2 complex variables does not contain isolated points. Furthermore.
Osgood's theorem implies that this set is not relatively compact in the domain of
definition of f. In this section we will make a more detailed study of the zero sets
of holomorphic functions of n complex variables.

2.1.1. Zero gets of Holomorphic Functions. For convenience, we consider
Ct+1 = C" x C, where C" is the space of the n complex variables z1..... z and
C is the complex plane of the variable w. Let D be a domain in Cr+1 and let
f (z, w) be a holomorphic function on D. Fix a point (a. b) in D. If f satisfies the
two conditions

(1) f(a.b)=0, (2) f(a.w)$0.
then we say that f (z, w) satisfies the Weierstrasa condition at (a. b) for the
coordinates (z, w). Clearly if f (z. w) jt 0 satisfies condition (1). then we can find a
linear coordinate transformation yielding new coordinates (z. w) for which f (z, w)
satisfies the Weierstrass condition at (a. b).

Now assume that f (z, w) satisfies the Weierstrass condition at (a. b) in the
coordinates (z, w). We consider the section D(a) in the w-plane over zJ = a, (j =
1,... , n). Then f (a, w) is holomorphic in the variable w in D(a). We let v > 1
denote the order of the zero of f (a, w) at b in D(a): thus

f (a, n.') = Ao(a)(w - b)' + A, (a)(w - b)"+1 + ...

where Aa(a) 96 0. In the domain D(a) we let I' : 1w - b{ < p be a closed disk
centered at b with radius p > 0 sufficiently small so that f (a. vi) 96 0 at any point
w in the punctured disk r \ {b}. We then fix r > 0 (depending on p) such that the
closed polydisk A = a x r, where

iz,-ail<_r
lies in D and f (z, w) # 0 on 0 x or.

LEMMA 2.1. For any fixed z' in A. the holomorphic function f(z'.w) of the
variable w has v zeros in r (counted with multiplicity).

PROOF. For each z' E 0 we let v(z') denote the number of zeros (counted
with multiplicity) of the holomorphic function w f (z', w) in F. By the argument
principle, we have

1 of(z'. w)/aw
vW) = 27ri Jar

du.

37
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Since f (z. w) # 0 on A x OF, the integral on the right-hand side is continuous for
z' in A. Hence v(z') a cont. in A. D

In Lemma 2.1 we let q,(z') (j = 1.... , v) denote the zeros of f (z'. w) in r for
fixed z' E A. Note that we may have 77,(z') = lb(z') for some i. j (1 < i, j < v).
We remark that

line i (z')=b (j =1....,v). (2.1)
a

To see this, fix p' (0 < p' < p). We then choose r' (0 < r' < r) such that if we
let F' c r denote the closed disk centered at b with radius p'. and we let A' C A
denote the polydisk centered at a with radius r'. then f (z. w) 54 0 on A' x or'. The
same argument used in the proof of Lemma 2.1 shows that nj (z') E r' (j = 1..... v)
for each z' E A'. Since p' > 0 (p' < p) was arbitrary. we have (2.1).

In Lemma 2.1, suppose that f (z. w) = 0 has only one zero vi(z) for each z E A.
that is. i7l(z) = . . . = r),, (z) __ ri(z). and the order of the zero w = rl(z) of f(z. w)
equals v for all z E A. Then we have the following result.

LEMMA 2.2. t)(z) is a holomorphic function on A.

PROOF. Given any z E A. applying the residue theorem we get

idf("'wu)8wdw.v'rl(z) = 27ri
forw

For w E or. the function under the integral in the right-hand side is a holomorphic
function of z in A. Thus the integral is a holomorphic function for z in A: hence
so is ?7(z). 0

From these two lemmas we see that the zero set of a holomorphic function of
n + I complex variables is a complex n-dimensional set which is analytic in a certain
sense. We call the zero set of a holomorphic function an analytic hypersurface.

2.1.2. Representations of Analytic Hypersurfaces. Let D be a domain
in CR'I with the variables zI..... z,, and w. We let f (z. u') be a holomorphic
function in D, and we let S denote the zero set of f (z. in D:

S = {(z, w) E D I f(z. w) = 0}.

Fix (a, b) E S and let A = 0 x r be a closed polydisk in D. where

A: 1zl-a}1<r (j n). r: Iw-b1<p.
We assume that A has been chosen so that we are in the situation of the previous
section:

1. f(z.w)34 Ofor any (z,w)E©xOr.
2. The holomorphic function f (a, w) of u' E r does not vanish at any w E

r \ {b}. Let v > 1 denote the order of the zero of f (a. u') at b.
3. For each z' E A. let m(z') denote the number of distinct zeros of the holo-

morphic function f (z', w) of w in r. We set

l = max{m(z') I z' E A }. (2.2)

so that I < is.
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Let

So=SnA.
From the proof of Lemma 2.1 we see that for any z' E A. the equation f (z'. w) = 0
has v zeros counted with multiplicity in F.

We have the following proposition.

PROPOSITION 2.1. The set So can be written in the form

P(z,w)(w-b)'+AI(z)(w-b)I`I (2.3)

where each AJ(z) (j = 1.....1) is a holomorphic function of z in 0 satisfying
A,(a) = 0.

PROOF. Let c be a point in A such that the equation f (c., w) = 0 has I distinct
solutions w = bk (k = 1, .... 1) in I'. For each bk we let

1k : 1w-NJ <P
be a closed disk with radius p' sufficiently small such that yk C r and lk n tih
fork 0 h, 1 < k. h < 1. We then let

6: Iz., -c3l<r' (j=l.....n)
be a closed polydisk centered at c with radius r' > 0 chosen small enough to insure
that f(--, w) 34 0 for any (z, w) E 6 x 8y, (see Figure 1).

C.,

FIGURE 1. Representations of analytic hypersurfaces

From condition 3 and Lemma 2.1 we see that for any z' E b and for each k =
1,. .. , 1. there exists precisely one zero of the holomorphic function f (z', w) for w
in 7k, which we denote by I k(z'). Lemma 2.2 implies that each rlk(z) (k = 1, ....1)
is a holomorphic function of z in J.

Next we consider the set V of all points z' in 0 such that the equation f (z', w) _
0 has I distinct zeros in r. By the above argument, V is an open subset of A. We
let V denote the connected component of V which contains the point c above.

Given any point c' E V, we can join c to c' by an are L in A. Then each
holomorphic function rlk (z) (k = 1.... , i) defined on 6 can be analytically continued
along the arc L to a neighborhood 6' of the point c'. We use the same notation
rlk(z) to denote the function obtained by this continuation, which is thus defined in
a neighborhood of L in V. The theorem on invariance of analytic relations under
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analytic continuation implies that the set {(z, 17k(z)) I z E L} is contained in S.
Therefore. for any z' E V, the values 1lk(z') (k = 1, ....1) are the I distinct zeros
of the equation f (z, w) = 0 for w in r.

Thus, in the case when V = A, each 11k(z) defines a single-valued holomorphic
function in A. Hence the set S. is given by the equation

I

P(z, w) := fl Iw - TA (Z)] = 0.
k=1

By expanding P(z, w) as a polynomial in w and using qk(a) = 0 (k = 1, ....1), we
have the desired representation of S°.

We next treat the case when V ,-b A. Take any closed curve L in V containing
the point c; we consider c as the initial and terminal point of L. Each holomorphic
function 71k(z) (k = 1.... ,1) defined on 6 (so that r7k(z) C -yk) can be analytically
continued along the curve L. and the resulting function, which is now defined on a
neighborhood of the terminal point c, must be identical with one of the functions
?7j,, (Z) C yy,,. Where jk E {1.... ,l}. Since jk # jh for k 34 h, it follows that
(j1,....j1) is a permutation of (1,... ,l). Thus for any z E V, if we let 17k (z) (k =
1.....1) denote the I distinct zeros of the equation f (z, w) = 0 for w in r, the
square of the product of the differences

d(z) := 11 177h (Z-) - 11k-(z))2
h<k

defines a single-valued, holomorphic function on V.

Now fix a boundary point z' E 8V in A. Since the number of distinct zeros of
the equation f (z', w) = 0 is less than 1. it follows from (2.1) that

lim,
k

m
IIlk (z) - 11h(z)I = 0:

hence

lim d(z) = 0.

By setting d(z) - 0 in A \ V, we obtain that d(z) is a continuous function on
A which is holomorphic at all points z where d(z) 54 0. By Rado's theorem, we
conclude that d(z) is holomorphic on A.

Now let a denote the zero set of d(z) in A, and let A° = A \ a = V. Define

P(z, w) := A Iw - rlk(z))
k=1

for (z,w) E 6 x C. Expanding this expression with respect to w, we obtain

P(z.w) = w'+a1(z)wt-1+...+at(z) (2.4)
= (w - b)' + Al (z)(w - b)'-' + + AI(z).

Each coefficient function ah(z), and hence each Ah(z) (h = 1,....1), is holomorphic
on 6 and can be analytically continued from 6 to any point z E A° along an are
connecting c and z. Since each ah(z). and hence each Ah(z). is clearly a symmetric
function of the zeros qk(z) (k = 1.....1), it follows that each Ah(z) is a single-
valued, holomorphic function on A°.

Note that each 17k(Z) is contained in r, so that qk(z) is bounded in A°; hence
Ah(z) is bounded in A°. From Riemann's removable singularity theorem, it follows
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that each Ah(z) is a holomorphic function on all of A. By (2.1), it is easy to
check that the analytic hypersurface defined by P(z, w) = 0 in A coincides with the
hypersurface S°. Furthermore, since the equation f (a, w) = 0 for w E F has only
one zero w = b (by condition 2), we see that each coefficient Ak(z) (k = 1.... , 1)
vanishes at a. This completes the proof of Proposition 2.1. 0

REMARK 2.1. The holomorphic function d(z) on V defined above is equal to
the discriminant of the polynomial P(z, w) in (2.4) with respect to w, i.e., d(z)
is the determinant of the following (21 + 1) x (21 + 1) square matrix:

1 al(z) ... ... al(z)

1 a1(z) al (z)
d(z) =

1 (1 - 1)al(z) ... ... al-1(z)

I
1 (1 - 1)al(z) ... ... at-1(z)

I

where all non-indicated entries are 0. This is the same as the resultant of P(z, w)
and (8PJ8w)(z. w).

In general, a polynomial P(z, w) in w whose coefficients Ah(z) are holomorphic
functions in a domain D in C' is called a pseudopolynomial in w. In particular.
when D is a polydisk A in C", the coefficient of the term of highest degree in w is
identically equal to 1, and each Ah(z) vanishes at the center of 0, we call P(z,w)
a distinguished pseudopolynomial in w.

Let P(z, w) be a distinguished pseudopolynomial in w of degree 1. The dis-
criminant d(z), constructed as in the proof of the previous proposition, defines a
holomorphic function on A. We let a denote the zero set of d(z) in A. Then the
hvpersurface P(z, w) = 0 in 0 x Cu, is the graph of the multivalued holomorphic
function w = q(z) over h\a composed of 1 distinct branches {qk(z)} (k = I.... ,1)
with the property that if a point z in 0 \ a approaches a point C E a, then each
branch >7k(z) tends to a point wk E Cu,. with wk = wh for some k 0 h. We call
the multivalued holomorphic function q(z) on 0 the implicit function or the
algebraic function determined by the equation P(z, w) = 0.

2.1.3. Weierstrass Preparation Theorem. In the previous section we stud-
ied the structure of analytic hypersurfaces as subsets of C11+1. We will now make
a more systematic study involving the notions of multiplicity and irreducibility.

Let f (z. w) be a holomorphic function in a domain D in C"+1. Fix (a, b) in
S = {(z, w) E D I f (z, w) = 0) and let A = 0 x 1' be a closed polydisk in D chosen
so that we are in the situation described in 2.1.2. We take a point c in 0 such that
f (c, w) has exactly I distinct zeros w = bk in 1', where I is defined in (2.2). We use
the same notation as in the proof of Proposition 2.1: bk (k = 1, ....1), yk, 6, qk(z)
andA°=A\a,wherea={zEs:d(z)=0}.

For each k = 1,... ,1, we let vk > 1 denote the order of the zero of f (c, w)
at the point bk := qk(c); hence Ek vk = v. Fix c' E Do and let L be an arc
in 0° joining c and d. Then the holomorphic function qk(z), which is defined
on the polydisk 6 centered at c, can be analytically continued along L to c'; the
values of this continuation, which we continue to denote by qk(z), he in I'. If we
set q&') := bk, then b'k is one of the zeros of the function f (c', w) for in in I'.
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Furthermore, the order of the zero of f (c', w) at w = b'k is equal to vk, the order of
the zero of f (c, w) at the point bk. This follows since the number of distinct zeros
of f (c. w) for w in I' is the max;mal number 1.

We divide the family C consisting of the I holomorphic functions {17k(z) I k =
1,... , 1} on b into subclasses as follows: identify [7k, (z) with f7k, (z) if there exists a
closed curve L in A' with initial and terminal point r such that the function element
%, (z) at the initial point c is analytically continued along L to the function element
qk,(z) at the terminal point c. Clearly this gives a stratification of the family C
into subclasses Ch (h = 1,... , m) of equivalent function elements, which we write
a s rlh.k, k = 1, ... , Ih; i.e.,

C = U Ch, where Ch := {7Ih.k(z) I k = 1,....Ih
h=1

For convenience, for each function element 17h.k. we use the notation ryh.k to denote
the disk with center bh.k which corresponds to the disk yk with center bk associated
to the function r7k described previously. For fixed h (h = 1..... m), the order of
the zero of f(z,w) in w at each 77h.k(z) (k = 1,... ,lh) will be denoted by vh; this
notation is consistent since this number is independent of k = 1, ... , lh. Thus we
have v = F,h I lhYh.

REMARK 2.2. If we shrink the radius r of the polydisk A centered at a. then
the number m of subclasses Ch (h = 1,... , m) may increase but cannot decrease.
Since m is always less than or equal to I , it follows that if r > 0 is sufficiently small,
the number of classes {Ch} of the family C obtained by the above stratification on
the polydisk 0 centered at a is independent of r.

For a fixed subclass Ch (h = 1, ... , m), we set

I,,

,.Ph(z, w) :_ fl (u' - 17h.k(z)] in . x Cr.
k=1

Expanding this expression with respect to w. we obtain

P,(z,w) _ (w-b)I° +A'(z)(w-b)Ih-1

Each coefficient Ak(z) (k = 1.... ,1h) is a single-valued holomorphic function of z
in A satisfying Ak(a) = 0. We let Sh denote the zero set of Ph(z,w) in A. so that

Su=SnAUhM

=1 Sh,

We will need the following lemma, which follows directly from the invariance
of analytic relations under analytic continuation.

LEMMA 2.3. Let F(z, w) be a holomorphic function in A. If F(z, w) vanishes
identically on an analytic hypersurface w = >'ih,k(z) in bxryh.k, then F(z, w) vanishes
identically on the analytic hypersurface Sh.

In particular, Ph(z,w) is a distinguished pseudopolynomial for w centered at
(a, b) which satisfies the hypothesis of the lemma. Furthermore, we see from the
above remark that if the radius r of the polydisk A centered at a is sufficiently
small, then Ph(z, w) is irreducible at (a, b), meaning that Ph(z, w) cannot be
written as a product of two non-constant distinguished pseudopolynomials in w
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centered at (a. b). We define
m

P'(z,w) := fl[Ph(z,w)]`° in A.
h=1

and we have the following lemma.

LEMMA 2.4. Let w(z, w) := f (z, w)/P' (z, w) for (z, w) in A. Then w(z. w) is
a non-vanishing holomorphic function on A.

PROOF. By construction. Ph (z, w) # 0 ono x OF for h = 1, .... m. so that
w(z, w) is holomorphic near A x or. Thus we can develop w(z, w) into a Hartogs-
Laurent series of the form

w(z. W) _ > 3j (z) (w - b)',
j=-x

where 8, (z) is holomorphic in 0 for each j = 0, f1. ±2,. ... From the construction
of P` (z, w), it follows that for any fixed z' E &° _ A \ a, the holomorphic functions
f (z'. w) and P' (z'. w) of w in r have the same zeros with the same multiplicities.
Hence the ratio w(z', w) is a non-vanishing holomorphic function for w in T. so that
13)(z') = 0 for j < 0. Thus 3j (z) = 0 in all of 0 for j < 0. Therefore w(z,w) is a
holomorphic function in A and w(z, w) 0 0 in 0° x r. Since w(z, w) 0 0 on A x Or,
we conclude from Proposition 2.1 that w(z, w) 34 0 on A.

Summarizing these results, we have the following theorem.

THEOREM 2.1 (Weierstrass Preparation Theorem). Let f (z, w) be a holomor-
phic function on a domain D in C"+'. Assume that f (z, w) satisfies the Weier-
strass condition at a point (a. b) in D for the coordinates (z, w). Then there exists
a closed polydisk A = 2K x t C D centered at (a. b) such that on A. f (z, w) can be
written in the form

m

f (z, w) = w(z. W) [J [Ph(z, w)]"°. (2.5)
h=1

where each Ph (z, w) is an irreducible distinguished pseudopolynomial in w at the
point (a, 6) whose coefficients are holomorphic functions of z in A. and w(z, w) is
a non-vanishing holomorphic function for (z, w) in A.

In the two-dimensional case, we get more information from the Weierstrass
condition. Let f (z, w) be a non-constant holomorphic function in a domain D in
C2. Suppose that f (a. b) = 0 and f (a, w) = 0 near w = b in the w-plane. From
the Taylor expansion of f (z, w) about (a, b), there exist a positive integer µ and a
neighborhood D' of (a, b) in D such that

f(z. w) = (z - a)"f°(z. w)
in D', where f °(z, w) is a holomorphic function of (z, w) in D' with f °(a, w) # 0. In
particular, if f °(a, b) = 0, then f °(z. w) satisfies the Weierstrass condition at (a, b)
for the coordinates (z, w) in D. Thus without using a preliminary linear coordinate
transformation we get the irreducible decomposition of f (z, w) in a closed polydisk
A = 0 x 1" centered at (a, b):

f(z,w) =w(z,w)(z - a)" [J[Ph(z.w)]
h=1



44 2. IMPLICIT FUNCTIONS AND ANALYTIC SETS

REMARK 2.3. From the proofs of Proposition 2.1. Lemma 2.3, and Lemma 2.4
we see that a global version of the W'Veierstrass preparation theorem holds:

Let D be a domain in C" with variables z = (z1.... , z,,) and let U be a domain
in the complex plane C with variable w. Consider the product domain C = D x U
in C"+I Suppose that f (z. w) is a holomorphic function of (z. w) in G such that
f (z, w) # 0 for (z, w) in D x 8U. Then f (z, w) can be written in the following form
on all of G:

f(z,w) = W(z,w) H[Ph(z.W-)]"' ,

h=1

where Ph(z, w) (h = 1..... m) are pseudopolynomials which are monic in w with
coefficients that are holomorphic functions of z in D. andw(z. w) is a non-vanishing
holomorphic function in G.

2.2. Analytic Sets (Local)

2.2.1. Definition. Let D be a domain in C". A subset E of D is called an
analytic set in D if E is defined locally as the common zero set of a finite number
of holomorphic functions. To be precise. this means that for any point p in D
there exists an open neighborhood U of p in D and a finite number of holomorphic
functions fj(z) (j = 1,... ,l) in U such that

£nU= fl{zEUI f)(z)=0}.
j=1

This is an equality of sets, i.e.. we do not take multiplicity into account. Thus we
may assume that each f j has no repeated factors. By definition, an analytic set
E in D is a closed subset of D. For the sake of convenience, the empty set and
the whole domain D are considered to be analytic sets in D. If E # D, then E is
nowhere dense in D and does not separate D. An analytic hypersurface in D (i.e.,
the zero set of a single holomorphic function in D) is a particular type of analytic
set in D.

Let E be a closed set in C". Then we say that £ is an analytic set in the closed
set E if there exists an open neighborhood D of E in C" such that E is an analytic
set in D.

We note that a non-empty analytic set £ in a closed disk -4 in the complex
plane C is either a finite set of points or coincides with 0. This follows from the
identity theorem for holomorphic functions of one complex variable.

We begin with the following proposition.

PROPOSITION 2.2. Let C and -F be analytic sets in a domain D in C". Then
the union e U F and the intersection E n F are also analytic sets in D.

PRooF. Let p E D. There exist a neighborhood U of p in D and a finite
number of holomorphic functions f3(z) (j = 1.... ,1) and gk (z) (k = 1,... , m)
such that £nU=n,_1{zEU I f3(z)=0}and.FnU=n ` 1{zE U {gk(z)=0).
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Then we have

(£ U.f) n u = n {z E U I fi(z) . gt(z) = 0};

(£nF)nU = n {zEUI f;(z)=0. gk(Z)=0}.
k=1.....m

It follows that both £ U.F and £ n f' are analytic sets in D. 0

Let 6 be an analytic set in a domain D in C". If £ can be decomposed in the
form

£ = £1 U £2 in D,

where £1 and £2 are analytic sets in D such that neither £, contains the other, then
we say that £ is reducible in D. Otherwise we say that £ is irreducible in D.

Let p E C. If for all sufficiently small polydisks U centered at p, the analytic set
£ n U in U is reducible in U, we say that £ is reducible at the point p. Otherwise
£ is said to be irreducible at p.

REMARK 2.4. An analytic set £ in D may be irreducible at a point p E .F but
reducible at a point q E £ which is arbitrarily close to p in D. For example, in C3
with variables x, y, and z, consider the analytic hypersurface £ defined by

2-xy2=0.

Then £ is irreducible at the origin in C3, but £ is reducible at any point q = (x, 0, 0)
in £with x#0.

We now define the dimension of an analytic set at a point. Let £ be an analytic
set in a domain D in C". Let p E C. Take a complex hyperplane L of dimension
rL (0 < rL < n) passing through p such that in a neighborhood of p in D, £ n L
consists of only the point p. Here, by a complex hyperplane of dimension 0 we mean
an isolated point, while a complex hyperplane of dimension n means the entire space
C". We let r (0 < r < n) denote the maximal such rL with this property. Then
n - r is called the dimension of the analytic set £ at the point p, and r is called
the codimension of £ at p. Furthermore, the maximum of the dimensions of £ at
all points q in £ is called the dimension of the analytic set £ in D. If £ has the
same dimension at each point of £ in D, then £ is said to be of pure dimension
in D; if this dimension is 1, we say that .6 is a pure 1-dimensional analytic set in
D.

In particular, a pure one-dimensional analytic set is often called an analytic
curve. Clearly an analytic hypersurface S in D is a pure (n - 1)-dimensional
analytic set in D. A set of isolated points in D with no accumulation point in D
is an analytic set of dimension 0, while the domain D itself is an analytic set of
dimension n in D. For the sake of convenience the empty set 0 is considered as an
analytic set of dimension -1.

Let £1 and £2 be analytic sets in D which have dimension v1 and v2 at a point
p in D. Then the dimension of the analytic set £1 U£2 is equal to max(vl, v2), while
that of £1 n£2 is at most min(vl,v2).
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2.2.2. Projections of Analytic Sets. Let £ be an analytic set in a domain
D in C". We set n = r+s where r and s are positive integers, and we consider C" as
the product of C' with variables zl, ... , Zr and C' with variables w 1, ... , w,. Let £
contain the origin 0 in C". We let D(0) and £(0) denote the sections of D and £ over
the s-dimensional hvperplane zj = 0 (j = 1,... , r). Then 0 E £(0) C D(0) C C'.
and the section E(0) is an analytic set in D(O).

Suppose that in some neighborhood b of the origin in C' the set £(0) consists
of the single point 0 (we use the same notation for the origin in Cr. C' and C").
Then the dimension of E at the origin in D C C" is at most r.

Let r be a closed polydisk centered at the origin 0 in C' with radius pk (k =
1.... . S),

r : IwkI < Pk (k =1.... ,s).
with pk chosen so that F c D(O) and r n £(o) _ {o}.

Then we let 1 be a closed polydisk centered at the origin 0 in Cr with radius
rj (j = 1, ... , r),

A . {zjI<rj (j=1... ,r),
with rj chosen so that A := 2i x F C D and (D x 8r) n t = 0. This is possible
because E is a closed subset of D in C". We define

£°:=EnA,
which is an analytic set in A.

We let ar denote the projection mapping of A onto N. Then we have the
following proposition, which is indispensable for inductive arguments on dimension.

PROPOSITION 2.3. The projection 7r,(£°) of £° onto 0 is an analytic set in 0.

PROOF. We prove the proposition by induction on s = n - r. To begin, we
assume s = 1, so that r = n - 1. We let 7r"_ I denote the projection from C" =
C"-I X C,,, onto C"-1. Fix z' in Since a x 8r) n£ = 0 and the section
£°(z') is an analytic set in the closed disk r c Cv;, it follows that £°(z') in A
consists of a finite number of points pi = (z', w,) (i = 1..... p). For each point p,
in £°(z') we choose a polydisk A, = 0, x ri, where of is a polydisk centered at z'
and IF, is a disk centered at w, in r, such that

AiCA, A,nAj=0(i$j). (D,xar,)n£°=0.
By Proposition 2.2, it suffices to prove that the projection n Ai) of each
analytic set t'.° n A, (i = 1,... , p) is an analytic set in 0,. For simplicity, we write
z' = 0, pi = 0, t, = A, r; = r, and Ai = A as described above.

Note that A is a polydisk centered at 0 in C"; by taking a smaller polydisk if
necessary, we can write

1

£°= fl {(z,w)EAI fj(z,w)=0},
j_I

where each f j (z, w) (j = 1,... , l) is a holomorphic function on A. Furthermore,
from the condition that (An8r)n£° = 0. we have 0 = ({0}n8r)n£° = £°(0)n8r,
so that one of the fj(z,w) (j = 1.... .l), say f,(z,w), satisfies fl(0,0) = 0 and
{ f I (0, w) = 0} 0 017; i.e., the one-variable holomorphic function f i (0, w) is not
identically zero in r. By taking a smaller disk r' C r centered at w = 0 with the
same property that (ZnOr')n£° = 0 (if necessary), we can assume f, (0, w) 0 0 for
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any w E r' \ {0}. For simplicity. we use the same notation r, = r. By Proposition
2.1, the zero set of fi(z. w) in A. denoted S, can be written in the following form:

P(z, w) := w° + A1(z)w"-1 +... + 0 in A.

where each Ak(z) (k = 1,... ,v) is a holomorphic function in A satisfying Ak(0) _
0. Note that P(z, w) may be reducible but, from the construction in Proposition
2.1, it cannot have repeated factors. thus the discriminant d(z) of P(z, w) with
respect to w does not vanish identically on A. We let a denote the zero set of d(z)
in A, and we set A' := A \ a.

Let c = (cl.... E A'. We let S(c) C I denote the section of S over the
hyperplane zj = cJ (j = 1.... n - 1). The set S(c) consists of v distinct points
w = bk (k = L... . P). For each k = 1..... v. let ' k be a closed disk in r centered
at bk and with radius p' > 0.

'rk : I w - bkI < p'.

with p' chosen so that yk fl'Y, = 0 (k h). Next, let 6 be a small closed polydisk
in A centered at c with radius r' > 0.

b : 1z) - c)1 < r' (j = 1..... r).
with r' chosen so that S fl (6 x t?yk) = 0 (k = 1.... , v). By Lemma 2.2, in the
polydisk Ak := 6 x Yk C A, the analytic set S can be written in the form

w = qk(z) (k = 1.... , v).

where each qk(z) is a single-valued holomorphic function in 6 satisfying qk(c) = bk.

We introduce the I - 1 complex variables uj (j = 2.... , I), and construct the
following holomorphic function on 6 x Cl-1:

H(z.u) := fj [f2(Z,7?k(Z))u2 +...+
k=1

Expanding this function as a homogeneous polynomial in u-, (j = 2.....I). we can
write

H(z.u) = 1:9)1.. ,,_,(z)uJ, ... U)1- 11

where each (z) is a holomorphic function in 6. To avoid multiple indices. we
write gj(z) := 9,,...,,_,(z) for I < J < 1' := (I - 1)v-1. Each ?/k(z) (k = 1.....v)
can be analytically continued to any point z' E A' along any arc in A' connecting c
and z'. Moreover, the function element at z' obtained by this continuation coincides
with one of the functions %, (z') determined by the equation P(z'. w) = 0. Since
each gj(s) (J = 1.....I') is symmetric with respect to qk(z) (k = I.... ,v), we
conclude that gj(z) can be analytically continued along any arc in A' and thus
defines a single-valued holomorphic function in A'. Since each qk(z) (k = 1.... , v)
is bounded in A', the same is true of each gj(z) (J = 1.....1'). It follows from
Riemann's removable singularity theorem that gj(z) can be analytically extended
across the analytic set a to all of A. We use the same notation gj(z) to denote this
holomorphic extension in A.

We set
11

e' := n {z E A 19J(z) = 0},
J=1
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which defines an analytic set in A. Note that we may have gj(z) = 0 (J
i.e., 0 = V.

To finish the proof of Proposition 2.3 for s = 1, we will show that £' coincides
with the projection of to onto 0; i.e..

£' = 7T,i_I(£°) in A. (2.6)

In fact, we note from (2.1) that each t]k(z) (k = 1.... ,v) is defined and con-
tinuous at all points of o. From the construction of w = nk(z) using f1 (z, w), and
from the representation of CO,

Ito = n {(z,w) E A I fj(z,w) = 0},
j=1

we easily obtain the following equivalent representation of £°:

£° = U {(z.nk(z)) E A I fj(z,Ilk(z)) = 0 (J = 2,... ,l)}.
k=1

To prove (2.6), first fix z' E £'; i.e.. let gj(z') = 0 (J = 1, ... ,1'). It follows
that H(z', u) -=O for u E CI-1. Hence for some k E {1, ... , v}

f2(z',t1k(z'))u2+...+ft (z,rik(Z'))u, =0

for all u E CI-1. Therefore,

fj(z ,J?k(z')) = 0 (j = 2,... ,1).
It follows from the description of to above that (z',rfk(z')) E £°.

Conversely, fix (z', w') E to. From the description of to. we have w' = qk(z')
for some k E (1,... v) such that fj(z',vjk(z')) = 0 (j = 2,... ,1). It follows that
H(z', u) = 0 for u E CI- ',and hence that each coefficient gj(z') = 0 (J = 1,... ,1');
i.e., z' E V. Thus (2.6) is valid and Proposition 2.3 for the case s = I is proved.'

Now we prove Proposition 2.3 for the case s > 2 under the assumption that it
is true for the case s - 1. Using 0 C C' and IF C C9 as described in the beginning
of the section, prior to the statement of the proposition, we set A' = c1' x T' C
C"-' x C, where

0' : Izjl5rj (j r), Iwkl -<Pk (k=1,...,s-1),
r' Iw,I <- P,

By assumption to fl (A x 8r) = 0. we see that to n (0' x 8r') = 0 in A'. Since
the proposition has already been proved in the case s = 1, the projection £' of the
analytic set £° fl A' onto A' is thus an analytic set in A'.

Note that if we let r,_, denote the polydisk

r,-1 :IWkl 5Pk (k= 1,...,s-1),
then we have £' n(A x 817,_ 1) = 0. It follows from the inductive hypothesis that the
projection £" of £' onto 0 is also an analytic set in A. Since £" is clearly identical
with the projection of £° onto A, it follows that the projection of £° C C" onto
A C C' is an analytic set in A. We thus conclude that the projection 7r,(£°) of
the analytic set £° in A onto 0 is an analytic set in A. 0

I This elegant method of introducing the l -1 indeterminants n2, ... , ut is due to R. Remmert
and K. Stein [691. However, this technique is not essential to verify the proposition.
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REMARK 2.5. Under the same hypothesis as in Proposition 2.3, it follows that
the dimension of P" at the origin 0 is at most r. Furthermore, we see from the
proof that dimir,(E") at z = 0 in A is equal to dim 1"" at the origin 0 in A. Thus,
7r,(E") = A if and only if dim E" = r at the origin 0.

2.2.3. Locally Algebraic Analytic Sets. In this section we consider ana-
lytic sets with a specific structure; the so-called complete locally algebraic analytic
sets. Our goal is to develop the machinery needed to study irreducible decomposi-
tions of analytic sets in the next section. As in the previous section we set n = r + s
and write C" = C' x C'. where C' and C' are the spaces of the r complex variables
z,.... , z,. and of the s complex variables wl , ... , w,. We consider a polydisk A in
C' centered at the origin 0 with radius r, (j = 1..... r).

A : Iz.,l < r, (j = 1..... r).
For each variable wk (k = 1..... s). we consider a monic distinguished pseudopoly-
nomial Pk(z. wk) in wk of degree 1k,

Pk(Z,wk)=wk tai(Z)u -1 ... } a+.(z) (k=l.....a).
where each coefficient ai (z) (j = 1.... ,1 k) is a holomorphic function on A sat is-
fying ajk (0) = 0. We assume that Pk(Z. wk) has no repeated factors, although we
allow it to be reducible. In each coordinate plane C,,.t we take a closed disk rk
centered at the origin with radius pk.

rk - IWk I:Pk (k s),

where Pk is chosen sufficiently large so that for any fixed z E A, all lk solutions of
the equation Pk(z. wk) = 0 for wk in C,, are contained in rk. We set

and A:=AxrcC".
We consider the pseudopolynomials Pk(z, Wk) as functions on A which are inde-
pendent of s - 1 variables w1.......... w,. Then we get an analytic set E in A
given by the following s equations:

E : Pk(z. Wk) = O (k = 1.... , S).

This analytic set is called a complete locally algebraic analytic set with pa-
rameters z1.... , Zr. Note that E is a pure r-dimensional analytic set in the product
space A x C' as well as being a pure r-dimensional analytic set in the polydisk
A=Axr.

We now consider in greater detail complete locally algebraic analytic sets. To
simplify the exposition. we recall the notion of holomorphic mappings (or vector-
valued functions) introduced in section 1.3.5. Let D be a domain in C". and
let f;(z) (j = I.... m) be holomorphic functions in D. Then the m-tuple of
holomorphic functions.

f(2) (f1 (z).... . fm (z))
is called a holomorphic mapping from D C C" into C'". In other words,
f (z) is a C'"-valued holomorphic function on D. As in the case of complex-valued
holomorphic functions, we can consider the analytic continuation of f (z) along an
arc I in C" starting from a point of D; this is merely the simultaneous analytic
continuation of all the functions f,(z) (j = 1,....m) along the arc 1.

Let E : Pk(z. wk) = 0 (k = 1..... s) be a complete locally algebraic analytic
set in A = A x r. We let dk(z) denote the discriminant of Pk(z. wk) with respect
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to wk and we let ak denote the zero set of dk(z) in A. Note that dk(z) 0 0. We
also set

b

a= 6 ak and A'=A\a.
k=1

Let c= (cl,... , c,) be a fixed point in A'. For each pseudopolynomial PA,(.-.wk) (k
= 1.... , s) of degree lk in wk. w e denote b y bk., (j = 1, ... , lk) the set of all
complex numbers wk satisfying the equation Pk(c,wk) = 0. These Ik solutions are
distinct and simple (order 1). For each j = 1, ... , Ik, we take a closed disk 1k.) in
Cur, ,

1k., : Iwk - bk.jI <- P (j = I.....lk).
centered at bkj and with radius p' sufficiently small so that 1k,j c Fk and 1k, fl
1k, = 0 if i 96 j. Next we take a closed polydisk 6 in X.

b : Iz,-c., 1 <r' (j=1.....r).
centered at c and with radius r' chosen so that AL (z. wk) -A 0 for any (z. wk) E
6 x Oyk., (j = L... , It.). We let Hk,3 denote the zero set of Pk(z. wk) in the
polydisk Ak,j 6 x -yk.j. From Lemma 2.2, the analytic hypersurface. Hk, can be
described as

Hk.1 : wk = 17k. j (z) in Ak.., .

where t)k. (z) is a single-valued holomorphic function in 6 (see Figure 2).

C, C r, C.,

FIGURE 2. Representation of analytic set

For each k = 1,... , s, we choose a number jk (1 < jk < 1k). and form the
s-tuple of integers j :_ (j1.... , js ). Then we construct an associated holomorphic
mapping on 6. the holomorphic C'-valued function

17j(z) :_ (rh.i, (z)..... r1,,(z))

The total number of such mappings is N:= II . . . 1,,. We set

YE.J,CF and A):=6x1, CA.
In the closed polydisk A) centered at (c., b1.3, ..... b,,,) in C" we set

Ej : w=>)., (z), zES.

so that E. is a pure r-dimensional analytic set in A,. From the definition of the
analytic set E in A. we see that E fl (6 x r) coincides with the union of the N
analytic sets E.
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The holomorphic mapping'b(z) can be analytically continued to any point
c E A' along any arc L in A' connecting the points c and cl. i.e., simultaneous
analytic continuation of all q1,j, (z).... , q,.j, (z) along L.

From the theorem on invariance of analytic relations under analytic continua-
tion, we see that the arc

w = 17, (z). ,. E L.

is contained in E. Therefore, similar to our procedure in section 2.1.3. we can
classify the N holomorphic mappings ij (z) defined on 6 into subclasses Kh (h =
1, ... , m) as follows: ql and t7.',, belong to the same class if and only if q can be
analytically continued to rty along a closed curve L in A' with initial and terminal
point c. Here we use the notation q (:) to denote a holomorphic mapping belonging
to the subclass Kh.

REMARK 2.6. If we shrink the polydisk A. the number in of distinct classes
Kh may increase but m is always bounded above by N. Thus this number m is
invariant for sufficiently small A. for the rest of the section. we fix such a A.

For each subclass Kh (h = 1.... , m). we analytically continue the mappings
q (z) on b along all possible arcs L in A' for which the simultaneous continuation is
possible. We continue to use the same notation q; h (z) for the holotorphic mappings
now defined on A'. We then define the r-dimensional analytic set Eh in A' := d' x T
by

Eh : rt = n; (z). z A'. 1711, .

and set
Eh:=Eh in A= -A x 1'.

We note that the set Eh is uniquely determined by the subclass Kh (h = 1..... m ).
We have the following two lemmas.

LEMMA 2.5. Each Eh (h = 1, 2..... m) is an analytic set in the potydisk A.

PROOF. We fix h = 1,... , m. We introduce s new complex variables rk (k =
1, .... s) and construct the ((f(ollowin)g function of (z. w.. r) in 6 x C' x C':

S(z. w. t):=fl {{wI-r11j[(z)l)rI +... + w - q'Ja(z)l)lv'J]

U)

where qk ,+(z) (k = 1..... s) are the component functions of the holomorphic map-
ping i(z), and the product is taken over all holomorphic mappings q' (z) from the
class Kh. Expanding Q(z. w. v) into a homogeneous polynomial of vk (k = 1..... s)
we see that the coefficients (J = 1.... t" := s#F") are polynomials in
wl,... , w, whose coefficients alj(z) are holomorphic functions of 2 in 6.

Let c' E A' and connect c and c' by an arc L in A'. Since all the holomorphic
mappings 1i (z) in Kh can be analytically continued from c to c' along L. the
function Q(z. w. v), as a function of z. can also be analytically continued. Note
that in the w and v variables. Q(z. w, v) is a polynomial.

On the other hand, from the explicit form of Q(z. w, v). it is clearly symmetric
with respect to all the holomorphic mappings q (z) belonging to h"h. It follows
that Q(z. w. v) defines a single-valued. holomorphic function in A' x C' x C'. In
particular, all of the coefficient functions a'(z) of gj(z, w) are single-valued. holo-
morphic functions in A'. Since all the mappings (z) are bounded in A'. the same
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is true of each a 4(z). It now follows from Riemann's removable singularity theorem
that each can be analytically extended across the analytic hypersurfaces o
to all of A. and thus gj(z.w) can be analytically continued to the domain A x C'.
Thus, using the same notation gj(z. w) (J = 1,... .l") for this single-valued holo-
morphic extension, gj (z, w) is a polynomial in w1.... w, whose coefficients are
single-valued holomorphic functions of z in A.

We now consider the following analytic set in A:

Eti : gJ (z, w) = 0 (J = 1, .... 1" ).

From the definition of Eh given before the statement of the lemma. and using the
definition of Q(z. w, v), it is easy to verify that Eh coincides with the set Eh := Eh.
Hence, Eh is an analytic set in A.

From the proof we have the following remark.

REMARK 2.7. The analytic set Eh can be written as Eh = {(z, w) E A
f3 (z, w) = 0 (j = 1, ... , v)}, where each f,(z, w) (j = 1..... v) is a holomorphic
function on A.

Finally we have the following lemma.

LEMMA 2.6. Each Eh (h = 1, ... , m) is an irreducible analytic set at the origin
0 in C".

PROOF. Let F(z, w) be a holomorphic function in A such that F(z. w) = 0 on
one of the analytic sets Eh : w = qi (z) in b x ryj. Then the theorem on invariance
of analytic relations under analytic continuation implies that F(z, w) = 0 on all of
Eh. Thus Eh is irreducible at the origin 0 in C'.

Indeed, we conclude that the complete locally algebraic analytic set E in A can
be represented as the union of a finite number of irreducible analytic sets Eh in A.

M
E U Eh. (2.7)

h=1

and this union is the irreducible decomposition of E at the origin 0 in C".

We call each irreducible component Eh (h = 1.... , m) a locally algebraic
analytic component of the complete locally algebraic analytic set E.

To represent Ei, in A' x r, we used the C'-valued holomorphic functions q (z)
on A'. If z E A' approaches a point p E or, we see from (2.1) that each branch
of q,1(z) tends to a certain point P in r. We thus get a single multiply C'-valued
function ti (z) on A. which we call a locally algebraic holomorphic mapping
(or a locally vector-valued algebraic function) on A. Moreover, the analytic
set Eh in A is called the graph of q, (z) or the analytic set determined by
w=qj, (z).

2.2.4. Irreducible Decompositions of Analytic Sets. We return to the
study of general analytic sets. Let t; be an analytic set in a domain D in C". We
assume that t contains the origin 0 and that the dimension oft at 0 is less than or
equal to r. We then choose suitable coordinates z1, .... z, and w1..... w, (where
n = r + a) so that the section e(0) of 6 over the hyperplane z; = 0 (j = 1.... , r)
consists of the single point 0 in C' in a neighborhood of the origin.

We have the following lemma.
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LEMMA 2.7. For each variable (k = 1. ... , s) there exists a distinguished
pseudopolynomial Pk(z. wk) in Wk with the following property: the complete locally
algebraic analytic set E with parameters z,, .... zr defined by

E : Pk(z, 0 (k = I.... s)

contains the analytic set .6 in a neighborhood of the origin 0 in C".

PROOF. Fbr a fixed integer k (1 < k < s). consider the space C'"1 of the
complex variables z,, ... , z, and wk. We take a closed polydisk Ak centered at 0
in C''+1. where

Ak := X rk. Iz) I :5 r. , (j = 1, .... r). rk : 1wk l < Pk-

Set

r:=r,x...xr A=oxr.
By assumption we can choose ri > 0 (j = 1, .... r) and pk > 0 (k = I.... , s)
sufficiently small so that £ n (0 x Or) = 0. We set

£° := £ n A. £k := irk(£°} (k = 1, ... , s).

where irk is the projection map from A onto Ak. By Proposition 2.3 and £ n (a x
Or) = 0. each £k is an analytic set in Ak (k = 1.... , s). Thus we can assume £k
can be written in a neighborhood 6k of the origin 0 in Ak in the form

gj (z, wk) = 0 (j = 1..... mk),
where each g (z,wk) is & holomorphic function in bk.

We note that the section £k(0) of £k over the hyperplane zj = 0 (j = 1.... r)
consists of the single point 0 in a neighborhood of the origin in the disk rk of the
wk plane. It follows that at least one of the functions gJ (z, wk) (j = I.... , ink),
say gk (z, wk). satisfies the Weierstrass condition at the origin 0 in the coordinates
(z, wk). By taking a smaller polydisk if necessary. we can assume that g3 (z, wk) 34 0
for (z, wk) E 0 x ark. We let £k denote the zero set of the holornorphic function
gi (z, wk) in Ak, so that £k C £k. We see from Theorem 2.1 that £k coincides with
the zero set of a distinguished pseudopolynomial Pk(z, wk) in wk in the polydisk
Ak. Note we may assume that for all k = 1.... , s, the same polydisk 1 centered
at 0 in C' is taken in the construction of Ak = 0 x rk. It then follows that the
analytic set £ n A is contained in the complete locally algebraic analytic set E in A
defined as

E : Pk(z.wk)=0 (k= 1.... ,s).
Lemma 2.7 is thus proved. 0

The complete locally algebraic analytic set E in Lemma 2.7 can be decomposed
into the union of irreducible components E = IJh=I Eh in a polydisk A centered at
the origin 0 in C". Here we may need to take a smaller polydisk A than in the
proof of Lemma 2.7. Since to C E. it follows that to can be decomposed into the
following (not necessarily irreducible) analytic sets:

£° =
6

£h
h=1

in A.

where
£h = £ n Eh (h = 1, .... l).
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If we let rh denote the dimension of Eh (h = 1....J) at the origin 0. then 0 <
rh < r. Furthermore. Eh = Eh in A if and only if rh = r, by the irreducibility of
Eh. If rh < r - 1, then Eh is an rh-dimensional analytic set which is contained in
Eh. The union of the analytic sets Eh which are of dimension r at the origin 0 will
be denoted er. The union of the remaining sets Eh will be denoted by E'. Hence
we have the decomposition CO = CUE'. where E' consists of all components of CO
which are pure r-dimensional irreducible analytic sets in A, while E' is an analytic
set of dimension at most r - 1 in A.

From Proposition 2.3 and Remark 2.5, rrr(E') is an analytic set in A of di-
mension at most r - 1. Thus. by taking a linear transformation of zl.....z,.
if necessary. we may assume that the section E'(0) of E' over the hyperplane
z1 = 0,....2, _1 = 0 in a neighborhood of the origin 0 in C" either consists
of the single point 0 in C"+t or is empty. We now repeat the above procedure for
the analytic set E' and obtain the following theorem.

THEOREM 2.2. Let E be an analytic set in a domain D in C". and let a =
(a,.... a,,) be a point in E at which the dimension of £ is r. Then there exist
coordinates (z1i... , zn) and a polydisk A centered at the point a in D.

A : Iz,-ail<r, (j=1.....n).
such that the analytic set E° = A fl E can be decomposed into a finite number of
irreducible analytic sets in A. Moreover, each irreducible component is pure dimen-
sional in A, and each pure s-dimensional irreducible analytic set (with s < r) coin-
cides with a locally algebraic analytic component in A with parameters zl..... z,.

We note from the proof that the coordinates (zi..... for C" satisfy the
conditions of Theorem 2.2 at the point a = in such a way that. for
s < r, the intersection E fl {zi = al.....:, = a,} consists of the single point
a in a neighborhood of a in C", where E, denotes the s-dimensional irreducible
components of a at a.

Given an analytic set £ in a neighborhood of a point a in C". the coordinates
z = (z1.... . of C" are said to satisfy the Weierstrass condition for E at a
if the conclusion of Theorem 2.2 holds for E and a in these coordinates. We then
call the closed polydisk a centered at a in Theorem 2.2 a Weierstrass canonical
neighborhood of E at the point a in C".

REMARK 2.8. Let D be a domain in C and let fk(z) (k = 1..... s) be s single-
valued. complex-valued functions on D. We set f(z) = (f1(z),... , f,(z)). z E D.
and consider the following subset £ of D x C,,.:

E: w=f(z). zED.
If either (i) E is an analytic set in D x C' or (ii) f (z) is continuous on D and there
exists an r-dimensional analytic set E in D x C. such that £ C E. then f (z) is
holomorphic on D.

Since the proofs in each case are similar, we will only give the proof for case
(ii). Let po = (zo. w01) E E. Using a linear coordinate transformation which is
sufficiently close to the identity, if necessary. we may assume that the coordinates
(z, u,) satisfy the W4eierstrass condition for E at pe. Then we can find a polydisk
A := A x A' C D x C'; centered at po such that (E US) fl (A x OA') = 0 and such
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that E n A is the union of components of a complete locally algebraic analytic set
E.

E : Pk(z, wk) = 0 in A.

Equivalently.
E . w = qt(z) (1 = 1.... M), z E A.

where >1t (z) .,7.(z)) (1 = 1.... , m) is a locally algebraic vector-valued
analytic function on A. We let a C 0 be the union of the zero set of the discriminant
dk(Z) of Pk(z. Wk) with respect to wk (k = 1..... s).

Fix z'EA\a. Since Sc E CE. we have

f(z') = qt(z') for some I = 1..... in.

Since qk(z) # qt(z) (k 0 l) for each point in :A \ a. it follows from the continuity
of f (z) and ql (z) that f (z) = ql (z) on 0 \ or. Since a is an analytic set in A of
dimension at most r - 1. we conclude that t7r(z) and f (z) are single-valued on A;
and, indeed, that f(z) = s1'(z) on J. In particular. f(z) is holomorphic on A.

This remark immediately implies the following fact. If T : 6 - 6' is a holomor-
phic map between two domains 6 and 6' in C" which is one-to-one and onto, then
T- I is holomorphic.

Now let E be an analytic set in a domain D in C". Let p E E and let E be
of pure dimension r at p. If there exists a closed polydisk A = x r centered at
p = (a, b) in the coordinates (z, w) of C" = C' x C°,

Z : Iz, -a., 15r3 (.?=1.....r).
r . Fwk - bkl<pk (k=1.....s).

such that E n A can be described in the form

Wk = gk(zl.... , Zr) (k = 1.... , s}.

where gk(zt..... z,.) (k = 1.... ,a) are single-valued holomorphic functions in 2i,
then the point p is called a nonsingular point of E. Otherwise p is called a
singular point of E. The set of all nonsingular points of E in D is called the
nonsingular part of E. Clearly the closure of the nonsingular part of E equals E.
If E is irreducible in D. then the nonsingular part of E is connected.

REMARK 2.9. Let E be a pure r-dimensional analytic set in a domain D C C".
Then the set S of singular points of E in D is an analytic set of dimension at most
r-1.

PROOF. We maintain the notations A = A x r C C' x C. and Pk(z. wk)(k =
1,... , s) used to verify formula (2.7) in A. Since the statement is local, we may
assume that D = A and E = Uh_I Eh in A. where Eh is given in (2.7) and in' < m.
Then the set S of singular points of E in A is of the form S = SI U S2 where

SI = U (Ek n E,).
I<k.,<m'; k#1

S2 = (1(PEE I a-k(P) =apk(p)=O(j=l....,r)).
k=1 awk az;

Thus. S is an analytic set of dimension at most r - I in A.
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REMARK 2.10. Let £ and F be two irreducible analytic sets in a domain D in
C", with dimensions u and p. Then either the analytic set £ n F in C" coincides
with one of £ or F, or the dimension of £ n F at any point is strictly less than
min{v, u}. In the latter case. £ nF can be locally decomposed into a finite number
of r,-dimensional irreducible analytic sets, where r, < min{v. µ}.

This may be proved by taking coordinates (z1..... z") which satisfy the WVeier-
strass condition for both £ and F. This remark yields the following useful corollary.

COROLLARY 2.1. The intersection of an infinite number of analytic sets in a
domain D in C" is an analytic set in D.

2.3. Weierstrass Condition

Let .6 be an analytic set in a domain D in C" whose dimension is at most n -1;
i.e.. £ 0 D. Let p be any point of £ and let z = (z1..... z") be coordinates of C".
From Proposition 2.3, we can easily find uncountably many systems of coordinates

(zi.... , z;,) of C" which are sufficiently close to the given coordinates z =
(zi.... , z,,) and such that £ satisfies the «eierstrass condition at the point p in the
z' coordinates. By "sufficiently close" we mean that z...... z, are obtained from
z1, ... , z" by a linear transformation whose transformation matrix is arbitrarily
close to the identity matrix. Therefore we can find a dense subset K of £ and
coordinates w = (wl.... , w") of C" for which £ satisfies the Weierstrass condition
at each point q of K. However, this does not yield the existence of coordinates for
C" such that £ satisfies the Weierstrass condition at every point of the analytic set
E.

Thus the following theorem will be important, not only in this section, but
especially in Part II of this book.

THEOREM 2.3. Let Dj (j = 1, 2.... ) be a countable collection of domains in
C" and let £j be an analytic set in Dj (j = 1.2....) whose dimension is at most
n - 1. Let z = (z1..... z") be coordinates for C". Then there exist coordinates
w = (w1, ... , w,,) for C" sufficiently close to the coordinates z") such that
every analytic set £j (j = 1.2....) satisfies the Weierstrass condition at each
point of £. (j = 1.2....) in the w coordinates.

Note we do not assume that D, n D, # 0 for i 34 j. This section will be devoted
to the proof of the theorem.2

2.3.1. Complex Lines Contained in an Analytic Hypersurface. As a
first step towards the proof of the theorem. we study the question of determining
when a complex line is contained in the zero set of a given holomorphic function.
Let f(z) be a non-constant holomorphic function in a domain D in C". We let S
denote the zero set of f (z) in D. Given z = (z1..... zn) E S. we fix a complex
line L passing through the point z in the (complex) direction w = (w1.... .w").
i.e., L : t E C -+ wt + z = (wI t + . . . . . . . , , tz " t + z") E C". and we consider the
restriction of f (z) to L:

F(t) := f (wt + z).
The function F(t) is defined and holomorphic for t in a neighborhood -y of t = 0
in the complex t-plane. A necessary and sufficient condition that the hypersurface

2This theorem was first proved by H. Grauert [21]. The proof given here is due to the author
1391.
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S contains a portion of the complex line L lying in a neighborhood of the point z
in C" is that F(t) __ 0 on -y. Clearly if w satisfies this condition, then so does any
multiple sw = (swi.... , sw") for s E C. For convenience, we include the case when
the direction is 0 = (0.....0); clearly the 0 direction satisfies the above condition.

Let r denote the closed polydisk centered at the origin with radius I in C",
and let -yp denote the closed disk centered at the origin with radius p in the complex
t-plane; i.e.,

r : l wi 151 (j =1..... n), IP:ItI<p.
Fix a point z° _ (z°.... , zn) in the domain D. and choose a closed polydisk A
centered at z0 with radius r > 0 sufficiently small so that 0 lies in D,

Jz,-z°J<r (j=1.....n).
We let p > 0 denote the polydisk distance from a to 8D. For any (z, w, t) E

x r x yP, we set, using the same notation from above.

F'(z. w, t) := f (wt + z),

which defines a holomorphic function in I x r x 7,

We have the following lemma.

LEMMA 2.8. Let o be the set of all points w in r with the following property:
there exist a point z E LNnS and a neighborhood V of the point z in C" such that S
contains the portion of a complex line L passing through the point z in the direction
w which lies in V. Then o is a closed. nowhere dense subset of r.

PRooF. We develop F(z. u:. t) into a power series with respect to t,

F(z.w,t) = Ao(z.w)+A,(z.w)t+A2{z,w)t2+.. ,

so that each coefficient Ai (z, w) (j = 0, 1, 2....) is a holomorphic function of (z, w)
in the closed polydisk A := 0 x r. Consider the subset E of A defined by the
countable number of equations

E:={(z.w)EA: A,(z.w) = 0. j=0.1.2.... }.
It follows from Corollary 2.1 that E is an analytic set of dimension at most 2n - I
in A. From the necessary and sufficient condition that the hypersurface S contains
the portion of a complex line L lying in a neighborhood V of the point z, we see
that

o = n,,,(E) in r,
where ir,,. is the projection from A onto r. Since A is closed, o is a closed subset of
r.

We now show that ir,.(E) contains no non-empty open set. Suppose, for the
sake of obtaining a contradiction. that 7r,., (E) contains a non-empty open set U. For
any a = (al..... a") E U, we consider the section E(a) of E over the hyperplane
wi = a, (j = 1, ... , n). For each p E E(a), we can find a sufficiently small
neighborhood A, of the point pin A such that A,nE can be decomposed into a finite
number of irreducible components at p. Since E(a) is compact in A, we can find a
finite number of these neighborhoods ay, (j = 1.....l) such that E(a) C U =1 ap,.
We let Ek (k = 1, .... mi) denote the irreducible components of each analytic set
Ap, n E (j = 1,... ,1) in A,,. By assumption, the union (jj_1 U'I xw(Ek) C r
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contains a as an interior point. Consequently, one of the sets {7r".(E')}J.k c r. say
7r".(V'), contains the point a in its interior.

For simplicity, we write Ek' = Eo. A = A0. and p. = po. Thus zr,,.(Eo) contains
a = 7r,,.(po) in its interior. We can find a sufficiently small polydisk Al := 61 x 11 C
AI, centered at po so that E, := Al r E0 is an irreducible analytic set in A, with
7r,,. (E I) = -y1. Clearly dim E, = n + r for some r > 0. For each w' E 17 , we let
E, (w') be the section of E1 over the hyperplane w = w'. Since 7r,,.(EI) = 11, we
can use Proposition 2.3 to prove that dim EI(w') is always greater than or equal
to r and that there exist w° E ry1 with dim EI (u.°) = r. Let z0 = (z°, ... , z;)
be a point in E(w°) at which dimEl(w°) equals r. Then we can find coordinates
z, ... , z" of C" such that the (n - r)-dimensional hyperplane H in C2" defined by

II : t4 = w°, ZI = Zj , ... , Zr = z;-

satisfies the condition that in a neighborhood of (z°, w°) on If. the intersection
E1 fl H consists of the single point (z°, 0°). We can therefore find a sufficiently
small polydisk A := d x y, where 6 is an (n + r)-dimensional polydisk centered at
(w°. z°..... z°) and ry is an (n - r)-dimensional polydisk centered at (z" , .... , Z,).
such that E1 n A can be described in the form

Zk=WW.Z1, , Zr) (k=r+1... ,n)
for (w. z,.... . Zr) E 6, where each t;k(w. zI.... , z,.) is an algebraic function in 6.
If we fix a nonsingular point (w. z) _ (a,;3) in EI fl A. then we can find a smaller
polydisk 6' C 6 centered at (a,r31,... ,l3r) in which each G(w.z1,....zr) (k =
r + 1.... , n) is a single-valued holomorphic function.

We fix Itl << 1 and construct the holomorphic mapping Tt : z' = ?(t, w) from
the n variables to near w = a to the n variables z' _ (z' ..... z;,) near z' = at + i3
by the formula

z. =wit + R3 (j = 1..... r ).
zk = wkt + G (W.131, .... 31) (k = r + 1..... it).

By the construction of EII, we see that f (z') = f (=-(t. w)) 0 for all (t. w) suffi-
ciently close to (0,a).

On the other hand, we see that the determinant of the Jacobian matrix of Tt.

i9(z'l ,.. ,z;,)
49(w1... .w"),

is a monic polynomial in t whose coefficients are holomorphic functions of w near
to = a. Therefore, for some jtl << 1. Tt is a bijective map from a neighborhood
of a in Cu. onto a neighborhood w of at + 3 in C__"... Hence f (z') = 0 in w, which
contradicts the hypothesis that f(z) is non-constant in D.

2.3.2. Hypersurface Case. Using Lemma 2.8, we can prove Theorem 2.3 in
the hypersurface case.

LEMMA 2.9. Let D; (j = 1,2,...) be a countable collection of domains in
C" and let fe(z) be a holomorphic function in D; (j = 1.2.... ). Let Si (j =
1, 2....) denote the zero set of fe(z) in Dj. Given coordinates (z,.... , z") of C",
there exist coordinates (w1, ... , w") sufficiently close to (z1, ... . z,,) such that each
hypersurface S1 U = 1, 2....) satisfies the Weierstrass condition in the coordinates
(w l , ... , w") at each of its points.
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PROOF. Let C be the set of all directions w E r such that for some Sj (j =
1.2.... ) and for some point p E Sj, there is a neighborhood of p in DJ such that
the portion of the complex line L with direction w passing through p lying in this
neighborhood is contained in S.

Given any point p in one of the sets S,. we consider a closed polydisk bj,p
centered at p and contained in the domain DJ. We let £(6J,p) denote the set of all
directions w E r such that for some point q E bj.p n SJ. there is a neighborhood of q
in Dj such that the portion of the complex line L with direction w passing through
q lying in this neighborhood is contained in Sj. By Lemma 2.8. the set C(6,.p) is a
closed, nowhere dense subset of r. Note that U' I S, can be covered by a countable
number of these sets b_,_p, say and thus C = U' By Baire's
theorem, r \ G is dense in F; hence we can take a direction wo E 1' \ G which is as
close as we please to the direction (0.....0.1). say wII 1). If we
consider the coordinate transformations w, = z, -c,z" (i = I..... n -1), w" = z".
then the coordinates (w1, ... , w") satisfy the conditions of the lemma; i.e., each
Si (j = 1.2....) satisfies the Weierstrass condition in these coordinates at every
point of S3. 0

2.3.3. General Case of Analytic Sets. To prove Theorem 2.3 for general
analytic sets we use induction on the dimension n of C. For n = I there is nothing
to prove. We thus prove Theorem 2.3 in C" under the assumption that it is true
in C"-1.

Fix one of the domains DJ (j = 1, 2.... ). For each point p E £J, we can
find a neighborhood by of p in C" and a finite number of holomorphic functions
f kJ (z) (k = 1..... vp) such that b, n.6, is given by the vp equations f (z) = 0 (k =
1,... , vp) in bp. Therefore we can find a countable number of such neighborhoods
b; (i = 1,2.... ) and holomorphic functions fA (z) (k = 1.... , v;) in bi such that the
sets b; cover £J, i.e., £J C U', b;, and b;n£J = {z E b, 1 f (z) = 0 (k = I, .... v,)).
For simplicity in notation, we write b; = DJ; in other words, it suffices to prove
the theorem under the assumption that each £J (j = 1.2. ...) is an analytic set in
a domain D, C C" described by global functions in Dj: i.e..

£J : fj, (z) = 0 (k = 1..... v,) in D..

where each ff'.(z) (k = 1.....v3) is holomorphic in DJ.
For each j = 1, 2. .... we choose one of the functions fk (z) (k = 1, ... , vj ),

say f (z). and we let S, denote the zero set of fl (z) in Dj. Note that £j C SJ.
From Lemma 2.9, we find coordinates w = (wl..... w") sufficiently close to the
original coordinates z = (z1.... , such that each Sj (j = 1.2....) satisfies the
Weierstrass condition for the coordinates w at any point p of S3.

Fix a E Sj. We can find a closed polydisk A = 6 x y centered at a in C". where

b: 17A:J-a,J5r9 (j=1.....n-1),
such that SJ n (b x &v) = 0. We let SJ.0 := S, n A denote the zero set of f, (z) in A.
and we decompose Sj.0 into irreducible components SJ.o := Ul'I SJ,o in A. Setting
£J,o = £J n k, since £J.o C SJ.o. we have £j,o fl (b x 8y) = 0. From Proposition 2.3
it follows that the projection £,*.o of £J,o onto 8 is an analytic set in 6 C C".
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We note that

Ej.o = U CJ where Elo = Ej.o n 5, -

Thus,

t=1

for some I by the irreducibility of S (O. WeThus, if Ego = 6, we have S'J,O

collect all such sets EJ o and denote their union by E'o; i.e., E'o is the union of all
the (n - 1)-dimensional components (i.e.. complex hypersurfaces) of the analytic
set Ej,o in A. Since Ej',o C Sj.o, it follows from the construction of the coordinates
w = (wi,... , w") that EJ o satisfies the Weierstrass condition in these coordinates
at any point p E e o. We let F,.o denote the union of the other sets EJ o, so that
Ej,o = EJ.o U Fj.o and .Fj,o is an analytic set in A of dimension at most n - 2. Thus
the projection Fjo of Fj.o onto 6 is an analytic set in 6 of dimension at most n - 2.

Each Sj (j = 1, 2, ...) can be covered by a countable number of closed polydisks
A as above; we denote these polydisks by

6j.k X 7j.k C C"-I X Cm, (j. k = 1.2.... ).

We set Ej.k := Ej n \j.k and Sj n Aj.k := U1'1 S;.k, the decomposition of Sj into
irreducible components. Then we have

E,.k = U (Ej.k n Sj.k) = U Ej.k
1=1 1=1

We let Fj,k denote the union of the analytic sets EJ,k having dimension at most
n - 2. Then the projection F,*.k of Fj.k onto 6j.k is an analytic set in 6j_k C C"-1
of dimension at most n - 2. .

Thus in CI- I with the n - 1 variables w 1 . . . . . . , . we have a countable
collection of polydisks 6j,k (j, k = 1, 2, ...) and analytic sets Fi.k in each 6j.k
having dimension at most n - 2. It follows from the inductive hypothesis that
there exist coordinates u' = (ul, ... , u.- I) obtained by a linear transformation of
w = (w 1, ... w,t_ 1) and sufficiently close tow' such that each F;.k (j, k = 1,2,...)
satisfies the Weierstrass condition in the u' coordinates at any point q of Pi.k. Thus,

since Fj.k n (6j,k x 8yj,k) = 0, each Fj,k itself necessarily satisfies the Weierstrass
condition in the coordinates u = (u', w") for C" at each point p E F,.k. 0

Theorem 2.3 will be used in the next section to investigate the global structure
of analytic sets.

2.4. Analytic Sets (Global)

2.4.1. Global Irreducible Decomposition of Analytic Sets. Let E be
an analytic set in a domain D in C". From Theorem 2.3. we can find coordinates
z = (z1,....z") for which the analytic set E satisfies the Weierstrass condition
at each of its points. At each point a = (al,....a") E E, we take a Weierstrass
canonical neighborhood 6a of E in these coordinates. Then E can be covered by a
countable number of such neighborhoods, which we denote by

6k : (j n; k=1,2....
We set Ek := E n 6k (k = 1,2.... ). and we consider the irreducible decomposition
of Ek in 6k:

tk

Ek = U Ek.v
v=1
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Each £k.,, is called a local irreducible component of £k in bk. If dim = r,
then Ek.,, coincides with a locally algebraic analytic set in 6k having parameters
ZI.... , Zr; i.e.,

(zr+1.... , Z'J = gk.v(z1,... , zr) in 7rr(bk)

where 7rr(bk) is the projection of bk onto the first r variables z1, ... , z,.; i.e..

7r(bk) : Iz3-ail5rJ (.i

and gk,,,(z1,.... Zr) := qk.,,(z') is a vector-valued algebraic function on 7rr(6k). Let
L be an are in Cr with initial point ar(ak) and terminal point V. If qk,,,(z') can
be analytically continued along L (we use the same notation qk,,,(z') to denote the
algebraic vector-valued function thus obtained) and if (z', qk,,,(z')) E D for any
z' E L, then (z'.gk,,,(z')) E E. Conversely. if is contained in a for
z' E L, then analytic continuation of 7)k,,,(z') is possible along L.

We next separate all local irreducible components {£k.,,} into subclasses. Two
local irreducible components Ek.,, in bk and £h.,, in bh will belong to the same class
if both (I) and (II) are satisfied:

(I) dim £k.,, = dim Ch., = r.
(II) Letting qk,,,(z') and qh.,,(z') denote the vector-valued algebraic functions

defined on 7rr(bk) and 7rr(6h) which represent Eh., and £h.,,, there exists an
arc L in C' starting from 7rr(ak) and ending at 7rr(ah) such that

(a) qk,,,(z') can be analytically continued along the are L and coincides
with qh.,,(z') at the terminal point 7rr(ah);

(b) if qk.,,(z') denotes the analytic continuation of 77k.,,(z') along L, then
the set {(z', 7)k,,, (z')) E C" { z' E L} is contained in the domain D.

It is clear that the classification of the components {£k,,,}k,,, is well-defined and
there exist at most countably many subclasses, denoted R' (t = 1, 2, ... ).

Let £` denote the union of all local irreducible components £k,,, belonging to
the class V. Then £` is an analytic set in D. Note that if f is an analytic set in
D with dimension r which contains one of the sets Ek,,, in V, then F necessarily
contains the entire analytic set E` by the theorem on invariance of analytic relations
under analytic continuation. Thus E` is irreducible in D.

We summarize this discussion in the following theorem.

THEOREM 2.4. An analytic set £ in a domain D in C" can be decomposed into
an at most countable union of irreducible analytic sets ft'} (t. = 1,2,...) in D.
Frthermore, there exist coordinates z1, ... , z" such that each irreducible component
E` of dimension r can be written locally in the form

(Zr,1.... , 17(z1, ... . Zr),

where q(zl,... , z,.) is a vector-valued algebraic function.

2.4.2. Analytic Continuation of Analytic Sets. We discuss the notion of
analytic continuation of analytic sets. Let D1 and D2 be two domains in C" such
that DI n D2 34 0. Let £1 be an analytic set in D1. If there exists an analytic set
E2 in D2 such that

£1nDI nD2=£2nDI nD2,
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then there exists a smallest such E2. We denote this set by £.'1 and we call E2 the
analytic continuation of EI into the domain D2. In the case when E, nD, nD2 =

we can take E2 = 0 to see that £1 can be analytically continued into D2.

REMARK 2.11. In the definition of analytic continuation of £, into D2, it is
essential to use the smallest set E2. For example, in C2 with variables z and w. we
consider the polydisks

A, : jzI < 2. jwl < 1. and A2 : I: - 31 < 2, 1.

We set E1 := {w = 0} n A, and £2 :_ {w(z - 3) = 0} n 02. Then E1 and E2 are
analytic sets in DI and A2 with Si n A, n A2 = E2 n AI n 02. The analytic set £,
can be analytically continued into 02; the minimal set E2 is {w = 0} n 02.

Let p E 0D1. If there exists a neighborhood 6 of p in C" such that £, in
D, can be analytically continued into 6, then we say that EI can be analytically
continued at the boundary point p.

REMARK 2.12. Let L be an arc in C" connecting the points p and q and let E
be an analytic set at the point p. By the remark above, we can define the notion of
(possible) analytic continuation of E along L from p to q. However, even if £ can
be analytically continued along all arcs in a domain D in C' which start from a
point p. the set E obtained from all such analytic continuations is not necessarily
an analytic set in D. For example. let a. 3. ti be three complex numbers such that
the set of all complex numbers of the form

(1,m.n =O.±1.±2....)

is dense in the complex plane C. In C2 with variables z and u-, we set D
(C,. \ {0.1. -1}) x C,, and we consider the analytic set £ given by the single-
valued function w = a log z + ;.i log (z - 1) + y log (z + 1) in a neighborhood of
the point p = (2. a log 2 + ry log 3) in D. Then the set E obtained from analytic
continuation of E along all arcs in D starting at p coincides with the graph of the
multiple-valued function

w=alog z+;3log (z-1)+7log (z+1)
in D. Thus £ is dense in D and hence is not an analytic set at any point of D.

2.4.3. Removability Theorem for Analytic Sets. Let E be an analytic
set in a domain D in C". If a boundary point p of D is an accumulation point of E.
then p is called a singular point of E. As with holomorphic functions, a singular
point p of £ may be removable: i.e., there may exist a neighborhood V of p in C"
and an analytic set e in V such that £ n V = £ n D.

Given an analytic set £ in a domain D in C", we let d be the largest dimension
of the irreducible components of E. We set D' = D \ £ and let F be an analytic set
in the domain D'. Let r be the smallest dimension of the irreducible components
of F.

We have the following removability theorem for analytic sets.

THEOREM 2.5. If d < r, then F can be analytically continued to all points of
E; i.e., the closure F of .F in D is an analytic set in D.

PROOF. We may assume that £ and F are of pure dimension d and r. We
first choose coordinates z = (z, , .... z,, ) of C" for which the analytic sets £ and
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.F satisfy the Weierstrass condition at each point. Thus .6 and F can be written
locally as

£. zjflj(zl.....zd) (j=d+1........ n).
zk=Sk(:I....... .Zr) (k=r+I.....n).

We fix a point a = (a,_. . a") of £: then we set a' := (a, , .... a,) and we denote
by D(a'),£(a')..F(a') C C"-' the sections of D,£,.F over the hyperplane z., =
aj (j = 1, ... , r) in C". We note that £(a') is an isolated set in D(a) - Since F(a')
is analytic in D(a') \£(a'), F(a`) is an isolated set in D(a') \£(a'), but it may have
accumulation points in £(a').

W e can thus find a neighborhood V' of a" = (ar+I. in D(a) such that
V' n .6(a') consists of the single point a"; and we take a closed polydisk r in C"-'
(with coordinates .... z") centered at a" and with radius pk (k = r+l..... n),

r : Izk - akj <_Pk (k=r+I....,n),
where the pk are chosen sufficiently small so that 8rn (£(a') U.F(a')) = 0. We next
take a closed polydisk A in Cr (with coordinates (zl,....z,)) centered at a' with
radius pj (j = 1,... ,r).

A: jzJ - ajJ:Pj (j=1.....r).
where the pj are chosen sufficiently small so that A := A x r C D and (A x iir) n
(£ U.F) = 0. These choices are possible because £ is analytic at a and F is closed
in D \ E. We set £° :_ £ n A and 0 := F n A. Then Theorem 2.3 implies that
the projection £' of £° onto A is an analytic set in A and the dimension of £' is d.
From the assumption that r > d, it follows that the set A' := A-£' is a non-empty
domain in Cr and that F n (A' x r) is an analytic set in A' x F.

Now let z' = (z...... z.) E A'. The section .F° (z') of 0 over the hyperplane
a3 = zi, (j = 1, ... , r) is a finite set; we denote its cardinality by ((z). The
nonnegative integer-valued function ((z') is easily seen to be a lowersemicontinuous
function of z' in A'.

Let v be any nonnegative integer, and let e be the set of all points z' E A'
such that ((z') < v. By the lowersemicontinuity of ((z), e,, is a closed set in A'.
and clearly

x
e C (v = 1.2....). a' = U el.

V=1

It follows from Baire's theorem that some e contains interior points in W. We let
v° be the smallest integer v such that e contains at least one interior point. Let
e`,0 denote the interior of e,,,) in 0'; then we shall prove that

A' = e,,,,. (2.8)

We prove (2.8) by contradiction. If (2.8) is false, then there exists a point 6' E
A' n 8e;. where 8e4 denotes the boundary of e;,,, in A'. Since e,,,, is a closed
set in a', the section .1 0(b') of .T over z' = 6' consists of at most v0 points in
r. Since dim.F = r, we can thus find a neighborhood 6 of b' in A' such that
.F° n (6 x r) coincides with a finite number of locally algebraic analytic sets in
6 x r with parameters zt,... zr in 6: zk = r1k(zI,... ,Zr) (k = r + 1,... ,n).
Consequently, given any point c' E 6, the number ((c.') of points of the section
0(c') C IF of .F° over the hyperplane z' = c' remains constant. say CO. except
perhaps for points c' belonging to an (at most) (r -1)-dimensional analytic set a in
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6. Since (b \ a) n e; # we have (o < vo. Hence d C e,,,. which is a contradiction:
and (2.8) is proved.

Since.F n (A' x I') is an analytic set in A' x r with A' n 817 = 0. it follows that
((z') = vo for each z' E A' except perhaps for an analytic set in A' of dimension
at most r - 1.

Using the same technique as in the proof of Proposition 2.1. we see that P1 n
(A' x r) consists of a finite number of irreducible components of complete, algebraic
analytic sets E' defined by

zk'+AI(z')z-k' +...+AVk(z')=0 (k=r+1.....n). (2.9)

where vk < vo and each Ai (z') (1 1..... vk) is a bounded, single-valued holomor-
phic function in A'. By the Riemann removable singularity theorem for holomorphic
functions, each Ak(z') can be holomorphically extended to all of A. Thus. (2.9)
defines a complete, algebraic analytic set E in A, and E equals the closure E' of E'
in A. Therefore, the closure f° of 0 in A is an analytic set in A. and the theorem
is proved.

2.5. Projections of Analytic Sets in Projective Space

Since the notion of analytic sets is local, we can define an analytic set in a
domain G of n-dimensional complex projective space P" or in a product space of
the form D x P", where D is a domain in C'. The dimension of such an analytic
set e in G and the irreducible decomposition of E in C are defined as in the case
of an analytic set in a domain of C'.

Let D be a domain in C' and consider the product domain Il := D x P". In
this section we study analytic sets E in Q.

We take coordinates u = (ui,....u,") of C"' and homogeneous coordinates
[z] = [zo : zi :...: z"] of P". We let it1 and ire denote the projections from
fl = D x P" onto D and P". Let E be an analytic set in 1 and let a be a subset
of D. We set

E(e) := a] 1(e) n e.
In the special case when e is a single point u' of D, the set E(u') can be regarded as
an analytic set in P". Then e(u') consists of a finite number of irreducible compact
analytic sets in P". We use the notation

d(u') := dimE(u')

for the maximal dimension of the irreducible components of E(u').

2.5.1. Chow's Theorem. We begin by proving a slight generalization of
Chow's theorem, which says that an analytic set in P" must be algebraic. To
define this notion, let [z] = [zo : i :...: z] be homogeneous coordinates of
P" and let Pk(z) (k = 1,... ,µ) be a homogeneous polynomial in the coordinates
z = (z°, z1, ... , z") of C" 1. Then the set of all points z of C" +I defined by the
m equations

Pk(z) = 0 (k = 1.... , µ)
canonically defines an analytic set in P" which we call an algebraic set in P".3

3The fact that any analytic set in P' must be an algebraic set in P" was first proved by L.
Chow [14). The idea of the proof given here is due to W. Rothstein [64) (see also R. Remmert and
K. Stein 169)). In Part II we shall show that it is possible in Theorem 2.6 to take the neighborhood
6 of u° in D to be an analytic polyhedron in D.



2.5. PROJECTIONS OF ANALYTIC SETS IN PROJECTIVE: SPACE 65

THEOREM 2.6. Let £ be an analytic set of dimension p > I in fl = D X P"
whose projection to D is non-empty. Let uo be any point in D. Then there exists
a neighborhood 6 of u(' in D such that £(S) = £ fl (6 x P") can be written as
the common zero set of a finite number of holomorphic functions Pk(u,z) (k =
1.... , µ). where each Pk(u. z) is a homogeneous polynomial of degree Mk in the
coordinates z of Cn+1 whose coefficients are holomorphic functions of u in S:

Pk(u.z) _ E (2.10)

;3=-k

where j = j") and Ij I =
E,0j1

PROOF. We may assume that £ is a p-dimensional irreducible analytic set in
fl. Let z = (zo. zl..... z") be coordinates for C"+ I. For convenience we write
(Cn+i). = C"+1 \{0}. Any point z E (C"'I)` corresponds to a point [z] E Pn. To

the analytic set £ in 11. we associate the set £,I in the product space D x (C"*,)'
defined as

Co :_ {(u.z) E D x (C"+1)' I (u, [z]) E £}. (2.11)

which will be called the associated set for C. Since ]z'] = [z] in P° if and only if
z' = tz for some t * 0 in C, it follows that the set Co is a cone and is a (p + 1)-
dimensional analytic set in D x (C"+1)'. We first show that Co is analytically
extendable to the the set D x {0}. i.e.. the closure E of £o in the product space
n := D x C"+1 is a (p + 1)-dimensional analytic set in 52.

Case 1: p > m. Since dim£II = p + 1 > m = dim(D x {0}). it follows from
Theorem 2.5 that To is analytic in 1. In this case, let ue E D. Since £o is analytic at
the point (uei 0), we can find a polydisk A:= 6 x - centered at (uo, 0) in D x C"+I
and a finite number of holomorphic functions gh (u, z) (h = 1, ... , v) in A such that

EonA={(u,z)EAI gh(u,z)=0(h=1....,v)}.
We develop each gh (u. z) into a Taylor series with respect to the variables z E -y
and we rearrange this series into a series of homogeneous polynomials in zI,..., Z.

gh(u. z) := > E (Ah)x(u)zo zi' ... 4
1.k=0 19..- JJ

where each (Ah)k(u) (1 < 1 < vk :_ ("kk)) is a holomorphic function in S. Fix
(u, z) in ! o. Since (u., tz) E 4 for all t E C. in particular. we have

tk l (Ah)k(u)z, z,' ... z;, } -0 in Iti < 1. (2.12)
k=0 =k JJJ

We let Eku tk (Ph)k(U, z) denote the function on the left-hand side of (2.12); thus
(Ph)k(u. z) (h = 1..... v; k = 0, 1....) is a homogeneous polynomial of degree k
in z E C"+I whose coefficients are holomorphic functions of u E 6. It follows from
(2.12) that

4o n (6 x c,,+') =n n {(U. Z) E 6 x C"+I I (Ph)k(u, Z) = 0}.
h=1 k=0

Using Corollary 2.1. the theorem is proved in case 1.
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Case 2: p < in. We set q = in - p > 1 and we use variables w = (w).... , wy) E
C4andz=(zo,z1....,z")ECn}1. We form the set

.F = {(u, [z : WI) E D X P"+Q I (u, Jz]) E E. w E C°}.

so that F is an in = (p+q)-dimensional irreducible analytic set in D x P"-4. Just
as E gave rise to E1, via (2.11)..F gives rise to the (m + 1)-dimensional analytic set
.FO in D x (C"+9+1).

Let uo E D. Applying case 1 for.F. we can find a neighborhood 6 of u11 in D and
a finite number of homogeneous polynomials Gh(u, z, w) (h = 1..... v) of degree
mh in (z. w) E C"'9+1 whose coefficients are holomorphic functions of u E 6.

Gh(u.Z. w) = Ah'J")(u) . w12 (h = 1.....v).
Ji 1',J2 1=m+

such that

To(6) = {(u. Z. W) E 6 x C"-9-1 1 I Gh(u. Z' w) = 0 (h = 1.... , v)}.

If we rearrange the sum

Gh(u. z. w) = (B,)e' (u. z)u'I' ...
s=0 \I kl=s

where k = (k1, ... , kq). then each (Bh);k}(u, z) is a homogeneous polynomial of
degree mh - $ in the coordinates z E C"+1 whose coefficients are holomorphic
functions of u E 6. Since (u. [z]) E E(6) if and only if (u. Jz : E .F(6) for all
w E C9 (or. equivalently, (u, z) E o(6) if and only if (u. z. w) E it follows
that

i ".q

T(6)= n n{(u,z)E6xC"+1 I (Bh)('kI(u.z)=0. where IkJ=s).
h=1s=0

This proves the theorem in case 2. G

COROLLARY 2.2. Under the same notation as in Theorem 2.6, the set e;,
{u E 6 1 d(u) = n} is an analytic set in 6.

Indeed. using the notation in (2.10). we have

en= {uE61Ak1(u)=0forall k and j).
which proves the corollary.

2.5.2. Projection. Given an integer s with 0 < s < n, we consider the fol-
lowing two projective subspaces of P":

V z.=0 (k=s+1.....n),
R.--1 zh = 0 (h = 0.1... , s),

so that !C' f1 1 = 0. For convenience, we set W- I = 0. To each point
[z] _ (z<> : ... : z"] E P" \ H"_,_1 we associate the point [z], = [z11 : ... : z, : 0 :

01 E V. We write [z], [z0 ...: z,] and canonically identif. the subspace
1C' with P'. The mapping w,(' z)) [z], from P" to K' is called the projection
from P" to K' = P". We also define the associated projection *.,(u, (z]) :_ (u.
fromDxP" toDx)C'=DxP'.



2.5. PROJECTIONS OF ANALYTIC SETS IN PROJECTIVE SPACE 14'

We shall prove a lemma which corresponds to the case r = n - 1 of Proposition
2.3 for analytic sets in a domain of C". We use the notation

[e;] := [0 :...:1:...: 0) E P" (i = 0.1..... n).
where the "1" occurs in the (i + 1)-th slot.

LEMMA 2.10. Let t be an analytic set in l and let u" be a point in D. Assume
that (e"] % £(u°); i.e.. x2(£(u(')) 11 Hc, = 0. Then we can find a neighborhood 6 of
u° in D such that

(1) The projection F(b) :_"_1(£(e)) of £(6) onto 6 x Kn-e is an analytic set
in 6 x K"-1. and

(2) dim £(u) = dins F(u) for all it E 6.

PROOF. By Theorem 2.6. we can find a neighborhood 6 of u" in D such that
£(b) gives rise to the analytic set £(6)0 in 6 x C"'1 defined by Pa(u, z) = 0 (k =
1..... js). where each Pk (u. z) is a homogeneous polynomial in C" * I whose coeffi-
cients are holomorphic functions of u E 6.

Since [e"] %£(u"). we have Pk(u".0.....0.1) # 0 for some k (I < k < µ). For
simplicity. let k = 1 and

P,(u.z) aui(u)ztnzi'...z

where j = (j0, j1..... j"). By taking a smaller neighborhood 6 of u° in D. if
necessary, we may assume that

Pl(u.0,....0.1)#0 for all uE6. (2.13)

We shall show that this 6 satisfies the conclusion of the theorem.

For simplicity. we set

£ = £(6). F = ty"-I(£(6))-
We write z' = (zo.z1.....z,,-1) E C" and [z'] = [z0 : zI :.... ;r, - Il E P" -I.
We note that (u. [z']) E F if and only if there exists at least one point z E C
such that (u, [z]) = (u. [z' : E C. Equivalently. if we let F0 C 6 x C" and
£o C 6 x C" +I denote the associated sets for F and E. then (u. z') E To if and
only if there exists at least one point z,, E C such that (u, z) = (u. z'., z") E £0. It
thus suffices to show that there exist a finite number of homogeneous polynomials
ha,(u.z') (a = 1,... Al) of z' E C" whose coefficients are holomorphic functions
of u E 6 such that Yo consists of the common zero set of hn,(u. z') (a = 1..... Al)
in 6xC".

To show this, we note from (2.13) that

PI (u. z) = AO(u)z" QI (u. z')Zni-1 + ... + Q,,, (u. Z'),

where A0(u) # 0 for u E 6 and where Qj(u. z') is a homogeneous polynomial in C"
of degree m - j whose coefficients are holomorphic functions of u E 6. It follows
that

P1 (u. z) = A() (u) (u, z')) ... (z, - (u. z'))
with

]{j(u,z')I < K(1 + 3[z'rrni-1). t;j(u.Az') = 9, (u., z') (A E C). (2.14)

where K > 0 is a constant independent of it E 6 and j = 1,... , in.
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Following the idea of Remmert-Stein in the proof of Proposition 2.3. we intro-
duce p - 1 complex variables X2.... , X,, and set

in

H(u, z', X) := fi (X2P2(u. z',ti(u. 2 )) +"' + z', yJ(u. z'))]
i=I

Then H(u, z', X) is a holomorphic function in 6 x C" x C'' - I which can be written
as

H(u, z', X) = E hc"(u. z')X.,' Xu-,
;al=m

where a = (a2,. .. , a,) - We also have the following:

(i) (u, z') E .f° if and only if (u. z') belongs to the common zero set of h (u, z')
=0 for all [aI=m.

(ii) From (2.14). each h(a) (u, z') with I a m is a homogeneous polynomial of
z' E C" whose coefficients are holomorphic functions of u E 6.

This proves (1).
Furthermore, since (,fl (6 x [e"]) = 0, for any u E 6 and [a'] = (ao :...

an-I] E .F(u). there exist at most a finite number of points a" E C such that
[a': an] E ((u). It follows that dime(u) = dim .1(u). We thus obtain (2).

We remark that for any given [a] E P", there exists a linear transformation
L of Pn such that L((a]) = and for any given (a] E P" such that [a] ¢
H.-,-, (0 < r < n - 1) (i.e., [a] is not contained in the subspace of P" spanned
by [ei] (j = n. n - 1, ... , n - r)) there exists a linear transformation L of P" such
that L([ei]) = [ei] (j = n, n - 1.....n - r) and L([a)) = [en-r- i]

Using the lemma, and an induction argument on the dimension of P" together
with this remark, we obtain the following corollary.

COROLLARY 2.3. Let E be an analytic set in Sl and let 0 ° be a point in D such
that d(u°) = dimE(u°) = r (0!5 r < n). Then there exist homogeneous coordinates
[z] = [z° :...: zn) of P" and a neighborhood 6 of u° in D such that

(1) 7'In-r-I r1 e(6) = 0:
(2) d(u') < r for any u' E 6, i.e., d(u) is a lowersemicontinuous function on 6;

and
(3) er)(6) :_ Wr(e(6)) is an analytic set in 6 x Kr such that dimE(u) _

dim &') (u) for all u E 6, and hence e(r)(u°) = Kr = Pr

We use these results to prove the following proposition.

PROPOSITION 2.4. Let E be an analytic set in Sl and let u° E D. If d(u°) = r.
then there exists a neighborhood 6 of u° in D such that

e° := {u E 6 1 d(u) = r}

is an analytic set in 6

PROOF. From (3) in Corollary 2.3. we can find a neighborhood 6 of u° in D
such that ((r)(6) is an analytic set in 6 x P''. By Theorem 2.6. if we form the
associated set E°{rl for g(r) in 6 x (C' )'. there exist a finite number of homo-
geneous polynomials Qk(u, z) (k = I.... ..v) for z in Cr+' whose coefficients are
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holomorphic functions of /u in 6:

Qk(u.Z)_
IJ1=-J.

such that

0rl(b) {(u, Z) E 6 x Crt' I Qk(u, z) = 0 (k = 1..... /)}.

Since dimE(u) = dim6'r)(u) for u E 6 and since dim6(')(u) = r if and only if
E(r)(u) = Pr, or equivalently. j'('(u) = Cr+1 it follows that

e°= {uE6I Bk'(u)=0 1 <k<v: IJI=mk}.
so that eor is an analytic set in 6. a7

COROLLARY 2.4. Under the same hypotheses as in Proposition 2.4, let d(u°) _
r and dim e° = a. Then E(6) contains an analytic set of dimension s + r in 6 x P".
so that dim C (fl > s + r.

REMARK 2.13. Even in the case when E is irreducible in 6 x P". we do not
necessarily have dim 6(6) = s + r. Let D = C2 with variables u1 and u2, and let
S2 = C2 x P1. We use homogeneous coordinates (x : yj in P1. Let E be the analytic
set in f2 defined by the single homogeneous linear equation

6:u1x+u2y=0.
Then E is of dimension 2 in Sl. The set of points u = (uI, u2) in C2 such that
dim6(u) = 1. i.e., such that E(u) = P'. consists of only one point. (0,0). Thus,
r + s = I + 0 = 1. However, for any neighborhood 6 of (0.0) in C2 we have
dim e(b) = 2.

In particular, if D = 0. in a manner similar to Lemma 2.10, we obtain the
following corollary for r = 0, .... n - 1 (the case r = n - 1 being an immediate
consequence of the lemma).

COROLLARY 2.5. Let.F be an analytic set in P" and suppose that ,Fnliln_r_ 1 =
0. Then the projection ypr(.F) is an analytic set in X'.

We deduce the following property of analytic sets in Pn, which will be used
later.

COROLLARY 2.6. Let F be an analytic set in P" of dimension r where 0 <
r < n. Then for each (n - r)-dimensional hyperplane L"-r of P", the intersection

.FnL"-r is non-empty; while for some (n-r-1)-dimensional hyperplane Ln-r-1

.Fn L"-r-I = 0.

PROOF. The result is trivial if r = n; thus we assume 0 < r < n - 1. The
second part of the corollary follows from the definition of dimension; without loss
of generality, we can assume that.Fnfn_ _ 1 = 0. For the first part. we can choose
coordinates so that L"-r = xn-r- From the previous corollary, together with the
assumption that F has dimension r, we conclude that or(F) = Kr. But Nn_rn/Cr
contains [er]. We note that [er) E My) means that there exists at least one point
[a) E F of the form (a] = [0 :...: 0: 1 : ar+I :...: an]. Since [a] E 7'tn_r, we have
the corollary. O
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2.5.3. Analyticity of Cr. Let E be an analytic set in 0. For an integer r with
-1 < r < n, we define

fCr := {u E D I d(u) = r}.
where d(u) = -1 if E(u) = 0. We consider all r such that er 0 and arrange them
in increasing order; using the notation rj, j = 0,1.....j . we have r., < rj. 1. VVP
set

U11

Er, U era (J = 0, 1.... . 11).
k=j

Note that Er,, Er, D ... D Er,, = er,,. Applying Proposition 2.4 inductively, we
obtain the following facts:

(1) Er,, is an analytic set in D.
(2) For each rj (j = 1...... - 1). the subset Cr, of D is an analytic set in

D \ Er,,,; we set sj := dimer,.
(3) er is a dense, open subset of D.
Our goal in this section is to show that the closure l of each e,., in D is an

analytic set in D. To achieve this goal, we require two lemmas.

LEMMA 2.11. Assume that E is an irreducible analytic set in S2 of dimension
p. Then r1(£) is an irreducible analytic set in D. In case r° = -1. r,(e) coincides
with e;., (the closure of er, in D) and is of dimension st = p - r, .

PROOF. In case when rI, ? 0. we have r1(E) = D. which proves the lemma.
We consider the case r = -1, i.e., there exists a non-empty open set C in D such
that C(u) = 0 for all u E G. Since dime = p in Q. it follows from Corollary 2.4
that p>sj+r, (j= 1,... p).

If j = 1. we have the relation p = s, + r1. To see this, we take a nonsingular
point (0°. [a°]) of the analytic set £(er,) in (D \ Ere) x P" such that u° and [a°]
are non-singular points of er, and £(u°). respectively. Since u° Ere and r = -1.
we can find a neighborhood 6 of u° in D such that 6 fl r(E) = 6 fl er, 54 6. Fix
a neighborhood r of [a°] in P". If 6 and r are sufficiently small, then we have
6n (S X r) = E(er,) fl (6 x r). The latter set has dimension at least s1 + rt. On
the other hand, from the irreducibility of E it follows that the former set and C are
of the same dimension p. From Corollary 2.4 we conclude that p = s, + r1.

Thus r, > r, (j = 2, .... }c) implies that

st > Si (j = 2..... p). (2.15)

From (2), er, is an analytic set in D \ E,.,. Since Cr, is pure s1-dimensional
and er, is an analytic set of dimension S2 in D \ Er, it follows from Theorem 2.5
and (2.15) that the closure of er, in D \ Er3, which is equal to ePr, fl (D \ EE,), is an
analytic set in D \ Er3. It is also pure s1-dimensional in D \ Er3. By repeating this
procedure, we conclude that the closure Cr, in D is a pure s1-dimensional analytic
set in D.

We thus see that t (er,) is a p-dimensional analytic set in Q. It follows from
the irreducibility of E in fl and the inclusion e(lr,) C E that £ = C(Fr, ). which
proves the lemma. 0

This immediately implies

COROLLARY 2.7. For any analytic set E in fl, the projection r1(£) is an ana-
lytic set in D.
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LEMMA 2.12. Each Er, (j = 0.... p) is an analytic set in D.

PROOF. We let G" denote the set of all (n-r.,)-dimensional hyperplanes in
P". Fix 0 ° 0 Er,. Then there exists L E C"-r' such that £(u(') n L = 0. On the
other hand. if u E Er,. then £(u) n L 34 0 for each L E C"-r,.

For each L E we set Lo := D x L. which is an analytic set in Q. We
thus have

EE, = n aI(Lon£).
Lern-,

To apply Corollary 2.7. for each fixed L E £"-r, we can consider Lo as Il in
Corollary 2.7. Thus. each projection ij(Lo n £) is an analytic set in D. Thus
Corollary 2.1 yields that Er, is an analytic set in D. O

From this lemma we obtain the following theorem.

THEOREM 2.7. For each rj (j = 0.1.... p), the closure erg of er, in D is an
analytic set in D.

PROOF. Since both e,- and E,,.-, = e,,. U er.. , are analytic sets in D (from
(2) and Lemma 2.12), it follows from the local irreducible decomposition theorem
of analytic sets (Theorem 2.2) that the closure er inof er, _, in D is an analytic
set in D. Repeating this argument, we obtain the theorem. U

These results on analytic sets E in Q = D x P" can be modified (Corollary
2.8): this will be useful in Chapter 6.

Let D c CL be a domain and set SW D x C".. Let P, (u, u) v)
be a polynomial in w = (wl.....w") whose coefficients are holomorphic functions
of u on D. Let E : P , (u, w) = 0 (j = 1 . . . . , v) bean analytic set in W. and let
E(u) be the section of E over u E D. i.e.. E(u) = {w E Cu. J (u, w) E E}. «e
assume that there exists a polydisk x := 6 x 1:' C C"' x C", in f2' such that, if
we set a := E n A. then the section a(u) of a over each point u E 6 consists of a
finite number of points in C. We let E0 denote the irreducible component of E
containing a (thus dim E(I = m).

COROLLARY 2.8. Under the above setting, them e.rists an analytic set e in D
of dimension at most m - 1 such that for each u E D \ e. Eo(u) consists oft > 1
distinct points in Cu. where I is an integer independent of u E D \ e.

PROOF. Let w, = C,/CU (i = L... , n) and let k, (j = 1, .... v) be the degree
of P, (u, w) in w. Then we can form the homogeneous polynomial Pj (u. C) in C =

where P,(u.wg ' = P,(u,(). We set (C] _ ]Cry : Cl :...:Cry] and
C"] and identify

C. ((C] E PS I Co # 0}. 7i". 1 = (K] E Pt I C(1 = 0) P!.-'.
so that P is the disjoint union P" = C. U I . Let f2 = D x P and let
E be the analytic set in 0 defined by P,(u.() = 0 (j = 1.....v). Then E

r) W. We let E denote the irreducible component of t which contains a (precisely.
,6n WD a). We set F = £ n (D x I), which we consider as an analytic set
in Q"-1 := D x P',-I. We use the notation from the beginning of 2.5.3 for £ in
fl. In this case, our assumption on E implies that ro = 0. and hence from Lemma
2.12 we conclude that there exists an analytic set Er1 in D of dimension at most
m - 1 such that dim £(u) = 0 over each u E D \ Er,, i.e., the section £(u) is
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non-empty and consists of a finite number of distinct points {p., (u)}j=1 in
P'. Note that 1(u) is bounded in D \ Er, since E is an irreducible analytic set
of dimension m in S1. Furthermore, if we set l := max {1(u) I u E D \ E,., } and
eI := {u E D \ Er1 11(u) < 1- 11. then e1 is an analytic set of dimension at most
m - 1 in D. We again use the notation from 2.5.3 for the analytic set F in n` 1.
Since F C E, F 96 E. and E is irreducible in A, it follows that re = -1 for F in
Sl"'1. hence there exists an analytic set Fr, in D of dimension at most m -1 such
that the section F(u) = 0 over each u E D\ Fr, . Thus. if we set e := Er1 U e l U Fr1,
then e is an analytic set in D of dimension at most m - 1 and E(u) = E0(u) for
u E D \ e: moreover. E(u) consists of l distinct points in Cc.. as desired. 0



CHAPTER 3

The Poincare, Cousin, and Runge Problems

3.1. Meromorphic Functions

3.1.1. Poincare Problem. Let D be a domain in C". If a function g(z) in
D can be locally represented as a quotient of two holomorphic functions, then g(z)
is called a meromorphic function in D. To be precise. g is meromorphic in D
if for each point p E D. we can find a neighborhood by of p in D and functions
hp(z), kp(z) holomorphic in 6p such that for any p, q E D with 6p fl 6q 0. we
have

kp(z)hq(z) = kq(z)hp(z) in by flbq. (3.1)

and g(z) = hp(z)/kp(z) in 6p.

From the Weierstrass preparation theorem, by choosing a smaller neighborhood
by if necessary, we may assume that hp(z) and kp(z) are relatively prime at p; i.e., if
we choose the coordinates (zi,... , satisfying the Weierstrass condition for the
analytic hypersurfaces hp(z) = 0 and kp(z) = 0 at p, then hp(z) and kp(z) have no
common factor which is an irreducible distinguished pseudopolynomial in z" at p
of positive degree. If we let ap denote the zero set of kp(z) in 6p, then the union
of the sets op defines an analytic set E in D. Note that E does not depend on the
choice of hp(z) and kp(z). We call E the set of singularities or pole set of g; the
function g(z) is holomorphic in D \ E.

Let p be a pole of g(z). If hp(p) 54 0, then clearly g(p) = oc. On the other
hand, even though hp(z) and kp(z) are assumed to be relatively prime at p, they
may simultaneously vanish at p (e.g.. take hp(z1. z2) = z1 and kp(zl. Z2) = z2 at
p = (0.0) in C2). Then. given any number c E C. the analytic hypersurface in D
defined by

hp(z) - ckp(z) = 0 in by

passes through the point p. Thus the value g(p) is not uniquely determined. Such
a pole p is called a point of indeterminacy of g(z). The set of all indeterminacy
points of g(z) in D is a pure (n - 2)-dimensional analytic set in D. This follows
since the non-empty intersection of two distinct irreducible analytic hypersurfaces
El, E2 in a domain C C C" is a pure (n - 2)-dimensional analytic set in G.

Since the definition of meromorphic function is local, the problem arises as
to when we can write a meromorphic function in D as a quotient of two global
holomorphic functions.

PoincarL Problem Let g(z) be a meromorphic function in D. Find two holo-
morphic functions h(z) and k(z) in D such that h(z) and k(z) are relatively prime
at each point p E D and satisfy g(z) = h(z)/k(z) in D.

This problem in the case of D = C2 was solved in the affirmative by Poincare
[59]. An example of a product domain D where the Poincar6 problem is not

73
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solvable for g in D will be given in Remark 3.5. We mention that even though
the Poincare problem as stated is not always solvable for g in D. there always
exist holomorphic functions h(z) and k(z) in D satisfying g(z) = h(z)/k(z) in any
domain of holomorphy D but where h(z) and k(z) are not necessarily relatively
prime at each p E D. This will be shown in Theorem 8.19 in Chapter 8.

3.1.2. Cousin Problems. The Poincare problem for a general domain is re-
lated to the following problems, known as problems I and II of Cousin.

Let D be a domain in C". For each p E D. we assume the pairs (.9,, 6p) are
given, where dp is a neighborhood of p in D and gp(z) is a merotorphic function
in 6,,; furthermore, we assume that for any points p, q E D with dp fl bq # 0, the
function gp(z) - gq(z) is holomorphic in 6,, Ii 6q. We call the collection {(gp, bp)}p
for p E D Cousin I data in D or a Cousin I distribution in D. In other words.
Cousin I data simply gives the analogue in several variables of the principal parts
at the poles of a meromorphic function. For a closed set E in C". we say that
Cousin I data is given in E if Cousin I data is given in a neighborhood D of E.

Cousin I Problem Given Cousin I data {(g,,,bp)}p in D, find a tneromorphic
function g(z) in D such that g(z) - gp(z) is holomorphic in bp, p E D.

In brief, this is the problem of finding a tneromorphic function with a prescribed
pole set and prescribed principal parts. If such a g(z) exists, we call g(z) a solution
of the Cousin I problem for the given data { (gp, bp) }p. In the case of one complex
variable, a solution always exists; this is the content of the classical Mittag-Leffler
theorem.

Let D be a domain in C". For each p E D, let (fp, bp) be given, where by is a
neighborhood of p in D and fp(z) is a holomorphic function in bp. Moreover. we
assume that if bpflbq 36 0. then fp(z)/fq(z) is a nonvanishing holomorphic function
in by fl dq. We call the collection {(fp,bp)}p for p E D Cousin 11 data in D or a
Cousin II distribution in D. In other words, we are specifying the zero set and
order of vanishing of a family of holomorphic functions. For a closed set E in C",
we say that Cousin II data in E is given if Cousin II data is given in a neighborhood
D of E.

Cousin II Problem Given Cousin II data {(f,,,5p)}p in a domain D. find a
holomorphic function f (z) in D such that f (z)/fp(z) is a nonvanishing holomorphic
function in bp, p E D.

In short, this is the problem of finding a holomorphic function with a prescribed
zero set. If such an f (z) exists, we say that f (z) is a solution of the Cousin
II problem for the given data {(fp, bp)}p. In the case of one complex variable, a
solution always exists; this is the content of the classical Weierstrass theorem.

We remark that for both Cousin I and Cousin II. if we replace each set by by
a finite union of subsets by which cover dp, then the collection of pairs {(fp, bp)}p,
where fp = fpj6p. again forms Cousin data for D. This fact will be used many
times.

In C. the Poincare problem is always solvable in any domain D; a standard
proof uses the classical N eierstrass theorem. Similarly, in C" we have the following
relation between the Poincare problem and the Cousin II problem.
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PROPOSITION 3.1. Let D be a domain in C". If the Cousin 11 problem is
solvable for any Cousin II data in D. then the Poincare problem is always solvable
in D.

PROOF. Let g(z) be a meromorphic function in D. By definition, for each p E
D, there exist a neighborhood dp of p in D and holomorphic functions hp(z), kp(z)
in by which satisfy equation (3.1) and are relatively prime at p. It is easy to see
that the collection {(kp.bp)}p defines Cousin II data in D. Since we are assuming
that the Cousin II problem is always solvable in D, we can find a holomorphic
function k(z) in D such that k(z)/kp(z) is a nonvanishing holomorphic function in
dp. Therefore, if we set h(z) := g(z)k(z). then h(z) becomes a holomorphic function
in D. Furthermore, since hp(z) and kp(z) are relatively prime at p, it follows that
h(z) and k(z) are also relatively prime at each point p E D. Thus g(z) = h(z)/k(z)
is a solution of the Poincare problem for g(z).

Later on we shall give an example of a Cousin II distribution in a Reinhardt
product domain D in C" for which no solution.- of a Cousin II problem exist. From
this example we shall also obtain a meromorphic function in D which cannot be
represented as a quotient of two holomorphic functions in D which are relatively
prime at each point in D (see Remark 3.5 in section 3.5.3). Thus, even for Reinhardt
product domains, the Poincare problem is not always solvable.

3.1.3. Runge Problem. Often in attempting to construct holomorphic func-
tions possessing a certain property, as is required in solving Cousin problems, ques-
tions on approximation of holomorphic functions arise.

Runge problem Let KI. K2 be subsets of C" with Kf CC KZ, where K.
denotes the interior of K2. Given a holomorphic function f(z) on K1, for each
E CC K1 and each e > 0, find a holomorphic function F(z) on K2 such that
IF(z) - f(z)( < e on E.

If this problem is solvable for (K1, K2) for any holomorphic function f (z) on
K1i we say that the Runge theorem holds for the pair (K1,K2). In the case
K2 = C", this is the classical Runge problem.

We have the following relation between the Runge problem and the Cousin I
problem.

PROPOSITION 3.2. Let D be a domain in C" and let Kj (j = 1.2....) be a
sequence of subsets in D such that each K, is compact or open and

x
Kj CC K'-1. D= U Kj.

j=1

If we assume that
1. the Cousin I problem is solvable on each Kj (j = 1. 2_ ... ), and
2. the Runge theorem holds for each pair (Kj. Kj+1) (j = 1, 2.... ).

then the Cousin I problem is solvable for D.

PROOF. We give the proof in the case where each Kj is compact; the general
case follows with minor modifications. Let a Cousin I distribution C1 = {(fp. b,)}p
be given in D. From 1 let g, (z) and gj+I (z) be any solutions of the Cousin I problem
for the restrictions of C1 in K, and Kj+l i and let e > 0. Since f j (z) = gj+1 (z)-g, (z)
is holomorphic on K). it follows from 2 that we can find a holomorphic function
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F+1(z) on Kj+1 such that IF,+I(z) - fj(z)I < e on Kj_1. Hence, Gj+,(z)
gj+1(z) - Fj+,(z) is a solution of the Cousin I problem for CI in Kj., satisfying
IGj+1(z) - gj(z)l < e on Kj_1.

Now let ej > 0 (j = 1,2,...) with e j < oo. By induction, we construct a
solution Gj(z) (j = 1, 2.... ) of the Cousin I problem for C, in Kj with the property
that IGj+1(z) - Gj(z)l < ej on K._1. Hence, the limit

G(z) := lim Gj(z)
7-X

converges uniformly on any compact set in D. Thus. G(z) is a solution of the
Cousin I problem for C, in D. 0

3.1.4. Cousin Problems and Domains of Holomorphy. Cousin problems
are not always solvable.

EXAMPLE 3.1. In C2 = C: x C,,.. consider the following three Reinhardt prod-
uct domains:

0, Izl<2. 2<lwl<3.
02 Izl < 2. IWI < 1.

v3 1<IzI<2, IwI<3,
and set 0 := Al U .2 U 03. In the domain A we define a Cousin I distribution

C, : (1,:-,), (1/z, 2). (1.03)

and a Cousin II distribution

C2: (l,A1). (Z.A2). (1,A3).

From Osgood's theorem, it follows that neither C, for Cousin I nor C2 for Cousin
II is solvable in A.

Related to the Cousin I problem, we have the following result of H. Cartan [9].

PROPOSITION 3.3. Let D be a domain in C" satisfying:
1. for any (n -1)-dimensional complex hyperplane L in C", the domain D fl L

is a domain of holomorphy in L: and
2. the Cousin I problem for any Cousin I distribution in D is solvable in D.

Then D is a domain of holomorphy.

PROOF. The proof is by contradiction. Assume that D is not a domain of holo-
morphy. Then there exist at least one boundary point Q of D and a neighborhood
V of Q in C" such that each holornorphic function in D has a holomorphic exten-
sion to V. We take an (n - 1)-dimensional complex hyperplane L passing through
Q such that Q is a boundary point of D° := D fl L. To simplify the notation.
we assume that L is the hyperplane given by z" = 0, so that D° is an open set
in C"-' with variables z' := (z,.....z"_I). From 1, there exists a holomorphic
function f (z') in D° whose domain of holomorphy is D° itself. By regarding f (z')
as a function of all n variables (z,.... , z,,) which is independent of z". we see that
f (z') is holomorphic in a neighborhood U of L fl D in D.

We consider the following Cousin I distribution C1 = {(g,,, 6,) 1, in D:
1. If p E L, we take a neighborhood 6p of p in U and the Ineromorphic function

gp(z) = .f (z)/z" in 6p.
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2. If p 11 L, we take a neighborhood 6p of p in D such that by ft L = 0 and set
9P(z) 1 in 6p.

