Translations of MATHEMATICAL MONOGRAPHS

Volume 193

Function Theory in Several Complex Variables

Toshio Nishino

Selected Titles in This Series

 systems, 1998 statistical models, 1997161 Michael Blank, Discreteness and continuity in problems of chaotic dynamics, 1997
Yu. N. Lin'kov, Asymptotic statistical methods for stochastic processes, 2001
Minoru Wakimoto, Infinite-dimensional Lie algebras. 2001
Valery B. Nevzorov, Records: Mathematical theory. 2001
Toshio Nishino, Function theory in several complex variables, 2001
Yu. P. Solovyov and E. V. Trottsky, C"-algebras and elliptic operators in differential topology, 2001
Shun-ichi Amari and Hiroshi Nagaoka, Methods of information geometry, 2000
Alexander N. Starkov, Dynamical systeins on homogeneous spaces. 2000
Mitsuru Ileawa, Hyperbolic partial differential equations and wave phenomena. 2000 V. V. Buldygin and Yu. V. Kozachenko, Metric characterization of random variables and random processes, 2000
7 A. V. Fursikov, Optimal control of distributed systems. Theory and applications, 2000
Kasuya Kato, Nobushige Kurokawa, and Takeshi Saito, Number theory 1: Fermat's dream, 2000
Kenji Ueno, Algebraic Geometry 1: From algebraic varieties to schemes, 1999 A. V. Mel'nikov, Financial markets. 1999

Hajime Sato, Algebraic topology: an intuitive approach, 1999
I. S. Krasil'shchik and A. M. Vinogradov, Editors, Symmetries and conservation lavis for differential equations of mathematical physics. 1999
Ya. G. Berkovich and E. M. Zhmud', Characters of finite groups. Part 2. 1999
A. A. Milyutin and N. P. Osmolovskii, Calculus of variations and optimal control, 1998
V. E. VoskresenskiI, Algebraic groups and their birational invariants. 1998

Mitsuo Morimoto, Analytic functionals on the sphere, 1998
Satoru Igari, Real analysis-writh an introduction to wavelet theory. 1998
L. M. Lerman and Ya. L. Umanskiy, Four-dimensional integrable Hamiltonian systems with simple singular points (topological aspects). 1998
S. K. Godunov, Modern aspects of linear algebra, 1998

Ya-Zhe Chen and Lan-Cheng Wu, Second order elliptic equations and elliptic

173 Yu. A. Davydov, M. A. Lifshits, and N. V. Smorodina, Local properties of distributions of stochastic functionals, 1998

Ya. G. Berkovich and E. M. Zhmud', Characters of finite groups. Part 1. 1998
E. M. Landis, Second order equations of elliptic and parabolic type, 1998

Viktor Prasolov and Yuri Solovyev, Elliptic functions and elliptic integrals, 1997
S. K. Godunov. Ordinary differential equations with constant coefficient. 1997

Junjiro Noguchi, Introduction to complex analysis. 1998
Masaya Yamaguti, Masayoshi Hata, and Jun Kigami, Mathematics of fractals, 1997
Kenji Ueno, An introduction to algebraic geometry, 1997
V. V. Ishkhanov, B. B. Lur'e, and D. K. Faddeev, The embedding problem in Galois theory, 1997
E. I. Gordon, Nonstandard methods in commutative harmonic analysis, 1997
A. Ya. Dorogovtsev, D. S. Silvestrov, A. V. Skorokhod, and M. I. Yadrenko, Probability theory: Collection of problems, 1997
V. G. Osmolovakif, Lincar and nonlinear perturbations of the operator div, 1997
(Continued in the back of this publication)

Function Theory in Several Complex Variables

Translations of MATHEMATICAL MONOGRAPHS

Volume 193

Function Theory in Several Complex Variables

Toshio Nishino
Translated by
Norman Levenberg Hiroshi Yamaguchi

Editorial Board

Shoshichi Kobayashi (Chair)
Masamichi Takesaki

Translated from the original Japanese edition

Tahensuu Kansuu Ron
Copyright © 1996 by NISHINO Toshio
Published 1996 by the University of Tokyo Press, Tokyo, Japan

Translated from the Japanese by Norman Levenberg and Hiroshi Yamaguchi

2000 Mathematics Subject Classification. Primary 32A05, 32A10, 32B15, 32C20. 32C22, 32C55, 32D05, 32E10, 32E40. 32U05.

Abstract. Kiyoshi Oka, at the beginning of his research, regarded the collection of problems which he encountered in the study of domains of holomorphy as large mountains which separate today and tomorrow. Thus, he believed that there could be no essential progress in analysis without climbing over these mountains. This book is an initial step for the reader to understand the mathematical world created by Oka.

Library of Congress Cataloging-in-Publication Data
Nishino, Toshio
[Tahensu kansuron. English]
Function theory in several complex variables / Toshio Nishino ; translated by Norman Levenberg, Hiroshi Yamaguchi.
p. cm. - (Translations of mathematical monographs. ISSN 0065-9282 ; v. 193)
Includes bibliographical references and index.
ISBN 0-8218-0816-8 (alk. paper)
1. Functions of several complex variables. I. Title. II. Series.
QA331.7.N5713 2001
515'.94-dc21

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, Anerican Matheinatical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permissiondans.org.
© 2001 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Goverument.
Printed in the United States of America.
(x) The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at URL: http://wwu.ans.org/

Contents

Preface ix
Preface to the English Edition xiii
Part 1. Fundamental Theory 1
Chapter 1. Holomorphic Functions and Domains of Holomorphy 3
1.1. Complex Euclidean Space 3
1.2. Analytic Functions 8
1.3. Holomorphic Functions 12
1.4. Separate Analyticity Theorem 23
1.5. Domains of Holomorphy 27
Chapter 2. Implicit Functions and Analytic Sets 37
2.1. Implicit Functions 37
2.2. Analytic Sets (Local) 44
2.3. Weierstrass Condition 56
2.4. Analytic Sets (Global) 60
2.5. Projections of Analytic Sets in Projective Space 64
Chapter 3. The Poincaré, Cousin, and Runge Problems 73
3.1. Meromorphic Functions 73
3.2. Cousin Problems in Polydisks 77
3.3. Cousin I Problem in Polynomially Convex Domains 80
3.4. Cousin I Problem in Domains of Holomorphy 85
3.5. Cousin II Problem 91
3.6. Runge Problem 98
Chapter 4. Pseudoconvex Domains and Pseudoconcave Sets 105
4.1. Pseudoconvex Domains 105
4.2. Pseudoconvex Domains with Smooth Boundary 116
4.3. Boundary Problem 124
4.4. Pseudoconcave Sets 131
4.5. Analytic Derived Sets 137
Chapter 5. Holomorphic Mappings 147
5.1. Holomorphic Mappings of Elementary Domains 147
5.2. Holomorphic Mappings of $\mathbf{C}^{\boldsymbol{n}}$ 152
Part 2. Theory of Analytic Spaces 165
Chapter 6. Ramified Domains 167
6.1. Ramified Domains 167
6.2. Fundamental Theorem for Locally Ramified Domains 179
6.3. Appendix 1 196
6.4. Appendix 2 200
Chapter 7. Analytic Sets and Holomorphic Functions 209
7.1. Holomorphic Functions on Analytic Sets 209
7.2. Universal Denominators 215
7.3. O-Modules 220
7.4. Combination Theorems 231
7.5. Local Finiteness Theorem 251
Chapter 8. Analytic Spaces 267
8.1. Analytic Spaces 267
8.2. Analytic Polyhedra 270
8.3. Stein Spaces 280
8.4. Quantitative Estimates 291
8.5. Representation of a Stein space 301
8.6. Appendix 316
Chapter 9. Normal Pseudoconvex Spaces 321
9.1. Normal Pseudoconvex Spaces 321
9.2. Linking Problem 328
9.3. Principal Theorem 339
9.4. Unramified Domains Over \mathbf{C}^{n} 344
Bibliography 359
Index 363

Preface

> "When you ask around and persist fondly in the Way, you can never find the Truth. Maintain your belief. Devote yourself to the Way. It will turn out to be the mighty Truth."
> from "the 12 teschings of Buddha"

One of the subjects in mathematical nature is created by unifying three notions: complex numbers, coordinate systems, and the related notions of differentiation and integration. The space \mathbf{C}^{n} of n-tuples of complex numbers is ruled by the coordinate system (z_{1}, \ldots, z_{n}). If a complex-valued function in a domain in $\mathbf{C}^{\boldsymbol{n}}$ is differentiable in each variable, it can be represented locally as a convergent power series. It has a natural domain of existence, in which it behaves in its own characteristic way, i.e., it creates its own mathematical world. We call such a function an analytic function.

In the case of one complex variable, an analytic function has a distinguishing property. In this case its real and imaginary parts are harmonic functions which are conjugate to each other. Namely, if one is considered as a potential, then the other is the flow which the potential induces. A harmonic function is uniquely determined by its boundary values; we can construct a harmonic function with prescribed boundary values and construct locally its conjugate harmonic function, which is unique up to an additive constant. This makes it easy to construct analytic functions of one complex variable. The main properties of analytic functions of one complex variable can be explained from this observation.

When we want to describe concepts in nature by using analytic functions, it is not enough to use only those of one complex variable. The theory of analytic functions of several complex variables is quite difficult to treat, compared to the theory in one complex variable. One reason for this is the freedom of the form of domains in $\mathbf{C l}^{\boldsymbol{n}}$ due to the increase in the dimension. Another reason is that both the real and the imaginary parts of an analytic function are now pluriharmonic functions, which imposes a stronger restriction than being merely harmonic. For example, in some cases, a pluriharmonic function is uniquely determined by its boundary values on some proper subset of the boundary, and we cannot always construct a pluriharmonic function with prescribed boundary values on a given portion of the boundary. Therefore, it is difficult to construct analytic functions of several complex variables. Since function theory in one complex variable generally proceeds by constructing analytic functions, we cannot simply use the one-variable approach in the case of several complex variables.

The most particular phenomena in the study of analytic functions in several complex variables which does not appear in the case of one complex variable is the fact that the natural domain of an analytic function is not arbitrary, i.e., it is
not true that any domain in $\mathbf{C}^{\text {n }}$ is a natural domain of existence of sone analytic function. This fact is important. We call a domain in \mathbf{C}^{n} which is the natural domain of existence of some analytic function a domain of holomorphy. The principal problem in function theory in several complex variables is to study which domains are domains of holomorphy, and to determine which objects we can coustruct in a domain of holomorphy.

This book is an attempt to explain results in the theory of functions of several complex variables which were mostly established from the late 19 th century through the middle of the 20th century. The focus is to introduce the mathematical world which was created by my advisor. Kiyoshi Oka (1901-1978). I have attempted to remain as close as possible to Oka's original work.

Kiyoshi Oka, at the beginning of his research. regarded the collection of problems which he encountered in the study of donains of holomorply as large mountains which separate today and tomorrow. Thus, he believed that there could be no essential progress in analysis without clinibing over these inountains.

The work of Oka can be divided into two parts. The first is the st udy of analytic functions in univalent domains in \mathbf{C}^{n}. Here he proved that three concepts: domains of holomorphy; holonorphically convex domains, and psendoconvex domains, are equivalent: and. moreover. that the Poincare problem, the Cousin problems, and the Runge problem - when stated properly - can be solved in domains of holomorphy satisfying the appropriate conditions. The second part was to establish a method by which we can study analytic functions defined in a ramified domain over $\mathbf{C}^{\prime \prime}$ in which the branch points are considered as interior points of the domain. He proceeded in this later work under the assumption that the results valid in univalent clomains in $\mathbf{C}^{\boldsymbol{n}}$ should similarly hold in a ramified domain over $\mathbf{C l}^{\boldsymbol{n}}$. However. the true situation was contrary to his intuition, i.e., a ramified domain of holomorplyy is not always a holomorphically convex domain.

Oka's establishment of his method to treat analytic functions in a ramified domain has proved to be indispensable not only in analysis but also in other fields of mathematics.

This book consists of parts I and II, according to Oka's earlier and later work mentioned above. In part I we treat analytic functions in a univalent domain in $\mathbf{C}^{\text {n }}$. In part II we treat analytic functions in an analytic space: this is a slight generalization of a ramified domain over \mathbf{C}^{n}. The one exception to our adherence to Oka's program is that the fact that a pseudoconvex univalent domain is a domain of holomorphy will be proved in part II in a more general setting by modifying Oka's original ideas.

A mathematical object is abstract and is described by use of words and notation. We should note that the words and the notation themselves are not really mathematics. Mathematics can be realized as a flow of the consciousness which is really creating mathematical nature. After such a process, mathennatical nature lives individually in the mind of each person who has studied it. He seems to hear a voice coming from the bottom of his mind. or to feel the glow of a living object within his mind. This process is essential when we study the established works of the pioneers of a field. If mathematical nature lives correctly within a person's mind, then when he encounters a certain problem, he may not recall the knowledge to solve it immediately, but he will be able to understand the problen itself in order to solve it.

The difficulty in studying mathematics is the procedure for giving life and meaning to the mathematics. The first step is to organize and expand upon the material written by use of words and notation in a concrete form. so that we can proceed with further steps.

I hope that this book is a worthwhile initial step for the reader in order to understand the mathematical world which was created by Kiyoshi Oka.

Toshio Nishino
June 22. 1996 at Kyoto

Preface to the English Edition

This book was written, after long consideration. with the intent to make Oka's original ideas easier to understand. One of the main reasons to pursue this project was the recommendation of Professor John Wermer. During the time while I was writing the original version of the book in Japanese, Professor Katsumi Nomizu had already started urging the AMS to publish an English translation.

Oka's original papers may appear to be difficult to read. However, when we truly understand his original thoughts, we gain much more than simply mathematical results. I hope that this book helps the reader to better comprehend Oka's work.

As for the English translation, Professors Norman Levenberg (Auckland University) and Hiroshi Yamaguchi (Nara Women's University) devoted much time and effort to translating the Japanese version; they had to overcome the difficulties caused by the many differences between Western and Japanese culture. I greatly appreciate their effort. Also, many thanks to the people at the AMS, particularly Ralph Sizer, for their patience and understanding.

Part 1

Fundamental Theory

CHAPTER 1

Holomorphic Functions and Domains of Holomorphy

1.1. Complex Euclidean Space

1.1.1. Complex Euclidean Space. We let C denote the Euclidean plane of one complex variable. To emphasize the variable used. e.g., w, we use the notation C_{u}. For a positive integer n, we let \mathbf{C}^{n} denote the n-dimensional complex Euclidean space generated by the n complex variables z_{1}, \ldots, z_{n}. Given a point $z=\left(z_{1}, \ldots, z_{n}\right) \in C^{n}$, we call z_{j} the j-th coordinate of z and we call C_{z}, the j-th coordinate plane of \mathbf{C}^{n}. Then \mathbf{C}^{n} is the product of the n complex planes $C_{z},(j=1 \ldots \ldots n)$. It is sometimes convenient to use the two real-dimensional plane to model $\mathbf{C}_{z_{3}}$. To visualize a point $z^{\prime}=\left(z_{1}^{\prime} \ldots \ldots z_{n}^{\prime}\right)$ of \mathbf{C}^{n}, we imagine n coordinate planes $C_{i},(j=1 \ldots, n)$ lying on the same plane C : we take the point z_{j}^{\prime} on \mathbf{C}_{z}, for $j=1, \ldots, n$ and regard their combination as the point z^{\prime} in \mathbf{C}^{n} (see Figure 1).

Figure 1. Representation of a point in $\mathbf{C}^{\boldsymbol{n}}$
By a linear coordinate transformation we inean a linear transformation of $\mathbf{C l}^{\boldsymbol{n}}$:

$$
\mathcal{L}: w_{i}=b_{i}+a_{i 1} z_{1}+\ldots+a_{i n} z_{n} \quad(i=1, \ldots, n)
$$

where $b_{i}, a_{i j}(i, j=1, \ldots, n)$ are complex numbers with $\operatorname{det}\left(a_{i j}\right) \neq 0$. We refer to (w_{1}, \ldots, w_{n}) as the new coordinate system of \mathbf{C}^{n}; thus if a point $P_{0} \in \mathbf{C}^{n}$ has coordinates $z^{0}=\left(z_{1}^{0}, \ldots, z_{n}^{0}\right)$ in the (old) coordinate system $\left(z_{1}, \ldots, z_{n}\right)$, then it has coordinates $w^{0}=\left(w_{1}^{0}, \ldots, u_{n}^{0}\right)$ in the new coordinate system $\left(w_{1}, \ldots, u_{n}\right)$ where $w^{0}=\mathcal{L}\left(z^{0}\right)$.
1.1.2. Projections, Product Spaces, and Sections. Let r and s be positive integers and set $n=r+s$. The space C^{n} of the n variables $z_{1} \ldots, z_{n}$ is the product of \mathbf{C}^{r} with variables z_{1}, \ldots, z_{r} and \mathbf{C}^{s} with variables z_{r+1}, \ldots, z_{n}. For a point $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \in \mathbf{C}^{n}$, we call $\left(z_{1}^{\prime}, \ldots, z_{r}^{\prime}\right)$ the projection of z^{\prime} to \mathbf{C}^{r} and
we call the map sending $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)$ to $\left(z_{1}^{\prime}, \ldots, z_{r}^{\prime}\right)$ the projection from \mathbf{C}^{n} to \mathbf{C}^{r}. For a subset E of \mathbf{C}^{n}, the set consisting of the projections of all points z in E is called the projection of E to \mathbf{C}^{r} and will be denoted E. We define in a similar manner the projection from \mathbf{C}^{n} to \mathbf{C}^{s}.

Let $E_{1} \subset \mathbf{C}^{r}$ and $E_{2} \subset \mathbf{C}^{s}$. For any $z^{\prime}=\left(z_{1}^{\prime} \ldots, z_{r}^{\prime}\right)$ in \mathbf{C}^{r} and $z^{\prime \prime}=$ $\left(z_{r+1}^{\prime \prime}, \ldots, z_{n}^{\prime \prime}\right)$ in \mathbf{C}^{s}, we consider the ordered pair

$$
\left(z^{\prime}, z^{\prime \prime}\right)=\left(z_{1}^{\prime}, \ldots, z_{r}^{\prime}, z_{r+1}^{\prime \prime}, \ldots, z_{n}^{\prime \prime}\right)
$$

as a point of \mathbf{C}^{n}. We denote the set of all such pairs by $E_{1} \times E_{2}$, called the product set of E_{1} and E_{2}. In a similar manner we can define the product set of more than two sets. Let $\mathbf{C}^{n}=\mathbf{C}^{r} \times \mathbf{C}^{s}$ and let $E \subset \mathbf{C}^{n}$. For $a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbf{C}^{r}$ we let $E(a)$ denote the set of all points of E whose projection to \mathbf{C}^{r} is a, and we call $E(a)$ the section (or fiber, sometimes) of E over $z_{j}=a_{j}(j=1 \ldots, r)$. Note that the projection of $E(a)$ to the space C^{s} is one-to-one. Thus we often identify $E(a) \subset C^{n}$ with the projection of $E(a)$ to \mathbf{C}^{s}, and we consider E as a variation of the sets $E(a)$ in \mathbf{C}^{s} varying with the parameter $a \in \mathbf{C}^{r}$. In the special case where $E=E_{1} \times E_{2}$, we identify $E(a)$ with E_{2} for $a \in E_{1}$ and with \emptyset for $a \notin E_{1}$.

Let $E \subset \mathbf{C}^{n}$ and $F \subset \mathbf{C}^{r}$. We let $E(F) \subset \mathbf{C}^{n}$ denote the set of all points of E whose projection to \mathbf{C}^{r} is contained in F; i.e.,

$$
E(F)=\bigcup_{a \in F} E(a)
$$

1.1.3. Domains and Product Domains. By a domain in \mathbf{C}^{n} we will mean an open and connected subset of C^{n}, although we will have occasion to drop the connectivity assumption. We let ∂D denote the boundary of the domain D. In general, for any subset E of \mathbf{C}^{n}, we let \bar{E} denote the closure of E. For a bounded domain D, we call the closure $\bar{D}=D \cup \partial D$ of D a closed domain.

To represent a domain D in \mathbf{C}^{n} more concretely, as described in 1.1.1 we consider n coordinate planes $C_{z},(j=1, \ldots, n)$ on the same plane C. Taking a point $z_{j}^{\prime}(j=1, \ldots, n-1)$ on each coordinate plane C_{z}, we set $z^{\prime}=$ $\left(z_{1}^{\prime}, \ldots, z_{n-1}^{\prime}\right) \in \mathbf{C}^{n-1}$. On the coordinate plane $\mathbf{C}_{z_{n}}$, we draw the section $D\left(z^{\prime}\right)$ of D over $z_{j}=z_{j}^{\prime}(j=1, \ldots, n-1)$ (identifying this section with its projection to $\left.\mathbf{C}_{z_{n}}\right)$, so that $D\left(z^{\prime}\right)$, which is a domain in $\mathbf{C}_{z_{n}}$, varies with the parameter $z^{\prime} \in \mathbf{C}^{n-1}$. The totality of these sections $D\left(z^{\prime}\right)$, varying in the complex plane $C_{z_{n}}$, gives a realization of the domain D in \mathbf{C}^{n}. We remark that even if D is connected and simply connected in \mathbf{C}^{n}, a section $D\left(z^{\prime}\right)$ in $\mathbf{C}_{z_{n}}$ is not necessarily connected.

Figure 2. Representation of a domain

Let Δ_{j} be a domain in the coordinate plane $C_{:},(j=1 \ldots, n)$. The product set $\Delta=\Delta_{1} \times \ldots \times \Delta_{n}$ in C^{n} is called a product domain in C^{n}, and $\Delta_{j} \subset C_{s_{;}}$is called the z_{j} component set of Δ. When $n \geq 2$ and each Δ, is connected (but not necessarily simply connected). the boundary $\partial \Delta$ of the product domain Δ consists of one connected component. The product domain Δ is connected and simply connected if and only if each z_{j} component set $\Delta,(j=1 \ldots . n)$ is commected and simply connected. In general, there is no easy way to describe. geometrically or analytically, a domain in \mathbf{C}^{n}. However. in the case of product domains Δ. we can represent the component sets of Δ on n separate coordinate planes. Often when we need to choose a neighborhood of a point z in $\mathbf{C}^{\prime \prime}$. we will take a product domain consisting of one simply connected component.
1.1.4. Complex Hyperplanes, Polydisks, and Balls. Let n and m ($0<$ $m<n$) be positive integers. We consider the space $C^{\prime \prime}$ of n complex variables $z_{1} \ldots \ldots z_{n}$, and the space \mathbf{C}^{m} of m complex variables $t_{1} \ldots \ldots t_{m}$. Let $a_{j k} \quad(j=$ $1, \ldots, n: k=1, \ldots . m$) be $n m$ complex numbers such that the rank of the matrix ($a_{j k}$) is equal to m, and let $b_{j}(j=1, \ldots, n)$ be any n coniplex numbers. Consider the mapping T from $C^{\prime \prime}$ to C^{n} sending $\left(t_{1} \ldots \ldots t_{m}\right)$ to $\left(z_{1} \ldots \ldots z_{n}\right)$ by the rule

$$
z_{j}=a_{j 1} t_{1}+\cdots+a_{j m} t_{m}+b_{j} \quad(j=1 \ldots, n) .
$$

We call the image set $L:=T\left(\mathrm{C}^{m}\right)$ an m-dimensional complex hyperplane in \mathbf{C}^{n}. In particlar, when $m=1 . L$ is called a complex line. An m-dimensional complex hyperplane can also be given as the solution set of a finite number of simultaneous linear equations for n unknown complex numbers $z_{1} \ldots \ldots, z_{n}$.

Let $E \subset \mathbf{C}^{\prime \prime}$ and let $L=T\left(\mathbf{C}^{m}\right)$ be an m-diniensional complex hyperplane in \mathbf{C}^{n}. Then $E \cap L$ is called the section of E in L in $\mathbf{C}^{\prime \prime}$. We often identify $E \cap L$ with its pre-image $T^{-1}(E \cap L)$ in \mathbf{C}^{m}.

Remark 1.1. We can identify \mathbf{C}^{n} with real $2 n$-dimensional Euclidean space $\mathbf{R}^{\mathbf{2 n}}$. Under this identification, an m-dimensional hyperplane L in $\mathbf{C}^{\prime \prime}$ is alwavs a real $2 m$-dimensional hyperplane. However, not all real $2 m$-dimensional hyperplanes can be regarded as complex m-dimensional hyperplanes. For example, given two distinct points p and q in \mathbf{C}^{n}, the family of all real two-dinensional hyperplanes passing through p and q is a $(2 n-2)$-dimensional real-parameter family. among which exactly one plane is a complex line.

Let $a=\left(a_{1}, \ldots, a_{n}\right) \in C^{n}$ and $r_{j}>0(j=1 \ldots . n)$. We call the subset of C^{n} given by

$$
\Delta:\left|=j-a_{j}\right|<r_{j} \quad(j=1 \ldots \ldots, n)
$$

the (open) polydisk centered at a with polyradius $r,(j=1, \ldots, n)$. This is a special type of product domain. In particular, when $r_{j}=r(j=1, \ldots, n)$, we call Δ a polydisk with radius r. We allow $r_{j}=+\infty$. The closure Δ of Δ is called a closed polydisk. If $n=2 . \Delta$ is called a bidisk.

For a polydisk Δ centered at a with polyradius $r_{j}(j=1 \ldots . n)$, we call

$$
\mathcal{E}:\left|z_{j}-a_{j}\right|=r, \quad(j=1 \ldots, n)
$$

the distinguished boundary of Δ. The topological boundary $\partial \Delta$ of Δ in $C^{n \prime}$ is a real $(2 n-1)$-dimensional set which contains the real n-dimensional distinguished boundary \mathcal{E}.

Let $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{C}^{n}$ and let $r>0$. We call the subset of \mathbf{C}^{n} given by

$$
B:\left|z_{1}-a_{1}\right|^{2}+\cdots+\left|z_{n}-a_{n}\right|^{2}<r^{2}
$$

the open (Euclidean) ball centered at a with radius r and

$$
\mathcal{Q}:\left|z_{1}-a_{1}\right|^{2}+\cdots+\left|z_{n}-a_{n}\right|^{2} \leq r^{2}
$$

the closed ball centered at a with radius r. We often use the simple notation:

$$
\|z-a\|:=\left(\left|z_{1}-a_{1}\right|^{2}+\cdots+\left|z_{n}-a_{n}\right|^{2}\right)^{1 / 2}
$$

for any $z, a \in \mathbf{C}^{n}$.
Remark 1.2. Let \mathcal{Q} be the closed ball centered at the origin with radius r in \mathbf{C}^{n} and let L be a complex line passing through the origin in \mathbf{C}^{n}. Define $\boldsymbol{Q}^{\boldsymbol{n}}=\boldsymbol{Q} \cap L$. Then the projection C_{j} of \mathcal{Q}^{0} to each coordinate plane \mathbf{C}_{2}, is a disk centered at $z_{j}=0$ (possibly of radius 0). Furthermore, if we let $r_{j}(j=1, \ldots, n)$ denote the radius of the disk $C_{j}(j=1, \ldots, n)$, then $r^{2}=\sum_{j=1}^{n} r_{j}^{2}$. so that the Euclidean area πr^{2} of $\mathcal{Q}^{\prime \prime}$ is equal to the sum $\pi \sum_{j=1}^{n} r_{j}^{2}$ of the Euclidean areas of these disks.
1.1.5. Boundary Distance. Let D be a domain in \mathbf{C}^{n}. For $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)$ $\in D$, the supremum of $r>0$ such that the closed ball

$$
\mathcal{Q}_{r}:\left|z_{1}-z_{1}^{\prime}\right|^{2}+\cdots+\left|z_{n}-z_{n}^{\prime}\right|^{2} \leq r^{2}
$$

centered at z^{\prime} with radius r is contained in D is called the (Euclidean) boundary distance from z^{\prime} to ∂D and is denoted by $d_{D}\left(z^{\prime}\right)$. Note that $\left|d_{D}\left(z^{\prime}\right)-d_{D}\left(z^{\prime \prime}\right)\right| \leq$ $\left\|z^{\prime}-z^{\prime \prime}\right\|$ for $z^{\prime}, z^{\prime \prime} \in D$. The boundary distance thus defines a positive-valued, continuous function $d_{D}(z)$ on D called the boundary distance function on D. For $E \subset D$,

$$
d_{D}(E):=\inf _{z \in E} d_{D}(z)
$$

is called the boundary distance from E to ∂D.
We also consider another kind of boundary distance. For $z^{\prime} \in D$. the supremum of $r>0$ such that the closed polydisk

$$
\bar{\Delta}_{r}:\left|z_{j}-z_{j}^{\prime}\right| \leq r \quad(j=1, \ldots, n)
$$

centered at z^{\prime} with radius r is contained in D is called the polydisk boundary distance from z^{\prime} to ∂D and is denoted by $\delta_{D}\left(z^{\prime}\right)$. For $E \subset D$,

$$
\delta_{D}(E):=\inf _{z \in E} \delta_{D}(z)
$$

is called the polydisk boundary distance from E to ∂D.
For $D \subset \mathbf{C}^{n}$ and $E \subset D, \bar{E} \cap D$ is called the closure of E in D. If $\bar{E} \cap D$ is compact. we say E is relatively compact in D and we write $E \subset \subset D$. For example, if D is a bounded domain in \mathbf{C}^{n}, and if the Euclidean or polydisk boundary distance from E to ∂D is positive, then E is relatively compact in D. However, this is not true in general if D is unbounded.
1.1.8. Compactification. We often want to add ideal boundary points to \mathbf{C}^{n} in such a way that the new space becomes compact. If $n=1$, there is a unique compactification obtained by adding one ideal boundary point to \mathbf{C}; this gives the Riemann sphere $\widehat{\mathbf{C}}$. If $n \geq 2$, there are several possible compactifications of $\mathbf{C}^{\boldsymbol{n}}$; we discuss two standard ones.

1. Osgood Space. In \mathbf{C}^{n} with coordinates z_{1}, \ldots, z_{n}, let $\widehat{\mathbf{C}}_{i},(j=1, \ldots, n)$ be the Riemann sphere of the coordinate plane \mathbf{C}_{z}, The product space

$$
\widehat{\mathbf{C}}^{n}=\widehat{\mathbf{C}}_{i_{1}} \times \ldots \times \widehat{\mathbf{C}}_{z_{n}}
$$

is called n-dimensional Osgood space. Thus, in a sense, n-dimensional Osgood space $\widehat{\mathbf{C}}^{n}$ is constructed by adding n copies of ($n-1$)-diniensional Osgood space $\widehat{\mathbf{C}}^{n-1}$ to $\mathbf{C}^{\boldsymbol{n}}$.

The mapping $\Phi\left(z_{1}, \ldots, z_{n}\right)=\left(w_{1}, \ldots, w_{n}\right)$, where

$$
w_{j}=\frac{a_{j} z_{j}+b_{j}}{c_{j} z_{j}+d_{j}} \quad\left(a, d_{j}-b_{j} c_{j} \neq 0 . j=1 \ldots, n\right)
$$

are linear fractional transformations, defines an analytic bijection from $\widehat{\mathbf{C}}^{n}$ to $\widehat{\mathbf{C}}^{n}$. These transformations are transitive on $\widehat{\mathbf{C}}^{n}$: i.e., given any point $\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \in \widehat{\mathbf{C}}^{n}$. there exists Φ as above with $\Phi\left(z_{1}^{\prime} \ldots, z_{n}^{\prime}\right)=(0, \ldots, 0)$.
2. Projective Space. Let $z^{\prime}=\left(z_{0}^{\prime}, z_{1}^{\prime} \ldots, z_{n}^{\prime}\right)$ and $z^{\prime \prime}=\left(z_{0}^{\prime \prime}, z_{1}^{\prime \prime} \ldots, z_{n}^{\prime \prime}\right)$ be points in $\mathbf{C}^{n+1} \backslash\{0\}$. We call these points equivalent if there exists $c \in \mathbf{C} \backslash\{0\}$ such that $z_{j}^{\prime \prime}=c z_{j}^{\prime}(j=0,1, \ldots, n)$. The equivalence classes in $\mathbf{C}^{n+1} \backslash\{0\}$ form an n-dimensional space called complex projective space, which we denote by $\mathbf{P}^{\boldsymbol{n}}$. The coordinates $z=\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ are called homogeneous coordinates for \mathbf{P}^{n} and will be denoted by $\left.\left[z_{1}\right): z_{1}: \ldots: z_{n}\right]$. If $n=1, \mathbf{P}^{1}:=\mathbf{P}$ is equal to the Riemann sphere $\widehat{\mathbf{C}}$.

We get a bijective correspondence by sending the point $z=\left[\begin{array}{ll}z_{0}: z_{1}: \ldots: z_{r}\end{array}\right]$ in \mathbf{P}^{n} with $z_{0} \neq 0$ to the point $u^{\prime}=\left(w_{1}, \ldots, w_{n}\right)$ in \mathbf{C}^{n}, where

$$
w_{j}=z_{j} / z_{0} \quad(j=1, \ldots, n) .
$$

The set of all points $z=\left[z_{1}: z_{1}: \ldots: z_{n}\right] \in \mathbf{P}^{n}$ with $z_{0}=0$ can be identified with the ($n-1$)-dimensional complex space consisting of all points with homogeneous coordinates (z_{1}, \ldots, z_{n}) in $\mathbf{C}^{n} \backslash\{0\}$. Thus \mathbf{P}^{n} is a compactification of \mathbf{C}^{n} obtained by adding the space \mathbf{P}^{n-1} as the set of ideal boundary points to \mathbf{C}^{n}. We call \mathbf{C}^{n} the finite part of $\mathbf{P}^{\boldsymbol{n}}$ and $\mathbf{P}^{\boldsymbol{n - 1}}$ the hyperplane at infinity; the coordinates $w=\left(w_{1}, \ldots, w_{n}\right)$ are called inhomogeneous coordinates for $\mathrm{P}^{\boldsymbol{n}} \backslash \mathrm{P}^{n-1}$.

Let $m<\boldsymbol{n}$ be a positive integer and let

$$
L_{k}(z)=a_{0 k} z_{0}+a_{1 k} z_{1}+\cdots+a_{n k} z_{n} \quad(k=1 \ldots, m)
$$

be linear functions of $z=\left\{z_{0}: z_{1}: \ldots: z_{n}\right]$. The set H_{L} of all points $z \in \mathbf{P}^{n}$ which satisfy the equations $L_{1}(z)=\cdots=L_{m}(z)=0$ is called a complex hyperplane in \mathbf{P}^{n}. When the functions $L_{k}(z)(k=1, \ldots . m)$ are linearly independent. H_{L} is ($n-m$)-dimensional and may be considered as an $(n-m)$-dimensional projective space.

Let $A=\left(a_{i j}\right)$ be an $(n+1 . n+1)$ matrix with non-zero determinant. The linear transformation $\Psi\left(\left[z_{0}: z_{1}: \ldots: z_{n}\right]\right)=\left(\left[w_{0}: w_{1}: \ldots: w_{n}\right]\right)$, where

$$
w_{j}=a_{0 j} z_{0}+a_{1}, z_{1}+\cdots+a_{n j} z_{n} \quad(j=0.1, \ldots, n),
$$

is an analytic bijection between \mathbf{P}^{n} with homogeneous coordinates z and \mathbf{P}^{n} with homogeneous coordinates w. We call Ψ a projective transformation of \mathbf{P}^{n}. These transformations are transitive on $\mathbf{P}^{\boldsymbol{n}}$; given any point with homogeneous coordinates $\left[z_{0}: z_{1}: \ldots: z_{n}\right] \in \mathbf{P}^{n}$, there exists $\boldsymbol{\Phi}$ as above with $\Phi\left(\left[z_{0}: z_{1}: \ldots\right.\right.$: $\left.\left.z_{n}\right]\right)=[1: 0: \ldots: 0]$.

1.2. Analytic Functions

1.2.1. Power Series. Fix $a=\left(a_{1} \ldots, a_{n}\right) \in \mathbf{C}^{n}$ and consider a power series centered at a in the n complex variables z_{1}, \ldots, z_{n} :

$$
\mathcal{P}(z)=\sum_{ر_{1} \ldots, ر_{n} \geq 0} a_{J_{1} \ldots \ldots j_{1}}\left(z_{1}-a_{1}\right)^{\mu_{1}} \cdots\left(z_{n}-a_{n}\right)^{\jmath_{n}} .
$$

The set of all points z^{\prime} in \mathbf{C}^{n} such that $\mathcal{P}(z)$ converges uniformly in some neighborhood of z^{\prime} is called the domain of convergence of $\mathcal{P}(z)$ and is denoted by $\mathcal{D}_{\boldsymbol{F}}$. Clearly $\mathcal{D}_{\mathcal{P}}$ is open.

REmark 1.3. If $n \geq 2$, there may exist points $z^{\prime} \notin \overline{\mathcal{D}_{P}}$ for which $\mathcal{P}\left(z^{\prime}\right)$ converges. For example, in \mathbf{C}^{2} with coordinates $\left(z_{1}, z_{2}\right)$, consider the power series

$$
\mathcal{P}\left(z_{1}, z_{2}\right)=z_{1}+z_{1} z_{2}+z_{1} z_{2}^{2}+\cdots
$$

centered at $(0,0)$. Then $\mathcal{D}_{\mathcal{P}}$ is the bidisk $\left(\left|z_{1}\right|<x\right) \times\left(\left|z_{2}\right|<1\right)$, while $\mathcal{P}\left(z_{1}, z_{2}\right)$ converges at any point on the complex line $z_{1}=0$.

If the domain of convergence $\mathcal{D}_{\mathcal{P}}$ of a power series $\mathcal{P}(z)$ is not empty, then $\mathcal{P}(z)$ defines a continuous function on $\mathcal{D}_{\mathcal{F}}$ that has partial derivatives $\partial \mathcal{P} / \partial z_{j} . j=$ $1, \ldots, n$. which are obtained by termwise differentiation of $\mathcal{P}(z)$ with respect to $z_{j}, j=1, \ldots, n$. Here we define $\partial / \partial z_{j}$ in the usual calculus sense: for more on these differential operators, see Remark 1.6 in section 1.3.2. A complex-valued function $f(z)$ defined in a domain D in \mathbf{C}^{n} is called analytic in D if $f(z)$ can be represented by a convergent power series in a neighborhood of each point in D.

Let D be a domain in \mathbf{C}^{n} and let $a=\left(a_{1} \ldots . a_{n}\right) \in \mathbf{C}^{n}$. If whenever $z^{\prime}=$ ($z_{1}^{\prime}, \ldots, z_{n}^{\prime}$) lies in D, the entire distinguished boundary

$$
\left|z_{j}-a_{j}\right|=\left|z_{j}^{\prime}-a_{j}\right| \quad(j=1, \ldots, n)
$$

of the polvdisk $\left|z_{j}-a_{j}\right|<\left|z_{j}^{\prime}-a_{j}\right|(j=1, \ldots . n)$ is contained in D. then D is called a Reinhardt domain centered at a. If, moreover, $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \in D$ implies that the entire closed polydisk

$$
\left|z,-a_{j}\right| \leq\left|z_{j}^{\prime}-a_{\jmath}\right| \quad(j=1, \ldots . n)
$$

is contained in D, then the Reinhardt domain D centered at a is said to be complete.

Proposirion 1.1. The domain of convergence $\mathcal{D}_{\mathcal{P}}$ of a power series $\mathcal{P}(z)$ centered at a in \mathbf{C}^{n} is a complete Reinhandt domain centered at a.

Proof. If $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \in \mathcal{D}_{\mathcal{P}}$, then the terms

$$
\left|a_{j_{1} \ldots . J_{n}}\left(z_{1}^{\prime}-a_{1}\right)^{j_{1}} \cdots\left(z_{n}^{\prime}-a_{n}\right)^{J_{n}}\right|
$$

in the series $\mathcal{P}\left(z^{\prime}\right)$ converge to 0 as $j_{1}+\ldots+j_{n} \rightarrow \infty$. Hence it suffices to prove that if the terms in the series $\mathcal{P}\left(z^{\prime}\right)$ are bounded. then $\mathcal{P}(z)$ converges uniformly on each compact subset of the polydisk

$$
\Delta:\left|z_{\jmath}-a_{3}\right|<\left|z_{j}^{\prime}-a_{\jmath}\right| \quad(j=1, \ldots . n) .
$$

Thus we assume there exists an $M>0$ such that

$$
\left|a_{j_{1} \ldots \ldots j_{n}}\left(z_{1}^{\prime}-a_{1}\right)^{j_{1}} \cdots\left(z_{n}^{\prime}-a_{n}\right)^{j_{n}}\right| \leq M I
$$

for all $j_{1} \ldots \ldots j_{n}$. Let $0<\rho<1$. In the closed polydisk

$$
\left|z_{j}-a_{j}\right| \leq \rho\left|z_{j}^{\prime}-a_{j}\right| \quad(j=1 \ldots, n) .
$$

we have

$$
\begin{aligned}
& \sum_{j_{1} \ldots \ldots j_{n} \geq 0} \mid a_{j_{1} \ldots \ldots j_{n}}\left(z_{1}-a_{1}\right)^{j_{1} \cdots\left(z_{n}-a_{n}\right)^{j_{n}} \mid} \\
& \leq M \sum_{j_{1} \ldots, j_{n} \geq 0} \rho^{j_{1}+\ldots+j_{n}}=\frac{M}{(1-\rho)^{n}} .
\end{aligned}
$$

Thus $\mathcal{P}(z)$ converges absolutely and uniformly on any compact subset of Δ. Since z^{\prime} was an arbitrary point of $\mathcal{D}_{\mathcal{F}}$, it follows that $\mathcal{D}_{\mathcal{P}}$ is a complete Reinhardt domain centered at a.
1.2.2. Associated Multiradius of Convergence. Let $r=\left(r_{1}, \ldots, r_{n}\right)$ be an n-tuple of positive nuinbers. Let $\mathcal{P}(z)$ be a power series centered at $a=$ $\left(a_{1}, \ldots, a_{n}\right)$ in \mathbf{C}^{n}. If $\mathcal{P}(z)$ is convergent in the polydisk

$$
\Delta:\left|z_{j}-a_{j}\right|<r_{j} \quad(j=1, \ldots, n)
$$

and is divergent in the product domain

$$
\left|z_{j}-a_{j}\right|>r_{j} \quad(j=1, \ldots, n) .
$$

then r is called an associated multiradius of convergence of $\mathcal{P}(z)$. Note that we make no assumptions for points on the topological boundary of Δ.

An associated multiradius of convergence can be determined by the following formula.

Theorem 1.1 (Hadamard). If r is an associated multiradius of convergence of $\mathcal{P}(z)$, then

$$
\begin{equation*}
\overline{\lim }_{j_{1}+\ldots+j_{n} \rightarrow x} \sqrt[\mu_{1}+\cdots+\jmath_{1}]{\left|a_{j_{1} \ldots . j_{n}}\right| r_{1}^{j_{1} \cdots r_{n}^{\prime \prime}}}=1 . \tag{1.1}
\end{equation*}
$$

Proof. Let $r=\left(r_{1} \ldots, r_{n}\right)$ be an associated multiradius of convergence of $\mathcal{P}(z)$ and let $\rho:=\varlimsup_{\lim _{j_{1}+\ldots+j_{n}} \rightarrow x}, \cdots+\sqrt[n]{\left|\alpha_{j_{1}} \ldots . \jmath_{n}\right| r_{1}^{j_{1}} \cdots r_{n}^{j_{n}}}$. We prove that $\rho=1$ by contradiction. If $\rho<1$. fix ρ^{\prime} with $\rho<\rho^{\prime}<1$. Then

$$
\mu_{1}++\mu_{n} \sqrt{\left|\alpha_{j_{1} \ldots \ldots J_{n}}\right| r_{1}^{\gamma_{1} \cdots r_{n}^{\prime n}}} \leq \rho^{\prime}
$$

for all but a finite number of n-tuples $\left(j_{1} \ldots, j_{n}\right)$. Then for any z^{\prime} satisfying

$$
\left|z_{j}^{\prime}-a,\right|=\frac{r_{j}}{\rho^{\prime}} \quad(j=1, \ldots, n),
$$

we have

$$
\left|\alpha_{j_{1} \ldots, j_{n}}\left(z_{1}^{\prime}-a_{1}\right)^{\mu_{1}} \cdots\left(z_{n}^{\prime}-a_{n}\right)^{j_{n}}\right| \leq 1
$$

for all but finitely many terms. Thus, as noted in the proof of Proposition 1.1, $\mathcal{P}(z)$ is convergent in the polydisk $\left|z_{j}-a_{j}\right|<r_{j} / \rho^{\prime}(j=1, \ldots, n)$. Since $0<\rho^{\prime}<1$. this contradicts the fact that r is an associated multiradius of convergence of $\mathcal{P}(z)$.

On the other hand. if $\rho>1$, fix ρ^{\prime} with $\rho>\rho^{\prime}>1$. Then

$$
n \cdots{ }_{n} \sqrt{\left|\alpha_{j_{2}} \ldots, \jmath_{n}\right| r_{1}^{j_{1}} \cdots r_{n}^{j_{n}^{\prime}}} \geq \rho^{\prime}
$$

for infinitely many n-tuples $\left(j_{1}, \ldots, j_{n}\right)$. Then for any z^{\prime} satisfying

$$
\left|z_{\jmath}^{\prime}-a_{\jmath}\right|=\frac{r_{\jmath}}{\rho^{\prime}} \quad(j=1, \ldots . n)
$$

we have

$$
\left|\alpha_{j_{1} \ldots . j_{n}}\left(z_{1}^{\prime}-a_{1}\right)^{j_{1}} \cdots\left(z_{n}^{\prime}-a_{n}\right)^{j_{n}}\right| \geq 1
$$

for infinitely many terms. Since $\rho^{\prime}>1$, this again contradicts our assumption that r is an associated multiradius of convergence of $\mathcal{P}(z)$.

The theorem implies that the power series $\partial \mathcal{P} / \partial z_{j}$ obtained by differentiating each term of \mathcal{P} with respect to z_{j} is a power series centered at a having the same associated multiradius of convergence as \mathcal{P}.

Remark 1.4. We have $z^{0} \in \mathcal{D}_{\mathcal{P}}$ if and only if there exist a neighborhood δ of z^{0} in C^{n} and constants $M>0$ and $0<\rho<1$ such that

$$
\left|a_{j_{1} \ldots, j_{n}}\left(z_{1}-a_{1}\right)^{j_{1}} \cdots\left(z_{n}-a_{n}\right)^{j_{n}}\right| \leq M \rho^{j_{1}+\ldots+\jmath_{n}}
$$

for all $j=\left(j_{1}, \ldots, j_{n}\right)$ and $z \in \delta$.
1.2.3. Convexity of Domains of Convergence. Thus far, the theory of power series of several complex variables has not differed significantly from the theory in one complex variable. In this section. we will study a type of convexity occurring in all domains of convergence $\mathcal{D}_{\mathcal{P}}$.

Let D be a complete Reinhardt domain centered at $a=\left(a_{1} \ldots, a_{n}\right)$ in \mathbf{C}^{n} and let $\mathcal{L}\left(z_{1}, \ldots, z_{n}\right):=\left(u_{1}, \ldots, u_{n}\right)$, where

$$
u_{j}:=\log \left|z_{j}-a_{j}\right| \quad(j=1 \ldots, n)
$$

thus \mathcal{L} is a mapping from $\mathbf{C}^{n} \backslash\{a\}$ into \mathbf{R}^{n}. We let \tilde{D} denote the inage of D under \mathcal{L}. If \tilde{D} is geometrically convex as a subset of \mathbf{R}^{n}. we say that D is logarithmically convex in \mathbf{C}^{n}.

THEOREM 1.2 (Fabry). The domain of convergence $\mathcal{D}_{\mathcal{P}}$ of a power series $\mathcal{P}(z)$ centered at a in \mathbf{C}^{n} is logarithmically convex in $\mathbf{C}^{\boldsymbol{n}}$.

Proof. Let $\widetilde{\mathcal{D}}_{\mathcal{P}} \subset \mathbf{R}^{n}$ be the image of $\mathcal{D}_{\mathcal{F}}$ under the mapping \mathcal{L}. We will use u_{1}, \ldots, u_{n} for coordinates in \mathbf{R}^{n}. Associated to each term

$$
\alpha_{j_{1} \ldots, j_{n}}\left(z_{1}-a_{1}\right)^{j_{1}} \cdots\left(z_{n}-a_{n}\right)^{j_{n}}
$$

of the power series $\mathcal{P}(z)$, we let $H_{(j)}$ be the half-space in \mathbf{R}^{n} defined by

$$
H_{(j)}: j_{1} u_{1}+\cdots+j_{n} u_{n}+\log \left|\alpha_{j_{1} \ldots . j_{n}}\right|<0
$$

A point $u^{\prime} \in \mathbf{R}^{n}$ belongs to $\tilde{\mathcal{D}}_{\mathcal{P}}$ if and only if there is a neighborhood V of u^{\prime} in \mathbf{R}^{n} such that $V \subset H_{(j)}$ for all but finitely many $j=\left(j_{1}, \ldots, j_{n}\right)$ (this follows from Remark 1.4). Since $H_{(j)}$ is a half-space, it follows that if u^{\prime} and $u^{\prime \prime}$ are contained in $\widetilde{\mathcal{D}}_{\mathcal{P}}$, then the segment $\left[u^{\prime}, u^{\prime \prime}\right]$ in \mathbf{R}^{n} is also contained in $\widetilde{\mathcal{D}}_{\mathcal{P}}$. Thus $\widetilde{\mathcal{D}}_{\mathcal{P}}$ is geometrically convex in $\mathbf{R}^{\boldsymbol{n}}$.

This fact was discovered in 1902 by Fabry [18]; it shows that the domain of convergence of a power series in several complex variables has very special properties. The theorem implies that the zero set of a holomorphic function of $n \geq 2$ complex variables does not contain isolated points.

Example 1.1. In \mathbf{C}^{2} with coordinates z_{1} and z_{2}, let

$$
\mathcal{P}\left(z_{1}, z_{2}\right)=\sum_{, . k \geq 0} a_{\rho, k} z_{1}^{J} z_{2}^{k}
$$

be a power series about ($\mathbf{0 . 0}$). If the domain of convergence $\mathcal{D}_{\mathcal{F}}$ of $\mathcal{P}\left(z_{1}, z_{2}\right)$ contains the polydisks

$$
\left|z_{1}\right|<1,\left|z_{2}\right|<\infty \quad \text { and } \quad\left|z_{1}\right|<\infty, \quad\left|z_{2}\right|<1 .
$$

then $\mathcal{D}_{\mathcal{P}}$ is all of \mathbf{C}^{2}.
1.2.4. Estimation of Coefficients. We next study the Cauchy estimates for coefficients of power series. Let

$$
\mathcal{P}(z)=\sum_{j_{1} \ldots, j_{n} \geq 0} a_{n_{1} \ldots j_{n}}\left(z_{1}-a_{1}\right)^{\rho_{1}} \cdots\left(z_{n}-a_{n}\right)^{j_{n}}
$$

be a power series centered at $a \in \mathbf{C}^{n}$ and let $\mathcal{D}_{\mathcal{P}}$ be the domain of convergence of $\mathcal{P}(z)$. Let

$$
\bar{\Delta}:|z,-a,| \leq r, \quad(j=1, \ldots, n)
$$

be a closed polydisk contained in $\mathcal{D}_{\mathcal{P}}$, and fix $M>0$ such that

$$
|\mathcal{P}(z)| \leq M \quad \text { in } \bar{\Delta} .
$$

Theorem 1.3 (Cauchy Estimates). The coefficients of $\mathcal{P}(z)$ satisfy

$$
\left|a_{j_{1} \ldots \ldots j_{n}}\right| \leq \frac{M}{r_{1}^{j_{1}} \cdots r_{n}^{j_{0}^{\prime}}} .
$$

Proof. Let $\nu=\left(\nu_{1} \ldots, \nu_{n}\right)$ be an n-tuple of integers. Then

$$
\int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi}\left(e^{i \theta_{1}}\right)^{\nu_{1}} \cdots\left(e^{i \theta_{n}}\right)^{\nu_{n}} d \theta_{1} \cdots d \theta_{n}= \begin{cases}0, & \nu \neq(0, \ldots, 0), \\ (2 \pi)^{n}, & \nu=(0 \ldots, 0) .\end{cases}
$$

where $i^{2}=-1$. We let \mathcal{E} denote the distinguished boundary of Δ, i.e., $\mathcal{E}:\left|z_{j}-a_{j}\right|=$ $r,(j=1, \ldots, n)$, and we form the integral

$$
I=\int \cdots \int_{\mathcal{E}} \frac{\mathcal{P}(z)}{\left(z_{1}-a_{1}\right)^{j_{1}+1} \cdots\left(z_{n}-a_{n}\right)^{j_{n}+1}} d z_{1} \cdots d z_{n} .
$$

By integrating term by term, we obtain

$$
I=(2 \pi)^{n} \alpha_{j_{1}} \ldots, J_{u} .
$$

On the other hand, standard estimates for the integral yield

$$
|I| \leq \frac{(2 \pi)^{n} M}{r_{1}^{\Omega_{1}} \cdots r_{n}^{\lambda_{n}^{\prime \prime}}},
$$

and the result follows.

Corollary 1.1. If two power series $\mathcal{P}_{1}(z)$ and $\mathcal{P}_{\mathbf{2}}(z)$ centered at a in \mathbf{C}^{n} agree in a neighborhood of a, then they are identical.

1.3. Holomorphic Functions

1.3.1. Definition. Let $f(z)$ be a complex-valued function defined on a domain D in $\mathbf{C}^{\boldsymbol{n}}$. If $f(z)$ satisfies the following two conditions:

1. $f(z)$ is continuous in D, and
2. $f(z)$ has partial derivatives $\partial f / \partial z_{j}(j=1, \ldots . n)$ in D.
then we say that $f(z)$ is a holomorphic function on D. For a closed subset E of \mathbf{C}^{n}. we say $f(z)$ is holomorphic on E if $f(z)$ is holomorphic in a neighborhood of E. In particular, we often use the terminology that $f(z)$ is holomorphic at a point a if $f(z)$ is defined and is holomorphic in a neighborhood of a in $\mathbf{C}^{\prime \prime}$.

By this definition. a holomorphic function $f(z)$ is necessarily holomorphic in each variable $z_{j}(j=1, \ldots, n)$ separately. Thus, many propeties for holomorphic functions of one complex variable remain valid for holomorphic functions of several complex variables.

One of the most important properties is the Cauchy integral representation of holomorphic functions on polydisks. Let D be a domain in C^{n} and let $a=$ $\left(a_{1} \ldots, a_{n}\right)$ be a point in D. Let

$$
\bar{\Delta}:\left|z_{j}-a_{j}\right| \leq r_{j} \quad(j=1, \ldots, n)
$$

be a closed polydisk centered at a which is contained in D; as usual we let \mathcal{E} be the distinguished boundary of Δ.

Theorem 1.4 (Cauchy Integral Formula). If $f(z)$ is holomorphic on D, then $f(z)$ has the following integral representation in Δ :

$$
f\left(z_{1} \ldots, z_{n}\right)=\frac{1}{(2 \pi i)^{n}} \int \cdots \int_{\mathcal{E}} \frac{f\left(\zeta_{1}, \ldots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right) \cdots\left(\zeta_{n}-z_{n}\right)} d \zeta_{1} \cdots d \zeta_{n} .
$$

Proof. The proof is by induction on the dimension n. For $n=1$ this is the classical Cauchy integral formula. We now assume the result is true in dimension $n-1$. Fix any point $z=\left(z_{1}, \ldots, z_{n}\right)$ in Δ. Since $f(z)$ is holomorphic in the complex variable z_{1}, we have from the one-variable case that

$$
\begin{equation*}
f\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{2 \pi i} \int_{\mathcal{E}_{1}} \frac{f\left(\zeta_{1}, z_{2}, \ldots, z_{n}\right)}{\zeta_{1}-z_{1}} d \zeta_{1} \tag{1.2}
\end{equation*}
$$

where $\mathcal{E}_{1}=\left\{\left|z_{1}-a_{1}\right|=r_{1}\right\}$. Now fix any point ζ_{1} on the circle \mathcal{E}_{1}. Then $f\left(\zeta_{1}, z_{2}, \ldots, z_{n}\right)$ is a holomorphic function of the $n-1$ complex variables $z_{2} \ldots \ldots, z_{n}$ on the closed polydisk $\bar{\Delta}^{\prime}:\left|z,-a_{\jmath}\right| \leq r_{j}(j=2, \ldots, n)$ in \mathbf{C}^{n-1}. It follows from the inductive hypothesis that

$$
f\left(\zeta_{1}, z_{2} \ldots \ldots, z_{n}\right)=\frac{1}{(2 \pi i)^{n-1}} \int \cdots \int_{\mathcal{E}^{\prime}} \frac{f\left(\zeta_{1} \cdot \zeta_{2}, \ldots, \zeta_{n}\right)}{\left(\zeta_{2}-z_{2}\right) \cdots\left(\zeta_{n}-z_{n}\right)} d \zeta_{2} \cdots d \zeta_{n}
$$

where \mathcal{E}^{\prime} denotes the distinguished boundary of Δ^{\prime}. We substitute this formula into (1.2) to obtain an iterated integral. Since $f(z)$ is continuous in D, the iterated integral can be replaced by the desired integral formula.

Remark 1.5. This proof also gives a Cauchy integral formula for holomorphic functions $f(z)$ in D when the polydisk is replaced by any product domain $\Delta=$ $\Delta_{1} \times \ldots \times \Delta_{n}$ contained in D having boundary component sets $\partial \Delta$, which consist of smooth curves in the plane C_{z}, Here, the integration takes place over the n real-dimensional set $\partial \Delta_{1} \times \cdots \times \partial \Delta_{n}$.

It follows from Theorem 1.4 that any holomorphic function $f(z)$ in D has partial derivatives of all orders with respect to each variable $z,(j=1 \ldots, n)$ at any point of D and the resulting functions are also holomorphic in D. Furthermore. in any closed polydisk $\bar{\Delta} \subset D$ centered at a point a in $D, f(z)$ can be expanded into an absolutely and uniformly convergent power series $\mathcal{P}(z)$; hence $f(z)$ is analytic in D. Thus the holomorphic functions of several complex variables are also analytic. just as in the case of one complex variable. By the Cauchy integral formula, we can write any partial derivative

$$
\frac{\partial^{\partial_{1}+\cdots+\jmath^{\prime}} f}{\partial z_{1}^{j_{1}} \cdots \partial z_{n}^{j_{n}^{\prime n}}}(z)
$$

of $f(z)$ as

$$
\frac{j_{1}!\cdots j_{n}!}{(2 \pi i)^{n}} \int \cdots \int_{\mathcal{E}} \frac{f\left(\zeta_{1} \cdots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right)^{j_{1}+1} \cdots\left(\zeta_{n}-z_{n}\right)^{j_{n}+1}} d \zeta_{1} \cdots d \zeta_{n} .
$$

It follows that if we write

$$
f(z)=\mathcal{P}(z)=\sum_{j_{1} \ldots . j_{n} \geq 0} \alpha_{j_{1} \ldots . j_{n}}\left(z_{1}-a_{1}\right)^{j_{1}} \cdots\left(z_{n}-a_{n}\right)^{j_{n}}
$$

in Δ. then the coefficient $\alpha_{j_{1}, \ldots, j_{n}}$ is given by

$$
\alpha_{j_{1} \ldots, j_{n}}=\frac{1}{(2 \pi i)^{n}} \int \cdots \int_{\mathcal{E}} \frac{f\left(\zeta_{1}, \ldots \zeta_{n}\right)}{\left(\zeta_{1}-a_{1}\right)^{j_{1}+1} \cdots\left(\zeta_{n}-a_{n}\right)^{j_{n}+1}} d \zeta_{1} \cdots d \zeta_{n} .
$$

1.3.2. Cauchy-Riemann Equations. In this section we study the real and imaginary parts of a holomorphic function of n complex variables $z=\left(z_{1} \ldots, z_{n}\right)$. We write

$$
z_{j}=x_{j}+i y_{j} \quad\left(i^{2}=-1: j=1, \ldots, n\right),
$$

where x_{j} and y_{j} are real numbers. For a holomorphic function $f(z)$, we set

$$
f(z)=u(x . y)+i v(x . y) .
$$

where $u(x, y)$ and $v(x, y)$ are the real and imaginary parts of $f(z) ; x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$. From the one-variable Cauchy-Riemann equations for each $z_{j}(j=1 \ldots, n)$, we have

$$
\begin{equation*}
\frac{\partial u}{\partial x_{j}}=\frac{\partial v}{\partial y_{j}}, \quad \frac{\partial u}{\partial y_{j}}=-\frac{\partial v}{\partial x_{j}} \quad(j=1, \ldots . n) . \tag{1.3}
\end{equation*}
$$

By differentiating these equations with respect to x_{k} and y_{k}, we see that both the real and the imaginary parts of a holomorphic function satisfy the following system of partial differential equations of second order:

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{k}}+\frac{\partial^{2} \varphi}{\partial y_{j} \partial y_{k}}=0, \quad \frac{\partial^{2} \varphi}{\partial x_{j} \partial y_{k}}-\frac{\partial^{2} \hat{\varphi}}{\partial x_{k} \partial y_{j}}=0 \quad(j, k=1, \ldots, n) . \tag{1.4}
\end{equation*}
$$

A function $\psi(x, y)$ satisfying (1.4) is called pluriharmonic. If u and v satisfy (1.3). we call v a pluriharmonic conjugate of u.

In general, a real- or complex-valued function $\varphi(x, y)$ defined on a domain D in \mathbf{C}^{n} is said to be of class C^{2} if it is of class C^{2} with respect to the $2 n$ real variables x_{j} and y_{j}.

For a real-valued function $u(x, y)$ of class C^{2} on a domain D in C^{n}, we define the 1 -form

$$
\omega=-\sum_{j=1}^{n} \frac{\partial u}{\partial y_{j}} d x_{j}+\sum_{j=1}^{n} \frac{\partial u}{\partial x} d y_{j}
$$

Condition (1.4) for the function u is equivalent to the condition that ω is locally exact in D. In this case, if we take v with $d v=\omega$, then u and v satisfy condition (1.3). If D is simply connected and we set

$$
f(z)=u(x, y)+i v(x, y)
$$

then $f(z)$ is a holomorphic function of z_{1}, \ldots, z_{n}.
Remark 1.6. For a complex variable $z,=x_{j}+i y_{j}$, we define

$$
\frac{\partial}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right) . \quad \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right) .
$$

Then condition (1.3) that the complex-valued function $f\left(z_{1}, \ldots, z_{n}\right)$ is differentiable with respect to the variable z_{j} becomes

$$
\frac{\partial f}{\partial \bar{z}_{j}}=0
$$

Similarly, condition (1.4) that a real-valued function $u\left(z_{1} \ldots . . z_{n}\right)$ is pluriharmonic becomes

$$
\frac{\partial^{2} u}{\partial z, \partial \bar{z}_{k}}=0 \quad(j . k=1, \ldots, n)
$$

We will use these conditions for the rest of the book.
1.3.3. Pluriharmonic Functions. From the definition in the previous section, it follows that a pluriharmonic function $u(z)$ is a harmonic function with respect to the $2 n$ real variables x_{1}, \ldots, x_{n} and $y_{1} \ldots, y_{n}$, namely. $\sum_{j=1}^{n}\left(\partial^{2} u / \partial x_{j}^{2}+\right.$ $\left.\partial^{2} u / \partial y_{j}^{2}\right)=0$. Moreover. such a function is harmonic with respect to each complex variable $z_{j}=x_{j}+i y_{j}$:

$$
\frac{\partial^{2} u}{\partial x_{j}^{2}}+\frac{\partial^{2} u}{\partial y_{j}^{2}}=0 \quad(j=1, \ldots, n)
$$

Indeed, the following stronger condition is valid.
Proposition 1.2. Let $\varphi(z)$ be a real-valued function of class C^{2} in a domain $D \subset \mathbf{C}^{n}$. Then $p(z)$ is pluriharmonic in D if and only if for any complex line L, the restriction of $\varphi(z)$ to $L \cap D$ is harmonic as a function of one complex variable on each component of $L \cap D$.

Proof. Let $L: t \rightarrow c t+b$ be a complex line which passes though a point $b=\left(b_{1}, \ldots, b_{n}\right) \in D$ and has a direction given by $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{C}^{n} \backslash\{0\}$. For any $t \in C$ such that $c t+b \in D$. we set

$$
\Phi(t):=p\left(c_{1} t+b_{1}, \ldots, c_{n} t+b_{n}\right)
$$

Then

$$
\frac{\partial^{2} \Phi}{\partial t \partial \bar{t}}(t)=\sum_{j . k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}(c t+b) c, \tilde{c}_{k}
$$

and the result follows.

As with Cauchy's integral formula. Poisson's formula in one complex variable can be generalized to the case of n complex variables. Let D be a domain in \mathbf{C}^{n} and fix $a=\left(a_{1}, \ldots, a_{n}\right) \in D$. Let $\bar{\Delta}$ be a closed polydisk centered at a and contained in D :

$$
\bar{\Delta}:\left|z_{j}-a_{j}\right| \leq r_{j} \quad(j=1, \ldots, n) .
$$

We set

$$
P_{j}\left(r_{j}, \rho_{j}, \theta_{j}, \vartheta_{j}\right)=\frac{r_{j}^{2}-\rho_{j}^{2}}{r_{j}^{2}+\rho_{j}^{2}-2 r_{j} \rho_{j} \cos \left(\theta_{j}-\vartheta_{j}\right)},
$$

the one-variable Poisson kernel for $\left|z_{j}-a_{j}\right|<r_{j}$, where $z_{j}=a_{j}+\rho_{j} e^{i v_{1}}$, and define

$$
P(r, \rho, \theta, \vartheta)=\prod_{j=1}^{n} P_{j}\left(r_{j}, \rho_{j}, \theta_{j}, \vartheta_{j}\right) .
$$

the Poisson kernel for $\Delta \subset C^{n}$. For any $z=\left(z_{1} \ldots, . z_{n}\right)$ in Δ; i.e., $z_{j}=a_{j}+\rho_{j} e^{i v_{j}}$ with $\rho_{j}<r_{j}$, a pluriharmonic function $\varphi(z)$ in D can be represented at z using the Poisson formula

$$
\begin{equation*}
\varphi\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} P(r, \rho, \theta, \vartheta) \varphi\left(r e^{i \theta}+a\right) d \theta_{1} \cdots d \theta_{n} . \tag{1.5}
\end{equation*}
$$

where we use the notation $r e^{i 0}+a=\left(r_{1} e^{i \theta_{1}}+a_{1} \ldots, r_{n} e^{i \theta_{n}}+a_{n}\right)$.
Remark 1.7. Poisson's formula (1.5) is valid for any C^{2} function $\varphi(z)$ which is harmonic in each complex variable $z_{j}(j=1, \ldots, n)$. However, a function which is harmonic in each complex variable $z_{j}(j=1 \ldots \ldots, n)$ is not necessarily pluriharmonic in the n complex variables $z=\left(z_{1} \ldots \ldots z_{n}\right)$. For example, in \mathbf{C}^{2} with coordinates $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$. consider the function

$$
\varphi\left(\tilde{z}_{1}, z_{2}\right)=x_{1} y_{1} x_{2} y_{2} .
$$

This function is harmonic in each complex variable z_{1} and z_{2}, but it is not pluriharmonic in $z=\left(z_{1}, z_{2}\right)$.

If $\varphi(\zeta)$ is any real-valued function of class C^{2} on the distinguished boundary of the polydisk Δ in $\mathbf{C}^{n}, n \geq 2$, the function $\varphi(z)$ in Δ defined by the Poisson integral formula (1.5) is harmonic in each complex variable z_{j} but is not necessarily pluriharmonic in $z=\left(z_{1}, \ldots, z_{n}\right)$.
1.3.4. Elementary Properties of Holomorphic Functions. We list some elementary properties of holomorphic functions of several complex variables which are proved by the same methods as in the case of one complex variable.

1. Liouville's theorem. Let $f(z)$ be an entire function in \mathbf{C}^{n}; i.e.. a holomorphic function in all of \mathbf{C}^{n}. If $|f(z)|$ is bounded in \mathbf{C}^{n}. then $f(z)$ is a constant in \mathbf{C}^{n}. More generally, let $\Delta_{r}:\left|z_{j}\right|<r(j=1, \ldots, n)$ and let $M(r)=\operatorname{Max}\left\{|f(z)| \mid z \in \bar{\Delta}_{r}\right\}$. If there exists an integer $\nu \geq 1$ such that

$$
\lim _{r \rightarrow x} M(r) / r^{\prime \prime}=0,
$$

then $f(z)$ is a polynonial of degree at most $\nu-1$ in \mathbf{C}^{n}.
Contrary to the case of one complex variable, there exist domains D in $\mathbf{C}^{n} . n>$ 1 , with $\mathbf{C}^{n} \backslash D$ having non-empty interior but such that every bounded holomorphic function in D is constant. For example, we will soon see (as a consequence of Osgood's theorem in section 1.5.2) that the complement of a ball has this property:
2. Identity theorem. Let $f(z)$ and $g(z)$ be holomorphic functions in a domain D in \mathbf{C}^{n}. If $f(z)=g(z)$ for all z in a non-empty open set δ in D. then $f(z) \equiv g(z)$ in D. Hence, analytic continuation of holomorphic functions in several complex variables can be performed as in the case of one complex variable.

Contrary to the case of one complex variable, the zero set of a holomorphic function in a domain $D \subset C^{n}, n \geq 2$. contains no isolated points. Thus, even if $f(z)=g(z)$ in a set with accumulation points in D. it does not necessarily follow that $f(z)=g(z)$ in D. For example, in \mathbf{C}^{2} with variables z and u., we can take $f(z, u)=z$ and $g(z, u)=z^{2}$.
3. Maximum principle. Let $f(z)$ be a holomorphic function in a domain D in \mathbf{C}^{n}. If $|f(z)|$ attains its inaximum at a point of D, then $f(z)$ is constant in D.

Contrary to the case of one complex variable, in some domains D in $\mathbf{C}^{n}, n>1$, there exists a proper closed subset e of ∂D such that any holomorphic function $f(z)$ in D with continuous boundary values attains its maximum nodulus at a point of e. Given $D \subset \mathbf{C}^{n}$, the smallest set $e \subset \partial D$ with this property is called the Shilov boundary of D. For example, the Shilov boundary of a polydisk $\left|z_{j}\right|<r,(j=1, \ldots, n)$ is the distinguished boundary $\left|z_{j}\right|=r,(j=1, \ldots, n)$; on the other hand, the Shilov boundary of an open ball B is the topological boundary, the sphere ∂B.
4. Weierstrass' theorem. Let $\left\{f_{j}\right\}_{j=1,2 \ldots .}$ be a sequence of holomorphic functions in a domain D in \mathbf{C}^{n}. If $\left\{f_{j}\right\}$ converges uniformly on each compact set in D, then the limit function $f(z)$ is a holomorphic function in D.

Let $\left\{f_{j}\right\}$ be a sequence of holomorphic functions in D which are uniformly bounded in D; i.e., there exists $M>0$ such that $\left|f_{j}(z)\right| \leq M(j=1.2 \ldots)$ in D. Then Stieltjes' theorem holds: if $\left\{f_{j}\right\}$ converges uniformly on a non-empty open set δ in D, then $\left\{f_{j}\right\}$ converges uniformly on each compact set in D. However. Vitali's theorem does not necessarily hold: if we replace δ by a set with accumulation points in D. $\left\{f_{j}\right\}$ might not converge uniformly on each compact set in D. For example. take D to be the unit bidisk centered at the origin in \mathbf{C}^{2} with variables \approx and u. and take $f_{j}(z, w):=(-1)^{j} z^{j}, j=1,2 \ldots \ldots$
5. Montel's theorem. Let \mathcal{F} be a family of holomorphic functions in D. Assume that there exists an $M>0$ such that $|f(z)| \leq M$ in D for all $f \in \mathcal{F}$. Then \mathcal{F} is uniformly equicontinuous in D and hence is a normal family. By Picard's theorem we can replace the uniform boundedness by the condition that there exist two different complex values a and b such that each $f \in \mathcal{F}$ omits the values a and b in D.
6. Rado's theorem. Let $f(z)$ be a complex-valued contimmous function in D and let e be the zero set of $f(z)$. i.e., $e=\{z \in D \mid f(z)=0\}$. If $f(z)$ is holomorphic in $D \backslash e$. then $f(z)$ is holomorphic in all of D.

Remark 1.8. Although Rado's theorem is inportant in the theory of functions in one and several complex variables, its proof is not often given in standard textbooks. Below we give the proof in the case where D is the unit disk in one complex variable.

Proof. Let $\Delta:|z|<1$ in C. and let $f(z) \not \equiv 0$ be a continuous function in $\bar{\Delta}$ with $|f(z)|<1$. We let e denote the zero set of $f(z)$ in Δ. and we let ω denote the interior of $\Delta \backslash e$. Let $u(z)=\Re f(z)$ on Δ. We form the harmonic function $\widehat{u}(z)$ on Δ, where $\widehat{u}(z)=u(z)$ on $\partial \Delta$. by use of the Poisson integral formula. It follows
from the maximum principle for harmonic functions that for any $\gamma>0$.

$$
\gamma \log |f(z)| \leq \widehat{u}(z)-u(z) \leq-\gamma \log |f(z)|, \quad z \in \Delta .
$$

Hence $\widehat{u}(z)=u(z)$ on w. Similarly, we have $\widehat{\imath}(z)=v(z)$ in ω for $v(z)=\Im f(z)$. We set $\widehat{f}(z):=\widehat{u}(z)+i \widehat{v}(z)$ in Δ. Since $\widehat{f}(z)=f(z)$ in ω. it follows that $\widehat{f}(z)$ is holomorphic in Δ. On the other hand, both $\hat{f}(z)$ and $f(z)$ are continuous on Δ and the zero set of $\widehat{f}(z)$ is isolated in Δ; hence. e is isolated and $\widehat{f}(z) \equiv f(z)$ in Δ.
1.3.5. Holomorphic Mappings. We let $z=\left(z_{1}, \ldots, z_{n}\right)$ denote the variables in \mathbf{C}^{n} and $w=\left(w_{1} \ldots \ldots u_{m}\right)$ those for \mathbf{C}^{m}. Let $D \subset \mathbf{C}^{n}$ be a domain and let $f_{k}(z)(k=1, \ldots, m)$ be holomorphic functions in D. We call

$$
T: w_{k}=f_{k}(z) \quad(k=1, \ldots, m)
$$

a holomorphic mapping from D into \mathbf{C}^{m}. If $T(D) \subset D^{\prime} \subset \mathbf{C}^{n 2}$, then T is called a holomorphic mapping from D into D^{\prime}.

Let $T: w_{k}=f_{k}(z)(k=1 \ldots . m)$ be a holomorphic mapping from D into D^{\prime}, and let $g\left(w_{1} \ldots \ldots w_{m}\right)$ be a holonorphic function in D^{\prime}. Then

$$
G(z)=g\left(f_{1}(z) \ldots, f_{m}(z)\right)
$$

is a holomorphic function in D which satisfies

$$
\frac{\partial G}{\partial z_{j}}=\frac{\partial g}{\partial w_{1}} \frac{\partial f_{1}}{\partial z_{j}}+\cdots+\frac{\partial g}{\partial w_{n}} \frac{\partial f_{m}}{\partial z_{j}} \quad(j=1, \ldots, m) .
$$

For a holomorphic mapping T : $w_{k}=f_{k}(z)(k=1, \ldots, m)$, we call the inatrix

$$
\frac{\partial\left(f_{1}, \ldots f_{m}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}=\left(\frac{\partial f_{k}}{\partial z_{j}}\right) \quad(j=1 \ldots . n: k=1, \ldots . m)
$$

the (complex) Jacobian matrix of T. In the case $m=n$, the determinant

$$
\left|\frac{\partial\left(f_{1} \ldots, f_{n}\right)}{\partial\left(z_{1} \ldots, z_{n}\right)}\right|=\left|\left(\frac{\partial f_{k}}{\partial z_{j}}\right)\right| \quad(j, k=1, \ldots, n)
$$

is called the (complex) Jacobian determinant of T.
Let $T_{1}: w_{k}=f_{k}(z)(k=1, \ldots, m)$ be a holomorphic mapping from $D_{1} \subset \mathbf{C}^{n}$ into $D_{2} \subset \mathbf{C}^{m}$ and let $T_{2}: v_{k}=g_{k}(w)(k=1, \ldots, l)$ be a holomorphic mapping from D_{2} into $D_{3} \subset \mathbf{C}^{t}$. Then the composition $T=T_{2} \circ T_{1}$ is a holomorphic napping from D_{1} into D_{3}. If we write $T: v_{k}=h_{k}(z)(k=1, \ldots, l)$, then we have

$$
\begin{equation*}
\frac{\partial\left(h_{1}, \ldots, h_{l}\right)}{\partial\left(z_{1} \ldots, z_{n}\right)}=\frac{\partial\left(g_{1}, \ldots, g_{l}\right)}{\partial\left(w_{1} \ldots \ldots w_{m}\right)} \cdot \frac{\partial\left(f_{1}, \ldots, f_{m}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)} . \tag{1.6}
\end{equation*}
$$

In the case $n=m=l$,

$$
\left|\frac{\partial\left(h_{1} \ldots, h_{n}\right)}{\partial\left(z_{1} \ldots, z_{n}\right)}\right|=\left|\frac{\partial\left(g_{1}, \ldots g_{n}\right)}{\partial\left(w_{1}, \ldots w_{n}\right)}\right| \cdot\left|\frac{\partial\left(f_{1}, \ldots, f_{n}\right)}{\partial\left(z_{1} \ldots, z_{n}\right)}\right| .
$$

We prove the following.
Proposition 1.3. Let $T: w_{k}=f_{k}(z)(k=1 \ldots, n)$ be a holomorphic mapping from $D \subset \mathbf{C}^{n}$ into \mathbf{C}^{n}. Suppose there exist $z_{0} \in D$ and $u_{0}=T\left(z_{0}\right)$ such that

$$
\left|\frac{\partial\left(f_{1} \ldots, f_{n}\right)}{\partial\left(z_{1} \ldots, z_{n}\right)}\right| \neq 0 \quad \text { at } \quad z=z_{0}
$$

Then T is a bijection from a neighborhood δ of z_{0} onto a neighborhood δ^{\prime} of u_{0}. and the inverse mapping T^{-1} is a holomorphic mapping frmm δ^{\prime} onto δ.

We call T a biholomorphic mapping between δ and δ^{\prime}. and we say that δ and δ^{\prime} are biholomorphically equivalent.

Proof of Proposition 1.3. Let $z_{j}:=x_{j}+i y_{j}$ and $u_{k}:=u_{k}+i v_{k}$. From the Cauchy-Riemann equations,

$$
\begin{aligned}
& \frac{\partial\left(u_{1}, v_{1}, \ldots, u_{n}, r_{n}\right)}{\partial\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)}=\frac{\partial\left(f_{1}, \bar{f}_{1}, \ldots, f_{n}, \bar{f}_{n}\right)}{\partial\left(z_{1}, \bar{z}_{1}, \ldots, z_{n}, \bar{z}_{n}\right)} \\
& \quad=\frac{\partial\left(f_{1}, \ldots, f_{n}, \bar{f}_{1}, \ldots, \bar{f}_{n}\right)}{\partial\left(z_{1}, \ldots, z_{n}, \bar{z}_{1}, \ldots, \bar{z}_{n}\right)}=\left|\frac{\partial\left(f_{1}, \ldots, f_{n}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}\right|^{2} \neq 0 \quad \text { at } \quad z=z_{0} .
\end{aligned}
$$

It follows that T is a bijection from a neighborhood δ of z_{0} onto a neighborhood δ^{\prime} of w_{0}.

We write $T^{-1}: z_{j}=g_{j}\left(w_{1}, \bar{w}_{1} \ldots \ldots w_{n}, \bar{u}_{n}\right)(j=1, \ldots, n)$, so that

$$
z_{j}=g_{j}\left(f_{1}(z), \overline{f_{1}(z)}, \ldots, f_{n}(z), \overline{f_{n}(z)}\right) \quad(j=1 \ldots, n) .
$$

Thus, for each $j . k(j . k=1 \ldots, n)$.

$$
0=\frac{\partial z_{j}}{\partial \bar{z}_{k}}=\frac{\partial g_{j}}{\partial \bar{w}_{1}} \overline{\left(\frac{\partial f_{1}}{\partial z_{k}}\right)}+\cdots+\frac{\partial g_{j}}{\partial \bar{w}_{n}} \overline{\left(\frac{\partial f_{n}}{\partial z_{k}}\right)} \text { in } \delta .
$$

By taking a smaller neighborhood δ of z_{0} if necessary. we nay assume

$$
\frac{\partial\left(f_{1}, \ldots, f_{n}\right)}{\partial\left(z_{1} \ldots \ldots z_{n}\right)} \neq 0 \text { in } \delta .
$$

Then we have $\partial g_{j} / \partial \bar{w}_{k}=0(k=1 \ldots, n)$ in δ^{\prime}. Hence $g_{j}(w)(j=1, \ldots, n)$ are holomorphic functions in δ^{\prime}.

The converse of Proposition 1.3 is also valid: this may be seen using (1.6): if T is a biholomorphic inapping from $\delta \subset \mathbf{C}^{n}$ onto $\delta^{\prime} \subset \mathbf{C}^{n}$, then the Jacobian determinant of T does not vanish in δ. Indeed, using arguments from the next chapter, we will see that the conclusion is true without the assumption that T^{-1} is a holomorphic mapping (see Remark 2.8).
1.3.6. Plurisubharmonic Functions. In the theory of functions of one complex variable, the study of both harmonic and subharmonic functions is important. In the theory of functions of several complex variables. the study of plurisubharmonic and pluriharmonic functions plays a much more important role than the study of subharmonic and harmonic functions in the underlying $2 n$ real variables.

Let $\rho(z)$ be an uppersemicontinuous function defined on a domain D in \mathbf{C}^{n} with $-\infty \leq \varphi(z)<+\infty$. If the restriction $\hat{\varphi} \ell \sim D$ of $\varphi(z)$ to any complex line L in D is a subharmonic function of one complex variable on each component of $L \cap D$, then $\varphi(z)$ is called plurisubharmonic in D. For convenience. the function $\varphi(z) \equiv-\infty$ on D is considered to be plurisubharmonic in D.

If $-\varphi(z)$ is plurisubharmonic in $D . \varphi(z)$ is called plurisuperharmonic in D. If both $\varphi(z)$ and $-\hat{\varphi}(z)$ are plurisubharmonic in D, then $\varphi(z)$ is pluriharmonic in D. This is clear from Proposition 1.2 if $\varphi(z)$ is of class C^{2} in D.

If $f(z)$ is holomorphic in D, then $|f(z)|$ and $\log |f(z)|$ are plurisubharmonic in D.

For functions of class C^{2} in D, we have the following criterion for plurisubharmonicity:

Proposition 1.4. Let $\varphi(z)$ be a real-valued function of class C^{2} on a domain D in \mathbf{C}^{n}. Then $\varphi(z)$ is plurisubharmonic in D if and only if the complex Hessian matrix of $\varphi(z)$,

$$
\begin{equation*}
\left(\frac{\partial^{2} \hat{\varphi}}{\partial z, \partial \bar{z}_{k}}\right)_{, . k=1 \ldots \ldots n} \tag{1.7}
\end{equation*}
$$

is positive semidefinite at each point z of D.
Proof. Fix $z=\left(z_{1}, \ldots, z_{n}\right) \in D$ and let $c=\left(c_{1} \ldots, c_{n}\right) \in \mathbf{C}^{n}$ satisfy $\|c\|^{2}:=$ $\left|c_{1}\right|^{2}+\cdots+\left|c_{n}\right|^{2}=1$. For $t \in C$ with $|t| \ll 1$. We let

$$
\Phi(t):=\varphi_{\varphi}\left(c_{1} t+z_{1} \ldots, c_{n} t+z_{n}\right)
$$

be the restriction of φ to a small disk centered at z and in the direction of c. Then

$$
\frac{\partial^{2} \Phi}{\partial t \partial \bar{t}}(0)=\sum_{j, k=1}^{n} \frac{\partial^{2} \dot{\varphi}}{\partial z_{j} \partial \bar{z}_{k}}(z) c_{j} \bar{c}_{k}
$$

which proves the proposition.
If the complex Hessian matrix (1.7) of $\varphi(z)$ is positive definite at $z_{0} \in D$, then $\varphi(z)$ is said to be strictly plurisubharmonic at z_{0}. If $\varphi(z)$ is strictly plurisubharmonic at all points of D, we call $\varphi(z)$ a strictly plurisubharmonic function in D.

The following properties of plurisubharmonic functions follow from the analogous properties of subharmonic functions of one complex variable.

1. Let $\varphi(z)$ be a plurisubharmonic function in D. Let $\bar{\Delta}:\left|z_{j}-a_{j}\right| \leq r_{j}(j=$ $1, \ldots, n$) be a closed polydisk in D and let $\left.P(r, \rho, \theta, \vartheta)=\prod_{j=1, \ldots, n} P_{j}\left(r, \rho_{j}, \theta_{j}, \vartheta,\right)_{j}\right)$ be the Poisson kernel for Δ, where $z_{j}=a_{j}+\rho_{j} e^{i v,}$ and

$$
P_{j}\left(r_{j}, \rho_{j}, \theta_{j}, \vartheta_{j}\right):=\frac{r_{j}^{2}-\rho_{j}^{2}}{r_{j}^{2}+\rho_{j}^{2}-2 r_{j} \rho_{j} \cos \left(\theta_{j}-\vartheta_{j}\right)}
$$

From the subharmonicity in each variable, we obtain

$$
\begin{aligned}
& \varphi\left(z_{1}, \ldots, z_{n}\right) \\
& \quad \leq \frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} P(r, \rho, \theta, \vartheta) \varphi\left(a_{1}+r_{1} e^{i \theta_{1}}, \ldots, a_{n}+r_{n} e^{i \theta_{n}}\right) d \theta_{1} \cdots d \theta_{n}
\end{aligned}
$$

In particular, setting $\rho_{j}=0(j=1, \ldots, n)$, we have

$$
\varphi(a) \leq \frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \varphi\left(a_{1}+r_{1} e^{i \theta_{1}} \cdots a_{n}+r_{n} e^{i \theta_{n}}\right) d \theta_{1} \cdots d \theta_{n}
$$

Multiplying each side of this inequality by $r_{1} \cdots r_{n}$ and integrating from $r_{j}=0$ to $r_{j}(j=1, \ldots, n)$, we obtain

$$
\varphi(a) \leq \frac{1}{V} \int \cdots \int_{\Delta} \varphi\left(z_{1}, \ldots, z_{n}\right) d v
$$

where V is the Euclidean volume of Δ and $d v$ denotes the volume element in $\mathbf{C}^{\boldsymbol{n}}$.
2. If $\varphi_{1}(z)$ and $\varphi_{2}(z)$ are plurisubharmonic in D, then so is

$$
\varphi(z)=\max \left(\varphi_{1}(z), \varphi_{2}(z)\right)
$$

Furthermore, let $\left\{\varphi_{l}\right\}_{\ell \in I}$ be a family of plurisubharmonic functions in D which are locally uniformly bounded above. Then the uppersemicontinuous regularization

$$
\Phi(z):=\varlimsup_{z^{\prime} \rightarrow z^{\prime}}\left\{\sup _{\iota \in I} \nu_{l}\left(z^{\prime}\right)\right]
$$

of the upper envelope $\sup _{t \in I} \varphi_{l}(z)$ is plurisubharmonic in D.
3. Let $\varphi(z)$ be plurisubharmonic in D and let $\xi(t)$ be a (real-valued) convex increasing function on $-\infty<t<\infty$. Then $\Psi(z):=\xi(\varphi(z))$ is plurisubharmonic in D.
4. Let $\left\{\varphi_{n}\right\}_{n=1.2 \ldots}$ be a sequence of plurisubharmonic functions in D. If $\left\{\varphi_{n}\right\}$ converges uniformly on compact subsets of D, or if $\left\{\varphi_{n}\right\}$ is monotonically decreasing in D, then the limit function is plurisubharmonic in D. This last fact, combined with 2, implies that if $\left\{\varphi_{n}\right\}_{n=1.2} \ldots$ is a sequence of plurisubharmonic functions in D which are locally bounded above, then

$$
\varlimsup_{z^{\prime} \rightarrow 2}\left[\varlimsup_{n \rightarrow x} p_{n}\left(z^{\prime}\right)\right], \quad z \in D
$$

is a plurisubharmonic function in D.
5. (Invariance under holomorphic mappings) Let $p(z)$ be plurisubharmonic in D and let

$$
T: z_{j}=g_{j}(w) \quad(j=1, \ldots, n)
$$

be a holomorphic mapping from a domain D^{\prime} in \mathbf{C}^{m} with coordinates $w=\left(w_{1} \ldots \ldots\right.$ w_{m}) into D. Then

$$
G(w):=\varphi\left(g_{1}(w), \ldots, g_{n}(w)\right)
$$

is plurisubharmonic in D^{\prime}.
1.3.7. Hartogs Series. In this section we describe another type of series representation for holomorphic functions. To simplify the discussion we consider the product space $\mathbf{C}^{n+1}=\mathbf{C}^{\boldsymbol{n}} \times \mathbf{C}$ of the $n+1$ variables $z_{1} \ldots . z_{n}, u$, where $\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}$ and $w \in C$. Let D be a domain in \mathbf{C}^{n} and let a be a point in C. We consider a power series

$$
\begin{equation*}
\mathcal{H}(z, w)=\sum_{j=0}^{\infty} \alpha_{j}(z)(w-a)^{\jmath} \tag{1.8}
\end{equation*}
$$

in the single variable w centered at a, where the coefficents $\alpha_{j}(z)(j=0,1,2 \ldots)$ are holomorphic functions in D. We call such a power series a Hartogs series in \boldsymbol{w} centered at \boldsymbol{a}.

Let $D \subset \mathbf{C}^{n}, \Delta=\{w \in \mathbf{C}:|w-a|<r\}$, and set $G:=D \times \Delta$. Then any holomorphic function $f(z, w)$ in G can be represented by a Hartogs series (1.8) in w centered at a. Each coefficient $\alpha_{j}(z)$ can be obtained as follows: if we fix a radius $r_{0}\left(0<r_{0}<r\right)$ and a circle $\gamma_{0}:|w-a|=r_{0}$ centered at a, then

$$
\alpha_{j}(z)=\frac{1}{2 \pi i} \int_{20} \frac{f(z, \zeta)}{(\zeta-a)^{j+1}} d \zeta \quad(j=0.1,2, \ldots)
$$

Given a Hartogs series $\mathcal{H}(z, w)$, let $\mathcal{D}_{\mathcal{H}}$ be the set of points $\left(z^{\prime}, w^{\prime}\right) \in \mathbf{C}^{n+1}$ such that $\mathcal{H}(z, w)$ converges uniformly in a neighborhood of $\left(z^{\prime}, w^{\prime}\right)$. We call $\mathcal{D}_{\mathcal{H}}$ the domain of convergence of $\mathcal{H}(z, w)$. As we now show. the domain of convergence of a Hartogs series is convex in a sense similar to the logarithmic convexity of the domain of convergence of a power series.

Let \mathcal{D} be a domain in the product space \mathbf{C}^{n+1} of the n complex variables z_{1}, \ldots, z_{n} and the one complex variable w. If $\left(z^{\prime}, w^{\prime}\right) \in \mathcal{D}$ implies

$$
\left\{z^{\prime}\right\} \times\left\{w \in \mathbf{C}:|w-a|=\left|w^{\prime}-a\right|\right\} \subset \mathcal{D}
$$

then \mathcal{D} is called a Hartogs domain centered at a. Moreover, if $\left(z^{\prime}, u^{\prime}\right) \in \mathcal{D}$ implies

$$
\left\{z^{\prime}\right\} \times\left\{w \in \mathbf{C}:|w-a| \leq\left|u^{\prime}-a\right|\right\} \subset \mathcal{D}
$$

then the Hartogs domain \mathcal{D} is said to be complete. In this case the projection of \mathcal{D} to C^{n} is called the base of \mathcal{D} and will be denoted by D.

Let \mathcal{D} be a complete Hartogs domain in C^{n+1} centered at a, and let D be the base of \mathcal{D}. For any $z^{\prime} \in D$, the section $\mathcal{D}\left(z^{\prime}\right)$ of \mathcal{D} over $z_{j}=z_{j}^{\prime}(j=1, \ldots, n)$ may be identified with an open disk centered at a of radius $\mathcal{R}\left(z^{\prime}\right)$. Thus $\mathcal{R}(z)$ defines a positive-valued function on D (which may attain the value $+\infty$). We call $\mathcal{R}(z)$ the Hartogs radius of \mathcal{D} with respect to a. Since \mathcal{D} is open, $\mathcal{R}(z)$ is a lowersemicontinuous function on D.

If the function $-\log \mathcal{R}(z)$ associated to the complete Hartogs domain \mathcal{D} is plurisubharmonic on D, then \mathcal{D} is said to be logarithmically convex.

Theorem 1.5. Let $\mathcal{H}(z, w)$ be a Hartogs series centered at a such that $\mathcal{H}(z, w)$ is holomorphic for (z, w) in $D \times \Delta \subset \mathbf{C}^{n} \times \mathbf{C}$, where $D \subset \mathbf{C}^{n}$ and $\Delta=\{w \in \mathbf{C}$: $|w-a|<r\}$. Then the domain of convergence $\mathcal{D}_{\mathcal{H}}$ of $\mathcal{H}\left(z, u^{\prime}\right)$ is a logarithmically convex and complete Hartogs domain centered at a.

Proof. We may assume that $a=0$ and $\mathcal{H}(z, u)=\sum_{j=0}^{x} a_{j}(z) u^{\nu}$. We fix $D^{\prime} \times \Delta_{0} \subset \subset D \times \Delta$, where $D^{\prime} \subset \subset D$ and $\Delta_{0}=\left\{w \in C:|w|<r_{0}\right\}$ with $r_{0}<r$. By our assumption, $\mathcal{H}(z, w)$ is a bounded, holomorphic function on $\bar{D}^{\prime} \times \overline{\Delta_{\mathbf{0}}}$, so that there exists an $M>0$ such that $\left|a_{j}(z)\right| \leq M / r_{0}^{j}$ for all $j=0.1 \ldots$ and $z \in D^{\prime}$. Therefore. $\frac{1}{j} \log \left|\alpha_{j}(z)\right|(j=0,1, \ldots)$ is a plurisubharmonic function in D^{\prime} with

$$
\begin{equation*}
\frac{1}{j} \log \left|\alpha_{j}(z)\right| \leq \frac{1}{j} \log M-\log r_{0} \quad(j=0.1 \ldots) . \quad z \in D^{\prime} \tag{1.9}
\end{equation*}
$$

For $z \in D^{\prime}$, we let $R(z)$ denote the radius of convergence of the Taylor series $\mathcal{H}(z, w)$ in w, i.e., $1 / R(z)=\varlimsup_{j \rightarrow x} \sqrt[2]{\left|a_{j}(z)\right|}$. We set

$$
1 / \tilde{R}(z):=\varlimsup_{z^{\prime} \rightarrow:}\left(\varlimsup_{j \rightarrow \infty} \sqrt{\left|a_{j}(z)\right|}\right), \quad z \in D^{\prime}
$$

and

$$
\tilde{\mathcal{D}}:=\bigcup_{z \in D^{\prime}}(z, \tilde{\Gamma}(z)), \quad \text { where } \tilde{\Gamma}(z)=\{w \in \mathbf{C}:|w|<\bar{R}(z)\}
$$

Using property 4 of plurisubharmonic functions from the last section, under condition (1.9) we see that $-\log \tilde{R}(z)$ is a plurisubharmonic function in D^{\prime}. It follows that $\tilde{\mathcal{D}}$ is a logarithmically convex and complete Hartogs domain centered at 0 .

To prove the theorem. since $D^{\prime} \subset \subset D$ was arbitrary, it suffices to show that $\tilde{\mathcal{D}}=\mathcal{D}_{\mathcal{H}}^{\prime}:=\mathcal{D}_{\mathcal{H}} \cap\left(D^{\prime} \times \mathrm{C}\right)$. Clearly $\mathcal{D}_{\mathcal{H}}^{\prime}$ is contained in $\tilde{\mathcal{D}}$; thus we fix a point $\left(z^{\prime}, w^{\prime}\right) \in \tilde{\mathcal{D}}$ and proceed to show that $\left(z^{\prime}, w^{\prime}\right)$ lies in $\mathcal{D}_{\mathcal{H}}^{\prime}$. Since $\tilde{\mathcal{D}}$ is a complete Hartogs domain centered at $w=0$, we can find a product domain $\delta^{\prime} \times \Gamma^{\prime} \subset \subset \tilde{\mathcal{D}}$. where $\Gamma^{\prime}=\left\{w \in \mathbf{C}:|w|<\rho^{\prime}\right\}$, which contains the point (z^{\prime}, w^{\prime}). Clearly $\rho^{\prime} \leq$ $\tilde{R}(z) \leq R(z)$ for any $z \in \delta^{\prime}$. Then $\mathcal{H}(z, w)$ is a holomorphic function in $\delta^{\prime} \times \Delta_{0}$. and, for any fixed $z \in \delta^{\prime}$, the radius of convergence of the Taylor series $\mathcal{H}(z, w)$ in w is greater than or equal to ρ^{\prime}. From Remark 1.11 at the end of section 1.4.3. it
follows that $\mathcal{H}(z, w)$ is a holomorphic function in $\delta^{\prime} \times \Gamma^{\prime}$: hence $\left(z^{\prime} . u^{\prime}\right)$ belongs to $\mathcal{D}^{\prime} \boldsymbol{\mathcal { H }}$.

Remark 1.9. The Hartogs radius $\mathcal{R}(z)$ of the domain of convergence of the Hartogs series $\mathcal{H}(z, w)$ is not always equal to the radius of convergence of the power series $\mathcal{H}\left(z, u^{\prime}\right)$ with respect to w for fixed $z \in D$. As an example, in \mathbf{C}^{2} with variables (z, w), consider the Hartogs series centered at $w=0$ given by

$$
\mathcal{H}(z, w)=z+z w+z w^{2}+\cdots
$$

Then $\mathcal{D}_{\mathcal{H}}=\mathbf{C} \times\{|\boldsymbol{w}|<1\}$. Hence $\mathcal{R}(z) \equiv 1$ on \mathbf{C}. while the radius of convergence $R(0)$ of $\mathcal{H}(0, w)$ is $+\infty$.

We can also consider a Hartogs-Laurent series centered at a in the w-plane: i.e., a Laurent series in w of the form

$$
\begin{equation*}
\mathcal{L}(z, w)=\sum_{j=-x}^{x} a_{j}(z)(w-a)^{j} \tag{1.10}
\end{equation*}
$$

where each $\alpha_{j}(z)$ is a holomorphic function on a domain D in $\mathbf{C}^{\boldsymbol{n}}$.
Let D be a domain in $\mathbf{C}^{\boldsymbol{n}}$ and let

$$
\Delta^{\bullet}: r_{1}<\left|u^{-}-a\right|<r_{2}
$$

be an annulus centered at a in \mathbf{C}. Set $G^{*}=D \times \Delta^{*}$. Then any holomorphic function $f(z, w)$ in G^{*} can be represented by a Hartogs-Laurent series (1.10). Furthermore, if we take a circle $\gamma_{0}:|w-a|=r_{0}$ where $r_{1}<r_{0}<r_{2}$, then we have

$$
a_{j}(z)=\frac{1}{2 \pi i} \int_{\gamma_{0}} \frac{f(z, \zeta)}{(\zeta-a)^{j+1}} d \zeta \quad(j=0 . \pm 1 . \pm 2 \ldots)
$$

As in the case of Hartogs series, we can define the domain of convergence $\mathcal{D}_{\mathcal{L}}$ of a Hartogs-Laurent series $\mathcal{L}\left(z, w^{\prime}\right) ; \mathcal{D}_{\mathcal{L}}$ is a Hartogs domain centered at a. Given $z^{\prime} \in D$, the section $\mathcal{D}_{\mathcal{L}}\left(z^{\prime}\right)$ over $z_{j}=z_{j}^{\prime}(j=1 \ldots, n)$ of $\mathcal{D}_{\mathcal{L}}$ is an annulus centered at a, which may be the entire u-plane C or all of $C \backslash\{a\}$. If we let $\mathcal{R}_{\mathrm{r}}(z)\left(\mathcal{R}_{i}(z)\right)$ denote the outer (inner) radius of $\mathcal{D}_{\mathcal{L}}(z)$ for $z \in D$. then $\log \mathcal{R}_{\mathrm{i}}(z)$ and $-\log \mathcal{R}_{\rho}(z)$ define plurisubharmonic functions on D.
1.3.8. Riemann's Removable Singularity Theorem. In this last section of 1.3 we discuss Riemann's theorem concerning removable singularities for holomorphic functions. Let $f(z)$ be a non-constant holomorphic function on a domain D and let Σ be the zero set of $f(z)$ in D :

$$
\Sigma=\{z \in D \mid f(z)=0\}
$$

Such sets will be discussed in Chapter 2.
Theorem 1.6 (Riemann). Let $g(z)$ be a holomorphic function on $D \backslash \Sigma$. If $g(z)$ is bounded in $D \backslash \Sigma$, then $g(z)$ may be holomorphically extended to all of D.

Proof. Fix $a \in \Sigma$. It suffices to prove that $g(z)$ has a holomorphic extension to a neighborhood of a in D. By using a suitable linear transformation in C^{n}. we may assume that the section $\Sigma^{\prime} \subset C_{z_{n}}$ of Σ over $z_{j}=a_{j}(j=1, \ldots, n-1)$ consists
of only one point a_{n} for z_{n} near a_{n} in $C_{2_{n}}$. Furthermore, since Σ is a closed subset of D, we can find a closed polydisk $\Lambda=\bar{\Delta} \times \Gamma$ in D, where

$$
\begin{aligned}
\bar{\Delta} & :\left|z_{j}-a_{j}\right| \leq r \quad(j=1 \ldots, n-1) \\
\Gamma & :\left|z_{n}-a_{n}\right| \leq \rho
\end{aligned}
$$

with the property that $(\bar{\Delta} \times \partial \Gamma) \cap \Sigma=0$. Thus $g(z)$ is holomorphic in a neighborhood of $\bar{\Delta} \times \partial \Gamma$; hence $g(z)$ can be represented by a Hartogs-Laurent series centered at a_{n} :

$$
g(z)=\sum_{j=-x}^{\infty} a_{j}\left(z_{1}, \ldots . z_{n-1}\right)\left(z_{n}-a_{n}\right)^{j}
$$

where $a,\left(z_{1} \ldots . z_{n-1}\right)(j=0, \pm 1, \pm 2 \ldots)$ are holomorphic functions on Δ. To prove the theorem, it suffices to prove that this series reduces to a Hartogs series; i.e.,

$$
\alpha_{j}\left(z_{1}, \ldots, z_{n-1}\right) \equiv 0 \quad \text { for } j<0
$$

To verify this. fix $a^{\prime} \in \Delta$. and let $\Sigma\left(a^{\prime}\right)$ be the section of Σ over $z_{j}=a_{j}^{\prime}(j=$ $1, \ldots . n-1)$. Since $f\left(a^{\prime}, z_{n}\right) \neq 0$ for $z_{n} \in \partial \Gamma$, we see that $\Gamma \cap \Sigma\left(a^{\prime}\right)$ consists of a finite number of points in Γ. Using the fact that $g\left(a^{\prime}, z_{n}\right)$ is bounded and holomorphic as a function of the single variable z_{n} in $\Gamma \backslash \Sigma\left(a^{\prime}\right)$, it follows from Riemann's removable singularity theorem for holomorphic functions of one complex variable that $g\left(a^{\prime}, z_{n}\right)$ extends to be holomorphic in Γ. Thus $a_{j}\left(a^{\prime}\right)=0$ for $j<0$, and the theorem is proved.

1.4. Separate Analyticity Theorem

To obtain Cauchy's integral formula in section 1.3 .1 we assumed that a holomorphic function of n complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ was continuous in z and had first partial derivatives with respect to each variable $z_{j}(j=1, \ldots, n)$. We now show that the continuity is implied by the existence of these first partial derivatives.

Theorem 1.7 (Separate Analyticity Theorem). A complex-valued function of n complex variables $\left(z_{1}, \ldots, z_{n}\right)$ which has first partial derivatives with respect to each variable $z_{j}(j=1, \ldots, n)$ is holomorphic as a function of n complex variables.

This theorem was discovered in 1906 by Hartogs. We give the proof by induction on the dimension n. our primary inductive argument. In the case $n=1$ the theorem is trivial. Thus, assuming the theorem is true for n complex variables, we prove it for $n+1$ complex variables (z, w) in C^{n+1}, where $z \in C^{n}$ and $w \in C$. Since the argument is local, we let Λ be a closed polydisk with center at the origin in \mathbf{C}^{n+1},

$$
\begin{aligned}
& \Lambda=\bar{\Delta} \times \Gamma \\
& \bar{\Delta}:\left|z_{j}\right| \leq r_{j} \quad(j=1, \ldots, n), \quad \Gamma:|w| \leq \rho
\end{aligned}
$$

and we assume that $f(z, w)$ is a complex-valued function defined on Λ which has first partial derivatives with respect to each variable z_{1}, \ldots, z_{n} and w. In this setting we shall show that $f(z, w)$ is a holomorphic function on Λ.
1.4.1. Bounded Case. First we show that $f(z, w)$ is holomorphic in Λ under the assumption that $f(z, w)$ is bounded on Λ; i.e., we assume there exists an $M>0$ such that

$$
|f(z, w)| \leq M
$$

for $(z, w) \in \Lambda$. Since $f(z, w)$ is holomorphic as a function of $w \in \Gamma$ for each fixed $z \in \bar{\Delta}$, it follows from the Cauchy estimates for one complex variable that if

$$
f(z, u)=\sum_{j=0}^{\infty} \alpha_{j}(z) u^{j}
$$

then

$$
\begin{equation*}
\left|\alpha_{j}(z)\right| \leq \frac{M}{\rho^{j}} \quad(j=0,1,2, \ldots) \tag{1.11}
\end{equation*}
$$

By Weierstrass theorem on locally uniformly convergent sequences of analytic functions, it suffices to show that each $\alpha_{j}(z)(j=0,1, \ldots)$ is holomorphic for $z \in \bar{\Delta}$.

We prove this by induction on j, our secondary induction. For $j=0$, we have $\alpha_{0}(z)=f(z, 0)$. Since $f(z, 0)$ is holomorphic in $\bar{\Delta}$ by the primary inductive assumption, $\alpha_{0}(z)$ is holomorphic in $\bar{\Delta}$. Now let l be any nonnegative integer and assume that each $\alpha_{j}(z)(j=0,1 \ldots . l)$ is holomorphic on $\bar{\Delta}$. To prove that $\alpha_{l+1}(z)$ is holomorphic in $\bar{\Delta}$, we consider the following family of holomorphic functions $\left\{F_{w}(z)\right\}_{w \in \Gamma}$ for $z \in \bar{\Delta}$:

$$
F_{u}(z)=\frac{f\left(z, w^{\prime}\right)-\sum_{j=0}^{l} \alpha_{j}(z) u^{j}}{w^{l+1}}
$$

By inequality (1.11) we have

$$
\left|F_{u}(z)\right| \leq \sum_{k=1}^{\infty}\left|\alpha_{l+k}(z)\right||w|^{k-1} \leq \frac{M}{\rho^{2}\left(1-\frac{\left|w_{0}\right|}{p}\right)}
$$

Thus $\left\{F_{u}(z)\right\}$ is uniformly bounded on $\bar{\Delta}$ for $|w| \leq \rho_{0}<\rho$. Since $\lim _{u \rightarrow 0} F_{u^{\prime}}(z)=$ $\alpha_{l+1}(z)$ pointwise for $z \in \bar{\Delta}$, it follows from Weierstrass' theoren that $\alpha_{l+1}(z)$ is bolomorphic in $\bar{\Delta}$. Hence $f(z, w)$ is holomorphic in Λ.

Remark 1.10. We see from the proof that if, under the boundedness assumption, we assume only that $f(z, w)$ is holomorphic as a function of $w \in \Gamma$ for any fixed $z \in \bar{\Delta}$. and, in addition, we assume that there exists a sequence $\left\{w_{j}\right\}$ in Γ with $w_{j} \neq 0$ and $\lim _{j \rightarrow x} w_{j}=0$ such that each function $f\left(z, w_{j}\right)$ is holomorphic as a function of $z \in \bar{\Delta}$, then we can conclude that $f(z, w)$ is holomorphic for $(z, w) \in \Lambda$.
1.4.2. Use of Baire's Theorem. To prove the general case we will first use the Baire Category Theorem to show that there exists an open set γ in Γ such that $f(z, w)$ is holomorphic in $\bar{\Delta} \times \gamma$. For each positive integer ν we define

$$
e_{\nu}=\left\{u^{\prime} \in \Gamma| | f\left(z, u^{\prime}\right) \mid \leq \nu \text { for each } z \text { in } \bar{\Delta}\right\}
$$

Since $f(z, w)$ is holomorphic for z in $\bar{\Delta}$ if $w \in \Gamma$ is fixed (by the primary inductive hypothesis), we have

$$
e_{\nu} \subset e_{\nu+1}(\nu=1,2, \ldots), \quad \bigcup_{\nu=1}^{x} e_{i,}=\Gamma .
$$

Furthermore, e_{ν} is a closed subset of Γ. To see this, let $w_{j}(j=1,2, \ldots)$ be a sequence in e_{ν} which converges to a point w_{0} in Γ and suppose, for the sake of obtaining a contradiction, that there exists a point $z^{\prime} \in \bar{\Delta}$ such that $\left|f\left(z^{\prime}, w_{0}\right)\right|>$ ν. By assumption, $f\left(z^{\prime}, w\right)$ is holomorphic with respect to w in Γ and hence is continuous at w_{0}. Thus

$$
\lim _{j \rightarrow x} f\left(z^{\prime} \cdot w_{j}\right)=f\left(z^{\prime}, w_{0}\right)
$$

which contradicts $\left|f\left(z^{\prime}, w_{j}\right)\right| \leq \nu(j=1,2, \ldots)$.
From Baire's theorem. we deduce that at least one of the sets e_{ν} contains an interior point. If we let γ denote the interior of such a set e_{ν}, then $|f(z, w)|$ is bounded in $\bar{\Delta} \times \gamma$. Using the result in the previous section. we get that $f(z, w)$ is holomorphic in $\bar{\Delta} \times \gamma$.
1.4.3. General Case. In order to prove that $f(z, w)$ is holomorphic in Λ in the general case, we may assume from the previous result that there exists a positive number $\rho_{0}<\rho$ such that if we set $\Gamma^{\prime}=\left\{w:|w| \leq \rho_{0}\right\}$. then $f(z, w)$ is holomorphic and bounded in $\bar{\Delta} \times \Gamma^{\prime}$. Thus we can develop $f(z, w)$ into a Hartogs series centered at $w=0$:

$$
\begin{equation*}
f(z, w)=\sum_{j=0}^{\infty} a_{j}(z) w^{j}, \tag{1.12}
\end{equation*}
$$

where $\alpha_{j}(z)(j=0,1, \ldots)$ is holomorphic in $\bar{\Delta}$ and, from the boundedness of $f(z, w)$ on $\bar{\Delta} \times \Gamma^{\prime}$ and the Cauchy estimates, there exists an $M>0$ such that for $z \in \bar{\Delta}$,

$$
\left|\alpha_{\jmath}(z)\right| \leq \frac{M}{\rho_{0}^{\prime}} \quad(j=0,1,2, \ldots)
$$

Moreover, for any fixed z in $\bar{\Delta}, f(z, w)$ is a holomorphic function of $w \in \Gamma$: hence the radius of convergence of the power series (1.12) in w is greater than or equal to ρ.

We will need the following lemma of Hartogs.
Lemma 1.1. Let $\bar{\Delta}:|z| \leq r_{j}(j=1, \ldots, n)$ be a closed polydisk in C^{n} with distinguished boundary \mathcal{E} and let $\left\{u_{k}\right\}_{k=1,2 \ldots}$... be a sequence of plurisubharmonic functions on $\bar{\Delta}$. Assume that there exist two positive constants l and L with $l<L$ such that

$$
\sup _{k} u_{k}(z) \leq L
$$

for all $z \in \bar{\Delta}$ and

$$
\overline{\lim }_{k_{-\infty}} u_{k}\left(z^{\prime}\right) \leq l
$$

for each $z^{\prime} \in \mathcal{E}$. Given positive numbers $r_{j}^{\prime}<r_{j}$ and $l^{\prime}>l$, if we set $\bar{\Delta}^{\prime}:\left|z_{j}\right| \leq$ $r_{j}^{\prime}(j=1, \ldots, n)$, then there exists an integer N such that

$$
u_{k}(z) \leq l^{\prime} \text { on } \bar{\Delta}^{\prime}
$$

for all $k \geq N$.
Proof. We set $l^{\prime \prime}:=\left(l^{\prime}+l\right) / 2$ and $\varepsilon:=\left(l^{\prime}-l\right) / 2$. For each integer $\nu \geq 1$, we define

$$
e_{\nu}:=\left\{z^{\prime} \in \mathcal{E}: u_{k}\left(z^{\prime}\right) \leq l^{\prime \prime} \text { for all } k \geq \nu\right\} .
$$

By assumption we have

$$
e_{\nu} \subset e_{\nu+1} \quad(\nu=1,2, \ldots), \quad \bigcup_{\nu=1}^{\infty} e_{\nu}=\mathcal{E}
$$

If we let $e_{\nu}^{c}:=\mathcal{E}-e_{\nu}$ and we let $m\left(e_{\nu}^{c}\right)$ be the (real) n-dimensional measure of the set $e_{\nu}^{c} \subset \mathcal{E}$, then

$$
\lim _{\nu \rightarrow \infty} m\left(e_{\nu}^{\kappa}\right)=0
$$

We can thus find a positive integer N such that

$$
\prod_{j=1}^{n}\left(\frac{r_{j}+r_{j}^{\prime}}{r_{j}-r_{j}^{\prime}}\right) L m\left(e_{\nu}^{c}\right)<\varepsilon
$$

for all $\nu \geq N$. Let $P(r, \rho, \theta, \vartheta)$ be the Poisson kernel for Δ. Since

$$
\begin{aligned}
& u_{\nu}\left(\rho_{1} e^{i \theta_{1}}, \ldots, \rho_{n} e^{i \vartheta_{n}}\right) \\
& \leq \frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} P(r, \rho, \theta, \vartheta) u_{\nu}\left(r_{1} e^{i \theta_{3}}, \ldots, r_{n} e^{i \theta_{n}}\right) d \theta_{1} \cdots d \theta_{n}
\end{aligned}
$$

it follows that for any positive $\rho_{j}<r_{j}^{\prime}$ and all $\nu \geq N$,

$$
u_{\nu}\left(\rho_{1} e^{i \vartheta_{1}}, \ldots, \rho_{n} e^{i \theta_{n}}\right) \leq l^{\prime \prime}+\prod_{j=1}^{n}\left(\frac{r_{j}+r_{j}^{\prime}}{r_{j}-r_{j}^{\prime}}\right) L m\left(e_{\nu}^{c}\right)<l^{\prime}
$$

which proves the lemma.
We return to the proof of Theorem 1.7 in the general case. We put

$$
u_{k}(z)=\frac{1}{k} \log \left|\alpha_{k}(z)\right| \quad(k=1,2, \ldots)
$$

Then each $u_{k}(z)$ is a plurisubharmonic function on $\bar{\Delta}$ which satisfies

$$
u_{k}(z) \leq-\log \rho_{0}+\log M \text { on } \bar{\Delta} \quad(k=1,2, \ldots)
$$

Furthermore, for any fixed $z^{\prime} \in \bar{\Delta}$, since the radius of convergence of the power series (1.12) in w is at least ρ,

$$
\varlimsup_{k \rightarrow \infty} u_{k}\left(z^{\prime}\right) \leq-\log \rho
$$

We now apply Lemma 1.1 to the sequence $\left\{u_{k}\right\}_{k=1,2 \ldots .}$. Given positive numbers $r_{j}^{\prime}<r_{j}(j=1, \ldots, n)$ and $\rho^{\prime}<\rho$, we set

$$
\bar{\Delta}^{\prime}:\left|z_{j}\right| \leq r_{j}^{\prime} \quad(j=1, \ldots, n) \quad \text { and } \quad \Gamma^{\prime}:|w| \leq \rho^{\prime}
$$

Then there exists a positive integer N such that

$$
u_{k}(z) \leq-\log \rho^{\prime} \text { on } \bar{\Delta}^{\prime}
$$

for all $k \geq N$. In other words,

$$
\left|\alpha_{k}(z)\right| \rho^{\prime k} \leq 1 \text { on } \bar{\Delta}^{\prime} \quad(k \geq N)
$$

It follows that the Hartogs series (1.12) converges absolutely and uniformly on any compact set in the interior $\left(\Lambda^{\prime}\right)^{\circ}$ of $\Lambda^{\prime}=\bar{\Delta}^{\prime} \times \Gamma^{\prime}$. Thus, again applying the Weierstrass theorem on power series, we see that $f(z, w)$ is holomorphic with respect to the $n+1$ complex variables $(z, w) \in\left(\Lambda^{\prime}\right)^{\circ}$. Since $r_{j}^{\prime}<r_{j}$ and $\rho^{\prime}<\rho$ were arbitrary, $f(z, w)$ is holomorphic in Λ.

Remark 1.11. From the general case of Hartogs theorem, we have the following result:

Let $f(z, w)=\sum_{j=0}^{x} \alpha_{j}(z) w^{j}$ be a holomorphic function for $(z, w) \in \Delta \times \gamma$, where $\Delta \subset \mathbf{C}^{n}$ and $\gamma=\{w \in \mathbf{C}:|w|<r\} \subset \mathbf{C}$. Suppose that for any $z \in \Delta$, the Taylor series of $f(z, w)$ in u has radius of convergence greater than or equal to ρ (independent of $z \in \Delta$). Then $f(z, w)$ is holomorphic for (z, w) in $\Delta \times \Gamma$. where $\Gamma=\{\boldsymbol{w} \in \mathbf{C}:|\boldsymbol{w}|<\rho\}$.

This fact remains valid under weaker conditions than those stated (cf. T. Terada [72]). To simplify the description we consider C^{2} with variables z and w. Let $\Lambda=\bar{\Delta} \times \Gamma$ be a closed bidisk centered at the origin and let $f(z, w)$ be a complex-valued function on Λ. Let $e \subset \Gamma$ and assume that $f(z, w)$ satisfies the following two conditions:

1. For any fixed $z^{\prime} \in \bar{\Delta}, f\left(z^{\prime}, w\right)$ is holomorphic with respect to $w \in \Gamma$.
2. For any fixed $w^{\prime} \in e, f\left(z, w^{\prime}\right)$ is holomorphic with respect to $z \in \bar{\Delta}$.

Then $f(z, w)$ is holomorphic with respect to the variables $(z, w) \in \Lambda$ if the logarithmic capacity of e is positive.

1.5. Domains of Holomorphy

1.5.1. Analytic Continuation. A holomorphic function of several complex variables can be locally represented by a power series. Hence its analytic continuation is unique as in the case of one complex variable. Indeed, following the ideas of Weierstrass, there are no qualitative differences between the theory of analytic continuation in the case of several complex variables and in the case of one complex variable, as the following two important theorems illustrate.

Theorem 1.8 (Monodromy Theorem). Let D be a simply connected domain in C^{n} and let $\mathcal{P}(z)$ be a power series centered at a point p in D whose domain of convergence is non-empty. If $\mathcal{P}(z)$ can be analytically continued to any point $q \in D$ along any continuous arc l in D joining p to q, then the function $f(z)$ obtained by this continuation is a single-valued holomorphic function on D.

Theorem 1.9 (Countable Valency Theorem). Let $\mathcal{P}(z)$ be a power series centered at a point p in \mathbf{C}^{n} whose domain of convegence is non-empty. If we analytically continue $\mathcal{P}(z)$ along all arcs starting from p for which a continuation is possible, then for any point q in \mathbf{C}^{n}, the function $f(z)$ obtained by this continuation has at most countably many branches over q.
1.5.2. Domains of Holomorphy. Let $f(z)$ be a holomorphic function in a domain D in C^{n}. We analytically continue $f(z)$ to as many points in C^{n} as possible. This gives us a canonical domain \widetilde{D} such that $f(z)$ is holomorphic in \widetilde{D} but $f(z)$ cannot be analytically continued beyond any boundary point of \tilde{D}. We say that \tilde{D} is the natural domain of $f(z)$ or the domain of holomorphy of $f(z)$. In general, we say that D is a domain of holomorphy if there exists at least one holomorphic function whose domain of holomorphy coincides with D. Given a domain D in C^{n}, the maximal domain \tilde{D} such that any holomorphic function on D is necessarily holomorphic on \tilde{D} is called the envelope of holomorphy of D.

Remark 1.12. In studying analytic continuation, there are problems regarding multiple-valuedness (multivalency), branch points. and points at infinity. In Part
I. we will not discuss these problems; hence the term domain refers to a univalent (or schlicht) domain in \mathbf{C}^{n} and the term envelope of holomorphy refers to a onesheeted envelope of holomorphy. With respect to points at infinity, we mention that the analytic continuation to a point at infinity p_{x} in the Osgood space $\widehat{\mathbf{C}}^{n}$ or in complex projective space \mathbf{P}^{n} may be treated as in the case of a point p in \mathbf{C}^{n} by transforming p_{x} to the origin O with a linear coordinate trausformation (cf., section 1.1.6).

In the case of one complex variable, every domain in \mathbf{C} is a domain of holomorphy. On the other hand, in the case of C^{n} with $n>1$, determining which domains are domains of holomorphy is an area of reseach which will be discussed in the forthcoming chapters. Here we mention a theorem which illustrates the distinguished character of domains of holomorphy. ${ }^{1}$

Theorem 1.10 (Osgood). ${ }^{2}$ Let D be a domain in \mathbf{C}^{n} and let E be a compact set in D. Assume that $D \backslash E$ is connected. Then any holomorphic function $f(z)$ on $D \backslash E$ can be analytically continued to a (single-valued) holomorphic function on all of D.

Proof. We consider \mathbf{C}^{n} as the product of \mathbf{C}^{n-1} with variables $z^{\prime}:=\left(z_{1} \ldots \ldots\right.$, z_{n-1}) and the complex plane $C_{z_{n}}$ with variable z_{n}. Given a set $S \subset C^{n}$ and a set $\sigma \subset \mathbf{C}^{n-1}$, we use the following notation: \underline{S} is the projection of S to $\mathbf{C}^{n-1}: S(\sigma)$ is the set of all points $\left(z^{\prime}, z_{n}\right) \in S$ such that $z^{\prime} \in \sigma$; and S^{0} and $S^{0}(\sigma)$ will denote the interiors of S and $S(\sigma)$. We note that $S(\sigma)$ may be empty. In the case where σ consists of a single point z^{\prime} in C^{n-1}, we write $S(\sigma)=S\left(z^{\prime}\right)$. We will identify the fiber $S\left(z^{\prime}\right)$ with the set in $\mathrm{C}_{z_{n}}$ consisting of those points z_{n} with $\left(z^{\prime}, z_{n}\right) \in S$.

By assumption, we have $\underline{E} \subset \subset \underline{D}$ and $E\left(z^{\prime}\right) \subset \subset D\left(z^{\prime}\right)$ for any $z^{\prime} \in \underline{E}$. Fix such a z^{\prime}. We take a finite number of smooth, closed Jordan curves L in $D\left(z^{\prime}\right)$ such that if U is the closed domain bounded by L, i.e.. $L=\partial U$, then $E\left(z^{\prime}\right) \subset \subset U^{0} \subset \subset D\left(z^{\prime}\right)$. We next take a sufficiently small neighborhood v of z^{\prime} in \underline{D} such that if $V:=v \times U$, then $E(v) \subset \subset V^{0} \subset \subset D(v)$, where $V^{0}=v \times U^{0}$. We note that $f(z)$ is defined and holomorphic on $D(v) \backslash V^{0}$.

For any $z=\left(z_{1}, \ldots, z_{n}\right) \in V^{0}$. we consider the integral

$$
g\left(z_{1}, \ldots, z_{n-1}, z_{n}\right)=\frac{1}{2 \pi i} \int_{L} \frac{f\left(z_{1}, \ldots, z_{n-1} \cdot \zeta\right)}{\zeta-z_{n}} d \zeta .
$$

Then $g(z)$ defines a holomorphic function in V^{0}. If we can find a non-empty open set δ_{0} in v such that $f(z)$ is holomorphic in $V\left(\delta_{0}\right)$ (for example. if $E\left(\delta_{0}\right)=\emptyset$), then, by applying Cauchy's theorem for the complex variable z_{n}. we get that $g(z)=f(z)$ on $V\left(\delta_{0}\right)$; hence $f(z)$ has an analytic continuation to the single-valued function $g(z)$ on V^{0}.

[^0]

Figlere 3. Osgood's theorem

Since \underline{E} is compact in \underline{D}, we can find a finite number of points $\left\{z_{\nu}\right\}_{\nu=1, \ldots . l}$ in \underline{E} such that if we construct the corresponding sets

$$
L_{\nu}=\partial U_{\nu}, \quad V_{\nu}:=v_{\nu} \times U_{\nu}
$$

and the corresponding functions $g_{\nu}(z)$ for each z_{ν}, and then we set $\Omega:=\bigcup_{\nu=1}^{\nu} V_{\nu}^{0}$, we have $E \subset \subset \Omega \subset \subset D$. We may assume that the Jordan curves L_{ν} intersect the curves L_{μ} with $\nu \neq \mu$ in at most finitely many points.

The theorem will be a consequence of the following lemma in one complex variable.

Lemma 1.2. Let $U_{j}(j=1,2)$ be closed domains (not necessarily connected) in the complex plane \mathbf{C}_{w}, each bounded by a finite number of smooth Jordan curves L_{j}, i.e., $\partial U_{j}=L_{j}$. Suppose that $L_{1} \cap L_{2}$ is a finite set of points. Given a holomorphic function $f(z)$ on the closed set

$$
U_{1} \cup U_{2}-\left(U_{1}^{0} \cap U_{2}^{0}\right)
$$

(here U_{j}^{0} denotes the interior of U_{j}), we define

$$
g_{j}(w):=\frac{1}{2 \pi i} \int_{L} \frac{f(\zeta)}{\zeta-w} d \zeta
$$

for $w \in U_{j}(j=1,2)$. Then $g_{1}(w)=g_{2}(w)$ on $U_{1}^{0} \cap U_{2}^{0}$.
Proof. We set $U_{1}^{e}:=U_{1} \backslash U_{2}^{0}, U_{2}^{e}:=U_{2} \backslash U_{1}^{0}$ and

$$
L_{1}^{e}:=U_{1}^{e} \cap L_{1}, \quad L_{2}^{i}:=U_{1}^{e} \cap L_{2}, \quad L_{2}^{e}:=U_{2}^{e} \cap L_{2}, \quad L_{1}^{i}:=U_{2}^{e} \cap L_{1}
$$

From the relation $U_{1} \cup U_{2}-\left(U_{1}^{0} \cap U_{2}^{0}\right)=U_{1}^{e} \cup U_{2}^{e}, f(z)$ is defined on $U_{j}^{e}(j=1,2)$. Since $\partial U_{1}^{e}=L_{1}^{e} \cup\left(-L_{2}^{i}\right)$ and $\partial U_{2}^{e}=L_{2}^{e} \cup\left(-L_{1}^{i}\right)$, it follows from Cauchy's theorem that, for any $w \in U_{1}^{0} \cap U_{2}^{0}$,

$$
\frac{1}{2 \pi i} \int_{L_{1}} \frac{f(\zeta)}{\zeta-w} d \zeta=\frac{1}{2 \pi i} \int_{L_{2}^{i}} \frac{f(\zeta)}{\zeta-w} d \zeta
$$

and

$$
\frac{1}{2 \pi i} \int_{L_{i}} \frac{f(\zeta)}{\zeta-w} d \zeta=\frac{1}{2 \pi i} \int_{L_{2}^{\prime}} \frac{f(\zeta)}{\zeta-w} d \zeta
$$

Since $L_{j}=L_{j}^{c} \cup L_{j}^{\prime}(j=1,2)$, we have $g_{1}(w) \equiv g_{2}(w)$ on $U_{1}^{0} \cap U_{2}^{0}$.
To finish the proof of Osgood's theorem, we assume that $v_{\nu} \cap v_{\mu} \neq \emptyset(1 \leq$ $\nu, \mu \leq l)$ and set $\delta:=v_{\nu} \cap v_{\mu}$. By assumption, $f(z)$ is defined on the closed domain

$$
V_{\nu}(\delta) \cup V_{\mu}(\delta)-\left(V_{\nu}^{0}(\delta) \cap V_{\mu}^{0}(\delta)\right) \quad \subset \subset(D \backslash E)^{0}(\delta)
$$

It follows from Lemma 1.2 that for any fixed $z^{\prime} \in \delta$.

$$
g_{\nu}\left(z^{\prime}, z_{n}\right)=g_{\mu}\left(z^{\prime}, z_{n}\right) \text { for all } z_{n} \text { with } z_{n} \in V_{\nu}^{0}\left(z^{\prime}\right) \cap V_{\mu}^{0}\left(z^{\prime}\right):
$$

i.e., $g_{\nu}(z)=g_{\mu}(z)$ in $V_{\nu}^{0}(\delta) \cap V_{\mu}^{0}(\delta)$. This means that $g_{\nu}(z)$ is an analytic continuation of $g_{\mu}(z)$. Therefore, setting $g(z)=g_{\nu}(z)$ in $V_{\nu}^{0}(\nu=1, \ldots, l)$, we get a (single-valued) holomorphic function $g(z)$ on Ω. On the other hand, some v_{1}, contains a non-empty open set δ_{0} such that $E\left(\delta_{0}\right)=\emptyset$; thus $g(z)$ is also the analytic continuation of $f(z)$ to Ω. Since D is connected, $D \cap \Omega \neq \emptyset$, and $E \subset \Omega, f(z)$ can thus be analytically continued to the entire domain $D .^{3}$

We deduce from this theorem that any bounded domain of holomorphy in \mathbf{C}^{n} for $n \geq 2$ must have only one boundary component. In general, when we study holomorphic functions, we consider them to be defined on their domains of holomorphy.

REmARK 1.13. In \mathbf{C}^{n} with $n>1$, not all domains are domains of holomorphy, and it is an important problem to determine the envelope of holomorphy of a domain. We give two interesting examples.

1. There exists a univalent domain D in C^{n} whose envelope of holomorphy has infinitely many sheets. For example, in \mathbf{C}^{2} with variables z and w we consider the sets

$$
\Sigma_{1}: z=1, \quad|w| \leq 1 \quad \text { and } \quad \Sigma_{2}: z=e^{t t},|w|=e^{t} \quad(0 \leq t<\infty)
$$

We set $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, and construct a univalent domain D in \mathbf{C}^{2} which contains Σ and does not intersect $\left\{e^{i t}\right\} \times\left\{|w|=e^{t+(2 k+1) x}\right\}(0 \leq t \leq \infty, k=0.1 \ldots$.$) . Then$ the envelope of holomorphy \widehat{D} of D contains the set

$$
\Sigma^{*}: z=e^{t t}, \quad|w| \leq e^{t} \quad(0 \leq t<\infty)
$$

in $\mathcal{R} \times \mathbf{C}_{u}$, where \mathcal{R} is the Riemann surface of $\log z$ over the z-plane, while \hat{D} is itself contained in the product set $\mathcal{R} \times \mathbf{C}_{w^{*}}$. To verify that $\Sigma^{*} \subset \widehat{D}$, we need to appeal to a result of Hartogs (Theorem 4.1) which will be proved later. Let \mathcal{F} be the family of all holomorphic functions on D. Given $t \geq 0$, we define the following subsets of \mathbf{C}^{2} :

$$
\sigma(t):=\left\{e^{i t}\right\} \times\left(|w|=e^{t}\right), \quad[\sigma](t):=\left\{e^{i t}\right\} \times\left(|w|<e^{t}\right)
$$

and

$$
\Sigma^{*}(t):=\bigcup_{0<t^{\prime}<t}[\sigma](t)
$$

[^1]Define

$$
T:=\sup \left\{t \geq 0 \mid \text { each } f \in \mathcal{F} \text { is holomorphic on } \Sigma^{*}\left(t^{\prime}\right) \text { for all } t^{\prime} \leq t\right\}
$$

Since $\Sigma_{1} \subset D$, we have $T>0$. The claim will follow if we can show $T=+\infty$. We prove this by contradiction; hence we assume that $T<+\infty$. Choose a neighborhood $U \times V$ of $\sigma(T)$ in D, where $U=\left\{\left|z-e^{i T}\right|<\delta\right\}, V=\left\{e^{T^{\prime}}<|w|<e^{T^{\prime \prime}}\right\}$ with $\delta>0,0<T^{\prime}<T<T^{\prime \prime}$, and $e^{i t} \in U\left(T^{\prime}<t<T^{\prime \prime}\right)$. Let $f \in \mathcal{F}$ and take t_{0} with $T^{\prime}<t_{0}<T$. Then $\sigma\left(t_{0}\right) \subset U \times V$, and $f(z)$ is holomorphic on $[\sigma]\left(t_{0}\right)$ by the definition of T. Since f is holomorphic on $U \times V$, Theorem 4.1 implies that f is holomorphic on $U \times\left\{|\boldsymbol{w}|<e^{t_{0}}\right\}$, and hence on $U \times\left\{|w|<e^{T^{\prime \prime}}\right\}$. It follows that f is holomorphic on $\Sigma^{*}\left(T^{\prime \prime}\right)$. Since $f \in \mathcal{F}$ was arbitrary; we have $T^{\prime \prime} \leq T$, which is a contradiction.
2. Conversely, there exists a multivalent domain whose envelope of holomorphy is a univalent domain. For example, in \mathbf{C}^{2} with variables z and w we consider the three domains

$$
\begin{gathered}
\Gamma: 1<|z|^{2}+|w|^{2}<3 \\
\Delta_{1}:|z-1|^{2}+|w|^{2}<r, \quad|z|^{2}+|w|^{2}<1
\end{gathered}
$$

and

$$
\Delta_{2}:|z+1|^{2}+|w|^{2}<r, \quad|z|^{2}+|w|^{2}<1
$$

where r is a real number satisfying $1<r<\sqrt{2}$. By gluing Δ_{1} and Δ_{2} to Γ along the sphere $|z|^{2}+|w|^{2}=1$, we obtain a domain D which is two-sheeted over a neighborhood of the origin. By Theorem 1.10 any holomorphic function on D can be analytically continued to a single-valued holomorphic function on the (univalent) ball $B=\left\{|z|^{2}+|u|^{2}<3\right\}$; hence the envelope of holomorphy \hat{D} of D contains B. Since B is a domain of holomorphy, we have $\hat{D}=B$.
1.5.3. Holomorphically Convex Domains. In this section we give an analytic characterization of domains of holonorphy which is due to Cartan and Thullen.

Let D be a domain in \mathbf{C}^{n} with variables z_{1}, \ldots, z_{n}. Let E be a compact set in D and let $r=\delta_{D}(E)>0$ denote the polydisk boundary distance from E to ∂D. Given $\rho(0<\rho<r)$ and $z^{\prime}=\left(z_{1}^{\prime} \ldots, z_{n}^{\prime}\right) \in E$, we consider the polydisk $\Delta_{z^{\prime}}^{\rho}:\left|z_{j}-z_{j}^{\prime}\right|<\rho(j=1, \ldots, n)$ centered at z^{\prime} with radius ρ. We set

$$
E^{\rho}:=\bigcup_{z^{\prime} \in E} \Delta_{z^{\prime}}^{\rho},
$$

so that $E \subset E^{\rho} \subset \subset D$. The sets E^{ρ} will occur in the Thullen lemma below.
Following Cartan and Thullen, we consider a class \mathcal{K} of holomorphic functions in D which satisfies the following properties:

1. $f \in \mathcal{K}$ implies $\partial f / \partial z, \in \mathcal{K}, j=1, \ldots, n$.
2. For any complex number c and any integer $l \geq 1, f \in \mathcal{K}$ implies $\mathrm{c} f^{l} \in \mathcal{K}$.

We call \mathcal{K} a regular class of holomorphic functions in D.
Standard examples are the class of all polynomials in \mathbf{C}^{n}; the class of all holomorphic functions in D; and the class of all functions which are holomorphic in a given domain D^{\prime} which contains D.

We have the following lemma concerning these classes.

Lemma 1.3 (Thullen [73]). Let \mathcal{K} be a regular class of holomorphic functions in D and let E be a compact set in D. We let $r=\delta_{D}(E)>0$ denote the polydisk boundary distance from E to ∂D. If z^{0} is a point in D at which we have the inequality

$$
\left|f\left(z^{0}\right)\right| \leq \max _{z \in E}|f(z)| \quad \text { for all } f \in \mathcal{K}
$$

then every $f \in \mathcal{K}$ can be analytically continued to the polydisk $\Delta_{z^{0}}^{r}:\left|z_{j}-z_{j}^{0}\right|<$ $r(j=1, \ldots, n)$ centered at z^{0} unth radius r.

Proof. Fix $f \in \mathcal{K}$. For any $\rho(0<\rho<r)$, we set

$$
A(\rho):=\max _{z \in E^{\rho}}|f(z)|<\infty
$$

It follows from the Cauchy estimates that for any $z \in E$

$$
\frac{1}{j_{1}!\cdots j_{n}!}\left|\frac{\partial^{j_{1}+\cdots+j_{n}} f}{\partial^{j_{1}} z_{1} \cdots \partial^{j_{n}} z_{n}}(z)\right| \leq \frac{A(\rho)}{\rho^{j_{1}+\cdots+j_{n}}} .
$$

Since $z^{0} \in D$. we can form the Taylor expansion of $f(z)$ centered at z^{0} :

$$
\begin{equation*}
f(z)=\sum \alpha_{j_{1} \ldots . j_{n}}\left(z_{1}-z_{1}^{0}\right)^{j_{1}} \cdots\left(z_{n}-z_{n}^{0}\right)^{j_{n}} \tag{1.13}
\end{equation*}
$$

By the hypothesis and condition 1 in the definition of a regular class \mathcal{K} we obtain

$$
\left|\alpha_{j_{1} \ldots, j_{n}}\right|=\left|\frac{1}{j_{1}!\cdots j_{n}!} \frac{\partial^{j_{1}+\cdots+j_{n}} f}{\partial^{j_{1}} z_{1} \cdots \partial^{\jmath_{n}} z_{n}}\left(z_{0}\right)\right| \leq \frac{A(\rho)}{\rho^{j_{1}+\cdots+j_{n}}} .
$$

Therefore, the right-hand-side of (1.13) converges absolutely and uniformly on any compact set in the polydisk $\Delta_{z^{0}}^{\rho}$ centered at z^{0} with radius ρ; hence f can be analytically continued to $\Delta_{z^{0}}^{\rho}$. Since $0<\rho<r$ was arbitrary, the lemma is proved.

Remark 1.14. This lemma has meaning for any point $z^{0} \in D$ such that the polydisk boundary distance $\delta_{D}\left(z^{0}\right)$ from z^{0} to ∂D is less than r; i.e., even in the case when $\Delta_{z^{0}}^{r}$ contains points outside of D. The lemma then implies that any holomorphic function belonging to \mathcal{K} extends analytically to these points.

Remark 1.15. In the proof of the lemma, condition 2 in the definition of a regular class \mathcal{K} was not used. However, using condition 2 we can show that, given any $0<\rho<r$, every $f \in \mathcal{K}$ satisfies

$$
\max _{z \in \Delta_{z_{0}^{p}}}|f(z)| \leq \max _{z \in E^{\rho}}|f(z)|
$$

This inequality follows by applying the same method as in the proof of the lemma to the functions $f^{\prime} \in \mathcal{K}$.

Lemma 1.3 yields an analytic characterization of a domain of holomorphy, as we will show in the Cartan-Thullen theorem below.

Let D be a domain in \mathbf{C}^{n} and let \mathcal{K} be a regular class of holomorphic functions in D. For a compact set E in D, we define the following closed subset of D :

$$
\begin{equation*}
\widehat{E}_{\mathcal{K}}:=\left\{z^{\prime} \in D| | f\left(z^{\prime}\right)\left|\leq \max _{z \in E}\right| f(z) \mid \text { for all } f \in \mathcal{K}\right\} \tag{1.14}
\end{equation*}
$$

We call the set $\widehat{E}_{\mathcal{K}}$ the \mathcal{K}-convex hull of E. In particular, in the case when \mathcal{K} coincides with the class of all polynomials, $\widehat{E}_{\mathcal{K}}$ is called the polynomial hull of E. When \mathcal{K} is the class of all holomorphic functions in $D, \widehat{E}_{\mathcal{K}}$ is called the holomorphic hull of E relative to D.

We have the following.
Corollary 1.2. Let D be a bounded domain of holomorphy in \mathbf{C}^{n}. For $r>0$. let $D^{[r]}=\left\{z \in D: \delta_{D}(z)>r\right\}$. Then the holomorphic hull of $\overline{D^{[r]}}$ relative to D is equal to $\overline{D^{[r!}}$. The same is true for the set $\overline{D^{(r)}}$ which is obtained by replacing the polydisk boundary distance $\delta_{D}(z)$ by the Euclidean boundary distance $d_{D}(z)$.

Proof. The first assertion follows directly from Lemma 1.3. For the second assertion, let A be an $n \times n$ unitary matrix so that $z^{A}:=A z$ defines a new Euclidean coordinate system for C^{n}. For $p \in D$. we let $\delta_{D}^{A}(p)$ denote the polydisk boundary distance from p to ∂D measured in these new coordinates. For $r>0$, we set $D^{|A \cdot r|}=\left\{p \in D: \delta_{D}^{A}(p)>r\right\}$. Taking $r^{\prime}=r / \sqrt{2 n}$, we note that $\overline{D^{(r)}}=\bigcap_{A} \overline{D^{\left[A . r^{\prime}\right]}}$, where the intersection is taken over all $n \times n$ unitary matrices A. From the first assertion, the holomorphic hull of each $\overline{D^{\left[A \cdot r^{\prime}\right]}}$ relative to D is equal to $\overline{D^{\left[A, r^{\prime}\right]}}$; thus the same is true for $\overline{D^{(r)}}$.

If a domain D in \mathbf{C}^{n} satisfies the condition that $\hat{E}_{\mathcal{K}} \subset \subset D$ for any compact set E in D, then D is called a \mathcal{K}-convex domain. In particular, when \mathcal{K} is the class of all polynomials (resp., all holomorphic functions in D). D is called a polynomially convex (resp., holomorphically convex) domain.

Let \mathcal{K} be the class of all monomials in the variables z_{1}, \ldots, z_{n}. We see that a domain D in \mathbf{C}^{n} is \mathcal{K}-convex if and only if D is a logaritlimically convex complete Reinhardt domain centered at the origin in \mathbf{C}^{n}.

Using these notions. we have the following theorem.
Theorem 1.11 (Cartan-Thullen [13]). Let D be a domain of holomorphy in \mathbf{C}^{n} and let \mathcal{K} be a regular class of holomorphic functions in D. Assume that \mathcal{K} contains a holomorphic function f whose domain of holomorphy is equal to D, and that \mathcal{K} also contains the coordinate functions z_{1}, \ldots, z_{n}. Then D is \mathcal{K}-convex.

Proof. Since \mathcal{K} contains the coordinate functions, it suffices to prove the theorem for bounded domains D in \mathbf{C}^{n}. Let E be any compact set in D. We let $r=\delta_{D}(E)>0$ denote the polydisk boundary distance from E to ∂D. Let z^{0} be any point in D such that $\delta_{D}\left(z^{0}\right)<r$. By Lemma 1.3 and the hypothesis that $f \in \mathcal{K}$, there exists a function $\varphi \in \mathcal{K}$ which satisfies the inequality

$$
\max _{z \in E}|\varphi(z)|<\left|\dot{\varphi}\left(z^{0}\right)\right| .
$$

It follows from the Heine-Borel theorem that D is \mathcal{K}-convex.
As a special case of the theorem when \mathcal{K} is the class of all holomorphic functions in D, we have the following corollary:

Corollary 1.3. A domain of holomorphy is holomorphically convex.
1.5.4. Analytic Polyhedra. Let D be a domain in \mathbf{C}^{n} and let $f_{j}(j=$ $1, \ldots, m$) be a finite collection of holomorphic functions in D. We consider the following closed subset Λ of D defined by the inequalities:

$$
\Lambda=\left\{z \in D| | f_{j}(z) \mid \leq 1, j=1, \ldots, m\right\}
$$

If a (closed) connected component Λ_{0} of Λ is compact in D, we call Λ_{0} an analytic polyhedron in D. A finite union of compact, connected components of Λ in D will also be called an analytic polyhedron in $\mathbf{C}^{\boldsymbol{n}}$. ${ }^{4}$

[^2]We have the following proposition.
Proposition 1.5. Let D be a domain in \mathbf{C}^{n} and let \mathcal{K} be a regular class of holomorphic functions in D. Assume that D is \mathcal{K}-convex. Then there exists a sequence of analytic polyhedra $\mathcal{P}_{j}(j=1,2 \ldots)$ defined by holomorphic functions in \mathcal{K} such that

$$
\mathcal{P}_{j} \subset \subset \mathcal{P}_{j+1}^{0} \quad(j=1,2, \ldots), \quad \text { and } \quad D=\bigcup_{j=1}^{\infty} \mathcal{P}_{j}
$$

Proof. It suffices to prove that, given any compact set E in D, we can find an analytic polyhedron \mathcal{P} determined by holomorphic functions in \mathcal{K} such that $E \subset \mathcal{P} \subset \subset D$. By assumption, the \mathcal{K}-convex hull $\widehat{E}_{\mathcal{K}}$ of E is compact in D. Let $r>0$ be the polydisk boundary distance from $\widehat{E}_{\mathcal{K}}$ to ∂D. and fix a positive number $\rho<r$. We form the compact subset

$$
\widehat{E}_{\mathcal{K}}^{\rho}=\bigcup_{: \in \dot{E}_{K}} \Delta_{\underline{i}}^{\rho}
$$

of D. Given any $z^{\prime} \in \partial \widehat{E}_{\mathcal{K}}^{\rho}$ (so that $z^{\prime} \notin \widehat{E}_{\mathcal{K}}$). we can find a holomorphic function $g \in \mathcal{K}$ such that

$$
\max _{z \in E}|g(z)|<1<\left|g\left(z^{\prime}\right)\right| .
$$

Thus there exists a neighborhood $\delta_{z^{\prime}} \subset \subset D$ of z^{\prime} such that the set $\{z \in D||g(z)| \leq$ $1\} \cap \delta_{z^{\prime}}=0$. Since $\partial \widehat{E}_{\mathcal{K}}^{\rho}$ is compact in D. we can find a finite number of these neighborhoods $\delta_{k}(k=1, \ldots, l)$ and holomorphic functions $g_{k}(k=1, \ldots, l)$ associated to δ_{k} such that if we set

$$
\mathbf{A}=\left\{z \in D| | g_{k}(z) \mid \leq 1, k=1, \ldots, l\right\}
$$

then $E \subset \subset \Lambda$ and $\Lambda \cap \partial \widehat{E}_{\mathcal{K}}^{\rho}=0$. It follows that a finite union Λ_{0} of connected components of Λ satisfies $E \subset \subset \Lambda_{0} \subset \subset \widehat{E}_{\mathcal{K}}^{\rho}$. Hence Λ_{0} is the desired analytic polyhedron.

This proposition yields the converse of Theorem 1.11.
Theorem 1.12. Let D be a domain in \mathbf{C}^{n} and let \mathcal{K} be a regular class of holomorphic functions in D. If D is \mathcal{K}-convex, then D is a domain of holomorphy.

Proof. From Proposition 1.5 we can find a sequence of analytic polyhedra $\mathcal{P}_{j}(j=1,2, \ldots)$ in D, each defined by holomorphic functions in \mathcal{K}, such that

$$
\mathcal{P}_{j} \subset \subset \mathcal{P}_{j+1}^{0} \quad(j=1,2, \ldots), \text { and } D=\bigcup_{j=1}^{\infty} \mathcal{P}_{j}
$$

Furthernore, we can find a sequence of points $\left\{z^{j}\right\}$ in D such that $z^{j} \in \partial P_{j}(j=$ $1,2, \ldots$) and whose set of accumulation points in \mathbf{C}^{n} is ∂D. Then for each z^{j} we can find a function $f_{j} \in \mathcal{K}$ such that

$$
\left|f_{j}(z)\right|<1 \text { in } \mathcal{P}_{j}, \quad f_{j}\left(z^{J}\right)=1
$$

We next take sequences of positive numbers $\varepsilon_{j}(j=1,2 \ldots)$ and positive integers $l_{j}(j=1,2 \ldots)$ such that

$$
\sum_{j=1}^{\infty} \varepsilon_{j}<\infty, \quad\left|f_{j}(z)\right|^{l,}<\varepsilon_{j} \text { in } \mathcal{P}_{j}(j=1.2 \ldots)
$$

The infinite product of holomorphic functions

$$
F(z):=\prod_{j=1}^{\infty}\left[1-\left(f_{j}(z)\right)^{t_{j}}\right]
$$

converges uniformly to a holomorphic function on each \mathcal{P}_{j} : hence F defines a holomorphic function in D. Clearly, $F \not \equiv 0$ in D. while $F\left(z^{j}\right)=0(j=1,2 \ldots)$. If F could be analytically continued to a point $p \in \partial D$ (i.e.. if there exist a neighborhood $V \subset C^{n}$ of p and a holomorphic function f in V with $\left.F\right|_{r}=f$), then $\partial D \cap V$ would be contained in the set $\Sigma:=\{z \in V: f(z)=0\}$. From the results of the next chapter, we will see that this forces $\Sigma=V$, i.e., $f \equiv 0$ in V. which leads to a contradiction. Thus F cannot be analytically continued to any point of ∂D : hence D is the domain of holomorphy of F.

This theorem. together with the corollary of Theorem 1.11. implies the following result.

Theorem 1.13. A domain D in \mathbf{C}^{n} is a domain of holomorphy if and only if D is holomorphically convex.

CHAPTER 2

Implicit Functions and Analytic Sets

2.1. Implicit Functions

As shown in the previous section, the set of zeros of a holomorphic function $f(z)$ of $n \geq 2$ complex variables does not contain isolated points. Furthermore. Osgood's theorem implies that this set is not relatively compact in the domain of definition of f. In this section we will make a more detailed study of the zero sets of holomorphic functions of n complex variables.
2.1.1. Zero Sets of Holomorphic Functions. For convenience, we consider $\mathbf{C}^{n+1}=\mathbf{C}^{n} \times \mathbf{C}$, where \mathbf{C}^{n} is the space of the n complex variables $z_{1} \ldots \ldots, z_{n}$ and \mathbf{C} is the complex plane of the variable u. Let D be a domain in C^{n+1} and let $f(z, w)$ be a holomorphic function on D. Fix a point (a.b) in D. If f satisfies the two conditions

$$
\text { (1) } f(a, b)=0, \quad \text { (2) } f(a, u) \neq 0
$$

then we say that $f(z, w)$ satisfies the Weierstrass condition at (a,b) for the coordinates (z, w). Clearly if $f(z, w) \not \equiv 0$ satisfies condition (1). then we can find a linear coordinate transformation yielding new coordinates (z, w) for which $f(z, w)$ satisfies the Weierstrass condition at (a.b).

Now assume that $f(z, w)$ satisfies the Weierstrass condition at (a.b) in the coordinates (z, w). We consider the section $D(a)$ in the w-plane over $z_{j}=a,(j=$ $1, \ldots, n)$. Then $f(a, w)$ is holomorphic in the variable w in $D(a)$. We let $\nu \geq 1$ denote the order of the zero of $f(a, w)$ at b in $D(a)$: thus

$$
f(a, u)=A_{0}(a)\left(u^{v}-b\right)^{\nu}+A_{1}(a)(u-b)^{\nu+1}+\ldots
$$

where $A_{0}(a) \neq 0$. In the domain $D(a)$ we let $\Gamma:|w-b| \leq \rho$ be a closed disk centered at b with radius $\rho>0$ sufficiently small so that $f(a, w) \neq 0$ at any point w in the punctured disk $\Gamma \backslash\{b\}$. We then fix $r>0$ (depending on ρ) such that the closed polydisk $\Lambda=\bar{\Delta} \times \Gamma$, where

$$
\bar{\Delta}: i z_{j}-a j \mid \leq r \quad(j=1 \ldots, n)
$$

lies in D and $f(z, w) \neq 0$ on $\bar{\Delta} \times \partial \Gamma$.
Lemma 2.1. For any fixed z^{\prime} in Δ. the holomorphic function $f\left(z^{\prime}, w\right)$ of the variable w has ν zeros in Γ (counted with multiplicity).

Proof. For each $z^{\prime} \in \Delta$ we let $\nu\left(z^{\prime}\right)$ denote the number of zeros (counted with multiplicity) of the holomorphic function $w \rightarrow f\left(z^{\prime}, w\right)$ in Γ. By the argument principle, we have

$$
\nu\left(z^{\prime}\right)=\frac{1}{2 \pi i} \int_{\partial \Gamma} \frac{\partial f\left(z^{\prime} \cdot w\right) / \partial u}{f\left(z^{\prime}, w\right)} d w
$$

Since $f(z, w) \neq 0$ on $\Delta \times \partial \Gamma$, the integral on the right-hand side is continuous for z^{\prime} in Δ. Hence $\nu\left(z^{\prime}\right) \equiv$ const. in Δ.

In Lemma 2.1 we let $\eta_{j}\left(z^{\prime}\right)(j=1, \ldots, \nu)$ denote the zeros of $f\left(z^{\prime}, u^{\prime}\right)$ in Γ for fixed $z^{\prime} \in \Delta$. . .ote that we may have $\eta_{i}\left(z^{\prime}\right)=\eta_{j}\left(z^{\prime}\right)$ for some $i, j(1 \leq i, j \leq \nu)$. We remark that

$$
\begin{equation*}
\lim _{z^{\prime} \rightarrow a} \eta_{j}\left(z^{\prime}\right)=b \quad(j=1, \ldots, \nu) \tag{2.1}
\end{equation*}
$$

To see this, fix $\rho^{\prime}\left(0<\rho^{\prime}<\rho\right)$. We then choose $r^{\prime}\left(0<r^{\prime}<r\right)$ such that if we let $\Gamma^{\prime} \subset \Gamma$ denote the closed clisk centered at b with radius ρ^{\prime}. and we let $\Delta^{\prime} \subset \Delta$ denote the polydisk centered at a with radius r^{\prime}, then $f(z, w) \neq 0$ on $\Delta^{\prime} \times \partial \Gamma^{\prime}$. The same argument used in the proof of Lemma 2.1 shows that $\eta_{j}\left(z^{\prime}\right) \in \Gamma^{\prime}(j=1, \ldots, \nu)$ for each $z^{\prime} \in \Delta^{\prime}$. Since $\rho^{\prime}>0\left(\rho^{\prime}<\rho\right)$ was arbitrary. we have (2.1).

In Lemma 2.1, suppose that $f(z . w)=0$ has only one zero $\eta(z)$ for each $z \in \Delta$. that is, $\eta_{1}(z)=\cdots=\eta_{\nu}(z) \equiv \eta(z)$. and the order of the zero $u=\eta(z)$ of $f\left(z, w^{\prime}\right)$ equals ν for all $z \in \Delta$. Then we have the following result.

Lemma 2.2. $\eta(z)$ is a holomorphic function on Δ.
Proof. Given any $z \in \Delta$. applying the residue theorem we get

$$
\nu \cdot \eta(z)=\frac{1}{2 \pi i} \int_{i \Gamma} u^{\prime} \frac{\partial f(z, w) / \partial u^{\prime}}{f\left(z, u^{\prime}\right)} d u
$$

For $w \in \partial \Gamma$, the function under the integral in the right-hand side is a holomorphic function of z in Δ. Thus the integral is a holomorphic function for z in Δ; hence so is $\eta(z)$.

From these two lemmas we see that the zero set of a holomorphic function of $n+1$ complex variables is a complex n-dimensional set which is analytic in a certain sense. We call the zero set of a holomorphic function an analytic hypersurface.
2.1.2. Representations of Analytic Hypersurfaces. Let D be a domain in C^{n+1} with the variables $z_{1} \ldots, z_{n}$ and u. We let $f(z, u)$ be a holomorphic function in D, and we let S denote the zero set of $f\left(z, u^{\prime}\right)$ in D :

$$
S=\{(z, w) \in D \mid f(z, u)=0\}
$$

Fix $(a, b) \in \mathcal{S}$ and let $\Lambda=\bar{\Delta} \times \Gamma$ be a closed polydisk in D, where

$$
\bar{\Delta}:\left|z_{j}-a_{j}\right| \leq r \quad(j=1, \ldots, n), \quad \Gamma:|u-b| \leq \rho .
$$

We assume that Λ has been chosen so that we are in the situation of the previous section:

1. $f(z, w) \neq 0$ for any $\left(z, u^{\prime}\right) \in \bar{\Delta} \times \partial \Gamma$.
2. The holomorphic function $f(a, w)$ of $u \in \Gamma$ does not vanish at any $u \in \in$ $\Gamma \backslash\{b\}$. Let $\nu \geq 1$ denote the order of the zero of $f\left(a, u^{\prime}\right)$ at b.
3. For each $z^{\prime} \in \bar{\Delta}$, let $m\left(z^{\prime}\right)$ denote the number of distinct zeros of the holomorphic function $f\left(z^{\prime}, w^{\prime}\right)$ of w in Γ. We set

$$
\begin{equation*}
l=\max \left\{m\left(z^{\prime}\right) \mid z^{\prime} \in \bar{\Delta}\right\} \tag{2.2}
\end{equation*}
$$

so that $l \leq \nu$.

Let

$$
\mathcal{S}_{0}=S \cap \Lambda
$$

From the proof of Lemma 2.1 we see that for any $z^{\prime} \in \Delta$. the equation $f\left(z^{\prime}, w\right)=0$ has ν zeros counted with multiplicity in Γ.

We have the following proposition.
Proposition 2.1. The set S_{0} can be written in the form

$$
\begin{equation*}
P(z, w):=(w-b)^{l}+A_{1}(z)(w-b)^{l-1}+\cdots+A_{l}(z)=0 . \tag{2.3}
\end{equation*}
$$

where each $A_{j}(z)(j=1, \ldots, l)$ is a holomorphic function of z in Δ satisfying $A_{j}(a)=0$.

Proof. Let \mathbf{c} be a point in Δ such that the equation $f(c, w)=0$ has l distinct solutions $w=b_{k}(k=1, \ldots, l)$ in Γ. For each b_{k} we let

$$
\gamma_{k}:\left|w-b_{k}\right| \leq \rho^{\prime}
$$

be a closed disk with radius ρ^{\prime} sufficiently small such that $\gamma_{k} \subset \Gamma$ and $\gamma_{k} \cap \gamma_{h}=\emptyset$ for $k \neq h, 1 \leq k, h \leq l$. We then let

$$
\bar{\delta}:\left|z_{j}-c_{j}\right| \leq r^{\prime} \quad(j=1 \ldots ., n)
$$

be a closed polydisk centered at c with radius $r^{\prime}>0$ chosen small enough to insure that $f(z, w) \neq 0$ for any $(z, w) \in \delta \times \partial \gamma_{j} \quad$ (see Figure 1).

Figlee 1. Representations of analytic hypersurfaces
From condition 3 and Lemma 2.1 we see that for any $z^{\prime} \in \delta$ and for each $k=$ $1, \ldots, l$, there exists precisely one zero of the holomorphic function $f\left(z^{\prime}, w\right)$ for u in γ_{k}, which we denote by $\eta_{k}\left(z^{\prime}\right)$. Lemma 2.2 implies that each $\eta_{k}(z)(k=1, \ldots, l)$ is a holomorphic function of z in δ.

Next we consider the set \mathcal{V} of all points z^{\prime} in Δ such that the equation $f\left(z^{\prime}, w\right)=$ 0 has l distinct zeros in Γ. By the above argument, \mathcal{V} is an open subset of Δ. We let V denote the connected component of \mathcal{V} which contains the point c above.

Given any point $c^{\prime} \in V$, we can join c to c^{\prime} by an arc L in Δ. Then each holomorphic function $\eta_{k}(z)(k=1 \ldots, l)$ defined on δ can be analytically continued along the arc L to a neighborhood δ^{\prime} of the point c^{\prime}. We use the same notation $\eta_{k}(z)$ to denote the function obtained by this continuation, which is thus defined in a neighborhood of L in V. The theorem on invariance of analytic relations under
analytic continuation implies that the set $\left\{\left(z, \eta_{k}(z)\right) \mid z \in L\right\}$ is contained in \mathcal{S}_{0}. Therefore, for any $z^{\prime} \in V$, the values $\eta_{k}\left(z^{\prime}\right)(k=1, \ldots, l)$ are the l distinct zeros of the equation $f(z, w)=0$ for w in Γ.

Thus, in the case when $V=\Delta$, each $\eta_{k}(z)$ defines a single-valued holomorphic function in Δ. Hence the set \mathcal{S}_{0} is given by the equation

$$
P(z, w):=\prod_{k=1}^{l}\left[w-\eta_{k}(z)\right]=0
$$

By expanding $P(z, w)$ as a polynomial in w and using $\eta_{k}(a)=0(k=1, \ldots . l)$, we have the desired representation of \mathcal{S}_{0}.

We next treat the case when $V \neq \Delta$. Take any closed curve L in V containing the point c; we consider c as the initial and terminal point of L. Each holomorphic function $\eta_{k}(z)(k=1, \ldots, l)$ defined on δ (so that $\left.\eta_{k}(z) \subset \gamma_{k}\right)$ can be analytically continued along the curve L, and the resulting function, which is now defined on a neighborhood of the terminal point c, must be identical with one of the functions $\eta_{j_{k}}(z) \subset \gamma_{j_{k}}$, where $j_{k} \in\{1, \ldots, l\}$. Since $j_{k} \neq j_{h}$ for $k \neq h$, it follows that $\left(j_{1}, \ldots, j_{l}\right)$ is a permutation of $(1, \ldots, l)$. Thus for any $z \in V$, if we let $\eta_{k}(z)(k=$ $1 \ldots . l)$ denote the l distinct zeros of the equation $f(z, w)=0$ for w in Γ, the square of the product of the differences

$$
d(z):=\prod_{h<k}\left[\eta_{h}(z)-\eta_{k}(z)\right]^{2}
$$

defines a single-valued, holomorphic function on V.
Now fix a boundary point $z^{\prime} \in \partial V$ in Δ. Since the number of distinct zeros of the equation $f\left(z^{\prime}, w\right)=0$ is less than l, it follows from (2.1) that

$$
\lim _{z=-z^{\prime}} \min _{k \neq h}\left|\eta_{k^{\prime}}(z)-\eta_{h}(z)\right|=0
$$

hence

$$
\lim _{z \rightarrow z^{\prime}} d(z)=0
$$

By setting $d(z) \equiv 0$ in $\Delta \backslash V$, we obtain that $d(z)$ is a continuous function on Δ which is holomorphic at all points z where $d(z) \neq 0$. By Rado's theorem, we conclude that $d(z)$ is holomorphic on Δ.

Now let σ denote the zero set of $d(z)$ in Δ, and let $\Delta^{0}=\Delta \backslash \sigma=V$. Define

$$
P(z, w):=\prod_{k=1}^{l}\left[w-\eta_{k}(z)\right]
$$

for $(z, w) \in \delta \times C$. Expanding this expression with respect to w, we obtain

$$
\begin{align*}
P(z . w) & =w^{l}+a_{1}(z) w^{l-1}+\cdots+a_{l}(z) \tag{2.4}\\
& =(w-b)^{l}+A_{1}(z)(w-b)^{l-1}+\cdots+A_{l}(z)
\end{align*}
$$

Each coefficient function $a_{h}(z)$, and hence each $A_{h}(z)(h=1, \ldots, l)$, is holomorphic on δ and can be analytically continued from δ to any point $z \in \Delta^{0}$ along an arc connecting c and z. Since each $a_{h}(z)$, and hence each $A_{h}(z)$. is clearly a symmetric function of the zeros $\eta_{k}(z)(k=1, \ldots, l)$, it follows that each $A_{h}(z)$ is a singlevalued, holomorphic function on Δ^{0}.

Note that each $\eta_{k}(z)$ is contained in Γ, so that $\eta_{k}(z)$ is bounded in Δ^{0}; hence $A_{h}(z)$ is bounded in Δ^{0}. Froin Riemann's removable singularity theorem, it follows
that each $A_{h}(z)$ is a holomorphic function on all of Δ. By (2.1), it is easy to check that the analytic hypersurface defined by $P(z, w)=0$ in Λ coincides with the hypersurface \mathcal{S}^{0}. Furthermore, since the equation $f(a, w)=0$ for $w \in \Gamma$ has only one zero $w=b$ (by condition 2), we see that each coefficient $A_{k}(z)(k=1, \ldots, l)$ vanishes at a. This completes the proof of Proposition 2.1.

Remark 2.1. The holomorphic function $d(z)$ on V defined above is equal to the discriminant of the polynomial $P(z, w)$ in (2.4) with respect to w, i.e., $d(z)$ is the determinant of the following $(2 l+1) \times(2 l+1)$ square matrix:

$$
d(z)=\left|\begin{array}{llllllll}
1 & a_{1}(z) & \cdots & \cdots & & a_{l}(z) & \\
& & \ddots & & \ddots & & & \\
& & 1 & a_{1}(z) & \cdots & \cdots & a_{l}(z) & \\
l & (l-1) a_{1}(z) & \cdots & \cdots & a_{l-1}(z) & & & \\
& & \ddots & & \ddots & & & \\
& & & l & (l-1) a_{1}(z) & \cdots & \cdots & a_{l-1}(z)
\end{array}\right| .
$$

where all non-indicated entries are 0 . This is the same as the resultant of $P(z, w)$ and $(\partial P / \partial w)(z, w)$.

In general, a polynomial $P(z, w)$ in w whose coefficients $A_{h}(z)$ are holomorphic functions in a domain D in \mathbf{C}^{n} is called a pseudopolynomial in w. In particular. when D is a polydisk Δ in \mathbf{C}^{n}, the coefficient of the term of highest degree in w is identically equal to 1 , and each $A_{h}(z)$ vanishes at the center of Δ, we call $P(z, w)$ a distinguished pseudopolynomial in w.

Let $P(z, w)$ be a distinguished pseudopolynomial in w of degree l. The discriminant $d(z)$, constructed as in the proof of the previous proposition, defines a holomorphic function on Δ. We let σ denote the zero set of $d(z)$ in Δ. Then the hypersurface $P(z, w)=0$ in $\Delta \times \mathbf{C}_{w}$, is the graph of the multivalued holomorphic function $w=\eta(z)$ over $\Delta \backslash \sigma$ composed of l distinct branches $\left\{\eta_{k}(z)\right\}(k=1, \ldots, l)$ with the property that if a point z in $\Delta \backslash \sigma$ approaches a point $\zeta \in \sigma$, then each branch $\eta_{k}(z)$ tends to a point $w_{k} \in \mathbf{C}_{w}$ with $w_{k}=w_{h}$ for some $k \neq h$. We call the multivalued holomorphic function $\eta(z)$ on Δ the implicit function or the algebraic function determined by the equation $P(z, w)=0$.
2.1.3. Weierstrass Preparation Theorem. In the previous section we studied the structure of analytic hypersurfaces as subsets of \mathbf{C}^{n+1}. We will now make a more systematic study involving the notions of multiplicity and irreducibility.

Let $f(z, w)$ be a holomorphic function in a domain D in \mathbf{C}^{n+1}. Fix (a, b) in $\mathcal{S}=\{(z, w) \in D \mid f(z, w)=0\}$ and let $\Lambda=\bar{\Delta} \times \Gamma$ be a closed polydisk in D chosen so that we are in the situation described in 2.1.2. We take a point c in Δ such that $f(c, w)$ has exactly l distinct zeros $w=b_{k}$ in Γ, where l is defined in (2.2). We use the same notation as in the proof of Proposition 2.1: $b_{k}(k=1, \ldots, l), \gamma_{k}, \delta, \eta_{k}(z)$ and $\Delta^{0}=\Delta \backslash \sigma$, where $\sigma=\{z \in \Delta: d(z)=0\}$.

For each $k=1, \ldots, l$, we let $\nu_{k} \geq 1$ denote the order of the zero of $f(c, w)$ at the point $b_{k}:=\eta_{k}(c)$; hence $\sum_{k} \nu_{k}=\nu$. Fix $c^{\prime} \in \Delta^{0}$ and let L be an arc in Δ^{0} joining c and ϵ^{d}. Then the holomorphic function $\eta_{k}(z)$, which is defined on the polydisk δ centered at c, can be analytically continued along L to c^{\prime}; the values of this continuation, which we continue to denote by $\eta_{k}(z)$, lie in Γ. If we set $\eta_{k}\left(c^{\prime}\right):=b_{k}^{\prime}$, then b_{k}^{\prime} is one of the zeros of the function $f\left(c^{\prime}, w\right)$ for w in Γ.

Furthermore, the order of the zero of $f\left(c^{\prime}, w^{\prime}\right)$ at $u^{\prime}=b_{k}^{\prime}$ is equal to ν_{k}. the order of the zero of $f(c, w)$ at the point b_{k}. This follows since the number of distinct zeros of $f(c, w)$ for w in Γ is the maximal number l.

We divide the family C consisting of the l holomorphic functions $\left\{\eta_{k}(z) \mid k=\right.$ $1, \ldots, l\}$ on δ into subclasses as follows: identify $\eta_{k_{1}}(z)$ with $\eta_{k_{2}}(z)$ if there exists a closed curve L in Δ^{0} with initial and terminal point c such that the function element $\eta_{k_{1}}(z)$ at the initial point c is analytically continued along L to the function element $\eta_{k_{2}}(z)$ at the terminal point c. Clearly this gives a stratification of the family C into subclasses $C_{h}(h=1, \ldots, m)$ of equivalent function elements. which we write as $\eta_{h . k}, k=1, \ldots, l_{h}$; i.e.,

$$
C=\bigcup_{h=1}^{m} C_{h}, \quad \text { where } C_{h}:=\left\{\eta_{h . k}(z) \mid k=1, \ldots, l_{h}\right\}
$$

For convenience, for each function element $\eta_{h . k}$, we use the notation $\gamma_{h . k}$ to denote the disk with center $b_{h . k}$ which corresponds to the disk γ_{k} with center b_{k} associated to the function η_{k} described previously. For fixed $h(h=1, \ldots, m)$, the order of the zero of $f(z, w)$ in w at each $\eta_{h . k}(z)\left(k=1, \ldots, l_{h}\right)$ will be denoted by ν_{h}; this notation is consistent since this number is independent of $k=1, \ldots, l_{h}$. Thus we have $\nu=\sum_{h=1}^{m} l_{h} \nu_{h}$.

Remark 2.2. If we shrink the radius r of the polydisk Δ centered at a, then the number m of subclasses $C_{h}(h=1, \ldots, m)$ may increase but cannot decrease. Since m is always less than or equal to l, it follows that if $r>0$ is sufficiently small, the number of classes $\left\{C_{h}\right\}$ of the family C obtained by the above stratification on the polydisk Δ centered at a is independent of r.

For a fixed subclass $C_{h}(h=1, \ldots, m)$, we set

$$
P_{h}(z, w):=\prod_{k=1}^{l_{h}}\left[w-\eta_{h . k}(z)\right] \quad \text { in } \Delta \times \mathbf{C}_{u}
$$

Expanding this expression with respect to w. we obtain

$$
P_{h}(z, w)=(w-b)^{l_{h}}+A_{1}^{h}(z)(w-b)^{l_{h}-1}+\cdots+A_{l_{h}}^{h}(z)
$$

Each coefficient $A_{k}^{h}(z)\left(k=1, \ldots, l_{h}\right)$ is a single-valued holomorphic function of z in Δ satisfying $A_{k}^{h}(a)=0$. We let \mathcal{S}_{h} denote the zero set of $P_{h}(z, w)$ in Λ, so that $\mathcal{S}_{0}=\mathcal{S} \cap \Lambda=\bigcup_{h=1}^{m} \mathcal{S}_{h}$.

We will need the following lemma, which follows directly from the invariance of analytic relations under analytic continuation.

Lemma 2.3. Let $F(z, w)$ be a holomorphic function in Λ. If $F(z, w)$ vanishes identically on an analytic hypersurface $w=\eta_{h, k}(z)$ in $\delta \times \gamma_{h, k}$, then $F(z, w)$ vanishes identically on the analytic hypersurface \mathcal{S}_{h}.

In particular, $P_{h}(z, w)$ is a distinguished pseudopolynomial for w centered at (a, b) which satisfies the hypothesis of the lemma. Furthermore, we see from the above remark that if the radius r of the polydisk Δ centered at a is sufficiently small, then $P_{h}(z, w)$ is irreducible at (a, b), meaning that $P_{h}(z, w)$ cannot be written as a product of two non-constant distinguished pseudopolynomials in w
centered at (a, b). We define

$$
P^{\bullet}(z, w):=\prod_{h=1}^{m}\left[P_{h}(z, w)\right]^{\nu_{h}} \quad \text { in } \Lambda .
$$

and we have the following lemma.
Lemma 2.4. Let $\omega(z, w):=f(z, w) / P^{*}(z, w)$ for (z, w) in Λ. Then $\omega(z, w)$ is a non-vanishing holomorphic function on A .

Proof. By construction. $P_{h}(z, w) \neq 0$ on $\Delta \times \partial \Gamma$ for $h=1, \ldots, m$, so that $\omega(z, w)$ is holomorphic near $\Delta \times \partial \Gamma$. Thus we can develop $\omega(z, w)$ into a HartogsLaurent series of the form

$$
\omega(z, w)=\sum_{j=-x}^{\infty} \beta_{j}(z)(w-b)^{j} .
$$

where $\beta_{j}(z)$ is holomorphic in Δ for each $j=0, \pm 1, \pm 2 \ldots$. From the construction of $P^{*}(z, w)$, it follows that for any fixed $z^{\prime} \in \Delta^{0}=\Delta \backslash \sigma$, the holomorphic functions $f\left(z^{\prime}, w\right)$ and $P^{*}\left(z^{\prime}, w\right)$ of w in Γ have the same zeros with the same multiplicities. Hence the ratio $\omega\left(z^{\prime}, w\right)$ is a non-vanishing holomorphic function for w in Γ, so that $\beta_{j}\left(z^{\prime}\right)=0$ for $j<0$. Thus $\beta_{j}(z)=0$ in all of Δ for $j<0$. Therefore $\omega(z, w)$ is a holomorphic function in Λ and $\omega(z, w) \neq 0$ in $\Delta^{0} \times \Gamma$. Since $\omega(z, w) \neq 0$ on $\Delta \times \partial \Gamma$. we conclude from Proposition 2.1 that $\omega(z, w) \neq 0$ on Λ.

Summarizing these results, we have the following theorem.
Theorem 2.1 (Weierstrass Preparation Theorem). Let $f(z, w)$ be a holomorphic function on a domain D in \mathbf{C}^{n+1}. Assume that $f(z, w)$ satisfies the Weierstrass condition at a point (a,b) in D for the coordinates (z, w). Then there exists a closed polydisk $\Lambda=\bar{\Delta} \times \Gamma \subset D$ centered at (a,b) such that on $\Lambda . f(z, w)$ can be written in the form

$$
\begin{equation*}
f(z, w)=\omega(z, w) \prod_{h=1}^{m}\left[P_{h}(z, w)\right]^{\nu_{h}} . \tag{2.5}
\end{equation*}
$$

where each $P_{h}(z, w)$ is an irreducible distinguished pseudopolynomial in w at the point (a, b) whose coefficients are holomorphic functions of z in Δ, and $\omega(z, w)$ is a non-vanishing holomorphic function for (z, w) in Λ.

In the two-dimensional case, we get more information from the Weierstrass condition. Let $f(z, w)$ be a non-constant holomorphic function in a domain D in \mathbf{C}^{2}. Suppose that $f(a, b)=0$ and $f(a, w) \equiv 0$ near $w=b$ in the w-plane. From the Taylor expansion of $f(z, w)$ about (a,b), there exist a positive integer μ and a neighborhood D^{\prime} of (a, b) in D such that

$$
f(z, w)=(z-a)^{\mu} f^{0}(z, w)
$$

in D^{\prime}. where $f^{0}(z, w)$ is a holomorphic function of (z, w) in D^{\prime} with $f^{0}(a, w) \not \equiv 0$. In particular, if $f^{\circ}(a, b)=0$, then $f^{0}(z, w)$ satisfies the Weierstrass condition at (a, b) for the coordinates (z, w) in D. Thus without using a preliminary linear coordinate transformation we get the irreducible decomposition of $f(z, w)$ in a closed polydisk $\Lambda=\Delta \times \Gamma$ centered at (a, b):

$$
f(z, w)=\omega(z, w)(z-a)^{\mu} \prod_{h=1}^{m}\left[P_{h}(z, w)\right]^{\nu_{1}} .
$$

Remark 2.3. From the proofs of Proposition 2.1. Lemma 2.3, and Lemma 2.4 we see that a global version of the Weierstrass preparation theorem holds:

Let D be a domain in \mathbf{C}^{n} with variables $z=\left(z_{1}, \ldots, z_{n}\right)$ and let U be a domain in the complex plane \mathbf{C} with variable w. Consider the product domain $G=D \times U$ in \mathbf{C}^{n+1}. Suppose that $f(z, w)$ is a holomorphic function of (z, w) in \bar{G} such that $f(z, w) \neq 0$ for (z, w) in $\bar{D} \times \partial U$. Then $f(z, w)$ can be uritten in the following form on all of G :

$$
f\left(z, w^{\prime}\right)=\omega\left(z, w^{\prime}\right) \prod_{h=1}^{m}\left[P_{h}(z, w)\right]^{\nu_{h}}
$$

where $P_{h}(z, w)(h=1, \ldots, m)$ are pseudopolynomials which are monic in w with coefficients that are holomorphic functions of z in D, and $\omega(z, u)$ is a non-vanishing holomorphic function in G.

2.2. Analytic Sets (Local)

2.2.1. Definition. Let D be a domain in \mathbf{C}^{n}. A subset \mathcal{E} of D is called an analytic set in D if \mathcal{E} is defined locally as the common zero set of a finite number of holomorphic functions. To be precise. this ineans that for any point p in D there exists an open neighborhood U of p in D and a finite number of holomorphic functions $f_{j}(z)(j=1, \ldots, l)$ in U such that

$$
\mathcal{E} \cap U=\bigcap_{j=1}^{1}\left\{z \in U \mid f_{j}(z)=0\right\}
$$

This is an equality of sets, i.e., we do not take inultiplicity into account. Thus we may assume that each f_{j} has no repeated factors. By definition, an analytic set \mathcal{E} in D is a closed subset of D. For the sake of convenience, the empty set and the whole domain D are considered to be analytic sets in D. If $\mathcal{E} \neq D$, then \mathcal{E} is nowhere dense in D and does not separate D. An analytic hypersurface in D (i.e., the zero set of a single holomorphic function in D) is a particular type of analytic set in D.

Let E be a closed set in \mathbf{C}^{n}. Then we say that \mathcal{E} is an analytic set in the closed set E if there exists an open neighborhood D of E in $\mathbf{C}^{\boldsymbol{n}}$ such that \mathcal{E} is an analytic set in D.

We note that a non-empty analytic set \mathcal{E} in a closed disk $\bar{\Delta}$ in the complex plane \mathbf{C} is either a finite set of points or coincides with $\bar{\Delta}$. This follows from the identity theorem for holomorphic functions of one complex variable.

We begin with the following proposition.
Proposition 2.2. Let \mathcal{E} and \mathcal{F} be analytic sets in a domain D in \mathbf{C}^{n}. Then the union $\mathcal{E} \cup \mathcal{F}$ and the intersection $\mathcal{E} \cap \mathcal{F}$ are also analytic. sets in D.

Proof. Let $p \in D$. There exist a neighborhood U of p in D and a finite number of holomorphic functions $f_{j}(z)(j=1, \ldots, l)$ and $g_{k}(z)(k=1, \ldots, m)$ such that $\mathcal{E} \cap U=\bigcap_{j=1}^{l}\left\{z \in U \mid f_{j}(z)=0\right\}$ and $\mathcal{F} \cap U=\bigcap_{k=1}^{m}\left\{z \in U \mid g_{k}(z)=0\right\}$.

Then we have

$$
\begin{aligned}
& (\mathcal{E} \cup \mathcal{F}) \cap U=\bigcap_{\substack{j=1 \ldots, i \\
k=1 \ldots, m}}\left\{z \in U \mid f_{j}(z) \cdot g_{k}(z)=0\right\} \\
& (\mathcal{E} \cap \mathcal{F}) \cap U=\bigcap_{\substack{j=1 \ldots, i \\
k=1, \ldots, m}}\left\{z \in U \mid f_{j}(z)=0, g_{k}(z)=0\right\} .
\end{aligned}
$$

It follows that both $\mathcal{E} \cup \mathcal{F}$ and $\mathcal{E} \cap \mathcal{F}$ are analytic sets in D.
Let \mathcal{E} be an analytic set in a domain D in \mathbf{C}^{n}. If \mathcal{E} can be decomposed in the form

$$
\mathcal{E}=\mathcal{E}_{1} \cup \mathcal{E}_{2} \quad \text { in } D,
$$

where \mathcal{E}_{1} and \mathcal{E}_{2} are analytic sets in D such that neither \mathcal{E}_{i} contains the other, then we say that \mathcal{E} is reducible in D. Otherwise we say that \mathcal{E} is irreducible in D.

Let $p \in \mathcal{E}$. If for all sufficiently small polydisks U centered at p, the analytic set $\mathcal{E} \cap U$ in U is reducible in U, we say that \mathcal{E} is reducible at the point p. Otherwise \mathcal{E} is said to be irreducible at p.

Remark 2.4. An analytic set \mathcal{E} in D may be irreducible at a point $p \in \mathcal{E}$ but reducible at a point $q \in \mathcal{E}$ which is arbitrarily close to p in D. For example, in \mathbf{C}^{3} with variables x, y, and z, consider the analytic hypersurface \mathcal{E} defined by

$$
z^{2}-x y^{2}=0 .
$$

Then \mathcal{E} is irreducible at the origin in \mathbf{C}^{3}, but \mathcal{E} is reducible at any point $q=(x, 0,0)$ in \mathcal{E} with $\boldsymbol{x} \neq 0$.

We now define the dimension of an analytic set at a point. Let \mathcal{E} be an analytic set in a domain D in \mathbf{C}^{n}. Let $p \in \mathcal{E}$. Take a complex hyperplane L of dimension $r_{L}\left(0 \leq r_{L} \leq n\right)$ passing through p such that in a neighborhood of p in $D, \mathcal{E} \cap L$ consists of only the point p. Here, by a complex hyperplane of dimension 0 we mean an isolated point, while a complex hyperplane of dimension n means the entire space \mathbf{C}^{n}. We let $r(0 \leq r \leq n)$ denote the maximal such r_{L} with this property. Then $n-r$ is called the dimension of the analytic set \mathcal{E} at the point p, and r is called the codimension of \mathcal{E} at p. Furthermore, the maximum of the dimensions of \mathcal{E} at all points q in \mathcal{E} is called the dimension of the analytic set \mathcal{E} in D. If \mathcal{E} has the same dimension at each point of \mathcal{E} in D, then \mathcal{E} is said to be of pure dimension in D; if this dimension is l, we say that \mathcal{E} is a pure l-dimensional analytic set in D.

In particular, a pure one-dimensional analytic set is often called an analytic curve. Clearly an analytic hypersurface \mathcal{S} in D is a pure ($n-1$)-dimensional analytic set in D. A set of isolated points in D with no accumulation point in D is an analytic set of dimension 0 , while the domain D itself is an analytic set of dimension n in D. For the sake of convenience the empty set \emptyset is considered as an analytic set of dimension -1 .

Let \mathcal{E}_{1} and \mathcal{E}_{2} be analytic sets in D which have dimension ν_{1} and ν_{2} at a point p in D. Then the dimension of the analytic set $\mathcal{E}_{1} \cup \mathcal{E}_{2}$ is equal to $\max \left(\nu_{1}, \nu_{2}\right)$, while that of $\mathcal{E}_{1} \cap \mathcal{E}_{2}$ is at $\operatorname{most} \min \left(\nu_{1}, \nu_{2}\right)$.
2.2.2. Projections of Analytic Sets. Let \mathcal{E} be an analytic set in a domain D in \mathbf{C}^{n}. We set $n=r+s$ where r and s are positive integers, and we consider \mathbf{C}^{n} as the product of C^{r} with variables z_{1}, \ldots, z_{r} and C^{s} with variables w_{1}, \ldots, w_{s}. Let \mathcal{E} contain the origin 0 in \mathbf{C}^{n}. We let $D(0)$ and $\mathcal{E}(0)$ denote the sections of D and \mathcal{E} over the s-dimensional hyperplane $z_{j}=0(j=1, \ldots, r)$. Then $0 \in \mathcal{E}(0) \subset D(0) \subset \mathbf{C}^{*}$, and the section $\mathcal{E}(0)$ is an analytic set in $D(0)$.

Suppose that in some neighborhood δ of the origin in \mathbf{C}^{s} the set $\mathcal{E}(0)$ consists of the single point 0 (we use the same notation for the origin in $\mathbf{C}^{r}, \mathbf{C}^{s}$ and $\mathbf{C}^{\boldsymbol{n}}$). Then the dimension of \mathcal{E} at the origin in $D \subset C^{n}$ is at most r.

Let Γ be a closed polydisk centered at the origin 0 in \mathbf{C}^{s} with radius $\rho_{k}(k=$ $1, \ldots, s)$,

$$
\Gamma:\left|w_{k}\right| \leq \rho_{k} \quad(k=1, \ldots, s)
$$

with ρ_{k} chosen so that $\Gamma \subset D(0)$ and $\Gamma \cap \mathcal{E}(0)=\{0\}$.
Then we let $\bar{\Delta}$ be a closed polydisk centered at the origin 0 in \mathbf{C}^{r} with radius $r_{j}(j=1, \ldots, r)$,

$$
\bar{\Delta}:\left|z_{j}\right| \leq r_{j} \quad(j=1, \ldots, r)
$$

with r_{j} chosen so that $\Lambda:=\bar{\Delta} \times \Gamma \subset D$ and $(\bar{\Delta} \times \partial \Gamma) \cap \mathcal{E}=\emptyset$. This is possible because \mathcal{E} is a closed subset of D in \mathbf{C}^{n}. We define

$$
\mathcal{E}^{0}:=\mathcal{E} \cap \Lambda
$$

which is an analytic set in Λ.
We let π_{r} denote the projection mapping of Λ onto $\bar{\Delta}$. Then we have the following proposition, which is indispensable for inductive arguments on dimension.

Proposition 2.3. The projection $\pi_{r}\left(\mathcal{E}^{0}\right)$ of \mathcal{E}^{0} onto $\bar{\Delta}$ is an analytic set in $\bar{\Delta}$.
Proof. We prove the proposition by induction on $s=n-r$. To begin. we assume $s=1$, so that $r=n-1$. We let π_{n-1} denote the projection from $\mathbf{C}^{n}=$ $\mathbf{C}^{n-1} \times \mathbf{C}_{w}$ onto \mathbf{C}^{n-1}. Fix z^{\prime} in $\pi_{n-1}\left(\mathcal{E}^{0}\right)$. Since $(\bar{\Delta} \times \partial \Gamma) \cap \mathcal{E}=\emptyset$ and the section $\mathcal{E}^{0}\left(z^{\prime}\right)$ is an analytic set in the closed disk $\Gamma \subset \mathbf{C}_{w}$, it follows that $\mathcal{E}^{0}\left(z^{\prime}\right)$ in Λ consists of a finite number of points $p_{i}=\left(z^{\prime}, w_{i}\right)(i=1 \ldots, \mu)$. For each point p_{i} in $\mathcal{E}^{0}\left(z^{\prime}\right)$ we choose a polydisk $\Lambda_{i}=\Delta_{i} \times \Gamma_{i}$, where Δ_{i} is a polydisk centered at z^{\prime} and Γ_{i} is a disk centered at w_{i} in Γ, such that

$$
\Lambda_{i} \subset \Lambda, \quad \Lambda_{i} \cap \Lambda_{j}=\emptyset(i \neq j), \quad\left(\Delta_{i} \times \partial \Gamma_{i}\right) \cap \mathcal{E}^{0}=0
$$

By Proposition 2.2, it suffices to prove that the projection $\pi_{n-1}\left(\mathcal{E}^{0} \cap \Lambda_{i}\right)$ of each analytic set $\mathcal{E}^{0} \cap \Lambda_{i}(i=1, \ldots, \mu)$ is an analytic set in Δ_{i}. For simplicity, we write $z^{\prime}=0, p_{i}=0, \Delta_{i}=\Delta, \Gamma_{i}=\Gamma$, and $\Lambda_{i}=\Lambda$ as described above.

Note that Λ is a polydisk centered at 0 in $\mathbf{C}^{\boldsymbol{n}}$; by taking a smaller polydisk if necessary, we can write

$$
\mathcal{E}^{0}=\bigcap_{j=1}^{l}\left\{(z, w) \in \Lambda \mid f_{j}(z, w)=0\right\}
$$

where each $f_{j}(z, w)(j=1, \ldots, l)$ is a holomorphic function on Λ. Furthermore, from the condition that $(\Delta \cap \partial \Gamma) \cap \mathcal{E}^{0}=\emptyset$, we have $\emptyset=(\{0\} \cap \partial \Gamma) \cap \mathcal{E}^{0}=\mathcal{E}^{0}(0) \cap \partial \Gamma$, so that one of the $f_{j}(z, w)(j=1, \ldots, l)$, say $f_{1}(z, w)$, satisfies $f_{1}(0,0)=0$ and $\left\{f_{1}(0, w)=0\right\} \not \subset \partial \Gamma$; i.e., the one-variable holomorphic function $f_{1}(0, w)$ is not identically zero in Γ. By taking a smaller disk $\Gamma^{\prime} \subset \Gamma$ centered at $w=0$ with the same property that $\left(\bar{\Delta} \cap \partial \Gamma^{\prime}\right) \cap \mathcal{E}^{0}=\emptyset$ (if necessary), we can assume $f_{1}(0, w) \neq 0$ for
any $u^{\prime} \in \Gamma^{\prime} \backslash\{0\}$. For simplicity, we use the same notation $\Gamma^{\prime}=\Gamma$. By Proposition 2.1, the zero set of $f_{1}(z, w)$ in Λ. denoted \mathcal{S}, can be written in the following form:

$$
P(z, w):=w^{\nu}+A_{1}(z) u^{\nu-1}+\ldots+A_{1}(z)=0 \quad \text { in } \Lambda
$$

where each $A_{k}(z)(k=1, \ldots, \nu)$ is a holomorphic function in Δ satisfying $A_{k}(0)=$ 0. Note that $P(z, w)$ nay be reducible but, from the construction in Proposition 2.1, it cannot have repeated factors; thus the discriminant $d(z)$ of $P(z, w)$ with respect to w does not vanish identically on Δ. We let σ denote the zero set of $d(z)$ in Δ, and we set $\Delta^{\prime}:=\Delta \backslash \sigma$.

Let $c=\left(c_{1}, \ldots, c_{n-1}\right) \in \Delta^{\prime}$. We let $\mathcal{S}(c) \subset \Gamma$ denote the section of S over the hyperplane $z_{j}=c_{j}(j=1, \ldots, n-1)$. The set $\mathcal{S}(\mathrm{c})$ consists of ν distinct points $w=b_{k}(k=1, \ldots, \nu)$. For each $k=1, \ldots, \nu$, let γ_{k} be a closed disk in Γ centered at b_{k} and with radius $\rho^{\prime}>0$,

$$
\gamma_{k}:\left|w-b_{k}\right| \leq \rho^{\prime} .
$$

with ρ^{\prime} chosen so that $\gamma_{k} \cap \gamma_{h}=\emptyset(k \neq h)$. Next, let δ be a small closed polydisk in Δ centered at c with radius $r^{\prime}>0$,

$$
\delta:\left|z_{j}-c_{j}\right| \leq r^{\prime} \quad(j=1 \ldots ., r)
$$

with r^{\prime} chosen so that $\mathcal{S} \cap\left(\delta \times \partial \gamma_{k}\right)=\emptyset(k=1 \ldots, \nu)$. By Lemma 2.2, in the polydisk $\lambda_{k}:=\delta \times \gamma_{k} \subset \Lambda$, the analytic set \mathcal{S} can be written in the form

$$
w=\eta_{k}(z) \quad(k=1 \ldots, \nu)
$$

where each $\eta_{k}(z)$ is a single-valued holomorphic function in δ satisfying $\eta_{k}(c)=b_{k}$.
We introduce the $l-1$ complex variables $u_{j}(j=2 \ldots, l)$, and construct the following holomorphic function on $\delta \times \mathbf{C}^{1-1}$:

$$
H(z, u):=\prod_{k=1}^{\prime \prime}\left[f_{2}\left(z, \eta_{k}(z)\right) u_{2}+\cdots+f_{l}\left(z, \eta_{k}(z)\right) u_{l}\right]
$$

Expanding this function as a homogeneous polynomial in $u,(j=2 \ldots . l)$, we can write

$$
H(z, u)=\sum g_{j_{1} \ldots \mu_{-1}}(z) u_{j_{1}} \ldots u_{j_{1,1}}
$$

where each $g_{ر_{1} \ldots \mu_{-1}}(z)$ is a holomorphic function in δ. To avoid multiple indices, we write $g_{J}(z):=g_{j_{1} \ldots j_{i-1}}(z)$ for $1 \leq J \leq l^{\prime}:=(l-1)^{\nu-1}$. Each $\eta_{k}(z)(k=1 \ldots, \nu)$ can be analytically continued to any point $z^{\prime} \in \Delta^{\prime}$ along any arc in Δ^{\prime} connecting c and z^{\prime}. Moreover, the function element at z^{\prime} obtained by this continuation coincides with one of the functions $\eta_{y_{k}}\left(z^{\prime}\right)$ determined by the equation $P\left(z^{\prime}, u\right)=0$. Since each $g_{J}(z)\left(J=1, \ldots . l^{\prime}\right)$ is symmetric with respect to $\eta_{k}(z)(k=1 \ldots, \nu)$, we conclude that $g_{J}(z)$ can be analytically continued along any arc in Δ^{\prime} and thus defines a single-valued holomorphic function in Δ^{\prime}. Since each $\eta_{k}(z)(k=1 \ldots, \nu)$ is bounded in Δ^{\prime}, the same is true of each $g_{J}(z)\left(J=1, \ldots, l^{\prime}\right)$. It follows from Riemann's removable singularity theorem that $g_{J}(z)$ can be analytically extended across the analytic set σ to all of Δ. We use the same notation $g_{J}(z)$ to denote this holomorphic extension in Δ.

We set

$$
\mathcal{E}^{\prime}:=\bigcap_{J=1}^{i^{\prime}}\left\{z \in \Delta \mid g_{J}(z)=0\right\}
$$

which defines an analytic set in Δ. Note that we may have $g_{J}(z) \equiv 0\left(J=1, \ldots, l^{\prime}\right)$, i.e., $\Delta=\mathcal{E}^{\prime}$.

To finish the proof of Proposition 2.3 for $s=1$, we will show that \mathcal{E}^{\prime} coincides with the projection of \mathcal{E}^{0} onto Δ; i.e..

$$
\begin{equation*}
\mathcal{E}^{\prime}=\pi_{n-1}\left(\mathcal{E}^{0}\right) \quad \text { in } \Delta \tag{2.6}
\end{equation*}
$$

In fact, we note from (2.1) that each $\eta_{k}(z)(k=1 \ldots, \nu)$ is defined and continuous at all points of σ. From the construction of $w=\eta_{k}(z)$ using $f_{1}(z, w)$, and from the representation of $\mathcal{E}^{\mathbf{0}}$,

$$
\mathcal{E}^{0}=\bigcap_{j=1}^{l}\left\{(z, w) \in \Lambda \mid f_{j}(z, w)=0\right\}
$$

we easily obtain the following equivalent representation of \mathcal{E}^{0} :

$$
\mathcal{E}^{0}=\bigcup_{k=1}^{\nu}\left\{\left(z, \eta_{k}(z)\right) \in \Lambda \mid f_{j}\left(z, \eta_{k}(z)\right)=0(j=2, \ldots, l)\right\} .
$$

To prove (2.6), first fix $z^{\prime} \in \mathcal{E}^{\prime}$; i.e.. let $g_{J}\left(z^{\prime}\right)=0\left(J=1, \ldots, l^{\prime}\right)$. It follows that $H\left(z^{\prime}, u\right) \equiv 0$ for $u \in \mathbf{C}^{l-1}$. Hence for some $k \in\{1, \ldots, \nu\}$

$$
f_{2}\left(z^{\prime}, \eta_{k}\left(z^{\prime}\right)\right) u_{2}+\cdots+f_{l}\left(z^{\prime}, \eta_{k}\left(z^{\prime}\right)\right) u_{l} \equiv 0
$$

for all $u \in \mathbf{C}^{l-1}$. Therefore,

$$
f_{j}\left(z^{\prime}, \eta_{k}\left(z^{\prime}\right)\right)=0 \quad(j=2, \ldots, l)
$$

It follows from the description of \mathcal{E}^{0} above that $\left(z^{\prime}, \eta_{k}\left(z^{\prime}\right)\right) \in \mathcal{E}^{0}$.
Conversely, fix $\left(z^{\prime}, w^{\prime}\right) \in \mathcal{E}^{0}$. From the description of \mathcal{E}^{0}. we have $u^{\prime}=\eta_{k}\left(z^{\prime}\right)$ for some $k \in\{1, \ldots, \nu\}$ such that $f_{j}\left(z^{\prime}, \eta_{k}\left(z^{\prime}\right)\right)=0(j=2, \ldots, l)$. It follows that $H\left(z^{\prime}, u\right) \equiv 0$ for $u \in \mathbf{C}^{l-1}$, and hence that each coefficient $g_{J}\left(z^{\prime}\right)=0\left(J=1, \ldots, l^{\prime}\right)$; i.e., $z^{\prime} \in \mathcal{E}^{\prime}$. Thus (2.6) is valid and Proposition 2.3 for the case $s=1$ is proved. ${ }^{1}$

Now we prove Proposition 2.3 for the case $s \geq 2$ under the assumption that it is true for the case $s-1$. Using $\Delta \subset C^{r}$ and $\Gamma \subset \mathbf{C}^{s}$ as described in the beginning of the section, prior to the statement of the proposition, we set $\Lambda^{\prime}=\Delta^{\prime} \times \Gamma^{\prime} \subset$ $\mathbf{C}^{n-1} \times \mathbf{C}$, where

$$
\begin{aligned}
\Delta^{\prime} & :\left|z_{j}\right| \leq r_{j} \quad(j=1, \ldots, r), \quad\left|w_{k}\right| \leq \rho_{k} \quad(k=1, \ldots, s-1) \\
\Gamma^{\prime} & :\left|w_{s}\right| \leq \rho_{s}
\end{aligned}
$$

By assumption $\mathcal{E}^{0} \cap(\Delta \times \partial \Gamma)=0$. we see that $\mathcal{E}^{0} \cap\left(\Delta^{\prime} \times \partial \Gamma^{\prime}\right)=0$ in Λ^{\prime}. Since the proposition has already been proved in the case $s=1$, the projection \mathcal{E}^{\prime} of the analytic set $\mathcal{E}^{0} \cap \Lambda^{\prime}$ onto Δ^{\prime} is thus an analytic set in Δ^{\prime}.

Note that if we let Γ_{s-1} denote the polydisk

$$
\Gamma_{s-1}:\left|w_{k}\right| \leq \rho_{k} \quad(k=1, \ldots, s-1)
$$

then we have $\mathcal{E}^{\prime} \cap\left(\Delta \times \partial \Gamma_{s-1}\right)=\emptyset$. It follows from the inductive hypothesis that the projection $\mathcal{E}^{\prime \prime}$ of \mathcal{E}^{\prime} onto Δ is also an analytic set in Δ. Since $\mathcal{E}^{\prime \prime}$ is clearly identical with the projection of \mathcal{E}^{0} onto Δ, it follows that the projection of $\mathcal{E}^{0} \subset \mathbf{C}^{n}$ onto $\Delta \subset \mathbf{C}^{r}$ is an analytic set in Δ. We thus conclude that the projection $\pi_{r}\left(\mathcal{E}^{0}\right)$ of the analytic set \mathcal{E}^{0} in Λ onto Δ is an analytic set in Δ.

[^3]Remark 2.5. Under the same hypothesis as in Proposition 2.3. it follows that the dimension of \mathcal{E}^{0} at the origin 0 is at most r. Furthermore, we see from the proof that $\operatorname{dim} \pi_{r}\left(\mathcal{E}^{0}\right)$ at $z=0$ in Δ is equal to $\operatorname{dim} \mathcal{E}^{0}$ at the origin 0 in Λ. Thus, $\pi_{r}\left(\mathcal{E}^{0}\right)=\Delta$ if and only if $\operatorname{dim} \mathcal{E}^{0}=r$ at the origin 0 .
2.2.3. Locally Algebraic Analytic Sets. In this section we consider analytic sets with a specific structure; the so-called complete locally algebraic analytic sets. Our goal is to develop the machinery needed to study irreducible decompositions of analytic sets in the next section. As in the previous section we set $n=r+s$ and write $\mathbf{C}^{\boldsymbol{n}}=\mathbf{C}^{r} \times \mathbf{C}^{*}$. where \mathbf{C}^{r} and \mathbf{C}^{s} are the spaces of the r complex variables $z_{1} \ldots, z_{r}$ and of the s complex variables $w_{1} \ldots \ldots w_{s}$. We consider a polydisk Δ in \mathbf{C}^{r} centered at the origin 0 with radius $r_{j}(j=1 \ldots . r)$.

$$
\Delta:\left|z_{j}\right|<r_{j} \quad(j=1 \ldots \ldots, r)
$$

For each variable $w_{k}(k=1 \ldots \ldots s)$. we consider a monic distinguished pseudopolynomial $P_{k}\left(z, w_{k}\right)$ in u_{k} of degree l_{k}.

$$
P_{k}\left(z, w_{k}\right)=u_{k}^{l_{k}}+\alpha_{1}^{k}(z) u_{k}^{l_{k}-1}+\cdots+\alpha_{i_{k}}^{k}(z) \quad(k=1 \ldots, s)
$$

where each coefficient $a_{j}^{k}(z)\left(j=1 \ldots ., l_{k}\right)$ is a holomorphic function on Δ satisfying $\alpha_{j}^{k}(0)=0$. We assume that $P_{k}\left(z . u_{k}\right)$ has no repeated factors, although we allow it to be reducible. In each coordinate plane $C_{u_{k}}$ we take a closed disk Γ_{k} centered at the origin with radius ρ_{k}.

$$
\Gamma_{k}:\left|w_{k}\right| \leq \rho_{k} \quad(k=1, \ldots, s)
$$

where ρ_{k} is chosen sufficiently large so that for any fixed $z \in \Delta$, all l_{k} solutions of the equation $P_{k}\left(z, w_{k}\right)=0$ for w_{k} in $C_{w_{k}}$ are contained in Γ_{k}. We set

$$
\Gamma:=\Gamma_{1} \times \cdots \times \Gamma_{s} \subset \mathbf{C}^{s} \quad \text { and } \quad \Lambda:=\Delta \times \Gamma \subset \mathbf{C}^{n}
$$

We consider the pseudopolynomials $P_{k}\left(z, u_{k}\right)$ as functions on Λ which are independent of $s-1$ variables $w_{1} \ldots, \widehat{u_{k}}, \ldots, w_{s}$. Then we get an analytic set Σ in Λ given by the following s equations:

$$
\Sigma: P_{k}\left(z, u_{k}\right)=0 \quad(k=1, \ldots, s)
$$

This analytic set is called a complete locally algebraic analytic set with parameters $z_{1} \ldots, z_{r}$. Note that Σ is a pure r-dimensional analytic set in the product space $\Delta \times C^{s}$ as well as being a pure r-dimensional analytic set in the polydisk $\Lambda=\Delta \times \Gamma$.

We now consider in greater detail complete locally algebraic analytic sets. To simplify the exposition, we recall the notion of holomorphic mappings (or vectorvalued functions) introduced in section 1.3.5. Let D be a domain in $\mathbf{C l}^{n}$. and let $f_{j}(z)(j=1 \ldots . m)$ be holomorphic functions in D. Then the m-tuple of holomorphic functions.

$$
f(z):=\left(f_{1}(z) \ldots, f_{m}(z)\right)
$$

is called a holomorphic mapping from $D \subset \mathbf{C}^{n}$ into \mathbf{C}^{m}. In other words, $f(z)$ is a \mathbf{C}^{m}-valued holomorphic function on D. As in the case of complex-valued holomorphic functions, we can consider the analytic continuation of $f(z)$ along an arc l in \mathbf{C}^{n} starting from a point of D; this is merely the simultaneous analytic continuation of all the functions $f_{3}(z)(j=1, \ldots, m)$ along the arc l.

Let $\Sigma: P_{k}\left(z, w_{k}\right)=0(k=1, \ldots, s)$ be a complete locally algebraic analytic set in $\Lambda=\Delta \times \Gamma$. We let $d_{k}(z)$ denote the discriminant of $P_{k}\left(z, w_{k}\right)$ with respect
to w_{k} and we let σ_{k} denote the zero set of $d_{k}(z)$ in Δ. Note that $d_{k}(z) \not \equiv 0$. We also set

$$
\sigma=\bigcup_{k=1}^{u} \sigma_{k} \quad \text { and } \quad \Delta^{\prime}=\Delta \backslash \sigma .
$$

Let $c=\left(c_{1}, \ldots, c_{\tau}\right)$ be a fixed point in Δ^{\prime}. For each pseudopolynomial $P_{k}\left(z, u_{k}\right)(k$ $=1 \ldots, s)$ of degree l_{k} in w_{k}, we denote by $b_{k . j}\left(j=1, \ldots, l_{k}\right)$ the set of all complex numbers w_{k} satisfying the equation $P_{k}\left(c, w_{k}\right)=0$. These l_{k} solutions are distinct and simple (order 1). For each $j=1, \ldots, l_{k}$, we take a closed disk $\gamma_{k . j}$ in $\mathbf{C u}_{u_{k}}$,

$$
\gamma_{k, j}:\left|w_{k}-b_{k, j}\right| \leq \rho^{\prime} \quad\left(j=1, \ldots, l_{k}\right)
$$

centered at $b_{k, j}$ and with radius ρ^{\prime} sufficiently small so that $\gamma_{k, j} \subset \Gamma_{k}$ and $\gamma_{k, j} \cap$ $\gamma_{k, i}=0$ if $i \neq j$. Next we take a closed polydisk δ in Δ^{\prime}.

$$
\delta:\left|z_{j}-c_{j}\right| \leq r^{\prime} \quad(j=1, \ldots, r)
$$

centered at c and with radius r^{\prime} chosen so that $P_{k}\left(z, w_{k}\right) \neq 0$ for any $\left(z, w_{k}\right) \in$ $\delta \times \partial \gamma_{k, j}\left(j=1, \ldots, l_{k}\right)$. We let $H_{k, j}$ denote the zero set of $P_{k}\left(z, u_{k}\right)$ in the polydisk $\lambda_{k, j}:=\delta \times \gamma_{k . j}$. From Lemma 2.2, the analytic hypersurface $H_{k, \text {, }}$ can be described as

$$
H_{k, j}: u_{k}=\eta_{k . j}(z) \quad \text { in } \lambda_{k . j}
$$

where $\eta_{k . j}(z)$ is a single-valued holomorphic function in δ (see Figure 2).

Figlere 2. Representation of analytic set
For each $k=1, \ldots, s$, we choose a number $j_{k}\left(1 \leq j_{k} \leq l_{k}\right)$, and form the s-tuple of integers $j:=\left(j_{1}, \ldots, j_{s}\right)$. Then we construct an associated holomorphic mapping on δ. the holomorphic \mathbf{C}^{s}-valued function

$$
\eta_{j}(z):=\left(\eta_{1 . j_{1}}(z) \ldots, \eta_{z . j_{n}}(z)\right) .
$$

The total number of such mappings is $N:=l_{1} \cdots l_{s}$. We set

$$
\gamma_{j}:=\gamma_{1, j_{1}} \times \cdots \times \gamma_{\varepsilon . j} \subset \Gamma \quad \text { and } \quad \lambda_{j}:=\delta \times \gamma_{j} \subset \Lambda
$$

In the closed polydisk λ_{j} centered at $\left(c, b_{1 . j_{1}} \ldots, b_{\text {s.j. }}\right)$ in C^{n} we set

$$
\Sigma_{j}: w=\eta_{j}(z), \quad z \in \delta
$$

so that Σ_{j} is a pure r-dimensional analytic set in λ_{j}. Froin the definition of the analytic set Σ in Λ, we see that $\Sigma \cap(\delta \times \Gamma)$ coincides with the union of the N analytic sets $\boldsymbol{\Sigma}_{\boldsymbol{j}}$.

The holomorphic mapping $\eta_{j}(z)$ can be analytically continued to any point $c^{\prime} \in \Delta^{\prime}$ along any arc L in Δ^{\prime} connecting the points c and c^{\prime}. i.e.. simultaneous analytic continuation of all $\eta_{1 . j_{1}}(z) \ldots . \eta_{s . j_{1}}(z)$ along L.

From the theorem on invariance of analytic relations under analytic continuation, we see that the arc

$$
u=\eta_{,}(z), \quad z \in L
$$

is contained in Σ. Therefore, similar to our procedure in section 2.1.3. we can classify the N holomorphic mappings $\eta_{j}(z)$ defined on δ into subclasses K^{h} ($h=$ $1, \ldots, m$) as follows: η_{j}^{h} and η_{j}^{h}, belong to the same class if and only if η_{j}^{h} can be analytically continued to $\eta_{,^{\prime}}^{h}$, along a closed curve L in Δ^{\prime} with initial and terminal point c. Here we use the notation $\eta_{j}^{h}(i)$ to denote a holomorphic mapping belonging to the subclass K^{h}.

REmARK 2.6. If we shrink the polydisk Δ. the number m of distinct classes $K^{\boldsymbol{h}}$ may increase but m is always bounded above by N. Thus this number m is invariant for sufficiently small Δ : for the rest of the section, we fix such a Δ.

For each subclass $K^{-h}(h=1 \ldots, m)$, we analytically continue the mappings $\eta_{j}^{h}(z)$ on δ along all possible arcs L in Δ^{\prime} for which the simultaneous continuation is possible. We continue to use the same notation $\eta_{j}^{h}(z)$ for the holomorphic mappings now defined on Δ^{\prime}. We then define the r-dimensional analytic set Σ_{h}^{\prime} in $\Lambda^{\prime}:=\Delta^{\prime} \times \Gamma$ by

$$
\Sigma_{h}^{\prime}: u=\eta_{j}^{h}(z), \quad z \in \Delta^{\prime}, \quad \eta_{j}^{h} \in K^{h}
$$

and set

$$
\Sigma_{h}:=\overline{\Sigma_{h}^{\prime}} \quad \text { in } \Lambda=\Delta \times \mathrm{J}
$$

We note that the set Σ_{h} is uniquely determined by the subclass $K^{h h}(h=1 \ldots, m)$.
We have the following two lemmas.
Lemma 2.5. Each $\Sigma_{h}(h=1,2, \ldots, m)$ is an analytic set in the polydisk Λ.
Proof. We fix $h=1, \ldots, m$. We introduce s new complex variables $\tau_{k}(k=$ $1, \ldots, s)$ and construct the following function of (z, u, v) in $\delta \times \mathbf{C}^{s} \times \mathbf{C}^{s}$:

$$
Q(z, w, v):=\prod_{(j)}\left[\left\{u_{1}-\eta_{1 . j_{s}}^{h}(z)\right\} v_{1}+\cdots+\left\{w_{s}-\eta_{s, j,}^{h}(z)\right\} v_{s}\right]
$$

where $\eta_{k, j_{k}}^{h}(z)(k=1, \ldots . s)$ are the component functions of the holomorphic mapping $\eta_{f}^{h}(z)$, and the product is taken over all holomorphic mappings $\eta_{j}^{h}(z)$ from the class K^{h}. Expanding $Q(z, u, v)$ into a homogeneous polynomial of $v_{k}(k=1, \ldots, s)$. we see that the coefficients $g_{J}\left(z, u^{\prime}\right)\left(J=1, \ldots, l^{\prime \prime}:=s^{\# K^{h}}\right)$ are polynomials in w_{1}, \ldots, w_{s} whose coefficients $\alpha_{J}^{i}(z)$ are holomorphic functions of z in δ.

Let $c^{\prime} \in \Delta^{\prime}$ and connect c and c^{\prime} by an $\operatorname{arc} L$ in Δ^{\prime}. Since all the holomorphic mappings $\eta_{j}^{h}(z)$ in K^{h} can be analytically continued from c to c^{\prime} along L, the function $Q(z, w, v)$, as a function of z, can also be analytically continued. Note that in the w and v variables. $Q(z, w, v)$ is a polynonial.

On the other hand, from the explicit form of $Q(z, u, v)$, it is clearly symmetric with respect to all the holomorphic mappings $\eta_{j}^{h}(z)$ belonging to k^{-h}. It follows that $Q(z, w, v)$ defines a single-valued. holomorphic function in $\Delta^{\prime} \times \mathbf{C}^{s} \times \mathbf{C}^{s}$. In particular, all of the coefficient functions $a_{J}^{i}(z)$ of $g_{J}(z, w)$ are single-valued. holomorphic functions in Δ^{\prime}. Since all the mappings $\eta_{j}^{h}(z)$ are bounded in Δ^{\prime}. the same
is true of each $\alpha_{j}^{i}(z)$. It now follows from Riemann's removable singularity theorem that each $\alpha_{j}^{2}(z)$ can be analytically extended across the analytic hypersurfaces σ to all of Δ, and thus $g_{J}(z, w)$ can be analytically continued to the domain $\Delta \times \mathbf{C}^{s}$. Thus, using the same notation $g_{J}\left(z, w^{\prime}\right)\left(J=1, \ldots . l^{\prime \prime}\right)$ for this single-valued holomorphic extension, $g_{J}(z, w)$ is a polynomial in $w_{1}, \ldots . w_{s}$ whose coefficients are single-valued holomorphic functions of z in Δ.

We now consider the following analytic set in Λ :

$$
\Sigma_{h}^{\prime \prime}: g_{J}(z, w)=0 \quad\left(J=1, \ldots, l^{\prime \prime}\right)
$$

From the definition of Σ_{h}^{\prime} given before the statement of the lemma. and using the definition of $Q(z, w, v)$, it is easy to verify that $\Sigma_{h}^{\prime \prime}$ coincides with the set $\Sigma_{h}:=\overline{\Sigma_{h}^{\prime}}$. Hence, $\boldsymbol{\Sigma}_{\boldsymbol{h}}$ is an analytic set in \boldsymbol{A}.

From the proof we have the following remark.
Remark 2.7. The analytic set Σ_{h} can be written as $\Sigma_{h}=\{(z, w) \in \Lambda \mid$ $\left.f_{j}(z, w)=0(j=1, \ldots, \nu)\right\}$, where each $f_{j}(z, w)(j=1, \ldots, \nu)$ is a holomorphic function on Λ.

Finally we have the following lemma.
Lemma 2.6. Each $\Sigma_{h}(h=1, \ldots, m)$ is an irreducible analytic set at the origin 0 in \mathbf{C}^{n}.

Proof. Let $F(z, w)$ be a holomorphic function in Λ such that $F(z . w)=0$ on one of the analytic sets $\Sigma_{j}^{h}: w=\eta_{j}^{h}(z)$ in $\delta \times \gamma_{j}$. Then the theorem on invariance of analytic relations under analytic continuation implies that $F(z, w) \equiv 0$ on all of Σ_{h}. Thus Σ_{h} is irreducible at the origin 0 in $\mathbf{C}^{\boldsymbol{n}}$.

Indeed, we conclude that the complete locally algebraic analytic set Σ in Λ can be represented as the union of a finite number of irreducible analytic sets Σ_{h} in Λ,

$$
\begin{equation*}
\Sigma=\bigcup_{h=1}^{m} \Sigma_{h} . \tag{2.7}
\end{equation*}
$$

and this union is the irreducible decomposition of Σ at the origin 0 in $\mathbf{C n}^{\mathbf{n}}$.
We call each irreducible component $\Sigma_{h}(h=1 \ldots ., m)$ a locally algebraic analytic component of the complete locally algebraic analytic set Σ.

To represent Σ_{h}^{\prime} in $\Delta^{\prime} \times \Gamma$, we used the \mathbf{C}^{s}-valued holomorphic functions $\eta_{j}^{h}(z)$ on Δ^{\prime}. If $z \in \Delta^{\prime}$ approaches a point $p \in \sigma$, we see from (2.1) that each branch of $\eta_{j}^{h}(z)$ tends to a certain point P in Γ. We thus get a single multiply C^{s}-valued function $\eta_{j}^{h}(z)$ on Δ, which we call a locally algebraic holomorphic mapping (or a locally vector-valued algebraic function) on Δ. Moreover. the analytic set Σ_{h} in Λ is called the graph of $\eta_{j}^{h}(z)$ or the analytic set determined by $w=\eta_{j}^{h}(z)$.
2.2.4. Irreducible Decompositions of Analytic Sets. We return to the study of general analytic sets. Let \mathcal{E} be an analytic set in a domain D in \mathbf{C}^{n}. We assume that \mathcal{E} contains the origin 0 and that the dimension of \mathcal{E} at 0 is less than or equal to r. We then choose suitable coordinates z_{1}, \ldots, z_{r} and $w_{1} \ldots \ldots, w_{s}$ (where $n=r+s)$ so that the section $\mathcal{E}(0)$ of \mathcal{E} over the hyperplane $z_{j}=0(j=1 \ldots, r)$ consists of the single point 0 in \mathbf{C}^{s} in a neighborhood of the origin.

We have the following lemma.

