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The shortest path between two truths in the real
domain passes through the complex domain.

Jacques Hadamard
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Preface

Solving algebraic equations has been historically one of the favorite topics of mathe-

maticians. While linear equations are always solvable in real numbers, not all quadratic

equations have this property. The simplest such equation is x2 + 1 = 0. Until the 18th

century, mathematicians avoided quadratic equations that were not solvable over R.

Leonhard Euler broke the ice introducing the “number”
√−1 in his famous book Ele-

ments of Algebra as “ . . . neither nothing, nor greater than nothing, nor less than noth-

ing . . . ” and observed “ . . . notwithstanding this, these numbers present themselves to

the mind; they exist in our imagination and we still have a sufficient idea of them; . . .

nothing prevents us from making use of these imaginary numbers, and employing them

in calculation”. Euler denoted the number
√−1 by i and called it the imaginary unit.

This became one of the most useful symbols in mathematics. Using this symbol one

defines complex numbers as z = a + bi , where a and b are real numbers. The study of

complex numbers continues and has been enhanced in the last two and a half centuries;

in fact, it is impossible to imagine modern mathematics without complex numbers. All

mathematical domains make use of them in some way. This is true of other disciplines

as well: for example, mechanics, theoretical physics, hydrodynamics, and chemistry.

Our main goal is to introduce the reader to this fascinating subject. The book runs

smoothly between key concepts and elementary results concerning complex numbers.

The reader has the opportunity to learn how complex numbers can be employed in

solving algebraic equations, and to understand the geometric interpretation of com-
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plex numbers and the operations involving them. The theoretical part of the book is

augmented by rich exercises and problems of various levels of difficulty. In Chap-

ters 3 and 4 we cover important applications in Euclidean geometry. Many geometry

problems may be solved efficiently and elegantly using complex numbers. The wealth

of examples we provide, the presentation of many topics in a personal manner, the

presence of numerous original problems, and the attention to detail in the solutions to

selected exercises and problems are only some of the key features of this book.

Among the techniques presented, for example, are those for the real and the complex

product of complex numbers. In complex number language, these are the analogues of

the scalar and cross products, respectively. Employing these two products turns out to

be efficient in solving numerous problems involving complex numbers. After covering

this part, the reader will appreciate the use of these techniques.

A special feature of the book is Chapter 5, an outstanding selection of genuine

Olympiad and other important mathematical contest problems solved using the meth-

ods already presented.

This work does not cover all aspects pertaining to complex numbers. It is not a

complex analysis book, but rather a stepping stone in its study, which is why we have

not used the standard notation eit for z = cos t + i sin t , or the usual power series

expansions.

The book reflects the unique experience of the authors. It distills a vast mathematical

literature, most of which is unknown to the western public, capturing the essence of an

abundant problem-solving culture.

Our work is partly based on a Romanian version, Numere complexe de la A la . . . Z,

authored by D. Andrica and N. Bişboacă and published by Millennium in 2001 (see our

reference [10]). We are preserving the title of the Romanian edition and about 35% of

the text. Even this 35% has been significantly improved and enhanced with up-to-date

material.

The targeted audience includes high school students and their teachers, undergrad-

uates, mathematics contestants such as those training for Olympiads or the W. L. Put-

nam Mathematical Competition, their coaches, and any person interested in essential

mathematics.

This book might spawn courses such as Complex Numbers and Euclidean Geom-

etry for prospective high school teachers, giving future educators ideas about things

they could do with their brighter students or with a math club. This would be quite a

welcome development.

Special thanks are given to Daniel Văcăreţu, Nicolae Bişboacă, Gabriel Dospinescu,

and Ioan Şerdean for the careful proofreading of the final version of the manuscript. We
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would also like to thank the referees who provided pertinent suggestions that directly

contributed to the improvement of the text.

Titu Andreescu

Dorin Andrica

October 2004



Notation

Z the set of integers

N the set of positive integers

Q the set of rational numbers

R the set of real numbers

R∗ the set of nonzero real numbers

R2 the set of pairs of real numbers

C the set of complex numbers

C∗ the set of nonzero complex numbers

[a, b] the set of real numbers x such that a ≤ x ≤ b

(a, b) the set of real numbers x such that a < x < b

z the conjugate of the complex number z

|z| the modulus or absolute value of complex number z−→
AB the vector AB

(AB) the open segment determined by A and B

[AB] the closed segment determined by A and B

(AB the open ray of origin A that contains B

area[F] the area of figure F

Un the set of nth roots of unity

C(P; n) the circle centered at point P with radius n



1

Complex Numbers in Algebraic Form

1.1 Algebraic Representation of Complex Numbers

1.1.1 Definition of complex numbers

In what follows we assume that the definition and basic properties of the set of real

numbers R are known.

Let us consider the set R2 = R × R = {(x, y)| x, y ∈ R}. Two elements (x1, y1)

and (x2, y2) of R2 are equal if and only if x1 = x2 and y1 = y2. The operations of

addition and multiplication are defined on the set R2 as follows:

z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) ∈ R2

and

z1 · z2 = (x1, y1) · (x2, y2) = (x1x2 − y1 y2, x1 y2 + x2 y1) ∈ R2,

for all z1 = (x1, y1) ∈ R2 and z2 = (x2, y2) ∈ R2.

The element z1 + z2 ∈ R2 is called the sum of z1, z2 and the element z1 · z2 ∈ R2 is

called the product of z1, z2.

Remarks. 1) If z1 = (x1, 0) ∈ R2 and z2 = (x2, 0) ∈ R2, then z1 · z2 = (x1x2, 0).

(2) If z1 = (0, y1) ∈ R2 and z2 = (0, y2) ∈ R2, then z1 · z2 = (−y1 y2, 0).

Examples. 1) Let z1 = (−5, 6) and z2 = (1, −2). Then

z1 + z2 = (−5, 6) + (1, −2) = (−4, 4)
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and

z1z2 = (−5, 6) · (1, −2) = (−5 + 12, 10 + 6) = (7, 16).

(2) Let z1 =
(

−1

2
, 1

)
and z2 =

(
−1

3
,

1

2

)
. Then

z1 + z2 =
(

−1

2
− 1

3
, 1 + 1

2

)
=
(

−5

6
,

3

2

)
and

z1z2 =
(

1

6
− 1

2
, −1

4
− 1

3

)
=
(

−1

3
, − 7

12

)
.

Definition. The set R2, together with the addition and multiplication operations, is

called the set of complex numbers, denoted by C. Any element z = (x, y) ∈ C is called

a complex number.

The notation C∗ is used to indicate the set C \ {(0, 0)}.

1.1.2 Properties concerning addition

The addition of complex numbers satisfies the following properties:

(a) Commutative law

z1 + z2 = z2 + z1 for all z1, z2 ∈ C.

(b) Associative law

(z1 + z2) + z3 = z1 + (z2 + z3) for all z1, z2, z3 ∈ C.

Indeed, if z1 = (x1, y1) ∈ C, z2 = (x2, y2) ∈ C, z3 = (x3, y3) ∈ C, then

(z1 + z2) + z3 = [(x1, y1) + (x2, y2)] + (x3, y3)

= (x1 + x2, y1 + y2) + (x3, y3) = ((x1 + x2) + x3, (y1 + y2) + y3),

and

z1 + (z2 + z3) = (x1, y1) + [(x2, y2) + (x3, y3)]
= (x1, y1) + (x2 + x3, y2 + y3) = (x1 + (x2 + x3), y1 + (y2 + y3)).

The claim holds due to the associativity of the addition of real numbers.

(c) Additive identity There is a unique complex number 0 = (0, 0) such that

z + 0 = 0 + z = z for all z = (x, y) ∈ C.

(d) Additive inverse For any complex number z = (x, y) there is a unique −z =
(−x, −y) ∈ C such that

z + (−z) = (−z) + z = 0.
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The reader can easily prove the claims (a), (c) and (d).

The number z1 − z2 = z1 + (−z2) is called the difference of the numbers z1 and

z2. The operation that assigns to the numbers z1 and z2 the number z1 − z2 is called

subtraction and is defined by

z1 − z2 = (x1, y1) − (x2, y2) = (x1 − x2, y1 − y2) ∈ C.

1.1.3 Properties concerning multiplication

The multiplication of complex numbers satisfies the following properties:

(a) Commutative law

z1 · z2 = z2 · z1 for all z1, z2 ∈ C.

(b) Associative law

(z1 · z2) · z3 = z1 · (z2 · z3) for all z1, z2, z3 ∈ C.

(c) Multiplicative identity There is a unique complex number 1 = (1, 0) ∈ C

such that

z · 1 = 1 · z = z for all z ∈ C.

A simple algebraic manipulation is all that is needed to verify these equalities:

z · 1 = (x, y) · (1, 0) = (x · 1 − y · 0, x · 0 + y · 1) = (x, y) = z

and

1 · z = (1, 0) · (x, y) = (1 · x − 0 · y, 1 · y + 0 · x) = (x, y) = z.

(d) Multiplicative inverse For any complex number z = (x, y) ∈ C∗ there is a

unique number z−1 = (x ′, y′) ∈ C such that

z · z−1 = z−1 · z = 1.

To find z−1 = (x ′, y′), observe that (x, y) �= (0, 0) implies x �= 0 or y �= 0 and

consequently x2 + y2 �= 0.

The relation z · z−1 = 1 gives (x, y) · (x ′, y′) = (1, 0), or equivalently{
xx ′ − yy′ = 1

yx ′ + xy′ = 0.

Solving this system with respect to x ′ and y′, one obtains

x ′ = x

x2 + y2
and y′ = − y

x2 + y2
,
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hence the multiplicative inverse of the complex number z = (x, y) ∈ C∗ is

z−1 = 1

z
=
(

x

x2 + y2
, − y

x2 + y2

)
∈ C∗.

By the commutative law we also have z−1 · z = 1.

Two complex numbers z1 = (z1, y1) ∈ C and z = (x, y) ∈ C∗ uniquely determine

a third number called their quotient, denoted by
z1

z
and defined by

z1

z
= z1 · z−1 = (x1, y1) ·

(
x

x2 + y2
, − y

x2 + y2

)
=
(

x1x + y1 y

x2 + y2
,
−x1 y + y1x

x2 + y2

)
∈ C.

Examples. 1) If z = (1, 2), then

z−1 =
(

1

12 + 22
,

−2

12 + 22

)
=
(

1

5
,
−2

5

)
.

2) If z1 = (1, 2) and z2 = (3, 4), then

z1

z2
=
(

3 + 8

9 + 16
,
−4 + 6

9 + 16

)
=
(

11

25
,

2

25

)
.

An integer power of a complex number z ∈ C∗ is defined by

z0 = 1; z1 = z; z2 = z · z;
zn = z · z · · · z︸ ︷︷ ︸

n times

for all integers n > 0

and zn = (z−1)−n for all integers n < 0.

The following properties hold for all complex numbers z, z1, z2 ∈ C∗ and for all

integers m, n:

1) zm · zn = zm+n ;

2)
zm

zn
= zm−n ;

3) (zm)n = zmn ;

4) (z1 · z2)
n = zn

1 · zn
2;

5)

(
z1

z2

)n

= zn
1

zn
2

.

When z = 0, we define 0n = 0 for all integers n > 0.

e) Distributive law

z1 · (z2 + z3) = z1 · z2 + z1 · z3 for all z1, z2, z3 ∈ C.

The above properties of addition and multiplication show that the set C of all com-

plex numbers, together with these operations, forms a field.
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1.1.4 Complex numbers in algebraic form

For algebraic manipulation it is not convenient to represent a complex number as an

ordered pair. For this reason another form of writing is preferred.

To introduce this new algebraic representation, consider the set R × {0}, together

with the addition and multiplication operations defined on R2. The function

f : R → R × {0}, f (x) = (x, 0)

is bijective and moreover,

(x, 0) + (y, 0) = (x + y, 0) and (x, 0) · (y, 0) = (xy, 0).

The reader will not fail to notice that the algebraic operations on R × {0} are sim-

ilar to the operations on R; therefore we can identify the ordered pair (x, 0) with the

number x for all x ∈ R. Hence we can use, by the above bijection f , the notation

(x, 0) = x .

Setting i = (0, 1) we obtain

z = (x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0) · (0, 1)

= x + yi = (x, 0) + (0, 1) · (y, 0) = x + iy.

In this way we obtain

Proposition. Any complex number z = (x, y) can be uniquely represented in the

form

z = x + yi,

where x, y are real numbers. The relation i2 = −1 holds.

The formula i2 = −1 follows directly from the definition of multiplication: i2 =
i · i = (0, 1) · (0, 1) = (−1, 0) = −1.

The expression x + yi is called the algebraic representation (form) of the complex

number z = (x, y), so we can write C = {x + yi | x ∈ R, y ∈ R, i2 = −1}. From

now on we will denote the complex number z = (x, y) by x + iy. The real number

x = Re(z) is called the real part of the complex number z and similarly, y = Im(z)

is called the imaginary part of z. Complex numbers of the form iy, y ∈ R — in other

words, complex numbers whose real part is 0 — are called imaginary. On the other

hand, complex numbers of the form iy, y ∈ R∗ are called purely imaginary and the

complex number i is called the imaginary unit.

The following relations are easy to verify:
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a) z1 = z2 if and only if Re(z)1 = Re(z)2 and Im(z)1 = Im(z)2.

b) z ∈ R if and only if Im(z) = 0.

c) z ∈ C \ R if and only if Im(z) �= 0.

Using the algebraic representation, the usual operations with complex numbers can

be performed as follows:

1. Addition

z1 + z2 = (x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i ∈ C.

It is easy to observe that the sum of two complex numbers is a complex number

whose real (imaginary) part is the sum of the real (imaginary) parts of the given num-

bers:

Re(z1 + z2) = Re(z)1 + Re(z)2;
Im(z1 + z2) = Im(z)1 + Im(z)2.

2. Multiplication

z1 · z2 = (x1 + y1i)(x2 + y2i) = (x1x2 − y1 y2) + (x1 y2 + x2 y1)i ∈ C.

In other words,

Re(z1z2) = Re(z)1 · Re(z)2 − Im(z)1 · Im(z)2

and

Im(z1z2) = Im(z)1 · Re(z)2 + Im(z)2 · Re(z)1.

For a real number λ and a complex number z = x + yi ,

λ · z = λ(x + yi) = λx + λyi ∈ C

is the product of a real number with a complex number. The following properties are

obvious:

1) λ(z1 + z2) = λz1 + λz2;

2) λ1(λ2z) = (λ1λ2)z;

3) (λ1 + λ2)z = λ1z + λ2z for all z, z1, z2 ∈ C and λ, λ1, λ2 ∈ R.

Actually, relations 1) and 3) are special cases of the distributive law and relation 2)

comes from the associative law of multiplication for complex numbers.

3. Subtraction

z1 − z2 = (x1 + y1i) − (x2 + y2i) = (x1 − x2) + (y1 − y2)i ∈ C.
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That is,

Re(z1 − z2) = Re(z)1 − Re(z)2;
Im(z1 − z2) = Im(z)1 − Im(z)2.

1.1.5 Powers of the number i

The formulas for the powers of a complex number with integer exponents are preserved

for the algebraic form z = x + iy. Setting z = i , we obtain

i0 = 1; i1 = i; i2 = −1; i3 = i2 · i = −i;

i4 = i3 · i = 1; i5 = i4 · i = i; i6 = i5 · i = −1; i7 = i6 · i = −i.

One can prove by induction that for any positive integer n,

i4n = 1; i4n+1 = i; i4n+2 = −1; i4n+3 = −i.

Hence in ∈ {−1, 1, −i, i} for all integers n ≥ 0. If n is a negative integer, we have

in = (i−1)−n =
(

1

i

)−n

= (−i)−n .

Examples. 1) We have

i105 + i23 + i20 − i34 = i4·26+1 + i4·5+3 + i4·5 − i4·8+2 = i − i + 1 + 1 = 2.

2) Let us solve the equation z3 = 18 + 26i , where z = x + yi and x, y are integers.

We can write

(x + yi)3 = (x + yi)2(x + yi) = (x2 − y2 + 2xyi)(x + yi)

= (x3 − 3xy2) + (3x2 y − y3)i = 18 + 26i.

Using the definition of equality of complex numbers, we obtain{
x3 − 3xy2 = 18

3x2 y − y3 = 26.

Setting y = t x in the equality 18(3x2 y − y3) = 26(x3 − 3xy2), let us observe that

x �= 0 and y �= 0 implies 18(3t − t3) = 26(1 − 3t2). The last relation is equivalent to

(3t − 1)(3t2 − 12t − 13) = 0.

The only rational solution of this equation is t = 1

3
; hence,

x = 3, y = 1 and z = 3 + i.
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1.1.6 Conjugate of a complex number

For a complex number z = x + yi the number z = x − yi is called the complex

conjugate or the conjugate complex of z.

Proposition. 1) The relation z = z holds if and only if z ∈ R.

2) For any complex number z the relation z = z holds.

3) For any complex number z the number z · z ∈ R is a nonnegative real number.

4) z1 + z2 = z1 + z2 (the conjugate of a sum is the sum of the conjugates).

5) z1 · z2 = z1 · z2 (the conjugate of a product is the product of the conjugates).

6) For any nonzero complex number z the relation z−1 = (z)−1 holds.

7)

(
z1

z2

)
= z1

z2
, z2 �= 0 (the conjugate of a quotient is the quotient of the conju-

gates).

8) The formulas

Re(z) = z + z

2
and Im(z) = z − z

2i

are valid for all z ∈ C.

Proof. 1) If z = x + yi , then the relation z = z is equivalent to x + yi = x − yi .

Hence 2yi = 0, so y = 0 and finally z = x ∈ R.

2) We have z = x − yi and z = x − (−y)i = x + yi = z.

3) Observe that z · z = (x + yi)(x − yi) = x2 + y2 ≥ 0.

4) Note that

z1 + z2 = (x1 + x2) + (y1 + y2)i = (x1 + x2) − (y1 + y2)i

= (x1 − y1i) + (x2 − y2i) = z1 + z2.

5) We can write

z1 · z2 = (x1x2 − y1 y2) + i(x1 y2 + x2 y1)

= (x1x2 − y1 y2) − i(x1 y2 + x2 y1) = (x1 − iy1)(x2 − iy2) = z1 · z2.

6) Because z · 1

z
= 1, we have

(
z · 1

z

)
= 1, and consequently z ·

(
1

z

)
= 1, yielding

(z−1) = (z)−1.

7) Observe that

(
z1

z2

)
=
(

z1 · 1

z2

)
= z1 ·

(
1

z2

)
= z1 · 1

z2
= z1

z2
.

8) From the relations

z + z = (x + yi) + (x − yi) = 2x,
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z − z = (x + yi) − (x − yi) = 2yi

it follows that

Re(z) = z + z

2
and Im(z) = z − z

2i
as desired. �

The properties 4) and 5) can be easily extended to give

4′)
(

n∑
k=1

zk

)
=

n∑
k=1

zk ;

5′)
(

n∏
k=1

zk

)
=

n∏
k=1

zk for all zk ∈ C, k = 1, 2, . . . , n.

As a consequence of 5′) and 6) we have

5′′) (zn) = (z)n for any integers n and for any z ∈ C.

Comments. a) To obtain the multiplication inverse of a complex number z ∈ C∗

one can use the following approach:

1

z
= z

z · z
= x − yi

x2 + y2
= x

x2 + y2
− y

x2 + y2
i.

b) The complex conjugate allows us to obtain the quotient of two complex numbers

as follows:

z1

z2
= z1 · z2

z2 · z2
= (x1 + y1i)(x2 − y2i)

x2
2 + y2

2

= x1x2 + y1 y2

x2
2 + y2

2

+ −x1 y2 + x2 y1

x2
2 + y2

2

i.

Examples. (1) Compute z = 5 + 5i

3 − 4i
+ 20

4 + 3i
.

Solution. We can write

z = (5 + 5i)(3 + 4i)

9 − 16i2
+ 20(4 − 3i)

16 − 9i2
= −5 + 35i

25
+ 80 − 60i

25

= 75 − 25i

25
= 3 − i.

(2) Let z1, z2 ∈ C. Prove that the number E = z1 · z2 + z1 · z2 is a real number.

Solution. We have

E = z1 · z2 + z1 · z2 = z1 · z2 + z1 · z2 = E, so E ∈ R.

1.1.7 Modulus of a complex number

The number |z| = √x2 + y2 is called the modulus or the absolute value of the complex

number z = x + yi . For example, the complex numbers

z1 = 4 + 3i, z2 = −3i, z3 = 2
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have the moduli

|z1| =
√

42 + 32 = 5, |z2| =
√

02 + (−3)2 = 3, |z3| =
√

22 = 2.

Proposition. The following properties are satisfied:

(1) −|z| ≤ Re(z) ≤ |z| and −|z| ≤ Im(z) ≤ |z|.
(2) |z| ≥ 0 for all z ∈ C. Moreover, we have |z| = 0 if and only if z = 0.

(3) |z| = | − z| = |z|.
(4) z · z = |z|2.

(5) |z1 · z2| = |z1| · |z2| (the modulus of a product is the product of the moduli).

(6) |z1| − |z2| ≤ |z1 + z2| ≤ |z1| + |z2|.
(7) |z−1| = |z|−1, z �= 0.

(8)

∣∣∣∣ z1

z2

∣∣∣∣ = |z1|
|z2| , z2 �= 0 (the modulus of a quotient is the quotient of the moduli).

9) |z1| − |z2| ≤ |z1 − z2| ≤ |z1| + |z2|.
Proof. One can easily check that (1)–(4) hold.

(5) We have |z1 · z2|2 = (z1 · z2)(z1 · z2) = (z1 · z1)(z2 · z2) = |z1|2 · |z2|2 and

consequently |z1 · z2| = |z1| · |z2|, since |z| ≥ 0 for all z ∈ C.

(6) Observe that

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2) = |z1|2 + z1 · z2 + z1 · z2 +|z2|2.
Because z1 · z2 = z1 · z2 = z1 · z2 it follows that

z1z2 + z1 · z2 = 2 Re(z1 · z2) ≤ 2|z1 · z2| = 2|z1| · |z2|,
hence

|z1 + z2|2 ≤ (|z1| + |z2|)2,

and consequently, |z1 + z2| ≤ |z1| + |z2|, as desired.

In order to obtain inequality on the left-hand side note that

|z1| = |z1 + z2 + (−z2)| ≤ |z1 + z2| + | − z2| = |z1 + z2| + |z2|,
hence

|z1| − |z2| ≤ |z1 + z2|.
(7) Note that the relation z · 1

z
= 1 implies |z| ·

∣∣∣∣1z
∣∣∣∣ = 1, or

∣∣∣∣1z
∣∣∣∣ = 1

|z| . Hence

|z−1| = |z|−1.

(8) We have∣∣∣∣ z1

z2

∣∣∣∣ = ∣∣∣∣z1 · 1

z2

∣∣∣∣ = |z1 · z−1
2 | = |z1| · |z−1

2 | = |z1| · |z2|−1 = |z1|
|z2| .
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(9) We can write |z1| = |z1 − z2 + z2| ≤ |z1 − z2| + |z2|, so |z1 − z2| ≥ |z1| − |z2|.
On the other hand,

|z1 − z2| = |z1 + (−z2)| ≤ |z1| + | − z2| = |z1| + |z2|. �

Remarks. (1) The inequality |z1 + z2| ≤ |z1|+ |z2| becomes an equality if and only

if Re(z1z2) = |z1||z2|. This is equivalent to z1 = t z2, where t is a nonnegative real

number.

(2) The properties 5) and 6) can be easily extended to give

(5′)
∣∣∣∣∣ n∏
k=1

zk

∣∣∣∣∣ = n∏
k=1

|zk |;

(6′)
∣∣∣∣∣ n∑
k=1

zk

∣∣∣∣∣ ≤ n∑
k=1

|zk | for all zk ∈ C, k = 1, n.

As a consequence of(5′) and (7) we have

(5′′) |zn| = |z|n for any integer n and any complex number z.

Problem 1. Prove the identity

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2)
for all complex numbers z1, z2.

Solution. Using property 4 in the proposition above, we obtain

|z1 + z2|2 + |z1 − z2|2 = (z1 + z2)(z1 + z2) + (z1 − z2)(z1 − z2)

= |z1|2 + z1 · z2 + z2 · z1 + |z2|2 + |z1|2 − z1 · z2 − z2 · z1 + |z2|2
= 2(|z1|2 + |z2|2).

Problem 2. Prove that if |z1| = |z2| = 1 and z1z2 �= −1, then
z1 + z2

1 + z1z2
is a real

number.

Solution. Using again property 4 in the above proposition, we have

z1 · z1 = |z1|2 = 1 and z1 = 1

z1
.

Likewise, z2 = 1

z2
. Hence denoting by A the number in the problem we have

A = z1 + z2

1 + z1 · z2
=

1

z1
+ 1

z2

1 + 1

z1
· 1

z2

= z1 + z2

1 + z1z2
= A,

so A is a real number.
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Problem 3. Let a be a positive real number and let

Ma =
{

z ∈ C∗ :
∣∣∣∣z + 1

z

∣∣∣∣ = a

}
.

Find the minimum and maximum value of |z| when z ∈ Ma.

Solution. Squaring both sides of the equality a =
∣∣∣∣z + 1

z

∣∣∣∣, we get

a2 =
∣∣∣∣z + 1

z

∣∣∣∣2 =
(

z + 1

z

)(
z + 1

z

)
= |z|2 + z2 + (z)2

|z|2 + 1

|z|2

= |z|4 + (z + z)2 − 2|z|2 + 1

|z|2 .

Hence

|z|4 − |z|2 · (a2 + 2) + 1 = −(z + z)2 ≤ 0

and consequently

|z|2 ∈
[

a2 + 2 − √
a4 + 4a2

2
,

a2 + 2 + √
a4 + 4a2

2

]
.

It follows that |z| ∈
[

−a + √
a2 + 4

2
,

a + √
a2 + 4

2

]
, so

max |z| = a + √
a2 + 4

2
, min |z| = −a + √

a2 + 4

2

and the extreme values are obtained for the complex numbers in M satisfying z = −z.

Problem 4. Prove that for any complex number z,

|z + 1| ≥ 1√
2

or |z2 + 1| ≥ 1.

Solution. Suppose by way of contradiction that

|1 + z| <
1√
2

and |1 + z2| < 1.

Setting z = a + bi , with a, b ∈ R yields z2 = a2 − b2 + 2abi . We obtain

(1 + a2 − b2)2 + 4a2b2 < 1 and (1 + a)2 + b2 <
1

2
,

and consequently

(a2 + b2)2 + 2(a2 − b2) < 0 and 2(a2 + b2) + 4a + 1 < 0.
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Summing these inequalities implies

(a2 + b2)2 + (2a + 1)2 < 0,

which is a contradiction.

Problem 5. Prove that √
7

2
≤ |1 + z| + |1 − z + z2| ≤ 3

√
7

6

for all complex numbers with |z| = 1.

Solution. Let t = |1 + z| ∈ [0, 2]. We have

t2 = (1 + z) · (1 + z) = 2 + 2 Re(z), so Re(z) = t2 − 2

2
.

Then |1 − z + z2| = √|7 − 2t2|. It suffices to find the extreme values of the function

f : [0, 2] → R, f (t) = t +
√

|7 − 2t2|.
We obtain

f

(√
7

2

)
=
√

7

2
≤ t +

√
|7 − 2t2| ≤ f

(√
7

6

)
= 3

√
7

6

as we can see from the figure below.

Figure 1.1.

Problem 6. Consider the set

H = {z ∈ C : z = x − 1 + xi, x ∈ R}.
Prove that there is a unique number z ∈ H such that |z| ≤ |w| for all w ∈ H.
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Solution. Let ω = y − 1 + yi , with y ∈ R.

It suffices to prove that there is a unique number x ∈ R such that

(x − 1)2 + x2 ≤ (y − 1)2 + y2

for all y ∈ R.

In other words, x is the minimum point of the function

f : R → R, f (y) = (y − 1)2 + y2 = 2y2 − 2y + 1 = 2

(
y − 1

2

)2

+ 1

2
,

hence x = 1

2
and z = −1

2
+ 1

2
i .

Problem 7. Let x, y, z be distinct complex numbers such that

y = t x + (1 − t)z, t ∈ (0, 1).

Prove that |z| − |y|
|z − y| ≥ |z| − |x |

|z − x | ≥ |y| − |x |
|y − x | .

Solution. The relation y = t x + (1 − t)z is equivalent to

z − y = t (z − x).

The inequality
|z| − |y|
|z − y| ≥ |z| − |x |

|z − x |
becomes

|z| − |y| ≥ t (|z| − |x |),
and consequently

|y| ≤ (1 − t)|z| + t |x |.
This is the triangle inequality for

y = (1 − t)z + t x .

The second inequality can be proved similarly, writing the equality

y = t x + (1 − t)z

as

y − x = (1 − t)(z − x).
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1.1.8 Solving quadratic equations

We are now able to solve the quadratic equation with real coefficients

ax2 + bx + c = 0, a �= 0

in the case when its discriminant � = b2 − 4ac is negative.

By completing the square, we easily get the equivalent form

a

[(
x + b

2a

)2

+ −�

4a2

]
= 0.

Therefore (
x + b

2a

)2

− i2

(√−�

2a

)2

= 0,

and so x1 = −b + i
√−�

2a
, x2 = −b − i

√−�

2a
.

Observe that the roots are conjugate complex numbers and the factorization formula

ax2 + bx + c = a(x − x1)(x − x2)

holds even in the case � < 0.

Let us consider now the general quadratic equation with complex coefficients

az2 + bz + c = 0, a �= 0.

Using the same algebraic manipulation as in the case of real coefficients, we get

a

[(
z + b

2a

)2

− �

4a2

]
= 0.

This is equivalent to (
z + b

2a

)2

= �

4a2

or

(2az + b)2 = �,

where � = b2 − 4ac is also called the discriminant of the quadratic equation. Setting

y = 2az + b, the equation is reduced to

y2 = � = u + vi,

where u and v are real numbers.
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This equation has the solutions

y1,2 = ±
(√

r + u

2
+ (sgn v)

√
r − u

2
i

)
,

where r = |�| and signv is the sign of the real number v.

The roots of the initial equation are

z1,2 = 1

2a
(−b + y1,2).

Observe that the relations between roots and coefficients

z1 + z2 = −b

a
, z1z2 = c

a
,

as well as the factorization formula

az2 + bz + c = a(z − z1)(z − z2)

are also preserved when the coefficients of the equation are elements of the field of

complex numbers C.

Problem 1. Solve, in complex numbers, the quadratic equation

z2 − 8(1 − i)z + 63 − 16i = 0.

Solution. We have

�′ = (4 − 4i)2 − (63 − 16i) = −63 − 16i

and

r = |�′| =
√

632 + 162 = 65,

where �′ =
(

b

2

)2

− ac.

The equation

y2 = −63 − 16i

has the solution y1,2 = ±
(√

65 − 63

2
+ i

√
65 + 63

2

)
= ±(1 − 8i). It follows that

z1,2 = 4 − 4i ± (1 − 8i). Hence

z1 = 5 − 12i and z2 = 3 + 4i.

Problem 2. Let p and q be complex numbers with q �= 0. Prove that if the roots of the

quadratic equation x2 + px + q2 = 0 have the same absolute value, then
p

q
is a real

number.

(1999 Romanian Mathematical Olympiad – Final Round)
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Solution. Let x1 and x2 be the roots of the equation and let r = |x1| = |x2|. Then

p2

q2
= (x1 + x2)

2

x1x2
= x1

x2
+ x2

x1
+ 2 = x1x2

r2
+ x2x1

r2
+ 2 = 2 + 2

r2
Re(x1x2)

is a real number. Moreover,

Re(x1x2) ≥ −|x1x2| = −r2, so
p2

q2
≥ 0.

Therefore
p

q
is a real number, as claimed.

Problem 3. Let a, b, c be distinct nonzero complex numbers with |a| = |b| = |c|.
a) Prove that if a root of the equation az2 + bz + c = 0 has modulus equal to 1,

then b2 = ac.

b) If each of the equations

az2 + bz + c = 0 and bz2 + cz + a = 0

has a root having modulus 1, then |a − b| = |b − c| = |c − a|.
Solution. a) Let z1, z2 be the roots of the equation with |z1| = 1. From z2 = c

a
· 1

z1

it follows that |z2| =
∣∣∣ c
a

∣∣∣ · 1

|z1| = 1. Because z1 + z2 = −b

a
and |a| = |b|, we have

|z1 + z2|2 = 1. This is equivalent to

(z1 + z2)(z1 + z2) = 1, i.e., (z1 + z2)

(
1

z1
+ 1

z2

)
= 1.

We find that

(z1 + z2)
2 = z1z2, i.e.,

(
−b

a

)2

= c

a
,

which reduces to b2 = ac, as desired.

b) As we have already seen, we have b2 = ac and c2 = ab. Multiplying these

relations yields b2c2 = a2bc, hence a2 = bc. Therefore

a2 + b2 + c2 = ab + bc + ca. (1)

Relation (1) is equivalent to

(a − b)2 + (b − c)2 + (c − a)2 = 0,

i.e.,

(a − b)2 + (b − c)2 + 2(a − b)(b − c) + (c − a)2 = 2(a − b)(b − c).
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It follows that (a − c)2 = (a − b)(b − c). Taking absolute values we find β2 = γα,

where α = |b − c|, β = |c − a|, γ = |a − b|. In an analogous way we obtain α2 = βγ

and γ 2 = αβ. Adding these relations yields α2 + β2 + γ 2 = αβ + βγ + γα, i.e.,

(α − β)2 + (β − γ )2 + (γ − α)2 = 0. Hence α = β = γ .

1.1.9 Problems

1. Consider the complex numbers z1 = (1, 2), z2 = (−2, 3) and z3 = (1, −1). Com-

pute the following complex numbers:

a) z1 + z2 + z3; b) z1z2 + z2z3 + z3z1; c) z1z2z3;

d) z2
1 + z2

2 + z2
3; e)

z1

z2
+ z2

z3
+ z3

z1
; f)

z2
1 + z2

2

z2
2 + z2

3

.

2. Solve the equations:

a) z + (−5, 7) = (2, −1); b) (2, 3) + z = (−5, −1);

c) z · (2, 3) = (4, 5); d)
z

(−1, 3)
= (3, 2).

3. Solve in C the equations:

a) z2 + z + 1 = 0; b) z3 + 1 = 0.

4. Let z = (0, 1) ∈ C. Express
n∑

k=0

zk in terms of the positive integer n.

5. Solve the equations:

a) z · (1, 2) = (−1, 3); b) (1, 1) · z2 = (−1, 7).

6. Let z = (a, b) ∈ C. Compute z2, z3 and z4.

7. Let z0 = (a, b) ∈ C. Find z ∈ C such that z2 = z0.

8. Let z = (1, −1). Compute zn , where n is a positive integer.

9. Find real numbers x and y in each of the following cases:

a) (1 − 2i)x + (1 + 2i)y = 1 + i ; b)
x − 3

3 + i
+ y − 3

3 − i
= i ;

c) (4 − 3i)x2 + (3 + 2i)xy = 4y2 − 1

2
x2 + (3xy − 2y2)i .

10. Compute:

a) (2 − i)(−3 + 2i)(5 − 4i); b) (2 − 4i)(5 + 2i) + (3 + 4i)(−6 − i);

c)

(
1 + i

1 − i

)16

+
(

1 − i

1 + i

)8

; d)

(
−1 + i

√
3

2

)6

+
(

1 − i
√

7

2

)6

;

e)
3 + 7i

2 + 3i
+ 5 − 8i

2 − 3i
.
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11. Compute:

a) i2000 + i1999 + i201 + i82 + i47;

b) En = 1 + i + i2 + i3 + · · · + in for n ≥ 1;

c) i1 · i2 · i3 · · · i2000;

d) i−5 + (−i)−7 + (−i)13 + i−100 + (−i)94.

12. Solve in C the equations:

a) z2 = i ; b) z2 = −i ; c) z2 = 1

2
− i

√
2

2
.

13. Find all complex numbers z �= 0 such that z + 1

z
∈ R.

14. Prove that:

a) E1 = (2 + i
√

5)7 + (2 − i
√

5)7 ∈ R;

b) E2 =
(

19 + 7i

9 − i

)n

+
(

20 + 5i

7 + 6i

)n

∈ R.

15. Prove the following identities:

a) |z1 + z2|2 + |z2 + z3|2 + |z3 + z1|2 = |z1|2 + |z2|2 + |z3|2 + |z1 + z2 + z3|2;

b) |1 + z1z2|2 + |z1 − z2|2 = (1 + |z1|2)(1 + |z2|2);
c) |1 − z1z2|2 − |z1 − z2|2 = (1 − |z1|2)(1 − |z2|2);
d) |z1 + z2 + z3|2 + | − z1 + z2 + z3|2 + |z1 − z2 + z3|2 + |z1 + z2 − z3|2

= 4(|z1|2 + |z2|2 + |z3|2).
16. Let z ∈ C∗ such that

∣∣∣∣z3 + 1

z3

∣∣∣∣ ≤ 2. Prove that

∣∣∣∣z + 1

z

∣∣∣∣ ≤ 2.

17. Find all complex numbers z such that

|z| = 1 and |z2 + z2| = 1.

18. Find all complex numbers z such that

4z2 + 8|z|2 = 8.

19. Find all complex numbers z such that z3 = z.

20. Consider z ∈ C with Re(z) > 1. Prove that∣∣∣∣1z − 1

2

∣∣∣∣ < 1

2
.

21. Let a, b, c be real numbers and ω = −1

2
+ i

√
3

2
. Compute

(a + bω + cω2)(a + bω2 + cω).
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22. Solve the equations:

a) |z| − 2z = 3 − 4i ;

b) |z| + z = 3 + 4i ;

c) z3 = 2 + 11i , where z = x + yi and x, y ∈ Z;

d) i z2 + (1 + 2i)z + 1 = 0;

e) z4 + 6(1 + i)z2 + 5 + 6i = 0;

f) (1 + i)z2 + 2 + 11i = 0.

23. Find all real numbers m for which the equation

z3 + (3 + i)z2 − 3z − (m + i) = 0

has at least a real root.

24. Find all complex numbers z such that

z′ = (z − 2)(z + i)

is a real number.

25. Find all complex numbers z such that |z| =
∣∣∣∣1z
∣∣∣∣.

26. Let z1, z2 ∈ C be complex numbers such that |z1 + z2| = √
3 and

|z1| = |z2| = 1. Compute |z1 − z2|.
27. Find all positive integers n such that(

−1 + i
√

3

2

)n

+
(

−1 − i
√

3

2

)n

= 2.

28. Let n > 2 be an integer. Find the number of solutions to the equation

zn−1 = i z.

29. Let z1, z2, z3 be complex numbers with

|z1| = |z2| = |z3| = R > 0.

Prove that

|z1 − z2| · |z2 − z3| + |z3 − z1| · |z1 − z2| + |z2 − z3| · |z3 − z1| ≤ 9R2.

30. Let u, v, w, z be complex numbers such that |u| < 1, |v| = 1 and

w = v(u − z)

u · z − 1
. Prove that |w| ≤ 1 if and only if |z| ≤ 1.
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31. Let z1, z2, z3 be complex numbers such that

z1 + z2 + z3 = 0 and |z1| = |z2| = |z3| = 1.

Prove that

z2
1 + z2

2 + z2
3 = 0.

32. Consider the complex numbers z1, z2, . . . , zn with

|z1| = |z2| = · · · = |zn| = r > 0.

Prove that the number

E = (z1 + z2)(z2 + z3) · · · (zn−1 + zn)(zn + z1)

z1 · z2 · · · zn

is real.

33. Let z1, z2, z3 be distinct complex numbers such that

|z1| = |z2| = |z3| > 0.

If z1 + z2z3, z2 + z1z3 and z3 + z1z2 are real numbers, prove that z1z2z3 = 1.

34. Let x1 and x2 be the roots of the equation x2 − x + 1 = 0. Compute:

a) x2000
1 + x2000

2 ; b) x1999
1 + x1999

2 ; c) xn
1 + xn

2 , for n ∈ N.

35. Factorize (in linear polynomials) the following polynomials:

a) x4 + 16; b) x3 − 27; c) x3 + 8; d) x4 + x2 + 1.

36. Find all quadratic equations with real coefficients that have one of the following

roots:

a) (2 + i)(3 − i); b)
5 + i

2 − i
; c) i51 + 2i80 + 3i45 + 4i38.

37. (Hlawka’s inequality) Prove that the following inequality

|z1 + z2| + |z2 + z3| + |z3 + z1| ≤ |z1| + |z2| + |z3| + |z1 + z2 + z3|
holds for all complex numbers z1, z2, z3.

1.2 Geometric Interpretation of the Algebraic
Operations

1.2.1 Geometric interpretation of a complex number

We have defined a complex number z = (x, y) = x + yi to be an ordered pair of

real numbers (x, y) ∈ R × R, so it is natural to let a complex number z = x + yi

correspond to a point M(x, y) in the plane R × R.
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For a formal introduction, let us consider P to be the set of points of a given plane �

equipped with a coordinate system x Oy. Consider the bijective function ϕ : C → P ,

ϕ(z) = M(x, y).

Definition. The point M(x, y) is called the geometric image of the complex number

z = x + yi .

The complex number z = x + yi is called the complex coordinate of the point

M(x, y). We will use the notation M(z) to indicate that the complex coordinate of M

is the complex number z.

Figure 1.2.

The geometric image of the complex conjugate z of a complex number z = x + yi

is the reflection point M ′(x, −y) across the x-axis of the point M(x, y) (see Fig. 1.2).

The geometric image of the additive inverse −z of a complex number z = x + yi is

the reflection M ′′(−x, −y) across the origin of the point M(x, y) (see Fig. 1.2).

The bijective function ϕ maps the set R onto the x-axis, which is called the real axis.

On the other hand, the imaginary complex numbers correspond to the y-axis, which

is called the imaginary axis. The plane �, whose points are identified with complex

numbers, is called the complex plane.

On the other hand, we can also identify a complex number z = x + yi with the

vector −→v = −−→
O M , where M(x, y) is the geometric image of the complex number z.
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Figure 1.3.

Let V0 be the set of vectors whose initial points are the origin O . Then we can define

the bijective function

ϕ′ : C → V0, ϕ′(z) = −−→
O M = −→v = x

−→
i + y

−→
j ,

where
−→
i ,

−→
j are the vectors of the x-axis and y-axis, respectively.

1.2.2 Geometric interpretation of the modulus

Let us consider a complex number z = x + yi and the geometric image M(x, y) in the

complex plane. The Euclidean distance O M is given by the formula

O M =
√

(xM − xO)2 + (yM − yO)2,

hence O M = √
x2 + y2 = |z| = |−→v |. In other words, the absolute value |z| of a

complex number z = x + yi is the length of the segment O M or the magnitude of the

vector −→v = x
−→
i + y

−→
j .

Remarks. a) For a positive real number r , the set of complex numbers with moduli

r corresponds in the complex plane to C(O; r), our notation for the circle C with center

O and radius r .

b) The complex numbers z with |z| < r correspond to the interior points of circle C;

on the other hand, the complex numbers z with |z| > r correspond to the points in the

exterior of circle C.

Example. The numbers zk = ±1

2
±

√
3

2
i , k = 1, 2, 3, 4, are represented in the

complex plane by four points on the unit circle centered on the origin, since

|z1| = |z2| = |z3| = |z4| = 1.
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1.2.3 Geometric interpretation of the algebraic operations

a) Addition and subtraction. Consider the complex numbers z1 = x1 + y1i and z2 =
x2 + y2i and the corresponding vectors −→v 1 = x1

−→
i + y1

−→
j and −→v 2 = x2

−→
i + y2

−→
j .

Observe that the sum of the complex numbers is

z1 + z2 = (x1 + x2) + (y1 + y2)i,

and the sum of the vectors is

−→v 1 + −→v 2 = (x1 + x2)
−→
i + (y1 + y2)

−→
j .

Therefore, the sum z1 + z2 corresponds to the sum −→v 1 + −→v 2.

Figure 1.4.

Examples. 1) We have (3 + 5i) + (6 + i) = 9 + 6i ; hence the geometric image of

the sum is given in Fig. 1.5.

2) Observe that (6 − 2i) + (−2 + 5i) = 4 + 3i . Therefore the geometric image of

the sum of these two complex numbers is the point M(4, 3) (see Fig. 1.6).
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On the other hand, the difference of the complex numbers z1 and z2 is

z1 − z2 = (x1 − x2) + (y1 − y2)i,

and the difference of the vectors v1 and v2 is

−→v 1 − −→v 2 = (x1 − x2)
−→
i + (y1 − y2)

−→
j .

Hence, the difference z1 − z2 corresponds to the difference −→v 1 − −→v 2.

3) We have (−3 + i) − (2 + 3i) = (−3 + i) + (−2 − 3i) = −5 − 2i ; hence the

geometric image of difference of these two complex numbers is the point M(−5, −2)

given in Fig. 1.7.

4) Note that (3 − 2i) − (−2 − 4i) = (3 − 2i) + (2 + 4i) = 5 + 2i , and obtain

the point M(−2, −4) as the geometric image of the difference of these two complex

numbers (see Fig. 1.8).

Remark. The distance M1(x1, y1) and M2(x2, y2) is equal to the modulus of the

complex number z1 − z2 or to the length of the vector −→v 1 − −→v 2. Indeed,

|M1 M2| = |z1 − z2| = |−→v 1 − −→v 2| =
√

(x2 − x1)2 + (y2 − y1)2.

b) Real multiples of a complex number. Consider a complex number z = x + iy

and the corresponding vector −→v = x
−→
i + y

−→
j . If λ is a real number, then the real

multiple λz = λx + iλy corresponds to the vector

λ−→v = λx
−→
i + λy

−→
j .

Note that if λ > 0 then the vectors λ−→v and −→v have the same orientation and

|λ−→v | = λ|−→v |.
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When λ < 0, the vector λ−→v changes to the opposite orientation and |λ−→v | = −λ|−→v |.
Of course, if λ = 0, then λ−→v = −→

0 .

Examples. 1) We have 3(1 + 2i) = 3 + 6i ; therefore M ′(3, 6) is the geometric

image of the product of 3 and z = 1 + 2i .

2) Observe that −2(−3 + 2i) = 6 − 4i , and obtain the point M ′(6, −4) as the

geometric image of the product of −2 and z = −3 + 2i .

Figure 1.10.
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1.2.4 Problems

1. Represent the geometric images of the following complex numbers:

z1 = 3 + i ; z2 = −4 + 2i ; z3 = −5 − 4i ; z4 = 5 − i ;

z5 = 1; z6 = −3i ; z7 = 2i ; z8 = −4.

2. Find the geometric interpretation for the following equalities:

a) (−5 + 4i) + (2 − 3i) = −3 + i ;

b) (4 − i) + (−6 + 4i) = −2 + 3i ;

c) (−3 − 2i) − (−5 + i) = 2 − 3i ;

d) (8 − i) − (5 + 3i) = 3 − 4i ;

e) 2(−4 + 2i) = −8 + 4i ;

f) −3(−1 + 2i) = 3 − 6i .

3. Find the geometric image of the complex number z in each of the following cases:

a) |z − 2| = 3; b) |z + i | < 1; c) |z − 1 + 2i | > 3;

d) |z − 2| − |z + 2| < 2; e) 0 < Re(i z) < 1; f) −1 < Im(z) < 1;

g) Re
( z − 2

z − 1

)
= 0; h)

1 + z

z
∈ R.

4. Find the set of points P(x, y) in the complex plane such that

|
√

x2 + 4 + i
√

y − 4| = √
10.

5. Let z1 = 1 + i and z2 = −1 − i . Find z3 ∈ C such that triangle z1, z2, z3 is

equilateral.

6. Find the geometric images of the complex numbers z such that the triangle with

vertices at z, z2 and z3 is right-angled.

7. Find the geometric images of the complex numbers z such that∣∣∣∣z + 1

z

∣∣∣∣ = 2.
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Complex Numbers

in Trigonometric Form

2.1 Polar Representation of Complex Numbers

2.1.1 Polar coordinates in the plane

Let us consider a coordinate plane and a point M(x, y) that is not the origin.

The real number r = √x2 + y2 is called the polar radius of the point M . The direct

angle t∗ ∈ [0, 2π) between the vector
−−→
O M and the positive x-axis is called the polar

argument of the point M . The pair (r, t∗) is called the polar coordinates of the point M .

We will write M(r, t∗). Note that the function h : R×R\{(0, 0)} → (0, ∞)×[0, 2π),

h((x, y)) = (r, t∗) is bijective.

The origin O is the unique point such that r = 0; the argument t∗ of the origin is

not defined.

For any point M in the plane there is a unique intersection point P of the ray (O M

with the unit circle centered at the origin. The point P has the same polar argument t∗.

Using the definition of the sine and cosine functions we find that

x = r cos t∗ and y = r sin t∗.

Therefore, it is easy to obtain the cartesian coordinates of a point from its polar coor-

dinates.

Conversely, let us consider a point M(x, y). The polar radius is r = √
x2 + y2. To

determine the polar argument we study the following cases:
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Figure 2.1.

a) If x �= 0, from tan t∗ = y

x
we deduce that

t∗ = arctan
y

x
+ kπ,

where

k =

⎧⎪⎨⎪⎩
0, for x > 0 and y ≥ 0

1, for x < 0 and any y

2, for x > 0 and y < 0.

b) If x = 0 and y �= 0, then

t∗ =
{

π/2, for y > 0

3π/2, for y < 0.

Examples. 1. Let us find the polar coordinates of the points M1(2, −2), M2(−1, 0),

M3(−2
√

3, −2), M4(
√

3, 1), M5(3, 0), M6(−2, 2), M7(0, 1) and M8(0, −4).

In this case we have r1 = √
22 + (−2)2 = 2

√
2; t∗1 = arctan(−1) + 2π = −π

4
+

2π = 7π

4
, so M1

(
2
√

2,
7π

4

)
.

Observe that r2 = 1, t∗2 = arctan 0 + π = π , so M2(1, π).

We have r3 = 4, t∗3 = arctan

√
3

3
+ π = π

6
+ π = 7π

6
, so M3

(
4,

7π

6

)
.

Note that r4 = 2, t∗4 = arctan

√
3

3
= π

6
, so M4

(
2,

π

6

)
.

We have r5 = 3, t∗5 = arctan 0 + 0 = 0, so M5(3, 0).

We have r6 = 2
√

2, t∗6 = arctan(−1) + π = −π

4
+ π = 3π

4
, so M6

(
2
√

2,
3π

4

)
.

Note that r7 = 1, t∗7 = π

2
, so M7

(
1,

π

2

)
.
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Observe that r8 = 4, t∗8 = 3π

2
, so M8

(
1,

3π

2

)
.

2. Let us find the cartesian coordinates of the points M1

(
2,

2π

3

)
, M2

(
3,

7π

4

)
and

M3(1, 1).

We have x1 = 2 cos
2π

3
= 2

(
−1

2

)
= −1, y1 = 2 sin

2π

3
= 2

√
3

2
= √

3, so

M1(−1,
√

3).

Note that x2 = 3 cos
7π

4
= 3

√
2

2
, y2 = 3 sin

7π

4
= −3

√
2

2
, so

M2

(
3
√

2

2
, −3

√
2

2

)
.

Observe that x3 = cos 1, y2 = sin 1, so M3(cos 1, sin 1).

2.1.2 Polar representation of a complex number

For a complex number z = x + yi we can write the polar representation

z = r(cos t∗ + i sin t∗),

where r ∈ [0, ∞) and t∗ ∈ [0, 2π) are the polar coordinates of the geometric image

of z.

The polar argument t∗ of the geometric image of z is called the argument of z,

denoted by arg z. The polar radius r of the geometric image of z is equal to the modulus

of z. For z �= 0, the modulus and argument of z are uniquely determined.

Consider z = r(cos t∗ + i sin t∗) and let t = t∗ + 2kπ for an integer k. Then

z = r [cos(t − 2kπ) + i sin(t − 2kπ)] = r(cos t + i sin t),

i.e., any complex number z can be represented as z = r(cos t + i sin t), where r ≥ 0

and t ∈ R. The set Arg z = {t : t∗ + 2kπ, k ∈ Z} is called the extended argument of

the complex number z.

Therefore, two complex numbers z1, z2 �= 0 represented as

z1 = r1(cos t1 + i sin t1) and z2 = r2(cos t2 + i sin t2)

are equal if and only if r1 = r2 and t1 − t2 = 2kπ , for an integer k.

Example 1. Let us find the polar representation of the numbers:

a) z1 = −1 − i ,

b) z2 = 2 + 2i ,

c) z3 = −1 + i
√

3,

d) z4 = 1 − i
√

3

and determine their extended argument.
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a) As in the figure below the geometric image P1(−1, −1) lies in the third quadrant.

Then r1 = √(−1)2 + (−1)2 = √
2 and

t∗1 = arctan
y

x
+ π = arctan 1 + π = π

4
+ π = 5π

4
.

Figure 2.2.

Hence

z1 = √
2

(
cos

5π

4
+ i sin

5π

4

)
and

Arg z1 =
{

5π

4
+ 2kπ | k ∈ Z

}
.

b) The point P2(2, 2) lies in the first quadrant, so we can write

r2 =
√

22 + 22 = 2
√

2 and t∗2 = arctan 1 = π

4
.

Hence

z2 = 2
√

2
(

cos
π

4
+ i sin

π

4

)
and

Arg z =
{π

4
+ 2kπ | k ∈ Z

}
.

c) The point P3(−1,
√

3) lies in the second quadrant, so

r3 = 2 and t∗3 = arctan(−√
3) + π = −π

3
+ π = 2π

3
.

Therefore,

z3 = 2

(
cos

2π

3
+ i sin

2π

3

)
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Figure 2.3.

and

Arg z3 =
{

2π

3
+ 2kπ | k ∈ Z

}
.

d) The point P4(1, −√
3) lies in the fourth quadrant (Fig. 2.4), so

r4 = 2 and t∗4 = arctan(−√
3) + 2π = −π

3
+ 2π = 5π

3
.

Figure 2.4.

Hence

z4 = 2

(
cos

5π

3
+ i sin

5π

3

)
,

and

Arg z4 =
{

5π

3
+ 2kπ | k ∈ Z

}
.
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Example 2. Let us find the polar representation of the numbers

a) z1 = 2i ,

b) z2 = −1,

c) z3 = 2,

d) z4 = −3i

and determine their extended argument.

a) The point P1(0, 2) lies on the positive y-axis, so

r1 = 2, t∗1 = π

2
, z1 = 2

(
cos

π

2
+ i sin

π

2

)
and

Arg z1 =
{π

2
+ 2kπ | k ∈ Z

}
.

b) The point P2(−1, 0) lies on the negative x-axis, so

r2 = 1, t∗2 = π, z2 = cos π + i sin π

and

Arg z2 = {π + 2kπ | k ∈ Z}.
c) The point P3(2, 0) lies on the positive x-axis, so

r3 = 2, t∗3 = 0, z3 = 2(cos 0 + i sin 0)

and

Arg z3 = {2kπ | k ∈ Z}.
d) The point P4(0, −3) lies on the negative y-axis, so

r4 = 3, t∗4 = 3π

2
, z3 = 2

(
cos

3π

2
+ i sin

3π

2

)
and

Arg z4 =
{

3π

2
+ 2kπ | k ∈ Z

}
.

Remark. The following formulas should be memorized:

1 = cos 0 + i sin 0; i = cos
π

2
+ i sin

π

2
;

− 1 = cos π + i sin π; −i = cos
3π

2
+ i sin

3π

2
.

Problem 1. Find the polar representation of the complex number

z = 1 + cos a + i sin a, a ∈ (0, 2π).



2.1. Polar Representation of Complex Numbers 35

Solution. The modulus is

|z| =
√

(1 + cos a)2 + sin2 a = √2(1 + cos a) =
√

4 cos2 a

2
= 2

∣∣∣cos
a

2

∣∣∣ .
The argument of z is determined as follows:

a) If a ∈ (0, π), then
a

2
∈
(

0,
π

2

)
and the point P(1 + cos a, sin a) lies on the first

quadrant. Hence

t∗ = arctan
sin a

1 + cos a
= arctan

(
tan

a

2

)
= a

2
,

and in this case

z = 2 cos
a

2

(
cos

a

2
+ i sin

a

2

)
.

b) If a ∈ (π, 2π), then
a

2
∈
(π

2
, π
)

and the point P(1 + cos a, sin a) lies on the

fourth quadrant. Hence

t∗ = arctan
(

tan
a

2

)
+ 2π = a

2
− π + 2π = a

2
+ π

and

z = −2 cos
a

2

(
cos
(a

2
+ π

)
+ i sin

(a

2
+ π

))
.

c) If a = π , then z = 0.

Problem 2. Find all complex numbers z such that |z| = 1 and∣∣∣∣ zz + z

z

∣∣∣∣ = 1.

Solution. Let z = cos x + i sin x , x ∈ [0, 2π). Then

1 =
∣∣∣∣ zz + z

z

∣∣∣∣ = |z2 + z2|
|z|2

= | cos 2x + i sin 2x + cos 2x − i sin 2x |
= 2| cos 2x |

hence

cos 2x = 1

2
or cos 2x = −1

2
.

If cos 2x = 1

2
, then

x1 = π

6
, x2 = 5π

6
, x3 = 7π

6
, x4 = 11π

6
.
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If cos 2x = −1

2
, then

x5 = π

3
, x6 = 2π

3
, x7 = 4π

3
, x8 = 5π

3
.

Hence there are eight solutions

zk = cos xk + i sin xk, k = 1, 2, . . . , 8.

2.1.3 Operations with complex numbers in polar representation

1. Multiplication

Proposition. Suppose that

z1 = r1(cos t1 + i sin t1) and z2 = r2(cos t2 + i sin t2).

Then

z1z2 = r1r2(cos(t1 + t2) + i sin(t1 + t2)). (1)

Proof. Indeed,

z1z2 = r1r2(cos t1 + i sin t1)(cos t2 + i sin t2)

= r1r2((cos t1 cos t2 − sin t1 sin t2) + i(sin t1 cos t2 + sin t2 cos t1))

= r1r2(cos(t1 + t2) + i sin(t1 + t2)). �

Remarks. a) We find again that |z1z2| = |z1| · |z2|.
b) We have arg(z1z2) = arg z1 + arg z2 − 2kπ , where

k =
{

0, for arg z1 + arg z2 < 2π,

1, for arg z1 + arg z2 ≥ 2π.

c) Also we can write Arg (z1z2) = {arg z1 + arg z2 + 2kπ : k ∈ Z}.
d) Formula (1) can be extended to n ≥ 2 complex numbers. If zk = rk(cos tk +

i sin tk), k = 1, . . . , n, then

z1z2 · · · zn = r1r2 · · · rn(cos(t1 + t2 + · · · + tn) + i sin(t1 + t2 + · · · + tn)).

The proof by induction is immediate. This formula can be written as

n∏
k=1

zk =
n∏

k=1

rk

(
cos

n∑
k=1

tk + i sin
n∑

k=1

tk

)
. (2)
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Example. Let z1 = 1 − i and z2 = √
3 + i . Then

z1 = √
2

(
cos

7π

4
+ i sin

7π

4

)
, z2 = 2

(
cos

π

6
+ i sin

π

6

)
and

z1z2 = 2
√

2

[
cos

(
7π

4
+ π

6

)
+ i sin

(
7π

4
+ π

6

)]

= 2
√

2

(
cos

23π

12
+ i sin

23π

12

)
.

2. The power of a complex number

Proposition. (De Moivre1) For z = r(cos t + i sin t) and n ∈ N, we have

zn = rn(cos nt + i sin nt). (3)

Proof. Apply formula (2) for z = z1 = z2 = · · · = zn to obtain

zn = r · r · · · r︸ ︷︷ ︸
n times

(cos(t + t + · · · + t︸ ︷︷ ︸
n times

) + i sin(t + t + · · · + t︸ ︷︷ ︸
n times

))

= rn(cos nt + i sin nt). �

Remarks. a) We find again that |zn| = |z|n .

b) If r = 1, then (cos t + i sin t)n = cos nt + i sin nt .

c) We can write Arg zn = {n arg z + 2kπ : k ∈ Z}.
Example. Let us compute (1 + i)1000.

The polar representation of 1 + i is
√

2
(

cos
π

4
+ i sin

π

4

)
. Applying de Moivre’s

formula we obtain

(1 + i)1000 = (
√

2)1000
(

cos 1000
π

4
+ i sin 1000

π

4

)
= 2500(cos 250π + i sin 250π) = 2500.

Problem. Prove that

sin 5t = 16 sin5 t − 20 sin3 t + 5 sin t;

cos 5t = 16 cos5 t − 20 cos3 t + 5 cos t.

1Abraham de Moivre (1667–1754), French mathematician, a pioneer in probability theory and trigonom-

etry.
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Solution. Using de Moivre’s theorem to expand (cos t + i sin t)5, then using the

binomial theorem, we have

cos 5t + i sin 5t = cos5 t + 5i cos4 t sin t + 10i2 cos3 t sin2 t

+ 10i3 cos2 t sin3 t + 5i4 cos t sin4 t + i5 sin5 t.

Hence

cos 5t + i sin 5t = cos5 t − 10 cos3 t (1 − cos2 t) + 5 cos t (1 − cos2 t)2

+ i(sint (1 − sin2 t)2 sin t − 10(1 − sin2 t) sin3 t + sin5 t).

Simple algebraic manipulation leads to the desired result.

3. Division

Proposition. Suppose that

z1 = r1(cos t1 + i sin t2), z2 = r2(cos t2 + i sin t2) �= 0.

Then
z1

z2
= r1

r2
[cos(t1 − t2) + i sin(t1 − t2)].

Proof. We have

z1

z2
= r1(cos t1 + i sin t1)

r2(cos t2 + i sin t2)
=

= r1(cos t1 + i sin t1)(cos t2 − i sin t2)

r2(cos2 t2 + sin2 t2)

= r1

r2
[(cos t1 cos t2 + sin t1 sin t2) + i(sin t1 cos t2 − sin t2 cos t1)]

= r1

r2
(cos(t1 − t2) + i sin(t1 − t2)). �

Remarks. a) We have again

∣∣∣∣ z1

z2

∣∣∣∣ = r1

r2
= |z1|

|z2| ;

b) We can write Arg

(
z1

z2

)
= {arg z1 − arg z2 + 2kπ : k ∈ Z};

c) For z1 = 1 and z2 = z,

1

z
= z−1 = 1

r
(cos(−t) + i sin(−t));

d) De Moivre’s formula also holds for negative integer exponents n, i.e., we have

zn = rn(cos nt + i sin nt).
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Problem. Compute

z = (1 − i)10(
√

3 + i)5

(−1 − i
√

3)10
.

Solution. We can write

z =
(
√

2)10
(

cos
7π

4
+ i sin

7π

4

)10

· 25
(

cos
π

6
+ i sin

π

6

)5

210

(
cos

4π

3
+ i sin

4π

3

)10

=
210
(

cos
35π

2
+ i sin

35π

2

)(
cos

5π

6
+ i sin

5π

6

)
210

(
cos

40π

3
+ i sin

40π

3

)

=
cos

55π

3
+ i sin

55π

3

cos
40π

3
+ i sin

40π

3

= cos 5π + i sin 5π = −1.

2.1.4 Geometric interpretation of multiplication

Consider the complex numbers

z1 = r1(cos t∗1 + i sin t∗1 ), z2 = r2(cos t∗2 + i sin t∗2 )

and their geometric images M1(r1, t∗1 ), M2(r2, t∗2 ). Let P1, P2 be the intersection

points of the circle C(O; 1) with the rays (O M1 and (O M2. Construct the point

P3 ∈ C(O; 1) with the polar argument t∗1 + t∗2 and choose the point M3 ∈ (O P3

such that O M3 = O M1 · O M2. Let z3 be the complex coordinate of M3. The point

M3(r1r2, t∗1 + t∗2 ) is the geometric image of the product z1 · z2.

Let A be the geometric image of the complex number 1. Because

O M3

O M1
= O M2

1
, i.e.,

O M3

O M2
= O M2

O A

and M̂2 O M3 = ÂO M1, it follows that triangles O AM1 and O M2 M3 are similar.

In order to construct the geometric image of the quotient, note that the image of
z3

z2
is M1.

2.1.5 Problems

1. Find the polar coordinates for the following points, given their cartesian coordinates:

a) M1(−3, 3); b) M2(−4
√

3, −4); c) M3(0, −5);

d) M4(−2, −1); e) M5(4, −2).
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Figure 2.5.

2. Find the cartesian coordinates for the following points, given their polar coordinates:

a) P1

(
2,

π

3

)
; b) P2

(
4, 2π − arcsin

3

5

)
; c) P3(2, π);

d) P4(3, −π); e) P5

(
1,

π

2

)
; f) P6

(
4,

3π

2

)
.

3. Express arg(z) and arg(−z) in terms of arg(z).

4. Find the geometric images for the complex numbers z in each of the following cases:

a) |z| = 2; b) |z + i | ≥ 2; c) |z − i | ≤ 3;

d) π < arg z <
5π

4
; e) arg z ≥ 3π

2
; f) arg z <

π

2
;

g) arg(−z) ∈
(π

6
,
π

3

)
; h) |z + 1 + i | < 3 and 0 < arg z <

π

6
.

5. Find polar representations for the following complex numbers:

a) z1 = 6 + 6i
√

3; b) z2 = −1

4
+ i

√
3

4
; c) z3 = −1

2
− i

√
3

2
;

d) z4 = 9 − 9i
√

3; e) z5 = 3 − 2i ; f) z6 = −4i .

6. Find polar representations for the following complex numbers:

a) z1 = cos a − i sin a, a ∈ [0, 2π);

b) z2 = sin a + i(1 + cos a), a ∈ [0, 2π);

c) z3 = cos a + sin a + i(sin a − cos a), a ∈ [0, 2π);

d) z4 = 1 − cos a + i sin a, a ∈ [0, 2π).

7. Compute the following products using the polar representation of a complex num-

ber:

a)

(
1

2
− i

√
3

2

)
(−3 + 3i)(2

√
3 + 2i); b) (1 + i)(−2 − 2i) · i ;

c) −2i · (−4 + 4
√

3i) · (3 + 3i); d) 3 · (1 − i)(−5 + 5i).
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Verify your results using the algebraic form.

8. Find |z|, arg z, Arg z, arg z, arg(−z) for

a) z = (1 − i)(6 + 6i); b) z = (7 − 7
√

3i)(−1 − i).

9. Find |z| and arg z for

a) z = (2
√

3 + 2i)8

(1 − i)6
+ (1 + i)6

(2
√

3 − 2i)8
;

b) z = (−1 + i)4

(
√

3 − i)10
+ 1

(2
√

3 + 2i)4
;

c) z = (1 + i
√

3)n + (1 − i
√

3)n .

10. Prove that de Moivre’s formula holds for negative integer exponents.

11. Compute:

a) (1 − cos a + i sin a)n for a ∈ [0, 2π) and n ∈ N;

b) zn + 1

zn
, if z + 1

z
= √

3.

2.2 The nth Roots of Unity

2.2.1 Defining the nth roots of a complex number

Consider a positive integer n ≥ 2 and a complex number z0 �= 0. As in the field of real

numbers, the equation

Zn − z0 = 0 (1)

is used for defining the nth roots of number z0. Hence we call any solution Z of the

equation (1) an nth root of the complex number z0.

Theorem. Let z0 = r(cos t∗ + i sin t∗) be a complex number with r > 0 and t∗ ∈
[0, 2π).

The number z0 has n distinct nth roots, given by the formulas

Zk = n
√

r

(
cos

t∗ + 2kπ

n
+ i sin

t∗ + 2kπ

n

)
,

k = 0, 1, . . . , n − 1.

Proof. We use the polar representation of the complex number Z with the extended

argument

Z = ρ(cos ϕ + i sin ϕ).

By definition, we have Zn = z0 or equivalently

ρn(cos nϕ + i sin nϕ) = r(cos t∗ + i sin t∗).

We obtain ρn = r and nϕ = t∗+2kπ for k ∈ Z; hence ρ = n
√

r and ϕk = t∗

n
+k · 2π

n
for k ∈ Z.
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So far the roots of equation (1) are

Zk = n
√

r(cos ϕk + i sin ϕk) for k ∈ Z.

Now observe that 0 ≤ ϕ0 < ϕ1 < · · · < ϕn−1 < 2π , so the numbers ϕk , k ∈
{0, 1, . . . , n − 1}, are reduced arguments, i.e., ϕ∗

k = ϕk . Until now we had n distinct

roots of z0:

Z0, Z1, . . . , Zn−1.

Consider some integer k and let r ∈ {0, 1, . . . , n − 1} be the residue of k modulo n.