Then the data CI = {(gp, 6p)}p defines a Cousin I distribution in D. From 2 we have
a solution g(z) of the Cousin I problem for CI in D. We define F(z) := z,, g(z) in
D. Then F(z) is a holomorphic function in D. and we claim that F(z)IDo = f(z').
To verify this claim, take p E L fl D. Then

"g(z) = hp(z) in 6p

where hp(z) is a holomorphic function in 6p. Therefore,

F(z) = f(z)+z"hp(z) in 6p,

and hence F(z', 0) = f (z'). Since F(z) is holomorphic in D, it has a holomorphic
extension to the neighborhood V of Q in C". Thus it follows that f (z') has a
holomorphic extension to L fl V. This is a contradiction to D° being the domain
of holomorphy of f (z'); thus D is a domain of holomorphy. 0

REMARK 3.1. In the case of one complex variable, every domain is a domain
of holomorphy; thus condition 1 in the proposition in the case n = 2 is always
satisfied. Hence we have shown that any domain D in C2 such that the Cousin I
problem is always solvable in D is necessarily a domain of holomorphy.

This result suggests that the Cousin I problem should be studied in domains
of holomorphy.

3.2. Cousin Problems in Polydisks

3.2.1. Cousin Integral. P. Cousin [15] solved in 1895 both of the Cousin
problems in polydisks in C". In this section, we introduce the notion of a Cousin
integral, which will be used in the following section to solve the Cousin I problem
in a closed polydisk in C".

Let a and b be distinct points in the complex plane C and let I be a simple
smooth arc with initial point a and terminal point b. Take a neighborhood V of I
in C and a holomorphic function f (z) in V, and form the integral

F(z)
27ri I ( (3.2)

for z E C" \ 1. We study the behavior of F(z) near 1.

Clearly F(z) is a holomorphic function in C \ I satisfying lim:..,, F(z) = 0.
Next, we note that

f(t) = f(<) - f(z) + f (z)
t;-x (-z C - z

Since the first term on the right-hand side is a holomorphic function of the two
complex variables z and S, it follows that

F(z) + log (a - z) and F(z) - 2(di) log (b - z)

are single-valued holomorphic functions in neighborhoods of a and b, respectively.

We next describe the behavior of F(z) near z' E I \ {a, b}. Note that at such
a point F(z) can be analytically continued across the arc I from each side, and the
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difference between these extensions is equal to f (z) in a neighborhood of z'. To be
precise, let z' E 1\ {a, b} and let d : lz -.z'! < p be a sufficiently small disk contained
in V \ {a, b} so that y = 86 intersects I at exactly two points a' and b'. We let 61
and ry1 denote the portions of S and 1 situated on one side of the oriented arc 1,
and by 62 and '2 the portions of b and 'y on the other side of 1. Set 3 := t fl b. We
then define

y.r(z) := F(z), z E S; (j = 1,2).
Then y2I (z) (V2(z)) can be analytically continued across the arc 3 to 62 (Se ), so
that W1(z) and <p2(z) become holomorphic functions on 6 and we have

p2 (Z) - (Z) = f(z). z E 6.

To verify this last statement, we let l' denote the subarc of I connecting a with
a', while I" denotes the subarc connecting b' and b. Then I = 1' + 0 + l". Let
11 := I' - 72 + l" and 12 := I' + 71 + l". Using the Cauchy integral formula, we
obtain, for z E 6; (j = 1, 2)1

d(
27ri J1

- dSpi(z) = Z1ri j1-
Since the function defined by the integral on the right-hand side is a holomorphic
function for z on 6, it follows that yob (z) (j = 1, 2) can be analytically continued to
6. Again using the Cauchy integral formula, we obtain

;02(z) - VIW = 1 f f() d(= 1 (- (C) d = f(=)
27ri z 27ri J z

for any z E 6, as claimed. 0
This is the idea of Cousin. We call the integral in (3.2) a Cousin integral of

f (z) along 1. and we say that the two holomorphic functions ,^j (z) (j = 1, 2) have
a jump of f (z) along 1.

We note from the construction that if f(z) is of the form f(z,w), where w is
a complex parameter such that f (z, w) is holomorphic with respect to w. then the
Cousin integral F(z, w) of f (z, w) along 1 as well as the functions , , (z, w) (j = 1, 2)
are also holomorphic in w.

3.2.2. Cousin I Problem in Polydisks. Let C' = C:, x x CZ and for
each C,, (j = 1, .... n) consider two concentric disks centered at the origin:

Al : `zjl < rj and A : Iz,I < r' (0 < r < rj).
We set

A=A1 x...xA,, and A'=AI x...xc',.
Directly from the Taylor series expansion of holomorphic functions, we obtain

the following simple lemma.

LEMMA 3.1. The Runge theorem holds for the pair (A'. A).

In order to show that the Cousin I problem is always solvable in open polydisks,
from the lemma and Proposition 3.2 it suffices to show that the Cousin I problem
is always solvable in any closed polydisk. Using the Cousin integral, we proceed
to show that the Cousin I problem can always be solved in a closed polydisk. We
remark that the Cousin I problem being solvable on a closed polydisk I in C"
means that if C := {(gp,S,,)}p is a Cousin I distribution on an open polydisk U
containing 0, then the corresponding Cousin I problem is solvable for C in an open
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U' such that N C U' C U. The open sets U and U' may depend on the data C:
i.e.. if we have another set of Cousin I data C1, then this data may be defined and
solvable on a (perhaps) smaller open polydisk 111 containing 2K.

Thus we begin with 0 = Al x x A and we let Cl = {(gp, bp)}p be a Cousin
I distribution on 2K. Setting z, = x, + iyj (j = L... . n). we let

fl, : Iz,I < 2r, jy,1 S 2r)

be a rectangle on C_., so that fl, .Nj. We subdivide fl; into N2 rectangles using
N lines parallel to the xj-axis and N lines parallel to the yj-axis. Let w, denote the
intersection of Ay and one of these rectangles. and define w := w1 x . . x w CA.
We assume that N is chosen sufficiently large so that each cube w is contained in
SD for some p in & this is where we are using the fact that we have Cousin data
on the closed polydisk.

Our goal is to replace the meromorphic Cousin I data gp on a cube w C by by a
holomorphic function. To this end. let A. (j = 1..... n) be a closed convex domain
in CZ, bounded by a simple smooth closed curve, and let A = AI x . x An C C".
For p > 0, we define

A' := {(zi.....c,,) E A ( x, < p}.
AZ :=

and we set A° := A' n A2. which we assume to be nonempty. Then we have the
following lemma.'

LEMMA 3.2. Let gl(z) and g2(z) be meromorphic functions in A' and A2 such
that 91 (z) - g2(z) is holomorphic in A". Then there exist holomorphic functions
hI(z) and h2(z) in A' and A2 such that the function

g(z) { 92(x) - h2(z). z E A2.

defines a single-valued meromorphic function in A.

PROOF. Fixing the complex parameters 22, .... z in A2 x . x A. we consider
the holomorphic function f (z) = g, (z)-91(x) in A° as a holomorphic function of z1
in A' = {z, E Al I - p:5 x1 < p}. We let ia. ib (a < b) in C., be the points where
8A, intersects the yt-axis and we fix a segment I = (ia', ib'] (a' < a. b < b') on
which f (z) is holomorphic. Using the Cousin integral of f (z) along 1, we construct
holomorphic functions h1(z) and h2(z) in A' and A2 such that f (z) = h1(z) - h2(z)
in A°. This gives the desired result. 0

Using Lemma 3.2 repeatedly for the meromorphic functions gp(z) on the cubes
w, we construct a meromorphic function g(z) on L which is a solution of the original
Cousin I problem for the distribution C,. Thus the Cousin I problem is solvable on
closed polydisks; hence we have proved the following result.

THEOREM 3.1. The Cousin I problem in an open potydisk in C" is always
solvable.

'The lemma is valid without the convexity assumption on A,; we impose this condition in
order to simplify the notation and to clarify the idea of the proof.
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3.3. Cousin I Problem in Polynomially Convex Domains

3.3.1. Lifting Principle. Kiyoshi Oka [531 proved in 1937 that the Cousin
I problem in an arbitrary domain of holomorphy in C" is always solvable. Here
we introduce his theory in its simplest form. First we will show that the Cousin
I problem in polynomially convex domains is always solvable. The key idea is the
lifting principle. 2

In C" with variables z = (zi,... ,z"), fix m polynomials Pk(z) (k = 1,... m)
and define a closed domain P in C".

P : Iz.1 5 ri (j = 1.... ,n), IPk(z)I 5 1 (k = 1,... ,m). (3.3)

We call P a polynomial polyhedron in C". We will always assume that the
collection of polynomials is minimal in the sense that deleting any one of the sets
{jPk(z)I < 1} from this intersection defines a strictly larger polynomial polyhedron
P, and we call this minimal number m the rank of P. Note that the dimension n
of C" and the rank m of a polynomial polyhedron are independent quantities. For
example, a polydisk in C" is a polynomial polyhedron of rank 0, regardless of n.

We introduce C' with variables w = (w1......m), and consider the closed
polydisk in C"+"' = Cz x Cu defined by

(l=1,...,n), iWk]51 (k=1.....m). (3.4)

Define

E={(z,w)E2i{wk=Pi.(z)(k=1,...,m)}. (3.5)

which is a pure n-dimensional anal}tic set in 0. Using the mapping

zEP-+M=(z.Pi(z),...,P.. (z))EE,

we see that P is homeomorphically equivalent to E and OP corresponds to (as) f1 E
(see Figure 1).

In this setting, we consider the following problem.

Lifting Problem. Let f (z) be a holomorphic function on P. Find a holomorphic
function F(z, w) on such that

f (z) = F(z, Pi (z), ... , Pm (z)) for p E P.

If this problem can be solved for an arbitrary holomorphic function f (z) on P,
we say that the lifting principle holds for P; and we call F(z. w) an extension
of f (z) on 2K.3

2The lifting principle is a central idea throughout all of Oka's work. In the footnote of his
paper I (p. 249), he has written " Je dois l'idEe A M. H. Cartan pour ce mode d'application de
th4orkme de M. Cousin, voir : [T[."

3Oka's terminology in Japanese for the lifting principle translates literally into the principle
of going up to the sky in English.
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w

P

z

FIGURE 1. Representation of a polynomial polyhedron

3.3.2. Polynomial Polyhedra. The lifting principle is closely related to the
Cousin I problem. In fact, on a polynomial polyhedron P in C", the solvability
of the Cousin I problem and the solvability of the lifting problem can be proved
simultaneously by use of a double induction on the rank m of P. We have already
seen that the Cousin I problem in polynomial polyhedra P of rank 0 (i.e.. poly-
disks) in C" is always solvable. Moreover, the lifting principle is trivially true for
polydisks. We next prove two lemmas which comprise the double induction proof
of solvability of Cousin I and of the lifting problem on polynomial polyhedra.

LEMMA 3.3. Let m > 1. Assume that both the Cousin I problem and the lifting
problem in any polynomial polyhedron of rank m - 1 are solvable. Then the lifting
problem in any polynomial polyhedron of rank m is solvable.

PROOF. Let P be a polynomial polyhedron of rank m in C" given by (3.3) and
use notation E in (3.5). Let f (z) be a holomorphic function on P.

We introduce the (n + 1)-dimensional Euclidean space C"+' = Cz X C,,,, and
define

P' : jzzj<r, (j=I.....n). jwij<1. IPk(z)I<1 (k=2,...,m).
Thus P' is a polynomial polyhedron of rank m - 1 in C"+i We put

E' : wk = Pk(z) (k = 2,... , m), (z, wi) E P. (3.6)

which is an (n+1)-dimensional analytic set in
D"+I

x A"'-' with E C E'; moreover,
E* is bijective to P': (z, wi) E P' -+ (z. wi, P2(z), ... , Pm(z)) E E*.

In P' we consider the set E, defined by

Ej : wi = P1 (z). z E P.
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Note that E; is a pure n-dimensional analytic set in P' which is homeomorphically
equivalent to P via the mapping z E P -. (z. PI (z)) E E. and OP corresponds to
E;n(8P').

ttW3, .. - ,

u'i = Pi (s)

Ei

wt = PI(z)

FIGURE 2. Relation between P' and E;

We can find a neighborhood V of E; in P' in which f (z) is holomorphic (here
we regard f as a function which is independent of wI ).

For each point p E P'. we choose a neighborhood 6p of p in C' I and a
meromorphic function pp(z, w) in 6p such that the following conditions are satisfied:

1. If P E E;. then we choose 6p to be contained in V and

y%p(z. WO = f(z)/(wi - P1 W) in 6p.

2. If p ¢ E. then we choose 6p such that 6p n E; = 0 and yp(z, uw1) - 1 in 6p.
Then Cl = {(,pp,6p))pEr- defines a Cousin I distribution in P. Since P' is a
polynomial polyhedron of rank m - 1, it follows from the inductive hypothesis
on solvability of the Cousin I problem that we can find a meromorphic function
4'(z, wt) in P' such that

4)(Z. WI) - f(z)
U'I - PI (z)

is holomorphic in each 6p c V (case I above). Thus, if we define

f'(z, wI) := (w1 - PI(z))$(z. wl) in P'.
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then f'(z,w1) defines a holomorphic function in P' such that

f(z) = f'(z.PI(z)) in P.

Since P' is of rank m - 1 and f'(z, ua) is holomorphic in P'. it follows front the
inductive hypothesis on the validity of the lifting principle from (3.6) that we can
find an extension F(z, w) of f'(,-. wl) in Y'm, i.e..

f'(z, wl) = F(z. w1, P2(z)..... Pm(z)) in P'.
so that F(z, Pl(z)..... P," (z)) = f (z) in P. Therefore. F(z. u.') is an extension of
f(z) in 0 4t1. 0

LEMMA 3.4. If the lifting principle holds for each polynomial polyhedron of rank
m > 1. then every Cousin I problem in each polynomial polyhedron of rank m is
solvable.

PROOF. We proceed as follows. Let P be a polynomial polyhedron of rank m
in C" given by (3.3). Let z1 = xI + iyI and let p > 0. We consider the intersections

PI := P fl {xI p} and P2 := P fl {xI > -p}.
and we set P" := P' fl P2. which we assume is non-empty. Let g, (z) and g2(z)
be meromorphic functions in P' and PZ chosen so that f (z) = g, (z) - 92(z) is
a holomorphic function in P°. We claim that we can find holomorphic functions
h,(z) and h2(z) in Pt and P2 such that

g(z) { g2 (z) -
hI(') z E '.

2 i3( . )

is a single-valued meromorphic function in P.

To verify this, we consider the n-dimensional analytic set E in the (n + m)-
dimensional polydisk of (3.4) defined by

wk = Pk(z) (k=1..... m), z E P.

where P3(z) are polynomials defining P. We consider the intersections

A' =An {xI < p} and 02 = A fl {I.I > -p}.

and define A" := A' fl &2. The n-dimensional analytic set E° in Al defined by

E°: trk=Pk(z) (k=1.....m). zEP"
is the restriction of E to 0". Using the mapping

z E P° (z. PI (=),.. . P,,,(z)) E E°.
we see that the domain Pu in C" is homeomorphically equivalent to E" and the
boundary a'P° corresponds to 8E°. By definition. P° is a polynomial polyhedron
in C" of rank nt.4 It follows from the assumption of validity of the lifting problem

4We note that our previous arguments about polynomial polyhedra of the form

are valid without change for a set in C" given by

zjEA., (j=1.....n), (Pk(s)l

where A. is a domain in the complex plane C., bounded by a piecewise-smooth closed curve.
Thus we also call such a domain a polynomial polyhedron of rank rn. In the present situation.
At =(IzII<ri. Izl1<p)and A, =(Izp1<rj)(j=2,...,n).
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of rank m that we can find a holomorphic function F(z, w) in Al such that

F(z.PI(z),... ,P.(z)) = f(z) on P°.
For simplicity we write z' :_ (z2i ... , Z,,). We consider F(z. w) in d° as a holomor-
phic function F(zl, z', w) of the variable zI in the domain AI (here. A I is defined in
the footnote); i.e., with (n + m - 1) complex parameters (z', E J_. x A. where

A' : Iz,I<rr, j=2.....n
and

Au.: ]wj 1, j=1.....m.
We form the Cousin integral of F(zi, z', w) along the segment ! = [-iri. irfl. where
ri > rI is chosen sufficiently close to r1 to insure that F(zl. z'. w) is holomorphic
near !, and we obtain holomorphic functions ' (z. w) and f 2(Z- W) in 'A' and A'
such that

F(z,w)=4'I(z.w)-4.2(z.w) in i. °.

If we define

h,(z) :_ $,(z,PI(z),... ,P.,(z)) in P' (i = 1.2),
then h;(z) is a holomorphic function in P` and satisfies

hi(z) - hz(z) = f(z) in P°.
Thus, h1(z) and h2(z) satisfy the requirements for (3.7).

Let C1 = {(gp(z),6p)}p be a Cousin I distribution in P. We apply the same
method as in the proof of Lemma 3.2, replacing a by P. We then construct
sufficiently small sets w' := (wi x x w") n P so that each set w' is contained
in some 6p. We remarked in the footnote that each w', as well as P itself, is a
polynomial polyhedron of rank m. Hence, using the above procedure. we obtain
Lemma 3.4.

We have now established the following proposition.

PROPOSITION 3.4 ([44]). For polynomial polyhedra in C", the Cousin I prob-
lem is always solvable and the lifting principle holds.

3.3.3. Cousin I Problem in Polynomially Convex Domains. In this
section, we show that the Cousin I problem is always solvable on a polynomially
convex domain. Let P be a polynomial polyhedron in C".

P: Iz,[ < rr (j =1.....n), IPk(z)I <_ 1 (k = 1.....m).

We first show the following.

THEOREM 3.2 ([44]). The Runge theorem holds for (P. C").

PROOF. Define the polydisk
+.": Izi1<r, (j n), Iwkl<i (k=1,....m).

Let f (z) be a holomorphic function in P. Rom Proposition 3.4. we can find a
holomorphic function F(z. w) in 0

"
such that

F(z.Pj(z).... ,PM(z)) = f(z) in P.



3.4. COUSIN I PROBLEM IN DOMAINS OF HOLOMORPHY 85

Let e > 0 be given. From the Taylor expansion of F(z. u') in
,"+"'

. we can find a
polynomial w) in C"+m such that

IF(z. w) - 4i(z. w)I < e in .,"-m.

If we set.
P(z) :=Cz,P,(z).....Pm(z)) . z E C".

then p is a polynomial in C" which satisfies If (z) - ;,(z)I < e in P. Thus the
theorem is proved. 0

Let G be a polynomially convex domain in C". Following the argument in
Proposition 1.5 in Chapter 1. given any E CC G. we can find a polynomial polyhe-
dron in C" such that E CC P CC G. In particular. if K is a polynomially convex
compact subset of C". i.e.. the polynomial hull of K in C" is identical with K.
then any function f (z) which is holomorphic on K is holomorphic on a sufficiently
small polynomial polyhedron containing K. Thus. as a corollary to the proof of
Theorem 3.2. we have the following approximation result.

COROLLARY 3.1 (Oka-Weil theorem). Let K be a polynomially convey compact
subset in C". Then for any function f (z) which is holomorphic on K and any e > 0.
there exists a polynomial p(z) with If (z) - p(z) I < F on K.

Note also from Theorem 3.2 that the Runge theorem holds for any pair of
polynomial polyhedra (Pi. P2) with PI CC P2. Thus Proposition 3.4. Theorem 3.2
and Proposition 3.2 imply the following.

THEOREM 3.3 ((44]). The Cousin I problem in polynomially convex domains
in C" is always solvable.

3.4. Cousin I Problem in Domains of Holomorphy

3.4.1. Polynomial Hulls. In this section we study the Cousin I problem in
a general domain of holomorphy in C".5 The key to its solution is a result about
polynomial hulls (see (1.14)) of analytic sets of a 'special form in polydisks.

We first discuss Oka's lemma Let E be a compact set in C". and let A be a
closed set in C" such that E C A. Let p E A. and let d be a neighborhood of p in
C". Let T = (0,1] be the unit interval on the real axis of the complex plane C,
and let V be a neighborhood of T in Ct. Let f (z, t) be a holomorphic function in
a x V. and define

at := {z E b 1 f (z, t.) = 0}

for each t E T. If the family of analytic sets {ot}tET in 6 satisfies

1. otnE=OforanytET;
2. a0nAq6OandalnA=0;and
3. (Oat)nA=O foralltET,

'Once the lifting principle for analytic polyhedra in C" has been established, one can verify,
using the same method as in the previous section, that the Cousin I problem in domains of
holomorphy is always solvable. However, we cannot establish the lifting principle for analytic
polyhedra using the ideas of Part 1. We shall establish it in Part II by using the new notion "ideal
with indeterminate domain" introduced by Oka 1501. In fact, we will show that the lifting principle
for analytic polyhedra in a ramified domain over C" (see Theorem 8.2 and Remark 8.4).
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then we say that the family {ot}fE7 satisfies Oka's condition at p for the pair
(E, A). Note we require that a° n A : 0. but we need not have p E a°. We
emphasize that the analytic sets {ot}tET are of codimension one; i.e., each at is an
analytic hypersurface. Using this notation, we state and prove Oka's lemma.

LEMMA 3.5 (Oka's lemma). Let E be a compact set in C" and let A denote
the polynomial hull of E in C". Then for each p E A. there does not east a family
of analytic hypersurfaces which satisfies Oka 's condition at p for the pair
(E. A).

PROOF. The proof is by contradiction. Assume that for some point p E A we
can find a neighborhood d of p in C" and a neighborhood V of T = [0. 1] in Ct
such that there exists a family of analytic hypersurfaces

at: f(z,t) = 0. (z,t) E 6 x V.

which satisfies Oka's condition at p for the pair (E. A).
Let G be a neighborhood of A in C" such that G n o, = 0 and G n (Oat) = 0

for each t E T. Then, since A x T is the polynomial hull of k; x T in C" x C,, there
exists a polynomial polyhedron P in C" x Ct such that

AxTcc Pcc GxV.
We define a Cousin I distribution in P as follows: given any q = (z', t') E P. we
take a neighborhood 6q in C" x C, and a meromorphic function gq(z, t) in 6q in
such a way that

1. if (z'. t') E 6 x V and f (z'. t.') = 0, then we take 6,, C 6 x V and set
9,(z.t) = 1/f(z,t).

2. if (z', t') E 6 x V and f(z'.t')A0orif(z',t') 6x V, then we take 6q so
that f (z, t) # 0 on 6q and set gq(z, t) __ 1.

It is clear from Oka's condition for {ot},Er that the collection CI = {(gq.bq)}qEp
forms a Cousin I distribution in P. From Theorem 3.3 we can find a solution
g(z, t) of the Cousin I problem for C, in P. Thus. g(z. t) can have poles only on
[UtEV at] n P.

Let t' = max{ t E T I at n A iA 0} < 1 and set T' := [t', 1). Then g(z, t) is
holomorphic in E x T', so that

AI := max{Ig(z,t)I I (z,f) E E x T'} < +x.

On the other hand, g(z. t') has a pole at some point zo E A. Therefore. if we fix to
with t' < 1° < 1 chosen sufficiently close to t', then g(z, to) = g°(z) is holomorphic
on A and satisfies

I9°(zo)j > M + I> max{Ig°(z)I I Z E E}.

Let e = (19°(zo)I - Al - 1)/3 > 0. Since A is a polynomial hull in C". from
Corollary 3.1 we can find a polynomial P(z) in C" such that 19°(z) - P(z) I < e on
A. It follows that

IP(zo)I >
2Ig°(zo)I3 Al + 1 > +32(AI + 1) > IP(z)I for Z E E.

This contradicts the fact that ztt E A.

In Chapter 9, we will see that the family of analytic hypers. urfaces {at }tET need
only vary continuously; i.e.. only continuity of f (z. t) in t E T is needed.
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3.4.2. Preparation Theorem. Let G be a domain in C" with variables z =
(zi....z"). Let

P : Izj1 5 rj U = 1.....n). Ife(z)I 5 1 (k= 1.... ,m)
be an analytic polyhedron such that P CC G. where fk(z) (k = 1..... m) is a
holomorphic function in G. We introduce C' with variables w = (wl.... , u,T,n
then in the polydisk a in C"+" = C" X C'",

A : Izj15r) (j=1,...,n), Iwk151 (k=1....,m).
we consider the pure n-dimensional analytic set

E : wk = fk(z) (k = 1,... , m). z E P. (3.8)

THEOREM 3.4 ([45]). E is a polynomially convex compact set in C"+111.1

PROOF. Let A denote the polynomial hull of E. For z' = E C".
we set

E(z') :_ {w E C' I (x'. W) E E},
A(z') :_ {w E Ctm I (z'.w) E A},

the sections of E and A over zj = zj (j = 1..... n). Thus E(z) C A(z'): and A(z')
may be empty for some z' E C". To prove the theorem it suffices to show that

E(z') = A(z') for each z' E C".

Without loss of generality. we may assume that the origin 0 of C" is not
contained in ?7. Given R > 0, we define the closed ball Q(R) in C".

n

Q(R) : Izj12 5 R 2.

j=1

If R is sufficiently large so that Q(R) D P. then it is clear that E(z') = A(z') = 0
for each z' if Q(R).

Fix R > 0 such that

E(Y) = A(z') for z' V Q(R).

We will show that for any p E OQ(R). there exists a neighborhood 6; of p in C"
such that

E(z')=A(z) for all z'Ebp.

For simplicity, we assume p = (0.... , 0, R).

We first assume that p ¢ P. Then we can find a ball 6,, centered at p with
radius r > 0 in C" such that 6p n P = 0. Thus. E(z') = 0 for any z' E O. and
it suffices to show that A(p) = 0. For. since A is closed in C"+'", we can find a
neighborhood 6 C dp of p in C" such that A(s') = 0 for any z' E 6;- Thus, if
A(p) = 0, then E(z') = A(z') = 0 for z' E 6,',. We prove A(p) = 0 by contradiction.
Assume that A(p) j4 0; suppose w° E A(p). We consider the following family of
analytic hypersurfaces {at}t in 8p x C':

at : zn=R+t. tET=[0,1].

6This theorem is the main theorem in Oka's paper II. The proof given here is due to A.
Takeuchi (711.
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Then, {at },ET satisfies Oka's condition for the pair (E, A) at the point (p, w°).
Indeed. of n E = 0 for any t E T from the condition Ap fl P = 0; furthermore,
(p. w°) E a,) n A and of n A = 0 for each t E T \ {0}, since at C (C" \ Q(R)) x C"'
and A(z) = E(z') = 0 for z' f Q(R). Finally, (Oat) n A = 0 for each t E T, since
A is compact in C"+m and o, has empty boundary relative to C"' "'. By Lemma
3.5 this contradicts the fact that A is the polynomial hull of E in C"+m

We next consider the case when p = (0.....0. R) E P. Let 6, be a ball centered
at p in G. Let z,, = r + iy and consider the real (2n -1)-dimensional hyperplane
H in C" of the form

H={zEC"Ixn=R-p,)}.
where p0 is the unique positive number so that (8Q(R)) n 6y C H. Fix p > 0 with
0 < p < p0, and define 6; := 6f, n {xn > R - p}. which is a neighborhood of p in
C". Our claim is that

E(z') = A(z') for all z' E 6y. (3.9)

We prove this by contradiction. Assume that there exists a point z' = (z,*.... . zn)
E 6P such that

E(z') 54 A(z'). (3.10)

We set z;, = x,+iy,,, so that R-p < x;, < R since A(z') = E(z') for z' ¢ Q(R).
By (3.10). there exists a point w' = (wi,... ,w,,) E A(z') such that

wk 0 fk(z') for some k (1 < k < m).

We fix this k and set ct := wk - fk (z') 96 0. Consider the family of analytic
hypersurfaces {at), in 6; x C"' defined by the equations

at . wk - fk(z) = co(1 + t E T = [O.MJ,

where a. AI > 0 are chosen large enough so that

(i) 1c0ic-XIR-P-r*,l > maX {Iwk - fk(z)I};
xC"')

(ii) IcoI(1+AI) > max {Iwk - ft(z)jea(r^-X,,)
(:.u)E.4n(6N xC" )

We claim that the family {o,},ET- satisfies Oka's condition for the pair (E. A) at
the point (z', w').

Clearly of fl E = 0 for t E T. since Wk - fk(z) # 0 on at: also. (z'. W*) E CO n A
and a.%f n A = 0 from (ii). Finally, to prove that (Oat) n A = 0 for all t E T. we
divide 05; in C" into two parts:

l1 =(86P)n(x=R-p) and 12=(06p)\11.

Since fk(z) is defined and holomorphic on dy. we note that fo, n [6N x C'" = 0 (t E
T). Thus. each boundary 80, in 6; x C"' (t E T) consists of two parts:

(Oat), := ((fat) n (l, x C"'). i = 1.2.

We set

A(1,):={(z.w)EAIZE1,}, i=1.2.
Then (i) implies that

(Oat) I n A(11) = 0 for all t E T.
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Furthermore, since 12 CC C' \ Q(R) and A(z) = E(z) for z ¢ Q(R) by our choice
of R > 0, it follows that wk - fk(z) = 0 for all z E 12. Hence at ft A(12) = 0 for all
t E T. by the defining equation for at. Consequently, (8ot) fl A = 0 for all t E T.
We conclude that {ot}SET satisfies Oka's condition for the pair (E. A) at (z', w0).
From Lemma 3.5, this contradicts the fact that A is the polynomial hull of E in
C"+m Hence, we must have E(z') = A(z') for all z' E 6;, and our claim (3.9) is
true.

Since 8Q(R) is compact, it follows from the Heine-Borel theorem that the
infimum of the set of all R > 0 such that E(z') = A(z') for all z' f Q(R) must be
0. This fact, together with the information that 0 0 G. implies that £(z') = A(z')
forallzEC".

As will be shown in Remark 7.12 in Chapter 7. this theorem has another quite
different proof.

3.4.3. Cousin I Problem in Domains of Holomorphy. Assume that G is
a domain of holomorphy in C". We use the same notation P CC G. A CC C"+m,
and E : wk = fk(z) (k = 1.... , m), z E P. in A from the previous section.

THEOREM 3.5 ((451). The Runge theorem holds for the pair (P. G).

PROOF. Let w(z) be a holomorphic function in a neighborhood v of P in C.
If we regard tp(z) as being independent of w E C'", then V(z) is a holomorphic
function in a neighborhood V of £ in C"+m where V = v x Cm. From Theorem
3.4 there exists a polynomial polyhedron P' in Cn+m such that

ECCP' CC V.

Now Theorem 3.2 implies that the Runge theorem holds for (P', C"*'). Hence,
given e > 0 and an open set Vo in C"+" such that E CC Vo CC P', we can find a
polynomial P(z. w) in C"+m with

I(z) - P(z, w)I < e in Vo.

If we set
(z) := P(z. ft{z).... , fm{z)}. z E G.

then I'(z) defines a holomorphic function in G such that

I,P(z)-4(z)I<e. zEP.
Thus, the Runge theorem holds for (P.G). 0

In order to solve the Cousin I problem in a domain of holomorphy C. the above
theorem, combined with Proposition 3.2, shows that it suffices to solve the Cousin
I problem in an analytic polyhedron contained in G. We now show this is always
the case.

LEMMA 3.6. Let C be a domain of holomorphy, and let P C G be an analytic
polyhedron. Then the Cousin I problem in P is always solvable.

PROOF. We use the same notation £ in 0 for P defined in (3.8). Let C1 =
{(gp, bp)}pe,. be a Cousin I distribution defined in a neighborhood v of P in C". If
we regard gp(z) as independent of w E C', , then C1 may be regarded as a Cousin I
distribution C1 in a neighborhood V of E in C'+'. where V = v x C"'. That is. let
p' E V and denote by p E v the projection of p' into C". Then set dp := by x C", a



90 3. THE POINC'ARF. COUSIN. AND RU'NCE PROILEMS

neighborhood of p' in C"+'", and define g., (z, w) := y,, (z). which is a meromorphic
function in bp.; then C3 :_ is a Cousin I distribution in V.
Once again using Theorem 3.4, we obtain a polynomial polyhedron P' in C1+1
such that

E cc P cc V.
From Proposition 3.4, there exists a solution G(z. w) of the Cousin I problem for
CI in P'. If we set

9(z):= G(z,fi(z),...,f",(z)) in P,

then g(z) is a solution of the Cousin I problem for the original Cousin I data C, in
P. O

Summarizing the results above, we have proved the main theorem of this sec-
tion.

THEOREM 3.6 ([451). The Cousin I problem in domains of holomorphy is a!-
ways solvable.

3.4.4. Example. We noted in Remark 3.1 (Cartan) that if D is a domain in
C2 in which the Cousin I problem is always solvable, then D must be a domain of
holomorphy. Cartan [101 showed that this is not necessarily true for a domain in
C3. We present his example in this section.

First we need a preliminary result. We let 0 < r, < r2, and we consider the
following three product domains in C3 = Cz, x C=2 x C,,:

0, r, < Iz,I < r2, Iz21 < r2, IzsI < r2.

A2 Iz,I < r2, r, < Iz2I < r2, Iz31 < r2,

(13 Iz,I < r2. Iz21 < r2. r, < Iz31 < r2.

Set.

and

Al =A2na3, A2=a3na,, 03=a,na2,

0°=A,nA2nt 3i 0=&, l., A2UA3.
Note that A is homeomorphic to a punctured ball {0 < Iz,12 + IZ2I2 + Iz3I2 < 1} in
C3. It follows from Osgood's theorem (Theorem 1.10) that A is not a domain of
holomorphy in C3.

THEOREM 3.7 (Three ring theorem). For j = 1, 2, 3, let gi (z) be a holomorphic
function on Ai satisfying

g'(z) + g2(z) + g3(z) = 0 on .0. (3.11)

Then there exist holomorphic functions f j (z) (j = 1, 2, 3) on ij such that

9'(z) = f3(z) - f3 (z), 92(z) = fs(z) - f, (z), 93(z) = f, (z) - f2 (Z)

on 01, A2 and &3, respectively.

PRooF. We expand g' (z) in a Laurent series with respect to Z), z2i z3 about
the origin 0 E C3. Clearly. the coefficients of zi z2 z3 with m < 0 vanish for all
m, l = 0,±l,.... By (3.11) and the uniqueness of the Laurent expansion, the
coefficients of zi z2 z3 where both in < 0 and I < 0 vanish. Hence, we can write a
unique decomposition of g' as

g'(z) = G,(z) + C2(z) + G31 (z),
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where G11 (z) is holomorphic on A, and Gk (z) (j = 2.3) is holomorphic on Aj but
not necessarily in A. For example, G'(z) is the sum of all terms of the expansion
in powers zi zz A with m < 0 and k. I > 0. In a similar fashion, we have

g'(z) = Gi (z) + G!2(z) + G,(z), i = 2, 3,

where G '(z) is holomorphic in A and G., (z) (j r) is holomorphic in A, but
not necessarily in A. Once again using (3.11) and the uniqueness of the Laurent
expansion, we have

G1(z)+G2(z) +G3(z) = 0.

G,(z) + G,(z) = 0, G(z)+G(z)=0. G(z)+G(z) = o
on A, AI , A2 and A3. Therefore, if we define

f1 (z) -G2(z)3+G3(Z) + G3(z) on A,

f2(z) -G3(z)3 G'(z) +GZ(z) on A2

f3 {z)
-G11(z)3+ G12(z)

+ G3 (z) on 03,

then f,(z) (j = 1.2.3) are the desired functions.

From this theorem we obtain the following result.

PROPOSITION 3.5. The Cousin I problem in the above domain A in C3 is al-
ways solvable.

PROOF. Let C, = {(gp, d)}pEo be a Cousin I distribution on A. Since A. (j =
1.2, 3) is a product domain, the Cousin I problem is always solvable in A j. Thus
we can find a solution pj (z) of the Cousin I problem for C, in A.. If we set

91(Z) = `'2(Z) -W3(Z) 92(.) = V-3(Z) - 91(z) 9'I(Z) = V) (Z) - `P2(z)

on Al, A2 and A3, then each g3(z) (j = 1.2,3) is a holomorphic function on A'
and

9I(Z)+g2(Z)+g3(Z)=o on A°.

By Theorem 3.7, we can find holomorphic functions f, (z) (j = 1.2.3) on A. such
that

9'(z) = f2(z) - f3(4 92(z) = f3 (Z) - fl W, 93(z) = h(z) - f2(Z)
on Al, A2 and A3. It follows that

G(z) 'v=i (z) - f, (z) on A, (j = 11 2.3)

defines a single-valued meromorphic function on all of A. Hence. G(z) is a solution
of the Cousin I problem for C1 on A.

3.5. Cousin II Problem

3.5.1. Oka's Counterexample. The Cousin II problem in product domains
in C' is not always solvable; we give a counterexample due to Oka in this section.
To illustrate the key idea, we first give an example of Oka [46) which indicates a
difference between zero sets of real-valued and complex-valued continuous functions.
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EXAMPLE 3.2. We consider the domain D in R3 defined by

D:={(x,y.z)ER3 I x2+y2<4. -2<z<2}
and let

L:={(0.0,z)ER3 1 -1<z<1}CCD.
There are many real-valued continuous functions F(x, y, z) in D such that F(x. Y, z)
= 0 if and only if (x, y, z) E L. However, suppose we look for a complex-valued
continuous function F(x, y, z) in D satisfying the following conditions:

(i) F(x, y, z) = 0 if and only if (x. y, z) E L;
(ii) in the disk 6: x2 + y2 <- p2 < 4 on the (x, y)-plane, we require that

F(x. y. 0) = (x + iy).(x. y) (i2 = -1),

where A(x, y) 0 0 for (x, y) E b.

We claim that there does not exist such a function F(x, y, z) in D.
For if F(x, y, z) exists

j
sat(i) and (ii), we consider

V(z) := d(arg F(x,y.z)) for E (-2.2).
a

Then (i) implies that V(z) does not depend on z E (-2.2). and also implies
V(3/2) = 0. However. (ii) implies that V(0) = 21r, which is a contradiction.

T. Gronwall 1271 was the first to give an example of a product domain in C"
in which the Cousin II problem is not always solvable. Below we will give Oka's
example, which more clearly indicates the essence of the Cousin II problem and is
based on the idea of the example described above.

Oka's counterexample for the Cousin II problem. In C2 with variables z
and w, we consider the product domain

A : 2/3<JzI<1, 2/3<4wI<1.
We write z = x + iy, and denote by A' and A" the points of L1 such that y > 0
and y < 0. Let

E : w-z+1=0 ins.
Note that E consists of two connected components E' C A' and E" C ,". since
E n {y = 0} = 0. We take open neighborhoods G' of A' and G" of 0" with

' cc C' and " cc C" such that C' fl E" =0 and G"nE'=0. If we set
f, :=w-z+ I, in G,
f2:= 1; in G",

then C2 = {(f1,G'), (f2.G")} defines a Cousin II distribution in A. Then there is
no solution of the Cousin II problem for C2 in A.

Indeed, assume that there does exist a solution F(z. w) for C2 in A. then F(z, t v)
vanishes in A only at points of E', and we can find a nonvanishing holomorphic
function w(z. w) on A' such that

F(z, w) = (w - z + I)w(z. w) on 0'. (3.12)

We define the circles

71 : Iz! = 5/6 in C. and tit : jwI =5/6 in C,,.;
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FIGURE 3. Oka's counterexample for the Cousin II problem

and we set y, := yI f1 {y > 0} and y' := yl fl {y < 0}. Now we vary z from 5/6
to -5/6 in a continuous fashion along y; C A'. Since w(z, w) 0 0 in 0', the total
variation of the argument of w(z, w) along y2,

dargw(z,w),

varies continuously with z E y;, and, being an integer multiple of 2ir, does not
depend on z E Y, . Since

fdarg(w_5/6+1)=21r and fdarg(w+5/6+1)=0,

it follows from (3.12) that

LL d arg F(5/6, w) = d arg F(-5/6, w) + 27r.

On the other hand, we note that F(z. w) $ 0 in G". Therefore, varying z from 5/6
to -5/6 continuously along y;' C G" and arguing as before, we have

dargF(5/6,w)=J dargF(-5/6.w).
z 7 z

This is a contradiction. 0
This example will be used again in section 3.6.2.

3.5.2. Oka's Principle. The counterexample in the previous section shows
that one of the obstructions to solving a Cousin II problem is topological. Thus we
now generalize the holomorphic Cousin II problem to the continuous case. For this
purpose, we introduce the following terminology.

Let D be a domain in C", and let C2 = {(fp, 6p)}p be a Cousin II distribution
in D. If we can find a complex-valued continuous function F(z) in D such that, at
each point p E D,

A (z) := F(z)lfp(z)
is a nonvanishing continuous function in bp, then we say that F(z) is a continuous
solution of the Cousin II problem for C2 in D. In this section, the "usual" solutions
will be called holomorphic solutions to distinguish them from the continuous ones.
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THEOREM 3.8 (Oka's principle). Let G be a domain of holomorphy in C", and
let C2 be a Cousin II distribution in G. If G admits a continuous solution of the
Cousin II problem for C2, then G admits a holomorphic solution of the Cousin II
problem for C2.

PROOF. By taking a refinement, we may assume that each set 6p. P E G, is a
polydisk in C". Let 4'(z) be a continuous solution of the Cousin II problem for C2
in G. Then for each p E G, 4b(z)/fp(z) is a nonvanishing continuous function in 6p.
Hence the function

Cp(x) := log (4(z)/fp(z)),
where we take an appropriate branch of the logarithm, defines a single-valued
continuous function in 6p with the following property: for any dp, 6q such that
by n by 96 0, the function (p(z) - (q (z) is holomorphic in dp n 5q.

We recall the method used to solve the Cousin I problem in polydisks in section
3.2.2, in particular. Lemma 3.2: given a Cousin I distribution {(gp,5,,)}p in G,
we constructed a holomorphic function hp(z) on each set 6p, p E G. such that
gp(z) - hp(z) defined a single-valued meromorphic function in all of G. This was
achieved by utilizing the relation 9p(z) - gq(z) = h,,(z) - hq(z) in 5p n 6q. In the
present situation, we replace the meromorphic function gp(z) by the continuous
function Sp(z). Then, following the same procedure under the condition that D
is a domain of holomorphy, we can find a holomorphic function hp(z) on each bp,
p E G, such that the collection of functions (p(z)-hp(z) on 6p defines a single-valued
continuous function E(z) on all of G. If we define

F(z) := on G,

then F(z) is a well-defined single-valued function on G. Moreover, since F(z) _
fp(z)eh=(') on each 4. F(z) is holomorphic on G and yields a holomorphic solution
of the Cousin II problem for C2 in C.

3.5.3. Generalized Cousin II. A holomorphic Cousin II distribution on a
domain D in C" can also be generalized to a continuous Cousin 11 distribution.
At each point p E D, let the data (hr,dp) be given, where 6p is a neighborhood of
p in D and hp(z) is a complex-valued continuous function in 6p. We require this
data to satisfy the condition that for any p, q E D with 6p n 6q 0, we can find a
nonvanishing continuous function A,,(z) in 6,nbq such that hp(z) = apq(z)hq(z) in
dpndq. We call the collection of pairs C2 = {(hp, bp)}pED a generalized Cousin II
distribution in D. Thus, locally, we are given the zero sets of continuous functions
in D; we want to find a globally defined continuous function with this zero set.

Generalized Cousin II Problem Given a generalized Cousin II distribution
C2 = {(hp,5p)}pED, find a complex-valued continuous function h(z) in D with the
property that for each p E D there exists a nonvanishing continuous function ),,(z)
in 5p such that h(z) = ap(z)hp(z) in 6p.

If such a function h(z) exists, we say that the generalized Cousin II problem
for C2 is solvable in D, and we call the continuous function h(z) in D a solution for
C2 of this generalized Cousin II problem.

REMARK 3.2. In the following example we show that. in general, a generalized
Cousin II problem in a polydisk D need not have a solution for a generalized Cousin
II distribution C2 = {(hp, bp)}pED if {z E 6p : hp(z) = 0} has an interior point in
dp.
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Example: We begin with an example in R3 with variables x. y. Z. Consider the
real-valued continuous function

Ip(x, y, z) := max{0.x2 + y2

We consider two half-spaces &t :_ {(x, y. z) E R3 I ± z > -1} and two cylinders
S':= {x2 + y2 < 1/3} x {Izl < 1} and S":= {x2 + y2 < 1/2} x {JzI < 21. We put

hi(z.y,z) _ (z+iy)v(x.y.z) on Al A-\ 6'.
h2(l y, z) = v(z. y, a) on A2 := A- \ 6'.
h3(x,y,z)=0 on A36".

Then the collection of pairs C2 = {(hi,A,)}e=1.2.3 defines a generalized Cousin iI
distribution in R3. Note that the zero sets of the functions h, in C2 comprise the set
B x RZ, where B = {x2+y2 < 1} C R= x Rp. Following the reasoning in Example
3.2. it is clear that there is no solution of the generalized Cousin II problem for C2
in R3.

Now to get a similar example in C2 = R'4 with variables zi := x + iy, 22
z + iv, we simply take t--,-, h, as above, making them independent of the variable v.

Thus from now on we assume that the zero sets of any generalized Cousin
II distribution C2 = {(hp,6p)}pED have empty interior. This implies that for any
p. q E D such that 6pflSq -A 0. if a nonvanishing continuous function .L (z) in 6pflSq
satisfying hp(z) = Apq(z)hq(z) in 6p fl 6q exists, then it is uniquely determined.

Since the usual (holomorphic) Cousin II distribution satisfies this condition.
Theorem 3.8 implies the following: Let D' be a domain of holomorphy in C".
Assume that D' is homeomorphic to a domain D in C" which has the property
that the generalized Cousin II problem is always solvable in D. Then the Cousin
II problem is always solvable in D'.

LEMMA 3.7. In the polydisk A : Iz,J < 1 (j = I.... , n) in C". the generalized
Cousin II problem is always solvable.

PROOF. Let C2 = {(hp,bp)}pE be a generalized Cousin II distribution in A.
For any 0 < r < 1, we define 0,.: Izj I < r (j = 1, .... n), and we will find a solution
of the generalized Cousin II problem for C2 in 0,.. Using the same arguments as
in solving the Cousin I problem (stated in Lemma 3.2). we see that it suffices to
prove the following.

Let Aj be a closed convex domain in the unit disk { lz, I < 11 in C:, (j =
CC". Let :i=x+iyand fix p>0. We

set
A':={zEAIx<p}. A2:={zEAIr>-p}.

and A° := A' f1 A2. which we assume is non-empty. If a generalized Cousin 11
distribution C2 defined in A has solutions hl(z) and h2(z) in A' and A2, then C2
has solutions in all of A.

To verify this. note that h°(z) := h, (z)/h2(z) defines a nonvanishing continuous
function in the simply connected domain A°. Thus, a branch of log h°(z) defines
a single-valued continuous function in A°. We define the following real-valued
continuous function in C,:

0. x < -p,
a(zi)(x+p)12p. -p<x<p,

1. X > p.
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If we set
k1(z):= a(z1)log h°(z), z E A1,

k2(z):= (a(zj) - 1) log h°(z), z E A2.

then ki(z) (i = 1,2) defines a continuous function in Ai such that log h°(z) _
kj(z) - k2(z) in A°; equivalently, h°(z) = ek1(a)/ek2(z) in A°. Thus the function

hl(z)e-k'(--), z E A',h(z)
h2(z)e-k,(z), z E A2.

defines a single-valued continuous function in A, and hence a solution for C2 in A.
Now we let rk (k = 1.2, ...) be a sequence of positive numbers such that

rk < rk+I, Jim rk = 1.

and we let Ak:={Iz1]<rk}x...x{Iz"l<rk}CC A. Foreach k=l,2,....the
above argument yields a solution hk(z) for C2 of the generalized Cousin II problem
in ©k. For k = 2,3,... we consider the following continuous function in the disk
{Izsl<-rk+1}(J=1,...,n):

1, IzjI < rk - 1.

,3(Z,) = 1 - rk-1 Iz f rk,
0. IzJI > rk,

and we set 13k(z) '(zl) ok(z") in Ok+1 We inductively define continuous
functions hk(z) (k = 1, 2.... ) in Ok in such a way that

h', (z) = h1(z)

hk+1(z) = hk+1(z)e3k(z)gk(Z)

in A1,
in Ak+l,

where qk(z) is a branch of the continuous function log {hk(z)/hk+1(z)} in the poly-
disk Ok On each Ak (k = 2,3.... ), hk(z) is a solution for C2, and hk+1(z) = hk(z)
in Ok-1. Thus, h(z) := limk hk(z) is a solution for C2 of the generalized Cousin
II problem in all of A.

From Lemma 3.7 and Theorem 3.8 we have the following theorem.

THEOREM 3.9 (Oka (46]). Let D be a domain of holomorphy in C" such that
D is homeomorphic to the unit polydisk 0 in C". Then the Cousin II problem is
always solvable.

REMARK 3.3. Theorem 3.9 is also true in the case when the unit polydisk A
is replaced by.& = DI X L2 x ... x A", where 01 is any domain in Czj .

To verify the remark, it suffices to show that Lemma 3.7 is valid if 0 is replaced
by 0. Let C2 = {(hp,bp)}1,EA be a generalized Cousin II distribution in 0. We
take an increasing sequence of domains & I k CC 01 (k = 1.2....) such that each
lalk is bounded by _a finite number of closed curves -Tk.1 (1 < 1 < m(k)),_and such
that Uk 101k = Ol Let 1'k,1 be the outer boundary component of ak. For
each k, I (k = 1, 2, ... ; 2 < I < m(k)). we choose a point ak,1 in the domain
in C1j bounded by the closed curve ryk,i such that ak.1 V OI,k+1. We set Lk =
A1k X A2k x "' x Onk CC,& (k = 1, 2,... ), where Dik = {Iz, { < rk} (i = 2,... , n),
and the radii rk increase up to 1.
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First of all, since. for each c E R. the set {z1 E Olk [ x = c} consists of simply
connected sets in C. the same is true of {z E Ak I x = c} in C'; thus it follows
from the same argument as in the proof of Lemma 3.7 that we have a solution hk(z)
of the generalized Cousin II problem with data C.2 in &k. _
_ Next. let $k(Z) (k = 2.3,...) be a continuous function in Ok+l such that
3k(z) = 1 in Ok_I and 0k_t(z) =0 in Ak+1/Ok. We inductively define continuous
functions hk(z) (k = 1, 2....) in &k in such a way that

h1(z) = h1(z) in 01,
-(k}

4+1W = hk+1(Z) [IP--, - ak.1)" in I&k+I
1=2

where
1

ti'k.r = dlog[hk(z)/hk-l(z)]
2st

and qk(z) is one of the single-valued branches of the continuous function
m(k)

log [hk(z)/hk+1(z)] - N7k.1 log (21 - at.,) in 1k.
1=2

Then hk(z) (k = 1, 2....) is a solution for C2 of the generalized Cousin II problem in
Ok. and hk+1(z) = hk(z) in Zk_t. Hence. h(z) := limk_m hk(z) defines a solution
for C2 in all A.

REMARK 3.4. There have been studies related to the Cousin II problem us-
ing methods other than Oka's principle. In [46], Oka introduced the notion of a
balayable Cousin distribution: this was the context of the original Oka principle.
K. Stein [66]7 gave an interesting topological condition for the solvability of the
Cousin II problem.

REMARK 3.5. The Poincare problem does not always admit a solution in prod-
uct domains in C".

PROOF. To see this, we recall Oka's counterexample to Cousin II in A = At x
A2 in C2 with variables (z, w), where Al = {2/3 < IzI < 1) and A2 = {2/3 <
Iwi < 11 (section 3.5.1). Writing z = x + iy and denoting by A' and A" the points
of A such that y >0 and y < 0. we set

E : w-z+1=0 in A.

then E consists of two connected components E' C A' and E" C A". We take open
neighborhoods C' DD A' and G" DD A" such that G' n E" = 0 and G" n E' = 0.
If we set

F1 := 1/(w - z + 1) in G'.
F2 := I in G",

then C1 = {(F1,G'), (F2.G")} defines a Cousin I distribution in A. We can solve
the Cousin I problem for C1 in the product domain A. and we obtain a meromorphic
function g(z, w) in A such that the pole set of g(z, w) is defined by 1/(w - z + 1)

'K. Stein (67) found an example of a domain of holomorphy D which admits a Cousin II
distribution C2 such that C2 has a solution in any subdomain Do CC D but which does not have
a solution in all of D.
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in S. We claim that this function g(z, w) cannot be written as a quotient of
holomorphic functions h(z. w) and f (z. w) in A which are relatively prime at each
point in A. For if we could write g(z, w) = h(z. w)/ f (z, w) in A. with h(z, w) and
f (z. w) relatively prime at each point, then f (z, w) would be a solution of the Cousin
II problem for the Cousin II distribution C2 in A given in the Oka counterexample
in 3.5.1; i.e., recall that if

ft:=w-z+l in G',
f; := l in G"

then C2 = { (fl, G'). (f2, G") j defines a Cousin II distribution in & Thus the
Poincare problem cannot always be solved in A.

Moreover, if we set h(z, w) := g(z. w)(w - z + 1) in A, then h is holomorphic in
0. Letting k(z, w) := to - z + 1. we have g(z, w) = h(z. w)/k(z. W) in A. Thus g is
a quotient of holomorphic functions in A. but h(z. w) and k(z, w) are not relatively
prime at any point in A" at which w - z + 1 = 0. 0

3.6. Runge Problem

3.6.1. General Expansion Theorem. Let C be a domain of holomorphy in
C" with variables zI .... , Z. If K is a class of holomorphic functions in C satisfying
the conditions

1. K contains the coordinates functions zk (k = 1,... , n). and
2. given a polynomial P(w3.... , u:,.,) in C with C-coefficients, and given

ft(z),... , f,,, (z) in K. we have P(f1(z)..... f,, (z)) E K.
then K is called a normal class. As examples of normal classes K. we have the
class of all polynomials; the class of all holomorphic functions in G: and. for a given
G' D G. the class of all holomorphic functions in G' (compare with a regular class
of holomorphic functions in G from section 1.5.3 in Chapter 1).

THEOREM 3.10. Let G be a domain of holomorphy in C" and let K be a normal
class of holomorphic functions in G. Then any holomorphic function in C can
be developed into a locally uniformly convergent series of holomorphic functions
belonging to K if and only if G is a K-convex domain.

PROOF. Assume that C is convex with respect to K. Then we can find a
sequence of analytic polyhedra P, (j = 1.2, ...) of the form

P,: 1z,1<r, (i=1.....n). {fjk(z)l<1 (k =1....,n,).
where each f,k E K. and these analytic polyhedra satisfy

P. , cc P , cc G (j = 1, 2.... ). G = lim P..

Let f (z) be a holomorphic function in C and let ej > 0 (j = 1, 2....) satisfy
lim j -,C f) = 0. From the proof of Theorem 3.5. for each j = 1.2..... we can find
a polynomial P.(z. w) in C"* such that

j(z) := Pj(:c. fj7(z}.... ,

f (z) in Pj_t.
Consequently. lim,_,- j(z) = f(z) uniformly on each compact set K in G. Thus.
the necessity of the convexity of G with respect to K is proved. The sufficiency is
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clear from the fact (Theorem 1.11) that a domain of holomorphy G is convex with
respect to the class of all holomorphic functions in G.

Oka's lemma (Lemma 3.5) can be generalized to a normal class K.

LEMMA 3.8. Let C be a domain of holomorphy. Assume that G is convex with
respect to a normal class K of holomorphic functions in C. Let E be a compact set
in G and let A denote the K-convex hull of E. For any p E A, there does not exist
a family of analytic hypersurfaces {o1}tE7' which satisfies Oka s condition at p for
the pair (E. A).

PROOF. Since the Cousin I problem in an analytic polyhedron in G is always
solvable, the proof given for polynomial hulls in Lemma 3.5 is valid here: together
with Theorem 3.10, this yields the lemma.

3.6.2. Rationally Convex Domains. In 1.5.3 of Chapter 1, we defined the
notion of convexity of a domain D in C" with respect to a regular class K of
holomorphic functions in D; in particular. D is said to be convex with respect
to rational functions if D is convex with respect to rational functions which are
holomorphic in D. However, this definition has some drawbacks. For example.
using this definition, the unbounded domain D f = C" \ S f. where Sf is the zero
set of an entire transcendental function f (z) in C". is not convex with respect to
rational functions. Thus we must extend the definition of rational convexity.

A domain D in C" is said to be rationally convex if there exists a sequence
of relatively compact subdomains D" CC D (n = 1.2....) such that each D"
is convex with respect to rational functions which are holomorphic in D,,. D,, C
D"+1 (n = 1, 2, ... ), and U: I D, = D. The unbounded domain D f in the
previous paragraph is thus rationally convex in C".

In the case of one complex variable. every domain is convex with respect to
rational functions. However. in the case of several complex variables, even a domain
of holomorphy need not be rationally convex. The following example is due to Oka
[471.

Oka's counterexample for rational convexity. In C. x C,,, we consider A =
AI X A2, where

A, : 2/3 < IzI < 1. A2 : 2/3 < ItwI < 1.

Then for z = x + iy. we denote by A' the subset of i with y > 0. We consider
the analytic set E : w - z + 1 = 0 in C2. and set E' := E rl A'. Thus E' is also an
analytic set in A, and G := . \ E' is a domain of holomorphy in C2 which is not
rationally convex in C2.

PROOF. Let g(z. w) be a meromorphic function in A whose pole set is given by
1/(w-z+1) on E' (such a function exists by solvability of Cousin I in A: cf.. Remark
3.5 in 3.5.3). By considering the holomorphic functions {z.w.1/z.l/w,q(z.w)} in
0. we see that C is holomorphically convex; hence C is a domain of holomorphy in
C2.

We also use the meromorphic function 9(z. w) in A to prove that G is not
rationally convex in C2. For suppose that G is rationally convex. Fix 0 < d < 1/12.
and set Do :_ A° x A2 CC O. where

Y° = {2/3+d<Izj<1-d}CC A,,
Al = {2/3+d<JwI<1-d}0002.
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Let

a = {Izl = 5/6} C A° 8A2 =132 - 31 C 32.
where !32 = {IwI = 1-d} and 131 = {IwI = 2/3+d}. We let o denote the projection
of E' f1 Ao onto 0°. Given 0 < c < d, we define, for z E o.

y,(z):= {wEC.I Iw-(z-1)I<c}CCA2.
Then we have

K,:=J°\ [U(z. (z)), CCG. (3.13)
sEo

Let z° be the point of intersection of the circles a and {jz - 11 = 5/6} in C: with
Imzo > 0. In particular, z0 E o and y,(zo) C A2. Finally, let a' and a" be
the subarcs of a connecting zo and -5/6 in the counterclockwise and clockwise
directions, respectively. Then we have

(a' x l31) U (a" x r32) U({-5/6} x OZ) C K,.

We fix c sufficiently small with 0 < c < d so that

min{Ig(zo,w)I I w E 8y,(zo)} > max{Ig(zo,w)I I w E 8i2}. (3.14)

This is possible because g(zo, z° - 1) = oo. Since we are assuming G is rationally
convex in C2. it follows from (3.13) that given any n > 0, we can find a rational
function R(z, w) = P(z, w)/Q(z, w) in C2, where P(z. w) and Q(z, w) are relatively
prime polynomials in C2. such that R(z. u') is holomorphic in a neighborhood V of
K, in G and satisfies

Ig(z. w) - R(z, w)I < i on K,.

Hence, if n > 0 is sufficiently small, we see from (3.14) that R(zo. w) is holomorphic
as a function of w in A2 \ y,(zo) and satisfies

min{IR(zo. w)I 1w E 8y,(zo)} > max{IR(zo. w)I I w E 8A2}.

The maximum modulus principle for holomorphic functions implies that R(zo, w)
cannot be holomorphic in all 02; thus the denominator Q(zo. w) has at least one
zero in y, (z°) and hence in o2. Therefore,

13
27r < ( dargQ(zo,w) = I dargQ(zo.w) - dargQ(zo.w). (3.15)

J88T 3 1

On the other hand, since P(z, w)/Q(z, w) is holomorphic on the neighborhood
V of K we have Q(z, w) # 0 on V. In fact, if not, we have a point (zo, w°) in V such
that Q(zo, w0) = 0. Thus, P(zo, w°) = 0. Since P(z, w) and Q(z, w) are relatively
prime, it follows that (zo, wo) is a point of indeterminacy of P(z, w)/Q(z, w). This
is a contradiction. In particular, Q(z, w) # 0 on a' x;31. a" x j32, and {-5/6} x o2.
These statements imply that

r
11 dargQ(zo.w) = J dargQ(-5/6.w),

a,

and

dargQ(zo.w) = JdargQ(_5/6.w).L
f dargQ(-5/6,w) = f dargQ(-5/6. w).

1 a

Putting these together gives a contradiction to (3.15). 0
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3.6.3. Approximation by Algebraic Functions. In this section, we prove
the following theorem concerning approximation of a holomorphic function by al-
gebraic functions.

THEOREM 3.11 (Oka [48]). Let G be a domain of holomorphy in C". Let E
be a compact set in G, let e > 0. and let f (z) be a holomorphic function in G.
Then we can find a single-valued branch u = ;,^,(z) of an algebraic function over a
neighborhood P of E in G such that

Ao(z)ut + A1(z)u1-1 + ... + A1(z) = 0 for z E P. (3.16)

where A,(z) (i = 0,....1) is a polynomial of z in C", and

If(z) -. (z)I < E on E.

PROOF. It suffices to show that we can find single-valued holomorphic functions
(,(z) (i = 1.....m) in a neighborhood P of E in G such that

(i) wk = (k(Z) (k = 1.... , m), z E P, satisfy the m algebraic equations

Pi-(z, w1, ... ,wm) = 0 (k = 1..... m).
where Pk(z, w1.... , w,,,) (k = 1..... m) is a polynomial in Cn, m and

8(P1,... ,Pm)
0 at wk = Ck(Z) (k = 1.....m). z E P;8(w1,... ,w) 96

(ii) we can find a polynomial p(z) in z.(1(z).....5,,,(z) such that

I f (z) - ,p(z)I < e on E.

For it follows by standard techniques (using symmetric functions) that u = w(z) is
a single-valued branch of an algebraic function of the form (3.16).

To construct (,(z) (i = 1.... , m) satisfying (i) and (ii), we take an analytic
polyhedron P in G,

P: Iz>)<r, (J=1....,n). Ifk(z)I51 (k=l.....m).
where fk(z) (k = I,....m) is a holomorphic function in C. and

E cc P cc C.
As usual, we introduce the space Cm of the variables w1, ... and we consider
the polydisk in C""'.

a: IzJI<r) (j n), iwk1<1 (k=1,...
Furthermore, we define

E: wk=fk(z)(k=1,...,m), z E P.
which is a pure n-dimensional analytic set in 0.

As the first step we approximate fk(z) (k = 1..... m) by an algebraic function
(k(z) with conditions (i) and (ii). Regarding fk(z) as independent of w1.... ,w,,,,
we have that

wk - fk(Z)
is a holomorphic function in a neighborhood Vk of E in C"+'". By Theorem 3.4.
E C C"+m is polynomially convex. Thus there exists a polynomial polyhedron P'
in C"+m such that

ECCP' CC Vk (k=1...,m).
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We can choose p > 0 sufficiently small so that

Q U ,T,,,(z)) CC P'. (3.17)
zEP

where 'Yk(Z) = [Wk E C. I Iwk - fk(z)I < p} (k = 1.... , m).
Fix q with 0 < >7 < p. By applying Corollary 3.1 for (P'. C"`) and the

function uwk - fk(z) in P'. we can find a polynomial Pk(z, w) in C""'" such that

JPk(z. w) - (wk - fk(=))I < 17/2 on P' (k = 1.... m). (3.18)

We consider the following holomorphic transformation

T : (z, w) E P x Cli (z, W) = (z. wl - f,(z)..... non, - f,,,(z)) E P x C.

Then T is one-to-one and maps Q onto the product domain P x BP, where Br (r > 0)
denotes the polydisk in C. of center 0 and radius r. We set

Hk(z. IV) := Pk(z.l%', + f,(z).... ,1Vn, + f,n(z)) (k = 1... , m).

which is a holomorphic function in P x B. and which, for each fixed z E P. is a
polynomial of W in Cm. Since B,, C B,,, we obtain from (3.17) and (3.18) that

jHk(z,14')-IVIJ<r/2 onPxB,, (k=1.....m).
Fix z E P. Using Rouche's theorem from one complex variable, for each k =
l..... m, the above inequalities imply that there exists a unique complex number
Wk = hk(z) (k = 1.... , m) with

Hk(z, hl(z),... , h,n(z)) = 0, and Ihk(z)I < q (k = 1.... , rn).

Furthermore, each hk(z) (k = 1,.... m) depends holomorphically on z E P. Thus.
if we define

(k(z) hk(z) + fk(z) (k = 1..... m). z E P.

then wk = (k (z) (k = 1,... , m) is a single-valued function in P which satisfies

Pk(z, wl... , w,,,) = 0 (k = 1..... in). z E P, (3.19)

Kk(z) - fk(z)l < q (k = 1.... , m), z E P. (3.20)

The uniqueness of Wk = hk(z) (k = 1,... ,m) also implies that any solution
wk(z) (k = 1, .... m) of the simultaneous algebraic equations (3.19) for wl,... , w,,,
(we regard z E P as parameters) such that Iwk(z) - fk(z)I < q (k = 1.... m) co-
incides with Ck(z) (k = 1..... m). Thus

d(PI, ... P,n) # 0 at wk = (k(z) (k = 1... .m). E P.
d(w1.... , w", )

which proves the first step.
To prove the second step, and hence the theorem, let ( > 0 and let f (z)

be a holomorphic function in G. From the proof of Theorem 3.5, there exists a
polynomial

4'(z) = P(z,f,(z),... ,fm(z))
of z, f, (z),... , fn(z) such that

f (z)j < e/2 on E.
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Therefore, if we take q > 0 sufficiently small, and use the functions wk = (k(z) (k =
1, ... , M), z E P. which were constructed above to satisfy 1(k (z) - fk (z) I < n (k =
1, ... , m) on P (and condition (i)), to define the polynomial

Oz) := P(z, (l (z).... 7 C. W)
in z,(1(z),... ,(,"(z). then we have

14'(z) -,p(z)I < -E/2 on E.

Thus
Is(z)-f(z)I<E onE.

and the theorem is proved.

3.6.4. PolynotnialIy Convex Domains. In the case of one complex vari-
able, a domain D in C is polynomially convex if and only if D is simply connected.
In the case of several complex variables, there is no topological characterization
of polynomial convexity Indeed, a polynomially convex domain D in C" is not
necessarily simply connected.

EXAMPLE 3.3. In C2 with variables z, w. consider the domain

D : Izl < 2, Iwl < 2, Izw - 11 < 1/2.

Then D is polynomially convex but not simply connected. To see that D is not
simply connected, assume the contrary. Since D fl({0} x C,,.) = 0. the function
log z has a single-valued branch in D. On the other hand, the closed curve y :=
{(z, w) = 1 0 < 0 < 2a} in C2 is contained in D: hence log z has no
single-valued branch in D. a contradiction.

Conversely, a simply connected domain of holomorphy D in C" (n > 2) is not
necessarily polynomially convex.

Wermer's Example 178]. In C3 with variables z, w, t, consider the compact
set

K: Izl<1, Iw l<-1, t=0.
For 0 < a < 1, define

Da : Izl < l + a. I wI < 1 + a. It1 <a

so that K CC Aa. Let T : (z, w, t) E C3 (z1. z2, z3) E C:.1 be the holomorphic
mapping defined as

T : z1=z, z2=zw+t, z3=zw2-w+2tw.
Define

E := T(K), G. := T(Da ).
Then T is a one-to-one mapping from K onto E. and (0,1.0) 0 E. Since the
determinant of the Jacobian matrix of T is

8(zt, Z2,23) = 1-2t,8(z,w,t)
we can choose a sufficiently small so that the domain G. in C= is biholomorphically
equivalent to the polydisk Aa in C3 and also to insure that (0.1.0) f Ga. We show
that, with such a choice of a, G. is not polynomially convex.
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PROOF. We consider the closed curve 1 = {(e`a. a -i0.0) 10 < 6 < 27r} in K.
Then T(-y) is the unit circle lying in the complex plane L : z2 = 1,
T(')isgiven by1z1I=1, z2=1, z3=0.

23 = 0; i.e.,

However, in general, any polynomially convex domain D in C" satisfies the
property that for any m-dimensional complex plane L in C" (0 < m < n). D n L is
also polynomially convex in Cm. In particular, for m = 1, D fl L must be a disjoint
union of simply connected domains.

Taking D to be Ga and L to be the 1-plane defined by z2 = 1, z3 = 0 in CZ,
we see that G. n L contains the circle Iz1 I = 1 in L but does not contain the center
z1 = 0 in C,,: hence G. fl L is not simply connected. Thus G. is not polynomially
convex in C. 0

REMARK 3.6. Let D be a rationally convex domain in C". Then for any m-
dimensional complex plane L (0 < m < n), the intersection L fl D is rationally
convex in C"'. For the case m = 1. this imposes no restriction on D n L. as every
planar domain is rationally convex. However, if we assume, in addition, that D
is simply connected in C", then for L with dim L = 1. D n L must be simply
connected in C (G. Stolzenberg [701).

To verify this last statement, assume. for the sake of obtaining a contradiction,
that for some L with dim L = 1. D1 := DnL is not simply connected. For simplicity,
we take L = C.,; i.e., L is defined b y 22 = = z" = 0. Since D1 is not simply
connected, we can take a point a E C:, \ 51- and a closed curve 1 in DI such that
f, d arg(z1 - a) = 27r. If we let L2 be the 2-plane z3 = . = z,, = 0. then we can
construct a holomorphic function f2(21, z2) in DnL2 such that f2(zl, 0) = 1/(zi -a)
in D1. To do this, we proceed by using the solution of a Cousin I problem similar
to that used in Lemma 3.3. We repeat this procedure to obtain a holomorphic
function f (z) in D satisfying f (z1, 0.... , 0) = 1/(zI - a) in DI.

Now let c > 0 and let G be a simply connected domain such that 1 CC
G CC D. Since D is rationally convex in C". we can find a rational function
R(z) = P(z)/Q(z). where P(z) and Q(z) are relatively prime polynomials in C",
such that R(z) is holomorphic in G and satisfies IR(z)- f (z) I < c in C. In particular,
the denominator Q(z) of R(z) cannot vanish at any point in the simply connected
domain G: hence

J dargQ(z) = 0.

On the other hand, if 0 < e < min{ `,1_a! : z1 E ti}, then Rouche's theorem implies

J darg P(z) = J darg 1 = -2a.
Q(z) I -a

Hence.

fdargQ(z) = J darg P(z) + 2a > 2a.

which is a contradiction. 0
It follows that the domain G. in Wermer's example is not rationally convex,

but it is a simply connected domain in C3. We mention that there is an example
due to J. Duval [16] of a domain in C2 which is both rationally convex and simply
connected but which is not polynomially convex.



CHAPTER 4

Pseudoconvex Domains and Pseudoconcave Sets

4.1. Pseudoconvex Domains

4.1.1. Domains of Holomorphy, Domains of Meromorphy, and Do-
mains of Normality. The notion of a pseudoconvex domain was developed by
K. Oka. This will give a geometric characterization of the boundary of a domain
of holomorphy (section 4.2). Preliminary results motivating this concept were ob-
tained by F. Hartogs, E. E. Levi and G. Julia, and we begin our discussion of this
topic with some classical results based on their work.

1. Hartogs' Theorem
In C"+1 with variables z = (zl,... and w, we consider a polydisk A =

A x I' where

A : Izil<r2 (j=1,...,n), r : IwI<p,
with r,>0(j=1,...,n)andp>0. 0<r'J <r, (j n)
and0<p'<p,weset

A, : IzjI<r; (j=1,...,n), r' : p'<IwI<p,
and define

El :=.A' x r, E2 := O x r', and E := E1 U E2

(see Figure 1).

C C..-.

O

a

FIGURE 1. Hartogs' Theorem
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We have the following theorem.

THEOREM 4.1 (Hartogs 129)). 1 Each holomorphic function f (z, w) on E ex-
tends holomorphically to the polydisk A.

PROOF. Since f (z. w) is holomorphic in we can consider the Hartogs-
Laurent series

f(z,w)= a,(z)ud in E2.
j=-x

where aj(z) (j = 0, ±1....) are holornorphic functions in A. Since f (z, w) is
holornorphic on El, from the uniqueness of the Hartogs-Laurent expansion it follows
that aj(z) = 0 on A' for j = -1. -2,... and hence aj(z) m 0 on A for these values
of j. Thus f (z, w) is the restriction to E of the holomorphic function o a)(-)ui
in A.

In particular. let D be a domain in C" and let o be an analytic set of di-
mension at most n - 2. Then each holomorphic function f (z) on D \ or extends
holomorphically to the domain D.

2. E. E. Levi's Theorem
Using the same notation as above, we prove the following lemmas.

LEMMA 4.1. Let g(z. w) be a holomorphic function in E2 with Hartogs-Laureni
series X

g(z,w) _ aj(z)u4 in E2.
j=-x

where aj (z) (j = 0, ±1.... ) is holornorphic in A. Then g(z. w) can be extended to a
meromorphic function in the polydisk A if and only if there exist a finite number of
holornorphic functions {bt(z).....bj(z)) on A which satisfy the following infinite
set of simultaneous equations for z in A:

=0 (v> 1). (4.1)

PROOF. Suppose first of all that g(z, w) can be extended to a meromorphic
function f (z, w)/h(z, w) on A where f (z, w) and h(z. w) are holomorphic on A and
relatively prime at each point (z. W) E A. Since g(z. w) is holomorphic on E2.
it follows that h(z, w) # 0 on E2. Using Remark 2.3 in section 2.1.3. the zero
set of h(z.w) in A (which may be empty) coincides with that of a distinguished
pseudopolynomial P(z, w) in A.

P(z, w) = wI + bt (z)wI-1 + + bI (z). (4.2)

where each bk(z) (k = L... ,1) is holomorphic in A. Since 9(z, w)P(z, w) can be
holomorphically extended to A, the coefficient of w -" (v = 1, 2, ...) of the Hartogs-
Laurent series of g(z, w)P(z, w) vanishes; this coefficient equals the left-hand side
of equation (4.1).

For the converse, assume that there exist a finite number of holomorphic func-
tions {b1(z),... ,bl(z)} on A which satisfy the equations in (4.1). We then define
P(z.w) by (4.2) so that P(z, w) is holomorphic on A and by (4.1) each coefficient
of w-" (v = 1.2.... ) of the Hartogs-Laurent series of g(z, w) P(z, w) vanishes on
A. Thus g(z, w)P(z. w) can be considered as a holomorphic function in A. so that
g(z. w) extends to a meromorphic function on A.

'In this paper, Hartogs proved Theorem 4.1 using Cauchy's integral formula.
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LEMMA 4.2. Let g(z, w) be a meromorphic function on E. If g(z. w) is holo-
inorphic on E2, then g(z. w) can be extended to a meromorphic function on the
polydisk A.

PROOF. We first develop g(z. u,) into the Hartogs-Laurent series
x

g(z.w) = E a,(z)ra' on E,1

where aj(z) (j = 0,t1....) are holomorphic on A. We would like to use Lemma
4.1 to construct a finite number of holomorphic functions {b1(z),... ,b((z)} on
A satisfying (4.1). Since g(z, w) is meromorphic in E and hence in the domain
El = A' x I', and the functions aj(z) are holomorphic on A and hence in 0',
we can appeal to Lemma 4.1 to find a finite number of holomorphic functions
{bl(z).... ,bi(z)} on the smaller polydisk A' which satisfy

,(z)bi(z) =0 (v> 1) (4.3)

on A'. Consider the matrix A(z), z E A. with infinitely many rows. each of length
1 + 1, defined by

A(z) :=
a-1-1(z) a.-1(z) ... a_t(z)
a-1-2(z) a_1-1(z) ... a_2(Z)

and the corresponding infinite set of homogeneous linear equations for z E A:

A(z)

Xo(z) 0
X1(z) 0

X1(z) 0

We seek non-trivial holomorphic solutions {Xo(z),... ,X((z)} of these equations in
A. Let r := max{rank A(z) I z E A'}. From (4.3), we know that 0 < r < 1. If
r = 0, then aj(z) = 0 on A' and hence on A for j = -1. -2,..., so that g(z, w)
is holomorphic in A and there is nothing to prove. We may therefore assume that
1 < r < 1 and we fix a point zo E A' such that rank A(zo) = r. Next we fix a
neighborhood V of zo in A and an r x r minor matrix of A(z) whose determinant
D(z) does not vanish at any point z E V; say, e.g.,

I a-1-1(z) ... a-1-2+r(Z)

D(z) _
a-1-2-r(Z) ... a-1-3(z)

96 0 on V.

while the determinant of any a x s minor matrix of A(z) with s > r + I necessarily
vanishes identically in V. Using Cramer's rule, we get polynomials AF,k(z) (0 <
p < r - 1 ;r < k < 1) in the coefficient functions aj(z) (j = 0,±1,...) such that.
if we define

B,,(z) := A``r(z)Br(z) +. + AM:(z)BI(z),
D(z) D(z)

where Br(z), ... , B, (z) are arbitrary holomorphic functions in A, then the functions
{Bo(z).... , Bi(z)} on A satisfy the equations (4.4) for z E V. We now set

Xk(z) := D(z)Bk(z) (0 < k < I) on A.
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Then Xk(z) (0 < k < 1) are holomorphic on A and satisfy the equations (4.4) for z
in V and hence for all z in A. From 1 < r < 1, we have thus constructed non-trivial
holomorphic solutions {Xo(z),.... XI(z)} of the system of equations (4.4) on all of
0. Defining

Q(z, w)
Xo(z)wl + X1(z)w'-1 + ... + XI(z) (0 0) on A,

for each v > I the coefficient of w-" of the Hartogs-Laurent series of h(z, w)
g(z, w)Q(z. w) on E2 is equal to zero on 0; i.e.. h(z. w) is holomorphic in A. Hence,
g(z, w) extends to a meromorphic function on all of A. C

We now consider Cn+2 with variables z = (z1..... zn) and w = (wi. w2). Fix
r > p > 0 and define two balls in Ci,:

Q(r) : Iw, + r12
+ 1 W212 < r2,

q(p)
: Iw1I1 + Iw212 < P2.

Finally, set

3 := q(p) \ Q(r) in C2
B {0} x 3 in C"+2. (4.5)

We have the following theorem.

THEOREM 4.2 (E. E. Levi 117]). Any meromorphic function g(z. w) on B has
a meromorphic extension to the origin (z, w) = (0,0); precisely. g(z.w) has a
meromorphic extension to the set b in Cn+2 defined by

B : z = 0, (w1. w2) E q(p) fl {Re w, > -p2/2r}.

PROOF. Let D be a neighborhood of {0} x E3 in C"-' on which g(z, w) is
meromorphic; we assume the origin (0, 0) E Ci+2 is not contained in D (otherwise
there is nothing to prove). Given W' E ,3, we let D(w') C C,` denote the section of
D over iv = w'.

We let a denote the set of poles of g(z, w) in D, and we let a(0) C 3 C Cu,
denote the section of a over z = 0. We have two cases to consider:

Case I: dim a(0) < 1; i.e.. a(0) 33:

Case II: dim a(0) = 2: i.e.. a(0) = 3.

We first prove the theorem for Case I; we proceed in several steps.

First step. g(z.w) has a meromorphic extension to {0} x (q(p) fl 8Q(r)) in
Cn+2.

It suffices to prove that g(z, w) has a meromorphic extension to the origin
(z, w) = (0, 0) in Cn+2.

We first consider the case when

{(wl. w2) E ;3 I wl = 0) 0 a(0). (4.6)

Since {(WI, W2) E)3 1 tcl = 0} n,7(0) consists of isolated points in the punctured
disk 0 < 1w21 < p, we can find a circle I W21 = p2 in Ca., with 0 < P2 < p/2 such
that g(z, w) is holomorphic on (z = 0) x {w1 = 0} x {I w21 = P2}. Thus g(z. w) is
holomorphic on {z = 0} x {Iw1I < P1 } x {1w21 = P2} if 0 < P1 < p/2 is sufficiently
small. Fix a point w° E {Iw1I < pl} fl {Re w1 > 0} sufficiently close to the origin
w, = 0 so that K := {(wi,w2) E Cu. 1 Iw21 < p/2} cc 3. It follows from Lemma
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4.2 that g(z,w) has a meromorphic extension to {0} x {Iw11 < p1} x {Iw21 < p2}
in Cn+2, and, in particular, to the origin (z, w) = (0, 0).

Now we consider the case when

{(wi,w2) E 13 1 wi = 0} C o(0).

For e > 0, the holomorphic mapping T of C2,

T w1 = w1 - Ew22, w2 = w2

is one-to-one and maps onto C2 fixing the origin (0.0). We choose e > 0 sufficiently
small so that

{w1 = EwZ} fl /3 ¢ 0(0)

(since dim o(0) < 1). An elementary calculation shows that

{w1 =Ewf}fl(q(r)\ {(0,0)}) C!3

provided e is sufficiently small. Given r' > r and 0 < p' < p. we set

Q(r) : Iw; + T I2 + Iu s11 < r 2, 4(p') Iwl12 +
Iw'2I2 < p'2

and /3 := j(p) \ Q(r'). If r' is sufficiently large and p' > 0 is sufficiently small. it
can be shown that

d C T(r3).
We set g(z, w') := g(z, w). where w' = Tw. Then g(z. w') is meromorphic in a
neighborhood of {0} x T(/3), and, in particular, g(z, w') is meromorphic on {0} x /3.
If we let & denote the set of poles of §(z, w'), then {(wi, u:2) E /3 1 w] = 0} ¢
&(0) from (4.7). It now follows from the previous case (4.6) that §(z. w') has
a meromorphic extension to the origin (z, w') = (0, 0). and hence g(z, w) has a
meromorphic extension to the origin (z. w) = (0.0). Thus, the first step is proved.

Second step. g(z. w) has a meromorphic extension to B.

We note that (8Q(r)) fl (8q(p)) fl {w2 = 0} lies on Rw1 = -p2/2r. From the
first step. it suffices to prove the second step under the condition that g(z. w) is
meromorphic on (OQ(r)) fl (dq(p)) (for we can take a smaller q(p) sufficient close
to the original q(p), if necessary). Given 0 < a < p2/2r. we consider the ball B(a)
in Cu. centered at (- R - a, 0) with radius R. where R is chosen so that the sphere
8B(a) intersects (8Q(r)) fl (aq(p)). Precisely, we take

8(a) : Iwl + R + a12 + Iw212 < R2.

where
/f

R2 R+a- )2+p2_ (

/ 2)2=(2

Then we have B(0) = Q(r). q(p) \ 8(a') C q(p) \ B(a") for all a'. a" with 0 < a' <
a" < p2/2r; lima_.p-/2, B(a) _ {(u'1. W2) E C2 I Rw1 < -p2/2r}; and

B = U {0} x [q(p) \ B(a)[. (4.8)
0<a<p2/2r

We set

a' := sup{a I g(z. w) has a meromorphic extension to {0} x [q(p) \ B(a)J}.

Using (4.8). we see that our goal is to show that a' = p2/2r. We prove this by
contradiction; hence, we assume a` < p2/2r. From the first step, g(z. w) has a
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meromorphic extension to each point of {0} x (q(p) n (8B(0))]. so that we certainly
have a' > 0. Since g(z.w) has a meromorphic extension to each point of {0} x
[q(p) n (8B(a))] for a < a'. g(z,w) has a meromorphic extension to each point of
{0} x [q(p) n (OB(a'))] by the first step; thus, we again get a > a' sufficiently close
to a' such that g(z, w) has a meromorphic extension to each point of {0} x [q(p) n
(8B(a))], contradicting the definition of a'. Thus the second step is proved, and
hence the theorem is valid in Case I.

We now turn to Case II. Fix a E C" \ {0} and the one-dimensional complex
line L = La :_ {ta E C" l t E C} such that

Dn(LxCv,)¢v. (4.9)

For 0 < e < 1, consider the following linear bijection TE of Ci+2:

TE: z'=z+(ew1)a, w'=wl, w2=w2,
which fixes the origin (0, 0). We set

gE(z', w') := g(z, w), where (z',w') E TE(D).

Then j, (z'. w') is a meromorphic function in B. := TE(D) whose set of poles R. in
DE satisfies dimde(0) < 1 (here dE(0) denotes the section of Q, over z' = 0). This
follows from (4.9). Note that the section DE (0) of DE over z' = 0 does not contain
a set of the form 0 (defined by (4.5)) at w' = 0.

For q satisfying 0 < q < p, we define the following subsets of Cu,:

&(r +,7) : Iw1 + rl2 + lu'2l2 < (r + 7)2,

q(P - 11) lwl - q12 + 1W212 < (p - 11)2,

and we let 13(q) = q(p - q) \ Q(r + q). Note that 13(q) CC 3. There exists a unique
real number a,, satisfying

(OQ(r + q)) n (04(p - q)) = {Re w, = -a,, } n (aq(p - I)).

We have ,3(q) - 0 and a,, p2/2r as q -' 0: hence we can choose q > 0 with
a,, > 0 sufficiently small so that

.(0, 0) E q(p - q) \ {Re wl > -a,,)

Since (3(q) CC 0, we can find a polydisk d : lzi l < aj (j = 1,... , n) in CZ such
that 6x13(u)CCD. We set6':lz,'l<s_,/2 (j=1....,n)inC?.andfix e > 0
sufficiently small so that

{z' -(ewl)aEC". Iz'E6'. IwiI<p}CC b.

It follows that 6' x %3(q) C DE. Since 13(q) in Cti,, is of the same form as i3, but with
w = (0,0) replaced by w' = (q, 0), and since dim o(0) < 1, it follows from Case I
that g, (z', w') has a meromorphic extension to

{0} x {w' E q(p - q) l Re wi > -a,,} in C""
and, in particular, to the origin (z', w') = (0, 0). Thus. g(z, w) has a meromorphic
extension to the origin (z, w) = (0, 0). Using the same method as in the proof of
the second step in Case I, we get the proof of the second step in Case II; hence the
theorem is true in Case II.
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3. Julia's Theorem
Let D be a domain in C"tl containing the origin (z, w) z,,, w)

(0, 0). Let F be a family of holomorphic functions in D. Consider the set

Lo : z,=0 (j=1,...,n). 0<IwI<r
in D and assume that F is a normal family at each point of Lo; i.e., for any p E Lo.
there exists a connected neighborhood V of p in D such that Jr is normal on V.
The definition of normality means that for any sequence {f " },, C F. we can find
a subsequence If., }, of If.},, such that f", -- f (j -- x) uniformly on compact
subsets of V where f is either a holomorphic function in V or f =_ oc in V.

Under this assumption we have the following theorem.

THEOREM 4.3 (Julia [321). Suppose F is not normal at the origin (z, w) _
(0.0). Then, given any r' with 0 < r' < r, there exists p > 0 such that. for any
z'=(z' ....z;,)EC'_' withIz,I <p(j=1,...,n). there must be at least one point
q on the set

Lz. : z,=z (j n),

such that Jr is not normal at q.

PROOF. Since {0} x {IwI = r'} C Lo. it follows from our assumptions that
there exist a p > 0 sufficiently small and 0 < e < r' such that, setting F.2 := a x r'
where

a : Iz,I<-p (j=l....,n), r : r'-c<IwI<r'+e,
we have E2 C D and.F is normal on E2. We prove that this p > 0 yields the conclu-
sion of the theorem. For suppose not. Then there exists some zf1 = (zU1.....
with Izo,I < p (j = 1,....n) such that.F is normal on L=a = {4} x flu-1 < r'}. We
can thus find a neighborhood E1 of L:% in D such that F is normal on Ei; indeed.
we can take E1 of the form E1 = a' x r, where

0': Iz,-zn,I!5 po(J=I.....n). r: Iwl<r'+e

with W C A. Now let if,.),, be any sequence in Y. We can find a subsequence
ff", }l of {fn}" such that f", f as j -+ oo uniformly on E, u E2. If f is
holomorphic on Er, then from Cauchy's integral formula applied to f,,, in the
polydisk 0 x r C D, we conclude that f", - f as j x uniformly on c1 x r.
This contradicts our assumption that F is not normal at the origin (0.0). Thus we
may assume that the limiting function f -= oc on E2 and hence on E, U E2 (since
E, U E2 is connected). If infinitely many of the f", are non-vanishing on A x r. it
follows that f,,, -+ oo uniformly on A x F. which also contradicts our assumption
at (0, 0). Thus there exist a subsequence {g1}1 of If., }1 and points (at, bt) with
at E &\a' and (btl < r'-e such that gt(al, bl) = 0. On the other hand, since gt x
as 1 -, x on E2. say Ig11 > 1 on E2 for all l > 10. it follows that for any z' E A.
each gt for I > to vanishes at some point (z', wl(z')) E Cn+1 with Iwt(z')I < r' - e
by the Weierstrass preparation theorem. In particular, if we fix z' = z') in and
consider a limit point w' of {wt(zp)},>la on L.,, then Iw"I < r' - e. We conclude
that {gt} cannot converge uniformly to x on any neighborhood of (zo, w*). This
contradicts our assumption that gt or, as I -+ x uniformly on E,, and proves
the theorem. 0
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4.1.2. Definition of Pseudoconvex Domains. Motivated by the three the-
orems in the previous section, we give three equivalent definitions of pseudocon-
vexity, following the ideas of Oka in [521.2 We recall from 1.3.5 that a one-to-one
holomorphic mapping T of a domain D C C" onto a domain D' C C" with a
holomorphic inverse T-1 is called a biholomorphic mapping: if D = D', we call T
an automorphism of D.

Definition A. Let D be a domain in C" (n > 2) and let P = (a1.... , an) E &D.
We say that D satisfies the continuity theorem of type A at the boundary
point P if the following holds: under the assumption that there exists r > 0 such
that the punctured disk

La : zj=aj (j=1....,n-1). 0<Izn-a"I<r
is contained in D, we have, for any r' satisfying 0 < r' < r, that there exists p > 0
such that for each (z...... z,',- 1) E C"-1 with Ii - a., I < p (j = 1..... n - 1). the
disk

La' zj=zi (j=1.....n-1). Izn-a"I<r'
intersects OD.

Now if P E OD satisfies the continuity theorem of type A and if this theorem
remains valid under any biholomorphic transformation T of a neighborhood V of
P in C" (i.e., if T(D fl V) satisfies the continity theorem of type A at the point
T(P)), then we say that D is pseudoconvex of type A at P.

Finally, if D is pseudoconvex of type A at all boundary points of D. then we
say that D is a pseudoconvex domain of type A.

Definition B. Let D be a domain in C" (n > 2) and let P = (a1. ... , an) be a
point in &D. In C2 with variables z,, _ I and zn, we fix a point Q = (bn.-1, bn) such
that Q 0 (an-1, an ), and we let r > 0 be the Euclidean distance between (an _ 1, an )
and Q. For 0 < p < r, we define the set j3, in C2 by the following inequalities:

Izn-I - bn-112 + Izn - bn12 > r2.
4.10

IZn-1 -a.-,1 2 +Izn - a,+I2 < p2 )

If for each Q E C2 and each 0 < p < r, the set B in C2 defined by

B : zj=aj(j=1.....n-2) (zn-1,zn)E,3p
is not contained in D, we say that D satisfies the continuity theorem of type
B at the boundary point P of D.

If P E 8D satisfies the continuity theorem of type B and if this theorem remains
valid under any biholomorphic transformation of a neighborhood of P in Cn, then
we say that D is pseudoconvex of type B at P.

Finally, if D is pseudoconvex of type B at every boundary point of D. then we
say that D is a pseudoconvex domain of type B.

Definition C. Let D be a domain in C" (n > 2). Let P = (aI , ....an) be a point
in C" and let A be a polydisk centered at P with polyradius rj (j = 1,....n):

A : Izj-a, I <r., (j=1,....n).

2In part I we are restricted to univalent domains in C". The definition of pseudoconvexity
stated here will later be extended to unramified covering domains over C" without any change.
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For 0 < r' < r., , j = 1..... n, we consider the following two sets in A:

El : 1z., - aiI < rj (j = 1.....n - 1). Iz" - a"1 < rn, 11)(4 .E2: 1z) - aiI < ri (j=1,....n-1), r, <Iz"-ant<rn,
and we set E := E1 U E2. If for any such A and E in C". E C D implies that
A C D, then we say that D satisfies the continuity theorem of type C.

Next. if for any polydisk K. K n D satisfies the continuity theorem of type C
and if the image of K n D under any biholomorphic transformation from K n D
into C" also satisfies the continuity theorem of type C. then we say that D is a
pseudoconvex domain of type C.

Note that we assume n > 2. In the case n = 1. we say that any domain in C
is a pseudoconvex domain.3

At first glance, these definitions of pseudoconvexity may seem rather difficult
to understand. We remark that the notion of a pseudoconvex domain of type A
or B is a local notion dependent on the boundary: the definition gives a property
which is to be satisfied at each boundary point P of the domain. On the other
hand, pseudoconvexity of type C is a global property of the domain.

4.1.3. Equivalence of Definitions. In this section we show that the three
definitions of pseudoconvex domains in C", n > 2, are equivalent.

1. Pseudoconvex Domains of Type A are of Type B.

PROOF. Let D be a domain in C" of type A. Let P be any point in 8D: we
show that D satisfies the continuity theorem of type B at P. For simplicity we
assume that P is the origin z = 0 in C" and the set i3,, defined by (4.10) is of the
form

Qp : 1z"_1 +rI2+IZ.12>r2, IZn-112+IZ"12 <p2.
Our claim is thus to show that the set B in C" defined by

B : zj =0(j=1.....n-2), (z"_1,zn)E 3,,

is not contained in D. We prove this by contradiction; hence we assume B C D.
Then the subset Lo of B defined by

Lo : zj=0(j=1,....n-1), 0<Iz"I<p
is contained in D and 0 E OD. Further, for any 0 < s < p/2 the set

z,=0(j=1.....n-2). z"-1=s. 1z"I<p/2
is contained in D. It follows that D does not satisfy the continuity theorem of type
A at the origin. This is a contradiction. E]

2. Pseudoconvex Domains of Type B are of Type C.

PROOF. Let D be a pseudoconvex domain in C" of type B. We prove the
assertion by contradiction. i.e., we assume that D does not satisfy the continuity
theorem of type C. Thus there exist a polydisk A centered at a point P in C" and
a set E1 U E2 defined by (4.11) in A such that E1 U E2 C D but A ¢ D. We fix a

3Any function of one complex varable z may be considered as a function of two complex
variables z and w which is independent of w. Thus, it is natural to consider any domain D in
the complex plane C: as a domain D x Cv, in C2 = C. x C,,. Since D x Cu. is proved to be a
pseudoconvex domain of type C in C2, the case n = 1 need not be treated as an exceptional case.
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point z' = (z..... z;,) in A \ D through this proof. Again for simplicity we may
assume that P is the origin z = 0 in C", so that

A . Iz1I < r., (j = 1... .n).
E1 Izjl < r., (j = 1,.. n - 1). Iz"I < r,,.
E2 . {zjI .n-1),

Thus the point z' E A \ D satisfies

rj <_ I ; I < r , for some j = 1,....n - 1, Iz;,I <

For simplicity we assume that r,-1 < Iz;,-I I < We fix c > 0 sufficiently large
so that

c
2()2+r-2 < + (4.12)

We then consider the following automorphism T of C;, C" \ (z, _ 1 = 01:

T : wj=z,(j=l..... n; j # n - 1 ) . u = .

We let G and S denote the sections of the image T(AnDnC,',) and T(AnODnC;,)
over wj = z,' (j = 1..... n - 2). These sets are subsets of C2 in the variables w -I
and wn. We set

rk1 := max { Iwn- 112 + Iw,12 I (wn_ I? IV,) E S} < x

and take a point (wn_I.w°,) E (9S such that Iw"_III + Then Q
(zI, ... , z;,_2. wn 1, w°,) E a7 (A n D n C;,). We see from (4.12) that, if we take
p > 0 sufficiently small and define the set 0p in C2 by

p Iw, l2 > vb. Iwn_I - W 1 1 + Iw - p2
then 3p is contained in G. Consequently, the set

B : wj=z' (j=l,....n-2).
is contained in T(AnDnC,1) , so that T(AnDnC'") does not satisfy the continuity
theorem of type B at the boundary point Q. This contradicts our assumption.

3. Pseudoconvex Domains of Type C are of Type A.

PROOF. Let D be a pseudoconvex domain in C" of type C. Let P = (a1....
an) be a point in OD; we prove that D satisfies the continuity theorem of type A
at P. Suppose not. Then we can find a set

La : zj=aj(j=1....,n-1), 0<Iz,,-a"I<r
contained in D and a number r' with 0 < r' < r such that, for any given 0 < p « 1.
we can find a point (zi,... ,z;,-1) E C"-I with Izi - ajI < p (j = 1,... n - 1)
such that

L-,, : z, =zj' (j= 1.....n-1). Iz" - a,I < r'
is contained in D.

On the other hand. since { (a, , .... 1, z,,) l I z,, - a, ,l = -r'} cc D, we can
find p > 0 sufficiently small so that the subset

u : Izj-ail <p(J=1,...,n-1), Iz"- anl=r
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of C" is contained in D. Fixing this p > 0. we can find a point (z' . z,, ) E C" -1
with z - a., j < p n -1) and with the property that L.' C D. Since L.
and a are compact in D. our assumption that D satisfies the continuity theorem of
type C implies that the polydisk 0 centered at P defined by

1z, -a.1<p(j=1.....n-1). Iz"-ar,j<r'

is contained in D. which contradicts P E OD.

Using these three equivalent conditions, we call a domain in C" of type A. B.
or C a pseudoconvex domain. Theorem 4.1 (Hartogs) states that any domain
of holomorphy is a pseudoconvex domain.

As with the definition of a domain of holomorphy in 1.5.2. we can define a
domain of meromorphy: if a domain D in C" admits at least one merornorphic
function f (z) which cannot extend meromorphically across any point of OD, then
D is called a domain of meromorphy. Theorem 4.2 (Levi) states that any domain
of meromorphy is a pseudoconvex domain.

Let F be a family of holomorphic functions in D C C". The set D' consisting of
all points z in D such that F is normal in a neighborhood of z is called the domain
of normality of F. Theorem 4.3 (Julia) states that. if I) is a pseudoconvex domain,
so is D'.4

Let D C C" and let { f j },=1.2.. be a sequence of holomorphic functions in D.
The set D' of points z in D such that if.,)) converges uniformly in a neighborhood
of z is called a domain of uniform convergence of { fj} f. Clearly such a domain
D' satisfies the continuity theorem of type C. Therefore. if D is a pseudoconvex
domain, so is D'.

4.1.4. Properties of Pseudoconvex Domains. We list some elementary
properties of pseudoconvex domains which follow from the definition.

1. If D1 and D2 are pseudoconvex domains in C", then D1 n D2 is a pseudo-
convex domain.

2. Let I = {t} be any index set and let D, (t E 1) be a family of pseudoconvex
domains. Then the interior of n,E, D, is a pseudoconvex domain.

3. Let Dj (j = 1.2....) be a sequence of pseudoconvex domains in C" such
that D, C D,,+1. Then Do := U' l D, is a pseudoconvex domain.

4. Let D be a pseudoconvex domain in C" and let L be any r-dimensional
(0 < r < n.) complex hyperplane. Then each connected component of D n L is a
pseudoconvex domain in C' = L.

5. (Invariance under holomorphic mappings) Let T be a biholomorphic map-
ping from a domain D in C" onto a domain D' in C". Then D is pseudoconvex if
and only if D' is pseudoconvex.

'In Oka (43) the definition of a normal family of analytic hypersurfaces in a domain in C"
was given, and it was proved that the domain of normality of such a family in a pseudoconrex
domain is also a pseudoconvex domain. This study was developed in his last paper (541.
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4.2. Pseudoconvex Domains with Smooth Boundary

4.2.1. Levi Problem. E. E. Levi [35]5 was the first to pose the problem of
determining whether a pseudoconvex domain is necessarily a domain of holomorphy.
He restricted his study of this problem to the consideration of a neighborhood of
a boundary point of a domain in C2 with smooth boundary. In this section we
extend his results to C".

In C" with variables z1, ... , z we let z. = x +iy, (j = 1,... , n). Let D C C"
be a domain and let p E 8D. If there exists a C2 function y'(z) in a neighborhood
6 of p such that

6 n D = {z E 6 I P(z) < 0},
6n8D = {zE6IyP(z)=0},

and Dip :_ (8io/8z1, ... , 8v/8zn) 0 0 on 6 n 8D, then we say that D has smooth
boundary at p. We call V(z) a defining function for 6 n D at p.

We have the following proposition.

PROPOSITION 4.1. Let D C C" and let p E OD. Assume that D has smooth
boundary at p. Then:

1. If D is pseudoconvex at p, then there does not exist a nonsingular, one-
dimensional analytic curve C in a neighborhood 6 of p such that C contains
p and C\ {p} C D.

2. If there exists an (n - 1)-dimensional analytic hypersurface S in a neighbor-
hood 6 of p such that S contains p and S C 6 \ D, then D is pseudoconvex
at p.

PROOF. Let D C C" be a pseudoconvex domain and let p E 8D. We prove 1
by contradiction; i.e., we assume that there exists a nonsingular analytic curve C in
a neighborhood 6 of p such that p E C and C\ {p} C D. By shrinking 6, if necessary,
we can find a one-to-one holomorphic mapping T from 6 onto a neighborhood 61 of
the origin z = 0 in C" such that T(p) = 0 and CO := T(C) _ {z E 6° I z, = 0, j =
1, ... , n -1}. We set (p° := rp oT-I in 6°. By hypothesis, e (0.... , 0, z") attains a
local maximum at z" = 0; thus it follows that &°/8z" = 0 at z = 0. Since Dip # 0
on 6 n 8D, we may assume that 8W°/8y1 0 0 at z = 0. so that v° := T(D n 6) can
be written in the form

v° _ {z E 6° I y1 < t;(x1, 22,... , Zn)},

where f is a C2 function defined in a neighborhood 6' C R2n-1 of the point
(x1, z2,... , z") = (0, 0,... , 0). From the assumption that C° \ {0} C v°, we can
find r > 0 sufficiently small so that the set

z, =0 (j=1,...,n-1), 0<Iz"I<r
is contained in v°. Hence

0 < ( 0 . . . . . 0 , z ) , 0 < Iznl < r.

It follows that for any e > 0, all points of the form

(-ie,0,...,0,z")EC"
with Iz"I < r lie in v°. This contradicts the assumption that D is pseudoconvex of
type A at z = 0, and 1 is proved.

5E. E. Levi died in 1917 at the age of 34.
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To prove 2, let D C C" and p E OD. Suppose that we can find an analytic
hypersurface S in a neighborhood 6 of p such that p E S C 6 \ D. We show that
D satisfies the continuity theorem of type A at p. For simplicity we take p = 0.
Assume that the set

Lo : zj=0 (j=1... ,n-1). 0<IznI<r
is contained in v := 6 n D. Fix r' with 0 < r' < r. We then take p > 0 and
0 < e < r' such that

I": Izjj<p(j=l,...,n-1), r'-a<IznI<r'+e
is contained in v. Since S is an analytic hypersurface in the polydisk

A: Izjl<p(j=1.....n-1). Iznl<r'+e
with 0 E S and s n 1" = 0, it follows from Remark 2.3 that for any z' (j =
1.....n-1)with lzzl<p.we have

Sn{(z',... ,z,'-1,zn):Iznl <r'-e} 340.

Since S C 6 \ D, we see that D satisfies the continuity theorem of type A at p, and
2 is proved. 0

REMARK 4.1. Let D C C" be a domain and let p E 8D. In the proof of 2. the
condition that aD is smooth at p was not used. Thus we have the following result.
Let D C C' be a domain. If for each p E OD there exists an analytic hypersurface
S in a neighborhood b of p which contains p and lies entirely outside of D, i.e.,
S C 6 \ D, then D is a pseudoconvex domain.

We now write down the conditions at p described in Proposition 4.1 in terms
of a defining function p(z) of 6 n D at p. For simplicity, we take p = 0 and write
,p(z) = Z",'x] , . , z" ) Since p(z) is of class C2. we consider the following
expansion at z = 0:

p(z) = 232
8z

(0)zj +232 80
k(0)zjzk (4.13)

j=1 ' j<k zjO

n 2

+ O82 (0)zjzk+o(IIz(I2).
j.k=1

where IIz1I2 = E;_1 Iz212, 32(a) is the real part of the complex number a, and
limr._o o(r2)/r2 = 0.

We have the following proposition.

PROPOSITION 4.2. Let D C C" and let p E 8D. Assume that D has smooth
boundary at p. Let cp(z) be a defining function of 6 n D at p, where S is a neigh-
borhood of p.

1. If D is pseudoconvex at p, then for any a = (a,.... . an) E C" satisfying

as (p)aj = 0, (4.14)
j=1
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we have

a2V
(p)aJ6k. > O. (4.15)

aZ azk.k= )

2. If we have. for any a 34 0 satisfying (4.14)

(p)a)ak > 0. (4.16)a_ k.k=1

then D is pseudoconvex at p.

By a simple calculation we see that conditions 1 and 2 depend on neither the
choice of defining function y: nor on a biholomorphic transformation of a neighbor-
hood of p. Equation (4.14) states that a belongs to the complex tangent space
of OD at p.

PaooF. For simplicity we take p = 0. To prove 1. we assume that D is pseu-
doconvex at 0. If assertion I is not true, then there exists an a = (a1..... a,,) 96 0
which satisfies (4.14) and

n dl ,
A w (0)0,ak < 0.

az a5k

Given b = (b1..... b,j (which will be determined later), we consider the analytic
curve C in C" passing through 0 defined by

C : 2)=apt+bjt2 (j=l,...,rt). t E C.

From (4.13), for z = to + t2b with t sufficiently small, we have

,p(z) = 2 { (> ( 0 ) b 3
+ E iJ ar (O)a,ak t2

j=I ) ,<k

+
a-'w

(0)ajak It1'=+o(1t12).
j.k=I

&-jMk

Since Q;(0) 0. we can choose b to make the coefficient of t2 on the right-hand
side vanish. Then we have

,p(ta+t2b) = AI t I2 +o(1 t I2) < 0. 0 < Itl << 1.

Thus we can find a neighborhood b of 0 in C" such that (C n 5) \ {0} C D. This
contradicts 1 of Proposition 4.1. and assertion I is proved.

To prove 2. we apply 2 of Proposition 4.1. We consider the following algebraic
hypersurface of degree 2:

aY 192 :
S. a (0)z) + a aZk (0)-)tik = 0.

j=l J jCk 7

which contains 0. It suffices to show that there exists a neighborhood b of 0 such
that S n 6 C 6 \ D. To prove this we consider the complex tangent space L of OD
at 0 defined by

j=l )
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By assumption there exist a neighborhood 61 of 0 in C" and e > 0 such that

(0)Z,zk > cIIZII2, z EL n 61.
j.k=1

For each z' E S. we consider the nearest point Z = Z(z) to z' on L; then z' _
Z + c(z'), where c(z') = o(IIz'II) at z' = 0. It follows that

V(z') _ E aa1 (0)zjzk +o(l1zh111)
J

> CI 2112 + O(11Z112)

We can thus find a neighborhood 6 C 61 of 0 in C" such that o(:') > 0 on 6 n s
except for z' = 0. and assertion 2 is proved. 0

REMARK 4.2. The proof of assertion 2 implies the following fact: Let D C
C" be a domain with smooth boundary at p E aD. Assume that for any a =
(at.... ,a,,) 0 0 satisfying (4.14). we have (4.16). By continuity there exists a
neighborhood 6 of p such that for each q E 6 n (OD) there exists an analytic
hypersurface Sq which passes through q and lies completely outside of D. i.e.,
Sq \ {q} C 6 \ D. Furthermore, we can assume that 6 is a ball centered at p and
that Sq is an analytic hypersurface in 6. It follows that D n 6 is a domain of
holomorphy; i.e., D is locally a domain of holomorphy at p.

The conditions in Proposition 4.2 are called Levi's conditions. We note that
Levi's condition is not linear. In C2 with variables z and w, the vector a = (at. a2)
in (4.14) is uniquely determined (up to multiplicative constants) by the equation

atr(p)+a3 -(p)=0.

Therefore, if we set

0 ay;/a.- ap/aw
L(;a) = a /az

a

a2 a a
a .az aw 8 f' &I

then 1 and 2 of Proposition 4.2 may be restated as follows:
1. If D is pseudoconvex at p, then L(ep) > 0 at p.
2. If L(y;) > 0 at p, then D is pseudoconvex at p.

2

Originally, E. E. Levi wrote down the operator L( .) using the coordinates
xt, x2. yt. Y2. Where z = xl + ix2. w = Y1 + 42, via:

apap LP aw (a2 a2 l-2 kaxt
ayt + 8z2 8y2 ) 8xt8y1 + 8x2ay2

'9V
ap a

02"; 02 IF-2 Ca
a.,
xt aye axe eyt) artay2 ax2ayl)
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We call L(cp) the Levi form of cp(z. w). We note that whether L(P) is positive,
negative or 0 at p E 8D does not depend on the choice of defining function p nor
on a biholomorphic mapping of a neighborhood of p.

