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To Zara and Chrissie—in the hope that, one day, 
they too will discover the fun of this subject.





vii

Contents

Preface to Second Edition	 xiii
Preface to First Edition	 xv
Acknowledgements	 xvii
About the Author	 xix

	 1	 Introduction	 1

1.1	 Aim and Scope  1
1.2	 Classification of Surveys  2

1.2.1	 Classification by Purpose  2
1.2.2	 Classification by Scale  3
1.2.3	 Classification by the Type of Measurements Taken  3
1.2.4	 Classification by the Equipment Used  4

1.3	 The Structure of This Book  5

	 2	 General Principles of Surveying	 7

2.1	 Errors  7
2.1.1	 Types of Errors  8
2.1.2	 Precision and Accuracy  9

2.2	 Redundancy  10
2.3	 Stiffness  10
2.4	 Adjustment  12
2.5	 Planning and Record Keeping  12

	 3	 Principal Surveying Activities	 15

3.1	 Establishing Control Networks  15
3.1.1	 Satellite Methods  17
3.1.2	 Triangulation  18
3.1.3	 Traversing  19

3.2	 Mapping  20



viii  Contents

3.3	 Setting Out  22
3.3.1	 Setting Out in the Horizontal Plane  23
3.3.2	 Setting Out Heights  27

3.4	 Resectioning  28
3.5	 Deformation Monitoring  30

	 4	 Angle Measurement	 33

4.1	 The Surveyor’s Compass  33
4.2	 The Clinometer  33
4.3	 The Total Station  34

4.3.1	 The Instrument  34
4.3.2	 Handling  37
4.3.3	 Setting Up, Centring and Levelling  38
4.3.4	 Focusing the Telescope  40
4.3.5	 Observing the Target  41
4.3.6	 Reading the Angle  41
4.3.7	 Errors Due to Maladjustment of the Instrument  42

4.4	 Making Observations  43
4.4.1	 Principles  43
4.4.2	 Practical Points  44
4.4.3	 Recording Observations  45
4.4.4	 Horizontal Angles  46
4.4.5	 Vertical Angles  47
4.4.6	 Setting Out Angles  49

4.5	 Checks on Permanent Adjustments  50
4.5.1	 Bubble Errors  50
4.5.2	 Plummet Errors  51
4.5.3	 Reticle Errors  51
4.5.4	 Collimation Errors  52
4.5.5	 Trunnion Axis Misalignment  52

	 5	 Distance Measurement	 53

5.1	 General  53
5.2	 Tape Measurements  53
5.3	 Optical Methods (Tachymetry)  54
5.4	 Electromagnetic Distance Measurement (EDM)  55

5.4.1	 Principles  55
5.4.2	 Use of EDM  57



Contents  ix

5.5	 Ultrasonic Methods  58
5.6	 GNSS  58

	 6	 Levelling	 61

6.1	 Theory  61
6.2	 The Instrument  64
6.3	 Technique  66
6.4	 Booking  68
6.5	 Permanent Adjustments  70
6.6	 Precise Levelling  71
6.7	 Contours  75
6.8	 Levelling over Longer Distances  76

	 7	 Satellite Surveying	 79

7.1	 Introduction  79
7.2	 How GPS Works  80
7.3	 Differential GNSS (DGNSS)  82

7.3.1	 Base Stations for Differential GNSS  84
7.3.1.1	 Passive Stations  84
7.3.1.2	 Active Stations  84
7.3.1.3	 Broadcasting Stations  85

7.3.2	 Network Real-Time Kinematic Services  85
7.4	 Using DGNSS in the Field  86

7.4.1	 Static  86
7.4.2	 Rapid Static  86
7.4.3	 Stop and Go  86
7.4.4	 Kinematic  87
7.4.5	 Real-Time Kinematic (RTK)  87
7.4.6	 Building a Network of Stations  88

7.5	 Redundancy  88
7.6	 Processing GNSS Results  90
7.7	 The International Terrestrial Reference System  94
7.8	 Further Details of GPS and Galileo  95