Lemma 2.7. For each variable $u_{k}(k=1, \ldots, s)$ there exists a distinguished pseudopolynomial $P_{k}\left(z, w_{k}\right)$ in w_{k} with the following property: the complete locally algebraic analytic set Σ with parameters z_{1}, \ldots, z_{r} defined by

$$
\Sigma: P_{k}\left(z, u_{k}\right)=0 \quad(k=1 \ldots \ldots s)
$$

contains the analytic set \mathcal{E} in a neighborhood of the origin 0 in \mathbf{C}^{n}.
Proof. For a fixed integer $k(1 \leq k \leq s)$, consider the space \mathbf{C}^{r+1} of the complex variables z_{1}, \ldots, z_{r} and w_{k}. We take a closed polydisk Λ_{k} centered at 0 in \mathbf{C}^{r+1}, where

$$
\Lambda_{k}:=\bar{\Delta} \times \Gamma_{k}, \quad \bar{\Delta}:\left|z_{j}\right| \leq r_{j} \quad(j=1 \ldots . r) . \quad \Gamma_{k}:\left|u_{k}\right| \leq \rho_{k}
$$

Set

$$
\Gamma:=\Gamma_{1} \times \cdots \times \Gamma_{s}, \quad \Lambda=\bar{\Delta} \times \Gamma
$$

By assumption we can choose $r_{j}>0(j=1, \ldots, r)$ and $\rho_{k}>0(k=1, \ldots, s)$ sufficiently small so that $\mathcal{E} \cap(\bar{\Delta} \times \partial \Gamma)=\emptyset$. We set

$$
\mathcal{E}^{0}:=\mathcal{E} \cap \Lambda . \quad \mathcal{E}_{k}:=\pi_{k}\left(\mathcal{E}^{0}\right) \quad(k=1, \ldots, s)
$$

where π_{k} is the projection map from Λ onto Λ_{k}. By Proposition 2.3 and $\mathcal{E} \cap(\bar{\Delta} \times$ $\partial \Gamma)=0$. each \mathcal{E}_{k} is an analytic set in $\Lambda_{k}(k=1 \ldots, s)$. Thus we can assume \mathcal{E}_{k} can be written in a neighborhood δ_{k} of the origin 0 in Λ_{k} in the form

$$
g_{j}^{k}\left(z, w_{k}\right)=0 \quad\left(j=1, \ldots, m_{k}\right)
$$

where each $g_{j}^{k}\left(z, w_{k}\right)$ is a holomorphic function in δ_{k}.
We note that the section $\mathcal{E}_{k}(0)$ of \mathcal{E}_{k} over the hyperplane $z_{j}=0(j=1 \ldots, r)$ consists of the single point 0 in a neighborhood of the origin in the disk Γ_{k} of the w_{k} plane. It follows that at least one of the functions $g_{j}^{k}\left(z, u_{k}\right)\left(j=1, \ldots, m_{k}\right)$, say $g_{1}^{k}\left(z, w_{k}\right)$. satisfies the Weierstrass condition at the origin 0 in the coordinates $\left(z, w_{k}\right)$. By taking a smaller polydisk if necessary, we can assume that $g_{1}^{k}\left(z, w_{k}\right) \neq 0$ for $\left(z, w_{k}\right) \in \bar{\Delta} \times \partial \Gamma_{k}$. We let $\widetilde{\varepsilon}_{k}$ denote the zero set of the holomorphic function $g_{1}^{k}\left(z, w_{k}\right)$ in Λ_{k}, so that $\mathcal{E}_{k} \subset \widetilde{\mathcal{E}}_{k}$. We see from Theorem 2.1 that $\widetilde{\mathcal{E}}_{k}$ coincides with the zero set of a distinguished pseudopolynomial $P_{k}\left(z, w_{k}\right)$ in w_{k} in the polydisk Λ_{k}. Note we may assume that for all $k=1, \ldots, s$, the same polydisk $\bar{\Delta}$ centered at 0 in \mathbf{C}^{r} is taken in the construction of $\Lambda_{k}=\bar{\Delta} \times \Gamma_{k}$. It then follows that the analytic set $\mathcal{E} \cap \Lambda$ is contained in the complete locally algebraic analytic set Σ in Λ defined as

$$
\Sigma: P_{k}\left(z, u_{k}\right)=0 \quad(k=1, \ldots, s)
$$

Lemma 2.7 is thus proved.
The complete locally algebraic analytic set Σ in Lemma 2.7 can be decomposed into the union of irreducible components $\Sigma=\bigcup_{h=1}^{3} \Sigma_{h}$ in a polydisk Λ centered at the origin 0 in $\mathbf{C}^{\boldsymbol{n}}$. Here we may need to take a smaller polydisk Λ than in the proof of Lemma 2.7. Since $\mathcal{E}^{0} \subset \Sigma$. it follows that \mathcal{E}^{0} can be decomposed into the following (not necessarily irreducible) analytic sets:

$$
\mathcal{E}^{0}=\bigcup_{h=1}^{l} \mathcal{E}_{h} \quad \text { in } \Lambda .
$$

where

$$
\mathcal{E}_{h}=\mathcal{E} \cap \Sigma_{h} \quad(h=1, \ldots, l)
$$

If we let r_{h} denote the dimension of $\mathcal{E}_{h}(h=1 \ldots . l)$ at the origin 0 . then $0 \leq$ $r_{h} \leq r$. Furthermore, $\mathcal{E}_{h}=\Sigma_{h}$ in Λ if and only if $r_{h}=r$, by the irreducibility of Σ_{h}. If $r_{h} \leq r-1$, then \mathcal{E}_{h} is an r_{h}-dimensional analytic set which is contained in Σ_{h}. The union of the analytic sets \mathcal{E}_{h} which are of dimension r at the origin 0 will be denoted \mathcal{E}^{r}. The union of the remaining sets \mathcal{E}_{h} will be denoted by \mathcal{E}^{*}. Hence we have the decomposition $\mathcal{E}^{\boldsymbol{0}}=\mathcal{E}^{r} \cup \mathcal{E}^{\bullet}$. where \mathcal{E}^{r} consists of all components of \mathcal{E}^{0} which are pure r-dimensional irreducible analytic sets in $\boldsymbol{\Lambda}$. while \mathcal{E}^{*} is an analytic set of dimension at most $r-1$ in Λ.

From Proposition 2.3 and Remark 2.5, $\pi_{r}\left(\mathcal{E}^{*}\right)$ is an analytic set in Δ of dimension at most $r-1$. Thus. by taking a linear transformation of $z_{1} \ldots \ldots z_{r}$. if necessary, we may assume that the section $\mathcal{E}^{*}(0)$ of \mathcal{E}^{*} over the hyperplane $z_{1}=0, \ldots, z_{r-1}=0$ in a neighborhood of the origin 0 in C^{s+1} either consists of the single point 0 in \mathbf{C}^{s+1} or is empty. We now repeat the above procedure for the analytic set \mathcal{E}^{*} and obtain the following theorem.

Theorem 2.2. Let \mathcal{E} be an analytic set in a domain D in \mathbf{C}^{n}. and let $a=$ $\left(a_{1} \ldots . . a_{n}\right)$ be a point in \mathcal{E} at which the dimension of \mathcal{E} is r. Then there exist coordinates $\left(z_{1}, \ldots, z_{n}\right)$ and a polydisk Δ centered at the point a in D.

$$
\Delta:\left|z,-a_{j}\right|<r, \quad(j=1 \ldots, n)
$$

such that the analytic set $\mathcal{E}^{0}=\Delta \cap \mathcal{E}$ can be decomposed into a finite number of irreducible analytic sets in Δ. Moreover, each irreducible component is pure dimensional in Δ, and each pure s-dimensional irreducible analytic set (with $s \leq r$) coincides with a locally algebraic analytic component in Δ with parameters $z_{1} \ldots \ldots z_{s}$.

We note from the proof that the coordinates $\left(z_{1}, \ldots, z_{n}\right)$ for C^{n} satisfy the conditions of Theorem 2.2 at the point $a=\left(a_{1}, \ldots, a_{n}\right)$ in such a way that. for $s \leq r$, the intersection $\mathcal{E}_{s} \cap\left\{z_{1}=a_{1}, \ldots z_{s}=a_{s}\right\}$ consists of the single point a in a neighborhood of a in \mathbf{C}^{n}, where \mathcal{E}_{s} denotes the s-dimensional irreducible components of \mathcal{E} at a.

Given an analytic set \mathcal{E} in a neighborhood of a point a in $\mathbf{C}^{\prime \prime}$. the coordinates $z=\left(z_{1} \ldots \ldots, z_{n}\right)$ of C^{n} are said to satisfy the Weierstrass condition for \mathcal{E} at a if the conclusion of Theorem 2.2 holds for \mathcal{E} and a in these coordinates. We then call the closed polydisk $\bar{\Delta}$ centered at a in Theorem 2.2 a Weierstrass canonical neighborhood of \mathcal{E} at the point a in $\mathbf{C}^{\boldsymbol{n}}$.

Remark 2.8. Let D be a domain in C_{z}^{r} and let $f_{k}(z)(k=1, \ldots, s)$ be s singlevalued, complex-valued functions on D. We set $f(z)=\left(f_{1}(z), \ldots, f_{s}(z)\right), z \in D$. and consider the following subset \mathcal{E} of $D \times \mathbf{C}_{n}^{s}$:

$$
\mathcal{E}: w=f(z), \quad z \in D
$$

If either (i) \mathcal{E} is an analytic set in $D \times \mathbf{C}_{\mathrm{u}}$, or (ii) $f(z)$ is continuous on D and there exists an r-dimensional analytic set Σ in $D \times C_{u^{\prime}}^{s}$ such that $\mathcal{E} \subset \Sigma$. then $f(z)$ is holomorphic on D.

Since the proofs in each case are similar, we will only give the proof for case (ii). Let $p_{0}=\left(z_{0}, u_{0}\right) \in \mathcal{E}$. Using a linear coordinate transformation which is sufficiently close to the identity, if necessary, we may assume that the coordinates $\left(z, u{ }^{\prime}\right)$ satisfy the Weierstrass condition for Σ at p_{0}. Then we can find a polydisk $A:=\Delta \times \Delta^{\prime} \subset D \times C_{u ;}^{s}$ centered at p_{0} such that $(\mathcal{E} \cup \mathcal{S}) \cap\left(\Delta \times \partial \Delta^{\prime}\right)=0$ and such
that $\Sigma \cap \Lambda$ is the union of components of a complete locally algebraic analytic set $\tilde{\boldsymbol{\Sigma}}$.

$$
\dot{\Sigma}: P_{k}\left(z, u_{k}^{\prime}\right)=0 \quad \text { in } \Lambda
$$

Equivalently:

$$
\tilde{\Sigma}: w^{\prime}=\eta^{l}(z) \quad(l=1 \ldots m), \quad z \in \Delta
$$

where $\eta^{l}(z)=\left(\eta_{1}^{l}(z), \ldots, \eta_{s}^{l}(z)\right)(l=1 \ldots, m)$ is a locally algebraic vector-valued analytic function on Δ. We let $\sigma \subset \Delta$ be the union of the zero set of the discriminant $d_{k}(z)$ of $P_{k}\left(z, w_{k}\right)$ with respect to $w_{k}(k=1 \ldots ., s)$.

Fix $z^{\prime} \in \Delta \backslash \sigma$. Since $\mathcal{E} \subset \Sigma \subset \dot{\Sigma}$, we have

$$
f\left(z^{\prime}\right)=\eta^{\prime}\left(z^{\prime}\right) \quad \text { for some } l=1 \ldots . .
$$

Since $\eta^{k}(z) \neq \eta^{l}(z)(k \neq l)$ for each point in $\Delta \backslash \sigma$, it follows from the continuity of $f(z)$ and $\eta^{l}(z)$ that $f(z)=\eta^{l}(z)$ on $\Delta \backslash \sigma$. Since σ is an analytic set in Δ of dimension at most $r-1$. we conclude that $\eta^{\prime}(z)$ and $f(z)$ are single-valued on Δ; and, indeed, that $f(z)=\eta^{l}(z)$ on Δ. In particular, $f(z)$ is holomorphic on Δ.

This remark immediately implies the following fact. If $T: \delta \rightarrow \delta^{\prime}$ is a holomorphic map between two domains δ and δ^{\prime} in \mathbf{C}^{n} which is one-to-one and onto. then T^{-1} is holomorphic.

Now let \mathcal{E} be an analytic set in a domain D in \mathbf{C}^{n}. Let $p \in \mathcal{E}$ and let \mathcal{E} be of pure dimension r at p. If there exists a closed polydisk $\Lambda=\bar{\Delta} \times \Gamma$ centered at $p=(a, b)$ in the coordinates $\left(z, u^{\prime}\right)$ of $\mathbf{C}^{n}=\mathbf{C}^{r} \times \mathbf{C}^{s}$,

$$
\begin{array}{rll}
\bar{\Delta}: & \left|z_{j}-a_{j}\right| \leq r_{j} & (j=1, \ldots, r) \\
\Gamma: & \left|w_{k}-b_{k}\right| \leq \rho_{k} & (k=1, \ldots, s)
\end{array}
$$

such that $\mathcal{E} \cap \Lambda$ can be described in the form

$$
w_{k}=\eta_{k}\left(z_{1}, \ldots, z_{r}\right) \quad(k=1, \ldots, s)
$$

where $\eta_{k}\left(z_{1} \ldots, z_{r}\right)(k=1 \ldots, s)$ are single-valued holomorphic functions in $\bar{\Delta}$, then the point p is called a nonsingular point of \mathcal{E}. Otherwise p is called a singular point of \mathcal{E}. The set of all nonsingular points of \mathcal{E} in D is called the nonsingular part of \mathcal{E}. Clearly the closure of the nonsingular part of \mathcal{E} equals \mathcal{E}. If \mathcal{E} is irreducible in D, then the nonsingular part of \mathcal{E} is connected.

Remark 2.9. Let \mathcal{E} be a pure r-dimensional analytic set in a domain $D \subset \mathbf{C}^{\boldsymbol{n}}$. Then the set S of singular points of \mathcal{E} in D is an analytic set of dimension at most $r-1$.

Proof. We maintain the notations $A=\Delta \times \Gamma \subset C_{z}^{r} \times \mathbf{C}_{u}^{s}$ and $P_{k}\left(z, u_{k}\right)(k=$ $1, \ldots, s)$ used to verify formula (2.7) in Λ. Since the statement is local, we may assume that $D=\Lambda$ and $\mathcal{E}=\bigcup_{h=1}^{m^{\prime}} \Sigma_{h}$ in Λ. where Σ_{h} is given in (2.7) and $m^{\prime} \leq m$. Then the set S of singular points of \mathcal{E} in Λ is of the form $S=S_{1} \cup S_{2}$ where

$$
\begin{aligned}
& S_{1}=\bigcup_{1 \leq k, l \leq m^{\prime} ; k \neq l}\left(\Sigma_{k} \cap \Sigma_{l}\right) \\
& S_{2}=\bigcap_{k=1}^{s}\left\{p \in \mathcal{E} \left\lvert\, \frac{\partial P_{k}}{\partial u_{i k}}(p)=\frac{\partial P_{k}}{\partial z_{j}}(p)=0(j=1, \ldots, r)\right.\right\} .
\end{aligned}
$$

Thus. S is an analytic set of dimension at most $r-1$ in Λ.

Remark 2.10. Let \mathcal{E} and \mathcal{F} be two irreducible analytic sets in a domain D in \mathbf{C}^{n}, with dimensions ν and μ. Then either the analytic set $\mathcal{E} \cap \mathcal{F}$ in \mathbf{C}^{n} coincides with one of \mathcal{E} or \mathcal{F}, or the dimension of $\mathcal{E} \cap \mathcal{F}$ at any point is strictly less than $\min \{\nu, \mu\}$. In the latter case. $\mathcal{E} \cap \mathcal{F}$ can be locally decomposed into a finite number of r_{j}-dimensional irreducible analytic sets, where $r_{j}<\min \{\nu, \mu\}$.

This may be proved by taking coordinates ($z_{1} \ldots \ldots z_{n}$) which satisfy the Weierstrass condition for both \mathcal{E} and \mathcal{F}. This remark yields the following useful corollary:

COROLLARY 2.1. The intersection of an infinite number of analytic sets in a domain D in \mathbf{C}^{n} is an analytic set in D.

2.3. Weierstrass Condition

Let \mathcal{E} be an analytic set in a domain D in $\mathbf{C}^{\boldsymbol{n}}$ whose dimension is at most $n-1$; i.e., $\mathcal{E} \neq D$. Let p be any point of \mathcal{E} and let $z=\left(z_{1}, \ldots, z_{n}\right)$ be coordinates of \mathbf{C}^{n}. From Proposition 2.3, we can easily find uncountably many systems of coordinates $z^{\prime}=\left(z_{1}^{\prime} \ldots, z_{n}^{\prime}\right)$ of C^{n} which are sufficiently close to the given coordinates $z=$ $\left(z_{1}, \ldots . z_{n}\right)$ and such that \mathcal{E} satisfies the Weierstrass condition at the point p in the z^{\prime} coordinates. By "sufficiently close" we mean that $z_{1}^{\prime} \ldots, z_{n}^{\prime}$ are obtained from z_{1}, \ldots, z_{n} by a linear transformation whose transformation matrix is arbitrarily close to the identity matrix. Therefore we can find a dense subset K of \mathcal{E} and coordinates $w=\left(w_{1}, \ldots, w_{n}\right)$ of \mathbf{C}^{n} for which \mathcal{E} satisfies the Weierstrass condition at each point q of K. However, this does not yield the existence of coordinates for $\mathbf{C}^{\boldsymbol{n}}$ such that \mathcal{E} satisfies the Weierstrass condition at every point of the analytic set \mathcal{E}.

Thus the following theorem will be important, not only in this section. but especially in Part II of this book.

Theorem 2.3. Let $D_{j}(j=1,2, \ldots)$ be a countable collection of domains in \mathbf{C}^{n} and let \mathcal{E}_{j} be an analytic set in $D_{j}(j=1,2, \ldots)$ whose dimension is at most $n-1$. Let $z=\left(z_{1} \ldots \ldots z_{n}\right)$ be coordinates for \mathbf{C}^{n}. Then there exist coordinates $w=\left(w_{1}, \ldots, w_{n}\right)$ for \mathbf{C}^{n} sufficiently close to the coordinates $\left(z_{1}, \ldots, z_{n}\right)$ such that every analytic set $\mathcal{E}_{j}(j=1.2 \ldots)$ satisfies the Weierstrass condition at each point of $\mathcal{E},(j=1,2, \ldots)$ in the w coordinates.

Note we do not assume that $D_{i} \cap D_{j} \neq \emptyset$ for $i \neq j$. This section will be devoted to the proof of the theorem. ${ }^{2}$
2.3.1. Complex Lines Contained in an Analytic Hypersurface. As a first step towards the proof of the theorem. we study the question of determining when a complex line is contained in the zero set of a given holomorphic function. Let $f(z)$ be a non-constant holomorphic function in a domain D in C^{n}. We let S denote the zero set of $f(z)$ in D. Given $z=\left(z_{1} \ldots, z_{n}\right) \in S$. we fix a complex line L passing through the point z in the (complex) direction $u:=\left(w_{1} \ldots \ldots, w_{n}\right)$. i.e., $L: t \in C \rightarrow w t+z=\left(w_{1} t+z_{1}, \ldots, w_{n} t+z_{n}\right) \in C^{n}$, and we consider the restriction of $f(z)$ to L :

$$
F(t):=f(w t+z)
$$

The function $F(t)$ is defined and holomorphic for t in a neighborhood γ of $t=0$ in the complex t-plane. A necessary and sufficient condition that the hypersurface

[^4]S contains a portion of the complex line L lying in a neighborhood of the point z in \mathbf{C}^{n} is that $F(t) \equiv 0$ on γ. Clearly if u satisfies this condition, then so does any multiple $s w=\left(s w_{1} \ldots, s w_{n}\right)$ for $s \in \mathbf{C}$. For convenience, we include the case when the direction is $0=(0, \ldots, 0)$; clearly the 0 direction satisfies the above condition.

Let Γ denote the closed polydisk centered at the origin with radius 1 in \mathbf{C}^{n}, and let γ_{ρ} denote the closed disk centered at the origin with radius ρ in the complex t-plane; i.e.,

$$
\Gamma:\left|w_{j}\right| \leq 1 \quad(j=1, \ldots, n), \quad \gamma_{\rho}:|t| \leq \rho .
$$

Fix a point $z^{0}=\left(z_{1}^{0} \ldots \ldots z_{n}^{0}\right)$ in the domain D, and choose a closed polydisk $\bar{\Delta}$ centered at z^{0} with radius $r>0$ sufficiently small so that $\bar{\Delta}$ lies in D,

$$
\bar{\Delta}:\left|z_{j}-z_{j}^{0}\right| \leq r \quad(j=1, \ldots, n) .
$$

We let $\rho>0$ denote the polydisk distance from $\bar{\Delta}$ to ∂D. For any $(z, w, t) \in$ $\bar{\Delta} \times \Gamma \times \gamma_{\rho}$, we set, using the same notation from above.

$$
F(z, w, t):=f(w t+z),
$$

which defines a holomorphic function in $\bar{\Delta} \times \Gamma \times \gamma_{\rho}$.
We have the following lemma.
Lemma 2.8. Let σ be the set of all points w in Γ with the following property: there exist a point $z \in \bar{\Delta} \cap S$ and a neighborhood V of the point z in \mathbf{C}_{z}^{n} such that S contains the portion of a complex line L passing through the point z in the direction w which lies in V. Then σ is a closed. nowhere dense subset of Γ.

Proof. We develop $F(z, w, t)$ into a power series with respect to t,

$$
F(z, w, t)=A_{0}(z, w)+A_{1}(z, w) t+A_{2}(z, w) t^{2}+\cdots,
$$

so that each coefficient $A_{j}(z, w)(j=0,1,2, \ldots)$ is a holomorphic function of (z, w) in the closed polydisk $\Lambda:=\bar{\Delta} \times \Gamma$. Consider the subset Σ of Λ defined by the countable number of equations

$$
\Sigma:=\{(z, w) \in \Lambda: A,(z, w)=0, j=0,1,2 \ldots\} .
$$

It follows from Corollary 2.1 that Σ is an analytic set of dimension at most $2 n-1$ in Λ. From the necessary and sufficient condition that the hypersurface S contains the portion of a complex line L lying in a neighborhood V of the point z, we see that

$$
\sigma=\pi_{\mathrm{w}}(\Sigma) \quad \text { in } \Gamma,
$$

where π_{w} is the projection from Λ onto Γ. Since Λ is closed, σ is a closed subset of Γ.

We now show that $\pi_{\psi}(\Sigma)$ contains no non-empty open set. Suppose, for the sake of obtaining a contradiction. that $\pi_{w}(\Sigma)$ contains a non-empty open set U. For any $a=\left(a_{1} \ldots, a_{n}\right) \in U$, we consider the section $\Sigma(a)$ of Σ over the hyperplane $w_{j}=a,(j=1, \ldots, n)$. For each $p \in \Sigma(a)$, we can find a sufficiently small neighborhood λ_{p} of the point p in Λ such that $\lambda_{p} \cap \Sigma$ can be decomposed into a finite number of irreducible components at p. Since $\Sigma(a)$ is compact in Λ, we can find a finite number of these neighborhoods $\lambda_{p},(j=1, \ldots, l)$ such that $\Sigma(a) \subset \bigcup_{j=1}^{l} \lambda_{p}$. We let $\Sigma_{j}^{k}\left(k=1, \ldots, m_{j}\right)$ denote the irreducible components of each analytic set $\lambda_{p,} \cap \Sigma(j=1, \ldots, l)$ in λ_{p}. By assumption, the union $\bigcup_{j=1}^{l} \bigcup_{k=1}^{m,} \pi_{u}\left(\Sigma_{j}^{k}\right) \subset \Gamma$
contains a as an interior point. Consequently, one of the sets $\left\{\pi_{u}\left(\Sigma_{j}^{k}\right)\right\}_{j . k} \subset \Gamma$, say $\pi_{u}\left(\Sigma_{j}^{k}\right)$, contains the point a in its interior.

For simplicity; we write $\Sigma_{j}^{k}=\Sigma_{0} . \lambda_{j}=\lambda_{0}$, and $p_{j}=p_{0}$. Thus $\pi_{u}\left(\Sigma_{0}\right)$ contains $a=\pi_{\mathrm{u}}\left(\mu_{1}\right)$ in its interior. We can find a sufficiently small polydisk $\lambda_{1}:=\delta_{1} \times \gamma_{1} \subset$ λ_{0} centered at p_{0} so that $\Sigma_{1}:=\lambda_{1} \cap \Sigma_{0}$ is an irreducible analytic set in λ_{1} with $\pi_{u}\left(\Sigma_{1}\right)=\gamma_{1}$. Clearly $\operatorname{dim} \Sigma_{1}=n+r$ for some $r \geq 0$. For each $w^{\prime} \in \gamma_{1}$, we let $\Sigma_{1}\left(w^{\prime}\right)$ be the section of Σ_{1} over the hyperplane $w=w^{\prime}$. Since $\pi_{w}\left(\Sigma_{1}\right)=\gamma_{1}$, we can use Proposition 2.3 to prove that $\operatorname{dim} \Sigma_{1}\left(w^{\prime}\right)$ is always greater than or equal to r and that there exist $w^{0} \in \gamma_{1}$ with $\operatorname{dim} \Sigma_{1}\left(w_{i}^{0}\right)=r$. Let $z^{\prime \prime}=\left(z_{1}^{0} \ldots \ldots, z_{n}^{0}\right)$ be a point in $\Sigma\left(w^{0}\right)$ at which $\operatorname{dim} \Sigma_{1}\left(w^{0}\right)$ equals r. Then we can find coordinates z_{1}, \ldots, z_{n} of \mathbf{C}^{n} such that the $(n-r)$-dinensional hyperplane H in $\mathbf{C}^{2 n}$ defined by

$$
H: u:=w^{0}, z_{1}=z_{1}^{0}, \ldots, z_{r}=z_{r}^{0}
$$

satisfies the condition that in a neighborhood of $\left(z^{0}, u^{0}\right)$ on H. the intersection $\Sigma_{1} \cap H$ consists of the single point (z^{0}, w^{0}). We can therefore find a sufficiently small polydisk $\lambda:=\delta \times \gamma$, where δ is an $(n+r)$-dimensional polydisk centered at ($w^{0}, z_{1}^{0} \ldots, z_{r}^{0}$) and γ is an ($n-r$)-dimensional polydisk centered at ($z_{r+1}^{0}, \ldots, z_{n}^{0}$). such that $\Sigma_{1} \cap \lambda$ can be described in the form

$$
z_{k}=\xi_{k}\left(u, z_{1}, \ldots, z_{r}\right) \quad(k=r+1, \ldots, n)
$$

for $\left(w, z_{1}, \ldots, z_{r}\right) \in \delta$, where each $\xi_{k}\left(w, z_{1} \ldots, z_{r}\right)$ is an algebraic function in δ. If we fix a nonsingular point $(w, z)=(\alpha, \beta)$ in $\Sigma_{1} \cap \lambda$, then we can find a smaller polydisk $\delta^{*} \subset \delta$ centered at ($\alpha, \beta_{1} \ldots, \beta_{r}$) in which each $\xi_{k}\left(u^{\prime}, z_{1}, \ldots . z_{r}\right)(k=$ $r+1 \ldots, n)$ is a single-valued holomorphic function.

We fix $|t| \ll 1$ and construct the holomorphic mapping $T_{t}: z^{\prime}=\Xi(t, w)$ from the n variables w near $w=\alpha$ to the n variables $z^{\prime}=\left(z_{1}^{\prime} \ldots, z_{n}^{\prime}\right)$ near $z^{\prime}=\alpha t+\beta$ by the formula

$$
\begin{array}{ll}
z_{j}^{\prime}=w_{j} t+\beta_{,} & (j=1, \ldots, r), \\
z_{k}^{\prime}=w_{k} t+\xi_{k}\left(w, \beta_{1}, \ldots, \beta_{r}\right) & (k=r+1, \ldots, n) .
\end{array}
$$

By the construction of Σ_{0}, we see that $f\left(z^{\prime}\right)=f(\equiv(t, w)) \equiv 0$ for all $\left(t, w^{\prime}\right)$ sufficiently close to ($0, \alpha$).

On the other hand, we see that the determinant of the Jacobian inatrix of T_{t}.

$$
\frac{\partial\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)}{\partial\left(w_{1}, \ldots, w_{n}\right)},
$$

is a monic polynomial in t whose coefficients are holomorphic functions of w near $w=\alpha$. Therefore, for some $|t| \ll 1 . T_{t}$ is a bijective map from a neighborhood of α in $\mathbf{C}_{w^{\prime}}^{n}$ onto a neighborhood ω of $\alpha t+\beta$ in $\mathbf{C}_{z^{\prime}}^{n}$. Hence $f\left(z^{\prime}\right) \equiv 0$ in ω, which contradicts the hypothesis that $f(z)$ is non-constant in D.
2.3.2. Hypersurface Case. Using Lemma 2.8. we can prove Theorem 2.3 in the hypersurface case.

Lemma 2.9. Let $D_{j}(j=1,2, \ldots)$ be a countable collection of domains in \mathbf{C}^{n} and let $f_{j}(z)$ be a holomorphic function in $D_{j}(j=1.2 \ldots)$. Let $S_{j}(j=$ $1,2, \ldots)$ denote the zero set of $f_{j}(z)$ in D_{j}. Given coordinates $\left(z_{1}, \ldots, z_{n}\right)$ of \mathbf{C}^{n}, there exist coordinates (w_{1}, \ldots, w_{n}) sufficiently close to ($z_{1} \ldots \ldots, z_{n}$) such that each hypersurface $S_{j}(j=1.2 \ldots)$ satisfies the Weierstrass condition in the coordinates $\left(w_{1}, \ldots, w_{n}\right)$ at each of its points.

Proof. Let \mathcal{L} be the set of all directions $w \in \Gamma$ such that for some $S_{j}(j=$ $1,2, \ldots$) and for some point $p \in S_{j}$, there is a neighborhood of p in D_{j} such that the portion of the complex line L with direction w passing through p lying in this neighborhood is contained in S_{j}.

Given any point p in one of the sets S_{j}, we consider a closed polydisk $\delta_{j, p}$ centered at p and contained in the domain D_{j}. We let $\mathcal{L}\left(\delta_{j, p}\right)$ denote the set of all directions $w \in \Gamma$ such that for some point $q \in \delta_{j, p} \cap S_{j}$, there is a neighborhood of q in D_{j} such that the portion of the complex line L with direction w passing through q lying in this neighborhood is contained in S_{j}. By Leinma 2.8. the set $\mathcal{L}\left(\delta_{j . p}\right)$ is a closed, nowhere dense subset of Γ. Note that $\bigcup_{j=1}^{x} S_{j}$ can be covered by a countable number of these sets $\delta_{J . p}$, say $\left\{\delta_{\nu}\right\}_{\nu=1.2 \ldots .}$, and thus $\mathcal{L}=\bigcup_{\nu=1}^{\infty} \mathcal{L}\left(\delta_{\nu}\right)$. By Baire's theorem, $\Gamma \backslash \mathcal{L}$ is dense in Γ; hence we can take a direction $w^{0} \in \Gamma \backslash \mathcal{L}$ which is as close as we please to the direction ($0, \ldots, 0,1$), say $w^{0}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, 1\right)$. If we consider the coordinate transformations $w_{i}=z_{i}-\varepsilon_{i} z_{n}(i=1, \ldots, n-1), w_{n}=z_{n}$. then the coordinates $\left(w_{1}, \ldots, u_{n}\right)$ satisfy the conditions of the lemma; i.e., each $S_{j}(j=1.2, \ldots)$ satisfies the Weierstrass condition in these coordinates at every point of S_{j}.
2.3.3. General Case of Analytic Sets. To prove Theorem 2.3 for general analytic sets we use induction on the dimension n of \mathbf{C}^{n}. For $n=1$ there is nothing to prove. We thus prove Theorem 2.3 in \mathbf{C}^{n} under the assumption that it is true in \mathbf{C}^{n-1}.

Fix one of the domains $D_{j}(j=1,2, \ldots)$. For each point $p \in \mathcal{E}_{j}$, we can find a neighborhood δ_{p} of p in \mathbf{C}^{n} and a finite number of holomorphic functions $f_{k}^{j}(z)\left(k=1, \ldots, \nu_{p}\right)$ such that $\delta_{p} \cap \mathcal{E}_{j}$ is given by the ν_{p} equations $f_{k}^{J}(z)=0(k=$ $1, \ldots, \nu_{p}$) in δ_{p}. Therefore we can find a countable number of such neighborhoods $\delta_{i}(i=1,2, \ldots)$ and holomorphic functions $f_{k}^{j}(z)\left(k=1 \ldots ., \nu_{i}\right)$ in δ_{i} such that the sets δ_{i} cover \mathcal{E}_{j}, i.e., $\mathcal{E}_{j} \subset \bigcup_{i=1}^{\infty} \delta_{i}$, and $\delta_{i} \cap \mathcal{E}_{j}=\left\{z \in \delta_{j} \mid f_{k}^{j}(z)=0\left(k=1, \ldots, \nu_{i}\right)\right\}$. For simplicity in notation, we write $\delta_{j}=D_{j}$; in other words, it suffices to prove the theorem under the assumption that each $\mathcal{E}_{j}(j=1.2, \ldots)$ is an analytic set in a domain $D_{j} \subset \mathbf{C}^{n}$ described by global functions in D_{j} : i.e..

$$
\mathcal{E}_{j}: f_{k}^{J}(z)=0 \quad\left(k=1, \ldots, \nu_{j}\right) \quad \text { in } D_{j}
$$

where each $f_{k}^{j}(z)\left(k=1, \ldots, \nu_{j}\right)$ is holomorphic in D_{j}.
For each $j=1,2, \ldots$, we choose one of the functions $f_{k}^{j}(z)\left(k=1, \ldots, \nu_{j}\right)$, say $f_{1}^{j}(z)$, and we let S, denote the zero set of $f_{1}^{j}(z)$ in D_{j}. Note that $\mathcal{E}_{j} \subset S_{j}$. From Lemma 2.9, we find coordinates $w=\left(w_{1} \ldots, w_{n}\right)$ sufficiently close to the original coordinates $z=\left(z_{1} \ldots \ldots z_{n}\right)$ such that each $S_{j}(j=1.2 \ldots)$ satisfies the Weierstrass condition for the coordinates w at any point p of S_{j}.

Fix $a \in S_{j}$. We can find a closed polydisk $\lambda=\delta \times \gamma$ centered at a in \mathbf{C}^{n}. where

$$
\delta:\left|w_{j}-a_{j}\right| \leq r_{j} \quad(j=1, \ldots, n-1), \quad \gamma:\left|w_{n}-a_{n}\right| \leq r_{n}
$$

such that $S_{j} \cap(\delta \times \partial \gamma)=\emptyset$. We let $S_{j .0}:=S_{j} \cap \lambda$ denote the zero set of $f_{1}^{J}(z)$ in λ. and we decompose $S_{j .0}$ into irreducible components $S_{j .0}:=\bigcup_{l=1}^{n,} S_{j .0}^{l}$ in λ. Setting $\mathcal{E}_{j .0}=\mathcal{E}_{j} \cap \lambda$, since $\mathcal{E}_{j .0} \subset S_{j .0}$, we have $\mathcal{E}_{j, 0} \cap(\delta \times \partial \gamma)=\emptyset$. From Proposition 2.3 it follows that the projection $\mathcal{E}_{j .0}^{*}$ of $\mathcal{E}_{j, 0}$ onto δ is an analytic set in $\delta \subset \mathbf{C}^{n-1}$.

We note that

$$
\mathcal{E}_{j, 0}=\bigcup_{l=1}^{n_{l}} \mathcal{E}_{j .0}^{l}, \quad \text { where } \quad \mathcal{E}_{j, 0}^{l}=\mathcal{E}_{j, 0} \cap S_{j, 0}^{l} .
$$

Thus, if $\mathcal{E}_{j, 0}^{*}=\delta$, we have $\mathcal{E}_{j, 0}^{l}=S_{j, 0}^{l}$ for sone l by the irreducibility of $S_{j, 0}^{l}$. We collect all such sets $\mathcal{E}_{j, 0}^{\prime}$ and denote their union by $\mathcal{E}_{j .0}^{\prime}$: i.e., $\mathcal{E}_{j .0}^{\prime}$ is the union of all the ($n-1$)-dimensional components (i.e., complex hypersurfaces) of the analytic set $\mathcal{E}_{j .0}$ in λ. Since $\mathcal{E}_{j .0}^{\prime} \subset S_{j .0}$, it follows from the construction of the coordinates $w=\left(w_{1}, \ldots, w_{n}\right)$ that $\mathcal{E}_{j .0}^{\prime}$ satisfies the Weierstrass condition in these coordinates at any point $p \in \mathcal{E}_{j .0}^{\prime}$. We let $\mathcal{F}_{j .0}$ denote the union of the other sets $\mathcal{E}_{j .0}^{\prime}$, so that $\mathcal{E}_{j, 0}=\mathcal{E}_{j .0}^{\prime} \cup \mathcal{F}_{j .0}$ and $\mathcal{F}_{j, 0}$ is an analytic set in λ of dimension at nost $n-2$. Thus the projection $\mathcal{F}_{j, 0}^{*}$ of $\mathcal{F}_{j, 0}$ onto δ is an analytic set in δ of dimension at most $n-2$.

Each $S_{j}(j=1,2, \ldots)$ can be covered by a countable number of closed polydisks λ as above; we denote these polydisks by

$$
\lambda_{j . k}=\delta_{j . k} \times \gamma_{j, k} \subset \mathbf{C}^{n-1} \times \mathbf{C}_{u_{n}} \quad(j, k=1,2 \ldots)
$$

We set $\mathcal{E}_{j . k}:=\mathcal{E}_{j} \cap \lambda_{j . k}$ and $S_{j} \cap \lambda_{j . k}:=\bigcup_{l=1}^{n, k} S_{j . k}^{l}$, the decomposition of S_{j} into irreducible components. Then we have

$$
\mathcal{E}_{J, k}=\bigcup_{l=1}^{n_{J . k}}\left(\mathcal{E}_{j, k} \cap S_{j . k}^{l}\right) \equiv \bigcup_{l=1}^{n_{J . k}} \mathcal{E}_{J . k}^{l}
$$

We let $\mathcal{F}_{j . k}$ denote the union of the analytic sets $\mathcal{E}_{j, k}^{l}$ having dimension at most $n-2$. Then the projection $\mathcal{F}_{j . k}^{*}$ of $\mathcal{F}_{j . k}$ onto $\delta_{j . k}$ is an analytic set in $\delta_{j . k} \subset \mathbf{C}^{n-1}$ of dimension at most $n-2$.

Thus in \mathbf{C}^{n-1} with the $n-1$ variables $w_{1} \ldots, u_{n-1}$, we have a countable collection of polydisks $\delta_{j . k}(j, k=1,2, \ldots)$ and analytic sets $\mathcal{F}_{j . k}^{*}$ in each $\delta_{j . k}$ having dimension at most $n-2$. It follows from the inductive hypothesis that there exist coordinates $u^{\prime}=\left(u_{1}, \ldots, u_{n-1}\right)$ obtained by a linear transformation of $w^{\prime}=\left(w_{1}, \ldots, w_{n-1}\right)$ and sufficiently close to w^{\prime} such that each $\mathcal{F}_{j . k}^{*}(j, k=1,2, \ldots)$ satisfies the Weierstrass condition in the u^{\prime} coordinates at any point q of $\mathcal{F}_{j . k}^{*}$. Thus, since $\mathcal{F}_{j, k} \cap\left(\delta_{j . k} \times \partial \gamma_{j, k}\right)=0$, each $\mathcal{F}_{j, k}$ itself necessarily satisfies the Weierstrass condition in the coordinates $u=\left(u^{\prime}, w_{n}\right)$ for \mathbf{C}^{n} at each point $p \in \mathcal{F}_{j, k}$.

Theorem 2.3 will be used in the next section to investigate the global structure of analytic sets.

2.4. Analytic Sets (Global)

2.4.1. Global Irreducible Decomposition of Analytic Sets. Let \mathcal{E} be an analytic set in a domain D in \mathbf{C}^{n}. From Theorem 2.3. we can find coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$ for which the analytic set \mathcal{E} satisfies the Weierstrass condition at each of its points. At each point $a=\left(a_{1}, \ldots . a_{n}\right) \in \mathcal{E}$, we take a Weierstrass canonical neighborhood δ_{a} of \mathcal{E} in these coordinates. Then \mathcal{E} can be covered by a countable number of such neighborhoods, which we denote by

$$
\delta_{k}:\left|z_{j}-a_{j}^{k}\right| \leq r_{j}^{k} \quad(j=1, \ldots, n ; k=1,2 \ldots)
$$

We set $\mathcal{E}_{k}:=\mathcal{E} \cap \delta_{k}(k=1,2, \ldots)$. and we consider the irreducible decomposition of ε_{k} in δ_{k} :

$$
\mathcal{E}_{k}=\bigcup_{\nu=1}^{l_{k}} \mathcal{E}_{k, \nu .}
$$

Each $\mathcal{E}_{k, \nu}$ is called a local irreducible component of \mathcal{E}_{k} in δ_{k}. If $\operatorname{dim} \mathcal{E}_{k, \nu}=r$, then $\mathcal{E}_{k, \nu}$ coincides with a locally algebraic analytic set in δ_{k} having parameters z_{1}, \ldots, z_{r}; i.e.,

$$
\left(z_{r+1} \ldots, z_{n}\right)=\eta_{k, \nu}\left(z_{1}, \ldots, z_{r}\right) \quad \text { in } \pi_{r}\left(\delta_{k}\right)
$$

where $\pi_{r}\left(\delta_{k}\right)$ is the projection of δ_{k} onto the first r variables z_{1}, \ldots, z_{r}; i.e.,

$$
\pi_{r}\left(\delta_{k}\right):\left|z_{j}-a_{j}^{k}\right| \leq r_{j}^{k} \quad(j=1, \ldots, r)
$$

and $\eta_{k . \nu}\left(z_{1}, \ldots, z_{r}\right):=\eta_{k . \nu}\left(z^{\prime}\right)$ is a vector-valued algebraic function on $\pi_{r}\left(\delta_{k}\right)$. Let L be an arc in \mathbf{C}^{r} with initial point $\pi_{r}\left(a^{k}\right)$ and terminal point b^{\prime}. If $\eta_{k, \nu}\left(z^{\prime}\right)$ can be analytically continued along L (we use the same notation $\eta_{k, \nu}\left(z^{\prime}\right)$ to denote the algebraic vector-valued function thus obtained) and if $\left(z^{\prime}, \eta_{k, \nu}\left(z^{\prime}\right)\right) \in D$ for any $z^{\prime} \in L$, then $\left(z^{\prime}, \eta_{k . \nu}\left(z^{\prime}\right)\right) \in \mathcal{E}$. Conversely. if $\left(z^{\prime}, \eta_{k . \nu}\left(z^{\prime}\right)\right)$ is contained in \mathcal{E} for $z^{\prime} \in L$, then analytic continuation of $\eta_{k, \nu}\left(z^{\prime}\right)$ is possible along L.

We next separate all local irreducible components $\left\{\mathcal{E}_{k . \nu}\right\}$ into subclasses. Two local irreducible components $\mathcal{E}_{k . \nu}$ in δ_{k} and $\mathcal{E}_{h, \mu}$ in δ_{h} will belong to the same class if both (I) and (II) are satisfied:
(I) $\operatorname{dim} \mathcal{E}_{k, \nu}=\operatorname{dim} \mathcal{E}_{h, \mu}=r$.
(II) Letting $\eta_{k, \nu}\left(z^{\prime}\right)$ and $\eta_{h . \mu}\left(z^{\prime}\right)$ denote the vector-valued algebraic functions defined on $\pi_{r}\left(\delta_{k}\right)$ and $\pi_{r}\left(\delta_{h}\right)$ which represent $\mathcal{E}_{h, \nu}$ and $\mathcal{E}_{h . \mu}$, there exists an arc L in \mathbf{C}^{r} starting from $\pi_{r}\left(a^{k}\right)$ and ending at $\pi_{r}\left(a^{h}\right)$ such that
(a) $\eta_{k, \nu}\left(z^{\prime}\right)$ can be analytically continued along the arc L and coincides with $\eta_{h, \mu}\left(z^{\prime}\right)$ at the terminal point $\pi_{r}\left(a^{h}\right)$;
(b) if $\eta_{k, \nu}\left(z^{\prime}\right)$ denotes the analytic continuation of $\eta_{k, \nu}\left(z^{\prime}\right)$ along L, then the set $\left\{\left(z^{\prime}, \eta_{k . \nu}\left(z^{\prime}\right)\right) \in \mathbf{C}^{n} \mid z^{\prime} \in L\right\}$ is contained in the domain D.

It is clear that the classification of the components $\left\{\mathcal{E}_{k, \nu}\right\}_{k, \nu}$ is well-defined and there exist at most countably many subclasses, denoted $\mathcal{H}^{\iota}(\iota=1,2, \ldots)$.

Let \mathcal{E}^{ι} denote the union of all local irreducible components $\mathcal{E}_{k . \nu}$ belonging to the class \mathcal{H}^{ι}. Then \mathcal{E}^{ι} is an analytic set in D. Note that if \mathcal{F} is an analytic set in D with dimension r which contains one of the sets $\mathcal{E}_{k, \nu}$ in \mathcal{H}^{\prime}, then \mathcal{F} necessarily contains the entire analytic set \mathcal{E}^{ι} by the theorem on invariance of analytic relations under analytic continuation. Thus \mathcal{E}^{ι} is irreducible in D.

We summarize this discussion in the following theorem.
TheOrem 2.4. An analytic set \mathcal{E} in a domain D in $\mathbf{C}^{\boldsymbol{n}}$ can be decomposed into an at most countable union of irreducible analytic sets $\left\{\mathcal{E}^{\iota}\right\}(\iota=1,2, \ldots)$ in D. Furthermore, there exist coordinates z_{1}, \ldots, z_{n} such that each irreducible component \mathcal{E}^{\prime} of dimension r can be uritten locally in the form

$$
\left(z_{r+1}, \ldots, z_{n}\right)=\eta\left(z_{1}, \ldots, z_{r}\right)
$$

where $\eta\left(z_{1}, \ldots, z_{r}\right)$ is a vector-valued algebraic function.
2.4.2. Analytic Continuation of Analytic Sets. We discuss the notion of analytic continuation of analytic sets. Let D_{1} and D_{2} be two domains in \mathbf{C}^{n} such that $D_{1} \cap D_{2} \neq 0$. Let \mathcal{E}_{1} be an analytic set in D_{1}. If there exists an analytic set \mathcal{E}_{2} in D_{2} such that

$$
\mathcal{E}_{1} \cap D_{1} \cap D_{2}=\mathcal{E}_{2} \cap D_{1} \cap D_{2}
$$

then there exists a smallest such \mathcal{E}_{2}. We denote this set by \mathcal{E}_{2}^{0} and we call \mathcal{E}_{2}^{0} the analytic continuation of \mathcal{E}_{1} into the domain D_{2}. In the case when $\mathcal{E}_{1} \cap D_{1} \cap D_{2}=$ \emptyset. we can take $\mathcal{E}_{2}=\emptyset$ to see that \mathcal{E}_{1} can be analytically continued into D_{2}.

Remark 2.11. In the definition of analytic continuation of \mathcal{E}_{1} into D_{2}, it is essential to use the smallest set \mathcal{E}_{2}. For example, in \mathbf{C}^{2} with variables z and u, we consider the polydisks

$$
\Delta_{1}:|z|<2 . \quad|u|<1, \quad \text { and } \quad \Delta_{2}:|z-3|<2, \quad|u|<1
$$

We set $\mathcal{E}_{1}:=\{w=0\} \cap \Delta_{1}$ and $\mathcal{E}_{2}:=\{w(z-3)=0\} \cap \Delta_{2}$. Then \mathcal{E}_{1} and \mathcal{E}_{2} are analytic sets in Δ_{1} and Δ_{2} with $\mathcal{E}_{1} \cap \Delta_{1} \cap \Delta_{2}=\mathcal{E}_{2} \cap \Delta_{1} \cap \Delta_{2}$. The analytic set \mathcal{E}_{1} can be analytically continued into Δ_{2}; the minimal set \mathcal{E}_{2}^{0} is $\{w=0\} \cap \Delta_{2}$.

Let $p \in \partial D_{1}$. If there exists a neighborhood δ of p in \mathbf{C}^{n} such that \mathcal{E}_{1} in D_{1} can be analytically continued into δ. then we say that \mathcal{E}_{1} can be analytically continued at the boundary point p.

Remark 2.12. Let L be an arc in \mathbf{C}^{n} connecting the points p and q and let \mathcal{E} be an analytic set at the point p. By the remark above, we can define the notion of (possible) analytic continuation of \mathcal{E} along L from p to q. However, even if \mathcal{E} can be analytically continued along all arcs in a doinain D in \mathbf{C}^{n} which start from a point p, the set $\widetilde{\mathcal{E}}$ obtained from all such analytic continuations is not necessarily an analytic set in D. For example. let $a, 3, \gamma$ be three complex numbers such that the set of all complex numbers of the form

$$
l \alpha+m \beta+n \gamma \quad(l, m . n=0, \pm 1 . \pm 2 \ldots)
$$

is dense in the complex plane C. In C^{2} with variables z and u, we set $D:=$ $\left(C_{z} \backslash\{0,1,-1\}\right) \times C_{u}$, and we consider the analytic set \mathcal{E} given by the singlevalued function $w=a \log z+j \log (z-1)+\gamma \log (z+1)$ in a neighborhood of the point $p=(2, \alpha \log 2+\gamma \log 3)$ in D. Then the set $\tilde{\mathcal{E}}$ obtained from analytic continuation of \mathcal{E} along all arcs in D starting at p coincides with the graph of the multiple-valued function

$$
u=a \log z+\beta \log (z-1)+\gamma \log (z+1)
$$

in D. Thus $\tilde{\mathcal{E}}$ is dense in D and hence is not an analytic set at any point of D.
2.4.3. Removability Theorem for Analytic Sets. Let \mathcal{E} be an analytic set in a domain D in \mathbf{C}^{n}. If a boundary point p of D is an accumulation point of \mathcal{E}, then p is called a singular point of \mathcal{E}. As with holomorphic functions, a singular point p of \mathcal{E} may be removable; i.e., there may exist a neighborhood V of p in $\mathbf{C}^{\boldsymbol{n}}$ and an analytic set $\tilde{\mathcal{E}}$ in V such that $\mathcal{E} \cap V=\tilde{\mathcal{E}} \cap D$.

Given an analytic set \mathcal{E} in a domain D in C^{n}, we let d be the largest dimension of the irreducible components of \mathcal{E}. We set $D^{\prime}=D \backslash \mathcal{E}$ and let \mathcal{F} be an analytic set in the domain D^{\prime}. Let r be the smallest dimension of the irreducible components of \mathcal{F}.

We have the following removability theorem for analytic sets.
Theorem 2.5. If $d<r$, then \mathcal{F} can be analytically continued to all points of \mathcal{E}; i.e., the closure $\overline{\mathcal{F}}$ of \mathcal{F} in D is an analytic set in D.

Proof. We may assume that \mathcal{E} and \mathcal{F} are of pure dimension d and r. We first choose coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$ of $\mathbf{C}^{\boldsymbol{n}}$ for which the analytic sets \mathcal{E} and
\mathcal{F} satisfy the Weierstrass condition at each point. Thus \mathcal{E} and \mathcal{F} can be written locally as

$$
\begin{array}{lc}
\mathcal{E}: z_{j}=\eta_{j}\left(z_{1} \ldots \ldots, z_{d}\right) & (j=d+1 \ldots \ldots, n), \\
\mathcal{F}: z_{k}=\xi_{k}\left(z_{1} \ldots \ldots, z_{r}\right) & (k=r+1 \ldots, n) .
\end{array}
$$

We fix a point $a=\left(a_{1}, \ldots, a_{n}\right)$ of \mathcal{E} : then we set $a^{\prime}:=\left(a_{1}, \ldots, a_{r}\right)$ and we denote by $D\left(a^{\prime}\right), \mathcal{E}\left(a^{\prime}\right), \mathcal{F}\left(a^{\prime}\right) \subset \mathbf{C}^{n-r}$ the sections of $D, \mathcal{E}, \mathcal{F}$ over the hyperplane $z_{\mathcal{J}}=$ $a_{j}(j=1, \ldots, r)$ in \mathbf{C}^{n}. We note that $\mathcal{E}\left(a^{\prime}\right)$ is an isolated set in $D\left(a^{\prime}\right)$. Since $\mathcal{F}\left(a^{\prime}\right)$ is analytic in $D\left(a^{\prime}\right) \backslash \mathcal{E}\left(a^{\prime}\right), \mathcal{F}\left(a^{\prime}\right)$ is an isolated set in $D\left(a^{\prime}\right) \backslash \mathcal{E}\left(a^{\prime}\right)$. but it may have accumulation points in $\mathcal{E}\left(a^{\prime}\right)$.

We can thus find a neighborhood V^{\prime} of $a^{\prime \prime}=\left(a_{r+1}, \ldots, a_{n}\right)$ in $D\left(a^{\prime}\right)$ such that $V^{\prime} \cap \mathcal{E}\left(a^{\prime}\right)$ consists of the single point $a^{\prime \prime} ;$ and we take a closed polydisk Γ in \mathbf{C}^{n-r} (with coordinates $\left.z_{r+1}, \ldots, z_{n}\right)$ centered at $a^{\prime \prime}$ and with radius $\rho_{k}(k=r+1 \ldots, n)$,

$$
\Gamma:\left|z_{k}-a_{k}\right| \leq \rho_{k} \quad(k=r+1, \ldots, n)
$$

where the ρ_{k} are chosen sufficiently small so that $\partial \Gamma \cap\left(\mathcal{E}\left(a^{\prime}\right) \cup \mathcal{F}\left(a^{\prime}\right)\right)=\emptyset$. We next take a closed polydisk Δ in C^{r} (with coordinates $\left(z_{1}, \ldots, z_{r}\right)$) centered at a^{\prime} with radius $\rho_{j}(j=1, \ldots, r)$.

$$
\Delta:\left|z,-a_{j}\right| \leq \rho_{j} \quad(j=1, \ldots . r)
$$

where the ρ_{j} are chosen sufficiently small so that $\Lambda:=\Delta \times \Gamma \subset D$ and $(\Delta \times \partial \Gamma) \cap$ $(\mathcal{E} \cup \mathcal{F})=\mathfrak{0}$. These choices are possible because \mathcal{E} is analytic at a and \mathcal{F} is closed in $D \backslash \mathcal{E}$. We set $\mathcal{E}^{0}:=\mathcal{E} \cap \Lambda$ and $\mathcal{F}^{0}:=\mathcal{F} \cap \Lambda$. Then Theorem 2.3 implies that the projection \mathcal{E}^{\prime} of \mathcal{E}^{0} onto Δ is an analytic set in Δ and the dimension of \mathcal{E}^{\prime} is d. From the assumption that $r>d$, it follows that the set $\Delta^{\prime}:=\Delta-\mathcal{E}^{\prime}$ is a non-empty domain in \mathbf{C}^{r} and that $\mathcal{F} \cap\left(\Delta^{\prime} \times \Gamma\right)$ is an analytic set in $\Delta^{\prime} \times \Gamma$.

Now let $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{r}^{\prime}\right) \in \Delta^{\prime}$. The section $\mathcal{F}^{0}\left(z^{\prime}\right)$ of \mathcal{F}^{0} over the hyperplane $z_{j}=z_{j}^{\prime}(j=1, \ldots, r)$ is a finite set; we denote its cardinality by $\zeta\left(z^{\prime}\right)$. The nonnegative integer-valued function $\zeta\left(z^{\prime}\right)$ is easily seen to be a lowersemicontinuous function of z^{\prime} in Δ^{\prime}.

Let ν be any nonnegative integer, and let e_{ν} be the set of all points $z^{\prime} \in \Delta^{\prime}$ such that $\zeta\left(z^{\prime}\right) \leq \nu$. By the lowersemicontinuity of $\zeta(z), e_{\nu}$ is a closed set in Δ^{\prime}. and clearly

$$
e_{\nu} \subset e_{\nu+1} \quad(\nu=1,2 \ldots) . \quad \Delta^{\prime}=\bigcup_{\nu=1}^{\infty} e_{\nu}
$$

It follows from Baire's theorem that some e_{ν} contains interior points in Δ^{\prime}. We let ν_{0} be the smallest integer ν such that e_{2}, contains at least one interior point. Let $e_{\nu_{0}}^{i}$ denote the interior of $e_{\nu_{0}}$ in Δ^{\prime}; then we shall prove that

$$
\begin{equation*}
\Delta^{\prime}=e_{\nu_{0}} \tag{2.8}
\end{equation*}
$$

We prove (2.8) by contradiction. If (2.8) is false. then there exists a point $b^{\prime} \in$ $\Delta^{\prime} \cap \partial e_{\nu_{0}}^{i}$, where $\partial e_{\nu_{0}}^{i}$ denotes the boundary of $e_{\nu_{0}}^{i}$ in Δ^{\prime}. Since $e_{\nu_{0}}$ is a closed set in Δ^{\prime}, the section $\mathcal{F}^{0}\left(b^{\prime}\right)$ of \mathcal{F}^{0} over $z^{\prime}=b^{\prime}$ consists of at most ν_{0} points in Γ. Since $\operatorname{dim} \mathcal{F}=r$, we can thus find a neighborhood δ of b^{\prime} in Δ^{\prime} such that $\mathcal{F}^{0} \cap(\delta \times \Gamma)$ coincides with a finite number of locally algebraic analytic sets in $\delta \times \Gamma$ with parameters z_{1}, \ldots, z_{r} in $\delta: z_{k}=\eta_{k}\left(z_{1}, \ldots, z_{r}\right)(k=r+1, \ldots, n)$. Consequently, given any point $c^{\prime} \in \delta$, the number $\zeta\left(c^{\prime}\right)$ of points of the section $\mathcal{F}^{0}\left(c^{\prime}\right) \subset \Gamma$ of \mathcal{F}^{0} over the hyperplane $z^{\prime}=c^{\prime}$ remains constant, say ζ_{0}. except perhaps for points c^{\prime} belonging to an (at most) $(r-1)$-dimensional analytic set σ in
δ. Since $(\delta \backslash \sigma) \cap e_{\nu_{0}}^{i} \neq 0$, we have $\zeta_{0} \leq \nu_{0}$. Hence $\delta \subset e_{\nu_{0}}$, which is a contradiction; and (2.8) is proved.

Since $\mathcal{F} \cap\left(\Delta^{\prime} \times \Gamma\right)$ is an analytic set in $\Delta^{\prime} \times \Gamma$ with $\Delta^{\prime} \cap \partial \Gamma=\emptyset$. it follows that $\zeta\left(z^{\prime}\right)=\nu_{0}$ for each $z^{\prime} \in \Delta^{\prime}$ except perhaps for an analytic set in Δ^{\prime} of dimension at most $r-1$.

Using the same technique as in the proof of Proposition 2.1. we see that $\mathcal{F}^{0} \cap$ ($\Delta^{\prime} \times \Gamma$) consists of a finite number of irreducible components of complete, algebraic analytic sets Σ^{\prime} defined by

$$
\begin{equation*}
z_{k}^{\nu_{k}}+A_{1}^{k}\left(z^{\prime}\right) z_{k}^{\nu_{k}-1}+\ldots+A_{\nu_{k}}^{k}\left(z^{\prime}\right)=0(k=r+1 \ldots, n) \tag{2.9}
\end{equation*}
$$

where $\nu_{k} \leq \nu_{0}$ and each $A_{l}^{k}\left(z^{\prime}\right)\left(l=1 \ldots . \nu_{k}\right)$ is a bounded, single-valued holomorphic function in Δ^{\prime}. By the Riemann removable singularity theorem for holomorphic functions, each $A_{k}^{\prime}\left(z^{\prime}\right)$ can be holomorphically extended to all of Δ. Thus. (2.9) defines a complete, algebraic analytic set Σ in Λ, and Σ equals the closure $\overline{\Sigma^{\prime}}$ of Σ^{\prime} in Λ. Therefore, the closure $\overline{\mathcal{F}^{0}}$ of \mathcal{F}^{0} in Λ is an analytic set in Λ, and the theorem is proved.

2.5. Projections of Analytic Sets in Projective Space

Since the notion of analytic sets is local. we can define an analytic set in a domain G of n-dimensional complex projective space \mathbf{P}^{n} or in a product space of the form $D \times \mathbf{P}^{n}$, where D is a domain in \mathbf{C}^{m}. The dimension of such an analytic set \mathcal{E} in G and the irreducible decomposition of \mathcal{E} in G are defined as in the case of an analytic set in a domain of \mathbf{C}^{n}.

Let D be a domain in \mathbf{C}^{m} and consider the product domain $\Omega:=D \times \mathbf{P}^{n}$. In this section we study analytic sets \mathcal{E} in Ω.

We take coordinates $u=\left(u_{1}, \ldots, u_{m}\right)$ of \mathbf{C}^{m} and homogeneous coordinates $[z]=\left[z_{0}: z_{1}: \ldots: z_{n}\right]$ of \mathbf{P}^{n}. We let π_{1} and π_{2} denote the projections from $\Omega=D \times \mathbf{P}^{n}$ onto D and \mathbf{P}^{n}. Let \mathcal{E} be an analytic set in Ω and let e be a subset of D. We set

$$
\mathcal{E}(e):=\pi_{1}^{-1}(e) \cap \mathcal{E} .
$$

In the special case when e is a single point u^{\prime} of D, the set $\mathcal{E}\left(u^{\prime}\right)$ can be regarded as an analytic set in $\mathbf{P}^{\mathbf{n}}$. Then $\mathcal{E}\left(u^{\prime}\right)$ consists of a finite number of irreducible compact analytic sets in $\mathbf{P}^{\mathbf{n}}$. We use the notation

$$
d\left(u^{\prime}\right):=\operatorname{dim} \mathcal{E}\left(u^{\prime}\right)
$$

for the maximal dimension of the irreducible components of $\mathcal{E}\left(u^{\prime}\right)$.
2.5.1. Chow's Theorem. We begin by proving a slight generalization of Chow's theorem, which says that an analytic set in \mathbf{P}^{n} must be algebraic. To define this notion, let $[z]=\left[z_{0}: z_{1}: \ldots: z_{n}\right]$ be homogeneous coordinates of \mathbf{P}^{n} and let $P_{k}(z)(k=1, \ldots, \mu)$ be a homogeneous polynomial in the coordinates $z=\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ of \mathbf{C}^{n+1}. Then the set of all points z of \mathbf{C}^{n+1} defined by the m equations

$$
P_{k}(z)=0 \quad(k=1, \ldots, \mu)
$$

canonically defines an analytic set in P^{n} which we call an algebraic set in $P^{n} .{ }^{3}$

[^5]THEOREM 2.6. Let \mathcal{E} be an analytic set of dimension $\rho \geq 1$ in $\Omega=D \times \mathbf{P}^{n}$ whose projection to D is non-empty. Let u^{0} be any point in D. Then there exists a neighborhood δ of $u^{i \prime}$ in D such that $\mathcal{E}(\delta)=\mathcal{E} \cap\left(\delta \times \mathbf{P}^{n}\right)$ can be uritten as the common zero set of a finite number of holomorphic functions $P_{k}(u, z)(k=$ $1, \ldots, \mu)$. where each $P_{k}(u, z)$ is a homogeneous polynomial of degres m_{k} in the coordinates z of \mathbf{C}^{n+1} whose coefficients are holomorphic functions of u in δ :

$$
\begin{equation*}
P_{k}(u, z)=\sum_{i j=m_{k}} A_{k}^{(j)}(u) z_{0}^{j u} z_{1}^{3_{1}} \cdots z_{n}^{j_{n}}, \tag{2.10}
\end{equation*}
$$

where $\mathbf{j}=\left(j_{0}, j_{1} \ldots, j_{n}\right)$ and $|j|=\sum_{l=0}^{n} j_{l}$.
Proof. We may assume that \mathcal{E} is a p-dimensional irreducible analytic set in Ω. Let $z=\left(z_{0}, z_{1} \ldots \ldots, z_{n}\right)$ be coordinates for \mathbf{C}^{n+1}. For convenience we write $\left(\mathbf{C}^{n+1}\right)^{*}=\mathbf{C}^{n+1} \backslash\{0\}$. Any point $z \in\left(\mathbf{C}^{n+1}\right)^{*}$ corresponds to a point $[z] \in \mathbf{P}^{n}$. To the analytic set \mathcal{E} in Ω, we associate the set \mathcal{E}_{0} in the product space $D \times\left(C^{n+1}\right)^{\text {• }}$ defined as

$$
\begin{equation*}
\mathcal{E}_{0}:=\left\{(u . z) \in D \times\left(\mathbf{C}^{n+1}\right)^{*} \mid(u .[z]) \in \mathcal{E}\right\} \tag{2.11}
\end{equation*}
$$

which will be called the associated set for \mathcal{E}. Since $\left[z^{\prime}\right]=[z]$ in \mathbf{P}^{n} if and only if $z^{\prime}=t z$ for some $t \neq 0$ in \mathbf{C}, it follows that the set \mathcal{E}_{0} is a cone and is a $(\rho+1)$ dimensional analytic set in $D \times\left(C^{n+1}\right)^{*}$. We first show that \mathcal{E}_{0} is analytically extendable to the the set $D \times\{0\}$. i.e., the closure $\overline{\mathcal{E}_{0}}$ of \mathcal{E}_{0} in the product space $\widetilde{\Omega}:=D \times \mathbf{C}^{n+1}$ is a $(\rho+1)$-dimensional analytic set in $\widetilde{\Omega}$.

Case 1: $\rho \geq m$. Since $\operatorname{dim} \mathcal{E}_{0}=\rho+1>m=\operatorname{dim}(D \times\{0\})$. it follows from Theorem 2.5 that $\overline{\mathcal{E}_{0}}$ is analytic in $\tilde{\Omega}$. In this case, let $u_{0} \in D$. Since $\overline{\mathcal{E}_{0}}$ is analytic at the point $\left(u_{0}, 0\right)$, we can find a polydisk $\lambda:=\delta \times \gamma$ centered at $\left(u_{0}, 0\right)$ in $D \times C^{n+1}$ and a finite number of holomorphic functions $g_{h}(u, z)(h=1, \ldots, \nu)$ in λ such that

$$
\overline{\mathcal{E}_{0}} \cap \lambda=\left\{(u, z) \in \lambda \mid g_{h}(u, z)=0(h=1, \ldots, \nu)\right\}
$$

We develop each $g_{h}(u, z)$ into a Taylor series with respect to the variables $z \in \gamma$ and we rearrange this series into a series of homogeneous polynomials in z_{1}, \ldots, z_{n},

$$
g_{h}(u . z):=\sum_{k=0}^{\infty}\left\{\sum_{l_{0}+\cdots+l_{n}=k}\left(A_{h}\right)_{k}^{l}(u) z_{0}^{l_{0}} z_{1}^{l_{1}} \cdots z_{n}^{l_{n}}\right\} .
$$

where each $\left(A_{h}\right)_{k}^{l}(u)\left(1 \leq l \leq \nu_{k}:=\binom{n+k}{k}\right)$ is a holomorphic function in δ. Fix (u, z) in $\overline{\mathcal{E}_{0}}$. Since $(u, t z) \in \overline{\mathcal{E}_{0}}$ for all $t \in \mathbf{C}$, in particular, we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} t^{k}\left\{\sum_{l_{0}+\cdots+l_{n}=k}\left(A_{h}\right)_{k}^{l}(u) z_{0}^{l_{0}} z_{1}^{l_{1}} \cdots z_{n}^{l_{n}}\right\} \equiv 0 \quad \text { in }|t|<1 \tag{2.12}
\end{equation*}
$$

We let $\sum_{k=0}^{x} t^{k}\left(P_{h}\right)_{k}(u, z)$ denote the function on the left-hand side of (2.12); thus $\left(P_{h}\right)_{k}(u, z)(h=1, \ldots . \nu: k=0,1 \ldots)$ is a homogeneous polynomial of degree k in $z \in \mathbf{C}^{n+1}$ whose coefficients are holomorphic functions of $u \in \delta$. It follows from (2.12) that

$$
\overline{\mathcal{E}_{0}} \cap\left(\delta \times \mathbf{C}^{n+1}\right)=\bigcap_{h=1}^{\nu} \bigcap_{k=0}^{\infty}\left\{(u . z) \in \delta \times \mathbf{C}^{n+1} \mid\left(P_{h}\right)_{k}(u, z)=0\right\}
$$

Using Corollary 2.1, the theorem is proved in case 1.

Case 2: $\rho<m$. We set $q=m-\rho \geq 1$ and we use variables $u^{\prime}=\left(u_{j}, \ldots . u_{q}\right) \in$ C^{q} and $z=\left(z_{0}, z_{1}, \ldots, z_{n}\right) \in C^{n+1}$. We form the set

$$
\mathcal{F}=\left\{(u,[z: w]) \in D \times \mathbf{P}^{n+q} \mid(u,[z]) \in \mathcal{E} . \quad u \in \mathbf{C}^{q}\right\}
$$

so that \mathcal{F} is an $m=(\rho+q)$-dimensional irreducible analytic set in $D \times \mathbf{P}^{n+q}$. Just as \mathcal{E} gave rise to \mathcal{E}_{0} via (2.11), \mathcal{F} gives rise to the ($m+1$)-dinnensional analytic set \mathcal{F}_{0} in $D \times\left(\mathbf{C}^{n+\eta+1}\right)^{*}$.

Let $u_{0} \in D$. Applying case 1 for \mathcal{F}. we can find a neighborhood δ of u_{0} in D and a finite number of homogeneaus polynomials $G_{h}(u, z, w)(h=1 \ldots, v)$ of degree m_{h} in $(z, w) \in \mathbf{C}^{n+q+1}$ whose coefficients are holomorphic functions of $u \in \delta$.

$$
G_{h}(u, z, w)=\sum_{i j_{1} \mid+i j_{21}=m_{h}} A_{h}^{\left.j_{1} J_{2}\right\}}(u) z^{j_{1}} w^{j_{2}} \quad(h=1, \ldots, \nu)
$$

such that

$$
\overline{\mathcal{F}_{0}}(\delta)=\left\{(u, z, u) \in \delta \times \mathbf{C}^{n+q+1} \mid G_{h}(u, z, u)=0(h=1, \ldots, \nu)\right\} .
$$

If we rearrange the sum

$$
G_{h}(u, z, w)=\sum_{s=0}^{m_{h}}\left(\sum_{|k|=s}\left(B_{h}\right)_{s}^{(k)}(u, z) u_{1}^{k_{1}} \cdots u_{4}^{k_{4}}\right)
$$

where $\mathbf{k}=\left(k_{1}, \ldots, k_{q}\right)$, then each $\left(B_{h}\right)_{s}^{(k)}(u, z)$ is a homogeneous polynomial of degree $m_{h}-s$ in the coordinates $z \in C^{n+1}$ whose coefficients are holomorphic functions of $u \in \delta$. Since ($u,[z]) \in \mathcal{E}(\delta)$ if and only if $(u . \mid z: u]) \in \mathcal{F}(\delta)$ for all $w \in \mathbf{C}^{\boldsymbol{q}}$ (or, equivalently, $(u, z) \in \overline{\mathcal{E}_{0}}(\delta)$ if and only if $\left.(u, z, u) \in \overline{\mathcal{F}_{0}}(\delta)\right)$. it follows that

$$
\overline{\mathcal{E}_{0}}(\delta)=\bigcap_{h=1}^{\nu} \bigcap_{s=0}^{m_{n}}\left\{(u, z) \in \delta \times C^{n+1} \mid\left(B_{h}\right)_{s}^{(k)}(u . z)=0 . \text { where }|\mathbf{k}|=s\right\}
$$

This proves the theorem in case 2.
Corollary 2.2. Under the same notation as in Theorem 2.6, the set $e_{n}^{0}:=$ $\{u \in \delta \mid d(u)=n\}$ is an analytic set in δ.

Indeed, using the notation in (2.10), we have

$$
e_{n}^{0}=\left\{u \in \delta \mid A_{k}^{(j)}(u)=0 \text { for all } k \text { and } j\right\}
$$

which proves the corollary:
2.5.2. Projection. Given an integer s with $0 \leq s \leq n$, we consider the following two projective subspaces of $\mathbf{P}^{\mathbf{n}}$:

$$
\begin{array}{clll}
\mathcal{K}^{*} & : & z_{k}=0 & (k=s+1, \ldots, n) \\
\mathcal{H}_{n-s-1} & : & z_{h}=0 & (h=0,1, \ldots, s)
\end{array}
$$

so that $\mathcal{K}^{s} \cap \mathcal{H}_{n-n-1}=\emptyset$. For convenience, we set $\mathcal{H}_{-1}=0$. To each point $[z]=\left[z_{0}: \ldots: z_{n}\right] \in \mathbf{P}^{n} \backslash H_{n-x-1}$ we associate the point $[z]_{s}=\left\{z_{1}: \ldots: z_{A}: 0\right.$: $\ldots: 0] \in \mathcal{K}^{N}$. We write $[z]_{s}:=\left[z_{0}: \ldots: z_{s}\right]$ and canonically identify the subspace \mathcal{K}^{s} with \mathbf{P}^{s}. The mapping $\left.\boldsymbol{\varphi}_{s}(i z]\right):=[z]_{s}$ from \mathbf{P}^{n} to \mathcal{K}^{s} is called the projection from \mathbf{P}^{n} to $\mathcal{K}^{s}=\mathbf{P}^{n}$. We also define the associated projection $\Psi_{s}(u,[z]):=\left(u,[z]_{n}\right)$ from $D \times \mathbf{P}^{n}$ to $D \times \mathcal{K}^{s}=D \times \mathbf{P}^{s}$.

We shall prove a lemma which corresponds to the case $r=n-1$ of Proposition 2.3 for analytic sets in a domain of $\mathbf{C}^{\boldsymbol{\prime}}$. We use the notation

$$
\left[\mathbf{e}_{i}\right]:=[0: \ldots: 1: \ldots: 0] \in \mathbf{P}^{n} \quad(i=0.1 \ldots ., n)
$$

where the " 1 " occurs in the $(i+1)$-th slot.
Lemma 2.10. Let \mathcal{E} be an analytic set in Ω and let u^{0} be a point in D. Assume that $\left[\mathbf{e}_{n}\right] \notin \mathcal{E}\left(u^{0}\right) ;$ i.e.. $\pi_{2}\left(\mathcal{E}\left(u^{0}\right)\right) \cap \mathcal{H}_{0}=\emptyset$. Then we can find a neighborhood δ of u^{0} in D such that
(1) The projection $\mathcal{F}(\delta):=\Psi_{n-1}(\mathcal{E}(\delta))$ of $\mathcal{E}(\delta)$ onto $\delta \times \mathcal{K}^{n-1}$ is an analytic set in $\delta \times K^{n-1}$, and
(2) $\operatorname{dim} \mathcal{E}(u)=\operatorname{din} \mathcal{F}(u)$ for all $u \in \delta$.

Proof. By Theorem 2.6, we can find a neighborhood δ of u^{0} in D such that $\mathcal{E}(\delta)$ gives rise to the analytic set $\overline{\mathcal{E}(\delta)_{0}}$ in $\delta \times \mathbf{C}^{n+1}$ defined by $P_{k}(u, z)=0(k=$ $1, \ldots, \mu)$, where each $P_{k}(u, z)$ is a homogeneous polynomial in \mathbf{C}^{n+1} whose coefficients are holomorphic functions of $u \in \delta$.

Since $\left[\mathbf{e}_{n}\right] \notin \mathcal{E}\left(u^{\prime \prime}\right)$. we have $P_{k}\left(u^{10} .0 \ldots . .0 .1\right) \neq 0$ for some $k(1 \leq k \leq \mu)$. For simplicity. let $k=1$ and

$$
P_{1}(u, z)=\sum_{|j|=m} a^{(j)}(u) z_{0}^{\prime \prime} z_{1}^{j} \cdots z_{n}^{\prime n} .
$$

where $\mathbf{j}=\left(j_{0}, j_{1}, \ldots . j_{n}\right)$. By taking a smaller neighborhood δ of u^{0} in D, if necessary, we may assume that

$$
\begin{equation*}
P_{1}(u .0, \ldots, 0,1) \neq 0 \quad \text { for all } u \in \bar{\delta} \tag{2.13}
\end{equation*}
$$

We shall show that this δ satisfies the conclusion of the theorem.
For simplicity, we set

$$
\mathcal{E}=\mathcal{E}(\delta) . \quad \mathcal{F}=\Psi_{n-1}(\mathcal{E}(\delta)) .
$$

We write $z^{\prime}=\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \in \mathbf{C}^{n}$ and $\left[z^{\prime}\right]=\left[z_{1}: z_{1}: \ldots: z_{n-1}\right] \in \mathbf{P}^{n-1}$. We note that $\left(u .\left[z^{\prime}\right]\right) \in \mathcal{F}$ if and only if there exists at least one point $z_{n} \in \mathbf{C}$ such that $\left.(u,[z])=\left(u . \mid z^{\prime}: z_{n}\right]\right) \in \mathcal{E}$. Equivalently, if we let $\mathcal{F}_{0} \subset \delta \times \mathbf{C}^{n}$ and $\mathcal{E}_{0} \subset \delta \times \mathbf{C}^{n+1}$ denote the associated sets for \mathcal{F} and \mathcal{E}. then $\left(u . z^{\prime}\right) \in \overline{\mathcal{F}_{0}}$ if and only if there exists at least one point $z_{n} \in \mathbf{C}$ such that $(u, z)=\left(u, z^{\prime}, z_{n}\right) \in \overline{\mathcal{E}_{0}}$. It thus suffices to show that there exist a finite number of homogeneous polynomials $h_{\alpha}\left(u, z^{\prime}\right)(\alpha=1, \ldots, M)$ of $z^{\prime} \in C^{n}$ whose coefficients are holomorplic functions of $u \in \bar{\delta}$ such that $\overline{\mathcal{F}_{0}}$ consists of the common zero set of $h_{\alpha}\left(u . z^{\prime}\right)(\alpha=1 \ldots \ldots, M)$ in $\delta \times \mathbf{C}^{\boldsymbol{n}}$.

To show this, we note from (2.13) that

$$
P_{1}(u . z)=A_{0}(u) z_{n}^{m}+Q_{1}\left(u, z^{\prime}\right) z_{n}^{m-1}+\cdots+Q_{m}\left(u . z^{\prime}\right)
$$

where $A_{0}(u) \neq 0$ for $u \in \bar{\delta}$ and where $Q_{j}\left(u, z^{\prime}\right)$ is a homogeneous polynomial in \mathbf{C}^{n} of degree $\boldsymbol{m}-j$ whose coefficients are holomorphic functions of $u \in \delta$. It follows that

$$
P_{1}(u, z)=A_{0}(u) \cdot\left(z_{n}-\xi_{1}\left(u, z^{\prime}\right)\right) \cdots\left(z_{n}-\xi_{m}\left(u, z^{\prime}\right)\right)
$$

with

$$
\begin{equation*}
\left|\xi_{j}\left(u, z^{\prime}\right)\right| \leq K\left(1+\left\|z^{\prime}\right\|^{m-1}\right), \quad \xi_{j}\left(u, \lambda z^{\prime}\right)=\lambda \xi_{j}\left(u, z^{\prime}\right)(\lambda \in \mathbf{C}) \tag{2.14}
\end{equation*}
$$

where $K>0$ is a constant independent of $u \in \delta$ and $j=1, \ldots, m$.

Following the idea of Remmert-Stein in the proof of Proposition 2.3. we introduce $\mu-1$ complex variables $X_{2} \ldots, X_{\mu}$ and set

$$
H\left(u, z^{\prime}, X\right):=\prod_{j=1}^{m}\left[X_{2} P_{2}\left(u, z^{\prime}, \xi_{j}\left(u, z^{\prime}\right)\right)+\cdots+X_{\mu} P_{\mu}\left(u, z^{\prime}, \xi_{j}\left(u, z^{\prime}\right)\right)\right]
$$

Then $H\left(u, z^{\prime}, X\right)$ is a holomorphic function in $\delta \times \mathbf{C}^{n} \times \mathbf{C}^{\mu-1}$ which can be written as

$$
H\left(u, z^{\prime}, X\right)=\sum_{: a=m} h^{(a)}\left(u, z^{\prime}\right) X_{2}^{a_{2}} \cdots X_{\mu}^{a_{\mu}}
$$

where $a=\left(a_{2}, \ldots, a_{\mu}\right)$. We also have the following:
(i) $\left(u, z^{\prime}\right) \in \overline{\mathcal{F}_{0}}$ if and only if $\left(u, z^{\prime}\right)$ belongs to the common zero set of $h^{(a)}\left(u, z^{\prime}\right)$ $=0$ for all $|a|=m$.
(ii) From (2.14), each $h^{(a)}\left(u, z^{\prime}\right)$ with $|\mathbf{a}|=m$ is a homogeneous polynomial of $z^{\prime} \in \mathbf{C}^{n}$ whose coefficients are holomorphic functions of $u \in \delta$.
This proves (1).
Furthermore, since $\mathcal{E} \cap\left(\delta \times\left[e_{n}\right]\right)=0$, for any $u \in \delta$ and $\left[a^{\prime}\right]=\left[a_{0}: \ldots\right.$: $\left.a_{n-1}\right] \in \mathcal{F}(u)$, there exist at most a finite number of points $a_{n} \in \mathbf{C}$ such that $\left[a^{\prime}: a_{n}\right] \in \mathcal{E}(u)$. It follows that $\operatorname{dim} \mathcal{E}(u)=\operatorname{dim} \mathcal{F}(u)$. We thus obtain (2).

We remark that for any given $[a] \in \mathbf{P}^{\boldsymbol{n}}$, there exists a linear transformation L of \mathbf{P}^{n} such that $L([a])=\left[e_{n}\right]$: and for any given $[a] \in \mathbf{P}^{n}$ such that $[a] \notin$ $H_{n-r-1}(0 \leq r \leq n-1)$ (i.e., $[a]$ is not contained in the subspace of $\mathbf{P}^{\boldsymbol{n}}$ spanned by $\left.\left[\mathbf{e}_{j}\right](j=n, n-1, \ldots, n-r)\right)$ there exists a linear transformation L of \mathbf{P}^{n} such that $L\left(\left[\mathbf{e}_{j}\right]\right)=\left[\mathbf{e}_{j}\right](j=n, n-1, \ldots . n-r)$ and $L([a])=\left[\mathbf{e}_{n-r-1}\right]$.

Using the lemma, and an induction argument on the dimension of P^{n} together with this remark, we obtain the following corollary.

Corollary 2.3. Let \mathcal{E} be an analytic set in Ω and let u^{0} be a point in D such that $d\left(u^{0}\right)=\operatorname{dim} \mathcal{E}\left(u^{0}\right)=r(0 \leq r \leq n)$. Then there exist homogeneous coordinates $[z]=\left[z_{0}: \ldots ; z_{n}\right]$ of P^{n} and a neighborhood δ of u^{0} in D such that
(1) $\mathcal{H}_{n-r-1} \cap \mathcal{E}(\delta)=\emptyset$:
(2) $d\left(u^{\prime}\right) \leq r$ for any $u^{\prime} \in \delta$, i.e., $d(u)$ is a lowersemicontinuous function on δ; and
(3) $\mathcal{E}^{(r)}(\delta):=\Psi_{r}(\mathcal{E}(\delta))$ is an analytic set in $\delta \times \mathcal{K}^{r}$ such that $\operatorname{dim} \mathcal{E}(u)=$ $\operatorname{dim} \mathcal{E}^{(r)}(u)$ for all $u \in \delta$, and hence $\mathcal{E}^{(r)}\left(u^{0}\right)=\mathcal{K}^{r}=\mathbf{P}^{r}$.

We use these results to prove the following proposition.
Proposition 2.4. Let \mathcal{E} be an analytic set in Ω and let $u^{0} \in D$. If $d\left(u^{0}\right)=r$. then there exists a neighborhood δ of u^{0} in D such that

$$
e_{r}^{0}:=\{u \in \delta \mid d(u)=r\}
$$

is an analytic set in δ
Proof. From (3) in Corollary 2.3. we can find a neighborhood δ of u^{0} in D such that $\mathcal{E}^{(r)}(\delta)$ is an analytic set in $\delta \times \mathrm{P}^{r}$. By. Theorem 2.6. if we form the associated set $\mathcal{E}_{0}^{(r)}$ for $\mathcal{E}^{(r)}$ in $\delta \times\left(C^{r+1}\right)^{*}$. there exist a finite number of homogeneous polynomials $Q_{k}(u, z)(k=1, \ldots, \nu)$ for z in C^{r+1} whose coefficients are
holomorphic functions of u in δ :

$$
Q_{k}(u, z)=\sum_{|j|=m_{k}} B_{k}^{(j)}(u) z_{0}^{j_{n}} z_{1}^{j_{1}} \cdots z_{r}^{j_{r}}
$$

such that

$$
\overline{\mathcal{E}_{0}^{(r)}}(\delta)=\left\{(u, z) \in \delta \times \mathbf{C}^{r+1} \mid Q_{k}(u, z)=0(k=1, \ldots, \nu)\right\}
$$

Since $\operatorname{dim} \mathcal{E}(u)=\operatorname{dim} \mathcal{E}^{(r)}(u)$ for $u \in \delta$ and $\operatorname{since} \operatorname{dim} \mathcal{E}^{(r)}(u)=r$ if and only if $\mathcal{E}^{(r)}(u)=\mathbf{P r}$, or equivalently, $\overline{\mathcal{E}_{0}^{(r)}}(u)=\mathbf{C}^{r+1}$, it follows that

$$
e_{r}^{0}=\left\{u \in \delta\left|B_{k}^{(j)}(u)=0 \quad 1 \leq k \leq \nu: \quad\right| j \mid=m_{k}\right\}
$$

so that e_{r}^{0} is an analytic set in δ.
Corollary 2.4. Under the same hypotheses as in Proposition 2.4, let $d\left(u^{0}\right)=$ r and $\operatorname{dim} e_{r}^{0}=s$. Then $\mathcal{E}(\delta)$ contains an analytic set of dimension $s+r$ in $\delta \times \mathbf{P}^{\boldsymbol{n}}$. so that $\operatorname{dim} \mathcal{E}(\delta) \geq s+r$.

Remark 2.13. Even in the case when \mathcal{E} is irreducible in $\delta \times \mathbf{P}^{\boldsymbol{n}}$, we do not necessarily have $\operatorname{dim} \mathcal{E}(\delta)=s+r$. Let $D=C^{2}$ with variables u_{1} and u_{2}, and let $\Omega=\mathbf{C}^{2} \times \mathbf{P}^{\mathbf{1}}$. We use homogeneous coordinates $[x: y]$ in $\mathbf{P}^{\mathbf{1}}$. Let \mathcal{E} be the analytic set in Ω defined by the single homogeneous linear equation

$$
\mathcal{E}: u_{1} x+u_{2} y=0
$$

Then \mathcal{E} is of dimension 2 in Ω. The set of points $u=\left(u_{1}, u_{2}\right)$ in \mathbf{C}^{2} such that $\operatorname{dim} \mathcal{E}(u)=1$, i.e., such that $\mathcal{E}(u)=\mathbf{P}^{1}$, consists of only one point. (0,0). Thus, $r+s=1+0=1$. However, for any neighborhood δ of (0.0) in \mathbf{C}^{2} we have $\operatorname{dim} \mathcal{E}(\delta)=2$.

In particular, if $D=0$. in a manner similar to Lemma 2.10. we obtain the following corollary for $r=0, \ldots . n-1$ (the case $r=n-1$ being an immediate consequence of the lemma).

Corollary 2.5. Let \mathcal{F} be an analytic set in \mathbf{P}^{n} and suppose that $\mathcal{F} \cap \mathcal{H}_{n-r-1}=$ 0. Then the projection $\varphi_{\mathrm{r}}(\mathcal{F})$ is an analytic set in \mathcal{K}^{r}.

We deduce the following property of analytic sets in \mathbf{P}^{n}, which will be used later.

Corollary 2.6. Let \mathcal{F} be an analytic set in \mathbf{P}^{n} of dimension r where $0 \leq$ $r \leq n$. Then for each $(n-r)$-dimensional hyperplane L^{n-r} of \mathbf{P}^{n}, the intersection $\mathcal{F} \cap L^{n-r}$ is non-empty; while for some ($n-r-1$)-dimensional hyperplane L^{n-r-1}, $\mathcal{F} \cap L^{n-r-1}=\emptyset$.

Proof. The result is trivial if $r=n$; thus we assume $0 \leq r \leq n-1$. The second part of the corollary follows from the definition of dimension: without loss of generality, we can assume that $\mathcal{F} \cap \mathcal{H}_{n-r-1}=0$. For the first part. we can choose coordinates so that $L^{n \sim r}=\mathcal{H}_{n-r}$. From the previous corollary, together with the assumption that \mathcal{F} has dimension r, we conclude that $\varphi_{r}(\mathcal{F})=\mathcal{K}^{r}$. But $\mathcal{H}_{n-r} \cap \mathcal{K}^{r}$ contains $\left[e_{r}\right]$. We note that $\left[e_{r}\right] \in \varphi_{r}(\mathcal{F})$ means that there exists at least one point $[a] \in \mathcal{F}$ of the form $[a]=\left[0: \ldots: 0: 1: a_{r+1}: \ldots: a_{n}\right]$. Since $[a] \in \mathcal{H}_{n-r}$. we have the corollary.
2.5.3. Analyticity of e_{r}. Let \mathcal{E} be an analytic set in Ω. For an integer r with $-1 \leq r \leq n$, we define

$$
e_{r}:=\{u \in D \mid d(u)=r\}
$$

where $d(u)=-1$ if $\mathcal{E}(u)=0$. We consider all r such that $e_{r} \neq 0$ and arrange them in increasing order; using the notation $r_{j}, j=0,1, \ldots, \mu$, we have $r_{j}<r_{j, 1}$. We set

$$
E_{r_{j}}:=\bigcup_{k=j}^{\mu} e_{r_{k}} \quad(j=0,1 \ldots, \mu)
$$

Note that $E_{r_{11}} \supset E_{r_{1}} \supset \ldots \supset E_{r_{\mu}}=e_{r_{6},}$. Applying Proposition 2.4 inductively, we obtain the following facts:
(1) $E_{r_{1}}$ is an analytic set in D.
(2) For each $r_{j}(j=1, \ldots, \mu-1)$, the subset e_{r}, of D is an analytic set in $D \backslash E_{r_{j+1}} ;$ we set $s_{j}:=\operatorname{dim} \epsilon_{r_{j}}$.
(3) $e_{r_{1}}$ is a dense, open subset of D.

Our goal in this section is to show that the closure $\overline{e_{r}}$, of each e_{r}, in D is an analytic set in D. To achieve this goal, we require two lemmas.

Lemma 2.11. Assume that \mathcal{E} is an irreducible analytic set in Ω of dimension ρ. Then $\pi_{1}(\mathcal{E})$ is an irreducible analytic set in D. In case $r_{0}=-1, \pi_{1}(\mathcal{E})$ coincides with $\overline{e_{r_{1}}}$ (the closure of $e_{r_{1}}$ in D) and is of dimension $s_{1}=\rho-r_{1}$.

Proof. In case when $r_{0} \geq 0$. we have $\pi_{1}(\mathcal{E})=D$, which proves the lemma. We consider the case $r_{0}=-1$, i.e., there exists a non-empty open set G in D such that $\mathcal{E}(u)=0$ for all $u \in G$. Since $\operatorname{dim} \mathcal{E}=\rho$ in Ω, it follows froin Corollary 2.4 that $\rho \geq s_{j}+r_{j}(j=1, \ldots, \mu)$.

If $j=1$, we have the relation $\rho=s_{1}+r_{1}$. To see this, we take a nonsingular point ($u^{01},\left[a^{0}\right]$) of the analytic set $\mathcal{E}\left(e_{r_{1}}\right)$ in ($\left.D \backslash E_{r_{2}}\right) \times \mathbf{P}^{n}$ such that u^{0} and $\left[a^{0}\right]$ are non-singular points of $e_{r_{1}}$ and $\mathcal{E}\left(u^{0}\right)$. respectively. Since $u^{0} \notin E_{r_{2}}$ and $r_{0}=-1$. we can find a neighborhood δ of u^{0} in D such that $\delta \cap \pi(\Sigma)=\delta \cap e_{r_{1}} \neq \delta$. Fix a neighborhood τ of $\left[a^{0}\right]$ in \mathbf{P}^{n}. If δ and τ are sufficiently small, then we have $\mathcal{E} \cap(\delta \times r)=\mathcal{E}\left(e_{r_{1}}\right) \cap(\delta \times \tau)$. The latter set has dimension at least $s_{1}+r_{1}$. On the other hand, from the irreducibility of \mathcal{E} it follows that the former set and \mathcal{E} are of the same dimension ρ. From Corollary 2.4 we conclude that $\rho=s_{1}+r_{1}$.

Thus $r_{j}>r_{1}(j=2, \ldots, \mu)$ implies that

$$
\begin{equation*}
s_{1}>s_{j} \quad(j=2 \ldots, \mu) \tag{2.15}
\end{equation*}
$$

From (2), $e_{r_{1}}$ is an analytic set in $D \backslash E_{r_{2}}$. Since $\epsilon_{r_{1}}$ is pure s_{1}-dimensional and $e_{r_{2}}$ is an analytic set of dimension s_{2} in $D \backslash E_{r_{3}}$. it follows from Theorem 2.5 and (2.15) that the closure of $e_{r_{1}}$ in $D \backslash E_{r_{3}}$, which is equal to $\overline{e_{r_{1}}} \cap\left(D \backslash E_{r_{3}}\right)$, is an analytic set in $D \backslash E_{r_{3}}$. It is also pure s_{1}-dimensional in $D \backslash E_{r_{3}}$. By repeating this procedure, we conclude that the closure $\overline{\epsilon_{r_{1}}}$ in D is a pure s_{1}-dimensional analytic set in D.

We thus see that $\mathcal{E}\left(\overline{e_{r_{1}}}\right)$ is a ρ-dimensional analytic set in Ω. It follows from the irreducibility of \mathcal{E} in Ω and the inclusion $\mathcal{E}\left(\overline{e_{r_{1}}}\right) \subset \mathcal{E}$ that $\mathcal{E}=\mathcal{E}\left(\overline{e_{r_{1}}}\right)$, which proves the lemma.

This immediately implies
Corollary 2.7. For any analytic set \mathcal{E} in Ω. the prajection $\pi_{1}(\mathcal{E})$ is an analytic set in D.

Lemma 2.12. Each $E_{r}(j=0 \ldots, \mu)$ is an analytic set in D.
Proof. We let \mathcal{L}^{n-r}, denote the set of all $\left(n-r_{j}\right)$-dimensional hyperplanes in \mathbf{P}^{n}. Fix $u^{0} \notin E_{r_{j}}$. Then there exists $L \in \mathcal{L}^{n-r,}$ such that $\mathcal{E}\left(u^{0}\right) \cap L=0$. On the other hand, if $u \in E_{r_{j}}$, then $\mathcal{E}(u) \cap L \neq 0$ for each $L \in \mathcal{L}^{n-r_{j}}$.

For each $L \in \mathcal{L}^{n-r}$, we set $L_{0}:=D \times L$. which is an analytic set in Ω. We thus have

$$
E_{r,}=\bigcap_{L \in L^{n} \cdots,} \pi_{1}\left(L_{0} \cap \mathcal{E}\right)
$$

To apply Corollary 2.7. for each fixed $L \in \mathcal{L}^{n-r}$, we can consider L_{0} as Ω in Corollary 2.7. Thus, each projection $\pi_{1}\left(L_{0} \cap \mathcal{E}\right)$ is an analytic set in D. Thus Corollary 2.1 yields that $E_{r_{j}}$ is an analytic set in D.

From this lemina we obtain the following theorem.
Theorem 2.7. For each $r_{j}(j=0.1 \ldots, \mu)$. the closure $\overline{e_{r}}$ of ϵ_{r}, in D is an analytic set in D.

Proof. Since both $e_{r_{\mu}}$ and $E_{r_{\mu-1}}=e_{r_{\mu}} \cup e_{r_{. .}, ~}$ are analytic sets in D (from (2) and Lemma 2.12), it follows from the local irreducible decomposition theorem of analytic sets (Theorem 2.2) that the closure $\overline{e_{r_{1}-1}}$ of $e_{r_{\mu-1}}$ in D is an analytic set in D. Repeating this argument, we obtain the theorem.

These results on analytic sets \mathcal{E} in $\Omega=D \times \mathbf{P}^{\boldsymbol{n}}$ can be modified (Corollary 2.8): this will be useful in Chapter 6.

Let $D \subset C_{u}^{m}$ be a domain and set $\Omega^{\prime}:=D \times \mathbf{C}_{u}^{n}$. Let $P_{j}(u, u)(j=1 \ldots ., \nu)$ be a polynomial in $w=\left(w_{1} \ldots . w_{n}\right)$ whose coefficients are holomorphic functions of u on D. Let $\Sigma: P_{j}(u, w)=0(j=1, \ldots, \nu)$ be an analytic set in Ω^{\prime}. and let $\Sigma(u)$ be the section of Σ over $u \in D$. i.e., $\Sigma(u)=\left\{u \in \mathbf{C}_{u^{\prime}}^{n} \mid\left(u, u^{\prime}\right) \in \Sigma\right\}$. We assume that there exists a polydisk $\lambda:=\delta \times \Gamma \subset \mathbf{C}_{u}^{m} \times \mathbf{C}_{u}^{n}$ in Ω^{\prime} such that. if we set $\sigma:=\Sigma \cap \lambda$, then the section $\sigma(u)$ of σ over each point $u \in \delta$ consists of a finite number of points in $\mathbf{C}_{\boldsymbol{u}}^{\boldsymbol{n}}$. We let Σ_{0} denote the irreducible component of Σ containing σ (thus $\operatorname{dim} \Sigma_{0}=m$).

Corollary 2.8. Under the above setting, there exists an analytic set e in D of dimension at most $m-1$ such that for each $u \in D \backslash e, \Sigma_{0}(u)$ consists of $l \geq 1$ distinct points in \mathbf{C}_{w}^{n}. where l is an integer independent of $u \in D \backslash e$.

Proof. Let $w_{i}=\zeta_{i} / \zeta_{0}(i=1, \ldots, n)$ and let $k_{j}(j=1, \ldots, \nu)$ be the degree of $P_{j}(u, w)$ in w. Then we can form the homogeneous polynomial $\widehat{P}_{j}(u, \zeta)$ in $\zeta=$ $\left(\zeta_{0}, \zeta_{1} \ldots, \zeta_{n}\right)$, where $\left.P_{j}(u, u) \zeta_{0}^{k}\right)=\widehat{P}_{j}(u, \zeta)$. We set $[\zeta]=\left[\zeta_{n}: \zeta_{1}: \ldots: \zeta_{n}\right]$ and $\left[\zeta^{\prime}\right]=\left[\zeta_{1}: \ldots: \zeta_{n}\right]$ and identify

$$
\mathbf{C}_{u}^{n} \cong\left\{[\zeta] \in \mathbf{P}_{\zeta}^{n} \mid \zeta_{0} \neq 0\right\}, \quad \mathcal{H}_{n \cdot 1}=\left\{\{\zeta\} \in \mathbf{P}_{\zeta}^{n} \mid \zeta_{0}=0\right\} \cong \mathbf{P}_{\forall^{\prime}}^{n-1}
$$

so that \mathbf{P}_{ζ}^{n} is the disjoint union $\mathbf{P}_{\zeta}^{n}=\mathbf{C}_{u}^{n} \cup \mathcal{H}_{n-1}$. Let $\Omega=D \times \mathbf{P}_{\zeta}^{n}$ and let $\widehat{\Sigma}$ be the analytic set in Ω defined by $\hat{P}_{j}(u, \zeta)=0(j=1, \ldots, \nu)$. Then $\Sigma=$ $\widehat{\Sigma} \cap \Omega^{\prime}$. We let \mathcal{E} denote the irreducible component of $\widehat{\Sigma}$ which contains σ (precisely, $\left.\mathcal{E} \cap \Omega^{\prime} \supset \sigma\right)$. We set $\mathcal{F}=\mathcal{E} \cap\left(D \times \mathcal{H}_{n-1}\right)$, which we consider as an analytic set in $\Omega^{n-1}:=D \times \mathbf{P}_{\zeta^{\prime}}{ }^{-1}$. We use the notation from the beginning of 2.5 .3 for \mathcal{E} in Ω. In this case, our assumption on Σ implies that $r_{0}=0$, and hence from Lemma 2.12 we conclude that there exists an analytic set $E_{r_{1}}$ in D of dimension at most $m-1$ such that $\operatorname{dim} \mathcal{E}(u)=0$ over each $u \in D \backslash E_{r_{1}}$, i.e., the section $\mathcal{E}(u)$ is
non-empty and consists of a finite number of distinct points $\left\{p_{j}(u)\right\}_{j=1, \ldots . l(u)}$ in \mathbf{P}_{ζ}^{n}. Note that $l(u)$ is bounded in $D \backslash E_{r_{1}}$ since \mathcal{E} is an irreducible analytic set of dimension m in Ω. Furthermore, if we set $l:=\max \left\{l(u) \mid u \in D \backslash E_{r_{1}}\right\}$ and $e_{1}:=\left\{u \in D \backslash E_{r_{2}} \mid l(u) \leq l-1\right\}$, then $\overline{e_{1}}$ is an analytic set of dimension at most $m-1$ in D. We again use the notation from 2.5 .3 for the analytic set \mathcal{F} in Ω^{n-1}. Since $\mathcal{F} \subset \mathcal{E}, \mathcal{F} \neq \mathcal{E}$, and \mathcal{E} is irreducible in Ω, it follows that $r_{0}=-1$ for \mathcal{F} in Ω^{n-1}; hence there exists an analytic set $F_{r_{1}}$ in D of dimension at most $m-1$ such that the section $\mathcal{F}(u)=\emptyset$ over each $u \in D \backslash F_{r_{1}}$. Thus, if we set $e:=E_{r_{1}} \cup e_{1} \cup F_{r_{1}}$, then e is an analytic set in D of dimension at most $m-1$ and $\mathcal{E}(u)=\Sigma_{0}(u)$ for $u \in D \backslash e$; moreover. $\mathcal{E}(u)$ consists of l distinct points in \mathbf{C}_{u}^{n}. as desired.

CHAPTER 3

The Poincaré, Cousin, and Runge Problems

3.1. Meromorphic Functions

3.1.1. Poincaré Problem. Let D be a domain in \mathbf{C}^{n}. If a function $g(z)$ in D can be locally represented as a quotient of two holomorphic functions, then $g(z)$ is called a meromorphic function in D. To be precise, g is meromorphic in D if for each point $p \in D$. we can find a neighborhood δ_{p} of p in D and functions $h_{p}(z), k_{p}(z)$ holomorphic in δ_{p} such that for any $p, q \in D$ with $\delta_{p} \cap \delta_{q} \neq 0$. we have

$$
\begin{equation*}
k_{p}(z) h_{q}(z)=k_{q}(z) h_{p}(z) \quad \text { in } \delta_{p} \cap \delta_{q} \tag{3.1}
\end{equation*}
$$

and $g(z)=h_{p}(z) / k_{p}(z)$ in δ_{p}.
From the Weierstrass preparation theorem, by choosing a smaller neighborhood δ_{p} if necessary, we may assume that $h_{p}(z)$ and $k_{p}(z)$ are relatively prime at p; i.e., if we choose the coordinates $\left(z_{1}, \ldots, z_{n}\right)$ satisfying the Weierstrass condition for the analytic hypersurfaces $h_{p}(z)=0$ and $k_{p}(z)=0$ at p, then $h_{p}(z)$ and $k_{p}(z)$ have no common factor which is an irreducible distinguished pseudopolynomial in z_{n} at p of positive degree. If we let σ_{p} denote the zero set of $k_{p}(z)$ in δ_{p}, then the union of the sets σ_{p} defines an analytic set Σ in D. Note that Σ does not depend on the choice of $h_{p}(z)$ and $k_{p}(z)$. We call Σ the set of singularities or pole set of g; the function $g(z)$ is holomorphic in $D \backslash \Sigma$.

Let p be a pole of $g(z)$. If $h_{p}(p) \neq 0$, then clearly $g(p)=\infty$. On the other hand, even though $h_{p}(z)$ and $k_{p}(z)$ are assumed to be relatively prime at p, they may simultaneously vanish at p (e.g.. take $h_{p}\left(z_{1}, z_{2}\right)=z_{1}$ and $k_{p}\left(z_{1}, z_{2}\right)=z_{2}$ at $p=(0.0)$ in \mathbf{C}^{2}). Then. given any number $c \in C$, the analytic hypersurface in D defined by

$$
h_{p}(z)-c k_{p}(z)=0 \quad \text { in } \delta_{p}
$$

passes through the point p. Thus the value $g(p)$ is not uniquely determined. Such a pole p is called a point of indeterminacy of $g(z)$. The set of all indeterminacy points of $g(z)$ in D is a pure $(n-2)$-dimensional analytic set in D. This follows since the non-empty intersection of two distinct irreducible analytic hypersurfaces Σ_{1}, Σ_{2} in a domain $G \subset C^{\prime \prime}$ is a pure ($n-2$)-dimensional analytic set in G.

Since the definition of meromorphic function is local, the problem arises as to when we can write a meromorphic function in D as a quotient of two global holomorphic functions.
Poincaré Problem Let $g(z)$ be a meromorphic function in D. Find two holomorphic functions $h(z)$ and $k(z)$ in D such that $h(z)$ and $k(z)$ are relatively prime at each point $p \in D$ and satisfy $g(z)=h(z) / k(z)$ in D.

This problem in the case of $D=\mathbf{C}^{2}$ was solved in the affirmative by Poincare [59]. An example of a product domain D where the Poincaré problem is not
solvable for g in D will be given in Remark 3.5. We mention that even though the Poincare problem as stated is not always solvable for g in D, there always exist holomorphic functions $h(z)$ and $k(z)$ in D satisfying $g(z)=h(z) / k(z)$ in any donnain of holomorphy D but where $h(z)$ and $k(z)$ are not necessarily relatively prime at each $p \in D$. This will be shown in Theorem 8.19 in Chapter 8.
3.1.2. Cousin Problems. The Poincaré problem for a general domain is related to the following problems, known as problems I and II of Cousin.

Let D be a domain in \mathbf{C}^{n}. For each $p \in D$, we assume the pairs (g_{p}, δ_{p}) are given, where δ_{p} is a neighborhood of p in D and $g_{p}(z)$ is a meromorphic function in δ_{p}; furthermore, we assume that for any points $p, q \in D$ with $\delta_{p} \cap \delta_{q} \neq \emptyset$, the function $g_{p}(z)-g_{q}(z)$ is holomorphic in $\delta_{p} \cap \delta_{q}$. We call the collection $\left\{\left(g_{p}, \delta_{p}\right)\right\}_{p}$ for $p \in D$ Cousin I data in D or a Cousin I distribution in D. In other words. Cousin I data simply gives the analogue in several variables of the principal parts at the poles of a meromorphic function. For a closed set E in C^{n}, we say that Cousin I data is given in E if Cousin I data is given in a neighborhood D of E.

Cousin I Problem Given Cousin I data $\left\{\left(g_{p}, \delta_{p}\right)\right\}_{p}$ in D, find a meromorphic function $g(z)$ in D such that $g(z)-g_{p}(z)$ is holomorphic in $\delta_{p}, p \in D$.

In brief, this is the problem of finding a meromorphic function with a prescribed pole set and prescribed principal parts. If such a $g(z)$ exists, we call $g(z)$ a solution of the Cousin I problem for the given data $\left\{\left(g_{p}, \delta_{p}\right)\right\}_{p}$. In the case of one complex variable, a solution always exists; this is the content of the classical Mittag-Leffler theorem.

Let D be a domain in \mathbf{C}^{n}. For each $p \in D$, let $\left(f_{p}, \delta_{p}\right)$ be given, where δ_{p} is a neighborhood of p in D and $f_{p}(z)$ is a holomorphic function in δ_{p}. Moreover. we assume that if $\delta_{p} \cap \delta_{q} \neq \emptyset$. then $f_{p}(z) / f_{q}(z)$ is a nonvanishing holomorphic function in $\delta_{p} \cap \delta_{q}$. We call the collection $\left\{\left(f_{p}, \delta_{p}\right)\right\}_{p}$ for $p \in D$ Cousin II data in D or a Cousin II distribution in D. In other words, we are specifying the zero set and order of vanishing of a family of holomorphic functions. For a closed set E in $\mathbf{C}^{\boldsymbol{n}}$, we say that Cousin II data in E is given if Cousin II data is given in a neighborhood D of E.

Cousin II Problem Given Cousin II data $\left\{\left(f_{p}, \delta_{p}\right)\right\}_{p}$ in a domain D. find a holomorphic function $f(z)$ in D such that $f(z) / f_{p}(z)$ is a nonvanishing holomorphic function in $\delta_{p}, p \in D$.

In short, this is the problem of finding a holomorphic function with a prescribed zero set. If such an $f(z)$ exists, we say that $f(z)$ is a solution of the Cousin II problem for the given data $\left\{\left(f_{p}, \delta_{p}\right)\right\}_{p}$. In the case of one complex variable, a solution always exists; this is the content of the classical Weierstrass theorem.

We remark that for both Cousin I and Cousin II. if we replace each set δ_{p} by a finite union of subsets δ_{p}^{\prime} which cover δ_{p}, then the collection of pairs $\left\{\left(f_{p}^{\prime}, \delta_{p}^{\prime}\right)\right\}_{p}$, where $f_{p}^{\prime}=\left.f_{p}\right|_{\delta_{p}^{\prime}}$, again forms Cousin data for D. This fact will be used many times.

In C. the Poincare problem is always solvable in any domain D; a standard proof uses the classical Weierstrass theorem. Similarly, in C^{n} we have the following relation between the Poincaré problem and the Cousin II problem.

Proposition 3.1. Let D be a domain in \mathbf{C}^{n}. If the Cousin II problem is solvable for any Cousin II data in D. then the Poincaré problem is always solvable in D.

Proof. Let $g(z)$ be a meromorphic function in D. By definition, for each $p \in$ D, there exist a neighborhood δ_{p} of p in D and holomorphic functions $h_{p}(z), k_{p}(z)$ in δ_{p} which satisfy equation (3.1) and are relatively prime at p. It is easy to see that the collection $\left\{\left(k_{p}, \delta_{p}\right)\right\}_{p}$ defines Cousin II data in D. Since we are assuming that the Cousin II problem is always solvable in D, we can find a holomorphic function $k(z)$ in D such that $k(z) / k_{p}(z)$ is a nonvanishing holomorplic function in δ_{p}. Therefore, if we set $h(z):=g(z) k(z)$, then $h(z)$ becomes a holomorphic function in D. Furthermore, since $h_{p}(z)$ and $k_{p}(z)$ are relatively prime at p, it follows that $h(z)$ and $k(z)$ are also relatively prime at each point $p \in D$. Thus $g(z)=h(z) / k(z)$ is a solution of the Poincaré problem for $g(z)$.

Later on we shall give an example of a Cousin II distribution in a Reinhardt product domain D in \mathbf{C}^{n} for which no solutions of a Cousin II problem exist. From this example we shall also obtain a meromorphic function in D which cannot be represented as a quotient of two holomorphic functions in D which are relatively prime at each point in D (see Remark 3.5 in section 3.5.3). Thus, even for Reinhardt product domains, the Poincaré problem is not always solvable.
3.1.3. Runge Problem. Often in attempting to construct holomorphic functions possessing a certain property, as is required in solving Cousin problems, questions on approximation of holomorphic functions arise.
Runge problem Let K_{1}, K_{2} be subsets of \mathbf{C}^{n} with $K_{1} \subset \subset K_{2}^{o}$, where K_{2}^{o} denotes the interior of K_{2}. Given a holomorphic function $f(z)$ on K_{1}, for each $E \subset \subset K_{1}$ and each $\varepsilon>0$, find a holomorphic function $F(z)$ on K_{2} such that $|F(z)-f(z)|<\varepsilon$ on E.

If this problem is solvable for (K_{1}, K_{2}) for any holomorphic function $f(z)$ on K_{1}, we say that the Runge theorem holds for the pair (K_{1}, K_{2}). In the case $K_{2}=\mathbf{C l}^{n}$, this is the classical Runge problem.

We have the following relation between the Runge problem and the Cousin I problem.

Proposition 3.2. Let D be a domain in \mathbf{C}^{n} and let $K_{j}(j=1.2 \ldots)$ be a sequence of subsets in D such that each K_{j} is compact or open and

$$
K_{j} \subset \subset K_{j+1}^{o} . \quad D=\bigcup_{j=1}^{\infty} K_{j} .
$$

If we assume that

1. the Cousin I problem is solvable on each $K_{j}(j=1,2, \ldots)$, and
2. the Runge theorem holds for each pair $\left(K_{j}, K_{j+1}\right)(j=1,2, \ldots)$, then the Cousin I problem is solvable for D.

Proof. We give the proof in the case where each K_{j} is compact: the general case follows with minor modifications. Let a Cousin I distribution $\mathcal{C}_{1}=\left\{\left(f_{p}, \delta_{p}\right)\right\}_{p}$ be given in D. From 1 let $g_{j}(z)$ and $g_{j+1}(z)$ be any solutions of the Cousin I problem for the restrictions of \mathcal{C}_{1} in K_{j} and K_{j+1}, and let $\varepsilon>0$. Since $f_{j}(z)=g_{j+1}(z)-g_{j}(z)$ is holomorphic on K, it follows from 2 that we can find a holomorphic function
$F_{j+1}(z)$ on K_{j+1} such that $\left|F_{j+1}(z)-f_{j}(z)\right|<\varepsilon$ on K_{j-1}. Hence, $G_{j+1}(z):=$ $g_{j+1}(z)-F_{j+1}(z)$ is a solution of the Cousin I problem for \mathcal{C}_{1} in K_{j+1} satisfying $\left|G_{j+1}(z)-g_{j}(z)\right|<\varepsilon$ on K_{j-1}.

Now let $\varepsilon_{j}>0(j=1,2, \ldots)$ with $\sum_{j=1}^{x} \varepsilon_{j}<\infty$. By induction. we construct a solution $G_{j}(z)(j=1,2, \ldots)$ of the Cousin I problem for \mathcal{C}_{1} in K_{j} with the property that $\left|G_{j+1}(z)-G_{j}(z)\right|<\varepsilon_{j}$ on K_{j-1}. Hence, the limit

$$
G(z):=\lim _{j \rightarrow x} G_{j}(z)
$$

converges uniformly on any compact set in D. Thus, $G(z)$ is a solution of the Cousin I problem for \mathcal{C}_{1} in D.
3.1.4. Cousin Problems and Domains of Holomorphy. Cousin problems are not always solvable.

Example 3.1. In $\mathbf{C}^{2}=\mathbf{C}_{z} \times \mathbf{C}_{\boldsymbol{u}}$. consider the following three Reinhardt product domains:

$$
\begin{array}{rlrr}
\Delta_{1} & : & |z|<2 . & 2<|w|<3 . \\
\Delta_{2}: & |z|<2 . & |w|<1 . \\
\Delta_{3}: & 1<|z|<2, & |w|<3
\end{array}
$$

and set $\Delta:=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$. In the domain Δ we define a Cousin I distribution

$$
\mathcal{C}_{1}: \quad\left(1, \Delta_{1}\right), \quad\left(1 / z, \Delta_{2}\right), \quad\left(1, \Delta_{3}\right)
$$

and a Cousin II distribution

$$
\mathcal{C}_{2}: \quad\left(1, \Delta_{1}\right), \quad\left(z, \Delta_{2}\right), \quad\left(1, \Delta_{3}\right)
$$

From Osgood's theorem, it follows that neither \mathcal{C}_{1} for Cousin I nor \mathcal{C}_{2} for Cousin II is solvable in Δ.

Related to the Cousin I problem, we have the following result of H. Cartan [9].
Proposition 3.3. Let D be a domain in \mathbf{C}^{n} satisfying:

1. for any ($n-1$)-dimensional complex hyperplane L in \mathbf{C}^{n}, the domain $D \cap L$ is a domain of holomorphy in L: and
2. the Cousin I problem for any Cousin I distribution in D is solvable in D.

Then D is a domain of holomorphy.
Proof. The proof is by contradiction. Assume that D is not a domain of holomorphy. Then there exist at least one boundary point Q of D and a neighborhood V of Q in \mathbf{C}^{n} such that each holoinorphic function in D has a holomorphic extension to V. We take an ($n-1$)-dimensional complex hyperplane L passing through Q such that Q is a boundary point of $D^{0}:=D \cap L$. To simplify the notation, we assume that L is the hyperplane given by $z_{n}=0$, so that D^{0} is an open set in \mathbf{C}^{n-1} with variables $z^{\prime}:=\left(z_{1} \ldots, z_{n-1}\right)$. From 1 , there exists a holomorphic function $f\left(z^{\prime}\right)$ in D^{0} whose domain of holomorphy is D^{0} itself. By regarding $f\left(z^{\prime}\right)$ as a function of all n variables $\left(z_{1}, \ldots, z_{n}\right)$ which is independent of z_{n}. we see that $f\left(z^{\prime}\right)$ is holomorphic in a neighborhood U^{U} of $L \cap D$ in D.

We consider the following Cousin I distribution $\mathcal{C}_{1}=\left\{\left(g_{p}, \delta_{p}\right)\right\}_{p}$ in D :

1. If $p \in L$, we take a neighborhood δ_{p} of p in U and the ineromorphic function $g_{p}(z)=f(z) / z_{n}$ in δ_{p}.
2. If $p \notin L$, we take a neighborhood δ_{p} of p in D such that $\delta_{p} \cap L=0$ and set $g_{p}(z) \equiv 1$ in δ_{p}.

Then the data $\mathcal{C}_{1}=\left\{\left(g_{p}, \delta_{p}\right)\right\}_{p}$ defines a Cousin I distribution in D. From 2 we have a solution $g(z)$ of the Cousin I problem for \mathcal{C}_{1} in D. We define $F(z):=z_{n} g(z)$ in D. Then $F(z)$ is a holomorphic function in D, and we claim that $\left.F(z)\right|_{D^{0}}=f\left(z^{\prime}\right)$. To verify this claim, take $p \in L \cap D$. Then

$$
g(z)=\frac{f(z)}{z_{n}}+h_{p}(z) \quad \text { in } \delta_{p}
$$

where $h_{p}(z)$ is a holomorphic function in δ_{p}. Therefore,

$$
F(z)=f(z)+z_{n} h_{p}(z) \quad \text { in } \delta_{p}
$$

and hence $F\left(z^{\prime}, 0\right)=f\left(z^{\prime}\right)$. Since $F(z)$ is holomorphic in D, it has a holomorphic extension to the neighborhood V of Q in \mathbf{C}^{n}. Thus it follows that $f\left(z^{\prime}\right)$ has a holomorphic extension to $L \cap V$. This is a contradiction to D^{0} being the domain of holomorphy of $f\left(z^{\prime}\right)$; thus D is a domain of holomorphy.

Remark 3.1. In the case of one complex variable, every domain is a domain of holomorphy; thus condition 1 in the proposition in the case $n=2$ is always satisfied. Hence we have shown that any domain D in \mathbf{C}^{2} such that the Cousin I problem is always solvable in D is necessarily a domain of holomorphy.

This result suggests that the Cousin I problem should be studied in domains of holomorphy.

3.2. Cousin Problems in Polydisks

3.2.1. Cousin Integral. P. Cousin [15] solved in 1895 both of the Cousin problems in polydisks in $\mathbf{C}^{\boldsymbol{n}}$. In this section, we introduce the notion of a Cousin integral, which will be used in the following section to solve the Cousin I problem in a closed polydisk in $\mathbf{C}^{\boldsymbol{n}}$.

Let a and b be distinct points in the complex plane C and let l be a simple smooth arc with initial point a and terminal point b. Take a neighborhood V of l in \mathbf{C} and a holomorphic function $f(z)$ in V, and form the integral

$$
\begin{equation*}
F(z)=\frac{1}{2 \pi i} \int_{l} \frac{f(\zeta)}{\zeta-z} d \zeta \tag{3.2}
\end{equation*}
$$

for $z \in C^{n} \backslash l$. We study the behavior of $F(z)$ near l.
Clearly $F(z)$ is a holomorphic function in $C \backslash l$ satisfying $\lim _{z \rightarrow x} F(z)=0$. Next, we note that

$$
\frac{f(\zeta)}{\zeta-z}=\frac{f(\zeta)-f(z)}{\zeta-z}+\frac{f(z)}{\zeta-z}
$$

Since the first term on the right-hand side is a holomorphic function of the two complex variables z and ζ, it follows that

$$
F(z)+\frac{f(z)}{2 \pi i} \log (a-z) \quad \text { and } \quad F(z)-\frac{f(z)}{2 \pi i} \log (b-z)
$$

are single-valued holomorphic functions in neighborhoods of a and b, respectively.
We next describe the behavior of $F(z)$ near $z^{\prime} \in l \backslash\{a, b\}$. Note that at such a point $F(z)$ can be analytically continued across the arc l from each side, and the
difference between these extensions is equal to $f(z)$ in a neighborhood of z^{\prime}. To be precise, let $z^{\prime} \in l \backslash\{a, b\}$ and let $\delta:\left|z-z^{\prime}\right|<\rho$ be a sufficiently small disk contained in $V \backslash\{a, b\}$ so that $\gamma=\partial \delta$ intersects l at exactly two points a^{\prime} and b^{\prime}. We let δ_{1} and γ_{1} denote the portions of δ and γ situated on one side of the oriented arc l, and by δ_{2} and γ_{2} the portions of δ and γ on the other side of l. Set $\beta:=l \cap \delta$. We then define

$$
\varphi_{j}(z):=F(z), \quad z \in \delta_{j}(j=1,2)
$$

Then $\varphi_{1}(z)\left(\varphi_{2}(z)\right)$ can be analytically continued across the arc β to $\delta_{2}\left(\delta_{1}\right)$, so that $\varphi_{1}(z)$ and $\varphi_{2}(z)$ become holomorphic functions on δ and we have

$$
\varphi_{2}(z)-\varphi_{1}(z)=f(z) . \quad z \in \delta .
$$

To verify this last statement, we let l^{\prime} denote the subarc of l connecting a with a^{\prime}, while $l^{\prime \prime}$ denotes the subarc connecting b^{\prime} and b. Then $l=l^{\prime}+\beta+l^{\prime \prime}$. Let $l_{1}:=l^{\prime}-\gamma_{2}+l^{\prime \prime}$ and $l_{2}:=l^{\prime}+\gamma_{1}+l^{\prime \prime}$. Using the Cauchy integral formula, we obtain, for $z \in \delta_{j}(j=1,2)$,

$$
\varphi_{j}(z)=\frac{1}{2 \pi i} \int_{l} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi i} \int_{l,} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

Since the function defined by the integral on the right-hand side is a holomorphic function for z on δ, it follows that $\varphi_{j}(z)(j=1,2)$ can be analytically continued to δ. Again using the Cauchy integral formula, we obtain

$$
\varphi_{2}(z)-\varphi_{1}(z)=\frac{1}{2 \pi i} \int_{l_{2}-l_{1}} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi i} \int_{,} \frac{f(\zeta)}{\zeta-z} d \zeta=f(z)
$$

for any $z \in \delta$, as claimed.
This is the idea of Cousin. We call the integral in (3.2) a Cousin integral of $f(z)$ along l. and we say that the two holomorphic functions $\dot{\gamma}_{j}(z)(j=1,2)$ have a jump of $f(z)$ along l.

We note from the construction that if $f(z)$ is of the form $f(z, w)$, where w is a complex parameter such that $f(z, w)$ is holomorphic with respect to w. then the Cousin integral $F(z, w)$ of $f(z, w)$ along l as well as the functions $\varphi_{j}(z, w)(j=1,2)$ are also holomorphic in w.
3.2.2. Cousin I Problem in Polydisks. Let $\mathbf{C}^{\boldsymbol{n}}=\mathbf{C}_{\boldsymbol{z}_{1}} \times \cdots \times \mathbf{C}_{z_{n}}$ and for each $C_{z},(j=1, \ldots, n)$ consider two concentric disks centered at the origin:

$$
\Delta_{j}:\left|z_{j}\right|<r_{j} \quad \text { and } \quad \Delta_{j}^{\prime}:\left|z_{j}\right| \leq r_{j}^{\prime} \quad\left(0<r_{j}^{\prime}<r_{j}\right)
$$

We set

$$
\Delta=\Delta_{1} \times \cdots \times \Delta_{n} \quad \text { and } \quad \Delta^{\prime}=\Delta_{1}^{\prime} \times \cdots \times \Delta_{n}^{\prime} .
$$

Directly from the Taylor series expansion of holomorphic functions, we obtain the following simple lemma.

Lemma 3.1. The Runge theorem holds for the pair ($\Delta^{\prime} . \Delta$).
In order to show that the Cousin I problem is always solvable in open polydisks, from the lemma and Proposition 3.2 it suffices to show that the Cousin I problem is always solvable in any closed polydisk. Using the Cousin integral, we proceed to show that the Cousin I problem can always be solved in a closed polydisk. We remark that the Cousin I problem being solvable on a closed polydisk $\bar{\Delta}$ in $\mathbf{C}^{\boldsymbol{n}}$ means that if $\mathcal{C}:=\left\{\left(g_{p}, \delta_{p}\right)\right\}_{p}$ is a Cousin I distribution on an open polydisk U containing $\bar{\Delta}$, then the corresponding Cousin I problem is solvable for \mathcal{C} in an open
U^{\prime} such that $\bar{\Delta} \subset U^{\prime} \subset U$. The open sets U and U^{\prime} may depend on the data \mathcal{C} : i.e., if we have another set of Cousin I data \mathcal{C}_{1}. then this data may be defined and solvable on a (perhaps) smaller open polydisk U_{1} containing $\bar{\Delta}$.

Thus we begin with $\Delta=\Delta_{1} \times \cdots \times \Delta_{n}$ and we let $\mathcal{C}_{1}=\left\{\left(g_{p}, \delta_{p}\right)\right\}_{p}$ be a Cousin I distribution on $\bar{\Delta}$. Setting $z_{j}=x_{j}+i y_{j}(j=1, \ldots, n)$. we let

$$
\Omega_{j}:\left|x_{j}\right| \leq 2 r_{j} . \quad\left|y_{j}\right| \leq 2 r_{j}
$$

be a rectangle on \mathbf{C}_{z}, so that $\Omega, \supset \bar{\Delta}_{j}$. We subdivide Ω_{j} into N^{2} rectangles using N lines parallel to the x_{j}-axis and N lines parallel to the y_{j}-axis. Let ω_{j} denote the intersection of Δ_{j} and one of these rectangles, and define $\omega:=\omega_{1} \times \cdots \times \omega_{n} \subset \Delta$. We assume that N is chosen sufficiently large so that each cube ω is contained in δ_{p} for some p in $\bar{\Delta}$: this is where we are using the fact that we have Cousin data on the closed polydisk.

Our goal is to replace the meromorphic Cousin I data g_{p} on a cube $\omega \subset \delta_{p}$ by a holomorphic function. To this end, let $\Lambda_{j}(j=1 \ldots . n)$ be a closed convex domain in \mathbf{C}_{z}, bounded by a simple smooth closed curve. and let $\Lambda=\Lambda_{1} \times \cdots \times \Lambda_{n} \subset \mathbf{C}^{n}$. For $\rho>0$, we define

$$
\begin{aligned}
& \Lambda^{1}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \Lambda \mid x_{1} \leq \rho\right\} . \\
& \Lambda^{2}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \Lambda \mid x_{1} \geq-\rho\right\} .
\end{aligned}
$$

and we set $\Lambda^{0}:=\Lambda^{1} \cap \Lambda^{2}$. which we assume to be nonempty. Then we have the following lemma. ${ }^{1}$

Lemma 3.2. Let $g_{1}(z)$ and $g_{2}(z)$ be meromorphic functions in Λ^{1} and Λ^{2} such that $g_{1}(z)-g_{2}(z)$ is holomorphic in Λ^{0}. Then there exist holomorphic functions $h_{1}(z)$ and $h_{2}(z)$ in Λ^{1} and Λ^{2} such that the function

$$
g(z):= \begin{cases}g_{1}(z)-h_{1}(z) . & z \in \Lambda^{1} \\ g_{2}(z)-h_{2}(z) . & z \in \Lambda^{2} .\end{cases}
$$

defines a single-valued meromorphic function in A .
Proof. Fixing the complex parameters z_{2}, \ldots, z_{n} in $\Lambda_{2} \times \cdots \times \Lambda_{n}$, we consider the holomorphic function $f(z)=g_{1}(z)-g_{2}(z)$ in Λ^{0} as a holomorphic function of z_{1} in $\lambda_{1}^{0}=\left\{z_{1} \in \Lambda_{1} \mid-\rho \leq x_{1} \leq \rho\right\}$. We let ia. ib $(a<b)$ in $\mathbf{C}_{z_{1}}$ be the points where $\partial \Lambda_{1}$ intersects the y_{1}-axis and we fix a segment $l=\left[i a^{\prime}, i b^{\prime}\right]\left(a^{\prime}<a . b<b^{\prime}\right)$ on which $f(z)$ is holomorphic. Using the Cousin integral of $f(z)$ along l, we construct holomorphic functions $h_{1}(z)$ and $h_{2}(z)$ in Λ^{1} and Λ^{2} such that $f(z)=h_{1}(z)-h_{2}(z)$ in Λ^{0}. This gives the desired result.

Using Lemma 3.2 repeatedly for the meromorphic functions $g_{p}(z)$ on the cubes ω, we construct a meromorphic function $g(z)$ on $\bar{\Delta}$ which is a solution of the original Cousin I problem for the distribution \mathcal{C}_{1}. Thus the Cousin I problem is solvable on closed polydisks: hence we have proved the following result.

Theorem 3.1. The Cousin I problem in an open polydisk in \mathbf{C}^{n} is always solvable.

[^6]
3.3. Cousin I Problem in Polynomially Convex Domains

3.3.1. Lifting Principle. Kiyoshi Oka [53] proved in 1937 that the Cousin I problem in an arbitrary domain of holomorphy in $\mathbf{C}^{\boldsymbol{n}}$ is always solvable. Here we introduce his theory in its simplest form. First we will show that the Cousin I problem in polynomially convex domains is always solvable. The key idea is the lifting principle. ${ }^{2}$

In \mathbf{C}^{n} with variables $z=\left(z_{1}, \ldots, z_{n}\right)$, fix m polynomials $P_{k}(z)(k=1, \ldots, m)$ and define a closed domain \mathcal{P} in $\mathbf{C}^{\boldsymbol{n}}$.

$$
\begin{equation*}
\mathcal{P}:\left|z_{j}\right| \leq r_{j} \quad(j=1, \ldots, n), \quad\left|P_{k}(z)\right| \leq 1 \quad(k=1, \ldots, m) \tag{3.3}
\end{equation*}
$$

We call \mathcal{P} a polynomial polyhedron in C^{n}. We will always assume that the collection of polynomials is minimal in the sense that deleting any one of the sets $\left\{\left|P_{k}(z)\right| \leq 1\right\}$ from this intersection defines a strictly larger polynomial polyhedron $\widetilde{\mathcal{P}}$, and we call this minimal number m the rank of \mathcal{P}. Note that the dimension n of \mathbf{C}^{n} and the rank m of a polynomial polyhedron are independent quantities. For example, a polydisk in $\mathbf{C}^{\boldsymbol{n}}$ is a polynomial polyhedron of rank 0 . regardless of n.

We introduce \mathbf{C}^{m} with variables $w=\left(w_{1}, \ldots, w_{m}\right)$, and consider the closed polydisk $\bar{\Delta}$ in $\mathbf{C}^{n+m}=\mathbf{C}_{z}^{n} \times \mathbf{C}_{u}^{m}$ defined by

$$
\begin{equation*}
\bar{\Delta}:\left|z_{j}\right| \leq r_{j} \quad(j=1, \ldots, n), \quad\left|w_{k}\right| \leq 1 \quad(k=1 \ldots, m) \tag{3.4}
\end{equation*}
$$

Define

$$
\begin{equation*}
\Sigma=\left\{(z, w) \in \bar{\Delta} \mid w_{k}=P_{k}(z)(k=1, \ldots, m)\right\} \tag{3.5}
\end{equation*}
$$

which is a pure n-dimensional analytic set in $\bar{\Delta}$. Using the mapping

$$
z \in \mathcal{P} \rightarrow M=\left(z, P_{1}(z), \ldots, P_{m}(z)\right) \in \Sigma
$$

we see that \mathcal{P} is homeomorphically equivalent to Σ and $\partial \mathcal{P}$ corresponds to $(\partial \Delta) \cap \Sigma$ (see Figure 1).

In this setting, we consider the following problem.
Lifting Problem. Let $f(z)$ be a holomorphic function on \mathcal{P}. Find a holomorphic function $F(z, w)$ on $\bar{\Delta}$ such that

$$
f(z)=F\left(z, P_{1}(z), \ldots, P_{m}(z)\right) \quad \text { for } p \in \mathcal{P}
$$

If this problem can be solved for an arbitrary holomorphic function $f(z)$ on \mathcal{P}, we say that the lifting principle holds for \mathcal{P}; and we call $F(z, w)$ an extension of $f(z)$ on $\bar{\Delta}^{3}$

[^7]

Figure 1. Representation of a polynomial polyhedron
3.3.2. Polynomial Polyhedra. The lifting principle is closely related to the Cousin I problem. In fact, on a polynomial polyhedron \mathcal{P} in \mathbf{C}^{n}, the solvability of the Cousin I problem and the solvability of the lifting problem can be proved simultaneously by use of a double induction on the rank m of \mathcal{P}. We have already seen that the Cousin I problem in polynomial polyhedra \mathcal{P} of rank 0 (i.e., polydisks) in \mathbf{C}^{n} is always solvable. Moreover. the lifting principle is trivially true for polydisks. We next prove two lemmas which comprise the double induction proof of solvability of Cousin I and of the lifting problem on polynomial polyhedra.

Lemma 3.3. Let $m \geq 1$. Assume that both the Cousin I problem and the lifting problem in any polynomial polyhedron of rank $m-1$ are solvable. Then the lifting problem in any polynomial polyhedron of rank m is solvable.

Proof. Let \mathcal{P} be a polynomial polyhedron of rank m in \mathbf{C}^{n} given by (3.3) and use notation Σ in (3.5). Let $f(z)$ be a holomorphic function on \mathcal{P}.

We introduce the $(n+1)$-dimensional Euclidean space $\mathbf{C}^{n+1}=\mathbf{C}_{z}^{n} \times \mathbf{C}_{w_{1}}$ and define

$$
\mathcal{P}^{v}:\left|z_{j}\right| \leq r_{j} \quad(j=1, \ldots, n) . \quad\left|w_{1}\right| \leq 1 . \quad\left|P_{k}(z)\right| \leq 1 \quad(k=2, \ldots, m) .
$$

Thus \mathcal{P}^{*} is a polynomial polyhedron of $\operatorname{rank} m-1$ in \mathbf{C}^{n+1}. We put

$$
\begin{equation*}
\Sigma^{*}: w_{k}=P_{k}(z) \quad(k=2, \ldots, m), \quad\left(z, w_{1}\right) \in \mathcal{P}^{*} . \tag{3.6}
\end{equation*}
$$

which is an ($n+1$)-dimensional analytic set in $\bar{\Delta}^{n+1} \times \bar{\Delta}^{m-1}$ with $\Sigma \subset \Sigma^{*}$; moreover. Σ^{*} is bijective to $\mathcal{P}^{*}:\left(z, w_{1}\right) \in \mathcal{P}^{*} \rightarrow\left(z, w_{1}, P_{2}(z), \ldots, P_{m}(z)\right) \in \Sigma^{*}$.
$\ln \mathcal{P}^{*}$ we consider the set Σ_{i}^{*} defined by

$$
\Sigma_{i}: w_{1}=P_{1}(z), \quad z \in \mathcal{P}
$$

Note that Σ_{1}^{*} is a pure n-dimensional analytic set in $\mathcal{P}^{\boldsymbol{*}}$ which is homeomorphically equivalent to \mathcal{P} via the mapping $z \in \mathcal{P} \rightarrow\left(z, P_{1}(z)\right) \in \Sigma_{1}^{*}$. and $\partial \mathcal{P}$ corresponds to $\Sigma_{i} \cap\left(\partial \mathcal{P}^{*}\right)$.

Figire 2. Relation between \mathcal{P}^{*} and $\boldsymbol{\Sigma}_{\mathbf{i}}$

We can find a neighborhood V of Σ_{1}^{*} in \mathcal{P}^{*} in which $f(z)$ is holomorphic (here we regard f as a function which is independent of w_{1}).

For each point $p \in \mathcal{P}^{*}$, we choose a neighborhood δ_{p} of p in C^{n+1} and a meromorphic function $\varphi_{p}(z, w)$ in δ_{p} such that the following conditions are satisfied:

1. If $p \in \Sigma_{i}$, then we choose δ_{p} to be contained in V and

$$
\hat{\nu}_{p}\left(z, u_{1}\right)=f(z) /\left(u_{1}-P_{1}(z)\right) \quad \text { in } \delta_{p} .
$$

2. If $p \notin \Sigma_{1}^{*}$, then we choose δ_{p} such that $\delta_{p} \cap \Sigma_{1}^{*}=\emptyset$ and $\varphi_{p}\left(z, u_{1}\right) \equiv 1$ in δ_{p}. Then $\mathcal{C}_{1}=\left\{\left(\varphi_{p}, \delta_{p}\right)\right\}_{p \in \mathcal{P}}$. defines a Cousin I distribution in \mathcal{P}^{*}. Since \mathcal{P}^{*} is a polynomial polyhedron of rank $m-1$, it follows from the inductive hypothesis on solvability of the Cousin I problem that we can find a meromorphic function $\boldsymbol{\Phi}\left(z, w_{1}\right)$ in \mathcal{P}^{*} such that

$$
\Phi\left(z, w_{1}\right)-\frac{f(z)}{u_{1}-P_{1}(z)}
$$

is holomorphic in each $\delta_{p} \subset V$ (case 1 above). Thus, if we define

$$
f^{*}\left(z, w_{1}\right):=\left(u_{1}-P_{1}(z)\right) \Phi\left(z, w_{1}\right) \quad \text { in } \mathcal{P}^{*}
$$

then $f^{*}\left(z, u_{1}\right)$ defines a holomorphic function in \mathcal{P}^{*} such that

$$
f(z)=f^{*}\left(z, P_{1}(z)\right) \quad \text { in } \mathcal{P} .
$$

Since \mathcal{P}^{*} is of rank $m-1$ and $f^{*}\left(z, u_{1}\right)$ is holomorphic in \mathcal{P}^{*}, it follows from the inductive hypothesis on the validity of the lifting principle from (3.6) that we can find an extension $F(z, w)$ of $f^{*}\left(z, w_{1}\right)$ in $\bar{\Delta}^{n+m}$, i.e..

$$
f^{*}\left(z, w_{1}\right)=F\left(z, w_{1}, P_{2}(z), \ldots, P_{m}(z)\right) \quad \text { in } \mathcal{P}^{*}
$$

so that $F\left(z, P_{1}(z) \ldots . P_{r m}(z)\right)=f(z)$ in \mathcal{P}. Therefore, $F(z, u:)$ is an extension of $f(z)$ in $\bar{\Delta}^{n+m}$.

Lemma 3.4. If the lifting principle holds for each polynomial polyhedron of rank $m \geq 1$, then every Cousin I problem in each polynomial polyhedron of rank m is solvable.

Proof. We proceed as follows. Let \mathcal{P} be a polynomial polyhedron of rank m in \mathbf{C}^{n} given by (3.3). Let $z_{1}=x_{1}+i y_{1}$ and let $\rho>0$. We consider the intersections

$$
\mathcal{P}^{1}:=\mathcal{P} \cap\left\{x_{1} \leq \rho\right\} \quad \text { and } \quad \mathcal{P}^{2}:=\mathcal{P} \cap\left\{x_{1} \geq-\rho\right\} .
$$

and we set $\mathcal{P}^{1}:=\mathcal{P}^{1} \cap \mathcal{P}^{2}$, which we assume is non-enipty. Let $g_{1}(z)$ and $g_{2}(z)$ be meromorphic functions in \mathcal{P}^{1} and \mathcal{P}^{2} chosen so that $f(z)=g_{1}(z)-g_{2}(z)$ is a holomorphic function in \mathcal{P}^{0}. We claim that we can find holomorphic functions $h_{1}(z)$ and $h_{2}(z)$ in \mathcal{P}^{1} and \mathcal{P}^{2} such that

$$
g(z):= \begin{cases}g_{1}(z)-h_{1}(z) . & z \in \mathcal{P}^{1} . \tag{3.7}\\ g_{2}(z)-h_{2}(z) . & z \in \mathcal{P}^{2} .\end{cases}
$$

is a single-valued meromorphic function in \mathcal{P}.
To verify this, we consider the n-dimensional analytic set Σ in the $(n+m)$ dimensional polydisk $\bar{\Delta}$ of (3.4) defined by

$$
\boldsymbol{u}_{k}=P_{k}(z) \quad(k=1, \ldots, m), \quad z \in \mathcal{P} .
$$

where $P_{k}(z)$ are polynomials defining \mathcal{P}. We consider the intersections

$$
\Delta^{1}=\bar{\Delta} \cap\left\{x_{1} \leq \rho\right\} \quad \text { and } \quad \Delta^{2}=\bar{\Delta} \cap\left\{x_{1} \geq-\rho\right\} .
$$

and define $\Delta^{01}:=\Delta^{1} \cap \Delta^{2}$. The n-dimensional analytic set Σ^{10} in Δ^{0} defined by

$$
\Sigma^{0}: u_{k}=P_{k}(z)(k=1, \ldots, m), \quad z \in \mathcal{P}^{\prime}
$$

is the restriction of Σ to Δ^{0}. Using the mapping

$$
z \in \mathcal{P}^{0} \rightarrow\left(z . P_{1}(z), \ldots, P_{m}(z)\right) \in \Sigma^{0}
$$

we see that the domain \mathcal{P}^{0} in \mathbf{C}^{n} is homeomorphically equivalent to Σ^{0} and the boundary ∂P^{0} corresponds to $\partial \Sigma^{0}$. By definition, \boldsymbol{p}^{0} is a polynomial polyhedron in \mathbf{C}^{n} of rank $m .{ }^{4}$ It follows from the assumption of validity of the lifting problem

[^8]$$
\left|z_{j}\right| \leq r,(j=1 \ldots, m), \quad\left|P_{k}(z)\right| \leq 1(k=1, \ldots, m)
$$
are valid without change for a set in \mathbf{C}^{n} given by
$$
z_{j} \in A_{j}(j=1, \ldots, n), \quad\left|P_{k}(z)\right| \leq 1(k=1, \ldots, m)
$$

[^9]of rank m that we can find a holomorphic function $F\left(z, w^{\prime}\right)$ in Δ^{0} such that
$$
F\left(z, P_{1}(z), \ldots, P_{m}(z)\right)=f(z) \quad \text { on } \mathcal{P}^{0} .
$$

For simplicity we write $z^{\prime}:=\left(z_{2}, \ldots, z_{m}\right)$. We consider $F\left(z, u^{\prime}\right)$ in Δ^{0} as a holomorphic function $F\left(z_{1}, z^{\prime}, w\right)$ of the variable z_{1} in the domain A_{1} (here, A_{1} is defined in the footnote); i.e., with $(n+m-1)$ complex parameters $\left(z^{\prime}, u^{\prime}\right) \in \Delta_{!}^{\prime} \times \Delta_{w}$. where

$$
\Delta_{z}^{\prime}:\left|z_{j}\right| \leq r_{j}, j=2 \ldots, n
$$

and

$$
\Delta_{w^{\prime}}:\left|w_{j}\right| \leq 1, j=1 \ldots \ldots m .
$$

We form the Cousin integral of $F\left(z_{1}, z^{\prime}, w\right)$ along the segment $l=\left[-i r_{1}^{\prime}, i r_{1}^{\prime}\right]$. where $r_{1}^{\prime}>r_{1}$ is chosen sufficiently close to r_{1} to insure that $F\left(z_{1}, z^{\prime}, w\right)$ is holomorphic near l, and we obtain holomorphic functions $\Phi_{1}(z, w)$ and $\Phi_{2}(z, w)$ in Δ^{1} and Δ^{2} such that

$$
F(z, w)=\Phi_{1}\left(z, w^{\prime}\right)-\Phi_{2}(z, w) \quad \text { in } \Delta^{\prime \prime} .
$$

If we define

$$
h_{1}(z):=\Phi_{i}\left(z, P_{1}(z) \ldots, P_{m}(z)\right) \quad \text { in } \mathcal{P}^{i}(i=1,2) .
$$

then $h_{i}(z)$ is a holomorphic function in \mathcal{P}^{i} and satisfies

$$
h_{1}(z)-h_{2}(z)=f(z) \quad \text { in } \mathcal{P}^{0} .
$$

Thus, $h_{1}(z)$ and $h_{2}(z)$ satisfy the requirements for (3.7).
Let $\mathcal{C}_{1}=\left\{\left(g_{p}(z), \delta_{p}\right)\right\}_{p}$ be a Cousin I distribution in \mathcal{P}. We apply the same method as in the proof of Lemma 3.2, replacing $\bar{\Delta}$ by \mathcal{P}. We then construct sufficiently small sets $\omega^{\prime}:=\left(\omega_{1} \times \cdots \times \omega_{n}\right) \cap \mathcal{P}$ so that each set ω^{\prime} is contained in some δ_{p}. We remarked in the footnote that each ω^{\prime}, as well as \mathcal{P} itself, is a polynomial polyhedron of rank m. Hence, using the above procedure, we obtain Lemma 3.4.

We have now established the following proposition.
Proposition 3.4 ([44]). For polynomial polyhedra in \mathbf{C}^{n}, the Cousin I problem is always solvable and the lifting principle holds.
3.3.3. Cousin I Problem in Polynomially Convex Domains. In this section, we show that the Cousin I problem is always solvable on a polynomially convex domain. Let \mathcal{P} be a polynomial polyhedron in \mathbf{C}^{n}.

$$
\mathcal{P}:\left|z_{j}\right| \leq r_{j}(j=1 \ldots \ldots n), \quad\left|P_{k}(z)\right| \leq 1(k=1 \ldots \ldots m) .
$$

We first show the following.
Theorem 3.2 ([44]). The Runge theorem holds for ($\mathcal{P}, \mathbf{C}^{n}$).
Proof. Define the polydisk

$$
\bar{\Delta}^{n+m}:\left|z_{j}\right| \leq r_{j}(j=1, \ldots, n), \quad\left|w_{k}\right| \leq 1(k=1, \ldots, m) .
$$

Let $f(z)$ be a holomorphic function in \mathcal{P}. From Proposition 3.4, we can find a holomorphic function $F(z, w)$ in $\bar{\Delta}^{n+m}$ such that

$$
F\left(z . P_{1}(z), \ldots, P_{m}(z)\right)=f(z) \quad \text { in } \mathcal{P} .
$$

Let $\epsilon>0$ be given. From the Taylor expansion of $F\left(z, w^{\prime}\right)$ in $\bar{\Delta}^{n+m}$. we can find a polynomial $\Phi(z, w)$ in \mathbf{C}^{n+m} such that

$$
|F(z, w)-\Phi(z, w)|<\epsilon \quad \text { in } \bar{\Delta}^{n+m} .
$$

If we set

$$
\varphi(z):=\Phi\left(z, P_{1}(z), \ldots P_{m}(z)\right), \quad z \in \mathbf{C}^{n}
$$

then φ is a polynomial in \mathbf{C}^{n} which satisfies $|f(z)-\varphi(z)|<\epsilon$ in \mathcal{P}. Thus the theorem is proved.

Let G be a polynomially convex domain in \mathbf{C}^{n}. Following the argument in Proposition 1.5 in Chapter 1, given any $E \subset \subset G$. we can find a polynomial polyhedron in \mathbf{C}^{n} such that $E \subset \subset \mathcal{P} \subset \subset G$. In particular, if K is a polynomially convex compact subset of \mathbf{C}^{n}. i.e., the polynomial hull of K in \mathbf{C}^{n} is identical with K, then any function $f(z)$ which is holomorphic on K is holomorphic on a sufficiently small polynomial polyhedron containing K. Thus, as a corollary to the proof of Theorem 3.2, we have the following approximation result.

Corollary 3.1 (Oka-Weil theorem). Let K be a polynomially conver compact subset in \mathbf{C}^{n}. Then for any function $f(z)$ which is holomorphic on K and any $\varepsilon>0$. there exists a polynomial $p(z)$ with $|f(z)-p(z)|<\varepsilon$ on K.

Note also from Theorem 3.2 that the Runge theorem holds for any pair of polynomial polyhedra ($\mathcal{P}_{1}, \mathcal{P}_{2}$) with $\mathcal{P}_{1} \subset \subset \mathcal{P}_{2}$. Thus Proposition 3.4. Theorem 3.2 and Proposition 3.2 imply the following.

Theorem 3.3 ([44]). The Cousin I problem in polynomially convex domains in \mathbf{C}^{n} is always solvable.

3.4. Cousin I Problem in Domains of Holomorphy

3.4.1. Polynomial Hulls. In this section we study the Cousin I problem in a general domain of holomorphy in $\mathbf{C}^{\boldsymbol{n}} .^{5}$ The key to its solution is a result about polynomial hulls (see (1.14)) of analytic sets of a special form in polydisks.

We first discuss Oka's lemma. Let E be a compact set in \mathbf{C}^{n}. and let A be a closed set in \mathbf{C}^{n} such that $E \subset A$. Let $p \in A$. and let δ be a neighborhood of p in \mathbf{C}^{n}. Let $\boldsymbol{T}=[0,1]$ be the unit interval on the real axis of the complex plane \mathbf{C}_{t} and let V be a neighborhood of T in $\mathbf{C}_{\mathbf{t}}$. Let $f(z, t)$ be a holomorphic function in $\delta \times V$, and define

$$
\sigma_{t}:=\{z \in \delta \mid f(z, t)=0\}
$$

for each $t \in T$. If the family of analytic sets $\left\{\sigma_{t}\right\}_{t \in T}$ in δ satisfies

1. $\sigma_{t} \cap E=\emptyset$ for any $t \in T$;
2. $\sigma_{0} \cap A \neq \emptyset$ and $\sigma_{1} \cap A=0$; and
3. $\left(\partial \sigma_{t}\right) \cap A=0$ for all $t \in T$,

[^10]then we say that the family $\left\{\sigma_{t}\right\}_{t \in T}$ satisfies Oka's condition at p for the pair (E, A). Note we require that $\sigma_{0} \cap A \neq 0$. but we need not have $p \in \sigma_{0}$. We emphasize that the analytic sets $\left\{\sigma_{t}\right\}_{t \in T}$ are of codimension one: i.e., each σ_{t} is an analytic hypersurface. Using this notation, we state and prove Oka's lemma.

Lemma 3.5 (Oka's lemma). Let E be a compact set in $\mathbf{C}^{\prime \prime}$ and let A denote the polynomial hull of E in \mathbf{C}^{n}. Then for each $p \in A$. there does not exist a family of analytic hypersurfaces $\left\{\sigma_{t}\right\}_{\in \in T}$ which satisfies Oka's condition at p for the pair (E, A).

Proof. The proof is by contradiction. Assume that for some point $p \in A$ we can find a neighborhood δ of p in \mathbf{C}^{n} and a neighborhood V of $T=[0,1]$ in \mathbf{C}_{t} such that there exists a family of analytic hypersurfaces

$$
\sigma_{t}: f(z, t)=0, \quad(z, t) \in \delta \times V .
$$

which satisfies Oka's condition at p for the pair (E, A).
Let G be a neighborhood of A in \mathbf{C}^{n} such that $G \cap \sigma_{1}=0$ and $G \cap\left(\partial \sigma_{t}\right)=0$ for each $t \in T$. Then, since $A \times T$ is the polynomial hull of $E \times T$ in $\mathbf{C}^{n} \times \mathbf{C}_{t}$, there exists a polynomial polyhedron \mathcal{P} in $\mathbf{C}^{n} \times \mathbf{C}_{t}$ such that

$$
A \times T \subset \subset \mathcal{P} \subset \subset G \times V
$$

We define a Cousin I distribution in \mathcal{P} as follows: given any $q=\left(z^{\prime}, t^{\prime}\right) \in \mathcal{P}$. we take a neighborhood δ_{q} in $\mathbf{C}^{n} \times \mathbf{C}_{t}$ and a meromorphic function $g_{q}(z, t)$ in δ_{q} in such a way that

1. if $\left(z^{\prime}, t^{\prime}\right) \in \delta \times V$ and $f\left(z^{\prime} \cdot t^{\prime}\right)=0$, then we take $\delta_{\eta} \subset \delta \times V$ and set $g_{q}(z, t)=1 / f(z, t):$
2. if $\left(z^{\prime}, t^{\prime}\right) \in \delta \times V$ and $f\left(z^{\prime}, t^{\prime}\right) \neq 0$ or if $\left(z^{\prime}, t^{\prime}\right) \notin \delta \times V$. then we take δ_{q} so that $f(z, t) \neq 0$ on δ_{q} and set $g_{q}(z, t) \equiv 1$.
It is clear from Oka's condition for $\left\{\sigma_{t}\right\}_{t \in T}$ that the collection $\mathcal{C}_{1}=\left\{\left(g_{q}, \delta_{q}\right)\right\}_{q \in \mathcal{P}}$ forms a Cousin I distribution in \mathcal{P}. Fron Theorem 3.3 we can find a solution $g(z, t)$ of the Cousin I problem for \mathcal{C}_{1} in \mathcal{P}. Thus, $g(z, t)$ can have poles only on $\left[U_{t \in V} \sigma_{t}\right] \cap \mathcal{P}$.

Let $t^{\prime}=\max \left\{t \in T \mid \sigma_{t} \cap A \neq 0\right\}<1$ and set $T^{\prime}:=\left[t^{\prime}, 1\right]$. Then $g(z, t)$ is holomorphic in $E \times T^{\prime}$, so that

$$
M:=\max \left\{|g(z, t)| \mid(z, t) \in E \times T^{\prime}\right\}<+\infty .
$$

On the other hand, $g\left(z, t^{\prime}\right)$ has a pole at some point $z_{0} \in A$. Therefore. if we fix $\left.t_{0}\right)$ with $t^{\prime}<t_{0}<1$ chosen sufficiently close to t^{\prime}, then $g\left(z, t_{0}\right) \equiv g^{0}(z)$ is holomorphic. on A and satisfies

$$
\left|g^{0}\left(z_{0}\right)\right|>M+1 \geq \max \left\{\left|g^{0}(z)\right| \mid z \in E\right\} .
$$

Let $\varepsilon=\left(\left|g^{\prime \prime}\left(z_{0}\right)\right|-M-1\right) / 3>0$. Since A is a polynomial hull in \mathbf{C}^{n}. from Corollary 3.1 we can find a polynomial $P(z)$ in \mathbf{C}^{n} such that $\left|g^{0}(z)-P(z)\right|<\varepsilon$ on A. It follows that

$$
\left|P\left(z_{0}\right)\right|>\frac{2\left|g^{0}\left(z_{0}\right)\right|+M+1}{3}>\frac{\left|g^{0}\left(z_{0}\right)\right|+2(M+1)}{3}>|P(z)| \quad \text { for } z \in E .
$$

This contradicts the fact that $z_{0} \in A$.
In Chapter 9, we will see that the family of analytic liypersurfaces $\left\{\sigma_{t}\right\}_{t \in T}$ need only vary continuously; i.e., only continuity of $f(z . t)$ in $t \in T$ is needed.
3.4.2. Preparation Theorem. Let G be a domain in $\mathbf{C}^{\boldsymbol{n}}$ with variables $z=$ $\left(z_{1}, \ldots, z_{n}\right)$. Let

$$
\mathcal{P}:\left|z_{j}\right| \leq r_{j} \quad(j=1, \ldots, n), \quad\left|f_{k}(z)\right| \leq 1 \quad(k=1, \ldots, m)
$$

be an analytic polyhedron such that $\mathcal{P} \subset \subset G$. where $f_{k}(z)(k=1, \ldots, m)$ is a holomorphic function in G. We introduce \mathbf{C}^{m} with variables $w=\left(w_{1}, \ldots, w_{m}\right)$; then in the polydisk $\bar{\Delta}$ in $\mathbf{C}^{\boldsymbol{n + m}}=\mathbf{C}^{\boldsymbol{n}} \times \mathbf{C}^{\boldsymbol{m}}$.

$$
\bar{\Delta}:\left|z_{j}\right| \leq r_{j} \quad(j=1, \ldots, n), \quad\left|w_{k}\right| \leq 1 \quad(k=1, \ldots, m)
$$

we consider the pure n-dimensional analytic set

$$
\begin{equation*}
\Sigma: w_{k}=f_{k}(z)(k=1, \ldots, m), \quad z \in \mathcal{P} \tag{3.8}
\end{equation*}
$$

THEOREM 3.4 ([45]). Σ is a polynomially convex compact set in $\mathbf{C}^{n+m} .{ }^{6}$
Proof. Let A denote the polynomial hull of Σ. For $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \in \mathbf{C}^{n}$. we set

$$
\begin{aligned}
& \Sigma\left(z^{\prime}\right):=\left\{w \in \mathbf{C}^{m} \mid\left(z^{\prime}, w\right) \in \Sigma\right\} \\
& A\left(z^{\prime}\right):=\left\{w \in \mathbf{C}^{m} \mid\left(z^{\prime}, w\right) \in A\right\}
\end{aligned}
$$

the sections of Σ and A over $z_{j}=z_{j}^{\prime}(j=1, \ldots, n)$. Thus $\Sigma\left(z^{\prime}\right) \subset A\left(z^{\prime}\right)$: and $A\left(z^{\prime}\right)$ may be empty for some $z^{\prime} \in \mathbf{C}^{n}$. To prove the theorem it suffices to show that

$$
\Sigma\left(z^{\prime}\right)=A\left(z^{\prime}\right) \quad \text { for each } z^{\prime} \in \mathbf{C}^{n}
$$

Without loss of generality; we may assume that the origin 0 of C^{n} is not contained in \bar{G}. Given $R>0$, we define the closed ball $\mathcal{Q}(R)$ in $\mathbf{C}^{\boldsymbol{n}}$,

$$
\mathcal{Q}(R): \sum_{j=1}^{n}\left|z_{j}\right|^{2} \leq R^{2}
$$

If R is sufficiently large so that $\mathcal{Q}(R) \supset \mathcal{P}$. then it is clear that $\Sigma\left(z^{\prime}\right)=A\left(z^{\prime}\right)=0$ for each $z^{\prime} \notin \mathcal{Q}(R)$.

Fix $R>0$ such that

$$
\Sigma\left(z^{\prime}\right)=A\left(z^{\prime}\right) \quad \text { for } z^{\prime} \notin Q(R)
$$

We will show that for any $p \in \partial \mathcal{Q}(R)$, there exists a neighborhood δ_{p}^{*} of p in \mathbf{C}^{n} such that

$$
\Sigma\left(z^{\prime}\right)=A\left(z^{\prime}\right) \quad \text { for all } z^{\prime} \in \delta_{p}^{*}
$$

For simplicity, we assume $p=(0, \ldots, 0, R)$.
We first assume that $p \notin \mathcal{P}$. Then we can find a ball δ_{p} centered at p with radius $r>0$ in \mathbf{C}^{n} such that $\overline{\delta_{p}} \cap \mathcal{P}=0$. Thus. $\Sigma\left(z^{\prime}\right)=0$ for any $z^{\prime} \in \delta_{p}$, and it suffices to show that $A(p)=0$. For. since A is closed in \mathbf{C}^{n+m}, we can find a neighborhood $\delta_{p}^{*} \subset \delta_{p}$ of p in \mathbf{C}^{n} such that $A\left(z^{\prime}\right)=0$ for any $z^{\prime} \in \delta_{p}^{*}$. Thus, if $A(p)=\emptyset$, then $\Sigma\left(z^{\prime}\right)=A\left(z^{\prime}\right)=\emptyset$ for $z^{\prime} \in \delta_{p}^{*}$. We prove $A(p)=\emptyset$ by contradiction. Assume that $A(p) \neq \emptyset$; suppose $w^{0} \in A(p)$. We consider the following family of analytic hypersurfaces $\left\{\sigma_{t}\right\}_{t}$ in $\delta_{p} \times \mathbf{C}^{m}$:

$$
\sigma_{t}: z_{n}=R+t, \quad t \in T=[0,1]
$$

[^11]Then, $\left\{\sigma_{t}\right\}_{\in \in T}$ satisfies Oka's condition for the pair (Σ, A) at the point $\left(p, u^{0}\right)$. Indeed, $\sigma_{t} \cap \Sigma=\emptyset$ for any $t \in T$ from the condition $\overline{\delta_{p}} \cap \mathcal{P}=\emptyset$; furthermore, $\left(p, u^{0}\right) \in \sigma_{0} \cap A$ and $\sigma_{t} \cap A=0$ for each $t \in T \backslash\{0\}$, since $\sigma_{t} \subset\left(\mathbf{C}^{n} \backslash \mathcal{Q}(R)\right) \times \mathbf{C}^{m}$ and $A\left(z^{\prime}\right)=\Sigma\left(z^{\prime}\right)=\emptyset$ for $z^{\prime} \notin \mathcal{Q}(R)$. Finally, $\left(\partial \sigma_{t}\right) \cap A=\emptyset$ for each $t \in T$, since A is compact in \mathbf{C}^{n+m} and σ_{t} has empty boundary relative to \mathbf{C}^{n+m}. By. Lemma 3.5 this contradicts the fact that A is the polynomial hull of Σ in \mathbf{C}^{n+m}.

We next consider the case when $p=(0, \ldots, 0, R) \in \mathcal{P}$. Let δ_{p} be a ball centered at p in G. Let $z_{n}=x_{n}+i y_{n}$ and consider the real ($2 n-1$)-dimensional hyperplane H in \mathbf{C}^{n} of the form

$$
H=\left\{z \in \mathbf{C}^{n} \mid x_{n}=R-\rho_{n}\right\} .
$$

where ρ_{0} is the unique positive number so that $(\partial \mathcal{Q}(R)) \cap \delta_{p} \subset H$. Fix $\rho>0$ with $0<\rho<\rho_{0}$, and define $\delta_{p}^{*}:=\delta_{p} \cap\left\{x_{n}>R-\rho\right\}$. which is a neighborhood of p in \mathbf{C}^{n}. Our claim is that

$$
\begin{equation*}
\Sigma\left(z^{\prime}\right)=A\left(z^{\prime}\right) \quad \text { for all } z^{\prime} \in \delta_{p} \tag{3.9}
\end{equation*}
$$

We prove this by contradiction. Assume that there exists a point $z^{*}=\left(z_{1}^{*}, \ldots, z_{n}^{*}\right)$ $\in \delta_{p}^{*}$ such that

$$
\begin{equation*}
\Sigma\left(z^{*}\right) \neq A\left(z^{*}\right) \tag{3.10}
\end{equation*}
$$

We set $z_{n}^{*}=x_{n}^{*}+i y_{n}^{*}$, so that $R-\rho<x_{n}^{*} \leq R$ since $A\left(z^{\prime}\right)=\Sigma\left(z^{\prime}\right)$ for $z^{\prime} \notin \mathcal{Q}(R)$. By (3.10). there exists a point $w^{*}=\left(u_{i}^{*} \ldots . u_{n}^{*}\right) \in A\left(z^{*}\right)$ such that

$$
u_{k}^{*} \neq f_{k}\left(z^{*}\right) \quad \text { for some } k(1 \leq k \leq m) .
$$

We fix this k and set $c_{0}:=w_{k}^{*}-f_{k}\left(z^{*}\right) \neq 0$. Consider the family of analytic hypersurfaces $\left\{\sigma_{t}\right\}_{t}$ in $\delta_{p}^{*} \times \mathbf{C}^{m}$ defined by the equations

$$
\sigma_{t}: w_{k}-f_{k}(z)=c_{0}(1+t) e^{-\lambda\left(z_{n}-z_{n}\right)}, \quad t \in T=[0, M],
$$

where $\lambda, M>0$ are chosen large enough so that
(i) $\left.\quad\left|c_{0}\right| e^{-\lambda_{1} R-\rho-x_{n}{ }^{\prime}}\right\rangle \max _{(:=u) \in A \cap\left(\delta_{i}^{j} \times C^{m}\right)}\left\{\left|w_{k}-f_{k}(z)\right|\right\}$;
(ii) $\quad\left|c_{0}\right|(1+M)>\max _{\left(\varepsilon, w^{\prime} \in \in A \cap\left(\delta_{j} \times \mathbf{C}^{\prime \prime \prime}\right)\right.}\left\{\left|w_{k}-f_{k}(z)\right| e^{\lambda\left(I_{n}-x_{n}^{\prime}\right)}\right\}$.

We claim that the family $\left\{\sigma_{t}\right\}_{t \in T}$ satisfies Oka's condition for the pair (Σ, A) at the point ($z^{*} . w^{*}$).

Clearly $\sigma_{t} \cap \Sigma=\emptyset$ for $t \in T$. since $w_{k}-f_{k}(z) \neq 0$ on σ_{t} : also. $\left(z^{*} . u^{*}\right) \in \sigma_{0} \cap A$ and $\sigma_{M} \cap A=\emptyset$ from (ii). Finally, to prove that $\left(\partial \sigma_{t}\right) \cap A=\emptyset$ for all $t \in T$, we divide $\partial \delta_{p}^{*}$ in \mathbf{C}^{n} into two parts:

$$
l_{1}=\left(\partial \delta_{p}^{*}\right) \cap\{x=R-\rho\} \quad \text { and } \quad l_{2}=\left(\partial \delta_{p}^{*}\right) \backslash l_{1} .
$$

Since $f_{k}(z)$ is defined and holomorphic on $\overline{\delta_{p}}$, we note that $\partial \sigma_{t} \cap\left[\delta_{p}^{*} \times \mathbf{C}^{m}\right]=0(t \in$ $T)$. Thus. each boundary $\partial \sigma_{t}$ in $\delta_{p}^{*} \times \mathbf{C}^{m^{m}}(t \in T)$ consists of two parts:

$$
\left(\partial \sigma_{t}\right)_{i}:=\left(\partial \sigma_{t}\right) \cap\left(I_{1} \times \mathbf{C}^{n t}\right), \quad i=1.2 .
$$

We set

$$
A\left(l_{1}\right):=\left\{(z . w) \in A \mid z \in l_{\imath}\right\}, \quad i=1,2 .
$$

Then (i) implies that

$$
\left(\partial \sigma_{t}\right)_{1} \cap A\left(l_{1}\right)=\emptyset \text { for all } t \in T .
$$

Furthermore, since $l_{2} \subset \subset \mathbf{C}^{n} \backslash \mathcal{Q}(R)$ and $A(z)=\Sigma(z)$ for $z \notin \mathcal{Q}(R)$ by our choice of $R>0$, it follows that $w_{k}-f_{k}(z)=0$ for all $z \in l_{2}$. Hence $\overline{\sigma_{t}} \cap A\left(l_{2}\right)=\emptyset$ for all $t \in T$. by the defining equation for σ_{t}. Consequently, $\left(\partial \sigma_{t}\right) \cap A=$ for all $t \in T$. We conclude that $\left\{\sigma_{t}\right\}_{t \in T}$ satisfies Oka's condition for the pair (Σ, A) at $\left(z^{*}, w^{*}\right)$. From Lemma 3.5, this contradicts the fact that A is the polynomial hull of Σ in $\mathbf{C}^{\boldsymbol{n + m}}$. Hence, we must have $\Sigma\left(z^{\prime}\right)=A\left(z^{\prime}\right)$ for all $z^{\prime} \in \delta_{p}^{*}$, and our claim (3.9) is true.

Since $\partial Q(R)$ is compact, it follows from the Heine-Borel theorem that the infimum of the set of all $R>0$ such that $\Sigma\left(z^{\prime}\right)=A\left(z^{\prime}\right)$ for all $z^{\prime} \notin \mathcal{Q}(R)$ must be 0 . This fact. together with the information that $0 \notin \bar{G}$, implies that $\Sigma\left(z^{\prime}\right)=A\left(z^{\prime}\right)$ for all $z \in \mathbf{C}^{n}$.

As will be shown in Remark 7.12 in Chapter 7. this theorem has another quite different proof.
3.4.3. Cousin I Problem in Domains of Holomorphy. Assume that G is a domain of holomorphy in \mathbf{C}^{n}. We use the same notation $\mathcal{P} \subset \subset G, \Delta \subset \subset \mathbf{C}^{n+m}$, and $\Sigma: w_{k}=f_{k}(z)(k=1 \ldots, m), z \in \mathcal{P}$, in Δ from the previous section.

Theorem 3.5 ([45]). The Runge theorem holds for the pair (P.G).
Proof. Let $\varphi(z)$ be a holomorphic function in a neighborhood v of \mathcal{P} in \mathbf{C}^{n}. If we regard $\varphi(z)$ as being independent of $w \in \mathbf{C}^{m}$, then $\varphi(z)$ is a holomorphic function in a neighborhood V of Σ in \mathbf{C}^{n+m}, where $V=v \times \mathbf{C}^{m}$. From Theorem 3.4 there exists a polynomial polyhedron \mathcal{P}^{*} in \mathbf{C}^{n+m} such that

$$
\Sigma \subset \subset \mathcal{P}^{\bullet} \subset \subset V .
$$

Now Theorem 3.2 implies that the Runge theorem holds for ($\mathcal{P}^{*}, \mathrm{C}^{n+m}$). Hence, given $\varepsilon>0$ and an open set V_{0} in \mathbf{C}^{n+m} such that $\Sigma \subset \subset V_{0} \subset \subset \mathcal{P}^{*}$, we can find a polynomial $P(z, w)$ in \mathbf{C}^{n+m} with

$$
|\varphi(z)-P(z, w)|<\varepsilon \quad \text { in } V_{0} .
$$

If we set

$$
\Phi(z):=P\left(z, f_{1}(z), \ldots, f_{m}(z)\right) . \quad z \in G .
$$

then $\boldsymbol{\Phi}(z)$ defines a holomorphic function in G such that

$$
|\varphi(z)-\Phi(z)|<\varepsilon, \quad z \in \mathcal{P} .
$$

Thus. the Runge theorem holds for ($\mathcal{P} . G$).
In order to solve the Cousin I problem in a domain of holomorphy G, the above theorem. combined with Proposition 3.2, shows that it suffices to solve the Cousin I problem in an analytic polyhedron contained in G. We now show this is always the case.

Lemma 3.6. Let G be a domain of holomorphy, and let $\mathcal{P} \subset G$ be an analytic polyhedron. Then the Cousin I problem in \mathcal{P} is always solvable.

Proof. We use the same notation Σ in Δ for \mathcal{P} defined in (3.8). Let $\mathcal{C}_{1}=$ $\left\{\left(g_{p}, \delta_{p}\right)\right\}_{p \in r}$ be a Cousin I distribution defined in a neighborhood v of \mathcal{P} in \mathbf{C}^{n}. If we regard $g_{p}(z)$ as independent of $w \in \mathbf{C}^{m}$, then \mathcal{C}_{1} may be regarded as a Cousin I distribution $\widehat{\mathcal{C}_{1}}$ in a neighborhood V of Σ in \mathbf{C}^{n+m}. where $V=v \times \mathbf{C}^{m}$. That is, let $p^{\prime} \in V$ and denote by $p \in v$ the projection of p^{\prime} into \mathbf{C}^{n}. Then set $\delta_{p^{\prime}}:=\delta_{p} \times \mathbf{C}^{m}$, a
neighborhood of p^{\prime} in \mathbf{C}^{n+m}, and define $g_{p^{\prime}}(z, w):=g_{p}(z)$. which is a meromorphic function in $\delta_{p^{\prime}}$; then $\widehat{\mathcal{C}_{1}}:=\left\{\left(g_{p^{\prime}}(z, w), \delta_{p^{\prime}}\right)\right\}_{p^{\prime} \in V}$ is a Cousin I distribution in V. Once again using Theorem 3.4, we obtain a polynomial polyhedron \mathcal{P}^{*} in $\mathbf{C}^{\boldsymbol{n + m}}$ such that

$$
\Sigma \subset \subset \mathcal{P}^{*} \subset \subset V
$$

From Proposition 3.4, there exists a solution $\boldsymbol{G}(z . w)$ of the Cousin I problem for $\widehat{\mathcal{C}}_{1}$ in \mathcal{P}^{*}. If we set

$$
g(z):=G\left(z, f_{1}(z), \ldots, f_{m}(z)\right) \text { in } \mathcal{P}
$$

then $g(z)$ is a solution of the Cousin I problem for the original Cousin I data \mathcal{C}_{1} in \mathcal{P}.

Summarizing the results above, we have proved the main theorem of this section.

Theorem 3.6 ([45]). The Cousin I problem in domains of holomorphy is always solvable.
3.4.4. Example. We noted in Remark 3.1 (Cartan) that if D is a domain in \mathbf{C}^{2} in which the Cousin I problem is always solvable, then D must be a domain of holomorphy. Cartan [10] showed that this is not necessarily true for a domain in \mathbf{C}^{3}. We present his example in this section.

First we need a preliminary result. We let $0<r_{1}<r_{2}$, and we consider the following three product domains in $\mathbf{C}^{3}=\mathbf{C}_{z_{1}} \times \mathbf{C}_{z_{2}} \times \mathbf{C}_{z_{3}}$:

$$
\begin{array}{rrrrr}
\Delta_{1} & : & r_{1}<\left|z_{1}\right|<r_{2}, & \left|z_{2}\right|<r_{2}, & \left|z_{3}\right|<r_{2} . \\
\Delta_{2}: & \left|z_{1}\right|<r_{2}, & r_{1}<\left|z_{2}\right|<r_{2} . & \left|z_{3}\right|<r_{2} . \\
\Delta_{3}: & \left|z_{1}\right|<r_{2} . & \left|z_{2}\right|<r_{2} . & r_{1}<\left|z_{3}\right|<r_{2} .
\end{array}
$$

Set

$$
\Delta^{1}=\Delta_{2} \cap \Delta_{3}, \quad \Delta^{2}=\Delta_{3} \cap \Delta_{1}, \quad \Delta^{3}=\Delta_{1} \cap \Delta_{2}
$$

and

$$
\Delta^{0}=\Delta_{1} \cap \Delta_{2} \cap \Delta_{3}, \quad \Delta=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}
$$

Note that Δ is homeomorphic to a punctured ball $\left\{0<\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}<1\right\}$ in \mathbf{C}^{3}. It follows from Osgood's theorem (Theorem 1.10) that Δ is not a domain of holonnorphy in \mathbf{C}^{3}.

Theorem 3.7 (Three ring theorem). For $j=1,2,3$. let $g^{j}(z)$ be a holomorphic function on Δ^{j} satisfying

$$
\begin{equation*}
g^{1}(z)+g^{2}(z)+g^{3}(z)=0 \text { on } \Delta^{0} . \tag{3.11}
\end{equation*}
$$

Then there exist holomorphic functions $f_{j}(z)(j=1,2,3)$ on Δ_{j} such that

$$
g^{1}(z)=f_{2}(z)-f_{3}(z), g^{2}(z)=f_{3}(z)-f_{1}(z), g^{3}(z)=f_{1}(z)-f_{2}(z)
$$

on Δ^{1}, Δ^{2} and Δ^{3}, respectively.
Proof. We expand $g^{1}(z)$ in a Laurent series with respect to z_{1}, z_{2}, z_{3} about the origin $0 \in \mathbf{C}^{3}$. Clearly, the coefficients of $z_{1}^{k} z_{2}^{m} z_{3}^{l}$ with $m<0$ vanish for all $m, l=0, \pm 1, \ldots$ By (3.11) and the uniqueness of the Laurent expansion, the coefficients of $z_{1}^{k} z_{2}^{m} z_{3}^{l}$ where both $m<0$ and $l<0$ vanish. Hence, we can write a unique decomposition of g^{1} as

$$
g^{1}(z)=G_{1}^{1}(z)+G_{2}^{1}(z)+G_{3}^{1}(z)
$$

where $G_{1}^{1}(z)$ is holomorphic on Δ, and $G_{j}^{1}(z)(j=2.3)$ is holomorphic on Δ_{j} but not necessarily in Δ. For example, $G_{2}^{1}(z)$ is the sum of all terms of the expansion in powers $z_{1}^{k} z_{2}^{m} z_{3}^{l}$ with $m<0$ and $k . l \geq 0$. In a similar fashion, we have

$$
g^{i}(z)=G_{1}^{i}(z)+G_{2}^{i}(z)+G_{3}^{i}(z), \quad i=2,3,
$$

where $G_{i}^{i}(z)$ is holomorphic in Δ and $G_{j}^{i}(z)(j \neq i)$ is holomorphic in Δ, but not necessarily in Δ. Once again using (3.11) and the uniqueness of the Laurent expansion, we have

$$
\begin{gathered}
G_{1}^{1}(z)+G_{2}^{2}(z)+G_{3}^{3}(z)=0, \\
G_{1}^{2}(z)+G_{1}^{3}(z)=0, \quad G_{2}^{1}(z)+G_{2}^{3}(z)=0, \quad G_{3}^{1}(z)+G_{3}^{2}(z)=0
\end{gathered}
$$

on $\Delta, \Delta_{1}, \Delta_{2}$ and Δ_{3}. Therefore, if we define

$$
\begin{array}{ll}
f_{1}(z):=\frac{-G_{2}^{2}(z)+G_{3}^{3}(z)}{3}+G_{1}^{3}(z) & \text { on } \Delta_{1} \\
f_{2}(z):=\frac{-G_{3}^{3}(z)+G_{1}^{1}(z)}{3}+G_{2}^{1}(z) & \text { on } \Delta_{2} \\
f_{3}(z):=\frac{-G_{1}^{1}(z)+G_{2}^{2}(z)}{3}+G_{3}^{2}(z) & \text { on } \Delta_{3},
\end{array}
$$

then $f_{j}(z)(j=1,2,3)$ are the desired functions.
From this theorem we obtain the following result.
Proposition 3.5. The Cousin I problem in the above domain Δ in \mathbf{C}^{3} is always solvable.

Proof. Let $\mathcal{C}_{1}=\left\{\left(g_{p}, \delta_{p}\right)\right\}_{p \in \Delta}$ be a Cousin I distribution on Δ. Since $\Delta_{j}(j=$ $1,2,3$) is a product domain, the Cousin I problem is always solvable in Δ_{j}. Thus we can find a solution $\varphi_{j}(z)$ of the Cousin 1 problem for \mathcal{C}_{1} in Δ_{j}. If we set

$$
g^{1}(z)=\varphi_{2}(z)-\varphi_{3}(z), \quad g^{2}(z)=\varphi_{3}(z)-\varphi_{1}(z), \quad g^{3}(z)=\varphi_{1}(z)-\varphi_{2}(z)
$$

on Δ^{1}, Δ^{2} and Δ^{3}. then each $g^{j}(z)(j=1,2,3)$ is a holomorphic function on Δ^{J} and

$$
g^{1}(z)+g^{2}(z)+g^{3}(z)=0 \text { on } \Delta^{0} .
$$

By Theorem 3.7, we can find holomorphic functions $f_{j}(z)(j=1,2,3)$ on Δ, such that

$$
g^{1}(z)=f_{2}(z)-f_{3}(z), \quad g^{2}(z)=f_{3}(z)-f_{1}(z), \quad g^{3}(z)=f_{1}(z)-f_{2}(z)
$$

on Δ^{1}, Δ^{2} and Δ^{3}. It follows that

$$
G(z):=\varphi_{j}(z)-f_{j}(z) \quad \text { on } \Delta,(j=1,2,3)
$$

defines a single-valued meromorphic function on all of Δ. Hence, $G(z)$ is a solution of the Cousin I problem for \mathcal{C}_{1} on Δ.

3.5. Cousin II Problem

3.5.1. Oka's Counterexample. The Cousin II problem in product domains in \mathbf{C}^{n} is not always solvable; we give a counterexample due to Oka in this section. To illustrate the key idea, we first give an example of Oka [46] which indicates a difference between zero sets of real-valued and complex-valued continuous functions.

Example 3.2. We consider the domain D in \mathbf{R}^{3} defined by

$$
D:=\left\{(x, y, z) \in \mathbf{R}^{3} \mid x^{2}+y^{2}<4 .-2<z<2\right\}
$$

and let

$$
L:=\left\{(0,0 . z) \in \mathbf{R}^{3} \mid-1 \leq z \leq 1\right\} \subset \subset D .
$$

There are many real-valued continuous functions $F(x, y, z)$ in D such that $F(x, y, z)$ $=0$ if and only if $(x, y, z) \in L$. However, suppose we look for a connplex-valued continuous function $F(x, y, z)$ in D satisfying the following conditions:
(i) $F(x, y, z)=0$ if and only if $(x, y, z) \in L$;
(ii) in the disk $\delta: x^{2}+y^{2} \leq \rho^{2}<4$ on the (x, y)-plane, we require that

$$
F(x, y, 0)=(x+i y) \lambda(x . y) \quad\left(i^{2}=-1\right),
$$

where $\lambda(x, y) \neq 0$ for $(x, y) \in \delta$.
We claim that there does not exist such a function $F(x, y, z)$ in D.
For if $F(x, y, z)$ exists satisfying (i) and (ii), we consider

$$
V(z):=\int_{\partial \delta} d(\arg F(x, y . z)) \quad \text { for } z \in(-2.2) .
$$

Then (i) implies that $V(z)$ does not depend on $z \in(-2,2)$, and also implies $V(3 / 2)=0$. However, (ii) implies that $V(0)=2 \pi$, which is a contradiction.
T. Gronwall [27] was the first to give an example of a product domain in \mathbf{C}^{n} in which the Cousin II problem is not always solvable. Below we will give Oka's example, which more clearly indicates the essence of the Cousin II problem and is based on the idea of the example described above.
Oka's counterexample for the Cousin II problem. In $\mathbf{C}^{\mathbf{2}}$ with variables z and w, we consider the product domain

$$
\Delta: 2 / 3<|z|<1, \quad 2 / 3<|w|<1 .
$$

We write $z=x+i y$, and denote by Δ^{\prime} and $\Delta^{\prime \prime}$ the points of Δ such that $y \geq 0$ and $y \leq 0$. Let

$$
\Sigma: w-z+1=0 \quad \text { in } \Delta .
$$

Note that Σ consists of two connected components $\Sigma^{\prime} \subset \Delta^{\prime}$ and $\Sigma^{\prime \prime} \subset \Delta^{\prime \prime}$. since $\Sigma \cap\{y=0\}=0$. We take open neighborhoods G^{\prime} of Δ^{\prime} and $G^{\prime \prime}$ of $\Delta^{\prime \prime}$ with $\Delta^{\prime} \subset \subset G^{\prime}$ and $\Delta^{\prime \prime} \subset \subset G^{\prime \prime}$ such that $G^{\prime} \cap \Sigma^{\prime \prime}=\emptyset$ and $G^{\prime \prime} \cap \Sigma^{\prime}=\emptyset$. If we set

$$
\begin{array}{ll}
f_{1}:=w-z+1, & \text { in } G^{\prime}, \\
f_{2}:=1, & \text { in } G^{\prime \prime},
\end{array}
$$

then $\mathcal{C}_{2}=\left\{\left(f_{1}, G^{\prime}\right),\left(f_{2}, G^{\prime \prime}\right)\right\}$ defines a Cousin II distribution in Δ. Then there is no solution of the Cousin II problem for \mathcal{C}_{2} in Δ.

Indeed, assume that there does exist a solution $F(z, w)$ for \mathcal{C}_{2} in Δ : then $F(z, w)$ vanishes in Δ only at points of Σ^{\prime}, and we can find a nonvanishing holomorphic function $\omega(z, w)$ on Δ^{\prime} such that

$$
\begin{equation*}
F(z, w)=(w-z+1) \omega(z, w) \text { on } \Delta^{\prime} . \tag{3.12}
\end{equation*}
$$

We define the circles

$$
\gamma_{1}:|z|=5 / 6 \quad \text { in } \mathbf{C} \quad \text { and } \quad \gamma_{2}:|w|=5 / 6 \quad \text { in } \mathbf{C}_{w} ;
$$

Figure 3. Oka's counterexample for the Cousin II problem
and we set $\gamma_{1}^{\prime}:=\gamma_{1} \cap\{y \geq 0\}$ and $\gamma_{1}^{\prime \prime}:=\gamma_{1} \cap\{y \leq 0\}$. Now we vary z from 5/6 to $-5 / 6$ in a continuous fashion along $\gamma_{1}^{\prime} \subset \Delta^{\prime}$. Since $\omega(z, w) \neq 0$ in Δ^{\prime}, the total variation of the argument of $\omega(z, w)$ along γ_{2},

$$
\int_{\gamma_{2}} d \arg \omega(z, w)
$$

varies continuously with $z \in \gamma_{1}^{\prime}$, and, being an integer multiple of 2π, does not depend on $z \in \gamma_{1}^{\prime}$. Since

$$
\int_{\gamma_{2}} d \arg (w-5 / 6+1)=2 \pi \quad \text { and } \quad \int_{7_{2}} d \arg (w+5 / 6+1)=0
$$

it follows from (3.12) that

$$
\int_{\gamma_{2}} d \arg F(5 / 6, w)=\int_{\gamma_{2}} d \arg F(-5 / 6, w)+2 \pi
$$

On the other hand, we note that $F(z, w) \neq 0$ in $G^{\prime \prime}$. Therefore, varying z from 5/6 to $-5 / 6$ continuously along $\gamma_{1}^{\prime \prime} \subset G^{\prime \prime}$ and arguing as before, we have

$$
\int_{\gamma_{2}} d \arg F(5 / 6, w)=\int_{\gamma_{2}} d \arg F(-5 / 6, w)
$$

This is a contradiction.
This example will be used again in section 3.6.2.
3.5.2. Oka's Principle. The counterexample in the previous section shows that one of the obstructions to solving a Cousin II problem is topological. Thus we now generalize the holomorphic Cousin II problem to the continuous case. For this purpose, we introduce the following terminology.

Let D be a domain in \mathbf{C}^{n}, and let $\mathcal{C}_{2}=\left\{\left(f_{p}, \delta_{p}\right)\right\}_{p}$ be a Cousin II distribution in D. If we can find a complex-valued continuous function $F(z)$ in D such that, at each point $p \in D$,

$$
\lambda_{p}(z):=F(z) / f_{p}(z)
$$

is a nonvanishing continuous function in δ_{p}, then we say that $F(z)$ is a continuous solution of the Cousin II problem for \mathcal{C}_{2} in D. In this section, the "usual" solutions will be called holomorphic solutions to distinguish them from the continuous ones.

Theorem 3.8 (Oka`s principle). Let G be a domain of holomorphy in \mathbf{C}^{n}, and let \mathcal{C}_{2} be a Cousin II distribution in G. If G admits a continuous solution of the Cousin II problem for \mathcal{C}_{2}, then G admits a holomorphic solution of the Cousin II problem for \mathcal{C}_{2}.

Proof. By taking a refinement, we may assume that each set $\delta_{p}, p \in G$, is a polydisk in C^{n}. Let $\Phi(z)$ be a continuous solution of the Cousin II problein for \mathcal{C}_{2} in G. Then for each $p \in G, \Phi(z) / f_{p}(z)$ is a nonvanishing continuous function in δ_{p}. Hence the function

$$
\zeta_{p}(z):=\log \left(\Phi(z) / f_{p}(z)\right)
$$

where we take an appropriate branch of the logarithm, defines a single-valued continuous function in δ_{p} with the following property: for any δ_{p}. δ_{q} such that $\delta_{p} \cap \delta_{q} \neq \emptyset$, the function $\zeta_{p}(z)-\zeta_{q}(z)$ is holomorphic in $\delta_{p} \cap \delta_{q}$.

We recall the method used to solve the Cousin I problem in polydisks in section 3.2.2, in particular. Lemma 3.2: given a Cousin I distribution $\left\{\left(g_{p}, \delta_{p}\right)\right\}_{p}$ in G, we constructed a holomorphic function $h_{p}(z)$ on each set $\delta_{p}, p \in G$. such that $g_{p}(z)-h_{p}(z)$ defined a single-valued meromorphic function in all of G. This was achieved by utilizing the relation $g_{p}(z)-g_{q}(z)=h_{p}(z)-h_{q}(z)$ in $\delta_{p} \cap \delta_{q}$. In the present situation, we replace the meromorphic function $g_{p}(z)$ by the continuous function $\zeta_{p}(z)$. Then, following the same procedure under the condition that D is a domain of holomorphy, we can find a holomorphic function $h_{p}(z)$ on each δ_{p}, $p \in G$, such that the collection of functions $\zeta_{p}(z)-h_{p}(z)$ on δ_{p} defines a single-valued continuous function $\Xi(z)$ on all of G. If we define

$$
F(z):=\Phi(z) e^{-\Xi(z)} \quad \text { on } G
$$

then $F(z)$ is a well-defined single-valued function on G. Moreover. since $F(z)=$ $f_{p}(z) e^{h_{p}(z)}$ on each $\delta_{p}, F(z)$ is holomorphic on G and yields a holomorphic solution of the Cousin II problem for \mathcal{C}_{2} in G.
3.5.3. Generalized Cousin II. A holomorphic Cousin II distribution on a domain D in \mathbf{C}^{n} can also be generalized to a continuous Cousin II distribution. At each point $p \in D$, let the data (h_{p}, δ_{p}) be given, where δ_{p} is a neighborhood of p in D and $h_{p}(z)$ is a complex-valued continuous function in δ_{p}. We require this data to satisfy the condition that for any $p, q \in D$ with $\delta_{p} \cap \delta_{q} \neq \emptyset$, we can find a nonvanishing continuous function $\lambda_{p q}(z)$ in $\delta_{p} \cap \delta_{q}$ such that $h_{p}(z)=\lambda_{p q}(z) h_{q}(z)$ in $\delta_{p} \cap \delta_{q}$. We call the collection of pairs $\mathcal{C}_{2}=\left\{\left(h_{p}, \delta_{p}\right)\right\}_{p \in D}$ a generalized Cousin II distribution in D. Thus, locally, we are given the zero sets of continuous functions in D; we want to find a globally defined continuous function with this zero set.
Generalized Cousin II Problem Given a generalized Cousin II distribution $\mathcal{C}_{2}=\left\{\left(h_{p}, \delta_{p}\right)\right\}_{p \in D}$, find a complex-valued continuous function $h(z)$ in D with the property that for each $p \in D$ there exists a nonvanishing continuous function $\lambda_{p}(z)$ in δ_{p} such that $h(z)=\lambda_{p}(z) h_{p}(z)$ in δ_{p}.

If such a function $h(z)$ exists, we say that the generalized Cousin II problem for \mathcal{C}_{2} is solvable in D, and we call the continuous function $h(z)$ in D a solution for \mathcal{C}_{2} of this generalized Cousin II problem.

Remark 3.2. In the following example we show that, in general, a generalized Cousin II problem in a polydisk D need not have a solution for a generalized Cousin II distribution $\mathcal{C}_{2}=\left\{\left(h_{p}, \delta_{p}\right)\right\}_{p \in D}$ if $\left\{z \in \delta_{p}: h_{p}(z)=0\right\}$ has an interior point in δ_{p}.

Example: We begin with an example in \mathbf{R}^{3} with variables x, y, z. Consider the real-valued continuous function

$$
\psi(x, y, z):=\max \left\{0 . x^{2}+y^{2}-1\right\} .
$$

We consider two half-spaces $\Delta^{ \pm}:=\left\{(x, y, z) \in \mathbf{R}^{3} \mid \pm z>-1\right\}$ and two cylinders $\delta^{\prime}:=\left\{x^{2}+y^{2}<1 / 3\right\} \times\{|z|<1\}$ and $\delta^{\prime \prime}:=\left\{x^{2}+y^{2}<1 / 2\right\} \times\{|z|<2\}$. We put

$$
\begin{array}{ll}
h_{1}(x, y, z)=(x+i y) \cup(x, y, z) & \text { on } \Delta_{1}:=\Delta^{+} \backslash \delta^{\prime} \\
h_{2}(x, y, z)=v(x, y, z) & \text { on } \Delta_{2}:=\Delta^{-} \backslash \delta^{\prime} . \\
h_{3}(x, y, z)=0 & \text { on } \Delta_{3}:=\delta^{\prime \prime} .
\end{array}
$$

Then the collection of pairs $\mathcal{C}_{2}=\left\{\left(h_{i}, \Delta_{i}\right)\right\}_{1=1.2 .3}$ defines a generalized Cousin II distribution in \mathbf{R}^{3}. Note that the zero sets of the functions h_{1} in \mathcal{C}_{2} comprise the set $B \times \mathbf{R}_{z}$, where $B=\left\{x^{2}+y^{2} \leq 1\right\} \subset \mathbf{R}_{x} \times \mathbf{R}_{y}$. Following the reasoning in Example 3.2. it is clear that there is no solution of the generalized Cousin II problem for \mathcal{C}_{2} in \mathbf{R}^{3}.

Now to get a similar example in $\mathbf{C}^{2}=\mathbf{R}^{4}$ with variables $z_{1}:=x+i y, z_{2}:=$ $z+i v$, we simply take w, h_{p} as above, making them independent of the variable v.

Thus from now on we assume that the zero sets of any generalized Cousin II distribution $\mathcal{C}_{2}=\left\{\left(h_{p}, \delta_{p}\right)\right\}_{p \in D}$ have empty interior. This implies that for any $p . q \in D$ such that $\delta_{p} \cap \delta_{q} \neq \emptyset$, if a nonvanishing continuous function $\lambda_{p q}(z)$ in $\delta_{p} \cap \delta_{q}$ satisfying $h_{p}(z)=\lambda_{p q}(z) h_{q}(z)$ in $\delta_{p} \cap \delta_{q}$ exists. then it is uniquely determined.

Since the usual (holomorphic) Cousin II distribution satisfies this condition. Theorem 3.8 implies the following: Let D^{0} be a domain of holomorphy in \mathbf{C}^{n}. Assume that D^{*} is homeomorphic to a domain D in \mathbf{C}^{n} which has the property that the generalized Cousin II problem is always solvable in D. Then the Cousin II problem is always solvable in D^{*}.

Lemma 3.7. In the polydisk $\Delta:\left|z_{j}\right|<1(j=1 \ldots . . n)$ in \mathbf{C}^{n}. the generalized Cousin II problem is always solvable.

Proof. Let $\mathcal{C}_{2}=\left\{\left(h_{p}, \delta_{p}\right)\right\}_{p \in \Delta}$ be a generalized Cousin II distribution in Δ. For any $0<r<1$, we define $\bar{\Delta}_{r}:\left|z_{j}\right| \leq r(j=1, \ldots, n)$, and we will find a solution of the generalized Cousin II problem for \mathcal{C}_{2} in $\bar{\Delta}_{r}$. Using the same arguments as in solving the Cousin I problem (stated in Lemma 3.2), we see that it suffices to prove the following.

Let $\Lambda_{\text {, }}$ be a closed convex domain in the unit disk $\{|z|<1\}$ in $\mathbf{C}_{2},(j=$ $1, \ldots, n$) and define $\Lambda:=\Lambda_{1} \times \cdots \times \Lambda_{n} \subset \mathbf{C}^{n}$. Let $z_{1}=x+i y$ and fix $\rho>0$. We set

$$
\Lambda^{1}:=\{z \in \Lambda \mid x \leq \rho\}, \quad \Lambda^{2}:=\{z \in \Lambda \mid x \geq-\rho\}
$$

and $\Lambda^{0}:=\Lambda^{1} \cap \Lambda^{2}$, which we assume is non-empty. If a generalized Cousin II distribution \mathcal{C}_{2} defined in Λ has solutions $h_{1}(z)$ and $h_{2}(z)$ in Λ^{1} and Λ^{2}. then \mathcal{C}_{2} has solutions in all of Λ.

To verify this, note that $h^{0}(z):=h_{1}(z) / h_{2}(z)$ defines a nonvanishing continuous function in the simply connected domain Λ^{0}. Thus, a branch of $\log h^{0}(z)$ defines a single-valued continuous function in Λ^{0}. We define the following real-valued continuous function in $\mathbf{C}_{\boldsymbol{z}_{1}}$:

$$
\alpha\left(z_{1}\right):= \begin{cases}0, & x \leq-\rho \\ (x+\rho) / 2 \rho, & -\rho \leq x \leq \rho \\ 1 . & x \geq \rho .\end{cases}
$$

If we set

$$
\begin{array}{ll}
k_{1}(z):=\alpha\left(z_{1}\right) \log h^{0}(z), & z \in \Lambda^{1}, \\
k_{2}(z):=\left(\alpha\left(z_{1}\right)-1\right) \log h^{0}(z), & z \in \Lambda^{2} .
\end{array}
$$

then $k_{i}(z)(i=1,2)$ defines a continuous function in Λ^{i} such that $\log h^{0}(z)=$ $k_{1}(z)-k_{2}(z)$ in Λ^{0}; equivalently, $h^{0}(z)=e^{k_{1}(z)} / e^{k_{2}(z)}$ in Λ^{0}. Thus the function

$$
h(z):= \begin{cases}h_{1}(z) e^{-k_{1}(z)}, & z \in \Lambda^{1}, \\ h_{2}(z) e^{-k_{2}(z)}, & z \in \Lambda^{2},\end{cases}
$$

defines a single-valued continuous function in Λ, and hence a solution for \mathcal{C}_{2} in Λ.
Now we let $r_{k}(k=1,2, \ldots)$ be a sequence of positive numbers such that

$$
r_{k}<r_{k+1}, \quad \lim _{k \rightarrow \infty} r_{k}=1
$$

and we let $\Delta_{k}:=\left\{\left|z_{1}\right| \leq r_{k}\right\} \times \cdots \times\left\{\left|z_{n}\right| \leq r_{k}\right\} \subset \subset \Delta$. For each $k=1,2, \ldots$ the above argument yields a solution $h_{k}(z)$ for \mathcal{C}_{2} of the generalized Cousin II problem in Δ_{k}. For $k=2,3, \ldots$ we consider the following continuous function in the disk $\left\{\left|z_{j}\right| \leq r_{k+1}\right\}(j=1, \ldots, n)$:

$$
\beta_{k}^{0}\left(z_{j}\right)= \begin{cases}1, & \left|z_{j}\right| \leq r_{k}-1 \\ 1-\frac{\left|z_{1}\right|-r_{k-1}}{r_{k}-r_{k-1}}, & r_{k-1} \leq\left|z_{j}\right| \leq r_{k} \\ 0, & \left|z_{j}\right| \geq r_{k}\end{cases}
$$

and we set $\beta_{k}(z):=\beta_{k}^{0}\left(z_{1}\right) \cdots \beta_{k}^{0}\left(z_{n}\right)$ in Δ_{k+1}. We inductively define continuous functions $h_{k}^{0}(z)(k=1,2, \ldots)$ in Δ_{k} in such a way that

$$
\begin{array}{ll}
h_{1}^{0}(z)=h_{1}(z) & \text { in } \Delta_{1} \\
h_{k+1}^{0}(z)=h_{k+1}(z) e^{3_{k}(z) q_{k}(z)} & \text { in } \Delta_{k+1}
\end{array}
$$

where $q_{k}(z)$ is a branch of the continuous function $\log \left\{h_{k}^{0}(z) / h_{k+1}(z)\right\}$ in the polydisk Δ_{k}. On each $\Delta_{k}(k=2,3, \ldots), h_{k}^{0}(z)$ is a solution for \mathcal{C}_{2}, and $h_{k+1}^{0}(z)=h_{k}^{0}(z)$ in Δ_{k-1}. Thus, $h(z):=\lim _{k \rightarrow x} h_{k}^{0}(z)$ is a solution for \mathcal{C}_{2} of the generalized Cousin II problem in all of Δ.

From Lemma 3.7 and Theorem 3.8 we have the following theorem.
Theorem 3.9 (Oka [46]). Let D be a domain of holomorphy in \mathbf{C}^{n} such that D is homeomorphic to the unit polydisk Δ in \mathbf{C}^{n}. Then the Cousin II problem is always solvable.

Remark 3.3. Theorem 3.9 is also true in the case when the unit polydisk Δ is replaced by $\widetilde{\Delta}=\widetilde{\Delta}_{1} \times \Delta_{2} \times \cdots \times \Delta_{n}$, where $\widetilde{\Delta}_{1}$ is any domain in $C_{z_{1}}$.

To verify the remark, it suffices to show that Lemma 3.7 is valid if Δ is replaced by $\tilde{\Delta}$. Let $\mathcal{C}_{2}=\left\{\left(h_{p}, \delta_{p}\right)\right\}_{p \in \bar{\Delta}}$ be a generalized Cousin II distribution in $\bar{\Delta}$. We take an increasing sequence of domains $\tilde{\Delta}_{1 k} \subset \subset \tilde{\Delta}_{1}(k=1,2 \ldots)$ such that each $\tilde{\Delta}_{1 k}$ is bounded by a finite number of closed curves $\gamma_{k, l}(l \leq l \leq m(k))$, and such that $\bigcup_{k=1}^{\infty} \tilde{\Delta}_{1 k}=\bar{\Delta}_{1}$. Let $\gamma_{k, 1}$ be the outer boundary component of $\tilde{\Delta}_{1 k}$. For each $k, l(k=1,2, \ldots ; 2 \leq l \leq m(k))$, we choose a point $a_{k, l}$ in the domain in $C_{z_{1}}$ bounded by the closed curve $\gamma_{k, l}$ such that $a_{k, l} \notin \tilde{\Delta}_{1, k+1}$. We set $\tilde{\Delta}_{k}=$ $\tilde{\Delta}_{1 k} \times \Delta_{2 k} \times \cdots \times \Delta_{n k} \subset \subset \tilde{\Delta}(k=1,2, \ldots)$. where $\Delta_{i k}=\left\{\left|z_{i}\right| \leq r_{k}\right\}(i=2, \ldots, n)$, and the radii r_{k} increase up to 1 .

First of all, since, for each $c \in R$, the set $\left\{z_{1} \in \tilde{\Delta}_{1 k} \mid x=c\right\}$ consists of simply connected sets in $\mathbf{C}_{z_{1}}$, the same is true of $\left\{z \in \tilde{\Delta}_{k} \mid x=c\right\}$ in \mathbf{C}^{n}; thus it follows from the same argument as in the proof of Lemma 3.7 that we have a solution $h_{k}(z)$ of the generalized Cousin II problem with data \mathcal{C}_{2} in $\tilde{\Delta}_{k}$.

Next, let $\tilde{\beta}_{k}(z)(k=2,3, \ldots)$ be a continuous function in $\tilde{\Delta}_{k+1}$ such that $\tilde{\beta}_{k}(z)=1$ in $\tilde{\Delta}_{k-1}$ and $\tilde{\beta}_{k-1}(z)=0$ in $\tilde{\Delta}_{k+1} / \tilde{\Delta}_{k}$. We inductively define continuous functions $\tilde{h}_{k}(z)(k=1,2, \ldots)$ in $\tilde{\Delta}_{k}$ in such a way that

$$
\begin{array}{ll}
\tilde{h}_{1}(z)=h_{1}(z) & \text { in } \tilde{\Delta}_{1} \\
\tilde{h}_{k+1}(z)=h_{k+1}(z)\left[\prod_{l=2}^{m(k)}\left(z_{1}-a_{k, l}\right)^{v_{k, l}}\right] e^{\bar{j}_{k}(=) g_{k}(z)} & \text { in } \tilde{\Delta}_{k+1}
\end{array}
$$

where

$$
N_{k . l}=\frac{1}{2 \pi i} \int_{ح_{A . l}} d \log \left[\tilde{h}_{k}(z) / h_{k+1}(z)\right]
$$

and $q_{k}(z)$ is one of the single-valued branches of the continuous function

$$
\log \left[\tilde{h}_{k}(z) / h_{k+1}(z)\right]-\sum_{l=2}^{m(k)} N_{k, l} \log \left(z_{1}-a_{k, l}\right) \quad \text { in } \tilde{\Delta}_{k}
$$

Then $\tilde{h}_{k}(z)(k=1,2, \ldots)$ is a solution for \mathcal{C}_{2} of the generalized Cousin II problem in $\tilde{\Delta}_{k}$, and $\tilde{h}_{k+1}(z)=\tilde{h}_{k}(z)$ in $\tilde{\Delta}_{k-1}$. Hence, $\widetilde{h}(z):=\lim _{k \rightarrow x} \tilde{h}_{k}(z)$ defines a solution for \mathcal{C}_{2} in all $\widetilde{\Delta}$.

Remark 3.4. There have been studies related to the Cousin II problem using methods other than Oka's principle. In [46], Oka introduced the notion of a balayable Cousin distribution: this was the context of the original Oka principle. K. Stein [66] ${ }^{\boldsymbol{7}}$ gave an interesting topological condition for the solvability of the Cousin II problem.

Remark 3.5. The Poincaré problem does not always admit a solution in product domains in \mathbf{C}^{n}.

Proof. To see this, we recall Oka's counterexample to Cousin II in $\Delta=\Delta_{1} \times$ Δ_{2} in C^{2} with variables (z, u), where $\Delta_{1}=\{2 / 3<|\tilde{z}|<1\}$ and $\Delta_{2}=\{2 / 3<$ $|w|<1\}$ (section 3.5.1). Writing $z=x+i y$ and denoting by Δ^{\prime} and $\Delta^{\prime \prime}$ the points of Δ such that $y \geq 0$ and $y \leq 0$, we set

$$
\Sigma: u-z+1=0 \quad \text { in } \Delta
$$

then Σ consists of two connected components $\Sigma^{\prime} \subset \Delta^{\prime}$ and $\Sigma^{\prime \prime} \subset \Delta^{\prime \prime}$. We take open neighborhoods $G^{\prime} \supset \Delta^{\prime}$ and $G^{\prime \prime} \supset \supset \Delta^{\prime \prime}$ such that $G^{\prime} \cap \Sigma^{\prime \prime}=\emptyset$ and $G^{\prime \prime} \cap \Sigma^{\prime}=\emptyset$. If we set

$$
\begin{array}{ll}
F_{1}:=1 /(w-z+1) & \text { in } G^{\prime} \\
F_{2}:=1 & \text { in } G^{\prime \prime}
\end{array}
$$

then $\mathcal{C}_{1}=\left\{\left(F_{1}, G^{\prime}\right),\left(F_{2}, G^{\prime \prime}\right)\right\}$ defines a Cousin I distribution in Δ. We can solve the Cousin I problem for \mathcal{C}_{1} in the product domain Δ, and we obtain a meromorphic function $g(z, w)$ in Δ such that the pole set of $g(z, w)$ is defined by $1 /(w-z+1)$

[^12]in Δ^{\prime}. We claim that this function $g(z, w)$ cannot be written as a quotient of holomorphic functions $h(z, w)$ and $f(z, w)$ in Δ which are relatively prime at each point in Δ. For if we could write $g(z, w)=h(z, w) / f(z, u)$ in Δ. with $h(z, w)$ and $f(z . w)$ relatively prime at each point, then $f(z, w)$ would be a solution of the Cousin II problem for the Cousin II distribution \mathcal{C}_{2} in Δ given in the Oka counterexample in 3.5.1; i.e., recall that if
\[

$$
\begin{array}{ll}
f_{1}:=u-z+1 & \text { in } G^{\prime} \\
f_{2}:=1 & \text { in } G^{\prime \prime}
\end{array}
$$
\]

then $\mathcal{C}_{2}=\left\{\left(f_{1}, G^{\prime}\right),\left(f_{2}, G^{\prime \prime}\right)\right\}$ defines a Cousin II distribution in Δ. Thus the Poincaré problem cannot always be solved in Δ.

Moreover, if we set $h(z, w):=g(z, w)(u-z+1)$ in Δ, then h is holomorphic in Δ. Letting $k(z, w):=w-z+1$, we have $g(z, w)=h(z, w) / k(z, u)$ in Δ. Thus g is a quotient of holomorphic functions in Δ, but $h(z, w)$ and $k(z, u)$ are not relatively prime at any point in $\Delta^{\prime \prime}$ at which $w-z+1=0$.

3.6. Runge Problem

3.6.1. General Expansion Theorem. Let G be a domain of holomorphy in \mathbf{C}^{n} with variables z_{1}, \ldots, z_{n}. If \mathcal{K} is a class of holomorphic functions in G satisfying the conditions

1. \mathcal{K} contains the coordinates functions $z_{k}(k=1, \ldots, n)$, and
2. given a polynomial $P\left(w_{1} \ldots, w_{m}\right)$ in \mathbf{C}^{m} with \mathbf{C}-coefficients, and given $f_{1}(z) \ldots, f_{m}(z)$ in \mathcal{K}. we have $P\left(f_{1}(z) \ldots, f_{m}(z)\right) \in \mathcal{K}$.
then \mathcal{K} is called a normal class. As examples of normal classes \mathcal{K}, we have the class of all polynomials; the class of all holomorphic functions in G; and. for a given $G^{*} \supset G$. the class of all holomorphic functions in G^{*} (compare with a regular class of holomorphic functions in G from section 1.5.3 in Chapter 1).

Theorem 3.10. Let G be a domain of holomorphy in C^{n} and let \mathcal{K} be a normal class of holomorphic functions in G. Then any holomorphic function in G can be developed into a locally uniformly convergent series of holomorphic functions belonging to \mathcal{K} if and only if G is a \mathcal{K}-convex domain.

Proof. Assume that G is convex with respect to \mathcal{K}. Then we can find a sequence of analytic polyhedra $\mathcal{P}_{j}(j=1.2, \ldots)$ of the form

$$
\mathcal{P}_{j}:\left|z_{i}\right| \leq r_{i}(i=1 \ldots \ldots n), \quad\left|f_{j k}(z)\right| \leq 1 \quad\left(k=1 \ldots, n_{j}\right)
$$

where each $f_{j k} \in \mathcal{K}$, and these analytic polyhedra satisfy

$$
\mathcal{P}, \subset \subset \mathcal{P}_{j+1}^{o} \subset \subset G \quad(j=1,2, \ldots), \quad G=\lim _{j \rightarrow x} \mathcal{P}_{j}
$$

Let $f(z)$ be a holomorphic function in G and let $\epsilon_{j}>0(j=1,2, \ldots)$ satisfy $\lim _{j-x} \epsilon_{j}=0$. From the proof of Theorem 3.5, for each $j=1.2 \ldots$. we can find a polynomial $P_{j}(z, w)$ in $C^{n+n,}$ such that

$$
\Phi_{j}(z):=P_{j}\left(z, f_{j 1}(z) \ldots, f_{j n j}(z)\right) \quad \text { in } G
$$

satisfies

$$
\left|\Phi_{j}(z)-f(z)\right|<\epsilon_{j} \quad \text { in } \mathcal{P}_{j-1} .
$$

Consequently, $\lim _{j \rightarrow x} \Phi_{j}(z)=f(z)$ uniformly on each compact set K in G. Thus. the necessity of the convexity of G with respect to \mathcal{K} is proved. The sufficiency is
clear from the fact (Theorem 1.11) that a domain of holonorphy G is convex with respect to the class of all holomorphic functions in \boldsymbol{G}.

Oka's lemma (Lemma 3.5) can be generalized to a normal class \mathcal{K}.
Lemma 3.8. Let G be a domain of holomorphy. Assume that G is convex, with respect to a normal class \mathcal{K} of holomorphic functions in G. Let E be a compact set in G and let A denote the \mathcal{K}-convex hull of E. For any $p \in A$, there does not erist a family of analytic hypersurfaces $\left\{\sigma_{t}\right\}_{t \in T}$ which satisfies Oka's condition at p for the pair (E.A).

Proof. Since the Cousin I problem in an analytic polyhedron in G is always solvable, the proof given for polynomial hulls in Lemma 3.5 is valid here: together with Theorem 3.10, this yields the lemma.
3.6.2. Rationally Convex Domains. In 1.5 .3 of Chapter 1 , we defined the notion of convexity of a domain D in C^{n} with respect to a regular class \mathcal{K} of holomorphic functions in D; in particular, D is said to be convex with respect to rational functions if D is convex with respect to rational functions which are holomorphic in D. However, this definition has some drawbacks. For example. using this definition, the unbounded domain $D_{f}=\mathbf{C}^{n} \backslash S_{f}$. where S_{f} is the zero set of an entire transcendental function $f(z)$ in \mathbf{C}^{n}, is not convex with respect to rational functions. Thus we must extend the definition of rational convexity.

A domain D in C^{n} is said to be rationally convex if there exists a sequence of relatively compact subdomains $D_{n} \subset \subset D(n=1,2, \ldots)$ such that each D_{n} is convex with respect to rational functions which are holomorphic in $D_{n}, D_{n} C$ $D_{n+1}(n=1,2, \ldots)$, and $\bigcup_{n=1}^{\infty} D_{n}=D$. The unbounded domain D_{f} in the previous paragraph is thus rationally convex in $\mathbf{C}^{\boldsymbol{n}}$.

In the case of one complex variable, every domain is convex with respect to rational functions. However. in the case of several complex variables, even a domain of holomorphy need not be rationally convex. The following example is due to Oka [47].
Oka's counterexample for rational convexity. In $\mathbf{C}_{\mathbf{z}} \times \mathbf{C}_{w}$ we consider $\Delta=$ $\Delta_{1} \times \Delta_{2}$. where

$$
\Delta_{1}: 2 / 3<|z|<1, \quad \Delta_{2}: 2 / 3<|u|<1
$$

Then for $z=x+i y$. we denote by Δ^{\prime} the subset of Δ with $y \geq 0$. We consider the analytic set $\Sigma: w-z+1=0$ in C^{2}. and set $\Sigma^{\prime}:=\Sigma \cap \Delta^{\prime}$. Thus Σ^{\prime} is also an analytic set in Δ, and $G:=\Delta \backslash \Sigma^{\prime}$ is a domain of holomorphy in C^{2} which is not rationally convex in $\mathbf{C}^{\mathbf{2}}$.

Proof. Let $g(2 . w)$ be a meromorphic function in Δ whose pole set is given by $1 /(w-z+1)$ on Σ^{\prime} (such a function exists by solvability of Cousin I in Δ : cf.. Remark 3.5 in 3.5.3). By considering the holomorphic functions $\{z, w, 1 / z, 1 / w, g(z, u)\}$ in G. we see that G is holomorphically convex; hence G is a domain of holomorphy in C^{2}.

We also use the meromorphic function $g(z, w)$ in Δ to prove that G is not rationally convex in \mathbf{C}^{2}. For suppose that G is rationally convex. Fix $0<d<1 / 12$. and set $\Delta^{0}:=\Delta_{1}^{0} \times \Delta_{2}^{0} \subset \subset \Delta$. where

$$
\begin{aligned}
& \Delta_{1}^{0}=\{2 / 3+d \leq|z| \leq 1-d\} \subset \subset \Delta_{1} \\
& \Delta_{2}^{0}=\{2 / 3+d \leq|w| \leq 1-d\} \subset \subset \Delta_{2}
\end{aligned}
$$

Let

$$
\alpha:=\{|z|=5 / 6\} \subset \Delta_{1}^{0}, \quad \partial \Delta_{2}^{0}=\beta_{2}-\beta_{1} \subset \Delta_{2}^{0}
$$

where $\beta_{2}=\{|w|=1-d\}$ and $\beta_{1}=\{|w|=2 / 3+d\}$. We let σ denote the projection of $\Sigma^{\prime} \cap \Delta^{0}$ onto Δ_{1}^{0}. Given $0<\epsilon<d$, we define, for $z \in \sigma$.

$$
\gamma_{\epsilon}(z):=\left\{w \in \mathbf{C}_{w}| | w-(z-1) \mid<\epsilon\right\} \subset \subset \Delta_{2}
$$

Then we have

$$
\begin{equation*}
K_{c}:=\Delta^{0} \backslash\left[\bigcup_{z \in \sigma}\left(z \cdot \gamma_{c}(z)\right)\right] \subset \subset G \tag{3.13}
\end{equation*}
$$

Let z_{0} be the point of intersection of the circles a and $\{i z-1 \mid=5 / 6\}$ in C with $\operatorname{Im} z_{0}>0$. In particular, $z_{0} \in \sigma$ and $\gamma_{\epsilon}\left(z_{0}\right) \subset \Delta_{2}^{0}$. Finally, let α^{\prime} and $\alpha^{\prime \prime}$ be the subarcs of α connecting z_{0} and $-5 / 6$ in the counterclockwise and clockwise directions, respectively. Then we have

$$
\left(\alpha^{\prime} \times \beta_{1}\right) \cup\left(\alpha^{\prime \prime} \times \beta_{2}\right) \cup\left(\{-5 / 6\} \times \Delta_{2}^{0}\right) \subset K_{e}
$$

We fix ϵ sufficiently small with $0<\epsilon<d$ so that

$$
\begin{equation*}
\min \left\{\left|g\left(z_{0}, w\right)\right| \mid w \in \partial \gamma_{\epsilon}\left(z_{0}\right)\right\}>\max \left\{\left|g\left(z_{0}, w\right)\right| \mid w \in \partial \Delta_{2}^{0}\right\} \tag{3.14}
\end{equation*}
$$

This is possible because $g\left(z_{0}, z_{0}-1\right)=\infty$. Since we are assuming G is rationally convex in C^{2}. it follows from (3.13) that given any $\eta>0$, we can find a rational function $R(z, w)=P(z, w) / Q(z, w)$ in C^{2}, where $P(z, w)$ and $Q(z, w)$ are relatively prime polynomials in \mathbf{C}^{2}, such that $R(z, u)$ is holomorphic in a neighborhood V of K_{ε} in G and satisfies

$$
|g(z, w)-R(z, w)|<\eta \quad \text { on } K_{c} .
$$

Hence, if $\eta>0$ is sufficiently small, we see from (3.14) that $R\left(z_{0}, w\right)$ is holomorphic as a function of w in $\Delta_{2}^{0} \backslash \gamma_{e}\left(z_{0}\right)$ and satisfies

$$
\min \left\{\left|R\left(z_{0}, w\right)\right| \mid w \in \partial \gamma_{\epsilon}\left(z_{0}\right)\right\}>\max \left\{\left|R\left(z_{0}, w\right)\right| \mid u \in \partial \Delta_{2}^{0}\right\}
$$

The maximum modulus principle for holomorphic functions implies that $R\left(z_{0}, w\right)$ cannot be holomorphic in all Δ_{2}^{0}; thus the denominator $Q\left(z_{0}, w\right)$ has at least one zero in $\gamma_{e}\left(z_{0}\right)$ and hence in Δ_{2}^{0}. Therefore,

$$
\begin{equation*}
2 \pi \leq \int_{\partial \Delta_{2}^{0}} d \arg Q\left(z_{0}, w\right)=\int_{3_{2}} d \arg Q\left(z_{0}, w\right)-\int_{3_{1}} d \arg Q\left(z_{0}, w\right) . \tag{3.15}
\end{equation*}
$$

On the other hand, since $P(z, w) / Q(z, w)$ is holomorphic on the neighborhood V of K_{c}, we have $Q(z, w) \neq 0$ on V. In fact, if not, we have a point $\left(z_{0}, w_{0}\right)$ in V such that $Q\left(z_{0}, w_{0}\right)=0$. Thus, $P\left(z_{0}, w_{0}\right)=0$. Since $P(z, w)$ and $Q(z, w)$ are relatively prime, it follows that $\left(z_{0}, w_{0}\right)$ is a point of indeterminacy of $P(z, w) / Q(z, w)$. This is a contradiction. In particular, $Q(z, w) \neq 0$ on $\alpha^{\prime} \times \beta_{1}, \alpha^{\prime \prime} \times \beta_{2}$, and $\{-5 / 6\} \times \Delta_{2}^{0}$. These statements imply that

$$
\begin{aligned}
\int_{3_{1}} d \arg Q\left(z_{0}, w\right) & =\int_{3_{1}} d \arg Q\left(-5 / 6, w^{\prime}\right) \\
\int_{3_{2}} d \arg Q\left(z_{0}, w\right) & =\int_{3_{2}} d \arg Q(-5 / 6, w)
\end{aligned}
$$

and

$$
\int_{3_{1}} d \arg Q(-5 / 6, w)=\int_{3_{2}} d \arg Q(-5 / 6, w)
$$

Putting these together gives a contradiction to (3.15).
3.6.3. Approximation by Algebraic Functions. In this section, we prove the following theorem concerning approximation of a holomorphic function by algebraic functions.

Theorem 3.11 (Oka [48]). Let G be a domain of holomorphy in \mathbf{C}^{n}. Let E be a compact set in G, let $\varepsilon>0$. and let $f(z)$ be a holomorphic function in G. Then we can find a single-valued branch $u=\gamma(z)$ of an algebraic function over a neighborhood \mathcal{P} of E in G such that

$$
\begin{equation*}
A_{0}(z) u^{l}+A_{1}(z) u^{l-1}+\ldots+A_{l}(z)=0 \quad \text { for } z \in \mathcal{P} \tag{3.16}
\end{equation*}
$$

where $A_{i}(z)(i=0, \ldots, l)$ is a polynomial of z in \mathbf{C}^{n}, and

$$
|f(z)-\varphi(z)|<\varepsilon \quad \text { on } E .
$$

Proof. It suffices to show that we can find single-valued holomorphic functions $\zeta_{i}(z)(i=1, \ldots, m)$ in a neighborhood \mathcal{P} of E in G such that
(i) $w_{k}=\zeta_{k}(z)(k=1, \ldots, m), z \in \mathcal{P}$, satisfy the m algebraic equations

$$
P_{k}\left(z, w_{1}, \ldots, w_{m}\right)=0 \quad(k=1, \ldots . m)
$$

where $P_{k}\left(z, w_{1} \ldots, w_{m}\right)(k=1 \ldots . m)$ is a polynomial in \mathbf{C}^{n+m} and

$$
\frac{\partial\left(P_{1}, \ldots, P_{m}\right)}{\partial\left(w_{1}, \ldots, w_{m}\right)} \neq 0 \quad \text { at } \quad w_{k}=\zeta_{k}(z)(k=1 \ldots . m), z \in \mathcal{P}
$$

(ii) we can find a polynomial $\varphi(z)$ in $z, \zeta_{1}(z) \ldots, \zeta_{m}(z)$ such that

$$
|f(z)-\varphi(z)|<\epsilon \quad \text { on } E .
$$

For it follows by standard techniques (using symmetric functions) that $u=\underset{\gamma}{ }(z)$ is a single-valued branch of an algebraic function of the form (3.16).