Then k = nq + r for q ∈ Z, and

ϕk = t∗

n
+ (nq + r)

2π

n
= t∗

n
+ r

2π

n
+ 2qπ = ϕr + 2qπ.

It is clear that Zk = Zr . Hence

{Zk : k ∈ Z} = {Z0, Z1, . . . , Zn−1}.

In other words, there are exactly n distinct nth roots of z0, as claimed. �
The geometric images of the nth roots of a complex number z0 �= 0 are the vertices

of a regular n-gon inscribed in a circle with center at the origin and radius n
√

r .

To prove this, denote M0, M1, . . . , Mn−1 the points with complex coordinates Z0,

Z1, . . . , Zn−1. Because O Mk = |Zk | = n
√

r for k ∈ {0, 1, . . . , n − 1}, it follows that

the points Mk lie on the circle C(O; n
√

r). On the other hand, the measure of the arc
�

Mk Mk+1 is equal to

arg Zk+1 − arg Zk = t∗ + 2(k + 1)π − (t∗ + 2kπ)

n
= 2π

n
,

for all k ∈ {0, 1, . . . , n − 2} and the remaining arc
�

Mn−1 M0 is

2π

n
= 2π − (n − 1)

2π

n
.

Because all of the arcs
�

M0 M1,
�

M1 M2, . . . ,
�

Mn−1 M0 are equal, the polygon

M0 M1 · · · Mn−1 is regular.

Example. Let us find the third roots of the number z = 1 + i and represent them in

the complex plane.

The polar representation of z = 1 + i is

z = √
2
(

cos
π

4
+ i sin

π

4

)
.
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The cube roots of the number z are

Zk = 6
√

2

(
cos

(
π

12
+ k

2π

3

)
+ i sin

(
π

12
+ k

2π

3

))
, k = 0, 1, 2,

or, in explicit form,

Z0 = 6
√

2
(

cos
π

12
+ i sin

π

12

)
,

Z1 = 6
√

2

(
cos

3π

4
+ i sin

3π

4

)
and

Z2 = 6
√

2

(
cos

17π

12
+ i sin

17π

12

)
.

Using polar coordinates, the geometric images of the numbers Z0, Z1, Z2 are

M0

(
6
√

2,
π

12

)
, M1

(
6
√

2,
3π

4

)
, M2

(
6
√

2,
17π

12

)
.

The resulting equilateral triangle M0 M1 M2 is shown in the following figure:

Figure 2.6.

2.2.2 The nth roots of unity

The roots of the equation Zn − 1 = 0 are called the nth roots of unity. Since 1 =
cos 0 + i sin 0, from the formulas for the nth roots of a complex number we derive that

the nth roots of unity are

εk = cos
2kπ

n
+ i sin

2kπ

n
, k ∈ {0, 1, 2, . . . , n − 1}.

Explicitly, we have

ε0 = cos 0 + i sin 0 = 1;
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ε1 = cos
2π

n
+ i sin

2π

n
= ε;

ε2 = cos
4π

n
+ i sin

4π

n
= ε2;

. . .

εn−1 = cos
2(n − 1)π

n
+ i sin

2(n − 1)π

n
= εn−1.

The set {1, ε, ε2, . . . , εn−1} is denoted by Un . Observe that the set Un is generated

by the element ε, i.e., the elements of Un are the powers of ε.

As stated before, the geometric images of the nth roots of unity are the vertices of a

regular polygon with n sides inscribed in the unit circle with one of the vertices at 1.

We take a brief look at some particular values of n.

i) For n = 2, the equation Z2 − 1 = 0 has the roots −1 and 1, which are the square

roots of unity.

ii) For n = 3, the cube roots of unity, i.e., the roots of equation Z3 −1 = 0 are given

by

εk = cos
2kπ

3
+ i sin

2kπ

3
for k ∈ {0, 1, 2}.

Hence

ε0 = 1, ε1 = cos
2π

3
+ i sin

2π

3
= −1

2
+ i

√
3

2
= ε

and

ε2 = cos
4π

3
+ i sin

4π

3
= −1

2
− i

√
3

2
= ε2.

They form an equilateral triangle inscribed in the circle C(O; 1) as in the figure

below.

Figure 2.7.
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iii) For n = 4, the fourth roots of unity are

εk = cos
2kπ

4
+ i sin

2kπ

4
for k = 0, 1, 2, 3.

In explicit form, we have

ε0 = cos 0 + i sin 0 = 1; ε1 = cos
π

2
+ i sin

π

2
= i;

ε2 = cos π + i sin π = −1 and ε3 = cos
3π

2
+ i sin

3π

2
= −i.

Observe that U4 = {1, i, i2, i3} = {1, i, −1, −i}. The geometric images of the

fourth roots of unity are the vertices of a square inscribed in the circle C(O; 1).

Figure 2.8.

The root εk ∈ Un is called primitive if for all positive integer m < n we have

εm
k �= 1.

Proposition 1. a) If n|q, then any root of Zn − 1 = 0 is a root of Zq − 1 = 0.

b) The common roots of Zm − 1 = 0 and Zn − 1 = 0 are the roots of Zd − 1 = 0,

where d = gcd(m, n), i.e., Um ∩ Un = Ud.

c) The primitive roots of Zm −1 = 0 are εk = cos
2kπ

m
+ i sin

2kπ

m
, where 0 ≤ k ≤

m and gcd(k, m) = 1.

Proof. a) If q = pn, then Zq − 1 = (Zn)p − 1 = (Zn − 1)(Z (p−1)n +· · ·+ Zn + 1)

and the conclusion follows.

b) Consider εp = cos
2pπ

m
+ i sin

2pπ

m
a root of Zm − 1 = 0 and ε′

q = cos
2qπ

n
+

i sin
2qπ

n
a root of Zn − 1 = 0. Since |εp| = |ε′

q | = 1, we have εp = ε′
q if and only
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if arg εp = arg ε′
q , i.e.,

2pπ

m
= 2qπ

n
+ 2rπ for some integer r . The last relation is

equivalent to
p

m
− q

n
= r , that is, pn − qm = rmn.

On the other hand we have m = m′d and n = n′d, where gcd(m′, n′) = 1. From the

relation pn − qm = rmn we find n′ p − m′q = rm′n′d. Hence m′|n′ p, so m′|p. That

is, p = p′m′ for some positive integer p′ and

arg εp = 2pπ

m
= 2p′m′π

m′d
= 2p′π

d
and εd

p = 1.

Conversely, since d|m and d|n (from property a), any root of Zd − 1 = 0 is a root

of Zm − 1 = 0 and Zn − 1 = 0.

c) First we will find the smallest positive integer p such that ε
p
k = 1. From the

relation ε
p
k = 1 it follows that

2kpπ

m
= 2k′π for some positive integer k′. That is,

kp

m
= k′ ∈ Z. Consider d = gcd(k, m) and k = k′d, m = m′d, where gcd(k′, m′) = 1.

We obtain
k′ pd

m′d
= k′ p

m′ ∈ Z. Since k′ and m′ are relatively primes, we get m′|p.

Therefore, the smallest positive integer p with ε
p
k = 1 is p = m′. Substituting in the

relation m = m′d , it follows that p = m

d
, where d = gcd(k, m).

If εk is a primitive root of unity, then from relation ε
p
k = 1, p = m

gcd(k, m)
, it

follows that p = m, i.e., gcd(k, m) = 1. �
Remark. From Proposition 1.b) one obtains that the equations Zm − 1 = 0 and

Zn − 1 = 0 have the unique common root 1 if and only if gcd(m, n) = 1.

Proposition 2. If ε ∈ Un is a primitive root of unity, then the roots of the equation

zn − 1 = 0 are εr , εr+1, . . . , εr+n−1, where r is an arbitrary positive integer.

Proof. Let r be a positive integer and consider h ∈ {0, 1, . . . , n−1}. Then (εr+h)n =
(εn)r+h = 1, i.e., εr+h is a root of Zn − 1 = 0.

We need only prove that εr , εr+1, . . . , εr+n−1 are distinct. Assume by way of con-

tradiction that for r + h1 �= r + h2 and h1 > h2, we have εr+h1 = εr+h2 . Then

εr+h2(εh1−h2 − 1) = 0. But εr+h2 �= 0 implies εh1−h2 = 1. Taking into account that

h1 − h2 < n and ε is a primitive root of Zn − 1 = 0, we get a contradiction. �
Proposition 3. Let ε0, ε1, . . . , εn−1 be the nth roots of unity. For any positive integer

k the following relation holds:

n−1∑
j=0

εk
j =

{
n, if n|k,

0, otherwise.
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Proof. Consider ε = cos
2π

n
+ i sin

2π

n
. Then ε ∈ Un is a primitive root of unity,

hence εm = 1 if and only if n|m. Assume that n does not divides k. We have

n−1∑
j=0

εk
j =

n−1∑
j=0

(ε j )k =
n−1∑
j=0

(εk) j = 1 − (εk)n

1 − εk
= 1 − (εn)k

1 − εk
= 0.

If n|k, then k = qn for some positive integer q, and we obtain

n−1∑
j=0

εk
j =

n−1∑
j=0

ε
qn
j =

n−1∑
j=0

(εn
j )

q =
n−1∑
j=0

1 = n. �

Proposition 4. Let p be a prime number and let ε = cos
2π

p
+ i sin

2π

p
. If

a0, a1, . . . , ap−1 are nonzero integers, the relation

a0 + a1ε + · · · + ap−1ε
p−1 = 0

holds if and only if a0 = a1 = · · · = ap−1.

Proof. If a0 = a1 = · · · = ap−1, then the above relation is clearly true.

Conversely, define the polynomials f, g ∈ Z[X ] by f = a1+a1 X +· · ·+ap−1 X p−1

and g = 1 + X + · · · + X p−1. If the polynomials f, g have common zeros, then

gcd( f, g) divides g. But it is well known (for example by Eisenstein’s irreducibility

criterion) that g is irreducible over Z. Hence gcd( f, g) = g, so g| f and we obtain

g = k f for some nonzero integer k, i.e., a0 = a1 = · · · = an−1. �
Problem 1. Find the number of ordered pairs (a, b) of real numbers such that (a +
bi)2002 = a − bi .

(American Mathematics Contest 12A, 2002, Problem 24)

Solution. Let z = a + bi , z = a − bi , and |z| = √
a2 + b2. The given relation

becomes z2002 = z. Note that

|z|2002 = |z2002| = |z| = |z|,
from which it follows that

|z|(|z|2001 − 1) = 0.

Hence |z| = 0, and (a, b) = (0, 0), or |z| = 1. In the case |z| = 1, we have

z2002 = z, which is equivalent to z2003 = z · z = |z|2 = 1. Since the equation

z2003 = 1 has 2003 distinct solutions, there are altogether 1 + 2003 = 2004 ordered

pairs that meet the required conditions.

Problem 2. Two regular polygons are inscribed in the same circle. The first polygon

has 1982 sides and the second has 2973 sides. If the polygons have any common ver-

tices, how many such vertices will there be?
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Solution. The number of common vertices is given by the number of common roots

of z1982 − 1 = 0 and z2973 − 1 = 0. Applying Proposition 1.b), the desired number is

d = gcd(1982, 2973) = 991.

Problem 3. Let ε ∈ Un be a primitive root of unity and let z be a complex number such

that |z − εk | ≤ 1 for all k = 0, 1, . . . , n − 1. Prove that z = 0.

Solution. From the given condition it follows that (z − εk)(z − εk) ≤ 1, yielding

|z|2 ≤ z(εk) + z · εk , k = 0, 1, . . . , n − 1. By summing these relations we obtain

n|z|2 ≤ z

(
n−1∑
k=0

εk

)
+ z ·

n−1∑
k=0

εk = 0.

Thus z = 0.

Problem 4. Let P0 P1 · · · Pn−1 be a regular polygon inscribed in a circle of radius 1.

Prove that:

a) P0 P1 · P0 P2 · · · P0 Pn−1 = n;

b) sin
π

n
sin

2π

n
· · · sin

(n − 1)π

n
= n

2n−1
;

c) sin
π

2n
sin

3π

2n
· · · sin

(2n − 1)π

2n
= 1

2n−1
.

Solution. a) Without loss of generality we may assume that the vertices of the poly-

gon are the geometric images of the nth roots of unity, and P0 = 1. Consider the

polynomial f = zn −1 = (z −1)(z − ε) · · · (z − εn−1), where ε = cos
2π

n
+ i sin

2π

n
.

Then it is clear that

n = f ′(1) = (1 − ε)(1 − ε2) · · · (1 − εn−1).

Taking the modulus of each side, the desired result follows.

b) We have

1 − εk = 1 − cos
2kπ

n
− i sin

2kπ

n
= 2 sin2 kπ

n
− 2i sin

kπ

n
cos

kπ

n

= 2 sin
kπ

n

(
sin

kπ

n
− i cos

kπ

n

)
,

hence |1 − εk | = 2 sin
kπ

n
, k = 1, 2, . . . , n − 1, and the desired trigonometric identity

follows from a).

c) Consider the regular polygon Q0 Q1 · · · Q2n−1 inscribed in the same circle whose

vertices are the geometric images of the (2n)th roots of unity. According to a),

Q0 Q1 · Q0 Q2 · · · Q0 Q2n−1 = 2n.
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Now taking into account that Q0 Q2 · · · Qn−2 is also a regular polygon, we deduce

from a) that

Q0 Q2 · Q0 Q4 · · · Q0 Q2n−2 = n.

Combining the last two relations yields

Q0 Q1 · Q0 Q3 · · · Q0 Q2n−1 = 2.

A similar computation to the one in b) leads to

Q0 Q2k−1 = 2 sin
(2k − 1)π

2n
, k = 1, 2, . . . , n,

and the desired result follows.

Let n be a positive integer and let εn = cos
2π

n
+ i sin

2π

n
. The nth-cyclotomic

polynomial is defined by

φn(x) =
∏

1≤k≤n−1
gcd(k,n)=1

(x − εk
n).

Clearly the degree of φn is ϕ(n), where ϕ is the Euler “totient” function. φn is a

monic polynomial with integer coefficients and is irreducible over Q. The first sixteen

cyclotomic polynomials are given below:

φ(x) = x − 1

φ2(x) = x + 1

φ3(x) = x2 + x + 1

φ4(x) = x2 + 1

φ5(x) = x4 + x3 + x2 + x + 1

φ6(x) = x2 − x + 1

φ7(x) = x6 + x5 + x4 + x3 + x2 + x + 1

φ8(x) = x4 + 1

φ9(x) = x6 + x3 + 1

φ10(x) = x4 − x3 + x2 − x + 1

φ11(x) = x10 + x9 + x8 + · · · + x + 1

φ12(x) = x4 − x2 + 1

φ13(x) = x12 + x11 + x10 + · · · + x + 1

φ14(x) = x6 − x5 + x4 − x3 + x2 − x + 1

φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1

φ16(x) = x8 + 1

The following properties of cyclotomic polynomials are well known:

1) If q > 1 is an odd integer, then φ2q(x) = φq(−x).
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2) If n > 1, then

φn(1) =
{

p, when n is a power of a prime p,

1, otherwise.

The next problem extends the trigonometric identity in Problem 4.b).

Problem 5. The following identities hold:

a)
∏

1≤k≤n−1
gcd(k,n)=1

sin
kπ

n
= 1

2ϕ(n)
, whenever n is not a power of a prime;

b)
∏

1≤k≤n−1
gcd(k,n)=1

cos
kπ

n
= (−1)

ϕ(n)
2

2ϕ(n)
, for all odd positive integers n.

Solution. a) As we have seen in Problem 4.b),

1 − εk
n = 2 sin

kπ

n

(
sin

kπ

n
− i cos

kπ

n

)
= 2

i
sin

kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)
.

We have

1 = φn(1) =
∏

1≤k≤n−1
gcd(k,n)=1

(1 − εk
n) =

∏
1≤k≤n−1

gcd(k,n)=1

2

i
sin

kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)

= 2ϕ(n)

iϕ(n)

⎛⎜⎝ ∏
1≤k≤n−1

gcd(k,n)=1

sin
kπ

n

⎞⎟⎠(cos
ϕ(n)

2
π + i sin

ϕ(n)

2
π

)

= 2ϕ(n)

(−1)
ϕ(n)

2

⎛⎜⎝ ∏
1≤k≤n−1

gcd(k,n)=1

sin
kπ

n

⎞⎟⎠ (−1)
ϕ(n)

2 ,

where we have used the fact that ϕ(n) is even, and also the well-known relation∑
1≤k≤n−1

gcd(k,n)=1

k = 1

2
nϕ(n).

The conclusion follows.

b) We have

1 + εk
n = 1 + cos

2kπ

n
+ i sin

2kπ

n
= 2 cos2 kπ

n
+ 2i sin

kπ

n
cos

kπ

n

= 2 cos
kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)
, k = 0, 1, . . . , n − 1.
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Because n is odd, from the relation φ2n(x) = φn(−1) it follows that φn(−1) =
φ2n(1) = 1. Then

1 = φn(−1) =
∏

1≤k≤n−1
gcd(k,n)=1

(1 − εk
n) = (−1)ϕ(n)

∏
1≤k≤n−1

gcd(k,n)=1

(1 + εk
n)

= (−1)ϕ(n)
∏

1≤k≤n−1
gcd(k,n)=1

2 cos
kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)

= (−1)ϕ(n)2ϕ(n)

⎛⎜⎝ ∏
1≤k≤n−1

gcd(k,n)=1

cos
kπ

n

⎞⎟⎠(cos
ϕ(n)

2
π + i sin

ϕ(n)

2
π

)

= (−1)
ϕ(n)

2 2ϕ(n)
∏

1≤k≤n−1
gcd(k,n)=1

cos
kπ

n
,

yielding the desired identity.

2.2.3 Binomial equations

A binomial equation is an equation of the form Zn + a = 0, where a ∈ C∗ and n ≥ 2

is an integer.

Solving for Z means finding the nth roots of the complex number −a. This is in fact

a simple polynomial equation of degree n with complex coefficients. From the well-

known fundamental theorem of algebra it follows that it has exactly n complex roots,

and it is obvious that the roots are distinct.

Example. 1) Let us find the roots of Z3 + 8 = 0.

We have −8 = 8(cos π + i sin π), so the roots are

Zk = 2

(
cos

π + 2kπ

3
+ i sin

π + 2kπ

3

)
, k ∈ {0, 1, 2}.

2) Let us solve the equation Z6 − Z3(1 + i) + i = 0.

Observe that the equation is equivalent to

(Z3 − 1)(Z3 − i) = 0.

Solving for Z the binomial equations Z3 − 1 = 0 and Z3 − i = 0, we obtain the

solutions

εk = cos
2kπ

3
+ i sin

2kπ

3
for k ∈ {0, 1, 2}

and

Zk = cos

π

2
+ 2kπ

3
+ i sin

π

2
+ 2kπ

3
for k ∈ {0, 1, 2}.
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2.2.4 Problems

1. Find the square roots of the following complex numbers:

a) z = 1 + i ; b) z = i ; c) z = 1√
2

+ i√
2

;

d) z = −2(1 + i
√

3); e) z = 7 − 24i .

2. Find the cube roots of the following complex numbers:

a) z = −i ; b) z = −27; c) z = 2 + 2i ;

d) z = 1

2
− i

√
3

2
; e) z = 18 + 26i .

3. Find the fourth roots of the following complex numbers:

a) z = 2 − i
√

12; b) z = √
3 + i ; c) z = i ;

d) z = −2i ; e) z = −7 + 24i .

4. Find the fifth, sixth, seventh, eighth, and twefth roots of the complex numbers given

above.

5. Let Un = {ε0, ε1, ε2, . . . , εn−1}. Prove that:

a) ε j · εk ∈ Un , for all j, k ∈ {0, 1, . . . , n − 1};
b) ε−1

j ∈ Un , for all j ∈ {0, 1, . . . , n − 1}.
6. Solve the equations:

a) z3 − 125 = 0; b) z4 + 16 = 0;

c) z3 + 64i = 0; d) z3 − 27i = 0.

7. Solve the equations:

a) z7 − 2i z4 − i z3 − 2 = 0; b) z6 + i z3 + i − 1 = 0;

c) (2 − 3i)z6 + 1 + 5i = 0; d) z10 + (−2 + i)z5 − 2i = 0.

8. Solve the equation

z4 = 5(z − 1)(z2 − z + 1).
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Complex Numbers and Geometry

3.1 Some Simple Geometric Notions and Properties

3.1.1 The distance between two points

Suppose that the complex numbers z1 and z2 have the geometric images M1 and M2.

Then the distance between the points M1 and M2 is given by

M1 M2 = |z1 − z2|.
The distance function d : C × C → [0, ∞) is defined by

d(z1, z2) = |z1 − z2|,
and it satisfies the following properties:

a) (positiveness and nondegeneration):

d(z1, z2) ≥ 0 for all z1, z2 ∈ C;
d(z1, z2) = 0 if and only if z1 = z2.

b) (symmetry):

d(z1, z2) = d(z2, z1) for all z1, z2 ∈ C.

c) (triangle inequality):

d(z1, z2) ≤ d(z1, z3) + d(z3, z2) for all z1, z2, z3 ∈ C.
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To justify c) let us observe that

|z1 − z2| = |(z1 − z3) + (z3 − z2)| ≤ |z1 − z3| + |z3 − z2|,
from the modulus property. Equality holds if and only if there is a positive real number

k such that

z3 − z1 = k(z2 − z3).

3.1.2 Segments, rays and lines

Let A and B be two distinct points with complex coordinates a and b. We say that the

point M with complex coordinate z is between the points A and B if z �= a, z �= b and

the following relation holds:

|a − z| + |z − b| = |a − b|.
We use the notation A − M − B.

The set (AB) = {M : A − M − B} is called the open segment determined by the

points A and B. The set [AB] = (AB)∪ {A, B} represents the closed segment defined

by the points A and B.

Theorem 1. Suppose A(a) and B(b) are two distinct points. The following state-

ments are equivalent:

1) M ∈ (AB);

2) there is a positive real number k such that z − a = k(b − z);
3) there is a real number t ∈ (0, 1) such that z = (1 − t)a + tb, where z is the

complex coordinate of M.

Proof. We first prove that 1) and 2) are equivalent. Indeed, we have M ∈ (AB) if and

only if |a − z|+ |z − b| = |a − b|. That is, d(a, z)+ d(z, b) = d(a, b), or equivalently

there is a real k > 0 such that z − a = k(b − z).

To prove that 2) ⇔ 3), set t = k

k + 1
∈ (0, 1) or k = t

1 − t
> 0. Then we have

z − a = k(b − z) if and only if z = 1

k + 1
a + k

k + 1
b. That is, z = (1 − t)a + tb and

we are done. �
The set (AB = {M | A − M − B or A − B − M} is called the open ray with endpoint

A that contains B.

Theorem 2. Suppose A(a) and B(b) are two distinct points. The following state-

ments are equivalent:

1) M ∈ (AB;

2) there is a positive real number t such that z = (1 − t)a + tb, where z is the

complex coordinate of M;
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3) arg(z − a) = arg(b − a);

4)
z − a

b − a
∈ R+.

Proof. It suffices to prove that 1) ⇒ 2) ⇒ 3) ⇒ 4) ⇒ 1).

1) ⇒ 2). Since M ∈ (AB we have A − M − B or A − B − M . There are numbers

t, l ∈ (0, 1) such that

z = (1 − t)a + tb or b = (1 − l)a + lz.

In the first case we are done; for the second case set t = 1

l
, hence

z = tb − (t − 1)a = (1 − t)a + tb,

as claimed.

2) ⇒ 3). From z = (1 − t)a + tb, t > 0 we obtain

z − a = t (b − a), t > 0.

Hence

arg(z − a) = arg(b − a).

3) ⇒ 4). The relation

arg
z − a

b − a
= arg(z − a) − arg(b − a) + 2kπ for some k ∈ Z

implies arg
z − a

b − a
= 2kπ , k ∈ Z. Since arg

z − a

b − a
∈ [0, 2π), it follows that k = 0 and

arg
z − a

b − a
= 0. Thus

z − a

b − a
∈ R+, as desired.

4) ⇒ 1). Let t = z − a

b − a
∈ R∗. Hence

z = a + t (b − a) = (1 − t)a + tb, t > 0.

If t ∈ (0, 1), then M ∈ (AB) ⊂ (AB.

If t = 1, then z = b and M = B ∈ (AB. Finally, if t > 1 then, setting l = 1

t
∈

(0, 1), we have

b = lz + (1 − l)a.

It follows that A − B − M and M ∈ (AB.

The proof is now complete. �
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Theorem 3. Suppose A(a) and B(b) are two distinct points. The following state-

ments are equivalent:

1) M(z) lies on the line AB.

2)
z − a

b − a
∈ R.

3) There is a real number t such that z = (1 − t)a + tb.

4)

∣∣∣∣∣ z − a z − a

b − a b − a

∣∣∣∣∣ = 0;

5)

∣∣∣∣∣∣∣
z z 1

a a 1

b b 1

∣∣∣∣∣∣∣ = 0.

Proof. To obtain the equivalences 1) ⇔ 2) ⇔ 3) observe that for a point C such

that C − A − B the line AB is the union (AB ∪ {A} ∪ (AC . Then apply Theorem 2.

Next we prove the equivalences 2) ⇔ 4) ⇔ 5).

Indeed, we have
z − a

b − a
∈ R if and only if

z − a

b − a
=
(

z − a

b − a

)
.

That is,
z − a

b − a
= z − a

b − a
, or, equivalently,

∣∣∣∣∣ z − a z − a

b − a b − a

∣∣∣∣∣ = 0, so we obtain that

2) is equivalent to 4).

Moreover, we have∣∣∣∣∣∣∣
z z 1

a a 1

b b 1

∣∣∣∣∣∣∣ = 0 if and only if

∣∣∣∣∣∣∣
z − a z − a 0

a a 1

b − a b − a 0

∣∣∣∣∣∣∣ = 0

The last relation is equivalent to∣∣∣∣∣ z − a z − a

b − a b − a

∣∣∣∣∣ = 0,

so we obtain that 4) is equivalent to 5), and we are done. �
Problem 1. Let z1, z2, z3 be complex numbers such that |z1| = |z2| = |z3| = R and

z2 �= z3. Prove that

min
a∈R

|az2 + (1 − a)z3 − z1| = 1

2R
|z1 − z2| · |z1 − z3|.

(Romanian Mathematical Olympiad – Final Round, 1984)

Solution. Let z = az2 + (1 − a)z3, a ∈ R and consider the points A1, A2, A3, A of

complex coordinates z1, z2, z3, z, respectively. From the hypothesis it follows that the
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circumcenter of triangle A1 A2 A3 is the origin of the complex plane. Notice that point

A lies on the line A2 A3, so A1 A = |z − z1| is greater than or equal to the altitude A1 B

of the triangle A1 A2 A3.

Figure 3.1.

It suffices to prove that

A1 B = 1

2R
|z1 − z2||z1 − z3| = 1

2R
A1 A2 · A1 A3.

Indeed, since R is the circumradius of the triangle A1 A2 A3, we have

A1 B = 2area[A1 A2 A3]
A2 A3

=
2

A1 A2 · A2 A3 · A3 A1

4R
A2 A3

= A1 A2 · A3 A1

2R
,

as claimed.

3.1.3 Dividing a segment into a given ratio

Consider two distinct points A(a) and B(b). A point M(z) on the line AB divides the

segments AB into the ratio k ∈ R \ {1} if the following vectorial relation holds:

−→
M A = k · −→

M B.

In terms of complex numbers this relation can be written as

a − z = k(b − z) or (1 − k)z = a − kb.

Hence, we obtain

z = a − kb

1 − k
.

Observe that for k < 0 the point M lies on the line segment joining the points A and

B. If k ∈ (0, 1), then M ∈ (AB \ [AB]. Finally, if k > 1, then M ∈ (B A \ [AB].
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As a consequence, note that for k = −1 we obtain that the coordinate of the mid-

point of segment [AB] is given by zM = a + b

2
.

Example. Let A(a), B(b), C(c) be noncollinear points in the complex plane. Then

the midpoint M of segment [AB] has the complex coordinate zM = a + b

2
. The cen-

troid G of triangle ABC divides the median [C M] into 2 : 1 internally, hence its

complex coordinate is given by k = −2, i.e.,

zG = c + 2zM

1 + 2
= a + b + c

3
.

3.1.4 Measure of an angle

Recall that a triangle is oriented if an ordering of its vertices is specified. It is posi-

tively or directly oriented if the vertices are oriented counterclockwise. Otherwise, we

say that the triangle is negatively oriented. Consider two distinct points M1(z1) and

M2(z2), other than the origin of a complex plane. The angle M̂1 O M2 is oriented if the

points M1 and M2 are ordered counterclockwise (Fig. 3.2 below).

Proposition. The measure of the directly oriented angle

M̂1 O M2 equals arg
z2

z1
.

Proof. We consider the following two cases.

Figure 3.2.

a) If the triangle M1 O M2 is negatively oriented (Fig. 3.2), then

M̂1 O M2 = x̂ O M2 − x̂ O M1 = arg z2 − arg z1 = arg
z2

z1
.

b) If the triangle M1 O M2 is positively oriented (Fig. 3.3), then

M̂1 O M2 = 2π − M̂2 O M1 = 2π − arg
z2

z1
,



3.1. Some Simple Geometric Notions and Properties 59

since the triangle M2 O M1 is negatively oriented. Thus

M̂1 O M2 = 2π − arg
z1

z2
= 2π −

(
2π − arg

z2

z1

)
= arg

z2

z1
,

as claimed. �

Figure 3.3.

Remark. The result also holds if the points O, M1, M2 are collinear.

Examples. a) Suppose that z1 = 1 + i and z2 = −1 + i . Then (see Fig. 3.4)

z2

z1
= −1 + i

1 + i
= (−1 + i)(1 − i)

2
= i,

so

M̂1 O M2 = arg i = π

2
and M̂2 O M1 = arg(−i) = 3π

2
.

Figure 3.4.
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Figure 3.5.

b) Suppose that z1 = i and z2 = 1. Then
z2

z1
= 1

i
= −i, so (see Fig. 3.5)

M̂1 O M2 = arg(−i) = 3π

2
and M̂2 O M1 = arg(i) = π

2
.

Theorem. Consider three distinct points M1(z1), M2(z2) and M3(z3).

The measure of the oriented angle ̂M2 M1 M3 is arg
z3 − z1

z2 − z1
.

Proof. The translation with the vector −z1 maps the points M1, M2, M3 into the

points O, M ′
2, M ′

3, with complex coordinates O, z2 − z1, z3 − z1. Moreover, we have
̂M2 M1 M3 = M̂ ′

2 O M ′
3. By the previous result, we obtain

M̂ ′
2 O M ′

3 = arg
z3 − z1

z2 − z1
,

as claimed. �
Example. Suppose that z1 = 4 + 3i , z2 = 4 + 7i , z3 = 8 + 7i . Then

z2 − z1

z3 − z1
= 4i

4 + 4i
= i(1 − i)

2
= 1 + i

2
,

so

̂M3 M1 M2 = arg
1 + i

2
= π

4

and

̂M2 M1 M3 = arg
2

1 + i
= arg(1 − i) = 7π

4
.

Remark. Using polar representation, from the above result we have

z3 − z1

z2 − z1
=
∣∣∣∣ z3 − z1

z2 − z1

∣∣∣∣ (cos

(
arg

z3 − z1

z2 − z1

)
+ i sin

(
arg

z3 − z1

z2 − z1

))

=
∣∣∣∣ z3 − z1

z2 − z1

∣∣∣∣ (cos ̂M2 M1 M3 + i sin ̂M2 M1 M3).
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3.1.5 Angle between two lines

Consider four distinct points Mi (zi ), i ∈ {1, 2, 3, 4}. The measure of the angle deter-

mined by the lines M1 M3 and M2 M4 equals arg
z3 − z1

z4 − z2
or arg

z4 − z2

z3 − z1
. The proof is

obtained following the same ideas as in the previous subsection.

3.1.6 Rotation of a point

Consider an angle α and the complex number given by

ε = cos α + i sin α.

Let z = r(cos t + i sin t) be a complex number and M its geometric image.

Form the product zε = r(cos(t + α) + i sin(t + α)) and let us observe that |zε| = r

and

arg(zε) = arg z + α.

It follows that the geometric image M ′ of zε is the rotation of M with respect to the

origin by the angle α.

Figure 3.6.

Now we have all the ingredients to establish the following result:

Proposition. Suppose that the point C is the rotation of B with respect to A by the

angle α.

If a, b, c are the coordinates of the points A, B, C, respectively, then

c = a + (b − a)ε, where ε = cos α + i sin α.

Proof. The translation with vector −a maps the points A, B, C into the points

O, B′, C ′, with complex coordinates O, b − a, c − a, respectively (see Fig. 3.7). The

point C ′ is the image of B ′ under rotation about the origin through the angle α, so

c − a = (b − a)ε, or c = a + (b − a)ε, as desired. �
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Figure 3.7.

We will call the formula in the above proposition the rotation formula.

Problem 1. Let ABC D and B N M K be two nonoverlapping squares and let E be the

midpoint of AN. If point F is the foot of the perpendicular from B to the line C K ,

prove that points E, F, B are collinear.

Solution. Consider the complex plane with origin at F and the axis C K and F B,

where F B is the imaginary axis.

Let c, k, bi be the complex coordinates of points C, K , B with c, k, b ∈ R. The

rotation with center B through the angle θ = π

2
maps point C to A, so A has the

complex coordinate a = b(1 − i)+ ci . Similarly, point N is obtained by rotating point

K around B through the angle θ = −π

2
and its complex coordinate is

n = b(1 + i) − ki.

The midpoint E of segment AN has the complex coordinate

e = a + n

2
= b + c − k

2
i,

so E lies on the line F B, as desired.

Problem 2. On the sides AB, BC, C D, D A of quadrilateral ABC D, and exterior

to the quadrilateral, we construct squares of centers O1, O2, O3, O4, respectively.

Prove that

O1 O3 ⊥ O2 O4 and O1 O3 = O2 O4.

Solution. Let AB M M ′, BC N N ′, C D P P ′ and D AQ Q′ be the constructed squares

with centers O1, O2, O3, O4, respectively.
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Denote by a lowercase letter the coordinate of each of the points denoted by an

uppercase letter, i.e., o1 is the coordinate of O1, etc.

Point M is obtained from point A by a rotation about B through the angle θ = π

2
;

hence m = b + (a − b)i . Likewise,

n = c + (b − c)i, p = d + (c − d)i and q = a + (d − a)i.

It follows that

o1 = a + m

2
= a + b + (a − b)i

2
, o2 = b + c + (b − c)i

2
,

o3 = c + d + (c − d)i

2
and o4 = d + a + (d − a)i

2
.

Then
o3 − o1

o4 − o2
= c + d − a − b + i(c − d − a + b)

a + d − b − c + i(d − a − b + c)
= −i ∈ iR∗,

so O1 O3 ⊥ O2 O4. Moreover, ∣∣∣∣o3 − o1

o4 − o2

∣∣∣∣ = | − i | = 1;

hence O1 O3 = O2 O4, as desired.

Problem 3. In the exterior of the triangle ABC we construct triangles AB R, BC P,

and C AQ such that

m(P̂ BC) = m(Ĉ AQ) = 45◦,

m(B̂C P) = m(Q̂C A) = 30◦,

and

m( ÂB R) = m(R̂ AB) = 15◦.

Figure 3.8.
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Figure 3.9.

Prove that

m(Q̂ R P) = 90◦ and RQ = R P.

Solution. Consider the complex plane with origin at point R and let M be the foot

of the perpendicular from P to the line BC .

Figure 3.10.

Denote by a lowercase letter the coordinate of a point denoted by an uppercase letter.

From M P = M B and
MC

M P
= √

3 it follows that

p − m

b − m
= i and

c − m

p − m
= i

√
3,
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hence

p = c + √
3b

1 + √
3

+ b − c

1 + √
3

i.

Likewise,

q = c + √
3a

1 + √
3

+ a − c

1 + √
3

i.

Point B is obtained from point A by a rotation about R through an angle θ = 150◦,

so

b = a

(
−

√
3

2
+ 1

2
i

)
.

Simple algebraic manipulations show that
p

q
= i ∈ iR∗, hence Q R ⊥ P R. Moreover,

|p| = |iq| = |q|, so R P = RQ and we are done.

3.2 Conditions for Collinearity, Orthogonality and
Concyclicity

In this section we consider four distinct points Mi (zi ), i ∈ {1, 2, 3, 4}.
Proposition 1. The points M1, M2, M3 are collinear if and only if

z3 − z1

z2 − z1
∈ R∗.

Proof. The collinearity of the points M1, M2, M3 is equivalent to ̂M2 M1 M3 ∈
{0, π}. It follows that arg

z3 − z1

z2 − z1
∈ {0, π} or equivalently

z3 − z1

z2 − z1
∈ R∗, as

claimed. �
Proposition 2. The lines M1 M2 and M3 M4 are orthogonal if and only if

z1 − z2

z3 − z4
∈ iR∗.

Proof. We have M1 M2 ⊥ M3 M4 if and only if (M1 M2, M3 M4) ∈
{

π

2
,

3π

2

}
. This

is equivalent to arg
z1 − z2

z3 − z4
∈
{

π

2
,

3π

2

}
. We obtain

z1 − z2

z3 − z4
∈ iR∗. �

Remark. Suppose that M2 = M4. Then M1 M2 ⊥ M3 M2 if and only if
z1 − z2

z3 − z2
∈

iR∗.
Examples. 1) Consider the points M1(2−i), M2(−1+2i), M3(−2−i), M4(1+2i).

Simple algebraic manipulation shows that

z1 − z2

z3 − z4
= i, hence M1 M2 ⊥ M3 M4.
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2) Consider the points M1(2 − i), M2(−1 + 2i), M3(1 + 2i), M4(−2 − i). Then we

have
z1 − z2

z3 − z4
= −i hence M1 M2 ⊥ M3 M4.

Problem 1. Let z1, z2, z3 be the coordinates of vertices A, B, C of a triangle. If w1 =
z1 − z2 and w2 = z3 − z1, prove that Â = 90◦ if and only if Re(w1 · w2) = 0.

Solution. We have Â = 90◦ if and only if
z2 − z1

z3 − z1
∈ iR, which is equivalent to

w1

−w2
∈ iR, i.e., Re

(
w1

−w2

)
= 0. The last relation is equivalent to Re

(
w1 · w2

−|w2|2
)

=
0, i.e., Re(w1 · w2) = 0, as desired.

Proposition 3. The distinct points M1(z1), M2(z2), M3(z3), M4(z4) are concyclic

or collinear if and only if

k = z3 − z2

z1 − z2
: z3 − z4

z1 − z4
∈ R∗.

Proof. Assume that the points are collinear. We can arrange four points on a circle in

(4 − 1)! = 3! = 6 different ways. Consider the case when M1, M2, M3, M4 are given

in this order. Then M1, M2, M3, M4 are concyclic if and only if

̂M1 M2 M3 + ̂M1 M4 M3 ∈ {3π, π}.
That is,

arg
z3 − z2

z1 − z2
+ arg

z1 − z4

z3 − z4
∈ {3π, π}.

We obtain

arg
z3 − z2

z1 − z2
− arg

z3 − z4

z1 − z4
∈ {3π, π},

i.e., k < 0.

For any other arrangements of the four points the proof is similar. Note that k > 0

in three cases and k < 0 in the other three. �
The number k is called the cross ratio of the four points M1(z1), M2(z2), M3(z3)

and M4(z4).

Remarks. 1) The points M1, M2, M3, M4 are collinear if and only if

z3 − z2

z1 − z2
∈ R∗ and

z3 − z4

z1 − z4
∈ R∗.

2) The points M1, M2, M3, M4 are concyclic if and only if

k = z3 − z2

z1 − z2
: z3 − z4

z1 − z4
∈ R∗, but

z3 − z2

z1 − z2
�∈ R and

z3 − z4

z1 − z4
�∈ R.

Examples. 1) The geometric images of the complex numbers 1, i, −1, −i are con-

cyclic. Indeed, we have the cross ratio k = −1 − i

1 − i
: −1 + i

1 + i
= −1 ∈ R∗ and clearly

−1 − i

1 − i
�∈ R and

−1 + i

1 + i
�∈ R.
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2) The points M1(2 − i), M2(3 − 2i), M3(−1 + 2i) and M4(−2 + 3i) are collinear.

Indeed, k = −4 + 4i

−1 + i
: 1 − i

4 − 4i
= 1 ∈ R∗ and

−4 + 4i

−1 + i
= 4 ∈ R∗.

Problem 2. Find all complex numbers z such that the points of complex coordinates

z, z2, z3, z4 – in this order – are the vertices of a cyclic quadrilateral.

Solution. If the points of complex coordinates z, z2, z3, z4 – in this order – are the

vertices of a cyclic quadrilateral, then

z3 − z2

z − z2
: z3 − z4

z − z4
∈ R∗.

It follows that

−1 + z + z2

z
∈ R∗, i.e., − 1 −

(
z + 1

z

)
∈ R∗.

We obtain z + 1
z ∈ R, i.e., z + 1

z = z + 1
z . Hence (z − z)(|z|2 − 1) = 0, hence z ∈ R

or |z| = 1.

If z ∈ R, then the points of complex coordinates z, z2, z3, z4 are collinear, hence it

is left to consider the case |z| = 1.

Let t = arg z ∈ [0, 2π). We prove that the points of complex coordinates

z, z2, z3, z4 lie in this order on the unit circle if and only if t ∈
(

0,
2π

3

)
∪
(

4π

3
, 2π

)
.

Indeed,

a) If t ∈
(

0,
π

2

)
, then 0 < t < 2t < 3t < 4t < 2π or

0 < arg z < arg z2 < arg z3 < arg z4 < 2π.

b) If t ∈
[
π

2
,

2π

3

)
, then 0 ≤ 4t − 2π < t < 2t < 3t < 2π or

0 ≤ arg z4 < arg z < arg z2 < arg z3 < 2π.

c) If t ∈
[

2π

3
, π

)
, then 0 ≤ 3t − 2π < t ≤ 4t − 2π < 2t < 2π or

0 ≤ arg z3 < arg z ≤ arg z4 < arg z2.

In the same manner we can analyze the case t ∈ [π, 2π).

To conclude, the complex numbers satisfying the desired property are

z = cos t + i sin t, with t ∈
(

0,
2π

3

)
∪
(

4π

3
, π

)
.
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3.3 Similar Triangles
Consider six points A1(a1), A2(a2), A3(a3), B1(b1), B2(b2), B3(b3) in the complex

plane. We say that the triangles A1 A2 A3 and B1 B2 B3 are similar if the angle at Ak is

equal to the angle at Bk , k ∈ {1, 2, 3}.
Proposition 1. The triangles A1 A2 A3 and B1 B2 B3 are similar, having the same

orientation, if and only if
a2 − a1

a3 − a1
= b2 − b1

b3 − b1
. (1)

Proof. We have �A1 A2 A3 ∼ �B1 B2 B3 if and only if
A1 A2

A1 A3
= B1 B2

B1 B3
and

Â3 A1 A2 ≡ B̂3 B1 B2. This is equivalent to
|a2 − a1|
|a3 − a1| = |b2 − b1|

|b3 − b1| and arg
a2 − a1

a3 − a1
=

arg
b2 − b1

b3 − b1
. We obtain

a2 − a1

a3 − a1
= b2 − b1

b3 − b1
. �

Remarks. 1) The condition (1) is equivalent to∣∣∣∣∣∣∣
1 1 1

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ = 0.

2) The triangles A1(0), A2(1), A3(2i) and B1(0), B2(−i), B3(−2) are similar, but

opposite oriented. In this case the condition (1) is not satisfied. Indeed,

a2 − a1

a3 − a1
= 1 − 0

2i − 0
= 1

2i
�= b2 − b1

b3 − b1
= −i − 0

−2 − 0
= i

2
.

Proposition 2. The triangles A1 A2 A3 and B1 B2 B3 are similar, having opposite

orientation, if and only if

a2 − a1

a3 − a1
= b2 − b1

b3 − b1
.

Proof. Reflection across the x-axis maps the points B1, B2, B3 into the points

M1(b1), M2(b2), M3(b3). The triangles B1 B2 B3 and M1 M2 M3 are similar and have

opposite orientation, hence triangles A1 A2 A3 and M1 M2 M3 are similar with the same

orientation. The conclusion follows from the previous proposition. �
Problem 1. On sides AB, BC, C A of a triangle ABC we draw similar triangles ADB,

B EC, C F A, having the same orientation. Prove that triangles ABC and DE F have

the same centroid.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter.
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Triangles ADB, B EC , C F A are similar with the same orientation, hence

d − a

b − a
= e − b

c − b
= f − c

a − c
= z,

and consequently

d = a + (b − a)z, e = b + (c − b)z, f = c + (a − c)z.

Then
d + c + f

3
= a + b + c

3
,

so triangles ABC and DE F have the same centroid.

Problem 2. Let M, N , P be the midpoints of sides AB, BC, C A of triangle ABC.

On the perpendicular bisectors of segments [AB], [BC], [C A] points C ′, A′, B ′ are

chosen inside the triangle such that

MC ′

AB
= N A′

BC
= P B ′

C A
.

Prove that ABC and A′ B ′C ′ have the same centroid.

Solution. Note that from

MC ′

AB
= N A′

BC
= P B ′

C A

it follows that tan(Ĉ ′ AB) = tan( Â′ BC) = tan(B̂ ′C A). Hence triangles AC ′ B, B A′C ,

C B ′ A are similar and we can proceed as in the previous problem.

Problem 3. Let ABO be an equilateral triangle with center S and let A′ B ′O be an-

other equilateral triangle with the same orientation and S �= A′, S �= B ′. Consider M

and N the midpoints of the segments A′ B and AB ′.
Prove that triangles SB ′M and S A′N are similar.

(30th IMO – Shortlist)

Solution. Let R be the circumradius of the triangle ABO and let

ε = cos
2π

3
+ i sin

2π

3
.

Consider the complex plane with origin at point S such that point O lies on the positive

real axis. Then the coordinates of points O, A, B are R, Rε, Rε2, respectively.

Let R + z be the coordinate of point B ′, so R − zε is the coordinate of point A′. It

follows that the midpoints M, N have the coordinates

zM = zB + z A′

2
= Rε2 + R − zε

2
= R(ε2 + 1) − zε

2
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Figure 3.11.

= −Rε − zε

2
= −ε(R + z)

2
and

zN = z A + zB′

2
= Rε + R + z

2
= R(ε + 1) + z

2
= −Eε2 + z

2

=
z − R

ε

2
= R − zε

−2ε
.

Now we have
zB′ − zS

zM − zS
= z A′ − zS

zN − zS

if and only if
R + z

−ε(R + z)

2

= R − zε

R − zε

−2ε

.

The last relation is equivalent to ε · ε = 1, i.e., |ε|2 = 1. Hence the triangles SB ′M
and S A′N are similar, with opposite orientation.

3.4 Equilateral Triangles

Proposition 1. Suppose z1, z2, z3 are the coordinates of the vertices of the triangle

A1 A2 A3. The following statements are equivalent:

a) A1 A2 A3 is an equilateral triangle;

b) |z1 − z2| = |z2 − z3| = |z3 − z1|;
c) z2

1 + z2
2 + z2

3 = z1z2 + z2z3 + z3z1;

d)
z2 − z1

z3 − z2
= z3 − z2

z1 − z2
;
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e)
1

z − z1
+ 1

z − z2
+ 1

z − z3
= 0, where z = z1 + z2 + z3

3
;

f) (z1 + εz2 + ε2z3)(z1 + ε2z2 + εz3) = 0, where ε = cos
2π

3
+ i sin

2π

3
;

g)

∣∣∣∣∣∣∣
1 1 1

z1 z2 z3

z2 z3 z1

∣∣∣∣∣∣∣ = 0.

Proof. The triangle A1 A2 A3 is equilateral if and only if A1 A2 A3 is similar with

same orientation with A2 A3 A1, or∣∣∣∣∣∣∣
1 1 1

z1 z2 z3

z2 z3 z1

∣∣∣∣∣∣∣ = 0,

thus a) ⇔ g).

Computing the determinant we obtain

0 =

∣∣∣∣∣∣∣
1 1 1

z1 z2 z3

z2 z3 z1

∣∣∣∣∣∣∣
= z1z2 + z2z3 + z3z1 − (z2

1 + z2
2 + z2

3)

= −(z1 + εz2 + ε2z3)(z1 + ε2z2 + εz3),

hence g) ⇔ c) ⇔ f).

Simple algebraic manipulation shows that d) ⇔ c). Since a) ⇔ b) is obvious, we

leave for the reader to prove that a) ⇔ e). �
The next results bring some refinements to this issue.

Proposition 2. Let z1, z2, z3 be the coordinates of the vertices A1, A2, A3 of a pos-

itively oriented triangle. The following statements are equivalent.

a) A1 A2 A3 is an equilateral triangle;

b) z3 − z1 = ε(z2 − z1), where ε = cos
π

3
+ i sin

π

3
;

c) z2 − z1 = ε(z3 − z1), where ε = cos
5π

3
+ i sin

5π

3
;

d) z1 + εz2 + ε2z3 = 0, where ε = cos
2π

3
+ i sin

2π

3
.

Proof. A1 A2 A3 is equilateral and positively oriented if and only if A3 is obtained

from A2 by rotation about A1 through an angle of
π

3
. That is,

z3 = z1 +
(

cos
π

3
+ i sin

π

3

)
(z2 − z1),

hence a) ⇔ b).
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Figure 3.12.

The rotation about A1 through an angle of
5π

3
maps A3 into A2. Similar considera-

tions show that a) ⇔ c).

To prove that b) ⇔ d), observe that b) is equivalent to

b′) z3 = z1 +
(

1

2
+ i

√
3

2

)
(z2 − z1) =

(
1

2
− i

√
3

2

)
z1 +

(
1

2
+ i

√
3

2

)
z2. Hence

z1 + εz2 + ε2z3 = z1 +
(

−1

2
+ i

√
3

2

)
z2 +

(
−1

2
− i

√
3

2

)
z3

= z1 +
(

−1

2
+ i

√
3

2

)
z2

+
(

−1

2
− i

√
3

2

)[(
1

2
− i

√
3

2

)
z1 +

(
1

2
+ i

√
3

2

)
z2

]

= z1 +
(

−1

2
+ i

√
3

2

)
z2 − z1 +

(
1

2
− i

√
3

2

)
z2 = 0,

or b) ⇔ d). �
Proposition 3. Let z1, z2, z3 be the coordinates of the vertices A1, A2, A3 of a neg-

atively oriented triangle.

The following statements are equivalent:

a) A1 A2 A3 is an equilateral triangle;

b) z3 − z1 = ε(z2 − z1), where ε = cos
5π

3
+ i sin

5π

3
;

c) z2 − z1 = ε(z3 − z1), where ε = cos
π

3
+ i sin

π

3
;

d) z1 + ε2z2 + εz3 = 0, where ε = cos
2π

3
+ i sin

2π

3
.
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Proof. Equilateral triangle A1 A2 A3 is negatively oriented if and only if A1 A3 A2 is a

positively oriented equilateral triangle. The rest follows from the previous proposition.

�
Proposition 4. Let z1, z2, z3 be the coordinates of the vertices of equilateral triangle

A1 A2 A3. Consider the statements:

1) A1 A2 A3 is an equilateral triangle;

2) z1 · z2 = z2 · z3 = z3 · z1;

3) z2
1 = z2 · z3 and z2

2 = z1 · z3.

Then 2) ⇒ 1), 3) ⇒ 1) and 2) ⇔ 3).

Proof. 2) ⇒ 1). Taking the modulus of the terms in the given relation we obtain

|z1| · |z2| = |z2| · |z3| = |z3| · |z1|,
or equivalently

|z1| · |z2| = |z2| · |z3| = |z3| · |z1|.
This implies

r = |z1| = |z2| = |z3|
and

z1 = r2

z1
, z2 = r2

z2
, z3 = r2

z3
.

Returning to the given relation we have

z1

z2
= z2

z3
= z3

z1
,

or

z2
1 = z2z3, z2

2 = z3z1, z2
3 = z1z2.

Summing up these relations yields

z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1,

so triangle A1 A2 A3 is equilateral.

Observe that we have also proved that 2) ⇒ 3) and that the arguments are re-

versible; hence 2) ⇔ 3). As a consequence, 3) ⇒ 1) and we are done. �
Problem 1. Let z1, z2, z3 be nonzero complex coordinates of the vertices of the triangle

A1 A2 A3. If z2
1 = z2z3 and z2

2 = z1z3, show that triangle A1 A2 A3 is equilateral.

Solution. Multiplying the relations z2
1 = z2z3 and z2

2 = z1z3 yields z2
1z2

2 = z1z2z2
3,

and consequently z1z2 = z2
3. Thus

z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1,

so triangle A1 A2 A3 is equilateral, by Proposition 1 in this section.
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Problem 2. Let z1, z2, z3 be the coordinates of the vertices of triangle A1 A2 A3. If

|z1| = |z2| = |z3| and z1 + z2 + z3 = 0, prove that triangle A1 A2 A3 is equilateral.

Solution. The following identity holds for any complex numbers z1 and z2 (see

Problem 1 in Subsection 1.1.7):

|z1 − z2|2 + |z1 + z2|2 = 2(|z1|2 + |z2|2). (1)

From z1 + z2 + z3 = 0 it follows that z1 + z2 = −z3, so |z1 + z2| = |z3|. Using

the relations |z1| = |z2| = |z3| and (1) we get |z1 − z2|2 = 3|z1|2. Analogously, we

find the relations |z2 − z3|2 = 3|z1|2 and |z3 − z1|2 = 3|z1|2. Therefore |z1 − z2| =
|z2 − z3| = |z3 − z1|, i.e., triangle A1 A2 A3 is equilateral.

Alternative solution 1. If we pass to conjugates, then we obtain
1

z1
+ 1

z2
+ 1

z3
= 0.

Combining this with the hypothesis yields z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1 = 0,

from which the desired conclusion follows by Proposition 1.

Alternative solution 2. Taking into account the hypotheses |z1| = |z2| = |z3| it

follows that we can consider the complex plane with its origin at the circumcenter of

triangle A1 A2 A3. Then, the coordinate of orthocenter H is zH = z1 + z2 + z3 = 0 =
zO . Hence H = O , and triangle A1 A2 A3 is equilateral.

Problem 3. In the exterior of triangle ABC three positively oriented equilateral

triangles AC ′ B, B A′C and C B ′ A are constructed. Prove that the centroids of these

triangles are the vertices of an equilateral triangle.

(Napoleon’s problem)

Solution.

Figure 3.13.

Let a, b, c be the coordinates of vertices A, B, C , respectively.
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Using Proposition 2, we have

a + c′ε + bε2 = 0, b + a′ε + cε2 = 0, c + b′ε + aε2 = 0, (1)

where a′, b′, c′ are the coordinates of points A′, B ′, C ′.
The centroids of triangles A′ BC , AB ′C , ABC ′ have the coordinates

a′′ = 1

3
(a′ + b + c), b′′ = 1

3
(a + b′ + c), c′′ = 1

3
(a + b + c′),

respectively. We have to check that c′′ + a′′ε + b′′ε2 = 0. Indeed,

3(c′′ + a′′ε + b′′ε2) = (a + b + c′) + (a′ + b + c)ε + (a + b′ + c)ε2

= (b + a′ε + cε2) + (c + b′ε + aε2)ε + (a + c′ε + bε2)ε2 = 0.

Problem 4. On the sides of the triangle ABC we draw three regular n-gons, external

to the triangle. Find all values of n for which the centers of the n-gons are the vertices

of an equilateral triangle.

(Balkan Mathematical Olympiad 1990 – Shortlist)

Solution. Let A0, B0, C0 be the centers of the regular n-gons constructed externally

on the sides BC, C A, AB, respectively.

Figure 3.14.

The angles ÂC0 B, B̂ A0C , ÂB0C have the measures of
2π

n
. Let

ε = cos
2π

n
+ i sin

2π

n

and denote by a, b, c, a0, b0, c0 the coordinates of the points A, B, C, A0, B0, C0, re-

spectively.
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Using the rotation formula, we obtain

a = c0 + (b − c0)ε;

b = a0 + (c − a0)ε;
c = b0 + (a − b0)ε.

Thus

a0 = b − cε

1 − ε
, b0 = c − aε

1 − ε
, c0 = a − bε

1 − ε
.

Triangle A0 B0C0 is equilateral if and only if

a2
0 + b2

0 + c2
0 = a0b0 + b0c0 + c0a0.

Substituting the above values of a0, b0, c0 we obtain

(b − cε)2 + (c − aε)2 + (a − bε)2

= (b − cε)(c − aε) + (c − aε)(a − bε) + (a − bε)(c − aε).

This is equivalent to

(1 + ε + ε2)[(a − b)2 + (b − c)2 + (c − a)2] = 0.

It follows that 1 + ε + ε2 = 0, i.e.,
2π

n
= 2π

3
and we get n = 3. Therefore n = 3 is

the only value with the desired property.

3.5 Some Analytic Geometry in the Complex Plane

3.5.1 Equation of a line

Proposition 1. The equation of a line in the complex plane is

α · z + αz + β = 0,

where α ∈ C∗, β ∈ R and z = x + iy ∈ C.

Proof. The equation of a line in the cartesian plane is

Ax + By + C = 0,

where A, B, C ∈ R and A2 + B2 �= 0. If we set z = x + iy, then x = z + z

2
and

y = z − z

2i
. Thus,

A
z + z

2
− Bi

z − z

2
+ C = 0,



3.5. Some Analytic Geometry in the Complex Plane 77

or equivalently

z

(
A + Bi

2

)
+ z

A − Bi

2
+ C = 0.

Let α = A − Bi

2
∈ C∗ and β = C ∈ R. Then

α · z + αz + β = 0,

as claimed. �
If α = α, then B = 0 and we have a vertical line. If α �= α, then we define the

angular coefficient of the line as

m = − A

B
= α + α

α − α

i

= α + α

α − α
i.

Proposition 2. Consider the lines d1 and d2 with equations

α1 · z + α1 · z + β1 = 0

and

α2 · z + α2 · z + β2 = 0,

respectively.

Then the lines d1 and d2 are:

1) parallel if and only if
α1

α1
= α2

α2
;

2) perpendicular if and only if
α1

α2
+ α2

α2
= 0;

3) concurrent if and only if
α1

α1
�= α2

α2
.

Proof. 1) We have d1‖d2 if and only if m1 = m2. Therefore
α1 + α1

α1 − α1
i = α2 + α2

α2 − α2
i ,

so α2α1 = α1α2 and we get
α1

α1
= α2

α2
.

2) We have d1 ⊥ d2 if and only if m1m2 = −1. That is, α2α1 + α2α2 = 0, or
α1

α
+ α2

α2
= 0.

3) The lines d1 and d2 are concurrent if and only if m1 �= m2. This condition yields
α1

α1
�= α2

α2
.

The results for angular coefficient correspond to the properties of slope. �

The ratio md = −α

α
is called the complex angular coefficient of the line d of equa-

tion

α · z + α · z + β = 0.
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3.5.2 Equation of a line determined by two points

Proposition. The equation of a line determined by the points P1(z1) and P2(z2) is∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z z 1

∣∣∣∣∣∣∣ = 0.

Proof. The equation of a line determined by the points P1(x1, y1) and P2(x2, y2) in

the cartesian plane is ∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x y 1

∣∣∣∣∣∣∣ = 0.

Using complex numbers we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z1 + z1

2

z1 − z1

2i
1

z2 + z2

2

z2 − z2

2i
1

z1 + z

2

z − z

2i
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

if and only if

1

4i

∣∣∣∣∣∣∣
z1 + z1 z1 − z1 1

z2 + z2 z2 − z2 1

z + z z − z 1

∣∣∣∣∣∣∣ = 0.

That is, ∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z z 1

∣∣∣∣∣∣∣ = 0,

as desired. �
Remarks. 1) The points M1(z1), M2(z2), M3(z3) are collinear if and only if∣∣∣∣∣∣∣

z1 z1 1

z2 z2 1

z3 z3 1

∣∣∣∣∣∣∣ = 0.

2) The complex angular coefficient of a line determined by the points with coordi-

nates z1 and z2 is

m = z2 − z1

z2 − z1
.
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Indeed, the equation is∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z3 z3 1

∣∣∣∣∣∣∣ = 0 ⇔ z1z2 + z2z + zz1 − zz2 − z1z − z2z1 = 0

⇔ z(z2 − z1) − z(z2 − z1) + z1z2 − z2z1 = 0.

Using the definition of the complex angular coefficient we obtain

m = z2 − z1

z2 − z1
.

3.5.3 The area of a triangle

Theorem. The area of triangle A1 A2 A3 whose vertices have coordinates z1, z2, z3 is

equal to the absolute value of the number

i

4

∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z3 z3 1

∣∣∣∣∣∣∣ . (1)

Proof. Using cartesian coordinates, the area of a triangle with vertices (x1, y1),

(x2, y2), (x3, y3) is equal to the absolute value of the determinant

� = 1

2

∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣ .
Since

xk = zk + zk

2
, yk = zk − zk

2i
, k = 1, 2, 3

we obtain

� = 1

8i

∣∣∣∣∣∣∣
z1 + z1 z1 − z1 1

z2 + z2 z2 − z2 1

z3 + z3 z3 − z3 1

∣∣∣∣∣∣∣ = − 1

4i

∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z3 z3 1

∣∣∣∣∣∣∣
= i

4

∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z3 z3 1

∣∣∣∣∣∣∣ ,
as claimed. �
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It is easy to see that for positively oriented triangle A1 A2 A3 with vertices with

coordinates z1, z2, z3 the following inequality holds:

i

4

∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z3 z3 1

∣∣∣∣∣∣∣ > 0.

Corollary. The area of a directly oriented triangle A1 A2 A3 whose vertices have

coordinates z1, z2, z3 is

area[A1 A2 A3] = 1

2
Im(z1z2 + z2z3 + z3z1). (2)

Proof. The determinant in the above theorem is

∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z3 z3 1

∣∣∣∣∣∣∣ = (z1z2 + z2z3 + z3z1 − z2z3 − z1z3 − z2z1)

= [(z1z2 + z2z3 + z3z1) − (z1z2 + z2z3 + z3z1)]

= 2i Im(z1z2 + z2z3 + z3z1) = −2i Im(z1z2 + z2z3 + z3z1).

Replacing this value in (1), the desired formula follows. �

We will see that formula (2) can be extended to a convex directly oriented polygon

A1 A2 · · · An (see Section 4.3).

Problem 1. Consider the triangle A1 A2 A3 and the points M1, M2, M3 situated on lines

A2 A3, A1 A3, A1 A2, respectively. Assume that M1, M2, M3 divide segments [A2 A3],
[A3 A1], [A1 A2] into ratios λ1, λ2, λ3, respectively. Then

area[M1 M2 M3]
area[A1 A2 A3] = 1 − λ1λ2λ3

(1 − λ1)(1 − λ2)(1 − λ3)
. (3)

Solution. The coordinates of the points M1, M2, M3 are

m1 = a2 − λ1a3

1 − λ1
, m2 = a3 − λ2a1

1 − λ2
, m3 = a1 − λ3a2

1 − λ3
.
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Applying formula (2) we find that

area[M1 M2 M3] = 1

2
Im(m1m2 + m2m3 + m3m1)

= 1

2
Im

[
(a2 − λ1a3)(a3 − λ2a1)

(1 − λ1)(1 − λ2)
+ (a3 − λ2a1)(a1 − λ3a2)

(1 − λ2)(1 − λ3)

+ (a1 − λ3a2)(a2 − λ1a3)

(1 − λ3)(1 − λ1)

]

= 1

2
Im

[
1 − λ1λ2λ3

(1 − λ1)(1 − λ2)(1 − λ3)
(a1a2 + a2a3 + a3a1)

]
= 1 − λ1λ2λ3

(1 − λ1)(1 − λ2)(1 − λ3)
area[A1 A2 A3].

Remark. From formula (3) we derive the well-known theorem of Menelaus: The

points M1, M2, M3 are collinear if and only if λ1λ2λ3 = 1, i.e.,

M1 A2

M1 A3
· M2 A3

M2 A1
· M3 A1

M3 A2
= 1

Problem 2. Let a, b, c be the coordinates of the vertices A, B, C of a triangle. It is

known that |a| = |b| = |c| = 1 and that there exists α ∈
(

0,
π

2

)
such that a +

b cos α + c sin α = 0. Prove that

1 < area[ABC] ≤ 1 + √
2

2
.

(Romanian Mathematical Olympiad – Final Round, 2003)

Solution. Observe that

1 = |a|2 = |b cos α + c sin α|2

= (b cos α + c sin α)(b cos α + c sin α)

= |b|2 cos2 α + |c|2 sin2 α + (bc + bc) sin α cos α

= 1 + b2 + c2

bc
cos α sin α.

It follows that b2 + c2 = 0, hence b = ±ic. Applying formula (2) we obtain
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area[ABC] = 1

2
| Im(ab + bc + ca)|

= 1

2
| Im[(−b cos α − c sin α)b + bc − c(b cos α + c sin α)]|

= 1

2
| Im(− cos α − sin α − bc sin α − bc cos α + bc)|

= 1

2
| Im[bc − (sin α + cos α)bc]| = 1

2
| Im[(1 + sin α + cos α)bc]|

= 1

2
(1 + sin α + cos α)| Im(bc)| = 1

2
(1 + sin α + cos α)| Im(±icc)|

= 1

2
(1 + sin α + cos α)| Im(±i)| = 1

2
(1 + sin α + cos α)

= 1

2

[
1 + √

2

(√
2

2
sin α +

√
2

2
cos α

)]
= 1

2

(
1 + √

2 sin
(
α + π

4

))
.

Taking into account that
π

4
< α + π

4
<

3π

4
we get that

√
2

2
< sin

(
α + π

4

)
≤ 1 and

the conclusion follows.

3.5.4 Equation of a line determined by a point and a direction

Proposition 1. Let d : αz + α · z + β = 0 be a line and let P0(z0) be a point. The

equation of a line parallel to d and passing through point P0 is

z − z0 = −α

α
(z − z0).

Proof. Using cartesian coordinates, the line parallel to d and passing through point

P0(x0, y0) has the equation

y − y0 = i
α + α

α − α
(x − x0).

Using complex numbers the equation takes the form

z − z

2i
− z0 − z0

2i
= i

α + α

α − α

(
z + z

2
− z0 + z0

2

)
.

This is equivalent to (α − α)(z − z0 − z + z0) = (α + α)(z + z − z0 − z0), or

α(z − z0) = −α(z − z0). We obtain z − z0 = −α

α
(z − z0). �

Proposition 2. Let d : αz +α · z +β = 0 be a line and let P0(z0) be a point. The line

passing through point P0 and perpendicular to d has the equation z − z0 = α

α
(z − z0).
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Proof. Using cartesian coordinates, the line passing through point P0 and perpen-

dicular to d has the equation

y − y0 = −1

i
· α − α

α + α
(x − x0).

Then we obtain

z − z

2i
− z0 − z0

2i
= i · α − α

α + α

(
z + z

2
− z0 + z0

2

)
.

That is, (α + α)(z − z0 − z + z0) = −(α − α)(z − z0 + z − z0) or

(z − z0)(α + α + α − α) = (z − z0)(−α + α + α + α).

We obtain α(z − z0) = α(z − z0) and z − z0 = α
α
(z − z0). �

3.5.5 The foot of a perpendicular from a point to a line

Proposition. Let P0(z0) be a point and let d : αz + αz + β = 0 be a line. The foot of

the perpendicular from P0 to d has the coordinate

z = αz0 − α z0 − β

2α
.

Proof. The point z is the solution of the system{
α · z + α · z + β = 0,

α(z − z0) = α(z − z0).

The first equation gives

z = −αz − β

α
.

Substituting in the second equation yields

αz − αz0 = −αz − β − α · z0.

Hence

z = αz0 − α z0 − β

2α
,

as claimed. �

3.5.6 Distance from a point to a line

Proposition. The distance from a point P0(z0) to a line d : α · z + α · z + β = 0,

α ∈ C∗ is equal to

D = |αz0 + α · z0 + β|
2
√

α · α
.
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Proof. Using the previous result, we can write

D =
∣∣∣∣αz0 − α · z0 − β

2α
− z0

∣∣∣∣ = ∣∣∣∣−αz0 − αz0 − β

2α

∣∣∣∣
= |α · z0 + αz0 + β|

2|α| = |αz0 + αz0 + β|
2
√

αα
. �

3.6 The Circle

3.6.1 Equation of a circle

Proposition. The equation of a circle in the complex plane is

z · z + α · z + α · z + β = 0,

where α ∈ C and β ∈ R.

Proof. The equation of a circle in the cartesian plane is

x2 + y2 + mx + ny + p = 0,

m, n, p ∈ R, p <
m2 + n2

4
.