7.8.1	 The GPS Signal  95
7.8.2	 Ionospheric Effects in GPS  97
7.8.3	 GPS Time  97
7.8.4	 Galileo  98

7.9	 Enhancement of GNSS  98
7.9.1	 Overlay Systems  98
7.9.2	 Precise Ephemerides  99



x  Contents

	 8	 Geoids, Ellipsoids and Co-ordinate Transforms	 101

8.1	 Definition of the Geoid  101
8.2	 The Need for an Ellipsoid  102
8.3	 Orthometric Heights and Bench Marks  106
8.4	 Geometry of the Ellipse  108

8.4.1	 Defining the Shape of an Ellipse  108
8.4.2	 Curvature on an Ellipse  110

8.5	 Transformations between Ellipsoids  112
8.5.1	 Using a Transform Matrix  112
8.5.2	 Making a Transform Matrix  117

8.6	 ETRS89 and the International Terrestrial Reference System  118
8.7	 Further Properties of Ellipsoids  119

8.7.1	 Curvature on an Ellipsoid  119
8.7.1.1	 Principal Curvatures  119
8.7.1.2	 Curvature in Other Directions  122
8.7.1.3	 Average Curvature at a Point  124
8.7.1.4	 Mean Curvature of an Ellipsoid  125

8.7.2	 Geodesics  125

	 9	 Map Projections	 129

9.1	 The Need for Projections  129
9.2	 Useful Properties of Projections  131
9.3	 Common Classes of Projections  132

9.3.1	 Azimuthal Projections  132
9.3.2	 Cylindrical Projections  135
9.3.3	 Conical Projections  137

9.4	 Individual Projections  138
9.4.1	 The Lambert Conformal Projection  138
9.4.2	 The Mercator Projection  139
9.4.3	 The Transverse Mercator Projection  139
9.4.4	 The Universal Transverse Mercator Projection  140

9.5	 Distortions in Conformal Projections  141
9.5.1	 Scale Factor Distortions  141
9.5.2	 Distortions of Shortest Paths between Points  142

9.6	 Grids  144
9.6.1	 UTM Grids  146
9.6.2	 The British National Grid  146
9.6.3	 The State Plane Co-ordinate System  147

9.7	 Bearings on Grids  147



Contents  xi

9.8	 The Realisation of the British National Grid  149
9.9	 Co-ordinate Systems for Engineering Works in Britain  151

	10	 Reduction of Distance Measurements	 155

10.1	 Correction for the Curvature of the Ellipsoid  155
10.2	 Correction for Light Curvature  158
10.3	 Corrections to Slope Distance Measurements  163
10.4	 Final Calculation of Reduced Distance  165
10.5	 Slope Distances  167
10.6	 Summary  169

	11	 Adjustment of Observations	 171

11.1	 Introduction  171
11.2	 The Bowditch Adjustment  172
11.3	 Least-Squares Adjustment  175
11.4	 Error Ellipses  182
11.5	 Least-Squares Adjustment by Computer  188
11.6	 Interpreting Least-Squares Results  189
11.7	 Summary  190

	12	 Trigonometric Heighting	 193

12.1	 Introduction  193
12.2	 Methods for Trigonometric Heighting  194
12.3	 Procedure for Reciprocal Vertical Measurements  194
12.4	 Scheme of Observations  198
12.5	 Calculations  198
12.6	 Accuracy of Reciprocal Vertical Angles  203

Appendix A: Constants, Formulae, Ellipsoid and 
Projection Data	 205
Appendix B: Control Stations	 207
Appendix C: Worked Example in Transforming 
between Ellipsoids	 211
Appendix D: Calculation of Local Scale Factors 
in Transverse Mercator Projections	 213
Appendix E: Worked Examples in Adjustment	 217
Appendix F: Worked Example in Setting Out	 225
Appendix G: Booking Sheets	 231



xii  Contents

Appendix H: Calculation Sheets	 237
References and Bibliography	 241
Glossary	 243



xiii

Preface to the Second Edition

In the 10 years since the first edition of this book was published, there 
have been a number of advances in surveying equipment: total stations have 
almost entirely replaced theodolites, GPS has been augmented by other sat-
ellite navigational systems, and the shaping of new roadways is now done 
by remotely-controlled earth-moving machinery using satellite receivers. 
More than this, though, it seems that I have learned more about the subject 
from 10 further years of teaching able and inquisitive students, who enjoy 
asking their lecturers difficult questions. The result is hopefully a book 
which is once again technically up-to-date, and which explains the subject 
with slightly more rigour and clarity than before.