4.2.2. Levi Flat Surfaces. Let D C C" be a domain and let p be a real-
valued C2 function in D. We set E := {z E D p(z) = 0}. We assume that V<p # 0
at any point of E. so that E is a real (2n - 1)-dimensional smooth hypersurface in
D. If both of the domains {p(z) < 0} and {V(z) > 0) are pseudoconvex at each
point of E. then the hypersurface E is called Levi flat. E. E. Levi (351 was the
first one who studied such hypersurfaces in C2. In this section, we follow the ideas
of E. Cartan (61 and study Levi flat hypersurfaces in the case where ,0(z) is real
analytic in D C C" (n > 2).'

Let D be a domain in C" with variables z) = xJ + iy, (j = 1,... , n). Let p
be a real-valued real analytic function in D; to be precise, we write

,P(z, 2) :_ ?(21..... Zn. Z1.... ,. in).

We set E :_ {z E D I ,;(z, -T) = 0}1 D+ :_ {z E D I y. < 0} and D- :_ {z E
D I V > 0}. We assume that V 34 0 at all points of E.

Then we have the following lemma.

LEMMA 4.3. Let z° E E. Then we have:
1. Assume that there exists an analytic hypersurface S in a neighborhood of z0

such that z0 E S C E. Then S is unique and is given by the equation

P(z,TV) = 0
in a neighborhood of z0.

2. Assume that 09/8z" # 0 at z0. If both D+ and D- are pseudoconvex at z0.
then, at zo.

-o a2 p 8;' e;, a2 y^ ay 8y
Ljk(zU, z ) 8Zj6Zk 8nz 8zn 8z,8z 8z 8Zk

(4.17)

a2
"o aw 0.'7 a2`r2 ap a

8zn8zk 8zn 8zn azn8zn 82) azk =
0 (J. k = 1.... , n - 1).

PROOF. We use the following elementary fact about real-analytic functions
based on the Taylor expansion: Let h(z,T) be a real analytic function in a neigh-
borhood b of a point a in C" (n > 1). If h(z,T) = 0 for z E b, then h(z,w) = 0
for (z, w) E d x b. In particular, h(z, i1) = 0 for z E 6. Equivalently, if f (z, w) is
holomorphic in 6 x d in C2n with f (z, z) = 0 for z E J in C". then f (z. w) _- 0 in
bxb.

For the proof of 1. let zo = (z°..... z,,) E E and let S be an analytic hyper-
surface in a neighborhood b centered at z° such that zo E S C E. We may assume
that 8w/8zn 76 0 at any z E S. and that S can be described by

S : Zn = VZ1... Zn_1),

where is a holomorphic function in a neighborhood ¢ of (z°..... z°_1) in C"-1
Since S C E, we have

irlZl... . Zn_1.S(21... . zn_0... . Zn_1.F,(zl... . Zn_1)) = 0

6The description of Levi flat hypersurfaces in the case where ;p(z) is of class C2 may be
found, e.g., in the textbook by V. S. Vladimirov (76].
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for any (zi,... ,zn_I) E ¢. It follows from the fact stated above that- -0 0 0Azl,... Zn-ItVZI,... ,zn-1),Z1,... 0

for any (z1,... ,zn_I) E ¢. Since z,, = s;(z°.... zn_1). this impies that S coincides
with the analytic hypersurface given by the equation -p(z, z°) = 0 in a neighborhood
of z° in C". Thus 1 is proved.

To prove 2, assume that D+ and D- are pseudoconvex at z° E E and that
acp/8zn 0 0 at z°. Given any a' = (a,,....an_I) E Cn-1, we set

n- `apapan ;_ -: [i]
z

a;.
n

Then a := (a', an) satisfies (4.14) at z°. Since D+ and D- are pseudoconvex at z°,
it follows from 1 of Proposition 4.2 that

" 2

ciY(a, z°) E as ilk (z°)ajak = 0.
j.k=1

We substitute an given above into this equation and obtain
2 n-I

- l a (z°, Z , L;k(z°, z )a;ak = 0.
J.-

Since a' is an arbitrary point in C"-1. w e have L;k(z°, z) = 0 (j, k = 1, ... , n -1).
Thus 2 is proved.

Let z° E E. If there is a holomorphic mapping T defined in a neighborhood 6
of z0 mapping onto a neighborhood b° of w = 0 in Cn with

T(bnE)={wEb° I N wn =0},
then E is called a hypersurface of planar type at z°.

We make the following remark.

REMARK 4.3. Let E : ,(z, t) = 0 be a real (2n - 1)-dimensional real-analytic
hypersurface in a neighborhood 6 of a point z0 in C" with VV(z0) 96 0. Assume
that for any fixed C E E, there exists a complex-analytic hypersurface S, in 6 such
that S E SC C E. Then E is a hypersurface of planar type at z°.

PROOF. We may assume that z° = 0 and ao/azn(0) 94 0. We set

e = E n (0.... , O. C=j.

which is a real 1-dimensional real-anal)tic nonsingular curve in the complex plane
C=,,. There exists a conformal mapping wn = h(z") from a neighborhood bn
of z, = 0 onto a neighborhood bn of wn = 0 such that e n bn gets mapped to
{3t wn = 0} n bn. Thus we may assume from the beginning that a is given by
{Nzn = 0} in bn. Fix a point iy,, E R. By hypothesis there exists an analytic
hypersurface S, I,,, in a neighborhood of z = 0 such that (0,... , O, i yn) E S; I,,, C E.
By 1 of Lemma 4.3 we have

Si Y. ' P(Zl,... ,zn,0,... ,0,tUn) =0. (4.18)

We solve the equation c (zl, ... , zn. 0.... , 0, wn) = 0 for wn; i.e.,

W. = TJ(Zi, ... , Zn ),
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where 77 is a holomorphic function in a neighborhood of z = 0 in C". We note from
(4.18) that i 1h y, = 1 yn. We then consider the analytic transformation

T: iv,=z. (i=1,.. n-1).
a neighborhood of z = 0 onto a neighborhood of it., = 0. Note that, for each

fixed yn in 1. is a domain in the (n - 1)-dimensional plane C"-' x {iyn}
which contains (0, yy ). It follows that T(E) C {9?w = 0}, so that E is of planar
type at the origin 0. 0

We shall prove the following theorem.

THEOREM 4.4. Let E be a real (2n - 1)-dimensional real analytic smooth hy-
persurface in D C C". Then E is Levi flat if and only if E is of planar type at each
point of E.

PROOF. Assume that E is of planar type at each point of E. Fix z1J E E. Then
we can find an (n - 1)-dimensional analytic hypersurface S in a neighborhood of
z° in C" such that zo E S C E; indeed, after applying a holomorphic change of
coordinates, we can take S = {wn = 0). It follows from 2 of Proposition 4.1 that
both D+ and D- are pseudoconvex at z0. Thus E is Levi flat in D.

To prove the converse, we assume that E is Levi flat in D. Fix zo E E. Since
the result is local, we can assume that zo = 0 and that p(z. is convergent in a
polydisk A x A centered at (0, 0) in C2", and that O p/8zn -A 0 in A x A. Since
yo(z.3) is real-valued, we note that

:(z,w) = Xw,z). (4.19)

For a fixed ( E A, we consider the analytic hypersurface in A defined by

S, := {zEAIV(z,O=0}.
We can write this hypersurface as

S( : Zn =Wz1.... ,Z.-1.() (4.20)

where (n is a holomorphic function of (z1.... , z _ 1) in a neighborhood A' of 0
in C"-1. We want to construct a biholomorphic mapping S : u. = S(z) from a
neighborhood 6' C A of z = 0 in C" onto a neighborhood 6" of w = 0 in C" such
that, for each fixed ( E 6'. we have

S(S() = {w = (w1,... wn) E 6" 1 w'., = c(()}. (4.21)

where c(() is a constant. For this purpose, we prove the following.
First claim: There exists a completely integrable system of partial differential

equations in A.
8zn

(4.22)
8zj

such that each function zn = Zn-1, (), E A. satisfies (4.22). In partic-
ular, F3(z1,... ,zn) does not depend on Z E A.

Indeed, set z' := (z1.....zn-1) ( = z = (21 ... Zn) _
and ( = ((1,....(n) = (S,("). Since 0 in A'

{z'ECn-1'(z',zn)EA},weehave. forj=1......n-1,

(a (4.23)
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Fix E A' and consider Sn as a parameter in o(z. (n) = 0 for z E A. We solve
this equation f o r Z. and write hn(z. S ). so that

(p(z,C 0, (z. Z') E A x A. (4.24)

From (4.23) we see that zn = 1;,,(z'.Z) satisfies the following system of partial
differential equations:

8z
az -

az
/ 8z

n-1). (4.25)

To prove the first claim, it suffices to show that

(1) F , (z, 4) (j = 1, ... , n - 1) does not depend on C' E A'; and
(2) the system (4.25) is completely integrable;
To prove (1), it suffices to show that

=0 (j.k= 1,....n-1)

From (4.24) we have

` a,p

1i}
rn(z.y) a- /

n

(2.Zr.hri('z,1
))

inAxA'.

(j=1,....n-1).
Using these equations, we compute that

8Fj
) =

1

aCk
(z

(Qi )2(
)2

1

r a2 ate aye a2 y: ay: aye
St OZ,ai, aZn OZk OZjOTk OZ,, On

a2 app ay _ a2,p aw a
+ aznazk OZj aZn aZna'zn OZ, aZk

Gjk.

where the right-hand side is evaluated at (z, z) = (z, , hn(z, '()). Since E is Levi
flat, it follows from 1 of Proposition 4.2 that Ljk(z,'z) = 0 on E; hence

Ljk(z.z) =Ajk(z,z) ,p(z.z), z E A.

where Ajk(z,z) is real analytic for z E A. Since both sides of the above equation
are real analytic in A, it follows that

Ljk(z,w) = Ajk(z,w) ,p(z,w). (z, w) E A x A.

Observing that L,k(z,z) = Ljk(z,z) in A x A, we see from (4.24) that for any

Gjk(z, S , hn(z, Z )) = Ajk(zX,hn(z,C ))' p(z,C ,hn(z.Z )) = 0.

It follows that (8Fj/ak)(z.(') = 0 on A x A', which proves (1).
To prove (2), it suffices to show that

aFj+aFjFk_aFk+-FkF,
8zk azn 8zj az (j.k=1,...,n-1)
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for (z, Z) E A x A'. This can be verified by direct calculation, using the explicit
form of F, and Fx in (4.25) and the following equalities from (4.24):

azn8Z (l=1.....n-1).
> > ("

This proves (2) and thus the first claim.

Second claim: Assertion (4.21) holds.
If necessary, we may take a smaller polydisk A centered at z = 0 in C", so

that the solutions of the system of differential equations (4.22) give a foliation of
complex (n - 1)-dimensional analytic hypersurfaces

Sc: G(z1,....z,,) =c, cE bl,

where 51 is a neighborhood of the origin 0 in the complex plane C. We consider
the analytic mapping S from a neighborhood of z = 0 in Cz onto a neighborhood
of w = 0 in C' defined by

S: wi=zi (j=1....,n-1), wn=G(zl,. z,,).

From the first claim it follows that each analytic hypersurface Sc, C E A. defined
by (4.20) is mapped to a complex hy-perplane of the form w" = c(Z) =cont. in a
neighborhood of w = 0 in Cu.. Thus, the second step is proved.

Finally we shall show that E is of planar type. Since all arguments are invariant
under analytic mappings of a neighborhood of the origin, we may assume from the
beginning that for each ( E A, the analytic hypersurface Sc 0 can be
written in the form z" _ c(l;). Therefore,

4?(z. (zn - c(Z)) H(z,

where H(z, 96 0 in a neighborhood of (0, 0) in Ctn. Formula (4.19) implies that
c(Z) is independent of i.e.. c(S"). Thus Sc : p(z.() = 0 is of
the form z,, = c(Zn). In particular, E : p(z. T) = 0 is of the form z,, c(!;), and
hence z". It follows that E _ {z E A I yn = 01. where zn = X + iy,,.
Consequently, E is of planar type, and Theorem 4.4 is completely proved.

We see from the above theorem that if E := {z E D I ;o(z) = 0} is Levi-Rat in
a domain D, then both domains D' and D- are locally domains of holomorphy at
each point z of E.

4.3. Boundary Problem

The Levi conditions for C2 functions (z) look very similar to the condition
of plurisubharmonicity of W(z). Plurisubharmonic functions are considered today
as the natural extension to several complex variables of subharmonic functions in
one complex variable. However, plurisubharmonic functions were first introduced
by K. Oka [49] to investigate pseudoconvex domains.7 He wanted to find a linear
condition on W(z) which would imply the (nonlinear) Levi conditions on :o(z). The
reason he wanted to do this is the following: an arbitrary pseudoconvex domain
can have a non-smooth and complicated boundary; to approximate such a domain

In his paper Oka called pluriaubharmonic functions pseudoconvez functions. The name
plurisubharmonic functions was given by P. Lelong. In Part II in this book the author will use
the terminology "pseudoconvex functions" in the setting of analytic spaces.
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by pseudoconvex domains with smooth boundary. one could begin with the non-
smooth function ;p(z) = -log dD(z) (see section 4.3.2) and take integral averages
to get smoother approximations. A linear condition on W(z) will be preserved
under this averaging process. In this section we study the relationship between
plurisubharmonic functions and pseudoconvex domains.

4.3.1. Strictly Pseudoconvex Domains and Strictly Plurisubharmonic
Functions. Let D be a domain in C" and let p E OD. Let 6 be an open neigh-
borhood of p in C" and let I = [0,1) be a closed interval in the real axis of the
complex t-plane Cc. Let f (z, t) be a holomorphic function of (z, t) on 6 x I. This
means there exists a neighborhood G of I in Ct such that f (z. t) is holomorphic in
5 x G. We set

at :={zE6I f(z,t)=0} (tEI),
so that {at}tEl is a family of analytic hypersurfaces in 6. If satisfies the
conditions

1. pEaoand ao\{p}C5\D.
2. a1Cd\Dforeach0<t<1,

then we call {at}tEi a family of analytic hypersurfaces touching p from the
complement of D.

If a boundary point p of D admits such a family of analytic hypersurfaces,
we say that D is strictly pseudoconvex at p. Furthermore, if D is strictly
pseudoconvex at each boundary point of D, then we say that D is a strictly
pseudoconvex domain.

We see from 2 of Proposition 4.1 that if D is strictly pseudoconvex at a point
p E 8D, then D is pseudoconvex at p.

REMARK 4.4. Assume that D is strictly pseudoconvex at a point p E D.
Given a neighborhood 5' C 6 of p, we can choose e > 0 sufficiently small so that

(1),3:={zESnDIJf(z,0)I<e}CC6';and
(2) each branch of log f (z, 0) is single-valued on 3.

For (1) is clear from condition 1 on {atltEJ. To prove (2). let ry be a 1-cycle
in fl. If e > 0 is sufficiently small, we can find a ball B such that 6 C B C 6' by
1. andBn{z Ed) f(z,1)=0}=0 by 2. Hence, f;darg f(z,1)=0. Since
f (z, t) 96 0 on ry for all t E I, it follows from the continuity of f (z, t) on ry x I that
f d arg f (z, 0) = 0, and (2) is verified.

REMARK 4.5. Let D = {(z,w) E C2 I I wi < I z I }. Then D is a pseudoconvex
domain whose boundary 8D contains the origin 0. The complex line L : z = 0 in
C2 passes through 0, and L\{0} C C2 \Z). However, D is not strictly pseudoconvex
at 0.

set

Let 0(z) be plurisubharmonic in a domain D C C". For a real number c. we

De:={zEDIm(z)<c}.
If D., 0 0, then D.. is pseudoconvex at each point of 8D,, in D. This follows from the
definitions of plurisubharmonicity and of pseudoconvexity of type C. In addition,
we have the following result.
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PROPOSITION 4.3. Let 6(z) be a C2 function in a domain D C C". If 0(z) is
strictly plurisubharmonic at a point z° in D, then, setting c = 0(z°). we have that
D, is strictly pseudoconvex at z°.

PROOF. We may assume z° = 0 and c = 0(z°) = 0. Since 0(z) is of class C2
at 0, we can write

n¢(z) = 2R az!(0)z'+`a0azk(0)zjzx
j<k

n

+ as (o)zjzk+o(II=II2)
j.k=1 '

near z = 0. Since 0(z) is strictly plurisubharmonic at 0. we can find a neighborhood
6 of 0 in D such that

j.k -1 8z,8

For each 0 < t < 1, we define

(0)zjzk > o(II Z II) In 0 \ J.

St := zEB I EaQ(0)z,+Ea a
k(0) Z'

zk =t
j=1 j<k

Then So n Do = {0}, and St n D° = 0 for 0 < t < 1. Thus. {SI}i is a family of
analytic hypersurfaces touching 0 E 0Do from the complement of Do. Hence. Do
is strictly pseudoconvex at 0.

Note that in the proof we did not require Vo(z°) # 0.

4.3.2. Boundary Distance Function on a Pseudoconvex Domain. One
of the most significant properties of a pseudoconvex domain in C" can be described
in terms of the boundary distance function. Given a domain D in C" and a point
z E D, recall from section 1.1.5 that

dn(z):=inf{IIz-t;II I CEOD },

the boundary distance function on D. This is a continuous, positive-valued function
on D satisfying lim2,en dn(z) = 0.

We have the following theorem.

THEOREM 4.5. If D is a pseudoconvex domain in C". then - log dD(z) is a
continuous plurisubharmonic function on D.

To prove this theorem, we begin with three lemmas.

LEMMA 4.4. Let D be a domain in the complex z-plane C2. Then -- log do(z)
is a continuous subharmonic function on D.

PROOF. If D = C2, then -log dn(z) _- -oc. Thus we assume D 96 C2. It is
clear that - log dD(z) is continuous at points z where it is finite-valued. i.e., on D.
Fix ( E W. Then z -+ - log Iz - (I is a harmonic function on D. Therefore,

-logdo(z)=sup{-1ogIz-(I (EaD}, zED
is a subharmonic function on D.
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Let D be a domain in the complex z-plane C; and let 9 be a subdomain in the
product space D x C C C2. Givens E D. we set

Q(z) := {w E C. I (z, w) E 9},

the section of G over z. We assume D x {0} C 9. i.e.. 0 E Q(z) for each z E D. We
let Rg(z) > 0 denote the boundary distance from w = 0 to dQQ(z),

R.c(z) = inf{Iw -.I I E arr(z)},

and we call this the Hartogs radius of 9 for z E D.
We have the following lemma.

LEMMA 4.5. Let C9 be a domain in D x C,,. C C2, where D is a domain in C.
with D x {0} C 9. If 9 is a pseudoconvex domain in C2, then - log RC(z) is a
subharmonic function on D.

PROOF. For simplicity we write R(z) = Rg(z) and o(z) _ -log RV(z) for
z E D. Since c is an open set in C2. o(z) is uppersemicontinuous on D. It
suffices to verify the subaveraging property. We proceed by contradiction: suppose
there exist a point a E D and a positive radius p so that o does not satisfy the
subaveraging property on 3:= {z : Iz - al < p} C D. i.e..

2x

(a + peie) d0.p(a) > 2'rI o

Since o(z) is uppersemicontinuous on 86 = {Iz -al = p}. we can find a real analytic
function u(z) such that

u(a + peie) > o(a + pe'e), 0 < 0 < 2a,

p(a) > 1
21r u(a +

pe'e) d9.
0

By the Poisson formula we construct the harmonic function h(z) on 6 with h(z) _
u(z) on N. Then p(a) > h(a). We take a harmonic conjugate k(z) of h(z) so that
(z) h(z) + ik(z) is holomorphic on J. We then consider the automorphism

T : z=z. w'=eEt`1w

of the product domain fl = 6 x C,,., and set g* := T(ft (1 g). Then f2 n G and
9' are pseudoconvex domains in C2 and 5 x {w' = 0} C g'. The Hartogs radius
R' (z) about w' = 0 for z E 6 is equal to

R'(z) = e' R(z).

From the relations between u(z) and d(z). we have

R'(a) < 1 < R'(a + peie). 0 <- 9 < 27r.

Thus we can find a point w'0 E 09'(a) with Iw'0I = R'(a) < 1. while {Iw'I <
11 CC 4'(a + peie) for 0 < 0 < 21r. Since R'(z) > 0 on {Iz - al < p} (for
D x {0} C G), g* does not satisfy the continuity theorem of type C. contradicting
the pseudoconvexity of Q'.

Let D C C" be a domain and let z' = (zi,... ,z;,) E D. We let D(z1) C C.._
denote the section of D over the complex line zj = z' (j = 1,... , n - 1) in C".
i.e..

D(z') = {z E C, I Z,_1.z") E D}.
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We let R"(z') denote the boundary distance from z,, to OD(z') in C. Then IZ,,(z)
is a positive-valued function on D, which we call the Hartogs radius of D with
respect to z".

We have the following lemma.

LEMMA 4.6. Let D be a pseudoconvex domain in C" and let 1 (z) be the
Hartogs radius of D with respect to z". Then - log R,, (z) is a plurisubharmonic
function on D.

PROOF. Since D is an open set in C", -log R (z) is uppersemicontinuous on
D. Thus we must show that the restriction of - log R"(z) to any complex line L
in D is subharmonic. Let a = (a1.... ,a") E D and fix a complex line L passing
through a. If L is of the form zj = aj (j = 1.... ,n - 1), then from Lemma 4.4
it follows that the restriction of - log R" (z) to L is subharmonic. Thus we may
assume that L is of the form

L: zJ =Li(zl) =cc(z1 -al)+a., (j =2.....n),
where c, # 0 for some j = 2,... , n. Fix a disk b :_ { Iz1 - a1 I < p} in C, such
that (b x C"-I) nL c D. We show that s(z1) :_ -log dD(z1,L2(zl),...
is subharmonic for zl E 6.

For each zl E 6 we consider the subset of CZ given by

Dn(zl) :_ {z,, E Cz,. I (z1,L2(21),... E D}.

Let
G :_ E Ci2 I z1 E b. Z E D"(z1) }.

Then G = D n (L' X where L' denotes the projection of L onto Czj; thus G
is a pseudoconvex domain in C2. We consider the automorphism

T : z1 = zl, w = z - al) - a,,

of 6 x C,, and set 4 := T(G). Then 9 is a pseudoconvex domain in C.y x C,,, with
b x {0} C 9. Since Rc(zl) = dD(z1iL2(z1),... ,L"(z1)) for z1 E 6, it follows from
Lemma 4.5 that s(z1) is subharmonic on 6. D

PROOF OF THEOREM 4.5. Letting z = (z1, ... , z") denote the usual coordi-
nates in C", we fix a unitary matrix U and form the coordinate transformation
z' := (z ... , z;,) = (z1.... , z,,) - U of C". Consider the Hartogs function RU(z)
of D with respect to z;,. We have

- log dD(z) = sup{- log Rn (z')}.
U

where the supremum is taken over all unitary matrices U. From Lemma 4.6 we con-
clude that - log Rn (z') is a plurisubharmonic function on D for each such U; since
- log dD(z) is continuous in D we conclude that - log do(z) is a plurisubharmonic
function on D. 0

4.3.3. Approximating the Boundary. The boundary of an arbitrary pseu-
doconvex domain D may be rather complicated, and thus we would like to be able
to approximate D from inside by pseudoconvex domains with simpler boundaries.
Indeed, this procedure is indispensable in order to verify that any pseudoconvex
domain is a domain of holomorphy (which will be discussed in Chapter 9).

We note that a pseudoconvex domain D in C" admits a continuous plurisub-
harmonic exhaustion function t(z). This means that for any real number a,
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D. :_ {z E D I t;(z) < a} CC D. To see this, in the case when D is bounded,
Theorem 4.5 implies that

t(z) := -log dD(z)
is a continuous plurisubharmonic exhaustion function for D. If D is unbounded,

t;(z) :_ -log do(z) + 11z112

satisfies this property (here, IIZ112 = Jz1 12 +... + 1z" I2).
Therefore any pseudoconvex domain D in C" can be approximated from inside

by an increasing sequence of relatively compact pseudoconvex domains {Da}, with
continuous boundaries. We present a method which modifies D. to a pseudoconvex
domain with smoother boundary.

Let D C C" be a domain (not necessarily pseudoconvex) and let 0(z) be a
plurisubharmonic function in D. If for each p E D we can find a neighborhood 6 of
p and a finite number of plurisubharmonic functions rpk(z) (k = 1.....l) of class
C2 in 8 such that

4(z) = Max {vk(z)} in b.

then we say that q(z) is a piecewise smooth plurisubharmonic function on D. In
addition, if each ok(z) is a strictly plurisubharmonic function on 6. we say that
0(z) is a piecewise smooth strictly plurisubharmonic function on D.

Let D be a domain in C". For c > 0 we let D` denote the set of all points z in
D such that the polydisk distance from z to 8D is greater than c.

Let f (z) be a locally (Lebesgue) integrable function on D. Given 0 < >7 < c,
we let 0.: ISj I < rl (j = 1, ... , n) be a poly disk in C". Then we can define, for
z E Dc. the average value of f,

A,,[f](Z):= Jf(zi+( I,...,Z.+(n)dvc,

where dv( is the volume element of C" at ( and V = (1rr12)".

LEMMA 4.7. If f(z) is a locally integrable function on D, then A,,[ f J(z) is a
continuous function on Dc. If f (z) is continuous (resp. of class C1). then A,,1 f J(z)
is of class C1 (reap. of class C2) in Dc.

The proof is standard. and is omitted.

LEMMA 4.8. Assume that f (z) is plurisubharmonic on D. Then:
1. A,,[ f ](z) is a continuous plurisubharmonic function on D2c.
2. A,,,[f](z) 5 A,,.[f](z) if 0 < 'rl1 < q2 < c and f(z) = li oA,,[fJ(z)

pointudse on D.
3. If f (z) is continuous on D, then f (z) _ l mA,I[ f ] (z) uniformly on each

compact set K C D.

PROOF. Since f (z) is plurisubharmonic on D, it is clear that f (z) is locally
integrable on D. Fix z' _ (zi.... , z,) E Dc and let

l:z,=alt+zj' (j=1,....n). tECe,
be a complex line in C" passing through z'. Fix e > 0 such that the restriction
1c of I for It) < e is contained in Dc. and consider the boundary of lE {z(8) _
(z,(8),... ,zn(8))}, where

zz(B)=ajee'e+z,' (j=1,...,n).
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Since f (z) is plurisubharmonic on D, we have
1 r2x
-J f(z+z(B))dO> f(z+z'), , z+z'ED`.
21r

"

Since A,[f](z) is continuous on DC. to verify assertion 1 it suffices to show that

m 1 f A1, Jf)(z(0))dO > A,[f](z'), z' E D2 .
2a -

We have
t

M =
1- f 1

J f(z(e) + ()dr, dB.
21r (, V J

Since f (z) is uppersemicontinuous on D. it is bounded above on any compact set
in D. Thus f(z(O) + O is bounded above on (9.O E (0.27r] x A q. and we can
interchange the order of integration to obtain

1
z,.

m Vf{ 27r
f (z(8) + ()d8} dt;

f f (z' + ()dv = An[ f ](z').

This proves 1.
To prove 2. we note that for any subharinonic function s(z) on a disk Iz-a] < p

in the complex plane C., we have, for 0 < pl < p2 < p.

1
2"

1
s(a) <

2a
f s(a + pieie)dO < 2-

f2m
s(a + p2eie)d0. (4.26)

U

Set (', := re(ej (j = I.... ,n). Using the change of variables r, = ?is, (0 < s, <
1; j = I.... , n). for any z' E D` and 0 <'l < c we obtain

A.,[f](=')
f(zi + i sIeLe,

zP +'rsneie..) s1 ... s dedS.7n J1,2t;^ x (1).1

where dEl = d91 ... dOn and dS = ds1 .. dsn. Together with (4.26). this implies the
first part of statement 2. The second part follows from the uppersemicontinuity of
f(z). Assertion 3 follows from 2 and Dini's theorem." 0

Thus, for any continuous plurisubharmonic function v(z) on D and for any
e > 0 and K CC D`, we can find a plurisubharnionic function o* (z) of class C2 on
D` such that

]o(z) - 4'(z)l < E. z E K.
Furthermore, if D is bounded, we can assume that o' (z) is strictly plurisubharmonic
on D`. Indeed, it suffices to take A > 0 sufficiently small and replace o'(z) by

6°(z) := o'(z) + A f]z332.

We now prove the following theorem.

THEOREM 4.6 (Oka [52]). A pseudocontex domain D in C" admits a piecewise
smooth, strictly plurisubharmonic exhaustion function.

s'1'he idea of smoothing plurisubharmonic functions by using integral averages is due to F.
Riesz 162).
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PROOF. We take a continuous plurisubharmonic exhaustion function (z) for
D. Let al (j = 1. 2, ...) be a sequence of real numbers with o j+ 1 - (v j > 2 (j =
1.2....) such that if we set Dj := {z E D j g(z) < a,} (CC D). then D1 0.
On each domain D21+3 (I = 1.2.... ). we can construct a strictly plurisubharmonic
function t1(z) of class C2 such that (ti(z) - £,(z)I < 1 on D21+3. We have

f1 (z) - a21 < -1 for z E 0D21-1:

Wz) - a21 > 1 for z E D21+3 \ D21+t

We shall construct, by induction, a piecewise smooth strictly plurisubhartttonic
function ll (z) on D21+1 (I = 1. 2.... ).

We first set 41 *(z) := .1(z) on D3 so that 41(z) > 1 on D3 \ D1. Next. hav-
ing constructed a piecewise smooth, strictly plurisubharmonic function tj(z) on
D21+1 (I > 1) such that t ,*(z) > I on D21.1 \ D21_1. we take c1+1 > 0 sufficiently
large so that, if we set 271+1(z) := C1+1 (WO - a11) on D21+3, then r11+1(z) > I + 1
on D21+3 \ D21+1 and

V(z) - 711+1(z) > 0 for z E OD21_1.

C1 (z) - 171+1(z) < 0 for z E 8D21+t.

Now for z r= D21+3 we define

cj(z) f o r z E D21_1i

V+t(z) := max(. W. ,+t (z)) for z E D21+1 -D21-1-

1 1I1+1(z) for z E D21+3 - D21+1

Then is a piecewise smooth, strictly plurisubharmonic function in D21+3
satisfying 1+1(z) = V(z) on D21-1. C,+1(z) ? Vt (z) on D21+1, and l;j,,_1(z) > 1+ 1
on D21+3 \ D21+1. It follows that the limit V(z) := Cj(z) exists on D
and defines a piecewise smooth, strictly plurisubharmonic exhaustion function on
D.

4.4. Pseudoconcave Sets

4.4.1. Definition of Pseudoconcave Sets. The complement of a pseudo-
convex domain has a certain analytic property, if it is 'small" as a set. This fact
was first discovered by F. Hartogs 1301 and was carefully studied by K. Oka. We
follow the ideas of Oka [43) and extend their study from the two-dimensional case
to the general n-dimensional case, n > 2.'

Let D be a domain in C" and let S be a closed set in D. For each point
z' _ ,z',) of a and each polydisk 6 : jzj - zjI < r (j = 1..... n) in D
centered at z', if each connected component of 6 \ (6 nC) is a pseudoconvex domain
in C", then C is called a pseudoconcave set in D. As an example, an analytic
hypersurface in D is a pseudoconcave set in D.

REMARK 4.6. We will simply say that 6 \ (6 n E) is a pseudoconvex domain if
each connected component of b \ (6 n E) is an open, connected pseudoconvex set;
i.e., we take a domain to be an open (but not necessarily connected) set.

The following properties of pseudoconcave sets are a consequence of the ele-
mentary properties of pseudoconvex domains.

9See Oka's posthumous work No. 7 in [55J, in which he called a peeudoconcave set an (H)-set.
See also T. Niahino 140).
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1. If £1 and £2 are pseudoconcave sets in D. then so is £1 U£2.

2. Let I = {a} be an index set. If £, (t E I) is a family of pseudoconcave sets
in D, then the closure of USE, £, in D is a pseudoconcave set in D.

3. Let C. (j = 1.2....) be a decreasing sequence of pseudoconcave sets in D;
i.e., £e+i C C. f o r all j. Then Co n 1 £i is a pseudoconcave set in D.

4. Let £ be a pseudoconcave set in D. For any r-dimensional complex analytic
plane L with 0 < r < n. £ fl L is a pseudoconcave set in D fl L (which we identify
with Cr).

5. Let £ be a closed set in D. Suppose that for each p E £ f1 D. there exist a
neighborhood 6 of p in D and an analytic hypersurface op in 6 such that p E oy C E.
Then ,6 is a pseudoconcave set in D.

6. Let S be an irreducible analytic hypersurface in a domain D C C" and let
£ be a nonempty pseudoconcave set in D. If £ C S. then £ = S. This fact can be
proved by use of the continuity theorem of type A.

7. If £ is a pseudoconcave set in D, and T is a biholomorphic mapping of D
onto T(D), then T(£) is a pseudoconcave set in T(D).

Let 6 be a pseudoconcave set in a domain D C C" and let p E 8£. If there
exists a neighborhood 6 of p in D such that the domain 6 \ (6 fl £) is strictly
pseudoconvex at p, then we say that .6 is strictly pseudoconcave at p. If 6\(6n£)
is a piecewise smooth strictly pseudoconvex domain at p. then we say that £ is a
piecewise smooth pseudoconcave set at p. If £ is strictly pseudoconcave
(resp., piecewise smooth) at each boundary point of 6 in D, then we say that £ is
a strictly pseudoconcave (resp., piecewise smooth) set in D. Theorem 4.6 implies
that any pseudoconcave set £ in a pseudoconvex domain D can be approximated
by a decreasing sequence of piecewise smooth strictly pseudoconcave sets in D.

4.4.2. Hartogs' Theorem. Consider C"+1 as the product of C" with vari-
ables z = (zl,... , z,,) and with variable w. Let D be a domain in C" and set
G := D x C,,. Let £ be a pseudoconcave set in G. For each z' E D. the fiber of £
over z' is defined by

£(z'):={wEC,1. I (z',w)ES}.
We make the assumption that each £(z'). z' E D. is bounded in C,,..

We prove the following theorem.

THEOREM 4.7 (Hartogs). Let £ be a pseudoconcave set in G = D x C,,. where
D is a domain in C". If each fiber £(z), z E D, consists of exactly one point ((z)
in C,,., then z - ((z) is a holomorphic function of z in D.

PROOF. Let zo E D and let po = (zo,((zo)) E C. Since G \ £ satisfies the
continuity theorem of type A at po, it follows that t;(z) is continuous at zo in D.
We now show that ((z) is holomorphic at zo in D.

Fix a point wo E C,, such that wo # ((zo). We take a ball 6 in D centered at
zo such that C(z) 96 wo for z E 6. We set

h(z) := log IK(z) - wol. z E 6.
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Since 1((z)-w0I is the Hartogs radius of D\E with respect to w, Lemma 4.6 implies
that -h(z) is a plurisubharmonic function on 6. Consider the following analytic
transformation T of 6 x (C \ {u.'°}) onto 6 x (C,,.- \ {0}):

T1 . z3=z. (j=1....,n). u'= 1 .
W - IL-0

We set w := 6 x C,,, and E° := T1(E nw). Then E° is a pseudoconcave set in w with
the property that each fiber E°(z). z E 6, consists of one point Co(--) in C.. with

u%,=(0(z) = 1

Since (°(z) 0 0, z E 6, it follows by the same reasoning that - log (1/I((z) - wy,I) is
a plurisubharmonic function on J. Consequently. h(z) is a pluriharmonic function
on 6.

We now take a conjugate pluriharmonic function k(z) of h(z) on 6 so that

e(z) := h(z) + ik(z), z E 6.

is a holomorphic function on 6. Then we form the following automorphism of w:

T2 : zj = z, (j = 1.... , n). tr" = (w - wo)e-;i->,

The image E' := T2(E) is thus a pseudoconcave set in w with the property that
each fiber E'(z) consists of one point ('(z) with

tv'1= ('(z) = (((z) - w°)e-e(
Note that I('(z)I - 1 on 6.

We next fix a point tc' E C,;" such that

Iw'I < 1, argw' = arg(*(zo)

Since I(*(z)I 1 on 6, 1(* (z) - w'I for z E 6 attains its minimum at the center z°
of 6. On the other hand, Lemma 4.6 again implies that h' (z) :_ - log 1('(z) - u'' I
is a plurisubharmonic function on 6. It follows that h'(z) is constant on 6. This
implies, together with the fact that I('(z)l - 1 on 6. that ('(z) is constant on 6,
say ('(z) - a. Hence.

((z) = aeC=) + w0, z E 6,

so that ((z) is a holomorphic function on 6.

4.4.3. Preparation Theorem. Let E be a compact set in C,,,. We fix an
integer m > 2 and take m points w, (j = I,. . m) in E. We set

lu',. - WpI
<r.

and define
Dm(E):=max{V(wz,.. ,wm)Itc'1. .w.,EE}.

the m-tb diameter of E. It is easy to verify that

Dm (E) > D.+1(E) (m = 2.3.... ).

Thus the limit
Dx(E) := lim Dm(E)n-x
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exists and is called the transfinite diameter of E." 1

Now let G = D x C4. where D is a domain in C", and let £ be a closed set in
G such that each fiber £(z) over z E D is a bounded set in C,,.. Let in > 2 be an
integer or let in = x. For each z E D. we consider the m-th diameter D...(E(z)) of
the fiber E(z). We set D,,,(z) := D..(E(z)) for z E D.

We have the following theorem.

THEOREbt 4.8. IS If E is a pseudoconcave set in G. then log D(z) (m =
2.3..... x) is a plurisubharmonic function on D.

PROOF. We know that the decreasing limit of a sequence of plurisubharmonic
functions on D is a plurisubharmonic function on D and that any pseudoconcave set
in G is a decreasing limit of a sequence of piecewise smooth, strictly pseudoconcave
sets in G. Thus it suffices to prove the theorem for each fixed finite integer in > 2
under the assumption that 6 is a piecewise smooth strictly pseudoconcave set in G.

Since E is closed in G. we first note that log D,,, (z) is uppersemicontinuous on
D. Fix zl' _ (z°..... zn) E D. It suffices to show that for any (a,.... , a,,) E C"
and any sufficiently small e, .0 < e, < 1 (j = 1.... , n),

1
2r

log Dm(°) <
21r

r log Dm(zj + a1e>eie.... ,zit (4.27)

We can find in points w° (v = I.... , m) in E(z°) such that

D,.. (z(j) W° - Wo
v<p

By the maximum principle we observe that w° E d6(z°) (v = I.... , in). We set
P. = (z('. wy) (v = 1.... , m). Since E is a piecewise smooth. strictly pseudoconcave
set at p, we can find an analytic hypersurface S. in a neighborhood 6 of p
in G such that p E S c e n 6,,. Since w° E 8£(z") and £(z°) is bounded
in Cu.. it follows from Lemma 2.1 that if we choose a suitably small polydisk
6o x A in C centered at p where 6(j = {Iz., - z°I < r} (j = 1.....n) and

{ ]-- wv I < p, ,l (v = 1, .... m), then Sv n (a° x (OA,)] = 0 and S. in 6l, x 0
can be written in the form

w - w°) = (w - w,,°.)"" + a(e) (z)(w - w°)' I + ... + a("(z) = 0 (4.28)

where P. has no multiple factors. In this equation. each coefficient a;' (z) is a
holomorphic function on 6o with the property that a;°I(z°) = 0. We consider the
discriminant of w - w°) with respect to w - w°. and set

Q,, := {z E 6o I 0} and 60, = 6° \ U a,,
v=1M

Fix z' E 6,',. We take a single-valued branch (v = 1..... rn) of the algebraic
function given by the solution of equation (4.28) on a neighborhood 6' of z' in 6(,,
and we consider the following vector((-valued holomorphic function on 6':

r)(z) (i i(z)..... it-,(Z))

1O The notion of transfinite diameter was introduced by M. FSkete [191. He also proved that
D,,,(E) is equal to the logarithmic capacity of E.

1 This theorem v.'as first proved by K. Oka [431 for the case m = 2. The proof given here for
the general case is due to H. Yamaguchi [79).
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Let -y be any arc in 6( with initial point z' and terminal point z. Then 11(a) can
be analytically continued along-?. If we denote the resulting function by i(z) =
(n) (z)..... t m(z)) near i. then each n ,,(z) is a branch of the algebraic function given
by equation (4.28) in a neighborhood of z in 6( '). We form the analytic continuation
of ?I(z) over all arcs in 6,) with initial point z`. and the resulting function is a
bounded, vector-valued function on b('). We use the same notation

O(z) = (n)(z).....i (z)) on 6('):

then the function

f(z) = fi ( 1 7 . ( Z )- z E
i <i<). <m

becomes a bounded, single-valued holomorphic function on 6,,. From Riemann's
removable singularity theorem, f (z) can be holomorphically extended to 64). Since
n .(z) E £(z). z E 6 (v = 1.... , m). and 17,,{z°) = u.,°, it follows that

_'- I7(z)I < D. (z), " D,,, (z°).

Since m m _ 1) log If (z) I is a plurisubharmonic function on 60. these! two formulas
imply the desired inequality (4.27). O

4.4.4. Pluripolar Sets. For a set E in the complex plane C we can canoni-
cally define its potential theoretic size, called the logarithmic capacity of E. We
summarize the well-known results for the logarithmic capacity in C. If E is com-
pact, this coincides with the transfinite diameter of E. Sets of logarithmic capacity
zero coincide with polar sets: a set E C C is polar if for each point z0 E E there
exists a subharmonic function u(z) 4 -x defined on a neighborhood 6 of z0 with

En6C{zE6:u(z)=-oc}.
This local notion is actually a global one: if E is polar, then one can find u(z)
subharmonic in a neighborhood D of E. u(z) -oo. with

E C {zED:u(z)=-x}.
Indeed, D can be taken to be all of C. Thus if 0(z) is a subharmonic function on a
domain D in C and the set E,, :_ {z E D I o(z) _ x} is of positive logarithmic
capacity. then ¢(z) _- -x on D.

For a set E in C" for n > 2. we have an analogous notion of pluripolar sets:
a set. E C C" is pluripolar if for each point zj) E E there exists a plurisubharmonic
function u(z) $_ -x defined on a neighborhood 6 of z,) with

En6c{zE6:u(z)=-oo}.
Again, this local notion is a global one: if E is pluripolar. then one can find u(z)
plurisubharmonic in a neighborhood D of E with

E C {zED:u(z)=-x}
(cf. M. Klimek (34), Theorem 4.7.4). Indeed. D can be taken to be all of C".

Let e C C" and p E e. If for any neighborhood 6 of p in C" and any plurisub-
harmonic function ¢(z) on 6 with p(z) = - x on e n 6 we have o(z) _- - --I,- on 6.
then p is called a point of type ({3) in e. If p is not of type (3) in e. p is called a
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point of type (a) in e. Thus if e consists entirely of points of type (a) in e. then
e is a pluripolar set in C". In general, we define

e3 := {p E e I p is of type (8) in a}. (4.29)

If e is contained in a domain D C C", then e3 is closed in D. and clearly e3 is
pluripolar - and hence empty! - if and only if e is pluripolar.

We easily have the following:

1. A countable union of pluripolar sets in C" is pluripolar.
2. A non-empty open set G in C" is not pluripolar.
3. Let e be a pluripolar set in D, where D is a domain in C". If f (z) is

a bounded holomorphic function in D \ e. then f (z) has a holomorphic
extension to all of D.

4. The pluripolarity or non-pluripolarity of a set e C C" is not a metric prop-
erty of e and depends on the complex structure of C". For example, any
analytic hypersurface S in a domain D in C" (hence S is real (2n - 2)-
dimensional) is pluripolar in C". On the other hand, the set

e={z=(zl.... ,z")IRz,=0(j=1....,n)}
(which is real n-dimensional) is not pluripolar in C". Similarly, the distin-
guished boundary e = {IzjI = 1 (j = 1,....n)} of the unit polydisk in C",
which is also real n-dimensional, is not pluripolar in C".

4.4.5. Oka's First Theorem. We utilize the notion of pluripolar sets to
prove the following theorem.

THEOREM 4.9 (Oka). Let G = D x C,,.. where D is a domain in C". Let
be a pseudoconcave set in C such that each fiber £(z) for z E D is bounded in C.
Define

e := {z E D I £(z) consists of a finite number of points in C,,.}.

If e is not pluripolar, then a is an analytic hypersurface in G.

PROOF. From the continuity theorem of type A it follows that t:(z) 0 for
each z E D. For an integer v -e 1. we let e denote the set of points z in e such
that the fiber e(z) consists of at most v distinct points in C, so that

x
elCe2C..., e= Ue,.

V=1

Since e is not pluripolar. it follows that some e,, is not pluripolar. We fix where
v'I > I is the smallest such integer; thus e,,,, - I is pluripolar (in the case vo = 1, we
set ee := 0). NVe consider the (vc + 1)-st diameter D,,,+I(z) of e(z), z E D. From
Theorem 4.8, log is a plurisubharmonic function on D. Since D,,,,+1 (z) =
0 for z E e,,,, and e,,,, is not pluripolar. it follows that log D,,,,+1 =- -x on D. i.e.,
e,,,, = D. We set D' = D \ e,,,,_1 and write 5(z) _ for z E D',
where &(z) t;,(z) (i ,-E j). Define

P(z, w) :_
W

fEw'-s`i(z)]
)=I
Ij,vo +a I (z)w"O-1

We claim that each a,(z) (j = 1.....vo) is a holomorphic function on D'.
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To verify this, fix z0 E D'. Using Theorem 4.7, we can find a polydisk 6 in D'
centered at zo such that if we set w := b x Cu,, then t n w can be described by the
equations

u: =Cj(z) (j=l-----V0)-
where each , (z) is a single-valued holomorphic function on J. Since the a. (z) (j =
1.... vo) are symmetric functions of {£I(z),....t;,,,,(z)}, it follows that the ad(z)
are holomorphic functions on 6 and hence on D'.

Furthermore, at each point z' E we can find a neighborhood b' of z'
in D such that each a,(z) (j = 1..... vo) is bounded on d' n V. Since e,,,, -I is
pluripolar. it follows that each a., (z) has a holomorphic extension to a', and hence
to all of D. Then P(z, w) is a polynomial in no with coefficients that are holomorphic
in D; thus P(z,w) is holomorphic in G, and it is easy to see that

E = {(z, w) E G I P(z, t) = 0 }.

Thus e is an analytic hypersurface in G.

This theorem gives us a generalization of Theorem 4.7.

COROLLARY 4.1. Let E be a pseudoconcave set in G = D x C. such that each
E(z). z E D, is bounded in C,,.. Assume that the set of points z E D such that £(z)
consists of exactly one point in C,,. is a non-pluripolar set. Then E can be described
as the set of points

w=e(z), zED.
where 1;(z) is a single-valued holomorphic function in D.

Furthermore. using Theorem 4.8 in the case m = x. we obtain the following
theorem.

THEOREM 4.10 (Yamaguchi). Let E be a pseudoconcave set in C = D x C,,.
such that each £(z), z E D, is bounded in C,,.. Assume that the set of points z E D
such that E(z) is of logarithmic capacity zero is a non-pluripolar set. Then each
E(z), z E D. is of logarithmic capacity zero.

4.5. Analytic Derived Sets

4.5.1. Definition of Analytic Derived Sets. Let D be a domain in C"
and let E be a pseudoconcave set in D. Fix p E E. If there exists a neighborhood
6 of p in D such that E n 6 is an analytic hypersurface in b, then we say that p is a
point of E of the first kind. If p E E is not of the first kind, we say that p is of the
second kind. We call the set £' of all points z E E which are of the second kind the
analytic derived set of E.

REMARK 4.7. In standard set-theoretic topology. given a closed set E in C".
one considers the subset E' of E. called the derived set of E, which is obtained
by excluding from E all isolated points of E. Thus the analytic derived set E' of
a pseudoconcave set £ may be regarded as a type of analytic modification of the
usual derived set E' of a closed set E, where we consider "analytic hypersurface
points" of 6 as isolated points of E.

The following theorem concerning analytic derived sets will be essential in the
following sections.
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THEOREM 4.11 (Oka [43], Nishino 140]). Let£ be a pseudoconcave set in a do-
main D in C". Then the analytic derived set £' is also a pseudoconcave set in D.

PROOF. l'om the definitiot. of analytic derived sets. £' is a closed set in D.
Fix :° E V. It suffices to prove that D \ £' satisfies the continuity theorem of type
B at z°. For simplicity we may assume that z° is the origin 0 in C". We fix a set
Q C CZ = C: _, x Cz of the form

13 : IZn_I + r12 + 1zn12 > r2, lzn-1 l2 + lzn12 < P

and we consider the set

B . zj=0 (j=1... .n-2).
in C". Our goal is to show that B ¢ D \V.

We remark that the content of the theorem is similar in spirit to that of Theorem
4.2 (Levi's theorem). Indeed. the method of proof will be similar to that of Theorem
4.2.

For the sake of obtaining a contradiction, we assume that B C D\£'. Recalling
the proof of Theorem 4.2, we see that it suffices to deduce a contradiction under
the assumption that. if we let I denote the complex line

1 : zJ=O (j=1,....n-1)
in C", then the restriction of I to any fixed neighborhood of the origin 0 in D is
not contained in the original pseudoconcave set E. Since B C D \ £`, for any point
p E B we can find a neighborhood 6,, of p in C" such that £ n 6,, is an analytic
hypersurface in 6,, (possibly empty). We thus see that under our assumption about
1, for any pl, p2 with 0 < p2 < pt < p, the set

l£n{(0....,O,zn):P25lznl5PI)
consists of a finite number of points in D. Thus we can choose q with p2 < q < pl
and 6 > 0 such that

£n{(z1.. .zn):Izil <6 (j=1.....n-1). 1znl =q}=0. (4.30)

We consider the open polydisk A = A x r centered at 0 in D. where

0 : Iz,l <6 (j=1,...,n-1). r : lz"1 <q.

By choosing smaller values of 6 and q. if necessary, we may assume that A C D. Set
to := Ant. It follows from (4.30) that £o is a pseudoconcave set in W A x C.,,.
Fix a point a > 0 sufficiently close to z,,_I = O in so that the set

zi=0(j=1,...,n-2), z,,-1=a.

is contained in B n A. Since B C D \ £', we can choose 6' with 0 < 6' < a such
that, setting

0': Iz,'l56' (j=1... .n-2), 1z;,-1-a1<6'.
each fiber z;,_1) of to over (z',.... , z,_1) E B` consists of a finite number
of points in C,,,. Since W is not pluripolar, it follows from Theorem 4.9 that £o
is an analytic hypersurface in W. Hence £ = 0. which contradicts the fact that
0EAn£'=£11). 0
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We will use the following lemma in the next section. Recall that for a subset
e in C", ej := {p E e I p is of type (/3) in a}. Let D be a domain in C". For
a = (a1, ... , a") E D. r > 0 sufficiently small, b E C,,., and p > 0, we let Ar (a)
denote the polydisk centered at a with radius r in D C C" and we let y,(b) be the
disk centered at b with radius p in C, .

LEMMA 4.9. Let D be a domain in C" and let F be a pseudoconcave set in
G := D x C., such that each fiber .F(z), z E D, is bounded in C,,.. Let e be
a non-pluripolar set in D. Suppose there exists a point (a, b) E F' (the analytic
derived set of F) such that a E eg and such that there exists a sequence of circles
c, = {Iw - b# = (v = 1, 2....) in C,,. with p -+ 0 (v -+ oo) such that
c,, f1 1(a) = 0. Then for each r > 0 and p > 0, there exists at least one point
z' E Ar(a) fl eq such that F(z') fl yt,(b) contains infinitely many distinct points in
C.

PROOF. The proof is by contradiction. Thus we assume that there exist r > 0
and p > 0 such that for each z E Ar(a) fl e,3, the set F(z) fl y,, (b) contains at most
finitely many distinct points in C,,. We take a sufficiently large integer v such that
the radius p,, > 0 of the circle c is smaller than p. We let y, denote the disk
bounded by c,,; then by hypothesis (01yv) fl F(a) = 0. We can find ro > 0 with
ro < r such that fl F(z) = 0 for all z E Aro(a). Let w :_ Ara(a) x y,,, a
polydisk centered at (a, b) in G. Since ey fl Or (a) is not pluripolar, it follows from
Theorem 4.9 that F fl w is an analytic hypersurface in w. Thus, (a, b) V F', which
is a contradiction. 0

The hypothesis in Lemma 4.9 does not imply that F'(a) contains infinitely
many distinct points in C,. For example, let D be a domain in C. and consider
the pseudoconcave set F in D x C,, C C2 defined as

F:= I{(z,w)IzED, w=1/j)]U{(z,w)IzED, w = 0}. (4.31)

Then (0,0) E F' and F'(0) = {0}, although each F'(z), z E D with z 36 0 contains
infinitely many points in C..

4.5.2. Kernel of a Pseudoconcave Set. We now define higher order derived
sets of pseudoconcave sets in C" in order to generalize Theorem 4.9 as Theorem
4.12 below.

We let N denote the set of all ordinal numbers up until the first uncountable
ordinal Sl.; i.e., N is the set of all so-called countable ordinals. We will only need
the following properties of N:

1. N is a well-ordered set; i.e.,
(i) there is a total order relation on N, which we denote by <; i.e., <

is transitive, anti-symmetric, and, for any a, /3 E N, either a < /3 or
/3<a;

(ii) every non-empty subset S of N contains a minimal element; i.e., there
exists an element a E S such that a < fl for all /3 E S.

2. Each a E N has a successor, which we denote by a + 1, in N. i.e., a < a + 1
and a + 1 :5,3 for all a < /3. In particular, {0, 1, 2... } C N since 0 < 1 <
2 < ....
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3. For any increasing sequence {a" }" in N. i.e.,

a1 < a2 < ... ,

a := sup{a : n = 1, 2. ... } exists and is a member of N.
4. For each a E N. define

1(a):={7EN y< a},
which is called the initial interval determined by a. Then I(a) is at most
countable.

We note that N is not countable. We may divide N into two distinct parts N'
and N". where

N' = In EM I there exists 3 E N such that a = d + 1),
N" = N\N'.

The elements belonging to N' are said to be successor ordinals. while the ele-
ments of N" are said to be limit ordinals.

Let E be a compact set in C". We let E' denote the usual derived set of E;
i.e., E' is the subset of E consisting of all non-isolated points of E. We define E(a)
for each a E N by transfinite induction as follows. First define E(0) := E. If 0 < a
and E(') has been defined for each ry E I(Q), then we define E(a) by:

(i) E(") := [E(0)]' if a =13 + 1 for some 13 < a. i.e., if a is a successor ordinal;
(ii) E(a) := n{E(') : 7 < a} = n,(a) E(l) if a is a limit ordinal.

It now follows that E(a) is well-defined for each a E N. Each E(a), a E N, is a
compact subset of E with E(°) C E(3) for 3 < a. We call

E(11) n E(a) in C"
r=. V,

the kernel of the compact set E.

PROPOSITION 4.4. Let E be a compact set in C". Then:
1. There exists a unique no EX such that

(1) E(a0) = Etn), and hence E(') = E(a0) for all ry E N with no < 7;
(2) E("+') is a proper subset of E(') for each -y E 1(ao):
(3) E = E(n} U (U'?E,(a0)[E(') - E('+1)]). and this is a disjoint union.

2. E is countable if and only if E(11) = 0.

PROOF. The proof of (1), (2) and (3) in 1 follows from the fact that no is the
smallest (i.e., first) element in N such that E("") = E(a0+1). which is easily proved
by the above properties about N.

To prove assertion 2. we first assume that E01) = 0. We have from (3) in 1.

E= U (E( ') \ E(,+1)].
1EI(a")

Now I(no) is countable. and since E(') \ E('+') consists of the isolated points of
E('), each E('') \ E('+1) is at most a countable set. Therefore E is countable.

To prove the converse, we assume that E(S1) = E)a°) 0 0. Then E01) is a perfect
subset of E; i.e., E(n) has no isolated points. It follows from the Baire category
theorem in C" that E(u) must be uncountable and hence E is uncountable. 0
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We return to the case of pseudoconcave sets. Let D be a domain in C" and
let £ be a pseudoconcave set in 0 := D x Cu. with the property that each fiber
£(z), z E D. is bounded in Cu.. In order to define the analytic kernel £(II) of £
we first define £(aI for each a E N.

We first set CO) := C. Given a E N with 0 < a, we assume that £(') has been
defined as a pseudoconcave set in G for each ") E I(a). Then if a is a successor
ordinal, i.e., if there exists 3 E N with a =.3 + 1. we define

£(a) :_ [£(3)],

(here A' denotes the analytic derived set of a pseudoconcave set A in G). If a is a
limit ordinal, we define

£(a) := n{£(') : < a} =
+EI(a)

Using Theorem 4.11 and property 3 in 4.4.1, we see that £(a) is a pseudoconcave
set in G for each a E N. Note that £(a) C £('3) for .3 < a. Finally. we call

em := n £(a)
aEA'

the analytic kernel of the pseudoconcave set C.

PROPOSITION 4.5 (cf. Baire [11). Let D be a domain in C" and let £ be a
pseudoconcave set in G := D x C,,. with the property that each fiber £(z). z E D,
is bounded in Cu.. Then there exists a unique ao E N such that

(1) £(ao) = £(I1). and hence £(') = £(a") for all 7 E N with ao < ry;
(2) £('+I) is a proper subset of CO) for each ? E I(ao); and
(3) £ = £(f1) u £(i11)}), and this is a disjoint union.

PROOF. The proof is similar to that of the preceding proposition. 0
In particular. from (1) it follows that £(Il) is a pseudoconcave set in G which

satisfies [V')]' = 01).

4.5.3. Oka's Second Theorem. We now state and prove a result for a pseu-
doconcave set £ analogous to the second part of Proposition 4.4 for a compact set
E in C'.

THEOREM 4.12 (Oka). Let D be a domain in Cn and let £ be a pseudoconcave
set in G := D x C", with the property that each fiber £(z). z E D. is bounded in
Cu..

1. Suppose that £(S1) = 0. Then each fiber £(z), z E D, is a countable set in
C.. Furthermore, for any point p E C. there exists an analytic hypersurface
o defined in a neighborhood of p which is contained in £ and which contains
the point p.

2. If the subset e of D defined by

e = {z E D I £(z) is a countable set in Cu.}

is not pluripolar, then 02) = 0.

PROOF. To prove 1, we assume that £(f1) = 0 and we fix zo E D. Note that for
any pseudoconcave set A in G. we have {A(zo)]' C A'(zo) (here, on the left-hand
side we are taking the set-theoretic derived set of the fiber A(zo): on the right-
hand side we are taking the fiber over zit of the analytic derived set of A). Hence
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[£(zo)]1a) C £i°)(zo) for each a E N; thus e"1)(z0) = [£(z0)](n) = 0. It follows
from the second part of Proposition 4.4 that £(zo) is countable.

Fix p E £. From (3) of Proposition 4.5 we can find a 7 E 1(ao) such that
p E e('+1). Therefore there exists an analytic hypersurface a defined in a
neighborhood b in C such that p E a C£(') C £. hence 1 is proved.

We prove 2 by contradiction. Thus we assume that 01) # 0. Let e;3 be the set
of all points z E e of type (0). Thus e,3 is a closed non-pluripolar set in D.

Fix z(°) E e3 and 00) E "n)(z(°)). Since £(n) = [01)]' and since the fiber
£(11)(z(0)) C £(z(0)) is a closed countable set in C... we can apply Lemma 4.9
with F = £(f1), a = z(0).b = w(°),r = ro = 1, and p = po = 1 to obtain z0j E
e;3 n A,o(z(0)) such that £(11)(z0)) n 7po(00)) contains infinitely many distinct
points in C,,. (recall that 7,,,(w1°)) denotes the disk of radius po centered at w(U)).
We choose two of these points wN;) (µ'1 = 0,1), and we take disjoint disks 7p, (w;,,))
centered at with radius pl which are contained in our original disk 7po (w{0) );
i.e.

n7p,(wil)) = 0, 7p,(V%o))

For each it, = 0.1, we can again apply Lemma 4.9 with F = £1S1), a =
zt1),b = r = r1 = 1/2, and p = p1 < 1/2. We obtain z{2) E e,3 n A, (z('))
and two distinct points w{2jµ,.µ2 (A2 = 0.1). For each µ2 = 0, 1, we again take a disk
7p, (w(2)µ2) centered at w`2)1+2 such that

0, 7p2(wjZ,0) U7p,(wµ,) 1) CC'YP'(wµ,)).
We inductively repeat this procedure to obtain the countable subset

K(z{1),wµ1jE£tsn I I=1.2...,µh=0,1; h=1,....1}
of £") which satisfies the following conditions:

(i) Each z(1) (1 = 1.2, ...) belongs to e,3 and the limit z)') := lim Pj exists;

hence z(') E e;3.
(ii) For each z(1) (I = 1.2,...), we can find 21 distinct points w.1;.....µ, (µh =

0, 1; h = 1,... , 1) which belong to £((1i(z(t))
(iii) For each I = 1, 2, ... , we can find 21 disjoint disks 7N;) (wN; ,.., ,µ,) centered at

w(1) with radius pi (0 < p1 < 1/21) in C. such that

CC 7p1-,)(wv1,.11.a, -,) (µI = 0. 1).

Since £(n) is closed in G. the set K1 of all accumulation points of K is contained
in £(n). By condition (i), K1 lies over z('), and (iii) implies that the fiber X, (z(*))
is uncountable (in fact, its cardinality is equal to that of the real number system
R). This contradicts the fact that z(') E e3 C e, since K1(z(')) C £(z(')) and
£(z(')) is countable. Consequently e(u) = 0, which proves Theorem 4.12. O

We make a remark on 1 of Theorem 4.12. Part of the conclusion is that there
exists an analytic hypersurface a defined in a neighborhood b of p which is contained
in C and which contains the point p; i.e..

aC£nJ.
If we assume the fibers £(z) are discrete, then we can get

a= £n 5.
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Precisely, let E be a pseudoconcave set in D x C,,.. If each fiber E(z). z E D. is a
discrete subset of Ca., then for any point p = (;.o, wo) E E, there exists an analytic
hypersurface a defined in a neighborhood of p such that o = E fl 6.

To verify this, fix p = (ZO, wo) E E. Since E(zo) is discrete, we can choose r > 0
sufficiently small so that the circle z = zo, ju! - wol = r does not intersect E. Since
E is closed, we can choose q > 0 sufficiently small so that the intersection of E with
the polydisk 6: {z - zol < tl, 1w - woo < r has the properties that

1. Efl(Iz-zol<q, Iw-wo1=r}=0, and
2. for Iz - zol < q, the fiber E(z) is finite.

Applying Theorem 4.9 to E fl 6. we conclude that E fl 6 coincides with an analytic
hypersurface a in 6.

If we only assume the fibers E(z) are countable but not necessarily discrete, the
conclusion is not true. For example, consider the pseudoconcave set F in D x CLL
from (4.31).

4.5.4. Thullen's Theorem. Using analytic derived sets, we shall prove the
following theorem on analytic continuation of analytic sets.12

THEOREM 4.13 (Thullen). Let E be a pure r-dimensional analytic set in a do-
main Din C' (n > 2). Let F be an analytic set in D' = D \ E. If each irreducible
component of F has dimension greater than or equal to r and if F can be analyt-
ically continued to at least one point of each irreducible component of E, then F
can be analytically continued to all points of E. and the closure j= of Jr in D is an
analytic set in D.

PROOF. From Theorem 2.5 we may assume that T is pure r-dimensional and
that E is irreducible in D (but F need not be irreducible in D).

We first consider the case when r = n - 1; thus E is an analytic hypersurface
in D and F is an analytic hypersurface in D'. Then S := E U .F is a closed.
pseudoconcave set in D (using 5 in section 4.4.1). Thus the analytic derived set S'
of S in D is contained in E. Since F can be analytically continued to at least one
point p of E. we can find a neighborhood 6 of p such that S' fl6 = 0. It follows from
6 in section 4.4.1 that S' = 0. This means that F can be analytically continued to
all points of E and implies that the closure F of F in D is an analytic set in D.

In the case when I < r < n - 1. we choose complex coordinates (z,, .... z")
which satisfy the W4'eierstrass condition at each point of E and F (Theorem 2.3).
Fix a = (a1.....a,.) E E. We let D(a), C(a), and F(a) denote the sections of D,
E. and F over the (n - r)-dimensional plane zs = aJ (j = 1..... r). Then D(a) is
a domain in C"-r = C,,,+, x ... x C,,,, E(a) consists of isolated points in D(a),
and F(a) consists of isolated points in D(a) \ C(a). More precisely, F(a) may have
accumulation points in D, but these points will lie in C(a). We choose i > 0 and
then p > 0 sufficiently small so that, if we let A(a) = Dial x 1'(a) denote the polydisk
centered at a in D given by

metal Iz. -a, 1 5 p (j = 1... . r).

rfa) 1Zk-akl <q (k=r+1.....n),

12This theorem was first discovered in the case of analytic hypersurfaces by P. Thullen [74).
In the case of analytic sets it was proved by R. Remmert and K. Stein [89). The proof given here
is due to K. Kato (33]. See also W. Rothstein [84].
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then £(a) n r(a) consists of only one point (a,+,.. .. a,) and
l0(a) x (ar(a))l n (£ u .F) = 0.

We set
£(a) := £ n A(a), .1(a) := F n A(a)

In each complex plane C.j, (k = r+1.... , n), we let rya) denote the disk Izk -akI <

centered at ak, i.e., r(a) = r(l) x x r(Q), and we define the polydisk

k kA(a) 0(a) X r(a)

centered at (a1,... ,ar,ak) in Cr+l = CZ, x x C., x C_.k. For each k =
r+1,...,n.wehave

fp(a) n e(r )1 x ... X r( a) x ... x n (£ U .F) = 0

(where A means that we omit A). From Proposition 2.3 it follows that the projection
£(a) of the analytic set £(a) onto A(a) is an analytic hypersurface in A(a). By
taking a linear coordinate transformation which is sufficiently close to the identity,
if necessary, we may impose the assumption (*) that there exists at least one point
zJ = (z'.... , on each irreducible component Ff) (j = 1.2, ...) of F(a) such
that (z-,',. .. , zT, zk) 14 £a) for each k = r + 1, ... , n. The projection Fa) of the
analytic set f(a) in A(a)\£(a) onto Ana) is an analytic hypersurface in (to be

precise, the non-empty set F( a) \,6(.) is analytic in A(,,) \ E(.)). We note that if F(a)
can be analytically continued to all points of £(a), then each F(;,) (k = r + 1,... , n)
can be analytically continued to all points of £k). The converse is also true under
the assumption (*) from the definition of an analytic set (cf. Theorem 2.2). Hence.
using the case when r = n - 1, we see that if .F(a) can be analytically continued to
at least one point of £(a), then .F(a) can be analytically continued to all points of
£(a) in A(a). Thus if we set

CO :_ {z E.6 I F can be analytically continued to the point z}.

then £o is a non-empty open subset without relative boundary in E. Since £ is
irreducible, we have £o = E. Thus the theorem is proved in the case when 1 < r <
n-1.

Isolated essential singular points Let D be a domain in C". Let E be an
analytic hypersurface in D, and let f (z) be a holomorphic function in D \ E. Fix
p E E. If f (z) cannot be extended holomorphically or meromorphically to p, then
we say that p is an essential singular point of f (z). If £ is irreducible and if at
least one point p of E is an essential singular point of f (z), then all points of £ are
essential singular points of f (z). This fact follows immediately from Theorems 4.1
and 4.2. Moreover, we have the following result.

COROLLARY 4.2. Let .6 be an irreducible analytic hypersurface in a domain D
in C" and let f (z) be a holomorphic function in D \ E. Assume that f (z) has at
least one essential singular point p on C. Then for any complex number a E C,
with at most one exception, the analytic hypersurface defined by

S. := {z E D \ £ : f (z) = a}
cannot be analytically continued to any point of C.
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PROOF. We prove this by contradiction. Hence assume that there exist at least
two distinct complex numbers a; (i = 1.2) such that there exists at least one point
b; on £ to which S., can be analytically continued. Thullen's theorem implies that
the closure E, of Sa, in D is an analytic hypersurface in D. Therefore, f(z) is a
holomorphic function in D \ J£ U El U E2J which does not attain the values aI or
a2. By Picard's theorem for one complex variable, f (z) can be holomorphically
extended to D \ a, where a is the analytic set of non-regular points of E U EI U E2
in D. Since dim a < n - 2, it follows that f (z) is holomorphic on all of D,
contradicting our assumption. 0





CHAPTER 5

Holomorphic Mappings

5.1. Holomorphic Mappings of Elementary Domains

In the theory of functions of one complex variable, conformal mappings and
conformal equivalence play an important role. We will analyze the analogous no-
tions in several complex variables.

Let Dt and D2 be domains in C". If there exists a one-to-one holomorphic
mapping from Dl onto D2, then we say that Dl and D2 are biholomorphically
equivalent. In one complex variable, the Riemann mapping theorem states that
all simply connected proper subdomains of C are biholomorphically equivalent to
the unit disk. However, in C" for n > 2, the unit polydisk is not biholomorphically
equivalent to the unit ball. This was discovered by H. Poincare [601. We give a
proof of this fact by elementary methods in the next section.

5.1.1. Schwarz Lemma. We first extend the Schwarz lemma of one complex
variable to the case of several complex variables. Let D be a domain in C" (n > 2)
which contains the origin 0. If the intersection D fl I of D with a complex line I
passing through 0 is always a disk in l centered at the origin. we say that D is of
disk type with respect to 0 or that D is completely circled with respect to
0. Equivalently. this means that whenever E D. then I

fit! < 1, t E C) C D. For example. balls. polydisks. and, more generally. complete
Reinhardt domains are of disk type about their centers.

Let D be a domain in C". Fix r > 0 and consider the homothetic transforma-
tion T, of C" given by

Setting
D(r) = Tr(D).

we have that D"') is a domain homothetic to D with ratio r. Let A = (aik)j.k=t.... .,,
be a non-singular matrix and define

S,q . =(z...... z;,)=AzEC".
If D is a domain in C" of disk type about the origin 0. then S4(D) is also of disk
type about 0. and clearly SA(Dir>) = SA(D)(rj for any r > 0. If A is a unitary
matrix. we call SA a unitary transformation of C".

We prove the following generalization of the Schwarz lemma.

LEMMA 5.1 (Schwarz lemma). Let D be a domain in C" which is of disk type
about the origin 0. Let f (z) be a holomorphic function in D with f (0) = 0. If
if (z) I < Al on D, then for any 0 < r < 1,

lf(z)j<AIr forzEDt')
147
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PROOF. Let 0 < r < 1 and let z° E D. We want to show that If (z°)I < Mr.
By use of a unitary transformation of C' we may assume z° = (z°.0.....0).

Let 1 be the complex line 1: z2 = = z = 0 and set D1 := D n 1. We regard
D1 as a disk centered at z1 = 0 with radius R > 0 in C_, . We restrict f (z) to D1.
and set

p(z1) f(.I.O.... ,0), zI E D1.

Then Iq(z1)I < M on D1 and 0(0) = 0. Since Iz I < rR. it follows from the
Schwarz lemma in one complex variable that Ip(z°) I < Al Iz°I < Mr. Thus 11(20)1 <
Mr. D

Using this lemma, we will deduce the following result.

THEOREM 5.1 (Poineare). In C' for n > 2. the ball

Q : IIZII2 Iz1I2 + ... + IZ" 12 < 1

and the polydisk
A : Iz)I<1 (j=1.....n)

are not biholomorphically equivalent.

PROOF. For the sake of obtaining a contradiction, we assume that there exists
a one-to-one holomorphic mapping T from Q onto A. Composing with a linear
transformation

az,= > > (j=1.....n)1 - djzj
which maps the unit disk A. in C,, onto itself, we may assume that T(0) = 0. We
shall prove that

T(Q(r)) = A(" for any 0 < r < 1. (5.1)

Set

T: Z E Q --r w= (f1 (Z)..... fn(Z)) E A.

T-1 : wEA-+z=(91(w)....,g"(w))E Q.
Fix 0<r<1. Sincelfj(z)I 5 1(j=1,...,n)inQand fj(0)=0. from the
Schwarz lemma we obtain that I f j(z)I < r in Q(r), and hence T(Q(r)) C A.
Conversely, let m° E A(r) and let z° = T-(w)). We take a unitary transformation
C = So(z) of C" with So(z°) .0); thus IIz°II = Iii I. We consider the
holomorphic mapping

(= SooT-I(w) = (01(w).....o.,(u'))
from A onto Q. Note that ol(w°) = C°. Since Io1(w)I < 1 on A and pI(O) = 0,
again using the Schwarz lemma we see that lot (w°)I < r, and hence IIz°II < r. Thus,
z° E Qiri. We obtain (5.1). The boundary of Q(r) is smooth everywhere; this is not
the case for the boundary of A{r). This contradicts the fact that T(8Q(r)) = a0(r).
which follows from (5.1).

REMARK 5.1. Using a similar proof, we obtain the following fact. Let D be a
ball or a polydisk centered at the origin 0 in C". Let 4' be a holomorphic mapping
from D into D such that 4P(0) = 0. Then 4'(D(r)) C D(r) for each 0 < r < 1. Thus
if 4 is a one-to-one holomorphic mapping from D onto D such that 4'(0) = 0, then
-O(D(r)) = D(r) for each 0 < r < 1.
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5.1.2. Automorphisms of the Polydisk. Let D be a domain in C'1. A
one-to-one holomorphic mapping from D onto itself is called an automorphism
of D. The set of all automorphisms of D forms a group under composition, which
we call the automorphism group A(D) of D. In this section we determine the
automorphism group A(i) of the unit polydisk A : Iz.,{ < I (j = 1.....n).
Given a = (a1, ... , a,,) E A. we define the component-wise linear fractional trans-
formation

Given 0 = E R", we have the rotation

R(e) : zj = eye, z, (i2 = -1: j = 1..... n).

Given a permutation (k) = r) of (1, ... , n). we define

P(k) : zj = Zk, (j = 1.... , n).

Clearly these linear fractional transformations, rotations and permutations are ele-
ments of A(A). and we have Ta)1 = T R-1 = 7Z(_5) and P(1) = P(k-3 ), where

( ) = l 1.....n )'
We have the following theorem.

THEOREM 5.2. A(©) is generated by the elements 7,?.. R(e) and P(k).

PROOF. Let T E A(A) and let T(0) = a. Setting T1 := T E A(A). we
have T1(0) = 0. We write T1 : w. = f1(z) (j = 1,....n). By 1 of Remark 5.1.
TI(A(r)) = A(r) for each 0 < r < 1. Hence

(1) T1(84,(r)) = 8A(r). and
(2) Ifl(z)I <_ r (j = 1,....n) in 0(r)

We set Aj:={Iz,E<1}and O(r):={frr}<r}(j=I.....n). Fix 0 < r < 1.
Since (r,0.... ,0) E 8&(r). (1) implies that T1r......0) E 80(r). In addition,
since

U
['a(r) x ... x (BQ(r)) x ... x Anr)

f=1

there exists k1 (1 < k1 < n) with Ifk, (r. 0.... .0)1 = r. Since 4 fk, (Z1.0.... , 0) 1 < 1
for z1 in A, and fk, (0) = 0, from the one-variable Schwarz lemma we conclude that

(3) fk, (z1, 0,... . 0) = eiel zl for z, in A,,
where 01 is a constant with 0:5 01 < 2w. Fix z° E Al and set

on_ 1 '_ {z = (22.... , Z") I IZ715 lz/I (j = 2.... , n)).
We set

i .z2.....z,,) in on_1OW) fk,(Z0
so that Id(z')I < 3z1j (from (2)). Using (3) we conclude that o(z') attains its
maximum modulus 1011 at z' = 0. Thus o(z') is constant on On-I, and hence
in A. I , zz, ... , z") . e`°' ZI in An-1. Since z4 E AI was arbitrary, fk, (z) __ e:e1 ZI
in'

Similarly, for each j = 1..... n, we can find an integer 1 < k., < n and a
constant 0j with 0:5 0; < 27r such that

u%k,=fk,(z)=e'e,zj (j=1,....n).
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Set (0) (9,.....0,4) and (k) (I ). Then T, = Pk; o R,o). so that
T = T-a) o P(k) o R(e).

5.1.3. Uniqueness Theorem. In this section we prove a uniqueness theorem
of H. Cartan [8] for holomorphic mappings of bounded domains in C". We then
give some applications of this result.

THEOREM 5.3 (Cartan). Let D be a bounded domain in C" (n > 1) containing
the origin 0. Let

T : z = (zl,....z,,) -+ u' = .f,,(:))
be a holomorphic mapping (not necessarily one-to-one) from D into D with T(0) _
0. Assume that

x
fs(z) = z.'+ , fi.,.(z) (j = 1..... n) (5.2)

,.-2

near z = 0, where fl, is a homogeneous polynomial of degree v > 2. Then T is the
identity mapping.

PROOF. For the sake of obtaining a contradiction, we assume that T is not
the identity mapping. i.e.. fj.,,(z) $ 0 for some I < j < n and some v > 2. For
j = 1.... , n, let v, be the smallest integer greater than or equal to 2 such that
f,.,, (z) 0 0. Since T(D) C D, we can consider the iterates Tw = T o ... o T of T
for t = 1,2..... These all map D into D with T(I'(0) = 0. We write

T(I) : z = (zl.... , z") -+ w = (f{r)(z).... , fnl)(:)).

Since D is bounded, for each j = I..... n the family of holomorphic functions

Jr, = { fi1)(z) l 1 = 1.2.... }

in D forms a normal family.
However. a simple calculation using (5.2) yields

(1) (Z) = z + if, (z) + F,.,+, (z) (j = 1.... , n)

near z = 0. where F., +I (z) consists of sums of homogeneous polynomials of degree

> v + 1. Since (z) 0 for some 1 < j < n and some vj > 2, this contradicts
the normality of the corresponding family F, in a neighborhood of z = 0.

REMARK 5.2. Let D be a bounded domain in C" and fix zo E D. We consider
the isotropy subgroup o(D) of the automorphism group A(D) of D consisting
of the elements T E A(D) which fix zo: i.e., T(z() = P. Cartan's theorem implies
that each T E Ao(D) is uniquely determined by its Jacobian matrix at z°.

As an application of Cartan's theorem, we prove the following.

COROLLARY 5.1. Let D1, D2 be bounded domains of disk type with respect to
the origin 0 in C". Let ( be a biholomorphic mapping of DI onto D2 with ((0) = 0.
Then t; is the restriction to D, of a linear transformation of C".

PROOF. Given 0 < 0 < 27r, we consider the rotation

R(0) : Zj = e'OZJ (i2 = -1: j = 1,... , n).
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Since D2 is of disk type with respect to the origin, R(o) is an automorphism of D2.
The same is true for D1 and R(_8). Therefore.

(` := R(-@) o C-1 o Rce1 0

is an automorphism of D1 with ('(0) =0; moreover, if We set (* (z) (z).... .
f,, (z)). then each f1(z) (j = 1,... , n) is of the form

f)(z) = zJ + f).v(z) (j ,n),
v=2

where f;,,, is a homogeneous polynomial of degree v > 2. Since D, is bounded in
Cn. it follows from Cartan's theorem that C' is the identity mapping on D1. We

thus have
(oR(e)=R(e)oC for all 0<0<21r.

It is easy to see that this implies that ( must be a linear mapping of C".

REMARK 5.3. The proof shows that the same conclusion is valid for any boun-
ded domains D, (i = 1.2) in C" such that A(D,) contains all rotations Rie) (0 <
0 < 27r). As a simple application we see that a complex ellipsoid

n

E : ni{z; w' < 1.

=1

where ap v; > 0 (j = 1.... , n). is biholomorphically equivalent to the unit ball Q if
and only if v; = 2 (j = 1, .... n). In fact, assume that there exists a biholomorphic
mapping T of 6 onto Q. We may assume T(0) = 0 by Remark 5.4 (which will
appear after Theorem 5.4). Thus, T is a linear transformation of C". and hence
T(86) = 8Q. By a simple calculation, this implies v, = 2 for each j = L. .. , n.

5.1.4. Automorphisms of the Ball. In this section we determine the au-
tomorphism group A(Q) of the unit ball Q : Iz;{2 < I. First of all, we let
A = (a;,> );,k=1,.., be an n x n unitary matrix. Then

S,1 : z = .zn) -. Z = (z1,.. . zn) = Az

is a unitary transformation of C". Clearly SA E A(Q) and (SA)-1 = SA Next
we let a be a complex number with {a{ < 1. For each 1 < j :S n. define

T.' z; (j # 1)iz '=1' az,, zi= 1-an
We note that 7.(0..... 0. a. z,t..... , (0... , 0.0. z;+1... . z,,). In particu-
lar. T,,' (a.0,....0) = (0.....0). Clearly 3. E A(Q) and (T;)-I = T_,,.

THEOREM 5.4. A(Q) is generated by S.4, A unitary, and Ta, {a{ < 1. i =
1,... ,n.

PROOF. Let T E A(Q). Composing T with a finite number (at most n) of
the mappings Ta, (i = 1, .... v: v < n) (or composing T with an S,4 and a T.).
which we denote by F. we can form an automorphism T := F o T E A(Q) with
T(0) = 0. Applying Corollary 5.1, we conclude that f is a linear mapping of C".
Since T(Q) = Q. it follows that T is a unitary transformation SA of C". Hence
T=F-1oSA-1.
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REMARK 5.4. Let D be a domain in C" (n > 1). If for any two distinct points
p. q in D there exists an automorphism T of D such that T (p) = q. then D is called
a homogeneous domain and A(D) is said to act transitively on D. As shown
above, the ball and the polydisk in C" are homogeneous domains. In C. every
simply connected domain is homogeneous. This is no longer true in C" if n > 2.

For example, in C2 with variables z and w, we consider the domain

D : Izwl < 1.

Then D is simply connected. and every automorphism T of D satisfies T(0.0) _
(0.0). For let T : (z. w) -+ (z'. w') := (f (z, w). g(z. w)). If we set F(z)
f (z, 0)g(z.0) for z E C_ then F is an entire function in C2 with JF(z)I < 1.
Thus, F(z) = a (constant) in C... We claim that a = 0. For if not, under T the
z-axis w = 0 is mapped into the set z'w' = a 96 0 in a one-to-one fashion. This
is impossible. since the set z'w' = a is not simply connected. Therefore a = 0.
which means that f (z.0) = 0 or g(z.0) = 0 in C2 (note that we can't have both
f (z.0) s 0 and g(z.0) __ 0. since if we did we could have T(:. 0) __ (0.0). contra-
dicting the fact that T is an automorphism). Thus the z-axis ur = 0 is mapped by
T onto either the z'-axis or the w'-axis. In a similar manner, either f (0, w) __ 0 or
g(0. w) = 0 in C,,.. and it follows that the u-axis z = 0 is mapped by T onto the
w'-axis (if f (z.0) __ 0) or the z'-axis (if g(z. 0) = 0). In either case. since if we did
we could have T(0.0) = (0.0) and D is not homogeneous.

Indeed, if D e C". n > 2. is a bounded domain with smooth boundary and if D
has a transitive automorphism group A(D), then D is biholomorphically equivalent
to the unit ball Q. This is a result of J: P. Rosay (83).

5.2. Holomorphic Mappings of C"

There are many interesting phenomena concerning holomorphic mappings of
C" for n > 1 which do not occur in one complex variable. In this section we
discuss certain holomorphic mappings of C" which were studied by Poincare and
Picard (see Picard [57)).

5.2.1. Transcendental Entire Mappings of Poincard -Picard. In this
section, we consider polynomial mappings of C" into C". i.e..

Tr . z") (j=1... .n).

where each P,(:1, ... , z") (j = 1,... , n) is a polynomial in zl, .... z". We assume
that Pi (zl..... z") is of the form

Pj(:) = a., zj +pj(z1.... , z,,) (j = 1,....n),
where

(1) lajI >1(j=1.....n): /

(2) pj(Zl,... ,z") = Ev'2fi.11 (j = 1.... ,it), where fj.,, is a ho-
mogeneous polynomial of degree v > 2: and

(3) for each j = 1, .... n and nonnegative integers k1.... , k with k1 + +k" >
2. we have

k, kal ... an # a,.
We write a:= (al.... ,a") and az := (alzl.....a"z").
We have the following proposition.
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PROPOSITION 5.1. Given a polynomial mapping Tp : zl = P, (zi .... , z") (j =
1.....n) satisfying (1), (2) and (3). there exist n entire functions Fj(z) (j =
1.... n) in Cn which satisfy the simultaneous functional equations

F.(az) = Pi(Fi(z).....F.(z)) (j = 1,....n) (5.3)

and are of the form

Ft(z) = zf + Fj..(zl,... ,z") (j = 1.....n), (5.4)

v=2

where F,.,, is a homogeneous polynomial of degree v > 2. Furthermore, the F1 are
unique.

Using the entire functions F,(z) (j = 1.... , n), we form the holomorphic map-
ping

SF : zl = Fj(zi.....z") (j = 1.....n)
of C". This is called the Poincare-Picard entire mapping of C" associated to
the polynomial mapping Tp of C". It satisfies

SF(az) = Tp 0 SF(z) in C". (5.5)

We note that if P(z) is of degree at least 2, i.e., the degree of at least one PJ(z)
(j = 1..... n) is greater than or equal to 2, then Sp is a transcendental mapping
of C".

REMARK 5.5.

1. Let TQ : z,' = Qj (zi .... zn) (j = 1.... , n) be a polynomial mapping with
TQ(O) = 0 and let JI0 (z) = 8(Q1.... , Qn)/e(zi,... , z,,) be the Jacobian
matrix of Q at z E C". If JTQ (0) is diagonalizable and has eigenvalues Al
(j = 1 ,... , n) with IA, I > 1 (j = 1, ... , n), then the polynomial mapping TQ
satisfies (1). (2) and (3) at z = 0 (after a coordinate change to diagonalize
Jrv(0))

2. Equation (5.5) for SF may be regarded as a generalization of the type of
relation certain transcendental entire functions satisfy in the complex plane.
For example. if we set z' = P(z) = -4z3 + 3z in C and take a = 3. then the
unique solution F(z) of the equation F(az) = PoF(z) with F(z) = z+o(z2)
is F(z) = sin z.

In this section we will use the notation

AP : IziI <p (j n)

for the polydisk centered at the origin z = 0 with radius p > 0, and for a =
(a 1i ... , a") E C" with a j # 0 we write

pp I> Iz,I < p/Ia,I (j =1.... , n).
Finally, if g is a holomorphic function in a neighborhood of the origin, we write

g(z) = g2(z) + 0((512)

to signify that the Taylor series expansion of g about the origin contains neither
constant nor linear terms; g2(z) denotes the quadratic terms. To prove Proposition
5.1 we need two lemmas.
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LEMMA 5.2. Let ,,7(z) be a holomorphic function in Jp with , (z) = 1:2(z) +
o(IzI2). Let la,l > 1 (j = 0.1.... ,n) and let a = (al.... E C" satisfy

a1i ...a; all (5.6)

for all integers k, > 0 (j = 1.... , n) such that I k,, > 2. Then there exists
a holomorphic function g(z) in the polydisk A,, with g(z) = g2(z) + o(I:I2) which
satisfies the functional equation

g(az) = atig(z) + w(z) in A(- 11. (5.7)

Furthermore, there exists a number k > 0. depending only on a, (j = 0. L... . n).
such that if Ip(z)I :5M in A, then

Ig(z) I <_ UI in A,.

The function g with these properties is unique.

REMARK 5.6. We will see from the proof that we can take, for example,

k= E
k,+.

1

all...an"-ao

1

PROOF. Let g(z) be a holomorphic function in the polvdisk A/, with g(z) =
92(z) + o(IzI2). and consider the Taylor series expansions of ;(z) and g(z) about
z = 0:

g(z) _ k, k,.Uk,.....k. zI ... Z
k, +...+k., > 2

Assume that g(z) satisfies the functional equation (5.7). From condition (5.6) we
obtain

ck, ..... k"
wk,.....k" a, ... an' - all

provided Ei kk > 2. Since Ian I > I (j = 1..... n). the infinite series

k :=
1

1

all ... ate" - a0k,...+k.,>2{

is convergent. Also. since I;p(z)I < Al on A,, the Cauchy estimates give

ICk,.....k" I < Pk'
11fk,.

Thus for any z E A,,,

Ig(z)I 5 Iuk,.....k. zi' ... z11

Ck, ,.... k"

at k' an -all

Al E

X.

Ix 1' ... 'n.,

at ... a,," - at)
= kAi.

(5.8)
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We conclude that if we now define
Ckl.....k^ k1 kz z z9 ki k" 1 n

kl+- +k^>2 a1 .. an - as
then g(z) is a holomorphic function in s.p; jg(z)I < kM in Op; and g(z) satisfies
the functional equation (5.7) in the polydisk Op-1) centered at 0. The uniqueness
of g(z) follows from the uniqueness of the Taylor series coefficients (5.8). O

LEMMA 5.3. Let ry(z, Z) be a holomorphic function in a polydisk 0 x A cen-
tered at (0, 0) in C" x C" such that the Taylor series expansion of Vi(z, Z) =
t/i(zI,... zn, Z1, ... , Zn) about the origin contains neither constant nor linear
terms. Then, for each p > 0 with A. CC 0, there exists a number Ap > 0 such
that

10(z, Z) - tG(z, W)I 5 Ap IZj - Wj l for (z, Z, W) in Op X OP X Op.
j=1

Furthermore,
limAp=0.P-0

PROOF. Fix p > 0 with Ap CC A. We observe that
n

Z1i...Zn - Wi'..yyn^ _
j=1

thus writing out the Taylor series expansion of rli(z, Z) - rv(z, W) about the origin
in C" X C" X C", we obtain n holomorphic functions Hj (z, Z, W) (j = 1,... , n)
in A, x A, x A, such that

n

t,b(z,Z) - t'(z,W) = E(Z, - Wj)H,(z,Z,W)
j=1

in Op x Ap x Ap. Thus if we set

AP := max {JH1(z, Z, w)I,... , I Hn (z, Z, w)I } < 00,
(z.Z.W)EA"XA'XA'

then we have
n

10(Z' Z) - P(z,W)l 5 A,E izi - Wjl
j=1

in A. X AP X Op. Since z[i(z, Z) contains neither constant nor linear terms, we have
that Hj (0, 0, 0) = 0 (j = 1,... , n). Consequently, limp_.o A. = 0. 0

PROOF OF PROPOSITION 5.1. The first step is to find a solution F,(z) (j =
1, ... , n) of the functional equation (5.3) valid in a certain polydisk centered at 0.
We write

Pj(z) = ajzj + pj(z), Fj(z) = z j + fj(z) (j = 1,... ,n),

where neither pj (z) nor f j (z) contains constant or linear terms. We also define

P(z,Z):=pj(z1+Z1,...,zn+Zn) (9=1,...,n),
which is a polynomial in C2n with neither constant nor linear terms in the variables
z1 i ... , zn, Z1,... , Zn. From a direct calculation we see that the functions Fj (z)
(j = 1,... , n) defined in a polydisk Op satisfy the functional equation (5.3) in
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Ap-'7 Izjl < p/jajI (j =I I... , n) if and only if the functions fj(z) (j = 1,... , n)
satisfy the functional equation

fj(Qz) =a,fj(z)+pj(z,f(z)) (j = 1.....n) in A(-'). (5.9)

where f(z) := (f, (z).... ,f. (z)).
Thus we look for functions f(z) (j = 1.... , n) defined in a certain polydisk

AP which satisfy- (5.9) in the polydisk AP-'). To do this. we use the method of
alternation. We set

k:= max
=1.....n kl+.. k.,>2

1

ak, an - a
< ,1c.

1 7

(5.10)

From Lemma 5.3 we can find a sufficiently small polydisk AP centered at 0 in C"
and a constant AP > 0 such that

lpp(z.Z)-p;(z.W)I<APEIZj-WWjI (j=l,....n) inAPXAPXAP
j=1

and such that
knAP < 1/2.

Furthermore, we may also assume that

Ipp(z,0)I <p/(2kn) (j = 1.....n) in AP.
since pj* (z, 0) contains neither constant nor linear terms.

We begin by setting

fj (z) = 0 (j = 1..... n.) in AP.

Then for v > 1. having determined holomorphic functions f f - "(z) (j = 1.... , n)
in A. such that each fj-' contains neither constant nor linear terms, we define
holomorphic functions f,(z) (j = 1.... ,n) containing neither constant nor linear
terms in AP in the following manner. We let f"-'(z) :_ (f ' ' (z)..... fn-' (z)).
and for each j = 1,... n, we apply Lemma 5.2 to p(z) := pp(z, f"-'(z)) and
ao = aj to find a unique holomorphic function fj (z) in Ap such that

fj (Qz) =af' (z)+p.*,(z.f"-'(z)) (J = 1.....n) in (5.11)

It follows that we have now inductively defined a sequence of analytic mappings
f"(z) = (fl (z),... , fn(z)) (v = 0,1....) on AP. To verify the first step of our
proof, using (5.9) and (5.11) it suffices to prove that the sequence of holomorphic
functions converges uniformly in AP for each j = 1, ... , n. To do this.
we shall show that

I fj (z) - fj -' (z)I < p/2" (v = 1.2, ...: j = 1, .... n) in AP. (5.12)

Indeed, using Lemma 5.2, for z E AP,

1f(z) - f'(z)I = If; (z)I < k max Ip;(z, 0)I < k . p/(2kn) p/2,

which proves the case v = 1 of (5.12). Now we assume that

If.(z)-fP-'(z)I<p/20' (1<µ<v; j=1.....n) in A,,.

In particular, we have Ifs (z)I < p (j = 1..... n) in AP; i.e.. f"(z) E AP (1 < it <
V).
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From (5.9), for z E AV') we have

f (az) =aj(ff+'(z) - fj (z))+{p;(z,f4(z)) -p;(z,f"-'(z))}.
Thus if we set

9j(z) fj+1(z) - fj(z) in A,,

pj(z) p;(z,fV(z))-p;(z,f'"_'(z)) intp,
then gj (z) (j = 1, ... , n) satisfies the functional equation

9)(az) =
aj9j(z) + y, (z) in OP-I),

where IajI > 1 and p3(z) is a holomorphic function in Ap with neither constant nor
linear terms. It follows from Lemma 5.2 and (5.10) that

19j(z)I 5 k Cmax I j(z)I) in tip.

Therefore, for any z E Ap

If;+1(z) - fj (z)I
<_ k Czmaax Ip;(z,f"(z))

kAp m'x t I f'' (z) - f; -' (=) I)

< kap p/2"
i-1

kApnp/2" <
p/2&+1

Thus (5.12) is verified and { f 7 (z) (j = 1, ... , n) converges uniformly to a
holomorphic function fj(z) in Op, which satisfies equation (5.9). Our first step is
proved.

We now set
F(z) = (Fi(z),... ,F.(z)),

where
Fj(z)=zj+fj(z) (j=1,...,n)inAp

and
SF: zEOp--.w=F(z)EC".

From the first step, we have

Fj(az) = Pj(Fi(z),... ,F"(z)) (j = 1.... n) in (5.13)

For the second step we now want to show that F(z) has a holomorphic extension
to all of C". To this end, we consider the linear automorphism T. of C" defined
by

Ta: z'j=ajzj (j=1,...,n).
The functional equations (5.13) in 4 " are equivalent to

SF o Ta = TP o SF in OP-1) (5.14)

Now for l = 1,2.... we set
Op I)

A("
Iz l < p/Iaj I' (j = 1, ... , n),

Izjl < Ia,I'p (j =1,....n),
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which are polydisks centered at 0; note that as I the polydisks OP shrink to
the origin while the polydisks Op') increase to all of C". Noting that (T.-')' (OP) _
A(

-1),
we iterate (5.14) 1 times to obtain

SF o Ta = Tr, o SF in AP-') (l = 1.2.... ). (5.15)

On the other hand, since the right-hand side in this equation is defined in A. and
since (T.')'(AP) = O, we can extend the domain of definition of SF from Ap to
A(') by use of the equation

SF(X) = 74P o SF o (TQ'1(z), z E QPi)

From (5.15), it follows that this extension of SF is independent of 1 = 1.2..... Since
lim,.... A(') = C", SF(z) is thus a holomorphic mapping on all of C". Furthermore.
SF satisfies the equation SF o T. = Tp o SF in C" (this may be proved directly or
by using analytic continuation). This finishes our second step of the proof.

Finally, we must verify the uniqueness of Fj (z) (j = I..... n) satisfying the
conditions stated in Proposition 5.1. To do this, it suffices to show the following. Let
`aj I > I (j = 1, ... , n) satisfy condition (3), i.e., Eat' ak, # a) (j = 1.... , n),
and let pj (z, Z) be a polynomial in C" x C" with neither constant nor linear terms
in zt..... zn, Z1.... , Z". Then the holomorphic functions fj(z) (j = 1, ... , n)
defined in a polydisk A,, centered at 0 which satisfy the functional equations (5.9)
and which contain neither constant nor linear terms are uniquely determined by aj
(j = 1, ... , n) and p., (z, Z) (j = 1, ... , n). Indeed, for j = 1, ... , n, writing the
Taylor series development in A., we have

(j k
,..k., Xl t ... Xn^fj(z) = E L'k c..

pj* (Z' Z) = E CO) XI, ... X,"Zr'it Zmn
1,_..ln.mt.....m,, 1 n I n

Using (5.9), we have

kt k (7) k, kn

X1, ... ZInlt.....ln.,n,.....mn 1 n
1, -... + 1

X (1) k, knm
kj+.-+k^>2 vk,.....kn zl ... zn

(5.16)

1: (n) k, ... kn)X.., X Xn

It suffices to prove that each v'k,......k^ (j = 1.... , n: s := k, + ... + kn > 2) is
determined uniquely by a = {aj j = L... , n} and C,. where

C, ={C(`) Ih+ <s; i=l....,n}.
We verify this by induction on s = kl +... + k,, > 2. First of all, let kl, .... kn > 0
be integers such that k1 + + k,, = 2. Then, by comparing the expressions for the

M^
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coefficient of zi' . zn". we have
IJ)

....k"
CIj) ...ak, - a,) (j - 1. )Vki. 11

- .. , n .

so that the case for s = 2 is true. Next we let s > 3 and assume that each ik)....k"
(k1 + - - + kn < s - 1; j = 1,... , n) is determined uniquely by a and a, 1. Then
for each j = 1, ... , n we compare the expressions for the coefficient of zk' . zk,,I it
where kl + + k" = s. in equation (5.16). On the left-hand side this coefficient is
(ai' -ak,., - aj)v(1) k"; on the right-hand side we obtain a polynomial in

<s
and

k,.... .k., kl +.+k,, 1.....n.
This can be seen by noting that if one of the vk. k for some i = 1.... , n and

then m,=1. 1k=0(k=1.... .n),and mk=0(k i).

This contradicts ^1 (1, +m,) > 2. Therefore, rki k" is uniquely determined
by a and C,,. and the uniqueness of f j (z) (j = 1.... , n) is proved.

5.2.2. Bieberbach's Example. Let Tp : z, = P, (z) (j = I..... n) be a
polynomial mapping of C" (n > 1). If a point z E C" satisfies Tp(z) = z, then z
is called a fixed point of Tp. Let z° E C" be a fixed point of Tp and let

(z)8(Pi....,P,,)

8(zl....
be the Jacobian matrix of T , in C". W e let A, (j = 1, ... , n) denote the eigenvalues
of J- 1-p If IAjI > 1 for j = 1..... n. we call z° a repelling fixed point of Tp.
If Ja j f < 1 for j = 1.... , n, we call z° an attracting fixed point of Tp. In all
other cases we call z° a loxodromic fixed point of T,'.

If z° is a repelling fixed point of T,, then we can find a neighborhood y of z° in
C" such that y CC Tp(y). If zll is an attracting fixed point of Tp. then we can find
a neighborhood y of z, in C" such that Tp(y) CC 7. For the polynomial mapping
Tt, studied in section 5.2.1, the origin z = 0 is a repelling fixed point of Tp.

If a polynomial mapping Tp of C" is one-to-one from C" onto C", then we
say that Tp is a polynomial automorphism of C". In the case n = 1, any
automorphism of C is linear. However. for n > 2 there are many polynomial
automorphisms of degree at least two.

Let

Tp . Z"=Pj(z1. ...w") (j=I... .n)
be a polynomial automorphism of C" such that PP(z) (j = 1..... n) satisfies condi-
tions (1). (2), and (3) stated at the begining of section 5.2.1 (a specific example will
be given at the end of this section). We fix a polydisk 'y° zjI < p (j = 1..... n)
such that y° Cc Tp(y°). We recursively define

y1+1 := Tp(-yl) (1 = 0. 1, 2.... ).

Since yl CC y1+1 (1 =0,1.2.... ) and Tp is an automorphism of C",

r1y, :=tim -y

is a domain in C". We note that does not depend on the choice of the initial
polydisk -y° as long as y" Cc Tp(y°).
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We consider the Poincar6-Picard entire mapping SF with respect to the above
polynomial mapping Tp; this mapping is defined via the equation

SF o T. = TP o SF in C".

We show the following.

PROPOSITION 5.2. The Poincar6-Picard entire mapping SF maps C" onto the
domain FTp in a one-to-one manner.

PROOF. By (5.4) we fix a neighborhood 6° of the origin z = 0 such that SF
is one-to-one on 60 and such that SF(6°) = y° (recall that we can start with any
polydisk y° such that y° CC Tp(y°)). Since

SF o7a=Tt,oSF inC"(f=1,2.... (5.17)

we have

S F ( Tat (60)) = yI (t = 1.2.... ).

Since V. : z E C" - w = (al zi.... , a;, z") and Ian I > 1 (j = 1, ... , n), we see
that the domains of (6°) increase to C". Thus SF maps C" onto the domain TTp.

We show that SF is one-to-one. For if not, there exist z1, Z2 E C" with z1 $ z2
such that SF(z1) = SF(z2). We fix an integer to > 1 sufficiently large so that
if we let (i := Ta 10 (zi) (i = 1, 2), then t:1. (2 E 61). Then S1 96 S2. and hence
SF((1) 0 SF((2). Since l°((,) = zi (1 = 1,2), it follows from (5.17) that

SF(zi) =Tp oSF(C,)

Therefore, T'p o SF(Cl) = T'p o Ss'((), which contradicts the condition that Tp
(and hence Tip) is an automorphism of C". O

We now impose the following additional condition on the above algebraic auto-
morphism Tp of C": there exists another repelling fixed point z' 0 0 in C". Thus
we can find a polydisk y' centered at z' in C" such that y' CC Tp(y'). We define

r% :=slim TP(y*),

which is a domain in C". Furthermore. since Tp is an automorphism of C". we
have I'7.P fl FTp = 0. 'Yom Proposition 5.2, we see that the domain TTr in C"
is biholomorphically equivalent to C". We will give an example of a polynomial
automorphism Tp of C" which satisfies conditions (1), (2). and (3) (at z = 0)
stated at the beginning of section 5.2.1 and which has another repelling fixed point
z' 0 0 in C". Thus we have the following proposition, which indicates another
major difference between C" for n > 2 and C.

PROPOSITION 5.3. There exists a domain D in C" (n > 2) such that D is
biholomorphically equivalent to C" and such that C" \ D has non-empty interior.

EXAMPLE 5.1. In C2 with variables z and w. we set

I z' = w.
Tp w' = 2z+w(w-1)(2w-1)-w.

Then Tp is a polynomial automorphism of C2 such that both (0.0) and (1,1)
are repelling fixed points of Tp with eigenvalues ±V"2- whose Jacobian matrix is
diagonizable at both points.
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5.2.3. Picard's Theorem. We consider a holomorphic mapping

T . u., =fe(z) (j=1.....in)
from C" to C' with m. n > 1. We call T : C" -+ C"' an entire mapping. We
call

ET := \T(C")
the set of exceptional values of T. As a particular example. if S is an algebraic
hypersurface in C'. i.e., S = {P(w) = 0} where P(w) is a non-zero polynomial in
to = (w,..... w,,,), and if S satisfies S C we call S an algebraic exceptional
set of T.

In the case when n = m = 1. from Picard's theorem in one complex variable. it
follows that ET consists of at most one point for any non-constant entire function
T. In Proposition 5.3 we observed that in the case when n = m = 2, there are
examples of entire mappings T such that Er contains interior points.

Let T : C" --. C" be an entire mapping. If there exists an algebraic hypersur-
face E in C" such that T(C") C E. then we say that T is degenerate. In this case
we may assume that E is irreducible in C. We shall show in Theorem 5.6 that if
T is non-degenerate. then the number of irreducible algebraic exceptional sets of T
is limited. This fact may be regarded as a generalization of Picard's theorem in one
complex variable. To state the theorem. we first discuss the following generalization
to several variables of Borel's theorem from the theory of functions of one complex
variable.

THEOREM 5.5 (Borel). Let v > 1 and let f3(z) (j = 1.....v) be entire func-
tions in C" (n > 1) such that fe(z) 34 0 on C". If there exist non-zero complex
numbers aj (j = 1.... v) such that

=0 in C". (5.18)

then there exists at least one pair h, k (h k: 1 < h, k < v) such that the ratio
fk(z)/fh(z) is constant in C".

PROOF. We prove this fact by induction on the dimension n > 1. In the case
n = 1, the result is Borel's theorem for one complex variable., We use this fact
without proof. Assume the result is true in C" for n > 1 fixed. and we shall prove
that the result is true in C"+1

Let H be a complex hyperplane in Cn`, which passes through the origin 0.
We restrict each fe(z) (j = 1..... v) and the relation (5.18) in Cn}1 to H. Since
H can be regarded as C". it follows from the inductive hypothesis that there
exists at least one pair h.k (h 34 k. 1 < h.k < v) depending on H such that
fk(z)/fh(z) = CH (constant) on H. Since there exist infinitely many complex
hyperplanes H passing through 0 in C1'}1 and since there exist at most a finite
number of pairs h. k (h 34 k. 1 < h, k < v). it follows that there exists at least one
pair h. k (h # k, 1 < h. k < v) such that

fh(Z)/fk(z) = CH

on infinitely many distinct hyperplanes H. Since fh(z)/ fk(z) is holomorphic at z =
0, this implies that the complex numbers CH coincide with c := fh(0)/fk(0). Hence
fh(z)/ fk(z) = con the union of the hyperplanes H. It follows that fh(z)/ fk(z) = c
in all of Cn+1. For, if F(z) := fh(z)/fk(z) # c in a neighborhood V of the origin.

1See, for example, the classic textbook (381.
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then, since F(z) is a non-constant holomorphic function in V. the set E defined
by F(z) = c in V consists of a finite number of irreducible analytic hypersurfaces
in V. This contradicts the fact that E contains infinitely many distinct irreducible
hyperplanes H passing through 0.

From Borel's theorem we obtain the following.

THEAREit5.6([42]). Let T:zEC"-.w= (ft(z),....f,,,('))EC"`(n.m>
1) be an entire mapping. If the set (a. of exceptional values of T contains at least
m+1 irreducible algebraic h y p e r s u r f a c e s Sk (k = 1, ... , m+ 1), then T is degenerate.

PROOF. Let Sk (k = 1..... m + 1) be given in the form
,.,

where Pk(w) is a polynomial in w E C'. We set

Wk k := Pk(w1.... , (k = 1..... m + 1) (5.19)

and we use these m + 1 equations to get an algebraic relation between lt'1.... ,
jrm +1:

`Y(TV1,....Vr21+1) := E
(7,....,-, )EJ

a 11'j, ... U',,i ' = 0 in Cr+1.j,.....jh.., 1 rn+1 R'

(5.20)

here, we have only a finite number of indices in J. Thus

0 = " n.t1( )

(1, .....j".., l E J

(5.21)

EL for u E Cm
(12.....j...., )EJ

where p1,.... ......,(w) := P, (w)" ...P",+1(u')J"'«' is a polynomial in u E C We
set

j,.....,...«,(f,(z)... for z E C".

which is an entire function on C". Since Si C g7. (j = 1.... ,m+ 1). we have
Pj(f1(z),... , f. (z)) $ 0 for all z E C". and hence w,,_,._, (z) 96 0 for all
z E C". Furthermore, from (5.21) we have

/a3,.....j.....,wj,.....j....,,(Z) =0 on C".

It follows from Borel's theorem that there exists at least one pair (j1.
(kl,... ,km+1) in J such that

w3,.....je.+, (Z)/u'k,....k,,,,, (z) = c = coast. in C".

Thus if we set

for u' E Cr". (5.22)

which is a polynomial in w E C"', then

T(C") C {w E C" I P'(w) = 0}.

so that T is degenerate.
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REMARK 5.7. In the proof. if Pt(w) (k = 1,... m + 1) in (5.19) are homoge-
neous polynomials in w = (wl.... . then P(w) in (5.22) is also a homogeneous
polynomial in w.

To prove this. we let yk > 1 denote the degree of the homogeneous polynomial
Pk(w) (k = I.....m+ 1). For (jl..... E J. pj,... _ (w) is a homogeneous
polynomial in w of degree

d:=j19t
moreover. we claim that this degree may be assumed to be independent of (j1.... ,
j",+t) E J. To see this. fix A 34 0. Then Pk(Au 1.....aw",) =
so that. setting TV, = PP(w) (i = 1..... rn + 1). w E C. (5.20) implies that

Q(Il,I/Aq.'... ,11;,1+11,\q- -,) = 0.

and hence

E ail....P1(u.1J:... =0
ill..........11EJ

l //

for u E C. Since this equation is valid for all A 0 0. it follows that d may be
assumed to be independent of (j1,....j,"+1) E J (for if not, collect all terms of
the highest degree of A). Thus P* (w) (w) . c pk1....k,,,;,(w) is a
homogeneous polynomial in w of degree d.