To construct $\zeta_{i}(z)(i=1, \ldots, m)$ satisfying (i) and (ii), we take an analytic polyhedron \mathcal{P} in G,

$$
\mathcal{P}: \quad\left|z_{j}\right| \leq r_{j} \quad(j=1, \ldots, n) . \quad\left|f_{k}(z)\right| \leq 1 \quad(k=1, \ldots . m)
$$

where $f_{k}(z)(k=1, \ldots, m)$ is a holomorphic function in G, and

$$
E \subset \subset \mathcal{P} \subset \subset G
$$

As usual, we introduce the space \mathbf{C}^{m} of the variables $w_{1} \ldots, w_{m}$. and we consider the polydisk in \mathbf{C}^{n+m}.

$$
\bar{\Delta}: \quad\left|z_{j}\right| \leq r_{j}(j=1, \ldots, n), \quad\left|w_{k}\right| \leq 1(k=1, \ldots, m)
$$

Furthermore, we define

$$
\Sigma: \quad u_{k}=f_{k}(z)(k=1, \ldots, m), \quad z \in \mathcal{P}
$$

which is a pure n-dimensional analytic set in $\bar{\Delta}$.
As the first step we approximate $f_{k}(z)(k=1 \ldots . m)$ by an algebraic function $\zeta_{k}(z)$ with conditions (i) and (ii). Regarding $f_{k}(z)$ as independent of $w_{1} \ldots \ldots w_{m}$, we have that

$$
w_{k}-f_{k}(z)
$$

is a holomorphic function in a neighborhood V_{k} of Σ in C^{n+m}. By Theorem 3.4, $\Sigma \subset \mathbf{C}^{n+m}$ is polynomially convex. Thus there exists a polynomial polyhedron \mathcal{P}^{*} in \mathbf{C}^{n+m} such that

$$
\Sigma \subset \subset \mathcal{P}^{*} \subset \subset V_{k} \quad(k=1 \ldots, m)
$$

We can choose $\rho>0$ sufficiently small so that

$$
\begin{equation*}
Q:=\bigcup_{z \in \mathcal{P}}\left(z, \gamma_{1}(z), \ldots, \gamma_{m}(z)\right) \subset \subset \mathcal{P}^{*} \tag{3.17}
\end{equation*}
$$

where $\gamma_{k}(z)=\left\{w_{k} \in C_{z_{k}}| | w_{k}-f_{k}(z) \mid<\rho\right\}(k=1 \ldots, m)$.
Fix η with $0<\eta<\rho$. By applying Corollary 3.1 for ($\mathcal{P}^{*} . C^{n+m}$) and the function $u_{k}-f_{k}(z)$ in \mathcal{P}^{*}, we can find a polynomial $P_{k}(z, u)$ in \mathbf{C}^{n+m} such that

$$
\begin{equation*}
\left|P_{k}(z . w)-\left(w_{k}-f_{k}(z)\right)\right|<\eta / 2 \text { on } \mathcal{P}^{*}(k=1 \ldots m) \tag{3.18}
\end{equation*}
$$

We consider the following holomorphic transformation

$$
T:(z, w) \in \mathcal{P} \times \mathbf{C}_{u^{\prime}}^{m} \rightarrow(z, W)=\left(z, u_{1}-f_{1}(z) \ldots, u_{m}-f_{m}(z)\right) \in \mathcal{P} \times \mathbf{C}_{w}^{m}
$$

Then T is one-to-one and maps Q onto the product domain $\mathcal{P} \times B_{\rho}$, where $B_{r}(r>0)$ denotes the polydisk in $\mathbf{C}_{1 j^{\prime}}^{m}$ of center 0 and radius r. We set

$$
H_{k}(z, W):=P_{k}\left(z, W_{1}^{\prime}+f_{1}(z) \ldots . W_{m}+f_{m}(z)\right) \quad(k=1 \ldots, m)
$$

which is a holomorphic function in $\mathcal{P} \times B_{\rho}$ and which, for each fixed $z \in \mathcal{P}$. is a polynomial of W in C^{m}. Since $B_{\eta} \subset B_{\rho}$, we obtain from (3.17) and (3.18) that

$$
\left|H_{k}(z, W)-W_{k}\right|<\eta / 2 \quad \text { on } \mathcal{P} \times B_{\eta} \quad(k=1 \ldots . m)
$$

Fix $z \in \mathcal{P}$. Using Rouchés theorem from one complex variable, for each $k=$ $1 m$. the above inequalities imply that there exists a unique complex number $W_{k}=h_{k}(z)(k=1, \ldots, m)$ with

$$
H_{k}\left(z, h_{1}(z), \ldots, h_{m}(z)\right)=0, \quad \text { and } \quad\left|h_{k}(z)\right|<\eta(k=1, \ldots, m) .
$$

Furthermore, each $h_{k}(z)(k=1 \ldots . m)$ depends holomorphically on $z \in \mathcal{P}$. Thus. if we define

$$
\zeta_{k}(z):=h_{k}(z)+f_{k}(z) \quad(k=1 \ldots . m) . \quad z \in \mathcal{P}
$$

then $w_{k}=\zeta_{k}(z)(k=1, \ldots, m)$ is a single-valued function in \mathcal{P} which satisfies

$$
\begin{align*}
P_{k}\left(z, w_{1}, \ldots, u_{m}\right) & =0(k=1 \ldots ., m) . \quad z \in \mathcal{P}, \tag{3.19}\\
\left|\zeta_{k}(z)-f_{k}(z)\right| & \leq \eta(k=1 \ldots, m) . \quad z \in \mathcal{P} . \tag{3.20}
\end{align*}
$$

The uniqueness of $W_{k}=h_{k}(z)(k=1, \ldots, m)$ also implies that any solution $w_{k}(z)(k=1, \ldots, m)$ of the simultaneous algebraic equations (3.19) for w_{1}, \ldots, w_{m} (we regard $z \in \mathcal{P}$ as parameters) such that $\left|w_{k}(z)-f_{k}(z)\right|<\eta(k=1, \ldots, m)$ coincides with $\zeta_{k}(z)(k=1, \ldots . m)$. Thus

$$
\frac{\partial\left(P_{1}, \ldots, P_{m}\right)}{\partial\left(w_{1}, \ldots, w_{m}\right)} \neq 0 \quad \text { at } \quad w_{k}=\zeta_{k}(z)(k=1 \ldots, m), z \in \mathcal{P}
$$

which proves the first step.
To prove the second step, and hence the theorem, let $c>0$ and let $f(z)$ be a holonorphic function in G. From the proof of Theorem 3.5, there exists a polynomial

$$
\Phi(z)=P\left(z, f_{1}(z) \ldots, f_{m}(z)\right)
$$

of $z, f_{1}(z), \ldots, f_{m}(z)$ such that

$$
|\Phi(z)-f(z)|<\epsilon / 2 \text { on } E .
$$

Therefore, if we take $\eta>0$ sufficiently small. and use the functions $w_{k}=\zeta_{k}(z)$ ($k=$ $1, \ldots, m), z \in \mathcal{P}$. which were constructed above to satisfy $\left|\zeta_{k}(z)-f_{k}(z)\right|<\eta(k=$ $1, \ldots, m$) on \mathcal{P} (and condition (i)), to define the polynomial

$$
\varphi(z):=P\left(z, \zeta_{1}(z) \ldots, \zeta_{m}(z)\right)
$$

in $z, \zeta_{1}(z), \ldots, \zeta_{m}(z)$, then we have

$$
|\Phi(z)-\varphi(z)|<\epsilon / 2 \text { on } E .
$$

Thus

$$
|\varphi(z)-f(z)|<\epsilon \quad \text { on } E .
$$

and the theorem is proved.
3.6.4. Polynomially Convex Domains. In the case of one complex variable, a domain D in \mathbf{C} is polynomially convex if and only if D is simply connected. In the case of several complex variables, there is no topological characterization of polynomial convexity. Indeed. a polynomially convex domain D in \mathbf{C}^{n} is not necessarily simply connected.

Example 3.3. In \mathbf{C}^{2} with variables z, w, consider the domain

$$
D: \quad|z|<2, \quad|w|<2, \quad|z w-1|<1 / 2 .
$$

Then D is polynomially convex but not simply connected. To see that D is not simply connected. assume the contrary. Since $D \cap\left(\{0\} \times \mathbf{C}_{u}\right)=0$. the function $\log z$ has a single-valued branch in D. On the other hand, the closed curve $\gamma:=$ $\left\{(z, w)=\left(e^{i \theta}, e^{-i \theta}\right) \mid 0 \leq \theta \leq 2 \pi\right\}$ in \mathbf{C}^{2} is contained in D; hence $\log z$ has no single-valued branch in D. a contradiction.

Conversely, a simply connected domain of holomorphy D in $\mathbf{C}^{\prime \prime}(n \geq 2)$ is not necessarily polynomially convex.

Wermer's Example [78]. In \mathbf{C}^{3} with variables z, w, t. consider the compact set

$$
K: \quad|z| \leq 1, \quad|w| \leq 1, \quad t=0
$$

For $0<a<1$, define

$$
\Delta_{a}: \quad|z|<1+a . \quad|w|<1+a . \quad|t|<a
$$

so that $K \subset \subset \Delta_{a}$. Let $T:(z, w, t) \in \mathbf{C}^{3} \rightarrow\left(z_{1}, z_{2}, z_{3}\right) \in \mathbf{C}_{:}^{3}$ be the holomorphic mapping defined as

$$
T: z_{1}=z, \quad z_{2}=z w+t . \quad z_{3}=z w^{2}-w+2 t w .
$$

Define

$$
E:=T(K), \quad G_{a}:=T\left(\Delta_{a}\right) .
$$

Then T is a one-to-one mapping from K onto E, and $(0,1.0) \notin E$. Since the determinant of the Jacobian matrix of T is

$$
\left|\frac{\partial\left(z_{1}, z_{2}, z_{3}\right)}{\partial(z, w, t)}\right|=1-2 t
$$

we can choose a sufficiently small so that the domain G_{a} in \mathbf{C}_{z}^{3} is biholomorphically equivalent to the polydisk Δ_{a} in \mathbf{C}^{3} and also to insure that (0.1 .0) $\notin G_{a}$. We show that, with such a choice of a, G_{a} is not polynomially convex.

Proof. We consider the closed curve $\gamma=\left\{\left(e^{i \theta}, e^{-i \theta}, 0\right) \mid 0 \leq \theta \leq 2 \pi\right\}$ in K. Then $T(\gamma)$ is the unit circle lying in the complex plane $L: z_{2}=1, z_{3}=0$; i.e., $T(\gamma)$ is given by $\left|z_{1}\right|=1, z_{2}=1, z_{3}=0$.

However, in general, any polynomially convex domain D in \mathbf{C}^{n} satisfies the property that for any m-dimensional complex plane L in $\mathbf{C}^{n}(0<m<n), D \cap L$ is also polynomially convex in \mathbf{C}^{m}. In particular, for $m=1, D \cap L$ must be a disjoint union of simply connected domains.

Taking D to be G_{a} and L to be the 1-plane defined by $z_{2}=1, z_{3}=0$ in \mathbf{C}_{z}^{3}, we see that $G_{a} \cap L$ contains the circle $\left|z_{1}\right|=1$ in L but does not contain the center $z_{1}=0$ in $C_{z_{1}}$; hence $G_{a} \cap L$ is not simply connected. Thus G_{a} is not polynomially convex in \mathbf{C}_{s}^{3}.

Remark 3.6. Let D be a rationally convex domain in \mathbf{C}^{n}. Then for any m dimensional complex plane $L(0<m<n)$, the intersection $L \cap D$ is rationally convex in $\mathbf{C}^{m 1}$. For the case $m=1$, this imposes no restriction on $D \cap L$, as every planar domain is rationally convex. However, if we assume, in addition. that D is simply connected in \mathbf{C}^{n}, then for L with $\operatorname{dim} L=1 . D \cap L$ must be simply connected in C (G. Stolzenberg [70]).

To verify this last statement, assume, for the sake of obtaining a contradiction, that for some L with $\operatorname{dim} L=1 . D_{1}:=D \cap L$ is not simply connected. For simplicity, we take $L=C_{s_{1}}$; i.e., L is defined by $z_{2}=\cdots=z_{n}=0$. Since D_{1} is not simply connected, we can take a point $a \in \mathbf{C}_{i_{1}} \backslash \overline{D_{1}}$ and a closed curve ${ }_{9}$ in D_{1} such that $\int_{\uparrow} d \arg \left(z_{1}-a\right)=2 \pi$. If we let L_{2} be the 2 -plane $z_{3}=\cdots=z_{n}=0$. then we can construct a holomorphic function $f_{2}\left(z_{1}, z_{2}\right)$ in $D \cap L_{2}$ such that $f_{2}\left(z_{1}, 0\right)=1 /\left(z_{1}-a\right)$ in D_{1}. To do this, we proceed by using the solution of a Cousin I problem similar to that used in Lemma 3.3. We repeat this procedure to obtain a holomorphic function $f(z)$ in D satisfying $f\left(z_{1}, 0, \ldots, 0\right)=1 /\left(z_{1}-a\right)$ in D_{1}.

Now let $\epsilon>0$ and let G be a simply connected domain such that $\gamma \subset C$ $G \subset \subset D$. Since D is rationally convex in \mathbf{C}^{n}, we can find a rational function $R(z)=P(z) / Q(z)$. where $P(z)$ and $Q(z)$ are relatively prime polynomials in \mathbf{C}^{n}, such that $R(z)$ is holomorphic in G and satisfies $|R(z)-f(z)|<\epsilon$ in G. In particular, the denominator $Q(z)$ of $R(z)$ cannot vanish at any point in the simply connected domain G : hence

$$
\int d \arg Q(z)=0 .
$$

On the other hand. if $0<\epsilon<\min \left\{\frac{1}{z_{1}-a!}: z_{1} \in \gamma\right\}$. then Rouchés theorem implies

$$
\int_{2} d \arg \frac{P(z)}{Q(z)}=\int_{2} d \arg \frac{1}{z_{1}-a}=-2 \pi .
$$

Hence,

$$
\int_{\gamma} d \arg Q(z)=\int_{\gamma} d \arg P(z)+2 \pi \geq 2 \pi
$$

which is a contradiction.
It follows that the domain G_{a} in Wermer's example is not rationally convex, but it is a simply connected donain in \mathbf{C}^{3}. We mention that there is an example due to J. Duval [16] of a domain in \mathbf{C}^{2} which is both rationally convex and simply connected but which is not polynomially convex.

CHAPTER 4

Pseudoconvex Domains and Pseudoconcave Sets

4.1. Pseudoconvex Domains

4.1.1. Domains of Holomorphy, Domains of Meromorphy, and Domains of Normality. The notion of a pseudoconvex domain was developed by K. Oka. This will give a geometric characterization of the boundary of a domain of holomorphy (section 4.2). Preliminary results motivating this concept were obtained by F. Hartogs, E. E. Levi and G. Julia, and we begin our discussion of this topic with some classical results based on their work.

1. Hartogs' Theorem

In \mathbf{C}^{n+1} with variables $z=\left(z_{1}, \ldots, z_{n}\right)$ and w, we consider a polydisk $\Lambda=$ $\Delta \times \Gamma$ where

$$
\Delta:\left|z_{j}\right|<r, \quad(j=1, \ldots, n), \quad \Gamma:|w|<\rho,
$$

with $r_{j}>0(j=1, \ldots, n)$ and $\rho>0$. For r_{j}^{\prime} and ρ^{\prime} with $0<r_{j}^{\prime}<r_{j}(j=1, \ldots, n)$ and $0<\rho^{\prime}<\rho$, we set

$$
\Delta^{\prime}:\left|z_{j}\right|<r_{j}^{\prime} \quad(j=1, \ldots, n), \quad \Gamma^{*}: \rho^{\prime}<|w|<\rho
$$

and define

$$
E_{1}:=\Delta^{\prime} \times \Gamma, \quad E_{2}:=\Delta \times \Gamma^{*}, \quad \text { and } \quad E:=E_{1} \cup E_{2}
$$

(see Figure 1).

Figure 1. Hartogs' Theorem

We have the following theorem.
Theorem 4.1 (Hartogs [29]). ${ }^{1}$ Each holomorphic function $f(z, w)$ on E extends holomorphically to the polydisk 1 .

Proof. Since $f(z, w)$ is holomorphic in E_{2}, we can consider the HartogsLaurent series

$$
f(z, u)=\sum_{j=-\infty}^{\infty} a_{j}(z) u^{j} \quad \text { in } E_{2},
$$

where $a_{j}(z)(j=0, \pm 1, \ldots)$ are holomorphic functious in Δ. Since $f(z, w)$ is holomorphic on E_{1}, from the uniqueness of the Hartogs-Laurent expansion it follows that $a_{j}(z) \equiv 0$ on Δ^{\prime} for $j=-1,-2, \ldots$ and hence $a_{j}(z) \equiv 0$ on Δ for these values of j. Thus $f(z, w)$ is the restriction to E of the holomorphic function $\sum_{j=0}^{x} a,(z) w^{j}$ in A .

In particular, let D be a domain in $\mathbf{C}^{\boldsymbol{n}}$ and let σ be an analytic set of dimension at most $n-2$. Then each holonorphic function $f(z)$ on $D \backslash \sigma$ extends holomorphically to the domain D.

2. E. E. Levi's Theorem

Using the same notation as above, we prove the following lemmas.
Lemma 4.1. Let $g(z, w)$ be a holomorphic function in E_{2} with Hartogs-Laurent series

$$
g(z, w)=\sum_{j=-\infty}^{x} a_{j}(z) w^{j} \quad \text { in } E_{2} .
$$

where $a_{j}(z)(j=0, \pm 1, \ldots)$ is holomorphic in Δ. Then $g(z, w)$ can be extended to a meromorphic function in the polydisk A if and only if there exist a finite number of holomorphic functions $\left\{b_{1}(z) \ldots . b_{l}(z)\right\}$ on Δ which satisfy the following infinite set of simultaneous equations for z in Δ :

$$
\begin{equation*}
a_{-(\nu+l)}(z)+a_{-(\nu+l-1)}(z) \cdot b_{1}(z)+\cdots+a_{-\nu}(z) \cdot b_{l}(z) \equiv 0 \quad(\nu \geq 1) . \tag{4.1}
\end{equation*}
$$

Proof. Suppose first of all that $g(z, w)$ can be extended to a meromorphic function $f(z, w) / h(z, w)$ on Λ where $f(z, w)$ and $h(z, w)$ are holomorphic on Λ and relatively prime at each point $(z . w) \in \Lambda$. Since $g(z, w)$ is holonorphic on E_{2}. it follows that $h(z, w) \neq 0$ on E_{2}. Using Remark 2.3 in section 2.1.3. the zero set of $h(z, w)$ in Λ (which may be empty) coincides with that of a distinguished pseudopolynomial $P(z, w)$ in Λ.

$$
\begin{equation*}
P(z, w)=w^{\prime}+b_{1}(z) u^{l-1}+\cdots+b_{l}(z) . \tag{4.2}
\end{equation*}
$$

where each $b_{k}(z)(k=1, \ldots, l)$ is holomorphic in Δ. Since $g(z, w) P(z, w)$ can be holomorphically extended to Λ, the coefficient of $w^{-\nu}(\nu=1,2, \ldots)$ of the HartogsLaurent series of $g(z, w) P(z, w)$ vanishes; this coefficient equals the left-hand side of equation (4.1).

For the converse. assume that there exist a finite number of holomorphic functions $\left\{b_{1}(z), \ldots, b_{l}(z)\right\}$ on Δ which satisfy the equations in (4.1). We then define $P(z, w)$ by (4.2) so that $P(z, w)$ is holomorphic on Λ and by (4.1) each coefficient of $w^{-\nu}(\nu=1.2 \ldots)$ of the Hartogs-Laurent series of $g(z, w) P\left(z, w^{\prime}\right)$ vanishes on Δ. Thus $g(z, w) P(z, w)$ can be considered as a holomorphic function in Λ, so that $g\left(z, w^{\prime}\right)$ extends to a meromorphic function on Λ.

[^13]Lemma 4.2. Let $g(z, w)$ be a meromorphic function on E. If $g(z, w)$ is holomorphic on E_{2}, then $g(z, w)$ can be extended to a meromorphic function on the polydisk A .

Proof. We first develop $g(z, w)$ into the Hartogs-Laurent series

$$
g(z, w)=\sum_{j=-\infty}^{\infty} a_{j}(z) w^{j} \quad \text { on } E_{2}
$$

where $a_{j}(z)(j=0, \pm 1, \ldots)$ are holomorphic on Δ. We would like to use Lemma 4.1 to construct a finite number of holomorphic functions $\left\{b_{1}(z), \ldots, b_{l}(z)\right\}$ on Δ satisfying (4.1). Since $g(z, w)$ is meromorphic in E and hence in the domain $E_{1}=\Delta^{\prime} \times \Gamma$, and the functions $a_{j}(z)$ are holomorphic on Δ and hence in Δ^{\prime}, we can appeal to Lemma 4.1 to find a finite number of holomorphic functions $\left\{b_{1}(z) \ldots, b_{l}(z)\right\}$ on the smaller polydisk Δ^{\prime} which satisfy

$$
\begin{equation*}
a_{-(\nu+l)}(z)+a_{-(\nu+l-1)}(z) b_{1}(z)+\cdots+a_{-\nu}(z) b_{1}(z) \equiv 0 \quad(\nu \geq 1) \tag{4.3}
\end{equation*}
$$

on Δ^{\prime}. Consider the matrix $A(z), z \in \Delta$, with infinitely many rows, each of length $l+1$, defined by

$$
A(z):=\left(\begin{array}{cccc}
a_{-1-1}(z) & a_{-1}(z) & \cdots & a_{-1}(z) \\
a_{-1-2}(z) & a_{-1-1}(z) & \cdots & a_{-2}(z) \\
\vdots & \vdots & & \vdots
\end{array}\right)
$$

and the corresponding infinite set of homogeneous linear equations for $z \in \Delta$:

$$
A(z)\left(\begin{array}{c}
X_{0}(z) \tag{4.4}\\
X_{1}(z) \\
\vdots \\
X_{l}(z)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

We seek non-trivial holomorphic solutions $\left\{X_{0}(z), \ldots, X_{l}(z)\right\}$ of these equations in Δ. Let $r:=\max \left\{\operatorname{rank} A(z) \mid z \in \Delta^{\prime}\right\}$. From (4.3), we know that $0 \leq r \leq l$. If $r=0$, then $a_{j}(z) \equiv 0$ on Δ^{\prime} and hence on Δ for $j=-1,-2, \ldots$, so that $g(z, w)$ is holomorphic in Λ and there is nothing to prove. We may therefore assume that $1 \leq r \leq l$ and we fix a point $z_{0} \in \Delta^{\prime}$ such that rank $A\left(z_{0}\right)=r$. Next we fix a neighborhood V of z_{0} in Δ and an $r \times r$ minor matrix of $A(z)$ whose determinant $D(z)$ does not vanish at any point $z \in V$; say, e.g.,

$$
D(z)=\left|\begin{array}{ccc}
a_{-1-1}(z) & \cdots & a_{-l-2+r}(z) \\
\vdots & \ddots & \vdots \\
a_{-l-2-r}(z) & \cdots & a_{-1-3}(z)
\end{array}\right| \neq 0 \quad \text { on } V
$$

while the determinant of any $s \times s$ minor matrix of $A(z)$ with $s \geq r+1$ necessarily vanishes identically in V. Using Cramer's rule, we get polynomials $A_{\mu k}(z)(0 \leq$ $\mu \leq r-1 ; r \leq k \leq l)$ in the coefficient functions $a_{j}(z)(j=0, \pm 1, \ldots)$ such that. if we define

$$
B_{\mu}(z):=\frac{A_{\mu r}(z)}{D(z)} B_{r}(z)+\cdots+\frac{A_{\mu l}(z)}{D(z)} B_{l}(z)
$$

where $B_{r}(z), \ldots, B_{l}(z)$ are arbitrary holomorphic functions in Δ, then the functions $\left\{B_{0}(z), \ldots, B_{l}(z)\right\}$ on Δ satisfy the equations (4.4) for $z \in V$. We now set

$$
X_{k}(z):=D(z) B_{k}(z) \quad(0 \leq k \leq l) \quad \text { on } \Delta
$$

Then $X_{k}(z)(0 \leq k \leq l)$ are holomorphic on Δ and satisfy the equations (4.4) for z in V and hence for all z in Δ. From $1 \leq r \leq l$, we have thus constructed non-trivial holomorphic solutions $\left\{X_{0}(z), \ldots . X_{l}(z)\right\}$ of the system of equations (4.4) on all of Δ. Defining

$$
Q(z, w):=X_{0}(z) w^{l}+X_{1}(z) w^{l-1}+\cdots+X_{l}(z)(\not \equiv 0) \text { on } \Lambda,
$$

for each $\nu \geq 1$ the coefficient of $w^{-\nu}$ of the Hartogs-Laurent series of $h(z, w) \equiv$ $g(z, w) Q(z, w)$ on E_{2} is equal to zero on Δ; i.e., $h(z . w)$ is holomorphic in Λ. Hence, $g(z, w)$ extends to a meromorphic function on all of Λ.

We now consider \mathbf{C}^{n+2} with variables $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, w_{2}\right)$. Fix $r>\rho>0$ and define two balls in \mathbf{C}_{w}^{2} :

$$
\begin{aligned}
& Q(r):\left|w_{1}+r\right|^{2}+\left|w_{2}\right|^{2} \leq r^{2}, \\
& q(\rho):\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}<\rho^{2} .
\end{aligned}
$$

Finally, set

$$
\begin{array}{ll}
B:=q(\rho) \backslash Q(r) & \text { in } \mathbf{C}_{u^{+}}^{2} \tag{4.5}\\
B:=\{0\} \times \beta & \text { in } \mathbf{C}^{n+2} .
\end{array}
$$

We have the following theoren.
Theorem 4.2 (E. E. Levi [17]). Any meromorphic function $g(z . w)$ on B has a meromorphic extension to the origin $(z . w)=(0,0)$; precisely, $g(z, w)$ has a meromorphic extension to the set \widehat{B} in \mathbf{C}^{n+2} defined by

$$
\widehat{B}: z=0, \quad\left(w_{1} \cdot u u_{2}\right) \in q(\rho) \cap\left\{\operatorname{Re} w_{1}>-\rho^{2} / 2 r\right\} .
$$

Proof. Let D be a neighborhood of $\{0\} \times \beta$ in \mathbf{C}^{n+2} on which $g(z, w)$ is meromorphic; we assume the origin $(0,0) \in \mathbf{C}^{n+2}$ is not contained in D (otherwise there is nothing to prove). Given $w^{\prime} \in \beta$, we let $D\left(w^{\prime}\right) \subset \mathbf{C}_{\Sigma}^{n}$ denote the section of D over $w=w^{\prime}$.

We let σ denote the set of poles of $g(z, u)$ in D, and we let $\sigma(0) \subset \beta \subset \mathbf{C}_{u^{\prime}}^{2}$ denote the section of σ over $z=0$. We have two cases to consider:

Case I: $\operatorname{dim} \sigma(0) \leq 1$; i.e., $\sigma(0) \neq 3$;
Case II: $\operatorname{dim} \sigma(0)=2$: i.e.. $\sigma(0)=\beta$.
We first prove the theorem for Case I : we proceed in several steps.
First step. $g(z, w)$ has a meromorphic extension to $\{0\} \times(q(\rho) \cap \partial Q(r))$ in \mathbf{C}^{n+2}.

It suffices to prove that $g(z, w)$ has a meronorphic extension to the origin $(z, w)=(0,0)$ in \mathbf{C}^{n+2}.

We first consider the case when

$$
\begin{equation*}
\left\{\left(w_{1}, w_{2}\right) \in \beta \mid w_{1}=0\right\} \not \subset \sigma(0) . \tag{4.6}
\end{equation*}
$$

Since $\left\{\left(w_{1}, w_{2}\right) \in \beta \mid w_{1}=0\right\} \cap \sigma(0)$ consists of isolated points in the punctured disk $0<\left|w_{2}\right|<\rho$, we can find a circle $\left|w_{2}\right|=\rho_{2}$ in $\mathbf{C}_{w_{2}}$ with $0<\rho_{2}<\rho / 2$ such that $g(z, w)$ is holomorphic on $\{z=0\} \times\left\{w_{1}=0\right\} \times\left\{\left|w_{2}\right|=\rho_{2}\right\}$. Thus $g(z . w)$ is holomorphic on $\{z=0\} \times\left\{\left|w_{1}\right| \leq \rho_{1}\right\} \times\left\{\left|w_{2}\right|=\rho_{2}\right\}$ if $0<\rho_{1}<\rho / 2$ is sufficiently small. Fix a point $w_{1}^{0} \in\left\{\left|w_{1}\right|<\rho_{1}\right\} \cap\left\{\operatorname{Re} w_{1}>0\right\}$ sufficiently close to the origin $w_{1}=0$ so that $K:=\left\{\left(w_{1}^{\prime \prime}, w_{2}\right) \in \mathbf{C}_{w}^{2}| | w_{2} \mid \leq \rho / 2\right\} \subset \subset 3$. It follows from Lemma
4.2 that $g(z, w)$ has a meromorphic extension to $\{0\} \times\left\{\left|w_{1}\right| \leq \rho_{1}\right\} \times\left\{\left|u_{2}\right| \leq \rho_{2}\right\}$ in \mathbf{C}^{n+2}, and, in particular, to the origin $(z, w)=(0,0)$.

Now we consider the case when

$$
\left\{\left(w_{1}, w_{2}\right) \in \beta \mid w_{1}=0\right\} \subset \sigma(0)
$$

For $\varepsilon>0$, the holomorphic mapping T of $\mathbf{C}^{\mathbf{2}}$,

$$
T: w_{1}^{\prime}=w_{1}-\varepsilon w_{2}^{2}, \quad u_{2}^{\prime}=w_{2}
$$

is one-to-one and maps onto \mathbf{C}^{2} fixing the origin (0.0). We choose $\varepsilon>0$ sufficiently small so that

$$
\begin{equation*}
\left\{w_{1}=\varepsilon u_{2}^{2}\right\} \cap \beta \not \subset \sigma(0) \tag{4.7}
\end{equation*}
$$

(since $\operatorname{dim} \sigma(0) \leq 1$). An elementary calculation shows that

$$
\left\{u_{1}=\varepsilon u_{2}^{2}\right\} \cap(q(r) \backslash\{(0,0)\}) \subset \beta
$$

provided ε is sufficiently small. Given $r^{\prime}>r$ and $0<\rho^{\prime}<\rho$, we set

$$
\tilde{Q}\left(r^{\prime}\right):\left|u_{1}^{\prime}+r^{\prime}\right|^{2}+\left|u_{2}^{\prime}\right|^{2} \leq{r^{\prime}}^{2}, \quad \tilde{q}\left(\rho^{\prime}\right):\left|u_{1}^{\prime}\right|^{2}+\left|w_{2}^{\prime}\right|^{2}<\rho^{\prime 2}
$$

and $\tilde{\beta}:=\tilde{q}\left(\rho^{\prime}\right) \backslash \tilde{Q}\left(r^{\prime}\right)$. If r^{\prime} is sufficiently large and $\rho^{\prime}>0$ is sufficiently small. it can be shown that

$$
\tilde{\beta} \subset T(\beta) .
$$

We set $\tilde{g}\left(z, w^{\prime}\right):=g(z, w)$, where $w^{\prime}=T w$. Then $\tilde{g}\left(z, w^{\prime}\right)$ is meromorphic in a neighborhood of $\{0\} \times T(\beta)$, and, in particular, $\tilde{g}\left(z, w^{\prime}\right)$ is meromorphic on $\{0\} \times \widetilde{\beta}$. If we let $\check{\sigma}$ denote the set of poles of $\tilde{g}\left(z, w^{\prime}\right)$, then $\left\{\left(w_{1}^{\prime}, u_{2}^{\prime}\right) \in \bar{\beta} \mid w_{1}^{\prime}=0\right\} \not \subset$ $\dot{\sigma}(0)$ from (4.7). It now follows from the previous case (4.6) that $\tilde{\boldsymbol{g}}\left(z, w^{\prime}\right)$ has a meromorphic extension to the origin $\left(z, w^{\prime}\right)=(0,0)$. and hence $g(z, w)$ has a meromorphic extension to the origin $(z, u)=(0.0)$. Thus, the first step is proved.

Second step. $g(z, w)$ has a meromorphic extension to \widehat{B}.
We note that $(\partial Q(r)) \cap(\partial q(\rho)) \cap\left\{w_{2}=0\right\}$ lies on $\Re w_{1}=-\rho^{2} / 2 r$. From the first step. it suffices to prove the second step under the condition that $g(z, w)$ is meromorphic on $(\partial Q(r)) \cap(\partial q(\rho))$ (for we can take a smaller $q(\rho)$ sufficient close to the original $q(\rho)$, if necessary). Given $0 \leq a<\rho^{2} / 2 r$, we consider the ball $B(a)$ in $\mathbf{C}_{u^{\prime}}^{2}$ centered at $(-R-a, 0)$ with radius R, where R is chosen so that the sphere $\partial B(a)$ intersects $(\partial Q(r)) \cap(\partial q(\rho))$. Precisely; we take

$$
B(a): \quad\left|w_{1}+R+a\right|^{2}+\left|w_{2}\right|^{2}<R^{2}
$$

where

$$
R^{2}=\left(R+a-\frac{\rho^{2}}{2 r}\right)^{2}+\rho^{2}-\left(\frac{\rho^{2}}{2 r}\right)^{2}
$$

Then we have $B(0)=Q(r): q(\rho) \backslash B\left(a^{\prime}\right) \subset q(\rho) \backslash B\left(a^{\prime \prime}\right)$ for all $a^{\prime}, a^{\prime \prime}$ with $0 \leq a^{\prime}<$ $a^{\prime \prime}<\rho^{2} / 2 r ; \lim _{a \rightarrow p^{2} / 2 r} B(a)=\left\{\left(u_{1}, w_{2}\right) \in C^{2} \mid \Re w_{1}<-\rho^{2} / 2 r\right\} ;$ and

$$
\begin{equation*}
\widehat{B}=\bigcup_{0 \leq a<\rho^{2} / 2 r}\{0\} \times[q(\rho) \backslash \overline{B(a)}] . \tag{4.8}
\end{equation*}
$$

We set

$$
a^{*}:=\sup \{a \mid g(z, w) \text { has a meromorphic extension to }\{0\} \times[q(\rho) \backslash \overline{B(a)}\}\}
$$

Using (4.8), we see that our goal is to show that $a^{*}=\rho^{2} / 2 r$. We prove this by contradiction; hence, we assume $a^{*}<\rho^{2} / 2 r$. From the first step, $g(z, w)$ has a
meromorphic extension to each point of $\{0\} \times[\overline{q(\rho)} \cap(\partial B(0))]$, so that we certainly have $a^{*}>0$. Since $g(z, w)$ has a meromorphic extension to each point of $\{0\} \times$ $[\overline{q(\rho)} \cap(\partial B(a))]$ for $a<a^{*}, g(z, w)$ has a meromorphic extension to each point of $\{0\} \times\left[\overline{q(\rho)} \cap\left(\partial B\left(a^{*}\right)\right)\right]$ by the first step; thus, we again get $a>a^{*}$ sufficiently close to a^{\bullet} such that $g(z, w)$ has a meromorphic extension to each point of $\{0\} \times[\overline{q(\rho)} \cap$ $(\partial B(a))]$, contradicting the definition of a^{*}. Thus the second step is proved, and hence the theorem is valid in Case I.

We now turn to Case II. Fix a $\in \mathbf{C}^{\boldsymbol{n}} \backslash\{0\}$ and the one-dimensional complex line $L=L_{a}:=\left\{t a \in \mathbf{C}^{n} \mid t \in \mathbf{C}\right\}$ such that

$$
\begin{equation*}
D \cap\left(L \times \mathbf{C}_{u}^{2}\right) \not \subset \sigma \tag{4.9}
\end{equation*}
$$

For $0<\varepsilon<1$, consider the following linear bijection T_{ε} of \mathbf{C}^{n+2} :

$$
T_{\varepsilon}: \quad z^{\prime}=z+\left(\varepsilon w_{1}\right) \mathbf{a}, \quad w_{1}^{\prime}=w_{1}, \quad w_{2}^{\prime}=u_{2}
$$

which fixes the origin $(0,0)$. We set

$$
\widehat{g}_{\varepsilon}\left(z^{\prime}, w^{\prime}\right):=g(z, w), \quad \text { where }\left(z^{\prime}, w^{\prime}\right) \in T_{\varepsilon}(D)
$$

Then $\hat{g}_{\varepsilon}\left(z^{\prime}, w^{\prime}\right)$ is a meromorphic function in $\hat{D}_{\varepsilon}:=T_{\varepsilon}(D)$ whose set of poles $\hat{\sigma}_{\varepsilon}$ in $\widehat{D}_{\varepsilon}$ satisfies $\operatorname{dim} \widehat{\sigma}_{\varepsilon}(0) \leq 1$ (here $\widehat{\sigma}_{\varepsilon}(0)$ denotes the section of $\widehat{\sigma}_{\varepsilon}$ over $z^{\prime}=0$). This follows from (4.9). Note that the section $\widehat{D}_{\varepsilon}(0)$ of $\widehat{D}_{\varepsilon}$ over $z^{\prime}=0$ does not contain a set of the form β (defined by (4.5)) at $w^{\prime}=0$.

For η satisfying $0<\eta<\rho$, we define the following subsets of \mathbf{C}_{w}^{2} :

$$
\begin{aligned}
\widehat{Q}(r+\eta) & :\left|w_{1}+r\right|^{2}+\left|w_{2}\right|^{2} \leq(r+\eta)^{2} \\
\widehat{q}(\rho-\eta) & :\left|w_{1}-\eta\right|^{2}+\left|w_{2}\right|^{2}<(\rho-\eta)^{2}
\end{aligned}
$$

and we let $\widehat{\beta}(\eta)=\widehat{q}(\rho-\eta) \backslash \widehat{Q}(r+\eta)$. Note that $\widehat{\beta}(\eta) \subset \subset \beta$. There exists a unique real number α_{η} satisfying

$$
(\partial \widehat{Q}(r+\eta)) \cap(\partial \widehat{q}(\rho-\eta))=\left\{\operatorname{Re} w_{1}=-\alpha_{\eta}\right\} \cap(\partial \widehat{q}(\rho-\eta))
$$

We have $\widehat{\beta}(\eta) \rightarrow \beta$ and $\alpha_{\eta} \rightarrow \rho^{2} / 2 r$ as $\eta \rightarrow 0$: hence we can choose $\eta>0$ with $\alpha_{\eta}>0$ sufficiently small so that

$$
(0,0) \in \hat{q}(\rho-\eta) \backslash\left\{\operatorname{Re} w_{1}>-a_{\eta}\right\}
$$

Since $\widehat{\beta}(\eta) \subset \subset \beta$, we can find a polydisk $\delta:\left|z_{j}\right|<s_{j}(j=1, \ldots, n)$ in C_{z}^{n} such that $\delta \times \widehat{\beta}(\eta) \subset \subset D$. We set $\delta^{\prime}:\left|z_{j}^{\prime}\right|<s_{j} / 2(j=1 \ldots ., n)$ in $C_{z^{\prime}}^{n}$ and fix $\varepsilon>0$ sufficiently small so that

$$
\left\{z^{\prime}-\left(\varepsilon w_{1}\right) \mathbf{a} \in \mathbf{C}_{z}^{n}\left|z^{\prime} \in \delta^{\prime},\left|w_{1}\right| \leq \rho\right\} \subset \subset \delta\right.
$$

It follows that $\delta^{\prime} \times \widehat{\beta}(\eta) \subset \widehat{D}_{\varepsilon}$. Since $\widehat{\beta}(\eta)$ in $\mathbf{C}_{u^{\prime}}^{2}$, is of the same form as β, but with $w=(0,0)$ replaced by $w^{\prime}=(\eta, 0)$, and since $\operatorname{dim} \widehat{\sigma}(0) \leq 1$, it follows from Case I that $\widehat{g}_{\varepsilon}\left(z^{\prime}, w^{\prime}\right)$ has a meromorphic extension to

$$
\{0\} \times\left\{w^{\prime} \in \widehat{q}(\rho-\eta) \mid \operatorname{Re} u_{1}^{\prime}>-\alpha_{\eta}\right\} \quad \text { in } \mathbf{C}^{n+2}
$$

and, in particular, to the origin $\left(z^{\prime}, w^{\prime}\right)=(0,0)$. Thus, $g(z, w)$ has a meromorphic extension to the origin $(z, w)=(0,0)$. Using the same method as in the proof of the second step in Case I, we get the proof of the second step in Case II; hence the theorem is true in Case II.

3. Julia's Theorem

Let D be a domain in C^{n+1} containing the origin $(z, w):=\left(z_{1}, \ldots, z_{n}, w\right)$ $=(0,0)$. Let \mathcal{F} be a family of holomorphic functions in D. Consider the set

$$
L_{0}: z_{\jmath}=0 \quad(j=1 \ldots, n) . \quad 0<|w|<r
$$

in D and assume that \mathcal{F} is a normal family at each point of L_{0}; i.e., for any $p \in L_{0}$. there exists a connected neighborhood V of p in D such that \mathcal{F} is normal on V. The definition of normality ineans that for any sequence $\left\{f_{n}\right\}_{n} \subset \mathcal{F}$, we can find a subsequence $\left\{f_{n}\right\}_{j}$ of $\left\{f_{n}\right\}_{n}$ such that $f_{n}, \rightarrow f(j \rightarrow \infty)$ uniformly on compact subsets of V where f is either a holomorphic function in V or $f \equiv \infty$ in V.

Under this assumption we have the following theorem.
Theorem 4.3 (Julia [32]). Suppose \mathcal{F} is not normal at the origin $(z, w)=$ (0,0). Then, given any r^{\prime} with $0<r^{\prime}<r$, there exists $\rho>0$ such that. for any $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \in \mathbf{C}_{=}^{n}$ with $\left|z_{j}^{\prime}\right|<\rho(j=1, \ldots, n)$, there must be at least one point q on the set

$$
L_{z^{\prime}}: z_{j}=z_{j}^{\prime} \quad(j=1 \ldots \ldots n), \quad|w| \leq r^{\prime}
$$

such that \mathcal{F} is not normal at q.
Proof. Since $\{0\} \times\left\{|w|=r^{\prime}\right\} \subset L_{0}$, it follows from our assumptions that there exist a $\rho>0$ sufficiently small and $0<\varepsilon<r^{\prime}$ such that, setting $E_{2}:=\bar{\Delta} \times \Gamma^{*}$ where

$$
\bar{\Delta}: \quad\left|z_{j}\right| \leq \rho \quad(j=1 \ldots, n), \quad \Gamma^{*}: r^{\prime}-\varepsilon \leq|w| \leq r^{\prime}+\varepsilon
$$

we have $E_{2} \subset D$ and \mathcal{F} is normal on E_{2}. We prove that this $\rho>0$ yields the conclusion of the theorem. For suppose not. Then there exists some $z_{0}^{\prime}=\left(z_{01}^{\prime} \ldots \ldots, z_{0 n}^{\prime}\right)$ with $\left|z_{0_{j}}^{\prime}\right|<\rho(j=1, \ldots, n)$ such that \mathcal{F} is normal on $L_{z_{0}^{\prime}}=\left\{z_{0}^{\prime}\right\} \times\left\{|u| \leq r^{\prime}\right\}$. We can thus find a neighborhood E_{1} of $L_{i_{i}^{\prime}}$ in D such that \mathcal{F} is normal on E_{1}; indeed. we can take E_{1} of the form $E_{1}=\bar{\Delta}^{\prime} \times \Gamma$, where

$$
\left.\bar{\Delta}^{\prime}: \mid z,-z_{0}^{\prime}\right)\left|\leq \rho_{0}^{\prime}(j=1, \ldots, n), \quad \Gamma:|u| \leq r^{\prime}+\varepsilon\right.
$$

with $\bar{\Delta}^{\prime} \subset \Delta$. Now let $\left\{f_{n}\right\}_{n}$ be any sequence in \mathcal{F}. We can find a subsequence $\left\{f_{n},\right\}_{j}$ of $\left\{f_{n}\right\}_{n}$ such that f_{n}, f as $j \rightarrow \infty$ uniformly on $E_{1} \cup E_{2}$. If f is holomorphic on E_{2}, then from Cauchy's integral formula applied to f_{n}, in the polydisk $\Delta \times \Gamma \subset D$, we conclude that $f_{n} \rightarrow f$ as $j \rightarrow \infty$ uniformly on $\Delta \times \Gamma$. This contradicts our assumption that \mathcal{F} is not normal at the origin (0,0). Thus we may assume that the limiting function $f \equiv \infty$ on E_{2} and hence on $E_{1} \cup E_{2}$ (since $E_{1} \cup E_{2}$ is connected). If infinitely many of the f_{n}, are non-vanishing on $\Delta \times \Gamma$, it follows that $f_{n,} \rightarrow \infty$ uniformly on $\Delta \times \Gamma$, which also contradicts our assumption at $(0,0)$. Thus there exist a subsequence $\left\{g_{l}\right\}_{l}$ of $\left\{f_{n},\right\}_{j}$ and points (a_{l}, b_{l}) with $a_{l} \in \Delta \backslash \bar{\Delta}^{\prime}$ and $\left|b_{l}\right|<r^{\prime}-\varepsilon$ such that $g_{l}\left(a_{l}, b_{l}\right)=0$. On the other hand, since $g_{l} \rightarrow \infty$ as $l \rightarrow \infty$ on E_{2}, say $\left|g_{l}\right| \geq 1$ on E_{2} for all $l \geq l_{0}$. it follows that for any $z^{\prime} \in \Delta$. each g_{l} for $l \geq l_{0}$ vanishes at some point $\left(z^{\prime}, w_{l}\left(z^{\prime}\right)\right) \in C^{n+1}$ with $\left|w_{l}\left(z^{\prime}\right)\right|<r^{\prime}-\varepsilon$ by the Weierstrass preparation theorem. In particular, if we fix $z^{\prime}=z_{0}^{\prime}$ in $\bar{\Delta}^{\prime}$ and consider a limit point w^{*} of $\left\{w_{l}\left(z_{0}^{\prime}\right)\right\}_{l_{1}}$ on $L_{z_{0}^{\prime}}$, then $\left|w^{*}\right| \leq r^{\prime}-\varepsilon$. We conclude that $\left\{g_{l}\right\}$ cannot converge uniformly to ∞ on any neighborhood of (z_{0}^{\prime}, w^{*}). This contradicts our assumption that $g_{l} \rightarrow \infty$ as $l \rightarrow \infty$ uniformly on E_{1}, and proves the theorem.
4.1.2. Definition of Pseudoconvex Domains. Motivated by the three theorems in the previous section, we give three equivalent definitions of pseudoconvexity, following the ideas of Oka in [52]. ${ }^{2}$ We recall from 1.3 .5 that a one-to-one holomorphic mapping T of a domain $D \subset \mathbf{C}^{n}$ onto a domain $D^{\prime} \subset \mathbf{C}^{n}$ with a holomorphic inverse T^{-1} is called a biholomorphic mapping: if $D=D^{\prime}$, we call T an automorphism of D.

Definition A. Let D be a domain in $\mathbf{C}^{n}(n \geq 2)$ and let $P=\left(a_{1}, \ldots, a_{n}\right) \in \partial D$. We say that D satisfies the continuity theorem of type A at the boundary point P if the following holds: under the assumption that there exists $r>0$ such that the punctured disk

$$
L_{a}: z_{j}=a_{j}(j=1 \ldots, n-1), \quad 0<\left|z_{n}-a_{n}\right|<r
$$

is contained in D, we have, for any r^{\prime} satisfying $0<r^{\prime}<r$, that there exists $\rho>0$ such that for each $\left(z_{1}^{\prime} \ldots, z_{n-1}^{\prime}\right) \in C^{n-1}$ with $\left|z_{j}^{\prime}-a_{j}\right|<\rho(j=1, \ldots, n-1)$, the disk

$$
L_{z^{\prime}}: z_{j}=z_{j}^{\prime}(j=1, \ldots, n-1), \quad\left|z_{n}-a_{n}\right|<r^{\prime}
$$

intersects ∂D.
Now if $P \in \partial D$ satisfies the continuity theorem of type A and if this theorem remains valid under any biholomorphic transformation T of a neighborhood V of P in C^{n} (i.e., if $T(D \cap V)$ satisfies the continity theorem of type A at the point $T(P)$), then we say that D is pseudoconvex of type A at P.

Finally, if D is pseudoconvex of type A at all boundary points of D, then we say that D is a pseudoconvex domain of type A.

Definition B. Let D be a domain in $\mathbf{C}^{\boldsymbol{n}}(n \geq 2)$ and let $P=\left(a_{1}, \ldots, a_{n}\right)$ be a point in ∂D. In \mathbf{C}^{2} with variables z_{n-1} and z_{n}, we fix a point $Q=\left(b_{n-1}, b_{n}\right)$ such that $Q \neq\left(a_{n-1}, a_{n}\right)$, and we let $r>0$ be the Euclidean distance between $\left(a_{n-1}, a_{n}\right)$ and Q. For $0<\rho<r$, we define the set β_{ρ} in \mathbf{C}^{2} by the following inequalities:

$$
\begin{align*}
& \left|z_{n-1}-b_{n-1}\right|^{2}+\left|z_{n}-b_{n}\right|^{2}>r^{2} \tag{4.10}\\
& \left|z_{n-1}-a_{n-1}\right|^{2}+\left|z_{n}-a_{n}\right|^{2}<\rho^{2} .
\end{align*}
$$

If for each $Q \in \mathbf{C}^{2}$ and each $0<\rho<r$, the set B in \mathbf{C}^{2} defined by

$$
B: z_{j}=a_{j}(j=1, \ldots, n-2) \cdot\left(z_{n-1}, z_{n}\right) \in \beta_{\rho}
$$

is not contained in D, we say that D satisfles the continuity theorem of type B at the boundary point P of D.

If $P \in \partial D$ satisfies the continuity theorem of type B and if this theorem remains valid under any biholomorphic transformation of a neighborhood of P in \mathbf{C}^{n}, then we say that D is pseudoconvex of type B at P.

Finally, if D is pseudoconvex of type B at every boundary point of D, then we say that D is a pseudoconvex domain of type B.

Definition C. Let D be a domain in $C^{n}(n \geq 2)$. Let $P=\left(a_{1}, \ldots, a_{n}\right)$ be a point in C^{n} and let Δ be a polydisk centered at P with polyradius $r_{j}(j=1, \ldots, n)$:

$$
\Delta:\left|z_{j}-a_{j}\right|<r,(j=1, \ldots, n)
$$

[^14]For $0<r_{j}^{\prime}<r_{j}, j=1, \ldots, n$, we consider the following two sets in Δ :

$$
\begin{align*}
& E_{1}:\left|z_{j}-a_{j}\right|<r_{j}^{\prime}(j=1, \ldots, n-1) . \quad\left|z_{n}-a_{n}\right|<r_{n}, \tag{4.11}\\
& E_{2}:\left|z_{j}-a_{j}\right|<r_{j} \quad(j=1, \ldots, n-1) . \quad r_{n}^{\prime}<\left|z_{n}-a_{n}\right|<r_{n},
\end{align*}
$$

and we set $E:=E_{1} \cup E_{2}$. If for any such Δ and E in $\mathbf{C}^{n}, E \subset D$ implies that $\Delta \subset D$, then we say that D satisfies the continuity theorem of type C.

Next. if for any polydisk $K . K \cap D$ satisfies the continuity theorem of type C and if the image of $K \cap D$ under any biholomorphic transformation from $K \cap D$ into \mathbf{C}^{n} also satisfies the continuity theorem of type C. then we say that D is a pseudoconvex domain of type C.

Note that we assume $n \geq 2$. In the case $n=1$. we say that any domain in \mathbf{C} is a pseudoconvex domain. ${ }^{3}$

At first glance, these definitions of pseudoconvexity may seem rather difficult to understand. We remark that the notion of a pseudoconvex domain of type A or B is a local notion dependent on the boundary; the definition gives a property which is to be satisfied at each boundary point P of the domain. On the other hand, pseudoconvexity of type C is a global property of the domain.
4.1.3. Equivalence of Definitions. In this section we show that the three definitions of pseudoconvex domains in $\mathbf{C}^{n}, n \geq 2$, are equivalent.

1. Pseudoconvex Domains of Type A are of Type B.

Proof. Let D be a domain in \mathbf{C}^{n} of type A. Let P be any point in ∂D : we show that D satisfies the continuity theorem of type B at P. For simplicity we assume that P is the origin $z=0$ in \mathbf{C}^{n} and the set β_{ρ} defined by (4.10) is of the form

$$
\beta_{\rho}:\left|z_{n-1}+r\right|^{2}+\left|z_{n}\right|^{2}>r^{2}, \quad\left|z_{n-1}\right|^{2}+\left|z_{n}\right|^{2}<\rho^{2} .
$$

Our claim is thus to show that the set B in \mathbf{C}^{n} defined by

$$
B: z_{j}=0(j=1, \ldots . n-2), \quad\left(z_{n-1}, z_{n}\right) \in \beta_{p}
$$

is not contained in D. We prove this by contradiction; hence we assume $B \subset D$. Then the subset L_{0} of B defined by

$$
L_{0}: z_{j}=0(j=1, \ldots, n-1), \quad 0<\left|z_{n}\right|<\rho
$$

is contained in D and $0 \in \partial D$. Further, for any $0<s<\rho / 2$ the set

$$
z_{j}=0(j=1, \ldots, n-2), \quad z_{n-1}=s, \quad\left|z_{n}\right|<\rho / 2
$$

is contained in D. It follows that D does not satisfy the continuity theorem of type A at the origin. This is a contradiction.

2. Pseudoconvex Domains of Type B are of Type C.

Proof. Let D be a pseudoconvex domain in \mathbf{C}^{n} of type B. We prove the assertion by contradiction: i.e., we assume that D does not satisfy the continuity theorem of type C. Thus there exist a polydisk Δ centered at a point P in C^{n} and a set $E_{1} \cup E_{2}$ defined by (4.11) in Δ such that $E_{1} \cup E_{2} \subset D$ but $\Delta \not \subset D$. We fix a

[^15]point $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)$ in $\Delta \backslash D$ through this proof. Again for simplicity we may assume that P is the origin $z=0$ in \mathbf{C}^{n}, so that
\[

$$
\begin{aligned}
\Delta & :\left|z_{j}\right|<r_{j}(j=1, \ldots, n) . \\
E_{1} & :\left|z_{j}\right|<r_{j}^{\prime}(j=1, \ldots, n-1),\left|z_{n}\right|<r_{n} . \\
E_{2} & :\left|z_{j}\right|<r_{j}(j=1, \ldots, n-1), r_{n}^{\prime}<\left|z_{n}\right|<r_{n} .
\end{aligned}
$$
\]

Thus the point $z^{\prime} \in \Delta \backslash D$ satisfies

$$
r_{j}^{\prime} \leq\left|z_{j}^{\prime}\right|<r_{j} \quad \text { for some } j=1, \ldots . n-1 . \quad\left|z_{n}^{\prime}\right|<r_{n}^{\prime} .
$$

For simplicity we assume that $r_{n-1}^{\prime} \leq\left|z_{n-1}^{\prime}\right|<r_{n-1}$. We fix $c>0$ sufficiently large so that

$$
\begin{equation*}
\left(\frac{c}{r_{n-1}}\right)^{2}+r_{n}^{2}<\left(\frac{c}{\left|z_{n-1}^{\prime}\right|}\right)^{2}+\left|z_{n}^{\prime}\right|^{2} . \tag{4.12}
\end{equation*}
$$

We then consider the following automorphism T of $\mathbf{C}_{n}^{\prime}:=\mathbf{C}^{n} \backslash\left\{z_{n-1}=0\right\}$:

$$
T: u_{j}=z_{j}(j=1, \ldots n ; j \neq n-1) . \quad u_{n-1}=\frac{c}{z_{n-1}} .
$$

We let G and S denote the sections of the image $T\left(\Delta \cap D \cap C_{n}^{\prime}\right)$ and $T\left(\Delta \cap \partial D \cap C_{n}^{\prime}\right)$ over $w_{j}=z_{j}^{\prime}(j=1, \ldots, n-2)$. These sets are subsets of \mathbf{C}^{2} in the variables w_{n-1} and w_{n}. We set

$$
\eta_{0}:=\max \left\{\left|w_{n-1}\right|^{2}+\left|w_{n}\right|^{2} \mid\left(w_{n-1}, w_{n}\right) \in \bar{S}\right\}<\infty
$$

and take a point $\left(w_{n-1}^{0}, w_{n}^{0}\right) \in \partial S$ such that $\left|w_{n-1}^{0}\right|^{2}+\left|w_{n}^{0}\right|^{2}=\eta_{0}$. Then $Q:=$ $\left(z_{1}^{\prime}, \ldots, z_{n-2}^{\prime}, w_{n-1}^{0}, w_{n}^{0}\right) \in \partial T\left(\Delta \cap D \cap C_{n}^{\prime}\right)$. We see from (4.12) that, if we take $\rho>0$ sufficiently small and define the set β_{ρ} in \mathbf{C}^{2} by

$$
; \beta_{\rho}:\left|w_{n-1}\right|^{2}+\left|w_{n}\right|^{2}>\eta_{0}^{2} . \quad\left|w_{n-1}-w_{n-1}^{0}\right|^{2}+\left|w_{n}-w_{n}^{\prime \prime}\right|^{2} \leq \rho^{2} .
$$

then 3_{ρ} is contained in G. Consequently, the set

$$
B: w_{j}=z_{j}^{\prime}(j=1, \ldots, n-2) . \quad\left(u_{n-1}, u_{n}\right) \in J_{j}
$$

is contained in $T\left(\Delta \cap D \cap C_{n}^{\prime}\right)$, so that $T\left(\Delta \cap D \cap C_{n}^{\prime}\right)$ does not satisfy the continuity theorem of type B at the boundary point Q. This contradicts our assumption.

3. Pseudoconvex Domains of Type C are of Type A.

Proof. Let D be a pseudoconvex domain in \mathbf{C}^{n} of type C. Let $P=\left(a_{1}, \ldots\right.$, a_{n}) be a point in ∂D; we prove that D satisfies the continuity theorem of type A at P. Suppose not. Then we can find a set

$$
L_{a}: z_{j}=a_{j}(j=1, \ldots, n-1), \quad 0<\left|z_{n}-a_{n}\right|<r
$$

contained in D and a number r^{\prime} with $0<r^{\prime}<r$ such that, for any given $0<\rho \ll 1$. we can find a point $\left(z_{1}^{\prime}, \ldots, z_{n-1}^{\prime}\right) \in \mathbf{C}^{n-1}$ with $\left|z_{j}^{\prime}-a_{j}\right|<\rho(j=1, \ldots, n-1)$ such that

$$
L_{z^{\prime}}: z_{j}=z_{j}^{\prime}(j=1, \ldots, n-1) . \quad\left|z_{n}-a_{n}\right| \leq r^{\prime}
$$

is contained in D.
On the other hand. since $\left\{\left(a_{1}, \ldots, a_{n-1}, z_{n}\right)\left|\left|z_{n}-a_{n}\right|=r^{\prime}\right\} \subset \subset D\right.$, we can find $\rho>0$ sufficiently small so that the subset

$$
\sigma:\left|z_{j}-a_{j}\right|<\rho(j=1, \ldots, n-1), \quad\left|z_{n}-a_{n}\right|=r^{\prime}
$$

of \mathbf{C}^{n} is contained in D. Fixing this $\rho>0$. we can find a point $\left(z_{1}^{\prime} \ldots . z_{n}^{\prime}\right) \in \mathbf{C}^{n-1}$ with $\left|z_{j}^{\prime}-a_{j}\right|<\rho(j=1, \ldots, n-1)$ and with the property that $L_{z^{\prime}} \subset D$. Since $L_{z^{\prime}}$ and σ are compact in D. our assumption that D satisfies the continuity theorem of type C implies that the polydisk Δ centered at P defined by

$$
\Delta:\left|z_{j}-a_{j}\right|<\rho(j=1, \ldots, n-1) . \quad\left|z_{n}-a_{n}\right|<r^{\prime}
$$

is contained in D. which contradicts $P \in \partial D$.
Using these three equivalent conditions. we call a domain in \mathbf{C}^{n} of type A. B. or C a pseudoconvex domain. Theorem 4.1 (Hartogs) states that any domain of holomorphy is a pseudoconvex domain.

As with the definition of a domain of holomorphy in 1.5.2, we can define a domain of meromorphy: if a domain D in \mathbf{C}^{n} adinits at least one meromorphic function $f(z)$ which cannot extend meronorphically across any point of ∂D, then D is called a domain of meromorphy. Theorem 4.2 (Levi) states that any domain of meromorphy is a pseudoconvex domain.

Let \mathcal{F} be a family of holomorphic functions in $D \subset \mathbf{C}^{n}$. The set D^{\prime} consisting of all points z in D such that \mathcal{F} is normal in a neighborhood of z is called the domain of normality of \mathcal{F}. Theorem 4.3 (Julia) states that, if D is a pseudoconvex domain, so is $D^{\prime .}{ }^{4}$

Let $D \subset C^{n}$ and let $\left\{f_{j}\right\}_{j=1.2 \ldots}$. be a sequence of holomorphic functions in D. The set D^{\prime} of points z in D such that $\left\{f_{j}\right\}$, converges uniformly in a neighborhood of z is called a domain of uniform convergence of $\left\{f_{j}\right\}_{j}$. Clearly such a domain D^{\prime} satisfies the continuity theorem of type C . Therefore, if D is a pseudoconvex domain, so is D^{\prime}.
4.1.4. Properties of Pseudoconvex Domains. We list some elementary properties of pseudoconvex domains which follow from the definition.

1. If D_{1} and D_{2} are pseudoconvex domains in C^{n}. then $D_{1} \cap D_{2}$ is a pseudoconvex domain.
2. Let $I=\{\iota\}$ be any index set and let $D_{\imath}(\iota \in I)$ be a family of pseudoconvex domains. Then the interior of $\bigcap_{i \in I} D_{t}$ is a pseudoconvex domain.
3. Let $D_{j}(j=1,2 \ldots)$ be a sequence of pseudoconvex donains in \mathbf{C}^{n} such that $D_{j} \subset D_{j+1}$. Then $D_{0}:=\bigcup_{j=1}^{\times} D_{j}$ is a pseudoconvex domain.
4. Let D be a pseudoconvex domain in \mathbf{C}^{n} and let L be any r-dimensional ($0<r<n$) complex hyperplane. Then each connected component of $D \cap L$ is a pseudoconvex domain in $\mathbf{C}^{r}=L$.
5. (Invariance under holomorphic mappings) Let T be a biholomorphic mapping from a domain D in \mathbf{C}^{n} onto a domain D^{\prime} in \mathbf{C}^{n}. Then D is pseudoconvex if and only if D^{\prime} is pseudoconvex.
[^16]
4.2. Pseudoconvex Domains with Smooth Boundary

4.2.1. Levi Problem. E. E. Levi $[35]^{5}$ was the first to pose the problem of determining whether a pseudoconvex domain is necessarily a domain of holomorphy. He restricted his study of this problem to the consideration of a neighborhood of a boundary point of a domain in C^{2} with smooth boundary. In this section we extend his results to $\mathbf{C}^{\boldsymbol{n}}$.

In \mathbf{C}^{n} with variables z_{1}, \ldots, z_{n}, we let $z_{j}=x_{j}+i y_{j}(j=1, \ldots, n)$. Let $D \subset C^{n}$ be a domain and let $p \in \partial D$. If there exists a C^{2} function $\varphi(z)$ in a neighborhood δ of p such that

$$
\begin{aligned}
\delta \cap D & =\{z \in \delta \mid \varphi(z)<0\} \\
\delta \cap \partial D & =\{z \in \delta \mid \varphi(z)=0\}
\end{aligned}
$$

and $\nabla \varphi:=\left(\partial \varphi / \partial z_{1}, \ldots, \partial \varphi / \partial z_{n}\right) \neq 0$ on $\delta \cap \partial D$, then we say that D has smooth boundary at p. We call $\varphi(z)$ a defining function for $\delta \cap D$ at p.

We have the following proposition.
Proposition 4.1. Let $D \subset C^{n}$ and let $p \in \partial D$. Assume that D has smooth boundary at p. Then:

1. If D is pseudoconvex at p, then there does not exist a nonsingular, onedimensional analytic curve C in a neighborhood δ of p such that C contains p and $C \backslash\{p\} \subset D$.
2. If there exists an ($n-1$)-dimensional analytic hypersurface S in a neighborhood δ of p such that S contains p and $S \subset \delta \backslash D$, then D is pseudoconvex at p.
Proof. Let $D \subset C^{n}$ be a pseudoconvex domain and let $p \in \partial D$. We prove 1 by contradiction; i.e., we assume that there exists a nonsingular analytic curve C in a neighborhood δ of p such that $p \in C$ and $C \backslash\{p\} \subset D$. By shrinking δ, if necessary, we can find a one-to-one holomorphic mapping T from δ onto a neighborhood δ^{0} of the origin $z=0$ in \mathbf{C}^{n} such that $T(p)=0$ and $C^{0}:=T(C)=\left\{z \in \delta^{0} \mid z_{j}=0, j=\right.$ $1, \ldots, n-1\}$. We set $\varphi^{0}:=\varphi \circ T^{-1}$ in δ^{0}. By hypothesis, $\varphi^{0}\left(0, \ldots, 0, z_{n}\right)$ attains a local maximum at $z_{n}=0$; thus it follows that $\partial \varphi^{0} / \partial z_{n}=0$ at $z=0$. Since $\nabla \varphi \neq 0$ on $\delta \cap \partial D$, we may assume that $\partial \varphi^{0} / \partial y_{1} \neq 0$ at $z=0$, so that $v^{0}:=T(D \cap \delta)$ can be written in the form

$$
v^{0}=\left\{z \in \delta^{0} \mid y_{1}<\xi\left(x_{1}, z_{2}, \ldots, z_{n}\right)\right\}
$$

where ξ is a C^{2} function defined in a neighborhood $\delta^{\prime} \subset \mathbf{R}^{2 n-1}$ of the point $\left(x_{1}, z_{2}, \ldots, z_{n}\right)=(0,0, \ldots, 0)$. From the assumption that $C^{0} \backslash\{0\} \subset v^{0}$, we can find $r>0$ sufficiently small so that the set

$$
z_{j}=0 \quad(j=1, \ldots, n-1), \quad 0<\left|z_{n}\right| \leq r
$$

is contained in $\boldsymbol{v}^{\mathbf{0}}$. Hence

$$
0<\xi\left(0, \ldots, 0, z_{n}\right), \quad 0<\left|z_{n}\right| \leq r .
$$

It follows that for any $\varepsilon>0$, all points of the form

$$
\left(-i \varepsilon, 0, \ldots, 0, z_{n}\right) \in \mathbf{C}^{n}
$$

with $\left|z_{n}\right|<r$ lie in v^{0}. This contradicts the assumption that D is pseudoconvex of type A at $z=0$, and 1 is proved.

[^17]To prove 2, let $D \subset \mathbf{C}^{n}$ and $p \in \partial D$. Suppose that we can find an analytic hypersurface S in a neighborhood δ of p such that $p \in S \subset \delta \backslash D$. We show that D satisfies the continuity theorem of type A at p. For simplicity we take $p=0$. Assume that the set

$$
L_{0}: z_{j}=0 \quad(j=1, \ldots, n-1), \quad 0<\left|z_{n}\right| \leq r
$$

is contained in $v:=\delta \cap D$. Fix r^{\prime} with $0<r^{\prime}<r$. We then take $\rho>0$ and $0<\varepsilon<r^{\prime}$ such that

$$
\Gamma^{*}:\left|z_{j}\right| \leq \rho(j=1, \ldots, n-1), \quad r^{\prime}-\varepsilon \leq\left|z_{n}\right| \leq r^{\prime}+\varepsilon
$$

is contained in v. Since S is an analytic hypersurface in the polydisk

$$
\Lambda:\left|z_{j}\right|<\rho(j=1, \ldots . n-1) . \quad\left|z_{n}\right|<r^{\prime}+\varepsilon
$$

with $0 \in S$ and $S \cap \Gamma^{*}=0$, it follows from Remark 2.3 that for any $z_{j}^{\prime}(j=$ $1, \ldots, n-1)$ with $\left|z_{j}^{\prime}\right|<\rho$, we have

$$
S \cap\left\{\left(z_{1}^{\prime}, \ldots, z_{n-1}^{\prime}, z_{n}\right):\left|z_{n}\right|<r^{\prime}-\varepsilon\right\} \neq \emptyset .
$$

Since $S \subset \delta \backslash D$, we see that D satisfies the continuity theorem of type A at p, and 2 is proved.

Remark 4.1. Let $D \subset C^{n}$ be a domain and let $p \in \partial D$. In the proof of 2 . the condition that ∂D is smooth at p was not used. Thus we have the following result. Let $D \subset C^{n}$ be a domain. If for each $p \in \partial D$ there exists an analytic hypersurface S in a neighborhood δ of p which contains p and lies entirely outside of D, i.e., $S \subset \delta \backslash D$, then D is a pseudoconvex domain.

We now write down the conditions at p described in Proposition 4.1 in terms of a defining function $\varphi(z)$ of $\delta \cap D$ at p. For simplicity, we take $p=0$ and write $\varphi(z)=\varphi\left(z_{1}, \ldots, z_{n}, \bar{z}_{1}, \ldots, \bar{z}_{n}\right)$. Since $\varphi(z)$ is of class C^{2}. we consider the following expansion at $z=0$:

$$
\begin{align*}
\varphi(z)=2 \Re\left(\sum_{j=1}^{n} \frac{\partial \varphi}{\partial z_{j}}(0) z_{j}\right) & +2 \Re\left(\sum_{j \leq k}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial z_{k}}(0) z_{j} z_{k}\right) \tag{4.13}\\
& +\sum_{j . k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}(0) z_{j} \bar{z}_{k}+o\left(\|z\|^{2}\right)
\end{align*}
$$

where $\|z\|^{2}=\sum_{j=1}^{n}\left|z_{j}\right|^{2}, \Re(\alpha)$ is the real part of the complex number a, and $\lim _{r \rightarrow 0} o\left(r^{2}\right) / r^{2}=0$.

We have the following proposition.
Proposition 4.2. Let $D \subset C^{n}$ and let $p \in \partial D$. Assume that D has smooth boundary at p. Let $\varphi(z)$ be a defining function of $\delta \cap D$ at p, where δ is a neighborhood of p.

1. If D is pseudoconvex at p, then for any $a=\left(a_{1}, \ldots, a_{n}\right) \in C^{n}$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\partial \varphi}{\partial z_{j}}(p) a_{j}=0 \tag{4.14}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{j . k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}(p) a_{j} \bar{a}_{k} \geq 0 \tag{4.15}
\end{equation*}
$$

2. If we have, for any $\mathbf{a} \neq 0$ satisfying (4.14),

$$
\begin{equation*}
\sum_{\rho, k=1}^{n} \frac{\partial^{2} \rho}{\partial z, \partial \bar{z}_{k}}(p) a, \bar{a}_{k}>0 \tag{4.16}
\end{equation*}
$$

then D is pseudoconvex at p.
By a simple calculation we see that conditions 1 and 2 depend on neither the choice of defining function φ nor on a biholomorphic transformation of a neighborhood of p. Equation (4.14) states that a belongs to the complex tangent space of ∂D at p.

Proof. For simplicity we take $p=0$. To prove 1. We assume that D is pseudoconvex at 0 . If assertion 1 is not true, then there exists an $a=\left(a_{1}, \ldots, a_{n}\right) \neq 0$ which satisfies (4.14) and

$$
A:=\sum_{j . k=1}^{n} \frac{\partial^{2} \hat{\gamma}}{\partial z j \bar{z}_{k}}(0) a_{j} \bar{a}_{k}<0
$$

Given $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ (which will be determined later), we consider the analytic curve C in $C^{\prime \prime}$ passing through 0 defined by

$$
C: z_{\jmath}=a_{\jmath} t+b_{\jmath} t^{2} \quad(j=1, \ldots, n), \quad t \in \mathbf{C}
$$

From (4.13), for $z=t a+t^{2} b$ with t sufficiently small. we have

$$
\begin{aligned}
\hat{\varphi}(z)= & 2 \Re\left\{\left(\sum_{j=1}^{n} \frac{\partial_{\gamma}}{\partial z_{j}}(0) b_{j}+\sum_{j \leq k}^{n} \frac{\partial^{2} \xi_{j}}{\partial z_{j} \partial z_{k}}(0) a_{j} a_{k}\right) t^{2}\right\} \\
& +\left(\sum_{j . k=1}^{n} \frac{\partial^{2} \psi^{2}}{\partial z_{j} \partial \bar{z}_{k}}(0) a_{j} \bar{a}_{k}\right)|t|^{2}+o\left(|t|^{2}\right) .
\end{aligned}
$$

Since $\nabla_{\hat{r}}(0) \neq 0$, we can choose b to make the coefficient of t^{2} on the right-hand side vanish. Then we have

$$
\varphi\left(t \mathrm{a}+t^{2} \mathrm{~b}\right)=A|t|^{2}+o\left(|t|^{2}\right)<0 . \quad 0<|t| \ll 1 .
$$

Thus we can find a neighborhood δ of 0 in C^{n} such that $(C \cap \delta) \backslash\{0\} \subset D$. This contradicts 1 of Proposition 4.1, and assertion 1 is proved.

To prove 2, we apply 2 of Proposition 4.1. We consider the following algebraic hypersurface of degree 2 :

$$
S: \sum_{j=1}^{n} \frac{\partial_{\hat{q}}}{\partial z_{j}}(0) z_{j}+\sum_{j \leq k}^{n} \frac{\partial^{2} \hat{r}^{\prime}}{\partial z_{j} \partial z_{k}}(0) z_{j} z_{k}=0
$$

which contains 0 . It suffices to show that there exists a neighborhood δ of 0 such that $S \cap \delta \subset \delta \backslash D$. To prove this we consider the complex tangent space L of ∂D at 0 defined by

$$
L: \sum_{j=1}^{n} \frac{\partial \varphi_{\varphi}}{\partial z_{j}}(0) z_{j}=0
$$

By assumption there exist a neighborhood δ_{1} of 0 in \mathbf{C}^{n} and $\varepsilon>0$ such that

$$
\sum_{j, k=1}^{n} \frac{\partial^{2} \dot{\partial}}{\partial z_{j} \partial \bar{z}_{k}}(0) z_{j} \bar{z}_{k} \geq \varepsilon\|z\|^{2}, \quad z \in L \cap \delta_{1}
$$

For each $z^{\prime} \in S$. we consider the nearest point $Z=Z\left(z^{\prime}\right)$ to z^{\prime} on L; then $z^{\prime}=$ $Z+c\left(z^{\prime}\right)$, where $c\left(z^{\prime}\right)=o\left(\left\|z^{\prime}\right\|\right)$ at $z^{\prime}=0$. It follows that

$$
\begin{aligned}
\varphi\left(z^{\prime}\right) & =\sum_{j . k=1}^{n} \frac{\partial^{2} \hat{r}}{\partial z_{j} \partial \bar{z}_{k}}(0) z_{j}^{\prime} \bar{z}_{k}^{\prime}+o\left(\left\|z^{\prime}\right\|^{2}\right) \\
& \geq \varepsilon\|Z\|^{2}+o\left(\|Z\|^{2}\right)
\end{aligned}
$$

We can thus find a neighborhood $\delta \subset \delta_{1}$ of 0 in C^{n} such that $\varphi\left(z^{\prime}\right)>0$ on $\delta \cap S$ except for $z^{\prime}=0$, and assertion 2 is proved.

Remark 4.2. The proof of assertion 2 implies the following fact: Let $D \subset$ $\mathbf{C l}^{\mathbf{n}}$ be a domain with smooth boundary at $p \in \partial D$. Assume that for any $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{n}\right) \neq 0$ satisfying (4.14). we have (4.16). By continuity there exists a neighborhood δ of p such that for each $q \in \delta \cap(\partial D)$ there exists an analytic hypersurface S_{q} which passes through q and lies completely outside of D. i.e., $S_{q} \backslash\{q\} \subset \delta \backslash \bar{D}$. Furthermore, we can assume that δ is a ball centered at p and that S_{q} is an analytic hypersurface in δ. It follows that $D \cap \delta$ is a domain of holomorphy: i.e., D is locally a domain of holomorphy at p.

The conditions in Proposition 4.2 are called Levi's conditions. We note that Levi's condition is not linear. In \mathbf{C}^{2} with variables z and w, the vector $a=\left(a_{1}, a_{2}\right)$ in (4.14) is uniquely determined (up to multiplicative constants) by the equation

$$
a_{1} \frac{\partial_{\hat{\varphi}}}{\partial z}(p)+a_{2} \frac{\partial_{\hat{\varphi}}}{\partial u^{\prime}}(p)=0 .
$$

Therefore, if we set

$$
\begin{aligned}
L(\varphi) & =\left|\begin{array}{ccc}
0 & \partial \varphi / \partial z & \partial \varphi / \partial w \\
\partial \varphi / \partial \bar{z} & \partial^{2} \varphi / \partial z \partial \bar{z} & \partial^{2} \varphi / \partial w \partial \bar{z} \\
\partial \varphi / \partial \bar{w} & \partial^{2} \varphi / \partial z \partial \bar{w} & \partial^{2} \varphi / \partial w \partial \overline{w^{\prime}}
\end{array}\right| \\
& =\frac{\partial^{2} \varphi}{\partial w \partial \bar{w}}\left|\frac{\partial \varphi}{\partial z}\right|^{2}-2 \Re\left\{\frac{\partial^{2} \varphi}{\partial \bar{w} \partial z} \frac{\partial_{\varphi}}{\partial w} \frac{\partial_{\varphi}}{\partial \bar{z}}\right\}+\left|\frac{\partial \varphi}{\partial w}\right|^{2} \frac{\partial^{2} \varphi}{\partial z \partial \bar{z}}
\end{aligned}
$$

then 1 and 2 of Proposition 4.2 may be restated as follows:

1. If D is pseudoconvex at \boldsymbol{p}, then $L(\varphi) \geq 0$ at \boldsymbol{p}.
2. If $L(\varphi)>0$ at p, then D is pseudoconvex at p.

Originally, E. E. Levi wrote down the operator $L(\hat{\varphi})$ using the coordinates $x_{1}, x_{2}, y_{1}, y_{2}$, where $z=x_{1}+i x_{2}, w=y_{1}+i y_{2}$, via:

$$
\begin{aligned}
\left(\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}+\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}\right) & {\left[\left(\frac{\partial \varphi}{\partial y_{1}}\right)^{2}+\left(\frac{\partial \varphi}{\partial y_{2}}\right)^{2}\right]+\left(\frac{\partial^{2} \varphi}{\partial y_{1}^{2}}+\frac{\partial^{2} \varphi}{\partial y_{2}^{2}}\right)\left[\left(\frac{\partial \varphi}{\partial x_{1}}\right)^{2}+\left(\frac{\partial_{\varphi}}{\partial x_{2}}\right)^{2}\right] } \\
& -2\left(\frac{\partial \varphi}{\partial x_{1}} \frac{\partial \varphi}{\partial y_{1}}+\frac{\partial \varphi}{\partial x_{2}} \frac{\partial_{\varphi}}{\partial y_{2}}\right)\left(\frac{\partial^{2} \varphi}{\partial x_{1} \partial y_{1}}+\frac{\partial^{2} \varphi}{\partial x_{2} \partial y_{2}}\right) \\
& -2\left(\frac{\partial \varphi}{\partial x_{1}} \frac{\partial \varphi}{\partial y_{2}}-\frac{\partial \varphi}{\partial x_{2}} \frac{\partial \varphi}{\partial y_{1}}\right)\left(\frac{\partial^{2} \varphi}{\partial x_{1} \partial y_{2}}-\frac{\partial^{2} \hat{\psi}}{\partial x_{2} \partial y_{1}}\right)
\end{aligned}
$$

We call $L(\varphi)$ the Levi form of $\varphi(z . w)$. We note that whether $L(p)$ is positive, negative or 0 at $p \in \partial D$ does not depend on the choice of defining function φ nor on a biholomorphic mapping of a neighborhood of p.
4.2.2. Levi Flat Surfaces. Let $D \subset \mathbf{C}^{n}$ be a domain and let φ be a realvalued C^{2} function in D. We set $\Sigma:=\{z \in D \mid \varphi(z)=0\}$. We assume that $\nabla \varphi \neq 0$ at any point of Σ, so that Σ is a real $(2 n-1)$-dimensional smooth hypersurface in D. If both of the domains $\{\varphi(z)<0\}$ and $\{\varphi(z)>0\}$ are pseudoconvex at each point of Σ. then the hypersurface Σ is called Levi flat. E. E. Levi [35] was the first one who studied such hypersurfaces in \mathbf{C}^{2}. In this section. we follow the ideas of E. Cartan [6] and study Levi flat hypersurfaces in the case where $\varphi(z)$ is real analytic in $D \subset \mathbf{C}^{n}(n \geq 2) .{ }^{6}$

Let D be a domain in \mathbf{C}^{n} with variables $z_{j}=x_{j}+i y_{j}(j=1, \ldots, n)$. Let φ be a real-valued real analytic function in D; to be precise, we write

$$
\varphi(z, \bar{z}):=\varphi\left(z_{1}, \ldots, z_{n}, \bar{z}_{1}, \ldots, \bar{z}_{n}\right) .
$$

We set $\Sigma:=\{z \in D \mid \varphi(z, \bar{z})=0\}, D^{+}:=\{z \in D \mid \varphi<0\}$ and $D^{-}:=\{z \in$ $D \mid \varphi>0\}$. We assume that $\nabla \varphi \neq 0$ at all points of Σ.

Then we have the following lemma.
Lemma 4.3. Let $z^{0} \in \Sigma$. Then we have:

1. Assume that there exists an analytic hypersurface S in a neighborhood of z^{0} such that $z^{0} \in S \subset \Sigma$. Then S is unique and is given by the equation

$$
\varphi\left(z, \bar{z}^{0}\right)=0
$$

in a neighborhood of z^{10}.
2. Assume that $\partial \varphi / \partial z_{n} \neq 0$ at z^{0}. If both D^{+}and D^{-}are pseudoconvex at z^{0}. then, at z^{0}.

$$
\begin{align*}
L_{j k}\left(z^{0}, \bar{z}^{0}\right) & :=\frac{\partial^{2} \dot{\psi}}{\partial z_{j} \partial \bar{z}_{k}} \frac{\partial \varphi}{\partial z_{n}} \frac{\partial \varphi}{\partial \bar{z}_{n}}-\frac{\partial^{2} \hat{\nu}}{\partial z_{j} \partial \bar{z}_{n}} \frac{\partial \psi}{\partial z_{n}} \frac{\partial_{\varphi}}{\partial \bar{z}_{k}} \tag{4.17}\\
& -\frac{\partial^{2} \varphi}{\partial z_{n} \partial \bar{z}_{k}} \frac{\partial \varphi}{\partial z} \frac{\partial \varphi}{\partial \bar{z}_{n}}+\frac{\partial^{2} \varphi}{\partial z_{n} \partial \bar{z}_{n}} \frac{\partial \varphi}{\partial z_{j}} \frac{\partial \varphi}{\partial \bar{z}_{k}}=0 \quad(j, k=1, \ldots, n-1) .
\end{align*}
$$

Proof. We use the following elementary fact about real-analytic functions based on the Taylor expansion: Let $h(z, \bar{z})$ be a real analytic function in a neighborhood δ of a point a in $\mathbf{C}^{n}(n \geq 1)$. If $h(z, \bar{z})=0$ for $z \in \delta$, then $h(z, \bar{w})=0$ for $(z, w) \in \delta \times \delta$. In particular, $h(z, \bar{a})=0$ for $z \in \delta$. Equivalently, if $f(z, w)$ is holomorphic in $\delta \times \bar{\delta}$ in $\mathbf{C}^{2 n}$ with $f(z, \bar{z})=0$ for $z \in \delta$ in \mathbf{C}^{n}. then $f(z, u) \equiv 0$ in $\delta \times \bar{\delta}$.

For the proof of 1 . let $z^{0}=\left(z_{1}^{0} \ldots \ldots z_{n}^{0}\right) \in \Sigma$ and let S be an analytic hypersurface in a neighborhood δ centered at z^{0} such that $z^{0} \in S \subset \Sigma$. We may assume that $\partial_{\varphi} / \partial z_{n} \neq 0$ at any $z \in S$, and that S can be described by

$$
S: z_{n}=\xi\left(z_{1} \ldots \ldots z_{n-1}\right) .
$$

where ξ is a holomorphic function in a neighborhood $\underline{\delta}$ of $\left(z_{1}^{0} \ldots, z_{n-1}^{0}\right)$ in \mathbf{C}^{n-1}. Since $S \subset \Sigma$, we have

$$
\hat{f}\left(z_{1} \ldots, z_{n-1}, \xi\left(z_{1}, \ldots, z_{n-1}\right), \bar{z}_{1}, \ldots, \bar{z}_{n-1}, \overline{\xi\left(z_{1} \ldots, z_{n-1}\right)}\right)=0
$$

[^18]for any $\left(z_{1}, \ldots, z_{n-1}\right) \in \oint$. It follows from the fact stated above that
$$
\varphi\left(z_{1}, \ldots, z_{n-1}, \xi\left(z_{1}, \ldots, z_{n-1}\right), \vec{z}_{1}^{0}, \ldots, \bar{z}_{n-1}^{0}, \overline{\xi\left(z_{1}^{0}, \ldots, z_{n-1}^{0}\right)}\right)=0
$$
for any $\left(z_{1}, \ldots, z_{n-1}\right) \in \underline{\delta}$. Since $z_{n}^{0}=\xi\left(z_{1}^{0} \ldots, z_{n-1}^{0}\right)$. this impies that S coincides with the analytic hypersurface given by the equation $\varphi\left(z, \overline{z^{0}}\right)=0$ in a neighborhood of z^{0} in \mathbf{C}^{n}. Thus 1 is proved.

To prove 2, assume that D^{+}and D^{-}are pseudoconvex at $z^{0} \in \Sigma$ and that $\partial \varphi / \partial z_{n} \neq 0$ at z^{0}. Given any $\mathbf{a}^{\prime}=\left(a_{1}, \ldots, a_{n-1}\right) \in \mathbf{C}^{n-1}$, we set

$$
a_{n}:=-\sum_{j=1}^{n-1}\left[\frac{\partial \varphi}{\partial z_{j}} / \frac{\partial \varphi}{\partial z_{n}}\right]_{z=z^{0}} a_{j}
$$

Then $\mathbf{a}:=\left(\mathbf{a}^{\prime}, a_{n}\right)$ satisfies (4.14) at z^{0}. Since D^{+}and D^{-}are pseudoconvex at z^{0}, it follows from 1 of Proposition 4.2 that

$$
\mathcal{L}_{\varphi}\left(\mathbf{a}, z^{0}\right):=\sum_{j . k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}\left(z^{0}\right) a_{j} \bar{a}_{k}=0 .
$$

We substitute a_{n} given above into this equation and obtain

$$
-\left|\frac{\partial \varphi}{\partial z_{n}}\left(z^{0}, \bar{z}^{0}\right)\right|^{-2} \sum_{j \cdot k=1}^{n-1} L_{j k}\left(z^{0}, \bar{z}^{0}\right) a_{j} \bar{a}_{k}=0
$$

Since a^{\prime} is an arbitrary point in \mathbf{C}^{n-1}, we have $L_{j k}\left(z^{0}, \bar{z}^{0}\right)=0(j, k=1, \ldots, n-1)$. Thus 2 is proved.

Let $z^{0} \in \Sigma$. If there is a holomorphic mapping T defined in a neighborhood δ of z^{0} mapping onto a neighborhood δ^{0} of $w=0$ in C^{n} with

$$
T(\delta \cap \Sigma)=\left\{u \in \delta^{0} \mid \Re w_{n}=0\right\}
$$

then Σ is called a hypersurface of planar type at z^{0}.
We make the following remark.
Remark 4.3. Let $\Sigma: \dot{\varphi}(z, \bar{z})=0$ be a real $(2 n-1)$-dimensional real-analytic hypersurface in a neighborhood δ of a point z_{0} in C^{n} with $\nabla \varphi\left(z_{0}\right) \neq 0$. Assume that for any fixed $\zeta \in \Sigma$, there exists a complex-analytic hypersurface S_{6} in δ such that $\zeta \in S_{\zeta} \subset \Sigma$. Then Σ is a hypersurface of planar type at \boldsymbol{z}_{0}.

Proof. We may assume that $z_{0}=0$ and $\partial \varphi / \partial z_{n}(0) \neq 0$. We set

$$
\ell=\Sigma \cap\left(0, \ldots, 0 . C_{z_{n}}\right)
$$

which is a real 1 -dimensional real-analytic nonsingular curve in the complex plane $\mathbf{C}_{z_{n}}$. There exists a conformal mapping $w_{n}=h\left(z_{n}\right)$ from a neighborhood δ_{n} of $z_{n}=0$ onto a neighborhood $\tilde{\delta}_{n}$ of $w_{n}=0$ such that $\ell \cap \delta_{n}$ gets mapped to $\left\{\Re w_{n}=0\right\} \cap \bar{\delta}_{n}$. Thus we may assume from the beginning that ε is given by $\left\{\Re z_{n}=0\right\}$ in δ_{n}. Fix a point $i y_{n} \in \ell$. By hypothesis there exists an analytic hypersurface $S_{i y_{n}}$ in a neighborhood of $z=0$ such that $\left(0, \ldots, 0, i y_{n}\right) \in S_{i y_{n}} \subset \Sigma$. By 1 of Lemma 4.3 we have

$$
\begin{equation*}
S_{i y_{n}}: \varphi\left(z_{1}, \ldots, z_{n}, 0, \ldots, 0, \overline{i y_{n}}\right)=0 \tag{4.18}
\end{equation*}
$$

We solve the equation $\varphi\left(z_{1}, \ldots, z_{n}, 0 \ldots, 0, w_{n}\right)=0$ for w_{n}; i.e.,

$$
w_{n}=\eta\left(z_{1}, \ldots, z_{n}\right)
$$

where η is a holomorphic function in a neighborhood of $z=0$ in \mathbf{C}^{n}. We note from (4.18) that $\left.\eta\right|_{s_{y_{n}}}=\overline{i y_{n}}$. We then consider the analytic transformation

$$
T: u_{i}=z_{i} \quad(i=1, \ldots, n-1) . \quad u_{n}=\eta\left(z_{1}, \ldots, z_{n}\right)
$$

from a neighborhood of $z=0$ onto a neighborhood of $w=0$. Note that, for each fixed y_{n} in $\ell, T\left(S_{i y_{n}}\right)$ is a domain in the $(n-1)$-dimensional plane $\mathbf{C}^{n-1} \times\left\{\overline{i y_{n}}\right\}$ which contains $\left(0, \tilde{i} y_{n}\right)$. It follows that $T(\Sigma) \subset\left\{\Re u_{n}=0\right\}$, so that Σ is of planar type at the origin 0.

We shall prove the following theorem.
Theorem 4.4. Let Σ be a real $(2 n-1)$-dimensional real analytic smooth hypersurface in $D \subset \mathbf{C}^{n}$. Then Σ is Levi flat if and only if Σ is of planar type at each point of Σ.

Proof. Assume that Σ is of planar type at each point of Σ. Fix $z^{0} \in \Sigma$. Then we can find an ($n-1$)-dimensional analytic hypersurface S in a neighborhood of z^{0} in \mathbf{C}^{n} such that $z^{0} \in S \subset \Sigma$; indeed, after applying a holonorphic change of coordinates, we can take $S=\left\{w_{n}=0\right\}$. It follows from 2 of Proposition 4.1 that both D^{+}and D^{-}are pseudoconvex at z^{0}. Thus Σ is Levi flat in D.

To prove the converse, we assume that Σ is Levi flat in D. Fix $z^{0} \in \Sigma$. Since the result is local, we can assume that $z^{0}=0$ and that $\psi\left(z, u^{\prime}\right)$ is convergent in a polydisk $\Delta \times \Delta$ centered at $(0,0)$ in $C^{2 n}$, and that $\partial \varphi / \partial z_{n} \neq 0$ in $\Delta \times \Delta$. Since $\varphi(z . \bar{z})$ is real-valued, we note that

$$
\begin{equation*}
\overline{\varphi(z, \bar{w})}=\varphi(w, \bar{z}) . \tag{4.19}
\end{equation*}
$$

For a fixed $\bar{\zeta} \in \Delta$, we consider the analytic hypersurface in Δ defined by

$$
S_{\zeta}:=\{z \in \Delta \mid \dot{\gamma}(z, \bar{\zeta})=0\}
$$

We can write this hypersurface as

$$
\begin{equation*}
S_{\zeta}: z_{n}=\xi_{n}\left(z_{1} \ldots, z_{n-1} \cdot \bar{\zeta}\right) \tag{4.20}
\end{equation*}
$$

where ξ_{n} is a holomorphic function of $\left(z_{1} \ldots, z_{n-1}\right)$ in a neighborhood Δ^{\prime} of 0 in \mathbf{C}^{n-1}. We want to construct a biholomorphic mapping $S: u ;=S(z)$ from a neighborhood $\delta^{\prime} \subset \Delta$ of $z=0$ in C^{n} onto a neighborhood $\delta^{\prime \prime}$ of $w=0$ in C^{n} such that, for each fixed $\zeta \in \delta^{\prime}$. we have

$$
\begin{equation*}
\mathbf{S}\left(S_{\zeta}\right)=\left\{w=\left(u_{1}, \ldots, w_{n}\right) \in \delta^{\prime \prime} \mid u_{n}=c(\zeta)\right\} \tag{4.21}
\end{equation*}
$$

where $c(\zeta)$ is a constant. For this purpose, we prove the following.
First claim: There exists a completely integrable system of partial differential equations in Δ.

$$
\begin{equation*}
\frac{\partial z_{n}}{\partial z_{j}}=F_{j}\left(z_{1}, \ldots, z_{n}\right) \quad(j=1, \ldots, n-1) \tag{4.22}
\end{equation*}
$$

such that each function $z_{n}=\xi_{n}\left(z_{1}, \ldots, z_{n-1}, \bar{\zeta}\right), \bar{\zeta} \in \Delta$. satisfies (4.22). In particular, $F_{j}\left(z_{1}, \ldots, z_{n}\right)$ does not depend on $\bar{\zeta} \in \Delta$.

Indeed, set $z^{\prime}:=\left(z_{1}, \ldots, z_{n-1}\right), \bar{\zeta}^{\prime}=\left(\bar{\zeta}_{1}, \ldots, \bar{\zeta}_{n-1}\right) . z=\left(z_{1}, \ldots, z_{n}\right)=$ $\left(z^{\prime}, z_{n}\right)$ and $\bar{\zeta}=\left(\bar{\zeta}_{1}, \ldots, \bar{\zeta}_{n}\right)=\left(\bar{\zeta}^{\prime}, \bar{\zeta}_{n}\right)$. Since $\hat{\gamma}\left(z^{\prime}, \xi_{n}\left(z^{\prime}, \bar{\zeta}\right), \bar{\zeta}\right)=0$ in $\Delta^{\prime}:=$ $\left\{z^{\prime} \in \mathbf{C}^{n-1} \mid\left(z^{\prime}, z_{n}\right) \in \Delta\right\}$, we have for $j=1, \ldots . n-1$.

$$
\begin{equation*}
\frac{\partial \xi_{n}}{\partial z_{j}}\left(z^{\prime} \cdot \bar{\zeta}\right)=-\left\{\left(\frac{\partial \varphi}{\partial z_{j}}\right) /\left(\frac{\partial_{\varphi}}{\partial z_{n}}\right)\right\}\left(z^{\prime}, \xi_{n}\left(z^{\prime} \cdot \bar{\zeta}\right) \cdot \bar{\zeta}\right) \tag{4.23}
\end{equation*}
$$

Fix $\bar{\zeta}^{\prime} \in \Delta^{\prime}$ and consider $\bar{\zeta}_{n}$ as a parameter in $\varphi\left(z, \bar{\zeta}^{\prime}, \bar{\zeta}_{n}\right)=0$ for $z \in \Delta$. We solve this equation for $\bar{\zeta}_{n}$ and write $\bar{\zeta}_{n}=h_{n}\left(z, \bar{\zeta}^{\prime}\right)$. so that

$$
\begin{equation*}
\varphi\left(z, \bar{\zeta}^{\prime}, h_{n}\left(z, \bar{\zeta}^{\prime}\right)\right)=0, \quad\left(z, \bar{\zeta}^{\prime}\right) \in \Delta \times \Delta^{\prime} \tag{4.24}
\end{equation*}
$$

From (4.23) we see that $z_{n}=\xi_{n}\left(z^{\prime}, \bar{\zeta}\right)$ satisfies the following system of partial differential equations:

$$
\begin{align*}
\frac{\partial z_{n}}{\partial z_{j}} & =-\left\{\frac{\partial_{\varphi}}{\partial z_{j}} / \frac{\partial \varphi}{\partial z_{n}}\right\}\left(z, \bar{\zeta}^{\prime}, h_{n}\left(z \cdot \bar{\zeta}^{\prime}\right)\right) \\
& \equiv F_{j}\left(z, \bar{\zeta}^{\prime}\right) \quad(j=1, \ldots, n-1) \tag{4.25}
\end{align*}
$$

To prove the first claim. it suffices to show that
(1) $F_{j}\left(z, \bar{\zeta}^{\prime}\right)(j=1, \ldots, n-1)$ does not depend on $\bar{\zeta}^{\prime} \in \Delta^{\prime}$; and
(2) the system (4.25) is completely integrable;

To prove (1), it suffices to show that

$$
\frac{\partial F_{j}}{\partial \bar{\zeta}_{k}}\left(z, \bar{\zeta}^{\prime}\right)=0 \quad(j, k=1, \ldots, n-1) \quad \text { in } \Delta \times \Delta^{\prime}
$$

From (4.24) we have

$$
\frac{\partial h_{n}}{\partial \bar{z}_{j}}\left(z, \bar{\zeta}^{\prime}\right)=-\left\{\frac{\partial \varphi}{\partial \bar{z}_{j}} / \frac{\partial \varphi}{\partial \bar{z}_{n}}\right\}\left(z, \bar{\zeta}^{\prime}, h_{n}\left(z, \bar{\zeta}^{\prime}\right)\right) \quad(j=1, \ldots . n-1)
$$

Using these equations, we compute that

$$
\begin{aligned}
\frac{\partial F_{j}}{\partial \bar{\zeta}_{k}}\left(z, \bar{\zeta}^{\prime}\right)= & \frac{1}{\left(\frac{\partial_{\varphi}}{\partial z_{n}}\right)^{2}\left(\frac{\partial \varphi}{\partial z_{n}}\right)^{2}} \cdot\left\{\frac{\partial^{2} \varphi}{\partial z, \partial \bar{z}_{n}} \frac{\partial \varphi}{\partial z_{n}} \frac{\partial \varphi}{\partial \bar{z}_{k}}-\frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} \frac{\partial \varphi}{\partial z_{n}} \frac{\partial \varphi}{\partial \bar{z}_{n}}\right. \\
& \left.+\frac{\partial^{2} \varphi}{\partial z_{n} \partial \bar{z}_{k}} \frac{\partial \varphi}{\partial z_{j}} \frac{\partial \varphi}{\partial \bar{z}_{n}}-\frac{\partial^{2} \varphi}{\partial z_{n} \partial \bar{z}_{n}} \frac{\partial \varphi}{\partial z_{j}} \frac{\partial \varphi}{\partial \bar{z}_{k}}\right\} \\
\equiv & \frac{1}{\left(\frac{\partial_{\varphi}}{\partial z_{n}}\right)^{2}\left(\frac{\partial_{i}}{\partial \bar{z}_{n}}\right)^{2}} \cdot \tilde{\mathcal{L}}_{j k}
\end{aligned}
$$

where the right-hand side is evaluated at $(z, \bar{z})=\left(z, \bar{\zeta}^{\prime}, h_{n}\left(z, \bar{\zeta}^{\prime}\right)\right)$. Since Σ is Levi flat, it follows from 1 of Proposition 4.2 that $L_{j k}(z, \bar{z})=0$ on Σ; hence

$$
L_{j k}(z, \bar{z})=A_{j k}(z, \bar{z}) \cdot \varphi(z, \bar{z}), \quad z \in \Delta,
$$

where $A_{j k}(z, \bar{z})$ is real analytic for $z \in \Delta$. Since both sides of the above equation are real analytic in Δ, it follows that

$$
L_{j k}(z, w)=A_{j k}(z, w) \cdot \varphi(z, w), \quad(z, w) \in \Delta \times \Delta
$$

Observing that $L_{\jmath k}(z, \bar{z})=\tilde{\mathcal{L}}_{j k}(z, \bar{z})$ in $\Delta \times \Delta$, we see from (4.24) that for any $\left(z, \bar{\zeta}^{\prime}\right) \in \Delta \times \Delta^{\prime}$,

$$
\tilde{\mathcal{L}}_{j k}\left(z, \bar{\zeta}^{\prime}, h_{n}\left(z, \bar{\zeta}^{\prime}\right)\right)=A_{j k}\left(z, \bar{\zeta}^{\prime}, h_{n}\left(z, \bar{\zeta}^{\prime}\right)\right) \cdot \varphi\left(z, \bar{\zeta}^{\prime}, h_{n}\left(z, \bar{\zeta}^{\prime}\right)\right)=0
$$

It follows that $\left(\partial F_{j} / \partial \bar{\zeta}_{k}\right)\left(z, \bar{\zeta}^{\prime}\right)=0$ on $\Delta \times \Delta^{\prime}$, which proves (1).
To prove (2), it suffices to show that

$$
\frac{\partial F_{j}}{\partial z_{k}}+\frac{\partial F_{j}}{\partial z_{n}} F_{k}=\frac{\partial F_{k}}{\partial z_{j}}+\frac{\partial F_{k}}{\partial z_{n}} F_{j} \quad(j . k=1, \ldots, n-1)
$$

for $\left(z, \bar{\zeta}^{\prime}\right) \in \Delta \times \Delta^{\prime}$. This can be verified by direct calculation, using the explicit form of F_{j} and F_{k} in (4.25) and the following equalities from (4.24):

$$
\frac{\partial h_{n}}{\partial z_{j}}\left(z, \bar{\zeta}^{\prime}\right)=-\left\{\frac{\partial \varphi}{\partial z_{j}} / \frac{\partial \varphi}{\partial \bar{\zeta}_{n}}\right\}\left(z, \bar{\zeta}^{\prime}, h_{n}\left(z, \bar{\zeta}^{\prime}\right)\right) \quad(j=1, \ldots, n-1)
$$

This proves (2) and thus the first clain.
Second claim: Assertion (4.21) holds.
If necessary, we may take a smaller polydisk Δ centered at $z=0$ in \mathbf{C}^{n}, so that the solutions of the system of differential equations (4.22) give a foliation of complex ($n-1$)-dimensional analytic hypersurfaces

$$
\mathcal{S}_{c}: G\left(z_{1}, \ldots, z_{n}\right)=c, \quad c \in \delta_{1},
$$

where δ_{1} is a neighborhood of the origin 0 in the complex plane C. We consider the analytic mapping \mathbf{S} from a neighborhood of $z=0$ in \mathbf{C}_{z}^{n} onto a neighborhood of $w=0$ in \mathbf{C}_{w}^{n} defined by

$$
\mathbf{S}: w_{j}=z_{j}(j=1, \ldots, n-1), \quad w_{n}=G\left(z_{1}, \ldots, z_{n}\right)
$$

From the first claim it follows that each analytic hypersurface $S_{\zeta}, \bar{\zeta} \in \Delta$. defined by (4.20) is mapped to a complex hyperplane of the form $u_{n}=c(\bar{\zeta})=$ const. in a neighborhood of $w=0$ in \mathbf{C}_{w}^{n}. Thus, the second step is proved.

Finally we shall show that Σ is of planar type. Since all arguments are invariant under analytic mappings of a neighborhood of the origin, we may assume from the beginning that for each $\bar{\zeta} \in \Delta$, the analytic hypersurface $S_{\zeta}: \rho(z, \bar{\zeta})=0$ can be written in the form $z_{n}=\xi_{n}\left(z^{\prime}, \bar{\zeta}\right)=c(\bar{\zeta})$. Therefore,

$$
\varphi(z, \bar{\zeta})=\left(z_{n}-c(\bar{\zeta})\right) H(z, \bar{\zeta})
$$

where $H(z, \bar{\zeta}) \neq 0$ in a neighborhood of $(0,0)$ in $\mathbf{C}^{2 n}$. Formula (4.19) implies that $c(\bar{\zeta})$ is independent of $\left(\overline{\zeta_{1}}, \ldots, \overline{\zeta_{n-1}}\right)$. i.e., $c(\bar{\zeta})=c\left(\overline{\zeta_{n}}\right)$. Thus $S_{\zeta}: \rho(z . \bar{\zeta})=0$ is of the form $z_{n}=c\left(\overline{\zeta_{n}}\right)$. In particular, $\Sigma: \varphi(z, \bar{z})=0$ is of the form $z_{n}=c\left(\overline{z_{n}}\right)$, and hence $c\left(\bar{z}_{n}\right)=\bar{z}_{n}$. It follows that $\Sigma=\left\{z \in \Delta \mid y_{n}=0\right\}$. where $z_{n}=x_{n}+i y_{n}$. Consequently, Σ is of planar type, and Theorem 4.4 is completely proved.

We see from the above theorem that if $\Sigma:=\{z \in D \mid \varphi(z)=0\}$ is Levi-flat in a domain D, then both domains D^{+}and D^{-}are locally domains of holomorphy at each point z of Σ.

4.3. Boundary Problem

The Levi conditions for C^{2} functions $\varphi(z)$ look very similar to the condition of plurisubharmonicity of $\varphi(z)$. Plurisubharmonic functions are considered today as the natural extension to several conmplex variables of subharmonic functions in one complex variable. However, plurisubharmonic functions were first introduced by K. Oka [49] to investigate pseudoconvex domains. ${ }^{7}$ He wanted to find a linear condition on $\varphi(z)$ which would imply the (nonlinear) Levi conditions on $\varphi(z)$. The reason he wanted to do this is the following: an arbitrary pseudoconvex domain can have a non-smooth and complicated boundary; to approximate such a domain

[^19]by pseudoconvex domains with smooth boundary, one could begin with the nonsmooth function $\varphi(z)=-\log d_{D}(z)$ (see section 4.3.2) and take integral averages to get smoother approximations. A linear condition on $\varphi(z)$ will be preserved under this averaging process. In this section we study the relationship between plurisubharmonic functions and pseudoconvex domains.
4.3.1. Strictly Pseudoconvex Domains and Strictly Plurisubharmonic Functions. Let D be a domain in \mathbf{C}^{n} and let $p \in \partial D$. Let δ be an open neighborhood of p in \mathbf{C}^{n} and let $I=\{0,1]$ be a closed interval in the real axis of the complex t-plane \mathbf{C}_{t}. Let $f(z, t)$ be a holomorphic function of (z, t) on $\delta \times I$. This means there exists a neighborhood G of I in \mathbf{C}_{t} such that $f(z, t)$ is holomorphic in $\delta \times G$. We set
$$
\sigma_{t}:=\{z \in \delta \mid f(z, t)=0\} \quad(t \in I),
$$
so that $\left\{\sigma_{t}\right\}_{t \in I}$ is a family of analytic hypersurfaces in δ. If $\left\{\sigma_{t}\right\}_{t \in I}$ satisfies the conditions

1. $p \in \sigma_{0}$ and $\sigma_{0} \backslash\{p\} \subset \delta \backslash \bar{D}$,
2. $\sigma_{t} \subset \delta \backslash \bar{D}$ for each $0<t \leq 1$,
then we call $\left\{\sigma_{t}\right\}_{t \in I}$ a family of analytic hypersurfaces touching p from the complement of D.

If a boundary point p of D admits such a family of analytic hypersurfaces, we say that D is strictly pseudoconvex at p. Furthermore, if D is strictly pseudoconvex at each boundary point of D, then we say that D is a strictly pseudoconvex domain.

We see from 2 of Proposition 4.1 that if D is strictly pseudoconvex at a point $p \in \partial D$, then D is pseudoconvex at p.

Remark 4.4. Assume that D is strictly pseudoconvex at a point $p \in \partial D$. Given a neighborhood $\delta^{\prime} \subset \delta$ of p, we can choose $\varepsilon>0$ sufficiently small so that
(1) $\beta:=\{z \in \delta \cap D| | f(z, 0) \mid<\varepsilon\} \subset \subset \delta^{\prime} ;$ and
(2) each branch of $\log f(z, 0)$ is single-valued on β.

For (1) is clear from condition 1 on $\left\{\sigma_{t}\right\}_{t \in I}$. To prove (2). let γ be a 1 -cycle in β. If $\varepsilon>0$ is sufficiently small, we can find a ball B such that $\beta \subset B \subset \delta^{\prime}$ by 1 , and $B \cap\{z \in \delta \mid f(z, 1)=0\}=0$ by 2. Hence, $\int_{\gamma} d \operatorname{darg} f(z, 1)=0$. Since $f(z, t) \neq 0$ on γ for all $t \in I$, it follows from the continuity of $f(z, t)$ on $\gamma \times I$ that $\int_{\gamma} d \arg f(z, 0)=0$, and (2) is verified.

Remark 4.5. Let $D=\left\{(z, w) \in \mathbf{C}^{2}| | w|<|z|\}\right.$. Then D is a pseudoconvex domain whose boundary ∂D contains the origin 0 . The complex line $L: z=0$ in \mathbf{C}^{2} passes through 0 , and $L \backslash\{0\} \subset \mathbf{C}^{2} \backslash \bar{D}$. However, D is not strictly pseudoconvex at 0 .

Let $\phi(z)$ be plurisubharmonic in a domain $D \subset C^{n}$. For a real number c, we set

$$
D_{c}:=\{z \in D \mid \phi(z)<c\} .
$$

If $D_{c} \neq \emptyset$, then D_{c} is pseudoconvex at each point of ∂D_{c} in D. This follows from the definitions of plurisubharmonicity and of pseudoconvexity of type C. In addition, we have the following result.

Proposition 4.3. Let $\phi(z)$ be a C^{2} function in a domain $D \subset \mathbf{C}^{n}$. If $\phi(z)$ is strictly plurisubharmonic at a point z^{0} in D, then, setting $\mathrm{c}=\varphi\left(z^{0}\right)$, we have that D_{c} is strictly pseudoconvex at z^{0}.

Proof. We may assume $z^{0}=0$ and $\mathrm{c}=\phi\left(z^{\prime \prime}\right)=0$. Since $\varphi(z)$ is of class C^{2} at 0 , we can write

$$
\begin{aligned}
& \phi(z)=2 \Re\left\{\sum_{j=1}^{n} \frac{\partial \phi}{\partial z_{j}}(0) z_{j}+\sum_{j \leq k}^{n} \frac{\partial^{2} \hat{f}}{\partial z_{j} \partial z_{k}}(0) z_{j} z_{k}\right\} \\
&+\sum_{j, k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}(0) z_{j} \bar{z}_{k}+o\left(\|z\|^{2}\right)
\end{aligned}
$$

near $z=0$. Since $\phi(z)$ is strictly plurisubharmonic at 0 , we can find a neighborhood δ of 0 in D such that

$$
\sum_{j, k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}(0) z_{j} \bar{z}_{k}>o\left(\|z\|^{2}\right) \quad \text { in } \delta \backslash\{0\} .
$$

For each $0 \leq t \leq 1$, we define

$$
S_{t}:=\left\{z \in \delta \left\lvert\, \sum_{j=1}^{n} \frac{\partial \varphi}{\partial z_{j}}(0) z_{j}+\sum_{j \leq k}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial z_{k}}(0) z_{j} z_{k}=t\right.\right\} .
$$

Then $S_{0} \cap \bar{D}_{0}=\{0\}$, and $S_{t} \cap \bar{D}_{0}=\emptyset$ for $0<t \leq 1$. Thus, $\left\{S_{t}\right\}_{t}$ is a family of analytic hypersurfaces touching $0 \in \partial D_{0}$ from the complement of D_{0}. Hence. D_{0} is strictly pseudoconvex at 0 .

Note that in the proof we did not require $\nabla \phi\left(z^{0}\right) \neq 0$.
4.3.2. Boundary Distance Function on a Pseudoconvex Domain. One of the most significant properties of a pseudoconvex domain in \mathbf{C}^{n} can be described in terms of the boundary distance function. Given a domain D in \mathbf{C}^{n} and a point $z \in D$, recall from section 1.1.5 that

$$
d_{D}(z):=\inf \{\|z-\zeta\| \mid \zeta \in \partial D\}
$$

the boundary distance function on D. This is a continuous, positive-valued function on D satisfying $\lim _{z \rightarrow \theta D} d_{D}(z)=0$.

We have the following theorem.
Theorem 4.5. If D is a pseudoconvex domain in \mathbf{C}^{n}, then $-\log d_{D}(z)$ is a continuous plurisubharmonic function on D.

To prove this theorem, we begin with three lemmas.
Lemma 4.4. Let D be a domain in the complex z-plane \mathbf{C}_{z}. Then $-\log d_{D}(z)$ is a continuous subharmonic function on D.

Proof. If $D=\mathbf{C}_{z}$, then $-\log d_{D}(z) \equiv-\infty$. Thus we assume $D \neq \mathbf{C}_{z}$. It is clear that $-\log d_{D}(z)$ is continuous at points z where it is finite-valued: i.e., on D. Fix $\zeta \in \partial D$. Then $z \rightarrow-\log |z-\zeta|$ is a harmonic function on D. Therefore,

$$
-\log d_{D}(z)=\sup \{-\log |z-\zeta| \mid \zeta \in \partial D\}, \quad z \in D
$$

is a subharmonic function on D.

Let D be a domain in the complex z-plane $\mathbf{C}_{\text {: }}$ and let \mathcal{G} be a subdomain in the product space $D \times \mathbf{C}_{\boldsymbol{w}} \subset \mathbf{C}^{2}$. Given $z \in D$, we set

$$
\mathcal{G}(z):=\left\{u \in \mathbf{C}_{w} \mid(z, w) \in \mathcal{G}\right\},
$$

the section of \mathcal{G} over z. We assume $D \times\{0\} \subset \mathcal{G}$. i.e., $0 \in \mathcal{G}(z)$ for each $z \in D$. We let $\mathcal{R}_{\mathcal{G}}(z)>0$ denote the boundary distance from $w=0$ to $\partial \mathcal{G}(z)$.

$$
\mathcal{R}_{\mathcal{G}}(z)=\inf \left\{\left|u^{\prime}-\xi\right| \mid \xi \in \partial \mathcal{G}(z)\right\} .
$$

and we call this the Hartogs radius of \mathcal{G} for $z \in D$.
We have the following lemma.
Lemma 4.5. Let \mathcal{G} be a domain in $D \times \mathbf{C}_{6} \subset \mathbf{C}^{2}$. where D is a domain in $\mathbf{C}_{\text {: }}$ with $D \times\{0\} \subset \mathcal{G}$. If \mathcal{G} is a pseudoconvex domain in \mathbf{C}^{2}, then $-\log \mathcal{R}_{\mathcal{G}}(z)$ is a subharmonic function on D.

Proof. For simplicity we write $\mathcal{R}(z)=\mathcal{R}_{\mathcal{C}}(z)$ and $\rho(z)=-\log \mathcal{R}_{\mathcal{C}}(z)$ for $z \in D$. Since \mathcal{G} is an open set in $\mathbf{C}^{2} . \mathcal{O}(z)$ is uppersemicontinuous on D. It suffices to verify the subaveraging property. We proceed by contradiction: suppose there exist a point $a \in D$ and a positive radius ρ so that ϕ does not satisfy the subaveraging property on $\bar{\delta}:=\{z:|z-a| \leq \rho\} \subset D$. i.e.,

$$
\varphi(a)>\frac{1}{2 \pi} \int_{0}^{2 \pi} \rho\left(a+\rho e^{i \theta}\right) d \theta .
$$

Since $\dot{\phi}(z)$ is uppersemicontinuous on $\partial \delta=\{|z-a|=\rho\}$. we can find a real analytic function $u(z)$ such that

$$
\begin{aligned}
& u\left(a+\rho e^{i \theta}\right)>\phi\left(a+\rho e^{i \theta}\right) . \quad 0 \leq \theta \leq 2 \pi, \\
& \varphi(a)>\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+\rho e^{i \theta}\right) d \theta .
\end{aligned}
$$

By the Poisson formula we construct the harmonic function $h(z)$ on δ with $h(z)=$ $u(z)$ on $\partial \delta$. Then $\phi(a)>h(a)$. We take a harmonic conjugate $k(z)$ of $h(z)$ so that $\xi(z):=h(z)+i k(z)$ is holomorphic on δ. We then consider the automorphism

$$
T: \quad z=z . \quad w^{\prime}=e^{\varepsilon(z)} w
$$

of the product domain $\Omega=\delta \times \mathbf{C}_{1 \times}$, and set $\mathcal{G}^{*}:=T(\Omega \cap \mathcal{G})$. Then $\Omega \cap \mathcal{G}$ and \mathcal{G}^{*} are pseudoconvex domains in \mathbf{C}^{2} and $\delta \times\left\{u^{\prime}=0\right\} \subset \mathcal{G}^{*}$. The Hartogs radius $\mathcal{R}^{*}(z)$ about $u^{\prime}=0$ for $z \in \delta$ is equal to

$$
\mathcal{R}^{\cdot}(z)=e^{h(z)} \mathcal{R}(z) .
$$

From the relations between $u(z)$ and $\phi(z)$, we have

$$
\mathcal{R}^{*}(a)<1<\mathcal{R}^{*}\left(a+\rho e^{i \theta}\right) . \quad 0 \leq \theta<2 \pi .
$$

Thus we can find a point $w^{\prime 0} \in \partial \mathcal{G}^{*}(a)$ with $\left|w^{\prime 0}\right|=\mathcal{R}^{*}(a)<1$. while $\left\{\left|w^{\prime}\right| \leq\right.$ 1\} $\subset \subset \mathcal{G}^{*}\left(a+\rho e^{\star \theta}\right)$ for $0 \leq \theta<2 \pi$. Since $\mathcal{R}^{*}(z)>0$ on $\{|z-a| \leq \rho\}$ (for $D \times\{0\} \subset G), \mathcal{G}^{*}$ does not satisfy the continuity theorem of type C, contradicting the pseudoconvexity of \mathcal{G}^{\bullet}.

Let $D \subset \mathbf{C}^{n}$ be a domain and let $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \in D$. We let $D\left(z^{\prime}\right) \subset \mathbf{C}_{z_{n}}$ denote the section of D over the complex line $z_{j}=z_{j}^{\prime}(j=1, \ldots, n-1)$ in \mathbf{C}^{n}. i.e.,

$$
D\left(z^{\prime}\right)=\left\{z_{n} \in \mathbf{C}_{z_{n}} \mid\left(z_{1}^{\prime}, \ldots, z_{n-1}^{\prime} \cdot z_{n}\right) \in D\right\} .
$$

We let $\mathcal{R}_{n}\left(z^{\prime}\right)$ denote the boundary distance from z_{n}^{\prime} to $\partial D\left(z^{\prime}\right)$ in $\mathbf{C}_{z_{n}}$. Then $\mathcal{R}_{n}(z)$ is a positive-valued function on D, which we call the Hartogs radius of D with respect to z_{n}.

We have the following lemma.
Lemma 4.6. Let D be a pseudoconvex domain in \mathbf{C}^{n} and let $\mathcal{R}_{n}(z)$ be the Hartogs radius of D with respect to z_{n}. Then $-\log \mathcal{R}_{n}(z)$ is a plurisubharmonic function on D.

Proof. Since D is an open set in $C^{n},-\log \mathcal{R}_{n}(z)$ is uppersemicontinuous on D. Thus we must show that the restriction of $-\log \mathcal{R}_{n}(z)$ to any complex line L in D is subharmonic. Let $a=\left(a_{1}, \ldots, a_{n}\right) \in D$ and fix a complex line L passing through a. If L is of the form $z_{j}=a_{j}(j=1 \ldots, n-1)$, then from Lemma 4.4 it follows that the restriction of $-\log \mathcal{R}_{n}(z)$ to L is subharmonic. Thus we may assume that L is of the form

$$
L: \quad z_{j}=L_{j}\left(z_{1}\right)=c_{j}\left(z_{1}-a_{1}\right)+a_{j} \quad(j=2, \ldots, n)
$$

where $c_{j} \neq 0$ for some $j=2, \ldots, n$. Fix a disk $\delta:=\left\{\left|z_{1}-a_{1}\right|<\rho\right\}$ in $C_{z_{1}}$ such that $\left(\bar{\delta} \times \mathbf{C}^{n-1}\right) \cap L \subset D$. We show that $s\left(z_{1}\right):=-\log d_{D}\left(z_{1}, L_{2}\left(z_{1}\right), \ldots, L_{n}\left(z_{1}\right)\right)$ is subharmonic for $z_{1} \in \delta$.

For each $z_{1} \in \delta$ we consider the subset of $C_{z_{n}}$ given by

$$
D_{n}\left(z_{1}\right):=\left\{z_{n} \in \mathbf{C}_{z_{n}} \mid\left(z_{1}, L_{2}\left(z_{1}\right), \ldots, L_{n-1}\left(z_{1}\right), z_{n}\right) \in D\right\}
$$

Let

$$
G:=\left\{\left(z_{1}, z_{n}\right) \in \mathbf{C}^{2} \mid z_{1} \in \delta, \quad z_{n} \in D_{n}\left(z_{1}\right)\right\}
$$

Then $G=D \cap\left(L^{\prime} \times \mathbf{C}_{z_{n}}\right)$ where L^{\prime} denotes the projection of L onto $\mathbf{C}_{z_{1}}$; thus G is a pseudoconvex domain in $\mathbf{C}^{\mathbf{2}}$. We consider the automorphism

$$
T: z_{1}=z_{1}, \quad w=z_{n}-c_{n}\left(z_{1}-a_{1}\right)-a_{n}
$$

of $\delta \times \mathbf{C}_{w^{\prime}}$ and set $\mathcal{G}:=T(G)$. Then \mathcal{G} is a pseudoconvex domain in $\mathbf{C}_{z_{1}} \times \mathbf{C}_{w}$ with $\delta \times\{0\} \subset \mathcal{G}$. Since $\mathcal{R}_{\mathcal{G}}\left(z_{1}\right)=d_{D}\left(z_{1}, L_{2}\left(z_{1}\right), \ldots, L_{n}\left(z_{1}\right)\right)$ for $z_{1} \in \delta$, it follows from Lemma 4.5 that $s\left(z_{1}\right)$ is subharmonic on δ.

Proof of Theorem 4.5. Letting $z=\left(z_{1}, \ldots, z_{n}\right)$ denote the usual coordinates in C^{n}, we fix a unitary matrix U and form the coordinate transformation $z^{\prime}:=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)=\left(z_{1}, \ldots, z_{n}\right) \cdot U$ of C^{n}. Consider the Hartogs function $\mathcal{R}_{n}^{L^{*}}\left(z^{\prime}\right)$ of D with respect to z_{n}^{\prime}. We have

$$
-\log d_{D}(z)=\sup _{L^{\prime}}\left\{-\log \mathcal{R}_{n}^{L^{\prime}}\left(z^{\prime}\right)\right\}
$$

where the supremum is taken over all unitary matrices U. From Lemma 4.6 we conclude that $-\log \mathcal{R}_{n}^{U}\left(z^{\prime}\right)$ is a plurisubharmonic function on D for each such U; since $-\log d_{D}(z)$ is continuous in D we conclude that $-\log d_{D}(z)$ is a plurisubharmonic function on D.
4.3.3. Approximating the Boundary. The boundary of an arbitrary pseudoconvex domain D may be rather complicated, and thus we would like to be able to approximate D from inside by pseudoconvex domains with simpler boundaries. Indeed, this procedure is indispensable in order to verify that any pseudoconvex domain is a domain of holomorphy (which will be discussed in Chapter 9).

We note that a pseudoconvex domain D in \mathbf{C}^{n} admits a continuous plurisubharmonic exhaustion function $\xi(z)$. This means that for any real number a,
$D_{a}:=\{z \in D \mid \xi(z)<a\} \subset \subset D$. To see this, in the case when D is bounded, Theorem 4.5 implies that

$$
\xi(z):=-\log d_{D}(z)
$$

is a continuous plurisubharmonic exhaustion function for D. If D is unbounded,

$$
\xi(z):=-\log d_{D}(z)+\|z\|^{2}
$$

satisfies this property (here, $\|z\|^{2}=\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}$).
Therefore any pseudoconvex domain D in \mathbf{C}^{n} can be approximated from inside by an increasing sequence of relatively compact pseudoconvex domains $\left\{D_{a}\right\}_{a}$ with continuous boundaries. We present a method which modifies D_{a} to a pseudoconvex domain with smoother boundary.

Let $D \subset C^{n}$ be a domain (not necessarily pseudoconvex) and let $\phi(z)$ be a plurisubharmonic function in D. If for each $p \in D$ we can find a neighborhood δ of p and a finite number of plurisubharmonic functions $\psi_{k}(z)(k=1 \ldots, l)$ of class C^{2} in δ such that

$$
\varphi(z)=\max _{k}\left\{i_{k}(z)\right\} \quad \text { in } \delta .
$$

then we say that $\phi(z)$ is a piecewise smooth plurisubharmonic function on D. In addition. if each $\psi_{k}(z)$ is a strictly plurisubharmonic function on δ, we say that $\phi(z)$ is a piecewise smooth strictly plurisubharmonic function on D.

Let D be a domain in \mathbf{C}^{n}. For $c>0$ we let D^{c} denote the set of all points z in D such that the polydisk distance from z to ∂D is greater than c.

Let $f(z)$ be a locally (Lebesgue) integrable function on D. Given $0<\eta<c$, we let $\Delta_{\eta}:\left|K_{j}\right|<\eta(j=1, \ldots, n)$ be a polydisk in \mathbf{C}^{n}. Then we can define, for $z \in D^{c}$, the average value of f,

$$
A_{\eta}[f](z):=\frac{1}{V} \int_{\Delta_{\eta}} f\left(z_{1}+\zeta_{1}, \ldots, z_{n}+\zeta_{n}\right) d v_{\zeta},
$$

where $d v_{\zeta}$ is the volume element of C^{n} at ζ and $V=\left(\pi \eta^{2}\right)^{n}$.
Lemma 4.7. If $f(z)$ is a locally integrable function on D, then $A_{\eta}[f](z)$ is a continuous function on D^{c}. If $f(z)$ is continuous (resp. of class C^{1}). then $A_{\eta}[f](z)$ is of class C^{1} (resp. of class C^{2}) in D^{c}.

The proof is standard. and is omitted.
Lemma 4.8. Assume that $f(z)$ is plurisubharmonic on D. Then:

1. $A_{\eta}[f](z)$ is a continuous plurisubharmonic function on $D^{2 c}$.
2. $A_{\eta_{1}}[f](z) \leq A_{\eta_{2}}[f](z)$ if $0<\eta_{1}<\eta_{2}<c$ and $f(z)=\lim _{\eta \rightarrow 0} A_{\eta}[f](z)$ pointwise on D.
3. If $f(z)$ is continuous on D, then $f(z)=\lim _{\eta \rightarrow 0} A_{\eta}[f](z)$ uniformly on each compact set $K \subset D$.
Proof. Since $f(z)$ is plurisubharmonic on D, it is clear that $f(z)$ is locally integrable on D. Fix $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \in D^{c}$ and let

$$
l: z_{j}=a, t+z_{j}^{\prime} \quad(j=1, \ldots, n), \quad t \in \mathbf{C}_{t}
$$

be a complex line in \mathbf{C}^{n} passing through z^{\prime}. Fix $\varepsilon>0$ such that the restriction l_{ε} of l for $|t| \leq \varepsilon$ is contained in D^{c}, and consider the boundary of $l_{\varepsilon}:=\{z(\theta)=$ $\left.\left(z_{1}(\theta), \ldots, z_{n}(\theta)\right)\right\}$, where

$$
z_{j}(\theta)=a_{j} \varepsilon e^{i \theta}+z_{j}^{\prime} \quad(j=1, \ldots, n) .
$$

Since $f(z)$ is plurisubharmonic on D, we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f(z+z(\theta)) d \theta \geq f\left(z+z^{\prime}\right), \quad z, z+z^{\prime} \in D^{c}
$$

Since $A_{\eta}[f](z)$ is continuous on D^{c}. to verify assertion 1 it suffices to show that

$$
m:=\frac{1}{2 \pi} \int_{0}^{2 \pi} A_{\eta}[f](z(\theta)) d \theta \geq A_{\eta}[f]\left(z^{\prime}\right), \quad z^{\prime} \in D^{2 c}
$$

We have

$$
m=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{\frac{1}{V} \int_{د_{\eta}} f(z(\theta)+\zeta) d v_{\zeta}\right\} d \theta
$$

Since $f(z)$ is uppersemicontinuous on D, it is bounded above on any compact set in D. Thus $f(z(\theta)+\zeta)$ is bounded above on $(\theta . \zeta) \in[0.2 \pi] \times \Delta_{\eta}$, and we can interchange the order of integration to obtain

$$
\begin{aligned}
m & =\frac{1}{V} \int_{\Delta_{\eta}}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} f(z(\theta)+\zeta) d \theta\right\} d v_{\zeta} \\
& \geq \frac{1}{V} \int_{\Delta_{\eta}} f\left(z^{\prime}+\zeta\right) d v_{\zeta}=A_{\eta}[f]\left(z^{\prime}\right)
\end{aligned}
$$

This proves 1.
To prove 2. we note that for any subharmonic function $s(z)$ on a disk $|z-a| \leq \rho$ in the complex plane C_{z}, we have, for $0<\rho_{1}<\rho_{2}<\rho$.

$$
\begin{equation*}
s(a) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} s\left(a+\rho_{1} e^{i \theta}\right) d \theta \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} s\left(a+\rho_{2} e^{i \theta}\right) d \theta \tag{4.26}
\end{equation*}
$$

Set $\zeta_{j}:=r_{j} e^{i \theta_{j}}(j=1, \ldots, n)$. Using the change of variables $r_{j}=\eta s_{j}\left(0 \leq s_{j} \leq\right.$ $1: j=1 \ldots . n$). for any $z^{\prime} \in D^{c}$ and $0<\eta<c$ we obtain

$$
\begin{aligned}
& A_{\eta}[f]\left(z^{\prime}\right) \\
& \quad=\frac{1}{\pi^{n}} \int_{\left[\left(0.2 \pi^{-n} \times[0.1]^{n}\right.\right.} f\left(z_{1}^{\prime}+\eta s_{1} e^{i \theta_{1}} \ldots, z_{n}^{\prime}+\eta s_{n} e^{i \theta_{n}}\right) s_{1} \cdots s_{n} d \Theta d S .
\end{aligned}
$$

where $d \Theta=d \theta_{1} \cdots d \theta_{n}$ and $d S=d s_{1} \cdots d s_{n}$. Together with (4.26). this implies the first part of statement 2. The second part follows from the uppersemicontinuity of $f(z)$. Assertion 3 follows from 2 and Dini's theorem. ${ }^{\forall}$

Thus, for any continuous plurisubharmonic function $\mathcal{L}(z)$ on D and for any $\varepsilon>0$ and $K \subset \subset D^{c}$, we can find a plurisubharmonic function $\varphi^{\circ}(z)$ of class C^{2} on D^{c} such that

$$
\left|\dot{\phi}(z)-\phi^{*}(z)\right|<\varepsilon . \quad z \in K .
$$

Furthermore, if D is bounded, we can assume that $0^{\circ}(z)$ is strictly plurisubharmonic on D^{c}. Indeed, it suffices to take $\lambda>0$ sufficiently small and replace $\mathcal{O}^{\circ}(z)$ by

$$
\dot{o}^{0}(z):=\sigma^{*}(z)+\lambda\|z\|^{2} .
$$

We now prove the following theorem.
Theorem 4.6 (Oka [52]). A pseudoconvex domain D in C^{n} admits a pieceurise smooth, strictly plurisubharmonic exhaustion function.

[^20]Proof. We take a continuous plurisubharmonic exhaustion function $\xi(z)$ for D. Let $\alpha_{j}(j=1.2, \ldots)$ be a sequence of real numbers with $\alpha_{j+1}-\alpha_{j}>2(j=$ $1.2 \ldots$) such that if we set $D_{j}:=\left\{z \in D \mid \xi(z)<\alpha_{j}\right\}(\subset \subset D)$. then $D_{1} \neq 0$. On each domain $D_{2 l+3}(l=1,2, \ldots)$. we can construct a strictly plurisubharmonic function $\xi_{1}(z)$ of class C^{2} such that $\left|\xi(z)-\xi_{l}(z)\right|<1$ on $D_{2 l+3}$. We have

$$
\begin{aligned}
\xi_{1}(z)-\alpha_{2 l}<-1 & \text { for } z \in \partial D_{2 l-1}: \\
\xi_{l}(z)-\alpha_{2 l}>1 & \text { for } z \in D_{2 l+3} \backslash D_{2 l+1} .
\end{aligned}
$$

We shall construct, by induction, a piecewise smooth strictly plurisubharmonic function $\xi_{l}^{*}(z)$ on $D_{2 l+1}(l=1.2, \ldots)$.

We first set $\xi_{1}^{*}(z):=\xi_{1}(z)$ on D_{3} so that $\xi_{1}^{*}(z) \geq 1$ on $D_{3} \backslash D_{1}$. Next. having constructed a piecewise smooth, strictly plurisubharmonic function $\xi_{i}(z)$ on $D_{2 l+1}(l \geq 1)$ such that $\xi_{l}^{\prime}(z) \geq l$ on $D_{2 l+1} \backslash D_{2 l-1}$. we take $c_{l+1}>0$ sufficiently large so that, if we set $\eta_{l+1}(z):=c_{l+1}\left(\xi_{l}(z)-a_{2 l}\right)$ on $D_{2 l+3}$, then $\eta_{l+1}(z) \geq l+1$ on $D_{21+3} \backslash D_{2 l+1}$ and

$$
\begin{array}{ll}
\xi_{l}^{*}(z)-\eta_{l+1}(z)>0 & \text { for } z \in \partial D_{2 l-1} \\
\xi_{l}^{*}(z)-\eta_{l+1}(z)<0 & \text { for } z \in \partial D_{2 l+1}
\end{array}
$$

Now for $z \in D_{2 t+3}$ we define

$$
\xi_{l+1}(z):= \begin{cases}\xi_{l}^{*}(z) & \text { for } z \in D_{2 l-1} \\ \max \left(\xi_{l}^{*}(z), \eta_{l+1}(z)\right) & \text { for } z \in D_{2 l+1}-D_{2 l-1} \\ \eta_{l+1}(z) & \text { for } z \in D_{2 l+3}-D_{2 l+1}\end{cases}
$$

Then $\xi_{i+1}(z)$ is a piecewise smooth, strictly plurisubharmonic function in $D_{2 l+3}$ satisfying $\xi_{i+1}^{*}(z)=\xi_{i}^{*}(z)$ on $D_{2 l-1}, \quad \xi_{l+1}(z) \geq \xi_{i}^{*}(z)$ on $D_{2 l+1}$, and $\xi_{i+1}^{*}(z) \geq l+1$ on $D_{21+3} \backslash D_{21+1}$. It follows that the limit $\xi^{*}(z):=\lim _{l \rightarrow x} \xi_{l}^{*}(z)$ exists on D and defines a piecewise smooth, strictly plurisubharmonic exhaustion function on D.

4.4. Pseudoconcave Sets

4.4.1. Definition of Pseudoconcave Sets. The coinplement of a pseudoconvex domain has a certain analytic property, if it is "small" as a set. This fact was first discovered by F. Hartogs [30] and was carefully studied by K. Oka. We follow the ideas of Oka [43] and extend their study from the two-dimensional case to the general n-dimensional case, $n \geq 2 .{ }^{9}$

Let D be a domain in \mathbb{C}^{n} and let \mathcal{E} be a closed set in D. For each point $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)$ of \mathcal{E} and each polydisk $\delta:\left|z_{j}-z_{j}^{\prime}\right|<r(j=1, \ldots, n)$ in D centered at z^{\prime}, if each connected component of $\delta \backslash(\delta \cap \mathcal{E})$ is a pseudoconvex domain in $\mathbf{C}^{\boldsymbol{n}}$, then \mathcal{E} is called a pseudoconcave set in D. As an example, an analytic hypersurface in D is a pseudoconcave set in D.

Remark 4.6. We will simply say that $\delta \backslash(\delta \cap \mathcal{E})$ is a pseudoconvex domain if each connected component of $\delta \backslash(\delta \cap \mathcal{E})$ is an open, connected pseudoconvex set; i.e., we take a domain to be an open (but not necessarily connected) set.

The following properties of pseudoconcave sets are a consequence of the elementary properties of pseudoconvex domains.

[^21]1. If \mathcal{E}_{1} and \mathcal{E}_{2} are pseudoconcave sets in D, then so is $\mathcal{E}_{1} \cup \mathcal{E}_{2}$.
2. Let $I=\{\iota\}$ be an index set. If $\mathcal{E}_{\iota}(\iota \in I)$ is a family of pseudoconcave sets in D, then the closure of $\bigcup_{\iota \in I} \mathcal{E}_{l}$ in D is a pseudoconcave set in D.
3. Let $\mathcal{E},(j=1,2 \ldots)$ be a decreasing sequence of pseudoconcave sets in D : i.e., $\mathcal{E}_{j+1} \subset \mathcal{E}$, for all j. Then $\mathcal{E}_{0}:=\bigcap_{j=1}^{x} \mathcal{E}_{j}$ is a pseudoconcave set in D.
4. Let \mathcal{E} be a pseudoconcave set in D. For any r-dimensional complex analytic plane L with $0<r<n, \mathcal{E} \cap L$ is a pseudoconcave set in $D \cap L$ (which we identify with \mathbf{C}^{r}).
5. Let \mathcal{E} be a closed set in D. Suppose that for each $p \in \mathcal{E} \cap D$. there exist a neighborhood δ of p in D and an analytic hypersurface σ_{p} in δ such that $p \in \sigma_{p} \subset \mathcal{E}$. Then \mathcal{E} is a pseudoconcave set in D.
6. Let S be an irreducible analytic hypersurface in a domain $D \subset \mathrm{C}^{n}$ and let \mathcal{E} be a nonempty pseudoconcave set in D. If $\mathcal{E} \subset S$. then $\mathcal{E}=S$. This fact can be proved by use of the continuity theorem of type A.
7. If \mathcal{E} is a pseudoconcave set in D, and T is a biholomorphic mapping of D onto $T(D)$, then $T(\mathcal{E})$ is a pseudoconcave set in $T(D)$.

Let \mathcal{E} be a pseudoconcave set in a domain $D \subset \mathbf{C}^{n}$ and let $p \in \partial \mathcal{E}$. If there exists a neighborhood δ of p in D such that the domain $\delta \backslash(\delta \cap \mathcal{E})$ is strictly pseudoconvex at p, then we say that \mathcal{E} is strictly pseudoconcave at p. If $\delta \backslash(\delta \cap \mathcal{E})$ is a piecewise smooth strictly pseudoconvex domain at p. then we say that \mathcal{E} is a piecewise smooth pseudoconcave set at p. If \mathcal{E} is strictly pseudoconcave (resp., piecewise smooth) at each boundary point of \mathcal{E} in D. then we say that \mathcal{E} is a strictly pseudoconcave (resp., piecewise smooth) set in D. Theorem 4.6 implies that any pseudoconcave set \mathcal{E} in a pseudoconvex domain D can be approximated by a decreasing sequence of piecewise smooth strictly pseudoconcave sets in D.
4.4.2. Hartogs' Theorem. Consider \mathbf{C}^{n+1} as the product of \mathbf{C}^{n} with variables $z=\left(z_{1}, \ldots, z_{n}\right)$ and $\mathbf{C}_{\mathbf{w}}$ with variable u. Let D be a domain in \mathbf{C}^{n} and set $G:=D \times \mathbf{C}_{\boldsymbol{w}}$. Let \mathcal{E} be a pseudoconcave set in G. For each $z^{\prime} \in D$. the fiber of \mathcal{E} over z^{\prime} is defined by

$$
\mathcal{E}\left(z^{\prime}\right):=\left\{w \in \mathbf{C}_{w} \mid\left(z^{\prime}, w\right) \in \mathcal{E}\right\}
$$

We make the assumption that each $\mathcal{E}\left(z^{\prime}\right) . z^{\prime} \in D$. is bounded in \mathbf{C}_{u}.
We prove the following theorem.
Theorem 4.7 (Hartogs). Let \mathcal{E} be a pseudoconcave set in $G=D \times \mathbf{C}_{u}$, where D is a domain in \mathbf{C}^{n}. If each fiber $\mathcal{E}(z), z \in D$, consists of exactly one point $\zeta(z)$ in C_{u}, then $z \rightarrow \zeta(z)$ is a holomorphic function of z in D.

Proof. Let $z_{0} \in D$ and let $p_{0}=\left(z_{0}, \zeta\left(z_{0}\right)\right) \in \mathcal{E}$. Since $G \backslash \mathcal{E}$ satisfies the continuity theorem of type A at p_{0}, it follows that $\zeta(z)$ is continuous at z_{0} in D. We now show that $\zeta(z)$ is holomorphic at z_{0} in D.

Fix a point $w_{0} \in \mathbf{C}_{w}$ such that $w_{0} \neq \zeta\left(z_{0}\right)$. We take a ball δ in D centered at z_{0} such that $\zeta(z) \neq w_{0}$ for $z \in \delta$. We set

$$
h(z):=\log \left|\zeta(z)-u_{0}\right| . \quad z \in \delta .
$$

Since $\left|\zeta(z)-w_{0}\right|$ is the Hartogs radius of $D \backslash \mathcal{E}$ with respect to u. Lemma 4.6 implies that $-h(z)$ is a plurisubharmonic function on δ. Consider the following analytic transformation T of $\delta \times\left(\mathbf{C}_{\mathbf{u}} \backslash\left\{w_{0}\right\}\right)$ onto $\delta \times\left(\mathbf{C}_{w^{\prime}} \backslash\{0\}\right)$:

$$
T_{1}: \quad z_{j}=z_{j}(j=1, \ldots, n) . \quad u^{\prime}=\frac{1}{w-u_{0}^{\prime}} .
$$

We set $\omega:=\delta \times \mathbf{C}_{w}$ and $\mathcal{E}^{0}:=T_{1}(\mathcal{E} \cap \omega)$. Then \mathcal{E}^{0} is a pseudoconcave set in ω with the property that each fiber $\mathcal{E}^{0}(z), z \in \delta$. consists of one point $\zeta^{9}(z)$ in $\mathbf{C}_{w^{\prime}}$ with

$$
w^{\prime}=\zeta^{0}(z)=\frac{1}{\zeta(z)-u_{0}} .
$$

Since $\zeta^{0}(z) \neq 0, z \in \delta$, it follows by the same reasoning that $-\log \left(1 /\left|\zeta(z)-u_{0}\right|\right)$ is a plurisubharmonic function on δ. Consequently: $h(z)$ is a pluriharmonic function on δ.

We now take a conjugate pluriharmonic function $k(z)$ of $h(z)$ on δ so that

$$
\xi(z):=h(z)+i k(z), \quad z \in \delta,
$$

is a holomorphic function on δ. Then we form the following automorphism of ω :

$$
T_{2}: z_{j}=z_{j} \quad(j=1, \ldots, n) . \quad u^{\prime \prime}=\left(u-u_{0}\right) e^{-\xi(i)} .
$$

The image $\mathcal{E}^{*}:=T_{2}(\mathcal{E})$ is thus a pseudoconcave set in ω with the property that each fiber $\mathcal{E}^{*}(z)$ consists of one point $\zeta^{*}(z)$ with

$$
w^{\prime \prime}=\zeta^{*}(z)=\left(\zeta(z)-w_{0}\right) e^{-\xi(z)} .
$$

Note that $\left|\zeta^{\circ}(z)\right| \equiv 1$ on δ.
We next fix a point $w^{*} \in \mathbf{C}_{w^{\prime \prime}}$ such that

$$
\left|w^{*}\right|<1, \quad \arg w^{*}=\arg \zeta^{\circ}\left(z_{0}\right) .
$$

Since $\left|\zeta^{*}(z)\right| \equiv 1$ on $\delta,\left|\zeta^{*}(z)-w^{*}\right|$ for $z \in \delta$ attains its minimum at the center z_{0} of δ. On the other hand, Lemma 4.6 again implies that $h^{*}(z):=-\log \left|\zeta^{*}(z)-u^{*}\right|$ is a plurisubharmonic function on δ. It follows that $h^{\boldsymbol{}}(z)$ is constant on δ. This implies, together with the fact that $\left|\zeta^{*}(z)\right| \equiv 1$ on δ, that $\zeta^{*}(z)$ is constant on δ, say $\zeta^{*}(z) \equiv \alpha$. Hence.

$$
\zeta(z)=\alpha e^{\xi(z)}+w_{0}, \quad z \in \delta,
$$

so that $\zeta(z)$ is a holomorphic function on δ.
4.4.3. Preparation Theorem. Let E be a compact set in \mathbf{C}_{w}. We fix an integer $m \geq 2$ and take m points $w_{j}(j=1, \ldots, m)$ in E. We set

$$
V_{m}\left(w_{1} \ldots \ldots w_{m 1}\right):=\sqrt[m!\frac{m}{2}-1 / 2]{\prod_{\nu<\mu}\left|w_{\nu}-u_{\mu}\right|}
$$

and define

$$
D_{m}(E):=\max \left\{V\left(w_{1}, \ldots, w_{m}\right) \mid w_{1}, \ldots, w_{m i} \in E\right\}
$$

the m-th diameter of E. It is easy to verify that

$$
D_{m}(E) \geq D_{m+1}(E) \quad(m=2.3 \ldots) .
$$

Thus the limit

$$
D_{\propto}(E):=\lim _{n=\infty} D_{m}(E)
$$

exists and is called the transfinite diameter of E. ${ }^{10}$
Now let $G=D \times C_{u}$, where D is a domain in C^{n}, and let \mathcal{E} be a closed set in G such that each fiber $\mathcal{E}(z)$ over $z \in D$ is a bounded set in C_{u}. Let $m \geq 2$ be an integer or let $m=x$. For each $z \in D$, we consider the m-th diameter $D_{m}(\mathcal{E}(z))$ of the fiber $\mathcal{E}(z)$. We set $D_{m}(z):=D_{m}(\mathcal{E}(z))$ for $z \in D$.

We have the following theorem.
Theorem 4.8. "If \mathcal{E} is a pseudoconcave set in G, then $\log D_{m}(z)$ ($m=$ $2.3 \ldots . \infty$) is a plurisubharmonic function on D.

Proof. We know that the decreasing limit of a sequence of phrisubharmonic functions on D is a plurisubharmonic function on D and that any pseudoconcave set in G is a decreasing limit of a sequence of piecewise smooth, strictly piseudoconcave sets in G. Thus it suffices to prove the theorem for each fixed finite integer $m \geq 2$ under the assumption that \mathcal{E} is a piecewise smooth strictly pseudoconcave set in G.

Since \mathcal{E} is closed in G. we first note that $\log D_{m}(z)$ is uppersemicontinuous on D. Fix $z^{0}=\left(z_{1}^{0} \ldots \ldots, z_{n}^{0}\right) \in D$. It suffices to show that for any $\left(a_{1} \ldots ., a_{n}\right) \in \mathbf{C}^{n}$ and any sufficiently small $\epsilon_{j}, 0<\varepsilon_{j}<1(j=1 \ldots \ldots, n)$,

$$
\begin{equation*}
\log D_{m}\left(z^{0}\right) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log D_{m}\left(z_{1}^{0}+a_{1} \varepsilon_{1} e^{i \theta} \ldots, z_{n}^{0}+a_{n} \varepsilon_{n} e^{i \theta}\right) d \theta \tag{4.27}
\end{equation*}
$$

We can find m points $u_{\nu}^{0}(\nu=1, \ldots, m)$ in $\mathcal{E}\left(z^{0}\right)$ such that

$$
D_{m}\left(z_{0}\right)=m_{i} \stackrel{m}{2}_{-1}^{-1} \sqrt{\prod_{\nu<\mu}\left|u_{\nu}^{0}-w_{\mu}^{0}\right|}
$$

By the maximum principle we observe that $u_{i}^{0} \in \partial \mathcal{E}\left(z^{0}\right)(\nu=1 \ldots \ldots, m)$. We set $p_{\nu}=\left(z^{0} . w_{\nu}^{0}\right)(\nu=1 \ldots, m)$. Since \mathcal{E} is a piecewise smooth. strictly pseudoconcave set at p_{ν}. we can find an analytic hypersurface S_{ν} in a neighborhood δ_{ν} of p_{ν} in G such that $p_{\nu} \in S_{\nu} \subset \mathcal{E} \cap \delta_{\nu}$. Since $u_{\nu}^{\prime \prime} \in \partial \mathcal{E}\left(z^{11}\right)$ and $\mathcal{E}\left(z^{0}\right)$ is bounded in \mathbf{C}_{15}. it follows from Lemma 2.1 that if we choose a suitably small polydisk $\delta_{0} \times \Delta_{\nu}$ in G centered at p_{ν} where $\delta_{0}=\left\{\left|z_{j}-z_{j}^{0}\right|<r\right\}(j=1 \ldots . n)$ and $\Delta_{\nu}=\left\{\left|w-u_{\nu}\right|<\rho_{\nu}\right\}(\nu=1, \ldots, m)$, then $S_{\nu} \cap\left[\delta_{0} \times\left(\partial \Delta_{\nu}\right)\right]=0$ and S_{ν} in $\dot{\delta}_{0} \times \Delta_{\nu}$ can be written in the form

$$
\begin{equation*}
P_{\nu}\left(z, u-u_{\nu}^{0}\right)=\left(w-u_{i \nu}^{0}\right)^{k_{v}}+a_{1}^{(\nu)}(z)\left(w-w_{v}^{0}\right)^{k_{\nu}} 1+\ldots+a_{\kappa_{i,}}^{(\nu)}(z)=0 \tag{4.28}
\end{equation*}
$$

where P_{ν} has no multiple factors. In this equation. each coefficient $a_{i}^{(\nu)}(z)$ is a holomorphic function on δ_{0} with the property that $a_{1}^{(\nu)}\left(z^{0}\right)=0$. We consider the discriminant $d_{b^{\prime}}(z)$ of $P_{\nu}\left(z, w-w_{\nu}^{0}\right)$ with respect to $w-u_{\nu}^{0}$. and set

$$
\sigma_{\nu}:=\left\{z \in \delta_{0} \mid d_{\nu}(z)=0\right\} \quad \text { and } \quad \delta_{0}^{\prime}=\delta_{0} \backslash\left(\bigcup_{\nu=1}^{m} \sigma_{\nu}\right)
$$

Fix $z^{*} \in \delta_{0}^{\prime}$. We take a single-valued branch $\eta_{\nu}(z)(\nu=1, \ldots m)$ of the algebraic function given by the solution of equation (4.28) on a neighborhood δ^{*} of z^{*} in δ_{0}^{\prime}, and we consider the following vector-valued holomorphic function on δ^{*} :

$$
\eta(z):=\left(\eta_{1}(z) \ldots, \eta_{m}(z)\right) .
$$

[^22]Let γ be any arc in δ_{0}^{\prime} with initial point z^{*} and terminal point Σ. Then $\eta(z)$ can be analytically continued along γ. If we denote the resulting function by $\eta(z)=$ ($\left.\tilde{\eta}_{1}(z) \ldots . \dot{\eta}_{m}(z)\right)$ near \tilde{z}, then each $\tilde{\eta}_{\nu}(z)$ is a branch of the algebraic function given by equation (4.28) in a neighborhood of \tilde{z} in δ_{0}^{\prime}. We form the analytic continuation of $\eta(z)$ over all arcs in δ_{10}^{\prime} with initial point z^{*}. and the resulting function is a bounded, vector-valued function on δ_{0}^{\prime}. We use the same notation

$$
\eta(z)=\left(\eta_{1}(z), \ldots, \eta_{m}(z)\right) \quad \text { on } \delta_{0}^{\prime}
$$

then the function

$$
f(z)=\prod_{1 \leq \nu<\mu \leq m}\left(\eta_{\nu}(z)-\eta_{\mu}(z)\right), \quad z \in \delta_{0}^{\prime}
$$

becomes a bounded, single-valued holomorphic function on $\boldsymbol{\delta}_{0}^{\prime}$. From Riemann's removable singularity theorem, $f(z)$ can be holomorphically extended to δ_{0}. Since $\eta_{\nu}(z) \in \mathcal{E}(z), z \in \delta(\nu=1, \ldots, m)$, and $\eta_{\nu}\left(z^{0}\right)=u_{u}^{0}$, , it follows that

$$
\sqrt[\frac{m(m-11}{2}]{|f(z)|} \leq D_{m}(z), \quad \frac{\frac{m i m_{1}-1}{2}}{z^{2}} \sqrt{\mid f\left(z^{0}\right) i}=D_{m}\left(z^{0}\right)
$$

Since $\frac{2}{m(m-1)} \log |f(z)|$ is a plurisubharmonic function on δ_{0}, these two formulas imply the desired inequality (4.27).
4.4.4. Pluripolar Sets. For a set E in the complex plane C we can canonically define its potential theoretic size. called the logarithmic capacity of E. We summarize the well-known results for the logarithmic capacity in C. If E is compact, this coincides with the transfinite diameter of E. Sets of logarithmic capacity zero coincide with polar sets: a set $E \subset C$ is polar if for each point $z_{0} \in E$ there exists a subharmonic function $u(z) \not \equiv-\infty$ defined on a neighborhood δ of z_{0} with

$$
E \cap \delta \subset\{z \in \delta: u(z)=-\infty\}
$$

This local notion is actually a global one: if E is polar, then one can find $u(i)$ subharmonic in a neighborhood D of $E, u(z) \not \equiv-\infty$, with

$$
E \subset\{z \in D: u(z)=-\infty\}
$$

Indeed. D can be taken to be all of C. Thus if $O(z)$ is a subharmonic function on a domain D in C and the set $E_{\circ}:=\{z \in D \mid \varphi(z)=-\infty\}$ is of positive logarithmic capacity, then $\phi(z) \equiv-\infty$ on D.

For a set E in \mathbf{C}^{n} for $n \geq 2$. we have an analogous notion of pluripolar sets: a set $E \subset \mathbf{C}^{n}$ is pluripolar if for each point $z_{0} \in E$ there exists a plurisubharmouic function $u(z) \not \equiv-\infty$ defined on a neighborhood δ of z_{1} with

$$
E \cap \delta \subset\{z \in \delta: u(z)=-\infty\}
$$

Again, this local notion is a global one: if E is pluripolar, then one can find $u(z)$ plurisubharmonic in a neighborhood D of E with

$$
E \subset\{z \in D: u(z)=-\infty\}
$$

(cf. M. Klimek [34], Theorem 4.7.4). Indeed. D can be taken to be all of C^{n}.
Let $e \subset C^{n}$ and $p \in e$. If for any neighborhood δ of p in \mathbf{C}^{n} and any plurisubharmonic function $\phi(z)$ on δ with $\phi(z)=-\infty$ on $e \cap \delta$ we have $\phi(z) \equiv-\infty$ on δ, then p is called a point of type (β) in e. If p is not of type (β) in e. p is called a
point of type (α) in e. Thus if e consists entirely of points of type (α) in e. then e is a pluripolar set in \mathbf{C}^{n}. In general, we define

$$
\begin{equation*}
e_{3}:=\{p \in e \mid p \text { is of type (} \beta \text {) in } e\} . \tag{4.29}
\end{equation*}
$$

If e is contained in a domain $D \subset C^{n}$, then e_{3} is closed in D, and clearly e_{3} is pluripolar - and hence empty! - if and only if e is pluripolar.

We easily have the following:

1. A countable union of pluripolar sets in \mathbf{C}^{n} is pluripolar.
2. A non-empty open set G in C^{n} is not pluripolar.
3. Let e be a pluripolar set in D, where D is a domain in \mathbf{C}^{n}. If $f(z)$ is a bounded holomorphic function in $D \backslash e$, then $f(z)$ has a holomorphic extension to all of D.
4. The pluripolarity or non-pluripolarity of a set $e \subset \mathrm{C}^{n}$ is not a metric property of e and depends on the complex structure of \mathbf{C}^{n}. For example, any analytic hypersurface S in a domain D in \mathbf{C}^{n} (hence S is real (2n-2)dimensional) is pluripolar in \mathbf{C}^{n}. On the other hand, the set

$$
e=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \mid \Re z_{j}=0(j=1, \ldots, n)\right\}
$$

(which is real n-dimensional) is not pluripolar in \mathbf{C}^{n}. Similarly, the distinguished boundary $e=\left\{\left|z_{j}\right|=1(j=1, \ldots, n)\right\}$ of the unit polydisk in \mathbf{C}^{n}, which is also real n-dimensional, is not pluripolar in \mathbf{C}^{n}.
4.4.5. Oka's First Theorem. We utilize the notion of pluripolar sets to prove the following theorem.

Theorem 4.9 (Oka). Let $G=D \times \mathbf{C}_{u}$. where D is a domain in \mathbf{C}^{n}. Let \mathcal{E} be a pseudoconcave set in G such that each fiber $\mathcal{E}(z)$ for $z \in D$ is bounded in \mathbf{C}_{w}. Define

$$
e:=\left\{z \in D \mid \mathcal{E}(z) \text { consists of a finite number of points in } \mathbf{C}_{u}\right\} \text {. }
$$

If e is not pluripolar, then \mathcal{E} is an analytic hypersurface in G.
Proof. From the continuity theorem of type A it follows that $\mathcal{E}(z) \neq \emptyset$ for each $z \in D$. For an integer $\nu \geq 1$. we let e_{ν} denote the set of points z in e such that the fiber $\mathcal{E}(z)$ consists of at most ν distinct points in \mathbf{C}_{w} so that

$$
e_{1} \subset e_{2} \subset \cdots, \quad e=\bigcup_{\nu=1}^{\infty} e_{\nu} .
$$

Since e is not pluripolar. it follows that some e_{ν} is not pluripolar. We fix $e_{\nu_{0}}$, where $\nu_{0} \geq 1$ is the smallest such integer; thus $e_{\nu_{1}-1}$ is pluripolar (in the case $\nu_{0}=1$. we set $e_{0}:=\emptyset$). We consider the $\left(\nu_{0}+1\right)$-st diameter $D_{\nu_{0}+1}(z)$ of $\mathcal{E}(z), z \in D$. From Theorem 4.8. $\log D_{\nu_{0}+1}(z)$ is a plurisubharmonic function on D. Since $D_{\nu_{0}+1}(z)=$ 0 for $z \in e_{\nu_{0}}$ and $e_{\nu_{0}}$ is not pluripolar. it follows that $\log D_{\nu_{0}+1} \equiv-\infty$ on D. i.e., $e_{\nu_{0}}=D$. We set $D^{\prime}=D \backslash e_{\nu_{11}-1}$ and write $\mathcal{E}(z)=\left\{\xi_{1}(z), \ldots . \xi_{\nu_{0}}(z)\right\}$ for $z \in D^{\prime}$. where $\xi_{i}(z) \neq \xi_{j}(z)(i \neq j)$. Define

$$
\begin{aligned}
P(z, w) & :=\prod_{j=1}^{\nu_{0}}\left[w-\xi_{j}(z)\right] \\
& =u^{\nu_{0}}+a_{1}(z) w^{\nu_{0}-1}+\cdots+a_{\nu_{0}}(z) .
\end{aligned}
$$

We claim that each $a_{3}(z)\left(j=1, \ldots . \nu_{0}\right)$ is a holomorphic function on D^{\prime}.

To verify this, fix $z_{0} \in D^{\prime}$. Using Theorem 4.7, we can find a polydisk δ in D^{\prime} centered at z_{0} such that if we set $\omega:=\delta \times \mathbf{C}_{w}$, then $\mathcal{E} \cap \omega$ can be described by the equations

$$
u=\xi_{j}(z) \quad\left(j=1, \ldots, \nu_{0}\right) .
$$

where each $\xi_{,}(z)$ is a single-valued holomorphic function on δ. Since the $a,(z)(j=$ $\left.1, \ldots, \nu_{0}\right)$ are symmetric functions of $\left\{\xi_{1}(z), \ldots, \xi_{\nu_{0}}(z)\right\}$. it follows that the $a_{j}(z)$ are holomorphic functions on δ and hence on D^{\prime}.

Furthermore, at each point $z^{*} \in e_{\nu_{0}-1}$, we can find a neighborhood δ^{*} of z^{*} in D such that each $a_{j}(z)\left(j=1 \ldots \ldots \nu_{0}\right)$ is bounded on $\delta^{*} \cap D^{\prime}$. Since $e_{\nu_{0}-1}$ is pluripolar, it follows that each $a_{j}(z)$ has a holomorphic extension to δ^{*}, and hence to all of D. Then $P(z, w)$ is a polynomial in u with coefficients that are holomorphic in D; thus $P(z, w)$ is holomorphic in G, and it is easy to see that

$$
\mathcal{E}=\{(z, w) \in G \mid P(z, w)=0\} .
$$

Thus \mathcal{E} is an analytic hypersurface in G.
This theorem gives us a generalization of Theorem 4.7.
Corollary 4.1. Let \mathcal{E} be a pseudoconcave set in $G=D \times \mathbf{C}_{u}$ such that each $\mathcal{E}(z) . z \in D$, is bounded in \mathbf{C}_{u}. Assume that the set of points $z \in D$ such that $\mathcal{E}(z)$ consists of exactly one point in \mathbf{C}_{w} is a non-pluripolar set. Then \mathcal{E} can be described as the set of points

$$
w=\xi(z) . \quad z \in D
$$

where $\xi(z)$ is a single-valued holomorphic function in D.
Furthermore, using Theorem 4.8 in the case $m=\infty$. we obtain the following theorem.

Theorem 4.10 (Yamaguchi). Let \mathcal{E} be a pseudoconcave set in $G=D \times \mathbf{C}_{w}$ such that each $\mathcal{E}(z), z \in D$, is bounded in $\mathbf{C}_{\mathbf{w}}$. Assume that the set of points $z \in D$ such that $\mathcal{E}(z)$ is of logarithmic capacity zero is a non-pluripolar set. Then each $\mathcal{E}(z), z \in D$. is of logarithmic capacity zero.

4.5. Analytic Derived Sets

4.5.1. Definition of Analytic Derived Sets. Let D be a domain in \mathbf{C}^{n} and let \mathcal{E} be a pseudoconcave set in D. Fix $p \in \mathcal{E}$. If there exists a neighborhood δ of p in D such that $\mathcal{E} \cap \delta$ is an analytic hypersurface in δ, then we say that p is a point of \mathcal{E} of the first kind. If $p \in \mathcal{E}$ is not of the first kind, we say that p is of the second kind. We call the set \mathcal{E}^{\prime} of all points $z \in \mathcal{E}$ which are of the second kind the analytic derived set of \mathcal{E}.

Remark 4.7. In standard set-theoretic topolog: given a closed set E in \mathbf{C}^{n}. one considers the subset E^{\prime} of E. called the derived set of E, which is obtained by excluding from E all isolated points of E. Thus the analytic derived set \mathcal{E}^{\prime} of a pseudoconcave set \mathcal{E} may be regarded as a type of analytic modification of the usual derived set E^{\prime} of a closed set E, where we consider "analytic hypersurface points" of \mathcal{E} as isolated points of E.

The following theorem concerning analytic derived sets will be essential in the following sections.

Theorem 4.11 (Oka [43]. Nishino [40]). Let \mathcal{E} be a pseudoconcave set in a domain D in \mathbf{C}^{n}. Then the analytic derived set \mathcal{E}^{\prime} is also a pseudoconcave set in D.

Proof. From the definitios of analytic derived sets, \mathcal{E}^{\prime} is a closed set in D. Fix $z^{n} \in \mathcal{E}^{\prime}$. It suffices to prove that $D \backslash \mathcal{E}^{\prime}$ satisfies the continuity theorem of type B at z^{0}. For simplicity we may assume that z^{0} is the origin 0 in C^{n}. We fix a set $\beta \subset \mathbf{C}^{2}=\mathbf{C}_{z_{n-1}} \times \mathbf{C}_{z_{n},}$ of the form

$$
\beta:\left|z_{n-1}+r\right|^{2}+\left|z_{n}\right|^{2}>r^{2}, \quad\left|z_{n-1}\right|^{2}+\left|z_{n}\right|^{2}<\rho
$$

and we consider the set

$$
B: z_{j}=0 \quad(j=1, \ldots, n-2), \quad\left(z_{n-1}, z_{n}\right) \in B
$$

in \mathbf{C}^{n}. Our goal is to show that $B \not \subset D \backslash \mathcal{E}^{\prime}$.
We remark that the content of the theorem is similar in spirit to that of Theorem 4.2 (Levi's theorem). Indeed, the method of proof will be similar to that of Theorem 4.2.

For the sake of obtaining a contradiction, we assume that $B \subset D \backslash \mathcal{E}^{\prime}$. Recalling the proof of Theorem 4.2, we see that it suffices to deduce a contradiction under the assumption that. if we let l denote the complex line

$$
l: z_{j}=0 \quad(j=1, \ldots, n-1)
$$

in \mathbf{C}^{n}, then the restriction of l to any fixed neighborhood of the origin 0 in D is not contained in the original pseudoconcave set \mathcal{E}. Since $B \subset D \backslash \mathcal{E}^{\prime}$, for any point $p \in B$ we can find a neighborhood δ_{p} of p in \mathbf{C}^{n} such that $\mathcal{E} \cap \delta_{p}$ is an analytic hypersurface in δ_{p} (possibly empty). We thus see that under our assumption about l, for any ρ_{1}, ρ_{2} with $0<\rho_{2}<\rho_{1}<\rho$, the set

$$
\mathcal{E} \cap\left\{\left(0, \ldots, 0, z_{n}\right): \rho_{2} \leq\left|z_{n}\right| \leq \rho_{1}\right\}
$$

consists of a finite number of points in D. Thus we can choose η with $\rho_{2}<\eta<\rho_{1}$ and $\delta>0$ such that

$$
\begin{equation*}
\mathcal{E} \cap\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{j}\right| \leq \delta \quad(j=1, \ldots . n-1),\left|z_{n}\right|=\eta\right\}=0 \tag{4.30}
\end{equation*}
$$

We consider the open polydisk $\Lambda=\Delta \times \Gamma$ centered at 0 in D. where

$$
\Delta:\left|z_{j}\right|<\delta(j=1, \ldots, n-1), \quad \Gamma:\left|z_{n}\right|<\eta
$$

By choosing smaller values of δ and η. if necessary, we may assume that $\Lambda \subset D$. Set $\mathcal{E}_{0}:=\Lambda \cap \mathcal{E}$. It follows from (4.30) that \mathcal{E}_{0} is a pseudoconcave set in $\omega:=\Delta \times C_{z_{n}}$. Fix a point $a>0$ sufficiently close to $z_{n-1}=0$ in $C_{i_{n-1}}$ so that the set

$$
z_{j}=0(j=1, \ldots, n-2), \quad z_{n-1}=a . \quad\left|z_{n}\right| \leq \eta
$$

is contained in $B \cap \Lambda$. Since $B \subset D \backslash \mathcal{E}^{\prime}$, we can choose δ^{\prime} with $0<\delta^{\prime}<a$ such that, setting

$$
\Delta^{\prime}:\left|z_{j}^{\prime}\right| \leq \delta^{\prime} \quad(j=1, \ldots, n-2), \quad\left|z_{n-1}^{\prime}-a\right| \leq \delta^{\prime}
$$

each fiber $\mathcal{E}^{\prime}\left(z_{1}^{\prime}, \ldots, z_{n-1}^{\prime}\right)$ of \mathcal{E}_{0} over $\left(z_{1}^{\prime}, \ldots, z_{n-1}^{\prime}\right) \in \Delta^{\prime}$ consists of a finite number of points in $C_{z_{n}}$. Since Δ^{\prime} is not pluripolar, it follows from Theorem 4.9 that \mathcal{E}_{0} is an analytic hypersurface in ω. Hence $\mathcal{E}_{0}^{\prime}=0$. which contradicts the fact that $0 \in \Lambda \cap \mathcal{E}^{\prime}=\mathcal{E}_{0}^{\prime}$.

We will use the following lemma in the next section. Recall that for a subset e in $\mathbf{C}^{n}, e_{3}:=\{p \in e \mid p$ is of type (β) in $e\}$. Let D be a domain in \mathbf{C}^{n}. For $a=\left(a_{1}, \ldots, a_{n}\right) \in D, r>0$ sufficiently small, $b \in C_{u}$, and $\rho>0$, we let $\Delta_{r}(a)$ denote the polydisk centered at a with radius r in $D \subset C^{n}$ and we let $\gamma_{\rho}(b)$ be the disk centered at b with radius ρ in $\mathbf{C}_{\boldsymbol{w}}$.

Lemma 4.9. Let D be a domain in \mathbf{C}^{n} and let \mathcal{F} be a pseudoconcave set in $G:=D \times \mathbf{C}_{w}$, such that each fiber $\mathcal{F}(z), z \in D$, is bounded in \mathbf{C}_{w}. Let e be a non-pluripolar set in D. Suppose there exists a point $(a, b) \in \mathcal{F}^{\prime}$ (the analytic derived set of \mathcal{F}) such that $a \in e_{B}$ and such that there exists a sequence of circles $c_{\nu}=\left\{|w-b|=\rho_{\nu}\right\}(\nu=1,2 \ldots)$ in \mathbf{C}_{v} with $\rho_{\nu} \rightarrow 0(\nu \rightarrow \infty)$ such that $c_{\nu} \cap \mathcal{F}(a)=0$. Then for each $r>0$ and $\rho>0$, there exists at least one point $z^{\prime} \in \Delta_{r}(a) \cap e_{3}$ such that $\mathcal{F}\left(z^{\prime}\right) \cap \gamma_{\rho}(b)$ contains infinitely many distinct points in $\mathbf{C}_{w^{\prime}}$.

Proof. The proof is by contradiction. Thus we assume that there exist $r>0$ and $\rho>0$ such that for each $z \in \Delta_{r}(a) \cap e_{\beta}$, the set $\mathcal{F}(z) \cap \gamma_{\rho}(b)$ contains at most finitely many distinct points in \mathbf{C}_{u}. We take a sufficiently large integer ν such that the radius $\rho_{\nu}>0$ of the circle c_{ν} is smaller than ρ. We let γ_{ν} denote the disk bounded by c_{ν}; then by hypothesis $\left(\partial \gamma_{\nu}\right) \cap \mathcal{F}(a)=0$. We can find $r_{0}>0$ with $r_{0}<r$ such that $\left(\partial \gamma_{\nu}\right) \cap \mathcal{F}(z)=0$ for all $z \in \Delta_{r_{0}}(a)$. Let $\omega:=\Delta_{r_{0}}(a) \times \gamma_{\nu}$, a polydisk centered at (a, b) in G. Since $e_{\beta} \cap \Delta_{r_{n}}(a)$ is not pluripolar, it follows from Theorem 4.9 that $\mathcal{F} \cap \omega$ is an analytic hypersurface in ω. Thus, $(a, b) \notin \mathcal{F}^{\prime}$, which is a contradiction.

The hypothesis in Lemma 4.9 does not imply that $\mathcal{F}^{\prime}(a)$ contains infinitely many distinct points in $\mathbf{C}_{\boldsymbol{u}}$. For example, let D be a domain in \mathbf{C}_{z} and consider the pseudoconcave set \mathcal{F} in $D \times \mathbf{C}_{w} \subset \mathbf{C}^{2}$ defined as

$$
\begin{equation*}
\mathcal{F}:=\left[\bigcup_{j=1}^{\infty}\{(z, w) \mid z \in D, w=1 / j\}\right] \cup\{(z, w) \mid z \in D, w=0\} \tag{4.31}
\end{equation*}
$$

Then $(0,0) \in \mathcal{F}^{\prime}$ and $\mathcal{F}^{\prime}(0)=\{0\}$, although each $\mathcal{F}^{\prime}(z), z \in D$ with $z \neq 0$ contains infinitely many points in $\mathbf{C}_{\boldsymbol{w}}$.
4.5.2. Kernel of a Pseudoconcave Set. We now define higher order derived sets of pseudoconcave sets in \mathbf{C}^{n} in order to generalize Theorem 4.9 as Theorem 4.12 below.

We let \mathcal{N} denote the set of all ordinal numbers up until the first uncountable ordinal Ω.; i.e., \mathcal{N} is the set of all so-called countable ordinals. We will only need the following properties of \mathcal{N} :

1. \mathcal{N} is a well-ordered set; i.e.,
(i) there is a total order relation on \mathcal{N}, which we denote by \leq; i.e., \leq is transitive, anti-symmetric, and, for any $\alpha, \beta \in \mathcal{N}$, either $\alpha \leq \beta$ or $\beta \leq \alpha$;
(ii) every non-empty subset S of \mathcal{N} contains a minimal element; i.e., there exists an element $\alpha \in S$ such that $\alpha \leq \beta$ for all $\beta \in S$.
2. Each $\alpha \in \mathcal{N}$ has a successor, which we denote by $\alpha+1$, in \mathcal{N}, i.e., $\alpha<\alpha+1$ and $\alpha+1 \leq \beta$ for all $\alpha<\beta$. In particular, $\{0,1,2 \ldots\} \subset \mathcal{N}$ since $0<1<$ $2<\ldots$.
3. For any increasing sequence $\left\{\alpha_{n}\right\}_{n}$ in \mathcal{N}, i.e.,

$$
\alpha_{1}<\alpha_{2}<\ldots,
$$

$\alpha:=\sup \left\{\alpha_{n}: n=1,2, \ldots\right\}$ exists and is a member of \mathcal{N}.
4. For each $\alpha \in \mathcal{N}$, define

$$
I(\alpha):=\{\gamma \in \mathcal{N} \mid \gamma<\alpha\},
$$

which is called the initial interval determined by α. Then $I(\alpha)$ is at most countable.

We note that \mathcal{N} is not countable. We may divide \mathcal{N} into two distinct parts \mathcal{N}^{\prime} and $\mathcal{N}^{\prime \prime}$. where

$$
\begin{aligned}
\mathcal{N}^{\prime} & =\{\alpha \in \mathcal{N} \mid \text { there exists } \beta \in \mathcal{N} \text { such that } \alpha=\beta+1\}, \\
\mathcal{N}^{\prime \prime} & =\mathcal{N} \backslash \mathcal{N}^{\prime \prime} .
\end{aligned}
$$

The elements belonging to \mathcal{N}^{\prime} are said to be successor ordinals. while the elements of $\mathcal{N}^{\prime \prime}$ are said to be limit ordinals.

Let E be a compact set in \mathbf{C}^{n}. We let E^{\prime} denote the usual derived set of E; i.e., E^{\prime} is the subset of E consisting of all non-isolated points of E. We define $E^{(\alpha)}$ for each $\alpha \in \mathcal{N}$ by transfinite induction as follows. First define $E^{(0)}:=E$. If $0<\alpha$ and $E^{(\gamma)}$ has been defined for each $\gamma \in I(\alpha)$, then we define $E^{(\alpha)}$ by:
(i) $E^{(\alpha)}:=\left[E^{(\beta)}\right]^{\prime}$ if $\alpha=\beta+1$ for some $\beta<\alpha$, i.e., if α is a successor ordinal;
(ii) $E^{(\alpha)}:=\bigcap\left\{E^{(\gamma)}: \gamma<\alpha\right\}=\bigcap_{I(\alpha)} E^{(\gamma)}$ if α is a limit ordinal.

It now follows that $E^{(\alpha)}$ is well-defined for each $\alpha \in \mathcal{N}$. Each $E^{(\alpha)}, \alpha \in \mathcal{N}$, is a compact subset of E with $E^{(\alpha)} \subset E^{(3)}$ for $\beta<\alpha$. We call

$$
E^{(\Omega)}:=\bigcap_{\alpha \in V^{V}} E^{(\alpha)} \quad \text { in } \mathbf{C}^{n}
$$

the kernel of the compact set E.
Proposition 4.4. Let E be a compact set in \mathbf{C}^{n}. Then:

1. There exists a unique $\alpha_{0} \in \mathcal{N}$ such that
(1) $E^{\left(\alpha_{0}\right)}=E^{(\Omega)}$, and hence $E^{(\gamma)}=E^{\left(\alpha_{0}\right)}$ for all $\gamma \in \mathcal{N}$ with $\alpha_{0}<\gamma$;
(2) $E^{(\gamma+1)}$ is a proper subset of $E^{(\gamma)}$ for each $\gamma \in I\left(\alpha_{0}\right)$;
(3) $E=E^{(\Omega)} \cup\left(\bigcup_{\gamma \in \ell_{\left(\alpha_{0}\right)}}\left[E^{(\gamma)}-E^{(\gamma+1)}\right]\right)$. and this is a disjoint union.
2. E is countable if and only if $E^{(1)}=\emptyset$.

Proof. The proof of (1), (2) and (3) in 1 follows from the fact that α_{0} is the smallest (i.e., first) element in \mathcal{N} such that $E^{\left(\alpha_{0}\right)}=E^{\left(a_{0}+1\right)}$. which is easily proved by the above properties about \mathcal{N}.

To prove assertion 2. we first assume that $E^{(\Omega)}=\emptyset$. We have from (3) in 1,

$$
E=\bigcup_{\imath \in I\left(a_{0}\right)}\left[E^{(\imath)} \backslash E^{(\imath+1)}\right] .
$$

Now $I\left(\alpha_{0}\right)$ is countable, and since $E^{(\gamma)} \backslash E^{(\gamma+1)}$ consists of the isolated points of $E^{(\gamma)}$, each $E^{(\gamma)} \backslash E^{(\gamma+1)}$ is at most a countable set. Therefore E is countable.

To prove the converse, we assume that $E^{(\Omega)}=E^{\left(a_{0}\right)} \neq \emptyset$. Then $E^{(\Omega)}$ is a perfect subset of E; i.e., $E^{(\Omega)}$ has no isolated points. It follows fron the Baire category theorem in \mathbf{C}^{n} that $E^{(\Omega)}$ must be uncountable and hence E is uncountable.

We return to the case of pseudoconcave sets. Let D be a domain in \mathbf{C}^{n} and let \mathcal{E} be a pseudoconcave set in $G:=D \times \mathbf{C}_{w}$ with the property that each fiber $\mathcal{E}(z), z \in D$, is bounded in \mathbf{C}_{w}. In order to define the analytic kernel $\mathcal{E}^{(\Omega)}$ of \mathcal{E} we first define $\mathcal{E}^{(a)}$ for each $a \in \mathcal{N}$.

We first set $\mathcal{E}^{(0)}:=\mathcal{E}$. Given $\alpha \in \mathcal{N}$ with $0<\alpha$, we assume that $\mathcal{E}^{(\gamma)}$ has been defined as a pseudoconcave set in G for each $\gamma \in I(\alpha)$. Then if α is a successor ordinal, i.e., if there exists $\beta \in \mathcal{N}$ with $\alpha=\beta+1$, we define

$$
\mathcal{E}^{(\alpha)}:=\left[\mathcal{E}^{\left(3_{1}\right.}\right]^{\prime}
$$

(here A^{\prime} denotes the analytic derived set of a pseudoconcave set A in G). If α is a limit ordinal, we define

$$
\mathcal{E}^{(a)}:=\bigcap\left\{\mathcal{E}^{(\gamma)}: \gamma<\alpha\right\}=\bigcap_{\curlyvee \in I(\alpha)} \mathcal{E}^{(\gamma)} .
$$

Using Theorem 4.11 and property 3 in 4.4.1, we see that $\mathcal{E}^{(a)}$ is a pseudoconcave set in G for each $a \in \mathcal{N}$. Note that $\mathcal{E}^{(a)} \subset \mathcal{E}^{(3)}$ for $\beta<\alpha$. Finally; we call

$$
\mathcal{E}^{(\Omega)}:=\bigcap_{a \in \cdot V^{\cdot}} \mathcal{E}^{(a)}
$$

the analytic kernel of the pseudoconcave set \mathcal{E}.
Proposition 4.5 (cf. Baire [1]). Let D be a domain in C^{n} and let \mathcal{E} be a pseudoconcave set in $G:=D \times \mathbf{C}_{u}$, with the property that each fiber $\mathcal{E}(z), z \in D$, is bounded in $\mathbf{C}_{\mathbf{w}}$. Then there exists a unique $\alpha_{0} \in \mathcal{N}$ such that
(1) $\mathcal{E}^{\left(a_{0}\right)}=\mathcal{E}^{(\Omega)}$. and hence $\mathcal{E}^{(\gamma)}=\mathcal{E}^{\left(\alpha_{0}\right)}$ for all $\gamma \in \mathcal{N}$ with $\alpha_{0}<\gamma$;
(2) $\mathcal{E}^{(\gamma+1)}$ is a proper subset of $\mathcal{E}^{(\gamma)}$ for each $\gamma \in I\left(\alpha_{0}\right)$; and
(3) $\mathcal{E}=\mathcal{E}^{(\Omega)} \cup\left(U_{\gamma \in I\left(a_{0}\right)}\left[\mathcal{E}^{(\gamma)}-\mathcal{E}^{(\imath+1)}\right]\right)$, and this is a disjoint union.

Proof. The proof is similar to that of the preceding proposition.
In particular. from (1) it follows that $\mathcal{E}^{(\Omega)}$ is a pseudoconcave set in G which satisfies $\left[\mathcal{E}^{(\Omega)}\right]^{\prime}=\mathcal{E}^{(1)}$.
4.5.3. Oka's Second Theorem. We now state and prove a result for a pseudoconcave set \mathcal{E} analogous to the second part of Proposition 4.4 for a compact set E in \mathbf{C}^{n}.

Theorem 4.12 (Oka). Let D be a domain in C^{n} and let \mathcal{E} be a pseudoconcave set in $G:=D \times \mathbf{C}_{w}$ with the property that each fiber $\mathcal{E}(z), z \in D$. is bounded in C_{u}.

1. Suppose that $\mathcal{E}^{(\Omega)}=0$. Then each fiber $\mathcal{E}(z), z \in D$, is a countable set in \mathbf{C}_{w}. Furthermore, for any point $p \in \mathcal{E}$, there exists an analytic hypersurface σ defined in a neighborhood of p which is contained in \mathcal{E} and which contains the point p.
2. If the subset e of D defined by

$$
e=\left\{z \in D \mid \mathcal{E}(z) \text { is a countable set in } \mathbf{C}_{w}\right\}
$$

is not pluripolar, then $\mathcal{E}^{(\Omega)}=0$.
Proof. To prove 1, we assume that $\mathcal{E}^{(\Omega)}=0$ and we fix $z_{0} \in D$. Note that for any pseudoconcave set \mathcal{A} in G, we have $\left[\mathcal{A}\left(z_{0}\right)\right]^{\prime} \subset \mathcal{A}^{\prime}\left(z_{0}\right)$ (here, on the left-hand side we are taking the set-theoretic derived set of the fiber $\mathcal{A}\left(z_{0}\right)$; on the righthand side we are taking the fiber over z_{0} of the analytic derived set of \mathcal{A}). Hence
$\left[\mathcal{E}\left(z_{0}\right)\right]^{(\alpha)} \subset \mathcal{E}^{(\alpha)}\left(z_{0}\right)$ for each $\alpha \in \mathcal{N}$; thus $\mathcal{E}^{(\Omega)}\left(z_{0}\right)=\left[\mathcal{E}\left(z_{0}\right)\right]^{(\Omega)}=\emptyset$. It follows from the second part of Proposition 4.4 that $\mathcal{E}\left(z_{0}\right)$ is countable.

Fix $p \in \mathcal{E}$. From (3) of Proposition 4.5 we can find a $\gamma \in I\left(\alpha_{0}\right)$ such that $p \in \mathcal{E}^{(\uparrow)} \backslash \mathcal{E}^{(\imath+1)}$. Therefore there exists an analytic hypersurface σ defined in a neighborhood δ in G such that $p \in \sigma \subset \mathcal{E}^{(\gamma)} \subset \mathcal{E}$; hence 1 is proved.

We prove 2 by contradiction. Thus we assume that $\mathcal{E}^{(\Omega)} \neq \emptyset$. Let e_{3} be the set of all points $z \in e$ of type (β). Thus e_{B} is a closed non-pluripolar set in D.

Fix $z^{(0)} \in e_{3}$ and $u^{(0)} \in \mathcal{E}^{(\Omega)}\left(z^{(0)}\right)$. Since $\mathcal{E}^{(\Omega)}=\left[\mathcal{E}^{(\Omega)}\right]^{\prime}$ and since the fiber $\mathcal{E}^{(\Omega)}\left(z^{(0)}\right) \subset \mathcal{E}\left(z^{(0)}\right)$ is a closed countable set in C_{u}. we can apply Lemma 4.9 with $\mathcal{F}=\mathcal{E}^{(\Omega)}, a=z^{(0)}, b=w^{(0)}, r=r_{0}=1$, and $\rho=\rho_{0}=1$ to obtain $z^{(1)} \in$ $e_{3} \cap \Delta_{r_{0}}\left(z^{(0)}\right)$ such that $\mathcal{E}^{(\Omega)}\left(z^{(1)}\right) \cap \gamma_{\rho_{0}}\left(w^{(0)}\right)$ contains infinitely many distinct points in $\mathbf{C}_{w^{\prime}}$ (recall that $\gamma_{\rho_{0}}\left(w^{(0)}\right)$ denotes the disk of radius ρ_{0} centered at $w^{(0)}$). We choose two of these points $w_{\mu_{1}}^{(1)}\left(\mu_{1}=0,1\right)$, and we take disjoint disks $\gamma_{\rho_{1}}\left(w_{\mu_{1}}^{(1)}\right)$ centered at $w_{\mu_{1}}^{(1)}$ with radius ρ_{1} which are contained in our original disk $\gamma_{\rho_{0}}\left(w^{(0)}\right)$; i.e.,

$$
\gamma_{\rho_{1}}\left(w_{0}^{(1)}\right) \cap \gamma_{\rho_{1}}\left(w_{1}^{(1)}\right)=0, \quad \gamma_{\rho_{1}}\left(w_{0}^{(1)}\right) \cup \gamma_{\rho_{1}}\left(w_{1}^{(1)}\right) \subset \subset \gamma_{\rho_{0}}\left(u^{(0)}\right)
$$

For each $\mu_{1}=0.1$, we can again apply Lemma 4.9 with $\mathcal{F}=\mathcal{E}^{(\Omega)}, a=$ $z^{(1)}, b=w_{\mu_{1}}^{(1)}, r=r_{1}=1 / 2$, and $\rho=\rho_{1}<1 / 2$. We obtain $z^{(2)} \in e_{3} \cap \Delta_{r_{1}}\left(z^{(1)}\right)$ and two distinct points $w_{\mu_{1}, \mu_{2}}^{(2)}\left(\mu_{2}=0,1\right)$. For each $\mu_{2}=0,1$, we again take a disk $\gamma_{\rho_{2}}\left(w_{\mu_{2}, \mu_{2}}^{(2)}\right)$ centered at $w_{\mu_{1}, \mu_{2}}^{(2)}$ such that

$$
\gamma_{\rho_{2}}\left(w_{\mu_{1}, 0}^{(2)}\right) \cap \gamma_{\rho_{2}}\left(w_{\mu_{1}, 1}^{(2)}\right)=0, \quad \gamma_{\rho_{2}}\left(w_{\mu_{1}, 0}^{(2)}\right) \cup \gamma_{\rho_{2}}\left(w_{\mu_{1}, 1}^{(2)}\right) \subset \subset \gamma_{\rho_{1}}\left(w_{\mu_{1}}^{(1)}\right)
$$

We inductively repeat this procedure to obtain the countable subset

$$
\mathcal{K}:=\left\{\left(z^{(l)}, w_{\mu_{1}, \ldots, \mu_{l}}^{(l)}\right) \in \mathcal{E}^{(\Lambda 1)} \mid l=1,2 \ldots: \mu_{h}=0,1 ; h=1, \ldots . l\right\}
$$

of $\mathcal{E}^{(\Omega)}$ which satisfies the following conditions:
(i) Each $z^{(l)}(l=1.2, \ldots)$ belongs to e_{3} and the limit $z^{(*)}:=\lim _{l \rightarrow \infty} z^{(l)}$ exists; hence $z^{(*)} \in e_{B}$.
(ii) For each $z^{(l)}(l=1,2, \ldots)$, we can find 2^{l} distinct points $u_{\mu_{1} \ldots . \mu_{l}}^{(l)}\left(\mu_{h}=\right.$ $0,1 ; h=1, \ldots, l)$ which belong to $\mathcal{E}^{(\Omega)}\left(z^{(l)}\right)$.
(iii) For each $l=1,2, \ldots$, we can find 2^{l} disjoint disks $\gamma_{\mu_{l}}^{(l)}\left(w_{\mu_{1} \ldots, \mu_{l}}^{(l)}\right)$ centered at $w_{\mu_{1} \ldots, \mu_{l}}^{(l)}$ with radius $\rho_{l}\left(0<\rho_{l}<1 / 2^{l}\right)$ in C_{w} such that

$$
\gamma_{\rho_{l}}^{(l)}\left(w_{\mu_{1} \ldots, \mu_{\mathrm{l}}}^{(l)}\right) \subset \subset \gamma_{\rho_{l-1}}^{(l-1)}\left(w_{\mu_{1} \ldots \ldots, \mu_{l-1}}^{(l-1)}\right) \quad\left(\mu_{l}=0,1\right)
$$

Since $\mathcal{E}^{(\Omega)}$ is closed in G, the set \mathcal{K}_{1} of all accumulation points of \mathcal{K} is contained in $\mathcal{E}^{(\Omega)}$. By condition (i), \mathcal{K}_{1} lies over $z^{(\cdot)}$, and (iii) implies that the fiber $\mathcal{K}_{1}\left(z^{(*)}\right)$ is uncountable (in fact, its cardinality is equal to that of the real number system R). This contradicts the fact that $z^{(*)} \in e_{3} \subset e$, since $\mathcal{K}_{1}\left(z^{(*)}\right) \subset \mathcal{E}\left(z^{(*)}\right)$ and $\mathcal{E}\left(z^{(\cdot)}\right)$ is countable. Consequently $\mathcal{E}^{(\Omega)}=\emptyset$, which proves Theorem 4.12.

We make a remark on 1 of Theorem 4.12. Part of the conclusion is that there exists an analytic hypersurface σ defined in a neighborhood δ of p which is contained in \mathcal{E} and which contains the point p; i.e.,

$$
\sigma \subset \mathcal{E} \cap \delta
$$

If we assume the fibers $\mathcal{E}(z)$ are discrete, then we can get

$$
\sigma=\mathcal{E} \cap \delta
$$

Precisely, let \mathcal{E} be a pseudoconcave set in $D \times \mathbf{C}_{u}$. If each fiber $\mathcal{E}(z), z \in D$, is a discrete subset of \mathbf{C}_{u}, then for any point $p=\left(z_{0}, w_{0}\right) \in \mathcal{E}$, there exists an analytic hypersurface σ defined in a neighborhood of p such that $\sigma=\mathcal{E} \cap \delta$.

To verify this, fix $p=\left(z_{0}, w_{0}\right) \in \mathcal{E}$. Since $\mathcal{E}\left(z_{0}\right)$ is discrete, we can choose $r>0$ sufficiently small so that the circle $z=z_{0},\left|w-w_{0}\right|=r$ does not intersect \mathcal{E}. Since \mathcal{E} is closed, we can choose $\eta>0$ sufficiently small so that the intersection of \mathcal{E} with the polydisk $\delta:\left|z-z_{0}\right|<\eta,\left|w-w_{0}\right|<r$ has the properties that

1. $\mathcal{E} \cap\left\{\left|z-z_{0}\right|<\eta,\left|w-u_{0}\right|=r\right\}=\emptyset$, and
2. for $\left|z-z_{0}\right|<\eta$, the fiber $\mathcal{E}(z)$ is finite.

Applying Theorem 4.9 to $\mathcal{E} \cap \delta$, we conclude that $\mathcal{E} \cap \delta$ coincides with an analytic hypersurface σ in δ.

If we only assume the fibers $\mathcal{E}(z)$ are countable but not necessarily discrete, the conclusion is not true. For example, consider the pseudoconcave set \mathcal{F} in $D \times \mathbf{C}_{u}$ from (4.31).
4.5.4. Thullen's Theorem. Using analytic derived sets, we shall prove the following theorem on analytic continuation of analytic sets. ${ }^{12}$

Theorem 4.13 (Thullen). Let \mathcal{E} be a pure r-dimensional analytic set in a do$\operatorname{main} D$ in $\mathbf{C}^{n}(n \geq 2)$. Let \mathcal{F} be an analytic set in $D^{\prime}=D \backslash \mathcal{E}$. If each irreducible component of \mathcal{F} has dimension greater than or equal to r and if \mathcal{F} can be analytically continued to at least one point of each irreducible component of \mathcal{E}, then \mathcal{F} can be analytically continued to all points of \mathcal{E}. and the closure $\overline{\mathcal{F}}$ of \mathcal{F} in D is an analytic set in D.

Proof. From Theorem 2.5 we may assume that \mathcal{F} is pure r-dinensional and that \mathcal{E} is irreducible in D (but \mathcal{F} need not be irreducible in D).

We first consider the case when $r=n-1$; thus \mathcal{E} is an analytic hypersurface in D and \mathcal{F} is an analytic hypersurface in D^{\prime}. Then $S:=\mathcal{E} \cup \mathcal{F}$ is a closed. pseudoconcave set in D (using 5 in section 4.4.1). Thus the analytic derived set S^{\prime} of S in D is contained in \mathcal{E}. Since \mathcal{F} can be analytically continued to at least one point p of \mathcal{E}, we can find a neighborhood δ of p such that $S^{\prime} \cap \delta=0$. It follows from 6 in section 4.4.1 that $S^{\prime}=0$. This means that \mathcal{F} can be analytically continued to all points of \mathcal{E} and implies that the closure $\overline{\mathcal{F}}$ of \mathcal{F} in D is an analytic set in D.

In the case when $1 \leq r<n-1$. we choose complex coordinates (z_{1}, \ldots, z_{n}) which satisfy the Weierstrass condition at each point of \mathcal{E} and \mathcal{F} (Theorem 2.3). Fix $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{E}$. We let $D(a), \mathcal{E}(a)$, and $\mathcal{F}(a)$ denote the sections of D, \mathcal{E}. and \mathcal{F} over the $(n-r)$-dimensional plane $z_{j}=a_{j}(j=1 \ldots . r)$. Then $\mathcal{D}(a)$ is a domain in $\mathbf{C}^{n-r}=\mathbf{C}_{z_{r+1}} \times \ldots \times \mathbf{C}_{z_{n}}, \mathcal{E}(a)$ consists of isolated points in $D(a)$, and $\mathcal{F}(a)$ consists of isolated points in $D(a) \backslash \mathcal{E}(a)$. More precisely, $\mathcal{F}(a)$ may have accumulation points in D, but these points will lie in $\mathcal{E}(a)$. We choose $\eta>0$ and then $\rho>0$ sufficiently small so that, if we let $\Lambda_{(a)}=\Delta_{(a)} \times \Gamma_{(a)}$ denote the polydisk centered at a in D given by

$$
\begin{array}{ll}
\Delta_{(a)}:\left|z_{j}-a_{j}\right| \leq \rho & (j=1 \ldots, r) \\
\Gamma_{(a)}:\left|z_{k}-a_{k}\right| \leq \eta & (k=r+1, \ldots, n)
\end{array}
$$

[^23]then $\mathcal{E}(a) \cap \Gamma_{(a)}$ consists of only one point $\left(a_{r+1}, \ldots, a_{n}\right)$ and
$$
\left[\Delta_{(a)} \times\left(\partial \Gamma_{(a)}\right)\right] \cap(\mathcal{E} \cup \mathcal{F})=\emptyset .
$$

We set

$$
\mathcal{E}_{(a)}:=\mathcal{E} \cap \Lambda_{(a)}, \quad \mathcal{F}_{(a)}:=\mathcal{F} \cap \Lambda_{(a)} .
$$

In each complex plane $C_{z_{k}}(k=r+1 \ldots, n)$, we let $\Gamma_{(a)}^{k}$ denote the disk $\left|z_{k}-a_{k}\right| \leq$ η centered at a_{k}, i.e., $\Gamma_{(a)}=\Gamma_{(a)}^{(1)} \times \cdots \times \Gamma_{(a)}^{(n)}$, and we define the polydisk

$$
\Lambda_{(a)}^{k}:=\Delta_{(a)} \times \Gamma_{(a)}^{k}
$$

centered at $\left(a_{1}, \ldots, a_{r}, a_{k}\right)$ in $\mathbf{C}^{r+1}=\mathbf{C}_{z_{1}} \times \cdots \times \mathbf{C}_{z_{r}} \times \mathbf{C}_{z_{k}}$. For each $k=$ $r+1, \ldots, n$, we have

$$
\left[\Delta_{(a)}^{k} \cap \partial\left(\Gamma_{(a)}^{r+1} \times \cdots \times \widehat{\Gamma_{(a)}^{k}} \times \cdots \times \Gamma_{(a)}^{n}\right)\right] \cap(\mathcal{E} \cup \mathcal{F})=\emptyset
$$

(where \widehat{A} means that we omit A). From Proposition 2.3 it follows that the projection $\mathcal{E}_{(a)}^{k}$ of the analytic set $\mathcal{E}_{(a)}$ onto $\Lambda_{(a)}^{k}$ is an analytic hypersurface in $\Lambda_{(a)}^{k}$. By taking a linear coordinate transformation which is sufficiently close to the identity, if necessary, we may impose the assumption (*) that there exists at least one point $z^{j}=\left(z_{1}^{j} \ldots, z_{n}^{j}\right)$ on each irreducible component $\mathcal{F}_{(a)}^{j}(j=1.2, \ldots)$ of $\mathcal{F}_{(a)}$ such that $\left(z_{1}^{j}, \ldots, z_{r}^{j}, z_{k}^{j}\right) \notin \mathcal{E}_{(a)}^{k}$ for each $k=r+1, \ldots, n$. The projection $\mathcal{F}_{(a)}^{k}$ of the analytic set $\mathcal{F}_{(a)}$ in $\Lambda_{(a)} \backslash \mathcal{E}_{(a)}$ onto $\Lambda_{(a)}^{k}$ is an analytic hypersurface in $\Lambda_{(a)}^{k} \backslash \mathcal{E}_{(a)}^{k}$ (to be precise, the non-empty set $\mathcal{F}_{(a)}^{k} \backslash \mathcal{E}_{(a)}$ is analytic in $\left.\Lambda_{(a)} \backslash \mathcal{E}_{(a)}\right)$. We note that if $\mathcal{F}_{(a)}$ can be analytically continued to all points of $\mathcal{E}_{(a)}$, then each $\mathcal{F}_{(a)}^{k}(k=r+1, \ldots, n)$ can be analytically continued to all points of $\mathcal{E}_{(a)}^{k}$. The converse is also true under the assumption (*) from the definition of an analytic set (cf. Theorem 2.2). Hence, using the case when $r=n-1$, we see that if $\mathcal{F}_{(a)}$ can be analytically continued to at least one point of $\mathcal{E}_{(a)}$, then $\mathcal{F}_{(a)}$ can be analytically continued to all points of $\mathcal{E}_{(a)}$ in $\Lambda_{(a)}$. Thus if we set

$$
\mathcal{E}_{0}:=\{z \in \mathcal{E} \mid \mathcal{F} \text { can be analytically continued to the point } z\}
$$

then \mathcal{E}_{0} is a non-empty open subset without relative boundary in \mathcal{E}. Since \mathcal{E} is irreducible, we have $\mathcal{E}_{0}=\mathcal{E}$. Thus the theorem is proved in the case when $1 \leq r<$ $n-1$.

Isolated essential singular points Let D be a domain in C^{n}. Let \mathcal{E} be an analytic hypersurface in D, and let $f(z)$ be a holomorphic function in $D \backslash \mathcal{E}$. Fix $p \in \mathcal{E}$. If $f(z)$ cannot be extended holomorphically or meromorphically to p, then we say that p is an essential singular point of $f(z)$. If \mathcal{E} is irreducible and if at least one point p of \mathcal{E} is an essential singular point of $f(z)$, then all points of \mathcal{E} are essential singular points of $f(z)$. This fact follows immediately from Theorems 4.1 and 4.2. Moreover, we have the following result.

Corollary 4.2. Let \mathcal{E} be an irreducible analytic hypersurface in a domain D in \mathbf{C}^{n} and let $f(z)$ be a holomorphic function in $D \backslash \mathcal{E}$. Assume that $f(z)$ has at least one essential singular point p on \mathcal{E}. Then for any complex number $a \in \mathbf{C}$, with at most one exception, the analytic hypersurface defined by

$$
S_{a}:=\{z \in D \backslash \mathcal{E}: f(z)=a\}
$$

cannot be analytically continued to any point of \mathcal{E}.

Proof. We prove this by contradiction. Hence assume that there exist at least two distinct complex numbers $a_{i}(i=1,2)$ such that there exists at least one point b_{i} on \mathcal{E} to which $S_{a_{1}}$ can be analytically continued. Thullen's theorem implies that the closure Σ_{i} of S_{a}, in D is an analytic hypersurface in D. Therefore, $f(z)$ is a holomorphic function in $D \backslash\left\{\mathcal{E} \cup \Sigma_{1} \cup \Sigma_{2}\right]$ which does not attain the values a_{1} or a_{2}. By Picard's theorem for one complex variable, $f(z)$ can be holomorphically extended to $D \backslash \sigma$, where σ is the analytic set of non-regular points of $\mathcal{E} \cup \Sigma_{1} \cup \Sigma_{2}$ in D. Since $\operatorname{dim} \sigma \leq n-2$, it follows that $f(z)$ is holomorphic on all of D, contradicting our assumption.

CHAPTER 5

Holomorphic Mappings

5.1. Holomorphic Mappings of Elementary Domains

In the theory of functions of one complex variable. conformal mappings and conformal equivalence play an important role. We will analyze the analogous notions in several complex variables.

Let D_{1} and D_{2} be domains in \mathbf{C}^{n}. If there exists a one-to-one holomorphic mapping from D_{1} onto D_{2}. then we say that D_{1} and D_{2} are biholomorphically equivalent. In one complex variable, the Riemann mapping theorem states that all simply connected proper subdomains of \mathbf{C} are biholoınorphically equivalent to the unit disk. However, in \mathbf{C}^{n} for $n \geq 2$, the unit polydisk is not biholomorphically equivalent to the unit ball. This was discovered by H. Poincaré [60]. We give a proof of this fact by elementary methods in the next section.
5.1.1. Schwarz Lemma. We first extend the Schwarz lemma of one complex variable to the case of several complex variables. Let D be a domain in $C^{\prime \prime}(n \geq 2)$ which contains the origin 0 . If the intersection $D \cap l$ of D with a complex line l passing through 0 is always a disk in l centered at the origin. we say that D is of disk type with respect to 0 or that D is completely circled with respect to 0. Equivalently: this means that whenever $\left(z_{1}, \ldots, z_{n}\right) \in D$. then $\left\{\left(t z_{1}, \ldots, t z_{n}\right) \mid\right.$ $|t| \leq 1, t \in C\} \subset D$. For example. balls, polydisks. and, more generally, complete Reinhardt domains are of disk type about their centers.

Let D be a domain in \mathbf{C}^{n}. Fix $r>0$ and consider the homothetic transforination T_{r} of $\mathbf{C}^{\boldsymbol{n}}$ given by

$$
T_{r}: z_{j}^{\prime}=r z_{j} \quad(j=1, \ldots, n)
$$

Setting

$$
D^{(r)}=T_{r}(D)
$$

we have that $D^{(r)}$ is a domain homothetic to D with ratio r. Let $A=\left(a_{j k}\right)_{j, k=1 \ldots . n}$ be a non-singular matrix and define

$$
S_{A}: z=\left(z_{1} \ldots, z_{n}\right) \in \mathbf{C}^{\prime \prime} \rightarrow z^{\prime}=\left(z_{1}^{\prime} \ldots ., z_{n}^{\prime}\right)=A z \in \mathbf{C}^{n}
$$

If D is a domain in C^{n} of disk type about the origin 0 , then $S_{A}(D)$ is also of disk type about 0 . and clearly $S_{A}\left(D^{(r)}\right)=S_{A}(D)^{(r)}$ for any $r>0$. If A is a unitary matrix. we call S_{A} a unitary transformation of C^{n}.

We prove the following generalization of the Schwarz lemma.
Lemma 5.1 (Schwarz lemma). Let D be a domain in \mathbf{C}^{n} which is of disk type about the origin 0. Let $f(z)$ be a holomorphic function in D urith $f(0)=0$. If $|f(z)| \leq M$ on D, then for any $0<r<1$,

$$
|f(z)| \leq M r \quad \text { for } z \in D^{(r)}
$$

Proof. Let $0<r<1$ and let $z^{0} \in D^{(r)}$. We want to show that $\left|f\left(z^{0}\right)\right| \leq M r$. By use of a unitary transformation of C^{n} we may assume $z^{0}=\left(z_{1}^{0}, 0, \ldots, 0\right)$.

Let l be the complex line $l: z_{2}=\cdots=z_{n}=0$ and set $D_{1}:=D \cap l$. We regard D_{1} as a disk centered at $z_{1}=0$ with radius $R>0$ in $C_{z_{2}}$. We restrict $f(z)$ to D_{1}. and set

$$
\phi\left(z_{1}\right):=f\left(z_{1}, 0, \ldots, 0\right), \quad z_{1} \in D_{1} .
$$

Then $\left|\varphi\left(z_{1}\right)\right| \leq M$ on D_{1} and $\phi(0)=0$. Since $\left|z_{1}^{0}\right| \leq r R$, it follows from the Schwarz lemma in one complex variable that $\left|\dot{\phi}\left(z_{1}^{0}\right)\right| \leq M\left|z_{1}^{0}\right| \leq M r$. Thus $\left|f\left(z^{0}\right)\right| \leq$ Mr.

Using this lemma, we will deduce the following result.
Theorem 5.1 (Poincaré). In $\mathbf{C}^{\mathbf{n}}$ for $n \geq 2$, the ball

$$
\mathcal{Q}:\|z\|^{2}:=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}<1
$$

and the polydisk

$$
\Delta:|z|<1 \quad(j=1, \ldots, n)
$$

are not biholomorphically equivalent.
Proof. For the sake of obtaining a contradiction, we assume that there exists a one-to-one holomorphic mapping T from \mathcal{Q} onto Δ. Composing with a linear transformation

$$
z_{j}^{\prime}=\frac{z_{j}-a_{j}}{1-\overline{a_{j}} z_{j}} \quad(j=1 \ldots, n)
$$

which maps the unit disk Δ_{j} in C_{z}, onto itself. we may assume that $T(0)=0$. We shall prove that

$$
\begin{equation*}
T\left(\mathcal{Q}^{(r)}\right)=\Delta^{(r)} \text { for any } 0<r<1 \tag{5.1}
\end{equation*}
$$

Set

$$
\begin{aligned}
T: & z \in \mathcal{Q} \rightarrow u=\left(f_{1}(z), \ldots, f_{n}(z)\right) \in \Delta \\
T^{-1} & : w \in \Delta \rightarrow z=\left(g_{1}(w) \ldots, g_{n}(u)\right) \in \mathbb{Q}
\end{aligned}
$$

Fix $0<r<1$. Since $\left|f_{j}(z)\right| \leq 1(j=1, \ldots, n)$ in Q and $f_{j}(0)=0$, from the Schwarz lemma we obtain that $\left|f_{j}(z)\right| \leq r$ in $Q^{(r)}$, and hence $T\left(\mathcal{Q}^{(r)}\right) \subset \Delta^{(r)}$. Conversely, let $w^{0} \in \Delta^{(r)}$ and let $z^{0}=T^{-1}\left(u^{0}\right)$. We take a unitary transformation $\zeta=S_{0}(z)$ of C^{n} with $S_{0}\left(z^{0}\right)=\left(\zeta_{1}^{0}, 0, \ldots, 0\right)$; thus $\left\|z^{0}\right\|=\left|\zeta_{1}^{0}\right|$. We consider the holomorphic mapping

$$
\zeta=S_{0} \circ T^{-1}(w)=\left(\oint_{1}(w) \ldots \ldots \dot{o}_{n}(w)\right)
$$

from Δ onto \mathcal{Q}. Note that $\phi_{1}\left(w^{0}\right)=\zeta_{1}^{0}$. Since $\left|\varphi_{1}(w)\right| \leq 1$ on Δ and $\varphi_{1}(0)=0$, again using the Schwarz lemma we see that $\left|\varphi_{1}\left(w^{0}\right)\right| \leq r$, and hence $\left\|z^{0}\right\| \leq r$. Thus, $z^{0} \in \mathcal{Q}^{(r)}$. We obtain (5.1). The boundary of $\mathcal{Q}^{(r)}$ is smooth everywhere; this is not the case for the boundary of $\Delta^{(r)}$. This contradicts the fact that $T\left(\partial Q^{(r)}\right)=\partial \Delta^{(r)}$. which follows from (5.1).

Remark 5.1. Using a similar proof, we obtain the following fact. Let D be a ball or a polydisk centered at the origin 0 in C^{n}. Let Φ be a holomorphic mapping from D into D such that $\Phi(0)=0$. Then $\Phi\left(D^{(r)}\right) \subset D^{(r)}$ for each $0<r<1$. Thus if Φ is a one-to-one holomorphic mapping from D onto D such that $\Phi(0)=0$. then $\Phi\left(D^{(r)}\right)=D^{(r)}$ for each $0<r<1$.
5.1.2. Automorphisms of the Polydisk. Let D be a domain in \mathbf{C}^{n}. A oneto-one holomorphic mapping from D onto itself is called an automorphism of D. The set of all automorphisms of D forms a group under composition, which we call the automorphism group $\mathcal{A}(D)$ of D. In this section we determine the automorphism group $\mathcal{A}(\Delta)$ of the unit polydisk $\Delta:\left|z_{j}\right|<1 \quad(j=1, \ldots, n)$. Given $a=\left(a_{1}, \ldots, a_{n}\right) \in \Delta$. we define the component-wise linear fractional transformation

$$
\mathcal{T}_{(a)}: z_{j}^{\prime}=\frac{z_{j}-a_{j}}{1-\bar{a}_{j} z_{j}} \quad(j=1, \ldots . n)
$$

Given $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbf{R}^{n}$, we have the rotation

$$
\mathcal{R}_{(\theta)}: z_{j}^{\prime}=e^{i \theta} z_{j} \quad\left(i^{2}=-1: j=1, \ldots, n\right) .
$$

Given a permutation $(k)=\binom{1, \ldots, n}{k_{1} \ldots, k_{n}}$ of $(1, \ldots, n)$. we define

$$
\mathcal{P}_{(k)}: z_{j}^{\prime}=z_{k}, \quad(j=1, \ldots, n) .
$$

Clearly these linear fractional transformations, rotations and permutations are elements of $\mathcal{A}(\Delta)$, and we have $\mathcal{T}_{(a)}^{-1}=\mathcal{T}_{(-a)} . \mathcal{R}_{(\theta)}^{-1}=\mathcal{R}_{(-\theta)}$ and $\mathcal{P}_{(k)}^{-1}=\mathcal{P}_{\left(k^{-2}\right)}$. where $\left(k^{-1}\right)=\binom{k_{1} \ldots \ldots, k_{n}}{i \ldots}$, .

We have the following theorem.
Theorem 5.2. $\mathcal{A}(\Delta)$ is generated by the elements $\mathcal{T}_{(a)}, \mathcal{R}_{(\theta)}$ and $\mathcal{P}_{(k)}$.
Proof. Let $T \in \mathcal{A}(\Delta)$ and let $T(0)=a$. Setting $T_{1}:=T_{(a)} \circ T \in \mathcal{A}(\Delta)$, we have $T_{1}(0)=0$. We write $T_{1}: w_{j}=f_{j}(z)(j=1, \ldots, n)$. By 1 of Remark 5.1. $T_{1}\left(\Delta^{(r)}\right)=\Delta^{(r)}$ for each $0<r<1$. Hence
(1) $T_{1}\left(\partial \Delta^{(r)}\right)=\partial \Delta^{(r)}$. and
(2) $\left|f_{j}(z)\right| \leq r(j=1, \ldots, n)$ in $\Delta^{(r)}$.

We set $\Delta_{j}:=\left\{\left|z_{j}\right|<1\right\}$ and $\Delta_{j}^{(r)}:=\left\{\left|z_{j}\right|<r\right\}(j=1, \ldots, n)$. Fix $0<r<1$. Since $(r, 0 \ldots, 0) \in \partial \Delta^{(r)}$. (1) implies that $T_{1}(r, 0 \ldots .0) \in \partial \Delta^{(r)}$. In addition, since

$$
\partial \Delta^{(r)}=\bigcup_{i=1}^{n}\left[\Delta_{1}^{(r)} \times \cdots \times\left(\partial \Delta_{i}^{(r)}\right) \times \cdots \times \Delta_{n}^{(r)}\right] .
$$

there exists $k_{1}\left(1 \leq k_{1} \leq n\right)$ with $\left|f_{k_{1}}(r .0 \ldots, 0)\right|=r$. Since $\left|f_{k_{1}}\left(z_{1}, 0 \ldots, 0\right)\right| \leq 1$ for z_{1} in Δ_{1} and $f_{k_{1}}(0)=0$. from the one-variable Schwarz lemma we conclude that
(3) $f_{k_{1}}\left(z_{1}, 0, \ldots, 0\right)=e^{i \theta_{1}} z_{1}$ for z_{1} in Δ_{1},
where θ_{1} is a constant with $0 \leq \theta_{1}<2 \pi$. Fix $z_{1}^{0} \in \Delta_{1}$ and set

$$
\Delta_{n-1}^{0}:=\left\{z^{\prime}=\left(z_{2}, \ldots, z_{n}\right)| | z_{j}\left|\leq\left|z_{1}^{0}\right|(j=2, \ldots, n)\right\} .\right.
$$

We set

$$
\phi\left(z^{\prime}\right):=f_{k_{2}}\left(z_{1}^{0}, z_{2}, \ldots, z_{n}\right) \quad \text { in } \Delta_{n-1}^{0} .
$$

so that $\left|\phi\left(z^{\prime}\right)\right| \leq\left|z_{1}^{0}\right|$ (from (2)). Using (3) we conclude that $O\left(z^{\prime}\right)$ attains its maximum modulus $\left|z_{1}^{0}\right|$ at $z^{\prime}=0$. Thus $o\left(z^{\prime}\right)$ is constant on Δ_{n-1}^{0}, and hence $f_{k_{1}}\left(z_{1}^{0}, z_{2}, \ldots, z_{n}\right) \equiv e^{i \theta_{1}} z_{1}^{0}$ in Δ_{n-1}^{0}. Since $z_{1}^{0} \in \Delta_{1}$ was arbitrary, $f_{k_{1}}(z) \equiv e^{i \theta_{1}} z_{1}$ in Δ.

Similarly, for each $j=1, \ldots, n$, we can find an integer $1 \leq k_{j} \leq n$ and a constant θ_{j} with $0 \leq \theta_{j}<2 \pi$ such that

$$
w_{k_{j}}=f_{k_{j}}(z) \equiv e^{i \theta_{j}} z_{j} \quad(j=1, \ldots, n) .
$$

Set $(\theta):=\left(\theta_{1} \ldots, \theta_{n}\right)$ and $(k):=\left(\begin{array}{cc}1 \ldots \ldots \\ k_{1} \ldots & \ldots k_{n}\end{array}\right)$. Then $T_{1}=\mathcal{P}_{(k)} \circ \mathcal{R}_{(\theta)}$, so that $T=\mathcal{T}_{(-a)} \circ \mathcal{P}_{(k)} \circ \mathcal{R}_{(\theta)}$.
5.1.3. Uniqueness Theorem. In this section we prove a uniqueness theorem of H. Cartan [8] for holomorphic mappings of bounded domains in C^{n}. We then give some applications of this result.

Theorem 5.3 (Cartan). Let D be a bounded domain in \mathbf{C}^{n} ($n \geq 1$) containing the origin 0 . Let

$$
T: z=\left(z_{1}, \ldots, z_{n}\right) \rightarrow w=\left(f_{1}(z), \ldots, f_{n}(z)\right)
$$

be a holomorphic mapping (not necessarily one-to-one) from D into D with $T(0)=$ 0. Assume that

$$
\begin{equation*}
f_{j}(z)=z_{j}+\sum_{z=2}^{\infty} f_{j . \nu}(z) \quad(j=1, \ldots, n) \tag{5.2}
\end{equation*}
$$

near $z=0$, where $f_{j . \nu}$ is a homogeneous polynomial of degree $\nu \geq 2$. Then T is the identity mapping.

Proof. For the sake of obtaining a contradiction, we assume that T is not the identity mapping. i.e., $f_{j . \nu}(z) \not \equiv 0$ for some $1 \leq j \leq n$ and some $\nu \geq 2$. For $j=1 \ldots \ldots, n$. let ν_{j} be the smallest integer greater than or equal to 2 such that $f_{j, \nu_{j}}(z) \not \equiv 0$. Since $T(D) \subset D$, we can consider the iterates $T^{(l)}=T \circ \cdots \circ T$ of T for $l=1,2, \ldots$. These all map D into D with $T^{(l)}(0)=0$. We write

$$
T^{(l)}: z=\left(z_{1} \ldots \ldots z_{n}\right) \rightarrow w=\left(f_{1}^{(l)}(z) \ldots \ldots f_{n}^{(l)}(z)\right)
$$

Since D is bounded. for each $j=1, \ldots, n$ the family of holomorphic functions

$$
\mathcal{F}_{j}=\left\{f_{j}^{(l)}(z) \mid l=1,2 \ldots\right\}
$$

in D forms a normal family.
However, a simple calculation using (5.2) yields

$$
f_{j}^{(l)}(z)=z_{j}+l f_{j . \nu,}^{(l)}(z)+F_{\nu,+1}(z) \quad(j=1 \ldots . n)
$$

near $z=0$. where $F_{\nu,+1}(z)$ consists of sums of homogeneous polynomials of degree $\geq \nu_{j}+1$. Since $f_{j . \nu_{j}}^{(l)}(z) \not \equiv 0$ for some $1 \leq j \leq n$ and some $\nu_{j} \geq 2$. this contradicts the normality of the corresponding family \mathcal{F}, in a neighborhood of $z=0$.

Remark 5.2. Let D be a bounded domain in $\mathbf{C l}^{n}$ and fix $z^{0} \in D$. We consider the isotropy subgroup $\mathcal{A}_{0}(D)$ of the automorphism group $\mathcal{A}(D)$ of D consisting of the elements $T \in \mathcal{A}(D)$ which fix z_{0} : i.e., $T\left(z^{0}\right)=z^{0}$. Cartan's theorem implies that each $T \in \mathcal{A}_{0}(D)$ is uniquely determined by its Jacobian matrix at z^{10}.

As an application of Cartan's theorem, we prove the following.
Corollary 5.1. Let D_{1}, D_{2} be bounded domains of disk type with respect to the origin 0 in \mathbf{C}^{n}. Let ζ be a biholomorphic mapping of D_{1} onto D_{2} with $\zeta(0)=0$. Then ζ is the restriction to D_{1} of a linear transformation of $\mathbf{C}^{\boldsymbol{n}}$.