Aylmer Johnson

Cambridge
May 2013





xv

Preface to the First Edition

More than almost any other engineering discipline, surveying is a practi-
cal, hands-on skill. It is impossible to become an expert surveyor, or even 
a competent one, without using real surveying instruments, and processing 
real data. On the other hand, it is undoubtedly possible to become a very 
useful surveyor without ever reading anything more theoretical than the 
instrument manufacturers’ operating instructions.

What, then, is the purpose of this book?
A second characteristic of surveying is that it involves much higher 

orders of accuracy than most other engineering disciplines. Points must 
often be set out to an accuracy of 5 millimetres with respect to other points, 
which may be more than 1 kilometre away. Achieving this level of accuracy 
requires not only high-quality instruments but also a meticulous approach 
to gathering and processing the necessary data. Errors and mistakes which 
are minute by normal engineering standards can lead to results which are 
catastrophic in the context of surveying.

Yet in the real world, errors will always exist, and approximations and 
assumptions must always be made. The accepted techniques of surveying 
have been developed to eliminate those errors which are avoidable and to 
minimise the effects of those which are not. Likewise, the formulae used 
by surveyors incorporate many assumptions and approximations, and save 
time when the errors which they introduce are negligible by comparison 
with the errors already inherent in the observations.

No two jobs in surveying are exactly the same. A competent professional 
surveyor therefore needs to know the scope and limitations of each surveying 
instrument, technique, and formula: partly to avoid using unnecessarily elab-
orate methods for a simple job but mainly to avoid using simplifying assump-
tions which are invalidated by the size or required accuracy of the project. 
This knowledge can only be developed by understanding how the accepted 
techniques have evolved, and how the formulae work—and this understand-
ing is becoming increasingly hard to acquire with the advent of electronic 
‘black box’ surveying instruments and software applications, which perform 
elaborate calculations whose details are hidden from the user.



xvi  Preface to the First Edition

It is this understanding which this book sets out to provide. The methods 
for using each generic class of surveying instrument have been described in 
a way which is intended to show why they have evolved; and the calcula-
tions are similarly explained, such that the inherent assumptions can be 
clearly identified. Wherever necessary, practical guidance is also given on 
the range of distances for which a particular formula or technique is both 
necessary and valid.

The material in this book is based on the surveying courses taught in the 
Engineering Department at Cambridge University, and I am grateful to the 
many colleagues who have both enhanced my own understanding of the sub-
ject and contributed to past editions of the ‘Survey Notes’, from which this 
book evolved. The philosophy of engineering education at Cambridge has 
always been that an understanding of a subject’s fundamental principles is 
the key to keep abreast with the changes which technology inevitably brings; 
and indeed to initiating appropriate changes, when technology makes this 
possible. I hope that this book has succeeded in applying that philosophy to 
surveying, in a way which will be of value to those who read it.

Aylmer Johnson

Cambridge
August 2003
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Chapter 1

Introduction

1.1  AIM AND SCOPE

Engineering works such as buildings, bridges, roads, pipelines and tun-
nels require very precise dimensional control during their construction. 
Buildings must be vertical, long tunnels must end at the correct place, and 
foundations must often be constructed in advance to accommodate pre-
fabricated structural sections. To achieve this, surveyors are required to 
determine the relative positions of fixed points to high accuracy, and also 
to establish physical markers at (or very close to) predetermined locations. 
These tasks are achieved using networks of so-called control points. This 
book aims to give the civil engineering surveyor all the necessary theoreti-
cal knowledge to set up, manage and use such networks for the construc-
tion and monitoring of large or small engineering works.