In a similar manner. we can treat the case of complex projective space P": i.e..
we consider a holomorphic mapping

7," : C" ,
and the set e'r> of exceptional values of 7'0: P"' \ ?"(C"). In the case
n = n: = 1. T° is a meromorphic function on C and it follows from Picard's
theorem in one complex variable that ('g'. consists of at most two points. In the
general case, we have the Following theorem.

THEOREM 5.7. Let T' : C" -+ P"' (n. m > 1) be a holomorphic rrlapping. If
£ .o contains at leasts m+2 irreducible. algebraic hyper surfaces S. (i = I..... m+2)
in P"'. then T° is degenerate; i.e., there exists an algebraic hypersurface E in P"'
such that T°(C") C E.

PROOF. We consider the canonical mapping it : C"" {0) P"' given ln
ir(uy).... , 1Um) = [w" :...: tern ). Since T° : C" -+ P" is a holomorphic mapping.
by solving the Cousin II problem we can find a holomorphic mapping

F I: z E C" -. (fo(z).....fm(z)) E C"'+1 \ {0}.

where each f1(z) (j = 0.....m) is an entire function on C". such that
71(z) for z E C". Since S. C E'r, (i = 1..... m + 2). we can find a homogeneous
polynomial P,(w) in C'"+l such that if we set

S. := {w E Cm+1 I P,(w) = 0} (i = I... . m + 2).

then ir(S, \ (0)) = S, and S, C P,.1. By applying Theorem 5.6 and Remark 5.7
to T = T1 : C" `1. we can find a homogeneous polynomial P' (w) ($ 0)
in Crti+1 such that T'(C") C E' := {w E C'+I I P'(w) = 0}. Hence T"(C") is
contained in the algebraic hypersurface E := ir(E' \ {0}) in P"'. 0
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CHAPTER 6

Ramified Domains

6.1. Ramified Domains

Let f be a holomorphic function at a point p in C". In general. when f is
analytically continued to a domain in C", we obtain a multiple-valued function j.
In the theory of several complex variables, as in the theory of one complex variable.
we consider a multiply sheeted domain V over C" on which j becomes a single-
valued function. If we do not consider a branch point as an interior point of D. so
that V is unmmiled. then the study of holomorphic functions in V is very similar
to that in the case of one complex variable. However, if we consider a branch point
as an interior point of D so that V is ramified. then we encounter interesting new
phenomena in the study of holomorphic functions on the ramified domain D over
C" for n > 2 which do not occur in the case of n = 1. The major portion of this
chapter is devoted to a proof of the local existence of a so-called simple function f
on a ramified domain V over C" (Theorem 6.1). Such an f provides a local in-fold
cover A of a polydisk A in C"; the essential point is that, if we consider the graph
C : X = f (p), p E A in the (n + 1)-dimensional product space ,& x Cx. then A and
C are one-to-one except for an analytic set of dimension at most n - 1: moreover,
each branch point p of A corresponds to a nonsingular point of C except for an
analytic set of dimension at most n - 2. A corollary of this result, Theorem 6.4.
which establishes local existence of a fundamental system for D, will be used in
Chapter 7.

6.1.1. Unramifed Domains. Let G be a connected Hausdorff space. As-
sume that there exists a continuous mapping it from G into C" which is locally
one-to-one; i.e., for any point p E 9 we can find a neighborhood V of p in g and a
ball B centered at ir(p) in C" such that rf is continuous and bijective from V onto
B. We say that G is an unramified domain over C" (or a Riemann domain
over C") and it is the canonical projection of 9 into C". Given a point p E 9.
rr(p), denoted by p, is called the projection of p or the base point of p. We say
that p lies over p. Given any set E C 9. we call a(E) the projection of E into
C" and we write E := rr(E). Given any p E C". we consider the number rn(p)
of points in the pre-image r1 (p) in G: this number is at most countable. We call
m(g) := max {ra(p) I p E C"} the number of sheets of G, which may be infinite.
If there exists a domain D such that r(g) C D. then G is called an unramified
domain over D.

A connected and open subset in g is called a domain in G. although we will
have occasion to drop the connectivity assumption as in the case of C". Let v be
a domain in 9. If r I,. is bijective from v onto rr(v). then r is called a univalent
domain in 9 over C". Given p E 9. there exists a univalent neighborhood 6 of p
in G. which will be called a coordinate neighborhood of p. Then by letting q E 6

167
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correspond to q = ir(q) E C", we consider ;r(S) as giving local coordinates of b
at p. We introduce analytic structure into g and define holomorphic functions in
the following manner. Let f(p) be a single-valued. complex-valued function defined
on a domain v in G. For p E v. let 6 C r be a coordinate neighborhood of p. If
f (rr-1(q)) is a holomorphic function for q in ir(b) C C". then we say that f (p) is a
holomorphic function in vv.

Boundary points. Let G be an unramified domain over C" with variables z1.... ,
z". Let it be the canonical projection of G into C". We want to define a boundary
point of G. Letp=(z......zj)EC". Letr,.k>0(j=I.....n: k=1.2....)
be n sequences of positive numbers such that rj.k > rj,k..( and limk_,,. rj,k = 0
(j = 1..... n). We consider the nested sequence of polydisks bk centered at p in
C" defined by

¢k . Iz,-z,I<r,.k (j=1... .n; k1,2....).
Set 6k:= 7r-t(bk) C G. Then each 1r-1(6j.) (k = 1.2,...) can be decomposed into
at most a countable number of connected components. If there exists a connected
component 6? 96 0 in bk for each k = 1.2.... such that

60
k .1 c Sk (k = 1.2....). (1 bk = 0,

k=1

then the sequence {Sk}k defines a boundary point P of G over p. We say that each
component Sk is a fundamental neighborhood of p in G and the sequence {Sk}k is
a fundamental neighborhood system of p in G. Let {bk}k and {qk}k be two
fundamental neighborhood systems of the boundary points p1 and 1l2 of G over the
same base point p E C". If. for any Dk (resp. qk). we can find qk, (resp. Sk,) such
that qk. C dk (resp. b14. C qk). then 01 and jig define the same boundary point of G
over p.

Let g be an unranified domain over a domain D C Cr' and let R denote the
canonical projection of g into D. The boundary point p of G over a point p in
D is called a relative boundary point of G with respect to D. We say that an
unramified domain G over D C C" which has no relative boundary points with
respect to D is an unramified domain over D without relative boundary. Let g be
an unramified domain over D without relative boundary. From standard covering
space theory, given any point p E G and any continuous are f in D starting from p,
we can find a unique continuous arc I in g with initial point at p such that ir(f) = E.
This shows that the number of sheets n(p) of G over p E D is independent of p. In
particular. if D is simply connected, then any unramified domain G over D without
relative boundary is a univalent domain.

Intersection of domains. Let be a finite number of unramified domains
over C" and let a, denote the canonical projection of G, into C". Let p be a point
in C" such that there is at least one point p, in G, (j = 1,....1) with a(p,) = p.
\Ve set p:= (p1.... , p,) and consider the set G of all such p for each p E C". Define
it to be the projection from G into C" via ir(p) = p. We next introduce a topology
on d as follows: let p = (p1.... pr) E and let ir(p) = p E C". We can find a
polydisk b containing p in C" such that there exists a univalent neighborhood bj
of p, in Gj with ir;(b,) = b. The set b of all points q = (91.....gl) of 9. where
q, E S (j = 1.....1) are associated to some q E 6. constitutes a neighborhood of
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p E gS. These form a neighborhood basis at p for the topology on Q. The space 9
equipped with this topology becomes a Hausdorff space. Since Tr 13 is bijective from
6 onto S. it follows that j is an unramified domain over C", and n is the canonical
projection from G into C". We say that g' is the intersection of the unramifled
domains {gjj }1=1 over C", and we write j = 91 n ... n q,.

In general. is not connected even if each 1, (j = 1.... ,1) is connected; cf.
Remark 6.2. Let p = (pi,. .. , P,) E Q lie over p E C" and let Qp be the connected
component of j which contains p. Let q = (q l ..... q,) E 9p lie over q E j. We
can find an are f which connects p and q such that there exists an arc L, in 9,
(j = 1.... ,1) which connects pj and qj with 7rj(Lj) = F: then L = (L1,... ,L,) is
an arc connecting p and q in CGp. By convention we say that cp is the intersection of
{Cjj };=1 determined by the initial point p. We can also consider the intersection of
infinitely many (countable or uncountable) unramified domains in a similar fashion
to that of finite intersections of unramified domains.

REMARK 6.1. Let fj(p) be a holomorphic function on an unramified domain
9j (j = 1,... ,1), where I < oo. Then Fj=I f''(p) and [Ij=I f,' (p) (aj > 0 is an
integer) define holomorphic functions on the intersection g, n . . . n g,.

REMARK 6.2. Even when c1 = C2 and `j, is connected, the intersection c, ng2
need not be equal to 991 = 92: nor must the intersection be connected. For example,
let 91 = 92 be the unramified domain over D = {0 < Jz! < oo} in the complex
plane C. determined by the function f, i.e., the Riemann surface of f over D.
Let z = 1 E D. Then each Jj (j = 1, 2) contains two different points pj and qj
lying over z = 1. In C1 n g2 we set p = (P1.P2). q = (g1, g2), and r = (pi, q2).
The connected component Ccp of g, n 992 determined by the initial point p coincides
with the connected component GQ determined by the initial point q. However, the
connected_ component Jr of g, n C2 determined by the initial point r is not the
same as Gp. Thus, g, n 92 consists of two connected components, Gp and Jr.

6.1.2. Locally Ramified Domains. We next define ramified domains over
C"; here, the branch points will be regarded as interior points of the domain. First
w e consider the local case. Fix a = (a, , .... a") E C" and let

A : Jzj-a,]<r, (j=1,...,n)
be a polydisk in C". Let E be an analytic hypersurface in 0 and set a := A n E
and A' :_ A \ a. We. note that for any p E o and any sufficiently small polydisk 6
centered at p in C" the intersection 6 n A' is connected. Let D' be an unramified
domain over A' without relative boundary; let it be its canonical projection; and let
in be the number of sheets of ZY over A', which is assumed to be finite. Fix P E O.
There exist boundary points p of D' over p. The number of such points {p} is at
most m. We form the union of all p over each p E O with D'. and we denote the
resulting set by D. For each p` E D \V, we introduce a fundamental neighborhood
basis as follows. Let 0 be any fundamental neighborhood of the boundary point p
of D' and set 6° := ir(60). Let q E a n So and let q` be one of the boundary points of
D' over q. If there exists a fundamental neighborhood 17 of q` which is contained in

6°. then we say that ij touches 6°. We let 6° denote the union of 6° and all points
4 for each q E o n 60 which touches 6°. We then define 6° to be a fundamental
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neighborhood of p' of D. For a fundamental neighborhood basis dk (k = 1.2....) of
a boundary point p of the unratnified domain D'. we construct 6(t' (k = 1.2....) in
V by the above procedure and we let btk (k = 1....) be a fundamental neighborhood
basis of p in D. Using this neighborhood basis. D becomes a Hausdorff space which
contains V. Note that since the topology of D does not depend on the choice of a
fundamental neighborhood system 6A (k = 1.2,...) of p' over p E a. V is uniquely
determined by V. N e call D the ramified domain associated to D'. In general.
such a domain D is called a locally ramified domain over A. precisely. a locally
ramified domain over A without relative boundary (or a branched cover of A).
The canonical projection it defined in D' extends continuously to D in a unique
fashion. We call this the canonical projection of V onto A. and we use the same
notation ir. \tie also call m (the number of sheets of D' over A') the number of
sheets of D over A. For any p E V. we call p := ir(p) the projection of p. or the
base point of p.

Using the same notation, if E (the analytic hypers.urface in the polydisk A)
does not intersect

E : fz, - a,I:rj (j=1.....n-1). I=r".
then D is said to be standard with respect to z,,. Let V be any locally ramified
domain over the polydisk A and let p E D. Then we can choose a coordinate system

of C" such that there exists a poly disk A° C A centered at p with the
property that the portion D(, of V lying over DO contains p and is standard with
respect to z,,.

Branch sets. Let D be a ramified domain over a poldisk A in C" and let E be
an analytic hypersurface in a. Let o, :_ A fl E; let ji E V lie over p E a and let
6° (k = 1.2....) be a fundamental neighborhood basis of p` in D. Then each 4!
becomes a ramified domain over 1r(6A) C A. Furthermore, the number of sheets Mk
of dR is independent of k provided k is sufficiently large. We denote this number by
v > 1, and we call v-1 the ramification number of D at p`. If v > 2. we say that
p` is a branch point of D. If v = 1, we say that p' (as well as each point p E D') is
a regular point of D. The set D° of all regular points of D is called the regular
part of D. Clearly D° is a connected subdomain of D and may be considered as an
unramified domain over A. We let S denote the set of all branch points of D and
we call S the branch set of D. Note that if S 54 0. then the projection S of S into
A consists of some irreducible components of a in A. Furthermore, suppose p E S
is chosen so that p is a non-singular point of S. Let I be the ramification number of
D at p. For simplicity. suppose p = 0 E A and S : z = 0 near p = 0. Then, near
p, V has a representation over a neighborhood of the origin in C" as the product
of C" - I with variables z i ..... z - i and the Riemann surface of V z-,, over C,,,. We
call such a branch point p a regular branch point of D. If a # 0 and the number
of sheets m of D' is at least 2. then V always contains branch points. This follows
since A is simply connected.

Let D be a rainiffed domain over A. If a continuous. complex-valued function
f (p) on D is holomorphic in V. then we say that f (p) is a holomorphic function
on D. We now give the prototypical example of such a function.

EXAMPLE 6.1. Let

P(z.u') = ICm +a,(`)w'" I +. ..+a,.(z)



(3.1. RAMIFIED DOMAINS 171

be an irreducible polynomial which is monic in w. where a, (z) (i = l.... , m) are
holomorphic functions in a polydisk A in C" . and let

E : P(z. a')= 0 in A x C,,..

We let d(z) denote the discriminant of P(z.w) with respect to w; thus d(z) is not
identically 0 in A. Let a := {z E A I d(z) = 0} and A' := A \ a. Then we have the
algebraic (single-valued) function w = >7(p) defined implicitly by P(z, w) = 0 on
the unramified m-sheeted domain D' over A' without relative boundary. Further-
more, if we consider the ramified domain D associated to D', then 17(p) becomes
a holomorphic function on D. We call the locally ramified domain V over A the
Riemann domain determined by the algebraic function w = q(p). and we
call V the projection of the analytic hypersurface E over A.

Let (z0. w()) E E with z(I E a. If (zo. wo) is a non-singular point of the analytic
hypersurface E in A x C,,.. then we can find a unique point p E D\D' such that p is a
regular branch point of D; and there exist neighborhoods 6 of (z(I. w()) in A x C,,. and
V of p in D with 6nE bijective to V. In general, there exist a finite number of points
p, (i = 1.... , v) in V which correspond to (ze. w(I). i.e., p, = zz and 17(pi) = wa.
For example, let P(zl, z2, w) = U?6 - z?4. Then a = {z1 = 0} U {z2 = 0} and
{z1 = w = 0} U {22 = w = 01 C E. The origin (0.0.0) in E corresponds to the
single point p1 of V lying over the origin (0.0). However, to any point (z1.0.0)
or (0, z2.0) of E other than the origin there correspond three or two points of D.
respectively.

Conversely, let V be any m-sheeted locally ramified domain over a polydisk A
in C" with branch set S. We let o := S. Let n(p) be any holomorphic function
on V such that i7(p) has m different values over some point p E A' := A \ or.
Then we can construct a monic polynomial P(z. w) in w such that the coefficients
are holomorphic functions in A and such that the algebraic function determined
by P(z.w) = 0 coincides with w = rl(z). Indeed, it suffices to define P(z.w)
n "_1(w - s1J(z)), where %(z) (j = 1,....m) are the values which t)(p) assumes at
p over z. In particular, if we set A := {p E Vt >7(p) = 0}, then the projection A is
the analytic hypersurface in A defined by {z E A ( P(z.0) = 0}. Thus, the zeros
of the holomorphic function ii(p) on the ramified domain D are not isolated, as in
the case of a univalent domain in C" (n > 2).

6.1.3. Ramified Domains. Next we define a (globally) ramified domain over
C". Let g be a connected Hausdorff space and let sr be a continuous mapping from
c into C" with the following property: for any point p E 9, there exists a polydisk
6 centered at ir(p) in C" such that the connected component 6 of a-I (6) which
contains p is a locally ramified domain over 6 without relative boundary; and the
canonical projection from 6 to d is the restriction of it onto 6. In this case, we call
9 a ramified domain over C". We call 6 a fundamental neighborhood of p. and
a branch point of 6 is called a branch point of C. The set of all branch points of g
is called the branch set of Q. A point of g which is not a branch point of g is said
to be regular. The set of all regular points of G is called the regular part of 9.
For a point p E C" such that n-I (p) contains no branch points of Cj, the cardinality
of n-1 (p) is called the number of sheets of g at p. The maximum m(g) of such
m(p), p E C", is called the number of sheets of G. This number may be +x.
A boundary point of f+ over C" is defined in a manner similar to the case of a
boundary point in an unramifed domain over C". If sr(G) is contained in a domain
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D C C". then we say that Q is a ramified domain over D. A boundary point p of the
ramified domain g over D such that r(p) E D is called a relative boundary point of
Q with respect to D. A ramified domain Q over D which has no relative boundary
points with respect to D will be called a ramified domain over D without relative
boundary. An open and connected set D in Q is called a domain in Q. although we
often drop the connectivity assumption. Let f (p) be a complex-valued function on
a domain v in Q. If f (p) is holomorphic on a fundamental neighborhood 61, of each
point p E v. then we say that f (p) is a holomorphic function on v.

Let G1 and G2 be ramified domains over C" and C'". Let p(p) be a mapping
from Q1 into g2. If for any domain v in 92 and any holomorphic function f (q)
on v the composite function j (p) := f (;p(p)) is a holomorphic function on the
domain-1(v) C 91, then we say that. p(p) is an analytic (or holomorphic)
mapping from 91 to 92. Moreover, if m = n and if there exists a bijective analytic
mapping from 91 to 92. then 91 and 92 are analytically (or biholomorphically)
equivalent. Note that an analytic mapping does not always map branch points to
branch points.

Let Q' be an unramified domain over C" and let r be the canonical projection
of Q' into C". We will construct in a canonical way a ramified domain Q associated
to G'. First take a E C" and a polydisk a centered at a. Let E be an analytic
hypersurface in a, and set a := E n a and a' := a \ a. If there exists a connected
component D' of r-1(a') C Q' which is a finitely sheeted unranified domain over a'
without relative boundary, then we can construct the ramified domain V associated
to D' as defined in 6.1.2. We replace each such component D' by the corresponding
domain D. Then we have constructed a ramified domain Q over C", which we call
the ramified domain associated to G'.

We now define the intersection of a finite number of ramified domains Q, (j =
1,... ,1) over C". Let Gj' be the regular part of C. Since G,, is an unramified
domain over C", we can construct g' n ... n Q;. which consists of a finite number
of unramified domains H, (k = 1,... , L). We form the ramified domain HL- over
C" associated to Hx, and the totality of these domains H1..... HL is called the
intersection of ramified domains {G,}j_1 and is denoted by 91 n ... n 91.
Given p, E Q, (j = 1.... ,1) such that rj(pj) is the same base point p E C", we
can define the connected component of Q1 n ... n Q/ determined by the initial point
p = (P1, . p,) in a similar fashion as in the case of unramified domains. Similarly,
we can define the intersection of infinitely many (not necessarily countable) ramified
domains over C" .

The following example gives the relationship between an analytic set of pure
dimension r < n in a domain D C C" and an associated ramified domain over Cr.

EXAMPLE 6.2. Let ,6 be an irreducible r-dimensional analytic set in a domain
D C C". We take Euclidean coordinates (z1.... ,z,,) of C" which satisfy the
%N-eierstrass condition for E at each point of E. Then £ can be represented in the
form (Zr+1, ... , z,,) = ,7(z1.... , z,.); i.e.,

Zn = rrn(Z1.... .

where r1j(z1,... ,zr) (j = r + I.....n) is a holomorphic function in a ramified
domain V3 over Cr with variables z,.... , and canonical projection rj. Fix
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a non-singular point p' = (zi, ... , z;,) of E. Then. over the point (z' , , z;.),
there exists a unique point pJ E D, (j = r + 1,... , n) such that zz = (pj). If we
construct the intersection b of D. (j = r + 1..... n) determined by the initial point

,p.), then rl(z) is a single-valued holomorphic vector-valued function on
D. Since E is irreducible. the graph (zr+l, . z") =17(2'), z' = (z1.....Zr) E Din
C" coincides with E. Thus we call b the ramified domain over Cr determined
by 71(2'), or the projection of E over C'.

6.1.4. Properties of Locally Ramified Domains. We now exhibit some
interesting phenomena for ramified domains over C" (n > 2), noted by K. Oka,
which do not occur in the case n = 1.

1. Non-uniformizable branch points. Let g be a ramified domain over
C" and let it be the canonical projection of g into C". Let p be a branch point
of G. If there exists a neighborhood v of p in G such that v is biholomorphically
equivalent to a polydisk, then p is called a uniformizable branch point of G. In
the case of C. any branch point of any Riemann surface is uniformizable.

Let p be a branch point of G. Let d be a fundamental neighborhood of p in G
and let a be the branch set ofGin6. We let d=Tr(b)and or =a(a).so that pEQ.
It is clear that if p is a non-singular point of a, then p is a uniformizable branch
point of G. We now give an example of a branch point which is not uniformizable.

EXAMPLE 6.3. In C2 with variables zi and z2. we consider the ramified domain
g over C2 determined by the algebraic function

W2 - zj + z2 = 0. i.e.. U, = t zi - z2.

Then G is two-sheeted over C2 with branch set z? - i2 = 0. The point 0 of G over
the origin (0, 0) E C2 is not a uniformizable branch point of G.

We prove this by contradiction. Assume that 0 is uniformizable. In particular,
there exists a simply connected neighborhood b of 0 in 9 such that b \ (O} is also
simply connected. We may assume that b has no relative boundary points with
respect to b. We consider the function

g(z1.z2) = z1 - z2,

which is locally holomorphic on b \ {O}. Since b \ {O} is simply connected, 9(z1. z2)
must be single-valued on b \ {O}. On the other hand, fix an c with 0 < e < I such
that {Iz1I < 2e} x {Iz21 < e} C b. We can choose two distinct points Pr, PP in
S over the point (e.0) E S. Consider the closed circle E : (21.22) = (ee'e,0), where
0 < 0 < 2n. in If we traverse f in G starting at P. then we return to P+.
However, g(P,+) = f # 0 will vary through the values a e'B and has final value
- f. This contradicts the single-valuedness of 9(z1, z2) on b \ {O}.

2. Analytic sets in a ramified domain. As in the case of univalent do-
mains in C". we shall define analytic sets A in a ramified domain 9 over C". Let
A be a closed set in G. If. for each point a E A, there exist a neighborhood b of a
in 9 and a finite number of holomorphic functions f, (p) (j = 1.... , A) in b such
that b n A = { fo(p) = 0 (j = 1..... p)}. then we say that A is an analytic set in
G. We note that the zero set E of a non-constant holomorphic function f (p) in 9
is called an analytic hypersurface in 9 (provided E # 0). Such a set E contains
no isolated points in 9 (see 2 of Remark 6.1).
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In the case of an analytic hypersurface E in a univalent. domain D in C", for any
point zo E E, we can find a holomorphic function f(z) defined in a neighborhood
6 of zo in D such that f (z) = 0 precisely on D fl E with order 1. This result is
no longer true in the case of analytic hypersurfaces in ramified domains over C".
We give an example of an analytic hypersurface E in a ramified domain G over C"
(which passes through a non-uniformizable branch point p) of G) such that there
does not exist a neighborhood 5 of p0 in g on which E fl 6 may be written as the
zero set of a holomorphic function f (p) with order 1.

EXAMPLE 6.4. Let G be the same ramified domain over C2 as in Example 6.3.
Take two (one-dimensional) analytic hypersurfaces E+ and E- over z2 = 0 in
and consider the holomorphic function f = f (p) in g. defined as

f(p) zi - z2 - zt. (6.1)

If we choose a suitable branch of the function Vz1 - z2, then f (p) = 0 on E+ and
f (p) 0 in G \ E. Note that the order of the zero of f (p) at each point on E* is
two. This follows because if we fix (E. 0) E E+ with r > 0. then in a neighborhood
of (E, 0) we can write

2

PC Z2) = E2 -Z2 - E=-ZE + O(z2).

On the other hand, we now proceed to show that there does not exist a holo-
morphic function F(p) defined in a neighborhood 6 of the point 0 in G over the
origin (0, 0) E C2 such that F(p) vanishes to order one at each point of E+ fl 6
and F(p) 54 0 on 6 \ E+.1 We prove this by contradiction. Assume that there
exists such a holomorphic function F(p) defined in a neighborhood 6 of 0 in G. We
may assume that 6 has no relative boundary on 6. We consider the holomorphic
mapping

T: u1 =Z1, w2=F(p)
from 6 into C. Define c := T(6). which is a ramified domain over C. such that
the point 0 = T(O) is the only point of i lying over (w1. tu2) = (0, 0). We fix a
bidisk B := BI x B2 C Ce,. where BI = {Iw1I < p1} and B2 = {1w21 < P2}, such
that there exists a subset ct1 of K over B which has no relative boundary points on
B. Thus the number of sheets m > 1 of ,cj is determined. If we show that, in fact,
m = 1. it follows that ,co = B. In this case. the point 0 is thus a uniformizable
point of G. which contradicts the fact stated in Example 6.3. Hence it suffices to
verify that m = 1.

We begin by choosing a bidisk A := AI X A2 CC ¢, where

01 ={lz1I<pi} and A2={1221<P2'},
and with pz > 0 chosen so small that ((801) flA2] fl {z? = z2 } = 0. We let & denote
the subset of 6 over A. We fix an annulus, I {pi < I zil < pi} containing )AI
such that if we let A I', X O2, then A fl {z1 = 2211 = 0. We thus have two regular
parts A} = rl x A2 of ,& over A. We assume A+ fl E+ 0 0 and A- fl E'' = 0. Over
each point (zt, z2) E A. there exists a point (zi . z2) E A. We fix zI E r1. By
assumption, as a holomorphic function of the complex variable z2 in A2. F( zi . z2)
vanishes if and only- if 22 = 0 (with order 1): also F(zi. 22) 54 0 at any point z2 E A2.
Thus there exist small disks A2 :_ {jz21 < a2} C A2 and B2 := {1w21 < i32} C B2

'This proof is due to T. Kizuka.
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such that F(zi . Z2) is univalent on A2 with BL C F(zl , AZ): in addition. we can
choose '2 > 0 sufficiently small so that IF(zI,z2)1 > r}2 for any z2 E 02. Letting
z1 vary over r, we may assume that 612. 82, t > 0 are independent of z1 E Ft.
Furthermore. since F(p) vanishes only on E' in g. it follows that we can find t2 > 0
such that IF(p)I > 6 for any p E 9 with p E b n (171 x {Iz21 > 02}). Thus. if we

} x {!W21 < c2} C C2.. thenset E2 := min(32.7h,t2) > 0 and A := {pl' < !u'11 <g
the subset of io lying over A consists of a single univalent part. Thus m = 1. as
desired.

Note that if we set g(p) := z1 - z2 - 21(1 + z2), then g(p) = 0 is of order I
along E* but g(p) has additional zeros near E+.

3. Intersection of two analytic hypersurfaces in a ramified domain.
Let D be a (univalent) domain in C" and let S1 and S2 be two distinct irre-

ducible analytic hypersurfaces in D. If the intersection S1 n S2 is nonempty. it is a
pure (n - 2)-dimensional analytic set in D. This result no longer holds in the case
of ramified domains over C".

EXAMPLE 6.5.2 We consider C2' with variables z = (z1,... ,z") and w _
(w1 i .... u") (here n > 2). Let

E:={(z.w)EC2" I z,wj =zj w, (1 <i.j <n)},
or, as is usually written.

u'1 u
Z1 "

Thus. E is an irreducible (n+1)-dimensional analytic set in C2i passing through the
origin (0, 0). Choose coordinates (u1 , .... U2") of C2' which satisfy the «eierstrass
condition for E at each point of E_ If D denotes the projection of E over the space
Ct+1 generated by the first n + I variables u1 , u"+1. it follows that V is a
ramified domain over Cn+1. We usually identify V with E. and we let 0 denote
the point. of D which corresponds to the origin (0, 0) in E. For any complex number
c E C. we define the n-dimensional analytic plane

I,,.: w, = cz; (i = 1..... n)
in C2i. Then L C E for each c E C, and L,., n L,., = {(0, 0)} in C2" if c1 0 c2.

Let C, denote the set in V corresponding to L, in C2". Then G, is an irreducible
analytic hypersurface in D with ,C,, n G,:, = {0} (c1 c2). This is 0-dimensional.
which yields the example since n + 1 > 3.

Furthermore, we note that for each c E C, there does not exist a holomorphic
function f (p) defined in a neighborhood V of 0 in D which vanishes precisely on
V n L, (regardless of the order of vanishing of f (p) along G,). We prove this
statement by contradiction. Thus we assume that there exists such a function f (p)
in a neighborhood V of 0 in D. We fix c' E C with c' 14 c. Denote the restriction
of f (p) to V n Ce (which is an n-dimensional ramified domain) by f11(p). Then
fo(p) vanishes only at the origin 0 in v fl c,,: in particular, the zeros of fo(p) are
isolated. This is impossible since n > 2. 0

4. Meromorphic functions in a ramified domain.
Let D be a ramified domain over C" (n > 2) and let A C D. We say that A

has dimension at most k if, for each point a E A. there exists a neighborhood 6 of

2This example is due to H. Grauert 1231.



176 6. RAMIFIED DOMAINS

a in V lying over a polydisk 6 centered at a in C" without relative boundary such
that A fl 6 is contained in a k-dimensional analytic set in b.

Let g(p) be a function defined in D. If g(p) can be represented locally as the
quotient of two holomorphic functions, then we say that g(p) is a meromorphic
function in D. More precisely. g(p) is a single-valued function on D (taking values
in C U {oc}) except for an at most (n - 1)-dimensional set A in D: moreover. at
each point p E D. there exist a neighborhood A of p in V and holomorphic functions
h6(p), kj(p) such that {h6(p) = k6 (p) = 0} C A and g(p) = h6(p)/k6(p) in 6\A. A
point p at which hs(p) j4 0 and k6(p) = 0 is called a pole of g(p). The points p at
which h6(p) = ks(p) = 0 are called the points of indeterminacy of g(p). Thus.
the set A is considered as the set of all indeterminacy points of g(p) in D.

Assume now that D is a ramified domain over a polydisk A C C" without
relative boundary such that the number of sheets m is finite. Let g(p) be a mero-
morphic function in D. Then there exists a polynomial Q(z. it,) of one complex
variable w of degree m.

Q(z. a(r(z)w"' + a,(z)u''"-1 + ... + a,.,(z),

where each a, (z) (i = 0.1..... m) is a holomorphic function in D. such that for
each fixed z = p. the set of points w satisfying Q(z. w) = 0 coincides with w = g(p).

To see this, fix z E A \ A. where A is the set of indeterminacy of g(p) in D.
Then there exist m points pl,....pof D such that p, = z. and we denote by
gl(z).....g.(z) the values of g(p) at pi.... .p,,,. We form the product

r"

R(z, w) _ fl(w - g,(z)) = w"` + bt(z)w''" + ... + b...(z).
f=1

where each bs(z) (i = 1,....m) is a single-valued meronlorphic function on A \
A. Since g(p) can be locally represented as the quotient of two holomorphic
functions. b,(z) is a meromorphic function on A. Thus, b,(z) = a,,(z)/a2,(z).
where al,(z) and a2,(z) are holomorphic functions in A. and setting Q(z,w)
R(z. w)a21(z) . . a2,"(z) gives the desired representation.

An indeterminacy point p E V of g(p) satisfies a(,(p) a..(p) = 0. In
general. the set of indeterminacy points of a meromorphic function in a ramified
domain over C" is no longer of dimension n - 2. in contrast to the case of univalent
domains in C".

EXAMPLE 6.6. We recall the ramified domain D over C" (n > 2) from Ex-
ample 6.5. and we use the same notation E.V. L. Cc. We note that

E = U L,., where L, = {(0,w) E Cl" I w E C" }.

We set

c4 EP

u;l
in C2".

ZI
and consider the restriction of 4 to E. which we denote by ;(z. w). Thus. ,;,j j . = c.
If we let gy(p) denote the function on V which corresponds to Y(z. w) on E. then
Y is a meromorphic function on D with pole set C., \ {O}. zero set Co \ {O}. and
only one indeterminacy point, namely {O}, which is not of codimension 2.

EXAMPLE 6.7. In Example 6.4, consider the meroinorphic function g(p)
AP) /Z2 . Where p = (z1. z2). in the two-dimensional ramified domain 9, and f (p) is
defined by (6.1). Then the set of indeterminacy points of g(p) is one-dimensional.
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6.1.5. Ramified Domains of Holomorphy. Let D be a ramified domain
over C". Let f(p) be a holomorphic function in D. If f(p) satisfies the following
two conditions:

1. f (p) has different function elements at any two distinct points of V. i.e.. for
any two distinct regular points P1.p2 E D such that p1 = p2 = zo in C".
f (p) has different Taylor expansions in powers of - zn in neighborhoods of
pi and p.?. and

2. there is no ramified domain b over C" with D C D and f) 54 V such that
f (p) can be holomorphically extended to V.

then we say that V is a ramified domain of holomorphy of f (p). Furthermore,
a ramified domain V over C" is called a ramified domain of holomorphy if
there exists at least one holomorphic function f (p) such that V is a domain of
holomorphy of f (p). Given a ramified domain V over C". there exists a smallest
ramified domain of holomorphy b which contains D. For this purpose. it suffices
to consider the intersection n D of all ramified domains of holomorphy f) such that
V C D. since, in particular. C" is one such D.

Now let V be a ramified domain over C" and let K CC D. We define

Kr := {q E D I If (q)1:5 max If (p) for all f holomorphic in D},
pElt

which is called the holomorphic hull of K in D.
If a ramified domain D over C" satisfies the two conditions:

1. there exists a holomorphic function f(p) in V such that f(p) has different

function elements at any two distinct points of V. and
2. foranyKccDwehave K, CC V.

then we say that D is holomorphically convex. In Theorem 1.13 in Part I we
showed that a (univalent) domain D in C" is a domain of holomorphy if and only if
D is holomorphically convex. In the case of ramified domains D over C" for n > 2.
D holomorphically convex implies V is a domain of holomorphy, but the converse
is no longer true in general. This is shown by the following example of H. Grauert
and R. Remmert [23).

EXAMPLE 6.8. We consider the ramified domain V over C"+1 (n > 2) in Ex-
ample 6.5 and use the same notation. We set D' := D \ Go. which is also a ramified
domain over C". Then D' is clearly a domain of holomorphy for the function
1/.gy(p) (where ,;,(p) is defined in Example 6.6). However. D' is not holomorphically
convex.

To prove this. we fix a non-zero complex number c and consider the following
subsets in E C C2i:

K = Ls.n{11z112+11w112=1}.

I = L,n{O< IIZII2+IIV-I12 << 1}.

We let K and I denote the sets in V which correspond to K and I. Then K CC D'
and K CC E \ L11. Furthermore. I C D' and I C E \ LI), while I is not compactly
contained in D' nor is I in E \ LI1. Let f (p) be a holomorphic function on V. We
restrict f(p) to G, \ {O} and denote this restriction by f,.(p). and we let ff(z.w)
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denote the corresponding function on L \ {(0,0)}. Then j,.(z.cz) is holomorphic
for z E C" \ {0}. and hence in all of C". It follows that

If,(z,cz)I < ma+If, (z,cz)I in 0< 11=11 S (1 + 1c12)-1.

Hence :r C Kn.. so that V is not holomorphically convex.

6.1.6. Ramified Pseudoconvex Domains. The notion of pseudoconvexity
of a domain is extracted from some geometric properties which a domain of polo-
morphy satisfies, and it was conjectured that, conversely, a pseudoconvex domain
is a domain of holomorphy. As will be shown in Chapter 9, Oka proved that this is
true in the case of a univalent domain in C" and even in the case of an unramified
domain over C". However, in the case of a ramified domain over C", the prob-
lem of finding necessary and sufficient geometric conditions for the domain to be a
ramified domain of holomorphy over C" is not yet completely solved. Thus, there
is no precise notion of pseudoconvexity for a ramified domain over C".

We first give the definition of pseudoconvexity of an unramified domain over
C", even though it is very similar to the case of a univalent domain in C". Let V be
an unramified domain over C" with variables z1, .... z" and let it be the canonical
projection f r o m V to C". L e t z° = ( : ' . . . . . z ) E C". For positive numbers r' < r
and p' < p we consider two open sets in C" defined by

Izj - z°I<r (j=l,....n-1), p' <Iz"-z;;I<p:
1=i-z°1<r' (j=1,...,n-1),

We let E denote the union of these two open sets, and we let C be the open polydisk
in C" given by

C . Izf-. I <r (J=1, ..,n-1).
If there exist univalent parts a and V of D such that 7r(v) = E and a(V) = C, then
we denote these sets by v = E and V = C.

We say that the unramified domain V satisfies the continuity theorem if for
any z" E C" and any r, r'. p. p', whenever the set F, exists as described, then a
corresponding set G exists with E C C.

Now let A be a polydisk in C". If the subdomain r- I (-A) of D satisfies the con-
tinuity theorem and if this property remains invariant under an analytic mapping
of A,'1 then we say that V is pseudoconvex.

This definition of pseudoconvexity of an unramified domain over C" corre-
sponds to the pseudoconvexity of type C for a univalent domain in C". One may
also define the pseudoconvexity of an unramified domain over C" which corresponds
to that of type A or of type B for a univalent domain in C"; we will not state these
definitions here.

We will temporarily define a pseudoconvex ramified domain over C" as follows.
Let V be a ramified domain over C" with branch set S and let D° = D \ S. Since
D11 is an unramified domain over C", we have the ramified domain V over C"
associated to D". We let S' denote the brands set of D'. In general. S C S'. If V
satisfies the following three conditions, then we say that D is pseudoconvex:

'Precisely. let u' _ ¢(z) be an analytic mapping from A onto a univalent domain a' in Cl..
so that O(z) maps a (A) to an unramified domain d over A'. Then d satisfies the continuity
theorem.
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(i) D° is an unramified pseudoconvex domain.
(ii) Let a' be the set of all regular points of the branch set S'. If there exists

at least one point of a' contained in S. then o' n S is pseudoconvex in a'
(as an (n - 1)-dimensional domain).

(iii) Let p be a branch point of D. If there exists a neighborhood r of p in D'
such that v nS' C S except for at most an (n - 2)-dimensional analytic set.
then p E S.

According to this definition, a ramified domain of holmnorphy over C" is pseu-
doconvex. but, as stated earlier, the converse problem remains open.

6.2. Fundamental Theorem for Locally Ramified Domains

6.2.1. Characteristic Functions in Ramified Domains. Let A <
r2 (j = I.....n) be a polydisk in C" with variables zz = (zl.....z"). Let RI be
a ramified domain over a neighborhood of : such that the part R" of RI over
A has no relative boundary. We let m denote the number of sheets of R°. which
we assume is finite. We also let a denote the branch set of R" and o = 7r(a) the
projection of a onto A. so that a is an analytic hypersurface in . : finally. we set
0':=0-0.

Let f (p) be a holomorphic function on R°. If f (p) has in different function
elements at the m distinct points of R" lying over a base point :;, E d'. then f (p) is
called a characteristic function on V. In this case, f (p) has rn different function
elements at each of the in distinct points of R° lying over any base point z' E r'1'.

We introduce an additional complex plane CX and consider the product space
A = A x C,v C C"+I. Given a holornorphic function f (p) on W. we consider the
set C in A defined as

C: X=f(p) forpER".
which defines an analytic hypersurface in A. If f (p) is a characteristic function on
R°, then we say that C is the graph of f (p) on R°. There is a bijection between
R° and C except on at most an analytic hypersurface in R". We call the set of
points p E R° such that there exists a point q E R°, q -A p. with f (p) = f (q) the
set of multiple points or simply double points of f (p).

Let f(p) be a characteristic function on R° and let C be the graph of f(p)
on R° in A. We let S denote the (n - 1)-dimensional analytic subset of C which
corresponds to the branch seta of R". If each point of S except for at most an
(n - 2)-dimensional analytic set is a non-singular point of C. then we say that f (p)
is a simple function on R°. This does not necessarily mean that the singular set
of C has dimension at most n - 2. Let f (p) be a characteristic function on R°. If
there exists at least one non-singular point of C on each irreducible component of
S. then f (p) is a simple function on R''.

THEOREM 6.1 (Fundamental Theorem). A ramified domain D over C" locally
carries a simple function.

Unlike the case of one complex variable, the local existence of simple functions
on D in several complex variables is non-trivial. This theorem was first proved by
H. Grauert and R. Remmert 1241. In this chapter we shall give an elementary proof
of the theorem.

We begin with some preliminaries. Let D be a ramified domain over C" (n > 2)
and let p E C". We may assume p = 0 E C". We can always choose Euclidean
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coordinates (zl.... , z,) and a neighborhood R° of p in D lying over a pol disk
A : Iz.,I < r., (j = 1,... , n) such that R° is standard with respect to z,,. Using
the above notation a. A'. g, etc., this means that g doers not intersect _1n-1 x e9 ,

where
An-1

: I=jI < rj (j = I.... .n - 1) and J" : r,,.

To prove the fundamental theorem, it suffices to verify the existence of a simple
function on the standard ramified domain R". Then, for any fixed z' E A"-'. the
fiber

V(z') _ {z I (c'. z,,) E R°}
is an m-sheeted Riemann surface over the disk An in C.,, (with m finite), which may
have branch points. Thus R° can be considered as a variation of Rienlann surfaces
over the disk A,, without relative boundary with variation parameter z' E A"-'.

R°: z'- ROW ). zlE All-.
Let P. denote the Riemami sphere { I w I < oc } and let A : (z3 I < r, (j =

1. ... , n) be a polydisk in C" (n > 1). In the product space C" x P,,.. we consider
the product domain

Let 'R be an m-sheeted ramified domain over A without relative boundary (in finite)
and let

rr: R-A
be the canonical projection. We let rr,, denote the projection from A to A. We
assume that the projection o of the branch seta of R does not contain any line of
the form {z°} x P4.. For any subset e of A. we define

R(e) := 7r- '(0).
If e is a domain 6 in A. then R(6) is a ramified domain over 6 x P,,. without
relative boundary. If e is a point z E A. then R(z) is an ne-sheeted compact
Riemann surface over P,,,. We let ir; denote the restriction of rr to R(z).

Finally, for p° with 0 < p° < x, we let

A : Iz,I<r, (j=I....,n) inC"(n>1).
r° Iwl < p° in P.
A° : Axr° in A=AxP,,..

Let R° be a finitely sheeted ramified domain over A° without relative boundary. If
there exists a finitely sheeted ramified domain R over A without relative boundary
such that RI,%o = R°, then R is called an algebraic extension of R°.

With this terminology, we now state the following result.

PROPOSITION 6.1. Let R° be a finitely sheeted ramified domain over A°
x I"° without relative boundary such that the projection a° of the branch set a0

of R° onto A° does not intersect A x 8170. i.e., R° is standard with respect to the
coordinate w. Then there exists an algebraic extension R of R° which satisfies the
following conditions:

1. R has no branch set lying over A x {w = oo}.
2. For any z° E A. R(z(') is a connected, compact Riemann surface over P,,..
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PROOF. Since o fl (A x 81'0) = 0, we can find a sufficiently thin annulus A :_
{p' < Iwi < p"} in P,, which contains or') and is such that the part A of R°
over A x A consists of a finite number of connected unramified domains without
relative boundary, i.e., A is a finite number of disjoint unions of product sets of the
form A x Sj, where Sj (j = 1,... JO) is a finitely sheeted Riemann surface over A
without relative boundary. We construct an m-sheeted connected Riemann surface
B over {p' < Iwl < oo} without relative boundary such that the part of b over A
coincides with Si (j = 1,... J o) and b has no branch points over w = co. Then
we attach R° to the ramified domain A x B along the common part A, and the
resulting ramified domain 1Z over A x P,, satisfies the conclusion of the proposition.

13

We set R' =R \ 7r-1 (A x {oo}). From this proposition, we see that to prove
Theorem 6.1, it suffices to construct a simple function on R' instead of on R° 4

6.2.2. Algebraic Functions of One Complex Variable. We recall a fun-
damental result about algebraic functions of one complex variable. Let R be a
compact Riemann surface of genus g. Let p, (j = 1,... , p) be a finite set of points
of R and let e j (j = 1,... , µ) be positive integers. We set

We let M = M(R) denote the complex-linear space of meromorphic functions f (z)
on R such that f (z) is holomorphic in R \ {pj}j=1.....1+ and has a pole of order
at most ej at pj (j = I,_ , p). We let (I denote the complex-linear space of
holomorphic differentials w on R such that w has a zero of order at least ej at
pj (j = 1,... , µ). We recall the Riemann-Roch theorem.

THEOREM 6.2.

dim M =dim fl + e - g + 1. (6.2)

In particular,

dim M=e-g+l if a>2g-1. (6.3)

The last statement (6.3) folows from the fact that any non-zero holomorphic
differential w on a compact Riemann surface R of genus g has just 2g - 2 zeros
(counted with multiplicity).

Let R be a compact Riemann surface of genus g lying m-sheeted over Pa,. We
will assume in this section that all points of R over w = oo are regular points, i.e.,
non-branch points of R; we list them as L' (j = 1, ... , m). Thus we can choose
and fix a large number p0 > 0 such that, setting E = E 1, = {w E P. I Iwi > po}
there are no branch points over E. Therefore, there are m different copies E. (j =
1,...,m)ofEwith Lj,,, EEj. We set

R

Let £(R) denote the linear space of meromorphic functions f (p) on R such that
f (p) is holomorphic in R'; i.e., f (p) may have poles only at the points Ljx (j =
1,... , m). If we restrict f (p) to Ej (j = 1,... , m) and denote this restriction by
fj(w), then fj(w) is a single-valued meromorphic function on E which may have
poles only at w = oo.

4This idea is due to H. Behnke and K. Stein.
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Given an integer v > 1. we let C(R) of (p) E
poles of order v at each (j = 1..... m).

(p) E f (p)

of order each LX (j = 1.....m)}.
Note that f (p) E 4,(R) belongs to C,*, (R) if and only if the total order of f (p) is
equal to rnv.

Let f (p) E C(R). Then by constructing the fundamental symmetric functions
in the in branches of f (p). we obtain an irreducible polynomial of a new complex
variable X of the form

F(w.X)=X,,,+a,(w)tf,-t+ ...+a,n(u') (6.4)

such that for each X. the solutions of F(w.X) = 0 coincide with X = f(tr) and
such that each ok(w) (k = 1.....m) is a polynomial in w E Cu.. Thus. F(u,X)
is a polynomial in both variables u and X in C2. We call F(w, X) the defining
polynomial for f (p).

We have the following lemma.

LEw[A[A 6.1. Let f (p) E £(R). Then f (p) E G (R) if and only if each co-
efficient ak(w) (k = 1..... rn) of the defining polynomial F(w. X) for f (p) is a
polynomial of degree at most vk.

PROOF. Let f(p) E C (R). We consider the branch f, (w) of f(p) on E, (j =
1.... , m). For each k = 1..... in we have

ak(w) _ fi1(w)...fik(w) on E.

It follows that ak(w) is a polynomial in Ic of degree at most vk.
We prove the converse by contradiction. Hence we assume that some f (u) has

a pole of order greater than v at u' = x. We let v' > v + I denote the maximum
such order and we suppose f j,... , f (1 < I < m) have poles of order v' at
w = x. Then at(w) is a polynomial in w of degree v'l, which is a contradiction.

El

REMARK 6.3. Let f (p) E C (R) and let F(w. X) in (6.4) denote the defining
polynomial for f(p). Then f(p) E C;,(R) if and only if a,n(w) is of order mv.

Let f (p) E C(R) and let F(w. X) be the defining polynomial for f(p). We set

Cf :_ ((iv. X) E Cl I F(u.X) = 0).

which is called the graph of f (p) in C-. Thus. Cf is a one-dimensional analytic
set in C2. We consider the points Pr, (h = 1..... ho) of Cf which correspond to
the branch points of R and the points Qk (k = 1..... k(,) which correspond to the
singular points of Cf. We write

Ph = %) (h = 1.....ho), Qk = (Ilk q) (k =1.... ,ko).
It may happen that Pr, = Qt for some h and k. We note that the Sh (h
are uniquely determined by the Rietnann surface R. but of course this is not the
case for 11rjk and t1k. If Cf satisfies the three conditions:

1. each Pr, (h = 1..... h) is a regular point of Cf and each Qk (k = 1, ... , ktu)

is a normal double point of Cf;
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2. if i 34 j (1 < i, j < m), then

Jim f;(w)/ff(w) 36 0, 1, or 00; (6.5)
00

3. if k # l (1 < k, l < ko), then 17k # qt; furthermore, for each k
we have qk # £h (h = 1,... , ho);

then we say that f (p) has a simple graph Cf in C2. Here we say that Q = (q, q')
is a normal double singular point of Cf if there exists a bidisk A = 5 x 7 C CW.x
centered at Q such that A fl C f can be written as

{(w,X) E A (X - ft(w))(X - f2(w)) = 0},

where f, (w), f2 (w) are holomorphic functions in 6 with f, (77) = f2 ('7) = 17' and
fl'(t7) # fz(q). We note that condition 2 implies that the function f(p) is a char-
acteristic function on R, and hence Cf can be considered as a graph of f (p) on
R.

We let C,(R) C C (R) denote the set of all f (p) E whose graphs Cf are
simple in C2.

It is easy to see the following fact. Let f (p) E C,,(R) and let fn(p) E C,,(R) (n =
1,2.... ) with lim fn (p) = f (p) uniformly on R; i.e.,n-x

1. lim fn(p) = f (p) uniformly on each subset K CC R';
n-»oc /,,

2. for suffciently large n, f. (p) has the same order as f (p) at each V. (j =
1, .. , m).

Then fn(p) E CS(R) for sufficiently large n.
We have the following theorem.

THEOREM 6.3. Let R be an m-sheeted compact Riemann surface over P,,, of
genus g. Let ho be the number of branch points of R, and set vo := (ho + 2)m + g.
Then for any function g(p) E CS(R) with v > m vo satisfying condition (6.5),
there exist a finite number of functions O,(p) E C,, (R) (i = 1,... , q) such that for
sufficiently small E; # 0 (i = 1,... ,q), GE(p) := g(p) + E°=1 e, ,(p) is a simple
function on R.

This is a classical result in the theory of algebraic functions of one complex
variable. The proof will be given in Appendix 1 to this chapter.

6.2.3. Meromorphic Functions on 7Z(z). We return to the subject of 6.2.1.
Let A C Cn and let R be a ramified domain over A = A x P,, which has no relative
boundary and which satisfies conditions 1 and 2 in Proposition 6.1. Let r : R - A
be the canonical projection and let m be the number of sheets of R. Then the
subset of R lying over w = oo, i.e., r-I (A x {oo}), consists of m different analytic
hyperplanes which will be denoted by Lf. (j = 1,... , m). We set

R'=R\ (j= U 1L;.JI.

For z E A, we write R(z) = r-1(z) for the fiber over z, which is a compact Riemann
surface lying m-sheeted over P,,,. We set

R1(z) := R' n R(z), L',,.(z) := Lx fl(z) (j=1,.--'m).
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To prove the fundamental theorem (Theorem 6.1). it suffices to construct a mero-
morphic function G(z. p) of n + 1 complex variables (z. p) in R which is holomorphic
in R' and such that for some point a E Q. X = G(a, p) has a simple graph in Cam. .

Let E be the branch set of R and set E = rr(E). For Z E A. we let E(z) denote
the branch points of R(z), so that the section of E over z' coincides with E(z') for
all but a finite set of points z' E A. From condition 1 in Proposition 6.1. if we fix
a sufficiently large number p > 0 and set

r : lwI < p in Pa.. A° _ a x r.

then E is an analytic set in A° with E n (J x dr) = 0. It follows that the part of
R over a x (p :S JwJ < oc) consists of m disjoint univalent parts and that E can be
written as

E = {(z, w) E . x P,,. I P(z, u) = 0}.

where
P(z. w) = w' + a1(z)wK_I +... +Q,jZ)

and each aj(z) (j = 1,... , K) is a holomorphic function on A. We decompose
P(z. w) into the prime factorization

P(z. W) = 11 P, (Z' w).
t=1

where each P,(z, w) (k = 1.... , Y°) has the same form as P(z, te). We note that
P(z, w) has no multiple factors. We let d(z) denote the discriminant of P(z, w)
with respect to w. and we set

o:={zEAId(z)=0}. A'= \a.
Then o is an (n-1)-dimensional analytic hypersurface in .!1. We note that for each
z E A'. R(z) is a compact Riemann surface of the same genus. say g. However. for
z E a. R(z) is of genus g' with 0 < g' < g.

Let v > 1 be an integer such that my > 2g - 1. For z E d we write
i.e.. C,,(z) is the linear space of meromorphic functions on R(z) which

are holomorphic in V (z) and which have poles at L',c (z) (j = 1..... m) of order at
most Y. By the Riemann-Rock theorem. dim C,(z) = my - g + I. For simplicity,
we set

h, := rnv - g. dim =1 + 1.
We need the following lemma, related to normal families of holomorphic func-

tions of one complex variable: this will form the basis of our proof of the Funda-
mental Theorem from 6.2.1.

LEMMA 6.2. Let z) (j = 1.2....) be a sequence of points in :1 which converges
to a point z° E Let f)(p) E C,, (z)) (j = 1.2....) be non-constant on R'(--)).
Assume that one of the zeros y) of f) (p) converges to a point Z;" in R'(.-") as j 00.
Then there exists a subsequence fi-(p) (v = 1.2....) of f) (p) (j = 1,2....) and a
sequence b" (v = 1.2, ...) of complex numbers such that, if we set

.q"(p) := br,.fi"(p) (v = 1.2.... ),

then the g)-(p) (v = 1.2....) converge locally uniformly to a non-constant holo-
morphic function g°(p) on R'(z°) with g"(p) E C(z°).
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We need to explain the terminology of local uniform convergence on R'(z°).
Fix pU = (z", w(') E R'(z°) \ E(z°). i.e., 0 is a regular point of R'(z°). Take a
relatively compact polydisk A0 x 6 C A x Cu. centered at (zo. w°) in R' \ E. We
restrict gi"(p) (v = 1.2....) to {zi} x 6. which is thus a holomorphic function for
w E 6 which we denote by g2'(w). Similarly, we set 9°(w) = g°(p) for to E 6. where
p = (zl', w). The conclusion of Lemma 6.2 is that lim g'" (w) = g°(w) uniformly-rx
on 6.

PROOF. Since there are at most my zeros of fJ(p) in R(V), we can extract
from { fi(p)}i-1.2.... a subsequence { f7k(p)}k=1.2..._ in such a way that the zeros of
fik (p) converge in R either to the points co (t = 1..... m') in R'(:°) or to points
of LJ.(z°) (j = 1.....m). By assumption one of the points C° (t = 1,....m')
coincides with " E R'(z°) described in the lemma, say {I = °. We select a
regular point , of 1Z'(z°) such that rli # ,° (t = 1..... m') and we fix a polydisk
At x 61 centered at (°., ) in V\ E such that f 1k (p) 34 0 for any p = (VI., w) with
to E 6'. We set Vill: (z)".>7°) E R'(>ik ). Since f'k ( k) # 0 for any sufficiently
large k > kll, we can define

Vk = l/f'k(14k). k(p) = b"f'k(p) in R(z'k).

Since there are at most my points p satisfying g.' (p) = 1 in R(zik ), we can extract
from a subsequence {gi^(p)}h=1.2.... such that all points satisfying
gi^ (p) = I converge in R either to the points 11° (t = 1.... , m") in R'(z°) or to
points of V , (j = 1, ... , m).

Take any pt) = (z° E R'(z°) \ E(z°) such that 0 ° # (t
j = 1.... , m"). Choose a polydisk 0° x 6° centered at (z". 0°) in R' \ E such
that g.' (p) 0,1 for any point p of the form p = (zi^, w) with w E 0 and It > 1
sufficiently large so that z'^ E A°. If we restrict each gi^ (p) to 6' and call this re-
striction 9i^ (w), then gi^ (w) is a holomorphic function on 6° which omits the values
0 and 1. Thus, by Picard's theorem, we can extract from {gi^(w)}h-1,2,... a subse-
quence {g) . (to) .... which converges uniformly to 9°(w) on 6°. We can consider
g°(w) as a holomorphic function g"(p) on R'(?) fl P. By the standard diagonal
method we may assume that gi" (p) (v = 1, 2....) converges locally uniformly to a
holomorphic function 9"(p) on

R'(Z°) \ (F.(z-11) U {St },-L....rre U

Note that we have not ruled out the possibility that g"(p) - 0, 1, or oc on R'(z").
Since >f = (z°.u't) was a regular point of R'(z°). there exists a sufficiently small
polydisk A' x 6' centered at (z°. wl) in R' \ E and such that 86' contains neither
e° (t = 1..... m') nor r)° (j = 1,... , m"). It follows from Weierstrass' theorem
that the uniform convergence of gd" (w) (v = 1, 2....) on 06' implies the uniform
convergence of gi" (w) on 6'. Consequently. 9°(p) is holomorphic at pl and 9°(11i) =
1. Similarly, g°(p) is holomorphic at ' and 0. Thus, g°(p) $ oc on
R'(z"). It follows from the Riemann removable singularity theorem that g°(p) is
holomorphic on R'(z°). Hence. g"(p) is a non-constant holomorphic function on

Since g'" (p) E C, (V-) (v = 1, 2.... ), we also have 9°(p) E

For It = 1.... ,111 := my-g. let (h be an irreducible analytic hypersurface in R'
such that the projection v((h) of (h onto A = A x P,,, is an n-dimensional complex
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hyperplane W = -:h- In particular. (h lies over L1 x { w , } in A. We assume that
wh 0 wt for It 34 k and that I%L h I > p. and we set

Ch(z) := Ch nR(z). z E A.

For z E A. this is a point in R(,) lying over uwl, in P,,.. i.e.. (h(z) = Wh.
For each z E A. we consider the subset G,", (z) of G (z) defined as

,Ctv(z) := E C, (z) I f(z.(h(z)) = 0 (1 = 1.... ,lo) }.

When we need to emphasize the dependence on (h (h = 1.....1,,). we will write
,!(Z) = G,,",(z, {(h}h=1.... We also define, for z E A.

G;,(z) = (f (z. p) E I f (z. p) has poles

of order vat each LX(z.)(j=1,...,m)}.
We prove the following one complex variable lemma.

LEMMA 6.3. Assume v > 2g - 1. Then:
1. Each z E A. is a complex-linear space with dint L,,(z) _> 1.
2. Fix a E A' := c'1 \ a. Then we can choose the points (h(a) (h = 1,... , l(,)

and (o(a) on V(a) with I w,, = ICh(a)I > p (h = 0. 1.... , lo) and wh 96 Wk
if h # k such that

(a) dim .C,!(a, 1. and
(b) there exists a function g(a, p) E C )(a, {(h}1,=i. such that

(i) E C,,(a);
(it) C,;(a, {Ch}h=i.....to) _
(iii) g(a. (o(a)) = 1;
(iv) g(a. p) does not vanish at any points of R(a) lying over w! (1 =

1.... , lo) except at (, (a). and g(a. p) does not assume the value
1 at any points of R(a) over wo except at (,1(a).

PROOF. Assertion I follows Theorem 6.2. To prove assertion 2. since dins C,, (a)
= it, + 1. we can choose a basis of .C,.(a) such that, on R(a).
f, (p) has poles of total order my and each f,, (p) for a = 2, .... to + 1 has poles
of total order at most my - 1. Thus. by analyticity, we can choose a point (i (a)
in V(a) such that Iw11 = I(i(a)I > p; ftr,+i((1(a)) 96 0: and such that fi(p) -

i ((t (a) )] 1(P) does not. vanish at any point of R(a) lying over w 1
except at (1(a). Note there are at most m - 1 such points. Then.
where

gft(P) := fjP) - [ff((i(a))/f,, i((i(a))]'
forms abase of L°(a.{(1(a)}); dim G;1(a.{(1(a))= lo: g1(p) E C,(a); each
for a = 2.... , to has poles of total order at most my - 1; and gt (p) does not
vanish at any point of R(a) lying over w1 except at (i (a). Thus we can recursively
find to different points Ch (a) (h = 1.....10) in R'(a) such that IwhI = 1(h(a)I > P
and wh fA wk for h # k, and a function hi(p) on R(a) of the form h1(p) _

!° z1 c<,f-(P) such that {hi(p)} rforms abase of G",(a,{(h(a)}h- L....4,) and
h1 (p) does not vanish at any point of R(a) lying over w1 (1 = 1,... ,1(1) except at
(1(a). Thus. dim G° (a, 1 and hi(p) E L :(a). We finally choose
a point (o(a) E R'(a) such that Iw111 = I(o(a)I > p. wo j4 w! (1 = 1.... ,h"). and
hi(a.(0(a)) # 0. If we set g(a,p) = hi(p)/hi((o(a)) on R(a). then this function
g(a. p) satisfies all the conditions in 2. 0
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We remark that the function g(a. p) is necessarily a characteristic function on
R(a). In fact, if not, there exist distinct points p'. p" on R(a) with p' = p" E C,.
such that g(a. p) has the same Taylor development about p' and p". We connect p'
and (I(a) by an arc in R'(a) such that ' does not pass through E(a) in C,,.. As
we move p" along -1 in R'(a). we reach a point (1 0 (l (a) over (I (a) in R'(a). Then

g(a, (I (a)) = g(a, (1) by analytic continuation. This contradicts (b)-(iv) for g(a. p)
in the lemma.

Throughout this section, we fix a point a E A', points (h (h = 0, 1.... , lo) and
a function g(a.p) E C°(a) = C°(a. satisfying 2 in Lemma 6.3.

We have the following lemma.

LEMMA 6.4. (Stability)
1. Let zJ E A (j = 1, 2, ...) converge to the point a and let

f(z..p) E C° (z.) (j = 1.2....) with f(z.,p) 0 0.
Any limit function f (a. p) of b) - f (zJ p) (v = 1, 2, ...) on R'(a) obtained by
applying Lemma 6.2 for z" = a and f, (p) = f (z', p) (j = 1.2....) must be
of the form cg(a,p) for some nonzero constant c. Hence, f (zJ. p) E C*(zJ)
for sufficiently large j.

2. There exists a neighborhood Vh of (h (a) (h = 0.1.... , in 1 '(a) such that
(i) dim G,',(a, {{h}h=1,... _10) = 1 for each (h E Vh (h = 1, , lo);
(ii) there exists a function f (a, p) E C(,', (a. {{h }h. I fl C, (a) such that

f(a.C(,)#0.
PROOF. Assertion 1 is clear from Lemma 6.2 and the uniqueness of g(a, p). \Ve

prove (i) of 2 by contradiction. Assume that there exist {(h};=1,2.... C R'(a) (h =
1,... ,lo) such that =lim h =(h in R'(a) and dim C°(a,{Ch}h=1_.__,I,)) > 2 (i =-30
1.2.... ). Then for each i = 1.2.... . we can find a non-constant function f,(p) E
C°(a, {(j,}h=1.....I) such that f,((o(a)) = 0. We can follow the same argument
as in the proof of Lemma 6.2 in the case zJ = a (j = 1.2, ... ). and we find
that & f= (p) (v = 1.2.... ) converges locally uniformly to a nonconstant multiple
cg(a,p) on R'(a) by 1. This gives a contradiction at (0(a). and part (i) of 2 is
proved. Part (ii) of 2 can also be proved by the technique in Lemma 6.2. 0

From this lemma we deduce the following corollaries with

C°(z) = C°(z ((h}h=),...10)

as above.

COROLLARY 6.1. There exists a neighborhood b' of a in A' such that for z E b',
each function f (z, p) E V1(z) which is not identically zero does not vanish at (0(z)
and belongs to

COROLLARY 6.2. There exists a neighborhood b" of a in A' such that dim C°(z)
=1 for all z E 6".

Let 6 be a neighborhood of a in A' which satisfies both Corollaries 6.1 and 6.2.
Then for each z E 6 there exists a unique function g(z, p) E C°(z) fl CV (z) such
that g(z, (o(z)) = 1. Thus g(z,p) can be considered as a function of n + 1 complex
variables (z,p) in R(6).

We have the following proposition.
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PROPOSITION 6.2. g(z,p) is a continuous function of (z. p) in R(6).

PROOF. Let z' E 6 and let z) -» z' as j x in 6. Using 1 of Lemma 6.4
and the fact that g(z',(0(zJ)) = 1 (j = 1,2,...). we can extract a subsequence
g(zJ°,p) (v = 1.2-.) of {g(z', p)}3_1.2,... which converges locally uniformly to
g(a,p) on R'(a). Hence g(z1, p) -+ g(a, p) (j x) locally uniformly on R'(a). and
g(z. p) is a continuous function on R'(6). Since the my zeros of 9(zJ.p) in R(d)
converge to the my zeros of g(a.p) in V(a) by Hurwitz' theorem,
it follows that 1/g(z-, p) converges uniformly to 1/g(a.p) in R(S)n5 x (po < ju' <
x)], where po > !p(")l (s = 1.... , rnv). Hence g(z,p) is continuous in R(6).

This proposition has the following interpretation: for each z E b. consider the
graph C:: X = g(z,p) in Cl,,x. Then C: varies continuously with the parameter
z E 6 not only in C' :.x. but also in P,,. x PX. Since the simpleness of the graph
is stable, by taking a smaller neighborhood 6 of a. if necessary. it follows that each
C:, z E 6, is a simple graph in C2. As a modification of Lemma 6.3. we need the
following fact.

REMARK 6.4. As in Theorem 6.3. we let hi) denote the number of branch points
of R(a) and set

vo :_ (ho + 2)m + g > 2g+ 1. (6.6)

If v > m vo, then we can choose (I (a) (1 = 0. 1, ....10 = my - g) with Iw, I _
[()(a)l > p in R'(a) such that the function g(a,p) in 2 of Lemma 6.3 satisfies
conditions (i)-(iv) in the lemma as well as the following condition:

(v) the graph Cy,,,,,1,) : X = g(a, p) in Cu, x is simple..
In fact. for each i = 1,... , m. there exists a meromorphic function h, (p) on

R(a) such that h,(p) has a pole at L',c(a) of order v but such that the poles at
L (a) (j # i) are of order at most v - 1. We set G6 (p) := g(a. p) + E," e,h,(p) on
R(a). If e, (i = 1,... , m) are suitably small, then G`(p) satisfies condition (6.5):
ifi34 j(1<i,j<m),then

lim G; (z)/G;(z) 76 0,1. or x.x
Thus, to of the zeros ((a) (h = 1.... ,10) of G(p) and one of the zeros ()(a) of
G5 (p) - 1 are arbitrarily close to (1,(a) and O(a). From 2 of Lemma 6.4. GE (p) and
('(a) (h = 0.1.....10) in V(a) satisfy the conditions (i)-(v) as well as (6.5). From
Theorem 6.3 we see that there exists a function G(p) E C,,(a) on R(a) arbitrarily
close to the function G`(a.p) such that the graph Cc. is simple in C'. X. Thus. l0
of the zeros (,,(a) (h = 1,....10) of G(p) and one of the zeros 11(a) of G(p) - 1 are
arbitrarily close to ((a) and ((a). Again using 2 of Lemma 6.4. we see that G(p)
and Q(a) (h = 0.1..... h),) satisfy

Throughout this section. we will assume that v > in v0 and we will work with
the function g(z,p) having a pole of order v along Il,- (j = 1.... rrl) in 1Z(6)
constructed so that g(a. p) satisfies all conditions in Lemma 6.3 as well as (r).

6.2.4. Analyticity of g(z,p). We now prove that. g(z.p) is a holomorphic
function of (z, p) in R'(6). For each z E 6. we let C(z, ir. X) denote the defining
polynomial for X = g(z, p):

G(z.w.X)=X' +o1(z.w)X' -1 ...+a,,,(:.u'), (6.7)
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where

Qi(Z,w) =Ci.o(z)w'1 +C,.1(z)w"i_I +...+ci.'i(Z) (i = 1, ... , m). (6.8)

From Proposition 6.2, cj(z) (i = 1.... , m; j = 0, 1,... , vi) is a continuous func-
tion on J.

We summarize the conditions satisfied by ci..,(z). Since g(z,p) vanishes at
(1(z) (1 = 1.... to). where (1(z) = wt. and since g(z,p) assumes the value 1 at
(o(z), where r;o(z) = wo, it follows that the cij(z) satisfy the following to + 1
simultaneous linear equations with constant coefficients:

Cm.o(z)w1 m + Cm.l (z)WI
m-1 + ... + 0 (1 = 1.... ,16); (6.9)

m
1+E[c,.o(z)w0'+c,.1(z)w0'-1+...+ci.,i(z)J=0. (6.10)

i=1

We note that the graph Cu = Cg(a,r) : X = g(a,p) in C2 = C... X is simple. We let

Ph(a) (. h(a). (a)) (h = 1..... ho)
denote the points on the graph C. which correspond to the branch points of R(a).
Each Ph(a) (h = 1.... , ho) is a non-singular point of C. in C2. Let

Qk(a) = (,74- (a). i7'(a)) (k = 1.... , ko)

denote the singular points of C. in C2, which are all normal double points.
We set

Zo(a) = (wo,1). ZI(a) = (wt. 0) (1 = 1,... ,lo);
these are the points on C. which correspond to (1(a) (1 = 0, 1, ....10) on R(a). We
fix

Ep:={wEP. IHw[>p}
so that there exist m disjoint univalent parts Ep (j = 1.... rn) of 1Z(a) over E.
We let g,(a.w) denote the branch of g(z,p) on EE (j = i.... ,m).

In C2 with variables w and X, we take a closed bidisk

rh ='1'h X ? " h (h = 1,... ho)

containing the point Ph(a) = (t;h(a), a (a)) and such that
(1) rhnrk=0(h76 k);
(2) (Ca n rh) n {w = h(a)} (h = 1.... , ho) consists of only one point, Ph(a);
(3) Can('yh xaryh)=0(h=1,....ho).

We take a closed bidisk

Ak = .1k X ak (k=1..... ko)
containing the point Qk(a) = (>)k(a),vvk(a)) and such that

(1) AhnAk=0(h54 k), so that AhnAk= 0 (h y6 k);
(2) (Ca n Ak) n {w = rlk(a)} (k = 1 . . . . . k 0 ) consists of only one point, Qk(a);
(3) C. n (ak x OAk) = 0 (k = 1,... ,ko).

On each complex line w = w, (I = 0,1, ... , la) in C2.X, by (iv) we can take a disk
l30:IX-1I <coand f31: [XI <E,(I= 1....,to)such that C.n({w,}xi3,) _
{t;i(a)} (I = 0.1... .to).

We say that the graph C. is standard with respect to {rh,Ak,,3,}h.k.1

From Proposition 6.2 we obtain the following lemma.
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LEMMA 6.5. For a sufficiently small neighborhood 6 of a in A', each graph
Cz of X = g(z,p) in C2..x for Z E 6 is simple and is standard with respect to
{rh, Ak, Qt }h.k., defined above. Here, condition (2) for rh (h = 1,... , ho) and
Ak (k = 1, .... ki)) above are replaced by the following conditions:

(2) for rh: (C fl fh) fl {w = th(Z)} consists of exactly one point, denoted
Ph(z);

(2') for Ak: At contains exactly one normal double point of C_. denoted Qt (z).

Clearly the points Qk(z) (k = 1.... ,k0) coincide with the set of all singular
points of the graph C. in C2. For z E 6, we set

Ph(Z) = (h = 1,... ,h(,)

Qk(z) = (llk(z),r1k(z)) (k = 1,....ko).
We observe that t,(z) (h = 1.... ht1) are single-valued holomorphic functions on
6 (determined by the given ramified domain R). and 77k(z) (k = 1..... ko) become.
single-valued continuous functions on 6 by Proposition 6.2.

The main result in this section is the following.

Claim Both c,. (z) (i = 1, .... m: j = 0.1..... vi) and rlk(z) (k = 1.... , ko)
are single-valued holomorphic functions on 6.

PROOF. Fix z E 6. We let D(z, w) denote the discriminant of the polynomial
G(z, w, X) with respect to the variable X, i.e.. D(z. w) is obtained by eliminating
the variable X from the equations

aG(z.w,X) =0. 19 G(z,w,X) =0.

Thus D(z, w) is a polynomial in w whose coefficients are polynomials in c,. (z);
hence D(z, w) is of the form

D(z,w)=Ao(c,.j(z))wv+A,(c+,j(z))tl_, ..1+...+AN(c,,(z)), (6.11)

where N is a positive integer.
On the other hand, it is known that D(z, w) coincides with the product of the

square of the differences of any two solutions of G(z. w. X) = 0 with respect to X.
i.e.,

D(z, w) = jj(g=(z, w) - gj(z, w))2. w E C,,..
i#j

where gi (z. w) (i = I.... , m) is a branch of g(z. p) lying over a neighborhood of w.
Since the graph C, z E 6, is simple. the zeros of D(z, w) = 0 coincide with

w=lh(Z) (h=1....,ho), w=r)k(z) (k=1.....ko),
and the order of l;1, (z) is equal to the order d,, of ramification of R(z) at w = t;h(z);
note the order of 77k (Z) is always equal to 2. It follows that

ho ko

D(z,w) = A0(c,.j(z)) 11 (10- 17k (Z))'- (6.12)
h=1 k=1

We formally develop the right-hand side into a polynomial in uv whose coefficients
are polynomials in c, j(z). th(z), and r)k(z):

D(z,w) = Ao(cs.j(z))wn + BI(c,.j(z). h(z). i k(z))w:v-1 + (6.13)
... + BN(C(j(z). h(z)7Jk(Z))
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We compare the coefficients of w3 (s = 0,1..... N) in (6.11) and (6.13), and obtain
N equations which c,.,(z) and qk(z) must satisfy:

Aa(c..2(z)) - 0 (A = 1,... , N). (6.14)

Now we introduce new complex variables

ui,j (i=1,....m;j=0,1.....vi), tk (k=1,...,ku)
and consider 1° + 1 + N equations obtained by replacing c,,j(:,) and qk(z) by u,,j
and Ilk in (6.9), (6.10). and (6.14), i.e..

u1nowi
tt' + nr-I +... +un,.,.re, = 0 (1 = 1.....10), (6.15)

m

I + E[Lo.W4 q° + t4,,IWOi-1 + ... + 0. (6.16)
i=l

Aa(ui.)) - vk) = 0 (A = 1.... ,N). (6.17)

We consider the space C.M with variables ui, j and i'k. and the product space

n6= 6xC.,f

We let S1 denote the analytic set in n6 defined by the analytic equations (6.15),
(6.16) and (6.17). These are all algebraic for u,. j and vk with holomorphic coeffi-
cients on 6; i.e. each of them is a polynomial in the variables u,., and Ilk whose
coefficients are single-valued holomorphic functions of z in S. From the construc-
tion. Sl contains the set

E : 11i.j = C1.j(Z), vk = qk(z). z E 6.

We let 11(1 denote the irreducible component of ) which contains P. To verify
the claim. using (ii) in Remark 2.8 in Chapter 2, it suffices to show that Sl° is of
dimension n. Therefore, we let Sl°(a) denote the section of f2° over z = a:

P"(a) _ {(u,.j.1'k) E C.tt I (a. u,.j.1'k) E fl°};

thus (ci,j(a), r1k(a)) E We want to show that

the point (c,,j(a).rlk(a)) is isolated in 0°(a). (6.18)

We prove this by contradiction. Let Q = (ci, j(a). qk(a)), and let Q' = (u; j. vZ) 76 Q
be a point in 1l°(a) arbitrarily close to Q in C". We construct the polynomial
a (w) in w.

ai(w) +...+ui.,, (i = I.....rn). (6.19)

and the polynomial G' (w. X) in X with coefficients a, (w).
G'(w. X) = Xrn + a, (u')Xrn-1 + ... + a;,,(w). (6.20)

We recall the definition of the analytic set fl°; thus, from (6.15) and (6.16),

0 (! = 1,....1(1) G'(w0, l) = 0.

If we let denote the discrinlinant of with respect to X, then our
condition (6.17) implies

ho ku

AU(ui.j) 11 (w - h(a))'k II (w - V;)2.
h=1 k=I
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We consider the algebraic function X = g' (p) defined by G' (w, X) = 0. We let R'
denote the Riemann surface over P,,. determined by g'(w). and we let C' denote
the graph of g' (p) in Cu, .

C' : X = g*(p) in du...,
If Q' approaches Q on Sl°. then the graph C' approaches the graph C,,, not only
in C2.X, but also in P,,. x Px by Remark 6.3. We thus assume that the graph

C. is simple and standard with respect to {rh, Ak,,3,}, where condition (2) for
rh (h = 1, ... , hog) and Ak (k = I.... , k°) is replaced by the following condtions:
(C' n rh) n { w = l;h (z) } (resp.. (C' n Ak) n {w = t}) consists of only one point;
we call this point Ph = (t;h(a),t;h') (resp.. Qk = (vk*, vZ')).

With this notation we state the following lemma; this will be needed to reach
a contradiction to finally verify (6.18).

LEMMA 6.6. If Q' = (u,j.vZ) E n°(a) is close enough to Q = (ci.J(a).rlk(a))
but Q' # Q, then

(1) R' = R(a), and
(2) g* (p) = g(a,p) on R(a).

PROOF. We observe that the graph C' approaches Ca in P,, x Px. and C' # C.
Thus, the number of sheets of R' over P, is equal to the number of sheets m of
R(a) over P. Also, the solutions of the discriminant equation D' (w) = 0 coincide
with G (h = 1, ... , h°) and vA (k = 1..... L-0). Since Ph(a) (h = 1..... h°) is a
non-singular point of C. in Cu,,z. Ph is a non-singular point of C'. Furthermore,
the order of ramification of R' at w = l h (a) is dh. the same as that of 1Z(a) at
w = t;h(a). Since Qk(a) (k = 1,... , k(,) is a normal double point of Ca. Q' is a
normal double point of C'. Thus Q1. does not correspond to a branch point of R'.
It turns out that R' is an rn-sheeted Riemann surface over P,,. with branch points
only at th(a) (h = 1,... ,h(1) over the same projection th(a) = t;h(a) with the same

C approaches Ca.order dh of ramification as th(a) has for 1 (a). Since the graph '
we see that R' = R(a), which proves (1).

To prove (2). we note from (1) that g'(p) is a meromorphic function on R(a).
Since each coefficient a; (w) of the polynomial G' (w. X) is of order at most vi,
it follows from Lemma 6.1 that g'(p) E .C,(a). From (6.15) (reap.. (6.16)) g'(p)
(resp., g'(p) - 1) vanishes for at least one point of R(a) over wt (1 = 1.... .1°)
(reap.. w°). Since C' approaches Ca. it follows from condition (iv) of 2 in Lemma
6.3 that there is only one such point, namely (,(a) (reap.. Co(a)). Equivalently.
g'(p) E G°(a) with g'((o(a)) = 1. From the uniqueness of g(a,p) on R(a) (using
the fact that dim G° (a) = 1), we have g'(p) = g(a.p). Hence (2) is proved. 0

We return to the proof of (6.18). Note that, for a given Q' = (u,., ,vk) E
fl°(a). the construction of the meromorphic function g' (p) on R' (using ak(w) and
G' (w, X)) yields a one-to-one function. This contradicts 2 of Lemma 6.6. Hence.
(6.18) is true. Thus, the claim is proved.

In the proof. since St° is irreducible in 116 and E' C !2°. it follows that

f2° =r. (6.21)

Since c;,J(z) (i = 1 . . . . . . . , j = 1.... ,vi) were shown to be single-valued holo-
morphic functions on 6, we thus obtain from (6.7) and (6.8) the following result.
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PROPOSITION 6.3. g(z.p) is a meromorphic function of (z. p) in R(b) which is
holomorphic in R'(b).

6.2.5. Analytic Continuation of 9(z. p). We next prove that g(z,p) in R(b)
can be meromorphically continued to all of R. We recall the simultaneous equations
(6.15), (6.16). and (6.17) which define the analytic set f1 in fIs. From our condition
for the branch set of R: w = t;h(z) (h = 1..... h°) with order of ramification dh,
we have

ho \I)

I] (w - bh(Z))`t" = [1 [P. (Z- a;))et,
h=1 Z=1

where Pi (z, w) is of the form

P(z. w) = 31(z)w"..1 + ... + /3, (Z)

with the ,3i(z) (i = 1.... K) being single-valued holomorphic functions on all of
A. Here, the e, (>L = 1,... , -<U) are positive integers which are determined by
the order of ramification of the branch set of R over P,. (z. w) = 0. Thus. from
(6.12) all the equations (6.15). (6.16). and (6.17) are algebraic with respect to uij
and vk with coefficients which are single-valued holomorphic functions on A. It
follows that fl and fl° defined in II6 can be analytically continued and considered
as analytic sets in the product space fI.1 := A x 611t or even in III := A x P". We
use the same notation S1° for the analytic set considered in Ila or in III obtained
by this analytic continuation of S1° in H. We can apply the results from § 2.5 in
Chapter 2 to W. From (6.21) we see that dim f1° = n and the projection of S1°
onto A contains b (and hence the point a). Given z' E A. we let S2°(z') denote the
section of 110 over z = z'. It follows from Corollary 2.8 that there exists an analytic
set e in A of dimension at most n -1 such that for z E A \ e. Q°(z) consists of W
distinct points in C`%1. where m' > I is an integer independent of z E A \ e.

Therefore, if we set AI := A' \ e (where A' = A \ a and or is the zero set of the
discriminant d(z) of P(z, w)). and we set 121 := f1° n (A, x C"), then S2; can be
written in the form

SZ'j 74;,J = c.' ,(z . 2:k = z E Al,

where Al is an unramified. finitely sheeted domain over At without relative bound-
ary, and ci,2 (z) and t7Z.('z) are holomorphic functions on AI . Thus. m* is the number
of sheets of Al over AI. Our next claim is that Al is univalent over AI. i.e..

Claim m' = 1.
Indeed, from (6.21), there exists an open. univalent part bt1 of AI over b n Al

such that c;.,(z) = c;j(z) and 17k(z) = qk(z) for z E b°. Take z E A, and let
n( }) E S1i(z). As in (6.19) and (6.20). we construct, for i = 1.....m.

a.,(z.w) = c1(z)u'' +ci.I(=)w"c-1+...+ci.vi(Z), (6.22)

G'(..w.X) = X'°+a*I (6.23)

These functions are holomorphic for z` E A. We let X = g' (z`, w) denote the alge-
braic function determined by G' (a, w. X) = 0 and we write R. (z) for the Riemann
surface of g' (% w). We also set

X = g'(z', w), z` E AI, (6.24)

the graph of g`(z, w) in C2U,. .
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Fix at) E St, and let 7 be any closed curve in 11 starting at at and terminating
at a1 = at,. We obtain a variation of graphs

ZEry C'(a')

starting from the graph Ca of X = g(a1,, u'). If ' lies in a sufficiently small neigh-
borhood Sit C St, of the starting point at,. then C"(:-) = C.. where _ : and C. is
the graph of g(z.p). This does not necessarily hold for in a neighborhood of the
terminal point a,. In any case, we have R'(:) = R(:) for -FE 6,',. For. since the Rie-
mann surface R(z) (R'(z)) varies holomorphically with respect to: E W ('z E J1).
and since A, C A', it follows that R'(z`) = R(z) for 7 lying in a neighborhood of
the terminal point a, with a'= z. For such points close to the terminal point a1.
g'(F.p) is thus a meromorphic function on the Riemann surface R(:) with = = :.
By construction of X = 9'(:'.P), we have g'(z,p) E and 9'(-F. t(,(z)) =I since
Q' (u,*,,. ) E W and w° satisfies (6.16). Since G° (z) = {c g(:,P)}roc for z E 6.
it follows that g' (z'. p) = g(z. p) for all z` sufficiently close to the terminal point a 1.
Since c,'.. ( q ( ) can be constructed from g'(-. p). this means that c,"., (-9, t1A(s)
vary holotnorphically with a E ti. starting with the values c,,,(.-). glk.(z) in 6t, and
returning to the same values c,j(z), rtk(z). We thus have rn' = 1.

In particular. we have a E At. We finally arrive at the last step of the
proof of the fundamental theorem (Theorem 6.1). Since tn' = 1. we can write

c,.,(z). rlA(z) = qk(z) for z E 0,: these are single-valued holomorphic
functions on d,. As in (6.22) and (6.23). we write a,*(:) = ai(:) on A, and
G(z. X) = G' (z. w, X) for z E Al x C,,...v. We also write g' (z. p) = g(z.p):
this is a meromorphic function of (z,p) in R(0,) which is holomorphic in 1Z'(A1).
Since (c,j(z).r)k(z)). z E At is a subset of the n-dimensional analytic set 11° in
I'll = :1 x P"r and since el and a are analytic sets in A of dimension at most it - 1
(where Ol = A\(e1 Uo)), it follows that c,,,(z) and tlk(:) are meromorpohic function
on all of 0 whose poles 9 are contained in cUcr. Using the solvability of the Poincare
problem in A (by Theorem 3.9). we can construct a holomorphic function r (:) on !1
such that ip(z) = 0 on y: p (n) 76 0: and cacti Y(z)c,_,(z) (i = 1.... m: j = 1.... vi)
can be holomorphicall extended to all of J. Therefore, equations (6.23) and (6.24)
imply that the holomorphic function X = g(:. p) p) on R satisfies the
following equation:

where each coefficient function a,(z. (i = 1..... rn) is a holomorphic
function on C" , Since g(a. p) as well as g(a.p) have simple graphs in C'. v,
it follows that g(z. p) is a simple function on V. The fundamental theorem is
completely proved.

0

6.2.6. Fundamental System of Locally Ramified Domains. Let L1 :

jz) I < r, (j = 1.... ,n) be a polydisk in C". Let R be a ramified domain over A
without relative boundary which is standard with respect to the variable and
let it : R - 0 be the canonical projection. We let m be the number of sheets of
R over A, we let E be the branch set of R: and we set E = rr(E). Then E can be
written as the zero set of a pseudopolynomial P(z) with respect to :,,:

F
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where n,(z') (i = l.....1:) is a holomorphic function for (z1, ... , z,,- 1) in
A': 1zjl <rj (j=I.....n-1).

Let 4'i (p) (i = 1.....N) be a holomorphic function on R. We introduce C-N*
with variables u, (i = L... N) and consider the following analytic set J in the
(n + N)-dimensional product space A = A x

C : u', = 4'jp) (p E R: i = 1..... N).

We let S denote the analytic set of singular points of j in A. If S is at most (n - 2)-
dimensional as an analytic set in A. we say that {4',(p)},-1,... , is a fundamental
system for R.

We have the following theorem.

THEOREM 6.4. There exists a fundamental system for R.

PROOF. By the fundamental theorem (Theorem 6.1). there exists a character-
istic and simple function t, (p) on R. We consider the product space A, _ ,7 x Cp.,
and the analytic hypersurface

Ci : u'I = $1(p), p E R.

We let E1 denote the set of points of C, which correspond to the branch points p
of R . i.e.. to the points p E E. Since 4'1(p) is a simple function for 1Z. EI consists
of regular points of CI except for an analytic set in A of dimension at most n - 2.

We let S denote the set of singular points of C, in A: this consists of a finite mum-
her of irreducible components S. (j = 1..... IA) with each SS being an analytic set of
dimension at most n - 1. We fix a component SI of S which is (n - 1)-dimensional
(if such a component exists). Since dim(SI fl E1) < n - 2. we can find a point
z' E SI \ E such that there exist distinct regular points pi (i = 1..... m1: m1 < m)
on R over z' with 4'1 (p) being a single-valued holomorphic function on a (univa-
lent) neighborhood of each p, in R and with 4'1(P,) = 4'1(p,) if i # j. Take any
two distinct points p, and p, among the points {p,} ,_ 1,... ,,,,, . Since 4)1(p) is char-
acteristic on R. it has different function elements at p; and pj. Thus. among the
partial differentiations

4'I(p)

of 4'1(p) with respect to z., (j = 1..... n). there exists at least one, say 41(p). which
attains different values at p, and p3. 'We note that 4+(p) is a meromorphic function
on R whose poles are contained in the branch surface E of R. Thus, if we take a
sufficiently large integer A. the function 'I (p) := (P(a))11''(p) is holomorphic on R
and satisfies *I(pi) j4 'l'i(pj). Repeating this method for any pair (pi.pj) (i # j).
we obtain holomorphic functions

In ,II1 (p), .... ka (p) on R
with the following properties: for distinct i. and j (1 < i.j < m1). there exists
some 'YA.' i (p) (1 < k < k1) such that W,"1 (p,) # 41k '11(p,). We thus consider
CI+k, := C,,., x Ct, with variables u1, IL'I,k (k = 1..... k1) and form the graph

C2:u1=4'I(P), wl.k=Ck."(P) (k I.... ki). PE *R

in the product space A2 := 0 x C'+k, Then C2 is an n-dimensional analytic
set in A2 which is non-singular at all points corresponding to a point of S, \ E
except perhaps for an analytic set in A2 of dimension at most n - 2. Repeating
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this procedure for St (I = 2,... tc). we obtain a holomorphic function %Y(' (p) (k =
1,... , ki) on R. In Cd1, where M = 1 + k1 + + k,, with variables W1, uti.A (1 =
1.... , µ: k = 1..... ki). we form the graph

C : w1 = +1(p), wi.A * ! ' ) ( P )( 1 = = 1, .... µ; k = 1, .. . k, ), p E R

lying in A := A x CM. The singular set of C consists of analytic sets of dimension
at most n - 2 in A. Thus {4i1(p),'ykil)t.A is a fundamental system for R. G

6.3. Appendix 1

In this section we give a proof of Theorem 6.3. Let R be an m-sheeted compact
Riemann surface over Pu, of genus g. Let 7r : R --4 P. denote the projection and let
Ph (h = 1, .... ho) be the set of branch points of R. We assume that rr(Ph) 34 X.

We let AT denote the part of R lying over C,,.. We set cr, = rr(Ph). and we let
eh - I denote the order of ramification of R at Ph. Then we can choose a local
parameter th at Pi, of the form w = ch + t ' . We let LJ (j = L... . m) denote the
m distinct points over w = x. and we use a local parameter t. at L, of the form
tj = 1/w. For a regular point p of R' we use a local parameter tp at P of the form
w = ir(P) + tp.

Given a meromorphic function f (p) on R. we write f'(p) to denote the deriva-
tive of f (p) with respect to the local parameter at p.

We let Ch (h = 1, .... ho) denote the distinct points among the points ch (h =
1, ... , ho), and we write

We write for the complex-linear space of meromorphic functions f (p) on R
such that f (p) is holomorphic on R' and the order of the pole of f (p) at L, (j =
1.... , m) is less than or equal to v. Given a non-constant function f (p) E G (R),
we consider the graph

C1: X= f (p), p E R.
in Cu. X with variables w and X; then C f is a one dimensional analytic set in

For p E R'. we call (rr(p), f(p)) E Cf the point corresponding to p. If
f (p) is a characteristic function on R, i.e.. if there exists a point w{ E C. such
that f (p) has m different function elements over a neighborhood of wo. then this
correspondence R Cf is one-to-one except at a finite set of points.

We have the following proposition.

PROPOSITION 6.4. Let q, (t = 1, .... K) be c distinct points of R' and let tv, _
a(q,) (t = L... , rc). Let a 3, (t = 1..... K) be complex numbers. Then there
exists a function f (p) E Gµ with po := m(K + 2) + g and

f(q,)=a,, f'(q,)=d, (t=1.....n).
PROOF. We let t, be a local parameter at q, (t = 1..... K). In a neighborhood

of each q, we prescribe a principal part p, of a meromorphic function as follows:
(i) if q, is a branch point of order e, - 1, then p, = a, /t?° + 3, /t,", -1 :

(ii) if q, is an ordinary point of R'. then p, = a, /t? + 3, It,.
Since e, < m, we easily see from the Riemann-Rosh theorem that there exists a
meromorphic function V(p) on R such that

(1) p(p) has principal part p, at each q, (i = 1.... , h):
(2) p(p) has poles at L. (j = 1,.... m) of order at most 14);
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(3) p(p) is holomorphic on R' \ (q,), = 1,.._ .

\\'e let w, (t = 1..... ro) denote the set of distinct points among all the points
to, (t= 1.....)C). If we set

N
f(p):=r(P) fl(Ir- w,)2. PER.

then f (p) satisfies all the conditions in the proposition. ID

We put vo := m(ho+2)+g, which is determined by the given Riemann surface
R. From this proposition we obtain the following lemma.

LEMMA 6.7. There exists a meromorphic function f (p) E C,,,,(R) such that if
C f : X = f (p). p E R. denotes the graph of f (p) in Cu.. v , then each intersection
point of Cf and the complex line w = Ch (h = 1.... , h( ')) in C2,..x is a non-singular
point of Cf in C' ...X.

PROOF. For each h = I..... h(). we let qh,,, (v = 1.... , vh) denote the points
of R' lying over to = ch. From the above proposition we can find a merotnorphic
function f(p) E C, (R) such that

f(qh..) = v, f'(gh.1,) = I.

Then the graph Cf : X = f(p), p E R'. in Cti.x satisfies the conditions in the
lemma. 0

Now let v > m vo and let g(p) be a characteristic function on R such that
g(p) E CL(R) (i.e., the order of the pole at each Lx (j = 1.....m) is equal to v).
Using the function f (p) from the above lemma, we set

G(p) := g(p) + of (p) on R (6.25)

for e > 0. If e is sufficiently small, then the graph Cr; : X = G(p). p E R'. in Cu...r
satisfies the following:

Condition
All points of R' over to = Ch (h = 1.... , h'I) correspond

O to non-singular points of C(; in C2 ..,.Y.

Since G(p) as well as g(p) is a characteristic function on R. the correspondence
p E R' -+ (7r(p).G(p)) E Cc; is one-to-one except for a finite point set

(k=1....,ko)
of CG. Here ak E C 'r. We let TJk > 2 be the number of points of R' which correspond
to Qk. In the present case Qk (k = I.....ko) coincides with the set of singular
points of Cc, in We study the behavior of Cc; in a neighborhood of a point Qk
in C2 X* For simplicity, we write Qk = Q = (a. b) and % = rt. We let pl.... . P" in
R' denote the points corresponding to Q through X = G(p). There exists a closed
bidisk A := 0 x r C q, x Cs centered at Q such that CG f A can be written in
the form

n

PQ(W. X) := JJ(X - vi(w)) = 0. (6.26)
i_i



19M ti. RAMIFIED DOMAINS

where z', (1r) (i = 1.... n) is a single-valued holotnorphic function on .1 with
b = t.-j(a) (i = 1.....>i) and v, (w) 54 v, (w) if w a and i 96 j. The discriminant
DQ(uv) of the polynomial PP(uw. X) with respect to X can be written in the form

Dc1(w) = A(u:) (m - a)2'.

where p > I and is a non-vanishing holotnorphic function on A. We call the
integer p > I the order of the singularity of Cc at the singular point Q. We
observe that Q is a normal double singular point of Co if and only if p = 1.

We have the following reduction for G(p).

LEMMA 6.8. Let v > m z. and let G(p) be a characteristic function on R such
that G(p) E C,, (R) and the graph Cc; : X = G(p) of G(p) in C ...v satisfies condition
{s), Then there exist a finite number of meromorphic functions ©)(p) E C,,,, (R) (j =
1, .... Al) such that for suitably small e, 0 (j = 1.....:11). if we set

K(p) := G(p) +E=)oi(p) on R

and if we let Ch : X = K(p). p E R' be the graph of K(p) in C j, x. then:
(1) the graph CK satisfies condition (#):
(2) all singular points Z = (x,;. y,;) (t = 1..... of the graph CK in Cu,, v

consist of normal double points:
(3) xk96 rl ifky-1 l: k.l=1,....nt,.

PROOF. First step. In order to modify G(p) to satisfy conditions (1) and (2).
we let pk > I (k = 1.... , kt)) denote the order of the singularity of Cc; at the singular
point Qk = (ak. bk ). We consider closed bidisks A,,.:= :Yk x rk c C. x C.t centered
at Qk such that Ak n Ar = 0 if k # 1 and such that Cc; f1.1k is of tlie form

71i

X) fl(X - 0,
i=1

where bk = uk..(ak) (k = 1.... , kt,) and for u 34 ak : i j4 j. The
discriminant Dk (tc) of Pk (w. X) with respect to X is of the form

Dk(w) = Ak(w) (u. - ak)2'

where Ak(u:)00for wEOk.
Assume that pk > 2 for some k. say k = 1 for simplicity. Let pt.... .p, be

the points of R' which correspond to Qt through Cc;. From Proposition 6.4 there
exists a meromorphic function ,;-(p) E C,,,,(R) such that

Ylpl) = Y(F2) = O. '(pl) = i. V'(P2) = 2.

r{Pf,)=p =0 (p=3.....I,)
We set

H(p) := G(p) + - ;(p) on R
and consider the graph C,, : X = H(p) p E R', in Cu,.x. If : 0 is sufficiently
small, then H(p) satisfies condition (#) and. moreover, the singular points of C,, in
Cu.X are all located in Al, (k = l.... , k0).

In fact. since G(p) E G;,(R). G(p) has pole of order vat each Lj (j = 1,... , m).
On the other hand. ,:(p) E Cv,, (R) has pole of order at most mV() at any L, (j =
1.... , m). It follows from v > m v0 that IG(p)I > 21,'(p)I outside the domains of R
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over the large disk A, :_ (Iwj < r} in C. Hence Ctt as well as Cc has no singular
points outside A, x Cx. Moreover, if E is sufficiently small, then Crr as well as Cc;
has no singular points in (A, x CX) \ Uk-l Ak.

In the bidisk A1. the graph CH n .11 has the form

m

Pl(w, X) :_ H[X - (t 1.,(w) + r, (u'))]
i=1

We see that Q1 is also a singular point of C11 (as well as of Ce). but it becomes a
normal double singular point of CH. so that the order of the singularity of CH at
Qt is equal to 1. Besides Q1, some new singular points of C,, may be created in A1;
these will be denoted by Tj (j = I..... j(I). We let pj be the order of the singularity
of Cu at T, (j = 1, .... jot). Let D1(w) be the discriminant of Pi (w, X) with respect
to X: then the number of zeros of b, (w) in DI (counted with multiplicity) is equal
to 2pt - the same as that of DI (w) - and it also equals the sum of the order of the
singularities of CH in A1. Hence

P1 = I + pl + ... +

It follows that p'j < P! - 1 (j = 1.... j o). Thus all singular points of CH in the
bidisk A I have order of singularity at most pi - 1.

Similarly, in the other bidisks At (k = 2..... A-,)) there may be finitely many
singular points T,t. j (j = 1.... , jk) of CH even though At has only one singular
point Qk of CC, and the order of singularity at Qk is Pk > 1. Let Pk.,t be the order
of the singularity of C,, at the singular point Tt., (j = 1.... j x.); then we see from
the argument above involving the discriminants that Pk so that each
Pk.i S Pk (j = 1, .... jk)

Repeating the same procedure, step by step, we construct a finite number of
meromorphic functions oj(p) E G,,,,(R) (j = 1..... N) such that for sufficiently
small E2 0(j=1.....Al).ifwedefine

.v

L(P) G(P) + E e Q, (p) on R
j=I

and if we let CL : X = L(p). P E R'. denote the graph of L(p) in C4...y. then CL
satisfies condition (*) and the set A of all singular points A. (K = I, ... , NO of CL
in Cu..x consists of those whose orders of singularity p. are all equal to 1. i.e.. each
A,; (rc = 1, ... , n()) is a normal double singular point of CL.

Second step. In order to modify L(p) to satisfy condition (3) we set A _
(a.,13.). n = 1.... , nt1, and let a,, (n = 1.... ,,c(!) be the set of distinct points
among all the points a,, (rc = 1, .... rcj) in C... For each tc = 1..... n' we let j,;
be the number of points of A lying over the complex line w = a,

Fix is = 1. Let A1,, (j = 1,... ,ji) be the points of A lying over the complex
line w = a and let p' j, p, E R' be the points of R' which correspond to the normal
double singular point At of CL through X = L(p). From Proposition 6.4 there
exists a function of (p) E C,,,, (R) such that

o1(p) = oi(pi) = 0. o; (pi) = 0'1 (P,),) = 0,

(ss7)
01 (pj) = 1. o1 ( p , ' ) = 2, 0 ' , = 0 ' , = 0 (j = 2.... ,j1).
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For sufficiently small q1, set

11(P) L(p)+t1io3(P) on R

and let C,SM : X = AI (p). P E if. denote the graph of M(p) in C2 Then the
graph C,11 satisfies condition (*), and the set B of all singular points of Cs, consists
of rco normal double points as well as the set Crr. This follows since rf, is sufficiently
small. Furthermore, if we set B := {B, = then (6.27) implies that
the number of distinct points among the 7, (t = 1, ... , .co) in C. is greater than
or equal to n'I + 1.

We continue this procedure and obtain 0,, (p) E C,,,,(R) (s = 1..... so) with the
property that. if we define

100

K(p) = H(p) -r R, 0,(P). p E R.
,=3

and we let Ch : X = K(p), p E R'. denote the graph of K(p) in C'...t , then for
sufficiently small rl, the graph Ch satisfies condition (*) and all singular points Z of
Cj, consist of rco double points. Moreover, if we write Z = {ZZ = (x, yK)},;_L ,

then the points x,; (r: = 1,... , :o) are distinct. Thus the lemma is proved.

PROOF OF THEOREM 6.3. Let v > mvo. Fix any g(p) E *(R) satisfying
condition (6.5). Then g(p) is a characteristic function on R. Thus. after con-
structing G(p) = g(p) + r f(p) as in (6.25). we can use Lemma 6.8 to obtain
K(p) = G(p) + Ll-I F,oj(p) on R. This function K(p) for sufficiently small e
and ej (j = 1,... , AI) satisfies all the conditions of the theorem.

6.4. Appendix 2

Let A Q x r c C!' x C,,, be a polydisk. where

Q: 1z,1< 1 (j n). r: IwI<1.
We set z = (z'.z,,) and Q = Q"'-31 x Q,,, where Wi-3) = Q, X
... X A,, -1 and QJ := {z, : 1-1I < 1}. Let E be an analytic hypersurface in A such
that E fl (Q x 81') = 0. Then there exists a monic pseudopolynomial in uw.

P(z. w) = w' + a) (z)u."- 3 + ... + a,(-).

where a, (z) (j = 1..... v) is a holomorphic function on A. with

E _ {(z, w) E Q x C,,. I P(z. w) = 0} (6.28)

and such that P(z. w) has no multiple factors. We let d(z) # 0 denote the discrim-
inant of P(z. uw) with respect to a,, and we set

a= {z E A I d(z) = 0}.

which is an analytic hypersurface in Q. We set Q' = Q \ a and A' = A \ E. For
zo E Q. we let A(zo).A'(zo) and E(zo) denote the sections of A.V. and E over zo.
We usually identify these sets in {zo} x r with sets in the disk r; E(zo) consists of
at most v distinct points and A'(zo) = A(z(j) \ E(zo) is a punctured disk with at
most v punctures.

We have the following lemma. which is stated on pp. 68-69 in Picard and
Simard 158).
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LEMMA 6.9. 5 In the above setting, let z' E A\a. Then any real 1-dimensional
closed curve 7 in A \ E can be continuously (i.e.. homotopically) deformed in A \ E
to a closed curve y' in A'(z').

The conclusion is not necessarily true for z' E o. For example. let n =
1; P(z, w) = w(w - z/2); 'y : 0 E 16,27r] (z, w) = (1/2,1/5e's); and z' = 0.
Then -F cannot be continuously deformed in A \ E to a closed curve in A'(0).

PROOF OF THE LEMMA. We may assume the following:

(1) A=Alx...xA,,,where A.(j=1,....n)is arectangle ((z
1) in the complex plane C--,; Zi = xJ + iyJ .

(2) The hypersurface E in A contains no complex lines of the form z' = c', w = d,
where c' = (c1..... and d are constant. i.e.. the coordinates (z', tv,
of C"+I as well as the coordinates (z', z, w) satisfy the Weierstrass condition
for E.

(3) If n > 2, we may assume that the hypersurface o in the rectangle A contains
no irreducible component of the form z = c where c is a constant.

(4) The closed curve -y is a real analytic, one-dimensional closed curve in A \ E
of the form y : z' = o(s). z = X(s). w = zr(s), where ¢(s),X(s),ip(s) are
real analytic functions on (-oc, +x) with period 2a and the projection of

to each axis x. y1, ... , z, y,,, u. v (where w = u + iv) does not reduce to
a point. To emphasize the z = x + iy and x(s) _
t'(s) + ix"(s). so that

^y : s E [0.21r] -* Al = ^y(s) (6.29)

_ (o(s), x'(s), x"(s), t (s)) E A \ E.

(5) For Al = 7(s) E - . consider the real one-dimensional segment X.e, and the
real analytic 2-dimensional set X, in the rectangle A defined via

{(o(s),z.X"(s)) E 0 I -1 < z< 1},
X, := U X.v.

AIE

The set X., intersects the complex (n - 1)-dimensional analytic set or in A
in at most a finite number of points; i.e..

X, n o = {.4i..... AIo }. (6.30)

Thus we can find a(k) E [0.27r] and zh E (-1.1) (k = I,....la;h =
1.....h(k)) such that Ak = (Q(a(k)),xh ), "(a (k))) and such that Xtlno =
0 for each s 0- a(k) (k = 1.....la). where At = 7(s).

(6) If n > 2, let z' = ((z')',z;, +iy;,) be the point in A in the
lemma. For any fixed At = -y(s) E 'y, we consider the real one-dimensional
segment Y11 (z*) and the real analytic 2-dimensional set Y, in A defined via

Ytit(z'):={(O(s),x;,,y)EA1-1<y<1}.
Y, U 1'..I(z').

ME,

Then Y, intersects a in at most a finite number of points, say

Y,no={B1.....BM}. (6.31)

5This proof follows Oka in his posthumous work No. 2, pp.113-123 in (55J.
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Tins we can find bit! E [0, 2a] and yf' E (-1, 1) (k = 1, . . , pt: l =
1,... ,1(k)) such that Bt. = (6(b(`).x*,ylk} and such that Yit(z')na = 0
for each s j4 b") (k = 1.... where Al = y(s)-

Condition (1) follows from the Riemann mapping theorem. Conditions (2) and
(3) are obtained by taking a linear transformation of the coordinates (z, w) of C', "
as close as we want to the original coordinates according to Lemma 2.9. Conditions
(4), (5), and (6) are obtained by taking a small perturbation (under condition (3)
in case n > 2) of the given closed curve y in A. if necessary, since the proof of the
lemma remains valid after such a small continuous deformation. Thus it suffices to
prove the lemma under the conditions (1)-(6).

In addition, we will use the following facts:

(I) In R3 with variables (t. u, r), let D = 1 x r be a solid cylinder, where
I={Itl <1}andr={u2+c2<1}. LetCj (j=I....,v)beasmooth areinD
of the form

C) : (t. u.v) = (t.u,(t).r_, (t)), where t r: l = [-1.1J.

and u. (t), c, (t) are continuous functions on [-1.1J with C, n (7 x or) = 0 (j =
1.....v)and CjnCt. =0(j34 k).We set C:=U' , CjandD':=D\C. For
t E I, we set D(t) _ {t} x r and D'(t) = D(t) \ C(t): the latter is an in-punctured
disk.

In this setting. fix to E I and let ry be an arc or a closed curve in D' of the form

ry : (t. it. r) = (t(s). u(s), r(s)). s E [a. b],

such that 1(a) = t(b) = to. i.e.. the initial point 1(u) and the terminal point -r(b)
both lie on D'(t(,). Then 't can be continuously deformed in D' to an arc or a closed
curve ry- on D'(to) with the same initial and terminal points ')(a) and 1(b).

In fact, since C; n Cj = 0 (i 96 j). there exists a hotneomorphism 4 : D
D=Ixr.where such that 44(D(t))=D(t)foreach tEI.
di(Cj) = I x {(a,.b,)} (j = 1,... ,v). where (a,.b,) (aj.bj) (i j6 j). and such
that is the identity mapping. This yields fact (I).

(II) The analytic hypersurface E in A defined by (6.28) can be written in the
form

EA.
where A is a v-sheeted ramified domain over the rectangle A without relative
boundary and C(i) is a single-valued holomorphic function on A. We let n denote
the projection from A onto A and we let S denote the branch set of A. so that. its
projection S onto A coincides with a.

We fix A! E 7 and we choose s E 10, 27rl such that Al = 7(s) _ (p(s), Y'(s),
k"(s), u(s)). Using the set. X,it C A, we define the set X,it in A:

X,tt:=X,it xF={(o(s).x. "(s))EDI-1<x<1}x
this is a real three-dimensional solid cylinder in A with left-hand" cover given by
K., :_ {(a(s), -1, t"(s)} x F and -right-hand" cover given by KAI {(D(s),+1.
X"(,s)} x IF. Then:
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(a) The set EnXAM consists of v distinct (but not necessarily disjoint) piecewise
real analytic arcs Cj (j = 1,... , v) in the solid cylinder XAI. The arcs Ci
and Cj (i 36 j) may intersect at finitely many points. Moreover, each Cj
starts at a point on the left-hand cover K,t, of the solid cylinder X,%, and
terminates at a point on the right-hand cover K',

(b) For all M E y except perhaps for a finite number of points, Cj (j = 1,... , v)
in (a) is a real analytic are, and Ci n Cj = 0 (i # j).