Setting x = z + z

2
and y = z − z

2i
we obtain

|z|2 + m
z + z

2
+ n

z − z

2i
+ p = 0

or

z · z + z
m − ni

2
+ z

m + ni

2
+ p = 0.

Take α = m − ni

2
∈ C and β = p ∈ R in the above equation and the claim is

proved. �
Note that the radius of the circle is equal to

r =
√

m2

4
+ n2

4
− p = √αα − β.

Then the equation is equivalent to

(z + α)(z + α) = r2.

Setting

γ = −α = −m

2
− n

2
i
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the equation of the circle with center at γ and radius r is

(z − γ )(z − γ ) = r2.

Problem. Let z1, z2, z3 be the coordinates of the vertices of triangle A1 A2 A3. The

coordinate zO of the circumcenter of triangle A1 A2 A3 is

zO =

∣∣∣∣∣∣∣
1 1 1

z1 z2 z3

|z1|2 |z2|2 |z3|2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1

z1 z2 z3

z1 z2 z3

∣∣∣∣∣∣∣
. (1)

Solution. The equation of the line passing through P(z0) which is perpendicular to

the line A1 A2 can be written in the form

z(z1 − z2) + z(z1 − z2) = z0(z1 − z2) + z0(z1 − z2). (2)

Applying this formula for the midpoints of the sides [A2 A3], [A1 A3] and for the lines

A2 A3, A1 A3, we find the equations

z(z2 − z3) + z(z2 − z3) = |z2|2 − |z3|2
z(z3 − z1) + z(z3 − z1) = |z3|2 − |z1|2.

By eliminating z from these two equations, it follows that

z[(z2 − z3) + (z3 − z1)(z2 − z3)]
= (z1 − z3)(|z2|2 − |z3|2) + (z2 − z3)(|z3|2 − |z1|2),

hence

z

∣∣∣∣∣∣∣
1 1 1

z1 z2 z3

z1 z2 z2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 1 1

z1 z2 z3

|z1|2 |z2|2 |z3|2

∣∣∣∣∣∣∣
and the desired formula follows.

Remark. We can write this formula in the following equivalent form:

zO = z1z1(z2 − z3) + z2z2(z3 − z1) + z3z3(z1 − z2)∣∣∣∣∣∣∣
1 1 1

z1 z2 z3

z1 z2 z3

∣∣∣∣∣∣∣
. (3)
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3.6.2 The power of a point with respect to a circle

Proposition. Consider a point P0(z0) and a circle with equation

z · z + α · z + α · z + β = 0,

for α ∈ C and β ∈ R.

The power of P0 with respect to the circle is

ρ(z0) = z0 · z0 + αz0 + α · z0 + β.

Proof. Let O(−α) be the center of the circle. The power of P0 with respect to the

circle of radius r is defined by ρ(z0) = O P2
0 − r2. In this case we obtain

ρ(z0) = O P2
0 − r2 = |z0 + α|2 − r2 = z0 · z0 + αz0 + αz0 + αα − αα + β

= z0 · z0 + αz0 + α · z0 + β,

as claimed. �
Given two circles of equations

z · z + α1 · z + α1 · z + β1 = 0 and z · z + α2 · z + α2 · z + β2 = 0,

where α1, α2 ∈ C, β1, β2 ∈ R, their radical axis is the locus of points having equal

powers with respect to the circles. If P(z) is a point of this locus, then

z · z + α1z + α1 · z + β1 = z · z + α2z + α2 · z + β2,

or equivalently (α1 − α2)z + (α1 − α2)z + β1 − β2 = 0, which is the equation of a

line.

3.6.3 Angle between two circles

The angle between two circles with equations

z · z + α1 · z + α1 · z + β1 = 0

and

z · z + α2 · z + α2 · z + β2 = 0, α1, α2 ∈ C, β1, β2 ∈ R,

is the angle θ determined by the tangents to the circles at a common point.

Proposition. The following formula

cos θ =
∣∣∣∣β1 + β2 − (α1α2 + α1α2)

2r1r2

∣∣∣∣
holds.
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Figure 3.15.

Proof. Let T be a common point and let O1(−α1), O2(−α2) be the centers of the

circles.

The angle θ is equal to Ô1T O2 or π − Ô1T O2, hence

cos θ = | cos Ô1T O2| = |r2
1 + r2

2 − O1 O2
2 |

2r1r2

= |α1α1 − β1 + α2α2 − β2 − |α1 − α2|2|
2r1r2

= |α1α1 + α2α2 − β1 − β2 − α1α1 − α2α2 + α1α2 + α1α2|
2r1r2

= |β1 + β2 − (α1α2 + α1α2)|
2r1r2

,

as claimed. �

Note that the circles are orthogonal if and only if

β1 + β2 = α1α2 + α1α2.
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Problem 1. Let a, b be real numbers such that |b| ≤ 2a2. Prove that the set of points

with coordinates z such that

|z2 − a2| = |2az + b|
is the union of two orthogonal circles.

Solution. The relation

|z2 − a2| = |2az + b|
is equivalent to

|z2 − a2|2 = |2az + b|2, i.e.,

(z2 − a2)(z2 − a2) = (2az + b)(2az + b).

We can rewrite the last relation as

|z|4 − a2(z2 + z2) + a4 = 4a2|z|2 + 2ab(z + z) + b2, i.e.,

|z|4 − a2[(z + z)2 − 2|z|2] + a4 = 4a2|z|2 + 2ab(z + z) + b2.

Hence

|z|4 − 2a2|z|2 + a4 = a2(z + z)2 + 2ab(z + z) + b2, i.e.,

(|z|2 − a2)2 = (a(z + z) + b)2.

It follows that

z · z − a2 = a(z + z) + b or z · z − a2 = −a(z + z) − b.

This is equivalent to

(z − a)(z − a) = 2a2 + b or (z + a)(z + a) = 2a2 − b.

Finally

|z − a|2 = 2a2 + b or |z + a|2 = 2a2 − b. (1)

Since |b| ≤ 2a2, it follows that 2a2 + b ≥ 0 and 2a2 − b ≥ 0. Hence the relations

(1) are equivalent to

|z − a| =
√

2a2 + b or |z + a| =
√

2a2 − b.

Therefore, the points with coordinates z that satisfy |z2 − a2| = |2az + b| lie on

two circles of centers C1 and C2, whose coordinates a and −a, and with radii R1 =√
2a2 + b and R2 = √

2a2 − b. Furthermore,

C1C2
2 = 4a2 = (

√
2a2 + b)2 + (

√
2a2 − b)2 = R2

1 + R2
2,

hence the circles are orthogonal, as claimed.
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More on Complex Numbers

and Geometry

4.1 The Real Product of Two Complex Numbers
The concept of the scalar product of two vectors is well known. In what follows we

will introduce this concept for complex numbers. We will see that in many situations

use of this product simplifies the solution to the problem considerably.

Let a and b be two complex numbers.

Definition. We call the real product of complex numbers a and b the number given

by

a · b = 1

2
(ab + ab).

It is easy to see that

a · b = 1

2
(ab + ab) = a · b;

hence a · b is a real number, which justifies the name of this product.

The following properties are easy to verify.

Proposition 1. For all complex numbers a, b, c, z the following relations hold:

1) a · a = |a|2.

2) a · b = b · a; (the real product is commutative).

3) a · (b+c) = a ·b+a ·c; (the real product is distributive with respect to addition).

4) (αa) · b = α(a · b) = a · (αb) for all α ∈ R.
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5) a · b = 0 if and only if O A ⊥ O B, where A has coordinate a and B has

coordinate b.

6) (az) · (bz) = |z|2(a · b).

Remark. Suppose that A and B are points with coordinates a and b. Then the real

product a · b is equal to the power of the origin with respect to the circle of diameter

AB.

Indeed, let M

(
a + b

2

)
be the midpoint of [AB], hence the center of this circle, and

let r = 1

2
AB = 1

2
|a − b| be the radius of this circle. The power of the origin with

respect to the circle is

O M2 − r2 =
∣∣∣∣a + b

2

∣∣∣∣2 −
∣∣∣∣a − b

2

∣∣∣∣2
= (a + b)(a + b)

4
− (a − b)(a − b)

4
= ab + ba

2
= a · b,

as claimed.

Proposition 2. Suppose that A(a), B(b), C(c) and D(d) are four distinct points.

The following statements are equivalent:

1) AB ⊥ C D;

2) (b − a) · (c − d) = 0;

3)
b − a

d − c
∈ iR∗ (or, equivalently, Re

(b − a

d − c

)
= 0).

Proof. Take points M(b − a) and N (d − c) such that O AB M and OC DN are

parallelograms. Then we have AB ⊥ C D if and only if O M ⊥ O N . That is, m · n =
(b − a) · (d − c) = 0, using property 5) of the real product.

The equivalence 2) ⇔ 3) follows immediately from the definition of the real

product. �
Proposition 3. The circumcenter of triangle ABC is at the origin of the complex

plane. If a, b, c are the coordinates of vertices A, B, C, then the orthocenter H has

the coordinate h = a + b + c.

Proof. Using the real product of the complex numbers, the equations of the altitudes

AA′, B B ′, CC ′ of the triangle are

AA′ : (z − a) · (b − c) = 0, B B ′ : (z − b) · (c − a) = 0, CC ′ : (z − c) · (a − b) = 0.

We will show that the point with coordinate h = a + b + c lies on all three altitudes.

Indeed, we have (h − a) · (b − c) = 0 if and only if (b + c) · (b − c) = 0. The last

relation is equivalent to b · b − c · c = 0, or |b|2 = |c|2. Similarly, H ∈ B B ′ and

H ∈ CC ′, and we are done. �
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Remark. If the numbers a, b, c, o, h are the coordinates of the vertices of triangle

ABC , the circumcenter O and the orthocenter H of the triangle, then h = a+b+c−2o.

Indeed, taking A′ diametrically opposite A in the circumcircle of triangle ABC , the

quadrilateral H B A′C is a parallelogram. If {M} = H A′ ∩ BC , then

zM = b + c

2
= zH + z A′

2
= zH + 2o − a

2
, i.e., zH = a + b + c − 2o.

Problem 1. Let ABC D be a convex quadrilateral. Prove that

AB2 + C D2 = AD2 + BC2

if and only if AC ⊥ B D.

Solution. Using the properties of the real product of complex numbers, we have

AB2 + C D2 = BC2 + D A2

if and only if

(b − a) · (b − a) + (d − c) · (d − c) = (c − b) · (c − b) + (a − d) · (a − d).

That is,

a · b + c · d = b · c + d · a

and finally

(c − a) · (d − b) = 0,

or, equivalently, AC ⊥ B D, as required.

Problem 2. Let M, N , P, Q, R, S be the midpoints of the sides AB, BC, C D, DE,

E F, F A of a hexagon. Prove that

RN 2 = M Q2 + P S2

if and only if M Q ⊥ P S.

(Romanian Mathematical Olympiad – Final Round, 1994)

Solution. Let a, b, c, d, e, f be the coordinates of the vertices of the hexagon. The

points M, N , P, Q, R, S have the coordinates

m = a + b

2
, n = b + c

2
, p = c + d

2
,

q = d + e

2
, r = e + f

2
, s = f + a

2
,

respectively.
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Figure 4.1.

Using the properties of the real product of complex numbers, we have

RN 2 = M Q2 + P S2

if and only if

(e + f − b − c) · (e + f − b − c)

= (d + e − a − b) · (d + e − a − b) + ( f + a − c − d) · ( f + a − c − d).

That is,

(d + e − a − b) · ( f + a − c − d) = 0;
hence M Q ⊥ P S, as claimed.

Problem 3. Let A1 A2 · · · An be a regular polygon inscribed in a circle of center O

and radius R. Prove that for all points M in the plane the following relation holds:

n∑
k=1

M A2
k = n(O M2 + R2).

Solution. Consider the complex plane with origin at point O and let Rεk be the

coordinate of vertex Ak , where εk are the nth-roots of unity, k = 1, . . . , n. Let m be

the coordinate of M .

Using the properties of the real product of the complex numbers, we have

n∑
k=1

M A2
k =

n∑
k=1

(m − Rεk) · (m − Rεk)

=
n∑

k=1

(m · m − 2Rεk · m + R2εk · εk)

= n|m|2 − 2R
( n∑

k=1

εk

)
· m + R2

n∑
k=1

|εk |2

= n · O M2 + n R2 = n(O M2 + R2),
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since
n∑

k=1

εk = 0.

Remark. If M lies on the circumcircle of the polygon, then

n∑
k=1

M A2
k = 2n R2.

Problem 4. Let O be the circumcenter of the triangle ABC, let D be the midpoint of

the segment AB, and let E is the centroid of triangle AC D. Prove that lines C D and

O E are perpendicular if and only if AB = AC.

(Balkan Mathematical Olympiad, 1985)

Solution. Let O be the origin of the complex plane and let a, b, c, d, e be the coor-

dinates of points A, B, C, D, E , respectively. Then

d = a + b

2
and e = a + c + d

3
= 3a + b + 2c

6
.

Using the real product of complex numbers, if R is the circumradius of triangle

ABC , then

a · a = b · b = c · c = R2.

Lines C D and DE are perpendicular if and only if (d − c) · e = 0 That is,

(a + b − 2c) · (3a + b + 2c) = 0.

The last relation is equivalent to

3a · a + a · b + 2a · c + 3a · b + b · b + 2b · c − 6a · c − 2b · c − 4c · c = 0,

that is,

a · b = a · c. (1)

On the other hand, AB = AC is equivalent to

|b − a|2 = |c − a|2.
That is,

(b − a) · (b − a) = (c − a) · (c − a)

or

b · b − 2a · b + a · a = c · c − 2a · c + a · a,

hence

a · b = a · c. (2)

The relations (1) and (2) show that C D ⊥ O E if and only if AB = AC .
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Problem 5. Let a, b, c be distinct complex numbers such that |a| = |b| = |c| and

|b + c − a| = |a|.
Prove that b + c = 0.

Solution. Let A, B, C be the geometric images of the complex numbers a, b, c,

respectively. Choose the circumcenter of triangle ABC as the origin of the complex

plane and denote by R the circumradius of triangle ABC . Then

aa = bb = cc = R2,

and using the real product of the complex numbers, we have

|b + c − a| = |a| if and only if |b + c − a|2 = |a|2.

That is,

(b + c − a) · (b + c − a) = |a|2, i.e.,

|a|2 + |b|2 + |c|2 + 2b · c − 2a · c − 2a · b = |a|2.
We obtain

2(R2 + b · c − a · c − a · b) = 0, i.e.,

a · a + b · c − a · c − a · b = 0.

It follows that (a − b) · (a − c) = 0, hence AB ⊥ AC , i.e., B̂ AC = 90◦. Therefore,

[BC] is the diameter of the circumcircle of triangle ABC , so b + c = 0.

Problem 6. Let E, F, G, H be the midpoints of sides AB, BC, C D, D A of the convex

quadrilateral ABC D. Prove that lines AB and C D are perpendicular if and only if

BC2 + AD2 = 2(EG2 + F H2).

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter. Then

e = a + b

2
, f = b + c

2
, g = c + d

2
, h = d + a

2
.

Using the real product of the complex numbers, the relation

BC2 + AD2 = 2(EG2 + F H2)

becomes

(c − b) · (c − b) + (d − a) · (d − a)
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= 1

2
(c + d − a − b) · (c + d − a − b) + 1

2
(a + d − b − c) · (a + d − b − c).

This is equivalent to

c · c + b · b + d · d + a · a − 2b · c − 2a · d

= a · a + b · b + c · c + d · d − 2a · c − 2b · d,

or

a · d + b · c = a · c + b · d.

The last relation shows that (a − b) · (d − c) = 0 if and only if AB ⊥ C D, as

desired.

Problem 7. Let G be the centroid of triangle ABC and let A1, B1, C1 be the midpoints

of sides BC, C A, AB, respectively. Prove that

M A2 + M B2 + MC2 + 9MG2 = 4(M A2
1 + M B2

1 + MC2
1)

for all points M in the plane.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter. Then

g = a + b + c

3
, a1 = b + c

2
, b1 = c + a

2
, c1 = a + b

2
.

Using the real product of the complex numbers, we have

M A2 + M B2 + MC2 + 9MG2

= (m − a) · (m − a) + (m − b) · (m − b) + (m − c) · (m − c)

+ 9

(
m − a + b + c

3

)
·
(

m − a + b + c

3

)
= 12|m|2 − 8(a + b + c) · m + 2(|a|2 + |b|2 + |c|2) + 2a · b + 2b · c + 2c · a.

On the other hand,

4(M A2
1 + M B2

1 + MC2
1)

= 4

[(
m − b + c

2

)
·
(

m − b + c

2

)
+
(

m − c + a

2

)
·
(

m − c + a

2

)
+
(

m − a + b

2

)
·
(

m − a + b

2

)]
= 12|m|2 − 8(a + b + c) · m + 2(|a|2 + |b|2 + |c|2) + 2a · b + 2b · c + 2c · a,

so we are done.
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Remark. The following generalization can be proved similarly.

Let A1 A2 · · · An be a polygon with the centroid G and let Ai j be the midpoint of the

segment [Ai A j ], i < j , i, j ∈ {1, 2, . . . , n}.
Then

(n − 2)

n∑
k=1

M A2
k + n2 MG2 = 4

∑
i< j

M A2
i j ,

for all points M in the plane. A nice generalization is given in Theorem 5, Section 4.11.

4.2 The Complex Product of Two Complex Numbers
The cross product of two vectors is a central concept in vector algebra, with numerous

applications in various branches of mathematics and science. In what follows we adapt

this product to complex numbers. The reader will see that this new interpretation has

multiple advantages in solving problems involving area or collinearity.

Let a and b be two complex numbers.

Definition. The complex number

a × b = 1

2
(ab − ab)

is called the complex product of the numbers a and b.

Note that

a × b + a × b = 1

2
(ab − ab) + 1

2
(ab − ab) = 0,

so Re(a × b) = 0, which justifies the definition of this product.

The following properties are easy to verify:

Proposition 1. Suppose that a, b, c are complex numbers. Then:

1) a × b = 0 if and only if a = 0 or b = 0 or a = λb, where λ is a real number.

2) a × b = −b × a; (the complex product is anticommutative).

3) a × (b + c) = a × b + a × c (the complex product is distributive with respect to

addition).

4) α(a × b) = (αa) × b = a × (αb), for all real numbers α.

5) If A(a) and B(b) are distinct points other than the origin, then a × b = 0 if and

only if O, A, B are collinear.

Remarks. a) Suppose A(a) and B(b) are distinct points in the complex plane, dif-

ferent from the origin.

The complex product of the numbers a and b has the following useful geometric

interpretation:

a × b =
{

2i · area[AO B], if triangle O AB is positively oriented;

−2i · area[AO B], if triangle O AB is negatively oriented.
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Figure 4.2.

Indeed, if triangle O AB is positively (directly) oriented, then

2i · area[O AB] = i · O A · O B · sin( ÂO B)

= i |a| · |b| · sin

(
arg

b

a

)
= i · |a| · |b| · Im

(
b

a

)
· |a|
|b|

= 1

2
|a|2

(
b

a
− b

a

)
= 1

2
(ab − ab) = a × b.

In the other case, note that triangle O B A is positively oriented, hence

2i · area[O B A] = b × a = −a × b.

b) Suppose A(a), B(b), C(c) are three points in the complex plane.

The complex product allows us to obtain the following useful formula for the area

of the triangle ABC :

area[ABC] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2i
(a × b + b × c + c × a),

if triangle ABC is positively oriented;

− 1

2i
(a × b + b × c + c × a),

if triangle ABC is negatively oriented.

Moreover, simple algebraic manipulation shows that

area[ABC] = 1

2
Im(ab + bc + ca)

if triangle ABC is directly (positively) oriented.

To prove the above formula, translate points A, B, C with vector −c. The images

of A, B, C are points A′, B ′, O with coordinates a − c, b − c, 0, respectively. Trian-

gles ABC and A′ B ′O are congruent with the same orientation. If ABC is positively
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oriented, then

area[ABC] = area[O A′ B ′] = 1

2i
((a − c) × (b − c))

= 1

2i
((a − c) × b − (a − c) × c) = 1

2i
(c × (a − c) − b × (a − c))

= 1

2i
(c × a − c × c − b × a + b × c) = 1

2i
(a × b + b × c + c × a),

as claimed.

The other situation can be similarly solved.

Proposition 2. Suppose A(a), B(b) and C(c) are distinct points. The following

statements are equivalent:

1) Points A, B, C are collinear.

2) (b − a) × (c − a) = 0.

3) a × b + b × c + c × a = 0.

Proof. Points A, B, C are collinear if and only if area[ABC] = 0, i.e., a × b + b ×
c + c × a = 0. The last equation can be written in the form (b − a) × (c − a) = 0. �

Proposition 3. Let A(a), B(b), C(c), D(d) be four points, no three of which are

collinear. Then AB‖C D if and only if (b − a) × (d − c) = 0.

Proof. Choose the points M(m) and N (n) such that O AB M and OC DN are paral-

lelograms; then m = b − a and n = d − c.

Lines AB and C D are parallel if and only if points O, M, N are collinear. Using

property 5, this is equivalent to 0 = m × n = (b − a) × (d − c). �

Problem 1. Points D and E lie on sides AB and AC of the triangle ABC such that

AD

AB
= AE

AC
= 3

4
.

Consider points E ′ and D′ on the rays (B E and (C D such that E E ′ = 3B E and

DD′ = 3C D. Prove that:

1) points D′, A, E ′ are collinear;

2) AD′ = AE ′.

Solution. The points D, E, D′, E ′ have the coordinates: d = a + 3b

4
, e = a + 3c

4
,

e′ = 4e − 3b = a + 3c − 3b and d ′ = 4d − 3c = a + 3b − 3c,

respectively.
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Figure 4.3.

1) Since

(a − d ′) × (e′ − d ′) = (3c − 3b) × (6c − 6b) = 18(c − b) × (c − b) = 0,

using Proposition 2 it follows that the points D′, A, E ′ are collinear.

2) Note that
AD′

D′E ′ =
∣∣∣∣ a − d ′

e′ − d ′

∣∣∣∣ = 1

2
,

so A is the midpoint of segment D′E ′.
Problem 2. Let ABC DE be a convex pentagon and let M, N , P, Q, X, Y be the mid-

points of the segments BC, C D, DE, E A, M P, N Q, respectively.

Prove that XY‖AB.

Solution. Let a, b, c, d, e be the coordinates of vertices A, B, C, D, E , respectively.

Figure 4.4.

Points M, N , P, Q, X, Y have the coordinates

m = b + c

2
, n = c + d

2
, p = d + e

2
,

q = e + a

2
, x = b + c + d + e

4
, y = c + d + e + a

4
,
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respectively. Then

y − x

b − a
=

a − b

4
b − a

= −1

4
∈ R,

hence

(y − x) × (b − a) = −1

4
(b − a) × (b − a) = 0.

From Proposition 3 it follows that XY‖AB.

4.3 The Area of a Convex Polygon
We say that the convex polygon A1 A2 · · · An is directly (or positively) oriented if

for any point M situated in the interior of the polygon the triangles M Ak Ak+1,

k = 1, 2, . . . , n, are directly oriented, where An+1 = A1.

Theorem. Consider a directly oriented convex polygon A1 A2 · · · An with vertices

with coordinates a1, a2, . . . , an. Then

area[A1 A2 · · · An] = 1

2
Im(a1a2 + a2a3 + · · · + an−1an + ana1).

Proof. We use induction on n. The base case n = 3 was proved above using the

complex product. Suppose that the claim holds for n = k and note that

area[A1 A2 · · · Ak Ak+1] = area[A1 A2 · · · Ak] + area[Ak Ak+1 A1]

= 1

2
Im(a1a2 + a2a3 + · · · + ak−1ak + aka1) + 1

2
Im(akak+1 + ak+1a1 + a1ak)

= 1

2
Im(a1a2 + a2a3 + · · · + ak−1ak + akak+1 + ak+1a1)

+ 1

2
Im(aka1 + a1ak) = 1

2
Im(a1a2 + a2a3 + · · · + akak+1 + ak+1a1),

since Im(aka1 + a1ak) = 0.
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Alternative proof. Choose a point M in the interior of the polygon. Applying the

formula (2) in Subsection 3.5.3 we have

area[A1 A2 · · · An] =
n∑

k=1

area[M Ak Ak+1]

= 1

2

n∑
k=1

Im(zak + akak+1 + ak+1z)

= 1

2

n∑
k=1

Im(akak+1) + 1

2

n∑
k=1

Im(zak + ak+1z)

= 1

2
Im

(
n∑

k=1

akak+1

)
+ 1

2
Im

(
z

n∑
k=1

ak + z
n∑

j=1

a j

)
= 1

2

(
n∑

k=1

akak+1

)
,

since for any complex numbers z, w the relation Im(zw + zw) = 0 holds. �
Remark. From the above formula it follows that the points A1(a1), A2(a2), . . . ,

An(an) are collinear if and only if

Im(a1a2 + a2a3 + · · · + an−1an + ana1) = 0.

Problem 1. Let P0 P1 · · · Pn−1 be the polygon whose vertices have coordinates

1, ε, . . . , εn−1 and let Q0 Q1 · · · Qn−1 be the polygon whose vertices have coordinates

1, 1 + ε, . . . , 1 + ε + · · · + εn−1, where ε = cos
2π

n
+ i sin

2π

n
. Find the ratio of the

areas of these polygons.

Solution. Consider ak = 1 + ε + · · · + εk , k = 0, 1, . . . , n − 1, and observe that

area[Q0 Q1 · · · Qn−1] = 1

2
Im

(
n−1∑
k=0

akak+1

)
1

2
Im

(
n−1∑
k=0

(ε)k+1 − 1

ε − 1
· εk+2 − 1

ε − 1

)

= 1

2|ε − 1|2 Im

[
n−1∑
k=0

(ε − (ε)k+1 − εk+2 + 1)

]

= 1

2|ε − 1|2 Im(nε + n) = 1

2|ε − 1|2 n sin
2π

n

= n

8 sin2 π

n

2 sin
π

n
cos

π

n
= n

4
cotan

π

n
,

since
n−1∑
k=0

εk+1 = 0 and
n−1∑
k=0

εk+2 = 0.

On the other hand, it is clear that

area[P0 P1 · · · Pn−1] = n area[P0 O P1] = n

2
sin

2π

n
= n sin

π

n
cos

π

n
.
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We obtain

area[P0 P1 · · · Pn−1]
area[Q0 Q1 · · · Qn−1] =

n sin
π

n
cos

π

n
n

4
cotan

π

n

= 4 sin2 π

n
. (1)

Remark. We have Qk Qk+1 = |ak+1 − ak | = |εk+1| = 1, and Pk Pk+1 = |εk+1 −
εk | = |εk(ε − 1)| = |εk ||1 − ε| = |1 − ε| = 2 sin

π

n
, k = 0, 1, . . . , n − 1. It follows

that
Pk Pk+1

Qk Qk+1
= 2 sin

π

n
, k = 0, 1, . . . , n − 1.

That is, the polygons P0 P1 · · · Pn−1 and Q0 Q1 · · · Qn−1 are similar and the result

in (1) follows.

Problem 2. Let A1 A2 · · · An (n ≥ 5) be a convex polygon and let Bk be the midpoint

of the segment [Ak Ak+1], k = 1, 2, . . . , n, where An+1 = A1. Then the following

inequality holds:

area[B1 B2 · · · Bn] ≥ 1

2
area[A1 A2 · · · An].

Solution. Let ak and bk be the coordinates of points Ak and Bk , k = 1, 2, . . . , n. It

is clear that the polygon B1 B2 · · · Bn is convex and if we assume that A1 A2 · · · An is

positively oriented, then B1 B2 · · · Bn also has this property. Choose as the origin O of

the complex plane a point situated in the interior of polygon A1 A2 · · · An .

We have bk = 1

2
(ak + ak+1), k = 1, 2, . . . , n, and

area[B1 B2 · · · Bn] = 1

2
Im

(
n∑

k=1

bkbk+1

)
= 1

8
Im

n∑
k=1

(ak + ak+1)(ak+1 + ak+2)

= 1

8
Im

(
n∑

k=1

akak+1

)
+ 1

8
Im

(
n∑

k=1

ak+1ak+2

)
+ 1

8
Im

(
n∑

k=1

akak+2

)

= 1

2
area[A1 A2 · · · An] + 1

8
Im

(
n∑

k=1

akak+2

)

= 1

2
area[A1 A2 · · · An] + 1

8

n∑
k=1

Im(akak+2)

= 1

2
area[A1 A2 · · · An] + 1

8

n∑
k=1

O Ak · O Ak+2 sin ̂Ak O Ak+2

≥ 1

2
area[A1 A2 · · · An].
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We have used the relations

Im

(
n∑

k=1

akak+1

)
= Im

(
n∑

k=1

ak+1ak+2

)
= 2 area[A1 A2 · · · An],

and sin ̂Ak O Ak+2 ≥ 0, k = 1, 2, . . . , n, where An+2 = A2.

4.4 Intersecting Cevians and Some Important Points
in a Triangle

Proposition 1. Consider the points A′, B ′, C ′ on the sides BC, C A, AB of the triangle

ABC such that AA′, B B ′, CC ′ intersect at point Q and let

B A′

A′C
= p

n
,

C B ′

B ′ A
= m

p
,

AC ′

C ′ B
= n

m
.

If a, b, c are the coordinates of points A, B, C, respectively, then the coordinate of

point Q is

q = ma + nb + pc

m + n + p
.

Proof. The coordinates of A′, B ′, C ′ are a′ = nb + pc

n + p
, b′ = ma + pc

m + p
and c′ =

ma + nb

m + n
, respectively. Let Q be the point with coordinate q = ma + nb + pc

m + n + p
. We

prove that AA′, B B ′, CC ′ meet at Q.

The points A, Q, A′ are collinear if and only if (q − a) × (a′ − a) = 0. This is

equivalent to (
ma + nb + pc

m + n + p
− a

)
×
(

nb + pc

n + p
− a

)
= 0

or (nb + pc − (n + p)a) × (nb + pc − (n + p)a) = 0, which is clear by definition of

the complex product.

Likewise, Q lies on lines B B ′ and CC ′, so the proof is complete. �
Some important points in a triangle. 1) If Q = G, the centroid of the triangle

ABC , we have m = n = p = 1. Then we obtain again that the coordinate of G is

zG = a + b + c

3
.

2) Suppose that the lengths of the sides of triangle ABC are BC = α, C A = β,

AB = γ . If Q = I , the incenter of triangle ABC , then, using the known result

concerning the angle bisector, it follows that m = α, n = β, p = γ . Therefore the

coordinate of I is

zI = αa + βb + γ c

α + β + γ
= 1

2s
[αa + βb + γ c],
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where s = 1

2
(α + β + γ ).

3) If Q = H , the orthocenter of the triangle ABC , we easily obtain the relations

B A′

A′C
= tan C

tan B
,

C B ′

B ′ A
= tan A

tan C
,

AC ′

C ′ B
= tan B

tan A
.

It follows that m = tan A, n = tan B, p = tan C , and the coordinate of H is given

by

zH = (tan A)a + (tan B)b + (tan C)c

tan A + tan B + tan C
.

Remark. The above formula can also be extended to the limiting case when the

triangle ABC is a right triangle. Indeed, assume that A → π

2
. Then tan A → ±∞

and
(tan B)b + (tan C)c

tan A
→ 0,

tan B + tan C

tan A
→ 0. In this case zH = a, i.e., the

orthocenter of triangle ABC is the vertex A.

4) The Gergonne1 point J is the intersection of the cevians AA′, B B ′, CC ′, where

A′, B ′, C ′ are the points of tangency of the incircle to the sides BC , C A, AB, respec-

tively. Then

B A′

A′C
=

1

s − γ

1

s − β

,
C B ′

B ′ A
=

1

s − α
1

s − γ

,
AC ′

C ′ B
=

1

s − β

1

s − α

,

and the coordinate z J is obtained from the same proposition, where

z J = rαa + rβb + rγ c

rα + rβ + rγ

.

Here rα, rβ, rγ denote the radii of the three excircles of triangle. It is not difficult to

show that the following formulas hold:

rα = K

s − α
, rβ = K

s − β
, rγ = K

s − γ
,

where K = area[ABC] and s = 1

2
(α + β + γ ).

5) The Lemoine2 point K is the intersection of the symmedians of the triangle (the

symmedian is the reflection of the bisector across the median). Using the notation from

1Joseph-Diaz Gergonne (1771–1859), French mathematician, founded the journal Annales de Mathéma-

tiques Pures et Appliquées in 1810.
2Emile Michel Hyacinthe Lemoine (1840–1912), French mathematician, made important contributions

to geometry.
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the proposition we obtain

B A′

A′C
= γ 2

β2
,

C B ′

B ′ A
= α2

γ 2
,

AC ′

C ′ B
= β2

α2
.

It follows that

zK = α2a + β2b + γ 2c

α2 + β2 + γ 2
.

6) The Nagel3 point N is the intersection of the cevians AA′, B B ′, CC ′, where

A′, B ′, C ′ are the points of tangency of the excircles with the sides BC , C A, AB,

respectively. Then

B A′

A′C
= s − γ

s − β
,

C B ′

B ′ A
= s − α

s − γ
,

AC ′

C ′ B
= s − β

s − α
,

and the proposition mentioned before gives the coordinate zN of the Nagel point N ,

zN = (s − α)a + (s − β)b + (s − γ )c

(s − α) + (s − β) + (s − γ )
= 1

s
[(s − α)a + (s − β)b + (s − γ )c]

=
(

1 − α

s

)
a +

(
1 − β

s

)
b +

(
1 − γ

s

)
c.

Problem. Let α, β, γ be the lengths of sides BC, C A, AB of triangle ABC and

suppose α < β < γ . If points O, I, H are the circumcenter, the incenter and the

orthocenter of the triangle ABC, respectively. Prove that

area[O I H ] = 1

8r
(α − β)(β − γ )(γ − α),

where r is the inradius of ABC.

Solution. Consider triangle ABC , directly oriented in the complex plane centered

at point O .

Using the complex product and the coordinates of I and H , we have

area[O I H ] = 1

2i
(I × h) = 1

2i

[αa + βb + γ c

α + β + γ
× (a + b + c)

]
= 1

4si
[(α − β)a × b + (β − γ )b × c + (γ − α)c × a]

= 1

2s
[(α − β) · area[O AB] + (β − γ ) · area[O BC] + (γ − α) · area[OC A]]

= 1

2s

[
(α − β)

R2 sin 2C

2
+ (β − γ )

R2 sin 2A

2
+ (γ − α)

R2 sin 2B

2

]
3Christian Heinrich von Nagel (1803–1882), German mathematician. His contributions to triangle ge-

ometry were included in the book The Development of Modern Triangle Geometry [13].
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= R2

4s
[(α − β) sin 2C + (β − γ ) sin 2A + (γ − α) sin 2B]

= 1

8r
(α − β)(β − γ )(γ − α),

as desired.

4.5 The Nine-Point Circle of Euler
Given a triangle ABC , choose its circumcenter O to be the origin of the complex plane

and let a, b, c be the coordinates of the vertices A, B, C . We have seen in Section 2.22,

Proposition 3, that the coordinate of the orthocenter H is zH = a + b + c.

Let us denote by A1, B1, C1 the midpoints of sides BC , C A, AB, by A′, B ′, C ′

the feet of the altitudes and by A′′, B ′′, C ′′ the midpoints of segments AH , B H , C H ,

respectively.

Figure 4.5.

It is clear that for the points A1, B1, C1, A′′, B ′′, C ′′ we have the following coordi-

nates:

z A1 = 1

2
(b + c), zB1 = 1

2
(c + a), zC1 = 1

2
(a + b),

z A′′ = a + 1

2
(b + c), zB′′ = b + 1

2
(c + a), zC ′′ = c + 1

2
(a + b).

It is not so easy to find the coordinates of A′, B ′, C ′.
Proposition 1. Consider the point X (x) in the plane of triangle ABC. Let P be the

projection of X onto line BC. Then the coordinate of P is given by

p = 1

2

(
x − bc

R2
x + b + c

)
where R is the circumradius of triangle ABC.
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Proof. Using the complex product and the real product we can write the equations

of lines BC and X P as follows:

BC : (z − b) × (c − b) = 0,

X P : (z − x) · (c − b) = 0.

The coordinate p of P satisfies both equations; hence we have

(p − b) × (c − b) = 0 and (p − x) · (c − b) = 0.

These equations are equivalent to

(p − b)(c − b) − (p − b)(c − b) = 0

and

(p − x)(c − b) + (p − x)(c − b) = 0.

Adding the above relations we find

(2p − b − x)(c − b) + (b − x)(c − b) = 0.

It follows that

p = 1

2

[
b + x + c − b

c − b
(x − b)

]
= 1

2

⎡⎢⎢⎣b + x + c − b

R2

c
− R2

b

(x − b)

⎤⎥⎥⎦
= 1

2

[
b + x − bc

R2
(x − b)

]
= 1

2

(
x − bc

R2
x + b + c

)
. �

From the above Proposition 1, the coordinates of A′, B ′, C ′ are

z A′ = 1

2

(
a + b + c − bca

R2

)
,

zB′ = 1

2

(
a + b + c − cab

R2

)
,

zC ′ = 1

2

(
a + b + c − abc

R2

)
.

Theorem 2. (The nine-point circle.) In any triangle ABC the points A1, B1, C1, A′,
B ′, C ′, A′′, B ′′, C ′′ are all on the same circle, whose center is at the midpoint of the

segment O H, and the radius is one-half of the circumcircle.
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Proof. Denote by O9 the midpoint of the segment O H . Using our initial assumption,

it follows that zO9 = 1

2
(a + b + c). Also we have |a| = |b| = |c| = R, where R is the

circumradius of triangle ABC .

Observe that O9 A1 = |z A1 − zO9 | = 1

2
|a| = 1

2
R, and also O9 B1 = O9C1 = 1

2
R.

We can write O9 A′′ = |z A′′ − zO0 | = 1

2
|a| = 1

2
R, and also O0 B ′′ = O9C ′′ = 1

2
R.

The distance O9 A′ is also not difficult to compute:

O9 A′ = |z A′ − zO9 | =
∣∣∣∣12
(

a + b + c − bca

R2

)
− 1

2
(a + b + c)

∣∣∣∣
= 1

2R2
|bca| = 1

2R2
|a||b||c| = R3

2R2
= 1

2
R.

Similarly, we get O9 B ′ = O9C ′ = 1

2
R. Therefore O9 A1 = O0 B1 = O9C1 =

O9 A′ = O9 B ′ = O9C ′ = O9 A′′ = O9 B ′′ = O9C ′′ = 1

2
R and the desired property

follows. �
Theorem 3. 1) (Euler4 line of a triangle.) In any triangle ABC the points O, G, H

are collinear.

2) (Nagel line of a triangle.) In any triangle ABC the points I, G, N are collinear.

Proof. 1) If the circumcenter O is the origin of the complex plane, we have zO = 0,

zG = 1

3
(a + b + c), zH = a + b + c. Hence these points are collinear by Proposition

2 in Section 2.22.

2) We have zI = α

2s
a + β

2s
b + γ

2s
c, zG = 1

3
(a + b + c), and zN =

(
1 − α

s

)
a +(

1 − β

s

)
b +

(
1 − γ

s

)
c and we can write zN = 3zG − 2zI .

Applying the result mentioned above and properties of the complex product we

obtain (zG − zI ) × (zN − zI ) = (zG − zI ) × [3(zG − zI )] = 0; hence the points

I, H, N are collinear. �
Remark. Note that N G = 2G I , hence the triangles OG I and H G N are similar.

It follows that the lines O I and N H are parallel and we have the following basic

configuration of triangle ABC (in Figure 4.6):

4Leonhard Euler (1707–1783), one of the most important mathematicians, created a good deal of anal-

ysis, and revised almost all the branches of pure mathematics which were then known, adding proofs, and

arranging the whole in a consistent form. Euler wrote an immense number of memoirs on all kinds of math-

ematical subjects. We recommend William Dunham’s book Euler. The Master of Us All (The Mathematical

Association of America, 1999) for more details concerning Euler’s contributions to mathematics.
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Figure 4.6.

If Gs is the midpoint of segment [I N ], then its coordinate is

zGs = 1

2
(zI + zN ) = (β + γ )

4s
a + (γ + α)

4s
b + (α + β)

4s
c.

The point Gs is called the Spiecker point of triangle ABC and it is easy to verify

that it is the incenter of the medial triangle A1 B1C1.

Problem 1. Consider a point M on the circumcircle of the triangle ABC. Prove that

the nine-point centers of the triangles M BC, MC A, M AB are the vertices of a trian-

gle similar to triangle ABC.

Solution. Let A′, B ′, C ′ be the nine-point centers of the triangles M BC , MC D,

M AB, respectively. Take the origin of the complex plane to be at the circumcenter of

triangle ABC . Denote by a lowercase letter the coordinate of the point denoted by an

uppercase letter. Then

a′ = m + b + c

2
, b′ = m + c + a

2
, c′ = m + a + b

2
,

since M lies on the circumcircle of triangle ABC . Then

b′ − a′

c′ − a′ = a − b

a − c
= b − a

c − a
,

and hence triangles A′ B ′C ′ and ABC are similar.

Problem 2. Show that triangle ABC is a right triangle if and only if its circumcircle

and its nine-point circle are tangent.

Solution. Take the origin of the complex plane to be at circumcenter O of triangle

ABC and denote by a, b, c the coordinates of vertices A, B, C , respectively. Then the
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circumcircle of triangle ABC is tangent to the nine-point circle of triangle ABC if and

only if O O9 = R

2
. This is equivalent to O O2

9 = R2

4
, that is, |a + b + c|2 = R2.

Using properties of the real product, we have

|a + b + c|2 = (a + b + c) · (a + b + c) = a2 + b2 + c2 + 2(a · b + b · c + c · a)

= 3R2 + 2(a · b + b · c + c · a) = 3R2 + (2R2 − α2 + 2R2 − β2 + 2R2 − γ 2)

= 9R2 − (α2 + β2 + γ 2),

where α, β, γ are the lengths of the sides of triangle ABC . We have used the formulas

a · b = R2 − γ 2

2
, b · c = R2 − α2

2
, c · a = R2 − β2

2
, which can be easily derived

from the definition of the real product of complex numbers (see also the lemma in

Subsection 4.6.2).

Therefore, α2 +β2 +γ 2 = 8R2, which is the same as sin2 A + sin2 B + sin2 C = 2.

We can write the last relation as 1 − cos 2A + 1 − cos 2B + 1 − cos 2C = 4. This is

equivalent to 2 cos(A + B) cos(A − B) + 2 cos2 C = 0, i.e., 4 cos A cos B cos C = 0,

and the desired conclusion follows.

Problem 3. Let ABC D be a cyclic quadrilateral and let Ea, Eb, Ec, Ed be the nine-

point centers of triangles BC D, C D A, D AB, ABC, respectively. Prove that the lines

AEa, B Eb, C Ec, DEd are concurrent.

Solution. Take the origin of the complex plane to be the center O of the circumcircle

of ABC D. Then the coordinates of the nine-point centers are

ea = 1

2
(b + c +d), eb = 1

2
(c +d +a), ec = 1

2
(d +a +b), ed = 1

2
(a +b + c).

We have AEa : z = ka + (1 − k)ea , k ∈ R, and the analogous equations for the

lines B Eb, C Ec, DEd . Observe that the point with coordinate
1

3
(a + b + c + d) lies

on all of the four lines
(

k = 1

3

)
, and we are done.

4.6 Some Important Distances in a Triangle

4.6.1 Fundamental invariants of a triangle

Consider the triangle ABC with sides α, β, γ , the semiperimeter s = 1

2
(α + β + γ ),

the inradius r and the circumradius R. The numbers s, r, R are called the fundamental

invariants of triangle ABC .

Theorem 1. The sides α, β, γ are the roots of the cubic equation

t3 − 2st2 + (s2 + r2 + 4Rr)t − 4s Rr = 0.
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Proof. Let us prove that α satisfies the equation. We have

α = 2R sin A = 4R sin
A

2
cos

A

2
and s − α = rcotan

A

2
= r

cos
A

2

sin
A

2

,

hence

cos2 A

2
= α(s − α)

4Rr
and sin2 A

2
= αr

4R(s − α)
.

From the formula cos2 A

2
+ sin2 A

2
= 1, it follows that

α(s − α)

4Rr
+ αr

4R(s − α)
= 1.

That is, α3 − 2sα2 + (s2 + r2 + 4Rr)α − 4s Rr = 0. We can show analogously that

β and γ are roots of the above equation. �
From the above theorem, by using the relations between the roots and the coeffi-

cients, it follows that

α + β + γ = 2s,

αβ + βγ + γα = s2 + r2 + 4Rr,

αβγ = 4s Rr.

Corollary 2. In any triangle ABC, the following formulas hold:

α2 + β2 + γ 2 = 2(s2 − r2 − 4Rr),

α3 + β3 + γ 3 = 2s(s2 − 3r2 − 6Rr).

Proof. We have

α2 + β2 + γ 2 = (α + β + γ )2 − 2(αβ + βγ + γα) = 4s2 − 2(s2 + r2 + 4Rr)

= 2s2 − 2r2 − 8Rr = 2(s2 − r2 − 4Rr).

In order to prove the second identity, we can write

α3 + β3 + γ 3 = (α + β + γ )(α2 + β2 + γ 2 − αβ − βγ − γα) + 3αβγ

= 2s(2s2 − 2r2 − 8Rr − s2 − r2 − 4Rr) + 12s Rr = 2s(s2 − 3r2 − 6Rr). �
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4.6.2 The distance OI

Assume that the circumcenter O of the triangle ABC is the origin of the complex plane

and let a, b, c be the coordinates of the vertices A, B, C , respectively.

Lemma. The real products a · b, b · c, c · a are given by

a · b = R2 − γ 2

2
, b · c = R2 − α2

2
, c · a = R2 − β2

2
.

Proof. Using the properties of the real product we have

γ 2 = |a − b|2 = (a − b) · (a − b) = a2 − 2a · b − b2 = 2R2 − 2a · b,

and the first formula follows. �
Theorem 4. (Euler) The following formula holds:

O I 2 = R2 − 2Rr.

Proof. The coordinate of the incenter is given by

zI = α

2s
a + β

2s
b + γ

2s
c

so we can write

O I 2 = |zI |2 =
(

α

2s
a + β

2s
b + γ

2s
c

)
·
(

α

2s
a + β

2s
b + γ

2s
c

)

= 1

4s2
(α2 + β2 + γ 2)R2 + 2

1

4s2

∑
cyc

(αβ)a · b.

Using the lemma above we find that

O I 2 = 1

4s2
(α2 + β2 + γ 2)R2 + 2

4s2

∑
cyc

αβ
(

R2 − γ 2

2

)

= 1

4s2
(α + β + γ )2 R2 − 1

4s2

∑
cyc

αβγ 2 = R2 − 1

4s2
αβγ (α + β + γ )

= R2 − 1

2s
αβγ = R2 − 2

αβγ

4K
· K

s
= R2 − 2Rr,

where the well-known formulas

R = αβγ

4K
, r = K

s
,

are used. Here K is the area of triangle ABC . �
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Corollary 5. (Euler’s inequality.) In any triangle ABC the following inequality

holds:

R ≥ 2r.

We have equality if and only if the triangle ABC is equilateral.

Proof. From Theorem 4 we have O I 2 = R(R − 2r) ≥ 0, hence R ≥ 2r . The

equality R − 2r = 0 holds if and only if O I 2 = 0, i.e., O = I . Therefore triangle

ABC is equilateral. �

4.6.3 The distance ON

Theorem 6. If N is the Nagel point of triangle ABC, then

O N = R − 2r.

Proof. The coordinate of the Nagel point of the triangle is given by

zN =
(

1 − α

s

)
a +

(
1 − β

s

)
b +

(
1 − γ

s

)
c.

Therefore

O N 2 = |zN |2 = zN · zN = R2
∑
cyc

(
1 − α

s

)2 + 2
∑
cyc

(
1 − α

s

)(
1 − β

s

)
a · b

= R2
∑
cyc

(
1 − α

s

)2 + 2
∑
cyc

(
1 − α

s

)(
1 − β

s

)(
R2 − γ 2

2

)

= R2
(

3 − α + β + γ

s

)2

−
∑
cyc

(
1 − α

s

)(
1 − β

s

)
γ 2

= R2 −
∑
cyc

(
1 − α

s

)(
1 − β

s

)
γ 2 = R2 − E .

To calculate E we note that

E =
∑
cyc

(
1 − α + β

s
+ αβ

s2

)
γ 2 =

∑
cyc

γ 2 − 1

s

∑
cyc

(α + β)γ 2 + 1

s2

∑
cyc

αβγ 2

=
∑
cyc

γ 2 − 1

s

∑
cyc

(2s − γ )γ 2 + 2αβγ

s
= −

∑
cyc

α2 + 1

s

∑
cyc

α3 + 8
αβγ

4K
· K

s

= −
∑
cyc

α2 + 1

s

∑
cyc

α3 + 8Rr.

Applying the formula in Corollary 2, we conclude that

E = −2(s2 − r2 − 4Rr) + 2(s2 − 3r2 − 6Rr) + 8Rr = −4r2 + 4Rr.
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Hence O N 2 = R2 − E = R2 − 4Rr + 4r2 = (R − 2r)2 and the desired formula is

proved by Euler’s inequality. �
Theorem 7. (Feuerbach5) In any triangle the incircle and the nine-point circle of

Euler are tangent.

Proof. Using the configuration in Section 4.5 we observe that

1

2
= G I

G N
= G O9

G O
.

Figure 4.7.

Therefore triangles G I O9 and G N O are similar. It follows that the lines I O9 and

O N are parallel and I O9 = 1

2
O N . Applying Theorem 6 we get I O9 = 1

2
(R − 2r) =

R

2
− r = R9 − r , hence the incircle is tangent to the nine-point circle. �
The point of tangency of these two circles is denoted by ϕ and is called the Feuer-

bach point of triangle.

4.6.4 The distance OH

Theorem 8. If H is the orthocenter of triangle ABC, then

O H2 = 9R2 + 2r2 + 8Rr − 2s2.

Proof. Assuming that the circumcenter O is the origin of the complex plane, the

coordinate of H is

zH = a + b + c.

5Karl Wilhelm Feuerbach (1800–1834), German geometer, published the result of Theorem 7 in 1822.
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Using the real product we can write

O H2 = |zH |2 = zH · zH = (a + b + c) · (a + b + c)

=
∑
cyc

|a|2 + 2
∑

ab = 3R2 + 2
∑
cyc

a · b.

Applying the formulas in the lemma (p. 112) and then the first formula in Corol-

lary 2, we obtain

O H2 = 3R2 + 2
∑
cyc

(
R2 − γ 2

2

)
= 9R2 − (α2 + β2 + γ 2)

= 9R2 − 2(s2 − r2 − 4Rr) = 9R2 + 2r2 + 8Rr − 2s2. �

Corollary 9. The following formulas hold:

1) OG2 = R2 + 2

9
r2 + 8

9
Rr − 2

9
s2;

2) O O2
9 = 9

4
R2 + 1

2
r2 + 2Rr − 1

2
s2.

Corollary 10. In any triangle ABC the inequality

α2 + β2 + γ 2 ≤ 9R2

is true. Equality holds if and only if the triangle is equilateral.

4.7 Distance between Two Points in the Plane of a
Triangle

4.7.1 Barycentric coordinates

Consider a triangle ABC and let α, β, γ be the lengths of sides BC , C A, AB, respec-

tively.

Proposition 1. Let a, b, c be the coordinates of vertices A, B, C and let P be a

point in the plane of triangle. If zP is the coordinate of P, then there exist unique real

numbers μa, μb, μc such that

zP = μaa + μbb + μcc and μa + μb + μc = 1.

Proof. Assume that P is in the interior of triangle ABC and consider the point A′

such that AP ∩ BC = {A′}. Let k1 = P A

P A′ , k2 = A′ B
A′C

and observe that

zP = a + k1z A′

1 + k1
, z A′ = b + k2c

1 + k2
.
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Hence in this case we can write

zP = 1

1 + k1
a + k1

(1 + k1)(1 + k2)
b + k1k2

(1 + k1)(1 + k2)
c.

Moreover, if we consider

μa = 1

1 + k1
, μb = k1

(1 + k1)(1 + k2)
, μc = k1k2

(1 + k1)(1 + k2)

we have

μa + μb + μc = 1

1 + k1
+ k1

(1 + k1)(1 + k2)
+ k1k2

(1 + k1)(1 + k2)

= 1 + k1 + k2 + k1k2

(1 + k1)(1 + k2)
= 1.

We proceed in an analogous way in the case when the point P is situated in the

exterior of triangle ABC .

If the point P is situated on the support line of a side of triangle ABC (i.e., the line

determined by two vertices)

zP = 1

1 + k
b + k

1 + k
c = 0 · a + 1

1 + k
b + k

1 + k
c,

where k = P B

PC
. �

The real numbers μa, μb, μc are called the absolute barycentric coordinates of P

with respect to the triangle ABC .

The signs of numbers μa, μb, μc depend on the regions of the plane where the point

P is situated. Triangle ABC determines seven such regions.

Figure 4.8.

In the next table we give the signs of μa, μb, μc:
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I II III IV V VI VII

μa − + + + − − +
μb + − + − + − +
μc + + − − − + +

4.7.2 Distance between two points in barycentric coordinates

In what follows, in order to simplify the formulas, we will use the symbol called “cyclic

sum.” That is,
∑
cyc

f (x1, x2, . . . , xn), the sum of terms considered in the cyclic order.

The most important example for our purposes is∑
cyc

f (x1, x2, x3) = f (x1, x2, x3) + f (x2, x3, x1) + f (x3, x1, x2).

Theorem 2. In the plane of triangle ABC consider the points P1 and P2 with coor-

dinates zP1 and zP2 , respectively. If zPk = αka + βkb + γkc, where αk, βk, γk are real

numbers such that αk + βk + γk = 1, k = 1, 2, then

P1 P2
2 = −

∑
cyc

(α2 − α1)(β2 − β1)γ
2.

Proof. Choose the origin of the complex plane at the circumcenter O of the triangle

ABC . Using properties of the real product, we have

P1 P2
2 = |zP2 − zP1 |2 = |(α2 − α1)a + (β2 − β1)b + (γ2 − γ1)c|2

=
∑
cyc

(α2 − α1)
2a · a + 2

∑
cyc

(α2 − α1)(β2 − β1)a · b

=
∑
cyc

(α2 − α1)
2 R2 + 2

∑
cyc

(α2 − α1)(β2 − β1)
(

R2 − γ 2

2

)
= R2(α2 + β2 + γ2 − α1 − β1 − γ1)

2 −
∑
cyc

(α2 − α1)(β2 − β1)γ
2

= −
∑
cyc

(α2 − α1)(β2 − β1)γ
2,

since α1 + β1 + γ1 = α2 + β2 + γ2 = 1. �
Theorem 3. The points A1, A2, B1, B2, C1, C2 are situated on the sides BC, C A,

AB of triangle ABC such that lines AA1, B B1, CC1 meet at point P1 and lines

AA2, B B2, CC2 meet at point P2. If

B Ak

AkC
= pk

nk
,

C Bk

Bk A
= mk

pk
,

ACk

Ck B
= nk

mk
, k = 1, 2
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where mk, nk, pk are nonzero real numbers, k = 1, 2, and Sk = mk+nk+ pk, k = 1, 2,

then

P1 P2
2 = 1

S2
1 S2

2

[
S1S2

∑
cyc

(n1 p2 + p1n2)α
2−S2

1

∑
cyc

n2 p2α
2−S2

2

∑
cyc

n1 p1α
2

]
.

Proof. The coordinates of points P1 and P2 are

zPk = mka + nkb + pkc

mk + nk + pk
, k = 1, 2.

It follows that in this case the absolute barycentric coordinates of points P1 and P2

are given by

αk = mk

mk + nk + pk
= mk

Sk
, βk = nk

mk + nk + pk
= nk

Sk
,

γk = pk

mk + nk + pk
= pk

Sk
, k = 1, 2.

Substituting in the formula in Theorem 2 we find

P1 P2
2 = −

∑
cyc

(
n2

S2
− n1

S1

)(
p2

S2
− p1

S1

)
α2

= − 1

S2
1 S2

2

∑
cyc

(S1n2 − S2n1)(S1 p2 − S2 p1)α
2

= − 1

S2
1 S2

2

∑
cyc

[S2
1 n2 p2 + S2

2 n1 p1 − S1S2(n1 p2 + n2 p1)]α2

= 1

S2
1 S2

2

[
S1S2

∑
cyc

(n1 p2 + p1n2)α
2 − S2

1

∑
cyc

n2 p2α
2 − S2

2

∑
cyc

n1 p1α
2

]
and the desired formula follows. �

Corollary 4. For any real numbers αk, βk, γk with αk + βk + γk = 1, k = 1, 2, the

following inequality holds:∑
cyc

(α2 − α1)(β2 − β1)γ
2 ≤ 0,

with equality if and only if α1 = α2, β1 = β2, γ1 = γ2.

Corollary 5. For any nonzero real numbers mk, nk, pk, k = 1, 2, with Sk = mk +
nk + pk, k = 1, 2, the lengths of sides α, β, γ of triangle ABC satisfy the inequality∑

cyc
(n1 p2 + p1n2)

2 ≥ S1

S2

∑
cyc

n2 p2α
2 + S2

S1

∑
cyc

n1 p1α
2

with equality if and only if
p1

n1
= p2

n2
,

m1

p1
= m2

p2
,

n1

m1
= n2

m2
.
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Applications. 1) Let us use the formula in Theorem 3 to compute the distance G I ,

where G is the centroid and I is the incenter of the triangle.

We have m1 = n1 = p1 = 1 and m2 = α, n2 = β, p2 = γ ; hence

S1 =
∑
cyc

m1 = 3; S2 =
∑
cyc

m2 = α + β + γ = 2s;
∑
cyc

(n1 p2 + n2 p1)α
2 = (β + γ )α2 + (γ + α)β2 + (α + β)γ 2

= (α + β + γ )(αβ + βγ + γα) − 3αβγ = 2s(s2 + r2 + 4r R) − 12s Rr

= 2s3 + 2sr2 − 4s Rr.

On the other hand,∑
cyc

n2 p2α
2 = α2βγ + β2γα + γ 2αβ = αβγ (α + β + γ ) = 8s2 Rr

and ∑
cyc

n1 p1α
2 = α2 + β2 + γ 2 = 2s2 − 2r2 − 8Rr.

Then

G I 2 = 1

9
(s2 + 5r2 − 16Rr).

2) Let us prove that in any triangle ABC with sides α, β, γ , the following inequality

holds: ∑
cyc

(2α − β − γ )(2β − α − γ )γ 2 ≤ 0.

In the inequality in Corollary 4 we consider the points P1 = G and P2 = I . Then

α1 = β1 = γ1 = 1

3
and α2 = α

2s
, β2 = β

2s
, γ2 = γ

2s
, and the above inequality

follows. We have equality if and only if P1 = P2; that is, G = I , so the triangle is

equilateral.

4.8 The Area of a Triangle in Barycentric Coordinates
Consider the triangle ABC with a, b, c the coordinates of its vertices, respectively. Let

α, β, γ be the lengths of sides BC, C A and AB.

Theorem 1. Let Pj (zPj ), j = 1, 2, 3, be three points in the plane of triangle ABC

with zPj = α j a + β j b + γ j c, where α j , β j , γ j are the barycentric coordinates of Pj .

If the triangles ABC and P1 P2 P3 have the same orientation, then

area[P1 P2 P3]
area[ABC] =

∣∣∣∣∣∣∣
α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

∣∣∣∣∣∣∣ .
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Proof. Suppose that the triangles ABC and P1 P2 P3 are positively oriented. If O

denotes the origin of the complex plane, then using the complex product we can write

2i area[P1 O P2] = zP1 × zP2 = (α1a + β1b + γ1c) × (α2a + β2b + γ2c)

= (α1β2 − α2β1)a × b + (β1γ2 − β2γ1)b × c + (γ1α2 − γ2α1)c × a

=

∣∣∣∣∣∣∣
a × b b × c c × a

γ1 α1 β1

γ2 α2 β2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

a × b b × c 2i area[ABC]
γ1 α1 1

γ2 α2 1

∣∣∣∣∣∣∣ .
Analogously, we find

2i area[P2 O P3] =

∣∣∣∣∣∣∣
a × b b × c 2i area[ABC]

γ2 α2 1

γ3 α3 1

∣∣∣∣∣∣∣ ,

2i area[P3 O P1] =

∣∣∣∣∣∣∣
a × b b × c 2i area[ABC]

γ3 α3 1

γ1 α1 1

∣∣∣∣∣∣∣ .
Assuming that the origin O is situated in the interior of triangle P1 P2 P3, it follows

that

area[P1 P2 P3] = area[P1 O P2] + area[P2 O P3] + area[P3 O P1]
= 1

2i
(α1 − α2 + α2 − α3 + α3 − α1)a × b − 1

2i
(γ1 − γ2 + γ2 − γ3 + γ3 − γ1)b × c

+ (γ1α2 − γ2α1 + γ2α3 − γ3α2 + γ3α1 − γ1α3)area[ABC]
= (γ1α2 − γ2α1 + γ2α3 − γ3α2 + γ3α1 − γ1α3)area[ABC]

= area[ABC]

∣∣∣∣∣∣∣
1 γ1 α1

1 γ2 α2

1 γ3 α3

∣∣∣∣∣∣∣ = area[ABC]

∣∣∣∣∣∣∣
α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

∣∣∣∣∣∣∣
and the desired formula is obtained. �

Corollary 2. Consider the triangle ABC and the points A1, B1, C1 situated on the

lines BC, C A, AB, respectively, such that

A1 B

A1C
= k1,

B1C

B1 A
= k2,

C1 A

C1 B
= k3.

If AA1 ∩ B B1 = {P1}, B B1 ∩ CC1 = {P2} and CC1 ∩ AA1 = {P3}, then

area[P1 P2 P3]
area[ABC] = (1 − k1k2k3)

2

(1 + k1 + k1k2)(1 + k2 + k2k3)(1 + k3 + k3k1)
.
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Figure 4.9.

Proof. Applying Menelaus’s well-known theorem in triangle AA1 B we find that

C1 A

C1 B
· C B

C A1
· P3 A1

P3 A
= 1.

Hence
P3 A

P3 A1
= C1 A

C1 B
· C B

C A1
= k3(1 + k1).

The coordinate of P3 is given by

zP3 = a + k3(1 + k1)z A1

1 + k3(1 + k1)
=

a + k3(1 + k1)
b + k1c

1 + k1

1 + k3 + k3k1
= a + k3b + k3k1c

1 + k3 + k3k1
.

In an analogous way we find that

zP1 = k1k2a + b + k1c

1 + k1 + k1k2
and zP2 = k2a + k2k3b + c

1 + k2 + k2k3
.

The triangles ABC and P1 P2 P3 have the same orientation; hence by applying the

formula in Theorem 1 we find that

area[P1 P2 P3]
area[ABC]

= 1

(1 + k1 + k1k2)(1 + k2 + k2k3)(1 + k3 + k3k1)

∣∣∣∣∣∣∣
k1k2 1 k1

k2 k2k3 1

1 k3 k3k1

∣∣∣∣∣∣∣
= (1 − k1k2k3)

2

(1 + k1 + k1k2)(1 + k2 + k2k3)(1 + k3 + k3k1)
. �

Remark. When k1 = k2 = k3 = k, from Corollary 2 we obtain Problem 3 from the

23rd Putnam Mathematical Competition.
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Let A j , B j , C j be points on the lines BC, C A, AB, respectively, such that

B A j

A j C
= p j

n j
,

C B j

B j A
= m j

p j
,

AC j

C j B
= n j

m j
, j = 1, 2, 3.

Corollary 3. If Pj is the intersection point of lines AA j , B B j , CC j , j = 1, 2, 3,

and the triangles ABC, P1 P2 P3 have the same orientation, then

area[P1 P2 P3]
area[ABC] = 1

S1S2S3

∣∣∣∣∣∣∣
m1 n1 p1

m2 n2 p2

m3 n3 p3

∣∣∣∣∣∣∣
where S j = m j + n j + p j , j = 1, 2, 3.

Proof. In terms of the coordinates of the triangle, the coordinates of the points Pj

are

zPj = m j a + n j b + p j c

m j + n j + p j
= 1

S j
(m j a + n j b + p j c), j = 1, 2, 3.

The formula above follows directly from Theorem 1. �
Corollary 4. In triangle ABC let us consider the cevians AA′, B B ′ and CC ′ such

that
A′ B
A′C

= m,
B ′C
B ′ A

= n,
C ′ A
C ′ B

= p.

Then the following formula holds:

area[A′ B ′C ′]
area[ABC] = 1 + mnp

(1 + m)(1 + n)(1 + p)
.

Proof. Observe that the coordinates of A′, B ′, C ′ are given by

z A′ = 1

1 + m
b + m

1 + m
c, zB′ = 1

1 + n
c + n

1 + n
a, zC ′ = 1

1 + p
a + p

1 + p
b.

Applying the formula in Corollary 3 we obtain

area[A′ B ′C ′]
area[ABC] = 1

(1 + m)(1 + n)(1 + p)

∣∣∣∣∣∣∣
0 1 m

n 0 1

1 p 0

∣∣∣∣∣∣∣
= 1 + mnp

(1 + m)(1 + n)(1 + p)
. �

Applications. 1) (Steinhaus6) Let A j , B j , C j be points on lines BC, C A, AB, re-

spectively, j = 1, 2, 3. Assume that

B A1

A1C
= 2

4
,

C B1

B1 A
= 1

2
,

AC1

C1 B
= 4

1
;

6Hugo Dyonizy Steinhaus (1887–1972), Polish mathematician, made important contributions in func-

tional analysis and other branches of modern mathematics.



4.8. The Area of a Triangle in Barycentric Coordinates 123

B A2

A2C
= 4

1
,

C B2

B2 A
= 2

4
,

AC2

C2 B
= 1

2
;

B A3

A3C
= 1

2
,

C B3

B3 A
= 4

1
,

AC3

C3 B
= 2

4
.

If Pj is the intersection point of lines AA j , B B j , CC j , j = 1, 2, 3, and triangles

ABC , P1 P2 P3 are of the same orientation, then from Corollary 3 we obtain

area[P1 P2 P3]
area[ABC] = 1

7 · 7 · 7

∣∣∣∣∣∣∣
1 4 2

2 1 4

4 2 1

∣∣∣∣∣∣∣ =
49

73
= 1

7
.

2) If the cevians AA′, B B ′, CC ′ are concurrent at point P , let us denote by K P the

area of triangle A′ B ′C ′. We can use the formula in Corollary 4 to compute the areas

of some triangles determined by the feet of the cevians of some remarkable points in a

triangle.

(i) If I is the incenter of triangle ABC we have

K I =
1 + γ

β
· β

α
· α

γ(
1 + γ

β

)(
1 + β

α

)(
1 + α

γ

)area[ABC]

= 2αβγ

(α + β)(β + γ )(γ + α)
area[ABC] = 2αβγ sr

(α + β)(β + γ )(γ + α)
.

(ii) For the orthocenter H of the acute triangle ABC we obtain

K H =
1 + tan C

tan B
· tan B

tan A
· tan A

tan C(
1 + tan C

tan B

)(
1 + tan B

tan A

)(
1 + tan A

tan C

)area[ABC]

= (2 cos A cos B cos C)area[ABC] = (2 cos A cos B cos C)sr.

(iii) For the Nagel point of triangle ABC we can write

KN =
1 + s − γ

s − β
· s − α

s − γ
· s − β

s − α(
1 + s − γ

s − β

)(
1 + s − α

s − γ

)(
1 + s − β

s − α

)area[ABC]

= 2(s − α)(s − β)(s − γ )

αβγ
area[ABC] = 4area2[ABC]

2sαβγ
area[ABC]

= r

2R
area[ABC] = sr2

2R
.
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If we proceed in the same way for the Gergonne point J we find the relation

K J = r

2R
area[ABC] = sr2

2R
.

Remark. Two cevians AA′ and AA′′ are isotomic if the points A′ and A′′ are sym-

metric with respect to the midpoint of the segment BC . Assuming that

A′ B
A′C

= m,
B ′C
B ′ A

= n,
C ′ A
C ′ B

= p,

then for the corresponding isotomic cevians we have

A′′ B
A′′C

= 1

m
,

B ′′C
B ′′ A

= 1

n
,

C ′′ A
C ′′ B

= 1

p
.