The exact way in which control networks are established and managed 
depends on a number of factors:

	 1.	The size of the construction project and the accuracy required. The 
accuracy of each technique described in this book is explained, 
together with the limitations of the various assumptions used in subse-
quent calculations. In particular, guidance is given as to when a project 
is sufficiently large that the curvature of the earth must be taken into 
account.

	 2.	The available equipment. As far as possible, the descriptions of sur-
veying equipment in this book are generic and are not based on the 
products of any one particular manufacturer. Both satellite and ‘con-
ventional’ surveying instruments are covered, since both are appro-
priate under different circumstances.

	 3.	The country in which the work is being carried out. This book 
explores some topics with particular reference to the mapping system 
used in Great Britain; but a clear indication is also given of how the 
same issues are addressed in other countries, with different mapping 
systems and survey authorities.
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The tools of the engineering surveyor have changed significantly in recent 
years. Most notably, navigational satellites now provide the simplest and 
most accurate way of finding the position of any point on the surface of the 
earth, or (more importantly) the relative positions of two or more points. 
This first became commonplace in the mid-1980s, with the advent of the 
global positioning system, or GPS; other systems are now also available, 
and the method is collectively known as the global navigational satellite 
system, or GNSS. However, GNSS has some inherent limitations, which 
are explained in detail in Chapter 7. As a result, other more conventional 
surveying techniques must still be understood, and used when appropriate. 
In addition, the traditional surveying tools such as levels and total stations 
are now predominantly electronic, and can usually record (and sometimes 
even observe) readings quite automatically. The descriptions in this book 
are largely independent of these advances, because they do not change the 
basic way in which the instrument works, but simply mean that readings 
can be taken more simply and quickly. The particular techniques for using 
manual instruments have also been included, for those occasions and loca-
tions where electronic instruments are not available or appropriate.

1.2  CLASSIFICATION OF SURVEYS

Surveys are conducted for many different purposes, which will determine 
the types of instruments which are used, the measurements which are 
taken, and the subsequent processing of those measurements to produce 
the required results. It is useful to know the names of the principal types of 
surveys, and the nature of the work which is involved.

Engineering surveys are usually classified in the following ways:

1.2.1  Classification by Purpose

	 1.	Geodetic—to determine the shape of the earth, or to provide an accu-
rate framework for a big survey, whose size means that the curvature 
of the earth must be taken into account;

	 2.	Topographic—to produce ordinary medium-scale maps for pub-
lication and general use. Topographic surveys record all the fea-
tures of the landscape which can be shown on the scale of the 
map. Topographic maps are usually produced by means of aerial or 
satellite photogrammetry.

	 3.	Cadastral—to establish and record the boundaries of property or ter-
ritory. Cadastral surveys are concerned only with those features of 
the landscape which are relevant to such boundaries.
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	 4.	Engineering—to choose locations for, and then set out markers for, 
engineering construction works. Engineering surveys are concerned 
only with the features relevant to the task in hand, and usually have 
two phases. The first phase typically involves collecting an amount of 
topographic information, to allow the project to be planned in detail. 
When the planning is complete, the second phase consists of setting 
out the necessary markers for earthmoving and construction to begin.

Engineering surveyors are likely to come in contact with all these types 
of surveys, but are less likely to have to conduct a large-scale topographic 
survey. For this reason, the techniques of topographic surveying are not 
covered in this book; for further information on this class of surveying, see 
Mikhail, Bethel and McGlone (2001) and Wolf (2000).

1.2.2  Classification by Scale

The scale (i.e., size) of a survey will affect the instruments and techniques 
used, as well as the type of projection used to display or record the results. 
In a topographic survey, it also determines the amount and type of topo-
graphic detail which is recorded.

1.2.3 � Classification by the Type 
of Measurements Taken

	 1.	Triangulation—finding the size and shape of a network of triangles 
by measuring their angles and (since about 1980) the lengths of their 
sides. Used in conventional surveying when each station can see three 
or more other stations.