Proof. Given $0 \leq \theta<2 \pi$, we consider the rotation

$$
\mathcal{R}_{(\theta)}: z_{j}^{\prime}=e^{i \theta} z, \quad\left(i^{2}=-1: j=1 \ldots, n\right)
$$

Since D_{2} is of disk type with respect to the origin, $\mathcal{R}_{(\theta)}$, is an automorphisin of D_{2}. The same is true for D_{1} and $\mathcal{R}_{(-\theta)}$. Therefore,

$$
\zeta^{*}:=\mathcal{R}_{(-\theta)} \circ \zeta^{-1} \circ \mathcal{R}_{(\theta)} \circ \zeta
$$

is an automorphism of D_{1} with $\zeta^{*}(0)=0$; moreover, if we set $\zeta^{*}(z):=\left(f_{1}(z) \ldots\right.$. $\left.f_{n}(z)\right)$, then each $f_{j}(z)(j=1, \ldots, n)$ is of the form

$$
f_{j}(z)=z j+\sum_{\nu=2}^{\infty} f_{j, \nu}(z) \quad(j=1 \ldots, n)
$$

where $f_{j . \nu}$ is a homogeneous polynomial of degree $\nu \geq 2$. Since D_{1} is bounded in \mathbf{C}^{n}. it follows from Cartan's theorem that ζ^{*} is the identity mapping on D_{1}. We thus have

$$
\zeta \circ \mathcal{R}_{(\theta)}=\mathcal{R}_{(\theta)} \circ \zeta \text { for all } 0 \leq \theta<2 \pi .
$$

It is easy to see that this implies that ζ must be a linear mapping of \mathbf{C}^{n}.
Remark 5.3. The proof shors that the same conclusion is valid for any bounded domains $D_{i}(i=1,2)$ in \mathbf{C}^{n} such that $\mathcal{A}\left(D_{i}\right)$ contains all rotations $\mathcal{R}_{(\theta)}(0 \leq$ $\theta<2 \pi$). As a simple application we see that a complex ellipsoid

$$
E: \sum_{j=1}^{n} a_{j}\left|z_{j}\right|^{\nu_{j}}<1 .
$$

where $a_{j}, \nu_{j}>0(j=1 \ldots, n)$. is biholomorphically equivalent to the unit ball \mathcal{Q} if and only if $\nu_{j}=2(j=1, \ldots, n)$. In fact, assume that there exists a biholomorphic mapping T of \mathcal{E} onto \mathcal{Q}. We may assume $T(0)=0$ by Remark 5.4 (which will appear after Theorem 5.4). Thus, T is a linear transformation of \mathbf{C}^{n}. and hence $T(\partial \mathcal{E})=\partial \mathcal{Q}$. By a simple calculation, this implies $\nu_{j}=2$ for each $j=1 \ldots, n$.
5.1.4. Automorphisms of the Ball. In this section we determine the automorphism group $\mathcal{A}(\mathcal{Q})$ of the unit ball $\mathcal{Q}: \sum_{j=1}^{n}\left|z_{j}\right|^{2}<1$. First of all. we let $A=\left(a_{j, k}\right)_{j, k=1 \ldots, n}$ be an $n \times n$ unitary matrix. Then

$$
S_{A}: z=\left(z_{1}, \ldots, z_{n}\right) \rightarrow z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)=A z
$$

is a unitary transformation of \mathbf{C}^{n}. Clearly $S_{A} \in \mathcal{A}(\mathcal{Q})$ and $\left(S_{A}\right)^{-1}=S_{A^{-1}}$. . .ext we let a be a complex number with $|a|<1$. For each $1 \leq j \leq n$, define

$$
T_{a}^{i}: z_{i}^{\prime}=\frac{z_{i}-a}{1-\bar{a} z_{i}}, \quad z_{j}^{\prime}=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z_{i}} z_{j} \quad(j \neq i) .
$$

We note that $T_{a}^{i}\left(0, \ldots, 0, a, z_{i+1}, \ldots, z_{n}\right)=\left(0, \ldots, 0.0 . z_{i+1}^{\prime}, \ldots, z_{n}^{\prime}\right)$. In particular, $T_{a}^{\prime}(a, 0, \ldots, 0)=(0 \ldots, 0)$. Clearly $T_{a}^{i} \in \mathcal{A}(\mathcal{Q})$ and $\left(T_{a}^{i}\right)^{-1}=T_{-a}^{i}$.

Theorem 5.4. $\mathcal{A}(\mathcal{Q})$ is generated by S_{A}, A unitary, and $T_{a}^{i},|a|<1, i=$ $1, \ldots, n$.

Proof. Let $T \in \mathcal{A}(\mathcal{Q})$. Composing T with a finite number (at most n) of the mappings $T_{a}^{i}(i=1, \ldots, \nu: \nu \leq n)$ (or composing T with an S_{A} and a $\left.T_{a}\right)$. which we denote by F, we can form an automorphism $\tilde{T}:=F \circ T \in \mathcal{A}(\mathcal{Q})$ with $\tilde{T}(0)=0$. Applying Corollary 5.1 , we conclude that \tilde{T} is a linear mapping of \mathbf{C}^{n}. Since $\tilde{T}(\mathcal{Q})=\mathcal{Q}$, it follows that \tilde{T} is a unitary transformation S_{A} of \mathbf{C}^{n}. Hence $T=F^{-1} \circ S_{A^{-1}}$.

Remark 5.4. Let D be a domain in \mathbf{C}^{n} ($n \geq 1$). If for any two distinct points $p . q$ in D there exists an automorphism T of D such that $T(p)=q$. then D is called a homogeneous domain and $\mathcal{A}(D)$ is said to act transitively on D. As shown above, the ball and the polydisk in \mathbf{C}^{n} are homogeneous domains. In C. every simply connected domain is homogeneous. This is no longer true in \mathbf{C}^{n} if $n \geq 2$.

For example, in \mathbf{C}^{2} with variables z and w, we consider the domain

$$
D:|z u|<1 .
$$

Then D is simply connected, and every automorphism T of D satisfies $T(0,0)=$ (0.0). For let $T:(z, w) \rightarrow\left(z^{\prime}, w^{\prime}\right):=\left(f\left(z, w^{\prime}\right) . g(z, w)\right)$. If we set $F(z):=$ $f(z, 0) g(z .0)$ for $z \in \mathbf{C}_{z}$. then F is an entire function in \mathbf{C}_{z} with $|F(z)|<1$. Thus, $F(z) \equiv a$ (constant) in \mathbf{C}_{z}. We claim that $a=0$. For if not, under T the z-axis $u=0$ is mapped into the set $z^{\prime} w^{\prime}=a \neq 0$ in a one-to-one fashion. This is impossible, since the set $z^{\prime} u^{\prime}=a$ is not simply connected. Therefore $a=0$, which means that $f(z .0) \equiv 0$ or $g(z .0) \equiv 0$ in \mathbf{C}_{z} (note that we can't have both $f(z, 0) \equiv 0$ and $g(z, 0) \equiv 0$. since if we did we could have $T(z, 0) \equiv(0,0)$, contradicting the fact that T is an automorphism). Thus the z-axis $u:=0$ is mapped by T onto either the z^{\prime}-axis or the w^{\prime}-axis. In a similar manner, either $f(0, w) \equiv 0$ or $g(0, w) \equiv 0$ in \mathbf{C}_{u}. and it follows that the u-axis $z=0$ is mapped by T onto the u^{\prime}-axis (if $f(z, 0) \equiv 0$) or the z^{\prime}-axis (if $g(z, 0) \equiv 0$). In either case. since if we did we could have $T(0,0)=(0,0)$ and D is not homogeneous.

Indeed, if $D \subset \mathbf{C}^{n} . n \geq 2$, is a bounded domain with smooth boundary and if D has a transitive automorphism group $\mathcal{A}(D)$, then D is biholonorphically equivalent to the unit ball \mathcal{Q}. This is a result of J.-P. Rosay [63].

5.2. Holomorphic Mappings of $\mathbf{C}^{\boldsymbol{n}}$

There are many interesting phenomena concerning holomorphic mappings of \mathbf{C}^{n} for $n>1$ which do not occur in one complex variable. In this section we discuss certain holomorphic inappings of $\mathbf{C}^{\boldsymbol{n}}$ which were studied by Poincaré and Picard (see Picard [57]).
5.2.1. Transcendental Entire Mappings of Poincaré -Picard. In this section, we consider polynomial mappings of \mathbf{C}^{n} into \mathbf{C}^{n}. i.e..

$$
T_{P}: z_{j}^{\prime}=P_{j}\left(z_{1}, \ldots, z_{n}\right) \quad(j=1, \ldots, n) .
$$

where each $P_{j}\left(z_{1}, \ldots, z_{n}\right)(j=1, \ldots, n)$ is a polynomial in z_{1}, \ldots, z_{n}. We assume that $P_{j}\left(z_{1} \ldots . . z_{n}\right)$ is of the form

$$
P_{j}(z)=a, z_{j}+p_{j}\left(z_{1}, \ldots, z_{n}\right) \quad(j=1, \ldots, n)
$$

where
(1) $\left|a_{j}\right|>1(j=1, \ldots, n)$;
(2) $p_{j}\left(z_{1}, \ldots, z_{n}\right)=\sum_{\nu=2}^{m_{j}} f_{j . \nu}\left(z_{1}, \ldots, z_{n}\right) \quad(j=1, \ldots, n)$, where $f_{J . \nu}$ is a homogeneous polynomial of degree $\nu \geq 2$: and
(3) for each $j=1, \ldots, n$ and nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n} \geq$ 2. we have

$$
a_{1}^{k_{1}} \cdots a_{n}^{k_{n}} \neq a_{j} .
$$

We write $a:=\left(a_{1}, \ldots, a_{n}\right)$ and $a z:=\left(a_{1} z_{1}, \ldots, a_{n} z_{n}\right)$.
We have the following proposition.

Proposition 5.1. Given a polynomial mapping $T_{P}: z_{j}^{\prime}=P_{j}\left(z_{1} \ldots, z_{n}\right)(j=$ $1, \ldots . n$) satisfying (1), (2) and (3), there exist n entire functions $F_{j}(z)(j=$ $1 \ldots . . n$) in \mathbf{C}^{n} which satisfy the simultaneous functional equations

$$
\begin{equation*}
F_{j}(a z)=P_{j}\left(F_{1}(z) \ldots, F_{n}(z)\right) \quad(j=1, \ldots, n) \tag{5.3}
\end{equation*}
$$

and are of the form

$$
\begin{equation*}
F_{j}(z)=z_{j}+\sum_{\nu=2}^{x} F_{j . \nu}\left(z_{1}, \ldots, z_{n}\right) \quad(j=1, \ldots, n), \tag{5.4}
\end{equation*}
$$

where $F_{j . \nu}$ is a homogeneous polynomial of degree $\nu \geq 2$. Furthermore, the F_{j} are unique.

Using the entire functions $F_{j}(z)(j=1, \ldots, n)$, we form the holomorphic mapping

$$
S_{F}: z_{j}^{\prime}=F_{j}\left(z_{1}, \ldots, z_{n}\right) \quad(j=1, \ldots, n)
$$

of \mathbf{C}^{n}. This is called the Poincare-Picard entire mapping of \mathbf{C}^{n} associated to the polynomial mapping \boldsymbol{T}_{P} of $\mathbf{C}^{\boldsymbol{n}}$. It satisfies

$$
\begin{equation*}
S_{F}(a z)=T_{P} \circ S_{F}(z) \quad \text { in } \mathbf{C}^{n} \tag{5.5}
\end{equation*}
$$

We note that if $P(z)$ is of degree at least 2, i.e., the degree of at least one $P_{j}(z)$ ($j=1, \ldots, n$) is greater than or equal to 2 , then S_{F} is a transcendental mapping of \mathbf{C}^{n}.

Remark 5.5.

1. Let $T_{Q}: z_{j}^{\prime}=Q_{j}\left(z_{1}, \ldots, z_{n}\right)(j=1, \ldots, n)$ be a polynomial mapping with $T_{Q}(0)=0$ and let $J_{T_{Q}}(z)=\partial\left(Q_{1} \ldots, Q_{n}\right) / \partial\left(z_{1}, \ldots, z_{n}\right)$ be the Jacobian matrix of Q at $z \in \mathbf{C}^{n}$. If $J_{T_{Q}}(0)$ is diagonalizable and has eigenvalues λ_{j} $(j=1, \ldots, n)$ with $\left|\lambda_{\jmath}\right|>1(j=1, \ldots, n)$, then the polynomial mapping T_{Q} satisfies (1). (2) and (3) at $z=0$ (after a coordinate change to diagonalize $\left.J_{T_{Q}}(0)\right)$.
2. Equation (5.5) for S_{F} may be regarded as a generalization of the type of relation certain transcendental entire functions satisfy in the complex plane. For example, if we set $z^{\prime}=P(z)=-4 z^{3}+3 z$ in C and take $a=3$, then the unique solution $F(z)$ of the equation $F(a z)=P \circ F(z)$ with $F(z)=z+o\left(z^{2}\right)$ is $F(z)=\sin z$.

In this section we will use the notation

$$
\Delta_{\rho}:\left|z_{j}\right|<\rho \quad(j=1 \ldots, n)
$$

for the polydisk centered at the origin $z=0$ with radius $\rho>0$, and for $a=$ $\left(a_{1}, \ldots, a_{n}\right) \in C^{n}$ with $a_{j} \neq 0$ we write

$$
\Delta_{\rho}^{(-1)}:\left|z_{j}\right|<\rho /\left|a_{j}\right| \quad(j=1, \ldots, n)
$$

Finally, if g is a holomorphic function in a neighborhood of the origin, we write

$$
g(z)=g_{2}(z)+o\left(|z|^{2}\right)
$$

to signify that the Taylor series expansion of g about the origin contains neither constant nor linear terms; $g_{2}(z)$ denotes the quadratic terms. To prove Proposition 5.1 we need two lemmas.

Lemma 5.2. Let $\hat{\varphi}(z)$ be a holomorphic function in Δ_{ρ} uith $\underset{\gamma}{ }(z)=\boldsymbol{\nu}_{2}(z)+$ $o\left(|z|^{2}\right)$. Let $\left|a_{j}\right|>1(j=0.1, \ldots, n)$ and let $a=\left(a_{1} \ldots \ldots a_{n}\right) \in C^{n}$ satisfy

$$
\begin{equation*}
a_{1}^{k_{1}} \ldots a_{n}^{k_{n}} \neq a_{0} \tag{5.6}
\end{equation*}
$$

for all integers $k_{j} \geq 0(j=1, \ldots, n)$ such that $\sum_{j=1}^{n} k_{j} \geq 2$. Then there exists a holomorphic function $g(z)$ in the polydisk Δ_{ρ} with $g(z)=g_{2}(z)+o\left(|z|^{2}\right)$ which satisfies the functional equation

$$
\begin{equation*}
g(a z)=a_{0} g(z)+\hat{\gamma}(z) \text { in } \Delta_{\rho}^{(-1)} . \tag{5.7}
\end{equation*}
$$

Furthermore, there exists a number $k>0$, depending only on $a,(j=0.1 \ldots . n)$. such that if $|\hat{\varphi}(z)| \leq M$ in Δ_{ρ}, then

$$
|g(z)| \leq k M \quad \text { in } \Delta_{\rho} .
$$

The function g with these properties is unique.
Remark 5.6. We will see from the proof that we can take. for example,

$$
k=\sum_{k_{1}+\cdots+k_{n} \geq 2}\left|\frac{1}{a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}-a_{0}}\right|<\infty .
$$

Proof. Let $g(z)$ be a holomorphic function in the polydisk Δ_{ρ} with $g(z)=$ $g_{2}(z)+o\left(|z|^{2}\right)$, and consider the Taylor series expansions of $\varphi(z)$ and $g(z)$ about $z=0$:

$$
\begin{aligned}
& p(z)=\sum_{k_{1}+\cdots+k_{n} \geq 2} c_{k_{1} \ldots, k_{n} z_{1}^{k_{1}} \cdots z_{n}^{k_{n}},}^{g(z)=\sum_{k_{1}+\cdots+k_{n} \geq 2} u_{k_{1} \ldots, k_{n}, z_{1}^{k_{1}} \cdots z_{n}^{k_{n}} .}} .
\end{aligned}
$$

Assume that $g(z)$ satisfies the functional equation (5.7). From condition (5.6) we obtain

$$
\begin{equation*}
u_{k_{1} \ldots \ldots, k_{n}}=\frac{c_{k_{1} \ldots . k_{n}}}{a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}-a_{0}} \tag{5.8}
\end{equation*}
$$

provided $\sum_{j=1}^{n} k_{j} \geq 2$. Since $\left|a_{j}\right|>1(j=1 \ldots, n)$. the infinite series

$$
k:=\sum_{k_{1}+\cdots+k_{n} \geq 2}\left|\frac{1}{a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}-a_{0}}\right|
$$

is convergent. Also. since $\left.\right|_{f}(z) \mid \leq M$ on Δ_{ρ}, the Cauchy estimates give

$$
\left|c_{k_{1} \ldots, k_{n}}\right| \leq \frac{M}{\rho^{k_{1}+\cdots+k_{n}}} .
$$

Thus for any $z \in \Delta_{\rho}$,

$$
\begin{aligned}
|g(z)| & \leq \sum_{k_{1}+\cdots+k_{n} \geq 2} \mid u_{k_{1} \ldots \ldots k_{n} z_{1}^{k_{1}} \cdots z_{n}^{k_{1}} \mid} \\
& =\sum_{k_{1}+\cdots+k_{n} \geq 2} \left\lvert\, \frac{c_{k_{1}, \ldots, k_{n}}^{a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}-a_{0}}| | z_{1}^{k_{1}} \cdots z_{n}^{k_{n}} \mid}{}\right. \\
& \leq M \sum_{k_{1}+\cdots+k_{n} \geq 2}\left|\frac{1}{a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}-a_{0}}\right|=k M .
\end{aligned}
$$

We conclude that if we now define

$$
g(z):=\sum_{k_{1}+\cdots+k_{n} \geq 2} \frac{c_{k_{1} \ldots, k_{n}}^{a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}-a_{0}} z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}, ~}{\text { n }}
$$

then $g(z)$ is a holomorphic function in $\Delta_{\rho} ;|g(z)| \leq k M$ in Δ_{ρ}; and $g(z)$ satisfies the functional equation (5.7) in the polydisk $\Delta_{\rho}^{(-1)}$ centered at 0 . The uniqueness of $g(z)$ follows from the uniqueness of the Taylor series coefficients (5.8).

Lemma 5.3. Let $\psi(z, Z)$ be a holomorphic function in a polydisk $\Delta \times \Delta$ centered at $(0,0)$ in $\mathbf{C}^{n} \times \mathbf{C}^{n}$ such that the Taylor series expansion of $\psi(z, Z)=$ $\psi\left(z_{1}, \ldots, z_{n}, Z_{1}, \ldots, Z_{n}\right)$ about the origin contains neither constant nor linear terms. Then, for each $\rho>0$ with $\Delta_{\rho} \subset \subset \Delta$, there exists a number $\lambda_{\rho}>0$ such that

$$
|\psi(z, Z)-\psi(z, W)| \leq \lambda_{\rho} \sum_{j=1}^{n}\left|Z_{j}-W_{j}\right| \quad \text { for }(z, Z, W) \text { in } \Delta_{\rho} \times \Delta_{\rho} \times \Delta_{\rho}
$$

Furthermore,

$$
\lim _{\rho \rightarrow 0} \lambda_{\rho}=0 .
$$

Proof. Fix $\rho>0$ with $\Delta_{\rho} \subset \subset \Delta$. We observe that

$$
Z_{1}^{k_{1}} \cdots Z_{n}^{k_{n}}-W_{1}^{k_{1}} \cdots W_{n}^{k_{n}}=\sum_{j=1}^{n}\left(Z_{j}^{k_{j}}-W_{j}^{k_{j}}\right) Z_{j+1}^{k_{j+1}} \cdots Z_{n}^{k_{n}} W_{1}^{k_{1}} \cdots W_{j-1}^{k_{-1}}
$$

thus writing out the Taylor series expansion of $\psi(z, Z)-\psi(z, W)$ about the origin in $\mathbf{C}^{n} \times \mathbf{C}^{\boldsymbol{n}} \times \mathbf{C}^{n}$, we obtain n holomorphic functions $H_{j}(z, Z, W)(j=1, \ldots, n)$ in $\Delta_{\rho} \times \Delta_{\rho} \times \Delta_{\rho}$ such that

$$
\psi(z, Z)-\psi(z, W)=\sum_{j=1}^{n}\left(Z_{j}-W_{j}\right) H_{j}(z, Z, W)
$$

in $\Delta_{\rho} \times \Delta_{\rho} \times \Delta_{\rho}$. Thus if we set

$$
\lambda_{\rho}:=\max _{(z . Z, W) \in \Delta_{\rho} \times \Delta_{\rho} \times \Delta_{\rho}}\left\{\left|H_{1}(z, Z, w)\right|, \ldots,\left|H_{n}(z, Z, w)\right|\right\}<\infty,
$$

then we have

$$
|\psi(z, Z)-\psi(z, W)| \leq \lambda_{\rho} \sum_{j=1}^{n}\left|Z_{j}-W_{j}\right|
$$

in $\Delta_{\rho} \times \Delta_{\rho} \times \Delta_{\rho}$. Since $\psi(z, Z)$ contains neither constant nor linear terms, we have that $H_{j}(0,0,0)=0(j=1, \ldots, n)$. Consequently, $\lim _{\rho \rightarrow 0} \lambda_{\rho}=0$.

Proof of Proposition 5.1. The first step is to find a solution $F_{j}(z)(j=$ $1, \ldots, n$) of the functional equation (5.3) valid in a certain polydisk centered at 0 . We write

$$
P_{j}(z)=a_{j} z_{j}+p_{j}(z), \quad F_{j}(z)=z_{j}+f_{j}(z) \quad(j=1, \ldots, n)
$$

where neither $\boldsymbol{p}_{j}(z)$ nor $f_{j}(z)$ contains constant or linear terms. We also define

$$
p_{j}^{*}(z, Z):=p_{j}\left(z_{1}+Z_{1}, \ldots, z_{n}+Z_{n}\right) \quad(j=1, \ldots, n),
$$

which is a polynomial in $\mathbf{C}^{2 n}$ with neither constant nor linear terms in the variables $z_{1}, \ldots, z_{n}, Z_{1}, \ldots, Z_{n}$. From a direct calculation we see that the functions $F_{j}(z)$ ($j=1, \ldots, n$) defined in a polydisk Δ_{ρ} satisfy the functional equation (5.3) in
$\Delta_{\rho}^{(-1)}:\left|z_{j}\right|<\rho /\left|a_{j}\right|(j=1, \ldots, n)$ if and only if the functions $f_{j}(z)(j=1, \ldots, n)$ satisfy the functional equation

$$
\begin{equation*}
f_{j}(a z)=a, f_{j}(z)+p_{j}^{*}(z, f(z)) \quad(j=1 \ldots . n) \text { in } \Delta_{\rho}^{(-1)} . \tag{5.9}
\end{equation*}
$$

where $f(z):=\left(f_{1}(z) \ldots, f_{n}(z)\right)$.
Thus we look for functions $f_{j}(z)(j=1 \ldots, n)$ defined in a certain polydisk Δ_{ρ} which satisfy (5.9) in the polydisk $\Delta_{\rho}^{(-1)}$. To do this, we use the method of alternation. We set

$$
\begin{equation*}
k:=\max _{J=1, \ldots, n}\left\{\sum_{k_{1}+\cdots+k_{n} \geq 2}\left|\frac{1}{a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}-a_{j}}\right|\right\}<\infty . \tag{5.10}
\end{equation*}
$$

From Lemma 5.3 we can find a sufficiently small polydisk Δ_{ρ} centered at 0 in \mathbf{C}^{n} and a constant $\lambda_{\rho}>0$ such that

$$
\left|p_{j}^{*}(z, Z)-p_{j}^{*}(z, W)\right| \leq \lambda_{\rho} \sum_{j=1}^{n}\left|Z_{j}-W_{j}\right| \quad(j=1, \ldots, n) \quad \text { in } \Delta_{\rho} \times \Delta_{\rho} \times \Delta_{\rho}
$$

and such that

$$
k n \lambda_{\rho}<1 / 2
$$

Furthermore, we may also assume that

$$
\left|p_{j}^{*}(z, 0)\right|<\rho /(2 k n) \quad(j=1 \ldots, n) \text { in } \Delta_{\rho}
$$

since $p_{j}^{*}(z, 0)$ contains neither constant nor linear terıns.
We begin by setting

$$
f_{j}^{0}(z) \equiv 0 \quad(j=1 \ldots \ldots n) \text { in } \Delta_{\rho}
$$

Then for $\nu \geq 1$, having determined holomorphic functions $f_{j}^{\nu-1}(z)(j=1 \ldots \ldots, n)$ in Δ_{ρ} such that each $f_{j}^{\nu-1}$ contains neither constant nor linear terms, we define holomorphic functions $f_{j}^{\nu}(z)(j=1, \ldots, n)$ containing neither constant nor linear terms in Δ_{ρ} in the following manner. We let $f^{\nu-1}(z):=\left(f_{1}^{\nu-1}(z) \ldots, f_{n}^{\nu-1}(z)\right)$, and for each $j=1, \ldots, n$, we apply Lemma 5.2 to $\nu(z):=p_{j}^{*}\left(z, f^{\nu-1}(z)\right.$) and $a_{0}=a_{j}$ to find a unique holomorphic function $f_{j}^{\nu}(z)$ in Δ_{ρ} such that

$$
\begin{equation*}
f_{j}^{\nu}(a z)=a_{j} f_{j}^{\nu}(z)+p_{j}^{*}\left(z . f^{\nu-1}(z)\right) \quad(j=1, \ldots . n) \text { in } \Delta_{\rho}^{(-1)} . \tag{5.11}
\end{equation*}
$$

It follows that we have now inductively defined a sequence of analytic mappings $f^{\nu}(z)=\left(f_{1}^{\nu}(z), \ldots, f_{n}^{\nu}(z)\right)(\nu=0,1, \ldots)$ on Δ_{p}. To verify the first step of our proof, using (5.9) and (5.11) it suffices to prove that the sequence of holomorphic functions $\left\{f_{j}^{\nu}\right\}_{\nu=1.2 \ldots . .}$ converges uniformly in Δ_{ρ} for each $j=1, \ldots, n$. To do this. we shall show that

$$
\begin{equation*}
\left|f_{j}^{\nu}(z)-f_{j}^{\nu-1}(z)\right|<\rho / 2^{\nu} \quad(\nu=1,2, \ldots: j=1, \ldots, n) \quad \text { in } \Delta_{\rho} \tag{5.12}
\end{equation*}
$$

Indeed, using Lemma 5.2 , for $z \in \Delta_{\rho}$,

$$
\left|f_{j}^{1}(z)-f_{j}^{0}(z)\right|=\left|f_{j}^{1}(z)\right| \leq k \max _{z \in \Delta_{\nu}}\left|p_{j}^{*}(z, 0)\right|<k \cdot \rho /(2 k n) \leq \rho / 2
$$

which proves the case $\nu=1$ of (5.12). Now we assume that

$$
\left|f_{j}^{\mu}(z)-f_{j}^{\mu-1}(z)\right|<\rho / 2^{\mu} \quad(1 \leq \mu \leq \nu ; j=1 \ldots, n) \quad \text { in } \Delta_{\rho}
$$

In particular, we have $\left|f_{j}^{\mu}(z)\right| \leq \rho(j=1, \ldots, n)$ in Δ_{ρ}; i.e., $f^{\mu}(z) \in \Delta_{\rho}(1 \leq \mu \leq$ $\nu)$.

From (5.9), for $z \in \Delta_{\rho}^{(-1)}$ we have

$$
f_{j}^{\nu+1}(a z)-f_{j}^{\nu}(a z)=a_{j}\left(f_{j}^{\nu+1}(z)-f_{j}^{\nu}(z)\right)+\left\{p_{j}^{*}\left(z, f^{\nu}(z)\right)-p_{j}^{*}\left(z, f^{\nu-1}(z)\right)\right\}
$$

Thus if we set

$$
\begin{aligned}
g_{j}(z) & :=f_{j}^{\nu+1}(z)-f_{j}^{\nu}(z) \text { in } \Delta_{\rho} \\
\varphi_{j}(z) & :=p_{j}^{*}\left(z, f^{\nu}(z)\right)-p_{j}^{*}\left(z, f^{\nu-1}(z)\right) \text { in } \Delta_{\rho}
\end{aligned}
$$

then $g_{j}(z)(j=1, \ldots, n)$ satisfies the functional equation

$$
g_{j}(a z)=a_{j} g_{j}(z)+\varphi_{j}(z) \quad \text { in } \Delta_{\rho}^{(-1)}
$$

where $\left|a_{j}\right|>1$ and $\varphi_{j}(z)$ is a holomorphic function in Δ_{ρ} with neither constant nor linear terms. It follows from Lemma 5.2 and (5.10) that

$$
\left|g_{j}(z)\right| \leq k\left(\max _{z \in \Delta_{\rho}}\left|\varphi_{j}(z)\right|\right) \quad \text { in } \Delta_{\rho}
$$

Therefore, for any $z \in \Delta_{\rho}$

$$
\begin{aligned}
\left|f_{j}^{\nu+1}(z)-f_{j}^{\nu}(z)\right| & \leq k\left(\max _{z \in \Delta_{\rho}}\left|p_{j}^{*}\left(z, f^{\nu}(z)\right)-p_{j}^{*}\left(z, f^{\nu-1}(z)\right)\right|\right) \\
& \leq k \lambda_{\rho} \max _{z \in \Delta_{\rho}}\left(\sum_{i=1}^{n}\left|f_{i}^{\prime \prime}(z)-f_{i}^{\nu-1}(z)\right|\right) \\
& \leq k \lambda_{\rho} \sum_{i=1}^{n} \rho / 2^{\nu} \\
& =k \lambda_{\rho} n \rho / 2^{\nu}<\rho / 2^{\nu+1}
\end{aligned}
$$

Thus (5.12) is verified and $\left\{f_{j}^{\nu}(z)\right\}_{\nu=1.2 \ldots}(j=1, \ldots, n)$ converges uniformly to a holomorphic function $f_{j}(z)$ in Δ_{ρ}, which satisfies equation (5.9). Our first step is proved.

We now set

$$
F(z):=\left(F_{1}(z), \ldots, F_{n}(z)\right)
$$

where

$$
F_{j}(z)=z_{j}+f_{j}(z) \quad(j=1, \ldots, n) \text { in } \Delta_{\rho}
$$

and

$$
S_{F}: z \in \Delta_{\rho} \rightarrow w=F(z) \in \mathbf{C}^{n}
$$

From the first step, we have

$$
\begin{equation*}
F_{j}(a z)=P_{j}\left(F_{1}(z), \ldots, F_{n}(z)\right) \quad(j=1, \ldots, n) \text { in } \Delta_{\rho}^{(-1)} \tag{5.13}
\end{equation*}
$$

For the second step we now want to show that $F(z)$ has a holomorphic extension to all of $\mathbf{C}^{\boldsymbol{n}}$. To this end, we consider the linear automorphism T_{a} of $\mathbf{C}^{\boldsymbol{n}}$ defined by

$$
T_{a}: z_{j}^{\prime}=a_{j} z_{j} \quad(j=1, \ldots, n)
$$

The functional equations (5.13) in $\Delta_{\rho}^{(-1)}$ are equivalent to

$$
\begin{equation*}
S_{F} \circ T_{a}=T_{P} \circ S_{F} \quad \text { in } \Delta_{\rho}^{(-1)} \tag{5.14}
\end{equation*}
$$

Now for $l=1,2, \ldots$ we set

$$
\begin{aligned}
\Delta_{\rho}^{(-l)} & : \quad\left|z_{j}\right|<\rho /\left|a_{j}\right|^{l} \quad(j=1, \ldots, n) \\
\Delta_{\rho}^{(l)} & : \quad\left|z_{j}\right|<\left|a_{j}\right|^{l} \rho \quad(j=1, \ldots, n)
\end{aligned}
$$

which are polydisks centered at 0 ; note that as $l \rightarrow \infty$, the polydisks $\Delta_{\rho}^{(-l)}$ shrink to the origin while the polydisks $\Delta_{\rho}^{(l)}$ increase to all of \mathbf{C}^{n}. Noting that $\left(T_{a}^{-1}\right)^{l}\left(\Delta_{\rho}\right)=$ $\Delta_{\rho}^{(-l)}$, we iterate (5.14) l times to obtain

$$
\begin{equation*}
S_{F} \circ T_{a}^{l}=T_{P}^{l} \circ S_{F} \text { in } \Delta_{\rho}^{(-l)}(l=1,2, \ldots) . \tag{5.15}
\end{equation*}
$$

On the other hand. since the right-hand side in this equation is defined in Δ_{ρ} and since $\left(T_{a}^{-1}\right)^{l}\left(\Delta_{\rho}^{(l)}\right)=\Delta_{\rho}$, we can extend the domain of definition of S_{F} from Δ_{ρ} to $\Delta_{\rho}^{(l)}$ by use of the equation

$$
S_{F}(z)=T_{P}^{\prime} \circ S_{F} \circ\left(T_{a}^{-1}\right)^{l}(z), \quad z \in \Delta_{\rho}^{(l)} .
$$

From (5.15), it follows that this extension of S_{F} is independent of $l=1,2 \ldots$. Since $\lim _{l \rightarrow \infty} \Delta_{\rho}^{(i)}=\mathbf{C}^{n}, S_{F}(z)$ is thus a holomorphic mapping on all of \mathbf{C}^{n}. Furthermore. S_{F} satisfies the equation $S_{F} \circ T_{a}=T_{P} \circ S_{F}$ in \mathbf{C}^{n} (this may be proved directly or by using analytic continuation). This finishes our second step of the proof.

Finally, we must verify the uniqueness of $F_{j}(z)(j=1, \ldots, n)$ satisfying the conditions stated in Proposition 5.1. To do this. it suffices to show the following. Let $\left|a_{j}\right|>1(j=1, \ldots, n)$ satisfy condition (3), i.e., $\sum a_{1}^{k_{1}} \cdots a_{n}^{k_{n}^{\prime \prime}} \neq a_{,}(j=1, \ldots, n)$, and let $p_{j}^{*}(z, Z)$ be a polynomial in $\mathbf{C}^{n} \times \mathbf{C}^{n}$ with neither constant nor linear terms in $z_{1}, \ldots, z_{n}, Z_{1}, \ldots, Z_{n}$. Then the holomorphic functions $f_{j}(z)(j=1, \ldots, n)$ defined in a polydisk Δ_{ρ} centered at 0 which satisfy the functional equations (5.9) and which contain neither constant nor linear terms are uniquely determined by a_{j} $(j=1, \ldots, n)$ and $p_{j}^{*}(z, Z)(j=1, \ldots, n)$. Indeed. for $j=1, \ldots, n$, writing the Taylor series development in Δ_{ρ}, we have

$$
\begin{aligned}
f_{j}(z) & =\sum_{k_{1}+\cdots+k_{n} \geq 2} v_{k_{1} \ldots \ldots k_{n}}^{(j)} z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}, \\
p_{j}^{*}(z, Z) & =\sum_{\substack{l_{1}+\cdots+l_{n} \\
+m_{1}+\cdots+m_{n} \geq 2}} C_{l_{1} \ldots, l_{n}, m_{1} \ldots \ldots m_{n}}^{(j)} z_{1}^{l_{1}} \cdots z_{n}^{l_{n}} Z_{1}^{m_{1}} \cdots Z_{n}^{m_{n}} .
\end{aligned}
$$

Using (5.9), we have

$$
\begin{align*}
& \sum_{k_{1}+\cdots+k_{n} \geq 2}\left(a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}-a_{j}\right) v_{k_{1} \ldots \ldots k_{n}}^{(J)} z_{1}^{k_{1}} \cdots z_{n}^{k_{n}} \tag{5.16}\\
&=\sum_{\substack{1_{1}+\cdots+l_{n} \\
+m_{1}+\cdots+m_{n} \geq 2}} C_{l_{1} \ldots . l_{n}, m_{1}, \ldots m_{n}}^{(J)} z_{1}^{l_{1}} \cdots z_{n}^{l_{n}} \\
& \times\left(\sum_{k_{1}+\cdots+k_{n} \geq 2} v_{k_{1} \ldots . k_{n}}^{(1)} z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}\right)^{m_{1}} \\
& \times \cdots \times\left(\sum_{k_{1}+\cdots+k_{n} \geq 2} v_{k_{1} \ldots, k_{n}}^{(n)} z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}\right)^{m_{n}} .
\end{align*}
$$

It suffices to prove that each $v_{k_{1} \ldots \ldots, k_{n}}^{(j)}\left(j=1, \ldots, n: s:=k_{1}+\ldots+k_{n} \geq 2\right)$ is determined uniquely by $a=\left\{a_{j} \mid j=1, \ldots, n\right\}$ and \mathcal{C}_{s}. where

$$
\mathcal{C}_{s}:=\left\{C_{l_{1} \ldots, l_{n}, m_{1} \ldots, m_{n}}^{(i)} \mid l_{1}+\cdots+l_{n}+m_{1}+\cdots+m_{n} \leq s ; i=1, \ldots, n\right\} .
$$

We verify this by induction on $s=k_{1}+\ldots+k_{n} \geq 2$. First of all. let $k_{1}, \ldots, k_{n} \geq 0$ be integers such that $k_{1}+\cdots+k_{n}=2$. Then, by comparing the expressions for the
coefficient of $z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}$, we have

$$
v_{k_{1} \ldots, k_{n}}^{(j)}=C_{k_{1} \ldots, k_{n}, 0, \ldots, 0}^{(j)} /\left(a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}-a_{j}\right) \quad(j=1, \ldots, n) .
$$

so that the case for $s=2$ is true. Next we let $s \geq 3$ and assume that each $v_{k_{1} \ldots \ldots k_{n}}^{(j)}$ ($k_{1}+\cdots+k_{n} \leq s-1 ; j=1, \ldots, n$) is determined uniquely by a and \mathcal{C}_{9-1}. Then for each $j=1, \ldots, n$ we compare the expressions for the coefficient of $z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}$, where $k_{1}+\cdots+k_{n}=s$. in equation (5.16). On the left-hand side this coefficient is $\left(a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}-a_{j}\right) v_{k_{1}}^{(j)}, k_{n} ;$ on the right-hand side we obtain a polynomial in

$$
C_{l_{1} \ldots, l_{n}, m_{1}, \ldots, m_{n}}^{(j)}: l_{1}+\cdots+l_{n}+m_{1}+\cdots+m_{n} \leq s
$$

and

$$
v_{k_{1} \ldots, k_{n}}^{(1)}: k_{1}+\cdots+k_{n} \leq s-1, \quad i=1, \ldots . n .
$$

This can be seen by noting that if one of the $v_{k_{1}}^{(i)}, k_{n}$ for some $i=1 \ldots \ldots n$ and $k_{1}+\cdots+k_{n} \geq s$ occurs, then $m_{i}=1, l_{k}=0(k=1 \ldots \ldots, n)$. and $m_{k}=0(k \neq i)$. This contradicts $\sum_{j=1}^{n}(l,+m) \geq 2$. Therefore, $v_{k_{1}}^{(j)}, \ldots, k_{n}$ is uniquely determined by a and \mathcal{C}_{s}, and the uniqueness of $f_{j}(z)(j=1, \ldots, n)$ is proved.
5.2.2. Bieberbach's Example. Let $T_{P}: z_{j}=P_{f}(z)(j=1 \ldots, n)$ be a polynomial mapping of $\mathbf{C}^{n}(n \geq 1)$. If a point $z \in \mathbf{C}^{n}$ satisfies $T_{P}(z)=z$, then z is called a fixed point of T_{P}. Let $z^{0} \in \mathbf{C}^{n}$ be a fixed point of T_{p}, and let

$$
J_{T_{r}}(z)=\frac{\partial\left(P_{1}, \ldots, P_{n}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}
$$

be the Jacobian matrix of T_{P} in \mathbf{C}^{n}. We let $\lambda_{j}(j=1, \ldots, n)$ denote the eigenvalues of $J_{T_{r}}\left(z^{0}\right)$. If $\left|\lambda_{j}\right|>1$ for $j=1 \ldots . n$. we call z^{0} a repelling fixed point of T_{P}. If $\left|\lambda_{j}\right|<1$ for $j=1 \ldots, n$, we call z^{0} an attracting fixed point of T_{P}. In all other cases we call z^{0} a loxodromic fixed point of T_{P}.

If z^{0} is a repelling fixed point of T_{P}, then we can find a neighborhood γ of z^{0} in \mathbf{C}^{n} such that $\gamma \subset \subset T_{p}(\gamma)$. If z_{0} is an attracting fixed point of T_{P}, then we can find a neighborhood γ of z_{1} in \mathbf{C}^{n} such that $T_{P}(\gamma) \subset \subset \gamma$. For the polynomial mapping T_{P} studied in section 5.2.1, the origin $z=0$ is a repelling fixed point of T_{P}.

If a polynomial mapping T_{P} of \mathbf{C}^{n} is one-to-one from \mathbf{C}^{n} onto \mathbf{C}^{n}, then we say that T_{P} is a polynomial automorphism of C^{n}. In the case $n=1$, any automorphism of \mathbf{C} is linear. However. for $n \geq 2$ there are nany polynomial automorphisms of degree at least two.

Let

$$
T_{P}: z_{j}^{\prime}=P_{j}\left(z_{1}, \ldots, z_{n}\right) \quad(j=1, \ldots, n)
$$

be a polynomial automorphism of \mathbf{C}^{n} such that $P_{j}(z)(j=1 \ldots, n)$ satisfies conditions (1). (2), and (3) stated at the begining of section 5.2 .1 (a specific example will be given at the end of this section). We fix a polydisk $\gamma^{0}:\left|z_{j}\right|<\rho(j=1, \ldots, n)$ such that $\gamma^{0} \subset \subset T_{P}\left(\gamma^{0}\right)$. We recursively define

$$
\gamma^{l+1}:=T_{P}\left(\gamma^{l}\right) \quad(l=0,1,2, \ldots) .
$$

Since $\gamma^{l} \subset \subset \gamma^{l+1}(l=0,1,2 \ldots)$ and T_{P} is an automorphism of \mathbf{C}^{n},

$$
\Gamma_{T_{r}}:=\lim _{l=x} \gamma^{l}
$$

is a domain in \mathbf{C}^{n}. We note that $\Gamma_{T_{r}}$ does not depend on the choice of the initial polydisk γ^{0} as long as $\gamma^{n} \subset \subset T_{P}\left(\gamma^{0}\right)$.

We consider the PoincaréPicard entire mapping S_{F} with respect to the above polynomial mapping T_{P}; this mapping is defined via the equation

$$
S_{F} \circ T_{a}=T_{P} \circ S_{F} \quad \text { in } \mathbf{C}^{n} .
$$

We show the following.
Proposition 5.2. The Poincaré-Picard entire mapping S_{F} maps \mathbf{C}^{n} onto the domain $\Gamma_{T_{P}}$ in a one-to-one manner.

Proof. By (5.4) we fix a neighborhood δ^{0} of the origin $z=0$ such that S_{F} is one-to-one on δ^{0} and such that $S_{F}\left(\delta^{0}\right)=\gamma^{0}$ (recall that we can start with any polydisk γ^{0} such that $\left.\gamma^{0} \subset \subset T_{P}\left(\gamma^{0}\right)\right)$. Since

$$
\begin{equation*}
S_{F} \circ T_{a}^{l}=T_{P}^{l} \circ S_{F} \quad \text { in } \mathbf{C}^{n}(l=1,2 \ldots), \tag{5.17}
\end{equation*}
$$

we have

$$
S_{F}\left(T_{a}^{l}\left(\delta^{0}\right)\right)=\gamma^{l} \quad(l=1.2 \ldots) .
$$

Since $T_{a}^{l}: z \in \mathbf{C}^{n} \rightarrow w=\left(a_{1}^{l} z_{1}, \ldots, a_{n}^{l} z_{n}\right)$ and $\left|a_{j}\right|>1(j=1, \ldots, n)$, we see that the domains $T_{a}^{l}\left(\delta^{0}\right)$ increase to \mathbf{C}^{n}. Thus S_{F} maps \mathbf{C}^{n} onto the domain $\Gamma_{T_{P}}$.

We show that S_{F} is one-to-one. For if not, there exist $z_{1}, z_{2} \in \mathbf{C}^{n}$ with $z_{1} \neq z_{2}$ such that $S_{F}\left(z_{1}\right)=S_{F}\left(z_{2}\right)$. We fix an integer $l_{0} \geq 1$ sufficiently large so that if we let $\zeta_{i}:=T_{a}^{-l_{0}}\left(z_{i}\right)(i=1,2)$, then $\zeta_{1} \cdot \zeta_{2} \in \delta^{0}$. Then $\zeta_{1} \neq \zeta_{2}$. and hence $S_{F}\left(\zeta_{1}\right) \neq S_{F}\left(\zeta_{2}\right)$. Since $T_{a}^{j_{0}}\left(\zeta_{i}\right)=z_{i}(i=1,2)$, it follows from (5.17) that

$$
S_{F}\left(z_{i}\right)=T_{P}^{l_{o}} \circ S_{F}\left(\zeta_{1}\right) .
$$

Therefore, $T_{P}^{d_{0}} \circ S_{F}\left(\zeta_{1}\right)=T_{P}^{\lambda_{0}} \circ S_{F}\left(\zeta_{2}\right)$, which contradicts the condition that T_{P} (and hence $T_{P}^{i_{0}}$) is an automorphism of \mathbf{C}^{n}.

We now impose the following additional condition on the above algebraic automorphism T_{P} of \mathbf{C}^{n} : there exists another repelling fixed point $z^{*} \neq 0$ in \mathbf{C}^{n}. Thus we can find a polydisk γ^{*} centered at z^{*} in \mathbf{C}^{n} such that $\gamma^{*} \subset \subset T_{P}\left(\gamma^{*}\right)$. We define

$$
\Gamma_{T_{P}}^{*}:=\lim _{l \rightarrow x} T_{P}^{l}\left(\gamma^{*}\right),
$$

which is a domain in \mathbf{C}^{n}. Furthermore, since T_{P} is an automorphism of \mathbf{C}^{n}, we have $\Gamma_{T_{P}}^{*} \cap \Gamma_{T_{P}}=0$. From Proposition 5.2, we see that the domain $\Gamma_{T_{P}}$ in \mathbf{C}^{n} is biholomorphically equivalent to \mathbf{C}^{n}. We will give an example of a polynomial automorphism T_{P} of \mathbf{C}^{n} which satisfies conditions (1), (2). and (3) (at $z=0$) stated at the beginning of section 5.2.1 and which has another repelling fixed point $z^{*} \neq 0$ in \mathbf{C}^{n}. Thus we have the following proposition, which indicates another major difference between \mathbf{C}^{n} for $n \geq 2$ and \mathbf{C}.

Proposition 5.3. There exists a domain D in $\mathbf{C}^{n}(n \geq 2)$ such that D is biholomorphically equivalent to \mathbf{C}^{n} and such that $\mathbf{C}^{n} \backslash D$ has non-empty interior.

Example 5.1. In \mathbf{C}^{2} with variables z and w, we set

$$
T_{P}:\left\{\begin{aligned}
z^{\prime} & =w \\
w^{\prime} & =2 z+w(w-1)(2 w-1)-w
\end{aligned}\right.
$$

Then T_{P} is a polynomial automorphism of \mathbf{C}^{2} such that both (0.0) and (1,1) are repelling fixed points of T_{P} with eigenvalues $\pm \sqrt{2}$ whose Jacobian matrix is diagonizable at both points.
5.2.3. Picard's Theorem. We consider a holomorphic mapping

$$
T: u_{j}=f_{j}(z) \quad(j=1, \ldots . m)
$$

from C^{n} to C^{m} with $m, n \geq 1$. We call $T: C^{n} \rightarrow C^{m}$ an entire mapping. We call

$$
\mathcal{E}_{T}:=\mathbf{C}^{n} \backslash T\left(\mathbf{C}^{n}\right)
$$

the set of exceptional values of T. As a particular example, if S is an algebraic hypersurface in \mathbf{C}^{m}. i.e.. $S=\{P(w)=0\}$ where $P(w)$ is a non-zero polynomial in $w=\left(w_{1}, \ldots, w_{m}\right)$, and if S satisfies $S \subset \mathcal{E}_{r}$. we call S an algebraic exceptional set of T.

In the case when $n=m=1$, from Picard's theorem in one complex variable. it follows that \mathcal{E}_{T} consists of at most one point for any non-constant entire function T. In Proposition 5.3 we observed that in the case when $n=m=2$, there are examples of entire mappings T such that ε_{T} contains interior points.

Let $T: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}$ be an entire mapping. If there exists an algebraic hypersurface Σ in \mathbf{C}^{n} such that $T\left(C^{n}\right) \subset \Sigma$. then we say that T is degenerate. In this case we nay assume that Σ is irreducible in \mathbf{C}^{n}. We shall show in Theorem 5.6 that if T is non-degenerate, then the number of irreducible algebraic exceptional sets of T is limited. This fact may be regarded as a generalization of Picard's theorem in one complex variable. To state the theorem. we first discuss the following generalization to several variables of Borel's theorem from the theory of functions of one complex variable.

Theorem 5.5 (Borel). Let $\nu \geq 1$ and let $f_{j}(z)(j=1, \ldots, \nu)$ be entire functions in $\mathbf{C}^{n}(n \geq 1)$ such that $f_{j}(z) \neq 0$ on \mathbf{C}^{n}. If there exist non-zero complex numbers $a_{j}(j=1 \ldots, \nu)$ such that

$$
\begin{equation*}
a_{1} f_{1}(z)+\cdots+a_{\nu} f_{\nu}(z) \equiv 0 \quad \text { in } C^{n} \tag{5.18}
\end{equation*}
$$

then there exists at least one pair $h . k(h \neq k: 1 \leq h, k \leq \nu)$ such that the ratio $f_{k}(z) / f_{h}(z)$ is constant in \mathbf{C}^{n}.

Proof. We prove this fact by induction on the dimension $n \geq 1$. In the case $n=1$, the result is Borel's theorem for one complex variable. ${ }^{1}$ We use this fact without proof. Assume the result is true in $\mathbf{C}^{\boldsymbol{n}}$ for $n \geq 1$ fixed. and we shall prove that the result is true in \mathbf{C}^{n+1}.

Let H be a complex hyperplane in \mathbf{C}^{n+1} which passes through the origin 0 . We restrict each $f_{j}(z)(j=1 \ldots, \nu)$ and the relation (5.18) in C^{n+1} to H. Since H can be regarded as $\mathbf{C}^{\boldsymbol{n}}$, it follows from the inductive hypothesis that there exists at least one pair $h . k(h \neq k .1 \leq h . k \leq \nu)$ depending on H such that $f_{k}(z) / f_{h}(z)=C_{H}$ (constant) on H. Since there exist infinitely many complex hyperplanes H passing through 0 in \mathbf{C}^{n+1} and since there exist at inost a finite number of pairs $h, k(h \neq k, 1 \leq h, k \leq \nu)$. it follows that there exists at least one pair $h . k(h \neq k, 1 \leq h, k \leq \nu)$ such that

$$
f_{h}(z) / f_{k}(z)=C_{H}
$$

on infinitely many distinct hyperplanes H. Since $f_{h}(z) / f_{k}(z)$ is holomorphic at $z=$ 0 , this implies that the complex numbers C_{H} coincide with $\mathrm{c}:=f_{h}(0) / f_{k}(0)$. Hence $f_{h}(z) / f_{k}(z) \equiv c$ on the union of the hyperplanes H. It follows that $f_{h}(z) / f_{k}(z) \equiv c$ in all of \mathbf{C}^{n+1}. For, if $F(z):=f_{h}(z) / f_{k}(z) \not \equiv \mathrm{c}$ in a neighborhood V of the origin.

[^24]then. since $F(z)$ is a non-constant holomorphic function in V. the set Σ defined by $F(z)=c$ in V consists of a finite number of irreducible analytic hypersurfaces in V. This contradicts the fact that Σ contains infinitely many distinct irreducible hyperplanes H passing through 0 .

From Borel's theorem we obtain the following.
Theorem 5.6 ([42]). Let $T: z \in \mathbf{C}^{n} \rightarrow u=\left(f_{1}(z), \ldots f_{m}(z)\right) \in \mathbf{C}^{m}(n . m \geq$ 1) be an entire mapping. If the set \mathcal{E}_{T} of exceptional values of T contains at least $m+1$ irreducible algebraic hypersurfaces $S_{k}(k=1, \ldots, m+1)$, then T is degenerate.

Proof. Let $S_{k}(k=1 \ldots \ldots m+1)$ be given in the form

$$
S_{k}: P_{k}\left(w_{1} \ldots \ldots u_{m}\right)=0 \quad \text { in } \mathbf{C}^{m}
$$

where $P_{k}(w)$ is a polynomial in $w \in \mathbf{C}^{m}$. We set

$$
\begin{equation*}
W_{k}^{\prime}:=P_{k}\left(u_{1}, \ldots, u_{m}\right) \quad(k=1, \ldots, m+1) \tag{5.19}
\end{equation*}
$$

and we use these $m+1$ equations to get an algebraic relation between $W_{1} \ldots$, W_{m+1} :

$$
\begin{equation*}
Q\left(W_{1}, \ldots . W_{m+1}^{\prime}\right):=\sum_{\left(j_{1}, \ldots, j_{m+1}\right) \in J} a_{j_{1} \ldots, j_{m, 1}} W_{1}^{j_{1}} \cdots U_{m+1}^{J_{m+1}}=0 \text { in } C_{1 \cdot}^{m+1} \tag{5.20}
\end{equation*}
$$

here, we have only a finite number of indices in J. Thus

$$
\begin{align*}
0 & =\sum_{\left(j_{1} \ldots, j_{m+1}\right) \in J} a_{j_{1} \ldots, j_{m+1}} P_{1}(u)^{j_{1}} \cdots P_{m+1}(u)^{j_{m+1}} \tag{5.21}\\
& =\sum_{\left(j_{1} \ldots, j_{m+1}\right) \in J} a_{j_{1}, \ldots, j_{m+1}} \rho_{j_{1} \ldots, j_{m+1}}\left(u^{\prime}\right) \text { for } u \cdot \in \mathbf{C}^{m} .
\end{align*}
$$

where $\rho_{\mu_{1} \ldots . j_{m+1}}(u):=P_{1}(u)^{j_{2}} \cdots P_{m+1}(u)^{J_{m+1}}$ is a polynomial in $u \in \mathbf{C}^{m}$. We set

$$
\begin{aligned}
u_{\jmath_{1} \ldots . \jmath_{m+1}}(z) & :=\wp_{j_{1} \ldots \ldots \jmath_{m+1}}(T(z)) \\
& =\varphi_{j_{1} \ldots . \jmath_{m+1}}\left(f_{1}(z) \ldots, f_{m}(z)\right) \text { for } z \in \mathbf{C}^{n}
\end{aligned}
$$

which is an entire function on \mathbf{C}^{n}. Since $S_{j} \subset \mathcal{E}_{T}(j=1 \ldots . m+1)$, we have $P_{j}\left(f_{1}(z), \ldots, f_{m}(z)\right) \neq 0$ for all $z \in \mathbf{C}^{n}$. and hence $u_{j_{1} \ldots, j_{m-2}}(z) \neq 0$ for all $z \in \mathbf{C}^{n}$. Furthermore, from (5.21) we have

$$
\sum_{\left(j_{1} \ldots ., j_{m+1}\right) \in J} a_{j_{1} \ldots, j_{j, 1}} u_{j_{1} \ldots \ldots, \ldots-1}(z) \equiv 0 \quad \text { on } C^{n}
$$

It follows from Borel's theorem that there exists at least one pair $\left(j_{1}, \ldots, j_{m+1}\right) \neq$ $\left(k_{1}, \ldots, k_{m+1}\right)$ in J such that

$$
u_{j_{1} \ldots, j_{m+1}}(z) / u_{k_{1} \ldots, k_{m+1}}(z) \equiv c=\text { const. in } \mathbf{C}^{n}
$$

Thus if we set

$$
\begin{equation*}
P^{\bullet}(w):=\rho_{j_{1}, \ldots . j_{m-1}}(w)-c \rho_{k_{1}, \ldots, k_{m-1}}\left(u^{\prime}\right) \text { for } u \in \mathbf{C}^{\prime n}, \tag{5.22}
\end{equation*}
$$

which is a polynomial in $w \in \mathbf{C}^{\text {m }}$, then

$$
T\left(\mathbf{C}^{n}\right) \subset\left\{w \in \mathbf{C}^{\prime \prime} \mid P^{\bullet}(w)=0\right\}
$$

so that T is degenerate.

Remark 5.7. In the proof, if $P_{k}(w)(k=1 \ldots . m+1)$ in (5.19) are homogeneous polynomials in $w=\left(w_{1}, \ldots, u_{m}\right)$, then $P^{*}(w)$ in (5.22) is also a homogeneous polynomial in $\boldsymbol{\omega}$.

To prove this. we let $q_{k} \geq 1$ denote the degree of the homogeneous polynomial $P_{k}(u)(k=1, \ldots m+1)$. For $\left(j_{1} \ldots \ldots j_{m+1}\right) \in J . \mu_{\rho_{1} \ldots j_{m+1}}(w)$ is a homogeneous polynomial in \boldsymbol{u} of degree

$$
d:=j_{1} q_{1}+\cdots+j_{m+1} q_{m+1}
$$

moreover. we claim that this degree may be assmued to be independent of ($j_{1} \ldots$. . $\left.j_{m+1}\right) \in J$. To see this. fix $\lambda \neq 0$. Then $P_{k}\left(\lambda u_{1}, \ldots, \lambda u_{m}\right)=\lambda^{q_{k}} P_{k}\left(u_{1}, \ldots, u_{m}\right)$. so that, setting $W_{1}=P_{i}(w)(i=1 \ldots, m+1), w \in \mathbf{C}_{w}{ }^{m}$, (5.20) implies that

$$
Q\left(W_{1}^{\prime} / \lambda^{q_{1}} \ldots, W_{m+1} / \lambda^{q_{m+1}}\right)=0 .
$$

and hence

$$
\sum_{\left(j_{1} \ldots . j_{m+1}\right) \in J} a_{j_{1} \ldots \ldots . j_{m+1}} \lambda^{-\left(q_{1} j_{1}+\cdots+q_{m+1} j_{m+1}\right)} P_{1}(u)^{j_{1}} \cdots P_{m-1}(u)^{)_{m+1}}=0
$$

for $u \in \mathbf{C}_{u}^{m}$. Since this equation is valid for all $\lambda \neq 0$. it follows that d may be assumed to be independent of $\left(j_{1}, \ldots, j_{m+1}\right) \in J$ (for if not. collect all terms of the highest degree of λ). Thus $P^{*}(w)=\wp_{\rho_{1} \ldots . j_{m+1}}(w)-c \varphi_{k_{1} \ldots \ldots k_{m+1}}(w)$ is a homogeneous polynomial in w of degree d.

In a similar manner, we can treat the case of complex projective space $\mathbf{P}^{\boldsymbol{n}}$: i.e.. we consider a holomorphic napping

$$
T^{\prime \prime}: \mathbf{C}^{\prime \prime} \rightarrow \mathbf{P}^{\prime \prime}
$$

and the set $\mathcal{E}_{T^{0}}$ of exceptional values of $T^{0}: \mathcal{E}_{T^{n}}:=\mathbf{P}^{m} \backslash T^{0}\left(\mathbf{C}^{n}\right)$. In the case $n=m=1 . T^{0}$ is a meromorphic function on \mathbf{C} and it follows from Picard's theorem in one complex variable that $\mathcal{E}_{T^{\prime \prime}}$ consists of at most two points. In the general case, we have the following theorem.

Theorem 5.7. Let $T^{\prime \prime}: \mathbf{C}^{n} \rightarrow \mathbf{P}^{m}$ ($n . m \geq 1$) be a holomoryhic mapping. If $\mathcal{E}_{T^{\circ}}$ contains at leasts $m+2$ irreducible algebraic hypersurfaces $S_{i}(i=1 \ldots . m+2)$ in \mathbf{P}^{m}, then T^{0} is degenerate; i.e., there exists an algebraic hypersurface Σ in \mathbf{P}^{m} such that $T^{(1)}\left(\mathbf{C}^{n}\right) \subset \Sigma$.

Proof. We consider the canonical mapping $\pi: \mathbf{C}^{m+1} \backslash\{0\} \rightarrow \mathbf{P}^{m}$ given ly $\pi\left(w_{0}, \ldots, w_{m}\right)=\left[w_{0}: \ldots: u_{m}\right]$. Since $T^{0}: \mathbf{C}^{n} \rightarrow \mathbf{P}^{\prime n}$ is a holomorphic mapping. by solving the Cousin Il problem we can find a holomorphic mapping

$$
\widetilde{T^{1}}: z \in \mathbf{C}^{n} \rightarrow\left(f_{0}(z) \ldots, f_{m}(z)\right) \in \mathbf{C}^{m+1} \backslash\{0\} .
$$

where each $f_{J}(z)(j=0, \ldots, m)$ is an entire function on \mathbf{C}^{n}. such that $\pi\left(\widetilde{T^{0}}(z)\right)=$ $T^{0}(z)$ for $z \in \mathbf{C}^{n}$. Since $S_{i} \subset \mathcal{E}_{T^{\prime}}$ ($i=1 \ldots, m+2$), we can find a homogeneous polynomial $P_{1}(w)$ in \mathbf{C}^{m+1} such that if we set

$$
\tilde{S}_{1}:=\left\{w \in \mathbf{C}^{m+1} \mid P_{i}(w)=0\right\} \quad(i=1, \ldots, m+2) .
$$

then $\pi\left(\tilde{S}_{i} \backslash\{0\}\right)=S_{i}$ and $\tilde{S}_{i} \subset \mathcal{E}_{\mathcal{T}^{2}}$. By applying Theoren 5.6 and Remark 5.7 to $T=\widetilde{T^{0}}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m+1}$. we can find a homogeneous polynomial $P^{*}(w)(\not \equiv 0)$ in \mathbf{C}^{m+1} such that $\widetilde{T^{\prime}}\left(\mathbf{C}^{n}\right) \subset \Sigma:=\left\{w \in \mathbf{C}^{m+1} \mid P^{*}(w)=0\right\}$. Hence $T^{n}\left(\mathbf{C}^{n}\right)$ is contained in the algebraic hypersurface $\Sigma:=\pi\left(\Sigma^{\bullet} \backslash\{0\}\right)$ in \mathbf{P}^{m}.

Part 2

Theory of Analytic Spaces

CHAPTER 6

Ramified Domains

6.1. Ramified Domains

Let f be a holomorphic function at a point \boldsymbol{p} in $\mathbf{C}^{\boldsymbol{n}}$. In general. when f is analytically continued to a domain in \mathbf{C}^{n}, we obtain a multiple-valued function \hat{f}. In the theory of several complex variables, as in the theory of one complex variable, we consider a multiply sheeted domain \mathcal{D} over \mathbf{C}^{n} on which \tilde{f} becones a singlevalued function. If we do not consider a branch point as an interior point of \mathcal{D}. so that \mathcal{D} is unramified, then the study of holomorphic functions in \mathcal{D} is very similar to that in the case of one complex variable. However, if we consider a branch point as an interior point of \mathcal{D} so that \mathcal{D} is ramified, then we encounter interesting new phenomena in the study of holomorphic functions on the ramified domain \mathcal{D} over \mathbf{C}^{n} for $n \geq 2$ which do not occur in the case of $n=1$. The major portion of this chapter is devoted to a proof of the local existence of a so-called simple function f on a ramified domain \mathcal{D} over \mathbf{C}^{n} (Theorem 6.1). Such an f provides a local m-fold cover $\dot{\Delta}$ of a polydisk Δ in \mathbf{C}^{n}; the essential point is that, if we consider the graph $\mathcal{C}: X=f(p), p \in \bar{\Delta}$ in the $(n+1)$-dimensional product space $\Delta \times C_{X}$, then $\bar{\Delta}$ and \mathcal{C} are one-to-one except for an analytic set of dimension at most $n-1$: moreover. each branch point p of $\bar{\Delta}$ corresponds to a nonsingular point of \mathcal{C} except for an analytic set of dimension at most $n-2$. A corollary of this result, Theorem 6.4. which establishes local existence of a fundamental system for \mathcal{D}, will be used in Chapter 7.
6.1.1. Unramified Domains. Let \mathcal{G} be a connected Hausdorff space. Assume that there exists a continuous mapping π from \mathcal{G} into \mathbf{C}^{n} which is locally one-to-one: i.e., for any point $p \in \mathcal{G}$ we can find a neighborhood V of p in \mathcal{G} and a ball B centered at $\pi(p)$ in \mathbf{C}^{n} such that π is continuous and bijective from V onto B. We say that \mathcal{G} is an unramifled domain over \mathbf{C}^{n} (or a Riemann domain over \mathbf{C}^{n}) and π is the canonical projection of \mathcal{G} into \mathbf{C}^{n}. Given a point $p \in \mathcal{G}$. $\pi(p)$. denoted by \underline{p}, is called the projection of p or the base point of p. We say that p lies over \underline{p}. Given any set $E \subset \mathcal{G}$. we call $\pi(E)$ the projection of E into \mathbf{C}^{n} and we write $\underline{E}:=\pi(E)$. Given any $\underline{p} \in \mathbf{C}^{n}$, we consider the number $m(\underline{p})$ of points in the pre-image $\pi^{-1}(\underline{p})$ in \mathcal{G} : this number is at most countable. We call $m(\mathcal{G}):=\max \left\{\boldsymbol{m}(\boldsymbol{p}) \mid \boldsymbol{p} \in \mathbf{C}^{n}\right\}$ the number of sheets of \mathcal{G}, which may be infinite. If there exists a domain D such that $\pi(\mathcal{G}) \subset D$, then \mathcal{G} is called an unramified domain over D.

A connected and open subset in \mathcal{G} is called a domain in \mathcal{G}, although we will have occasion to drop the connectivity assumption as in the case of \mathbf{C}^{n}. Let \mathfrak{v} be a domain in \mathcal{G}. If $\left.\pi\right|_{\mathbf{v}}$ is bijective from \boldsymbol{v} onto $\pi(v)$. then \boldsymbol{v} is called a univalent domain in \mathcal{G} over \mathbf{C}^{n}. Given $\boldsymbol{p} \in \mathcal{G}$, there exists a univalent neighborhood δ of p in \mathcal{G}. which will be called a coordinate neighborhood of p. Then by letting $q \in \delta$
correspond to $q=\pi(q) \in C^{\prime \prime}$, we consider $\pi(\delta)$ as giving local coordinates of δ at p. We introduce analytic structure into \mathcal{G} and define holomorphic functions in the following manner. Let $f(p)$ be a single-valued. complex-valued function defined on a domain v in \mathcal{G}. For $p \in v$. let $\delta \subset v$ be a coordinate neighborhood of p. If $f\left(\pi^{-1}(\underline{q})\right.$) is a holomorphic function for \underline{q} in $\pi(\delta) \subset \mathbf{C}^{n}$, then we say that $f(p)$ is a holomorphic function in v.

Boundary points. Let \mathcal{G} be an unramified domain over $\mathbf{C l}^{n}$ with variables $z_{1} \ldots$, z_{n}. Let π be the canonical projection of \mathcal{G} into \mathbf{C}^{n}. We want to define a boundary point of \mathcal{G}. Let $\underline{p}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \in \mathbf{C}^{n}$. Let $r_{ر . k}>0(j=1 \ldots, n: k=1,2 \ldots)$ be n sequences of positive numbers such that $r_{j . k}>r_{j . k+1}$ and $\lim _{k \rightarrow x} r_{j . k}=0$ $(j=1, \ldots, n)$. We consider the nested sequence of polydisks $\underline{\delta}_{k}$ centered at \underline{p} in $\mathbf{C l}^{n}$ defined by

$$
\underline{\delta}_{k}:\left|z_{\jmath}-z_{j}^{\prime}\right|<r_{\jmath . k} \quad(j=1, \ldots, n ; k=1,2, \ldots)
$$

Set $\delta_{k}:=\pi^{-1}\left(\underline{\delta}_{k}\right) \subset \mathcal{G}$. Then each $\pi^{-1}\left(\underline{\delta}_{k}\right) \quad(k=1,2, \ldots)$ can be decomposed into at most a countable number of connected components. If there exists a connected component $\delta_{k}^{0} \neq \emptyset$ in δ_{k} for each $k=1.2 \ldots$ such that

$$
\delta_{k+1}^{0} \subset \delta_{k}^{0} \quad(k=1,2, \ldots), \quad \bigcap_{k=1}^{\infty} \delta_{k}^{0}=0
$$

then the sequence $\left\{\delta_{k}^{0}\right\}_{k}$ defines a boundary point \tilde{p} of \mathcal{G} over \underline{p}. We say that each component δ_{k}^{0} is a fundamental neighborhood of \tilde{p} in \mathcal{G} and the sequence $\left\{\delta_{k}^{0}\right\}_{k}$ is a fundamental neighborhood system of \tilde{p} in \mathcal{G}. Let $\left\{\delta_{k}^{0}\right\}_{k}$ and $\left\{\eta_{k}^{0}\right\}_{k}$ be two fundamental neighborhood systems of the boundary points \tilde{p}_{1} and \tilde{p}_{2} of \mathcal{G} over the same base point $\underline{p} \in \mathbf{C}^{n}$. If, for any δ_{k}^{0} (resp. η_{k}^{0}), we can find $\eta_{k^{\prime}}^{0}$ (resp. $\delta_{k^{\prime}}^{0}$) such that $\eta_{k^{\prime}}^{0} \subset \delta_{k}^{0}$ (resp. $\delta_{k^{\prime}}^{0} \subset \eta_{k}^{0}$), then \tilde{p}_{1} and \tilde{p}_{2} define the same boundary point of \mathcal{G} over p.

Let \mathcal{G} be an unramified domain over a doinain $D \subset C^{n}$ and let π denote the canonical projection of \mathcal{G} into D. The boundary point \tilde{p} of \mathcal{G} over a point \underline{p} in D is called a relative boundary point of \mathcal{G} with respect to D. We say that an unramified domain \mathcal{G} over $D \subset C^{n}$ which has no relative boundary points with respect to D is an unramified domain over D without relative boundary. Let \mathcal{G} be an unramified domain over D without relative boundary. From standard covering space theory: given any point $p \in \mathcal{G}$ and any continuous arc $\underline{\ell}$ in D starting from \underline{p}, we can find a unique continuous arc l in \mathcal{G} with initial point at p such that $\pi(\varepsilon)=\bar{\varepsilon}$. This shows that the number of sheets $n(\underline{p})$ of \mathcal{G} over $\underline{p} \in D$ is independent of \underline{p}. In particular. if D is simply connected, then any unramified domain \mathcal{G} over D without relative boundary is a univalent domain.
Intersection of domains. Let $\left\{\mathcal{G}_{j}\right\}_{j=1}^{\prime}$ be a finite number of unramified domains over \mathbf{C}^{n} and let π, denote the canonical projection of \mathcal{G}_{j} into \mathbf{C}^{n}. Let \underline{p} be a point in $\mathbf{C}^{\prime \prime}$ such that there is at least one point p_{j} in $\mathcal{G},(j=1, \ldots, l)$ with $\pi\left(p_{j}\right)=\underline{p}$. We set $p:=\left(p_{1}, \ldots, p_{l}\right)$ and consider the set $\tilde{\mathcal{G}}$ of all such p for each $p \in \mathbf{C}^{\boldsymbol{n}}$. Define $\tilde{\pi}$ to be the projection from $\overline{\mathcal{G}}$ into \mathbf{C}^{n} via $\tilde{\pi}(p)=\underline{p}$. We next introduce a topology on $\widetilde{\mathcal{G}}$ as follows: let $\boldsymbol{p}=\left(p_{1}, \ldots, p_{l}\right) \in \tilde{\mathcal{G}}$ and let $\tilde{\pi}(p)=p \in \mathbf{C}^{n}$. We can find a polydisk $\underline{\delta}$ containing \underline{p} in $C^{\prime \prime}$ such that there exists a univalent neighborhood δ_{j} of p_{j} in \mathcal{G}_{j} with $\pi_{j}\left(\delta_{j}\right)=\underline{\delta}$. The set $\tilde{\delta}$ of all points $q=\left(q_{1}, \ldots, q_{l}\right)$ of $\tilde{\mathcal{G}}$, where $q_{j} \in \delta_{j}(j=1 \ldots, l)$ are associated to some $\underline{q} \in \underline{\delta}$. constitutes a neighborhood of
$p \in \tilde{\mathcal{G}}$. These form a neighborhood basis at p for the topology on $\tilde{\mathcal{G}}$. The space $\tilde{\mathcal{G}}$ equipped with this topology becomes a Hausdorf space. Since $\left.\tilde{\pi}\right|_{\bar{\delta}}$ is bijective from $\tilde{\delta}$ onto δ, it follows that $\tilde{\mathcal{G}}$ is an unramified domain over \mathbf{C}^{n}, and $\tilde{\pi}$ is the canonical projection from $\tilde{\mathcal{G}}$ into \mathbf{C}^{n}. We say that $\tilde{\mathcal{G}}$ is the intersection of the unramifled domains $\left\{\mathcal{G}_{j}\right\}_{j=1}^{\prime}$ over \mathbf{C}^{n}, and we write $\tilde{\mathcal{G}}=\mathcal{G}_{1} \cap \ldots \cap \mathcal{G}_{1}$.

In general. $\tilde{\mathcal{G}}$ is not connected even if each $\mathcal{G},(j=1, \ldots, l)$ is connected; cf. Remark 6.2. Let $p=\left(p_{1}, \ldots, p_{l}\right) \in \tilde{\mathcal{G}}$ lie over $\underline{p} \in \mathbf{C}^{n}$ and let $\tilde{\mathcal{G}}_{p}$ be the connected component of $\tilde{\mathcal{G}}$ which contains p. Let $q=\left(q_{1}, \ldots, q_{l}\right) \in \tilde{\mathcal{G}}_{p}$ lie over $\underline{q} \in \tilde{\mathcal{G}}$. We can find an arc $\underline{\ell}$ which connects \underline{p} and \underline{q} such that there exists an arc L_{j} in \mathcal{G}_{j} $(j=1, \ldots, l)$ which connects p_{j} and q_{j} with $\pi_{j}\left(L_{j}\right)=\underline{\ell}$: then $L=\left(L_{1}, \ldots, L_{l}\right)$ is an arc connecting p and q in $\tilde{\mathcal{G}}_{p}$. By convention we say that $\tilde{\mathcal{G}}_{p}$ is the intersection of $\left\{\mathcal{G}_{j}\right\}_{j=1}^{\prime}$ determined by the initial point p. We can also consider the intersection of infinitely many (countable or uncountable) unramified domains in a similar fashion to that of finite intersections of unramified domains.

Remark 6.1. Let $f_{j}(p)$ be a holomorphic function on an unramified domain $\mathcal{G}_{j}(j=1, \ldots, l)$, where $l<\infty$. Then $\sum_{j=1}^{l} f_{j}^{a_{j}}(p)$ and $\prod_{j=1}^{l} f_{j}^{a_{j}}(p)\left(a_{j} \geq 0\right.$ is an integer) define holomorphic functions on the intersection $\mathcal{G}_{1} \cap \cdots \cap \mathcal{G}_{l}$.

Remark 6.2. Even when $\mathcal{G}_{1}=\mathcal{G}_{2}$ and \mathcal{G}_{1} is connected, the intersection $\mathcal{G}_{1} \cap \mathcal{G}_{2}$ need not be equal to $\mathcal{G}_{1}=\mathcal{G}_{2}$: nor must the intersection be connected. For example, let $\mathcal{G}_{1}=\mathcal{G}_{2}$ be the unramified domain over $D=\{0<|z|<\infty\}$ in the complex plane \mathbf{C}_{z} determined by the function \sqrt{z}, i.e., the Riemann surface of \sqrt{z} over D. Let $z=1 \in D$. Then each $\mathcal{G}_{j}(j=1,2)$ contains two different points p_{j} and q_{j} lying over $z=1$. In $\mathcal{G}_{1} \cap \mathcal{G}_{2}$ we set $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right)$, and $r=\left(p_{1}, q_{2}\right)$. The connected component $\mathcal{\mathcal { G }}_{p}$ of $\mathcal{G}_{1} \cap \mathcal{G}_{2}$ determined by the initial point p coincides with the connected component $\overline{\mathcal{G}}_{q}$ determined by the initial point q. However, the connected component $\tilde{\mathcal{G}}_{r}$ of $\mathcal{G}_{1} \cap \mathcal{G}_{2}$ determined by the initial point r is not the same as $\tilde{\mathcal{G}}_{p}$. Thus, $\mathcal{G}_{1} \cap \mathcal{G}_{2}$ consists of two connected components, $\tilde{\mathcal{G}}_{p}$ and $\tilde{\mathcal{G}}_{\boldsymbol{r}}$.
6.1.2. Locally Ramified Domains. We next define ramified domains over \mathbf{C}^{n}; here, the branch points will be regarded as interior points of the domain. First we consider the local case. Fix $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{C}^{n}$ and let

$$
\Delta:\left|z_{j}-a_{j}\right|<r, \quad(j=1, \ldots, n)
$$

be a polydisk in C^{n}. Let Σ be an analytic hypersurface in $\bar{\Delta}$ and set $\sigma:=\Delta \cap \Sigma$ and $\Delta^{\prime}:=\Delta \backslash \sigma$. We note that for any $\underline{p} \in \sigma$ and any sufficiently small polydisk δ centered at \underline{p} in \mathbf{C}^{n} the intersection $\delta \cap^{\prime} \Delta^{\prime}$ is connected. Let \mathcal{D}^{\prime} be an unramified domain over Δ^{\prime} without relative boundary; let π be its canonical projection; and let m be the number of sheets of \mathcal{D}^{\prime} over Δ^{\prime}. which is assumed to be finite. Fix $p \in \sigma$. There exist boundary points \tilde{p} of \mathcal{D}^{\prime} over \underline{p}. The number of such points $\{\tilde{p}\}^{-}$is at most m. We form the union of all \tilde{p} over each $p \in \sigma$ with \mathcal{D}^{\prime}, and we denote the resulting set by \mathcal{D}. For each $\widetilde{p} \in \mathcal{D} \backslash \mathcal{D}^{\prime}$, we introduce a fundamental neighborhood basis as follows. Let δ^{0} be any fundamental neighborhood of the boundary point \tilde{p} of \mathcal{D}^{\prime} and set $\underline{\delta}^{(1)}:=\pi\left(\delta^{0}\right)$. Let $\underline{q} \in \sigma \cap \underline{\delta}^{0}$ and let \tilde{q} be one of the boundary points of \mathcal{D}^{\prime} over \underline{q}. If there exists a fundamental neighborhood η of \tilde{q} which is contained in δ^{0}. then we say that \tilde{q} touches δ^{0}. We let $\widetilde{\delta}^{0}$ denote the union of δ^{0} and all points \tilde{q} for each $\underline{q} \in \sigma \cap \underline{\delta}^{0}$ which touches δ^{0}. We then define $\tilde{\delta}^{0}$ to be a fundamental
neighborhood of \tilde{p} of \mathcal{D}. For a fundamental neighborhood basis $\delta_{k}^{\prime \prime}(k=1,2 \ldots)$ of a boundary point \tilde{p} of the nnramified domain \mathcal{D}^{\prime}. we construct $\tilde{\delta}_{k}^{\prime \prime}(k=1.2 \ldots)$ in \mathcal{D} by the above procedure and we let $\tilde{\delta}_{k}^{0}(k=1, \ldots)$ be a fundamental neighborhood basis of \tilde{p} in \mathcal{D}. Using this neighhorhood basis, \mathcal{D} becones a Hausdorff space which contains \mathcal{D}^{\prime}. Note that since the topology of \mathcal{D} does not depend on the choice of a fundanental neighborhood system $\tilde{\delta}_{k}^{v}(k=1,2, \ldots)$ of \tilde{p} over $p \in \sigma . \mathcal{D}$ is uniquely determined by \mathcal{D}^{\prime}. We call \mathcal{D} the ramified domain associated to \mathcal{D}^{\prime}. In general. such a domain \mathcal{D} is called a locally ramified domain over Δ. precisely. a locally ramified domain over Δ without relative boundary (or a branched cover of Δ). The canonical projection π defined in \mathcal{D}^{\prime} extends continuously to \mathcal{D} in a uniqne fashion. We call this the canonical projection of \mathcal{D} onto Δ, and we use the same notation π. We also call m (the number of sheets of \mathcal{D}^{\prime} over Δ^{\prime}) the number of sheets of \mathcal{D} over Δ. For any $p \in \mathcal{D}$, we call $p:=\pi(p)$ the projection of p, or the base point of p.

Using the same notation. if Σ (the analytic hypersurface in the polydisk $\bar{\Delta}$) does not intersect

$$
E:\left|z_{j}-a_{j}\right| \leq r_{j} \quad(j=1 \ldots . n-1) . \quad\left|z_{n}-a_{n}\right|=r_{n} .
$$

then \mathcal{D} is said to be standard with respect to z_{n}. Let \mathcal{D} be any locally ramified domain over the polydisk Δ and let $p \in \mathcal{D}$. Then we can choose a coordinate system $\left(z_{1} \ldots . z_{n}\right)$ of \mathbf{C}^{n} such that there exists a polydisk $\Delta_{0} \subset \Delta$ centered at p with the property that the portion \mathcal{D}_{0} of \mathcal{D} lying over Δ_{0} contains p and is standard with respect to z_{n}.
Branch sets. Let \mathcal{D} be a ramified donain over a polydisk Δ in \mathbf{C}^{n} and let Σ be an analytic hypersurface in $\bar{\Delta}$. Let $\sigma:=\Delta \cap \Sigma$: let $\tilde{p} \in \mathcal{D}$ lie over $\underline{p} \in \sigma$ and let $\tilde{\delta}_{k}^{\prime \prime}(k=1,2, \ldots)$ be a fundanental neighborhood basis of \tilde{p} in \mathcal{D}. Then each $\tilde{\delta}_{k}^{\prime \prime}$ becomes a ramified domain over $\pi\left(\tilde{\delta}_{k}^{0}\right) \subset \Delta$. Furthermore, the number of sheets m_{k} of $\tilde{\delta}_{k}^{1 \prime}$ is independent of k provided k is sufficiently large. We denote this number by $\nu \geq 1$, and we call $\nu-1$ the ramification number of \mathcal{D} at \bar{p}. If $\nu \geq 2$. we say that \tilde{p} is a branch point of \mathcal{D}. If $\nu=1$, we say that \tilde{p} (as well as each point $p \in \mathcal{D}^{\prime}$) is a regular point of \mathcal{D}. The set \mathcal{D}^{0} of all regular points of \mathcal{D} is called the regular part of \mathcal{D}. Clearly \mathcal{D}^{10} is a connected subdomain of \mathcal{D} and may be considered as an unramified domain over Δ. We let S denote the set of all branch points of \mathcal{D} and we call S the branch set of \mathcal{D}. Note that if $S \neq 0$. then the projection \underline{S} of S into Δ consists of some irreducible components of σ in Δ. Furtherinore, suppose $p \in S$ is chosen so that p is a non-singular point of \underline{S}. Let l be the ramification number of \mathcal{D} at p. For simplicity, suppose $\underline{p}=0 \in \Delta$ and $\underline{S}: z_{n}=0$ near $p=0$. Then, near $p . \mathcal{D}$ has a representation over a neighborhood of the origin in $\overline{\mathbf{C}}^{n}$ as the product of \mathbf{C}^{n-1} with variables $z_{1} \ldots \ldots, z_{n-1}$ and the Riemann surface of $\sqrt[4]{z_{n}}$ over $\mathbf{C}_{z_{n}}$. We call such a branch point p a regular branch point of \mathcal{D}. If $\sigma \neq \emptyset$ and the number of sheets m of \mathcal{D}^{\prime} is at least 2 , then \mathcal{D} always contains branch points. This follows since Δ is simply connected.

Let \mathcal{D} be a ramified donain over Δ. If a continuous, coniplex-valued function $f(p)$ on \mathcal{D} is holomorphic in \mathcal{D}^{\prime}, then we say that $f(p)$ is a holomorphic function on \mathcal{D}. We now give the prototypical example of such a function.

Example 6.1. Let

$$
P(z, u)=u^{m}+a_{1}(z) u^{m-1}+\cdots+a_{m}(z)
$$

be an irreducible polynomial which is nonic in w. where $a_{i}(z)(i=1, \ldots, m)$ are holomorphic functions in a polydisk Δ in \mathbf{C}^{n}, and let

$$
\Sigma: P(z, w)=0 \quad \text { in } \Delta \times \mathbf{C}_{w} .
$$

We let $d(z)$ denote the discriminant of $P(z, w)$ with respect to u; thus $d(z)$ is not identically 0 in Δ. Let $\sigma:=\{z \in \Delta \mid d(z)=0\}$ and $\Delta^{\prime}:=\Delta \backslash \sigma$. Then we have the algebraic (single-valued) function $w=\eta(p)$ defined implicitly by $P(z, w)=0$ on the unramified m-sheeted domain \mathcal{D}^{\prime} over Δ^{\prime} without relative boundary. Furthermore, if we consider the ramified domain \mathcal{D} associated to \mathcal{D}^{\prime}, then $\eta(p)$ becomes a holomorphic function on \mathcal{D}. We call the locally ramified domain \mathcal{D} over Δ the Riemann domain determined by the algebraic function $u: \eta(p)$, and we call \mathcal{D} the projection of the analytic hypersurface Σ over Δ.

Let $\left(z_{0}, w_{0}\right) \in \Sigma$ with $z_{0} \in \sigma$. If $\left(z_{0}, w_{0}\right)$ is a non-singular point of the analytic hypersurface Σ in $\Delta \times \mathbf{C}_{w}$. then we can find a unique point $p \in \mathcal{D} \backslash \mathcal{D}^{\prime}$ such that p is a regular branch point of \mathcal{D}; and there exist neighborhoods δ of $\left(z_{0}, u_{0}\right)$ in $\Delta \times \mathbf{C}_{1}$, and V of p in \mathcal{D} with $\delta \cap \Sigma$ bijective to V. In general. there exist a finite number of points $p_{i}(i=1 \ldots, \nu)$ in \mathcal{D} which correspond to $\left(z_{0}, w_{0}\right)$. i.e., $\underline{p}_{1}=z_{0}$ and $\eta\left(p_{i}\right)=u_{0}$. For example, let $P\left(z_{1}, z_{2}, w\right)=w^{6}-z_{1}^{2} z_{2}^{3}$. Then $\sigma=\left\{z_{1}=0\right\} \cup\left\{z_{2}=0\right\}$ and $\left\{z_{1}=\boldsymbol{w}=0\right\} \cup\left\{z_{2}=w=0\right\} \subset \Sigma$. The origin (0.0 .0) in Σ corresponds to the single point p_{1} of \mathcal{D} lying over the origin (0,0). However, to any point ($z_{1}, 0.0$) or $\left(0, z_{2}, 0\right)$ of Σ other than the origin there correspond three or two points of \mathcal{D}. respectively.

Conversely, let \mathcal{D} be any m-sheeted locally ramified domain over a polydisk Δ in \mathbf{C}^{n} with branch set S. We let $\sigma:=\underline{S}$. Let $\eta(p)$ be any holomorphic function on \mathcal{D} such that $\eta(p)$ has m different values over some point $\underline{p} \in \Delta^{\prime}:=\Delta \backslash \sigma$. Then we can construct a monic polynomial $P\left(z, w^{\prime}\right)$ in u such that the coefficients are holomorphic functions in Δ and such that the algebraic function determined by $P(z, w)=0$ coincides with $w=\eta(z)$. Indeed. it suffices to define $P(z, w):=$ $\prod_{j=1}^{\prime n}\left(w-\eta_{j}(z)\right)$, where $\eta_{j}(z)(j=1, \ldots, m)$ are the values which $\eta(p)$ assumes at p over z. In particular, if we set $A:=\{p \in \mathcal{D} \mid \eta(p)=0\}$, then the projection \underline{A} is the analytic hypersurface in Δ defined by $\{z \in \Delta \mid P(z .0)=0\}$. Thus, the zeros of the holomorphic function $\eta(p)$ on the ramified domain \mathcal{D} are not isolated, as in the case of a univalent domain in $\mathbf{C}^{n}(n \geq 2)$.
6.1.3. Ramified Domains. Next we define a (globally) rannified domain over \mathbf{C}^{n}. Let \mathcal{G} be a connected Hausdorff space and let π be a continuous mapping from \mathcal{G} into \mathbf{C}^{n} with the following property: for any point $p \in \mathcal{G}$, there exists a polydisk $\underline{\delta}$ centered at $\pi(p)$ in \mathbf{C}^{n} such that the comected component δ of $\pi^{-1}(\underline{\delta})$ which contains p is a locally ramified domain over $\underline{\delta}$ without relative boundary; and the canonical projection from δ to $\underline{\delta}$ is the restriction of π onto δ. In this case, we call \mathcal{G} a ramified domain over \mathbf{C}^{n}. We call δ a fundamental neighborhood of p and a branch point of δ is called a branch point of \mathcal{G}. The set of all branch points of \mathcal{G} is called the branch set of \mathcal{G}. A point of \mathcal{G} which is not a branch point of \mathcal{G} is said to be regular. The set of all regular points of \mathcal{G} is called the regular part of \mathcal{G}. For a point $\underline{p} \in \mathbf{C}^{n}$ such that $\pi^{-1}(\underline{p})$ contains no branch points of \mathcal{G}, the cardinality of $\pi^{-1}(\underline{p})$ is called the number of sheets of \mathcal{G} at \underline{p}. The maximum $m(\mathcal{G})$ of such $m(\underline{p}), \underline{p} \in \mathbf{C}^{n}$, is called the number of sheets of $\overline{\mathcal{G}}$. This number may be $+\infty$. A boundary point of \mathcal{G} over \mathbf{C}^{n} is defined in a manner similar to the case of a boundary point in an unramifed domain over \mathbf{C}^{n}. If $\pi(\mathcal{G})$ is contained in a domain
$D \subset \mathbf{C}^{n}$. then we say that \mathcal{G} is a ramified domain over D. A boundary point p of the ramified domain \mathcal{G} over D such that $\pi(p) \in D$ is called a relative boundary point of \mathcal{G} with respect to D. A ramified domain \mathcal{G} over D which has no relative boundary points with respect to D will be called a ramified domain over D without relative boundary. An open and connected set \mathcal{D} in \mathcal{G} is called a domain in \mathcal{G}, although we often drop the connectivity assumption. Let $f(p)$ be a complex-valued function on a domain \boldsymbol{v} in \mathcal{G}. If $f(p)$ is holomorphic on a fundamental neighborhood δ_{p} of each point $p \in v$, then we say that $f(p)$ is a holomorphic function on v.

Let \mathcal{G}_{1} and \mathcal{G}_{2} be ramified domains over \mathbf{C}^{n} and \mathbf{C}^{n}. Let $\mathcal{\varphi}(p)$ be a mapping from \mathcal{G}_{1} into \mathcal{G}_{2}. If for any domain \boldsymbol{v} in \mathcal{G}_{2} and any holomorphic function $f(q)$ on v the composite function $\tilde{f}(p):=f(\varphi(p))$ is a holonorphic function on the domain $\varphi^{-1}(v) \subset \mathcal{G}_{1}$, then we say that $\varphi(p)$ is an analytic (or holomorphic) mapping from \mathcal{G}_{1} to \mathcal{G}_{2}. Moreover, if $m=n$ and if there exists a bijective analytic. mapping from \mathcal{G}_{1} to \mathcal{G}_{2}, then \mathcal{G}_{1} and \mathcal{G}_{2} are analytically (or biholomorphically) equivalent. Note that an analytic mapping does not always map branch points to branch points.

Let \mathcal{G}^{\prime} be an unramified domain over $\mathbf{C}^{\boldsymbol{n}}$ and let π be the canonical projection of \mathcal{G}^{\prime} into $\mathbf{C}^{\prime \prime}$. We will construct in a canonical way a ramified domain \mathcal{G} associated to \mathcal{G}^{\prime}. First take $a \in \mathbf{C}^{n}$ and a polydisk Δ centered at a. Let Σ be an analytic hypersurface in $\bar{\Delta}$, and set $\sigma:=\Sigma \cap \Delta$ and $\Delta^{\prime}:=\Delta \backslash \sigma$. If there exists a connected component \mathcal{D}^{\prime} of $\pi^{-1}\left(\Delta^{\prime}\right) \subset \mathcal{G}^{\prime}$ which is a finitely sheeted unramified donain over Δ^{\prime} without relative boundary, then we can construct the ramified domain \mathcal{D} associated to \mathcal{D}^{\prime} as defined in 6.1.2. We replace each such component \mathcal{D}^{\prime} by the corresponding domain \mathcal{D}. Then we have constructed a ramified domain \mathcal{G} over \mathbf{C}^{n}, which we call the ramified domain associated to \mathcal{G}^{\prime}.

We now define the intersection of a finite number of ramified domains $\mathcal{G}_{j}(j=$ $1, \ldots, l$) over \mathbf{C}^{n}. Let \mathcal{G}_{j}^{\prime} be the regular part of \mathcal{G}_{j}. Since \mathcal{G}_{j}^{\prime} is an unramified domain over \mathbf{C}^{n}, we can construct $\mathcal{G}_{1}^{\prime} \cap \ldots \cap \mathcal{G}_{l}^{\prime}$, which consists of a finite number of unramified domains $H_{k}^{\prime}(k=1, \ldots, L)$. We form the ramified domain H_{k} over C^{n} associated to H_{k}^{\prime}, and the totality of these domains $H_{1} \ldots, H_{L}$ is called the intersection of ramified domains $\left\{\mathcal{G}_{j}\right\}_{j=1}^{l}$ and is denoted by $\mathcal{G}_{1} \cap \ldots \cap \mathcal{G}_{l}$. Given $p_{j} \in \mathcal{G}_{j}(j=1, \ldots, l)$ such that $\pi_{j}\left(p_{j}\right)$ is the same base point $p \in \mathbf{C}^{n}$, we can define the connected component of $\mathcal{G}_{1} \cap \ldots \cap \mathcal{G}_{l}$ determined by the initial point $p=\left(p_{1}, \ldots, p_{l}\right)$ in a similar fashion as in the case of unranified domains. Similarly, we can define the intersection of infinitely many (not necessarily countable) ramified domains over $\mathbf{C}^{\boldsymbol{n}}$.

The following example gives the relationship between an analytic set of pure dimension $r<n$ in a domain $D \subset \mathbf{C}^{n}$ and an associated ramified domain over \mathbf{C}^{r}.

Example 6.2. Let \mathcal{E} be an irreducible r-dimensional analytic set in a domain $D \subset C^{n}$. We take Euclidean coordinates $\left(z_{1}, \ldots, z_{n}\right)$ of \mathbf{C}^{n} which satisfy the Weierstrass condition for Σ at each point of Σ. Then \mathcal{E} can be represented in the form $\left(z_{r+1}, \ldots, z_{n}\right)=\eta\left(z_{1}, \ldots, z_{r}\right)$; i.e.,

$$
\begin{array}{ccc}
z_{r+1} & = & \eta_{r+1}\left(z_{1}, \ldots, z_{r}\right) \\
\vdots & \vdots \\
z_{n} & = & \eta_{n}\left(z_{1}, \ldots, z_{r}\right)
\end{array}
$$

where $\eta_{j}\left(z_{1}, \ldots, z_{r}\right)(j=r+1, \ldots, n)$ is a holomorphic function in a ramified domain \mathcal{D}_{j} over \mathbf{C}^{r} with variables $z_{1} \ldots, z_{r}$ and canonical projection π_{j}. Fix
a non-singular point $p^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)$ of \mathcal{E}. Then. over the point $\left(z_{1}^{\prime}, \ldots, z_{r}^{\prime}\right)$, there exists a unique point $p_{j}^{\prime} \in \mathcal{D}_{j}(j=r+1, \ldots, n)$ such that $z_{j}^{\prime}=\eta_{j}\left(p_{j}^{\prime}\right)$. If we construct the intersection $\tilde{\mathcal{D}}$ of $\mathcal{D}_{j}(j=r+1, \ldots . n)$ determined by the initial point ($p_{r+1}^{\prime}, \ldots, p_{n}^{\prime}$), then $\eta(z)$ is a single-valued holomorphic vector-valued function on $\tilde{\mathcal{D}}$. Since \mathcal{E} is irreducible, the graph $\left(z_{r+1}, \ldots, z_{n}\right)=\eta\left(z^{\prime}\right), z^{\prime}=\left(z_{1}, \ldots, z_{r}\right) \in \tilde{\mathcal{D}}$ in $\mathbf{C}^{\boldsymbol{n}}$ coincides with \mathcal{E}. Thus we call $\tilde{\mathcal{D}}$ the ramified domain over \mathbf{C}^{r} determined by $\eta\left(z^{\prime}\right)$, or the projection of \mathcal{E} over \mathbf{C}^{r}.
6.1.4. Properties of Locally Ramified Domains. We now exhibit some interesting phenomena for ramified domains over $\mathbf{C}^{\boldsymbol{n}}(n \geq 2)$, noted by K. Oka, which do not occur in the case $n=1$.

1. Non-uniformizable branch points. Let \mathcal{G} be a ramified domain over \mathbf{C}^{n} and let π be the canonical projection of \mathcal{G} into $\mathbf{C}^{\boldsymbol{n}}$. Let \boldsymbol{p} be a branch point of \mathcal{G}. If there exists a neighborhood v of p in \mathcal{G} such that v is biholomorphically equivalent to a polydisk. then p is called a uniformizable branch point of \mathcal{G}. In the case of \mathbf{C}, any branch point of any Riemann surface is uniformizable.

Let p be a branch point of \mathcal{G}. Let δ be a fundamental neighborhood of p in \mathcal{G} and let σ be the branch set of \mathcal{G} in δ. We let $\underline{\delta}=\pi(\delta)$ and $\underline{\sigma}=\pi(\sigma)$, so that $\underline{p} \in \underline{\sigma}$. It is clear that if \underline{p} is a non-singular point of $\underline{\sigma}$, then p is a uniformizable branch point of \mathcal{G}. We now give an example of a branch point which is not uniformizable.

EXAMPLE 6.3. In \mathbf{C}^{2} with variables z_{1} and z_{2}, we consider the ramified domain \mathcal{G} over \mathbf{C}^{2} determined by the algebraic function

$$
w^{2}-z_{1}^{2}+z_{2}^{2}=0 . \quad \text { i.e.. } w=\sqrt{z_{1}^{2}-z_{2}^{2}}
$$

Then \mathcal{G} is two-sheeted over \mathbf{C}^{2} with branch set $z_{1}^{2}-z_{2}^{2}=0$. The point O of \mathcal{G} over the origin $(0,0) \in \mathbf{C}^{2}$ is not a uniformizable branch point of \mathcal{G}.

We prove this by contradiction. Assume that O is uniformizable. In particular, there exists a simply connected neighborhood δ of O in \mathcal{G} such that $\delta \backslash\{O\}$ is also simply connected. We may assume that δ has no relative boundary points with respect to δ. We consider the function

$$
g\left(z_{1}, z_{2}\right)=\sqrt{z_{1}-z_{2}}
$$

which is locally holomorphic on $\delta \backslash\{O\}$. Since $\delta \backslash\{O\}$ is simply connected, $g\left(z_{1}, z_{2}\right)$ must be single-valued on $\delta \backslash\{O\}$. On the other hand, fix an ϵ with $0<\epsilon<1$ such that $\left\{\left|z_{1}\right| \leq 2 \epsilon\right\} \times\left\{\left|z_{2}\right| \leq \epsilon\right\} \subset \underline{\delta}$. We can choose two distinct points $P_{\epsilon}^{+}, P_{\epsilon}^{-}$in δ over the point $(\epsilon, 0) \in \underline{\delta}$. Consider the closed circle $\ell:\left(z_{1}, z_{2}\right)=\left(\epsilon e^{i \theta}, 0\right)$, where $0 \leq \theta \leq 2 \pi$, in $\underline{\delta}$. If we traverse ℓ in \mathcal{G} starting at P_{ε}^{+}. then we return to P_{ε}^{+}. However, $g\left(P_{t}^{+}\right)=\sqrt{\epsilon} \neq 0$ will vary through the values $\sqrt{\epsilon e^{i \theta}}$ and has final value $-\sqrt{\epsilon}$. This contradicts the single-valuedness of $g\left(z_{1}, z_{2}\right)$ on $\delta \backslash\{O\}$.
2. Analytic sets in a ramified domain. As in the case of univalent domains in \mathbf{C}^{n}, we shall define analytic sets A in a ramified domain \mathcal{G} over \mathbf{C}^{n}. Let A be a closed set in \mathcal{G}. If, for each point $a \in A$, there exist a neighborhood δ of a in \mathcal{G} and a finite number of holomorphic functions $f_{j}(p)(j=1, \ldots, \mu)$ in δ such that $\delta \cap A=\left\{f_{j}(p)=0(j=1, \ldots, \mu)\right\}$. then we say that A is an analytic set in \mathcal{G}. We note that the zero set Σ of a non-constant holomorphic function $f(p)$ in \mathcal{G} is called an analytic hypersurface in \mathcal{G} (provided $\Sigma \neq \emptyset$). Such a set Σ contains no isolated points in \mathcal{G} (see 2 of Remark 6.1).

In the case of an analytic hypersurface Σ in a univalent domain D in $\mathbf{C}^{\boldsymbol{n}}$, for any point $z_{0} \in \Sigma$, we can find a holomorphic function $f(z)$ defined in a neighborhood δ of z_{0} in D such that $f(z)=0$ precisely on $\delta \cap \Sigma$ with order 1. This result is no longer true in the case of analytic hypersurfaces in ramified domains over $\mathbf{C}^{\boldsymbol{n}}$. We give an example of an analytic hypersurface Σ in a ramified domain \mathcal{G} over $\mathbf{C}^{\boldsymbol{n}}$ (which passes through a non-uniformizable branch point p_{0} of \mathcal{G}) such that there does not exist a neighborhood δ of p_{0} in \mathcal{G} on which $\Sigma \cap \delta$ may be written as the zero set of a holomorphic function $f(p)$ with order 1.

Example 6.4. Let \mathcal{G} be the same ramified domain over \mathbf{C}^{2} as in Example 6.3. Take two (one-dimensional) analytic hypersurfaces Σ^{+}and Σ^{-}over $z_{2}=0$ in \mathcal{G}. and consider the holomorphic function $f=f(p)$ in \mathcal{G}. defiued as

$$
\begin{equation*}
f(p):=\sqrt{z_{1}^{2}-z_{2}^{2}}-z_{1} \tag{6.1}
\end{equation*}
$$

If we choose a suitable branch of the function $\sqrt{z_{1}^{2}-z_{2}^{2}}$, then $f(p)=0$ on Σ^{+}and $f(p) \neq 0$ in $\mathcal{G} \backslash \Sigma^{+}$. Note that the order of the zero of $f(p)$ at each point on Σ^{+}is two. This follows because if we fix $(\epsilon .0) \in \Sigma^{+}$with $\epsilon>0$, then in a neighborhood of $(\epsilon, 0)$ we can write

$$
f\left(\epsilon, z_{2}\right)=\sqrt{\epsilon^{2}-z_{2}^{2}}-\epsilon=-\frac{z_{2}^{2}}{2 \epsilon}+O\left(z_{2}^{4}\right)
$$

On the other hand, we now proceed to show that there does not exist a holomorphic function $F(p)$ defined in a neighborhood δ of the point O in \mathcal{G} over the origin $(0,0) \in \mathbf{C}^{2}$ such that. $F(p)$ vanishes to order one at each point of $\Sigma^{+} \cap \delta$ and $F(p) \neq 0$ on $\delta \backslash \Sigma^{+} .{ }^{1}$ We prove this by contradiction. Assume that there exists such a holomorphic function $F(p)$ defined in a neighborhood δ of O in \mathcal{G}. We may assume that δ has no relative boundary on $\underline{\delta}$. We consider the holomorphic mapping

$$
T: \quad w_{1}=z_{1}, \quad u_{2}=F(p)
$$

from $\bar{\delta}$ into $\mathbf{C}_{u^{2}}^{2}$. Define $\kappa:=T(\delta)$, which is a ramified domain over \mathbf{C}_{u}^{2}, such that the point $\tilde{O}=T(O)$ is the only point of κ lying over $\left(w_{1}, w_{2}\right)=(0,0)$. We fix a bidisk $B:=B_{1} \times B_{2} \subset C_{w}^{2}$, where $B_{1}=\left\{\left|w_{1}\right|<\rho_{1}\right\}$ and $B_{2}=\left\{\left|w_{2}\right|<\rho_{2}\right\}$, such that there exists a subset κ_{0} of κ over B which has no relative boundary points on B. Thus the number of sheets $m \geq 1$ of κ_{0} is determined. If we show that, in fact. $m=1$, it follows that $\kappa_{0}=B$. In this case, the point O is thus a uniformizable point of \mathcal{G}, which contradicts the fact stated in Example 6.3. Hence it suffices to verify that $m=1$.

We begin by choosing a bidisk $\Delta:=\Delta_{1} \times \Delta_{2} \subset \subset \underline{\delta}$, where

$$
\Delta_{1}=\left\{\left|z_{1}\right|<\rho_{1}^{*}\right\} \text { and } \Delta_{2}=\left\{\left|z_{2}\right|<\rho_{2}^{*}\right\}
$$

and with $\rho_{2}>0$ chosen so small that $\left\{\left(\partial \Delta_{1}\right) \cap \Delta_{2}\right] \cap\left\{z_{1}^{2}=z_{2}^{2}\right\}=0$. We let $\tilde{\Delta}$ denote the subset of δ over Δ. We fix an annulus $\Gamma_{1}:=\left\{\rho_{1}^{\prime \prime}<\left|z_{1}\right|<\rho_{1}^{\prime}\right\}$ containing $\partial \Delta_{1}$ such that if we let $\Lambda:=\Gamma_{1} \times \Delta_{2}$. then $\Lambda \cap\left\{z_{1}^{2}=z_{2}^{2}\right\}=\emptyset$. We thus have two regular parts $\Lambda^{ \pm}=\Gamma_{1}^{ \pm} \times \Delta_{2}$ of $\bar{\Delta}$ over Λ. We assume $\Lambda^{+} \cap \Sigma^{+} \neq \emptyset$ and $\Lambda^{-} \cap \Sigma^{+}=0$. Over each point $\left(z_{1}, z_{2}\right) \in \Lambda$, there exists a point $\left(z_{1}^{ \pm}, z_{2}\right) \in \Lambda^{ \pm}$. We fix $z_{1} \in \Gamma_{1}$. By assumption, as a holomorphic function of the complex variable z_{2} in $\Delta_{2}, F\left(z_{1}^{+}, z_{2}\right)$ vanishes if and only if $z_{2}=0$ (with order 1): also $F\left(z_{1}^{-}, z_{2}\right) \neq 0$ at any point $z_{2} \in \Delta_{2}$. Thus there exist small disks $\Delta_{2}^{0}:=\left\{\left|z_{2}\right|<\alpha_{2}\right\} \subset \Delta_{2}$ and $B_{2}^{0}:=\left\{\left|u_{2}\right|<\beta_{2}\right\} \subset B_{2}$

[^25]such that $F\left(z_{1}^{+}, z_{2}\right)$ is univalent on Δ_{2}^{0} with $B_{2}^{0} \subset F\left(z_{1}^{+}, \Delta_{2}^{0}\right)$: in addition. we can choose $\eta_{2}>0$ sufficiently small so that $\left|F\left(z_{1}^{-}, z_{2}\right)\right| \geq \eta_{2}$ for any $z_{2} \in \Delta_{2}$. Letting z_{1} vary over Γ_{1}, we may assume that $\alpha_{2}, \beta_{2}, \eta_{2}>0$ are independent of $z_{1} \in \Gamma_{1}$. Furthermore, since $F(p)$ vanishes only on Σ^{+}in \mathcal{G}. it follows that we can find $\xi_{2}>0$ such that $|F(p)| \geq \xi_{2}$ for any $p \in \mathcal{G}$ with $\underline{p} \in \underline{\delta} \cap\left(\Gamma_{1} \times\left\{\left|z_{2}\right| \geq \alpha_{2}\right\}\right)$. Thus, if we set $\epsilon_{2}:=\min \left\{\mathcal{3}_{2}, \eta_{2}, \xi_{2}\right\}>0$ and $\lambda:=\left\{\rho_{1}^{\prime \prime}<\left|u_{1}\right|<\rho_{1}^{\prime}\right\} \times\left\{\left|u_{2}\right|<\iota_{2}\right\} \subset C_{w}^{2}$. then the subset of κ_{0} lying over λ consists of a single univalent part. Thus $m=1$, as desired.

Note that if we set $g(p):=\sqrt{z_{1}^{2}-z_{2}^{2}}-z_{1}\left(1+z_{2}\right)$, then $g(p)=0$ is of order 1 along Σ^{+}but $g(p)$ has additional zeros near Σ^{+}.
3. Intersection of two analytic hypersurfaces in a ramified domain.

Let D be a (univalent) domain in C^{n} and let S_{1} and S_{2} be two distinct irreducible analytic hypersurfaces in D. If the intersection $S_{1} \cap S_{2}$ is nonempty, it is a pure ($n-2$)-dimensional analytic set in D. This result no longer holds in the case of ramified domains over $\mathbf{C l}^{\prime \prime}$.

Example 6.5. ${ }^{2}$ We consider $\mathbf{C}^{2 n}$ with variables $z=\left(z_{1}, \ldots, z_{n}\right)$ and $u^{\prime}=$ (w_{1}, \ldots, u_{n}) (here $n \geq 2$). Let

$$
\Sigma:=\left\{(z, w) \in \mathbf{C}^{2 n} \mid z_{i} w_{j}=z_{j} w_{i}(1 \leq i, j \leq n)\right\}
$$

or, as is usually written.

$$
\Sigma: \frac{u_{1}}{z_{1}}=\cdots=\frac{u_{n}}{z_{n}} .
$$

Thus, Σ is an irreducible ($n+1$)-dimensional analytic set in $C^{2 n}$ passing through the origin (0,0). Choose coordinates ($u_{1}, \ldots, u_{2 n}$) of $\mathbf{C}^{2 n}$ which satisfy the Weierstrass condition for Σ at each point of Σ. If \mathcal{D} denotes the projection of Σ over the space \mathbf{C}^{n+1} generated by the first $n+1$ variables $u_{1} \ldots, u_{n+1}$, it follows that \mathcal{D} is a ramified domain over C^{n+1}. We usually identify \mathcal{D} with Σ, and we let O denote the point of \mathcal{D} which corresponds to the origin $(0,0)$ in Σ. For any complex nuinber $c \in C$. we define the n-dimensional analytic plane

$$
L_{r}: w_{i}=c z_{i} \quad(i=1, \ldots, n)
$$

in $\mathbf{C}^{2 n}$. Then $L_{c} \subset \Sigma$ for each $c \in \mathbf{C}$, and $L_{c_{1}} \cap L_{c_{2}}=\{(0,0)\}$ in $\mathbf{C}^{2 n}$ if $c_{1} \neq c_{2}$.
Let \mathcal{L}_{c} denote the set in \mathcal{D} corresponding to L_{c} in $\mathbf{C}^{2 n}$. Then \mathcal{L}_{c} is an irreducible analytic hypersurface in \mathcal{D} with $\mathcal{L}_{c_{1}} \cap \mathcal{L}_{c_{2}}=\{O\}\left(c_{1} \neq c_{2}\right)$. This is 0-dimensional, which yields the example since $n+1 \geq 3$.

Furthermore, we note that for each $\mathbf{c} \in \mathbf{C}$, there does not exist a holomorphic function $f(p)$ defined in a neighborhood V of O in \mathcal{D} which vanishes precisely on $V \cap \mathcal{L}_{c}$ (regardless of the order of vanishing of $f(p)$ along \mathcal{L}_{c}). We prove this statement by contradiction. Thus we assume that there exists such a function $f(p)$ in a neighborhood V of O in \mathcal{D}. We fix $c^{\prime} \in C$ with $c^{\prime} \neq c$. Denote the restriction of $f(p)$ to $V \cap \mathcal{L}_{c^{\prime}}$ (which is an n-dimensional ramified domain) by $f_{0}(p)$. Then $f_{0}(p)$ vanishes only at the origin O in $V \cap \mathcal{L}_{c^{\prime}}$: in particular, the zeros of $f_{0}(p)$ are isolated. This is impossible since $n \geq 2$.

4. Meromorphic functions in a ramified domain.

Let \mathcal{D} be a ramified domain over $\mathbf{C}^{n}(n \geq 2)$ and let $A \subset \mathcal{D}$. We say that A has dimension at most k if, for each point $a \in A$, there exists a neighborhood δ of

[^26]a in \mathcal{D} lying over a polydisk $\underline{\delta}$ centered at \underline{a} in \mathbf{C}^{n} without relative boundary such that $A \cap \delta$ is contained in a k-dimensional analytic set in δ.

Let $g(p)$ be a function defined in \mathcal{D}. If $g(p)$ can be represented locally as the quotient of two holomorphic functions, then we say that $g(p)$ is a meromorphic function in \mathcal{D}. More precisely, $g(p)$ is a single-valued function on \mathcal{D} (taking values in $C \cup\{\infty\}$) except for an at most ($n-1$)-dimensional set A in \mathcal{D} : moreover. at each point $p \in \mathcal{D}$, there exist a neighborhood δ of p in \mathcal{D} and holomorphic functions $h_{\delta}(p), k_{\delta}(p)$ such that $\left\{h_{\delta}(p)=k_{\delta}(p)=0\right\} \subset A$ and $g(p)=h_{\delta}(p) / k_{\delta}(p)$ in $\delta \backslash A$. A point p at which $h_{\delta}(p) \neq 0$ and $k_{\delta}(p)=0$ is called a pole of $g(p)$. The points p at which $h_{\delta}(p)=k_{\delta}(p)=0$ are called the points of indeterminacy of $g(p)$. Thus, the set A is considered as the set of all indeterminacy points of $g(p)$ in \mathcal{D}.

Assume now that \mathcal{D} is a ramified domain over a polydisk $\Delta \subset \mathbf{C}^{n}$ without relative boundary such that the number of sheets m is finite. Let $g(p)$ be a meromorphic function in \mathcal{D}. Then there exists a polynonial $Q(z, u)$ of one complex variable w of degree m.

$$
Q\left(z, u^{\prime}\right)=a_{0}(z) w^{m}+a_{1}(z) u^{m-1}+\cdots+a_{m}(z)
$$

where each $a_{i}(z)(i=0,1 \ldots, m)$ is a holomorphic function in \mathcal{D}, such that for each fixed $z=\underline{p}$, the set of points u satisfying $Q\left(z, w^{\prime}\right)=0$ coincides with $u=g(p)$.

To see this, fix $z \in \Delta \backslash \underline{A}$. where A is the set of indeterminacy of $g(p)$ in \mathcal{D}. Then there exist m points p_{1}, \ldots, p_{m} of \mathcal{D} such that $\underline{p}_{i}=z$, and we denote by $g_{1}(z) \ldots ., g_{m}(z)$ the values of $g(p)$ at $p_{1} \ldots . p_{m}$. We form the product

$$
R(z, w)=\prod_{i=1}^{m}\left(w-g_{i}(z)\right)=w^{m}+b_{1}(z) u^{, m-1}+\cdots+b_{m}(z)
$$

where each $b_{i}(z)(i=1, \ldots, m)$ is a single-valued meromorphic function on $\Delta \backslash$ A. Since $g(p)$ can be locally represented as the quotient of two holomorphic functions, $b_{i}(z)$ is a meromorphic function on Δ. Thus, $b_{i}(z)=a_{12}(z) / a_{2 i}(z)$, where $a_{1 i}(z)$ and $a_{21}(z)$ are holomorphic functions in Δ. and setting $Q(z, u):=$ $R(z, w) a_{21}(z) \cdots a_{2 m}(z)$ gives the desired representation.

An indeterminacy point $p \in \mathcal{D}$ of $g(p)$ satisfies $a_{0}(\underline{p})=\cdots=a_{m}(\underline{p})=0$. In general. the set of indeterminacy points of a meromorphic function in a ramified domain over C^{n} is no longer of dimension $n-2$. in contrast to the case of univalent domains in \mathbf{C}^{n}.

Example 6.6. We recall the ramified domain \mathcal{D} over $C^{n-1}(n \geq 2)$ from Example 6.5. and we use the same notation $\Sigma, \mathcal{D}, L_{r}, \mathcal{L}_{c}$. We note that

$$
\Sigma=\bigcup_{c \in \mathbb{P}} L_{r}, \quad \text { where } L_{x}=\left\{(0, w) \in \mathbf{C}^{2 n} \mid w \in \mathbf{C}^{n}\right\}
$$

We set

$$
\Phi(z, w):=\frac{w_{1}}{z_{1}} \quad \text { in } \mathbf{C}^{2 n}
$$

and consider the restriction of Φ to Σ. which we denote by $\varphi(z, u)$. Thus. $\left.\varphi\right|_{L_{c}}=c$. If we let $\tilde{\mathcal{\rho}}(p)$ denote the function on \mathcal{D} which corresponds to $\underset{\sim}{ }\left(z, u^{\prime}\right)$ on Σ, then \mathcal{j} is a meromorphic function on \mathcal{D} with pole set $\mathcal{L}_{x} \backslash\{O\}$, zero set $\mathcal{L}_{0} \backslash\{O\}$, and only one indeterminacy point, namely $\{O\}$, which is not of codimension 2 .

EXAMPLE 6.7. In Example 6.4, consider the ineromorphic function $g(p):=$ $f(p) / z_{2}$, where $\underline{p}=\left(z_{1}, z_{2}\right)$, in the two-dimensional ramified domain \mathcal{G}, and $f(p)$ is defined by (6.1). Then the set of indeterminacy points of $g(p)$ is one-dimensional.
6.1.5. Ramified Domains of Holomorphy. Let \mathcal{D} be a ranified domain over \mathbf{C}^{n}. Let $f(p)$ be a holomorphic function in \mathcal{D}. If $f(p)$ satisfies the following two conditions:

1. $f(p)$ has different function elements at any two distinct points of \mathcal{D}; i.e.. for any two distinct regular points $p_{1}, p_{2} \in \mathcal{D}$ such that $\underline{p}_{1}=\underline{p}_{2}=z_{0}$ in \mathbf{C}^{n}. $f(p)$ has different Taylor expansions in powers of $z-z_{0}$ in neighborhoods of p_{1} and p_{2}, and
2. there is no ramified domain $\overline{\mathcal{D}}$ over \mathbf{C}^{n} with $\mathcal{D} \subset \tilde{\mathcal{D}}$ and $\overline{\mathcal{D}} \neq \mathcal{D}$ such that $f(p)$ can be holomorphically extended to $\widetilde{\mathcal{D}}$.
then we say that \mathcal{D} is a ramified domain of holomorphy of $f(p)$. Furthermore, a ramified domain \mathcal{D} over C^{n} is called a ramified domain of holomorphy if there exists at least one holomorphic function $f(p)$ such that \mathcal{D} is a domain of holomorphy of $f(p)$. Given a ramified domain \mathcal{D} over \mathbf{C}^{n}. there exists a smallest ramified domain of holomorphy $\widehat{\mathcal{D}}$ which contains \mathcal{D}. For this purpose, it suffices to consider the intersection $\bigcap \dot{\overline{\mathcal{D}}}$ of all ramified domains of holomorphy $\tilde{\mathcal{D}}$ such that $\mathcal{D} \subset \widetilde{\mathcal{D}}$. since, in particular, \mathbf{C}^{n} is one such $\tilde{\mathcal{D}}$.

Now let \mathcal{D} be a ramified domain over \mathbf{C}^{n} and let $\boldsymbol{K} \subset \subset \mathcal{D}$. We define

$$
\widehat{K}_{\mathcal{D}}:=\left\{q \in \mathcal{D}| | f(q)\left|\leq \max _{p \in K}\right| f(p) \text { for all } f \text { holomorphic in } \mathcal{D}\right\} .
$$

which is called the holomorphic hull of K in \mathcal{D}.
If a ramified domain \mathcal{D} over \mathbf{C}^{n} satisfies the two conditions:

1. there exists a holonorphic function $f(p)$ in \mathcal{D} such that $f(p)$ has different function elements at any two distinct points of \mathcal{D}, and
2. for any $K \subset \subset \mathcal{D}$ we have $\widehat{K}_{D} \subset \subset \mathcal{D}$.
then we say that \mathcal{D} is holomorphically convex. In Theorem 1.13 in Part I we showed that a (univalent) domain D in \mathbf{C}^{n} is a domain of holomorphy if and only if D is holomorphically convex. In the case of ramified doinains \mathcal{D} over \mathbf{C}^{n} for $n \geq 2$. \mathcal{D} holomorphically convex implies \mathcal{D} is a doinain of holomorphy, but the converse is no longer true in general. This is shown by the following example of H. Grauert and R. Reininert [23].

Example 6.8. We consider the ramified domain \mathcal{D} over $C^{n+1}(n \geq 2)$ in Example 6.5 and use the same notation. We set $\mathcal{D}^{\prime}:=\mathcal{D} \backslash \mathcal{L}_{0}$, which is also a ramified domain over $\mathbf{C}^{\boldsymbol{n + 1}}$. Then \mathcal{D}^{\prime} is clearly a domain of holomorphy for the function $1 / \tilde{\varphi}(p)$ (where $\tilde{\varphi}(p)$ is defined in Example 6.6). However. \mathcal{D}^{\prime} is not holomorphically convex.

To prove this. we fix a non-zero conplex number c and consider the following subsets in $\Sigma \subset \mathbf{C}^{2 n}$:

$$
\begin{aligned}
K & =L_{c} \cap\left\{\|z\|^{2}+\|w\|^{2}=1\right\} \\
I & =L_{c} \cap\left\{0<\|z\|^{2}+\|w\|^{2} \leq 1\right\}
\end{aligned}
$$

We let \mathcal{K} and \mathcal{I} denote the sets in \mathcal{D} which correspond to K and I. Then $\mathcal{K} \subset \subset \mathcal{D}^{\prime}$ and $K \subset \subset \Sigma \backslash L_{0}$. Furthermore, $\mathcal{I} \subset \mathcal{D}^{\prime}$ and $I \subset \Sigma \backslash L_{0}$. while \mathcal{I} is not compactly contained in \mathcal{D}^{\prime} nor is I in $\Sigma \backslash L_{10}$. Let $f(p)$ be a holomorphic function on \mathcal{D}^{\prime}. We restrict $f(p)$ to $\mathcal{L}_{c} \backslash\{O\}$ and denote this restriction by $f_{r}(p)$. and we let $\bar{f}_{r}(z, u)$
denote the corresponding function on $L_{c} \backslash\{(0,0)\}$. Then $\tilde{f}_{c}(z, c z)$ is holomorphic for $z \in \mathbf{C}^{\boldsymbol{n}} \backslash\{0\}$, and hence in all of $\mathbf{C}^{\boldsymbol{n}}$. It follows that

$$
\left|\tilde{f}_{c}(z, c z)\right| \leq \max _{:: \mid=1 /\left(1+\mid e^{2}\right)}\left|\tilde{f}_{c}(z, c z)\right| \quad \text { in } \quad 0<\|z\| \leq\left(1+|c|^{2}\right)^{-1} .
$$

Hence $\mathcal{I} \subset \hat{\mathcal{K}}_{\mathcal{D}^{\prime}}$, so that \mathcal{D}^{\prime} is not holomorphically convex.
6.1.6. Ramifled Pseudoconvex Domains. The notion of pseudoconvexity of a domain is extracted from some geometric properties which a domain of holomorphy satisfies, and it was conjectured that. conversely, a pseudoconvex domain is a domain of holomorphy. As will be shown in Chapter 9, Oka proved that this is true in the case of a univalent domain in \mathbf{C}^{n} and even in the case of an unramified domain over \mathbf{C}^{n}. However, in the case of a ramified domain over $\mathbf{C}^{\boldsymbol{\prime}}$, the problem of finding necessary and sufficient geometric conditions for the donain to be a ramified domain of holomorphy over $\mathbf{C}^{\boldsymbol{n}}$ is not yet completely solved. Thus, there is no precise notion of pseudoconvexity for a ramified domain over $\mathbf{C}^{\boldsymbol{n}}$.

We first give the definition of pseudoconvexity of an unramified domain over C^{n}, even though it is very similar to the case of a univalent domain in C^{n}. Let \mathcal{D} be an unramified domain over C^{n} with variables z_{1}, \ldots, z_{n} and let π be the canonical projection from \mathcal{D} to \mathbf{C}^{n}. Let $z^{0}=\left(z_{1}^{0}, \ldots, z_{n}^{0}\right) \in \mathbf{C}^{n}$. For positive numbers $r^{\prime}<r$ and $\rho^{\prime}<\rho$ we consider two open sets in $\mathbf{C}^{\boldsymbol{n}}$ defined by

$$
\begin{array}{llr}
\left|z_{j}-z_{j}^{0}\right|<r & (j=1, \ldots, n-1), & \rho^{\prime}<\left|z_{n}-z_{n}^{0}\right|<\rho ; \\
\left|z_{j}-z_{j}^{0}\right|<r^{\prime} & (j=1, \ldots, n-1) . & \left|z_{n}-z_{n}^{0}\right|<\rho .
\end{array}
$$

We let E denote the union of these two open sets, and we let C be the open polydisk in $\mathbf{C}^{1 / 2}$ given by

$$
C:\left|z_{j}-z_{j}^{\prime \prime}\right|<r(j=1, \ldots, n-1), \quad\left|z_{n}-z_{n}^{0 \prime}\right|<\rho .
$$

If there exist univalent parts v and V of \mathcal{D} such that $\pi(v)=E$ and $\pi(V)=C$, then we denote these sets by $v=\widetilde{E}$ and $V=\widetilde{C}$.

We say that the unramified domain \mathcal{D} satisfies the continuity theorem if for any $z^{n} \in \mathbf{C}^{n}$ and any $r, r^{\prime}, \rho, \rho^{\prime}$, whenever the set \tilde{E} exists as described, then a corresponding set \widetilde{C} exists with $\tilde{E} \subset \tilde{C}$.

Now let Δ be a polydisk in C^{n}. If the subdomain $\pi^{-1}(\Delta)$ of \mathcal{D} satisfies the continuity theorem and if this property remains invariant under an analytic mapping of $\Delta,{ }^{3}$ then we say that \mathcal{D} is pseudoconvex.

This definition of pseudoconvexity of an unramified domain over \mathbf{C}^{n} corresponds to the pseudoconvexity of type C for a univalent domain in $C^{\prime \prime}$. One may also define the pseudoconvexity of an unramified domain over \mathbf{C}^{n} which corresponds to that of type A or of type B for a univalent domain in $\mathbf{C}^{\prime \prime}$; we will not state these definitions here.

We will temporarily define a pseudoconvex ranified domain over $\mathbf{C}^{\boldsymbol{n}}$ as follows. Let \mathcal{D} be a ramified domain over C^{n} with branch set S and let $\mathcal{D}^{0}=\mathcal{D} \backslash \mathcal{S}$. Since $\mathcal{D}^{\prime \prime}$ is an unramified domain over \mathbf{C}^{n}, we have the ramified domain \mathcal{D}^{\bullet} over \mathbf{C}^{n} associated to $\mathcal{D}^{\prime \prime}$. We let \mathcal{S}^{*} denote the branch set of \mathcal{D}^{*}. In general, $\mathcal{S} \subset \mathcal{S}^{*}$. If \mathcal{D} satisfies the following three conditions, then we say that \mathcal{D} is pseudoconvex:

[^27](i) \mathcal{D}^{10} is an unramified pseudoconvex domain.
(ii) Let σ^{*} be the set of all regular points of the branch set \mathcal{S}^{*}. If there exists at least one point of σ^{*} contained in \mathcal{S}, then $\sigma^{*} \cap \mathcal{S}$ is pseudoconvex in σ^{*} (as an ($n-1$)-dimensional domain).
(iii) Let p be a branch point of \mathcal{D}^{*}. If there exists a neighborhood r of p in \mathcal{D}^{*} such that $v \cap \mathcal{S}^{*} \subset \mathcal{S}$ except for at most an ($n-2$)-dimensional analytic set. then $p \in S$.
According to this definition, a ramified domain of holomorphy over \mathbf{C}^{n} is pseudoconvex, but, as stated earlier, the converse problem remains open.

6.2. Fundamental Theorem for Locally Ramifled Domains

6.2.1. Characteristic Functions in Ramiffed Domains. Let $\Delta:\left|z_{j}\right|<$ $r_{3}(j=1, \ldots, n)$ be a polydisk in \mathbf{C}^{n} with variables $z=\left(z_{1}, \ldots, z_{n}\right)$. Let \mathcal{R}^{1} be a ramified domain over a neighborhood of $\bar{\Delta}$ such that the part \mathcal{R}^{0} of \mathcal{R}^{1} over Δ has no relative boundary. We let m denote the number of sheets of $\mathcal{R}^{\prime \prime}$. which we assume is finite. We also let σ denote the branch set of \mathcal{R}^{0} and $\underline{\sigma}=\pi(\sigma)$ the projection of σ onto Δ. so that $\underline{\sigma}$ is an analytic hypersurface in Δ : finally, we set $\Delta^{\prime}:=\Delta-\underline{\boldsymbol{\sigma}}$.

Let $f(p)$ be a holomorphic function on $\mathcal{R}^{\prime \prime}$. If $f(p)$ has m different function elements at the m distinct points of \mathcal{R}^{0} lying over a base point $z_{1,}^{\prime} \in \Delta^{\prime}$. then $f(p)$ is called a characteristic function on \mathcal{R}^{0}. In this case. $f(p)$ has m different function elements at each of the m distinct points of \mathcal{R}^{0} lying over any base point $z^{\prime} \in \Delta^{\prime}$.

We introduce an additional complex plane \mathbf{C}_{X} and consider the product space $\Lambda=\Delta \times \mathbf{C}_{x} \subset \mathbf{C}^{n+1}$. Given a holomorphic function $f(p)$ on $\mathcal{R}^{\mathbf{0}}$, we consider the set \mathcal{C} in A defined as

$$
\mathcal{C}: X=f(p) \quad \text { for } p \in \mathcal{R}^{\prime \prime}
$$

which defines an analytic hypersurface in Λ. If $f(p)$ is a characteristic function on \mathcal{R}^{0}, then we say that \mathcal{C} is the graph of $f(p)$ on $\mathcal{R}^{\prime \prime}$. There is a bijection between \mathcal{R}^{0} and \mathcal{C} except on at most an analytic hypersurface in $\mathcal{R}^{\mathbf{1}}$. We call the set of points $p \in \mathcal{R}^{0}$ such that there exists a point $q \in \mathcal{R}^{0}, q \neq p$, with $f(p)=f(q)$ the set of multiple points or simply double points of $f(p)$.

Let $f(p)$ be a characteristic function on \mathcal{R}^{0} and let \mathcal{C} be the graph of $f(p)$ on $\mathcal{R}^{\mathbf{0}}$ in A . We let S denote the ($n-1$)-dimensional analytic subset of \mathcal{C} which corresponds to the branch set σ of $\mathcal{R}^{\prime \prime}$. If each point of S except for at most an ($n-2$)-dimensional analytic set is a non-singular point of \mathcal{C}. then we say that $f(p)$ is a simple function on $\mathcal{R}^{\prime \prime}$. This does not necessarily mean that the singular set of \mathcal{C} has dimension at most $n-2$. Let $f(p)$ be a characteristic function on $\mathcal{R}^{\mathbf{0}}$. If there exists at least one non-singular point of \mathcal{C} on each irreducible component of S, then $f(p)$ is a simple function on $\mathcal{R}^{\prime \prime}$.

Theorem 6.1 (Fundamental Theorem). A ramified domain \mathcal{D} over \mathbf{C}^{n} locally carries a simple function.

Unlike the case of one complex variable, the local existence of simple functions on \mathcal{D} in several complex variables is non-trivial. This theorem was first proved by H. Grauert and R. Remmert [24]. In this chapter we shall give an elementary proof of the theorem.

We begin with some preliminaries. Let \mathcal{D} be a ramified domain over $\mathbf{C}^{n}(n \geq 2)$ and let $p \in \mathbf{C}^{n}$. We may assume $\underline{p}=0 \in \mathbf{C}^{\prime \prime}$. We can always choase Euclidean
coordinates $\left(z_{1}, \ldots, z_{n}\right)$ and a neighborhood $\mathcal{R}^{(1)}$ of p in \mathcal{D} lying over a polydisk $\Delta:\left|z_{j}\right|<r_{j}(j=1, \ldots, n)$ such that \mathcal{R}^{0} is standard with respect to z_{n}. Using the above notation $\sigma, \Delta^{\prime}, \underline{\sigma}$, etc., this means that $\underline{\sigma}$ does not intersect $\Delta^{n-1} \times \partial_{n}$. where

$$
\Delta^{n-1}:\left|z_{j}\right|<r_{j}(j=1 \ldots, n-1) \quad \text { and } \quad \Delta_{n}:\left|z_{n}\right|<r_{n}
$$

To prove the fundamental theorem, it suffices to verify the existence of a simple function on the standard ramified domain $\mathcal{R}^{\mathbf{j}}$. Then, for any fixed $z^{\prime} \in \Delta^{n-1}$, the fiber

$$
\mathcal{R}^{\prime \prime}\left(z^{\prime}\right)=\left\{z_{n} \mid\left(z^{\prime}, z_{n}\right) \in \mathcal{R}^{0}\right\}
$$

is an m-sheeted Riemann surface over the disk Δ_{n} in $C_{i_{n}}$ (with m finite). which may have branch points. Thus \mathcal{R}^{0} can be considered as a variation of Riemann surfaces over the disk Δ_{n} without relative boundary with variation parameter $z^{\prime} \in \Delta^{n-1}$.

$$
\mathcal{R}^{0}: z^{\prime} \rightarrow \mathcal{R}^{0}\left(z^{\prime}\right) . \quad z^{\prime} \in \Delta^{n-1}
$$

Let \mathbf{P}_{u}. denote the Riemann sphere $\{|w| \leq \infty\}$ and let $\Delta:\left|z_{j}\right|<r_{j}(j=$ $1, \ldots, n)$ be a polydisk in $\mathbf{C}^{n}(n \geq 1)$. In the product space $\mathbf{C}^{n} \times \mathbf{P}_{u}$. we cousider the product domain

$$
\Lambda=\Delta \times \mathbf{P}_{u}
$$

Let \mathcal{R} be an m-sheeted ramified domain over Λ without relative boundary (m finite) and let

$$
\pi: \mathcal{R} \rightarrow \Lambda
$$

be the canonical projection. We let π_{n} denote the projection from Λ to Δ. We assume that the projection σ of the branch set σ of \mathcal{R} does not contain any line of the form $\left\{z_{0}\right\} \times \mathbf{P}_{\mathbf{u}}$. For any subset e of Δ, we define

$$
\mathcal{R}(e):=\pi^{-1}\left(\pi_{n}^{-1}(e)\right) .
$$

If e is a domain δ in Δ, then $\mathcal{R}(\delta)$ is a ramified doinain over $\delta \times \mathbf{P}_{u}$, without relative boundary. If e is a point $z \in \Delta$. then $\mathcal{R}(z)$ is an m-sheeted compact Riemann surface over $\mathbf{P}_{u^{\prime}}$. We let π_{z} denote the restriction of π to $\mathcal{R}(z)$.

Finally, for ρ^{0} with $0<\rho^{0}<\infty$, we let

$$
\begin{array}{ll}
\Delta & :\left|z_{j}\right|<r_{j}(j=1, \ldots, n) \\
\Gamma^{0}:\left|w^{0}\right|<\rho^{0} & \text { in } C^{n}(n \geq 1) \\
\Lambda^{0}: \Delta \times \Gamma^{0} & \text { in } P_{u} \\
\text { in } \Lambda=\Delta \times \mathbf{P}_{u}
\end{array}
$$

Let \mathcal{R}^{0} be a finitely sheeted ramified domain over λ^{0} without relative boundary. If there exists a finitely sheeted ramified domain R over Λ without relative boundary such that $\left.\mathcal{R}\right|_{1^{\circ}}=\mathcal{R}^{0}$, then \mathcal{R} is called an algebraic extension of $\mathcal{R}^{\prime \prime}$.

With this terminology, we now state the following result.
Proposition 6.1. Let \mathcal{R}^{0} be a finitely sheeted ramified domain over $\overline{\Lambda^{0}}:=$ $\bar{\Delta} \times \overline{\Gamma^{0}}$ without relative boundary such that the projection σ^{0} of the branch set σ_{0} of \mathcal{R}^{0} onto $\overline{\Lambda^{0}}$ does not intersect $\bar{\Delta} \times \partial \Gamma^{0}$. i.e., \mathcal{R}^{0} is standard with respect to the coordinate w. Then there exists an algebraic extension \mathcal{R} of $\mathcal{R}^{(0)}$ which satisfies the following conditions:

1. \mathcal{R} has no branch set lying over $\Delta \times\{w=\infty\}$.
2. For any $z^{0} \in \Delta, \mathcal{R}\left(z^{0}\right)$ is a connected. compact Riemann surface over \mathbf{P}_{u}.

Proof. Since $\underline{\sigma} \cap\left(\underline{\Delta} \times \partial \Gamma^{0}\right)=\emptyset$, we can find a sufficiently thin annulus $A:=$ $\left\{\rho^{\prime}<|w|<\rho^{\prime \prime}\right\}$ in \mathbf{P}_{w} which contains $\partial \Gamma^{(0}$ and is such that the part \mathcal{A} of \mathcal{R}^{0} over $\Delta \times A$ consists of a finite number of connected unramified domains without relative boundary, i.e., \mathcal{A} is a finite number of disjoint unions of product sets of the form $\Delta \times S_{j}$, where $S_{j}\left(j=1, \ldots, j_{0}\right)$ is a finitely sheeted Riemann surface over A without relative boundary. We construct an m-sheeted connected Riemann surface \widetilde{B} over $\left\{\rho^{\prime}<|w| \leq \infty\right\}$ without relative boundary such that the part of \widetilde{B} over A coincides with $S_{j}\left(j=1, \ldots, j_{0}\right)$ and \tilde{B} has no branch points over $w=\infty$. Then we attach \mathcal{R}^{0} to the ramified domain $\Delta \times \widetilde{B}$ along the common part \mathcal{A}, and the resulting ramified domain \mathcal{R} over $\Delta \times \mathbf{P}_{w}$ satisfies the conclusion of the proposition.

We set $\mathcal{R}^{\prime}=\mathcal{R} \backslash \pi^{-1}(\Delta \times\{\infty\})$. From this proposition, we see that to prove Theorem 6.1, it suffices to construct a simple function on \mathcal{R}^{\prime} instead of on $\mathcal{R}^{0} .4$
6.2.2. Algebraic Functions of One Complex Variable. We recall a fundamental result about algebraic functions of one complex variable. Let R be a compact Riemann surface of genus g. Let $p_{j}(j=1, \ldots, \mu)$ be a finite set of points of R and let $e_{j}(j=1, \ldots, \mu)$ be positive integers. We set

$$
e:=e_{1}+\cdots+e_{\mu} .
$$

We let $\mathcal{M}=\mathcal{M}(R)$ denote the complex-linear space of meromorphic functions $f(z)$ on R such that $f(z)$ is holomorphic in $R \backslash\left\{p_{j}\right\}_{j=1, \ldots, \mu}$ and has a pole of order at most e_{j} at $p_{j}(j=1, \ldots, \mu)$. We let Ω denote the complex-linear space of holomorphic differentials ω on R such that ω has a zero of order at least e_{j} at $p_{j}(j=1, \ldots, \mu)$. We recall the Riemann-Roch theorem.

Theorem 6.2.

$$
\begin{equation*}
\operatorname{dim} \mathcal{M}=\operatorname{dim} \Omega+e-g+1 \tag{6.2}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\operatorname{dim} \mathcal{M}=\mathrm{e}-g+1 \quad \text { if } \quad e \geq 2 g-1 . \tag{6.3}
\end{equation*}
$$

The last statement (6.3) folows from the fact that any non-zero holomorphic differential ω on a compact Riemann surface R of genus g has just $2 g-2$ zeros (counted with multiplicity).

Let R be a compact Riemann surface of genus g lying m-sheeted over \mathbf{P}_{u}. We will assume in this section that all points of R over $w=\infty$ are regular points, i.e., non-branch points of R; we list them as $L_{\infty}^{j}(j=1, \ldots, m)$. Thus we can choose and fix a large number $\rho_{0}>0$ such that, setting $E=E_{\rho_{0}}=\left\{w \in \mathbf{P}_{w}| | w \mid>\rho_{0}\right\}$, there are no branch points over E. Therefore, there are m different copies E_{j} ($j=$ $1, \ldots, m)$ of E with $L_{\infty}^{j} \in E_{j}$. We set

$$
R^{\prime}:=R \backslash\left\{L_{\infty}^{\jmath}\right\}_{j=1, \ldots . m} .
$$

Let $\mathcal{L}(R)$ denote the linear space of meromorphic functions $f(p)$ on R such that $f(p)$ is holomorphic in R^{\prime}; i.e., $f(p)$ may have poles only at the points $L_{x}^{j}(j=$ $1, \ldots, m)$. If we restrict $f(p)$ to $E_{j}(j=1, \ldots, m)$ and denote this restriction by $f_{j}(w)$, then $f_{j}(w)$ is a single-valued meromorphic function on E which may have poles only at $w=\infty$.

[^28]Given an integer $\nu \geq 1$, we let $\mathcal{L}_{\nu}(R)$ denote the set of all $f(p) \in \mathcal{L}(R)$ which have poles of order at most ν at each point $L_{x}^{\prime}(j=1 \ldots . m)$. We also define

$$
\begin{aligned}
\mathcal{L}_{\nu}^{\bullet}(R)= & \left\{f(p) \in \mathcal{L}_{\nu}(R) \mid f(p)\right. \text { has poles } \\
& \text { of order } \left.\nu \text { at each } L_{x}^{j}(j=1 \ldots, m)\right\} .
\end{aligned}
$$

Note that $f(p) \in \mathcal{L}_{1}(R)$ belongs to $\mathcal{L}_{v}^{*}(R)$ if and only if the total order of $f(p)$ is equal to $m \nu$.

Let $f(p) \in \mathcal{L}(R)$. Then by constructing the fundamental symmetric functions in the m branches of $f(p)$. we obtain an irreducible polynomial of a new complex variable X of the form

$$
\begin{equation*}
F(u, X)=X^{m}+\alpha_{1}(u) X^{m-1}+\cdots+\alpha_{m}\left(u^{\prime}\right) \tag{6.4}
\end{equation*}
$$

such that for each X, the solutions of $F(u, X)=0$ coincide with $X=f(u)$ and such that each $a_{k}(w)(k=1, \ldots, m)$ is a polynomial in $u \in \mathbf{C}_{u}$. Thus, $F(u, X)$ is a polynomial in both variables u and X in \mathbf{C}^{2}. We call $F(u, X)$ the defining polynomial for $f(p)$.

We have the following lemma.
Lemma 6.1. Let $f(p) \in \mathcal{L}(R)$. Then $f(p) \in \mathcal{L}_{y}(R)$ if and only if each coefficient $\alpha_{k}\left(u^{\prime}\right)(k=1 \ldots . m)$ of the defining polynomial $F(u, X)$ for $f(p)$ is a polynomial of degree at most νk.

Proof. Let $f(p) \in \mathcal{L}_{\nu}(R)$. We consider the branch $f_{J}\left(u^{\prime}\right)$ of $f(p)$ on $E j(j=$ $1, \ldots, m)$. For each $k=1, \ldots, m$ we have

$$
\alpha_{k}(w)=\sum f_{j_{1}}\left(u^{\prime}\right) \cdots f_{j_{k}}(u) \quad \text { on } E
$$

It follows that $a_{k}(u)$ is a polynomial in u of degree at most νk.
We prove the converse by contradiction. Hence we assume that some $f_{j}\left(u^{\cdot}\right)$ has a pole of order greater than ν at $u:=\infty$. We let $\nu^{\bullet} \geq \nu+1$ denote the maximmm such order and we suppose $f_{j_{1}} \ldots \ldots f_{\mu}(1 \leq I \leq m)$ have poles of order ν^{*} at $u=x$. Then $\alpha_{l}(w)$ is a polynomial in u^{\prime} of degree $\nu^{\boldsymbol{*}} l$, which is a contradiction.

Remark 6.3. Let $f(p) \in \mathcal{L}_{\nu}(R)$ and let $F(u: X)$ in (6.4) denote the defining polynomial for $f(p)$. Then $f(p) \in \mathcal{L}_{\nu}^{*}(R)$ if and only if $\alpha_{m}(u)$ is of order $m \nu$.

Let $f(p) \in \mathcal{L}(R)$ and let $F(u, X)$ be the defining polynomial for $f(p)$. We set

$$
\mathcal{C}_{f}:=\left\{(u, X) \in \mathbf{C}^{2} \mid \boldsymbol{F}(u, X)=0\right\}
$$

which is called the graph of $f(p)$ in \mathbf{C}^{2}. Thus, \mathcal{C}_{f} is a one-dimensional analytic set in \mathbf{C}^{2}. We consider the points $P_{h}\left(h=1, \ldots, h_{0}\right)$ of \mathcal{C}_{f} which correspond to the branch points of R and the points $Q_{k}\left(k=1 \ldots . k_{0}\right)$ which correspond to the singular points of $\mathcal{C}_{\boldsymbol{f}}$. We write

$$
P_{h}=\left(\xi_{h}, \xi_{h}^{\prime}\right) \quad\left(h=1 \ldots \ldots, h_{0}\right), \quad Q_{k}=\left(\eta_{k}, \eta_{k}^{\prime}\right) \quad\left(k=1 \ldots \ldots, k_{0}\right)
$$

It may happen that $P_{h}=Q_{k}$ for some h and k. We note that the $\xi_{h}\left(h=1, \ldots, h_{0}\right)$ are uniquely determined by the Riemann surface R. but of course this is not the case for $\xi_{h}^{\prime} . \eta_{k}$ and η_{k}^{\prime}. If \mathcal{C}_{f} satisfies the three conditions:

1. each $P_{h}\left(h=1, \ldots . h_{6}\right)$ is a regular point of \mathcal{C}_{f} and each $Q_{k}\left(k=1, \ldots, k_{0}\right)$ is a norinal double point of \mathcal{C}_{f} :
2. if $i \neq j(1 \leq i, j \leq m)$, then

$$
\begin{equation*}
\lim _{w \rightarrow \infty} f_{i}(w) / f_{j}(w) \neq 0,1, \text { or } \infty \tag{6.5}
\end{equation*}
$$

3. if $k \neq l\left(1 \leq k, l \leq k_{0}\right)$, then $\eta_{k} \neq \eta_{l}$; furthermore, for each $k=1, \ldots, k_{0}$, we have $\eta_{k} \neq \xi_{h}\left(h=1, \ldots, h_{0}\right)$;
then we say that $f(p)$ has a simple graph \mathcal{C}_{f} in \mathbf{C}^{2}. Here we say that $Q=\left(\eta, \eta^{\prime}\right)$ is a normal double singular point of C_{ρ} if there exists a bidisk $\lambda=\delta \times \gamma \subset C_{w, X}^{2}$ centered at Q such that $\Lambda \cap C_{\rho}$ can be written as

$$
\left\{(w, X) \in \lambda \mid\left(X-f_{1}(w)\right)\left(X-f_{2}(w)\right)=0\right\}
$$

where $f_{1}(w), f_{2}(w)$ are holomorphic functions in δ with $f_{1}(\eta)=f_{2}(\eta)=\eta^{\prime}$ and $f_{1}^{\prime}(\eta) \neq f_{2}^{\prime}(\eta)$. We note that condition 2 implies that the function $f(p)$ is a characteristic function on R, and hence C_{ρ} can be considered as a graph of $f(p)$ on R.

We let $\mathcal{L}_{\nu}^{s}(R) \subset \mathcal{L}_{\nu}(R)$ denote the set of all $f(p) \in \mathcal{L}_{\nu}(R)$ whose graphs \mathcal{C}_{f} are simple in $\mathbf{C}^{\mathbf{2}}$.

It is easy to see the following fact. Let $f(p) \in \mathcal{L}_{\nu}^{s}(R)$ and let $f_{n}(p) \in \mathcal{L}_{\nu}(R)(n=$ $1,2, \ldots)$ with $\lim _{n \rightarrow \infty} f_{n}(p)=f(p)$ uniformly on R; i.e.,

1. $\lim _{n \rightarrow \infty} f_{n}(p)=f(p)$ uniformly on each subset $K \subset \subset R^{\prime}$;
2. for sufficiently large $n, f_{n}(p)$ has the same order as $f(p)$ at each $L_{\infty}^{j}(j=$ $1, \ldots, m)$.
Then $f_{n}(p) \in \mathcal{L}_{\nu}^{s}(R)$ for sufficiently large n.
We have the following theorem.
Theorem 6.3. Let R be an m-sheeted compact Riemann surface over $\mathbf{P}_{\boldsymbol{w}}$ of genus g. Let h_{0} be the number of branch points of R, and set $\nu_{0}:=\left(h_{0}+2\right) m+g$. Then for any function $g(p) \in \mathcal{L}_{\nu}^{*}(R)$ with $\nu>m \nu_{0}$ satisfying condition (6.5), there exist a finite number of functions $\phi_{i}(p) \in \mathcal{L}_{\nu_{0}}(R)(i=1, \ldots, q)$ such that for sufficiently small $\varepsilon_{i} \neq 0(i=1, \ldots, q), G_{\varepsilon}(p):=g(p)+\sum_{i=1}^{q} \varepsilon_{i} \phi_{i}(p)$ is a simple function on R.

This is a classical result in the theory of algebraic functions of one complex variable. The proof will be given in Appendix 1 to this chapter.
6.2.3. Meromorphic Functions on $\mathcal{R}(z)$. We return to the subject of 6.2.1. Let $\Delta \subset C^{n}$ and let \mathcal{R} be a ramified domain over $\Lambda=\Delta \times \mathbf{P}_{w}$ which has no relative boundary and which satisfies conditions 1 and 2 in Proposition 6.1. Let $\pi: \mathcal{R} \rightarrow \Lambda$ be the canonical projection and let m be the number of sheets of \mathcal{R}. Then the subset of \mathcal{R} lying over $w=\infty$, i.e., $\pi^{-1}(\Delta \times\{\infty\})$, consists of m different analytic hyperplanes which will be denoted by $L_{\infty}^{j}(j=1, \ldots, m)$. We set

$$
\mathcal{R}^{\prime}=\mathcal{R} \backslash\left(\bigcup_{j=1}^{m} L_{\infty}^{j}\right) .
$$

For $z \in \Delta$, we write $\mathcal{R}(z)=\pi^{-1}(z)$ for the fiber over z, which is a compact Riemann surface lying m-sheeted over $\mathbf{P}_{\boldsymbol{w}}$. We set

$$
\mathcal{R}^{\prime}(z):=\mathcal{R}^{\prime} \cap \mathcal{R}(z), \quad L_{\infty}^{j}(z):=L_{\infty}^{j} \cap \mathcal{R}(z) \quad(j=1, \ldots, m)
$$

To prove the fundamental theorem (Theorem 6.1). it suffices to construct a meromorphic function $G(z, p)$ of $n+1$ complex variables (z, p) in \mathcal{R} which is holomorphic in \mathcal{R}^{\prime} and such that for some point $a \in \Delta . X=G(a, p)$ has a simple graph in $\mathrm{C}_{u, \ldots}^{2} . \mathrm{X}^{\text {. }}$

Let Σ be the branch set of \mathcal{R} and set $\underline{\Sigma}=\pi(\Sigma)$. For $z \in \Delta$. we let $\Sigma(z)$ denote the branch points of $\mathcal{R}(z)$, so that the section of Σ over z^{\prime} coincides with $\Sigma\left(z^{\prime}\right)$ for all but a finite set of points $z^{\prime} \in \Delta$. From condition 1 in Proposition 6.1, if we fix a sufficiently large number $\rho>0$ and set

$$
\Gamma:|w|<\rho \quad \text { in } \mathbf{P}_{u}, \quad \Lambda^{0}=\Delta \times \Gamma .
$$

then $\underset{\underline{\Sigma}}{ }$ is an analytic set in Λ^{0} with $\underline{\underline{\Sigma}} \cap(\Delta \times \partial \Gamma)=0$. lt follows that the part of \mathcal{R} over $\Delta \times(\rho \leq|w| \leq \infty)$ consists of m disjoint univalent parts and that $\underline{\underline{\Sigma}}$ can be written as

$$
\underline{\underline{\Sigma}}=\left\{(z, u) \in \Delta \times \mathbf{P}_{u} \mid P\left(z, u^{\prime}\right)=0\right\} .
$$

where

$$
P\left(z, u^{\prime}\right)=u^{\kappa}+\alpha_{1}(z) u^{\kappa-1}+\cdots+\alpha_{\kappa}(z)
$$

and each $\alpha_{j}(z)(j=1, \ldots, \kappa)$ is a holomorphic function on Δ. We decompose $P(z, w)$ into the prime factorization

$$
P(z, w)=\prod_{\imath=1}^{10} P_{\imath}(z, w)
$$

where each $P_{\chi}(z, w)\left(\chi=1 \ldots, \chi_{0}\right)$ has the same form as $P(z, w)$. We note that $P(z, w)$ has no multiple factors. We let $d(z)$ denote the discriminant of $P(z, w)$ with respect to u, and we set

$$
\sigma:=\{z \in \Delta \mid d(z)=0\}, \quad \Delta^{\prime}=\Delta \backslash \sigma .
$$

Then σ is an $(n-1)$-dimensional analytic hypersurface in Δ. We note that for each $z \in \Delta^{\prime}, R(z)$ is a compact Riemann surface of the same genus. say g. However. for $z \in \sigma . R(z)$ is of genus g^{\prime} with $0 \leq g^{\prime} \leq g$.

Let $\nu \geq 1$ be an integer such that $m \nu \geq 2 g-1$. For $z \in \Delta$ we write $\mathcal{L}_{\nu}(z)=$ $\mathcal{L}_{\nu}(R(z))$. i.e.. $\mathcal{L}_{l \prime}(z)$ is the linear space of meromorphic functious on $\mathcal{R}(z)$ which are holonorphic in $\mathcal{R}^{\prime}(z)$ and which have poles at $L_{x}^{j}(z)(j=1, \ldots, m)$ of order at most ν. By the Riemann-Roch theorem, $\operatorname{dim} \mathcal{L}_{\nu}(z)=m \nu-g+1$. For simplicity; we set

$$
l_{0}:=m \nu-g, \quad \operatorname{dim} \quad \mathcal{L}_{\nu}(z)=l_{0}+1 .
$$

We need the following lemına, related to norinal families of holomorphic functions of one complex variable: this will form the basis of our proof of the Fundamental Theorem from 6.2.1.

Lemma 6.2. Let $z^{j}(j=1,2 \ldots)$ be a sequence of points in Δ which converges to a point $z^{\prime \prime} \in \Delta$. Let $f^{j}(p) \in \mathcal{L}_{\nu}\left(z^{j}\right)(j=1,2, \ldots)$ be non-constant on $\mathcal{R}^{\prime}\left(z^{j}\right)$. Assume that one of the zeros ξ^{j} of $f^{J}(p)$ converges to a point $\xi^{\prime \prime}$ in $\mathcal{R}^{\prime}\left(z^{0}\right)$ as $j \rightarrow \infty$. Then there exists a subsequence $f^{j \nu}(p)(\nu=1,2 \ldots)$ of $f^{\prime}(p)(j=1,2 \ldots)$ and a sequence $b^{j^{j u}}(\nu=1,2, \ldots)$ of complex numbers such that, if ue set

$$
g^{j_{\nu}}(p):=b^{j^{\prime \prime}} f^{\rho_{\nu}}(p) \quad(\nu=1,2 \ldots)
$$

then the $g^{\nu}(p)(\nu=1,2 \ldots)$ converge locally uniformly to a non-constant holomorphic function $g^{0}(p)$ on $\mathcal{R}^{\prime}\left(z^{0}\right)$ with $g^{0}(p) \in \mathcal{L}_{\nu}\left(z^{0}\right)$.

We need to explain the terminology of local uniform convergence on $R^{\prime}\left(z^{0}\right)$. Fix $p_{0}=\left(z^{0}, u^{0}\right) \in \mathcal{R}^{\prime}\left(z^{0}\right) \backslash \Sigma\left(z^{0}\right)$, i.e., u^{0} is a regular point of $\mathcal{R}^{\prime}\left(z^{0}\right)$. Take a relatively compact polydisk $\Delta_{0} \times \delta \subset \Delta \times C_{u}$ centered at (z^{0}, w^{0}) in $\mathcal{R}^{\prime} \backslash \Sigma$. We restrict $g^{j_{\nu}}(p)(\nu=1,2 \ldots)$ to $\left\{z^{j}\right\} \times \delta$. which is thus a holomorphic function for $u \in \delta$ which we denote by $g^{j v}(u)$. Similarly, we set $g^{0}\left(u^{\prime}\right)=g^{0}(p)$ for $w \in \delta$, where $p=\left(z^{0}, w\right)$. The conclusion of Lemma 6.2 is that $\lim _{\nu \rightarrow x} g^{j_{\nu}}(w)=g^{0}(w)$ uniformly on δ.

Proof. Since there are at most $m \nu$ zeros of $f^{\prime}(p)$ in $\mathcal{R}\left(z^{j}\right)$, we can extract from $\left\{f^{j}(p)\right\}_{j=1.2 \ldots . .}$ a subsequence $\left\{f^{j_{k}}(p)\right\}_{k=1.2 \ldots . .}$ in such a way that the zeros of $f^{j_{k}}(p)$ converge in \mathcal{R} either to the points $\xi_{\imath}^{0}\left(\iota=1, \ldots . m^{\prime}\right)$ in $\mathcal{R}^{\prime}\left(z^{0}\right)$ or to points of $L_{x}^{j}\left(z^{0}\right)(j=1 \ldots . m)$. By assumption one of the points $\xi_{\imath}^{0}\left(\iota=1, \ldots, m^{\prime}\right)$ coincides with $\xi^{\prime \prime} \in \mathcal{R}^{\prime}\left(z^{0}\right)$ described in the lemna. say $\xi_{1}^{0}=\xi^{0}$. We select a regular point η_{1}^{0} of $\mathcal{R}^{\prime}\left(z^{0}\right)$ such that $\eta_{1}^{0} \neq \xi_{1}^{0}\left(\iota=1, \ldots, m^{\prime}\right)$ and we fix a polydisk $\Delta^{\mathrm{I}} \times \delta^{1}$ centered at $\left(z^{0}, \eta_{1}^{0}\right)$ in $\mathcal{R}^{\prime} \backslash \Sigma$ such that $f^{j_{k}}(p) \neq 0$ for any $p=\left(z^{j_{4}}, w\right)$ with $u \in \delta^{1}$. We set $\eta_{1}^{j_{k}}:=\left(z^{j_{k}}, \eta_{1}^{0}\right) \in \mathcal{R}^{\prime}\left(z^{j_{k}}\right)$. Since $f^{j_{k}}\left(\eta_{1}^{j_{k}}\right) \neq 0$ for any sufficiently large $k \geq k_{0}$. we can define

$$
b^{j_{k}}=1 / f^{j_{k}}\left(\eta_{1}^{j_{k}}\right) . \quad g^{j_{k}}(p)=b^{j_{k}} f^{j_{k}}(p) \quad \text { in } \mathcal{R}\left(z^{j_{k}}\right) .
$$

Since there are at most $m \nu$ points p satisfying $g^{j_{k}}(p)=1$ in $\mathcal{R}\left(z^{j_{k}}\right)$, we can extract from $\left\{g^{j_{k}}(p)\right\}_{k\left(\geq k_{0}\right)}$ a subsequence $\left\{g^{j^{h}}(p)\right\}_{h=1.2 \ldots}$. such that all points satisfying $g^{j h}(p)=1$ converge in \mathcal{R} either to the points $\eta_{t}^{0}\left(\iota=1, \ldots, m^{\prime \prime}\right)$ in $\mathcal{R}^{\prime}\left(z^{0}\right)$ or to points of $L_{x}^{j}\left(z^{0}\right)(j=1, \ldots, m)$.

Take any $p_{0}=\left(z^{0}, u^{0}\right) \in \mathcal{R}^{\prime}\left(z^{0}\right) \backslash \Sigma\left(z^{0}\right)$ such that $w^{0} \neq \xi_{t}^{0}, \eta_{j}^{0}\left(\iota=1, \ldots, m^{\prime} ;\right.$ $j=1, \ldots, m^{\prime \prime}$). Choose a polydisk $\Delta^{0} \times \delta^{0}$ centered at (z^{n}, w^{0}) in $\mathcal{R}^{\prime} \backslash \Sigma$ such that $g^{j_{h}}(p) \neq 0,1$ for any point p of the form $p=\left(z^{j h}, w\right)$ with $w \in \delta^{0}$ and $h>1$ sufficiently large so that $z^{j_{h}} \in \Delta^{0}$. If we restrict each $g^{j n}(p)$ to δ^{0} and call this restriction $g^{j^{h}}(w)$, then $g^{\text {ih }}\left(w^{\cdot}\right)$ is a holomorphic function on δ^{0} which omits the values 0 and 1. Thus. by Picard's theorem, we can extract from $\left\{g^{j_{h}}(w)\right\}_{h=1,2, \ldots}$ a subsequence $\left\{g^{j^{\prime \prime}}(w)\right\}_{\nu=1.2 \ldots .}$. which converges uniformly to $g^{0}(w)$ on δ^{0}. We can consider $g^{0}(w)$ as a holomorphic function $g^{0}(p)$ on $\mathcal{R}^{\prime}\left(z^{0}\right) \cap \delta^{0}$. By the standard diagonal method we may assume that $g^{j \nu}(p)(\nu=1,2, \ldots)$ converges locally uniformly to a holomorphic function $g^{(1)}(p)$ on

$$
\mathcal{R}^{*}\left(z^{01}\right):=\mathcal{R}^{\prime}\left(z^{0}\right) \backslash\left(\Sigma\left(z^{0}\right) \cup\left\{\xi_{2}^{0}\right\}_{\&=1, \ldots . m^{\prime}} \cup\left\{\eta_{j}^{0}\right\}_{J-1 \ldots . . m^{\prime \prime}}\right)
$$

Note that we have not ruled out the possibility that $g^{\prime \prime}(p) \equiv 0,1$, or x on $\mathcal{R}^{\prime \prime}\left(z^{0}\right)$. Since $\eta_{1}^{0}=\left(z^{0}, u^{1}\right)$ was a regular point of $\mathcal{R}^{\prime}\left(z^{0}\right)$. there exists a sufficiently small polydisk $\Delta^{\prime} \times \delta^{\prime}$ centered at ($z^{0} . w^{1}$) in $\mathcal{R}^{\prime} \backslash \Sigma$ and such that $\partial \delta^{\prime}$ contains neither $\xi_{t}^{0}\left(t=1, \ldots, m^{\prime}\right)$ nor $\eta_{j}^{0}\left(j=1, \ldots, m^{\prime \prime}\right)$. It follows from Weierstrass' theorem that the uniform convergence of $g^{\prime \prime \prime}\left(w^{\prime}\right)(\nu=1,2, \ldots)$ on $\partial \delta^{\prime}$ implies the uniform convergence of $g^{j_{\nu}}(w)$ on δ^{\prime}. Consequently. $g^{0}(p)$ is holomorphic at η_{1}^{0} and $g^{0}\left(\eta_{1}^{0}\right)=$ 1. Similarly, $g^{0}(p)$ is holomorphic at ξ_{1}^{0} and $g^{0}\left(\xi_{1}^{0}\right)=0$. Thus, $g^{0}(p) \not \equiv \infty$ on $\mathcal{R}^{*}\left(z^{0}\right)$. It follows from the Riemann removable singularity theorem that $g^{\prime \prime}(p)$ is holomorphic on $\mathcal{R}^{\prime}\left(z^{0}\right)$. Hence, $g^{(1)}(p)$ is a non-constant holomorphic function on $\mathcal{R}^{\prime}\left(z^{0}\right)$. Since $g^{j_{\nu}}(p) \in \mathcal{L}_{\nu}\left(z^{j_{\nu}}\right)(\nu=1,2, \ldots)$, we also have $g^{0}(p) \in \mathcal{L}_{\nu}\left(z^{0}\right)$.

For $h=1, \ldots, l_{0}:=m \nu-g$, let ζ_{h} be an irreducible analytic hypersurface in \mathcal{R}^{\prime} such that the projection $\pi\left(\zeta_{h}\right)$ of ζ_{h} onto $\Lambda=\Delta \times \mathbf{P}_{w}$ is an n-dimensional complex
hyperplane $w=w_{h}$. In particular, ζ_{h} lies over $\Delta \times\left\{w_{h}\right\}$ in A. We assume that $w_{h} \neq u_{k}$ for $h \neq k$ and that $\left|\omega_{h}\right|>\rho$, and we set

$$
\zeta_{h}(z):=\zeta_{h} \cap \mathcal{R}(z) . \quad z \in \Delta
$$

For $z \in \Delta$. this is a point in $\mathcal{R}(\alpha)$ lying over w_{h} in \mathbf{P}_{u}. i.e.. $\zeta_{h}(z)=w_{h}$.
For each $z \in \Delta$. we consider the subset $\mathcal{L}_{10}^{0}(z)$ of $\mathcal{L}_{v \prime}(z)$ defined as

$$
\mathcal{L}_{\nu}^{(\prime)}(z):=\left\{f(z, p) \in \mathcal{L}_{\nu}(z) \mid f\left(z, \zeta_{h}(z)\right)=0\left(l=1 \ldots . . l_{0}\right)\right\} .
$$

When we need to emphasize the dependence on $\zeta_{h}\left(h=1 \ldots . l_{0}\right)$, we will write $\mathcal{L}_{\nu}^{(1)}(z)=\mathcal{L}_{\nu}^{0}\left(z,\left\{\zeta_{h}\right\}_{h=1} \ldots, l_{0}\right)$. We also define, for $z \in \Delta$.

$$
\begin{aligned}
\mathcal{L}_{\nu}^{*}(z)= & \left\{f(z, p) \in \mathcal{L}_{\nu}(z) \mid f(z, p)\right. \text { has poles } \\
& \text { of order } \left.\nu \text { at cach } L_{x}^{j}(z)(j=1, \ldots, m)\right\} .
\end{aligned}
$$

We prove the following one complex variable lemma.
Lemma 6.3. Assume $\nu>2 g-1$. Then:

1. Each $\mathcal{L}_{i,}^{0}(z), \quad z \in \Delta$, is a complex-linear space with dim $\mathcal{L}_{i}^{0}(z) \geq 1$.
2. Fix $a \in \Delta^{\prime}:=\Delta \backslash \sigma$. Then we can choose the points $\zeta_{h}(a)\left(h=1, \ldots, l_{0}\right)$ and $\zeta_{0}(a)$ on $\mathcal{R}^{\prime}(a)$ with $\left|w_{h}\right|=\left|\zeta_{h}(a)\right|>\rho\left(h=0.1 \ldots . l_{0}\right)$ and $u_{h} \neq u_{k}$ if $h \neq k$ such that
(a) $\operatorname{dim} \mathcal{L}_{1,}^{0}\left(a,\left\{\zeta_{h}\right\}_{h=1} \ldots . l_{11}\right)=1$, and
(b) there exists a function $g(a, p) \in \mathcal{L}_{\nu}^{0}\left(a,\left\{\zeta_{h}\right\}_{h=1} \ldots h_{1}\right)$ such that
(i) $g(a . p) \in \mathcal{L}_{i}^{*}(a)$;
(ii) $\mathcal{L}_{l}^{0}\left(a,\left\{\zeta_{h}\right\}_{h=1 \ldots ., l_{0}}\right)=\{c g(a, p)\}_{c \in C}$:
(iii) $g\left(a . \zeta_{0}(a)\right)=1$;
(iv) $g(a, p)$ does not vanish at any points of $\mathcal{R}(a)$ lying over $u_{l}(l=$ $\left.1, \ldots, l_{1}\right)$ except at $\zeta_{1}(a)$. and $g(a, p)$ does not assume the value 1 at any points of $\mathcal{R}(a)$ over w_{0} except at $\zeta_{0}(a)$.

Proof. Assertion 1 follows Theorem 6.2. To prove assertion 2, since dim $\mathcal{L}_{\nu}(a)$ $=l_{(1}+1$, we can choose a basis $\left\{f_{a}(p)\right\}_{a=1 \ldots ., l_{0}+1}$ of $\mathcal{L}_{l}(a)$ such that, on $\mathcal{R}(a)$, $f_{1}(p)$ has poles of total order $m \nu$ and each $f_{a}(p)$ for $a=2, \ldots, l_{0}+1$ has poles of total order at most $m \nu-1$. Thus. by analyticity, we can choose a point $\zeta_{1}(a)$ in $\mathcal{R}^{\prime}(a)$ such that $\left|w_{1}\right|=\left|\underline{\zeta_{1}}(a)\right|>\rho ; f_{1_{0}+1}\left(\zeta_{1}(a)\right) \neq 0$; and such that $f_{1}(p)-$ $\left[f_{1}\left(\zeta_{1}(a)\right) / f_{l_{0}+1}\left(\zeta_{1}(a)\right)\right] \cdot f_{l_{11}+1}(p)$ does not vanish at any point of $\mathcal{R}(a)$ lying over w_{1} except at $\zeta_{1}(a)$. Note there are at most $m-1$ such points. Then. $\left\{g_{n}(p)\right\}_{a=1 \ldots, l_{0}}$. where

$$
g_{\alpha}(p):=f_{\alpha}(p)-\left[f_{a}\left(\zeta_{1}(a)\right) / f_{l_{n+1}}\left(\zeta_{1}(a)\right)\right] \cdot f_{l_{0}+1}(p)
$$

forms a base of $\mathcal{L}_{\nu}^{0}\left(a,\left\{\zeta_{1}(a)\right\}\right) ; \operatorname{dim} \mathcal{L}_{\nu}^{\prime \prime}\left(a .\left\{\zeta_{1}(a)\right\}=l_{0}: g_{1}(p) \in \mathcal{L}_{\nu}^{*}(a)\right.$; each $g_{a}(p)$ for $a=2 \ldots . l_{0}$ has poles of total order at most $m \nu-1$; and $g_{1}(p)$ does not vanish at any point of $\mathcal{R}(a)$ lying over w_{1} except at $\zeta_{1}(a)$. Thus we can recursively find l_{0} different points $\zeta_{h}(a)\left(h=1, \ldots, l_{0}\right)$ in $\mathcal{R}^{\prime}(a)$ such that $\left|w_{h}\right|=\mid \underline{\zeta_{h}(a) \mid>\rho}$ and $w_{h} \neq w_{k}$ for $h \neq k$, and a function $h_{1}(p)$ on $\mathcal{R}(a)$ of the form $h_{1}(p)=$ $f_{1}(p)-\sum_{a=2}^{l_{1}+1} c_{a} f_{a}(p)$ such that $\left\{h_{1}(p)\right\}$ forms a base of $\mathcal{L}_{b}^{0}\left(a .\left\{\zeta_{h}(a)\right\}_{h=1} \ldots . l_{0}\right)$ and $h_{1}(p)$ does not vanish at any point of $\mathcal{R}(a)$ lying over $u_{l}^{\prime}\left(l=1 \ldots . l_{0}\right)$ except at $\zeta_{l}(a)$. Thus, $\operatorname{dinn} \mathcal{L}_{\nu}^{0}\left(a,\left\{\zeta_{h}(a)\right\}_{h=1} \ldots, I_{0}\right)=1$ and $h_{1}(p) \in \mathcal{L}_{\nu}^{*}(a)$. We finally choose a point $\zeta_{0}(a) \in R^{\prime}(a)$ such that $\left|w_{0}\right|=\left|\zeta_{0}(a)\right|>\rho$. $u_{0} \neq u^{\prime}\left(l=1 \ldots . h_{0}\right)$, and $h_{1}\left(a, \zeta_{0}(a)\right) \neq 0$. If we set $g(a, p)=h_{1}(p) / h_{1}\left(\zeta_{0}(a)\right)$ on $\mathcal{R}(a)$, then this function $g(a, p)$ satisfies all the conditions in 2.

We remark that the function $g(a . p)$ is necessarily a characteristic function on $R(a)$. In fact, if not, there exist distinct points $p^{\prime} . p^{\prime \prime}$ on $R(a)$ with $\underline{p}^{\prime}=\underline{p^{\prime \prime}} \in \mathbf{C}_{u}$ such that $g(a, p)$ has the same Taylor developinent about p^{\prime} and $p^{\prime \prime}$. We connect p^{\prime} and $\zeta_{1}(a)$ by an arc γ in $R^{\prime}(a)$ such that $\underline{\gamma}$ does not pass through $\Sigma(a)$ in \mathbf{C}_{w}. As we move $p^{\prime \prime}$ along $\underset{\sim}{\gamma}$ in $R^{\prime}(a)$. we reach a point $\tilde{\zeta}_{1} \neq \zeta_{1}(a)$ over $\zeta_{1}(a)$ in $R^{\prime}(a)$. Then $g\left(a, \zeta_{1}(a)\right)=g\left(a, \tilde{\zeta_{1}}\right)$ by analytic continuation. This contradicts (b)-(iv) for $g(a, p)$ in the lemma.

Throughout this section, we fix a point $a \in \Delta^{\prime}$, points $\zeta_{h}\left(h=0,1, \ldots, l_{1}\right)$ and a function $g(a . p) \in \mathcal{L}_{\nu}^{0}(a)=\mathcal{L}_{\nu}^{0}\left(a .\left\{\zeta_{k}\right\}_{h=1} \ldots . l_{4}\right)$ satisfying 2 in Lemna 6.3.

We have the following lemma.

Lemma 6.4. (Stability)

1. Let $z^{j} \in \Delta(j=1,2, \ldots)$ converye to the point a and let

$$
f\left(z^{j}, p\right) \in \mathcal{L}_{\nu}^{0}\left(z^{j}\right) \quad(j=1,2 \ldots) \quad \text { with } f\left(z^{j}, p\right) \not \equiv 0
$$

Any limit function $f(a, p)$ of $b^{j_{1 \prime}} f\left(z^{j_{\nu}}, p\right)(\nu=1,2, \ldots)$ on $\mathcal{R}^{\prime}(a)$ obtained by applying Lemma 6.2 for $z^{0}=a$ and $f_{j}(p)=f\left(z^{j}, p\right)(j=1,2 \ldots)$ must be of the form cg(a,p) for some nonzero constant c. Hence, $f\left(z^{j}, p\right) \in \mathcal{L}_{\nu}^{*}\left(z^{j}\right)$ for sufficiently large j.
2. There exists a neighborhood V_{h} of $\zeta_{h}(a)\left(h=0.1 \ldots . l_{0}\right)$ in $\mathcal{R}^{\prime}(a)$ such that
(i) $\operatorname{dim} \mathcal{L}_{\nu}^{0}\left(a,\left\{\xi_{h}\right\}_{h=1} \ldots l_{0}\right)=1$ for each $\xi_{h} \in V_{h}\left(h=1, \cdots, l_{0}\right)$;
(ii) there exists a function $f(a, p) \in \mathcal{L}_{\nu}^{0}\left(a,\left\{\xi_{h}\right\}_{h=1}, \ldots, l_{0}\right) \cap \mathcal{L}_{i}^{*}(a)$ such that $f\left(a, \xi_{0}\right) \neq 0$.

Proof. Assertion 1 is clear from Lemina 6.2 and the uniqueness of $g(a, p)$. We prove (i) of 2 by contradiction. Assume that there exist $\left\{\xi_{h}^{i}\right\}_{i=1,2 \ldots .} \subset \mathcal{R}^{\prime}(a)(h=$ $\left.1, \ldots, l_{0}\right)$ such that $\lim _{i \rightarrow \infty} \xi_{h}^{\prime}=\zeta_{h}$ in $\mathcal{R}^{\prime}(a)$ and $\operatorname{dim} \mathcal{L}_{\nu}^{0}\left(a,\left\{\xi_{h}^{i}\right\}_{h=1, \ldots, l_{0}}\right) \geq 2(i=$ $1.2 \ldots$). Then for each $i=1.2 \ldots$, we can find a non-constant function $f_{l}(p) \in$ $\mathcal{L}_{\nu}^{0}\left(a,\left\{\xi_{h}^{i}\right\}_{h=1 \ldots . l_{0}}\right)$ such that $f_{i}\left(\zeta_{0}(a)\right)=0$. We can follow the same argument as in the proof of Lemma 6.2 in the case $z^{j}=a(j=1,2, \ldots)$. and we find that $b^{j_{\nu}} f_{i_{\nu}}(p)(\nu=1,2, \ldots)$ converges locally uniformiy to a nonconstant multiple $c g(a, p)$ on $\mathcal{R}^{\prime}(a)$ by 1 . This gives a contradiction at $\zeta_{0}(a)$, and part (i) of 2 is proved. Part (ii) of 2 can also be proved by the technique in Lemma 6.2.

From this lemma we deduce the following corollaries with

$$
\mathcal{L}_{\nu}^{0}(z)=\mathcal{L}_{\nu}^{\prime \prime}\left(z,\left\{\zeta_{h}\right\}_{h=1, \ldots, l_{0}}\right)
$$

as above.
Corollary 6.1. There exists a neighborhood δ^{\prime} of a in Δ^{\prime} such that for $z \in \delta^{\prime}$, each function $f(z, p) \in \mathcal{L}_{\nu}^{\prime}(z)$ which is not identically zero does not vanish at $\zeta_{0}(z)$ and belongs to $\mathcal{L}_{\nu}^{*}(z)$.

Corollary 6.2. There exists a neighborhood $\delta^{\prime \prime}$ of a in Δ^{\prime} such that $\operatorname{dim} \mathcal{L}_{\nu}^{0}(z)$ $=1$ for all $z \in \delta^{\prime \prime}$.

Let δ be a neighborhood of a in Δ^{\prime} which satisfies both Corollaries 6.1 and 6.2. Then for each $z \in \delta$ there exists a unique function $g(z, p) \in \mathcal{L}_{\nu}^{0}(z) \cap \mathcal{L}_{\nu}^{*}(z)$ such that $g\left(z, \zeta_{0}(z)\right)=1$. Thus $g(z, p)$ can be considered as a function of $n+1$ complex variables (z, p) in $\mathcal{R}(\delta)$.

We have the following proposition.

Proposition 6.2. $g(z, p)$ is a continuous function of (z, p) in $\mathcal{R}(\delta)$.
Proof. Let $z^{\prime} \in \delta$ and let $z^{J} \rightarrow z^{\prime}$ as $j \rightarrow \infty$ in δ. Using 1 of Lemma 6.4 and the fact that $g\left(z^{j}, \zeta_{0}\left(z^{j}\right)\right)=1(j=1,2, \ldots)$. we can extract a subsequence $g\left(z^{j,}, p\right)(\nu=1,2 \ldots)$ of $\left\{g\left(z^{j}, p\right)\right\}_{j=1.2 \ldots}$ which converges locally uniformly to $g(a, p)$ on $\mathcal{R}^{\prime}(a)$. Hence $g\left(z^{j}, p\right) \rightarrow g(a, p)(j \rightarrow \infty)$ locally uniformly on $\mathcal{R}^{\prime}(a)$. and $g(z . p)$ is a continuous function on $\mathcal{R}^{\prime}(\delta)$. Since the $m \nu$ zeros of $g\left(z^{j} . p\right)$ in $\mathcal{R}^{\prime}\left(z^{j}\right)$ converge to the $m \nu$ zeros $\left\{p^{(s)}\right\}_{s=1 \ldots . . m \nu}$ of $g(a, p)$ in $\mathcal{R}^{\prime}(a)$ by Hurwitz theorem, it follows that $1 / g\left(z^{j}, p\right)$ converges uniforinly to $1 / g(a, p)$ in $\mathcal{R}(\delta) \cap \mid \delta \times\left(\rho_{0} \leq|u| \leq\right.$ $\infty)]$, where $\rho_{0}>\left|\underline{\left|p^{(s)}\right|}\right|(s=1, \ldots, m \nu)$. Hence $g(z, p)$ is continuous in $\mathcal{R}(\delta)$.

This proposition has the following interpretation: for each $z \in \delta$. consider the graph $\mathcal{C}_{z}: X=g(z, p)$ in $\mathbf{C}_{w, X}^{2}$. Then \mathcal{C}_{z} varies continuously with the parameter $z \in \delta$ not only in $\mathbf{C}_{\boldsymbol{u} \cdot \boldsymbol{X}}^{2}$, but also in $\mathbf{P}_{\boldsymbol{u}} \times \mathbf{P}_{\boldsymbol{X}}$. Since the simpleness of the graph is stable, by taking a smaller neighborhood δ of a. if necessary: it follows that each $\mathcal{C}_{z}, z \in \delta$, is a simple graph in \mathbf{C}^{2}. As a modification of Lemma 6.3, we need the following fact.

Remark 6.4. As in Theorem 6.3. we let h_{0} denote the mumber of branch points of $R(a)$ and set

$$
\begin{equation*}
\nu_{0}:=\left(h_{0}+2\right) m+g>2 g+1 . \tag{6.6}
\end{equation*}
$$

If $\nu>m \nu_{0}$, then we can choose $\zeta_{1}(a)\left(l=0.1, \ldots, l_{0}=m \nu-g\right)$ with $\left|u_{i}\right|=$ $\left|\mathcal{C}_{1}(a)\right|>\rho$ in $\mathcal{R}^{\prime}(a)$ such that the function $g(a, p)$ in 2 of Lemma 6.3 satisfies conditions (i)-(iv) in the lemma as well as the following condition:
(v) the graph $\mathcal{C}_{g!a, p)}: X=g(a, p)$ in $\mathbf{C}_{w . X}^{2}$ is simple.

In fact. for each $i=1, \ldots, m$, there exists a meromorphic function $h_{i}(p)$ on $R(a)$ such that $h_{1}(p)$ has a pole at $L_{x}^{i}(a)$ of order ν but such that the poles at $L_{\infty}^{j}(a)(j \neq i)$ are of order at most $\nu-1$. We set $G^{\varepsilon}(p):=g(a . p)+\sum_{1}^{m} \varepsilon_{i} h_{,}(p)$ on $R(a)$. If $\varepsilon_{\mathrm{i}}(i=1, \ldots, m)$ are suitably small, then $G^{e}(p)$ satisfies condition (6.5): if $i \neq j(1 \leq i, j \leq m)$, then

$$
\lim _{: \rightarrow x} G_{\mathrm{i}}^{\varepsilon}(z) / G_{j}^{\varepsilon}(z) \neq 0,1, \text { or } x .
$$

Thus, l_{0} of the zeros $\zeta_{h}^{\prime}(a)\left(h=1 \ldots, l_{0}\right)$ of $G^{*}(p)$ and one of the zeros $\zeta_{1}^{\prime}(a)$ of $G^{\varepsilon}(p)-1$ are arbitrarily close to $\zeta_{h}(a)$ and $\zeta_{0}(a)$. From 2 of Lemma 6.4. $G^{\varepsilon}(p)$ and $\zeta_{h}^{\prime}(a)\left(h=0,1, \ldots, l_{0}\right)$ in $\mathcal{R}^{\prime}(a)$ satisfy the conditions (i)-(v) as well as (6.5). From Theorem 6.3 we see that there exists a function $G(p) \in \mathcal{L}_{\nu}^{*}(a)$ on $R(a)$ arbitrarily close to the function $G^{s}(a, p)$ such that the graph \mathcal{C}_{G} is simple in $\mathbf{C}_{u . .}^{2}$. Thus. l_{0} of the zeros $\zeta_{h}^{*}(a)\left(h=1, \ldots, l_{0}\right)$ of $G(p)$ and one of the zeros $\zeta_{i 0}^{*}(a)$ of $G(p)-1$ are arbitrarily close to $\zeta_{h}^{\prime}(a)$ and $\zeta_{0}^{\prime}(a)$. Again using 2 of Lemma 6.4 . we see that $G(p)$ and $\zeta_{h}^{*}(a)\left(h=0,1 \ldots \ldots h_{(1)}\right)$ satisfy $(i)-(v)$.

Throughout this section, we will assume that $\nu>m \nu_{0}$ and we will work with the function $g(z, p)$ having a pole of order ν along $L_{x}^{j}(j=1 \ldots . m)$ in $\mathcal{R}(\delta)$ constructed so that $g(a, p)$ satisfies all conditions in Lemma 6.3 as well as (c).
6.2.4. Analyticity of $g(z, p)$. We now prove that $g(z . p)$ is a holomorphic function of (z, p) in $\mathcal{R}^{\prime}(\delta)$. For each $z \in \delta$, we let $G(z, w, X)$ denote the defining polynomial for $X=g(z, p)$:

$$
\begin{equation*}
G(z, w, X)=X^{m}+\alpha_{1}(z, w) X^{m-1}+\cdots+\alpha_{m}(z, u) \tag{6.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{i}\left(z, w^{\prime}\right)=c_{i .0}(z) u^{\nu i}+c_{i .1}(z) u^{, \nu i-1}+\cdots+c_{i, \nu i}(z) \quad(i=1, \ldots, m) \tag{6.8}
\end{equation*}
$$

From Proposition 6.2, $c_{1 . j}(z)(i=1, \ldots, m ; j=0,1, \ldots, \nu i)$ is a continuous function on δ.

We summarize the conditions satisfied by $c_{i, j}(z)$. Since $g(z, p)$ vanishes at $\zeta_{l}(z)\left(l=1, \ldots, l_{0}\right)$. where $\zeta_{l}(z)=w_{l}$. and since $g(z, p)$ assumes the value 1 at $\zeta_{0}(z)$, where $\zeta_{0}(z)=w_{0}$, it follows that the $c_{i . j}(z)$ satisfy the following $l_{0}+1$ simultaneous linear equations with constant coefficients:

$$
\begin{gather*}
c_{m .0}(z) \omega_{l}^{\nu m}+c_{m .1}(z) \omega_{l}^{\nu m-1}+\cdots+c_{m, \nu m}(z)=0 \quad\left(l=1 \ldots, l_{0}\right) \tag{6.9}\\
1+\sum_{i=1}^{m}\left[c_{i .0}(z) \omega_{0}^{\nu i}+c_{i, 1}(z) \omega_{0}^{\nu i-1}+\cdots+c_{i . \nu i}(z)\right]=0 . \tag{6.10}
\end{gather*}
$$

We note that the graph $\mathcal{C}_{a}=\mathcal{C}_{g(a, p)}: X=g(a, p)$ in $\mathbf{C}^{2}=\mathbf{C}_{u \cdot, X}$ is simple. We let

$$
P_{h}(a):=\left(\xi_{h}(a), \xi_{h}^{\prime}(a)\right) \quad\left(h=1, \ldots, h_{0}\right)
$$

denote the points on the graph \mathcal{C}_{a} which correspond to the branch points of $\mathcal{R}(a)$. Each $P_{h}(a)\left(h=1, \ldots, h_{0}\right)$ is a non-singular point of \mathcal{C}_{a} in \mathbf{C}^{2}. Let

$$
Q_{k}(a)=\left(\eta_{k}(a), \eta_{k}^{\prime}(a)\right) \quad\left(k=1, \ldots, k_{0}\right)
$$

denote the singular points of \mathcal{C}_{a} in $\mathbf{C}^{\mathbf{2}}$, which are all normal double points.
We set

$$
Z_{0}(a)=\left(\omega_{0}, 1\right), \quad Z_{l}(a)=\left(\omega_{l}, 0\right) \quad\left(l=1, \ldots, l_{0}\right)
$$

these are the points on \mathcal{C}_{a} which correspond to $\zeta_{l}(a)\left(l=0,1, \ldots, l_{0}\right)$ on $\mathcal{R}(a)$. We fix

$$
E_{\rho}:=\left\{w \in \mathbf{P}_{u^{\prime}}| | w \mid>\rho\right\}
$$

so that there exist m disjoint univalent parts $E_{\rho}^{j}(j=1, \ldots, m)$ of $\mathcal{R}(a)$ over E_{ρ}. We let $g_{j}(a, w)$ denote the branch of $g(z, p)$ on $E_{\rho}^{j}(j=1 \ldots, m)$.

In \mathbf{C}^{2} with variables w and X, we take a closed bidisk

$$
\Gamma_{h}=\gamma_{h} \times \gamma_{h}^{\prime} \quad\left(h=1, \ldots, h_{0}\right)
$$

containing the point $P_{h}(a)=\left(\xi_{h}(a), \xi_{h}^{\prime}(a)\right)$ and such that
(1) $\Gamma_{h} \cap \Gamma_{k}=(h \neq k)$;
(2) $\left(\mathcal{C}_{a} \cap \Gamma_{h}\right) \cap\left\{w=\xi_{h}(a)\right\}\left(h=1, \ldots, h_{0}\right)$ consists of only one point, $P_{h}(a)$;
(3) $\mathcal{C}_{a} \cap\left(\gamma_{h} \times \partial \gamma_{h}^{\prime}\right)=\emptyset\left(h=1, \ldots . h_{0}\right)$.

We take a closed bidisk

$$
\Lambda_{k}=\lambda_{k} \times \lambda_{k}^{\prime} \quad\left(k=1, \ldots, k_{0}\right)
$$

containing the point $Q_{k}(a)=\left(\eta_{k}(a), \eta_{k}^{\prime}(a)\right)$ and such that
(1) $\lambda_{h} \cap \lambda_{k}=\emptyset(h \neq k)$, so that $\Lambda_{h} \cap \Lambda_{k}=\emptyset(h \neq k)$;
(2) $\left(\mathcal{C}_{a} \cap \Lambda_{k}\right) \cap\left\{w=\eta_{k}(a)\right\} \quad\left(k=1, \ldots, k_{0}\right)$ consists of only one point, $Q_{k}(a)$;
(3) $\mathcal{C}_{a} \cap\left(\lambda_{k} \times \partial \lambda_{k}^{\prime}\right)=\left(k=1, \ldots, k_{0}\right)$.

On each complex line $w=\omega_{l}\left(l=0,1, \ldots, l_{0}\right)$ in $C_{w . X}^{2}$, by ($i v$) we can take a disk $\beta_{0}:|X-1|<\varepsilon_{0}$ and $\beta_{l}:|X|<\varepsilon_{l}\left(l=1, \ldots, l_{0}\right)$ such that $\mathcal{C}_{a} \cap\left(\left\{w_{l}\right\} \times \beta_{l}\right)=$ $\left\{\zeta_{l}(a)\right\}\left(l=0,1 \ldots, l_{0}\right)$.

We say that the graph C_{a} is standard with respect to $\left\{\Gamma_{h}, \Lambda_{k}, \beta_{l}\right\}_{h, k, l}$.
From Proposition 6.2 we obtain the following lemma.

Lemma 6.5. For a sufficiently small neighborhood io of a in Δ^{\prime}. each graph \mathcal{C}_{z} of $X=g(z, p)$ in $\mathbf{C}_{u, x}^{2}$ for $z \in \delta$ is simple and is standard with respect to $\left\{\Gamma_{h}, \Lambda_{k}, \beta_{l}\right\}_{h . k . l}$ defined above. Here, condition (2) for $\Gamma_{h}\left(h=1, \ldots, h_{0}\right)$ and $\Lambda_{k}\left(k=1, \ldots, k_{0}\right)$ above are replaced by the following conditions:
(2) for $\Gamma_{h}: \quad\left(\mathcal{C}_{a} \cap \Gamma_{h}\right) \cap\left\{w=\xi_{h}(z)\right\}$ consists of exactly one point, denoted $P_{h}(z)$:
(2') for $\Lambda_{k}: \quad \Lambda_{k}$ contains exactly one normal double point of \mathcal{C}_{z}, denoted $Q_{k}(z)$.
Clearly the points $Q_{k}(z)\left(k=1 \ldots, k_{0}\right)$ coincide with the set of all singular points of the graph \mathcal{C}_{z} in \mathbf{C}^{2}. For $z \in \delta$, we set

$$
\begin{array}{ll}
P_{h}(z)=\left(\xi_{h}(z), \xi_{h}^{\prime}(z)\right) & \left(h=1, \ldots, h_{0}\right) \\
Q_{k}(z)=\left(\eta_{k}(z), \eta_{k}^{\prime}(z)\right) & \left(k=1, \ldots, k_{0}\right)
\end{array}
$$

We observe that $\xi_{h}(z)\left(h=1, \ldots, h_{0}\right)$ are single-valued holomorphic functions on δ (determined by the given ramified domain $\mathcal{R})$, and $\eta_{k}(z)\left(k=1 \ldots . k_{0}\right)$ become single-valued continuous functions on δ by Proposition 6.2.

The main result in this section is the following.
Claim Both $c_{i . j}(z)(i=1, \ldots, m: j=0.1, \ldots, \nu i)$ and $\eta_{k}(z)\left(k=1, \ldots, k_{0}\right)$ are single-valued holomorphic functions on δ.

Proof. Fix $z \in \delta$. We let $D(z, w)$ denote the discriminant of the polynomial $G(z, w, X)$ with respect to the variable X, i.e., $D(z, w)$ is obtained by eliminating the variable X from the equations

$$
G(z, u, X)=0, \quad \frac{\partial}{\partial X} G(z, w, X)=0
$$

Thus $D(z, w)$ is a polynomial in w whose coefficients are polynomials in $c_{i, j}(z)$; hence $D(z, w)$ is of the form

$$
\begin{equation*}
D(z, u)=A_{0}\left(c_{i, j}(z)\right) w^{N}+A_{1}\left(c_{i, j}(z)\right) w^{N \cdots 1}+\cdots+A_{N}\left(c_{i, j}(z)\right) \tag{6.11}
\end{equation*}
$$

where N is a positive integer.
On the other hand, it is known that $D(z, w)$ coincides with the product of the square of the differences of any two solutions of $G(z, w, X)=0$ with respect to X. i.e.,

$$
D(z, w)=\prod_{i \neq j}\left(g_{i}(z, w)-g_{j}(z, w)\right)^{2} . \quad w \in \mathbf{C}_{u}
$$

where $g_{i}(z, w)(i=1, \ldots, m)$ is a branch of $g(z, p)$ lying over a neighborhood of w. Since the graph $\mathcal{C}_{2}, z \in \delta$, is simple. the zeros of $D\left(z, w^{\prime}\right)=0$ coincide with

$$
w=\xi_{h}(z) \quad\left(h=1 \ldots, h_{0}\right), \quad w=\eta_{k}(z) \quad\left(k=1, \ldots, k_{0}\right),
$$

and the order of $\xi_{h}(z)$ is equal to the order d_{h} of ramification of $\mathcal{R}(z)$ at $u:=\xi_{h}(z)$; note the order of $\eta_{k}(z)$ is always equal to 2 . It follows that

$$
\begin{equation*}
D(z, w)=A_{0}\left(c_{\imath, j}(z)\right) \prod_{h=1}^{h_{0}}\left(w-\xi_{h}(z)\right)^{d_{h}} \prod_{k=1}^{k_{0}}\left(w-\eta_{k}(z)\right)^{2} \tag{6.12}
\end{equation*}
$$

We formally develop the right-hand side into a polynomial in u, whose coefficients are polynomials in $c_{i, j}(z) . \xi_{h}(z)$, and $\eta_{k}(z)$:

$$
\begin{align*}
& D(z, w)=A_{0}\left(c_{i, j}(z)\right) w^{N}+B_{1}\left(c_{i, j}(z), \xi_{h}(z), \eta_{k}(z)\right) u^{N-1}+ \tag{6.13}\\
& \cdots
\end{aligned} \begin{aligned}
N\left(c_{i, j}(z), \xi_{h}(z), \eta_{k}(z)\right)
\end{align*}
$$

We compare the coefficients of $w^{s}(s=0,1, \ldots, N)$ in (6.11) and (6.13), and obtain N equations which $c_{i, j}(z)$ and $\eta_{k}(z)$ must satisfy:

$$
\begin{equation*}
A_{\lambda}\left(c_{t, j}(z)\right)-B_{\lambda}\left(c_{i, j}(z), \xi_{h}(z), \eta_{k}(z)\right)=0 \quad(\lambda=1, \ldots, N) . \tag{6.14}
\end{equation*}
$$

Now we introduce new complex variables

$$
u_{i, j}\left(i=1, \ldots . m_{;} j=0,1, \ldots . \nu i\right), \quad v_{k}\left(k=1, \ldots, k_{0}\right)
$$

and consider $l_{0}+1+N$ equations obtained by replacing $c_{1, j}(z)$ and $\eta_{k}(z)$ by $u_{1, j}$ and v_{k} in (6.9), (6.10). and (6.14), i.e.,

$$
\begin{gather*}
u_{m, 0 i w_{l}^{\nu m}}^{\nu m} u_{m, 1} \omega_{l}^{\nu m-1}+\cdots+u_{m, 1 / m}=0 \quad\left(l=1, \ldots, l_{0}\right), \tag{6.15}\\
1+\sum_{i=1}^{m}\left[u_{t .0 u_{0}^{\nu i}}+u_{t, 1 i_{l}^{\nu i-1}}+\cdots+u_{i, 2 n}\right]=0, \tag{6.16}\\
A_{\lambda}\left(u_{i, j}\right)-B_{\lambda}\left(u_{1, j}, \xi_{h}(z), v_{k}\right)=0 \quad(\lambda=1, \ldots, N) . \tag{6.17}
\end{gather*}
$$

We consider the space C^{M} with variables $u_{i, j}$ and i_{k}, and the product space

$$
\Pi_{\delta}=\delta \times \mathbf{C}^{M}
$$

We let Ω denote the analytic set in Π_{δ} defined by the analytic equations (6.15), (6.16) and (6.17). These are all algebraic for $u_{i . j}$ and v_{k} with holomorphic coefficients on δ; i.e., each of them is a polynomial in the variables $u_{i, j}$ and v_{k} whose coefficients are single-valued holomorphic functions of z in δ. From the construction. Ω contains the set

$$
\mathcal{E}^{\bullet}: u_{i, j}=c_{i, j}(z), \quad v_{k}=\eta_{k}(z) . \quad z \in \delta .
$$

We let Ω^{0} denote the irreducible component of Ω which contains \mathcal{E}^{*}. To verify the claim, using (ii) in Remark 2.8 in Chapter 2, it suffices to show that Ω^{0} is of dimension n. Therefore, we let $\Omega^{0}(a)$ denote the section of Ω^{0} over $z=a$:

$$
\Omega^{\prime \prime}(a)=\left\{\left(u_{1, j}, v_{k}\right) \in \mathbf{C}^{M} \mid\left(a, u_{1, j}, v_{k}\right) \in \Omega^{\prime \prime}\right\}:
$$

thus $\left(c_{i, j}(a), \eta_{k}(a)\right) \in \Omega^{0}(a)$. We want to show that

$$
\begin{equation*}
\text { the point }\left(c_{1, j}(a), \eta_{k}(a)\right) \text { is isolated in } \Omega^{\prime \prime}(a) \tag{6.18}
\end{equation*}
$$

We prove this by contradiction. Let $Q=\left(c_{i . j}(a) . \eta_{k}(a)\right)$, and let $Q^{*}=\left(u_{i, j}^{*}, v_{k}^{*}\right) \neq Q$ be a point in $\Omega^{\prime \prime}(a)$ arbitrarily close to Q in C^{M}. We construct the polynomial $\alpha_{i}^{4}(w)$ in w,

$$
\begin{equation*}
\alpha_{i}^{*}\left(u^{\prime}\right)=u_{1,0}^{*} u^{\nu i}+u_{i, 1}^{*} u^{\nu v_{2}-1}+\cdots+u_{i, \nu t}^{*} \quad(i=1, \ldots . m) . \tag{6.19}
\end{equation*}
$$

and the polynomial $G^{*}(u, X)$ in X with coefficients $\alpha_{z}^{*}(w)$,

$$
\begin{equation*}
G^{\bullet}\left(u^{\prime}, X\right)=X^{m}+\alpha_{1}^{*}\left(u_{:}\right) X^{m-1}+\cdots+\alpha_{m}^{*}(w) \tag{6.20}
\end{equation*}
$$

We recall the definition of the analytic set Ω^{0}; thus, from (6.15) and (6.16),

$$
G^{\bullet}\left(\omega_{j}, 0\right)=0 \quad\left(j=1, \ldots . l_{0}\right) . \quad G^{-}\left(\omega_{0}, 1\right)=0 .
$$

If we let $D^{*}\left(u^{\prime}\right)$ denote the discrininant of $G^{*}(u, X)$ with respect to X, then our condition (6.17) implies

$$
D^{*}\left(u^{\prime}\right)=A_{0}\left(u_{i . j}^{*}\right) \prod_{h=1}^{h_{0}}\left(w-\xi_{h}(a)\right)^{d_{k}} \prod_{k=1}^{k_{i v}}\left(w-v_{k}^{*}\right)^{2}
$$

We consider the algebraic function $X=g^{*}(p)$ defined by $G^{*}(w, X)=0$. We let R^{*} denote the Riemann surface over $\mathbf{P}_{u^{\prime}}$ determined by $g^{*}(w)$, and we let \mathcal{C}^{*} denote the graph of $g^{*}(p)$ in $\mathbf{C}_{u \cdot \mathcal{N}^{2}}^{2}$.

$$
\mathcal{C}^{*}: X=g^{*}(p) \quad \text { in } \quad C_{u: X}^{2} .
$$

If Q^{*} approaches Q on Ω^{0}. then the graph C^{*} approaches the graph \mathcal{C}_{a}, not only in $\mathbf{C}_{w \cdot X}^{2}$, but also in $\mathbf{P}_{u^{*}} \times \mathbf{P}_{x}$ by Remark 6.3. We thus assume that the graph \mathcal{C}^{*} is simple and standard with respect to $\left\{\Gamma_{h}, \Lambda_{k}, \beta_{3}\right\}$, where condition (2) for $\Gamma_{h}\left(h=1, \ldots, h_{0}\right)$ and $\Lambda_{k}\left(k=1 \ldots, k_{0}\right)$ is replaced by the following condtions: $\left(C^{*} \cap \Gamma_{h}\right) \cap\left\{u=\xi_{h}(z)\right\}$ (resp.. ($\left.C^{*} \cap \Lambda_{k}\right) \cap\left\{w=v_{k}^{*}\right\}$) consists of only one point; we call this point $P_{h}^{*}=\left(\xi_{h}(a), \xi_{h}^{* \prime}\right)\left(\right.$ resp.. $\left.Q_{k}^{*}=\left(v_{k}^{*}, v_{k}^{\prime \prime}\right)\right)$.

With this notation we state the following lemma; this will be needed to reach a contradiction to finally verify (6.18).

Lemma 6.6. If $Q^{*}=\left(u_{i . j}^{*}, v_{k}^{*}\right) \in \Omega^{0}(a)$ is close enough to $Q=\left(c_{i . j}(a), \eta_{k}(a)\right)$ but $Q^{*} \neq Q$, then
(1) $R^{*}=\mathcal{R}(a)$, and
(2) $g^{*}(p)=g(a, p)$ on $\mathcal{R}(a)$.

Proof. We observe that the graph \mathcal{C}^{*} approaches \mathcal{C}_{a} in $\mathbf{P}_{w} \times \mathbf{P}_{X}$, and $\mathcal{C}^{*} \neq \mathcal{C}_{a}$. Thus, the number of sheets of R^{*} over \mathbf{P}_{w} is equal to the number of sheets m of $\mathcal{R}(a)$ over \mathbf{P}_{w}. Also, the solutions of the discriminant equation $D^{\bullet}(w)=0$ coincide with $\xi_{h}(a)\left(h=1, \ldots, h_{0}\right)$ and $v_{k}^{*}\left(k=1 \ldots . k_{0}\right)$. Since $P_{h}(a)\left(h=1, \ldots, h_{0}\right)$ is a non-singular point of \mathcal{C}_{n} in $\mathbf{C}_{w, X}^{2}, P_{h}^{*}$ is a non-singular point of \mathcal{C}^{*}. Furthermore. the order of ramification of R^{*} at $u=\xi_{h}(a)$ is d_{h}. the same as that of $\mathcal{R}(a)$ at $w=\xi_{h}(a)$. Since $Q_{k}(a)\left(k=1, \ldots, k_{0}\right)$ is a normal double point of \mathcal{C}_{a}, Q_{k} is a normal double point of \mathcal{C}^{*}. Thus $Q_{k}^{\dot{k}}$ does not correspond to a branch point of R^{*}. It turns out that R^{*} is an m-sheeted Riemann surface over \mathbf{P}_{w} with branch points only at $\xi_{h}(a)\left(h=1, \ldots, h_{0}\right)$ over the same projection $\xi_{h}^{\prime}(a)=\xi_{h}(a)$ with the same order d_{h} of ramification as $\xi_{h}(a)$ has for $\mathcal{R}(a)$. Since the graph \mathcal{C}^{*} approaches \mathcal{C}_{a}. we see that $R^{*}=\mathcal{R}(a)$, which proves (1).

To prove (2), we note from (1) that $g^{*}(p)$ is a meromorphic function on $\mathcal{R}(a)$. Since each coefficient $\alpha_{i}^{*}(w)$ of the polynomial $G^{*}(w, X)$ is of order at most νi, it follows from Lemma 6.1 that $g^{*}(p) \in \mathcal{L}_{\nu}(a)$. From (6.15) (resp.. (6.16)) $g^{*}(p)$ (resp., $\left.g^{*}(p)-1\right)$ vanishes for at least one point of $R(a)$ over $u_{l}\left(l=1, \ldots, l_{0}\right)$ (resp., w_{0}). Since \mathcal{C}^{*} approaches C_{a}. it follows from condition (iv) of 2 in Lemma 6.3 that there is only one such point, namely $\zeta_{i}(a)$ (resp.. $\zeta_{0}(a)$). Equivalently. $g^{*}(p) \in \mathcal{L}_{\nu}^{0}(a)$ with $g^{*}\left(\zeta_{0}(a)\right)=1$. From the uniqueness of $g(a, p)$ on $R(a)$ (using the fact that $\left.\operatorname{dim} \mathcal{L}_{\nu}^{0}(a)=1\right)$, we have $g^{*}(p)=g(a, p)$. Hence (2) is proved.

We return to the proof of (6.18). Note that, for a given $Q^{*}=\left(u_{i .,}^{*}, v_{k}^{*}\right) \in$ $\Omega^{0}(a)$, the construction of the meromorphic function $g^{*}(p)$ on R^{*} (using $\alpha_{k}^{*}(w)$ and $\left.G^{*}(w, X)\right)$ yields a one-to-one function. This contradicts 2 of Lemma 6.6. Hence, (6.18) is true. Thus. the claim is proved.

In the proof, since Ω^{0} is irreducible in $\Pi_{\dot{\delta}}$ and $\mathcal{E}^{*} \subset \Omega^{0}$. it follows that

$$
\begin{equation*}
\Omega^{0}=\varepsilon^{*} . \tag{6.21}
\end{equation*}
$$

Since $\mathrm{c}_{i, j}(z)(i=1, \ldots, m ; j=1 \ldots, \nu i)$ were shown to be single-valued holomorphic functions on δ, we thus obtain from (6.7) and (6.8) the following result.

Proposition 6.3. $g(z . p)$ is a meromorphic function of (z, p) in $\mathcal{R}(\delta)$ which is holomorphic in $\mathcal{R}^{\prime}(\delta)$.
6.2.5. Analytic Continuation of $g(z, p)$. We next prove that $g(z, p)$ in $\mathcal{R}(\delta)$ can be meromorphically continued to all of \mathcal{R}. We recall the simultaneous equations (6.15), (6.16). and (6.17) which define the analytic set Ω in Π_{i}. From our condition for the branch set of $\mathcal{R}: u=\xi_{h}(z)\left(h=1, \ldots, h_{0}\right)$ with order of ramification d_{h}, we have

$$
\prod_{h=1}^{h_{0}}\left(w-\xi_{h}(z)\right)^{d_{h}}=\prod_{\lambda=1}^{\lambda 11}\left[P_{\lambda}(z, w)\right]^{e^{\chi}}
$$

where $P_{\lambda}(z, w)$ is of the form

$$
P\left(z, u^{\prime}\right)=u^{\kappa}+\beta_{1}(z) u^{\kappa \cdots 1}+\cdots+\beta_{\kappa}(z)
$$

with the $\beta_{i}(z)(i=1 \ldots \ldots \kappa)$ being single-valued holomorphic functions on all of Δ. Here, the $e_{\lambda}\left(\chi=1, \ldots, \chi_{0}\right)$ are positive integers which are determined by the order of ramification of the branch set of \mathcal{R} over $P_{\lambda}(z, u)=0$. Thus. from (6.12) all the equations (6.15), (6.16). and (6.17) are algebraic with respect to $u_{i, j}$ and v_{k} with coefficients which are single-valued holomorphic functions on Δ. It follows that Ω and Ω^{0} defined in Π_{δ} can be analytically continued and considered as analytic sets in the product space $\Pi_{\Delta}:=\Delta \times \mathbf{C}^{M}$ or even in $\Pi_{\Delta}^{*}:=\Delta \times \mathbf{P}^{M}$. We use the same notation Ω^{0} for the analytic set considered in Π_{Δ} or in Π_{j}^{*} obtained by this analytic continuation of Ω^{0} in Π_{δ}. We can apply the results from $\S 2.5$ in Chapter 2 to $\Omega^{\mathbf{0}}$. From (6.21) we see that $\operatorname{dim} \Omega^{\mathbf{0}}=n$ and the projection of Ω^{0} onto Δ contains δ (and hence the point a). Given $z^{\prime} \in \Delta$, we let $\Omega^{0}\left(z^{\prime}\right)$ denote the section of Ω^{0} over $z=z^{\prime}$. It follows from Corollary 2.8 that there exists an analytic set e in Δ of dimension at most $n-1$ such that for $z \in \Delta \backslash e . \Omega^{0}(z)$ consists of m^{*} distinct points in C^{M}, where $m^{*} \geq 1$ is an integer independent of $z \in \Delta \backslash e$.

Therefore, if we set $\Delta_{1}:=\Delta^{\prime} \backslash e$ (where $\Delta^{\prime}=\Delta \backslash \sigma$ and σ is the zero set of the discriminant $d(z)$ of $\left.P\left(z, u^{\prime}\right)\right)$. and we set $\Omega_{1}^{0}:=\Omega^{0} \cap\left(\Delta_{1} \times C^{M}\right)$, then Ω_{1}^{0} can be written in the form

$$
\Omega_{1}^{0}: \quad u_{i, j}=c_{i, j}^{*}(\bar{z}), \quad v_{k}=\eta_{k}^{*}(\tilde{z}) . \quad z \in \tilde{\Delta}_{1}
$$

where $\tilde{\Delta}_{1}$ is an unramified. finitely sheeted domain over Δ_{1} without relative boundary, and $c_{i, j}(\bar{z})$ and $\eta_{k}^{*}(\bar{z})$ are holomorphic functions on $\tilde{\Delta}_{1}$. Thus, m * is the number of sheets of $\tilde{\Delta}_{1}$ over Δ_{1}. Our next claim is that $\tilde{\Delta}_{1}$ is univalent over Δ_{1}, i.e.,

Claim $\quad m^{*}=1$.
Indeed, from (6.21), there exists an open. univalent part δ_{0} of $\tilde{\Delta}_{1}$ over $\delta \cap \Delta_{1}$ such that $c_{i, j}^{*}(z)=c_{i, j}(z)$ and $\eta_{k}^{*}(z)=\eta_{k}(z)$ for $z \in \delta_{0}$. Take $z \in \Delta_{1}^{\prime}$ and let $\left(c_{i, j}^{*}(\tilde{z}), \eta_{k}^{*}(\tilde{z})\right) \in \Omega_{1}^{0}(z)$. As in (6.19) and (6.20). we construct, for $i=1, \ldots . m$.

$$
\begin{align*}
\alpha_{i}^{*}\left(\tilde{z}, u^{\prime}\right) & =c_{i, 0}^{*}(\tilde{z}) u^{\nu i}+c_{i, 1}^{*}(\tilde{z}) w^{\nu i-1}+\cdots+c_{i, \nu i}^{*}(\tilde{z}), \tag{6.22}\\
G^{*}(\widetilde{z}, w, X) & =X^{m}+\alpha_{1}^{*}(\tilde{z}, w) X^{m-1}+\cdots+\alpha_{m}^{*}(\widetilde{z}, w) \tag{6.23}
\end{align*}
$$

These functions are holomorphic for $\tilde{z} \in \tilde{\Delta}$. We let $X=g^{\bullet}(\tilde{z}, w)$ denote the algebraic function determined by $G^{*}(\tilde{z}, u, X)=0$ and we write $R^{*}(\tilde{z})$ for the Riemann surface of $g^{\bullet}(\tilde{z}, w)$. We also set

$$
\begin{equation*}
\mathcal{C}^{*}(\tilde{z}): \quad X=g^{*}(\tilde{z}, w), \quad \tilde{z} \in \bar{\Delta}_{1} \tag{6.24}
\end{equation*}
$$

the graph of $g^{*}(\bar{z}, w)$ in $\mathbf{C}_{w^{2}, N}^{2}$.

Fix $a_{0} \in \delta_{0}$ and let γ be any closed curve in Δ_{1} starting at a_{0} and terminating at $a_{1}=a_{0}$. We obtain a variation of graphs

$$
\tilde{z} \in \gamma \rightarrow \mathcal{C}^{*}(\tilde{z})
$$

starting from the graph $\mathcal{C}_{a_{0}}$ of $X=g\left(a_{0}, u^{\prime}\right)$. If \approx lies in a sufficiently sunall neighborhood $\delta_{0}^{\prime} \subset \delta_{0}$ of the starting point a_{0}. then $\mathcal{C}^{-}(\tilde{z})=\mathcal{C}_{z}$. where $\tilde{\tilde{z}}=z$ and \mathcal{C}_{z} is the graph of $g(z, p)$. This does not necessarily hold for \tilde{z} in a neighborhood of the terminal point a_{1}. In any case, we have $R^{*}(\bar{z})=R(z)$ for $\bar{z} \in \delta_{0}^{\prime}$. For. since the Ricmann surface $R(z)\left(R^{*}(\tilde{z})\right)$ varies holomorphically with respect to $z \in \Delta^{\prime}\left(\bar{z} \in \Delta_{1}\right)$. and since $\Delta_{1} \subset \Delta^{\prime}$, it follows that $R^{*}(\tilde{z})=R(z)$ for \tilde{z} lying in a neighborhood of the terminal point a_{1} with $\underline{\tilde{z}}=z$. For such points Ξ close to the terminal point a_{1}, $g^{n}(\tilde{z}, p)$ is thus a meromorphic function on the Riemann surface $R(z)$ with $\tilde{z}=z$. By construction of $X=g^{*}(\tilde{z}, p)$, we have $g^{*}(\tilde{z}, p) \in \mathcal{L}_{10}^{\prime \prime}(z)$ and $g^{*}\left(\bar{z}, \zeta_{0}(z)\right)=1$ since $Q^{*}=\left(u_{i . j}^{*}, v_{k}^{*}\right) \in \Omega^{0}$ and ω^{0} satisfies (6.16). Since $\mathcal{L}_{\nu}^{0}(z)=\{c g(z, p)\}_{r \in C}$ for $z \in \delta$. it follows that $g^{*}(\tilde{z}, p)=g(z, p)$ for all \tilde{z} sufficiently close to the terminal point a_{1}. Since $c_{t, j}^{*}(\tilde{z}), \eta_{k}^{*}(\tilde{z})$ can be constructed from $g^{*}(\tilde{z}, p)$. this means that $c_{t, j}^{*}(\tilde{z}), \eta_{k}^{*}(\tilde{z})$ vary holonorphically with $\tilde{z} \in\left\{\right.$. starting with the values $c_{i, j}(z) . \eta_{k}(z)$ in δ_{0} and returning to the same values $c_{i . j}(z), \eta_{k}(z)$. We thus have $m^{*}=1$.

In particular, we have $a \in \Delta_{1}$. We finally arrive at the last step of the proof of the fundamental theorem (Theorem 6.1). Since $m^{*}=1$, we can write $c_{i, j}^{*}(z)=c_{i, j}(z) . \eta_{k}^{*}(z)=\eta_{k}(z)$ for $z \in \Delta_{1}$; these are single-valued holomorphic functions on Δ_{1}. As in (6.22) and (6.23), we write $a_{i}^{*}(z)=\alpha_{i}(z)$ on Δ_{1} and $G(z, u, X)=G^{\bullet}(z, u, X)$ for $z \in \Delta_{1} \times C_{u} . X$. We also write $g^{*}(z, p)=g(z, p)$; this is a meromorphic function of (z, p) in $\mathcal{R}\left(\Delta_{1}\right)$ which is holomorphic in $\mathcal{R}^{\prime}\left(\Delta_{1}\right)$. Since ($\left.c_{i . j}(z), \eta_{k}(z)\right), z \in \Delta_{1}$ is a subset of the n-dimensional analytic set Ω^{0} in $\Pi_{\dot{j}}=\Delta \times \mathbf{P}^{M}$ and since e_{1} and σ are analytic sets in Δ of dimension at nost $n-1$ (where $\Delta_{1}=\Delta \backslash\left(e_{1} \cup \sigma\right)$), it follows that $c_{1, j}(z)$ and $\eta_{k}(z)$ are meromorpohic function on all of Δ whose poles ξ are contained in $c \cup \sigma$. Using the solvability of the Poincaré problem in Δ (by Theorem 3.9). we can const ruct a holomorphic function $\dot{\gamma}(z)$ on Δ such that $\varphi(z)=0$ on $\varphi ; \gamma(a) \neq 0$; and each $\varphi(z) c_{i, j}(z)(i=1, \ldots m ; j=1 \ldots \nu i)$ can be holomorphically extended to all of Δ. Therefore, equations (6.23) and (6.24) imply that the holomorphic function $X=\widehat{g}(z, p):=\varphi(z) g(z, p)$ on \mathcal{R} satisfies the following equation:

$$
X^{m}+a_{1}\left(z, u^{\prime}\right)_{r}(z) X^{m-1}+\cdots+a_{m}(z, u)(\tilde{r}(z))^{m}=0
$$

where each coefficient function $\alpha_{i}(z . u)(\hat{r}(z))^{\prime}(i=1 \ldots ., m)$ is a holomorphic function on $\mathbf{C}_{z=11}^{n+1}$. Since $\widehat{g}(a . p)$ as well as $g(a, p)$ have simple graples in $\mathbf{C}_{u, X}^{2}$. it follows that $\widehat{g}(z, p)$ is a simple function on \mathcal{R}^{\prime}. The fundamental theorem is completely proved.
6.2.6. Fundamental System of Locally Ramified Domains. Let Δ : $\left|z_{j}\right|<r,(j=1, \ldots, n)$ be a polydisk in C^{n}. Let \mathcal{R} be a ramified domain over Δ without relative boundary which is standard with respect to the variable z_{n}, and let $\pi: \mathcal{R} \rightarrow \Delta$ be the canonical projection. We let m be the number of sheets of \mathcal{R} over Δ; we let Σ be the branch set of \mathcal{R} : and we set $\Sigma=\pi(\Sigma)$. Then $\underline{\Sigma}$ can be written as the zero set of a pseudopolynomial $P(z)$ with respect to z_{n} :

$$
P(z)=z_{n}^{\kappa}+\alpha_{1}\left(z^{\prime}\right) z_{n}^{\kappa-1}+\cdots+a_{n}\left(z^{\prime}\right)
$$

where $a_{i}\left(z^{\prime}\right)(i=1, \ldots, \kappa)$ is a holomorphic function for $z^{\prime}=\left(z_{1}, \ldots, z_{n-1}\right)$ in $\Delta^{\prime}:\left|z_{j}\right|<r_{j}(j=1 \ldots \ldots n-1)$.

Let $\Phi_{i}(p)(i=1 \ldots . N)$ be a holomorphic function on \mathcal{R}. We introduce $\mathbf{C}^{\boldsymbol{N}}$ with variables $u_{i}(i=1, \ldots, N)$ and consider the following analytic set $\overline{\mathcal{C}}$ in the $(n+V)$-dimensional product space $\Lambda=\Delta \times C^{-}$:

$$
\tilde{\mathcal{C}}: u_{i}=\Phi_{1}(p) \quad(p \in \mathcal{R}: i=1, \ldots, N) .
$$

We let \mathcal{S} denote the analytic set of singular points of $\tilde{\mathcal{C}}$ in A . If \mathcal{S} is at most $(n-2)$ dimensional as an analytic set in A . we say that $\left\{\Phi_{1}(p)\right\}_{1-1} \ldots \ldots$ is a fundamental system for \mathcal{R}.

We have the following theorem.

Theorem 6.4. There exsts a fundamental system for \mathcal{R}.

Proof. By the fundamental theorem (Theorem 6.1), there exists a characteristic and simple function $\Phi_{1}(p)$ on \mathcal{R}. We consider the product space $\Lambda_{1}=\Delta \times \mathbf{C}_{w}$, and the analytic hypersurface

$$
\mathcal{C}_{1}: \quad u_{1}=\Phi_{1}(p), \quad p \in \mathcal{R} .
$$

We let Σ_{1} denote the set of points of \mathcal{C}_{1} which correspond to the branch points p of \mathcal{R}. i.e., to the points $p \in \Sigma$. Since $\Phi_{1}(p)$ is a simple function for \mathcal{R}. Σ_{1} consists of regular points of \mathcal{C}_{1} except for an analytic set in Λ of dimension at most $n-2$.