(c) If we let Cj denote the projection of Cj onto r, then Cj does not reduce to
a point.

In fact, we have

E n XA, _ {(4(s), x, X"(s), w) I P(o(s), x + if"(s), w) = 0, IxI < 1)

_
W e have t w o cases to consider: either s # aiki for any k = 1,... , lo, ors =a(k) for
some k = 1,... , to (where a(k) is defined in condition (5)). In the first case, since
anX A, = 0, the part of ,& over XM consists of v disjoint segments L, (j = 1'... , v).
On each Lj (j = 1, ... , n), if we set C(i) = Cj (s (s), x, X" (s)) = fj (x) for x E (-1,1),
then fi(z) n fj(x) = 0 (i 34 j) for x E (-1,1). Therefore, E n XA, consists of v
different arcs Cj (j = 1,... , v) in the solid cylinder MAt with Ci n Cj = 0 (i 34 j)
and such that each L. starts at a point on the left-hand cover K. of the solid
cylinder XAr and terminates at a point on the right-hand cover K. Thus (b)
is proved. In the second case, suppose for simplicity that s = a0). Then, by
an argument similar to the first case, we see that E n XAq consists of v different
piecewise real analytic arcs Cj (j = 1,... ,v) in the solid cylinder XAt, where Ci
and Cj (i 0 j) may intersect each other at finitely many points (corresponding to
the points zh(1) (h = 1,... , h(1)) which are defined in condition (5)) and each Cj
starts at a point on the left-hand cover K., of XAi and terminates at a point on
the right-hand cover K. Thus (a) is proved; (c) is clear from condition (2).

Therefore, if we set

X7 = U XA,
MEy

and we consider X., as a variation of the solid cylinder X 1 with parameter M E 'y,
then each solid cylinder XA, with corresponding arcs C j (j = 1, ... , v) satisfies the
condition in (I) except for at most a finite number of parameter values M.

(III) If n > 2, using the notation in (6): z' = ((z')',x;,+iy,,) E A', YA,(z') C
0 for M E 'y, we define

YA,(z') = YA9(z') x r
= {(0(s),r;,,y)E .I-1<y<1}xr,

which is a real, three-dimensional solid cylinder in A with "bottom" HAS {(O(s),
x;,, -1)} x r and "top" HM := {(.(s),z;,,+1)} x F. Then:

(a) The set EnYA1(z') consists of v different piecewise real analytic arcs Cj (j =
1,... , v) in the solid cylinder YA, (z*), where Ci and Cj (i 0 j) may intersect
each other at finitely many points and each Cj starts at a point on the bottom
Hm of the solid cylinder YAi(z') and terminates at a point of the top H.

(b) For all M E y except for a finite number of points, Cj (j = 1, ... , v) in (a)
is a real analytic arc and Ci n Cj = 0 0 0 j).
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(c) The projection G, of G, onto r does not reduce to a point.
Therefore, if we set

Y, = U Ykt(z') (6.32)
,11EI

and we consider ) as a variation of the solid cylinder Y,11(z') with parameter
M E 'y, then each solid cylinder Yi1(z') with corresponding arcs G, (j = I, ... , v)
satisfies the condition in (I) except for at most a finite number of parameter values
M.

This is proved as in (II) using conditions (6) and (2).

Proof of the lemma: Case n = 1. In this case we note that a : d(z) = 0
consists of a finite number of points Ak = Ak + iAk (k = 1, ... , k0), where Ak, AA
are real. We claim that it suffices to prove the lemma in this case under the following
assumption:

The point z' = x' + iy' E 0 \ a in the lemma satisfies y' AA (k =
1 . . . . . k 0 ) .

To prove this claim, we take a point z = i + iy E A \ a such that 54

Ak (k = 1, ... , ko). If the lemma were true under assumption (##), then -y could be
continuously deformed in A \ E to a closed curve y in A'(Z). We connect a and z'
by an arc a in 0\a. Since U:EI A'(z) is homeomorphic to the product set f x A'(z)
with the fibers being preserved, it follows that y (and hence -y) can be continuously
deformed in A \ E to a closed curve -)' in A'(z'). Thus we may proceed under
assumption (#).

We divide the proof of case n = 1 into three steps.

First step. Let Al = (z,ll, w1,) E y, where znl = xal+iytil and w.11 = unl+ivtl,
and set

X,%1={IxI<1}x{y,1/}CO, X,11=X%t xrCA.
We can find a real 1-dimensional line segment L(M) in the solid cylinder Xn1 passing
through the point M such that

(i) L(M) n E = 0,
(ii) L(M) n ({IxI < 1} x {y,tl} x ar] = 0.

To see this, we consider the line segment L(M) in X,11 passing through M given
by

L(M) : (x, y, u, v) = (x, yn1, ua1 + o(x - xbl ), v,11 + l3(x - x., )) (6.33)

where x E 7 = 1] and a,/3 are real numbers. If we let L(M) denote the
projection of L(M) onto r, then condition (ii) means that L(Af) cc r. Thus (ii)
is satisfied for sufficiently small Ial, IQI. To choose a, 0 in order that L(M) satisfies
(i), we consider the set E n X,11. As shown in (II), this set consists of v different
piecewise real analytic arcs G, (j = 1,... ,v) in the solid cylinder Xt1, where L,
and G, (i 0 j) may intersect and where each G, starts at a point of the left-hand
cover Ks, of the solid cylinder X,11 and terminates at a point of the right-hand
cover finally, the projection G, of G, onto A does not reduce to a point. We
set C=U,_IG, =EnXJ1 and G=U;_14

If w.,,, G, the segment L(M) satisfies condition (i) for sufficiently small o,,3.
For the second step we exclude the case a = 0 = 0.
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If u;.11 E G. there exist points (x;1,y(').w,11) E Cj for certain j, say j =
1,....v'<v. WesetC=tJ" ICjandC"=C\C. Since MEyand ynE=
we have yil J 36 y,11 (j = .... ). We choose two real numbers a,13 with (a. 13) $
(0, 0) and such that the slope c3/a of the line segment L(A1) in r is not equal to the
slope of the tangent line to any C, (j = 1,... , ) at the point W,,tl. Furthermore, if
a and 3 are sufficiently small, then we have L(Al) nC' = {te,l } and L(M) nC" = 0.
Since there is only one point Al of L(M) over W,1r and since Al efG, (j = 1..... ),
it follows that L(AI) n C = 0 and hence L(Af) n C = 0.

We make the following essential step in the proof of the lemma.
Second step. We set z' = r.' + iy' E L1' in the lemma under condition (#),

and we set

Y(z')={(x.y)EA1-1<y<1}, y(z')=Y(z')xr.
Then y(z') is a three-dimensional solid cylinder in A with bottom H- := {(x', -1)}
xr and top H' :_ {(x'.+1)} x F. We claim that we can continuously deform the
curve y in A \ E to a closed curve ti in y(z') \ E.

To verify this claim, let A10 E y and let Q. i% be the constants corresponding to
the line segment L(Mo) in (6.33). From the first step, there exists a subarc [M hl' ]
of y which contains If as an interior point such that L(M) satisfies conditions (i)
and (ii) for any point Al E [Al Itl 1 using the same constants ao. J%. Since y is
compact in A \ E. it follows that we can find a finite number of points Ml.... , Afq
on -y such that each subarc [Ale Al") (i = 1.... , q) of y satisfies the above conditions,
i.e., for any point M E [AliAli+I], the line segment L(M) in (6.33) satisfies (i) and
(ii) with the same a;,i3i, and the union of the subarcs [Af;lbli+i] covers y. We
set Al; : (z;,u;i) = (i = I,... ,q). Note that MQ+I = All. We may
assume

y, 96 Ak (i = I.... . q: k = I... . A-0). (6.34)

for if y, = A' for some i and k. we perturb Al, on y. From condition (4). a slightly
modified Ali will satisfy y; 36 A". Since a small deformation will not affect the
above situation. we can assume y; 34 Ak for each i and k.

Fix i E {1.....q}. To each Al = (z.tr.w.r) = E
there corresponds a point p,(Af) on the solid cylinder y(z') such that

pt(AI) = L,(Af)Ix=x = (x',yv.u.11 +ai(x' -x.t1).t'11 +A (x* -x m)).

For simplicity we set p, (Al;) = p' , and pi (Ali..1) = p°, and we consider the following
are on the solid cylinder y(z'):

[Pip'i't = (pi(A1) I Al E [Ibl1Ali+I)}.

The arc [AI; A1,+11 can be continuously deformed in A to the arc [p,p,'] in such a
manner that Al E moves to pi (AI) along the line segment L; (M). Since
L, (Al) n E = 0. this continuous deformation takes place entirely in A \ E. We
note that each point Al, (i = 1.... , q) corresponds to two points p, = Li (Ali) and
Al I = Li _ I (Mi ). which both lie in the solid cylinder Note that Lq(Af9+ 1) _
L9(M1) = p'. In the solid cylinder X,11, we form an arc A; such that A; consists of
two line segments a, and a,', where a, joins p=' I and Mi on the segment L,_ 1(A1i)
and A,' joins At, and p, on the segment L;(AM,). Note that pp = p'9. By condition
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(i) for the segment L(M). we have Ai C X11, \ E. Thus, if we form

7:=A, +[pipi]+A2+...+[p4Pq]

it follows that 7 is a closed curve in A \ E such that -) can be continuously deformed
to in A\E.

Again fix i E {1, ... , q}. The initial and terminal points p," 1 and p,' of A, =
A + A lie on x = x` in A. Using (6.34). we have X.%,. n or = 0. so that C, n Cj =
0 (i 34 j), where E n K41, _ UJ=I C. It follows from (I) that the arc aj can be
continuously deformed in X:11, \E to an arc a, with the same initial (reap., terminal)
point as A, in the v-punctured disk A' (x' + iyi). Thus 7 can be deformed in A \ E
to a closed curve

which lies in y(z') \ E; this proves the second step.

Third step. The closed curve y in y(z') \ E in the second step can be
continuously deformed in y(z') \ E to a closed curve ry' in A'(f').

Indeed, since we imposed assumption (#) for the point z', the set E n y(z`)
consists of v different arcs Cj (j = 1, .... v) such that C, n C, = 0 (i 34 j) and such
that each Cj starts from a point on the bottom H- of the solid cylinder y(z') and
terminates at a point on the top H+. Thus, again using (I) for the closed curve y,
we obtain the third step. Hence the lemma in the case n = 1 is completely proved.

Proof of the lemma: Case n > 2. By taking a linear transformation of CZ .
if necessary, we we may assume that the point z' _ (zi , .... z;,) = ((z')*. z;,) E
A \ a in the lemma satisfies the following condition: if we set a("-I) _ {z'
(z1i... E O(n-1) I (z', z,*,) E a}. then

(z')' E A(n-1) \ ,(n-1). (6.35)

First step. Let M E y and choose s E [0, 21r] such that

M = y(s) _ (0(s)..y'(s). ti'(s))
(zA1 x.11, yA1 uA, + iu , ). (6.36)

Using the set Xh, C 0 in (5), we set

which is a three-dimensional solid cylinder in A. We take a line segment L(Al) in
X,11 passing through the point Al of the form

L(,11) : (z';x.y,u.v) = (zs1.x.ytf,u%l+o(x-x.r),vn1+3(x-xA1)).
where -15 x < 1 and a,)3 are constants, which satisfies

(i) L(M) n E = 0,
(ii) L(M) n [{z'1} x {jxI < 1} x {yA/} x ar] = 0.

This is proved as in the first step of the case n = 1, from conditions (2) and
(4).

Second step. Let z' = ((z')', z;,) E 0'. where z;, = x,, + iy;,, be the point in
the lemma and let

A. := pi"-1} x {x;,} x {IyI < 1} x r.
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Using the notation y11(z') and Y. C A,. in (6.32). we claim that we can contin-
uously deform the curve y in A \ E to a closed curve ti in the set y, \ E. where

s E [0, 27r] (q(s). x,,. y(s), u(s), v(s)) E A \ E and y(s). u(s). r(s) are continu-
ous functions of s E [0.21r).

This is proved as in the second step of the case n = 1. using (I1).

Third step. The closed curve y- in Y. \ E in the second step can be continuously
deformed in Al. \ E to a closed curve i in

11

(s). r ,y.*)} x r E.U {(QZ := (MEI
J

This is proved by repeating the method used in the first and second steps. using
(III) instead of (II).

Forth step. The lemma is true in case n > 2.

For the curve y can be continuously deformed in A \ E to the closed curve y in
Z from the third step. We put

A...:=©- -1,x{z,}xr.
so that Z C A=, \ E. Thus, if we set Et 1) = E n A1. and A. is identified with
DI"-11 x r =: A(B-1). then we have j C I I \E{"' 11 Therefore, under condition
(6.35). the case n reduces to the case n - 1. Since the case n = I was proved, the
fourth step follows from induction. O

Now let A = :9 x r C C" x C,,., E = {P(z. 0} satisfying condition
(6.28). or = (d(z) = 01. A' = A \ E. and A' = A \ a be as defined in the beginning
of this section. Let V be a ramified domain over the polydisk A without relative
boundary such that the projection of the branch set S of V onto A coincides,
with E. For Z() E 0, we let D(zo) denote the fiber of V over z = zo; this is a
finitely sheeted Riemann surface over the disk r without relative boundary. Let
D'(zo) := D(zo) \ E(zo). which is equal to D(zo) punctured in at most a finite
number of points.

We have the following.

COROLLARY 6.3. Let zo E A'. Any closed curve y in D\S can be continuously
deformed in D \ S to a closed curve 7 in the fiber D'(zo).

PROOF. By taking a small continuous deformation of y in D\S we may assume
that the projection y of y onto A satisfies y fl a = 0. Since z E A'. it follows from
the above lemma that y can be continuously deformed in A \ E to a closed curve
r in A'(:(,). We write this deformation as t E [0.1] - r(t) so that r(0) = y and
r(1) = r. This deformation uniquely induces a continuous deformation of the closed
curves y(t) in the unramified domain D\S over 0, where y(0) = y and y(t) = r(t)
for all t E [0.1]. Since y(l) lies on the fiber D'(zo). we obtain the corollary. D

The following corollary will be used in Chapter 9.

COROLLARY 6.4. Using the same notation as in the above corollary, assume
that E(0) consists of a single point. which we take to be the origin 0 in r, t. e.. the
equation P(0, w) = 0 has the unique solution to = 0 of order v. Let C = f (z, w) be
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a non-vanishing holomorphic function on D. Then there is a single-valued branch
of the function log f (z. w) defined on D.

PROOF. Fix zo E A. Let 7 be a closed curve in D \ S and let C = f (7). This
is a closed curve in the complex plane Cc such that the origin 0 is not in C. We let
N denote the winding number of C about 0. and our first claim is that N = 0. By
the lemma, y can be continuously deformed in D \ S to a closed curve y(zo) on the
Riemann surface D'(zo). This Riemann surface is finitely sheeted and is punctured
in a t most a finite number of points p, (j = 1, .... µ); moreover the points {p, I j
lie over E(zo). We set C(zo) = f (I(zo)); this is a closed curve in CC \ {0} whose
winding number N(zo) about 0 is equal to N (independent of zo E 0'). We may
assume that the projection y(zo) of -y(zo) onto r lies over the disk 5 (zo) centered
at 0 and of radius s = e(zo) in F, where max,=1.....N{Jpj1 } < e < 1 and a is as close
to this maximum as we like. Under the assumption that P(0. w) = 0 has only the
solution w = 0 of order v. we have E(zo) {0} in A as zo -' 0 in A. Hence we can
take e = e(zo) such that t5 (zo) -+ 0 as zo -' {0}. Moreover, if we let b_ (zo) denote
the connected component of the part of D(zo) over d,(zo) which contains 7(zo), then
d£(zo) converges in D to a point qo E D(0) over w = 0. Thus. C(zo) - f (qo) 0 0 as
zo -+ 0, and hence N(zo) -+ 0 as zo -+ 0. so that N = 0. From this claim, it follows
that there exists a single-valued branch of the holomorphic function log f (z, w) on
D \ S. Since this function is bounded there, it follows from Riemann's theorem on
removable singularities that log f (z, w) extends to a holomorphic function on all of
D. 0



CHAPTER 7

Analytic Sets and Holomorphic Functions

7.1. Holomorphic Functions on Analytic Sets

7.1.1. Holomorphic Functions on Analytic Sets. Chapters 7 and 8 will
be devoted to establishing the lifting principle for analytic polyhedra in an analytic
space. I Let D be a domain in C" with variables zi , .... z . Let E be an analytic
set in D and let v C E. We say that v is an open set in E if there exists an open set
6 in C" such that v = b n E. Let p E E. An open set v in E containing the point p
is called a neighborhood of p in E. Let o(z) be a function defined on 6 C C" and
let v = 8 n E. We let b(z)I, denote the restriction of o(z) to v.

We shall define holomorphic functions on the analytic set E as follows. First.
let v be an open set in E and let f (p) be a complex-valued function on v. Fix q E V.
If we can find an open neighborhood dq of q in C' and a holomorphic function o(z)
in d4 such that the restriction o(z)I,,. where vq := 6q fl E C v. coincides with f (p)
on v4, then we say that f (p) is holomorphic at q on v. If f (p) is holomorphic at
each point q E v, then we say that f (p) is holomorphic on v.

Let E be a pure r-dimensional analytic set in D C C" and let (z1..... z") be
coordinates of C" which satisfy the AVeierstrass condition at each point of E. Recall
this means that if we project E over the space C" comprised of the first r complex
variables (zl..... z,.) and we denote the image of E by D. then D is a ramified
domain over Cr and E can be described as

z,, =i;l(z1.....z,.) (j=r+1.....n),
where (zl.... , Zr) lie in the ramified domain D and each t;j (zt, ... , z,.) (j = r +
1..... n) is a single-valued holomorphic function on D. Note that E and D are one-
to-one except for an analytic set of dimension at most r - 1. If E has no singular
points in D. then the projection it : E -' V gives a bijection between E and D. In
this case, any open set V in V corresponds to an open set v in E where ir(v) = V.
and conversely. Furthermore. for any holomorphic function F(q) on V. the function
f (p) := F(ir(p)) is holomorphic on v: and for any holomorphic function g(p) on v,
the function G(q) := g(zr t(q)) is holomorphic on V. Thus. in the case when E
has no singular points in D. the holomorphic functions F(q) on V C E and the
holomorphic functions f (p) on v C V are in one-to-one correspondence through the
projection it. However, if E has singular points in D. this is not necessarily the
case.

I This problem was first solved by K. Oka (50], [51]. After that, H. Cartan created sheaf
theory from Oka's method. In this book we develop the lifting principle using Oka's original
ideas. In the textbooks [25], [26] H. Grauert and R. Remmert explain the lifting principle by
means of sheaf theory.

209
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EXAMPLE 7.1. Consider C2 with variables z and w. and the analytic hyper-
surface E in C2 defined by the equation

IV 2-z(z-1)2=0.
«'e project E over the complex plane C:. This projection of E can be identified
with the Riemann surface 1t determined by / : thus we write a : E -. R. Note
E has a singularity at (1.0). and E and R are not bijective. Furthermore, V
is a (single-valued) holomorphic function on R. but the corresponding function
f(p) := n(p) is not continuous at the point (1.0), so it is not holomorphic at
(l.0) on E.

EXAMPLE 7.2. We consider the analytic hypersurface E in C2 defined by

tc2-z3=0.
We project E over the complex plane C.. again. this projection of E can be identi-
fied with the R.iemann surface R determined by V r:, and we write r, : E R. The
hypersurface E has a singularity at (0.0). and E and R are bijective in this case.
Again, fz is a (single-valued) holomorphic function on R. but the corresponding
function A p) := 7r(p) is not holomorphic at the point (0, 0) on E.

We prove this by contradiction. thus we assume that f(z) is holomorphic in
a neighborhood of (0.0) on E. Thus there exists a holomorphic function o(z. uw)
defined on a neighborhood of (0.0) in C2 such that o(:, : l 2) = f for z in a
neighborhood of : = 0 in C.. This is impossible as can be seen from the Taylor
expansion of o(z. w) about (0.0) in C2 and from the uniqueness of the Puiseux
series.

7.1.2. Weakly Holomorphic Functions on Analytic Sets. We next in-
troduce another notion of holomorphy of functions defined on an analytic set E in
a domain D in C". Let S be the set of singular points of E and set E' := E \ S. Let
t: be an open set in E and set r' := r n E'. Let f (p) be a complex-valued function
on V. If f (p) is holomorphic on a' and if f (p) is bounded in a'neighborhood of each
point q E S n t' in E, then we say that f (p) is a weakly holomorphic function on
v C E. The condition that f (p) be bounded in a neighborhood of q E S n c means
that there exists a neighborhood u of q in v such that f(p) is bounded in r' n u.
We also say that a function f (p) is weakly holomorphic at a point q E E if there
exists a neighborhood r C E of q on which f (p) is weakly holomorphic.

Let E be a pure r-dimensional analytic set in D and. as in the previous section,
consider the ramified domain V over C' given by the image of E by the projection
IT to Cr. Let S be the set of singular points of E: thus S is an analytic set in D
of dimension at most r - 1. We set E' := E \ S and D' := ir(E') C D. Thus D'
and E' are bijective via s. For any open set r in E. we set V := 7r(r) C V. which
is a ramified domain over Cr. We set r' := v \ S and V' := )r(r'). Then for any
holomorphic function F(q) on V. the function f (p) := F(rr(p)) for P E r' clearly
defines a weakly holomorphic function on v. Conversely. let f (p) be a weakly
holotorphic function on r. We claim that the function F(q) := f (ir 1(q)) for
q E V' can be uniquely extended as a holomorphic function on V.

To verify this last statement, let pt, E V \ V'. We take a singular point :" _
(z?.... , z;,) of v such that r(:1)) = p(l. and a polydisk 6 = 6'x 6" (where. 6' C Cr)
centered at z0 such that each irreducible component r (j = 1.... ,1) of run passing
through z(I is bijective to V- := rr(rj) C V and t-(', n (n' n (fin" ') = 0. Thus, if
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we put V0 = U,)= l i,' and 1 i, V J . then V, is a finitely-sheeted ramified
domain over the polydisk b' centered at without relative boundary,
and F(q) is a bounded holomorphic function on V except for an at most (r - 1)-
dimensional set Ir(vt) fl S). We let m denote the number of sheets of V0 over 6'.
By the standard method of taking symmetric functions of branches of F(q). we see
that F(q) coincides with the solution w = l;(z') = (z,..... z,) of the equation of
a monk polynomial in w.

where each a., (z') is a holomorphic function in 6. Here we use the boundedness of
F(q). Since 4(z') is a holomorphic function on V,, we have the result.

Thus we obtain the following

REMARK 7.1. For an open set v C E and the projection V = ir(u) C D,
we get a one-to-one correspondence between the family of all weakly holomorphic
functions f (p) on v and the family of all holomorphic functions F(q) on V with
F(r(p)) = f(p).

This remark, in conjuction with Hartogs' theorem (Theorem 4.1). implies the
following result, which will be useful later when combined with Theorem 6.4 of
Chapter 6.

REMARK 7.2. Let D be a domain in C° and let E be a pure r-dimensional
analytic set in D. Let a be an analytic set in D such that or C E and a is of
dimension at most r - 2. Then any weakly holomorphic function f (z) on E \ a can
be extended to a weakly holomorphic function on all of E.

PROOF. Let zo E or. We may assume the coordinate system z = (z,,....z,.
2,..,.1..... z,+1 .... , satisfies the VVeierstrass condition for E at zt,. so
that there is a polydisk A := A x r C D centered at zo = ( 4 ' . . . . . z . zr'+1 . . °)

"' . and E fl (c1 x 8r) =0. Thus E fl A maysuch that C I C C"Z, L

be written in the form

zl - (z,..... z,.) (j = r + 1. ... n).

where z' = (z,..... z,) varies over a finitely sheeted ramified domain A over a
without relative boundary.

We let m denote the number of sheets of 0 over A and we let S denote the
branch set of A. We also write S for the projection of S onto A. and we let o
denote the projection of a fl A onto A. Thus S is of dimension r - 1 and a is of
dimension at most r - 2. We set A, = A \ (S U g) and 0, = A over A,. Therefore.
the weakly holomorphic function f (z) on E \ a gives rise to a holomorphic function
F(V) on 0, by the relation

4., 1 (z')....
.. ,1(z'))f(z .

Let (' E A, and fix a ball 6 centered at ('' in 0,. Then the function F(z`') for z' E 6
defines m holomorphic functions F,(z') (j = 1.....m) on J. If we construct the
function

P(z'.X) (X - F,(z'))...(X - Fm(z'))
= Xm+a,(z')Xm 1+...+am(z') on 6 xCx.



212 7. ANALYTIC SETS AND HOLOMORPHIC FUNCTIONS

then each ai (z') (j = 1.... , m) can be extended to a single-valued holomorphic
function on A1. Let E \ a. Since f (z) is weakly holomorphic on E \ a, it
follows that ai (z') (j = 1,... , m) is bounded in a neighborhood 6' of e' E A \ o,
so that ai(z') has an extension as a holomorphic function on A \ o. Since o is of
dimension at most r - 2 in the r-dimensional polydisk A, it follows from Hartogs'
theorem that ai(z') (j = 1,....m) has an extension as a holomorphic function
on A. so that P(z',X) is a monk pseudopolynomial in X whose coefficients are
holomorphic functions on all of A. Thus F(z') can be extended to a holomorphic
function F(z) on the ramified domain 0 by use of the relation P(z', X) = 0 (cf.,
Example 6.1). This means that f (z) can be extended to a weakly holomorphic
function f(z) on E nA by means of the relation F(z')
fora'EA.

Let E be an analytic set in a domain D in C" and let q E E. If every function
f which is weakly holomorphic at the point q is holomorphic at q, i.e., there exists
a holomorphic function F(z) defined in a neighborhood U of q in C" such that
Fit-nE = f(P), then we say that E is normal at q, or the point q is a normal
point of E. If E is normal at each point of E, then we say that E is a normal
analytic set in D. Clearly any non-singular point of E is a normal point of E;
however, it may also happen that a singular point of E is a normal point of E.

EXAMPLE 7.3. In C3 with variables zl, z2 and w, we consider the analytic
by persurface E defined by the equation

w2-Z1Z2=0.
Then the origin 0 in C3 is the only singular point of E, and it is a normal point of
E.

To prove this, let V denote the projection of E onto C2 with variables 21, z2:
V = tr(E). Thus V is a two-sheeted ramified domain over C2 determined by VIE, -z2
and the branch set C of V lies over L := ir(C) = A n ({z1 = 0} U{z2 = 0}). Let
f (p) be a weakly holomorphic function defined on an open neighborhood v of the
origin 0 in E. We let V C V denote the open set which corresponds to v. By
taking a smaller set V if necessary, we can assume that V is a two-sheeted ramified
domain over a polydisk A centered at (0, 0) in C2 without relative boundary. Thus
over each (zI, z2) E A \ L, we can find two points pl (zI, z2) and P2(z1, Z2) in V. If
we set

fi(zl,z2) f(Zl,Z2,Pi(ZI,Z2)) (j = 1.2).

then fi(zI, Z2) becomes a (single-valued) holomorphic function on the ramified do-
main V with the property that if (z1, z2) traces a closed curve in A \ L in such a
manner that pl(z1,z2) moves in a continuous fashion to P2(zl,z2), then fl(zl,z2)
continuously varies to f2(z1, z2). Thus the pair of functions fi(z1, z2) (j = 1.2) has
the same behavior as the pair ± z1 z2. It follows that if we define

a(zl, Z2)
f1(Zl, Z2) - f2(ZI, Z2)

2 z1z2

b(zl,Z2) = fl(Zl,z2) + f2(Zl,Z2)
2

then a(z1i22) and b(z1,22) are single-valued on all of A except perhaps for the
complex lines zl = 0 and 22 = 0. However, it is clear that b(z1 it 22) is holomorphic
on A. Moreover, since f1 = f2 on L except for the origin (0.0), we see that a(zi, Z2)
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is holomorphic in A \ {(0.0)}. and hence on all of A from Osgood's theorem. Thus
we can define the holomorphic function

F(z1, z2. w) := a(z1, z2) w + b(z1. z2)

in A x C,,.. We have f (p) = F(zi. 22, a:) j, and hence the origin 0 is a normal point
of E.

In the case when E is an analytic hypersurface in D C C" we have the following
fact.

REMARK 7.3. Let E be an analytic hypersurface in a domain D C C". If each
point of E except for an analytic set a of dimension at most n - 3 is a normal point
of E. then E is a normal analytic set in D.

To prove this, fix Po E a and let f(p) be a weakly holomorphic function on an
open neighborhood v C E of N. For simplicity, we set p0 = 0 in C" and we choose
Euclidean coordinates (z1..... z") which satisfy the Weierstrass condition for a at
0. We take a polydisk A = Al x x A,, centered at 0 in C" and a holomorphic
function 0(z) in A such that E fl A = {o(z) = 0). Since dim or < n - 3. we can
find a polydisk of the form A' _ (Ai X A2 X A,,) X (A4 x x A") centered
at 0. such that A; CC A, (i = 1,2,3) and such that A° := A \ A' does not
intersect a. By assumption, for each point p E E fl A° we can find a neighborhood
5, C A° of p and a holomorphic function Fp(z) in b, such that Fp(z)I6 . = f (p)
on by fl or. We define a Cousin I distribution C = { (gp. bp) } on A° as follows: for
p E E n A°, we take the above neighborhood by of p and the meromorphic function
gp(z) = Fp(z)/Q(z) in bp. and, for p E A° \ E. we take a neighborhood by of p with
by fl E = 0 and set gp(z) 1. From Lemma 3.5 (Cartan) there is a solution G(z)
of the Cousin I problem for C in A°. If we define F(z) := G(z)o(z). then F(z) is a
holomorphic function on A° and F(z)IErAo = f (p) on E n Y. Since F(z) can be
holomorphically extended to A by Osgood's theorem, we see that F(z) I_% = f (p)
on An E.

7.1.3. Linings of Analytic Sets. To treat analytic sets in a simpler fashion.
we introduce two types of liftings of such sets. Let D be a domain in C" with
variables z1.... , z", and let E be an analytic set in D.

Lifting of the first kind Let Y, (p) (j = 1.... , m) be weakly holomorphic
functions on E. Using the variables w1.... , w," for C'". we consider the product
domain A = D x C"` C C"+'In the domain A we consider the set

E: wj =w",(P) (PEE. j=1.....M).
The closure F,':= E in A is an analytic set in A. We call the analytic set E° in ,1 a
lifting of the first kind of the analytic set E in D through w, (p) (j = 1..... m).

The projection a from C"*' to C" induces a projection from E° onto E, which
we denote by r0.

7r°: E°CC`
If p is a non-singular point of E in D, then each q in as 1(p) is also a non-singular
point of E° in A. We let o be the set of singular points of E in D. and we set
o° := zr 1(a). Note it may occur that each point of rrr 1(P0) is a non-singular point
of E° for some p0 E a.

The projection 1r0 gives a bijection between E° \ a° and E \ a. Thus, from
the definition of a weakly holomorphic function on an analytic set, for each weakly
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holomorphic function f (p) at p,l on E we get a weakly holomorphic function f (q)
at a point q in r 1 (A1) C E° by setting f (q) := f (;r°(q) ). The converse is also
true: i.e.. the family Wj: of all weakly holomorphic functions on E coincides with
the family WI... of all weakly holomorphic functions on E° via the projection no.
Under this correspondence f (p) - f (q). if f is holomorphic at a point p in E. then
f is holomorphic at each point of rr,- 1(po) in V. Moreover, it may occur that every
function f which is weakly holomorphic at p in E corresponds to the holomorphic
function f at each point of n,-, 1(pl,) in E°: i.e., even if p is not a normal point of
E. each point in ir,,'(A,) may be a normal point of V.

If E is pure r-dimensional, then the irreducible components of E in D corre-
spond in a one-to-one manner to the irreducible components of E° in A. Moreover,
if we choose coordinates z = (Z1,....: Z,.al.... which satisfy the Weierstrass
condition for the analytic set E. then the coordinates (z, w) satisfy the Weierstrass
condition for V. The projection D of E over C' coincides with that of E° as
a ramified domain over Cr, and W , (W.;,) can be identified with the family
of all holomorphic functions on D.

From Example 6.3 we see that there exists an analytic set a in a domain D C C'
such that, for some point q E a. there do not exist a neighborhood 6 of q in D and
a lifting of the first kind ii of a n 6 in a domain 6 C C"-" with the property that
if we set n° : & -+ or, then & is non-singular at any point of 7rj, '(q). However, we
shall show in section 8.2 that for any analytic set a in D and any point q E a. we
can construct a lifting of the first kind & in 6 of a n 6 such that a is normal at each
point 7rO '(q).

Lifting of the second kind We decompose E into E := E(, u U E,. (r < n),
where each E,, (k = 0. 1..... r) is a pure k-dimensional analytic set in D. We
introduce Cr with variables u1..... ur and the product space A = D x Cr. For
k = 0,1, ... , r we define the k-dimensional hyperplane

Hx: u,=0 (j=k+1.....r) in C',

where by convention we set H, := C''. In A we define

EA = Ek X Hr-k R=0.1--r), E' = E; U ... U E;..

In case Ek = 0. we set Ek X Hr-k = 0. Then E' is a pure r-dimensional analytic
set in A. and E' fl (D x {(0.....0)} in A can be identified with E in D. We all
the analytic set E' in A a lifting of the second kind of the analytic set E in D.

The projection it from C"+r to C" induces a projection from E' onto E. which
will be denoted by it,.

rr.: E'CC",- ECC".
If p E E is a non-singular point of E in D. then each point q in 7r.-'(p) is also a
non-singular point of E' in A. Conversely, if q E E' is a non-singular point of E.
then ir.(q) is a non-singular point of E. We note that for any weakly holoniorphic
function f (p) at a point p(, on E. the function j (q) := f (r,.(q)) is weakly holomor-
phic at each point q(, E r, .-' on E*. Conversely, if J (q) is a weakly holomorphic
function on E', then Av becomes a weakh' holomorphic function on E.
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7.2. Universal Denominators

7.2.1. Weierstrass Theorem. Let C"'' = C" x Cu, with variables zl.... .
z,, and w. Let D C C" be a domain and let

F(z. w) = w' +aI(z)w'-' + +a,(z)

be a monic polynomial in w such that a,(:) (i = 1.....1) is a holomorphic function
in D. We do not assume that F(:, w) is irreducible, but we do assume that F(z. w)
has no multiple factors. We set A := D x C C"' and consider the analytic
hypersurface

E : F(z. uw) = 0 in A.

We note that (OF/Ow)(z. w) 0 on each irreducible component of E.
Then we have the following proposition concerning the representation of weakly

holomorphic functions on E.

PROPOSITION 7.1. Let o(p) be a weakly holomorphic function on the analytic
hypersurface E. Then there exists a unique w) in w of degree
at most I - 1.

4k(.-, w) = Ao(z)w'-' +... + 4,_j(:)

where each A;(z) (i = 0. L... ,1 - 1) rs a holomorphic function on D. such that

d(p) =
w)

an (7.1)
(8F/()w)(z. w)

PROOF. Let d(z) be the discriminant of F(:. w) with respect to w. Thus. d(:)
is a holomorphic function in D with d(z) t 0 in D. We set a:= {: E DI d(z) = 0}
and D' = D \ a. Fix z E D' and let d be a simply connected neighborhood of z in
D'. Then the equation F(z. w) = 0 has ! distinct solutions w = rh(z) (j = 1.... ,1),
so that each q,, (z) is a holomorphic function on 6 and F(z.w) = f""='(IV -71, (;,))
in 6 x C,,.. We let vj (j = 1.... ,1) denote the portion of E defined by w = q, (z )
for z E 6. We write o, (p) = Q(p) ,, and regard o j (p) as a holomorphic funct ion on
6; thus we denote it by o; (z). Next we consider the following function on 6 x C,,.:

4(:, w) := F(z, w) I °' (z) + + °t(z)
u'_771(z) u;-fi(z)

i

= L.. o.'(z)(w - q, (z)) ... (u, n (:)) ... (u. -
J=1

where o denotes the omission of o. Note that w) is of the form

(z.w)=Ao(z)w' for zE6.

where each A; (z) is a holomorphic function on 6. and 4 (z. w) satisfies the relation

(z)) =Oj(z) (z.q,(z)) for z E 6.

By analytic continuation and the expression of A,(:) (i = 0.1.....1- 1) as a sym-
metric function of a (z)....,o,(z), each A,(z) becomes a single-valued, bounded
holomorphic function in D'. It follows from Riemann's removable singularity theo-
rem that each A, (z) is holomorphic in all of D. Thus. 4D(z, w) is a pseudopolynomial
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in w of degree at most I - I whose coefficients A, (z) are holomorphic functions on
D. and

$(z. w) = o(p)
aw

(z. W) for (z. w) = p E E.

Now take any p = (z. w) E E such that z 0 Since bu (p) j4 0. 0(p) is of the form
(7.1). Furthermore, by analytic continuation (7.1) holds at any non-singular point
of E. The uniqueness is clear from the 1t `eierstrass preparation theorem (Remark
2.3). O

Proposition 7.1 says that any weakly holomorphic function p(p) on an analytic
h}persurface E in A is the restriction of the meromorphic function G(z, w) :=

in A to E. Note the denominator OF/&w does not depend on o(p).
Let po = (zo, wo) be a singular point of E. If o(p) is a weakly holomorphic function
but is not a holomorphic function at po. then po is a point of indeterminacy of the
function G(z. w) associated to o(p).

A non-singular point po of E such that z1, E o may be a point of indeterminacy of
G(z, w). For example. take the non-singular hypersurface E : F(z, w) = w2 - z = 0
in C2 and let o(p) = V:-. Then we have OF/Ow = 2w. w) = 2z and G(z, w) =
z/w. For another example. take E : F(z, w) = w(w2 - z) = 0. which is singular
at (0.0). Let p(p) = I on w2 = z, while 4(p) = -1 on w = 0. Then 0(p) is
discontinuous at (z, w) = (0.0). Here. G(z. w) = (w2 + z).

REMARK 7.4. Using the same notation E : F(z,w) = 0 in A = D x Cu. as in
Proposition 7.1. the proposition implies the following fact: Let E be a lifting of E
of the first kind,

E:w,=wj(P) (PEE. j=1,....m),
which lies in A x C'". Here each , ,,(p) (j = 1.... , m) is a weakly holomorphic
function on E. Then, for each j = 1.... , m. there exists a pseudopolynomial
It, (z. w) in w of degree at most l - 1.

$'i (z, w) = -1 + ... + AtliI1(z),

where each A; -}(z) (i = 0,1.....1 - 1) is a holomorphic function on D, such that
the linear polynomial d (z. w. w,) in w1 defined by

J(z,w.w,) := ww au (z,w) - (,(z.w) in A x C'

vanishes on E.

7.2.2. Universal Denominators. Let E be an analytic set in a domain D in
C". Let 6 be an open set in D and let 61-(z) be a holomorphic function in 6. We set
r := 6 n E. Suppose W(:) satisfies the following condition: for any q E v and any
weakly holomorphic function f (p) at q. the weakly holomorphic function f (p)W(p)
at q is a holomorphic function at q. This means that there exist a neighborhood
6q of q in 6 and a holomorphic function F(z) on 6q such that F(z) = f(p)W(p) on
v n 6Q. Then we say that W(z) is a universal denominator2 for E in 6. Fix p E E
and let W(z) be a holomorphic function at p in C". If there exists a neighborhood
6 of p in C" such that W(r) is a universal denominator for E in 6. then we say that
IV(z) is a universal denominator for E at p. Clearly if W(z) = 0 on E, then W(z)
is a universal denominator for E in D.

2In [31], Oka calls a universal denominator a W-function.



7.2. UNIVERSAL DENOMINATORS 217

Proposition 7.1 yields the following result.

COROLLARY 7.1. Using the same notation as in Proposition 7.1, the function
OF/Ow is a universal denominator at each point of E in A.

PROOF. Let q E E and let f (p) be a weakly holomorphic function at q. We may
assume that f (p) is weakly holomorphic on v := Efla, where A := 6 x y C D x C,, is
a polydisk centered at q with pn (6 x 8-y] = 0. Then there exists a monic polynomial
F, (z, w) in w.

F1 (z, w) = wk + b1(z)wk-1 + ... + bk(z),

whose coefficients are holomorphic functions on 6, with 1 < k < I and v = {(z, w) E
6 x C. I FI (z, w) = 0}. By applying Proposition 7.1 to F1 in 6 x C., we see that
(OF, /ft) f 1, has a holomorphic extension P, (z, w) in 6 x Cu of the form

P1 (z, w) = B°(z)wk-I + ... + Bk_ 1(z)

On the other hand, F(z,w) can be written as

F(z.w) = F1(z,w)F2(z,w) in 6 x C".,

where F2 (z, w) is also a monic polynomial in to of degree I - k > 0 whose coefficients
are holomorphic functions in 6 with F2(z, w) 54 0 at each point (z, w) E A. Since

OF _ F2 on v,
Out

it follows that f h has a holomorphic extension P, (z, w)/F2(z, w) in A. Hence,
the function OF/8w in A is a universal denominator at each point of E.

The following two propositions indicate the relation between our two kinds of
liftings of analytic sets and universal denominators.

PROPOSITION 7.2. Let E be an analytic set in a domain D in C". Let pj(p)
(j = 1,... , m) be weakly holomorphic functions on E. We consider a lifting E° of
the first kind of E,

E°: w,=Pi(p) (PEE, j=1.... ,m).
in A := D x CW . If a holomorphic function W(z) in 6 C D is a universal de-
nominator for E in 6, then W(z), considered as a holomorphic function on 6 x Cw
which is independent of w, is a universal denominator for E° in 6 x C1w.

PROOF. The proposition follows from the fact that the weakly holomorphic
functions on E° fl (6 x Cw) and the weakly holomorphic functions on E fl 6 are in
one-to-one correspondence via the standard projection mapping.

PROPOSITION 7.3. Let E be an analytic set in a domain D in C" and let E =
E° U U E,., where E, (i = 1,... , r) is a pure i-dimensional analytic set in D.
Suppose E' is a lifting of the second kind of E in A := D x Cu. Let 6 be an open set
in D and let W (z, u) be a holomorphic function in a neighborhood A of 6 x {0} in
A. If W (z, u) is a universal denominator for E` in A, then W (z, 0) is a universal
denominator for E in 6.

This easily follows from the definition of universal denominators.

Using these propositions, we have the following result.
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PROPOSITION 7.4. Let E be an analytic set in a domain D in C" and fix
1k, E E. Then there exists a neighborhood A of pU in D such that for any given
neighborhood A0 of pU with A0 CC A and any non-singular point ql, of E in AU.
there exists a universal denominator WU(z) of E in A', where A1I CC A' CC A.
with HV()(z) 4 0 on any irreducible component of E in Au, and 11 'jl(ql,) j4 0.

PROOF. Since the singular points of E correspond to the singular points of the
lifting E' of the second kind of E, it follows from Proposition 7.3 that E may be
assumed to be a pure r-dimensional analytic set in D. Fix 1A, = (z4..... (;) E E and
choose coordinates z = (z1.... , zn) of C" which satisfy the Weierstrass condition
for E at puu. Then we can take

o : Izl-z°1<P, (J=1....,r).
Ak 14 -Zx1:5 Pk (k=r+l.....n).

so that if we set r:=Or+1 A=i'xr.then
ACC D, En[A'xOr)=O.

We let D denote the projection of E n A over c7'. so that V is a ramified domain
over i1' without relative boundary. For simplicity, we write ' :_ Zr). Then
E n A can be described as

( Z , + 1 , .. Zn) = ('r+1(Z') ,rtn(=')). Z' E D.

where each i (z') (j = r + 1.... , n) is a holomorphic function on D. We put

A ='' X artI, r'=A,-+2X ... X A,,.

Since the condition E n (0' x arl = 0 implies that E n [. x ar'] = 0. it follows from
Proposition 2.3 that the projection E of E onto , C C' t' is an analytic set in A.
We note that E is an analytic hypersurface in A. We let D' denote the projection
of E over A'. Then E can be described as

in A, (7.2)

where each a,(z') (i = 1.....1) is a holomorphic function in A': i.e.. zr,.l =
rlr+z' E V. coincides with the solution set of F(z', Zr+l) = 0. Further-
more, we may assume that F(z'. zr+1) has no multiple factors. It follows from
Corollary 7.1 that

(Z'
OF

rYl
is a universal denominator for E in A such that bt'(z', z,.,.1) * 0 on each irreducible
component of E. On the other hand, E in A is a lifting of the first kind of E through
nk(p) (k = r+2..... n). From Proposition 7.2. it follows that W(z) := W(z'. Z'.4-0-
considered as independent Of Zr+2, , Z,,. is a universal denominator for E in A
which is not identically zero on each irreducible component of E.

Using the variable Zk (k = r + 2..... n) instead of Zr-I we obtain a universal
denominator Wk(z', zk) for E in A which is not identically zero on each irreducible
component of E.

Let AU be a neighborhood of pt) with All C C A and let qll EAU be a non-
singular point of E. For simplicity we take qU = 0. If Wk(0.0) 0 for some
k (r + 1 < k < n), then we can take WU(z) to be W, (z', zk) in A and set A' = A.
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and we are done. Thus we assume that 11k (0.0) = 0 for each k = r + 1.... , n. As
in (7.2) we set. for each k = r + 1.... , n,

: F/`' Z'"+ak.l Zr Zn+... FaR.", Z' =t) in 'L'xA.,k k(-. Zk) l ( ) A ( ) 1

in order that It 'k (Z'- zk) = (8Fk/8zk)(z'. zk) in A. Here m depends on k. Since
(0, 0) is a non-singular point of E, it follows that

Oak,, (0)
A 0 f o r some k (r + 1 < k < n) and i (1 < i < r):

8z, - -
we take k = r+ 1 and i = 1 for simplicity. For small e 34 0. we consider the following
coordinate transformation of C":

i1 = Zi + Elr+1 t; 2..... n).

If we again construct a universal denominator (JFr 1/(dzr+
in A' = a x 1 of the same type as 1Vrt 1(z', zr+1) in A. then it r.1(0, 0) _

--"2(0))s-(8".8a,

0. Choose e 34 0 sufficiently small so that A' C A is close
enough to A to ensure that Au CC A. Then, taking R i,(z) to be
the conclusion of the proposition is satisfied. G

From this proposition we easily deduce the following corollary.

COROLLARY 7.2. Let E be an analytic set in a domain D in C" and let S be
the set of singular points of E in D. Let p E E. Then there exists a neighborhood
6 of p in D such that the common zeros in b of all universal denominators of E on
b are contained in S n S.

This corollary, combined with the fundamental theorem in Chapter 6. yields
the following result, which will play an important role in the next chapter.

COROLLARY 7.3. Let E be a pure r-dimensional analytic set in a domain D in
C" and let p E E. There exists a neighborhood 6 of p in D such that. if we write
E,s E n 6, we can find a lifting of E6 of the first kind.

(E6)1} : ww = i].'(p) (p E E6. j = 1..... m).
in 6° := 6 x C"`. such that the common zems in 6° of all universal denominators
for (E6)" in 0 are contained in an analytic set of dimension at most r - 2 in 6".

PROOF. Fix p E E and a closed polydisk J:= A' x 0" C Cr x C"-' centered
at p = (p'.p") which satisfies the Weierstrass condition for E. and such that, if we
set E6 := E It 6. then E6 n (t1' x 8A") = 0. We let V denote the projection of E6
over ©'. Thus D is a ramified domain over A' without relative boundary. By taking
a smaller 6 centered at p if necessary, from Theorem 6.4 we can find a fundamental
system (4+,(p)},=1 ...,m for D; i.e., each 4,(p) is a holomorphic function on V such
that the set S of singular points of the graph

C: w;= 4i, (p) (pEV. i=1....,m)
in 0' x C"' is of dimension at most r - 2.

Since ti(p) becomes a weakly holomorphic function on E6, we have a lifting of
the first kind of E6.

(E6)°: w, =4);(p) (pEE6, i=1,...,m)
in 6" := 6 x C"' C C"+` such that the set of singular points of (E6)° is of dimension
at most (r - 2). Thus, the corollary follows from Corollary 7.2. 0
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7.3. 0-Modules

7.3.1. Definition of 0-Modules. In C" with variables z1.... , z", let 6 C
C" be an open set and let A > 1 be an integer. Take A single-valued holomorphic
functions fj(z) (j = 1.... ..A) on 6 and set

f(z) (fj(z), .... fa(z)).
We call f (z) a holomorphic vector-valued function on 6 of rank A, and
fj(z) (j = 1,... ,.1) is the j-th component of f(z). We let 0" denote the set
of all pairs (f (z), 6), where 6 is an open set in C" and f (z) is a holomorphic
vector-valued function on 6 of rank A. In case A = I we use the notation 0.

Let .7a be a subset of 0'. Suppose 3a satisfies the following two conditions:
(1) If (fl (z), 61), (f2 (z), 62) E 3" and 61 n62 34 0. then UI(z)+ f2(z).61 n62) EP.
(2) Let 6' c C" be an open set and let a(z) be a holomorphic function on 6'.

If (f (z), 6) E 3" and 6 n 6' # 0, then (a(z) f (z), 6 n 6') E 3a
Then we say that 3a is an 0-module of rank A, or simply, an 0-module. In
case A = 1, we call 3a = 3 an 0-ideal 3

Let 3a be an 0-module. If (f (z), 6) E 3". then we say that f (z) belongs to
3a on 6. From condition (2), (f (z). 6) E 3'' and 6' C 6 imply that (f (z), 6') E 3".
Let p E C" and let f (z) be a holomorphic vector-valued function of rank A at a
point p. If there exists a neighborhood 6 of p in C" such that f (z) belongs to 3a
on 6, then we say that f (z) belongs to 31 at the point p.

Let D C C" be a domain and let ,7" be an 0-module. If the open set 6 C C"
is contained in D for each (f (z), 6) E .7", then we say that 3" is an 0-module on
D. To emphasize this, we write 3"(D).

Let 3'' be an 0-module and let Z" C 3". If Za itself is an 0-module, then we
say that Za is an 0-submodule of 3a.

Let D C C" be a domain and let 3" be an 0-module. Then it is clear that
Za := {(f (z),6) E .7" 16 C D} is an 0-submodule of 3a. We say that 11 is the
restriction of 3" to D.

Let 31a and 32 be 0-modules. Then J' := .71 n 32 is also an 0-module,
which is called the intersection of 31 and 32.

Let Ja and 3z\ be 0-modules and let D C C". Fix a point p E D. Assume
that if f (z) belongs to 31 (resp. 32) at p, then f (z) belongs to 32 (resp. Via) at
p. If this occurs for each p E D, then we say that 31 and 32 are equivalent on
D. Furthermore, let 31 and 32 be 0-modules and fix p E C". If there exists a
neighborhood 6 of p in C" such that 31 and 32 are equivalent on 6, then we say
that 3, and 321 are equivalent at the point p.

Let D C C" and A, v > 1 be integers. Let

4,j (Z) = (`Ii1j (z).....ka.,,(z)) (j = 1,... v)

be v holomorphic vector-valued functions of rank A on D. For an open set 6 C D
and v holomorphic functions aj(z) (j = 1,... v) on 6, we form the holomorphic
vector-valued function of rank A

f (z) = QI on 6.

'The notion of 0-ideal was first introduced by Oka ]50] under the name of ideal with inde-
terminate domain. The 0-module defined here is an example of a presheaf in sheaf theory.
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The totality of such pairs (f (z).6) becomes an 0-module of rank A. We call it the
0-module generated by {,D} := {,D;(z)};.1.... .,, and denote it by 7a{4}.

Let .T be an 0-module. If there exist a finite number of holomorphic vector-
valued functions '(z) (j = 1,... ,v) of rank A on a domain D C C" such that
the restriction of ,7" to D is the 0-module J"{O} generated by {O;(z)};=i.... ....
then we say that 9a is a finitely generated 0-module on D, and we call
{O;(z)};=1.... ,,, a pseudobase for ,7a on D.

Let ,7" be an 0-module and let p E C". If there exists a neighborhood 6 of
p in C" such that ,7,` is equivalent to a finitely generated 0-module Z"{4'} on 6,
where {4'} = {40, then we say that ,7" is a locally finitely generated
0-module at the point p and is a local pseudobase at the
point p; equivalently, we say that .7" admits a locally finite pseudobase at p.

REMARK 7.5. Let D C C" be a domain and let R be the ring of all holomorphic
functions on D. Then one ordinarily defines an R-ideal F on D as a set F of
holomorphic functions on D satisfying (I) if fj(z).f2(z) E Y. then fl(z)+f2(z) E
.F; (2) if a(z) ER and f (z) E.F. then a(z)f(z) E.F. We will call such an ideal .F
an ideal with determined domain D, while the 0-ideal defined above is an ideal with
indeterminate domain. These two types of ideals have different properties arising
from the structure of the zero sets of holomorphic functions.

For example, in C2 with variables z = (z1, z2), we define A : 1z11 < 2, 1z21 < 2
and E : z1 = 0, 1z21 < 1 so that E CC: A. We define J and .7 as follows:

(1) J is the set of all holomorphic functions f (z) on A such that f (z) = 0 on E.
(2) 3 is the set of all pairs (f (z), 6) such that f (z) is a holomorphic function

on 5 CD with f(z)=0on8f1E.
Then J is an ideal with determined domain A and .7 is an ideal with indeterminate
domain in A. The common zero set of all of the functions f (z) E J is the disk
1z21 < 2 in the complex line z1 = 0 (which contains E), while the the zero set of
any holomorphic function f (z) in 6 such that (f (z), 6) E 9 is necessarily contained
in E.

REMARK 7.6. An 0-ideal does not always admit a locally finite pseudobase at
a given point.

For example, let 7 cc r be concentric open balls centered at the origin in C2
with variables x and y. Let E be the hyperplane z = y in C2 and let a denote the
portion of E in r \ 7. Consider the set 9 of all pairs {(f (x, y), 6) } with 6 C r and
f (x, y) holomorphic on 6 with f (x, y) = 0 on o f16. Then ,7 is an O-module in r
which does not admit a locally finite pseudobase at each point of E fl (O) in r.

As another example, letA=(lxl<1)x(lyl<1)andA'=(lxl<1)x(0<
lyf < 1) in C2 and let Z be the 0-ideal in A generated by (xy, A) and (1, A'). To
be precise. (f, 6) E I if and only if, in case 6 C A', f is an arbitrary holomorphic
function in 6, while in case 6 C A but 6 ¢ A', f is of the form h(x, y)xy where
h(x, y) is a holomorphic function on 6. Then I is an 0-ideal in A which does not
admit a locally finite pseudobase at the origin (0, 0).

7.3.2. Main Theorem. Let D C C" be a domain and let A, v > 1 be integers.
Let

F , (z) = (Fi,i (z), ... , F . (z)) (j = 1, ... , v)
be v holomorphic vector-valued functions of rank A on D. We consider the fol-
lowing system of A homogenous linear equations involving v unknown holomorphic
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functions fi(z) (j = 1,... v):

(11) fl(z)FI(z) +. + 0.

or equivalently,

Fi.1(z)fI(z) +...+ 0.

1 Fa.l (z)fj(z) .}....+ Fa.: 0.

If a holomorphic vector-valued function

f(z) = U1 W, ... , Mz))
of rank v on an open set 6 C D satisfies these linear homogeneous equations on
6, then we say that (f (z).6) is a solution of equation (1). The set of all solutions
(f (z), 6) of equation (SI) where 6 C D clearly becomes an 0-module of rank v. We
call it the 0-module with respect to the linear relation (SI) and denote it by

With this terminology we have the following theorem.

THEOREM 7.1 (Oka). For any given system of homogeneous linear equations
(Sl) on D C C", the 0-module .C(SI) with respect to the linear relation (Sl) has a
locally finite pseudobase at each point of D.

This theorem is the main theorem in the theory of 0-modules. It was first
proved by Oka in 1948 (cf. 1501); the proof below is a modification of Oka's proof
due to H. Cartan [121.

7.3.3. Two Preparation Theorems. Let D be a domain in C" with vari-
ables z1,... , z,, and let C,,, be the complex plane with variable w. Let I > 1 be an
integer, and consider a monic pseudopolynomial P(z, w) in w of degree 1,

where each a,(z) (i = 1, ... , 1) is a holomorphic function on D. (P(z. w) may have
multiple factors.) Fix r > 0 and define r := {Iwl < r} C C,,. and A := D x r C
C"'. We assume r > 0 is sufficiently large so that for each z' E D. the I solutions
of P(z'. w) = 0 with respect to w are contained in the interior of r, i.e.,

{(z, w) E D x C,,. I P(z, w) = 0} CC A. (7.3)

Then we have the following two theorems.

THEOREM 7.2 (Remainder theorem). Let f (z, w) be a holomorphic function in
A.

1. There exist a holomorphic function q(z, w) in A and I holomorphic functions
ck(z) (k = 0,1.....1 - 1) in D such that

f(z,w) = q(z, w) P(z,w)+r(z.w) on A. (7.4)

where

onDxC,,.. (7.5)

2. (a) The holomorphic functions q(z. w) and r(z. w) which satisfy (7.4) are
uniquely determined by f (z, w).
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(b) Let 0 < ro < r. Define I'o : awl < ro and Ao = D x ro. Then there
exists a constant K > 0 such that if If (z, w)I < Al on A, then

q(z,w)I. fr(z,w)I <_ KAI on A0,

ck(z)! < KAI (k = 0,1,... ,1- 1) on Do.

PROOF. Following H. Cartan. we consider the following integral for (z, w) E
A\(Dxor):

1 f(z.() P(z.()-P(z.w)
I (z, w} :=

d(2rri P(z, w() (-
FYom Cauchy's theorem we have

I
Since P(z, 0 on D x or by our assumption on r, it follows that the integral
in the second term of the right-hand side is a holomorphic function q(.-, w) for
(z, w) E A.

On the other hand, the integral I(z, w) may be written as

I(Z.w) _ QJ(z. () d( wr,
2tri P(Z.()

1=o

where each Q j (z, () (j = 0, ... , I - 1) is a pseudopolynomial in (of degree at most
I - 1 whose coefficients are holomorphic functions for z in D. Thus, the coefficient
of uw (j = 0,....1- 1) on the right-hand side is a holomorphic function cj(z) in
D. Hence,

t-i
f(z,w) - q(z,w}P(z, w) _ cj(z)ua in A,

j=0

which proves 1.

To prove 2 (a), let q(z, w) and r(z, w) satisfy conditions (7.4) and (7.5). Then
Cauchy's theorem applied to q(z. w) yields, for (z, w) E A \ (D x 8I'),

a = -' I !(`,()d(

I f I f(z.() d(- 1 ( 1 r(z.() d(

2rri ICI=r (- w P(z.() 2rri ( - W P(z,()
S(z, w) - T(z, w).

Condition (7.3) implies

T(z, w) =
1 f 1 r(z, ()

d( for any R > r.
21r ICI -R (- w P(z, ()

By letting R - x, we see from (7.5) that T(z, w) = 0. We thus have q(z, w) _
S(z, w), which is uniquely determined by f (z. w); hence so is r(z, w).

To prove 2 (b), fix (z, w) E Ao so that I wl < ro < r. We set

A := max{IP(z, w)I I(z,w) E A),
a:= min {IP(z,()I I (z,() E D x 8T} > 0.
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Suppose If(z,w)I < M on A. Then the above expression for q(z, w) = S(z,w) for
(z, w) E Ao implies

Iq(z,'w)I 5 1 J
1 I f (z, c)E

141 <
rM =: KIM.

2a SCI=r I S - wI I P(z.()I (r - ro)a

so that Ir(z,w)I < M(1 + KIA). It follows that Ic3(z)I < M(1 +KIA)/r3 for
j = 0,1, ... , 1- 1. Thus, K:= max,=o.1.....r_ 1 {(1 + KI A)/rl } > 0. and this proves
2 (b). 0

THEOREM 7.3 (Division theorem). Let '(z, w) be a pseudopolynomial in w of
degree at most A whose coefficients are holomorphic functions on D. If there exists
a holomorphic function q(z, w) in A such that

$(z, w) = q(z.w) - P(z,w) on A,

then q(z, w) is also a pseudopolynomial in w of degree at most A-1 whose coefficients
are holomorphic functions on D.

PROOF. Noting that q(z, w) is holomorphic in D x C,,,. we set
x

q(z, w) := > On D X C,,.,
n=0

where each an(z) (n = 0, 1,...) is a holomorphic function on D. Fix z E A and
R > r. Then we have from condition (7.3) that

an(z) = 1 f q( , 1 dw
27ri I_r w

_ 1 1 4(z, u:)

27ri
f

u.1=R w"+1 p(z, w) dw.

Let n > A -1 + 1 and let R - oo. Since degu.'(z, w) < A and degu.P(z, w) = 1,
we have a,, (z) = 0, so that q(z,w) = Ea=oa"(z)w", as desired. 0

7.3.4. Proof of the Main Theorem. Let D C C" be a domain and let

F3(z) = (Fi.2(z),... ,FA.J(z)) (j = 1.....v)
be a given set of v holomorphic vector-valued functions of rank A > I in D. Let

(D) fi (z)FI (z) + + 0

be a system of A simultaneous linear equations for the v unknown functions fi(x)
(j = 1,... , v). We form the 0-module Q111 which consists of all solutions (f (z), 6)
of (12); i.e..

f(z) = (fl(z),... , f. (z))
is a holomorphic vector-valued function of rank v in a domain b C D which satisfies
equation (0) in b.

When we need to emphasize the dimension n, the rank A, and the domain D,
we write &1(n, A, D) and G{Il(n, A, D)} instead of f2 and G{f2}. We prove Theorem
7.1 by double induction with respect to the dimension n > 1 and the rank A > 1.
It suffices to prove the following three steps.

First step. Each 0-module G{fl(1.1, D)} has a locally finite pseudobase at
every point of D.
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Second step. If each 0-module C{12(n, k, D)} (k = 1,... , A) has a locally
finite pseudobase at every point in D, then the same is true for each 0-module
C{11(n, A + 1, D)}.

Third step. If each 0-module C{Q(n, A. D)} (A = 1.2....) has a locally
finite pseudobase at every point in D, then the same is true for each 0-module
C{11(n + 1, 1. D)}.

Proof of the first step. Fix zo E D. We set Fj(z) = hj(z)(z - zo)k, (j =
1,... ,v), where hj(z) is a holomorphic function in a neighborhood v of zo in D
with hj(z) 96 0 in v. Let k := min{k,,... , for simplicity, assume k1 = k. Then

Gj(z) := (-F,(z)/Fi(z).0.... ,0,1.0.....0) (j = 2..... v)
(where the "1" occurs in the j-th slot) is a local pseudobase in v. Indeed, we
note first that (Gj(z), v) E C{12(1.1, v)} for j = 2,... . V. Next, fix any (f,6) E
C{12(1,1,0)}, where f = (fl,... , f = f2G2 + + in b,
which concludes the proof of the first step. 0

Proof of the second step. Assume that each 0-module C{fl(n, k. D)} (k =
1,... , A) has a local pseudobase at each point in D. Let C{11(n, A + 1, D)} be an
0-module for a set of linear relations S1(n. A + 1, D). Precisely, let D C C" and let

Fj(z) = (Fo,j(z),FF.j(z).....FA,j(z)) (j = 1,...,v)
be v given a holomorphic vector-valued functions of rank A + 1 in D, and let

(n) 0

be a set of simultaneous linear equations for the unknown holomorphic vector-
valued function f(z) = (f,(z),... J ,,(z)) of rank v. Then C{ft(n,.1 + 1,D)} is
the set of all pairs (f, 6) where f (z) is a holomorphic vector-valued function in 6
satisfying (12) in 6.

Fix zo E D. Our goal is to find a neighborhood 60 of zo in D and a finite
number, say K. of holomorphic vector-valued functions of rank v

K,(z) = (Kjj(z)..... KKj(z)) (I= 1.... , K)

in go such that at any point z' E 6o, any f (z) belonging to C{SZ(n, A + 1. D) j at z'
can be written in the form

in 6'.

where 6' is a neighborhood of z' in 60 and hj(z) (l = 1.....K) is a holomorphic
function in 6'.

Set

F°(z) :_ (Fi.j(z).....F.\.j(z)) (j = 1,....v)
and consider the simultaneous linear equations

(11°) fl (z)F°(z) + - + 0

involving the unknown holomorphic vector-valued function f (z) _ (f, (x), ... ,
f, (z)) of rank v, so that (12°) is of type 12(n, A, D).

We also consider the single linear equation

(c11) Foa(z)fi(z) +... + Fo..(z)f,,(z) = 0
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involving the unknown holomorphic vector-valued function f(--) = (f I (z)....
of rank v, so that (ill) is of type 0(n. 1, D). Note that

C{(l} = C{ft"} n C{fll }.

By the inductive hypothesis. G{f2°} has a local pseudobase at z° in D. i.e..
there exist a neighborhood 6' of zo in D and a finite number, say p. of holoinorphic
vector-valued functions of rank v

44W = O'1.k(:).... (k = I....µ)
in 6' such that at any z' E 6', any f(z) belonging to C{fl('} at z' can be written
in the form

f(z) (z) in e'. (7.6)

where e' is a neighborhood of z' in 6' and gk(z) (k = 1.....p) is a holotuorphic
function in e'. By substituting this expression for f(z) into (fl1). we obtain the
following. Let

Gk(z) FI1.1(z)$l,k(z)+...+F ,(Z)4,.k(z) (k 1.....p)
which is a holomorphic function in 6. and consider the single linear equation

(S2') g1(z)Gi(z) +...+g,,(z)G,.(z) = 0
involving the unknown holomorphic function g(z) _ (g1(z).... ,g, (z)) of rank 11,
so that (fl') is of type 1l(n.1.6'). Fix z' E 6. Then f (z) belongs to G{fl°} n C{fli }
at z' if and only if f (z) can he written in the form (7.6) with g(z) belonging to
L(ST) at Z*.

Again by the inductive hypothesis. C{fl'} has a local pseudobase at z(,. Thus
there exist a neighborhood 61, C 6' of zo and a finite number, say X. of holomorphic
vector-valued functions of rank p in 6°,

411(-') = ('I'11(z)... .`I'u.t(z)) (1 = 1.....n).

such that at each z' E 6°. any holotuorphic vector-valued function g(z) = (gi (z).
g,(z)) which belongs to C{fl'} at z' can be written in the form

g(z) = h1(z)'y1(z) - ... + h, (zz)`I' (z) in eo.

where ell is a neighborhood of z' in 6o and hk(z) (k = 1.....n) is a holomorphic
function on eo.

We substitute this expression for g(z) into equation (7.6) for f (z). upon setting
h1(z):='I'1.1(z)$1(z)+...+$, 1(z)(Dn(z) (1 = 1.... ,n).

which is a holonorphic vector-valued function of rank v in 6(1. we have

f (z) = hi (z)h i (z) + ... + h,;(z)ti,(z)
in a neighborhood of z' in 6(,. We thus conclude that KI(z) (k = 1.... , n) is a
local pseudobase of C{f)} on 6°. Thus. the second step is proved.

Proof of the third step. Let D C Ct'+I and let F, (j = 1.... ,v) be a given
set of v holomorphic functions in D. We consider the single linear equation

(R) fi(z)Fj(z) - ... + = 0

involving the unknown vector-valued function f(z) = (f,(z),... , f,.(z)): i.e.. equa-
tion (f2) is the general equation of type 1l(n + 1, 1. D).
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Fix z)) E D. We shall show that C{Sl} has a local pseudobase at z0. For
simplicity we set zt) = 0 E C"-". If we have F, (0) 56 0 for some j. say j = v.
then G(S2) has a local pseudobase in a neighborhood of z = 0. Indeed. fix 6)) :=
{lzj < r))) CC A so that ,,(z) 0 on 6(). Then the following v - 1 holomorphic
vector-valued functions of rank v on 6)).

G,(z) =(0,.. ,1.0.....-F,(z)/F,,(z)) (j=1. .v-1).
where the "1" occurs in the j-th slot, form a pseudobase of C{O} on 41.

Thus, it remains to treat the case when F, (0) = 0 for j = 1.... , v. We may
assume that the coordinates (z)..... z", z,,:.)) satisfy the Weierstrass condition for
each hypersurface F,(z) = 0 (j = I.... , v) at the origin 0. For simplicity. we
use the notation z := (zl.... , :,,) and u' := z,,..1. Hence we can find a polydisk A
centered at z = 0 and a disk I "centered at w = 0 such that. upon setting A :_ A x I'.
we have A CC D and F,(z. w) 34 0 (j = 1.... , v) on A x Or. Therefore, we can
write

where

F3 (z. tc) = ..;,(z. tr) P; (z. u) in A.

P, (z. u,) = ur!' +A.'.1,-i(z)u,),-1 +...+A,.u(z)

(which may have multiple factors); each A,,k(z) (0 < k < 1) is a holomorphic
function in d: each u;j (z, w) is a non-vanishing holomorphic function in A; and

{(z.u)EAxC,,.IPP(z.w)=0} CCA (j v). (7.7)

We consider the single linear equation

(fY) f) (z. w)P)(z,w) + + tr)P,,(z. w) = 0.

Since w,(z. w) # 0 (j = 1..... v) on A. it thus suffices. to complete the third
step, to prove that C{SY} has a local pseudobase at (z. (0,0). We set I =

We assume. for simplicity. that I = 1,,.

[1] We consider the set of holomorphic vector-valued functions of rank v.

Q(z. u') = (Q) (z.
such that Qj(z. w) (j = I.... , v) is a pseudopolynomial in w of degree at most
I - I:

Q,(z.w) = b3.i-I(z)w1.-1 +b2.,-,(-)u1-2 + +b,.o(z) (7.8)

U=1 . -- 0 .
Here. (k = 0.....1 - 1) is a holomorphic function for z in 6 C A. If
Q(z. uw) is a solution of equation (f") on an open set 6 x 7 C A. then we write
(Q(z.u),6) E Cr-'{fl'}. and we say that Q(z.w) belongs to 41-1{Sl'} on 6 since
this condition does not depend on ? C I-.

We first show that Ct"1{fl'} has a local pseudobase at (z. w) _ (0.0). Precisely.
we will find a neighborhood S() of z = 0 in,& and a finite number p of vector-valued
functions 4'k(z. w) (k = 1..... µ) belonging to C1-1 {fl'} on 66) such that at each
point z' E 6,). each vector-valued function Q(z, w) belonging to C" {S2'} at z' may
be written in the form

Q(:, u') = g1(z)'I'1 (z. u') + - - + gN(z)d+N (z, w) (7.9)

in 6' x r. where 6' is a neighborhood of z' in 6t, and q, (z) (t = I.... , µ) is a
holomorphic function in P.
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Indeed, assume that Q(z,w) = belongs to,Ct-1{SZ'}
on b c 0 and that Q j (z, w) (j = 1,... , v) is of the form (7.8). Then we have

EPj(z,w)Qj(z,w) = E E Aj,t(z)bj.,(z) I wk = 0
j=1 k=0 j=1 a+t=k

inbxrcA. This is equivalent to

(fin) Aj,e(z)bj,t(z) = 0 (k = 0,... , 21-1) in b.
j=1a+t=k

We can regard ((l") as a set of 21 simultaneous linear equations with holomorphic
coefficient functions Aj,t(z) in A involving the unknown vector-valued holomorphic
functions of rank A := v 1,

b(z) _ (bj,k(z)) (j 1,... , v; k = 0,1, ... , l -1).

Thus (f'") is of type fl(n, 21, A). By the inductive hypothesis, we can find a neigh-
borhood bo of z = 0 and a finite number p of holomorphic vector-valued functions
of rank A,

c'(z):_( .k(z)) (t=1,...,tt; I.... v; k=0,1,...,l-1),
such that at any point z' E bo, each b(z) belonging to CIA") at z may be written
as

b(z) = R1(z)c' (z) + ... + fl (z)c''(z) in b',
where b' is a neighborhood of z' in bo and #,(z) (t = 1,... ,u) is a holomorphic
function in b'.

Fix t (t = 1,... ,p). Using a holomorphic vector-valued function c'(z) of rank
A, we construct v pseudopolynomials %P. (z,w) in w of degree at most 1- 1:

W
(z,w)_c,1-1(z)w1-1+c,I-2(z)w1-2+...+cj"a(z)

(j=1,.. ,v).
Next we set

'I'4(z,w) :_ (W (z,w),... , W,(z,w)) (t = 1,... ,14
which belongs to on b0. We see from the above argument that for any
z' E bo , each Q(z,w) = (Qi(z,w),... belonging toCI-1 {fl'} at z* can
be written in the form

Q(z, w) = 91(z)W1(z, w) + ... + ga(z)'I'µ(z, w)

in b' x r, where b' is a neighborhood of z' in b0 and qj(z) (j = 1,...µ) is a
holomorphic function in P. We thus have assertion (7.9).

RI) We set

'1j(z,w) _ (0,... ,0,-Pj(z,w))

(j=1,...,v-1),
where the "1" occurs in the j-th slot, which belongs to G{51'} on A. We shall prove
that the collection of all

4j(z,w) 1I'1(z,w) (t=1,...,µ)
forms a local pseudobase of G{SY} on b0 x r.
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To see this, fix (z', w') E bo x r and let

f (z. W) = (fi (z. W), ... , f ,(z. W))

be a holomorphic vector-valued function of rank v belonging to C{Sl'} on a neigh-
borhood A':=6'x-y'CboxCof (z'.w'). If have

f1(z.w)f(z.w)=P"(z,w) 1(z.w)+...+ 1(z.ti'}

in a neighborhood of (z'. w') in Y. Thus it suffices to study the case 0.
In this case we can find a polydisk A' := 6' x -)' C A' with center (z', such
that 0 on b' x0\7'. Then we have

w) = P'(z. w) P"(z, w) in A'. (7.10)

where P"(z, w) 96 0 in A' and where P'(z,w) is a pseudopolynomial in w.

P'(z.w) = w" +

where a3 (z) (j = 1,....1') is a holomorphic function in b' such that

{(z,w) E b' x Cu, I P'(z,w) = 0) CC A. (7.11)

By the division theorem. P"(z, w) is also a monic pseudopolynomial in w of degree
1-1'=1".

We can apply the remainder theorem to this P'(z.w) in A'. and obtain

(j=1.....v-1) in A'.

where q, (z, w) (j = I.... , v - 1) is a holomorphic function in A' and r, (z. u-)
(j = 1..... v - 1) is a pseudopolynomial in u' of degree at most 1' - 1 whose
coefficients are holomorphic functions in 6'. Thus. using the fact that P"(z. w) 0
on A', we have

f(z,w) _ (g1(z,w)P'(z,w),... q,,-j(z.w)P'(z,w),0)
+(rl(z,w),...

gt(z.w) (Z' W) + ... + qv-1(z, w)tv_1(z,
u')P"(z.w) P"(z. W)

+ (r1(z.. r ,w).... r,_ 1(z, w). R,, (z. w))

9(z,w) + r(z.w).

where

91(z,u%)P1(z.W)+...+g
P"(z, W) P" (Z' w)

(this explicit formula will not be used). To prove [Ill. since P"(z. w) # 0 on A'. it
suffices to show that

i=(z,w) P"(z.w)r(z,w)
_ (P"(z,w)r1(z,w)...

belongs to L1-1{fY} on b'.
Since f (z, w) and g(z, w) belong to G{St'} in A', so does r(z. w). so that r`(z. U-)

belongs to G{St'} on A. Next. P"(z, w)rj (z, w) (j = 1..... P - 1) is clearly a
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pseudopolynomial in u of degree at most I - 1. Finally. since r(_, uw) belongs to
G{f2'} on A. we have

P1(z, uw)rt (:. uw) + ... + P,,-, (z. u')r,._ t(:, w) + u') = 0

in A. so that
-(P,(z.w)r,(z,u)+...+P,,_1(z.w)r,,

in A'. From (7.11). eye can apply the division theorem for P'(:, u') in A'. Since the
left-hand side is a pseudopolynomial in ie of degree at most 1 + 1' - 1. it follows that
P"(z. tc) must be a pseudopolynomial in u' of degree at most (1 41'-1)-1' _
1 - 1. Therefore. F(--. u-) belongs to V`{W) on 6'. which proves ilI].

Let D C C" be a domain. Let 3, and 32 be two 0-modules of the same rank A
in D. From the main theorem (Theorem 7.1). we obtain the following useful result.

THEORF,A1 7.4. If 11 and 32 each have a locally finite pseudobase at a point
z(,. then J, n Jz also has a locally finite pseudobase at zt,.

PROOF. By assumption we can find a neighborhood 6 of zl, in D and holo-
morphic vector-valued functions of rank A on du.

1,... ,µ).$J (Z) (j = 1.....v). 1'k(z) (k

which generate 31 and 3 on do.
Fix Z' E 61,. Then f (z) belongs to J n J., at :' if and only if we have

.1(z) _ (Z)$, (z) _ b, (z)`1'x(:)
l=l k=1

for z in a neighborhood 6' of z' in b,,, where a, (z) (j = 1.... v) and bc.(z) (k =
I.... , µ) are holomorphic functions in 6'.

Now we regard 4)J (z) (j = 1.... ,v) and %P j. (z) (k = 1,... ,µ) as fixed holo-
morphic functions on 6,,, and we consider the single linear equation

(fl°) La2(;)$2(:) - bj.(:)$k(:) = 0
J- L k _. I

involving the unknown holomorphic vector-valued function

(al(z).... -b,.(z))
of rank v + p. By Theorem 7.1 we can find a locally finite pseudobase of the
0-module C(f)°} with respect to the linear relation (fl°).

c`(z) = (a,(z)... -bi(z).....-bi,(z)) (i = I... K),

valid in a neighborhood 6' of :() in 6t,. Then

Ye(Z) := ai (Z)43(Z) (1 = I,... K) on
J=J

is a finite pseudobase of J, n J on A'.

Using the remainder theorem for P'(:. u') (where ii) = P'(z. uw)P"(z, u'))
in the same ruanner as it was used in (7.10) with (7.11). we easily obtain the
following elementary fact.
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REMARK 7.7. Let E be a pure r-dimensional analytic set in the polydisk A
centered at the origin 0 in C". Here A = A x r c C; x C;., where r + s = n. and
with E n ( ; 1 x OF] = N. W V e set IF := r1 x x r,, where l', (j = 1..... s) is a disk
in C. We let E, denote the projection of E onto the polydisk A,, :_ . x r,: Ej
is thus an analytic hypersurface in A). Then we have

E, = { (z. er,) E :1 x C,,. I P; (.. ir,) = 0}.

where

and a('(-)(k = 1..... m,) is a holotuorphic function on A: moreover, P,(z. it,)
has no multiple factors. We set Af nz,) - s. In this setting we let f (;. uw)
be a holoniorphic function near the point (zc,, u,(>) in A. Then f (z. w) can be written
in the following form in a sufficiently small polydisk A := 6 x centered at (z(,.
in A with E n (6 x 0,y) = 0:

f(z.u)=y I(=.lc)PI(Z.Lei) +...

Y 33(z)u ...,,y.
Iii =0

for i=(jt...., ,,); UI=jI+...+jR:0<jk<rn,-1,

where each (z. w) is a holomorphic function of (z. uw) E A and each .3j(=) is a
holotuorphic function of z E 6.

7.4. Combination Theorems

7.4.1. Combination Problems. Let D C C" be a domain. Let F, (z) (j =
L. . . , v) be v holomorphic vector-valued functions of rank A in D,

F,(z) = (F1.,(z),.. . Fa.,(z)) (j = 1.... ,v).
We let Ja{F} denote the O-module on D generated by {Fj(z)},.1, ..,,,. In this
setting, we pose the following two problems.

Problem C1 Let fi(z) be a holomorphic vector-valued function of rank A on D
such that t(z) belongs to Ja{F} at each point in D. Find v holonorphic functions
A;(z) (j = 1..... v) on D such that

4(z) = A1(z)F1(z) +... + in D.

Problem C2 For each p E D. let the pair (op(z). A,,) be given, where b is a
neighborhood of p in D and op(z) is a holomorphic vector-valued function of rank
A in 6,, having the property that for any p, q E D with 6,, n S. 36 0. the difference
op(z)-oq(z) belongs to.?a{F} at each point of 6pndq. Find a holotuorphic vector-
valued function 4P(z) of rank A in D such that for each p. o,(z) belongs to
1T {F} at each point of S.

We call the collection of pairs C :_ {(p (z),6p)},,En a C2-distribution. and
we call a solution of Problem C2 for the C2-distribution C.

Let 9A be an 0-module of rank A in D. We also consider the following problem.

Problem E Assume that 3a has a locally finite pseudobase at each point of D.
Find a finite number of holotuorphic vector-valued functions 4 { z) (k = 1.... , v)
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of rank A on D such that the 0-module .A{0} generated by {4k(z)}k=1....,,. on D
is equivalent to ,7" on D.

We also consider Problems C1. C2 and E for a closed set D C C" and their
solvability on D. To this end, let D C C" be a closed set and let F, (z) (j = 1, .... V)
be v holomorphic vector-valued functions of rank A on D,

F,(z) := (F1.;(z).....F,%j(z)) (j = 1.....v).
Recall that this means there exists an open set G with D C G C C" such that each
Fe(z) (j = 1.....v) is holomorphic on G. We let ,7a{ F} denote the 0-module
on G generated by In this setting we pose the following three
problems.

Problem C1 Let 4'(z) be a holomorphic vector-valued function of rank A on D
such that 4)(z) belongs to ,7A{F} at each point in D; i.e., there exists an open set
G1 with D C G1 C G such that O(z) is holomorphic on GI and $(z) belongs to
,7a { F} at each point in C1 . Find v holomorphic functions A, (z) (j = 1.... , v) on
D such that

AI(z)Fl(z) + + A in D;
i.e., each A,(z) (j = 1.... ,v) is holomorphic on an open set G2, where D C G2 C
G1. and the above relation is satisfied on G2.

If this holds for any data 4(z) on the closed set D in C", then we say that
Problem C1 is solvable on the closed set D.

Problem C2 For each p E D. let the pair (4,(z).6,) be given where 6, is a
neighborhood of p and Op(.-) is a holomorphic vector-valued function of rank A
in 6p having the property that for any p, q E D with 6, n 6, 34 0, the difference
o,(z) - oy(z) belongs to .7''{F} at each point of 6, n 6q; i.e., there exists an open
set G" with 6p,-) 6q c G such that op(z) - oy(z) is holotorphic on G,'9
and belongs to .7'fF} at each point in G;'9. Find a holomorphic vector-valued
function 1'(z) of rank A in D such that for each p,

4i(z) - op(z) belongs to JA(F)
at each point of d,; i.e., O(z) is holomorphic on an open set G2. where D C G2 C
LJp dp. and the above relation is satisfied on C2.

If this holds for any such pair (p,(z).6,). then we say that Problem C2 is
solvable on the closed set D.

Problem E Let ,7" be an 0-module of rank A on D such that ,7A has a locally
finite pseudobase at each point of D; i.e., .7' is an 0-module of rank A on an open
set G with D C G C C" and has a locally finite pseudobase at each point of G.
Find a finite number of holomorphic vector-valued functions Ok(z) (k = 1, ... , v)
of rank A on D such that the 0-module Ja{d+} generated by on D
is equivalent to 3a on D. i.e.. Ok(z) (k = 1.... , v) is a holomorphic vector-valued
function of rank A on an open set G1 with D C G1 C G such that the 0-module

generated by {Ok(z)}k=t.... ... on G1 is equivalent to .7A on Ci.
If this holds for any such 0-module ,7" of rank A on D in C". then we say that

Problem E is solvable on the closed set D.

These three problems were solved in a special case by K. Oka in 1943 in his
reports in Japanese.' As with the Cousin problems. these problems cannot always

"See Oka's posthumous work No. 1 in (55].



TA. COMBINATION THEOREMS 233

be solved in arbitrary domains D in C". In 1948, Oka solved these problems in
the polydisk; this was published in French in 1950 (Oka [501). In this section we
present his proofs.

REMARK 7.8. This remark is for the reader familiar with sheaf theory; thus
we do not explain the (standard) notation and terminology. We state the following
two important results in sheaf theory.

1) Let V be an analytic space (to be defined in the next chapter) and let

0 - M 1 -+ M2 - M3 - 0
be an exact sequence of sheaves on V. Then we have the following exact sequence
of cohomology on V:

o r(V,M1) r(V,M2) r(V,M3)
-. H1(V,M1) - H'(V, M2) -. H'(V, M3)

Thus if HI (V, M1) = 0, then the mapping

r(V, M2) -+ r(V, M3)

is surjective.
2) Let M and N be two sheaves on V and let : M - N be a sheaf

homomorphism. We let K denote the kernel of 0, and we let I denote the image of
0. Then

0-K--+M M/K--+ 0
and

are exact sequences.

0

Now let D be adomain in C' and let 0: Oq(D) -+ OP(D) be a homomorphism
with the propery that there exist q holomorphic vector-valued functions F, (j =
1,... ,q) on D of rank p such that 0 maps a = (a1,... ,aq) E OQ(D) to a1F1 +

+ agFq E OP(D). In this case we take I to be the O-module Of F) generated
by {Fj}j=1...... on D, and we take K to be the module C(fl) on D with respect
to the linear relation

(ft)

Problem C1 is to show that

r(D, OP) -+ r(D, OP/K)

is surjective, and Problem C2 is to show that

r(D, OQ) - r(D, MIT)

is surjective. Furthermore, it is clear that I is coherent. The coherence of K is
nothing but Oka's Theorem 7.1 on the existence of a locally finite pseudobase for
C(f2) at each point in D.



234 7. ANALYTIC SE'T'S AND 1101.0SIORPHIC FUNCTIONS

7.4.2. Two Lemmas. For convenience we consider C"' 1 = C" x C. with
variables zT..... z" and w, and we set w := u + it (i2 = -1). Let G be a closed
region in C? and consider two closed rectangles KI , K2 in C. constructed in the
following manner: for a < a' < b' < b and c, d, we define

K, a<u<b'. c<v<d,
K2 a'<u<b. c<v<d.

In C. we set
K':= K' U K,.

and finally in C"+T we define

KI := G x K,, lit := G x K2. D;= G x D'. K.= G x K'. (7.12)

We let 1 = 2(b' - a' + d - c) be the perimeter of D' and set L =1/a.
Choose e > 0 sufficiently small so that

(a'-a b'-b d-c
< min 2, 2 2}

In Ce., we define

K,(e) . a-a<u<b'+e. c-e<r<d+e,
K21(e) . a'-e<u<b+e. c.-a<v<d+c.

Note that K, cc K,(e) and K_ cc K2(e). We also set
D'(e) := K' (e) n KZ(e). K'(e) := K, (e) U K;(e).

Finally, we define the following subsets of C"" 1:

K, (e) := G x K,(e), K2(e) G x K2(e).
D(e) := G x D'(e). K(e) := C x K'(e).

We can now state the first lemma in this section.

LEMMA 7.1 (Cousin's lemma). ' Let f1I(z.w) be a holotnorphic function on
D(e).

1. There exist holomorphic functions f, (z, w) and f2(c. w) in KI and K2 such
that

fii(z. w) = fT (2. u) + f2 (z. w) in D.
2. If lfo(z,w)I < p on D(e), then we can find fl(z.w) and f2(z,w) as in I

which satisfy

fl(z,w)1< Lp/e in KI and I w)I < Lp/e in K2.

PROOF. We let C denote the boundary of the rectangle D'(e) in C. Fix two
points p := ((a' + b')/2, c - e) and q := ((a' + b')/2, d + e) on C and let C.1 and
C2 denote the right- and left-hand portions of C divided by p and q. We form the
Cousin integrals

f, (4. w) :=
,l21ri ( - u; d(, (z, u,) E KI .

f2(2. w) := I f (:.w) E K2.
21ri ,z (- w

''This lemma was essentially proved in Part I: we repeat the statement and proof due to its
importance.
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where C1 and C2 are oriented so that aD'(e) = C, + C2. Thus, in particular.
f, (z, w) and f2(z. w) are holomorphic functions in K1 and K2. Cauchy's theorem
implies that

fi(z. w) = f1 (z, v.') + f 2(z. v'). (z. u') E D.
which proves assertion 1.

To prove 2, assume that If(1(z. w)I < p on D(e). Let (z, u') E Ki (i = 1, 2).
From the integral formula above for f, (z, u'). since IC - w'I > e. if ( E C.;, we obtain
the estimate

Ifl(z. w)I -j Ifn(z. l
Id(I

P
- a') + (d - c) + 4e.] < ep.

I.. IC- uI 2tr

which proves 2. O

For each nonnegative integer n. we consider the sets

K l'(e/2" ). K2'(e/2" )..... D(e./'2" ). K(e/2" );

clearly each corresponding sequence of closed sets is nested; e.g., K , ( T) C
K'j (1* ). and these sequences decrease to

Ki, K1..... D and K.
Hence, in the proof of Lemma 7.1 (replacing C = aD'(e). D(e.), and D by C" _
OD'(1;, ). D(1;, ), and D( 1). and using 1( - w) > e/2i+1 for ( E OD(z) and
w E D(am) in the last estimate), we obtain the following remark.

REMARK 7.9. Let fo,,, (z. w) be a holotnorphic function on D(- ,L) with inequal-
ity l fo,,,(z, w)I < p on D(2, ). where p > 0 is a constant. Then we obtain holo-
morphic functions f1,,,(z.w) and in K1(2-) and K2(2- ) such that

(1) fl.n(z.w)+f2.n( .w)=fU.n(z.w) in D(e./2"t1):
2,++1p in K,(e/2"+l) (j=1,2).(2) Ifj.,.(z.w)I <

C.

Using 1 of Lemma 7.1 we have the following corollary.

COROLLARY 7.4. Let 'I (z. w) (j = 1..... v) be a holomorphic vector-valued
function of tank A on the set K and let ,?a{41} denote the 0-module generated
by {4 (z, w)}j=I... ,,, on K. Let 11 (z. w) and f2 (z, w) be holomorphic vector-valued
functions of rank A on K1 and K2 such that f, (z. w) - f2 (z. w) belongs to ,7a{4} at
each point in D. If Problem C1 is always solvable on D, there exists a holomorphic
vector-valued function F(z. w) of rank A on K such that F(z, w) - fl (z. w) belongs
to JA ($j on K1 and F(z.w) - f2(z,w) belongs to JA on K-2.

PROOF. From the hypothesis, for any p E D. we can find v holomorphic vector-
valued functions a, (z. w) (j = 1.... , v) in a neighborhood do of p in D such that

ft(z. w) - f2(z u') = Q1(z. w)$1(z. w) in O,.

Since Problem C1 is assumed to be solvable on D. we can find v holomorphic
vector-valued function.-; A,(--. w) (j = 1.... , v) on D such that

fl (z, w) - f2(z. w) = A, (z. w)' 1(z, w) + ... + w)$ (z. w) on D.

Using 1 of Lemma 7.1 (note that if we take a sufficiently small e > 0. each
A3 (z, w) (j = 1,... , v) is defined and holomorphic on D(e)). for each j = (1.... , v)
we can find holotnorphic functions A' (z. w) and A'7 (z. w) on K3 and K2 such that

.4, (z. u.?) = A 1(z. u') - AJ (z. w) on D.
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Therefore, if we set

F(z, w)

f fI(z.w) - (Ai(z,w)''I(z,w)+...+A,(z,w)4,,(z,w)), (z,w) E K1,
1 f2(z,w) - (z,w) E K2,

then F(z, w) is a single-valued holomorphic vector-valued function of rank A on K
such that F(z. w) - f, (z, w) (i = 1, 2) belongs to J' {4} on K,.

Repeating the same procedure step by step (similar to the solution of the Cousin
I problem in 3.2.2). we obtain the following proposition.

PROPOSITION 7.5. If Problem CI is always solvable in any closed polydisk in
C". then Problem C2 is always solvable in any closed polydisk in C".

We want to show that under the hypothesis of Proposition 7.5, Problem E
is always solvable in any closed polydisk in C"; then we will show that, indeed,
Problem CI (and hence Problem C2 and Problem E) is always solvable in any closed
polydisk in C". To do this, we will need a lemma of Cartan on holomorphic matrix-
valued functions. First we introduce some notation involving these functions.

Let C" be the space of v complex variables ul.... , u and let V C C" be a
domain. We call an (m, n)-matrix A(u) = (aj,k(u))J,k whose coefficients aj,k(u) are
holomorphic functions in V, a holomorphic (m, n)-matrix-valued function, or
simply an (m,n)-holomorphic matrix in V. We let Mm,n(V) denote the set
of all (m, n)-holomorphic matrices in V. In case m = n, we call A(u) a square
holomorphic matrix of order m in V, and we write Mm (V) := Mrn, (V). We let
E denote the identity matrix of order m.

Given A(u) E Mm(V) and an integer 1 > 1, for each u E V, we write A(u) for
the 1-th the power of matrix A(u). Thus AI(u) E Mm(V). If A(u) has an inverse
matrix for each u E V, we denote it by A-1(u); then A-1(u) E Mm(V), and we
say that A(u) is invertible in V.

Fix is = ({I,... .'em) E C"' with 1 and fix A(u) = (aj.k(u))j.k E
Mm,n(V). Given u E V, we define

IIA(u)II := 1ma i {IIA - A(u)II},

where 111; A(u)II denotes the Euclidean length in C" of the image of is under the
linear transformation A(u) : Cm -4 C", and we define

IIAIIv := ax {IIA(u)II}.
U4EV

It is clear that Iaj.k(u)I S IIAIIv for each 1 < j < m, 1 < k < n and u E
V; conversely, if Ia,,k(u)I < Al for each j,k and u E V, then IIAII < v/InnM.
Furthermore, for A(u),B(u) E Mm (V),

IIA + Buy 5 IIAIIv + IIBIIy, IA. BIIy <- IIAIIv ' IIBIIv

Therefore, for A(u) E Mn(V),

eA(u) E+ A(u) + A2(u) +...
1! 2!

is well-defined, belongs to M,,,(V), and is invertible (since (eA(" ))-I = e-A(u))

We note that the "usual" law of exponents eA(u)+B(u) = eA(u) eB(u) does not
necessarily hold. It is valid, for example, if A(u) B(u) = B(u) A(u).
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PROPOSITION 7.6. Let A, (u) E Mn, (V) (j = 1,2.... ) and let Ej, 0 < ej <
1 (j =1,2.... ), satisfy E', E j < oo. If II Ai 11 ti: < e; (j = 1, 2.... ), then

B(u) := lim B. (u) := lim (E - AI(u))(E - A2(u)) (E - An (u)),nix n-x
C(u) := lim C,,(u) := slim (E - (E - A,(u))

are uniformly convergent in V. 11rthetmore, B(u) and C(u) belong to M,n(V)
and are invertible in V.

PROOF. We write Bn(u) = (b(k (u))j.k. We note that, for n = 1, 2, ... ,
x

IIBn Ilv :5 fl(i + e,) =: M < 00.
i=I

Let l > k and set bk :_ E k4-I e, Then we have

JIB! - Bklly 5 MIIE-(E-Ak+1) ... (E - AI)Ily < M(bk+6k+...).

It follows that for each j, k = 1,... , m, the sequence of holomorphic functions
{b k (u))n in V forms a Cauchy sequence, so that limn-., Bn(u) _: B(u) converges
uniformly in V and B(u) E M,n(V). Moreover, each factor E-Aj (u) (j = 1, 2.... )

is invertible in V, i.e.,

(E-Aj(u))-I =
which is uniformly convergent in V from the estimate II A3 II v < e j < 1. So, B(u)
is invertible in V. Since p - A3 (u) + AJ (u) + ll v <- Ke, (where K is independent
of j = 1,2.... ), we can similarly prove that limn-x Bn I (u) =: B' (u) converges
uniformly in V and belongs to M,n (V). Since B,, (u) Bn I (u) = E for u E V, it
follows that B(u) B* (u) = E for u E V, so that B(u) is invertible in V. Similarly,
C(u) belongs to M,n(V) and is invertible in V.

We fix an integer m > 1, and use the notation D(e), KI, K2, D = KI n K2,
and K = KI U K2 defined at the beginning of this section. We fix a small e > 0
such that Lie > 1. Recall that we consider Cn+I = C" x C. with variables
zl,... zn and w. Let A(z,w) = (aj.k(z,w))i.k E M,(D(e)) =: M(D(e)) and
define B(z, w) = (b,,k(z, w))j_k via

A(z, w) = E + B(z, w).

Set p = IIBIID(.) >- 0. Applying Remark 7.9 to each b,,k(z, w) (j, k = 1,... , m) in
D(e), we obtain holomorphic functions bbIk(z,w) and b(k(z,w) in KI and K2 such
that

bj,k(z,w) = bb'k(z,w)+b?k(z,w) in D,

Ib k(z,w)I < Lp/e in K. (s = 1,2).

We set

B. (z, w) :_ (bjsk(z, w))i,k (s = 1,2) in K,
Thus, B.(z,w) E A4 (K.) (s = 1,2) satisfies

B(z, w) = BI (z, w) + B2(z, w) in D,

IIB111K, 5 mLp/e, IIB2IIK, < mLp/e.
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We also define B'(z, w) in D by the relation

(E-B1(z,w))(E+B(z,w))(E-B2(z,w)) =E+B'(z,w) in D,

hence

B' = B1 B2 -BIB - BB2 + B1 BB2;

JIB* IID S 3 (mLp/e)2 + (mLp/e)3.

We are now ready to state and prove Cartan's lemma [11].

LEMMA 7.2 (Cartan's lemma). Let A(z, w) E Mm(D(e)) be invertible in D(e).
If A(z, w) is sufficiently close to the identity matrix E of order m in D(e), then
there exist A1(z,w) E Mm (K1) and A2(z,w) E Mm(K2) which are invertible in
K1 and K2 and such that

inD.

PROOF. For simplicity we omit the subscript m; e.g., M,,,(E) = M(E). To
prove the lemma it suffices to find A, (z, w) E Mm (K1) and A2 (Z, w) E Mm (K20)
such that A(z, w) = A, (z, w) A21(z, w) in D° (where K° and D° denote the
interior of K1 and D). For n = 0,1, ... , we set

D n := D(e/2n), Kn.1 := Kl(e/2n+1), Kn,2 := K2(e/2n+1),

so that Kn+1.. CC K,,,8 (s = 1, 2), D.+1 = K.,1 n Kn,2 and D° = D,,.
We construct sequences B,,(z,w) E M(Dn), B(n'1)(z,w) E M(Kn,I), and

B(n.2)(z,w) E M(Kn,2) inductively as follows. We define Bo(z,w) E M(Do) by
the relation

A(z, w) = E + Bo(z, w) in Do
and we setpo:=l1Boll D,, >0.

Now f i x n > 0, assume that B. (z, w) _ (b k (z, w))j,k E M(Dn) has been
defined, and set Pi := II Bi II D, (l =0,---,n).

Applying Remark 7.9 following Lemma 7.1 to each b
k

(z, w) (j, k = 1, ... , m)
in Dn, we obtain holomorphic functions b(k1)(z, w) and b(. k2) (z, w) in &.1 and
K,2 such that

inDn+1,

bi
ka)(z,'w)I < 2"+1LPn/e in K,,,, (s=1,2).

We write
B(n.e) (z, w) (bj ka) (z, w))a.k in Kn,, (a = 1, 2).

Thus B(n,I)(z,w) E M(K,,,8) (s = 1,2) satisfies

Bn(z,w) = B(",')(z,w)+B (n,2) (Z' W) in D,,+,,

IIK,,.. M 2n pn (s = 1, 2), (7.13)

where M := 2mL/e > 1 is independent of n. We then define Bn+1(z,w) E
M(Dn+1) by

(E-B(n,1)(z,w))(E+B.(z,w))(E-B(n,2)(z,w)) =E+B,,+1(z,w)) in Dn+1,

i.e.,

Bn+1 = B(n.l)B(n.2) - B(n,1)Bn - BnB(n.2) + B(n.1)BB(n'2).
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Thus if we set pn+1 = IIBn+1IID.+ we have

pn+1 <- 3M2(2npn)2 + M3(2"Pn)3 (7.14)

This implies that if po > 0 is sufficiently small, then

pn < 1/4" (n = 0,1,...). (7.15)

In fact, by setting r,, = 4"pn (n = 0,1, ... ), we have, from (7.14),

,rn+1 5 12M2Tn + 4M3T,3,.

Consequently, if we take a sufficiently small po = To with 0 < po < 1, then {Tn}n
decreases to 0, so that

P. ='rnl4" < To/4" < 1/4n,

which proves (7.15).
Together with (7.13), this implies that if we take po > 0 sufficiently small, i.e.,

if A(z, w) = E+Bo(z, w) is sufficiently close to the identity matrix E in D(e), then
we have

IIBnIID 5 1/4", IIB(",") IIKn., < M/2" (s=1,2). (7.16)

Now for n = 0, 1, ... , we define

An.1(z,w)
:=(E-B(",1)(z,w))(E-B(n-1.1)(z,w))...(E-B(o,')(z, w)) in K1,

An,2(z,w) (E-B(0.2)(z,w))(E-B(1'2)(z,w))...(E-B(n.2)(z,w)) in K2,

so that
An,l(z,w)A(z,w)An,2(z,w) _ E- in D.

It follows from (7.16) and Proposition 7.6 that An.1(z, w) E M(K1) and An,2(z, W)
E M(K2) are invertible in K1 and K2, and that the sequences {A, I (z, w)),, and
{An,2(z,w)}n are uniformly convergent in K1 and K2. Thus,

A1(z,w) := lim A,,.1(z,w) E

A2(z,w) := lim An,2(z,w) E M(K2),noc
which are also invertible in K1 and K2 with IIA8IIK, <- 3 (s = 1, 2). Inequality
(7.16) also implies that

A1(z,w)A(z,w)A2(z,w) = E on D°,

as desired.

REMARK 7.10. 1. Since D is closed in Cr}1 and e > 0 can be taken as
small as we want in Cartan's lemma, we shall use the lemma in the following
form: Let A(z,w) E M ,(D) be invertible and sufficiently close to the identity
matrix E on D. Then there exist Ai(z, w) (i = 1, 2) invertible on Ki such that
A(z,w) = A1(z,w) A2(z,w) on D.

2. Cartan's lemma holds for any A(z,w) E M,n(D(e)) which is invertible in
D(e) in the case when G C CZ is simply connected. For, in this case, A(z, w) can
be written as a product of a finite number of holomorphic matrices Ak(z,w) (k =
1,... , v) which are sufficiently close to E and are invertible in D(e). However, we
will not need this fact.
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Let p and q be positive integers. We assume G (stated in (7.12)) is a closed poly-
disk in Cz, and we use the same notation K1i K2, D, and K as before in Cn+1 We
consider p holomorphic vector-valued functions of rank A in K1 and q holomorphic
vector-valued functions of rank A in K2:

fj(z,w) (j=1,...,p) in K1, 9j(z,w) (j=1,...,q) in K2.
We let .7 { f } and .7a{g} denote the 0-modules generated by { fj (z, w) } j and
{gj(z,w)}j in K1 and K2.

Then we obtain the following corollary.

COROLLARY 7.5. Assume that each fj (z, w) (j = 1,... , p) belongs to ,7a {g} on
D, and that each gj (z, w) (j = 1,... , q) belongs to J' { f } on D. Then thereexist
a finite number of holomorphic vector-valued functions F,(z, w) (j = 1,... , p+ q)
in K := K1 UK2 such that the 0-module ,7'{F}

generated by {F,(z, w)}j in K is
equivalent to ,7a{ f } on K1 and to J'{g} on K2.

PROOF. By the hypothesis we can find Aq,p(z,w) = (Oj.k(z, w))j,k E M9,p(D)
and B(z, w)p.q = (Nj,k(z, w))j,k E Mp,q(D) satisfying

(fi,...,fp) = (91,... ,9q)Aq.p m D,
(91,... ,9q) _ (fl,... ,fp)Bp,q in D.

On the other hand, since D = G x D', where G is a closed polydisk in Cz and
D' is a rectangle in C., by Runge's theorem, given e > 0, there exist Aq'.p(z, w) _
(0j.k(z,w))j,k E Mq,p(Cn+i) and Bpq(z,w) = (pj,k(z,w))j.k E Mp.q(Cn+l1 such
that, for each j, k, /

Iaj.k(z, w) - aj.k(z, w)I 5 c for (z, w) E K1,

I$,,k(z,w)-f ,k(z,w)I<e for(z,w)EK2.
If we write

(11,... , fp) = (91, ... , 99) A'q.p + (91, ... , 99) [Aq.p - A'q.p]

(91,... 9P+ (91,... gq) A"9
P

in D,

then we see that g'j (z, w) E J' {g} ( j = 1, ... , p) on K2, gj (z, w) is close to f j (z, w)
on D, and A' p(z, w) E Mq,p(D) is close to the zero matrix on D. Analogously, we
have

(91,... ,94) (fl,... fp) Bp,9 + (fl,... , fp) [Bp.q - B,,q]
(f1,... ,fq)+(fl.... fp) Bpq in D,

so that E .7''{f} (j = 1,... q) on K1, fj(z,w) is close to gj(z,w) on D,
and Byq(z,w) E Mp,q(D) is close to the zero matrix on D. We then have

(fi,...,fq) = (9i,...,99)-I(9i,...,gp)+(91,...,gq)Av,p].BPQ
= (91, ... , 9q) [E - q] - (911- .. , g,) ' BP Q

in D,

where Cq,q(z,w) E M9,9(D) is close to the identity matrix E of order q in D.
Consequently,

E B" \
(fl,... ,fp,fl,... fq) _ (91,... 9p,91,... gq) A9.4 C,p,q

/9.9

(9i , ... , 9p, 91, ... , gq) Rp+q,p+q in D,
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where Rp+q.p+q(z, w) E Mp+q(D) is close to the identity matrix E of order p + q
in D. Applying Cartan's lemma (see 1 of Remark 7.10). there exist AI(:,w) E
Mp+q(KI) and A2(z,w) E Mp+q(K2) which are invertible in K1 and K2 and such
that

Rp+q(z, w) = A2(z. w) Ai 1(z. w) in D.
Thus, if we set

= 1(Ft (.11.. '.fp, fi..
}F , f4) Al in K1.,... , p+q l (g'.. .. .9q).A2 in K2.

then Fj (z, w) (j = 1, ... , p + q) is a single-valued holomorphic rector-valued func-
tion of rank A on K. Furthermore, since AI (z. w) and A2(z. W) are invertible in K1
and K2. it is clear that the 0-module ,7a {F} generated by (171 (z. w)}, =1..,..p+, is
equivalent to ,7A{ f} on KI and to ,7A{g} on K2.

By repeating the same procedure step by step, we reach the conclusion that
if Problem CI is always solvable in any polydisk in C", then Problem E is always
solvable in any polydisk in C". Thus it remains to prove that Problem CI is always
solvable in any polydisk in C". However, we cannot verify this directly; instead, by
making careful use of C o r o l l a r y 7.5, o f the Cousin integral, and of the main theorem
(Theorem 7.1) in the following section we shall simultaneously solve Problems CI
and Problem E in polydisks by a double induction procedure.

7.4.3. Combination Theorem. We shall prove that Problem C1 and Prob-
lem E are always solvable in any closed polydisk in C". These two problems will
be solved simultaneously by a double induction procedure.

Let C" have complex variables z = (zI.... , z") and write
Zi =t 22j-I +it2j (i2 = -1: j = 1.... ,n).

where t2,_I and t2j are real numbers. Let ak, bk be 2n real numbers with ak < bk
fork=l,..., 2n, and set

Lk : ak < tk 'C bk (k = 1 , ... , 2n). E := L1 x x L2".

We call E a box in C". For a fixed I = 1.....2n. we consider the subset in C"
defined by

El : aj < tj < bj (j = 1,....1). tj = aj = bj (j =1 + 1. ... ,2n).

By convention, we set E° _ {(a,.a2.... ,a2")} (one point). We call E' a real
1-dimensional open box, and the closure EI of EI in C" is a real 1-dimensional
closed box.

Given Et as above, we call a set 0 in C" of the form

01 : aJ < tj < b J t., : Iti - ai I < e (j = l -. 1, .... 2n),

where
a''<a,, bj<bj (j=1,...,1) ej>0(j=1+L....2n).

an open box neighborhood ofE- in C".
Let (1 = 0, 1. ... , 2n) be a real 1-dimensional closed box in C". We say

that Problem CI is solvable on the real 1-dimensional closed box E if the following
condition is satisfied: Let Fj(z) (j = 1.....v) and be holomorphic vector-
valued functions of rank A on E (i.e.. on a neighborhood U of 9 in C") such that



2.12 T. ANALY'T'IC S TS AND 1101.0MORPHIC FUNCTIONS

4'(z) E .P{F} at any points in U. Here
,7'{F}

denotes the 0-module generated
by {F,(z)},=I....,, in U. Then there exist an open box neighborhood 0 of F.'r and
holomorphic functions A,(z) (j = 1.....v) on 0 such that h,'1 CC 0 CC C% and

(s) = A1(z)FI(z) + ... + A,,(-)I (i.)

on U. In a similar fashion. we define the notion of Problem E being solvable on h .