Applying the formula in Corollary 4, it follows that

area[A′ B ′C ′]
area[ABC] = 1 + mnp

(1 + m)(1 + n)(1 + p)

=
1 + 1

mnp(
1 + 1

m

)(
1 + 1

n

)(
1 + 1

p

) = area[A′′ B ′′C ′′]
area[ABC] .

Therefore area[A′ B ′C ′] = area[A′′ B ′′C ′′]. A special case of this relation is KN =
K J , since the points N and J are isotomic (i.e., these points are intersections of iso-

tomic cevians).

3) Consider the excenters Iα, Iβ, Iγ of triangle ABC . It is not difficult to see that

the coordinates of these points are

zIα = − α

2(s − α)
a + β

2(s − β)
b + γ

2(s − γ )
c,

zIβ = α

2(s − α)
a − β

2(s − β)
b + γ

2(s − γ )
c,

zIγ = α

2(s − α)
a + β

2(s − β)
b − γ

2(s − γ )
c.

From the formula in Theorem 1, it follows that

area[Iα Iβ Iγ ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− α

2(s − α)

β

2(s − β)

γ

2(s − γ )

α

2(s − α)
− β

2(s − β)

γ

2(s − γ )

α

2(s − α)

β

2(s − β)
− γ

2(s − γ )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
area[ABC]
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= αβγ

8(s − α)(s − β)(s − γ )

∣∣∣∣∣∣∣
−1 1 1

1 −1 1

1 1 −1

∣∣∣∣∣∣∣ area[ABC]

= sαβγ area[ABC]
2s(s − α)(s − β)(s − γ )

= sαβγ area[ABC]
2 area2[ABC] = 2sαβγ

4 area[ABC] = 2s R.

4) (Nagel line.) Using the formula in Theorem 1, we give a different proof for the so-

called Nagel line: the points I, G, N are collinear. We have seen that the coordinates

of these points are

zI = α

2s
a + β

2s
b + γ

2s
c,

zG = 1

3
a + 1

3
b + 1

3
c,

zN =
(

1 − α

s

)
a +

(
1 − β

s

)
b +

(
1 − γ

s

)
c.

Then

area[I G N ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α

2s

β

2s

γ

2s

1

3

1

3

1

3

1 − α

s
1 − β

s
1 − γ

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
· area[ABC] = 0,

hence the points I, G, N are collinear.

4.9 Orthopolar Triangles

4.9.1 The Simson–Wallance line and the pedal triangle

Consider the triangle ABC , and let M be a point situated in the triangle plane. Let

P, Q, R be the projections of M onto lines BC, C A, AB, respectively.

Theorem 1. (The Simson7 line8) The points P, Q, R are collinear if and only if M

is on the circumcircle of triangle ABC.

7Robert Simson (1687–1768), Scottish mathematician.
8This line was attributed to Simson by Poncelet, but is now frequently known as the Simson–Wallance

line since it does not actually appear in any work of Simson. William Wallance (1768–1843) was also a

Scottish mathematician, who possibly published the theorem above concerning the Simson line in 1799.
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Figure 4.10.

Proof. We will give a standard geometric argument.

Suppose that M lies on the circumcircle of triangle ABC . Without loss of generality

we may assume that M is on the arc
�

BC . In order to prove the collinearity of R, P, Q,

it suffices to show that the angles B̂ P R and Ĉ P Q are congruent. The quadrilaterals

P RB M and PC QM are cyclic (since B̂ RM ≡ B̂ P M and M̂ PC + M̂ QC = 180◦),

hence we have B̂ P R ≡ B̂ M R and Ĉ P Q ≡ Ĉ M Q. But B̂ M R = 90◦ − ÂB M =
90◦ − M̂C Q, since the quadrilateral AB MC is cyclic too. Finally, we obtain B̂ M R =
90◦ − M̂C Q = Ĉ M Q, so the angles B̂ P R and Ĉ P Q are congruent.

To prove the converse, we note that if the points P, Q, R are collinear, then the

angles B̂ P R and Ĉ P Q are congruent, hence ÂB M + ÂC M = 180◦, i.e., the quadri-

lateral AB MC is cyclic. Therefore the point M is situated on the circumcircle of tri-

angles ABC . �
When M lies on the circumcircle of triangle ABC , the line in the above theorem is

called the Simson–Wallance line of M with respect to triangle ABC .

We continue with a nice generalization of the property contained in Theorem 1. For

an arbitrary point X in the plane of triangle ABC consider its projections P, Q and R

on the lines BC, C A and AB, respectively.

The triangle PQR is called the pedal triangle of point X with respect to the triangle

ABC . Let us choose the circumcenter O of triangle ABC as the origin of the complex

plane.

Theorem 2. The area of the pedal triangle of X with respect to the triangle ABC is

given by

area[P Q R] = area[ABC]
4R2

|xx − R2| (1)
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Figure 4.11.

where R is the circumradius of triangle ABC.

Proof. Applying the formula in Proposition 1, Section 4.5, we obtain the coordinates

p, q, r of the points P, Q, R, respectively:

p = 1

2

(
x − bc

R2
x + b + c

)
,

q = 1

2

(
x − ca

R2
x + c + a

)
,

r = 1

2

(
x − ab

R2
x + a + b

)
.

Taking into account the formula in Section 2.5.3 we have

area[P Q R] = i

4

∣∣∣∣∣∣∣
p p 1

q q 1

r r 1

∣∣∣∣∣∣∣ =
i

4

∣∣∣∣∣ q − p q − p

r − p r − p

∣∣∣∣∣ .
For the coordinates p, q, r we obtain

p = 1

2

(
x − b c

R2
x + b + c

)
,

q = 1

2

(
x − c a

R2
x + c + a

)
,

r = 1

2

(
x − a b

R2
x + a + b

)
.

It follows that

q − p = 1

2
(a − b)

(
1 − cx

R2

)
and r − p = 1

2
(a − c)

(
1 − bx

R2

)
, (2)
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q − p = 1

2abc
(a − b)(x − c)R2 and r − p = 1

2abc
(a − c)(x − b)R2.

Therefore

area[P Q R] = i

4

∣∣∣∣∣ q − p q − p

r − p r − p

∣∣∣∣∣
= i(a − b)(a − c)

16abc

∣∣∣∣∣∣∣∣∣
1 − cx

R2
(x − c)R2

1 − bx

R2
(x − b)R2

∣∣∣∣∣∣∣∣∣
= i(a − b)(a − c)

16abc

∣∣∣∣∣ R2 − cx x − c

R2 − bx x − b

∣∣∣∣∣
= i(a − b)(a − c)

16abc

∣∣∣∣∣ (b − c)x b − c

R2 − bx x − b

∣∣∣∣∣
= i(a − b)(b − c)(a − c)

16abc

∣∣∣∣∣ x 1

R2 − bx x − b

∣∣∣∣∣
= i(a − b)(b − c)(a − c)

16abc
(xx − R2).

Proceeding to moduli we find that

area[P Q R] = |a − b||b − c||c − a|
16|a||b||c| |xx − R2| = αβγ

16R3
|xx − R2|

= area[ABC]
4R2

|xx − R2|,
where α, β, γ are the length of sides of triangle ABC . �

Remarks. 1) The formula in Theorem 2 contains the Simson–Wallance line prop-

erty. Indeed, points P, Q, R are collinear if and only if area[P Q R] = 0. That is,

|xx − R2| = 0, i.e., xx = R2. It follows that |x | = R, so X lies on the circumcircle of

triangle ABC .

2) If X lies on a circle of radius R1 and center O (the circumcenter of triangle ABC),

then xx = R2
1, and from Theorem 2 we obtain

area[P Q R] = area[ABC]
4R2

|R2
1 − R2|.

It follows that the area of triangle P Q R does not depend on the point X .

The converse is also true. The locus of all points X in the plane of triangle ABC

such that area[P Q R] = k (constant) is defined by

|xx − R2| = 4R2k

area[ABC] .
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This is equivalent to

|x |2 = R2 ± 4R2k

area[ABC] = R2
(

1 ± 4k

area[ABC]
)

.

If k >
1

4
area[ABC], then the locus is a circle of center O and radius R1 =

R

√
1 + 4k

area[ABC] .

If k ≤ 1

4
area[ABC], then the locus consists of two circles of center O and radii

R

√
1 ± 4k

area[ABC] , one of which degenerated to O when k = 1

4
area[ABC].

Theorem 3. For any point X in the plane of triangle ABC, we can construct a

triangle with sides AX · BC, B X · C A, C X · AB. This triangle is then similar to the

pedal triangle of point X with respect to the triangle ABC.

Proof. Let P Q R be the pedal triangle of X with respect to triangle ABC . From

formula (2) we obtain

q − p = 1

2
(a − b)(x − c)

R2 − cx

R2(x − c)
. (3)

Proceeding to moduli in (3), it follows that

|q − p| = 1

2R2
|a − b||x − c|

∣∣∣∣∣ R2 − cx

x − c

∣∣∣∣∣ . (4)

On the other hand,∣∣∣∣∣ R2 − cx

x − c

∣∣∣∣∣
2

= R2 − cx

x − c
· R2 − cx

x − c
= R2 − cx

x − c
· R2 − cx

x − R2

c

= R2 − cx

x − c
· R2(c − x)

cx − R2
= R2,

hence from (4) we derive the relation

|q − p| = 1

2R
|a − b||x − c|. (5)

Therefore
P Q

C X · AB
= Q R

AX · BC
= R P

B X · C A
= 1

2R
, (6)

and the conclusion follows. �
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Corollary 4. In the plane of triangle ABC consider the point X and denote by

A′ B ′C ′ the triangle with sides AX · BC, B X · C A, C X · AB. Then

area[A′ B ′C ′] = area[ABC]|xx − R2|. (7)

Proof. From formula (6) it follows that area[A′ B ′C ′] = 4R2area[P Q R], where

P Q R is the pedal triangle of X with respect to triangle ABC . Replacing this result in

(1), we find the desired formula. �
Corollary 5. (Ptolemy’s inequality) For any quadrilateral ABC D the following

inequality holds:

AC · B D ≤ AB · C D + BC · AD. (8)

Corollary 6. (Ptolemy’s theorem) The convex quadrilateral ABC D is cyclic if and

only if

AC · B D = AB · C D + BC · AD. (9)

Proof. If the relation (9) holds, then triangle A′ B ′C ′ in Corollary 4 is degenerate;

i.e., area[A′ B ′C ′] = 0. From formula (7) it follows that d · d = R2, where d is the

coordinate of D and R is the circumradius of triangle ABC . Hence the point D lies on

the circumcircle of triangle ABC .

If quadrilateral ABC D is cyclic, then the pedal triangle of point D with respect to

triangle ABC is degenerate. From (6) we obtain the relation (9). �
Corollary 7. (Pompeiu’s Theorem9) For any point X in the plane of the equilateral

triangle ABC, three segments with lengths X A, X B, XC can be taken as the sides of

a triangle.

Proof. In Theorem 3 we have BC = C A = AB and the desired conclusion fol-

lows. �
The triangle in Corollary 7 is called the Pompeiu triangle of X with respect to the

equilateral triangle ABC . This triangle is degenerate if and only if X lies on the cir-

cumcircle of ABC . Using the second part of Theorem 3 we find that Pompeiu’s triangle

of point X is similar to the pedal triangle of X with respect to triangle ABC and

C X

P Q
= AX

Q R
= B X

R P
= 2R

α
= 2

√
3

3
. (10)

Problem 1. Let A, B and C be equidistant points on the circumference of a circle of

unit radius centered at O, and let X be any point in the circle’s interior. Let dA, dB, dC

be the distances from X to A, B, C, respectively. Show that there is a triangle with

9Dimitrie Pompeiu (1873–1954), Romanian mathematician, made important contributions in the fields

of mathematical analysis, functions of a complex variable, and rational mechanics.
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sides dA, dB, dC , and the area of this triangle depends only on the distance from X

to O.

(2003 Putnam Mathematical Competition)

Solution. The first assertion is just the property contained in Corollary 7. Taking into

account the relations (10), it follows that the area of Pompeiu’s triangle of point X is
2

3
area[P Q R]. From Theorem 2 we get that area[P Q R] depends only on the distance

from P to O , as desired.

Problem 2. Let X be a point in the plane of the equilateral triangle ABC such that X

does not lie on the circumcircle of triangle ABC, and let X A = u, X B = v, XC = w.

Express the length side α of triangle ABC in terms of real numbers u, v, w.

(1978 GDR Mathematical Olympiad)

Solution. The segments [X A], [X B], [XC] are the sides of Pompeiu’s triangle of

point X with respect to equilateral triangle ABC . Denote this triangle by A′ B ′C ′.
From relations (10) and from Theorem 2 it follows that

area[A′ B ′C ′] =
(

2
√

3

3

)2

area[P Q R] = 1

3R2
area[ABC]|x · x − R2|

= 1

3R2
· α2

√
3

4
|x · x − R2| =

√
3

4
|X O2 − R2|. (11)

On the other hand, using the well-known formula of Hero we obtain, after a few

simple computations:

area[A′ B ′C ′] = 1

4

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4).

Substituting in (11) we find

|X O2 − R2| = 1√
3

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4). (12)

Now we consider the following two cases:

Case 1. If X lies in the interior of the circumcircle of triangle ABC , then X O2 <

R2. Using the relation (see also formula (4) in Section 4.11)

X O2 = 1

3
(u2 + v2 + w2 − 3R2),

from (12) we find that

2R2 = 1

3
(u2 + v2 + w2) + 1√

3

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4),
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hence

α2 = 1

2
(u2 + v2 + w2) +

√
3

2

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4).

Case 2. If X lies in the exterior of circumcircle of triangle ABC , then X O2 > R2

and after some similar computations we find

α2 = 1

2
(u2 + v2 + w2) −

√
3

2

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4).

4.9.2 Necessary and sufficient conditions for orthopolarity

Consider a triangle ABC and points X, Y, Z situated on its circumcircle. Triangles

ABC and XY Z are called orthopolar triangles (or S-triangles)10 if the Simson–

Wallance line of point X with respect to triangle ABC is perpendicular (orthogonal)

to line Y Z .

Let us choose the circumcenter O of triangle ABC at the origin of the complex

plane. Points A, B, C, X, Y, Z have the coordinates a, b, c, x, y, z with

|a| = |b| = |c| = |x | = |y| = |z| = R,

where R is the circumradius of the triangle ABC .

Theorem 3. Triangles ABC and XY Z are orthopolar triangles if and only if abc =
xyz.

Proof. Let P, Q, R be the feet of the orthogonal lines from the point X to the lines

BC, C A, AB, respectively.

Points P, Q, R are on the same line; that is, the Simson–Wallance line of point X

with respect to triangle ABC .

The coordinates of P, Q, R are denoted by p, q, r , respectively. Using the formula

in Proposition 1, Section 4.5, we have

p = 1

2

(
x − bc

R2
x + b + c

)
q = 1

2

(
x − ca

R2
x + c + a

)
,

r = 1

2

(
x − ab

R2
x + a + b

)
.

We study two cases.

10This definition was given in 1915 by Romanian mathematician Traian Lalescu (1882–1929). He is

famous for his book La géometrie du triangle published by Librairie Vuibert, Paris, 1937.
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Case 1. Point X is not a vertex of triangle ABC .

Then P Q is orthogonal to Y Z if and only if (p − q) · (y − z) = 0. That is,[
(b − a)

(
1 − cx

R2

)]
· (y − z) = 0

or

(b − a)(R2 − cx)(y − z) + (b − a)(R2 − cx)(y − z) = 0.

We obtain(
R2

b
− R2

a

)(
R2 − R2

c
x

)
(y − z) + (b − a)

(
R2 − c

R2

x

)(
R2

y
− R2

z

)
= 0,

hence
1

abc
(a − b)(c − x)(y − z) − 1

xyz
(a − b)(c − x)(y − z) = 0.

The last relation is equivalent to

(abc − xyz)(a − b)(c − x)(y − z) = 0

and finally we get abc = xyz, as desired.

Case 2. Point X is a vertex of triangle ABC . Without loss of generality, assume that

X = B.

Then the Simson–Wallance line of point X = B is the orthogonal line from B to

AC . It follows that B Q is orthogonal to Y Z if and only if lines AC and Y Z are parallel.

This is equivalent to ac = yz. Because b = x , we obtain abc = xyz, as desired. �
Remark. Due to the symmetry of the relation abc = xyz, we observe that the

Simson–Wallance line of any vertex of triangle XY Z with respect to ABC is orthog-

onal to the opposite side of the triangle XY Z . Moreover, the same property holds for

the vertices of triangle ABC .

Hence ABC and XY Z are orthopolar triangles if and only if XY Z and ABC are

orthopolar triangles. Therefore the orthopolarity relation is symmetric.

Problem 1. The median and the orthic triangles of a triangle ABC are orthopolar in

the nine-point circle.

Solution. Consider the origin of the complex plane at the circumcenter O of triangle

ABC . Let M, N , P be the midpoints of AB, BC, C A and let A′, B ′, C ′ be the feet of

the altitudes of triangles ABC from A, B, C , respectively.

If m, n, p, a′, b′, c′ are coordinates of M, N , P, A′, B ′, C ′ then we have

m = 1

2
(a + b), n = 1

2
(b + c), p = 1

2
(c + a)
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and

a′ = 1

2

(
a + b + c − bc

R2
a

)
= 1

2

(
a + b + c − bc

a

)
,

b′ = 1

2

(
a + b + c − ca

b

)
, c′ = 1

2

(
a + b + c − ab

2

)
.

The nine-point center O9 is the midpoint of the segment O H , where H(a + b + c)

is the orthocenter of triangle ABC . The coordinate of O9 is ω = 1

2
(a + b + c).

Now observe that

(a − ω)(b − ω)(c − ω) = (m − ω)(n − ω)(p − ω) = 1

8
abc,

and the claim is proved.

Problem 2. The altitudes of triangle ABC meet its circumcircle at points A1, B1, C1,

respectively. If A′
1, B ′

1, C ′
1 are the antipodal points of A1, B1, C1 on the circumcircle

ABC, then ABC and A′
1 B ′

1C ′
1 are orthopolar triangles.

Solution. The coordinates of A1, B1, C1 are −bc

a
, −ca

b
, −ab

c
, respectively. Indeed,

the equation of line AH in terms of the real product is AH : (z − a) · (b − c) = 0.

It suffices to show that the point with coordinate −bc

a
lies both on AH and on the

circumcircle of triangle ABC . First, let us note that

∣∣∣∣−bc

a

∣∣∣∣ = |b||c|
|a| = R · R

R
= R,

hence this point is situated on the circumcircle of triangle ABC . Now, we show that

the complex number −bc

a
satisfies the equation of the line AH . This is equivalent to(

bc

a
+ a

)
· (b − c) = 0.

Using the definition of the real product, this reduces to(
b c

a
+ a

)
(b − c) +

(
bc

a
+ a

)
(b − c) = 0

or (
ab c

R2
+ a

)
(b − c) +

(
bc

a
+ a

)(
R2

b
− R2

c

)
= 0.

Finally, this comes down to

(b − c)

(
abc

R2
+ a − R2

a
− a R2

bc

)
= 0,

a relation that is clearly true.
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Figure 4.12.

It follows that A′
1, B ′

1, C ′
1 have coordinates

bc

a
,

ca

b
,

ab

c
, respectively. Because

bc

a
· ca

c
· ab

c
= abc,

we obtain that the triangles ABC and A′
1 B ′

1C ′
1 are orthopolar.

Problem 3. Let P and P ′ be distinct points on the circumcircle of triangle ABC such

that lines AP and AP ′ are symmetric with respect to the bisector of angle B̂ AC. Then

triangles ABC and AP P ′ are orthopolar.

Figure 4.13.

Solution. Let us consider p and p′ the coordinates of points P and P ′, respectively.

It is clear that the lines P P ′ and BC are parallel. Using the complex product, it follows
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that (p − p′) × (b − c) = 0. This relation is equivalent to

(p − p′)(b − c) − (p − p′)(b − c) = 0.

Considering the origin of the complex plane at the circumcenter O of triangle ABC ,

we have

(p − p′)
(

R2

b
− R2

c

)
−
(

R2

p
− R2

p′

)
(b − c) = 0,

so

R2(p − p′)(b − c)

(
1

bc
− 1

pp′

)
= 0.

Therefore bc = pp′, i.e., abc = app′. From Theorem 3 it follows that ABC and

AP P ′ are orthopolar triangles.

4.10 Area of the Antipedal Triangle
Consider a triangle ABC and a point M . The perpendicular lines from A, B, C to

M A, M B, MC , respectively, determine a triangle; we call this triangle the antipedal

triangle of M with respect to ABC .

Recall that M ′ is the isogonal point of M if the pairs of lines AM, AM ′; B M, B M ′;
C M, C M ′ are isogonal, i.e., the following relations hold: M̂ AC ≡ M̂ ′ AB, M̂ BC ≡
M̂ ′ B A, M̂C A ≡ M̂ ′C B.

Figure 4.14.

Theorem. Consider M a point in the plane of triangle ABC, M ′ the isogonal point

of M and A′′ B ′′C ′′ the antipedal triangle of M with respect to ABC. Then

area[ABC]
area[A′′ B ′′C ′′] = |R2 − O M ′2|

4R2
= |ρ(M ′)|

4R2
,

where ρ(M ′) is the power of M ′ with respect to the circumcircle of triangle ABC.
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Proof. Consider point O the origin of the complex plane and let m, a, b, c be the

coordinates of M, A, B, C . Then

R2 = aa = bb = cc and ρ(M) = R2 − mm. (1)

Let O1, O2, O3 be the circumcenters of triangles B MC , C M A, AM B, respectively.

It is easy to verify that O1, O2, O3 are the midpoints of segments M A′′, M B ′′, MC ′′,
respectively, and so

area[O1 O2 O3]
area[A′′ B ′′C ′′] = 1

4
. (2)

The coordinate of the circumcenter of the triangle with vertices with coordinates

z1, z2, z3 is given by the following formula (see formula (1) in Subsection 3.6.1):

zO = z1z1(z2 − z3) + z2z2(z3 − z1) + z3z3(z1 − z2)∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z3 z3 1

∣∣∣∣∣∣∣
.

The bisector line of the segment [z1, z2] has the following equation in terms of real

product:

[
z − 1

2
(z1 + z2)

]
· (z1 − z2) = 0. It is sufficient to check that zO satisfies this

equation as this implies, by symmetry, that zO belongs to the perpendicular bisectors

of segments [z2, z3] and [z3, z1].
The coordinate of O1 is

zO1 = mm(b − c) + bb(c − m) + cc(m − b)∣∣∣∣∣∣∣
m m 1

b b 1

c c 1

∣∣∣∣∣∣∣
= (R2 − mm)(c − b)∣∣∣∣∣∣∣

m m 1

b b 1

c c 1

∣∣∣∣∣∣∣
= ρ(M)(c − b)∣∣∣∣∣∣∣

m m 1

b b 1

c c 1

∣∣∣∣∣∣∣
.

Let

� =

∣∣∣∣∣∣∣
a a 1

b b 1

c c 1

∣∣∣∣∣∣∣
and consider

α = 1

�

∣∣∣∣∣∣∣
m m 1

b b 1

c c 1

∣∣∣∣∣∣∣ , β = 1

�

∣∣∣∣∣∣∣
m m 1

c c 1

a a 1

∣∣∣∣∣∣∣ ,
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and

γ = 1

�

∣∣∣∣∣∣∣
m m 1

a a 1

b b 1

∣∣∣∣∣∣∣ .
With this notation we obtain

(αa + βb + γ c) · �

=
∑
cyc

m(ab − ac) −
∑
cyc

m(ab − ac) +
∑
cyc

a(bc − bc)

= m� − m · 0 +
∑
cyc

a

(
b

R2

c
− R2

c
a

)

= m� + R2
∑
cyc

(
ab

c
− ac

b

)
= m�,

and consequently

αa + βb + γ c = m,

since it is clear that � �= 0.

We note that α, β, γ are real numbers and α + β + γ = 1, so α, β, γ are the

barycentric coordinates of point M .

Since

zO1 = (c − b) · ρ(M)

α · �
, zO2 = (c − a) · ρ(M)

β�
, zO3 = (a − b) · ρ(M)

γ · �
,

we have

area[O1 O2 O3]
area[ABC] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i

4

∣∣∣∣∣∣∣
zO1 zO1 1

zO2 zO2 1

zO3 zO3 1

∣∣∣∣∣∣∣
i

4
· �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

�
· ρ2(M)

�2
· 1

αβγ

∣∣∣∣∣∣∣
b − c b − c α

c − a c − a β

a − b a − b γ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

=
∣∣∣∣∣ρ2(M)

�3
· 1

αβγ
·
∣∣∣∣∣ c − a c − a

a − b a − b

∣∣∣∣∣
∣∣∣∣∣

=
∣∣∣∣∣ρ2(M)

�3
· 1

αβγ
· �

∣∣∣∣∣ =
∣∣∣∣∣ρ2(M)

�2
· 1

αβγ

∣∣∣∣∣ . (3)
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Relations (2) and (3) imply that

area[ABC]
area[A′′ B ′′C ′′] = |�2αβγ |

4ρ2(M)
. (4)

Because α, β, γ are the barycentric coordinates of M , it follows that

zM = αz A + βzB + γ zC .

Using the real product we find that

O M2 = zM · zM = (αz A + βzB + γ zC ) · (αz A + βzB + γ zC )

= (α2 + β2 + γ 2)R2 + 2
∑
cyc

αβz A · zB

= (α2 + β2 + γ 2)R2 + 2
∑
cyc

αβ

(
R2 − AB2

2

)
= (α + β + γ )2 R2 −

∑
cyc

αβ AB2 = R2 −
∑
cyc

αβ AB2.

Therefore the power of M ′ with respect to the circumcircle of triangle ABC can be

expressed in the form

ρ(M) = R2 − O M2 =
∑
cyc

αβ AB2.

On the other hand, if α, β, γ are the barycentric coordinates of the point M , then its

isogonal point M ′ has the barycentric coordinates given by

α′ = βγ BC2

βγ BC2 + αγ C A2 + αβ AB2
, β ′ = γαC A2

βγ BC2 + αγ C A2 + αβ AB2
,

γ ′ = αβ AB2

βγ BC2 + αγ C A2 + αβ AB2
.

Therefore

ρ(M ′) =
∑
cyc

α′β ′ AB2

= αβγ AB2 · BC2 · C A2

(βγ BC2 + αγ C A2 + αβ AB2)2
= αβγ AB2 BC2C A2

ρ2(M)
. (5)

On the other hand, we have

�2 =
∣∣∣∣∣
(

4

i
· i

4
�

)2
∣∣∣∣∣ =

∣∣∣∣4i · area[ABC]
∣∣∣∣2 = AB2 · BC2 · C A2

R2
. (6)

The desired conclusion follows from the relations (4), (5), and (6). �
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Applications. 1) If M is the orthocenter H , then M ′ is the circumcenter O and

area[ABC]
area[A′′ B ′′C ′′] = R2

4R2
= 1

4
.

2) If M is the circumcenter O , then M ′ is the orthocenter H and we obtain

area[ABC]
area[A′′ B ′′C ′′] = |R2 − O H2|

4R2
.

Using the formula in Theorem 8, Subsection 4.6.4, it follows that

area[ABC]
area[A′′ B ′′C ′′] = |(2R + r)2 − s2|

2R2
.

3) If M is the Lemoine point K , then M ′ is the centroid G and

area[ABC]
area[A′′ B ′′C ′′] = |R2 − OG2|

4R2
.

Applying the formula in Corollary 9, Subsection 4.6.4, then the first formula in

Corollary 2, Subsection 4.6.1, it follows that

area[ABC]
area[A′′ B ′′C ′′] = 2(s2 − r2 − 4Rr)

36R2
= α2 + β2 + γ 2

36R2

where α, β, γ are the sides of triangle ABC .

From the inequality α2 +β2 +γ 2 ≤ 9R2 (Corollary 10, Subsection 4.6.4) we obtain

area[ABC]
area[A′′ B ′′C ′′] ≤ 1

4
.

4) If M is the incenter I of triangle ABC , then M ′ = I and using Euler’s formula

O I 2 = R2 − 2Rr (see Theorem 4 in Subsection 4.6.2) we find that

area[ABC]
area[A′′ B ′′C ′′] = |R2 − O I 2|

4R2
= 2Rr

4R2
= r

4R
.

Applying Euler’s inequality R ≥ 2r (Corollary 5 in Subsection 4.6.2) it follows that

area[ABC]
area[A′′ B ′′C ′′] ≤ 1

4
.

4.11 Lagrange’s Theorem and Applications
Consider the distinct points A1(z1), . . . , An(zn) in the complex plane. Let m1, . . . , mn

be nonzero real numbers such that m1 + · · · + mn �= 0. Let m = m1 + · · · + mn .
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The point G with coordinate

zG = 1

m
(m1z1 + · · · + mnzn)

is called the barycenter of set {A1, . . . , An} with respect to the weights m1, . . . , mn .

In the case m1 = · · · = mn = 1, the point G is the centroid of the set {A1, . . . , An}.
When n = 3 and the points A1, A2, A3 are not collinear, we obtain the absolute

barycentric coordinates of G with respect to the triangle A1 A2 A3 (see Subsection

4.7.1):

μz1 = m1

m
, μz2 = m2

m
, μz3 = m3

m
.

Theorem 1. (Lagrange11) Consider the points A1, . . . , An and the nonzero real

numbers m1, . . . , mn such that m = m1 + · · · + mn �= 0. If G denotes the barycenter

of set {A1, . . . , An} with respect to the weights m1, . . . , mn, then for any point M in

the plane the following relation holds:

n∑
j=1

m j M A2
j = mMG2 +

n∑
j=1

m j G A2
j (1)

Proof. Without loss of generality we can assume that the barycenter G is the origin

of the complex plane; that is, zG = 0.

Using properties of the real product we obtain for all j = 1, . . . , n, the relations

M A2
j = |zM − z j |2 = (zM − z j ) · (zM − z j )

= |zM |2 − 2zM · z j + |z j |2,
i.e.,

M A2
j = |zM |2 − 2zM · z j + |z j |2.

Multiplying by m j and adding the relations obtained for j = 1, . . . , n, it follows

that
n∑

j=1

m j M A2
j =

n∑
j=1

m j (|zM |2 − 2zM · z j + |z j |2)

= m|zM |2 − 2zM ·
(

n∑
j=1

m j z j

)
+

n∑
j=1

m j |z j |2

11Joseph Louis Lagrange (1736–1813), French mathematician, one of the greatest mathematicians of the

eighteenth century. He made important contributions in all branches of mathematics and his results have

greatly influenced modern science.
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= m|zM |2 − 2zM · (mzG) +
n∑

j=1

m j |z j |2

= m|zM |2 +
n∑

j=1

m j |z j |2 = m|zM − zG |2 +
n∑

j=1

m j |z j − zG |2

= mMG2 +
n∑

j=1

m j G A2
j . �

Corollary 2. Consider the distinct points A1, . . . , An and the nonzero real numbers

m1, . . . , mn such that m1 + · · · + mn �= 0. For any point M in the plane the following

inequality holds:
n∑

j=1

m j M A2
j ≥

n∑
j=1

m j G A2
j , (2)

with equality if and only if M = G, the barycenter of set {A1, . . . , An} with respect to

the weights m1, . . . , mn.

Proof. The inequality (2) follows directly from Lagrange’s relation (1). �
If m1 = · · · = mn = 1, from Theorem 1 one obtains:

Corollary 3. (Leibniz12) Consider the distinct points A1, . . . , An and the centroid

G of the set {A1, . . . , An}. For any point M in the plane the following relation holds:

n∑
j=1

M A2
j = nMG2 +

n∑
j=1

G A2
j . (3)

Remark. The relation (3) is equivalent to the following identity: For any complex

numbers z, z1, . . . , zn we have

1

n

n∑
j=1

|z − z j |2 = n

∣∣∣∣z − z1 + · · · + zn

n

∣∣∣∣2 +
n∑

j=1

∣∣∣∣z j − z1 + · · · + zn

n

∣∣∣∣2 .

Applications. We will use formula (3) in determining some important distances in a

triangle. Let us consider the triangle ABC and let us take n = 3 in the formula (3). We

find that for any point M in the plane of triangle ABC the following formula holds:

M A2 + M B2 + MC2 = 3MG2 + G A2 + G B2 + GC2 (4)

where G is the centroid of triangle ABC . Assume that the circumcenter O of the

triangle ABC is the origin of complex plane.

12Gottfried Wilhelm Leibniz (1646–1716) was a German philosopher, mathematician, and logician who

is probably most well known for having invented the differential and integral calculus independently of Sir

Isaac Newton.
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1) In the relation (4) we choose M = 0 and we get

3R2 = 3OG2 + G A2 + G B2 + GC2.

Applying the well-known median formula it follows that

G A2 + G B2 + GC2 = 4

9
(m2

α + m2
β + m2

γ )

= 4

9

∑
cyc

1

4
[2(β2 + γ 2) − α2] = 1

3
(α2 + β2 + γ 2),

where α, β, γ are the sides of triangle ABC . We find

OG2 = R2 − 1

9
(α2 + β2 + γ 2). (5)

An equivalent form of the distance OG is given in terms of the basic invariants of

triangle in Corollary 9, Subsection 4.6.4.

2) Using the collinearity of points O, G, H and the relation O H = 3OG (see

Theorem 3.1 in Section 4.5) it follows that

O H2 = 9OG2 = 9R2 − (α2 + β2 + γ 2) (6)

An equivalent form for the distance O H was obtained in terms of the fundamental

invariants of the triangle in Theorem 8, Subsection 4.6.4.

3) Consider in (4) M = I , the incenter of triangle ABC . We obtain

I A2 + I B2 + I C2 = 3I G2 + 1

3
(α2 + β2 + γ 2).

Figure 4.15.

On the other hand, we have the following relations:

I A = r

sin
A

2

, I B = r

sin
B

2

, I C = r

sin
C

2

,
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where r is the inradius of triangle ABC . It follows that

I G2 = 1

3

⎡⎢⎣r2

⎛⎜⎝ 1

sin2 A

2

+ 1

sin2 B

2

+ 1

sin2 C

2

⎞⎟⎠− 1

3
(α2 + β2 + γ 2)

⎤⎥⎦ .

Taking into account the well-known formula

sin2 A

2
= (s − β)(s − γ )

βγ

we obtain∑
cyc

1

sin2 A

2

=
∑
cyc

βγ

(s − β)(s − γ )
=
∑
cyc

βγ (s − α)

(s − α)(s − β)(s − γ )

= s

K 2

∑
cyc

βγ (s − α) = s

K 2

[
s
∑

βγ − 3αβγ
]

= s

K 2
[s(s2 + r2 + 4Rr) − 12s Rr ] = 1

r2
(s2 + r2 − 8Rr),

where we have used the formulas in Subsection 4.6.1. Therefore

I G2 = 1

3

[
s2 + r2 − 8Rr − 1

3
(α2 + β2 + γ 2)

]

= 1

3

[
s2 + r2 − 8Rr − 2

3
(s2 − r2 − 4Rr)

]
= 1

9
(s2 + 5r2 − 16Rr),

where the first formula in Corollary 2 was used. That is,

I G2 = 1

9
(s2 + 5r2 − 16Rr), (7)

hence we obtain again the formula in Application 1), Subsection 4.7.2.

Problem 1. Let z1, z2, z3 be distinct complex numbers having modulus R. Prove that

9R2 − |z1 + z2 + z3|2
|z1 − z2| · |z2 − z3| · |z3 − z1| ≥

√
3

R
.

Solution. Let A, B, C be the geometric images of the complex numbers z1, z2, z3

and let G be the centroid of the triangle ABC .

The coordinate of G is equal to
z1 + z2 + z3

3
, and |z1 − z2| = γ , |z2 − z3| = α,

|z3 − z1| = β.

The inequality becomes
9R2 − 9OG2

αβγ
≥

√
3

R
. (1)
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Using the formula

OG2 = R2 − 1

9
(α2 + β2 + γ 2),

(1) is equivalent to

α2 + β2 + γ 2 ≥ αβγ
√

3

R
= 4r K

R

√
3 = 4K

√
3.

Here is a proof of this famous inequality, by using Hero’s formula and the AM-GM

inequality:

K = √s(s − α)(s − β)(s − γ ) ≤
√

s
(s − α + s − β + s − γ )3

27
=
√

s
s3

27

= s2

3
√

3
= (α + β + γ )2

12
√

3
≤ 3(α2 + β2 + γ 2)

12
√

3
= α2 + β2 + γ 2

4
√

3
.

We now extend Leibniz’s relation in Corollary 3. First, we need the following result.

Theorem 4. Let n ≥ 2 be a positive integer. Consider the distinct points A1, . . . , An

and let G be the centroid of the set {A1, . . . , An}. Then for any point in the plane the

following formula holds:

n2 MG2 = n
n∑

j=1

M A2
j −

∑
1≤i<k≤n

Ai A2
k . (8)

Proof. We assume that the barycenter G is the origin of the complex plane. Using

properties of the real product we have

M A2
j = |zM − z j |2 = (zM − z j ) · (zM − z j ) = |zM |2 − 2zM · z j + |z j |2

and

Ai A2
k = |zi − zk |2 = |zi |2 − 2zi · zk + |zk |2,

where the complex number z j is the coordinate of the point A j , j = 1, 2, . . . , n.

The relation (8) is equivalent to

n2|zM |2 = n
n∑

j=1

(|zM |2 − 2zM · z j + |z j |2) −
∑

1≤i<k≤n

|(|zi |2 − 2zi · zk + |zk |2).

That is,

n
n∑

j=1

|z j |2 = 2n
n∑

j=1

zM · z j +
∑

1≤i<k≤n

(|zi |2 − 2zi · zk + |zk |2).
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Taking into account the hypothesis that G is the origin of the complex plane, we

have
n∑

j=1

zM · z j = zM ·
(

n∑
j=1

z j

)
= n(zM · zG) = n(zM · 0) = 0.

Hence, the relation (8) is equivalent to

n∑
j=1

|z j |2 = −2
∑

1≤i<k≤n

zi · zk .

The last relation can be obtained as follows:

0 = |zG |2 = zG · zG = 1

n2

(
n∑

i=1

zi

)
·
(

n∑
k=1

zk

)

= 1

n2

(
n∑

j=1

|z j |2 + 2
∑

1≤i<k≤n

zi · zk

)
.

Therefore the relation (8) is proved. �
Remark. The formula (8) is equivalent to the following identity: For any complex

numbers z, z1, . . . , zn , we have

1

n

n∑
j=1

|z − z j |2 −
∣∣∣∣z − z1 + · · · + zn

n

∣∣∣∣2 = 1

n

∑
1≤i<k≤n

|zi − zk |2.

Applications. 1) If A1, . . . , An are points on the circle of center O and radius R,

then taking in (8) M = O , it follows that∑
1≤i<k≤n

Ai A2
k = n2(R2 − OG2).

If n = 3 we obtain the formula (5).

2) For any point M in the plane the following inequality holds:

n∑
j=1

M A2
j ≥ 1

n

∑
1≤i<k≤n

Ai A2
k,

with equality if and only if M = G, the centroid of the set {A1, . . . , An}.
Let n ≥ 2 be a positive integer, and let k be an integer such that 2 ≤ k ≤ n. Consider

the distinct points A1, . . . , An and let G be the centroid of the set {A1, . . . , An}. For

indices i1 < · · · < ik let us denote by Gi1,...,ik the centroid of the set {Ai1 , . . . , Aik }.
We have the following result:
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Theorem 5. For any point M in the plane,

(n − k)

(
n

k

) n∑
j=1

M A2
j + n2(k − 1)

(
n

k

)
MG2

= kn(n − 1)
∑

1≤i1<··· ,ik≤n

MG2
i1···ik

. (9)

Proof. It is not difficult to see that the barycenter of the set {Gi1···ik : 1 ≤ i1 < · · · <

ik ≤ n} is G. Applying Leibniz’s relation one obtains

n∑
j=1

M A2
j = nMG2 +

n∑
j=1

G A2
j , (10)

∑
1≤i1<···<ik≤n

MG2
i1···ik

=
(

n

k

)
MG2 +

∑
1≤i1<···<ik≤n

GG2
i1···ik

(11)

k∑
s=1

M A2
is

= k MG2
i1···ik

+
k∑

s=1

Gi1···ik A2
is
. (12)

Considering in (12) M = G and adding all these relations, it follows that

∑
1≤i1<···<ik≤n

k∑
s=1

G A2
is

= k
∑

1≤i1<···<ik≤n

GG2
i1···ik

+
∑

1≤i1<···<ik≤n

k∑
s=1

Gi1···ik A2
is
. (13)

Applying formula (8) in Theorem 5 for the sets {A1, . . . , An} and {Ai1 , . . . , Aik },
respectively, we get

n2 MG2 = n
n∑

j=1

M A2
j −

∑
1≤i<k≤n

Ai A2
k, (14)

k2 MG2
i1···ik

= k
k∑

s=1

M A2
is

−
∑

1≤p<q≤k

Ai p A2
iq

. (15)

Taking M = Gi1···ik in (15), it follows that

k∑
s=1

Gi1···ik A2
is

= 1

k

∑
1≤p<q≤k

Ai p A2
iq

. (16)

From (16) and (13) we obtain

∑
1≤i1<···<ik≤n

k∑
s=1

G A2
is

= k
∑

1≤i1<···<ik≤n

GG2
i1···ik
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+ 1

k

∑
1≤i1<···<ik≤n

∑
1≤p<q≤n

Ai p A2
iq

(17)

If we rearrange the terms in formula (17), we get(
k

1

)(
n

k

)
(

n

1

) n∑
j=1

G A2
j = k

∑
1≤i1<···<ik≤n

GG2
i1···ik

+ 1

k

(
k

2

)(
n

k

)
(

n

2

) ∑
1≤i<k≤n

Ai A2
j . (18)

From relations (10), (11), (14) and (18) we readily derive formula (9). �
Remark. The relation (9) is equivalent to the following identity: For any complex

numbers z, z1, . . . , zn we have

(n − k)

(
n

k

) n∑
j=1

|z − z j |2 + n2(k − 1)

(
n

k

) ∣∣∣∣z − z1 + · · · + zn

n

∣∣∣∣2

= kn(n − 1)
∑

1≤i1<···<ik≤n

∣∣∣∣z − zi1 + · · · + zik

k

∣∣∣∣2 .

Applications. 1) In the case k = 2, from (9) we obtain that for any point M in the

plane, the following relation holds:

(n − 2)

n∑
j=1

M A2
j + n2 MG2 = 4

∑
1≤i1<i2≤n

MG2
i1i2

.

In this case Gi1i2 is the midpoint of the segment [Ai1 Ai2 ].
2) If k = 3, from (9) we get that for any point M in the plane, the relation

(n − 3)(n − 2)

n∑
j=1

M A2
j + 2n2(n − 2)MG2 = 18

∑
1≤i1<i2<i3≤n

MG2
i1i2i3

holds. Here the point Gi1i2i3 is the centroid of triangle Ai1 Ai2 Ai3 .

4.12 Euler’s Center of an Inscribed Polygon
Consider a polygon A1 A2 · · · An inscribed in a circle centered at the origin of a com-

plex plane and let a1, a2, . . . , an be the coordinates of its vertices.

By definition, the point E with coordinate

zE = a1 + a2 + · · · + an

2

is called Euler’s center of the polygon A1 A2 · · · An . In the case n = 3 it is clear that

E = O9, the center of Euler’s nine-point circle.
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Remarks. a) Let G(zG) and H(zH ) be the centroid and orthocenter of the inscribed

polygon A1 A2 · · · An . Then

zE = nzG

2
= zH

2
and O E = nOG

2
= O H

2
.

Recall that the orthocenter of the polygon A1 A2 · · · An is the point H with coordi-

nate zH = a1 + a2 + · · · + an .

b) For n = 4, point E is also called Mathot’s point of the inscribed quadrilateral

A1 A2 A3 A4.

Proposition. In the above notation, the following relation holds:

n∑
i=1

E A2
i = n R2 + (n − 4)E O2. (1)

Proof. Using the identity (8) in Theorem 4, Section 2.17,

n2 · MG2 = n
n∑

i=1

M A2
i −

∑
1≤i< j≤n

Ai A2
j

for M = E and M = O , we obtain

n2 · EG2 = n
n∑

i=1

E A2
i −

∑
1≤i< j≤n

Ai A2
j , (2)

and

n2 · OG2 = n R2 −
∑

1≤i< j≤n

Ai A2
j . (3)

Setting s =
n∑

i=1

ai , we have

EG = |zE − zG | =
∣∣∣ s
2

− s

n

∣∣∣ = ∣∣∣ s
2

∣∣∣ · n − 2

n
= n − 2

n
· O E . (4)

From the relations (2), (3) and (4) we derive that

n
n∑

i=1

E A2
i = n2 · EG2 − n2 · OG2 + n2 R2

= (n − 2)2 O E2 − 4O E2 + n2 R2 = n(n − 4) · E O2 + n2 R2

or, equivalently,
n∑

i=1

E A2
i = n R2 + (n − 4)E O2,

as desired. �
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Applications. 1) For n = 3, from relation (1) we obtain

O9 A2
1 + O9 A2

2 + O9 A2
3 = 3R2 − O O2

9 . (5)

Using the formula in Corollary 9.2, Subsection 4.6.4, we can express the right-hand

side in (5) in terms of the fundamental invariants of triangle A1 A2 A3:

O9 A2
1 + O9 A2

2 + O9 A2
3 = 3

4
R2 − 1

2
r2 − 2Rr + 1

2
s2. (6)

From formula (5) it follows that for any triangle A1 A2 A3 the following inequality

holds:

O9 A2
1 + O9 A2

2 + O9 A2
3 ≤ 3R2, (7)

with equality if and only if the triangle is equilateral.

2) For n = 4 we obtain the interesting relation

4∑
i=1

E A2
i = 4R2. (8)

The point E is the unique point in the plane of the quadrilateral A1 A2 A3 A4 satisfying

relation (8).

3) For n > 4, from relation (1) the inequality

n∑
i=1

E A2
i ≥ n R2 (9)

follows. Equality holds only in the polygon A1 A2 · · · An with the property E = O .

4) The Cauchy–Schwarz inequality and inequality (7) give

( 3∑
i=1

R · O9 Ai

)2 ≤ (3R2)

3∑
i=1

O9 A2
i ≤ 9R2.

This is equivalent to

O9 A1 + O9 A2 + O9 A3 ≤ 3R. (10)

5) Using the same inequality and the relation (8) we have

(
R

4∑
i=1

E Ai

)2 ≤ 4R2 ·
4∑

i=1

E Ai = 16R4

or, equivalently,
4∑

i=1

E Ai ≤ 4R. (11)
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6) Using the relation

2E Ai = 2|e − ai | = 2
∣∣∣ s
2

− ai

∣∣∣ = |s − 2ai |,
the inequalities (4), (5) become∑

cyc
| − a1 + a2 + a3| ≤ 6R

and, respectively, ∑
cyc

| − a1 + a2 + a3 + a4| ≤ 8R.

The above inequalities hold for all complex numbers of the same modulus R.

4.13 Some Geometric Transformations of the
Complex Plane

4.13.1 Translation

Let z0 be a fixed complex number and let tz0 be the mapping defined by

tz0 : C → C, tz0(z) = z + z0.

The mapping tz0 is called the translation of the complex plane with complex num-

ber z0.

Figure 4.16.

Taking into account the geometric interpretation of the addition of two complex

numbers (see Subsection 1.2.3), we have Fig. 4.16, giving the geometric image

of tz0(z).
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In Fig. 4.16 O M0 M ′M is a parallelogram and O M ′ is one of its diagonals. There-

fore, the mapping tz0 corresponds in the complex plane C to the translation t−−→O M0
of

vector
−−→
O M0 in the case of a Euclidean plane.

It is clear that the composition of two translations tz1 and tz2 satisfies the relation

tz1 ◦ tz2 = tz1+z2 .

It is also clear that the set T of all translations of a complex plane is a group with

respect to the composition of mappings. The group (T , ◦) is Abelian and its unity is

tO = 1C, the translation of the complex number 0.

4.13.2 Reflection in the real axis

Consider the mappings s : C → C, s(z) = z. If M is the point with coordinate z, then

the point M ′(s(z)) is obtained by reflecting M across the real axis (see Fig. 4.17). The

mapping s is called the reflection in the real axis. It is clear that s ◦ s = 1C.

Figure 4.17.

4.13.3 Reflection in a point

Consider the mapping s0 : C → C, s0(z) = −z. Since s0(z) + z = 0, the origin O

is the midpoint of the segment [M(z)M ′(z)]. Hence M ′ is the reflection of point M

across O (Fig. 4.18).

The mapping s0 is called the reflection in the origin.

Consider a fixed complex number z0 and the mapping

sz0 : C → C, sz0(z) = 2z0 − z.

If z0, z, sz0(z) are the coordinates of points M0, M, M ′, then M0 is the midpoint of the

segment [M M ′], hence M ′ is the reflection of M in M0 (Fig. 4.19).

The mapping sz0 is called the reflection in the point M0(z0). It is clear that the

following relation holds: sz0 ◦ sz0 = 1C.
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Figure 4.18.

Figure 4.19.

4.13.4 Rotation

Let a = cos t0 + i sin t0 be a complex number having modulus 1 and let ra be the

mapping given by ra : C → C, ra(z) = az. If z = ρ(cos t + i sin t), then

ra(z) = az = ρ[cos(t + t0) + i sin(t + t0)],
hence M ′(ra(z)) is obtained by rotating point M(z) about the origin through the angle

t0 (Fig. 4.20).

The mapping ra is called the rotation with center O and angle t0 = arg a.

4.13.5 Isometric transformation of the complex plane

A mapping f : C → C is called an isometry if it preserves distance, i.e., for all

z1, z2 ∈ C, | f (z1) − f (z2)| = |z1 − z2|.
Theorem 1. Translations, reflections (in the real axis or in a point) and rotations

about center O are isometries of the complex plane.
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Figure 4.20.

Proof. For the translation tz0 we have

|tz0(z1) − tz0(z2)| = |(z1 + z0) − (z2 + z0)| = |z1 − z2|.
For the reflection s across the real axis we obtain

|s(z1) − s(z2)| = |z1 − z2| = |z1 − z2| = |z1 − z2|,
and the same goes for the reflection in a point. Finally, if ra is a rotation, then

|ra(z1) − ra(z2)| = |az1 − az2| = |a||z1 − z2| = |z1 − z2|, since |a| = 1. �

We can easily check that the composition of two isometries is also an isometry.

The set I zo(C) of all isometries of the complex plane is a group with respect to the

composition of mappings and (T , ◦) is a subgroup of it.

Problem. Let A1 A2 A3 A4 be a cyclic quadrilateral inscribed in a circle of center O

and let H1, H2, H3, H4 be the orthocenters of triangles A2 A3 A4, A1 A3 A4, A1 A2 A4,

A1 A2 A3, respectively.

Prove that quadrilaterals A1 A2 A3 A4 and H1 H2 H3 H4 are congruent.

(Balkan Mathematical Olympiad, 1984)

Solution. Consider the complex plane with origin at the circumcenter, and denote

by lowercase letters the coordinates of the points denoted by uppercase letters.

If s = a1 +a2 +a3 +a4, then h1 = a2 +a3 +a4 = s −a1, h2 = s −a2, h3 = s −a3,

h4 = s − a4. Hence the quadrilateral H1 H2 H3 H4 is the reflection of quadrilateral

A1 A2 A3 A4 across the point with coordinate
s

2
.

The following result describes all isometries of the complex plane.

Theorem 2. Any isometry is a mapping f : C → C with f (z) = az + b or

f (z) = az + b, where a, b ∈ C and |a| = 1.
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Proof. Let b = f (0), c = f (1) and a = c − b. Then

|a| = |c − b| = | f (1) − f (0)| = |1 − 0| = 1.

Consider the mapping g : C → C, given by g(z) = az+b. It is not difficult to prove

that g is an isometry, with g(0) = b = f (0) and g(1) = a + b = c = f (1). Hence

h = g−1 ◦ f is an isometry, with 0 and 1 as fixed points. By definition, it follows that

any real number is a fixed point of h, hence h = 1C or h = s, the reflection in the real

axis. Hence g = f or g = f ◦ s, and the proof is complete. �
The above result shows that any isometry of the complex plane is the composition

of a rotation and a translation, or the composition of a rotation with the reflection in

the origin O and a translation.

4.13.6 Morley’s theorem

In 1899, Frank Morley, then professor of mathematics at Haverford College, came

across a result so surprising that it entered mathematical folklore under the name of

“Morley’s Miracle.” Morley’s marvelous theorem states that: The three points of in-

tersection of the adjacent trisectors of the angles of any triangle form an equilateral

triangle.

The theorem was mistakenly attributed to Napoleon Bonaparte, who made some

contributions to geometry.

There are various proofs of this nice result: J. Conway’s proof, D.J. Newman’s proof,

L. Bankoff’s proof, and N. Dergiades’s proof.

Here we present the new proof published in 1998, by Alain Connes. His proof is

derived from the following result:

Theorem 3. (Alain Connes) Consider the transformations of a complex plane fi :
C → C, fi (z) = ai z + bi , i = 1, 2, 3, where all coefficients ai are different from zero.

Assume that the mappings f1 ◦ f2, f2 ◦ f3, f3 ◦ f1 and f1 ◦ f2 ◦ f3 are not translations,

i.e., equivalently, a1a2, a2a3, a3a1, a1a2a3 ∈ C \ {1}. Then the following statements

are equivalent:

(1) f 3
1 ◦ f 3

2 ◦ f 3
3 = 1C;

(2) j3 = 1 and α + jβ + j2γ = 0, where j = a1a2a3 �= 1 and α, β, γ are the

unique fixed points of mappings f1 ◦ f2, f2 ◦ f3, f3 ◦ f1, respectively.

Proof. Note that ( f1 ◦ f2)(z) = a1a2z + a1b2 + b1, a1a2 �= 1,

( f2 ◦ f3)(z) = a2a3z + a2b3 + b2, a2a3 �= 1,

( f3 ◦ f1)(z) = a3a1z + a3b1 + b3, a3a1 �= 1.
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Fix( f1 ◦ f2) =
{

a1b2 + b1

1 − a1a2

}
=
{

a1a3b2 + a3b1

a3 − j
=: α

}
,

Fix( f2 ◦ f3) =
{

a2b3 + b2

1 − a2a3

}
=
{

a1a2b3 + a1b2

a1 − j
=: β

}
,

Fix( f3 ◦ f1) =
{

a3b1 + b3

1 − a3a1

}
=
{

a2a3b1 + a2b3

a2 − j
=: γ

}
,

where Fix( f ) denotes the set of fixed points of the mapping f .

For the cubes of f1, f2, f3 we have the formulas

f 3
1 (z) = a3

1 z + b1(a
2
1 + a1 + 1),

f 3
2 (z) = a3

2 z + b2(a
2
2 + a2 + 1),

f 3
3 (z) = a3

3 + b3(a
2
3 + a3 + 1),

hence

( f 3
1 ◦ f 3

2 ◦ f 3
3 )(z) = a3

1a3
2a3

3 z + a3
1a3

2b3(a
2
3 + a3 + 1)

+ a3
1b2(a

2
2 + a2 + 1) + b1(a

2
1 + a1 + 1).

Therefore f 3
1 ◦ f 3

2 ◦ f 3
3 = idC if and only if a3

1a3
2a3

3 = 1 and

a3
1a3

2b3(a
2
3 + a3 + 1) + a3

1b2(a
2
2 + a2 + 1) + b1(a

2
1 + a1 + 1) = 0.

To prove the equivalence of statements (1) and (2) we have to show that α+ jβ+ j2γ

is different from the free term of f 3
1 ◦ f 3

2 ◦ f 3
3 by a multiplicative constant. Indeed,

using the relation j3 = 1 and implicitly j2 + j + 1 = 0, we have successively:

α + jβ + j2γ = α + jβ + (−1 − j)γ = α − γ + j (β − γ )

= a1a3b2 + a3b1

a3 − j
− a2a3b1 + a2b3

a2 − j
+ j
(a1a2b3 + a1b2

a1 − j
− a2a3b1 + a2b3

a2 − j

)
= a1a2a3b2 + a2a3b1 − a1a3b2 j − a3b1 j − a2a2

3b1 − a2a3b3 + a2a3b1 j + a2b3 j

(a2 − j)(a3 − j)

+ j
a1a2

2b3 + a1a2b2 − a1a2b3 j − a1b2 j − a1a2a3b1 − a1a2b3 + a2a3b1 j + a2b3 j

(a1 − j)(a2 − j)

= 1

a2 − j

(
b2 j − a2a3b1 j2 − a1a3b2 j − a3b1 j − a2a2

3b1 − a2a3b3 + a2b3 j

a3 − j

+ a1a2
2b3 j + a1a2b2 j + a1a2b3 − a1b2 j2 − b1 j2 + a2a3b1 j2 + a2b3 j2

a1 − j

)
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= 1

(a1 − j)(a2 − j)(a3 − j)
(a1b2 j − b1 − a2

1a3b2 j − a1a3b1 j − a1a2a2
3b1 − b3 j

+ a1a2b3 j − b2 j2 + a2a3b1 + a1a3b2 j2 + a3b1 j2 + a2a2
3b1 j + a2a3b3 j − a2b3 j2

+ a2b3 j2 + b2 j2 + b3 j − a1a3b2 j2 − a3b1 j2 + a2a3b1 j2 + a2a3b3 j2

− a1a2
2b3 j2 − a1a2b2 j2 − a1a2b3 j + a1b2 + b1 − a2a3b1 − a2b3)

= 1

(a1 − j)(a2 − j)(a3 − j)
(−a1b2 j2 − a2

1a3b2 j − a1a3b1 j − a3b1 j

− a2a2
3b1 − a2a3b3 − a1a2

2b3 j2 − a1a2b2 j2 − a2b3)

= − 1

(a1 − j)(a2 − j)(a3 − j)
(a2

1a2
2a2

3b2 + a3
1a2a2

3b2

+ a2
1a2a2

3b1 + a1a2a2
3b1 + a2a2

3b1 + a2a3b3 + a3
1a4

2a2
3b3 + a3

1a3
2a2

3b2 + a2b3)

= − 1

(a1 − j)(a2 − j)(a3 − j)
[a2a2

3b1(1 + a1 + a2
1) + a3

1a2a2
3b2(1 + a2 + a2

2)

+ a2b3(1 + a3 + a3
1 + a3

1a3
2a2

3)]

= − a2a2
3

(a1 − j)(a2 − j)(a3 − j)
[a3

1a3
2b3(1 + a3 + a2

3)

+ a3
1b2(1 + a2 + a2

2) + b1(1 + a1 + a2
1)]. �

Theorem 4. (Morley) The three points A′(α), B ′(β), C ′(γ ) of the adjacent trisec-

tors of the angles of any triangle ABC form an equilateral triangle.

Figure 4.21.

Proof. (Alain Connes) Let us consider the rotations f1 = rA,2x , f2 = rB,2y , f3 =
rC,2z of centers A, B, C and of angles x = 1

3
Â, y = 1

3
B̂, z = 1

3
Ĉ (Figure 4.21).

Note that Fix( f1 ◦ f2) = {A′}, Fix( f2 ◦ f3) = {B ′}, Fix( f3 ◦ f1) = {C ′} (see Fig-

ure 4.22).
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Figure 4.22.

Figure 4.23.

To prove that triangle A′ B ′C ′ is equilateral it is sufficient to show, by Proposition 2

in Section 2.4 and above Theorem 3, that f 3
1 ◦ f 3

2 ◦ f 3
3 = 1C. The composition sAC ◦sAB

of reflections sAC and sAB across the lines AC and AB is a rotation about center A

through angle 6x .

Therefore f 3
1 = sAC ◦ sAB and analogously f 3

2 = sB A ◦ sBC and f 3
3 = sC B ◦ sC A.

It follows that

f 3
1 ◦ f 3

2 ◦ f 3
3 = sAC ◦ sAB ◦ sB A ◦ sBC ◦ sC B ◦ sC A = 1C. �

4.13.7 Homothecy

Given a fixed nonzero real number k, the mapping hk : C → C, hk(z) = kz, is called

the homothecy of the complex plane with center O and magnitude k.

Figures 4.24 and 4.25 show the position of point M ′(hk(z)) in the cases k > 0 and

k < 0.

Points M(z) and M ′(hk(z)) are collinear with the center O , which lies on the line

segment M M ′ if and only if k < 0.

Moreover, the following relation holds:

|O M ′| = |k||O M |.
Point M ′ is called the homothetic point of M with center O and magnitude k.
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Figure 4.24.

Figure 4.25.

It is clear that the composition of two homothecies hk1 and hk2 is also a homothecy,

that is,

hk1 ◦ hk2 = hk1k2 .

The set H of all homothecies of the complex plane is an Abelian group with respect

to the composition of mappings. The identity of the group (H, ◦) is h1 = 1C, the

homothecy of magnitude 1.

Problem. Let M be a point inside an equilateral triangle ABC and let M1, M2, M3

be the feet of the perpendiculars from M to the sides BC, C A, AB, respectively. Find

the locus of the centroid of the triangle M1 M2 M3.

Solution. Let 1, ε, ε2 be the coordinates of points A, B, C , where ε = cos 120◦ +
i sin 120◦. Recall that

ε2 + ε + 1 = 0 and ε3 = 1.

If m, m1, m2, m3 are the coordinates of points M, M1, M2, M3, we have

m1 = 1

2
(1 + ε + m − εm),
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m2 = 1

2
(ε + ε2 + m − m),

m3 = 1

2
(ε2 + 1 + m − ε2m).

Let g be the coordinate of the centroid of the triangle M1 M2 M3. Then

g = 1

3
(m1 + m2 + m3) = 1

6
(2(1 + ε + ε2) + 3m − m(1 + ε + ε2)) = m

2
,

hence OG = 1

2
O M .

The locus of G is the interior of the triangle obtained from ABC under a homoth-

ecy of center O and magnitude
1

2
. In other words, the vertices of this triangle have

coordinates
1

2
,

1

2
ε,

1

2
ε2.

4.13.8 Problems

1. Prove that the composition of two isometries of the complex plane is an isometry.

2. An isometry of the complex plane has two fixed points A and B. Prove that any

point M of line AB is a fixed point of the transformation.

3. Prove that any isometry of the complex plane is a composition of a rotation with a

translation and possibly also with the reflection in the real axis.

4. Prove that the mapping f : C → C, f (z) = i · z + 4 − i is an isometry. Analyze f

as in problem 3.

5. Prove that the mapping g : C → C, g(z) = −i z + 1 + 2i is an isometry. Analyze g

as in problem 4.
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Olympiad-Caliber Problems

The use of complex numbers is helpful in solving Olympiad problems. In many in-

stances, a rather complicated problem can be solved unexpectedly by employing com-

plex numbers. Even though the methods of Euclidean geometry, coordinate geometry,

vector algebra and complex numbers look similar, in many situations the use of the

latter has multiple advantages. This chapter will illustrate some classes of Olympiad-

caliber problems where the method of complex numbers works efficiently.

5.1 Problems Involving Moduli and Conjugates

Problem 1. Let z1, z2, z3 be complex numbers such that

|z1| = |z2| = |z3| = r > 0

and z1 + z2 + z3 �= 0. Prove that∣∣∣∣ z1z2 + z2z3 + z3z1

z1 + z2 + z3

∣∣∣∣ = r.

Solution. Observe that

z1 · z1 = z2 · z2 = z3 · z3 = r2.

Then ∣∣∣∣ z1z2 + z2z3 + z3z1

z1 + z2 + z3

∣∣∣∣2 = z1z2 + z2z3 + z3z1

z1 + z2 + z3
· z1z2 + z2z3 + z3z1

z1 + z2 + z3
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= z1z2 + z2z3 + z3z1

z1 + z2 + z3
·

r2

z1
· r2

z2
+ r2

z2
· r2

z3
+ r2

z3
· r2

z1

r2

z1
+ r2

z2
+ r2

z3

= r2,

as desired.

Problem 2. Let z1, z2 be complex numbers such that

|z1| = |z2| = r > 0.

Prove that (
z1 + z2

r2 + z1z2

)2

+
(

z1 − z2

r2 − z1z2

)2

≥ 1

r2
.

Solution. The desired inequality is equivalent to(
r(z1 + z2)

r2 + z1z2

)2

+
(

r(z1 − z2)

r2 − z1z2

)2

≥ 1.

Setting

z1 = r(cos 2x + i sin 2x) and z2 = r(cos 2y + i sin 2y)

yields

r(z1 + z2)

r2 + z1z2
= r2(cos 2x + i sin 2x + cos 2y + i sin 2y)

r2(1 + cos(2x + 2y) + i sin(2x + 2y))
= cos(x − y)

cos(x + y)
.

Similarly,
r(z1 − z2)

r2 − z1z2
= sin(y − x)

sin(y + x)
.

Thus (
r(z1 + z2

r2 + z1z2

)2

+
(

r(z1 − z2)

r2 − z1z2

)2

= cos2(x − y)

cos2(x + y)
+ sin2(x − y)

sin2(x + y)

≥ cos2(x − y) + sin2(x − y) = 1,

as claimed.

Problem 3. Let z1, z2, z3 be complex numbers such that

|z1| = |z2| = |z3| = 1

and
z2

1

z2z3
+ z2

2

z1z3
+ z2

3

z1z2
+ 1 = 0.

Prove that

|z1 + z2 + z3| ∈ {1, 2}.
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Solution. The given equality can be written as

z3
1 + z3

2 + z3
3 + z1z2z3 = 0

or

−4z1z2z3 = z3
1 + z3

2 + z3
3 − 3z1z2z3

= (z1 + z2 + z3)(z
2
1 + z2

2 + z2
3 − z1z2 − z2z3 − z3z1).

Setting z = z1 + z2 + z3, yields

z3 − 3z(z1z2 + z2z3 + z3z1) = −4z1z2z3.

This is equivalent to

z3 = z1z2z3

[
3z

(
1

z1
+ 1

z2
+ 1

z3

)
− 4

]
.

The last relation can be written as

z3 = z1z2z3[3z(z1 + z2 + z3) − 4], i.e., z3 = z1z2z3(3|z|2 − 4).

Taking the absolute values of both sides yields |z|3 = |3|z|2 − 4|. If |z| ≥ 2√
3

, then

|z|3 − 3|z|2 + 4 = 0, implying |z| = 2. If |z| <
2√
3

, then |z|3 + 3|z|2 − 4 = 0, giving

|z| = 1, as needed.

Alternate solution. It is not difficult to see that |z3
1 + z3

2 + z3
3| = 1. By using the

algebraic identity

(u + v)(v + w)(w + u) = (u + v + w)(uv + vw + wu) − uvw

for u = z3
1, v = z3

2, w = z3
3, it follows that

(z3
1 + z3

2)(z
3
2 + z3

3)(z
3
3 + z3

1) = (z3
1 + z3

2 + z3
3)(z

3
1z3

2 + z3
2z3

3 + z3
3z3

1) − z3
1z3

2z3
3

= z3
1z3

2z3
3(z

3
1 + z3

2 + z3
3)

(
1

z3
1

+ 1

z3
2

+ 1

z3
3

)
− z3

1z3
2z3

3

= z3
1z3

2z3
3(z

3
1 + z3

2 + z3
3)(z

3
1 + z3

2 + z3
3) − z3

1z3
2z3

3

= z3
1z3

2z3
3 − z3

1z3
2z3

3 = 0.

Suppose that z3
1 + z3

2 = 0. Then z1 + z2 = 0 or z2
1 − z1z2 + z2

3 = 0 implying

z2
1 + z2

2 = −2z1z2 or z2
1 + z2

2 = z1z2.
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On the other hand, from the given relation it follows that z3
3 = −z1z2z3, yielding

z2
3 = −z1z2.

We have

|z1 + z2 + z3|2 = (z1 + z2 + z3)

(
1

z1
+ 1

z2
+ 1

z3

)
= 3 +

(
z1

z2
+ z2

z1

)
+
(

z1

z3
+ z3

z2

)
+
(

z2

z3
+ z3

z1

)
= 3 + z2

1 + z2
2

z1z2
+ z2

3 + z1z2

z2z3
+ z2

3 + z1z2

z3z1
= 3 + z2

1 + z2
2

z1z2
.

This leads to |z1 + z2 + z3|2 = 1 if z2
1 + z2

2 = −2z1z2 and |z1 + z2 + z3|2 = 4 if

z2
1 + z2

2 = z1z2. The conclusion follows.

Problem 4. Let z1, z2 be complex numbers with |z1| = |z2| = 1. Prove that

|z1 + 1| + |z2 + 1| + |z1z2 + 1| ≥ 2.