We let \mathcal{S} denote the set of singular points of \mathcal{C}_{1} in A : this consists of a finite number of irreducible components $S,(j=1 \ldots \ldots \mu)$ with each S_{j} being an analytic set of dimension at most $n-1$. We fix a component S_{1} of \mathcal{S} which is $(n-1)$-dimensional (if such a component exists). Since $\operatorname{dim}\left(S_{1} \cap \Sigma_{1}\right) \leq n-2$. we can find a point $z^{*} \in \underline{S}_{1} \backslash \underline{\underline{E}}$ such that there exist distinct regular points $p_{i}\left(i=1 \ldots, m_{1}: m_{1} \leq m\right)$ on \mathcal{R} over z^{*} with $\Phi_{1}(p)$ being a single-valued holomorphic function on a (univalent) neighborhood of each p_{i} in \mathcal{R} and with $\Phi_{1}\left(p_{i}\right)=\Phi_{1}\left(p_{j}\right)$ if $i \neq j$. Take any two distinct points p_{i} and $p_{\text {J }}$ among the points $\left\{p_{i}\right\}_{i=1 \ldots \ldots m_{1}}$. Since $\Phi_{1}(p)$ is characteristic on \mathcal{R}, it has different function elements at p_{i} and p_{j}. Thus, among the partial differentiations

$$
\frac{\partial^{j_{1}+\cdots+j_{n}}}{\partial z_{1}^{1} \cdots \partial z_{n}^{n}} \Phi_{1}(p)
$$

of $\Phi_{1}(p)$ with respect to $z(j=1, \ldots, n)$, there exists at least one, say $\Psi(p)$. which attains different values at p_{t} and p_{j}. We note that $\Psi(p)$ is a meromorphic function on \mathcal{R} whose poles are contained in the branch surface Σ of \mathcal{R}. Thus, if we take a sufficiently large integer λ, the function $\Psi_{1}(p):=(P(z))^{\lambda} \Psi(p)$ is holomorphic on \mathcal{R} and satisfies $\Psi_{1}\left(p_{i}\right) \neq \Psi_{1}\left(p_{j}\right)$. Repeating this method for any pair $\left(p_{i}, p_{j}\right)(i \neq j)$. we obtain holomorphic functions

$$
\Psi_{1}^{(1)}(p) \ldots \ldots \Psi_{k_{1}}^{(1)}(p) \quad \text { on } \mathcal{R}
$$

with the following properties: for distinct i and $j\left(1 \leq i, j \leq m_{1}\right)$, there exists some $\Psi_{k}^{(1)}(p)\left(1 \leq k \leq k_{1}\right)$ such that $\Psi_{k}^{(1)}\left(p_{i}\right) \neq \Psi_{k}^{(1)}\left(p_{j}\right)$. We thus consider $\mathbf{C}^{1+k_{1}}:=\mathbf{C}_{w_{1}} \times \mathbf{C}^{k_{1}}$ with variables $w_{1}, w_{1, k}\left(k=1 \ldots, k_{1}\right)$ and form the graph

$$
\mathcal{C}_{2}: w_{1}=\Phi_{1}(p), w_{1 . k}=\Psi_{k}^{(1)}(p) \quad\left(k=1, \ldots, k_{1}\right), \quad p \in \mathcal{R}
$$

in the product space $\Lambda_{2}:=\Delta \times \mathbf{C}^{1+k_{1}}$. Then \mathcal{C}_{2} is an n-dimensional analytic set in Λ_{2} which is non-singular at all points corresponding to a point of $S_{1} \backslash \Sigma$ except perhaps for an analytic set in Λ_{2} of dimension at most $n-2$. Repeating
this procedure for $S_{l}(l=2 \ldots \mu)$, we obtain a holomorphic function $\Psi_{k}^{i l}(p)(k=$ $\left.1, \ldots, k_{l}\right)$ on \mathcal{R}. In \mathbf{C}^{M}. where $M=1+k_{1}+\cdots+k_{\mu}$ with variables $u_{1}, u_{1, k}(l=$ $\left.1, \ldots, \mu ; k=1, \ldots, k_{l}\right)$. we form the graph

$$
\mathcal{C}: w_{1}=\Phi_{1}(p), \quad w_{l . k}=\Psi_{l .}^{(l)}(p)\left(l=1, \ldots \mu ; k=1, \ldots, k_{l}\right), \quad p \in \mathcal{R}
$$

lying in $\Lambda:=\Delta \times C^{M}$. The singular set of \mathcal{C} consists of analytic sets of dimension at most $n-2$ in Λ. Thus $\left\{\Phi_{1}(p), \Psi_{k}^{(l)}\right\}_{l, k}$ is a fundamental system for \mathcal{R}.

6.3. Appendix 1

In this section we give a proof of Theorem 6.3. Let R be an m-sheeted compact Riemann surface over \mathbf{P}_{w} of genus g. Let $\pi: R \rightarrow \mathbf{P}_{w}$ denote the projection and let $P_{h}\left(h=1, \ldots, h_{0}\right)$ be the set of branch points of R. We assume that $\pi\left(P_{h}\right) \neq x$.

We let R^{\prime} denote the part of R lying over \mathbf{C}_{u}. We set $c_{h}=\pi\left(P_{h}\right)$. and we let $e_{h}-1$ denote the order of ramification of R at P_{h}. Then we can choose a local parameter t_{h} at P_{h} of the form $w=c_{h}+t_{h}^{e,}$. We let $L_{j}(j=1, \ldots . m)$ denote the m distinct points over $w=x$, and we use a local parameter t_{j} at L_{ρ} of the form $t_{j}=1 / w$. For a regular point p of R^{\prime} we use a local parameter t_{p} at P of the form $w=\pi(P)+t_{p}$.

Given a meromorphic function $f(p)$ on R, we write $f^{\prime}(p)$ to denote the derivative of $f(p)$ with respect to the local parameter at p.

We let $c_{h}\left(h=1, \ldots . h_{0}^{\prime}\right)$ denote the distinct points anong the points $c_{h}(h=$ $\left.1, \ldots, h_{0}\right)$, and we write

$$
\mathbf{C}_{w}^{\prime}:=\mathbf{C} \backslash\left\{c_{h}\right\}_{h=1 \ldots . h_{0}^{\prime}} .
$$

We write $\mathcal{L}_{\nu}(R)$ for the complex-linear space of meromorphic functions $f(p)$ on R such that $f(p)$ is holomorphic on R^{\prime} and the order of the pole of $f(p)$ at $L,(j=$ $1, \ldots, m$) is less than or equal to ν. Given a non-constant function $f(p) \in \mathcal{L}_{\nu}(R)$, we consider the graph

$$
\mathcal{C}_{f}: \quad X=f(p), \quad p \in R .
$$

in $\mathbf{C}_{u \cdot X}^{2}$ with variables w and X; then \mathcal{C}_{f} is a one-dimensional analytic set in $\mathbf{C}_{\boldsymbol{u} \cdot \boldsymbol{X}}^{2}$. For $p \in R^{\prime}$, we call $(\pi(p), f(p)) \in \mathcal{C}_{\rho}$ the point corresponding to p. If $f(p)$ is a characteristic function on R, i.e., if there exists a point $w_{0} \in \mathbf{C}_{u}^{\prime}$ such that $f(p)$ has m different function elements over a neighborhood of u_{0}, then this correspondence $R \rightarrow \mathcal{C}_{f}$ is one-to-one except at a finite set of points.

We have the following proposition.
Proposition 6.4. Let $q_{1}(\iota=1, \ldots, \kappa)$ be κ distinct points of R^{\prime} and let $u_{t}=$ $\pi\left(q_{\iota}\right)(\iota=1, \ldots, \kappa)$. Let $\alpha_{\iota}, \beta_{1}(\iota=1 \ldots \ldots \kappa)$ be complex numbers. Then there exists a function $f(p) \in \mathcal{L}_{\mu_{1}}$ with $\mu_{0}:=m(\kappa+2)+g$ and

$$
f\left(q_{c}\right)=\alpha_{\imath}, \quad f^{\prime}\left(q_{\imath}\right)=3_{i} \quad(\iota=1, \ldots, \kappa) .
$$

Proof. We let t_{c} be a local parameter at $q_{\mathrm{c}}(\iota=1 \ldots, \kappa)$. In a neighborhood of each q_{2} we prescribe a principal part \wp, of a meromorphic function as follows:
(i) if q_{t} is a branch point of order $e_{1}-1$. then $p_{1}=a_{1} / t_{1}^{2 c_{4}}+3_{1} / t_{1}^{2 e_{1}-1}$:
(ii) if q_{l} is an ordinary point of R^{\prime}, then $p_{1}=\alpha_{l} / t_{l}^{2}+\beta_{l} / t_{l}$.

Since $e_{\iota} \leq m$, we easily see from the Riemann-Roch theorem that there exists a meromorphic function $\varphi(p)$ on R such that
(1) $\varphi(p)$ has principal part p_{ι} at each $q_{\iota}(\iota=1 \ldots \ldots \kappa)$:
(2) $\varphi(p)$ has poles at $L_{j}(j=1, \ldots, m)$ of order at most μ_{0};
(3) $\varphi(p)$ is holomorphic on $R^{\prime} \backslash\left\{q_{t}\right\}_{1}=1 \ldots \ldots$.

We let $u_{c}\left(\iota=1, \ldots \ldots \kappa_{0}\right)$ denote the set of distinct points among all the points $w_{\iota}(\iota=1, \ldots, \kappa)$. If we set

$$
f(p):=\varphi(p) \prod_{t=1}^{\hat{\Lambda}_{n}}\left(u-w_{t}\right)^{2} . \quad p \in R .
$$

then $f(p)$ satisfies all the conditions in the proposition.
We put $\nu_{0}:=m\left(h_{0}+2\right)+g$, which is determined by the given Riemann surface R. From this proposition we obtain the following lemma.

Lemma 6.7. There exists a meromorphic function $f(p) \in \mathcal{L}_{1,1}(R)$ such that if $\mathcal{C}_{f}: X=f(p), p \in R$. denotes the graph of $f(p)$ in $\mathbf{C}_{u . X}^{2}$. , then each intersection point of \mathcal{C}_{f} and the complex line $w=c_{h}\left(h=1 \ldots, h_{0}^{\prime}\right)$ in $\mathbf{C}_{w . X}^{2}$ is a non-singular point of \mathcal{C}_{f} in $\mathbf{C}_{u, X}^{2}$.

Proof. For each $h=1, \ldots, h_{0}^{\prime}$, we let $q_{h, \nu}\left(\nu=1, \ldots . \nu_{h}\right)$ denote the points of R^{\prime} lying over $w=c_{h}$. From the above proposition we can find a meromorphic function $f(p) \in \mathcal{L}_{\nu_{0}}(R)$ such that

$$
f\left(q_{h, \nu}\right)=\nu, \quad f^{\prime}\left(q_{h, \nu}\right)=1 .
$$

Then the graph $\mathcal{C}_{f}: X=f(p), p \in R^{\prime}$, in $\mathbf{C}_{u, X}^{2}$ satisfies the conditions in the lemma.

Now let $\nu>m \nu_{0}$ and let $g(p)$ be a characteristic function on R such that $g(p) \in \mathcal{L}_{\nu}^{*}(R)$ (i.e., the order of the pole at each $L_{x}^{\prime}(j=1 \ldots, m)$ is equal to $\left.\nu\right)$. Using the function $f(p)$ from the above lemma, we set

$$
\begin{equation*}
G(p):=g(p)+\varepsilon f(p) \quad \text { on } R \tag{6.25}
\end{equation*}
$$

for $\varepsilon>0$. If ε is sufficiently small, then the graph $\mathcal{C}_{G}: X=G(p), p \in R^{\prime}$. in $\mathbf{C}_{u . . X}^{2}$ satisfies the following:

Condition (*) :
All points of R^{\prime} over $w=c_{h}\left(h=1 \ldots, h_{0}^{\prime}\right)$ correspond to non-singular points of \mathcal{C}_{G} in $\mathbf{C}_{u, X}^{2}$.

Since $G(p)$ as well as $g(p)$ is a characteristic function on R. the correspondence $p \in R^{\prime} \rightarrow(\pi(p) . G(p)) \in \mathcal{C}_{G}$ is one-to-one except for a finite point set

$$
Q_{k}=\left(a_{k}, b_{k}\right) \quad\left(k=1, \ldots, k_{0}\right)
$$

of \mathcal{C}_{G}. Here $a_{k} \in \mathbf{C}_{k r}^{\prime}$. We let $\eta_{k} \geq 2$ be the number of points of R^{\prime} which correspond to Q_{k}. In the present case $Q_{k}\left(k=1 \ldots . k_{0}\right)$ coincides with the set of singular points of \mathcal{C}_{G} in $\mathbf{C}_{w . X}^{2}$. We study the behavior of \mathcal{C}_{G} in a neighborhood of a point Q_{k} in $\mathbf{C}_{\boldsymbol{u} . \boldsymbol{X}}^{2}$. For simplicity: we write $Q_{k}=Q=(a . b)$ and $\eta_{k}=\eta$. We let $p_{1} \ldots \ldots, p_{\eta}$ in R^{\prime} denote the points corresponding to Q through $X=G(p)$. There exists a closed bidisk $\Lambda:=\Delta \times \Gamma \subset \mathbf{C}_{w}^{\prime} \times \mathbf{C}_{X}$ centered at Q such that $\mathcal{C}_{G} \cap \Lambda$ can be written in the form

$$
\begin{equation*}
P_{Q}(u \cdot X):=\prod_{i=1}^{\eta}\left(X-\imath_{i}(w)\right)=0 . \tag{6.26}
\end{equation*}
$$

where $v_{i}(u)(i=1 \ldots ., \eta)$ is a single-valued holomorphic function on $د$ with $b=\tau_{j}(a)(i=1, \ldots, \eta)$ and $\tau_{i}\left(w^{\prime}\right) \neq \psi_{j}^{\prime}\left(u^{\prime}\right)$ if $u^{\prime} \neq a$ and $i \neq j$. The discriminant $D_{Q}\left(w^{\prime}\right)$ of the polynomial $P_{Q}(u, X)$ with respect to X can be written in the form

$$
D_{Q}(u:)=A(u)(u \cdot-a)^{2 \rho} .
$$

where $\rho \geq 1$ and $A\left(u^{*}\right)$ is a non-vanishing holonorphic function on Δ. We call the integer $\rho \geq 1$ the order of the singularity of \mathcal{C}_{G} at the singular point Q. We observe that Q is a normal double singular point of \mathcal{C}_{G} if and only if $\rho=1$.

We have the following reduction for $G(p)$.
Lemma 6.8. Let $\nu>m \nu_{0}$ and let $G(p)$ be a characteristic function on R such that $G(p) \in \mathcal{L}_{i,}^{*}(R)$ and the graph $\mathcal{C}_{G}: X=G(p)$ of $G(p)$ in $\mathbf{C}_{4}^{2} . \times$ satisfies condition (*). Then there exist a finite number of meromorphic functions $\phi_{j}(p) \in \mathcal{L}_{1_{11}}(R)(j=$ $1, \ldots, M)$ such that for suitably small $\varepsilon_{j} \neq 0(j=1 \ldots .$. . $)$. if we set

$$
\boldsymbol{K}(p):=G(p)+\sum_{j=1}^{M} \S_{j} \phi_{j}(p) \quad \text { on } R
$$

and if we let $\mathcal{C}_{K}: X=K^{\prime}(p) . p \in R^{\prime}$ be the graph of $K(p)$ in $\mathbf{C}_{u \times . X}^{2}$. then:
(1) the graph \mathcal{C}_{K} satisfies condition (*):
(2) all singular points $Z_{\kappa}=\left(x_{\kappa}, y_{\kappa}\right)\left(\kappa=1, \ldots, \kappa_{1}\right)$ of the graph \mathcal{C}_{κ} in $\mathbf{C}_{u \ldots .}^{2}$ consist of normal double points:
(3) $x_{k} \neq x_{l}$ if $k \neq l: k \cdot l=1, \ldots, \kappa_{l}$.

Proof. First step. In order to modify $G(p)$ to satisfy conditions (1) and (2). we let $\rho_{k} \geq 1\left(k=1, \ldots, k_{0}\right)$ denote the order of the singularity of $\mathcal{C}_{(}$; at the singular point $Q_{k}=\left(a_{k}, b_{k}\right)$. We consider closed bidisks $\Lambda_{k}:=\bar{\Delta}_{k} \times \Gamma_{k} \subset \mathbf{C}_{u} \times \mathbf{C}_{x}$ centered at Q_{k} such that $\lambda_{k} \cap A_{l}=0$ if $k \neq l$ and such that $\mathcal{C}_{;} \cap \lambda_{k}$ is of the form

$$
P_{k}(u, X):=\prod_{i=1}^{\eta_{k}}\left(X-v_{k, i}(w)\right)=0
$$

where $b_{k}=v_{k . i}\left(a_{k}\right)\left(k=1 \ldots, k_{0}\right)$ and $v_{k .1}\left(u^{\prime}\right) \neq v_{k, j}\left(u^{\prime}\right)$ for $u \neq a_{k}: i \neq j$. The discriminant $D_{k}(u)$ of $P_{k}(u, X)$ with respect to X is of the form

$$
D_{k}\left(u^{\prime}\right)=A_{k}\left(u^{\prime}\right)\left(u^{\cdot}-a_{k}\right)^{2 \rho_{k}}
$$

where $A_{k}(u) \neq 0$ for $u \in \bar{\Delta}_{k}$.
Assume that $\rho_{k} \geq 2$ for some k, say $k=1$ for simplicity. Let $p_{1}, \ldots, p_{\eta_{i}}$ be the points of R^{\prime} which correspond to Q_{1} through \mathcal{C}_{6}. From Proposition 6.4 there exists a meromorphic function $\hat{\varphi}(p) \in \mathcal{L}_{2 \mu_{11}}(R)$ such that

$$
\begin{aligned}
& r\left(p_{1}\right)=r\left(p_{2}\right)=0, \quad r^{\prime}\left(p_{1}\right)=1, \quad \gamma^{\prime}\left(p_{2}\right)=2 . \\
& \varphi\left(p_{\mu}\right)=\mu . \quad \rho^{\prime}\left(p_{\mu}\right)=0 \quad\left(\mu=3 \ldots, \eta_{1}\right) .
\end{aligned}
$$

We set

$$
H(p):=G(p)+\varepsilon \gamma(p) \quad \text { on } R
$$

and consider the graph $\mathcal{C}_{H}: X=H(p), p \in R^{\prime}$, in $C_{u, X}^{2}$. If $\Xi \neq 0$ is sufficiently small, then $H(p)$ satisfies condition (*) and. moreover, the singular points of \mathcal{C}_{H} in $\mathbf{C}_{u, N}^{2}$ are all located in $\Lambda_{k}\left(k=1 \ldots, k_{0}\right)$.

In fact. since $G(p) \in \mathcal{L}_{\nu}^{*}(R) . G(p)$ has pole of order ν at each $L_{j}{ }^{x}(j=1, \ldots, m)$. On the other hand. $\mathcal{\sim}(p) \in \mathcal{L}_{\nu_{11}}(R)$ has pole of order at most $m \nu_{0}$ at any $L_{j}^{x}(j=$ $1 . \ldots, m)$. It follows from $\nu>m \nu_{v}$ that $|G(p)|>2|\varphi(p)|$ outside the domains of R
over the large disk $\Delta_{r}:=\{|u|<r\}$ in \mathbf{C}_{u}. Hence \mathcal{C}_{H} as well as \mathcal{C}_{G} has no singular points outside $\Delta_{r} \times \mathbf{C}_{\boldsymbol{X}}$. Moreover, if ε is sufficiently small, then $\mathcal{C}_{I I}$ as well as $\mathcal{C}_{;}$ has no singular points in $\left(\Delta_{r} \times C_{X}\right) \backslash \bigcup_{k=1}^{k_{1}}, A_{k}$.

In the bidisk Λ_{1}, the graph $\mathcal{C}_{H} \cap \Lambda_{1}$ has the form

$$
\widetilde{P}_{1}(u: X):=\prod_{i=1}^{\eta_{1}}\left[X-\left(\varepsilon_{1 . i}(u:)+\varepsilon_{\varphi}(u \cdot)\right)\right] .
$$

We see that Q_{1} is also a singular point of \mathcal{C}_{H} (as well as of \mathcal{C}_{G}), but it becomes a normal double singular point of \mathcal{C}_{H}, so that the order of the singularity of \mathcal{C}_{H} at Q_{1} is equal to 1 . Besides Q_{1}, some new singular points of \mathcal{C}_{H} nay be created in Λ_{1}; these will be denoted by $T_{j}\left(j=1, \ldots j_{0}\right)$. We let $\tilde{\rho}_{j}$ be the order of the singularity of \mathcal{C}_{H} at $T_{j}\left(j=1, \ldots, j_{0}\right)$. Let $\tilde{D}_{1}(w)$ be the discriminant of $\tilde{P}_{1}(w, Y)$ with respect to X : then the number of zeros of $\tilde{D}_{1}(u)$ in $\bar{\Delta}_{1}$ (counted with multiplicity) is equal to $2 \rho_{1}$ - the same as that of $D_{1}(w)$ - and it also equals the sum of the order of the singularities of \mathcal{C}_{H} in Λ_{1}. Hence

$$
\rho_{1}=1+\tilde{\rho}_{1}+\cdots+\tilde{\rho}_{j,} .
$$

It follows that $\tilde{\rho}_{j} \leq \rho_{1}-1\left(j=1, \ldots, j_{0}\right)$. Thus all singular points of \mathcal{C}_{H} in the bidisk Λ_{1} have order of singularity at most $\rho_{1}-1$.

Similarly, in the other bidisks $\Lambda_{k}\left(k=2, \ldots, k_{11}\right)$ there may be finitely many singular points $\tilde{T}_{k . j}\left(j=1 \ldots, j_{k}\right)$ of \mathcal{C}_{H} even though Λ_{k} has only one singular point Q_{k} of \mathcal{C}_{G} and the order of singularity at Q_{k} is $\rho_{k} \geq 1$. Let $\tilde{\rho}_{k . j}$ be the order of the singularity of \mathcal{C}_{H} at the singular point $\tilde{T}_{k, j}\left(j=1, \ldots, j_{k}\right)$; then we see from the argument above involving the discriminants that $\rho_{k}=\sum_{j=1}^{j_{k}} \tilde{\rho}_{k, j}$, so that each $\tilde{\rho}_{k . j} \leq \rho_{k}\left(j=1, \ldots, j_{k}\right)$.

Repeating the same procedure, step by step, we construct a finite number of meromorphic functions $\phi_{j}(p) \in \mathcal{L}_{\nu_{0}}(R)(j=1, \ldots, N)$ such that for sufficiently small $\varepsilon_{j} \neq 0(j=1, \ldots, M)$. if we define

$$
L(p):=G(p)+\sum_{j=1}^{N} \varepsilon_{j} \varphi_{j}(p) \quad \text { on } R
$$

and if we let $\mathcal{C}_{L}: X=L(p), p \in R^{\prime}$. denote the graph of $L(p)$ in $\mathbf{C}_{u, X}^{2}$. then \mathcal{C}_{L}. satisfies condition (*) and the set \mathcal{A} of all singular points $A_{\kappa}\left(\kappa=1, \ldots, \kappa_{0}\right)$ of \mathcal{C}_{L} in $\mathbf{C}_{u \cdot X}^{2}$ consists of those whose orders of singularity ρ_{κ} are all equal to 1. i.e., each $A_{\kappa}\left(\kappa=1, \ldots, \kappa_{0}\right)$ is a normal double singular point of \mathcal{C}_{L}.

Second step. In order to modify $L(p)$ to satisfy condition (3) we set $A_{\kappa}=$ ($\alpha_{\kappa}, \beta_{\kappa}$), $\kappa=1 \ldots \ldots \kappa_{0}$, and let $\alpha_{\kappa}\left(\kappa=1, \ldots, \kappa_{0}^{\prime}\right)$ be the set of distinct points among all the points $\alpha_{\kappa}\left(\kappa=1, \ldots, \kappa_{0}\right)$ in \mathbf{C}_{u}. For each $\kappa=1, \ldots . \kappa_{0}^{\prime}$ we let j_{κ} be the number of points of \mathcal{A} lying over the complex line $w=\mathbf{a}_{\kappa}$.

Fix $\kappa=1$. Let $A_{1, j}\left(j=1, \ldots, j_{1}\right)$ be the points of \mathcal{A} lying over the complex line $w^{\prime}=a_{1}$, and let $p_{j}^{\prime}, p_{j}^{\prime \prime} \in R^{\prime}$ be the points of R^{\prime} which correspond to the normal double singular point $A_{1, j}$ of \mathcal{C}_{I}, through $X=L(p)$. From Proposition 6.4 there exists a function $\varphi_{1}(p) \in \mathcal{L}_{\nu_{1}}(R)$ such that

$$
\begin{array}{ll}
\phi_{1}\left(p_{1}^{\prime}\right)=\phi_{1}\left(p_{1}^{\prime \prime}\right)=0 . & \phi_{1}^{\prime}\left(p_{1}^{\prime}\right)=\phi_{1}^{\prime}\left(p_{1}^{\prime \prime}\right)=0 \\
\varphi_{1}\left(p_{j}^{\prime}\right)=1, \Phi_{1}\left(p_{j}^{\prime \prime}\right)=2, & \phi_{1}^{\prime}\left(p_{j}^{\prime}\right)=\phi_{1}^{\prime}\left(p_{j}^{\prime \prime}\right)=0\left(j=2, \ldots, j_{1}\right) . \tag{6.27}
\end{array}
$$

For sufficiently small η_{1}, set

$$
M(p):=L(p)+\eta_{1} o_{1}(p) \quad \text { on } R
$$

and let $\mathcal{C}_{M}: X=M(p), p \in R^{\prime}$, denote the graph of $M(p)$ in $\mathbf{C}_{u, X}^{2}$. Then the graph \mathcal{C}_{M} satisfies condition (*), and the set \mathcal{B} of all singular points of \mathcal{C}_{M} consists of κ_{0} normal double points as well as the set \mathcal{C}_{H}. This follows since η_{1} is sufficiently small. Furthermore, if we set $\mathcal{B}:=\left\{B_{i}=\left(\gamma_{i}, \delta_{l}\right)\right\}_{l=1}, \ldots, \kappa_{i 1}$, then (6.27) implies that the number of distinct points among the $\gamma_{1}\left(\imath=1, \ldots, \kappa_{0}\right)$ in \mathbf{C}_{u}^{\prime} is greater than or equal to $n_{11}^{\prime}+1$.

We continue this procedure and obtain $o_{s}(p) \in \mathcal{L}_{\nu_{0}}(R)\left(s=1 \ldots . s_{0}\right)$ with the property that, if we define

$$
K(p):=H(p)+\sum_{s=1}^{s_{0}} \eta_{s} O_{s}(p), \quad p \in R .
$$

and we let $\mathcal{C}_{K}: X=K^{\prime}(p), p \in R^{\prime}$. denote the graph of $K^{\prime}(p)$ in $\mathbf{C}_{U . X}^{2}$, then for sufficiently small η_{s}, the graph \mathcal{C}_{K} satisfies condition (*) and all singular points \mathcal{Z} of \mathcal{C}_{κ} consist of κ_{0} double points. Moreover, if we write $\mathcal{Z}=\left\{Z_{\kappa}=\left(x_{\kappa}, y_{\kappa}\right)\right\}_{\kappa=1} \ldots, \kappa_{0}$. then the points $x_{\kappa}\left(\kappa=1, \ldots, \kappa_{i}\right)$ are distinct. Thus the lemma is proved.

Proof of Theorem 6.3. Let $\nu>m \nu_{0}$. Fix any $g(p) \in \mathcal{L}_{\nu}^{*}(R)$ satisfying condition (6.5). Then $g(p)$ is a characteristic function on R. Thus, after constructing $G(p)=g(p)+\varepsilon f(p)$ as in (6.25), we can use Lenıma 6.8 to obtain $K(p)=G(p)+\sum_{j=1}^{M} \varepsilon_{j} \rho_{j}(p)$ on R. This function $K(p)$ for sufficiently small ε and $\varepsilon_{j}(j=1, \ldots, M)$ satisfies all the conditions of the theorem.

6.4. Appendix 2

Let $\mathrm{A}=\Delta \times \Gamma \subset \mathbf{C}_{z}^{n} \times \mathbf{C}_{w}$ be a polydisk. where

$$
\Delta:\left|z_{j}\right|<1(j=1, \ldots, n) . \quad \Gamma:|x|<1 .
$$

We set $z=\left(z_{1}, \ldots . z_{n}\right)=\left(z^{\prime}, z_{n}\right)$ and $\Delta=\Delta^{(n-1)} \times \Delta_{n}$, where $\Delta^{(n-1)}=\Delta_{1} \times$ $\ldots \times \Delta_{n-1}$ and $\Delta_{j}:=\left\{z_{j}:|z|<1,\right\}$. Let Σ be an analytic hypersurface in Λ such that $\Sigma \cap(\Delta \times \partial \Gamma)=0$. Then there exists a monic pseudopolynomial in u.

$$
P(z . w)=w^{\nu}+a_{1}(z) u^{\nu-1}+\cdots+a_{\nu}(z) .
$$

where $a_{j}(z)(j=1 \ldots . \nu)$ is a holomorphic function on Δ, with

$$
\begin{equation*}
\Sigma=\left\{\left(z, u^{\prime}\right) \in \Delta \times \mathbf{C}_{w^{\prime}} \mid P\left(z, w^{\prime}\right)=0\right\} \tag{6.28}
\end{equation*}
$$

and such that $P(z, w)$ has no nultiple factors. We let $d(z) \not \equiv 0$ denote the discriminant of $P\left(z, w^{\prime}\right)$ with respect to u, and we set

$$
\sigma=\{z \in \Delta \mid d(z)=0\}
$$

which is an analytic hypersurface in Δ. We set $\Delta^{\prime}=\Delta \backslash \sigma$ and $\Lambda^{\prime}=\Lambda \backslash \Sigma$. For $z_{n} \in \Delta$. we let $\Lambda\left(z_{0}\right) \cdot \Lambda^{\prime}\left(z_{0}\right)$ and $\Sigma\left(z_{0}\right)$ denote the sections of $\Lambda . \Lambda^{\prime}$. and Σ over z_{0}. We usually identify these sets in $\left\{z_{0}\right\} \times \Gamma$ with sets in the disk $\Gamma ; \Sigma\left(z_{0}\right)$ consists of at most ν distinct points and $\Lambda^{\prime}\left(z_{0}\right)=\Lambda\left(z_{0}\right) \backslash \Sigma\left(z_{0}\right)$ is a punctured disk with at most ν punctures.

We have the following lemma, which is stated on pp. 68-69 in Picard and Simard [58].

Lemma 6.9. ${ }^{5}$ In the above setting, let $z^{*} \in \Delta \backslash \sigma$. Then any real 1-dimensional closed curve γ in $\Lambda \backslash \Sigma$ can be continuously (i.e., homotopically) deformed in $\Lambda \backslash \Sigma$ to a closed curve γ^{*} in $\mathrm{A}^{\prime}\left(z^{*}\right)$.

The conclusion is not necessarily true for $z^{*} \in \sigma$. For example, let $n=$ 1; $P(z, w)=w(w-z / 2) ; \gamma: \theta \in[0,2 \pi] \rightarrow(z, w)=\left(1 / 2,1 / 5 e^{1 \theta}\right) ;$ and $z^{*}=0$. Then γ cannot be continuously deformed in $\Lambda \backslash \Sigma$ to a closed curve in $\Lambda^{\prime}(0)$.

Proof of the lemma. We may assume the following:
(1) $\Delta=\Delta_{1} \times \cdots \times \Delta_{n}$, where $\Delta_{j}(j=1, \ldots . n)$ is a rectangle $\left(\left|x_{j}\right|<1\right) \times\left(\left|y_{j}\right|<\right.$ 1) in the complex plane $C_{z j} ; z_{j}=x_{j}+i y_{j}$.
(2) The hypersurface Σ in Λ contains no complex lines of the form $z^{\prime}=c^{\prime}, w=d$, where $c^{\prime}=\left(c_{1} \ldots \ldots c_{n-1}\right)$ and d are constant, i.e., the coordinates $\left(z^{\prime}, w, z_{n}\right)$ of \mathbf{C}^{n+1} as well as the coordinates $\left(z^{\prime}, z_{n}, w\right)$ satisfy the Weierstrass condition for Σ.
(3) If $n \geq 2$, we may assume that the hypersurface σ in the rectangle Δ contains no irreducible component of the form $z_{n}=c$ where c is a constant.
(4) The closed curve γ is a real analytic, one-dimensional closed curve in $\Delta \backslash \Sigma$ of the form $\gamma: z^{\prime}=\phi(s), z_{n}=\gamma(s), w=\psi(s)$, where $\phi(s), \chi(s), \psi(s)$ are real analytic functions on $(-\infty,+\infty)$ with period 2π and the projection of γ to each axis $x_{1}, y_{1}, \ldots, x_{n}, y_{n}, u, v$ (where $w=u+i v$) does not reduce to a point. To emphasize the z_{n}-component, we set $z_{n}=x+i y$ and $\chi(s)=$ $x^{\prime}(s)+i \chi^{\prime \prime}(s)$. so that

$$
\begin{align*}
\gamma: s \in[0.2 \pi] \rightarrow M & =\gamma(s) \tag{6.29}\\
& =\left(\varphi(s), \chi^{\prime}(s), \chi^{\prime \prime}(s), \dot{v}(s)\right) \in \Lambda \backslash \Sigma .
\end{align*}
$$

(5) For $M=\gamma(s) \in \gamma$. consider the real one-dimensional segment X_{M} and the real analytic 2-dimensional set $X_{\text {? }}$ in the rectangle Δ defined via

$$
\begin{aligned}
X_{M} & :=\left\{\left(\varphi(s), x \cdot \chi^{\prime \prime}(s)\right) \in \Delta \mid-1 \leq x \leq 1\right\} \\
X_{\checkmark} & :=\bigcup_{M \in \gamma} X_{M}
\end{aligned}
$$

The set X, intersects the complex ($n-1$)-dimensional analytic set σ in Δ in at most a finite number of points; i.e.,

$$
\begin{equation*}
\mathbf{X}_{\gamma} \cap \sigma=\left\{A_{1}, \ldots . A_{l_{0}}\right\} \tag{6.30}
\end{equation*}
$$

Thus we can find $a^{(k)} \in[0.2 \pi]$ and $x_{h}^{(k)} \in(-1.1) \quad\left(k=1, \ldots . l_{0} ; h=\right.$ $1 \ldots ., h(k))$ such that $A_{k}=\left(\phi\left(a^{(k)}\right), x_{h}^{(k)} \cdot \chi^{\prime \prime}\left(a^{(k)}\right)\right)$ and such that $X_{M} \cap \sigma=$ 0 for each $s \neq a^{(k)}\left(k=1, \ldots, l_{0}\right)$. where $M=\gamma(s)$.
(6) If $n \geq 2$, let $z^{*}=\left(\left(z^{*}\right)^{\prime}, z_{n}^{*}\right)=\left(\left(z^{*}\right)^{\prime}, x_{n}^{*}+i y_{n}^{*}\right)$ be the point in Δ in the lemma. For any fixed $M=\gamma(s) \in \gamma$, we consider the real one-dimensional segment $Y_{M}\left(z^{*}\right)$ and the real analytic 2-dimensional set Y, in Δ defined via

$$
\begin{aligned}
Y_{M}\left(z^{*}\right) & :=\left\{\left(o(s) . x_{n}^{*}, y\right) \in \Delta\{-1 \leq y \leq 1\}\right. \\
Y_{\gamma} & :=\bigcup_{M \in, ~} Y_{M}\left(z^{*}\right)
\end{aligned}
$$

Then Y, intersects σ in at most a finite number of points, say

$$
\begin{equation*}
\mathbf{Y}, \cap \sigma=\left\{B_{1} \ldots, B_{p_{0}}\right\} . \tag{6.31}
\end{equation*}
$$

[^29]Thus we can find $b^{(k)} \in[0.2 \pi]$ and $y_{i}^{(k)} \in(-1,1)\left(k=1, \ldots, p_{0} ; i=\right.$ $1, \ldots, l(k))$ such that $B_{l}=\left(\dot{o}\left(b^{(k)}\right), x_{n}^{*}, y_{l}^{(k)}\right)$ and such that $Y_{M}\left(z^{*}\right) \cap \sigma=0$ for each $s \neq b^{(k)}\left(k=1 \ldots, p_{(}\right)$. where $M=\gamma(s)$.

Condition (1) follows from the Riemann mapping theorem. Conditions (2) and (3) are obtained by taking a linear transformation of the coordinates (z, w^{\prime}) of \mathbf{C}^{n+1} as close as we want to the original coordinates according to Lenma 2.9. Conditions (4), (5), and (6) are obtained by taking a small perturbation (under condition (3) in case $n \geq 2$) of the given closed curve γ in Δ. if necessary, since the proof of the lemına remains valid after such a small continuous deformation. Thus it suffices to prove the lemma under the conditions (1)-(6).

In addition. we will use the following facts:
(I) In \mathbf{R}^{3} with variables (t. u, r), let $D=I \times \Gamma$ be a solid cylinder. where $I=\{|t|<1\}$ and $\Gamma=\left\{u^{2}+c^{2}<1\right\}$. Let $\mathcal{L}_{j}(j=1, \ldots . \nu)$ be a smooth arc in \bar{D} of the form

$$
\mathcal{L}_{j}: \quad(t, u, v)=\left(t, u_{j}(t) . v_{j}(t)\right) . \quad \text { where } t \in \bar{I}=[-1.1]
$$

and $u_{j}(t), v_{j}(t)$ are continuous functions on $[-1,1]$ with $\mathcal{L}, \cap(\bar{I} \times \partial \Gamma)=\emptyset(j=$ $1, \ldots, \nu)$ and $\mathcal{L}_{j} \cap \mathcal{L}_{k}=\emptyset(j \neq k)$. We set $\mathcal{L}:=\bigcup_{j=1}^{m} \mathcal{L}_{j}$ and $D^{\prime}:=D \backslash \mathcal{L}$. For $t \in I$, we set $D(t)=\{t\} \times \Gamma$ and $D^{\prime}(t)=D(t) \backslash \mathcal{L}(t)$; the latter is an in-punctured disk.

In this setting, fix $t_{0} \in I$ and let γ be an arc or a closed curve in D^{\prime} of the form

$$
\gamma:(t, u, v)=(t(s), u(s), v(s)), \quad s \in[a, b]
$$

such that $t(a)=t(b)=t_{0}$, i.e., the initial point $\gamma(a)$ and the terminal point $\gamma(b)$ both lie on $D^{\prime}\left(t_{1}\right)$. Then γ can be continuously deformed in D^{\prime} to an arc or a closed curve $\bar{\gamma}$ on $D^{\prime}\left(t_{0}\right)$ with the same initial and terminal points $\gamma(a)$ and $\gamma(b)$.

In fact, since $\mathcal{L}_{i} \cap \mathcal{L}_{j}=\emptyset(i \neq j)$, there exists a homeomorphisn $\Phi: D \rightarrow$ $\tilde{D}=I \times \tilde{\Gamma}$. where $\tilde{\Gamma}=\left\{\tilde{u}^{2}+\tilde{i}^{2}<1\right\}$, such that $\Phi(D(t))=\tilde{D}(t)$ for each $t \in I$. $\Phi\left(\mathcal{L}_{j}\right)=I \times\left\{\left(a_{j}, b_{j}\right)\right\}(j=1, \ldots, \nu)$, where $\left(a_{i}, b_{i}\right) \neq\left(a_{j}, b_{j}\right)(i \neq j)$. and such that $\left.\Phi\right|_{D\left(u_{11}\right)}$ is the identity mapping. This yields fact (I).
(II) The analytic hypersurface Σ in Λ defined by (6.28) can be written in the form

$$
u=\xi(\bar{z}) . \quad \tilde{z} \in \tilde{\Delta}
$$

where $\bar{\Delta}$ is a ν-sheeted ramified domain over the rectangle Δ without relative boundary and $\xi(\tilde{z})$ is a single-valued holomorphic function on $\bar{\Delta}$. We let π denote the projection from $\dot{\Delta}$ onto Δ and we let \mathcal{S} denote the branch set of $\tilde{\Delta}$. so that its projection \underline{S} onto Δ coincides with σ.

We fix $M \in \gamma$ and we choose $s \in[0,2 \pi]$ such that $M=\gamma(s)=\left(\varphi(s), \chi^{\prime}(s)\right.$, $\left.\chi^{\prime \prime}(s), \dot{\psi}(s)\right)$. Cising the set $X_{M} \subset \Delta$, we define the set \mathcal{X}_{M} in A :

$$
\mathcal{X}_{M}:=X_{M} \times \Gamma=\left\{\left(o(s), x, \chi^{\prime \prime}(s)\right) \in \Delta \mid-1 \leq x \leq 1\right\} \times \Gamma
$$

this is a real three-dimensional solid cylinder in Λ with "left-hand" cover given by
 $\left.\chi^{\prime \prime}(s)\right\} \times \Gamma$. Then:
(a) The set $\Sigma \cap \mathcal{X}_{M}$ consists of ν distinct (but not necessarily disjoint) piecewise real analytic arcs $\mathcal{L}_{j}(j=1, \ldots, \nu)$ in the solid cylinder \mathcal{X}_{M}. The arcs \mathcal{L}_{i} and $\mathcal{L}_{j}(i \neq j)$ may intersect at finitely many points. Moreover, each \mathcal{L}_{j} starts at a point on the left-hand cover K_{M}^{-}of the solid cylinder \mathcal{X}_{M} and terminates at a point on the right-hand cover K_{M}^{+}.
(b) For all $M \in \gamma$ except perhaps for a finite number of points, $\mathcal{L}_{j}(j=1, \ldots, \nu)$ in (a) is a real analytic arc, and $\mathcal{L}_{i} \cap \mathcal{L}_{j}=\emptyset(i \neq j)$.
(c) If we let $\underline{\mathcal{L}}_{j}$ denote the projection of \mathcal{L}_{j} onto Γ, then $\underline{\mathcal{L}}_{j}$ does not reduce to a point.
In fact, we have

$$
\begin{aligned}
\Sigma \cap \mathcal{X}_{M} & =\left\{\left(\phi(s), x, \chi^{\prime \prime}(s), w\right)\left|P\left(\phi(s), x+i \chi^{\prime \prime}(s), w\right)=0,|x|<1\right\}\right. \\
& =\left\{w=\xi\left(\phi(s), x+i \chi^{\prime \prime}(s)\right)| | x \mid<1\right\}
\end{aligned}
$$

We have two cases to consider: either $s \neq a^{(k)}$ for any $k=1, \ldots, l_{0}$, or $s=a^{(k)}$ for some $k=1, \ldots, l_{0}$ (where $a^{(k)}$ is defined in condition (5)). In the first case, since $\sigma \cap X_{M}=\emptyset$, the part of $\tilde{\Delta}$ over X_{M} consists of ν disjoint segments $\tilde{L}_{j}(j=1, \ldots, \nu)$. On each $\tilde{L}_{j}(j=1, \ldots, n)$, if we set $\xi(\tilde{z})=\xi_{j}\left(\phi(s), x, \chi^{\prime \prime}(s)\right) \equiv f_{j}(x)$ for $x \in(-1,1)$, then $f_{i}(x) \cap f_{j}(x)=\emptyset(i \neq j)$ for $x \in(-1,1)$. Therefore, $\Sigma \cap \mathcal{X}_{M}$ consists of ν different $\operatorname{arcs} \mathcal{L}_{j}(j=1, \ldots, \nu)$ in the solid cylinder \mathcal{X}_{M} with $\mathcal{L}_{i} \cap \mathcal{L}_{j}=\emptyset(i \neq j)$ and such that each \mathcal{L}_{j} starts at a point on the left-hand cover K_{M}^{-}of the solid cylinder \mathcal{X}_{M} and terminates at a point on the right-hand cover K_{M}^{+}. Thus (b) is proved. In the second case, suppose for simplicity that $s=a^{(1)}$. Then, by an argument similar to the first case, we see that $\Sigma \cap \mathcal{X}_{M}$ consists of ν different piecewise real analytic $\operatorname{arcs} \mathcal{L}_{j}(j=1, \ldots, \nu)$ in the solid cylinder \mathcal{X}_{M}, where \mathcal{L}_{i} and $\mathcal{L}_{j}(i \neq j)$ may intersect each other at finitely many points (corresponding to the points $x_{h}(1)(h=1, \ldots, h(1))$ which are defined in condition (5)) and each \mathcal{L}_{j} starts at a point on the left-hand cover K_{M}^{-}of \mathcal{X}_{M} and terminates at a point on the right-hand cover K_{M}^{+}. Thus (a) is proved; (c) is clear from condition (2).

Therefore, if we set

$$
\widetilde{\mathcal{X}_{\gamma}}=\bigcup_{M \in \gamma} \mathcal{X}_{M}
$$

and we consider $\widetilde{\mathcal{X}_{\gamma}}$ as a variation of the solid cylinder \mathcal{X}_{M} with parameter $M \in \gamma$, then each solid cylinder \mathcal{X}_{M} with corresponding arcs $\mathcal{L}_{j}(j=1, \ldots, \nu)$ satisfies the condition in (I) except for at most a finite number of parameter values M.
(III) If $n \geq 2$, using the notation in (6): $z^{*}=\left(\left(z^{*}\right)^{\prime}, x_{n}^{*}+i y_{n}^{*}\right) \in \Delta^{\prime}, Y_{M}\left(z^{*}\right) \subset$ Δ for $M \in \gamma$, we define

$$
\begin{aligned}
\mathcal{Y}_{M}\left(z^{*}\right) & =Y_{M}\left(z^{*}\right) \times \Gamma \\
& =\left\{\left(\phi(s), x_{n}^{*}, y\right) \in \Delta \mid-1 \leq y \leq 1\right\} \times \Gamma
\end{aligned}
$$

which is a real, three-dimensional solid cylinder in Λ with "bottom" $H_{M}^{-}:=\{(\phi(s)$, $\left.\left.x_{n}^{*},-1\right)\right\} \times \Gamma$ and "top" $H_{M}^{+}:=\left\{\left(\phi(s), x_{n}^{*},+1\right)\right\} \times \Gamma$. Then:
(a) The set $\Sigma \cap \mathcal{Y}_{M}\left(z^{*}\right)$ consists of ν different piecewise real analytic arcs \mathcal{L}_{j} ($j=$ $1, \ldots, \nu)$ in the solid cylinder $\mathcal{Y}_{M}\left(z^{*}\right)$, where \mathcal{L}_{i} and $\mathcal{L}_{j}(i \neq j)$ may intersect each other at finitely many points and each \mathcal{L}_{j} starts at a point on the bottom H_{M}^{-}of the solid cylinder $\mathcal{Y}_{M}\left(z^{*}\right)$ and terminates at a point of the top H_{M}^{+}.
(b) For all $M \in \gamma$ except for a finite number of points, $\mathcal{L}_{j}(j=1, \ldots, \nu)$ in (a) is a real analytic arc and $\mathcal{L}_{i} \cap \mathcal{L}_{j}=\emptyset(i \neq j)$.
(c) The projection $\underline{\mathcal{L}}_{j}$ of \mathcal{L}_{j} onto Γ does not reduce to a point.

Therefore, if we set

$$
\begin{equation*}
\widetilde{\mathcal{Y}}_{\gamma}=\bigcup_{M \in \gamma} \mathcal{Y}_{M}\left(z^{*}\right) \tag{6.32}
\end{equation*}
$$

and we consider $\widetilde{\mathcal{Y}}_{\gamma}$ as a variation of the solid cylinder $\mathcal{Y}_{M}\left(z^{*}\right)$ with parameter $M \in \gamma$, then each solid cylinder $\mathcal{Y}_{M_{1}}\left(z^{*}\right)$ with corresponding arcs $\mathcal{L}_{j}(j=1, \ldots, \nu)$ satisfies the condition in (I) except for at most a finite number of parameter values M.

This is proved as in (II) using conditions (6) and (2).
Proof of the lemma: Case $n=1$. In this case we note that $\sigma: d(z)=0$ consists of a finite number of points $A_{k}=A_{k}^{\prime}+i A_{k}^{\prime \prime}\left(k=1, \ldots, k_{0}\right)$, where $A_{k}^{\prime}, A_{k}^{\prime \prime}$ are real. We claim that it suffices to prove the lemma in this case under the following assumption:
(\#) The point $z^{*}=x^{*}+i y^{*} \in \Delta \backslash \sigma$ in the lemma satisfies $y^{*} \neq A_{k}^{\prime \prime}(k=$ $\left.1, \ldots, k_{0}\right)$.
To prove this claim, we take a point $\hat{z}=\hat{x}+i \hat{y} \in \Delta \backslash \sigma$ such that $\hat{y} \neq$ $A_{k}^{\prime \prime}\left(k=1, \ldots, k_{0}\right)$. If the lemma were true under assumption (\#), then γ could be continuously deformed in $\Lambda \backslash \Sigma$ to a closed curve $\hat{\gamma}$ in $\Lambda^{\prime}(\hat{z})$. We connect \hat{z} and z^{*} by an arc ℓ in $\Delta \backslash \sigma$. Since $\bigcup_{z \in \ell} \Lambda^{\prime}(z)$ is homeomorphic to the product set $\ell \times \Lambda^{\prime}(\hat{z})$ with the fibers being preserved, it follows that $\hat{\gamma}$ (and hence γ) can be continuously deformed in $\Lambda \backslash \Sigma$ to a closed curve γ^{*} in $\Lambda^{\prime}\left(z^{*}\right)$. Thus we may proceed under assumption (\#).

We divide the proof of case $n=1$ into three steps.
First step. Let $M=\left(z_{M}, w_{M}\right) \in \gamma$, where $z_{M}=x_{M}+i y_{M}$ and $w_{M}=u_{M}+i v_{M}$, and set

$$
X_{M}=\{|x|<1\} \times\left\{y_{M}\right\} \subset \Delta, \quad \mathcal{X}_{M}=X_{M} \times \Gamma \subset \Lambda .
$$

We can find a real 1-dimensional line segment $L(M)$ in the solid cylinder \mathcal{X}_{M} passing through the point M such that
(i) $L(M) \cap \Sigma=\emptyset$,
(ii) $L(M) \cap\left[\{|x| \leq 1\} \times\left\{y_{M}\right\} \times \partial \Gamma\right]=0$.

To see this, we consider the line segment $L(M)$ in \mathcal{X}_{M} passing through M given by

$$
\begin{equation*}
L(M):(x, y, u, v)=\left(x, y_{M}, u_{M}+\alpha\left(x-x_{M}\right), v_{M}+\beta\left(x-x_{M}\right)\right) \tag{6.33}
\end{equation*}
$$

where $x \in \bar{I}=[-1,1]$ and α, β are real numbers. If we let $L(M)$ denote the projection of $L(M)$ onto Γ, then condition (ii) means that $L(M) \subset \subset \Gamma$. Thus (ii) is satisfied for sufficiently small $|\alpha|,|\beta|$. To choose $\alpha . \beta$ in order that $L(M)$ satisfies (i), we consider the set $\Sigma \cap \mathcal{X}_{M}$. As shown in (II), this set consists of ν different piecewise real analytic arcs $\mathcal{L}_{j}(j=1, \ldots, \nu)$ in the solid cylinder \mathcal{X}_{M}, where \mathcal{L}_{i} and $\mathcal{L}_{j}(i \neq j)$ may intersect and where each \mathcal{L}_{j} starts at a point of the left-hand cover K_{M}^{-}of the solid cylinder \mathcal{X}_{M} and terminates at a point of the right-hand cover K_{M}^{+}; finally, the projection \mathcal{L}_{j} of \mathcal{L}_{j} onto Δ does not reduce to a point. We set $\mathcal{L}=\bigcup_{j=1}^{\nu} \mathcal{L}_{j}=\Sigma \cap \mathcal{X}_{M}$ and $\underline{\mathcal{L}}=\bigcup_{j=1}^{\nu} \underline{\mathcal{L}_{j}}$.

If $w_{M} \notin \underline{\mathcal{L}}$, the segment $L(M)$ satisfies condition (i) for sufficiently small α, β. For the second step we exclude the case $\alpha=\beta=0$.

If $u_{M} \in \underline{\mathcal{L}}$. there exist points $\left(x_{M}, y^{(j)}, w_{M}\right) \in \mathcal{L}_{j}$ for certain j, say $j=$ $1, \ldots, \nu^{\prime} \leq \nu$. We set $\mathcal{L}^{\prime}=\bigcup_{j=1}^{\nu^{\prime}} \mathcal{L}_{j}$ and $\mathcal{L}^{\prime \prime}=\mathcal{L} \backslash \mathcal{L}^{\prime}$. Since $M \in \gamma$ and $\gamma \cap \Sigma=0$, we have $y^{(j)} \neq y_{M}\left(j=1, \ldots, \nu^{\prime}\right)$. We choose two real numbers α, β with $(a, \beta) \neq$ $(0,0)$ and such that the slope B / a of the line segment $L(M)$ in Γ is not equal to the slope of the tangent line to any $\underline{\mathcal{L}}_{j}\left(j=1, \ldots, \nu^{\prime}\right)$ at the point w_{M}. Furthermore, if a and β are sufficiently small, then we have $L(M) \cap \mathcal{L}^{\prime}=\left\{w_{M}\right\}$ and $L(M) \cap \mathcal{L}^{\prime \prime}=\boldsymbol{\theta}$. Since there is only one point M of $L(M)$ over w_{M} and since $\left.M \notin \mathcal{L}_{j} \overline{(j=1} \ldots, \nu^{\prime}\right)$, it follows that $L(M) \cap \mathcal{L}^{\prime}=\emptyset$ and hence $L(M) \cap \mathcal{L}=0$.

We make the following essential step in the proof of the lemma.
Second step. We set $z^{*}=x^{*}+i y^{*} \in \Delta^{\prime}$ in the lemma under condition (\#), and we set

$$
Y\left(z^{*}\right)=\left\{\left(x^{*}, y\right) \in \Delta \mid-1 \leq y \leq 1\right\}, \quad \mathcal{Y}\left(z^{*}\right)=Y\left(z^{*}\right) \times \Gamma
$$

Then $\mathcal{Y}\left(z^{*}\right)$ is a three-dimensional solid cylinder in Λ with bottom $H^{-}:=\left\{\left(x^{*},-1\right)\right\}$ $\times \Gamma$ and top $H^{+}:=\left\{\left(x^{*} .+1\right)\right\} \times \Gamma$. We claim that we can continuously deform the curve γ in $\Lambda \backslash \Sigma$ to a closed curve $\bar{\gamma}$ in $\mathcal{Y}\left(z^{*}\right) \backslash \Sigma$.

To verify this claim. let $M_{0} \in \gamma$ and let $\alpha_{0} . \beta_{0}$, be the constants corresponding to the line segment $L\left(M_{0}\right)$ in (6.33). From the first step, there exists a subarc [$M_{0}^{\prime} M_{0}^{\prime \prime}$] of γ which contains M as an interior point such that $L(M)$ satisfies conditions (i) and (ii) for any point $M \in\left[M_{0}^{\prime} M_{0}^{\prime \prime}\right]$ using the same constants α_{0}. \mathcal{B}_{0}. Since γ is compact in $\Lambda \backslash \Sigma$, it follows that we can find a finite number of points $M_{1} \ldots, M_{q}$ on γ such that each subarc $\left[M_{i}^{\prime} M_{i}^{\prime \prime}\right](i=1 \ldots, q)$ of γ satisfies the above conditions, i.e., for any point $M \in\left[M_{i} M_{i+1}\right]$, the line segment $L(M)$ in (6.33) satisfies (i) and (ii) with the same a_{i}, β_{i}, and the union of the subarcs $\left[M_{i} M_{i+1}\right]$ covers γ. We set $M_{i}:\left(z_{i}, w_{i}\right)=\left(x_{i}, y_{i}, u_{i}, v_{i}\right)(i=1, \ldots, q)$. Note that $M_{q+1}=M_{1}$. We may assume

$$
\begin{equation*}
y_{1} \neq A_{k}^{\prime \prime} \quad\left(i=1 \ldots, q: k=1, \ldots, k_{0}\right) \tag{6.34}
\end{equation*}
$$

for if $y_{1}=A_{k}^{\prime \prime}$ for some i and k, we perturb M, on γ. From condition (4), a slightly modified M_{i} will satisfy $y_{i} \neq A_{k}^{\prime \prime}$. Since a small deformation will not affect the above situation. we can assume $y_{i} \neq A_{k}^{\prime \prime}$ for each i and k.

Fix $i \in\{1 \ldots, q\}$. To each $M=\left(z_{M}, u_{M}\right)=\left(x_{M}, y_{M}, u_{M}, v_{M}\right) \in\left[M_{i} M_{i+1}\right]$ there corresponds a point $p_{1}(M)$ on the solid cylinder $\mathcal{Y}\left(z^{*}\right)$ such that

$$
p_{i}(M)=\left.L_{2}(M)\right|_{x=x^{*}}=\left(x^{*}, y_{M}, u_{M}+a_{i}\left(x^{*}-x_{M}\right) \cdot v_{M}+\beta_{i}\left(x^{*}-x_{M}\right)\right) .
$$

For simplicity we set $p_{1}\left(M_{i}\right)=p_{1}^{\prime}$ and $p_{i}\left(M_{i+1}\right)=p_{i}^{\prime \prime}$, and we consider the following arc on the solid cylinder $\mathcal{Y}\left(z^{*}\right)$:

$$
\left[p_{i}^{\prime} p_{i}^{\prime \prime}\right]=\left\{p_{i}(M) \mid M \in\left[M_{i} M_{i+1}\right]\right\}
$$

The arc $\left[M_{i} M_{1+1}\right]$ can be continuously deformed in Λ to the arc $\left[p_{i}^{\prime} p_{i}^{\prime \prime}\right]$ in such a manner that $M \in\left[M_{i}^{\prime} M_{i}^{\prime \prime}\right]$ moves to $p_{i}(M)$ along the line segment $L_{i}(M)$. Since $L_{i}(M) \cap \Sigma=0$. this continuous deformation takes place entirely in $\Lambda \backslash \Sigma$. We note that each point $M_{2}(i=1, \ldots, q)$ corresponds to two points $p_{i}^{\prime}=L_{i}\left(M_{i}\right)$ and $p_{i-1}^{\prime \prime}=L_{i-1}\left(M_{i}\right)$. which both lie in the solid cylinder $\mathcal{X}_{M_{1}}$. Note that $L_{q}\left(M_{q+1}\right)=$ $L_{q}\left(M_{1}\right)=p_{1}^{\prime \prime}$. In the solid cylinder \mathcal{X}_{M}, we form an arc λ_{i} such that λ_{i} consists of two line segments λ_{i}^{\prime} and $\lambda_{i}^{\prime \prime}$, where λ_{i}^{\prime} joins $p_{i-1}^{\prime \prime}$ and M_{i} on the segment $L_{i-1}\left(M_{i}\right)$ and $\lambda_{i}^{\prime \prime}$ joins M_{i} and p_{i}^{\prime} on the segment $L_{i}\left(M_{i}\right)$. Note that $p_{0}^{\prime \prime}=p_{q}^{\prime \prime}$. By condition
(i) for the segment $L(M)$, we have $\lambda_{i} \subset \mathcal{X}_{M_{i}} \backslash \Sigma$. Thus, if we form

$$
\widehat{\gamma}:=\lambda_{1}+\left[p_{1}^{\prime} p_{1}^{\prime \prime}\right]+\lambda_{2}+\cdots+\left[p_{q}^{\prime} p_{q}^{\prime \prime}\right]
$$

it follows that $\hat{\gamma}$ is a closed curve in $\Lambda \backslash \Sigma$ such that γ can be continuously deformed to $\widehat{\gamma}$ in $\Lambda \backslash \Sigma$.

Again fix $i \in\{1, \ldots, q\}$. The initial and terminal points $p_{i-1}^{\prime \prime}$ and $p_{i}^{\prime \prime}$ of $\lambda_{1}=$ $\lambda_{i}^{\prime}+\lambda_{i}^{\prime \prime}$ lie on $x=x^{*}$ in Λ. Using (6.34). we have $X_{M} \cap \sigma=0$. so that $\mathcal{L}_{1} \cap \mathcal{L}_{j}=$ $0(i \neq j)$, where $\Sigma \cap \mathcal{X}_{M_{i}}=\bigcup_{j=1}^{\nu} \mathcal{L}_{j}$. It follows from (I) that the arc λ_{i} can be continuously deformed in $\mathcal{X}_{M_{\mathrm{e}}} \backslash \Sigma$ to an arc $\bar{\lambda}_{1}$ with the same initial (resp., terninal) point as λ_{i} in the ν-punctured disk $\Lambda^{\prime}\left(x^{*}+i y_{i}\right)$. Thus $\widehat{\gamma}$ can be deformed in $\Lambda \backslash \Sigma$ to a closed curve

$$
\bar{\gamma}:=\tilde{\lambda}_{1}+\left[p_{1}^{\prime} p_{1}^{\prime \prime}\right]+\tilde{\lambda}_{2}+\cdots+\left[p_{q}^{\prime} p_{q}^{\prime \prime}\right],
$$

which lies in $\mathcal{Y}\left(z^{*}\right) \backslash \Sigma$; this proves the second step.
Third step. The closed curve $\bar{\gamma}$ in $\mathcal{Y}\left(z^{*}\right) \backslash \Sigma$ in the second step can be continuously deformed in $\mathcal{Y}\left(z^{*}\right) \backslash \Sigma$ to a closed curve γ^{*} in $\Lambda^{\prime}\left(z^{*}\right)$.

Indeed, since we imposed assumption (\#) for the point z^{*}, the set $\Sigma \cap \mathcal{Y}\left(z^{*}\right)$ consists of ν different arcs $\mathcal{L}_{j}(j=1, \ldots . \nu)$ such that $\mathcal{L}_{i} \cap \mathcal{L}_{j}=\emptyset(i \neq j)$ and such that each \mathcal{L}_{j} starts from a point on the bottom H^{-}of the solid cylinder $\mathcal{Y}\left(z^{*}\right)$ and terminates at a point on the top H^{+}. Thus, again using (1) for the closed curve $\tilde{\gamma}$, we obtain the third step. Hence the lenuma in the case $n=1$ is completely proved.

Proof of the lemma: Case $n \geq 2$. By taking a linear transformation of \mathbf{C}_{2}^{n}. if necessary, we we nay assume that the point $z^{*}=\left(z_{1}^{*}, \ldots, z_{n}^{*}\right)=\left(\left(z^{\prime}\right)^{*}, z_{n}^{*}\right) \in$ $\Delta \backslash \sigma$ in the lemma satisfies the following condition: if we set $\sigma^{(n-1)}=\left\{z^{\prime}=\right.$ $\left.\left(z_{1}, \ldots, z_{n-1}\right) \in \Delta^{(n-1)} \mid\left(z^{\prime}, z_{n}^{*}\right) \in \sigma\right\}$, then

$$
\begin{equation*}
\left(z^{\prime}\right)^{\cdot} \in \Delta^{(n-1)} \backslash \sigma^{(n-1)} \tag{6.35}
\end{equation*}
$$

First step. Let $M \in \gamma$ and choose $s \in[0,2 \pi]$ such that

$$
\begin{align*}
M=\gamma(s) & =\left(\varphi(s), \chi^{\prime}(s), \chi^{\prime \prime}(s), \dot{v}(s)\right) \\
& =:\left(z_{M}^{\prime}, x_{M}, y_{M}, u_{M}+\dot{v} v_{M}\right) . \tag{6.36}
\end{align*}
$$

Using the set $X_{M} \subset \Delta$ in (5), we set

$$
\mathcal{X}_{M}=X_{M} \times \Gamma=\left\{\left(\Phi(s), x, \chi^{\prime \prime}(s)\right) \in \Delta \mid-1 \leq x \leq 1\right\} \times \Gamma .
$$

which is a three-dimensional solid cylinder in Λ. We take a line segment $L(M I)$ in \mathcal{X}_{M} passing through the point M of the form

$$
L(M):\left(z^{\prime}, x, y, u, v\right)=\left(z_{M}^{\prime}, x_{,}, y_{M}, u_{M}+\alpha\left(x-x_{M}\right), v_{M}+\beta\left(x-x_{M}\right)\right) .
$$

where $-1 \leq x \leq 1$ and α, β are constants. which satisfies
(i) $L(M) \cap \Sigma=0$.
(ii) $L(M) \cap\left[\left\{z_{M}^{\prime}\right\} \times\{|x| \leq 1\} \times\left\{y_{M}\right\} \times \partial \Gamma\right]=\emptyset$.

This is proved as in the first step of the case $n=1$, from conditions (2) and (4).

Second step. Let $z^{*}=\left(\left(z^{\prime}\right)^{*}, z_{n}^{*}\right) \in \Delta^{\prime}$. where $z_{n}^{*}=x_{n}^{*}+i y_{n}^{*}$, be the point in the lemma and let

$$
\Lambda_{x_{n}^{*}}:=\Delta^{(n-1)} \times\left\{x_{n}^{*}\right\} \times\{|y|<1\} \times \Gamma .
$$

Using the notation $\mathcal{Y}_{M}\left(z^{*}\right)$ and $\widetilde{\mathcal{Y}_{\gamma}} \subset \Lambda_{r_{i}^{*}}$ in (6.32). we clain that we can continuously deform the curve γ in $\Lambda \backslash \Sigma$ to a closed curve $\tilde{\gamma}$ in the set $\widetilde{\mathcal{Y}_{j}} \backslash \Sigma$, where $j: s \in[0,2 \pi] \rightarrow\left(\varphi(s), x_{n}^{*}, y(s), u(s), v^{\prime}(s)\right) \in \Lambda \backslash \Sigma$ and $y(s), u(s), v(s)$ are continuous functions of $s \in[0.2 \pi]$.

This is proved as in the second step of the case $n=1$, using (II).
Third step. The closed curve \bar{j} in $\widetilde{\mathcal{Y}_{\lambda}} \backslash \Sigma$ in the second step can be continuously deformed in $\boldsymbol{A}_{r_{n}} \backslash \Sigma$ to a closed curve $\hat{\gamma}$ in

$$
\mathbf{Z}:=\left(\bigcup_{M \in \Omega}\left\{\left(o(s), x_{n}^{*}, y_{n}^{*}\right)\right\} \times \Gamma\right) \backslash \Sigma .
$$

This is proved by repeating the method used in the first and second steps, using (III) instead of (II).

Forth step. The lemma is true in case $n \geq 2$.
For the curve γ can be continuously deformed in $\Lambda \backslash \Sigma$ to the closed curve $\hat{\gamma}$ in \mathbf{Z} from the third step. We put

$$
\Lambda_{z_{n}^{*}}:=\Delta^{(n-1)} \times\left\{z_{n}^{*}\right\} \times \Gamma,
$$

so that $\mathrm{Z} \subset \Lambda_{z_{n}^{-}} \backslash \Sigma$. Thus, if we set $\Sigma^{(n-1)}=\Sigma \cap \Lambda_{z_{n}^{*}}$ and $\Lambda_{z_{i}^{*}}$ is identified with $\Delta^{(n-1)} \times \Gamma=: \Lambda^{(n-1)}$, then we have $\hat{\gamma} \subset \Lambda^{(n-1)} \backslash \Sigma^{(n-1)}$. Therefore, under condition (6.35). the case n reduces to the case $n-1$. Since the case $n=1$ was proved. the fourth step follows from induction.

Now let $A=\Delta \times \Gamma \subset C_{z}^{n} \times C_{w}, \Sigma=\{P(z, u)=0\}$ satisfying condition (6.28), $\sigma=\{d(z)=0\} . \Lambda^{\prime}=\Lambda \backslash \Sigma$, and $\Delta^{\prime}=\Delta \backslash \sigma$ be as defined in the beginning of this section. Let \mathcal{D} be a ramified donain over the polydisk Λ without relative boundary such that the projection of the branch set \mathcal{S} of \mathcal{D} onto Δ coincides with Σ. For $z_{0} \in \Delta$, we let $D\left(z_{0}\right)$ denote the fiber of \mathcal{D} over $z=z_{0}$; this is a finitely sheeted Riemann surface over the disk Γ without relative boundary. Let $D^{\prime}\left(z_{0}\right):=D\left(z_{0}\right) \backslash \Sigma\left(z_{0}\right)$. which is equal to $D\left(z_{0}\right)$ punctured in at most a finite number of points.

We have the following.
Corollary 6.3. Let $z_{0} \in \Delta^{\prime}$. Any closed curve γ in $\mathcal{D} \backslash \mathcal{S}$ can be continuously deformed in $\mathcal{D} \backslash \mathcal{S}$ to a closed curve $\hat{\gamma}$ in the fiber $D^{\prime}\left(z_{0}\right)$.

Proof. By taking a small continuous deformation of γ in $\mathcal{D} \backslash \mathcal{S}$ we may assume that the projection $\underline{\gamma}$ of γ onto Δ satisfies $\underline{\underline{\gamma}} \cap \sigma=\emptyset$. Since $\tilde{z}_{0} \in \Delta^{\prime}$. it follows from the above lemma that $\underline{\gamma}$ can be continuously deformed in $\Lambda \backslash \Sigma$ to a closed curve τ in $\Lambda^{\prime}\left(\tilde{z}_{1}\right)$. We write this deformation as $t \in[0.1] \rightarrow \tau(t)$ so that $\tau(0)=\gamma$ and $\tau(1)=\tau$. This deformation uniquely induces a continuous deformation of the closed curves $\gamma(t)$ in the unramified domain $\mathcal{D} \backslash \mathcal{S}$ over Δ, where $\gamma(0)=\gamma$ and $\gamma(t)=\tau(t)$ for all $t \in[0.1]$. Since $\gamma(1)$ lies on the fiber $D^{\prime}\left(z_{0}\right)$. we obtain the corollary.

The following corollary will be used in Chapter 9.
Corollary 6.4. Using the same notation as in the above corollary, assume that $\Sigma(0)$ consists of a single point. which we take to be the origin 0 in Γ, i.e.. the equation $P(0, w)=0$ has the unique solution $w=0$ of order ν. Let $\zeta=f(z, w)$ be
a non-vanishing holomorphic function on \mathcal{D}. Then there is a single-valued branch of the function $\log f(z, w)$ defined on \mathcal{D}.

Proof. Fix $z_{0} \in \Delta^{\prime}$. Let γ be a closed curve in $\mathcal{D} \backslash S$ and let $C=f(\gamma)$. This is a closed curve in the complex plane \mathbf{C}_{6} such that the origin 0 is not in C. We let N denote the winding number of C about 0 . and our first claim is that $N=0$. By the lemma, γ can be continuously deformed in $\mathcal{D} \backslash S$ to a closed curve $\gamma\left(z_{0}\right)$ on the Riemann surface $D^{\prime}\left(z_{0}\right)$. This Riemann surface is finitely sheeted and is punctured in at most a finite number of points $p_{j}(j=1, \ldots, \mu)$; moreover the points $\left\{p_{j}\right\}_{j}$ lie over $\Sigma\left(z_{0}\right)$. We set $C\left(z_{0}\right)=f\left(\gamma\left(z_{0}\right)\right)$; this is a closed curve in $\mathbf{C}_{\zeta} \backslash\{0\}$ whose winding number $N\left(z_{0}\right)$ about 0 is equal to N (independent of $z_{0} \in \Delta^{\prime}$). We may assume that the projection $\gamma\left(z_{0}\right)$ of $\gamma\left(z_{0}\right)$ onto Γ lies over the disk $\delta_{\varepsilon}\left(z_{0}\right)$ centered at 0 and of radius $\varepsilon=\varepsilon\left(z_{0}\right)$ in Γ, where $\max _{j=1 \ldots \ldots \mu}\left\{\left|p_{j}\right|\right\}<\varepsilon<1$ and ε is as close to this maximum as we like. Under the assumption that $P(0, w)=0$ has only the solution $w=0$ of order ν, we have $\Sigma\left(z_{0}\right) \rightarrow\{0\}$ in Λ as $z_{0} \rightarrow 0$ in Δ^{\prime}. Hence we can take $\varepsilon=\varepsilon\left(z_{0}\right)$ such that $\delta_{\varepsilon}\left(z_{0}\right) \rightarrow 0$ as $z_{0} \rightarrow\{0\}$. Moreover, if we let $\tilde{\delta}_{s}\left(z_{0}\right)$ denote the connected component of the part of $D\left(z_{0}\right)$ over $\delta_{\varepsilon}\left(z_{0}\right)$ which contains $\gamma\left(z_{0}\right)$, then $\bar{\delta}_{\varepsilon}\left(z_{0}\right)$ converges in D to a point $q_{0} \in D(0)$ over $w=0$. Thus, $C\left(z_{0}\right) \rightarrow f\left(q_{0}\right) \neq 0$ as $z_{0} \rightarrow 0$, and hence $N\left(z_{0}\right) \rightarrow 0$ as $z_{0} \rightarrow 0$. so that $N=0$. From this claim. it follows that there exists a single-valued branch of the holomorphic function $\log f(z, w)$ on $\mathcal{D} \backslash \mathcal{S}$. Since this function is bounded there, it follows from Rienann's theorem on removable singularities that $\log f(z, w)$ extends to a holomorphic function on all of D.

CHAPTER 7

Analytic Sets and Holomorphic Functions

7.1. Holomorphic Functions on Analytic Sets

7.1.1. Holomorphic Functions on Analytic Sets. Chapters 7 and 8 will be devoted to establishing the lifting principle for analytic polyhedra in an analytic space. ${ }^{1}$ Let D be a domain in \mathbf{C}^{n} with variables z_{1}, \ldots, z_{n}. Let Σ be an analytic set in D and let $v \subset \Sigma$. We say that v is an open set in Σ if there exists an open set δ in \mathbf{C}^{n} such that $v=\delta \cap \Sigma$. Let $p \in \Sigma$. An open set v in Σ containing the point p is called a neighborhood of p in Σ. Let $\propto(z)$ be a function defined on $\delta \subset \mathbf{C}^{n}$ and let $v=\delta \cap \Sigma$. We let $\left.\phi(z)\right|_{r}$ denote the restriction of $O(z)$ to v.

We shall define holomorphic functions on the analytic set Σ as follows. First. let \boldsymbol{v} be an open set in Σ and let $f(p)$ be a complex-valued function on \boldsymbol{v}. Fix $\boldsymbol{q} \in \boldsymbol{v}$. If we can find an open neighborhood δ_{q} of q in \mathbf{C}^{n} and a holomorphic function $\mathcal{o}(z)$ in δ_{q} such that the restriction $\left.\phi(z)\right|_{i_{q}}$. where $v_{q}:=\delta_{q} \cap \Sigma \subset v$. coincides with $f(p)$ on v_{q}, then we say that $f(p)$ is holomorphic at q on ε. If $f(p)$ is holomorphic at each point $q \in v$, then we say that $f(p)$ is holomorphic on v.

Let Σ be a pure r-dimensional analytic set in $D \subset C^{n}$ and let $\left(z_{1} \ldots, z_{n}\right)$ be coordinates of $\mathbf{C}^{\boldsymbol{n}}$ which satisfy the Weierstrass condition at each point of Σ. Recall this means that if we project Σ over the space C^{r} comprised of the first r complex variables $\left(z_{1}, \ldots, z_{r}\right)$ and we denote the image of Σ by \mathcal{D}, then \mathcal{D} is a ramified domain over $\mathbf{C l}^{r}$ and Σ can be described as

$$
z_{j}=\xi_{j}\left(z_{1} \ldots \ldots z_{r}\right) \quad(j=r+1 \ldots . n)
$$

where $\left(z_{1} \ldots, z_{r}\right)$ lie in the ranified domain \mathcal{D} and each $\xi_{j}\left(z_{1}, \ldots, z_{r}\right)(j=r+$ $1 \ldots ., n$) is a single-valued holomorphic function on \mathcal{D}. Note that Σ and \mathcal{D} are one-to-one except for an analytic set of dimension at most $r-1$. If Σ has no singular points in D. then the projection $\pi: \Sigma \rightarrow \mathcal{D}$ gives a bijection between Σ and \mathcal{D}. In this case, any open set V in \mathcal{D} corresponds to an open set v in Σ where $\pi(v)=V$, and conversely. Furthermore, for any holomorphic function $F(q)$ on V, the function $f(p):=F(\pi(p))$ is holomorphic on r : and for any holomorphic function $g(p)$ on v, the function $G(q):=g\left(\pi^{-1}(q)\right)$ is holomorphic on V. Thus, in the case when Σ has no singular points in D, the holomorphic functions $F(q)$ on $V \subset \Sigma$ and the holomorphic functions $f(p)$ on $v \subset \mathcal{D}$ are in one-to-one correspondence through the projection π. However, if Σ has singular points in D. this is not necessarily the case.

[^30]Example 7.1. Consider \mathbf{C}^{2} with variables z and u, and the analytic hypersurface Σ in \mathbf{C}^{2} defined by the equation

$$
w^{2}-z(z-1)^{2}=0
$$

We project Σ over the complex plane $\mathbf{C}_{\mathbf{:}}$. This projection of Σ can be identified with the Riemann surface \mathcal{R} determined by \sqrt{z} : thus we write $\pi: \Sigma \rightarrow \mathcal{R}$. Note Σ has a singularity at (1.0) and Σ and \mathcal{R} are not bijective. Furthernore, $\sqrt{\Sigma}$ is a (single-valued) holomorphic function on \mathcal{R}. but the corresponding function $f(p):=\sqrt{\pi(p)}$ is not continuous at the point (1.0), so it is not holomorphic at (1.0) on Σ.

Example 7.2. We consider the analytic liypersurface Σ in \mathbf{C}^{2} defined by

$$
w^{2}-z^{3}=0 .
$$

We project Σ over the complex plane $\mathbf{C}_{\text {: }}$: again. this projection of Σ can be identified with the Riemann surface \mathcal{R} determined by $\sqrt{\Sigma}$, and we write $\pi: \Sigma \rightarrow \mathcal{R}$. The hypersurface Σ has a singularity at (0.0), and Σ and \mathcal{R} are bijective in this case. Again, \sqrt{z} is a (single-valued) holomorphic function on \mathcal{R}. but the corresponding function $f(p):=\sqrt{\pi(p)}$ is not holomorphic at the point $(0,0)$ on Σ.

We prove this by contradiction. thus we assume that $f(z)$ is holomorphic in a neighborhood of (0.0) on Σ. Thus there exists a holomorphic function $O(z, u)$ defined on a neighborhood of (0.0) in \mathbf{C}^{2} such that $o\left(z, z^{32}\right)=\sqrt{z}$ for z in a neighborhood of $z=0$ in \mathbf{C}_{8}. This is impossible as can be seen from the Taylor expansion of $o(z . w)$ about (0.0) in \mathbf{C}^{2} and from the uniqueness of the Puiseux series.
7.1.2. Weakly Holomorphic Functions on Analytic Sets. We next introduce another notion of holomorphy of functions defined on an analytic set Σ in a domain D in \mathbf{C}^{n}. Let S be the set of singular points of Σ and set $\Sigma^{\prime}:=\Sigma \backslash S$. Let v be an open set in Σ and set $c^{\prime}:=v \cap \Sigma^{\prime}$. Let $f(p)$ be a complex-valued function on v^{\prime}. If $f(p)$ is holomorphic on v^{\prime} and if $f(p)$ is bounded in a neighborhood of each point $q \in S \cap v$ in Σ, then we say that $f(p)$ is a weakly holomorphic function on $r \subset \Sigma$. The condition that $f(p)$ be bounded in a neighborhood of $q \in S \cap c$ means that there exists a neighborhood u of q in c^{\prime} such that $f(p)$ is bounded in $c^{\prime} \cap u$. We also say that a function $f(p)$ is weakly holomorphic at a point $q \in \Sigma$ if there exists a neighborhood $r \subset \Sigma$ of q on which $f(p)$ is weakly holonorphic.

Let Σ be a pure r-dimensional analytic set in D and. as in the previous section, consider the ramified domain \mathcal{D} over \mathbf{C}^{r} given by the image of Σ by the projection π to C^{r}. Let S be the set of singular points of Σ : thus S is an analytic set in D of dimension at most $r-1$. We set $\Sigma^{\prime}:=\Sigma \backslash S$ and $\mathcal{D}^{\prime}:=\pi\left(\Sigma^{\prime}\right) \subset \mathcal{D}$. Thus \mathcal{D}^{\prime} and Σ^{\prime} are bijective via π. For any open set v in Σ. we set $V:=\pi(\cdot) \subset \mathcal{D}$, which is a ramified domain over \mathbf{C}^{r}. We set $\varepsilon^{\prime}:=r \backslash S$ and $V^{\prime}:=\pi\left(v^{\prime}\right)$. Then for any holomorphic function $F(q)$ on V, the function $f(p):=F(\pi(p))$ for $p \in r^{\prime}$ clearly defines a weakly holonorphic function on v. Conversely. let $f(p)$ be a weakly holomorphic function on c. We claim that the function $F(q):=f\left(\pi^{1}(q)\right)$ for $q \in V^{\prime}$ can be uniquely extended as a holomorphic function on V.

To verify this last statement, let $p_{0} \in V \backslash V^{\prime}$. We take a singular point $z^{0}=$ $\left(z_{1}^{0}, \ldots, z_{n}^{0}\right)$ of v such that $\pi\left(z_{0}\right)=p_{0}$. and a polydisk $\delta=\delta^{r} \times \delta^{n-r}$ (where $\delta^{r} \subset \mathbf{C}^{r}$) centered at z_{0} such that each irreducible component $\tau_{0}^{j}(j=1, \ldots, l)$ of ($\cap \delta$ passing through z_{0} is bijective to $V_{0}^{J}:=\pi\left(v_{0}^{J}\right) \subset V$ and $\imath_{0}^{v} \cap\left(\bar{\delta}^{r} \cap \partial \delta^{n r}\right)=\emptyset$. Thus, if
we put $v_{0}=\bigcup_{j=1}^{d} v_{0}^{j}$ and $V_{0}:=\bigcup_{j=1}^{k} V_{0}^{j}$, then V_{0} is a finitely-sheeted ranified domain over the polydisk δ^{r} centered at ($z_{1}^{0} \ldots \ldots . i_{r}^{0}$) without relative boundary: and $F(q)$ is a bounded holomorphic function on V_{0} except for an at most ($r-1$)dimensional set $\pi\left(v_{0} \cap S\right)$. We let m denote the number of sheets of V_{0} over δ^{r}. By the standard method of taking symmetric functions of branches of $F(q)$, we see that $F(q)$ coincides with the solution $w=\xi\left(z^{\prime}\right)=\xi\left(z_{1} \ldots \ldots z_{r}\right)$ of the equation of a monic polynomial in w.

$$
P\left(z^{\prime} \cdot u\right)=u^{m}+a_{1}\left(z^{\prime}\right) u^{m-1}+\cdots+a_{m}\left(z^{\prime}\right)=0 .
$$

where each $a_{j}\left(z^{\prime}\right)$ is a holomorphic function in δ^{r}. Here we use the boundedness of $\boldsymbol{F}(\boldsymbol{q})$. Since $\boldsymbol{\xi}\left(z^{\prime}\right)$ is a holonorphic function on V_{0}, we have the result.

Thus we obtain the following
Remark 7.1. For an open set $v \subset \Sigma$ and the projection $V=\pi(v) \subset \mathcal{D}$, we get a one-to-one correspondence between the family of all weakly holomorphic functions $f(p)$ on v and the family of all holomorphic functions $F(q)$ on V with $\boldsymbol{F}(\pi(p))=f(p)$.

This remark, in conjuction with Hartogs' theorem (Theorem 4.1). implips the following result. which will be useful later when combined with Theorem 6.4 of Chapter 6.

Remark 7.2. Let D be a domain in \mathbf{C}^{n} and let Σ be a pure r-dimensional analytic set in D. Let σ be an analytic set in D such that $\sigma \subset \Sigma$ and σ is of dimension at most $r-2$. Then any weakly holomorphic function $f(z)$ on $\Sigma \backslash \sigma$ can be extended to a weakly holomorphic function on all of Σ.

Proof. Let $z_{0} \in \sigma$. We may assume the coordinate system $z=\left(z_{1}, \ldots, i_{r}\right.$. $\left.z_{r+1} \ldots, z_{n}\right)=\left(z^{\prime}, z_{r+1} \ldots \ldots, z_{n}\right)$ satisfies the Weierstrass condition for Σ at z_{1}, so that there is a polydisk $\Lambda:=\Delta \times \Gamma \subset D$ centered at $z_{0}=\left(z_{1}^{0} \ldots, i_{r}^{0}, z_{r+1}^{0}, \ldots, z_{n}^{0}\right)$ such that $\Delta \subset C_{\varepsilon_{1}, \ldots, s, r}^{r}, \Gamma \subset C_{\Sigma_{i}}^{n-i} \ldots, \ldots$, and $\Sigma \cap(\Delta \times \partial \Gamma)=0$. Thus $\Sigma \cap \Lambda$ may be written in the form

$$
z_{j}=\xi_{j}\left(z_{1} \ldots, z_{r}\right) \quad(j=r+1, \ldots, n) .
$$

where $\bar{z}^{\prime}=\left(z_{1} \ldots \ldots z_{r}\right)$ varies over a finitely sheeted ramified domain $\bar{\Delta}$ over Δ without relative boundary.

We let m denote the number of sheets of $\dot{\Delta}$ over Δ and we let S denote the branch set of $\tilde{\Delta}$. We also write \underline{S} for the projection of S onto Δ, and we let $\underline{\sigma}$ denote the projection of $\sigma \cap \Lambda$ onto Δ. Thus \underline{S} is of dimension $r-1$ and $\underline{\sigma}$ is of dimension at most $r-2$. We set $\Delta_{1}=\Delta \backslash(\underline{S} \cup \underline{\sigma})$ and $\tilde{\Delta}_{1}=\tilde{\Delta}$ over Δ_{1}. Therefore. the weakly holomorphic function $f(z)$ on $\Sigma \backslash \sigma$ gives rise to a holomorphic function $F\left(\tilde{z}^{\prime}\right)$ on $\tilde{\Delta}_{1}$ by the relation

$$
f\left(z^{\prime}, \xi_{r+1}\left(z^{\prime}\right) \ldots, \xi_{n}\left(z^{\prime}\right)\right)=F\left(z^{\prime}\right) .
$$

Let $\zeta^{\prime} \in \Delta_{1}$ and fix a ball δ centered at ζ^{\prime} in Δ_{1}. Then the function $F\left(\tilde{z}^{\prime}\right)$ for $z^{\prime} \in \delta$ defines m holomorphic functions $F_{\boldsymbol{J}}\left(z^{\prime}\right)(j=1, \ldots . m)$ on δ. If we construct the function

$$
\begin{aligned}
P\left(z^{\prime}, X\right) & :=\left(X-F_{1}\left(z^{\prime}\right)\right) \cdots\left(X-F_{m}\left(z^{\prime}\right)\right) \\
& =X^{m}+a_{1}\left(z^{\prime}\right) X^{m-1}+\cdots+a_{m}\left(z^{\prime}\right) \text { on } \delta \times \mathbf{C}_{X},
\end{aligned}
$$

then each $a_{j}\left(z^{\prime}\right)(j=1, \ldots, m)$ can be extended to a single-valued holomorphic function on Δ_{1}. Let $\xi^{\prime} \in \underline{S} \backslash \underline{\sigma}$. Since $f(z)$ is weakly holomorphic on $\Sigma \backslash \sigma$, it follows that $a_{j}\left(z^{\prime}\right)(j=1, \ldots, m)$ is bounded in a neighborhood δ^{\prime} of $\xi^{\prime} \in \Delta \backslash \underline{\sigma}$, so that $a_{j}\left(z^{\prime}\right)$ has an extension as a holomorphic function on $\Delta \backslash \underline{\sigma}$. Since $\underline{\sigma}$ is of dimension at most $r-2$ in the r-dimensional polydisk Δ, it follows from Hartogs' theorem that $a_{j}\left(z^{\prime}\right)(j=1, \ldots, m)$ has an extension as a holomorphic function on Δ, so that $P\left(z^{\prime}, X\right)$ is a monic pseudopolynomial in X whose coefficients are holomorphic functions on all of Δ. Thus $F\left(z^{\prime}\right)$ can be extended to a holomorphic function $\tilde{F}(\tilde{z})$ on the ramified domain $\dot{\Delta}$ by use of the relation $P\left(z^{\prime}, X\right)=0$ (cf., Example 6.1). This means that $f(z)$ can be extended to a weakly holomorphic function $\tilde{f}(z)$ on $\Sigma \cap A$ by means of the relation $\tilde{f}\left(z^{\prime}, \xi_{r+1}\left(z^{\prime}\right), \ldots, \xi_{n}\left(z^{\prime}\right)\right)=\bar{F}\left(z^{\prime}\right)$ for $\bar{z}^{\prime} \in \bar{\Delta}$.

Let Σ be an analytic set in a domain D in $\mathbf{C}^{\boldsymbol{n}}$ and let $q \in \Sigma$. If every function f which is weakly holomorphic at the point q is holomorphic at q, i.e., there exists a holomorphic function $F(z)$ defined in a neighborhood U of q in C^{n} such that $\left.F\right|_{c i n \Sigma}=f(p)$, then we say that Σ is normal at q, or the point q is a normal point of Σ. If Σ is normal at each point of Σ, then we say that Σ is a normal analytic set in D. Clearly any non-singular point of Σ is a normal point of Σ; however, it may also happen that a singular point of $\boldsymbol{\Sigma}$ is a normal point of $\boldsymbol{\Sigma}$.

EXAMPLE 7.3. In \mathbf{C}^{3} with variables z_{1}, z_{2} and w, we consider the analytic hypersurface Σ defined by the equation

$$
w^{2}-z_{1} z_{2}=0 .
$$

Then the origin O in \mathbf{C}^{3} is the only singular point of Σ, and it is a normal point of Σ.

To prove this, let \mathcal{D} denote the projection of Σ onto \mathbf{C}^{2} with variables z_{1}, z_{2} : $\mathcal{D}=\pi(\Sigma)$. Thus \mathcal{D} is a two-sheeted ramified domain over \mathbf{C}^{2} determined by $\sqrt{z_{1} z_{2}}$ and the branch set \mathcal{L} of \mathcal{D} lies over $L:=\pi(\mathcal{L})=\Delta \cap\left(\left\{z_{1}=0\right\} \cup\left\{z_{2}=0\right\}\right)$. Let $f(p)$ be a weakly holomorphic function defined on an open neighborhood v of the origin O in Σ. We let $V \subset \mathcal{D}$ denote the open set which corresponds to v. By taking a smaller set V if necessary, we can assume that V is a two-sheeted ramified domain over a polydisk Δ centered at $(0,0)$ in C^{2} without relative boundary. Thus over each $\left(z_{1}, z_{2}\right) \in \Delta \backslash L$, we can find two points $p_{1}\left(z_{1}, z_{2}\right)$ and $p_{2}\left(z_{1}, z_{2}\right)$ in V. If we set

$$
f_{j}\left(z_{1}, z_{2}\right):=f\left(z_{1}, z_{2}, p_{j}\left(z_{1}, z_{2}\right)\right) \quad(j=1,2)
$$

then $f_{j}\left(z_{1}, z_{2}\right)$ becomes a (single-valued) holomorphic function on the ramified domain V with the property that if $\left(z_{1}, z_{2}\right)$ traces a closed curve in $\Delta \backslash L$ in such a manner that $p_{1}\left(z_{1}, z_{2}\right)$ moves in a continuous fashion to $p_{2}\left(z_{1}, z_{2}\right)$, then $f_{1}\left(z_{1}, z_{2}\right)$ continuously varies to $f_{2}\left(z_{1}, z_{2}\right)$. Thus the pair of functions $f_{j}\left(z_{1}, z_{2}\right)(j=1,2)$ has the same behavior as the pair $\pm \sqrt{z_{1} z_{2}}$. It follows that if we define

$$
\begin{aligned}
& a\left(z_{1}, z_{2}\right):=\frac{f_{1}\left(z_{1}, z_{2}\right)-f_{2}\left(z_{1}, z_{2}\right)}{2 \sqrt{z_{1} z_{2}}} \\
& b\left(z_{1}, z_{2}\right):=\frac{f_{1}\left(z_{1}, z_{2}\right)+f_{2}\left(z_{1}, z_{2}\right)}{2}
\end{aligned}
$$

then $a\left(z_{1}, z_{2}\right)$ and $b\left(z_{1}, z_{2}\right)$ are single-valued on all of Δ except perhaps for the complex lines $z_{1}=0$ and $z_{2}=0$. However, it is clear that $b\left(z_{1}, z_{2}\right)$ is holomorphic on Δ. Moreover, since $f_{1}=f_{2}$ on L except for the origin (0.0), we see that $a\left(z_{1}, z_{2}\right)$
is holomorphic in $\Delta \backslash\{(0.0)\}$, and hence on all of Δ from Osgood's theorem. Thus we can define the holomorphic function

$$
F\left(z_{1}, z_{2}, w\right):=a\left(z_{1}, z_{2}\right) u+b\left(z_{1}, z_{2}\right)
$$

in $\Delta \times \mathbf{C}_{u}$. We have $f(p)=\left.F\left(z_{1}, z_{2}, u\right)\right|_{v}$ and hence the origin O is a normal point of Σ.

In the case when Σ is an analytic hypersurface in $D \subset C^{n}$ we have the following fact.

Remark 7.3. Let Σ be an analytic hypersurface in a domain $D \subset \mathbf{C}^{\boldsymbol{n}}$. If each point of Σ except for an analytic set σ of dimension at most $n-3$ is a norınal point of Σ, then Σ is a normal analytic set in D.

To prove this, fix $p_{0} \in \sigma$ and let $f(p)$ be a weakly holomorphic function on an open neighborhood $v \subset \Sigma$ of p_{0}. For simplicity, we set $p_{0}=0$ in \mathbf{C}^{n} and we choose Euclidean coordinates $\left(z_{1}, \ldots, z_{n}\right)$ which satisfy the Weierstrass condition for σ at 0 . We take a polydisk $\Delta=\Delta_{1} \times \cdots \times \Delta_{n}$ centered at 0 in \mathbf{C}^{n} and a holomorphic function $\phi(z)$ in Δ such that $\Sigma \cap \Delta=\{\phi(z)=0\}$. Since $\operatorname{dim} \sigma \leq n-3$. we can find a polydisk of the form $\Delta^{\prime}=\left(\Delta_{1}^{\prime} \times \Delta_{2}^{\prime} \times \Delta_{3}^{\prime}\right) \times\left(\Delta_{4} \times \cdots \times \Delta_{n}\right)$ centered at 0 , such that $\Delta_{i}^{\prime} \subset \subset \Delta_{i}(i=1,2,3)$ and such that $\Delta^{0}:=\Delta \backslash \Delta^{\prime}$ does not intersect σ. By assumption, for each point $p \in \Sigma \cap \Delta^{0}$ we can find a neighborhood $\delta_{p} \subset \Delta^{0}$ of p and a holomorphic function $F_{p}(z)$ in δ_{p} such that $\left.F_{p}(z)\right|_{\delta_{\rho} \cap \sigma}=f(p)$ on $\delta_{p} \cap \sigma$. We define a Cousin I distribution $\mathcal{C}=\left\{\left(g_{p}, \delta_{p}\right)\right\}$ on Δ^{0} as follows: for $p \in \Sigma \cap \Delta^{0}$, we take the above neighborhood δ_{p} of p and the meromorphic function $g_{p}(z)=F_{p}(z) / \varphi(z)$ in δ_{p}, and, for $p \in \Delta^{0} \backslash \Sigma$. we take a neighborhood δ_{p} of p with $\delta_{p} \cap \Sigma=0$ and set $g_{p}(z) \equiv 1$. From Lemma 3.5 (Cartan) there is a solution $G(z)$ of the Cousin I problem for \mathcal{C} in Δ^{0}. If we define $F(z):=G(z) \rho(z)$, then $F(z)$ is a holomorphic function on Δ^{0} and $\left.F(z)\right|_{\Sigma \cap د^{0}}=f(p)$ on $\Sigma \cap \Delta^{0}$. Since $F(z)$ can be holomorphically extended to Δ by Osgood's theorem, we see that $\left.F(z)\right|_{\Delta า \Sigma}=f(p)$ on $\Delta \cap \Sigma$.
7.1.3. Liftings of Analytic Sets. To treat analytic sets in a simpler fashion. we introduce two types of liftings of such sets. Let D be a domain in \mathbf{C}^{n} with variables z_{1}, \ldots, z_{n}, and let Σ be an analytic set in D.
Lifting of the first kind Let $; \mathcal{j}(p)(j=1 \ldots . m)$ be weakly holomorphic functions on Σ. Using the variables $w_{1} \ldots, u_{m}$ for \mathbf{C}^{m}. we consider the product domain $\Lambda=D \times \mathbf{C}^{m} \subset \mathbf{C}^{\boldsymbol{n + m}}$. In the domain Λ we consider the set

$$
E: w_{j}=\varphi_{j}(p) \quad(p \in \Sigma, j=1 \ldots, m)
$$

The closure $\Sigma^{0}:=\bar{E}$ in Λ is an analytic set in A. We call the analytic set Σ^{0} in Λ a lifting of the first kind of the analytic set Σ in D throngh $p_{j}(p)(j=1, \ldots . m)$.

The projection $\tilde{\pi}$ from $\mathbf{C}^{\boldsymbol{n + m}}$ to $\mathbf{C}^{\boldsymbol{n}}$ induces a projection from $\boldsymbol{\Sigma}^{\mathbf{0}}$ onto Σ, which we denote by π_{0}.

$$
\pi_{0}: \Sigma^{0} \subset \mathbf{C}^{n+m} \rightarrow \Sigma \subset \mathbf{C}^{n}
$$

If p is a non-singular point of Σ in D, then each q in $\pi_{0}^{-1}(p)$ is also a non-singular point of $\Sigma^{\mathbf{0}}$ in Λ. We let σ be the set of singular points of Σ in D, and we set $\sigma^{0}:=\pi_{0}^{-1}(\sigma)$. Note it may occur that each point of $\pi_{0}^{-1}\left(p_{0}\right)$ is a non-singular point of Σ^{0} for some $p_{0} \in \sigma$.

The projection π_{0} gives a bijection between $\Sigma^{0} \backslash \sigma^{0}$ and $\Sigma \backslash \sigma$. Thus, from the definition of a weakly holomorphic function on an analytic set. for each weakly
holomorphic function $f(p)$ at p_{1} on Σ we get a weakly holomorphic function $\tilde{f}(q)$ at a point q_{11} in $\pi_{11}^{-1}\left(p_{11}\right) \subset \Sigma^{0}$ by setting $\tilde{f}(q):=f\left(\pi_{u}(q)\right)$. The converse is also true: i.e., the family $\mathcal{W}_{\mathcal{E}}$ of all weakly holomorphic functions on Σ coincides with the family $\mathcal{W}_{\mathbb{S}^{\prime \prime}}$ of all weakly holomorphic functions on $\Sigma^{\prime \prime}$ via the projection π_{0}. Under this correspondence $f(p) \rightarrow \bar{f}(q)$, if f is holomorphic at a point p_{11} in Σ, then f is holomorphic at each point of $\pi_{0}^{-1}\left(p_{0}\right)$ in Σ^{0}. Moreover, it may occur that every function f which is weakly holomorphic at p_{v} in Σ corresponds to the holomorphic function \tilde{f} at each point of $\pi_{10}^{-1}\left(p_{0}\right)$ in Σ^{0}; i.e., even if p_{1}, is not a normal point of Σ. each point in $\pi_{0}^{-1}\left(p_{1}\right)$ nay be a normal point of Σ^{0}.

If Σ is pure r-dimensional, then the irreducible components of Σ in D correspond in a one-to-one manner to the irreducible components of Σ^{0} in A . Moreover, if we choose coordinates $z=\left(z_{1} \ldots, z_{r}, z_{r+1} \ldots, z_{n}\right)$ which satisfy the Weierstrass condition for the analytic set Σ. then the coordinates $\left(z, w^{w}\right)$ satisfy the Weierstrass condition for Σ^{0}. The projection \mathcal{D} of Σ over $\mathbf{C}_{\Sigma_{1}, \ldots, \Sigma_{\text {r }}}^{r}$ coincides with that of $\Sigma^{\prime \prime}$ as a ramified domain over $\mathbf{C}_{z_{1}, \ldots, z,}^{r}$, and $\mathcal{W}_{\mathcal{E}}\left(\mathcal{W}_{\mathcal{L}^{\prime \prime}}\right)$ can be identified with the family of all holomorphic functions on \mathcal{D}.

From Example 6.3 we see that there exists an analytic set σ in a domain $D \subset \mathbf{C}^{n}$ such that, for some point $q \in \sigma$. there do not exist a neighborhood δ of q in D and a lifting of the first kind $\tilde{\sigma}$ of $\sigma \cap \delta$ in a domain $\delta \subset \mathbf{C}^{n+1 /}$ with the property that if we set $\pi_{0}: \tilde{\sigma} \rightarrow \sigma$, then $\bar{\sigma}$ is non-singular at any point of $\pi_{0}^{-1}(q)$. However. we shall show in section 8.2 that for any analytic set σ in D and any point $q \in \sigma$. we can construct a lifting of the first kind $\bar{\sigma}$ in $\bar{\delta}$ of $\sigma \cap \delta$ such that $\dot{\sigma}$ is normal at each point $\pi_{0}^{-1}(q)$.

Lifting of the second kind We decompose Σ into $\Sigma:=\Sigma_{0} \cup \cdots \cup \Sigma,(r<n)$, where each $\Sigma_{k}(k=0.1 \ldots . r)$ is a pure k-dimensional analytic set in D. We introduce \mathbf{C}^{r} with variables $u_{1} \ldots \ldots u_{r}$ and the product space $\Lambda=D \times \mathbf{C}^{r}$. For $k=0,1, \ldots, r$ we define the k-dimensional hyperplane

$$
H_{k}: u_{j}=0 \quad(j=k+1 \ldots . r) \quad \text { in } \mathbf{C}^{\prime} .
$$

where by convention we set $H_{r}:=\mathbf{C}^{\boldsymbol{r}}$. In A we define

$$
\Sigma_{k}^{*}=\Sigma_{k} \times H_{r-k} \quad(k=0.1 \ldots \ldots r) . \quad \Sigma^{*}=\Sigma_{0}^{*} \cup \cdots \cup \Sigma_{r}^{*} .
$$

In case $\Sigma_{k}=0$. we set $\Sigma_{k} \times H_{r-k}=0$. Then Σ^{*} is a pure r-dimensional analytic set in A . and $\Sigma^{*} \cap(D \times\{(0, \ldots, 0)\}$ in A can be identified with Σ in D. We call the analytic set Σ^{*} in A a lifting of the second kind of the analytic set Σ in D.

The projection $\tilde{\pi}$ from \mathbf{C}^{n+r} to \mathbf{C}^{n} induces a projection from Σ^{*} onto Σ. which will be denoted by π..

$$
\pi_{-}: \Sigma^{*} \subset \mathbf{C}^{n+r} \rightarrow \Sigma \subset \mathbf{C}^{n}
$$

If $p \in \Sigma$ is a non-singular point of Σ in D. then each point q in $\pi_{0}^{-1}(p)$ is also a non-singular point of Σ^{*} in A. Conversely, if $q \in \Sigma^{*}$ is a non-singular point of Σ^{*}, then $\pi_{*}(q)$ is a non-singular point of Σ. We note that for any weakly holomorphic function $f(p)$ at a point p_{0} on Σ. the function $\tilde{f}(q):=f\left(\pi_{-}(q)\right)$ is weakly holomorphic at each point $q_{0} \in \pi_{0}^{-1}\left(p_{0}\right)$ on Σ^{*}. Conversely. if $\tilde{f}(q)$ is a weakly holomorphic function on Σ^{*}, then $\tilde{f} \mid \leq$ becomes a weakly holomorphic function on Σ.

7.2. Universal Denominators

7.2.1. Weierstrass Theorem. Let $\mathbf{C}^{n+1}=\mathbf{C}^{n} \times \mathbf{C}_{\boldsymbol{w}}$ with variables $z_{1} \ldots$. z_{n} and u. Let $D \subset C^{n}$ be a domain and let

$$
F(z \cdot w)=u^{\prime}+a_{1}(z) u^{l-1}+\cdots+a_{l}(z)
$$

be a monic polynomial in w such that $a_{i}(z)(i=1, \ldots, l)$ is a holomorphic function in D. We do not assume that $F(z, u)$ is irreducible, but we do assume that $F(z, u)$ has no multiple factors. We set $A:=D \times \mathbf{C}_{v} \subset \mathbf{C}^{n+1}$ and consider the analytic hypersurface

$$
\Sigma: F(z, u)=0 \quad \text { in } A .
$$

We note that $(\partial F / \partial w)(\Sigma, w) \not \equiv 0$ on each irreducible component of Σ.
Then we have the following proposition concerning the representation of weakly holomorphic functions on Σ.

Proposition 7.1. Let $o(p)$ be a weakly holomorphic function on the analytic hypersurface Σ. Then there exists a unique pseudopolynomial $\Phi(z, u)$ in u of degree at most $l-1$.

$$
\Phi(z, w)=A_{0}(z) u^{l-1}+\cdots+A_{l-1}(z) .
$$

where each $A_{i}(z)(i=0.1, \ldots, l-1)$ is a holomorphic function on D. such that

$$
\begin{equation*}
\phi(p)=\frac{\Phi\left(z, u^{\prime}\right)}{\left(\partial F / \partial u^{\prime}\right)\left(z, u^{\prime}\right)} \quad \text { on } \Sigma . \tag{7.1}
\end{equation*}
$$

Proof. Let $d(z)$ be the discriminant of $F\left(z, u^{\prime}\right)$ with respect to u. Thus. $d(z)$ is a holomorphic function in D with $d(z) \not \equiv 0$ in D. We set $\sigma:=\{z \in D \mid d(z)=0\}$ and $D^{\prime}=D \backslash \sigma$. Fix $z \in D^{\prime}$ and let δ be a simply counected neighborhood of z in D^{\prime}. Then the equation $F(z, u)=0$ has l distinct solutions $u^{\prime}=\eta_{\jmath}(z)(j=1, \ldots, l)$, so that each $\eta_{j}(z)$ is a holomorphic function on δ and $F\left(z, u^{w}\right)=\prod_{j=1}^{l}\left(w-\eta_{j}(z)\right)$ in $\delta \times \mathbf{C}_{u}$. We let $v_{j}(j=1, \ldots, l)$ denote the portion of Σ defined by $u=\eta_{j}(z)$ for $z \in \delta$. We write $\circ_{j}(p)=\left.\varphi(p)\right|_{2}$, and regard $o_{j}(p)$ as a holomorphic function on δ; thus we denote it by $\phi_{j}(z)$. Next we consider the following function on $\delta \times \mathbf{C}_{4}$:

$$
\begin{aligned}
\Phi(z, w) & :=F\left(z, u^{\prime}\right)\left\{\frac{o_{1}(z)}{u^{\prime}-\eta_{1}(z)}+\cdots+\frac{\phi_{l}(z)}{w^{\prime}-\eta_{l}(z)}\right\} \\
& =\sum_{j=1}^{1} o_{j}(z)\left(u-\eta_{1}(z)\right) \cdots\left(u^{\prime}-\eta_{J}(z)\right) \cdots\left(u-\eta_{l}(z)\right) .
\end{aligned}
$$

where ô denotes the omission of 0 . Note that $\Phi\left(z, u^{\prime}\right)$ is of the form

$$
\Phi(z, w)=A_{0}(z) u^{l-1}+\cdots+A_{t-1}(z) \quad \text { for } z \in \delta
$$

where each $A_{i}(z)$ is a holomorphic function on δ, and $\Phi(z, w)$ satisfies the relation

$$
\Phi\left(z, \eta_{j}(z)\right)=\varphi_{j}(z) \frac{\partial F}{\partial w}\left(z, \eta_{j}(z)\right) \quad \text { for } z \in \delta .
$$

By analytic continuation and the expression of $A_{t}(z)(i=0.1, \ldots, l-1)$ as a symmetric function of $\phi_{1}(z) \ldots . \varphi_{1}(z)$. each $A_{i}(z)$ becomes a singlevalued, bounded holomorphic function in D^{\prime}. It follows from Riemann's removable singularity theorem that each $A_{1}(z)$ is holomorphic in all of D. Thus, $\Phi(z, w)$ is a pseudopolynonial
in w of degree at most $l-1$ whose coefficients $A_{i}(z)$ are holomorphic functions on D, and

$$
\Phi(z, u)=\phi(p) \frac{\partial F}{\partial w}(z, w) \quad \text { for }(z, w)=p \in \Sigma .
$$

Now take any $p=(z, u) \in \Sigma$ such that $z \notin \sigma$. Since $\frac{\partial F}{\partial w}(p) \neq 0, \phi(p)$ is of the form (7.1). Furthermore. by analytic continuation (7.1) holds at any non-singular point of Σ. The uniqueness is clear from the Weierstrass preparation theorem (Remark 2.3).

Proposition 7.1 says that any weakly holomorphic function $\varphi(p)$ on an analytic hypersurface Σ in Λ is the restriction of the meromorphic function $G(z . w):=$ $\frac{\phi(z, u)}{(\partial F ; \partial w) \mid z, w]}$ in A to Σ. Note the denominator $\partial F / \partial w$ does not depend on $\phi(p)$. Let $p_{0}=\left(z_{0}, w_{0}\right)$ be a singular point of Σ. If $\rho(p)$ is a weakly holomorphic function but is not a holomorphic function at p_{0}, then p_{0} is a point of indeterminacy of the function $G(z, w)$ associated to $\phi(p)$.

A non-singular point p_{0} of Σ such that $z_{0} \in \sigma$ may be a point of indeterminacy of $G(z, u)$. For example, take the non-singular hypersurface $\Sigma: F(z, u)=w^{2}-z=0$ in \mathbf{C}^{2} and let $\Theta(p)=\sqrt{z}$. Then we have $\partial F / \partial w=2 w . \Phi(z, w)=2 z$ and $G(z, w)=$ z / u. For another example. take $\Sigma: F(z, w)=w\left(w^{2}-z\right)=0$. which is singular at $(0,0)$. Let $\phi(p)=1$ on $w^{2}=z$, while $\phi(p)=-1$ on $w=0$. Then $\phi(p)$ is discontinuous at $\left(z, w^{\prime}\right)=(0,0)$. Here. $G(z, w)=\left(w^{2}+z\right) /\left(3 w^{2}-z\right)$.

Remark 7.4. Using the same notation $\Sigma: F(z, w)=0$ in $\Lambda=D \times \mathbf{C}_{w}$ as in Proposition 7.1, the proposition implies the following fact: Let $\tilde{\Sigma}$ be a lifting of Σ of the first kind.

$$
\tilde{\Sigma}: w_{j}=\varphi_{j}(p) \quad(p \in \Sigma, j=1, \ldots, m)
$$

which lies in $\mathrm{A} \times \mathbf{C}^{m}$. Here each $\hat{\boldsymbol{p}_{j}}(p)(j=1 \ldots \ldots m)$ is a weakly holomorphic function on Σ. Then, for each $j=1, \ldots, m$. there exists a pseudopolynomial $\Phi_{J}(z, u)$ in w of degree at most $l-1$.

$$
\Phi_{j}(z, w)=A_{0}^{(j)}(z) w^{i-1}+\cdots+A_{i-1}^{(j)}(z) .
$$

where each $A_{2}^{(j)}(z)(i=0,1 \ldots . l-1)$ is a holomorphic function on D, such that the linear polynomial $\Phi_{j}^{-}(z, w, w$,$) in u$, defined by

$$
\Phi_{j}^{:}\left(z, w^{\prime}, u_{j}\right):=w_{j} \frac{\partial F}{\partial u^{\prime}}(z, w)-\Phi_{J}\left(z, w^{\prime}\right) \quad \text { in } \Lambda \times \mathbf{C}^{m}
$$

vanishes on $\tilde{\Sigma}$.
7.2.2. Universal Denominators. Let Σ be an analytic set in a domain D in C^{n}. Let δ be an open set in D and let $W^{-}(z)$ be a holomorphic function in δ. We set $v:=\delta \cap \Sigma$. Suppose $W^{\prime}(z)$ satisfies the following condition: for any $q \in v$ and any weakly holomorphic function $f(p)$ at q. the weakly holomorphic function $f(p) W(p)$ at \boldsymbol{q} is a holomorphic function at \boldsymbol{q}. This means that there exist a neighborhood δ_{q} of q in δ and a holomorphic function $F(z)$ on δ_{q} such that $F(z)=f(p) W(p)$ on $\varepsilon \cap \delta_{q}$. Then we say that $W^{\prime}(z)$ is a universal denominator ${ }^{2}$ for Σ in δ. Fix $p \in \Sigma$ and let $\boldsymbol{W}(z)$ be a holomorphic function at p in $\mathbf{C}^{\boldsymbol{n}}$. If there exists a neighborhood δ of p in \mathbf{C}^{n} such that $W^{\prime}(z)$ is a universal denominator for Σ in δ, then we say that $W(z)$ is a universal denominator for Σ at p. Clearly if $W(z) \equiv 0$ on Σ, then $W(z)$ is a universal denominator for Σ in D.

[^31]Proposition 7.1 yields the following result.
Corollary 7.1. Using the same notation as in Proposition 7.1, the function $\partial F / \partial w$ is a universal denominator at each point of Σ in Λ.

Proof. Let $q \in \Sigma$ and let $f(p)$ be a weakly holomorphic function at q. We may assume that $f(p)$ is weakly holomorphic on $v:=\Sigma \cap \lambda$, where $\lambda:=\delta \times \gamma \subset D \times C_{w}$ is a polydisk centered at q with $\bar{v} \cap[\delta \times \partial \gamma]=\emptyset$. Then there exists a monic polynomial $F_{1}(z, w)$ in w.

$$
F_{1}(z, w)=w^{k}+b_{1}(z) w^{k-1}+\cdots+b_{k}(z)
$$

whose coefficients are holomorphic functions on δ, with $1 \leq k \leq l$ and $v=\{(z, w) \in$ $\left.\delta \times \mathbf{C}_{w} \mid F_{1}(z, w)=0\right\}$. By applying Proposition 7.1 to F_{1} in $\delta \times \mathbf{C}_{w}$, we see that $\left.\left(\partial F_{1} / \partial w\right) \cdot f\right|_{v}$ has a holomorphic extension $P_{1}(z, w)$ in $\delta \times \mathbf{C}_{w}$ of the form

$$
P_{1}(z, w)=B_{0}(z) w^{k-1}+\cdots+B_{k-1}(z)
$$

On the other hand, $F(z, w)$ can be written as

$$
F(z, w)=F_{1}(z, w) F_{2}(z, w) \quad \text { in } \delta \times \mathbf{C}_{w}
$$

where $F_{2}(z, w)$ is also a monic polynomial in w of degree $l-k \geq 0$ whose coefficients are holomorphic functions in δ with $F_{2}(z, w) \neq 0$ at each point $(z, w) \in \lambda$. Since

$$
\frac{\partial F}{\partial w}=\left(\frac{\partial F_{1}}{\partial w}\right) / F_{2} \quad \text { on } v
$$

it follows that $\left.\frac{\partial F}{\partial w} \cdot f\right|_{v}$ has a holomorphic extension $P_{1}(z, w) / F_{2}(z, w)$ in λ. Hence, the function $\partial F / \partial w$ in Λ is a universal denominator at each point of Σ.

The following two propositions indicate the relation between our two kinds of liftings of analytic sets and universal denominators.

Proposition 7.2. Let Σ be an analytic set in a domain D in \mathbf{C}^{n}. Let $\varphi_{j}(p)$ $(j=1, \ldots, m)$ be weakly holomorphic functions on Σ. We consider a lifting Σ^{0} of the first kind of Σ,

$$
\Sigma^{0}: w_{j}=\varphi_{j}(p) \quad(p \in \Sigma, j=1, \ldots, m)
$$

in $\Lambda:=D \times \mathbf{C}_{w}^{m}$. If a holomorphic function $W(z)$ in $\delta \subset D$ is a universal denominator for Σ in δ, then $W(z)$, considered as a holomorphic function on $\delta \times \mathbf{C}_{\boldsymbol{w}}^{\boldsymbol{m}}$ which is independent of w, is a universal denominator for Σ^{0} in $\delta \times \mathbf{C}_{\boldsymbol{w}}^{\boldsymbol{m}}$.

Proof. The proposition follows from the fact that the weakly holomorphic functions on $\Sigma^{0} \cap\left(\delta \times \mathbf{C}_{\boldsymbol{w}}^{\boldsymbol{m}}\right)$ and the weakly holomorphic functions on $\Sigma \cap \delta$ are in one-to-one correspondence via the standard projection mapping.

Proposition 7.3. Let Σ be an analytic set in a domain D in \mathbf{C}^{n} and let $\Sigma=$ $\Sigma_{0} \cup \cdots \cup \Sigma_{r}$, where $\Sigma_{i}(i=1, \ldots, r)$ is a pure i-dimensional analytic set in D. Suppose Σ^{*} is a lifting of the second kind of Σ in $\Lambda:=D \times \mathbf{C}_{u}^{r}$. Let δ be an open set in D and let $W(z, u)$ be a holomorphic function in a neighborhood λ of $\delta \times\{0\}$ in A. If $W(z, u)$ is a universal denominator for Σ^{*} in λ, then $W(z, 0)$ is a universal denominator for Σ in δ.

This easily follows from the definition of universal denominators.
Using these propositions, we have the following result.

Proposition 7.4. Let Σ be an analytic set in a domain D in C^{n} and fix $p_{0} \in \Sigma$. Then there exists a neighborhood A of μ_{0} in D such that for any given neighborhood Λ_{0} of p_{0} with $\Lambda_{0} \subset \subset \Lambda$ and any non-singular point q_{0} of Σ in Λ_{0}. there exists a universal denominator $W_{0}(z)$ of Σ in Λ^{*}, uhere $\Lambda_{0} \subset \subset A^{*} \subset \subset A$. uith $W_{0}(z) \not \equiv 0$ on any irreducible component of Σ in Λ_{0}. and $W_{0}\left(q_{0}\right) \neq 0$.

Proof. Since the singular points of Σ correspond to the singular points of the lifting Σ^{*} of the second kind of Σ, it follows from Proposition 7.3 that Σ may be assumed to be a pure r-dimensional analytic set in D. Fix $\mu_{1}=\left(z_{1}^{\prime \prime} \ldots ., z_{n}^{0}\right) \in \Sigma$ and choose coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$ of C^{n} which satisfy the Weierstrass condition for Σ at p_{1}. Then we can take

$$
\begin{aligned}
\Delta^{\prime}: & \left|z_{\jmath}-z_{j}^{0}\right| \leq \rho_{J} \\
\Delta_{k}: & \quad\left(z_{k}-z_{k}^{0} \mid \leq \rho_{k}\right.
\end{aligned} \quad\left(\begin{array}{l}
(k=r+1 \ldots, r) . \\
\end{array}\right.
$$

so that if we set $\Gamma:=\Delta_{r+1} \times \cdots \times \Delta_{n}$ and $\Lambda=\Delta^{\prime} \times \Gamma$, then

$$
\Lambda \subset \subset D, \quad \Sigma \cap\left[\Delta^{\prime} \times \partial \Gamma\right]=0
$$

We let \mathcal{D} denote the projection of $\Sigma \cap \Lambda$ over Δ^{\prime}, so that \mathcal{D} is a ramified domain over Δ^{\prime} without relative boundary: For simplicity, we write $z^{\prime}:=\left(z_{1}, \ldots, z_{r}\right)$. Then $\Sigma \cap A$ can be described as

$$
\left(z_{r+1}, \ldots, z_{n}\right)=\left(\eta_{r+1}\left(z^{\prime}\right) \ldots, \eta_{n}\left(z^{\prime}\right)\right), \quad z^{\prime} \in \mathcal{D}
$$

where each $\eta_{j}\left(z^{\prime}\right)(j=r+1, \ldots, n)$ is a holomorphic function on \mathcal{D}. We put

$$
\Delta=\Delta^{\prime} \times \Delta_{r+1}, \quad \Gamma^{\prime}=\Delta_{r+2} \times \cdots \times \Delta_{n} .
$$

Since the condition $\Sigma \cap\left[\Delta^{\prime} \times \partial \Gamma\right]=\emptyset$ implies that $\Sigma \cap\left[\Delta \times \partial \Gamma^{\prime}\right]=\emptyset$, it follows from Proposition 2.3 that the projection $\underline{\underline{\Sigma}}$ of Σ onto $\Delta \subset \mathrm{C}^{r+1}$ is an analytic set in Δ. We note that $\underline{\Sigma}$ is an analytic hypersurface in Δ. We let \mathcal{D}^{\prime} denote the projection of $\underline{\underline{\Sigma}}$ over Δ^{\prime}. Then $\underline{\underline{\Sigma}}$ can be described as

$$
\begin{equation*}
\underline{\underline{E}}: F\left(z^{\prime} \cdot z_{r+1}\right) \equiv z_{r+1}^{\prime}+a_{1}\left(z^{\prime}\right) z_{r+1}^{l-1}+\cdots+a_{l}\left(z^{\prime}\right)=0 \quad \text { in } \Delta . \tag{7.2}
\end{equation*}
$$

where each $a_{i}\left(z^{\prime}\right)(i=1 \ldots . l)$ is a holomorphic function in Δ^{\prime} : i.e.. $z_{r+1}=$ $\eta_{r+1}\left(z^{\prime}\right), z^{\prime} \in \mathcal{D}^{\prime}$, coincides with the solution set of $F\left(z^{\prime}, z_{r+1}\right)=0$. Furthermore, we nay assume that $F\left(z^{\prime}, z_{r+1}\right)$ has no multiple factors. It follows from Corollary 7.1 that

$$
W^{\prime}\left(z^{\prime}, z_{r+1}\right)=\frac{\partial F}{\partial z_{r+1}}\left(z^{\prime}, z_{r+1}\right)
$$

is a universal denominator for $\underline{\Sigma}$ in Δ such that $W^{\prime}\left(z^{\prime}, z_{r+1}\right) \not \equiv 0$ on each irreducible component of $\underline{\Sigma}$. On the other hand, Σ in Λ is a lifting of the first kind of $\underline{\Sigma}$ through $\eta_{k}(p)(k=r+2 \ldots, n)$. From Proposition 7.2, it follows that $\mathcal{W}^{\prime}(z):=W^{\prime}\left(z^{\prime}, z_{r+1}\right)$. considered as independent of z_{r+2}, \ldots, z_{n}. is a universal denominator for Σ in Λ which is not identically zero on each irreducible component of Σ.

Using the variable $z_{k}(k=r+2 \ldots, n)$ instead of z_{r+1} we obtain a universal denominator $W_{k}\left(z^{\prime}, z_{k}\right)$ for Σ in Λ which is not identically zero on each irreducible component of Σ.

Let Λ_{0} be a neighborhood of p_{0} with $\Delta_{0} \subset \subset \Lambda$ and let $q_{0} \in \Lambda_{0}$ be a nonsingular point of Σ. For simplicity we take $q_{0}=0$. If $W_{k}(0,0) \neq 0$ for some $k(r+1 \leq k \leq n)$, then we can take $W_{0}(z)$ to be $W_{k}\left(z^{\prime}, z_{k}\right)$ in Λ and set $\Lambda^{*}=\Lambda$.
and we are done. Thus we assume that $W_{k}^{\prime}(0,0)=0$ for each $k=r+1 \ldots, n$. As in (7.2) we set, for each $k=r+1 \ldots, n$.

$$
\underline{\Sigma}_{k}: \quad F_{k}\left(z^{\prime}, z_{k}\right) \equiv z_{k}^{m}+a_{k, 1}\left(z^{\prime}\right) z_{k}^{m-1}+\cdots+a_{k, m}\left(z^{\prime}\right)=0 \quad \text { in } \Delta^{\prime} \times \Delta_{k}
$$

in order that $W_{k}\left(z^{\prime}, z_{k}\right)=\left(\partial F_{k} / \partial z_{k}\right)\left(z^{\prime}, z_{k}\right)$ in Λ. Here m depends on k. Since $(0,0)$ is a non-singular point of Σ, it follows that

$$
\frac{\partial a_{k, m}}{\partial z_{i}}(0) \neq 0 \quad \text { for some } k(r+1 \leq k \leq n) \text { and } i(1 \leq i \leq r) \text { : }
$$

we take $k=r+1$ and $i=1$ for simplicity. For small $\varepsilon \neq 0$. we consider the following coordinate transformation of \mathbf{C}^{n} :

$$
\tilde{z}_{1}=z_{1}+\varepsilon z_{r+1}, \quad \tilde{z}_{j}=z_{j} \quad(j=2, \ldots, n) .
$$

If we again construct a universal denominator $\widetilde{\boldsymbol{W}}_{r+1}\left(\tilde{z}^{\prime}, \tilde{z}_{r+1}\right):=\partial \tilde{F}_{r+1} / \partial \tilde{z}_{r+1}$ in $\Lambda^{*}=\tilde{\Delta} \times \tilde{\Gamma}$ of the same type as $W_{r+1}\left(z^{\prime}, z_{r+1}\right)$ in Λ, then $\widetilde{W}_{r+1}(0,0)=$ $-\left(\frac{\partial a_{r+1}, m}{\partial_{1}}(0)\right) \varepsilon \neq 0$. Choose $\varepsilon \neq 0$ sufficiently small so that $\Lambda^{*} \subset \Lambda$ is close enough to Λ to ensure that $\Lambda_{0} \subset \subset \Lambda^{\cdot}$. Then. taking $W_{0}^{r}(z)$ to be $\widetilde{W}_{r+1}\left(\tilde{z}_{r+1}, z^{\prime}\right)$. the conclusion of the proposition is satisfied.

From this proposition we easily deduce the following corollary.
Corollary 7.2. Let Σ be an analytic set in a domain D in \mathbf{C}^{n} and let S be the set of singular points of Σ in D. Let $p \in \Sigma$. Then there exists a neighborhood δ of p in D such that the common zeros in δ of all universal denominators of Σ on δ are contained in $S \cap \delta$.

This corollary, combined with the fundamental theorem in Chapter 6. yields the following result, which will play an important role in the next chapter.

Corollary 7.3. Let Σ be a pure r-dimensional analytic set in a domain D in \mathbf{C}^{n} and let $p \in \Sigma$. There exists a neighborhood δ of p in D such that, if we urite $\Sigma_{\delta}:=\Sigma \cap \delta$, we can find a lifting of Σ_{δ} of the first kind.

$$
\left(\Sigma_{\delta}\right)^{n}: u_{j}=\eta_{,}(p) \quad\left(p \in \Sigma_{\delta}, \quad j=1, \ldots, m\right) .
$$

in $\delta^{0}:=\delta \times \mathbf{C}^{n}$, such that the common zeros in δ^{n} of all universal denominators for $\left(\Sigma_{\delta}\right)^{\prime \prime}$ in $\delta^{\prime \prime}$ are contained in an analytic set of dimension at most $r-2$ in $\delta^{\prime \prime}$.

Proof. Fix $p \in \Sigma$ and a closed polydisk $\delta:=\Delta^{\prime} \times \Delta^{\prime \prime} \subset \mathbf{C}^{r} \times \mathbf{C}^{n-r}$ centered at $p=\left(p^{\prime}, p^{\prime \prime}\right)$ which satisfies the Weierstrass condition for Σ, and such that. if we set $\Sigma_{\delta}:=\Sigma \cap \delta$, then $\Sigma_{\delta} \cap\left(\Delta^{\prime} \times \partial \Delta^{\prime \prime}\right)=0$. We let \mathcal{D} denote the projection of Σ_{δ} over Δ^{\prime}. Thus \mathcal{D} is a ramified domain over Δ^{\prime} without relative boundary. By taking a smaller δ centered at p if necessary, from Theorem 6.4 we can find a fundamental system $\left\{\Phi_{i}(p)\right\}_{i=1, \ldots, m}$ for $\mathcal{D} ;$ i.e., each $\Phi_{i}(p)$ is a holomorphic function on \mathcal{D} such that the set S of singular points of the graph

$$
\mathcal{C}: w_{i}=\Phi_{i}(p) \quad(p \in \mathcal{D}, i=1, \ldots, m)
$$

in $\Delta^{\prime} \times \mathbf{C}^{m}$ is of dimension at most $r-2$.
Since $\Phi_{i}(p)$ becomes a weakly holomorphic function on Σ_{δ}. we have a lifting of the first kind of Σ_{δ}.

$$
\left(\Sigma_{j}\right)^{0}: w_{1}=\Phi_{i}(p) \quad\left(p \in \Sigma_{\delta}, i=1, \ldots, m\right)
$$

in $\delta^{\prime \prime}:=\delta \times \mathbf{C}^{m} \subset \mathbf{C}^{n+m}$ such that the set of singular points of $\left(\Sigma_{\delta}\right)^{10}$ is of dimension at most $(r-2)$. Thus, the corollary follows from Corollary 7.2.

7.3. \mathcal{O}-Modules

7.3.1. Definition of \mathcal{O}-Modules. In \mathbf{C}^{n} with variables $z_{1}, \ldots, z_{\mathrm{n}}$, let $\delta \subset$ \mathbf{C}^{n} be an open set and let $\lambda \geq 1$ be an integer. Take λ single-valued holomorphic functions $f_{j}(z)(j=1, \ldots, \lambda)$ on δ and set

$$
f(z):=\left(f_{1}(z), \ldots, f_{\lambda}(z)\right)
$$

We call $f(z)$ a holomorphic vector-valued function on δ of rank λ, and $f_{j}(z)(j=1, \ldots, \lambda)$ is the j-th component of $f(z)$. We let \mathcal{O}^{λ} denote the set of all pairs $(f(z), \delta)$, where δ is an open set in \mathbf{C}^{n} and $f(z)$ is a holomorphic vector-valued function on δ of rank λ. In case $\lambda=1$ we use the notation \mathcal{O}.

Let \mathcal{J}^{λ} be a subset of \mathcal{O}^{λ}. Suppose \mathcal{J}^{λ} satisfies the following two conditions:
(1) If $\left(f_{1}(z), \delta_{1}\right),\left(f_{2}(z), \delta_{2}\right) \in \mathcal{J}^{\lambda}$ and $\delta_{1} \cap \delta_{2} \neq \emptyset$, then $\left(f_{1}(z)+f_{2}(z), \delta_{1} \cap \delta_{2}\right) \in$ \mathcal{J}^{λ}.
(2) Let $\delta^{\prime} \subset C^{n}$ be an open set and let $\alpha(z)$ be a holomorphic function on δ^{\prime}. If $(f(z), \delta) \in \mathcal{J}^{\lambda}$ and $\delta \cap \delta^{\prime} \neq \emptyset$, then $\left(\alpha(z) f(z), \delta \cap \delta^{\prime}\right) \in \mathcal{J}^{\lambda}$.
Then we say that \mathcal{J}^{λ} is an \mathcal{O}-module of rank λ, or simply, an \mathcal{O}-module. In case $\lambda=1$, we call $\mathcal{J}^{\lambda}=\mathcal{J}$ an \mathcal{O}-ideal. ${ }^{3}$

Let \mathcal{J}^{λ} be an \mathcal{O}-module. If $(f(z), \delta) \in \mathcal{J}^{\lambda}$, then we say that $f(z)$ belongs to \mathcal{J}^{λ} on δ. From condition (2), $(f(z), \delta) \in \mathcal{J}^{\lambda}$ and $\delta^{\prime} \subset \delta$ imply that $\left(f(z), \delta^{\prime}\right) \in \mathcal{J}^{\lambda}$. Let $p \in \mathbf{C}^{n}$ and let $f(z)$ be a holomorphic vector-valued function of rank λ at a point p. If there exists a neighborhood δ of p in \mathbf{C}^{n} such that $f(z)$ belongs to \mathcal{J}^{λ} on δ, then we say that $f(z)$ belongs to \mathcal{J}^{λ} at the point p.

Let $D \subset \mathbf{C}^{\boldsymbol{n}}$ be a domain and let \mathcal{J}^{λ} be an \mathcal{O}-module. If the open set $\delta \subset \mathbf{C}^{\boldsymbol{n}}$ is contained in D for each $(f(z), \delta) \in \mathcal{J}^{\lambda}$, then we say that \mathcal{J}^{λ} is an \mathcal{O}-module on D. To emphasize this, we write $\mathcal{J}^{\lambda}(D)$.

Let \mathcal{J}^{λ} be an \mathcal{O}-module and let $\mathcal{I}^{\lambda} \subset \mathcal{J}^{\lambda}$. If \mathcal{I}^{λ} itself is an \mathcal{O}-module, then we say that I^{λ} is an \mathcal{O}-submodule of \mathcal{J}^{λ}.

Let $D \subset \mathrm{C}^{n}$ be a domain and let \mathcal{J}^{λ} be an \mathcal{O}-module. Then it is clear that $\mathcal{I}^{\lambda}:=\left\{(f(z), \delta) \in \mathcal{J}^{\lambda} \mid \delta \subset D\right\}$ is an \mathcal{O}-submodule of \mathcal{J}^{λ}. We say that \mathcal{I}^{λ} is the restriction of \mathcal{J}^{λ} to D.

Let $\mathcal{J}_{1}^{\lambda}$ and $\mathcal{J}_{2}^{\lambda}$ be \mathcal{O}-modules. Then $\mathcal{J}^{\lambda}:=\mathcal{J}_{1}^{\lambda} \cap \mathcal{J}_{2}^{\lambda}$ is also an \mathcal{O}-module, which is called the intersection of $\mathcal{J}_{1}^{\lambda}$ and $\mathcal{J}_{2}^{\lambda}$.

Let $\mathcal{J}_{1}^{\lambda}$ and $\mathcal{J}_{2}^{\lambda}$ be \mathcal{O}-modules and let $D \subset \mathbf{C}^{n}$. Fix a point $p \in D$. Assume that if $f(z)$ belongs to $\mathcal{J}_{1}^{\lambda}$ (resp. $\mathcal{J}_{2}^{\lambda}$) at p, then $f(z)$ belongs to $\mathcal{J}_{2}^{\lambda}$ (resp. $\mathcal{J}_{1}^{\lambda}$) at p. If this occurs for each $p \in D$, then we say that $\mathcal{J}_{1}^{\lambda}$ and $\mathcal{J}_{2}^{\lambda}$ are equivalent on D. Furthermore, let $\mathcal{J}_{1}^{\lambda}$ and $\mathcal{J}_{2}^{\lambda}$ be \mathcal{O}-modules and fix $p \in \mathbf{C}^{n}$. If there exists a neighborhood δ of p in \mathbf{C}^{n} such that $\mathcal{J}_{1}^{\lambda}$ and $\mathcal{J}_{2}^{\lambda}$ are equivalent on δ, then we say that $\mathcal{J}_{1}^{\lambda}$ and $\mathcal{J}_{2}^{\lambda}$ are equivalent at the point p.

Let $D \subset C^{n}$ and $\lambda, \nu \geq 1$ be integers. Let

$$
\Phi_{j}(z)=\left(\Phi_{1 . j}(z) \ldots, \Phi_{\lambda . j}(z)\right) \quad(j=1, \ldots, \nu)
$$

be ν holomorphic vector-valued functions of rank λ on D. For an open set $\delta \subset D$ and ν holomorphic functions $\alpha_{j}(z)(j=1, \ldots, \nu)$ on δ, we form the holomorphic vector-valued function of rank λ

$$
f(z)=\alpha_{1}(z) \Phi_{1}(z)+\cdots+\alpha_{\nu}(z) \Phi_{\nu}(z) \quad \text { on } \delta .
$$

[^32]The totality of such pairs $(f(z), \delta)$ becomes an \mathcal{O}-module of rank λ. We call it the \mathcal{O}-module generated by $\{\Phi\}:=\left\{\Phi_{j}(z)\right\}_{j=1, \ldots, \nu}$ and denote it by $\mathcal{J}^{\lambda}\{\Phi\}$.

Let \mathcal{J}^{λ} be an \mathcal{O}-module. If there exist a finite number of holomorphic vectorvalued functions $\Phi_{j}(z)(j=1, \ldots, \nu)$ of rank λ on a domain $D \subset C^{n}$ such that the restriction of \mathcal{J}^{λ} to D is the \mathcal{O}-module $\mathcal{J}^{\lambda}\{\Phi\}$ generated by $\left\{\Phi_{j}(z)\right\}_{j=1, \ldots, \nu}$. then we say that \mathcal{J}^{λ} is a finitely generated \mathcal{O}-module on D, and we call $\left\{\Phi_{j}(z)\right\}_{j=1} \ldots, \nu$ a pseudobase for \mathcal{J}^{λ} on D.

Let \mathcal{J}^{λ} be an \mathcal{O}-module and let $p \in \mathbf{C}^{n}$. If there exists a neighborhood δ of p in \mathbf{C}^{n} such that $\mathcal{J}^{\boldsymbol{\lambda}}$ is equivalent to a finitely generated \mathcal{O}-module $\mathcal{I}^{\lambda}\{\Phi\}$ on δ, where $\{\Phi\}=\left\{\Phi_{J}(z)\right\}_{j=1} \ldots, .$, , then we say that \mathcal{J}^{λ} is a locally finitely generated \mathcal{O}-module at the point p and $\left\{\Phi_{j}(z)\right\}_{j=1} \ldots ., \nu$ is a local pseudobase at the point p; equivalently, we say that \mathcal{J}^{λ} admits a locally finite pseudobase at p.

Remark 7.5. Let $D \subset \mathbf{C}^{n}$ be a domain and let \mathcal{R} be the ring of all holomorphic functions on D. Then one ordinarily defines an \mathcal{R}-ideal \mathcal{F} on D as a set \mathcal{F} of holomorphic functions on D satisfying (1) if $f_{1}(z) . f_{2}(z) \in \mathcal{F}$, then $f_{1}(z)+f_{2}(z) \in$ \mathcal{F}; (2) if $\alpha(z) \in \mathcal{R}$ and $f(z) \in \mathcal{F}$, then $\alpha(z) f(z) \in \mathcal{F}$. We will call such an ideal \mathcal{F} an ideal with determined domain D, while the \mathcal{O}-ideal defined above is an ideal with indeterminate domain. These two types of ideals have different properties arising from the structure of the zero sets of holomorphic functions.

For example, in \mathbf{C}^{2} with variables $z=\left(z_{1}, z_{2}\right)$, we define $\Delta:\left|z_{1}\right|<2,\left|z_{2}\right|<2$ and $E: z_{1}=0,\left|z_{2}\right| \leq 1$ so that $E \subset \subset \Delta$. We define J and \mathcal{J} as follows:
(1) J is the set of all holomorphic functions $f(z)$ on Δ such that $f(z)=0$ on E.
(2) \mathcal{J} is the set of all pairs $(f(z), \delta)$ such that $f(z)$ is a holomorphic function on $\delta \subset D$ with $f(z)=0$ on $\delta \cap E$.
Then J is an ideal with determined domain Δ and \mathcal{J} is an ideal with indeterminate domain in Δ. The common zero set of all of the functions $f(z) \in J$ is the disk $\left|z_{2}\right|<2$ in the complex line $z_{1}=0$ (which contains E), while the the zero set of any holomorphic function $f(z)$ in δ such that $(f(z), \delta) \in \mathcal{J}$ is necessarily contained in E.

Remark 7.6. An \mathcal{O}-ideal does not always admit a locally finite pseudobase at a given point.

For example, let $\gamma \subset \subset \Gamma$ be concentric open balls centered at the origin in \mathbf{C}^{2} with variables x and y. Let Σ be the hyperplane $x=y$ in \mathbf{C}^{2} and let σ denote the portion of Σ in $\Gamma \backslash \gamma$. Consider the set \mathcal{J} of all pairs $\{(f(x, y), \delta)\}$ with $\delta \subset \Gamma$ and $f(x, y)$ holomorphic on δ with $f(x, y)=0$ on $\sigma \cap \delta$. Then \mathcal{J} is an \mathcal{O}-module in Γ which does not admit a locally finite pseudobase at each point of $\Sigma \cap(\partial \gamma)$ in Γ.

As another example, let $\Delta=(|x|<1) \times(|y|<1)$ and $\Delta^{\prime}=(|x|<1) \times(0<$ $|y|<1)$ in C^{2} and let I be the \mathcal{O}-ideal in Δ generated by $(x y, \Delta)$ and ($1, \Delta^{\prime}$). To be precise, $(f, \delta) \in I$ if and only if, in case $\delta \subset \Delta^{\prime}, f$ is an arbitrary holomorphic function in δ, while in case $\delta \subset \Delta$ but $\delta \not \subset \Delta^{\prime}, f$ is of the form $h(x, y) x y$ where $h(x, y)$ is a holomorphic function on δ. Then \mathcal{I} is an \mathcal{O}-ideal in Δ which does not admit a locally finite pseudobase at the origin (0,0).
7.3.2. Main Theorem. Let $D \subset \mathbf{C}^{n}$ be a domain and let $\lambda, \nu \geq 1$ be integers. Let

$$
F_{j}(z)=\left(F_{1, j}(z), \ldots, F_{\lambda, j}(z)\right) \quad(j=1, \ldots, \nu)
$$

be ν holomorphic vector-valued functions of rank λ on D. We consider the following system of λ homogenous linear equations involving ν unknown holomorphic
functions $f_{j}(z)(j=1, \ldots, \nu)$:

$$
f_{1}(z) F_{1}(z)+\cdots+f_{\nu}(z) F_{\nu}(z)=0,
$$

or equivalently,

$$
\left\{\begin{array}{ccc}
F_{1.1}(z) f_{1}(z) & +\cdots+ & F_{1 . \nu}(z) f_{\nu}(z)=0 \\
\vdots & & \vdots \\
& F_{\lambda .1}(z) f_{1}(z) & +\cdots+ \\
F_{\lambda . \nu}(z) f_{\nu}(z)=0 .
\end{array}\right.
$$

If a holomorphic vector-valued function

$$
f(z)=\left(f_{1}(z) \ldots \ldots f_{\nu}(z)\right)
$$

of rank ν on an open set $\delta \subset D$ satisfies these linear homogeneous equations on δ, then we say that $(f(z) . \delta)$ is a solution of equation (Ω). The set of all solutions ($f(z), \delta)$ of equation (Ω) where $\delta \subset D$ clearly becomes an \mathcal{O}-module of rank ν. We call it the \mathcal{O}-module with respect to the linear relation (Ω) and denote it by $\mathcal{L}\{\Omega\}$.

With this terminology we have the following theorem.
Theorem 7.1 (Oka). For any given system of homogeneous linear equations (Ω) on $D \subset \mathbf{C}^{n}$, the \mathcal{O}-module $\mathcal{L}(\Omega)$ with respect to the linear relation (Ω) has a locally finite pseudobase at each point of D.

This theorem is the main theorem in the theory of \mathcal{O}-modules. It was first proved by Oka in 1948 (cf. [50]); the proof below is a modification of Oka's proof due to H. Cartan [12].
7.3.3. Two Preparation Theorems. Let D be a domain in \mathbf{C}^{n} with variables z_{1}, \ldots, z_{n} and let $\mathbf{C}_{w^{\prime}}$ be the complex plane with variable w. Let $l \geq 1$ be an integer, and consider a monic pseudopolynomial $P(z, w)$ in w of degree l.

$$
P(z, w)=w^{l}+a_{1}(z) u^{l-1}+\cdots+a_{l}(z) .
$$

where each $a_{i}(z)(i=1, \ldots, l)$ is a holomorphic function on \bar{D}. $(P(z, w)$ may have multiple factors.) Fix $r>0$ and define $\Gamma:=\{|w| \leq r\} \subset C_{u}$ and $A:=D \times \Gamma \subset$ $\mathrm{C}^{\mathrm{n+1}}$. We assume $r>0$ is sufficiently large so that for each $z^{\prime} \in D$, the l solutions of $P\left(z^{\prime}, w\right)=0$ with respect to w are contained in the interior of Γ, i.e.,

$$
\begin{equation*}
\left\{(z, w) \in D \times \mathbf{C}_{u^{*}} \mid P\left(z, w^{\prime}\right)=0\right\} \subset \subset \Lambda . \tag{7.3}
\end{equation*}
$$

Then we have the following two theorens.
Theorem 7.2 (Remainder theorem). Let $f(z, w)$ be a holomorphic function in Λ.

1. There exist a holomorphic function $q(z, w)$ in Λ and l holomorphic functions $\mathrm{c}_{\mathrm{k}}(z)(k=0,1 \ldots . . l-1)$ in D such that

$$
\begin{equation*}
f(z, w)=q(z, w) \cdot P(z, w)+r(z, w) \quad \text { on } \Lambda, \tag{7.4}
\end{equation*}
$$

where

$$
\begin{equation*}
r(z, w)=c_{0}(z) w^{l-1}+\cdots+c_{l-1}(z) \quad \text { on } D \times \mathbf{C}_{u} . \tag{7.5}
\end{equation*}
$$

2. (a) The holomorphic functions $q(z, w)$ and $r(z, w)$ which satisfy (7.4) are uniquely determined by $f(z, w)$.
(b) Let $0<r_{0}<r$. Define $\Gamma_{0}:|u| \leq r_{0}$ and $\Lambda_{0}=D \times \Gamma_{0}$. Then there exists a constant $K>0$ such that if $|f(z, w)| \leq M$ on Λ, then

$$
\begin{aligned}
& |q(z, u)|,|r(z, w)| \leq K M \text { on } A_{0} \\
& \left|c_{k}(z)\right| \leq K M(k=0,1, \ldots, l-1) \text { on } D_{0} .
\end{aligned}
$$

Proof. Following H. Cartan, we consider the following integral for $(z, w) \in$ $\Lambda \backslash(D \times \partial \Gamma):$

$$
I(z, w):=\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{f(z, \zeta)}{P(z, \zeta)} \cdot \frac{P(z, \zeta)-P(z, w)}{\zeta-w} d \zeta .
$$

From Cauchy's theorem we have

$$
I\left(z, w^{\prime}\right)=f\left(z, w^{\prime}\right)-P\left(z, u^{\prime}\right) \cdot\left(\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{f(z, \zeta)}{(\zeta-u) P(z, \zeta)} d \zeta\right)
$$

Since $P(z, \zeta) \neq 0$ on $D \times \partial \Gamma$ by our assumption on Γ, it follows that the integral in the second term of the right-hand side is a holomorphic function $q(z, w)$ for $(z, w) \in \Lambda$.

On the other hand, the integral $I(z, w)$ may be written as

$$
I\left(z, u^{\prime}\right)=\sum_{j=0}^{i-1}\left(\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{f(z, \zeta)}{P(z, \zeta)} \cdot Q_{j}(z, \zeta) d \zeta\right) w^{j}
$$

where each $Q_{j}(z, \zeta)(j=0, \ldots, l-1)$ is a pseudopolynomial in ζ of degree at most $l-1$ whose coefficients are holomorphic functions for z in D. Thus, the coefficient of $\boldsymbol{w}^{j}(j=0, \ldots, l-1)$ on the right-hand side is a holomorphic function $c_{j}(z)$ in D. Hence,

$$
f\left(z, w^{\prime}\right)-q\left(z, w^{j}\right) P\left(z, w^{\prime}\right)=\sum_{j=0}^{l-1} c_{j}(z) u^{j} \quad \text { in } \Lambda
$$

which proves 1.
To prove 2 (a), let $q(z, w)$ and $r(z, w)$ satisfy conditions (7.4) and (7.5). Then Cauchy's theorem applied to $q(z, w)$ yields, for $(z, w) \in \Lambda \backslash(D \times \partial \Gamma)$.

$$
\begin{aligned}
q(z, w) & =\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{q(z, \zeta)}{\zeta-w} d \zeta \\
& =\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{1}{\zeta-w} \frac{f(z, \zeta)}{P(z, \zeta)} d \zeta-\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{1}{\zeta-w} \frac{r(z, \zeta)}{P(z, \zeta)} d \zeta \\
& =S(z, w)-T(z, w)
\end{aligned}
$$

Condition (7.3) implies

$$
T(z, w)=\frac{1}{2 \pi i} \int_{|\zeta|=R} \frac{1}{\zeta-w} \frac{r(z, \zeta)}{P(z, \zeta)} d \zeta \quad \text { for any } R \geq r
$$

By letting $R \rightarrow \infty$, we see from (7.5) that $T(z, w)=0$. We thus have $q(z, w)=$ $S(z, w)$, which is uniquely determined by $f(z, w)$; hence so is $r(z, w)$.

To prove $2(b)$, fix $(z, u) \in \Lambda_{0}$ so that $|u| \leq r_{0}<r$. We set

$$
\begin{aligned}
& A:=\max \{|P(z, w)| \mid(z, w) \in \Lambda\} \\
& a:=\min \{|P(z, \zeta)| \mid(z, \zeta) \in D \times \partial \Gamma\}>0
\end{aligned}
$$

Suppose $|f(z, w)| \leq M$ on Λ. Then the above expression for $q(z, w)=S(z, w)$ for $(z, w) \in \Lambda_{0}$ implies

$$
|q(z, w)| \leq \frac{1}{2 \pi} \int_{|\zeta|=r} \frac{1}{|\zeta-w|} \frac{|f(z, \zeta)|}{|P(z, \zeta)|}|d \zeta| \leq \frac{r M}{\left(r-r_{0}\right) a}=: K_{1} M,
$$

so that $|r(z, w)| \leq M\left(1+K_{1} A\right)$. It follows that $\left|c_{j}(z)\right| \leq M\left(1+K_{1} A\right) / r^{r}$ for $j=0,1, \ldots, l-1$. Thus, $K:=\max _{j=0.1 \ldots, l-1}\left\{\left(1+K_{1} A\right) / r^{j}\right\}>0$, and this proves 2 (b).

Theorem 7.3 (Division theorem). Let $\boldsymbol{\Phi}(z, w)$ be a pseudopolynomial in w of degree at most λ whose coefficients are holomorphic functions on D. If there exists a holomorphic function $q(z, w)$ in Λ such that

$$
\Phi(z, w)=q(z, w) \cdot P(z, w) \quad \text { on } \Lambda,
$$

then $q(z, w)$ is also a pseudopolynomial in w of degree at most $\lambda-l$ whose coefficients are holomorphic functions on D.

Proof. Noting that $q(z, w)$ is holomorphic in $D \times \mathbf{C}_{w}$, we set

$$
q(z, w):=\sum_{n=0}^{\infty} a_{n}(z) w^{n} \quad \text { on } D \times \mathbf{C}_{w}
$$

where each $a_{n}(z)(n=0,1, \ldots)$ is a holomorphic function on D. Fix $z \in \Delta$ and $R>r$. Then we have from condition (7.3) that

$$
\begin{aligned}
a_{n}(z) & =\frac{1}{2 \pi i} \int_{|w|=r} \frac{q(z, w)}{w^{n+1}} d w \\
& =\frac{1}{2 \pi i} \int_{|w|=R} \frac{1}{w^{n+1}} \frac{\Phi(z, w)}{P(z, w)} d w .
\end{aligned}
$$

Let $n \geq \lambda-l+1$ and let $R \rightarrow \infty$. Since $\operatorname{deg}_{u} \Phi(z, w) \leq \lambda$ and $\operatorname{deg}_{u} P(z, w)=l$, we have $a_{n}(z)=0$, so that $q(z, w)=\sum_{n=0}^{\lambda-1} a_{n}(z) w^{n}$, as desired.
7.3.4. Proof of the Main Theorem. Let $D \subset \mathbf{C}^{n}$ be a domain and let

$$
F_{j}(z)=\left(F_{1 . j}(z), \ldots, F_{\lambda, j}(z)\right) \quad(j=1, \ldots, \nu)
$$

be a given set of ν holomorphic vector-valued functions of rank $\lambda \geq 1$ in D. Let

$$
f_{1}(z) F_{1}(z)+\cdots+f_{\nu}(z) F_{\nu}(z)=0
$$

be a system of λ simultaneous linear equations for the ν unknown functions $f_{j}(z)$ ($j=1, \ldots, \nu$). We form the \mathcal{O}-module $\mathcal{L}\{\Omega\}$ which consists of all solutions $(f(z), \delta)$ of (Ω); i.e.,

$$
f(z)=\left(f_{1}(z), \ldots, f_{\nu}(z)\right)
$$

is a holomorphic vector-valued function of rank ν in a domain $\delta \subset D$ which satisfies equation (Ω) in δ.

When we need to emphasize the dimension n, the rank λ, and the domain D, we write $\Omega(n, \lambda, D)$ and $\mathcal{L}\{\Omega(n, \lambda, D)\}$ instead of Ω and $\mathcal{L}\{\Omega\}$. We prove Theorem 7.1 by double induction with respect to the dimension $n \geq 1$ and the rank $\lambda \geq 1$. It suffices to prove the following three steps.

First step. Each \mathcal{O}-module $\mathcal{L}\{\Omega(1,1, D)\}$ has a locally finite pseudobase at every point of D.

Second step. If each \mathcal{O}-module $\mathcal{L}\{\Omega(n, k, D)\}(k=1, \ldots, \lambda)$ has a locally finite pseudobase at every point in D, then the same is true for each \mathcal{O}-module $\mathcal{L}\{\Omega(n, \lambda+1, D)\}$.

Third step. If each \mathcal{O}-module $\mathcal{L}\{\Omega(n, \lambda . D)\}(\lambda=1,2, \ldots)$ has a locally finite pseudobase at every point in D, then the same is true for each \mathcal{O}-module $\mathcal{L}\{\Omega(n+1,1, D)\}$.

Proof of the first step. Fix $z_{0} \in D$. We set $F_{j}(z)=h_{j}(z)\left(z-z_{0}\right)^{k},(j=$ $1, \ldots, v)$, where $h_{j}(z)$ is a holomorphic function in a neighborhood v of z_{0} in D with $h_{j}(z) \neq 0$ in v. Let $k:=\min \left\{k_{1}, \ldots, k_{\nu}\right\}$; for simplicity, assume $k_{1}=k$. Then

$$
G_{j}(z):=\left(-F_{j}(z) / F_{1}(z), 0 \ldots, 0,1,0, \ldots, 0\right) \quad(j=2 \ldots, \nu)
$$

(where the " 1 " occurs in the j-th slot) is a local pseudobase in v. Indeed, we note first that $\left(G_{j}(z), v\right) \in \mathcal{L}\{\Omega(1.1, v)\}$ for $j=2, \ldots, \nu$. Next. fix any $(f, \delta) \in$ $\mathcal{L}\{\Omega(1,1, v)\}$, where $f=\left(f_{1}, \ldots, f_{\nu}\right)$. Then we have $f=f_{2} G_{2}+\cdots+f_{\nu} G_{1}$ in δ, which concludes the proof of the first step.

Proof of the second step. Assume that each \mathcal{O}-module $\mathcal{L}\{\Omega(n, k, D)\}(k=$ $1, \ldots, \lambda)$ has a local pseudobase at each point in D. Let $\mathcal{L}\{\Omega(n, \lambda+1, D)\}$ be an \mathcal{O}-module for a set of linear relations $\Omega(n, \lambda+1, D)$. Precisely, let $D \subset \mathbf{C}^{\boldsymbol{n}}$ and let

$$
F_{j}(z)=\left(F_{0 . j}(z), F_{1 . j}(z) \ldots, F_{\lambda . j}(z)\right) \quad(j=1, \ldots, \nu)
$$

be ν given a holomorphic vector-valued functions of $\operatorname{rank} \lambda+1$ in D, and let

$$
f_{1}(z) F_{1}(z)+\cdots+f_{\nu}(z) F_{\nu}(z)=0
$$

be a set of simultaneous linear equations for the unknown holomorphic vectorvalued function $f(z)=\left(f_{1}(z), \ldots, f_{\nu}(z)\right)$ of rank ν. Then $\mathcal{L}\{\Omega(n, \lambda+1, D)\}$ is the set of all pairs (f, δ) where $f(z)$ is a holomorphic vector-valued function in δ satisfying (Ω) in δ.

Fix $z_{0} \in D$. Our goal is to find a neighborhood δ_{0} of z_{0} in D and a finite number, say κ. of holomorphic vector-valued functions of rank ν

$$
K_{l}(z)=\left(K_{1 . l}(z) \ldots, K_{\nu, l}(z)\right) \quad(l=1, \ldots, \kappa)
$$

in δ_{0} such that at any point $z^{*} \in \delta_{0}$, any $f(z)$ belonging to $\mathcal{L}\{\Omega(n, \lambda+1 . D)\}$ at z^{*} can be written in the form

$$
f(z)=h_{1}(z) K_{1}(z)+\cdots+h_{\kappa}(z) K_{\kappa}(z) \quad \text { in } \delta^{*}
$$

where δ^{*} is a neighborhood of z^{*} in δ_{0} and $h_{l}(z)(l=1, \ldots, \kappa)$ is a holomorphic function in δ^{*}.

Set

$$
F_{j}^{0}(z):=\left(F_{1 . j}(z), \ldots, F_{\lambda . j}(z)\right) \quad(j=1, \ldots, \nu)
$$

and consider the simultaneous linear equations

$$
\begin{equation*}
f_{1}(z) F_{1}^{0}(z)+\cdots+f_{\nu}(z) F_{\nu}^{0}(z)=0 \tag{0}
\end{equation*}
$$

involving the unknown holomorphic vector-valued function $f(z)=\left(f_{1}(z), \ldots\right.$, $\left.f_{\nu}(z)\right)$ of $\operatorname{rank} \nu$, so that $\left(\Omega^{0}\right)$ is of type $\Omega(n, \lambda, D)$.

We also consider the single linear equation

$$
\begin{equation*}
F_{0.1}(z) f_{1}(z)+\cdots+F_{0 . \nu}(z) f_{\nu}(z)=0 \tag{1}
\end{equation*}
$$

involving the unknown holomorphic vector-valued function $f(z)=\left(f_{1}(z), \ldots\right.$. $f_{\nu}(z)$) of rank ν, so that $\left(\Omega_{1}\right)$ is of type $\Omega(n, 1, D)$. Note that

$$
\mathcal{L}\{\Omega\}=\mathcal{L}\left\{\Omega^{\prime \prime}\right\} \cap \mathcal{L}\left\{\Omega_{1}\right\} .
$$

By the inductive hypothesis, $\mathcal{L}\left\{\Omega^{0}\right\}$ has a local pseudobase at z^{11} in D. i.e.. there exist a neighborhood δ^{\prime} of z_{0} in D and a finite number, say μ, of holomorphic vector-valued functions of rank ν

$$
\Phi_{k}(z)=\left(\Phi_{1, k}(z), \ldots, \Phi_{\nu, k}(z)\right) \quad(k=1, \ldots, \mu)
$$

in δ^{\prime} such that at any $z^{*} \in \delta^{\prime}$, any $f(z)$ belonging to $\mathcal{L}\left\{\Omega^{0}\right\}$ at z^{*} can be written in the form

$$
\begin{equation*}
f(z)=g_{1}(z) \Phi_{1}(z)+\cdots+g_{\mu}(z) \Phi_{\mu}(z) \quad \text { in } \epsilon^{*} \tag{7.6}
\end{equation*}
$$

where e^{*} is a neighborhood of z^{*} in δ^{\prime} and $g_{k}(z)(k=1, \ldots, \mu)$ is a holomorplic function in e^{*}. By substituting this expression for $f(z)$ into $\left(\Omega_{1}\right)$. we obtain the following. Let

$$
G_{k}(z):=F_{0,1}(z) \Phi_{1, k}(z)+\cdots+F_{0, \nu}(z) \Phi_{\nu, k}(z) \quad(k=1, \ldots, \mu)
$$

which is a holomorphic function in δ^{\prime}, and consider the single linear equation

$$
g_{1}(z) G_{1}(z)+\cdots+g_{\mu}(z) G_{\mu}(z)=0
$$

involving the unknown holomorphic function $g(z)=\left(g_{1}(z), \ldots, g_{\mu}(z)\right)$ of rank μ, so that (Ω^{\prime}) is of type $\Omega\left(n, 1 . \delta^{\prime}\right)$. Fix $z^{\bullet} \in \delta^{\prime}$. Then $f(z)$ belongs to $\mathcal{L}\left\{\Omega^{0}\right\} \cap \mathcal{L}\left\{\Omega_{1}\right\}$ at z^{*} if and only if $f(z)$ can be written in the form (7.6) with $g(z)$ belonging to $\mathcal{L}\left\{\Omega^{\prime}\right\}$ at z^{*}.

Again by the inductive lyypothesis, $\mathcal{L}\left\{\Omega^{\prime}\right\}$ has a local pseudobase at z_{1}. Thus there exist a neighborhood $\delta_{0} \subset \delta^{\prime}$ of z_{0} and a finite number. say κ, of holomorphic vector-valued functions of rank μ in δ_{0}.

$$
\Psi_{l}(z)=\left(\Psi_{1 . l}(z) \ldots, \Psi_{\mu . l}(z)\right) \quad(l=1, \ldots, \kappa) .
$$

such that at each $z^{*} \in \delta_{0}$. any holonorphic vertor-valued function $g(z)=\left(g_{1}(z)\right.$. $\left.\ldots, g_{\mu}(z)\right)$ which belongs to $\mathcal{L}\left\{\Omega^{\prime}\right\}$ at z^{*} can be written in the form

$$
g(z)=h_{1}(z) \Psi_{1}(z)+\cdots+h_{\kappa}(z) \Psi_{\kappa}(z) \quad \text { in } e_{0} .
$$

where e_{0} is a neighborhood of z^{*} in δ_{0} and $h_{k}(z)(k=1 \ldots, \kappa)$ is a holomorphic function on e_{0}.

We substitute this expression for $g(z)$ into equation ($\mathbf{(7 . 6)}$ for $f(z)$. Upon setting

$$
K_{l}(z):=\Psi_{1, l}(z) \Phi_{1}(z)+\cdots+\Psi_{\mu l l}(z) \Phi_{\mu l}(z) \quad(l=1 \ldots, \kappa) .
$$

which is a holomorphic vector-valued function of rank ν in δ_{0}. we have

$$
f(z)=h_{1}(z) K_{1}(z)+\cdots+h_{\kappa}(z) K_{\kappa}(z)
$$

in a neighborhood of z^{*} in δ_{0}. We thus conclude that $K_{l}(z)(k=1 \ldots, \kappa)$ is a local pseudobase of $\mathcal{L}\{\Omega\}$ on δ_{0}. Thus. the second step is proved.

Proof of the third step. Let $D \subset \mathbf{C}^{n+1}$ and let $F_{j}(j=1 \ldots . \nu)$ be a given set of ν holomorphic functions in D. We consider the single linear equation

$$
f_{1}(z) F_{1}(z)+\cdots+f_{\nu}(z) F_{\nu}(z)=0
$$

involving the unknown vector-valued function $f(z)=\left(f_{1}(z) \ldots, f_{l}(z)\right)$: i.e., equation (Ω) is the general equation of type $\Omega(n+1,1, D)$.

Fix $z_{0} \in D$. We shall show that $\mathcal{L}\{\Omega\}$ has a local pseudobase at z_{0}. For simplicity we set $z_{0}=0 \in C^{n+1}$. If we have $F_{j}(0) \neq 0$ for some j, say $j=\nu$. then $\mathcal{L}\{\Omega\}$ has a local pseudobase in a neighborhood of $z=0$. Indeed, fix $\dot{\delta}_{0}:=$ $\left\{|z|<r_{0}\right\} \subset \subset \Delta$ so that $F_{r^{\prime}}(z) \neq 0$ on δ_{0}. Then the following $\nu-1$ holomorphic vector-valued functions of rank ν on $\delta_{(1)}$.

$$
G_{j}(z):=\left(0, \ldots, 1,0, \ldots,-F_{j}(z) / F_{1}(z)\right) \quad(j=1, \ldots, \nu-1) .
$$

where the " 1 " occurs in the j-th slot. form a pseudobase of $\mathcal{L}\{\Omega\}$ on δ_{11}.
Thus, it remains to treat the case when $F_{j}(0)=0$ for $j=1, \ldots, \nu$. We may assume that the coordinates $\left(z_{1} \ldots \ldots z_{n}, z_{n+1}\right)$ satisfy the Weierstrass condition for each hypersurface $F_{j}(z)=0(j=1 \ldots, \nu)$ at the origin 0 . For simplicity, we use the notation $z:=\left(z_{1}, \ldots, z_{n}\right)$ and $u^{\prime}:=z_{n+1}$. Hence we can find a polydisk Δ centered at $z=0$ and a disk Γ centered at $u^{\prime}=0$ such that. upon setting $\mathrm{A}:=\Delta \times \Gamma$. we have $\Lambda \subset \subset D$ and $F_{j}(z, u) \neq 0(j=1 \ldots, \nu)$ on $\Delta \times \partial \Gamma$. Therefore, we can write

$$
F_{j}\left(z, u^{\prime}\right)=u_{j}\left(z, u^{\prime}\right) \cdot P_{j}\left(z, u^{\prime}\right) \quad \text { in } A
$$

where

$$
P_{\jmath}(z, w)=u^{l} l^{l}+A_{j . l_{j}-1}(z) u^{l,-1}+\cdots+A_{, .0}(z)
$$

(which may have multiple factors): each $A_{J . k}(z)\left(0 \leq k \leq l_{j}\right)$ is a holomorphic function in Δ; each $\omega_{j}(z, u)$ is a non-vanishing holomorphic function in Λ; and

$$
\begin{equation*}
\left\{\left(z, u^{\prime}\right) \in \Delta \times \mathbf{C}_{u^{\prime}} \mid P_{j}\left(z, u^{\prime}\right)=0\right\} \subset \subset \Lambda \quad(j=1, \ldots, \nu) \tag{7.7}
\end{equation*}
$$

We consider the single linear equation

$$
f_{1}(z, w) P_{1}(z, u:)+\cdots+f_{v}\left(z, u^{\prime}\right) P_{\nu}\left(z, u^{\prime}\right)=0 .
$$

Since $w_{j}(z, u) \neq 0(j=1, \ldots, \nu)$ on λ. it thus suffices, to complete the third step, to prove that $\mathcal{L}\left\{\Omega^{\prime}\right\}$ has a local pseudobase at $\left(z, u^{\prime}\right)=(0,0)$. We set $l=$ $\max \left\{l_{1} \ldots, l_{\nu}\right\}$. We assume. for simplicity, that $l=l_{\nu}$.
[I] We consider the set of holomorphic vector-valned functions of rank ν.

$$
\mathbf{Q}(z, u)=\left(Q_{1}\left(z, u^{\cdot}\right) \ldots, Q_{u^{\prime}}\left(z, u^{\prime}\right)\right)
$$

such that $Q_{j}(z, u)(j=1 \ldots, \nu)$ is a pseudopolynomial in w of degree at most l-1:

$$
\begin{align*}
Q_{j}(z . u \cdot)=b_{j, l-1}(z) u^{l-1}+b_{j, l-2}(z) u^{\prime-2}+\cdots \quad & +b_{ر .0}(z) \tag{7.8}\\
& (j=1, \ldots, \nu) .
\end{align*}
$$

Here, $b_{j . k}(z)(k=0, \ldots . l-1)$ is a holomorphic function for z in $\delta \subset \Delta$. If $\mathbf{Q}\left(z, u^{\prime}\right)$ is a solution of equation (Ω^{\prime}) on an open set $\delta \times \gamma \subset A$. then we write $(\mathbf{Q}(z, u), \delta) \in \mathcal{L}^{l-1}\left\{\Omega^{\prime}\right\}$. and we say that $\mathbf{Q}(z, w)$ belongs to $\mathcal{L}^{l-1}\left\{\Omega^{\prime}\right\}$ on δ since this condition does not depend on $\rceil \subset \Gamma$.

We first show that $\mathcal{L}^{l-1}\left\{\Omega^{\prime}\right\}$ has a local pseudobase at $(z, u)=(0,0)$. Precisely, we will find a neighborhood δ_{0} of $z=0$ in Δ and a finite number μ of vector-valued functions $\Psi_{k}(z, w)(k=1, \ldots, \mu)$ belonging to $\mathcal{L}^{l-1}\left\{\Omega^{\prime}\right\}$ on δ_{0} such that at each point $z^{*} \in \delta_{l}$. each vector-valued function $\mathbf{Q}(z, u)$ belonging to $\mathcal{L}^{l-1}\left\{\Omega^{\prime}\right\}$ at z^{*} may be written in the form

$$
\begin{equation*}
\mathbf{Q}(z, u \cdot)=q_{1}(z) \Psi_{1}\left(z, u^{\cdot}\right)+\cdots+g_{\mu}(z) \Psi_{\mu}(z, w) \tag{7.9}
\end{equation*}
$$

in $\delta^{*} \times \Gamma$, where δ^{*} is a neighborhood of z^{*} in δ_{11} and $q_{\ell}(z)(\iota=1, \ldots, \mu)$ is a holomorphic function in δ^{*}.

Indeed, assume that $Q(z, w)=\left(Q_{1}(z, w), \ldots, Q_{\nu}(z, w)\right)$ belongs to $\mathcal{L}^{l-1}\left\{\Omega^{\prime}\right\}$ on $\delta \subset \Delta$ and that $Q_{j}(z, w)(j=1, \ldots, \nu)$ is of the form (7.8). Then we have

$$
\sum_{j=1}^{\nu} P_{j}(z, w) Q_{j}(z, w)=\sum_{k=0}^{2 l-1} \sum_{j=1}^{\nu}\left(\sum_{0+t=k} A_{j, t}(z) b_{j, \varrho}(z)\right) w^{k}=0
$$

in $\delta \times \Gamma \subset \Lambda$. This is equivalent to

$$
\sum_{j=1}^{\nu} \sum_{s+t=k} A_{j, s}(z) b_{j, t}(z)=0 \quad(k=0, \ldots, 2 l-1) \quad \text { in } \delta
$$

We can regard ($\Omega^{\prime \prime}$) as a set of $2 l$ simultaneous linear equations with holomorphic coefficient functions $A_{j, t}(z)$ in Δ involving the unknown vector-valued holomorphic functions of rank $\lambda:=\nu l$,

$$
\mathbf{b}(z)=\left(b_{j, k}(z)\right) \quad(j=1, \ldots, \nu ; k=0,1, \ldots, l-1)
$$

Thus ($\Omega^{\prime \prime}$) is of type $\Omega(n, 2 l, \Delta)$. By the inductive hypothesis, we can find a neighborhood δ_{0} of $z=0$ and a finite number μ of holomorphic vector-valued functions of rank λ,

$$
\mathbf{c}^{\iota}(z):=\left(c_{j, k}^{\iota}(z)\right) \quad(\iota=1, \ldots, \mu ; j=1, \ldots, \nu ; k=0,1, \ldots, l-1),
$$

such that at any point $z^{*} \in \delta_{0}$, each $b(z)$ belonging to $\mathcal{L}\left\{\Omega^{\prime \prime}\right\}$ at z^{*} may be written as

$$
\mathbf{b}(z)=\beta_{1}(z) \mathbf{c}^{1}(z)+\cdots+\beta_{\mu}(z) \mathbf{c}^{\mu}(z) \quad \text { in } \delta^{*},
$$

where δ^{*} is a neighborhood of z^{*} in δ_{0} and $\beta_{\iota}(z)(\iota=1, \ldots, \mu)$ is a holomorphic function in δ^{*}.

Fix $\iota(\iota=1, \ldots, \mu)$. Using a holomorphic vector-valued function $\mathbf{c}^{\iota}(z)$ of rank λ, we construct ν pseudopolynomials $\Psi_{j}^{\prime}(z, w)$ in w of degree at most $l-1$:

$$
\begin{aligned}
\Psi_{j}^{L}(z, w)=c_{j, l-1}^{L}(z) w^{l-1}+c_{j, l-2}^{L}(z) w^{l-2}+\cdots & +c_{j, 0}^{l}(z) \\
& (j=1, \ldots, \nu) .
\end{aligned}
$$

Next we set

$$
\Psi_{\iota}(z, w):=\left(\Psi_{1}^{\iota}(z, w), \ldots, \Psi_{\nu}^{\iota}(z, w)\right) \quad(\iota=1, \ldots, \mu),
$$

which belongs to $\mathcal{L}^{\nu-1}\left\{\Omega^{\prime}\right\}$ on δ_{0}. We see from the above argument that for any $z^{*} \in \delta_{0}$, each $\mathbf{Q}(z, w)=\left(Q_{1}(z, w), \ldots, Q_{\nu}(z, w)\right)$ belonging to $\mathcal{L}^{l-1}\left\{\Omega^{\prime}\right\}$ at z^{*} can be written in the form

$$
\mathbf{Q}(z, w)=q_{1}(z) \Psi_{1}(z, w)+\cdots+q_{\mu}(z) \Psi_{\mu}(z, w)
$$

in $\delta^{*} \times \Gamma$, where δ^{*} is a neighborhood of z^{*} in δ_{0} and $q_{j}(z)(j=1, \ldots \mu)$ is a holomorphic function in δ^{*}. We thus have assertion (7.9).
[II] We set

$$
\begin{aligned}
& \Phi_{j}(z, w)=\left(0, \ldots, 0, P_{\nu}(z, w), 0, \ldots, 0,-P_{j}(z, w)\right) \\
& \quad(j=1, \ldots, \nu-1),
\end{aligned}
$$

where the " 1 " occurs in the j-th slot, which belongs to $\mathcal{L}\left\{\Omega^{\prime}\right\}$ on Λ. We shall prove that the collection of all

$$
\Phi_{j}(z, w) \quad(j=1, \ldots, \nu-1), \quad \Psi_{\iota}(z, w) \quad(\iota=1, \ldots, \mu)
$$

forms a local pseudobase of $\mathcal{L}\left\{\Omega^{\prime}\right\}$ on $\delta_{0} \times \Gamma$.

To see this, fix $\left(z^{*}, w^{*}\right) \in \delta_{0} \times \Gamma$ and let

$$
f(z, w)=\left(f_{1}(z, w), \ldots, f_{\nu}(z, w)\right)
$$

be a holomorphic vector-valued function of rank ν belonging to $\mathcal{L}\left\{\Omega^{\prime}\right\}$ on a neighborhood $\lambda^{\prime}:=\delta^{\prime} \times \gamma^{\prime} \subset \delta_{0} \times \Gamma$ of $\left(z^{*}, u^{*}\right)$. If $P_{\nu}\left(z^{*}, u^{*}\right) \neq 0$, we have

$$
f(z . w)=\frac{f_{1}(z . w)}{P_{\nu}(z, w)} \Phi_{1}(z, w)+\cdots+\frac{f_{\nu-1}(z, w)}{P_{\nu}(z, w)} \Phi_{\nu-1}\left(z, w^{\prime}\right)
$$

in a neighborhood of $\left(z^{*}, w^{*}\right)$ in λ^{\prime}. Thus it suffices to study the case $P_{u}\left(z^{*}, u^{*}\right)=0$. In this case we can find a polydisk $\lambda^{*}:=\delta^{*} \times \eta^{*} \subset \lambda^{\prime}$ with center $\left(z^{*}, u^{*}\right)$ such that $P_{\nu}(z, w) \neq 0$ on $\delta^{*} \times \partial \gamma^{*}$. Then we have

$$
\begin{equation*}
P_{\nu}(z, w)=P^{\prime}(z, w) \cdot P^{\prime \prime}(z, w) \quad \text { in } \lambda^{\prime} \text {. } \tag{7.10}
\end{equation*}
$$

where $P^{\prime \prime}(z, w) \neq 0$ in λ^{\bullet} and where $P^{\prime}(z, w)$ is a pseudopolynomial in u :

$$
P^{\prime}(z, w)=w^{l^{\prime}}+a_{1}(z) w^{l^{\prime}-1}+\cdots+a_{l^{\prime}}(z) .
$$

where $a_{j}(z)\left(j=1, \ldots, l^{\prime}\right)$ is a holomorphic function in δ^{*} such that

$$
\begin{equation*}
\left\{(z, w) \in \delta^{*} \times \mathbf{C}_{w} \mid P^{\prime}(z, w)=0\right\} \subset \subset \lambda^{*} \tag{7.11}
\end{equation*}
$$

By the division theoren, $P^{\prime \prime}(z, w)$ is also a monic pseudopolynomial in u of degree $l-l^{\prime}=l^{\prime \prime}$.

We can apply the remainder theorem to this $P^{\prime}(z, w)$ in λ^{-}, and obtain

$$
f_{j}(z, w)=q_{j}(z, w) \cdot P^{\prime}(z, w)+r_{j}(z, w)(j=1, \ldots, \nu-1) \text { in } \lambda^{*} .
$$

where $q_{j}(z, w)(j=1 \ldots, \nu-1)$ is a holomorphic function in λ^{*} and $r_{j}\left(z, u^{\prime}\right)$ ($j=1 \ldots . \nu-1$) is a pseudopolynomial in u of degree at most $l^{\prime}-1$ whose coefficients are holomorphic functions in δ^{*}. Thus. using the fact that $P^{\prime \prime}(z, w) \neq 0$ on λ^{*}, we have

$$
\begin{aligned}
f(z, w)= & \left(q_{1}(z, w) P^{\prime}(z, w), \ldots, q_{\nu-1}(z, w) P^{\prime}(z, w), 0\right) \\
& \quad\left(r_{1}(z, w), \ldots, r_{\nu-1}\left(z, w^{\prime}\right), f_{\nu}(z, w)\right) \\
= & \frac{q_{1}(z, w)}{P^{\prime \prime}(z, w)} \Phi_{1}(z, w)+\cdots+\frac{q_{\nu-1}\left(z, u^{\prime}\right)}{P^{\prime \prime}\left(z, w^{\prime}\right)} \Phi_{\nu-1}\left(z, w^{\prime}\right) \\
& \quad+\left(r_{1}(z, w), \ldots, r_{\nu-1}\left(z, w^{\prime}\right), R_{\nu}(z, w)\right) \\
\equiv & g(z, w)+r(z, w) .
\end{aligned}
$$

where

$$
R_{\nu}(z, w)=f_{\nu}(z, w)+\frac{q_{1}(z, w)}{P^{\prime \prime}\left(z, w^{\prime}\right)} P_{1}(z, w)+\cdots+\frac{q_{\nu-1}(z, w)}{P^{\prime \prime}(z, w)} P_{\nu,-1}(z, w)
$$

(this explicit formula will not be used). To prove [II]. since $P^{\prime \prime}(z, u:) \neq 0$ on λ^{\bullet}, it suffices to show that

$$
\begin{aligned}
\tilde{r}(z, w) & :=P^{\prime \prime}(z, w) r(z, w) \\
& =\left(P^{\prime \prime}(z, w) r_{1}(z, w) \ldots . P^{\prime \prime}\left(z, u^{\prime}\right) r_{\nu-1}\left(z, w^{\prime}\right), P^{\prime \prime}\left(z, w^{\prime}\right) R_{l /}\left(z, u^{\prime}\right)\right)
\end{aligned}
$$

belongs to $\mathcal{L}^{l-1}\left\{\Omega^{\prime}\right\}$ on δ^{\bullet}.
Since $f(z, w)$ and $g(z, w)$ belong to $\mathcal{L}\left\{\Omega^{\prime}\right\}$ in λ^{*}, so does $r\left(z, u^{\prime}\right)$, so that $\widetilde{r}\left(z, u^{\prime}\right)$ belongs to $\mathcal{L}\left\{\Omega^{\prime}\right\}$ on λ^{\prime}. Next. $P^{\prime \prime}(z, u) r_{j}(z, w)(j=1 \ldots, \nu-1)$ is clearly a
pseudopolynomial in u of degree at most $l-1$. Finally, since $r(z, u)$ belongs to $\mathcal{L}\left\{\Omega^{\prime}\right\}$ on λ^{*}. we have

$$
P_{1}\left(z, u^{\prime}\right) r_{1}\left(z, u^{\prime}\right)+\cdots+P_{v-1}\left(z, u^{\prime}\right) r_{v,-1}\left(z, u^{\prime}\right)+P_{v}\left(z, u^{\prime}\right) R_{v,}\left(z, u^{\prime}\right)=0
$$

in λ^{*}, so that

$$
-\left(P_{1}\left(z, u^{\prime}\right) r_{1}\left(z, u^{\prime}\right)+\cdots+P_{1,1}\left(z, w^{\prime}\right) r_{b}, 1\left(z, u^{\prime}\right)\right)=\left[P^{\prime \prime}(z, w) R_{1}\left(z, u^{\prime}\right)\right] \cdot P^{\prime}\left(=, u^{\prime}\right)
$$

in λ^{*}. From (7.11), we can apply the division theorem for $P^{\prime}\left(z, u^{\prime}\right)$ in λ^{*}. Since the left-hand side is a pseudopolynomial in u of degree at most $l+l^{\prime}-1$, it follows that $P^{\prime \prime}\left(\approx, u^{\prime}\right) R_{1}(z, u)$ nust be a pseudopolynomial in u of degree at most $\left(l+l^{\prime}-1\right)-l^{\prime}=$ $l-1$. Therefore, $\tilde{r}\left(\tilde{z}, u^{\prime}\right)$ belongs to $\mathcal{L}^{l-1}\left\{\Omega^{\prime}\right\}$ on $\dot{\delta}^{*}$. which proves [II].

Let $D \subset \mathbb{C}^{n}$ be a domain. Let \mathcal{J}_{1} and \mathcal{J}_{2} be two \mathcal{O}-modnles of the same rank λ in D. From the main theorem (Theorem 7.1), we obtain the following nsefnl result.

Theorem 7.4. If \mathcal{J}_{1} and \mathcal{J}_{2} each have a locally finite pseudobase at a point \approx_{10}. then $\mathcal{J}_{1} \cap \mathcal{J}_{2}$ also has a locally finite pseudobase at \tilde{z}_{0}.

Proof. By assumption we can find a neighborhood δ_{11} of z_{0} in D and holomorphic vector-valued functions of rank λ on $\delta_{i 1}$,

$$
\Phi_{j}(z) \quad(j=1, \ldots, \nu), \quad \Psi_{k}(z) \quad(k=1, \ldots, \mu) .
$$

which generate \mathcal{J}_{1} and \mathcal{J}_{2} on δ_{1}.
Fix $z^{\prime} \in \delta_{11}$. Then $f(z)$ belongs to $\mathcal{J}_{1} \cap \mathcal{J}_{2}$ at z^{\prime} if and only if we have

$$
f(z)=\sum_{j=1}^{\nu} a_{j}(z) \Phi_{j}(z)=\sum_{k=1}^{\mu} b_{k}(z) \Psi_{k}\{z)
$$

for z in a neighborhood δ^{\prime} of z^{\prime} in δ_{0}. where $a_{j}(z)(j=1 \ldots ., \nu)$ and $b_{k}(z)(k=$ $1, \ldots, \mu)$ are holomorphic functions in δ^{\prime}.

Now we regard $\Phi_{j}(z)(j=1 \ldots, \nu)$ and $\Psi_{k}(z)(k=1 \ldots . \mu)$ as fixed holomorphic functions on $\dot{\delta}_{0}$, and we consider the single linear equation

$$
\begin{equation*}
\sum_{j-1}^{1} a_{j}(z) \Phi_{j}(z)-\sum_{k=1}^{n} b_{k}(z) \Psi_{k}(z)=0 \tag{0}
\end{equation*}
$$

involving the unknown holomorphic vector-valued function

$$
\left(a_{1}(z), \ldots, a_{\nu}(z),-b_{1}(z), \ldots-b_{\mu}(z)\right)
$$

of rank $\nu+\mu$. By Theorem 7.1 we can find a locally finite pseudobase of the \mathcal{O}-module $\mathcal{L}\left\{\Omega^{0}\right\}$ with respect to the linear relation $\left(\Omega^{\circ}\right)$.

$$
c^{i}(z)=\left(a_{1}^{i}(z) \ldots, a_{1}^{i}(z),-b_{1}^{i}(z) \ldots,-b_{\mu 1}^{i}(z)\right) \quad(i=1 \ldots, \kappa),
$$

valid in a neighborhood δ^{*} of z_{0} in δ_{0}. Then

$$
\gamma_{i}(z):=\sum_{j=1}^{1} a_{j}^{i}(z) \Phi_{j}(z) \quad(i=1 \ldots \ldots, \kappa) \quad \text { on } \delta^{*}
$$

is a finite psendobase of $\mathcal{J}_{1} \cap \mathcal{J}_{2}$ on $\dot{\delta}^{\circ}$.
U'sing the remainder theorem for $P^{\prime}\left(z, u^{\prime}\right)$ (where $\left.P_{u}\left(z, u^{\prime}\right)=P^{\prime}\left(z, u^{\prime}\right) P^{\prime \prime}\left(z, u^{\prime}\right)\right)$ in the same manner as it was used in (7.10) with (7.11). we easily obtain the following elementary fact.

Remark 7.7. Let Σ be a pure r-dimensional analytic set in the polydisk A centered at the origin 0 in C^{n}. Here $\lambda=\Delta \times \Gamma \subset C_{:}^{r} \times C_{u}^{s}$. where $r+s=n$. and with $\Sigma \cap[\Delta \times \partial \Gamma]=0$. We set $\Gamma:=\Gamma_{1} \times \cdots \times \Gamma_{s}$. where $\Gamma_{j}(j=1, \ldots, s)$ is a disk in $\mathbf{C}_{w,}$. We let Σ_{j} denote the projection of Σ onto the polydisk $\Lambda_{j}:=\Delta \times \Gamma_{j}: \Sigma_{j}$ is thus an analytic hypersurface in Λ_{j}. Then we have

$$
\Sigma_{j}=\left\{\left(i, u_{j}\right) \in \Delta \times \mathbf{C}_{u}, \mid P_{j}\left(\Sigma, u_{\jmath}\right)=0\right\}
$$

where

$$
P_{\jmath}\left(z, u_{\jmath}\right)=u_{j}^{m_{2}}+a_{1}^{i \jmath 1}(z) u_{j}^{m_{j}} 1+\cdots+a_{m}^{i j i}(z)
$$

and $a_{k}^{(j)}(z)\left(k=1 \ldots \ldots, m_{j}\right)$ is a holomorphic function on Δ : inoreover, $P_{j}\left(z, w_{j}\right)$ has no multiple factors. We set $M=\left(\sum_{j=1}^{s} m_{j}\right)-s$. In this setting we let $f(z, u)$ be a holomorphic function near the point $\left(z_{0}, u_{0}\right)$ in Λ. Then $f(z, u)$ can be written in the following form in a sufficiently small polydisk $\lambda:=\delta \times$) centered at ($\left.z_{0}, u_{0}\right)$ in Λ with $\Sigma \cap(\delta \times \partial \gamma)=\emptyset:$

$$
\begin{aligned}
f(z, u)= & \hat{r}_{1}(z . u) P_{1}\left(z, u_{1}\right)+\cdots+\hat{r}_{s}\left(z, u^{\prime}\right) P_{s}\left(z, u_{s}\right) \\
& +\sum_{|j|=0}^{M} 3_{j}(z) u_{1}^{j_{1}} \cdots u_{s}^{j} \\
& \text { for } \mathbf{j}=\left(j_{1}, \ldots, j_{s}\right) ;|j|=j_{1}+\cdots+j_{k}: 0 \leq j_{k} \leq m_{j}-1 .
\end{aligned}
$$

where each $\vdash_{j}(z \cdot u)$ is a holomorphic fnnction of $\left(z, u^{\prime}\right) \in \lambda$ and each $j_{j}(z)$ is a holomorphic function of $z \in \delta$.

7.4. Combination Theorems

7.4.1. Combination Problems. Let $D \subset C^{\prime \prime}$ be a domain. Let $F_{j}(z)(j=$ $1, \ldots, \nu)$ be ν holomorphic vector-valued functions of rank λ in D,

$$
F_{\jmath}(z)=\left(F_{1, j}(z) \ldots ., F_{\lambda, j}(z)\right) \quad(j=1 \ldots, \nu)
$$

We let $\mathcal{J}^{\lambda}\{F\}$ denote the \mathcal{O}-modnle on D generated by $\left\{F_{j}(z)\right\}_{,=1, \ldots . .}$. In this setting, we pose the following two problems.

Problem C_{1} Let $\Phi(z)$ be a holomorphic vector-valued function of rank λ on D such that $\Phi(z)$ belongs to $\mathcal{J}^{\lambda}\{F\}$ at each point in D. Find ν holomorphic functions $A_{j}(z)(j=1, \ldots, \nu)$ on D such that

$$
\Phi(z)=A_{1}(z) F_{1}(z)+\cdots+A_{\nu}(z) F_{\nu}(z) \text { in } D
$$

Problem C_{2} For each $p \in D$. let the pair $\left(o_{p}(z), \delta_{p}\right)$ be given. where δ_{p} is a neighborhood of p in D and $o_{\nu}(z)$ is a holomorphic vector-valued function of rank λ in δ_{p} having the property that for any $p, q \in D$ with $\delta_{p} \cap \delta_{\varphi} \neq 0$. the difference $\sigma_{p}(z)-o_{q}(z)$ belongs to $\mathcal{J}^{\lambda}\{F\}$ at each point of $\delta_{p} \cap \delta_{q}$. Find a holomorphic vectorvalued function $\Phi(z)$ of $\operatorname{rank} \lambda$ in D such that for each $p . \Phi(z)-o_{p}(z)$ belongs to $\mathcal{J}^{\lambda}\{F\}$ at each point of δ_{p}.

We call the collection of pairs $\mathcal{C}:=\left\{\left(\omega_{p}(z), \delta_{p}\right)\right\}_{p \in D}$ a C_{2}-distribution. and we call $\Phi(z)$ a solution of Problem C_{2} for the C_{2}-distribution \mathcal{C}.

Let \mathcal{J}^{λ} be an \mathcal{O}-module of rank λ in D. We also consider the following problem.
Problem $E \quad$ Assume that \mathcal{J}^{λ} has a locally finite pseudobase at each point of D. Find a finite number of holomorphic vector-valued functions $\boldsymbol{\Phi}_{k}(z)(k=1 \ldots, \nu)$
of rank λ on D such that the \mathcal{O}-module $\mathcal{J}^{\lambda}\{\Phi\}$ generated by $\left\{\Phi_{k}(z)\right\}_{k=1 \ldots ., \nu}$ on D is equivalent to \mathcal{J}^{λ} on D.

We also consider Problems $C_{1} . C_{2}$ and E for a closed set $D \subset \mathbf{C}^{n}$ and their solvability on D. To this end, let $D \subset C^{n}$ be a closed set and let $F,(z)(j=1, \ldots, \nu)$ be ν holomorphic vector-valued functions of rank λ on D,

$$
F_{j}(z):=\left(F_{1, j}(z) \ldots, F_{\lambda, j}(z)\right) \quad(j=1 \ldots, \nu) .
$$

Recall that this means there exists an open set G with $D \subset G \subset C^{n}$ such that each $F_{j}(z)(j=1, \ldots, \nu)$ is holomorphic on G. We let $\mathcal{J}^{\lambda}\{F\}$ denote the \mathcal{O}-module on G generated by $\left\{F_{j}(z)\right\}_{\jmath=1 \ldots \ldots . .}$. In this setting we pose the following three problems.
Problem C_{1} Let $\boldsymbol{\Phi}(z)$ be a holomorphic vector-valued function of rank λ on D such that $\Phi(z)$ belongs to $\mathcal{J}^{\lambda}\{F\}$ at each point in D; i.e., there exists an open set G_{1} with $D \subset G_{1} \subset G$ such that $\Phi(z)$ is holomorphic on G_{1} and $\Phi(z)$ belongs to $\mathcal{J}^{\lambda}\{F\}$ at each point in G_{1}. Find ν holomorphic functions $A_{,}(z)(j=1, \ldots, \nu)$ on D such that

$$
\Phi(z)=A_{1}(z) F_{1}(z)+\cdots+A_{\nu}(z) F_{\nu}(z) \text { in } D ;
$$

i.e., each $A_{j}(z)(j=1, \ldots, \nu)$ is holomorphic on an open set G_{2}, where $D \subset G_{2} \subset$ G_{1}, and the above relation is satisfied on G_{2}.

If this holds for any data $\Phi(z)$ on the closed set D in \mathbf{C}^{n}, then we say that Problem C_{1} is solvable on the closed set D.
Problem C_{2} For each $p \in D$. let the pair ($\phi_{p}(z) . \delta_{p}$) be given where δ_{p} is a neighborhood of p and $\phi_{p}(z)$ is a holomorphic vector-valued function of rank λ in δ_{p} having the property that for any $p, q \in D$ with $\delta_{p} \cap \delta_{q} \neq \emptyset$. the difference $o_{p}(z)-o_{q}(z)$ belongs to $\mathcal{J}^{\lambda}\{F\}$ at each point of $\delta_{p} \cap \delta_{q}$: i.e., there exists an open set $G_{1}^{\text {p.q.q }}$ with $\delta_{p} \cap \delta_{q} \subset G_{1}^{p, q} \subset G$ such that $\delta_{p}(z)-\phi_{q}(z)$ is holomorphic on $G_{1}^{p, q}$ and belongs to $\mathcal{J}^{\lambda}\{F\}$ at each point in $G_{1}^{p, 9}$. Find a holomorphic vector-valued function $\Phi(z)$ of rank λ in D such that for each p,

$$
\Phi(z)-\oint_{p}(z) \text { belongs to } \mathcal{J}^{\lambda}\{F\}
$$

at each point of δ_{p}; i.e., $\Phi(z)$ is holomorphic on an open set G_{2}, where $D \subset G_{2} \subset$ $\bigcup_{p} \delta_{p}$, and the above relation is satisfied on G_{2}.

If this holds for any such pair ($\phi_{p}(z), \delta_{p}$), then we say that Problem C_{2} is solvable on the closed set D.
Problem E Let \mathcal{J}^{λ} be an \mathcal{O}-module of rank λ on D such that \mathcal{J}^{λ} has a locally finite pseudobase at each point of D; i.e., \mathcal{J}^{λ} is an \mathcal{O}-module of rank λ on an open set G with $D \subset G \subset \mathbf{C}^{\prime \prime}$ and has a locally finite pseudobase at each point of G. Find a finite number of holomorphic vector-valued functions $\Phi_{k}(z)(k=1, \ldots, \nu)$ of rank λ on D such that the \mathcal{O}-module $\mathcal{J}^{\lambda}\{\Phi\}$ generated by $\left\{\Phi_{k}(z)\right\}_{k=1 \ldots, \nu}$ on D is equivalent to \mathcal{J}^{λ} on D : i.e.. $\Phi_{k}(z)(k=1, \ldots, \nu)$ is a holomorphic vector-valued function of rank λ on an open set G_{1} with $D \subset G_{1} \subset G$ such that the \mathcal{O}-module $\mathcal{J}^{\lambda}\{\Phi\}$ generated by $\left\{\Phi_{k}(z)\right\}_{k=1} \ldots, \nu$ on G_{1} is equivalent to \mathcal{J}^{λ} on G_{1}.

If this holds for any such \mathcal{O}-module \mathcal{J}^{λ} of rank λ on D in \mathbf{C}^{n}. then we say that Problem E is solvable on the closed set D.

These three problems were solved in a special case by K. Oka in 1943 in his reports in Japanese. ${ }^{4}$ As with the Cousin problems. these problems cannot always

[^33]be solved in arbitrary domains D in \mathbf{C}^{n}. In 1948, Oka solved these problems in the polydisk; this was published in French in 1950 (Oka [50]). In this section we present his proofs.

Remark 7.8. This remark is for the reader familiar with sheaf theory; thus we do not explain the (standard) notation and terminology. We state the following two important results in sheaf theory.

1) Let V be an analytic space (to be defined in the next chapter) and let

$$
0 \longrightarrow \mathcal{M}_{1} \longrightarrow \mathcal{M}_{2} \longrightarrow \mathcal{M}_{3} \longrightarrow 0
$$

be an exact sequence of sheaves on V. Then we have the following exact sequence of cohomology on V :

$$
\begin{aligned}
0 & \longrightarrow \Gamma\left(V, \mathcal{M}_{1}\right) \longrightarrow \Gamma\left(V, \mathcal{M}_{2}\right) \longrightarrow \Gamma\left(V, \mathcal{M}_{3}\right) \\
& \longrightarrow H^{1}\left(V, \mathcal{M}_{1}\right) \longrightarrow H^{1}\left(V, \mathcal{M}_{2}\right) \longrightarrow H^{1}\left(V, \mathcal{M}_{3}\right) \longrightarrow \cdots .
\end{aligned}
$$

Thus if $H^{1}\left(V, \mathcal{M}_{1}\right)=0$, then the mapping

$$
\Gamma\left(V, \mathcal{M}_{2}\right) \longrightarrow \Gamma\left(V, \mathcal{M}_{3}\right)
$$

is surjective.
2) Let \mathcal{M} and \mathcal{N} be two sheaves on V and let $\phi: \mathcal{M} \longrightarrow \mathcal{N}$ be a sheaf homomorphism. We let \mathcal{K} denote the kernel of ϕ, and we let \mathcal{I} denote the image of ϕ. Then

$$
0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{M} \longrightarrow \mathcal{M} / \mathcal{K} \longrightarrow 0
$$

and

$$
0 \longrightarrow I \longrightarrow \mathcal{N} \longrightarrow \mathcal{N} / I \longrightarrow 0
$$

are exact sequences.
Now let D be a domain in C^{n} and let $\phi: \mathcal{O}^{\varrho}(D) \longrightarrow \mathcal{O}^{p}(D)$ be a homomorphism with the propery that there exist q holomorphic vector-valued functions F_{j} ($j=$ $1, \ldots, q)$ on D of rank p such that ϕ maps $\alpha=\left(\alpha_{1}, \ldots, \alpha_{q}\right) \in \mathcal{O}^{q}(D)$ to $\alpha_{1} F_{1}+$ $\cdots+\alpha_{q} F_{q} \in \mathcal{O}^{P}(D)$. In this case we take I to be the \mathcal{O}-module $\mathcal{O}\{F\}$ generated by $\left\{F_{j}\right\}_{j=1 \ldots . ., q}$ on D, and we take \mathcal{K} to be the \mathcal{L}-module $\mathcal{L}(\Omega)$ on D with respect to the linear relation

$$
\alpha_{1} F_{1}+\cdots+\alpha_{q} F_{q}=0 .
$$

Problem C_{1} is to show that

$$
\Gamma\left(D, \mathcal{O}^{P}\right) \longrightarrow \Gamma\left(D, \mathcal{O}^{P} / \mathcal{K}\right)
$$

is surjective, and Problem C_{2} is to show that

$$
\Gamma\left(D, \mathcal{O}^{\top}\right) \longrightarrow \Gamma\left(D, \mathcal{O}^{q} / \mathcal{I}\right)
$$

is surjective. Furthermore, it is clear that I is coherent. The coherence of \mathcal{K} is nothing but Oka's Theorem 7.1 on the existence of a locally finite pseudobase for $\mathcal{L}(\Omega)$ at each point in D.
7.4.2. Two Lemmas. For convenience we consider $\mathbf{C}^{n+1}=\mathbf{C}_{z}^{n} \times \mathbf{C}_{w}$ with variables z_{1}, \ldots, z_{n} and u, and we set $w:=u+i v\left(i^{2}=-1\right)$. Let G be a closed region in $\mathbf{C}_{=}^{n}$ and consider two closed rectangles $\boldsymbol{K}_{1}, K_{2}$ in $\mathbf{C}_{1 \prime}$ constructed in the following manner: for $a<a^{\prime}<b^{\prime}<b$ and c; d, we define

$$
\begin{array}{llll}
K_{1}^{\prime \prime}: & a \leq u \leq b^{\prime} . & c \leq r \leq d, \\
\boldsymbol{K}_{2}^{\prime \prime}: & a^{\prime} \leq u \leq b . & c \leq r \leq d .
\end{array}
$$

In \mathbf{C}_{w}. we set

$$
D^{\prime}:=K_{1}^{\prime \prime} \cap K_{2}^{\prime \prime} . \quad \kappa^{\prime \prime}:=\boldsymbol{K}_{1}^{\prime \prime} \cup \kappa_{2}^{\prime \prime} .
$$

and finally in \mathbf{C}^{n+1} we define

$$
\begin{equation*}
K_{1}:=G \times K_{1}^{\prime \prime}, \quad K_{2}^{\prime}:=G \times K_{2}^{\prime}, \quad D:=G \times D^{\prime}, \quad K:=G \times K^{\prime \prime} . \tag{7.12}
\end{equation*}
$$

We let $l=2\left(b^{\prime}-a^{\prime}+d-c\right)$ be the perimeter of D^{\prime} and set $L=l / \pi$.
Choose $e>0$ sufficiently small so that

$$
e<\min \left\{\frac{a^{\prime}-a}{2}, \frac{b^{\prime}-b}{2}, \frac{d-c}{2}\right\} .
$$

In $\mathbf{C}_{u} \cdot$, we define

$$
\begin{array}{lll}
K_{1}^{\prime}(e): ~ & a-e \leq u \leq b^{\prime}+e . & c-e \leq v \leq d+e, \\
K_{2}^{\prime}(e): & a^{\prime}-e \leq u \leq b+e . & c-e \leq v \leq d+c .
\end{array}
$$

Note that $K_{1}^{\prime \prime} \subset \subset K_{1}^{\prime}(e)$ and $K_{2}^{\prime \prime} \subset \subset K_{2}^{\prime \prime}(e)$. We also set

$$
D^{\prime}(e):=K_{1}^{\prime}(e) \cap K_{2}^{\prime \prime}(e), \quad K^{\prime}(e):=K_{1}^{\prime \prime}(e) \cup K_{2}^{\prime \prime}(e) .
$$

Finally, we define the following subsets of \mathbf{C}^{n+1} :

$$
\begin{array}{ll}
K_{1}(e):=G \times K_{1}^{\prime}(e), & K_{2}(e):=G \times K_{2}^{\prime}(e) . \\
D(e):=G \times D^{\prime}(e), & K^{\prime}(e):=G \times K^{\prime \prime}(e) .
\end{array}
$$

We can now state the first lemma in this section.
Lemma 7.1 (Cousin's lemma). ${ }^{5}$ Let $f_{0}\left(z, w^{\prime}\right)$ be a holomorphic function on $D(e)$.

1. There exist holomorphic functions $f_{1}(z, w)$ and $f_{2}\left(z . u^{\prime}\right)$ in K_{1} and K_{2} such that

$$
f_{0}(z, w)=f_{1}(z, u)+f_{2}(z, w) \text { in } D .
$$

2. If $\left|f_{0}(z, w)\right| \leq \rho$ on $D(e)$, then we can find $f_{1}(z, w)$ and $f_{2}(z, w)$ as in 1 which satisfy

$$
\left|f_{1}(z, w)\right| \leq L \rho / e \text { in } K_{1} \quad \text { and } \quad\left|f_{2}(z . w)\right| \leq L \rho / e \text { in } K_{2} .
$$

Proof. We let C denote the boundary of the rectangle $D^{\prime}(e)$ in \mathbf{C}_{r}. Fix two points $p:=\left(\left(a^{\prime}+b^{\prime}\right) / 2 . c-e\right)$ and $q:=\left(\left(a^{\prime}+b^{\prime}\right) / 2, d+e\right)$ on C and let C_{1} and C_{2} denote the right- and left-hand portions of C divided by p and q. We form the Cousin integrals

$$
\begin{array}{ll}
f_{1}(z, w):=\frac{1}{2 \pi i} \int_{C_{1}} \frac{f_{0}(z, \zeta)}{\zeta-u} d \zeta, & (z, w) \in K_{1} . \\
f_{2}(z, w):=\frac{1}{2 \pi i} \int_{C_{2}} \frac{f_{0}(z, \zeta)}{\zeta-u^{\prime}} d \zeta, & (z, w) \in K_{2}^{\prime} .
\end{array}
$$

[^34]where C_{1} and C_{2} are oriented so that $\partial D^{\prime}(e)=C_{1}+C_{2}$. Thus. in particular. $f_{1}(z, w)$ and $f_{2}\left(z, w^{\prime}\right)$ are holomorphic functions in K_{1} and K_{2}. Cauchy's theorem implies that
$$
f_{0}(z, w)=f_{1}\left(z, u^{\prime}\right)+f_{2}(z, u) . \quad(z, u) \in D .
$$
which proves assertion 1.
To prove 2, assume that $\left|f_{0}\left(z, w^{\prime}\right)\right| \leq \rho$ on $D(e)$. Let $\left(z, u^{\prime}\right) \in K_{i}(i=1.2)$. From the integral formula above for $f_{i}\left(z, u^{\prime}\right)$. since $|\zeta-w| \geq e$ if $\zeta \in C_{i}$, we obtain the estimate
$$
\left|f_{i}(z, w)\right| \leq \frac{1}{2 \pi} \int_{C_{;}} \frac{\mid f_{0}(z, w)!}{|\zeta-w|}|d \zeta| \leq \frac{1}{2 \pi} \frac{\rho}{e}\left[\left(b^{\prime}-a^{\prime}\right)+(d-c)+4 e\right]<\frac{L \rho}{e} .
$$
which proves 2 .
For each nonnegative integer n. we consider the sets
$$
K_{1}^{\prime \prime}\left(e / 2^{n}\right) . K_{2}^{\prime \prime}\left(e / 2^{\prime \prime}\right), \ldots . D\left(e / 2^{n}\right) . K\left(e / 2^{\prime \prime}\right) ;
$$
clearly each corresponding sequence of closed sets is nested: e.g., $\boldsymbol{K}_{1}^{\prime \prime}\left(\frac{\ddot{v}}{2 n+T}\right) \subset$ $K_{1}^{\prime \prime}\left(\frac{e}{2^{n}}\right)$. and these sequences decrease to
$$
K_{1}^{\prime}, K_{2}^{\prime \prime}, \ldots, D \text { and } K .
$$

Hence. in the proof of Lemma 7.1 (replacing $C=\partial D^{\prime}(e) . D(e)$, and D by $C_{n}=$ $\partial D^{\prime}\left(\frac{e}{2^{n}}\right)$. $D\left(\frac{e}{2^{n}}\right)$, and $D\left(\frac{e}{2^{n+1}}\right)$. and using $|\zeta-w| \geq e / 2^{n+1}$ for $\zeta \in \partial D\left(\frac{e}{2^{n}}\right)$ and $w \in D\left(\frac{c}{2^{n+}}\right.$) in the last estimate), we obtain the following remark.

Remark 7.9. Let $f_{0, n}(z, w)$ be a holonorphic function on $D\left(\frac{c}{2^{2}}\right)$ with inequality $\left|f_{0 . n}(z, w)\right| \leq \rho_{n}$ on $D\left(\frac{e}{2^{n}}\right)$, where $\rho_{n}>0$ is a constant. Then we obtain holomorplic functions $f_{1, n}(z, w)$ and $f_{2, n}(z, w)$ in $K_{1}\left(\frac{c}{2^{n-1}}\right)$ and $K_{2}^{\prime}\left(\frac{c}{2^{n-1}}\right)$ such that
(1) $f_{1, n}(z, w)+f_{2, n}(z, w)=f_{0, n}(z, w)$ in $D\left(e / 2^{n+1}\right)$:
(2) $\left|f_{j, n}(z, w)\right| \leq \frac{L}{e} 2^{n+1} \rho_{n} \quad$ in $K_{j}\left(e / 2^{n+1}\right) \quad(j=1,2)$.

Using 1 of Leinma 7.1 we have the following corollary.
Corollary 7.4. Let $\Phi_{j}(z . w)(j=1 \ldots, \nu)$ be a holomorphic vector-valued function of rank λ on the set K and let $\mathcal{J}^{\lambda}\{\Phi\}$ denote the \mathcal{O}-module generated by $\left\{\Phi_{j}(z, u)\right\}_{j=1, \ldots, \nu}$ on K. Let $f_{1}(z, w)$ and $f_{2}(z, w)$ be holomorphic vector-valued functions of rank λ on K_{1} and K_{2} such that $f_{1}(z, w)-f_{2}(z, w)$ belongs to $\mathcal{J}^{\lambda}\{\Phi\}$ at each point in D. If Problem C_{1} is always solvable on D, there exists a holomorphic vector-valued function $F(z, w)$ of rank λ on K such that $F(z, w)-f_{1}(z, w)$ belongs to $\mathcal{J}^{\lambda}\{\Phi\}$ on K_{1} and $F(z, u)-f_{2}(z, w)$ belongs to $\mathcal{J}^{\lambda}\{\Phi\}$ on K_{2}.

Proof. From the hypothesis, for any $p \in D$. we can find ν holonorphic vectorvalued functions $\alpha_{j}(z, u)(j=1, \ldots, \nu)$ in a neighborhood δ_{p} of p in D such that

$$
f_{1}(z, w)-f_{2}(z, w)=a_{1}(z, u) \Phi_{1}(z, w)+\cdots+a_{\nu}(z, w) \Phi_{\nu}(z, u) \quad \text { in } \delta_{p} .
$$

Since Problem C_{1} is assumed to be solvable on D. we can find ν holomorphic vector-valued functions $A_{j}(z . u)(j=1, \ldots, \nu)$ on D such that

$$
f_{1}(z, w)-f_{2}(z, w)=A_{1}(z, w) \Phi_{1}(z, w)+\cdots+A_{\nu}(z, w) \Phi_{\nu}(z, w) \quad \text { on } D .
$$

Using 1 of Lemma 7.1 (note that if we take a sufficiently small $e>0$, each $A_{j}(z, w)(j=1, \ldots, \nu)$ is defined and holomorphic on $\left.D(e)\right)$, for each $j=(1, \ldots, \nu)$ we can find holomorphic finctions $A_{j}^{\prime}(z, w)$ and $A_{j}^{\prime \prime}(z, w)$ on K_{1} and K_{2} such that

$$
A_{j}(z, w)=A_{1}^{\prime}\left(z, w^{\prime}\right)-A_{j}^{\prime \prime}\left(z, w^{\prime}\right) \quad \text { on } D .
$$

Therefore, if we set

$$
\begin{aligned}
& F(z, w) \\
& := \begin{cases}f_{1}(z, w)-\left(A_{1}^{\prime}(z, w) \Phi_{1}(z, w)+\cdots+A_{\nu}^{\prime}(z, w) \Phi_{\nu}(z, w)\right), & (z, w) \in K_{1}, \\
f_{2}(z, w)-\left(A_{1}^{\prime \prime}(z, w) \Phi_{1}(z, w)+\cdots+A_{\nu}^{\prime \prime}(z, w) \Phi_{\nu}(z, w)\right), & (z, w) \in K_{2},\end{cases}
\end{aligned}
$$

then $F(z, w)$ is a single-valued holomorphic vector-valued function of rank λ on K such that $F(z . w)-f_{i}(z, w)(i=1,2)$ belongs to $\mathcal{J}^{\lambda}\{\Phi\}$ on K_{i}.

Repeating the same procedure step by step (similar to the solution of the Cousin I problem in 3.2.2), we obtain the following proposition.

Proposition 7.5. If Problem C_{1} is always solvable in any closed polydisk in \mathbf{C}^{n}. then Problem C_{2} is always solvable in any closed polydisk in $\mathbf{C}^{\boldsymbol{n}}$.

We want to show that under the hypothesis of Proposition 7.5, Problem E is always solvable in any closed polydisk in \mathbf{C}^{n}; then we will show that, indeed, Problem C_{1} (and hence Problem C_{2} and Problem E) is always solvable in any closed polydisk in $\mathbf{C}^{\prime \prime}$. To do this, we will need a lemma of Cartan on holomorphic matrixvalued functions. First we introduce some notation involving these functions.

Let \mathbf{C}^{ν} be the space of ν complex variables u_{1}, \ldots, u_{ν} and let $V \subset C^{\nu}$ be a domain. We call an (m, n)-matrix $A(u)=\left(a_{j, k}(u)\right)_{j, k}$ whose coefficients $a_{j, k}(u)$ are holomorphic functions in V, a holomorphic (m, n)-matrix-valued function, or simply an (m, n)-holomorphic matrix in V. We let $\mathcal{M}_{m, n}(V)$ denote the set of all (m, n)-holomorphic matrices in V. In case $m=n$, we call $A(u)$ a square holomorphic matrix of order m in V, and we write $\mathcal{M}_{m}(V):=\mathcal{M}_{m, m}(V)$. We let E denote the identity matrix of order m.

Given $A(u) \in \mathcal{M}_{m}(V)$ and an integer $l \geq 1$, for each $u \in V$, we write $A^{l}(u)$ for the l-th the power of matrix $A(u)$. Thus $A^{l}(u) \in \mathcal{M}_{m}(V)$. If $A(u)$ has an inverse matrix for each $u \in V$, we denote it by $A^{-1}(u)$; then $A^{-1}(u) \in \mathcal{M}_{m}(V)$, and we say that $A(u)$ is invertible in V.

Fix $\xi=\left(\xi_{1}, \ldots, \xi_{m}\right) \in \mathbf{C}^{m}$ with $\|\xi\|=1$ and fix $A(u)=\left(a_{j . k}(u)\right)_{j . k} \in$ $\mathcal{M}_{m, n}(V)$. Given $u \in V$, we define

$$
\|A(u)\|:=\max _{\|\xi\|=1}\{\|\xi \cdot A(u)\|\},
$$

where $\|\xi \cdot A(u)\|$ denotes the Euclidean length in C^{n} of the image of ξ under the linear transformation $A(u): \mathbf{C}^{m} \rightarrow \mathbf{C}^{\boldsymbol{n}}$, and we define

$$
\|A\|_{V}:=\max _{u \in V}\{\|A(u)\|\} .
$$

It is clear that $\left|a_{j, k}(u)\right| \leq\|A\| v$ for each $1 \leq j \leq m, 1 \leq k \leq n$ and $u \in$ V; conversely, if $\left|a_{j, k}(u)\right| \leq M$ for each j, k and $u \in V$, then $\|A\| \leq \sqrt{m n} M$. Furthermore, for $A(u), B(u) \in \mathcal{M}_{m}(V)$,

$$
\|A+B\|_{V} \leq\|A\|_{V}+\|B\|_{v}, \quad\|A \cdot B\|_{v} \leq\|A\|_{v} \cdot\|B\|_{v}
$$

Therefore, for $A(u) \in \mathcal{M}_{m}(V)$,

$$
e^{A(u)}:=E+\frac{A(u)}{1!}+\frac{A^{2}(u)}{2!}+\cdots
$$

is well-defined, belongs to $\mathcal{M}_{m}(V)$, and is invertible (since $\left(e^{A(u)}\right)^{-1}=e^{-A(u)}$). We note that the "usual" law of exponents $e^{A(u)+B(u)}=e^{A(u)} \cdot e^{B(u)}$ does not necessarily hold. It is valid, for example, if $A(u) \cdot B(u)=B(u) \cdot A(u)$.

Proposition 7.6. Let $A_{j}(u) \in \mathcal{M}_{m}(V)(j=1,2, \ldots)$ and let $\varepsilon_{j}, 0<\varepsilon_{j}<$ $1(j=1,2, \ldots)$, satisfy $\sum_{j=1}^{\infty} \varepsilon_{j}<\infty$. If $\left\|A_{j}\right\|_{v} \leq \varepsilon_{j}(j=1,2, \ldots)$, then

$$
\begin{aligned}
& B(u):=\lim _{n \rightarrow \infty} B_{n}(u):=\lim _{n \rightarrow \infty}\left(E-A_{1}(u)\right)\left(E-A_{2}(u)\right) \cdots\left(E-A_{n}(u)\right), \\
& C(u):=\lim _{n \rightarrow \infty} C_{n}(u):=\lim _{n \rightarrow \infty}\left(E-A_{n}(u)\right)\left(E-A_{n-1}(u)\right) \cdots\left(E-A_{1}(u)\right)
\end{aligned}
$$

are uniformly convergent in V. Furthermore, $B(u)$ and $C(u)$ belong to $\mathcal{M}_{m}(V)$ and are invertible in V.

Proof. We write $B_{n}(u)=\left(b_{j . k}^{(n)}(u)\right)_{j . k}$. We note that, for $n=1,2, \ldots$,

$$
\left\|B_{n}\right\|_{\nu} \leq \prod_{i=1}^{\infty}\left(1+\varepsilon_{i}\right)=: M<\infty
$$

Let $l>k$ and set $\delta_{k}:=\sum_{j=k+1}^{x} \varepsilon_{j}$. Then we have

$$
\left\|B_{l}-B_{k}\right\| v \leq M\left\|E-\left(E-A_{k+1}\right) \cdots\left(E-A_{l}\right)\right\| v \leq M\left(\delta_{k}+\delta_{k}^{2}+\cdots\right)
$$

It follows that for each $j, k=1, \ldots, m$, the sequence of holomorphic functions $\left\{b_{j, k}^{(n)}(u)\right\}_{n}$ in V forms a Cauchy sequence, so that $\lim _{n \rightarrow \infty} B_{n}(u)=: B(u)$ converges uniformly in V and $B(u) \in \mathcal{M}_{m}(V)$. Moreover, each factor $E-A_{j}(u)(j=1,2, \ldots)$ is invertible in V. i.e.,

$$
\left(E-A_{j}(u)\right)^{-1}=E-A_{j}(u)+A_{j}^{2}(u)+\cdots,
$$

which is uniformly convergent in V from the estimate $\left\|A_{j}\right\|_{V}<\varepsilon_{j}<1$. So, $B_{n}(u)$ is invertible in V. Since $\left\|-A_{j}(u)+A_{j}^{2}(u)+\cdots\right\| v \leq K \varepsilon_{j}$ (where K is independent of $j=1,2, \ldots$, we can similarly prove that $\lim _{n \rightarrow \infty} B_{n}^{-1}(u)=: B^{n}(u)$ converges uniformly in V and belongs to $\mathcal{M}_{m}(V)$. Since $B_{n}(u) \cdot B_{n}^{-1}(u)=E$ for $u \in V$, it follows that $B(u) \cdot B^{*}(u)=E$ for $u \in V$, so that $B(u)$ is invertible in V. Similarly, $C(u)$ belongs to $\mathcal{M}_{m}(V)$ and is invertible in V.

We fix an integer $m \geq 1$, and use the notation $D(e), K_{1}, K_{2}, D=K_{1} \cap K_{2}$, and $K=K_{1} \cup K_{2}$ defined at the beginning of this section. We fix a small $e>0$ such that $L / e>1$. Recall that we consider $\mathbf{C}^{n+1}=\mathbf{C}_{z}^{n} \times \mathbf{C}_{\boldsymbol{w}}$ with variables z_{1}, \ldots, z_{n} and w. Let $A(z, w)=\left(a_{j . k}(z, w)\right)_{j . k} \in \mathcal{M}_{m}(D(e))=: \mathcal{M}(D(e))$ and define $B(z, w)=\left(b_{j, k}(z, w)\right)_{j, k}$ via

$$
A(z, w)=E+B(z, w)
$$

Set $\rho=\|B\|_{D(e)} \geq 0$. Applying Remark 7.9 to each $b_{j, k}(z, w)(j, k=1, \ldots, m)$ in $D(e)$, we obtain holomorphic functions $b_{j . k}^{(1)}(z, w)$ and $b_{j . k}^{(2)}(z, w)$ in K_{1} and K_{2} such that

$$
\begin{aligned}
b_{j, k}(z, w) & =b_{j . k}^{(1)}(z, w)+b_{j . k}^{(2)}(z, w) \quad \text { in } D \\
\left|b_{j . k}^{(s)}(z, w)\right| & \leq L \rho / e \quad \text { in } K_{s}(s=1,2)
\end{aligned}
$$

We set

$$
B_{s}(z, w):=\left(b_{j . k}^{(s)}(z, w)\right)_{j, k} \quad(s=1,2) \quad \text { in } K_{s}
$$

Thus, $B_{s}(z, w) \in \mathcal{M}\left(K_{s}\right)(s=1,2)$ satisfies

$$
\begin{aligned}
& B(z, w)=B_{1}(z, w)+B_{2}(z, w) \quad \text { in } D \\
& \left\|B_{1}\right\|_{K_{1}} \leq m L \rho / e, \quad\left\|B_{2}\right\|_{K_{2}} \leq m L \rho / e
\end{aligned}
$$

We also define $B^{*}(z, w)$ in D by the relation

$$
\left(E-B_{1}(z, w)\right)(E+B(z, w))\left(E-B_{2}(z, w)\right)=E+B^{\bullet}(z, w) \quad \text { in } D
$$

i.e.,

$$
B^{\bullet}=B_{1} B_{2}-B_{1} B-B B_{2}+B_{1} B B_{2}
$$

hence

$$
\left\|B^{*}\right\|_{D} \leq 3(m L \rho / e)^{2}+(m L \rho / e)^{3} .
$$

We are now ready to state and prove Cartan's lemma [11].
Lemma 7.2 (Cartan's lemma). Let $A(z, w) \in \mathcal{M}_{m}(D(e))$ be invertible in $D(e)$. If $A(z, w)$ is sufficiently close to the identity matrix E of order m in $D(e)$, then there exist $A_{1}(z, w) \in \mathcal{M}_{m}\left(K_{1}\right)$ and $A_{2}(z, w) \in \mathcal{M}_{m}\left(K_{2}\right)$ which are invertible in K_{1} and K_{2} and such that

$$
A(z, w)=A_{1}(z, w) \cdot A_{2}^{-1}(z, w) \quad \text { in } D
$$

Proof. For simplicity we omit the subscript m; e.g., $\mathcal{M}_{m}(E)=\mathcal{M}(E)$. To prove the lemma it suffices to find $A_{1}(z, w) \in \mathcal{M}_{m}\left(K_{1}^{o}\right)$ and $A_{2}(z, w) \in \mathcal{M}_{m}\left(K_{2}^{o}\right)$ such that $A(z, w)=A_{1}(z, w) \cdot A_{2}^{-1}(z, w)$ in D^{o} (where K_{i}^{o} and D^{o} denote the interior of K_{i} and D). For $n=0,1, \ldots$, we set

$$
D_{n}:=D\left(e / 2^{n}\right), \quad K_{n, 1}:=K_{1}\left(e / 2^{n+1}\right), \quad K_{n, 2}:=K_{2}\left(e / 2^{n+1}\right)
$$

so that $K_{n+1, s} \subset \subset K_{n, s}(s=1,2), D_{n+1}=K_{n, 1} \cap K_{n, 2}$ and $D^{o}=\lim _{n \rightarrow \infty} D_{n}$.
We construct sequences $B_{n}(z, w) \in \mathcal{M}\left(D_{n}\right), B^{(n, 1)}(z, w) \in \mathcal{M}\left(K_{n, 1}\right)$, and $B^{(n, 2)}(z, w) \in \mathcal{M}\left(K_{n, 2}\right)$ inductively as follows. We define $B_{0}(z, w) \in \mathcal{M}\left(D_{0}\right)$ by the relation

$$
A(z, w)=E+B_{0}(z, w) \quad \text { in } D_{0}
$$

and we set $\rho_{0}:=\left\|B_{0}\right\|_{D_{0}} \geq 0$.
Now fix $n \geq 0$, assume that $B_{n}(z, w)=\left(b_{j, k}^{(n)}(z, w)\right)_{j, k} \in \mathcal{M}\left(D_{n}\right)$ has been defined, and set $\rho_{l}:=\left\|B_{l}\right\|_{D_{l}}(l=0, \ldots, n)$.