LEMMA 7.3. Fir 1 with 0 < I < 2n. If Problem Cl and Problem E are solvable
for any real 1-dimensional closed box E'. then Problem E is solvable for any real
(l + 1)-dimensional closed box 1':

+1

PROOF. Let
F.t+1: aj <t,<b, (j=1.....1+1). ti= c,(j=1+2.....2n)

be a real (1 + 1)-dimensional box in C". Let G be a neighborhood of E'+l. and
let ({t '},=6p)pE(; be data for Problem Eon G; i.e.. D,, is a neighborhood
of p in C" and fl (j = 1.....k5) are holomorphic vector-valued functions of
rank A in 6,, such that if 61, n6, 4 0 (p.y E C). then ,7a{t:"'I and 9A{t,lq)} are

equivalent to each other on b,, nd,. Here denotes the O-nodule generated
by on 6p.

Fix a point c in [at_1. bt . I] and set

F.(c): a,<t,<b, (j=1.....1). te».1=c, t,=c,(j=1+2... .2n).
Since EI(c) C E'+I is a real 1-dimensional closed box in C". it follows that Problem
E is solvable on E (c). Thus we can find box neighborhoods 0"(c) and 0(c) of Et (c)
in C" with 0(c) CC O'(c) and a finite number of holomorphic vector-valued func-
tions (s) (j = I ..... te,.) of rank A on 0*((,) such that the O-module ,7a (4111,11

generated by on O'(c) is equivalent to ,7L `r')} on 0* (r) n bp.
p E G. Since c is an arbitrary point in [a,+,.b,+I], it follows from the Heine- Borel
theorem that there is a finite cover

U 0(c1)-I
of E +

1. where al+l = cl < c,,, = bI+1. For simplicit}. we set O(c,) _
U,. O*(c,) = O,. 4' ')(z) = %Vj(z) (1 = 1.....v, = v) and Ja{ `} _
on 0, (i = 1.... , m). By shrinking O, if necessary, we may assume that each O;
is of the form

O , <t., <3, (j = 1.....1). }, <tl- I <d,.
-c,i<e(j=l+2,....2n).

with

a,< a,. b,<.3) (j=1.....1),
11<ti2<61<'1I<62<, 1<6,.,.

Now we focus on the pairs (.7a{V}.0}) and and consider the
following real (I + 1)-dimensional box T' 1 CC O * U O._ :

TI+1 n, <t, <3, (j= 1.....1). ?1 <ti_I <622. t, =c, (j=1+2.....2n).
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We prove the following assertion:
(*) There exist a box neighborhood U' in C" with

T" cc U. ccO u0;
and a finite number of holomorphic vector-valued functions Fe(z) (j =
1.... ,µ) of rank A on U' such that the 0-module Ja{F} generated by
{F,(z)}i=1.....µ on U' is equivalent to ,7a(t;(r"} on 6, n U. P E G.

To prove this. we set Q := O; n O. which is a real 2n-dimensional box in C".
Fix a point tr+I = q E (y2.61) and consider the real I-dimensional closed box

kr :a.? Ctj <3j (j=1.....I). t1+1 = q. t, =ci (j=1+2....,2n).

We note that fh r cc Q and that 9a {'tl' } and J'{*') are equivalent to each
other on Q. Since Problem CI is solvable on W4. it follows that there exists a box
neighborhood V' in C" with

Is cc V.ccQ
such that each *'(z) (j = 1..... vl) belongs to 7a{IY2} on V'. and. similarly, each
$J(z) (j = I.....v2) belongs to Ja{'"} on V'. We can take V' of the form

V':oj <t' <3j* <11+1 <6'. pt,-c, I <e' (1=1+2.....2n).
where

12 <7' <q<6' <61 and 0<r' <E.
We define the real 2n-dimensional boxes Uj CC O*1 and UZ cc 02 by

Uj :of <t' <3j* (j=1.....1). y' <tl+l <6'. It,-cI<e' (j=1+2....,2n).
< tJ < 3.,* (j = 1.....1). y` < tr+l < 62. It, - c. ,j < e' (j = 1+ 2.....2n).

so that U1 n U. = V' and U` := Ui U UZ is a box neighborhood of Tr'' in
C". It follows from Corollary 7.5 that there exist a finite number of holomorphic
vector-valued functions FJ(z) (j = L... p) of rank A on U' such that ,7x{F} is
equivalent to 7a{w0' } on U' and to ,7a{t:'2} on U2. Thus assertion (*) is proved.

We repeat the same procedure for the pairs (.7a{F},U') and as
for the pairs O1*) and (9a{'I12}.O2,): continuing this process, we finally
obtain a box neighborhood A' of E +' in C" and a finite number of holomorphic
vector-valued functions (z) (j = I.....Al) of rank A on A' such that the 0-
module .7P{fi} generated by {fiz(z)}s_1.... ,.! on A' is equivalent to 9a{ IP)} on
6p n A. p E G. This proves that Problem E is always solvable on any real (1 + 1)-
dimensional closed box in C".

LEMMA 7.4. Fix an integer I with 1 < I < 2n. Assume that Problem CI is
solvable for any real 1-dimensional closed box and that Problem E is solvable for
any real (l + 1)-dimensional closed box. Then Problem CI is solvable for any real
(l + 1)-dimensional closed box.

PROOF. Let
-r+lK : aj <t, <b, (j=1.....1+1), t,1+2.....2n)

be a real (I + 1)-dimensional closed box in C". Let w.,(z) (j = 1,... , v) and F(z)
be holomorphic vector-valued functions on T' '

I (i.e., on a neighborhood U of
R j'1
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in C") such that, for each point z11 E U. there exist a neighborhood a of z0 and v
holomorphic functions f, (z) (j = 1,... .v) on b such that

F(z) = f1(z)v1(x) + ... + on b.

Fix c in [at+I,bt+1] and set

E9(c): aj<tj <bj (j=1.....1), t1+1=c. tj=cj(i=1+2.....2n).

Since E1(c) is a real 1-dimensional closed box in C". it follows that Problem CI is
solvable on E(c). Thus we can find box neighborhoods O'(c) and O(c) of k (c)
in U with O(c) CC O' (c) and v holomorphic functions f {` (z) (j = 1..... v) on
O' (c) such that

F(z) = fl`)(z) V1(z) + + f,',`1(z)v,,(z) on 0*(c).

Since c was an arbitrary point in the interval [al.,. b,..1 ]. it follows from the Heine-
Borel theorem that there exists a finite cover

",

U O(c, )
I_1

of E+I. where a1+1 = cl < c2 < ... < c", = b1+1. For simplicity. we set 0(c,) _
O,. D.(c,) = 0 . f")(z) = fe(z) (j = 1.....v) on 0, (i = 1... ,m). By
shrinking O,. if necessary. we may assume that each 0, is of the form

O, : aj < tj < fj (j = 1, ... ,t), 7, < t1+1 < b,. It., - cjl < e (j =1 + 2,... 2n)

with

aj < aj, b., < :3j (j = 1.....1),
71 < '2 < 61 < 73 < 62 < '73 < ... < 11m < t < am.

We focus on the pairs ({fJ (z)}j, 0) and ({ and consider the following
real (1 + 1)-dimensional box T1+1 CC Oi U Oz:
T'1+1 : a j < tj < /3j (j = 1.... ,1). 71 < t1+1 < b2, t, = c, (j = I + 2.... ,2n).

We prove the following assertion:

(s*) There exist a box neighborhood 64" in C".

T +1 CC Ti" cc O1* UO2.

and v holomorphic functions Fj (z) (j = 1, ... , v) on W' such that

F(z) = FI(z)U1(z) + - - + on 6i".

To prove this, we set Q' := O; I1 OZ and consider the simultaneous linear
equations

((1) fi (z)w1(z) + ... + 0 on Q'

and the O-module C{S2} with respect to the linear relation (S2). We note that

g(z) (fi (z) - fi (z).... ,f,',(z) - f,(z))
belongs to C1111 on Q.



7.4. COMBINATION ruF.oRFxts 245

By the main theorem (Theorem 7.1). we see that G{Sl} has a finite pseudobase
at each point p E Q'. Fix tl+l = q E (12.61) and consider the

real 1-dimensional closed box

K1 (j=1+2.....2n).
We note that K' cc Q. Since Problem E is solvable on Kr, it follows that there
exist a box neighborhood V' in C" with

K, cc V' cc Q'
and a finite number of holomorphic vector-valued functions Hi (z) (j = 1..... s) of
rank v on V' such that {H,(z)},_1,...,, is a finite pseudobase of C(Q) on V'.

We again look at the real 1-dimensional closed box K defined above. We note
that g(z) and HJ(z) (j = 1,... , s) are defined in V' and that g(z) belongs to the
0-module 91 {H} generated by {H., (z)},= 1,.....A, on V' at each point of V. Since

Problem C1 is solvable on K' and KI cc V'. it follows that there exist a box
neighborhood W in C" with

K cc TV cc V.
and s holomorphic functions A, (z) (j = 1..... s) on 14' such that

g(z) = on W.

We write

W: o. <tj <N,1 (j=1,...,1).-,°<tr+1 <6°. It)-cl<E°(j=1+2,....2n)

and consider the following real 2n-dimensional boxes:

WI : no < tj < ;3J (j = 1, ... ,1). 11 < t,..l < 6°. I t, - ci I < E° (j = 1+ 2.... .2n ).

112:n°<tj<r3°(j=1,-11°<t1-1<62, Itj-cjI<E°(j=1+2,...,2n).
Note that W = WI fl 9'2 and TV := W1 U T2 is a box neighborhood of the
real (1 + 1)-dimensional closed box

T"
defined above. Using the Cousin integral

for each AJ (z) (j = 1.... , s) on U' along a segment on t1...1 = q. we can find
holomorphic functions AI (z) and A2 (z) on 4V1 and W2 such that

A' (z) - Ad(z) = A,(z) on 4T'.

For j = 1.... , v we set

fl(z) - (Ai(z)Hl(z) +... +A',,(z)H,(z)) on V1,
F,(z) ff(z) - (A2,(z)Hl(z) +... + A,2(z)H,(z)) on W2.

Then F, (z) (j = 1,... v) is a single-valued holomorphic function on YV' which
satisfies

F(z) = Fl (z)t:l(z) + + on T4":
this proves assertion (**).

As usual, we repeat this for the pairs ((F.(z)}x,14") and ({ 03) (as was
done for the pairs ({ fJ (z)},,Oi) and ({f, (z)},, 02)): continuing this procedure
proves the lemma. 0

Observing that, by definition. Problem C1 and Problem E are always solvable
for any real 0-dimensional closed box E in C" (here r is a point in C"). we
obtain from Lemmas 7.3 and 7.4 the following result.



246 7. ANALYTIC SETS AND HOLOMORPHIC FUNCTIONS

THEOREM 7.5 (Combination theorem). Problem C1, Problem C2 and Problem
E are always solvable for any closed polydisk in C".

As a simple application of this theorem we have

COROLLARY 7.6. Let 4j (z) (j = 1, ... , v) be holomorphic functions on the
closed polydisk A in C". If the functions 4j(z) (j = 1,... v) have no common
zeros on A, then there exist holomorphic functions f j (z) (j = 1, ... , v) on A such
that

f1(z)1(z)+...+f(z)4'(z)=1 on A.

7.4.4. Completeness. Let D C C" be a domain and let *j (z) (j = 1, ... , v)
be v holomorphic vector-valued functions of rank A in D. We let 9"{0} denote the
0-module generated by on D. The following completeness theorem
for 9a{4} will be useful in the next chapter.

THEOREM 7.6. Let 6 be a domain in D and let

fe(z) = (fi(z),... ,fa(z)) (& =1,2,... )
be a sequence of holomorphic vector-valued functions on b such that

(1) each (f,(z),6) E,7a{0} (L=1,2,...), and
(2) { f,(z)},=1,2,.,. converges uniformly to a holomorphic vector-valued function

fo(z) on 6.
Then fo(z) belongs to JA{4P} at each point in 6.

In order to prove this theorem, we first prove a lemma about solving Prob-
lem CI with local estimates. Given f (z) = (fi (z), ... , fa(z)), we define I f (z)I =
maxj_i,....a {Ifi(z)I }.

LEMMA 7.5. Let D be a polydisk centered at the origin 0 in C". Let Fj(z) =
(F1,j(z),... ,Fa,j(z)) (j = 1,... , v) be v holomorphic vector-valued functions of
rank A on D. Then we can find a polydisk 66 C D centered at 0 and a constant
K > 0 with the following property. Let f (z) = (fi (z), , fa(z)) be a holomorphic
vector-valued function on D such that

f (z) = ai (z)Fi (z) + - + on D, (7.17)

If(z)I < 1 on D, (7.18)

where each aj(z) (j = 1,... , v) is a holomorphic function on D. Then f (z) can be
written in the form

f(z) = a°(z)Fi(z)+...+a°(z)F,,(z) on 60,

Iajo(z)I S K (j = I,- , v) on 60,
where each a°(z) (j = 1, ... , v) is a holomorphic function on bo.

PROOF. The proof will proceed by a double induction on the dimension n > 1
and the rank A > 1 as in the proof of the main theorem.

First step. The lemma is true in the case (n, A) = (1,1).

We fix a closed disk 6o cc D centered at 0 such that we have Fj(z) _
zk' hj (z) (j = 1,... , v) on bo with hj (z) 0 0 on bo. For simplicity, suppose
ki < kj (j = 2,... ,v). Let K := max ZEO6o{1/IF1(z)I} > 0. Then any
holomorphic function f (z) satisfying (7.17) and (7.18) can be written in the form
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f(z) = A1(z)Fl(z) on Sr1. where A1(z) is a holomorphic function in S. Hence
IA1(z)I < K on Sit by the maximum modulus principle, which proves the first step
of the induction.

Second step. The lemma is true in the case (n..\ + 1) if the lemma is true in
the cases (n, k) (k = 1..... A).

Let
F1(z) = (j = 1.....v)

be a holomorphic vector-valued function of rank A + 1 in a polydisk D centered at
the origin O in C". Let

f(z) _ (fn(z),f1(z),....fa(z))
be a holomorphic vector-valued function of rank A + 1 in D with

(C) f (z) =
at(z)Ft(z) + + on D.

If(z)I <- 1 on D.
We fix a polydisk D11 CC D centered at 0 and set A! := max(Ej_1IFi(-)I

I

z E Do) < x. Define the holomorphic vector-valued functions

F; (z) _ (F1.,r(z).... , Fa_,1(-)) (j = 1.... , v),

f°(-) _ (ft(z)..... fa(z)).
each of rank A in D. Then

(Co) f°(z) = at (z)F'(z) + ... + on D,

(CO fo(z) on D,

so that (C)) is of type (n. A) and (C1) is of type (n. 1).
By the induction assumption applied to (Si) on D, we can find a closed polydisk

Sf C D11 centered at O. a constant K1 > 0 independent of fo(-), and holomorphic
functions a° (z) (j = 1, ... , v) on S1 such that

fo(z) = ai (z)Fo.1(z) + ... + a°(z)Fi1,,.(z) on 41.

Ia°(-)I K1 on 41.

Note that If11(z)I < K1M on Si.
Now we consider the single linear equation

(Do) bi (z)Fo.i (z) + ... + 0

for the unknown holomorphic vector-valued function

b(z) = (bi(z).....b.(z))

of rank v. and we consider the O"-module with respect to Lite linear relation
(f1o). By the main theorem (Theorem 7.1). the O"-module C{011} has a locally
finite pseudobase at the origin 0: thus we can find a finite number. say P. of
holomorphic vector-valued functions

4'k(Z) = (C.k(Z)...... Cv.k(Z)) (k = 1...... u)
of rank v on a closed polydisk 42 C Si centered at 0 which generate C{fl11} on
S2 (where neither 62 nor fk(z) (k = 1.... , u) depends on f (-) in (C)). We set
A!' = max {J:k=1 I4k(z)I I z E S2} < x. Note that if we set

a(z) - ao(z) = (a1(z) - ai(z),... ,a,(--) - a°(z)) on 61.
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then a(z) - a°(z) belongs to C{52°} on 62. Since Problem CI is solvable on the
closed polydisk 62, we can find holomorphic functions ca (z) (j = 1, .... p) on 62
such that

a(z) - a°(z) = cl (z)4>1(z) + + on 62 (7.19)

(note that for any holomorphic functions c.,(z) (j = I.....p) on 62. the functions
ad(z) (j = 1.... v) obtained by substituting the functions c.,(z) into (7.19) auto-
matically satisfy (Cl) on 62). We substitute this expression into (£°) and obtain

f°(z) - (ai(z)F'°(z)+ n.(. +a°(z)F'(z) )
= cl (z) (z) +... +

+c (z) (4 I,,,(z)F°(z) + + (z)F°(z)) on 62

as holomorphic vector-valued functions of rank A. If we set

9°(z) = f°(z) - (ai(z)F? (z) +... +a°(z)F°(z)) on 62.

G2(z) = (z) (j=1...... .) on 62,

then we have

9°(z) = cl (z)GI(z) + ... + on 62.

Again, note that for any holomorphic functions c3(z) (j = 1.....11) satisfying
these A equations (CG) on 6 C 62. the functions al(z) (j = 1,... v) obtained by
substituting the functions cj(z) into (7.19) automatically satisfy (£°) on 6. and
hence both (£1) and (£°) on 6. We have that Ig°(z)I < 1 + KIM on 62. Since
equation (C) is of type (n, A) on 62, the inductive hypothesis applied to C,, (z) (j =
1..... µ) and 62 implies that there exist a closed polydisk 63 C 62 centered at 0.
a constant K3 > 0 independent of g°(z), and p holomorphic functions c (z) (j =
1..... p) such that

9°(z) = on 63,

jc°(z)I < Kz(1 +KIAf) (j = 1.... ,p) on 63.

Thus, if we set

0* (Z) a°(z) + c°(x)41l(z) + on 63.

then we have

f(z) = a*(z)F,(.-)+--.+a,*(z)F,,(z) on 6,,,

lat(z)l < KI + K (j = 1.....v) on 63.

Since 63. Kl, K;, Al and AI' do not depend on the choice of f (z) satisfying (£)
with Jf(z) I < I on D, the second step is proved (using 63 and K > 0).

Third step. The lemma is true in the case (n + 1. 1) if the lemma is true in
the cases (n, A) for A = 1.2.... .

Let D be a polydisk centered at the origin 0 in C' I and let Fe(z) (j =
1.... , v) be holomorphic functions on D.

We may assume that the ¢,,,1-direction satisfies the Weierstrass condition for
each analytic hypersurface E, : Fj(z) = 0 (j = 1.... , v) at z = 0. For convenience
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we write z = (z2.... , zR) and w = z,,,,. so that C°+1 = C" x C. We can thus
find a closed polydisk A := A x r centered at (z. u) = (0, 0) = 0 in C° x C,,..

A : 1zj I < p (j = 1... . n). f : IwI :
such that Fj (z, w) 0 0 (j=l,....v) on x or'. Thus we have

Fj(z,w)=wj(z,w)Pj(z,w) (j=1.....v) on A.

where wj(z, w) 34 0 at any point (z, w) E A and where P3(z, w) is a monic pseu-
dopolynomial in w with coefficient functions that are holomorphic on A.

PP(z,w)=wk,+Aj.I(z)u.t'-1+...+A,.k,(z) on A, (7.20)

and such that Ej = {(z,w) E A x C,.. I Pj(z,w) = 0?. Thus, instead of finding a
polydisk do C D centered at 0 and a constant K > 0 for Fj (z, w) (j = 1.... , v) and
D to satisfy the conclusion of the third step. it suffices to find a polydisk A' C A
centered at 0 and a constant K' > 0 for Pj (z. w) (j = L... . v) and A.

Without loss of generality, we will assume k > kj (j = 1.... v - 1): i.e..
the monic pseudopolynomial w) has largest degree in w among all the monic
pseudopolynomials Pj (z. w). Let f (z) be a holomorphic function on A satisfying

(E) f(z,w) on A,

E f(z, w)J < 1 on A.
where each aj (z, w) (j = 1.... , v) is a holomorphic function on A. By the remainder
theorem applied to w), we have

f (z, w) = q(z, w)P (z, w) + r(z, w) on A. (7.21)

where q(z, w) is a holomorphic function on A and r(z, w) is a pseudopolynomial in
w of degree at most k - 1 with coefficient functions that are holomorphic for z in
A,

r(z.w) _ 8o(z)wk`-1 +03)(z)wk,.-2+... on A.
Fix To : IwI < % < q and A := a x Co. From (2) of Theorem 7.2 we can find
Al > 0. independent of f (z, w). such that

jq(z. w)I. jr(z. w)I < b1 on Ao.
Ii3j(z)j<d! (j=0.1.... ono.

Similarly we have

aj(z, w) = qj(z. w) + rj(z. er) (j = 1,.... v - 1) on A.

where each qj(z, w) is a holomorphic function on A and each rj(z, w) is a pseu-
dopolynomial in w of degree at most k - I with coefficient functions which are
holomorphic for z in A.

r,(z,w) = cj.o(z)wk_1 +cj.I(z)wk'-" on A.

Therefore, from (f') we have

r(z,w) - (r1(z,w)P)(z, w) + +
w), (7.22)

where r,, (z, w) is a holomorphic function on A. By the division theorem we see that
w) must be a pseudopolynomial in w of degree at most k -1 with coefficient

functions which are holomorphic for z in 0,

r,, (z, w) = cv.o(z)wk"-1 +cv.1(z)wk°-2 +...+ce..k,,-1(z) on A.
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Thus, by comparing the coefficients of wk on both sides of the equation (7.22) on
A, we obtain the following 2k,, simultaneous linear equations (E) on A:

(E)

A(z) _
i.j

0 = c;,j(z)A,J)(z) (k=k,,,k,,

where each A )(z) is a linear combination of the functions {Aj.m(x)}I m on A. If we

define 9(z) :_ (/3o(z),... ,,8k,.-I(z),0,... ,0) and Ai.j(z) := (A;°)(z),...
(z)), then the set of equations (E) can be rewritten as

(E) Q(z) = E4,j(z)Ai,j(z) on
i.j

with IQ(z)I < M on A. Since this (E) is a case of the form (n, 2k,), it follows
by the inductive hypothesis applied to {Ai,j(z)}i,j (which is determined by the
given P. (z, w) (j = 1,... , v) in (7.20)) and A that we can find a polydisk Aa C A
centered at 0, a constant KI independent of Q(z), and holomorphic functions c0ij(z)
on Do such that Ic°j(z)I < KIM on Do and c0ij(z) (as well as c;,j(z)) satisfy the
equations (E) on Do. Conversely, if we construct pseudopolynomials 90(z, w) (j =
1, ... , v) in w of degree at most k,, - 1 using c° j (z) (as rj (z, w) (j = 1, ... , v) are
constructed using ci,j(z)), then by (7.22) we obtain

r(z, w) = r° (z, w) P1 (z, w) + + r°_ (z, w) w)

r = A° in A, and fir? (z,w)l 5 KIMEj=ol r' = K2 (j = 1,... , v) on A'.
Since (7.21) implies that

f on A',
the third step is proved (using the polydisk A' and the constant K' := K2+M > 0).
This completes the proof of the lemma.

REMARK 7.11. Now that Lemma 7.5 is established, we can use the same double
induction method with respect to the real dimension of R.21 as in section 7.4.3 to
extend Lemma 7.5 from a polydisk 6o to an arbitrary subset Do CC D (D is a
polydisk in C"), where the constant K > 0 depends on Do. Moreover, in Theorem
8.16 in Chapter 8 we shall extend this lemma to a more general situation using
another method (by use of the open mapping theorem for Frechet spaces based on
Lemma 7.5).

We now use Lemma 7.5 to prove Thorem 7.6.

PROOF OF THEOREM 7.6. By taking a subsequence of { fe(z)},-I,2.... and a
smaller 6, if necessary, we may assume that {f4(z)},=1,2.... converges uniformly to
fo(z) on 6 with

max {Ifs+I(z) - f,(z)j} < 1/2` (t = 1,2,...),

and that each fe(z) can be written in the form

f,(z) = ai`)(z)OI (z) + ... + a(')(z)4i,,(z) on 6.
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Fix q E 6. From Lemma 7.5. it follows that there exist a neighborhood 6o of q
in 6 and a constant K > 0 satisfying the conditions in the lemma for the func-
tions {4)(z)},=I,..,,,, on 6. Thus, there exist holomorphic functions cl'i(z) (j =
l.....v;t = 1.2,...) on 6o with

f,:1(z}-f,(z)=c6 on S.
max {Ic; (z) 1} <_ K/2' (j = 1..... y,).

Forj=l....,v,we set

cc (z) .= a,'1(z) + cc (z) on bo;
,_1

then {c, (z)}, converges uniformly on 60. and we have

fo(z) = c1(z)I'1(z) + ... + c,(z)-O,,(z) on bo.

Thus fo(z) belongs to on 60.

7.5. Local Finiteness Theorem

0

7.5.1. 1-ideal. Let D be a domain in C" with variables zi..... z". Let F? (z)
(j = 1.... , v) be v holomorphic vector-valued functions of rank A on D.

Fe(z) _ (F1, (z),....F,,)(z)) (j = 1... ,v).

Consider the set of A homogeneous linear simultaneous equations

(1) fl(z)Fi(z) +...+f.,(z)F,(z) = 0
for the unknown holomorphic vector-valued function f(z) = (fi(z),.... of
rank v. We refer to this system as the linear relation (Q). We let £(fl} denote
the 0-module with respect to the linear relation (fl), i.e., G{fl} is the set of all
pairs (f (z), b) such that f (z) = (fl (z).... , f,, (z)) is a holomorphic vector-valued
function of rank v on 5 which satisfies ((1) on J. Looking at the first components of
f (z), we consider the set t{Sl} of all pairs (f1(z).5) such that there exists at least
one (f(z),6) in G(l) with f(z) = (f, (z).... , Then f{1l} is an 0-ideal on
D which is called the 1-ideal with respect to the linear relation (S2). Since G{12}
has a locally finite pseudobase at each point in V. we have the following theorem.

THEOREM 7.7. For the linear relation (S2) associated to the holomorphic vector-
valued functions F) (z) (j = 1.... , v) on D, the f-ideal f {1l} has a locally finite
pseudobase at each point in D.

In this section we will often use this theorem to show that some important
0-ideals on V have a locally finite pseudobase at each point in D. We next prove
the following corollary, due to Oka. which is a simple application of Theorem 7.7.
This corollary, will not be used in the remainder of this book.

Let Z beYan 0-ideal in a domain D C C" and let. $ be a holomorphic function
on D. We define r to be the set of all pairs (f + A$. b fl 6') where (f. 6) E Z and A
is a holomorphic function on 6'. In addition, we define Z. to be the set of all pairs
(So, 6) where V = f1$ is holomorphic on b and (f, 6) E Z. These are both 0-ideals
on D. We call T' and Zo the adjoint and the quotient 0-ideals of I for t. We
note that I C Z fl Za,.

Using this notation and terminology, we have the following result.
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COROLLARY 7.7. The 0-ideal I on D admits a locally finite pseudobase at each
point in D if and only if the same is true for both Tz and Tt .

PROOF. Fix zo E D. Assume that I admits a locally finite pseudobase Fj (j =
1,... , v) on a neighborhood 6 of zo in D. Then {Fj. 4} J=l__, forms a locally
finite pseudobase of T" on 6. Fix tip E 4 at a point z' in 6. Then we have

41) = a1 F1 + + aF in 6%

where 6' C 6 is a neighborhood of z' and each a j (j = L... . v) is a holomorphic
function on P. Thus the restriction 4 on 6 coincides with the f-ideal with respect
to the linear relation (11) in 6. By Theorem 7.7. TO admits a locally finite pseudobase
at zo.

Conversely, assume that V and T* both admit a locally finite pseudobase at
zo. We denote these pseudobases as

Fj+Ai-0(j=1,...,v) and Wk (k=l.....µ) on6,

where 6 is a neighborhood of zo in D. Here, (F., 6) E T and A, is a holomorphic
function on 6; moreover, each 'k = Gk/4' is a holomorphic function on 6 where
(Gk, 6) E T. Let f E T at a point z` E 6. Since f E T ' at z', we have

f = ft(Fl +A10) +... (F. on 6',

where 6' is a neighborhood of z' in 6 and each f, (j = 1..... v) is a holonorphic
function on 6'. Thus,

f -f1Fl-...-ff,FL,=(f1A,+...+f,,AN)4 on 6%

so that fl Al + . + belongs to Tm on 6". Hence, we have

fA = bl'Irl + ... + bj Tp on 6`.

where each bk (k = 1...... u) is a holomorphic function on 6'. It follows that

on 6*.

Consequently, the restriction of I to 6 coincides with the 0-ideal generated by v+µ
holomorphic functions {Fj,Gk} on 6.

EXAMPLE7.4. LetA=(Ixl<1)x(lyl<1)andA'=(IxI<1)x(0<lyl<1)
in C2. Let I be the set of all pairs (f, 6), 6 C A satisfying the following: if 6 C A',
then f can be an arbitrary holomorphic function on 6'; if 6 Q W. then f = a ry,
where a is a holomorphic function on 6. Then I is an 0-ideal on A. but T does not
admit a locally finite pseudobase at the origin 0 in A. For if I had a pseudobase
{aj xy} (j = 1, ... , v) in a neighborhood V of 0 in A. then their common zero set
in V would contain {xy = 0}. However. at the point (0, y) E V with y 0 the
constant function 1 belongs to I. which is a contradiction.

The adjoint Ty of T for the function y and the quotient T= for the function x are
generated by the function y on A. However. neither T, nor Ts admit a locally finite
pseudobase at the origin. For both Ty and P consist of the collection of all pairs
(f, 6) with 6 C A satisfying the following: if 6 C A', then f can be all arbitrary
holomorphic function on 6; if 6 5t A'. then f = ax, where a is a holomorphic
function on J. Hence this collection does not admit a locally finite pseudobase at
the origin.
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7.5.2. G-ideal. Let D be a domain in C" and let I be an 0-ideal on D. Fix
p E D. If each holomorphic function f (z) belonging to I at the point p vanishes
at p. then we say that p is a zero point of T. We call the set E(T) of all such p in
D the zero set of T. Note that for q E D. we have q E(T) if and only if each
holomorphic function f (z) at q belongs to I at the point q. It is clear that E(T) is
a closed set in D. Furthermore, if I has a locally finite pseudobase at each point
in D. then E(T) is an analytic set in D.

Conversely, let E be a closed set in D. We consider the set G{E} of all pairs
(f (z). 6) such that 6 C D and f (z) is a holomorphic function on 6 which satisfies
f (z) = 0 on E fl S. Then G{E} becomes an 0-ideal on D. called the geometric
ideal for E on D (or the G-ideal for E). We will need the following theorem
concerning G-ideals.

THEOREM 7.8. Let E be an analytic set in a domain D in C". Then the G-ideal
G{E} on D has a locally finite pseudobase at each point in D.

We first prove Theorem 7.8 in the special case given as Proposition 7.7 below.
For the sake of convenience, we use the following notation: C" = Ct X Cu,-''.
where C`' has variables z,,.... z,. and Cu .-r has variables w1..... w"-r. Let D be
a domain in Ct and let A = D X Cu, -r C C". For each wj (j = 1, ... , n - r), we
consider a monic pseudopolynomial

Pi(z.wi) = +aj,l(z)uj'-' +...+aj.t,(z)

with respect to wj, where each aj,k(z) (1 < k < lj) is a holomorphic function on D
and Pj(z,wj) has no multiple factors. We set

E= l {(z, w1.... , E A I Pj(z. wj) = 01,
j=1

which is a pure r-dimensional analytic set in A.
Then we have the following proposition.

PROPOSITION 7.7. The G-ideal G{E} on A is generated by n - r pseudopoly-
nomials Pj(z. w3) (j = 1,... , n - r) on A.

PROOF. We prove this by induction on n - r > 1 (the number of pseudopoly-
nomials). We first assume that n - r = 1, i.e.. E is an analytic hypersurface
in A := D x C,, defined by the zero set of a single monic pseudopolynomial
P(z,w) with no multiple factors whose coefficients are holomorphic functions on
D. Fix pa E A. Let f (z, w) be any holomorphic function at po belonging to
G{E} at p0. Fix a sufficiently small polydisk A := 6 x 7 CC D x C,,, centered
at p, such that f (z, w) is holomorphic on A and P(z. w) 54 0 in 6 x &r. Then
we can write P(z,w) = P'(z,w)P"(z.w) in A. where P'(z,w) is a Inonic pseu-
dopolynomial with respect to w and P"(z, w) 34 0 in A. Since f (z, w) = 0 on
X n {P'(z. w) = 0} and P'(z. w) has no multiple factors. it follows from the Weier-
strass preparation theorem that f (z, w) = P'(z, w)w(z, w) on A. where w(z. w)
is a holomorphic function on A (which may have zeros on A). We thus have
f (z, w) = P(z. w)(-,(z, w)/P"(z, w)) =: P(z, w)w1(z, w) on A. where w1(z, w) is
a holomorphic function on A. Consequently. P(z, w) is a pseudobase of G{E} on
A.

We next assume that the proposition is true for n - r > 1, and prove it for
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n - r + 1. Let t be the pure r-dimensional analytic set in A := D X Cu,-r-1 C

C x Cu,-r+l = Cn` l defined by
n-r+lE = n { (z, w) E A I P. (z, w,) = 0}.
i=1

where each Pi (z, w,) (j = 1.... , n - r + 1) is a monic pseudopolynomial in wi with
no multiple factors whose coefficients are holomorphic functions on D. For later
use we write

w = (wl,... ,wn_r.llln-r+l) = (w'. wn-r+1),
nr

A' = D x C;;,'r. E' = n ( ( Z . E A' I P , wi) = 0},
i=1

We also let on_rt1 denote the zero set of the discriminant d,,-,+I(z) in D of
Pn-r+l(Z, wn-r+l) with respect tow,-,.,, so that is an (r-1)-dimensional
analytic hypersurface in D.

Now let po E A, and let f (z. w) be any holomorphic function at po which
belongs to C{E} at po. We claim that there exists a neighborhood Ag of po in A
such that

f(z,w) On A0.
(7.23)

where each ai (z, w) (j = 1,... , n - r + 1) is a holomorphic function on A0.
Tb prove this, We Set po = (Z0. wgl) = (zo, WO. I.... , WO.rr-r, w0.n--r+1) _ (zn. u'0,

wo,n-r+1 ) In case po E A\E, we have P3(zo, wo.i) 76 0 for some j (I< j < n-r+1).
Thus, if we set f(z,w) _ (f(z.w)/P3(z.wi))P,(z.w,) =: ai(z.w)P,(z.w) then
ai (z, w) is a holomorphic function in a neighborhood A0 of pl) in which Pi (z, wi) 54 0.
This proves our claim (7.23).

We next study the case pa = (zl), w))) E E. We take a polydisk A := d x y C
D x Cu,-r+l centered at (zo. wo) in which f (z. w) is holomorphic. We write

-r1 := y1 X ... X In-r X -Y.-,+l C C,,. . 7 :=1I X ... X "In-r C .'nLL.
A':=6xYCDxc rcCn, A:=A'X7,r-r+lCCn+l

By taking a suitably smaller polydisk A centered at (zo, wo) if necessary, we may
assume that

P.-r+1(z, Wn--r+1) # O Oll d X

Thus, we have

Pn-r+1(z, wn-r+1) = P'(z, Wn-r+l )P"(z, W,,-r+l) on 6 X 1'n- r+1

where both P'(z.wn-r+1) and are monic pseudopolynomials whose
coefficients are holomorphic functions on S such that

P'(z, wn-r+)) 0 on h x (Cu. - ., \ tin-

z.wn-r+i) # O on 6 X ryn-r+1:

furthermore P'(z, Wn-r+1) has no multiple factors. We let 1. 1'. and 1" denote
the orders of Pn-r+1 P, and P" with respect to W,,-r+), so that I = 1' + I".
Considering P'(z, wn_r+l) as a monic pseudopolynomial with respect to wn-r+l
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whose coefficients are holomorphic functions on Y. we can apply the remainder
theorem on A = A' x -yn_r+, to obtain

f (z, w) = q(z. w)P'(z. Wn-r+1) + r(z. w'. wn-r+t) on A. (7.24)

Here q(z. u:) is a holomorphic function on A and r(z. w', w,,-r+l) is a pseudopoly-
nomial with respect to wn_r+l of degree at most 1' - 1: i.e..

T(Z, w'. wn_r+1) = A (z, w')w;,-r+t

where Al(--, u') (j = 0.1.... ,1' - 1) is a holomorphic function on V.
We want to show that for each j = 0.1.... , l' - 1.

A, (z, w') = 0 on t' f1 A'. (7.25)

To see this. let (a. b) E A' c D x Cti-' be any point of 2' f1 A' such that a E
D \ on_r+1 so that P,,_r+t(a,wn--r-1) = 0 has I distinct solutions in Cu.,,_,_,.
Hence. P'(a.w,,_r+t) = 0 has 1' distinct solutions in 1n_r+I, say. (I (a)... .(1,(a).
Since (a, b, (k(a)) E Ef A (k = 1..... I'), it follows from (7.24) that r(a. b, (k(a)) = 0
(k = I.....1'). Since r(a,b.wn_r+t) is a polynomial with respect to Wn-r+1 of
degree at most I'-I, we have r(a, b. wn _ r+ t) °- 0 on C,.,-,+,. and hence A, (a, b) =
0(j= 0,1, ....l' - 1). By analytic continuation, Aj(z, w') = 0 (j =0.11... .1'- l)
for any point (z. w') E E' fl A'. which proves (7.25).

Since t' is defined by n - r pseudopolynomials, from the inductive hypothesis
we conclude that there exists a neighborhood ao of (zo. w( ')) in A' such that, for each
j=0.1....,1'-1.

Aj (z, w') = aw)Pi(z, w1) + ... + a;''r(z. w') P, - r(z. Wn_r) on Jyt.

where each a;') (z, w') (1 < i. n - r) is a holomorphic function on A'. If we set
An := A x which is a neighborhood of (zit, we) in A. then we have

f (z,(Z, u') _
q(z,w)

. Pn-r+1(Z, wn-r+1)

n-r 1'-(:oz.w'_r+i)
+ Pk(Z,Vk)

n-r+t

ak(Z, w)Pk(z, wk) on A .
k=1

where each ak(z, w) (k = 1..... n - r + 1) is a holomorphic function on J41. This
proves our claim in the case pp = (z0. w(1) E E for it - r + 1. By induction we
complete the proof of the proposition. 0

PROOF OF THEOREM 7.8. Let E be an analytic set in a domain D in C".
Let zo E E. We fix a polydisk A centered at zo in D and decompose A fl E into
irreducible components: A fl E = Et U . U E. We let G{E,} (j = I.....q)
denote the G-ideal for E3 in A. We note that G{E} Ia coincides with n.'=1 G{EJ}.
Using Theorem 7.4, to prove Theorem 7.8 it suffices to prove that each G{E,}
(j = 1.....q) has a locally finite pseudobase at the point z0. For simplicity in
notation we write E3 = E and assume that E is of dimension r (0 < r < n).
By performing a coordinate change and taking a smaller polydisk A if necessary.
we may assume that z = (z1, .... Zr. Zr+1.... , zn) = (Z'. Zr+1, .... zn) satisfies the
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Wieierstrass condition for E at any point z on E. Thus, if we write A = :.' x r c
x C°_r . then E n (A' x ar) = 0. It follows from Theorem 2.2 in Chapter

2 that there exists a monic pseudopol'nomial P. (z'. zj) (j = r + 1.... , n) with
respect to zj whose coefficients are holomorphic functions on A'. such that, if we
define

14

E:= I I {(z'.zrrl.... . zn) E A' X C" r I P,(z'. zzj) =0}.
j=r+l

then E is one of the irreducible components of t in A. We may also assume that
each Pj(z', z)) (j = r + 1..... n) has no multiple factors. We let E' denote the
union of the remaining irreducible components of E. so that E = E U E'. From
Remark 2.7 of Lemma 2.5. E' is itself an analytic set in A which can be written in
the form

A

E'= n{zEAIy,(z)=0}.
i=1

where Y,(z) (i = 1.... , A) is a holomorphic: function on all of A.
Consider the following system of homogeneous linear equations:

(ii) f(z)1p,(z) = Zr+1)+"' + fn.i(z)P,(z'. z,)

(i=1.....A) on A;

equivalently.

f (,;I
=fr+l.l (Pr+1,0... ,0)+...+f,,.l (P,,.....0.0)

.... - f r..-1.1 ' (0.... . 0. Pr+ 1) + ... + fn. 1 ' (0.... . 0. Pn) .

Here the functions (V,(z).Pj(z'.zj)) (i. = 1.....A; j = r + I.....n) oil A are
known (given): the unknown functions are (f (z), fk., (z)) (k = r + 1..... n: i =
1..... A). Thus, the linear relation (1) is of rank A and the 0-module C{S2} is
of rank 1 + A(n - r). We consider the l-ideal 1.{Q} with respect to (S2) in A. By
Theorem 7.7. ({fl} = {(f,6)}o-. has a locally finite pseudobase at each point in
A. To prove the theorem it thus suffices to prove that (.{f1} is equivalent to G{E}
as an 0-ideal on A.

To verify this, fix z° E A and let f (z) be any holomorphic function at z° which
belongs to 1{0} at z°. Then there exists a neighborhood 6 of z° in A such that

f(z),%.(z) = fr+1.i(z)Pr+t(z',zr+t)+.. + (i = 1... . A).

where each fk,,(z) (k = r + 1..... n: i = 1.... , A) is a holomorphic function on
6. Take a point C = (('.Sr+I.....(n) E (E \ E') n 6. Then i(C) 0 0 for some i
(1 < i < A). Since E C E implies that Pk (('. (k) = 0 (k = r + 1..... n). it follows
that f(()y;,(C) = 0. and hence f(() = 0. By continuity. this implies f(z) = 0 on
E n 6 (since EnE' is of dimension r-1). so that (f.6) E G{E}. Thus, f(z) belongs
to G{E} at z°.

Conversely. let z° E A and let f(z) belong to G{E} at z°. There exists a
neighborhood 6 of z° in A such that f (z) = 0 on 6 fl E. Then each function
f(z)pi(z) (i = 1..... A) is a holomorphic function in 6 such that f (z)p,(z) = 0 on
(E U E') n 6. i.e.. (f (z)r,(z), 6) E G{E}. From Proposition 7.7 we have

f (z)Ypf(z) = ar+I.,(z)Pr+1(z'. zr+1) + ... + a,, ,(z)P.(z'. z,,) (i = 1.... . A)
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in a neighborhood be C 6 of z°, where each ak,; (z) (k =r+ 1.... n: i = I .... A)

is a holomorphic function on bo. This means that. (f (z). bo) E E{S2}. so that f (z)
belongs to E(S2) at zo.

Consequently. G{E} and [{S2} are equivalent as 0-ideals on A. 0
Theorem 7.8 combined with the solvablity of Problem E in a closed polydisk

implies the following corollary.

COROLLARY 7.8. Let 2K be a closed polydisk in C" and let E be an analytic
set in 2S. Then there exist a finite number of holomorphic functions fj(z) (j =
1, .... v) on A such that E n A is equal to the common zero set of f, (z) (j =
1,... ,v) in A.

REMARK 7.12. Theorem 3.4 in Chapter 3 (the main theorem in Oka (45]) fol-
lows immediately from this fact.

We give another proof of Theorem 7.8; this is due to Oka [50].

REMARK 7.13. After a slight change in notation, together with the use of The-
orem 7.4, we may assume that E is an r-dimensional irreducible analytic set in
the polydisk A centered at the origin 0 in C". Here A = A x r C C: x C. and
r+s=n with E n [A x Or] = 0. We set l =Ii x...xI,.where I, (j=1....,s)
is a disk in C,,,. We let D denote the projection of E over the polydisk A; this
is a ramified domain over A without relative boundary. Finally we let m de-
note the number of sheets of D over A. Thus E can be written in the form
w., = t;j (i) (j = 1.... ,s), E V. where each t;j(i) is a single-valued holomor-
phic function on D with Sj (i) E I,. We let E. (j = 1..... s) denote the projection
of E onto the (r + 1)-dimensional polydisk Aj := A x r.. Then Ej is an analytic
hypersurface in Aj, so that Ej can be written as

I Pj(z,wj)=0},
where P(z, w,) is a polynomial in wj of degree at most m whose coefficients are
holomorphic functions on A; moreover P(z. w1) has no multiple factors. Thus.
wj = C, (i) satisfies Pj(z, wj) = 0. where z is the projection of i onto A. We
forcus on j = 1. By taking a coordinate transformation of C' sufficiently close
to the identity transformation, if necessary, we may assume that E and EI are in
one-to-one correspondence except for an analytic set of dimension at most r - 1;
thus the projection DI of El over A, which is a ramified domain over A without
boundary, coincides with D. In particular. OP1(z, w1)/0wl ; 0 on E1. and hence
on E. Thus each {j(i) (j = 2..... s) defines a weakly holomorphic function on El.
and E can thus be considered as a lifting of the first kind of E1 by wj = {j(i) (j =
2..... s). For each j = 2..... s. using Remark 7.4 there exists a linear polynomial
';(z.w1.wj) in wj of the form:

(<,wlev%j)=wj
8P z,w1 -) (z,w ) (j=2,....s)

I

which vanishes on E. Here 4ij (z, w1) is a polynomial in wI of degree at most m -1
whose coefficients are holomorphic functions on A. We set M = (s - 1)m.

We consider the following linear equation (0) defined on A:

(H) f(z,w)
(OPl(z.wl))!

O%I
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= fl(z.w)P,(z.wi)+...+fq(z,w)P(z.wy)
+ 92(z. w)'Ds(z, u:1, w2) + ... + w1, u'9),

where P, (z, w j) and 4 (z, w1 i wk) are known functions on A. and (f. f, ..... f .

92,... ,g,) is an unknown holomorphic vector-valued function of rank 2s in (z. u..).
By the main theorem (Theorem 7.1). it remains to prove that our G-ideal G{E}
on A is equivalent to the 1-ideal l{Sl} := {(f (z. w). A)} (here A C A) with respect
to the linear relation (Sl) on A.

Fix (f (z, u.,), A) E 1{Q}. We note that each -Pk as well as each P, vanishes on
E in A. Since f (z, w) satisfies equation (fl) on A for some holomorphic functions
fj.9k on A, it follows from the fact that 8P1(z. w1)/aw, 0 0 on E that f(.-. w) = 0
on E fl A; thus (f, A) E G{E}.

Conversely, let f (z, w) be a holomorphic function belonging to G{E} at a point
(z0, w(1) in A. By Remark 7.7. there exists a sufficiently small polydisk A = b x 7 C
o x r centered at (za, w()) with E n (6 x d7) = 0 such that

f(z,w)=yP1(z,w)PI(z.w)+...+;P,(z.w)P,(z,u:)+ i3J(z)ui'...aNa

JI=0

for j=(j1....,j,). 0<jk<m-1.where each Y, (z.w)isa
holomorphic function on A and where each ,3u, (z) is a holomorphic function on 6.
W e set y := yi x- - - ry,,, where7j (j = 1, ... , s) is a disk in r j. Multiplying both sides
of the above formula by (apt /awi )-" and using the functions 40; (z. W1. wj) (j =
2, ... , s), we have

f(z.w) (apt(Z w1)) = wi(z.zc)Pi .{_....{. y3..(z.w)Pa
\ l

+ T'2(z w)4,2 +... + (z, 1P)'5 + H(z, w1 ).

where. (z, w) and 10k(z, w) are holomorphic functions on A. and where H(z. wi) is
a polynomial in w, whose coefficients are holomorphic functions of z E 6 (indepen-
dent of wk (k = 2-.. . s)). Since f (z. w) = 0 on Ef1A, we have H(z, w,) = 0 on En
A; thus H(z. w1) vanishes on the analytic hypersurface E, in the (r+ 1)-dimensional
polydisk A,. where A, = b x -yi. It follows that H(z. wi) = P, (z, w1)h(z. w,) in A,.
where h(z. wi) is a holomorphic function on Al. Hence (f (z, w), A) E I{Sl}. Thus
G{E} and 1{11} are equivalent as 0-ideals on A. 0

7.5.3. Projection. Let DI be a domain in C" with variables z1..... z,, and
let D2 be a bounded domain in C". with variables w1.... , w,,,. We set D =
D, x D2 C C- X C. Let Z be an O-ideal in D. Consider the set J of all
pairs (f (z), 6) such that 6 C DI and f (z) is a holomorphic function in 6 with the
following property: f (z), regarded as a holomorphic function on 6 x D2, belongs to
Z at each point (z. w) in 6 x D2. Then 3 is an O-ideal on D. which is called the
projection of I onto Di. We write 9 =: P{2}. Clearly, if an O-ideal Z in D is
equivalent to T on DI x D2 as 0-ideals, then P{i} is equivalent to PIT} on D1.
We let E and E1 denote the zero sets of I and P{I} in D and D1, respectively.
We also denote by p(E) the projection of E onto D1. Then p(E) C E. Moreover,
if E fl (DI f liD2) = 0. then p(E) = E,.

We have the following theorem.

THEOREht 7.9. Let Z be an O-ideal in D = D, x D2 such that
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(1) Z has a locally finite pseudobase at each point of D. and
(2) the zero set E of I contains no points in a neighborhood of D, x 8D2 in

Dt x Cum.

Then the projection P{Z} of Z onto D, has a locally finite pseudobase at each point
in D1.

PROOF. Let z0 E D1. and let us prove that P{Z} has a locally finite pseudobase
at the point z(j. By condition (2). the section E(zo) = {w E D2 I (zo.w) E E} of
E at z = zo consists of a finite number of points (:0. t o))..... (:0.w(a"). For each
point (zo.wi>>) (j = 1,....q), there exists a polydisk A, := 6 x r, CC D, x D2
centered at (za. w(J)) such that E n (& x 8r,) = 0. We let TX, (j = 1..... q) denote
the restriction of I to A, and we set Pt)1 = P{1,\, } (the projection of 2a, onto b).
By definition of the projection of an 0-ideal, we see that P{1}$6 is equivalent to
fJq_

1
Pal as an 0-ideal on 6. By Theorem 7.4 it suffices to prove that each Pt"

(j = 1.... , q) has a locally finite pseudobase at each point in 6. In other words, we
may assume from the beginning that D, = 6 (a polydisk in C" ); D2 = r (a polydisk
in C;,`); Z is an 0-ideal on the closed pol disk A = 6 x r satisfying condition (1)
on a; and condition (2) becomes E n (3 x or) = 0. where E is the zero set of I on
A.

Moreover, we may assume m = 1. For assume that the theorem is true in this
case and let m > 1. Set IF = r, x . x r,,,. where r, (j = 1,....m) is a disk
in the plane C,,.,. and 6 x r, x . x rm _ I C C". x C,m-' Since

E n (b,,,_1 n or,,,) = 0 from (2). it follows from the assumption for m = 1 that
the projection P,,,_,{I} = of I onto b,,,_, has a locally finite pseudobase at
each point of b,,,_1. We note that the zero set E,,,_1 of Zm_, in b,,,_1 coincides
with the projection of the analytic set E onto a,,,_1 (which is an analytic set from
Proposition 2.3 in Chapter 2). so that. if we define 6m_2 := 6 x r, x . . . x r,,,-2.
then (bm_2 x 8rm_,) n Em_, = 0. We repeat the same procedure to obtain
Zm_2 = P,,,_2{I,,,_)},... ,Zo = Po{Z1} where I,_, (j = 1.... .in - 1) is the
projection of Z, onto 6,_1 := 6 x rt x x F,_1 (here 60 := 6) and I,_, has
a locally finite pseudobase at each point of 6j_1. Thus, To has a locally finite
pseudobase at each point of 6. On the other hand, we see from the definition of the
projection of an 0-ideal that To is equivalent to P(77)16 as an 0-ideal on 6.

Thus. taking m = 1, we may assume A = b x F C C" x C,,., where r is a
disk in the plane C, Let z' E 6. Since E n (6 x 8r) = 0, the section E(:') of E
at z = z' consists of a finite number of points W. WO.... , (z', up,), where w, E r
(j = 1.... , u). By conditions (1) and (2). there exist a polydisk A, := 6' x y, C A
centered at (a'. w,) (j = 1..... p) and a finite number of holomorphic functions

w),... up) on a' such that (i) if we let J{dti') } denote the 0-ideal
generated by on A then {VA} is equivalent to Zla, as an
0-ideal on Aj, and (ii) 4i(,j)(z, w) # 0 on 6' x (8y,) for each j = 1,... , y. We
let PW (j = 1.... , p) denote the projection 9{4pti)} onto 6. Since P{I}16' is
equivalent to f1_1 PIE) as an 0-ideal on 6'. from Theorem 7.4 it suffices to prove
that each P(I) (j = 1, ... , u) has a locally finite pseudobase at each point of 6'.

To simplifythe notation, we set 6'=aCC", y2=rCC,,.,A=AxIF c
Cn x C,,.. vj = v. t()(z, w) = 4 k(z, u-) (k = 1..... v). and ,I{Vi} } = 9{}.
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Since -to I(z.w)96 0 on0xor=0, we have

4-1(x, w) = PI(z, w)w,(z, w) on A.

where wl (z. w) # 0 on A and PI (z. w) is a monic pseudopolynomial in w satisfying

PF(z, u,) = u,1 + Ai"(z)wr-I + ... + A("(z) in a x C,,.,
(7.26)

{(z. w) E A x Cu. I P1(z. w) = 0} CC A.

where each (j = 1.....1) is a holomorphic function on A. By the remainder
theorem for PI (_. w) on A we have

' ,(z.w) =Q.,(z.w)P1(z.w)+R,,(z,w) (j = 2.....v) on A,

where each Q, (z. u-) is a holomorphic function on A and each R, (z. w) is a pseu-
dopolynomial in w satisfying

on AxC,,..

where each Ak')(:) (k = 0,1.....1 - 1) is a holomorphic function on A. Clearly
is equivalent to the 0-ideal 9 generated by P1(z, w), R2(z, w).... ,R,(z.w)

on A. Hence it suffices to prove that the projection P{G} of 9 onto -A has a locally
finite pseudobase at each point in A.

Let zo E A and let f (z) be any holomorphic function belonging to P{ Q} at zo.
Since f(z) belongs to G at each point of {zr} x T, we can find a polydisk 5 C A
centered at zo such that. at each point q E IF. there exist a disk !,, c r centered at
q and v holomorphic functions f.,(z.w) (j = 1.....v) on s := 5 x 1,, with

f(z)

f (z, w) (j = 2.... , v) are holomorphic functions
on the polydisk 6 x r and since Problem C, is solvable on this polydisk, we may
assume that each fl (z. w) (j = 1.... , v) is a holomorphic function in 5 x r satisfying
equation (7.27) on 5 x r. Again using the remainder theorem for PI(z, w) on 5 x r
and condition (7.26), we have. for each j = 2.... , v.

f f (z. w) = qj(z, w)Pi (z. w) + r, (z. w) on 5 x r,

where qJ (z. w) is a holomorphic function on 5 x r and r, (z. w) is a pseudopolynomial
in w of degree at most I - 1 with

rj (z, w) = a0Ji(z)w1_ I + a111(z)w1_2 +.... + a,(J)1(z) (j = 2..... v); (7.28)

here. each ajj'(z) (k = 0. 1.... ,I - 1) is a holomorphic function on 6. Substituting
these into (7.27), we have

f(z) = rl(z. w)Pl (z. w) + r2(z. w)R2(z. w) + + w) (7.29)

on 5 x r.

where r, (z. w) is a certain holomorphic function on 5 x r. By use of the division
theorem for PI(z. w), we see that ri(z, w) must. in fact, be a pseudopolynomial in
w of degree at most I - 2; i.e.,

rj(z.w) l'2(z) in 5 x Cu., (7.30)
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where each ak1)(z) (k = 0.1.... .1- 2) is a holomorphic function on 6. Therefore.
comparing the coefficients of w2 (j = 0.1.....21- 2) in equation (7.29), we obtain
21 - 1 equations on 6:

f(z)=ai-s(z)Ai1 (a)+a i-,l(z)Ai2)1(z)+..., ai`1(z)At"j(z),

0 = ar( l),(z)A(I) (z) +at') (z)A;1>(z) +... +at(")s(--")k"1(z)ti r1 I

0 = a01)(z) +ao )(z)A(2)(z) + . . . +ao' (z)A0(z).

Or, equivalently.

f (1.0......... .0)
=a,,"2 1 ....Al(1'.1,0.... .0)

(2) (2) fl)
+ a1-1 - (Ar_ 1. A1_2......9a2>. 0.....0)
+...+ (0,.. .0. A,("i,Al,, 2.....A0 )).

Therefore. if f (z) belongs to P{G} at z0 E A. then we can find a polydisk 6 C A
centered at z0 and lv - I holomorphic functions a,12(z). a,-1(z). , a,)''(z) on 6
which satisfy the 21 - I equations (fl) on 6. In other words. f(z) belongs to the (-
ideal ({f2} with respect to the linear relation (f2). Here we consider ((2) as a linear
system of 21 - 1 homogeneous equations determined by the known holomorphic
functions 1. A,(')(z).....Ao'")(z) on A. where the unknown holomorphic vector-
valued function (f(z).a(l)z(z), is of rank µ:= W.

Conversely, let zo E A and let f (z) be any holomorphic function belong-
ing to ({fl} at zo. Thus. there exist a neighborhood 60 of z0 in A and p -
1 holomorphic functions {akjl(z)}j,k on 60 such that f(z) is holomorphic in 6e.
and (f (z). a1 2(z). . ao'1(z)) satisfies equations (f2) on 60. If we construct the
pseudopolynomials r1(z, w) and r, (z. w) (j = 2.... , v) with respect to w using
{ak1)(z)}k and (aj)(z)}k from (7.30) and (7.28), then {f(z.w). r;(z,w) (i =
1.....v)} satisfies equation (7.29) on 60 x F. so that (f(z),60) belongs to P{Cc}.
Therefore. P{C} is equivalent to 1{f1} as an 0-ideal on A; thus, it follows from
Theorem 7.7 that P{G} has a locally finite pseudobase at each point of A. This
completes the proof of Theorem 7.9. 0

This theorem combined with Theorem 7.5 implies the following corollary.

COROLLARY 7.9. Let A = A x r be a closed polydisk in C; x C. Let
j(z,w) (j = I.... .&,) be holomorphic functions on A whose common zero set
E satisfies E n (A x 8F) = 0. Then there exist holomorphic functions ,2k(z) (k =
1,... n) on A such that

(1) y^k(<") a(k'(z. w),Pj(z, w) on A. where the w) are holomorphic
functions on A; and

(2) any holomorphic function f (z) on A of the form
"

f(z) = Ea,(z. w)', (z. W)
j=1

on A. where the aj(z. w) are holomorphic function on A, can be written in
the form f (z) = Ek=1 bk(z) ,k(z) on A. where the b&.(.-) are holomorphic
functions on A.
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7.5.4. Z-ideal. Let D C C" be a domain. Let E be an analytic set in D. and
let F(z) be a holomorphic function on D such that F(z) # 0 on each irreducible
component of E in D. N e consider the set I of all pairs (f (z), 6). where 6 C D is
a domain and f (z) is a holomorphic function on 6 satisfying

1. if S n E = 0, then f (z) is an arbitrary holomorphic function on 6:
2. if 6 n E # 0. then (f (z)/F(z)) )6,)1: is a weakly holomorphic function on

6nE.
Then Z is an 0-ideal on D. We call I the Z-ideal with respect to F'(z) and E. and
we use the notation I = Z{E, F}.6 Note that the zero set of 7, {E. F) is contained
in E.

We have the following theorem concerning Z-ideals.

THEOREM 7.10. For any analytic set E in D and any holomorphic function
F(z) such that F(z) $ 0 on each irreducible component of E in D. the Z-ideal
Zf F. E} has a locally finite pseudobase at each point in D.

PROOF. Fix z(, E E. We prove that !, { F. E } has a locally finite pseudobase at
z,,. Fix a sufiicently small polydisk A centered at z(, in D so that J n E can be
decomposed into irreducible components E, (j = 1.....1) in J such that each E,
passes through Z. Since F(:) 0 0 on E,. we can consider the Z-ideal Z{F. E.' }
(j = 1.... ,1) as defined on J. Since Z{F.E}I,, = fl .1 Z{F,E,} as an 0-ideal
in A. it follows from Theorem 7.4 that we need only show that each Z{F, E, }
(j = 1.....1) has a locally finite pseudobase at z().

To prove Z{F. E, } has a locally finite pseudobase at z(,. as usual to sim-
plify notation, we write E = E, in ,, and assume E is of dimension r. After a
suitable linear coordinate transformation. we can assume the coordinate system
- = (21.... , ar.: ,.* 1..... z,,) satisfies the «eierstrass condition for E at z,,. Thus
we can find a pol disk A(, := D X A; -r CC J centered at the point Zo = (2U'. --0)
such that (E n n (A6 x (i)J r)] = 0 and such that E n s can be described as

z, = t;,(ZL,... Zr) (j = r+ 1.....n),
where Zr) varies over a ramified domain over On without relative
boundary. By Theorem 6.4 in Chapter 6, there exists a pol disk & in , centered
at the point z such that. upon taking 6 to be the part of 0,, over 6. there are a
finite number of bounded holomorphic functions p,(zj......,.) (j = 1.... , rrl) on
S. say {;.;l < M (j = 1..... rn). such that., if we take the polydisk F : iItcj < Al
(j = 1..... in) in C. then the r-dimensional irreducible analytic set t in A
6 x x r c C,' x C;' defined by

(j
E: Z,= S)(21,... Zr) (j = r +1... , n).

u'r =w+(Zt.....Z,.) (k=I... .m).
where = (zl.... , zr) varies over 6. has a singularity set a in A with dim a < r-2.
i.e., the analytic set E in A is the lifting of the first kind of the analytic set E in
6 x with singular set of dimension at most r - 2.

''Intuitively, the Z-ideal Z. F} is the collection of all holomorphic functions f(z) on d C D
such that f(z) idr-g vanishes on the given zero set of F(s)I... Thus. if we set S := E n {F = 0}
and denote to, O(S) the G-ideal for 5 in D. then Z{E. F) C C{S}.
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We regard F(z) as a holomorphic function on A (constant for w). so that
F(z) $ 0 on E. We can thus consider the Z-ideal Z{F. E} on A. We note that
E n((6 x x ari = 0. and E 1ex_1,) . -. is equal to the projection of the analytic

.At E onto 6 x A -'. Furthermore. since, as we have noted, the family of weakly
holomorphic functions on r C E can be identified with the family of weakly holo-
morphic functions on 7r 1(r) C E via r : C ; x C ;' - C?, we see from the definition
of the projection of an O-ideal that the projection P of the Z-ideal Z{F, E} onto
6 x Du -' is equivalent to the Z-ideal Z { F. E } a K ,, . as an 0-ideal on b x A(",-".
Therefore. to prove that Z{F. E} has a locally finite pseudobase at the point zt,.
it suffices from Theorem 7.9 to verify that Z{F, E} has a locally finite pseudobase
at each point in A. To this end, let (z, w') be any point in A. By Corollary 7.2,
we can find a polydisk A' centered at (z'. in A and a finite number of universal
denominators tee (z. w) (j = 1..... q) in A' for t n A' such that

q

B:= n{(z.ur)EA'Itj(z.w)=0}Cir.
,_I

We set E' = A'() E. and we consider the G-ideal 9{E'} with respect to E;' in A'.
By Theorem 7.8 and the solvablity of Problem E in the polydisk A'. we can find a
finite pseudobase Gj(z. w) (j = 1.... ,s) of Q{ E'} on A.

Consider the following system of q homogeneous linear equations (1) (deter-
mined by the known holomorphic function t,}(z.w) (j = 1.... ,q). F(--). and
Gk(z.w) (A = 1,....s) on A') for the unknown holomorphic vector-valued func-
tions (f(z.w),J(J)(z.w), g( )(z.w)) (j = 1.....q; k = 1,... ,s):

A f(z.w)vj(z.w) = f(j1(z.w)F(z)

(j = 1.... ,q).
We will prove that the £-ideal C{fl} (the collection of first. components (f (z, w). A)
of the O-module G{S2} with respect to the linear relation (fl) in A') is equivalent
to the Z-ideal Z{F. E'} as an 0-ideal oil A'.

To verify this, let (z,,, uw(,) E A' and let f (z. w) be any holomorphic function
belonging to Z{ F. E'} at (z,), wc,). Thus. f (z. w)/F(z. W) is a weakly holomorphic

function on E' n k). where A0 is a neighborhood of (ze. in A'. For each j =
1..... q. the function (f (z, w)/F(--. w)) ty(z. w) is the restriction of a holomorphic
function f 01(z, w) in a neighborhood A' of (za. tc(,) in A,,. Thus, there exist a
neighborhood A" C A' of (z,,,u(,) and s holomorphic functions 9A.''(.-.w)

(k =
1..... s) in A" such that

f(z. w)v,(z. w) = fU'(z, w)F(z) + g"(z. u')G1(--. w) + ... +g0'(z. w)

in A". Therefore. f (z. w) belongs to C{I} at the point. (zO.
Conversely, let (z0. wo) E A' and let f (z. w) belong to C{fl} at (z(,. tea). We can

find a neighborhood All of (zo. wo) in A' and a holomorphic vector-valued function

(f (z. P)(z, W). 9A.0) (z. w)) (j = 1..... q: k = 1... . s) which satisfies equations
(fl) in A0. Let (z',w') E Al) \ a. Since 6 C a, we have 0.(z',w') # 0 for some
j = 1.... , q. Thus, dividing both sides of (Sl) by v' (z. w) in a small neighborhood
A' C AD of (z', u,'). we have

f(z w) = Jt-1)(z, w)F(z) + §2''(z. w)G1(z, w) + ... + q; }(z. w)G,(z, w)
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in A'. where jul(z. w) and gk (k =L.... a) are holomorphic functions in A'.
It follows that (f (z, w)/F(z))I;...A. is a weakly holomorphic function on E'flA'. We
thus see that f(z, w)/F(z) is a weakly holomorphic function on E'fAI, (an analytic
set of dimension r) except perhaps at points of o (an analytic set of dimension at
most r -2). Using Remark 7.2. it follows that f (z, w)/F(z) is a weakly holomorphic
function on all of E' fl A0. i.e.. f (z, w) belongs to Z{F, E'} at the point (z0, uq,).

By Theorem 7.7. f{n} has a locally finite pseudobase at any point (z, w) E A',
and hence so does Z{F. E'} = Z{F. E}IA'. Theorem 7.10 is proved. 0

Let E be an analytic set in a domain D C C". We let 0,,(E) denote the set
of all pairs (f (z), u) such that u C E is an open set in E and f (z) is a weakly
holomorphic function on v. Let z0 E E. We say that f(z) belongs to 0,,.(E) at
the point z if there exists a pair (f (z), u) E 0,,.(E). where u is a neighborhood of
z0 in E. In Theorem 7.10 we consider the special case where F(:) is a universal
denominator Wo(z) for E in D such that 6t o(z) # 0 on each irreducible component
of E.

Then we obtain the following corollary.

COROLLARY 7.10. Let zIl E E and let' ., (z) (j = 1..... v) be a pseudobase of
the Z-ideal Z{tt ,. E} in a neighborhood J of zu in D. Then for any z' E A fl E
and for any f (z) belonging to at the point z', we can find a neighborhood 6'
of z' in A and v holomorphic functions ad (z) (j = 1..... v) on 6' such that

f(z) = al(z) io(z)
I

..,,
. (7.31)

PROOF. Let z' E ., fl E and let f (z) belong to 0.. (E) at the point z'. Then
f (z)itO(z) is a holomorphic function on a neighborhood t' C E of z' on E. That is.
there exists a holomorphic function F(z) on a neighborhood 60 of z' in A such that

f(z)II o(z) = F(z) Ian :s.
This means that F(z) belongs to Z{Ii Q. E} at the point z', so that, using Theorem
7.10, we can find a neighborhood 6' C 60 of z' in 0 and v holomorphic functions
ad(z) (j = 1.....v) on 6' such that

F(z) = ai (z)411(z) + . + o on 6'.

which implies (7.31).

7.5.5. IV-ideal. Let D be a domain in C" and let E be an analytic set in D.
We consider the set I of all pairs (f (z), 6) such that 6 C D is an open set and f (z)
is a universal denominator of E in 6. (If 6 fl E = 0. then all holomorphic functions
on 6 belong to T on 6.) Then Z becomes an 0-ideal in D. We call it the It'-ideal
with respect to E. and we write .1 = W{E}.

Then we have the following theorem.

THEOREM 7.11. For any analytic set in E in D. the It'-ideal ti'{E} has a
locally finite pseudobase at each point in D.

PROOF. Let zit E D. From Proposition 7.4 we take a polydisk d centered at z0
in D and a universal denominator Ito(z) on J for E such that W()(z) ; 0 on each
irreducible component of Efl., in A. We can thus construct the Z-ideal Z{It o. E}
in A. By Theorem 7.10 and Theorem 7.8. we can find a polydisk A0 in A. centered
at z0, such that there exist a finite pseudobase 0,(z) (j = 1..... v) of the Z-ideal
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Z{14'0, E} in Ao and a finite pseudobase Gk(z) (k = 1.... , s) of the G-ideal G{E}
in A0.

Consider the following linear system of v homogeneous equations determined
by the known holomorphic functions W((z). 4)j (z) (j = I.....v). and Gk(Z) (k =
11 ... , s) in Do for the unknown holomorphic vector-valued function (f (z), f IJ'(z),
gk,J)(z))(j=1....,v.k=1.....s)ofrank I+v+s:

(0) f(z) j(z) =fU)(z)lip(z)+g(1j)(z)G1(z)+...+gaj)(z)G,(z).

We let C111} denote the C-ideal with respect to (fl). i.e.. for 6 C Ao. the set of the
first components (f (z), 6) of the 0-module G{fl} with respect to the linear relation
(fl) in .70. Then the W-ideal is equivalent to C{fl} as 0-ideals in DU.

To see this, let z' E Ao. In case z' E Ao \ E, an arbitrary holomorphic function
f (z) at z' belongs to both W{E} and ({fl} at z'. Thus we may assume z' E D0 f1E.
Let f (z) belong to W{E} at the point z' and fix j E {1. - - - . v}. Since 4' (z)/H o(z)
belongs to 0. (E) at z'. we can find a neighborhood 6' of z' in A0 and a holomorphic
function f(-?)(z) in d' such that ('I (z)/lio(z)) f(z) = fI')(z) IEe.. Thus. we can
find a neighborhood 6" C 6' of z' and s holomorphic functions gk) (z) (k = 1..... s)
on 6" such that

f (z)1' (z) = g(,')(z)Gl(z) + ... + g(')(z)Cs(z)

on 6". It follows that f (z) belongs to C{f } at z'.
Conversely, let a E A0 and let f(z) belong to ({fl} at a. We can find a

neighborhood 60 of a in A0 and v + a holomorphic functions f)j)(z). gk)(z) (j =
1, ... , v; k = I.... , s) on 6o which satisfy (12) on 60. Thus.

(j = 1 . . . . ,v).f(z)14o(z)
=

fO'(2)
LA;

In order to prove that f (z) E W{E} on 60, let z' E E fl 6o and let h(z) belong to
0,,,(E) at z'. We see from Corollary 7.10 that there exist a neighborhood 6' of z'
in 6o and v holomorphic functions aj (z) (j = 1..... s) on 6' such that

h(z) aI (z) 4o(z) + ... + a, (z) 1iI(z) L-41 .

It follows that

h(z)f (z) = al (z)f()(z) + ... +
Since the right-hand side is a holomorphic function in 6'. it follows that f (z) belongs
to lV{E} on 6o and hence at the point a. Thus. ({E} and ii'{E} are equivalent as
0-ideals on A0, and Theorem 7.7 again yields Theorem 7.11. O

COROLLARY 7.11. Let E be an r-dimensional analytic set in a domain D in
C" and let a be the singular set of E. Then the common zero set r of the W-ideal
W{E} with respect to E in D is an analytic set in D of dimension at most r - 1
and r C o.





CHAPTER 8

Analytic Spaces

8.1. Analytic Spaces

We begin by defining an analytic space of dimension it. Fix an integer n > 1
and let V be a connected Hausdorff space such that for each point p E V. there
exists a neighborhood by of p in V satisfying the following conditions:

(i) there exists a homeomorphism op from 6p onto a ramified domain Ap over
C":

(ii) for any distinct points p. q in V. the mapping oq oo; 1 is an analytic mapping
from op(bp n 6q) onto Oq(bp n 6q). Precisely. if

bq 00P
I : ©p (bp n bq) -- ©q (bp n 6q )

via

w=( t{z).....U"(z)):=Ogo4 '(zi.....z,i).
then each v,(z) (j = 1.....n) is a holomorphic function on the ramified
domain pp(6p n 6q) C Ap over C".

We call V an analytic space of dimension n. The triple (6p, Ap, ©p) is called a
local coordinate neighborhood of p in V. Furthermore. if we can take Ap to be a
univalent domain in C" for each p E V, then we call V a complex manifold of
dimension n. In the case n = 1, V is a Riemann surface of one complex variable.

Let V be an analytic space of dimension it. A connected open set in V is called
a domain in V. Occasionally we omit the connectivity condition for a domain. Let
D be a domain in V and let f (p) be a complex-valued function on D. If for any
point p in D with local coordinate neighborhood (6p, Ap. bp) the function f o by
is holomorphic on the ramified domain pp(6p n D) C Ap over C". then we say that
f (p) is a holomorphic function on D. Let K C V be a closed set. We say
that a complex-valued function f (p) is holomorphic on K if there exists an open
neighborhood D of K in V such that f (p) is defined and holomorphic on D.

Let V, and V2 be analytic spaces of dimensions it and m. Let V : Vi - V2
be a mapping from Vl into V2. If for any open set v C V2 and for any holomor-
phic function f (p) on v, the function f := f o <p is a holomorphic function on
(P_'(-p(VI) n v) C V1, then we say that ap(p) is an analytic mapping from Vt into
V2. Furthermore. if m = n and if there exists a one-to-one analytic mapping from
V1 onto V2, then we say that Vt and V2 are analytically equivalent.

8.1.1. Examples of Analytic Spaces. An analytic space of dimension n > 2
is a canonical generalization of a Riemann surface of one complex variable. However.
an analytic space of dimension n > 2 is not always a complex manifold (as shown
in Example 6.3). in contrast to the fact that a Riemann surface of one complex
variable is locally uniformizable at each point. We present some other examples of

267
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analytic spaces of dimension n > 2 which illustrate differences with the Riemann
surface case.

1. T. Rado [61] showed that any Riemann surface R satisfies the second
axiom of countability; i.e., there exist a countable number of open sets U (n =
1,2.... ) in R such that for any point p in R. the collection {U } contains a
fundamental neighborhood basis of p in R. This axiom is not necessarily satisfied
by an analytic space of dimension n > 2.

EXAMPLE 8.1. 1 Let C2 = C= X Cy with variables x and y. and let P_ be the
Riemann sphere with variable z. Fix a E C. In the product space C2 x P. we
consider the analytic hypersurface

Ea : yz-x+a=0. (8.1)

Since Ea is nonsingular in C2 X P; , it follows that Ea can be considered as a
2-dimensional complex submanifold in C2 X P.

Let

ra : (x, y, z) E Ea - (x, y) E C2
be the projection from E. to C2. We let L denote the complex line y = 0 in C2 and
consider the inverse image rr; 1(L) in Ea. Thus. ir,'(L) consists of two irreducible
components

La=CIx{0}x{oo} and L,,={(a.0)}xP__,

so that L. fl La* = {(a, 0, oc)}. We set

Eu := Ea \ La:

then ra(EQ) fl L = {(a.0)}. Now let E be an arbitrary subset of C. We set

Al :_ U E;,
aEE

and we will define an identification in Al to form a new space ME. This identifi-
cation is defined as follows. Let p E Ea and q E E. where a. b E E. If a # b and
ra(p) = rb(q), then we identify p with q. The space 111E obtained by this identifi-
cation in M canonically becomes a 2-dimensional complex manifold. We have an
analytic mapping r from ME into C2 such that 7rl-r. = rairra for a E E, and hence
r(ME) fl L = E. We put Lu = L.' \ { (a, 0, oo) }. Then. for any a E E. the points of
La are not identified with any other points.

Suppose we take a set E which contains an uncountable number of points in C.
Then the complex manifold AME does not satisfy the second axiom of countability.
To verify this, first note from above that for each a E E, the set LQ is a subset of ME.
Furthermore, for each a E E, there uniquely exists a smallest open neighborhood
E; of Lu in M, such that iriza = r{ .. Hence Eu fl Lb = 0 for all b 96 a (a, b E E).

Since ME = U.EE E,; and since E is uncountable, ML does not satisfy the second
axiom of countability.

2. A Riemann surface admits a non-constant meromorphic function. This is
not always true for complex manifolds of dimension n > 2.

'This example is due to E. Calabi and M. Rosenlicht [5).
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EXAMPLE 8.2. 2 In C2 with variables x,y we set M := C2 \ {(0,0)}. Let
a,# be complex numbers with Jal, 101 > 1. We consider the following analytic
automorphism:

T : (x, y) E M -+ (x', y') = (ax, f3y) E M,
and we let r denote the automorphism subgroup of M generated by T; i.e., r =
{T" : n = 0, f 1, ... }. Since T has no fixed points in Al and since, given (a, b) E M,
the orbit {T"(a, b) In = 0, ±1, ... } has no accumulation point in M, it follows that
M := M/I' (the quotient space of M modulo r) is a compact, complex manifold
of dimension 2. We note that one of the fundamental regions of M for r is

({IXI < a} x {I < Iyl <,a)) U ({1 < 1xI < a} x {Iyl <,S)).

Assume that there is no pair of integers (h, k) 54 (0, 0) such that ah= ,Qk. Then
M does not admit a non-constant meromorphic function.

PROOF. Let a : M -+ M be the canonical mapping such that a o T' = it (n =
0, ±1.... ) on M. Assume that there exists a non-constant meromorphic function
g(p) on M. If we set G(x, y) := g(,r(x, y)) on M, then G(x, y) is a non-constant
meromorphic function in M = C2 \ {(0,0)}. By Levi's theorem (Theorem 4.2),
G(x, y) has a meromorphic extension to (0, 0). Since g(p) has a pole in M, G(x, y)
should have a pole S at (0, 0) in C2. To see this, let p = (x, y) be a pole of G(x, y).
Then each point p" = T-"(p) (n = 1, 2,...) is a pole of G(x, y). Since {p"}" tends
to the origin (0, 0), G(x, y) cannot be holomorphic at the origin. Hence G(x, y) has
a pole at the origin.

Thus S determines an analytic hypersurface E in C2 passing through (0, 0).
We fix a small polydisk A centered at (0, 0) and let E1, ... , E be the irreducible
components of E n A. Since Tk (E) = E (k = 0, ±1, ±2.... ) and T(0, 0) = (0, 0),
for some I with 1 < I < v and some j with I < j < v we have T'(Ej) = Ej n A'
(here A' = T'(A)). We may assume that Ej can be written in the form

h, h+1+ ah+lx P + ... (ah 96 0)Ej : y = ahx P

in a neighborhood of (0, 0) in A, where p > 1 and h are integers. Thus, Tl (Ej) is
of the form _

T'(Ej) : (3'y=ah(alx)P+ah+I(alx) P +...
in a neighborhood of (0, 0) in A. It follows from the uniqueness of the Puiseux
series expansion that 61 = a P

; i.e., all = 01p, which contradicts our assumption.
0

EXAMPLE 8.3. In C" with n > 2 variables zl,... , z,,, we consider 2n vectors

wk = (Wk,... , Wk) (k = I,- , 2n)
which are linearly independent over R. Let

gk:z=(zl,...,z")EC"-Z =z+Wk (k=1,...,2n)
be a parallel translation of C". We let IF denote the automorphism subgroup
of C" generated by the 9k (k = 1,... , 2n). The quotient space M, := C2/17
canonically becomes a compact, complex manifold of dimension n. We call M,,
an n-dimensional complex torus. We let it : C2 -+ Mr, denote the canonical
projection such that 7rog = it for g E r. If there exists a non-constant meromorphic

2This example is due to H. Hopf ]31].
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function g(p) on ,M,.,, then G(z) := g(ir(t)) is a non-constant meromorphic function
on C" which has periods wk (k = 1.....2n). i.e., G(z) is a so-called Abel function
on C" with 2n periods wk (k = 1.....2n). It is known in this c'ase' that if we
consider the (n. 2n)-matrix

fwI ... 10 ),1

C. _
wpit ... "211

n

then there exists an invertible (2n. 2n.)-matrix A with integer coefficients such that

(*) CA-'C' = 0. i YA-1 C' > 0 (i2 = -1).
where A -' denotes the inverse matrix of A and C' is the transpose matrix of C.
Thus if we take 2n vectors wk (k = 1.....2n) which do not satisfy condition (*),
then the complex torus .M, does not admit a non-constant meromorphic function.

8.2. Analytic Polyhedra

8.2.1. Extension Theorem. We next consider analytic polyhedra in an an-
alytic space. First of all, we mention that a non-compact complex analytic space
V does not necessarily admit enough global holomorphic functions f to separate
points; i.e., it is not necessarily true that for p. q E V with p q. there exists f
holomorphic in V with f (p) # f (q). Thus we introduce the following notion of
separability. Let V be an analytic space of dimension n and let E be a subset of
V. If for distinct points p. q E E there exists a holomorphic function f on an open
set D in V containing E such that f (p) f (q), then we say that E satisfies the
separation condition.

Let P be a compact set in V which can be described in the following manner:
there exist an open set D with P CC D C V and finitely many holomorphic
functions .,gy(p) (j = I.... , m) on D such that P consists of a finite number of
(closed) connected components of the set

fU1

D, n {pE D I IY"j(p)I < 1}.
=1

Then we call P a generalized analytic polyhedron in V; the functions Y, (j =
1.... . m) are defining functions of P. Of course. some connected components of
D may not be relatively compact in D.

If a generalized analytic polyhedron P in V satisfies the separation condition.
then we say that P is an analytic polyhedron in V. When we want to emphasize
the domain D where the defining functions p,.,(p) (j = I..... m) of P are holomor-
phic. we will say that P is an analytic polyhedron in V with defining functions on
D.4

Let P be an analytic polyhedron in an analytic space V of dimension n and let
(j = 1.....m) be defining functions of P. Let

rn)

3See the textbook of C. L. Siegel [65], Vol. 111, p. 72.
In the 2-dimensional complex manifold E. studied in Example S.1. we consider the subset

P = E. r1 {(z, y, z) E C2 x P. 1 [z - al < 1. jyI < 1}

of E,1. Then P is a generalized analytic polyhedron in E,., but it is not an analytic polyhedron
since P contains the compact 1-dimensional analytic set L..
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be the closed unit polydisk in Cm. We consider the following analytic mapping
from P into &

4 : zJ='ri(p) (7=1.....m). pEP.
Then the image E := fi(P) of P is an n-dimensional analytic set in 0 such that
4'(8P) C 8A. By adding more holomorphic functions on P. if necessary. we may
assume that P satisfies the separation condition and that the points of P and E are
in one-to-one correspondence via 4'. We call E a model for P on 0. Furthermore,
if E is normal in N, i.e., if there exists an open polydisk

A1'):jzzI<1+e (1=1.....m)
sufficiently close to [2K such that E can be analytically extended to be an analytic
set t in 0W with t normal in W`), then we say that E is a normal model on 2i.

We have the following theorem concerning analytic polyhedra in an analytic
space.

THEOREM 8.1 (Normalization Theorem). An analytic polyhedron P in an an-
alytic space V of dimension n always has a normal model on a closed polydisk in
C", where v > n is an integer depending on P.

PROOF. First we construct a model E of P on the closed unit polydisk J in
CM.

E:zJ=, (p) (J=1.....in), pEP.
Then we consider the IV-ideal LV{E} with respect to E on & Since W{E} has a
locally finite pseudobase at each point in 2K by Theorem 7.11, and since Problem
E is always solvable in 0, we can find a finite number of universal denominators
IV, (z) (i = 1.....q) for E on E such that {li,(z)},=Iforms a pseudobase of
11{E} at each point in & Since the common zero set of the W,(z) (i = 1, ... , q)
on 0 is contained in the set of singularities or of E by Corollary 7.2, we obtain a
universal denominator W(z) (a linear combination of the (z) (i = 1.....q) with
constant coefficients) for E on 0 such that W(z) $ 0 on any irreducible component
ofEonE.

Next we consider the Z-ideal T,{W,E} with respect to this universal denom-
inator 11'(z) and E on & Since Z{W', E} has a locally finite pseudobase at each
point in 0 by Theorem 7.10 and since Problem E is solvable on A, it follows that
we can find a finite number of holomorphic functions

Zk(z) (k =L... I) on

such that {Zk(z)}k=1.,...1 forms a pseudobase of Z{147. E} at each point in 0. There-
fore. each quotient Zk (z) /6V (z) (k = 1.....1) is a weakly holomorphic function on
E. and these become holomorphic functions t'k(P) on the analytic polyhedron P;
i.e..

Wk(p) = W (O(p)) (k = 1, ... ,1) on P.

We may assume 1'lN(p) < 1 (k = 1,... ,1) on P. Then we construct the n-
dimensional analytic set

E : zJ = yJ(p) (7 = 1.... ,rn), Wk = Vk(p) (k = 1... .1), p E P.

in the closed unit polydisk

I (J=l.....m). IwkI<1 (k=1.....1)
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in C"'-' = C°' x Cu,. i.e.. E is a lifting of E of the first kind through Vk (k =
1,... ,l).

We shall show that t is a normal model of P in A.
First of all. since E is a model of P in A. it follows that t is a model of P in A.

Let u c E be an open set and let f (z, w) be a weakly holomorphic function for E
on v. Since E and E are analytically isomorphic via the mapping 1r, induced by the
projection from C"+' to C". f (z, w) can be considered as a weakly holomorphic
function f (z) for Eon v c E such that f (z. w) = f (z) for z E t' = rrt' (if). Let
(z', w') E v with z' E v. As shown in Corollary 7.10. there exist a neighborhood 6'
of z' in 3 such that 6' n E C v and l holomorphic functions ck(z) (k = 1, ... , t) in
8' such that

f(z)
=a1(z)Z1(z) + +aI(-)Z,(z)

In other words,

f(z. w) = (11 (z)WI +... + Cai(z)wl 1(6,0)q:--

so that f (z. w) is a holomorphic function for E in a neighborhood of (z'. w'). Thus,
E is normal on A.

We next prove an extension theorem concerning a normal model of an analytic
polyhedron in an analytic space.

THEOREM 8.2 (Extension Theorem). Let P be an analytic polyhedron in an
analytic space V of dimension n. Let E be a normal model of P in the closed unit
polydisk 3 in C' with variables zl.... , s,,,.

d':pEP- 2 =4(p)=(v%1(p).....rm(p))EE.
Given a holomorphic function f (p) on P, there exists a holomorphic function F(z)
on 3 such that

f(p) = F(4'(p)). p E P.

PROOF. We consider the G-ideal G{E} of E on 3. Since G{E} has a locally
finite pseudobase at each point in 3 and since Problem E is solvable on 3. there
exist a finite number of holomorphic functions Gk(Z) (k = i..... s) on 3 such that
{Gk(z)}k=1.....e forms a pseudobase at each point of 3. Since P is a closed analytic
polyhedron in V and 3 is a closed polydisk in C"'. we can find an open analytic
polyhedron P(°) with P CC P{`) CC V and an open polydisk AI'I with 3 CC A'')
in C"` such that f (p) and yo, (p) (j = 1.... , m) are holomorphic in P''). E(') is a
normal model of PW on A(c).

$ : p E Pi') - Z = E
E(f)

and such that each Gk(z) (k = 1..... s) is a holomorphic function on A'' with the
property that {Gk(z)}k=1,..,.r is a pseudobase of the G-ideal G{E'f!} at each point
of A(f). We consider the following collection C of pairs where ( E A' f)
and 6( is a neighborhood of (in AW:

1. If (V Elf), then we take a neighborhood 6C of ( in A"' such that 6c n A00 _
0, and we take f< (z) __ 1 on 6 .
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2. If ( E V'). we take a neighborhood dt of C in Ol`) and a holomorphic
function fe(z) in 66 such that f( (4)(p)) = f (p) for p E 4- 1(6 f) E(`)). This can be
done by Theorem 8.1.

Then C is a C2-distribution in We) with respect to Gk(z) (k = 1.... ,s). To
see this, let (1,(2 be distinct points in 0(°). If at least one of these points is not.
contained in E(`), there is nothing to prove since the common zero set of Gk(Z) (k =
1..... a) coincides with E(E). Thus we may assume that (1. (2 E E. Since & (z) -
&(z) = 0 on Sc, f16S,, it follows that ft, (z)-& (z) belongs to G{E(`)} at each point
of Sc, ft6t,. Thus. C is a C2-distribution in :1(1) with respect to Gk(z) (k = 1, .... s).

Since Problem C2 is solvable in the closed disk 0. we can find a holomorphic
function F(z) on 2i such that, for any { E 0. F(z) - fe(z) belongs to G{E(t)} at
each point of 6C. Consequently. f(p) = F(o(p)) for all p E P. which proves the
theorem.

We call F(z) a holomorphic extension of f (p) to 0. Similarly, given a holo-
morphic vector-valued function f(p) = (fl(p).... . on P, if each FJ(z) (j =
I, ... , v) is a holomorphic extension of h(p) on :N. then we call the holomorphic
vector-valued function F(z) = (F1(z)..... F (z)) on E a holomorphic extension
of the vector-valued function f (p) to L.

Theorem 8.1 and Theorem 8.2 are the lifting principles in analytic spaces,
which are perhaps the most important results in this book.

REMARK 8.1. Let V be a ramified domain over C". Assume that D has a
normal model with defining functions yp, (p) (j = 1, .... m). Let po E V and let
f (p) be a holomorphic function at po. From Theorem 8.2. we see that

f(P) _ aJ,..... ,(r'1{P))J1 ... (v,. (p)))- (8.2)

in a neighborhood of po E D. This expansion may be considered as a generalization
of the Puiseux expansion in the case of one complex variable. We remark that
for one-variable Puiseux expansions we have uniqueness of coefficients, but this
is not necessarily the case in several complex variables. As a simple example of
this phenomenon. define the analytic polyhedron P C C2 as {(x.y) E C2 : fix) <
1, jyi < 1, Ix + yI < 1). The function xy2 + x2y = xy(x + y) yields an example of
nonuniqueness.

REMARK 8.2. Let P be a generalized analytic polyhedron in an analytic space
V of dimension n. Let pJ (p) (j = 1.... , m) be defining functions for P in a domain
D C V. Let

yn
: IzJ 15 1 (j = I..... m) denote the closed unit polydisk in Cm.

We consider the analytic mapping

4 :pEP-.z= (v%1(P).... .Pm(P))E
and its image E in Wn.

E : z, = vwi(P). U=1-----M).
Consider the following condition:

SThese principles were first established by K. Oka [51]. He states them in a slightly different
form (see Remark 8.2).
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(*) P and E are in one-to-one correspondence except perhaps for points lying
on an analytic set o of dimension at most n - 1.

Equivalently, for each irreducible component £k (k = 1,... , a) of E in 0 , there
exists a point z° E Ek such that 4V I(z°) consists of one point. Then the nor-
malization theorem holds for P. Precisely, there exist defining functions '+bk(p)
(k = 1, ... , l) of P in a domain Do C D such that

E : wk = ePk(P) (k = 1,... ,!), p E P,

is a normal model of P in the closed polydisk 2KI in Cr (so that P and t are
necessarily in one-to-one correspondence), and hence P is necessarily an analytic
polyhedron in V with defining functions *k(p) (k = 1,... ,1) on Do C V.

In fact, replacing the condition in Theorem 8.1 that P and E are in one-to-one
correspondence via by this weaker condition (*), the family of all holomorphic
functions f (p) on P and the family of all weakly holomorphic functions F(z) on
E are still in one-to-one correspondence via F($) = f on P. Since the remaining
arguments in the proof of Theorem 8.1 are unchanged, we obtain the normalization
theorem for generalized analytic polyhedra P satisfying condition (*).

Once we have this normalization result, we see by following the proof of Theo-
rem 8.2 that the extension theorem also remains valid for such generalized analytic
polyhedra P.

This remark, combined with Theorem 6.1, implies the following corollary.

COROLLARY 8.1. Any ramified domain over C" locally has a normal model.

The type of generalized analytic polyhedra P satisfying condition (*) originally
studied by Oka [51] were the following. Let V be a ramified domain over CZ
with branch set S. Let P be a generalized analytic polyhedron in V with defining
functions on D (here, P CC D C V). If there exists a holomorphic function ii(i) on
D such that tP(i) has different function elements over each point z E D\S (where D
and S denote the projections of D and S onto C2), then the normalization theorem
and the extension theorem hold for P.

REMARK 8.3. Let E be an analytic set of pure dimension r in the closed poly-
disk I in C". In the beginning of the proof of Theorem 8.1, we proved the existence
of a global universal denominator W(z) on all of 3 for E such that W(z) 0 0 on
each irreducible component of E by introducing the notion of a W-ideal W{E}
(this ideal was not discussed in Oka's papers). Oka proved the existence of such a
universal denominator W(z) in the following manner. Let o be the set of singular-
ities of £ in a; thus o is an analytic set in 3 of dimension at most r -1. Let (pj (z)
(j = 1, ... , m) be a pseudobase of the G-ideal G{a} on 3, so that the common
zero set of pj (z) (j = 1, ... , m) is equal to a. Fix any point zo E N. By Corollary
7.2, there exist a polydisk 6 centered at zo and a finite number of universal denom-
inators r¢k(z) (k = 1, ... , v) in b such that T=o := f k=1 {z E 6 I t'k(z) = 0} C ono.
Since ,pj (z) = 0 (j = 1,... , m) on T_0, it follows from the Hilbert-Riickert Nullstel-
lensatz for holomorphic functions (see Appendix in this chapter) that there exist a
polydisk 6o CC 6 centered at zo and an integer aj ? I such that

Wj(z)°j _ a(i)(z)1GI(z) + -.+a1)(z)0,,(z) on 6o,
where each ak(z) (k = 1,... ,v) is a holomorphic function in 60. Thus, ,pj(z)°jIoo
(j = 1,... , m) is a universal denominator for E on 6°. Since 3 is a closed polydisk,
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we can find sufficiently large integers A. (j = 1.....m) so that each is
a universal denominator for E on the whole 0. Since fl , {z E I w (z) A, _
0} = o. it follows that some linear combination W(z) (j = 1.... m) is
a universal denominator for E on 3 with W(z) $- 0 on each irreducible component
of E.

REMARK 8.4. To prove the extension theorem (Theorem 8.2) for analytic poly-
hedra in a univalent domain in C". we do not need the fact that a Z-ideal has a
locally finite pseudobase at each point. We only require the fact that a C-ideal has
a locally finite pseudobase at each point and that Problems C2 and E are solvable
on polydisks in C".

We studied 01-modules (0-modules of rank A) on a domain in C": we can
define Oa-modules on a domain in an analytic space V in the same manner.

Let P be an analytic polyhedron in a domain D in an analytic space V and
let E be a normal model of P on the closed unit polydisk 2i via the one-to-one
mapping

0: PEP--z=(w"c(p).....
_

.(p))EEC2i.
where . (p) (j = I..... m) is a holomorphic function on D (here P CC D) and J :
IzjI < 1. By Theorem 8.2, any holomorphic function f(p) on P has a holomorphic
extension F(z) on E. We shall show that this kind of extension theorem holds for
any 0-1-module on P.

Let ZA be an 01-module on P. Let ( E 2i. We define pairs (f, (z), 4C) where
6C is a neighborhood of (in L and fe(z) is a holomorphic vector-valued function
of rank A on 64, as follows:

1. If c !f E. we take b and f(z) such that b< n E = 0 and f{(z) is any
holomorphic function on 6C.

2. If S E E, we take 6 and f (z) such that bt c J and f (O(p)) belongs to Za
at each point of -1(b, n E).

Since E is a normal model of P on 3, the set {(fe(z), bt)}461 of all such pairs is an
0,\-module on 0. We let Z" denote this O''-module and we call it the extension
01-module of Za on 0 .

We have the following lemma.

LEMMA 8.1. 2" is generated by a finite number of holomorphic vector-valued
functions of rank A on P if and only if the same is true for Z' on L.

To be precise, let Gk(z) (k = 1..... µ) be a pseudobase of the G-ideal G{E}
on N. For any h (h = 1, .... A) and k (k = 1.... , p) we consider the following Aµ
holomorphic vector-valued functions of rank A on 0:

It

Vh.k(z) _ (0.... ,O,Gk(Z).O,... ,0). (8.3)

A

From the definition of Za for any 01-module Za. we always have Vh.k(z) E Za for
any h, k.

Then the following statements are valid.
1. Assume that Za is equivalent to an O-\-module 9''{F} generated by a finite

number of holomorphic vector-valued functions F,(p) (j = 1..... v) on P:

F,(p) = Fa.., (p)).
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We let Fe(z) (j = 1,....v) denote a vector-valued function on 0 which is a holo-
morphic extension of Fo(p). Then Za is equivalent to the OA-module Ja{F. 10)
generated by Fj(z)(j=1.....v)and vh.k(z)(h=1.....A: k=1....,A)on2i.

2. Conversely, assume that Ia is equivalent to an 0'-module J'{F} gener-
ated by a finite number of holomorphic vector-valued functions F, (z) (j = 1..... s)
of rank A on 2i. Then Za is equivalent to the O'-module J'{F} generated by
s holomorphic vector-valued functions F,(p) (j = I,....s) such that Fo(p) _
Fj(4)(p)) on P.

PROOF. For the proof of 1. let (o E .'s and let f (z) _ (fl (z).... , f),(z)) be any

holomorphic vector-valued function belonging to Za at the point ((). If (', 0 E. then
some Gk(z) # 0 at Co. Thus we can write

f(z)= f1(z) tt.k(z)+...+ fa(z)Va.k(z)
Gk(z) Gk(z)

in a neighborhood of (() in A. so that f(z) E 9'{F. w} at the point (p. If (o E E,
then f(44(p)) belongs to Za at the point p(, = -1((). Thus

f ($(p)) = a l (p) FI (p) + ... + a, (p)F.(p)

in a neighborhood r of p(, on P, where ap(p) (j = 1.....v) is a holomorphic
function on t. There exists a holomorphic extension n1 (z) (j = 1.....v) of ap(p)
in a neighborhood 6() of Co. i.e.. ap(p) = dj(4'(p)) for p E e fl (4, '1(6())). We thus
have

f(z) = al(z)F1(z) + on 61 flE.

where 61 C 6o is a neighborhood of (. It follows that f (z) E J {F. at the point
((). On the other hand, since any f (z) belonging to v} at (a E 27 clearly
belongs to Za at (11i we obtain 1.

For the proof of 2, let pa E P and let f (p) be any holomorphic vector-valued
function of rank A belonging to Za at p(1. Let (o = 1(pu). Since E is a normal
model of P. there exists a holomorphic vector-valued extension f (z) of f (p) in
a neighborhood 6u of ( in so that (f(z),6(,) E V{F}. Thus, we can find a
holomorphic function a, (z) (j = 1.... , s) on a neighborhood 61 c 60 of Co such
that

f(z)=81(z)F1(z)+ +a (z)F.(z) on61.

If we set a.,(p) = u, (4p(p)) (j = I.... , s). then we have f (p) = a1(p)Fm(p) + +
a,(p)F;(p) on 4,'1(61) n E. so that f E JA(F} at the point po. 0

8.2.2. Various Problems on Analytic Polyhedra. Using Lemma 8.1. var-
ious problems which were solved on a closed polydisk in C" in Chapter 7 may be
solved on an analytic polyhedron in an analytic space V.

Let V be an analytic space of dimension n and let P be an analytic polyhedron
in V. Let E be a normal model of P in the closed unit A in Cm. Let yj(p)
(j = 1.....m) be defining functions of P in D C V with respect to E. so that. if
we set

:pEP-+z=(zl,....zm)=(t(p).....Ym(p))E L.
then is one-to-one from P onto E with E = 4(P) and 4(OP) C 82K.
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We shall consider the 0"-module defined as follows. Let F, (p) (j = 1..... v)
be a holomorphic vector-valued function of rank A on P. We consider the following
system of A homogeneous linear equations:

(SI) fi(p)Fl(p) + ... + f"(p)F"(p) = 0.
determined by the given holomorphic vector-valued functions F, (p) (j = 1.... , v) of
rank ,\ on P for the unknown holomorphic vector-valued function f (p) _ (f, (p).... .
f,(p)) of rank v on a domain 6 C P. The set of all solutions {(f (p). b)}6cr
determines an 0"-module on P. We call this the 0-module with respect to the
linear relation (fl). and denote it by G{S2}.

We have the following theorem.

THEOREM 8.3 (Oka). The 0-module C{I} with respect to any linear relation
(S1) has a locally finite pseudobase at each point of P.

PROOF. We let Fj (z) (j = L. . . . v) denote a holomorphic, vector-valued ex-
tension of F,(p) to We use the functions Oh.k(z) (h = 1..... A: k = 1..... µ)
defined in (8.3). Consider the following system of A homogeneous linear equations
in M

(fl) fi (z)Fi (z) + ... + j"(z)F"(z) + E gh.k(Z)t'h.k(z) = 0.
h.k

determined by the given holomorphic vector-valued functions P, (Z) (j = 1.... ,v)
and t. h.k (z) (h = 1..... A. k = 1..... p) of rank A on for the unknown holomor-

phic vector-valued function f(z) = (fj(z),9h,k(z)) of rank is := v+Aµ on a domain
6 C !. We let C{fl} denote the 0-module with respect to the linear relation (f1)
on By Theorem 7.1. C{(t} has a locally finite pseudobase ft, (z) (j = 1..... s)
on i.e.. H,(z) is a holomorphic vector-valued function of rank i on 0 such that
the 0-module 9"{H} generated by H,(z) (j = 1.... s) is equivalent to C{l2} on
2i. We set H,(p) = H,('(p)) (j = 1.... ,s). so that H,(p) is of the form

J1µ

on P.

if we define H°(p) (Hj,.,(p).... ,Hj(p)) (j = 1.... ,s). which is a holomorphic
vector-valued function of rank v on P. then we will show that C{f1} is equivalent
to the 0-module ."{H°} generated by the H°(p) (j = 1.... , s) on P.

To see this, we first note that Ho(p) E C{fl} (j = 1..... s) on P. Next.
we take po E P and f(p) = (fl(p)..... f,, (p)) E C{S1} at the point po and set
zo = 4(po) E D. We let f(z) = (fl(z)..... 1, (z)) denote a holomorphic vector-
valued extension of f (p) in a neighborhood 6 of zo on L. Then we have

f"(z)F"(z) =0 onbr1E.
Thus there exist holomorphic functions gh,k(z) (h = 1.... , A: k = 1, .... it) in a
neighborhood 61 C 6 of zo such that

fi(Z)Fi(Z) + ... + fv(z)i',(z) + L.,gh.k(Z)t'h.k(Z) = 0 on dl,
h.k

so that !(Z):= (fj(z),gh,k(z)) E C{S1} on 61. Thus.

f(z) =ai(Z)Ni(z)+...+d (z)HR(z)
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in a neighborhood 62 C 61 of zr,. If we set o)(z) = it,(di(p)) (j = 1.....s) on
r :_ x-'(62 n E). then by taking the first v components we have

f (p) = a I (p) Hi (p) + ... + a.. (p) H' (p)

on the neighborhood a of A) in P: i.e.. f (p) E J"{H°} at P. O

We also have the following two theorems.

THEOREM 8.4 (Problem CI ). Problem CI is solvable for any analytic polyhe-
dron P in an analytic space V.

PROOF. Let H(p) and F1 (p) (j = I..... v) be holomorphic vector-valued func-
tions of rank A on P. We let ,7"{F} denote the 0-module on P generated by the
F, (p) (j = 1..... v). Assume that H(p) belongs to "{ F} at each point in P. We
claim that there exist v holomorphic functions a j (p) (j = 1..... v) on P such that

H(p) = at(p)F1 (p) + ... + on P. (8.4)

To prove this, we take a normal model E of P in the polydisk A in C"` defined
by use of the defining functions .j(p) (j = 1..... m) of P in D C V. and we set

C .
Let H(z) and (j = 1.....v) be holomorphic vector-valued extensions of
H(p) and Fj(p) on 0. Let (h = I..... A: k = 1..... µ) be the holomorphic
vector-valued functions of rank A on P defined by (8.3). We let J' {F. u} denote
the 0'-module generated by F3(z) (j = 1.... v) and Vh,A(z) (h = 1.... A: k =
1.... , p) on A. Since E is a normal model of P in :S, we deduce from the fact
that H(p) E 9A{F} at each point in P that H(p) E P (P. t'} at each point in
:K. Since Problem Cr is solvable in the closed polvdisk A. there exist n := v + Ap
holomorphic functions aj(z) (j = 1.... , v). 3h,A(z) (k = I..... A: h = 1..... µ)
such that

R(z) = Rr(z)FI (z) + ... + Lih.A(z)tJ,. t(z) on e.
h.A

Setting aj(p) = 6,($(p)) (j = 1.....v) on P proves (8.4). O

THEOREM 8.5 (Problem C2). Problem is solvable for any analytic polyhe-
dron P in an analytic space V.

PROOF. We use the same notation E. C C"'. Yj(p) (j = 1.... m) and
P - E C S as in the proof of the previous theorem. Let Fo(p) (j = 1..... v)

be a holomorphic vector-valued function of rank A on P and let 9a{F} denote the
0-module generated by Fj(p) (j = 1.....v) on P. Let C = {hq(p).dq}qEP be any
C2-distribution with respect to JA{F}. i.e.. if 6q, n 6q, $ 0. then hq, (p) - hq,(p) E
,7a{F} at each point. of 6q, n6q,. We claim that there exists a holomorphic vector-
valued function H(p) of rank A on P such that, for each q E P.

H(p) - hq(p) E
.7'\{F}

at each point in 6q. (8.5)

To prove this. we consider the same 0-module,7a {F. ei } on :X as in the proof of
the previous theorem, and we form the following distribution C := {(f
on 2K. where 6 is a neighborhood of ( in 0 and f (z) is a holomorphic vector-valued

function of rank A on k:
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1. If t; V E. we take Sc such that bt n E = 0 and set f-( (Z) = 0.
2. If E E, we set q = 4b-'(() and take 6c = -h-1(3a): and ff(+(p)) = h,1(p)

on bQ.

Since E is a normal model of P on & we can form such a distribution d at each
point of 0. Also, since C is a C2-distribution on P with respect to .71'{F }, we see
that d is a C2-distribution on 0 with respect to ,7a{F.v}. Since Problem C2 is
solvable on the closed polydisk 0, there exists a holomorphic vector-valued function
H(z) on such that, for each t; E L, H(z) - f<(z) E 9a{F,v} at each point in
Sc. If we set H(p) = H(4(p)) for p E P. then H(p) satisfies (8.5).

Finally, we prove the following theorem.

THEOREM 8.6 (Problem E). Problem E is solvable for any analytic polyhedron
P in an analytic space V.

PROOF. Let .7" be an O"-module on P which has a locally finite pseudobase at
each point in P. We use the same notation, E. C and ci C C'. as in the previous
theorem. We let ja denote the extended 0k-module of 9a to the polydisk J. By
statement 1 of Lemma 8.1. 9" has a locally finite pseudobase at each point in &
Since Problem E is solvable for the polydisk , 3' is equivalent to the 0"-module
,7a{ F} generated by a finite number of holomorphic vector-valued functions F, (z)
(j = 1 , ... , v) of rank A on a. If we set FJ (p) = Fj (rh(p)) (j = 1, ... , v) for p E P.
then statement 2 of Lemma 8.1 implies that the 0-module .7"{F} generated by
FF (p) (j = 1, .... v) is equivalent to 3" on P.

8.2.3. Runge Problem. Let V be an analytic space of dimension n. Let P1
and P2 be analytic polyhedra in V such that the defining function,; of both PI and
P2 are defined on the same set U: P1. P2 CC U C V. Assume that P1 CC Pz (the
interior of P2). Then we have the following lemma.

LEMMA 8.2. The pair (PI,P2) satisfies the Runge theorem.

PROOF. Let E1 (resp. E4) be a normal model in the unit polydisk 11 C C;
(resp.12 C Cs,) of PI (resp. P2) whose defining functions are V j (p) (j = 1.... , M)
(reap. tk(p) (k = 1.....1)) defined on U. We assume that Ip,(p)I 5 Al (j =
1 . . . . . m) on P2. W'ie set 2K1 := Iz, I < Al (j = 1 . . . . . m), so that al C C cL1 C C"'.
We consider the holomorphic mapping

41: pE P2 - (z. w) _ (Y%1(p)...... .(p).v1(p)...... y(p)) E ]N1 x :S2

and define E _ 4'(P2). Since E1 (reap. E2) is a normal model on L, (resp. 2K2) of
PI (reap. P2). it follows from the hypothesis P1 CC Pz that E n (,11 x i2) (resp.
E) is a normal model of P1 (reap. P2) in LI x 02 (resp. W1 x 11).