Solution. We have

|z1 + 1| + |z2 + 1| + |z1z2 + 1|
≥ |z1 + 1| + |z1z2 + 1 − (z2 + 1)| = |z1 + 1| + |z1z2 − z2|

≥ |z1 + 1| + |z2||z1 − 1| = |z1 + 1| + |z1 − 1|
≥ |z1 + 1 + z1 − 1| = 2|z1| = 2,

as claimed.

Problem 5. Let n > 0 be an integer and let z be a complex number such that |z| = 1.

Prove that

n|1 + z| + |1 + z2| + |1 + z3| + · · · + |1 + z2n| + |1 + z2n+1| ≥ 2n.

Solution. We have

n|1 + z| + |1 + z2| + |1 + z3| + · · · + |1 + z2n| + |1 + z2n+1|

=
n∑

k=1

(|1 + z| + |1 + z2k+1|) +
n∑

k=1

|1 + z2k |

≥
n∑

k=1

|z − z2k+1| +
n∑

k=1

|1 + z2k | =
n∑

k=1

(|z||1 − z2k | + |1 + z2k |)

=
n∑

k=1

(|1 − z2k | + |z + z2k |) ≥
n∑

k=1

|1 − z2k + 1 + z2k | = 2n,

as claimed.
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Alternate solution. We use induction on n.

For n = 1, we prove that |1 + z| + |1 + z2| + |1 + z3| ≥ 2. Indeed,

2 = |1 + z + z3 + 1 − z(1 + z2)| ≤ |1 + z| + |z3 + 1| + |z||1 + z2|

= |1 + z| + |1 + z2| + |1 + z3|.
Assume that the inequality is valid for some n, so

n|1 + z| + |1 + z2| + · · · + |1 + z2n+1| ≥ 2n.

We prove that

(n + 1)|1 + z| + |1 + z2| + · · · + |1 + z2n+1| + |1 + z2n+2| + |1 + z2n+3| ≥ 2n + 2.

Using the inductive hypothesis yields

(n + 1)|1 + z| + |1 + z2| + · · · + |1 + z2n+2| + |1 + z2n+3|

≥ 2n + |1 + z| + |1 + z2n+2| + |1 + z2n+3|
= 2n + |1 + z| + |z||1 + z2n+2| + |1 + z2n+3|

≥ 2n + |1 + z − z(1 + z2n+2) + 1 + z2n+3| = 2n + 2,

as needed.

Problem 6. Let z1, z2, z3 be complex numbers such that

1) |z1| = |z2| = |z3| = 1;

2) z1 + z2 + z3 �= 0;

3) z2
1 + z2

2 + z2
3 = 0.

Prove that for all integers n ≥ 2,

|zn
1 + zn

2 + zn
3 | ∈ {0, 1, 2, 3}.

Solution. Let

s1 = z1 + z2 + z3, s2 = z1z2 + z2z3 + z3z1, s3 = z1z2z3

and consider the cubic equation

z3 − s1z2 + s2z − s3 = 0

with roots z1, z2, z3.

Because z2
1 + z2

2 + z2
3 = 0, we have

s2
1 = 2s2. (1)
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On the other hand,

s2 = s3

(
1

z1
+ 1

z2
+ 1

z3

)
= s3(z1 + z2 + z3) = s3 · s1. (2)

The relations (1) and (2) imply s2
1 = 2s3 · s1 and, consequently, |s1|2 = 2|s3| · |s1| =

2|s1|. Because s1 �= 0, we have |s1| = 2, so s1 = 2λ with |λ| = 1.

From relations (1) and (2) it follows that s2 = 1

2
s2

1 = 2λ2 and s3 = s2

s1
= 2λ2

2λ
= λ3.

The equation with roots z1, z2, z3 becomes

z3 − 2λz2 + 2λ2z − λ3 = 0.

This is equivalent to

(z − λ)(z2 − λz + λ2) = 0.

The roots are λ, λε, −λε2,where ε = 1

2
+ i

√
3

2
.

Without loss of generality we may assume that z1 = λ, z2 = λε, z3 = −λε2. Using

the relations ε2 − ε + 1 = 0 and ε3 = −1, it follows that

En = |zn
1 + zn

2 + zn
3 | = |λn + λnεn + (−1)nλnε2n|

= |1 + εn + (−1)nε2n|.
It is not difficult to see that Ek+6 = Ek for all integers k and that the equalities

E0 = 3, E1 = 2, E2 = 0, E3 = 1, E4 = 0, E5 = 2,

settle the claim.

Alternate solution. It is clear that z2
1, z2

2, z2
3 are distinct. Otherwise, if, for example,

z2
1 = z2

2, then 1 = |z2
3| = | − (z2

1 + z2
2)| = 2|z2

1| = 2, a contradiction.

From z2
1 + z2

2 + z2
3 = 0 it follows that z2

1, z2
2, z2

3 are the coordinates of the vertices

of an equilateral triangle. Hence we may assume that z2
2 = εz2

1 and z2
3 = ε2z2

1, where

ε2 + ε + 1 = 0. Because z2
2 = ε4z2

1 and z2
3 = ε2z2

1 it follows that z2 = ±ε2z1 and

z3 = ±εz1. Then

|zn
1 + zn

2 + zn
3 | = |(1 + (±ε)n + (±ε2)n)zn

1 | = |1 + (±ε)n + (±ε2)n| ∈ {0, 1, 2, 3}

by the same argument used at the end of the previous solution.

Problem 7. Find all complex numbers z such that

|z − |z + 1|| = |z + |z − 1||.
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Solution. We have

|z − |z + 1|| = |z + |z − 1||
if and only if

|z − |z + 1||2 = |z + |z − 1||2,
i.e.,

(z − |z + 1|) · (z − |z + 1|) = (z + |z − 1|) · (z + |z − 1|).
The last equation is equivalent to

z · z − (z + z)|z + 1| + |z + 1|2 = z · z + (z + z) · |z − 1| + |z − 1|2.

This can be written as

|z + 1|2 − |z − 1|2 = (z + z) · (|z + 1| + |z − 1|),

i.e.,
(z + 1)(z + 1) − (z − 1)(z − 1) = (z + z) · (|z + 1| + |z − 1|).

The last equation is equivalent to

2(z + z) = (z + z) · (|z + 1| + |z − 1|), i.e., z + z = 0,

or |z + 1| + |z − 1| = 2.

The triangle inequality

2 = |(z + 1) − (z − 1)| ≤ |z + 1| + |z − 1|

shows that the solutions to the equation |z + 1| + |z − 1| = 2 satisfy z + 1 = t (1 − z),

where t is a real number and t ≥ 0.

It follows that z = t − 1

t + 1
, so z is any real number with −1 ≤ z ≤ 1.

The equation z + z = 0 has the solutions z = bi , b ∈ R. Hence, the solutions to the

equation are

{bi : b ∈ R} ∪ {a ∈ R : a ∈ [−1, 1]}.
Problem 8. Let z1, z2, . . . , zn be complex numbers such that |z1| = |z2| = · · · =
|zn| > 0. Prove that

Re
( n∑

j=1

n∑
k=1

z j

zk

)
= 0

if and only if n∑
k=1

zk = 0.

(Romanian Mathematical Olympiad – Second Round, 1987)
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Solution. Let

S =
n∑

j=1

n∑
k=1

z j

zk
.

Then

S =
(

n∑
k=1

zk

)
·
(

n∑
k=1

1

zk

)
,

and since zk · zk = r2 for all k, we have

S =
(

n∑
k=1

zk

)
·
(

n∑
k=1

zk

r2

)

= 1

r2

(
n∑

k=1

zk

)(
n∑

k=1

zk

)
= 1

r2

∣∣∣∣∣ n∑
k=1

zk

∣∣∣∣∣
2

.

Hence S is a real number, so ReS = S = 0 if and only if
n∑

k=1

zk = 0.

Problem 9. Let λ be a real number and let n ≥ 2 be an integer. Solve the equation

λ(z + zn) = i(z − zn).

Solution. The equation is equivalent to

zn(λ + i) = z(−λ + i).

Taking the absolute values of both sides of the equation, we obtain |z|n = |z| = |z|,
hence |z| = 0 or |z| = 1.

If |z| = 0, then z = 0 which satisfies the equation. If |z| = 1, then z = 1

z
and the

equation may be rewritten as

zn+1 = −λ + i

λ + i
.

Because

∣∣∣∣−λ + i

λ + i

∣∣∣∣ = 1, there exists t ∈ [0, 2π) such that

−λ + i

λ + i
= cos t + i sin t.

Then

zk = cos
t + 2kπ

n + 1
+ i sin

t + 2kπ

n + 1

for k = 0, 1, . . . , n are the other solutions to the equation (besides z = 0).
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Problem 10. Prove that ∣∣∣∣ 6z − i

2 + 3i z

∣∣∣∣ ≤ 1 if and only if |z| ≤ 1

3
.

Solution. We have∣∣∣∣ 6z − i

2 + 3i z

∣∣∣∣ ≤ 1 if and only if |6z − i | ≤ |2 + 3i z|.

The last inequality is equivalent to

|6z − i |2 ≤ |2 + 3i z|2, i.e., (6z − i)(6z + i) ≤ (2 + 3i z)(2 − 3i z).

We find

36z · z + 6i z − 6i z + 1 ≤ 4 − 6i z + 6i z + 9zz,

i.e., 27z · z ≤ 3. Finally, zz ≤ 1
9 or, equivalently, |z| ≤ 1

3 , as desired.

Problem 11. Let z be a complex number such that z ∈ C \ R and

1 + z + z2

1 − z + z2
∈ R.

Prove that |z| = 1.

Solution. We have

1 + z + z2

1 − z + z2
= 1 + 2

z

1 − z + z2
∈ R if and only if

z

1 − z + z2
∈ R.

That is,
1 − z + z2

z
= 1

z
− 1 + z ∈ R, i.e., z + 1

z
∈ R.

The last relation is equivalent to

z + 1

z
= z + 1

z
, i.e., (z − z)(1 − |z|2) = 0.

We find z = z or |z| = 1.

Because z is not a real number, it follows that |z| = 1, as desired.

Problem 12. Let z1, z2, . . . , zn be complex numbers such that |z1| = · · · = |zn| = 1

z =
(

n∑
k=1

zk

)
·
(

n∑
k=1

1

zk

)
.

Prove that z is a real number and 0 ≤ z ≤ n2.
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Solution. Note that zk = 1

zk
for all k = 1, . . . , n. Because

z =
(

n∑
k=1

zk

)(
n∑

k=1

1

zk

)
=
(

n∑
k=1

1

zk

)(
n∑

k=1

zk

)
= z,

it follows that z is a real number.

Let zk = cos αk + i sin αk , where αk are real numbers. for k = 1, n. Then

z =
(

n∑
k=1

cos αk + i
n∑

k=1

sin αk

)(
n∑

k=1

cos αk − i
n∑

k=1

sin αk

)

=
(

n∑
k=1

cos αk

)2

+
(

n∑
k=1

sin αk

)2

≥ 0.

On the other hand, we have

z =
n∑

k=1

(cos2 αk + sin2 αk) + 2
∑

1≤i< j≤n

(cos αi cos α j + sin αi sin α j )

= n + 2
∑

1≤i< j≤n

cos(αi − α j ) ≤ n + 2

(
n

2

)
= n + 2

n(n − 1)

2
= n2,

as desired.

Remark. An alternative solution to the inequalities 0 ≤ z ≤ n2 is as follows:

z =
(

n∑
k=1

zk

)(
n∑

k=1

1

zk

)
=
(

n∑
k=1

zk

)(
n∑

k=1

zk

)

=
(

n∑
k=1

zk

)(
n∑

k=1

zk

)
=
∣∣∣∣∣ n∑
k=1

zk

∣∣∣∣∣
2

≤
(

n∑
k=1

|zk |
)2

= n2,

so 0 ≤ z ≤ n2.

Problem 13. Let z1, z2, z3 be complex numbers such that

z1 + z2 + z3 �= 0 and |z1| = |z2| = |z3|.

Prove that

Re

(
1

z1
+ 1

z2
+ 1

z3

)
· Re

(
1

z1 + z2 + z3

)
≥ 0.

Solution. Let r = |z1| = |z2| = |z3| > 0. Then

z1z1 = z2z2 = z3z3 = r2
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and
1

z1
+ 1

z2
+ 1

z3
= z1 + z2 + z3

r2
= z1 + z2 + z3

r2
.

On the other hand, we have

1

z1 + z2 + z3
= z1 + z2 + z3

|z1 + z2 + z3|2
and, consequently,

Re

(
1

z1
+ 1

z2
+ 1

z3

)
· Re

(
1

z1 + z2 + z3

)

= Re

(
z1 + z2 + z3

r2

)
· Re

(
z1 + z2 + z3

|z1 + z2 + z3|2
)

= (Re(z1 + z2 + z3))
2

r2|z1 + z2 + z3|2 ≥ 0,

as desired.

Problem 14. Let x, y, z be complex numbers.

a) Prove that

|x | + |y| + |z| ≤ |x + y − z| + |x − y + z| + | − x + y + z|.

b) If x, y, z are distinct and the numbers x + y − z, x − y + z, −x + y + z have

equal absolute values, prove that

2(|x | + |y| + |z|) ≤ |x + y − z| + |x − y + z| + | − x + y + z|.

Solution. Let

m = −x + y + z, n = x − y + z, p = x + y − z.

We have

x = n + p

2
, y = m + p

2
, z = m + n

2
.

a) Adding the inequalities

|x | ≤ 1

2
(|n| + |p|), |y| ≤ 1

2
(|m| + |p|), |z| ≤ 1

2
(|m| + |n|)

yields

|x | + |y| + |z| ≤ |m| + |n| + |p|,
as desired.

b) Let A, B, C be the points with coordinates m, n, p and observe that numbers

m, n, p are distinct and that |m| = |n| = |p| = R, the circumradius of triangle ABC .

Let the origin of the complex plane be the circumcenter of triangle ABC .
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The orthocenter H of triangle ABC has the coordinate h = m + n + p. The desired

inequality becomes

|h − m| + |h − n| + |h − p| ≤ |m| + |n| + |p|

or

AH + B H + C H ≤ 3R.

This is equivalent to

cos A + cos B + cos C ≤ 3

2
. (1)

Inequality (1) can be written as

2 cos
A + B

2
cos

A − B

2
+ 1 − 2 sin2 C

2
≤ 3

2

or

0 ≤
(

2 sin
C

2
− cos

A − B

2

)2

+ sin2 A − B

2
,

which is clear. We have equality in (1) if and only if triangle ABC is equilateral, i.e.,

m = a, n = aε, p = aε2, where a is a complex parameter and ε = cos
2π

3
+ i sin

2π

3
.

In this case x = −a

2
, y = −a

2
ε, z = −a

2
ε2.

Problem 15. Let z0, z1, z2, . . . , zn be complex numbers such that

(k + 1)zk+1 − i(n − k)zk = 0

for all k ∈ {0, 1, 2, . . . , n − 1}.
1) Find z0 such that

z0 + z1 + · · · + zn = 2n .

2) For the value of z0 determined above, prove that

|z0|2 + |z1|2 + · · · + |zn|2 <
(3n + 1)n

n! .

Solution. a) Use induction to prove that

zk = i k
(

n

k

)
z0, for all k ∈ {0, 1, . . . , n}.

Then

z0 + z1 + · · · + zn = 2n if and only if z0(1 + i)n = 2n,

i.e., z0 = (1 − i)n .
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b) Applying the AM-GM inequality, we have

|z0|2 + |z1|2 + · · · + |zn|2 = |z0|2
((

n

0

)2

+
(

n

1

)2

+ · · · +
(

n

n

)2
)

= |z0|2 ·
(

2n

n

)
= 2n ·

(
2n

n

)
= 2n

n! 2n(2n − 1) · · · (n + 1)

<
2n

n!
(

2n + (2n − 1) + · · · + (n + 1)

n

)n

= (3n + 1)n

n! ,

as desired.

Problem 16. Let z1, z2, z3 be complex numbers such that

z1 + z2 + z3 = z1z2 + z2z3 + z3z1 = 0.

Prove that |z1| = |z2| = |z3|.
Solution. Substituting z1 + z2 = −z3 in z1z2 + z3(z1 + z3) = 0 gives z1z2 = z2

3, so

|z1| · |z2| = |z3|2. Likewise, |z2| · |z3| = |z1|2 and |z3||z1| = |z2|2. Then

|z1|2 + |z2|2 + |z3|2 = |z1||z2| + |z2||z3| + |z3||z1|,
i.e.,

(|z1| − |z2|)2 + (|z2| − |z3|)2 + (|z3| − |z1|)2 = 0,

yielding |z1| = |z2| = |z3|.
Alternate solution. Using the relations between the roots and the coefficients, it

follows that z1, z2, z3 are the roots of polynomial z3 − p, where p = z1z2z3. Hence

z3
1 − p = z3

2 − p = z3
3 − p = 0, implying z3

1 = z3
2 = z3

3, and the conclusion follows.

Problem 17. Prove that for all complex numbers z with |z| = 1 the following inequal-

ities hold: √
2 ≤ |1 − z| + |1 + z2| ≤ 4.

Solution. Setting z = cos t + i sin t yields

|1 − z| =
√

(1 − cos t)2 + sin2 t = √
2 − 2 cos t = 2

∣∣∣∣sin
t

2

∣∣∣∣
and

|1 + z2| =
√

(1 + cos 2t)2 + sin2 2t = √
2 + 2 cos 2t

= 2| cos t | = 2

∣∣∣∣1 − 2 sin2 t

2

∣∣∣∣ .
It suffices to prove that

√
2

2
≤ |a| + |1 − 2a2| ≤ 2, for a = sin

t

2
∈ [−1, 1]. We

leave this to the reader.
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Problem 18. Let z1, z2, z3, z4 be distinct complex numbers such that

Re
z2 − z1

z4 − z1
= Re

z2 − z3

z4 − z3
= 0.

a) Find all real numbers x such that

|z1 − z2|x + |z1 − z4|x ≤ |z2 − z4|x ≤ |z2 − z3|x + |z4 − z3|x .

b) Prove that |z3 − z1| ≤ |z4 − z2|.
Solution. Consider the points A, B, C, D with coordinates z1, z2, z3, z4, respec-

tively. The conditions

Re
z2 − z1

z4 − z1
= Re

z2 − z3

z4 − z3
= 0

imply B̂ AD = B̂C D = 90◦. Then |z1 − z2| = AB and |z1 − z4| = AD are the lengths

of the sides of the right triangle AB D with hypotenuses B D = |z2 − z4|.
The inequality ABx + ADx ≤ B Dx holds for x ≥ 2.

Similarly, |z2 − z3| = BC and |z4 − z3| = C D are the sides of the right triangle

BC D, so the inequality B Dx ≤ BCx + C Dx holds for x ≤ 2. Consequently, x = 2.

Finally, AC = |z3 − z1| ≤ B D = |z4 − z2|, since AC is a chord in the circle of

diameter B D.

Problem 19. Let x and y be distinct complex numbers such that |x | = |y|. Prove that

1

2
|x + y| < |x |.

Solution. Let x = a + ib and y = c+ id , with a, b, c, d ∈ R and a2 +b2 = c2 +d2.

The inequality is equivalent to

(a + c)2 + (b + d)2 < 4(a2 + b2)

or

(a − c)2 + (b − d)2 > 0,

which is clear, since x �= y.

Alternate solution. Consider points X (x) and Y (y). In triangle X OY we have

O X = OY . Hence O M < O X , where M is the midpoint of segment [XY ]. The

coordinate of point M is
x + y

2
, and the desired inequality follows.

Problem 20. Consider the set

A = {z ∈ C : z = a + bi, a > 0, |z| < 1}.
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Prove that for any z ∈ A there is a number x ∈ A such that

z = 1 − x

1 + x
.

Solution. Let z ∈ A. The equation z = 1 − x

1 + x
has the root

x = 1 − z

1 + z
= 1 − a − ib

1 + a + ib
,

where a > 0 and a2 + b2 < 1.

To prove that x ∈ A, it suffices to show that |x | < 1 and Re(x) > 0. Indeed, we

have

|x |2 = (1 − a)2 + b2

(1 + a)2 + b2
< 1 if and only if (1 − a)2 < (1 + a)2,

i.e., 0 < 4a, as needed.

Moreover, Re(x) = 1 − |z|2
|1 + z|2 > 0, since |z| < 1.

Here are more problems involving moduli and conjugates of complex numbers.

Problem 21. Consider the set

A = {z ∈ C : |z| < 1},
a real number a with |a| > 1, and the function

f : A → A, f (z) = 1 + az

z + a
.

Prove that f is bijective.

Problem 22. Let z be a complex number such that |z| = 1 and both Re(z) and Im(z)

are rational numbers. Prove that |z2n − 1| is rational for all integers n ≥ 1.

Problem 23. Consider the function

f : R → C, f (t) = 1 + ti

1 − ti
.

Prove that f is injective and determine its range.

Problem 24. Let z1, z2 ∈ C∗ such that |z1 + z2| = |z1| = |z2|. Compute
z1

z2
.

Problem 25. Prove that for any complex numbers z1, z2, . . . , zn the following inequal-

ity holds: (|z1| + |z2| + · · · + |zn| + |z1 + z2 + · · · + zn|)2
≥ 2
(|zn|2 + · · · + |zn|2 + |z1 + z2 + · · · + zn|2).
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Problem 26. Let z1, z2, . . . , z2n be complex numbers such that |z1| = |z2| = · · · =
|z2n| and arg z1 ≤ arg z2 ≤ · · · ≤ arg z2n ≤ π . Prove that

|z1 + z2n| ≤ |z2 + z2n−1| ≤ · · · ≤ |zn + zn+1|.
Problem 27. Find all positive real numbers x and y satisfying the system of equations

√
3x

(
1 + 1

x + y

)
= 2,

√
7y

(
1 − 1

x + y

)
= 4

√
2.

(1996 Vietnamese Mathematical Olympiad)

Problem 28. Let z1, z2, z3 be complex numbers. Prove that z1 + z2 + z3 = 0 if and

only if |z1| = |z2 + z3|, |z2| = |z3 + z1| and |z3| = |z1 + z2|.
Problem 29. Let z1, z2, . . . , zn be distinct complex numbers with the same modulus

such that

z3z4 · · · zn−1zn + z1z4 · · · zn−1zn + · · · + z1z2 · · · zn−2 = 0.

Prove that

z1z2 + z2z3 + · · · + zn−1zn = 0.

Problem 30. Let a and z be complex numbers such that |z + a| = 1. Prove that

|z2 + a2| ≥ |1 − 2|a||√
2

.

Problem 31. Find the geometric images of the complex numbers z for which

zn · Re(z) = zn · Im(z),

where n is an integer.

Problem 32. Let a, b be real numbers with a + b = 1 and let z1, z2 be complex

numbers with |z1| = |z2| = 1.

Prove that

|az1 + bz2| ≥ |z1 + z2|
2

.

Problem 33. Let k, n be positive integers and let z1, z2, . . . , zn be nonzero complex

numbers with the same modulus such that

zk
1 + zk

2 + · · · + zk
n = 0.

Prove that
1

zk
1

+ 1

zk
2

+ · · · + 1

zk
n

= 0.
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5.2 Algebraic Equations and Polynomials

Problem 1. Consider the quadratic equation

a2z2 + abz + c2 = 0

where a, b, c ∈ C∗ and denote by z1, z2 its roots. Prove that if
b

c
is a real number then

|z1| = |z2| or
z1

z2
∈ R.

Solution. Let t = b

c
∈ R. Then b = tc and

� = (ab)2 − 4a2 · c2 = a2c2(t2 − 4).

If |t | ≥ 2, the roots of the equation are

z1,2 = −tac ± ac
√

t2 − 4

2a2
= c

2a
(−t ±

√
t2 − 4),

and it is obvious that
z1

z2
is a real number.

If |t | < 2, the roots of the equation are

z1,2 = c

2a
(−t ± i

√
4 − t2),

hence |z1| = |z2| = |c|
|a| , as claimed.

Problem 2. Let a, b, c, z be complex numbers such that |a| = |b| = |c| > 0 and

az2 + bz + c = 0. Prove that

√
5 − 1

2
≤ |z| ≤

√
5 + 1

2
.

Solution. Let r = |a| = |b| = |c| > 0. We have

|az2| = | − bz − c| ≤ |b||z| + |c|,

hence r |z2| ≤ r |z| + r . It follows that |z|2 − |z| − 1 ≤ 0, so |z| ≤ 1 + √
5

2
.

On the other hand, |c| = |− az2 − bz| ≤ |a||z|2 + b|z|, such that |z|2 + |z| − 1 ≥ 0.

Thus |z| ≥
√

5 − 1

2
, and we are done.

Problem 3. Let p, q be complex numbers such that |p|+|q| < 1. Prove that the moduli

of the roots of the equation z2 + pz + q = 0 are less than 1.
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Solution. Because z1 + z2 = −p and z1z2 = q, the inequality |p|+ |q| < 1 implies

|z1 + z2| + |z1z2| < 1. But ||z1| − |z2|| ≤ |z1 + z2|, hence

|z1| − |z2| + |z1||z2| − 1 < 0 if and only if (1 + |z2|)(|z1| − 1) < 0

and

|z2| − |z1| + |z2||z1| − 1 < 0 if and only if (1 + |z1|)(|z2| − 1) < 0.

Consequently, |z1| < 1 and |z2| < 1, as desired.

Problem 4. Let f = x2 + ax + b be a quadratic polynomial with complex coefficients

with both roots having modulus 1. Prove that f = x2+|a|x+|b| has the same property.

Solution. Let x1 and x2 be the complex roots of the polynomial f = x2 + ax + b

and let y1 and y2 be the complex roots of the polynomial g = x2 + |a|x + |b|.
We have to prove that if |x1| = |x2| = 1, then |y1| = |y2| = 1.

Since x1·x2 = b and x1+x2 = −a, then |b| = |x1||x2| = 1 and |a| ≤ |x1|+|x2| = 2.

The quadratic polynomial g = x2 +|a|x +1 has the discriminant � = |a|2 −4 ≤ 0,

hence

y1,2 = −|a| ± i
√

4 − |a|2
2

.

It is easy to see that |y1| = |y2| = 1, as desired.

Problem 5. Let a, b be nonzero complex numbers. Prove that the equation

az3 + bz2 + bz + a = 0

has at least one root with absolute value equal to 1.

Solution. Observe that if z is a root of the equation, then
1

z
is also a root of the

equation. Consequently, if z1, z2, z3 are the roots of the equation, then
1

z1
,

1

z2
,

1

z3
are

the same roots, not necessarily in the same order.

If zk = 1

zk
for some k = 1, 2, 3, then |zk |2 = zk zk = 1 and we are done. If zk �= 1

zk
for all k = 1, 2, 3, we may consider without loss of generality that

z1 = 1

z2
, z2 = 1

z3
, z3 = 1

z1
.

The first two equalities yield z1 · z2 · z2 · z3 = 1, hence |z1| · |z2|2 · |z3| = 1. On the

other hand, z1z2z3 = −a

a
, so |z1||z2||z3| = 1. It follows that |z2| = 1, as claimed.

Problem 6. Let f = x4 + ax3 + bx2 + cx + d be a polynomial with real coefficients

and real roots. Prove that if | f (i)| = 1 then a = b = c = d = 0.
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Solution. Let x1, x2, x3, x4 be the real roots of the polynomial f . Then

f = (x − x1)(x − x2)(x − x3)(x − x4)

and

| f (i)| =
√

1 + x2
1 ·
√

1 + x2
2 ·
√

1 + x2
3 ·
√

1 + x2
4 .

Because | f (i)| = 1, we deduce that x1 = x2 = x3 = x4 = 0 and consequently

a = b = c = d = 0, as desired.

Problem 7. Prove that if 11z10 + 10i z9 + 10i z − 11 = 0, then |z| = 1.

(1989 Putnam Mathematical Competition)

Solution. The equation can be rewritten as z9 = 11 − 10i z

11z + 10i
. If z = a + bi , then

|z|9 =
∣∣∣∣11 − 10i z

11z + 10i

∣∣∣∣ =
√

112 + 220b + 102(a2 + b2)√
112(a2 + b2) + 220b + 102

.

Let f (a, b) and g(a, b) denote the numerator and denominator of the right-hand

side. If |z| > 1, then a2 + b2 > 1, so g(a, b) > f (a, b), leading to |z9| < 1, a

contradiction. If |z| < 1, then a2 + b2 < 1, so g(a, b) < f (a, b), yielding |z9| > 1,

again a contradiction. Hence |z| = 1.

Problem 8. Let n ≥ 3 be an integer and let a be a nonzero real number. Show that any

nonreal root z of the equation xn + ax + 1 = 0 satisfies the inequality

|z| ≥ n

√
1

n − 1
.

(Romanian Mathematical Olympiad – Final Round, 1995)

Solution. Let z = r(cos α + i sin α) be a nonreal root of the equation, where α ∈
(0, 2π) and α �= π . Substituting back into the equation we find rn cos nα + ra cos α +
1 + i(rn sin nα + ra sin α) = 0. Hence

rn cos nα + ra cos α + 1 = 0 and rn sin nα + ra sin α = 0.

Multiplying the first relation by sin α, the second by cos α, and then subtracting

them we find that rn sin(n − 1)α = sin α. It follows that

rn| sin(n − 1)α| = | sin α|.
The inequality | sin kα| ≤ k| sin α| is valid for any positive integer k. The proof is

based on a simple inductive argument on k.

Applying this inequality, from rn| sin(n − 1)α| = | sin α|, we obtain | sin α| ≤
rn(n − 1)| sin α|. Because sin α �= 0, it follows that rn ≥ 1

n − 1
, i.e., |z| ≥ n

√
1

n − 1
.
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Problem 9. Suppose P is a polynomial with complex coefficients and an even degree.

If all the roots of P are complex nonreal numbers with modulus 1, prove that

P(1) ∈ R if and only if P(−1) ∈ R.

Solution. It suffices to prove that
P(1)

P(−1)
∈ R.

Let x1, x2, . . . , x2n be the roots of P . Then

P(x) = λ(x − x1)(x − x2) · · · (x − x2n)

for some λ ∈ C∗, and

P(1)

P(−1)
= λ(1 − x1)(1 − x2) · · · (1 − x2n)

λ(−1 − x1)(−1 − x2) · · · (−1 − x2n)
=

2n∏
k=1

1 − xk

1 + xk
.

From the hypothesis we have |xk | = 1 for all k = 1, 2, . . . , 2n. Then

(
1 − xk

1 + xk

)
= 1 − xk

1 + xk
=

1 − 1

xk

1 + 1

xk

= xk − 1

xk + 1
= −1 − xk

1 + xk
,

hence (
P(1)

P(−1)

)
=

2n∏
k=1

(
1 − xk

1 + xk

)
=

2n∏
k=1

(
−1 − xk

1 + xk

)

= (−1)2n
2n∏

k=1

1 − xk

1 + xk
= P(1)

P(−1)
.

This proves that
P(1)

P(−1)
is a real number, as desired.

Problem 10. Consider the sequence of polynomials defined by P1(x) = x2 − 2 and

Pj (x) = P1(Pj−1(x)) for j = 2, 3, . . . . Show that for any positive integer n the roots

of equation Pn(x) = x are all real and distinct.

(18th IMO – Shortlist)

Solution. Put x = z + z−1, where z is a nonzero complex number. Then P1(x) =
x2 − 2 = (z + z−1)2 − 2 = z2 + z−2. A simple inductive argument shows that for all

positive integers n we have Pn(x) = z2n + z−2n
.

The equation Pn(x) = x is equivalent to z2n + z−2n = z + z−1. We obtain z2n − z =
z−1−z−2n

, i.e., z(z2n−1−1) = z−2n
(z2n−1−1). It follows that (z2n−1−1)(z2n+1−1) =

0. Because gcd(2n −1, 2n +1) = 1 the unique common root of equations z2n−1−1 = 0

and z2n+1 − 1 = 0 is z = 1 (see Proposition 1 in Section 2.2). Moreover, for any root
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of equation (z2n−1 − 1)(z2n+1 − 1) = 0 we have |z| = 1, i.e., z−1 = z. Also, observe

that for two roots z and w of (z2n−1 − 1)(z2n+1 − 1) = 0 which are different from 1,

we have z + z−1 = w+w−1 if and only if (z −w)(1−(zw)−1) = 0. This is equivalent

to zw = 1, i.e., w = z−1 = z, a contradiction to the fact that the unique common root

of z2n−1 − 1 = 0 and z2n+1 − 1 = 0 is 1.

It is clear that the degree of polynomial Pn is 2n . As we have seen before, all the

roots of Pn(x) = x are given by x = z+z−1, where z = 1, z = cos
2kπ

n
+i sin

2kπ

2n − 1
,

k = 1, . . . , 2n − 2 and z = cos
2sπ

2n + 1
+ i sin

2sπ

2n + 1
, s = 1, . . . , 2n .

Taking into account the symmetry of expression z + z−1, the total number of these

roots is 1 + 1

2
(2n − 2) + 1

2
2n = 2n and all of them are real and distinct.

Here are other problems involving algebraic equations and polynomials.

Problem 11. Let a, b, c be complex numbers with a �= 0. Prove that if the roots of the

equation az2 + bz + c = 0 have equal moduli then ab|c| = |a|bc.

Problem 12. Let z1, z2 be the roots of the equation z2 + z + 1 = 0 and let z3, z4 be the

roots of the equation z2 − z + 1 = 0. Find all integers n such that zn
1 + zn

2 = zn
3 + zn

4 .

Problem 13. Consider the equation with real coefficients

x6 + ax5 + bx4 + cx3 + bx2 + ax + 1 = 0,

and denote by x1, x2, . . . , x6 the roots of the equation.

Prove that
6∏

k=1

(x2
k + 1) = (2a − c)2.

Problem 14. Let a and b be complex numbers and let P(z) = az2 + bz + i . Prove that

there is a z0 ∈ C with |z0| = 1 such that |P(z0)| ≥ 1 + |a|.
Problem 15. Find all polynomials f with real coefficients satisfying, for any real num-

ber x, the relation f (x) f (2x2) = f (2x3 + x).

(21st IMO – Shortlist)

5.3 From Algebraic Identities to Geometric Properties

Problem 1. Consider equilateral triangles ABC and A′ B ′C ′, both in the same plane

and having the same orientation. Show that the segments [AA′], [B B ′], [CC ′] can be

the sides of a triangle.
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Solution. Let a, b, c be the coordinates of vertices A, B, C and let a′, b′, c′ be the

coordinates of vertices A′, B ′, C ′. Because triangles ABC and A′ B ′C ′ are similar, we

have the relation (see Remark 1 in Section 3.3):∣∣∣∣∣∣∣
1 1 1

a b c

a′ b′ c′

∣∣∣∣∣∣∣ = 0. (1)

That is,

a′(b − c) + b′(c − a) + c′(a − b) = 0. (2)

On the other hand the following relation is clear:

a(b − c) + b(c − a) + c(a − b) = 0. (3)

By subtracting relation (3) from relation (2), we find

(a′ − a)(b − c) + (b′ − b)(c − a) + (c′ − c)(a − b) = 0. (4)

Passing to moduli, it follows that

|a′ − a||b − c| ≤ |b′ − b||c − a| + |c′ − c||a − b|. (5)

Taking into account that |b − c| = |c − a| = |a − b|, we obtain AA′ ≤ B B ′ + CC ′.
Similarly we prove the inequalities B B ′ ≤ CC ′ + AA′ and CC ′ ≤ AA′ + B B ′, hence

the desired conclusion follows.

Remarks. 1) If ABC and A′ B ′C ′ are two similar triangles situated in the same

plane and having the same orientation, then from (5) the inequality

AA′ · BC ≤ B B ′ · C A + CC ′ · AB (6)

follows. This is the generalized Ptolemy inequality. Ptolemy’s inequality is obtained

when the triangle A′ B ′C ′ degenerates to a point.

2) Taking into account the inequality (6), we have also B B ′ · C A ≤ CC ′ · AB +
AA′ · BC and CC ′ · AB ≤ AA′ · BC + B B ′ · C A. It follows that for any two similar

triangles ABC and A′ B ′C ′ with the same orientation and situated in the same plane,

we can construct a triangle of sides lengths AA′ · BC , B B ′ · C A, CC ′ · AB.

3) In the case when the triangle A′ B ′C ′ degenerates to the point M , from the prop-

erty in our problem it follows that the segments M A, M B, MC are the sides of a

triangle, i.e., Pompeiu’s theorem (see also Subsection 4.9.1).

Problem 2. Let P be an arbitrary point in the plane of a triangle ABC. Then

α · P B · PC + β · PC · P A + γ · P A · P B ≥ αβγ,

where α, β, γ are the sides of ABC.
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Solution. Let us consider the origin of the complex plane at P and let a, b, c be the

coordinates of vertices of triangle ABC . From the algebraic identity

bc

(a − b)(a − c)
+ ca

(b − c)(b − a)
+ ab

(c − a)(c − b)
= 1. (1)

Passing to the absolute value, it follows that

|b||c|
|a − b||a − c| + |c||a|

|b − c||b − a| + |a||b|
|c − a||c − b| ≥ 1. (2)

Taking into account that |a| = P A, |b| = P B, |c| = PC , and |b−c| = α, |c−a| = β,

|a − b| = γ , the inequality (2) is equivalent to

P B · PC

βγ
+ PC · P A

γα
+ P A · P B

αβ
≥ 1,

i.e., the desired inequality.

Remarks. 1) If P is the circumcenter O of triangle ABC , we can derive Euler’s

inequality R ≥ 2r . Indeed, in this case the inequality is equivalent to R2(α+β +γ ) ≥
αβγ . Therefore

R2 ≥ αβγ

α + β + γ
= αβγ

2s
= 4R

2s
· αβγ

4R
= 2R · area[ABC]

s
= 2Rr,

hence R ≥ 2r .

2) If P is the centroid G of triangle ABC we obtain the following inequality involv-

ing the medians mα, mβ, mγ :

mαmβ

αβ
+ mβmγ

βγ
+ mγ mα

γ α
≥ 9

4

with equality if and only if triangle ABC is equilateral. A good argument for the case

of acute-angled triangles is given in the next problem.

Problem 3. Let ABC be an acute-angled triangle and let P be a point in its interior.

Prove that

α · P B · PC + β · PC · P A + γ · P A · P B = αβγ,

if and only if P is the orthocenter of triangle ABC.
(1998 Chinese Mathematical Olympiad)

Solution. Let P be the origin of the complex plane and let a, b, c be the coordinates

of A, B, C , respectively. The relation in the problem is equivalent to

|ab(a − b)| + |bc(b − c)| + |ca(c − a)| = |(a − b)(b − c)(c − a)|.
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Let

z1 = ab

(a − c)(b − c)
, z2 = bc

(b − a)(c − a)
, z3 = ca

(c − b)(a − b)
.

It follows that

|z1| + |z2| + |z3| = 1 and z1 + z2 + z3 = 1,

the latter from identity (1) in the previous problem.

We will prove that P is the orthocenter of triangle ABC if and only if z1, z2, z3 are

positive real numbers. Indeed, if P is the orthocenter, then since the triangle ABC is

acute-angled, it follows that P is in the interior of ABC . Hence there are positive real

numbers r1, r2, r3 such that

a

b − c
= −r1i,

b

c − a
= −r2i,

c

a − b
= −r3i,

implying z1 = r1r2 > 0, z2 = r2r3 > 0, z3 = r3r1 > 0, and we are done. Conversely,

suppose that z1, z2, z3 are all positive real numbers. Because

− z1z2

z3
=
(

b

c − a

)2

, − z2z3

z1
=
(

c

a − b

)2

, − z3z1

z2
=
(

a

b − c

)2

it follows that
a

b − c
,

b

c − a
,

c

a − b
are pure imaginary numbers, thus AP ⊥ BC and

B P ⊥ C A, showing that P is the orthocenter of triangle ABC .

Problem 4. Let G be the centroid of triangle ABC and let R1, R2, R3 be the circum-

radii of triangles G BC, GC A, G AB, respectively. Then

R1 + R2 + R3 ≥ 3R,

where R is the circumradius of triangle ABC.

Solution. In Problem 2, consider P the centroid G of triangle ABC . Then

α · G B · GC + β · GC · G A + γ · G A · G B ≥ αβγ, (1)

where α, β, γ are the lengths of the sides of triangle ABC .

But

α · G B · GC = 4R1 · area[G BC] = 4R1 · 1

3
area[ABC].

Likewise,

β · GC · G A = 4R2 · 1

3
area[ABC], γ · G A · G B = 4R3 · 1

3
area[ABC].
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Hence, the inequality (1) is equivalent to

4

3
(R1 + R2 + R3) · area[ABC] ≥ 4R · area[ABC],

i.e., R1 + R2 + R3 ≥ 3R.

Problem 5. Let ABC be a triangle and let P be a point in its interior. Let R1, R2, R3

be the radii of the circumcircles of triangles P BC, PC A, P AB, respectively. Lines

P A, P B, PC intersect sides BC, C A, AB at A1, B1, C1, respectively. Let

k1 = P A1

AA1
, k2 = P B1

B B1
, k3 = PC1

CC1
.

Prove that k1 R1 +k2 R2 +k3 R3 ≥ R, where R is the circumradius of triangle ABC.

(2004 Romanian IMO Team Selection Test)

Solution. Note that

k1 = area[P BC]
area[ABC] , k2 = area[PC A]

area[ABC] , k3 = area[P AB]
area[ABC] .

But area[ABC] = αβγ

4R
and area[P BC] = α · P B · PC

4R1
. Two similar relations for

area[PC A] and area[P AB] hold.

The desired inequality is equivalent to

R
α · P B · PC

αβγ
+ R

β · PC · P A

αβγ
+ R

γ · P A · P B

αβγ
≥ R

which reduces to the inequality in Problem 2.

In the case when triangle ABC is acute-angled, from Problem 3 it follows that equal-

ity holds if and only if P is the orthocenter of ABC .

Problem 6. For any point M in the plane of triangle ABC the following inequality

holds:

AM3 sin A + B M3 sin B + C M3 sin C ≥ 6 · MG · area[ABC],

where G is the centroid of triangle ABC.

Solution. The identity

x3(y − z) + y3(z − x) + z3(x − y) = (x − y)(y − z)(z − x)(x + y + z) (1)

holds for any complex numbers x, y, z. Passing to the absolute value we obtain the

inequality

|x3(y − z)| + |y3(z − x)| + |z3(x − y)| ≥ |x − y||y − z||z − x ||x + y + z|. (2)
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Let a, b, c, m be the coordinates of points A, B, C, M , respectively. In (2) consider

x = m − a, y = m − b, z = m − c and obtain

AM3 · α + B M3 · β + C M3 · γ ≥ 3αβγ MG. (3)

Using the formula area[ABC] = αβγ

4R
and the law of sines the desired inequality

follows from (3).

Problem 7. Let ABC D be a cyclic quadrilateral inscribed in circle C(O; R) having

the sides lengths α, β, γ, δ and the diagonals lengths d1 and d2. Then

area[ABC D] ≥ αβγ δd1d2

8R4
.

Solution. Take the center O to be the origin of the complex plane and consider

a, b, c, d the coordinates of vertices A, B, C, D. From the well-known Euler identity

∑
cyc

a3

(a − b)(a − c)(a − d)
= 1 (1)

by passing to the absolute value, it follows that

∑
cyc

|a|3
|a − b||a − c||a − d| ≥ 1. (2)

The inequality (2) is equivalent to

∑
cyc

R3

AB · AC · AD
≥ 1 (3)

or ∑
cyc

R3 · B D · C D · BC ≥ αβγ δd1d2. (4)

But we have the known relation B D · C D · BC = 4R · area[BC D] and three other

such relations. The inequality (4) can be written in the form

4R4(area[ABC] + area[BC D] + area[C D A] + area[D AB]) ≥ αβγ δd1d2

or equivalently 8R4area[ABC D] ≥ αβγ δd1d2.

Problem 8. Let a, b, c be distinct complex numbers such that

(a − b)7 + (b − c)7 + (c − a)7 = 0.

Prove that a, b, c are the coordinates of the vertices of an equilateral triangle.
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Solution. Setting x = a − b, y = b − c, z = c − a implies x + y + z = 0 and

x7 + y7 + z7 = 0. Since z �= 0, we may set α = x

z
and β = y

z
. Hence α + β = −1

and α7 + β7 = −1. Then

α6 − α5β + α4β2 − α3β3 + α2β4 − αβ5 + β6 = 1. (1)

Let s = α + β = −1 and p = ab. The relation (1) becomes

(α6 + β6) − p(α4 + β4) + p2(α2 + β2) − p3 = 1. (2)

Because α2 + β2 = s2 − 2p = 1 − 2p,

α4 + β4 = (α2 + β2)2 − 2α2β2 = (1 − 2p)2 − 2p2 = 1 − 4p + 2p2,

α6 + β6 = (α2 + β2)((α4 + β4) − α2β2) = (1 − 2p)(1 − 4p + p2),

the equality (2) is equivalent to

(1 − 2p)(1 − 4p + p2) − p(1 − 4p + 2p2) + p2(1 − 2p) − p3 = 1.

That is, 1 − 4p + p2 − 2p + 8p2 − 2p3 − p + 4p2 − 2p3 + p2 − 2p3 − p3 = 1; i.e.,

−7p3 + 14p2 − 7p + 1 = 1. We obtain −7p(p − 1)2 = 0, hence p = 0 or p = 1.

If p = 0, then α = 0 or β = 0, and consequently x = 0 or y = 0. It follows that

a = b or b = c, which is false; hence p = 1.

From αβ = 1 and α + β = −1 we deduce that α and β are the roots of the

quadratic equation x2 + x + 1 = 0. Thus α3 = β3 = 1 and |α| = |β| = 1. Therefore

|x | = |y| = |z| or |a − b| = |b − c| = |c − a|, as claimed.

Alternate solution. Let x = a − b, y = b − c, z = c − a. Because x + y + z = 0

and x7 + y7 + z7 = 0, we find that (x + y)7 − x7 − y7 = 0. This is equivalent to

7xy(x + y)(x2 + xy + y2)2 = 0.

But xyz �= 0, so x2 + xy + y2 = 0, i.e., x3 = y3. From symmetry, x3 = y3 = z3,

hence |x | = |y| = |z|.
Problem 9. Let M be a point in the plane of the square ABC D and let M A = x,

M B = y, MC = z, M D = t . Prove that the numbers xy, yz, zt, t x are the sides of a

quadrilateral.

Solution. Consider the complex plane such that 1, i, −1, −i are the coordinates of

vertices A, B, C, D of the square. If z is the coordinate of point M , then we have the

identity

1(z − i)(z + 1) + i(z + 1)(z + i) − 1(z + i)(z − 1) − i(z − 1)(z − i) = 0. (1)
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Subtracting the first term of the sum from both sides yields

i(z + 1)(z + i) − 1(z + i)(z − i) − i(z − 1)(z − i) = −1(z − i)(z + 1),

and using the triangle inequality we obtain

|z − i ||z + i | + |z + 1||z + i | + |z + i ||z − 1| ≥ |z − 1||z − i |
or yz + zt + t x ≥ xy.

In the same manner we prove that

xy + zt + t x ≥ yz, xy + yz + t x ≥ yz

and xy + yz + zt ≥ t x, as needed.

Problem 10. Let z1, z2, z3 be distinct complex numbers such that |z1| = |z2| = |z3| =
R. Prove that

1

|z1 − z2||z1 − z3| + 1

|z2 − z1||z2 − z3| + 1

|z3 − z1||z3 − z2| ≥ 1

R2
.

Solution. The following identity is easy to verify

z2
1

(z1 − z2)(z1 − z3)
+ z2

2

(z2 − z1)(z2 − z3)
+ z2

3

(z3 − z1)(z3 − z2)
= 1.

Passing to the absolute value we find that

1 =
∣∣∣∣∣∑cyc

z2
1

(z1 − z2)(z1 − z3)

∣∣∣∣∣ ≤∑cyc

|z1|2
|z1 − z2||z1 − z3|

= R2
∑
cyc

1

|z1 − z2||z1 − z3| ,

i.e., the desired inequality.

Alternate solution. Let

α = |z2 − z3|, β = |z3 − z1|, γ = |z1 − z2|.
From Problem 29 in Section 1.1 we have

αβ + βγ + γα ≤ 9R2.

Using the inequality

(αβ + βγ + γα)

(
1

αβ
+ 1

βγ
+ 1

γα

)
≥ 9

it follows that
1

αβ
+ 1

βγ
+ 1

γα
≥ 9

αβ + βγ + γα
≥ 1

R2
,

as desired.
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Remark. Consider the triangle with vertices at z1, z2, z3 and whose circumcenter is

the origin of the complex plane. Then the circumradius R equals |z1| = |z2| = |z3|
and the sides are

α = |z2 − z3|, β = |z1 − z3|, γ = |z1 − z2|.
The above inequality is equivalent to

1

αβ
+ 1

βγ
+ 1

γα
≥ 1

R2
,

i.e.,

α + β + γ ≥ αβγ

R2
= 4K

R
= 4sr

R
.

We obtain R ≥ 2r , i.e., Euler’s inequality for a triangle.

Problem 11. Let ABC be a triangle and let P be a point in its plane. Prove that

α · P A3 + β · P B3 + γ · PC3 ≥ 3αβγ · PG,

where G is the centroid of ABC.

2) Prove that

R2(R2 − 4r2) ≥ 4r2[8R2 − (α2 + β2 + γ 2)].
Solution. 1) The identity

x3(y − z) + y3(z − x) + z3(x − y) = (x − y)(y − z)(z − x)(x + y + z) (1)

holds for any complex numbers x, y, z. Passing to absolute values we obtain

|x |3|y − z| + |y|3|z − x | + |z|3|x − y| ≥ |x − y||y − z||z − x ||x + y + z|.
Let a, b, c, zP be the coordinates of A, B, C, P , respectively. In (2) take x = zP −a,

y = zP − b, z = zP − c and obtain the desired inequality.

2) If P is the circumcenter O of triangle ABC , after some elementary transfor-

mations the previous inequality becomes R2 ≥ 6r · OG. Squaring both sides yields

R4 ≥ 36r2 · OG2. Using the well-known relation OG2 = R2 − 1

9
(α2 + β2 + γ 2) we

obtain R4 ≥ 36R2r2 − 4r2(α2 + β2 + γ 2) and the conclusion follows.

Remark. The inequality 2) improves Euler’s inequality for the class of obtuse tri-

angles. This is equivalent to proving that α2 + β2 + γ 2 < 8R2 in any such triangle.

The last relation can be written as sin2 A + sin2 B + sin2 C < 2, or cos2 A + cos2 B −
sin2 C > 0. That is,

1 + cos 2A

2
+ 1 + cos 2B

2
− 1 + cos2 C > 0,

which reduces to cos(A + B) cos(A − B) + cos2 C > 0. This is equivalent to

cos C[cos(A − B) − cos(A + B)] > 0, i.e., cos A cos B cos C < 0.
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Here are some other problems involving this topic.

Problem 12. Let a, b, c, d be distinct complex numbers with |a| = |b| = |c| = |d|
and a + b + c + d = 0.

Then the geometric images of a, b, c, d are the vertices of a rectangle.

Problem 13. The complex numbers zi , i = 1, 2, 3, 4, 5, have the same nonzero mod-

ulus and
5∑

i=1

zi =
5∑

i=1

z2
i = 0.

Prove that z1, z2, . . . , z5 are the coordinates of the vertices of a regular pentagon.

(Romanian Mathematical Olympiad – Final Round, 2003)

Problem 14. Let ABC be a triangle.

a) Prove that if M is any point in its plane, then

AM sin A ≤ B M sin B + C M sin C.

b) Let A1, B1, C1 be points on the sides BC, AC and AB, respectively, such that

the angles of the triangle A1 B1C1 are in this order α, β, γ . Prove that∑
cyc

AA1 sin α ≤
∑
cyc

BC sin α.

(Romanian Mathematical Olympiad – Second Round, 2003)

Problem 15. Let M and N be points inside triangle ABC such that

M̂ AB = N̂ AC and M̂ B A = N̂ BC .

Prove that
AM · AN

AB · AC
+ B M · B N

B A · BC
+ C M · C N

C A · C B
= 1.

(39th IMO – Shortlist)

5.4 Solving Geometric Problems

Problem 1. On each side of a parallelogram a square is drawn external to the figure.

Prove that the centers of the squares are the vertices of another square.

Solution. Consider the complex plane with origin at the intersection point of the

diagonals and let a, b, −a, −b be the coordinates of the vertices A, B, C, D, respec-

tively.
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Using the rotation formulas, we obtain

b = zO1 + (a − zO1)(−i) or zO1 = b + ai

1 + i
.

Likewise,

zO2 = a − bi

1 + i
, zO3 = −b − ai

1 + i
, zO4 = −a + bi

1 + i
.

It follows that

Ô4 O1 O2 = arg
zO2 − zO1

zO4 − zO1

= arg
a − bi − b − ai

−a + bi − b − ai
= arg i = π

2
,

so O1 O2 = O1 O4, and

Ô2 O3 O4 = arg
zO4 − zO4

zO2 − zO3

= arg
−a + bi + b + ai

a − bi + b + ai
= arg i = π

2
,

so O3 O4 = O3 O2. Therefore O1 O2 O3 O4 is a square.

Problem 2. Given a point on the circumcircle of a cyclic quadrilateral, prove that the

products of the distances from the point to any pair of opposite sides or to the diagonals

are equal.

(Pappus’s theorem)

Solution. Let a, b, c, d be the coordinates of the vertices A, B, C, D of the quadri-

lateral and consider the complex plane with origin at the circumcenter of ABC D.

Without loss of generality assume that the circumradius equals 1.

The equation of line AB is ∣∣∣∣∣∣∣
a a 1

b b 1

z z 1

∣∣∣∣∣∣∣ = 0.

This is equivalent to

z(a − b) − z(a − b) = ab − ab, i.e., z + abz = a + b.

Let point M1 be the foot of the perpendicular from a point M on the circumcircle to

the line AB. If m is the coordinate point M , then (see Proposition 1 in Section 4.5)

zM1 = m − abm + a + b

2

and

d(M, AB) = |m − m1| =
∣∣∣∣m − m − abm + a + b

2

∣∣∣∣ = ∣∣∣∣ (m − a)(m − b)

2m

∣∣∣∣ ,
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since mm = 1.

Likewise,

d(M, BC) =
∣∣∣∣ (m − b)(m − c)

2m

∣∣∣∣ , d(M, C D) =
∣∣∣∣ (m − c)(m − d)

2m

∣∣∣∣ ,
d(M, D A) =

∣∣∣∣ (m − d)(m − a)

2m

∣∣∣∣ , d(M, AC) =
∣∣∣∣ (m − a)(m − c)

2m

∣∣∣∣
and

d(M, B D) =
∣∣∣∣ (m − b)(m − d)

2m

∣∣∣∣ .
Thus,

d(M, AB) · d(M, C D) = d(M, BC) · d(M, D A) = d(M, AC) · d(M, B D),

as claimed.

Problem 3. Three equal circles C1(O1; r), C2(O2; r) and C3(O3; r) have a common

point O. Circles C1 and C2, C2 and C3, C3 and C1, meet again at points A, B, C respec-

tively. Prove that the circumradius of triangle ABC is equal to r .
(Tzitzeica’s1 “five-coin problem”)

Solution. Consider the complex plane with origin at point O and let z1, z2, z3 be

the coordinates of the centers O1, O2, O3, respectively. It follows that points A, B, C

have the coordinates z1 + z2, z2 + z3, z3 + z1, hence

AB = |(z1 + z2) − (z2 + z3)| = |z1 − z3| = O1 O3.

Likewise, BC = O1 O2 and AC = O2 O3, hence triangles ABC and O1 O2 O3 are

congruent. Consequently, their circumradii are equal. Since O O1 = O O2 = O O3 =
r , the circumradius of triangles O1 O2 O3 and ABC is equal to r , as desired.

Problem 4. On the sides AB and BC of triangle ABC draw squares with centers D

and E such that points C and D lie on the same side of line AB and points A and E

lie opposite sides of line BC. Prove that the angle between lines AC and DE is equal

to 45◦.

Solution. The rotation about E through angle 90◦ mappings point C to point B,

hence

zB = zE + (zC − zE )i and zE = zB − zC i

1 − i
.

Similarly, zD = zB − z Ai

1 − i
.

1Gheorghe Tzitzeica (1873–1939), Romanian mathematician, made important contributions in geometry.



5.4. Solving Geometric Problems 193

Figure 5.1.

The angle between the lines AC and DE is equal to

arg
zC − z A

zE − zD
= arg

(zC − z A)(1 − i)

zB − zC i − zB + z Ai
= arg

1 − i

−i
= arg(1 + i) = π

4
,

as desired.

Remark. If the squares are replaced in the same conditions by rectangles with cen-

ters D and E , then the angle between lines AC and DE is equal to 90◦ − B̂ AD.

Problem 5. On the sides AB and BC of triangles ABC equilateral triangles AB N

and AC M are drawn external to the figure. If P, Q, R are the midpoints of segments

BC, AM, AN, respectively, prove that triangle P Q R is equilateral.

Solution. Consider the complex plane with origin at A and denote by a lowercase

letter the coordinate of the point denoted by an uppercase letter.

The rotation about center A through angle 60◦ maps points N and C to B and M ,

respectively. Setting ε = cos 60◦ + i sin 60◦, we have b = n · ε and m = c · ε. Thus

p = b + c

2
, q = m

2
= c · ε

2
, r = n

2
= b

2ε
= bε5

2
= −bε2

2
.

To prove that triangle P Q R is equilateral, using Proposition 1 in Section 3.4, it

suffices to observe that

p2 + q2 + r2 = pq + qr + r p.

Problem 6. Let AA′ B B ′CC ′ be a hexagon inscribed in the circle C(O; R) such that

AA′ = B B ′ = CC ′ = R.
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Figure 5.2.

If M, N , P are midpoints of sides AA′, B B ′, CC ′ respectively, prove that triangle

M N P is equilateral.

Solution. Consider the complex plane with origin at the circumcenter O and let

a, b, c, a′, b′, c′ be the coordinates of the vertices A, B, C, A′, B ′, C ′, respectively. If

ε = cos 60◦ + i sin 60◦, then

a′ = a · ε, b′ = b · ε, c′ = c · ε.

The points M, N , P have the coordinates

m = aε + b

2
, n = bε + c

2
, p = cε + a

2
.

It is easy to observe that

m2 + n2 + p2 = mn + np + pm;
therefore M N P is an equilateral triangle (see Proposition 1 in Section 3.4).

Problem 7. On the sides AB and AC of triangle ABC squares AB DE and AC FG

are drawn external to the figure. If M is the midpoint of side BC, prove that AM ⊥ EG

and EG = 2AM.

Solution. Consider the complex plane with origin at A and let b, c, g, e, m be the

coordinates of points B, C, G, E, M .

Observe that g = ci , e = −bi , m = b + c

2
, hence

m − a

g − e
= −(b + c)

2i(b + c)
= i

2
∈ iR∗

and

|m − a| = 1

2
|e − g|.

Thus, AM ⊥ EG and 2AM = EG.
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Figure 5.3.

Problem 8. The sides AB, BC and C A of the triangle ABC are divided into three

equals parts by points M, N; P, Q and R, S, respectively. Equilateral triangles

M N D, P QE, RSF are constructed exterior to triangle ABC. Prove that triangle

DE F is equilateral.

Solution. Denote by lowercase letters the coordinates of the points denoted by up-

percase letters. Then

m = 2a + b

3
, n = a + 2b

3
, p = 2b + c

3
,

q = b + 2c

3
, r = 2c + a

3
, s = c + 2a

3
.

Figure 5.4.

The point D is obtained from point M by a rotation of center N and angle 60◦.

Hence

d = n + (m − n)ε = a + 2b + (a − b)ε

3
,
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where ε = cos 60◦ + i sin 60◦. Likewise

e = q + (p − q)ε = b + 2c + (b − c)ε

3

and

f = s + (r − s)ε = c + 2a + (c − a)ε

3
.

Since
f − d

e − d
= c + a − 2b + (b + c − 2a)ε

2c − a − b + (2b − a − c)ε

= ε(b + c − 2a + (c + a − 2b)(−ε2))

2c − a − b + (2b − a − c)ε

= ε(b + c − 2a) + (c + a − 2b)(ε − 1))

2c − a − b + (2b − a − c)ε
= ε,

we have F̂ DE = 60◦ and F D = F E , so triangle DE F is equilateral.

Problem 9. Let ABC D be a square of length side a and consider a point P on the

incircle of the square. Find the value of

P A2 + P B2 + PC2 + P D2.

Solution. Consider the complex plane such that point A, B, C, D have coordinates

z A = a
√

2

2
, zB = a

√
2

2
i, zC = −a

√
2

2
, zD = −a

√
2

2
i.

Let zP = a

2
(cos x + i sin x) be the coordinate of point P .

Figure 5.5.
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Then

P A2 + P B2 + PC2 + P D2 = |z A − zP |2 + |zB − zP |2 + |zC − zP |2 + |zD − zP |2

=
∑
cyc

(z A − zP )(z A − zP ) = 4
a2

2
+ 2

a
√

2

2
· a

2

(
2 cos x + 2 cos

(
x + π

2

)
+

+2 cos(x + π) + 2 cos

(
x + 3π

2

))
+ 4

a2

4
= 2a2 + 0 + a2 = 3a2.

Problem 10. On the sides AB and AD of the triangle AB D draw externally squares

AB E F and ADG H with centers O and Q, respectively. If M is the midpoint of the

side B D, prove that O M Q is an isosceles triangle with a right angle at M.

Solution. Let a, b, d be the coordinates of the points A, B, D, respectively.

Figure 5.6.

The rotation formula gives

a − zO

b − zO
= d − zQ

a − zQ
= i,

so

zO = b + a + (a − b)i

2
and zQ = a + d + (d − a)i

2
.

The coordinate of the midpoint M of segment [B D] is zM = b + d

2
, hence

zO − zM

zQ − zM
= a − d + (a − b)i

a − b + (d − a)i
= i.

Therefore QM ⊥ O M and O M = QM , as desired.

Problem 11. On the sides of a convex quadrilateral ABC D, equilateral triangles

AB M and C D P are drawn external to the figure, and equilateral triangles BC N

and ADQ are drawn internal to the figure. Describe the shape of the quadrilateral

M N P Q.

(23rd IMO – Shortlist)
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Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter.

Figure 5.7.

Using the rotation formula, we obtain

m = a + (b − a)ε, n = c + (b − c)ε,

p = c + (d − c)ε, q = a + (d − a)ε,

where

ε = cos 60◦ + i sin 60◦.

It is easy to notice that

m + p = a + c + (b + d − a − c)ε = n + q,

hence M N P Q is a parallelogram or points M, N , P, Q are collinear.

Problem 12. On the sides of a triangle ABC draw externally the squares AB M M ′,
AC N N ′ and BC P P ′. Let A′, B ′, C ′ be the midpoints of the segments M ′N ′, P ′M,

P N, respectively.

Prove that triangles ABC and A′ B ′C ′ have the same centroid.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter.
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Figure 5.8.

Using the rotation formula we obtain

n′ = a + (c − a)i and m′ = a + (b − a)(−i),

hence

a′ = m′ + n′

2
= 2a + (c − b)i

2
.

Likewise,

b′ = 2b + (a − c)i

2
and c′ = 2c + (b − a)i

2
.

Triangles A′ B ′C ′ and ABC have the same centroid if and only if

a′ + b′ + c′

3
= a + b + c

3
.

Since

a′ + b′ + c′ = 2a + 2b + 2c + (c − b + a − c + b − a)i

2
= a + b + c,

the conclusion follows.

Problem 13. Let ABC be an acute-angled triangle. On the same side of line AC as

point B draw isosceles triangles D AB, BC E, AFC with right angles at A, C, F,

respectively.
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Prove that the points D, E, F are collinear.

Solution. Denote by lowercase letters the coordinates of the points denoted by up-

percase letters. The rotation formula gives

d = a + (b − a)(−i), e = c + (b − c)i, a = f + (c − f )i.

Then

f = a − ci

1 − i
= a + c + (a − c)i

2
= d + e

2
,

so points F, D, E are collinear.

Problem 14. On sides AB and C D of the parallelogram ABC D draw externally equi-

lateral triangles AB E and C DF. On the sides AD and BC draw externally squares

of centers G and H.

Prove that E H FG is a parallelogram.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter.

Since ABC D is a parallelogram, we have a + c = b + d.

Figure 5.9.
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The rotations with 90◦ and centers G and H mapping the points A and C into D

and B, respectively. Then d − g = (a − g)i and b − h = (c − h)i , hence g = d − ai

1 − i

and h = b − ci

1 − i
.

The rotations with 60◦ and centers E and F mapping the point B and D into A

and C , respectively. Then a − e = (b − e)ε and c − f = (d − f )ε, where ε =
cos 60◦ + i sin 60◦. Hence e = a − bε

1 − ε
and f = c − dε

1 − ε
.

Observe that

g + h = d + b − (a + c)i

1 − i
= (a + c) − (a + c)i

1 − i
= a + c

and

e + f = a + c − (b + d)ε

1 − ε
= a + c − (ac)ε

1 − ε
= a + c,

hence E H FG is a parallelogram.

Problem 15. Let ABC be a right-angled triangle with Ĉ = 90◦ and let D be the foot

of the altitude from C. If M and N are the midpoints of the segments [DC] and [B D],
prove that lines AM and C N are perpendicular.

Solution. Consider the complex plane with origin at point C , and let a, b, d, m, n

be the coordinates of points A, B, D, M, N , respectively.

Figure 5.10.

Triangles ABC and C DB are similar with the same orientation, hence

a − d

d − 0
= 0 − d

d − b
or d = ab

a + b
.

Then

m = d

2
= ab

2(a + b)
and n = b + d

2
= 2ab + b2

2(a + b)
.

Thus

arg
m − a

n − 0
= arg

ab

2(a + b)
− a

2ab + b2

2(a + b)

= arg
(
−a

b

)
= π

2
,

so AM ⊥ C N .
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Alternate solution. Using the properties of real product in Proposition 1, Section

4.1, and taking into account that C A ⊥ C B, we have

(m − a) · (n − c) =
(

ab

2(a + b)
− a

)
·
(

2ab + b2

2(a + b)

)

=
(

a
2a + b

2(a + b)

)
·
(

b
2a + b

2(a + b)

)
=
∣∣∣∣ 2a + b

2(a + b)

∣∣∣∣2 (a · b) = 0.

The conclusion follows from Proposition 2 in Section 4.1.

Problem 16. Let ABC be an equilateral triangle with the circumradius equal to 1.

Prove that for any point P on the circumcircle we have

P A2 + P B2 + PC2 = 6.

Solution. Consider the complex plane such that the coordinates of points A, B, C

are the cube roots of unity 1, ε, ε2, respectively, and let z be the coordinate of point P .

Then |z| = 1 and we have

P A2 + P B2 + PC2 = |z − 1|2 + |z − ε|2 + |z − ε2|2
= (z − 1)(z − 1) + (z − ε)(z − ε) + (z − ε2)(z − ε2)

= 3|z|2 − (1 + ε + ε2)z − (1 + ε + ε2)z + 1 + |ε|2 + |ε2|2
= 3 − 0 · z − 0 · z + 1 + 1 + 1 = 6,

as desired.

Problem 17. Point B lies inside the segment [AC]. Equilateral triangles AB E and

BC F are constructed on the same side of line AC. If M and N are the midpoints of

segments AF and C E, prove that triangle B M N is equilateral.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter. The point E is obtained from point B by a rotation with center A and

angle of 60◦, hence

e = a + (b − a)ε, where ε = cos 60◦ + i sin 60◦.

Likewise, f = b + (c − b)ε.

The coordinates of points M and N are

m = a + b + (c − b)ε

2
and n = c + a + (b − a)ε

2
.

It suffices to prove that
m − b

n − b
= ε. Indeed, we have

m − b = (n − b)ε
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if and only if

a − b + (c − b)ε = (c + a − 2b)ε + (b − a)ε2.

That is,

a − b = (a − b)ε + (b − a)(ε − 1),

as needed.

Problem 18. Let ABC D be a square with center O and let M, N be the midpoints of

segments BO, C D respectively.

Prove that triangle AM N is isosceles and right-angled.

Solution. Consider the complex plane with center at O such that 1, i, −1, −i are

the coordinates of points A, B, C, D respectively.

Figure 5.11.

The points M and N have the coordinates m = i

2
and n = −1 − i

2
, so

a − m

n − m
=

1 − i

2
−1 − i

2
− i

2

= 2 − i

−1 − 2i
= i.

Then AM ⊥ M N and AM = N M , as needed.

Problem 19. In the plane of the nonequilateral triangle A1 A2 A3 consider points

B1, B2, B3 such that triangles A1 A2 B3, A2 A3 B1 and A3 A1 B2 are similar with the

same orientation.