Applying Remark 7.9 following Lemma 7.1 to each $b_{j, k}^{(n)}(z, w)(j, k=1, \ldots, m)$ in D_{n}, we obtain holomorphic functions $b_{j, k}^{(n, 1)}(z, w)$ and $b_{j, k}^{(n, 2)}(z, w)$ in $K_{n, 1}$ and $K_{n, 2}$ such that

$$
\begin{aligned}
b_{j, k}^{(n)}(z, w) & =b_{j, k}^{(n, 1)}(z, w)+b_{j, k}^{(n, 2)}(z, w) \quad \text { in } D_{n+1}, \\
\left|b_{j, k}^{(n, s)}(z, w)\right| & \leq 2^{n+1} L \rho_{n} / e \quad \text { in } K_{n, s} \quad(s=1,2) .
\end{aligned}
$$

We write

$$
B^{(n, s)}(z, w):=\left(b_{j, k}^{(n, s)}(z, w)\right)_{j, k} \quad \text { in } K_{n, s} \quad(s=1,2)
$$

Thus $B^{(n, s)}(z, w) \in \mathcal{M}\left(K_{n, s}\right)(s=1,2)$ satisfies

$$
\begin{align*}
B_{n}(z, w) & =B^{(n, 1)}(z, w)+B^{(n, 2)}(z, w) \quad \text { in } D_{n+1} \\
\left\|B^{(n, s)}\right\|_{K_{n, 0}} & \leq M 2^{n} \rho_{n} \quad(s=1,2) \tag{7.13}
\end{align*}
$$

where $M:=2 m L / e>1$ is independent of n. We then define $B_{n+1}(z, w) \in$ $\mathcal{M}\left(D_{n+1}\right)$ by

$$
\left.\left(E-B^{(n, 1)}(z, w)\right)\left(E+B_{n}(z, w)\right)\left(E-B^{(n .2)}(z, w)\right)=E+B_{n+1}(z, w)\right) \text { in } D_{n+1}
$$ i.e.,

$$
B_{n+1}=B^{(n, 1)} B^{(n, 2)}-B^{(n, 1)} B_{n}-B_{n} B^{(n, 2)}+B^{(n, 1)} B_{n} B^{(n, 2)}
$$

Thus if we set $\rho_{n+1}=\left\|B_{n+1}\right\|_{D_{n+1}}$, we have

$$
\begin{equation*}
\rho_{n+1} \leq 3 M^{2}\left(2^{n} \rho_{n}\right)^{2}+M^{3}\left(2^{n} \rho_{n}\right)^{3} . \tag{7.14}
\end{equation*}
$$

This implies that if $\rho_{0}>0$ is sufficiently small, then

$$
\begin{equation*}
\rho_{n} \leq 1 / 4^{n}(n=0,1, \ldots) . \tag{7.15}
\end{equation*}
$$

In fact, by setting $\tau_{n}=4^{n} \rho_{n}(n=0,1, \ldots)$, we have, from (7.14),

$$
\tau_{n+1} \leq 12 M^{2} \tau_{n}^{2}+4 M^{3} \tau_{n}^{3}
$$

Consequently, if we take a sufficiently small $\rho_{0}=\tau_{0}$ with $0<\rho_{0}<1$, then $\left\{\tau_{n}\right\}_{n}$ decreases to 0 , so that

$$
\rho_{n}=\tau_{n} / 4^{n} \leq \tau_{0} / 4^{n} \leq 1 / 4^{n}
$$

which proves (7.15).
Together with (7.13), this implies that if we take $\rho_{0}>0$ sufficiently small, i.e., if $A(z, w)=E+B_{0}(z, w)$ is sufficiently close to the identity matrix E in $D(e)$, then we have

$$
\begin{equation*}
\left\|B_{n}\right\|_{D_{n}} \leq 1 / 4^{n}, \quad\left\|B^{(n, s)}\right\|_{K_{n, s}} \leq M / 2^{n} \quad(s=1,2) \tag{7.16}
\end{equation*}
$$

Now for $n=0,1, \ldots$, we define

$$
\begin{gathered}
A_{n, 1}(z, w):=\left(E-B^{(n, 1)}(z, w)\right)\left(E-B^{(n-1,1)}(z, w)\right) \cdots\left(E-B^{(0,1)}(z, w)\right) \quad \text { in } K_{1}, \\
A_{n, 2}(z, w):=\left(E-B^{(0,2)}(z, w)\right)\left(E-B^{(1,2)}(z, w)\right) \cdots\left(E-B^{(n, 2)}(z, w)\right) \quad \text { in } K_{2},
\end{gathered}
$$

so that

$$
A_{n, 1}(z, w) A(z, w) A_{n, 2}(z, w)=E-B_{n+1}(z, w) \quad \text { in } D .
$$

It follows from (7.16) and Proposition 7.6 that $A_{n, 1}(z, w) \in \mathcal{M}\left(K_{1}\right)$ and $A_{n, 2}(z, w)$ $\in \mathcal{M}\left(K_{2}\right)$ are invertible in K_{1} and K_{2}, and that the sequences $\left\{A_{n, 1}(z, w)\right\}_{n}$ and $\left\{A_{n, 2}(z, w)\right\}_{n}$ are uniformly convergent in K_{1} and K_{2}. Thus,

$$
\begin{aligned}
& A_{1}(z, w):=\lim _{n \rightarrow \infty} A_{n .1}(z, w) \in \mathcal{M}\left(K_{1}^{o}\right), \\
& A_{2}(z, w):=\lim _{n \rightarrow \infty} A_{n .2}(z, w) \in \mathcal{M}\left(K_{2}^{o}\right),
\end{aligned}
$$

which are also invertible in K_{1} and K_{2} with $\left\|A_{s}\right\|_{K_{s}} \leq 3(s=1,2)$. Inequality (7.16) also implies that

$$
A_{1}(z, w) A(z, w) A_{2}(z, w)=E \quad \text { on } D^{o} .
$$

as desired.

Remark 7.10. 1. Since D is closed in \mathbf{C}^{n+1} and $e>0$ can be taken as small as we want in Cartan's lemma, we shall use the lemma in the following form: Let $A(z, w) \in \mathcal{M}_{m}(D)$ be invertible and sufficiently close to the identity matrix E on D. Then there exist $A_{i}(z, w)(i=1,2)$ invertible on K_{i} such that $A(z, w)=A_{1}(z, w) \cdot A_{2}(z, w)$ on D.
2. Cartan's lemma holds for any $A(z, w) \in \mathcal{M}_{m}(D(e))$ which is invertible in $D(e)$ in the case when $G \subset \mathrm{C}_{z}^{n}$ is simply connected. For, in this case, $A(z, w)$ can be written as a product of a finite number of holomorphic matrices $A_{k}(z, w)(k=$ $1, \ldots, \nu)$ which are sufficiently close to E and are invertible in $D(e)$. However, we will not need this fact.

Let p and q be positive integers. We assume G (stated in (7.12)) is a closed polydisk in \mathbf{C}_{z}^{n}, and we use the same notation K_{1}, K_{2}, D, and K as before in $\mathbf{C}^{\mathbf{n + 1}}$. We consider p holomorphic vector-valued functions of rank λ in K_{1} and q holomorphic vector-valued functions of rank λ in K_{2} :

$$
f_{j}(z, w) \quad(j=1, \ldots, p) \quad \text { in } K_{1}, \quad g_{j}(z, w) \quad(j=1, \ldots, q) \quad \text { in } K_{2}
$$

We let $\mathcal{J}^{\lambda}\{f\}$ and $\mathcal{J}^{\lambda}\{g\}$ denote the \mathcal{O}-modules generated by $\left\{f_{j}(z, w)\right\}_{j}$ and $\left\{g_{j}(z, w)\right\}_{j}$ in K_{1} and K_{2}.

Then we obtain the following corollary.
Corollary 7.5. Assume that each $f_{j}(z, w)(j=1, \ldots, p)$ belongs to $\mathcal{J}^{\lambda}\{g\}$ on D, and that each $g_{j}(z, w)(j=1, \ldots, q)$ belongs to $\mathcal{J}^{\lambda}\{f\}$ on D. Then there exist a finite number of holomorphic vector-valued functions $F_{j}(z, w)(j=1, \ldots, p+q)$ in $K:=K_{1} \cup K_{2}$ such that the \mathcal{O}-module $\mathcal{J}^{\lambda}\{F\}$ generated by $\left\{F_{j}(z, w)\right\}_{j}$ in K is equivalent to $\mathcal{J}^{\lambda}\{f\}$ on K_{1} and to $\mathcal{J}^{\lambda}\{g\}$ on K_{2}.

Proof. By the hypothesis we can find $A_{q . p}(z, w)=\left(\alpha_{j . k}(z, w)\right)_{j . k} \in \mathcal{M}_{q, p}(D)$ and $B(z, w)_{p, q}=\left(\beta_{j, k}(z, w)\right)_{j, k} \in \mathcal{M}_{p, q}(D)$ satisfying

$$
\begin{array}{lll}
\left(f_{1}, \ldots, f_{p}\right) & =\left(g_{1}, \ldots, g_{q}\right) A_{q, p} & \text { in } D \\
\left(g_{1}, \ldots, g_{q}\right) & =\left(f_{1}, \ldots, f_{p}\right) B_{p . q} & \text { in } D
\end{array}
$$

On the other hand, since $D=G \times D^{\prime}$, where G is a closed polydisk in C_{z}^{n} and D^{\prime} is a rectangle in \mathbf{C}_{w}, by Runge's theorem, given $\varepsilon>0$, there exist $A_{q, p}^{\prime}(z, w)=$ $\left(\alpha_{j, k}^{\prime}(z, w)\right)_{j, k} \in \mathcal{M}_{q . p}\left(\mathbf{C}^{n+1}\right)$ and $B_{p, q}^{\prime}(z, w)=\left(\beta_{j . k}^{\prime}(z, w)\right)_{j, k} \in \mathcal{M}_{p . q}\left(\mathbf{C}^{n+1}\right)$ such that, for each j, k,

$$
\begin{array}{lc}
\left|\alpha_{j . k}(z, w)-\alpha_{j . k}^{\prime}(z, w)\right| \leq \varepsilon & \text { for }(z, w) \in K_{1} \\
\left|\beta_{j . k}(z, w)-\beta_{j . k}^{\prime}(z, w)\right| \leq \varepsilon & \text { for }(z, w) \in K_{2}
\end{array}
$$

If we write

$$
\begin{aligned}
\left(f_{1}, \ldots, f_{p}\right) & =\left(g_{1}, \ldots, g_{q}\right) \cdot A_{q, p}^{\prime}+\left(g_{1}, \ldots, g_{q}\right) \cdot\left[A_{q, p}-A_{q, p}^{\prime}\right] \\
& \equiv\left(g_{1}^{\prime}, \ldots, g_{p}^{\prime}\right)+\left(g_{1}, \ldots, g_{q}\right) \cdot A_{q, p}^{\prime \prime} \quad \text { in } D
\end{aligned}
$$

then we see that $g_{j}^{\prime}(z, w) \in \mathcal{J}^{\lambda}\{g\}(j=1, \ldots, p)$ on $K_{2}, g_{j}^{\prime}(z, w)$ is close to $f_{j}(z, w)$ on D, and $A_{q, p}^{\prime \prime}(z, w) \in \mathcal{M}_{q, p}(D)$ is close to the zero matrix on D. Analogously, we have

$$
\begin{aligned}
\left(g_{1}, \ldots, g_{q}\right) & =\left(f_{1}, \ldots, f_{p}\right) \cdot B_{p, q}^{\prime}+\left(f_{1}, \ldots, f_{p}\right) \cdot\left[B_{p, q}-B_{p, q}^{\prime}\right] \\
& \equiv\left(f_{1}^{\prime}, \ldots, f_{q}^{\prime}\right)+\left(f_{1}, \ldots, f_{p}\right) \cdot B_{p . q}^{\prime \prime} \quad \text { in } D
\end{aligned}
$$

so that $f_{j}^{\prime}(z, w) \in \mathcal{J}^{\lambda}\{f\}(j=1, \ldots, q)$ on $K_{1}, f_{j}^{\prime}(z, w)$ is close to $g_{j}(z, w)$ on D, and $B_{p, q}^{\prime \prime}(z, w) \in \mathcal{M}_{p, q}(D)$ is close to the zero matrix on D. We then have

$$
\begin{aligned}
\left(f_{1}^{\prime}, \ldots, f_{q}^{\prime}\right) & =\left(g_{1}, \ldots, g_{q}\right)-\left[\left(g_{1}^{\prime}, \ldots, g_{p}^{\prime}\right)+\left(g_{1}, \ldots, g_{q}\right) A_{q, p}^{\prime \prime}\right] \cdot B_{p . q}^{\prime \prime} \\
& =\left(g_{1}, \ldots, g_{q}\right) \cdot\left[E-A_{q, p}^{\prime \prime} B_{p, q}^{\prime \prime}\right]-\left(g_{1}^{\prime}, \ldots, g_{p}^{\prime}\right) \cdot B_{p . q}^{\prime \prime} \\
& \equiv\left(g_{1}, \ldots, g_{q}\right) \cdot C_{q, q}+\left(g_{1}^{\prime}, \ldots, g_{p}^{\prime}\right) \cdot B_{p, q}^{\prime \prime} \quad \text { in } D
\end{aligned}
$$

where $C_{q, q}(z, w) \in \mathcal{M}_{q, q}(D)$ is close to the identity matrix E of order q in D. Consequently,

$$
\begin{aligned}
\left(f_{1}, \ldots, f_{p}, f_{1}^{\prime}, \ldots, f_{q}^{\prime}\right) & =\left(g_{1}^{\prime}, \ldots, g_{p}^{\prime}, g_{1}, \ldots, g_{q}\right)\left(\begin{array}{cc}
E_{q, q} & B_{p, q}^{\prime \prime} \\
A_{q, p}^{\prime \prime} & C_{q, q}
\end{array}\right) \\
& \equiv\left(g_{1}^{\prime}, \ldots, g_{p}^{\prime}, g_{1}, \ldots, g_{q}\right) \cdot R_{p+q, p+q} \quad \text { in } D
\end{aligned}
$$

where $R_{p+q . p+q}(z, w) \in \mathcal{M}_{p+q}(D)$ is close to the identity matrix E of order $p+q$ in D. Applying Cartan's lemma (see 1 of Remark 7.10), there exist $A_{1}(z, w) \in$ $\mathcal{M}_{p+q}\left(K_{1}\right)$ and $A_{2}(z, w) \in \mathcal{M}_{p+q}\left(K_{2}\right)$ which are invertible in K_{1} and K_{2} and such that

$$
R_{p+q}(z, w)=A_{2}(z, w) \cdot A_{1}^{-1}(z, w) \quad \text { in } D .
$$

Thus, if we set

$$
\left(F_{1}, \ldots, F_{p+q}\right)= \begin{cases}\left(f_{1}, \ldots, f_{p}, f_{1}^{\prime}, \ldots, f_{q}^{\prime}\right) \cdot A_{1} & \text { in } K_{1}, \\ \left(g_{1}^{\prime}, \ldots . g_{p}^{\prime} \cdot g_{1}, \ldots, g_{q}\right) \cdot A_{2} & \text { in } K_{2} .\end{cases}
$$

then $F_{j}(z, w)(j=1, \ldots, p+q)$ is a single-valued holomorphic vector-valued function of rank λ on K. Furthermore, since $A_{1}(z, w)$ and $A_{2}(z, w)$ are invertible in K_{1} and K_{2}, it is clear that the \mathcal{O}-module $\mathcal{J}^{\lambda}\{F\}$ generated by $\left\{F_{j}(z, w)\right\}_{j=1 \ldots . p+q}$ is equivalent to $\mathcal{J}^{\lambda}\{f\}$ on K_{1} and to $\mathcal{J}^{\lambda}\{g\}$ on K_{2}.

By repeating the same procedure step by step, we reach the conclusion that if Problem C_{1} is always solvable in any polydisk in \mathbf{C}^{n}, then Problem E is always solvable in any polydisk in \mathbf{C}^{n}. Thus it remains to prove that Problem C_{1} is always solvable in any polydisk in $\mathbf{C}^{\boldsymbol{n}}$. However, we cannot verify this directly; instead, by making careful use of Corollary 7.5, of the Cousin integral, and of the main theorem (Theorem 7.1) in the following section we shall simultaneously solve Problems C_{1} and Problem E in polydisks by a double induction procedure.
7.4.3. Combination Theorem. We shall prove that Problem C_{1} and Problem E are always solvable in any closed polydisk in \mathbf{C}^{n}. These two problems will be solved simultaneously by a double induction procedure.

Let \mathbf{C}^{n} have complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ and write

$$
z_{j}=t_{2 j-1}+i t_{2 j} \quad\left(i^{2}=-1 ; j=1, \ldots, n\right)
$$

where $t_{2 j-1}$ and $t_{2 j}$ are real numbers. Let a_{k}, b_{k} be $2 n$ real numbers with $a_{k} \leq b_{k}$ for $k=1, \ldots, 2 n$, and set

$$
L_{k}: a_{k} \leq t_{k} \leq b_{k} \quad(k=1, \ldots, 2 n) . \quad E:=L_{1} \times \cdots \times L_{2 n}
$$

We call E a box in \mathbf{C}^{n}. For a fixed $l=1, \ldots .2 n$. we consider the subset in \mathbf{C}^{n} defined by

$$
E^{l}: a_{j}<t_{j}<b_{j} \quad(j=1, \ldots, l), \quad t_{j}=a_{j}=b_{j} \quad(j=l+1 . \ldots, 2 n) .
$$

By convention, we set $E^{0}=\left\{\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)\right\}$ (one point). We call E^{l} a real l-dimensional open box, and the closure \bar{E}^{\prime} of E^{l} in \mathbf{C}^{n} is a real l-dimensional closed box.

Given E^{l} as above, we call a set O^{l} in \mathbf{C}^{n} of the form

$$
O^{l}: a_{j}^{\prime}<t_{j}<b_{j}^{\prime} \quad(j=1 \ldots, l) . \quad t_{j}:\left|t_{j}-a_{j}\right|<\varepsilon_{j} \quad(j=l-1, \ldots, 2 n)
$$

where

$$
a_{j}^{\prime}<a_{j}, b_{j}<b_{j}^{\prime}(j=1, \ldots, l) \quad \varepsilon_{j}>0(j=l+1, \ldots, 2 n) .
$$

an open box neighborhood of \vec{E} in C^{n}.
Let $\vec{E}^{l}(l=0,1, \ldots, 2 n)$ be a real l-dimensional closed box in C^{n}. We say that Problem C_{1} is solvable on the real l-dimensional closed box \bar{E}^{l} if the following condition is satisfied: Let $F_{j}(z)(j=1, \ldots, \nu)$ and $\Phi(z)$ be holomorphic vectorvalued functions of rank λ on \bar{E}^{l} (i.e., on a neighborhood U of \bar{E}^{\prime} in \mathbf{C}^{n}) such that
$\Phi(z) \in \mathcal{J}^{\lambda}\{F\}$ at any point z in U. Here $\mathcal{J}^{\lambda}\{F\}$ denotes the \mathcal{O}-module generated by $\left\{F_{j}(z)\right\}_{j=1 \ldots, \ldots,}$ in U. Then there exist an open box neighborhood O of \bar{E}^{\prime} and holomorphic functions $A_{j}(z)(j=1, \ldots, \nu)$ on O such that $\bar{E}^{d} \subset \subset O \subset \subset U$ and

$$
\Phi(z)=A_{1}(z) F_{1}(z)+\cdots+A_{1}(z) F_{v}(z)
$$

on O. In a similar fashion. we define the notion of Problem E being solvable on \bar{E}.
Lemma 7.3. Fix l with $0 \leq 1 \leq 2 n$. If Problem C_{1} and Problem E are solvable for any renl l-dimensional closed bor \bar{E}^{\prime}. then Problem E is solvable for any real $(l+1)$-dimensional closed bor \bar{E}^{+1}.

Proof. Let

$$
E^{t+1}: a_{j}<t,<b, \quad(j=1, \ldots, l+1) . \quad t_{j}=c_{j}(j=l+2, \ldots .2 n)
$$

be a real $(l+1)$-dimensional box in \mathbf{C}^{n}. Let G be a neighborhood of \bar{E}^{l+1}. and let $\left(\left\{w_{j}^{(p)}\right\}_{j=1} \ldots \ldots k_{p}, \delta_{p}\right)_{p \in G}$ be data for Problem E on G : i.e.. δ_{p} is a neighborhood of p in \mathbf{C}^{n} and $\psi_{j}^{(p)}\left(j=1, \ldots, k_{p}\right)$ are holomorphic vector-valued functions of rank λ in δ_{p} such that if $\delta_{p} \cap \delta_{q} \neq 0(p, q \in G)$. then $\mathcal{J}^{\lambda}\left\{v^{(p p}\right\}$ and $\mathcal{J}^{\lambda}\left\{t^{1 q)}\right\}$ are equivalent to each other on $\delta_{p} \cap \delta_{q}$. Here $\mathcal{J}^{\lambda}\left\{\mathfrak{b}^{\left({ }^{(p)}\right)}\right\}$ denotes the \mathcal{O}-module generated by $\left\{v_{j}^{(\rho)}\right\}_{j=1, \ldots, k_{p}}$ on δ_{p}.

Fix a point c in $\left[a_{l+1}, b_{l+1}\right]$ and set

$$
\bar{E}^{\prime}(c): a_{j} \leq t, \leq b, \quad(j=1 \ldots, l) . \quad t_{l+1}=c . \quad t_{j}=c,(j=l+2, \ldots, 2 n) .
$$

Since $\bar{E}^{\prime}(c) \subset \bar{E}^{\prime+1}$ is a real l-dimensional closed box in $\mathbf{C}^{\prime \prime}$. it follows that Problem E is solvable on $\bar{E}^{\prime}(c)$. Thus we can find box neighborhoods $O{ }^{\cdot}(c)$ and $O(c)$ of $\bar{E}^{\prime}(c)$ in \mathbf{C}^{n} with $O(c) \subset \subset O^{*}(c)$ and a finite number of holomorplic vector-valued functions $\Psi^{(c)}(z)\left(j=1, \ldots, \mu_{c}\right)$ of rank λ on $O^{*}(c)$ such that the \mathcal{O}-module $\mathcal{J}^{\lambda}\left\{\Psi^{(c)}\right\}$ generated by $\left\{\Psi_{j}^{(c\rangle}(z)\right\}_{,=1 \ldots, \ldots,}$ on $O^{*}(c)$ is equivalent to $\mathcal{J}^{\lambda}\left\{2^{(p)}\right\}$ on $O^{*}(c) \cap \delta_{p}$. $\boldsymbol{p} \in G$. Since c is an arbitrary point in $\left[a_{l+1}, b_{l+1}\right]$. it follows from the Heine- Borel theorem that there is a finite cover

$$
\bigcup_{i-1}^{m} O\left(c_{i}\right)
$$

of \bar{E}^{l+1}. where $a_{l+1}=c_{1}<c_{2}<\ldots<c_{m}=b_{l+1}$. For simplicity, we set $O\left(c_{1}\right)=$ $O_{\imath}, O^{*}\left(c_{i}\right)=O_{i}^{*} . \Psi_{j}^{\left(c_{i}\right)}(z)=\Psi_{j}^{\prime}(z)\left(j=1, \ldots . \nu_{i}=\nu_{c_{c}}\right)$ and $\mathcal{J}^{\lambda}\left\{\Psi^{c_{i}}\right\}=\mathcal{J}^{\lambda}\left\{\Psi^{\prime}\right\}$ on $O_{i}^{*}(i=1, \ldots, m)$. By shrinking O_{1} if necessary, we may assume that each O_{i} is of the form

$$
\begin{aligned}
O_{i}: & a_{,}<t_{j}<j_{j}(j=1, \ldots, l) . \gamma_{i}<t_{l+1}<\delta_{i} . \\
& \left|t_{j}-c_{j}\right|<\varepsilon(j=l+2 \ldots, 2 n) .
\end{aligned}
$$

with

$$
\begin{aligned}
& a_{j}<a_{j}, b_{j}<3_{j}(j=1, \ldots, l) . \\
& \eta_{1}<\gamma_{2}<\delta_{1}<\gamma_{3}<\delta_{2}<\gamma_{14}<\ldots<\gamma_{m}<\delta_{m}<\delta_{m} .
\end{aligned}
$$

Now we focus on the pairs $\left(\mathcal{J}^{\lambda}\left\{\Psi^{1}\right\} . O_{i}^{i}\right)$ and $\left(\mathcal{J}^{\lambda}\left\{\Psi^{2}\right\} . O_{i}^{*}\right)$, and consider the following real $(l+1)$-dimensional box $T^{l+1} \subset \subset O_{i}^{*} \cup O_{2}^{*}$:

$$
T^{\prime+1}: a_{j}<t_{j}<3,(j=1, \ldots, l) . \eta_{1}<t_{l+1}<\delta_{2}, t_{j}=c_{j}(j=l+2 \ldots, 2 n) .
$$

We prove the following assertion:
(*) There exist a box neighborhood U^{*} in \mathbf{C}^{n} with

$$
\vec{T}^{+1} \subset \subset U^{*} \subset \subset O_{1}^{*} \cup O_{2}^{*}
$$

and a finite number of holoniorphic vector-valued functions $F_{j}(z)(j=$ $1 \ldots, \mu)$ of rank λ on U^{*} such that the \mathcal{O}-module $\mathcal{J}^{\lambda}\{F\}$ generated by $\left\{F_{j}(z)\right\}_{j=1 \ldots . \mu}$ on U^{*} is equivalent to $\mathcal{J}^{\lambda}\left\{v^{(p)}\right\}$ on $\dot{\delta}_{p} \cap U^{\bullet}, p \in G$.
To prove this, we set $Q:=O_{\mathrm{i}} \cap O_{2}^{*}$, which is a real $2 n$-dimensional box in C^{n}. Fix a point $t_{l+1}=q \in\left(\gamma_{2}, \delta_{1}\right)$ and consider the real l-dimensional closed box

$$
\bar{K}^{\prime}: a_{j} \leq t_{j} \leq \beta_{j}(j=1, \ldots, l) . t_{l+1}=q . t_{j}=c_{j}(j=l+2, \ldots, 2 n) .
$$

We note that $\bar{K}^{2} \subset \subset Q$ and that $\mathcal{J}^{\lambda}\left\{\Psi^{1}\right\}$ and $\mathcal{J}^{\lambda}\left\{\Psi^{2}\right\}$ are equivalent to each other on Q. Since Problem C_{1} is solvable on \bar{K}, it follows that there exists a box neighborhood V^{\bullet} in \mathbf{C}^{n} with

$$
\overrightarrow{k^{\prime}} \subset \subset V^{*} \subset \subset Q
$$

such that each $\Psi_{j}^{1}(z)\left(j=1 \ldots, \nu_{1}\right)$ belongs to $\mathcal{J}^{\lambda}\left\{\Psi^{2}\right\}$ on V^{\bullet}. and. similarly, each $\Psi_{j}^{2}(z)\left(j=1 \ldots ., \nu_{2}\right)$ belongs to $\mathcal{J}^{\lambda}\left\{\Psi^{1}\right\}$ on V^{*}. We can take V^{*} of the form $V^{*}: a_{j}^{*}<t_{j}<3_{j}^{*}(j=1 \ldots . l) . \gamma^{*}<t_{l+1}<\delta^{*} .\left|t_{j}-r_{j}\right|<\varepsilon^{*}(j=l+2 \ldots . .2 n)$, where

$$
\gamma_{2}<\gamma^{*}<q<\delta^{*}<\delta_{1} \quad \text { and } \quad 0<\varepsilon^{*}<\varepsilon
$$

We define the real $2 n$-dimensional boxes $U_{1}^{*} \subset \subset O_{1}^{*}$ and $U_{2}^{*} \subset \subset O_{2}^{*}$ by
$U_{1}^{*}: \alpha_{j}^{*}<t_{j}<3_{j}^{*}(j=1 \ldots, l), \gamma_{1}<t_{l+1}<\delta^{*},\left|t_{j}-c_{j}\right|<\hat{c}^{*}(j=l+2 \ldots ., 2 n)$,
$U_{2}^{*}: a_{j}^{*}<t_{j}<i_{j}^{*}(j=1 \ldots ., l), \gamma^{*}<t_{1+1}<\delta_{2},\left|t_{j}-c_{j}\right|<\varepsilon^{*}(j=l+2, \ldots .2 n)$.
so that $U_{i}^{*} \cap U_{2}^{*}=V^{*}$ and $U^{*}:=U_{i}^{*} \cup U_{2}^{*}$ is a box neighborhood of $\bar{T}^{\prime+1}$ in $\mathbf{C}^{\boldsymbol{n}}$. It follows from Corollary 7.5 that there exist a finite number of holonorphic vector-valued functions $F_{j}(z)(j=1, \ldots, \mu)$ of rank λ on U^{*} such that $\mathcal{J}^{\lambda}\{F\}$ is equivalent to $\mathcal{J}^{\lambda}\left\{\dot{\psi}^{1}\right\}$ on U_{i}^{*} and to $\mathcal{J}^{\lambda}\left\{x^{2}\right\}$ on U_{2}^{*}. Thus assertion (*) is proved.

We repeat the same procedure for the pairs $\left(\mathcal{J}^{\lambda}\{F\} . U^{\bullet}\right)$ and $\left(\mathcal{J}^{\lambda}\left\{\Psi^{3}\right\} . O_{3}^{*}\right)$ as for the pairs $\left(\mathcal{J}^{\lambda}\left\{\Psi^{1}\right\}, O_{i}^{*}\right)$ and $\left(\mathcal{J}^{\lambda}\left\{\Psi^{2}\right\}, O_{2}^{*}\right)$; continuing this process, we finally obtain a box neighborhood Λ^{*} of \bar{E}^{+1} in $C^{\prime \prime}$ and a finite number of holomorphic vector-valued functions $\Phi_{j}(z)(j=1, \ldots, M)$ of rank λ on Λ^{*} such that the \mathcal{O} module $\mathcal{J}^{\lambda}\{\Phi\}$ generated by $\left\{\Phi_{j}(z)\right\}_{j=1} \ldots \ldots$ on Λ^{*} is equivalent to $\mathcal{J}^{\lambda}\left\{\dot{\psi}^{(\nu)}\right\}$ on $\delta_{p} \cap \Lambda^{*}, p \in G$. This proves that Problem E is always solvable on any real (l+1)dimensional closed box in $\mathbf{C}^{\mathbf{n}}$.

Lemma 7.4. Fix an integer l with $1 \leq l \leq 2 n$. Assume that Problem C_{1} is solvable for any real l-dimensional closed box and that Problem E is solvable for any real $(l+1)$-dimensional closed box. Then Problem C_{1} is solvable for any real $(l+1)$-dimensional closed box.

Proof. Let

$$
\bar{K}^{\prime+1}: a_{j} \leq t_{j} \leq b_{j} \quad(j=1, \ldots . l+1), \quad t_{j}=c_{j}(j=l+2, \ldots .2 n)
$$

be a real $(l+1)$-dimensional closed box in $\mathbf{C}^{\prime \prime}$. Let $\dot{\psi}_{j}(z)(j=1, \ldots, \nu)$ and $F(z)$ be holomorphic vector-valued functions on \bar{K}^{l+1} (i.e., on a neighborhood U of \bar{K}^{l+1}
in $\mathbf{C}^{\boldsymbol{n}}$) such that, for each point $z_{0} \in U$. there exist a neighborhood δ of z_{0} and ν holomorphic functions $f_{j}(z)(j=1, \ldots, \nu)$ on δ such that

$$
F(z)=f_{1}(z) \psi_{1}(x)+\cdots+f_{\nu}(z) z_{\nu}(z) \quad \text { on } \delta
$$

Fix c in $\left[a_{l+1}, b_{l+1}\right]$ and set

$$
\bar{E}^{\prime}(c): a_{j} \leq t_{j} \leq b_{j} \quad(j=1, \ldots . l), \quad t_{l+1}=c, \quad t_{j}=c_{j}(j=l+2, \ldots, 2 n)
$$

Since $\bar{E}^{l}(c)$ is a real l-dimensional closed box in \mathbf{C}^{n}. it follows that Problem C_{1} is solvable on $\vec{E}^{\prime}(c)$. Thus we can find box neighborhoods $O^{*}(c)$ and $O(c)$ of \bar{E}^{\prime} (c) in U with $O(c) \subset \subset O^{*}(c)$ and ν holomorphic functions $f_{j}^{(c)}(z)(j=1 \ldots, \nu)$ on $O^{*}(c)$ such that

$$
F(z)=f_{1}^{(c)}(z) \dot{\psi}_{1}(z)+\cdots+f_{\nu}^{(c)}(z) \psi_{\nu}(z) \quad \text { on } O^{*}(c)
$$

Since c was an arbitrary point in the interval $\left[a_{l+1}, b_{l+1}\right]$, it follows from the HeineBorel theorem that there exists a finite cover

$$
\bigcup_{i=1}^{m} O\left(c_{i}\right)
$$

of \bar{E}^{l+1}. where $a_{l+1}=c_{1}<c_{2}<\ldots<c_{m}=b_{l+1}$. For simplicity, we set $O\left(c_{i}\right)=$ $O_{i}, O^{*}\left(c_{i}\right)=O_{i}^{*}, f_{j}^{\left(c_{1}\right)}(z)=f_{j}^{i}(z)(j=1, \ldots, \nu)$ on $O_{i}^{*}(i=1, \ldots, m)$. By shrinking O_{i}, if necessary. we may assume that each O_{1} is of the form

$$
O_{i}: \alpha_{j}<t_{j}<\beta_{j}(j=1, \ldots, l), \gamma_{i}<t_{l+1}<\delta_{i},\left|t_{j}-c_{j}\right|<\varepsilon(j=l+2, \ldots, 2 n)
$$

with

$$
\begin{aligned}
& a_{j}<a_{j}, b_{j}<\xi_{j}(j=1 . \ldots . l) \\
& \gamma_{1}<\gamma_{2}<\delta_{1}<\gamma_{3}<\delta_{2}<\gamma_{t}<\ldots<\gamma_{m}<\delta_{m-1}<\delta_{m}
\end{aligned}
$$

We focus on the pairs $\left(\left\{f_{j}^{1}(z)\right\}_{j}, O_{i}^{*}\right)$ and $\left(\left\{f_{j}^{2}(z)\right\}_{j}, O_{2}^{*}\right)$, and consider the following real $(l+1)$-dimensional box $T^{l+1} \subset \subset O_{i}^{*} \cup O_{2}^{*}$:
$T^{l+1}: a_{j}<t_{j}<\beta_{j}(j=1, \ldots, l) . \gamma_{1}<t_{l+1}<\delta_{2}, t_{j}=c,(j=l+2, \ldots, 2 n)$.
We prove the following assertion:
(**) There exist a box neighborhood W^{*} in \mathbf{C}^{n},

$$
\bar{T}^{t+1} \subset \subset W^{\prime *} \subset \subset O_{1}^{*} \cup O_{2}^{*}
$$

and ν holomorphic functions $F_{j}(z)(j=1, \ldots, \nu)$ on W^{*} such that

$$
F(z)=F_{1}(z) \psi_{1}(z)+\cdots+F_{\nu}(z) \varepsilon_{\nu}(z) \quad \text { on } W^{\bullet}
$$

To prove this, we set $Q^{*}:=O_{i}^{*} \cap O_{2}^{*}$ and consider the simultaneous linear equations

$$
f_{1}(z) \dot{w}_{1}(z)+\cdots+f_{\nu}(z) \dot{w}_{\nu}(z)=0 \quad \text { on } Q^{\bullet}
$$

and the \mathcal{O}-module $\mathcal{C}\{\Omega\}$ with respect to the linear relation (Ω). We note that

$$
\mathbf{g}(z):=\left(f_{1}^{1}(z)-f_{1}^{2}(z) \ldots, f_{\nu}^{1}(z)-f_{\nu}^{2}(z)\right)
$$

belongs to $\mathcal{L}\{\Omega\}$ on Q^{*}.

By the main theorem (Theorem 7.1). we see that $\mathcal{L}\{\Omega\}$ has a finite pseudobase $\left\{h^{(p)}(z)\right\}_{j=1, \ldots, m_{p}}$ at each point $p \in Q^{*}$. Fix $t_{l+1}=q \in\left(\gamma_{2}, \delta_{1}\right)$ and consider the real l-dimensional closed box

$$
\bar{K}^{\prime}: a_{j} \leq t_{j} \leq \beta_{\jmath}(j=1, \ldots . l) . t_{l+1}=q . t_{j}=c,(j=l+2 \ldots .2 n) .
$$

We note that $\bar{K}^{\prime} \subset \subset Q^{*}$. Since Problem E is solvable on \bar{K}^{\prime}, it follows that there exist a box neighborhood V^{*} in \mathbf{C}^{n} with

$$
\bar{K}^{\prime} \subset \subset V^{\cdot} \subset \subset Q^{*}
$$

and a finite number of holornorphic vector-valued functions $H_{j}(z)(j=1, \ldots, s)$ of

We again look at the real l-dimensional closed bax \vec{K}^{\prime} defined above. We note that $g(z)$ and $H_{j}(z)(j=1 \ldots \ldots, s)$ are defined in V^{\bullet} and that $g(z)$ belongs to the \mathcal{O}-module $\mathcal{J}^{\lambda}\{H\}$ generated by $\left\{H_{j}(z)\right\}_{j=1, \ldots, \text { as }}$ on V^{*} at each point of V^{*}. Since Problem C_{1} is solvable on \bar{K}^{\prime} and $\bar{K}^{\prime} \subset \subset V^{\prime}$. it follows that there exist a box neighborhood W^{\prime} in \mathbf{C}^{n} with

$$
\bar{K}^{\prime} \subset \subset W \subset \subset V^{*}
$$

and s holomorphic functions $A_{j}(z)(j=1, \ldots, s)$ on W such that

$$
g(z)=A_{1}(z) H_{1}(z)+\cdots+A_{s}(z) H_{s}(z) \quad \text { on } K:
$$

We write
$W: \alpha_{j}^{0}<t_{j}<\beta_{j}^{0}(j=1, \ldots, l) . \gamma^{0}<t_{l+1}<\delta^{0} .\left|t_{j}-c_{j}\right|<\varepsilon^{0}(j=l+2 \ldots .2 n)$ and consider the following real $2 n$-dimensional boxes:
$W_{1}: a_{j}^{0}<t_{j}<\beta_{j}^{0}(j=1 \ldots ., l) . \gamma_{1}<t_{l+1}<\delta^{0} .\left|t_{j}-c_{j}\right|<\varepsilon^{0}(j=l+2 \ldots .2 n)$.
$W_{2}: a_{j}^{0}<t_{j}<\beta_{j}^{0}(j=1, \ldots, l), \gamma^{0}<t_{l+1}<\delta_{2},\left|t_{j}-c_{j}\right|<\varepsilon^{0}(j=l+2 \ldots, 2 n)$. Note that $W=W_{1} \cap W_{2}$ and $W^{*}:=W_{1} \cup W_{2}$ is a box neighborhood of the real $(l+1)$-dimensional closed box \bar{T}^{l+1} defined above. Using the Cousin integral for each $A_{j}(z)(j=1, \ldots, s)$ on W along a seginent on $t_{t+1}=q$. we can find holomorphic functions $A_{j}^{1}(z)$ and $A_{j}^{2}(z)$ on W_{1} and W_{2} such that

$$
A_{j}^{1}(z)-A_{j}^{2}(z)=A_{j}(z) \quad \text { on } W .
$$

For $j=1, \ldots, \nu$ we set

$$
F_{j}(z):= \begin{cases}f_{j}^{1}(z)-\left(A_{1}^{1}(z) H_{1}(z)+\cdots+A_{s}^{1}(z) H_{s}(z)\right) & \text { on } W_{1}^{\prime} . \\ f_{j}^{2}(z)-\left(A_{1}^{2}(z) H_{1}(z)+\cdots+A_{s}^{2}(z) H_{s}(z)\right) & \text { on } W_{2} .\end{cases}
$$

Then $F_{f}(z)(j=1, \ldots, \nu)$ is a single-valued holomorphic function on W^{*} which satisfies

$$
F(z)=F_{1}(z) \dot{v}_{1}(z)+\cdots+F_{\nu}(z) \dot{v}_{\nu}(z) \quad \text { on } W^{*} ;
$$

this proves assertion (**).
As usual, we repeat this for the pairs $\left(\left\{F_{j}(z)\right\}_{j} . W^{*}\right)$ and $\left(\left\{f_{j}^{3}(z)\right\}_{,} . O_{3}^{*}\right)$ (as was done for the pairs $\left(\left\{f_{j}^{1}(z)\right\}_{j}, O_{1}^{*}\right)$ and $\left(\left\{f_{j}^{2}(z)\right\}_{j}, O_{2}^{*}\right)$); continuing this procedure proves the lemma.

Observing that, by definition, Problem C_{1} and Problem E are always solvable for any real 0 -dimensional closed box \bar{E}^{0} in \mathbf{C}^{n} (here \bar{E}^{0} is a point in \mathbf{C}^{n}). we obtain from Lemmas 7.3 and 7.4 the following result.

Theorem 7.5 (Combination theorem). Problem C_{1}, Problem C_{2} and Problem E are always solvable for any closed polydisk in \mathbf{C}^{n}.

As a simple application of this theorem we have
Corollary 7.6. Let $\Phi_{j}(z)(j=1, \ldots, \nu)$ be holomorphic functions on the closed polydisk Δ in \mathbf{C}^{n}. If the functions $\Phi_{j}(z)(j=1, \ldots, \nu)$ have no common zeros on Δ, then there exist holomorphic functions $f_{j}(z)(j=1, \ldots, \nu)$ on Δ such that

$$
f_{1}(z) \Phi_{1}(z)+\cdots+f_{\nu}(z) \Phi_{\nu}(z)=1 \quad \text { on } \Delta .
$$

7.4.4. Completeness. Let $D \subset C^{n}$ be a domain and let $\Phi_{j}(z)(j=1, \ldots, \nu)$ be ν holomorphic vector-valued functions of rank λ in D. We let $\mathcal{J}^{\lambda}\{\Phi\}$ denote the \mathcal{O}-module generated by $\left\{\Phi_{j}(z)\right\}_{j=1, \ldots, \nu}$ on D. The following completeness theorem for $\mathcal{J}^{\lambda}\{\Phi\}$ will be useful in the next chapter.

Theorem 7.6. Let δ be a domain in D and let

$$
f_{\iota}(z)=\left(f_{1}^{\iota}(z), \ldots, f_{\lambda}^{\iota}(z)\right) \quad(\iota=1,2, \ldots)
$$

be a sequence of holomorphic vector-valued functions on δ such that
(1) each $\left(f_{\ell}(z), \delta\right) \in \mathcal{J}^{\lambda}\{\Phi\}(\iota=1,2, \ldots)$, and
(2) $\left\{f_{\iota}(z)\right\}_{<=1,2 \ldots . .}$ converges uniformly to a holomorphic vector-valued function $f_{0}(z)$ on δ.
Then $f_{0}(z)$ belongs to $\mathcal{J}^{\lambda}\{\Phi\}$ at each point in δ.
In order to prove this theorem, we first prove a lemma about solving Problem C_{1} with local estimates. Given $f(z)=\left(f_{1}(z), \ldots, f_{\lambda}(z)\right)$, we define $|f(z)|=$ $\max _{j=1, \ldots, \lambda}\left\{\left|f_{j}(z)\right|\right\}$.

Lemma 7.5. Let D be a polydisk centered at the origin O in \mathbf{C}^{n}. Let $F_{j}(z)=$ ($\left.F_{1, j}(z), \ldots, F_{\lambda, j}(z)\right)(j=1, \ldots, \nu)$ be ν holomorphic vector-valued functions of rank λ on D. Then we can find a polydisk $\delta_{0} \subset D$ centered at O and a constant $K>0$ with the following property. Let $f(z)=\left(f_{1}(z), \ldots, f_{\lambda}(z)\right)$ be a holomorphic vector-valued function on D such that

$$
\begin{align*}
f(z) & =a_{1}(z) F_{1}(z)+\cdots+a_{\nu}(z) F_{\nu}(z) \quad \text { on } D, \tag{7.17}\\
|f(z)| & \leq 1 \text { on } D, \tag{7.18}
\end{align*}
$$

where each $a_{j}(z)(j=1, \ldots, \nu)$ is a holomorphic function on D. Then $f(z)$ can be written in the form

$$
\begin{aligned}
f(z) & =a_{1}^{0}(z) F_{1}(z)+\cdots+a_{\nu}^{0}(z) F_{\nu}(z) \text { on } \delta_{0} \\
\left|a_{j}^{0}(z)\right| & \leq K(j=1, \ldots, \nu) \text { on } \delta_{0}
\end{aligned}
$$

where each $a_{j}^{0}(z)(j=1, \ldots, \nu)$ is a holomorphic function on δ_{0}.
Proof. The proof will proceed by a double induction on the dimension $n \geq 1$ and the rank $\lambda \geq 1$ as in the proof of the main theorem.

First step. The lemma is true in the case $(n, \lambda)=(1,1)$.
We fix a closed disk $\delta_{0} \subset \subset D$ centered at O such that we have $F_{j}(z)=$ $z^{k_{j}} h_{j}(z)(j=1, \ldots, \nu)$ on δ_{0} with $h_{j}(z) \neq 0$ on δ_{0}. For simplicity, suppose $k_{1} \leq k_{j}(j=2, \ldots, \nu)$. Let $K:=\max _{z \in \theta \delta_{0}}\left\{1 /\left|F_{1}(z)\right|\right\}>0$. Then any holomorphic function $f(z)$ satisfying (7.17) and (7.18) can be written in the form
$f(z)=A_{1}(z) F_{1}(z)$ on δ_{0}, where $A_{1}(z)$ is a holomorplic function in δ_{0}. Hence $\left|A_{1}(z)\right| \leq K$ on δ_{0} by the maxinum modulus principle, which proves the first step of the induction.

Second step. The lemma is true in the case $(n . \lambda+1)$ if the lemma is true in the cases $(n, k)(k=1 \ldots, \lambda)$.

Let

$$
F_{j}(z)=\left(F_{0, j}(z), F_{1, j}(z), \ldots, F_{\lambda, j}(z)\right) \quad(j=1 \ldots \ldots \nu)
$$

be a holonorphic vector-valued function of rank $\lambda+1$ in a polydisk D centered at the origin O in \mathbf{C}^{n}. Let

$$
f(z)=\left(f_{0}(z) \cdot f_{1}(z), \ldots, f_{\lambda}(z)\right)
$$

be a holomorphic vector-valued function of rank $\lambda+1$ in D with

$$
\begin{gather*}
f(z)=a_{1}(z) F_{1}(z)+\cdots+a_{\nu}(z) F_{\nu}(z) \text { on } D . \tag{E}\\
|f(z)| \leq 1 \text { on } D .
\end{gather*}
$$

We fix a polydisk $D_{0} \subset \subset D$ centered at O and set $M:=\max \left\{\sum_{j=1}^{\nu}\left|F_{j}(z)\right| \mid\right.$ $\left.z \in D_{0}\right\}<\infty$. Define the holonorphic vector-valued functions

$$
\begin{aligned}
F_{j}^{0}(z) & =\left(F_{1, j}(z) \ldots, F_{\lambda, j}(z)\right)(j=1, \ldots, \nu) \\
f^{0}(z) & =\left(f_{1}(z) \ldots, f_{\lambda}(z)\right)
\end{aligned}
$$

each of rank λ in D. Then

$$
\begin{equation*}
f^{\prime \prime}(z)=a_{1}(z) F_{1}^{\prime \prime}(z)+\cdots+a_{v}(z) F_{l}^{\prime \prime}(z) \quad \text { on } D, \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
f_{0}(z)=a_{1}(z) F_{0,1}(z)+\cdots+a_{\nu}(z) F_{0, \nu}(z) \quad \text { on } D \tag{1}
\end{equation*}
$$

so that $\left(\mathcal{E}^{0}\right)$ is of type (n, λ) and $\left(\mathcal{E}_{1}\right)$ is of type $(n, 1)$.
By the induction assumption applied to $\left(\mathcal{E}_{1}\right)$ on D, we can find a closed polydisk $\delta_{1} \subset D_{0}$ centered at O, a constant $K_{1}>0$ independent of $f_{0}(\tilde{z})$, and holonorphic functions $a_{j}^{0}(z)(j=1, \ldots, \nu)$ on δ_{1} such that

$$
\begin{aligned}
f_{0}(z) & =a_{1}^{0}(z) F_{0.1}(z)+\cdots+a_{\nu}^{0}(z) F_{0, v}(z) \quad \text { on } \delta_{1}, \\
\left|a_{j}^{0}(z)\right| & \leq K_{1} \text { on } \delta_{1} .
\end{aligned}
$$

Note that $\left|f_{0}(z)\right| \leq K_{1} M$ on δ_{1}.
Now we consider the single linear equation

$$
\begin{equation*}
b_{1}(z) F_{0,1}(z)+\cdots+b_{\nu}(z) F_{0,1}(z)=0 \tag{0}
\end{equation*}
$$

for the unknown holomorphic vector-valued function

$$
b(z)=\left(b_{1}(z) \ldots, b_{\nu}(z)\right)
$$

of rank ν, and we consider the \mathcal{O}^{ν}-module $\mathcal{L}\left\{\Omega_{0}\right\}$ with respect to the linear relation $\left(\Omega_{0}\right)$. By the main theorem (Theorem 7.1). the \mathcal{O}^{ν}-module $\mathcal{L}\left\{\Omega_{11}\right\}$ has a locally finite pseudobase at the origin O; thus we can find a finite number. say μ. of holomorphic vector-valued functions

$$
\Phi_{k}(z)=\left(\Phi_{1 . k}(z) \ldots, \Phi_{\nu, k}(z)\right) \quad(k=1, \ldots, \mu)
$$

of rank ν on a closed polydisk $\delta_{2} \subset \delta_{1}$ centered at O which generate $\mathcal{L}\left\{\Omega_{0}\right\}$ on δ_{2} (where neither δ_{2} nor $\Phi_{k}(z)(k=1 \ldots, \mu)$ depends on $f(z)$ in (\mathcal{E})). We set $M^{\prime}=\max \left\{\sum_{k=1}^{\mu}\left|\Phi_{k}(z)\right| \mid z \in \delta_{2}\right\}<\infty$. Note that if we set

$$
a(z)-a^{0}(z)=\left(a_{1}(z)-a_{1}^{0}(z), \ldots a_{\nu}(z)-a_{\nu}^{0}(z)\right) \quad \text { on } \delta_{1} .
$$

then $a(z)-a^{0}(z)$ belongs to $\mathcal{L}\left\{\Omega_{0}\right\}$ on δ_{2}. Since Problem C_{1} is solvable on the closed polydisk δ_{2}, we can find holomorphic functions $c_{j}(z)(j=1, \ldots, \mu)$ on δ_{2} such that

$$
\begin{equation*}
a(z)-a^{0}(z)=c_{1}(z) \Phi_{1}(z)+\cdots+c_{\mu}(z) \Phi_{\mu}(z) \quad \text { on } \delta_{2} \tag{7.19}
\end{equation*}
$$

(note that for any holomorphic functions $c_{j}(z)(j=1, \ldots, \mu)$ on δ_{2}, the functions $a_{j}(z)(j=1, \ldots, \nu)$ obtained by substituting the functions $c_{j}(z)$ into (7.19) automatically satisfy $\left(\mathcal{E}_{1}\right)$ on $\left.\delta_{2}\right)$. We substitute this expression into $\left(\mathcal{E}^{(0}\right)$ and obtain

$$
\begin{aligned}
f^{0}(z)- & \left(a_{1}^{0}(z) F_{1}^{0}(z)+\cdots+a_{\nu}^{0}(z) F_{\nu}^{0}(z)\right) \\
= & c_{1}(z)\left(\Phi_{1,1}(z) F_{1}^{0}(z)+\cdots+\Phi_{\nu, 1}(z) F_{\nu}^{0}(z)\right) \\
& +\cdots \\
& +c_{\mu}(z)\left(\Phi_{1, \mu}(z) F_{1}^{0}(z)+\cdots+\Phi_{\nu, \mu}(z) F_{\nu}^{0}(z)\right) \quad \text { on } \delta_{2}
\end{aligned}
$$

as holomorphic vector-valued functions of rank λ. If we set

$$
\begin{aligned}
g^{0}(z) & =f^{0}(z)-\left(a_{1}^{0}(z) F_{1}^{0}(z)+\cdots+a_{\nu}^{0}(z) F_{\nu}^{0}(z)\right) \quad \text { on } \delta_{2}, \\
G,(z) & =\Phi_{1 . j}(z) F_{1}^{0}(z)+\cdots+\Phi_{\nu . j}(z) F_{\nu}^{0}(z) \quad(j=1, \ldots, \mu) \quad \text { on } \delta_{2},
\end{aligned}
$$

then we have

$$
\begin{equation*}
g^{0}(z)=c_{1}(z) G_{1}(z)+\cdots+c_{\mu}(z) G_{\mu}(z) \quad \text { on } \delta_{2} \tag{G}
\end{equation*}
$$

Again, note that for any holomorphic functions $c_{j}(z)(j=1, \ldots, \mu)$ satisfying these λ equations (\mathcal{G}) on $\delta \subset \delta_{2}$, the functions $a_{j}(z)(j=1 \ldots, \nu)$ obtained by substituting the functions $c_{j}(z)$ into (7.19) automatically satisfy $\left(\mathcal{E}^{0}\right)$ on δ. and hence both $\left(\mathcal{E}_{1}\right)$ and $\left(\mathcal{E}^{0}\right)$ on δ. We have that $\left|g^{0}(z)\right| \leq 1+K_{1} M$ on δ_{2}. Since equation (\mathcal{G}) is of type (n, λ) on δ_{2}, the inductive hypothesis applied to $G_{\jmath}(z)(j=$ $1, \ldots, \mu$) and δ_{2} implies that there exist a closed polydisk $\delta_{3} \subset \delta_{2}$ centered at O, a constant $K_{3}>0$ independent of $g^{0}(z)$, and μ holomorphic functions $c_{j}^{(1)}(z)(j=$ $1, \ldots, \mu)$ such that

$$
\begin{array}{ll}
g^{0}(z)=c_{1}^{0}(z) G_{1}(z)+\cdots+c_{\mu}^{0}(z) G_{\mu}(z) & \text { on } \delta_{3} \\
\left|c_{j}^{0}(z)\right| \leq K_{3}\left(1+K_{1} M\right)(j=1, \ldots, \mu) & \text { on } \delta_{3}
\end{array}
$$

Thus, if we set

$$
a^{*}(z):=a^{0}(z)+c_{1}^{0}(z) \Phi_{1}(z)+\cdots+c_{\mu}^{0}(z) \Phi_{\mu}(z) \quad \text { on } \delta_{3}
$$

then we have

$$
\begin{array}{lll}
f(z) & =a_{1}^{*}(z) F_{1}(z)+\cdots+a_{\nu}^{*}(z) F_{\nu}(z) & \text { on } \delta_{3} \\
\left|a_{j}^{*}(z)\right| \leq K_{1}+K_{3}\left(1+K_{1} M\right) M^{\prime} \equiv K^{\prime}(j=1, \ldots \nu) & \text { on } \delta_{3} .
\end{array}
$$

Since $\delta_{3}, K_{1}, K_{3}, M$ and M^{\prime} do not depend on the choice of $f(z)$ satisfying (\mathcal{E}) with $|f(z)| \leq 1$ on D, the second step is proved (using δ_{3} and $K>0$).

Third step. The lemma is true in the case $(n+1,1)$ if the lemma is true in the cases (n, λ) for $\lambda=1,2, \ldots$

Let D be a polydisk centered at the origin O in C^{n+1} and let $F_{j}(z)(j=$ $1, \ldots, \nu)$ be holomorphic functions on D.

We may assume that the z_{n+1}-direction satisfies the Weierstrass condition for each analytic hypersurface $\Sigma_{j}: F_{j}(z)=0(j=1 \ldots, \nu)$ at $z=O$. For convenience
we write $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=z_{n+1}$, so that $\mathbf{C}^{n+1}=\mathbf{C}_{\dot{z}}^{n} \times \mathbf{C}_{u^{*}}$. We can thus find a closed polydisk $\Lambda:=\Delta \times \Gamma$ centered at $(z, w)=(0,0)=O$ in $\mathbf{C}^{n} \times \mathbf{C}_{w}$,

$$
\Delta:\left|z_{j}\right| \leq \rho \quad(j=1, \ldots, n), \quad \Gamma:|u| \leq \eta
$$

such that $F_{j}(z, w) \neq 0 \quad(j=1, \ldots, \nu)$ on $\Delta \times \partial \Gamma$. Thus we have

$$
F_{j}(z, w)=\omega_{j}(z, w) P_{j}(z, u) \quad(j=1 \ldots, \nu) \quad \text { on } \Lambda .
$$

where $\omega_{j}(z, w) \neq 0$ at any point $(z, w) \in \Lambda$ and where $P_{j}(z, w)$ is a monic pseudopolynomial in w with coefficient functions that are holomorphic on Δ.

$$
\begin{equation*}
P_{j}\left(z, u^{\prime}\right)=w^{k_{j}}+A_{j, 1}(z) u^{k_{j}-1}+\cdots+A_{j . k}(z) \quad \text { on } \Lambda, \tag{7.20}
\end{equation*}
$$

and such that $\Sigma_{j}=\left\{(z, w) \in \Delta \times \mathbf{C}_{u} \mid P_{j}(z, w)=0\right\}$. Thus, instead of finding a polydisk $\delta_{0} \subset D$ centered at O and a constant $K>0$ for $F_{j}(z, w)(j=1, \ldots, \nu)$ and D to satisfy the conclusion of the third step. it suffices to find a polydisk $\Lambda^{*} \subset \Lambda$ centered at O and a constant $K^{*}>0$ for $P_{f}(z, u)(j=1, \ldots, \nu)$ and A .

Without loss of generality, we will assume $k_{\nu} \geq k_{j}(j=1, \ldots, \nu-1)$; i.e., the monic pseudopolynomial $P_{\nu}(z, w)$ has largest degree in w among all the monic pseudopolynomials $P_{j}(z, w)$. Let $f(z)$ be a holomorphic function on Λ satisfying

$$
\begin{gather*}
f(z, w)=a_{1}(z, w) P_{1}(z, w)+\cdots+a_{\nu}(z, w) P_{\nu}(z, w) \text { on } \Lambda . \tag{E}\\
|f(z, w)| \leq 1 \text { on } \Lambda .
\end{gather*}
$$

where each $a,(z, w)(j=1 \ldots, \nu)$ is a holomorphic function on Λ. By the remainder theorem applied to $P_{\nu}(z, w)$, we have

$$
\begin{equation*}
f(z, w)=q(z, w) P_{\nu}(z, w)+r(z, w) \quad \text { on } \Lambda . \tag{7.21}
\end{equation*}
$$

where $q(z, w)$ is a holomorphic function on Λ and $r(z, w)$ is a pseudopolynomial in w of degree at most $k_{\nu}-1$ with coefficient functions that are holomorphic for z in Δ,

$$
r(z, w)=\beta_{0}(z) w^{k_{\nu}-1}+\beta_{1}(z) w^{k_{\nu}-2}+\cdots+\beta_{k_{\nu}-1}(z) \quad \text { on } \Lambda .
$$

Fix $\Gamma_{0}:|w| \leq \eta_{0}<\eta$ and $\Lambda_{0}:=\Delta \times \Gamma_{0}$. From (2) of Theorem 7.2 we can find $M>0$. independent of $f(z, w)$. such that

$$
\begin{aligned}
& |q(z, w)| .|r(z, w)| \leq M \quad \text { on } A_{0} . \\
& \left|B_{j}(z)\right| \leq M \quad\left(j=0,1 \ldots, k_{\nu}-1\right) \quad \text { on } \Delta .
\end{aligned}
$$

Similarly we have

$$
a_{j}(z, w)=q_{j}(z, w) P_{\nu}(z, w)+r_{j}(z, u) \quad(j=1, \ldots, \nu-1) \quad \text { on } \Lambda .
$$

where each $q_{j}(z, w)$ is a holomorphic function on Λ and each $r_{j}(z, w)$ is a pseudopolynomial in w of degree at most $k_{\nu}-1$ with coefficient functions which are holomorphic for z in Δ.

$$
r_{J}(z, w)=c_{j, 0}(z) u^{k_{\nu-1}}+c_{j, 1}(z) w^{k_{\nu-2}}+\cdots+c_{j, k_{\nu-1}}(z) \quad \text { on } \Lambda .
$$

Therefore, from (\mathcal{E}) we have

$$
\begin{array}{r}
r(z, w)-\left(r_{1}(z, w) P_{1}(z, w)+\cdots+\quad r_{\nu-1}(z, w) P_{\nu-1}(z, w)\right) \\
=r_{\nu}(z, u) P_{\nu}(z, w) \tag{7.22}
\end{array}
$$

where $r_{\nu}(z, w)$ is a holomorphic function on Λ. By the division theorem we see that $r_{\nu}(z, w)$ must be a pseudopolynomial in w of degree at most $k_{\nu}-1$ with coefficient functions which are holomorphic for z in Δ,

$$
r_{\nu}(z, w)=c_{\nu, 0}(z) w^{k_{\nu}-1}+c_{\nu, 1}(z) w^{k_{\nu}-2}+\cdots+c_{\nu, k_{\nu}-1}(z) \quad \text { on } \Lambda \text {. }
$$

Thus, by comparing the coefficients of w^{k} on both sides of the equation (7.22) on Λ, we obtain the following $2 k_{\nu}$ simultaneous linear equations $(\widehat{\mathcal{E}})$ on Δ :

$$
\begin{cases}\beta_{k}(z) & =\sum_{i, j} c_{i, j}(z) \mathcal{A}_{i, j}^{(k)}(z) \quad\left(k=0, \ldots, k_{\nu}-1\right) \tag{E}\\ 0 & =\sum_{i, j} c_{i, j}(z) \mathcal{A}_{i, j}^{(k)}(z) \quad\left(k=k_{\nu}, k_{\nu}+1, \ldots, 2 k_{\nu}-1\right)\end{cases}
$$

where each $\mathcal{A}_{i, j}^{(k)}(z)$ is a linear combination of the functions $\left\{A_{l, m}(z)\right\}_{l, m}$ on Δ. If we define $\widetilde{\beta}(z):=\left(\beta_{0}(z), \ldots, \beta_{k_{\nu}-1}(z), 0, \ldots, 0\right)$ and $\tilde{\mathcal{A}}_{i, j}(z):=\left(\mathcal{A}_{i, j}^{(0)}(z), \ldots, \mathcal{A}_{i, j}^{\left(2 k_{\nu}-1\right)}\right.$ (z)), then the set of equations $(\widehat{\mathcal{E}})$ can be rewritten as

$$
\begin{equation*}
\tilde{\beta}(z)=\sum_{i, j} c_{i, j}(z) \tilde{\mathcal{A}}_{i, j}(z) \quad \text { on } \Delta \tag{E}
\end{equation*}
$$

with $|\tilde{\beta}(z)| \leq M$ on Δ. Since this $(\tilde{\mathcal{E}})$ is a case of the form $\left(n, 2 k_{\nu}\right)$, it follows by the inductive hypothesis applied to $\left\{\tilde{\mathcal{A}}_{i, j}(z)\right\}_{i, j}$ (which is determined by the given $P_{j}(z, w)(j=1, \ldots, \nu)$ in (7.20)) and Δ that we can find a polydisk $\Delta_{0} \subset \Delta$ centered at O, a constant K_{1} independent of $\tilde{\beta}(z)$, and holomorphic functions $c_{i, j}^{0}(z)$ on Δ_{0} such that $\left|c_{i, j}^{0}(z)\right| \leq K_{1} M$ on Δ_{0} and $c_{i, j}^{0}(z)$ (as well as $\left.c_{i, j}(z)\right)$ satisfy the equations $(\tilde{\mathcal{E}})$ on Δ_{0}. Conversely, if we construct pseudopolynomials $r_{j}^{0}(z, w)(j=$ $1, \ldots, \nu)$ in w of degree at most $k_{\nu}-1$ using $c_{i, j}^{0}(z)$ (as $r_{j}(z, w)(j=1, \ldots, \nu)$ are constructed using $c_{i, j}(z)$), then by (7.22) we obtain

$$
r(z, w)=r_{1}^{0}(z, w) P_{1}(z, w)+\cdots+r_{\nu-1}^{0}(z, w) P_{\nu-1}(z, w)+r_{\nu}^{0}(z, w) P_{\nu}(z, w)
$$

on $\Delta_{0} \times \Gamma \equiv \Lambda^{*}$ in Λ, and $\left|r_{j}^{0}(z, w)\right| \leq K_{1} M \sum_{j=0}^{k_{\nu}-1} \eta^{j} \equiv K_{2}(j=1, \ldots, \nu)$ on Λ^{*}. Since (7.21) implies that

$$
f=r_{1}^{0} P_{1}+\cdots+r_{\nu-1}^{0} P_{\nu-1}+\left(r_{\nu}^{0}+q\right) P_{\nu} \quad \text { on } \Lambda^{*}
$$

the third step is proved (using the polydisk Λ^{\bullet} and the constant $K^{\bullet}:=K_{2}+M>0$). This completes the proof of the lemma.

Remark 7.11. Now that Lemma 7.5 is established, we can use the same double induction method with respect to the real dimension of $R^{2 n}$ as in section 7.4.3 to extend Lemma 7.5 from a polydisk δ_{0} to an arbitrary subset $D_{0} \subset \subset D$ (D is a polydisk in $\mathbf{C}^{\mathbf{n}}$), where the constant $K>0$ depends on D_{0}. Moreover, in Theorem 8.16 in Chapter 8 we shall extend this lemma to a more general situation using another method (by use of the open mapping theorem for Fréchet spaces based on Lemma 7.5).

We now use Lemma 7.5 to prove Thorem 7.6.
Proof of Theorem 7.6. By taking a subsequence of $\left\{f_{L}(z)\right\}_{L=1,2 \ldots}$ and a smaller δ, if necessary, we may assume that $\left\{f_{l}(z)\right\}_{l=1,2} \ldots$. converges uniformly to $f_{0}(z)$ on δ with

$$
\max _{z \in \delta}\left\{\left|f_{\iota+1}(z)-f_{\iota}(z)\right|\right\}<1 / 2^{\iota} \quad(\iota=1,2, \ldots)
$$

and that each $f_{l}(z)$ can be written in the form

$$
f_{l}(z)=a_{1}^{(L)}(z) \Phi_{1}(z)+\cdots+a_{\nu}^{(L)}(z) \Phi_{\nu}(z) \quad \text { on } \delta
$$

Fix $q \in \delta$. From Lemma 7.5, it follows that there exist a neighborhood δ_{0} of q in δ and a coustant $K>0$ satisfying the conditions in the lemma for the functions $\left\{\Phi_{j}(z)\right\}_{j=1 \ldots . \nu}$ on δ. Thus, there exist holomorphic functions $c_{j}^{(1)}(z)(j=$ $1, \ldots, \nu ; \iota=1,2, \ldots)$ on δ_{0} with

$$
\begin{aligned}
& f_{1+1}(z)-f_{1}(z)=c_{1}^{(1)}(z) \Phi_{1}(z)+\cdots+c_{11}^{(l)}(z) \Phi_{1}(z) \quad \text { on } \delta_{10} . \\
& \max _{z \in \delta_{0}}\left\{\left|c_{j}^{(L)}(z)\right|\right\} \leq K / 2^{\prime} \quad(j=1, \ldots, \nu) .
\end{aligned}
$$

For $j=1, \ldots, \nu$, we set

$$
c_{j}(z):=a_{j}^{(1)}(z)+\sum_{i=1}^{x} c_{j}^{(1)}(z) \quad \text { on } \delta_{0}
$$

then $\left\{c_{j}(z)\right\}_{j}$ converges uniformly on δ_{0}. and we have

$$
f_{0}(z)=c_{1}(z) \Phi_{1}(z)+\cdots+c_{\nu}(z) \Phi_{\nu}(z) \quad \text { on } \delta_{0}
$$

Thus $f_{0}(z)$ belongs to $\mathcal{J}^{\lambda}\{\Phi\}$ on δ_{0}.

7.5. Local Finiteness Theorem

7.5.1. ℓ-ideal. Let D be a domain in \mathbf{C}^{n} with variables $z_{1} \ldots, z_{n}$. Let $F_{j}(z)$ $(j=1, \ldots, \nu)$ be ν holomorphic vector-valued functions of rank λ on D.

$$
F_{j}(z)=\left(F_{1, j}(z) \ldots . F_{\lambda, j}(z)\right) \quad(j=1, \ldots, \nu) .
$$

Consider the set of λ homogeneous linear simultaneous equations

$$
f_{1}(z) F_{1}(z)+\cdots+f_{1}(z) F_{1 \prime}(z)=0
$$

for the unknown holomorphic vector-valued function $f(z)=\left(f_{1}(z), \ldots f_{\nu}(z)\right)$ of rank ν. We refer to this system as the linear relation (Ω). We let $\mathcal{L}\{\Omega\}$ denote the \mathcal{O}-module with respect to the linear relation (Ω), i.e., $\mathcal{L}\{\Omega\}$ is the set of all pairs $(f(z), \delta)$ such that $f(z)=\left(f_{1}(z) \ldots, f_{\nu}(z)\right)$ is a holomorphic vector-valued function of rank ν on δ which satisfies (Ω) on δ. Looking at the first components of $f(z)$, we consider the set $\ell\{\Omega\}$ of all pairs $\left(f_{1}(z), \delta\right)$ such that there exists at least one $(f(z), \delta)$ in $\mathcal{L}\{\Omega\}$ with $f(z)=\left(f_{1}(z), \ldots, f_{\nu}(z)\right)$. Then $\varepsilon\{\Omega\}$ is an \mathcal{O}-ideal on D which is called the ℓ-ideal with respect to the linear relation (Ω). Since $\mathcal{L}\{\Omega\}$ has a locally finite pseudobase at each point in \mathcal{D}, we have the following theorem.

Theorem 7.7. For the linear relation (Ω) associated to the holomorphic vectorvalued functions $F_{j}(z)(j=1 \ldots, \nu)$ on D, the ε-ideal $\ell\{\Omega\}$ has a locally finite pseudobase at each point in D.

In this section we will often use this theorem to show that some important \mathcal{O}-ideals on \mathcal{D} have a locally finite pseudobase at each point in D. We next prove the following corollary, due to Oka, which is a simple application of Theorem 7.7. This corollary will not be used in the remainder of this book.

Let I be an \mathcal{O}-ideal in a domain $D \subset \mathbf{C}^{\boldsymbol{n}}$ and let Φ be a holomorphic function on D. We define \mathcal{I}^{Φ} to be the set of all pairs ($f+A \Phi, \delta \cap \delta^{\prime}$) where $(f, \delta) \in I$ and A is a holomorphic function on δ^{\prime}. In addition, we define \boldsymbol{I}_{Φ} to be the set of all pairs (φ, δ) where $\varphi=f / \Phi$ is holomorphic on δ and $(f, \delta) \in \mathcal{I}$. These are both \mathcal{O}-ideals on D. We call I^{Φ} and I_{Φ} the adjoint and the quotient \mathcal{O}-ideals of I for Φ. We note that $\mathcal{I} \subset \mathcal{I}^{\Phi} \cap I_{\Phi}$.

Using this notation and terminology, we have the following result.

Corollary 7.7. The \mathcal{O}-ideal I on D admits a locally finite pseudobase at each point in D if and only if the same is true for both I^{Φ} and I_{Φ}.

Proof. Fix $z_{0} \in D$. Assume that I admits a locally finite pseudobase $F_{j}(j=$ $1, \ldots, \nu$) on a neighborhood δ of z_{0} in D. Then $\left\{F_{j} . \Phi\right\}_{j=1, \ldots, \nu}$ forms a locally finite pseudobase of \mathcal{I}^{Φ} on δ. Fix $\varphi \in \mathcal{I}_{\Phi}$ at a point z^{*} in δ. Then we have

$$
\Phi_{\varphi}=a_{1} F_{1}+\cdots+\alpha_{\nu} F_{\nu} \quad \text { in } \delta^{*} .
$$

where $\delta^{*} \subset \delta$ is a neighborhood of z^{*} and each $a_{j}(j=1, \ldots, \nu)$ is a holomorphic function on δ^{*}. Thus the restriction \mathcal{I}_{ϕ} on δ coincides with the ε-ideal with respect to the linear relation (Ω) in δ. By Theorem 7.7, I_{Φ} admits a locally finite pseudobase at Σ_{0}.

Conversely, assume that I^{Φ} and I_{Φ} both admit a locally finite pseudobase at z_{0}. We denote these pseudobases as

$$
F_{j}+A_{i} \Phi(j=1, \ldots, \nu) \quad \text { and } \quad \Psi_{k}(k=1, \ldots, \mu) \quad \text { on } \delta,
$$

where δ is a neighborhood of z_{0} in D. Here, $\left(F_{j}, \delta\right) \in \mathcal{I}$ and A, is a holomorphic function on δ; moreover. each $\Psi_{k}=G_{k} / \Phi$ is a holomorphic function on δ where $\left(G_{k}, \delta\right) \in I$. Let $f \in \mathcal{I}$ at a point $z^{*} \in \delta$. Since $f \in I^{\phi}$ at z^{*}, we have

$$
f=f_{1}\left(F_{1}+A_{1} \Phi\right)+\cdots+f_{\nu}\left(F_{\nu}+A_{\nu} \Phi\right) \quad \text { on } \delta^{*} .
$$

where δ^{*} is a neighborhood of z^{*} in δ and each $f,(j=1, \ldots, \nu)$ is a holomorphic function on δ^{*}. Thus,

$$
f-f_{1} F_{1}-\cdots-f_{\nu} F_{\nu}=\left(f_{1} A_{1}+\cdots+f_{\nu} A_{\nu}\right) \Phi \quad \text { on } \delta^{\bullet},
$$

so that $f_{1} A_{1}+\cdots+f_{\nu} A_{\nu}$ belongs to I_{Φ} on δ^{*}. Hence. we have

$$
f_{1} A_{1}+\cdots+f_{\nu} A_{\nu}=b_{1} \Psi_{1}+\cdots+b_{\mu} \Psi_{\mu} \quad \text { on } \delta^{*}
$$

where each $b_{k}(k=1, \ldots, \mu)$ is a holomorphic function on δ^{*}. It follows that

$$
f=f_{1} F_{1}+\cdots+f_{\nu} F_{\nu}+b_{1} G_{1}+\cdots+b_{\mu} G_{\mu} \quad \text { on } \delta^{*} .
$$

Consequently, the restriction of \mathcal{I} to δ coincides with the \mathcal{O}-ideal generated by $\nu+\mu$ holomorphic functions $\left\{F_{j}, G_{k}\right\}$ on δ.

Example 7.4. Let $\Delta=(|x|<1) \times(|y|<1)$ and $\Delta^{\prime}=(|x|<1) \times(0<|y|<1)$ in \mathbf{C}^{2}. Let I be the set of all pairs $(f, \delta), \delta \subset \Delta$ satisfying the following: if $\delta \subset \Delta^{\prime}$, then f can be an arbitrary holomorphic function on δ^{\prime}; if $\delta \not \subset \Delta^{\prime}$. then $f=\alpha x y$, where a is a holomorphic function on δ. Then \mathcal{I} is an \mathcal{O}-ideal on Δ, but \mathcal{I} does not admit a locally finite pseudobase at the origin 0 in Δ. For if \mathcal{I} had a pseudobase $\left\{\alpha_{j} x y\right\}(j=1, \ldots, \nu)$ in a neighborhood V of 0 in Δ. then their common zero set in V would contain $\{x y=0\}$. However, at the point $(0, y) \in V$ with $y \neq 0$ the constant function 1 belongs to I. which is a contradiction.

The adjoint \mathcal{I}^{y} of I for the function y and the quotient \mathcal{I}_{x} for the function x are generated by the function y on Δ. However, neither \mathcal{I}_{y} nor \mathcal{I}^{x} admit a locally finite pseudobase at the origin. For both \mathcal{I}_{y} and \mathcal{I}^{x} consist of the collection of all pairs (f, δ) with $\delta \subset \Delta$ satisfying the following: if $\delta \subset \Delta^{\prime}$, then f can be an arbitrary holomorphic function on δ; if $\delta \not \subset \Delta^{\prime}$, then $f=\alpha x$, where α is a holomorphic function on δ. Hence this collection does not admit a locally finite pseudobase at the origin.
7.5.2. G-ideal. Let D be a domain in \mathbf{C}^{n} and let \mathcal{I} be an \mathcal{O}-ideal on D. Fix $p \in D$. If each holomorphic function $f(z)$ belonging to I at the point p vanishes at p, then we say that p is a zero point of \mathcal{I}. We call the set $E(\mathcal{I})$ of all such p in D the zero set of I. Note that for $q \in D$. we have $q \notin E(I)$ if and only if each holomorphic function $f(z)$ at q belongs to I at the point q. It is clear that $E(\mathcal{I})$ is a closed set in D. Furthermore, if I has a locally finite pseudobase at each point in D, then $E(\mathcal{I})$ is an analytic set in D.

Conversely; let E be a closed set in D. We consider the set $G\{E\}$ of all pairs $(f(z), \delta)$ such that $\delta \subset D$ and $f(z)$ is a holomorphic function on δ which satisfies $f(z)=0$ on $E \cap \delta$. Then $G\{E\}$ becomes an \mathcal{O}-ideal on D. called the geometric ideal for E on D (or the G-ideal for E). We will need the following theorem concerning G-ideals.

Theorem 7.8. Let Σ be an analytic set in a domain D in \mathbf{C}^{n}. Then the G-ideal $G\{\Sigma\}$ on D has a locally finite pseudobase at each point in D.

We first prove Theorem 7.8 in the special case given as Proposition 7.7 below. For the sake of convenience, we use the following notation: $\mathbf{C}^{n}=\mathbf{C}_{z}^{r} \times \mathbf{C}_{u^{n-r}}^{n-r}$, where \mathbf{C}_{z}^{r} has variables z_{1}, \ldots, z_{r} and $\mathbf{C}_{u^{n-r}}^{n}$ has variables w_{1}, \ldots, w_{n-r}. Let D be a domain in \mathbf{C}_{z}^{r} and let $\Lambda=D \times \mathbf{C}_{u^{i}}^{n-r} \subset \mathbf{C}^{n}$. For each $w_{j}(j=1, \ldots, n-r)$, we consider a monic pseudopolynomial

$$
P_{j}\left(z, w_{j}\right)=w_{j}^{l_{j}}+a_{j, 1}(z) u_{j}^{l_{j}-1}+\cdots+a_{j . l_{j}(z)}
$$

with respect to u_{j}, where each $a_{j . k}(z)\left(1 \leq k \leq l_{j}\right)$ is a holomorphic function on D and $P_{j}\left(z, w_{j}\right)$ has no multiple factors. We set

$$
\tilde{\Sigma}=\bigcap_{j=1}^{n-r}\left\{\left(z, u_{1} \ldots, u_{n-r}\right) \in \Lambda \mid P_{j}\left(z . w_{j}\right)=0\right\}
$$

which is a pure r-dimensional analytic set in Λ.
Then we have the following proposition.
Proposition 7.7. The G-ideal $G\{\tilde{\Sigma}\}$ on Λ is generated by $n-r$ pseudopolynomials $P_{j}\left(z, w_{j}\right)(j=1, \ldots, n-r)$ on A .

Proof. We prove this by induction on $n-r \geq 1$ (the number of pseudopolynomials). We first assume that $n-r=1$, i.e., $\bar{\Sigma}$ is an analytic hypersurface in $\Lambda:=D \times \mathbf{C}_{w}$ defined by the zero set of a single monic pseudopolynomial $P(z, w)$ with no multiple factors whose coefficients are holomorphic functions on D. Fix $p_{0} \in \Lambda$. Let $f(z, w)$ be any holomorphic function at p_{0} belonging to $G\{\Sigma\}$ at p_{0}. Fix a sufficiently snall polydisk $\lambda:=\delta \times \gamma \subset \subset D \times \mathbf{C}_{u}$, centered at p_{v}, such that $f(z, w)$ is holomorphic on $\bar{\lambda}$ and $P(z, w) \neq 0$ in $\delta \times \partial \gamma$. Then we can write $P(z, w)=P^{\prime}(z, w) P^{\prime \prime}(z, w)$ in λ, where $P^{\prime}(z, w)$ is a inonic pseudopolynomial with respect to w and $P^{\prime \prime}(z, w) \neq 0$ in $\bar{\lambda}$. Since $f(z, w)=0$ on $\bar{\lambda} \cap\left\{P^{\prime}(z, w)=0\right\}$ and $P^{\prime}(z, w)$ has no multiple factors. it follows from the Weierstrass preparation theorem that $f(z, w)=P^{\prime}(z, w) \omega(z, w)$ on λ. where $\omega(z, w)$ is a holomorphic function on λ (which may have zeros on λ). We thus have $f\left(z, u^{\prime}\right)=P(z, w)\left(w(z, w) / P^{\prime \prime}(z, w)\right)=: P(z, w) \omega_{1}(z, w)$ on λ, where $\omega_{1}(z, w)$ is a holomorphic function on λ. Consequently, $P(z, w)$ is a pseudobase of $G\{\Sigma\}$ on Λ.

We next assume that the proposition is true for $n-r \geq 1$, and prove it for
$n-r+1$. Let $\tilde{\Sigma}$ be the pure r-dimensional analytic set in $\mathrm{A}:=\mathrm{D} \times \mathbf{C}_{u^{n-r+1}}^{n} \subset$ $\mathbf{C}_{:}^{r} \times \mathbf{C}_{\mathbf{u}}^{n-r+1}=\mathbf{C}^{n+1}$ defined by

$$
\bar{\Sigma}=\bigcap_{j=1}^{n-r+1}\left\{(z, w) \in \Lambda \mid P_{j}\left(z, w_{j}\right)=0\right\}
$$

where each $P_{j}\left(z, w_{j}\right)(j=1, \ldots, n-r+1)$ is a monic pseudopolynomial in w_{j} with no multiple factors whose coefficients are holomorphic functions on D. For later use we write

$$
\begin{aligned}
w & =\left(w_{1}, \ldots, w_{n-r}, w_{n-r+1}\right)=\left(w^{\prime}, u_{n-r+1}\right) \\
\Lambda^{\prime} & =D \times C_{u^{\prime}}^{n-r}, \quad \tilde{\Sigma}^{\prime}=\bigcap_{j=1}^{n-r}\left\{(z, w) \in \Lambda^{\prime} \mid P_{j}\left(z, u_{j}\right)=0\right\}
\end{aligned}
$$

We also let σ_{n-r+1} denote the zero set of the discriminant $d_{n-r+1}(z)$ in D of $P_{n-r+1}\left(z, w_{n-r+1}\right)$ with respect to w_{n-r+1}, so that σ_{n-r+1} is an $(r-1)$-dimensional analytic hypersurface in D.

Now let $p_{0} \in \Lambda$, and let $f(z, w)$ be any holomorphic function at p_{0} which belongs to $G\{\tilde{\Sigma}\}$ at p_{0}. We clains that there exists a neighborhood λ_{0} of p_{0} in Λ such that

$$
\begin{equation*}
f(z, w)=a_{1}(z, w) P_{1}\left(z, w_{1}\right)+\cdots+a_{n-r+1}(z, w) P_{n-r+1}\left(z, w_{n-r+1}\right) \text { on } \lambda_{0} . \tag{7.23}
\end{equation*}
$$

where each $a_{j}(z, w)(j=1, \ldots, n-r+1)$ is a holomorphic function on λ_{0}.
To prove this, we set $p_{0}=\left(z_{0}, w_{0}\right)=\left(z_{0}, w_{0.1} \ldots, w_{0, n-r}, w_{0, n-r+1}\right)=\left(z_{0}, w_{0}^{\prime}\right.$, $\left.w_{0, n-r+1}\right)$. In case $p_{0} \in \Lambda \backslash \bar{\Sigma}$, we have $P_{j}\left(z_{0}, u_{0 . j}\right) \neq 0$ for some $j(1 \leq j \leq n-r+1)$. Thus, if we set $f(z, w)=\left(f(z, w) / P_{j}\left(z, w_{j}\right)\right) P_{j}\left(z, u_{j}\right)=: a_{j}(z, w) P_{j}(z, u)$, then $a_{j}(z, w)$ is a holomorphic function in a neighborhood λ_{0} of p_{0} in which $P_{j}\left(z, w_{j}\right) \neq 0$. This proves our claim (7.23).

We next study the case $p_{0}=\left(z_{0}, w_{0}\right) \in \bar{\Sigma}$. We take a polydisk $\lambda:=\delta \times \gamma \subset$ $D \times \mathbf{C}_{u}^{n-r+1}$ centered at $\left(z_{0}, w_{0}\right)$ in which $f\left(z, w^{\prime}\right)$ is holomorphic. We write

$$
\begin{array}{ll}
\gamma:=\gamma_{1} \times \cdots \times \gamma_{n-r} \times \gamma_{n-r+1} \subset \mathbf{C}_{u}^{n-r+1} . & \gamma^{\prime}:=\gamma_{1} \times \cdots \times \gamma_{n-r} \subset \mathbf{C}_{u}^{n-r} \\
\lambda^{\prime}:=\delta \times \gamma^{\prime} \subset D \times \mathbf{C}_{u}^{n-r} \subset \mathbf{C}^{n}, & \lambda:=\lambda^{\prime} \times \gamma_{n-r+1} \subset \mathbf{C}^{n+1} .
\end{array}
$$

By taking a suitably sinaller polydisk λ centered at $\left(z_{0}, w_{0}\right)$ if necessary, we may assume that

$$
P_{n-r+1}\left(z, w_{n-r+1}\right) \neq 0 \quad \text { on } \delta \times \partial \gamma_{n-r+1}
$$

Thus, we have

$$
P_{n-r+1}\left(z, w_{n-r+1}\right)=P^{\prime}\left(z, w_{n-r+1}\right) P^{\prime \prime}\left(z, w_{n-r+1}\right) \quad \text { on } \delta \times \gamma_{n-r+1}
$$

where both $P^{\prime}\left(z, w_{n-r+1}\right)$ and $P^{\prime \prime}\left(z, w_{n-r+1}\right)$ are monic pseudopolynomials whose coefficients are holomorphic functions on δ such that

$$
\begin{aligned}
P^{\prime}\left(z, w_{n-r+1}\right) & \neq 0 \text { on } \delta \times\left[\mathbf{C}_{u_{n-r+1}} \backslash \gamma_{n-r+1}\right] \\
P^{\prime \prime}\left(z, w_{n-r+1}\right) & \neq 0 \text { on } \delta \times \gamma_{n-r+1}
\end{aligned}
$$

furthermore $P^{\prime}\left(z, w_{n-r+1}\right)$ has no multiple factors. We let l, l^{\prime}, and $l^{\prime \prime}$ denote the orders of P_{n-r+1}, P^{\prime}, and $P^{\prime \prime}$ with respect to w_{n-r+1}. so that $l=l^{\prime}+l^{\prime \prime}$. Considering $P^{\prime}\left(z, w_{n-r+1}\right)$ as a monic pseudopolynomial with respect to w_{n-r+1}
whose coefficients are holomorphic functions on λ^{\prime}. we can apply the remainder theorem on $\lambda=\lambda^{\prime} \times \gamma_{n-r+1}$ to obtain

$$
\begin{equation*}
f(z, w)=q(z, w) P^{\prime}\left(z, w_{n-r+1}\right)+r\left(z, w^{\prime}, w_{n-r+1}\right) \quad \text { on } \lambda . \tag{7.24}
\end{equation*}
$$

Here $q(z . w)$ is a holomorphic function on λ and $r\left(z, w^{\prime}, w_{n-r+1}\right)$ is a pseudopolynomial with respect to u_{n-r+1} of degree at most $l^{\prime}-1$: i.e.,

$$
\tau\left(z, w^{\prime}, w_{n-r+1}\right)=A_{0}\left(z, w^{\prime}\right) w_{n-r+1}^{l^{\prime}-1}+\cdots+A_{l^{\prime}-1}\left(z, u^{\prime}\right) \text { on } \lambda^{\prime} \times \mathbf{C}_{u_{n-r+1}},
$$

where $A_{j}\left(z, u^{\prime}\right)\left(j=0.1 \ldots, l^{\prime}-1\right)$ is a holomorphic function on λ^{\prime}.
We want to show that for each $j=0,1, \ldots, l^{\prime}-1$.

$$
\begin{equation*}
A_{j}\left(z, w^{\prime}\right)=0 \quad \text { on } \tilde{\Sigma}^{\prime} \cap \lambda^{\prime} . \tag{7.25}
\end{equation*}
$$

To see this. let $(a, b) \in \lambda^{\prime} \subset D \times \mathbf{C}_{u^{\prime}}^{n-r}$ be any point of $\tilde{\Sigma}^{\prime} \cap \lambda^{\prime}$ such that $a \in$ $D \backslash \sigma_{n-r+1}$. so that $P_{n-r+1}\left(a, w_{n-r-1}\right)=0$ has l distinct solutions in $\mathbf{C}_{w_{n-r+1}}$. Hence, $P^{\prime}\left(a, u_{n-r+1}\right)=0$ has l^{\prime} distinct solutions in γ_{n-r+1}, say. $\zeta_{1}(a), \ldots, \zeta_{l^{\prime}}(a)$. Since $\left(a, b, \zeta_{k}(a)\right) \in \bar{\Sigma} \cap \lambda\left(k=1, \ldots, l^{\prime}\right)$, it follows from (7.24) that $r\left(a, b, \zeta_{k}(a)\right)=0$ ($k=1, \ldots, l^{\prime}$). Since $r\left(a, b, w_{n-r+1}\right)$ is a polynomial with respect to w_{n-r+1} of degree at most $l^{\prime}-1$, we have $r\left(a, b, w_{n-r+1}\right) \equiv 0$ on $\mathbf{C}_{w_{n-r+1}}$, and hence $A_{\jmath}(a, b)=$ $0\left(j=0,1, \ldots, l^{\prime}-1\right)$. By analytic continuation, $A_{j}\left(z, u^{\prime}\right)=0\left(j=0,1, \ldots . l^{\prime}-1\right)$ for any point $\left(z . w^{\prime}\right) \in \dot{\Sigma}^{\prime} \cap \lambda^{\prime}$. which proves (7.25).

Since $\tilde{\Sigma}^{\prime}$ is defined by $n-r$ pseudopolynomials, from the inductive hypothesis we conclude that there exists a neighborhood λ_{0}^{\prime} of $\left(z_{0}, w_{0}^{\prime}\right)$ in λ^{\prime} such that, for each $j=0.1, \ldots . l^{\prime}-1$.

$$
A_{j}\left(z, w^{\prime}\right)=a_{1}^{(j)}\left(z . w^{\prime}\right) P_{1}\left(z, w_{1}\right)+\cdots+a_{n-r}^{(j)}\left(z, w^{\prime}\right) P_{n-r}\left(z, w_{n-r}\right) \text { on } \lambda_{0}^{\prime} .
$$

where each $a_{1}^{(j)}\left(z, w^{\prime}\right)(1 \leq i \leq n-r)$ is a holomorphic function on λ_{0}^{\prime}. If we set $\lambda_{n}:=\lambda_{0}^{\prime} \times \gamma_{n-r+1}$, which is a neighborhood of $\left(z_{0}, w_{0}\right)$ in Λ. then we have

$$
\begin{aligned}
f(z, w)= & \frac{q(z, w)}{P^{\prime \prime}\left(z, u_{n-r+1}^{\prime}\right)} \cdot P_{n-r+1}\left(z, w_{n-r+1}\right) \\
& +\sum_{k=1}^{n-r}\left(\sum_{j=0}^{t^{\prime}-1} a_{k}^{(j)}\left(z, w^{\prime}\right) u_{n-r+1}^{j}\right) P_{k}\left(z, u_{k}\right) \\
\equiv & \sum_{k=1}^{n-r+1} a_{k}(z, w) P_{k}\left(z, w_{k}\right) \quad \text { on } \lambda_{0}
\end{aligned}
$$

where each $a_{k}(z, w)(k=1, \ldots, n-r+1)$ is a holomorphic function on λ_{1}. This proves our claim in the case $p_{0}=\left(z_{0}, u_{0}\right) \in \tilde{\Sigma}$ for $n-r+1$. By induction we complete the proof of the proposition.

Proof of Theorem 7.8. Let Σ be an analytic set in a domain D in \mathbf{C}^{n}. Let $z_{0} \in \Sigma$. We fix a polydisk Δ centered at z_{0} in D and decompose $\Delta \cap \Sigma$ into irreducible components: $\Delta \cap \Sigma=\Sigma_{1} \cup \cdots \cup \Sigma_{q}$. We let $G\left\{\Sigma_{j}\right\}(j=1 \ldots \ldots q)$ denote the G-ideal for Σ_{j} in Δ. We note that $\left.G\{\Sigma\}\right|_{\Delta}$ coincides with $\bigcap_{j=1}^{q} G\left\{\Sigma_{j}\right\}$. Using Theorem 7.4, to prove Theorem 7.8 it suffices to prove that each $G\left\{\Sigma_{j}\right\}$ $(j=1, \ldots, q)$ has a locally finite pseudobase at the point z_{1}. For simplicity in notation we write $\Sigma_{j}=\Sigma$ and assume that Σ is of dimension $r(0 \leq r<n)$. By performing a coordinate change and taking a smaller polydisk Δ if necessary: we may assume that $z=\left(z_{1}, \ldots, z_{r}, z_{r+1}, \ldots, z_{n}\right)=\left(z^{\prime} . z_{r+1}, \ldots, z_{n}\right)$ satisfies the

Weierstrass condition for Σ at any point z on Σ. Thus, if we write $\Delta=\Delta^{\prime} \times \Gamma \subset$ $\mathbf{C}_{z^{\prime}}^{r} \times \mathbf{C}_{z_{r+1} \ldots . z_{n}}^{n-r}$. then $\Sigma \cap\left(\Delta^{\prime} \times \partial \Gamma\right)=\emptyset$. It follows from Theorem 2.2 in Chapter 2 that there exists a monic pseudopolynomial $P_{j}\left(z^{\prime} . z_{j}\right)(j=r+1 \ldots . n)$ with respect to z_{j} whose coefficients are holomorphic functions on Δ^{\prime}. such that, if we define

$$
\bar{\Sigma}:=\bigcap_{j=r+1}^{n}\left\{\left(z^{\prime}, z_{r+1} \ldots, z_{n}\right) \in \Delta^{\prime} \times \mathbf{C}^{n \cdot r} \mid P_{j}\left(z^{\prime}, z_{j}\right)=0\right\}
$$

then Σ is one of the irreducible components of $\dot{\Sigma}$ in Δ. We may also assume that each $P_{j}\left(z^{\prime}, z_{j}\right)(j=r+1, \ldots, n)$ has no multiple factors. We let Σ^{\prime} denote the union of the remaining irreducible components of $\tilde{\Sigma}$, so that $\tilde{\Sigma}=\Sigma \cup \Sigma^{\prime}$. From Remark 2.7 of Lemma 2.5, Σ^{\prime} is itself an analytic set in Δ which can be uritten in the form

$$
\Sigma^{\prime}=\bigcap_{i=1}^{\lambda}\left\{z \in \Delta \mid \hat{y}_{1}(z)=0\right\}
$$

where $p_{i}(z)(i=1, \ldots, \lambda)$ is a holomorphic function on all of Δ.
Consider the following system of homogeneous linear equations:

$$
\begin{align*}
& f(z)_{i \gamma_{2}}(z)=f_{r+1 . i}(z) P_{r+1}\left(z^{\prime} . z_{r+1}\right)+\cdots+f_{n, 1}(z) P_{n}\left(z^{\prime}, z_{n}\right) \\
& (i=1, \ldots, \lambda) \text { on } \Delta ;
\end{align*}
$$

equivalently.

$$
\begin{aligned}
f \cdot & \left(\hat{r}_{1} \cdot \hat{r}_{2} \ldots \ldots \cdot \gamma_{\lambda}\right) \\
& =f_{r+1.1} \cdot\left(P_{r+1} \cdot 0, \ldots, 0\right)+\cdots+f_{n, 1} \cdot\left(P_{n} \ldots, 0.0\right) \\
& +\cdots+f_{r+1, \lambda} \cdot\left(0, \ldots .0, P_{r+1}\right)+\ldots+f_{n, \lambda} \cdot\left(0 \ldots .0, P_{n}\right) .
\end{aligned}
$$

Here the functions $\left(\psi_{i}(z), P_{j}\left(z^{\prime}, z_{j}\right)\right)(i=1, \ldots, \lambda ; j=r+1, \ldots, n)$ on Δ are known (given): the unknown functions are ($\left.f(z), f_{k . i}(z)\right)(k=r+1, \ldots, n$: $i=$ $1 \ldots . . \lambda)$. Thus, the linear relation (Ω) is of rank λ and the \mathcal{O}-module $\mathcal{L}\{\Omega\}$ is of rank $1+\lambda(n-r)$. We consider the $\{$-ideal $\ell\{\Omega\}$ with respect to (Ω) in Δ. By Theorem 7.7. $\ell\{\Omega\}=\{(f, \delta)\}_{\delta \subset \Delta}$ has a locally finite pseudobase at each point in Δ. To prove the theorem it thus suffices to prove that $\ell\{\Omega\}$ is equivalent to $G\{\Sigma\}$ as an \mathcal{O}-ideal on Δ.

To verify this, fix $z^{0} \in \Delta$ and let $f(z)$ be any holomorphic function at z^{0} which belongs to $\ell\{\Omega\}$ at z^{0}. Then there exists a neighborhood δ of z^{0} in Δ such that

$$
f(z)_{i_{i}}(z)=f_{r+1, i}(z) P_{r+1}\left(z^{\prime}, z_{r+1}\right)+\cdots+f_{n, 1}(z) P_{n}\left(z^{\prime}, z_{n}\right)(i=1 \ldots, \lambda) .
$$

where each $f_{k, i}(z)(k=r+1, \ldots, n: i=1, \ldots, \lambda)$ is a holomorphic function on δ. Take a point $\zeta=\left(\zeta^{\prime} . \zeta_{r+1}, \ldots ., \zeta_{n}\right) \in\left(\Sigma \backslash \Sigma^{\prime}\right) \cap \delta$. Then $\hat{\gamma}_{i}(\zeta) \neq 0$ for some i $(1 \leq i \leq \lambda)$. Since $\Sigma \subset \tilde{\Sigma}$ implies that $P_{k}\left(\zeta^{\prime} \cdot \zeta_{k}\right)=0(k=r+1, \ldots, n)$, it follows that $f(\zeta)_{\nu_{i}}(\zeta)=0$. and hence $f(\zeta)=0$. By continuity. this implies $f(z)=0$ on $\Sigma \cap \delta$ (since $\Sigma \cap \Sigma^{\prime}$ is of dimension $r-1$), so that $(f, \delta) \in G\{\Sigma\}$. Thus, $f(z)$ belongs to $G\{\Sigma\}$ at z^{0}.

Conversely, let $z^{\prime \prime} \in \Delta$ and let $f(z)$ belong to $G\{\Sigma\}$ at z^{0}. There exists a neighborhood δ of z^{0} in Δ such that $f(z)=0$ on $\delta \cap \Sigma$. Then each function $f(z) \varphi_{i}(z)(i=1, \ldots . \lambda)$ is a holomorphic function in δ such that $f(z) \varphi_{i}(z)=0$ on $\left(\Sigma \cup \Sigma^{\prime}\right) \cap \delta$, i.e., $\left(f(z)_{\hat{\gamma}_{i}}(z), \delta\right) \in G\{\tilde{\Sigma}\}$. From Proposition 7.7 we have

$$
f(z) \varphi_{i}(z)=a_{r+1, i}(z) P_{r+1}\left(z^{\prime}, z_{r+1}\right)+\cdots+a_{n, i}(z) P_{n}\left(z^{\prime}, z_{n}\right)(i=1, \ldots, \lambda)
$$

in a neighborhood $\delta_{0} \subset \delta$ of z^{0}, where each $a_{k, i}(z)(k=r+1, \ldots, n: i=1, \ldots, \lambda)$ is a holomorphic function on δ_{0}. This neans that $\left(f(z), \delta_{0}\right) \in \ell\{\Omega\}$, so that $f(z)$ belongs to $\ell\{\Omega\}$ at z^{0}.

Consequently, $G\{\Sigma\}$ and $\{\{\Omega\}$ are equivalent as \mathcal{O}-ideals on Δ.
Theorem 7.8 combined with the solvablity of Problem E in a closed polydisk implies the following corollary.

Corollary 7.8. Let $\bar{\Delta}$ be a closed polydisk in \mathbf{C}^{n} and let Σ be an analytic set in $\bar{\Delta}$. Then there exist a finite number of holomorphic functions $f_{j}(z)(j=$ $1, \ldots . \nu)$ on Δ such that $\Sigma \cap \Delta$ is equal to the common zero set of $f_{j}(z)(j=$ $1, \ldots, \nu)$ in Δ.

Remark 7.12. Theorem 3.4 in Chapter 3 (the main theorein in Oka [45]) follows immediately from this fact.

We give another proof of Theorem 7.8: this is due to Oka [50].
Remark 7.13. After a slight change in notation, together with the use of Theorem 7.4, we may assume that Σ is an r-dimensional irreducible analytic set in the polydisk Λ centered at the origin 0 in \mathbf{C}^{n}. Here $\Lambda=\Delta \times \Gamma \subset C_{z}^{r} \times C_{\mathbf{u}}^{s}$. and $r+s=n$ with $\Sigma \cap[\Delta \times \partial \Gamma]=0$. We set $\Gamma=\Gamma_{1} \times \cdots \times \Gamma_{s}$, where $\Gamma_{j}(j=1 \ldots, s)$ is a disk in $\mathbf{C}_{w^{\prime}}$, We let \mathcal{D} denote the projection of Σ over the polydisk Δ; this is a ramified domain over Δ without relative boundary. Finally we let m denote the number of sheets of \mathcal{D} over Δ. Thus Σ can be written in the form $w_{j}=\xi_{j}(\tilde{z})(j=1 \ldots, s), \tilde{z} \in \mathcal{D}$. where each $\xi_{j}(\tilde{z})$ is a single-valued holomorphic function on \mathcal{D} with $\xi_{j}(\tilde{z}) \in \Gamma_{j}$. We let $\Sigma,(j=1, \ldots, s)$ denote the projection of Σ onto the ($r+1$)-dimensional polydisk $\Lambda_{j}:=\Delta \times \Gamma_{j}$. Then Σ_{j} is an analytic hypersurface in Λ_{j}, so that Σ_{j} can be written as

$$
\Sigma_{j}=\left\{\left(z, w_{j}\right) \in \Delta \times \mathbf{C}_{u}, \mid P_{j}\left(z, w_{j}\right)=0\right\}
$$

where $P\left(z, w_{j}\right)$ is a polynomial in w_{j} of degree at most m whose coefficients are holomorphic functions on $\Delta_{\text {; }}$ moreover $P\left(z, w_{j}\right)$ has no multiple factors. Thus, $w_{j}=\xi_{j}(\tilde{z})$ satisfies $P_{j}\left(z, w_{j}\right)=0$, where z is the projection of \tilde{z} onto Δ. We forcus on $j=1$. By taking a coordinate transformation of C^{s} sufficiently close to the identity transformation, if necessary, we may assume that Σ and Σ_{1} are in one-to-one correspondence except for an analytic set of dimension at most $r-1$; thus the projection \mathcal{D}_{1} of Σ_{1} over Δ, which is a ramified domain over Δ without boundary; coincides with \mathcal{D}. In particular. $\partial P_{1}\left(z, w_{1}\right) / \partial w_{1} \not \equiv 0$ on Σ_{1}. and hence on Σ. Thus each $\xi_{j}(\tilde{z})(j=2, \ldots, s)$ defines a weakly holomorphic function on Σ_{1}. and Σ can thus be considered as a lifting of the first kind of Σ_{1} by $w_{j}=\xi_{j}(\tilde{z})(j=$ $2, \ldots, s)$. For each $j=2 \ldots$, s. using Remark 7.4 there exists a linear polynomial $\Phi_{j}^{*}\left(z, u_{1}, w_{j}\right)$ in w_{j} of the form:

$$
\Phi_{j}^{*}\left(z, w_{1}, w_{j}\right)=w_{j} \frac{\partial P_{1}\left(z, w_{1}\right)}{\partial w_{1}}-\Phi_{j}\left(z, w_{1}\right) \quad(j=2, \ldots, s)
$$

which vanishes on Σ. Here $\Phi_{j}\left(z, w_{1}\right)$ is a polynomial in w_{1} of degree at most $m-1$ whose coefficients are holomorphic functions on Δ. We set $M=(s-1) m$.

We consider the following linear equation (Ω) defined on Λ :

$$
f(z, w)\left(\frac{\partial P_{1}\left(z, w_{1}\right)}{\partial w_{1}}\right)^{M}
$$

$$
\begin{aligned}
= & f_{1}(z, w) P_{1}\left(z, w_{1}\right)+\cdots+f_{s}(z, w) P_{s}\left(z, w_{s}^{\prime}\right) \\
& +g_{2}(z . w) \Phi_{2}^{*}\left(z, w_{1}, u u_{2}\right)+\cdots+g_{*}\left(z, u^{\prime}\right) \Phi_{s}^{*}\left(z, w_{1}, u_{s}\right)
\end{aligned}
$$

where $P_{j}\left(z, w_{j}\right)$ and $\Phi_{k}^{*}\left(z, w_{1}, w_{k}\right)$ are known functions on A, and $\left(f, f_{1} \ldots \ldots f_{s}\right.$, g_{2}, \ldots, g_{s}) is an unknown holomorphic vector-valued function of rank $2 s$ in ($z, u ;$). By the main theorem (Theorem 7.1). it remains to prove that our G-ideal $G\{\Sigma\}$ on Λ is equivalent to the l-ideal $l\{\Omega\}:=\{(f(z, w), \lambda)\}$ (here $\lambda \subset \Lambda)$ with respect to the linear relation (Ω) on A.

Fix $(f(z, w), \lambda) \in l\{\Omega\}$. We note that each Φ_{k}^{*} as well as each P, vanishes on Σ in Λ. Since $f(z, w)$ satisfies equation (Ω) on λ for some holomorphic functions f_{j}, g_{k} on λ, it follows from the fact that $\partial P_{1}\left(z, u_{1}\right) / \partial u_{1} \not \equiv 0$ on Σ that $f\left(z, u^{\prime}\right)=0$ on $\Sigma \cap \lambda$; thus $(f, \lambda) \in G\{\Sigma\}$.

Conversely; let $f\left(z, w^{\prime}\right)$ be a holomorphic function belonging to $G\{\Sigma\}$ at a point (z_{0}, w_{0}) in Λ. By Remark 7.7, there exists a sufficiently small polydisk $\lambda=\delta \times \gamma \subset$ $\Delta \times \Gamma$ centered at $\left(z_{0}, w_{0}\right)$ with $\Sigma \cap(\delta \times \partial \gamma)=0$ such that

$$
f(z, w)=\varphi_{1}(z, w) P_{1}\left(z, w^{\prime}\right)+\cdots+\nu_{s}(z, w) P_{s}(z, w)+\sum_{i \mathrm{j} \mid=0}^{M} j_{\mathrm{j}}(z) u_{1}^{\mu_{1}} \cdots u_{s}^{\jmath_{s}}
$$

for $\mathbf{j}=\left(j_{1}, \ldots, j_{s}\right),|\mathbf{j}|=j_{1}+\cdots+j_{,}, 0 \leq j_{k} \leq m-1$. where each $\gamma_{j}(z, u)$ is a holomorphic function on λ and where each $\beta_{(j)}(z)$ is a holomorphic function on δ. We set $\gamma:=\gamma_{1} \times \cdots \gamma_{s}$, where $\gamma_{j}(j=1, \ldots, s)$ is a disk in Γ_{j}. Multiplying both sides of the above formula by $\left(\partial P_{1} / \partial w_{1}\right)^{M}$ and using the functions $\Phi_{j}^{*}\left(z, u_{1}, u_{j}\right)(j=$ $2, \ldots, s)$, we have

$$
\begin{aligned}
f(z, w)\left(\frac{\partial P_{1}\left(z, w_{1}\right)}{\partial u_{1}}\right)^{M=} & \dot{\hat{\varphi}}_{1}(z, u) P_{1}+\cdots+\overline{\hat{\psi}}_{s}(z, w) P_{s} \\
& +\bar{\psi}_{2}(z, w) \Phi_{2}^{*}+\cdots+\bar{\psi}_{s}(z, u:) \Phi_{s}^{*}+H\left(z, u_{1}\right)
\end{aligned}
$$

where $\tilde{\nu}_{j}(z, w)$ and $\tilde{\psi}_{k}(z, w)$ are holomorphic functions on λ. and where $H\left(z, u_{1}\right)$ is a polynomial in w_{1} whose coefficients are holomorphic functions of $z \in \delta$ (independent of $\left.w_{k}(k=2, \ldots, s)\right)$. Since $f\left(z, w^{\prime}\right)=0$ on $\Sigma \cap \lambda$, we have $H\left(z, u_{1}\right)=0$ on $\Sigma \cap$ λ; thus $H\left(z, w_{1}\right)$ vanishes on the analytic hypersurface Σ_{1} in the $(r+1)$-dimensional polydisk λ_{1}, where $\lambda_{1}=\delta \times \gamma_{1}$. It follows that $H\left(z, w_{1}\right)=P_{1}\left(z, u_{1}\right) h\left(z, w_{1}\right)$ in λ_{1}. where $h\left(z, w_{1}\right)$ is a holomorphic function on λ_{1}. Hence $(f(z, u), \lambda) \in l\{\Omega\}$. Thus $G\{\Sigma\}$ and $l\{\Omega\}$ are equivalent as \mathcal{O}-ideals on Λ.
7.5.3. Projection. Let D_{1} be a domain in C_{z}^{n} with variables z_{1}, \ldots, z_{n} and let D_{2} be a bounded domain in C_{u}^{m} with variables u_{1}, \ldots, u_{m}. We set $D=$ $D_{1} \times D_{2} \subset \mathbf{C}_{z}^{n} \times \mathbf{C}_{u}^{m}$. Let \mathcal{I} be an \mathcal{O}-ideal in D. Consider the set \mathcal{J} of all pairs $(f(z), \delta)$ such that $\delta \subset D_{1}$ and $f(z)$ is a holomorphic function in δ with the following property: $f(z)$, regarded as a holomorphic function on $\delta \times D_{2}$, belongs to \mathcal{I} at each point (z, w) in $\delta \times D_{2}$. Then \mathcal{J} is an \mathcal{O}-ideal on D_{1}. which is called the projection of \mathcal{I} onto D_{1}. We write $\mathcal{J}=: \mathcal{P}\{\mathcal{I}\}$. Clearly, if an \mathcal{O}-ideal $\overline{\mathcal{I}}$ in D is equivalent to \mathcal{I} on $D_{1} \times D_{2}$ as \mathcal{O}-ideals, then $\mathcal{P}\{\tilde{\mathcal{I}}\}$ is equivalent to $\mathcal{P}\{\mathcal{I}\}$ on D_{1}. We let E and E_{1} denote the zero sets of I and $\mathcal{P}\{I\}$ in D and D_{1}, respectively. We also denote by $p(E)$ the projection of E onto D_{1}. Then $p(E) \subset E_{1}$. Moreover, if $E \cap\left(D_{1} \cap \partial D_{2}\right)=0$, then $p(E)=E_{1}$.

We have the following theorem.
Theorem 7.9. Let \mathcal{I} be an \mathcal{O}-ideal in $D=D_{1} \times D_{2}$ such that
(1) I has a locally finite pseudobase at each point of D. and
(2) the zem set Σ of I contains no points in a neighborhood of $D_{1} \times \partial D_{2}$ in $D_{1} \times \mathbf{C}_{\boldsymbol{w}}^{m}$.

Then the projection $\mathcal{P}\{I\}$ of \mathcal{I} onto D_{1} has a locally finite pseudobase at each point in D_{1}.

Proof. Let $z_{0} \in D_{1}$, and let us prove that $\mathcal{P}\{I\}$ has a locally finite pseudobase at the point z_{0}. By condition (2). the section $\Sigma\left(z_{0}\right)=\left\{u \in D_{2} \mid\left(z_{0}, w\right) \in \Sigma\right\}$ of Σ at $z=z_{0}$ consists of a finite number of points $\left(z_{0}, u^{(1)}\right) \ldots,\left(z_{0}, w^{(q)}\right)$. For each point $\left(z_{0}, w^{(j)}\right)(j=1, \ldots, q)$, there exists a polydisk $\lambda_{j}:=\delta \times \Gamma, \subset \subset D_{1} \times D_{2}$ centered at $\left(z_{0}, w^{(j)}\right)$ such that $\Sigma \cap(\bar{\delta} \times \partial \Gamma)=,\emptyset$. We let $I_{\lambda},(j=1 \ldots ., q)$ denote the restriction of \mathcal{I} to λ, and we set $\mathcal{P}^{(j)}=\mathcal{P}\left\{I_{\lambda},\right\}$ (the projection of I_{λ}, onto δ). By definition of the projection of an \mathcal{O}-ideal, we see that $\mathcal{P}\{\mathcal{I}\} \mid \delta$ is equivalent to $\bigcap_{j=1}^{q} \mathcal{P}^{(j)}$ as an \mathcal{O}-ideal on δ. By Theorem 7.4 it suffices to prove that each $\mathcal{P}^{(j)}$ $(j=1, \ldots, q)$ has a locally finite pseudobase at each point in δ. In other words. we may assume from the beginning that $D_{1}=\delta$ (a polydisk in C_{2}^{n}); $D_{2}=\Gamma$ (a polydisk in $\mathbf{C}_{k^{\prime}}^{(n)}$; \boldsymbol{I} is an \mathcal{O}-ideal on the closed polydisk $\bar{\lambda}=\bar{\delta} \times \bar{\Gamma}$ satisfying condition (1) on $\bar{\lambda}$; and condition (2) becomes $\Sigma \cap(\bar{\delta} \times \partial \Gamma)=\emptyset$. where Σ is the zero set of I on $\bar{\lambda}$.

Moreover, we may assume $m=1$. For assume that the theorem is true in this case and let $m>1$. Set $\Gamma=\Gamma_{1} \times \cdots \times \Gamma_{m}$. where $\Gamma_{j}(j=1, \ldots . m)$ is a disk in the plane $\mathbf{C}_{w_{1},}$, and $\delta_{m-1}:=\delta \times \Gamma_{1} \times \cdots \times \Gamma_{m-1} \subset \mathbf{C}_{z}^{n} \times \mathbf{C}_{w_{1}, \ldots, u_{m-1}}^{m-1}$. Since $\Sigma \cap\left(\overline{\delta_{m-1}} \cap \partial \Gamma_{m}\right)=\emptyset$ from (2). it follows from the assumption for $m=1$ that the projection $\mathcal{P}_{m-1}\{\mathcal{I}\}=\mathcal{I}_{m-1}$ of \mathcal{I} onto δ_{m-1} has a locally finite pseudobase at each point of δ_{m-1}. We note that the zero set Σ_{m-1} of \mathcal{I}_{m-1} in $\bar{\delta}_{m-1}$ coincides with the projection of the analytic set Σ onto $\bar{\delta}_{m-1}$ (which is an amalytic set from Proposition 2.3 in Chapter 2), so that. if we define $\delta_{m-2}:=\delta \times \Gamma_{1} \times \cdots \times \Gamma_{m-2}$. then $\left(\overline{\delta_{m-2}} \times \partial \Gamma_{m-1}\right) \cap \Sigma_{m-1}=\emptyset$. We repeat the same procedure to obtain $\mathcal{I}_{m-2}=\mathcal{P}_{m-2}\left\{\mathcal{I}_{m-1}\right\}, \ldots, \mathcal{I}_{1}=\mathcal{P}_{0}\left\{I_{1}\right\}$ where $\mathcal{I}_{J_{-1}}(j=1, \ldots, m-1)$ is the projection of \mathcal{I}_{j} onto $\delta_{j-1}:=\delta \times \Gamma_{1} \times \cdots \times \Gamma_{j-1}$ (here $\delta_{0}:=\delta$) and \mathcal{I}_{j-1} has a locally finite pseudobase at each point of δ_{j-1}. Thus, \mathcal{I}_{0} has a locally finite pseudobase at each point of δ. On the other hand, we see from the definition of the projection of an \mathcal{O}-ideal that \mathcal{I}_{0} is equivalent to $\left.\mathcal{P}\{I\}\right|_{\delta}$ as an \mathcal{O}-ideal on δ.

Thus, taking $m=1$, we may assume $\lambda=\bar{\delta} \times \Gamma \subset C_{=}^{n} \times C_{u}$, where Γ is a disk in the plane \mathbf{C}_{w}. Let $z^{\prime} \in \delta$. Since $\boldsymbol{\Sigma} \cap(\bar{\delta} \times \partial \Gamma)=\emptyset$, the section $\Sigma\left(z^{\prime}\right)$ of $\boldsymbol{\Sigma}$ at $z=z^{\prime}$ consists of a finite number of points $\left(z^{\prime}, w_{1}\right) \ldots,\left(z^{\prime}, w_{\mu}\right)$, where $w_{j} \in \Gamma$ ($j=1, \ldots, \mu$). By conditions (1) and (2). there exist a polydisk $\lambda,:=\delta^{\prime} \times \gamma_{j} \subset \lambda$ centered at $\left(z^{\prime}, w_{j}\right)(j=1 \ldots \ldots \mu)$ and a finite number of holomorphic functions $\Phi_{1}^{(j)}(z, w), \ldots, \Phi_{\nu_{j}}^{(j)}\left(z, w^{w}\right)$ on $\overline{\lambda_{j}}$ such that (i) if we let $\mathcal{J}\left\{\Phi^{(j)}\right\}$ denote the \mathcal{O}-ideal generated by $\left\{\Phi_{k}^{(j)}(z, w)\right\}_{k=1} \ldots . . \nu$, on λ_{j}, then $\mathcal{J}\left\{\Phi^{(j)}\right\}$ is equivalent to $\left.I\right|_{\lambda,}$ as an \mathcal{O}-ideal on λ_{j}, and (ii) $\Phi_{1}^{(j)}(z, w) \neq 0$ on $\delta^{\prime} \times\left(\partial \gamma_{j}\right)$ for each $j=1, \ldots, \mu$. We let $\mathcal{P}^{(j)}(j=1 \ldots, \mu)$ denote the projection $\mathcal{J}\left\{\Phi^{(j)}\right\}$ onto δ^{\prime}. Since $\left.\mathcal{P}\{\mathcal{I}\}\right|_{\delta^{\prime}}$ is equivalent to $\bigcap_{j=1}^{\mu} \mathcal{P}^{(j)}$ as an \mathcal{O}-ideal on δ^{\prime}, from Theorem 7.4 it suffices to prove that each $\mathcal{P}^{(j)}(j=1, \ldots, \mu)$ has a locally finite pseudobase at each point of δ^{\prime}.

To simplify the notation, we set $\delta^{\prime}=\Delta \subset \mathbf{C}_{:}^{n}, \gamma_{j}=\Gamma \subset \mathbf{C}_{\mathbf{w}}, \Lambda=\Delta \times \Gamma \subset$ $\mathbf{C}_{i}^{n} \times \mathbf{C}_{u} \cdot \nu_{j}=\nu, \Phi_{k}^{(j)}(z, w)=\Phi_{k}\left(z, u^{\prime}\right)(k=1 \ldots . \nu)$, and $\mathcal{J}\left\{\Phi^{(j)}\right\}=\mathcal{J}\{\Phi\}$.

Since $\Phi_{1}(z, u) \neq 0$ on $\Delta \times \partial \Gamma=0$, we have

$$
\Phi_{1}(z, w)=P_{1}(z, w) \omega_{1}(z, w) \quad \text { on } \Lambda,
$$

where $\omega_{1}(z, w) \neq 0$ on Λ and $P_{1}(z, u)$ is a monic pseudopolynomial in u satisfying

$$
\begin{gather*}
P_{1}\left(z, u^{\prime}\right)=u^{l}+A_{1}^{(1)}(z) u^{l-1}+\cdots+A_{l}^{(1)}(z) \text { in } \Delta \times \mathbf{C}_{u} \tag{7.26}\\
\left\{(z, w) \in \Delta \times \mathbf{C}_{u} \mid P_{1}(z, w)=0\right\} \subset \subset
\end{gather*}
$$

where each $A_{j}^{(1)}(z)(j=1, \ldots, l)$ is a holomorphic function on Δ. By the remainder theorem for $P_{1}(z, u)$ on Λ we have

$$
\Phi_{j}(z, w)=Q_{j}(z, w) P_{1}(z, w)+R_{j}(z, w)(j=2, \ldots, \nu) \text { on } \Lambda,
$$

where each $Q_{j}\left(z, u^{\prime}\right)$ is a holomorphic function on Λ and each $R_{j}(z, w)$ is a pseudopolynomial in w satisfying

$$
R_{j}(z, u)=A_{0}^{(\jmath)}(z) u^{l-1}+\cdots+A_{l-1}^{(\rho)}(z) \quad \text { on } \Delta \times \mathbf{C}_{u}
$$

where each $A_{k}^{(j)}(z)(k=0,1 \ldots, l-1)$ is a holomorphic function on Δ. Clearly $\mathcal{J}\{\Phi\}$ is equivalent to the \mathcal{O}-ideal \mathcal{G} generated by $P_{1}(z, u), R_{2}(z, u), \ldots, R_{\nu}(z, u)$ on Λ. Hence it suffices to prove that the projection $\mathcal{P}\{\mathcal{G}\}$ of \mathcal{G} onto Δ has a locally finite pseudobase at each point in Δ.

Let $z_{0} \in \Delta$ and let $f(z)$ be any holonorphic function belonging to $\mathcal{P}\{\mathcal{G}\}$ at z_{0}. Since $f(z)$ belongs to \mathcal{G} at each point of $\left\{z_{0}\right\} \times \bar{\Gamma}$, we can find a polydisk $\delta \subset \Delta$ centered at z_{0} such that. at each point $\eta \in \Gamma$, there exist a disk $i_{\eta} \subset \Gamma$ centered at η and ν bolomorphic functions $f_{j}(z, w)(j=1 \ldots, \nu)$ on $v_{\eta}:=\delta \times \gamma_{\eta}$ with

$$
\begin{equation*}
f(z)=f_{1}(z, w) P_{1}\left(z, u^{\prime}\right)+f_{2}\left(z, u^{\prime}\right) R_{2}(z, w)+\cdots+f_{\nu}(z, w) R_{1}\left(z, w^{\prime}\right) \tag{7.27}
\end{equation*}
$$

on v_{η}. Since $f(z), P_{1}(z, w)$, and $R_{j}(z, w)(j=2, \ldots, \nu)$ are holomorphic functions on the polydisk $\delta \times \Gamma$ and since Problem C_{1} is solvable on this polydisk, we may assume that each $f_{j}(z, w)(j=1, \ldots, \nu)$ is a holomorphic function in $\delta \times \Gamma$ satisfying equation (7.27) on $\delta \times \Gamma$. Again using the remainder theorem for $P_{1}\left(z, u^{\prime}\right)$ on $\delta \times \Gamma$ and condition (7.26), we have. for each $j=2 \ldots, \nu$.

$$
f_{j}(z, w)=q_{j}\left(z, u^{\prime}\right) P_{1}\left(z, u^{\prime}\right)+r_{j}\left(z, w^{\prime}\right) \quad \text { on } \bar{\delta} \times \Gamma
$$

where $q_{j}(z, w)$ is a holomorphic function on $\delta \times \Gamma$ and $r_{j}(z, u)$ is a pseudopolynomial in u of degree at most $l-1$ with

$$
\begin{equation*}
r_{j}(z, w)=a_{0}^{(\jmath)}(z) w^{l-1}+a_{1}^{(j)}(z) u^{l-2}+\cdots+a_{l-1}^{(j)}(z) \quad(j=2, \ldots, \nu) ; \tag{7.28}
\end{equation*}
$$

here, each $a_{k}^{(j)}(z)(k=0,1, \ldots, l-1)$ is a holomorphic function on δ. Substituting these into (7.27), we have

$$
\begin{array}{r}
f(z)=r_{1}(z, w) P_{1}(z, w)+r_{2}(z, w) R_{2}(z, w)+\cdots+r_{\nu}(z, w) R_{\nu}(z, w) \tag{7.29}\\
\text { on } \delta \times \Gamma .
\end{array}
$$

where $r_{1}(z, w)$ is a certain holomorphic function on $\delta \times \Gamma$. By use of the division theorem for $P_{1}(z, w)$, we see that $r_{1}(z, w)$ must. in fact. be a pseudopolynomial in u of degree at most $l-2$; i.e.,

$$
\begin{equation*}
r_{1}(z, w)=a_{0}^{(1)}(z) u^{l-2}+a_{1}^{(1)}(z) u^{l-3}+\cdots+a_{l-2}^{(1)}(z) \quad \text { in } \delta \times \mathbf{C}_{u^{\prime}} \tag{7.30}
\end{equation*}
$$

where each $a_{k}^{(1)}(z)(k=0,1, \ldots, l-2)$ is a holomorphic function on δ. Therefore. comparing the coefficients of $u^{j}(j=0.1 \ldots, 2 l-2)$ in equation (7.29), we obtain $2 l-1$ equations on δ :

$$
\left\{\begin{array}{l}
f(z)=a_{l-2}^{(1)}(z) A_{1}^{(1)}(z)+a_{l-1}^{(2)}(z) A_{l-1}^{(2)}(z)+\cdots+a_{l-1}^{(\nu)}(z) A_{l-1}^{(\nu)}(z), \\
0=a_{l-2}^{(1)}(z) A_{l-1}^{(1)}(z)+a_{l-1}^{(1)}(z) A_{l}^{(1)}(z)+\cdots+a_{l-2}^{(\nu)}(z) A_{l-1}^{(\nu)}(z) . \\
\vdots \\
0=a_{0}^{(1)}(z)+a_{0}^{(2)}(z) A_{0}^{(2)}(z)+\cdots+a_{0}^{(\nu)}(z) A_{0}^{(\nu)}(z) .
\end{array}\right.
$$

Or, equivalently.

$$
\begin{aligned}
f \cdot & (1.0 \ldots \ldots, \ldots, 0) \\
= & a_{l-2}^{(1)} \cdot\left(A_{l}^{(1)} \cdot A_{l-1}^{(1)} \ldots, A_{l}^{(1)}, 1,0, \ldots, 0\right) \\
& +a_{i-1}^{(2)} \cdot\left(A_{l-1}^{(2)} \cdot A_{i-2}^{(2)}, \ldots, A_{0}^{(2)}, 0 \ldots, 0\right) \\
& +\cdots+a_{0}^{(\nu)} \cdot\left(0, \ldots, 0, A_{l-1}^{(\nu)}, A_{l-2}^{(\nu)} \ldots, A_{0}^{(\nu)}\right)
\end{aligned}
$$

Therefore, if $f(z)$ belongs to $\mathcal{P}\{\mathcal{G}\}$ at $z_{0} \in \Delta$. then we can find a polydisk $\delta \subset A$ centered at z_{0} and $l \nu-1$ holomorphic functions $a_{l-2}^{(1)}(z), a_{l-1}^{(2)}(z), \cdots, a_{0}^{(\mu)}(z)$ on δ which satisfy the $2 l-1$ equations (Ω) on δ. In other words. $f(z)$ belongs to the ε ideal $(\{\Omega\}$ with respect to the linear relation (Ω). Here we consider (Ω) as a linear system of $2 l-1$ homogeneous equations determined by the known holomorphic functions 1. $A_{l}^{(1)}(z) \ldots, A_{0}^{(\nu)}(z)$ on Δ. where the unknown holomorphic vectorvalued function $\left(f(z) \cdot a_{i-2}^{(1)}(z), \cdots, a_{0}^{(\nu)}(z)\right)$ is of rank $\mu:=\nu l$.

Conversely, let $z_{0} \in \Delta$ and let $f(z)$ be any holomorphic function belonging to $\ell\{\Omega\}$ at z_{0}. Thus. there exist a neighborhood δ_{0} of z_{0} in Δ and μ 1 holomorphic functions $\left\{a_{k}^{(j)}(z)\right\}_{j, k}$ on δ_{0} such that $f(z)$ is holomorphic in δ_{0}. and $\left(f(z), a_{l-2}^{(1)}(z), \cdots, a_{0}^{(\nu)}(z)\right)$ satisfies equations (Ω) on δ_{0}. If we construct the pseudopolynomials $r_{1}(z, w)$ and $r_{j}(z, w)(j=2 \ldots, \nu)$ with respect to w using $\left\{a_{k}^{(1)}(z)\right\}_{k}$ and $\left\{a_{k}^{(j)}(z)\right\}_{k}$ from (7.30) and (7.28), then $\left\{f(z, w) . r_{i}(z, w)(i=\right.$ $1, \ldots . \nu)\}$ satisfies equation (7.29) on $\delta_{0} \times \Gamma$. so that $\left(f(z), \delta_{0}\right)$ belongs to $\mathcal{P}\{\mathcal{G}\}$. Therefore, $\mathcal{P}\{\mathcal{G}\}$ is equivalent to $\ell\{\Omega\}$ as an \mathcal{O}-ideal on Δ : thus, it follows from Theorem 7.7 that $\mathcal{P}\{\mathcal{G}\}$ has a locally finite pseudobase at each point of Δ. This completes the proof of Theorem 7.9.

This theorem combined with Theorem 7.5 implies the following corollary:
Corollary 7.9. Let $\Lambda=\Delta \times \Gamma$ be a closed polydisk in $\mathbf{C}_{z}^{n} \times \mathbf{C}_{\dot{w}}^{m}$. Let $\Phi_{j}(z, w)(j=1, \ldots, \nu)$ be holomorphic functions on I uhose common zero set Σ satisfies $\Sigma \cap(\Delta \times \partial \Gamma)=0$. Then there exist holomorphic functions $\eta_{k}(z)(k=$ $1, \ldots, \kappa)$ on Δ such that
(1) $\mathcal{F}_{k}(z)=\sum_{j=1}^{\nu} a_{j}^{(k)}\left(z, w^{\prime}\right) \Phi_{j}\left(z, w^{\prime}\right)$ on Λ. where the $a_{j}^{(k)}\left(z, w^{\prime}\right)$ are holomorphic functions on A ; and
(2) any holomorphic function $f(z)$ on Δ of the form

$$
f(z)=\sum_{j=1}^{\nu} a_{j}(z, w) \Phi_{j}(z, u)
$$

on A . where the $a_{j}(z . w)$ are holomorphic function on A , can be written in the form $f(z)=\sum_{k=1}^{\kappa} b_{k}(z)_{\vartheta_{k}}(z)$ on Δ. where the $b_{k}(z)$ are holomorphic functions on Δ.
7.5.4. Z-ideal. Let $D \subset C^{n}$ be a domain. Let Σ be an analytic set in D, and let $F(z)$ be a holomorphic function on D such that $F(z) \not \equiv 0$ on each irreducible component of Σ in D. We consider the set \mathcal{I} of all pairs $(f(z), \delta)$, where $\delta \subset D$ is a domain and $f(z)$ is a holomorphic function on δ satisfying

1. if $\delta \cap \Sigma=\emptyset$. then $f(z)$ is an arbitrary holonorphic function on δ :
2. if $\delta \cap \Sigma \neq 0$. then $\left.(f(z) / F(z))\right|_{0} \geq$ is a weakly holomorphic function on $\delta \cap \Sigma$.
Then \mathcal{I} is an \mathcal{O}-ideal on D. We call \mathcal{I} the Z-ideal with respect to $F(z)$ and Σ, and we use the notation $I=Z\{\Sigma, F\} .^{6}$. Note that the zero set of $Z\{\Sigma, F\}$ is contained in Σ.

We have the following theorem concerning Z-ideals.
Theorem 7.10. For any analytic set Σ in D and any holomorphic function $F(z)$ such that $F(z) \not \equiv 0$ on each irreducible component of Σ in D, the Z-ideal $Z\{F, \Sigma\}$ has a locally finite pseudobase at each point in D.

Proof. Fix $z(1 \in \Sigma$. We prove that $Z\{F, \Sigma\}$ has a locally finite pseudobase at z_{0}. Fix a sufficently small polydisk Δ centered at z_{0} in D so that $\Delta \cap \Sigma$ can be decomposed into irreducible components $\Sigma_{j}(j=1 \ldots . . l)$ in Δ such that each Σ_{j} passes through z_{1}. Since $F(z) \not \equiv 0$ on Σ_{j}, we can consider the Z-ideal $Z\{F, \Sigma$, $(j=1 \ldots ., l)$ us defined on Δ. Since $\left.Z\{F, \Sigma\}\right|_{\nu}=\bigcap_{j=1}^{\prime} Z\{F, \Sigma$,$\} as an \mathcal{O}$-ideal in Δ. it follows from Theorem 7.4 that we need only show that each $Z\left\{F, \Sigma_{j}\right\}$ $(j=1, \ldots . l)$ has a locally finite pseudobase at \approx_{0}.

To prove $Z\left\{F, \Sigma_{j}\right\}$ has a locally finite pseudobase at $z u$. as usual to simplify notation. we write $\Sigma=\Sigma \Sigma_{j}$ in Δ and assume Σ is of dimension r. After a suitable linear coordinate transformation, we can assume the coordinate system $z=\left(z_{1}, \ldots, z_{r} z_{r+1} \ldots \ldots z_{n}\right)$ satisfies the Weierstrass condition for Σ at z_{0}. Thus we can find a polydisk $\Delta_{0}:=\Delta_{10}^{r} \times \Delta_{11}^{n-r} \subset \subset \Delta$ centered at the point $z_{11}=\left(z_{0}^{\prime}, z_{0}^{\prime \prime}\right)$ such that $\left(\Sigma \cap \Delta_{0}\right) \cap\left[\Delta_{0}^{r} \times\left(\partial \Delta_{0}^{n-r}\right)\right]=0$ and such that $\Sigma \cap \Delta_{0}$ can be described as

$$
z_{j}=\xi_{j}\left(z_{1}, \ldots, z_{r}\right) \quad(j=r+1, \ldots . n),
$$

where $z^{\prime}=\left(z_{1} \ldots, z_{r}\right)$ varics over a ramified domain $\bar{\Delta}_{0}^{r}$ over Δ_{0}^{r} without relative boundary. By Theorem 6.4 in Chapter 6, there exists a polydisk δ in Δ_{0}^{r} centered at the point $z_{1,}^{\prime}$ such that. upon taking $\dot{\delta}$ to be the part of $\dot{\Delta}_{1 j}^{r}$ over δ. there are a finite number of bounded holonorphic functions $\psi_{\nu},\left(z_{1}, \ldots, i_{r}\right)(j=1, \ldots, m)$ on $\dot{\delta}$. say $|\boldsymbol{\varphi} j|<M(j=1, \ldots, m)$, such that., if we take the polydisk $\Gamma:\left|u_{j}\right|<M$ $(j=1, \ldots, m)$ in C_{u}^{m}, then the r-dimensional irreducible analytic set $\dot{\Sigma}$ in $\Lambda:=$ $\delta \times \Delta_{0}^{n-r} \times \Gamma \subset \mathbf{C}_{z}^{n} \times \mathbf{C}_{u}^{m}$ defined by

$$
\tilde{\Sigma}:\left\{\begin{array}{l}
z_{\jmath}=z_{j}(j=1, \ldots, r), \\
z_{j}=\xi_{j}\left(z_{1} \ldots . z_{r}\right) \quad(j=r+1, \ldots, n), \\
u_{k}=\psi_{k}\left(z_{1} \ldots . z_{r}\right) \quad(k=1 \ldots . m) .
\end{array}\right.
$$

where $z^{\prime}=\left(z_{1} \ldots . . z_{r}\right)$ varies over $\tilde{\delta}$. has a singularity set $\tilde{\sigma}$ in A with dim $\tilde{\sigma} \leq r-2$. i.e., the analytic set $\dot{\Sigma}$ in \bar{A} is the lifting of the first kind of the analytic set Σ in $\delta \times \Delta_{0}^{n-r}$ with singular set of dimension at most $r-2$.

[^35]We regard $F(z)$ as a holomorphic function on A (constant for u), so that $F(z) \not \equiv 0$ on $\bar{\Sigma}$. We can thus consider the Z-ideal $Z\{F, \bar{\Sigma}\}$ on A. We note that $\tilde{\Sigma} \bigcap\left[\left(\delta \times \Delta_{0}^{n-r}\right) \times \partial \Gamma\right]=0$. and $\left.\Sigma\right|_{\delta \times \Delta_{1,}^{n-r}}$ is equal to the projection of the analytic set $\dot{\Sigma}$ onto $\delta \times \Delta_{0}^{n-r}$. Furthermore. since, as we have noted, the family of weakly holomorphic functions on $r \subset \Sigma$ can be identified with the fanily of weakly holomorphic functions on $\pi_{0}^{-1}(v) \subset \bar{\Sigma}$ via $\pi_{1}: C_{z}^{n} \times C_{n}^{m} \rightarrow C_{z}^{n}$, we see from the definition of the projection of an \mathcal{O}-ideal that the projection $\dot{\mathcal{P}}$ of the Z-ideal $Z\{F, \dot{\Sigma}\}$ onto $\delta \times \Delta_{0}^{n-r}$ is equivalent to the Z-ideal $\left.Z\{F, \Sigma\}\right|_{\delta \times \Delta_{1}^{n}}$., as an \mathcal{O}-ideal on $\delta \times \Delta_{0}^{n-r}$. Therefore, to prove that $Z\{F, \Sigma\}$ has a locally finite pseudobase at the point \mathfrak{z}. it suffices from Theorem 7.9 to verify that $Z\{F, \bar{\Sigma}\}$ has a locally finite pseudobase at each point in Λ. To this end, let $\left(z, u^{\prime}\right)$ be any point in Λ. By Corollary 7.2. we can find a polydisk Λ^{\prime} centered at ($z^{\prime} . u^{\prime}$) in Λ and a finite number of universal denominators $\mathfrak{c}^{\prime},(z, u)(j=1 \ldots ., q)$ in Λ^{\prime} for $\Sigma \bar{\Sigma} \cap \Lambda^{\prime}$ such that

$$
B:=\bigcap_{j=1}^{q}\left\{(z, u) \in \Lambda^{\prime} \mid v_{j}(z, u)=0\right\} \subset \bar{\sigma} .
$$

We set $\dot{\Sigma}^{\prime}=\Lambda^{\prime} \cap \dot{\Sigma}$, and we consider the G-ideal $\mathcal{G}\left\{\tilde{\Sigma}^{\prime}\right\}$ with respect to $\tilde{\Sigma}^{\prime}$ in Λ^{\prime}. By. Theorem 7.8 and the solvablity of Problem E in the polydisk Λ^{\prime}. we can find a finite pseudobase $G_{j}(z, u)(j=1 \ldots, s)$ of $\mathcal{G}\left\{\Sigma^{\prime}\right\}$ on Λ^{\prime}.

Consider the following system of q homogeneous linear equations (Ω) (determined by the known holomorphic functions $u j(z, u)(j=1, \ldots, q) . F(z)$, and $G_{k}(z, u)(k=1, \ldots, s)$ on $\left.\Lambda^{\prime}\right)$ for the unknown holonorphic vector-valned functions $\left(f(z, w), f^{(j)}(z, w), g_{k}^{(j)}(z, u ;)\right)(j=1, \ldots, q ; k=1, \ldots, s)$:

$$
\begin{align*}
& f(z, w) v_{j}\left(z, u^{\cdot}\right)=f^{(j)}\left(z, u^{\prime}\right) F(z) \\
& \quad+g_{1}^{(j)}\left(z, u^{\prime}\right) G_{1}\left(z, u^{\prime}\right)+\cdots+g_{s}^{(j)}\left(z, u^{\prime}\right) G_{s}\left(z, u^{\prime}\right) \quad(j=1 \ldots ., q) .
\end{align*}
$$

We will prove that the $\{$-ideal $\ell\{\Omega\}$ (the collection of first components $(f(z, u), \lambda)$ of the \mathcal{O}-module $\mathcal{L}\{\Omega\}$ with respect to the linear relation (Ω) in.$^{\prime}$) is equivalent to the Z-ideal $Z\left\{F, \Sigma^{\prime}\right\}$ as an \mathcal{O}-ideal on Λ^{\prime}.

To verify this, let $\left(z_{1}, u_{0}^{\prime}\right) \in \Lambda^{\prime}$ and let $f\left(z, u^{\prime}\right)$ be any holomorphic function belonging to $Z\left\{F, \Sigma^{\prime}\right\}$ at $\left(\tilde{z}_{0}, u_{0}^{\prime}\right)$. Thus, $f\left(z, u^{\prime}\right) / F(z, w)$ is a weakly holomorphic function on $\Sigma^{\prime} \cap \lambda_{0}$. Where λ_{0} is a neighborhood of (z_{0}, u_{0}) in Λ^{\prime}. For each $j=$ $1 \ldots, q$, the function $(f(z, u) / F(z, u \cdot)) \cdot t_{j}(z, u)$ is the restriction of a holomorphic: function $f^{\prime \prime}\left(z, u^{\prime}\right)$ in a neighborhood λ^{\prime} of $\left(z_{0}, u_{0}\right)$ in λ_{0}. Thus, there exist a neighborhood $\lambda^{\prime \prime} \subset \lambda^{\prime}$ of $\left(z_{0}, u_{(1)}\right)$ and s holomorphic functions $g_{k}^{(j)}\left(z, u_{0}\right)(k=$ $1, \ldots, s)$ in $\lambda^{\prime \prime}$ such that
$f\left(z, u^{\prime}\right) v_{j}\left(z, w^{\prime}\right)=f^{(\jmath)}\left(z, u^{\prime}\right) F(z)+g_{1}^{(\jmath)}\left(z, u^{\prime}\right) G_{1}\left(z, u^{\prime}\right)+\cdots+g_{v}^{(j)}\left(z, u^{\prime}\right) G_{N}\left(z, u^{\prime}\right)$
in $\lambda^{\prime \prime}$. Therefore, $f(z, w)$ belongs to $\ell\{\Omega\}$ at the point $\left(z_{0}, u_{0}\right)$.
Conversely, let $\left(z_{0}, w_{0}\right) \in \Lambda^{\prime}$ and let $f\left(z, u^{\prime}\right)$ belong to $\mathcal{C}\{\Omega\}$ at ($\left.z_{1}, u_{0}\right)$. We can find a neighborhood λ_{0} of $\left(z_{0}, w_{0}\right)$ in Λ^{\prime} and a holomorphic vector-valued function $\left(f\left(z, u^{\prime}\right) . f^{(j)}\left(z, u^{\prime}\right) . g_{k}^{(j)}\left(z, u^{\prime}\right)\right)(j=1, \ldots, q ; k=1 \ldots, s)$ which satisfies equations (Ω) in λ_{0}. Let $\left(z^{\prime}, w^{\prime}\right) \in \lambda_{0} \backslash \bar{\sigma}$. Since $\beta \subset \bar{\sigma}$, we have $\dot{v}_{j}\left(z^{\prime}, w^{\prime}\right) \neq 0$ for some $j=1, \ldots, q$. Thus, dividing both sides of (Ω) by $\psi_{j}(z, u ;)$ in a small neighborhood $\lambda^{\prime} \subset \lambda_{1}$ of $\left(z^{\prime}, u^{\prime}\right)$. we have

$$
f(z, u)=\tilde{f}^{(\rho)}(z, w) F(z)+\tilde{g}_{1}^{(j)}(z, w) G_{1}(z, w)+\cdots+\tilde{g}_{s}^{(j)}\left(z, u^{\prime}\right) G_{s}\left(z, u^{\prime}\right)
$$

in λ^{\prime}. where $\tilde{f}^{(j)}\left(z . w^{\prime}\right)$ and $\tilde{g}_{k}^{(j)}\left(z, w^{\prime}\right)(k=1 \ldots, s)$ are holomorphic functions in λ^{\prime}. It follows that $\left.\left(f\left(z, u^{\prime}\right) / F(z)\right)\right|_{\Sigma^{\prime} \sim \lambda^{\prime}}$ is a weakly holomorphic function on $\Sigma^{\prime} \cap \lambda^{\prime}$. We thus see that $f(z, w) / F(z)$ is a weakly holomorphic function on $\Sigma^{\prime} \cap \lambda_{0}$ (an analytic set of dimension r) except perhaps at points of $\bar{\sigma}$ (an analytic set of dimension at most $r-2$). Using Remark 7.2. it follows that $f(z, u) / F(z)$ is a weakly holomorphic function on all of $\Sigma^{\prime} \cap \lambda_{0}$, i.e., $f(z, w)$ belongs to $Z\left\{F, \Sigma^{\prime}\right\}$ at the point ($\left.z_{0}, u_{0}^{\prime}\right)$.

By Theorem 7.7, $\ell\{\Omega\}$ has a locally finite pseudobase at any point $(z, u) \in \Lambda^{\prime}$, and hence so does $Z\left\{F, \Sigma^{\prime}\right\}=\left.Z\{F, \Sigma\}\right|_{A^{\prime}}$. Theorem $\bar{T} .10$ is proved.

Let Σ be an analytic set in a domain $D \subset C^{n}$. We let $\mathcal{O}_{u}(\Sigma)$ denote the set of all pairs $(f(z), v)$ such that $v \subset \Sigma$ is an open set in Σ and $f(z)$ is a weakly holomorphic function on v. Let $z_{0} \in \Sigma$. We say that $f(z)$ belongs to $\mathcal{O}_{w}(\Sigma)$ at the point z_{10} if there exists a pair $(f(z), u) \in \mathcal{O}_{k \cdot}(\Sigma)$, where u is a neighborhood of z_{0} in Σ. In Theorem 7.10 we consider the special case where $\mathcal{F}(z)$ is a universal denominator $W_{0}^{\prime}(z)$ for Σ in D such that $W_{0}^{\prime}(z) \not \equiv 0$ on each irreducible component of Σ.

Then we obtain the following corollary.
Corollary 7.10. Let $z_{0} \in \Sigma$ and let $\Phi_{j}(z)(j=1, \ldots . \nu)$ be a pseudobase of the Z-ideal $Z\left\{W_{0}^{\prime} . \Sigma\right\}$ in a neighborhood Δ of z_{0} in D. Then for any $z^{\prime} \in \Delta \cap \Sigma$ and for any $f(z)$ belonging to $\mathcal{O}_{u}(\Sigma)$ at the point z^{\prime}, we can find a neighborhood δ^{\prime} of z^{\prime} in Δ and ν holomorphic functions $\alpha_{j}(z)(j=1, \ldots . \nu)$ on δ^{\prime} such that

$$
\begin{equation*}
f(z)=a_{1}(z) \frac{\Phi_{1}(z)}{W_{0}(z)}+\cdots+\left.a_{\nu}(z) \frac{\Phi_{\nu}(z)}{W_{0}^{\prime}(z)}\right|_{\underline{i} \sim \phi^{\prime}} \tag{7.31}
\end{equation*}
$$

Proof. Let $z^{\prime} \in \Delta \cap \Sigma$ and let $f(z)$ belong to $\mathcal{O}_{u^{\prime}}(\Sigma)$ at the point z^{\prime}. Then $f(z) W_{0}^{\prime}(z)$ is a holomorphic function on a neighborhood $v^{\prime} \subset \Sigma$ of z^{\prime} on Σ. That is. there exists a holomorphic function $F(z)$ on a neighborhood δ_{0} of z^{\prime} in Δ such that

$$
f(z) W_{0}(z)=\left.F(z)\right|_{\delta_{0}} \backsim \Sigma
$$

This means that $F(z)$ belongs to $Z\left\{U_{0}, \Sigma\right\}$ at the point z^{\prime}, so that, using Theorem 7.10. we can find a neighborhood $\delta^{\prime} \subset \delta_{0}$ of z^{\prime} in Δ and ν holomorphic functions $a_{j}(z)(j=1 \ldots ., \nu)$ on δ^{\prime} such that

$$
F(z)=a_{1}(z) \Phi_{1}(z)+\cdots+a_{\nu}(z) \Phi_{\nu}(z) \text { on } \delta^{\prime}
$$

which implies (7.31).
7.5.5. W-ideal. Let D be a domain in C^{n} and let Σ be an analytic set in D. We consider the set \mathcal{I} of all pairs $(f(z) . \delta)$ such that $\delta \subset D$ is an open set and $f(z)$ is a universal denominator of Σ in δ. (If $\delta \cap \Sigma=0$. then all holomorphic functions on δ belong to \mathcal{I} on δ.) Then \mathcal{I} becomes an \mathcal{O}-ideal in D. We call it the \mathbb{I}-ideal with respect to Σ, and we write $I=W\{\Sigma\}$.

Then we have the following theorem.
Theorem 7.11. For any analytic set in Σ in D, the W^{-}-ideal $W^{\prime}\{\Sigma\}$ has a locally finite pseudobase at each point in D.

Proof. Let $z_{0} \in D$. From Proposition 7.4 we take a polydisk Δ centered at z_{0} in D and a universal denominator $W_{0}(z)$ on Δ for Σ such that $W_{0}(z) \not \equiv 0$ on each irreducible component of $\Sigma \cap \Delta$ in Δ. We can thus construct the Z-ideal $Z\left\{W_{0}^{\circ}, \Sigma\right\}$ in Δ. By Theorem 7.10 and Theorem 7.8. we can find a polydisk Δ_{0} in Δ. centered at z_{0}, such that there exist a finite pseudobase $\Phi_{j}(z)(j=1, \ldots, \nu)$ of the Z-ideal
$Z\left\{W_{0}, \Sigma\right\}$ in Δ_{0} and a finite pseudobase $G_{k}(z)(k=1, \ldots, s)$ of the G-ideal $G\{\Sigma\}$ in Δ_{0}.

Consider the following linear system of ν homogeneous equations determined by the known holomorphic functions $W_{0}(z), \Phi_{j}(z)(j=1, \ldots, \nu)$, and $G_{k}(z)(k=$ $1, \ldots, s)$ in Δ_{0} for the unknown holomorphic vector-valued function $\left(f(z), f^{(j)}(z)\right.$, $\left.g_{k}^{(\rho)}(z)\right)(j=1, \ldots, \nu: k=1, \ldots, s)$ of rank $1+\nu+s:$

$$
f(z) \Phi_{j}(z)=f^{(j)}(z) W_{0}(z)+g_{1}^{(j)}(z) G_{1}(z)+\cdots+g_{s}^{(j)}(z) G_{s}(z)
$$

We let $\varepsilon\{\Omega\}$ denote the ε-ideal with respect to (Ω). i.e., for $\delta \subset \Delta_{0}$. the set of the first components ($f(z), \delta$) of the \mathcal{O}-module $\mathcal{L}\{\Omega\}$ with respect to the linear relation (Ω) in Δ_{0}. Then the W-ideal $\mathbb{W}\{\Sigma\} \lambda_{11}$ is equivalent to $\mathcal{C}\{\Omega\}$ as \mathcal{O}-ideals in Δ_{0}.

To see this, let $z^{\prime} \in \Delta_{0}$. In case $z^{\prime} \in \Delta_{0} \backslash \Sigma$, an arbitrary holomorphic function $f(z)$ at z^{\prime} belongs to both $W\{\Sigma\}$ and $\ell\{\Omega\}$ at z^{\prime}. Thins we may assume $z^{\prime} \in \Delta_{0} \cap \Sigma$. Let $f(z)$ belong to $W^{\prime}\{\Sigma\}$ at the point z^{\prime} and fix $j \in\{1 \ldots \ldots, \nu\}$. Since $\Phi_{j}(z) / W_{0}(z)$ belongs to $\mathcal{O}_{u}(\Sigma)$ at z^{\prime}. we can find a neighborhood δ^{\prime} of z^{\prime} in Δ_{0} and a holomorphic function $f^{(j)}(z)$ in δ^{\prime} such that $\left(\Phi_{j}(z) / W_{0}^{\prime}(z)\right) \cdot f(z)=\left.f^{(j)}(z)\right|_{\Sigma^{-}, 0^{\prime}}$. Thus. we can find a neighborhood $\delta^{\prime \prime} \subset \delta^{\prime}$ of z^{\prime} and s holomorphic functions $g_{k}^{(j)}(z)(k=1, \ldots, s)$ on $\delta^{\prime \prime}$ such that

$$
f(z) \Phi_{j}(z)=f^{(j)}(z) W_{0}(z)+g_{1}^{(j)}(z) G_{1}(z)+\cdots+g_{s}^{(j)}(z) G_{s}(z)
$$

on $\delta^{\prime \prime}$. It follows that $f(z)$ belongs to $\ell\{\Omega\}$ at z^{\prime}.
Conversely; let $a \in \Delta_{0}$ and let $f(z)$ belong to $\ell\{\Omega\}$ at a. We can find a neighborhood δ_{0} of a in Δ_{0} and $\nu+s$ holomorphic functions $f^{(j)}(z), g_{k}^{(j)}(z)(j=$ $1, \ldots, \nu ; k=1, \ldots, s)$ on δ_{0} which satisfy (Ω) on δ_{0}. Thus.

$$
f(z) \frac{\Phi_{j}(z)}{W_{0}^{\prime}(z)}=\left.f^{(j i}(z)\right|_{\Sigma r \delta_{11}} \quad(j=1 \ldots, \nu)
$$

In order to prove that $f(z) \in W\{\Sigma\}$ on $\dot{\delta}_{0}$, let $z^{\prime} \in \Sigma \cap \delta_{0}$ and let $h(z)$ belong to $\mathcal{O}_{u^{\prime}}(\Sigma)$ at z^{\prime}. We see from Corollary 7.10 that there exist a neighborhood δ^{\prime} of z^{\prime} in δ_{0} and ν holomorphic functions $a_{j}(z)(j=1 \ldots . s)$ on δ^{\prime} such that

$$
h(z)=\alpha_{1}(z) \frac{\Phi_{1}(z)}{W_{0}(z)}+\cdots+\left.\alpha_{\nu}(z) \frac{\Phi_{\nu}(z)}{W_{0}^{\prime}(z)}\right|_{\Sigma \cap_{1} \sigma^{\prime}} .
$$

It follows that

$$
h(z) f(z)=a_{1}(z) f^{(1)}(z)+\cdots+\left.a_{\nu}(z) f^{(\nu)}(z)\right|_{\Sigma \upharpoonright \delta^{\prime}} .
$$

Since the right-hand side is a holomorphic function in δ^{\prime}. it follows that $f(z)$ belongs to $W\{\Sigma\}$ on δ_{0} and hence at the point a. Thus, $\ell\{\Sigma\}$ and $W\{\Sigma\}$ are equivalent as \mathcal{O}-ideals on Δ_{0}, and Theorem 7.7 again yields Theorem 7.11.

Corollary 7.11. Let Σ be an r-dimensional analytic set in a domain D in C^{n} and let σ be the singular set of Σ. Then the common zero set τ of the W-ideal $W\{\Sigma\}$ with respect to Σ in D is an analytic set in D of dimension at most $r-1$ and $\tau \subset \sigma$.

CHAPTER 8

Analytic Spaces

8.1. Analytic Spaces

We begin by defining an analytic space of dimension n. Fix an integer $n \geq 1$ and let \mathcal{V} be a connected Hausdorff space such that for each point $p \in \mathcal{V}$. there exists a neighborhood δ_{p} of p in \mathcal{V} satisfying the following conditions:
(i) there exists a homeomorphism \oplus_{p} from δ_{p} onto a ramified domain λ_{p} over \mathbf{C}^{n} :
(ii) for any distinct points $p . q$ in \mathcal{V}. the mapping $\phi_{q} \circ \varphi_{p}^{-1}$ is an analytic mapping from $\phi_{p}\left(\delta_{p} \cap \delta_{q}\right)$ onto $\varphi_{q}\left(\delta_{p} \cap \delta_{q}\right)$. Precisely, if

$$
\phi_{q} \circ o_{p}^{-1}: \phi_{p}\left(\delta_{p} \cap \delta_{q}\right) \rightarrow \phi_{q}\left(\delta_{p} \cap \delta_{q}\right)
$$

via

$$
w=\left(v_{1}(z), \ldots, \dot{\psi}_{n}(z)\right):=\varphi_{q} \circ \phi_{p}^{-1}\left(z_{1}, \ldots, z_{n}\right),
$$

then each $\psi_{j}(z)(j=1, \ldots, n)$ is a holomorphic function on the ramified domain $\varphi_{p}\left(\delta_{p} \cap \delta_{q}\right) \subset \lambda_{p}$ over \mathbf{C}^{n}.
We call \mathcal{V} an analytic space of dimension n. The triple ($\delta_{p}, \lambda_{p}, \phi_{p}$) is called a local coordinate neighborhood of p in \mathcal{V}. Furthermore, if we can take λ_{p} to be a univalent domain in \mathbf{C}^{n} for each $p \in \mathcal{V}$, then we call \mathcal{V} a complex manifold of dimension n. In the case $n=1, \mathcal{V}$ is a Riemann surface of one complex variable.

Let \mathcal{V} be an analytic space of dimension n. A connected open set in \mathcal{V} is called a domain in \mathcal{V}. Occasionally we omit the connectivity condition for a domain. Let D be a domain in \mathcal{V} and let $f(p)$ be a complex-valued function on D. If for any point p in D with local coordinate neighborhood ($\delta_{p}, \lambda_{p}, \phi_{p}$) the function $f \circ \circ_{p}^{-1}$ is holomorphic on the ramified domain $\phi_{p}\left(\delta_{p} \cap D\right) \subset \lambda_{p}$ over \mathbf{C}^{n}. then we say that $f(p)$ is a holomorphic function on D. Let $K \subset \mathcal{V}$ be a closed set. We say that a complex-valued function $f(p)$ is holomorphic on K if there exists an open neighborhood D of K in \mathcal{V} such that $f(p)$ is defined and holomorphic on D.

Let \mathcal{V}_{1} and \mathcal{V}_{2} be analytic spaces of dimensions n and m. Let $\varphi: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ be a mapping from \mathcal{V}_{1} into \mathcal{V}_{2}. If for any open set $v \subset \mathcal{V}_{2}$ and for any holomorphic function $f(p)$ on v, the function $\tilde{f}:=f \circ \varphi$ is a holomorphic function on $\varphi^{-1}\left(\varphi\left(\mathcal{V}_{1}\right) \cap v\right) \subset \mathcal{V}_{1}$, then we say that $\varphi(p)$ is an analytic mapping from \mathcal{V}_{1} into \mathcal{V}_{2}. Furthermore. if $m=n$ and if there exists a one-to-one analytic mapping from \mathcal{V}_{1} onto \mathcal{V}_{2}, then we say that \mathcal{V}_{1} and \mathcal{V}_{2} are analytically equivalent.

8.1.1. Examples of Analytic Spaces. An analytic space of dimension $n \geq 2$

 is a canonical generalization of a Riemann surface of one complex variable. However, an analytic space of dimension $n \geq 2$ is not always a complex manifold (as shown in Example 6.3), in contrast to the fact that a Riemann surface of one complex variable is locally uniformizable at each point. We present some other examples ofanalytic spaces of dimension $n \geq 2$ which illustrate differences with the Riemann surface case.

1. T. Radó [61] showed that any Riemann surface \mathcal{R} satisfies the second axiom of countability; i.e., there exist a countable number of open sets U_{n} ($n=$ $1,2 \ldots$) in \mathcal{R} such that for any point p in \mathcal{R}, the collection $\left\{U_{n}\right\}_{n}$ contains a fundamental neighborhood basis of p in \mathcal{R}. This axiom is not necessarily satisfied by an analytic space of dimension $n \geq 2$.

Example 8.1. ${ }^{1}$ Let $\mathbf{C}^{2}=\mathbf{C}_{x} \times \mathbf{C}_{y}$ with variables x and y, and let \mathbf{P}_{z} be the Riemann sphere with variable z. Fix $a \in C$. In the product space $C^{2} \times P_{z}$. we consider the analytic hypersurface

$$
\begin{equation*}
\Sigma_{a}: y z-x+a=0 \tag{8.1}
\end{equation*}
$$

Since Σ_{a} is nonsingular in $\mathbf{C}^{2} \times \mathbf{P}_{z}$, it follows that Σ_{a} can be considered as a 2-dimensional complex subinanifold in $\mathbf{C}^{2} \times \mathbf{P}_{z}$.

Let

$$
\pi_{a}:(x, y, z) \in \Sigma_{a} \rightarrow(x, y) \in \mathbf{C}^{2}
$$

be the projection from Σ_{a} to \mathbf{C}^{2}. We let L denote the complex line $y=0$ in \mathbf{C}^{2} and consider the inverse image $\pi_{a}^{-1}(L)$ in Σ_{a}. Thus. $\pi_{a}^{-1}(L)$ consists of two irreducible components

$$
L_{a}=\mathbf{C}_{x} \times\{0\} \times\{\infty\} \quad \text { and } \quad L_{a}^{*}=\{(a .0)\} \times \mathbf{P}_{z}
$$

so that $L_{a} \cap L_{a}^{*}=\{(a, 0, \infty)\}$. We set

$$
\Sigma_{a}^{*}:=\Sigma_{a} \backslash L_{a}
$$

then $\pi_{a}\left(\Sigma_{a}^{*}\right) \cap L=\{(a, 0)\}$. Now let E be an arbitrary subset of C. We set

$$
M:=\bigcup_{a \in E} \Sigma_{\dot{a}}^{*}
$$

and we will define an identification in M to form a new space M_{E}. This identification is defined as follows. Let $p \in \Sigma_{a}^{*}$ and $q \in \Sigma_{b}^{*}$. where $a, b \in E$. If $a \neq b$ and $\pi_{a}(p)=\pi_{b}(q)$, then we identify p with q. The space M_{E} obtained by this identification in M canonically becomes a 2 -dimensional complex manifold. We have an analytic mapping π from M_{E} into \mathbf{C}^{2} such that $\pi_{\mid \Sigma_{a}}=\pi_{a \mid \Sigma_{a}}$ for $a \in E$, and hence $\pi\left(M_{E}\right) \cap L=E$. We put $\tilde{L}_{a}^{*}=L_{a}^{*} \backslash\{(a, 0, \infty)\}$. Then. for any $a \in E$. the points of \tilde{L}_{a}^{*} are not identified with any other points.

Suppose we take a set E which contains an uncountable number of points in \mathbf{C}. Then the complex manifold M_{E} does not satisfy the second axiom of countability. To verify this, first note from above that for each $a \in E$, the set \tilde{L}_{a}^{*} is a subset of M_{E}. Furthermore, for each $a \in E$, there uniquely exists a smallest open neighborhood $\tilde{\Sigma}_{a}^{*}$ of \tilde{L}_{a}^{*} in M_{E} such that $\pi_{i \dot{\Sigma}_{a}^{*}}=\pi_{a \mid \Sigma_{a}}$. Hence $\tilde{\Sigma}_{a}^{*} \cap \dot{L}_{b}^{*}=\emptyset$ for all $b \neq a(a, b \in E)$. Since $M_{E}=\bigcup_{a \in E} \tilde{\Sigma}_{a}^{*}$ and since E is uncountable, M_{E} does not satisfy the second axiom of countability.
2. A Riemann surface admits a non-constant meromorphic function. This is not always true for complex manifolds of dimension $n \geq 2$.

[^36]Example 8.2. ${ }^{2}$ In \mathbf{C}^{2} with variables x, y we set $M:=\mathbf{C}^{2} \backslash\{(0,0)\}$. Let α, β be complex numbers with $|\alpha|,|\beta|>1$. We consider the following analytic automorphism:

$$
T:(x, y) \in M \rightarrow\left(x^{\prime}, y^{\prime}\right)=(\alpha x, \beta y) \in M,
$$

and we let Γ denote the automorphism subgroup of M generated by T; i.e., $\Gamma=$ $\left\{T^{n}: n=0, \pm 1, \ldots\right\}$. Since T has no fixed points in M and since, given (a,b) $\in M$, the orbit $\left\{T^{n}(a, b) \mid n=0, \pm 1, \ldots\right\}$ has no accumulation point in M, it follows that $\mathcal{M}:=M / \Gamma$ (the quotient space of M modulo Γ) is a compact, complex manifold of dimension 2. We note that one of the fundamental regions of M for Γ is

$$
(\{|x|<\alpha\} \times\{1 \leq|y|<\beta\}) \cup(\{1 \leq|x|<\alpha\} \times\{|y|<\beta\}) .
$$

Assume that there is no pair of integers $(h, k) \neq(0,0)$ such that $\alpha^{h}=\beta^{k}$. Then \mathcal{M} does not admit a non-constant meromorphic function.

Proof. Let $\pi: M \rightarrow \mathcal{M}$ be the canonical mapping such that $\pi \circ T^{n}=\pi(n=$ $0, \pm 1, \ldots$) on M. Assume that there exists a non-constant meromorphic function $g(p)$ on \mathcal{M}. If we set $G(x, y):=g(\pi(x, y))$ on M, then $G(x, y)$ is a non-constant meromorphic function in $M=\mathbf{C}^{2} \backslash\{(0,0)\}$. By Levi's theorem (Theorem 4.2), $G(x, y)$ has a meromorphic extension to (0,0). Since $g(p)$ has a pole in $\mathcal{M}, G(x, y)$ should have a pole S at $(0,0)$ in \mathbf{C}^{2}. To see this, let $p=(x, y)$ be a pole of $G(x, y)$. Then each point $p_{n}=T^{-n}(p)(n=1,2, \ldots)$ is a pole of $G(x, y)$. Since $\left\{p_{n}\right\}_{n}$ tends to the origin $(0,0), \boldsymbol{G}(x, y)$ cannot be holomorphic at the origin. Hence $\boldsymbol{G}(x, y)$ has a pole at the origin.

Thus S determines an analytic hypersurface Σ in \mathbf{C}^{2} passing through (0,0). We fix a small polydisk Δ centered at $(0,0)$ and let $\Sigma_{1}, \ldots, \Sigma_{\nu}$ be the irreducible components of $\Sigma \cap \Delta$. Since $T^{k}(\Sigma)=\Sigma(k=0, \pm 1, \pm 2, \ldots)$ and $T(0,0)=(0,0)$, for some l with $1 \leq l \leq \nu$ and some j with $1 \leq j \leq \nu$ we have $T^{\prime}\left(\Sigma_{j}\right)=\Sigma_{j} \cap \Delta^{l}$ (here $\Delta^{l}=T^{l}(\Delta)$). We may assume that Σ_{j} can be written in the form

$$
\Sigma_{j}: y=a_{h} x^{h}+a_{h+1} x^{\frac{h+1}{p}}+\cdots \quad\left(a_{h} \neq 0\right)
$$

in a neighborhood of $(0,0)$ in Δ, where $p \geq 1$ and h are integers. Thus, $T^{\prime}\left(\Sigma_{j}\right)$ is of the form

$$
T^{l}\left(\Sigma_{j}\right): \beta^{\prime} y=a_{h}\left(\alpha^{l} x\right)^{\frac{h}{p}}+a_{h+1}\left(\alpha^{\prime} x\right)^{\frac{h+1}{p}}+\cdots
$$

in a neighborhood of $(0,0)$ in Δ. It follows from the uniqueness of the Puiseux series expansion that $\beta^{l}=\alpha^{\frac{t h}{D}}$; i.e., $\alpha^{l h}=\beta^{l p}$, which contradicts our assumption.

Example 8.3. In \mathbf{C}^{n} with $n \geq 2$ variables z_{1}, \ldots, z_{n}, we consider $2 n$ vectors

$$
w_{k}=\left(\omega_{k}^{1}, \ldots, \omega_{k}^{n}\right) \quad(k=1, \ldots, 2 n)
$$

which are linearly independent over \mathbf{R}. Let

$$
g_{k}: z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n} \rightarrow z^{\prime}=z+\omega_{k} \quad(k=1, \ldots, 2 n)
$$

be a parallel translation of \mathbf{C}^{n}. We let Γ denote the automorphism subgroup of \mathbf{C}^{n} generated by the $g_{k}(k=1, \ldots, 2 n)$. The quotient space $\mathcal{M}_{\omega}:=\mathbf{C}^{2} / \Gamma$ canonically becomes a compact, complex manifold of dimension n. We call \mathcal{M}_{ω} an n-dimensional complex torus. We let $\pi: \mathbf{C}^{2} \rightarrow \mathcal{M}_{\omega}$ denote the canonical projection such that $\pi \circ g=\pi$ for $g \in \Gamma$. If there exists a non-constant meromorphic

[^37]function $g(p)$ on $\mathcal{M}_{\dot{\sim}}$, then $G(z):=g(\pi(z))$ is a non-constant meromorphic function on C^{n} which has periods $\omega_{k}(k=1 \ldots .2 n)$. i.e., $G(z)$ is a so-called Abel function on C^{n} with $2 n$ periods $\omega_{k}(k=1, \ldots, 2 n)$. It is known in this case ${ }^{3}$ that if we consider the ($n, 2 n$)-matrix
\[

C=\left($$
\begin{array}{ccc}
\omega_{1}^{1} & \cdots & \omega_{2 n}^{1} \\
\vdots & \ddots & \vdots \\
\omega_{1}^{\prime \prime} & \cdots & \dot{\sim}_{2 n}^{\prime n}
\end{array}
$$\right)
\]

then there exists an invertible ($2 n, 2 n$)-matrix A with integer coefficients such that

$$
\begin{equation*}
C A^{-1} C^{\prime}=0, \quad i \bar{C} A^{-1} C^{\prime}>0 \quad\left(i^{2}=-1\right) \tag{*}
\end{equation*}
$$

where A^{-1} denotes the inverse matrix of A and C^{\prime} is the transpose matrix of C. Thus if we take $2 n$ vectors $\omega_{k}(k=1 \ldots ., 2 n)$ which do not satisfy condition ($*$). then the complex torus \mathcal{M}_{w} does not admit a non-constant meromorphic function.

8.2. Analytic Polyhedra

8.2.1. Extension Theorem. We next consider analytic polyhedra in an analytic space. First of all, we mention that a non-compact complex analytic space \mathcal{V} does not necessarily admit enough global holomorphic functions f to separate points; i.e., it is not necessarily true that for $p, q \in \mathcal{V}$ with $p \neq q$. there exists f holomorphic in \mathcal{V} with $f(p) \neq f(q)$. Thus we introduce the following notion of separability: Let \mathcal{V} be an analytic space of dimension n and let E be a subset of \mathcal{V}. If for distinct points $p . q \in E$ there exists a holomorphic function f on an open set D in \mathcal{V} containing E such that $f(p) \neq f(q)$, then we say that E satisfies the separation condition.

Let \mathcal{P} be a compact set in \mathcal{V} which can be described in the following manner: there exist an open set D with $\mathcal{P} \subset \subset D \subset \mathcal{V}$ and finitely many liolomorphic functions $\boldsymbol{\omega}_{j}(p)(j=1, \ldots . m)$ on D such that \mathcal{P} consists of a finite number of (closed) connected components of the set

$$
D_{i}:=\bigcap_{\jmath=1}^{m}\left\{p \in D| | \varphi_{\jmath}(p) \mid \leq 1\right\} .
$$

Then we call \mathcal{P} a generalized analytic polyhedron in \mathcal{V}; the functions $\nu_{j}(j=$ $1 \ldots, m$) are defining functions of \mathcal{P}. Of course. some connected components of D_{\star} may not be relatively compact in D.

If a generalized analytic polyhedron \mathcal{P} in \mathcal{V} satisfies the separation condition, then we say that \mathcal{P} is an analytic polyhedron in \mathcal{V}. When we want to emphasize the domain D where the defining functions $p_{j}(p)(j=1 \ldots . m)$ of \mathcal{P} are holomorphic, we will say that \mathcal{P} is an analytic polyhedron in \mathcal{V} with defining functions on D. ${ }^{\downarrow}$

Let \mathcal{P} be an analytic polyhedron in an analytic space \mathcal{V} of dimension n and let $\hat{F}_{j}(j=1, \ldots . m)$ be defining functions of \mathcal{P}. Let

$$
\bar{\Delta}:|z| \leq 1(j=1, \ldots, m)
$$

[^38]$$
\mathcal{P}=\Sigma_{n} \cap\left\{(x, y, z) \in C^{2} \times P=||x-a| \leq 1,|y| \leq 1\}\right.
$$
of Σ_{n}. Then \mathcal{P} is a generalized analytic polyhedron in Σ_{a}, but it is not an analytic polyhedron since \mathcal{P} contains the compact 1 -dimensional analytic set L_{a}^{*}.
be the closed unit polydisk in \mathbf{C}^{m}. We consider the following analytic mapping from \mathcal{P} into $\bar{\Delta}$:
$$
\Phi: z_{j}=\varphi_{j}(p)(j=1, \ldots, m) . \quad p \in \mathcal{P} .
$$

Then the image $\Sigma:=\Phi(\mathcal{P})$ of \mathcal{P} is an n-dimensional analytic set in $\bar{\Delta}$ such that $\Phi(\partial \mathcal{P}) \subset \partial \Delta$. By adding more holomorphic functions on \mathcal{P}. if necessary, we may assume that \mathcal{P} satisfies the separation condition and that the points of \mathcal{P} and Σ are in oneto-one correspondence via Φ. We call Σ a model for \mathcal{P} on $\bar{\Delta}$. Furthermore, if Σ is normal in $\bar{\Delta}$, i.e., if there exists an open polydisk

$$
\Delta^{(c)}:\left|z_{j}\right|<1+\epsilon \quad(j=1, \ldots, m)
$$

sufficiently close to $\bar{\Delta}$ such that Σ can be analytically extended to be an analytic set $\tilde{\Sigma}$ in $\Delta^{(t)}$ with $\tilde{\Sigma}$ normal in $\Delta^{(c)}$. then we say that Σ is a normal model on $\bar{\Delta}$.

We have the following theorem concerning analytic polyhedra in an analytic space.

Theorem 8.1 (Normalization Theorem). An analytic polyhedron \mathcal{P} in an analytic space \mathcal{V} of dimension n always has a normal model on a closed polydisk in $\mathbf{C}^{\prime \prime}$, where $\nu \geq n$ is an integer depending on \mathcal{P}.

Proof. First we construct a model Σ of \mathcal{P} on the closed unit polydisk $\bar{\Delta}$ in \mathbf{C}^{m}.

$$
\Sigma: z_{j}=\imath_{j}(p) \quad(j=1 \ldots \ldots m), \quad p \in \mathcal{P} .
$$

Then we consider the W-ideal $W\{\Sigma\}$ with respect to Σ on $\bar{\Delta}$. Since $W\{\Sigma\}$ has a locally finite pseudobase at each point in $\bar{\Delta}$ by Theorem 7.11, and since Problem E is always solvable in $\bar{\Delta}$. we can find a finite number of universal denominators $W_{i}(z)(i=1 \ldots, q)$ for Σ on $\bar{\Delta}$ such that $\left\{W_{i}(z)\right\}_{i=1 \ldots ., q}$ forms a pseudobase of $W\{\Sigma\}$ at each point in $\bar{\Delta}$. Since the common zero set of the $W_{i}(z)(i=1, \ldots, q)$ on $\bar{\Delta}$ is contained in the set of singularities σ of Σ by Corollary 7.2 , we obtain a universal denominator $W(z)$ (a linear combination of the $W_{i}^{\prime}(z)(i=1, \ldots, q)$ with constant coefficients) for Σ on $\bar{\Delta}$ such that $W(z) \not \equiv 0$ on any irreducible component of Σ on $\bar{\Delta}$.

Next we consider the Z-ideal $Z\{W, \Sigma\}$ with respect to this universal denoninator $W(z)$ and Σ on $\bar{\Delta}$. Since $Z\{W, \Sigma\}$ has a locally finite pseudobase at each point in $\bar{\Delta}$ by Theorem 7.10 and since Problem E is solvable on $\bar{\Delta}$. it follows that we can find a finite number of holomorphic functions

$$
Z_{k}(z) \quad(k=1, \ldots, l) \quad \text { on } \bar{\Delta}
$$

such that $\left\{Z_{k}(z)\right\}_{k=1, \ldots, l}$ forms a pseudobase of $Z\{W, \Sigma\}$ at each point in $\bar{\Delta}$. Therefore. each quotient $Z_{k}(z) / W(z)(k=1 \ldots . l)$ is a weakly holomorphic function on Σ, and these become holomorphic functions $\psi_{k}(p)$ on the analytic polyhedron \mathcal{P}; i.e.,

$$
\psi_{k}(p)=\frac{Z_{k}}{W}(\Phi(p)) \quad(k=1, \ldots, l) \quad \text { on } \mathcal{P} .
$$

We may assume $\left|\psi_{k}(p)\right|<1(k=1, \ldots, l)$ on \mathcal{P}. Then we construct the n dimensional analytic set

$$
\tilde{\Sigma}: z_{j}=\varphi_{j}(p)(j=1, \ldots, m), w_{k}=\psi_{k}(p)(k=1, \ldots, l), \quad p \in \mathcal{P} .
$$

in the closed unit polydisk

$$
\bar{\Lambda}:\left|z_{j}\right| \leq 1(j=1 \ldots . m) .\left|w_{k}\right| \leq 1(k=1, \ldots, l)
$$

in $\mathbf{C}^{m+l}=\mathbf{C}_{\dot{z}}^{m} \times \mathbf{C}_{u}^{l}$, i.e., $\bar{\Sigma}$ is a lifting of Σ of the first kind through $2 \%(k=$ $1, \ldots, l)$.

We shall show that $\bar{\Sigma}$ is a normal model of \mathcal{P} in $\overline{\mathrm{A}}$.
First of all, since Σ is a model of \mathcal{P} in $\bar{\Delta}$. it follows that $\bar{\Sigma}$ is a model of \mathcal{P} in $\bar{\Lambda}$. Let $\bar{v} \subset \tilde{\Sigma}$ be an open set and let $f(z, w)$ be a weakly holomorphic function for $\tilde{\Sigma}$ on \tilde{v}. Since $\tilde{\Sigma}$ and Σ are analytically isomorphic via the mapping π_{0} induced by the projection from $\mathbf{C}^{\boldsymbol{n + l}}$ to $\mathbf{C}^{\boldsymbol{n}} . f(z, w)$ can be considered as a weakly holomorphic function $\tilde{f}(z)$ for Σ on $v \subset \Sigma$ such that $f(z, u)=\tilde{f}(z)$ for $z \in v=\pi_{0}^{-1}(\tilde{i})$. Let $\left(z^{\prime}, w^{\prime}\right) \in \tilde{v}$ with $z^{\prime} \in v$. As shown in Corollary 7.10. there exist a neighborhood δ^{\prime} of z^{\prime} in $\bar{\Delta}$ such that $\delta^{\prime} \cap \Sigma \subset v$ and l holomorphic functions $\alpha_{k}(z)(k=1 \ldots, l)$ in δ^{\prime} such that

$$
\tilde{f}(z)=\alpha_{1}(z) \frac{Z_{1}(z)}{W^{\prime}(z)}+\cdots+\left.\alpha_{l}(z) \frac{Z_{l}(z)}{W^{\prime}(z)}\right|_{\underline{v} \sigma^{\prime}}
$$

In other words,

$$
f(z, w)=a_{1}(z) w_{1}+\cdots+\left.\alpha_{l}(z) w_{l}^{\prime}\right|_{i \delta^{\prime} \times C^{\prime}, n \tilde{x}}
$$

so that $f(z, w)$ is a holomorphic function for $\tilde{\Sigma}$ in a neighborhood of $\left(z^{\prime}, u^{\prime}\right)$. Thus, $\dot{\Sigma}$ is normal on $\bar{\Lambda}$.

We next prove an extension theorem concerning a normal model of an analytic polyhedron in an analytic space.

Theorem 8.2 (Extension Theorem). Let \mathcal{P} be an analytic polyhedron in an analytic space \mathcal{V} of dimension n. Let Σ be a normal model of \mathcal{P} in the closed unit polydisk $\bar{\Delta}$ in \mathbf{C}^{m} with variables z_{1}, \ldots, z_{m}.

$$
\Phi: p \in \mathcal{P} \rightarrow z=\Phi(p)=\left(\varphi_{1}(p) \ldots \varphi_{m}(p)\right) \in \Sigma .
$$

Given a holomorphic function $f(p)$ on \mathcal{P}, there exists a holomorphic function $F(z)$ on $\bar{\Delta}$ such that

$$
f(p)=F(\Phi(p)), \quad p \in \mathcal{P}
$$

Proof. We consider the G-ideal $G\{\Sigma\}$ of Σ on $\bar{\Delta}$. Since $G\{\Sigma\}$ has a locally finite pseudobase at each point in $\bar{\Delta}$ and since Problem E is solvable on $\bar{\Delta}$, there exist a finite number of holomorphic functions $G_{k}(z)(k=1 \ldots . s)$ on $\bar{\Delta}$ such that $\left\{G_{k}(z)\right\}_{k=1 \ldots . s}$ forms a pseudobase at each point of $\bar{\Delta}$. Since \mathcal{P} is a closed analytic polyhedron in \mathcal{V} and $\bar{\Delta}$ is a closed polydisk in \mathbf{C}^{m}. we can find an open analytic polyhedron $\mathcal{P}^{(\epsilon)}$ with $\mathcal{P} \subset \subset \mathcal{P}^{(\epsilon)} \subset \subset \mathcal{V}$ and an open polydisk $\Delta^{(n)}$ with $\bar{\Delta} \subset \subset \Delta^{(\epsilon)}$ in $\mathbf{C}^{m t}$ such that $f(p)$ and $\varphi_{j}(p)(j=1, \ldots, m)$ are holomorphic in $\mathcal{P}^{(c)} . \Sigma^{(c)}$ is a normal model of $\mathcal{P}^{(e)}$ on $\Delta^{(c)}$.

$$
\Phi: p \in \mathcal{P}^{(c)} \rightarrow z=\left(\hat{\gamma}_{1}(p) \ldots, \hat{\gamma}_{m}(p)\right) \in \Sigma^{(c)}
$$

and such that each $G_{k}(z)(k=1, \ldots, s)$ is a holomorphic function on $\Delta^{(f)}$ with the property that $\left\{G_{k}(z)\right\}_{k=1 \ldots \ldots s}$ is a pseudobase of the G-ideal $G\left\{\Sigma^{(0)}\right\}$ at each point of $\Delta^{(\epsilon)}$. We consider the following collection \mathcal{C} of pairs $\left(f_{\zeta}(z), \delta_{\zeta}\right)$. where $\zeta \in \Delta^{(e)}$ and δ_{ζ} is a neighborhood of ζ in $\Delta^{(e)}$:

1. If $\zeta \notin \Sigma^{(\epsilon)}$, then we take a neighborhood δ_{ζ} of ζ in $\Delta^{(\epsilon)}$ such that $\delta_{\zeta} \cap \Delta^{(\epsilon)}=$ 0 . and we take $f_{\zeta}(z) \equiv 1$ on δ_{ζ}.
2. If $\zeta \in \Sigma^{(e)}$, we take a neighborhood δ_{ζ} of ζ in $\Delta^{(c)}$ and a holomorphic function $f_{\zeta}(z)$ in δ_{ζ} such that $f_{\zeta}(\Phi(p))=f(p)$ for $p \in \Phi^{-1}\left(\delta_{p} \cap \Sigma^{(\epsilon)}\right)$. This can be done by Theorem 8.1.

Then \mathcal{C} is a C_{2}-distribution in $\Delta^{(t)}$ with respect to $G_{k}(z)(k=1, \ldots, s)$. To see this, let ζ_{1}, ζ_{2} be distinct points in $\Delta^{(c)}$. If at least one of these points is not contained in $\Sigma^{(c)}$, there is nothing to prove since the common zero set of $G_{k}(z)(k=$ $1 \ldots, s)$ coincides with $\Sigma^{(\epsilon)}$. Thus we may assume that $\zeta_{1}, \zeta_{2} \in \Sigma^{(\epsilon)}$. Since $f_{\zeta_{1}}(z)-$ $f_{\zeta_{2}}(z)=0$ on $\delta_{\zeta_{1}} \cap \delta_{\zeta_{2}}$, it follows that $f_{\mathcal{C}_{1}}(z)-f_{\zeta_{2}}(z)$ belongs to $G\left\{\Sigma^{(\epsilon)}\right\}$ at each point of $\delta_{C_{1}} \cap \delta_{\dot{\zeta}_{2}}$. Thus. \mathcal{C} is a C_{2}-distribution in $\Delta^{(\epsilon)}$ with respect to $G_{k}(z)(k=1, \ldots, s)$.

Since Problem C_{2} is solvable in the closed disk $\bar{\Delta}$, we can find a holomorphic function $F(z)$ on $\bar{\Delta}$ such that. for any $\zeta \in \bar{\Delta} . F(z)-f_{\bar{G}}(z)$ belongs to $G\left\{\Sigma^{(c)}\right\}$ at each point of δ_{6}. Consequently. $f(p)=F(\Phi(p))$ for all $p \in \mathcal{P}$. which proves the theorem.

We call $F(z)$ a holomorphic extension of $f(p)$ to $\bar{\Delta}$. Similarly, given a holomorphic vector-valued function $f(p)=\left(f_{1}(p), \ldots f_{\nu}(p)\right)$ on \mathcal{P}, if each $F_{j}(z)(j=$ $1, \ldots, \nu)$ is a holomorphic extension of $f_{j}(p)$ on $\bar{\Delta}$. then we call the holomorphic vector-valued function $F(z)=\left(F_{1}(z) \ldots . F_{\nu}(z)\right)$ on $\bar{\Delta}$ a holomorphic extension of the vector-valued function $f(p)$ to $\bar{\Delta}$.

Theorem 8.1 and Theorem 8.2 are the lifting principles in analytic spaces, which are perhaps the most important results in this book. ${ }^{5}$

Remark 8.1. Let \mathcal{D} be a ramified domain over \mathbf{C}^{n}. Assume that \mathcal{D} has a normal model with defining functions $\psi_{j}(p)(j=1, \ldots m)$. Let $p_{0} \in \mathcal{D}$ and let $f(p)$ be a holomorphic function at p_{0}. From Theorem 8.2, we see that

$$
\begin{equation*}
f(p)=\sum_{j_{1} \ldots \cdot j_{m}} a_{j_{1} \ldots \ldots j_{m}}\left(\varphi_{1}(p)\right)^{j_{1}} \cdots\left(\varphi_{m}(p)\right)^{j_{m}} \tag{8.2}
\end{equation*}
$$

in a neighborhood of $p_{0} \in \mathcal{D}$. This expansion may be considered as a generalization of the Puiseux expansion in the case of one complex variable. We remark that for one-variable Puiseux expansions we have uniqueness of coefficients, but this is not necessarily the case in several complex variables. As a simple example of this phenomenon, define the analytic polyhedron $\mathcal{P} \subset \mathbf{C}^{2}$ as $\left\{(x, y) \in \mathbf{C}^{2}:|x|<\right.$ 1, $|y|<1,|x+y|<1\}$. The function $x y^{2}+x^{2} y=x y(x+y)$ yields an example of nonuniqueness.

Remark 8.2. Let \mathcal{P} be a generalized analytic polyhedron in an analytic space \mathcal{V} of dimension n. Let $\varphi_{j}(p)(j=1, \ldots, m)$ be defining functions for \mathcal{P} in a domain $D \subset \mathcal{V}$. Let $\bar{\Delta}^{m}:\left|z_{j}\right| \leq 1(j=1 \ldots \ldots m)$ denote the closed unit polydisk in \mathbf{C}^{m}. We consider the analytic mapping

$$
\Phi: p \in \mathcal{P} \rightarrow z=\left(\varphi_{1}(p) \ldots, \varphi_{m}(p)\right) \in \bar{\Delta}^{m}
$$

and its image Σ in $\bar{\Delta}^{m}$.

$$
\Sigma: z_{\jmath}=\varphi_{j}(p), \quad(j=1, \ldots, m) .
$$

Consider the following condition:

[^39](*) \mathcal{P} and Σ are in one-to-one correspondence except perhaps for points lying on an analytic set σ of dimension at most $n-1$.
Equivalently, for each irreducible component $\Sigma_{k}(k=1, \ldots, s)$ of Σ in $\bar{\Delta}^{m}$, there exists a point $z^{0} \in \Sigma_{k}$ such that $\Phi^{-1}\left(z^{0}\right)$ consists of one point. Then the normalization theorem holds for \mathcal{P}. Precisely, there exist defining functions $\psi_{k}(p)$ ($k=1, \ldots, l$) of \mathcal{P} in a domain $D_{0} \subset D$ such that
$$
\dot{\Sigma}: \quad w_{k}=\psi_{k}(p) \quad(k=1, \ldots, l), \quad p \in \mathcal{P}
$$
is a normal model of \mathcal{P} in the closed polydisk $\bar{\Delta}^{\prime}$ in C^{\prime} (so that \mathcal{P} and $\bar{\Sigma}$ are necessarily in one-to-one correspondence), and hence \mathcal{P} is necessarily an analytic polyhedron in \mathcal{V} with defining functions $\psi_{k}(p)(k=1, \ldots, l)$ on $D_{0} \subset \mathcal{V}$.

In fact, replacing the condition in Theorem 8.1 that \mathcal{P} and Σ are in one-to-one correspondence via Φ by this weaker condition (*), the family of all holomorphic functions $f(p)$ on \mathcal{P} and the family of all weakly holomorphic functions $F(z)$ on Σ are still in one-to-one correspondence via $F(\Phi)=f$ on \mathcal{P}. Since the remaining arguments in the proof of Theorem 8.1 are unchanged, we obtain the normalization theorem for generalized analytic polyhedra \mathcal{P} satisfying condition (*).

Once we have this normalization result, we see by following the proof of Theorem 8.2 that the extension theorem also remains valid for such generalized analytic polyhedra \mathcal{P}.

This remark, combined with Theorem 6.1, implies the following corollary.
Corollary 8.1. Any ramified domain over \mathbf{C}^{n} locally has a normal model.
The type of generalized analytic polyhedra \mathcal{P} satisfying condition (*) originally studied by Oka [51] were the following. Let \mathcal{V} be a ramified domain over $\mathbf{C}_{z}^{\boldsymbol{n}}$ with branch set S. Let \mathcal{P} be a generalized analytic polyhedron in \mathcal{V} with defining functions on D (here, $\mathcal{P} \subset \subset D \subset \mathcal{V}$). If there exists a holomorphic function $\psi(\tilde{z})$ on D such that $\psi(\bar{z})$ has different function elements over each point $z \in \underline{D} \backslash \underline{S}$ (where \underline{D} and S denote the projections of D and S onto C_{z}^{n}), then the normalization theorem and the extension theorem hold for \mathcal{P}.

Remark 8.3. Let Σ be an analytic set of pure dimension r in the closed polydisk $\bar{\Delta}$ in C^{n}. In the beginning of the proof of Theorem 8.1, we proved the existence of a global universal denominator $W(z)$ on all of $\bar{\Delta}$ for Σ such that $W(z) \not \equiv 0$ on each irreducible component of Σ by introducing the notion of a W-ideal $W\{\Sigma\}$ (this ideal was not discussed in Oks's papers). Oka proved the existence of such a universal denominator $W(z)$ in the following manner. Let σ be the set of singularities of Σ in $\bar{\Delta}$; thus σ is an analytic set in $\bar{\Delta}$ of dimension at most $r-1$. Let $\varphi_{j}(z)$ ($j=1, \ldots, m$) be a pseudobase of the G-ideal $G\{\sigma\}$ on $\bar{\Delta}$, so that the common zero set of $\varphi_{j}(z)(j=1, \ldots, m)$ is equal to σ. Fix any point $z_{0} \in \bar{\Delta}$. By Corollary 7.2, there exist a polydisk δ centered at z_{0} and a finite number of universal denominators $\psi_{k}(z)(k=1, \ldots, \nu)$ in δ such that $T_{z_{0}}:=\bigcap_{k=1}^{\nu}\left\{z \in \delta \mid \psi_{k}(z)=0\right\} \subset \sigma \cap \delta$. Since $\varphi_{j}(z)=0(j=1, \ldots, m)$ on $T_{s_{0}}$, it follows from the Hilbert-Rückert Nullstellensatz for holomorphic functions (see Appendix in this chapter) that there exist a polydisk $\delta_{0} \subset \subset \delta$ centered at z_{0} and an integer $\alpha_{j} \geq 1$ such that

$$
\varphi_{j}(z)^{\alpha_{j}}=a_{1}^{(j)}(z) \psi_{1}(z)+\cdots+a_{\nu}^{(j)}(z) \psi_{\nu}(z) \quad \text { on } \delta_{0}
$$

where each $a_{k}(z)(k=1, \ldots, \nu)$ is a holomorphic function in δ_{0}. Thus, $\left.\varphi_{j}(z)^{\alpha_{j}}\right|_{\delta_{0}}$ $(j=1, \ldots, m)$ is a universal denominator for Σ on δ_{0}. Since $\bar{\Delta}$ is a closed polydisk,
we can find sufficiently large integers $A_{j}(j=1, \ldots, m)$ so that each $\hat{\gamma}_{j}(z)^{4,}$ is a universal denominator for Σ on the whole $\bar{\Delta}$. Since $\bigcap_{j=1}^{m}\left\{z \in \bar{\Delta} \mid \psi_{j}(z)^{A j}=\right.$ $0\}=\sigma$, it follows that some linear combination $W^{\prime}(z)$ of $i_{j}(z)^{4},(j=1 \ldots ., m)$ is a universal denominator for Σ on $\bar{\Delta}$ with $W^{\top}(z) \not \equiv 0$ on each irreducible component of Σ.

Remark 8.4. To prove the extension theorem (Theorem 8.2) for analytic polyhedra in a univalent domain in \mathbf{C}^{n}, we do not need the fact that a Z-ideal has a locally finite pseudobase at each point. We only require the fact that a G-ideal has a locally finite pseudobase at each point and that Problems C_{2} and E are solvable on polydisks in \mathbf{C}^{n}.

We studied $\mathcal{O}^{\boldsymbol{\lambda}}$-modules (\mathcal{O}-modules of rank λ) on a domain in $\mathbf{C}^{\boldsymbol{n}}$; we can define \mathcal{O}^{λ}-modules on a domain in an analytic space \mathcal{V} in the same manner.

Let \mathcal{P} be an analytic polyhedron in a doinain D in an analytic space \mathcal{V} and let Σ be a normal model of \mathcal{P} on the closed unit polydisk $\bar{\Delta}$ via the one-to-one mapping

$$
\Phi: p \in \mathcal{P} \rightarrow z=\left(\varphi_{1}(p), \ldots, \varphi_{m}(p)\right) \in \Sigma \subset \bar{\Delta} .
$$

where $\hat{\varphi}_{j}(p)(j=1, \ldots, m)$ is a holomorphic function on D (here $\left.\mathcal{P} \subset \subset D\right)$ and $\bar{\Delta}$: $\left|z_{j}\right| \leq 1$. By Theorem 8.2, any holomorphic function $f(p)$ on \mathcal{P} has a holomorphic extension $F(z)$ on $\bar{\Delta}$. We shall show that this kind of extension theorem holds for any $\mathcal{O}^{\boldsymbol{\lambda}}$-module on \mathcal{P}.

Let \mathcal{I}^{λ} be an \mathcal{O}^{λ}-module on \mathcal{P}. Let $\zeta \in \bar{\Delta}$. We define pairs $\left(f_{i}(z), \delta_{\zeta}\right)$ where δ_{ζ} is a neighborhood of ζ in $\bar{\Delta}$ and $f_{\zeta}(z)$ is a holomorphic vector-valued function of rank λ on δ_{j}, as follows:

1. If $\zeta \notin \Sigma$. we take δ_{ζ} and $f(z)$ such that $\delta_{\zeta} \cap \Sigma=0$ and $f_{i}(z)$ is any holomorphic function on δ_{ζ}.
2. If $\zeta \in \Sigma$, we take δ_{ζ} and $f(z)$ such that $\delta_{\zeta} \subset \bar{\Delta}$ and $f(\Phi(p))$ belongs to I^{λ} at each point of $\Phi^{-1}\left(\delta_{\zeta} \cap \Sigma\right)$.
Since Σ is a normal model of \mathcal{P} on $\bar{\Delta}$, the set $\left\{\left(f_{\zeta}(z), \delta_{\zeta}\right)\right\}_{\zeta \in \Xi}$ of all such pairs is an \mathcal{O}^{λ}-module on $\bar{\Delta}$. We let $\dot{\mathcal{I}}^{\lambda}$ denote this $\mathcal{O}^{\boldsymbol{\lambda}}$-module and we call it the extension \mathcal{O}^{λ}-module of \mathcal{I}^{λ} on $\bar{\Delta}$.

We have the following lemma.
Lemma 8.1. I^{λ} is generated by a finite number of holomorphic vector-valued functions of rank λ on \mathcal{P} if and only if the same is true for $\tilde{\mathcal{I}}^{\lambda}$ on $\bar{\Delta}$.

To be precise, let $G_{k}(z)(k=1 \ldots \ldots \mu)$ be a pseudobase of the G-ideal $G\{\Sigma\}$ on $\bar{\Delta}$. For any $h(h=1, \ldots, \lambda)$ and $k(k=1, \ldots ; \mu)$ we consider the following λ_{μ} holomorphic vector-valued functions of rank λ on $\bar{\Delta}$:

$$
\begin{equation*}
\psi_{h, k}(z)=(\overbrace{\lambda}^{\overbrace{0, \ldots, 0, G_{k}(z)}^{h}, 0, \ldots, 0}) . \tag{8.3}
\end{equation*}
$$

From the definition of $\tilde{\mathcal{I}}^{\boldsymbol{\lambda}}$ for any $\mathcal{O}^{\boldsymbol{\lambda}}$-module $\mathcal{I}^{\boldsymbol{\lambda}}$, we always have $\dot{U}_{h . k}(z) \in \dot{\mathcal{I}}^{\boldsymbol{\lambda}}$ for any h, k.

Then the following statements are valid.

1. Assume that \mathcal{I}^{λ} is equivalent to an \mathcal{O}^{λ}-module $\mathcal{J}^{\lambda}\{F\}$ generated by a finite number of holomorphic vector-valued functions $F_{j}(p)(j=1, \ldots, \nu)$ on \mathcal{P} :

$$
F_{j}(p)=\left(F_{1 . j}(p) \ldots, F_{\lambda . j}(p)\right)
$$

We let $\check{F}_{j}(z)(j=1, \ldots, \nu)$ denote a vector-valued function on $\bar{\Delta}$ which is a holomorphic extension of $F_{\jmath}(p)$. Then $\tilde{\mathcal{I}}^{\lambda}$ is equivalent to the \mathcal{O}^{λ}-module $\mathcal{J}^{\lambda}\{\bar{F}, \psi\}$ generated by $\tilde{F}_{j}(z)(j=1 \ldots, \nu)$ and $v_{h, k}(z)(h=1 \ldots, \lambda: k=1 \ldots, \mu)$ on $\bar{\Delta}$.
2. Conversely, assume that $\overline{\mathcal{I}}^{\lambda}$ is equivalent to an \mathcal{O}^{λ}-module $\mathcal{J}^{\lambda}\{\tilde{F}\}$ generated by a finite number of holomorphic vector-valued functions $\bar{F}_{j}(z)(j=1 \ldots ., s)$ of rank λ on $\bar{\Delta}$. Then $\mathcal{I}^{\boldsymbol{\lambda}}$ is equivalent to the \mathcal{O}^{λ}-module $\mathcal{J}^{\lambda}\{F\}$ generated by s holomorphic vector-valued functions $F_{j}(p)(j=1 \ldots . s)$ such that $F_{j}(p)=$ $\bar{F}_{j}(\Phi(p))$ on \mathcal{P}.

Proof. For the proof of 1 . let $\zeta_{0} \in \bar{\Delta}$ and let $f(z)=\left(f_{1}(z) \ldots, f_{\lambda}(z)\right)$ be any holomorphic vector-valued function belonging to $\tilde{\mathcal{I}}^{\lambda}$ at the point ζ_{0}. If $\zeta_{0} \notin \Sigma$. then some $G_{k}(z) \neq 0$ at ζ_{1}. Thus we can write

$$
f(z)=\frac{f_{1}(z)}{G_{k}(z)} v_{1 . k}(z)+\cdots+\frac{f_{\lambda}(z)}{G_{k}(z)} v_{\lambda . k}(z)
$$

in a neighborhood of ζ_{0} in $\bar{\Delta}$. so that $f(z) \in \mathcal{J}^{\lambda}\{\tilde{F}, \dot{\psi}\}$ at the point ζ_{0}. If $\zeta_{0} \in \Sigma$, then $f(\Phi(p))$ belongs to I^{λ} at the point $p_{0}=\Phi^{-1}\left(\zeta_{0}\right)$. Thus

$$
f(\Phi(p))=a_{1}(p) F_{1}(p)+\cdots+a_{\nu}(p) F_{\nu}(p)
$$

in a neighborhood v of p_{0} on \mathcal{P}, where $a_{j}(p)(j=1 \ldots . \nu)$ is a holomorphic function on r. There exists a holomorphic extension $\bar{a}_{j}(z)(j=1 \ldots, \nu)$ of $a_{j}(p)$ in a neighborhood δ_{0} of ζ_{0}. i.e.. $a_{j}(p)=\tilde{a}_{j}(\Phi(p))$ for $p \in v^{\prime} \cap\left(\Phi^{-1}\left(\delta_{0}\right)\right)$. We thus have

$$
f(z)=\tilde{a}_{1}(z) \bar{F}_{1}(z)+\cdots+\tilde{a}_{\nu}(z) \tilde{F}_{\nu}(z) \quad \text { on } \delta_{1} \cap \Sigma
$$

where $\delta_{1} \subset \delta_{0}$ is a neighborhood of ζ_{0}. It follows that $f(z) \in \mathcal{J}^{\lambda}\{\dot{F} . v\}$ at the point ζ_{0}. On the other hand, since any $f(z)$ belonging to $\mathcal{J}^{\lambda}\{\bar{F}, v\}$ at $\zeta_{0} \in \bar{\Delta}$ clearly belongs to \dot{I}^{λ} at ζ_{0}, we obtain 1 .

For the proof of 2 , let $p_{0} \in \mathcal{P}$ and let $f(p)$ be any holomorphic vector-valued function of rank λ belonging to I^{λ} at p_{0}. Let $\zeta_{0}=\Phi\left(p_{0}\right)$. Since Σ is a normal model of \mathcal{P}, there exists a holomorphic vector-valued extension $\tilde{f}(z)$ of $f(p)$ in a neighborhood δ_{0} of ζ_{0} in $\bar{\Delta}$ so that $\left(\tilde{f}(z), \delta_{0}\right) \in I^{\lambda}\{\tilde{F}\}$. Thus, we can find a holomorphic function $\bar{a}_{j}(z)(j=1 \ldots, s)$ on a neighborhood $\delta_{1} \subset \delta_{0}$ of ζ_{0} such that

$$
\bar{f}(z)=\tilde{a}_{1}(z) \tilde{F}_{1}(z)+\cdots+\tilde{a}_{n}(z) \bar{F}_{n}(z) \text { on } \bar{\delta}_{1}
$$

If we set $a_{j}(p)=a_{j}(\Phi(p))(j=1 \ldots, s)$, then we have $f(p)=a_{1}(p) F_{1}(p)+\cdots+$ $a_{s}(p) F_{s}(p)$ on $\Phi^{-1}\left(\delta_{1}\right) \cap \Sigma$, so that $f \in \mathcal{J}^{\lambda}\{F\}$ at the point p_{0}.
8.2.2. Various Problems on Analytic Polyhedra. Using Lemma 8.1, various problems which were solved on a closed polydisk in \mathbf{C}^{n} in Chapter 7 may be solved on an analytic polyhedron in an analytic space \mathcal{V}.

Let \mathcal{V} be an analytic space of dimension n and let \mathcal{P} be an analytic polyhedron in \mathcal{V}. Let Σ be a norinal model of \mathcal{P} in the closed unit polydisk $\bar{\Delta}$ in C^{m}. Let $\varphi_{j}(p)$ ($j=1 \ldots \ldots, m$) be defining functions of \mathcal{P} in $D \subset \mathcal{V}$ with respect to Σ. so that. if we set

$$
\Phi: p \in \mathcal{P} \rightarrow z=\left(z_{1}, \ldots, z_{m}\right)=\left(\nu_{1}(p), \ldots . \varphi_{m}(p)\right) \in \bar{\Delta} .
$$

then Φ is one-to-one from \mathcal{P} onto Σ with $\Sigma=\Phi(\mathcal{P})$ and $\Phi(\partial P) \subset \partial \bar{\Delta}$.

We shall consider the $\mathcal{O}^{\prime \prime}$-module defined as follows. Let $F_{j}(p)(j=1 \ldots . \nu)$ be a holomorphic vector-valued function of rank λ on \mathcal{P}. We consider the following system of λ homogeneous linear equations:

$$
f_{1}(p) F_{1}(p)+\cdots+f_{\nu}(p) F_{\nu}(p)=0
$$

determined by the given holomorphic vector-valued functions $F_{j}(p)(j=1, \ldots, \nu)$ of $\operatorname{rank} \lambda$ on \mathcal{P} for the unknown holomorphic vector-valued function $f(p)=\left(f_{1}(p) \ldots\right.$. $\left.f_{\nu}(p)\right)$ of rank ν on a domain $\delta \subset \mathcal{P}$. The set of all solutions $\{(f(p), \delta)\}_{\delta \subset \mathcal{P}}$ determines an \mathcal{O}^{ν}-module on \mathcal{P}. We call this the \mathcal{O}-module with respect to the linear relation (Ω). and denote it by $\mathcal{L}\{\Omega\}$.

We have the following theorem.
Theorem 8.3 (Oka). The \mathcal{O}-module $\mathcal{L}\{\Omega\}$ with respect to any linear relation (Ω) has a locally finite pseudobase at each point of \mathcal{P}.

Proof. We let $\tilde{F}_{j}(z)(j=1 \ldots, \nu)$ denote a holomorphic. vector-valued extension of $F_{j}(p)$ to $\bar{\Delta}$. We use the functions $\dot{\psi}_{k, k}(z)(h=1 \ldots, \lambda: k=1 \ldots, \mu)$ defined in (8.3). Consider the following system of λ homogeneous linear equations in $\bar{\Delta}$:

$$
\bar{f}_{1}(z) \tilde{F}_{1}(z)+\cdots+\tilde{f}_{\nu}(z) \tilde{F}_{\nu}(z)+\sum_{h, k} \tilde{g}_{h, k}(z) v_{h, k}(z)=0
$$

determined by the given holomorphic vector-valued functions $\bar{F}_{j}(z)(j=1 \ldots, \nu)$ and $i_{h . k}(z)(h=1, \ldots, \lambda ; k=1, \ldots, \mu)$ of rank λ on $\bar{\Delta}$ for the unknown holomorphic vector-valued function $\tilde{f}(z)=\left(\tilde{f}_{j}(z), \tilde{g}_{h, k}(z)\right)$ of $\operatorname{rank} \kappa:=\nu+\lambda \mu$ on a domain $\delta \subset \bar{\Delta}$. We let $\mathcal{L}\{\tilde{\Omega}\}$ denote the \mathcal{O}-module with respect to the linear relation ($\tilde{\Omega})$ on $\bar{\Delta}$. By Theorem 7.1. $\mathcal{L}\{\Omega\}$ has a locally finite pseudobase $\tilde{H}_{j}(z)(j=1 \ldots \ldots$. $)$ on $\bar{\Delta}$. i.e.. $\tilde{H}_{j}(z)$ is a holomorphic vector-valued function of rank κ on $\bar{\Delta}$ such that the \mathcal{O}-module $\mathcal{J}^{\kappa}\{\tilde{H}\}$ generated by $\tilde{H}_{j}(z)(j=1, \ldots, s)$ is equivalent to $\mathcal{L}\{\tilde{\Omega}\}$ on $\bar{\Delta}$. We set $H_{j}(p)=\dot{H}_{j}(\Phi(p))(j=1, \ldots, s)$, so that $H_{j}(p)$ is of the form

$$
H_{j}(p)=(H_{1 . \jmath}(p), \ldots . H_{\nu, \jmath}(p) \cdot \overbrace{0 \ldots .0}^{\lambda \mu}) \text { on } \mathcal{P} .
$$

If we define $H_{j}^{0}(p):=\left(H_{1, j}(p) \ldots, H_{\nu, j}(p)\right)(j=1 \ldots, s)$, which is a holomorphic vector-valued function of rank ν on \mathcal{P}. then we will show that $\mathcal{L}\{\Omega\}$ is equivalent to the \mathcal{O}-module $\mathcal{J}^{\nu}\left\{H^{0}\right\}$ generated by the $H_{j}^{0}(p)(j=1 \ldots, s)$ on \mathcal{P}.

To see this, we first note that $H_{j}^{0}(p) \in \mathcal{L}\{\Omega\}(j=1 \ldots \ldots s)$ on \mathcal{P}. Next, we take $p_{0} \in \mathcal{P}$ and $f(p)=\left(f_{1}(p) \ldots . f_{\nu}(p)\right) \in \mathcal{L}\{\Omega\}$ at the point p_{0} and set $z_{0}=\Phi\left(p_{0}\right) \in \bar{\Delta}$. We let $\tilde{f}(z)=\left(\tilde{f}_{1}(z), \ldots \tilde{f}_{1}(z)\right)$ denote a holomorphic vectorvalued extension of $f(p)$ in a neighborhood δ of z_{0} on $\bar{\Delta}$. Then we have

$$
\bar{f}_{1}(z) \tilde{F}_{1}(z)+\cdots+\bar{f}_{\nu}(z) \tilde{F}_{\nu}(z)=0 \text { on } \delta \cap \Sigma
$$

Thus there exist holomorphic functions $g_{h, k}(z)(h=1, \ldots, \lambda ; k=1, \ldots, \mu)$ in a neighborhood $\delta_{1} \subset \delta$ of z_{0} such that

$$
\tilde{f}_{1}(z) \tilde{F}_{1}(z)+\cdots+\tilde{f}_{\nu}(z) \tilde{F}_{v}(z)+\sum_{h, k} g_{h . k}(z) u^{\prime} h . k(z)=0 \quad \text { on } \delta_{1}
$$

so that $\tilde{f}(z):=\left(\tilde{f_{j}}(z), g_{h, k}(z)\right) \in \mathcal{L}\{\tilde{\Omega}\}$ on δ_{1}. Thus.

$$
\tilde{f}(z)=\tilde{a}_{1}(z) \check{H}_{1}(z)+\cdots+\tilde{a}_{s}(z) \grave{H}_{s}(z)
$$

in a neighborhood $\delta_{2} \subset \delta_{1}$ of z_{1}. If we set $\alpha_{j}(z)=\dot{\alpha}_{\boldsymbol{j}}(\Phi(p))(j=1, \ldots, s)$ on $r:=\boldsymbol{\Phi}^{-1}\left(\bar{\delta}_{2} \cap \Sigma\right)$. then by taking the first ν components we have

$$
f(p)=\alpha_{1}(p) H_{1}^{0}(p)+\cdots+\alpha_{s}(p) H_{x}^{0}(p)
$$

on the neighborhood v of p_{0} in \mathcal{P} : i.e.. $f(p) \in \mathcal{J}^{\prime \prime}\left\{H^{0}\right\}$ at p_{0}.
We also have the following two theorems.
Theorem 8.4 (Problem C_{1}). Problem C_{1} is solvable for any analytic polyhedron \mathcal{P} in an analytic space \mathcal{V}.

Phoof. Let $H(p)$ and $F,(p)(j=1, \ldots, \nu)$ be holomorphic vector-valued functions of rank λ on \mathcal{P}. We let $\mathcal{J}^{\nu}\{F\}$ denote the \mathcal{O}-module on \mathcal{P} generated by the $F_{j}(p)(j=1 \ldots, \nu)$. Assume that $H(p)$ belongs to $\mathcal{J}^{\nu}\{F\}$ at each point in \mathcal{P}. We claim that there exist ν holomorphic functions $\alpha_{j}(p)(j=1 \ldots, \nu)$ on \mathcal{P} such that

$$
\begin{equation*}
H(p)=a_{1}(p) F_{1}(p)+\cdots+a_{\nu}(p) F_{\nu}(p) \quad \text { on } \mathcal{P} . \tag{8.4}
\end{equation*}
$$

To prove this. we take a norinal model Σ of \mathcal{P} in the polydisk $\bar{\Delta}$ in \mathbf{C}^{m} defined by use of the defining functions $\varphi_{j}(p)(j=1 \ldots \ldots m)$ of \mathcal{P} in $D \subset \mathcal{V}$. and we set

$$
\Phi: p \in \mathcal{P} \rightarrow z=\left(\varphi_{1}(p) \ldots, \hat{\varphi_{m}}(p)\right) \in \Sigma \subset \bar{\Delta} .
$$

Let $\bar{H}(z)$ and $\bar{H}_{j}(z)(j=1, \ldots, \nu)$ be holomorphic vector-valued extensions of $H(p)$ and $F_{j}(p)$ on $\bar{\Delta}$. Let $\psi_{h . k}(z)(h=1 \ldots, \lambda ; k=1, \ldots, \mu)$ be the holomorphic vector-valned functions of rank λ on \mathcal{P} defined by (8.3). We let $\mathcal{J}^{\lambda}\{\bar{F}, u\}$ denote the \mathcal{O}^{λ}-module generated by $\grave{F}_{j}(z)(j=1, \ldots, \nu)$ and $\iota_{h . k}(z)(h=1, \ldots, \lambda: k=$ $1 \ldots, \mu)$ on $\bar{\Delta}$. Since Σ is a norinal model of \mathcal{P} in $\bar{\Delta}$, we dednce from the fact that $H(p) \in \mathcal{J}^{\lambda}\{F\}$ at each point in \mathcal{P} that $\dot{H}(p) \in \dot{J}^{\lambda}\{\tilde{F}, \dot{w}\}$ at each point in $\bar{\Delta}$. Since Problem C_{1} is solvable in the closed polydisk $\bar{\Delta}$. there exist $\kappa:=\nu+\lambda \mu$ holomorphic functions $\tilde{a}_{j}(z)(j=1 \ldots, \nu) . \overline{3}_{h . k}(z)(k=1, \ldots, \lambda ; h=1, \ldots, \mu)$ such that

$$
\bar{H}(z)=\tilde{\alpha}_{1}(z) \bar{F}_{1}(z)+\cdots+\bar{\alpha}_{\nu}(z) \bar{F}_{\nu}(z)+\sum_{h . k} \bar{\beta}_{h . k}(z) \psi_{h . k}(z) \quad \text { on } \bar{\Delta} .
$$

Setting $a_{j}(p)=\bar{a}_{\boldsymbol{j}}(\Phi(p))(j=1 \ldots, \nu)$ on \mathcal{P} proves (8.4).
Theorem 8.5 (Problem C_{2}). Problem C_{2}^{2} is solvable for any analytic polyhedron \mathcal{P} in an analytic space \mathcal{V}.

Proof. We use the same notation $\Sigma, \bar{\Delta} \subset \mathbf{C}^{\prime \prime} . \hat{\gamma}_{j}(p)(j=1 \ldots . . m)$ and $\Phi: \mathcal{P} \rightarrow \Sigma \subset \bar{\Delta}$ as in the proof of the previous theorem. Let $F_{,}(p)(j=1 \ldots . \nu)$ be a holomorphic vector-valued function of rank λ on \mathcal{P} and let $\mathcal{J}^{\boldsymbol{\lambda}}\{F\}$ denote the \mathcal{O}-module generated by $F_{j}(p)(j=1, \ldots, \nu)$ on \mathcal{P}. Let $\mathcal{C}=\left\{h_{q}(p), \delta_{q}\right\}_{q \in \mathcal{P}}$ be any C_{2}-distribution with respect to $\mathcal{J}^{\lambda}\{F\}$. i.e.. if $\delta_{q_{1}} \cap \delta_{q_{2}} \neq \emptyset$, then $h_{q_{1}}(p)-h_{q_{2}}(p) \in$ $\mathcal{J}^{\lambda}\{F\}$ at each point of $\delta_{q_{1}} \cap \delta_{q_{2}}$. We claim that there exists a holomorphic vectorvalued function $H(p)$ of rank λ on \mathcal{P} such that, for each $q \in \mathcal{P}$.

$$
\begin{equation*}
H(p)-h_{q}(p) \in \mathcal{J}^{\lambda}\{F\} \text { at each point in } \delta_{q} . \tag{8.5}
\end{equation*}
$$

To prove this. we consider the saine \mathcal{O}-module $\mathcal{J}^{\lambda}\{\tilde{F}, \psi\}$ on $\bar{\Delta}$ as in the proof of the previous theorem. and we form the following distribution $\overline{\mathcal{C}}:=\left\{\left(\bar{f}_{\zeta}(z) . \bar{\delta}_{G}\right)\right\}_{\epsilon \in \Xi}$ on $\bar{\Delta}$. where $\tilde{\delta}_{\dot{j}}$ is a neighborhood of ζ in $\bar{\Delta}$ and $\tilde{f}_{j}(z)$ is a holomorphic vector-valued function of rank λ on $\dot{\delta}_{s}$:

1. If $\zeta \notin \Sigma$. we take $\tilde{\delta}_{\xi}$ such that $\tilde{\delta}_{\zeta} \cap \Sigma=\emptyset$ and set $\bar{f}_{\zeta}(\approx) \equiv 0$.
2. If $\zeta \in \Sigma$. we set $q=\Phi^{-1}(\zeta)$ and take $\tilde{\delta}_{\zeta}=\Phi^{-1}\left(\delta_{q}\right)$: and $\bar{f}_{i}(\Phi(p))=h_{q}(p)$ on δ_{q}.
Since Σ is a normal model of \mathcal{P} on $\bar{\Delta}$. we can form such a distribution $\dot{\mathcal{C}}$ at each point of $\bar{\Delta}$. Also, since \mathcal{C} is a C_{2}-distribution on \mathcal{P} with respect to $\mathcal{J}^{\lambda}\{F\}$, we see that $\overline{\mathcal{C}}$ is a C_{2}-distribution on $\bar{\Delta}$ with respect to $\mathcal{J}^{\lambda}\{\bar{F}, v\}$. Since Problem C_{2} is solvable on the closed polydisk $\bar{\Delta}$, there exists a holomorphic vector-valued function $\bar{H}(z)$ on $\bar{\Delta}$ such that, for each $\zeta \in \bar{\Delta}, \tilde{H}(z)-\bar{f}_{\zeta}(z) \in \mathcal{J}^{\lambda}\{\tilde{F}, \varphi\}$ at each point in $\dot{\delta}_{\zeta}$. If we set $H(p)=\dot{H}(\Phi(p))$ for $p \in \mathcal{P}$. then $H(p)$ satisfies (8.5).

Finally, we prove the following theorem.
Theorem 8.6 (Problem E). Problem E is solvable for any analytic polyhedion \mathcal{P} in an analytic space \mathcal{V}.