Let f (p) be a holomorphic function on PI . Let K C C P, and let c > O. We fix a
holomorphic extension F(z, w) of f (p) on al x 2i2 and set k = 4,(li) CC 01 x L2 -

From the Taylor expansion of F(z. w) in 01 x L2. we can find a polynomial Q(z. w)
of (z, w) such that IF(z, w) - Q(z, w) I < eon K. If we set Q(p) = 0(4(p)) for
p E P2. then Q(p) is a holomorphic function on P2 such that If (p) - Q(p) I < c on
K. 0

Using the same notation P1 CC P2 CC U C V as in the previous lemma, we
let 71 be an 0"-module on U. We have the following lemma.
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LEMMA 8.3. Assume that J has a locally finite pseudobase at each point in
U. Let f (p) be a vector-valued holomorphic function of rank a on P, such that
f (p) E .TA at each point of PI. Let e > 0. Then there exists a holomorphic vector-
valued function F(p) of rank A on P2 such that

1. F(p) E ,7A at each point of P2:
2. IIF(p)-f(p)II <c forpEP1.

PROOF. We fix an analytic polyhedron P in V with defining functions on U
such that Pt CC P° CC P. and P is so close to PI that the given function
f (p) is defined on P and f (p) E 9a at each point of P. Since ,7a has a locally
finite pseudobase at each point in U, it follows from Theorem 8.6 that there exist a
finite number of holomorphic vector-valued functions tsy (p) (j = 1.... , v) of rank
A on P2 such that the Oa-module J{v} generated by tJj(p) (j = 1.....v) on
P2 is equivalent to ,7a on P2. Thus, the function f(p) on P belongs to J{v}
at each point of P. By Theorem 8.4. there exist v holomorphic functions ap(p)
(j = 1..... v) on P such that

1(r) = a i (p)t'r (p) + ... + on P.

Since the pair (P.P2) satisfies Runge's theorem (by Lemma 8.2). we can find a
holomorphic function Aj(p) (j = I.... v) on P2 such that IA,(p) -n,(p)I < E on
PI. where 0 < E < e/(((villa, + +!IvvIIF,) (here IIvill22 = max{IIv,(p)II I p E
P2}). Consequently. if we define F(p) = AI (p) t' (p)+ +A,(p)v,,(p) on P2. then
F(p) E 9a at each point in P2 and

{iF(p) - f(P)II <_ f (IIvilly, + + c for p E Pi.

as desired. 0

8.3. Stein Spaces

8.3.1. Definition of Stein Spaces. Let V be an analytic space of dimension
rt. Let U C V be a domain and let K CC U be a compact set. We let f(U) denote
the family of all holomorphic functions f (p) on U. We define

h, := n {q E U I If (4)I <_ P ax If(p)I }.

We call R. the holomorphic hull of K with respect to U. If hc. = K. then we
say that K is holomorphically convex with respect to U. Let V be an open set
in V which contains U. If for any compact set K CC U we have ht, C U. then
we say that U is holomorphically convex in V. In case U = V. we say that U is a
holomorphically convex domain.

If a domain U in V satisfies the following three conditions:
1. U satisfies the second axiom of countability;
2. U is holomorphically convex:
3. U satisfies the separation condition:

then we say that U is a holomorphically complete domain in V. In case U = V.
we say that V is a holomorphically complete space, or a Stein space.'

For example. the interior P° of an analytic polyhedron P in an analytic space
V is always holomorphically complete. To see this, we fix a model E of P in

'It is known that conditions 2 and 3 imply condition 1 (see H. Grauert (21)).



8.3. STEIN SPACES 281

the unit polydisk c1 centered at the origin in C: 4' : p E P - . z = 4,(p) =
(, i(p) Ym(p)) E E. There exist holomorphic functions Gk(z) (k = 1..... v)
in A such that E = 11k,=,(z E A I Gk(Z) = 0}. For 0 < n < 1. we define
K(*I) := (p E P I t (k = 1.... , v). I a,(p)I < I - ii (i = I.... , n1)}.
Then K(q) CC P° and lim,,-() K(rj) = P°, yielding the result.

REMARK 8.5. The notion of Stein space in the case of complex manifolds was
introduced by K. Stein [67] in order to study more general spaces in which the
Cousin problems. Runge theorems, expansion theorems, etc., hold as in the case
of a (univalent) domain of holomorphy in C". However, as noted in Example 6.8.
even in the case of a ramified domain D over C". a domain of holomorphy (which is
a complex manifold) is not necessarily a Stein space. unlike the case of a univalent
domain in C".

From the definition of a holomorphically complete domain, we immediately
obtain the following proposition.

PROPOSITION 8.1. Let U be a holomorphically complete domain in an analytic
space V. Then there exists a sequence of analytic polyhedra P (v = 1.2....) in V
with defining functions on U such that

P CC (t'=1.2....). U = lim P,,.vex
Using the notation of the proposition, each pair (P,,, satisfies the Runge

theorem according to Lemma 8.2. WVe thus obtain the following corollary by apply-
ing the usual techniques.

COROLLARY 8.2. Let U be a holomorphically complete domain in an analytic
space V and let P be an analytic polyhedron in V with defining functions on U.
Then the pair (P, U) satisfies the Runge theorem.

8.3.2. Approximation Condition. Let V be an analytic space of dimension
n. If there exists a sequence of holomorphically complete domains U, (j = 1.2.... )
in V such that

1. U j CC U. +I (j = 1, 2.... ). V = lim Uj. andjx
2. for each j = 1, 2..... the domain Uj is holomorphically convex in Uj+1.

then we say that the analytic space V satisfies the approximation condition.

It is clear from Lemma 8.2 and Proposition 8.1 that any Stein space V admits
such a sequence bj (j = 1.2.... ). The converse is also true; to prove it. we first
demonstrate the following theorem.

THEOREM 8.7 (Runge theorem). If the analytic space V satisfies the approxi-
mation condition, i.e., if there exists a sequence of holomorphically complete do-
mains U, (j = 1, 2....) satisfying conditions 1 and 2. then the pair (U1.V) satisfies
the Runge theorem.

PROOF. Let f(p) be a holomorphic function on U1. let K CC U1. and let c > 0.
By condition 1. we have Kt-, CC U1. Since U1 is holomorphically convex in U2.
we have Kt,., = Kt., so that we can find an analytic polyhedron P2 with defining
functions on U2 such that K CC P2 CC U1. Since f(p) is holomorphic on P2.
it follows from Corollary 8.2 that there exists a holomorphic function f2(p) on U2
such that 1f2(p) - f(p)I < E/2 on P2. By repeating the same procedure for f2(p)
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on 22 CC U2 as for f(p) on K CC U1, we obtain a sequence of analytic polyhedra
Dj+1 (j = 1.2....) in Uj+1,

2)+1 CC U j CC Pj+2 CC Uj+1 (j = 1.2.... ).

and a sequence of holomorphic functions f,,.1(p) (j = 1, 2, ...) on U_,+, such that

Ifj+1(p)-fj(P)I <E/2' (j=0.1,...)
(we define f, (p) := f(p) on U1). If we set

on 2j 1

F(p) = f (P) + j:(fj+1(p) - f)(p) ). p E V.
)=1

then this series converges uniformly on any compact set in V. so that
holomorphic function on V which satisfies

x x
IF(p)-f(p)I <_ Ifj+1(p)-fj(p)I <>E/2)=E

j= 1 j=1
on K.

F(p) is a

Thus the pair (Ul, V) satisfies the Runge theorem.

We now obtain the following theorem.

THEOREM 8.8 (Approximation theorem). If the analytic space V satisfies the
approximation condition, then V is a Stein space.

PROOF. Let U j (j = 1, 2, ...) be a sequence of holomorphically complete do-
mains in V which satisfies the approximation conditions I and 2. Since each Uj
(j = 1,2.... ) satisfies the second axiom of countability, and V = UJ 1 U3. it follows
that V satisfies the second axiom of countability.

Let pi, p2 E V be distinct points, and take a sufficiently large integer jo so that
pl, p2 E Uja. Since Uj,, satisfies the separation condition, there exists a holomorphic
function f (p) on Uj such that f (pl) 96 f (p2). By Theorem 8.7, the pair (U,,,, V)
satisfies Runge's theorem. thus we can approximate f (p) by a holomorphic function
F(p) on V with the property that F(pl) F(p2). Thus, V satisfies the separation
condition.

Let K CC V be a compact set. We fix Uj with K CC Up,. Then K, -,0 CC U30.
It follows from condition 2 that k,,,,(, = k j, for all j > jl,; we denote this set by
K. Let po E V \ K and fix j sufficiently large so that K U{po} CC Uj. Then there
exists a holomorphic function f (p) on Uj such that If (po) I > max{If (q) I I q E K}.
Since the pair (Uj, V) satisfies Runge's theorem, there exists a holomorphic function
F(p) on V such that IF(po)I > max{IF(q)j I q E K}; i.e., po ¢ Ky. Hence,
Kv = K cc V, so that V is holomorphically complete. Consequently. V is a Stein
space.

REMARK 8.6. In the case when V is a bounded domain in C", H. Behnke and K.
Stein (2] proved that the approximation theorem holds without the approximation
condition 2; i.e., if D is a bounded domain in C" with the property that there
exists a sequence of holomorphically convex domains Dj (j = 1.2,... ) in D such
that Dj CC Dj+1 (j = 1,2,...) and D = Dj, then D is a holomorphically
convex domain.
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PROOF. Let r > 0. For j=1,2.....we. Id1),(z)>r}.
where d1,, (z) is the Euclidean distance from z to OD;. Using Corollary 1.2 in
section 1.5.3. we first note that, for a set C with CC G CC D, there exists an
analytic polyhedron P with defining functions on D) such that D,T) CC P CC C.
We next choose a subsequence }A of {Dj}, and a sequence rk > 0 (k = 1, 2.... )
such that

D;k cc DJ:` 2) CC D.,., (k = 1,2,... ). (8.6)

To verify this last inclusion. for 1 < j < v we set

mj = min {d(p. q) p E 8D q E 8D},
mj.,, = min {d(p,q) I P E ODD. q E

where d(p, q) denotes the Euclidean distance between p and q in C". Similarly, we
define

M1 = max{d(p,q) J p E 8D,. q E 8D} and

Al .,, = wax {d(p, q) I p E ODJ, q E 8DV}.

Since D is bounded in C", we have 0 < mj,,, < mi; 0 < Af,,,, < Af,; m Ali
0 as j -+ oo; and Afj.,, -+ AM,, m,.,, -+ m, as v -. oo. We let D = D1. We choose
j2 > j, such that m > Af;,. Then we take 73 > 72 such that

mn.j3 > M,,,,3 and m., > Alh3.

If we take r3 > 0 with my,,j3 > r3 > Af,2,,3. it follows that D,, CC DJ-' CC Dj2'
Similarly, since m > Al,,,. we can take ja > j3 such that >3A1.1,144 and
m33 > Af.., and then we can take r4 > 0 with mj2,_,, > r4 > Mj3,,4 to obtain
D)2 CC CC DJ,. Repeating this procedure, we obtain (8.6).

We now set is = k in (8.6). i.e.. Dk CC DI +;2) CC Dk,1 (k = 1,2,...).
From the first statement, there exists a sequence of analytic polyhedra p(k) (k =
1, 2, ...) with defining functions in Dk such that Dk CC p(k+2) CC Dk+I. We let
1k.k+2 (resp. ?{k) denote the holomorphic hull of Nk relative to Dk+2 (resp. D).
Using Theorem 3.5. it follows that ik.k+2 CC DL. I. and hence that any holomor-
phic function f (z) on Dk+I can be uniformly approximated on Dk by a sequence of
holomorphic functions f,, (z) (v = 1, 2....) on Dk+2. Thus, by standard techniques,
we conclude that 74 = 71k.k+2 cc D. as desired.

In the case when D is an unbounded domain in C", the approximation the-
orem also holds without the approximation condition 2. To see this, let D be an
unbounded domain in C" having the same property as the bounded domain D in
Remark 8.6. Fix z' E D. For r > 0. we let BT denote the ball centered at z0 with
radius r and we let DO denote the connected component of the open set D n B,.
Then using Remark 8.6. we see that each D(P) (p = 1, 2....) is a holomorphically
convex domain. Moreover, D(P) is holomorphically convex in D(P+I). For take
K CC D(P). Then K CC B, for r < p sufficiently close to p. It follows that
K,,,+1 CC B. n D(P+1) C D(P). Thus, condition 2 is satisfied.

In the case of a general analytic space V. we cannot drop the approximation
condition 2 in order to verify the approximation theorem.
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EXAMPLE 8.4. 7 We recall the Calabi-Rosenlicht example (Example 8.1). Let
v be a positive integer and set E. = {1/22 I j = 1, ... , v} C C. Let Al := AIE.
be the 2-dimensional complex manifold associated to E defined in the example. If
we set C; = Cy \ {0}, then

Al" = (Cr X C; x {0}) U (1J{(1/23.O.C;))
=1

(Cr X C; x {0}) U U

The topology on Al can be described as follows: For a sequence (xe. E Cr x C;.
we have (x,,, y,,.0) E Cr x Cy x {0} - (1/2j,0.2) as n - oc if and only if
(xn,y) - (1/2J,O) and (x -2'f)/yn z as n -- oc. Note that (1/2J.Cy.O) C
Af (j = 1.2.... -v). Thus. we have A1 C (v = 1.2, ... ), and hence
Al := U', ML, is a 2-dimensional complex manifold. We will prove that each Al
(v = 1, 2, ...) is a Stein manifold but Al is not a Stein manifold.

C3:
PROOF. We consider the following non-singular analytic hypersurface E. in

/!
1

E, yz=Hx-2f

Thus E is a Stein manifold. Furthermore. E is holomorphically equivalent to Af,,.
To see this, we can form a one-to-one holomorphic mapping l from Af onto E,,,
where

(x.y,0)EC=xC;x{0} -+(x.y.y-'rl' 1(x-1/22))E E
(1/2'.O,z) E L (j = 1,....v) (1/2'.O,zr1k=I,k '(1/2' - 1/2k)) E E,,.

Thus, At,, is a Stein manifold. To prove that Al is not Stein, let K = {I'I <
11 x {1/2 < IyI < 11 x (0} CC Afl C M. Let f(p) be holomorphic function on Al.
Fix j = 1, 2.. .. and let OJ denote the disk

Aj :={1/2'}x{IyI<1}x{0} CC M.

By the maximum principle we have

If(1/2',0.0)I < max{If(l/2'.y.O)I I IyI = 1} < max{If(p)I I p E K),

so that (1/2',0.0) E k..r (j = 1,2....). Since ((1/23,0,0) I j = 1.2....} is not
relatively compact in M. it follows that Al is not holomorphically convex.

In this construction, Afv C Ale+1 but AI is not relatively compact in
However, it is easy to see that we can construct AIL CC AL such that AI; CC A1;+1;
Al is a Stein manifold; and Al = Ux

1
AIL. 0

REMARK 8.7. Let V be a Stein space of dimension n. Let po E V. Then
there exists a local coordinate chart (bo, Ao, moI )for p in V such that (po is a
holomorphic mapping defined on all of V into Cr.

This example is due to T. Veda 175).
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PROOF. Let po E V and let (6. A. P) be a local coordinate chart for po in V.
Since V satisfies the separation condition, the holomorphically convex hull of the
one-point set {po} in the Stein space V is {A} itself. There thus exists an analytic
polyhedron P with defining functions on V such that po E P° (the interior of P)
and P CC 6. Thus, V is holomorphic on P. Since the pair (P, V) satisfies Runge's
theorem, there exists a holomorphic mapping ro on V into C" which is uniformly
close to %o on P. Set 6o = P° and Ao = :oo(P°). which is a ramified domain over C".
Then the triple (6o. A0.'poI6j,) satisfies the necessary requirements. If A is univalent
in C". so is Ao for wo suffciently close to Y. G

8.3.3. Various Problems in a Stein Space. In a Stein space, many of the
theorems which hold in a domain of holotnorphy in C" hold without any change.
In this section we consider a few of these theorems.

1. Cousin problems
Cousin problems I and II in an analytic space are posed just as in a univalent

domain in C". We have the following two theorems.

THEOREM 8.9 (Cousin I problem). A Cousin I problem is always solvable in a
Stein space V.

PROOF. As shown in Chapter 3. a Cousin I problem is solvable in a domain
D in C" if there exists a sequence of domains Dj (j = 1, 2, ...) in D such that
Dj CC D1..1 (j = 1,2.... ). D = lim3_,, Dj, and

(1) the Cousin I problem is solvable on each D j (j = 1.2, ... );
(2) the pair (D,, D,-,) (j = 1,2, ...) satisfies Runge's theorem.

The same fact holds in an analytic space. In a Stein space V, there exists a sequence
of analytic polyhedra Pj (j = 1.2. ...) in V with defining functions on V such that
Pi CC Pj, 1 and limj_,, Pj = V. Since each Pj (j = 1.2,...) has a normal model
Ej in the polydisk Ai in C for which Oka's lifting principles (Theorems 8.1 and
8.2) hold, we can show by arguments used in Lemmas 3.3 and 3.4 that the Cousin
I problem is solvable on each Pj. Since (P,.Pj.1) satisfies Runge's theorem, it
follows from (1) and (2) that the Cousin I problem is also solvable in the Stein
space V. 0

THEOREM 8.10 (Cousin II problem). Let C = {(fp, 6p)}pEv be a Cousin 11 dis-
tribution in a Stein space V. If C has a continuous solution in V. then C has an
analytic solution in V.

PROOF. The same proof of Theorem 3.8 yields that if a Cousin II distribution
C has a continuous solution in the space V, then C has an analytic solution in V
under the assumption that the Cousin I problem is always solvable in V. This
assumption is guaranteed by Theorem 8.9; thus C has an analytic solution in V.

0
2. Problem C1 and Problem C2.
Let V be a Stein space. Let F, (p) (j = I..... v) be v holomorphic vector-valued

functions of rank A in V: F,(p) = (Fl,j(p),... ,FA.j(p)) (j = 1.... ,v), p E V. We
let 9''{F} denote the O''-module generated by Fj(p) (j = 1.... , v) in V. We also
let C{ St} denote the O"-module with respect to the linear relation

A fl(p)F1(p) + ... + f.(p)F.(p) = 0.
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i.e.. G{ S2} = {(f (p), d)}acv, where the holomorphic vector-valued function f (p) _
(f, (p),. . . , f., (p)) of rank v in b satisfies the A equations (51) in b.

We have the following two theorems.

THEOREM 8.11 (Problem C-1). Problem C, is always solvable in a Stein space
V.

PROOF. Let H(p) be a holomorphic vector-valued function of rank A in V such
that H(p) belongs to Ta{F} at each point p in V. We want to find a holomorphic
vector-valued function A(p) = (A, (p),... on V such that

H(p) = F, (P)AI (P) + ... + F,(P)A,(p), p E V.

Let Pk (k = 1.2, ...) be a sequence of analytic polyhedra in V such that

P, CC Pjo+I (J = 1.2.... ), V = lim Pk,k-c
and where the defining functions of each Pk are defined in V.

Choose ek > 0 (k = 1.2, ...) s u c h that Ek I Ek < X. As usual, it s u f -
fi c e s to find, f o r each k = 1, 2, ... , a holomorphic vector-valued function Ak (p) _
(Ak (p), ... , AY (p)) of rank v on Pk such that

(i) H(p) = F,(P)Ai(P) +... + F,(P)Ak(P), p E PL., and
(ii) IIAk+I(p) - Ak(P)!I < Ek, P E Pk.

Then A(p) := limk_,, Ak(p) is uniformly convergent on any K CC V. which proves
our result.

For k = 1, we can find a holomorphic vector-valued function AI (p) of rank v
on PI which satisfies condition (i) by Theorem 8.4. Assuming that there exists
an Ak(p) on Pk which satisfies condition (i), we now construct Ak+I(p) on PA,.-I
which satisfies condition (i) on Pk.,l and which also satisfies (ii) together with
Ac(p) on Pk. To do this, using Theorem 8.4, we first find a holomorphic vector-
valued function Ak+l(p) of rank v on Pk+I which satisfies condition (1) on Pk,,.
Then Ak+I(p) - Ak(p) belongs to ,C{S2} on P. Next we find a pseudobase 4,(p)

s) of CIO} on Pi., 1.

t(P) _ 4',.t(P)), p E Pk+I.
by combining Theorems 8.3 and 8.6. Furthermore, from Theorem 8.4 there exist s
holomorphic functions al (p) (I = 1.... , s) on Pk such that

Ak+I (P) - Ak(P) = aI (P)`'I (p) + ... + ar(P)-t,(P), P E Pk.
=Since the pair (Pk, V) satisfies Runge's theorem (by Corollary 8.2), for each I

1,... , s there exists a holomorphic function al (p) on V such that

Ia1(p) - a1(P)I < Ek (! = 1....,s), p E Pk

where ek < Ek / (E;= l Il gh (p) lI p.+.,) Setting

Ak+I(P)=A4'+I(P)+ai(P)'I(P)+...+a6(p)4,(P), pEPk+I
it follows easily that Ak+I (p) satisfies condition (i) on Pk+I Moreover, for p E Pt,

IIAk+I(P)
- Ak(P)II = JI(Ak+I(p) - Ak+I(p)) + (Ak+l(P) - A"(P))II

= 1I(al(p)- (a9(p) -

Ek (1: III1Npk.. ) < Ek,
l=1
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so that Ak+i(p). together with Ac(p). satisfies condition (ii) on Pt. Thus we have
constructed Ak(p) (k = 1.2....) on Pk by induction, proving the result.

THEOREM 8.12 (Problem C2). Problem C2 is alurays solvable in a Stein space
V.

PROOF. We prove this under the assumption that the completeness property of
the same type as in Theorem 7.6 in C" holds in the analytic space V. This fact will
be proved later in Proposition 8.3. Let C = {(hq(p),bp)}yev be a C2 distribution
with respect to .7a {F}. Choose Ek > 0 (k = 1.2....) such that E 1 Ek < x.
Utilizing the completeness property. it suffices to construct, for each k = 1,2.....
a holomorphic vector-valued function HI(p) of rank A on Pk such that

(i) Hk(p) - hq(p) E 9''{F} at each point in Pk f16q for each q E Pk. and
(ii)

IlHk+l(P) - H1(p)II < fk, p E Pk.
For again, if such a sequence Hk(p) (k = 1.2....) on Pk exists, then H(p)
limk,, Hk(p) is uniformly convergent on each K cc V and H(p) is a solution to
Problem C2 on V for the given C2 distribution C (under the above completeness
assumption).

To begin, by Theorem 8.4. we can find an H1 (p) on Pi which satisfies condition
(i) on P. Assuming that there exists an Hk(p) on Pk which satisfies condition (i)
on Pk, we shall construct Hk+1(p) on Pk+l which satisfies condition (i) on Pk+1
and satisfies condition (ii) together with this Hk(p) on Pk.

We first find, by Theorem 8.5. a vector-valued function Al" i (p) on Pk+i which
satisfies condition (i) on Pk+1. Since Hk+1 (p) - H"(p) belongs to L{f)} on Pk, we
thus can find s holomorphic functions d, (p) (1 = 1.... , s) on Pk such that

Hk+1(P) - Hk(P) = i31(p)d'l(P) + ... + r3R(P)4'.(p) p E Pk.,

where the 4+1(p) (I = 1.... s) constitute a pseudobase of G{fl} on Pk+i. Since
the pair (Pk. V) satisfies Runge's theorem. for each I = 1, ... , s there exists a
holomorphic function 3,(p) in V such that

131 (p) - i31(P)I < ek. p E PL..

where 0 < fk < fkAZj"=, 141(01P,.,)- If we set
Hk+1 (P) = Hk+1(P) + i31(P)4'1(p) + ... + i3.(P)4'.(P) pEPk+1,

then Hk+I(p) satisfies condition (i) on Pk+i and satisfies condition (ii) together
with Hk(p) on Pk. Thus we have constructed Ha (p) (k = 1.2....) on Pk by
induction. proving the result.

3. Problem E
Let V be a Stein space and let .7A be an O'-module on V such that ,7A has a

locally finite pseudobase at each point in V. It is not necessarily true that .7a has
a finite pseudobase on all of V.

Oka's counterexample for the pseudobase of Problem E.s We consider
C4 with variables r1 x2, Y1 - y2. Let v > 3 be an integer. We consider the following
four polynomials in Cl:

F "-x°-1. F2 "- x"xF3 x x F=xv-2+xj,1=y1 I =y2 2 1 =YIY2- 1 2, 4

"This example is due to K. Oka [521
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and we let E denote the analytic set in C' defined by F1 = F2 = F3 = FI = 0.
We will show that E is a 1-dimensional analytic set in C. We. consider the G-ideal
G{E} with respect to E in C'.

Then we have the following lemma.

LE4tMA 8.4. If Gk(p) (k = 1, .... s) is a locally finite pseudobase of G{E} at
the origin 0 in C4, then s > v - 1.

PROOF. We consider the ramified domain R over C,21 ,,defined by the function
x1. so that R is (holomorphically) isomorphic to Cf2 S, with variables (t, x2) via

the mapping
T: (t,x2) E C1, - (T1,x2) _ (t".x2) E R.

We consider the analytic set S in Ca defined by F1 = F2 = F3 = 0. Then S is
isomorphic to 7Z.

Indeed, we have

y1

Y2

= (x,'")"-1 since F1 = 0,

= x2(ex11,")

since F2 = 0.

where a is a v-th root of unity; i.e., e" = 1. From F3 = 0 we have (xi'")"
1112, so that e = 1. Thus. S is the 2-dimensional irreducible analytic set in C4
defined by

S : in = (xi y)v 1 Y2 = 1211

where (11,x2) varies over R. Thus. S is isomorphic to C',,,., via

7r : (t,x2) E Ci- (XI.x2,y1.Y2) = (t".x2.t".x2t) E S.

We remark that F3 = xi-2 + x'2 depends only on the variables x1 and x2.
Thus, if we let o denote the analytic set in Cl,..,, defined by F.1 = 0. then we have
E = S f1 [a x Cy, ,.J. Setting

b = {(1,x2) E Ct.rp +xv = 0}.'
which is an analytic hypersurface in C2 r" we see that it gives a bijection from o
onto E. Thus E consists of v irreducible 1-dimensional analytic sets in C'. Let
F(x1, x2, in, y2) be a holomorphic function defined in a neighborhood 8 of the origin
O in C'. Then F Isna can be written in the form

Pt' X2) := F(t`.12.t"_1.x21). (t.x2) E 1.

where y is a neighborhood of (t, x2) = (0, 0) in Cl.,,, so that f (t, 0) is of the form

f(t,0)=a+a"_1t"-I± (8.7)

where a, a"_ 1. a,,... are constants.
Now assume that F(x1, x2, Y19 y2) E G{E} on o. We remark that a f1 y is an

analytic hypersurface in y which is the zero set of the function t"("-2) + x2; this
function has no multiple factors. Since Pt. X2) = 0 on y f &. it follows that

f (t, x2) = (tvl,,.-2) + x2) h(t, x2).

where h(t,12) is a holomorphic function on a neighborhood '7(1 C -,, of (0.0), so that
f (t, 0) is of the form

f(t,0) = t"("-2)(b(I+b1t+b2t2+...+b"-2tv-2) (8.8)

+ terms of order higher than v(v - 2) + v - 1.
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where bo, b1.... are constants.
Conversely. let Pt- x2) be a holomorphic function in a neighborhood of (0, 0)

in C2t... of the form

f (t, x2) = (tv(v- 2) + x2) h(t. x2).

Then we can find an F(x1, x2, y1, y2) E G{E} on a neighborhood bo of 0 in C'
such that F 16ars = f

Indeed, we note that f (p) := f (ir(p)) is a weakly holomorphic function on S
in a neighborhood 6 of the origin 0 in Ca with f 16n£= 0. Since E C S. if we
could holomorphically extend f (p) to a holomorphic function F(x 1, x2, y1,112) in a
neighborhood 60 of 0 in Ca, then necessarily F(xl,x2,yi,y2) E G{E} on bo.

Since t"-1 = y1 and h((. x2) = Fn ,,,_fl a,,,,,tmx2. it suffices to prove that the
weakly holomorphic functions

fi(t, x2) = (tut u-21 + x2 t' (i = 0.1.... , v - 2) (8.9)

on S have holomorphic extensions $i(xl, x2. yl, y2) in Ca. To this end, for i = 0,
since x1 = t" we can take

W0(xl, x2. yl . y2) = XI
-2

+ x2.

For i = 1..... v - 2. since x1 = t", y1 = P`, and y2 = tx2. we can take

4',(x1,x2,yl,y2)=xi Iyi-'+x?-1y2 (i=1....,v-2) (8.10)

in C4, so that the converse is true.
We proceed to prove the lemma by contradiction. Assume that there exist v-2

holomorphic functions

Gk(xl,x2,y1,y2) (k= 1.....v-2)
on a neighborhood A of the origin 0 in C° such that the 0-ideal J{G} generated
by Gk(x1, x2, Y1, Y2) (k = 1, .... v - 2) on 0 is equivalent to G{E} on A. By (8.8)
we have

gk(t,X2) Gk

9k(t. 0) = tv(v-2) (bk.o + bk.l t + ... + bk.v-2tv 2)

+ terms of order higher than v(v - 2) + v - 1.

Since each I, (xi , X2, Y1 . y2) (i = 0.L... . v - 2) defined by (8.10) belongs to G{ E}
in C°, there exist v - 2 holomorphic functions CL(x1, x2. y1. y2) (k = 1..... v - 2)
defined on a neighborhood 0O C A of the origin 0 in C1 such that

Oi('x1,x2,y1.y2) = C1i(x1.x2,y1.y2)Gi(x1,xz.y1.y2)
+... + Cv_2(x1.x2, y1, y2)Gv_2(xl, x2 yl , y2)

(i=0.1.... ,v-2). (x1,x2.yl,y2) E Ao.

We restrict 'i (xl . x2, y1, y2) to S n {x2 = 0} and set

f;(t,0) _ -bi(t",0.t`-'.0). ck(t.0) =Ck(t",0,tv-1.0) (i = 0,1,... ,v -2)

in a neighborhood eo of t = 0 in C. From (8.9) and (8.7) we have

0 tv(v-2)+i. c' t. a' + a' t"-' + a' t" + . .f,(t+ ) = k( ) = k k.v-1 k.v
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where ak, are constants. Since
V-2

f,(t10)=FC,(t.0)9k(t,0) (i=0.1....P-2).
k=1

it follows that
V-2

tu(v-2)+, _ Eakt"( 2) (bk.0+bkjt+...+bk.,,-2tt_2)

k=1

+ terms of order higher than v(v - 2) + v - 1.

(i=0.1.....v-2) on x11.

Consequently,
v-2 P-2 v- 2

V _ akbk.0+tEaAbk.,+...+t 2Ea'bk.v-Y.
k=1 k=1 k=1

(i = 0. l..... v - 2) on e1),

so that
a(,' a°_2

t 1 1

a1 a2

aV

2

( Y-al-2 I2a
1 2 a,.-2 by .2.-

where is the (v - 1. v - 1) identity matrix. Since (a ),,) is a (v - 1, v - 2)
matrix and (b=,2),.j is a (v - 2. v - 1) matrix, such an equality is impossible. Thus,
Lemma 8.4 is proved. 0

For each integer v > 3 we let F4 (x1, x2. yi, y2) (k = 1, 2, 3.4) denote the four
polynomials in C' defined above. Let a (v = 1.2. ...) be a sequence of com-
plex numbers such that lim,,.. a, = oc. In C5 with variables x1,£2. y,,y2, y;3 we
consider the analytic set of dimension 1 given by

E,,: Fl = =Fa =0. y:1=a,,.

and we set E = u'1 E in C''. We consider the C-ideal G(E} in C'. Then G{E}
has a locally finite pseudobase on all of C5. However, Lemma 8.4 implies that there
is no finitely generated 0-ideal j on all of C' which is equivalent to the G-ideal
G{E} at each point of C5.

REMARK 8.8. W e see f r o m the proof of Lemma 8.4 that ( 1 ) F1 = x
i

- 2+xz is a
universal denominator of the 2-dimensional analytic set S in C'' with F4 0- 0 on S:
(2) the Z-ideal Z{F4,S} is equivalent to the G-ideal G{E} at the origin 0 in C4:
and (3) G{E} is equivalent to the O-ideal generated by j (j = 0. 1.... , v-2)
at 0 in Ca.

In fact, statements (2) and (3) follow immediately from the proof. To see (1),
let p,) = (xi. x2, 1/1', y2) E S. The singular set r of S is contained in x1 = 0. Since
Sn {x1 = 0} _ {(0,x2,0,0) 1 x2 E C} and since F1 96 0 at (0,x2) if x2 # 0. it
suffices to prove that, for any weakly holomorphic function f (p) at the origin 0 on
S. the function F4 f is holomorphic at 0 on S. Since E = Sn {F4 = 0}. F., f is a
weakly holomorphic function at 0 on S which vanishes on E in a neighborhood of

b1.o b1.1 ... b1.1-2
b2.o b2.1 ... b2.. -2.
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0. Under this condition we have shown that there exists a holomorphic function
F(x1, r2, y1, 112) in a neighborhood of 0 in C' such that FIS = F4 fls. as desired.

8.4. Quantitative Estimates

In this section we extend Theorem 8.2 (extension theorem) and Theorem 8.4
(Problem Cl) to quantitative results with estimates (see Chapter I in Oka [521).
Our proofs will be done by a combination of Oka's theorems (which have already
been proved) and the open mapping theorem in a Freshet space. These theorems
with estimates will be applied to obtain a subglobal pseudobase of an 01-module
on a Stein space V which has a locally finite pseudobase at each point in V. In
addition, we will use these results in Chapter 9 to show that any analytic space
admitting a strictly pseudoconvex exhaustion function is a Stein space.

8.4.1. Open Mapping Theorem. Let £ be a vector space over C equipped
with a metric d(x. y) such that d(x. y) = d(z - y. 0), where 0 denotes the zero vector
in E. Assume that:

(i) £ has a fundamental system of convex and circled neighborhoods V. (n =
1.2....) of 0 in C. Here circled means that AV. C V for any A E C with
IAI < 1. (Note that Vn is not, in general, relatively compact).

(ii) £ is complete with respect to the metric d(x. y).
(iii) For any R.;? E C. the mapping S : (x, y) E £ x £ - o.r + jjy E £ is

continuous.
(iv) ForanyzE£. lim z/n=0.n--x

Then we call £ a Frr chet space.
The following theorem will be useful in this section.

THEOREM 8.13 (Open mapping theorem). Let Cl and £2 be Firechet spaces e-
quipped with metrics d1(x, y) and d2 (u. f'). Let y, : Cl - £2 be a continuous linear
mapping from £1 onto £2. Then yp is an open mapping.

PROOF. (cf. 1281) From (iii) it suffices to verify that for any neighborhood
V of the zero vector 0 in £1. ip(V) is a neighborhood of the zero vector 0 in £2.
We first prove that for any neighborhood V of 0 in £1 , V(V) is a neighborhood
of 0 in £2. To this end, using (i) we may assume that V is a convex and circled
neighborhood of 0 in £1. Set W = ; (V). By linearity of It' is convex and circled
in £2, so that W is a convex and circled closed set in £2. Since yp is surjective, it
follows from (iv) that £2 = U', nW = Un 1 nW. Since nW (n = 1, 2....) is
closed in the complete metric space £2. it follows from the Baire category theorem
that for some integer n. nN' contains an interior point uo in £2. Thus we can find
a convex and circled neighborhood G of 0 in £2 such that no + G C nW (n > n1)).
Consequently. uo/n + G/n C W. In particular, uo/n C W. so that -uo/n C W.
Since TT is convex, we have

n 2
n+(!+)} ciV,

which proves 1V is a neighborhood of 0 in £2.
Let V be any convex and circled neighborhood of 0 in Cl. We now show that

W(V) C p(2V). Using (i) and (iv), we can find a sequence of convex and circled
neighborhoods Vj (j = 1, 2....) of 0 in E1 such that Vj c {x E £1 I dl (x, 0) < I/2'}
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(j = 1.2.... ). 2V1 C V. and 2V,+1 C 4; (j = 1.2.... ). Let yr, E ; (V). Since

,?(V)) was shown to be a neighborhood of 0 in E2. there exist in E V and y1 E (I i )

such that yr) - y1 = p(xr)). In a similar manner, we can find .r1 E VI and y2 E p(V2)

such that y1 - y2 = p(x1 ). We inductively choose a sequence of points x E V
and yn E (n = 1.2....) such that y - o(x,,) (n = 1.2, ... ). Since

V;, 0 as n 0, it follows that ^(V,) and hence Y(V) -. 0 as n - x, so
that limn-,c yn = 0. If we set an = xo + xl + ' + xn (n = 1, 2-.), we see
from d(xn,0) < 1/2" that {an}" is a Cauchy sequence in E. so that the limit
a=limn_, an exists in E1. Since

a E 2V. Also.
(yr) - y,) = yj. so that p(V) C , (2V).

For any convex and circled neighborhood V of 0 in E1, (2V) is a neighborhood
of the origin 0 in E2. The collection of these sets 2V is a fundamental neighborhood
system of 0 in E1. proving Theorem 8.13.

Let V be an analytic space and let U C V be a domain. Let A > 1 be an
integer and let OA(U) denote the set of all holomorphic vector-valued functions
f(p) = (f1(p).... J \(p)) of rank A on U. Thus. OA(U) is a vector space over C.
In case A = 1. we write 0'(U) = O(U).

Let U, (j = 1.2....) be a sequence of domains in U such that

U,CCU, (j=1.2....). U= limUJ.
1-'x

For any f (p) E OA (U). we set

rn,,(f) = sup !If(p)II (j = 1.2.... ).
PEI",

so that m, (f) < m, +.1(f) < oo. In general, we can have liml_, m, (f) = +-X. For
f (p). g(p) E 0'(U). we define

1 M, (f - g)

2J1+m
<1.

Since h(r) := r/(1 + r) is a concave increasing function on [0, x) with h(0) = 0,
it follows that da(f.g) is a metric on 0"(U) with da(f,g) = dA(f -g,0). We call
dA'(f.g) the canonical metric on OA(U) (relative to {U,},). We shall prove that
0"(U) is a Frechet space with respect to this metric dA(f.9). Indeed, let fn(p)
(n = 1.2....) and f(p) belong to 0'(U). Then we see that lim da(f,,. f) = 0
if and only if limn__ f,, (p) = f (p) uniformly on any compact K CC U. We thus
see that conditions (ii), (iii). and (iv) are satisfied. For condition (i) it suffices to
set

Vj = {f(p) E OA(U) I Tnj(f) < 1/j} (j = 1.2.... ).

We have the following proposition.

PROPOSITION 8.2. Let Al > 0. Then there exists K with 0 < K < 1 such that
if Ilf (p) II < Al on U then da (f. 0) < K. Conversely. fix K with 0 < K < 1. Then
there exists an Al > 0 such that da(f.0) < K implies IIf(p)II <_ M on U. 1.
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PROOF. To prove the first assertion. take K = Al/(Al+1) < 1. For the second
one, since

K> I mj(f) > 1 mi(f) - ml(f)
- 271+m2(f) l+ml(f)*

j=1 J=1

we cantake bl=K/(1-K)>0. 13

8.4.2. Quantitative Estimates in the Existence Theorem. Let V be an
analytic space of dimension n and let P be a (closed) analytic polyhedron in V
with defining functions on D : P CC D C V. Let E be a normal model of P in the
closed unit polydisk C C' and let

.y^:n(P))E

denote the normalization mapping of P into C"': here each y:j(p) (j = 1.2....) is
a holomorphic function on D. We let P° and 0 denote the interiors of P in V and
of in Cm.

The following theorem, which will be proved without using the theory of Frechet
spaces. is an essential ingredient in proving the main theorems in this section.

THEOREM 8.14 (Interior extension theorem). Let f (p) be a holomorphic func-
tion on P. There exists a holomorphic function F(z) on A with

f (p) = F('(P)) p E P.

PROOF. Choose rk. 0 < rk < 1 (k = 1, 2.... ). such that rk < rk_1 (k =
1.2....)andlimk_,,rk=1. For each k = 1,2..... set

A s, : k (j = 1.....m). Ek = E f Ak

Let Pk = CC P°. Choose Ek. 0 < Ek < 1. so that EA 1 Ek < X. We
would like to construct a sequence of holomorphic functions Fk(z) on Ak (k =
1, 2, ...) such that, for each k = 1.2.... .

f(P) = Fk('(P)). P E Pk.

Wk-1(z) - Fk(z)I < Ek' Z E c7k;
(8.11)

for then F(z) = limk.x Fk(z) converges uniformly on any compact K CC P°
and F(z) satisfies F(41(p)) = f (p), p E P°. We construct such a sequence Fk(z)
(k = 1.2....) on Pk satisfying condition (8.11) by induction.

By Theorem 8.2. there exists a holomorphic function F1(z) on OI such that
f(p) = on P1. Fix k > I and assume that we have constructed holo-
morphic functions F,(z) on i j (j = 1.... , k) such that Fj (4i(p)) = f (p) on
Pi (j = 1.... ,k) and IFj+1(z) - Fj(z)] < Ej on aj (j = 1,... k - 1). By
Theorem 8.2, there exists a holomorphic function Fk+l(z) on Ak+I such that
f(p) = Fk+1(I(p)) on Pk+1. Consider the G-ideal G{Ek+1} on 3k+1. Since
G{Ek+1} has a locally finite pseudobase at each point of Ok+1 it follows from
Theorem 8.6 (Problem E for a closed polydisk) that there exist a finite number of
holomorphic functions G,(z) (l = 1.... , s) on Ok+l such that the 0-ideal J{G}
generated by G,(z) (l = 1,... s) on Ok..l is equivalent to G{Ek+l} on Ok+l.
Since Fk+1(z) - Fk(z) = 0 on Ek. it follows that Fk+1(z) - Fk(z) E G{Ek} on



29$ r ANALYTIC SKACES

Ak. By Theorem 8.4 (Problem C, for a closed polydisk). there exist s holomorphic
functions u, (z) (l = 1.....s) on Jk such that

h_.i(z) - Fk(z) = d,(z)Gi(z) +... +nn(z)G,(z). z E Ak.

Since the pair of polydisks (ak.2k-1) satisfies Runge's theorem, we can find a
holomorphic function ad(z) (t = 1.....s) on 2ik-, such that

)at (z) - dt(z)I < c' (l = 1..... s). z E Ak

where 0<c&. <ck/( max If we set
zE.1k

Fk+,(:)=Fk+,(z)+tt,(z)G,(:)+...+a.,(z)G..(z). zEAk,-,.

then Fk,,(z) is a holomorphic function on Ak+, with Fk.,(dt(p)) = f(p) for p E
Pk+l and IFk,,(z) - Fk(Z)I < Et_t Iai(z) - dt(z)IIG,(z)I < ck for z E :SL. Thus
we have inductively constructed Fk(z) (k = 1.2....) on Ak satisfying condition
(8.11).

Using the same notation P.:&. P'. A. E. Pt.:ik, and Ek. recall that Ak :
Iz, I < r, (j = 1..... tit) and we thus have Ak CC Ak.,., (k = 1, 2.... ) and
A = limk _, Ak. We consider the set O(A) of all holomorphic functions F(z) on
A. By the method mentioned in the previous section. the vector space 0(A) with
the canonical metric d, (F. G) relative to {AA.}k becomes a IYkhet space. Similarly.
using Pj CC P 4 , (k = 1, 2....) and P° = lim,,P; . we consider the Frechet
space O(P°) of all holomorphic functions f(p) on P' with the canonical metric
d2(f. g) relative to {Px }k.

Consider the following linear mapping Y from O(A) to O(P'):

,r : F(z) f (p) = F(4 (p)), p E P

Since the topology for O(A) and for O(P°) is uniform convergence on each compact
set in A and in P°. it follows that w is a continuous mapping on O(A). By Theorem
8.14. p is surjective. Thus. the open mapping theorem can be applied to p.

We have the following theorem.

THEOREM 8.15 (Extension theorem with estimates). There exists a constant
K > 0 such that for any f (p) E O(P°). there exists F(z) E O(A) with

F(,b(p)) = f(p). p E P'.

max{IF(z)I} < Kmax{If(p)I}.
:E[, PE F°

PROOF. It suffices to prove the existence of such a constant K > 0 for f (p) E
O(P°) with max{I f(p)I} < 1. Fix 0 < p < 1 and let BP = {F(z) E O(A) I

PEP.
d,(F.0) < p} and Af, = p/(1 - p) > 0. which satisfies Proposition 8.2. By the
open mapping theorem. ,:(B,,) contains a neighborhood A, := {f(p) E O(P°) I
d2(f,0) < q} of the origin 0 in O(P'). Take f (p) E O(P`) with max{If (p)j) < 1.

PEP
Since of (p) E A,,, there exists Fo(z) E O(A) with d,(Fo.0) < p such that FF,((D(p))
= tTf(p), p E P°. By Proposition 8.2 we have IFo(z)I < AIP := p/(1 - p) on U1. If
we define F(z) = Fo(z)/q on A. then F(tI(p)) = f(p), p E P°. and IF(z)I < MP/q
on UI. Thus K := AIP/q > 0 satisfies the conclusion of the theorem.
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8.4.3. Completeness. Using the previous theorem we can extend the com-
pleteness theorem (Theorem 7.6) for O"-modules in a domain in C" to the case
of an analytic space V. Let V be an analytic space of dimension n. Let 11' C V
be a domain and let F) (p) (j = 1.... , v) be v holomorphic vector-valued func-
tions of rank A on W. We let .7"{F} denote the OX'-module generated by F,(p)
(j=1, . v) on 14'.

We have the following result.

PROPOSITION 8.3..7"{F} is complete in the topology of uniform convergence
on compact sets in W.

To be precise. completeness in this sense means the following. Let f,(p) (i =
1.2.... ) be a sequence of holomorphic vector-valued functions of rank A on the
common domain U C W. Assume that (1) limi, f,(p) = f(p) is uniformly
convergent on any K CC U, and (2) each f,(p) (i = 1.2....) belongs to

.7"{F}
at

each point of U. Then f (p) belongs to .7A{F} at each point of U.

PROOF. Let po E U. We can take a sufficiently small analytic polyhedron P
in a domain D C U such that po E P° (Corollary 8.1). Fix a normal model E of P
in the closed unit polydisk in C".

ID: p E P - z= (,,:I (p)..... (p)) E E.

where each p,(p) (j = 1.....m) is a holomorphic function on D. We take holo-
morphic extensions Fe(z) (j = 1.... v) of F,(p) on thus Fj(4'(p)) = F, (p) in
P. Fix a closed polydisk Al CC A such that P1 = 4-'(E n A1) contains the
point pu. Since lim,-,, f,(p) = f (p) uniformly on P. there exists Af > 0 such that
JI f,(p)U < Af (i = 1.2....) on P. By Theorem 8.15, for each i = 1.2..... there
exists a holomorphic extension f, (z) in A such that

f.(p) = f:(4'(p)). p E P°.

Jjf.(z)jj < KAI (i = 1.2....). z E Al.

where K > 0 is a constant independent of i = 1, 2..... Thus. { f,(z)}, is a normal
family on AI. Let 6 CC O1 be a neighborhood of the point za = 4(po). Then
there exists a subsequence { f,k (z) }k of { f, (z) }, which converges uniformly on 6.

say j (z) = limk.,. f,k (z) on 6, so that f (z) is a holomorphic vector-valued function
of rank A on 6 satisfying j (4(p)) = f (p) for p E 4, -' (E n 6).

Recall the holomorphic vector-valued functions r'k.I(z) (k = 1.....A; l =
1,... s) of rank A on Z which were constructed using the pseudobase Cz(z) (t =
1 , .... s) of the C-ideal C{E} on defined b y (8.3). Let .7t{F. ill denote the O,\-
module generated b y FF(z) (j = 1 , . . .v) and vt.,(z) (k = 1 . . . .A; l = 1,.. s)
on Z. Since f,(p) E 9a{F} (i = 1.2....) at each point of P. it follows that
f,(z) E 9a{F, g+} (i = 1,2.... ) at each point of A. Since 1imk-, fsk (z) = R Z)
uniformly on 6, it follows from Theorem 7.6 that f (z) E J1 JA &} at each point of
6. Since f (p) on v :_ 4 ' (E n 6). which is a neighborhood of the point
po in W. we see that f(p) E .7a(F) at each point of r. 0

Using this completeness result, we generalize Lemma 8.3.
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LESISIA 8.5. Let V be a Stein space and let 9A be an OA-inodule on V which has
a locally finite pseudobase at each point in V. Let P be an analytic polyhedron in V
with defining functions on V and let f (p) be a holomorphic vector-valued function
of rank A on P such that f (p) E j' at each point of P. Given e > 0. there exists
a holomorphic vector-valued function F(p) of rank A on V such that

1. F(p) E 9A at each point in V. and
2. IIF(p) -f(p)II < c for each p E P.

PROOF. Let Pj (j = 1.2....) be a sequence of analytic polyhedra in V with
defining functions on V such that P CC P,. Pj CC (j'= 1.2....). and
V = lini,_ ,. Pj. Choose ck > 0 (k = 1.2....) such that J= ck < c. By Theorem
8.6 (Problem E), there exist a finite number of holomorphic vector-valued functions
,:J (p) (j = I.....s) of rank A defined in a neighborhood U of P, such that the
Oa-module .7a{,;} generated by ;,j (p) (j = 1.....s) on P1 is equivalent to J' on
P1.

Using Theorem 8.6. we can find a holomorphic vector-valued function a(p) _
(a,(p).....a.(p)) of rank s on P such that

f(p) = ai (p),ri (p) + ... + a.(p)r".(p). PEP.

Since the pair (P. PI) satisfies Runge's theorem (Lemma 8.2). there exists a holo-
morphic vector-valued function A(p) = (A,(p)..... A,(p)) of rank s on P1 such
that

IIA(p) - a(p)II < c', for p E P.

where 0<e'1 <ci/(IE If we set

pEPi.
then F, (p) is a holomorphic vector-valued function of rank A on P1 such that
Fi (p) E J ' at each point of P, and

IF'i(p) - f(p)II < c' Ilw,(p)I!) < ci. p E P.

Similarly, there exists F2(p) of rank A on P2 such that F2(p) E 7a at each point
of P2 and IIF2(p) - FI(p)II < c2 for p E P1. Thus, inductively we construct a
vector-valued function F. (p) (j = 1.2....) of rank A on P, such that Fj (p) E 9"
at each point of Pj and I I Fj (p) - Fj- i (p) I I < c, on P, -1. where Fo (p) = f (p)
and Po = P. It follows that F(p) := linij, F,(p) converges uniformly on any
compact set in V. Thus. F(p) is a holomorphic vector-valued function of rank A
on V which belongs to 71 at each point of V by Proposition 8.3. We also have
IIF(p) - f(p)II 5 E i ilFi(p) -- F,-i(p)II < Fj`_1 cj < c on P. which proves the
lemma.

8.4.4. Quantitative Estimates for Problem C1. We return to the situa-
tion in 8.4.2. Let V be an analytic space and let P be an analytic polyhedron in
V with defining functions on D. P CC D C V. Let P' denote the interior of P in
V. We let Oa(P') and O"(P') denote the spaces of all holomorphic vector-valued
functions on P` of rank A and v. Let Fj (j = 1..... v) be v holomorphic vector-
valued functions of rank A on the closed analytic polyhedron P and let ,7''{F} be
the O'`-module generated by F, (j = 1.... , v) on P.

We have the following theorem.
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THEOREM 8.16 (Estimates for Problem CI). Let U CC P°. Then there exists
a constant K > 0 such that for any H(p) E 0'(P°) with H(p) E 9'{F} at each
point in P°. there exists A(p) = (AI(p)..... A,(p)) E O"(P°) such that

H(P) = Aj(P)FI(p) +... + A,,(P)F.,(p). PEP'.
max{IIA(p)II} < K

m
max {IIH(P)UI).

PROOF. Let U, (j = 1, 2.... ) be a sequence of domains in P° such that U = U1,
L', CC U,,, (j = 1.2.... ). and P° = limb-, U, We let da(f.g) and
denote the canonical distances with respect to {U1}, on 0"(P°) and on 0"(P°).
Then 0a(P°) and 0"(P°) are Frechet spaces with respect to d1(f,g) and d"(f.g).
We let F denote the set of all holomorphic vector-valued functions f (p) of rank A
on P° such that f (p) E J1 (F) at each point of P°; thus F is a linear subspace of
O''(P°). By Proposition 8.3, F is complete with respect to the metric dl'(f.g). so
that F is a Frechet space.

Next we consider the continuous linear mapping p from O"(P°) to .F given by

, : A(p) = (At (p)..... A"(P)) - H(p) = A, (p)F1(P) + ... + A"(p)F"(P)

By Theorem 8.11, ip is surjective. Thus, the open mapping theorem can be applied
to ;^.

We fix p, 0 < p < 1. and let 6p = {A(p) E 0''(P°) I d"(A.0) < p}. By
Proposition 8.2. there exists Al, > 0 such that IIA(p)II < Al, on U for all A(p) E &F,.
Since w(6P) is an open neighborhood of the zero vector in F. there exists q, 0 <
i < 1. such that V,,, = {H(p) E F I 11H(P)II < n} C We show that K :=
Mo/q > 0 satisfies the conclusion of the theorem. To prove this, we may assume
that H(p) satisfies 11H(p)II < 1 on P°. We then have d(gH,0) < q/(1 +Tl) < q,
so that we can find A(p) = (A1(p)..... A"(p)) E 6,, such that p(A) = qH on P°.
Consequently,

H(P) = A,(P)Ft(p)+...+
A"P)F"(p),

'7
17

lIA(P)/rill 5 AIP/rj= K. PEI,,.

pEP':

which proves the theorem. J
8.4.5. Applications of Quantitative Estimates. We give some applica-

tions of Theorem 8.16 (Problem C1 with quantitative estimates) concerning the
existence of a subglobal normal model of a Stein space V and of a subglobal pseu-
dobase of an O'-module on V having a locally finite pseudobase at each point in
V.

1. Subglobal normal model

Let V be an analytic space. Let P be an analytic polyhedron in V with defining
functions on all of V. We showed that P has a normal model E in a polydisk A
in C' via the mapping 4 ' : p E P .- z = 4'(p) = (V(Pt). . ,,,(p)) E E. where
yp, (p) (j = 1..... m) is a holomorphic function in a domain G in V. In general.
we cannot assume that y^,(p) is holomorphic on all of V. However. if V is a Stein
space. this is possible.

Let V be an analytic space of dimension n. Let P : I Y1(P) 15 1 (j = 1..... m) be
an analytic polyhedron in V where p,(p) (j = 1.... ,m) is a holomorphic function
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on a domain G with P CC C C V such that

4':zj=,Pj(P)(j=1.....m), pEP.
is a normal model E = 4(p) in the closed unit polydisk IN in C"'.

Let 0 < a < 1 and 0 < c < 1. Let tij(p) (j = 1, ... , rn) be holomorphic
functions in a domain C1, P CC G! C C. such that

I;pj(P) -,(P)I < c.. pEP.
If c > 0 is sufficiently small relative to a. then the set

P`:_{pEC1I10,(P)I<1-a, j=1,...,m}

(8.12)

is an analytic polyhedron in V such that P' CC P°. We consider the image

E' : w j. . . . . . . . . . . . . . . . . . . . m ) .(,1 = 1,....m). pEP'
in the polydisk Y : Iwj1 < 1 - a in C. and we set

'h:pEP`-w= T(P)_(L'1(p).....u,(P))EE'.
We obtain the following stability result concerning the normal model.

LEMMA 8.6. For sufficiently small c > 0. E' (as well as E in 0) is a normal
model in W.

PROOF. Take a polydisk 01 CC A such that P' CC 4-1(Ef)cA 1). By Theorem
8.15 and (8.12), there exist a constant K > 0 (depending on OI) and a holomorphic
function Fj (z) (j = 1..... m) in a such that

Fj(4'(P)) = V,(P) - , ,(p). PEP°.

IFj(z)I Ke. z E 2iI. (8.13)

We consider the following analytic mapping from 0 into Cu`:

T: wj=zj+F,(z) (j=1....,m).
For e > 0 sufficiently small, it follows from (8.13) that T is injective on :NI with

C T(01). and T('f'(p)) ='I'(P) on P'; i.e., T(E) IT-3(E-)= E'.
Vow let f(p) be a weakly holomorphic function at a point p1 on E'. We set

fio = T-1(po) and f = f oT, which is a weakly holomorphic function at the point po
on E. Since E is normal at p11 on E. we can find a holomorphic function F(z) in a
neighborhood b of po in such that F IS'n6= f IEno. If we set H(w) = F(T-1(w))
for w E 6' := T(6) (so that b' is a neighborhood of po in Y), then H(w) is a
holomorphic function on 6' with H It;-n6-= F I,_-n6= f Izn6= f I E-n6 Thus. f (p)
is holomorphic at the point p0. Therefore, E' is a normal model of P' in W.

This result, combined with Runge's theorem in a Stein space. yields the follow-
ing theorem.

THEOREM 8.17 (Subglobal normalization). Let V be a Stein space and let P
be an analytic polyhedron in V with defining functions on all of V. Then P has a
normal model E : wj = rjj(p) (j = 1.....µ) in a polydisk A in Cµ, where', (p)
(j = 1, ... , p) is a holomorphic function on V.
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PROOF. By Theorem 8.1. P has a normal model E : zj = p j (p) (j = 1, ... , m).
p E P in the closed unit polydisk W° in C'", where 5pj(p) (j = 1.... , m) are
holomorphic functions in a domain G. P CC G C V. By taking a smaller domain, if
necessary, we can take rl > 0 sufficiently small so that, if we set P,, : 1,,2,(p) I< I+ q
(j = 1,....m), then P CC P, CC G and E,, : zj = Wj(p) (j = 1.....m) is a
normal model of P,, in G1,, : 1zj I < 1 + rl (j = 1, ... , m). Fix e > 0. Since the
pair (P,,, V) satisfies Runge's theorem (Corollary 8.2). we can find a holomorphic
function lPj (p) (j = 1. ... m) on V such that

IV., (p) -'pj(p)I < c on P,,.

If c > 0 is sufficiently small, then P' : Ivj(p)I < 1 + (j = 1.... m) is an
analytic polyhedron in G with P C P. Furthermore. Lemma 8.6 implies that
E' wj = (p) (j = 1.... , m) is a normal model of P' in the polydisk Ti,,, ,'2
Iw,,I < I +rl/2 (j = 1.....m) in C. The theorem is proved by setting

E: wj=vj(p)(j=1,....m)
in the polydisk 2i,,,2 in C'". 0

2. Subglobal finite pseudobase
Let V be an analytic space and let 91 be an 01-module on V. We say that .71

has a subglobal finite pseudobase in V if j1 satisfies the following condition.
Let E be an arbitrary compact set in V. Then there exist a finite number of
holomorphic vector-valued functions F; ,.(p) (k = I.... , v) of rank A on V such that:

1. Each Fk (p) (k = I,. , v) belongs to ,71 at each point of V.
2..71 is generated by FR.(p) (k = 1.....v) on E, i.e.. if we let .71{F} denote

the 01-module generated by FA ,(p) (k = 1,... , v), then .71 { F} is equivalent
to ,71 on E.

Then we have the following theorem.

THEOREM 8.18. Let V be a Stein space and let J ' be an 01-module on V which
has a locally finite pseudobase at each point in V. Then ,71 has a subglobal finite
pseudobase in V.

To prove this we prove the following lemma on the stability of a pseudobase.

LEMMA 8.7. Let P be a closed analytic polyhedron in V with defining functions
in a domain U C V. Let FF(p) (j = 1.....v) be a holomorphic vector-valued
function of rank A on P and let .71 {F} denote the 01-module generated by Fj(p)
(j = 1.... , v) on P. Let e > 0 and let Fj (p) (j = 1,_ , v) be a holomorphic
vector-valued function of rank A on P such that FF (p) E 91{F} at each point of P
and

fIF,(p)-Fj(p)II <c (j=1,...,v) for pEP. (8.14)

Then fore > 0 sufficiently small, the 01-module .71 {F`} generated by F'(p) (j =
1..... v) is equivalent to -7'(F) on P.

PROOF. Let P : Iv^j(p)I <_ 1 (j = 1.... m) with P CC U, where jpj(p)
(j = I.... , m) is a holomorphic function on U. We take n > 0 sufficiently small
so that P,, CC U, where P,, : Ipj (p)I < 1 + rl (j = 1,... , m) and F' (p) E J"{F}
(j = 1, .... v) at each point of P,,. By Theorem 8.4. there exists a holomorphic
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vector-valued function AW(p) = (A; ')(p).... , A;,''(p)) (j = 1.... , m) of rank v on
P, such that, for j = L... . v,

F; (p) - Fj(p) = A(')(p)Fi(p) +... +A(j)(p)F,(p). p E Pn

We may assume that each AQ) (p) on Pq satisfies l I A(' ) (p) I I < tic on P for some
constant K > 0 (depending on P and P CC P, but not on r) by Theorem 8.16
and (8.14). Therefore, by taking a smaller e > 0 if necessary. we can write Fj (p)
(j=1,....v)in the form

F3(p) = B(')(p)Fi(p)+...+(1+BJj)(p))Fj(p)+...+B,(,ji(p)F,'(p)

(j=1,...,v). pEP.

where each Bj')(p) (j, k = 1,... , v) is a uniformly small holomorphic function on
P. It follows that .7a { F' } is equivalent to .71 { F} on P.

PROOF OF THEOREM 8.18. Let E CC V be given. We take an analytic poly-
hedron P in V with defining functions on V such that E CC P°. By Theorem
8.6, we can find a finite number of holomorphic vector-valued functions Fj (p)
(j = 1,... , v) of rank A on P such that the O'-module J' {F} generated by
the Fj(p) (j = 1, ... , v) is equivalent to J on P. Given e > 0, by Lemma 8.5
we can find a holomorphic vector-valued function F3' (p) (j = 1..... P) of rank A
on V such that F' (p) E .7" at each point of P and IIF7(p) - Fj(p)II < e on P.
By Lemma 8.7, for sufficiently small e > 0, the O'-module .71 {F' } generated by
Fj* (p) (j = 1, ... , v) on V is equivalent to .7a(F) on P. It follows that J' has a
subglobal finite pseudobase in V.

3. Representation of meromorphic functions

Let V be a Stein space and let g(p) be a meromorphic function on V. To be
precise, g(p) is a single-valued holomorphic function on V except for at most an
analytic hypersurface E. and, at any point q E V, there exist two holomorphic
functions hq(p) and kq(p) on a neighborhood 3q of q in V such that hq(p) and
kq(p) are relatively prime on 6q and g(p) = hq(p)/kq(p) on bq. To be precise, this
means that for gj.92 E V with bq, fl 6q, 96 0. hq, (p) (kq, (p)) has the same zero set,
counted with multiplicity, as hq2 (p) (kq, (p)) in the sense that both hq, (p)/hq, (p) and
kq, (p)/kQ2 (p) can be holomorphically extended to non-zero holomorphic functions
on 5q, fl6Qz. Hence the data determined by the denominators {(kq(p).6q)}qav
defines a Cousin 11 distribution C on V. If the distribution C admits a solution
K (p) of the Cousin II problem on V. then H(p) = K(p) g(p) is a single-valued
holomorphic function on V. It follows that y(p) = H(p)/K(p) on V. where H(p)
and K(p) are relatively prime at each point in V (i.e.. this is a solution of the
Poincare problem for g(p)). As shown in Chapter 3. the Cousin II problem cannot
always be solved, even in a product domain in C2. However, using Theorem 8.18
regarding 0-ideals, we have the following theorem.

THEOREM 8.19. Any meromorphic function g(p) on a Stein space V can be
represented in the form g(p) = H(p)/K(p) on V. where H(p) and K(p) are holo-
morphic functions on V (which are not necessarily relatively prime at each point of
V).
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PROOF. We use the notation hq(p), kq(p), 6q (q E V) associated with g(p). For
a fixed point q E V, we consider the 0-ideal 2q generated by the function kq(p) on
6q. If qI, q2 E V with 6q, n 6q, * 0, then I., and 2q, are equivalent on 6q, n 6q,
(since kq, (p) = (hq, (p)/hq, (p) )kq, (p) on dq, n 6q where hq, (p)/hq, (p) is a non-
zero holomorphic function on 6q, n dq, ). Thus, the collection I of the the 0-ideals
{Tq}gEv becomes an 0-ideal on V which has a locally finite pseudobase (indeed,
one element) at each point in V. We let E denote the zero set of the 0-ideal I on
V, i.e., E consists of the pole set together with the points of indeterminacy of g(p)
in V. If E = 0, there is nothing to prove. If E # 0, then Theorem 8.18 implies
that there exists a holomorphic function K(p) on V such that K(p) $ 0 on V and
K(p) E Z at each point of V. Thus, K(p) = cq(p) kq(p) near a point q E V,
where cq(p) is a holomorphic function in a neighborhood 6q of q (where cq(p) may
have zeros in 6'q). If we set H(p) = g(p) K(p) on V, then H(p) is a single-valued
holomorphic function on V, so that g(p) = H(p)/K(p) on V. 0

8.5. Representation of a Stein space

In this section we show that a Stein space V of dimension n can be realized as
an analytic set in Cs"+1, and as a distinguished ramified domain over C" (this will
be defined in 8.5.2). The results in this section are due to E. Bishop [3].

8.5.1. Distinguished Analytic Polyhedra. Let V be an analytic space of
dimension n and let U C V be a domain. Let P be an analytic polyhedron in
V whose defining functions are defined in U; i.e., there exist a finite number of
holomorphic functions ipj (p) (j = 1,... , v) in U such that P consists of a finite
number of compact, connected components of the set U, := lj=1 {p E U I (p) <
1}. We consider the closed unit polydisk 2K in C°,

:IzjI<1(j=1,...,v),
and the mapping

4i:pEP.z=(VI(p),...,co (p))Ea.
We set E = 4'(P), which is an analytic set in 0 with 8E C 80. Since P satisfies
the separation condition, P does not contain any compact analytic set of positive
dimension. Thus, v > n and E is of dimension n. Moreover, for each z E E, 0-1(z)
consists of a finite number d of points in P, where d is the same for all z E E
except perhaps for an analytic set of dimension at most n - 1. If v = n, we say
that P is a distinguished analytic polyhedron in V (whose defining functions
are defined on U). Then E = A, and P is mapped in a one-to-one fashion onto a
finitely sheeted, ramified domain D over 2K without relative boundary.

By definition, at any point of the analytic space V, there exists a distinguished
analytic polyhedron neighborhood V of p in V.

We have the following proposition, which is of fundamental importance in this
section.

PROPOSITION 8.4. Let V be an analytic space of dimension n and let U C V
be a domain. Let P be an analytic polyhedron in V whose defining functions are
defined on U. Let K be a compact set in V such that K CC P° (the interior of P
in V) and let W be a domain in V such that P C W CC U. Then there exists a
distinguished analytic polyhedron Q in V, whose defining functions are defined in
U, such that K CC Q° CC W.
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To prove this we need the following two lemmas.

LEMMA 8.8. Under the same notation as in Proposition 8.4, we write the an-
alytic polyhedron i' as a finite union of compact, connected components of the set

V

U,,:= n(pEUII' (P)I <-1},
j=1

where cpj(p) (j = 1,... , v) is a nonconstant holomorphic function in U. We set

a = {p E U I'P1(p) = 0},

which is an analytic hypersurface in U. Assume v > n + 1. Then for any e > 0,
there exists a holomorphic function t/ij (p) (j = 2,. .. , v) on U such that

(1) ('Pi(p)-0j(P)I<£ (j=2,...,v) on W, and
(ii) for any a = (al,... ,a"_1) E C"-, the set

Sa:={pEW\oI ±ti(p)=ak(k=1,...,v-1)}

consists of at most a finite number of points in W.

PROOF. We consider C"+n with variables z1, ... , z,, and wl,... , wn. Noting
that v > n + 1, we consider the following set in C"+n:

zj = (Pi (P) (j = 1, ... , v), wk = `Pk+1(P) (k = 1, ... , n), p E U \ a;
VI (P)

this is an n-dimensional analytic set in the domain D \ {z1 = 0), where

D= ((z, w) E C"+n : Izj I < 1 (j = 1, ..., v), w E C" }.9

By Theorem 2.3, there exists a coordinate system Z' = (z., ... , z'", wi, ... , w,)
sufficiently close to the original coordinate system Z = (zl,... , z", wl, ... , w,)
such that E' satisfies the Weierstrass condition for w;,) at each point of
E'; i.e., the projection >rn of E' onto Cwi ,, , , has the property that for any
a = (a,,... , an) E Cn, the set an 1(a) is isolated in E'. Here, Z' = AZ, where A is
a (v + n, v + n) matrix sufficiently close to the unit matrix This means
that if we set A = (bi,j +E;,j){,j, where 8;.j is the Kronecker delta and Iei,jI < < 1,
then the set of points p in U with

Ev.v+lfPv(P) + (1+ev+1,"+1)to,
P

+ ev+n.v+n Wt p = al
(*)

et,"+nCP1(P) + ... + g 'fv+1,v+n f2 p
t

V, CPT

is isolated in U. Therefore, if we define, for p E U,

= an

//
n

1,(p) :_ 'Pj (.p) + Sol (p) E Ek,v+j (Pk (p) + E Ev+1,v+j 4P1+ 1(P) (j = 2, ... , n + 1),
k=1 1=1

ipj (P) := Wj (P) (j = n + 2, ... 'V),

91f we set Z* : zj = 'pj (p) Gl = 1, ... , v), ,P1(P)wk = fPk+t (P)(k = I,_ , n), p E U, then
r' is an n-dimensional analytic set in D and is equal to the closure of E' in D.



8.5. REPRESENTATION OF A STEIN SPACE 303

then (t:, (p) - :pj(p) I < e (j = 2, ... v) on 14' (for we can choose e, j sufficiently
small relative to E > 0). Equation (#) and the condition v-1 > n imply that, given
a= (at.....a,,.... ,a,,-I) E C"-', the set of points pin U such that "`(p) =

(p)yi

a, (j = 1, ... , v - 1) is isolated in U. 13

To prove Proposition 8.4, using Lemma 8.8 we may assume that for any (a2, ... .
E C'-I \ cr. the analytic set in U defined by

(P) =a, (j = 2, ... , v) (8.15)

has dimension 0.
Given a number r > 1 and an integer N > 1. we set

Fk(p) := (r1(p))v - (rwk(p))' (k=2.... ,v),
which is a holomorphic function on U. and we set

Er.,, :={pEU : IFk(p)I<1 (k=2.....v)}.
so that E,,.- is a closed subset of U defined by v - 1 holomorphic functions in U.

We have the following lemma.

LEMMA 8.9. Under the same notation as in Proposition 8.4, if r > 1 is suffi-
ciently close to 1 and N = N(r) > 1 is sufficiently large., then there exist a finite
number of connected components Qj of E,.N whose union Q = UQ3 satisfies

K CC Q° CC W. (8.16)

where Q° denotes the interior of Q in V. Then Q is an analytic polyhedron in
U which satisfies condition (8.16) and is defined by v - 1 holomorphic functions
Fk(p) (k = 2..... v) in U.

PROOF. We fix a domain V with smooth boundary OV in W such that

P cc V cc W
Since K is a compact set in P°, we can choose r > 1 sufficiently close to 1 so that
Ir:pj(p)I < 1 (j = 1.....v) on K. Therefore. there exists an integer No such that
K CC Eh (the interior of E,M for all N > No. We let Q,,N denote the smallest
union of connected components of E,, ti which contains K. To prove the lemma, it
suffices to show that

Qr.N C V for sufficiently large N. (8.17)

We prove this by contradiction: thus we assume there exist an infinite number of
integers N > No such that Q,. x 0 V. For simplicity we write Er, N = EN and
Qr.N = Q,-V. For such N, since K C Qyf1P° and P C V, there exists a (connected)
real 1-dimensional arc 'y in (Qv fl V) \ P° which connects a point p'N E UP to a
point p' E LV.

Fix q E 1. Since q V P°, we have I,pj(q)I > 1 for some j (1 < j < v). Using the
fact that y c QN, it follows that

Ir,1(q)IN > Irw,(q)I - 1 > 1 > 87rN

(for the last inequality is true if N = N(r) is sufficiently large). Since IFk(q)I
1 (k = 2,... , v), we obtain

1
I _ Fk(g)I 1 1

(8.18)-
VI(q)J

=
Irp1(q)I^'

<
Iripl(q)I`v - 8rrN
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In particular, setting 6 = {p E U I ICI I < 1/2). which contains o, we have q E U \ 6
(for I',(p)I > 1). We define

ON :_ It E C= 111 - t-,1 < 1/8nN},

which consists of N mutually disjoint sets wj' (1 = 1.... , N) about each Nth-root
e' of unity. Fix k E {2, ... , v}. Then inequality (8.18) implies that E w'
for some 1 (1 < 1 < N). Since q E -y is arbitrary and Lk (?) is connected, it follows
that (ry) C wt and i (-}') C U \ 6. where I depends only on ry and k. By taking
a subsquence of such N, if necessary, we can assume that wj approaches a point
tk with Itk( = 1 as N oo. Consequently, there exist infinitely many connected
real 1-dimensional arcs 7; (independent of k = 2,... , v) which connect a point
p., EOPandapoint V\P° such that (7,v)-'tk (k=2.....v)
in C= as N -+ oo. Thus we can find a continuum I' in (V \ P°) f1 (U \ 6) which
connects a point of &P and a point of 8V such that (I') = tk (k = 2.... , v).
This contradicts (8.15), and (8.17) is proved.

PROOF OF PROPOSITION 8.4. If we repeat Lemmas 8.8 and 8.9 (v - n) times,
then we obtain Proposition 8.4.

Using Proposition 8.4 we obtain the following proposition.

PROPOSITION 8.5. Let V be a Stein spare. Then there exists a sequence of
distinguished analytic polyhedra P" (n = 1, 2, ...) in V whose defining functions
are defined in V and such that

Pk CC PP+I (k = 1.2.... ). V = lim Pk. (8.19)kx
PROOF. We first take a sequence of analytic polyhedra Qk (k = 1, 2... in V

satisfying condition (8.19) whose defining functions are defined in V. By Proposition
8.4, there exists a distinguished analytic polyhedron Rk (k = 1, 2....) in V whose
defining functions are defined in Qk+I and such that Qk CC R,k CC Qk+I. Since
each pair Mk. Q*+I) and (Qk.I . V) satisfies the Runge theorem, we can find a
distinguished analytic polyhedron Pk in V whose defining functions are defined
in V and such that Qk CC P° CC Qk+i Thus Pk (k = 1.2.... ) satisfies the
conclusion of the proposition. C

8.5.2. Distinguished Ramified Domains. Let V be a ramified domain over
C" and let Tr : D C" be the projection map. If, for any compact set K in C",
each connected component of rr-I(K) is compact in D, then we say that V is a
distinguished ramified domain over C". It is clear that a distinguished ramified
domain V over C" is a Stein space if V satisfies the separation condition. Indeed.
from Theorem 9.3 in Chapter 9 we shall see that any distinguished ramified domain
is a Stein space. Conversely, we have the following theorem.

THEOREM 8.20. Let V be a Stein space of dimension n. Then V is holomor-
phically isomorphic to a distinguished ramified domain V over C".

PROOF. By Proposition 8.19 we can find a sequence of distinguished analytic
polyhedra Pk (k = 0,1....)in V such that

Pk CC Pk_i (k=0,1,-..). V = kim Pk.
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where each Pk (k = 0.1....) can be described as a finite union of compact connected
components in V of the set

v,:,. (1{PEVI I .(k)(P)I<1}.

where Jk)(p) (j = 1.....n) is a nonconstant holomorphic function on V.
Choose Ek>0(k=1.2....)sothat k Ek<landpk(k=1.2....)sothat

pl < P2 < ... and lim pn = w. We set.n-.x

J
{I,ol(P)I I P E PI} > 0.Afo = .=1

....
max

n.

and we set cl = pl + Alo > 0. We can then choose an integer N1 such that

/
C1

(Y. YIJ1)

(P)) < E1 lj = 1.....n) on Pot

since 1 on the compact set Po in P.
Consequently, if for j = 1..... n we define

,

ti's 1) (P) (P) + cl
()(p))

then is a holomorphic function on V which satisfies

Ivj (P) - jo)(P)I < EI (j = 1..... n) on P0.

Furthermore,
Imil)(P)I + . + It'nl)(P)I ? P, oil 0-P, -

To see this. let q E EOP1. Then 1(1)(q)I = 1 for some j (1 < j < n), so that

Iw;l)(q)I Cl
I ,0)(q)I?cl-A1o=P1

which proves the above inequality on 8P1.
We repeat the same procedure for a' (p) (j = 1,....n} that we used for

y,(o)(p) (j = 1.... , n) to obtain a holomorphic function vp2)(p) n) of

the form vj(p) + C2 (f;2)
r,

(p)) such that

121(p) - ,WW 1)

I < E2 (j = 1..... n) on P1.

Izij)(P) I + ... + Iv:,2) (P) I ? P2 on a'P2.

We thus inductively obtain a sequence of holomorphic functions {vJk)(p)}k=o......

(j = 1, ... , n) (where we set (p) _ ; to (p) (j - 1..... n)) of the form (p)

krl
= v;k)(P) + ck+1 ( k+1)(P)) (j = 1..... n) and such that

IV'; (P) - Ek+1 (j=1,...,n) onP5
IV,1k,-1)(P)I + ... + Pk+1

We define

on &Pk+1

x
H,(P) =

(o)(P)
4'(k)(P)) (j = 1,....n) on V.

k=0
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Since this sum converges uniformly on each compact set in V, it follows that
Hj(p) (j = 1.... , n) is a holomorphic function on V. Moreover, if we fix p E
t7Pt (1 = 1. 2,. .. ), then we have

IHi(p)I+...+IH,,(p)I

>I1Oit'(P)I+.+(p)I-

Cf
It x+li(P)-v;"')(P)

Pt- 4.1) 2: pi - n.

Thus

IHj(p)I > nt - 1 for some j (1 < j < n). (8.20)

where j depends on p E LPt.
Consider the holomorphic mapping

ID: p E V -+z={Hi(p).... ,H"(p))

Then 4) maps V bijectively onto a ramified domain D = $(V) over C". Ave shall
show that D is a distinguished ramified domain over C".

To see this, let K be a compact set in C" and fix a polvdisk Q : IzjI < R (j =
1 . . . . . n ) such that K CC Q. We choose an integer to > 1 such that -1 > R.
Then (8.20) implies that 4-1(K) fl LP, = 0 for 1 > lo. Hence, each component k
of $ `(K) in V is contained in Pty, or in P1-+1 \ PP for some l' > 10 (which depends
on k). Thus k is compact in V. Hence. D is a distinguished ramified domain over
C". C

8.5.3. Imbedding of a Stein Space. Any n-dimensional analytic set E in
Cx (N > n) can be regarded in a canonical manner as a Stein space V on which
the holomorphic functions correspond to the weakly holomorphic functions on E.
Conversely, any Stein space of dimension n can be represented as an n-dimensional
irreducible analytic set in CN. where N = 2n + 1.10 We prove this by first using
Theorem 8.20 to prove the following theorem.

THEOREdt 8.21. Any Stein space V of dimension n can be mapped holomorphi-
cally onto an n-dimensional analytic set E in C"+' in a one-to-one manner, except
perhaps for an at most (n - 1)-dimensional analytic set in V.

PROOF. Using Theorem 8.20. we. can find n holomorphic functions 0,(p) (j =
1, ... , n) on V such that the mapping

41: zj=aj(p) (j=1....,n), pEV.
gives a bijection from V onto a distinguished ramified domain V over C". We let
7r denote the projection from V onto C" and we write 0 for the origin in C". We
set

(8.21)

10The imbedding of a Stein space was first studied by R. Remmert (see R. Narasimhan (361).
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Let rk (k = 1.2....) be a sequence of positive numbers such that rk < rt.+1 (k =
1.2....) and limk_x rk = oc. and consider the sequence of polydisks Ak in C'
defined as

Ak : Izj 1 < rk (j = I ..... n: k = 1.2, ... ).

We set bl"k = 1r-1(Ok) C V; in general, this set consists of an infinite number of
compact. connected components. We let W. denote the connected component of
Itk which contains the point pi. Then It k.:1 n Wk consists of a finite number of
connected components of Rk which includes IV A.. We set Hk = Wk-+i n (Wk \ wk-)
and Rk = Ii k+I \ Wk, so that

lIk+i = ItkuHkuRk and rr(Rk)nik =0.

We note that Wk. Hk and the disjoint union It'k U Hk are analytic polyhedra
in V whose defining functions are defined in V. We also set it-1(O) n Wk =

{Pik'}

Choose fk > 0 (k = 1.2....) with fk < 1 and choose ak > 3 (k = 1.2.... )
so that ak* I > ak and limk_x ak = x. Since V satisfies the separation condition.
there exists a holomorphic function ft (p) on V such that

fi(Peli) fi(Pp1))

We set

mi =min{Ifi(P;i')-fi(P;')I I i.Ji#j}>0.
Next we construct a holomorphic function f2(p) on V such that

1. If2(P) - fi (P)I < Ei min{1/'2.m,/2} on IVI;
2. If2(P)I > a1 + max(if1(P)I) on H1:

3. MP, ) 34 f2(Pj2)) (i,j = 1..., .12: i 34 j)
To do this. we fix positive numbers Al and 6 with maxPE 11f, (p) I }+a 1 +1 < Af

and 0 < 6 < 1. Since the union L'1 := Wt UH1 is an analytic polyhedron in V whose
defining functions are defined in V. it follows that the pair (U1. V) satisfies Runge's
theorem. Noting that It', and H, are closed sets in V such that IV, n Ht = 0. we
can find a holomorphic function 12(p) on V such that If-2(P) - fi(P)I < 6 on ll'1
and I12(p) - AMI < 6 on H1. Hence, If2(P)I > {If1(P)I} + a1 on H1. By
taking 6 > 0 sufficiently small, we see that f2(p) satisfies conditions 1 and 2. Since
V satisfies the separation condition, we can find a holomorphic function k(p) on V
such that k(p;2)) 0 k(pp21) (i, j = 1.....12: i j). Hence, for r > 0 sufficiently
small. f2(p) := f2(p) + ck(p) on V satisfies conditions 1. 2, and 3.

We inductively construct a sequence of holomorphic functions fk(p) (k =
1.2. ...) on V and a sequence of positive numbers mA. (k = 1.2.... ),

rnk=min{Ifk(Pik))-fk(P`,k')II i,j=1, ....tk; i j}>0.
such that

1. Ifk+i(P) - fk(p)I < ck min{ 1/2. mi/2.... , rnk/2 } on Itk:
2. Ifk+i(P)I > ak+ mtax{Ifk(P)I) on Hk:PE.
3

fk+l(Pik«11) 0

fk+l(Pj k' ) (t' j = I,....Ik+1: i # 7)
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WC set
x

F(P) = fi(P) + F(fk-1(P) - fk(P)) P E V.

k=1

Condition 1 implies that this sum converges uniformly on each compact set in V.
so that F(p) is a holomorphic function on V. On Wj-t, (k = 1.2.... ), we have

x x
I F(P) - fk+, (P) I <- F, I f -.- i (P) - MP) I < EN <I-

In particular.

(8.22)

IF(P)I ? Ifk,,(P)I - 1 on 6t'k+1,

IF(P)I ? ak + max(Ifk(P)I} - 1 on HA.- (8.23)
pESS'k

For k = 1.2..... we also have

F(P;k`)I

7 Ifk(P;k) -
fk(Pjk,)I

fi,(Pk,)I + If"_I(Pjk:) - fv(Pj)I)
p=k

x
2rnk (1-F,C")>0

l4=k

for i, j = 1..... /k: i 0j. It follows that

F(p,) 0 F(P,) (i.j = 0. 1.... : i 34 j) (8.24)

Now consider the following holomorphic mapping F from V into C" 1 = C; x
C,,.:

F : p - (z,.... , ..., ti) _ (Pi(P) .... o"(P) F(P)) E C" 1

and set E = F(V) in C". «e shall show that F and E satisfy the conclusion of
the theorem.

To this end. using (8.24) and (8.21) it suffices to show that E is an analytic set
in C"'': i.e.. E is closed in C". Equivalently, if we set

Lk = min Ioj(P)I + IF(p)I I p E Il'k+1 \ Il k
i=1

(k = 1.2....),

then it suffices to show that limk-, Lk = +x.
To see this. fix p E Rk. Then there exists j with 1 < j < n such that Io,(p)I >

rk. Furthermore. (8.23) implies that IF(p)I > ak - 1 on Hk. Since Wk+, \ Wk =
Rk U Hk. it follows that Lk > min{rk.ak - 1} -+ +oo as k -+ +x. Hence, E is an
n-dii11ensional analytic set in C". 0

REMARK 8.9. The analytic set E = F(V) in C` from the above proof has
the following property: Let M. = max {IF(p)I}. I a = {IwI < Mk} C C,,.. and

pen,,
Ak = k x I'k C C". Then E fl Ak = F(Wk).
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Indeed, for each l > k. we have. from (8.23) and condition 1 on the sequence
{f&.h.

IF(p)I > a) + max{Ih(p)!} -1 on H,
PEW,

> 41,+1>M..
Since tr-' (Oa) \ I k. C U k H!. it follows that

min {IF(p)I I p E tr-1(Ok) \11k I> !ilk.
which proves the remark.

We also obtain the following theorems.

THEOREM 8.22. Any Stein space V of dimension n is holomotphically isomor-
phic to an n-dimensional analytic set E in C2''.

PROOF. We use Theorem 8.21 and maintain the notation from its proof. Let S
be the set of points p E V such that there exists at least one point q E V with p # q
and F(p) = F(q). The set S in V is an analytic set of dimension at most n - 1. To
see this, fix po E S and let (z('. w") = F(po) E E. From Theorem 8.21 there exist
only a finite number of points p, E V (j = 1..... in) such that F(ps) = (", and
pi 54 p,). If we take a small neighborhood 6 of (z". w0) in C°` . then the open set
F-'(6 .- E) in V consists of (m + 1) connected components C V (i = 0.1..... tn)
such that p, E t;. Since o := UJ' I[F(co) n F(r,)] is an analytic set in 6 whose
dimension is at most n - 1. the same is true of the analytic set r := F- 1 (a) n ro in
t-0. Since r = S n v1. we have our desired conclusion.

We set = F(S). which is an analytic set of dimension at most n - 1 in
C"'. We let S(n-1) denote the family of (n - 1)-dimensional irreducible analytic
sets in S. say SI"-" = {S,}j_) We let S1 denote the collection of S, such
that 11'1 n S, 54 0; this is a finite collection of sets. We inductively define Sky 1 (k =
1.2.... ) as the collection of all S. such that lt'k+1 n S. # 0. so that Sk C Sk _, and
S("-'' = limk_, S. Note that each Sk is a finite collection of sets Si.

For the sake of convenience, we rename the collection of sets S, in Sk:

here 0<!k<xand Sk_),JSk,, forj=1.....lk.
On each Sk (k = 1.2.... ), we fix a point plJk' E Sk.,J n W j. (j = 1, ....1k) such

that pjk) = pk+l) (j = 1.....lk) and such that E("-'! is nonsingular at the point
We consider all points E V (s = 1.2....) such that p`lk' # qj r' and

(k) 1k} (k)F(p) ) = F(q, ). Since p E 11 k. it follows from Remark 8.9 that all points
q a) are contained in Wk. and hence there are only finitely many such points. say

q ;) E 6i k (s = 1.... , stk) ). where s. < oc.
Let (k>0(k=1.2....)withek>Ekr1and F 1Ek<1. Since V satisfies the

separation condition. we can find a holomorphic function g1 (p) on V such that

9t (pj(") 36 91(gq') (j = 1.....11; s = 1..... sit' ).

We set

m)= min >0.
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We next construct a holomorphic function g2(p) on V such that

1 Ig2(P) - g1(P) I < F1 mint'l, m1/21 on 11):
2.

!J2(Pf21) g2(q),) (j s =

To do this, since V .satisfies the separation condition. we first find a holomorphic
i21 12) ,2function h2(p) on V such that h_(q, ,) (j = 1.....12; s = 1.... , sl ). If

we set g2(p) = q1(p) + Fh2(p) on V, then satisfies conditions I and 2 provided
r is sufficiently small.

We inductively obtain a sequence of holomorphic functions gA.(p) (k = 1. 2.... )
on V and a sequence of positive numbers Mk (k = 1.2....) such that

1 Igk+1(P) - 9k(P)I < Fk mite{1/2, n11/2.....mk/2} On Ilk:
2 Ik+11 ( iA!

j1) 0 = 1... 3 = 1.... .3,k-1'):
gk 1(P, ) 34 .91-1 qj,... ;k-tf

) - gkT I
(q,.k.. -t,)i > 0.min3. nak-] = (Pj }

Next we set
x

G1(P) = 91(P) + F 9k(P)). p E V.
k=1

By condition 1. GI(p) is a holomorphic function on V. Furthermore, by condition
I we have

1G, (p' - GI(q,k')s
X

Igk(P3AI)

- gk(q,Hl)I -
(I.g1,_t(P`,A')

-gl,(gjA')I)
I-L

X

> Mk (1 - F, (,,) > 0 (8.25)

N_k

for all k. j. s. We consider the holomorphic mapping

G1 PE V -- (_1.... .,n. WI. 11'2)

(9t(p).... E C°'2

and we let Et := G1(V). which is an lI-dimensional analytic set in C"+2. Then
V and CI are in one-to-one correspondence except perhaps for the analytic sets
S1"-2' of dimension at most it - 2 in V. To see this. note that (8.25) implies p1jk1
S'" =' (k = 1, 2, ... 1..... IA.). SO that Sj r 21 does not contain the irreducible
component Sk_ j. Since Sf 13 = Uk., Sk. j, it follows- that dim S" ' 2) < n - 2.

We repeat the same procedure on S1 "' as we performed on S"' to obtain
a holomorphic function G2(p) on V such that the mapping

G2 : p E V - (Z1.... . :,,, w1. tl?2, u;3)

_ (01(p).....o,,(p).F(p).G1(p).G2(p)) E
gives a one-to-one correspondence between V and the analytic set E2 = G2(V) in

except perhaps for the analytic set S'"-31 in V which has dimension at most
n - 3.

After 11 repetitions of this procedure. we finally achieve the conclusion of the
theorem. C
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For the next theorem concerning Stein manifolds we need the following lemma.

LEMMA 8.10. Let D be a domain in C" and let

G:
(where l > 1) be a holomorphic mapping from D into C". For an integer i with
0 < i < n. we consider the following analytic set E1i1 in D:

Si+l _ 1 E D j rank
o(.91... .g,i+t)l

< i

Assume that for any a E C"+'. the set G-' (a) is either empty or is an isolated set
in D. Then dim Pt'I < i.

PROOF. We set k = dim S"' and we need to show that k < i. Let 1A1 be a
nonsingular point of t". We may assume that D =.A" : Izil < 1 (j = 1..... n)
and E'!'! = Ok x {O} where Ok := Iz',1 < I (j = 1.....k) and 0 is the origin
in C" ' . We set Gj(zt..... Zk) (j = 1.....n + 1). Since for any
z = (Zt.....zk.,0.....0) = (z'.0.....0) E 6 ' we have

rank 08(.91....: rank
C8(GI.....G"+t)1

\ 8(zt... Z") J1 \ 8(zl.... --k) JJ

it suffices to prove that zk) is of rank k at some point
z'EOk.

We consider the holomorphic mapping

d : z' E Qk w = (G](z').....G E

and set E = G(Ak ). For each a E C"-'. since the set G (a) is either empty or is an
isolated set in A". the same is true of d-1 (a) in ,k. Hence E is a k-dimensional
analytic set in a domain in C". If we project E to a suitable k-dimensional
hy'perplane L in C"+'. say r : E -a L and L : wj = 0 (j = k + 1.... , n + 1). then
rr(E) is a ramified domain over with branch set S of dimension at most
k - 1. Thus. det (a(Gl...... 0 0 on Ak for some (jl.... , jk).
which proves the result.

We study the mapping

F: V
defined in the proof of Theorem 8.21 in the case when V is a complex manifold
of dimension n. By Remark 8.9. F in each Ak satisfies the condition in Lemma
8.10. The contrapositive of the lemma yields the following fact: on an analytic set
a of dimension r (0 < r < n) in V. the matrix 8(01..... o,,. F)/8((1..... (") is of
rank at least r on a except for an analytic set a' C a of dimension r - 1. where
(t;t.... ,(") are local coordinates on the complex manifold V."

Then we have the following imbedding theorem for Stein manifolds.

THEOREM 8.23. A Stein manifold V of dimension n is holomorphically isomor-
phic to an n-dimensional non-singular analytic act E in C2-1.

11 By convention, an analytic set of negative dimension is the empty set.
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PROOF. We maintain the notation used in the proof of Theorems 8.21 and
8.22. The proof is similar to that of Theorem 8.22; we add the rank condition to
the separation condition as follows.

We .et o, 1(P) = F(P) in V. For a = 0,1..... n - 1. we set

E0 i., E V; rank
a

7 \
1

and we let £t"' = CI [Eo, ] denote the closure of £t;' in V. Then £'') is an analytic set
in V. We note by the definition of rank that =e"' and at") C Ul01 E" (a =
1, ... , n - 1). so that E'"' C U'4'=,, E11'`'. Lemma 8.10 implies that

d(, := dim £'" < a. (8.26)

First step. There exists a holomorphic function on V such that the
mapping

EG : P E V --+ (C1, ... Z,,. U'1. u'.) - (01(p).. . .

from V into C"'2 satisfies the following conditions:

(1) If we set E = G(V). then V and E are one-to-one except for perhaps an
analytic set of dimension at most n - 2 in V.

(2) If we put. for each a = 0,1.... , n - 1.

E V I rank
(o(oi 2)) - a

then dim .'Q' < a - 1.

To prove this. for each a = 0.1..... n-1. we begin by setting £''"' U j 1 E("'.
where (I = 1.2....) is an irreducible component of «e let E`r1' denote
the collection of sets Ei"' such that 11'1 n El') 0 0. where It', is defined in the
proof of Theorem 8.21. This is a finite collection of sets.

We inductively define £1,,.k-11 (k = 1.2....) to be the collection of sets E,'"'
such that n E,"' j4 0 and E,(") E',,.!' U... U Again. this is a finite
collection of sets. Thus. Ux 1 £'"'". and this is a disjoint union except for
analytic sets of dimension at most a -1. For convenience, we rename the collection
of sets Ei"' in E{"lI'''

where 0 < X.
We first take k = 1. In the proof of Theorem 8.22. we chose a point E

S1.1nit'1 (j 1.....11)andES1,Jn11(j=1....,11; s= 1.....s1 '°). Now
(i=1.....m'"1')foreach a=0.1.....n-I
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such that
P,1)(all (j=1.....11:

(a.l) # p(o.1 t (i. j = 1... .
1

1.....m(".11)

nri<r.l i j).

rank =a (i=l....,m
a((

Fix Ek > 0 (k = 1.2....) with Ek > fk+1 and E' l Ek < 1. Since V satisfies; the
separation condition, using Remark 8.7 we obtain a holomorphic function g, (p) on
V such that

(j = 1,....I: s1 = 1.... sj1'),

rank =a+1 (a=0.1... .n-1: i=1... .nr'<,.11

... - w ) g, - 1,

We thus have

det
a(o.......

0 (i = I.....in(r..1r).

where (i1.... , are a distinct numbers in (1..... n) and are a + 1
distinct numbers in (1,... ,n) which depend on W'Ve set

MI = min {I91(P21>) - 91(gj
81 ))I1 Ia,".1)I) > 0.

j 1.....l t

a=0.1.....n-1

We next construct a holomorphic function g2(p) on V such that
1. I91(P) - 92(P)I < f1 min{1,m1/2} on lt'1;
2. if we set

b(1) =
det (

0.......

where (µ1..... µ") runs over all increasing a-tuples in (1..... n+l ). (i1.....
is+1) runs over all increasing (a + 1)-tuples in (1..... n): a = 0.1..... n -
1; i = 1.... then we have S") < E1 min{l,ml }:

3. 92(Pj')#g2(9;,))(v=1.2: j=1.....12: s=1.....8j2)

rank \a(41 =a+1 (a=0.1.....n-1: i=1.....rn1"'l)).\ a((1, ,Srt) -,,.2l

To do this, just as we constructed g1 (p) on V. we construct a holomorphic function
h2(p) on V which satisfies condition 3. If we set g2 (p) = g, (p) + Eh2(p) on V. then
922(p) satisfies conditions 1. 2. and 3 for sufficiently small E.

By condition 3 we have

a(a.2) det (O(Q1... 0 (a = 0. 1.....n-1: i = I..... rn 2i).
J
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where (i I .... i,,) is an increasing a-tuple in (1, ... , n+ 1) and (j' .... j1) is an
increasing (a + 1)-tuple in (1, .... n) which depends on (a = 0.1, .... n -
1; i = I...... m(<' 2)). We set

m2 = min{ I92(P32j) - 92(9j;')I, Ia1°'21I } > 0,

where j=1,...,12: s=1,...,..... a=0,1,....n-1;andi=l,...,ne.`..2.

We inductively obtain a sequence of holomorphic functions gk(p) (k = 1.2.... )
on V and a sequence of positive numbers mk (k = 1.2, ...) such that

1. I9k(P) -9k+I(P)I <Ckmin{1,m1/2.... ,mk/2} on Ui.:
2. if we set

bik) = max j

3.

det
C8(4"`.....dN 9k -9k+I)1

where (µI ..... µ,,) runs o v e r all increasing a-tuples in ( 1 . . . . , n+l ) ; (i 1, ... .
ictl) runs over all increasing (a + 1)-tuples in (1.... , n); a = 0,1.... , n -

then we have a(k) < Ckmin{1,nI.....Mk };
= 1...9k+1(PJV)) 9k=1(qj,) (v = 1,.. k + 1: j = 1.....(,: 8

rank a r 1

(a = 0.1,....n - 1; i = 1....

4. by condition 3, if we set

a(a.k+I) .= det 0,,, . 9k+1) 00

where (i1..... i<,) is some increasing a-tuple in (1..... n + 1) and (jl.. , . .

jn+1) is some increasing (a+1)-tuple in (1..... n) which depends on
then

mk+I := -9k+1(4J8+")I Iaia.k+I)I } > 0,

where j = 1.... dk+I ; s = 1, ... , sJk+I ): a = 0,1..... n - 1: and i =
1.... ,m(a.k+1).

We define

x
GI(P) = 91(P) + I:(9u-I(P) - 91L(P)), P E V.

n=I

Then condition 1 implies that G1(p) is a holomorphic function on V. As already
shown in the proof of Theorem 8.22, we have

GI( 96 GI (9j ,>) for all k. j, s. (8.27)
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Furthermore, for any point

det
(

det a(Oi...... 0e., , 90

-
x
E det (8(0t .....0e,,.9µ+1 -8(C,,.....c,,,_1)

)0!,,.k,

x
>ink (1-_:lFP) >0.

/p=k

so that

rank =a+1 at all points (8.28)

where a = 0.1... , n - 1; k = 1.2.... , i = 1.....
Next we consider the holomorphic mapping

G1 : p E V (Zl,....Zn,tL`1,91:2) _ (01(p)... E Cn+2

and set E1 = G1 (V) in Cn+2. Formula (8.27) implies that V and E1 are in one-to-
one correspondence via G1 except for an analytic set S(n-2) of dimension at most
n - 2. Further, f o r each a = 0.1.... , n - 1. if we set

Fo° p E V I rank=- (°°;:(;ci: ... .Cn) )p
P-) = Cl [4i°,] in V.

then Ft"1 is an analytic set in V of dimension at most a - 1. In fact, it is clear that
C Let £J°i be any irreducible component oft(') and let d°.; = dim Sl°

so that < a by (8.26). On the other hand. formula (8.28) implies that

rank d(o1 ,4n+1,G1)l =a+1
Cn) / p

for all p E lid°) except for an analytic set a°i of dimension at most d°, -1 (< a-1).
Therefore. P") C U; 1 e.("). and dim P-) < a - 1.

Thus, by setting On+2(p) = Gj(p). we complete the first step.

We have dim P°i < a - 1. In particular. if we set a = 0. then PO) = 0, i.e.,

/0(01+
p E V I rank _

1

Cn) ) - 0 = 0. (8.29)

Second step. If we repeat the same procedure for F(Ui (a = 1, 2.... , n - 1) as
we performed for (°) (a = 0.1..... n -1), then we obtain a holomorphic function
0.+3(p) on V with the following property: if we set

G2 : p E V - (z1... ,?.n. Wt. w2. w3) = (01'p).....¢n+3) E Cn+3
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and E2 = G2(V) in Cn'3, then V and E2 are in one-to-one correspondence via G2
except for an analytic set Stn-31 of dimension at most n - 3. Moreover, for each
a=1.....n-1.ifweset

Ga; -
a {PE VIrankl / =a ,

0((1,...

Gt°' = Cl 19((,") 1 in V.

then cI°' is an analytic set in V of dimension at most a - 2. From (2) in the first
step we have dim .F`°1 < a - 2. In particular. if we set a = 1. then this inequality
and (8.29) imply that

(O(oi.. .. .0, 1 6ri-2.4n+) =0or1 }=0.

Third step. We repeat the same procedure n times to obtain n holomorphic
functions On+2, . o2,1(p) on V such that, if we put

Gn p E V -i (z1..... Z».tl';,....1/! 1) _ (Ol(p),....O2»YI(P)) E Czn+l
and E. = G,(V) in C2"+1, then V and E. are in one-to-one correspondance via
G" and

n-1
U pEVIrank C8o1,...,42..+1)1 =a =0.

a=0 8(c1,... Jp
This completes the proof of the theorem. 0

8.6. Appendix
We shall prove the Hilbert-Riickert Nullstellensatz for holomorphic functions.

This proof follows Oka [51].

THEOREM 8.24 (Nullstellensatz). Let F, (z) (j = 1.... ,v) be holomorphic
functions defined on a neighborhood A of the origin 0 in C:` and let E denote
the common zero set of the F, (j = 1..... P) in A. Let 1{F} denote the 0-ideal
generated by Fj (j = 1,... , v) in A. If f (z) is a holomorphic function defined in a
neighborhood 6 C A of 0 in C" with f (z) = 0 on 6 n E. then there exists a positive
integer p with if E Z{F} at 0.

PROOF. We let r(E) > 0 denote the dimension of the analytic set E at 0, i.e.,
r(E) is the maximum dimension at 0 of the irreducible components of E passing
through 0. The proof will be by induction on r(E) (and is independent of the
dimension n of CZ ).

We first prove that the theorem is valid if r(E) = 0. Let Fj, A, E and f be
given as in the statement of the theorem with r(E) = 0. By taking a smaller
neighborhood 6, if necessary, we may assume that 6 = ii1 x . . x 6 C A where
6, (i = L... . n) is a disk in the complex plane C:, centered at the origin z, = 0
a_ndthat 6nE={O}. Fix iE
6, means that 6, is omitted. We consider the projection ideal Pi of T{F} on 6 onto
the disk 6, in C.,. Since En(6* x 86,) = 0. it follows from Theorem 7.9 that P, has
a locally finite pseudobase pt r 1(z;) (k = 1, ... , v,) on a neighborhood 6; C 6, of the
origin z, = 0 in C:,. We note that the projection of E n 6 onto 6i consists of the
origin z, = 0 and that the common zero set of (k = 1..... v,) on 6; equals
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{0} in CZ,. We thus have tip(k)(z,) = a(k)(z,)z;`.' (k = 1,... , vi). where a(k) (Z,) is

a holomorphic function on 6 with a(k)(0) 54 0 and lk,, is a positive integer. Setting
l; := mink=I.....,,, 1k,,, we see that Pi is generated by z;' in 61. By the definition of
the projection ideal P, of Z{F} we see that

zi E Z{F} at each point in 6' x {z; = 0} C C".

We set I = max,=,.... ."{l;} > 1, so that z1, E Z{F} (i = r + 1,... n) at the origin
0 in C". On the other hand, since f (O) = 0, we can write

f(z) _ .4,(z)z1 on b.

It follows that f (z)"1 E 1{F} at O. which proves the theorem if r(E) = 0.

Now let r > 1 be an integer and assume that the theorem holds for E with
r(E) < r - 1. Let F;, A. E and f be given as in the statement of the theorem with
r(E) = r. We claim that it suffices to prove the result under the assumption that
E is of pure dimension r at the origin 0 in C".

For assume the theorem is valid for any E with pure dimension r at O. Given
a general E with r(E) = r. we have a decomposition of E in 0 of the form

E=E0U...UEr,
where E; (j = 0.1, ... , r) is a pure j-dimensional analytic set in 0 (possibly
empty). As usual, we may need to take a smaller neighborhood D about 0 in
C" to achieve this. For each j = 0..... r - 1, we can find holomorphic functions
Fkj)(z) (k = 1, ... , vj) in A whose common zero set in 0 equals Vk=0 Ek. We
introduce r new variables y1.... , yr and consider the common zero set t in 0
A X Cr of the v + u,-1 + ... + v0 holomorphic functions

FL.... F,,, y1F{r-').... . Y1 F,, ,1).... ,yrF(0),... y,F,(o).1 10

Then the analytic set t in & is identical with the lifting of the second kind of the
analytic set E in 0, and is of pure dimension r in 0. We let ,7 denote the 0-ideal
generated by these functions in & Since f (z) = 0 on t (we regard f as being
independent of the variables yl.... , yr), from the hypothesis that f E .7 at the
origin 0 in C" X Cr, we can write

v r v

f =>a)F,+EEO(k)ykF(r

i
i=1 k=1;=1

where a,,;3jk) are holomorphic functions in a neighborhood of 0 in C= X C.
Restricting this equation to y, = = yr = 0, we see that f E Z{F} at 0 in C7.
Thus, the theorem is valid if E is not necessarily pure r-dimensional at the origin
0inC".

Thus we can now assume that E : Fe(z) = 0 (j = 1, ... , v) is of pure dimension
r at 0 in C". We can choose coordinates

(z',z") := (z1.... ,zr.zr-..1.... ,,Z")

where z' = (z1.... ,Zr) and z" = (zr_1, ... , zn), and a polydisk A = O(r) x r C
Cr, X C,-r centered at the origin 0 such that E fl [A(r) x Or] = 0. We set
r=rr+Ix---xrnwhere r,: Iz;I<r; (i=r+1,...,n).FixiE{r+1,...,n}.
We set

A,=O(r)xr, and r'=rr+i x...xr,x...xrn.
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Since E fl [A; x (8T')] = 0. we see from Theorem 7.9 that the projection ideal P,
of Z{F} onto AI has a finite pseudobase

4 (k=1,...,p:) on A,

(again, we take a smaller polydisk A, if necessary). We let Z{ i °' } denote the
0-ideal generated by (z', z,) (k = 1..... p,) on A,: thus Z{Y ` } is equivalent to

on A;. We note that the projection of the analytic set E onto A, is an analytic
set Ell) in A; which equals the common zero set of.k (z'. z) (k = 1.... , p,) in A, .
Also. we note that Ei'ifl[A(r}f18I ;] = 0. Since Ell) is a pure r-dimensional analytic
set in the (r + 1)-dimensional polydisk A;. i.e.. Et" is an analytic hypersurface in
A,. it follows that E(`) can be described as

E(,) : Pi(z', z.) = 0 in A,

where P, (z'. z,) is a distinguished in z; whose coefficients are
holomorphic functions of z' in Wri. From the arguments in Chapter 2. the origi-
nal analytic set E in A consists of certain irreducible components of the complete
algebraic analytic set defined by

11

S :=
1 1 {z = (z'. z") E A(r> X C,'., r I P, W. Z.) = 01

e= r+ l

We let E' denote the collection of the remaining irreducible comoponents of S. other
than E. so that S = E u V.

We claim that for each i = r + 1.... n. there exists a positive integer q, such
that

(.) Pi (Z'. z,)"' E Z{wi'1} at the origin 0 in C, x CG,. (8.30)

If the claim is proved, then we complete the proof of the theorem as follows.
By the definition of the projection ideal P, of Z{F} onto Al. we see that each
:rk" (z', z,) E Z{F} (k = I...... ,) at each point in A C C. Here we regard
p (z', z;) as being independent of the n - r - 1 variables zr+1 .... z;, .... z,,. This
observation. combined with claim (s). implies that

P,(z'. z,)Q' E Z{F} at the origin 0 in C".

We set q = maxc=r+t....., q, >- 1. We now let H(z) be a holomorphic function in A
such that H(z) = 0 on E' and H(z) * 0 on each irreducible component of E. Since
f(z) = 0 on E, we have fH = 0 on S. From Proposition 7.7 it follows that

f (z)H(z) E Z{Pr+1. . A,) at 0 in C".

If we let a denote the common zero set of the n - r + 1 holomorphic functions
{H(z),Pr,l(z'.zr+t)..... in A. then the conditions imposed on H(z)
imply that the dimension of a at 0 is less than or equal to r - 1. Since f = 0 on
a C E, it follows from the induction hypothesis that there exists a positive integer
p with

at0inC".
Hence. the above relations imply that

f (z)1v+I)."w E 1{F} at 0 in C.
Thus the theorem is proved, assuming the claim (s).
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It remains to prove claim (*) for each i = r + 1,... , n. For simplicity, we write

zi = w, Vii = E, Pi(z', zi) = P(z', w), Pkt,(z', zi) _ wk(z', w) (k = 1,... pi = p),
Z{o>} = Z{gyp}, r, = r c C., and A = OMr) x r c CZ, x C,,. We let

E=EIU...UEp
denote the irreducible decomposition of E in A. Since E? 11 [A('') x 8r) = 0, each
E3 (j = 1, ... p) can be represented in the form

EJ . Q,(z',w) = 0 in D(r) X C,,,,

where each Q, (z', w) is an irreducible distinguished pseudopolynomial in w whose
coefficients are holomorphic functions of z' in A(''). We note that

P=Q1 x...xQp on A(r) X C..

Since W, (z', w) = 0 on E, it follows from the Weierstrass preparation theorem that
w1=AiQr'...Qpr in A,

where AI is a holomorphic function on A with Al $ 0 on each E, (j = 1,... p),
and m, (j = 1,... , p) is a positive integer. Setting m = maxj=1....,p mj and
mil =m-mj >0 (j = 1,... p), we have

QM1 ...Qp P,p1 = A1Pm in A.