Prove that triangle B1 B2 B3 is equilateral if and only if triangles A1 A2 B3, A2 A3 B1,

A3 A1 B2 are isosceles with the bases A1 A2, A2 A3, A3 A1 and the base angles equal to

30◦.
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Solution. Triangles A1 A2 B3, A2 A3 B1, A3 A1 B2 are similar with the same orienta-

tion, hence
b3 − a2

a1 − a2
= b1 − a3

a2 − a3
= b2 − a1

a3 − a1
= z. Then

b3 = a2 + z(a1 − a2), b1 = a3 + z(a2 − a3), b2 = a1 + z(a3 − a1).

Triangle B1 B2 B3 is equilateral if and only if

b1 + εb2 + ε2b3 = 0 or b1 + εb3 + ε2b2 = 0.

Assume the first is valid.

Then, we have

b1 + εb2 + ε2b3 = 0 if and only if

a3 + z(a2 − a3) + εa1 + εz(a3 − a1) + ε2a2 + ε2z(a1 − a2) = 0, i.e.,

a3 + εa1 + ε2a2 + z(a2 − a3 + εa3 − εa1 + ε2a1 − ε2a2) = 0.

The last relation is equivalent to

⇔ z[a2(1 − ε)(1 + ε) − a1ε(1 − ε) − a3(1 − ε)] = −(a3 + εa1 + ε2a2), i.e.,

z = + a3 + εa1 + ε2a2

(1 − ε)(a3 + εa1 + ε2a2)
= 1

1 − ε
= 1√

3
(cos 30◦ + i sin 30◦),

which shows that triangles A1 A2 B3, A2 A3 B1 and A3 A1 B2 are isosceles with angles

of 30◦.

Notice that a3 + εa1 + ε2a2 �= 0, since triangle A1 A2 A3 is not equilateral.

Problem 20. The diagonals AC and C E of a regular hexagon ABC DE F are di-

vided by interior points M and N, respectively, such that

AM

AC
= C N

C E
= r.

Determine r knowing that points B, M and N are collinear.

(23rd IMO)

Solution. Consider the complex plane with origin at the center of the reg-

ular hexagon such that 1, ε, ε2, ε3, ε4, ε5 are the coordinates of the vertices

B, C, D, E, F, A, where

ε = cos
π

3
+ i sin

π

3
= 1 + i

√
3

2
.

Since
MC

M A
= N E

NC
= 1 − r

r
,
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Figure 5.12.

the coordinates of points M and N are

m = εr + ε5(1 − r)

and

n = ε2r + ε(1 − r),

respectively.

The points B, M, N are collinear if and only if
m − 1

n − 1
∈ R∗. We have

m − 1 = εr + ε5(1 − r) − 1 = εr − ε2(1 − r) − 1

= 1 + i
√

3

2
r − −1 + i

√
3

2
(1 − r) = −1

2
+ i

√
3

2
(2r − 1)

and

n − 1 = ε3r + ε(1 − r) − 1 = −r + 1 + i
√

3

2
(1 − r) − 1

= −1

2
− 3r

2
+ i

√
3

2
(1 − r),

hence
m − 1

n − 1
= −1 + i

√
3(2r − 1)

−(1 + 3r) + i
√

3(1 − r)
∈ R∗

if and only if √
3(1 − r) − (1 + 3r) · √

3(2r − 1) = 0.

This is equivalent to 1 − r = 6r2 − r − 1, i.e., r2 = 1
3 . It follows r = 1√

3
.

Problem 21. Let G be the centroid of quadrilateral ABC D. Prove that if lines G A and

G D are perpendicular, then AD is congruent to the line segment joining the midpoints

of sides AD and BC.
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Solution. Consider a, b, c, d, g the coordinates of points A, B, C, D, G, respec-

tively. Using properties of the real product of complex numbers we have

G A ⊥ G D if and only if (a − g) · (d − g) = 0, i.e.,(
a − a + b + c + d

4

)
·
(

d − a + b + c + d

4

)
= 0.

That is,

(3a − b − c − d) · (3d − a − b − c) = 0

and we obtain

[a − b − c + d + 2(a − d)] · [a − b − c + d − 2(a − d)] = 0.

The last relation is equivalent to

(a + d − b − c) · (a + d − b − c) = 4(a − d) · (a − d), i.e.,∣∣∣∣a + d

2
− b + c

2

∣∣∣∣2 = |a − d|2. (1)

Let M and N be the midpoints of the sides AD and BC . The coordinates of points

M and N are
a + d

2
and

b + c

2
, hence relation (1) shows that M N = AD and we are

done.

Problem 22. Consider a convex quadrilateral ABC D with the nonparallel opposite

sides AD and BC. Let G1, G2, G3, G4 be the centroids of the triangles BC D, AC D,

AB D, ABC, respectively. Prove that if AG1 = BG2 and CG3 = DG4 then ABC D

is an isosceles trapezoid.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter. Setting s = a + b + c + d yields

g1 = b + c + d

3
= s − a

3
, g2 = s − b

3
, g3 = s − c

3
, g4 = s − d

3
.

The relation AG1 = BG2 can be written as

|a − g1| = |b − g2|, that is, |4a − s| = |4b − s|.

Using the real product of complex numbers, the last relation is equivalent to

(4a − s) · (4a − s) = (4b − s) · (4b − s), i.e.,

16|a|2 − 8a · s = 16|b|2 − 8b · s.
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We find

2(|a|2 − |b|2) = (a − b) · s. (1)

Likewise, we have

CG3 = DG4 if and only if 2(|c|2 − |d|2) = (c − d) · s. (2)

Subtracting the relations (1) and (2) gives

2(|a|2 − |b|2 − |c|2 + |d|2) = (a − b − c + d) · (a + b + c + d).

That is,

2(|a|2 − |b|2 − |c|2 + |d|2) = |a + d|2 − |b + c|2, i.e.,

2(aa − bb − cc + dd) = ac + ad + ad + dd − bb − bc − bc − cc.

We obtain

aa − ad − ad + dd = bb − bc − bc + cc, i.e.,

|a − d|2 = |b − c|2.
Hence

AD = BC. (3)

Adding relations (1) and (2) gives

2(|a|2 − |b|2 − |d|2 + |c|2) = (a − b − d + c) · (a + b + c + d),

and similarly we obtain

AC = B D. (4)

From relations (3) and (4) we deduce that AB‖C D and consequently ABC D is an

isosceles trapezoid.

Problem 23. Prove that in any quadrilateral ABC D,

AC2 · B D2 = AB2 · C D2 + AD2 · BC2 − 2AB · BC · C D · D A · cos(A + C).

(Bretschneider relation or a first generalization of Ptolemy’s theorem)

Solution. Let z A, zB, zC , zD be the coordinates of the points A, B, C, D in the com-

plex plane with origin at A and point B on the positive real axis (see Fig. 5.13).

Using the identities

(z A − zC )(zB − zD) = −(z A − zB)(zD − zC ) − (z A − zD)(zC − zB)
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Figure 5.13.

and

(z A − zC )(zB − zD) = −(z A − zB)(zD − zC ) − (z A − zD)(zC − zB),

by multiplication we obtain

AC2 · B D2 = AB2 · DC2 + AD · BC2 + z + z,

where

z = (z A − zB)(zD − zC )(z A − zD)(zC − zB).

It suffices to prove that

z + z = −2AB · BC · C D · D A · cos(A + C).

We have

z A − zB = AB(cos π + i sin π),

zD − zC = DC[cos(2π − B − C) + i sin(2π − B − C)],
z A − zD = D A[cos(π − A) + i sin(π − A)]

and

zC − zD = BC[cos(π + B) + i sin(π + B)].
Then

z + z = 2Rez = 2AB · BC · C D · D A cos(5π − A − C)

= −2AB · BC · C D · D A · cos(A + C)

and we are done.
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Remark. Since cos(A + C) ≥ −1, this relation gives Ptolemy’s inequality

AC · B D ≤ AB · DC + AD · BC,

with equality only for cyclic quadrilaterals.

Problem 24. Let ABC D be a quadrilateral and AB = a, BC = b, C D = c, D A = d,

AC = d1 and BC = d2.

Prove that

d2
2 [a2d2 + b2c2 − 2abcd cos(B − D)] = d2

1 [a2b2 + c2d2 − 2abcd cos(A − C)]

(A second generalization of Ptolemy’s theorem)

Solution. Let z A, zB, zC , zD be the coordinates of the points A, B, C, D in the com-

plex plane with origin at D and point C on the positive real axis (see the figure in the

previous problem but with different notation).

Multiplying the identities

(zB − zD)[(z A − zB)(z A − zB) − (zC − zD)(zC − zD)]
= (zC − z A) · [(zB − z A)(zB − zC ) − (zD − z A)(zD − zC )]

and

(zB − zD)[(z A − zB)(z A − zD) − (zC − zB)(zC − zD)]
= (zC − z A) · [(zB − z A)(zB − zC ) − (zD − z A)(zD − zC )]

yields

d2
2 [a2 · d2 + b2 · c2 − (z A − zB)(z A − zD)(zC − zB)(zC − zD)

− (zC − zB)(zC − zD)(z A − zB)(z A − zD)]
= d2

1 [a2 · b2 + c2 · d2 − (zB − z A)(zB − zC )(zD − z A)(zD − zC )

− (zD − z A)(zD − zC )(zB − z A)(zB − zC )].
It suffices to prove that

2Re(z A − zB)(z A − zD)(zC − zB)(zC − zD) = 2abcd cos(B − D)

and

2Re(zB − z A)(zB − zC )(zB − z A)(zD − zC ) = 2abcd cos(A − C).

We have

zB − z A = a[cos(π + A + D) + i sin(π + A + D)],



210 5. Olympiad-Caliber Problems

zB − zC = b[cos(π − C) + i sin(π − C)],
zD − z A = d[cos(π − D) + i sin(π − D)],

zD − zC = c[cos π + i sin π ],
z A − zB = a[cos(A + D) + i sin(A + D)],

z A − zD = d[cos D + i sin D],
zC − zB = b[cos B + i sin B],
zC − zD = c[cos 0 + i sin 0];

hence

2Re(z A − zB)(z A − zD)(zC − zB)(zC − zD)

= 2abcd cos(A + D + D + C) = 2abcd cos(2π − B + D) = 2abcd cos(B − D)

and

2Re(zB − z A)(zB − zC )(zD − z A)(zD − zC )

= 2abcd cos(π + A + D + π − C + π − D + π)

= 2abcd cos(4π + A − C) = 2abcd cos(A − C),

as desired.

Remark. If ABC D is a cyclic quadrilateral, then B + D = A + C = π . It follows

that

cos(B − A) = cos(2B − π) = − cos 2B

and

cos(A − C) = cos(2A − π) = − cos 2A.

The relation becomes

d2
2 [(ad + bc)2 − 2abcd(1 − cos 2B)] = d2

1 [(ab + cd)2 − 2abcd(1 − cos 2A)].
This is equivalent to

d2
2 (ad + bc)2 − 4abcdd2

2 sin2 B = d2
1 (ab + cd)2 − 2abcdd2

1 sin2 A. (1)

The law of sines applied to the triangles ABC and AB D with circumradii R gives

d1 = 2R sin B and d2 = 2R sin A, hence d1 sin A = d2 sin B. The relation (1) is

equivalent to

d2
2 (ad + bc)2 = d2

1 (ab + cd)2,

and consequently
d2

d1
= ab + cd

ad + bc
. (2)

Relation (2) is known as Ptolemy’s second theorem.
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Problem 25. In a plane three equilateral triangles O AB, OC D and O E F are given.

Prove that the midpoints of the segments BC, DE and F A are the vertices of an

equilateral triangle.

Solution. Consider the complex plane with origin at O and assume that triangles

O AB, OC D, O E F are positively orientated. Denote by a lowercase letter the coordi-

nate of a point denoted by an uppercase letter.

Let ε = cos 60◦ + i sin 60◦. Then

b = aε, d = cε, f = eε

and

m = b + c

2
= aε + c

2
, n = d + e

2
= cε + e

2
, p = f + a

2
= eε + a

2
.

Triangle M N P is equilateral if and only if

m + ωn + ω2 p = 0,

where

ω = cos 120◦ + i sin 120◦ = ε2.

Because

m + ε2n + ε4 p = m + ε2n − εp = 1

2
(aε + c − c + eε2 − eε2 − εa) = 0,

we are done.

We invite the reader to solve the following problems by using complex numbers.

Problem 26. Let ABC be a triangle such that AC2 + AB2 = 5BC2. Prove that the

medians from the vertices B and C are perpendicular.

Problem 27. On the sides BC, C A, AB of a triangle ABC the points A′, B ′, C ′ are

chosen such that
A′ B
A′C

= B ′C
B ′ A

= C ′ A
C ′ B

= k.

Consider the points A′′, B ′′, C ′′ on the segments B ′C ′, C ′ A′, A′ B ′ such that

A′′C ′

A′′ B ′ = C ′′ B ′

C ′′ A′ = B ′′ A′

B ′′C ′ = k.

Prove that triangles ABC and A′′ B ′′C ′′ are similar.

Problem 28. Prove that in any triangle the following inequality is true

R

2r
≥ mα

hα

.

Equality holds only for equilateral triangles.
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Problem 29. Let ABC D be a quadrilateral inscribed in the circle C(O; R). Prove that

AB2 + BC2 + C D2 + D A2 = 8R2

if and only if AC ⊥ B D or one of the diagonals is a diameter of C.

Problem 30. On the sides of convex quadrilateral ABC D equilateral triangles AB M ,

BC N , C D P and D AQ are drawn external to the figure. Prove that quadrilaterals

ABC D and M N P Q have the same centroid.

Problem 31. Let ABC D be a quadrilateral and consider the rotations R1, R2, R3, R4

with centers A, B, C, D through angle α and of the same orientation.

Points M, N , P, Q are the images of points A, B, C, D under the rotations R2, R3,

R4, R1, respectively.

Prove that the midpoints of the diagonals of the quadrilaterals ABC D and M N P Q

are the vertices of a parallelogram.

Problem 32. Prove that in any cyclic quadrilateral ABC D the following holds:

a) AD + BC cos(A + B) = AB cos A + C D cos D;

b) BC sin(A + B) = AB sin A − C D sin D.

Problem 33. Let O9, I, G be the 9-point center, the incenter and the centroid, respec-

tively, of a triangle ABC . Prove that lines O9G and AI are perpendicular if and only

if Â = π

3
.

Problem 34. Two circles ω1 and ω2 are given in the plane, with centers O1 and O2,

respectively. Let M ′
1 and M ′

2 be two points on ω1 and ω2, respectively, such that the

lines O1 M ′
1 and O2 M ′

2 intersect. Let M1 and M2 be points on ω1 and ω2, respectively,

such that when measured clockwise the angles ̂M ′
1 O1 M1 and ̂M ′

2 O2 M2 are equal.

(a) Determine the locus of the midpoint of [M1 M2].
(b) Let P be the point of intersection of lines O1 M1 and O2 M2. The circumcircle of

triangle M1 P M2 intersects the circumcircle of triangle O1 P O2 at P and another point

Q. Prove that Q is fixed, independent of the locations of M1 and M2.
(2000 Vietnamese Mathematical Olympiad)

Problem 35. Isosceles triangles A3 A1 O2 and A1 A2 O3 are constructed externally

along the sides of a triangle A1 A2 A3 with O2 A3 = O2 A1 and O3 A1 = O3 A2. Let O1

be a point on the opposite side of line A2 A3 from A1, with Ô1 A3 A2 = 1
2 Â1 O3 A2 and

Ô1 A2 A3 = 1
2 Â1 O2 A3, and let T be the foot of the perpendicular from O1 to A2 A3.

Prove that A1 O1 ⊥ O2 O3 and that

A1 O1

O2 O3
= 2

O1T

A2 A3
.

(2000 Iranian Mathematical Olympiad)
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Problem 36. A triangle A1 A2 A3 and a point P0 are given in the plane. We define

As = As−3 for all s ≥ 4. We construct a sequence of points P0, P1, P2, . . . such that

Pk+1 is the image of Pk under rotation with center Ak+1 through angle 120◦ clockwise

(k = 0, 1, 2, . . . ). Prove that if P1986 = P0 then the triangle A1 A2 A3 is equilateral.

(27th IMO)

Problem 37. Two circles in a plane intersect. Let A be one of the points of intersection.

Starting simultaneously from A two points move with constant speeds, each point

travelling along its own circle in the same direction. After one revolution the two points

return simultaneously to A. Prove that there exists a fixed point P in the plane such

that, at any time, the distances from P to the moving points are equal.
(21st IMO)

Problem 38. Inside the square ABC D, the equilateral triangles ABK , BC L , C DM ,

D AN are inscribed. Prove that the midpoints of the segments K L , L M , M N , N K

and the midpoints of the segments AK , BK , BL , C L , C M , DM , DN , AN are the

vertices of a regular dodecagon.
(19th IMO)

Problem 39. Let ABC be an equilateral triangle and let M be a point in the interior

of angle B̂ AC . Points D and E are the images of points B and C under the rotations

with center M and angle 120◦, counterclockwise and clockwise, respectively.

Prove that the fourth vertex of the parallelogram with sides M D and M E is the

reflection of point A across point M .

Problem 40. Prove that for any point M inside parallelogram ABC D the following

inequality holds:

M A · MC + M B · M D ≥ AB · BC.

Problem 41. Let ABC be a triangle, H its orthocenter, O its circumcenter, and R

its circumradius. Let D be the reflection of A across BC , let E be that of B across

C A, and F that of C across AB. Prove that D, E and F are collinear if and only if

O H = 2R.

(39th IMO – Shortlist)

Problem 42. Let ABC be a triangle such that ÂC B = 2 ÂBC . Let D be the point

on the side BC such that C D = 2B D. The segment AD is extended to E so that

AD = DE . Prove that

ÊC B + 180◦ = 2Ê BC .

(39th IMO – Shortlist)
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5.5 Solving Trigonometric Problems
Problem 1. Prove that

cos
π

11
+ cos

3π

11
+ cos

5π

11
+ cos

7π

11
+ cos

9π

11
= 1

2
.

Solution. Setting z = cos
π

11
+ i sin

π

11
implies that

z + z3 + z5 + z7 + z9 = z11 − z

z2 − 1
= −1 − z

z2 − 1
= 1

1 − z
.

Taking the real parts of both sides of the equality gives the desired result.

Problem 2. Compute the product P = cos 20◦ · cos 40◦ · cos 80◦.
Solution. Setting z = cos 20◦ + i sin 20◦ implies z9 = −1, z = cos 20◦ − i sin 20◦

and cos 20◦ = z2 + 1

2z
, cos 40◦ = z4 + 1

2z2
, cos 80◦ = z8 + 1

2z4
. Then

P = (z2 + 1)(z4 + 1)(z8 + 1)

8z7 = (z2 − 1)(z2 + 1)(z4 + 1)(z8 + 1)

8z7(z2 − 1)

= z16 − 1

8(z9 − z7)
= −z7 − 1

8(−1 − z7)
= 1

8
.

Solution II. This is a classic problem with a classic solution. Let S =
cos 20 cos 40 cos 80. Then

S sin 20 = sin 20 cos 20 cos 40 cos 80

= 1

2
sin 40 cos 40 cos 80

= 1

4
sin 80 cos 80

= 1

8
cos 160 = 1

8
sin 20.

So S = 1

8
.

Note that this classic solution is contrived, with no motivation. The solution using

complex numbers, however, is a straightforward computation.

Problem 3. Let x, y, z be real numbers such that

sin x + sin y + sin z = 0 and cos x + cos y + cos z = 0.

Prove that

sin 2x + sin 2y + sin 2z = 0 and cos 2x + cos 2y + cos 2z = 0.
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Solution. Setting z1 = cos x + i sin x , z2 = cos y + i sin y, z3 = cos z + i sin z, we

have z1 + z2 + z3 = 0 and |z1| = |z2| = |z3| = 1.

We have

z2
1 + z2

2 + z2
3 = (z1 + z2 + z3)

2 − 2(z1z2 + z2z3 + z3z1)

= −2z1z2z3

(
1

z1
+ 1

z2
+ 1

z3

)
= −2z1z2z3(z1 + z2 + z3)

= −2z1z2z3(z1 + z2 + z3) = 0.

Thus (cos 2x +cos 2y+cos 2z)+i(sin 2x +sin 2y+sin 2z) = 0, and the conclusion

is obvious.

Problem 4. Prove that

cos2 10◦ + cos2 50◦ + cos2 70◦ = 3

2
.

Solution. Setting z = cos 10◦ + i sin 10◦, we have z9 = i and

cos 10◦ = z2 + 1

2z
, cos 50◦ = z10 + 1

2z5
, cos 70◦ = z14 + 1

2z7 .

The identity is equivalent to(
z2 + 1

2z

)2

+
(

z10 + 1

2z5

)2

+
(

z14 + 1

2z7

)2

= 3

2
.

That is,

z16 + 2z14 + z12 + z24 + 2z14 + z4 + z28 + 2z14 + 1 = 6z14, i.e.,

z28 + z24 + z16 + z12 + z4 + 1 = 0.

Using relation z18 = −1, we obtain

z16 + z12 − z10 − z6 + z4 + 1 = 0

or equivalently

(z4 + 1)(z12 − z6 + 1) = 0.

That is,
(z4 + 1)(z18 + 1)

z6 + 1
= 0,

which is obvious.
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Problem 5. Solve the equation

cos x + cos 2x − cos 3x = 1.

Solution. Setting z = cos x + i sin x yields

cos x = z2 + 1

2z
, cos 2x = z4 + 1

2z2
, cos 3x = z6 + 1

2z3
.

The equation may be rewritten as

z2 + 1

2z
+ z4 + 1

2z2
− z6 + 1

2z3
= 1, i.e., z4 + z2 + z5 + z − z6 − 1 − 2z3 = 0

This is equivalent to

(z6 − z5 − z4 − z3) + (z3 − z2 − z + 1) = 0

or

(z3 + 1)(z3 − z2 − z + 1) = 0.

Finally we obtain

(z3 + 1)(z − 1)2(z + 1) = 0.

Thus, z = 1 or z = −1 or z3 = −1 and consequently x ∈ {2kπ |k ∈ Z} or

x ∈ {π + 2kπ |k ∈ Z} or x ∈
{

π + 2kπ

3
|k ∈ Z

}
. Therefore x ∈ {kπ |k ∈ Z} ∪{

2k + 1

2
π |k ∈ Z

}
.

Problem 6. Compute the sums

S =
n∑

k=1

qk · cos kx and T =
n∑

k=1

qk · sin kx .

Solution. We have

1 + S + iT =
n∑

k=0

qk(cos kx + i sin kx) =
n∑

k=0

qk(cos x + i sin x)k

= 1 − qn+1(cos x + i sin x)n+1

1 − q cos x − iq sin x

= 1 − qn+1[cos(n + 1)x + i sin(n + 1)x]
1 − q cos x − iq sin x

= [1 − qn+1 cos(n + 1)x − iqn+1 sin(n + 1)x][1 − q cos x + iq sin x]
q2 − 2q cos x + 1

,
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hence

1 + S = qn+2 cos nx − qn+1 cos(n + 1)x − q cos x + 1

q2 − 2q cos x + 1

and

T = qn+2 sin nx − qn+1 sin(n + 1)x + q sin x

q2 − 2q cos x + 1
.

Remark. If q = 1 then we find the well-known formulas

n∑
k=1

cos kx =
sin

nx

2
cos

(n + 1)x

2

sin
x

2

and
n∑

k=1

sin kx =
sin

nx

2
sin

(n + 1)x

2

sin
x

2

.

Indeed, we have

n∑
k=1

cos kx = cos nx − cos(n + 1)x − (1 − cos x)

2(1 − cos x)

=
2 sin

x

2
sin

(2n + 1)x

2
− 2 sin2 x

2

4 sin2 x

2

=
sin

(2n + 1)x

2
− sin

x

2

2 sin
x

2

=
sin

nx

2
cos

(n + 1)x

2

sin
x

2

and
n∑

k=1

sin kx = sin nx − sin(n + 1)x + sin x

2(1 − cos x)

=
2 sin

x

2
cos

x

2
− 2 sin

x

2
cos

(2n + 1)x

2

4 sin2 x

2

=
cos

x

2
− cos

(2n + 1)x

2

2 sin
x

2

=
sin

nx

2
sin

(n + 1)x

2

sin
x

2

.

Problem 7. The points A1, A2, . . . , A10 are equally distributed on a circle of radius R

(in that order). Prove that A1 A4 − A1 A2 = R.

Solution. Let z = cos
π

10
+ i sin

π

10
. Without loss of generality we may assume that

R = 1. We need to show that 2 sin
3π

10
− 2 sin

π

10
= 1.
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In general, if z = cos a + i sin a, then sin a = z2 − 1

2i z
and we have to prove that

z6 − 1

i z3
− z2 − 1

i z
= 1. This reduces to z6 − z4 + z2 − 1 = i z3. Because z5 = i , the

previous relation is equivalent to z8 − z6 + z4 − z2 + 1 = 0. But this is true because

(z8 − z6 + z4 − z2 + 1)(z2 + 1) = z10 + 1 = 0 and z2 + 1 �= 0.

Problem 8. Show that

cos
π

7
− cos

2π

7
+ cos

3π

7
= 1

2
.

(5th IMO)

Solution. Let z = cos
π

7
+ i sin

π

7
. Then z7 + 1 = 0. Because z �= −1 and z7 + 1 =

(z + 1)(z6 − z5 + z4 − z3 + z2 − z + 1) = 0 it follows that the second factor from the

above product is zero. The condition is equivalent to z(z2 − z + 1) = 1

1 − z3
.

The given sum is

cos
π

7
− cos

2π

7
+ cos

3π

7
= Re(z3 − z2 + z).

Therefore, we have to prove that Re

(
1

1 − z3

)
= 1

2
. This follows from the well-

known:

Lemma. If z = cos t + i sin t and z �= 1, then Re
1

1 − z
= 1

2
.

Proof.
1

1 − z
= 1

1 − (cos t + i sin t)
= 1

(1 − cos t) − i sin t
=

= 1

2 sin2 t

2
− 2i sin

t

2
cos

t

2

= 1

2 sin
t

2

(
sin

t

2
− i cos

t

2

)

=
sin

t

2
+ i cos

t

2

2 sin
t

2

= 1

2
+ i

cos
t

2

2 sin
t

2

.

Problem 9. Prove that the average of the numbers k sin k◦ (k = 2, 4, 6, . . . , 180) is

cot 1◦.

(1996 USA Mathematical Olympiad)

Solution. Denote z = cos t + i sin t . From the identity

z + 2z2 + · · · + nzn = (z + · · · + zn) + (z2 + · · · + zn) + · · · + zn
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= 1

z − 1
[(zn+1 − z) + (zn+1 − z2) + · · · + (zn+1 − zn)]

= nzn+1

z − 1
− zn+1 − z

(z − 1)2

we derive the formulas:

n∑
k=1

k cos kt =
(n + 1) sin

(2n + 1)t

2

2 sin
t

2

− 1 − cos(n + 1)t

4 sin2 t

2

, (1)

n∑
k=1

k sin kt = sin(n + 1)t

4 sin2 t

2

−
n cos

(2n + 1)t

2

2 sin
t

2

. (2)

Using relation (2) one obtains:

2 sin 2◦ + 4 sin 4◦ + · · · + 178 sin 178◦ = 2(sin 2◦ + 2 sin 2 · 2◦ + · · · + 89 sin 89 · 2◦)

= 2

(
sin 90 · 2◦

4 sin2 1◦ − 90 cos 179◦

2 sin 1◦

)
= −90 cos 179◦

sin 1◦ = 90 cot 1◦.

Finally,

1

90
(2 sin 2◦ + 4 sin 4◦ + · · · + 178 sin 178◦ + 180 sin 180◦) = cot 1◦.

Problem 10. Let n be a positive integer. Find real numbers a0 and akl , k, l = 1, n,

k > l, such that
sin2 nx

sin2 x
= a0 +

∑
1≤l<k≤n

akl cos 2(k − l)x

for all real numbers x �= mπ , m ∈ Z.

(Romanian Mathematical Regional Contest “Grigore Moisil”, 1995)

Solution. Using the identities

S1 =
n∑

j=1

cos 2 j x = sin nx cos(n + 1)x

sin x

and

S2 =
n∑

j=1

sin 2 j x = sin nx sin(n + 1)x

sin x

we obtain

S2
1 + S2

2 =
( sin nx

sin x

)2
.
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On the other hand,

S2
1 + S2

2 = (cos 2x + cos 4x + · · · + cos 2nx)2

+ (sin 2x + sin 4x + · · · + sin 2nx)2

= n + 2
∑

1≤l<k≤n

(cos 2kx cos 2lx + sin 2kx sin 2lx)

= n + 2
∑

1≤l<k≤n

cos 2(k − l)x,

hence ( sin nx

sin x

)2 = n + 2
∑

1≤l<k≤n

cos 2(k − l)x .

Set a0 = n and akl = 2, 1 ≤ l < k ≤ n, and the problem is solved.

Here are some more problems.

Problem 11. Sum the following two n-term series for θ = 30◦:

i) 1 + cos θ

cos θ
+ cos(2θ)

cos2 θ
+ cos(3θ)

cos3 θ
+ · · · + cos((n − 1)θ)

cosn−1 θ
, and

ii) cos θ cos θ + cos2 θ cos(2θ) + cos3 θ cos(3θ) + · · · + cosn θ cos(nθ).
(Crux Mathematicorum, 2003)

Problem 12. Prove that

1 + cos2n
(π

n

)
+ cos2n

(
2π

n

)
+ · · · + cos2n

(
(n − 1)π

n

)

= n · 4−n
(

2 +
(

2n

n

))
,

for all integers n ≥ 2.

Problem 13. For any integer p ≥ 0 there are real numbers a0, a1, . . . , ap with

ap �= 0 such that

cos 2pα = a0 + a1 sin2 α + · · · + ap · (sin2 α)p, for all α ∈ R.

5.6 More on the nth Roots of Unity

Problem 1. Let n ≥ 3 and k ≥ 2 be positive integers and consider the complex

numbers

z = cos
2π

n
+ i sin

2π

n
and

θ = 1 − z + z2 − z3 + · · · + (−1)k−1zk−1.
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a) If k is even, prove that θn = 1 if and only if n is even and
n

2
divides k − 1 or

k + 1.

b) If k is odd, prove that θn = 1 if and only if n divide k − 1 or k + 1.

Solution. Since z �= −1, we have

θ = 1 + (−1)k+1zk

1 + z
.

a) If k is even, then

θ = 1 − zk

1 + z
=

1 − cos
2kπ

n
− i sin

2kπ

n

1 + cos
2π

n
+ i sin

2π

n

=
sin

kπ

n

(
sin

kπ

n
− i cos

kπ

n

)
cos

π

n

(
cos

π

n
+ i sin

π

n

)

= −i
sin

kπ

n

cos
π

n

(
cos

(k − 1)π

n
+ i sin

(k − 1)π

n

)
,

and

|θ | =

∣∣∣∣∣∣∣
sin

kπ

n

cos
π

n

∣∣∣∣∣∣∣ .
We have

|θ | = 1 if and only if

∣∣∣∣sin
kπ

n

∣∣∣∣ = ∣∣∣cos
π

n

∣∣∣ .
That is,

sin2 kπ

n
= cos2 π

n
or cos

2kπ

n
+ cos

2π

n
= 0.

The last relation is equivalent to

cos
(k + 1)π

n
cos

(k − 1)π

n
= 0, i.e.,

2(k + 1)

n
∈ 2Z + 1

or
2(k − 1)

n
∈ 2Z + 1. This is equivalent to the statement that n is even and

n

2
divides

k + 1 or k − 1. Hence, it suffices to prove that θn = 1 is equivalent to |θ | = 1.

The direct implication is obvious. Conversely, if |θ | = 1, then n = 2t , t ∈ Z+ and t

divides k + 1 or k − 1. Since k is even, numbers k + 1, k − 1 are odd, hence t = 2l + 1

and n = 4l + 2, l ∈ Z.

Then

θ = ±i

(
cos

(k − 1)π

n
+ i sin

(k − 1)π

n

)
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and

θn = − cos(k − 1)π = 1,

as desired.

b) If k is odd, then

θ = 1 + zk

1 + z
=

1 + cos
2kπ

n
+ i sin

2kπ

n

1 + cos
2π

n
+ i sin

2π

n

=
cos

kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)
cos

π

n

(
cos

π

n
+ i sin

π

n

)

=
cos

kπ

n

cos
π

n

(
cos

k − 1

n
π + i sin

k − 1

n
π

)
.

We have

|θ | = 1 if and only if

∣∣∣∣cos
kπ

n

∣∣∣∣ = ∣∣∣cos
π

n

∣∣∣ .
That is,

cos2 kπ

n
= cos2 π

n
so cos

2kπ

n
= cos

2π

n
.

It follows that

sin
(k + 1)π

n
sin

(k − 1)π

n
= 0,

i.e., n divides k + 1 or k − 1.

It suffices to prove that θn = 1 is equivalent to |θ | = 1. Since the direct implication

is obvious, let us prove the converse. If |θ | = 1, then k±1 = nt , t ∈ Z. Then k = nt±1

and

θ = (−1)t
(

cos
(k − 1)π

n
+ i sin

(k − 1)π

n

)
.

It follows that

θn = (−1)k±1(cos(k − 1)π + i sin(k − 1)π) = (−1)k±1(−1)k−1 = 1,

as desired.

Problem 2. Consider the cube root of unity

ε = cos
2π

3
+ i sin

2π

3
.

Compute

(1 + ε)(1 + ε2) · · · (1 + ε1987).

Solution. Notice that ε3 = 1, ε2 + ε + 1 = 0 and 1987 = 662 · 3 + 1. Then

(1 + ε)(1 + ε2) · · · (1 + ε1987)
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=
661∏
k=0

[(1 + ε3k+1)(1 + ε3k+2)(1 + ε3k+3)](1 + ε1987)

=
661∏
k=0

[(1 + ε)(1 + ε2)(1 + 1)](1 + ε) = (1 + ε)[2(1 + ε + ε2 + ε3)]662

= (1 + ε)[2(0 + 1)]662 = 2662(1 + ε)

= 2662(−ε2) = 2662 1 + i
√

3

2
= 2661(1 + i

√
3).

Problem 3. Let ε �= 1 be a cube root of unity. Compute

(1 − ε + ε2)(1 − ε2 + ε4) · · · (1 − εn + ε2n).

Solution. Notice that 1 + ε + ε2 = 0 and ε3 = 1. Hence 1 − ε + ε2 = −2ε and

1 + ε − ε2 = −2ε2.

Then

1 − εn + ε2n =

⎧⎪⎨⎪⎩
1, if n ≡ 0(mod3),

−2ε, if n ≡ 1(mod3),

−2ε2, if n ≡ 2(mod3),

the product of any three consecutive factors of the given product equals

1 · (−2ε) · (−2ε2) = 22.

Therefore

(1 − ε + ε2)(1 − ε2 + ε4) · · · (1 − εn + ε2n)

=

⎧⎪⎨⎪⎩
2

2n
3 , if n ≡ 0(mod3),

−22[ n
3 ]+1ε, if n ≡ 1(mod3),

22[ n
3 ]+2, if n ≡ 2(mod3).

Problem 4. Prove that the complex number

z = 2 + i

2 − i

has modulus equal to 1, but z is not an nth-root of unity for any positive integer n.

Solution. Obviously |z| = 1. Assume by contradiction that there is an integer n ≥ 1

such that zn = 1.

Then (2 + i)n = (2 − i)n , and writing 2 + i = (2 − i) + 2i it follows that

(2 − i)n = (2 + i)n

= (2 − i)n +
(

n

1

)
(2 − i)n−12i + · · · +

(
n

n − 1

)
(2 − i)(2i)n−1 + (2i)n .
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This is equivalent to

(2i)n = (−2 + i)

[(
n

1

)
(2i − 1)n−22i + · · · +

(
n

n − 1

)
(2i)n−1

]
= (−2 + i)(a + bi),

with a, b ∈ Z.

Taking the modulus of both members of the equality gives 2n = 5(a2 + b2), a

contradiction.

Problem 5. Let Un be the set of nth-roots of unity. Prove that the following statements

are equivalent:

a) there is α ∈ Un such that 1 + α ∈ Un;

b) there is β ∈ Un such that 1 − β ∈ Un.

(Romanian Mathematical Olympiad – Second Round, 1990)

Solution. Assume that there exists α ∈ Un such that 1+α ∈ Un . Setting β = 1

1 + α

we have βn =
(

1

1 + α

)n

= 1

(1 + α)n
= 1, hence β ∈ Un . On the other hand,

1 − β = α

α + 1
and (1 − β)n = αn

(1 + α)n
= 1, hence 1 − β ∈ Un , as desired.

Conversely, if β, 1 − β ∈ Un , set α = 1 − β

β
. Since αn = (1 − β)n

βn
= 1 and

(1 + α)n = 1

βn
= 1, we have α ∈ Un and 1 + α ∈ Un , as desired.

Remark. The statements a) and b) are equivalent with 6|n. Indeed, if α, 1+α ∈ Un ,

then |α| = |1+α| = 1. It follows that 1 = |1+α|2 = (1+α)(1+α) = 1+α+α+|α|2 =
1 + α + α + 1 = 2 + α + 1

α
, i.e., α = −1

2
± i

√
3

2
, hence

1 + α = 1

2
± i

√
3

2
= cos

2π

6
± i sin

2π

6
.

Since (1 + α)n = 1 it follows that 6 divides n.

Conversely, if n is a multiple of 6, then both α = −1

2
+ i

√
3

2
and 1+α = 1

2
+ i

√
3

2
belong to Un .

Problem 6. Let n ≥ 3 be a positive integer and let ε �= 1 be an nth root of unity.

1) Show that |1 − ε| >
2

n − 1
.

2) If k is a positive integer such that n does not divides k, then∣∣∣∣sin
kπ

n

∣∣∣∣ > 1

n − 1
.



5.6. More on the nth Roots of Unity 225

(Romanian Mathematical Olympiad – Final Round, 1988)

Solution. 1) We have εn − 1 = (ε − 1)(εn−1 + · · · + ε + 1) hence, taking into

account that ε �= 1, we find εn−1 + · · · + ε + 1 = 0. The last relation is equivalent to

(εn−1−1)+· · ·+(ε−1) = −n, i.e., (ε−1)[εn−2+2εn−3+· · ·+(n−2)ε+(n−1)] = −n.

Passing to the absolute value we find that

n = |ε −1||εn−2 +2εn−3 +· · ·+ (n −1)| ≤ |ε −1|(|εn−2|+2|ε|n−3 +· · ·+ (n −1)).

Therefore

n ≤ |1 − ε|(1 + 2 + · · · + (n − 1)) = |1 − ε|n(n − 1)

2
,

i.e., we find the inequality |1 − ε| ≥ 2

n − 1
. Moreover, equality is not possible since

the geometric images of 1, ε, . . . , εn−1 are not collinear.

2) Consider ε = cos
2kπ

n
+ i sin

2kπ

n
and obtain

1 − ε = 1 − cos
2kπ

n
− i sin

2kπ

n
.

Hence

|1 − ε|2 =
(

1 − cos
2kπ

n

)2

+ sin2 2kπ

n
= 2 − 2 cos

2kπ

n
= 4 sin2 kπ

n
.

Applying the inequality in 1), the desired inequality follows.

Problem 7. Let Un be the set of the nth-roots of unity. Prove that

∏
ε∈Un

(
ε + 1

ε

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if n ≡ 0 (mod 4),

2, if n ≡ 1 (mod 2),

−4, if n ≡ 2 (mod 4),

2, if n ≡ 3 (mod 4).

Solution. Consider the polynomial

f (x) = Xn − 1 =
∏
ε∈Un

(X − ε).

Denoting by Pn the product in our problem, we have

Pn =
∏
ε∈Un

(
ε + 1

ε

)
=
∏
ε∈Un

ε2 + 1

ε
=

∏
ε∈Un

(ε + i)(ε − i)∏
ε∈Un

ε
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=

∏
ε∈Un

(i + ε)
∏
ε∈Un

(−i + ε)

(−1)n f (0)
= f (−1) · f (i)

(−1)n−1
= [(−i)n − 1](in − 1)

(−1)n−1
.

If n ≡ 0 (mod 4), then in = 1 and Pn = 0.

If n ≡ 1 (mod 2), then (−1)n−1 = 1 and

Pn = (−in − 1)(in − 1) = −(i2n − 1) = −((−1)n − 1) = −(−1 − 1) = 2.

If n ≡ 2 (mod 4), then (−1)n−1 = −1, (−i)n = in = i2 = −1, in = −1, hence

Pn = (−1 − 1)(−1 − 1)

−1
= −4.

If n ≡ 3 (mod 4), then (−1)n−1 = 1 and

Pn = (−in − 1)(in − 1) = (i3 − 1)(−i3 − 1) = −(i6 − 1) = −((−1)3 − 1) = 2,

and we are done.

Problem 8. Let

ω = cos
2π

2n + 1
+ i sin

2π

2n + 1
, n ≥ 0,

and let

z = 1

2
+ ω + ω2 + · · · + ωn .

Prove that:

a) Im(z2k) = Re(z2k+1) = 0 for all k ∈ N;

b) (2z + 1)2n+1 + (2z − 1)2n+1 = 0.

Solution. We have ω2n+1 = 1 and

1 + ω + ω2 + · · · + ω2n = 0.

Then
1

2
+ ω + ω2 + · · · + ωn + ωn(ω + ω2 + · · · + ωn) + 1

2
= 0

or

z + ωn
(

z − 1

2

)
+ 1

2
= 0,

hence

z = 1

2
· ωn − 1

ωn + 1
.

a) We have z = 1

2

1

ωn
− 1

1

ωn
+ 1

= −z. Thus z2k = z2k and z2k+1 = −z2k+1. The

conclusion follows from these two equalities.
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b) From the relation

z + ωn
(

z − 1

2

)
+ 1

2
= 0

we obtain 2z + 1 = −ωn(2z − 1). Taking into account that ω2n+1 = 1, we obtain

(2z + 1)2n+1 = −(2z − 1)2n+1, and we are done.

Problem 9. Let n be an odd positive integer and ε0, ε1, . . . , εn−1 the complex roots of

unity of order n. Prove that

n−1∏
k=0

(a + bε2
k ) = an + bn

for all complex numbers a and b.

(Romanian Mathematical Olympiad – Second Round, 2000)

Solution. If ab = 0, then the claim is obvious, so consider the case when a �= 0 and

b �= 0.

We start with a useful lemma.

Lemma. If ε0, ε1, . . . , εn−1 are the complex roots of unity of order n, where n is an

odd integer, then
n−1∏
k=0

(A + Bεk) = An + Bn,

for all complex numbers A and B.

Proof. Using the identity

xn − 1 =
n−1∏
k=0

(x − εk)

for x = − A

B
yields

−
(

An

Bn
+ 1

)
= −

n−1∏
k=0

(
A

B
+ εk

)
,

and the conclusion follows. �
Because n is odd, the function f : Un → Un is bijective. To prove this, it suf-

fices to show that it is injective. Indeed, assume that f (x) = f (y). It follows that

(x − y)(x + y) = 0. If x + y = 0, then xn = (−y)n , i.e., 1 = −1, a contradiction.

Hence x = y.

From the lemma we have

n−1∏
k=0

(a + bε2
k ) =

n−1∏
j=0

(a + bε j ) = an + bn .
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Problem 10. Let n be an even positive integer such that
n

2
is odd and let

ε0, ε1, . . . , εn−1 be the complex roots of unity of order n. Prove that

n−1∏
k=0

(a + bε2
k ) = (a

n
2 + b

n
2 )2

for any complex numbers a and b.

(Romanian Mathematical Olympiad – Second Round, 2000)

Solution. If b = 0 the claim is obvious. If not, let n = 2(2s+1). Consider a complex

number α such that α2 = a

b
and the polynomial

f = Xn − 1 = (X − ε0)(X − ε1) · · · (X − εn−1).

We have

f
(α

i

)
=
(

1

i

)a

(α − iε0) · · · (α − iεn−1)

and

f
(
−α

i

)
=
(−1

i

)a

(α + iε0) · · · (α + iεn−1),

hence

f
(α

i

)
f
(
−α

i

)
= (α2 + ε2

0) · · · (α2 + ε2
n−1).

Therefore

n−1∏
k=0

(a + bε2
k ) = bn

n−1∏
k=0

(a

b
+ ε2

k

)
= bn

n−1∏
k=0

(α2 + ε2
k )

= bn f
(α

i

)
f
(
−α

i

)
= bn[(α2)2s+1 + 1]2 = bn

[(a

b

)2s+1 + 1

]2

= b2(2s+1)

(
a2s+1 + b2s+1

b2s+1

)2

= (a
n
2 + b

n
2 )2.

The following problems also involve nth roots of unity.

Problem 11. For all positive integers k define

Uk = {z ∈ C | zk = 1}.
Prove that for any integers m and n with 0 < m < n we have

U1 ∪ U2 ∪ · · · ∪ Um ⊂ Un−m+1 ∪ Un−m+2 ∪ · · · ∪ Un .

(Romanian Mathematical Regional Contest “Grigore Moisil”, 1997)
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Problem 12. Let a, b, c, d, α be complex numbers such that |a| = |b| �= 0 and |c| =
|d| �= 0. Prove that all roots of the equation

c(bx + aα)n − d(ax + bα)n = 0, n ≥ 1,

are real numbers.

Problem 13. Suppose that z �= 1 is a complex number such that zn = 1, n ≥ 1. Prove

that

|nz − (n + 2)| ≤ (n + 1)(2n + 1)

6
|z − 1|2.

(Crux Mathematicorum, 2003)

Problem 14. Let M be a set of complex numbers such that if x, y ∈ M , then
x

y
∈ M .

Prove that if the set M has n elements, then M is the set of the nth-roots of 1.

Problem 15. A finite set A of complex numbers has the property: z ∈ A implies zn ∈ A

for every positive integer n.

a) Prove that
∑
z∈A

z is an integer.

b) Prove that for every integer k one can choose a set A which fulfills the above

condition and
∑
z∈A

z = k.

(Romanian Mathematical Olympiad – Final Round, 2003)

5.7 Problems Involving Polygons

Problem 1. Let z1, z2, . . . , zn be distinct complex numbers such that |z1| =
|z2| = · · · = |zn|. Prove that∑

1≤i< j≤n

∣∣∣∣ zi + z j

zi − z j

∣∣∣∣2 ≥ (n − 1)(n − 2)

2
.

Solution. Consider the points A1, A2, . . . , An with coordinates z1, z2, . . . , zn . The

polygon A1 A2 · · · An is inscribed in the circle with center at origin and radius R = |z1|.
The coordinate of the midpoint Ai j of the segment [Ai A j ] is equal to

zi + z j

2
, for

1 ≤ i < j ≤ n. Hence

|zi + z j |2 = 4O A2
i j and |zi − z j |2 = Ai A2

j .

Moreover, 4O A2
i j = 4R2 − Ai A2

j .

The sum ∑
1≤i< j≤n

∣∣∣∣ zi + z j

zi − z j

∣∣∣∣2
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equals

∑
1≤i< j≤n

4O A2
i j

Ai A2
j

=
∑

1≤i< j≤n

4R2 − Ai A2
j

Ai A2
j

= 4R2
∑

1≤i< j≤n

1

Ai A2
j

−
(

n

2

)
.

The AM − H M inequality gives

∑
1≤i< j≤n

1

Ai A2
j

≥
((n

2

))2∑
1≤i< j≤n

Ai A2
j

.

Since
∑

1≤i< j≤n

Ai A2
j ≤ n2 · R2, it follows that

∑
1≤i< j≤n

∣∣∣∣ zi + z j

zi − z j

∣∣∣∣2 ≥ 4R2

((n
2

))2∑
1≤i< j≤n

Ai A2
j

−
(

n

2

)

≥ 4
((n

2

))2
n2

−
(

n

2

)
=
(
4
(n

2

)− n2
) · (n2)

n2
= (n − 1)(n − 2)

2
,

as claimed.

Problem 2. Let A1 A2 · · · An be a polygon and let a1, a2, . . . , an be the coordinates of

the vertices A1, A2, . . . , An. If |a1| = |a2| = · · · = |an| = R, prove that∑
1≤i< j≤n

|ai + a j |2 ≥ n(n − 2)R2.

Solution. We have∑
1≤i< j≤n

|ai + a j |2 =
∑

1≤i< j≤n

(ai + a j )(ai + a j )

=
∑

1≤i< j≤n

(|ai |2 + |a j |2 + ai a j + ai a j )

= 2R2
(

n

2

)
+
∑
i �= j

ai a j = n(n − 1)R2 +
n∑

i=1

n∑
j=1

ai a j −
n∑

i=1

ai ai

= n(n − 1)R2 +
(

n∑
i=1

ai

)(
n∑

i=1

ai

)
− n R2

= n(n − 2)R2 +
∣∣∣∣∣ n∑

i=1

ai

∣∣∣∣∣
2

≥ n(n − 2)R2,

as desired.
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Problem 3. Let z1, z2, . . . , zn be the coordinates of the vertices of a regular polygon

with the circumcenter at the origin of the complex plane. Prove that there are i, j, k ∈
{1, 2, . . . , n} such that zi + z j = zk if and only if 6 divides n.

Solution. Let ε = cos
2π

n
+ i sin

2π

n
. Then z p = z1 · ε p−1, for all p = 1, n.

We have zi + z j = zk if and only if 1 + ε j−i = εk−i , i.e.,

2cos
( j − i)π

n

[
cos

( j − i)π

n
+i sin

( j − i)π

n

]
=cos

2(k − i)π

n
+i sin

2(k − i)π

n
.

The last relation is equivalent to

( j − i)π

n
= π

3
= 2(k − i)π

n
, i.e., n = 6(k − i) = 3( j − i),

hence 6 divides n.

Conversely, if 6 divides n, let

i = 1, j = n

3
+ 1, k = n

6
+ 1

and we have zi + zl = zk , as desired.

Problem 4. Let z1, z2, . . . , zn be the coordinates of the vertices of a regular polygon.

Prove that

z2
1 + z2

2 + · · · + z2
n = z1z2 + z2z3 + · · · + znz1.

Solution. Without loss of generality we may assume that the center of the polygon

is the origin of the complex plane.

Let zk = z1ε
k−1, where

ε = cos
2π

n
+ i sin

2π

n
, k = 1, . . . , n.

The right-hand side is equal to

z1z2 + z2z3 + · · · + znz1 =
n∑

k=1

zi zk+1

=
n∑

k=1

z2
1ε

2k−1 = z2
1 · ε · 1 − ε2n

1 − ε2
= 0.

On the other hand,

z2
1 + z2

2 + · · · + z2
n =

n∑
k=1

z2
i =

n∑
k=1

z2
1ε

2k−2 = z2
1

1 − ε2n

1 − ε2
= 0

and we are done.
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Problem 5. Let n ≥ 4 and let a1, a2, . . . , an be the coordinates of the vertices of a

regular polygon. Prove that

a1a2 + a2a3 + · · · + ana1 = a1a3 + a2a4 + · · · + ana2.

Solution. Assume that the center of the polygon is the origin of the complex plane

and ak = a1ε
k−1, k = 1, . . . , n, where

ε = cos
2π

n
+ i sin

2π

n
.

The left-hand side of the equality is

a1a2 + a2a3 + · · · + ana1 = a2
1

n∑
k=1

ε2k−1 = a2
1ε

1 − ε2n

1 − ε2
= 0.

The right-hand side of the equality is

a2
1

n∑
k=1

ε2k = a2
1ε2 1 − ε2n

1 − ε2
= 0,

and we are done.

Problem 6. Let z1, z2, . . . , zn be distinct complex numbers such that

|z1| = |z2| = · · · = |zn| = 1.

Consider the statements:

a) z1, z2, . . . , zn are the coordinates of the vertices of a regular polygon.

b) zn
1 + zn

2 + · · · + zn
n = n(−1)n+1z1z2 · · · zn.

Decide with proof if the implications a) ⇒ b) and b) ⇒ a) are true.

Solution. We study at first the implication a) ⇒ b).

Let ε = 2π

n
+ i sin

2π

n
. Since z1, z2, . . . , zn are coordinates of the vertices of a

regular polygon, without loss of generality we may assume that

zk = z1ε
k−1 for k = 1, n.

The relation b) becomes

zn
1(1 + εn + ε2n + · · · + εn(n−1)) = n(−1)n+1zn

1ε1+2+···+(n−1).

This is equivalent to

n = n(−1)n+1ε
n(n−1)

2 , i.e.,

1 = (−1)n+1
(

cos
n(n − 1)

2
· 2π

n
+ i sin

n(n − 1)

2
· 2π

n

)
.
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We obtain

1 = (−1)n+1(cos(n − 1)π + i sin(n − 1)π), i.e., 1 = (−1)n+1(−1)n−1,

which is valid. Therefore the implication a) ⇒ b) holds.

We prove now that the implication b) ⇒ a) is also valid.

Observe that

|n · (−1)n+1z1z2 · · · zn| = n|z1| · |z2| · · · |zn| = n,

hence

|zn
1 + zn

2 + · · · + zn
n | = n.

Using the triangle inequality we obtain

n = |zn
1 + zn

2 + · · · + zn
n | ≤ |zn

1 | + |zn
2 | + · · · + |zn

n | = 1 + 1 + · · · + 1︸ ︷︷ ︸
n times

= n,

hence the numbers zn
1, zn

2, . . . , zn
n have the same argument. Since |zn

1 | = |zn
2 | = · · · =

|zn
n | = 1, it follows that zn

1 = zn
2 = · · · = zn

n = a, where a is a complex number with

|a| = 1. Numbers z1, z2, . . . , zn are distinct, therefore there are the nth-roots of a, and

consequently the coordinates of the vertices of a regular polygon.

Problem 7. Let A, B, C be 3 consecutive vertices of a regular n-gon and consider the

point M on the circumcircle such that points B and M lie on opposite sides of line

AC.

Prove that M A + MC = 2M B cos π
n .

(A generalization of the Van Schouten theorem; see the first remark below)

Solution. Consider the complex plane with origin at the center of the polygon and

let 1 be the coordinate of A1.

If ε = cos
2π

n
+ i sin

2π

n
, then εk−1 is the coordinate of Ak , k = 1, n.

Without loss of generality, assume that A = A1, B = A2 and C = A3. Let zM =
cos t + i sin t , t ∈ [0, 2π) be the coordinate of point M . Since point B and M are

separated by the line AC , it follows that
4π

n
< t .

Then

M A = |zM − 1| =
√

(cos t − 1)2 + sin2 t = √
2 − 2 cos t = 2 sin

t

2
;

M B = |zM − ε| = 2 sin

(
t

2
− π

n

)
and

MC = |zM − ε2| = 2 sin

(
t

2
− 2π

n

)
.
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The equality

M A + M B = 2MC cos
π

n
is equivalent to

2 sin
t

2
+ 2 sin

(
t

2
− 2π

n

)
= 4 sin

(
t

2
− π

n

)
cos

π

n
,

which follows using the sum-to-product formula in the left-hand side.

Remarks. 1) If n = 3 then we obtain the Van Schouten theorem: For any point M

on the circumcircle of equilateral triangle ABC such that M belongs on the arc
�

AC,

the following relation holds:

M A + MC = M B.

Note that this result also follows from Ptolemy’s theorem.

2) If n = 4, then for any point M on the circumcircle of square ABC D such that B

and M lie on opposite sides of line AC , we have the relation

M A + MC = √
2M B.

Problem 8. Let P be a point on the circumcircle of square ABC D. Find all integers

n > 0 such that the sum

Sn(P) = P An + P Bn + PCn + P Dn

is constant with respect to point P.

Solution. Consider the complex plane with origin at the center of the square such

that A, B, C, D have coordinates 1, i, −1, −i , respectively.

Let z = a + bi be the coordinate of point P , where a, b ∈ R with a2 + b2 = 1.

The sum Sn(P) is equal to

Sn(P) = [(a − 1)2 + b2] n
2 + [a2 + (b − 1)2] n

2 + [(a + 1)2 + b2] n
2 + [a2 + (b + 1)2] n

2

= 2
n
2

[
(1 + a)

n
2 + (1 − a)

n
2 + (1 + b)

n
2 + (1 − b)

n
2

]
.

Set P = A(1, 0). Then Sn(A) = 2
n+2

2 + 2n . For P = E

(√
2

2
,

√
2

2

)
, we get

Sn(E) = 2(2 − √
2)

n
2 + 2(2 + √

2)
n
2 .

Since Sn(P) is constant with respect to P , it follows that Sn(A) = Sn(E) or 2
n+2

2 +
2n = 2(2 − √

2)
n
2 + 2(2 + √

2)
n
2 .
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It is obvious that 2
n+2

2 > 2(2 − √
2)

n
2 for all n ≥ 1. We also have 2n > 2(2 + √

2)
n
2

for all n ≥ 9. The last inequality is equivalent to

1

4
>

(
2 + √

2

4

)n

for n ≥ 9.

The left-hand side member of the inequality decreases with n, so it suffices to notice

that

1

4
>

(
2 + √

2

4

)9

.

Therefore the inequality Sn(A) = Sn(E) can hold only for n ≤ 8. Now it is not

difficult to verify that Sn(P) is constant only for n ∈ {2, 4, 6}.
Problem 9. A function f : R2 → R is called Olympic if it has the following property:

given n ≥ 3 distinct points A1, A2, . . . , An ∈ R2, if f (A1) = f (A2) = · · · = f (An)

then the points A1, A2, . . . , An are the vertices of a convex polygon. Let P ∈ C[X ] be

a nonconstant polynomial. Prove that the function f : R2 → R, defined by f (x, y) =
|P(x + iy)|, is Olympic if and only if all the roots of P are equal.

(Romanian Mathematical Olympiad – Final Round, 2000)

Solution. First suppose that all the roots of P are equal, and write P(x) = a(z−z0)
n

for some a, z0 ∈ C and n ∈ N. If A1, A2, . . . , An are distinct point in R2 such that

f (A1) = f (A2) = · · · = f (An), then A1, . . . , An are situated on a circle with center

(Re(z0), Im(z0)) and radius n
√| f (A1)/a|, implying that the points are the vertices of a

convex polygon.

Conversely, suppose that not all the roots of P are equal, and write P(x) =
(z−z1)(z−z2)Q(z) where z1 and z2 are distinct roots of P(x) such that |z1−z2| is min-

imal. Let l be the line containing Z1 = (Re(z1), Im(z1)) and Z2 = (Re(z2), Im(z2)),

and let z3 = 1

2
(z1 + z2) so that Z3 = (Re(z3), Im(z3)) is the midpoint of [Z1 Z2].

Also, let s1, s2 denote the rays Z3 Z1 and Z3 Z2, and let d = f (Z3) ≥ 0. We must have

r > 0, because otherwise z3 would be a root of P such that |z1 − z3| < |z1 − z2|,
which is impossible. Because f (Z3) = 0,

lim
Z3→∞

Z∈s1

f (Z) = +∞,

and f is continuous, there exists a point Z4 ∈ s1, on the side of Z1 opposite Z3, such

that f (Z4) = r . Similarly, there exists Z5 ∈ s2, on the side of Z2 opposite Z3, such

that f (Z5) = r . Thus, f (Z3) = f (Z4) = f (Z5) and Z3, Z4, Z5 are not vertices of a

convex polygon. Hence, f is not Olympic.
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Problem 10. In a convex hexagon ABC DE F, Â + Ĉ + Ê = 360◦ and

AB · C D · E F = BC · DE · F A.

Prove that AB · FC · EC = B F · DE · C A.

(1999 Polish Mathematical Olympiad)

Solution. Position the hexagon in the complex plane and let a = B − A, b =
C − B, . . . , f = A − F . The product identity implies that |ace| = |bd f |, and the

angle equality implies
−b

a
· −d

c
· − f

e
is real and positive. Hence, ace = −bd f . Also,

a + b + c + d + e + f = 0. Multiplying this by ad and adding ace + bd f = 0

gives a2d + abd + acd + ad2 + ade + ad f + ace + bd f = 0 which factors to

a(d + e)(c + d) + d(a + b)( f + a) = 0. Thus

|a(d + e)(c + d)| = |d(a + b)( f + a)|,
which is what we wanted.

Problem 11. Let n > 2 be an integer and f : R2 → R be a function such that for any

regular n-gon A1 A2 · · · An,

f (A1) + f (A2) + · · · + f (An) = 0.

Prove that f is identically zero.

(Romanian Mathematical Olympiad – Final Round, 1996)

Solution. We identify R2 with the complex plane and let ζ = cos
2π

n
+ i sin

2π

n
.

Then the condition is that for any z ∈ C and any positive real t ,

n∑
j=1

f (z + tζ j ) = 0.

In particular, for each of k = 1, . . . , n, we have

n∑
j=1

f (z − ζ k + ζ j ) = 0.

Summing over k, we have

n∑
m=1

n∑
k=1

f (z − (1 − ζ m)ζ k) = 0.

For m = n the inner sum is n f (z); for other m, the inner sum again runs over a

regular polygon, hence is 0. Thus f (z) = 0 for all z ∈ C.

Here are some proposed problems.
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Problem 12. Prove that there exists a convex 1990-gon with the following two prop-

erties:

a) all angles are equal;

b) the lengths of the sides are the numbers 12, 22, 32, . . . , 19892, 19902 in some

order.

(31st IMO)

Problem 13. Let A and E be opposite vertices of a regular octagon. Let an be the

number of paths of length n of the form (P0, P1, . . . , Pn) where Pi are vertices of the

octagon and the paths are constructed using the rule: P0 = A, Pn = E , Pi and Pi+1

are adjacent vertices for i = 0, . . . , n − 1 and Pi �= E for i = 0, . . . , n − 1.

Prove that a2n−1 = 0 and a2n = 1√
2
(xn−1 − yn−1), for all n = 1, 2, 3, . . . , where

x = 2 + √
2 and y = 2 − √

2.

(21st IMO)

Problem 14. Let A, B, C be three consecutive vertices of a regular polygon and let us

consider a point M on the major arc AC of the circumcircle.

Prove that

M A · MC = M B2 − AB2.

Problem 15. Let A1 A2 · · · An be a regular polygon with the circumradius equal to 1.

Find the maximum value of max
n∏

j=1

P A j when P describes the circumcircle.

(Romanian Mathematical Regional Contest “Grigore Moisil”, 1992)

Problem 16. Let A1 A2 · · · A2n be a regular polygon with circumradius equal to 1 and

consider a point P on the circumcircle. Prove that

n−1∑
k=0

P A2
k+1 · P A2

n+k+1 = 2n.

5.8 Complex Numbers and Combinatorics

Problem 1. Compute the sum

3n−1∑
k=0

(−1)k

(
6n

2k + 1

)
3k .

Solution. We have

3n−1∑
k=0

(−1)k
(

6n

2k + 1

)
3k =

3n−1∑
k=0

(
6n

2k + 1

)
(−3)k
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=
3n−1∑
k=0

(
6n

2k + 1

)
(i

√
3)2k = 1

i
√

3

3n−1∑
k=0

(
6n

2k + 1

)
(i

√
3)2k+1

= 1

i
√

3
Im(1 + i

√
3)6n = 1

i
√

3
Im
[
2
(

cos
π

3
+ i sin

π

3

)]6n

= 1

i
√

3
Im[26n(cos 2πn + i sin 2πn)] = 0.

Problem 2. Calculate the sum Sn =
n∑

k=0

(
n

k

)
cos kα, where α ∈ [0, π ].

Solution. Consider the complex number z = cos α + i sin α and the sum Tn =
n∑

k=0

(
n

k

)
sin kα. We have

Sn + iTn =
n∑

k=0

(
n

k

)
(cos kα + i sin kα) =

n∑
k=0

(
n

k

)
(cos α + i sin α)k

=
n∑

k=0

(
n

k

)
zk = (1 + z)n . (1)

The polar form of complex number 1 + z is

1 + cos α + i sin α = 2 cos2 α

2
+ 2i sin

α

2
cos

α

2

= 2 cos
α

2

(
cos

α

2
+ i sin

α

2

)
since α ∈ [0, π ]. From (1) it follows that

Sn + iTn =
(

2 cos
α

2

)n (
cos

nα

2
+ i sin

nα

2

)
,

i.e.,

Sn =
(

2 cos
α

2

)n
cos

nα

2
and Tn =

(
2 cos

α

2

)n
sin

nα

2
.

Problem 3. Prove the identity((
n

0

)
−
(

n

2

)
+
(

n

4

)
− · · ·

)2

+
((

n

1

)
−
(

n

3

)
+
(

n

5

)
− · · ·

)2

= 2n .

Solution. Denote

xn =
(

n

0

)
−
(

n

2

)
+
(

n

4

)
− · · · and yn =

(
n

1

)
−
(

n

3

)
+
(

n

5

)
− · · ·

and observe that

(1 + i)n = xn + yni. (1)
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Passing to the absolute value it follows that

|xn + yni | = |(1 + i)n| = |1 + i |n = 2
n
2 .

This is equivalent to x2
n + y2

n = 2n .

Remark. We can write the explicit formulas for xn and yn as follows. Observe that

(1 + i)n =
(√

2
(

cos
π

4
+ i sin

π

4

))n = 2
n
2

(
cos

nπ

4
+ i sin

nπ

4

)
.

From relation (1) we get

xn = 2
n
2 cos

nπ

4
and yn = 2

n
2 sin

nπ

4
.

Problem 4. If m and p are positive integers and m > p, then(
m

0

)
+
(

m

p

)
+
(

m

2p

)
+
(

m

3p

)
+ · · ·

= 2m

p

⎛⎜⎝1 +

[
p−1

2

]∑
k=1

(
cos

kπ

p

)m

cos
mkπ

p

⎞⎟⎠ .

Solution. We begin with the following simple but useful remark: If f ∈ R[X ] is

a polynomial, f = a0 + a1 X + · · · + am Xm , and ε = cos
2π

p
+ i sin

2π

p
is the pth

primitive root of unity, then for all real numbers n the following relation holds:

a0 + apx p + a2px2p + · · · = 1

p
( f (x) + f (εx) + · · · + f (ε p−1x)). (1)

To prove (1) we use the relation

1 + εk + ε2k + · · · + ε(p−1)k =
{

p, if p|k,

0, otherwise,

on the right-hand side.

Consider the case when p is odd. Using relation (1) for polynomial f = (1+ X)m =(
m

0

)
+
(

m

1

)
X + · · · +

(
m

m

)
Xm we obtain

(
m

0

)
+
(

m

p

)
x p+

(
m

2p

)
x2p+· · · = 1

p
((1+x)m+(1+εx)m+· · ·+(1+ε p−1x)m) (2)

Substituting x = 1 in relation (2) we find

Sp =
(

m

0

)
+
(

m

p

)
+
(

m

2p

)
+ · · · = 1

p
(2m + (1 + ε)m + · · · + (1 + ε p−1)m). (3)
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From εk = cos
2kπ

p
+ i sin

2kπ

p
it follows that for all k = 0, 1, . . . , p − 1

(1 + εk)m = 2m
(

cos
kπ

p

)m (
cos

mkπ

p
+ i sin

mkπ

p

)
.

Using the relation ε p−k = εk we find

(1 + ε p−k)m = (1 + εk)m = (1 + εk)m

= 2m
(

cos
kπ

p

)m (
cos

mkπ

p
− i sin

mkπ

p

)
.

Replacing in (3) we obtain

Sp = 1

p

p−1∑
k=0

(1 + εk)m = 1

p

⎡⎣ p−1
2∑

k=0

(1 + εk)m +
p−1

2∑
k=1

(1 + ε p−k)m

⎤⎦

= 1

p

⎡⎣2m + 2m

p−1
2∑

k=1

(
cos

kπ

p

)m (
cos

mkπ

p
+ i sin

mkπ

p

)

+2m

p−1
2∑

k=1

(
cos

kπ

p

)m (
cos

mkπ

p
− i sin

mkπ

p

)⎤⎦
= 2m

p

⎛⎝1 + 2

p−1
2∑

k=1

(
cos

kπ

p

)m

cos
mkπ

p

⎞⎠ .

Consider now the case when p is an even positive integer. Because ε
p
2 = −1 we

have

Sp = 1

p

p−1∑
k=0

(1 + εk)m = 1

p

⎡⎣2m +
p
2 −1∑
k=1

(1 + εk)m +
p−1∑

k= p
2 +1

(1 + εk)m

⎤⎦

= 1

p

⎡⎣2m +
p
2 −1∑
k=1

2m
(

cos
kπ

p

)m (
cos

mkπ

p
+ i sin

mkπ

p

)
+

+
p
2 −1∑
k=1

2m
(

cos
kπ

p

)m (
cos

mkπ

p
− i sin

mkπ

p

)⎤⎦
= 2m

p

⎛⎝1 + 2

p
2 −1∑
k=1

(
cos

kπ

p

)m

cos
mkπ

p

⎞⎠ .
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Problem 5. The following identity holds:(
n

m

)
+
(

n

m + p

)
+
(

n

m + 2p

)
+ · · · = 2n

p

p−1∑
k=0

(
cos

kπ

p

)n

cos
(n − 2m)kπ

p
.