Proof. Let \mathcal{J}^{λ} be an \mathcal{O}^{λ}-module on \mathcal{P} which has a locally finite pseudobase at each point in \mathcal{P}. We use the same notation, Σ. Φ. and $\bar{\Delta} \subset \mathbf{C}^{m}$. as in the previous theorem. We let $\overline{\mathcal{J}}^{\lambda}$ denote the extended \mathcal{O}^{λ}-module of \mathcal{J}^{λ} to the polydisk $\bar{\Delta}$. By statement 1 of Lemma 8.1. \dot{J}^{λ} has a locally finite pseudobase at each point in $\bar{\Delta}$. Since Problem E is solvable for the polydisk $\bar{\Delta}, \dot{\mathcal{J}}^{\lambda}$ is equivalent to the \mathcal{O}^{λ}-module $\mathcal{J}^{\lambda}\{\bar{F}\}$ generated by a finite number of holomorphic vector-valued functions $\bar{F}_{J}(z)$ $(j=1, \ldots, \nu)$ of $\operatorname{rank} \lambda$ on $\bar{\Delta}$. If we set $F_{j}(p)=\tilde{F}_{j}(\Phi(p))(j=1, \ldots, \nu)$ for $p \in \mathcal{P}$. then statement 2 of Lemma 8.1 implies that the \mathcal{O}-module $\mathcal{J}^{\lambda}\{F\}$ generated by $F_{j}(p)(j=1, \ldots, \nu)$ is equivalent to \mathcal{J}^{λ} on \mathcal{P}.
8.2.3. Runge Problem. Let \mathcal{V} be an analytic space of dimension n. Let \mathcal{P}_{1} and \mathcal{P}_{2} be analytic polyhedra in \mathcal{V} such that the defining functions of both \mathcal{P}_{1} and \mathcal{P}_{2} are defined on the same set $U: \mathcal{P}_{1}, \mathcal{P}_{2} \subset \subset U \subset \mathcal{V}$. Assume that $\mathcal{P}_{1} \subset \subset \mathcal{P}_{2}^{c}$ (the interior of \mathcal{P}_{2}). Then we have the following lemma.

Lemma 8.2. The pair $\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$ satisfies the Runge theorem.

Proof. Let Σ_{1} (resp. Σ_{2}) be a normal model in the unit polydisk $\bar{\Delta}_{1} \subset \mathbf{C}_{:}^{m}$ (resp. $\bar{\Delta}_{2} \subset \mathbf{C}_{u}^{\prime}$) of \mathcal{P}_{1} (resp. \mathcal{P}_{2}) whose defining functions are $\varphi_{j}(p)(j=1, \ldots, m)$ (resp. $\left.v_{k}(p)(k=1, \ldots, l)\right)$ defined on U. We assume that $\left|p_{j}(p)\right| \leq M(j=$ $1, \ldots, m)$ on \mathcal{P}_{2}. We set $\bar{\Delta}_{1}^{*}:=\left|z_{j}\right| \leq M(j=1, \ldots, m)$, so that $\bar{\Delta}_{1} \subset \subset \bar{\Delta}_{1}^{*} \subset \mathbf{C}_{:}^{m}$. We consider the holomorphic mapping

$$
\Phi: p \in \mathcal{P}_{2} \rightarrow(z, w)=\left(\eta_{1}(p) \ldots \ldots \varphi_{m}(p), v_{1}(p) \ldots \ldots v_{1}(p)\right) \in \bar{\Delta}_{1}^{*} \times \bar{\Delta}_{2}
$$

and define $\Sigma=\boldsymbol{\Sigma}\left(\mathcal{P}_{2}\right)$. Since Σ_{1} (resp. Σ_{2}) is a normal model on $\bar{\Delta}_{1}$ (resp. $\bar{\Delta}_{2}$) of \mathcal{P}_{1} (resp. \mathcal{P}_{2}). it follows from the hypothesis $\mathcal{P}_{1} \subset \subset \mathcal{P}_{2}^{\circ}$ that $\Sigma \cap\left(\bar{\Delta}_{1} \times \bar{\Delta}_{2}\right)$ (resp. Σ) is a normal model of \mathcal{P}_{1} (resp. \mathcal{P}_{2}) in $\bar{\Delta}_{1} \times \bar{\Delta}_{2}$ (resp. $\bar{\Delta}_{1}^{*} \times \bar{X}_{2}$).

Let $f(p)$ be a holomorphic function on \mathcal{P}_{1}. Let $K \subset \subset \mathcal{P}_{1}^{i}$ and let $\epsilon>0$. We fix a holomorphic extension $F(z, w)$ of $f(p)$ on $\bar{\Delta}_{1} \times \bar{\Delta}_{2}$ and set $\tilde{K}=\Phi(K) \subset \subset \bar{\Delta}_{1} \times \bar{\Delta}_{2}$. From the Taylor expansion of $F(z . w)$ in $\bar{\Delta}_{1} \times \bar{\Delta}_{2}$. we can find a polynomial $\tilde{Q}(z . w)$ of $\left(z, w^{\prime}\right)$ such that $|F(z, w)-\bar{Q}(z, w)|<\epsilon$ on \bar{K}. If we set $Q(p)=\bar{Q}(\Phi(p))$ for $p \in \mathcal{P}_{2}$, then $Q(p)$ is a holomorphic function on \mathcal{P}_{2} such that $|f(p)-Q(p)|<\varepsilon$ on \boldsymbol{K}.

Using the same notation $\mathcal{P}_{1} \subset \subset \mathcal{P}_{2}^{\circ} \subset \subset U \subset \mathcal{V}$ as in the previous lenma. we let \mathcal{J}^{λ} be an \mathcal{O}^{λ}-module on U. We have the following lemma.

Lemma 8.3. Assume that \mathcal{J}^{λ} has a locally finite pseudobase at each point in ℓ. Let $f(p)$ be a vector-valued holomorphic function of rank λ on \mathcal{P}_{1} such that $f(p) \in \mathcal{J}^{\lambda}$ at each point of \mathcal{P}_{1}. Let $\epsilon>0$. Then there exists a holomorphic vectorvalued function $F(p)$ of rank λ on \mathcal{P}_{2} such that

1. $F(p) \in \mathcal{J}^{\lambda}$ at each point of \mathcal{P}_{2} :
2. $\|F(p)-f(p)\|<\epsilon$ for $p \in \mathcal{P}_{1}$.

Proof. We fix an analytic polyhedron \mathcal{P} in \mathcal{V} with defining functions on U such that $\mathcal{P}_{1} \subset \subset \mathcal{P}^{0} \subset \subset \mathcal{P}_{2}^{\circ}$, and \mathcal{P} is so close to \mathcal{P}_{1} that the given function $f(p)$ is defined on \mathcal{P} and $f(p) \in \mathcal{J}^{\lambda}$ at each point of \mathcal{P}. Since \mathcal{J}^{λ} has a locally finite pseudobase at each point in U, it follows from Theorem 8.6 that there exist a finite number of holomorphic vector-valued functions $\psi_{j}(p)(j=1 \ldots, \nu)$ of rank λ on \mathcal{P}_{2} such that the \mathcal{O}^{λ}-module $\mathcal{J}\{v\}$ generated by $\tau_{j}(p)(j=1 \ldots, \nu)$ on \mathcal{P}_{2} is equivalent to $\mathcal{J}^{\boldsymbol{\lambda}}$ on \mathcal{P}_{2}. Thus, the function $f(p)$ on \mathcal{P} belongs to $\mathcal{J}\{\cup \mathcal{\chi}\}$ at each point of \mathcal{P}. By Theorem 8.4. there exist ν holomorphic functions $\alpha_{j}(p)$ $(j=1 \ldots . \nu)$ on \mathcal{P} such that

$$
f(p)=\alpha_{1}(p) \mathfrak{q}_{1}(p)+\cdots+\alpha_{\nu}(p) v_{L_{1}}(p) \text { on } \mathcal{P}
$$

Since the pair ($\mathcal{P}, \mathcal{P}_{2}$) satisfies Runge's theorem (by Lemma 8.2), we can find a holomorphic function $A_{j}(p)(j=1, \ldots, \nu)$ on \mathcal{P}_{2} such that $\left|A_{j}(p)-\Omega_{j}(p)\right|<\epsilon^{\prime}$ on \mathcal{P}_{1}. where $0<\epsilon^{\prime}<\epsilon /\left(\left\|v_{1}\right\| \mathcal{P}_{2}+\cdots+!\dot{v}_{\nu} \|_{\mathcal{F}_{2}}\right)$ (here $\left\|\psi_{i}\right\|_{\mathcal{P}_{2}}=\max \left\{\left\|\psi_{1}(p)\right\| \mid p \in\right.$ $\left.\mathcal{P}_{2}\right\}$). Consequently: if we define $F(p)=A_{1}(p) v_{1}(p)+\cdots+A_{\nu}(p) v_{v}(p)$ on \mathcal{P}_{2}, then $F(p) \in \mathcal{J}^{\lambda}$ at each point in \mathcal{P}_{2} and

$$
\|F(p)-f(p)\| \leq \epsilon^{\prime}\left(\left\|v_{1}\right\|_{\mathcal{P}_{2}}+\cdots+\mid \psi_{\nu} \|_{\mathcal{P}_{2}}\right)<\epsilon \quad \text { for } p \in \mathcal{P}_{1}
$$

as desired.

8.3. Stein Spaces

8.3.1. Definition of Stein Spaces. Let \mathcal{V} be an analytic space of dimension n. Let $U \subset \mathcal{V}$ be a domain and let $K \subset \subset U$ be a compact set. We let $\mathcal{H}(U)$ denote the family of all holomorphic functions $f(p)$ on U. We define

$$
\widehat{K}_{l}::=\bigcap_{f \in \mathcal{H}\left(C^{\cdot}\right)}\left\{q \in U| | f(q)\left|\leq \max _{p \in K}\right| f(p) \mid\right\}
$$

We call \widehat{K}_{U} the holomorphic hull of K with respect to C. If $\hat{K}_{C}=K$. then we say that K is holomorphically convex with respect to U. Let V be an open set in \mathcal{V} which contains U. If for any compact set $K \subset \subset U$ we have $\widehat{K}_{V} \subset U$, then we say that U is holomorphically convex in V. In case $U=V$. we say that U is a holomorphically convex domain.

If a domain U in \mathcal{V} satisfies the following three conditions:

1. U satisfies the second axiom of countability;
2. L is holomorphically convex:
3. U satisfies the separation condition:
then we say that U is a holomorphically complete domain in \mathcal{V}. In case $U=\mathcal{V}$. we say that \mathcal{V} is a holomorphically complete space, or a Stein space. ${ }^{6}$

For example, the interior \mathcal{P}° of an analytic polyhedron \mathcal{P} in an analytic space \mathcal{V} is always holomorphically complete. To see this, we fix a model Σ of \mathcal{P} in

[^40]the unit polydisk Δ centered at the origin in $\mathbf{C}^{m}: \Phi: p \in \mathcal{P} \rightarrow z=\Phi(p)=$ $\left(\hat{\nu}_{1}(p) \ldots, \hat{y}_{m}(p)\right) \in \Sigma$. There exist holomorphic functions $G_{k}(z)(k=1, \ldots, \nu)$ in Δ such that $\Sigma=\bigcap_{k=1}^{\nu}\left\{z \in \Delta \mid G_{k}(z)=0\right\}$. For $0<\eta<1$, we define $K(\eta):=\left\{p \in \mathcal{P}| | G_{k}(\Phi(p))\left|<\eta(k=1 \ldots, \nu),\left|\rho_{i}(p)\right|<1-\eta(i=1, \ldots, m)\right\}\right.$. Then $K(\eta) \subset \subset \mathcal{P}^{o}$ and $\lim _{\eta \rightarrow 0} K^{\prime}(\eta)=\mathcal{P}^{0}$, yielding the result.

Remark 8.5. The notion of Stein space in the case of complex manifolds was introduced by K. Stein [67] in order to study more general spaces in which the Cousin problems. Runge theorems, expansion theorems, etc., hold as in the case of a (univalent) domain of holomorphy in \mathbf{C}^{n}. However, as noted in Example 6.8. even in the case of a ramified domain D over \mathbf{C}^{n}. a domain of holomorphy (which is a complex manifold) is not necessarily a Stein space. unlike the case of a univalent domain in $\mathbf{C}^{\boldsymbol{n}}$.

From the definition of a holomorphically complete domain, we inmediately obtain the following proposition.

Proposition 8.1. Let U be a holomorphically complete domain in an analytic space \mathcal{V}. Then there exists a sequence of analytic polyhedra $\mathcal{P}_{\nu}(\nu=1,2, \ldots)$ in \mathcal{V} with defining functions on U such that

$$
\mathcal{P}_{\nu} \subset \subset \mathcal{P}_{\nu+1}^{0} \quad(\nu=1,2, \ldots) . \quad U=\lim _{\nu \rightarrow \infty} \mathcal{P}_{\nu}
$$

Using the notation of the proposition, each pair ($\mathcal{P}_{1}, \mathcal{P}_{\nu+1}$) satisfies the Runge theorem according to Lemma 8.2. We thus obtain the following corollary by applying the usual techniques.

Corollary 8.2. Let U be a holomorphically complete domain in an analytic space \mathcal{V} and let \mathcal{P} be an analytic polyhedron in \mathcal{V} uith defining functions on U. Then the pair (\mathcal{P}, U) satisfies the Runge theorem.
8.3.2. Approximation Condition. Let \mathcal{V} be an analytic space of dimension n. If there exists a sequence of holomorphically complete domains $U_{j}(j=1,2 \ldots)$ in \mathcal{V} such that

1. $U_{j}, \subset \subset U_{j+1}(j=1.2 \ldots) . \quad \mathcal{V}=\lim _{j \rightarrow \infty} U_{j}$. and
2. for each $j=1,2, \ldots$, the domain U_{j} is holomorphically convex in U_{j+1}, then we say that the analytic space \mathcal{V} satisfies the approximation condition.

It is clear from Lemma 8.2 and Proposition 8.1 that any Stein space \mathcal{V} admits such a sequence $U,(j=1,2 \ldots)$. The converse is also true; to prove it, we first demonstrate the following theorem.

Theorem 8.7 (Runge theorem). If the analytic space \mathcal{V} satisfies the approximation condition, i.e., if there exists a sequence of holomorphically complete domains $U_{j}(j=1,2 \ldots)$ satisfying conditions 1 and 2 , then the pair $\left(U_{1}, \mathcal{V}\right)$ satisfies the Runge theorem.

Proof. Let $f(p)$ be a holomorphic function on U_{1}, let $K \subset \subset U_{1}$, and let $\epsilon>0$. By condition 1. we have $\widehat{K}_{l_{1}} \subset \subset U_{1}$. Since U_{1} is holomorphically convex in U_{2}, we have $\widehat{K}_{l^{\prime}}=\widehat{K}_{l_{1}}$, so that we can find an analytic polyhedron \mathcal{P}_{2} with defining functions on U_{2} such that $\hbar \subset \subset \mathcal{P}_{2} \subset \subset U_{1}$. Since $f(p)$ is holomorphic on \mathcal{P}_{2}. it follows from Corollary 8.2 that there exists a holomorphic function $f_{2}(p)$ on U_{2} such that $\left|f_{2}(p)-f(p)\right|<\epsilon / 2$ on \mathcal{P}_{2}. By repeating the same procedure for $f_{2}(p)$
on $\mathcal{P}_{2} \subset \subset U_{2}$ as for $f(p)$ on $K \subset \subset U_{1}$, we obtain a sequence of analytic polyhedra $\mathcal{P}_{j+1}(j=1,2 \ldots)$ in U_{j+1},

$$
\mathcal{P}_{j+1} \subset \subset U_{j} \subset \subset \mathcal{P}_{j+2} \subset \subset U_{j+1}(j=1,2 \ldots)
$$

and a sequence of holomorphic functions $f_{j+1}(p)(j=1,2, \ldots)$ on U_{j+1} such that

$$
\left|f_{j+1}(p)-f_{j}(p)\right|<\epsilon / 2^{j} \quad(j=0,1, \ldots) \quad \text { on } \mathcal{P}_{j+1}
$$

(we define $f_{1}(p):=f(p)$ on U_{1}). If we set

$$
F(p)=f(p)+\sum_{j=1}^{\infty}\left(f_{j+1}(p)-f_{j}(p)\right) . \quad p \in \mathcal{V}
$$

then this series converges uniformly on any compact set in \mathcal{V}. so that $F(p)$ is a holomorphic function on \mathcal{V} which satisfies

$$
|F(p)-f(p)| \leq \sum_{j=1}^{\infty}\left|f_{j+1}(p)-f_{j}(p)\right|<\sum_{j=1}^{\infty} \epsilon / 2^{j}=\epsilon \quad \text { on } K
$$

Thus the pair $\left(U_{1}, \mathcal{V}\right)$ satisfies the Runge theorem.
We now obtain the following theorem.
Theorem 8.8 (Approximation theorem). If the analytic space \mathcal{V} satisfies the approximation condition, then \mathcal{V} is a Stein space.

Proof. Let $U_{j}(j=1,2, \ldots)$ be a sequence of holomorphically complete domains in \mathcal{V} which satisfies the approximation conditions 1 and 2. Since each U_{j} $(j=1,2, \ldots)$ satisfies the second axiom of countability, and $\mathcal{V}=\bigcup_{j=1}^{x} U_{j}$, it follows that \mathcal{V} satisfies the second axiom of countability.

Let $p_{1}, p_{2} \in \mathcal{V}$ be distinct points, and take a sufficiently large integer j_{0} so that $p_{1}, p_{2} \in U_{j_{0}}$. Since $U_{j_{0}}$, satisfies the separation condition, there exists a holomorphic function $f(p)$ on $U_{j_{n}}$ such that $f\left(p_{1}\right) \neq f\left(p_{2}\right)$. By Theorem 8.7, the pair ($\left.U_{j 0}, \mathcal{V}\right)$ satisfies Runge's theoren: thus we can approximate $f(p)$ by a holomorphic function $F(p)$ on \mathcal{V} with the property that $F\left(p_{1}\right) \neq F\left(p_{2}\right)$. Thus, \mathcal{V} satisfies the separation condition.

Let $K \subset \subset \mathcal{V}$ be a compact set. We fix $U_{j_{0}}$ with $K \subset \subset U_{j_{0}}$. Then $\widehat{K}_{(}{ }_{j_{0}} \subset \subset U_{j_{0}}$. It follows from condition 2 that $\widehat{K}_{U_{j 0}}=\widehat{K}_{U}$, for all $j \geq j_{0}$; we denote this set by \widehat{K}. Let $p_{0} \in \mathcal{V} \backslash \widehat{K}$ and fix j sufficiently large so that $\widehat{K} \cup\left\{p_{0}\right\} \subset \subset U_{j}$. Then there exists a holomorphic function $f(p)$ on U_{j} such that $\left|f\left(p_{0}\right)\right|>\max \{|f(q)| \mid q \in K\}$. Since the pair (U_{j}, \mathcal{V}) satisfies Runge's theorem, there exists a holomorphic function $F(p)$ on \mathcal{V} such that $\left|F\left(p_{0}\right)\right|>\max \{|F(q)| \mid q \in K\}$; i.e., $p_{0} \notin \widehat{K}_{\mathcal{V}}$. Hence, $\widehat{K}_{\mathcal{V}}=\widehat{K} \subset \subset \mathcal{V}$, so that \mathcal{V} is holomorphically complete. Consequently, \mathcal{V} is a Stein space.

REMARK 8.6. In the case when \mathcal{V} is a bounded domain in C^{n}, H. Behnke and K . Stein [2] proved that the approximation theorem holds without the approximation condition 2; i.e., if D is a bounded domain in C^{n} with the property that there exists a sequence of holomorphically convex domains $D_{j}(j=1.2, \ldots)$ in D such that $D_{j} \subset \subset D_{j+1}(j=1,2, \ldots)$ and $D=\bigcup_{j=1}^{\infty} D_{j}$, then D is a holomorphically convex domain.

Proof. Let $r>0$. For $j=1,2, \ldots$ we set $D_{j}^{(r)}=\left\{z \in D_{j} \mid d_{D},(z)>r\right\}$. where $d_{D},(z)$ is the Euclidean distance from z to ∂D_{j}. Using Corollary 1.2 in section 1.5.3. we first note that, for a set G with $D_{j}^{(r)} \subset \subset G \subset \subset D$, there exists an analytic polyhedron \mathcal{P} with defining functions on D_{j} such that $D_{j}^{(r)} \subset \subset \mathcal{P} \subset \subset G$. We next choose a subsequence $\left\{D_{j_{k}}\right\}_{k}$ of $\left\{D_{j}\right\}_{j}$, and a sequence $r_{k}>0(k=1,2 \ldots)$ such that

$$
\begin{equation*}
D_{j_{k}} \subset \subset D_{j_{k+2}}^{\left(\Gamma_{k-2}\right)} \subset \subset D_{j_{k+1}} \quad(k=1,2, \ldots) . \tag{8.6}
\end{equation*}
$$

To verify this last inclusion, for $1 \leq j<\nu$ we set

$$
\begin{aligned}
m_{j} & =\min \left\{d(p . q) \mid p \in \partial D_{j}, q \in \partial D\right\}, \\
m_{j . \nu} & =\min \left\{d(p, q) \mid p \in \partial D_{j} . q \in \partial D_{\nu}\right\} .
\end{aligned}
$$

where $d(p, q)$ denotes the Euclidean distance between p and q in \mathbf{C}^{n}. Similarly, we define

$$
\begin{aligned}
M_{j} & =\max \left\{d(p, q) \mid p \in \partial D_{j} . q \in \partial D\right\} \quad \text { and } \\
M_{j . \nu} & =\max \left\{d(p, q) \mid p \in \partial D_{j}, q \in \partial D_{\nu}\right\} .
\end{aligned}
$$

Since D is bounded in \mathbf{C}^{n}, we have $0<m_{j, \nu}<m_{j} ; 0<M_{j, \nu}<M_{j} ; m_{j}, M_{j} \rightarrow$ 0 as $j \rightarrow \infty$; and $M_{j . \nu} \rightarrow M_{j}, m_{j . \nu} \rightarrow m_{j}$ as $\nu \rightarrow \infty$. We let $D_{j_{1}}=D_{1}$. We choose $j_{2}>j_{1}$ such that $m_{j_{1}}>M_{j_{2}}$. Then we take $j_{3}>j_{2}$ such that

$$
m_{j_{1}, j_{y}}>M_{j_{2}, j_{3}} \quad \text { and } \quad m_{j_{2}}>M_{j_{3}} .
$$

If we take $r_{3}>0$ with $m_{j_{1}, j_{3}}>r_{3}>M_{j_{2} . j_{3}}$. it follows that $D_{j_{1}} \subset \subset D_{j_{3}}^{\left(r_{3}\right)} \subset \subset D_{j_{2}}$. Similarly, since $m_{j_{2}}>M_{j_{3}}$, we can take $j_{4}>j_{3}$ such that $m_{j_{2} . j_{4}}>M_{j_{3}, j_{4}}$ and $m_{j_{3}}>M_{j_{4}}$, and then we can take $r_{4}>0$ with $m_{j_{2}, j_{4}}>r_{4}>M_{j_{3}, j_{4}}$ to obtain $D_{j_{2}} \subset \subset D_{j_{s}}^{\left(r_{1}\right)} \subset \subset D_{j_{3}}$. Repeating this procedure, we obtain (8.6).

We now set $j_{k}=k$ in (8.6), i.e., $D_{k} \subset \subset D_{k+2}^{\left(r_{k}\right)} \subset \subset D_{k+1}(k=1,2, \ldots)$. From the first statement. there exists a sequence of analytic polyhedra $\mathcal{P}^{(k)}$ ($k=$ $1,2, \ldots$) with defining functions in D_{k} such that $D_{k} \subset \subset \mathcal{P}^{(k+2)} \subset \subset D_{k+1}$. We let $\mathcal{H}_{k, k+2}$ (resp. \mathcal{H}_{k}) denote the holomorphic hull of $\overline{D_{k}}$ relative to D_{k+2} (resp. D). Using Theorem 3.5, it follows that $\mathcal{H}_{k, k+2} \subset \subset D_{k+1}$, and hence that any holomorphic function $f(z)$ on D_{k+1} can be uniformly approximated on D_{k} by a sequence of holomorphic functions $f_{\nu}(z)(\nu=1,2, \ldots)$ on D_{k+2}. Thus, by standard techniques, we conclude that $\mathcal{H}_{k}=\mathcal{H}_{k . k+2} \subset \subset D$, as desired.

In the case when D is an unbounded domain in \mathbf{C}^{n}, the approximation theorem also holds without the approximation condition 2 . To see this, let D be an unbounded domain in \mathbf{C}^{n} having the same property as the bounded domain D in Remark 8.6. Fix $z_{0} \in D$. For $r>0$, we let B_{r} denote the ball centered at z_{0} with radius r and we let $D^{(r)}$ denote the connected component of the open set $D \cap B_{r}$. Then using Remark 8.6, we see that each $D^{(p)}(p=1,2, \ldots)$ is a holomorphically convex domain. Moreover, $D^{(p)}$ is holomorphically convex in $D^{(p+1)}$. For take $K \subset \subset D^{(p)}$. Then $K \subset \subset B_{r}$ for $r<p$ sufficiently close to p. It follows that $\hat{K}_{D^{(p+1}} \subset \subset B_{r} \cap D^{(p+1)} \subset D^{(p)}$. Thus, condition 2 is satisfied.

In the case of a general analytic space \mathcal{V}. we cannot drop the approximation condition 2 in order to verify the approximation theorem.

Example 8.4. ${ }^{7}$ We recall the Calabi-Rosenlicht example (Example 8.1). Let ν be a positive integer and set $E_{\nu}=\left\{1 / 2^{j} \mid j=1, \ldots, \nu\right\} \subset$ C. Let $M_{\nu}:=M_{E_{\nu}}$ be the 2-dimensional complex manifold associated to E_{ν} defined in the example. If we set $C_{y}^{*}=C_{y} \backslash\{0\}$, then

$$
\begin{aligned}
M_{\nu} & =\left(\mathbf{C}_{x} \times \mathbf{C}_{y}^{*} \times\{0\}\right) \cup\left(\bigcup_{j=1}^{\nu}\left\{\left(1 / 2^{J}, 0 . \mathbf{C}_{:}\right)\right)\right. \\
& \equiv\left(\mathbf{C}_{x} \times \mathbf{C}_{y}^{*} \times\{0\}\right) \cup\left(\bigcup_{j=1}^{\nu} \tilde{L}_{j}^{*}\right)
\end{aligned}
$$

The topology on M_{ν} can be described as follows: For a sequence $\left(x_{n}, y_{n}\right) \in \mathbf{C}_{x} \times \mathbf{C}_{y}$. we have $\left(x_{n}, y_{n}, 0\right) \in \mathbf{C}_{x} \times \mathbf{C}_{y}^{*} \times\{0\} \rightarrow\left(1 / 2^{j}, 0, z\right)$ as $n \rightarrow x$ if and only if $\left(x_{n}, y_{n}\right) \rightarrow\left(1 / 2^{j}, 0\right)$ and $\left(x_{n}-2^{-j}\right) / y_{n} \rightarrow z$ as $n \rightarrow \infty$. Note that $\left(1 / 2^{j}, C_{y}, 0\right) \subset$ $M_{\nu}(j=1,2 \ldots, \nu)$. Thus, we have $M_{\nu} \subset M_{\nu+1}(\nu=1,2, \ldots)$, and hence $M:=\bigcup_{\nu=1}^{\infty} M_{\nu}$ is a 2-dimensional complex manifold. We will prove that each M_{ν} $(\nu=1,2, \ldots)$ is a Stein manifold but M is not a Stein manifold.

Proof. We consider the following non-singular analytic hypersurface Σ_{ν} in C^{3} :

$$
\Sigma_{\nu}: \quad y z=\prod_{j=1}^{\nu}\left(x-\frac{1}{2^{j}}\right)
$$

Thus Σ_{ν} is a Stein manifold. Furthermore. Σ_{ν} is holomorphically equivalent to M_{ν}. To see this, we can form a one-to-one holomorphic mapping Φ_{ν} from M_{ν} onto Σ_{ν}, where

$$
\Phi_{\nu}: \begin{array}{ll}
(x, y, 0) \in \mathbf{C}_{x} \times \mathbf{C}_{y}^{*} \times\{0\} & \rightarrow\left(x \cdot y \cdot y^{-1} \prod_{j=1}^{\nu}\left(x-1 / 2^{j}\right)\right) \in \Sigma_{1} \\
\left(1 / 2^{j} \cdot 0 . z\right) \in \tilde{L}_{j}^{*}(j=1, \ldots, \nu) & \rightarrow\left(1 / 2^{j} \cdot 0 . z \prod_{k=1, k \neq \nu}^{n}\left(1 / 2^{j}-1 / 2^{k}\right)\right) \in \Sigma_{\nu}
\end{array}
$$

Thus, M_{ν} is a Stein manifold. To prove that M is not Stein, let $K=\{|x| \leq$ $1\} \times\{1 / 2 \leq|y| \leq 1\} \times\{0\} \subset \subset M_{1} \subset M$. Let $f(p)$ be holomorphic function on M. Fix $j=1,2, \ldots$ and let $\bar{\Delta}$, denote the disk

$$
\bar{\Delta}_{j}:=\left\{1 / 2^{j}\right\} \times\{|y| \leq 1\} \times\{0\} \subset \subset M
$$

By the maximum principle we have

$$
\left|f\left(1 / 2^{j}, 0.0\right)\right| \leq \max \left\{\left|f\left(1 / 2^{j}, y, 0\right)\right|| | y \mid=1\right\} \leq \max \{|f(p)| \mid p \in K\}
$$

so that $\left(1 / 2^{J}, 0,0\right) \in \widehat{K}_{M}(j=1,2, \ldots)$. Since $\left\{\left(1 / 2^{j}, 0,0\right) \mid j=1,2, \ldots\right\}$ is not relatively compact in M, it follows that M is not holomorphically convex.

In this construction, $M_{\nu} \subset M_{\nu+1}$ but M_{ν} is not relatively compact in $M_{\nu+1}$. However, it is easy to see that we can construct $M_{\nu}^{\prime} \subset \subset M_{\nu}$ such that $M_{\nu}^{\prime} \subset \subset M_{\nu+1}^{\prime}$; M_{v}^{\prime} is a Stein manifold; and $M=\bigcup_{\nu=1}^{\infty} M_{\nu}^{\prime}$.

Remark 8.7. Let \mathcal{V} be a Stein space of dimension n. Let $p_{0} \in \mathcal{V}$. Then there exists a local coordinate chart ($\delta_{0}, \lambda_{0},\left.\phi_{0}\right|_{\delta_{0}}$) for p_{0} in \mathcal{V} such that φ_{0} is a holomorphic mapping defined on all of \mathcal{V} into \mathbf{C}^{n}.

[^41]Proof. Let $p_{0} \in \mathcal{V}$ and let $\left(\delta, \lambda, \boldsymbol{v}^{\prime}\right)$ be a local coordinate chart for p_{0} in \mathcal{V}. Since \mathcal{V} satisfies the separation condition, the holomorphically convex hull of the one-point set $\left\{p_{0}\right\}$ in the Stein space \mathcal{V} is $\left\{p_{0}\right\}$ itself. There thus exists an analytic polyhedron \mathcal{P} with defining functions on \mathcal{V} such that $p_{0} \in \mathcal{P}^{\circ}$ (the interior of \mathcal{P}) and $\mathcal{P} \subset \subset \delta$. Thus, ψ is holomorphic on \mathcal{P}. Since the pair $(\mathcal{P}, \mathcal{V})$ satisfies Runge's theorem. there exists a holomorphic mapping $\hat{\gamma}_{0}$ on \mathcal{V} into \mathbf{C}^{n} which is uniformly close to φ on \mathcal{P}. Set $\delta_{0}=\mathcal{P}^{\circ}$ and $\lambda_{0}=\rho_{0}\left(\mathcal{P}^{\circ}\right)$. which is a ramified domain over \mathbf{C}^{n}. Then the triple ($\delta_{0}, \lambda_{0},\left.\varphi_{0}\right|_{\delta_{0}}$) satisfies the necessary requirements. If λ is univalent in C^{n}, so is λ_{0} for φ_{0} sufficiently close to φ.
8.3.3. Various Problems in a Stein Space. In a Stein space, many of the theorems which hold in a domain of holomorphy in \mathbf{C}^{n} hold without any change. In this section we consider a few of these theorems.

1. Cousin problems

Cousin problems I and II in an analytic space are posed just as in a univalent domain in \mathbf{C}^{n}. We have the following two theorems.

Theorem 8.9 (Cousin I problem). A Cousin I problem is always solvable in a Stein space \mathcal{V}.

Proof. As shown in Chapter 3. a Cousin I problem is solvable in a domain D in \mathbf{C}^{n} if there exists a sequence of domains $D_{j}(j=1,2, \ldots)$ in D such that $D_{j} \subset \subset D_{j+1}(j=1,2, \ldots) . D=\lim _{\boldsymbol{j} \rightarrow \infty} D_{j}$, and
(1) the Cousin I problem is solvable on each $\overline{D_{j}}(j=1.2, \ldots)$;
(2) the pair $\left(D_{j}, D_{j+1}\right)(j=1,2, \ldots)$ satisfies Runge's theorem.

The same fact holds in an analytic space. In a Stein space \mathcal{V}, there exists a sequence of analytic polyhedra $\mathcal{P}_{j}(j=1.2, \ldots)$ in \mathcal{V} with defining functions on \mathcal{V} such that $\mathcal{P}_{j} \subset \subset \mathcal{P}_{j+1}^{\rho}$ and $\lim _{j \rightarrow \infty} \mathcal{P}_{j}=\mathcal{V}$. Since each $\mathcal{P}_{j}(j=1.2, \ldots)$ has a normal model Σ_{j} in the polydisk $\bar{\Delta}_{j}$ in C^{m}, for which Okas lifting principles (Theorems 8.1 and 8.2) hold, we can show by arguments used in Lemmas 3.3 and 3.4 that the Cousin I problem is solvable on each \mathcal{P}_{j}. Since ($\mathcal{P}_{j}, \mathcal{P}_{j+1}$) satisfies Runge's theorem, it follows from (1) and (2) that the Cousin I problem is also solvable in the Stein space \mathcal{V}.

Theorem 8.10 (Cousin II problem). Let $\mathcal{C}=\left\{\left(f_{p}, \delta_{p}\right)\right\}_{p \in \mathcal{V}}$ be a Cousin II distribution in a Stein space \mathcal{V}. If \mathcal{C} has a continuous solution in \mathcal{V}. then \mathcal{C} has an analytic solution in \mathcal{V}.

Proof. The same proof of Theorem 3.8 yields that if a Cousin II distribution \mathcal{C} has a continuous solution in the space \mathcal{V}, then \mathcal{C} has an analytic solution in \mathcal{V} under the assumption that the Cousin I problem is always solvable in \mathcal{V}. This assumption is guaranteed by Theorem 8.9; thus \mathcal{C} has an analytic solution in \mathcal{V}.

2. Problem C_{1} and Problem C_{2}.

Let \mathcal{V} be a Stein space. Let $F_{j}(p)(j=1 \ldots, \nu)$ be ν holomorphic vector-valued functions of $\operatorname{rank} \lambda$ in $\mathcal{V}: F_{j}(p)=\left(F_{1 . j}(p) \ldots, F_{\lambda . j}(p)\right)(j=1, \ldots, \nu), p \in \mathcal{V}$. We let $\mathcal{J}^{\lambda}\{F\}$ denote the \mathcal{O}^{λ}-module generated by $F_{j}(p)(j=1, \ldots, \nu)$ in \mathcal{V}. We also let $\mathcal{L}\{\Omega\}$ denote the \mathcal{O}^{ν}-module with respect to the linear relation

$$
f_{1}(p) F_{1}(p)+\cdots+f_{\nu}(p) F_{\nu}(p)=0
$$

i.e.. $\mathcal{L}\{\Omega\}=\{(f(p), \delta)\}_{\delta \subset \mathcal{V}}$, where the holomorphic vector-valued function $f(p)=$ ($\left.f_{1}(p), \ldots, f_{\nu}(p)\right)$ of rank ν in δ satisfies the λ equations (Ω) in δ.

We have the following two theorems.
Theorem 8.11 (Problem C_{1}). Problem C_{1} is always solvable in a Stein space \mathcal{V}.

Proof. Let $H(p)$ be a holomorphic vector-valued function of rank λ in \mathcal{V} such that $H(p)$ belongs to $\mathcal{J}^{\lambda}\{F\}$ at each point p in \mathcal{V}. We want to find a holomorphic vector-valued function $A(p)=\left(A_{1}(p), \ldots, A_{\nu}(p)\right)$ on \mathcal{V} such that

$$
H(p)=F_{1}(p) A_{1}(p)+\cdots+F_{\nu}(p) A_{\nu}(p), \quad p \in \mathcal{V}
$$

Let $\mathcal{P}_{k}(k=1,2, \ldots)$ be a sequence of analytic polyhedra in \mathcal{V} such that

$$
\mathcal{P}_{j} \subset \subset \mathcal{P}_{j+1}^{o} \quad(j=1.2, \ldots), \quad \mathcal{V}=\lim _{k \rightarrow x} \mathcal{P}_{k}
$$

and where the defining functions of each \mathcal{P}_{k} are defined in \mathcal{V}.
Choose $\epsilon_{k}>0(k=1,2, \ldots)$ such that $\sum_{k=1}^{x} \epsilon_{k}<\infty$. As usual, it suffices to find, for each $k=1,2, \ldots$, a holomorphic vector-valued function $A^{k}(p)=$ ($\left.A_{1}^{k}(p), \ldots, A_{\nu}^{k}(p)\right)$ of rank ν on \mathcal{P}_{k} such that
(i) $H(p)=F_{1}(p) A_{1}^{k}(p)+\cdots+F_{\nu}(p) A_{\nu}^{k}(p), \quad p \in \mathcal{P}_{k}$, and
(ii) $\left\|A^{k+1}(p)-A^{k}(p)\right\|<\epsilon_{k}, \quad p \in \mathcal{P}_{k}$.

Then $A(p):=\lim _{k \rightarrow \infty} A^{k}(p)$ is uniformly convergent on any $K \subset \subset \mathcal{V}$, which proves our result.

For $k=1$, we can find a holomorphic vector-valued function $A^{1}(p)$ of rank ν on \mathcal{P}_{1} which satisfies condition (i) by Theorem 8.4. Assuming that there exists an $A^{k}(p)$ on \mathcal{P}_{k} which satisfies condition (i), we now construct $A^{k+1}(p)$ on \mathcal{P}_{k+1} which satisfies condition (i) on \mathcal{P}_{k+1} and which also satisfies (ii) together with $A^{k}(p)$ on \mathcal{P}_{k}. To do this, using Theorem 8.4, we first find a holomorphic vectorvalued function $\bar{A}^{k+1}(p)$ of rank ν on \mathcal{P}_{k+1} which satisfies condition (i) on \mathcal{P}_{k+1}. Then $\tilde{A}^{k+1}(p)-A^{k}(p)$ belongs to $\mathcal{L}\{\Omega\}$ on \mathcal{P}_{k}. Next we find a pseudobase $\Phi_{l}(p)$ $(l=1 \ldots, s)$ of $\mathcal{L}\{\Omega\}$ on \mathcal{P}_{k+1}.

$$
\Phi_{l}(p)=\left(\Phi_{1, l}(p) \ldots, \Phi_{\nu . l}(p)\right), \quad p \in \mathcal{P}_{k+1}
$$

by combining Theorems 8.3 and 8.6. Furthermore, from Theorem 8.4 there exist s holomorphic functions $a_{l}(p)(l=1, \ldots, s)$ on \mathcal{P}_{k} such that

$$
\tilde{A}^{k+1}(p)-A^{k}(p)=a_{1}(p) \Phi_{1}(p)+\cdots+a_{s}(p) \Phi_{s}(p), \quad p \in \mathcal{P}_{k}
$$

Since the pair ($\mathcal{P}_{k}, \mathcal{V}$) satisfies Runge's theorem (by Corollary 8.2), for each $l=$ $1, \ldots, s$ there exists a holomorphic function $\tilde{a}_{l}(p)$ on \mathcal{V} such that

$$
\left|\tilde{a}_{l}(p)-a_{l}(p)\right|<\epsilon_{k}^{\prime} \quad(l=1, \ldots, s), \quad p \in \mathcal{P}_{k}
$$

where $\epsilon_{k}^{\prime}<\epsilon_{k} /\left(\sum_{l=1}^{s}\left\|\Phi_{l}(p)\right\|_{\mathcal{P}_{k+1}}\right)$. Setting

$$
A^{k+1}(p)=\tilde{A}^{k+1}(p)+\bar{a}_{1}(p) \Phi_{1}(p)+\cdots+\bar{a}_{5}(p) \Phi_{s}(p), \quad p \in \mathcal{P}_{k+1}
$$

it follows easily that $A^{k+1}(p)$ satisfies condition (i) on \mathcal{P}_{k+1}. Moreover, for $p \in \mathcal{P}_{k}$,

$$
\begin{aligned}
\left\|A^{k+1}(p)-A^{k}(p)\right\| & =\left\|\left(A^{k+1}(p)-\tilde{A}^{k+1}(p)\right)+\left(\tilde{A}^{k+1}(p)-A^{k}(p)\right)\right\| \\
& =\left\|\left(\tilde{a}_{1}(p)-a_{1}(p)\right) \Phi_{1}(p)+\cdots+\left(\bar{a}_{s}(p)-a_{s}(p)\right) \Phi_{s}(p)\right\| \\
& \leq \epsilon_{k}^{\prime}\left(\sum_{l=1}^{s}\left\|\Phi_{l}\right\| p_{k+1}\right)<\epsilon_{k}
\end{aligned}
$$

so that $A^{k+1}(p)$, together with $A^{k}(p)$. satisfies condition (ii) on \mathcal{P}_{k}. Thus we have constructed $A^{k}(p)(k=1.2 \ldots)$ on \mathcal{P}_{k} by induction, proving the result.

Theorem 8.12 (Problem C_{2}). Problem C_{2} is always solvable in a Stein space \mathcal{V}.

Proof. We prove this under the assumption that the completeness property of the same type as in Theorem 7.6 in \mathbf{C}^{n} holds in the analytic space \mathcal{V}. This fact will be proved later in Proposition 8.3. Let $\mathcal{C}=\left\{\left(h_{q}(p), \delta_{p}\right)\right\}_{q \in \mathcal{V}}$ be a C_{2} distribution with respect to $\mathcal{J}^{\lambda}\{F\}$. Choose $\epsilon_{k}>0(k=1,2, \ldots)$ such that $\sum_{k=1}^{\infty} \epsilon_{k}<\boldsymbol{x}$. Utilizing the completeness property. it suffices to construct, for each $k=1,2 \ldots$. a holomorphic vector-valued function $H^{k}(p)$ of rank λ on \mathcal{P}_{k} such that
(i) $H^{k}(p)-h_{q}(p) \in \mathcal{J}^{\lambda}\{F\}$ at each point in $\mathcal{P}_{k} \cap \delta_{q}$ for each $q \in \mathcal{P}_{k}$, and
(ii) $\left\|H^{k+1}(p)-H^{k}(p)\right\|<\epsilon_{k}, \quad p \in \mathcal{P}_{k}$.

For again, if such a sequence $H^{k}(p)(k=1.2, \ldots)$ on \mathcal{P}_{k} exists, then $H(p):=$ $\lim _{k \rightarrow \times} H^{k}(p)$ is uniformly convergent on each $K \subset \subset \mathcal{V}$ and $H(p)$ is a solution to Problem C_{2} on \mathcal{V} for the given C_{2} distribution \mathcal{C} (under the above completeness assumption).

To begin, by Theorem 8.4, we can find an $H^{1}(p)$ on \mathcal{P}_{1} which satisfies condition (i) on \mathcal{P}_{1}. Assuming that there exists an $H^{k}(p)$ on \mathcal{P}_{k} which satisfies condition (i) on \mathcal{P}_{k}, we shall construct $H^{k+1}(p)$ on \mathcal{P}_{k+1} which satisfies condition (i) on \mathcal{P}_{k+1} and satisfies condition (ii) together with this $H^{k}(p)$ on \mathcal{P}_{k}.

We first find, by Theorem 8.5. a vector-valued function $\tilde{H}^{k+1}(p)$ on \mathcal{P}_{k+1} which satisfies condition (i) on \mathcal{P}_{k+1}. Since $\bar{H}^{k+1}(p)-H^{k}(p)$ belongs to $\mathcal{L}\{\Omega\}$ on \mathcal{P}_{k}, we thus can find s holomorphic functions $\beta_{l}(p)(l=1 \ldots, s)$ on \mathcal{P}_{k} such that

$$
\tilde{H}^{k+1}(p)-H^{k}(p)=\beta_{1}(p) \Phi_{1}(p)+\cdots+\beta_{n}(p) \Phi_{n}(p) . \quad p \in \mathcal{P}_{k}
$$

where the $\Phi_{l}(p)(l=1 \ldots, s)$ constitute a pseudobase of $\mathcal{L}\{\Omega\}$ on \mathcal{P}_{k+1}. Since the pair ($\mathcal{P}_{k} . \mathcal{V}$) satisfies Runge's theorem. for each $l=1, \ldots, s$ there exists a holomorphic function $\bar{\beta}_{l}(p)$ in \mathcal{V} such that

$$
\left|\overline{3}_{l}(p)-\beta_{l}(p)\right|<\epsilon_{k}^{\prime}, \quad p \in \mathcal{P}_{k},
$$

where $0<\epsilon_{k}^{\prime}<\epsilon_{k} /\left(\sum_{l=1}^{s}\left\|\Phi_{l}(p)\right\|_{\mathcal{D}_{k},}\right)$. If we set

$$
H^{k+1}(p)=\tilde{H}^{k+1}(p)+\dot{B}_{1}(p) \Phi_{1}(p)+\cdots+\tilde{\beta}_{s}(p) \Phi_{s}(p), \quad p \in \mathcal{P}_{k+1},
$$

then $H^{k+1}(p)$ satisfies condition (i) on \mathcal{P}_{k+1} and satisfies condition (ii) together with $H^{k}(p)$ on \mathcal{P}_{k}. Thus we have constructed $H^{k}(p)(k=1,2 \ldots)$ on \mathcal{P}_{k} by induction. proving the result.

3. Problem E

Let \mathcal{V} be a Stein space and let \mathcal{J}^{λ} be an \mathcal{O}^{λ}-module on \mathcal{V} such that \mathcal{J}^{λ} has a locally finite pseudobase at each point in \mathcal{V}. It is not necessarily true that \mathcal{J}^{λ} has a finite pseudobase on all of \mathcal{V}.
Oka's counterexample for the pseudobase of Problem E. ${ }^{\text {s }}$ We consider C^{4} with variables $x_{1}, x_{2}, y_{1}, y_{2}$. Let $\nu \geq 3$ be an integer. We consider the following four polynomials in \mathbf{C}^{4} :

$$
F_{1}=y_{1}^{\nu}-x_{1}^{\nu-1}, F_{2}=y_{2}^{\nu}-x_{2}^{\nu} x_{1} . F_{3}=y_{1} y_{2}-x_{1} x_{2} . F_{4}=x_{1}^{\nu-2}+x_{2}^{\nu},
$$

[^42]and we let Σ denote the analytic set in \mathbf{C}^{d} defined by $F_{1}=F_{2}=F_{3}=F_{4}=0$. We will show that Σ is a l-dimensional analytic set in $\mathbf{C}^{\boldsymbol{4}}$. We consider the G-ideal $G\{\Sigma\}$ with respect to Σ in \mathbf{C}^{4}.

Then we have the following lemma.
Lemma 8.4. If $G_{k}(p)(k=1, \ldots, s)$ is a locally finite pseudobase of $G\{\Sigma\}$ at the origin O in C^{4}, then $s \geq \nu-1$.

Proof. We consider the ramified domain \mathcal{R} over $C_{x_{1}, x_{2}}^{2}$ defined by the function $\sqrt[\downarrow]{x_{1}}$, so that \mathcal{R} is (holomorphically) isomorphic to $C_{t, x_{2}}^{2}$ with variables (t, x_{2}) via the mapping

$$
T: \quad\left(t, x_{2}\right) \in \mathbf{C}_{t . x_{2}}^{2} \rightarrow\left(\tilde{x}_{1}, x_{2}\right)=\left(t^{\nu}, x_{2}\right) \in \mathcal{R}
$$

We consider the analytic set \mathcal{S} in \mathbf{C}^{4} defined by $F_{1}=F_{2}=F_{3}=0$. Then \mathcal{S} is isomorphic to \mathcal{R}.

Indeed, we have

$$
\begin{aligned}
& y_{1}=\left(x_{1}^{1 / \nu}\right)^{\nu-1} \quad \text { since } F_{1}=0 \\
& y_{2}=x_{2}\left(\epsilon x_{1}^{1 / \nu}\right) \text { since } F_{2}=0
\end{aligned}
$$

where ϵ is a ν-th root of unity; i.e., $\epsilon^{\nu}=1$. From $F_{3}=0$ we have $\left(x_{1}^{1 / \nu}\right)^{\nu-1} x_{2} \epsilon x_{1}^{1 / \nu}=$ $x_{1} x_{2}$, so that $\epsilon=1$. Thus. \mathcal{S} is the 2-dimensional irreducible analytic set in \mathbf{C}^{4} defined by

$$
\mathcal{S}: \quad y_{1}=\left(x_{1}^{1 / \nu}\right)^{\nu-1} . \quad y_{2}=x_{2} x_{1}^{1 / \nu}
$$

where (x_{1}, x_{2}) varies over \mathcal{R}. Thus, \mathcal{S} is isomorphic to $\mathbf{C}_{t_{. x_{2}}}^{2}$ via

$$
\pi:\left(t, x_{2}\right) \in \mathbf{C}_{t, x_{2}}^{2} \rightarrow\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(t^{\nu}, x_{2}, t^{\nu-1}, x_{2} t\right) \in \mathcal{S} .
$$

We remark that $F_{4}=x_{1}^{\nu-2}+x_{2}^{\prime \prime}$ depends only on the variables x_{1} and x_{2}. Thus, if we let σ denote the analytic set in $C_{x_{1}, x_{2}}^{2}$ defined by $F_{4}=0$, then we have $\Sigma=S \cap\left[\sigma \times \mathbf{C}_{y_{1}, y_{2}}^{2}\right]$. Setting

$$
\tilde{\sigma}=\left\{\left(t, x_{2}\right) \in \mathbf{C}_{t . x_{2}}^{2} \mid t^{\nu(\nu-2)}+x_{2}^{\nu}=0\right\}
$$

which is an analytic hypersurface in $\mathbf{C}_{t . x_{2}}^{2}$. we see that π gives a bijection from $\tilde{\sigma}$ onto Σ. Thus Σ consists of ν irreducible 1-dimensional analytic sets in \mathbf{C}^{4}. Let $F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ be a holomorphic function defined in a neighborhood δ of the origin O in \mathbf{C}^{4}. Then $\left.F\right|_{s \cap \delta}$ can be written in the form

$$
f\left(t, x_{2}\right):=F\left(t^{\nu}, x_{2}, t^{\prime \prime-1}, x_{2} t\right), \quad\left(t, x_{2}\right) \in ?
$$

where γ is a neighborhood of $\left(t, x_{2}\right)=(0,0)$ in $\mathbf{C}_{t . x_{2}}^{2}$, so that $f(t, 0)$ is of the form

$$
\begin{equation*}
f(t, 0)=a+a_{\nu-1} t^{\nu-1}+a_{1} t^{\prime}+\cdots \tag{8.7}
\end{equation*}
$$

where $a, a_{\nu-1}, a_{\nu}, \ldots$ are constants.
Now assume that $F\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in G\{\Sigma\}$ on $\dot{\delta}$. We remark that $\tilde{\sigma} \cap \gamma$ is an analytic hypersurface in γ which is the zero set of the function $t^{\nu(\nu-2)}+x_{2}^{\nu}$; this function has no multiple factors. Since $f\left(t, x_{2}\right)=0$ on $\gamma \cap \dot{\sigma}$, it follows that

$$
f\left(t, x_{2}\right)=\left(t^{\nu(\nu-2)}+x_{2}^{\nu}\right) h\left(t, x_{2}\right)
$$

where $h\left(t, x_{2}\right)$ is a holomorphic function on a neighborhood $\gamma_{0} \subset \gamma$ of (0.0), so that $f(t, 0)$ is of the form

$$
\begin{align*}
f(t, 0)= & t^{\nu(\nu-2)}\left(b_{0}+b_{1} t+b_{2} t^{2}+\cdots+b_{\nu-2} t^{\nu-2}\right) \tag{8.8}\\
& + \text { terms of order higher than } \nu(\nu-2)+\nu-1
\end{align*}
$$

where b_{0}, b_{1}, \ldots are constants.
Conversely. let $f\left(t, x_{2}\right)$ be a holomorphic function in a neighborhood of $(0,0)$ in $\mathbf{C}_{t . x_{2}}^{2}$ of the form

$$
f\left(t, x_{2}\right)=\left(t^{\nu(\nu-2)}+x_{2}^{\nu}\right) h\left(t . x_{2}\right) .
$$

Then we can find an $F\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in G\{\Sigma\}$ on a neighborhood δ_{0} of O in \mathbf{C}^{4} such that $\left.F\right|_{\delta_{0}} n s=f$.

Indeed, we note that $f(p):=f(\pi(p))$ is a weakly holomorphic function on S in a neighborhood δ of the origin O in \mathbf{C}^{4} with $\left.f\right|_{o n \Sigma}=0$. Since $\Sigma \subset S$, if we could holomorphically extend $f(p)$ to a holomorphic function $F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ in a neighborhood δ_{0} of O in \mathbf{C}^{4}, then necessarily $F\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in G\{\Sigma\}$ on δ_{0}.

Since $t^{\nu-1}=y_{1}$ and $h\left(t, x_{2}\right)=\sum_{n, m=0}^{\infty} a_{m n} t^{m} x_{2}^{n}$. it suffices to prove that the weakly holomorphic functions

$$
\begin{equation*}
f_{i}\left(t, x_{2}\right)=\left(t^{\nu(\nu-2)}+x_{2}^{\nu}\right) t^{i} \quad(i=0.1 \ldots ., \nu-2) \tag{8.9}
\end{equation*}
$$

on S have holomorphic extensions $\Phi_{i}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ in \mathbf{C}^{4}. To this end, for $i=0$. since $x_{1}=t^{\nu}$ we can take

$$
\Phi_{0}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=x_{1}^{\nu-2}+x_{2}^{\nu} .
$$

For $i=1, \ldots, \nu-2$, since $x_{1}=t^{\prime \prime}, y_{1}=t^{\prime-1}$, and $y_{2}=t x_{2}$, we can take

$$
\begin{equation*}
\Phi_{i}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=x_{1}^{2-1} y_{1}^{\nu-i}+x_{2}^{\nu-1} y_{2}^{1} \quad(i=1 \ldots, \nu-2) \tag{8.10}
\end{equation*}
$$

in \mathbf{C}^{4}, so that the converse is true.
We proceed to prove the lemma by contradiction. Assume that there exist $\boldsymbol{\nu - 2}$ holomorphic functions

$$
G_{k}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \quad(k=1, \ldots, \nu-2)
$$

on a neighborhood Δ of the origin O in \mathbf{C}^{4} such that the \mathcal{O}-ideal $\mathcal{J}\{G\}$ generated by $G_{k}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)(k=1, \ldots, \nu-2)$ on Δ is equivalent to $G\{\Sigma\}$ on Δ. By (8.8) we have

$$
\begin{aligned}
g_{k}\left(t, x_{2}\right):= & \left.G_{k}\right|_{\Sigma \sim \Delta} \\
g_{k}(t, 0)= & t^{\nu(\nu-2)}\left(b_{k .0}+b_{k .1} t+\cdots+b_{k, \nu-2} t^{\nu-2}\right) \\
& + \text { terms of order higher than } \nu(\nu-2)+\nu-1
\end{aligned}
$$

Since each $\Phi_{i}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)(i=0,1, \ldots, \nu-2)$ defined by (8.10) belongs to $G\{\Sigma\}$ in \mathbf{C}^{4}, there exist $\nu-2$ holomorphic functions $C_{k}^{z}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)(k=1, \ldots . \nu-2)$ defined on a neighborhood $\Delta_{0} \subset \Delta$ of the origin O in C^{4} such that

$$
\begin{aligned}
& \Phi_{i}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)= C_{1}^{i}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) G_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \\
&+\cdots+C_{\nu-2}^{i}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) G_{\nu-2}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \\
&(i=0,1, \ldots, \nu-2), \quad\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in \Delta_{0} .
\end{aligned}
$$

We restrict $\Phi_{i}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ to $S \cap\left\{x_{2}=0\right\}$ and set

$$
f_{i}(t, 0)=\Phi_{i}\left(t^{\nu}, 0, t^{\nu-1}, 0\right) . \quad c_{k}^{i}(t, 0)=C_{k}^{i}\left(t^{\nu}, 0, t^{\nu-1}, 0\right) \quad(i=0,1, \ldots, \nu-2)
$$

in a neighborhood e_{0} of $t=0$ in C_{t}. From (8.9) and (8.7) we have

$$
f_{1}(t, 0)=t^{\nu(\nu-2)+i}, \quad c_{k}^{i}(t, 0)=a_{k}^{i}+a_{k, \nu-1}^{i} t^{\nu-1}+a_{k, \nu}^{i} t^{\nu}+\cdots,
$$

where $a_{k}^{\prime}, a_{k, r-1}^{d} \ldots$ are constants. Since

$$
f_{i}(t, 0)=\sum_{k=1}^{u-2} c_{k}^{i}(t, 0) g_{k}(t, 0) \quad(i=0,1, \ldots, \nu-2)
$$

it follows that

$$
\begin{aligned}
t^{\nu(\nu-2)+i}= & \sum_{k=1}^{\nu-2} a_{k}^{i} t^{\nu(\nu-2)}\left(b_{k, 0}+b_{k, 1} t+\cdots+b_{k, v-2} t^{\nu-2}\right) \\
& + \text { terms of order higher than } \nu(\nu-2)+\nu-1 \\
& (i=0,1, \ldots, \nu-2) \text { on } e_{0} .
\end{aligned}
$$

Consequently.

$$
\begin{gathered}
t^{\prime}=\sum_{k=1}^{\nu-2} a_{k}^{j} b_{k, 0}+t \sum_{k=1}^{\nu-2} a_{k}^{2} b_{k .1}+\cdots+t^{\nu-2} \sum_{k=1}^{\nu-2} a_{k}^{1} b_{k, \nu-2} \\
(i=0,1, \ldots, \nu-2) \text { on } \epsilon_{0} .
\end{gathered}
$$

so that

$$
\left(\begin{array}{cccc}
a_{1}^{0} & a_{2}^{0} & \cdots & a_{\nu-2}^{0} \\
a_{1}^{1} & a_{2}^{1} & \cdots & a_{\nu-2}^{1} \\
& \vdots & & \vdots \\
a_{1}^{\nu-2} & a_{2}^{\nu-2} & \cdots & a_{1,-2}^{\nu-2}
\end{array}\right)\left(\begin{array}{cccc}
b_{1.0} & b_{1,1} & \cdots & b_{1, \nu-2} \\
b_{2.0} & b_{2.1} & \cdots & b_{2 .,-2} \\
& \vdots & & \vdots \\
b_{\nu-2.0} & b_{1 \nu-2.1} & \cdots & b_{\nu, 2,1,2}
\end{array}\right)=E_{\nu-1,}
$$

where $E_{\nu-1}$ is the $(\nu-1, \nu-1)$ identity matrix. Since $\left(a_{j}^{i}\right)_{i . j}$ is a $(\nu-1, \nu-2)$ matrix and $\left(b_{i, j}\right)_{i . j}$ is a $(\nu-2 . \nu-1)$ matrix, such an equality is inıpossible. Thus, Leinma 8.4 is proved.

For each integer $\nu \geq 3$ we let $F_{k}^{\prime \prime}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)(k=1,2,3,4)$ denote the four polynomials in \mathbf{C}^{1} defined above. Let $a_{\nu}(\nu=1,2 \ldots)$ be a sequence of complex numbers such that $\lim _{\nu \rightarrow x} a_{\nu}=x$. In C^{5} with variables $x_{1}, x_{2}, y_{1}, y_{2}, y_{1}$ we consider the analytic set of dimension 1 given by

$$
\Sigma_{\nu}: \quad F_{1}^{\nu}=\cdots=F_{4}^{\nu}=0, \quad y_{: 1}=a_{\nu}
$$

and we set $\Sigma=\bigcup_{\nu=1}^{\infty} \Sigma_{\nu}$ in C^{5}. We consider the G-ideal $G\{\Sigma\}$ in C^{i}. Then $G\{\Sigma\}$ has a locally finite pseudobase on all of \mathbf{C}^{5}. However, Lemma 8.4 implies that there is no finitely generated \mathcal{O}-ideal \mathcal{J} on all of $\mathbf{C}^{\mathfrak{j}}$ which is equivalent to the G-ideal $G\{\Sigma\}$ at each point of \mathbf{C}^{5}.

Remark 8.8. We see from the proof of Lemma 8.4 that (1) $F_{1}=x_{1}^{\nu-2}+x_{2}^{\prime \prime}$ is a universal denominator of the 2-dimensional analytic set \mathcal{S} in $\mathbf{C}^{\mathbf{4}}$ with $F_{4} \not \equiv 0$ on \mathcal{S} : (2) the Z-ideal $Z\left\{F_{4}, S\right\}$ is equivalent to the G-ideal $G\{\Sigma\}$ at the origin O in \mathbf{C}^{4} : and (3) $G\{\Sigma\}$ is equivalent to the \mathcal{O}-ideal $\mathcal{O}\{\Phi\}$ generated by $\Phi_{j}(j=0,1, \ldots, \nu-2)$ at O in \mathbf{C}^{4}.

In fact, statements (2) and (3) follow immediately from the proof. To see (1), let $p_{0}=\left(x_{1}^{0}, x_{2}^{0}, y_{1}^{0}, y_{2}^{0}\right) \in \mathcal{S}$. The singular set τ of \mathcal{S} is contained in $x_{1}=0$. Since $\mathcal{S} \cap\left\{x_{1}=0\right\}=\left\{\left(0, x_{2}, 0,0\right) \mid x_{2} \in C\right\}$ and since $F_{1} \neq 0$ at $\left(0, x_{2}\right)$ if $x_{2} \neq 0$, it suffices to prove that. for any weakly holomorphic function $f(p)$ at the origin O on \mathcal{S}, the function $F_{4} \cdot f$ is holomorphic at O on \mathcal{S}. Since $\Sigma=\mathcal{S} \cap\left\{F_{4}=0\right\} . F_{1} \cdot f$ is a weakly holomorphic function at O on \mathcal{S} which vanishes on Σ in a neighborhood of
O. Under this condition we have shown that there exists a holomorphic function $F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ in a neighborhood of O in \mathbf{C}^{4} such that $\left.F\right|_{s}=\left.F_{4} \cdot f\right|_{s}$, as desired.

8.4. Quantitative Estimates

In this section we extend Theorem 8.2 (extension theorem) and Theorem 8.4 (Problem C_{1}) to quantitative results with estimates (see Chapter I in Oka [52]). Our proofs will be done by a combination of Oka's theorems (which have already been proved) and the open mapping theorem in a Fréchet space. These theorems with estimates will be applied to obtain a subglobal pseudobase of an \mathcal{O}^{λ}-module on a Stein space \mathcal{V} which has a locally finite pseudobase at each point in \mathcal{V}. In addition, we will use these results in Chapter 9 to show that any analytic space admitting a strictly pseudoconvex exhaustion function is a Stein space.
8.4.1. Open Mapping Theorem. Let \mathcal{E} be a vector space over \mathbf{C} equipped with a inetric $d(x, y)$ such that $d(x, y)=d(x-y, 0)$, where 0 denotes the zero vector in \mathcal{E}. Assume that:
(i) \mathcal{E} has a fundamental system of convex and circled neighborhoods $V_{n}(n=$ $1,2, \ldots$) of 0 in \mathcal{E}. Here circled means that $\lambda V_{n} \subset V_{n}$ for any $\lambda \in \mathbf{C}$ with $|\lambda| \leq 1$. (Note that V_{n} is not. in general, relatively compact).
(ii) \mathcal{E} is complete with respect to the metric $d(x, y)$.
(iii) For any $a, \beta \in \mathbf{C}$, the mapping $\mathcal{S}:(x, y) \in \mathcal{E} \times \mathcal{E} \rightarrow \alpha x+\beta y \in \mathcal{E}$ is continuous.
(iv) For any $x \in \mathcal{E}, \lim _{n \rightarrow x} x / n=0$.

Then we call \mathcal{E} a Fréchet space.
The following theorem will be useful in this section.
Theorem 8.13 (Open mapping theorem). Let \mathcal{E}_{1} and \mathcal{E}_{2} be Fréchet spaces equipped with metrics $d_{1}(x, y)$ and $d_{2}(u, v)$. Let $\varphi: \mathcal{E}_{1} \rightarrow \mathcal{E}_{2}$ be a continuous linear mapping from \mathcal{E}_{1} onto \mathcal{E}_{2}. Then φ is an open mapping.

Proof. (cf. [28]) From (iii) it suffices to verify that for any neighborhood V of the zero vector 0 in $\mathcal{E}_{1}, \varphi(V)$ is a neighborhood of the zero vector 0 in \mathcal{E}_{2}. We first prove that for any neighborhood V of 0 in $\mathcal{E}_{1}, \overline{\varphi(V)}$ is a neighborhood of 0 in \mathcal{E}_{2}. To this end, using (i) we may assume that V is a convex and circled neighborhood of 0 in \mathcal{E}_{1}. Set $W=\underset{\sim}{ }(V)$. By linearity of φ, W is convex and circled in \mathcal{E}_{2}, so that \bar{W} is a convex and circled closed set in \mathcal{E}_{2}. Since φ is surjective, it follows from (iv) that $\mathcal{E}_{2}=\bigcup_{n=1}^{\infty} n W=\bigcup_{n=1}^{\infty} n \bar{W}$. Since $n \bar{W}(n=1,2, \ldots)$ is closed in the complete metric space \mathcal{E}_{2}, it follows from the Baire category theorem that for some integer $n, n \overline{W^{\prime}}$ contains an interior point u_{0} in \mathcal{E}_{2}. Thus we can find a convex and circled neighborhood G of 0 in \mathcal{E}_{2} such that $u_{0}+G \subset n \bar{W}\left(n \geq n_{0}\right)$. Consequently, $u_{0} / n+G / n \subset \bar{W}$. In particular, $u_{0} / n \subset \bar{W}$, so that $-u_{0} / n \subset \overline{W^{\prime}}$. Since \bar{W} is convex, we have

$$
\frac{G}{2 n}=\frac{1}{2}\left\{\left(-\frac{u_{0}}{n}\right)+\left(\frac{u_{0}}{n}+\frac{G}{n}\right)\right\} \subset \bar{W} .
$$

which proves \bar{W} is a neighborhood of 0 in \mathcal{E}_{2}.
Let V be any convex and circled neighborhood of 0 in \mathcal{E}_{1}. We now show that $\overline{\varphi(V)} \subset \varphi(2 \bar{V})$. Using (i) and (iv), we can find a sequence of convex and circled neighborhoods $V_{j}(j=1,2, \ldots)$ of 0 in \mathcal{E}_{1} such that $V_{j} \subset\left\{x \in \mathcal{E}_{1} \mid d_{1}(x, 0)<1 / 2^{j}\right\}$
$(j=1.2 \ldots) .2 \widetilde{V}_{1} \subset V$. and $2 \bar{V}_{j+1} \subset V_{j}(j=1.2 \ldots)$. Let $y_{0} \in \overline{\gamma^{\prime}(V)}$. Since $\overline{\gamma\left(V_{1}\right)}$ was shown to be a neighborhood of 0 in \mathcal{E}_{2}, there exist $x_{0} \in V$ and $y_{1} \in \overline{\varphi\left(V_{1}\right)}$ such that $y_{0}-y_{1}=\varphi\left(x_{0}\right)$. In a similar mamner, we can find $x_{1} \in V_{1}$ and $y_{2} \in \overline{\varphi\left(V_{2}\right)}$ such that $y_{1}-y_{2}=\varphi\left(x_{1}\right)$. We inductively choose a sequence of points $x_{n} \in V_{n}$ and $y_{n} \in \hat{\gamma}\left(V_{n}\right)(n=1.2 \ldots)$ such that $y_{n}-y_{n+1}=\hat{\gamma}\left(x_{n}\right)(n=1.2, \ldots)$. Since $V_{n} \rightarrow 0$ as $n \rightarrow 0$, it follows that $\varphi\left(V_{n}\right)$ and hence $\overline{\gamma\left(V_{n}\right)} \rightarrow 0$ as $n \rightarrow \infty$. so that $\lim _{n \rightarrow x} y_{n}=0$. If we set $a_{n}=x_{0}+x_{1}+\cdots+x_{n}(n=1,2 \ldots)$, we see from $d\left(x_{n}, 0\right)<1 / 2^{n}$ that $\left\{a_{n}\right\}_{n}$ is a Cauchy sequence in \mathcal{E}_{1}. so that the limit $a=\lim _{n \rightarrow x} a_{n}$ exists in \mathcal{E}_{1}. Since $a_{n} \in V+V_{1}+\cdots+V_{n} \subset 2 V(n=1.2, \ldots)$, we have $a \in 2 \bar{V}$. Also. $\hat{\gamma}(a)=\lim _{n \rightarrow x} \underline{\gamma}\left(a_{n}\right)=\lim _{n \cdots x_{x}}\left(\left(y_{0}-y_{1}\right)+\cdots+\left(y_{n}-y_{n+1}\right)\right)$ $=\lim _{n \rightarrow x}\left(y_{0}-y_{n}\right)=y_{0}$. so that $\overline{\gamma(V)} \subset f(2 \bar{V})$.

For any convex and circled neighborhood V of 0 in $\mathcal{E}_{1, \gamma}(2 \bar{V})$ is a neighborhood of the origin 0 in \mathcal{E}_{2}. The collection of these sets $2 \bar{V}$ is a fundamental neighborhood system of 0 in \mathcal{E}_{1}. proving Theorem 8.13.

Let \mathcal{V} be an analytic space and let $U \subset \mathcal{V}$ be a domain. Let $\lambda \geq 1$ be an integer and let $\mathcal{O}^{\lambda}(U)$ denote the set of all holomorphic vector-valued functions $f(p)=\left(f_{1}(p) \ldots . f_{\lambda}(p)\right)$ of rank λ on U. Thus, $\mathcal{O}^{\lambda}\left(U^{U}\right)$ is a vector space over \mathbf{C}. In case $\lambda=1$, we wite $\mathcal{O}^{1}\left(U^{\prime}\right)=\mathcal{O}\left(U^{U}\right)$.

Let $U_{j}(j=1,2 \ldots)$ be a sequence of domains in U such that

$$
U_{j} \subset \subset U_{j+1} \quad(j=1.2, \ldots), \quad U=\lim _{j \rightarrow \infty} U_{j}
$$

For any $f(p) \in \mathcal{O}^{\lambda}\left(U^{\prime}\right)$. we set

$$
m_{j}(f)=\sup _{p \in L^{\prime},}\|f(p)\| \quad(j=1.2 \ldots)
$$

so that $m_{j}(f) \leq m_{j+1}(f)<\infty$. In general, we can have $\lim _{\boldsymbol{j} \rightarrow \boldsymbol{x}} m_{j}(f)=+\infty$. For $f(p), g(p) \in \mathcal{O}^{\lambda}(U)$. we define

$$
d^{\lambda}(f . g)=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{m_{\jmath}(f-g)}{1+m_{j}(f-g)}<1
$$

Since $h(r):=r /(1+r)$ is a concave increasing function on $[0, x)$ with $h(0)=0$. it follows that $d^{\lambda}(f, g)$ is a metric on $\mathcal{O}^{\lambda}\left(U^{\prime}\right)$ with $d^{\lambda}(f, g)=d^{\lambda}(f-g, 0)$. We call $d^{\lambda}(f, g)$ the canonical metric on $\mathcal{O}^{\lambda}(U)$ (relative to $\left\{U_{j}\right\}$,). We shall prove that $\mathcal{O}^{\lambda}(U)$ is a Fréchet space with respect to this metric $d^{\lambda}(f . g)$. Indeed, let $f_{n}(p)$ $(n=1,2, \ldots)$ and $f(p)$ belong to $\mathcal{O}^{\lambda}(U)$. Then we see that $\lim _{n \rightarrow x} d^{\lambda}\left(f_{n}, f\right)=0$ if and only if $\lim _{n \rightarrow x} f_{n}(p)=f(p)$ uniformly on any compact $K \subset \subset U$. We thus see that conditions (ii), (iii), and (iv) are satisfied. For condition (i) it suffices to set

$$
V_{j}=\left\{f(p) \in \mathcal{O}^{\lambda}(U) \mid m_{j}(f)<1 / j\right\} \quad(j=1,2 \ldots)
$$

We have the following proposition.
Proposition 8.2. Let $M>0$. Then there exists K with $0<K<1$ such that if $\|f(p)\| \leq M$ on U then $d^{\lambda}(f, 0) \leq K$. Conversely. fix K with $0<K<1$. Then there exists an $M>0$ such that $d^{\lambda}(f .0) \leq K^{\prime}$ implies $\|f(p)\| \leq M$ on U_{1}.

Proof. To prove the first assertion, take $K=M /(M+1)<1$. For the second one, since

$$
K \geq \sum_{j=1}^{\infty} \frac{1}{2} \frac{m_{j}(f)}{1+m_{j}(f)} \geq \sum_{j=1}^{\infty} \frac{1}{2,} \frac{m_{1}(f)}{1+m_{1}(f)}=\frac{m_{1}(f)}{1+m_{1}(f)} .
$$

we can take $M=K /\left(1-K^{\prime}\right)>0$.
8.4.2. Quantitative Estimates in the Existence Theorem. Let \mathcal{V} be an analytic space of dimension n and let \mathcal{P} be a (closed) analytic polyhedron in \mathcal{V} with defining functions on $D: \mathcal{P} \subset \subset D \subset \mathcal{V}$. Let Σ be a normal model of \mathcal{P} in the closed unit polydisk $\bar{\Delta} \subset \mathbf{C}^{m}$ and let

$$
\Phi: p \in \mathcal{P} \rightarrow z=\left(z_{1}, \ldots . z_{m}\right)=\left(\hat{\vartheta}_{1}(p) \ldots, \varphi_{m}(p)\right) \in \Sigma
$$

denote the normalization mapping of \mathcal{P} into \mathbf{C}^{m} : here each $\boldsymbol{q}_{j}(p)(j=1,2, \ldots)$ is a holomorphic function on D. We let \mathcal{P}° and Δ denote the interiors of \mathcal{P} in \mathcal{V} and of $\bar{\Delta}$ in \mathbf{C}^{m}.

The following theorem, which will be proved without using the theory of Fréchet spaces, is an essential ingredient in proving the main theorems in this section.

Theorem 8.14 (Interior extension theorem). Let $f(p)$ be a holomorphic function on \mathcal{P}^{0}. There exists a holomorphic function $F(z)$ on Δ with

$$
f(p)=F(\Phi(p)), \quad p \in \mathcal{P}^{c} .
$$

Proof. Choose $r_{k}, 0<r_{k}<1(k=1,2 \ldots)$ such that $r_{k}<r_{k+1}(k=$ $1,2, \ldots$) and $\lim _{k \rightarrow x} r_{k}=1$. For each $k=1,2 \ldots$, set

$$
\bar{\Delta}_{k}:\left|z_{j}\right| \leq r_{k} \quad(j=1, \ldots, m) . \quad \Sigma_{k}=\Sigma \cap \bar{\Delta}_{k} .
$$

Let $\mathcal{P}_{k}=\Phi^{-1}\left(\Sigma_{k}\right) \subset \subset \mathcal{P}^{0}$. Choose ϵ_{k}. $0<\epsilon_{k}<1$. so that $\sum_{k=1}^{x} \epsilon_{k}<\infty$. We would like to construct a sequence of holomorphic functions $F_{k}(z)$ on $\bar{\Delta}_{k}(k=$ $1,2 \ldots$) such that, for each $k=1,2 \ldots$.

$$
\begin{align*}
& f(p)=F_{k}(\Phi(p)), \quad p \in \mathcal{P}_{k}, \tag{8.11}\\
& \left|F_{k+1}(z)-F_{k}(z)\right|<\epsilon_{k}, \quad z \in \bar{\Delta}_{k} .
\end{align*}
$$

for then $F(z)=\lim _{k \rightarrow x} F_{k}(z)$ converges uniformly on any compact $K \subset \subset \mathcal{P}^{\circ}$ and $F(z)$ satisfies $F(\Phi(p))=f(p), p \in \mathcal{P}^{\circ}$. We construct such a sequence $F_{k}(z)$ ($k=1,2, \ldots$) on \mathcal{P}_{k} satisfying condition (8.11) by induction.

By Theorem 8.2, there exists a holomorphic function $F_{1}(z)$ on $\bar{\Delta}_{1}$ such that $f(p)=F_{1}(\Phi(p))$ on \mathcal{P}_{1}. Fix $k \geq 1$ and assume that we have constructed holomorphic functions $F_{j}(z)$ on $\bar{\Delta}_{j}(j=1 \ldots . k)$ such that $F_{j}(\Phi(p))=f(p)$ on $\mathcal{P}_{j}(j=1, \ldots, k)$ and $\left\{F_{j+1}(z)-F_{j}(z) \mid<\epsilon_{j}\right.$ on $\bar{\Delta}_{j}(j=1, \ldots, k-1)$. By Theorem 8.2, there exists a holomorphic function $\tilde{F}_{k+1}(z)$ on $\bar{\Delta}_{k+1}$ such that $f(p)=\tilde{F}_{k+1}(\Phi(p))$ on \mathcal{P}_{k+1}. Consider the G-ideal $G\left\{\Sigma_{k+1}\right\}$ on $\bar{\Delta}_{k+1}$. Since $G\left\{\Sigma_{k+1}\right\}$ has a locally finite pseudobase at each point of $\bar{\Delta}_{k+1}$. it follows from Theorem 8.6 (Problem E for a closed polydisk) that there exist a finite number of holomorphic functions $G_{l}(z)(l=1, \ldots, s)$ on $\bar{\Delta}_{k+1}$ such that the \mathcal{O}-ideal $\mathcal{J}\{G\}$ generated by $G_{l}(z)(l=1, \ldots, s)$ on $\bar{\Delta}_{k+1}$ is equivalent to $G\left\{\Sigma_{k+1}\right\}$ on $\bar{\Delta}_{k+1}$. Since $\bar{F}_{k+1}(z)-F_{k}(z)=0$ on Σ_{k}, it follows that $\bar{F}_{k+1}(z)-F_{k}(z) \in G\left\{\Sigma_{k}\right\}$ on
$\bar{\Delta}_{k}$. By Theorem 8.4 (Problem C_{1} for a closed polydisk). there exist s holomorphic functions $\tilde{\alpha}_{l}(z)(l=1, \ldots, s)$ on $\bar{\Delta}_{k}$ such that

$$
\tilde{F}_{k+1}(z)-F_{k}(z)=\tilde{\alpha}_{1}(z) G_{1}(z)+\cdots+\tilde{a}_{n}(z) G_{n}(z), \quad z \in \bar{\Delta}_{k} .
$$

Since the pair of polydisks ($\bar{\Delta}_{k}, \bar{\Delta}_{k+1}$) satisfies Runge's theorem, we can find a holomorphic function $\alpha_{j}(z)(l=1 \ldots . s)$ on $\bar{\Delta}_{k-1}$ such that

$$
\left|\alpha_{l}(z)-\bar{\alpha}_{l}(z)\right|<c_{k}^{\prime} \quad(l=1 \ldots . s) . \quad z \in \bar{\Delta}_{k}
$$

where $0<\epsilon_{k}^{\prime}<\epsilon_{k} / \int \max _{z \in ذ_{k+1}}\left\{\left\{G_{1}(z)\left|+\cdots+\left|G_{s}(z)\right|\right\}\right]\right.$. If we set

$$
F_{k+1}(z)=\tilde{F}_{k+1}(z)+a_{1}(z) G_{1}(z)+\cdots+\alpha_{s}(z) G_{s}(z) . \quad z \in \bar{\Delta}_{k+1} .
$$

then $F_{k+1}(z)$ is a holomorphic function on $\bar{\Delta}_{k+1}$ with $F_{k+1}(\Phi(p))=f(p)$ for $p \in$ \mathcal{P}_{k+1} and $\left|F_{k+1}(z)-F_{k}(z)\right|<\sum_{i=1}^{i}\left|\alpha_{l}(z)-\dot{\alpha}_{l}(z)\right|\left|G_{l}(z)\right|<\epsilon_{k}$ for $z \in \bar{\Delta}_{k}$. Thus we have inductively constructed $F_{k}(z)(k=1.2 \ldots)$ on $\bar{\Delta}_{k}$ satisfying condition (8.11).

Using the same notation $\mathcal{P}, \bar{\Delta}, \mathcal{P}^{*}, \Delta, \Sigma, \mathcal{P}_{k}, \bar{\Delta}_{k}$, and Σ_{k}, recall that Δ_{k} : $\left|z_{j}\right|<r_{j}(j=1, \ldots, m)$ and we thus have $\Delta_{k} \subset \subset \Delta_{k+1}(k=1,2, \ldots)$ and $\Delta=\lim _{k \rightarrow x} \Delta_{k}$. We consider the set $\mathcal{O}(\Delta)$ of all holomorphic functions $F(z)$ on Δ. By the method mentioned in the previous section, the vector space $\mathcal{O}(\Delta)$ with the canonical metric $d_{1}(F, G)$ relative to $\left\{\Delta_{k}\right\}_{k}$ becomes a Frechet space. Similarly. using $\mathcal{P}_{k}^{c} \subset \subset \mathcal{P}_{k+1}^{c}(k=1,2, \ldots)$ and $\mathcal{P}^{\circ}=\lim _{n \rightarrow \infty} \mathcal{P}_{k}^{c}$, we consider the Fréchet space $\mathcal{O}\left(\mathcal{P}^{\circ}\right)$ of all holomorphic functions $f(p)$ on \mathcal{P}° with the canonical netric $d_{2}(f, g)$ relative to $\left\{\mathcal{P}_{k}^{\circ}\right\}_{k}$.

Cousider the following linear mapping from $\mathcal{O}(\Delta)$ to $\mathcal{O}\left(\mathcal{P}^{v}\right)$:

$$
\dot{r}: F(z) \rightarrow f(p)=F(\Phi(p)), \quad p \in \mathcal{P}^{\dot{*}}
$$

Since the topology for $\mathcal{O}(\Delta)$ and for $\mathcal{O}\left(\mathcal{P}^{c}\right)$ is uniform convergence on each compact set in Δ and in \mathcal{P}°. it follows that $\boldsymbol{\sim}$ is a continuous mapping on $\mathcal{O}(\Delta)$. By Theoren 8.14. $\hat{\psi}$ is surjective. Thus, the open mapping theorem can be applied to γ.

We have the following theorem.
Theorem 8.15 (Extension theorem with estimates). There exists a constant $K>0$ such that for any $f(p) \in \mathcal{O}\left(\mathcal{P}^{\circ}\right)$. there exists $F(z) \in \mathcal{O}(\Delta)$ with

$$
\begin{aligned}
F(\Phi(p)) & =f(p), \quad p \in \mathcal{P}^{z} \\
\max _{z \in \mathcal{C}_{1}}\{|F(z)|\} & \leq K \max _{p \in \mathcal{F}:}\{|f(p)|\} .
\end{aligned}
$$

Proof. It suffices to prove the existence of such a constant $K>0$ for $f(p) \in$ $\mathcal{O}\left(\mathcal{P}^{\circ}\right)$ with $\max _{p \in \mathcal{P} 0}\{|f(p)|\} \leq 1$. Fix $0<\rho<1$ and let $B_{\rho}=\{F(z) \in \mathcal{O}(\Delta) \mid$ $\left.d_{1}(F, 0)<\rho\right\}$ and $M_{\rho}=\rho /(1-\rho)>0$. which satisfies Proposition 8.2. By the open mapping theorem, $\boldsymbol{f}\left(B_{p}\right)$ contains a neighborhood $A_{\eta}:=\left\{f(p) \in \mathcal{O}\left(\mathcal{P}^{\circ}\right) \mid\right.$ $\left.d_{2}(f, 0) \leq \eta\right\}$ of the origin O in $\mathcal{O}\left(\mathcal{P}^{\circ}\right)$. Take $f(p) \in \mathcal{O}\left(\mathcal{P}^{c}\right)$ with $\max _{p \in \mathcal{P}}\{|f(p)|\} \leq 1$. Since $\eta f(p) \in A_{\eta}$, there exists $F_{0}(z) \in \mathcal{O}(\Delta)$ with $d_{1}\left(F_{0}, 0\right)<\rho$ such that $F_{0}(\Phi(p))$ $=\eta f(p), p \in \mathcal{P}^{\circ}$. By Proposition 8.2 we have $\left|F_{0}(z)\right| \leq M_{\rho}:=\rho /(1-\rho)$ on U_{1}. If we define $F(z)=F_{0}(z) / \eta$ on Δ, then $F(\Phi(p))=f(p), p \in \mathcal{P}^{\rho}$. and $|F(z)| \leq M_{\rho} / \eta$ on U_{1}. Thus $K:=M_{\rho} / \eta>0$ satisfies the conclusion of the theorem.
8.4.3. Completeness. Using the previous theorem we can extend the conpleteness theorem (Theorem 7.6) for \mathcal{O}^{λ}-modules in a domain in \mathbf{C}^{n} to the case of an analytic space \mathcal{V}. Let \mathcal{V} be an analytic space of dimension n. Let $W \subset \mathcal{V}$ be a domain and let $F_{j}(p)(j=1 \ldots, \nu)$ be ν holomorphic vector-valued functions of rank λ on W^{\prime}. We let $\mathcal{J}^{\lambda}\{F\}$ denote the \mathcal{O}^{λ}-module generated by $F_{j}(p)$ $(j=1, \ldots, \nu)$ on W^{*}.

We have the following result.
Proposition 8.3. $\mathcal{J}^{\lambda}\{F\}$ is complete in the topology of uniform convergence on compact sets in W.

To be precise, completeness in this sense means the following. Let $f_{i}(p)(i=$ $1,2 \ldots$) be a sequence of holomorphic vector-valued functions of rank λ on the common domain $U \subset W$. Assume that (1) $\lim _{i \sim x} f_{i}(p)=f(p)$ is uniformly convergent on any $K \subset \subset U$, and (2) each $f_{i}(p)(i=1.2, \ldots)$ belongs to $\mathcal{J}^{\lambda}\{F\}$ at each point of U. Then $f(p)$ belongs to $\mathcal{J}^{\lambda}\{F\}$ at each point of U.

Proof. Let $p_{0} \in U$. We can take a sufficiently sinall analytic polyhedron \mathcal{P} in a domain $D \subset U$ such that $p_{0} \in \mathcal{P}^{\circ}$ (Corollary 8.1). Fix a normal model Σ of \mathcal{P} in the closed unit polydisk $\bar{\Delta}$ in $\mathbf{C}^{\boldsymbol{n}}$,

$$
\Phi: p \in \mathcal{P} \rightarrow z=\left(\hat{\gamma_{1}}(p) \ldots . \hat{\gamma}_{m}(p)\right) \in \Sigma
$$

where each $p_{\rho}(p)(j=1, \ldots, m)$ is a holomorphic function on D. We take holomorphic extensions $\bar{F}_{j}(z)(j=1 \ldots, \nu)$ of $F_{j}(p)$ on $\bar{\Delta}_{\text {; thus }} \bar{F}_{j}(\Phi(p))=F_{j}(p)$ in \mathcal{P}. Fix a closed polydisk $\bar{\Delta}_{1} \subset \subset \Delta$ such that $\mathcal{P}_{1}^{p}=\Phi^{-1}\left(\Sigma \cap \Delta_{1}\right)$ contains the point p_{0}. Since $\lim _{2 \rightarrow x} f_{l}(p)=f(p)$ uniformly on \mathcal{P}. there exists $M>0$ such that $\left\|f_{i}(p)\right\| \leq M(i=1,2 \ldots)$ on \mathcal{P}. By Theorem 8.15. for each $i=1,2, \ldots$, there exists a holomorphic extension $\tilde{f}_{i}(z)$ in Δ such that

$$
\begin{array}{ll}
f_{i}(p)=\tilde{f}_{i}(\Phi(p)), & p \in \mathcal{P}^{\circ} \\
\left\|\bar{f}_{i}(z)\right\| \leq K M & (i=1,2 \ldots), \quad z \in \Delta_{1}
\end{array}
$$

where $K>0$ is a constant independent of $i=1,2 \ldots$. Thus. $\left\{\bar{f}_{i}(z)\right\}_{i}$ is a normal family on Δ_{1}. Let $\delta \subset \subset \Delta_{1}$ be a neighborhood of the point $z_{0}=\Phi\left(p_{0}\right)$. Then there exists a subsequence $\left\{\tilde{f}_{i_{k}}(z)\right\}_{k}$ of $\left\{\tilde{f}_{i}(z)\right\}_{i}$ which converges uniformly on δ, say $\tilde{f}(z)=\lim _{k \rightarrow x} \tilde{f}_{i_{k}}(z)$ on δ, so that $\tilde{f}(z)$ is a holomorphic vector-valued function of rank λ on δ satisfying $\dot{f}(\Phi(p))=f(p)$ for $p \in \Phi^{-1}(\Sigma \cap \delta)$.

Recall the holomorphic vector-valued functions $v_{k, l}(z)(k=1, \ldots, \lambda ; l=$ $1, \ldots, s)$ of rank λ on $\bar{\Delta}$ which were constructed using the pseudobase $G_{l}(z)(l=$ $1, \ldots, s)$ of the G-ideal $G\{\Sigma\}$ on $\bar{\Delta}$ defined by (8.3). Let $\mathcal{J}^{\lambda}\{\dot{F} . \Psi\}$ denote the \mathcal{O}^{λ} module generated by $\tilde{F}_{j}(z)(j=1, \ldots, \nu)$ and $v_{k, l}(z)(k=1 \ldots, \lambda ; l=1, \ldots, s)$ on $\bar{\Delta}$. Since $f_{i}(p) \in \mathcal{J}^{\lambda}\{F\}(i=1.2 \ldots)$ at each point of \mathcal{P}. it follows that $\bar{f}_{2}(z) \in \mathcal{J}^{\lambda}\{\tilde{F}, \Psi\}(i=1,2, \ldots)$ at each point of $\bar{\Delta}$. Since $\lim _{k \rightarrow x} \bar{f}_{i_{k}}(z)=\hat{f}(z)$ uniformly on δ, it follows from Theorem 7.6 that $\tilde{f}(z) \in \mathcal{J}^{\lambda}\{\tilde{F}, \Psi\}$ at each point of δ. Since $\hat{f}(\Phi(p))=f(p)$ on $v:=\Phi^{-1}(\Sigma \cap \delta)$. which is a neighborhood of the point p_{0} in W. we see that $f(p) \in \mathcal{J}^{\lambda}\{F\}$ at each point of r.

Using this completeness result, we generalize Lemma 8.3.

Lemma 8.5. Let \mathcal{V} be a Stein space and let \mathcal{J}^{λ} be an \mathcal{O}^{λ}-module on \mathcal{V} which has a locally finite pseudobase at each point in \mathcal{V}. Let \mathcal{P} be an analytic polyhedron in \mathcal{V} urith defining functions on \mathcal{V} and let $f(p)$ be a holomorphic vector-valued function of rank λ on \mathcal{P} such that $f(p) \in \mathcal{J}^{\lambda}$ at each point of \mathcal{P}. Given $\varepsilon>0$, there exists a holomorphic vector-valued function $F(p)$ of rank λ on \mathcal{V} such that

1. $F(p) \in \mathcal{J}^{\lambda}$ at each point in \mathcal{V}. and
2. $\|F(p)-f(p)\|<\epsilon \quad$ for each $p \in \mathcal{P}$.

Proof. Let $\mathcal{P}_{j}(j=1.2 \ldots)$ be a sequence of analytic polyhedra in \mathcal{V} with defining functious on \mathcal{V} such that $\mathcal{P} \subset \subset \mathcal{P}_{i}^{\circ}, \mathcal{P}_{j} \subset \subset \mathcal{P}_{j+1}^{o}(j=1,2, \ldots)$. and $\mathcal{V}=\lim _{\mathrm{J}_{\rightarrow x}} \mathcal{P}_{j}$. Choose $\epsilon_{k}>0(k=1,2, \ldots)$ such that $\sum_{j=1}^{\infty} \epsilon_{k}<\epsilon$. By Theorem 8.6 (Problem E), there exist a finite number of holomorphic vector-valued functions $\hat{\gamma}_{j}(p)(j=1 \ldots, s)$ of rank λ defined in a neighborhood U of \mathcal{P}_{1} such that the \mathcal{O}^{λ}-module $\mathcal{J}^{\lambda}\{\hat{r}\}$ generated by $\hat{\varphi}_{j}(p)(j=1 \ldots ., s)$ on \mathcal{P}_{1} is equivalent to \mathcal{J}^{λ} on \mathcal{P}_{1}.

Using Theorem 8.6, we can find a holomorphic vector-valued function $a(p)=$ ($\left.a_{1}(p) \ldots . a_{\theta}(p)\right)$ of rank s on \mathcal{P} such that

$$
f(p)=a_{1}(p) \hat{\gamma}_{1}(p)+\cdots+a_{s}(p)_{p_{s}}(p), \quad p \in \mathcal{P}
$$

Since the pair ($\mathcal{P}, \mathcal{P}_{1}$) satisfies Runge's theorem (Lemma 8.2), there exists a holomorphic vector-valued function $A(p)=\left(A_{1}(p) \ldots . A_{s}(p)\right)$ of rank s on \mathcal{P}_{1} such that

$$
\|\cdot A(p)-a(p)\|<\epsilon_{1}^{\prime} \quad \text { for } p \in \mathcal{P}
$$

where $0<\epsilon_{1}^{\prime}<\epsilon_{1} /\left(\left\|\nu_{1}\right\|_{\mathcal{P}_{1}}+\cdots+\left\|\boldsymbol{Y}_{s}\right\|_{\mathcal{P}_{1}}\right)$. If we set

$$
F_{1}(p)=A_{1}(p)_{\hat{F}_{1}}(p)+\cdots+A_{s}(p)_{\psi_{s}}(p), \quad p \in \mathcal{P}_{1}
$$

then $F_{1}(p)$ is a holomorphic vector-valued function of rank λ on \mathcal{P}_{1} such that $F_{1}(p) \in \mathcal{J}^{\lambda}$ at each point of \mathcal{P}_{1} and

$$
\left\|F_{1}(p)-f(p)\right\| \leq \epsilon_{1}^{\prime}\left(\left\|\Gamma_{1}(p)\right\|+\cdots+\left\|\gamma_{s}(p)\right\|\right)<\epsilon_{1} . \quad p \in \mathcal{P} .
$$

Similarly, there exists $F_{2}(p)$ of rank λ on \mathcal{P}_{2} such that $F_{2}(p) \in \mathcal{J}^{\lambda}$ at each point of \mathcal{P}_{2} and $\left\|F_{2}(p)-F_{1}(p)\right\|<f_{2}$ for $p \in \mathcal{P}_{1}$. Thus. inductively we construct a vector-valued function $F_{j}(p)(j=1.2, \ldots)$ of rank λ on \mathcal{P}, such that $F_{j}(p) \in \mathcal{J}^{\lambda}$ at each point of \mathcal{P}_{j} and $\left\|F_{j}(p)-F_{j-1}(p)\right\|<\epsilon_{j}$ on \mathcal{P}_{j-1}, where $F_{0}(p)=f(p)$ and $\mathcal{P}_{0}=\mathcal{P}$. It follows that $F(p):=\lim _{j \rightarrow x} F_{j}(p)$ converges uniformly on any compact set in \mathcal{V}. Thus. $F(p)$ is a holonorphic vector-valued function of rank λ on \mathcal{V} which belongs to \mathcal{J}^{λ} at each point of \mathcal{V} by Proposition 8.3. We also have $\|F(p)-f(p)\| \leq \sum_{j=1}^{x} \mid\left\|F_{j}(p)-F_{j-1}(p)\right\|<\sum_{j=1}^{x} c_{j}<c$ on \mathcal{P}, which proves the lemma.
8.4.4. Quantitative Estimates for Problem C_{1}. We return to the situation in 8.4.2. Let \mathcal{V} be an analytic space and let \mathcal{P} be an analytic polyhedron in \mathcal{V} with defining functions on $D, \mathcal{P} \subset \subset D \subset \mathcal{V}$. Let \mathcal{P}° denote the interior of \mathcal{P} in \mathcal{V}. We let $\mathcal{O}^{\lambda}\left(\mathcal{P}^{\nu}\right)$ and $\mathcal{O}^{\nu}\left(\mathcal{P}^{\nu}\right)$ denote the spaces of all holomorphic vector-valued functions on \mathcal{P}^{*} of rank λ and ν. Let $F_{j}(j=1 \ldots, \nu)$ be ν holomorphic vectorvalued functions of rank λ on the closed analytic polyhedron \mathcal{P} and let $\mathcal{J}^{\lambda}\{F\}$ be the $\mathcal{O}^{\boldsymbol{\lambda}}$-module generated by $F,(j=1, \ldots, \nu)$ on \mathcal{P}.

We have the following theorem.

Theorem 8.16 (Estimates for Problem C_{1}). Let $U \subset \subset \mathcal{P}^{\circ}$. Then there exists a constant $K>0$ such that for any $H(p) \in \mathcal{O}^{\lambda}\left(\mathcal{P}^{\circ}\right)$ uith $H(p) \in \mathcal{J}^{\lambda}\{F\}$ at each point in \mathcal{P}°, there exists $A(p)=\left(A_{1}(p) \ldots . A_{\nu}(p)\right) \in \mathcal{O}^{\nu}\left(\mathcal{P}^{\circ}\right)$ such that

$$
\begin{aligned}
& H(p)=A_{1}(p) F_{1}(p)+\cdots+A_{v}(p) F_{v}(p), \quad p \in \mathcal{P}^{\circ}, \\
& \max _{p \in U^{\circ}}\{\|A(p)\|\} \leq K \max _{p \in \mathcal{P}^{c}}\{\|H(p)\|\} .
\end{aligned}
$$

Proof. Let $U_{j}(j=1,2 \ldots)$ be a sequence of domains in \mathcal{P}^{c} such that $U=U_{1}$, $U, \subset \subset U_{j+1}(j=1.2, \ldots)$, and $\mathcal{P}^{\circ}=\lim _{j \rightarrow \infty} E_{j}$. We let $d^{\lambda}(f . g)$ and $d^{\nu}(f . g)$ denote the canonical distances with respect to $\left\{U_{j}\right\}$, on $\mathcal{O}^{\lambda}\left(\mathcal{P}^{\circ}\right)$ and on $\mathcal{O}^{\nu}\left(\mathcal{P}^{0}\right)$. Then $\mathcal{O}^{\lambda}\left(\mathcal{P}^{\circ}\right)$ and $\mathcal{O}^{\nu}\left(\mathcal{P}^{\circ}\right)$ are Fréchet spaces with respect to $d^{\lambda}(f, g)$ and $d^{\nu}(f, g)$. We let \mathcal{F} denote the set of all holomorphic vector-valued functions $f(p)$ of rank λ on \mathcal{P}° such that $f(p) \in \mathcal{J}^{\lambda}\{F\}$ at each point of \mathcal{P}°; thus \mathcal{F} is a linear subspace of $\mathcal{O}^{\lambda}\left(\mathcal{P}^{c}\right)$. By Proposition $8.3, \mathcal{F}$ is complete with respect to the metric $d^{\lambda}(f . g)$. so that \mathcal{F} is a Fréchet space.

Next we consider the continuous linear mapping φ from $\mathcal{O}^{\nu}\left(\mathcal{P}^{c}\right)$ to \mathcal{F} given by

$$
\uparrow: A(p)=\left(A_{1}(p) \ldots, A_{\nu}(p)\right) \rightarrow H(p)=A_{1}(p) F_{1}(p)+\cdots+A_{\nu}(p) F_{\nu}(p)
$$

By Theorem 8.11, φ is surjective. Thus, the open mapping theorem can be applied to φ.

We fix $\rho, 0<\rho<1$. and let $\delta_{\rho}=\left\{A(p) \in \mathcal{O}^{\prime \prime}\left(\mathcal{P}^{\circ}\right) \mid d^{\prime \prime}(A, 0)<\rho\right\}$. By Proposition 8.2, there exists $M_{\rho}>0$ such that $\|A(p)\|<M_{\rho}$ on U for all $A(p) \in \delta_{\rho}$. Since $\psi\left(\delta_{\rho}\right)$ is an open neighborhood of the zero vector in \mathcal{F}, there exists $\eta, 0<$ $\eta<1$. such that $V_{\eta}=\{H(p) \in \mathcal{F} \mid\|H(p)\|<\eta\} \subset \varphi\left(\delta_{\rho}\right)$. We show that $K:=$ $M_{\rho} / \eta>0$ satisfies the conclusion of the theorem. To prove this, we may assume that $H(p)$ satisfies $\|H(p)\| \leq 1$ on \mathcal{P}^{c}. We then have $d^{\lambda}(\eta H, 0) \leq \eta /(1+\eta)<\eta$. so that we can find $A(p)=\left(A_{1}(p) \ldots, A_{\nu}(p)\right) \in \delta_{\rho}$ such that $\varphi(A)=\eta H$ on \mathcal{P}°. Consequently:

$$
\begin{aligned}
& H(p)=\frac{A_{1}(p)}{\eta} F_{1}(p)+\cdots+\frac{A_{1}(p)}{\eta} F_{\nu}(p), \quad p \in \mathcal{P}^{0}: \\
& \|A(p) / \eta\| \leq M_{\rho} / \eta=K, \quad p \in U
\end{aligned}
$$

which proves the theorem.
8.4.5. Applications of Quantitative Estimates. We give some applications of Theorem 8.16 (Problem C_{1} with quantitative estimates) concerning the existence of a subglobal normal model of a Stein space \mathcal{V} and of a subglobal pseudobase of an $\mathcal{O}^{\boldsymbol{\lambda}}$-module on \mathcal{V} having a locally finite pseudobase at each point in \mathcal{V}.

1. Subglobal normal model

Let \mathcal{V} be an analytic space. Let \mathcal{P} be an analytic polyhedron in \mathcal{V} with defining functions on all of \mathcal{V}. We showed that \mathcal{P} has a normal nodel Σ in a polydisk $\bar{\Delta}$ in \mathbf{C}^{m} via the mapping $\Phi: p \in \mathcal{P} \rightarrow z=\Phi(p)=\left(\varphi\left(p_{1}\right) \ldots . \varphi_{m}(p)\right) \in \Sigma$, where $\varphi_{j}(p)(j=1, \ldots, m)$ is a holomorphic function in a domain G in \mathcal{V}. In general. we cannot assume that $\vartheta_{j}(p)$ is holomorphic on all of \mathcal{V}. However. if \mathcal{V} is a Stein space, this is possible.

Let \mathcal{V} be an analytic space of dimension n. Let $\mathcal{P}:\left.\right|_{\hat{\gamma} j}(p) \mid \leq 1(j=1 \ldots, m)$ be an analytic polyhedron in \mathcal{V} where $\varphi_{j}(p)(j=1, \ldots, m)$ is a holomorphic function
on a domain G with $\mathcal{P} \subset \subset G \subset \mathcal{V}$ such that

$$
\Phi: z_{j}=\varphi_{j}(p)(j=1, \ldots, m), \quad p \in \mathcal{P} .
$$

is a normal model $\Sigma=\boldsymbol{\Phi}(p)$ in the closed unit polydisk $\bar{\Delta}$ in \mathbf{C}^{m}.
Let $0<\alpha<1$ and $0<c<1$. Let $\dot{\psi}_{j}(p)(j=1, \ldots, m)$ be holomorphic functious in a domain $G_{1}, \mathcal{P} \subset \subset G_{1} \subset G$. such that

$$
\begin{equation*}
\left|\psi_{j}(p)-\dot{\psi}_{j}(p)\right|<\epsilon . \quad p \in \mathcal{P} . \tag{8.12}
\end{equation*}
$$

If $\epsilon>0$ is sufficiently small relative to a. then the set

$$
\mathcal{P}^{*}:=\left\{p \in G_{1}| | \mathcal{U}_{J}(p) \mid \leq 1-\alpha, j=1, \ldots, m\right\}
$$

is an analytic polyhedron in \mathcal{V} such that $\mathcal{P}^{*} \subset \subset \mathcal{P}^{\circ}$. We consider the inage

$$
\Sigma^{*}: w_{j}=\psi_{j}(p)(j=1, \ldots, m), \quad p \in \mathcal{P}^{*}
$$

in the polydisk $\bar{\Delta}^{*}:\left|w_{j}\right| \leq 1-\alpha$ in $\mathbf{C}_{w^{m}}^{m}$, and we set

$$
\Psi: p \in \mathcal{P}^{*} \rightarrow w=\Psi(p)=\left(\psi_{1}(p) \ldots, v_{m}(p)\right) \in \Sigma^{*}
$$

We obtain the following stability result concerning the normal model.
Lemma 8.6. For sufficiently small $\epsilon>0, \Sigma^{-}$(as well as Σ in $\bar{\Delta}$) is a normal model in $\bar{\Delta}^{\bullet}$.

Proof. Take a polydisk $\bar{\Delta}_{1} \subset \subset \Delta$ such that $\mathcal{P}^{*} \subset \subset \Phi^{-1}\left(\Sigma \cap \bar{\Delta}_{1}\right)$. By Theorem 8.15 and (8.12), there exist a constant $K>0$ (depending on $\bar{\Delta}_{1}$) and a holomorphic function $F_{j}(z)(j=1, \ldots, m)$ in $\bar{\Delta}$ such that

$$
\begin{align*}
F_{j}(\Phi(p)) & =\psi_{j}(p)-p_{j}(p) . \quad p \in \mathcal{P}^{\circ} . \\
\left|F_{j}(z)\right| & \leq K \epsilon, \quad z \in \bar{\Delta}_{1} . \tag{8.13}
\end{align*}
$$

We consider the following analytic mapping from Δ into \mathbf{C}_{u}^{m} :

$$
T: w_{j}=z_{j}+F_{j}(z) \quad(j=1, \ldots, m)
$$

For $\epsilon>0$ sufficiently small, it follows from (8.13) that T is injective on $\bar{\Delta}_{1}$ with $\bar{\Delta}^{*} \subset T\left(\bar{\Delta}_{1}\right)$, and $T(\Phi(p))=\Psi(p)$ on $\mathcal{P}^{*} ;$ i.e., $\left.T(\Sigma)\right|_{T^{-1}\left(\Sigma^{\cdot}\right)}=\Sigma^{*}$.

Now let $f(p)$ be a weakly holomorphic function at a point p_{0} on Σ^{*}. We set $\tilde{p}_{0}=T^{-1}\left(p_{0}\right)$ and $\tilde{f}=f \circ T$, which is a weakly holoniorphic function at the point \tilde{p}_{0} on Σ. Since Σ is normal at \tilde{p}_{0} on Σ, we can find a holomorphic function $F(z)$ in a neighborhood δ of \tilde{p}_{0} in $\bar{\Delta}$ such that $\left.F\right|_{\text {घ } \cap \delta}=\left.\tilde{f}\right|_{\text {:. }: ~} \delta$. If we set $H\left(u^{\prime}\right)=F\left(T^{-1}(w)\right)$ for $w \in \delta^{*}:=T(\delta)$ (so that δ^{*} is a neighborhood of p_{0} in $\bar{\Delta}^{*}$), then $H(w)$ is a holomorphic function on δ^{*} with $\left.H\right|_{\Sigma \cdot \cap \delta^{\circ}}=\left.F\right|_{\Sigma \cap \delta}=\left.\bar{f}\right|_{\Sigma \cap \delta}=\left.f\right|_{\Sigma \cdot \cap \delta^{\prime}}$. Thus, $f(p)$ is holomorphic at the point p_{0}. Therefore, Σ^{*} is a normal model of \mathcal{P}^{*} in $\bar{\Delta}^{*}$.

This result, combined with Runge's theorem in a Stein space, yields the following theorem.

Theorem 8.17 (Subglobal normalization). Let \mathcal{V} be a Stein space and let \mathcal{P} be an analytic polyhedron in \mathcal{V} with defining functions on all of \mathcal{V}. Then \mathcal{P} has a normal model $\bar{\Sigma}: w_{j}=\dot{\psi}_{j}(p)(j=1, \ldots, \mu)$ in a polydisk $\bar{\Delta}$ in \mathbf{C}^{μ}, where $\psi_{j}(p)$ $(j=1, \ldots, \mu)$ is a holomorphic function on \mathcal{V}.

Proof. By Theorem 8.1, \mathcal{P} has a normal model $\Sigma: z_{j}=\eta_{j}(p)(j=1, \ldots, m)$. $p \in \mathcal{P}$ in the closed unit polydisk $\bar{\Delta}^{m}$ in \mathbf{C}^{m}, where $\varphi_{j}(p)(j=1 \ldots, m)$ are holomorphic functions in a domain $G, \mathcal{P} \subset \subset G \subset \mathcal{V}$. By taking a smaller domain, if necessary, we can take $\eta>0$ sufficiently small so that, if we set $\mathcal{P}_{\eta}:\left|\varphi_{j}(p)\right| \leq 1+\eta$ $(j=1, \ldots, m)$, then $\mathcal{P} \subset \subset \mathcal{P}_{\eta} \subset \subset G$ and $\Sigma_{\eta}: z_{j}=\varphi_{j}(p)(j=1, \ldots, m)$ is a normal inodel of $\mathcal{P}_{\boldsymbol{\eta}}$ in $\bar{\Delta}_{\eta}:\left|z_{j}\right| \leq 1+\eta(j=1, \ldots, m)$. Fix $\epsilon>0$. Since the pair ($\mathcal{P}_{\boldsymbol{\eta}}, \mathcal{V}$) satisfies Runge's theorem (Corollary 8.2). we can find a holomorphic function $\psi_{j}(p)(j=1, \ldots m)$ on \mathcal{V} such that

$$
\left|\dot{\psi}_{\jmath}(p)-\hat{f}_{\jmath}(p)\right|<\epsilon \text { on } \mathcal{P}_{\eta} .
$$

If $\epsilon>0$ is sufficiently small, then $\mathcal{P}^{\bullet}:\left|\psi_{j}(p)\right| \leq 1+\eta / 2(j=1, \ldots, m)$ is an analytic polyhedron in G with $\mathcal{P} \subset \mathcal{P}^{\boldsymbol{0}}$. Furthermore. Lemma 8.6 implies that $\Sigma^{*}: w_{j}=\psi_{j}(p)(j=1, \ldots, m)$ is a normal model of \mathcal{P}^{*} in the polydisk $\bar{\Delta}_{\eta / 2}:=$ $\left|w_{j}\right| \leq 1+\eta / 2(j=1 \ldots \ldots m)$ in \mathbf{C}_{m}^{m}. The theorem is proved by setting

$$
\widehat{\Sigma}: \quad w_{j}=w_{j}(p)(j=1, \ldots, m)
$$

in the polydisk $\bar{\Delta}_{\eta / 2}$ in \mathbf{C}^{m}.

2. Subglobal finite pseudobase

Let \mathcal{V} be an analytic space and let \mathcal{J}^{λ} be an \mathcal{O}^{λ}-module on \mathcal{V}. We say that \mathcal{J}^{λ} has a subglobal finite pseudobase in \mathcal{V} if \mathcal{J}^{λ} satisfies the following condition. Let E be an arbitrary compact set in \mathcal{V}. Then there exist a finite number of holomorphic vector-valued functions $F_{k}(p)(k=1 \ldots, \nu)$ of rank λ on \mathcal{V} such that:

1. Each $F_{k}(p)(k=1, \ldots, \nu)$ belongs to \mathcal{J}^{λ} at each point of \mathcal{V}.
2. \mathcal{J}^{λ} is generated by $F_{k}(p)(k=1 \ldots . \nu)$ on E, i.e.. if we let $\mathcal{J}^{\lambda}\{F\}$ denote the \mathcal{O}^{λ}-module generated by $F_{k}(p)(k=1, \ldots, \nu)$, then $\mathcal{J}^{\lambda}\{F\}$ is equivalent to \mathcal{J}^{λ} on E.

Then we have the following theorem.
Theorem 8.18. Let \mathcal{V} be a Stein space and let \mathcal{J}^{λ} be an \mathcal{O}^{λ}-module on \mathcal{V} which has a locally finite pseudobase at each point in \mathcal{V}. Then \mathcal{J}^{λ} has a subglobal finite pseudobase in \mathcal{V}.

To prove this we prove the following lemma on the stability of a pseudobase.
Lemma 8.7. Let \mathcal{P} be a closed analytic polyhedron in \mathcal{V} with defining functions in a domain $U \subset \mathcal{V}$. Let $F_{f}(p)(j=1 \ldots . \nu)$ be a holomorphic vector-valued function of rank λ on \mathcal{P} and let $\mathcal{J}^{\lambda}\{F\}$ denote the \mathcal{O}^{λ}-module generated by $F_{j}(p)$ $(j=1, \ldots, \nu)$ on \mathcal{P}. Let $\epsilon>0$ and let $F_{j}^{*}(p)(j=1, \ldots, \nu)$ be a holomorphic vector-valued function of rank λ on \mathcal{P} such that $F_{j}^{*}(p) \in \mathcal{J}^{\lambda}\{F\}$ at each point of \mathcal{P} and

$$
\begin{equation*}
\left\|F_{j}^{*}(p)-F_{j}(p)\right\|<\epsilon \quad(j=1, \ldots, \nu) \quad \text { for } p \in \mathcal{P} \tag{8.14}
\end{equation*}
$$

Then for $\epsilon>0$ sufficiently small, the \mathcal{O}^{λ}-module $\mathcal{J}^{\lambda}\left\{F^{*}\right\}$ generated by $F^{*}(p)(j=$ $1, \ldots, \nu)$ is equivalent to $\mathcal{J}^{\lambda}\{F\}$ on \mathcal{P}.

Proof. Let $\mathcal{P}:\left|\varphi_{j}(p)\right| \leq 1(j=1, \ldots, m)$ with $\mathcal{P} \subset \subset U$, where $\varphi_{j}(p)$ $(j=1, \ldots, m)$ is a holomorphic function on U. We take $\eta>0$ sufficiently small so that $\mathcal{P}_{\eta} \subset \subset U$, where $\mathcal{P}_{\eta}:\left|\varphi_{j}(p)\right| \leq 1+\eta(j=1, \ldots, m)$ and $F_{j}^{*}(p) \in \mathcal{J}^{\lambda}\{F\}$ $(j=1, \ldots, \nu)$ at each point of \mathcal{P}_{η}. By Theorem 8.4, there exists a holomorphic
vector-valued function $A^{(j)}(p)=\left(A_{1}^{(j)}(p) \ldots, A_{\nu}^{(j)}(p)\right)(j=1 \ldots ., m)$ of rank ν on \mathcal{P}_{η} such that, for $j=1, \ldots, \nu$,

$$
F_{j}^{*}(p)-F_{j}(p)=A_{1}^{(J)}(p) F_{1}(p)+\cdots+A_{\nu}^{(j)}(p) F_{\nu}(p) . \quad p \in \mathcal{P}_{\eta}
$$

We may assume that each $A^{(j)}(p)$ on \mathcal{P}_{η} satisfies $\left\|A^{(j)}(p)\right\|<K$ e on \mathcal{P} for some constant $K>0$ (depending on \mathcal{P}_{η} and $\mathcal{P} \subset \subset \mathcal{P}_{\eta}^{0}$ but not on f) by Theorem 8.16 and (8.14). Therefore, by taking a smaller $\epsilon>0$ if necessary. we can write $F_{j}(p)$ $(j=1, \ldots, \nu)$ in the form

$$
\begin{gathered}
F_{j}(p)=B_{1}^{(\jmath)}(p) F_{1}^{*}(p)+\cdots+\left(1+B_{j}^{(j)}(p)\right) F_{j}^{*}(p)+\cdots+B_{\nu}^{(j)}(p) F_{\nu}^{*}(p) \\
(j=1, \ldots, \nu), \quad p \in \mathcal{P} .
\end{gathered}
$$

where each $B_{k}^{(j)}(p)(j, k=1, \ldots, \nu)$ is a uniformly small holomorphic function on \mathcal{P}. It follows that $\mathcal{J}^{\lambda}\left\{F^{*}\right\}$ is equivalent to $\mathcal{J}^{\lambda}\{F\}$ on \mathcal{P}.

Proof of Theorem 8.18. Let $E \subset \subset \mathcal{V}$ be given. We take an analytic polyhedron \mathcal{P} in \mathcal{V} with defining functions on \mathcal{V} such that $E \subset \subset \mathcal{P}^{\circ}$. By Theorem 8.6, we can find a finite number of holomorphic vector-valued functions $F_{j}(p)$ ($j=1, \ldots, \nu$) of rank λ on \mathcal{P} such that the \mathcal{O}^{λ}-module $\mathcal{J}^{\lambda}\{F\}$ generated by the $F_{j}(p)(j=1, \ldots, \nu)$ is equivalent to \mathcal{J}^{λ} on \mathcal{P}. Given $\subset>0$, by Lemma 8.5 we can find a holomorphic vector-valued function $F_{j}^{*}(p)(j=1 \ldots, \nu)$ of rank λ on \mathcal{V} such that $F_{j}^{*}(p) \in \mathcal{J}^{\lambda}$ at each point of \mathcal{P} and $\left\|F_{j}^{*}(p)-F_{j}(p)\right\|<\epsilon$ on \mathcal{P}. By Lemma 8.7, for sufficiently small $\epsilon>0$, the \mathcal{O}^{λ}-module $\mathcal{J}^{\lambda}\left\{F^{*}\right\}$ generated by $F_{j}^{*}(p)(j=1, \ldots, \nu)$ on \mathcal{V} is equivalent to $\mathcal{J}^{\lambda}\{F\}$ on \mathcal{P}. It follows that \mathcal{J}^{λ} has a subglobal finite pseudobase in \mathcal{V}.

3. Representation of meromorphic functions

Let \mathcal{V} be a Stein space and let $g(p)$ be a meromorphic function on \mathcal{V}. To be precise, $g(p)$ is a single-valued holomorphic function on \mathcal{V} except for at most an analytic hypersurface Σ : and, at any point $q \in \mathcal{V}$, there exist two holomorphic functions $h_{q}(p)$ and $k_{q}(p)$ on a neighborhood δ_{q} of q in \mathcal{V} such that $h_{q}(p)$ and $k_{q}(p)$ are relatively prime on δ_{q} and $g(p)=h_{q}(p) / k_{q}(p)$ on δ_{q}. To be precise, this means that for $q_{1}, q_{2} \in \mathcal{V}$ with $\delta_{q_{1}} \cap \delta_{q_{2}} \neq \emptyset . h_{q_{1}}(p)\left(k_{q_{1}}(p)\right)$ has the same zero set, counted with multiplicity, as $h_{q_{2}}(p)\left(k_{q_{2}}(p)\right)$ in the sense that both $h_{q_{1}}(p) / h_{q_{2}}(p)$ and $k_{q_{1}}(p) / k_{q_{2}}(p)$ can be holomorphically extended to non-zero holomorphic functions on $\delta_{q_{1}} \cap \delta_{q_{2}}$. Hence the data determined by the denominators $\left\{\left(k_{q}(p), \delta_{q}\right)\right\}_{q \in \mathcal{V}}$ defines a Cousin II distribution \mathcal{C} on \mathcal{V}. If the distribution \mathcal{C} admits a solution $K(p)$ of the Cousin II problem on \mathcal{V}. then $H(p)=K(p) \cdot g(p)$ is a single-valued holomorphic function on \mathcal{V}. It follows that $g(p)=H(p) / K(p)$ on \mathcal{V}, where $H(p)$ and $K^{\prime}(p)$ are relatively prime at each point in \mathcal{V} (i.e.. this is a solution of the Poincaré problem for $g(p)$). As shown in Chapter 3. the Cousin II problem cannot always be solved, even in a product domain in $\mathrm{C}^{\mathbf{2}}$. However, using Theorem 8.18 regarding \mathcal{O}-ideals, we have the following theorem.

Theorem 8.19. Any meromorphic function $g(p)$ on a Stein space \mathcal{V} can be represented in the form $g(p)=H(p) / K(p)$ on \mathcal{V}, where $H(p)$ and $K(p)$ are holomorphic functions on \mathcal{V} (which are not necessarily relatively prime at each point of $\mathcal{V})$.

Proof. We use the notation $h_{q}(p), k_{q}(p), \delta_{q}(q \in \mathcal{V})$ associated with $g(p)$. For a fixed point $q \in \mathcal{V}$, we consider the \mathcal{O}-ideal \mathcal{I}_{q} generated by the function $k_{q}(p)$ on δ_{q}. If $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{V}$ with $\delta_{q_{1}} \cap \delta_{q_{2}} \neq \emptyset$, then $\mathcal{I}_{q_{1}}$ and $\mathcal{I}_{q_{2}}$ are equivalent on $\delta_{q_{1}} \cap \delta_{\boldsymbol{q}_{2}}$ (since $k_{q_{2}}(p)=\left(h_{q_{2}}(p) / h_{q_{1}}(p)\right) k_{q_{1}}(p)$ on $\delta_{q_{1}} \cap \delta_{q_{2}}$, where $h_{q_{2}}(p) / h_{q_{1}}(p)$ is a nonzero holomorphic function on $\delta_{q_{1}} \cap \delta_{q_{2}}$). Thus, the collection \mathcal{I} of the the \mathcal{O}-ideals $\left\{\mathcal{I}_{q}\right\}_{q \in \mathcal{V}}$ becomes an \mathcal{O}-ideal on \mathcal{V} which has a locally finite pseudobase (indeed, one element) at each point in \mathcal{V}. We let Σ denote the zero set of the \mathcal{O}-ideal \mathcal{I} on \mathcal{V}, i.e., Σ consists of the pole set together with the points of indeterminacy of $g(p)$ in \mathcal{V}. If $\Sigma=\emptyset$, there is nothing to prove. If $\Sigma \neq \emptyset$, then Theorem 8.18 implies that there exists a holomorphic function $K(p)$ on \mathcal{V} such that $K(p) \not \equiv 0$ on \mathcal{V} and $K(p) \in \mathcal{I}$ at each point of \mathcal{V}. Thus, $K(p)=c_{q}(p) \cdot k_{q}(p)$ near a point $q \in \mathcal{V}$, where $c_{q}(p)$ is a holomorphic function in a neighborhood δ_{q}^{\prime} of q (where $c_{q}(p)$ may have zeros in δ_{q}^{\prime}). If we set $H(p)=g(p) \cdot K(p)$ on \mathcal{V}, then $H(p)$ is a single-valued holomorphic function on \mathcal{V}, so that $g(p)=H(p) / K(p)$ on \mathcal{V}.

8.5. Representation of a Stein space

In this section we show that a Stein space \mathcal{V} of dimension n can be realized as an analytic set in $\mathbf{C}^{2 n+1}$, and as a distinguished ramified domain over \mathbf{C}^{n} (this will be defined in 8.5.2). The results in this section are due to E. Bishop [3].
8.5.1. Distinguished Analytic Polyhedra. Let \mathcal{V} be an analytic space of dimension n and let $U \subset \mathcal{V}$ be a domain. Let \mathcal{P} be an analytic polyhedron in \mathcal{V} whose defining functions are defined in U; i.e., there exist a finite number of holomorphic functions $\varphi_{j}(p)(j=1, \ldots, \nu)$ in U such that \mathcal{P} consists of a finite number of compact, connected components of the set $U_{\varphi}:=\bigcap_{j=1}^{\nu}\left\{p \in U| | \varphi_{j}(p) \mid \leq\right.$ $1\}$. We consider the closed unit polydisk $\bar{\Delta}$ in $\mathbf{C}^{\boldsymbol{\nu}}$,

$$
\bar{\Delta}:\left|z_{j}\right| \leq 1(j=1, \ldots, \nu)
$$

and the mapping

$$
\Phi: p \in \mathcal{P} \rightarrow z=\left(\varphi_{1}(p), \ldots, \varphi_{\nu}(p)\right) \in \bar{\Delta}
$$

We set $\Sigma=\boldsymbol{\Phi}(\mathcal{P})$, which is an analytic set in $\bar{\Delta}$ with $\partial \Sigma \subset \partial \Delta$. Since \mathcal{P} satisfies the separation condition, \mathcal{P} does not contain any compact analytic set of positive dimension. Thus, $\nu \geq n$ and Σ is of dimension n. Moreover, for each $z \in \Sigma, \Phi^{-1}(z)$ consists of a finite number d of points in \mathcal{P}, where d is the same for all $z \in \Sigma$ except perhaps for an analytic set of dimension at most $n-1$. If $\nu=n$, we say that \mathcal{P} is a distinguished analytic polyhedron in \mathcal{V} (whose defining functions are defined on U). Then $\Sigma=\Delta$, and \mathcal{P} is mapped in a one-to-one fashion onto a finitely sheeted, ramified domain \mathcal{D} over $\bar{\Delta}$ without relative boundary.

By definition, at any point of the analytic space \mathcal{V}, there exists a distinguished analytic polyhedron neighborhood V of p in \mathcal{V}.

We have the following proposition, which is of fundamental importance in this section.

Proposition 8.4. Let \mathcal{V} be an analytic space of dimension n and let $U \subset \mathcal{V}$ be a domain. Let \mathcal{P} be an analytic polyhedron in \mathcal{V} whose defining functions are defined on U. Let K be a compact set in \mathcal{V} such that $K \subset \subset \mathcal{P}^{0}$ (the interior of \mathcal{P} in \mathcal{V}) and let W be a domain in \mathcal{V} such that $\mathcal{P} \subset W \subset \subset U$. Then there exists a distinguished analytic polyhedron Q in \mathcal{V}, whose defining functions are defined in U, such that $K \subset \subset \mathcal{Q}^{\circ} \subset \subset W$.

To prove this we need the following two lemmas.
Lemma 8.8. Under the same notation as in Proposition 8.4, we write the analytic polyhedron \mathcal{P} as a finite union of compact, connected components of the set

$$
U_{\varphi}:=\bigcap_{j=1}^{\nu}\left\{p \in U| | \varphi_{j}(p) \mid \leq 1\right\},
$$

where $\varphi_{j}(p)(j=1, \ldots, \nu)$ is a nonconstant holomorphic function in U. We set

$$
\sigma=\left\{p \in U \mid \varphi_{1}(p)=0\right\}
$$

which is an analytic hypersurface in U. Assume $\nu \geq n+1$. Then for any $\varepsilon>0$, there exists a holomorphic function $\psi_{j}(p)(j=2, \ldots, \nu)$ on U such that
(i) $\left|\varphi_{j}(p)-\psi_{j}(p)\right|<\varepsilon \quad(j=2, \ldots, \nu)$ on W, and
(ii) for any $a=\left(a_{1}, \ldots, a_{\nu-1}\right) \in \mathbf{C}^{\nu-1}$, the set

$$
S_{a}:=\left\{p \in W \backslash \sigma \left\lvert\, \frac{\psi_{k+1}(p)}{\varphi_{1}(p)}=a_{k}(k=1, \ldots, \nu-1)\right.\right\}
$$

consists of at most a finite number of points in W.
Proof. We consider $\mathrm{C}^{\nu+n}$ with variables z_{1}, \ldots, z_{ν} and w_{1}, \ldots, w_{n}. Noting that $\nu \geq n+1$, we consider the following set in $\mathbf{C}^{\nu+n}$:

$$
\Sigma^{\bullet}: z_{j}=\varphi_{j}(p)(j=1, \ldots, \nu), w_{k}=\frac{\varphi_{k+1}(p)}{\varphi_{1}(p)}(k=1, \ldots, n), p \in U \backslash \sigma ;
$$

this is an n-dimensional analytic set in the domain $D \backslash\left\{z_{1}=0\right\}$, where

$$
D=\left\{(z, w) \in \mathbf{C}^{\nu+n}:\left|z_{j}\right|<1(j=1, \ldots, \nu), w \in \mathbf{C}^{n}\right\} .{ }^{9}
$$

By Theorem 2.3, there exists a coordinate system $Z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{\nu}^{\prime}, w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right)$ sufficiently close to the original coordinate system $Z=\left(z_{1}, \ldots, z_{\nu}, w_{1}, \ldots, w_{n}\right)$ such that Σ^{*} satisfies the Weierstrass condition for $\left(w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right)$ at each point of Σ^{*}; i.e., the projection π_{n} of Σ^{*} onto $\mathbf{C}_{w_{1}^{\prime}, \ldots, w_{n}^{\prime}}$ has the property that for any $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{C}^{n}$, the set $\pi_{n}^{-1}(a)$ is isolated in Σ^{*}. Here, $Z^{\prime}=A Z$, where A is a $(\nu+n, \nu+n)$ matrix sufficiently close to the unit matrix $E_{\nu+n . \nu+n}$. This means that if we set $A=\left(\delta_{i, j}+\varepsilon_{i, j}\right)_{i, j}$, where $\delta_{i, j}$ is the Kronecker delta and $\left|\varepsilon_{i, j}\right| \ll 1$, then the set of points p in U with

$$
\left\{\begin{array}{rll}
\varepsilon_{1, \nu+1} \varphi_{1}(p) & +\cdots+\varepsilon_{\nu, \nu+1} \varphi_{\nu}(p)+\left(1+\varepsilon_{\nu+1, \nu+1}\right) \frac{\varphi_{2}(p)}{\varphi_{1}(p)} & \tag{*}\\
& +\cdots+\varepsilon_{\nu+n, \nu+n} \frac{\varphi_{n+1}(p)}{\varphi_{1}(p)} & =a_{1} \\
& \vdots & \vdots \\
\varepsilon_{1, \nu+n} \varphi_{1}(p) & +\cdots+\varepsilon_{\nu, \nu+n} \varphi_{\nu}(p)+\varepsilon_{\nu+1, \nu+n} \frac{\varphi_{2}(p)}{\varphi_{1}(p)} & \\
& +\cdots+\left(1+\varepsilon_{\nu+n, \nu+n}\right) \frac{\varphi_{\nu+1}(p)}{\varphi_{1}(p)} & =a_{n}
\end{array}\right.
$$

is isolated in U. Therefore, if we define, for $p \in U$,

$$
\begin{aligned}
& \psi_{j}(p):=\varphi_{j}(p)+\varphi_{1}(p) \sum_{k=1}^{\nu} \epsilon_{k, \nu+j} \varphi_{k}(p)+\sum_{l=1}^{n} \epsilon_{\nu+l, \nu+j} \varphi_{l+1}(p)(j=2, \ldots, n+1), \\
& \psi_{j}(p):=\varphi_{j}(p)(j=n+2, \ldots, \nu)
\end{aligned}
$$

[^43]then $\left|\imath_{j}(p)-\psi_{j}(p)\right|<\varepsilon(j=2, \ldots, \nu)$ on W^{\prime} (for we can choose $\varepsilon_{i, j}$ sufficiently small relative to $\varepsilon>0$). Equation (*) and the condition $\nu-1 \geq n$ imply that, given $a=\left(a_{1}, \ldots, a_{n}, \ldots, a_{\nu-1}\right) \in \mathbf{C}^{\nu-1}$, the set of points p in U such that $\frac{v_{1}+1(p)}{\nu_{1}(p)}=$ $a_{j}(j=1, \ldots, \nu-1)$ is isolated in U.

To prove Proposition 8.4, using Lemma 8.8 we may assume that for any (a_{2}, \ldots. $\left.a_{\nu}\right) \in \mathbf{C}^{\nu-1} \backslash \sigma$. the analytic set in U defined by

$$
\begin{equation*}
\frac{\varphi_{j}(p)}{\varphi_{1}(p)}=a, \quad(j=2, \ldots, \nu) \tag{8.15}
\end{equation*}
$$

has dimension 0 .
Given a number $r>1$ and an integer $N \geq 1$. we set

$$
F_{k}(p):=\left(r_{\varphi_{1}}(p)\right)^{\cdot v}-\left(r_{\varphi_{k}}(p)\right)^{N} \quad(k=2, \ldots, \nu)
$$

which is a holomorphic function on U, and we set

$$
E_{r . N}:=\left\{p \in U:\left|F_{k}(p)\right| \leq 1 \quad(k=2, \ldots, \nu)\right\}
$$

so that $E_{r_{1}, v}$ is a closed subset of U defined by $\nu-1$ holomorphic functions in U.
We have the following lemma.
Lemma 8.9. Under the same notation as in Proposition 8.4, if $r>1$ is suffciently close to 1 and $N=N(r) \geq 1$ is sufficiently large, then there exist a finite number of connected components Q_{j} of $E_{r . N}$ whose union $Q=\bigcup Q_{j}$ satisfies

$$
\begin{equation*}
K \subset \subset \mathbb{Q}^{\circ} \subset \subset \mathbb{W} \tag{8.16}
\end{equation*}
$$

where \mathcal{Q}° denotes the interior of \mathcal{Q} in \mathcal{V}. Then \mathcal{Q} is an analytic polyhedron in U which satisfies condition (8.16) and is defined by $\nu-1$ holomorphic functions $F_{k}(p)(k=2, \ldots, \nu)$ in U.

Proof. We fix a domain V with smooth boundary ∂V in W such that

$$
\mathcal{P} \subset \subset V \subset \subset W
$$

Since K is a compact set in \mathcal{P}^{0}, we can choose $r>1$ sufficiently close to 1 so that $\left|r_{p_{j}}(p)\right|<1(j=1, \ldots, \nu)$ on K. Therefore, there exists an integer N_{0} such that $K \subset \subset E_{r, N}^{0}$ (the interior of $E_{r, N}$) for all $N \geq N_{0}$. We let $\mathcal{Q}_{r . N}$ denote the smallest union of connected components of $E_{r . N}$ which contains K. To prove the lemma, it suffices to show that

$$
\begin{equation*}
\mathcal{Q}_{r, N} \subset V \text { for sufficiently large } N \tag{8.17}
\end{equation*}
$$

We prove this by contradiction: thus we assume there exist an infinite number of integers $N \geq N_{0}$ such that $\mathcal{Q}_{r . N} \not \subset V$. For simplicity we write $E_{r, N}=E_{N}$ and $\mathcal{Q}_{r, N}=\mathcal{Q}_{N}$. For such N, since $K \subset \mathcal{Q}_{N}^{o} \cap \mathcal{P}^{\circ}$ and $\mathcal{P} \subset V$, there exists a (connected) real 1-dimensional arc γ in $\left(\mathcal{Q}_{N} \cap V\right) \backslash \mathcal{P}^{0}$ which connects a point $p_{N}^{\prime} \in \partial \mathcal{P}$ to a point $p_{N}^{\prime \prime} \in \partial V$.

Fix $q \in \gamma$. Since $q \notin \mathcal{P}^{o}$, we have $\left|\boldsymbol{\varphi}_{j}(q)\right| \geq 1$ for some $j(1 \leq j \leq \nu)$. Using the fact that $\gamma \subset \mathcal{Q}_{N}$, it follows that

$$
\left|r \varphi_{1}(q)\right|^{N} \geq\left|r_{\varphi_{j}}(q)\right|^{N}-1 \geq r^{N}-1>8 \pi N
$$

(for the last inequality is true if $N=N(r)$ is sufficiently large). Since $\left|F_{k}(q)\right| \leq$ $1(k=2, \ldots, \nu)$, we obtain

$$
\begin{equation*}
\left|1-\left(\frac{\varphi_{k}(q)}{\varphi_{1}(q)}\right)^{N}\right|=\frac{\left|F_{k}(q)\right|}{\left|r \varphi_{1}(q)\right|^{N}} \leq \frac{1}{\left|r \varphi_{1}(q)\right|^{N}} \leq \frac{1}{8 \pi N} \tag{8.18}
\end{equation*}
$$

In particular, setting $\delta=\left\{p \in U| | \varphi_{1} \mid<1 / 2\right\}$. which contains σ. we have $q \in U \backslash \delta$ (for $\left|\varphi_{j}(p)\right| \geq 1$). We define

$$
\Omega_{N}:=\left\{t \in \mathbf{C}_{t}| | 1-t^{N} \mid<1 / 8 \pi N\right\}
$$

which consists of N mutually disjoint sets $\omega_{i}^{N}(l=1, \ldots, N)$ about each $N^{\text {th }}$-root ε_{i}^{N} of unity. Fix $k \in\{2, \ldots, \nu\}$. Then inequality (8.18) implies that $\frac{\varphi_{k}(q)}{\hat{F}_{1}(q)} \in w_{i}^{N}$ for some $l(1 \leq l \leq N)$. Since $q \in \gamma$ is arbitrary and $\frac{\sum_{k}}{\gamma_{1}}(\gamma)$ is connected, it follows that $\frac{\rho_{k}}{\varphi_{1}}(\gamma) \subset \omega_{l}^{N}$ and $\rho_{1}(\gamma) \subset U \backslash \delta$. where l depends only on γ and k. By taking a subsquence of such N, if necessary, we can assume that ω_{i}^{*} approaches a point t_{k} with $\left|t_{k}\right|=1$ as $N \rightarrow \infty$. Consequently, there exist infinitely many connected real l-dimensional arcs γ_{N} (independent of $k=2, \ldots, \nu$) which connect a point $p_{N}^{\prime} \in \partial \mathcal{P}$ and a point $p_{N}^{\prime \prime} \in \partial V$ in $V \backslash \mathcal{P}^{0}$ such that $\frac{f_{k}}{\gamma_{i}}\left(\gamma_{N}\right) \rightarrow t_{k}(k=2, \ldots, \nu)$ in C_{t} as $N \rightarrow \infty$. Thus we can find a continuum Γ in $\left(\bar{V} \backslash \mathcal{P}^{0}\right) \cap(U \backslash \delta)$ which connects a point of $\partial \mathcal{P}$ and a point of ∂V such that $\frac{\hat{\gamma}_{k}}{\gamma_{2}}(\Gamma)=t_{k}(k=2 \ldots, \nu)$. This contradicts (8.15), and (8.17) is proved.

Proof of Proposition 8.4. If we repeat Lemmas 8.8 and $8.9(\nu-n)$ times, then we obtain Proposition 8.4.

Using Proposition 8.4 we obtain the following proposition.
Proposition 8.5. Let \mathcal{V} be a Stein space. Then there exists a sequence of distinguished analytic polyhedra $\mathcal{P}_{n}(n=1,2, \ldots)$ in \mathcal{V} whose defining functions are defined in \mathcal{V} and such that

$$
\begin{equation*}
\mathcal{P}_{k} \subset \subset \mathcal{P}_{k+1}^{o} \quad(k=1,2, \ldots), \quad \mathcal{V}=\lim _{k \rightarrow x} \mathcal{P}_{k} \tag{8.19}
\end{equation*}
$$

Proof. We first take a sequence of analytic polyhedra $\mathcal{Q}_{k}(k=1,2, \ldots)$ in \mathcal{V} satisfying condition (8.19) whose defining functions are defined in \mathcal{V}. By Proposition 8.4, there exists a distinguished analytic polyhedron $\mathcal{R}_{k}(k=1,2, \ldots)$ in \mathcal{V} whose defining functions are defined in \mathcal{Q}_{k+1} and such that $\mathcal{Q}_{k} \subset \subset \mathcal{R}_{k}^{o} \subset \subset \mathcal{Q}_{k+1}$. Since each pair ($\mathcal{R}_{k}, \mathcal{Q}_{k+1}^{\circ}$) and ($\mathcal{Q}_{k+1}, \mathcal{V}$) satisfies the Runge theorem, we can find a distinguished analytic polyhedron \mathcal{P}_{k} in \mathcal{V} whose defining functions are defined in \mathcal{V} and such that $\mathcal{Q}_{k} \subset \subset \mathcal{P}_{k}^{o} \subset \subset \mathcal{Q}_{k+1}$. Thus $\mathcal{P}_{k}(k=1,2, \ldots)$ satisfies the conclusion of the proposition.
8.5.2. Distinguished Ramified Domains. Let \mathcal{D} be a ramified domain over \mathbf{C}^{n} and let $\pi: \mathcal{D} \rightarrow \mathbf{C}^{n}$ be the projection map. If, for any compact set K in \mathbf{C}^{n}, each connected component of $\pi^{-1}\left(K^{\prime}\right)$ is compact in \mathcal{D}. then we say that \mathcal{D} is a distinguished ramified domain over \mathbf{C}^{n}. It is clear that a distinguished ramified domain \mathcal{D} over \mathbf{C}^{n} is a Stein space if \mathcal{D} satisfies the separation condition. Indeed, from Theorem 9.3 in Chapter 9 we shall see that any distinguished ramified domain is a Stein space. Conversely, we have the following theorem.

Theorem 8.20. Let \mathcal{V} be a Stein space of dimension n. Then \mathcal{V} is holomorphically isomorphic to a distinguished ramified domain \mathcal{D} over $\mathbf{C}^{\boldsymbol{n}}$.

Proof. By Proposition 8.19 we can find a sequence of distinguished analytic polyhedra $\mathcal{P}_{k}(k=0,1, \ldots)$ in \mathcal{V} such that

$$
\mathcal{P}_{k} \subset \subset \mathcal{P}_{k+1}^{o} \quad(k=0.1, \ldots), \quad \mathcal{V}=\lim _{k \rightarrow \infty} \mathcal{P}_{k}
$$

where each $\mathcal{P}_{k}(k=0,1 \ldots)$ can be described as a finite union of compact connected components in \mathcal{V} of the set

$$
\mathcal{V}_{i k}:=\bigcap_{j=1}^{n}\left\{p \in \mathcal{V}| | \varphi_{j}^{(k)}(p) \mid \leq 1\right\}
$$

where $\varphi_{j}^{(k)}(p)(j=1, \ldots, n)$ is a nonconstant holomorphic function on \mathcal{V}.
Choose $\epsilon_{k}>0(k=1,2, \ldots)$ so that $\sum_{k=1}^{x} \epsilon_{k}<1$ and $p_{k}(k=1.2, \ldots)$ so that $p_{1}<p_{2}<\ldots$ and $\lim _{n \rightarrow x} p_{n}=\infty$. We set

$$
M_{0}=\max _{j=1 \ldots . n}\left\{\left|\psi_{j}^{(0)}(p)\right| \mid p \in \mathcal{P}_{1}\right\}>0
$$

and we set $c_{1}=p_{1}+M_{0}>0$. We can then choose an integer N_{1} such that

$$
\left|c_{1}\left(i_{j}^{(1)}(p)\right)^{N_{1}}\right|<\epsilon_{1} \quad(j=1, \ldots, n) \quad \text { on } \mathcal{P}_{0}
$$

since $\left|\varphi_{j}^{(1)}(p)\right|<1$ on the compact set \mathcal{P}_{0} in \mathcal{P}_{1}^{o}.
Consequently, if for $j=1 \ldots . n$ we define

$$
\psi_{j}^{(1)}(p):=\hat{\gamma}_{j}^{(0)}(p)+c_{1}\left(\psi_{j}^{(1)}(p)\right)^{._{1}} \text { on } \mathcal{V} .
$$

then $\psi_{j}^{(1)}(p)$ is a holomorphic function on \mathcal{V} which satisfies

$$
\left|\psi_{j}^{(1)}(p)-\varphi_{j}^{(0)}(p)\right|<\epsilon_{1} \quad(j=1 \ldots \ldots, n) \quad \text { on } \mathcal{P}_{0} .
$$

Furthermore,

$$
\left|\psi_{1}^{(1)}(p)\right|+\cdots+\left|\psi_{n}^{(1)}(p)\right| \geq p_{1} \quad \text { on } \partial P_{1}
$$

To see this, let $q \in \partial P_{1}$. Then $\left|\psi_{j}^{(1)}(q)\right|=1$ for some $j(1 \leq j \leq n)$, so that

$$
\left|\dot{\psi}_{j}^{(1)}(q)\right| \geq\left|c_{1}\left(\psi_{j}^{(1)}(q)\right)^{x_{1}}\right|-\left|\psi_{j}^{(0)}(q)\right| \geq c_{1}-M_{0}=p_{1}
$$

which proves the above inequality on ∂P_{1}.
We repeat the same procedure for $\psi_{j}^{(1)}(p)(j=1, \ldots, n)$ that we used for $\varphi_{j}^{(0)}(p)(j=1 \ldots, n)$ to obtain a holomorphic function $v_{j}^{(2)}(p)(j=1, \ldots, n)$ of the form $\psi_{j}^{(1)}(p)+c_{2}\left(\psi_{j}^{(2)}(p)\right)^{v_{2}}$ such that

$$
\begin{array}{ll}
\left|\psi_{j}^{(2)}(p)-\dot{\psi}_{j}^{(1)}(p)\right|<\epsilon_{2} & (j=1, \ldots . n) \\
\left|\dot{\psi}_{1}^{(2)}(p)\right|+\cdots+\left|\dot{\psi}_{n}^{(2)}(p)\right| \geq p_{2} & \text { on } \mathcal{P}_{1} \\
\partial \mathcal{P}_{2}
\end{array}
$$

We thus inductively obtain a sequence of holomorphic functions $\left\{v_{j}^{(k)}(p)\right\}_{k=0.1 \ldots}$. $(j=1, \ldots . n)$ (where we set $\psi_{j}^{(0)}(p)=\psi_{j}^{(0)}(p)(j=1, \ldots . n)$) of the form $\psi_{j}^{(k+1)}(p)$ $=\dot{\psi}_{j}^{(k)}(p)+c_{k+1}\left(\psi_{j}^{(k+1)}(p)\right)^{\dot{\nu}_{k+1}}(j=1, \ldots, n)$ and such that

$$
\begin{array}{ll}
\left|\psi_{j}^{(k+1)}(p)-\psi_{j}^{(k)}(p)\right|<\epsilon_{k+1} \quad(j=1, \ldots, n) & \text { on } \mathcal{P}_{k} \\
\left|\psi_{1}^{(k+1)}(p)\right|+\cdots+\left|\psi_{n}^{(k+1)}(p)\right| \geq p_{k+1} & \text { on } \partial \mathcal{P}_{k+1}
\end{array}
$$

We define

$$
H_{j}(p)=\varphi_{j}^{(0)}(p)+\sum_{k=0}^{\infty}\left(\psi_{j}^{(k+1)}(p)-\psi_{j}^{(k)}(p)\right) \quad(j=1, \ldots, n) \quad \text { on } \mathcal{V}
$$

Since this sum converges uniformly on each compact set in \mathcal{V}, it follows that $H_{j}(p)(j=1 \ldots, n)$ is a holomorphic function on \mathcal{V}. Moreover, if we fix $p \in$ $\partial P_{l}(l=1,2, \ldots)$, then we have

$$
\begin{aligned}
& \left|H_{1}(p)\right|+\cdots+\left|H_{n}(p)\right| \\
& \quad \geq\left|\dot{\psi}_{1}^{(l)}(p)\right|+\cdots+\left|\dot{\psi}_{n}^{(l)}(p)\right|-\sum_{j=1}^{n}\left(\sum_{k=1}^{\infty}\left|\psi_{j}^{(k+1)}(p)-v_{j}^{(k)}(p)\right|\right) \\
& \quad \geq p_{l}-\sum_{j=1}^{n}\left(\sum_{k=1}^{\infty} \epsilon_{k+1}\right) \geq p_{l}-n .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|H_{j}(p)\right| \geq \frac{p_{l}}{n}-1 \quad \text { for some } j(1 \leq j \leq n) \tag{8.20}
\end{equation*}
$$

where j depends on $p \in \partial \mathcal{P}_{l}$.
Consider the holomorphic mapping

$$
\Phi: p \in \mathcal{V} \rightarrow z=\left(H_{1}(p) \ldots, H_{n}(p)\right) .
$$

Then Φ maps \mathcal{V} bijectively onto a ramified domain $\mathcal{D}=\boldsymbol{\Phi}(\mathcal{V})$ over \mathbf{C}^{n}. We shall show that \mathcal{D} is a distinguished ramified domain over \mathbf{C}^{n}.

To see this, let K be a compact set in \mathbf{C}^{n} and fix a polydisk $Q:\left|z_{j}\right|<R(j=$ $1, \ldots, n)$ such that $K \subset \subset Q$. We choose an integer $l_{0} \geq 1$ such that $p_{l_{0}} / n-1>R$. Then (8.20) implies that $\Phi^{-1}(K) \cap \partial \mathcal{P}_{l}=\emptyset$ for $l \geq l_{0}$. Hence, each component \tilde{K} of $\Phi^{-1}(K)$ in \mathcal{V} is contained in $\mathcal{P}_{i_{0}}^{o}$ or in $\mathcal{P}_{l^{\prime}+1} \backslash \mathcal{P}_{l^{\prime}}^{\prime}$, for some $l^{\prime} \geq l_{0}$ (which depends on \dot{K}). Thus \bar{K} is compact in \mathcal{V}. Hence. \mathcal{D} is a distinguished ramified domain over $C^{\prime \prime}$.
8.5.3. Imbedding of a Stein Space. Any n-dimensional analytic set Σ in $C^{N}(N \geq n)$ can be regarded in a canonical manner as a Stein space \mathcal{V} on which the holomorphic functions correspond to the weakly holomorphic functions on Σ. Conversely, any Stein space of dimension n can be represented as an n-dimensional irreducible analytic set in \mathbf{C}^{N}, where $N=2 n+1 .{ }^{10}$ We prove this by first using Theorem 8.20 to prove the following theorein.

Theorem 8.21. Any Stein space \mathcal{V} of dimension n can be mapped holomorphically onto an n-dimensional analytic set Σ in \mathbf{C}^{n+1} in a one-to-one manner. except perhaps for an at most $(n-1)$-dimensional analytic set in \mathcal{V}.

Proof. Using Theorem 8.20. we can find n holomorphic functions $\dot{\varphi}_{j}(p)(j=$ $1, \ldots, n$) on \mathcal{V} such that the mapping

$$
\Phi: z_{j}=\Phi_{j}(p) \quad(j=1 \ldots, n), \quad p \in \mathcal{V}
$$

gives a bijection from \mathcal{V} onto a distinguished ramified domain \mathcal{D} over $\mathbf{C}^{\boldsymbol{n}}$. We let π denote the projection from \mathcal{D} onto C^{n} and we write O for the origin in \mathbf{C}^{n}. We set

$$
\begin{equation*}
\pi^{-1}(O)=\left\{p_{i}\right\}_{i=1.2 \ldots} \subset \mathcal{D} \tag{8.21}
\end{equation*}
$$

[^44]Let $r_{k}(k=1.2 \ldots)$ be a sequence of positive numbers such that $r_{k}<r_{k+1}(k=$ $1,2, \ldots$) and $\lim _{k-x} r_{k}=x$. and consider the sequence of polydisks Δ_{k} in \mathbf{C}^{n} defined as

$$
\Delta_{k}:\left|z_{j}\right| \leq r_{k} \quad(j=1 \ldots, n: k=1,2 \ldots) .
$$

We set $\tilde{W}_{k}=\pi^{-1}\left(\Delta_{k}\right) \subset \mathcal{V}$; in general. this set consists of an infinite number of compact. connected components. We let W_{k} denote the connected component of \tilde{i}_{k} which contains the point p_{1}. Then $W_{k+1} \cap \tilde{W}_{k}$ consists of a finite number of connected components of \tilde{W}_{k} which includes \boldsymbol{W}_{k}. We set $H_{k}=W_{k+1} \cap\left(\tilde{W}_{k}^{\prime} \backslash W_{k}\right)$ and $R_{k}=W_{k+1} \backslash \bar{W}_{k}$, so that

$$
W_{k+1}=W_{k}^{\prime} \cup H_{k} \cup R_{k} \quad \text { and } \quad \pi\left(R_{k}\right) \cap \bar{\Delta}_{k}=\emptyset .
$$

We note that W_{k}, H_{k} and the disjoint union $W_{k} \cup H_{k}$ are analytic polyhedra in \mathcal{V} whose defining functions are defined in \mathcal{V}. We also set $\pi^{-1}(O) \cap W_{k}=$ $\left\{p_{j}^{(k)}\right\}_{j=1 \ldots, I_{k}}$.

Choose $\epsilon_{k}>0(k=1.2, \ldots)$ with $\sum_{k=1}^{x} \epsilon_{k}<1$ and choose $a_{k}>3(k=1,2 \ldots)$ so that $a_{k+1}>a_{k}$ and $\lim _{k \rightarrow x} a_{k}=x$. Since \mathcal{V} satisfies the separation condition, there exists a holomorphic function $f_{1}(p)$ on \mathcal{V} such that

$$
f_{1}\left(p_{t}^{(1)}\right) \neq f_{1}\left(p_{J}^{(1)}\right) \quad\left(i, j=1 \ldots, l_{1} ; i \neq j\right) .
$$

We set

$$
m_{1}=\min \left\{\left|f_{1}\left(p_{i}^{(1)}\right)-f_{1}\left(p_{j}^{(1 i}\right)\right| \mid i, j=1 \ldots ., l_{1} ; i \neq j\right\}>0 .
$$

Next we construct a holomorphic function $f_{2}(p)$ on \mathcal{V} such that

1. $\left|f_{2}(p)-f_{1}(p)\right|<\epsilon_{1} \min \left\{1 / 2, m_{1} / 2\right\} \quad$ on W_{1};
2. $\left|f_{2}(p)\right|>a_{1}+\max _{p \in W_{1}}\left\{\left|f_{1}(p)\right|\right\} \quad$ on H_{1} :
3. $f_{2}\left(p_{i}^{(2)}\right) \neq f_{2}\left(p_{j}^{(2)}\right)\left(i, j=1, \ldots, l_{2}: i \neq j\right)$.

To do this. we fix positive numbers M and δ with $\max _{p \in W_{1}}\left\{\left|f_{1}(p)\right|\right\}+a_{1}+1<M$ and $0<\delta<1$. Since the union $U_{1}:=W_{1} \cup H_{1}$ is an analytic polyhedron in \mathcal{V} whose defiuing functions are defined in \mathcal{V}. it follows that the pair $\left(U_{1}, \mathcal{V}\right)$ satisfies Runge's theoren. Noting that W_{1} and H_{1} are closed sets in \mathcal{V} such that $W_{1} \cap H_{1}=\emptyset$. we can find a holomorphic function $\tilde{f}_{2}(p)$ on \mathcal{V} such that $\left|\tilde{f}_{2}(p)-f_{1}(p)\right|<\delta$ on W_{1} and $\left|\tilde{f}_{2}(p)-M\right|<\delta$ on H_{1}. Hence, $\left|\tilde{f}_{2}(p)\right|>\max _{p \in w_{i}}\left\{\left|f_{1}(p)\right|\right\}+a_{1}$ on H_{1}. By taking $\delta>0$ sufficiently small. we see that $\bar{f}_{2}(p)$ satisfies conditions 1 and 2 . Since \mathcal{V} satisfies the separation condition. we can find a holomorphic function $k(p)$ on \mathcal{V} such that $k\left(p_{1}^{(2)}\right) \neq k\left(p,{ }_{j}^{(2)}\right)\left(i, j=1 \ldots . l_{2} ; i \neq j\right)$. Hence, for $\epsilon>0$ sufficiently small, $f_{2}(p):=\bar{f}_{2}(p)+\epsilon k(p)$ on \mathcal{V} satisfies conditions 1. 2, and 3.

We inductively construct a sequence of holomorphic functions $f_{k}(p)(k=$ $1,2, \ldots)$ on \mathcal{V} and a sequence of positive numbers $m_{k}(k=1,2, \ldots)$,

$$
m_{k}=\min \left\{\left|f_{k}\left(p_{i}^{(k)}\right)-f_{k}\left(p_{j}^{(k)}\right)\right| \mid i, j=1, \ldots . l_{k} ; i \neq j\right\}>0 .
$$

such that

1. $\left|f_{k+1}(p)-f_{k}(p)\right|<\epsilon_{k} \min \left\{1 / 2 . m_{1} / 2, \ldots . m_{k} / 2\right\} \quad$ on W_{k} :
2. $\left|f_{k+1}(p)\right|>a_{k}+\max _{p \in K_{k}}\left\{\left|f_{k}(p)\right|\right\} \quad$ on H_{k} :
3. $f_{k+1}\left(p_{i}^{(k+1)}\right) \neq f_{k+1}\left(p_{j}^{(k+1)}\right) \quad\left(i, j=1 \ldots, l_{k+1} ; i \neq j\right)$.

We set

$$
F(p)=f_{1}(p)+\sum_{k=1}^{\infty}\left(f_{k+1}(p)-f_{k}(p)\right) . \quad p \in \mathcal{V} .
$$

Condition 1 implies that this sum converges uniformly on each compact set in \mathcal{V}. so that $F(p)$ is a holomorphic function on \mathcal{V}. On $W_{k+1}(k=1.2 \ldots)$, we have

$$
\begin{equation*}
\left|F(p)-f_{k+1}(p)\right| \leq \sum_{\mu=k+1}^{\infty}\left|f_{\mu+1}(p)-f_{\mu}(p)\right|<\sum_{\mu=k+1}^{x} \epsilon_{\mu}<1 . \tag{8.22}
\end{equation*}
$$

In particular.

$$
\begin{align*}
& |F(p)| \geq\left|f_{k+1}(p)\right|-1 \text { on } W_{k+1}, \\
& |F(p)| \geq a_{k}+\max _{p \in W_{k}}\left\{\left|f_{k}(p)\right|\right\}-1 \text { on } H_{k} . \tag{8.23}
\end{align*}
$$

For $k=1.2 \ldots \ldots$ we also have

$$
\begin{aligned}
& \left|F\left(p_{i}^{(k)}\right)-F\left(p_{j}^{(k)}\right)\right| \\
& \quad \geq\left|f_{k}\left(p_{i}^{(k)}\right)-f_{k}\left(p_{j}^{(k)}\right)\right|-\sum_{\mu=k}^{\times}\left(\left|f_{\mu+1}\left(p_{i}^{(k)}\right)-f_{\mu}\left(p_{i}^{(k)}\right)\right|+\left|f_{\mu-1}\left(p_{j}^{(k)}\right)-f_{\mu}\left(p_{j}^{(k)}\right)\right|\right) \\
& \quad \geq m_{k}\left(1-\sum_{\mu=k}^{\times} \epsilon_{\mu}\right)>0
\end{aligned}
$$

for $i . j=1, \ldots, l_{k}: i \neq j$. It follows that

$$
\begin{equation*}
F\left(p_{t}\right) \neq F\left(p_{j}\right) \quad(i, j=0,1 \ldots ; i \neq j) . \tag{8.24}
\end{equation*}
$$

Now consider the following holomorphic napping \mathbf{F} from \mathcal{V} into $\mathbf{C}^{n+1}=\mathbf{C}_{\dot{2}}^{n} \times$ \mathbf{C}_{u} :

$$
\mathbf{F}: p \rightarrow\left(z_{1} \ldots \ldots z_{n}, w\right)=\left(\varphi_{1}(p) \ldots \ldots \phi_{n}(p), F(p)\right) \in \mathbf{C}^{n+1}
$$

and set $\Sigma=\mathbf{F}(\mathcal{V})$ in \mathbf{C}^{n+1}. We shall show that \mathbf{F} and Σ satisfy the conclusion of the theorem.

To this end. using (8.24) and (8.21) it suffices to show that Σ is an analytic set in \mathbf{C}^{n+1}; i.e., Σ is closed in \mathbf{C}^{n+1}. Equivalently; if we set

$$
L_{k}=\min \left\{\sum_{j=1}^{n}\left|o_{j}(p)\right|+|F(p)| \mid p \in W_{k+1} \backslash W_{k}\right\} \quad(k=1.2 \ldots),
$$

then it suffices to show that $\lim _{k \rightarrow x} L_{k}=+x$.
To see this. fix $p \in R_{k}$. Then there exists j with $1 \leq j \leq n$ such that $\left|O_{,}(p)\right| \geq$ r_{k}. Furthermore, (8.23) implies that $|F(p)| \geq a_{k}-1$ on H_{k}. Since $\boldsymbol{W}_{k+1} \backslash \boldsymbol{W}_{k}=$ $R_{k} \cup H_{k}$. it follows that $L_{k} \geq \min \left\{r_{k}, a_{k}-1\right\} \rightarrow+\infty$ as $k \rightarrow+\infty$. Hence, Σ is an n-dimensional analytic set in \mathbf{C}^{n+1}.

Remark 8.9. The analytic set $\Sigma=F(\mathcal{V})$ in \mathbf{C}^{n+1} from the above proof has the following property: Let $M_{k}=\max _{p \in H_{k}}\{|F(p)|\}, \Gamma_{k}=\left\{|u|<M_{k}\right\} \subset C_{u}$, and $\mathrm{A}_{k}=\bar{\Delta}_{k} \times \mathrm{r}_{k} \subset \mathbf{C}^{n+1}$. Then $\Sigma \cap \mathrm{A}_{k}=\mathbf{F}\left(\boldsymbol{W}_{k}\right)$.

Indeed, for each $l \geq k$. we have, from (8.23) and condition 1 on the sequence $\left\{f_{k}\right\}_{k}$.

$$
\begin{aligned}
|F(p)| & >a_{l}+\max _{p \in 11_{l}}\left\{\mid f_{l}(p)!\right\}-1 \text { on } H_{l} \\
& >M_{l}+1>M_{k} .
\end{aligned}
$$

Since $\pi^{-1}\left(\bar{\Delta}_{k}\right) \backslash W_{k} \subset \bigcup_{l=k}^{\mathrm{x}} H_{l}$. it follows that

$$
\min \left\{|F(p)| \mid p \in \pi^{-1}\left(\bar{\Delta}_{k}\right) \backslash W_{k}\right\}>M_{k},
$$

which proves the remark.
We also obtain the following theorems.
Theorem 8.22. Any Stein space \mathcal{V} of dimension n is holomorphically isomorphic to an n-dimensional analytic set Σ in $\mathbf{C}^{2 n+1}$.

Proof. We use Theorem 8.21 and maintain the notation from its proof. Let \mathcal{S} be the set of points $p \in \mathcal{V}$ such that there exists at least one point $q \in \mathcal{V}$ with $p \neq q$ and $\mathbf{F}(p)=\mathbf{F}(q)$. The set \mathcal{S} in \mathcal{V} is an analytic set of dimension at most $n-1$. To see this, fix $p_{0} \in \mathcal{S}$ and let $\left(z^{0}, w^{\prime \prime}\right)=F\left(p_{0}\right) \in \Sigma$. From Theorem 8.21 there exist only a finite number of points $p, \in \mathcal{V}(j=1 \ldots \ldots m)$ such that $F\left(p_{j}\right)=\left(\varepsilon^{\prime \prime}, u u^{\prime \prime}\right)$ and $p_{j} \neq p_{0}$. If we take a snall neighborhood δ of $\left(z^{\prime \prime}, u^{0}\right)$ in \mathbf{C}^{n+1}, then the open set $F^{-1}(\delta \cap \Sigma)$ in \mathcal{V} consists of $(m+1)$ connected components $v_{2} \subset \mathcal{V}(i=0,1 \ldots . m)$ such that $p_{i} \in v_{i}$. Since $\sigma:=\bigcup_{j=1}^{\prime \prime}\left[F\left(c_{0}\right) \cap F\left(c_{j}\right)\right]$ is an analytic set in δ whose dimension is at most $n-1$, the same is true of the analytic set $\tau:=F^{-1}(\sigma) \cap v_{0}$ in r_{0}. Since $\tau=\mathcal{S} \cap_{i_{0}}$, we have our desired conclusion.

We set $\Sigma^{(n-1)}=\mathbf{F}(\mathcal{S})$. which is an analytic set of dimeusion at most $n-1$ in \mathbf{C}^{n+1}. We let $\mathcal{S}^{(n-1)}$ denote the family of $(n-1)$-dimensional irredncible analytic sets in \mathcal{S}. say $\mathcal{S}^{(n-1)}=\left\{S_{j}\right\}_{,=1.2 \ldots \ldots}$. We let S_{1} denote the collection of S_{j} such that $W_{1} \cap S_{j} \neq \emptyset$: this is a finite collection of sets. We inductively define $\mathcal{S}_{k+1}(k=$ $1,2 \ldots)$ as the collection of all S, such that $W_{k+1} \cap S, \neq 0$. so that $\mathcal{S}_{k} \subset \mathcal{S}_{k-1}$ and $\mathcal{S}^{(n-1)}=\lim _{k \rightarrow x} \mathcal{S}_{k}$. Note that each \mathcal{S}_{k} is a finite collection of sets S_{j}.

For the sake of convenience. we rename the collection of sets S_{j} in \mathcal{S}_{k} :

$$
S_{k}=\left\{S_{k, j}\right\}_{J=1} \ldots, I_{k}:
$$

here $0 \leq l_{k}<x$ and $S_{k-1, j}=S_{k, j}$ for $j=1 \ldots . . l_{k}$.
On each $\mathcal{S}_{k}(k=1.2 \ldots)$, we fix a point $p_{j}^{(k)} \in S_{k, j} \cap W_{k}\left(j=1, \ldots . l_{k}\right)$ such that $p_{j}^{(k)}=p_{j}^{(k+1)}\left(j=1 \ldots . l_{k}\right)$ and such that $\Sigma^{(n-1)}$ is nonsingular at the point $\mathbf{F}\left(p_{j}^{(k)}\right)$. We consider all points $q_{j . .}^{(k)} \in \mathcal{V}(s=1,2 \ldots)$ such that $p_{j}^{(k)} \neq q_{j . s}^{(k)}$ and $\mathbf{F}\left(\boldsymbol{p}_{,}^{(k)}\right)=\mathbf{F}\left(q_{j, s}^{(k)}\right)$. Since $p_{j}^{(k)} \in W_{k}$, it follows from Renark 8.9 that all points $q_{j, 8}^{(k)}$ are contained in W_{k} and hence there are only finitely many such points, say $q_{j, s}^{(k)} \in W_{k}^{\prime}\left(s=1, \ldots, s_{j}^{(k)}\right)$ where $\mathrm{s}_{j}^{(k)}<\boldsymbol{x}$.

Let $\epsilon_{k}>0(k=1,2, \ldots)$ with $\epsilon_{k}>\epsilon_{k+1}$ and $\sum_{k=1}^{x} \epsilon_{k}<1$. Since \mathcal{V} satisfies the separation condition. we can find a holomorphic function $g_{1}(p)$ on \mathcal{V} such that

$$
g_{1}\left(p_{j}^{(1)}\right) \neq g_{1}\left(q_{j, s}^{(1)}\right) \quad\left(j=1, \ldots, l_{1}: s=1 \ldots, s_{j}^{(1)}\right) .
$$

We set

$$
m_{1}=\min _{\substack{j=1 \ldots .1_{1} \\ s=1 \ldots \ldots ; . s_{j}^{1}}}\left\{\left|g_{1}\left(p_{j}^{(1)}\right)-g_{1}\left(q_{j, s}^{(1)}\right)\right|\right\}>0
$$

We next construct a holomorphic function $g_{2}(p)$ on \mathcal{V} such that

1. $\left|g_{2}(p)-g_{1}(p)\right|<\epsilon_{1} \min \left\{1, m_{1} / 2\right\}$ on W_{1} :
2. $g_{2}\left(p_{j}^{(2)}\right) \neq g_{2}\left(q_{j, x}^{(2)}\right)\left(j=1 \ldots, l_{2} ; s=1 \ldots . s_{j}^{(2)}\right)$.

To do this, since \mathcal{V} satisfies the separation condition, we first find a holomorphic function $h_{2}(p)$ on \mathcal{V} such that $h_{2}\left(p_{j}^{(2)}\right) \neq h_{2}\left(q_{j, x}^{(2)}\right)\left(j=1 \ldots . l_{2} ; s=1 \ldots . s_{j}^{(2)}\right)$. If we set $g_{2}(p)=g_{1}(p)+\epsilon h_{2}(p)$ on \mathcal{V}. then $g_{2}(p)$ satisfies conditions 1 and 2 provided ϵ is sufficiently small.

We inductively obtain a sequence of holomorphic functions $g_{k}(p)(k=1.2, \ldots)$ on \mathcal{V} and a sequence of positive numbers $m_{k}(k=1,2, \ldots)$ such that

1. $\left|g_{k+1}(p)-g_{k}(p)\right|<f_{k} \min \left\{1 / 2, m_{1} / 2 \ldots . m_{k} / 2\right\} \quad$ on W_{k} :
2. $\quad g_{k+1}\left(p_{j}^{(k+1)}\right) \neq g_{k+1}\left(q_{j .}^{i k+1)}\right) \quad\left(j=1 \ldots . l_{k+1}: s=1 \ldots . s_{j}^{(k+1)}\right)$:
3. $m_{k+1}=\min _{\substack{\left.j=1 \ldots I_{k+1} \\ s=1 \ldots \ldots k_{1}^{\prime 2}\right)}}\left\{\left|g_{k+1}\left(p_{j}^{(k+1)}\right)-g_{k+1}\left(q_{j, \ldots}^{(k-1)}\right)\right|\right\}>0$.

Next we set

$$
G_{1}(p)=g_{1}(p)+\sum_{k=1}^{\times}\left(g_{k+1}(p)-g_{k}(p)\right) . \quad p \in \mathcal{V}
$$

By condition 1, $G_{1}(p)$ is a holomorphic function on \mathcal{V}. Furthermore, by condition 1 we have

$$
\begin{align*}
& \left.\mid G_{1}\left(\mu_{j}^{(k)}\right)-G_{1}\left(q_{j, k}^{(k)}\right)\right\} \\
& \quad \geq\left|g_{k}\left(p_{j}^{(k)}\right)-g_{k}\left(q_{j, k}^{(k)}\right)\right|-\sum_{\mu=1}^{x}\left(\left|g_{\mu^{z+1}}\left(p_{j}^{(k)}\right)-g_{\mu}\left(p_{j}^{(k)}\right)\right|+\left|g_{\mu+1}\left(q_{j, k}^{(k)}\right)-g_{\mu}\left(q_{j . s}^{(k)}\right)\right|\right) \\
& \quad \geq m_{k}\left(1-\sum_{\mu=k}^{\infty} \epsilon_{\mu}\right)>0 \tag{8.25}
\end{align*}
$$

for all k, j.s. We consider the holomorphic mapping

$$
\begin{aligned}
\mathbf{G}_{1}: p \in \mathcal{V} & \rightarrow\left(\tilde{1}_{1} \ldots \ldots, i_{n}, w_{1}, u_{2}\right) \\
& =\left(\varphi_{1}(p) \ldots, \varphi_{n}(p), F(p) \cdot G_{1}(p)\right) \in \mathbf{C}^{n+2} .
\end{aligned}
$$

and we let $\Sigma_{1}:=\mathbf{G}_{1}(\mathcal{V})$. which is an n-dimensional analytic set in $\mathbf{C}^{\boldsymbol{+}+2}$. Then \mathcal{V} and Σ_{1} are in oneto-one correspondence except perhaps for the analytic sets $\mathcal{S}^{(n-2)}$ of dimension at most $n-2$ in \mathcal{V}. To see this, note that (8.25) innplies $p_{j}^{(k)} \notin$ $\mathcal{S}^{(n-2)}\left(k=1,2, \ldots ; j=1 \ldots, l_{k}\right)$, so that $\mathcal{S}^{(n-2)}$ does not contain the irreducible component $S_{k . j}$. Since $\mathcal{S}^{(n-1)}=\bigcup_{k, j} S_{k . j}$. it follow's that dinn $\mathcal{S}^{(n \cdot 2)} \leq n-2$.

We repeat the same procedure on $\mathcal{S}^{(n-2)}$ as we performed on $\mathcal{S}^{(n-1)}$ to obtain a holomorphic function $G_{2}(p)$ on \mathcal{V} such that the inapping

$$
\begin{aligned}
\mathbf{G}_{2}: p \in \mathcal{V} & \rightarrow\left(z_{1}, \ldots, z_{n} \cdot w_{1}, u_{2}, u_{3}\right) \\
& =\left(o_{1}(p) \ldots \ldots, o_{n}(p) \cdot F(p) \cdot G_{1}(p) \cdot G_{2}(p)\right) \in \mathbf{C}^{n+3}
\end{aligned}
$$

gives a one-to-one correspondence betreen \mathcal{V} and the analytic set $\Sigma_{2}=\mathbf{G}_{2}(\mathcal{V})$ in \mathbf{C}^{n+3} except perhaps for the analytic set $\mathcal{S}^{(n-3)}$ in \mathcal{V} which has dimension at most $n-3$.

After n repetitions of this procedure. we finally achieve the conclusion of the theorem.

For the next theoren concerning Stein manifolds we need the following lemma.
Lemma 8.10. Let D be a domain in \mathbf{C}^{n} and let

$$
\mathbf{G}: z \in D \rightarrow u=\left(g_{1}(z), \ldots, g_{n+l}(z)\right) \in \mathbf{C}^{n+l}
$$

(uhere $l \geq 1$) be a holomorphic mapping from D into \mathbf{C}^{n+1}. For an integer i with $0 \leq i \leq n$. we consider the follouing analytic set $\mathcal{E}^{\prime \prime}$ in D :

$$
\mathcal{E}^{i(1)}=\left\{z_{n} \in D \left\lvert\, \operatorname{rank}\left(\frac{\partial\left(g_{1} \ldots \ldots g_{n+1}\right)}{\partial\left(z_{1} \ldots \ldots z_{n}\right)}\right)_{z_{0}} \leq i\right.\right\} .
$$

Assume that for any $a \in \mathbf{C}^{n+1}$. the set $\mathbf{G}^{-1}(a)$ is either empty or is an isolated set in D. Then $\operatorname{dim} \mathcal{E}^{(1)} \leq i$.

Proof. We set $k=\operatorname{dim} \mathcal{E}^{(i)}$ and we need to show that $k \leq i$. Let p_{10} be a nonsingular point of $\mathcal{E}^{(t)}$. We may assume that $D=\Delta^{n}:\left|z_{j}\right|<1(j=1 \ldots, n)$ and $\mathcal{E}^{(1)}=\Delta^{k} \times\{O\}$ where $\Delta^{k}:=\left|z_{j}\right|<1(j=1 \ldots \ldots k)$ and O is the origin in $C_{z_{n+1} \ldots \ldots z_{n}}^{n-k}$. We set $\left.g_{j}\right|_{\varepsilon_{n}}=G_{j}\left(z_{1} \ldots \ldots, z_{k}\right)(j=1, \ldots, n+l)$. Since for any $z=\left(z_{1}, \ldots, z_{k}, 0, \ldots, 0\right)=\left(z^{\prime}, 0, \ldots, 0\right) \in \mathcal{E}^{(1)}$ we have

$$
\operatorname{rank}\left(\frac{\partial\left(g_{1} \ldots, g_{n+1}\right)}{\partial\left(z_{1} \ldots, z_{n}\right)}\right)_{z} \geq \operatorname{rank}\left(\frac{\partial\left(G_{1} \ldots, G_{n+1}\right)}{\partial\left(z_{1}, \ldots, z_{k}\right)}\right)_{z \prime}
$$

it suffices to prove that $\partial\left(G_{1} \ldots, G_{n+1}\right) / \partial\left(z_{1} \ldots \ldots, z_{k}\right)$ is of rank k at some point $z^{\prime} \in \Delta^{k}$.

We consider the holomorphic mapping

$$
\dot{\mathbf{G}}: z^{\prime} \in \Delta^{k} \rightarrow u:=\left(G_{1}\left(z^{\prime}\right), \ldots, G_{n-1}\left(z^{\prime}\right)\right) \in \mathbf{C}^{n+1}
$$

and set $\Sigma=\dot{\mathbf{G}}\left(\Delta^{k}\right)$. For each $a \in \mathbf{C}^{n+1}$, since the set $\mathbf{G}^{-1}(a)$ is either empty or is an isolated set in Δ^{n}. the same is true of $\tilde{\mathbf{G}}^{-1}(a)$ in Δ^{k}. Hence Σ is a k-dinensional analytic set in a domain in \mathbf{C}^{n+1}. If we project Σ to a suitable k-dimensional hyperplane L in \mathbf{C}^{n+l}. say $\pi: \Sigma \rightarrow L$ and $L: w_{j}=0(j=k+1, \ldots, n+l)$, then $\pi(\Sigma)$ is a ramified domain over $\mathbf{C}_{w_{2} \ldots \ldots u_{k}}^{k}$ with branch set S of dimension at most $k-1$. Thus, $\operatorname{det}\left(\partial\left(G_{1} \ldots \ldots G_{j_{k}}\right) / \partial\left(z_{1} \ldots, z_{k}\right)\right) \not \equiv 0$ on Δ^{k} for some $\left(j_{1} \ldots, j_{k}\right)$, which proves the result.

We study the mapping

$$
\mathbf{F}: \mathcal{V} \rightarrow\left(z_{1}, \ldots, z_{n}, u^{\prime}\right)=\left(o_{1}(p) \ldots, o_{n}(p), F(p)\right) \in \mathbf{C}^{n+1}
$$

defined in the proof of Theorem 8.21 in the case when \mathcal{V} is a complex manifold of dimension n. By Remark 8.9. F in each Λ_{k} satisfies the condition in Lemma 8.10. The contrapositive of the lemma yields the following fact: on an analytic set σ of dimension $r(0 \leq r \leq n)$ in \mathcal{V}, the matrix $\partial\left(o_{1} \ldots . \circ_{n}, F\right) / \partial\left(\zeta_{1}, \ldots . \zeta_{n}\right)$ is of rank at least r on σ except for an analytic set $\sigma^{\prime} \subset \sigma$ of dimension $r-1$. where $\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ are local coordinates on the complex manifold $\mathcal{V} .{ }^{11}$

Then we have the following imbedding theorem for Stein manifolds.
Theorem 8.23. A Stein manifold \mathcal{V} of dimension n is holomorphically isomorphic to an n-dimensional non-singular analytic set Σ an $\mathbf{C}^{2 n+1}$.

[^45]Proof. We maintain the notation used in the proof of Theorems 8.21 and 8.22. The proof is similar to that of Theorem 8.22; we add the rank condition to the separation condition as follows.

We set $O_{n+1}(p)=F(p)$ in \mathcal{V}. For $\alpha=0,1, \ldots, n-1$. we set

$$
\mathcal{E}_{0}^{(n)}=\left\{p \in \mathcal{V}: \operatorname{rank}\left(\frac{\partial\left(o_{1}, \ldots, o_{n+1}\right)}{\partial\left(\zeta_{1}, \ldots, \zeta_{n}\right)}\right)_{p}=a\right\} .
$$

and we let $\mathcal{E}^{(a)}=C l\left\{\mathcal{E}_{0}^{(0)}\right]$ denote the closure of $\mathcal{E}_{0}^{(a)}$ in \mathcal{V}. Then $\mathcal{E}^{(a)}$ is an analytic set in \mathcal{V}. We note by the definition of rank that $\mathcal{E}_{11}^{(0)}=\mathcal{E}^{(0)}$ and $\partial \mathcal{E}^{(\alpha)} \subset \bigcup_{j=0}^{\alpha-1} \mathcal{E}^{J}(\alpha=$ $1, \ldots, n-1)$. so that $\mathcal{E}^{[\alpha]} \subset \bigcup_{k=0}^{\alpha} \mathcal{E}_{0}^{(k)}$. Lemma 8.10 implies that

$$
\begin{equation*}
d_{\Omega}:=\operatorname{dim} \mathcal{E}^{(\alpha)} \leq a . \tag{8.26}
\end{equation*}
$$

First step. There exists a holomorphic function $O_{n+2}(p)$ on \mathcal{V} such that the mapping

$$
\mathbf{G}: p \in \mathcal{V} \rightarrow\left(z_{1}, \ldots, z_{n}, u_{1}, u_{2}\right)=\left(\wp_{1}(p) \ldots, \wp_{n}(p), \odot_{n-1}(p), \wp_{n+2}(p)\right) \in \mathbf{C}^{n+2}
$$

from \mathcal{V} into \mathbf{C}^{n+2} satisfies the following conditions:
(1) If we set $\Sigma=\mathbf{G}(\mathcal{V})$, then \mathcal{V} and Σ are one-to-one except for perhaps an analytic set of dimension at most $n-2$ in \mathcal{V}.
(2) If we put. for each $a=0,1 \ldots, n-1$.

$$
\begin{aligned}
\mathcal{F}_{0}^{(\alpha)} & =\left\{p \in \mathcal{V} \left\lvert\, \operatorname{rank}\left(\frac{\partial\left(o_{1} \ldots \cdot o_{n+1} \cdot o_{n+2}\right)}{\partial\left(\zeta_{1} \ldots \ldots \cdot \zeta_{n}\right)}\right)_{p}=a\right.\right\} \\
\mathcal{F}^{(\alpha)} & =C l\left[\mathcal{F}_{0}^{(\alpha)}\right] .
\end{aligned}
$$

then $\operatorname{dim} \mathcal{F}^{(\alpha)} \leq a-1$.
To prove this. for each $a=0,1, \ldots, n-1$. we begin by setting $\mathcal{E}^{(w)}=\bigcup_{i=1}^{x} E_{l}^{(\alpha)}$, where $E_{1}^{(\alpha)}(l=1,2, \ldots)$ is an irreducible component of $\mathcal{E}^{(\alpha)}$. We let $\mathcal{E}^{(a, 1)}$ denote the collection of sets $E_{l}^{(n)}$ such that $\Pi_{1} \cap E_{l}^{(\Omega)} \neq 0$. where W_{1} is defined in the proof of Theorem 8.21. This is a finite collection of sets.

We inductively define $\mathcal{E}^{(a, k+1)}(k=1.2 \ldots)$ to be the collection of sets $E_{l}^{(\alpha)}$ such that $\Pi_{k+1} \cap E_{l}^{(n)} \neq \emptyset$ and $E_{l}^{(n)} \notin \mathcal{E}^{(a, 1)} \cup \ldots \cup \mathcal{E}^{(a . k)}$. Again, this is a finite collection of sets. Thns. $\mathcal{E}^{(\sigma)}=\bigcup_{k=1}^{\infty} \mathcal{E}^{(\Omega . k)}$. and this is a disjoint union except for analytic sets of dimension at most $\alpha-1$. For convenience, we rename the collection of sets $E_{l}^{(\infty)}$ in $\mathcal{E}^{(n, k)}$.

$$
\mathcal{E}^{(\alpha, k)}=\left\{E_{1}^{(\alpha, k)}\right\}_{i=1, \ldots, m^{(i, N, k}}
$$

where $0 \leq m^{(0 . k)}<x$.
We first take $k=1$. In the proof of Theorem 8.22, we chose a point $p_{j}^{(1)} \in$ $S_{1 ., 7} \cap W_{1}\left(j=1 \ldots \ldots l_{1}\right)$ and $q_{j, s}^{(1 i} \in S_{1 . j} \cap W_{1}\left(j=1 \ldots . l_{1}: s=1 \ldots \ldots s_{j}^{(1)}\right)$. . Now choase a point $\tilde{p}_{i}^{(\alpha, 1)} \in E_{i}^{(0.1)} \cap W_{i}\left(i=1, \ldots m^{(\alpha, 1)}\right)$ for each $a=0.1 \ldots, n-1$
such that

$$
\begin{aligned}
& p_{j}^{(1)} \neq \tilde{p}_{i}^{(\alpha .1)} \quad\left(j=1, \ldots . l_{1}: i=1, \ldots m^{(\alpha .1)}\right) \\
& \tilde{p}_{i}^{(\alpha .1)} \neq \tilde{p}_{j}^{(\alpha .1)} \quad\left(i, j=1 \ldots \ldots m^{(\alpha .11} \cdot i \neq j\right) \\
& \operatorname{rank}\left(\frac{\partial\left(\varphi_{1}, \ldots, \varphi_{n+1}\right)}{\partial\left(\zeta_{1} \ldots . \zeta_{n}\right)}\right)_{\tilde{p}_{1}^{(\alpha, 1)}}=\alpha \quad\left(i=1 \ldots \ldots m^{(\alpha .1)}\right) .
\end{aligned}
$$

Fix $\epsilon_{k}>0(k=1.2, \ldots)$ with $\epsilon_{k}>\epsilon_{k+1}$ and $\sum_{k=1}^{x} \epsilon_{k}<1$. Since \mathcal{V} satisfies the separation condition, using Remark 8.7 we obtain a holomorphic function $g_{1}(p)$ oll \mathcal{V} such that

$$
g_{1}\left(p_{j}^{(1)}\right) \neq g_{1}\left(q_{j, s}^{(1)}\right) \quad\left(j=1, \ldots, l_{1}: s_{1}=1, \ldots, s_{j}^{(1!}\right) .
$$

$\operatorname{rank}\left(\frac{\partial\left(\varphi_{1}, \ldots, \varphi_{n+1}, g_{1}\right)}{\partial\left(\zeta_{1} \ldots . \zeta_{n}\right)}\right)_{\tilde{p}_{1} \cdot(.1)}=a+1 \quad\left(\alpha=0.1 \ldots, n-1: i=1 \ldots . m^{(\alpha, 1)}\right)$.
We thus have

$$
\tilde{a}_{i}^{(a .1)}:=\operatorname{det}\left(\frac{\partial\left(\theta_{i_{1}} \ldots, \phi_{1_{0}}, g_{1}\right)}{\partial\left(\zeta_{J_{1}} \ldots, \zeta_{j_{0-1}}\right)}\right)_{\bar{p}_{1}^{(n .2)}} \neq 0 \quad\left(i=1 \ldots . m^{(a .1)}\right)
$$

where $\left(i_{1}, \ldots, i_{a}\right)$ are a distinct numbers in ($1 \ldots \ldots, n$) and $\left(j_{1} \ldots \ldots, j_{a-1}\right)$ are $a+1$ distinct numbers in $(1, \ldots, n)$ which depend on $\tilde{p}_{z}^{(a .1)}$. We set

$$
m_{1}=\min _{\substack{j=1 \ldots . l_{1} \\ n=1 \ldots . s_{j}^{\prime 1} \\ n=0.1 \ldots . n-1 \\ t=1 \ldots \ldots, m^{(n, 1)}}}\left\{\left|g_{1}\left(p_{j}^{(1)}\right)-g_{1}\left(q_{j, s}^{(1)}\right)\right|,\left|\tilde{a}_{i}^{(n, 1)}\right|\right\}>0 .
$$

We next construct a holomorphic function $g_{2}(p)$ on \mathcal{V} such that

1. $\left|g_{1}(p)-g_{2}(p)\right|<\epsilon_{1} \min \left\{1, m_{1} / 2\right\}$ on W_{1};
2. if we set

$$
\delta^{(1)}=\max _{\substack{\left(\mu_{2} \ldots, \mu_{0}\right) . \\\left(z_{1} \ldots \ldots, i_{0+1}\right)}}\left\{\left|\operatorname{det}\left(\frac{\partial\left(o_{\mu_{1}} \ldots, o_{\mu_{0}}, g_{1}-g_{2}\right)}{\partial\left(\zeta_{i_{1}} \ldots, \zeta_{i_{1+1}}\right)}\right)_{\dot{p}_{1}^{(\ldots}}\right|\right\} \geq 0
$$

where $\left(\mu_{1} \ldots, \mu_{n}\right)$ runs over all increasing α-tuples in $(1, \ldots, n+1):\left(i_{1}, \ldots\right.$. i_{a+1}) runs over all increasing ($a+1$)-tuples in (1, ... n): $a=0.1 \ldots, n-$ $1 ; i=1 \ldots . m^{(\alpha .1)}$, then we have $\delta^{(1)}<\epsilon_{1} \min \left\{1, m_{1}\right\}$:
3. $g_{2}\left(p_{j}^{(\nu)}\right) \neq g_{2}\left(q_{j, s}^{(\nu)}\right)\left(\nu=1,2 ; j=1 \ldots . l_{2} ; s=1 \ldots . s_{j}^{(2)}\right)$:
$\operatorname{rank}\left(\frac{\partial\left(\delta_{1} \ldots, \phi_{n+1}, g_{2}\right)}{\partial\left(\zeta_{1}, \ldots, \zeta_{n}\right)}\right)_{\bar{p}_{1}^{(\alpha, 2)}}=a+1 \quad\left(\alpha=0,1, \ldots . n-1: i=1 \ldots \ldots m^{(\alpha, 2)}\right)$.
To do this, just as we constructed $g_{1}(p)$ on \mathcal{V}, we construct a holomorphic function $h_{2}(p)$ on \mathcal{V} which satisfies condition 3. If we set $g_{2}(p)=g_{1}(p)+\epsilon h_{2}(p)$ on \mathcal{V}. then $g_{2}(p)$ satisfies conditions 1,2 , and 3 for sufficiently small ϵ.

By condition 3 we have
$\tilde{a}_{i}^{(a .2)}:=\operatorname{det}\left(\frac{\partial\left(\varphi_{1}, \ldots, \odot_{i_{a}}, g_{2}\right)}{\partial\left(\zeta_{J_{1}}, \ldots . \zeta_{J_{a}+1}\right)}\right)_{\tilde{p}_{i}^{(\alpha, 21}} \neq 0\left(a=0.1 \ldots . n-1: i=1 \ldots . m^{i(a .2!}\right)$.
where ($i_{1}, \ldots, i_{\alpha}$) is an increasing α-tuple in ($1 \ldots, n+1$) and ($j_{1} \ldots, j_{(r-1}$) is an increasing $(\alpha+1)$-tuple in $(1, \ldots, n)$ which depends on $\bar{p}_{i}^{(\alpha .2)}(\alpha=0.1 \ldots . n-$ $\left.1 ; i=1, \ldots, m^{(\alpha .2)}\right)$. We set

$$
m_{2}=\min \left\{\left|g_{2}\left(p_{j}^{(2)}\right)-g_{2}\left(q_{j, s}^{(2 i}\right)\right|,\left|\bar{a}_{i}^{(\alpha .2)}\right|\right\}>0
$$

where $j=1, \ldots, l_{2} ; s=1, \ldots, s_{j}^{(2)}: \alpha=0,1, \ldots, n-1$; and $i=1, \ldots, m^{(\alpha .2)}$.
We inductively obtain a sequence of holomorphic functions $g_{k}(p)(k=1,2 \ldots)$ on \mathcal{V} and a sequence of positive numbers $m_{k}(k=1,2 \ldots)$ such that

1. $\left|g_{k}(p)-g_{k+1}(p)\right|<\epsilon_{k} \min \left\{1, m_{1} / 2 \ldots, m_{k} / 2\right\} \quad$ on W_{k} :
2. if we set

$$
\delta^{\left(L^{\prime}\right)}=\max \left\{\left|\operatorname{det}\left(\frac{\partial\left(\phi_{\mu_{1}}, \ldots, \phi_{\mu_{n}}, g_{k}-g_{k+1}\right)}{\partial\left(\zeta_{i_{1}}, \ldots: \zeta_{i_{n}-1}\right)}\right)_{\dot{p}_{1}^{(2, k)}}\right|\right\} \geq 0
$$

where $\left(\mu_{1}, \ldots, \mu_{\alpha}\right)$ runs over all increasing α-tuples in ($1, \ldots, n+1$); (i_{1}, \ldots. $i_{\alpha+1}$) runs over all increasing ($\alpha+1$)-tuples in (1....,n); $\alpha=0,1 \ldots, n-$ $1 ; i=1, \ldots . m^{(\alpha \cdot k)}$, then we have $\delta^{(k)}<\epsilon_{k} \cdot \min \left\{1, m_{1} \ldots \ldots m_{k}\right\}$;
3. $g_{k+1}\left(p_{j}^{(\nu)}\right) \neq g_{k+1}\left(g_{j, s}^{(\nu)}\right)\left(\nu=1, \ldots, k+1: j=1 \ldots, l_{\nu}: s=1 \ldots, s_{j}^{(\nu)}\right)$.

$$
\begin{aligned}
& \operatorname{rank}\left(\frac{\partial\left(\phi_{1}, \ldots, o_{n+1}, g_{k+1}\right)}{\partial\left(\zeta_{1}, \ldots, \zeta_{n}\right)}\right)_{p_{1}^{(,, k+1}}=\alpha+1 \\
&\left(\alpha=0.1, \ldots, n-1 ; i=1 \ldots \ldots m^{i \alpha, k+1)}\right)
\end{aligned}
$$

4. by condition 3, if we set

$$
\tilde{a}_{i}^{(\alpha, k+1)}:=\operatorname{det}\left(\frac{\partial\left(\oint_{2_{1}}, \ldots, \varphi_{2_{n}} \cdot g_{k+1}\right)}{\partial\left(\zeta_{J_{1}} \ldots, \zeta_{J_{a-1}}\right)}\right)_{\tilde{p}_{1}^{(n \cdot k+1)}} \neq 0 \quad\left(i=1 \ldots . m^{(a . k+1)}\right)
$$

where ($i_{1} \ldots, i_{\alpha}$) is some increasing α-tuple in ($1 \ldots . . n+1$) and ($j_{1} \ldots .$. $\left.j_{a+1}\right)$ is some increasing $(\alpha+1)$-tuple in $(1 \ldots, n)$ which depends on $\tilde{p}_{t}^{(\alpha, k+1)}$, then

$$
m_{k+1}:=\min \left\{\left|g_{k+1}\left(p_{j}^{(k+1)}\right)-g_{k+1}\left(q_{j, i}^{(k+1)}\right)\right| .\left|\tilde{a}_{i}^{(\alpha, k+1)}\right|\right\}>0,
$$

where $j=1 \ldots, l_{k+1} ; s=1, \ldots, s_{j}^{(k+1)}: a=0,1 \ldots . n-1:$ and $i=$ $1, \ldots, m^{(\alpha, k+1)}$.

We define

$$
G_{1}(p)=g_{1}(p)+\sum_{\mu=1}^{\infty}\left(g_{\mu+1}(p)-g_{\mu}(p)\right), \quad p \in \mathcal{V}
$$

Then condition 1 implies that $G_{1}(p)$ is a holomorphic function on \mathcal{V}. As already shown in the proof of Theorem 8.22, we have

$$
\begin{equation*}
G_{1}\left(p_{j}^{(k)}\right) \neq G_{1}\left(q_{j, s}^{(k)}\right) \quad \text { for all } k . j . s . \tag{8.27}
\end{equation*}
$$

Furthermore, for any point $\tilde{p}_{i}^{(a, k)}$.

$$
\begin{aligned}
& \left|\operatorname{det}\left(\frac{\partial\left(\varphi_{i_{1}} \ldots, \phi_{i_{a}}, G_{1}\right)}{\partial\left(\zeta_{j_{1}} \ldots, \zeta_{j, \ldots t}\right)}\right)_{\dot{p}_{1}^{(a, k)}}\right| \\
& \geq\left|\operatorname{det}\left(\frac{\partial\left(\varphi_{i_{1}}, \ldots, \varphi_{i_{2}}, g_{k}\right)}{\partial\left(\zeta_{j_{1}}, \ldots, \zeta_{j n+1}\right)}\right)_{\dot{p}_{1}^{(2, k)}}\right| \\
& -\sum_{\mu=k}^{\infty}\left|\operatorname{det}\left(\frac{\partial\left(\Phi_{i_{1}}, \ldots, \phi_{i_{n}} \cdot g_{\mu+1}-g_{\mu}\right)}{\partial\left(\zeta_{j_{1}} \ldots, \zeta_{j_{\alpha+1}}\right)}\right)_{\bar{p}_{e}^{(\Omega, k)}}\right| \\
& \geq m_{k}\left(1-\sum_{\mu=k}^{\infty} \epsilon_{\mu}\right)>0 \text {, }
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{rank}\left(\frac{\partial\left(\varphi_{1}, \ldots . \varphi_{n+1}, G_{1}\right)}{\partial\left(\zeta_{1} \ldots, \zeta_{n}\right)}\right)=a+1 \quad \text { at all points } \bar{p}_{i}^{(\alpha \cdot k)} \tag{8.28}
\end{equation*}
$$

where $\alpha=0.1, \ldots, n-1 ; k=1,2 \ldots: i=1, \ldots, m^{(a, k)}$.
Next we consider the holomorphic mapping

$$
\mathbf{G}_{1}: p \in \mathcal{V} \rightarrow\left(z_{1}, \ldots, z_{n}, w_{1}, w_{2}\right)=\left(\varphi_{1}(p), \ldots, \phi_{n}(p), \varphi_{n+1}(p), G_{1}(p)\right) \in \mathbf{C}^{n+2}
$$

and set $\Sigma_{1}=\mathbf{G}_{1}(\mathcal{V})$ in \mathbf{C}^{n+2}. Formula (8.27) implies that \mathcal{V} and Σ_{1} are in one-toone correspondence via \mathbf{G}_{1} except for an analytic set $\mathcal{S}^{(n-2)}$ of dimension at most $n-2$. Further. for each $a=0,1, \ldots, n-1$. if we set

$$
\begin{aligned}
\mathcal{F}_{0}^{(a)}: & =\left\{p \in \mathcal{V} \left\lvert\, \operatorname{rank}\left(\frac{\partial\left(\phi_{1}, \ldots, \phi_{n+1}, G_{1}\right)}{\partial\left(\zeta_{1}, \ldots, \zeta_{n}\right)}\right)_{p}=\alpha\right.\right\} \\
\mathcal{F}^{(\alpha)} & =C l\left[\mathcal{F}_{0}^{(\alpha)}\right] \text { in } \mathcal{V}
\end{aligned}
$$

then $\mathcal{F}^{(\alpha)}$ is an analytic set in \mathcal{V} of dimension at most $\alpha-1$. In fact, it is clear that $\mathcal{F}^{(\alpha)} \subset \mathcal{E}^{(\alpha)}$. Let $\mathcal{E}_{j}^{(\alpha)}$ be any irreducible component of $\mathcal{E}^{(\alpha)}$ and let $d_{a . j}=\operatorname{dim} \mathcal{E}_{j}^{(\alpha)}$. so that $d_{a, J} \leq \alpha$ by (8.26). On the other hand. formula (8.28) implies that

$$
\operatorname{rank}\left(\frac{\partial\left(\rho_{1}, \ldots, \phi_{n+1}, G_{1}\right)}{\partial\left(\zeta_{1} \ldots, \zeta_{n}\right)}\right)_{p}=\alpha+1
$$

for all $p \in \mathcal{E}_{j}^{(\alpha)}$ except for an analytic set $e_{j}^{(\alpha)}$ of dimension at most $d_{\alpha, j}-1(\leq \alpha-1)$. Therefore, $\mathcal{F}^{(\alpha)} \subset \bigcup_{j=1}^{\infty} e_{j}^{(\alpha)}$. and $\operatorname{dim} \mathcal{F}^{(\alpha)} \leq \alpha-1$.

Thus, by setting $\varphi_{n+2}(p)=G_{1}(p)$. we complete the first step.
We have $\operatorname{dim} \mathcal{F}^{(\alpha)} \leq \alpha-1$. In particular. if we set $\alpha=0$. then $\mathcal{F}^{(0)}=0$. i.e.,

$$
\begin{equation*}
\left\{p \in \mathcal{V} \left\lvert\, \operatorname{rank}\left(\frac{\partial\left(\varphi_{1}, \ldots, \phi_{n+1} \cdot \varphi_{n+2}\right)}{\partial\left(\zeta_{1}, \ldots, \zeta_{n}\right)}\right)_{p}=0\right.\right\}=0 . \tag{8.29}
\end{equation*}
$$

Second step. If we repeat the same procedure for $\mathcal{F}^{(a)}(\alpha=1.2 \ldots, n-1)$ as we performed for $\mathcal{E}^{(\alpha)}(\alpha=0.1, \ldots, n-1)$, then we obtain a holomorphic function $\phi_{n+3}(p)$ on \mathcal{V} with the following property: if we set

$$
\mathbf{G}_{2}: p \in \mathcal{V} \rightarrow\left(z_{1}, \ldots, z_{n} \cdot w_{1}, u_{2}, w_{3}\right)=\left(\phi_{1}(p), \ldots . \phi_{n+3}\right) \in \mathbf{C}^{n+3}
$$

and $\Sigma_{2}=\mathbf{G}_{2}(\mathcal{V})$ in $\mathbf{C}^{\boldsymbol{n + 3}}$, then \mathcal{V} and Σ_{2} are in one-to-one correspondence via \mathbf{G}_{2} except for an analytic set $\mathcal{S}^{(n-3)}$ of dimension at nost $n-3$. Moreover, for each $\alpha=1, \ldots, n-1$. if we set

$$
\begin{aligned}
\mathcal{G}_{0}^{(\alpha)} & :=\left\{p \in \mathcal{V} \left\lvert\, \operatorname{rank}\left(\frac{\partial\left(o_{1} \ldots . o_{n+3}\right)}{\partial\left(\zeta_{1} \ldots \ldots \zeta_{n}\right)}\right)_{p}=\alpha\right.\right\} \\
\mathcal{G}^{(\alpha)} & =C l\left[\mathcal{G}_{0}^{(\alpha)}\right] \text { in } \mathcal{V}
\end{aligned}
$$

then $\mathcal{G}^{(\alpha)}$ is an analytic set in \mathcal{V} of dimension at most $\alpha-2$. From (2) in the first step we have $\operatorname{dim} \mathcal{F}^{(a)} \leq a-2$. In particular, if we set $a=1$. then this inequality and (8.29) imply that

$$
\left\{p \in \mathcal{V} \left\lvert\, \operatorname{rank}\left(\frac{\partial\left(o_{1}, \ldots, o_{n+1}, o_{n+2}, o_{n+3}\right)}{\partial\left(\zeta_{1}, \ldots, \zeta_{n}\right)}\right)_{p}=0\right. \text { or } 1\right\}=0
$$

Third step. We repeat the same procedure n times to obtain n holomorphic functions $\varphi_{n+2}, \ldots, \varphi_{2 n+1}(p)$ on \mathcal{V} such that, if we put

$$
\mathbf{G}_{n}: p \in \mathcal{V} \rightarrow\left(z_{1}, \ldots, z_{n}, u_{1} \ldots \ldots w_{n+1}\right)=\left(o_{1}(p) \ldots o_{2 n+1}(p)\right) \in \mathbf{C}^{2 n+1}
$$

and $\Sigma_{n}=\mathbf{G}_{n}(\mathcal{V})$ in $\mathbf{C}^{2 n+1}$, then \mathcal{V} and Σ_{n} are in one-to-one correspondance via $\mathbf{G}_{\boldsymbol{n}}$ and

$$
\bigcup_{a=0}^{n-1}\left\{p \in \mathcal{V} \left\lvert\, \operatorname{rank}\left(\frac{\partial\left(\rho_{1}, \ldots, \varphi_{2 n+1}\right)}{\partial\left(\zeta_{1}, \ldots, \zeta_{n}\right)}\right)_{p}=\alpha\right.\right\}=0
$$

This completes the proof of the theorem.

8.6. Appendix

We shall prove the Hilbert-Rückert Nullstellensatz for holomorphic functions. This proof follows Oka [51].

Theorem 8.24 (Nullstellensatz). Let $F_{j}(z)(j=1 \ldots ., \nu)$ be holomorphic functions defined on a neighborhood Δ of the origin O in \mathbf{C}_{z}^{n} and let Σ denote the common zero set of the $F_{3}(j=1, \ldots, \nu)$ in Δ. Let $\mathcal{I}\{F\}$ denote the \mathcal{O}-ideal generated by $F_{j}(j=1, \ldots, \nu)$ in Δ. If $f(z)$ is a holomorphic function defined in a neighborhood $\delta \subset \Delta$ of O in C_{z}^{n} unth $f(z)=0$ on $\delta \cap \Sigma$. then there exists a positive integer ρ with $f^{\rho} \in \mathcal{I}\{\mathrm{F}\}$ at O.

Proof. We let $r(\Sigma) \geq 0$ denote the dimension of the analytic set Σ at O, i.e., $r(\Sigma)$ is the maximum dimension at O of the irreducible components of Σ passing through O. The proof will be by induction on $r(\Sigma)$ (and is independent of the dimension n of \mathbf{C}_{2}^{n}).

We first prove that the theorem is valid if $r(\Sigma)=0$. Let F_{j}, Δ, Σ and f be given as in the statement of the theorem with $r(\Sigma)=0$. By taking a smaller neighborhood δ, if necessary; we may assume that $\delta=\delta_{1} \times \cdots \times \delta_{n} \subset \Delta$ where $\delta_{i}(i=1, \ldots, n)$ is a disk in the complex plane $C_{z_{i}}$, centered at the origin $z_{i}=0$ and that $\delta \cap \Sigma=\{O\}$. Fix $i \in\{1 \ldots, n\}$ and set $\delta^{*}:=\delta_{1} \times \cdots \times \widehat{\delta_{1}} \times \cdots \times \delta_{n}$, where $\widehat{\delta}_{i}$ means that δ_{i} is omitted. We consider the projection ideal \mathcal{P}_{i} of $\mathcal{I}\{F\}$ on δ onto the disk δ_{i} in $\mathbf{C}_{z_{i}}$. Since $\boldsymbol{\Sigma} \cap\left(\delta^{*} \times \partial \delta_{i}\right)=\emptyset$, it follows from Theorem 7.9 that \mathcal{P}_{1} has a locally finite pseudobase $p^{(k)}\left(z_{i}\right)\left(k=1, \ldots, \nu_{i}\right)$ on a neighborhood $\delta_{i}^{\prime} \subseteq \delta_{i}$ of the origin $z_{i}=0$ in $C_{z_{1}}$. We note that the projection of $\Sigma \cap \delta$ onto δ_{i} consists of the origin $z_{i}=0$ and that the common zero set of $\psi^{(k)}\left(z_{i}\right)\left(k=1 \ldots . \nu_{i}\right)$ on δ_{i}^{\prime} equals
$\{0\}$ in $\mathbf{C}_{z_{i}}$. We thus have $\varphi^{(k)}\left(z_{i}\right)=\alpha^{(k)}\left(z_{1}\right) z_{\mathrm{i}}^{l_{k, i}}\left(k=1, \ldots, \nu_{\mathrm{i}}\right)$. where $\alpha^{(k)}\left(z_{\mathrm{i}}\right)$ is a holomorphic function on δ_{i}^{\prime} with $a^{(k)}(0) \neq 0$ and $l_{k, i}$ is a positive integer. Setting $l_{i}:=\min _{k=1} \ldots, \nu_{1} l_{k, i}$, we see that \mathcal{P}_{i} is generated by $z_{i}^{l_{i}}$ in δ_{i}^{\prime}. By the definition of the projection ideal \mathcal{P}_{1} of $\mathcal{I}\{\mathbf{F}\}$ we see that

$$
z_{i}^{l_{i}} \in \mathcal{I}\{\mathbf{F}\} \quad \text { at each point in } \delta^{*} \times\left\{z_{i}=0\right\} \subset \mathbf{C}^{n}
$$

We set $l=\max _{i=1 \ldots \ldots n}\left\{l_{i}\right\} \geq 1$, so that $z_{i}^{l} \in \mathcal{I}\{\mathrm{~F}\}(i=r+1, \ldots, n)$ at the origin O in \mathbf{C}^{n}. On the other hand, since $f(O)=0$, we can write

$$
f(z)=A_{1}(z) z_{1}+\cdots+A_{n}(z) z_{n} \quad \text { on } \delta .
$$

It follows that $f(z)^{n t} \in \mathcal{I}\{F\}$ at O, which proves the theorem if $r(\Sigma)=0$.
Now let $r \geq 1$ be an integer and assume that the theorem holds for Σ with $r(\Sigma) \leq r-1$. Let F_{j}, Δ, Σ and f be given as in the statement of the theorem with $r(\Sigma)=r$. We claim that it suffices to prove the result under the assumption that Σ is of pure dimension r at the origin O in \mathbf{C}^{n}.

For assume the theorem is valid for any Σ with pure dimension r at O. Given a general Σ with $r(\Sigma)=r$, we have a decomposition of Σ in Δ of the form

$$
\Sigma=\Sigma_{0} \cup \cdots \cup \Sigma_{r}
$$

where $\Sigma_{j}(j=0,1, \ldots, r)$ is a pure j-dimensional analytic set in Δ (possibly empty). As usual, we may need to take a smaller neighborhood Δ about O in $\mathbf{C}^{\boldsymbol{n}}$ to achieve this. For each $j=0, \ldots, r-1$, we can find holomorphic functions $F_{k}^{(j)}(z)\left(k=1, \ldots, \nu_{j}\right)$ in Δ whose common zero set in Δ equals $\bigcup_{k=0}^{j} \Sigma_{k}$. We introduce r new variables $y_{1} \ldots, y_{r}$ and consider the common zero set $\bar{\Sigma}$ in $\tilde{\Delta}:=$ $\Delta \times \mathbf{C}_{y}^{r}$ of the $\nu+\nu_{r-1}+\ldots+\nu_{0}$ holomorphic functions

$$
F_{1}, \ldots, F_{\nu}, y_{1} F_{1}^{(r-1)} \ldots, y_{1} F_{\nu-1}^{(r-1)} \ldots, y_{r} F_{1}^{(0)} \ldots, y_{r} F_{\nu_{0}}^{(0)} .
$$

Then the analytic set $\tilde{\Sigma}$ in $\tilde{\Delta}$ is identical with the lifting of the second kind of the analytic set Σ in Δ, and is of pure dimension r in $\widetilde{\Delta}$. We let $\widetilde{\mathcal{J}}$ denote the \mathcal{O}-ideal generated by these functions in $\tilde{\Delta}$. Since $f(z)=0$ on $\widetilde{\Sigma}$ (we regard f as being independent of the variables y_{1}, \ldots, y_{r}), from the hypothesis that $f \in \tilde{\mathcal{J}}$ at the origin O in $\mathbf{C}_{z}^{n} \times \mathbf{C}_{y}^{r}$, we can write

$$
f=\sum_{i=1}^{\nu} \alpha_{j} F_{i}+\sum_{k=1}^{r} \sum_{j=1}^{\nu_{j}} \beta_{j}^{(k)} y_{k} F_{j}^{(r-k)} .
$$

where $\alpha_{i}, \beta_{j}^{(k)}$ are holomorphic functions in a neighborhood of O in $\mathbf{C}_{z}^{n} \times \mathbf{C}_{y}^{r}$. Restricting this equation to $y_{1}=\cdots=y_{r}=0$, we see that $f \in I\{\mathbf{F}\}$ at O in \mathbf{C}_{z}^{n}. Thus, the theorem is valid if Σ is not necessarily pure r-dimensional at the origin O in \mathbf{C}^{n}.

Thus we can now assume that $\Sigma: F_{f}(z)=0(j=1, \ldots, \nu)$ is of pure dimension r at O in \mathbf{C}^{n}. We can choose coordinates

$$
\left(z^{\prime}, z^{\prime \prime}\right):=\left(z_{1}, \ldots, z_{r}, z_{r+1}, \ldots, z_{n}\right)
$$

where $z^{\prime}=\left(z_{1}, \ldots, z_{r}\right)$ and $z^{\prime \prime}=\left(z_{r+1} \ldots, z_{n}\right)$, and a polydisk $\Delta=\Delta^{(r)} \times \Gamma \subset$ $\mathbf{C}_{z^{\prime}}^{r} \times \mathbf{C}_{z^{\prime \prime}}^{n-r}$ centered at the origin O such that $\Sigma \cap\left[\Delta^{(r)} \times \partial \Gamma\right]=0$. We set $\Gamma=\Gamma_{r+1} \times \cdots \times \Gamma_{n}$ where $\Gamma_{i}:\left|z_{i}\right| \leq r_{i}(i=r+1, \ldots, n)$. Fix $i \in\{r+1, \ldots, n\}$. We set

$$
\Lambda_{t}=\Delta^{(r)} \times \Gamma_{i} \quad \text { and } \quad \Gamma^{*}=\Gamma_{r+1} \times \cdots \times \hat{\Gamma}_{i} \times \cdots \times \Gamma_{n}
$$

Since $\Sigma \cap\left[\Lambda_{i} \times\left(\partial \Gamma^{*}\right)\right]=\emptyset$, we see from Theorem 7.9 that the projection ideal \mathcal{P}_{1} of $I\{F\}$ onto Λ_{i} has a finite pseudobase

$$
\varphi_{k}^{(i)}\left(z^{\prime}, z_{i}\right) \quad\left(k=1, \ldots, \mu_{i}\right) \quad \text { on } \lambda_{1}
$$

(again, we take a smaller polydisk Λ_{i}, if necessary). We let $\mathcal{I}\left\{\gamma^{(i)}\right\}$ denote the \mathcal{O}-ideal generated by $\varphi_{k}^{(i)}\left(z^{\prime}, z_{i}\right)\left(k=1 \ldots, \mu_{i}\right)$ on Λ_{i}; thus $\mathcal{I}\left\{\gamma^{(i)}\right\}$ is equivalent to \mathcal{P}_{i} on Λ_{i}. We note that the projection of the analytic set Σ onto Λ_{t} is an analytic set $\Sigma^{(i)}$ in Λ_{i} which equals the common zero set of $\hat{\gamma}_{k}\left(z^{\prime}, z_{i}\right)\left(k=1, \ldots, \mu_{i}\right)$ in Λ_{i}. Also. we note that $\Sigma^{(i)} \cap\left[\Delta^{(r)} \cap \partial \Gamma_{i}\right]=\emptyset$. Since $\Sigma^{(i)}$ is a pure r-dimensional analytic set in the $(r+1)$-dimensional polydisk Λ_{i}, i.e.. $\Sigma^{(1)}$ is an analytic hypersurface in Λ_{i}, it follows that $\Sigma^{(1)}$ can be described as

$$
\Sigma^{(i)}: P_{i}\left(z^{\prime}, z_{1}\right)=0 \quad \text { in } \Lambda_{i}
$$

where $P_{1}\left(z^{\prime}, z_{i}\right)$ is a distinguished pseudopolynomial in z_{i} whose coefficients are holomorphic functions of z^{\prime} in $\Delta^{(r)}$. From the arguments in Chapter 2, the original analytic set Σ in Λ consists of certain irreducible components of the complete algebraic analytic set defined by-

$$
S:=\bigcap_{i=r+1}^{n}\left\{z=\left(z^{\prime}, z^{\prime \prime}\right) \in \Delta^{(r)} \times \mathbf{C}_{z^{\prime \prime}}^{n-r} \mid P_{i}\left(z^{\prime}, z_{1}\right)=0\right\}
$$

We let Σ^{\prime} denote the collection of the remaining irreducible comoponents of S. ot her than Σ, so that $S=\Sigma \cup \Sigma^{\prime}$.

We claim that for each $i=r+1, \ldots n$. there exists a positive integer q_{i} such that

$$
\begin{equation*}
\text { (*) } \quad P_{i}\left(z^{\prime}, z_{i}\right)^{q_{i}} \in I\left\{\varphi^{(i)}\right\} \quad \text { at the origin } O \text { in } C_{z^{\prime}}^{r} \times \mathbf{C}_{z_{1}} \tag{8.30}
\end{equation*}
$$

If the claim is proved, then we complete the proof of the theorem as follows. By the definition of the projection ideal \mathcal{P}_{1} of $\mathcal{I}\{F\}$ onto A_{i}, we see that each $\dot{r}_{k}^{(i)}\left(z^{\prime}, z_{i}\right) \in I\{F\}\left(k=1, \ldots, \mu_{i}\right)$ at each point in $A \subset C_{:}^{n}$. Here we regard $\hat{\varphi}_{k}^{(z)}\left(z^{\prime}, z_{i}\right)$ as being independent of the $n-r-1$ variables $z_{r+1} \ldots, \widehat{z_{i}}, \ldots, z_{n}$. This observation, combined with claim (*). implies that

$$
P_{\imath}\left(z^{\prime}, z_{i}\right)^{q_{i}} \in \mathcal{I}\{\mathbf{F}\} \quad \text { at the origin } O \text { in } \mathbf{C}_{z}^{n}
$$

We set $q=\max _{i=r+1 \ldots, n} q_{\mathrm{i}} \geq 1$. We now let $H(z)$ be a holomorphic function in Λ such that $H(z)=0$ on Σ^{\prime} and $H(z) \neq 0$ on each irreducible component of Σ. Since $f(z)=0$ on Σ, we have $f H=0$ on S. From Proposition 7.7 it follows that

$$
f(z) H(z) \in \mathcal{I}\left\{P_{r+1} \ldots \ldots P_{n}\right\} \quad \text { at } O \text { in } \mathbf{C}_{z}^{n}
$$

If we let σ denote the common zero set of the $n-r+1$ holonorphic functions $\left\{H(z), P_{r+1}\left(z^{\prime}, z_{r+1}\right), \ldots, P_{n}\left(z^{\prime}, z_{n}\right)\right\}$ in A. then the conditions imposed on $H(z)$ imply that the dimension of σ at O is less than or equal to $r-1$. Since $f=0$ on $\sigma \subset \Sigma$, it follows from the induction hypothesis that there exists a positive integer ρ with

$$
f(z)^{\rho} \in \mathcal{I}\left\{H, F_{1}, \ldots, F_{\nu}\right\} \quad \text { at } O \text { in } C_{:}^{n}
$$

Hence, the above relations imply that

$$
f(z)^{(p+1) \cdot n q} \in \mathcal{I}\{\mathbf{F}\} \quad \text { at } O \text { in } \mathbf{C}_{:}^{n}
$$

Thus the theorem is proved. assuming the claim (*).

It remains to prove claim (*) for each $i=r+1, \ldots, n$. For simplicity, we write $z_{i}=w, \Sigma^{(i)}=\Sigma, P_{i}\left(z^{\prime}, z_{i}\right)=P\left(z^{\prime}, w\right), \varphi_{k}^{(i)}\left(z^{\prime}, z_{i}\right)=\varphi_{k}\left(z^{\prime}, w\right)\left(k=1, \ldots, \mu_{i}=\mu\right)$, $\mathcal{I}\left\{\varphi^{(i)}\right\}=\mathcal{I}\{\varphi\}, \Gamma_{i}=\Gamma \subset \mathbf{C}_{w}$, and $\Lambda=\Delta^{(r)} \times \Gamma \subset \mathbf{C}_{z^{\prime}}^{r} \times \mathbf{C}_{w}$. We let

$$
\Sigma=\Sigma_{1} \cup \ldots \cup \Sigma_{p}
$$

denote the irreducible decomposition of Σ in Λ. Since $\Sigma_{j} \cap\left[\Delta^{(r)} \times \partial \Gamma\right]=\emptyset$, each $\Sigma_{j}(j=1, \ldots p)$ can be represented in the form

$$
\Sigma_{j}: Q_{j}\left(z^{\prime}, w\right)=0 \quad \text { in } \Delta^{(r)} \times \mathbf{C}_{w}
$$

where each $Q_{j}\left(z^{\prime}, w\right)$ is an irreducible distinguished pseudopolynomial in w whose coefficients are holomorphic functions of z^{\prime} in $\Delta^{(r)}$. We note that

$$
P=Q_{1} \times \cdots \times Q_{p} \quad \text { on } \Delta^{(r)} \times \mathbf{C}_{w}
$$

Since $\varphi_{1}\left(z^{\prime}, w\right)=0$ on Σ, it follows from the Weierstrass preparation theorem that

$$
\varphi_{1}=A_{1} Q_{1}^{m_{1}} \cdots Q_{p}^{m_{p}} \quad \text { in } \Lambda
$$

where A_{1} is a holomorphic function on Λ with $A_{1} \not \equiv 0$ on each $\Sigma_{j}(j=1, \ldots, p)$, and $m_{j}(j=1, \ldots, p)$ is a positive integer. Setting $m=\max _{j=1, \ldots, p} m_{j}$ and $m_{j}^{\prime}=m-m_{j} \geq 0(j=1, \ldots, p)$, we have

$$
Q_{1}^{m_{1}^{\prime}} \cdots Q_{p}^{m_{p}^{\prime}} \varphi_{1}=A_{1} P^{m} \quad \text { in } \Lambda
$$

If $A_{1}(O) \neq 0$, we have $P \in \mathcal{I}\left\{\varphi_{1}\right\} \subset \mathcal{I}\{\varphi\}$ at the origin O in $\mathbf{C}_{z^{\prime}}^{r} \times \mathbf{C}_{w}$; hence the claim (*) is proved. If $A_{1}(O)=0$, the common zero set σ of the $\mu+1$ holomorphic functions $\left\{A_{1}, \varphi_{1}, \ldots, \varphi_{\mu}\right\}$ in Λ is of dimension $r-1$ at O. Since $P=0$ on $\sigma \subset \Sigma$, it follows from the induction hypothesis that there exists a positive integer ρ with

$$
P^{\rho}=\alpha_{1} A_{1}+\beta_{1} \varphi_{1}+\cdots+\beta_{\mu} \varphi_{\mu} \quad \text { at } O \text { in } \mathbf{C}_{z^{\prime}}^{r} \times \mathbf{C}_{w}
$$

where $\alpha_{1}, \beta_{j}(j=1, \ldots, \mu)$ are holomorphic functions at O in $\mathbf{C}_{z^{\prime}}^{r} \times \mathbf{C}_{\boldsymbol{w}}$. Thus

$$
P^{\rho+m}=\left(Q_{1}^{m_{1}^{\prime}} \cdots Q_{p}^{m_{p}^{\prime}}+\beta_{1}\right) \varphi_{1}+\beta_{2} \varphi_{2}+\cdots+\beta_{\mu} \varphi_{\mu} \quad \text { at } O \text { in } \mathbf{C}_{z^{\prime}}^{r} \times \mathbf{C}_{w}
$$

which proves the claim (*).