	 2.	Traverse—proceeding from one point to another by ‘dead reckon-
ing’, using measured distances and angles to calculate bearings. Used 
when the construction work is long and narrow, such as a motorway 
or tunnel.

	 3.	Resectioning—establishing the precise position of a single station by 
measuring distances and angles to a number of other nearby stations 
whose positions are already known.

	 4.	DGNSS (differential GNSS)—measuring the relative three-dimen-
sional (3-D) positions of two stations by simultaneously recording 
satellite observations at each one, and comparing the results.

Often, a particular survey involves a hybrid of all four of these techniques.
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1.2.4  Classification by the Equipment Used

	 1.	Tape—for direct linear measurement. Cheap and robust. Still occa-
sionally used for small detailed surveys, but now largely supplanted 
by electromagnetic distance measurement devices.

	 2.	Compass—to observe bearings. Used mainly in preliminary 
reconnaissance.

	 3.	Theodolite—a telescopic sight pivoted horizontally and vertically, 
with two graduated protractors (called ‘circles’) for measuring angles. 
See Figure 1.1.

	 4.	Electromagnetic distance measurement (EDM) devices—typically 
used for measurements of lengths from, say, 5 m to 5 km, though 
some instruments have ranges up to about 25 km.

	 5.	Total station—essentially a theodolite with a built-in EDM. Total sta-
tions usually have facilities for recording and processing measurements 
electronically, and have largely replaced conventional theodolites.

	 6.	LiDAR—acronym which stands for light detection and ranging, and 
refers to a class of surveying instruments which can measure dis-
tances and angles to solid surfaces to a reasonable accuracy at a very 
high rate. A LiDAR receiver generates a three-dimensional ‘cloud’ of 
points and is an efficient way of capturing a three-dimensional shape, 
e.g., the surface of some land, the façade of a building, or the details 
of a chemical plant. These devices are also known as laser scanners.

	 7.	GNSS—using navigational satellites to fix positions on the earth. This 
technique has almost completely replaced terrestrial triangulation for 

Target 2
Horizontal

angle

Zenith
angle

Horizontal circle

Vertical circle

Target 1

Vertical

Slope
angle

Figure 1.1 � Angles measured by a theodolite or total station.
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large-scale control survey, and can also be useful on building sites, pro-
vided it is not set up close to buildings or trees. The term ‘satellite sur-
veying’ is also used for this activity, but is ambiguous—see 9, below.

	 8.	Aerial camera (photogrammetry)—mainly used in topographic sur-
veys, but also for recording the shapes (and subsequent deformations) 
of buildings: see Atkinson (2001).

	 9.	Satellite camera—essentially, a long-range aerial camera. Satellites 
can be used for gathering topographic data, and also for many other 
remote sensing purposes related to geographic information systems 
(GIS), such as monitoring crop yields or atmospheric pollution.

1.3  THE STRUCTURE OF THIS BOOK

There are several possible ways to set out the further theoretical knowledge 
that a competent engineering surveyor will need. The approach adopted 
in this book is to describe the most important principles of surveying in 
Chapter 2, and the main activities of surveyors in Chapter 3. This is fol-
lowed by four further chapters explaining how particular measurements 
are made: angles in Chapter 4, distances in Chapter 5, heights in Chapter 6, 
and satellite position fixing in Chapter 7. The use of satellite data in par-
ticular requires an understanding of geodesy, including the shape of the 
earth, and the co-ordinate systems used to describe the positions of points 
on or near to its surface; these concepts are discussed in Chapters 8 and 9. 
Chapters 10 and 11 cover the main calculations a surveyor will need to pro-
cess raw observations into useful results; and Chapter 12 describes some 
additional conventional methods for finding height differences which are 
particularly useful when dealing with tall structures, or when establishing 
local transforms for raw GNSS data.

The appendices contain useful numerical data, observation and calcula-
tion sheets, and worked examples of some of the calculations described 
in the book. A glossary is also included, explaining terms which might be 
unfamiliar to the reader.