Solution. Let ε0, ε1, . . . , εp−1 be the pth roots of unity. Then

p−1∑
k=0

ε−m
k (1 + εk)

n =
n∑

k=0

(
n

k

)
(εk−m

0 + · · · + εk−m
p−1 ). (1)

Using the result in Proposition 3, Subsection 2.2.2, it follows that

εk−m
0 + · · · + εk−m

p−1 =
{

p, if p|(k − m),

0, otherwise.
(2)

Taking into account that

ε−m
k (1 + εk)

m

=
(

cos
2mkπ

p
− i sin

2mkπ

p

)(
2 cos

kπ

p

)n (
cos

nkπ

p
+ i sin

nkπ

p

)

= 2n
(

cos
kπ

p

)n (
cos

(n − 2m)kπ

p
+ i sin

(n − 2m)kπ

p

)
and using (1) and (2) the desired identity follows.

Remark. The following interesting trigonometric relation holds:

p−1∑
k=0

(
cos

kπ

p

)n

sin
(n − 2m)kπ

p
= 0. (3)

Problem 6. Consider the integers an, bn, cn, where

an =
(

n

0

)
+
(

n

3

)
+
(

n

6

)
+ · · · ,

bn =
(

n

1

)
+
(

n

4

)
+
(

n

7

)
+ · · · ,

cn =
(

n

2

)
+
(

n

5

)
+
(

n

8

)
+ · · · .

Show that:

1) a3
n + b3

n + c3
n − 3anbncn = 2n.

2) a2
n + b2

n + c2
n − anbn − bncn − cnan = 1.

3) Two of integers an, bn, cn are equal and the third differs by one.
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Solution. 1) Let ε be a cube root of unity different from 1. We have

(1 + 1)n = an + bn + cn, (1 + ε)n = an + bnε + cnε2, (1 + ε2)n = an + bnε2 + cnε.

Therefore

a3
n + b3

n + c3
n − 3anbncn = (an + bn + cn)(an + bnε + cnε2)(an + bnε2 + cnε)

= 2n(1 + ε)n(1 + ε2)n = 2n(−ε2)n(−ε)n = 2n .

2) Using the identity

x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy − yz − zx)

and the above relation it follows that

a2
n + b2

n + c2
n − anbn − bncn − cnan = 1.

3) Multiplying the above relation by 2 we find

(an − bn)2 + (bn − cn)2 + (cn − an)2 = 2. (1)

From (1) it follows that two of an, bn, cn are equal and the third differs by one.

Remark. From Problem 5 it follows that

an = 1

3

[
2n + cos

nπ

3
+ (−1)n cos

2nπ

3

]
= 1

3

(
2n + 2 cos

nπ

3

)
,

bn = 1

3

[
2n + cos

(n − 2)π

3
+ (−1)n cos

(2n − 4)π

3

]
= 1

3

(
2n + 2 cos

(n − 2)π

3

)
,

cn = 1

3

[
2n + cos

(n − 4)π

3
+ (−1)n cos

(2n − 8)π

3

]
= 1

3

(
2n + 2 cos

(n − 4)π

3

)
.

It is not difficult to see that

an = bn if and only if n ≡ 1 (mod 3),

an = cn if and only if n ≡ 2 (mod 3),

bn = cn if and only if n ≡ 0 (mod 3).

Problem 7. How many positive integers of n digits chosen from the set {2, 3, 7, 9} are

divisible by 3?

(Romanian Mathematical Regional Contest “Traian Lalescu”, 2003)
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Solution. Let xn, yn, zn be the number of all positive integers of n digits 2, 3, 7 or 9

which are congruent to 0, 1 and 2 modulo 3. We have to find xn .

Consider ε = cos
2π

3
+ i sin

2π

3
. It is clear that xn + yn + zn = 4n and

xn + εyn + ε2zn =
∑

j1+ j2+ j3+ j4=n

ε2 j1+3 j2+7 j3+9 j4 = (ε2 + ε3 + ε7 + ε9)n = 1.

It follows that xn − 1 + εyn + ε2zn = 0. Applying Proposition 4 in Subsection 2.2.2

we obtain xn − 1 = yn = zn = k. Then 3k = xn + yn + zn − 1 = 4n − 1 and we find

k = 1

3
(4n − 1). Finally xn = k + 1 = 1

3
(4n + 2).

Problem 8. Let n be a prime number and let a1, a2, . . . , am be positive integers.

Consider f (k) the number of all m-tuples (c1, . . . , cm) satisfying 1 ≤ ci ≤ ai and
m∑

i=1

ci ≡ k (mod n). Show that f (0) = f (1) = · · · = f (n − 1) if and only if n|a j for

some j ∈ {1, . . . , m}.
(Rookie Contest, 1999)

Solution. Let ε = cos
2π

n
+ i sin

2π

n
. Note that the following relations hold:

m∏
i=1

(X + X2 + · · · + Xai ) =
∑

1≤ci ≤ai

Xc1+···+cm

and

f (0) + f (1)ε + · · · + f (n − 1)εn−1 =
∑

1≤ci ≤ai

εc1+···+cm =
m∏

i=1

(ε + ε2 + · · · + εai ).

Applying the result in Proposition 4, Subsection 2.2.2, we have f (0) = f (1) =
· · · = f (n − 1) if and only if f (0) + f (1)ε + · · · + f (n − 1)εn−1 = 0. This is

equivalent to
m∏

i=1

(ε + ε2 + · · · + εai ) = 0, i.e., ε + ε2 + · · · + εa j = 0 for some

j ∈ {1, . . . , m}. It follows that εa j − 1 = 0, i.e., n|a j .

Problem 9. For a finite set of real numbers A denote by |A| the cardinal number of A

and by m(A) the sum of elements of A.

Let p be a prime and A = {1, 2, . . . , 2p}. Find the number of all subsets B ⊂ A

such that |B| = p and p|m(B).

(36th IMO)

Solution. The case p = 2 is trivial. Consider p ≥ 3 and ε = cos
2π

p
+ i sin

2π

p
.

Denote by x j the number of all subsets B ⊂ A with properties |B| = p and m(B) ≡ j

(mod p).
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Then
p−1∑
j=0

x jε
j =

∑
B⊂A,|B|=p

εm(B) =
∑

1≤c1<···<≤cp≤2p

εc1+···+cp

The last sum is the coefficient of X p in (X + ε)(X + ε2) · · · (X + ε2p). Taking into

account the relation X p − 1 = (X − 1)(X − ε) · · · (X − ε p−1) we obtain (X + ε)(X +
ε2) · · · (X + ε2p) = (X p + 1)2, hence the coefficient of X p is 2. Therefore

p−1∑
j=0

x jε
j = 2,

i.e., x0−2+x1ε+· · ·+x p−1ε
p−1 = 0. From Proposition 4, Subsection 2.2.2, it follows

that x0 − 2 = x1 = · · · = x p−1 = k. We find pk = x0 + · · · + x p−1 − 2 =
(

2p

p

)
− 2

hence k = 1

p

((
2p

p

)
− 2

)
. Therefore, the desired number is

x0 = 2 + k = 2 + 1

p

((
2p

p

)
− 2

)
.

Problem 10. Prove that the number
n∑

k=0

(
2n + 1

2k + 1

)
23k is not divisible by 5 for any

integer n ≥ 0.
(16th IMO)

Solution. Since 23 ≡ −2 (mod 5), an equivalent problem is to prove that Sn =
n∑

k=0

(
2n + 1

2k + 1

)
(−2)k is not divisible by 5. Expanding (1 + i

√
2)2n+1 and then separat-

ing the even and odd terms we get

(1 + i
√

2)2n+1 = Rn + i
√

2Sn, (1)

where Rn =
n∑

k=0

(
2n + 1

2k

)
(−2)k .

Passing to the absolute value from (1) it follows that

32n+1 = R2
n + 2S2

n (2)

Since 32 ≡ −1 (mod 5), the relation (2) leads to

R2
n + 2S2

n ≡ ±3 (mod 5). (3)

Assume by contradiction that Sn ≡ 0 (mod 5) for some positive integer n. Then

from (3) we obtain R2
n ≡ ±3 (mod 5), a contradiction since any square is congruent

to 0, 1, or 4 modulo 5.
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Here are other problems concerning complex numbers and combinatorics.

Problem 11. Calculate the sum sn =
n∑

k=0

(
n

k

)2

cos kt , where t ∈ [0, π ].

Problem 12. Prove that following identities:

1)

(
n

0

)
+
(

n

4

)
+
(

n

8

)
+ · · · = 1

4

(
2n + 2

n
2 +1 cos

nπ

4

)
.

(Romanian Mathematical Olympiad – Second Round, 1981)

2)

(
n

0

)
+
(

n

5

)
+
(

n

10

)
+ · · · =

= 1

5

[
2n + (

√
5 + 1)n

2n−1
cos

nπ

5
+ (

√
5 − 1)n

2n−1
cos

2nπ

5

]
.

Problem 13. Consider the integers An, Bn, Cn defined by

An =
(

n

0

)
−
(

n

3

)
+
(

n

6

)
− · · · ,

Bn = −
(

n

1

)
+
(

n

4

)
−
(

n

7

)
+ · · · ,

Cn =
(

n

2

)
−
(

n

5

)
+
(

n

8

)
− · · · .

The following identities hold:

1) A2
n + B2

n + C2
n − An Bn − BnCn − Cn An = 3n ;

2) A2
n + An Bn + B2

n = 3n−1.

Problem 14. Let p ≥ 3 be a prime and let m, n be positive integers divisible by p such

that n is odd. For each m-tuple (c1, . . . , cm), ci ∈ {1, 2, . . . , n}, with the property that

p|
m∑

i=1

ci , let us consider the product c1 · · · cm . Prove that the sum of all these products

are divisible by

(
n

p

)m

.

Problem 15. Let k be a positive integer and a = 4k − 1. Prove that for any positive

integer n, the integer

sn =
(

n

0

)
−
(

n

2

)
a +

(
n

4

)
a2 −

(
n

6

)
a3 + · · · is divisible by 2n−1.

(Romanian Mathematical Olympiad – Second Round, 1984)
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5.9 Miscellaneous Problems

Problem 1. Two unit squares K1, K2 with centers M, N are situated in the plane so

that M N = 4. Two sides of K1 are parallel to the line M N, and one of the diagonals

of K2 lies on M N. Find the locus of the midpoint of XY as X, Y vary over the interior

of K1, K2, respectively.

(1997 Bulgarian Mathematical Olympiad)

Solution. Introduce complex numbers with M = −2, N = 2. Then the locus is the

set of points of the form −(w + xi)+ (y + zi), where |w|, |x | < 1/2 and |x + y|, |x −
y| <

√
2/2. The result is an octagon with vertices (1+√

2)/2+i/2, 1/2+(1+√
2)i/2,

and so on.

Problem 2. Curves A, B, C and D are defined in the plane as follows:

A =
{
(x, y) : x2 − y2 = x

x2 + y2

}
,

B =
{
(x, y) : 2xy + y

x2 + y2
= 3

}
,

C = {(x, y) : x3 − 3xy2 + 3y = 1},
D = {(x, y) : 3x2 y − 3x − y3 = 0}.

Prove that A ∩ B = C ∩ D.

(1987 Putnam Mathematical Competition)

Solution. Let z = x +yi . The equations defining A and B are the real and imaginary

parts of the equation z2 = z−1 + 3i , and similarly the equations defining C and D are

the real and imaginary parts of z3 − 3i z = 1. Hence for all real x and y, we have

(x, y) ∈ A ∩ B if and only if z2 = z−1 + 3i . This is equivalent to z3 − 3i z = 1, i.e.,

(x, y) ∈ C ∩ D.

Thus A ∩ B = C ∩ D.

Problem 3. Determine with proof whether or not it is possible to consider 1975 points

on the unit circle such that the distances between any two points are rational numbers

(the distances being taken along the chord).
(17th IMO)

Solution. There are infinitely many points with rational coordinates on the unit cir-

cle. This is a well-known result arising from Pythagorean triangles and the correspond-

ing equation:

m2 + n2 = p2.

Any such point A(xA, yA) can be represented by a complex number

z A = xA + iyA = cos αA + i sin αA
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where αA is the argument of the complex number z A and cos αA, sin αA are rational

numbers.

Taking on the unit circle complex numbers of the form

z2
A = cos 2αA + i sin 2αA

we have for two such points:

|z2
A − z2

B | =
√

(cos 2αA − cos 2αB)2 + (sin 2αA − sin 2αB)2

= √2[1 − cos 2(αB − αA)] =
√

2 · 2 sin2(αB − αA) = 2| sin(αB − αA)|
= 2| sin αB cos αA − sin αA cos αB | ∈ Q.

Answer: Yes, it is possible.

Problem 4. A tourist takes a trip through a city in stages. Each stage consists of three

segments of length 100 meters separated by right turns of 60◦. Between the last seg-

ment of one stage and the first segment of the next stage, the tourist makes a left turn

of 60◦. At what distance will the tourist be from his initial position after 1997 stages?

(1997 Rio Plata Mathematical Olympiad)

Solution. In one stage, the tourist traverses the complex number

x = 100 + 100ε + 100ε2 = 100 − 100
√

3i,

where ε = cos
π

3
+ i sin

π

3
.

Thus in 1997 stages, the tourist traverses the complex number

z = x + xε + xε2 + · · · + xε1996 = x
1 − ε1997

1 − ε
= xε2.

Hence, the tourist ends up |z| = |xε2| = |x | = 200 meters away from his initial

position.

Problem 5. Let A, B, C, be fixed points in the plane. A man starts from a certain

point P0 and walks directly to A. At A he turns by 60◦ to the left and walks to P1 such

that P0 A = AP1. After he performs the same action 1986 times successively around

points A, B, C, A, B, C, . . . , he returns to the starting point. Prove that ABC is an

equilateral triangle, and that the vertices A, B, C, are arranged counterclockwise.
(27th IMO)

Solution. For convenience, let A1, A2, A3, A4, A5, . . . be A, B, C , A, B, . . . ,

respectively, and let P0 be the origin. After the kth step, the position Pk will be Pk =
Ak + (Pk−1 − Ak)ε for k = 1, 2, . . . , where ε = cos

4π

3
+ i sin

4π

3
. We easily obtain

Pk = (1 − ε)(Ak + εAk−1 + ε2 Ak−2 + · · · + εk−1 A1).
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The condition P = P1986 is equivalent to A1986+εA1985+· · ·+ε1984 A2+ε1985 A1 = 0,

which having in mind that A1 = A4 = A7 = · · · , A2 = A5 = A8 = · · · , A3 = A6 =
A9 = · · · , reduces to

662(A3 + εA2 + ε2 A1) = (1 + ε3 + · · · + ε1983)(A3 + εA2 + ε2 A1) = 0,

and the assertion follows from Proposition 2 in Section 3.4.

Problem 6. Let a, n be integers and let p be prime such that p > |a| + 1. Prove

that the polynomial f (x) = xn + ax + p cannot be represented as a product of two

nonconstant polynomials with integer coefficients.

(1999 Romanian Mathematical Olympiad)

Solution. Let z be a complex root of the polynomial. We shall prove that |z| > 1.

Suppose |z| ≤ 1. Then, zn + az = −p, we deduce that

p = |zn + az| = |z||zn−1 + a| ≤ |zn−1| + |a| ≤ 1 + |a|,

which contradicts the hypothesis.

Now, suppose f = gh is a decomposition of f into nonconstant polynomials with

integer coefficients. Then p = f (0) = g(0)h(0), and either |g(0)| = 1 or |h(0)| = 1.

Assume without loss generality that |g(0)| = 1. If z1, z2, . . . , zk are the roots of g,

then they are also roots of f . Therefore

1 = |g(0)| = |z1z2 · · · zk | = |z1||z2| · · · |zk | > 1,

a contradiction.

Problem 7. Prove that if a, b, c are complex numbers such that⎧⎪⎨⎪⎩
(a + b)(a + c) = b,

(b + c)(b + a) = c,

(c + a)(c + b) = a,

then a, b, c are real numbers.

(2001 Romanian IMO Team Selection Test)

Solution. Let P(x) = x3 − sx2 + qx − p be the polynomial with roots a, b, c. We

have s = a + b + c, q = ab + bc + ca, p = abc. The given equalities are equivalent

to ⎧⎪⎨⎪⎩
sa + bc = b,

sb + ca = c,

sc + ab = a.

(1)
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Adding these equalities, we obtain q = s − s2. Multiplying the equalities in (1) by

a, b, c, respectively, and adding them we obtain s(a2 + b2 + c2) + 3p = q or, after a

short computation,

3p = −3s3 + s2 + s. (2)

If we write the given equations in the form

(s − c)(s − b) = b, (s − a)(s − c) = c, (s − b)(s − a) = a,

we obtain ((s − a)(s − b)(s − c))2 = abc, and, by performing standard computations

and using (2), we finally get

s(4s − 3)(s + 1)2 = 0.

If s = 0, then P(x) = x3, so a = b = c = 0. If s = −1, then P(x) = x3 + x2 −
2x − 1, which has the roots 2 cos

2π

7
, 2 cos

4π

7
, 2 cos

6π

7
(this is not obvious, but we

can see that P changes its sign on the intervals (−2, −1), (−1, 0), (1, 2) of the real

line, hence its roots are real). Finally, if s = 3/4, then P(x) = x3 − 3

4
x2 + 3

16
x − 1

64
,

which has roots a = b = c = 1/4.

Alternate solution. Subtract the second equation from the first. We obtain (a +
b)(a−b) = b−c. Analogously, (b+c)(b−c) = c−a and (c+a)(c−a) = a−b. We can

see that if two of the numbers are equal, then all three are equal and the conclusion is

obvious. Suppose that the numbers are distinct. Then, after multiplying the equalities

above, we obtain (a + b)(b + c)(c + a) = 1, and next: b(b + c) = c(c + a) =
a(a + b) = 1. Now, if one of the numbers is real, it follows immediately that all three

are real. Suppose all numbers are not real. Then arg a, arg b, arg c ∈ (0, 2π). Two of

the numbers arg a, arg b, arg c are contained in either (0, π) or in [π, 2π). Suppose

these are arg a, arg b and that arg a ≤ arg b. Then arg a ≤ arg(a + b) ≤ arg b and

arg a ≤ arg a(a +b) ≤ arg(a +b) ≤ arg b. This is a contradiction, since a(a +b) = 1.

Problem 8. Find the smallest integer n such that an n × n square can be partitioned

into 40 × 40 and 49 × 49 squares, with both types of squares present in the partition.

(2000 Russian Mathematical Olympiad)

Solution. We can partition a 2000 × 2000 square into 40 × 40 and 49 × 49 squares:

partition one 1960 × 1960 corner of the square into 49 × 49 squares and then partition

the remaining portion into 40 × 40 squares.

We now show that n must be at least 2000. Suppose that an n × n square has been

partitioned into 40 × 40 and 49 × 49 squares, using at least one of each type. Let

ζ = cos
2π

40
+ i sin

2π

40
and ξ = cos

2π

49
+ i sin

2π

49
. Orient the n × n square so that



250 5. Olympiad-Caliber Problems

two sides are horizontal, and number the rows and columns of unit squares from the

top left: 0, 1, 2, . . . , n − 1. For 0 ≤ j , k ≤ n − 1, and write ζ jξ k in square ( j, k). If

an m × m square has its top-left corner at (x, y), then the sum of the numbers written

in it is
x+m−1∑

j=x

y+m−1∑
k=y

ζ jξ k = ζ xξ y
(

ζm − 1

ζ − 1

)(
ξm − 1

ξ − 1

)
.

The first fraction in parentheses is 0 if m = 40, and the second fraction is 0 if

m = 49. Thus, the sum of the numbers written inside each square in the partition is 0,

so the sum of all the numbers must be 0. However, applying the above formula with

(m, x, y) = (n, 0, 0), we find that the sum of all the numbers equals 0 only if either

ζ n − 1 or ξn − 1 equals 0. Thus, n must be either a multiple of 40 or a multiple of 49.

Let a and b be the number of 40 × 40 and 49 × 49 squares, respectively. The area

of the square equals 402 · a + 492 · b = n2. If 40|n, then 402|b and hence b ≥ 402.

Thus, n2 > 492 · 402 = 19602; because n is a multiple of 40, n ≥ 50 · 40 = 2000. If

instead 49|n, then 492|a, a ≥ 492, and again n2 > 19602. Because n is a multiple of

49, n ≥ 41 · 49 = 2009 > 2000. In either case, n ≥ 2000, and 2000 is the minimum

possible value of n.

Problem 9. The pair (z1, z2) of nonzero complex numbers has the following property:

there is a real number a ∈ [−2, 2] such that z2
1 − az1z2 + z2

2 = 0. Prove that all pairs

(zn
1, zn

2), n = 2, 3, . . . , have the same property.

(Romanian Mathematical Olympiad – Second Round, 2001)

Solution. Denote t = z1

z2
, t ∈ C∗. The relation z2

1 − az1z2 + z2
2 = 0 is equivalent

to t2 − at + 1 = 0. We have � = a2 − 4 ≤ 0, hence t = a ± i
√

4 − a2

2
and

|t | =
√

a2

4
+ 4 − a2

4
= 1. If t = cos α + i sin α, then

zn
1

zn
2

= tn = cos nα + i sin nα

and we can write z2n
1 − anzn

1 zn
2 + z2n

2 = 0, where an = 2 cos nα ∈ [−2, 2].
Alternate solution. Because a ∈ [−2, 2], we can write a = 2 cos α. The relation

z2
1 − az1z2 + z2

2 = 0 is equivalent to

z1

z2
+ z2

z1
= 2 cos α (1)

and, by a simple inductive argument, from (1) it follows that

zn
1

zn
2

+ zn
2

zn
1

= 2 cos nα, n = 1, 2, . . . .

Problem 10. Find

min
z∈C\R

Imz5

Im5z
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and the values of z for which the minimum is reached.

Solution. Let a, b be real numbers such that z = a + bi , b �= 0. Then Im(z)5 =
5a4b − 10a2b3 + b5 and

Imz5

Im5z
= 5

(a

b

)4 − 10
(a

b

)2 + 1.

Setting x =
(a

b

)2
yields

Im(z)5

Im5 z
= 5x2 − 10x + 1 = 5(x − 1)2 − 4.

The minimum value is −4 and is obtained for x = 1 i.e., for z = a(1 ± i), a �= 0.

Problem 11. Let z1, z2, z3 be complex numbers, not all real, such that |z1| = |z2| =
|z3| = 1 and 2(z1 + z2 + z3) − 3z1z2z3 ∈ R.

Prove that

max(arg z1, arg z2, arg z3) ≥ π

6
.

Solution. Let zk = cos tk + i sin tk , k ∈ {1, 2, 3}.
The condition 2(z1 + z2 + z3) − 3z1z2z3 ∈ R implies

2(sin t1 + sin t2 + sin t3) = 3 sin(t1 + t2 + t3). (1)

Assume by way of contradiction that max(t1, t2, t3) <
π

6
, hence t1, t2, t3 <

π

6
. Let

t = t1 + t2 + t3
3

∈
(

0,
π

6

)
. The sine function is concave on

[
0,

π

6

)
, so

1

3
(sin t1 + sin t2 + sin t3) ≤ sin

t1 + t2 + t3
3

. (2)

From the relations (1) and (2) we obtain

sin(t1 + t2 + t3)

2
≤ sin

t1 + t2 + t3
3

.

Then

sin 3t ≤ 2 sin t.

It follows that

4 sin3 t − sin t ≥ 0,

i.e., sin2 t ≥ 1

4
. Hence sin t ≥ 1

2
, then t ≥ π

6
, which contradicts that t ∈

(
0,

π

6

)
.

Therefore max(t1, t2, t3) ≥ π

6
, as desired.
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Here are some more problems.

Problem 12. Solve in complex numbers the system of equations⎧⎪⎨⎪⎩
x |y| + y|x | = 2z2,

y|z| + z|y| = 2x2,

z|x | + x |z| = 2y2.

Problem 13. Solve in complex numbers the following:⎧⎪⎨⎪⎩
x(x − y)(x − z) = 3,

y(y − x)(y − z) = 3,

z(z − x)(z − y) = 3.

(Romanian Mathematical Olympiad – Second Round, 2002)

Problem 14. Let X, Y, Z , T be four points in the plane. The segments [XY ] and [Z T ]
are said to be connected if there is some point O in the plane such that the triangles

O XY and O Z T are right isosceles triangles in O .

Let ABC DE F be a convex hexagon such that the pairs of segments [AB], [C E],
and [B D], [E F] are connected. Show that the points A, C, D and F are the vertices

of a parallelogram and that the segments [BC] and [AE] are connected.

(Romanian Mathematical Olympiad – Final Round, 2002)

Problem 15. Let ABC DE be a cyclic pentagon inscribed in a circle of center O which

has angles B̂ = 120◦, Ĉ = 120◦, D̂ = 130◦, Ê = 100◦. Show that the diagonals B D

and C E meet at a point belonging to the diameter AO .

(Romanian IMO, Team Selection Test, 2002)



6

Answers, Hints and Solutions to

Proposed Problems

In what follows answers and solutions are presented to problems posed in previous

chapters. We have preserved the title of the subsection containing the problem and the

number of the proposed problem.

6.1 Answers, Hints and Solutions to Routine Problems

6.1.1 Complex numbers in algebraic representation (pp. 18–21)

1. a) z1 + z2 + z3 = (0, 4); b) z1z2 + z2z3 + z3z1 = (−4, 5);

c) z1z2z3 = (−9, 7); d) z2
1 + z2

2 + z2
3 = (−8, −10);

e)
z1

z2
+ z2

z3
+ z3

z1
=
(

−311

130
,

65

83

)
; f)

z2
1 + z2

2

z2
2 + z2

3

=
(

152

221
, − 72

221

)
.

2. a) z = (7, −8); b) z = (−7, −4);

c) z =
(

23

13
, − 2

13

)
; d) z = (−9, 7).

3. a) z1 =
(

−1

2
,

√
3

2

)
, z2 =

(
−1

2
, −

√
3

2

)
;

b) z1 = (−1, 0), z2 =
(

1

2
,

√
3

2

)
, z3 =

(
1

2
, −

√
3

2

)
.
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4.
n∑

k=0

zk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 0), for n = 4k;
(1, 1), for n = 4k + 1;
(0, 1), for n = 4k + 2;
(0, 0), for n = 4k + 3.

5. a) z = (1, 1); b) z1 = (2, 1), z2 = (−2, −1).

6. z2 = (a2 − b2, 2ab); z3 = (a3 − 3ab2, 3a2b − b3);

z4 = (a4 − 6a2b2 + b4, 4a3b − 4ab3).

7. z1 =
⎛⎝√a + √

a2 + b2

2
, sgn b

√
−a + √

a2 + b2

2

⎞⎠,

z2 =
⎛⎝−
√

a + √
a2 + b2

2
, −sgn b

√
−a + √

a2 + b2

2

⎞⎠.

8. For all nonnegative integers k we have

z4k = ((−4)k, 0); z4k+1 = ((−4)k, −(−4)k); z4k+2 = (0, −2(−4)k);

z4k+3 = (−2(−4)k, −2(−4)k); for k ≥ 0.

9. a) x = 1

4
, y = 3

4
; b) x = −2, y = 8; c) x = 0, y = 0.

10. a) 8 + 51i ; b) 4 − 43i ; c) 2; d)
11

4
− 5

√
7

2
i ; e)

61

13
+ 4

13
i .

11. a) −i ; b) E4k = 1, E4k+1 = 1 + i , E4k+2 = i , E4k+3 = 0; c) 1; d) −3i .

12. a) z1 =
√

2

2
+ i

√
2

2
, z2 = −

√
2

2
− i

√
2

2
;

b) z1 =
√

2

2
− i

√
2

2
, z2 = −

√
2

2
+ i

√
2

2
;

c) z1,2 = ±
(√

1 + √
3

2
−
√√

3 − 1

2
i

)
.

13. z ∈ R or z = x + iy with x2 + y2 = 1.

14. a) E1 = E1;

b) E2 = E2.

15. We substitute a formula for the definition of modulus.

16. From the identity (
z + 1

z

)3

= z3 + 1

z3
+ 3

(
z + 1

z

)
we obtain ∣∣∣∣z + 1

z

∣∣∣∣3 ≤ 2 + 3

∣∣∣∣z + 1

z

∣∣∣∣ or a3 − 3a − 2 ≤ 0,
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where

a =
∣∣∣∣z + 1

z

∣∣∣∣ , a ≥ 0.

Since

a3 − 3a − 2 = (a − 2)(a2 + 2a + 1) = (a − 2)(a + 1)2,

we have a ≤ 2, as desired.

17. The equation |z2 + z2| = 1 is equivalent to |z2 + z2|2 = 1. That is, (z2 + z2)(z2 +
z2) = 1. We find (z2 + z2)2 = 1 or

(
z2 + 1

z2

)2 = 1. The last equation is equivalent to

(z4 + 1)2 = z4 or (z4 − z2 + 1)(z4 + z2 + 1) = 0. The solutions are ±1

2
i ±

√
3

2
and

±
√

3

2
± 1

2
i.

18. z ∈
{

±
√

2

3
, ±i

√
2

}
.

19. z ∈ {0, 1, −1, i, −i}.
20. Observe that

∣∣∣∣1z − 1

2

∣∣∣∣ <
1

2
is equivalent to |2 − z| < |z|, and consequently (2 −

z)(2 − z) < z · z. It follows that 4 < 2(z + z) = 4Re(z), as needed.

21. a2 + b2 + c2 − ab − bc − ca.

22. a) z1,2 = −6 + √
21

3
+ 2i ; b) z = −7

6
+ 4i ; c) z = 2 + i ;

d) z1,2 = −2 ± √
3

2
+ 1

2
i ; e) z2 = −1, z2 = −5 − 6i ; f) z2 = −13

2
− 9

2
i .

23. m ∈ {1, 5}.
24. z = −2y + 2 + iy, y ∈ R.

25. z = x + iy with x2 + y2 = 1.

26. From |z1 + z2| = √
3 it follows that |z1 + z2|2 = 3, i.e., (z1 + z2)(z1 + z2) = 3. We

obtain |z1|2 + (z1z2 + z1z2) + |z2|2 = 3. That is, z1z2 + z1z2 = 1. On the other hand

we have |z1 − z2|2 = |z1|2 − (z1z2 + z1z2) + |z2|2 = 2 − 1 = 1, hence |z1 − z2| = 1.

27. Letting ε = −1

2
+ i

√
3

2
and noticing that ε3 = 1, we obtain n = 3k, k ∈ Z.

28. Note that z = 0 is a solution. For z �= 0 passing to absolute value we obtain

|z|n−1 = |z|, i.e., |z| = 1. The equation is equivalent to zn = i z · z, which reduces to

zn = i . The total number of solutions is n + 1.

29. Let

α = |z2 − z3|, β = |z3 − z1|, γ = |z1 − z2|.
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Since the following inequality,

αβ + βγ + γα ≤ α2 + β2 + γ 2

holds, and

α2 + β2 + γ 2 = 3(|z1|2 + |z2|2 + |z2|2 − |z1 + z2 + z3|2)
≤ 3(|z1|2 + |z2|2 + |z2|2 = 9R2,

it follows that

αβ + βγ + γα ≤ 9r2.

30. Observe that

|w| = |v| · |u − z|
uz − 1

= |u − z|
|uz − 1| ≤ 1

if and only if

|u − z| ≤ |uz − 1|.
This is equivalent to

|u − z|2 ≤ |uz − 1|2.
We obtain

(u − z)(u − z) ≤ (uz − 1)(uz − 1),

i.e.,

|u|2 + |z|2 − |u|2|z|2 − 1 ≤ 0.

Finally

(|u2| − 1)(|z|2 − 1) ≥ 0.

Since |u| ≤ 1, it follows that |w| ≤ 1 if and only if |z| ≤ 1, as desired.

31. z2
1 + z2

2 + z2
3 = (z1 + z2 + z3)

2 − 2(z1z2 + z2z3 + z3z1)

= −2z1z2z3

(
1

z1
+ 1

z2
+ 1

z3

)
= −2z1z2z3(z1 + z2 + z3) = 0.

32. The relation |zk | = r implies zk = r2

zk
for k ∈ {1, 2, . . . , n}. Then

E =

(
r2

z1
+ r2

z2

)(
r2

z2
+ r2

z3

)
· · ·
(

r2

zn
+ r2

z1

)
r2

z1
· r2

z2
· · · r2

zn

=
r2n · z1 + z2

z1z2
· z2 + z3

z2z3
· · · zn + z1

znz1

r2n · 1

z1z2 · · · zn

= E,
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hence E ∈ R.

33. Notice that

z1 · z1 = z2 · z2 = z3 · z3 = r2

and

z1z2 + z3 ∈ R if and only if z1z2 + z3 = z1 · z2 + z3.

Then
r2

z1z2z3
= z1z2 + z3

z1z2 + r2z3
= z1z3 + z2

z1z3 + r2z2
= z2z3 + z1

z2z3 + r2z1

(z1 − 1)(z2 − z3)

(z2 − z3)(z1 − r2)
= z1 − 1

z1 − r2
= z2 − 1

z2 − r2
= z3 − 1

z3 − r2
= z1 − z2

z1 − z2
= 1.

Hence z1z2z2 = r2 and consequently r3 = r2. Therefore r = 1 and z1z2z3 = 1, as

desired.

34. Note that x3
1 = x3

2 = −1.

a) −1; b) 1; c) Consider n ∈ {6k, 6k ± 1, 6k ± 2, 6k ± 3}.
35. a) x4 + 16 = x4 + 24 = (x2 + 4i)(x2 − 4i)

= [x2 + (
√

2(1 + i))2][x2 − (
√

2(1 + i))2]
= (x + √

2(−1 + i))(x + √
2(1 − i))(x − √

2(1 + i))(x + √
2(1 + i)).

b) x3 − 27 = x3 − 33 = (x − 3)(x − 3ε)(x − 3ε2), where ε = −1

2
+

√
3

2
i .

c) x3 + 8 = x3 + 23 = (x + 2)(x + 1 + i
√

3)(x + 1 − i
√

3).

d) x4 + x2 + 1 = (x2 − ε)(x2 − ε2) = (x2 − ε−2)(x2 − ε2)

= (x − ε)(x + ε)(x − ε)(x + ε), where ε = −1

2
+

√
3

2
i.

36. a) x2 − 14x + 50 = 0; b) x2 − 18

5
x + 26

5
= 0; c) x2 + 4x + 8 = 0.

37. We have

2|z1 + z2| · |z2 + z3| = 2|z2(z1 + z2 + z3) + z1z3| ≤ 2|z2| · |z1 + z2 + z3| + 2|z1||z3|,
and likewise,

2|z2 + z3| · |z3 + z1| ≤ 2|z3||z1 + z2 + z3| + 2|z2||z1|,
2|z3 + z1| · |z1 + z2| ≤ 2|z1||z1 + z2 + z3| + 2|z2||z3|.

Summing up these inequalities with

|z1 + z2|2 + |z2 + z3|2 + |z3 + z1|2 = |z1|2 + |z2|2 + |z3|2 + |z1 + z2 + z3|2
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yields

(|z1 + z2|2 + |z2 + z3|2 + |z3 + z1|2) ≤ (|z1| + |z2| + |z3| + |z1 + z2 + z3|2).

The conclusion is now obvious.

6.1.2 Geometric interpretation of the algebraic operations (p. 27)

3. a) The circle of center (2, 0) and radius 3.

b) The disk of center (0, −1) and radius 1.

c) The exterior of the circle of center (1, −2) and radius 3.

d) M =
{
(x, y) ∈ R2|x ≥ −1

2

}
∪
{
(x, y) ∈ R2|x < −1

2
, 3x2 − y2 − 3 < 0

}
.

e) M = {(x, y) ∈ R2| − 1 < y < 0}.
f) M = {(x, y) ∈ R2| − 1 < y < 1}.
g) M = {(x, y) ∈ R2|x2 + y2 − 3x + 2 = 0}4.

h) The union of the lines with equations x = −1

2
and y = 0.

4. M = {(x, y) ∈ R2|y = 10 − x2, y ≥ 4}.
5. z3 = √

3(1 − i) and z′
3 = √

3(1 + i).

6. M = {(x, y) ∈ R2|x2 + y2 + x = 0, x �= 0, x �= −1}
∪{(0, y) ∈ R2|y �= 0} ∪ {(−1, y) ∈ R2|y �= 0}.

7. The union of the circles with equations

x2 + y2 − 2y − 1 = 0 and x2 + y2 + 2y − 1 = 0.

6.1.3 Polar representation of complex numbers (pp. 39–41)

1. a) r = 3
√

2, t∗ = 3π

4
; b) r = 8, t∗ = 7π

6
; c) r = 5, t∗ = π ;

d) r = √
5, t∗ = arctan

1

2
+ π ; e) r = 2

√
5, t∗ = arctan

(
−1

2

)
+ 2π .

2. a) x = 1, y = √
3; b) x = 16

5
, y = −12

5
; c) x = −2, y = 0;

d) x = −3, y = 0 e) x = 0, y = 1 f) x = 0, y = −4.

3. arg(z) =
{

2π − arg z, if arg z �= 0,

0, if arg z = 0; ;

arg(−z) =
{

π + arg z, if arg z ∈ [0, π),

−π + arg z, if arg z ∈ [π, 2π).

4. a) The circle of radius 2 with center at origin.

b) The circle of center (0, −1) and radius 2 and its exterior.

c) The disk of center (0, 1) and radius 3.
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d) The interior of the angle determined by the rays y = 0, x ≤ 0 and y = x , x ≤ 0.

e) The fourth quadrant and the ray (OY ′.
f) The first quadrant and the ray (O X .

g) The interior of the angle determined by the rays y =
√

3

3
x , x ≤ 0 and y = √

3x ,

x < 0.

h) The intersection of the disk of center (−1, −1) and radius 3 with the interior of

the angle determined by the rays y = 0, x ≥ 0 and y =
√

3

3
x , x > 0.

5. a) z1 = 12
(

cos
π

3
+ i sin

π

3

)
; b) z2 = 1

2

(
cos

2π

3
+ i sin

2π

3

)
;

c) z3 = cos
4π

3
+ i sin

4π

3
; d) z4 = 18

(
cos

5π

3
+ i sin

5π

3

)
;

e) z5 = √
13

[
cos

(
2π − arctan

2

3

)
+ i sin

(
2π − arctan

2

3

)]
;

f) z6 = 4

(
cos

3π

2
+ i sin

3π

2

)
.

6. a) z1 = cos(2π − a) + i sin(2π − a), a ∈ [0, 2π);

b) z2 = 2
∣∣∣cos

a

2

∣∣∣ · [cos
(π

2
− a

2

)
+ i sin

(π

2
− a

2

)]
if a ∈ [0, π);

z2 = 2
∣∣∣cos

a

2

∣∣∣ · [cos

(
3π

2
− a

2

)
+ i sin

(
3π

2
− a

2

)]
if a ∈ (π, 2π);

c) z3 = √
2

[
cos

(
a + 7π

4

)
+ i sin

(
a + 7π

4

)]
if a ∈

[
0,

π

4

]
;

z3 = √
2
[
cos
(

a − π

4

)
+ i sin

(
a − π

4

)]
if a ∈

(π

4
, 2π

)
;

d) z4 = 2 sin
a

2

[
cos
(π

2
− a

2

)
+ i sin

(π

2
− a

2

)]
if a ∈ [0, π);

z4 = 2 sin
a

2

[
cos

(
5π

2
− a

2

)
+ i sin

(
5π

2
− a

2

)]
if a ∈ [π, 2π).

7. a) 12
√

2

(
cos

7π

4
+ i sin

7π

4

)
; b) 4(cos 0 + i sin 0);

c) 48
√

2

(
cos

5π

12
+ i sin

5π

12

)
; d) 30

(
cos

π

2
+ i sin

π

2

)
.

8. a) |z| = 12, arg z = 0, Arg z = 2kπ , arg z = 0, arg(−z) = π ;

b) |z| = 14
√

2, arg z = 11π

12
, Arg z = 11π

12
+ 2kπ , arg z = 13π

12
, arg(−z) = π

12
.

9. a) |z| = 213 + 1

213
, arg z = 5π

6
; b) |z| = 1

29
, arg z = π ;

c) |z| = 2n+1

∣∣∣∣cos
5nπ

3

∣∣∣∣, arg z ∈ {0, π}.
10. If z = r(cos t + i sin t) and n = −m, where m is a positive integer, then

zn = z−m = 1

zm
= 1

rm(cos mt + i sin mt)
= 1

rm
· cos 0 + i sin 0

cos mt + i sin mt
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= 1

rm
[cos(0 − m)t + i sin(0 − m)t] = r−m(cos(−mt) + i sin(−mt))

= rn(cos nt + i sin nt).

11. a) 2n sinn a

2

[
cos

n(π − a)

2
+ i sin

n(π − a)

2

]
if a ∈ [0, π);

2n sinn a

2

[
cos

n(5π − a)

2
+ i sin

n(5π − a)

2

]
if a ∈ [π, 2π ];

b) zn + 1

zn
= 2 cos

nπ

6
.

6.1.4 The nth roots of unity (p. 52)

1. a) zk = 4
√

2

⎛⎜⎝cos

π

4
+ 2kπ

2
+ i sin

π

4
+ 2kπ

2

⎞⎟⎠, k ∈ {0, 1};

b) zk = cos

π

2
+ 2kπ

2
+ i sin

π

2
+ 2kπ

2
, k ∈ {0, 1};

c) zk = cos

π

4
+ 2kπ

2
+ i sin

π

4
+ 2kπ

2
, k ∈ {0, 1};

d) zk = 2

⎛⎜⎝cos

4π

3
+ 2kπ

2
+ i sin

4π

3
+ 2kπ

2

⎞⎟⎠, k ∈ {0, 1};

e) z0 = 4 − 3i , z1 = −4 + 3i .

2. a) zk = cos

3π

2
+ 2kπ

3
+ i sin

3π

2
+ 2kπ

2
, k ∈ {0, 1, 2};

b) zk = 3

(
cos

π + 2kπ

3
+ i sin

π + 2kπ

3

)
, k ∈ {0, 1, 2};

c) zk = √
2

⎛⎜⎝cos

π

4
+ 2kπ

3
+ i sin

π

4
+ 2kπ

3

⎞⎟⎠, k ∈ {0, 1, 2};

d) zk = cos

5π

3
+ 2kπ

3
+ i sin

5π

3
+ 2kπ

3
, k ∈ {0, 1, 2};

e) z0 = 3 + i , z1 = (3 + i)ε, z2 = (3 + i)ε2, where 1, ε, ε2 are the cube roots of 1.

3. a) zk = √
2

⎛⎜⎝cos

5π

4
+ 2kπ

4
+ i sin

5π

4
+ 2kπ

4

⎞⎟⎠, k ∈ {0, 1, 2, 3};

b) zk = 4
√

2

⎛⎜⎝cos

π

6
+ 2kπ

4
+ i sin

π

6
+ 2kπ

4

⎞⎟⎠, k ∈ {0, 1, 2, 3};
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c) zk = cos

π

2
+ 2kπ

4
+ i sin

π

2
+ 2kπ

4
, k ∈ {0, 1, 2, 3};

d) zk = 4
√

2

⎛⎜⎝cos

3π

2
+ 2kπ

4
+ i sin

3π

2
+ 2kπ

4

⎞⎟⎠, k ∈ {0, 1, 2, 3};

e) z0 = 2 + i , z1 = −2 − i , z2 = −1 + 2i , z3 = 1 − 2i .

4. zk = cos
2kπ

n
+ i sin

2kπ

n
, k ∈ {0, 1, . . . , n − 1}, n ∈ {5, 6, 7, 8, 12}.

5. a) Consider ε j = ε j , εk = εk , where ε = cos
2π

n
+i sin

2π

n
. Then ε j ·εk = ε j+k . Let

r be the remainder modulo n of j +k. We have j +k = p ·n +r , r ∈ {0, 1, . . . , n −1}
and ε j · εk =p·n+r= (εn)p · εr = εr = εr ∈ Un .

b) We can write ε−1
j = 1

ε j
= 1

ε j
= εn

ε j
= εn− j ∈ Un .

6. a) zk = 5

(
cos

2kπ

3
+ i sin

2kπ

3

)
, k ∈ {0, 1, 2};

b) zk = 2

(
cos

π + 2kπ

4
+ i sin

π + 2kπ

4

)
, k ∈ {0, 1, 2, 3};

c) zk = 4

⎛⎜⎝cos

3π

2
+ 2kπ

3
+ i sin

3π

2
+ 2kπ

3

⎞⎟⎠, k ∈ {0, 1, 2};

d) zk = 3

⎛⎜⎝cos

π

2
+ 2kπ

3
+ i sin

π

2
+ 2kπ

3

⎞⎟⎠, k ∈ {0, 1, 2}.

7. a) The equation is equivalent to (z4 − i)(z3 − 2i) = 0.

b) We can write the equation as (z3 + 1)(z3 + i − 1) = 0.

c) The equation is equivalent to z6 = −1 + i .

d) We can write the equation equivalently as (z5 − 2)(z5 + i) = 0.

8. It is clear that any solution is different from zero. Multiplying by z, the equation

is equivalent to z5 − 5z4 + 10z3 − 10z2 + 5z − 1 = −1, z �= 0. We obtain the

binomial equation (z − 1)5 = −1, z �= 0. The solutions are zk = 1 + cos
(2k + 1)π

5
+

i sin
(2k + 1)π

5
, k = 0, 1, 3, 4.

6.1.5 Some geometric transformations of the complex plane (p. 160)

1. Suppose that f, g are isometries. Then for all complex numbers a, b, we have

| f (g(a)) − f (g(b))| = |g(a) − g(b)| = |a − b|, so f ◦ g is also an isometry.

2. Suppose that f is an isometry and let C be any point on the line AB. Let f (C) = M .

Then M A = f (C) f (A) = AC and, similarly, M B = BC . Thus |M A − M B| = AB.
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Hence A, M, B are collinear. Now, from M A = AC and M B = BC , we conclude

that M = C . Hence f (M) = M and the conclusion follows.

3. This follows immediately from the fact that any isometry f is of the form f (z) =
az + b or f (z) = az + b, with |a| = 1.

4. The function f is the product of the rotation z → i z, the translation z → z + 4 − i ,

and the reflection in the real axis. It is clear that f is an isometry.

5. The function f is the product of the rotation z → −i z with the translation z →
z + 1 + 2i .

6.2 Solutions to the Olympiad-Caliber Problems

6.2.1 Problems involving moduli and conjugates (pp. 175–176)

Problem 21. At first we prove that function f is well defined, i.e., | f (z)| < 1 for all z

with |z| < 1.

Indeed, we have | f (z)| < 1 if and only if
∣∣∣ 1+az

z+a

∣∣∣ < 1, i.e., |1 + az|2 < |z + a|2. The

last relation is equivalent to (1 + az)(1 + az) < (z + a)(z + a). That is, 1 + |a|2|z|2 <

|a|2 +|z|2 or equivalently (|a|2 −1)(|z|2 −1) < 0. The last inequality is obvious since

|z| < 1, and |a| > 1.

To prove that f is bijective, it suffices to observe that for any y ∈ A there is a unique

z ∈ A such that

f (z) = 1 + az

z + a
= y.

We obtain

z = ay − 1

a − y
= − f (−y),

hence |z| = | f (−y)| < 1, as desired.

Problem 22. Let z = cos ϕ + i sin ϕ with cos ϕ, sin ϕ ∈ Q. Then

z2n − 1 = cos 2nϕ + i sin 2nϕ − 1 = 1 − 2 sin2 nϕ + 2i sin nϕ cos nϕ − 1

= −2 sin nϕ(sin nϕ − i cos nϕ)

and

|z2n − 1| = 2| sin nϕ|.
It suffices to prove that sin nϕ ∈ Q. We prove by induction on n that both sin nϕ and

cos nϕ are rational numbers. The claim is obvious for n = 1.

Assume that sin nϕ, cos nϕ ∈ Q. Then

sin(n + 1)ϕ = sin nϕ cos ϕ + cos nϕ cos ϕ ∈ Q
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and

cos(n + 1)ϕ = cos nϕ cos ϕ − sin nϕ sin ϕ ∈ Q,

as desired.

Problem 23. To prove that the function f is injective, let f (a) = f (b). Then
1 + ai

1 − ai
=

1 + bi

1 − bi
. This is equivalent to 1 + ab + (a − b)i = 1 + ab + (b − a)i , i.e., a = b, as

needed.

The image of the function f is the set of numbers z ∈ C such that there is t ∈ R

with

z = f (t) = 1 + ti

1 − ti
.

From z = 1 + ti

1 − ti
we obtain t = z − 1

i(1 + z)
if z �= 1. Then t ∈ R if and only if t = t . The

last relation is equivalent to
z − 1

i(1 + z)
= z − 1

−i(1 + z
, i.e., −(z−1)(z+1) = (z+1)(z−1).

It follows that 2zz = 2, i.e., |z| = 1, hence the image of the function f is the set

{z ∈ R||z| = 1 and z �= −1}, the unit circle without the point with coordinate z = −1.

Problem 24. Let
z2

z1
= t ∈ C. Then

|z1 + z1t | = |z1| = |z1t | or |1 + t | = |t | = 1.

It follows that t t = 1 and

1 = |1 + t |2 = (1 + t)(1 + t) = 1 + t + t + 1,

hence t2 + t + 1 = 0.

Therefore t is a nonreal cube root of unity.

Alternate solution. Let A, B, C be the geometric images of the complex numbers

z1, z2, z1 + z2, respectively. In the parallelogram O AC B we have O A = O B = OC ,

hence ÂO B = 120◦. Then

z2

z1
= cos 120◦ + i sin 120◦ or

z1

z2
= cos 120◦ + i sin 120◦,

therefore
z2

z1
= cos

2π

3
± i sin

2π

3
.

Problem 25. We prove first the inequality

|zk | ≤ |z1| + |z2| + · · · + |zk−1| + |zk+1| + · · · + |zn| + |z1 + z2 + · · · + zn|
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for all k ∈ {1, 2, . . . , n}. Indeed,

|zk | = |(z1 + z2 + · · · + zk−1 + zk + zk+1 + · · · + zn)

− (z1 + z2 + · · · + zk−1 + zk+1 + · · · + zn)|
≤ |z1 + z2 + · · · + zn| + |z1| + · · · + |zk−1| + |zk+1| + · · · + |zn|,

as claimed.

Denote Sk = |z1| + · · · + |zk−1| + |zk+1| + · · · + |zn| for all k. Then

|zk | ≤ Sk + |z1 + z2 + · · · + zn|, for all k. (1)

Moreover,

|z1 + z2 + · · · + zn| ≤ |z1| + |z2| + · · · + |zn|. (2)

Multiplying by |zk | the inequalities (1) and by |z1 + z2 + · · · + zn| the inequalities

(2), we obtained by summation:

|z1|2 + |z2|2 + · · · + |zn|2 + |z1 + z2 + · · · + zn|2

≤ |z1 + z2 + · · · + zn|
n∑

k=1

|zk | +
n∑

k=1

|zk |Sk .

Adding on both sides of the inequality the expression

|z1|2 + |z2|2 + · · · + |zn|2 + |z1 + z2 + · · · + zn|2

yields

2(|z1|2 + |z2|2 + · · · + |zn|2 + |z1 + z2 + · · · + zn|2)
≤ (|z1| + · · · + |zn| + |z1 + z2 + · · · + zn|)2,

as desired.

Problem 26. Let M1, M2, . . . , M2n be the points with the coordinates z1, z2, . . . , z2n

and let A1, A2, . . . , An be the midpoints of segments M1 M2n , M2 M2n−1, . . . ,

Mn Mn+1.

The points Mi , i = 1, 2n lie on the upper semicircle centered in the origin and with

radius 1. Moreover, the lengths of the chords M1 M2n , M2 M2n−1, . . . , Mn Mn+1 are in

a decreasing order, hence O A1, O A2, . . . , O An are increasing. Thus∣∣∣∣ z1 + z2n

2

∣∣∣∣ ≤ ∣∣∣∣ z2 + z2n−1

2

∣∣∣∣ ≤ · · · ≤
∣∣∣∣ zn + zn+1

2

∣∣∣∣
and the conclusion follows.
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Figure 6.1.

Alternate solution. Consider zk = r(cos tk + i sin tk), k = 1, 2, . . . , 2n and observe

that for any j = 1, 2, . . . , n, we have

|z j + z2n− j+1|2 = |r [(cos t j + cos t2n− j+1) + i(sin t j + sin t2n− j+1)]|2

= r2[(cos t j + cos t2n− j+1)
2 + (sin t j + sin t2n− j+1)

2]
= r2[2 + 2(cos t j cos t2n− j+1 + sin t j sin t2n− j+1)]

= 2r2[1 + cos(t2n− j+1 − t j )] = 4r2 cos2 t2n− j+1 − t j

2
.

Therefore |z j + z2n− j+1| = 2r cos
t2n− j+1 − t j

2
and the inequalities

|z1 + z2n| ≤ |z2 + z2n−1| ≤ · · · ≤ |zn + zn+1|

are equivalent to t2n − t1 ≥ t2n−1 − t2 ≥ · · · ≥ tn+1 − tn . Because 0 ≤ t1 ≤ t2 ≤ · · · ≤
t2n ≤ π , the last inequalities are obviously satisfied.

Problem 27. It is natural to make the substitution
√

x = u,
√

y = v. The system

becomes

u

(
1 + 1

u2 + v2

)
= 2√

3
,

v

(
1 − 1

u2 + v2

)
= 4

√
2√

7
.

But u2 + v2 is the square of the absolute value of the complex number z = u + iv.

This suggests that we add the second equation multiplied by i to the first one. We

obtain

u + iv + u − iv

u2 + v2
=
(

2√
3

+ i
4
√

2√
7

)
.
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The quotient (u − iv)/(u2 + v2) is equal to z/|z|2 = z/(zz) = 1/z, so the above

equation becomes

z + 1

z
=
(

2√
3

+ i
4
√

2√
7

)
.

Hence z satisfies the quadratic equation

z2 −
(

2√
3

+ i
4
√

2√
7

)
z + 1 = 0

with solutions (
1√
3

± 2√
21

)
+ i

(
2
√

2√
7

± √
2

)
,

where the signs + and − correspond.

This shows that the initial system has the solutions

x =
(

1√
3

± 2√
21

)2

, y =
(

2
√

2√
7

± √
2

)2

,

where the signs + and − correspond.

Problem 28. The direct implication is obvious.

Conversely, let |z1| = |z2 + z3|, |z2| = |z1 + z3|, |z3| = |z1 + z2|. It follows that

|z1|2 + |z2|2 + |z3|2 = |z2 + z3|2 + |z3 + z1|2 + |z1 + z2|2.

This is equivalent to

z1z1 + z2z2 + z3z3 = z2z2 + z2z3 + z2z3 + z3z3

+ z3z1 + z1z3 + z1z1 + z1z1 + z1z2 + z2z1 + z2z2, i.e.,

z1z1 + z2z2 + z3z3 + z1z2 + z2z1 + z1z3 + z1z3 + z2z3 + z3z2 = 0.

We write the last relation as

(z1 + z2 + z3)(z1 + z2 + z3) = 0,

and we obtain

|z1 + z2 + z3|2 = 0, i.e., z1 + z2 + z3 = 0,

as desired.

Problem 29. Let a = |z1| = |z2| = · · · = |zn|. Then

zk = a2

zk
, k = 1, n
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and

z1z2 + z2z3 + · · · + zn−1zn =
n−1∑
k=1

zk zk+1 =
n−1∑
k=1

a4

zk zk+1

= a4

z1z2 · · · zn
(z3z4 · · · zn + z1z4 · · · zn + · · · + z1z2 · · · zn−2) = 0;

hence

z1z2 + z2z3 + · · · + zn−1zn = 0,

as desired.

Problem 30. Let

z = r1(cos t1 + i sin t1)

and

a = r2(cos t2 + i sin t2).

We have

1 = |z + a| =
√

(r1 cos t1 + r2 cos t2)2 + (r1 sin t1 + r2 sin t2)2

=
√

r2
1 + r2

2 + 2r1r2 cos(t1 − t2),

so

cos(t1 − t2) = 1 − r2
1 − r2

2

2r1r2
.

Then

|z2 + a2| = |r2
1 (cos 2t1 + i sin 2t1) + r2

2 (cos 2t2 + i sin 2t2)|
=
√

(r2
1 cos 2t1 + r2

2 cos 2t2)2 + (r2
1 sin 2t1 + r2

2 sin 2t2)

=
√

r4
1 + r4

2 + 2r2
1r2

2 cos 2(t1 − t2)

=
√

r4
1 + r4

2 + 2r1r2(2 cos2(t1 − t2) − 1)

=

√√√√√r4
1 + r4

2 + 2r2
1r2

2 ·
⎛⎝2

(
1 − r2

1 − r2
2

2r1r2

)2

− 1

⎞⎠
=
√

2r4
1 + 2r4

2 + 1 − 2r2
1 − 2r2

2 .

The inequality

|z2 + a2| ≥ |1 − 2|a||√
2
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is equivalent to

2r4
1 + 2r4

2 + 1 − 2r2
1 − 2r2

2 ≥ (1 − 2r2
1 )2

2
, i.e.,

4r4
1 + 4r4

2 − 4r2
1 − 4r2

2 + 2 ≥ 1 − 4r2
1 + 4r2

2 .

We obtain

(2r2
2 − 1)2 ≥ 0,

and we are done.

Problem 31. It is easy to see that z = 0 is a root of the equation. Consider z = a+ib �=
0, a, b ∈ R.

Observe that if a = 0, then b = 0 and if b = 0, then a = 0. Therefore we may

assume that a, b �= 0.

Taking the modulus of both members of the equation

azn = bzn (1)

yields |a| = |b| or a = ±b.

Case 1. If a = b, the equation (1) becomes

(a + ia)n = (a − ia)n .

This is equivalent to (
1 + i

1 − i

)n

= 1, i.e., in = 1,

which has solutions only for n = 4k, k ∈ Z. In that case the solutions are

z = a(1 + i), a �= 0.

Case 2. If a = −b, the equation (1) may be rewritten as

(a − ia)n = −(a + ia)n .

That is, (
1 − i

1 + i

)n

= −1, i.e., (−i)n = −1,

which has solutions only for n = 4k + 2, k ∈ Z. We obtain

z = a(1 − i), a �= 0.

To conclude,

a) if n is odd, then z = 0;

b) if n = 4k, k ∈ Z, then z = {a(1 + i)|a ∈ R}, i.e., a line through origin;

c) if n = 4k + 2, k ∈ Z, then z = {a(1 − i)|a ∈ R}, i.e., a line through origin.
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Problem 32. Let z1 = cos t1 + i sin t1 and z2 = cos t2 + i sin t2. The inequality

|az1 + bz2| ≥ |z1 + z2|
2

is equivalent to √
(a cos t1 + b cos t2)2 + (a sin t1 + b sin t2)2

≥ 1

2

√
(cos t1 + cos t2)2 + (sin t1 + sin t2)2.

That is,

2
√

a2 + b2 + 2ab cos(t1 − t2) ≥ √2 + cos(t1 − t2), i.e.,

4a2 + 4(1 − a)2 + 8a(1 − a) cos(t1 − t2) ≥ 2 + 2 cos(t1 − t2).

We obtain

8a2 − 8a + 2 ≥ (8a2 − 8a + 2) cos(t1 − t2), i.e., 1 ≥ cos(t1 − t2),

which is obvious.

The equality holds if and only if t1 = t2, i.e., z1 = z2 or a = b = 1

2
.

Problem 33. Let r = |z1| = |z2| = · · · = |zn| > 0. Then

1

zk
1

+ 1

zk
2

+ · · · + 1

zk
n

= z1
k

r2k
+ z2

k

r2k
+ · · · + zn

k

r2k

= 1

r2k
(zk

1 + zk
2 + · · · + zk

n) = 0,

as desired.

6.2.2 Algebraic equations and polynomials (p. 181)

Problem 11. Let r = |z1| = |z2|.
The relation ab|c| = |a|bc is equivalent to

ab|c|
aa|a| = |a|bc

aa|a| .

This relation can be written as

b

a
·
∣∣∣ c
a

∣∣∣ = −
(

b

a

)
· c

a
.

That is,

−(x1 + x2) · |x1x2| = −(x1 + x2) · x1x2, i.e.,

(x1 + x2)r
2 = |x1|2x2 + x1|x2|2.
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It follows that

(x1 + x2)r
2 = (x1 + x2)r

2,

which is certainly true.

Problem 12. Observe that z3
1 = z3

2 = 1 and z3
3 = z3

4 = −1. If n = 6k + r , with k ∈ Z

and r ∈ {0, 1, 2, 3, 4, 5}, then zn
1 + zn

2 = zr
1 + zr

2 and zn
3 + zn

4 = zr
3 + zr

4.

The equality zn
1 + zn

2 = zn
3 + zn

4 is equivalent to zr
1 + zr

2 = zr
3 + zr

4 and holds only

for r ∈ {0, 2, 4}. Indeed,

i) if r = 0, then z0
1 + z0

2 = 2 = z0
3 + z0

4;

ii) if r = 2, then z2
1 + z2

2 = (z1 + z2)
2 − 2z1z2 = (−1)2 − 2 · 1 = −1 and

z2
3 + z2

4 = (z3 + z4)
2 − 2z3z4 = 12 − 2 · 1 = −1;

iii) if r = 4, then z4
1 + z4

2 = z1 + z2 = 1 and z3
3 + z4

4 = −(z3 + z4) = −(−1) = 1.

The other cases are:

iv) r = 1 then z1 + z2 = −1 �= z3 + z4 = 1;

v) r = 3, then z3
1 + z3

2 = 1 + 1 = 2 �= z3
3 + z3

4 = −1 − 1 = −2;

vi) r = 5, then z5
1 + z5

2 = z2
1 + z2

2 = −1 �= z5
3 + z5

4 = −(z2
3 + z2

4) = 1.

Therefore, the desired numbers are the even numbers.

Problem 13. Let

f (x) = x6 + ax5 + bx4 + cx3 + bx2 + ax + 1

=
6∏

k=1

(x − xk) =
6∏

k=1

(xk − x), for all x ∈ C.

We have

6∏
k=1

(x2
k + 1) =

6∏
k=1

(xk + i) ·
6∏

k=1

(xk − i) = f (−i) · f (i)

= (i6 + ai5 + bi4 + ci3 + bi2 + ai + 1) · (i6 − ai5 + bi4 − ci3 + bi2 − ai + 1)

= (2ai − ci)(−2ai + ci) = (2a − c)2,

as desired.

Problem 14. For a complex number z with |z| = 1, observe that

P(z) + P(−z) = az2 + bz + i + az2 − bz + i = 2(az2 + i).

It suffices to choose z0 such that az2
0 = |a|i . Let

a = |a|(cos t + i sin t), t ∈ [0, 2π).
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The equation az2 = |a|i is equivalent to

z2
0 = cos

(π

2
− t
)

+ i sin
(π

2
− t
)

.

Set

z0 = cos

(
π

4
− t

2

)
+ i sin

(
π

4
− t

2

)
,

and we are done.

Therefore, we have

P(z0) + P(−z0) = 2(|z|i + i) = 2i(1 + |a|).

Passing to absolute values it follows that

|P(z0)| + |P(−z0)| ≥ 2(1 + |a|).

That is, |P(z0)| ≥ 1 + |a| or |P(−z0)| ≥ 1 + |a|.
Note that |z0| = | − z0| = 1, as needed.

Problem 15. Let z be a complex root of polynomial f . From the given relation it

follows that 2z3 + z is also a root of f . Observe that if |z| > 1, then

|2z3 + z| = |z||2z2 + 1| ≥ |z|(2|z|2 − 1) > |z|.

Hence, if f has a root z1 with |z1| > 1, then f has a root z2 = 2z3
1 + z1 with

|z2| > |z1|. We can continue this procedure and obtain an infinite number of roots of

f , z1, z2, . . . with · · · > |z2| > |z1|, a contradiction.

Therefore, all roots of f satisfy |z| ≤ 1.

We will show that f is not divisible by x . Assume, by contradiction, the contrary

and choose the greatest k ≥ 1 with the property that xk divides f . It follows that

f (x) = xk(a + xg(x)) with a �= 0, hence

f (2x2) = x2k(a1 + 2k+1x2g(2x2)) = x2k(a1 + xg1(x))

and

f (2x3 + x) = xk(2x2 + 1)k(a + (2x2 + 1)xg(x)) = xk(a + xg2(x)),

where g, g1, g2 are polynomials and a1 �= 0 is a real number. The relation

f (x) f (2x2) = f (2x3 + x) is equivalent to xk(a + xg(x))x2k(a1 + xg1(x)) =
xk(a + xg2(x)) which is not possible for a �= 0 and k > 0.

Let m be the degree of polynomial f . The polynomials f (2x2) and f (2x3 +x) have

degrees 2m and 3m, respectively.
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If f (x) = bm xm + · · · + b0, then f (2x2) = 2mbm x2m + · · · and f (2x3 + x) =
2mbm x3m + · · · From the given relation we find bm · 2m · bm = 2mbm , hence bm = 1.

Again using the given relation it follows that f 2(0) = f (0), i.e., b2
0 = b0, hence

b0 = 1.

The product of the roots of polynomial f is ±1. Taking into account that for any

root z of f we have |z| ≤ 1, it follows that the roots of f have modulus 1.

Consider z a root of f . Then |z| = 1 and 1 = |2z3 + z| = |z||2z2 +1| = |2z2 +1| ≥
|2z2|− 1 = 2|z|2 − 1 = 1. Equality is possible if and only if the complex numbers 2z2

and −1 have the same argument; that is, z = ±i .

Because f has real coefficients and its roots are ±i , it follows that f is of the

form (x2 + 1)n for some positive integer n. Using the identity (x2 + 1)(4x4 + 1) =
(2x3 + x)2 + 1 we obtain that the desired polynomials are f (x) = (x2 + 1)n , where n

is an arbitrary positive integer.

6.2.3 From algebraic identities to geometric properties (p. 190)

Problem 12. Let A, B, C, D be the points with coordinates a, b, c, d, respectively.

If a + b = 0, then c + d = 0. Hence a + b = c + d, i.e., ABC D is a parallelogram

inscribed in the circle of radius R = |a| and we are done.

If a + b �= 0, then the points M and N with coordinates a + b and c + d, respec-

tively, are symmetric with respect to the origin O of the complex plane. Since AB is

a diagonal in the rhombus O AM B, it follows that AB is the perpendicular bisector

of the segment O M . Likewise, C D is the perpendicular bisector of the segment O N .

Therefore A, B, C, D are the intersection points of the circle of radius R with the per-

pendicular bisector s of the segments O M and O N , so A, B, C, D are the vertices of

a rectangle.

Alternate solution. First, let us note that from a + b + c + d = 0 it follows that

a + d = −(b + c), i.e., |a + d| = |b + c|. Hence |a + d|2 = |b + c|2 and using

properties of the real product we find that (a + d) · (a + d) = (b + c) · (b + c). That is,

|a|2 +|d|2 +2a ·d = |b|2 +|c|2 +2b ·c. Taking into account that |a| = |b| = |c| = |d|
one obtains a · d = b · c.

On the other hand, AD2 = |d − a|2 = (d − a) · (d − a) = |d|2 + |a|2 − 2a · d =
2(R2 −a ·d). Analogously, we have BC2 = 2(R2 −b ·c). Since a ·d = b ·c, it follows

that AD = BC , so ABC D is a rectangle.

Problem 13. Consider the polynomial

P(X) = X5 + aX4 + bX3 + cX2 + d X + e
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with roots zk , k = 1, 5. Then

a = −
∑

z1 = 0 and b =
∑

z1z2 = 1

2

(∑
z1

)2 − 1

2

∑
z2

1 = 0.

Denoting by r the common modulus and taking conjugates we also get

0 =
∑

z1 =
∑ r2

z1
= r2

z1z2z3z4z5

∑
z1z2z3z4,

from which d = 0 and

0 =
∑

z1z2 =
∑ r4

z1z2
= r4

z1z2z3z4z5

∑
z1z2z3;

therefore c = 0. It follows that P(X) = X5 + e, so z1, z2, . . . , z5 are the fifth roots of

e and the conclusion is proved.