If AI (O) 14 0, we have P E Z{w1 } C Z{gyp} at the origin 0 in Ct, x C,,,; hence the
claim (*) is proved. If A1(O) = 0, the common zero set or of the p+ 1 holomorphic
functions {AI, p1, ... ip} in A is of dimension r- 1 at O. Since P= 0 on a C E,
it follows from the induction hypothesis that there exists a positive integer p with

P° a1A1 +Q1(p1 at O in Ci, x Cu;,

where a1 i J 1 (j = 1, ... .. u) are holomorphic functions at 0 in C=, x Cu,. Thus

P°+- = (Q-1' Q>,' N&l + QµWµ at O in C=, x Cm,

which proves the claim (*). 0





CHAPTER 9

Normal Pseudoconvex Spaces

9.1. Normal Pseudoconvex Spaces

The main purpose of this chapter is to prove Oka's theorem that any pseudo-
convex domain in C" is a domain of holomorphy. We shall prove this theorem in
a more general setting. The essential part of the proof of this generalization, the
use of an integral equation to solve the Cousin I problem. is the same as in Oka's
original work (53]. We first define a normal pseudoconvex space as an analytic
space with a strictly pseudoconvex exhaustion function.' We shall then show that
a normal pseudoconvex space is a Stein space: this statement contains Oka's theo-
rem as a special case. In this chapter we will always assume that an analytic space
satisfies the second countability axiom of Hausdorff.

9.1.1. Pseudoconvex Functions. We will define a pseudoconvex domain in
an analytic space. Let V be an analytic space of dimension n. Let U C V be a
domain and let 8U denote the boundary of U in V. Let q E dU and let (d4, A9. G )
be a local coordinate chart for q in V. If there exists a neighborhood v C 69 such
that qy(v fl U) C aQ is a ramified pseudoconvex domain over C" (defined in 6.1.6),
then we say that U is pseudoconvex at the boundary point q. If U is pseudoconvex
at each boundary point, then we say that U is a pseudoconvex domain in V.
Immediately from the definition we obtain the following properties.

1. If U, and U2 are pseudoconvex domains in V. then so is U, n U2.
2. Let Uk (k = 1, 2....) be pseudoconvex domains in V with Uk C Uk+l

(k = 1.2.... ). limk, Up. = Uo. and Uu CC V. Then Uo is a pseudoconvex
domain in V.

Now let D be a domain in V and let 1(p) be a real-valued continuous function on
D; we allow I to admit the value -ac. If, for any point q E D, the domain {p E
D I f(p) < 1(q)) C D is pseudoconvex. then we say that 1(p) is a pseudoconvex
function on D. As we have already shown, any continuous plurisubharmonic
function in a univalent domain D in C" is a pseudoconvex function on D.2

'We use the word "normal" for the following reasons:
(i) We showed in Chapter 8 that an analytic space can locally be mapped to a normal analytic

set in a onto-one manner.
(ii) A pseudoconvex domain in an analytic space is not always a holomorphically complete

domain (Stein space). In Theorem 9.3 we shall prove that a domain which admits a strictly
pseudoconvex exhaustion function is holomorphically convex; we will call such a domain in an
analytic space a normal pseudoconvex domain.

2Since the notion of pseudoconvexity is local, we can define the notion of a plurisubharmonic
function on a domain in a complex manifold without any ambiguity. However, there is no unique
definition of plurisubharmonicity (or of pseudoconvexity) in a ramified domain over C^. We use
the terminology "pseudoconvex function" on domains in an analytic space.

321
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In section 3.4.1 we defined what it meant for a family of analytic hypersurfaces
{0}tEf0.l! in C" to satisfy Oka's condition in order to find a useful criterion for
a point to be in a polynomially convex hull. We now introduce a similar type of
family of analytic hypersurfaces in an analytic space V.

Let q E V and let (bq,aq,©q) give local coordinates for q in V. Let I = [0,1) be
the unit interval of the complex t-plane and let g(p. t) be a complex-valued function
in bq x I such that

1. g(p, 1) is a continuous function on S. x I. and
2. for any fixed t E 1, g(p, t) is a non-constant holomorphic function on bq.

Given t E I. we consider the analytic hypersurface in 5q defined by

at: g(p.t) = 0. (9.1)

We say that {at}tEl is a continuous family of analytic hypersurfaces in 6q at the
point q.

Now let ((p) be a finite real-valued continuous function defined on a domain D
in V. Fix q E D and let {at}tEt be a continuous family of analytic hypersurfaces
in Sq C D at the point q. We use the same notation as in (9.1). If {at}tE/ satisfies
the following two conditions:

1. ao passes through q and att \ {q} lies in {p E dq 11(p) > f(q)};
2. for each t > 0. at C {p E dq I ((p) > ((q)}.

then we say that {at}tEi is a family of analytic hypersurfaces touching the
domain {p E D I f(p) < 1(q)} from outside at the point q.

If f(p) admits at least one such continuous family {at}tFj, then we say that
((p) is strictly pseudoconvex at the point q. If ((p) is strictly pseudoconvex
at each point q in D. then we say that 1(p) is a strictly pseudoconvex function
on D.

By definition, any strictly pseudoconvex function on D C V is a pseudoconvex
function on D. Any piecewise smooth. strictly plurisubharmonic function on a
univalent domain D in C" is a strictly pseudoconvex function on D. However
a strictly pseudoconvex function of class C2 on a univalent domain D in C" is
not always a strictly plurisubharmonic function on D. The following properties of
strictly pseudoconvex functions on a domain D C V are easily verified.

1. Let E(p) be a strictly pseudoconvex function on D and let h(r) be a finite.
real-valued increasing function on Then ft,(p) := h(i(p)) is a
strictly pseudoconvex function on D.

2. Let f; (p) (i = 1.2) be strictly pseudoconvex functions on D and let ft,(p) _
max{fl(p).£2(p)}. Then (gy(p) is a strictly pseudoconvex function on D.

We have the following relationship between strictly pseudoconvex functions and
pseudoconvex domains.

1. Let D be a ramified domain over a polydisk A in C" and let a : D 0 be
the canonical projection. For any strictly plurisubharmonic function s(z) on
0, the function f(p) := s(a(p)) is a strictly pseudoconvex function on D.

2. Let P be an analytic polyhedron in an analytic space V of dimension n. Let
E be a model of P in the polydisk 0 in C'", i.e..

1b:pEP-+z=(rpt(p).....io_(p))EJ.
where each vj (p) (j = 1..... m) is a holomorphic function on a domain G
containing P with E = 4'(P); E is an analytic set in A: and E and P are
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bijective except for an analytic set of dimension at most n - 1. Then for any
strictly plurisubharmonic function s(z) on A, the function 1(p) := s(i(p))
is a strictly pseudoconvex function on P.

Now let t(p) be a real-valued continuous function on a domain U in V. We allow t
to admit the value -oo. For a real number a, we set3

U.:= {p E U I E(p) < a}.

If U. CC U for each a, we say that t(p) is an exhaustion function for U.

9.1.2. Normal Pseudoconvex Spaces. Let V be an analytic space of di-
mension n and let U C V be a domain. If there exists a strictly pseudoconvex
exhaustion function t(p) on U, then we say that U is a normal pseudoconvex
domain in V, and we call t(p) an associated function on U. In the case of
U = V, we call V a normal pseudoconvex space.

We have the following theorem relating Stein spaces and normal pseudoconvex
spaces.

THEOREM 9.1. A Stein space V is a normal pseudoconvex space.

PROOF. Let n = dim V. Theorem 8.22 implies that V is bijective to an analytic
set E in C2n+1; we let

I /,14': pEV -+Z= /(Vi (Y).... C2n+1(p))EE

denote this bijection. We set s(z) := E,11+1 1z212 in C2n+1 and define 1(p)
s(4(p)) for p E V. Since s(z) is a strictly plurisubharmonic exhaustion function
on C2n+1, it follows that t(p) is a strictly pseudoconvex exhaustion function on V.

0
We showed in Theorem 4.6 that any univalent pseudoconvex domain D in C"

admits a piecewise smooth, strictly plurisubharmonic exhaustion function; hence
D is a normal pseudoconvex domain. In the case of an analytic space (even in
the case of a complex manifold), this is not necessarily true. Before giving some
counterexamples, we verify the following proposition.

PROPOSITION 9.1. A normal pseudoconvex domain D in an analytic space V
cannot contain a compact analytic set r of positive dimension.

PROOF. Let D be a normal pseudoconvex domain with associated function
t(p). Assume that there exists a compact analytic set r in D having positive
dimension. Let a = max{t(p) I P E r} < oo and fix q0 E r with f(go) = a. There
exists a family of analytic hypersurfaces

at: g(p,t) = 0 (t E 1)

in a neighborhood 6 of q0 in D with qo E vo, ao \ {qo} C 6,, :_ {p E 6 t(p) > a},
and at C 6a for each t > 0. Fix a one-dimensional analytic set ro c r in 6 passing
through qo; we may assume ro is conformally equivalent to a disk too. Identifying
ro with Ao, we have

g(p,t)Ioo00 for allt>0,
while g(qo, 0) = 0 and g(p, 0) Jno$ 0. Since g(p, t) --+ g(p, 0) as t -+ 0 uniformly on
Ao, this contradicts the classical Hurwitz theorem.

3U, may be the empty set.
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There exist many pseudoconvex domains in an analytic space which are not
normal pseudoconvex domains.

EXAMPLE 9.1. Let Il = C= x P' with m > 1. This is a complex manifold,
and D :_ {IzI < 1} x P'° is a pseudoconvex domain which contains the compact
analytic set {0} x P"' of dimension m. Thus D is not a normal pseudoconvex
domain.

EXAMPLE 9.2. Let C" have variables zl.... , z,, and let P"-' have homoge-
neous coordinates (wl : w2 : ... : w"J. We consider the product space 11'
C" x P" -' and the n-dimensional analytic set E in S2' defined by

E: z1w, -z,wl=0 (j=2....,n).
Since E is non-singular in cr, it follows that E is an n-dimensional complex mani-
fold. If we consider the subset of E given by Ei := E f1 Iz., I2 < 1). then E,

is a strictly pseudoconvex domain in E. Since E1 contains the (n - 1)-dimensional
compact analytic set {0} x P"-1. it is not a normal pseudoconvex domain.

EXA161PLE 9.3. d Let C2 have variables z = x + iy and w = u + iv. We consider
the lattice group r generated by the following four linearly independent vectors (in
C2) over R:

0. 0), (i.0), (0. 1). (io. i).
where a > 0 is an irrational number. We let M denote the quotient space C2/t.
Then M is a 2-dimensional, compact, complex torus with canonical projection
rr : C2 -» M. Let a and b be real numbers with 0 < a < b < 1 and let

A_{(z,w)EC2Ia<Re z<b}, U=r(1 ).
Then U is a Levi flat domain in M. We list the following properties of I.T.

1. U cannot contain any compact analytic set of dimension 1.

PROOF. Let 0 < c < 1 and define H,.:_ {(z, w) E C2 I Re z = c}.
1{, := r(HH). Then 1i, is a real 3-dimensional compact hypersurface in M.
Fix zit = Co + icv' with 0 < co < I and let

3z := {(z. K') E C2 I z = Zo}. Sz

Then we have S.,, = {zo} x (C,,./(1]). so that S, is conformally equivalent
to C' as a Riemann surface. We note that S:,, # 1{,. and that

(*) S; is dense in 1{,.,,.
To verify (*). let z1 = cl +ici, where 0 < c1 < 1. Then Sz, if and

only if o, = cl and c;1 - = ma + n, where n and m are integers. Since
7tc = Uve S,.-j, and since a is irrational. (*) follows.

We now prove 1 by contradiction. Thus we assume that there exists
a one-dimensional compact analytic set S in U. Set s = r-' (S) in 0,
which is a non-compact analytic set in A. Let (z, w). (z'. w') E s. Then
a(z. w) = r(z'. w') in S implies Re z = Re z'. Since S is compact. the single-
valued harmonic function Re z on S attains its maximum on S. Therefore,
Rez = c (constant) on s, and hence s = {c + is } x C, where c' is a
constant. Consequently. r(s) = which is not compact from (*). This
contradicts the assumption that r(s) = S is compact.

This example is due to H. Grauert.
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2. Any holomorphic function on U is a constant.

PROOF. Let f (p) be a holomorphic function on U. Let zo = c + ic`
where a < c < b. Since S.,, is conformally equivalent to C', it follows from
the fact that Se,, = 71, CC U that f (p) must be constant on and hence
in 7{,.. Consequently, f (p) is a constant on U.

3. U is not a normal pseudoconvex domain.

PROOF. We prove this by contradiction. Thus we assume that there
exists an associated function w(p) on U. Then by the same reasoning as in
2 we see that ,e(p) is constant on each set 7.1, a < c < b. Therefore, for
suffciently large A > 0. U4 := {p E U I V(p) < Al is a non-empty Levi flat
domain in U. which contradicts the fact that p(p) is an associated function
on U.

From 1 and 3 we see that U is a pseudoconvex domain in M containing no
compact curves, but U is not a normal pseudoconvex domain.

Another proof of (*): We first remark that M is homeomorphic to the product
TI x T2 of two real compact tori TI and T2. where

TI = R,, x R,./[(1.0), (0.1)].

T2 = R. x
We write M TI x T2. Since TI is homeomorphic to the product 71 x 1i of two
unit circles, we have M '71 X 12 x T2. We let n2 denote the canonical projection
from R,1 x R onto T2. Since a is irrational. for any fixed cu with 0 < co' < 1. we
have that a,.; := a2({c2.o} x R,.) is dense in T2. Fix 0 < c0 < 1 and set zo = co +ic(',.
Since

S_ x {CA)} X ?2 X O,a' ?{, {C{)} X 12 x T 2 -

i t follows that S,, is dense in N,..

We remark that the domains in these three examples are domains of holontor-
phy. but they are not Stein spaces.

9.1.3. Local Holomorphic Completeness. We shall extend Lemma 3.5
(Oka's lemma) in C" to an analytic space. Let V be an analytic space of dimension
n. Let E and A be compact sets in V with E C A. Let p E A and let be
a continuous family of analytic hypersurfaces in 5P, where I = 10, 1] and by is an
open neighborhood of p in V. If {at}tEI satisfies the following three conditions:

1. fortE1.a,nE=0;
2. oonA:#OandalnA=0:
3. fort E I. (Oat) n A = 0.

then we say that {at}tEI satisfies Oka's condition at p with respect to the pair
(E. A).

We have the following generalization of Lemma 3.5.

LEMMA 9.1. Let U be a holomorphically complete domain in V. i.e.. U is a
Stein space. Let K CC U and let K =Kt- denote a holomorphically convex hull
of K with respect to the holomorphic functions in U. Then for each p E k. there
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does not exist a continuous family of analytic hypersurfaces {o,},E, in 6x, which
satisfies Okas condition at p with respect to the pair (K. k).

PROOF. The essential part of the proof is similar to that of Lemma 3.5. In
Lemma 3.5 we used the fact that I x k is the holomorphic hull of I x K in V x U C
C, x C. and we used the solvability of the Cousin I problem in the analytic
polyhedron in the (n+1)-dimensional domain V x U. Here we will use the solvability
of the Cousin I problem in an analytic polyhedron in the n-dimensional domain U.
We will prove the lemma by contradiction: hence we assume that there exists a
continuous family of hypersurfaces {o,},4=, which satisfies Oka's condition with
respect to the pair (K. K) at some point po E K. Let

o,: g(t.p)=0. (t,p)EI xb.
where 6 is a neighborhood of pc, in U and g(t. p) is a continuous function of (t. p) E
I x 6 which is a nonconstant holomorphic function in p E 6 for each fixed t E I.
Since k is the holomorphic hull of K in the Stein space U. it follows that there
exists an analytic polyhedron P in U with defining functions that. are defined in U
such that

h CP°: 34 0: a,r1P=0: and (8a,)fP=0. IEI.
Thus for each fixed t E I. the meromorphic function 1/g(t. p) in Sri P canonically
defines a Cousin I distribution in P. Hence for each t E I we can find a meromorphic
function H(t, p) in P whose only poles in 6 rl P are given by 1/g(t p). We remark
that although H(t. p) is not uniquely determined by I/g(t.p). the proof in Theorem
8.9 of the construction of meromorphic functions with prescribed Cousin I data
implies that we can take H(1, p) in I x P to be continuous for (t, p) E I x 6 if g(t, p)
is continuous in I x 6. Setting to := inf (t E I I a, rl I = 0}. we can choose t' with
0 < to, < t' sufficiently close to to to insure that H(t`, p) satisfies the condition
that there exists a point q E ti with IH(t'.9)I > max,,EK {IH(t'. p)I}. Since the
pair (P. U) satisfies the Runge theorem, we can find a holomorphic function H(p)
in U such that IH(q)I > cttaxpEK {IH(p)I}. which gives a contradiction to the fact
that k is the holomorphic hull of K in U.

Let. q E V. Using Remark 8.2, there exists a neighborhood 64 of q in V which
has a normal model in a polydisk A. Thus the set 6,, is holomorphically complete.
We say that an analytic space V is locally holomorphically complete at each
point.

Let U be a domain in an analytic space V. Let q E OU. If there exists a
neighborhood 6q of q in V such that U rl6q is holomorphically complete. i.e.. U n 6Q
is itself a Stein space. then we say that U is locally holomorphically complete at
the boundary point q. If U is locally holomorphically complete at each point q of
dU, then we say that t: is a locally holomorphically complete domain in V.

In the following lemmas and propositions in this section we will always assume
that V is a normal pseudoconvex space with associated function f(p). For a real
number a, we set

V°:={pEVIf(p)<a}CC V. V, =V.

1J.-E. Fornaess 1201 gave an example of an analytic space V and a domain t' CC V such that
U is locally holomorphicaily complete in V but f' is not holomorphically complete.
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LEMMA 9.2. Let U be a holomorphically complete domain in V. Then for any
real number a, the subset U, = U n V, is holomorphically convex with respect to the
holomorphic functions in U.

PROOF. Let K CC U, and let k be the holomorphically convex hull of K with
respect to U, so that k cc U. We set b := oo. We prove the
lemma by contradiction; hence we assume that b > a. Fix a point iw E K such that
(po) = b. Since 8(p) is strictly pseudoconvex in V, there exists a continuous family
of analytic hypersurfaces {at}tEI in a neighborhood bpa of pv which touches Vb from
outside at the point po. Since K CC V, C Vb, it follows that the continuous family
{at}tE, satisfies Oka's condition at po for the pair (K, K). This contradicts Lemma
9.1.

This lemma implies the following proposition.

PROPOSITION 9.2. For any real number a, the domain V. is a locally holomor-
phically complete domain in V.

PROOF. Let q e 8V,. Since V is locally holomorphically complete at each
point, we can find a holomorphically complete neighborhood J. of q in V. By
Lemma 9.2, 6q fl V. is holomorphically complete; this proves the proposition.

PROPOSITION 9.3. Let a be a real number or a = +oo. If V. is holomorphically
complete, then for each c < a, Vc is also holomorphically complete.

PROOF. Since V, satisfies conditions 1 and 3 in the definition of holomorphic
completeness (stated in 8.3.1), so does the set V.. By Lemma 9.2, condition 2 for
V. implies condition 2 for V, . Thus VV is holomorphically complete.

We obtain the converse of Proposition 9.3.

PROPOSITION 9.4. Let a be a real number or a = +oo. If for each c < a the
set VV is holomorphically complete, then V. is holomorphically complete.

PROOF. Let c; (j = 1, 2.... ) be an increasing sequence of real numbers with
lim,.,o c. = a. Then,

Vc, CC VV,,, (j = 1,2,... ), Va = lim VV,.

Using Lemma 9.2, we conclude that Vc, is holomorphically convex with respect
to Vc,+,, so that V,,, (j = 1, 2.... ) satisfies the approximation condition stated in
8.3.2. It follows from Theorem 8.8 that V. is holomorphically complete.

Let D be a relatively compact domain in an analytic space V. We say that the
Cousin I problem is solvable on the closure D of D if for any Cousin I distribution
C = {(gq(p), 6q)}qEG where D CC C, there exists a meromorphic function F(p) on
a domain G' with D CC C' C G such that F(p) - gq(p) is holomorphic on 6q fl C.
For use in the next section, we prove the following two lemmas.

LEMMA 9.3. Let D and D' be domains in an analytic space V with D' CC
D CC V. Assume that the Cousin I problem is solvable on D. Let C E 8D' and
let ff(p) be a holomorphic function in a neighborhood 6E of { in V satisfying the
following conditions: if we let S denote the analytic hypersurface in 6£ determined
by f( (p) = 0 in bt, then l: E S, S fl ((8D') \ {t;}J = 0, and 8S fl D = 0. Then there
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exist a holororphic function F(p) on D' and two neighborhoods 6" 6f of 1; in D
such that 6, C 6',' c 6t and

D'rt6,C{pED'IIF(p)I>1}.

sup { I F(p) I I P E D'\'} < 1.

P ROOF. Fix a domain C in V such that D C G and dS ft C = 0. Consider the
following Cousin I distribution C = {(gq(p). 5q)}qEG:

1. for 9 E G fl6t. we set 6q = 6t fl G and g, (p) = 1/ft(p) on 6q;
2. for q V G \ 6t. we choose 6t so that 6q f16t = 0 and set gq(p) - 0 on 6q.

Since Cousin I is solvable in D, there exists a meromorphic function F'(p) on G%
where D CC C' C G. such that F'(p) -- gq(p) is holomorphic ott 6q f1 G'. Thus
F' (p) is holomorphic on C' \ S: in particular, it is holomorphic on D' \ {t;}. which
contains D. and it has poles along Sf1G': i.e.. IF'(p)I = +x on SnG'. Since AI :_
maxPE{IF'(p)!} < x and f E S. it follows that there exist two neighborhoods
6E and 6E of 1; in G' with 6,' C o C 6t such that minpE n no; {IF* (p)I} > AI + 1 and
maxpcn.\6, {!F'(P)I} < Al + 1/2. Setting F(p) = F'(p)/(,11 + 1) on D' completes
the proof of the lemma. 0

LESISIA 9.4. Let D be a domain in an analytic space V with D CC V. Assume
that the Cousin I problem is solvable on D. Let f (p) be a holomorphic function on D
and let S denote the analytic hypersurface in D determined by f (p) = 0 on D. Let
pt. P2 E S. Assume that there exists a holomorphic function Y(p) in a neighborhood
V of S in D such that .(pr) 9E .p(P2). Then there exists a holomorphic function
$(p) defined on all of D such that 4i(pi) # 4D(p2).

PROOF. We fix a domain C with D cc C Cc V such that f (p) is holomorphic
in G and S is an analytic hypersurface in G. We may assume that p(p) is defined
and holomorphic in a neighborhood V of S in G. We consider the following Cousin
I distribution C = {(g, (p), J,)},,E(. on G:

1. for q E V, we take 6q C V and set gq(p) = r(p)/f(p) on 6,r:
2. for q E G \ V. we take 6q such that 6q n S = 0 and set gq(p) - 0 on 6q.

Since the Cousin I problem is solvable on D, there exists a meromorphic function
F(p) on a domain C' with DD CC G' C G such that F(p) - gq(p) is holomorphic
on each 6q, q E G. If we set 4(p) = F(p) - f (p) on G', then $(p) is a holomor-
phic function on G' satisfying 4(p,) = ,;(p,) (i = 1.2). Thus, d+(p) satisfies the
conclusion of the lemma. 0

9.2. Linking Problem

9.2.1. Linking Condition. Let V be an analytic space of dimension n. Let
V, and D2 be relatively compact domains in V such that if we set

D = D1 U D2, D = D, fl D2. (9.2)

then D and DO satisfy the following conditions:

(LI) D is a normal pseudoconvex domain.
(L2) Both 'DI and D2 are holomorphically complete domains in V.



9.2. LINKING PROBLEM 329

(L3) There exists a bounded holomorphic function po(p) = u(p) + iv(p) on a
domain G in V such that Do CC G and Do can be described as

Do={pEGnD Iai <u(p) <a2}.

where at and a2 are real numbers with a, < 0 < a2.

We say that V satisfies the linking condition, or, more precisely, D satisfies the
linking condition with respect to fo(p) and a, (i = 1, 2).

For real numbers b, and b2 with a, < b, < 0 < b2 < a2. such a domain D
satisfies the linking condition with respect to this same function c,,o(p) and the
numbers b, (i = 1, 2), since we can write

D=D;uD'2. Pal =D',nD2={pEGnDIb, <u(p)<b2}. (9.3)

where D; C D, (i = 1, 2) are holomorphically complete.
We shall prove later (Theorem 9.2) that a domain V CC V satisfying the linking

condition is a holomorphically complete domain.
Define

no = {p E Do I u(p) = 0}.

N. = {P E Do I u(P) = a,} (i = 1,2).

We may assume from (9.2) that

7.12CC7D,. 7I1C"2.

Although u(p) is not defined on all of D. we use the terminology that the direction
for V in which u(p) increases (decreases) is to the right (left) - see Figure 1.

V2

s DI ,

Do

FiGuRE 1. Linking condition for D
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We note from condition (L2) that Dt, is holomorphically complete. By condition
(L1) there exists an associated function f(p) on D. Fix a real number a and set

DI"3 {pEDIf(p)<a}cc D.
Dl") Dt"!nV. CDR (j=0.1.2).

By Lemma 9.2. each D(°' (j = 0.1,2) is holomorphically complete.
We have the following lenuna.

LEMMA 9.5. is holomorphically convex with respect to the holomorphic
functions in Di" and in Similarly, De is holomorphically convex with respect
to the holomorphic functions in D, and in Da.

PROOF. Since the proofs are similar. we will only prove that D(1 is holomor-
phically convex with respect to D("). Let K cc D(;') be compact. We let k denote
the holomorphically convex hull of K with respect to D;°): i.e.. K = KP ... Our

goal is to show that K cc Since K CC V. using (9.4) it suffices to prove
that k n7t, = 0. We prove this by contradiction; thus we assume that Knf1 : 0.
Set

c=max{v(p) IpEKnni} < co.
thus there exists a point qtl E K n fl, such that tt(gt/) = a, + ic. Consider the
following family of analytic hypersurfaces in C:

Tt : iYU(P) = al + (C + t)i (0 < t < OC).

From the definition of the number c we have qo E r n k and rt n (k n f,) = 0 for
allt>0,sothat rtnK=0forall t>0. Moreoverar1 COG for all t 0. so that
(art) n k = 0 for all t > 0. It follows that {rt}tE(u.x satisfies Oka's condition at
q0 for the pair (K, K). This contradicts Lemma 9.1.

9.2.2. Oka's Fundamental Lemma. Let D Cc V be a domain which sat-
isfies the linking condition. We use the same notation D, (j = 0, 1, 2). p (p) =
u(p) + iv(p) on G where Dot CC G. a, (i = 1, 2). and it, (j = 0, 1, 2) as in the
previous section. We also use the associated function f(p) on V and the notation
Dt(') = {p E D I f(p) < a} for each real number a. For future use. we fix a positive
number po such that

pv > max{ItPo(P)l I P E Do}. (9.5)

We fix real numbers bi (i = 1, 2) sufficiently close to a, with a, < b, < 0 < b2 <
a2. As in (9.3) we construct domains V. (j = 0.1.2) associated to bi (i = 1, 2) such
that

D=D,uD2. Do=DinD2={pEGnDIb, <u(p)<b2}.
For simplicity, given a > 0. we use the notation

D:=-D(`). J) ; := D, n D(") (j=0.1,2) (9.6)

(note the slight difference in notation between Di and Di (i = 0. 1, 2)). Fix a real
number ti < a and consider the following set:

b = {p E D(') n G I b, < u(p) < b2} cc (9.7)

We remark that this set will be used in 9.2.3.
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We assume that there exist a finite number of holomorphic functions spy (p)
(j = 1,... , m) on Do which satisfy the following conditions:

10. There exists a positive number 6 > 0 such that the subset

A = {p E Do I -b < u(p) S 6, I v; (p) I : 1 (j = 1, ... , m))
satisfies A CC Do, so that A is an analytic polyhedron in Do.

2°. In C-+1 with variables zo = u + iv, zl,... , zm, define the product domain

A=Ux2K Zm

where

U:Izol<2po, -6<u«,

3°.

1:Izjl<1 (j=1,...,m),
and po > 0 is defined in (9.5). Then the mapping

'1(p) : zi = gyp, (p) (i = 0,1, ... , m)

gives a normal model E = $(A) of A in A.
There exist positive numbers co, eI with eo, el < 1 such that, if we set

E = {pEDo I u(p) <b1+el}U{pE Do I u(p)>b2-el
then we have

I,pj(p)I<1-eo (j=1,...,m) onEub.
The existence of such functions Vj (p) (j = 1,... , m) on Do will be proved in the
next section.6

D2

D1

Do -

FIGURE 2. Linking condition for D

6Condition 1° says that a neighborhood V of No n 8Do in Do is excluded from Do whenever
Itipj(p)I > 1 for some j (1 < j:5 m). Further, condition 3° says that this neighborhood V can be
chosen so that V does not intersect either of the sets u(p) = b1 or u(p) = b2 (see Figure 2).
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We fix a positive number pi such that

1 - co < pt < (9.8)

and we define

W = {p E Do I I ,pi (P) 15 p1 (7 = 1, ... , m)} U(D \ Do), (9.9)

so that, by condition 3°,

D n (Wt U?i2) C W, D("1 CC W. (9.10)

We divide W into two parts W, and W2 using the real hypersurface No so that Wl
(W2) is the left (right) part of W; thus Wt C D1 and W2 C D2.

In this geometric situation, we have the following fundamental lemma of Oka.

LEMMA 9.6 (Oka). T Let f (p) be a holomorphic function on A. Then there
exist holomorphic functions f, (p) and f2(p) on W1 and W2 such that both fl(p)
and f2(p) can be holomorphically extended beyond No n W and

f(p) = ft (p) - f2(P) on Non W. (9.11)

PROOF. We divide the proof into four steps. Afterwards, we will make a few
remarks to clarify some of the details.

First step. Let 6, eo, el be as in 1° and 3°. We fix b' > 0 with 0 < b' < 6 and
we also fix pi > 0 with 1 - co < pi < pi < 1. Consider the polydisk

A' = U' X C Czp X Cz ,...,z-,

where

U' : IzoI S po, -6' < u < a', n : Iz;I <- pi (9 =1,... ,m),
with po > 0 having been defined in (9.5). We have A' CC A. Using condition 2°,
Theorem 8.15 implies that if g(p) is a holomorphic function on A, then g(p) has a
holomorphic extension G(/zo, zt,... , zm) = G(z) on

9(p) on A,

with
max{IG(z)I} < KmaAx{I9(p)I},
z4GI

where K is a constant which does not depend on the function g(p) on A.

Second step. Let f (p) be a holomorphic function on A. Since A is a compact
set, there exists M > 0 such that

If(P)I <- M on A.
From the first step, there exists a holomorphic extension F(zo, z1,... , zm) = F(z)
on A of f (p) (i.e., 401(p), ... , V,,,(p)) = f (p) on A) such that

IF(z)I < KM on A'.

Fix a segment L = [-poi, poi) on the imaginary axis of the zo = u + iv-plane Cam,
and let C SO (C=,) denote the right (left) half-plane divided by the imaginary axis

TThis result was first proved in 1942 by Olnt ]49) in C2. In that paper, Oka used the Well
integral formula. The proof was rather complicated to understand (although the essential point
- using an integral equation technique - is the same as presented here). The simpler proof given
here using the lifting principle was published in 1953 by Oka [52]. However, the original idea of
the simpler proof had been written in 1943 in Japanese (see Oka's posthumous work No. 1 in
[aa]).
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in C. Since F(z) is holomorphic on A. which contains L x 0, we can consider the
Cousin integral of F(z) with respect to zo:

'I'(z) := '(zo, zl, ... , Zm) = 1 F((o, z1, ... , zm) d(o
27ri JL Co - zo

f o r (zo, zl, ... , zm) E (Cr0 \ L) x a. This defines a holomorphic function 'I'1(z)
(N2(z)) on C+ x a (C 0 x 2K) such that both P1(z) and *2(Z) can be holomor-
phically extended beyond L x A and satisfy

411(2) - *1i2(z) = F(z) on L x 0. (9.12)

We consider the polydisk A' : Iz, I < p1 (j = 1,... , m) and its distinguished
boundary

r: ICiI=pi (j=1,...,m) inCt.
Since A' CC A, it follows from Cauchy's formula that

F((o,Zi,... Zm) =
1 F(Co,C1,... ,(m)

, (27ti '^
d(I ."dCm

Jr ((l - zl) ... ((m - Zm)

for (Co, zl, ... , zm) E L x (A')°, where (A')° is the interior of A'. Therefore, we
have

'I'1(zo,z1,... Zm) ('I'2(zo,z1,... ,Zm)) (9.13)

I F(Co,(1,... (m) ,7 ,7
(27ri)m+1 J xr (Co - zo)((i - z1) ... (Cm - Zm) "10"'Sl ... m

for (zo, zl,... , zm) E C0 x (0')° (Cx, X (A')°).Now,let p E Do n W1 (p E Do n W2). Then u(p) = ReVo(p) < 0 (u(p) > 0),
and I pj(p) j< pl <p' U = 1, ... , m). It follows that

ilp) ='I'i('PO(P),'pl(P),... (i=1,2)
is a well-defined holomorphic function on Do nWi. Furthermore, since IVo(p)I < po
on Do, it follows that the ti', (p) (i = 1, 2) can be holomorphically extended beyond
?to n Wi and satisfy (from (9.12))

b1(p) - iP2(P) = ,rpm(P)) = f(p), p E W n1t . (9.14)

We remark that from (9.13), the functions Oi(p) on Do n Wi (i = 1, 2) can be
written in the form

Oz (P) = I X((,P)F(C)dCod(1 d(., p E Do n Wi, (9.15)
Lxr

where C = (Co, CI , ... , Cm) E L x r and

X((,P) = (27ri)m+I (Co - vo(p))((1 - iol(P)) ... (Cm -,pm(P))
for ((,p) E (L x r) x Do. We note from (9.14) that the 1Pi(p) (i = 1,2) can
be holomorphically extended beyond W n ?{o to (Do n Wi) U (W f l A) and satisfy
,01 (p) - ,2 (p) = f (p) on W n A. Furthermore, there exists a constant k > 0
(independent of f (p) on A) such that

jv1i(p)j<KM, pEWnA. (9.16)
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To verify this last statement, we set U. = {zo E U' I u > 01: note that the
boundary of this set contains L, and set L' = (8U-) \ L (which consists of two
circular arcs and one line segment). Fix pt, > 0 with p,, > pi, > I p E
Do}. \Ve then have

77:=min{6',po-pu} 5 1C0-,:;((P)1

for C(, EL'and pEW1nA. LetpEt4'tnAand(C,....,(,,,)Erbefixed. Then
x((.p) is holomorphic as a function of Co on U;.. Using Cauchy's formula, we can
replace L by L' and obtain

I0p)I = II, krx((,P)F(()dCod(,...d(,.,

KAW
(irpo)

(2npi),,, K'RI.

where K' > 0 does not depend on f(p). Similarly we have K'DI on
W2 n A. It follows from (9.14) that

li't(p)I 5 1v2(p)I + If(p)I 5 (K' + l)hl on W2 n A.

Therefore, K = K' + I > 0 satisfies (9.16).

Third step. We fix a small rectangular neighborhood I of L in C,,, and we
form the product set y = y, x x where each y, (j = 1..... m) is a thin
annular neighborhood of the circle IC,1 = p', in Cep. We set r = I x y, which is a
neighborhood of L x r in C"'+t We consider ' ((. p) as a meromorphic function on
r x Do. From condition 3° and the relation p, > p, > 1 - co. we can choose such a
neighborhood r of L x r sufficiently small so that the pole set of x((. p) does not
intersect (OD(,) n D C {p E D I u (p) = b, or &2). Therefore, if we define

C=x(C.p) on rxD0,
f 0 on r x (D \ Do).

then C is a Cousin I distribution on r x D. and hence on r x D1. Since r x D,
is a holomorphically complete domain, from Theorem 8.9 we conclude that there
exists a solution x, (C, p) of the Cousin I problem for C on r x D,. Thus. t, (C. p) is
a meromorphic function on r x D, with x, ((, p) - x ((. p) holomorphic on r x Do;
moreover, )(I((. p) itself is holomorphic on r x (D, \ D()).

Fix c > 0. Since r x Do is holomorphically convex in r x D, by Lemma 9.5. it
follows from the inclusion (L x r) x A cc r x D that there exists a holomorphic
function H, ((,p) on r x D, such that

1(X(((.p) - t(C.p)) - H,((.p)I < c on (L x I') x A.

%V- set

hl((,p) = ki((,p) - x((.p) - Hi((,p) on r x Do.

%(((,p) - Hi((,p) on r x D,,

so that K, ((, p) is a meromorphic function on r x D, with the same pole set as
x((,p) and

K, ((, p) = x(( p) + h, ((. p) on r x D(),
Ih,(C,p)I < c on(Lxr)xA.
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In a similar fashion, we can construct a meromorphic function K2((, p) on r x D2
with the same pole set as X(C, p) and a holomorphic function h2((. p) on r x De
such that

K2((,P) = X((.P) +h2((-P) on r x Do,
c on (L x r) x A.

Since K; ((, p) (i = 1, 2) as well as X((. p) has no poles in (L x F) x W. we can form
the integral

,if (P) = Kj((.P)F(()d(od(I ... d(,,, for p E 6V,.
Lxr

which is a holomorphic function on Td;. On the other hand, we have

I.f (P) = f X((. P)F(()d(od(I ... d(,,, (9.17)
LxI'

+ J h,(( P)F(()d(ad(, d(for p E Wn Do.
xr

The second term on the right-hand side is a holomorphic function on Do. It follows
from (9.14) and (9.15) that I,f(p) can be holomorphically extended beyond WW'nf0
and satisfies

Ilf(P) - I2f(P) = f(P) + L (hl((,P) - h2((,P))F(()d(0d(j ...d(,,

for p E TV n xo.

Consider the second term on the right-hand side:

f(1)(P) = f (h2((.P) - hI((,P) )F(C)d(od( ...dC,,, for p E Do.
Lxr

f ( 1) (p) is a holomorphic function on Do. Let p E A CC Do. Since I h, ((, p) I < e on
(L x t) x A and IF(C)I < KAf on A' (which contains L x 17). we have

If(l)(P)1 <_ (2c) KAf (2po) ' (2npi)m =: AA/.

where. A = 2ri+2Kpo(api)me > 0. We assume we have chosen c > 0 sufficiently
small so that 0 < A < 1. Since K. po, pi, are independent of f (p) on A. so is A.

We have constructed the integral kernel Ki((,p) on (L x r) x D, (i = 1,2)
with the following property: given a holomorphic function f (p) on A such that
If(p)I < Al on A, take a holomorphic extension F(z) of f(p) on A such that
IF(z)I < KA1 on A', and construct

I,f(P) = K,((.P)F(()d(od(I ...dd,,, (i = 1,2) for p E TV,.f xr

Then I, f (p) is a holomorphic function on lV, which can be holomorphically ex-
tended beyond W, n No and satisfies

IIf(P)-I2f(P) =f(P) -fllj(P) on Wnn0.

where f( 1) (p) is a holomorphic function on Do with

If` '(P)I 5 AM on A.
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Therefore 1, f (p) (i = 1, 2) can be holomorphicatly extended to TV I' = It', U (A n W)
and satisfies

hf(p)-I2f(P)=f(p)-f(I)(P) onAnli' (9.18)

Furthermore. (9.16) and (9.17) imply

i,f(P) = V, (P) + f h,((,P)F)d(od(I d(,,, on A n 11'
Xr

and

lii f (p) I < KAI + EKA12po(2irp' )m =: K'AI on A n It . (9.19)

where K' > 0 does not depend on the function f (p) on A.

Fourth step. We repeat the same procedure for f (I) (p) on A satisfying
I f (I) (p) I < AM on A as we used for f (p) on A satisfying If (P) I < if on A; thus we
use an extension function F(') (z) of f (I) (p) on A such that I F(I) (z) I < KAM on
A'. and we obtain 1, f (I) (p) on W, (i = 1.2) such that

IIf(I)(P) -'2f(I)(P) = f(l)(p) - f(2J(P) on An W,

where f (2) (p) is a holomorphic function on Do such that l f (2' (p) I < A2111 on A and
Iitf(I)(P)I 5 K'AAI (i = 1,2) on An W.

We thus inductively construct sequences of holomorphic functions f(i) (p) (j =
1,2....)onDo,Fj(z)(j=1,2....)onA.andI,f(J)(p)(1=1.2:j=1.2....)on
W,' such that

I f(j)(P)I 5 AJAI (j = 1.2....) on A,
IF(J)(p)1 < KAJAI (j = 1,2,...) on A'. (9.20)
{I;P)f(p)I <K'AjAM (j=1.2....) on An It'.

In order to solve equation (9.11), we set
a.

f(P) = f(P) + E f(j)(P)
=1

on A.

x
P(z) = F(z) + E F(l) (z) on A'.

j=I

Using (9.20). and the fact that 0 < A < 1. we see that f (p) is continuous on A
and holomorphic in A° (the interior of A) and that F(z) is continuous on A' and
holomorphic in (A')°. with

F(vpo(P). i(P), j(p) on An W

We construct

I. 1(p) =
JLXr

k,((.p)F(()d( (i=1,2) for p E it',.

so that 11J(p) is holomorphic on 14',. We shall show that I, f (p) can be holomor-
phically extended beyond Io n W and satisfies

!1J(p) - I2f (p) = f (P) on fo n it .



9.2. LINKING PROBLEM 337

Indeed, fix p E 14', (i = 1,2). Since F(j)(() is uniformly convergent on A'
(which contains L X I'). we have

d(d(l .. d,,Iii(P) K7((.P) (F)+FU))
(.xr j_1

I,f (P) + Y'I, f (') (P)
j=1

Using (9.20), we see that the right-hand side is a holomorphic function in (AnW)°.
Therefore I, f (p) can be holomorphically extended beyond Non41' to 1i,U(A n W)°
Moreover, for any p E (A n W)°.

11f (P) - I2f (P)

= IIf(P) - I2I(P) +E(lif(')(P) - 12f(j)(P))
-1

x

= f(p) - f(1)(P) + Df(j)(P) - P-1)(P))
7=1

= f(p) by (9.20).

Consequently, f,(p) := I, f (p) (i = 1.2) on W; solves (9.11). Lemma 9.6 is com-
pletely proved

We make the following remarks concerning this proof.

1. In the second step of the proof, formulas (9.14) and (9.15) obtained from the
kernel K((, p) on (L x r) x Do imply that the functions ', (p) on 4t 1nDo (i =
1.2) give the solution of equation (9.11) on the holomorphically complete
domain Do n W c W.

2. In the third step, we modified the kernel X((.p) defined in (L x r) x Do to
form the kernel Ki((. p) defined in (L x T) x Di (i = 1, 2) in order to obtain
a solution f=(p) of equation (9.11) on W1.

3. Given a holomorphic function f (p) on A. the functions Ii f (p) (i = 1.2) are
defined on W. Although W, nA CC A, the difference f(1)(p) = Itf(p) -
12 f (p) is also holomorphic on A; this allows us to repeat the same procedure
for f(t)(p) as for f(p).

9.2.3. Examination of the Conditions. In this section. we shall construct
a finite number of holomorphic functions Vj(p) (j = 1.... , m) on Dog which satisfy
conditions 1°. 2°. and 3° in the previous section.

Fix t E No n &Do. Since 3Do near £ is contained in {p E D 1 1(p) = a}. there
exists a continuous family of analytic hypersurfaces in a neighborhood b of ( in D:

or : 9(t,P) = 0 (p E 5t, t E I)

which touches the domain Do from outside at the point {. We may assume that
b{ n ({p E Do I u(p) = bt or b2} LJ b) = 0 (recall b was defined in (9.7)). We fix a
real number Q > or sufficiently close to a so that

.D(3) n (800) = 0.
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By Lemma 9.5. the domain

<u(p)<a,,}

(with Do Cc Vol") is holomorphically complete: hence the Cousin I problem is
solvable on D. Applying Lemma 9.3 for Do. 'D(()3'. Q,,, and g(0. p) (corresponding
to D'. D. S and f{(p) in the lemma). we obtain a hololnorphic function :F(p) on
Do and two neighborhoods b£ CAE of C in Dl,-3) n bt such that

b nDo c{pED0IIyE(p)I>1},
sup{I;(p)IIpE D,.\bE}<1.

Since no n 8Do is compact. there exist a finite number of points j E NO n c3Do
(j = 1.... , v) such that the corresponding functions YE, (p) and neighborhoods bF
satisfy the condition

No n &Dn C U
1=1

thus gin n 8Dn C Uj=, {p E Do I IV,,, (P)I > 11. For e, > 0 sufficiently small, we
have

max {Iyf;(p)I} < 1 (9.21)

for any p E D such that u(p) < b, + c, or > b2 - E,.

Consequently, if we fix b > 0 sufficiently small, then the subset A in Do defined by

A={pEDo IIu(P)I<6, Ii2f,(p)I<I (j=1,....v)}
satisfies condition 1°. Furthermore, using (9.21). we see that condition 3° is satis-
fied.

In order to verify condition 2°. i.e.. in order to prove that A has a normal model.
we first note that a) is holomorphically complete. Since D cc
there exists an analytic polyhedron P in Dt;3) with defining functions Uk(p) (k =
I...... s) in such that Do Cc 2 cc V 3) and E : Wk = 10, (p) (k = 1.....µ)
is a normal model of P in the polydisk A;' : Iu'kI < 1 (k = 1.....µ). Since A C P.
if we set ia,(p) = VF, (p) (j = I..... v) and ;+k(P) Vk(P) (k = 1..... µ) on
Do. then for in = v + p. the m holomorphic functions Yi(p) (j = 1..... m) on Do
satisfy all the conditions 1°-3°.

9.2.4. Cousin I Problem. From Lemma 9.6 we obtain the following result.

LEMMA 9.7. Let V CC V be a domain which satisfies the linking condition.
Let £(p) be a strictly pseudoconve.x exhaustion function on V. and for a real number
y. let D(~) = {p E D I £(p) < y} CC D. Then the Cousin I problem is solvable on
D(').

PROOF. We use the same notation D, (j = 0.1.2). , (p) = u(p) + iv(p) on
Do CC: G, a, (i = 1.2), and N j (j = 0.1.2) as in 9.2.1. Let C = {(gq(p),bq)}QE,
be a Cousin I distribution on a domain U.'P h) C U C D. We take a real number
13 > y sufficiently close toy so that Dt3) CC U. We also take b, (i = 1.2) with
a, < b1 < 0 < b2 < a2, and. for fixed a > 3, we write

D := D(°), D; := DJ n Ds°' (j = 0, 1, 2)
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(as in (9.6)). We consider the following set:

b=DO)nV;°1={pED''I'nGIb, <u(p)<bi}
(similar to (9.7)). Recall that in 9.2.3 we constructed a finite number of holomorphic
functions Vj (p) (j = 1.... , m) on Do satisfying conditions 1°, 2°, and 3°.

We continue to use the same notation A. W. W. (i = 1, 2) as in Lemma 9.6.
As noted in (9.10). we have D(") CC W. Each Di (i = 1.2) is holomorphically
complete: hence the Cousin I problem is solvable in Di. Since D, C D13, C U.
there exists a meromorphic function G,(p) in D, with the same pole set as gq(p)
on each dq n D,. Thus, G, (p) - G2 (p) is holomorphic in Do. and hence in A. By
Lemma 9.6. there exists a holomorphic function f, (p) in W, (i = 1.2) which can
be holomorphically extended beyond No n W and which satisfies f,(p) - f2 (p) _
G, (P) - G2(P) on no n W. We set

F(P) G2(P) + ft P). p E iV2.

Then F(p) is a single-valued meromorphic function on W with the same pole set
as gq(p) on each 6q n W. Since DO) CC W. the proof is complete. 0

9.3. Principal Theorem

9.3.1. Linking Theorem. Let V be an analytic space of dimension n and let
D CC V be a domain which satisfies the linking condition in 9.2.1. Let (p) be an
associated function on D, and for a real number o. set D(°) = {p E D I F(p) < a}.

We have the following theorem.

THEOREM 9.2 (Linking theorem). A domain D satisfying the linking condition
is holomorphically complete.

PROOF. From Proposition 9.4 and Lemma 9.2. it suffices to prove that for any
real number a, there exists an analytic polyhedron P in D with defining functions
on G C D satisfying

D(°) CC P CC D.

We first prove that there exists a generalized analytic polyhedron P in V such
that D(°i CC P CC D. To do this. we fix a real number 13 with a < 3 < oc
and consider the domain Dc3). Fix E OD"). There exists a continuous family of
analytic hypersurfaces in a neighborhood bt in V:

(It:9{(t,p)=0 (pEbt. tE1).

which touches D1.31 from outside at the point . Since the analytic space V is locally
holomorphically complete at each point, we may assume that 6C is holomorphically
complete and that dE O VII) = 0. Choose a real number ^y > 3 sufficiently close to
0 so that (&o) nD(I) = 0. Since the Cousin I problem is solvable on D") (Lemma
9.7), it follows from Lemma 9.3 that there exist a holomorphic function 04(p) on
DO) and two neighborhoods d,, 64 of C in D1,) with tff C dF C 64. satisfying

D131 n 6{ C {p E D13) I IPE(P)I > 1),

sup{I,PE(p)I I p E D1.31 \ 6' } < 1. (9.22)
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Since 8D(') is compact, we can find a finite number of points j E 8D(a) (j =
1,... ,.u) such that

8D(s) C
µ
U 81 E,.

j_'

If we set

(9.23)

P :_ {p E D(") I I40E, (P) l < 1 U = 1, ... 14)},

then P is a generalized analytic polyhedron in D with defining functions in VW,
and

D(") cc P cc DO).
We next prove that P is an analytic polyhedron, i.e., P satisfies the separation

condition. To prove this, it suffices to show that P has a normal model in a unit
polydisk a in C", where v > p.

In Cl' with variables z1, ... , z,, let : Iz j I < 1 (j = 1, ... , µ) be the unit
polydisk; consider the analytic mapping

-D: p E P - z = (Wp jp), ... ,'*&Jp)) E 3

and set E = $(P) C 3. Then E is an n-dimensional analytic set in a with
8E c 80. Let Q E E \ 8E. Then 0-1(Q) is an analytic set in P. Since 8E C 8O
and P contains no compact analytic sets of positive dimension, it follows that
O-'(Qo) consists of a finite number of points in P. Assume that there exists a
point Q of E such that 0-1 (Q) consists of more than one point. Then P is mapped
via to a ramified domain E over the analytic set E without relative boundary. We
let d > 2 denote the number of sheets of E over E. There exists a point Qo E 8E
such that 4-1(Qo) consists of d distinct points,... , Q0 E 8P. Let

Qo=(a1,...,a,.)EBE;
thus some ak (k = 1,... , i) satisfies Iak I = 1. Therefore, Wf,k (Q0) = ak (1 =
1,... , d). We set

S = {p E p(s) I WC. (P) = ak},

so that S c b by (9.22), E S (1 = 1,... , d), and (8S) n D(A) = 0 (since
8S c 8D19). Since p(a) n bc,, as well as bg,, is holomorphically complete, we can
find a holomorphic f u n c t i o n f (p) in DO) n b{,, s u c h that f (C10) 91 f ( ) (101', 1 <

1,1' < d). Fix a number 6' < 0 sufficiently close to 6 so that P cc DO'). Since
the Cousin I problem is always solvable on p(0') and 4p(, (p) (which defines S) is
holomorphic in p(l'), we can apply Lemma 9.4 to obtain a holomorphic function
po(p) on DO') such that vo((10) 96 Wo(() (196 1', 1 < 1,1' < d). We may assume
Icvo(p)I < 1 on P.

In C"+' with variables i = (zo, zl.... zn), we consider the unit polydisk

D:Izjj <1 U=0'1'--- 'A)
and the analytic mapping

4: p E P -- i = (Wo(p), PC, (P), 'PE (p)) E A,

and we set (P) = E. For any point C E 80 of the form C = (zo, al, ... , aµ) _
(zo, Qo), the set -' (S) in P consists of at most one point. Thus, P and E are
in one-to-one correspondence via the mapping 4 except perhaps on an at most
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(n - 1)-dimensional analytic set in P. It follows from Remark 8.2 that P has a
normal model.

9.3.2. Principal Theorem. Let V be a normal pseudoconvex space with
associated function f(p). For a real number a. we set Va (p E V 11(p) < a}. We
now state and prove the main lemma in this section.

LEMMA 9.8. If Va is holomorphically complete, then there exists a real number
b such that b > a and Vb is also holomorphically complete.

PROOF. Let C E 8Va. There exists a continuous family of analytic hypersur-
faces in a neighborhood 6< of ( in V.

ac,r:g<(p,t)=0 (pE6<. tEI=[0.1)).
which touches the domain V. from outside at the point (. Since the analytic space
is locally holomorphically complete (Corollary 8.1), we can assume that the neigh-
borhood 6< is holomorphically complete. Further we may assume that 6 satisfies
the condition in Corollary 6.4 in Chapter 6. By taking a smaller neighborhood 6<.
if necessary. we may also assume that g< (p. t) is continuous for (p, t) E 6< x I and
g<(p.1) 0 0 for any p E 6<. i.e., o<,1 = 0. Let e< and < be positive numbers with
e<>e'>0.andset

1 < _ {p E 6< 119( (p. 0)I < e<}.
(p E 6< [ 19<(p.0)1 < (4}.

Thus, y< and 171, are neighborhoods of ( in V with 1s C -< C 6<. We may assume
that e< > 0 is sufficiently small so that [(81<) n (86<)) fl V. = 0. Since 8Va is a
compact set. we can find a finite number of points (., (j = 1..... N) such that.
writing yj and -y for ry<, and 7,',, and writing aj.t and 9j(p. t) for o<,.t and g<, (p. t).

we have 8V,, C UJ 17j. We also let (J (j = L.... N) denote the corresponding
numbers e<,. It follows that we can find a real number b > a sufficiently close to a
so that

(1) BVbCU 1- and
(2) if we set

tJ = tij n vb. 7, n Vb (J = 1..... N).

then [ryj \ %) n {O,,t}1E/ = 0.

We have the following fact:

(*) the holomorphic function log g, (p. 0) has a single-valued branch on 5, \'5 .

PROOF. Let I be a closed curve in ', \ -j1. Let 1' be the image of 1 under the
function r = gj (p, 0); thus 1' is a closed curve in the complex plane C, which does
not pass through the origin 0. To verify (*), it suffices to show that the winding
number N(0) of 1' about 0 is zero. We note from (2) that gj(p,t) is a continuous
function for (p.t) E bj x I with gj(p,t) 34 0 on I x 1. For each t E I we let 1'(t)
denote the image of I under the function r = gj(p.I); thus 1'(t) is a closed curve
in Cr \ {0}, which varies continuously with t E I. Thus. if we let N(t) denote
the winding number of l' (t) about 0, then N(0) = N(t) for all t E I. On the
other hand, since gj(p,1) # 0 for each p E 6,, it follows from Corollary 6.4 that
log gj(p.1) is single-valued in 6j. Hence N(1) = 0, and (*) is proved.
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We set
N

Dk=Vb - U Yj (k=0.1,...,:1'),
j=k+1

where D.-v = Vb, so that Do C D1 C C C Vb and D11 CC V,,. In addition,
we set

.ti

Y; _ ?'j - U ih (./ = 1..... X)
h=..}1

where 'y;; = 7,v. Then we have

Dk-1=DkUYA+I (k=0.1.....ti-1)
(see Figure 3).

FIGURE 3. Representation of Dk

(9.24)

Since V. is holomorphically complete, it follows from Lemma 9.1 that Dr, is holo-
nlorphically complete. Similarly. since 6k is holomorphically complete and g,, (p. 0)
is holomorphic on bk, it follows again from Lemma 9.1 that each 10 (k = L... , N)
is holomorphically complete.

We shall show that
(**) each Vk (k = 0, 1,... , N) is a normal pseudoconvex space.

PROOF. We prove this by reverse induction. We first note that VN = Vb is a
normal pseudoconvex space. since WP) = 1/(b - f(p)) is a strictly pseudoconvex
exhaustion function on Vb. We next assume that Dk.1 is a normal pseudoconvex
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space with associated function tk+I(p) > 0 on A-1. We will construct a strictly
pseudoconvex exhaustion function for Dk. Using 9k-+,(p.0) in dk+1 we can construct
a strictly pseudoconvex function'lk..I(p) in yk+l \ yA+I C bk+I, with

< 0, E
rlk+I (P)

p 8'Yk+ I
_ p E 8yk+l'

We set
max{{tk.:I (P) tk+I (P)}, P E Dk n ryi+1,

Pk(P)= Pk+I(P) PEDk\7k+1
Then G (P) is a strictly pseudoconvex exhaustion function in Dk: this completes the
proof of (**).

Finally, we show that
(* * *) each Dk (k = 0. 1, ... , N) is holomorphically complete.

PROOF. We prove this by induction. We already noted that Do is holomorphi-
cally complete. Assume that Dk is holomorphically complete. We will prove that
Dk+I is holomorphicalh complete. By Theorem 9.2. it suffices to show that Dk+I
satisfies the linking conditions (LI). (L2). and (L3) with Dk and tik+1.

We showed that Dk.,.1 = Dk u 7k+1; 7k+i is holomorphically complete: and
Dk+1 is a normal pseudoconvex space. Thus. Dk+1 satisfies conditions (Ll) and
(L2). To verify (L3). we set.

;p(P) = loggs+1(P, 0) = u(p) + iv(P) on 7k+I \ `Yk+1

which is a single-valued holomorphic function. Then

Dk n'Yi+I = {P E (7k+1 \ 7i+I) fl Dk+1 logf'k+I < u(P) < logek+I }.

so that Dk+1 satisfies condition (L3). Thus (* * *) is verified.

Consequently, Dv = Vb is holomorphically complete. and Lemma 9.8 is com-
pletely proved.

From Lemma 9.8 we obtain the following theorem.

THEOREM 9.3 (Nishino [411). Any normal pseudoconvex space is a Stein space.

PROOF. Let V be a normal pseudoconvex space with associated function £(p).
Let a = minEv{e(p)}, so that -oo < a < oc. and Va is a compact set in V without
interior points. Then by reasoning similar to that used in Lemma 9.8 (replacing V.
by V. with 8V = V,,). we see that there exists a real number 13 > a such that V.3
is holomorphically complete. Thus, we can define

ao := sup{a I Va is holomorphically complete}.

so that a < at) < +oo.
If ao < +oc, then Va is holomorphically complete from Proposition 9.4. This

contradicts Lemma 9.8. Therefore ao = +oc. Proposition 9.4 now yields that V
itself is holomorphically complete.

Notice that in establishing this theorem, which is one of the main goals of the
book, almost all of the results in Chapters 7 and 8 have been used. In conjuction
with Theorem 4.6. we obtain the following corollary.

COROLLARY 9.1. Any pseudoconvex univalent domain in C" is a domain of
holomorphy.
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This corollary was proved by Oka. The case n = 2 is in [491 and the case n > 2
is in (52).

REMARK 9.1. As shown on p. 35 in [49], the linking theorem (Theorem 9.2)
in section 9.3.1 is needed to prove the corollary in C". but we do not need the
arguments in section 9.3.2.

For let D be a pseudoconvex domain in C" with associated function 1(z).
Let D,, = {z E C" I l(z) < a} for a real number a. From Proposition 9.4 it
suffices to prove that each Da (a < +x) is holomorphically complete. To show
this, noting that Da is locally holomorphically complete, we divide the z,-plane
C, (i = 1,... , n) into equal rectangles SP) (j = 1,2.... ) by two systems of
straight lines parallel to the x,- and y,-axis (where z; = x, + y,) and we
set D(y) = 5' x ... x 6,^ (where j = (ji,... , j,,)). which is a box in C". We set
DU) = Dnidi: then D. is a finite collection of these sets Di». If :-U) is sufficiently
small, then DU) is a holomorphically complete domain. In this situation, we can
apply the linking theorem step by step to conclude that D. is holomorphically
complete.

This method can be applied to a ramified domain D over C" with associated
function l(p). The arguments in section 9.3.2 were needed to prove the holomorphic
completeness for a general normal pseudoconvex space.

REMARK 9.2. In a ramified domain D over C" any generalized analytic poly-
hedron P is an analytic polyhedron, i.e., P satisfies the separation condition.

T o see this, let P : I y ' l (p) < 1 (j = 1, ... , m), so that in > n; let E
w, = rj(p) (j = 1.... m) in C'"; and let 4i : p E P E. Thus E is an n-
dimensional analytic set in the unit polydisk 0"' in C'". Let u(w) he a strictly
plurisubharmonic exhaustion function on A"'. Then s(p) := u(4(p)) is a strictly
pseudoconvex exhaustion function on P. By Theorem 9.3, P is a Stein space.

REMARK 9.3. H. Grauert showed in [22) that any relatively compact strongly
pseudoconvex domain with piecewise smooth boundary in a complex manifold is
holomorphically convex, and that a complex manifold admitting a piecewise smooth
strongly plurisubharmonic exhaustion function is a Stein manifold. R. Narasimhan
showed in [37) that an analytic space with a strongly plurisubharmonic exhaustion
function is a Stein space. Here, we say that a real-valued function s(p) on an analytic
space V is strongly plurisubharmonic on V if any point p E V has a neighborhood
v in V which is isomorphic to an analytic set a in a domain 6 in some CO: and, if
we denote this isomorphism by T, then we require that so T-1 is the restriction to
a of some strictly- plurisubharmonic function in 6.

9.4. Unramified Domains Over C"

We shall show that any unramified pseudoconvex domain D over C" is holo-
morphically complete and hence is a domain of holomorphy.s Using Theorem 9.3,
it suffices to construct a strictly plurisubharmonic. piecewise smooth exhaustion
function on D.

'This fact was published in 1952 by Oka in [521. However, he already proved it in 1943 (see
Oka's posthumous work No. 6 in (551).
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9.4.1. Unramified Domains over C". Let R be an unramified domain over
C" with variables zI,... , z and let it : R C" be the canonical projection. We
write ir(p) = p for p E R. We let qr(a) denote the ball in C" centered at a with
radius r, and we let yr(a) denote the polydisk in C" centered at a with radius r.
Let P E R, and let v be a univalent subset of R such that p E v and ir(v) = q,.(p).
We call the supremum DR(p) of such r > 0 the (Euclidean) boundary distance
of R from the point p. If we replace qr(p) by -t, (E). then we call the supremum
OR(p) of r with ir(v) = yr(p) the cylindrical boundary distance of R from the
point p.

Let E C R. Then we call inf {DR(p) I p E E} the (Euclidean) boundary
distance of R from the set E. Given p > 0, we also define

R(P) = {p E 1Z I Dit(p) > p}. (9.25)

We set

6(p) _ - log DR(p), PER, (9.26)

which we call the logarithmic boundary distance function on R.
We have the following theorem.

THEOREM 9.4. If R is an unramified pseudoconvez domain over C", then 6(p)
is a plurisubharmonic function on R.

PROOF. This theorem was proved in the case when 1Z is a univalent pseudo-
convex domain D in C" in Lemma 4.6. In the proof we did not need D to be
univalent, i.e., the proof is valid for an unramified pseudoconvex domain R over
C". Thus Theorem 9.4 is true.

In the case of a bounded univalent domain D in C", we have D(P) CC D for
each p > 0. Using this fact, we constructed a piecewise smooth, strictly plurisubhar-
monic exhaustion function on a univalent pseudoconvex domain in C". However.
in the case of an (infinitely sheeted) bounded unramified domain R over C". it
is no longer true that W' CC R for all p > 0. For example, let R denote the
portion of the Riemann surface of log z lying over the disk flzI < 1}. Then R(P)
for 0 < p < 1/2 coincides with the portion of R lying over {p < jzi < 1 - p},
which is not relatively compact in R. Thus, we need further analysis, which we
will carry out in the following section, to construct a piecewise smooth, strictly
plurisubharmonic exhaustion function on an unramified pseudoconvex domain over
C".

9.4.2. Family of Continuous Curves. Let I be a rectifiable curve in C",

where I = [0,1], 1,, (t) (j = 1,... , n) is a complex-valued continuous function on I,
and the Euclidean length L(1) of the curve I in C" is finite. We call the vector-valued
function 1(t) = (lI (t), ... 1,,(t)) on I a parameterization for the curve 1.

We consider a sequence of rectifiable curves lk (k = 1, 2,...) in C". If we can
find a sequence of parameterizations !k(t) on I of lk such that lk(t) (k = 1,2.... )
converges uniformly to 1°(t) on I, then w e s a y that 1k (k = 1, 2, ...) converges
uniformly to the curve

I°:z=1°(t). tE1.



9. NORMAL PSEUDOCONVEX SPACES

and we call to the limiting curve of lk (k = 1.2, ... ).
Let {l,}, be a family of rectifable curves in C". If for any sequence {lk}k=1.2

which is contained in {l,}, we can choose a subsequence {lk, },_1,2.... Of {lk}k.1,2....
such that Ilk-, }j =1.2.... converges uniformly to a curve 1, then we say that (1, }, is a
normal family.

We have the following proposition.

PROPOSITION 9.5 (Oka). Let {l,},EI be a family of rectifiable curves in C"
such that the set of initial points of 1, (e E Z) is bounded in C" and the Euclidean
length L(l,) of the curves 1, (1 E Z) is uniformly bounded. Then {l, }, Ey is a normal
family.

PROOF. We prove this by use of the are length parameter r of the curve 1,.
Let l,(t) (c E I) be a parameterization on I of the curve 1, and let L,(t) denote
the length of 1, from 1, (0) to 1, (t). By assumption there exists an Al > 0 such that
L, (1) < AI (t E I). N e may assume each L, (1) > 0. We set r, : t E I r =
L,(t)/L,(1) E [0,1) (t E I), and we let t = a, (r) denote the inverse function of r,.
Then l,(7-) := l,(a,(r)) is a parameterization on I of 1,. We have

Il;(T)-1.*(r")I<AfI-r'-r"I for all T.r"EI.
so that 1, (r) (t E T) is equicontinuous on I. Since {l,(0)},Ez is bounded in C",
it follows from the Arzela-Ascoli theorem that {l, (r)},£z is a normal family of
functions on I. Thus, {l,},EZ is normal. 0

9.4.3. Distance Function. Let 1Z be an unramified domain over C". Let
P1, p2 E R and let -y be a curve which connects pi and p2 in R. We let L(-) denote
the Euclidean length of the curve -y = zr(-y) in C". We set

dR(pl,p2) = inf {L(-y) I -y connects pl and p2 in R}.

Let Rv be a connected region in R such that the boundary distance of R from Re,
is positive, i.e.,

m=inf{DR(p)IpERo}>0.
Fix a point po in Ro. Let p E Ro and set

cho(p) = dtzo(po,p), (9.27)

which is called the distance function on Ro with initial point po.
We have the following lemma.

LEMMA 9.9. For each Al > 0, the subset

E:u:={pERoIdvo(p)<AI}
of Ro is relatively compact in R.

PROOF. We prove this by contradiction: thus we assume that there exists a
sequence of points pk (k = 1,2,...) in Etr such that {pk}k=1,2has no accu-
mulation points in R. For each k = 1,2,.... we can find a continuous curve lk
in 7 o which connects po and pk such that L(lk) < M. We write lk = rr(lk) and
po = 7r(p(j). Then lk is a rectifiable curve in C" with initial point po and length
L(lk) = L(lk) < M. It follows from Proposition 9.5 that we can find a subsequence
{lk,}j=1.2,... Of {lk}A=1,2,,., which converges uniformly to a curve 10. Let lk,(t) and
lo(t) be parameterizations on I of lk, and to such that limj_,,.lk,(t) = lo(t) uni-
formly on I. We fix r with 0 < r < m/2 and consider the band B along to with
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radius r: i.e., the collection of balls gr(1p(t)), t E I. in C". Then we have lk,(t) C B
(t E I) for sufficiently large j. Fix such a j. Then lfo(t) (t E I) is contained in
the band B, along 1k, with radius 2r < m and B C B,. Since DR(p) > m for all
p E lk, (t), t E I. it follows that B, CC R. and hence B CC R. We thus have
pk, = lk, (1) E B for all sufficiently large i. This is a contradiction.

9.4.4. Modification of dp (p). Let U be a domain in an analytic space V.
Let h(p) and k(p) be two real-valued functions on U. If. given a real number a.
there exists a real number b > 0 such that

{p E U I h(p) < a} C {p E U I k(p) < b}.

{p E U I k(p) < a} C {p E U I h(p) < b},

then we say that h(p) and k(p) are of weakly bounded difference in U. Fur-
thermore, if h(p) - k(p) is a bounded function in U, then we say that h(p) and k(p)
are of bounded difference in U.

Let P. be an unramified domain over C" and for m > 0 let

Ro = Ro.m = {p E R I DR(p) > m} C R. (9.28)

We note that if R is finitely sheeted and bounded over C", then Ro CC R.
However, if R is infinitely sheeted, this is not necessarily the case. We defined
d,,(p) = dRo (po, p) on Ro where po is a fixed point in Ro. Let p > 0 and let

RoP) = {p E Ro I OR,(p) > p}. (9.29)

so that the polydisk y, (p) CC P. for each p E RoP) (recall the notation from (9.25)).
We shall construct a strictly plurisubharmonic function u(p) on 1Z0(') such that u(p)
and di(p) are of weakly bounded difference in R.P)

To this end, we recall the following mean-value integral of a real-valued, con-
tinuous function yp(z) which was studied in Chapter 4:

SPI(z) := Ar`p(z) = I
(Trr )" (z)

(9.30)

We have the following lemma.

LEMMA 9.10. Lety".(z) be a real-valued continuous function on a univalent do-
main D in C". Letp>0andletD(p)={pEDIAD(p)>p}. For0<r<p
define :pl (z) = Arq;(z) on D(P) (which is of class C' in D(P)).

1. If there exists a constant c > 0 such that for any two points z', z2 in D.

I(z') - (z2)15 cllz' - x211,
then we have

Iay'(z) c, zED(P)
at; -

Here 8/.9 denotes any of the partial derivatives 818x3 or 8/0yy, where

z, =xj+V----Iyy (j = 1.....n)9
2. If I (z)I 5 M on D, then

Ot i(z)
< 4111.

z E D(P),a - ar

yi!z1 - z211 denotes the Euclidean distance between zi and z2 in C".



348 9. NORMAL PSEUDOCONVEX SPACES

PROOF. We prove this for F = x1. Let a = (al, ... , a,,) E D1P' and let AC be
a real number such that a' = (a2 + AC, a2, ... , an) E DAP). Under the assumption
in 1, we have

1 (La (z)dv: - f c(z)dz-/
l) '1,(a)

< 1 If (ip(a' + () - Sp(a + ())dvtloll r(0)

<
ILI 1.lo) c Ila' - alldv, = c(ir2)n,

so that I(ew2/8()(a)I < c. Thus 1 is proved.
Under the assumption in 2, we have

O((J ,p(z)dv: -
J

i°) '(z)dv:)

<
(I

vol ('),(a') `'Vr(a))ly
< W r (irr2)n-I

so that I(O'p2/88)(a)I < 4M/irr. Hence, 2 is proved. 0

Since the mean-value integral ;pj (z) = Ar p(Z) of cp(z) is defined locally on
D(P), this integration can be defined on D(P) for a continuous function ip(z) on an
unramified domain V over C".

We return to the situation (9.29). The distance function d,,,(p) = dR0 (po, p)
on Ro is a real-valued continuous function in Rp with the property that

Idpo (p') - dro (p") I < Iia' - p
I'll (9.31)

for any two points p', p" in Ro such that p', p" are contained in a (univalent) ball in
Ro. Fix r with 0 < r < p. Then we can construct the mean-value integral defined
by (9.30):

0I (p) p E
R(p),

Z2p)P2(P) Ar%1(p), PE o.
Then w2 (p) is of class C' in RAP) and

a(I (p) I < 1, p E ROP). (9.32)

in addition, V,2(p) is of class C2 in R,2P) with

1

±V2
&A (p) I < ((p) I r , p E RoP). (9.33)

We note from (9.31) and (9.32) that

I P2(P) - d,,0(p)I < 2r, p E R(2p) (9.34)

Next we define the following function on 'R:

((p) =
{

IZIIZ + ... + IZnI2. p ER.
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where p = (zl,... , z") E C". Then i,'(p) is a strictly plurisubharmonic function on
it. Given a constant K > 0, we set

,\K(P) ='P2(P) + K((P). p E Ro °)

which is a positive-valued function of class C2 on 0
We have the following lemma.

LEMMA 9.11. There exists a strictly plurisubharmonic function <p(z) on Ro2°i

such that yp(p) and dR, (p) are of weakly bounded difference on Ro2pl

PROOF. We fix a constant K > 0 such that K > 4n2/(ar). We shall show that
W(p) = \K(P) on Ro2p) satisfies the conclusion of the lemma.

Indeed, from (9.33) we we that for any c = (c1, ... , c") E C" with JIcfl = 1, we
have

n 02 \K(P) 4n2 K 0,

so that AK(p) is a strictly plurisubharmonic function on Ro2p). It is clear from
(9.34) that p2(P) and d,(p) are of bounded difference on Roepi. Let c > 0 and let
Ac = {p E Ro2°) di(p) < c}. Then the projection Ac of Ac to C" is a bounded
subset in C", so that C(p) is bounded on A. It follows that AK(p) and d. (p) are
of weakly bounded difference on R0(2p). 11

In the case when the projection Ro of Ro to C" is a bounded domain in C",
AK(p) and dyo(p) are of bounded difference on Roe°)

Given e > 0, by taking smaller m > 0 and p > 0 such that m + 2p < e we have
from this lemma the following corollary.

COROLLARY 9.2. Let R be an unnamified pseudoconvex domain over C", and
for e > 0, let

D={pERIDR(p)>e}.
Then there exists a strictly plurisubharmonic function ;p(p) on D such that, for any
real number a,

DQ={pED I,p(p)<al CC R.

This corollary says that, if we let 8i denote the boundary of D. in it, then
D, is finitely sheeted over C" and

ODoC{pERI DR(p)=e}U{pEDI ap(p)=a}. (9.35)

9.4.5. Construction of an Associated Function on it. Let R be an un-
ramified pseudoconvex domain over C". We defined the logarithmic boundary
distance function 6(p) = - log DR(p) on R by (9.26). Since R is pseudoconvex, we
have that 6(p) is continuous and plurisubharmonic on it. Let as (j = 1, 2.... ) be
a sequence of positive numbers such that

aj< ai+I (j=1,2.... ), lim a. = +oc.
I or,

We set
R,, = {P E R 16(P) < aj} (j = 1.2,... ).
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Equivalently, setting ej = e-*, > 0 (j = 1, 2.... ) (so that ej > cj+i and limj_ ej
=0),wehave Rj={pERIDit(p)>Ej}.Then

Rj C Rj+I (j=1,2,...), lien Rj = R.
1 00

By Corollary 9.2, there exists a strictly plurisubharmonic function apj(p) on Rj
(j = 1,2.... ) such that, for any real number b,

(Rj)b {P E Rj I 'Pj(P) < b} CC R.

We note from (9.35) that (R j )b CC R j+l. Next, let bj (j =1, 2.... ) be a sequence
of positive real numbers such that

(1) bj < bj+I (j = 1, 2, ...) and jlim b3 = +oo;
00

(2) if we set

Aj = {P E Rj I ''j+3(p) < bj},
then

Aj CC Aj+i (j = 1,2.... ), jlim Aj = R.
00

This is possible by taking bjt1 sufficiently greater than bj. We note that A7+2 CC
Rj+3 and

80j C {p E R I d(p) = aj} U{p E Rj+3 I Wj+3(P) = bj}.

We set

'Pj(P) = max{b(P) - aj, pj+3 (P) - bj }, P E Aj+2 \ A j- i (j=2,3,...).
Then ipj(p) is a plurisubharmonic function on Aj+2 \ Oj-1 satisfying

'Oj(P) > 0 (resp. = 0, < 0) on Aj+2 \ NJ (reap. 8°j, Aj \ Aj-1)
Using the sequence of functions Oj(p) on A7+2 \ Aj-1 (j=1,2.... ), we can apply
standard techniques to construct a plurisubharmonic exhaustion function ti(p) on
R.

To be precise, we fix a plurisubharmonic function +L2 (P) on X3 such that t12 (p) >
0 on Y3. We take k2 > 0 sufficiently large so that

min {k2lh(p)} > max( p, max {MP)}},
PEiia\03 PEE3

and define
1fi2(p) on 12,

&P) = Max {//+,,'2(p), k2 ") I on N3 \A1,
on N4 \ 03.

Then 3(p) > 0 is a plurisubharmonic function on N4 such that j3(p) = i2(p)
on s and +('3(p) > 3 On \ 03. In a similar fashion, using t!3(p) on Y4 and
9P3(p) on \,&2, we obtain a plurisubharmonic function v%4(p) > 0 on Y5 such
that j4 (p) = j3 (p) on 33 and j4 (p) > 4 on Y55 \ A4. We repeat this procedure
inductively and obtain a continuous plurisubharmonic exhaustion function r%(p) on
R.

Using the same argument in the case of a univalent pseudoconvex domain in C^
via the mean-value integral of ,(p), we modify '(p) to obtain a pieoewise smooth,
strictly plurisubharmonic exhaustion function 4'(p) on R.

Thus we have proved the following.
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PROPOSITION 9.6. Any unramified pseudoconvex domain over C" is a normal
pseudoconvex space.

This proposition, together with the main theorem (Theorem 9.3). yields the
following.

THEOREM 9.5. Any unramified pseudoconvex domain over C" is holomorphi-
cally complete, and hence is a domain of holomorphy.

9.4.6. Unramified Covers. Let V be an analytic space of dimension n. Let V
be another analytic space of dimension n. If V satisfies the following two conditions:

(1) there exists an analytic mapping fr from V onto V; and
(2) for any point p in V, there exists a neighborhood ap of p in V such that it

maps each connected component of a-1(8,,) in V in a one-to-one fashion to
bp,

then we say that. V is an unramified cover of V without relative boundary; the
mapping fr is called the canonical projection.

We shall prove the following theorem.

THEOREM 9.6. 10 Any unramified cover of a Stein space is also a Stein space.

We devote the rest of this section to the proof of this theorem. Thus we always
assume that V is a Stein space and that V is an unramified cover of V with canonical
projection fr. We first verify the following proposition.

PROPOSITION 9.7. Suppose that there exists a sequence of analytic polyhedra
Pj (j = 1.2....) in V with defining functions on V such that

(1) Pj CC P°+1 (j = 1,2,...) and Iimj-,, Pj = V; and
(2) each connected component of (j = 1, 2, ...) in V is holomor-

phically complete.
Then V is a Stein space.

PROOF. For each j = 1, 2...., we can find a connected component P° of P, in
V such that

P° C P;+1 (j=1,2,...). lim P° = V.

In general, is infinitely sheeted over Pj. In order to prove that V is a Stein space.
using Theorem 8.8 it suffices to show that each f>1 is holomorphically convex in
P°+ Recall that in Theorem 8.8 we assumed P° CC P;+1; however, we only used
the fact that P; C P,+1 in the proof.

To this end, let K cc Pj and let k denote the holomorphically convex hull of
K with respect to P. It suffices to show that

(i) K CC (ii) fr(K) CC Pj.

Claim (i) follows from our assumption that P°t1 is holomorphically complete. To
verify (ii), let k = fr(K), so that k CC P,. We let k denote the holomorphically
convex hull of k with respect to Pj+1. Since any holomorphic function p on Pj+1
gives rise to the holomorphic function p o rr in P°+1, it follows easily that

loThis theorem was first proved by K. Stein in [68). The proof given here is due to the
author.
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*(K) C k. Since P, is holomorphically convex in P,+1, we have k cc P,, proving
(ii).

9.4.7. Preparation Lemma. By Theorem 8.20, a Stein space V can be re-
alized as a distinguished ramified domain D over C" with projection Ir. Precisely,
fixing p > 0, we use variables zl,... , zn in C" and we let

r,,:Izil <p (j=1,...,n)
be the polydisk centered at the origin 0 with radius p. Then each connected compo-
nent of a I(r,,) in V is a finitely sheeted ramified domain over r,, without relative
boundary. To verify Theorem 9.6, it thus suffices to prove that the unramified cover
D with canonical projection it of the distinguished ramified domain V over C" is a
Stein space.

We fix po and p1 with po > pi > 0 and we take a connected component Dl
(reap. De) of Ir1(r,,) (reap. Ir-'(rpo)) in D; then DI (reap. Do) is a finitely
sheeted ramified domain over r,,, (reap. rp,) without relative boundary such that
DI CC Do.

Let to be any connected domain over D, so that D is an infinitely or finitely
sheeted unramified cover of Do without relative boundary with projection Fr, and
let ii = ,r o >r; this maps Do onto rpo. Let DI be the part of to over r,,; this is
an unramified cover of DI without relative boundary. To prove Theorem 9.6, using
Proposition 9.7 it suffices to show that DI is holomorphically complete. Moreover,
using Theorem 9.3 it suffices to verify the following claim:

Claim. There exists a strictly pseudoconvex

exhaustion function ap(p) on D1. (9.36)

In the construction of ap(p) we use the following notation. Let E C Do. Then

E:= 7r(E) C r , , ,, and k : =
so that DI = rp, and DI = fr-I(DI). Consider the function

max IZ;12, z E rp'7(z) = .= .n l p1 1 IM I +
F
j=J

and set
*) =1!(?(p)), p E DI.

Then il(p) is a strictly pseudoconvex function on DI such that limp-po q(p) = +oo
for any po E 8D1 with ir(po) E arp, . However, q(p) is not necessarily an exhaustion
function on DI if D1 is infinitely sheeted over DI (or equivalently over r,,,).

On Do, we define the usual metric d ,,(p1,p2) in the following manner. Let
P1,P2 E Do. We connect p1 and p2 by a curve'' in Do and we let L(j) denote the
Euclidean length of the curve ti = rr(ry') in C". We define

dDo(p1ip2) = inf {L(ti) I ' joins P1 and p2 in Do}.

Fix a point po in to and define

dro(p) dr% (po, p), p E Do. (9.37)

This is a nonnegative, continuous function on Do such that

Idpn(P) - 4a(9)I 5 d,-,.(p,4) for p,9 E Do.
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We call d, (p) the distance function on Do. Using the fact that Do is a finitely
sheeted ramified domain over rm, without relative boundary, we see via the method
used in the proof of Lemma 9.9 that for any real number a, the set

(Do). {p E Do I a}

is finitely sheeted over Do, and hence over rte. The set (1Do)a has relative boundary
in to in the case when Do is infinitely sheeted over Do. Consequently, if we set

A(p) = max (d. (p). ft) 1, p E D1.

then A(p) is an exhaustion function on D1, but it is not necessarily a strictly pseu-
doconvex function. To finish the proof of our claim. it thus suffices to construct a
strictly pseudoconvex function ,p(p) on 15i such that yi(p) and i(p) are of bounded
difference on D1.

9.4.8. Canonical Coordinates. Let r be an integer with 1 < r < n and let

pr : (Zi.... , zn) E C" + (zi..... zr) E Cr

be a projection from C" onto Cr. We set

ar = pr o 7r on Do.

Then we have the following proposition.

PROPOSITION 9.8. After a preliminary coordinate transformation of C", if nec-
essary. them exists a sequence of analytic sets Sr (r = 0, 1, .... n - 1) in Do such
that:

1. S"-I is a pure (n - 1)-dimensional analytic set in Do. Each Sr (r =
0,1.... , n - 2) is a pure r-dimensional analytic set in Do with Sr C Sr+i

2. The coordinate system (z1.... , z,,) satisfies the Weierstrass condition for
each analytic set Sr (r = 0.1, .... n - 1) in rp at each point of S'.

3. If we set so = Sr \ S'-1, then the projection aT from so over Cr is locally
one-to-one, i.e., the image or(sr) is an unramified domain over Cr.

PROOF. For r = n - 1, we can take S"-i to be the branch set Sn_i of Do
over C". Since Sn-1 is an analytic hypersurface in ra,, we may assume that the
coordinates (z1.... , z,,) of C" satisfy the Weierstrass condition for S"- i at each
point of,. Thus we can find a finitely sheeted ramified domain Dn_1 over Cn-1
such that S_1 and Dn_1 are in one-to-one correspondence via the projection pn-i
except perhaps for an at most (n-2)-dimensional analytic set in r,o. Consequently.
under the projection an-i = pn_1 o rr, there exists a ramified domain D"-i over

C"-1 such that S"-1 and D"-1 are in one-to-one correspondence except perhaps
for an (n - 2)-dimensional analytic set (S')"-2 in Do; i.e..

S"-'
`S . Z. = Sn('Z1,... ,Zn-i), (9.38)

where (z1,....zn_1) runs over the ramified domain D" over Cn-1. We let rn_1

denote this mapping from S"-1 to Dn-1. Consider the branch set Sn_2 of D"-'

over C"-1 and let (S")"-2 denote the (n - 2)-dimensional analytic subset of S"-1
which corresponds to '&-2 via We then define

Sn-2 = (S')"-2 u (S")n-2,
which is an (n - 2)-dimensional analytic set in Do with Sn-2 C S"-1.



35.1 9. NORMAL PSEUDO('ONVEX SPACES

Since Sn-2 is an analytic set in rP0, it follows from (9.38) that after taking a
suitable linear transformation of (z1.... , z.- I ) in C', , if necessary, the coordi-
nates ( z 1 , . . . ,z"_I) satisfy the Weierstrass condition f o r S"' as well a s f o r S' 1

By applying the same method to S"-2 as was done to S"-I, under the projection
there exists a ramified domain D"-2 over Cn-2 such that Sn-2 and D"-2

are in one-to-one correspondence except for an at most (n - 3)-dimensional analytic
set (S')"-3 in Do; i.e.,

/S" -2 : =k = t)k(z1.... . Zn-2) (k = n

where z z runs over the ramified domain D over Ci-,2 and

'nn(ZI... ,Zn-2)=Sn(z1. n-2))
We let Tn_2 denote the mapping from S" -2 onto D"-2. Next, we consider the
branch set Sn-3 of Dn-2 over Cn-2 and we let (S")"-'3 denote the analytic subset
of S"-2 which corresponds to Sn-3 via rn-2. We then define

sn-3 = (S')n-3 U (S")n-3,

which is an (n - 3)-dimensional analytic subset in Do with Si-2 c Si-3.
We thus inductively obtain a pure i.-dimensional analytic set S' (i = n -

I,_ .1, 0) in Do and a ramified domain D' (i = n - 1.... ,1.0) over C' such
that S'-' C S' (i = n - L... ,1); S' and D' are in one-to-one correspondence via
the transformation r except for an at most (i - 1)-dimensional analytic set (which
is contained in S") in Do.

r,: S'
and the coordinates (z1,... satisfy the Weierstrass condition for each S'. Thus,
this sequence S' (i = it - 1.... ,1,0) satisfies conditions I and 2. If we set si; _
S' \ S''-1 (r = 0, L... , n), where S" = Do, the construction also yields that sa
corresponds to the ramified domain D' over C' after the branch set S, of Dr over
Cr and some (r - 1)-dimensional analytic set determined by the mapping T,. are
deleted. Thus, R.r := T,($) is a finitely sheeted. unramified domain over C": hence
condition 3 is also satisfied locally by r,. = a,. 0

W e s e t i ' r = T r o i t (r = 0.1, ... , n - 1); thus r,. is a one-to-one mapping
from it = i-I (sc) C Du onto an unramified domain 'R' over Rr without relative
boundary. Generally this domain is infinitely sheeted. We let i)r Rr denote
the mapping which corresponds to ri : so s, via f,. Since Rr is a domain over
C', we have the usual distance function d.R. (('. (") for C. (" E Rr Oust as we have
dD0 (p', p") in DD over C"). Since so and 7Zr are in one-to-one correspondence via

we can define the distance function dr (p', p") for p'. p" in ip by

drW, P") = djz,

where C' = r,.(p') and (" = Tr(p").

We make the following observation about the distance function defined
in (9.37).

REMARK 9.4. Let K be a compact set in s' (equivalently. Tr(L'l) is a compact
set in Rr). Then there exists a constant CK > 0 such that

Idao(P) - lip. (P')I <- CK dr(p', p") (9.39)
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for all points p' and p" in k = it-I(K) C §or which are sufficiently close to each
other so that ir(p') and i,(p") are contained in a univalent closed ball B in ??,r
over Cr.

PROOF. We may assume that the given set K is a compact set in s,) so that
rr(K) is a closed univalent ball B in the unrarnified domain Rr over Cr. For
simplicity we set K = B. Thus the set B = ir,: I (B) C Rr satisfies ijr(B) = B. We
set K = (Tr)-I(B) C s'. Then r. can be written in the form

IC : Zk =Gk(Z1,....Zr) (k = r+ 1,.. .n),
where each {k(z1,... , zr) (k = r+ L... . n) is a single-valued holonorphic function
on the closed ball B in Cr. Thus, we can find a constant AK > 1 such that

Iak(zl....,zr)I<AK

for any point (z,.... , z,.) E B. Let p', p" E 90' with rr(p'), ir(p") E B. We set
.....z), z') and a(p") = (z' , ... , z,) in C". We consider the arc 5y on si,

connecting the points p' and p":

'' : t E [0,1] -r (Z1(t),....Zn(t))
where

(t)z;+(z,''-z;)t (i=1....,r).
Zk(t) _ (Z1(t).....Zr(t)) (k = r + 1,... , n).

Since dr(p', p") = (E'= 1z; - Z,"12)1!2 and s(C Do. it follows that

Idyo(P)-dno(p")I Sdaa(P,p")SL(i):=fo I(" IdJ t)I2)1/2dt
E

1

r lj2 n
8

11/2
IZI -zhI2) C1+

r ....J(zl(t),
Zr())I2E

t=1 k 1

F, az'=r+ i=1
< dr(p', p") (1 + (n - r)rA2 )1/2.

Setting CK := (1 + (n - r)rAK)I/2 > 0. we obtain (9.39). 0
9.4.9. Lemmas. The ramified domain Do over rp is an analytic polyhedron

in a ramified domain G, where Do CC G (Remark 9.2). We can thus find a normal
model E in a polydisk r = rpo x I'o in C"+m = C" x C'", where C' has variables
wl,... ,wm and

ro : Iwk I < 1 (k = 1, .. , m).

To be precise, we can find a one-to-one holomorphic mapping 4 from Do onto E
such that E is an n-dimensional analytic set in r:

$ : p E D o -+ (z, w) _ (ir(p), 01(p), ... ,'m(P)) E E. (9.40)

We set
n n

X(z,

W) =

Izid2 + E IwkI2 in C"+,
i=1 k=1

Using the projection it Do, we define

X(P) = o ir(p)), p E D1,

so that k(p) is a bounded, strictly pseudoconvex function on 2)1.
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We prove the following two lemmas.

LEMMA 9.12. Let e be an open set in 4 with e CC s'. There exist a neigh-
borhood V of e in Do and a strictly pseudoconvex function f(p) on V = fr-1(V)
such that f (p) and j. (p) are of bounded difference on V.

PROOF. We set E = rr(e.) C R', e = a`1(e) C g', and E = Tr(e.) C S'. so
that E cc R' and so that E C R' is an infinitely sheeted unramified cover of E
without relative boundary. Thus, both E and k are unramified domains over C'.
For any point C E R', there exists a unique point p E so' C Do with fr(p) = C.
Thus we define

Dr(C) dpo(p), (E1,
which is a nonnegative function on 7Z'. Since e cc: sr, it follows from inequality
(9.39) that there exists a constant ce >r0 such that

Ce SIC' - n

for all points in t which are sufficiently close to each other. Here iIC' - C"11
denotes the Euclidean distance between (and C" in C'; this only depends on the
set e. Therefore, using the same method as was used in section 9.4.4, but now
applied to E CC R', we can construct a strictly plurisubharmonic function Gr(()
on the unramified domain k over Cr such that Gr(C) and Dr(() are of bounded
difference in E. It follows that

gr(p) = Gr(Tr(p)), p E F.

is a strictly plurisubharmonic function on a such that gr(p) and dpo(p) are of
bounded difference on e.

On the other hand, from Proposition 9.8, so is an r-dimensional, non-singular
analytic set in a domain in r,, and the coordinates (z1..... z") satisfy the Weier-
strass condition for sor. Thus s' can be written in the form

Zk = k(Z1..... Zr) (k = r + 1, .... n),

where (zl,... ,Zr) varies over the unramified domain R' over Cr and Ck(z1,... , Zr)
is a single-valued holomorphic function on R'. Since e CC so, we can find a tubular
neighborhood V of e in D0 of the form

V = U (zl, , zr, V(Zl, , zr)),
(zi.....z.)EE

where V(zl,... ,Zr) is a polydisk in Cn-' centered at the point (C)L-+I(zl,....Zr),
... ,Zr)):

V(Zj,... ,Zr): IZk-G(Zl,... .Zr)I <6 (k=r+1,... ,n).
and 6 > 0 is sufficiently small. Thus V is a unramified domain over C". The
projection Tr from V onto e such that

Tr(Zl... .Zr.V(Zl.....Zr))=(Zl, ,Zr-G+1(Z1... .Zr). .

canonically determines a holomorphic mapping (contraction) Z. where
V = ir` 1(V), via the relation it o Tr = Tr o ir. Setting

g(p) := gr(Tt(p)), p E V.
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it follows that g(p) is a pseudoconvex function on V. Further.-since gr(p) and
d, (p) are of bounded difference on e, so are g(p) and dp (p) on V. Consequently,
if we set f (p) = g(p) + X(p) on V, then f (p) is a function satisfying the conclusion
of the lemma. C

We use this lemma to prove the following.

LEMMA 9.13. Let e be an open set in S' (r = 1..... n -1) such that e CC Sr'
and set e' = e n Sr-I CC S'- 1. Assume that there exists a neighborhood U of e'
in Do with the property that there exists a strictly pseudoconvex function f (p) on
U = * ' (U) such that f (p) and dp (p) are of bounded difference on U. Then there
exist a neighborhood W of e in Do and a strictly pseudoconvex function F(p) on
W = ir-I(W) such that F(p) and di(p) are of bounded difference on W.

PROOF. We begin with the normal model E of Do in the polydisk F C C"+"'
via the mapping 4' defined in (9.40). We set Er-I = +(Sr-I). Since Ei-1 is an
(r - 1)-dimensional analytic set in r, we can find a finite number of holomorphic
functions f, (z, w) (j = 1..... s) on r such that

Er-I:f3(z,w)=0 ()=1.....s).
For 0 < e << 1, we define

H,(z,w):_ max {Iff(z,w)I}+e,.'(z,w). (z.w)EI-.
J=l.....a

and

hjP) := H,(4'(p)), p E Do.

so that h, (p) is a strictly pseudoconvex function on Do. We take e > 0 sufficiently
small so that if we set

N. {P E Do I h, (p) < a}

for a sufficiently small a > 0, then 7{a is a tubular neighborhood of S'-' in Do
such that e' C W. n e cc U. We fix 0 < a1 < a2 < a3 such that fl n e CC U.
Since e \ Na, CC so, it follows from Lemma 9.12 that there exist a neighborhood
V of e \ 7t, in Do and a strictly pseudoconvex function g(p) on V such that g(p)
and dy (p) are of bounded difference on V. We set

W1= Wa, n U. w2 = (7la3 \ 7{0,) n V. W, = V \ 1a,,,

so that W := W1 U W2 U W3 is a neighborhood of e in Do. Let it-' (W,) = Wi
(i = 1,2.3) and ir-I(W)=W. For K >0. we set

I f(P), p E Wl.
F(p) = max if (P), g(P) + K [h.F (a(p)) - a2J }, p E W2.

g(P)+K[h,(Fr(p))-a2[+ pE W3.

We note that if K > 0 is sufficiently large, then F(p) is a well-defined, single
valued function on W. It is clear that F(p) is a strictly pseudoconvex function on
W. Moreover, f (p) and g(p) are of bounded difference on W2, since each of them
are of bounded difference with dp. (p) on W. Furthermore, since K [h, (*(p)) - a2J
is bounded in W2 U W3, we see that F(p) and are of bounded difference on
W. Hence, this F(p) on W satisfies the conditions of the lemma. 0
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9.4.10. Proof of the Claim. We shall prove our claim (9.36). which then
yields Theorem 9.6. We use the notation S" (r = 0,1, ... , n) from Proposition 9.8,
where S" = V. Then S° consists of a finite number of points Qk (k = 1, .... Al) in
D,,. By taking a larger p, (0 < p, < p) than the given p1 in claim (9.36), if necessary,
we may assume that Qk V 01), (k = 1.... , Al) and s, n D, _ {Qk}k-1.... ..,f.
(M' < Al). where D, is the subset of Do over rp,.

For each Qk (k = 1.... , Al'), we can take a sufficiently small neighborhood Uk
of Qk in D, such that Uk nU, = 0 (k $1) and such that each connected component
of Uk = fr-'(Uk) in b, is bijective to Uk via the projection fr (since 15, is an
unramified cover over D, without relative boundary). We set U° = Uk 1 Uk, which
is a neighborhood of S° fl V. and we define

9o(P) = dao(Qk) + Y(p). p E Uk,

where Qk denotes the point of Uk over Qk. Then 9u(p) is a strictly pseudoconvex
function on a' = fr-'(U°), and go(p) and da,(p) are clearly of bounded difference
on U°.

Applying Lemma 9.13 for r = 1, f (p) = go(p), U = U°, and e = S1 fl D, (so
that e n S(I = {Qk}k=1.... ..W). we can find a neighborhood U' of S' nD, in D° and
a strictly pseudoconvex function g, (p) on U' = fr-' (U') such that g, (p) and dno (p)
are of bounded difference on U'. Again applying the lemma for r = 2, f (p) = g, (p),
U = U', and e = S2 fl D, (so that e n S' = S' fly,), we can find a neighborhood U2
of S2 fl V, in D° and a strictly pseudoconvex function 9,2 (p) on a2 = fr- i (U2) such
that 92(p) and da,(p) are of bounded difference on U2. We repeat this procedure n
times to verify claim (9.36).

Part II may be summarized briefly as follows. In Chapter 6 we showed that
any ramified domain over C" locally carries a simple function. In Chapter 7 we
introduced the notion of 0-ideals and proved certain results concerning them. In
particular. we proved the existence of a locally finite pseudobase for a G-ideal and
for a 7,-ideal at each point. This was established with the aid of a simple function.
(Oka, on the other hand, proved the existence without utilizing simple functions;
instead, he made very detailed and complicated constructions which heavily depend
on the properties of ramified domains over C"). These results were then used to
establish the lifting principle in an analytic space in the beginning of Chapter 8;
this principle was used to prove many results for Stein spaces. In Chapter 9 we gave
a geometric condition for an analytic space to be a Stein space (Levi's problem),
and we gave examples of analytic spaces satisfying this condition. These examples
include unramified pseudoconvex domains over C".
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tion, 27
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analytic derived set, 138.

analytic equivalence of analytic spaces, 26Z

analytic function, a
analytic hypersurface, 38
analytic hypersurface in a ramified domain,
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analytic kernel of a pseudoconcave set, 141
analytic mapping, 112
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analytic polyhedron in C", 33 87
analytic polyhedron in an analytic space, 220
analytic set, 44, 113
analytic space, 267
analytically equivalent, 112
approximation condition, 281
approximation theorem by algebraic func-
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approximation theorem for a Stein space,

282
associated function for a normal pseudocon-

vex domain, 323
associated multiradius, 9
associated set, 65
attracting fixed point, 159
automorphism, 112, 149
automorphism group, 199

Baire category theorem, 24
bidisk, 5
biholomorphic mapping, 18
biholomorphically equivalent, 122
Borel's theorem, 161
boundary, 4
boundary distance, 6 345
boundary distance function, 126
boundary point of a ramified domain, 111

boundary point of an unramified domain,
16$

bounded difference, 347
branch point, 110
branch set, 170. 111
branched cover, 120

canonical metric, 292
canonical projection, 110

canonical projection of unramified cover, 351
Cartan-Thullen theorem, 33
Cauchy estimates, 11
Cauchy integral formula, 12
Cauchy-Riemann equations, 13
characteristic function, 124
Chow's theorem, 64
closure, 4
codimension, 45
complete algebraic analytic set, 49
complete Hartogs domain, 21
complete Reinhardt domain, a
complex hyperplane, 5
complex line, 5
complex manifold, 262
complex tangent space, 118
complex torus, 269
continuity theorem of type A, 112
continuity theorem of type B, 112
continuity theorem of type C, 113
continuous solution of Cousin II problems,
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countable ordinals, 139
countable valency theorem, 21
Cousin I data (or distribution), 24
Cousin I problem, 74
Cousin I problem in a Stein space, 285
Cousin 11 data (or distribution), 24
Cousin II problem, Z4
Cousin 11 problem in a Stein space, 285

Cousin integral, 28
cylindrical boundary distance, 345

defining function, 116
defining polynomial, 182
degenerate entire mapping, 163,
derived set, 13$
dimension, 45
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discriminant, 41
disk type, 192
distance function in a domain in C", 6
distance function in an unramified domain

over C", 346
distinguished analytic polyhedron, 301
distinguished boundary, 5 12
distinguished peeudopolynomial, Al
distinguished ramified domain, 304
domain, 4 267
domain of convergence, 8 20
domain of holomorphy, 27, 35
domain of meromorphy, 115
domain of normality, 115
domain without relative boundary, 168
double point, 179

entire mapping, 181
equivalency of 0-modules, 224
essential singular point of a holomorphic func-

tion, 145
exceptional values, 1fil
exhaustion function, 129. 323
extension O-module, 275
extension theorem for a holomorphic func-

tion on an analytic aet, 272

Fabry's theorem, 10
family of analytic hypersurfaces touching a

boundary point, 125 322
fiber, 4
finitely generated 0-module, 221
fixed point, 159
Frbchet space, 291
fundamental neighborhood system. 168
fundamental system for a ramified domain,

195

generalized analytic polyhedron, 220
generalized Cousin II distribution, 24
generalized Cousin II problem, 94
geometric ideal, 253
G-ideal, 253
graph of a function on a ramified domain,

179 182
graph of a locally algebraic analytic set, 52

Hadamard's formula, 2
Hartogs domain, 21
Hartogs holomorphic extension theorem, 106
Hartoga radius, 2k 127,128
Hartogs series, 20
Hartogs' theorem on peeudoconcave sets, 133
Hartoga-Laurent series, 22
Hessian matrix, 19
Hilbert-Riickert Nullstellensatz, 274, 316
holomorphic convex, 35
holomorphic extension, 273
holomorphic function, 12
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holomorphic function on a ramified domain,
170. 172

holomorphic function on an analytic set, 203
holomorphic function on an analytic space,

2ii7
holomorphic bull, 32 321
holomorphic hull in an analytic space, 280
holomorphic mapping, 12 172
holomorphic matrix. 236
holomorphic vector-valued function, 273
holomorphically complete domain, 280
holomorphically convex, 33
holomorphically convex domain in an ana-

lytic space, 280
homogeneous domain. 152
homogeneous coordinates, Z
homothetic transformation, 147
hyperplane at infinity, 2
hypersurface of planar type, 121

imbedding of a Stein manifold, 311
imbedding of a Stein space, 306
implicit function, Al
inhomogeneous coordinates, Z
interior extension theorem, 293
intersection of ramified domains, 172
intersection of unramified domains, 169
invariance of analytic relations, 39
irreducible analytic set, 45
irreducible decompositions of an analytic set,

52
irreducible pseudopolynomial, 42

Jacobian matrix, 12
Julia's theorem, ill

IC-convex domain, 33
PC-convex hull, 32
kernel of a set, 140

Levi flat, 120
Levi form, 124
Levi problem, 116
Levi's conditions, 119
Levi's theorem, 148
I-dimensional box, 241
l-ideal, 251
lifting principle for analytic polyhedra in an

analytic space, 273
lifting principle for polynomial polyhedra,

80
lifting problem, 80
limit ordinals, 140
linear coordinate transformation, 3
linear relation (Cl), 222
linking condition, 329
linking theorem, 339
Liouville's theorem, 15
local pseudobase, 221
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locally algebraic analytic component, 52
locally finite pseudobase at a point, 221
locally finitely generated 0-module, 221
locally holomorphically complete domain, 326
locally ramified domain, 170
locally vector-valued algebraic function, 52
logarithmic boundary distance function, 345
logarithmic capacity, 135
logarithmically convex, 111
loxodromic fixed point, 159

maximum principle, 16
meromorphic extension, 108
meromorphic function, 23
Mittag-Leffler theorem, 74
model for an analytic polyhedron, 271
monodromy theorem, 22
Mantel's theorem, 16

nonsingular point of an analytic set, 55
normal analytic set, 212
normal class of functions, 98
normal family of curves, 346
normal family of holomorphic functions, 184
normal model for a domain in an analytic

space, 271
normal point, 212
normal pseudoconvex domain, 323
normal pseudoconvex space, 32L 323
normalization theorem, 271
Nullstellensatz, 316
number of sheets, 1FL7, 150 121

0-ideal, 220
0-ideal Z{E, F}, 262, 271
t-ideal P{Z}, 258 263
0-ideal C{E}, 253 265
0-ideal l{fl}, 211. 256, 221, 263
0-ideal W{E}, 2f44. 265
Oka's condition, 85 322
Oka's condition on a continuous family of

analytic hypersurfaces, 325
Oka's counterexample for the Cousin II prob-

lem, 92
Oka's counterexample on a pseudobase for

Problem E, 287
Oka's counterexample on rational convexity,

99
Oka's lemma on polynomial hulls, 86
Oka's principle, 94
Oka-Weil theorem, 85
O-module, 220
O-module L{il}, 222, 222
0-module generated by finitely many holo-

morphic vector-valued functions, 221
0-module with respect to the linear relation,

2222, 272
open mapping theorem, 291
open set in an analytic set, 249

order of singularity, 198
Osgood space, 7
Osgood's theorem, 28
0-submodule, 220

Picard's theorem, 16
piecewise smooth strictly plurisubharmonic

function, 129.
pluriharmonic function, 13
plurisubharmonic function, 18
plurisuperhermonic function. 18
Poincard problem, 73
Poineard's theorem on automorphisms, L48
Poincard--Picard entire mapping, 153. 160
point of indeterminacy, 77.3 126
point of the second kind, 138
point of the first kind, LIZ
point of type (a), 13fi
point of type (9), 136
Poisson formula, 15
Poisson kernel, 15
polar set, 135
pole, 126
polydisk, 5
polynomial automorphism, 159
polynomial hull, 32
polynomial polyhedron, 80
polynomially convex, 33
polynomially convex compact set, 88_5 82
polyradlus, S
Problem C1, 231
Problem C1 in a Stein space, 286
Problem C2, 231
Problem C2 distribution, 231
Problem Cz in a Stein space, 287
Problem E, 231
Problem E in a Stein space, 287
product domain, 5
product set, 4
projection, 3 86
projection of an analytic hypersurface, 171
projection of an analytic set, 46
projection of an 0-ideal, 3,58
projective space, Z
projective transformation, 8
peeudobase for an 0-module, 221
pseudoconcave set, 132
pseudoconvex domain, 105, 115
pseudoconvex domain in an analytic space,

321
pseudoconvex domain of type A, 112
pseudoconvex domain of type B, 112
pseudoconvex domain of type C, 113
pseudoconvex function, 321
peeudopolynomial, 41
pure dimension, 43

quotient 0-ideal, 251
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Rado's theorem, 16
ramification number, 170
ramified domain, 169, 171
ramified domain associated to an unramified

domain, 170
ramified pseudoconvex domain, 178
rank of a holomorphic vector-valued func-

tion, 220
rank of a polynomial polyhedron, 80
rank of an 0-module, 220
rationally convex, 99
reducible analytic set, 45
regular branch point, 170
regular class, 31
regular part, 170, 171
regular point, 170
Reinhardt domain, 8
relative boundary point, 168
remainder theorem, 222
removability theorem for analytic sets, 62
repelling fixed point, 159
resultant, Al
Riemann domain of an algebraic function,

171
Riemann sphere, Z
Riemann's removable singularity theorem, 22
Riemann-Rosh theorem, 181
Runge problem, 75
Runge theorem, 75

section, 4
separate analyticity theorem, 23
separation condition, 270
Shilov boundary, 16
simple function on a ramified domain, 179
simple graph of a holomorphic function, 183
simultaneous analytic continuation, 49
singular point of an analytic set, 55, fi2
smooth function, 116
Stein space, 280
strictly plurisubharmonic function, 19
strictly pseudoconcave boundary point, 132
strictly pseudoconvex boundary point, 125
strictly pseudoconvex domain, 125
strictly pseudoconvex function on a ramified

domain, 322
subglobal finite pseudobase, 299
subglobal normalization theorem, 298
successor ordinals, 140

three ring theorem, 90
Thullen's theorem, 32
Thullen's theorem on removability of an an-

alytic set, 143
transfinite diameter, 134
transitivity, 152
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uniqueness theorem for holomorphic map-
pings, 150

unitary transformation. 132
univalent domain, 167
unramified cover, 351
unramified domain over C^, 167, 345
unramified pseudoconvex domain. 178

vector-valued function, 49

weakly bounded difference, 347
weakly holomorphic function, 210
Weierstrass condition, 37, 54, 56
Weierstrass preparation theorem. 43
Weierstrass theorem, 16
W-ideal, 269

zero set of an 0-ideal, 253
Z-ideal, 262

uniformizable branch point, 173
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