CHAPTER 9

Normal Pseudoconvex Spaces

9.1. Normal Pseudoconvex Spaces

The main purpose of this chapter is to prove Oka's theorem that any pseudoconvex domain in \mathbf{C}^{n} is a domain of holomorphy. We shall prove this theorem in a more general setting. The essential part of the proof of this generalization, the use of an integral equation to solve the Cousin I problem, is the same as in Oka's original work [53]. We first define a normal pseudoconvex space as an analytic space with a strictly pseudoconvex exhaustion function. ${ }^{1}$ We shall then show that a normal pseudoconvex space is a Stein space; this statement contains Oka's theorem as a special case. In this chapter we will always assume that an analytic space satisfies the second countability axiom of Hausdorff.
9.1.1. Pseudoconvex Functions. We will define a pseudoconvex domain in an analytic space. Let \mathcal{V} be an analytic space of dimension n. Let $U \subset \mathcal{V}$ be a domain and let ∂U denote the boundary of U in \mathcal{V}. Let $q \in \partial U$ and let ($\delta_{q}, \lambda_{q}, \phi_{q}$) be a local coordinate chart for q in \mathcal{V}. If there exists a neighborhood $v \subset \delta_{q}$ such that $\rho_{q}(v \cap U) \subset \lambda_{q}$ is a ramified pseudoconvex domain over \mathbf{C}^{n} (defined in 6.1.6). then we say that U is pseudoconvex at the boundary point q. If U is pseudoconvex at each boundary point, then we say that U is a pseudoconvex domain in \mathcal{V}. Immediately from the definition we obtain the following properties.

1. If U_{1} and U_{2} are pseudoconvex domains in \mathcal{V}. then so is $U_{1} \cap U_{2}$.
2. Let $U_{k}(k=1,2 \ldots)$ be pseudoconvex domains in \mathcal{V} with $U_{k} \subset U_{k+1}$ $(k=1,2, \ldots), \lim _{k \rightarrow x} U_{k}=U_{0}$, and $U_{0} \subset \subset \mathcal{V}$. Then U_{0} is a pseudoconvex domain in \mathcal{V}.

Now let D be a domain in \mathcal{V} and let $\ell(p)$ be a real-valued continuous function on D; we allow ℓ to admit the value $-\infty$. If, for any point $q \in D$, the domain $\{p \in$ $D \mid \ell(p)<\ell(q)\} \subset D$ is pseudoconvex. then we say that $\ell(p)$ is a pseudoconvex function on D. As we have already shown, any continuous plurisubharinonic function in a univalent domain D in \mathbf{C}^{n} is a pseudoconvex function on $D .^{2}$

[^46]In section 3.4.1 we defined what it meant for a family of analytic hypersurfaces $\{\sigma\}_{t \in[0.1]^{1}}$ in \mathbf{C}^{n} to satisfy Oka's condition in order to find a useful criterion for a point to be in a polynomially convex hull. We now introduce a similar type of family of analytic hypersurfaces in an analytic space \mathcal{V}.

Let $q \in \mathcal{V}$ and let ($\delta_{q}, \lambda_{q}, \dot{\sigma}_{q}$) give local coordinates for q in \mathcal{V}. Let $I=[0,1]$ be the unit interval of the complex t-plane and let $g(p, t)$ be a complex-valued function in $\delta_{q} \times I$ such that

1. $g(p, t)$ is a continuous function on $\delta_{q} \times I$, and
2. for any fixed $t \in I, g(p, t)$ is a non-constant holomorphic function on δ_{q}. Given $t \in I$, we consider the analytic hypersurface in δ_{q} defined by

$$
\begin{equation*}
\sigma_{t}: \quad g(p . t)=0 \tag{9.1}
\end{equation*}
$$

We say that $\left\{\sigma_{t}\right\}_{t \in I}$ is a continuous family of analytic hypersurfaces in δ_{q} at the point q.

Now let $\ell(p)$ be a finite real-valued continuous function defined on a domain D in \mathcal{V}. Fix $q \in D$ and let $\left\{\sigma_{t}\right\}_{t \in I}$ be a continuous family of analytic hypersurfaces in $\delta_{q} \subset D$ at the point q. We use the same notation as in (9.1). If $\left\{\sigma_{t}\right\}_{t \in I}$ satisfies the following two conditions:

1. σ_{0} passes through q and $\sigma_{0} \backslash\{q\}$ lies in $\left\{p \in \delta_{q} \mid \ell(p)>\ell(q)\right\} ;$
2. for each $t>0 . \sigma_{t} \subset\left\{p \in \delta_{q} \mid \ell(p)>\ell(q)\right\}$.
then we say that $\left\{\sigma_{t}\right\}_{t \in I}$ is a family of analytic hypersurfaces touching the domain $\{p \in D \mid \varepsilon(p)<\varepsilon(q)\}$ from outside at the point q.

If $\mathcal{E}(p)$ admits at least one such continuous family $\left\{\sigma_{t}\right\}_{t \in I}$, then we say that $\ell(p)$ is strictly pseudoconvex at the point q. If $\ell(p)$ is strictly pseudoconvex at each point q in D. then we say that $\ell(p)$ is a strictly pseudoconvex function on D.

By definition, any strictly pseudoconvex function on $D \subset \mathcal{V}$ is a pseudoconvex function on D. Any piecewise smooth, strictly plurisubharmonic function on a univalent domain D in $C^{\prime \prime}$ is a strictly pseudoconvex function on D. However a strictly pseudoconvex function of class C^{2} on a univalent domain D in C^{n} is not always a strictly plurisubharmonic function on D. The following properties of strictly pseudoconvex functions on a domain $D \subset \mathcal{V}$ are easily verified.

1. Let $\ell(p)$ be a strictly pseudoconvex function on D and let $h(x)$ be a finite, real-valued increasing function on $(-\infty, \infty)$. Then $\ell_{0}(p):=h(\ell(p))$ is a strictly pseudoconvex function on D.
2. Let $\ell_{i}(p)(i=1,2)$ be strictly pseudoconvex functions on D and let $\ell_{0}(p)=$ $\max \left\{\ell_{1}(p), \ell_{2}(p)\right\}$. Then $\ell_{0}(p)$ is a strictly pseudoconvex function on D.
We have the following relationship between strictly pseudoconvex functions and pseudoconvex domains.
3. Let \mathcal{D} be a ramified domain over a polydisk Δ in \mathbf{C}^{n} and let $\pi: \mathcal{D} \rightarrow \Delta$ be the canonical projection. For any strictly plurisubharmonic function $s(z)$ on Δ, the function $\ell(p):=s(\pi(p))$ is a strictly pseudoconvex function on \mathcal{D}.
4. Let \mathcal{P} be an analytic polyhedron in an analytic space \mathcal{V} of dimension n. Let Σ be a model of \mathcal{P} in the polydisk Δ in \mathbf{C}^{m}. i.e.,

$$
\Phi: p \in \mathcal{P} \rightarrow z=\left(\gamma_{1}(p), \ldots \hat{\gamma}_{m}(p)\right) \in \Delta .
$$

where each $\varphi_{j}(p)(j=1 \ldots . m)$ is a holomorphic function on a domain G containing \mathcal{P} with $\Sigma=\Phi(\mathcal{P}) ; \Sigma$ is an analytic set in Δ : and Σ and \mathcal{P} are
bijective except for an analytic set of dimension at most $n-1$. Then for any strictly plurisubharmonic function $s(z)$ on Δ, the function $\ell(p):=s(\Phi(p))$ is a strictly pseudoconvex function on \mathcal{P}.
Now let $\ell(p)$ be a real-valued continuous function on a domain U in \mathcal{V}. We allow ℓ to admit the value $-\infty$. For a real number a, we set ${ }^{3}$

$$
U_{a}:=\{p \in U \mid \ell(p)<a\} .
$$

If $U_{a} \subset \subset U$ for each a, we say that $\ell(p)$ is an exhaustion function for U.
9.1.2. Normal Pseudoconvex Spaces. Let \mathcal{V} be an analytic space of dimension n and let $U \subset \mathcal{V}$ be a domain. If there exists a strictly pseudoconvex exhaustion function $\ell(p)$ on U, then we say that U is a normal pseudoconvex domain in \mathcal{V}, and we call $\ell(p)$ an associated function on U. In the case of $U=\mathcal{V}$, we call \mathcal{V} a normal pseudoconvex space.

We have the following theorem relating Stein spaces and normal pseudoconvex spaces.

Theorem 9.1. A Stein space \mathcal{V} is a normal pseudoconvex space.
Proof. Let $n=\operatorname{dim} \mathcal{V}$. Theorem 8.22 implies that \mathcal{V} is bijective to an analytic set Σ in $\mathbf{C}^{2 n+1}$; we let

$$
\Phi: \quad p \in \mathcal{V} \rightarrow z=\left(\varphi_{1}(p), \ldots, \varphi_{2 n+1}(p)\right) \in \Sigma
$$

denote this bijection. We set $s(z):=\sum_{j=1}^{2 n+1}\left|z_{j}\right|^{2}$ in $C^{2 n+1}$ and define $\ell(p):=$ $s(\Phi(p))$ for $p \in \mathcal{V}$. Since $s(z)$ is a strictly plurisubharmonic exhaustion function on $\mathbf{C}^{2 n+1}$, it follows that $\ell(p)$ is a strictly pseudoconvex exhaustion function on \mathcal{V}.

We showed in Theorem 4.6 that any univalent pseudoconvex domain D in $\mathbf{C}^{\boldsymbol{n}}$ admits a piecewise smooth, strictly plurisubharmonic exhaustion function; hence D is a normal pseudoconvex domain. In the case of an analytic space (even in the case of a complex manifold), this is not necessarily true. Before giving some counterexamples, we verify the following proposition.

Proposition 9.1. A normal pseudoconvex domain D in an analytic space \mathcal{V} cannot contain a compact analytic set τ of positive dimension.

Proof. Let D be a normal pseudoconvex domain with associated function $\ell(p)$. Assume that there exists a compact analytic set τ in D having positive dimension. Let $a=\max \{\ell(p) \mid p \in \tau\}<\infty$ and fix $q_{0} \in \tau$ with $\ell\left(q_{0}\right)=a$. There exists a family of analytic hypersurfaces

$$
\sigma_{t}: \quad g(p, t)=0 \quad(t \in I)
$$

in a neighborhood δ of q_{0} in D with $q_{0} \in \sigma_{0}, \sigma_{1} \backslash\left\{q_{0}\right\} \subset \delta_{a}:=\{p \in \delta \mid \ell(p)>a\}$, and $\sigma_{t} \subset \delta_{a}$ for each $t>0$. Fix a one-dimensional analytic set $\tau_{0} \subset \tau$ in δ passing through q_{0}; we may assume τ_{0} is conformally equivalent to a disk Δ_{0}. Identifying τ_{0} with Δ_{0}, we have

$$
\left.g(p, t)\right|_{\Delta_{0}} \neq 0 \text { for all } t>0
$$

while $g\left(g_{0}, 0\right)=0$ and $\left.g(p, 0)\right|_{\Delta_{0}} \not \equiv 0$. Since $g(p, t) \rightarrow g(p, 0)$ as $t \rightarrow 0$ uniformly on Δ_{0}, this contradicts the classical Hurwitz theorem.

[^47]There exist many pseudoconvex domains in an analytic space which are not normal pseudoconvex domains.

Example 9.1. Let $\Omega=\mathbf{C}_{z} \times \mathbf{P}^{m}$ with $m \geq 1$. This is a complex manifold. and $D:=\{|z|<1\} \times \mathbf{P}^{m}$ is a pseudoconvex domain which contains the compact analytic set $\{0\} \times \mathbf{P}^{m}$ of dimension m. Thus D is not a normal pseudoconvex domain.

Example 9.2. Let \mathbf{C}^{n} have variables $z_{1} \ldots, z_{n}$ and let \mathbf{P}^{n-1} have homogeneous coordinates $\left[u_{1}: u_{2}: \ldots: u_{n}\right]$. We consider the product space $\Omega^{*}:=$ $\mathbf{C}^{\boldsymbol{n}} \times \mathbf{P}^{\boldsymbol{n}-1}$ and the n-dimensional analytic set Σ in Ω^{*} defined by

$$
\Sigma: \quad z_{1} w_{j}-z_{j} u_{1}=0 \quad(j=2 \ldots . n)
$$

Since Σ is non-singular in Ω^{*}, it follows that Σ is an n-dimensional complex manifold. If we consider the subset of Σ given by $\Sigma_{1}:=\Sigma \cap\left\{\sum_{j=1}^{n}|z|^{2}<1\right\}$. then Σ_{1} is a strictly pseudoconvex domain in Σ. Since Σ_{1} contains the ($n-1$)-dimensional compact analytic set $\{0\} \times \mathbf{P}^{\boldsymbol{n - 1}}$. it is not a normal pseudoconvex domain.

Example 9.3. ${ }^{4}$ Let \mathbf{C}^{2} have variables $z=x+i y$ and $u=u+i v$. We consider the lattice group Γ generated by the following four linearly indepeudent vectors (in \mathbf{C}^{2}) over \mathbf{R} :

$$
(1.0),(i, 0),(0.1),(i \alpha, i) .
$$

where $a>0$ is an irrational number. We let \mathcal{M} denote the quotient space \mathbf{C}^{2} / Γ. Then \mathcal{M} is a 2 -dimensional, compact, complex torus with canonical projection $\pi: \mathbf{C}^{2} \rightarrow \mathcal{M}$. Let a and b be real numbers with $0<a<b<1$ and let

$$
\Delta=\left\{\left(z, u^{\prime}\right) \in \mathbf{C}^{2} \mid a<\operatorname{Re} z<b\right\} . \quad U=\pi(\Delta)
$$

Then U is a Levi flat domain in \mathcal{M}. We list the following properties of U.

1. U cannot contain any compact analytic set of dimension 1.

Proof. Let $0<c<1$ and define $H_{c}:=\left\{(z, w) \in \mathbf{C}^{2} \mid \operatorname{Re} z=c\right\}$. $\mathcal{H}_{c}:=\pi\left(H_{c}\right)$. Then \mathcal{H}_{c} is a real 3-dimensional compact hypersurface in \mathcal{M}. Fix $z_{1}=c_{0}+i c_{0}^{\prime}$ with $0<c_{0}<1$ and let

$$
s_{z_{0}}:=\left\{\left(z, u^{v}\right) \in \mathbf{C}^{2} \mid z=z_{0}\right\}, \quad \mathcal{S}_{z_{0}}:=\pi\left(s_{z_{0}}\right)
$$

Then we have $\mathcal{S}_{z_{0}}=\left\{z_{0}\right\} \times\left(C_{u} /[1]\right)$, so that $\mathcal{S}_{z_{0}}$ is conformally equivalent to C^{*} as a Riemann surface. We note that $\mathcal{S}_{z_{0}} \neq \mathcal{H}_{c_{0}}$ and that
(*) $S_{x_{0}}$ is dense in $\mathcal{H}_{c_{0}}$.
To verify (*), let $z_{1}=c_{1}+i c_{1}^{\prime}$, where $0<c_{1}<1$. Then $\mathcal{S}_{z_{0}}=S_{z_{1}}$ if and only if $c_{0}=c_{1}$ and $c_{1}^{\prime}-c_{1}^{\prime}=m a+n$. where n and m are integers. Since $\mathcal{H}_{c_{1}}=\bigcup_{y \in \mathbf{R}_{v}} \mathcal{S}_{c_{0}+i y}$ and since α is irrational, (*) follows.

We now prove 1 by contradiction. Thus we assume that there exists a one-dimensional compact analytic set \mathcal{S} in U. Set $s=\pi^{-1}(\mathcal{S})$ in Δ, which is a non-compact analytic set in Δ. Let $(z, w) .\left(z^{\prime}, u^{\prime}\right) \in \mathrm{s}$. Then $\pi\left(z, u^{\prime}\right)=\pi\left(z^{\prime} . w^{\prime}\right)$ in \mathcal{S} implies $\operatorname{Re} z=\operatorname{Re} z^{\prime}$. Since \mathcal{S} is compact. the singlevalued harmonic function $\operatorname{Re} z$ on \mathcal{S} attains its maximum on \mathcal{S}. Therefore, $\operatorname{Re} z=c$ (constant) on s, and hence $s=\left\{c+i c^{\prime}\right\} \times \mathbf{C}_{v}$. where c^{\prime} is a constant. Consequently, $\pi(s)=\mathcal{S}_{c+2 c^{\prime}}$. which is not compact from (*). This contradicts the assumption that $\pi(\mathrm{s})=\mathcal{S}$ is compact.

[^48]2. Any holomorphic function on U is a constant.

Proof. Let $f(p)$ be a holomorphic function on U. Let $z_{0}=c+i c^{\prime}$ where $a<c<b$. Since $\mathcal{S}_{z_{0}}$ is conformally equivalent to \mathbf{C}^{\bullet}, it follows from the fact that $\overline{\mathcal{S}}_{z_{0}}=\mathcal{H}_{c} \subset \subset U$ that $f(p)$ must be constant on $\mathcal{S}_{z_{1}}$, and hence in \mathcal{H}_{r}. Consequently, $f(p)$ is a constant on U.
3. U is not a normal pseudoconvex domain.

Proof. We prove this by contradiction. Thus we assume that there exists an associated function $\varphi(p)$ on U. Then by the same reasoning as in 2 we see that $\varphi(p)$ is constant on each set $\mathcal{H}_{c}, a<c<b$. Therefore. for suffiently large $A>0, U_{A}:=\{p \in U \mid \varphi(p)<A\}$ is a non-empty Levi flat domain in U. which contradicts the fact that $\varphi(p)$ is an associated function on U.

From 1 and 3 we see that U is a pseudoconvex domain in \mathcal{M} containing no compact curves. but U is not a normal pseudoconvex domain.

Another proof of (*): We first remark that \mathcal{M} is homeomorphic to the product $T_{1} \times T_{2}$ of two real compact tori T_{1} and T_{2}, where

$$
\begin{aligned}
& T_{1}=\mathbf{R}_{r} \times \mathbf{R}_{u} /[(1,0),(0.1)] \\
& T_{2}=\mathbf{R}_{y} \times \mathbf{R}_{r} /[(1,0) .(\alpha, 1)]
\end{aligned}
$$

We write $\mathcal{M} \approx T_{1} \times T_{2}$. Since T_{1} is homeonorphic to the product $\gamma_{1} \times \gamma_{2}$ of two unit circles, we have $\mathcal{M} \approx \gamma_{1} \times \gamma_{2} \times T_{2}$. We let π_{2} denote the canonical projection from $\mathbf{R}_{y} \times \mathbf{R}_{v}$ onto T_{2}. Since α is irrational. for any fixed c_{0}^{\prime} with $0<c_{0}^{\prime}<1$, we have that $\sigma_{c_{v}^{\prime}}:=\pi_{2}\left(\left\{c_{0}^{\prime}\right\} \times \mathbf{R}_{v}\right)$ is dense in T_{2}. Fix $0<c_{0}<1$ and set $z_{0}=c_{0}+i c_{0}^{\prime}$. Since

$$
\mathcal{S}_{z_{0}} \approx\left\{c_{0}\right\} \times \gamma_{2} \times \sigma_{c_{1}^{\prime}}, \quad \mathcal{H}_{c_{0}} \approx\left\{c_{0}\right\} \times \gamma_{2} \times T_{2}
$$

it follows that $\mathcal{S}_{z_{j}}$ is dense in $\mathcal{H}_{c_{0}}$.
We remark that the domains in these three examples are domains of holomorphy: but they are not Stein spaces.
9.1.3. Local Holomorphic Completeness. We shall extend Lemma 3.5 (Oka`s lemma) in $\mathbf{C}^{\prime \prime}$ to an analytic space. Let \mathcal{V} be an analytic space of dimension n. Let E and A be compact sets in \mathcal{V} with $E \subset A$. Let $p \in A$ and let $\left\{\sigma_{t}\right\}_{t \in I}$ be a continuous family of analytic hypersurfaces in δ_{p}. where $I=[0,1]$ and δ_{p} is an open neighborhood of p in \mathcal{V}. If $\left\{\sigma_{t}\right\}_{t \in I}$ satisfies the following three conditions:

1. for $t \in I, \sigma_{t} \cap E=\emptyset$;
2. $\sigma_{0} \cap A \neq 0$ and $\sigma_{1} \cap A=0$:
3. for $t \in I$. $\left(\partial \sigma_{t}\right) \cap A=\emptyset$,
then we say that $\left\{\sigma_{t}\right\}_{t \in I}$ satisfies Oka's condition at p with respect to the pair (E, A).

We have the following generalization of Lemma 3.5.
Lemma 9.1. Let U be a holomorphically complete domain in \mathcal{V}, i.e.. \mathcal{U} is a Stein space. Let $K^{\prime} \subset \subset U$ and let $\widehat{K}=\widehat{K}_{l}$ denote a holomorphically convex hull of K with respect to the holomorphic functions in U. Then for each $p \in \widehat{K}$. there
does not exist a continuous family of analytic hypersurfaces $\left\{\sigma_{t}\right\}_{\in \in I}$ in δ_{p} which satisfies Oka's condition at p with respect to the pair (\boldsymbol{K}, \hat{K}).

Proof. The essential part of the proof is similar to that of Lemma 3.5. In Lemma 3.5 we used the fact that $I \times \widehat{K}$ is the holomorphic hull of $I \times K$ in $V \times l^{\prime} \subset$ $C_{t} \times C_{n}^{n}$, and we used the solvability of the Cousin I problem in the analytic polyhedron in the $(n+1)$-dimensional domain $V^{\prime} \times U^{\prime}$. Here we will use the solvability of the Cousin I problem in an analytic polyhedron in the n-dimensional clomain U. We will prove the lemma by contradiction: hence we assume that there exists a continuous family of hypersurfaces $\left\{\sigma_{t}\right\}_{t=1}$ which satisfies Oka's condition with respect to the pair (K, \hat{K}) at some point $p_{0} \in \widehat{K}$. Let

$$
\sigma_{t}: g(t . p)=0, \quad(t, p) \in I \times \delta
$$

where δ is a neighborhood of p_{0} in U and $g(t, p)$ is a continuous function of $(t, p) \in$ $I \times \delta$ which is a nonconstant holomorphic function in $p \in \delta$ for each fixed $t \in I$. Since \widehat{K} is the holomorphic hull of \boldsymbol{K} in the Stein space \mathcal{C}, it follows that there exists an analytic polyhedron \mathcal{P} in U with defining functions that are defined in U such that

$$
\widehat{\kappa} \subset \mathcal{P}^{0}: \sigma_{0} \cap \mathcal{P} \neq \theta: \sigma_{1} \cap \mathcal{P}=\theta: \text { and }\left(\partial \sigma_{t}\right) \cap \mathcal{P}=\theta . t \in I .
$$

Thus for each fixed $t \in I$, the meromorphic function $1 / g(t, p)$ in $\delta \cap \mathcal{P}$ canonically defines a Cousin I distribution in \mathcal{P}. Hence for each $t \in I$ we can find a meromorphic function $H(t, p)$ in \mathcal{P} whose only poles in $\delta \cap \mathcal{P}$ are given by $1 / g(t, p)$. We remark that although $H(t . p)$ is not uniquely determined by $1 / g(t, p)$, the proof in Theorem 8.9 of the construction of meromorphic functions with prescribed Cousin I data implies that we can take $H(t, p)$ in $I \times \mathcal{P}$ to be continuous for $(t, p) \in I \times \delta$ if $g(t, p)$ is continuous in $I \times \delta$. Setting $t_{0}:=\inf \left\{t \in I \mid \sigma_{1} \cap \widehat{K}=\emptyset\right\}$, we can choose t^{\cdot} with $0<t_{0}<t^{*}$ sufficiently close to t_{0} to insure that $H\left(t^{*}, p\right)$ satisfies the condition that there exists a point $q \in \widehat{K}$ with $\left|H\left(t^{*}, q\right)\right|>\max _{p \in \kappa}\left\{\left|H\left(t^{*}, p\right)\right|\right\}$. Since the pair ($\mathcal{P} . U^{\prime}$) satisfies the Runge theorem, we can find a holonorphic function $H(p)$ in U such that $|H(q)|>\max _{p \in \mathcal{K}}\{|H(p)|\}$. which gives a contradiction to the fact that \widehat{K} is the holomorphic hull of K in U.

Let $q \in \mathcal{V}$. Using Remark 8.2, there exists a neighborhood δ_{q} of q in \mathcal{V} which has a normal model in a polydisk Δ. Thus the set δ_{q} is holomorphically complete. We say that an analytic space \mathcal{V} is locally holomorphically complete at each point.

Let U be a donain in an analytic space \mathcal{V}. Let $q \in \partial C^{\circ}$. If there exists a ueighborhood δ_{q} of q in \mathcal{V} such that $U \cap \delta_{q}$ is holomorphically complete. i.e.. $U \cap \delta_{q}$ is itself a Stein space, then we say that U^{\prime} is locally holomorphically complete at the boundary point q. If U is locally holonorphically complete at each point q of ∂L^{\prime}, then we say that U is a locally holomorphically complete domain in $\mathcal{V} .{ }^{3}$

In the following leminas and propositious in this section we will always assume that \mathcal{V} is a normal pseudoconvex space with associated function $\ell(p)$. For a real number a. we set

$$
\mathcal{V}_{a}:=\{p \in \mathcal{V} \mid \ell(p)<a\} \subset \subset \mathcal{V}, \quad \mathcal{V}_{x}=\mathcal{V}
$$

[^49]Lemma 9.2. Let U be a holomorphically complete domain in \mathcal{V}. Then for any real number a, the subset $U_{a}=U \cap \mathcal{V}_{a}$ is holomorphically convex with respect to the holomorphic functions in U.

Proof. Let $K \subset \subset U_{a}$ and let \widehat{K} be the holomorphically convex hull of K with respect to U, so that $\widehat{K} \subset \subset U$. We set $b:=\max _{p \in \dot{K}}\{\ell(p)\}<\infty$. We prove the lemma by contradiction; hence we assume that $b \geq a$. Fix a point $p_{0} \in \widehat{K}$ such that $\ell\left(p_{0}\right)=b$. Since $\ell(p)$ is strictly pseudoconvex in \mathcal{V}, there exists a continuous family of analytic hypersurfaces $\left\{\sigma_{t}\right\}_{t \in I}$ in a neighborhood $\delta_{p_{0}}$ of p_{0} which touches \mathcal{V}_{b} from outside at the point p_{0}. Since $K \subset \subset \mathcal{V}_{a} \subset \mathcal{V}_{b}$, it follows that the continuous family $\left\{\sigma_{t}\right\}_{t \in I}$ satisfies Oka's condition at p_{0} for the pair (K, \widehat{K}). This contradicts Lemma 9.1.

This lemma implies the following proposition.
Proposition 9.2. For any real number a, the domain \mathcal{V}_{a} is a locally holomorphically complete domain in \mathcal{V}.

Proof. Let $q \in \partial \mathcal{V}_{a}$. Since \mathcal{V} is locally holomorphically complete at each point, we can find a holomorphically complete neighborhood δ_{q} of q in \mathcal{V}. By Lemma 9.2, $\delta_{q} \cap \mathcal{V}_{a}$ is holomorphically complete; this proves the proposition.

Proposition 9.3. Let a be a real number or $a=+\infty$. If \mathcal{V}_{a} is holomorphically complete, then for each $c<a, \mathcal{V}_{c}$ is also holomorphically complete.

Proof. Since \mathcal{V}_{a} satisfies conditions 1 and 3 in the definition of holomorphic completeness (stated in 8.3.1), so does the set \mathcal{V}_{c}. By Lemma 9.2, condition 2 for \mathcal{V}_{a} implies condition 2 for \mathcal{V}_{c}. Thus \mathcal{V}_{c} is holomorphically complete.

We obtain the converse of Proposition 9.3.
Proposition 9.4. Let a be a real number or $a=+\infty$. If for each $c<a$ the set \mathcal{V}_{c} is holomorphically complete, then \mathcal{V}_{a} is holomorphically complete.

Proof. Let $c_{j}(j=1,2, \ldots)$ be an increasing sequence of real numbers with $\lim _{j \rightarrow \infty} \mathbf{c}_{j}=a$. Then,

$$
\mathcal{V}_{c}, \subset \subset \mathcal{V}_{c_{j+1}} \quad(j=1,2, \ldots), \quad \mathcal{V}_{a}=\lim _{j \rightarrow \infty} \mathcal{V}_{c_{j}}
$$

Using Lemma 9.2, we conclude that $\mathcal{V}_{c_{j}}$ is holomorphically convex with respect to $\mathcal{V}_{c,+1}$, so that $\mathcal{V}_{c},(j=1,2, \ldots)$ satisfies the approximation condition stated in 8.3.2. It follows from Theorem 8.8 that \mathcal{V}_{a} is holomorphically complete.

Let D be a relatively compact domain in an analytic space \mathcal{V}. We say that the Cousin I problem is solvable on the closure \bar{D} of D if for any Cousin I distribution $\mathcal{C}=\left\{\left(g_{q}(p), \delta_{q}\right)\right\}_{q \in G}$ where $\bar{D} \subset \subset G$, there exists a meromorphic function $F(p)$ on a domain G^{*} with $\bar{D} \subset \subset G^{*} \subset G$ such that $F(p)-g_{q}(p)$ is holomorphic on $\delta_{q} \cap G^{*}$. For use in the next section, we prove the following two lemmas.

Lemma 9.3. Let D and D^{\prime} be domains in an analytic space \mathcal{V} with $D^{\prime} \subset \subset$ $D \subset \subset \mathcal{V}$. Assume that the Cousin I problem is solvable on \bar{D}. Let $\xi \in \partial D^{\prime}$ and let $f_{\xi}(p)$ be a holomorphic function in a neighborhood δ_{ξ} of ξ in \mathcal{V} satisfying the following conditions: if we let S denote the analytic hypersurface in δ_{ξ} determined by $f_{\xi}(p)=0$ in δ_{ξ}, then $\xi \in S, S \cap\left[\left(\partial D^{\prime}\right) \backslash\{\xi\}\right]=\emptyset$, and $\partial S \cap \bar{D}=\emptyset$. Then there
exist a holomorphic function $F(p)$ on D^{\prime} and two neighborhoods $\delta_{\xi}^{\prime}, \delta_{\xi}^{\prime \prime}$ of ξ in D such that $\delta_{\xi}^{\prime} \subset \delta_{\xi}^{\prime \prime} \subset \delta_{\xi}$ and

$$
\begin{aligned}
& D^{\prime} \cap \delta_{\xi}^{\prime} \subset\left\{p \in D^{\prime}| | F(p) \mid>1\right\} \\
& \sup \left\{|F(p)| \mid p \in D^{\prime} \backslash \delta_{\xi}^{\prime \prime}\right\}<1
\end{aligned}
$$

Proof. Fix a domain G in \mathcal{V} such that $\bar{D} \subset G$ and $\partial S \cap G=\emptyset$. Consider the following Cousin I distribution $\mathcal{C}=\left\{\left(g_{4}(p), \delta_{q}\right)\right\}_{4 \in G}$:

1. for $q \in G \cap \delta_{\xi}$. We set $\delta_{q}=\delta_{\xi} \cap G$ and $g_{q}(p)=1 / f_{\xi}(p)$ on δ_{q};
2. for $q \notin G \backslash \delta_{\xi}$, we choose δ_{ξ} so that $\delta_{q} \cap \delta_{\xi}=0$ and set $g_{q}(p) \equiv 0$ on δ_{q}.

Since Cousin I is solvable in \bar{D}, there exists a meromorphic function $F^{*}(p)$ on G^{*}. where $\bar{D} \subset \subset G^{\bullet} \subset G$. such that $F^{\bullet}(p)-g_{q}(p)$ is holomorphic on $\delta_{4} \cap G^{*}$. Thus $F^{*}(p)$ is holomorphic on $G^{*} \backslash S$; in particular, it is holomorphic on $\overline{D^{\prime}} \backslash\{\xi\}$, which contains D^{\prime}, and it has poles along $S \cap G^{*}$: i.e.. $\left|F^{*}(p)\right|=+\infty$ on $S \cap G^{*}$. Since $M:=$ $\max _{p \in \bar{D} \backslash_{\xi}}\left\{\left|F^{*}(p)\right|\right\}<x$ and $\xi \in S$, it follows that there exist two neighborhoods δ_{ξ}^{\prime} and $\delta_{\xi}^{\prime \prime \prime}$ of ξ in G^{*} with $\delta_{\xi}^{\prime} \subset \delta_{\xi}^{\prime \prime} \subset \delta_{\xi}$ such that $\min _{p \in D^{\prime} \cap 0_{\xi}^{\prime}}\left\{\left|F^{*}(p)\right|\right\}>M+1$ and $\max _{p \in D^{\prime} \backslash \delta_{<}^{\prime \prime}}\left\{\left|F^{* *}(p)\right|\right\}<M+1 / 2$. Setting $F(p)=F^{*}(p) /(M+1)$ on D^{\prime} completes the proof of the lenima.

Lemma 9.4. Let D be a domain in an analytic space \mathcal{V} uith $D \subset \subset \mathcal{V}$. Assume that the Cousin I problem is solvable on \bar{D}. Let $f(p)$ be a holomorphic function on \bar{D} and let S denote the analytic hypersurface in \bar{D} determined by $f(p)=0$ on \bar{D}. Let $p_{1}, p_{2} \in S$. Assume that there exists a holomorphic function $\dot{\varphi}(p)$ in a neighborhood V of S in \bar{D} such that $\dot{p}\left(p_{1}\right) \neq \varphi\left(p_{2}\right)$. Then there exists a holomorphic function $\Phi(p)$ defined on all of \bar{D} such that $\Phi\left(p_{1}\right) \neq \Phi\left(p_{2}\right)$.

Proof. We fix a domain G with $\bar{D} \subset \subset G \subset \subset \mathcal{V}$ such that $f(p)$ is holomorphic in G and S is an analytic hypersurface in G. We nay assume that $\varphi(p)$ is defined and holomorphic in a neighborhood V of S in G. We consider the following Cousin I distribution $\mathcal{C}=\left\{\left(g_{q}(p), \delta_{q}\right)\right\}_{4 \in G}$ on G :

1. for $q \in V$, we take $\delta_{q} \subset V$ and set $g_{q}(p)=f(p) / f(p)$ on δ_{q} :
2. for $q \in G \backslash V$. we take δ_{q} such that $\delta_{q} \cap S=\emptyset$ and set $g_{q}(p) \equiv 0$ on δ_{q}.

Since the Cousin I problem is solvable on \bar{D}, there exists a meromorphic function $F(p)$ on a domain G^{*} with $\bar{D} \subset \subset G^{*} \subset G$ such that $F(p)-g_{q}(p)$ is holomorphic on each $\delta_{q} . q \in G^{*}$. If we set $\Phi(p)=F(p) \cdot f(p)$ on G^{*}, then $\Phi(p)$ is a holonorphic function on G^{*} satisfying $\Phi\left(p_{i}\right)=\hat{r}\left(p_{i}\right)(i=1,2)$. Thus, $\Phi(p)$ satisfies the conclusion of the lemma.

9.2. Linking Problem

9.2.1. Linking Condition. Let \mathcal{V} be an analytic space of dimension n. Let \mathcal{D}_{1} and \mathcal{D}_{2} be relatively compact domains in \mathcal{V} such that if we set

$$
\begin{equation*}
\mathcal{D}=\mathcal{D}_{1} \cup \mathcal{D}_{2}, \quad \mathcal{D}_{0}=\mathcal{D}_{1} \cap \mathcal{D}_{2} \tag{9.2}
\end{equation*}
$$

then \mathcal{D} and \mathcal{D}_{0} satisfy the following conditions:
(L1) \mathcal{D} is a normal pseudoconvex domain.
(L2) Both \mathcal{D}_{1} and \mathcal{D}_{2} are holomorphically complete domains in \mathcal{V}.
(L3) There exists a bounded holomorphic function $\varphi_{0}(p)=u(p)+i v(p)$ on a domain G in \mathcal{V} such that $\mathcal{D}_{0} \subset \subset G$ and \mathcal{D}_{0} can be described as

$$
\mathcal{D}_{0}=\left\{p \in G \cap \mathcal{D} \mid a_{1}<u(p)<a_{2}\right\}
$$

where a_{1} and a_{2} are real numbers with $a_{1}<0<a_{2}$.
We say that \mathcal{D} satisfies the linking condition, or, more precisely; \mathcal{D} satisfies the linking condition with respect to $\varphi_{0}(p)$ and $a_{i}(i=1,2)$.

For real numbers b_{1} and b_{2} with $a_{1}<b_{1}<0<b_{2}<a_{2}$. such a domain \mathcal{D} satisfies the linking condition with respect to this same function $\mathcal{Y}_{0}(p)$ and the numbers $b_{i}(i=1,2)$, since we can write

$$
\begin{equation*}
\mathcal{D}=\mathcal{D}_{1}^{\prime} \cup \mathcal{D}_{2}^{\prime}, \quad \mathcal{D}_{0}^{\prime}=\mathcal{D}_{1}^{\prime} \cap \mathcal{D}_{2}^{\prime}=\left\{p \in G \cap \mathcal{D} \mid b_{1}<u(p)<b_{2}\right\} \tag{9.3}
\end{equation*}
$$

where $\mathcal{D}_{i}^{\prime} \subset \mathcal{D}_{i}(i=1,2)$ are holomorphically coniplete.
We shall prove later (Theorem 9.2) that a domain $\mathcal{D} \subset \subset \mathcal{V}$ satisfying the linking condition is a holomorphically complete domain.

Define

$$
\begin{aligned}
\mathcal{H}_{0} & =\left\{p \in \mathcal{D}_{0} \mid u(p)=0\right\} \\
\mathcal{H}_{i} & =\left\{p \in \mathcal{D}_{0} \mid u(p)=a_{i}\right\} \quad(i=1,2)
\end{aligned}
$$

We may assume from (9.2) that

$$
\begin{equation*}
\mathcal{H}_{2} \subset \partial \mathcal{D}_{1}, \quad \mathcal{H}_{1} \subset \partial \mathcal{D}_{2} \tag{9.4}
\end{equation*}
$$

Although $u(p)$ is not defined on all of \mathcal{D}. we use the terminology that the direction for \mathcal{D} in which $u(p)$ increases (decreases) is to the right (left) - see Figure 1.

Figure 1. Linking condition for \mathcal{D}

We note from condition (L2) that \mathcal{D}_{0} is holomorphically complete. By condition (L1) there exists an associated function $\mathcal{C}(p)$ on \mathcal{D}. Fix a real number α and set

$$
\begin{aligned}
& \mathcal{D}^{(n)}:=\{p \in \mathcal{D} \mid \epsilon(p)<\alpha\} \subset \subset \mathcal{D} . \\
& \mathcal{D}_{j}^{(n)}:=\mathcal{D}^{(\alpha)} \cap \mathcal{D}_{j} \subset \mathcal{D}_{J} \quad(j=0,1,2) .
\end{aligned}
$$

By Lemma 9.2, each $\mathcal{D}_{j}^{(\alpha)}(j=0.1,2)$ is holomorphically complete.
We have the following lemma.
Lemma 9.5. $\mathcal{D}_{0}^{(0)}$ is holomorphically convex with respect to the holomorphic functions in $\mathcal{D}_{1}^{(a)}$ and in $\mathcal{D}_{2}^{(a)}$. Similarly, \mathcal{D}_{0} is holomorphically convex urith respect to the holomorphic functions in \mathcal{D}_{1} and in \mathcal{D}_{2}.

Proof. Since the proofs are similar, we will only prove that $\mathcal{D}_{0}^{(n)}$ is holomorphically convex with respect to $\mathcal{D}_{1}^{(n)}$. Let $K \subset \subset \mathcal{D}_{0}^{(a)}$ be compact. We let \widehat{K} denote the holomorphically convex hull of K with respect to $\mathcal{D}_{1}^{(a)}$ i.e., $\widehat{K}=\widehat{K}_{\mathcal{D}_{1}^{(a)}}$. Our goal is to show that $\widehat{K} \subset \subset \mathcal{D}_{0}^{(\alpha)}$. Since $\widehat{K} \subset \subset \mathcal{D}_{1}^{(\text {() }}$, using (9.4) it suffices to prove that $\hat{K} \cap \mathcal{H}_{1}=\emptyset$. We prove this by contradiction; thus we assume that $\hat{K} \cap \mathcal{H}_{1} \neq \emptyset$. Set

$$
c=\operatorname{nax}\left\{v(p) \mid p \in \widehat{K} \cap \mathcal{H}_{1}\right\}<\boldsymbol{\infty} ;
$$

thus there exists a point $q_{0} \in \widehat{K} \cap \mathcal{H}_{1}$ such that $\hat{\varphi}_{0}\left(q_{0}\right)=a_{1}+i c$. Consider the following family of analytic hypersurfaces in G :

$$
\tau_{t}: \quad \hat{\gamma}_{0}(p)=a_{1}+(c+t) i \quad(0 \leq t<\infty) .
$$

From the definition of the number \mathbf{c} we have $q_{0} \in \tau_{0} \cap \widehat{K}$ and $\tau_{l} \cap\left(\widehat{K} \cap \mathcal{H}_{1}\right)=\emptyset$ for all $t>0$, so that $\tau_{t} \cap \hat{K}=\emptyset$ for all $t>0$. Moreover $\partial \tau_{t} \subset \partial G$ for all $t \geq 0$, so that $\left(\partial \tau_{t}\right) \cap \widehat{K}=\emptyset$ for all $t \geq 0$. It follows that $\left\{\tau_{t}\right\}_{(\in[0 . x)}$ satisfies $O_{k A}$'s condition at q_{0} for the pair (K, \widehat{K}). This contradicts Lemma 9.1.
9.2.2. Oka's Fundamental Lemma. Let $\mathcal{D} \subset \subset \mathcal{V}$ be a domain which satisfies the linking condition. We use the same notation $\mathcal{D}_{J}(j=0,1,2)$. $p_{0}(p)=$ $u(p)+i v(p)$ on G where $\mathcal{D}_{0} \subset \subset G, a_{i}(i=1,2)$. and $\mathcal{H}_{j}(j=0,1,2)$ as in the previous section. We also use the associated function $\epsilon(p)$ on \mathcal{D} and the notation $\mathcal{D}^{(\alpha)}=\{p \in \mathcal{D} \mid \ell(p)<\alpha\}$ for each real number α. For future use. we fix a positive number ρ_{0} such that

$$
\begin{equation*}
\rho_{0}>\max \left\{\left|\varphi_{0}(p)\right| \mid p \in \overline{\mathcal{D}}_{0}\right\} . \tag{9.5}
\end{equation*}
$$

We fix real numbers $b_{i}(i=1,2)$ sufficiently close to a_{i} with $a_{1}<b_{1}<0<b_{2}<$ a_{2}. As in (9.3) we construct domains $\mathcal{D}_{j}^{\prime}(j=0,1,2)$ associated to $b_{i}(i=1,2)$ such that

$$
\mathcal{D}=\mathcal{D}_{1}^{\prime} \cup \mathcal{D}_{2}^{\prime} . \quad \mathcal{D}_{0}^{\prime}=\mathcal{D}_{1}^{\prime} \cap \mathcal{D}_{2}^{\prime}=\left\{p \in G \cap \mathcal{D} \mid b_{1}<u(p)<b_{2}\right\} .
$$

For simplicity. given $\alpha>0$. we use the notation

$$
\begin{equation*}
D:=\mathcal{D}^{(\alpha)} . \quad D_{j}:=\mathcal{D}_{j}^{\prime}, \cap \mathcal{D}^{(\omega)} \quad(j=0,1,2) \tag{9.6}
\end{equation*}
$$

(note the slight difference in notation between \mathcal{D}_{i} and $D_{i}(i=0,1,2)$). Fix a real number $\gamma<\alpha$ and consider the following set:

$$
\begin{equation*}
\mathrm{b}=\left\{p \in \mathcal{D}^{(\gamma)} \cap G \mid b_{1}<u(p)<b_{2}\right\} \subset \subset \mathcal{D}_{1}^{(\alpha)} . \tag{9.7}
\end{equation*}
$$

We remark that this set will be used in 9.2.3.

We assume that there exist a finite number of holomorphic functions $\varphi_{j}(p)$ ($j=1, \ldots, m$) on D_{0} which satisfy the following conditions:
1^{1}. There exists a positive number $\delta>0$ such that the subset

$$
\mathcal{A}=\left\{p \in D_{0}\left|-\delta \leq u(p) \leq \delta,\left|\varphi_{j}(p)\right| \leq 1 \quad(j=1, \ldots, m)\right\}\right.
$$

satisfies $\mathcal{A} \subset \subset D_{0}$, so that \mathcal{A} is an analytic polyhedron in D_{0}.
2°. In \mathbf{C}^{m+1} with variables $z_{0}=u+i v, z_{1}, \ldots, z_{m}$, define the product domain

$$
\Lambda=U \times \bar{\Delta} \subset \mathbf{C}_{z_{0}} \times \mathbf{C}_{\mathbf{z}_{1}, \ldots, z_{m}}^{m}
$$

where

$$
U:\left|z_{0}\right| \leq 2 \rho_{0}, \quad-\delta \leq u \leq \delta, \quad \bar{\Delta}:\left|z_{j}\right| \leq 1 \quad(j=1, \ldots, m),
$$

and $\rho_{0}>0$ is defined in (9.5). Then the mapping

$$
\Phi(p): \quad z_{i}=\varphi_{i}(p) \quad(i=0,1, \ldots, m)
$$

gives a normal model $\Sigma=\Phi(\mathcal{A})$ of \mathcal{A} in Λ.
3°. There exist positive numbers $\epsilon_{0}, \epsilon_{1}$ with $\epsilon_{0}, \epsilon_{1}<1$ such that, if we set

$$
E=\left\{p \in D_{0} \mid u(p)<b_{1}+\epsilon_{1}\right\} \bigcup\left\{p \in D_{0} \mid u(p)>b_{2}-\epsilon_{1}\right\},
$$

then we have

$$
\left|\varphi_{j}(p)\right|<1-\epsilon_{0} \quad(j=1, \ldots, m) \quad \text { on } E \cup b .
$$

The existence of such functions $\varphi_{j}(p)(j=1, \ldots, m)$ on D_{0} will be proved in the next section. ${ }^{6}$

Figure 2. Linking condition for D

[^50]We fix a positive number ρ_{1} such that

$$
\begin{equation*}
1-\epsilon_{0}<\rho_{1}<1, \tag{9.8}
\end{equation*}
$$

and we define

$$
\begin{equation*}
W=\left\{p \in D_{0}| | \varphi_{j}(p) \mid \leq \rho_{1}(j=1, \ldots, m)\right\} \cup\left(D \backslash D_{0}\right), \tag{9.9}
\end{equation*}
$$

so that, by condition 3°,

$$
\begin{equation*}
D \cap\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right) \subset W, \quad \mathcal{D}^{(\gamma)} \subset \subset W \tag{9.10}
\end{equation*}
$$

We divide W into two parts W_{1} and W_{2} using the real hypersurface \mathcal{H}_{0} so that W_{1} (W_{2}) is the left (right) part of W; thus $W_{1} \subset D_{1}$ and $W_{2} \subset D_{2}$.

In this geometric situation, we have the following fundamental lemma of Oka.
Lemma 9.6 (Oka). ${ }^{7}$ Let $f(p)$ be a holomorphic function on \mathcal{A}. Then there exist holomorphic functions $f_{1}(p)$ and $f_{2}(p)$ on W_{1} and W_{2} such that both $f_{1}(p)$ and $f_{2}(p)$ can be holomorphically extended beyond $\mathcal{H}_{0} \cap W$ and

$$
\begin{equation*}
f(p)=f_{1}(p)-f_{2}(p) \quad \text { on } \quad \mathcal{H}_{0} \cap W \tag{9.11}
\end{equation*}
$$

Proof. We divide the proof into four steps. Afterwards, we will make a few remarks to clarify some of the details.

First step. Let $\delta, \epsilon_{0}, \epsilon_{1}$ be as in 1° and 3°. We fix $\delta^{\prime}>0$ with $0<\delta^{\prime}<\delta$ and we also fix $\rho_{1}^{\prime}>0$ with $1-\epsilon_{0}<\rho_{1}<\rho_{1}^{\prime}<1$. Consider the polydisk

$$
\Lambda^{\prime}=U^{\prime} \times \bar{\Delta}^{\prime} \subset \mathbf{C}_{z_{0}} \times \mathbf{C}_{z_{1}, \ldots, z_{m}}^{m},
$$

where

$$
U^{\prime}:\left|z_{0}\right| \leq \rho_{0}, \quad-\delta^{\prime} \leq u \leq \delta^{\prime}, \quad \bar{\Delta}^{\prime}:\left|z_{j}\right| \leq \rho_{1}^{\prime} \quad(j=1, \ldots, m),
$$

with $\rho_{0}>0$ having been defined in (9.5). We have $\Lambda^{\prime} \subset \subset \Lambda$. Using condition 2°, Theorem 8.15 implies that if $g(p)$ is a holomorphic function on \mathcal{A}, then $g(p)$ has a holomorphic extension $G\left(z_{0}, z_{1}, \ldots, z_{m}\right)=G(z)$ on Λ,

$$
G\left(\varphi_{0}(p), \varphi_{1}(p), \ldots, \varphi_{m}(p)\right)=g(p) \quad \text { on } \mathcal{A},
$$

with

$$
\max _{z \in \Lambda^{\prime}}\{|G(z)|\} \leq K \max _{p \in \mathcal{A}}\{|g(p)|\}
$$

where K is a constant which does not depend on the function $g(p)$ on \mathcal{A}.
Second step. Let $f(p)$ be a holomorphic function on \mathcal{A}. Since \mathcal{A} is a compact set, there exists $M>0$ such that

$$
|f(p)| \leq M \text { on } \mathcal{A} .
$$

From the first step, there exists a holomorphic extension $F\left(z_{0}, z_{1}, \ldots, z_{m}\right)=F(z)$ on Λ of $f(p)$ (i.e., $F\left(\varphi_{0}(p), \varphi_{1}(p), \ldots, \varphi_{m}(p)\right)=f(p)$ on $\left.\mathcal{A}\right)$ such that

$$
|F(z)| \leq K M \quad \text { on } \quad \Lambda^{\prime} .
$$

Fix a segment $L=\left[-\rho_{0} i, \rho_{0}\right]$ on the imaginary axis of the $z_{0}=u+i v$-plane $\mathbf{C}_{z_{0}}$, and let $\mathbf{C}_{\boldsymbol{z}_{0}}^{+}\left(\mathbf{C}_{z_{0}}^{-}\right)$denote the right (left) half-plane divided by the imaginary axis

[^51]in $\mathbf{C}_{z_{0}}$. Since $F(z)$ is holomorphic on Λ, which contains $L \times \bar{\Delta}$, we can consider the Cousin integral of $F(z)$ with respect to z_{0} :
$$
\Psi(z):=\Psi\left(z_{0}, z_{1}, \ldots, z_{m}\right)=\frac{1}{2 \pi i} \int_{L} \frac{F\left(\zeta_{0}, z_{1}, \ldots, z_{m}\right)}{\zeta_{0}-z_{0}} d \zeta_{0}
$$
for $\left(z_{0}, z_{1}, \ldots, z_{m}\right) \in\left(C_{z_{0}} \backslash L\right) \times \bar{\Delta}$. This defines a holomorphic function $\Psi_{1}(z)$ $\left(\Psi_{2}(z)\right)$ on $C_{z_{0}}^{+} \times \bar{\Delta}\left(C_{z_{0}}^{-} \times \bar{\Delta}\right)$ such that both $\Psi_{1}(z)$ and $\Psi_{2}(z)$ can be holomorphically extended beyond $L \times \bar{\Delta}$ and satisfy
\[

$$
\begin{equation*}
\Psi_{1}(z)-\Psi_{2}(z)=F(z) \quad \text { on } L \times \bar{\Delta} \tag{9.12}
\end{equation*}
$$

\]

We consider the polydisk $\Delta^{\prime}:\left|z_{j}\right|<\rho_{1}^{\prime}(j=1, \ldots, m)$ and its distinguished boundary

$$
\Gamma:\left|\zeta_{j}\right|=\rho_{1}^{\prime} \quad(j=1, \ldots, m) \quad \text { in } \mathbf{C}^{m}
$$

Since $\Delta^{\prime} \subset \subset \Delta$, it follows from Cauchy's formula that

$$
F\left(\zeta_{0}, z_{1}, \ldots, z_{m}\right)=\frac{1}{(2 \pi i)^{m}} \int_{\Gamma} \frac{F\left(\zeta_{0}, \zeta_{1}, \ldots, \zeta_{m}\right)}{\left(\zeta_{1}-z_{1}\right) \cdots\left(\zeta_{m}-z_{m}\right)} d \zeta_{1} \cdots d \zeta_{m}
$$

for $\left(\zeta_{0}, z_{1}, \ldots, z_{m}\right) \in L \times\left(\Delta^{\prime}\right)^{o}$, where $\left(\Delta^{\prime}\right)^{o}$ is the interior of Δ^{\prime}. Therefore, we have

$$
\begin{align*}
& \Psi_{1}\left(z_{0}, z_{1}, \ldots, z_{m}\right)\left(\Psi_{2}\left(z_{0}, z_{1}, \ldots, z_{m}\right)\right) \tag{9.13}\\
& \quad=\frac{1}{(2 \pi i)^{m+1}} \int_{L \times \Gamma} \frac{F\left(\zeta_{0}, \zeta_{1}, \ldots, \zeta_{m}\right)}{\left(\zeta_{0}-z_{0}\right)\left(\zeta_{1}-z_{1}\right) \cdots\left(\zeta_{m}-z_{m}\right)} d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m}
\end{align*}
$$

for $\left(z_{0}, z_{1}, \ldots, z_{m}\right) \in C_{z_{0}}^{-} \times\left(\Delta^{\prime}\right)^{o}\left(C_{z_{0}}^{+} \times\left(\Delta^{\prime}\right)^{o}\right)$.
Now let $p \in D_{0} \cap W_{1} \quad\left(p \in D_{0} \cap W_{2}\right)$. Then $u(p)=\operatorname{Re} \varphi_{0}(p)<0(u(p)>0)$, and $\left|\varphi_{j}(p)\right|<\rho_{1}<\rho_{1}^{\prime}(j=1, \ldots, m)$. It follows that

$$
\psi_{i}(p):=\Psi_{i}\left(\varphi_{0}(p), \varphi_{1}(p), \ldots, \varphi_{m}(p)\right) \quad(i=1,2)
$$

is a well-defined holomorphic function on $D_{0} \cap W_{i}$. Furthermore, since $\left|\varphi_{0}(p)\right|<\rho_{0}$ on $\overline{D_{0}}$, it follows that the $\psi_{i}(p)(i=1,2)$ can be holomorphically extended beyond $\mathcal{H}_{0} \cap W_{i}$ and satisfy (from (9.12))

$$
\begin{equation*}
\psi_{1}(p)-\psi_{2}(p)=F\left(\varphi_{0}(p), \varphi_{1}(p), \ldots, \varphi_{m}(p)\right)=f(p), \quad p \in W \cap \mathcal{H}_{0} \tag{9.14}
\end{equation*}
$$

We remark that from (9.13), the functions $\psi_{i}(p)$ on $D_{0} \cap W_{i}(i=1,2)$ can be written in the form

$$
\begin{equation*}
\psi_{i}(p)=\int_{L \times \Gamma} \chi(\zeta, p) F(\zeta) d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m}, \quad p \in D_{0} \cap W_{i} \tag{9.15}
\end{equation*}
$$

where $\zeta=\left(\zeta_{0}, \zeta_{1}, \ldots, \zeta_{m}\right) \in L \times \Gamma$ and

$$
\chi(\zeta, p)=\frac{1}{(2 \pi i)^{m+1}} \frac{1}{\left(\zeta_{0}-\varphi_{0}(p)\right)\left(\zeta_{1}-\varphi_{1}(p)\right) \cdots\left(\zeta_{m}-\varphi_{m}(p)\right)}
$$

for $(\zeta, p) \in(L \times \Gamma) \times D_{0}$. We note from (9.14) that the $\psi_{i}(p)(i=1,2)$ can be holomorphically extended beyond $W \cap \mathcal{H}_{0}$ to $\left(D_{0} \bigcap W_{i}\right) \cup(W \cap \mathcal{A})$ and satisfy $\psi_{1}(p)-\psi_{2}(p)=f(p)$ on $W \cap \mathcal{A}$. Furthermore, there exists a constant $\bar{K}>0$ (independent of $f(p)$ on \mathcal{A}) such that

$$
\begin{equation*}
\left|\psi_{i}(p)\right| \leq \bar{K} M, \quad p \in W \cap \mathcal{A} . \tag{9.16}
\end{equation*}
$$

To verify this last statement, we set $U_{+}^{\prime}=\left\{\tilde{z}_{0} \in U^{\prime} \mid u \geq 0\right\}$: note that the boundary of this set contains L, and set $L^{\prime}=\left(\partial U_{+}^{\prime}\right) \backslash L$ (which consists of two circular arcs and one line segment). Fix $\rho_{0}^{*}>0$ with $\rho_{0}>\rho_{0}^{*}>\max \{|\dot{\gamma} 0(p)| \mid p \in$ $\left.\overline{D_{0}}\right\}$. We then have

$$
\eta:=\min \left\{\delta^{\prime} \cdot \rho_{0}-\rho_{0}^{*}\right\} \leq\left|\kappa_{0}-\gamma_{0}(\mu)\right|
$$

for $\zeta_{0} \in L^{\prime}$ and $p \in W_{1}^{\prime} \cap \mathcal{A}$. Let $p \in W_{1}^{\prime} \cap \mathcal{A}$ and $\left(\zeta_{1} \ldots \ldots, \zeta_{m}\right) \in \Gamma$ be fixed. Then $\chi(\zeta, p)$ is holomorphic as a function of ζ_{0} on U_{+}^{\prime}. Using Cauchy's formula, we can replace L by L^{\prime} and obtain

$$
\begin{aligned}
\left|v_{1}(p)\right| & =\left|\int_{L^{\prime} \times r} \chi(\zeta, p) F(\zeta) d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m}\right| \\
& \leq \frac{K M}{\eta\left(\rho_{1}^{\prime}-\rho_{1}\right)^{m^{\prime}}} \cdot\left(\pi \rho_{0}\right) \cdot\left(2 \pi \rho_{1}\right)^{m}=: K^{-\prime} M .
\end{aligned}
$$

where $K^{\prime}>0$ does not depend on $f(p)$. Similarly we have $\left|\iota_{2}(p)\right| \leq K^{\prime} M$ on $\boldsymbol{W}_{2} \cap \mathcal{A}$. It follows from (9.14) that

$$
\left|\psi_{1}(p)\right| \leq\left|\psi_{2}(p)\right|+|f(p)| \leq\left(K^{\prime}+1\right) M \quad \text { on } W_{2} \cap \mathcal{A} .
$$

Therefore, $\check{K}=K^{\prime}+1>0$ satisfies (9.16).
Third step. We fix a sinall rectangular neighborhood l of L in $\mathbf{C}_{2,1}$ and we form the product set $\gamma=\gamma_{1} \times \cdots \times \gamma_{m}$. where each $\gamma_{j}(j=1 \ldots, m)$ is a thin annular neighborhood of the circle $\left|\zeta_{j}\right|=\rho_{1}^{\prime}$ in $\mathbf{C}_{z_{2}}$. We set $\tau=l \times \gamma$. which is a neighborhood of $L \times \Gamma$ in \mathbf{C}^{m+1}. We consider $\chi(\zeta, p)$ as a meronorphic function on $\tau \times D_{\mathrm{t}}$. From condition 3° and the relation $\rho_{1}^{\prime}>\rho_{1}>1-c_{0}$. we can choose such a neighborhood τ of $L \times \Gamma$ sufficiently small so that the pole set of $\chi(\zeta . p)$ does not intersect $\left(\partial D_{0}\right) \cap D \subset\left\{p \in D \mid u_{0}(p)=b_{1}\right.$ or $\left.b_{2}\right\}$. Therefore. if we define

$$
\mathcal{C}= \begin{cases}\chi(\zeta . p) & \text { on } \tau \times D_{0} . \\ 0 & \text { on } \tau \times\left(D \backslash D_{0}\right) .\end{cases}
$$

then \mathcal{C} is a Cousin I distribution on $\tau \times D$. and hence on $\tau \times D_{1}$. Since $\tau \times D_{1}$ is a holomorphically complete domain. fron Theorem 8.9 we conclude that there exists a solution $\chi_{1}(\zeta, p)$ of the Cousin I problem for \mathcal{C} on $\tau \times D_{1}$. Thus. $\chi_{1}(\zeta, p)$ is a meromorphic function on $\tau \times D_{1}$ with $\chi_{1}(\zeta, p)-\chi(\zeta, p)$ holomorphic on $\tau \times D_{0}$; moreover, $\chi_{1}(\zeta . p)$ itself is holomorphic on $\tau \times\left(D_{1} \backslash D_{0}\right)$.

Fix $\epsilon>0$. Since $\tau \times D_{01}$ is holomorphically convex in $\tau \times D_{1}$ by Lemma 9.5, it follows from the inclusion $(L \times \Gamma) \times \mathcal{A} \subset \subset \tau \times D_{11}$ that there exists a holomorphic function $H_{1}(\zeta, p)$ on $\tau \times D_{1}$ such that

$$
\left|\left(\chi_{1}(\zeta, p)-\chi(\zeta, p)\right)-H_{1}(\zeta, p)\right|<\epsilon \quad \text { on }(L \times \Gamma) \times \mathcal{A} .
$$

We set

$$
\begin{aligned}
& h_{1}(\zeta, p)=\chi_{1}(\zeta, p)-\chi(\zeta, p)-H_{1}(\zeta, p) \text { on } \tau \times D_{0} . \\
& K_{1}(\zeta, p)=\chi_{1}(\zeta, p)-H_{1}(\zeta, p) \text { on } \tau \times D_{1} .
\end{aligned}
$$

so that $K_{1}(\zeta . p)$ is a meromorphic function on $\tau \times D_{1}$ with the same pole set as $\chi(\zeta, p)$ and

$$
\begin{aligned}
K_{1}(\zeta, p) & =x(\zeta, p)+h_{1}(\zeta, p) \text { on } \tau \times D_{0}, \\
\left|h_{1}(\zeta, p)\right| & <c \text { on }(L \times \Gamma) \times \mathcal{A} .
\end{aligned}
$$

In a similar fashion, we can construct a meromorphic function $K_{2}\left(\zeta_{,} p\right)$ on $\tau \times D_{2}$ with the same pole set as $\chi(\zeta, p)$ and a holomorphic function $h_{2}(\zeta, p)$ on $\tau \times D_{0}$ such that

$$
\begin{aligned}
K_{2}(\zeta, p) & =\chi(\zeta, p)+h_{2}(\zeta, p) \text { on } \tau \times D_{0} \\
\left|h_{2}(\zeta, p)\right| & <\epsilon \text { on }(L \times \Gamma) \times \mathcal{A} .
\end{aligned}
$$

Since $K_{i}(\zeta, p)(i=1,2)$ as well as $\chi(\zeta, p)$ has no poles in $(L \times \Gamma) \times W_{i}$, we can form the integral

$$
I_{i} f(p)=\int_{L \times \Gamma} K_{i}(\zeta, p) F(\zeta) d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m} \quad \text { for } p \in W_{1}
$$

which is a holomorphic function on W_{2}. On the other hand, we have

$$
\begin{align*}
I_{1} f(p) & =\int_{L \times I^{\top}} \chi(\zeta, p) F(\zeta) d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m} \tag{9.17}\\
& +\int_{L \times r} h_{i}(\zeta, p) F(\zeta) d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m} \quad \text { for } p \in W_{i} \cap D_{0}
\end{align*}
$$

The second term on the right-hand side is a holomorphic function on D_{0}. It follows from (9.14) and (9.15) that $I_{i} f(p)$ can be holomorphically extended beyond $W \cap \mathcal{H}_{0}$ and satisfies

$$
\begin{gathered}
I_{1} f(p)-I_{2} f(p)=f(p)+\int_{L \times \Gamma}\left(h_{1}(\zeta, p)-h_{2}(\zeta, p)\right) F(\zeta) d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m} \\
\text { for } p \in W \cap \mathcal{H}_{0}
\end{gathered}
$$

Consider the second term on the right-hand side:

$$
f^{(1)}(p):=\int_{L \times \Gamma}\left(h_{2}(\zeta, p)-h_{1}(\zeta, p)\right) F(\zeta) d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m} \quad \text { for } p \in D_{0}
$$

$f^{(1)}(p)$ is a holomorphic function on D_{0}. Let $p \in \mathcal{A} \subset \subset D_{0}$. Since $\left|h_{1}(\zeta . p)\right|<\epsilon$ on ($L \times \Gamma$) $\times \mathcal{A}$ and $|F(\zeta)| \leq K M$ on Λ^{\prime} (which contains $L \times \Gamma$). we have

$$
\left|f^{(1)}(p)\right| \leq(2 \epsilon) \cdot K M \cdot\left(2 \rho_{0}\right) \cdot\left(2 \pi \rho_{1}^{\prime}\right)^{m}=: \lambda M .
$$

where $\lambda=2^{m+2} K \rho_{0}\left(\pi \rho_{1}^{\prime}\right)^{m} \epsilon>0$. We assume we have chosen $\epsilon>0$ sufficiently small so that $0<\lambda<1$. Since $K, \rho_{0}, \rho_{0}^{\prime}$ are independent of $f(p)$ on \mathcal{A}. so is λ.

We have constructed the integral kernel $K_{i}(\zeta, p)$ on $(L \times \Gamma) \times D_{i}(i=1,2)$ with the following property: given a holomorphic function $f(p)$ on \mathcal{A} such that $|f(p)| \leq M$ on \mathcal{A}, take a holomorphic extension $F(z)$ of $f(p)$ on Λ such that $|F(z)| \leq K M$ on Λ^{\prime}, and construct

$$
I_{1} f(p)=\int_{L \times \Gamma} K_{i}(\zeta, p) F(\zeta) d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m} \quad(i=1,2) \quad \text { for } p \in W_{i}
$$

Then $I_{i} f(p)$ is a holomorphic function on W_{i} which can be holomorphically extended beyond $W_{i} \cap \mathcal{H}_{0}$ and satisfies

$$
I_{1} f(p)-I_{2} f(p)=f(p)-f^{(1)}(p) \quad \text { on } W \cap \mathcal{H}_{0}
$$

where $f^{(1)}(p)$ is a holomorphic function on D_{0} with

$$
\left|f^{(1)}(p)\right| \leq \lambda M \quad \text { on } \mathcal{A}
$$

Therefore $I_{i} f(p)(i=1,2)$ can be holomorphically extended to $W_{i}^{\prime}=W_{i} \cup\left(\mathcal{A} \cap W^{\prime}\right)$ and satisfies

$$
\begin{equation*}
I_{1} f(p)-I_{2} f(p)=f(p)-f^{(1)}(p) \quad \text { on } \mathcal{A} \cap W \tag{9.18}
\end{equation*}
$$

Furthermore. (9.16) and (9.17) imply

$$
I_{i} f(p)=\dot{\psi}_{i}(p)+\int_{L \times \Gamma} h_{i}(\zeta, p) F(\zeta) d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m} \quad \text { on } \mathcal{A} \cap W
$$

and

$$
\begin{equation*}
\left|I_{i} f(p)\right| \leq \tilde{K} M+\epsilon K M 2 \rho_{0}\left(2 \pi \rho_{1}^{\prime}\right)^{m}=: K^{*} M \quad \text { on } \mathcal{A} \cap W \tag{9.19}
\end{equation*}
$$

where $K^{*}>0$ does not depend on the function $f(p)$ on \mathcal{A}.
Fourth step. We repeat the same procedure for $f^{(1)}(p)$ on \mathcal{A} satisfying $\left|f^{(1)}(p)\right| \leq \lambda M$ on \mathcal{A} as we used for $f(p)$ on \mathcal{A} satisfying $|f(p)| \leq M$ on \mathcal{A} : thus we use an extension function $F^{(1)}(z)$ of $f^{(1)}(p)$ on A such that $\left|F^{(1)}(z)\right| \leq K \lambda M$ on Λ^{\prime}, and we obtain $I_{i} f^{(1)}(p)$ on $W_{i}(i=1.2)$ such that

$$
I_{1} f^{(1)}(p)-I_{2} f^{(1)}(p)=f^{(1)}(p)-f^{(2)}(p) \quad \text { on } \mathcal{A} \cap W
$$

where $f^{(2)}(p)$ is a holomorphic function on D_{0} such that $\left|f^{(2)}(p)\right| \leq \lambda^{2} M$ on \mathcal{A} and $\left|I_{i} f^{(1)}(p)\right| \leq K^{-\bullet} \lambda M(i=1,2)$ on $\mathcal{A} \cap \boldsymbol{W}^{r}$.

We thus inductively construct sequences of holomorphic functions $f^{(\rho)}(p)(j=$ $1,2, \ldots)$ on $D_{0}, F^{j}(z)(j=1,2 \ldots)$ on Λ. and $I_{i} f^{(j)}(p)(i=1,2: j=1,2 \ldots)$ on W_{i}^{\prime} such that

$$
\begin{array}{llll}
\left|f^{(j)}(p)\right| & \leq \lambda^{J} M & (j=1,2, \ldots) & \text { on } \mathcal{A}, \\
\left|F^{(j)}(p)\right| & \leq K \lambda^{j} M & (j=1,2 \ldots) & \text { on } \Lambda^{\prime} \tag{9.20}\\
\left|I_{i}^{(j)} f(p)\right| \leq K^{*} \lambda^{J} M & (j=1.2 \ldots) & \text { on } \mathcal{A} \cap W:
\end{array}
$$

In order to solve equation (9.11), we set

$$
\begin{aligned}
& \tilde{f}(p)=f(p)+\sum_{j=1}^{\infty} f^{(j)}(p) \text { on } \mathcal{A} . \\
& \tilde{F}(z)=F(z)+\sum_{j=1}^{\infty} F^{(j)}(z) \text { on } \Lambda^{\prime} .
\end{aligned}
$$

Using (9.20), and the fact that $0<\lambda<1$, we see that $\tilde{f}(p)$ is continuous on \mathcal{A} and holomorphic in \mathcal{A}° (the interior of \mathcal{A}) and that $\bar{F}(z)$ is continuous on Λ^{\prime} and holomorphic in $\left(\Lambda^{\prime}\right)^{\circ}$. with

$$
\tilde{F}\left(\varphi_{0}(p) . \varphi_{1}(p), \ldots, \varphi_{m}(p)\right)=\tilde{f}(p) \quad \text { on } \mathcal{A} \cap W
$$

We construct

$$
I_{i} \bar{f}(p)=\int_{L \times \Gamma} K_{i}(\zeta, p) \tilde{F}(\zeta) d \zeta \quad(i=1,2) \quad \text { for } p \in W_{1}
$$

so that $I_{i} \tilde{f}(p)$ is holomorphic on W_{i}. We shall show that $I_{1} \dot{f}(p)$ can be holonorphically extended beyond $\mathcal{H}_{0} \cap W$ and satisfies

$$
I_{1} \tilde{f}(p)-I_{2} \tilde{f}(p)=f(p) \quad \text { on } \mathcal{H}_{0} \cap W
$$

Indeed, fix $p \in W_{i}^{\prime}(i=1.2)$. Since $\sum_{j=1}^{\infty} F^{(j)}(\zeta)$ is uniformly convergent on Λ^{\prime} (which contains $L \times \Gamma$), we have

$$
\begin{aligned}
I_{i} \bar{f}(p) & =\int_{L \times \Gamma} K_{i}(\zeta, p)\left(F(\zeta)+\sum_{j=1}^{\infty} F^{(\jmath)}(\zeta)\right) d \zeta_{0} d \zeta_{1} \cdots d \zeta_{m} \\
& =I_{2} f(p)+\sum_{j=1}^{\infty} I_{i} f^{(\jmath)}(p)
\end{aligned}
$$

Using (9.20), we see that the right-hand side is a holomorphic function in $(\mathcal{A} \cap W)^{\circ}$. Therefore $I_{i} \tilde{f}(p)$ can be holomorphically extended beyond $\mathcal{H}_{0} \cap W$ to $W_{i} \cup(\mathcal{A} \cap W)^{o}$. Moreover, for any $p \in(\mathcal{A} \cap W)^{0}$,

$$
\begin{aligned}
& I_{1} \tilde{f}(p)-I_{2} \tilde{f}(p) \\
& \quad=I_{1} f(p)-I_{2} f(p)+\sum_{j=1}^{\infty}\left(I_{1} f^{(j)}(p)-I_{2} f^{(j)}(p)\right) \\
& =f(p)-f^{(1)}(p)+\sum_{j=1}^{\infty}\left(f^{(j)}(p)-f^{(j+1)}(p)\right) \\
& =f(p) \text { by }(9.20) .
\end{aligned}
$$

Consequently, $f_{i}(p):=I_{i} \dot{f}(p)(i=1.2)$ on W_{i} solves (9.11). Lemma 9.6 is completely proved

We make the following remarks concerning this proof.

1. In the second step of the proof, formulas (9.14) and (9.15) obtained from the kernel $K(\zeta, p)$ on $(L \times \Gamma) \times D_{0}$ imply that the functions $\psi_{i}(p)$ on $W_{i} \cap D_{0}(i=$ $1,2)$ give the solution of equation (9.11) on the holomorphically complete domain $D_{0} \cap W^{\prime} \subset W^{r}$.
2. In the third step, we modified the kernel $\chi(\zeta . p)$ defined in $(L \times \Gamma) \times D_{0}$ to form the kernel $K_{i}(\zeta, p)$ defined in $(L \times \Gamma) \times D_{i}(i=1,2)$ in order to obtain a solution $f_{i}(p)$ of equation (9.11) on W_{i}.
3. Given a holomorphic function $f(p)$ on \mathcal{A}, the functions $I_{i} f(p)(i=1,2)$ are defined on W_{i}. Although $W_{i} \cap \mathcal{A} \subset \subset \mathcal{A}$, the difference $f^{(1)}(p)=I_{1} f(p)-$ $I_{2} f(p)$ is also holomorphic on \mathcal{A}; this allows us to repeat the same procedure for $f^{(1)}(p)$ as for $f(p)$.
9.2.3. Examination of the Conditions. In this section, we shall construct a finite number of holomorphic functions $\varphi_{j}(p)(j=1, \ldots, m)$ on D_{0} which satisfy conditions $1^{\circ}, 2^{\circ}$, and 3° in the previous section.

Fix $\xi \in \mathcal{H}_{0} \cap \partial D_{0}$. Since ∂D_{0} near ξ is contained in $\{p \in \mathcal{D} \mid l(p)=\alpha\}$, there exists a continuous family of analytic hypersurfaces in a neighborhood δ_{ξ} of ξ in \mathcal{D} :

$$
\sigma_{f}: g(t, p)=0 \quad\left(p \in \delta_{\xi}, t \in I\right)
$$

which touches the domain D_{0} from outside at the point ξ. We may assume that $\delta_{\xi} \cap\left(\left\{p \in D_{0} \mid u(p)=b_{1}\right.\right.$ or $\left.\left.b_{2}\right\} \cup b\right)=0$ (recall b was defined in (9.7)). We fix a real number $\beta>\alpha$ sufficiently close to α so that

$$
\mathcal{D}^{(3)} \cap\left(\partial \sigma_{0}\right)=0
$$

By Lemma 9.5, the domain

$$
\mathcal{D}_{0}^{(3)}:=\left\{p \in \mathcal{D}^{(, 3)} \cap G \mid a_{1}<u(p)<a_{2}\right\}
$$

(with $D_{0} \subset \subset \mathcal{D}_{0}^{(3)}$) is holomorphically complete: hence the Cousin I problem is solvable on $\mathcal{D}_{0}^{(, 3)}$. Applying Lemma 9.3 for D_{0}. $\mathcal{D}_{0}^{(3)}$. σ_{0}, and $g(0 . p)$ (corresponding to $D^{\prime} . D, S$ and $f_{\xi}(p)$ in the lemma). we obtain a holomorphic function $\varphi_{\xi}(p)$ on D_{0} and two neighborhoods $\delta_{\xi}^{\prime} \subset \delta_{\xi}^{\prime \prime}$ of ξ in $\mathcal{D}_{0}^{(.3)} \cap \delta_{\xi}$ such that

$$
\begin{gathered}
\delta_{\xi}^{\prime} \cap D_{0} \subset\left\{p \in D_{0}| |_{\varphi \xi}(p) \mid>1\right\} \\
\sup \left\{|\varphi \xi(p)| \mid p \in D_{0} \backslash \delta_{\xi}^{\prime \prime}\right\}<1
\end{gathered}
$$

Since $\mathcal{H}_{0} \cap \partial D_{0}$ is compact. there exist a finite number of points $\xi_{j} \in \mathcal{H}_{0} \cap \partial D_{0}$ $(j=1, \ldots, \nu)$ such that the corresponding functions $\varphi_{\varphi},(p)$ and neighborhoods δ_{ξ}^{\prime} satisfy the condition

$$
\mathcal{H}_{0} \cap \partial D_{0} \subset \bigcup_{J=1}^{\prime \prime} \delta_{\xi_{3}}^{\prime}
$$

thus $\mathcal{H}_{0} \cap \partial D_{0} \subset \bigcup_{j=1}^{\nu}\left\{p \in D_{0}| |_{\dot{F} \varsigma_{,}}(p) \mid>1\right\}$. For $\epsilon_{1}>0$ sufficiently small, we have

$$
\begin{equation*}
\max _{j=1 \ldots \ldots \nu}\left\{\left|\varphi_{\xi_{j}}(p)\right|\right\}<1 \tag{9.21}
\end{equation*}
$$

for any $p \in D_{0}$ such that $u(p) \leq b_{1}+c_{1}$ or $\geq b_{2}-\epsilon_{1}$.
Consequently, if we fix $\bar{\delta}>0$ sufficiently small, then the subset \mathcal{A} in D_{0} defined by

$$
\mathcal{A}=\left\{p \in D_{0}| | u(p)\left|\leq \delta,\left|\nu_{\xi}(p)\right| \leq 1 \quad(j=1, \ldots . \nu)\right\}\right.
$$

satisfies condition 1°. Furthermore, using (9.21). we see that condition 3° is satisfied.

In order to verify condition 2°. i.e., in order to prove that \mathcal{A} has a normal model. we first note that $\mathcal{D}_{0}^{(3)}(\beta>a)$ is holomorphically complete. Since $D_{0} \subset \subset \mathcal{D}_{0}^{(3)}$, there exists an analytic polyhedron \mathcal{P} in $\mathcal{D}_{0}^{(13)}$ with defining functions $\mathcal{L}_{k}(p)(k=$ $1 \ldots, \mu)$ in $\mathcal{D}_{0}^{(3)}$ such that $D_{0} \subset \subset \mathcal{P} \subset \subset \mathcal{D}_{0}^{(.3)}$ and $\Sigma: u_{k}=\iota_{k}(p)(k=1 \ldots \ldots \mu)$ is a normal model of \mathcal{P} in the polydisk $\Delta^{\mu}:\left|w_{k}\right|<1(k=1 \ldots, \mu)$. Since $\mathcal{A} \subset \mathcal{P}$. if we set $\nu_{j}(p)=\hat{\varphi}_{\xi}(p) \quad(j=1 \ldots ., \nu)$ and $\hat{\nu}_{\nu+k}(p)=\iota_{k}(p)(k=1, \ldots, \mu)$ on D_{0}. then for $m=\nu+\mu$, the m holomorphic functions $\dot{\gamma}_{j}(p)(j=1 \ldots . . m)$ on D_{0} satisfy all the conditions $1^{\circ}-3^{\circ}$.
9.2.4. Cousin I Problem. From Iemma 9.6 we obtain the following result.

Lemma 9.7. Let $\mathcal{D} \subset \subset \mathcal{V}$ be a domain which satisfies the linking condition. Let $\ell(p)$ be a strictly pseudoconvex exhaustion function on \mathcal{D}, and for a real number γ. let $\mathcal{D}^{(\gamma)}=\{p \in \mathcal{D} \mid \ell(p)<\gamma\} \subset \subset \mathcal{D}$. Then the Cousin I problem is solvable on $\overline{\mathcal{D}^{(r)}}$.

Proof. We use the same notation $\mathcal{D}_{j}(j=0.1 .2)$, $\hat{y}_{0}(p)=u(p)+i u(p)$ on $\mathcal{D}_{0} \subset \subset G, a_{i}(i=1.2)$, and $\mathcal{H}_{j}(j=0,1,2)$ as in 9.2.1. Let $\mathcal{C}=\left\{\left(g_{q}(p), \delta_{q}\right)\right\}_{q \in V}$. be a Cousin I distribution on a domain $U, \overline{\mathcal{D}^{(n)}} \subset U \subset \mathcal{D}$. We take a real number $\beta>\gamma$ sufficiently close to γ so that $\mathcal{D}^{(3)} \subset \subset U$. We also take $b_{1}(i=1.2)$ with $a_{1}<b_{1}<0<b_{2}<a_{2}$, and, for fixed $\alpha>3$, we write

$$
D:=\mathcal{D}^{(\alpha)}, \quad D_{j}:=\mathcal{D}_{\jmath}^{\prime} \cap \mathcal{D}^{(a)} \quad(j=0,1,2)
$$

(as in (9.6)). We consider the following set:

$$
\mathbf{b}=\mathcal{D}^{(\gamma)} \cap \mathcal{D}_{0}^{(a)}=\left\{p \in \mathcal{D}^{(\gamma)} \cap G \mid b_{1}<u(p)<b_{1}\right\}
$$

(similar to (9.7)). Recall that in 9.2 .3 we constructed a finite number of holomorphic functions $\varphi_{j}(p)(j=1, \ldots, m)$ on D_{0} satisfying conditions $1^{\circ}, 2^{\circ}$, and 3°.

We continue to use the same notation $\mathcal{A} . W, W_{i}^{\prime}(i=1,2)$ as in Lemma 9.6. As noted in (9.10), we have $\mathcal{D}^{(r)} \subset \subset W$. Fach $D_{i}(i=1,2)$ is holomorphically complete: hence the Cousin I problem is solvable in D_{i}. Since $D_{i} \subset \mathcal{D}^{(3)} \subset U$, there exists a meromorphic function $G_{i}(p)$ in D_{i} with the same pole set as $g_{q}(p)$ on each $\delta_{q} \cap D_{i}$. Thus, $G_{1}(p)-G_{2}(p)$ is holomorphic in D_{0}, and hence in \mathcal{A}. By Lenıma 9.6. there exists a holomorphic function $f_{i}(p)$ in $W_{i}(i=1.2)$ which can be holomorphically extended beyond $\mathcal{H}_{0} \cap \boldsymbol{W}$ and which satisfies $f_{1}(p)-f_{2}(p)=$ $G_{1}(p)-G_{2}(p)$ on $\mathcal{H}_{0} \cap W^{\prime}$. We set

$$
F(p)= \begin{cases}G_{1}(p)+f_{1}(p), & p \in W_{1} \\ G_{2}(p)+f_{2}(p), & p \in W_{2}\end{cases}
$$

Then $F(p)$ is a single-valued meromorphic function on W^{\prime} with the same pole set as $g_{q}(p)$ on each $\delta_{q} \cap W$. Since $\mathcal{D}^{(r)} \subset \subset W$. the proof is complete.

9.3. Principal Theorem

9.3.1. Linking Theorem. Let \mathcal{V} be an analytic space of dimension n and let $\mathcal{D} \subset \subset \mathcal{V}$ be a domain which satisfies the linking condition in 9.2.1. Let $\ell(p)$ be an associated function on \mathcal{D}, and for a real nuinber a. set $\mathcal{D}^{(\alpha)}=\{p \in \mathcal{D} \mid \ell(p)<\alpha\}$.

We have the following theorem.
Theorem 9.2 (Linking theorem). A domain \mathcal{D} satisfying the linking condition is holomorphically complete.

Proof. From Proposition 9.4 and Lemma 9.2. it suffices to prove that for any real number α, there exists an analytic polyhedron \mathcal{P} in \mathcal{D} with defining functions on $G \subset \mathcal{D}$ satisfying

$$
\mathcal{D}^{(\alpha)} \subset \subset \mathcal{P} \subset \subset \mathcal{D}
$$

We first prove that there exists a generalized analytic polyhedron \mathcal{P} in \mathcal{D} such that $\mathcal{D}^{(\alpha)} \subset \subset \mathcal{P} \subset \subset \mathcal{D}$. To do this. we fix a real number β with $\alpha<\beta<\infty$ and consider the domain $\mathcal{D}^{(3)}$. Fix $\xi \in \partial D^{(3)}$. There exists a continuous family of analytic hypersurfaces in a neighborhood δ_{ξ} in \mathcal{D} :

$$
\sigma_{t}: g_{\xi}(t, p)=0 \quad\left(p \in \delta_{\xi}, t \in I\right)
$$

which touches $\mathcal{D}^{(.3)}$ from outside at the point ξ. Since the analytic space \mathcal{V} is locally holomorphically complete at each point, we may assume that δ_{ξ} is holomorphically complete and that $\overline{\delta_{\xi}} \cap \mathcal{D}^{(a)}=\emptyset$. Choose a real number $\gamma>\beta$ sufficiently close to β so that $\left(\partial \sigma_{0}\right) \cap \mathcal{D}^{(\gamma)}=\emptyset$. Since the Cousin I problem is solvable on $\overline{\mathcal{D}^{(\gamma)}}$ (Lemma 9.7), it follows from Iemma 9.3 that there exist a holomorphic function $\phi_{\xi}(p)$ on $\mathcal{D}^{(3)}$ and two neighborhoods $\delta_{\xi}^{\prime}, \delta_{\xi}^{\prime \prime}$ of ξ in $\mathcal{D}^{(\gamma)}$ with $\delta_{\xi}^{\prime} \subset \delta_{\xi}^{\prime \prime} \subset \delta_{\xi}$, satisfying

$$
\begin{align*}
& \mathcal{D}^{(3)} \cap \delta_{\xi}^{\prime} \subset\left\{p \in \mathcal{D}^{(3)}| | \varphi_{\xi}(p) \mid>1\right\} \\
& \sup \left\{\left|\varphi_{\xi}(p)\right| \mid p \in \mathcal{D}^{(3)} \backslash \delta_{\xi}^{\prime \prime}\right\}<1 \tag{9.22}
\end{align*}
$$

Since $\partial D^{(\beta)}$ is compact, we can find a finite number of points $\xi_{j} \in \partial D^{(\beta)}(j=$ $1, \ldots, \mu)$ such that

$$
\begin{equation*}
\partial D^{(\beta)} \subset \bigcup_{j=1}^{\mu} \delta_{\xi,}^{\prime} \tag{9.23}
\end{equation*}
$$

If we set

$$
\mathcal{P}:=\left\{p \in \mathcal{D}^{(\beta)}| | \varphi_{\xi^{\prime}}(p) \mid<1(j=1, \ldots, \mu)\right\}
$$

then \mathcal{P} is a generalized analytic polyhedron in \mathcal{D} with defining functions in $\mathcal{D}^{(\beta)}$, and

$$
\mathcal{D}^{(\alpha)} \subset \subset \mathcal{P} \subset \subset \mathcal{D}^{(\beta)}
$$

We next prove that \mathcal{P} is an analytic polyhedron, i.e., \mathcal{P} satisfies the separation condition. To prove this, it suffices to show that \mathcal{P} has a normal model in a unit polydisk $\bar{\Delta}$ in \mathbf{C}^{ν}, where $\nu \geq \mu$.

In \mathbf{C}^{μ} with variables z_{1}, \ldots, z_{μ}, let $\bar{\Delta}:\left|z_{j}\right| \leq 1(j=1, \ldots, \mu)$ be the unit polydisk; consider the analytic mapping

$$
\Phi: p \in \mathcal{P} \rightarrow z=\left(\varphi_{\xi_{1}}(p), \ldots, \varphi_{\xi_{\mu}}(p)\right) \in \bar{\Delta}
$$

and set $\Sigma=\Phi(\mathcal{P}) \subset \bar{\Delta}$. Then Σ is an n-dimensional analytic set in $\bar{\Delta}$ with $\partial \Sigma \subset \partial \Delta$. Let $Q \in \Sigma \backslash \partial \Sigma$. Then $\Phi^{-1}(Q)$ is an analytic set in \mathcal{P}. Since $\partial \Sigma \subset \partial \Delta$ and \mathcal{P} contains no compact analytic sets of positive dimension, it follows that $\Phi^{-1}\left(Q_{0}\right)$ consists of a finite number of points in \mathcal{P}. Assume that there exists a point Q of Σ such that $\Phi^{-1}(Q)$ consists of more than one point. Then \mathcal{P} is mapped via Φ to a ramified domain $\tilde{\Sigma}$ over the analytic set Σ without relative boundary. We let $d \geq 2$ denote the number of sheets of $\tilde{\Sigma}$ over Σ. There exists a point $Q_{0} \in \partial \Sigma$ such that $\Phi^{-1}\left(Q_{0}\right)$ consists of d distinct points $\zeta_{1}^{0}, \ldots, \zeta_{d}^{0} \in \partial P$. Let

$$
Q_{0}=\left(\alpha_{1}, \ldots, \alpha_{\mu}\right) \in \partial \Sigma
$$

thus some $\alpha_{k}(k=1, \ldots, \mu)$ satisfies $\left|\alpha_{k}\right|=1$. Therefore, $\varphi_{\xi_{k}}\left(\zeta_{l}^{0}\right)=\alpha_{k}(l=$ $1, \ldots, d)$. We set

$$
S=\left\{p \in \mathcal{D}^{(\beta)} \mid \varphi_{\xi_{k}}(p)=\alpha_{k}\right\}
$$

so that $S \subset \delta_{\xi_{k}}$ by (9.22), $\zeta_{l}^{0} \in S(l=1, \ldots, d)$, and $(\partial S) \cap \mathcal{D}^{(\beta)}=\emptyset$ (since $\partial S \subset \partial D^{\beta}$). Since $\mathcal{D}^{(\beta)} \cap \delta_{\xi_{k}}$ as well as $\delta_{\xi_{k}}$ is holomorphically complete, we can find a holomorphic function $f(p)$ in $\mathcal{D}^{(\beta)} \cap \delta_{\xi_{k}}$ such that $f\left(\zeta_{l}^{0}\right) \neq f\left(\zeta_{l^{\prime}}^{0}\right)\left(l \neq l^{\prime}, 1 \leq\right.$ $\left.l, l^{\prime} \leq d\right)$. Fix a number $\beta^{\prime}<\beta$ sufficiently close to β so that $\mathcal{P} \subset \subset \mathcal{D}^{\left(\beta^{\prime}\right)}$. Since the Cousin I problem is always solvable on $\overline{\mathcal{D}^{\left(\beta^{\prime}\right)}}$ and $\varphi_{\xi_{k}}(p)$ (which defines S) is holomorphic in $\overline{D^{\left(\beta^{\prime}\right)}}$, we can apply Lemma 9.4 to obtain a holomorphic function $\varphi_{0}(p)$ on $\mathcal{D}^{\left(\beta^{\prime}\right)}$ such that $\varphi_{0}\left(\zeta_{l}^{0}\right) \neq \varphi_{0}\left(\zeta_{l^{\prime}}^{0}\right)\left(l \neq l^{\prime}, 1 \leq l, l^{\prime} \leq d\right)$. We may assume $\left|\varphi_{0}(p)\right|<1$ on \mathcal{P}.

In $\mathbf{C}^{\mu+1}$ with variables $\tilde{z}=\left(z_{0}, z_{1}, \ldots z_{\mu}\right)$, we consider the unit polydisk

$$
\bar{\Delta}:\left|z_{j}\right| \leq 1 \quad(j=0,1, \ldots, \mu)
$$

and the analytic mapping

$$
\tilde{\Phi}: p \in \mathcal{P} \rightarrow \tilde{z}=\left(\varphi_{0}(p), \varphi_{\xi_{1}}(p), \ldots, \varphi_{\xi_{\mu}}(p)\right) \in \tilde{\Delta}
$$

and we set $\bar{\Phi}(\mathcal{P})=\tilde{\Sigma}$. For any point $\zeta \in \partial \tilde{\Delta}$ of the form $\bar{\zeta}=\left(z_{0}, \alpha_{1}, \ldots, \alpha_{\mu}\right)=$ $\left(z_{0}, Q_{0}\right)$, the set $\tilde{\Phi}^{-1}(\tilde{\zeta})$ in \mathcal{P} consists of at most one point. Thus, \mathcal{P} and $\tilde{\Sigma}$ are in one-to-one correspondence via the mapping $\tilde{\Phi}$ except perhaps on an at most
($n-1$)-dimensional analytic set in \mathcal{P}. It follows from Remark 8.2 that \mathcal{P} has a normal model.
9.3.2. Principal Theorem. Let \mathcal{V} be a normal pseudoconvex space with associated function $\ell(p)$. For a real number a. we set $\mathcal{V}_{a}:=\{p \in \mathcal{V} \mid \ell(p)<a\}$. We now state and prove the main lemma in this section.

Lemma 9.8. If \mathcal{V}_{a} is holomorphically complete, then there exists a real number b such that $b>a$ and \mathcal{V}_{b} is also holomorphically complete.

Proof. Let $\zeta \in \partial \mathcal{V}_{a}$. There exists a continuous family of analytic hypersurfaces in a neighborhood δ_{ζ} of ζ in \mathcal{V}.

$$
\sigma_{\zeta, t}: g_{\zeta}(p, t)=0 \quad\left(p \in \delta_{\zeta}, t \in I=[0,1]\right)
$$

which touches the domain \mathcal{V}_{a} from outside at the point ζ. Since the analytic space is locally holomorphically complete (Corollary 8.1). we can assume that the neighborhood δ_{ζ} is holomorphically complete. Further we may assume that δ satisfies the condition in Corollary 6.4 in Chapter 6. By taking a smaller neighborhood δ_{ξ}. if necessary, we may also assume that $g_{\zeta}(p, t)$ is continuous for $(p, t) \in \delta_{j} \times I$ and $g_{\zeta}(p, 1) \neq 0$ for any $p \in \delta_{\zeta}$, i.e., $\sigma_{\zeta, 1}=0$. Let ϵ_{ζ} and $\epsilon_{\zeta}^{\prime}$ be positive numbers with $\epsilon_{\zeta}>\epsilon_{\zeta}^{\prime}>0$. and set

$$
\begin{aligned}
\gamma_{\zeta} & =\left\{p \in \delta_{\zeta}| | g_{\zeta}(p, 0) \mid<\epsilon_{\zeta}\right\} \\
\gamma_{\zeta}^{\prime} & =\left\{p \in \delta_{\zeta}| | g_{\zeta}(p, 0) \mid<\epsilon_{\zeta}^{\prime}\right\} .
\end{aligned}
$$

Thus, γ_{ζ} and γ_{ζ}^{\prime} are neighborhoods of ζ in \mathcal{V} with $\gamma_{\zeta}^{\prime} \subset \gamma_{\zeta} \subset \delta_{\zeta}$. We inay assume that $\epsilon_{\zeta}>0$ is sufficiently small so that $\left\{\left(\partial \gamma_{\zeta}\right) \cap\left(\partial \delta_{\zeta}\right)\right\} \cap \mathcal{V}_{a}=0$. Since $\partial \mathcal{V}_{a}$ is a compact set. we can find a finite number of points $\zeta_{j}(j=1, \ldots, V)$ such that. writing γ_{j} and γ_{j}^{\prime} for γ_{j}, and $\gamma_{\zeta,}^{\prime}$, and writing $\sigma_{j . t}$ and $g_{j}(p, t)$ for $\sigma_{\dot{\zeta}, t}$ and $g_{\dot{j}}(p, t)$. we have $\partial \mathcal{V}_{a} \subset \bigcup_{j=1}^{N} \gamma_{j}^{\prime}$. We also let $\epsilon_{j}(j=1, \ldots . N)$ denote the corresponding numbers ϵ_{ζ}, It follows that we can find a real number $b>a$ sufficiently close to a so that
(1) $\partial \mathcal{V}_{b} \subset \bigcup_{j=1}^{N} \gamma_{j}^{\prime}$, and
(2) if we set

$$
\dot{\gamma}_{j}=\gamma_{j} \cap \mathcal{V}_{b} . \quad \tilde{\gamma}_{j}^{\prime}=\gamma_{j}^{\prime} \cap \mathcal{V}_{b} \quad(j=1 \ldots, i)
$$

then $\left[\tilde{\gamma}_{j} \backslash \dot{\gamma}_{j}^{\prime}\right] \cap\left\{\sigma_{, t t}\right\}_{t \in I}=0$.
We have the following fact:
(*) the holomorphic function $\log g_{j}(p, 0)$ has a single-valued branch on $\tilde{i}_{j} \backslash \tilde{i}_{j}^{\prime}$.
Proof. Let l be a closed curve in $\bar{\gamma}_{j} \backslash \bar{j}_{j}^{\prime}$. Let l^{*} be the image of l under the function $\tau=g_{j}(p, 0)$; thus l^{*} is a closed curve in the complex plane C_{T} which does not pass through the origin 0 . To verify (*), it suffices to show that the winding number $N(0)$ of l^{*} about 0 is zero. We note from (2) that $g_{j}(p, t)$ is a continuous function for $(p . t) \in \delta_{j} \times I$ with $g_{j}(p, t) \neq 0$ on $l \times I$. For each $t \in I$ we let $l^{*}(t)$ denote the image of l under the function $r=g_{j}(p, t)$: thus $l^{*}(t)$ is a closed curve in $C_{T} \backslash\{0\}$, which varies continuously with $t \in I$. Thus. if we let $N(t)$ denote the winding number of $l^{*}(t)$ about 0 , then $N(0)=N(t)$ for all $t \in I$. On the other hand. since $g_{j}(p, 1) \neq 0$ for each $p \in \delta_{j}$, it follows from Corollary 6.4 that $\log g_{j}(p, 1)$ is single-valued in δ_{j}. Hence $N(1)=0$, and (*) is proved.

We set

$$
\mathcal{D}_{k}=\mathcal{V}_{b}-\bigcup_{j=k+1}^{\stackrel{N}{U}} \tilde{\gamma}_{j}^{\prime} \quad(k=0,1, \ldots, N)
$$

where $\mathcal{D}_{N}=\mathcal{V}_{b}$, so that $\mathcal{D}_{0} \subset \mathcal{D}_{1} \subset \cdots \subset \mathcal{D}_{N_{-1}} \subset \mathcal{V}_{b}$ and $\mathcal{D}_{0} \subset \subset \mathcal{V}_{a}$. In addition, we set

$$
\gamma_{j}^{0}=\bar{\gamma}_{j}-\left[\begin{array}{c}
\dot{U} \\
\dot{U}=j+1
\end{array} \dot{\gamma}_{h}^{\prime}\right] \quad(j=1, \ldots, \mathcal{N}) .
$$

where $\gamma_{\hat{N}}^{0}=\tilde{\gamma}_{N}$. Then we have

$$
\begin{equation*}
\mathcal{D}_{k+1}=\mathcal{D}_{k} \cup \gamma_{k+1}^{0} \quad(k=0.1 \ldots . . N-1) \tag{9.2.4}
\end{equation*}
$$

(see Figure 3).

Figure 3. Representation of \mathcal{D}_{k}

Since \mathcal{V}_{a} is holomorphically complete, it follows from Lemma 9.1 that \mathcal{D}_{0} is holonorphically complete. Similarly, since δ_{k} is holomorphically complete and $g_{k}(p, 0)$ is holomorphic on δ_{k}, it follows again from Lemma 9.1 that each $\gamma_{k}^{0}(k=1 \ldots, N)$ is holomorphically complete.

We shall show that
(**) each $\mathcal{D}_{k}(k=0,1, \ldots, N)$ is a normal pseudoconvex space.
Proof. We prove this by reverse induction. We first note that $\mathcal{D}_{N}=\mathcal{V}_{b}$ is a normal pseudoconvex space. since $\ell_{N}(p)=1 /(b-\ell(p))$ is a strictly pseudoconvex exhaustion function on \mathcal{V}_{b}. We next assume that \mathcal{D}_{k+1} is a normal pseudoconvex
space with associated function $\ell_{k+1}(p)>0$ on \mathcal{D}_{k+1}. We will construct a strictly pseudoconvex exhaustion function for \mathcal{D}_{k}. Using $g_{k+1}(p .0)$ in δ_{k+1} we can construct a strictly pseudoconvex function $\eta_{k+1}(p)$ in $\gamma_{k+1} \backslash \gamma_{k+1}^{\prime} \subset \delta_{k+1}$, with

$$
\eta_{k+1}(p) \begin{cases}<0 . & p \in \partial \gamma_{k+1} \\ =+\infty, & p \in \partial \gamma_{k+1}^{\prime}\end{cases}
$$

We set

$$
\ell_{k}(p)= \begin{cases}\max \left\{\ell_{k+1}(p) . \eta_{k+1}(p)\right\}, & p \in \mathcal{D}_{k} \cap \gamma_{k+1}^{0} \\ \ell_{k+1}(p), & p \in \mathcal{D}_{k} \backslash \gamma_{k+1}^{0}\end{cases}
$$

Then $\mathcal{E}_{k}(p)$ is a strictly pseudoconvex exhaustion function in \mathcal{D}_{k} : this completes the proof of (**).

Finally, we show that
(***) each $\mathcal{D}_{k}(k=0,1, \ldots, N)$ is holomorphically complete.
Proof. We prove this by induction. We already noted that \mathcal{D}_{0} is holomorphically complete. Assume that \mathcal{D}_{k} is holomorphically complete. We will prove that \mathcal{D}_{k+1} is holomorphically complete. By Theorem 9.2. it suffices to show that \mathcal{D}_{k+1} satisfies the linking conditions (L1). (L2), and (L3) with \mathcal{D}_{k} and γ_{k+1}^{0}.

We showed that $\mathcal{D}_{k+1}=\mathcal{D}_{k} \cup \gamma_{k+1}^{0} ; \gamma_{k+1}^{0}$ is holomorphically complete: and \mathcal{D}_{k+1} is a normal pseudoconvex space. Thus, \mathcal{D}_{k+1} satisfies conditions (L1) and (L2). To verify (L3), we set

$$
\varphi(p)=\log g_{k+1}(p, 0)=u(p)+i v(p) \quad \text { on } \dot{\gamma}_{k+1} \backslash \dot{\gamma}_{k+1}^{\prime}
$$

which is a single-valued holomorphic function. Then

$$
\mathcal{D}_{k} \cap \gamma_{k+1}^{0}=\left\{p \in\left(\tilde{\gamma}_{k+1} \backslash \tilde{\gamma}_{k+1}^{\prime}\right) \cap \mathcal{D}_{k+1} \mid \log \epsilon_{k+1}^{\prime}<u(p)<\log \epsilon_{k+1}\right\} .
$$

so that \mathcal{D}_{k+1} satisfies condition (L3). Thus ($* * *$) is verified.
Consequently, $\mathcal{D}_{N}=\mathcal{V}_{b}$ is holomorphically complete. and Lemma 9.8 is completely proved.

From Lemma 9.8 we obtain the following theorem.
Theorem 9.3 (Nishino [41]). Any normal pseudoconvex space is a Stein space.
Proof. Let \mathcal{V} be a normal pseudoconvex space with associated function $\ell(p)$. Let $\alpha=\min _{p \in \mathcal{V}}\{\ell(p)\}$, so that $-\infty<\alpha<\infty$. and \mathcal{V}_{α} is a compact set in \mathcal{V} without interior points. Then by reasoning similar to that used in Lemma 9.8 (replacing \mathcal{V}_{a} by \mathcal{V}_{α} with $\partial \mathcal{V}_{n}=\mathcal{V}_{a}$), we see that there exists a real number $\beta>a$ such that \mathcal{V}_{3} is holonnorphically complete. Thus, we can define

$$
a_{0}:=\sup \left\{a \mid \mathcal{V}_{a} \text { is holomorphically complete }\right\}
$$

so that $\alpha<a_{0} \leq+\infty$.
If $a_{0}<+\infty$, then $\mathcal{V}_{a_{0}}$ is holomorphically complete from Proposition 9.4. This contradicts Lemma 9.8. Therefore $a_{0}=+\infty$. Proposition 9.4 now yields that \mathcal{V} itself is holomorphically complete.

Notice that in establishing this theorem, which is one of the main goals of the book, almost all of the results in Chapters 7 and 8 have been used. In conjuction with Theorem 4.6, we obtain the following corollary:

Corollary 9.1. Any pseudoconvex univalent domain in $\mathbf{C}^{\prime \prime}$ is a domain of holomorphy.

This corollary was proved by Oka. The case $n=2$ is in [49] and the case $n \geq 2$ is in [52].

Remark 9.1. As shown on p. 35 in [49], the linking theorem (Theorem 9.2) in section 9.3 .1 is needed to prove the corollary in \mathbf{C}^{n}. but we do not need the arguments in section 9.3.2

For let D be a pseudoconvex domain in C^{n} with associated function $l(z)$. Let $D_{a}=\left\{z \in C^{n} \mid l(z)<a\right\}$ for a real number a. From Proposition 9.4 it suffices to prove that each $D_{a}(a<+\infty)$ is holomorphically complete. To show this, noting that D_{a} is locally holomorphically complete, we divide the z_{i}-plane $\mathbf{C}_{z_{1}}(i=1, \ldots, n)$ into equal rectangles $\delta_{i}^{(j)}(j=1,2, \ldots)$ by two systems of straight lines parallel to the x_{i} - and y_{i}-axis (where $z_{i}=x_{i}+\sqrt{-1} y_{z}$) and we set $\Delta^{(j)}=\delta_{1}^{j_{1}} \times \cdots \times \delta_{n}^{j_{n}}\left(\right.$ where $\left.\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right)\right)$, which is a box in \mathbf{C}^{n}. We set $D^{(\mathrm{j})}=D \cap \Delta^{(\mathrm{j})}$; then D_{a} is a finite collection of these sets $D^{(\mathrm{j})}$. If $\Delta^{(\mathrm{j})}$ is sufficiently small. then $D^{(j)}$ is a holomorphically complete domain. In this situation, we can apply the linking theorem step by step to conclude that D_{a} is holomorphically complete.

This method can be applied to a ramified domain \mathcal{D} over \mathbf{C}^{n} with associated function $l(p)$. The arguments in section 9.3.2 were needed to prove the holomorphic completeness for a general normal pseudoconvex space.

Remark 9.2. In a ramified domain \mathcal{D} over \mathbf{C}^{n} any generalized analytic polyhedron \mathcal{P} is an analytic polyhedron, i.e., \mathcal{P} satisfies the separation condition.

To see this, let $\mathcal{P}:\left|\omega_{j}(p)\right| \leq 1(j=1, \ldots, m)$, so that $m \geq n$; let Σ : $w,=\hat{\gamma}_{j}(p)(j=1, \ldots, m)$ in \mathbf{C}^{m}; and let $\Phi: p \in \mathcal{P} \rightarrow \Sigma$. Thus Σ is an n dimensional analytic set in the unit polydisk Δ^{m} in C^{m}. Let $u(w)$ be a strictly plurisubharmonic exhaustion function on Δ^{m}. Then $s(p):=u(\Phi(p))$ is a strictly pseudoconvex exhaustion function on \mathcal{P}. By Theorem $9.3, \mathcal{P}$ is a Stein space.

Remark 9.3. H. Grauert showed in [22] that any relatively compact strongly pseudoconvex domain with piecewise smooth boundary in a complex manifold is holomorphically convex, and that a complex manifold admitting a piecewise smooth strongly plurisubharmonic exhaustion function is a Stein manifold. R. Narasimhan showed in [37] that an analytic space with a strongly plurisubharmonic exhaustion function is a Stein space. Here, we say that a real-valued function $s(p)$ on an analytic space \mathcal{V} is strongly plurisubharmonic on \mathcal{V} if any point $p \in \mathcal{V}$ has a neighborhood v in \mathcal{V} which is isomorphic to an analytic set σ in a domain δ in some \mathbf{C}^{ν}; and, if we denote this isomorphism by T, then we require that $s \circ T^{-1}$ is the restriction to σ of some strictly plurisubharmonic function in $\bar{\delta}$.

9.4. Unramified Domains Over $\mathbf{C}^{\boldsymbol{n}}$

We shall show that any unramified pseudoconvex domain D over \mathbf{C}^{n} is holomorphically complete and hence is a domain of holomorphy. ${ }^{8}$ Using Theorem 9.3, it suffices to construct a strictly plurisubharmonic. piecewise smooth exhaustion function on D.

[^52]9.4.1. Unramified Domains over $\mathbf{C}^{\boldsymbol{n}}$. Let \mathcal{R} be an unramified domain over \mathbf{C}^{n} with variables z_{1}, \ldots, z_{n} and let $\pi: \mathcal{R} \rightarrow \mathbf{C}^{n}$ be the canonical projection. We write $\pi(p)=\underline{p}$ for $p \in \mathcal{R}$. We let $q_{r}(a)$ denote the ball in \mathbf{C}^{n} centered at a with radius r, and we let $\gamma_{r}(a)$ denote the polydisk in C^{n} centered at a with radius r. Let $p \in \mathcal{R}$, and let v be a univalent subset of \mathcal{R} such that $p \in v$ and $\pi(v)=q_{r}(\underline{p})$. We call the supremum $D_{\mathcal{R}}(p)$ of such $r>0$ the (Euclidean) boundary distance of \mathcal{R} from the point p. If we replace $q_{r}(\underline{p})$ by $\gamma_{r}(\underline{p})$. then we call the supremum $\Delta_{\mathcal{R}}(p)$ of r with $\pi(v)=\gamma_{r}(\underline{p})$ the cylindrical boundary distance of \mathcal{R} from the point p.

Let $E \subset \mathcal{R}$. Then we call $\inf \left\{D_{\mathcal{R}}(p) \mid p \in E\right\}$ the (Euclidean) boundary distance of \mathcal{R} from the set E. Given $\rho>0$, we also define

$$
\begin{equation*}
\mathcal{R}^{(\rho)}=\left\{p \in \mathcal{R} \mid \Delta_{\mathcal{R}}(p)>\rho\right\} \tag{9.25}
\end{equation*}
$$

We set

$$
\begin{equation*}
\delta(p)=-\log D_{\mathcal{R}}(p), \quad p \in \mathcal{R} \tag{9.26}
\end{equation*}
$$

which we call the logarithmic boundary distance function on \mathcal{R}.
We have the following theorem.
Theorem 9.4. If \mathcal{R} is an unramified pseudoconvex domain over $\mathbf{C}^{\boldsymbol{n}}$, then $\delta(p)$ is a plurisubharmonic function on \mathcal{R}.

Proof. This theorem was proved in the case when \mathcal{R} is a univalent pseudoconvex domain D in C^{n} in Lenma 4.6. In the proof we did not need D to be univalent, i.e., the proof is valid for an unramified pseudoconvex domain \mathcal{R} over C^{n}. Thus Theorem 9.4 is true.

In the case of a bounded univalent domain D in C^{n}, we have $D^{(\rho)} \subset \subset D$ for each $\rho>0$. Using this fact, we constructed a piecewise smooth. strictly plurisubharmonic exhaustion function on a univalent pseudoconvex domain in \mathbf{C}^{n}. However, in the case of an (infinitely sheeted) bounded unramified domain \mathcal{R} over \mathbf{C}^{n}, it is no longer true that $\mathcal{R}^{(\rho)} \subset \subset \mathcal{R}$ for all $\rho>0$. For example, let \mathcal{R} denote the portion of the Riemann surface of $\log z$ lying over the disk $\{|z|<1\}$. Then $\mathcal{R}^{(\rho)}$ for $0<\rho<1 / 2$ coincides with the portion of \mathcal{R} lying over $\{\rho<|z|<1-\rho\}$, which is not relatively compact in \mathcal{R}. Thus, we need further analysis, which we will carry out in the following section, to construct a piecewise smooth, strictly plurisubharmonic exhaustion function on an unramified pseudoconvex domain over $\mathbf{C l}^{n}$.
9.4.2. Family of Continuous Curves. Let l be a rectifiable curve in $\mathbf{C}^{\boldsymbol{n}}$, i.e.,

$$
l: t \in I \rightarrow z=\left(l_{1}(t), \ldots, l_{n}(t)\right) \in \mathbf{C}^{n}
$$

where $I=[0,1], l_{j}(t)(j=1, \ldots, n)$ is a complex-valued continuous function on I, and the Euclidean length $L(l)$ of the curve l in C^{n} is finite. We call the vector-valued function $l(t)=\left(l_{1}(t), \ldots, l_{n}(t)\right)$ on I a parameterization for the curve l.

We consider a sequence of rectifiable curves $l_{k}(k=1,2, \ldots)$ in \mathbf{C}^{n}. If we can find a sequence of parameterizations $l^{k}(t)$ on I of l_{k} such that $l^{k}(t)(k=1,2 \ldots)$ converges uniformly to $l^{0}(t)$ on I, then we say that $l_{k}(k=1,2, \ldots)$ converges uniformly to the curve

$$
l^{a}: z=l^{0}(t) . \quad t \in I
$$

and we call l^{0} the limiting curve of $l_{k}(k=1,2, \ldots)$.
Let $\left\{l_{c}\right\}_{l}$ be a family of rectifable curves in \mathbf{C}^{n}. If for any sequence $\left\{l_{k}\right\}_{k=1.2 \ldots \ldots}$ which is contained in $\left\{l_{k}\right\}_{l}$ we can choose a subsequence $\left\{l_{k},\right\}_{j=1.2 \ldots . .}$ of $\left\{l_{k}\right\}_{k-1,2 \ldots}$. such that $\left\{l_{k},\right\}_{j=1,2 \ldots}$. converges uniformly to a curve l, then we say that $\left\{l_{l}\right\}_{2}$ is a normal family.

We have the following proposition.
Proposition 9.5 (Oka). Let $\left\{l_{l}\right\}_{\iota \in \mathcal{I}}$ be a family of rectifiable curves in $\mathbf{C}^{\text {" }}$ such that the set of initial points of $l_{c}(\iota \in \mathcal{I})$ is bounded in \mathbf{C}^{n} and the Euclidean length $L\left(l_{l}\right)$ of the curves $l_{1}(l \in \mathcal{I})$ is uniformly bounded. Then $\left\{l_{1}\right\}_{\in \in \mathcal{I}}$ is a normal family.

Proof. We prove this by use of the arc length parameter τ of the curve l_{1}. Let $l_{l}(t)(\iota \in \mathcal{I})$ be a parameterization on I of the curve l_{l} and let $L_{l}(t)$ denote the length of l_{1} from $l_{1}(0)$ to $l_{,}(t)$. By assumption there exists an $M>0$ such that $L_{l}(1) \leq M(\iota \in \mathcal{I})$. We may assume each $L_{l}(1)>0$. We set $\tau_{l}: t \in I \rightarrow \tau=$ $L_{l}(t) / L_{l}(1) \in[0,1](\iota \in \mathcal{I})$, and we let $t=\sigma_{l}(\tau)$ denote the inverse function of τ_{l}. Then $l_{l}^{*}(\tau):=l_{l}\left(\sigma_{l}(\tau)\right)$ is a parameterization on I of l_{l}. We have

$$
\left|l_{\imath}^{\prime}\left(\tau^{\prime}\right)-l_{\iota}^{*}\left(\tau^{\prime \prime}\right)\right| \leq M\left|\tau^{\prime}-\tau^{\prime \prime}\right| \quad \text { for all } \tau^{\prime}, \tau^{\prime \prime} \in I .
$$

so that $l_{l}^{*}(\tau)(\iota \in \mathcal{I})$ is equicontinuous on I. Since $\left\{l_{\iota}(0)\right\}_{\iota \in \mathcal{I}}$ is bounded in \mathbf{C}^{n}, it follows from the Arzelà-Ascoli theorem that $\left\{l_{i}(\tau)\right\}_{i \in \mathcal{I}}$ is a nornal family of functions on I. Thus, $\left\{l_{l}\right\}_{\ell \in \mathcal{I}}$ is normal.
9.4.3. Distance Function. Let \mathcal{R} be an unramified domain over $\mathbf{C}^{\prime \prime}$. Let $p_{1}, p_{2} \in \mathcal{R}$ and let γ be a curve which connects p_{1} and p_{2} in \mathcal{R}. We let $L(\gamma)$ denote the Euclidean length of the curve $\underline{\gamma}=\pi(\gamma)$ in \mathbf{C}^{n}. We set

$$
d_{\mathbb{R}}\left(p_{1}, p_{2}\right)=\inf \left\{L(\gamma) \mid \gamma \text { connects } p_{1} \text { and } p_{2} \text { in } \mathcal{R}\right\} .
$$

Let \mathcal{R}_{0} be a connected region in \mathcal{R} such that the boundary distance of \mathcal{R} from \mathcal{R}_{0} is positive, i.e.,

$$
m=\inf \left\{D_{\mathcal{R}}(p) \mid p \in \mathcal{R}_{0}\right\}>0 .
$$

Fix a point p_{0} in \mathcal{R}_{0}. Let $p \in \mathcal{R}_{0}$ and set

$$
\begin{equation*}
d_{p_{0}}(p)=d_{\mathcal{R}_{0}}\left(p_{0}, p\right), \tag{9.27}
\end{equation*}
$$

which is called the distance function on \mathcal{R}_{0} with initial point p_{0}.
We have the following lemma.
Lemma 9.9. For each $M>0$, the subset

$$
E_{M}:=\left\{p \in \mathcal{R}_{0} \mid d_{p_{0}}(p)<M\right\}
$$

of \mathcal{R}_{0} is relatively compact in \mathcal{R}.
Proof. We prove this by contradiction; thus we assume that there exists a sequence of points $p_{k}(k=1,2, \ldots)$ in E_{M} such that $\left\{p_{k}\right\}_{k=1.2 \ldots . .}$ has no accumulation points in \mathcal{R}. For each $k=1,2, \ldots$, we can find a continuous curve l_{k} in \mathcal{R}_{0} which connects p_{0} and p_{k} such that $L\left(l_{k}\right)<M$. We write $\underline{l}_{\boldsymbol{k}}=\pi\left(l_{k}\right)$ and $\boldsymbol{p}_{0}=\pi\left(p_{0}\right)$. Then $\underline{l}_{\boldsymbol{k}}$ is a rectifiable curve in \mathbf{C}^{n} with initial point \boldsymbol{p}_{0} and length $\bar{L}\left(\underline{l}_{k}\right)=L\left(l_{k}\right)<M$. It follows from Proposition 9.5 that we can find a subsequence $\left\{l_{k_{j}}\right\}_{J=1,2 \ldots} \ldots$ of $\left\{\underline{l}_{k}\right\}_{k=1,2 \ldots .}$ which converges uniformly to a curve $\underline{l}_{\underline{l}}$. Let $\underline{l}_{k_{1}}(t)$ and $\underline{l_{0}}(t)$ be parameterizations on I of $\underline{l_{k_{j}}}$ and $\underline{l_{\underline{0}}}$ such that $\lim _{j \rightarrow \infty} \underline{l_{k_{j}}}(t)=\underline{\underline{l}_{0}}(t)$ uniformly on I. We fix r with $0<r<m / 2$ and consider the band \mathcal{B} along $\underline{l_{0}}$ with
radius r : i.e., the collection of balls $q_{r}\left(\underline{l_{0}}(t)\right), t \in I$, in \mathbf{C}^{n}. Then we have $\underline{l_{k_{1}}}(t) \subset \mathcal{B}$ $(t \in I)$ for sufficiently large j. Fix such a j. Then $l_{0}(t)(t \in I)$ is contained in the band \mathcal{B}, along $l_{k_{j}}$ with radius $2 r<m$ and $B \subset \mathcal{B}_{j}$. Since $D_{\mathcal{R}}(p) \geq m$ for all $p \in{\underline{l_{j}}}(t), t \in I$, it follows that $\mathcal{B}_{3} \subset \subset \mathcal{R}$. and hence $B \subset \subset \mathcal{R}$. We thus have $p_{k_{i}}=\bar{l}_{k_{i}}(1) \in \mathcal{B}$ for all sufficiently large i. This is a contradiction.
9.4.4. Modification of $d_{p \mathfrak{s}}(p)$. Let \mathcal{U} be a domain in an analytic space \mathcal{V}. Let $h(p)$ and $k(p)$ be two real-valued functions on \mathcal{U}. If, given a real number a. there exists a real number $b>0$ such that

$$
\begin{array}{ll}
\{p \in U \mid h(p)<a\} & \subset\{p \in U \mid k(p)<b\} \\
\{p \in U \mid k(p)<a\} & \subset\{p \in U \mid h(p)<b\}
\end{array}
$$

then we say that $h(p)$ and $k(p)$ are of weakly bounded difference in \mathcal{U}. Furthermore. if $h(p)-k(p)$ is a bounded function in U, then we say that $h(p)$ and $k(p)$ are of bounded difference in \mathcal{U}.

Let \mathcal{R} be an unramified domain over \mathbf{C}^{n} and for $m>0$ let

$$
\begin{equation*}
\mathcal{R}_{0}=\mathcal{R}_{0 . m}=\left\{p \in \mathcal{R} \mid D_{\mathcal{R}}(p)>m\right\} \subset \mathcal{R} \tag{9.28}
\end{equation*}
$$

We note that if \mathcal{R} is finitely sheeted and bounded over \mathbf{C}^{n}, then $\mathcal{R}_{0} \subset \subset \mathcal{R}$. However, if \mathcal{R} is infinitely sheeted, this is not necessarily the case. We defined $d_{p_{0}}(p)=d_{\mathcal{R}_{0}}\left(p_{0}, p\right)$ on \mathcal{R}_{0} where p_{0} is a fixed point in \mathcal{R}_{0}. Let $\rho>0$ and let

$$
\begin{equation*}
\mathcal{R}_{0}^{(\rho)}=\left\{p \in \mathcal{R}_{0} \mid \Delta_{\mathcal{R}_{0}}(p)>\rho\right\} \tag{9.29}
\end{equation*}
$$

so that the polydisk $\gamma_{\rho}(p) \subset \subset \mathcal{R}$ for each $p \in \mathcal{R}_{0}^{(\rho)}$ (recall the notation from (9.25)). We shall construct a strictly plurisubharmonic function $u(p)$ on $\mathcal{R}_{0}^{(\rho)}$ such that $u(p)$ and $d_{p_{0}}(p)$ are of weakly bounded difference in $\mathcal{R}_{0}^{(\rho)}$.

To this end, we recall the following mean-value integral of a real-valued, continuous function $\varphi(z)$ which was studied in Chapter 4:

$$
\begin{equation*}
\varphi_{1}(z):=A_{r} \varphi(z)=\frac{1}{\left(\pi r^{2}\right)^{n}} \int_{\gamma_{r}(z)} \varphi(\zeta) d v_{\zeta} . \tag{9.30}
\end{equation*}
$$

We have the following lemma.
Lemma 9.10. Let $\varphi(z)$ be a real-valued continuous function on a univalent do$\operatorname{main} D$ in \mathbf{C}^{n}. Let $\rho>0$ and let $D^{(\rho)}=\left\{p \in D \mid \Delta_{D}(p)>\rho\right\}$. For $0<r<\rho$ define $\varphi_{1}(z)=A_{r} \varphi(z)$ on $D^{(\rho)}$ (which is of class C^{1} in $\left.D^{(\rho)}\right)$.

1. If there exists a constant $c>0$ such that for any two points z^{1}, z^{2} in D.

$$
\left|\varphi\left(z^{1}\right)-\varphi\left(z^{2}\right)\right| \leq c\left\|z^{1}-z^{2}\right\|
$$

then we have

$$
\left|\frac{\partial \varphi_{1}(z)}{\partial \xi}\right| \leq c, \quad z \in D^{(\rho)}
$$

Here $\partial / \partial \xi$ denotes any of the partial derivatives $\partial / \partial x_{j}$ or $\partial / \partial y_{j}$, where $z_{j}=x_{j}+\sqrt{-1} y_{j}(j=1, \ldots, n) .^{9}$
2. If $|p(z)| \leq M$ on D, then

$$
\left|\frac{\partial \varphi_{1}(z)}{\partial \xi}\right| \leq \frac{4 M}{\pi r}, \quad z \in D^{(\rho)}
$$

${ }^{9}\left\|z^{1}-z^{2}\right\|$ denotes the Euclidean distance between z^{1} and z^{2} in C^{n}.

Proof. We prove this for $\xi=x_{1}$. Let $a=\left(a_{1}, \ldots, a_{n}\right) \in D^{(\rho)}$ and let $\Delta \xi$ be a real number such that $a^{\prime}=\left(a_{1}+\Delta \xi, a_{2}, \ldots, a_{n}\right) \in D^{(\rho)}$. Under the assumption in 1 , we have

$$
\begin{aligned}
& \left|\frac{1}{\Delta \xi}\left(\int_{\gamma_{r}\left(a^{\prime}\right)} \varphi(z) d v_{z}-\int_{\gamma_{r}(a)} \varphi(z) d v_{z}\right)\right| \\
& \quad \leq \frac{1}{|\Delta \xi|}\left|\int_{\gamma_{r}(0)}\left(\varphi\left(a^{\prime}+\zeta\right)-\varphi(a+\zeta)\right) d v_{\zeta}\right| \\
& \quad \leq \frac{1}{|\Delta \xi|} \int_{\gamma_{r}(0)} \mathrm{c}\left\|a^{\prime}-a\right\| d v_{\zeta}=\mathrm{c}\left(\pi r^{2}\right)^{n}
\end{aligned}
$$

so that $\left|\left(\partial \varphi_{1} / \partial \xi\right)(a)\right| \leq c$. Thus 1 is proved.
Under the assumption in 2, we have

$$
\begin{aligned}
& \left|\frac{1}{\Delta \xi}\left(\int_{\gamma_{r}\left(a^{\prime}\right)} \varphi(z) d v_{z}-\int_{\gamma_{r}(a)} \varphi(z) d v_{z}\right)\right| \\
& \quad \leq \frac{M}{|\Delta \xi|} \operatorname{vol}\left(\gamma_{r}\left(a^{\prime}\right) \backslash \gamma_{r}(a)\right) \\
& \quad \leq 4 M r \cdot\left(\pi r^{2}\right)^{n-1}
\end{aligned}
$$

so that $\left|\left(\partial \varphi_{1} / \partial \xi\right)(a)\right| \leq 4 M / \pi r$. Hence, 2 is proved.
Since the mean-value integral $\varphi_{1}(z)=A_{r} \varphi(z)$ of $\varphi(z)$ is defined locally on $D^{(\rho)}$, this integration can be defined on $D^{(\rho)}$ for a continuous function $\varphi(z)$ on an unramified domain D over C^{n}.

We return to the situation (9.29). The distance function $d_{p_{0}}(p)=d_{\mathcal{R}_{0}}\left(p_{0}, p\right)$ on \mathcal{R}_{0} is a real-valued continuous function in \mathcal{R}_{0} with the property that

$$
\begin{equation*}
\left|d_{p_{0}}\left(p^{\prime}\right)-d_{p_{0}}\left(p^{\prime \prime}\right)\right| \leq\left\|\underline{p}^{\prime}-\underline{p}^{\prime \prime}\right\| \tag{9.31}
\end{equation*}
$$

for any two points $p^{\prime}, p^{\prime \prime}$ in \mathcal{R}_{0} such that $p^{\prime}, p^{\prime \prime}$ are contained in a (univalent) ball in \mathcal{R}_{0}. Fix r with $0<r<\rho$. Then we can construct the mean-value integral defined by (9.30):

$$
\begin{aligned}
& \varphi_{1}(p):=A_{r} d_{p_{0}}(p), \quad p \in \mathcal{R}_{0}^{(\rho)} \\
& \varphi_{2}(p):=A_{r} \varphi_{1}(p), \quad p \in \mathcal{R}_{0}^{(2 \rho)}
\end{aligned}
$$

Then $\varphi_{1}(p)$ is of class C^{1} in $\mathcal{R}_{0}^{(\rho)}$ and

$$
\begin{equation*}
\left|\frac{\partial \varphi_{1}}{\partial \xi}(p)\right| \leq 1, \quad p \in \mathcal{R}_{0}^{(\rho)} \tag{9.32}
\end{equation*}
$$

in addition, $\varphi_{2}(p)$ is of class C^{2} in $\mathcal{R}_{0}^{(2 \rho)}$ with

$$
\begin{equation*}
\left|\frac{\partial \varphi_{2}}{\partial \eta \partial \xi}(p)\right| \leq\left|\frac{\partial}{\partial \eta}\left(A_{r} \frac{\partial \varphi_{1}}{\partial \xi}\right)(p)\right| \leq \frac{4}{\pi r}, \quad p \in \mathcal{R}_{0}^{(2 \rho)} \tag{9.33}
\end{equation*}
$$

We note from (9.31) and (9.32) that

$$
\begin{equation*}
\left|\varphi_{2}(p)-d_{p_{0}}(p)\right| \leq 2 r, \quad p \in \mathcal{R}_{0}^{(2 \rho)} \tag{9.34}
\end{equation*}
$$

Next we define the following function on \mathcal{R} :

$$
\zeta(p)=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}, \quad p \in \mathcal{R}
$$

where $\underline{p}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}$. Then $\zeta(p)$ is a strictly plurisubharmonic function on \mathcal{R}. Given a constant $K>0$, we set

$$
\lambda_{K}(p)=\varphi_{2}(p)+K \zeta(p), \quad p \in \mathcal{R}_{0}^{(2 \rho)}
$$

which is a positive-valued function of class C^{2} on $\mathcal{R}_{0}^{(2 \rho)}$.
We have the following lemma.
Lemma 9.11. There exists a strictly plurisubharmonic function $\varphi(z)$ on $\mathcal{R}_{0}^{(2 \rho)}$ such that $\varphi(p)$ and $d_{p_{0}}(p)$ are of weakly bounded difference on $\mathcal{R}_{0}^{(2 \rho)}$.

Proof. We fix a constant $K>0$ such that $K>4 n^{2} /(\pi r)$. We shall show that $\varphi(p)=\lambda_{K}(p)$ on $\mathcal{R}_{0}^{(2 \rho)}$ satisfies the conclusion of the lemma.

Indeed, from (9.33) we see that for any $c=\left(c_{1}, \ldots, c_{n}\right) \in C^{n}$ with $\|c\|=1$, we have

$$
\sum_{j, k=1}^{n} \frac{\partial^{2} \lambda_{K}(p)}{\partial z_{i} \partial \bar{z}_{j}} c_{i} c_{j} \geq-\frac{4 n^{2}}{\pi r}+K>0
$$

so that $\lambda_{K}(p)$ is a strictly plurisubharmonic function on $\mathcal{R}_{0}^{(2 \rho)}$. It is clear from (9.34) that $\varphi_{2}(p)$ and $d_{p_{0}}(p)$ are of bounded difference on $\mathcal{R}_{0}^{(2 \rho)}$. Let $c>0$ and let $A_{c}=\left\{p \in \mathcal{R}_{0}^{(2 \rho)} \mid d_{p_{0}}(p)<c\right\}$. Then the projection A_{c} of A_{c} to \mathbf{C}^{n} is a bounded subset in \mathbf{C}^{n}, so that $\zeta(p)$ is bounded on A_{c}. It follows that $\lambda_{K}(p)$ and $d_{p_{0}}(p)$ are of weakly bounded difference on $\mathcal{R}_{0}^{(2 \rho)}$.

In the case when the projection $\underline{\mathcal{R}}_{0}$ of \mathcal{R}_{0} to $\mathbf{C}^{\boldsymbol{n}}$ is a bounded domain in $\mathbf{C}^{\boldsymbol{n}}$, $\lambda_{K}(p)$ and $d_{p_{0}}(p)$ are of bounded difference on $\mathcal{R}_{0}^{(2 \rho)}$.

Given $\varepsilon>0$, by taking smaller $m>0$ and $\rho>0$ such that $m+2 \rho<\varepsilon$ we have from this lemma the following corollary.

Corollary 9.2. Let \mathcal{R} be an unramified pseudoconvex domain over \mathbf{C}^{n}, and for $\varepsilon>0$, let

$$
\mathcal{D}=\left\{p \in \mathcal{R} \mid D_{\mathcal{R}}(p)>\varepsilon\right\}
$$

Then there exists a strictly plurisubharmonic function $\varphi(p)$ on \mathcal{D} such that, for any real number a,

$$
\mathcal{D}_{a}=\{p \in \mathcal{D} \mid \dot{p}(p)<a\} \subset \subset \mathcal{R} .
$$

This corollary says that, if we let $\partial \mathcal{D}_{a}$ denote the boundary of \mathcal{D}_{a} in \mathcal{R}, then \mathcal{D}_{a} is finitely sheeted over \mathbf{C}^{n} and

$$
\begin{equation*}
\partial \mathcal{D}_{a} \subset\left\{p \in \mathcal{R} \mid D_{\mathcal{R}}(p)=\varepsilon\right\} \cup\{p \in \mathcal{D} \mid \varphi(p)=a\} \tag{9.35}
\end{equation*}
$$

9.4.5. Construction of an Associated Function on \mathcal{R}. Let \mathcal{R} be an unramified pseudoconvex domain over C^{n}. We defined the logarithmic boundary distance function $\delta(p)=-\log D_{\mathcal{R}}(p)$ on \mathcal{R} by (9.26). Since \mathcal{R} is pseudoconvex, we have that $\delta(p)$ is continuous and plurisubharmonic on \mathcal{R}. Let $a_{j}(j=1,2, \ldots)$ be a sequence of positive numbers such that

$$
a_{j}<a_{j+1} \quad(j=1,2, \ldots), \quad \lim _{j \rightarrow \infty} a_{j}=+\infty
$$

We set

$$
\mathcal{R}_{j}=\left\{p \in \mathcal{R} \mid \delta(p)<a_{j}\right\} \quad(j=1,2, \ldots)
$$

Equivalently, setting $\varepsilon_{j}=e^{-a_{j}}>0(j=1,2, \ldots)$ (so that $\varepsilon_{j}>\varepsilon_{j+1}$ and $\lim _{j \rightarrow \infty} \varepsilon_{j}$ $=0$), we have $\mathcal{R}_{j}=\left\{p \in \mathcal{R} \mid D_{\mathcal{R}}(p)>\varepsilon_{j}\right\}$. Then

$$
\mathcal{R}_{j} \subset \mathcal{R}_{j+1} \quad(j=1,2, \ldots), \quad \lim _{j \rightarrow \infty} \mathcal{R}_{j}=\mathcal{R}
$$

By Corollary 9.2, there exists a strictly plurisubharmonic function $\varphi_{j}(p)$ on \mathcal{R}_{j} ($j=1,2, \ldots$) such that, for any real number b,

$$
\left(\mathcal{R}_{j}\right)_{b}:=\left\{p \in \mathcal{R}_{j} \mid \varphi_{j}(p)<b\right\} \subset \subset \mathcal{R} .
$$

We note from (9.35) that $\left(\mathcal{R}_{j}\right)_{b} \subset \subset \mathcal{R}_{j+1}$. Next, let $b_{j}(j=1,2, \ldots)$ be a sequence of positive real numbers such that
(1) $b_{j}<b_{j+1}(j=1,2, \ldots)$ and $\lim _{j \rightarrow \infty} b_{j}=+\infty$;
(2) if we set

$$
\Delta_{j}=\left\{p \in \mathcal{R}_{j} \mid \varphi_{j+3}(p)<b_{j}\right\},
$$

then

$$
\Delta_{j} \subset \subset \Delta_{j+1}(j=1,2, \ldots), \quad \lim _{j \rightarrow \infty} \Delta_{j}=\mathcal{R}
$$

This is possible by taking b_{j+1} sufficiently greater than b_{j}. We note that $\Delta_{j+2} \subset \subset$ $\boldsymbol{R}_{\boldsymbol{j}+3}$ and

$$
\partial \Delta_{j} \subset\left\{p \in \mathcal{R} \mid \delta(p)=a_{j}\right\} \bigcup\left\{p \in \mathcal{R}_{j+3} \mid \varphi_{j+3}(p)=b_{j}\right\}
$$

We set

$$
\psi_{j}(p)=\max \left\{\delta(p)-a_{j}, \varphi_{j+3}(p)-b_{j}\right\}, \quad p \in \Delta_{j+2} \backslash \Delta_{j-1} \quad(j=2,3, \ldots)
$$

Then $\psi_{j}(p)$ is a plurisubharmonic function on $\boldsymbol{\Delta}_{\boldsymbol{j}+\boldsymbol{2}} \backslash \boldsymbol{\Delta}_{\boldsymbol{j}-1}$ satisfying

$$
\psi_{j}(p)>0 \quad(\text { resp. }=0,<0) \quad \text { on } \overline{\Delta_{j+2}} \backslash \overline{\Delta_{j}}\left(\text { resp. } \partial \Delta_{j}, \Delta_{j} \backslash \Delta_{j-1}\right)
$$

Using the sequence of functions $\psi_{j}(p)$ on $\Delta_{j+2} \backslash \Delta_{j-1} \quad(j=1,2, \ldots)$, we can apply standard techniques to construct a plurisubharmonic exhaustion function $\psi(p)$ on \mathcal{R}.

To be precise, we fix a plurisubharmonic function $\overline{\psi_{2}}(p)$ on $\overline{\Delta_{3}}$ such that $\bar{\psi}_{2}(p)>$ 0 on $\overline{\Delta_{3}}$. We take $k_{2}>0$ sufficiently large so that

$$
\min _{p \in \overline{\Delta_{1} \backslash \Delta_{3}}}\left\{k_{2} \psi_{2}(p)\right\}>\max \left\{3, \max _{p \in \overline{\bar{\Delta}_{3}}}\left\{\tilde{\psi}_{2}(p)\right\}\right\}
$$

and define

$$
\tilde{\psi}_{3}(p)= \begin{cases}\tilde{\psi}_{2}(p) & \text { on } \overline{\Delta_{2}}, \\ \max \left\{\bar{\psi}_{2}(p), k_{2} \psi_{2}(p)\right\} & \text { on } \bar{\Delta}_{3} \backslash \Delta_{1} \\ k_{2} \psi_{2}(p) & \text { on } \overline{\Delta_{4}} \backslash \Delta_{3}\end{cases}
$$

Then $\tilde{\psi}_{3}(p)>0$ is a plurisubharmonic function on $\overline{\Delta_{4}}$ such that $\tilde{\psi}_{3}(p)=\tilde{\psi}_{2}(p)$ on $\bar{\Delta}_{2}$ and $\bar{\psi}_{3}(p) \geq 3$ on $\overline{\Delta_{4}} \backslash \Delta_{3}$. In a similar fashion, using $\bar{\psi}_{3}(p)$ on ${\overline{\Delta_{4}}}_{4}$ and $\psi_{3}(p)$ on $\overline{\Delta_{5}} \backslash \Delta_{2}$, we obtain a plurisubharmonic function $\bar{\psi}_{4}(p)>0$ on $\overline{\Delta_{5}}$ such that $\tilde{\psi}_{4}(p)=\tilde{\psi}_{3}(p)$ on $\bar{\Delta}_{3}$ and $\tilde{\psi}_{4}(p) \geq 4$ on $\bar{\Delta}_{5} \backslash \Delta_{4}$. We repeat this procedure inductively and obtain a continuous plurisubharmonic exhaustion function $\bar{\psi}(p)$ on \mathcal{R}.

Using the same argument in the case of a univalent pseudoconvex domain in $\mathbf{C}^{\boldsymbol{n}}$ via the mean-value integral of $\tilde{\psi}(p)$, we modify $\tilde{\psi}(p)$ to obtain a piecewise smooth, strictly plurisubharmonic exhaustion function $\Phi(p)$ on \mathcal{R}.

Thus we have proved the following.

Proposition 9.6. Any unramified pseudoconvex domain over \mathbf{C}^{n} is a normal pseudoconvex space.

This proposition, together with the main theorem (Theorem 9.3), yields the following.

Theorem 9.5. Any unramified pseudoconvex domain over \mathbf{C}^{n} is holomorphically complete, and hence is a domain of holomorphy.
9.4.6. Unramified Covers. Let \mathcal{V} be an analytic space of dimension n. Let $\tilde{\mathcal{V}}$ be another analytic space of dimension n. If $\tilde{\mathcal{V}}$ satisfies the following two conditions:
(1) there exists an analytic mapping $\tilde{\pi}$ from $\tilde{\mathcal{V}}$ onto \mathcal{V}; and
(2) for any point p in \mathcal{V}, there exists a neighborhood δ_{p} of p in \mathcal{V} such that $\tilde{\pi}$ maps each connected component of $\bar{\pi}^{-1}\left(\delta_{p}\right)$ in $\overline{\mathcal{V}}$ in a one-to-one fashion to δ_{p},
then we say that $\tilde{\mathcal{V}}$ is an unramified cover of \mathcal{V} without relative boundary; the mapping $\bar{\pi}$ is called the canonical projection.

We shall prove the following theorem.
Theorem 9.6. ${ }^{10}$ Any unramified cover of a Stein space is also a Stein space.
We devote the rest of this section to the proof of this theorem. Thus we always assume that \mathcal{V} is a Stein space and that $\tilde{\mathcal{V}}$ is an unramified cover of \mathcal{V} with canonical projection $\bar{\pi}$. We first verify the following proposition.

Proposition 9.7. Suppose that there exists a sequence of analytic polyhedra $\mathcal{P}_{j}(j=1,2, \ldots)$ in \mathcal{V} with defining functions on \mathcal{V} such that
(1) $\mathcal{P}_{j} \subset \subset \mathcal{P}_{j+1}^{0}(j=1,2, \ldots)$ and $\lim _{j \rightarrow \infty} \mathcal{P}_{j}=\mathcal{V}$; and
(2) each connected component of $\tilde{\mathcal{P}}_{j}:=\tilde{\pi}^{-1}\left(\mathcal{P}_{j}\right)(j=1,2, \ldots)$ in $\overline{\mathcal{V}}$ is holomorphically complete.
Then $\overline{\mathcal{V}}$ is a Stein space.
Proof. For each $j=1,2 \ldots$, we can find a connected component $\tilde{\mathcal{P}}_{j}^{0}$ of $\tilde{\mathcal{P}}_{j}$ in $\overline{\mathcal{V}}$ such that

$$
\hat{\mathcal{P}}_{j}^{0} \subset \tilde{\mathcal{P}}_{j+1}^{0} \quad(j=1,2, \ldots), \quad \lim _{j \rightarrow \infty} \tilde{\mathcal{P}}_{j}^{0}=\tilde{\mathcal{V}}
$$

In general, $\tilde{\mathcal{P}}_{j}^{0}$ is infinitely sheeted over $\mathcal{P}_{\boldsymbol{j}}$. In order to prove that $\tilde{\mathcal{V}}$ is a Stein space, using Theorem 8.8 it suffices to show that each $\tilde{\mathcal{P}}_{j}^{0}$ is holomorphically convex in $\tilde{\mathcal{P}}_{j+1}^{0}$. Recall that in Theorem 8.8 we assumed $\tilde{\mathcal{P}}_{j}^{0} \subset \subset \tilde{\mathcal{P}}_{j+1}^{0}$; however, we only used the fact that $\tilde{\mathcal{P}}_{j}^{0} \subset \tilde{\mathcal{P}}_{j+1}^{0}$ in the proof.

To this end, let $K \subset \subset \overline{\mathcal{P}}^{0}$, and let \widehat{K} denote the holomorphically convex hull of K with respect to $\tilde{\mathcal{P}}_{j+1}^{0}$. It suffices to show that

$$
\text { (i) } \widehat{K} \subset \subset \tilde{\mathcal{P}}_{j+1}^{n} ; \quad \text { (ii) } \tilde{\pi}(\widehat{K}) \subset \subset \mathcal{P}_{j}
$$

Claim (i) follows from our assumption that $\tilde{\mathcal{P}}_{j+1}^{0}$ is holomorphically complete. To verify (ii), let $k=\tilde{\pi}(K)$, so that $k \subset \subset \mathcal{P}_{j}$. We let \hat{k} denote the holomorphically convex hull of k with respect to \mathcal{P}_{j+1}. Since any holomorphic function φ on \mathcal{P}_{j+1} gives rise to the holomorphic function $\bar{\varphi}:=\varphi \circ \pi$ in $\tilde{\mathcal{P}}_{j+1}^{0}$, it follows easily that

[^53]$\tilde{\pi}(\hat{K}) \subset \hat{k}$. Since $\mathcal{P}_{\boldsymbol{j}}$ is holomorphically convex in $\mathcal{P}_{\boldsymbol{j}+1}$, we have $\hat{k} \subset \subset \mathcal{P}_{\boldsymbol{j}}$, proving (ii).
9.4.7. Preparation Lemma. By Theorem 8.20, a Stein space \mathcal{V} can be realized as a distinguished ramified domain \mathcal{D} over $\mathbf{C}^{\boldsymbol{n}}$ with projection π. Precisely, fixing $\rho>0$, we use variables z_{1}, \ldots, z_{n} in \mathbf{C}^{n} and we let
$$
\Gamma_{\rho}:\left|z_{j}\right|<\rho \quad(j=1, \ldots, n)
$$
be the polydisk centered at the origin O with radius ρ. Then each connected component of $\pi^{-1}\left(\Gamma_{\rho}\right)$ in \mathcal{D} is a finitely sheeted ramified domain over Γ_{ρ} without relative boundary. To verify Theorem 9.6, it thus suffices to prove that the unramified cover $\tilde{\mathcal{D}}$ with canonical projection $\tilde{\pi}$ of the distinguished ramified domain \mathcal{D} over $\mathbf{C}^{\boldsymbol{n}}$ is a Stein space.

We fix ρ_{0} and ρ_{1} with $\rho_{0}>\rho_{1}>0$ and we take a connected component \mathcal{D}_{1} (resp. \mathcal{D}_{0}) of $\pi^{-1}\left(\Gamma_{\rho_{1}}\right)$ (resp. $\pi^{-1}\left(\Gamma_{\rho_{0}}\right)$) in \mathcal{D}; then \mathcal{D}_{1} (resp. \mathcal{D}_{0}) is a finitely sheeted ramified domain over $\Gamma_{\rho_{0}}$ (resp. $\Gamma_{\rho_{1}}$) without relative boundary such that $\mathcal{D}_{1} \subset \subset \mathcal{D}_{0}$.

Let $\tilde{\mathcal{D}}_{0}$ be any connected domain over $\tilde{\mathcal{D}}$, so that $\tilde{\mathcal{D}}$ is an infinitely or finitely sheeted unramified cover of \mathcal{D}_{0} without relative boundary with projection $\tilde{\pi}$, and let $\hat{\pi}=\pi \circ \tilde{\pi}$; this maps $\tilde{\mathcal{D}}_{0}$ onto $\Gamma_{\rho_{0}}$. Let $\tilde{\mathcal{D}}_{1}$ be the part of $\tilde{\mathcal{D}}_{0}$ over $\Gamma_{\rho_{1}}$; this is an unramified cover of \mathcal{D}_{1} without relative boundary. To prove Theorem 9.6 , using Proposition 9.7 it suffices to show that $\overline{\mathcal{D}}_{1}$ is holomorphically complete. Moreover, using Theorem 9.3 it suffices to verify the following claim:

> Claim. There exists a strictly pseudoconvex exhaustion function $\bar{\varphi}(p)$ on $\overline{\mathcal{D}}_{1}$.

In the construction of $\bar{\varphi}(p)$ we use the following notation. Let $E \subset \mathcal{D}_{0}$. Then

$$
\underline{E}:=\pi(E) \subset \Gamma_{\rho_{0}} \quad \text { and } \quad \bar{E}:=\tilde{\pi}^{-1}(E) \subset \tilde{\mathcal{D}}_{0}
$$

so that $\underline{\mathcal{D}_{1}}=\Gamma_{\rho_{1}}$ and $\tilde{\mathcal{D}}_{1}=\tilde{\pi}^{-1}\left(\mathcal{D}_{1}\right)$. Consider the function

$$
\eta(z)=\max _{j=1, \ldots, n}\left\{\frac{1}{\rho_{1}-\left|z_{j}\right|}\right\}+\sum_{j=1}^{n}\left|z_{j}\right|^{2}, \quad z \in \Gamma_{\rho_{1}}
$$

and set

$$
\tilde{\eta}(p)=\eta(\hat{\pi}(p)), \quad p \in \tilde{\mathcal{D}}_{1}
$$

Then $\tilde{\eta}(p)$ is a strictly pseudoconvex function on $\tilde{\mathcal{D}}_{1}$ such that $\lim _{p \rightarrow p_{0}} \tilde{\eta}(p)=+\infty$ for any $p_{0} \in \partial \tilde{\mathcal{D}}_{1}$ with $\widehat{\pi}\left(p_{0}\right) \in \partial \Gamma_{\rho_{1}}$. However, $\tilde{\eta}(p)$ is not necessarily an exhaustion function on $\tilde{\mathcal{D}}_{1}$ if $\tilde{\mathcal{D}}_{1}$ is infinitely sheeted over \mathcal{D}_{1} (or equivalently over $\Gamma_{\rho_{1}}$).

On $\tilde{\mathcal{D}}_{0}$, we define the usual metric $d_{\tilde{\mathcal{D}}_{0}}\left(p_{1}, p_{2}\right)$ in the following manner. Let $p_{1}, p_{2} \in \tilde{\mathcal{D}}_{0}$. We connect p_{1} and p_{2} by a curve $\bar{\gamma}$ in $\tilde{\mathcal{D}}_{0}$ and we let $L(\tilde{\gamma})$ denote the Euclidean length of the curve $\underline{\tilde{\gamma}}=\widehat{\pi}(\tilde{\gamma})$ in \mathbf{C}^{n}. We define

$$
d_{\tilde{\mathcal{D}}_{0}}\left(p_{1}, p_{2}\right)=\inf \left\{L(\tilde{\gamma}) \mid \tilde{\gamma} \text { joins } p_{1} \text { and } p_{2} \text { in } \overline{\mathcal{D}}_{0}\right\}
$$

Fix a point p_{0} in $\tilde{\mathcal{D}}_{0}$ and define

$$
\begin{equation*}
\tilde{d}_{p_{0}}(p):=d_{\tilde{\mathcal{D}}_{0}}\left(p_{0}, p\right), \quad p \in \tilde{\mathcal{D}}_{0} \tag{9.37}
\end{equation*}
$$

This is a nonnegative, continuous function on $\tilde{\mathcal{D}}_{\mathbf{0}}$ such that

$$
\left|\tilde{d}_{p_{0}}(p)-\bar{d}_{p_{0}}(q)\right| \leq d_{\bar{D}_{0}}(p, q) \quad \text { for } p, q \in \tilde{\mathcal{D}}_{0}
$$

We call $\tilde{d}_{p_{0}}(p)$ the distance function on $\tilde{\mathcal{D}}_{0}$. Using the fact that \mathcal{D}_{0} is a finitely sheeted ramified domain over $\Gamma_{\rho_{0}}$ without relative boundary, we see via the method used in the proof of Lemma 9.9 that for any real number a, the set

$$
\left(\tilde{\mathcal{D}}_{0}\right)_{a}:=\left\{p \in \tilde{\mathcal{D}}_{0} \mid \tilde{d}_{p_{0}}(p)<a\right\}
$$

is finitely sheeted over \mathcal{D}_{0}, and hence over $\Gamma_{p_{0}}$. The set $\left(\tilde{\mathcal{D}}_{0}\right)_{a}$ has relative boundary in $\tilde{\mathcal{D}}_{0}$ in the case when $\tilde{\mathcal{D}}_{0}$ is infinitely sheeted over \mathcal{D}_{0}. Consequently, if we set

$$
\bar{\lambda}(p)=\max \left\{\tilde{d}_{p_{0}}(p) . \bar{\eta}(p)\right\}, \quad p \in \tilde{\mathcal{D}}_{1} .
$$

then $\tilde{\lambda}(p)$ is an exhaustion function on $\tilde{\mathcal{D}}_{1}$, but it is not necessarily a strictly pseudoconvex function. To finish the proof of our claim. it thus suffices to construct a strictly pseudoconvex function $\bar{\varphi}(p)$ on $\tilde{\mathcal{D}}_{1}$ such that $\bar{\varphi}(p)$ and $\bar{\lambda}(p)$ are of bounded difference on $\tilde{\mathcal{D}}_{1}$.
9.4.8. Canonical Coordinates. Let r be an integer with $1 \leq r \leq n$ and let

$$
p_{r}:\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n} \rightarrow\left(z_{1}, \ldots, z_{r}\right) \in \mathbf{C}^{r}
$$

be a projection from \mathbf{C}^{n} onto \mathbf{C}^{r}. We set

$$
\sigma_{r}=p_{r} \circ \pi \quad \text { on } \mathcal{D}_{0} .
$$

Then we have the following proposition.
Proposition 9.8. After a preliminary coordinate transformation of \mathbf{C}^{n}, if necessary. there exists a sequence of analytic sets $S^{r}(r=0,1, \ldots, n-1)$ in \mathcal{D}_{0} such that:

1. S^{n-1} is a pure ($n-1$)-dimensional analytic set in \mathcal{D}_{0}. Each $S^{r}(r=$ $0,1, \ldots, n-2$) is a pure r-dimensional analytic set in \mathcal{D}_{0} with $S^{r} \subset S^{r+1}$.
2. The coordinate system $\left(z_{1}, \ldots, z_{n}\right)$ satisfies the Weierstrass condition for each analytic set $\underline{S}^{r}(r=0,1, \ldots, n-1)$ in $\Gamma_{\rho_{0}}$ at each point of \underline{S}^{r}.
3. If we set $s_{0}^{r}=S^{r} \backslash S^{r-1}$, then the projection σ_{r} from s_{0}^{r} over \mathbf{C}^{r} is locally one-to-one, i.e., the image $\sigma_{r}\left(s_{0}^{r}\right)$ is an unramified domain over \mathbf{C}^{r}.
Proof. For $r=n-1$, we can take S^{n-1} to be the branch set \mathcal{S}_{n-1} of \mathcal{D}_{0} over \mathbf{C}^{n}. Since \underline{S}^{n-1} is an analytic hypersurface in $\Gamma_{p_{0}}$, we may assume that the coordinates (z_{1}, \ldots, z_{n}) of \mathbf{C}^{n} satisfy the Weierstrass condition for $\underline{S^{n-1}}$ at each point of $\underline{S^{n-1}}$. Thus we can find a finitely sheeted ramified domain D_{n-1} over \mathbf{C}^{n-1} such that \underline{S}^{n-1} and D_{n-1} are in one-to-one correspondence via the projection p_{n-1} except perhaps for an at most ($n-2$)-dimensional analytic set in $\Gamma_{\rho_{0}}$. Consequently, under the projection $\sigma_{n-1}=p_{n-1} \circ \pi$, there exists a ramified domain \mathcal{D}^{n-1} over C^{n-1} such that S^{n-1} and \mathcal{D}^{n-1} are in one-to-one correspondence except perhaps for an ($n-2$)-dimensional analytic set $\left(S^{\prime}\right)^{n-2}$ in \mathcal{D}_{0}; i.e.,

$$
\begin{equation*}
S^{n-1}: z_{n}=\xi_{n}\left(z_{1}, \ldots, z_{n-1}\right) \tag{9.38}
\end{equation*}
$$

where (z_{1}, \ldots, z_{n-1}) runs over the ramified domain \mathcal{D}^{n-1} over \mathbf{C}^{n-1}. We let τ_{n-1} denote this mapping from S^{n-1} to \mathcal{D}^{n-1}. Consider the branch set \mathcal{S}_{n-2} of \mathcal{D}^{n-1} over C^{n-1} and let $\left(S^{\prime \prime}\right)^{n-2}$ denote the $(n-2)$-dimensional analytic subset of S^{n-1} which corresponds to \mathcal{S}_{n-2} via τ_{n-1}. We then define

$$
S^{n-2}=\left(S^{\prime}\right)^{n-2} \cup\left(S^{\prime \prime}\right)^{n-2}
$$

which is an ($n-2$)-dimensional analytic set in \mathcal{D}_{0} with $S^{n-2} \subset S^{n-1}$.

Since \underline{S}^{n-2} is an analytic set in $\Gamma_{\rho_{0}}$, it follows from (9.38) that after taking a suitable linear transformation of $\left(z_{1} \ldots, z_{n-1}\right)$ in \mathbf{C}^{n-1}, if necessary, the coordinates $\left(z_{1}, \ldots, z_{n-1}\right)$ satisfy the Weierstrass condition for \underline{S}^{n-2} as well as for S^{n-1}. By applying the same method to \underline{S}^{n-2} as was done to \underline{S}^{n-1}, under the projection σ_{n-2}, there exists a ramified domain \mathcal{D}^{n-2} over C^{n-2} such that S^{n-2} and \mathcal{D}^{n-2} are in one-to-one correspondence except for an at most $(n-3)$-dimensional analytic set $\left(S^{\prime}\right)^{n-3}$ in \mathcal{D}_{0}; i.e.,

$$
S^{n-2}: z_{k}=\eta_{k}\left(z_{1} \ldots . z_{n-2}\right) \quad(k=n-1 . n)
$$

where $\left(z_{1}, \ldots, z_{n-2}\right)$ runs over the ramified domain \mathcal{D}^{n-2} over \mathbf{C}^{n-2} and

$$
\eta_{n}\left(z_{1}, \ldots, i_{n-2}\right)=\xi_{n}\left(z_{1}, \ldots, z_{n-2}, \eta_{n-1}\left(z_{1}, \ldots, z_{n-2}\right)\right)
$$

We let τ_{n-2} denote the mapping from S^{n-2} onto \mathcal{D}^{n-2}. Next, we consider the branch set S_{n-3} of \mathcal{D}^{n-2} over C^{n-2} and we let $\left(S^{\prime \prime}\right)^{n-3}$ denote the analytic subset of S^{n-2} which corresponds to S_{n-3} via τ_{n-2}. We then define

$$
S^{n-3}=\left(S^{\prime}\right)^{n-3} \cup\left(S^{\prime \prime}\right)^{n-3}
$$

which is an $(n-3)$-dimensional analytic subset in \mathcal{D}_{0} with $S^{n-2} \subset S^{n-3}$.
We thus inductively obtain a pure i-dimensional analytic set S^{i} ($i=n-$ $1, \ldots, 1,0)$ in \mathcal{D}_{0} and a ramified domain $\mathcal{D}^{i}(i=n-1 \ldots, 1,0)$ over C^{i} such that $S^{i-1} \subset S^{i}(i=n-1, \ldots, 1) ; S^{i}$ and \mathcal{D}^{i} are in one-to-one correspondence via the transformation τ_{i} except for an at most ($i-1$)-dimensional analytic set (which is contained in S^{i-1}) in \mathcal{D}_{0}.

$$
\tau_{i}: S^{i} \rightarrow \mathcal{D}^{i}:
$$

and the coordinates $\left(z_{1}, \ldots, z_{n}\right)$ satisfy the Weierstrass condition for each \underline{S}^{i}. Thus, this sequence $S^{i}(i=n-1, \ldots, 1,0)$ satisfies conditions 1 and 2. If we set $s_{0}^{r}=$ $S^{r} \backslash S^{r-1}(r=0,1, \ldots, n)$, where $S^{n}=\mathcal{D}_{0}$, the construction also yields that s_{0}^{r} corresponds to the ramified domain \mathcal{D}^{r} over \mathbf{C}^{r} after the branch set S_{r} of \mathcal{D}^{r} over C^{r} and some ($r-1$)-dimensional analytic set determined by the mapping τ_{r} are deleted. Thus, $\mathcal{R}^{r}:=\tau_{r}\left(s_{10}^{r}\right)$ is a finitely sheeted. unramified domain over \mathbf{C}^{r}; hence condition 3 is also satisfied locally by $\tau_{r}=\sigma_{r}$.

We set $\tilde{\tau}_{r}=\tau_{r} \circ \tilde{\pi}(r=0,1, \ldots, n-1)$; thus $\tilde{\tau}_{r}$ is a one-to-one mapping from $\bar{s}_{0}^{r}=\tilde{\pi}^{-1}\left(s_{0}^{r}\right) \subset \overline{\mathcal{D}}_{0}$ onto an unramified domain $\dot{\mathcal{R}}^{r}$ over \mathcal{R}^{r} without relative boundary. Generally this domain is infinitely sheeted. We let $\tilde{\eta}_{r_{r}}: \tilde{\mathcal{R}}^{r} \rightarrow \mathcal{R}^{r}$ denote the inapping which corresponds to $\tilde{\pi}: \tilde{s}_{0}^{r} \rightarrow s_{0}^{r}$ via $\dot{\tau}_{r}$. Since $\tilde{\mathcal{R}}^{r}$ is a domain over \mathbf{C}^{r}. we have the usual distance function $d_{\mathcal{R}^{r}}\left(\zeta^{\prime}, \zeta^{\prime \prime}\right)$ for $\zeta^{\prime} . \zeta^{\prime \prime} \in \tilde{\mathcal{R}}^{r}$ (just as we have $d_{\tilde{\mathcal{D}}_{0}}\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}^{\prime \prime}\right)$ in $\tilde{\mathcal{D}}_{0}$ over $\left.\mathbf{C}^{n}\right)$. Since $\tilde{\boldsymbol{s}}_{0}^{r}$ and $\tilde{\mathcal{R}}^{r}$ are in one-to-one correspondence via $\tilde{\tau}_{r}$, we can define the distance function $\boldsymbol{d}_{r}\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}^{\prime \prime}\right)$ for $\boldsymbol{p}^{\prime} . \boldsymbol{p}^{\prime \prime}$ in \tilde{s}_{0}^{r} by

$$
d_{r}\left(p^{\prime}, p^{\prime \prime}\right)=d_{\overline{\mathcal{R}}^{\prime}}\left(\zeta^{\prime}, \zeta^{\prime \prime}\right)
$$

where $\zeta^{\prime}=\bar{\tau}_{r}\left(p^{\prime}\right)$ and $\zeta^{\prime \prime}=\tilde{\tau}_{r}\left(p^{\prime \prime}\right)$.
We make the following observation about the distance function $\bar{d}_{p_{0}}(p)$ defined in (9.37).

Remark 9.4. Let K be a compact set in s_{0}^{r} (equivalently, $\tau_{r}\left(K^{*}\right)$ is a compact set in \mathcal{R}^{r}). Then there exists a constant $c_{K}>0$ such that

$$
\begin{equation*}
\left|\tilde{d}_{p_{0}}\left(p^{\prime}\right)-\tilde{d}_{p_{0}}\left(p^{\prime \prime}\right)\right| \leq c_{K} d_{r}\left(p^{\prime}, p^{\prime \prime}\right) \tag{9.39}
\end{equation*}
$$

for all points p^{\prime} and $p^{\prime \prime}$ in $\tilde{K}=\tilde{\pi}^{-1}(K) \subset \tilde{s}_{0}^{r}$ which are sufficiently close to each other so that $\tilde{\tau}_{r}\left(p^{\prime}\right)$ and $\tilde{\tau}_{r}\left(p^{\prime \prime}\right)$ are contained in a univalent closed ball \tilde{B} in $\overline{\mathcal{R}}^{r}$ over \mathbf{C}^{r}.

Proof. We may assume that the given set K is a compact set in s_{0}^{r} so that $\tau_{r}(K)$ is a closed univalent ball B in the unramified domain \mathcal{R}^{r} over \mathbf{C}^{r}. For simplicity we set $K=B$. Thus the set $\bar{B}=\tilde{\pi}_{r}^{-1}(B) \subset \overline{\mathcal{R}}^{r}$ satisfies $\tilde{\eta}_{r}(\dot{B})=B$. We set $\kappa=\left(\tilde{\tau}_{r}\right)^{-1}(\tilde{B}) \subset \tilde{s}_{0}^{r}$. Then κ can be written in the form

$$
n: z_{k}=\xi_{k}\left(z_{1}, \ldots, z_{r}\right) \quad(k=r+1, \ldots, n),
$$

where each $\xi_{k}\left(z_{1}, \ldots, z_{r}\right)(k=r+1, \ldots, n)$ is a single-valued holomorphic function on the closed ball B in $\mathbf{C r}$. Thus, we can find a constant $A_{K}>1$ such that

$$
\left|\frac{\partial \xi_{k}}{\partial z_{i}}\left(z_{1} \ldots, z_{r}\right)\right| \leq A_{K}
$$

for any point $\left(z_{1}, \ldots, z_{r}\right) \in B$. Let $p^{\prime}, p^{\prime \prime} \in \tilde{s}_{0}^{r}$ with $\tilde{\tau}_{r}\left(p^{\prime}\right), \tilde{\tau}_{r}\left(p^{\prime \prime}\right) \in \tilde{B}$. We set $\widehat{\pi}\left(p^{\prime}\right)=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)$ and $\widehat{\pi}\left(p^{\prime \prime}\right)=\left(z_{1}^{\prime \prime}, \ldots, z_{n}^{\prime \prime}\right)$ in \mathbf{C}^{n}. We consider the arc $\tilde{\gamma}$ on \bar{s}_{0}^{r} connecting the points p^{\prime} and $p^{\prime \prime}$:

$$
\bar{\gamma}: t \in[0,1] \rightarrow\left(z_{1}(t), \ldots, z_{n}(t)\right) .
$$

where

$$
\begin{array}{ll}
z_{i}(t)=z_{i}^{\prime}+\left(z_{i}^{\prime \prime}-z_{i}^{\prime}\right) t & (i=1, \ldots, r) . \\
z_{k}(t)=\xi_{k}\left(z_{1}(t) \ldots, z_{r}(t)\right) & (k=r+1, \ldots, n) .
\end{array}
$$

Since $d_{r}\left(p^{\prime}, p^{\prime \prime}\right)=\left(\sum_{i=1}^{r}\left|z_{i}^{\prime}-z_{i}^{\prime \prime}\right|^{2}\right)^{1 / 2}$ and $\bar{s}_{0}^{r} \subset \overline{\mathcal{D}}_{0}$. it follows that

$$
\begin{aligned}
& \left|\tilde{d}_{p_{0}}\left(p^{\prime}\right)-\tilde{d}_{p_{0}}\left(p^{\prime \prime}\right)\right| \leq d_{\tilde{\mathcal{D}}_{0}}\left(p^{\prime}, p^{\prime \prime}\right) \leq L(\bar{\gamma}):=\int_{0}^{1}\left(\sum_{j=1}^{n}\left|\frac{d z_{j}(t)}{d t}\right|^{2}\right)^{1 / 2} d t \\
& \quad \leq\left(\sum_{i=1}^{r}\left|z_{i}^{\prime}-z_{i}^{\prime \prime}\right|^{2}\right)^{1 / 2}\left(1+\sum_{k=r+1}^{n} \sum_{i=1}^{r}\left|\frac{\partial \xi_{k}}{\partial z_{i}}\left(z_{1}(t), \ldots . z_{r}(t)\right)\right|^{2}\right)^{1 / 2} \\
& \quad \leq d_{r}\left(p^{\prime}, p^{\prime \prime}\right)\left(1+(n-r) r A_{K}^{2}\right)^{1 / 2} .
\end{aligned}
$$

Setting $c_{K}:=\left(1+(n-r) r A_{K}^{2}\right)^{1 / 2}>0$, we obtain (9.39).
9.4.9. Lemmas. The ramified domain \mathcal{D}_{0} over $\Gamma_{\rho_{0}}$ is an analytic polyhedron in a ramified domain G, where $\mathcal{D}_{0} \subset \subset G$ (Remark 9.2). We can thus find a normal model Σ in a polydisk $\Gamma=\Gamma_{\rho_{0}} \times \Gamma^{0}$ in $\mathbf{C}^{n+m}=\mathbf{C}^{n} \times \mathbf{C}^{m}$, where \mathbf{C}^{m} has variables w_{1}, \ldots, w_{m} and

$$
\Gamma^{0}: \quad\left|w_{k}\right|<1 \quad(k=1, \ldots, m)
$$

To be precise, we can find a one-to-one holomorphic mapping Φ from \mathcal{D}_{0} onto Σ such that Σ is an n-dimensional analytic set in Γ :

$$
\begin{equation*}
\Phi: p \in \mathcal{D}_{0} \rightarrow(z, w)=\left(\pi(p), \Phi_{1}(p), \ldots, \Phi_{m}(p)\right) \in \Sigma . \tag{9.40}
\end{equation*}
$$

We set

$$
\chi(z, w)=\sum_{i=1}^{n}\left|z_{i}\right|^{2}+\sum_{k=1}^{m}\left|w_{k}\right|^{2} \quad \text { in } \mathbf{C}^{n+m} .
$$

Using the projection $\tilde{\pi}: \overline{\mathcal{D}}_{0} \rightarrow \mathcal{D}_{0}$, we define

$$
\bar{\chi}(p)=\chi(\Phi \circ \tilde{\pi}(p)), \quad p \in \tilde{\mathcal{D}}_{1},
$$

so that $\tilde{\chi}(p)$ is a bounded, strictly pseudoconvex function on $\tilde{\mathcal{D}}_{1}$.

We prove the following two lemmas.
Lemma 9.12. Let e be an open set in s_{0}^{r} unth e $\subset \subset s_{0}^{r}$. There exist a neighborhood \mathbf{V} of e in \mathcal{D}_{0} and a strictly pseudoconvex function $f(p)$ on $\overline{\mathbf{V}}=\tilde{\pi}^{-1}(\mathbf{V})$ such that $f(p)$ and $\bar{d}_{p_{0}}(p)$ are of bounded difference on $\overline{\mathbf{V}}$.

Proof. We set $E=\tau_{r}(e) \subset \mathcal{R}^{r}, \tilde{e}=\tilde{\pi}^{-1}(e) \subset \bar{s}_{0}^{r}$, and $\tilde{E}=\tilde{\tau}_{r}(\tilde{e}) \subset \dot{\mathcal{S}}^{r}$, so that $E \subset \subset \mathcal{R}^{r}$ and so that $\tilde{E} \subset \tilde{\mathcal{R}}^{r}$ is an infinitely sheeted unramified cover of E without relative boundary. Thus, both E and \bar{E} are unramified domains over \mathbf{C}^{r}. For any point $\zeta \in \tilde{\mathcal{R}}^{r}$, there exists a unique point $p \in \tilde{s}_{0}^{r} \subset \tilde{\mathcal{D}}_{0}$ with $\tilde{\tau}_{r}(p)=\zeta$. Thus we define

$$
D_{r}(\zeta):=\tilde{d}_{p_{0}}(p), \quad \zeta \in \tilde{\mathcal{R}}^{r}
$$

which is a nonnegative function on $\tilde{\mathcal{R}}^{r}$. Since $e \subset \subset s_{0}^{r}$, it follows from inequality (9.39) that there exists a constant $c_{e}>0$ such that

$$
\left|D_{r}\left(\zeta^{\prime}\right)-D_{r}\left(\zeta^{\prime \prime}\right)\right| \leq c_{e}\left\|\zeta^{\prime}-\zeta^{\prime \prime}\right\|
$$

for all points $\zeta^{\prime}, \zeta^{\prime \prime}$ in \dot{E} which are sufficiently close to each other. Here $\left\|\zeta^{\prime}-\zeta^{\prime \prime}\right\|$ denotes the Euclidean distance between ζ^{\prime} and $\zeta^{\prime \prime}$ in \mathbf{C}^{r}; this only depends on the set e. Therefore, using the same method as was used in section 9.4.4, but now applied to $E \subset \subset \mathcal{R}^{r}$, we can construct a strictly plurisubharmonic function $G_{r}(\zeta)$ on the unramified domain \bar{E} over \mathbf{C}^{r} such that $G_{r}(\zeta)$ and $D_{r}(\zeta)$ are of bounded difference in \tilde{E}. It follows that

$$
g_{r}(p)=G_{r}\left(\tilde{\tau}_{r}(p)\right), \quad p \in \tilde{e}_{.}
$$

is a strictly plurisubharmonic function on \tilde{e} such that $g_{r}(p)$ and $\tilde{d}_{p_{0}}(p)$ are of bounded difference on \tilde{e}.

On the other hand, from Proposition 9.8, s_{0}^{r} is an r-dimensional, non-singular analytic set in a domain in $\Gamma_{\rho_{1},}$ and the coordinates (z_{1}, \ldots, z_{n}) satisfy the Weierstrass condition for s_{0}^{r}. Thus s_{0}^{r} can be written in the form

$$
z_{k}=\xi_{k}\left(z_{1}, \ldots, z_{r}\right) \quad(k=r+1, \ldots, n)
$$

where $\left(z_{1}, \ldots, z_{r}\right)$ varies over the unramified domain \mathcal{R}^{r} over \mathbf{C}^{r} and $\xi_{k}\left(z_{1}, \ldots, z_{r}\right)$ is a single-valued holomorphic function on \mathcal{R}^{r}. Since $e \subset \subset s_{0}^{r}$, we can find a tubular neighborhood V of e in $\mathcal{D}_{\mathbf{0}}$ of the form

$$
\mathbf{V}=\bigcup_{\left(z_{1}, \ldots, z_{r}\right) \in E}\left(z_{1}, \ldots, z_{r}, V\left(z_{1}, \ldots, z_{r}\right)\right)
$$

where $V\left(z_{1}, \ldots, z_{r}\right)$ is a polydisk in \mathbf{C}^{n-r} centered at the point $\left(\xi_{k+1}\left(z_{1}, \ldots, z_{r}\right)\right.$, $\left.\ldots, \xi_{n}\left(z_{1}, \ldots, z_{r}\right)\right)$:

$$
V\left(z_{1}, \ldots, z_{r}\right):\left|z_{k}-\xi_{k}\left(z_{1}, \ldots, z_{r}\right)\right|<\delta \quad(k=r+1, \ldots, n)
$$

and $\delta>0$ is sufficiently small. Thus V is a unramified domain over $\mathbf{C r}^{n}$. The projection T_{r} from \mathbf{V} onto e such that

$$
T_{r}\left(z_{1}, \ldots, z_{r}, V\left(z_{1}, \ldots, z_{r}\right)\right)=\left(z_{1}, \ldots, z_{r}, \xi_{k+1}\left(z_{1}, \ldots, z_{r}\right), \ldots, \xi_{n}\left(z_{1}, \ldots, z_{r}\right)\right)
$$

canonically determines a holomorphic mapping (contraction) $\tilde{T}_{r}: \tilde{\mathbf{V}} \rightarrow \tilde{e}$. where $\dot{\mathbf{V}}=\tilde{\pi}^{-1}(\mathbf{V})$, via the relation $\bar{\pi} \circ \tilde{T}_{r}=T_{r} \circ \tilde{\pi}$. Setting

$$
g(p):=g_{r}\left(\tilde{T}_{r}(p)\right), \quad p \in \dot{\mathbf{V}}
$$

it follows that $g(p)$ is a pseudoconvex function on $\tilde{\mathbf{V}}$. Further. since $g_{r}(p)$ and $\tilde{d}_{p_{0}}(p)$ are of bounded difference on \tilde{e}, so are $g(p)$ and $\tilde{d}_{p_{11}}(p)$ on $\dot{\mathbf{V}}$. Consequently: if we set $f(p)=g(p)+\tilde{\chi}(p)$ on $\tilde{\mathbf{V}}$, then $f(p)$ is a function satisfying the conclusion of the lemma.

We use this lemma to prove the following.
Lemma 9.13. Let e be an open set in $S^{r}(r=1 \ldots . . n-1)$ such that $e \subset \subset S^{r}$, and set $e^{\prime}=e \cap S^{r-1} \subset \subset S^{r-1}$. Assume that there exists a neighborhood U of e^{\prime} in \mathcal{D}_{0} with the property that there exists a strictly pseudoconvex function $f(p)$ on $\dot{U}=\tilde{\pi}^{-1}(\mathcal{U})$ such that $f(p)$ and $\tilde{d}_{p_{0}}(p)$ are of bounded difference on $\dot{\mathcal{U}}$. Then there exist a neighborhood \mathcal{W} of e in \mathcal{D}_{0} and a strictly pseudoconvex function $F(p)$ on $\tilde{W}=\tilde{\pi}^{-1}(\mathcal{W})$ such that $F(p)$ and $\tilde{d}_{p_{0}}(p)$ are of bounded difference on $\tilde{\mathcal{W}}$.

Proof. We begin with the normal model Σ of \mathcal{D}_{0} in the polydisk $\Gamma \subset \mathbf{C}^{n+m}$ via the mapping Φ defined in (9.40). We set $\Sigma^{r-1}=\Phi\left(S^{r-1}\right)$. Since Σ^{r-1} is an ($r-1$)-dimensional analytic set in Γ, we can find a finite number of holomorphic functions $f_{j}(z, w)(j=1, \ldots, s)$ on Γ such that

$$
\Sigma^{r-1}: f_{j}(z, w)=0 \quad(j=1 \ldots \ldots s) .
$$

For $0<\epsilon \ll 1$, we define

$$
H_{\mathrm{e}}(z, w):=\max _{j=1 \ldots . s}\left\{\left|f_{j}(z, w)\right|\right\}+\epsilon \chi(z, w) . \quad(z, w) \in \Gamma .
$$

and

$$
h_{\mathrm{e}}(p):=H_{\mathrm{f}}(\Phi(p)), \quad p \in \mathcal{D}_{0}
$$

so that $h_{e}(p)$ is a strictly pseudoconvex function on \mathcal{D}_{0}. We take $\epsilon>0$ sufficiently small so that if we set

$$
\mathcal{H}_{a}:=\left\{p \in \mathcal{D}_{0} \mid h_{\epsilon}(p)<a\right\}
$$

for a sufficiently small $a>0$, then \mathcal{H}_{a} is a tubular neighborhood of S^{r-1} in \mathcal{D}_{0} such that $e^{\prime} \subset \mathcal{H}_{a} \cap e \subset \subset \mathcal{U}$. We fix $0<a_{1}<a_{2}<a_{3}$ such that $\mathcal{H}_{a,} \cap e \subset \subset \mathcal{U}$. Since $e \backslash \mathcal{H}_{a_{1}} \subset \subset s_{0}^{\tau}$, it follows from Lemma 9.12 that there exist a neighborhood \mathbf{V} of $e \backslash \mathcal{H}_{a_{1}}$ in \mathcal{D}_{0} and a strictly pseudoconvex function $g(p)$ on $\tilde{\mathbf{V}}$ such that $g(p)$ and $\tilde{d}_{p_{n}}(p)$ are of bounded difference on $\tilde{\mathbf{V}}$. We set

$$
\mathcal{W}_{1}=\mathcal{H}_{a_{1}} \cap \mathcal{U} . \quad \mathcal{W}_{2}=\left(\mathcal{H}_{a_{3}} \backslash \mathcal{H}_{a_{1}}\right) \cap \mathbf{V} . \quad \mathcal{W}_{3}=\mathbf{V} \backslash \mathcal{H}_{a_{3}},
$$

so that $\mathcal{W}:=\mathcal{W}_{1} \cup \mathcal{W}_{2} \cup \mathcal{W}_{3}$ is a neighborhood of e in \mathcal{D}_{0}. Let $\bar{\pi}^{-1}\left(\mathcal{W}_{i}\right)=\overline{\mathcal{W}}_{i}$ $(i=1,2,3)$ and $\bar{\pi}^{-1}(\mathcal{W})=\overline{\mathcal{W}}$. For $K>0$. we set

$$
F(p)= \begin{cases}f(p), & p \in \tilde{\mathcal{W}}_{1} \\ \max \left\{f(p), g(p)+K\left[h_{\mathrm{f}}(\tilde{\pi}(p))-a_{2}\right]\right\}, & p \in \tilde{W}_{2} \\ g(p)+K\left[h_{\ell}(\tilde{\pi}(p))-a_{2}\right] . & p \in \tilde{W}_{3}\end{cases}
$$

We note that if $K>0$ is sufficiently large, then $F(p)$ is a well-defined, singlevalued function on $\tilde{\mathcal{W}}$. It is clear that $F(p)$ is a strictly pseudoconvex function on $\overline{\mathcal{W}}$. Moreover, $f(p)$ and $g(p)$ are of bounded difference on $\overline{\mathcal{W}}_{2}$, since each of them are of bounded difference with $\tilde{d}_{p_{0}}(p)$ on $\tilde{\mathcal{W}}$. Furthermore, since $K\left[h_{e}(\tilde{\pi}(p))-a_{2}\right]$ is bounded in $\tilde{\mathcal{W}}_{2} \cup \tilde{\mathcal{W}}_{3}$, we see that $F(p)$ and $\tilde{d}_{p_{0}}(p)$ are of bounded difference on $\tilde{\mathcal{W}}$. Hence, this $F(p)$ on $\tilde{\mathcal{W}}$ satisfies the conditions of the lemma.
9.4.10. Proof of the Claim. We shall prove our claim (9.36), which then yields Theorem 9.6. We use the notation $S^{r}(r=0,1, \ldots, n)$ from Proposition 9.8, where $S^{n}=\mathcal{D}_{0}$. Then S^{0} consists of a finite number of points $Q_{k}(k=1, \ldots, M)$ in \mathcal{D}_{10}. By taking a larger $\rho_{1}\left(0<\rho_{1}<\rho\right)$ than the given ρ_{1} in clain (9.36), if necessary, we may assume that $Q_{k} \notin \partial \mathcal{D}_{1}(k=1 \ldots, M)$ and $S^{0} \cap \mathcal{D}_{1}=\left\{Q_{k}\right\}_{k=1 \ldots, M^{\prime}}$ ($M^{\prime} \leq M$), where \mathcal{D}_{1} is the subset of \mathcal{D}_{0} over $\Gamma_{\rho_{1}}$.

For each $Q_{k}\left(k=1, \ldots, M^{\prime}\right)$, we can take a sufficiently small neighborhood \mathcal{U}_{k}. of Q_{k} in \mathcal{D}_{1} such that $\mathcal{U}_{k} \cap \mathcal{U}_{l}=\emptyset(k \neq l)$ and such that each connected component of $\tilde{\mathcal{U}}_{k}=\bar{\pi}^{-1}\left(\mathcal{U}_{k}\right)$ in $\tilde{\mathcal{D}}_{1}$ is bijective to \mathcal{U}_{k} via the projection $\tilde{\pi}$ (since $\tilde{\mathcal{D}}_{1}$ is an unramified cover over \mathcal{D}_{1} without relative boundary). We set $\mathcal{U}^{0}=\bigcup_{k=1}^{M \prime^{\prime}} \mathcal{U}_{k}$, which is a neighborhood of $S^{0} \cap \mathcal{D}_{1}$, and we define

$$
g_{0}(p)=\tilde{d}_{p_{0}}\left(\bar{Q}_{k}\right)+\tilde{\chi}(p), \quad p \in \tilde{\mathcal{U}}_{k}
$$

where \tilde{Q}_{k} denotes the point of $\tilde{\mathcal{U}}_{k}$ over Q_{k}. Then $g_{0}(p)$ is a strictly pseudoconvex function on $\tilde{\mathcal{U}}^{0}=\tilde{\pi}^{-1}\left(\mathcal{U}^{0}\right)$, and $g_{0}(p)$ and $\tilde{d}_{p_{0}}(p)$ are clearly of bounded difference on $\dot{\mathcal{U}}^{0}$.

Applying Lemma 9.13 for $r=1, f(p)=g_{0}(p), \mathcal{U}=\mathcal{U}^{0}$, and $e=S^{1} \cap \mathcal{D}_{1}$ (so that $\left.e \cap S^{0}=\left\{Q_{k}\right\}_{k=1 \ldots \ldots M^{\prime}}\right)$, we can find a neighborhood \mathcal{U}^{1} of $S^{1} \cap \mathcal{D}_{1}$ in \mathcal{D}_{0} and a strictly pseudoconvex function $g_{1}(p)$ on $\dot{\mathcal{U}}^{1}=\tilde{\pi}^{-1}\left(\mathcal{U}^{1}\right)$ such that $g_{1}(p)$ and $\bar{d}_{p_{0}}(p)$ are of bounded difference on $\tilde{\mathcal{U}}^{1}$. Again applying the lemma for $r=2, f(p)=g_{1}(p)$, $\mathcal{U}=\mathcal{U}^{1}$, and $\mathrm{e}=S^{2} \cap \mathcal{D}_{1}$ (so that $e \cap S^{1}=S^{1} \cap \mathcal{D}_{1}$), we can find a neighborhood \mathcal{U}^{2} of $S^{2} \cap \mathcal{D}_{1}$ in \mathcal{D}_{0} and a strictly pseudoconvex function $g_{2}(p)$ on $\tilde{\mathcal{U}}^{2}=\tilde{\pi}^{-1}\left(\mathcal{U}^{2}\right)$ such that $g_{2}(p)$ and $\tilde{d}_{p_{0}}(p)$ are of bounded difference on $\tilde{\mathcal{U}}^{2}$. We repeat this procedure n times to verify claim (9.36).

Part II may be summarized briefly as follows. In Chapter 6 we showed that any ramified domain over \mathbf{C}^{n} locally carries a simple function. In Chapter 7 we introduced the notion of \mathcal{O}-ideals and proved certain results concerning them. In particular. we proved the existence of a locally finite pseudobase for a G-ideal and for a Z-ideal at each point. This was established with the aid of a simple function. (Oka, on the other hand, proved the existence without utilizing simple functions; instead, he made very detailed and complicated constructions which heavily depend on the properties of ramified domains over $\mathbf{C}^{\boldsymbol{n}}$). These results were then used to establish the lifting principle in an analytic space in the beginning of Chapter 8 ; this principle was used to prove many results for Stein spaces. In Chapter 9 we gave a geometric condition for an analytic space to be a Stein space (Levi`s problem), and we gave examples of analytic spaces satisfying this condition. These examples include unramified pseudoconvex domains over $\mathbf{C}^{\boldsymbol{n}}$.

Bibliography

[1] R. Baire, Lecons sur les fonctions discontinues. Gauthier-Villars, 1907.
[2] H. Behnke and K. Stein. Konvergentenfolgen von Regularitätshereichen und der Meromorphiekonvexität, Math. Ann. 116 (1939), 204-216.
[3] E. Bishop. Mapping of partially analytic spaces, Amer. J. Math. 83 (1961), 209-242.
[4] A. B. Brown, On certain analytic continuations and analytic homeomorphisms, Duke Math. J. 2 (1936), 20-28.
[5] E. Calabi and M. Rosenlicht, Complex analytic manifolds without countable base, Proc. Amer. Math. Soc. 4 (1953), 335-340.
[6] E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, Ann. Mat. Pura Appl. (4) 11 (1932), 17-90.
[7] H. Cartan, Sur les fonctions de deux variables complexes, Bull. Sci. Math. 54 (1930), 99-116.
[8] H. Cartan, Sur les fonctions de deux variables complexes: les transformations d'un doinaine borné D en un domaine intérieur à D, Bull. Soc. Math. France 58 (1930), 199-219.
[9] H. Cartan, Les problèmes de Poincaré et de Cousin pour les fonctions de plusicurs variables complexes, C. R. Acad. Sci. Paris 199 (1934).1284-1287.
[10] H. Cartan. Sur le premier problème de Cousin, C. R. Acad. Sci. Paris 207 (1938). 558-560.
[11] H. Cartan, Sur les matrices holomorphes de n variables complexes, J. Math. Pura Appl. (9) 19 (1940), 1-26.
[12] H. Cartan, Ideaux et modules de fonctions analytiques de variables complexes, Bull. Soc. Math. France 78 (1950), 29-64.
[13] H. Cartan and P. Thullen, Zur Theorie der Singularitäten der Funktionen mehrerer komplexen Veränderlichen: Regularitäts- und Konvergenzbereiche. Math. Ann. 106 (1932), 617-647.
[14] L. Chow. On compact analytic varieties, Amer. J. Math. 71 (1949), 893-914.
[15] P. Cousin, Sur les fonctions de n variables complexes, Acta Math. 19 (1895), 1-61.
[16] J. Duval, Convexité rationnelle des surfaces lagrangiennes, Invent. Afath. 104 (1991). 581-599.
[17] E. E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche di due o piî variabili complesse, Ann. Mat. Pura Appl (3) 17 (1910), 61-87.
[18] E. Fabry, Sur les rayons de convergente d'une série double. C. R. Acad. Sci. Paris 134 (1902), 1190-1192.
[19] M. Fékete. Über die Verteilung der Wurzeln bei gewiseen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
[20] J. E. Fornaess, A counterexample for the Levi problem for bordered Riemann domains, Math. Ann. 234 (1978), 275-277.
[21] H. Gravert, Charakterisierung der holomorph vollständigen komplexen Räume, Math. Ann. 129 (1955), 233-259.
[22] H. Grauert, On Levi's problem and the innbedding of real analytic manifolds, Ann. of Math. (2) 68 (1958), 460-472.
[23] H. Grauert and R. Remmert, Konvexität in der komplexen Analysis. Nicht-holomorphkonvexe Holomorphicgebiete und Anwendungen auf die Abbildungstheorie, Comment. Math. Helvetici 31 (1956), 152-160, 161-183.
[24] H. Grauert and R. Remmert. Komplexe Räume, Aath. Ann. 136 (1958), 245-318.
[25] H. Grauert and R. Remmert, Theorie der Steinschen Räume. Springer-Verlag, 1977.
[26] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer-Verlag, 1984.
[27] T. H. Gronwall, On the expressibility of a uniform function of several complex variables as the quotient of two functions of entire character, Thans. Amer. Math. Sor. 18 (1917), 50-64.
[28] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, 1965.
[29] F. Hartogs, Einige Folgerungen aus der Cauchyschen Integralformel bei Funktionen mehrerer Veränderlichen, Sitzengsber. Math. Phys. Kl. Bayer. Akad. Wiss. München 36 (1906), 223242.
[30] F. Hartogs, Über die aus den singulären Stellen einer analytischen Funktion mehrerer Veränderlichen bestehenden Gebilde, Acta Math. 32 (1909), 57-79.
[31] H. Hopf, Zur Topologie der komplexen Mannigfaltigkeiten. Studies and essays presented to R. Courant on his sixtieth birthday, Interscience, 1948, pp. 167-185.
[32] G. Julia, Sur les familles de fonctions analytiques de plusieurs variables, Acta Math. 47 (1926), 53-115.
[33] K. Kato, Sur le théorème de P. Thullen et K. Stein. J. Math. Soc. Japan 18 (1966), 211-218.
[34] M. Klimek, Pluripotential theory, Clarendon Press, 1991.
[35] E. E. Levi, Sulle ipersuperficie dello spazio a 4 dimensioni che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse, Ann. Mat. Pura Appl. 18 (1911), 69-79.
[36] R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82 (1960), 917-934.
[37] R. Narasimhan, The Levi problem for complex spaces, Math. Ann. 142 (1961), 355-365.
[38] R. Nevanlinna, Le théorème de Picnrd-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, 1929.
[39] T. Nishino, Les ensembles analytiques et les domaines, J. Math. Kyoto Univ. 1 (1962), 379384.
[40] T. Nishino, Sur les ensembles peeudoconcaves, J. Math. Kyoto Univ. 1 (1962), 225-245.
[41] T. Nishino, Sur les espaces analytiques holomorphiquement complets, J. Math. Kyoto Univ. 1 (1962), 247-254.
[42] T. Nishino, Le théorème de Borel et le théorème de Picard, C. R. Acad. Sci. Paris Ser. I Math. 299 (1984), 667-668.
[43] K. Oka, Note sur les familles de fonctions analytiques multiformes etc, J. Sci. Hiroshima Univ. A 4 (1934), 93-98.
[44] K. Oka, Sur les fonctions analytiques de plusieurs variables, I: Domaines convexes par rapport aux fonctions rationnelles, J. Sci. Hinoshima Univ. A 6 (1936), 245-255.
[45] K. Oka, Sur les fonctions analytiques de plusieurs variables, II: Domaines d'holomorphie, J. Sci. Hiroshima Univ. A 7 (1937), 115-130.
[46] K. Oka, Sur les fonctions analytiques de plusieurs variables, III: Deuxième problème de Cousin, J. Sci. Hiroshima Univ. A 9 (1939), 7-19.
[47] K. Oka, Sur les fonctions analytiques de plusieurs variables, IV: Domaines d'holomorphie et domaines rationnellement convexes, Japanese J. Math. 17 (1941), 517-521.
[48] K. Oka, Sur les fonctions analytiques de plusieurs variables, V: L'integrale de Cauchy, Japanese J. Math. 17 (1941), 523-531.
[49] K. Oks, Sur les fonctions analytiques de plusieurs variables, VI: Domaines pseudoconvexes, Tohoku Math. J. 49 (1942), 15-52.
[50] K. Oka, Sur les fonctions analytiques de plusieurs variables, VII: Sur quelques notions arithmétiques, Bull. Soc. Math. France 78 (1950), 1-27.
[51] K. Oka, Sur les fonctions analytiques de plusieurs variables, VIII: Lemme fondamental, J. Math. Soc. Japan 3 (1951), 204-214.
[52] K. Oka, Sur les fonctions analytiques de plusieurs variables, IX: Domaines finis sans point critique intérieur, Japanese J. Math. 27 (1953), 97-155.
[53] K. Oka, Sur les fonctions analytiques de plusieurs variables, Iwanami Shoten, Tokyo, 1961.
[54] K. Oka, Sur les fonctions analytiques de plusieurs variables, X: Une mode nouvelle engendrant les domaines pseudoconvexes, Japanese J. Math. 32 (1962), 1-12.
[55] K. Oka, Oka's posthumous works No. $1 \sim$ No. 7, Edited by T. Nishino and A. Takeuchi, Kyoto, 1980-1983. (Japanese)
[56] W. F. Osgood, Lehrbuch der Funktionentheorie, Zweiter Band,, reprint, Chelsea Publishing Company, 1965.
[57] E. Picard, Sur certaines équations fonctionnelles et sur une classe de surfaces algébriquea, C. R. Acad. Sci. Paris 139 (1904), 5-9.
[58] E. Picard and G. Simart, Théorie des fonctions algébraiques (Tome I), reprint, Chelsea Publishing Company, 1971.
[59] H. Poincaré, Sur les fonctions de deux variables, Acta Math. 2 (1883), 97-113.
[60] H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo 23 (1907), 185-220.
[61] T. Radó, Über den Begriff der Riemannschen Fläche, Acta Litt. Sci. Reg. Úntv. Hungar. Szeged 2 (1925), 101-121.
[62] F. Riesz, Sur les fonctions suhharmoniques et leur rapport avec la theoric du potentiel. 1, II, Acta Math. 48 (1926), 329-343; 54 (1930), 321-360.
[63] J.-P. Rosay, Sur une characterisation de la boule parmi les domaines de $\mathbf{C l}^{\boldsymbol{n}}$ par son groupe d'automorphismes, Ann. Inst. Fourier 29 (1979), no. 4. 91-97.
[64] W. Rothstein, Zur Theorie der analytischen Mannigfaltigkeiten im Räune von n komplexen Veränderlichen, Math. Ann. 129 (1955), 96-138.
[65] C. L. Siegel, Topics in complex function theory, Vols.I.II,III, Wiley-Interscience, 1969, 1971, 1973.
[66] K. Stein, Topologische Bedingungen für die Existenz analytischer Funktionen komplexer Veränderlichen zu vorgegebenen Nullstellenfächen. Math. Ann. 117 (1941), 727-757.
[67] K. Stein, Analytischen Funktionen mehrerer komplexer Veränderlichen $2 u$ vorgegebenen $P e-$ riodizitätmoduln und das zweite Cousinsche Problem. Math. Ann. 123 (1951), 201-222.
[68] K. Stein, Überlagerungen holomorph-vollständiger komplexer Räume, Arch. Math. 7 (1956), 354-361.
[69] R. Remmert and K. Stein, Über die wesentlichen Singularitäten analytischer Mengen. Math. Ann. 126 (1953), 263-306.
[70] G. Stolzenberg, An example concerning rational convexity, Math. Ann. 147 (1962), 275-276.
[71] A. Takeuchi, Une remarque sur le deuxième mémoire de M. K. Oka, J. Math. Kyoto Untv. 9 (1969), 1-4.
[72] T. Terada, Sur une certaine condition sous laquelle une fonction de plusieurs variables complexes est holomorphe, Publ. Res. Inst. Math. Sci. Koyto Univ. Ser. A 2 (1967). 383-396.
[73] P. Thullen, Zur Theorie des Singularitäten der Funktionen zweier komplexen Varäderichen: Die Regularitätshüllen, Math. Ann. 106 (1932), 64-76.
[74] P. Thullen, Über die wesentlichen Singularitäten analytiqscher Funktionen und Flächen im Raume von n komplexen Veränderlichen, Math. Ann. 111 (1935), 137-157.
[75] T. Ueda, Modifications continues des variétés de Stein. Publ. Res. Inst. Math. Sci. Kyoto Univ. 13 (1977), 681-686.
[76] V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables. The M.I.T. Press, 1966.
[77] A. Weil, Sur les séries de polynomes de deux variables complexes, C. R. Acad. Sci. Paris 194 (1932), 1304-1305.
[78] J. Wermer, Addendum to "An example concerning polynomial convexity", Math. Ann. 140 (1960), 322-323.
[79] H. Yamaguchi, Sur une uniformité des surfaces d'une fonction entiète de deux variables complexes, J. Math. Kyoto Univ. 13 (1973), 417-433.

Index

adjoint O-ideal, 251
algebraic exceptional set, 161
algebraic extension, 180
algebraic function, 41
algebraic set in $P^{n}, 64$
analytic continuation of a holomorphic function, 27
analytic continuation of an analytic set, 62
analytic curve, 45
analytic derived set, 138
analytic equivalence of analytic spaces, 267
analytic function, 8
analytic hypersurface, 38
analytic hypersurface in a ramified domain, 173
analytic kernel of a pseudoconcave set, 141
analytic mapping, 172
analytic mapping between analytic spaces, 267
analytic polyhedron in $\mathrm{C}^{n}, 33,87$
analytic polyhedron in an analytic space, 270
analytic set, 44, 173
analytic space, 267
analytically equivalent, 172
approximation condition, 281
approximation theorem by algebraic functions, 101
approximation theorem for a Stein space, 282
associated function for a normal pseudoconvex domain, 323
associated multiradius, 9
associated set, 65
attracting fixed point, 159
automorphism, 112, 149
automorphism group, 149
Baire category theorem, 24
bidisk, 5
biholomorphic mapping, 18
biholomorphically equivalent, 172
Barel's theorem, 161
boundary, 4
boundary distance, 6, 345
boundary distance function, 126
boundary point of a ramified domain, 171
boundary point of an unramified domain, 168
bounded difference, 347
branch point, 170
branch set, 170, 171
branched cover, 170
canonical metric, 292
canonical projection, 170
canonical projection of unramified cover, 351
Cartan-Thullen theorem, 33
Cauchy estimates, 11
Cauchy integral formula, 12
Cauchy-Riemann equations, 13
characteristic function, 179
Chow's theorem, 64
closure, 4
codimension, 45
complete algebraic analytic set, 49
complete Hartogs domain, 21
complete Reinhardt domain, 8
complex hyperplane, $\mathbf{5}$
complex hine, 5
complex manifold, 267
complex tangent space, 118
complex torus, 269
continuity theorem of type $A, 112$
continuity theorem of type $B, 112$
continuity theorem of type C, 113
continuous solution of Cousin II problems, 03
countable ordinals, 139
countable valency theorem, 27
Cousin I data (or distribution), 74
Cousin I problem, 74
Cousin I problem in a Stein space, 285
Cousin II data (or distribution), 74
Cousin II problem, 74
Cousin II problem in a Stein space, 285
Cousin integral, 78
cylindrical boundary distance, 345
defining function, 116
defining polynomial, 182
degenerate entire mapping, 161
derived set, 138
dimension, 45
discriminant, 41
disk type, 147
distance function in a domain in $\mathbf{C}^{\text {n }}, 6$
distance function in an unramified domain over $\mathrm{C}^{n}, \mathbf{3 4 6}$
distinguished analytic polyhedron, 301
distinguished boundary, 5, 12
distinguished peeudopolynomial, 41
distinguished ramified domain, 304
domain, 4, 267
domain of convergence, $\underline{8} 20$
domain of holomorphy, 27,35
domain of meromorphy, 115
domain of normality, 115
domain without relative boundary, 168
double point, 179
entire mapping, 161
equivalency of \mathcal{O}-modules, 220
essential singular point of a holomorphic function, 145
exceptional values, 161
exhaustion function, 129, 323
extension \mathcal{O}-module, 275
extension theorem for a holomorphic function on an analytic set, 272

Fabry's theorem, 10
family of analytic hypersurfaces touching a boundary point, 125, 322
fiber, 4
finitely generated \mathcal{O}-module, 221
fixed point, 159
Fréchet space, 291
fundamental neighborhood system, 168
fundamental system for a ramified domain, 195
generalized analytic polyhedron, 270
generalized Cousin II distribution, 94
generalized Cousin II problem, 94
geometric ideal, 253
G-ideal, 253
graph of a function on a ramified domain, 179, 182
graph of a locally algebraic analytic set, 52
Hadamard's formula, 9
Hartogs domain, 21
Hartogs holomorphic extension theorem, 106
Hartogs radius, 21. 127, 128
Hartogs series, 20
Hartogs' theorem on pseudoconcave sets, 133
Hartogs-Laurent series, 22
Hessian matrix, 19
Hilbert-Rückert Nullstellensatz, 274, 316
holomorphic convex, 35
holomorphic extension, 273
holomorphic function, 12
holomorphic function on a ramified domain, 170. 172
holomorphic function on an analytic set, 209
holomorphic function on an analytic space, 267
holomorphic hull, 32, 177
holomorphic hull in an analytic space, 280
holomorphic mapping, 17, 172
holomorphic matrix. 236
holomorphic vector-valued function, 273
holomorphically complete domain, 280
holomorphically convex, 33
holomorphically convex domain in an anslytic space, 280
homogeneous domain. 152
homogeneous coordinates, 1
homothetic transformation, 147
hyperplane at infinity, 7
hypersurface of planar type, 121
imbedding of a Stein manifold, 311
imbedding of a Stein space, 306
implicit function, 41
inhomogeneous coordinates, 7
interior extension theorem, 293
intersection of ramified domains, 172
intersection of unramified domains, 169
invariance of analytic relations, 39
irreducible analytic set, 45
irreducible decompositions of an analytic set, 52
irreducible pseudopolynomial, 42
Jacobian matrix, 17
Julia's theorem, 111
\mathcal{K}-convex domain, 33
K-convex hull, 32
kernel of a set, 140
Levi flat, 120
Levi form, 120
Levi prablem, 116
Levi's conditions, 119
Levi's theorem, 108
l-dimensional box, 241
l-ideal, 251
lifting principle for analytic polyhedra in an analytic space, 273
lifting principle for polynomial polyhedra, 80
lifting problem, 80
limit ordinals, 140
linear coordinate transformation, 3
linear relation (Ω), 222
linking condition, 329
linking theorem, 339
Liouville's theorem, 15
local pseudobase, 221
locally algebraic analytic component, 52
locally finite poeudobase at a point, 221
locally finitely generated O-module, 221
locally holomorphically complete domain, 326
locally ramified domain, 170
locally vector-valued algebraic function, 52
logarithmic boundary distance function, 345
logarithmic capacity, 135
logarithmically convex, 10
loxodromic fixed point, 159
maximum principle, 16
meromorphic extension, 108
meromorphic function, 73
Mittag-Leffler theorem, 74
model for an anatytic polyhedron, 271
monodromy theorem, 27
Montel's theorem, 16
nonsingular point of an analytic set, 55
normal analytic set, 212
normal class of functions, $\mathbf{8 8}$
normal family of curves, 346
normal family of holomorphic functions, 184
normal model for a domain in an analytic space, 271
normal point, 212
normal pseudoconvex domain, 323
normal pseudoconvex space, 321, 323
normalization theorem, 271
Nullstellensatz, 316
number of sheets, 167, 170, 171
O-ideal, 220
O-ideal $Z\{\Sigma, F\}, 262,271$
O-ideal $\mathcal{P}\{I\}, 258,263$
O-ideal $G\{\Sigma\}, 253,265$
O-ideal $\backslash\{\Omega\}, 251,256,261,263$
O-ideal $W\{\Sigma\}, 264,265$
Oka's condition, 85, 322
Oka's condition on a continuous family of analytic hypersurfaces, 325
Oka's counterexample for the Cousin II problem, 92
Oka's counterexample on a pseudobase for Problem E, 287
Oka's counterexample on rational convexity, 99
Oka's lemma on polynomial hulls, 86
Oka's principle, 94
Oka-Weil theorem, 85
O-module, 220
O-module $\mathcal{C}\{\Omega\}, 222,277$
0 -module generated by finitely many holomorphic vector-valued functions, 221
O-module with respect to the linear relation, 222. 277
open mapping theorem, 291
open set in an analytic set, 209
order of singularity, 198
Osgood space, 7
Osgood's theorem, 28
O-submodule, 220
Picard's theorem, 16
piecewise smooth strictly plurisubharmonic function, 129
pluriharmonic function, 13
plurisubharmonic function, 18
plurisuperharmonic function, 18
Poincaré problem, 73
Poincarés theorem on automorphisms, 148
Poincaré-Picard entire mapping, 153, 160
point of indeterminacy, 73, 176
point of the second kind, 138
point of the first kind, 137
point of type (a), $\mathbf{1 3 6}$
point of type (β), 136
Poisson formula, 15
Poisson kernel, 15
polar set, 135
pole, 73, 176
polydisk, $\mathbf{5}$
polynomial automorphism, 159
polynomial hull, 32
polynomial polyhedron, 80
polynomially convex, 33
polynomially convex compact set, 85, 87
polyradius, $\mathbf{5}$
Problem C1, 231
Problem C_{1} in a Stein space, 286
Problem $C_{2}, 231$
Problem C_{2} distribution, 231
Problem C_{2} in a Stein space, 287
Problem E, 231
Problem E in a Stein space, 287
product domain, 5
product set, 4
projection, 3, 66
projection of an analytic hypersurface, 171
projection of an analytic set, 46
projection of an O-ideal, 258
projective space, 7
projective transformation, 8
peeudobase for an O-module, 221
pseudoconcave set, 132
pseudoconvex domain, 105, 115
peeudoconvex domain in an analytic space, 321
pseudoconvex domain of type A, 112
peeudoconvex domain of type B, 112
peeudoconvex domain of type C, 113
pseudoconvex function, 321
peeudopolynomial, 41
pure dimension, 45
quotient O-ideal, 251

Rado's theorem, 16
ramification number, 170
ramified domain, 169, 171
ramified domain associated to an unramified domain, 170
ramified pseudoconvex domain, 178
rank of a holomorphic vector-valued function, 220
rank of a polynomial polyhedron, 80
rank of an 0 -module, 220
rationally convex, 99
reducible analytic set, 45
regular branch point, 170
regular class, 31
regular part, 170, 171
regular point, 170
Reinhardt domain, 8
relative boundary point, 168
remainder theorem, 222
removability theorem for analytic sets, 62
repelling fixed point, 159
resultant, 41
Riemann domain of an algebraic function, 171
Riemann sphere, \mathbf{Z}
Riemann's removable singularity theorem, 22
Riemann-Roch theorem, 181
Runge problem, 75
Ruage theorem, 75
section, 4
separate analyticity theorem, 23
separation condition, 270
Shilov boundary, 16
simple function on a ramified domain, 179
simple graph of a holomorphic function, 183
simultaneous analytic continuation, 49
singular point of an analytic set, 55,62
smooth function, 116
Stein space, 280
strictly plurisubharmonic function, 19
strictly peeudoconcave boundary point, 132
strictly pseudoconvex boundary point, 125
strictly peeudoconvex domain, 125
strictly pseudoconvex function on a ramified domain, 322
subglobal finite pseudobase, 299
subglobal normatization theorem, 298
successor ordinals, 140
three ring theorem, 90
Thullen's theorem, 32
Thullen's theorem on removability of an analytic set, 143
transfinite diameter, 134
transitivity, 152
uniqueness theorem for holomorphic mappings, 150
unitary transformation. 147
univalent domain, 167
unramified cover, 351
unramified domain over $C^{n}, 167,345$
unramified pseudoconvex domain. 178
vector-valued function, 49
weakly bounded difference, 347
weakly holomorphic function, 210
Weierstrass condition, 37, 54, 56
Weierstrass preparation theorem, 43
Weierstrass theorem, 16
W-ideal, 264
zero set of an 0 -ideal, 253
Z-ideal, 262
 www.ams.org

[^0]: ${ }^{1}$ In the introduction of Oka's paper [IX] there appears the following sentence: "La theorie générale du prolongement analytique à une seule variable est semblable à la plaine campagne; là, on n'a pu trouver, malgré les nombreux efforts, aucun fait en dehors des prévisions de la logique formelle. Au contraire, le cas de plusieurs variables nous apparaît comine un pays montagneux, très escarpe."
 ${ }^{2}$ This theorem is essentially due to Hartogs. In the textbook of Osgood [56] there is a proof which appears to be incomplete. A complete proof may be found in A. B. Brown [4]. The proof given here is due to the author.

[^1]: ${ }^{3}$ In the case when $D \backslash E$ consists of several connected components G_{1}, \ldots, G_{m} we set $f(z)=$ $f_{k}(z)$ on $G_{k}(k=1, \ldots, m)$. Then the function $g(z)$ obtained by the above procedure using $f(z)$ is the analytic continuation of $f_{k_{0}}(z)$ on the component $G_{k_{0}}$, where $\partial G_{k_{0}}$ contains the outer boundary of D.

[^2]: ${ }^{4}$ The notion of analytic polyhedron is due to A . Weil [77].

[^3]: ${ }^{1}$ This elegant method of introducing the $l-1$ indeterminants u_{2}, \ldots, u_{l} is due to R. Remmert and K. Stein [69]. However, this technique is not essential to verify the proposition.

[^4]: ${ }^{2}$ This theorem was first proved by H. Grauert [21]. The proof given here is due to the author [39].

[^5]: ${ }^{3}$ The fact that any analytic set in P^{n} must be an algebraic set in P^{n} was first proved by L. Chow [14]. The idea of the proof given here is due to W. Rothstein [64] (see also R. Remmert and K. Stein [69]). In Part II we shall show that it is possible in Theorem 2.6 to take the neighborhood δ of u^{0} in D to be an analytic polyhedron in D.

[^6]: ${ }^{1}$ The lemma is valid without the convexity assumption on Λ_{y}; we impose this condition in order to simplify the notation and to clarify the idea of the proof.

[^7]: ${ }^{2}$ The lifting principle is a central idea throughout all of Oks's work. In the footnote of his paper I (p. 249), he has written " Je dois l'idee à M. H. Cartan pour ce mode d'application de théorème de M. Cousin, voir : [7]."
 ${ }^{3}$ Oka's terminology in Japanese for the lifting principle translates literally into the principle of going up to the sky in English.

[^8]: ${ }^{4}$ We note that our previous anguments about polynomial polyhedra of the form

[^9]: where A_{j} is a domain in the complex plane C_{s}, bounded by a piecewise-smooth closed curve. Thus we also call such a domain a polynomial polyhedron of rank m. In the present situation. $A_{1}=\left\{\left|z_{1}\right| \leq r_{1},\left|x_{1}\right| \leq \rho\right\}$ and $A_{j}=\left\{\left|z_{j}\right| \leq r_{j}\right\}(j=2, \ldots, n)$.

[^10]: ${ }^{3}$ Once the lifting principle for analytic polyhedra in C^{n} has been established, one can verify. using the same method as in the previous section, that the Cousin I problem in domains of holomorphy is always solvable. However, we cannot establish the lifting principle for analytic polyhedra using the ideas of Part I. We shall establish it in Part II by using the new notion "ideal with indeterminate domain" introduced by Olea [50]. In fact, we will show that the lifting principle for analytic polyhedra in a ramified domain over C^{n} (see Theorem 8.2 and Remark 8.4).

[^11]: ${ }^{6}$ This theorem is the main theorem in Oka's paper II. The proof given here is due to A. Takeuchi [71].

[^12]: ${ }^{7} K$. Stein [67] found an example of a domain of holomorphy D which admits a Cousin II distribution C_{2} such that \mathcal{C}_{2} has a solution in any subdomain $D_{0} \subset \subset D$ but which does not have a solution in all of D.

[^13]: ${ }^{1}$ In this paper, Hartogs proved Theorem 4.1 using Cauchy's integral formula.

[^14]: ${ }^{2}$ In part I we are restricted to univalent domains in $\mathbf{C}^{\boldsymbol{n}}$. The definition of pseudoconvexity stated here will later be extended to unramified covering domains over $\mathbf{C}^{\boldsymbol{n}}$ without any change.

[^15]: ${ }^{3}$ Any function of one complex varable z may be considered as a function of two complex variables z and w which is independent of w. Thus, it is natural to consider any domain D in the complex plane \mathbf{C}_{z} as a domain $D \times \mathbf{C}_{w}$ in $\mathbf{C}^{2}=\mathbf{C}_{z} \times \mathbf{C}_{w}$. Since $D \times \mathbf{C}_{w}$, is proved to be a pseudoconvex domain of type C in C^{2}, the case $n=1$ need not be treated as an exceptional case.

[^16]: ${ }^{4}$ In Oka [43] the definition of a normal family of analytic hypersurfaces in a domain in C^{n} was given, and it was proved that the domain of normality of such a family in a pseudoconvex domain is also a pseudoconvex domain. This study was developed in his last paper [54].

[^17]: ${ }^{5}$ E. E. Levi died in 1917 at the age of 34.

[^18]: ${ }^{6}$ The description of Levi flat hypersurfaces in the case where $\varphi(z)$ is of class C^{2} may be found, e.g., in the textbook by V.S. Vladimirov [78].

[^19]: ${ }^{7}$ In his paper Oka called plurisubharmonic functions pseudoconvex functions. The name plurisubharmonic functions was given by P. Lelong. In Part II in this book the author will use the terminology "pseudoconvex functions" in the setting of analytic spaces.

[^20]: ${ }^{\forall}$ The idea of smoothing plurisubharmonic functions by using integral averages is due to F. Riesz [62].

[^21]: ${ }^{9}$ See Oka's posthumous work No. 7 in [55], in which he called a peeudoconcave set an (H)-set. See also T. Nishino [40].

[^22]: ${ }^{10}$ The notion of transfinite diameter was introduced by M. Fékete [19]. He also proved that $D_{x}(E)$ is equal to the logarithmic capacity of E.
 ${ }^{11}$ This theorem was first proved by K. Oka [43] for the case $m=2$. The proof given here for the general case is due to H. Yamaguchi [78].

[^23]: ${ }^{12}$ This theorem was first discovered in the case of analytic hypersurfaces by P. Thullen [74]. In the case of analytic sets it was proved by R. Remmert and K. Stein [69]. The proof given here is due to K. Kato [33]. See also W. Rothstein [64].

[^24]: ${ }^{1}$ See, for example, the classic textbook [38].

[^25]: ${ }^{1}$ This proof is due to T. Kizuka.

[^26]: ${ }^{2}$ This example is due to H. Grauert [23].

[^27]: ${ }^{3}$ Precisely. let $w=\phi(z)$ be an analytic mapping from Δ onto a univalent domain Δ^{*} in $\mathbf{C}_{\boldsymbol{u}}^{\boldsymbol{n}}$, so that $\phi(z)$ maps $\pi^{-1}(\Delta)$ to an unramified domain \dot{d} over Δ^{\bullet}. Then \dot{d} satisfies the continuity theorem.

[^28]: ${ }^{4}$ This idea is due to H. Behnke and K. Stein.

[^29]: ${ }^{5}$ This proof follows Oka in his posthumous work No. 2, pp.113-123 in [55].

[^30]: ${ }^{1}$ This problem was first solved by K. Oka [50], [51]. After that, H. Cartan created sheaf theory from Oka's method. In this book we develop the lifting principle using Oka's original ideas. In the textbooks [25], [26] H. Grauert and R. Remmert explain the lifting principle by means of sheaf theory.

[^31]: ${ }^{2}$ In [51], Oka calls a universal denominator a W-function.

[^32]: ${ }^{3}$ The notion of O-ideal was first introduced by Oka [50] under the name of ideal with indeterminate domain. The \mathcal{O}-module defined here is an example of a presheaf in sheaf theory.

[^33]: ${ }^{4}$ See Oka's posthumous work No. 1 in [55].

[^34]: ${ }^{\text {'S }}$ This lemma was essentially proved in Part I; we repeat the statement and proof due to its importance.

[^35]: ${ }^{6}$ Int uitively, the Z-ideal $Z\{\Sigma, F\}$ is the collection of all holomorphic functions $f(z)$ on $\delta \subset D$ such that $f(z) \mid$ or s vanishes on the given zero set of $F(z) \mid \mathrm{s}$. Thus, if we set $S:=\Sigma \cap\{F=0\}$ and denote by $G\{S\}$ the G-ideal for S in D, then $Z\{\Sigma, F\} こ G\{S\}$.

[^36]: ${ }^{1}$ This example is due to E . Calabi and M. Rosenlicht [5].

[^37]: ${ }^{2}$ This example is due to H. Hopf [31].

[^38]: ${ }^{3}$ Sce the textbook of C. L. Siegel [65], Vol. III, p. 72.
 ${ }^{5}$ In the 2-dimensional complex manifold Σ_{a} studied in Example 8.1. we consider the subset

[^39]: ${ }^{5}$ These principles were first established by K. Oka [51]. He states them in a slightly different form (see Remark 8.2).

[^40]: ${ }^{6}$ It is known that conditions 2 and 3 imply condition 1 (see H. Grauert [21]).

[^41]: ${ }^{7}$ This exarnple is due to T. Ceda [75].

[^42]: ${ }^{4}$ This example is due to K. Oks [52]

[^43]: ${ }^{9}$ If we set $\Sigma^{\bullet}: z_{j}=\varphi_{j}(p)(j=1, \ldots, \nu), \varphi_{1}(p) w_{k}=\varphi_{k+1}(p)(k=1, \ldots, n), p \in U$, then Σ^{*} is an π-dimensional analytic set in D and is equal to the closure of Σ^{+}in D.

[^44]: ${ }^{10}$ The imbedding of a Stein space was first studied by R. Remmert (see R. Narasimhan [36]).

[^45]: ${ }^{11}$ By convention, an analytic set of negative dimension is the empty set.

[^46]: ${ }^{1}$ We use the word "normal" for the following reasons:
 (i) We showed in Chapter 8 that an analytic space can locally be mapped to a normal analytic set in a oneto-one manner.
 (ii) A pseudoconvex domain in an analytic space is not always a holomorphically complete domain (Stein space). In Theorem 9.3 we shall prove that a domain which admits a strictly pseudoconvex exhaustion function is holomorphically convex; we will call such a domain in an analytic space a normal pseudoconvex domain.
 ${ }^{2}$ Since the notion of pseudoconvexity is local. we can define the notion of a plurisubharmonic function on a domain in a complex manifold without any ambiguity. However, there is no unique definition of plurisubharmonicity (or of pseudoconvexity) in a ramified domain over \mathbf{C}^{n}. We use the terminology "pseudoconvex function" on domains in an analytic space.

[^47]: ${ }^{3} U_{a}$ may be the empty set.

[^48]: ${ }^{4}$ This example is due to H . Grauert.

[^49]: ${ }^{5}$ J.-E. Fornaess $[20]$ gave an example of an analytic space \mathcal{V} and a domain $\mathscr{V}^{\circ} \subset \subset \mathcal{V}$ such that U^{*} is locally holomorphically complete in \mathcal{V}^{\prime} but \mathbb{I}° is not holomorphically complete.

[^50]: ${ }^{6}$ Condition 1° says that a neighborhood V of $\mathcal{H}_{0} \cap \partial D_{0}$ in D_{0} is excluded from D_{0} whenever $\left|\varphi_{j}(p)\right|>1$ for some $j(1 \leq j \leq m)$. Further, condition 3° says that this neighborhood V can be chosen so that V does not intersect either of the sets $u(p)=b_{1}$ or $u(p)=b_{2}$ (see Figure 2).

[^51]: ${ }^{7}$ This result was first proved in 1942 by Oka [49] in C^{2}. In that paper, Oka used the Weil integral formula. The proof was rather complicated to understand (although the essential point - using an integral equation technique - is the same as presented here). The simpler proof given here using the lifting principle was published in 1953 by Oka [52]. However, the original idea of the simpler proof had been written in 1943 in Japanese (see Oka's posthumous work No. 1 in [58]).

[^52]: ${ }^{8}$ This fact was published in 1952 by Olas in [52]. However, he already proved it in 1943 (see Oka's posthumous work No. 6 in [55]).

[^53]: ${ }^{10}$ This theorem was first proved by K. Stein in [68]. The proof given here is due to the author.