Problem 14. a) Consider a complex plane with origin at M . Denote by a, b, c the

coordinates of A, B, C , respectively. As a(b − c) = b(a − c) + c(b − a) we have

|a||b − a| = |b(a − c) + c(b − a)| ≤ |b||a − c| + |c||b − a|. Thus AM · BC ≤
B M · AC + C M · AB or 2R · AM · sin A ≤ 2R · B M · sin B + 2R · C M · sin C which

gives AM · sin A ≤ B M · sin B + C M · sin C .

b) From a) we have

AA1 · sin α ≤ AB1 · sin β + AC1 · sin γ,

B B1 · sin β ≤ B A1 · sin α + BC1 · sin γ,

CC1 · sin γ ≤ C A1 · sin α + C B1 · sin β,

which, summed up, give the desired conclusion.

Problem 15. Let the coordinates of A, B, C, M and N be a, b, c, m and n, respec-

tively. Since the lines AM, B M and C M are concurrent, as well as the lines AN , B N

and C N , it follows from Ceva’s theorem that

sin B̂ AM

sin M̂ AC
· sin Ĉ B M

sin M̂ B A
· sin ÂC M

sin M̂C B
= 1, (1)

sin B̂ AN

sin N̂ AC
· sin Ĉ B N

sin N̂ B A
· sin ÂC N

sin N̂C B
= 1. (2)

By hypotheses, B̂ AM = N̂ AC and M̂ B A = Ĉ B N . Hence B̂ AN = M̂ AC and

N̂ B A = Ĉ B M . Combined with (1) and (2), these equalities imply

sin ÂC M · sin ÂC N = sin M̂C B · sin N̂C B.
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Figure 6.2.

Thus,

cos(N̂C M + 2 ÂC M) − cos N̂C M = cos(N̂C M + 2N̂C B) − cos N̂C M,

and hence ÂC M = N̂C B.

Since B̂ AM = N̂ AC , M̂ B A = Ĉ B N and ÂC N = M̂C B, the following complex

ratios are all positive real numbers:

m − a

b − a
: c − a

n − a
,

m − b

a − b
: c − b

n − b
and

m − c

b − c
: a − c

n − c
.

Hence each of these equals its absolute value, and so

AM · AN

AB · AC
+ B M · B N

B A · BC
+ C M · C N

C A · C B

= (m − a)(n − a)

(b − a)(c − a)
+ (m − b)(n − b)

(a − b)(c − b)
+ (m − c)(n − c)

(b − c)(a − c)
= 1.

6.2.4 Solving geometric problems (pp. 211–213)

Problem 26. Let a, b, c be the coordinates of the points A, B, C , respectively. Using

the real product of the complex numbers, we have

AC2 + AB2 = 5BC2 if and only if |c − a|2 + |b − a|2 = 5|c − b|2, i.e.,

(c − a) · (c − a) + (b − a) · (b − a) = 5(c − b) · (c − b).

The last relation is equivalent to

c2 − 2a · c + a2 + b2 − 2a · b + a2 = 5c2 − 10b · c + 5b2, i.e.,

2a2 − 4b2 − 4c2 − 2a · b − 2a · c + 10b · c = 0.
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It follows that

a2 − 2b2 − 2c2 − a · b − a · c + 5b · c = 0, i.e.,

(a + c − 2b) · (a + b − 2c) = 0, so

(
a + c

2
− b

)
·
(

a + b

2
− c

)
= 0.

The last relation shows that the medians from B and C are perpendicular, as desired.

Problem 27. Denoting by a lowercase letter the coordinates of a point with an upper-

case letter, we obtain

a′ = b − kc

1 − k
, b′ = c − ka

1 − k
, c′ = a − kb

1 − k

and

a′′ = c′ − kb′

1 − k
= (1 + k2)a − k(b + c)

(1 − k)2
,

b′′ = a′ − kc′

1 − k
= (1 + k2)b − k(a + c)

(1 − k)2
,

c′′ = b′ − ka′

1 − k
= (1 + k2)c − k(b + a)

(1 − k)2
.

Then
c′′ − a′′

b′′ − a′′ = (1 + k2)(c − a) − k(a − c)

(1 + k2)(b − a) − k(a − b)
= c − a

b − a
,

which proves that triangles ABC and A′′ B ′′C ′′ are similar.

Problem 28. Consider the complex plane with origin at the circumcircle of triangle

ABC and let z1, z2, z3 be the coordinates of points A, B, C .

The inequality
R

2r
≥ mα

hα

is equivalent to

2rmα ≤ Rhα, i.e., 2
K

s
mα ≤ R

2K

α
.

Hence αmα ≤ Rs.

Using complex numbers, we have

2αmα = 2|z2 − z3|
∣∣∣∣z1 − z2 + z3

2

∣∣∣∣ = |(z2 − z3)(2z1 − z2 − z3)|

= |z2(z1 − z2) + z1(z2 − z3) + z3(z3 − z1)|
≤ |z2||z1 − z2| + |z1||z2 − z3| + |z3||z3 − z1| = R(α + β + γ ) = 2Rs.

Hence αmα ≤ Rs, as desired.
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Problem 29. Consider the complex plane with origin at the circumcenter O and let

a, b, c, d be the coordinates of points A, B, C, D.

The midpoints E and F of the diagonals AC and B D have the coordinates
a + c

2

and
b + d

2
.

Using the real product the complex numbers we have

AB2 + BC2 + C D2 + D A2 = 8R2 if and only if

(b − a) · (b − a) + (c − b) · (c − b) + (d − c) · (d − c) + (a − d) · (a − d) = 8R2, i.e.,

2a · b + 2b · c + 2c · d + 2d · a = 0.

The last relation is equivalent to

b · (a + c) + d · (a + c) = 0, i.e., (b + d) · (a + c) = 0.

We find
b + d

2
· a + c

2
= 0, i.e., O E ⊥ O F

or E = O or F = O .

That is, AC ⊥ B D or one of the diagonals AC and B D is a diameter of the circle

C.

Problem 30. Denote by a lowercase letter the coordinate of a point denoted by an

uppercase letter and let

ε = cos 120◦ + i sin 120◦.

Since triangles AB M , BC N , C O P and D AQ are equilateral we have

m + bε + aε2 = 0, n + cε + bε2 = 0, p + dε + cε2 = 0, q + aε + dε2 = 0.

Summing these equalities yields

(m + n + p + q) + (a + b + c + d)(ε + ε2) = 0,

and since ε + ε2 = −1 it follows that m + n + p + q = a + b + c + d. Therefore the

quadrilaterals ABC D and M N P Q have the same centroid.

Problem 31. Denote by a lowercase letter the coordinate of a point denoted by an

uppercase letter. Using the rotation formula, we obtain

m = b + (a − b)ε, n = c + (b − c)ε, p = d + (c − d)ε, q = a + (d − a)ε,

where ε = cos α + i sin α.
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Let E, F, G, H be the midpoints of the diagonals B D, AC, M P, N Q

respectively; then

e = b + d

2
, f = a + c

2
, g = b + d + (a + c − b − d)ε

2

and h = a + c + (b + d − a − c)ε

2
.

Since e + f = g + h, then EG F H is a parallelogram, as desired.

Problem 32. Consider the points E, F, G, H such that

O E ⊥ AB, O E = C D, O F ⊥ BC, O F = AD,

OG ⊥ C D, OG = AB, O H ⊥ AD, O H = BC,

where O is the circumcenter of ABC D.

We prove that E FG H is a parallelogram. Since O E = C D, O F = AD and

Ê O F = 180◦ − ÂBC = ÂDC follows that triangles E O F and ADC are congruent,

hence E F = G H . Likewise FG = E H and the claim is proved.

Consider the complex plane with origin at O such that F is on the positive real axis.

Denote by a lowercase letter the coordinate of a point denoted by an uppercase letter.

We have

|e| = C D, | f | = AD, |g| = AB, |h| = BC.

Furthermore,

F̂ OG = 180◦ − Ĉ = Â, Ĝ O H = B̂, Ĥ O E = Ĉ,

hence

f = | f | = AD, g = |g|(cos A + i sin A) = AD(cos A + i sin A),

h = |h|[cos(A + B) + i sin(A + B)] = BC[cos(A + B) + i sin(A + B)],
e = |e|[cos(A + B + C) + i sin(A + B + C)] = C D(cos D − i sin D).

Since e + g = f + h, we obtain

AD + BC cos(A + B) + i BC sin(A + B)

= C D(cos D − i sin D) + AB(cos A + i sin A)

and the conclusion follows.
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Problem 33. Consider the complex plane with origin at the circumcenter O of the

triangle. Let a, b, c, ω, g, zI be the coordinates of the points A, B, C, O9, G, I , re-

spectively.

Without loss of generality, we may assume that the circumradius of the triangle

ABC is equal to 1, hence |a| = |b| = |c| = 1.

We have

ω = a + b + c

2
, g = a + b + c

3
, zI = a|b − c| + b|a − c| + c|a − b|

|a − b| + |b − c| + |a − c| .

Using the properties of the real product of complex numbers, we have

O9G ⊥ AI if and only if (ω − g) · (a − zI ) = 0, i.e.,

a + b + c

6
· (a − b)|a − c| + (a − c)|a − b|

|a − b| + |b − c| + |a − c| = 0.

This is equivalent to

(a + b + c) · [(a − b)|a − c| + (a − c)|a − b|] = 0, i.e.,

Re{(a + b + c)[(a − b)|a − c| + (a − c)|a − b|]} = 0.

We find that

Re{|a − c|(aa + ba + ca − ab − bb − cb)

+ |a − b|(aa + ba + ca − ac − bc − cc)} = 0. (1)

Observe that

aa = bb = cc = 1 and Re(ba − ab) = Re(ca − ac) = 0,

hence the relation (1) is equivalent to

Re{|a − c|(ca − cb) + |a − b|(ba − bc)} = 0, i.e.,

|a − c|(ca + ca − cb − cb) + |a − b|(ab + ab − bc − bc) = 0.

It follows that

|a − c|[(bb − bc − cb + cc) − (aa − ca − ca + cc)]
+ |a − b|[(bb − bc − cb + cc) − (aa − ab − ab + bb)] = 0, i.e.,

|a − c|(|b − c|2 − |a − c|2) + |a − b|(|b − c|2 − |a − b|2) = 0.

This is equivalent to

AC · BC2 − AC3 + AB · BC2 − AB3 = 0.
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The last relation can be written as

BC2(AC + AB) = (AC + AB)(AC2 − AC · AB + AB2),

so AC · AB = AC2 + AB2 − BC2.

We obtain

cos A = 1

2
, i.e., Â = π

3
,

as desired.

Problem 34. (a) Let a lowercase letter denote the complex number associated with

the point labeled by the corresponding uppercase letter. Let M ′, M and O denote

the midpoints of segments [M ′
1 M ′

2], [M1 M2] and [O1 O2], respectively. Also let

z = m1 − o1

m′
1 − o1

= m2 − o2

m′
2 − o2

, so that multiplication by z is a rotation about the origin

through some angle. Then m = m1 + m2

2
equals

1

2
(o1 + z(m′

1 − o1)) + 1

2
(o2 + z(m′

2 − o2)) = o + z(m′ − o),

i.e., the locus of M is the circle centered at O with radius O M ′.
(b) We shall use directed angles modulo π . Observe that

Q̂M1 M2 = Q̂ P M2 = Q̂ P O2 = Q̂O1 O2.

Similarly, Q̂M2 M1 = Q̂O2 O1, implying that triangles QM1 M2 and QO1 O2 are

similar with the same orientations. Hence,

q − o1

q − o2
= q − m1

q − m2
,

or equivalently

q − o1

q − o2
= (q − m1) − (q − o1)

(q − m2) − (q − o2)
= o1 − m1

o2 − m2
= o1 − m′

1

o2 − m′
2
.

Because lines O1 M ′
1 and O2 M ′

2 meet, o1 − m′
1 �= o2 − m′

2 and we can solve this

equation to find a unique value for q.

Problem 35. Without loss of generality, assume that triangle A1 A2 A3 is oriented coun-

terclockwise (i.e., angle A1 A2 A3 is oriented clockwise). Let P be the reflection of O1

across T .

We use the complex numbers with origin O1, where each point denoted by an up-

percase letter is represented by the complex number with the corresponding lowercase
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letter. Let ζk = ak/p for k = 1, 2, so that z �→ ζk(z − z0) is a similarity through angle

P̂ O1 Ak with ratio O1 A3/O1 P about the point corresponding to z0.

Because O1 and A1 lie on opposite sides of line A2 A3, angles A2 A3 O1 and A2 A3 A1

have opposite orientations, i.e., the former is oriented counterclockwise. Thus, an-

gles P A3 O1 and A2 O3 A1 are both oriented counterclockwise. Because P̂ A3 O1 =
2 Â2 A3 O2 = Â2 O3 A1, it follows that isosceles triangles P A3 O1 and A2 O3 A1 are

similar and have the same orientation. Hence, o3 = a1 + ζ3(a2 − a1).

Similarly, o2 = a1 + ζ2(a3 − a1). Hence,

o3 − o2 = (ζ2 − ζ3)a1 + ζ3a2 − ζ2a3

= ζ2(a2 − a3) + ζ3(ζ2 p) − ζ2(ζ3 p) = ζ2(a2 − a3),

or (recalling that o1 = 0 and t = 2p)

o3 − o2

a1 − o1
= ζ2 = a2 − a3

p − o1
= 1

2

a2 − a3

t − o1
.

Thus, the angle between [O1 A1] and [O2 O3] equals the angle between [O1T ] and

[A3 A2], which is π/2. Furthermore, O2 O3/O1 A1 = 1

2
A3 A2/O1T , or O1 A1/O2 O3=

2O1T/A2 A3. This completes the proof.

Problem 36. Assume that the origin O of the coordinate system in the complex plane

is the center of the circumscribed circle. Then, the vertices A1, A2, A3 are represented

by complex numbers w1, w2, w3 such that

|w1| = |w2| = |w3| = R.

Let ε = cos
2π

3
+ i sin

2π

3
. Then ε2 + ε + 1 = 0 and ε3 = 1. Suppose that P0

is represented by the complex number z0. The point P1 is represented by the complex

number

z1 = z0ε + (1 − ε)w1. (1)

The point P2 is represented by

z2 = z0ε
2 + (1 − ε)w1ε + (1 − ε)w2,

and P3 by

z3 = z0ε
3 + (1 − ε)w1ε

2 + (1 − ε)w2ε + (1 − ε)w3

= z0 + (1 − ε)(w1ε
2 + w2ε + w3).

An easy induction on n shows that after n cycles of three such rotations, we obtain

that P3n is represented by

z3n = z0 + n(1 − ε)(w1ε
2 + w2ε + w3).
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In our case, for n = 662 we obtain

z1996 = z0 + 662(1 − ε)(w1ε
2 + w2ε + w3) = z0.

Thus, we have the equality

w1ε
2 + w2ε + w3 = 0. (2)

This can be written under the equivalent form

w3 = w1(1 + ε) + (−ε)w2. (3)

Taking into account that 1 + ε = cos
π

3
+ i sin

π

3
, the equality (3) can be translated,

using the lemma on p. 218, into the following: the point A3 is obtained under the

rotation of point A1 about center A2 through the angle
π

3
. This proved that A1 A2 A3 is

an equilateral triangle.

Problem 37. Let B(b, 0), C(c, 0) be the centers of the given circles and let

A(0, a), X (0, −a) be their intersection points. The complex numbers associated to

these point are zB = b, zC = c, z A = ia and zX = −ia, respectively. After rotating A

through angle t about B we obtain a point M and after rotating A about C we obtain

the point N . Their corresponding complex numbers are given by formulas:

zM = (ia − b)ω + b = iaω + (1 − ω)b

and

zN = iaω + (1 − ω)c.

Figure 6.3.

The required result is equivalent to the following: the bisector lines lM N of the seg-

ments M N pass through a fixed point P(x0, y0). Let R be the midpoint of the segment
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M N . Then zR = 1

2
(zM + zN ). A point Z of the plane is a point of lM N if and only if

the lines RZ and M N are orthogonal. By using the real product of complex numbers

we obtain (
z − zM + zN

2

)
· (zN − zM ) = 0.

This is equivalent to

z · (zN − zM ) = 1

2
(|zN |2 − |zM |2).

By noting that z = x + iy we obtain

x(c − b)(1 − cos t) − y(c − b) sin t = 1

2
(|zN |2 − |zM |2).

After an easy computation we obtain

|zM |2 = 2b2 + a2 − 2b2 cos t − 2ab sin t

and

|zN |2 = 2c2 + a2 − 2c2 cos t − 2ac sin t.

Thus, the orthogonality condition yields

x(1 − cos t) − y sin t = (b + c) − (b + c) cos t − a sin t.

This can be written in the form

(x − b − c)(1 − cos t) = (y − a) sin t.

This equation shows that the point P(x0, y0) where x0 = b + c, y0 = a is a fixed point

of the family of lines lM N .

The point P belong to the line through A parallel to BC and it is the symmetrical

point of X with respect to the midpoint of the segment BC . This follows from the

equality

zP + zX = b + c

2
.

Problem 38. Let A(1+i), B(−1+i), C(−1−i), D(1−i) be the vertices of the square.

Using the symmetry of the configuration of points, with respect to the axes and center

O of the square, we will do computations for the points lying in the first quadrant.

Then L , M are represented by the complex numbers L(
√

3 − 1), M((
√

3 − 1)i). The

midpoint of the segment L M is P
(√

3 − 1

2
+ i

√
3 − 1

2

)
. Since K is represented by

K (−i(
√

3 − 1)), the midpoint of AK is Q
(1

2
+ i

2 − √
3

2

)
. In the same way, the
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Figure 6.4.

midpoint of AN is R
(2 − √

3

2
+ i

2

)
and the midpoint of BL is S

(−2 + √
3

2
+ i

2

)
. It

is sufficient to prove that S R = R P = P Q and Ŝ R P = R̂ P Q = 5π

6
. For any point

X we denote by Z X the corresponding complex number. We have

RS2 = |ZS − Z R |2 = (−2 + √
3)2 = 7 − 4

√
3,

R P2 = |Z P − Z R |2 =
∣∣∣∣∣
√

3 − 1

2
+ i

√
3 − 1

2
− 2 − √

3

2
− i

2

∣∣∣∣∣
2

=
∣∣∣∣∣2

√
3 − 3

2
+ i

√
3 − 2

2

∣∣∣∣∣
2

= (2
√

3 − 3)2 + (2
√

3 − 2)2

4

= 28 − 16
√

3

4
= 7 − 4

√
3.

Using reflection in O A, we also have P Q2 = R P2 = 7 − 4
√

3.

For angles we have

cos Ŝ R P =
3 − 2

√
3

2
(2 − √

3) + 2 − 2
√

3

2
· 0

7 − 4
√

3

= (12 − 7
√

3)(7 + 4
√

3)

2(7 − 4
√

3)(7 + 4
√

3)
= −

√
3

2
.

This proves that Ŝ R P = 5π

6
. In the same way, cos R̂ P Q = −

√
3

2
and R̂ P Q = 5π

6
.



284 6. Answers, Hints and Solutions to Proposed Problems

Problem 39. Let 1, ε, ε2, be the coordinates of points A, B, C, M , respectively, where

ε = cos 120◦ + i sin 120◦.

Figure 6.5.

Consider point V such that M EV D is a parallelogram. If d, e, v are the coordinates

of points D, E, V , respectively, then

v = e + d − m.

Using the rotation formula, we obtain

d = m + (ε − m)ε and e = m + (ε2 − m)ε2,

hence

v = m + ε2 − mε + m + ε4 − mε2 − m

= m + ε2 + ε − m(ε2 + ε) = m − 1 + m = 2m − 1.

This relation shows that M is the midpoint of the segment [AV ] and the conclusion

follows.

Problem 40. Consider the complex plane with origin at the center of the parallelogram

ABC D. Let a, b, c, d, m be the coordinates of points A, B, C, D, M , respectively.

It follows that c = −a and d = −b.

It suffices to prove that

|m − a| · |m + a| + |m − b||m + b| ≥ |a − b||a + b|,
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or

|m2 − a2| + |m2 − b2| ≥ |a2 − b2|.
This follows immediately from the triangle inequality.

Problem 41. Let the coordinates of A, B, C, H and O be a, b, c, h and o, respectively.

Consequently, aa = bb = cc = R2 and h = a + b + c. Since D is symmetric to A

with respect to line BC , the coordinates d and a satisfy

d − b

c − b
=
(

a − b

c − b

)
, or (b − c)d − (b − c)a + (bc − bc) = 0. (1)

Since

b − c = − R2(b − c)

bc
and bc − bc = R2(b2 − c2)

bc
,

by inserting these expressions in (1), we obtain that

d = −bc + ca + ab

a
= k − 2bc

a
,

d = R2(−a + b + c)

bc
= R2(h − 2a)

bc
,

where k = bc + c + ab. Similarly, we have

e = k − 2ca

b
, e = R2(h − 2b)

ca
, f = k − 2ab

c
and f = R2(h − 2c)

ab
.

Since

� =

∣∣∣∣∣∣∣
d d 1

e e 1

f f 1

∣∣∣∣∣∣∣ =
∣∣∣∣∣ e − d e − d

f − d f − d

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
(b − a)(k − 2ab)

ab

R2(a − b)(h − 2c)

abc

(c − a)(k − 2ca)

ca

R2(a − c)(h − 2b)

abc

∣∣∣∣∣∣∣∣∣∣
= R2(c − a)(a − b)

a2b2c2
×
∣∣∣∣∣ −(ck − 2abc) (h − 2c)

(bk − 2abc) −(h − 2b)

∣∣∣∣∣
= −R2(b − c)(c − a)(a − b)(hk − 4abc)

a2b2c2

and h = R2k/abc, it follows that D, E and F are collinear if and only if � = 0.

This is equivalent to hk − 4abc = 0, i.e., hh = 4R2. From the last relation we obtain

O H = 2R.
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Problem 42. Let the coordinates of A, B, C, D and E be a, b, c, d and e, respectively.

Then d = (2b + c)/3 and e = 2d − a. Since ÂC B = 2 ÂBC , the ratio(
a − b

c − b

)2

: b − c

a − c

is real and positive. It is equal to (AB2 · AC)/BC3. On the other hand, a direct com-

putation shows that the ratio
e − c

b − c
:
(

c − b

e − b

)2

is equal to

1

(b − c)3
×
(

(b − a) + 2(c − a)

3

)2 (4(b − a) − (c − a)

3

)

= 4

27
+ (b − a)2(c − a)

(b − c)3
= 4

27
− AB2 · AC

BC3
,

which is a real number. Hence the arguments of (e − c)/(b − c) and (c − b)2/(e − b)2,

namely, ÊC B and 2Ê BC , differ by an integer multiple of 180◦. We easily infer that

either ÊC B = 2Ê BC or ÊC B = 2Ê BC − 180◦, according to whether the ratio is

positive or negative. To prove that the latter holds, we have to show that AB2 ·AC/BC3

is greater than 4/27. Choose a point F on the ray AC such that C F = C B.

Figure 6.6.

Since �C B F is isosceles and ÂC B = 2 ÂBC , we have Ĉ F B = ÂBC . Thus

�AB F and �AC B are similar and AB : AF = AC : AB. Since AF = AC + BC ,
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AB2 = AC(AC + BC). Let AC = u2 and AC + BC = v2. Then AB = uv and

BC = v2 − u2. From AB + AC > BC , we obtain u/v > 1/2. Thus

AB2 · AC

BC3
= u4v2

(v2 − u2)3
= (u/v)4

(1 − u2/v2)3
>

(1/2)4

(1 − 1/4)3
= 4

27
,

and the conclusion follows.

6.2.5 Solving trigonometric problems (p. 220)

Problem 11. (i) Consider the complex number

z = 1

cos θ
(cos θ + i sin θ).

From the identity

n−1∑
k=0

zk = 1 − zn

1 − z
(1)

we derive

n−1∑
k=0

1

cosk θ
(cos kθ + i sin kθ) =

1 − 1

cosn θ
(cos nθ + i sin nθ)

1 − 1

cos θ
(cos θ + i sin θ)

=
cos θ − 1

cosn−1 θ
(cos nθ + i sin nθ)

−i sin θ
= sin nθ

sin θ cosn−1 θ
+ i

cosn θ − cos nθ

sin θ cosn−1 θ
.

It follows that

n−1∑
k=0

cos kθ

cosk θ
= sin nθ

sin θ cosn−1 θ

and we just have to substitute θ = 30◦.

(ii) We proceed in an analogous way by considering the complex number z =
cos θ(cos θ + i sin θ). Using identity (1) we obtain

n∑
k=1

zk = z − zn+1

1 − z
.
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Hence

n∑
k=1

cosk θ(cos kθ + i sin kθ)

= cos θ(cos θ + i sin θ) − cosn+1 θ(cos(n + 1)θ + i sin(n + 1)θ)

sin2 θ − i cos θ sin θ

= i
cos θ(cos θ + i sin θ) − cosn+1 θ(cos(n + 1)θ + i sin(n + 1)θ)

sin θ(cos θ + i sin θ)

= i
[
cotanθ − cosn+1 θ(cos nθ + i sin nθ)

sin θ

]
= sin nθ cosn+1 θ

sin θ
+ i
(

cotanθ − cosn+1 θ cos nθ

sin θ

)
It follows that

n∑
k=1

cosk θ cos kθ = sin nθ cosn+1 θ

sin θ

Finally, we let θ = 30◦ in the above sum.

Problem 12. Let

ω = cos
2π

n
+ i sin

2π

n

for some integer n. Consider the sum

Sn = 4n + (1 + ω)2n + (1 + ω2)2n + · · · + (1 + ωn−1)2n .

For all k = 1, . . . , n − 1, we have

1 + ωk = 1 + cos
2kπ

n
+ i sin

2kπ

n
= 2 cos

kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)
and

(1 + ωk)2n = 22n cos2n kπ

n
(cos 2kπ + i sin 2kπ) = 4n cos2n kπ

n
.

Hence

Sn = 4n +
n−1∑
k=1

(1 + ωk)2n

= 4n
[

1 + cos2n
(π

n

)
+ cos2n

(
2π

n

)
+ · · · + cos2n

(
(n − 1)π

n

)]
. (1)

On the other hand, using the binomial expansion, we have

Sn =
n−1∑
k=0

(1 + ωk)2n =
n−1∑
k=0

((
2n

0

)
+
(

2n

1

)
ωk+
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+
(

2n

2

)
ω2k + · · · +

(
2n

n

)
ωnk +

(
2n

2n − 1

)
ω(2n−1)k +

(
2n

2n

))

= n

(
2n

0

)
+ n

(
2n

n

)
+ n

(
2n

2n

)
+

2n−1∑
j=1
i �=n

(
2n

j

)
·

n−1∑
k=0

ω jk

= 2n + n

(
2n

n

)
+

2n−1∑
j=1
i �=n

(
2n

j

)
· 1 − ω jn

1 − ω j
= 2n + n

(
2n

n

)
. (2)

The relations (1) and (2) give the desired identity.

Problem 13. For p = 0, take a0 = 1. If p ≥ 1, let z = cos α + i sin α and observe that

z2p = cos 2pα + i sin 2pα,

z−2p = cos 2pα − i sin 2pα

and

cos 2pα = z2p + z−2p

2
= 1

2
[(cos α + i sin α)2p + (cos α − i sin α)2p].

Using the binomial expansion we obtain

cos 2pα =
(

2p

0

)
cos2p α −

(
2p

2

)
cos2p−2 α sin2 α + · · · + (−1)p

(
2p

2p

)
sin2p α.

Hence cos 2pα is a polynomial of degree p in sin2 α, so there are a0, a1, . . . , ap ∈ R

such that

cos 2pα = a0 + a1 sin2 α + · · · + ap sin2p α for all α ∈ R,

with

ap =
(

2p

0

)
−
(

2p

2

)
(−1)p−1 +

(
2p

4

)
(−1)p−2 + · · · +

(
2p

2p

)
(−1)p

= (−1)p
((

2p

0

)
+
(

2p

2

)
+ · · · +

(
2p

2p

))
�= 0.

6.2.6 More on the nth roots of unity (pp. 228–229)

Problem 11. Let p = 1, 2, . . . , m and let z ∈ Up. Then z p = 1.

Note that n −m +1, n −m +2, . . . , n are m consecutive integers, and, since p ≤ m,

there is an integer k ∈ {n − m + 1, n − m + 2, . . . , n} such that p divides k.
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Let k = k′ p. It follows that zk = (z p)k′ = 1, so z ∈ Uk ⊂ Un−m+1 ∪ Un−m+2 ∪
· · · ∪ Un , as claimed.

Remark. An alternative solution can be obtained by using the fact that

(an − 1)(an−1 − 1) · · · (an−k+1 − 1)

(ak − 1)(ak−1 − 1) · · · (a − 1)

is an integer for all positive integers a > 1 and n > k.

Problem 12. Rewrite the equation as(
bx + aα

ax + bα

)n

= d

c
.

Since |c| = |d|, we have

∣∣∣∣dc
∣∣∣∣ = 1 and consider

d

c
= cos t + i sin t, t ∈ [0, 2π).

It follows that
bxk + aα

axk + bα
= uk, (1)

where

uk = cos
t + 2kπ

n
+ i sin

t + 2kπ

n
, k = 0, n − 1.

The relation (1) implies that

xk = bαuk − aα

b − auk
, k = 0, n − 1.

To prove that the roots xk , k = 0, n − 1 are real numbers, it suffices to show that

xk = xk for all k = 0, n − 1.

Denote |a| = |b| = r . Then

xk = bαuk − aα

b − auk
=

r2

b
· α · 1

uk
− r2

a
· α

r2

b
− r2

a
· 1

uk

= αa − bαuk

auk − b
= xk, k = 0, n − 1,

as desired.

Problem 13. Differentiating the familiar identity

n∑
k=0

zk = xn+1 − 1

x − 1
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with respect to x , we get

n∑
k=1

kxk−1 = nxn+1 − (n + 1)xn + 1

(x − 1)2
.

Multiplying both sides by x and differentiating again, we arrive at

n∑
k=1

k2xk−1 = g(x),

where

g(x) = n2xn+2 − (2n2 + 2n − 1)xn+1 + (n + 1)2xn − x − 1

(x − 1)3
.

Taking x = z and using |z| = 1 (which we were given), we obtain

|g(z)| ≤
n∑

k=1

k2|z|k−1 = n(n + 1)(2n + 1)

6
. (1)

On the other side, taking into account that zn = 1, z �= 1, we get

g(z) = n(nz2 − 2(n + 1)z + n + 2)

(z − 1)3
= n(nz − (n + 2))

(z − 1)2
. (2)

From (1) and (2) we therefore conclude that

|nz − (n + 2)| ≤ (n + 1)(2n + 1)

6
|z − 1|2.

Problem 14. Setting x = y ∈ M yields 1 = x

y
∈ M . For x = 1 and y ∈ M we obtain

1

y
= y−1 ∈ M .

If x and y are arbitrary elements of M , then x, y−1 ∈ M and consequently

x

y−1
= xy ∈ M.

Let x1, x2, . . . , xn be the elements of set M and take at random an element xk ∈ M ,

k = 1, n. Since xk �= 0 for all k = 1, n, the numbers xk x1, xk x2, . . . , xk xn are distinct

and belong to the set M , hence

{xk x1, xk x2, . . . , xk xn} = {x1, x2, . . . , xn}.

Therefore xk x1 · xk x2 · · · xk xn = x1x2 · · · xn , hence xn
k = 1, that is, xk is an nth root

of 1.

The number xk was chosen arbitrary, hence M is the set of the nth-roots of 1, as

claimed.
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Problem 15. a) We will denote by S(X) the sum of the elements of a finite set X .

Suppose 0 �= z ∈ A. Since A is finite, there exists positive integers m < n such that

zm = zn , whence zn−m = 1. Let d be the smallest positive integer k such that zk ∈ 1.

Then 1, z, z2, . . . , zd−1 are different, and the dth power of each is equal to 1; therefore

these numbers are the dth roots of unity. This shows that A \ {0} =
m⋃

k=1

Unk , where

Up = {z ∈ C| z p = 1}. Since S(Up) = 0 for p ≥ 2, S(U1) = 1 and Up ∩Uq = U(p,q)

we get

S(A) =
∑

k

S(Unk ) −
∑
k<l

S(Unk ∩ Unl )

+
∑

k<l<s

S(Unk ∩ Unl ∩ Uns ) + · · · = an integer.

b) Suppose that for some integer k there exists A =
m⋃

k=1

Unk such that S(A) = k.

Let p1, p2, . . . , p6 be the distinct primes which are not divisors of any nk . Then

S(A ∪ Up1) = S(A) + S(Up1) − S(A ∩ Up1) = k − S(U1) = k − 1.

Also

S(A ∪ Up1 p2 p3 ∪ Up1 p4 p5 ∪ Up2 p4 p6 ∪ Up3 p5 p6)

= S(A) + S(Up1 p2 p3) + S(Up1 p4 p5) + S(Up2 p4 p6) + S(Up3 p5 p6)

− S(A ∩ Up1 p2 p3) − · · · + S(A ∩ Up1 p2 p3 ∩ Up1 p4 p5)

+ · · · − S(A ∩ Up1 p2 p3 ∩ Up1 p4 p5 ∩ Up2 p4 p6 ∩ Up3 p5 p6)

= k + 4 · 0 − 4S(U1) −
6∑

k=1

S(Upk ) + 10S(U1) − 5S(U1) + S(U1)

= k − 4 + 10 − 5 + 1 = k + 2.

Hence, if there exists A such that S(A) = k, then there exist B and C such that

S(B) = k − 1 and S(C) = k + 2. The conclusion now follows easily.

6.2.7 Problems involving polygons (p. 237)

Problem 12. Suppose that such a 1990-gon exists and let A0 A1 · · · A1989 be its ver-

tices. The sides Ak Ak+1, k = 0, 1, . . . , 1989 define the vectors
−−−−→
Ak Ak+1 which can be

represented in the complex plane by the numbers

zk = nkw
k, k = 0, 1, . . . , 1989
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where w = cos
2π

1990
+ i sin

2π

1990
. Here A1990 = A0 and n0, n1, . . . , n1989 represents

a permutation of the numbers 12, 22, . . . , 19902.

Because
1989∑
k=0

−−−−→
Ak Ak+1 = 0, the problem can be restated as follows: find a permuta-

tion (n0, n1, . . . , n1989) of the numbers 12, 22, . . . , 19902 such that

1989∑
k=0

nkw
k = 0.

Observe that 1990 = 2 ·5 ·199. The strategy is to add vectors after suitable grouping

of 2, 5, 199 vectors such that these partial sums can be directed toward the suitable

result.

To begin, let consider the pairing of numbers

(12, 22), (32, 42), . . . , (19882, 19892)

and assign these lengths to pairs of opposite vectors respectively:

(wk, wk+995), k = 0, . . . , 994.

By adding the obtained vectors, we obtain 995 vectors of lengths

22 − 12 = 3; 42 − 32 = 7; 62 − 52 = 11; . . . ; 19892 − 19882 = 3979

which divide the unit circle of the coordinate plane into 995 equal arcs.

Let B0 = 1, B1, . . . , B994 be the vertices of the regular 995-gon inscribed in

the unit circle. We intend to assign the lengths 3,7,11, . . . ,3979 to the unit vectors−→
O B0,

−→
O B1, . . . ,

−→
O B994 such that the sum of the obtained vectors is zero,

We divide 995 lengths into 199 groups of size 5:

(3, 7, 11, 15, 19), (23, 27, 31, 35, 39), . . . , (3963, 3967, 3971, 3975, 3979).

Let ζ = cos
2π

5
+ i sin

2π

5
, ω = cos

2π

199
+ i sin

2π

199
be the primitive roots of unity

of order 5 and 199, respectively. Let P1 be the pentagon with vertices 1, ζ, ζ 2, ζ 3, ζ 4.

Then we rotate P1 about the origin O with coordinates through angles θk = 2kπ

199
, k =

1, . . . , 198, to obtain new pentagons P2, . . . , P198, respectively. The vertices of Pk+1

are ωk, ωkζ, ωkζ 2, ωkζ 3, ωkζ 4, k = 0, . . . , 198. We assign to unit vectors defined by

the vertices Pk of the respective lengths:
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Figure 6.7.

2k + 3, 2k + 7, 2k + 11, 2k + 15, 2k + 19 (k = 0, . . . , 198).

Thus, we have to evaluate the sum:

198∑
k=0

[(2k + 3)ωk + (2k + 7)ωkζ + (2k + 1)ωkζ 2 + (2k + 15)ωkζ 3 + (2k + 19)ωkζ 4]
198∑
k=0

2kωk(1 + ζ + ζ 2 + ζ 3 + ζ 4) + (3 + 7ζ + 11ζ 2 + 15ζ 3 + 19ζ 4)

198∑
k=0

ωk .

Since 1 + ζ + ζ 2 + ζ 3 + ζ 4 = 0 and 1 + ω + ω2 + · · · + ω198 = 0, it follows that

the sum equals zero.

Problem 13. It is convenient to take a regular octagon inscribed in a circle and note its

vertices as follows:

A = A0, A1, A2, A3, A4 = E, A−3, A−2, A−1.

We imagine a step in the path like a rotation of angle
2π

8
= π

4
about the center O

of the circumscribed circle of the octagon. In this way, a path is a sequence of such

rotations, submitted to some conditions. If the rotation is counterclockwise we add the

angle
π

4
; if the rotation is clockwise we add the angle −π

4
. The starting point is A0,

which is represented by the complex number z0 = cos 0 + i sin 0. Any vertex Ak of

the octagon is represented by zk = cos
2kπ

8
+ i sin

2kπ

8
. It is convenient to work only

with the angles
2kπ

8
, −4 ≤ k ≤ 4. But these k’s are integers considered mod 8, such

that z4 = z−4 and A4 = A−4.
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Figure 6.8.

We may associate to a path of length n, say (P0 P1 · · · Pn), an ordered sequence

(u,u2, . . . , un) of integers which satisfy the following conditions:

a) uk = ±1 for any k = 1, 2, . . . , n; more precisely ui = ±1 if the arc(Pk−1 Pk) is
π

4
and uk = −1 if the arc(Pk−1 Pk) is −π

4
;

b) u1 + u2 + · · · + uk ∈ {−3, −2, −1, 0, 1, 2, 3} for all k = 1, 2, . . . , n − 1;

c) u1 + u2 + · · · + un = ±4.

For example, the sequence associated with the path (A0, A−1, A0, A1, A2, A3, A4)

is (−1, 1, 1, 1, 1, 1). From now on we consider only sequences that satisfy a), b), c). It

is obvious that conditions a), b), c) define a bijective function between the set of paths

and the set of sequences.

For any sequence u1, u2, . . . , un and any k, 1 ≤ k ≤ n, we call the sum sk =
u1 + u2 + · · · + uk a partial sum of the sequence. It is easy to see that for any k, sk

is an even number if and only if k is even. Thus, a2n−1 = 0. Thus we have to prove

the formula for even numbers. For small n we have a2 = 0, a4 = 2; for example, only

sequences (1, 1, 1, 1) and (−1, −1, −1, −1) of length 4 satisfy conditions a)–c).

In the following we will prove a recurrence relation between the numbers an , n

even. The first step is to observe that if sn = ±4, then sn−2 = ±2. Moreover,

if (u1, u2, . . . , un−2) is a sequence that satisfies a), b) and sn−2 = ±2 there are

only two ways to extend it to a sequence that satisfy c) as well: either the sequence

(u1, u2, . . . , un−2, +1, +1) or the sequence (u1, u2, . . . , un−2, −1, −1). So if we de-

note by xn the number of sequences that satisfy a), b) and sn = ±2, then n is even and

an = xn−2.
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Let yn denote the number of sequences which satisfy a), b) and sn = 0. Then n is

even and we have the equality

yn = xn−2 + 2yn−2. (1)

This equality comes from the following constructions. A sequence (u1, . . . , un−2)

for which sn−2 = ±2 gives rise to a unique sequence of length n with sn =
0 by extending it either to (u1, . . . , un−2, 1, 1) or (u1, u2, . . . , un−1, −1, −1).

Also, a sequence (u1, . . . , un−2) with sn−2 = 0 gives rise either to sequence

(u1, . . . , un−2, 1, −1) or (u1, . . . , un−2, −1, 1). Finally, every sequence of length n

with sn = 0 ends in one of the following “terminations”: (−1, −1), (1, 1), (1, −1),

(−1, 1).

The following equality is also verified:

xn = 2xn−2 + 2yn−2. (2)

This corresponds to the property that any sequence of length n for which sn = ±2

can be obtained either from a similar sequence of length n−2 by adding the termination

(1, −1) or the termination (−1, 1), or from a sequence of length n − 2 for which

sn−2 = 0 by adding the termination (1,1) or the termination (−1, −1).

Now, the problem is to derive an = xn−2, from relations (1) and (2). By subtracting

(1) from (2) we obtain xn−2 = xn−yn , for all n ≥ 4, n even. Thus, yn−2 = xn−2−xn−4.

Substituting the last equality in (2) we obtain the recurrent relation: xn = 4xn−2 −
2xn−4, for all n ≥ 4, n even. Taking into account that xn = an+2, we obtain the linear

recurrent relation

an+2 = 4an − 2an−2, n ≥ 4, (3)

with the initial values a2 = 0, a4 = 2.

The sequence (an), n ≥ 2, n even is uniquely defined by a2 = 0, a4 = 2 and

relation (3). Therefore, to answer the question, it is sufficient to prove that the sequence

(c2n)n≥1, c2n = 1√
2
((2 + √

2)n−1 − (2 − √
2)n−1) obeys the same conditions. This is

a straightforward computation.

Problem 14. Consider the complex plane with origin at the center of the polygon.

Without loss of generality we may assume that the coordinates of A, B, C are 1, ε, ε2,

respectively, where ε = cos
2π

n
+ i sin

2π

n
.

Let zM = cos t + i sin t , t ∈ [0, 2π) be the coordinate of point M . From the hypoth-

esis we derive that t >
4π

n
. Then

M A = |zM − 1| =
√

(cos t − 1)2 + sin2 t = √
2 − 2 cos t = 2 sin

t

2
;
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M B = |zM − ε| =
√

2 − 2 cos

(
t − 2π

n

)
= 2 sin

(
t

2
− π

n

)
;

MC = |zM − ε2| =
√

2 − 2 cos

(
t − 4π

n

)
= 2 sin

(
t

2
− 2π

n

)
;

AB = |ε − 1| =
√

2 − 2 cos
2π

n
= 2 sin

π

n
.

We have

M B2 − AB2 = 4 sin2
(

t

2
− π

n

)
− 4 sin2 π

n

2

(
cos

2π

n
− cos

(
t − 2π

n

))

= −2 · 2 sin

2π

n
−
(

t − 2π

n

)
2

sin

2π

n
+
(

t − 2π

n

)
2

= 2 sin
t

2
· 2 sin

(
t

2
− 2π

n

)
= M A · MC,

as desired.

Problem 15. Rotate the polygon A1 A2 · · · An so that the coordinates of its vertices are

the complex roots of unity of order n, ε1, ε2, . . . , εn . Let z be the coordinate of point

P located on the circumcircle of the polygon and note that |z| = 1.

The equality

zn − 1 =
n∏

j=1

(z − ε j )

yields

|zn − 1| =
n∏

j=1

|z − ε j | =
n∏

j=1

P A j .

Since |zn −1| ≤ |z|n +1 = 2, it follows that the maximal value of
n∏

j=1

P A2
j is 2 and

is attained for zn = −1, i.e., for the midpoints of arcs A j A j+1, j = 1, . . . , n, where

An+1 = A1.

Problem 16. Without loss of generality, assume that points Ak have coordinates εk−1

for k = 1, . . . , 2n, where

ε = cos
π

n
+ i sin

π

n
.

Let α be the coordinate of the point P , |α| = 1. We have

P Ak+1 = |α − εk |
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and

P An+k+1 = |α − εn+k | = |α + εk |,
for k = 0, . . . , n − 1. Then

n−1∑
k=0

P A2
k+1 · P A2

n+k+1 =
n−1∑
k=0

|α − εk |2 · |α + εk |2

=
n−1∑
k=0

[(α − εk)(α − εk)][(α + εk)(α + εk)]

=
n−1∑
k=0

(2 − αεk − αεk)(2 + αεk + αεk)

=
n−1∑
k=0

(2 − α2ε2k − α2ε2k) = 2n − α2
n−1∑
k=0

ε2k − α2 ·
n−1∑
k=0

ε2k

= 2n − α2 · ε2n − 1

ε2 − 1
− α2 · ε2n − 1

ε2 − 1
= 2n,

as desired.

6.2.8 Complex numbers and combinatorics (p. 245)

Problem 11. Let us consider the complex number z = cos t + i sin t and the sum

tn =
n∑

k=0

(
n

k

)2

sin kt . Observe that

sn + i tn =
n∑

k=0

(
n

k

)2

(cos kt + i sin kt) =
n∑

k=0

(
n

k

)2

(cos t + i sin t)k .

In the product (1 + X)n(1 + zX)n = (1 + (z + 1)X + zX2)n we set the coefficient

of Xn equal to obtain∑
0≤k,s≤n
k+s=n

(
n

k

)(
n

s

)
zs =

∑
0≤k,s,r≤n
k+s+r=n
s+2r=n

n!
k!s!r ! (z + 1)s zr . (1)

The above relation is equivalent to

n∑
k=0

(
n

k

)2

zk =
[ n

2

]∑
k=0

(
n

2k

)(
2k

k

)
(z + 1)n−2k zk . (2)

The trigonometric form of the complex number 1 + z is given by

1 + cos t + i sin t = 2 cos2 t

2
+ 2i sin

t

2
cos

t

2
= 2 cos

t

2

(
cos

t

2
+ i sin

t

2

)
,
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since t ∈ [0, π ]. From (2) it follows that

sn + i tn =
[ n

2

]∑
k=0

(
n

2k

)(
2k

k

)(
2 cos

t

2

)n−2k (
cos

nt

2
+ i sin

nt

2

)
,

hence

sn =
[ n

2

]∑
k=0

(
n

2k

)(
2k

k

)(
2 cos

t

2

)n−2k

cos
nt

2
,

tn =
[ n

2

]∑
k=0

(
n

2k

)(
2k

k

)(
2 cos

t

2

)n−2k

sin
nt

2
.

Remark. Here we have a few particular cases of (2).

1) If z = 1, then

n∑
k=0

(
n

k

)2

=
[ n

2

]∑
k=0

(
n

2k

)(
2k

k

)
2n−2k =

(
2n

n

)
.

2) If z = −1, then

n∑
k=0

(−1)k
(

n

k

)2

=

⎧⎪⎪⎨⎪⎪⎩
0, if n is odd,

(−1)
n
2

(
n

n/2

)
, if n is even.

3) If z = −1

2
, then

n∑
k=0

(−1)k
(

n

k

)2

2n−k =
[ n

2

]∑
k=0

(−1)k
(

n

2k

)(
2k

k

)
2k .

Problem 12. 1) In Problem 4 consider p = 4 to obtain(
n

0

)
+
(

n

4

)
+
(

n

8

)
+ · · · = 2n

4

(
1 + 2

(
cos

π

4

)n
cos

nπ

4

)
= 1

4

(
2n + 2

n
2 +1 cos

nπ

4

)
.

2) Let us consider p = 5 in Problem 4. We find that(
n

0

)
+
(

n

4

)
+
(

n

8

)
+ · · · = 2n

5

(
1 + 2

(
cos

π

5

)n
cos

nπ

5
+ 2
(

cos
2π

5

)n
cos

2nπ

5

)
.

Using the well-known relations

cos
π

5
=

√
5 + 1

4
and cos

2π

5
=

√
5 − 1

4
the desired identity follows.



300 6. Answers, Hints and Solutions to Proposed Problems

Problem 13. 1) Let ε be a cube root of unity different from 1. We have

(1 − ε)n = An + Bnε + Cnε2, (1 − ε2)n = An + Bnε2 + Cnε

hence

A2
n + B2

n − C2
n − An Bn − BnCn − Cn An =(An + Bnε + Cnε2)(An + Bnε2 + Cnε)

= (1 − ε)n(1 − ε2)n = (1 − ε − ε2 + 1)n = 3n .

2) It is obvious that An + Bn +Cn = 0. Replacing Cn = −(An + Bn) in the previous

identity we get A2
n + An Bn + C2

n = 3n−1.

Problem 14. For any k ∈ {0, 1, . . . , p − 1}, consider xk =
∑

c1 · · · cm , the sum of

all products c1 · · · cm such that ci ∈ {1, 2, . . . , n} and
m∑

i=1

ci ≡ k (mod p).

If ε = cos
2π

p
+ i sin

2π

p
, then

(ε + 2ε2 + · · · + nεn)m =
∑

c1,...,cm∈{1,2,...,n}
c1 · · · cmεc1+···+cm =

p−1∑
k=0

xkε
k .

Taking into account the relation

ε + 2ε2 + · · · + nεn = nεn+2 − (n + 1)εn+1 + ε

(ε − 1)2
= nε

ε − 1

(see Problem 9 in Section 5.4 or Problem 13 in Section 5.5) it follows that

nm

(ε − 1)m
=

p−1∑
k=0

xkε
k . (1)

On the other hand, from ε p−1 + · · · + ε + 1 = 0 we obtain that

1

ε − 1
= − 1

p
(ε p−2 + 2ε p−3 + · · · + (p − 2)ε + p − 1),

hence

nm

(ε − 1)m
=
(

− n

p

)m

(ε p−2 + 2ε p−3 + · · · + (p − 2)ε + p − 1)m .

Put

(X p−2 + 2X p−3 + · · · + (p − 2)X + p − 1)m = b0 + b1 X + · · · + bm(p−2) Xm(p−2),
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and find
nm

(ε − 1)m
=
(

− n

p

)m

(y0 + y1ε + · · · + yp−1ε
p−1), (2)

where y j =
∑

k≡ j (mod p)

bk .

From (1) and (2) we get

x0 − r y0 + (x1 − ry1)ε + · · · + (x p−1 − r yp−1)ε
p−1 = 0,

where r =
(

− n

p

)m

. From Proposition 4 in Subsection 2.2.2, it follows that x0−r y0 =
x1 − r y1 = · · · = x p−1 − r yp−1 = k. Now it is sufficient to show that r |k. But

pk = x0 + · · · + x p−1 − r(y0 + · · · + yp−1)

= (1 + 2 + · · · + n)m − r(b0 + · · · + bm(p−2))

= (1 + 2 + · · · + n)m − r(1 + 2 + · · · + (p − 1))m,

and we obtain

pk =
(

n(n + 1)

2

)m

− r

(
p(p − 1)

2

)m

.

Since the right-hand side is divisible by pr , it follows that r |k.

Problem 15. Expanding (1+ i
√

a)n by binomial theorem and then separating the even

and odd terms we find

(1 + i
√

a)n = sn + i
√

atn . (1)

Passing to conjugates in (1) we get

(1 − i
√

a)n = sn − i
√

atn . (2)

From (1) and (2) it follows that

sn = 1

2
[(1 + i

√
a)n + (1 − i

√
a)n]. (3)

The quadratic equation with roots z1 = 1+i
√

a and z2 = 1−i
√

a is z2−2z+(a+1) =
0. It is easy to see that for any positive integer n the following relation holds:

sn+2 = 2sn+1 − (1 + a)sn . (4)

Now, we proceed by induction by step 2. We have s1 = 1 and s2 = 1 − a = 2 − 4k =
2(1 − 2k), hence the desired property holds. Assume that 2n−1|sn and 2n|sn+1. From

(4) it follows that 2n+1|sn+2, since 1 + a = 4k and 2n+1|(1 + a)sn .
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6.2.9 Miscellaneous problems (p. 252)

Problem 12. Using the triangle inequality, we have

2|z|2 = |x |y| + y|x || ≤ |x ||y| + |y||x |,

so |z|2 ≤ |x | · |y|. Likewise,

|y|2 ≤ |x | · |z| and |z|2 ≤ |y||x |.

Summing these inequality yields

|x |2 + |y|2 + |z|2 ≤ |x ||y| + |y||z| + |z||x |.

This implies that

|x | = |y| = |z| = a.

If a = 0, then x = y = z = 0 is a solution of the system. Consider a > 0. The

system may be written as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y = 2

a
z2,

y + z = 2

a
x2,

z + x = 2

a
y2.

Subtracting the last two equations gives

x − y = 2

a
(y2 − x2), i.e., (y − x)

(
y + x + 2

a

)
= 0.

Case 1. If x = y, then x = y = z2

a
. The last equation implies

z + z2

a
= 2

z4

a3
.

This is equivalent to

2
( z

a

)3 = z

a
+ 1,

hence
z

a
= 1 or

z

a
= −1 ± i

2
.

If z = a, then x = y = z = a is a solution of the system.
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If
z

a
= −1 ± i

2
, then

1 =
∣∣∣ z
a

∣∣∣ = ∣∣∣∣−1 ± i

2

∣∣∣∣ =
√

2

2
,

which is a contradiction.

Case 2. If x + y = −2

a
, then −2

a
= 2

a
z2. We obtain z = ±i and a = |z| = 1.

Consider z = i ; then

x = (x + y) − (y + z) + z = 2z2 − 2x2 + z = −2 + i − 2x2

or equivalently,

2x2 + x + 2 − i = 0.

Then x = i or x = −1

2
− i . Since |x | = a = 1, we have x = i . Then y = 2x2 − z =

−2 − i and |y| = √
5 �= a = 1, so the system has no solution. The case z = −i had

the same conclusion.

Therefore, the solutions are x = y = z = a, where a ≥ 0 is a real number.

Problem 13. In any solution (x, y, z) we have x �= 0, y �= 0, z �= 0 and x �= y, y �= z,

z �= x . We can divide each equation by others and obtain new equations:

x2 + y2 = yz + zx,

y2 + z2 = xy + zx,

z2 + x2 = xy + yz.

(1)

By adding them one obtains the equality

x2 + y2 + z2 = xy + yz + zx . (2)

After subtracting equations (1), the second from the first, one obtains x + y + z = 0.

By squaring this identity one obtains an improvement of (2):

x2 + y2 + z2 = xy + yz + zx = 0. (3)

Using (3) in (1) one obtains

x2 = zy, y2 = zx, z2 = xy (4)

and also

x3 = y3 = z3 = xyz.

It follows that x, y, z are distinct roots of the same complex number a = xyz. From

x3 = y3 = z3 = xyz = a we obtain

x = 3
√

a, t = ε 3
√

a, z = ε2 3
√

a, (5)
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where ε2 + ε + 1 = 0, ε3 = 1. When introduce relations (5) in the first equation

of the original system, one obtains a3(1 − ε)(1 − ε2) = 3. Taking into account the

computation

(1 − ε)(1 − ε2) = 1 − ε − ε2 + 1 = 3,

we have a3 = 1. Hence, we obtain using (5) that (x, y, z) is a permutation of the set

{1, ε, ε2}.
Problem 14. Suppose that the triangles O XY and O Z T are counterclockwise ori-

ented, and let x, y, z, t be the coordinates of the points X, Y, Z , T and let m be the

coordinate of O . As these are right isosceles triangles we have x − m = i(y − m),

z−m = i(t−m). It follows that m(1−i) = x−iy = z−i t . We deduce x−z = i(y−t).

Reciprocally, if x −iy = z−i t , the coordinate of O is m = x − iy

1 − i
, and the triangles

O XY and O Z T are right and isosceles.

Let a, b, c, d, e, f be the coordinates of the given hexagon in that order. We can

write a − ib = c − ie, b − id = e − i f . It follows that a + d = c + f , i.e., AC DF is

a parallelogram.

Multiplying the first equality by i , we obtain b − ic = e − ia, i.e., BC and AE are

connected.

Problem 15. By standard computations, we find that on the circumscribed circle the

sides of the pentagon subtend the following arcs:
�

AB= 80◦,
�

BC= 40◦,
�

C D= 80◦,
�

DE= 20◦ and
�

E A= 140◦. It is then natural to consider all these measures as multiples

of 20◦ that correspond to the primitive 18th roots of unity, say ω = cos
2π

18
+ i sin

2π

18
.

We thus assign, to each vertex, starting from A(1), the corresponding root of unity:

B(ω4), C(ω6), D(ω10), E(ω11). We shall use the following properties of ω:

ω18 = 1, ω9 = −1, ωk = ω18−k, ω6 − ω3 + 1 = 0. (A)

We need to prove that the coordinate coordinate of the common point of the lines

B D and C E is a real number.

The equation of the line B D is∣∣∣∣∣∣∣
z z 1

ω4 ω4 1

ω10 ω10 1

∣∣∣∣∣∣∣ = 0, (1)

and the equation of the line C E is∣∣∣∣∣∣∣
z z 1

ω6 ω6 1

ω11 ω11 1

∣∣∣∣∣∣∣ = 0. (2)
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Figure 6.9.

The equation (1) can be written as follows:

z(ω14 − ω8) − z(ω4 − ω10) + (ω12 − ω6) = 0

or

zω8(ω6 − 1) + zω4(ω6 − 1) + ω6(ω6 − 1) = 0.

Using the properties of ω we derive a simplified version of (1):

zω4 + z + ω2 = 0. (1′)

In the same way, equation (2) becomes

zω + z − ω3(ω4 − 1) = 0. (2′)

From (1′) and (2′) we obtain the following expression for z:

z = −ω7 + ω3 − ω2

ω4 − ω
= −ω6 + ω2 − ω

ω6
= −1 + ω − 1

ω5
.

To prove that z is real, it will suffice to prove that it coincides with its conjugate. It

is easy to see that
ω − 1

ω5
= ω − 1

ω5

is equivalent to

ω4 − ω5 = ω4 − ω5,

i.e., ω14 − ω13 = ω4 − ω5, which is true by the properties of ω given in (A).
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Antipedal triangle of point M: The triangle determined by perpendicular lines from

vertices A, B, C of triangle ABC to M A, M B, MC , respectively.

Area of a triangle: The area of triangle with vertices with coordinates z1, z2, z3 is the

absolute value of the determinant

� = i

4

∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z3 z3 1

∣∣∣∣∣∣∣ .
Area of pedal triangle of point X with respect to the triangle ABC:

area[P Q R] = area[ABC]
4R2

|xx − R2|.
Argument of a complex number: If the polar representation of complex number z is

z = r(cos t∗ + i sin t∗), then arg(z) = t∗.

Barycenter of set {A1, . . . , An} with respect to weights m1, . . . , mn: The point G

with coordinate zG = 1

m
(m1z1 + · · · + mnzn), where m = m1 + · · · + mn .

Barycentric coordinates: Consider triangle ABC . The unique real number μa , μb,

μc such that

zP = μaa + μbb + μcc, where μa + μb + μc = 1.

Basic invariants of triangle: s, r, R
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Binomial equation: An algebraic equation of the form Zn + a = 0, where a ∈ C∗.

Ceva’s theorem: Let AD, B E, C F be three cevians of triangle ABC . Then, lines

AD, B E, C F are concurrent if and only if

AF

F B
· B D

DC
· C E

E A
= 1.

Cevian of a triangle: any segment joining a vertex to a point on the opposite side.

Concyclicity condition: If points Mk(zk), k = 1, 2, 3, 4, are not collinear, then they

are concyclic if and only if

z3 − z2

z1 − z2
: z3 − z4

z1 − z4
∈ R∗.

Collinearity condition: M1(z1), M2(z2), M3(z3) are collinear if and only if
z3 − z1

z2 − z1
∈

R∗.

Complex coordinate of point A of cartesian coordinates (x, y): The complex num-

ber z = x + yi . We use the notation A(z).

Complex coordinate of the midpoint of segment [AB]: zM = a + b

2
, where A(a)

and B(b).

Complex coordinates of important centers of a triangle: Consider the triangle ABC

with vertices with coordinates a, b, c. If the origin of complex plane is in the circum-

center of triangle ABC , then:

• the centroid G has coordinate zG = 1

3
(a + b + c);

• the incenter I has coordinate zI = αa + βb + γ c

α + β + γ
, where α, β, γ are the sides

length of triangle ABC ;

• the orthocenter H has coordinate zH = a + b + c;

• the Gergonne point J has coordinate z J = rαa + rβb + rγ c

rα + rβ + rγ

, where rα, rβ, rγ

are the radii of the three excircles of triangle;

• the Lemoine point K has coordinate zK = α2a + β2b + γ 2c

α2 + β2 + γ 2
;

• the Nagel point N has coordinate zN =
(

1 − α

s

)
a +

(
1 − β

s

)
b +

(
1 − γ

s

)
c;

• the center O9 of point circle has coordinate zO9 = 1

2
(a + b + c).
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Complex number: A number z of the form z = a + bi , where a, b are real numbers

and i = √−1.

Complex product of complex numbers a and b: a × b = 1

2
(ab − ab).

Conjugate of a complex number: The complex number z = a−bi , where z = a+bi .

Cyclic sum: Let n be a positive integer. Given a function f of n variables, define the

cyclic sum of variables (x1, x2, . . . , xn) as∑
cyc

f (x1, x2, . . . , xn) = f (x1, x2, . . . , xn) + f (x2, x3, . . . , xn, x1)

+ · · · + f (xn, x1, x2, . . . , xn−1)

De Moivre’s formula: For any angle α and for any integer n,

(cos α + i sin α)n = cos nα + i sin nα.

Distance between points M1(z1) and M2(z2): M1 M2 = |z2 − z1|.
Equation of a circle: z · z + α · z + α · z + β = 0, where α ∈ C and β ∈ R.

Equation of a line: α · z + αz + β = 0, where α ∈ C∗, β ∈ R and z = x + iy ∈ C.

Equation of a line determined by two points: If P1(z1) and P2(z2) are distinct points,

then the equation of line P1 P2 is ∣∣∣∣∣∣∣
z1 z1 1

z2 z2 1

z z 1

∣∣∣∣∣∣∣ = 0.

Euler’s formula: Let O and I be the circumcenter and incenter, respectively, of a

triangle with circumradius R and inradius r . Then

O I 2 = R2 − 2Rr.

Euler line of triangle: The line determined by the circumcenter O , the centroid G,

and the orthocenter H .

Extend law of sines: In a triangle ABC with circumradius R and sides α, β, γ the

following relations hold:

α

sin A
= β

sin B
= γ

sin C
= 2R.

Heron’s formula: The area of triangle ABC with sides α, β, γ is equal to

area[ABC] = √s(s − α)(s − β)(s − γ ),

where s = 1

2
(α + β + γ ) is the semiperimeter of the triangle.
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Isometric transformation: A mapping f : C → C preserving the distance.

Lagrange’s theorem: Consider the points A1, . . . , An and the nonzero real numbers

m1, . . . , mn such that m = m1 + · · · + mn �= 0. For any point M in the plane the

following relation holds:

n∑
j=1

m j M A2
j = mMG2 +

n∑
j=1

m j G A2
j ,

where G is the barycenter of set {A1, . . . , An} with respect to weights m1, . . . , mn .

Modulus of a complex number: The real number |z| = √
a2 + b2, where z = a +bi .

Morley’s theorem: The three points of adjacent trisectors of angles form an equilateral

triangle.

Nagel line of triangle: The line I, G, N .

nth roots of complex number z0: Any solution Z of the equation Zn − z0 = 0.

nth roots of unity: The complex numbers

εk = cos
2kπ

n
+ i sin

2kπ

n
, k ∈ {0, 1, . . . , n − 1}.

The set of all these complex numbers is denoted by Un .

Orthogonality condition: If Mk(zk), k = 1, 2, 3, 4, then lines M1 M2 and M3 M4 are

orthogonal if and only if
z1 − z2

z3 − z4
∈ iR∗.

Orthopolar triangles: Consider triangle ABC and points X, Y, Z situated on its cir-

cumcircle. Triangles ABC and XY Z are orthopolar (or S-triangles) if the Simson–

Wallance line of point X with respect to triangle ABC is orthogonal to line Y Z .

Pedal triangle of point X : The triangle determined by projections of X on sides of

triangle ABC .

Polar representation of complex number z = x + yi : The representation z =
r(cos t∗ + i sin t∗), where r ∈ [0, ∞) and t∗ ∈ [0, 2π).

Primitive nth root of unity: An nth root ε ∈ Un such that εm �= 1 for all positive

integers m < n.

Quadratic equation: The algebraic equation ax2 + bx + c = 0, a, b, c ∈ C, a �= 0.

Real product of complex numbers a and b: a · b = 1

2
(ab + ab).

Reflection across a point: The mapping sz0 : C → C, sz0(z) = 2z0 − z.

Reflection across the real axis: The mapping s : C → C, s(z) = z.
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Rotation: The mapping ra : C → C, ra(z) = az, where a is a given complex number.

Rotation formula: Suppose that A(a), B(b), C(c) and C is the rotation of B with

respect to A by the angle α. Then c = a + (b − a)ε, where ε = cos α + i sin α.

Similar triangles: Triangles A1 A2 A3 and B1 B2 B3 of the same orientation are similar

if and only if
a2 − a1

a3 − a1
= b2 − b1

b3 − b1
.

Simson Line: For any point M on the circumcircle of triangle ABC , the projections

of M on lines BC, C A, AB are collinear.

Translation: The mapping tz0 : C → C, tz0(z) = z + z0.

Trigonometric identities
sin2 x + cos2 x = 1,

1 + cot2 x = csc2x,

tan2 x + 1 = sec2 x;
addition and subtraction formulas:

sin(a ± b) = sin a cos b ± cos a sin b,

cos(a ± b) = cos a cos b ∓ sin a sin b,

tan(a ± b) = tan a ± tan b

1 ∓ tan a tan b
,

cot(a ± b) = cot a cot b ∓ 1

cot a ± cot b
;

double-angle formulas:

sin 2a = 2 sin a cos a = 2 tan a

1 + tan2 a
,

cos 2a = 2 cos2 a − 1 = 1 − 2 sin2 a = 1 − tan2 a

1 + tan2 a
,

tan 2a = 2 tan a

1 − tan2 a
;

triple-angle formulas:

sin 3a = 3 sin a − 4 sin3 a,

cos 3a = 4 cos3 a − 3 cos a,

tan 3a = 3 tan a − tan3 a

1 − 3 tan2
a;
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half-angle formulas:

sin2 a

2
= 1 − cos a

2
,

cos2 a

2
= 1 + cos a

2
,

tan
a

2
= 1 − cos a

sin a
= sin a

1 + cos a
;

sum-to-product formulas:

sin a + sin b = 2 sin
a + b

2
cos

a − b

2
,

cos a + cos b = 2 cos
a + b

2
cos

a − b

2
,

tan a + tan b = sin(a + b)

cos a cos b
;

difference-to-product formulas:

sin a − sin b = 2 sin
a − b

2
cos

a + b

2
,

cos a − cos b = −2 sin
a − b

2
sin

a + b

2
,

tan a − tan b = sin(a − b)

cos a cos b
;

product-to-sum formulas:

2 sin a cos b = sin(a + b) + sin(a − b),

2 cos a cos b = cos(a + b) + cos(a − b),

2 sin a sin b = − cos(a + b) + cos(a − b).

Vieta’s theorem: Let x1, x2, . . . , xn be the roots of polynomial

P(x) = an xn + an−1xn−1 + · · · + a1x + a0,

where an �= 0 and a0, a1, . . . , an ∈ C. Let sk be the sum of the products of the xi taken

k at a time. Then

sk = (−1)k an−k

an
,

that is,

x1 + x2 + · · · + xn = an−1

an
,

x1x2 + · · · + xi x j + xn−1xn = an−2

an
,

. . .

x1x2 · · · xn = (−1)n a0

an
.
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[41] Nahin, P. J., An Imaginary Tale. The Story of
√−1 (Romanian), Theta,

Bucharest, 2000.

[42] Nicula, V., Complex Numbers (Romanian), Scorpion 7, Bucharest, 1999.

[43] Pedoe, D., A Course of Geometry for Colleges and Universities, Cambridge

University Press, Cambridge, 1970.

[44] Pompeiu, D., The Mathematical Works (Romanian), Academiei, Bucharest,

1959.

[45] Prasolov, V. V., Problems of Plane Geometry, 2 volumes, Nauka, Moscow, 1986.



316 References

[46] Retali, V., Biggiogero, G., La geometria del triangolo (cap. XXIV din Enciclo-

pedia delle matematiche elementari, vol. II, parte I, Milan, 1937).
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Ceteraş, M.: 5.7.7
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Dincă, M.: 5.3.8, 5.4.31
Dospinescu, G.: 5.8.14
Dumitrescu, C.: 5.1.33

Enescu, B.: 5.2.3, 5.9.14

Feher, D.: 5.7.14

Gologan, R.: 5.2.8

Iancu, M.: 5.4.33
Ioan, C.: 5.1.31
Ionescu, P.: 5.6.15



318 Index of Authors

Jinga, D.: 5.1.3, 5.1.6, 5.2.12

Manole, Gh.: 5.1.11
Marinescu, D.: 5.2.13
Miculescu, R.: 4.11.1
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