Finally, a least-squares adjustment program called LSQ is available on 
the book’s webpage (www.crcpress.com/product/isbn/9781466589551). 
LSQ will adjust a mixture of conventional and differential GNSS observa-
tions to compute the most likely positions of stations whose positions are 
unknown, and the likely accuracy to which they have been found.
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Chapter 2

General Principles of Surveying

Surveying has two notable characteristics: the work is done to a much 
higher level of accuracy than most other engineering work; and it is possi-
ble for quite serious errors to remain undetected until it is too late to correct 
them. For this reason, there are some inherent principles which should be 
observed in all surveying, regardless of the type of survey or the equipment 
used. This chapter describes those principles.

2.1  ERRORS

All the results of surveying are based on measurements, and all measure-
ments are subject to errors. Because surveying involves high degrees of 
accuracy (most surveying measurements are accurate to within 10 parts 
per million and some are within 1 or 2 parts per million), it is relatively 
easy to make significant errors, and relatively hard to detect them. The 
understanding and management of errors is therefore possibly the single 
most important skill that a professional surveyor must possess. Many of 
the techniques of surveying are directed towards cancelling or eliminating 
errors, and towards ensuring that no serious error remains undetected in 
the final result. Even so, the presence of unnoticed ‘systematic’ errors in a 
survey can lead to false, yet seemingly consistent, results. A recent inter-
national tunnelling project drifted several metres from its intended path 
because temperature gradients near the tunnel wall caused lines of sight to 
bend consistently in one direction, and this was not detected until an inde-
pendent method was used to check the work.

High accuracy in surveying is expensive because it involves costly, high-
quality equipment and more elaborate procedures for taking measurements. 
On the other hand, cheaper equipment may not be adequate to achieve the 
required accuracy, particularly if (for instance) a long distance has to be 
split into several steps, requiring more measurements and resulting in an 
accumulation of errors. Surveys are therefore often conducted using high-
quality equipment to establish a few ‘major control’ stations around the 
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area to a higher accuracy than is required overall, and then filling in the 
intervening detail by cheaper methods adequate for the shorter distances. 
This is usually the most economic way of distributing the ‘error budget’ to 
achieve a satisfactory final result at minimum cost.

2.1.1  Types of Errors

Surveying errors fall into three categories:

	 1.	Gross errors. Gross errors are due to mistakes or carelessness, such as 
misreading by a metre or a degree. A proper routine of checks should 
detect them. A surprisingly common source of error is the manual 
transcription of readings from one place to another.

	 2.	Systematic errors. Systematic errors are cumulative and due to some 
persistent cause—generally in an instrument, but sometimes in a habit 
of the observer. They can be reduced by better technique but not by 
averaging many readings, as they are not governed by the laws of prob-
ability. Thus all distances measured with an inaccurate tape or electro-
magnetic distance measurement (EDM) device will, from that cause, 
have the same percentage or absolute error, whatever their lengths and 
however many times they are measured; the only remedy is to calibrate 
the device more carefully. This is the most serious sort of error, and the 
technique of survey is mainly directed against it: the greater the accu-
racy required, the more elaborate and expensive the instruments and 
the technique.

		    A special type of systematic error is a periodic error, which var-
ies cyclically within the instrument. Examples include errors in the 
positions of the angle markers on a horizontal circle, inaccuracies 
in a vernier scale, or nonlinearities in the phase resolver of an EDM 
or global navigational satellite system (GNSS) receiver. This type of 
error can sometimes be eliminated by special observation techniques: 
for instance, measuring a horizontal angle several times, but using a 
different part of the horizontal circle on each occasion.

	 3.	Random errors. Random errors are due to a number of small causes 
beyond the control of the observer. Their magnitude depends on the 
quality of the instrument used and on the skill of the observer, but 
they cannot be corrected. Thus no one can place a mark, or make an 
intersection, or read a scale with absolute accuracy or consistency. 
Even after allowing for systematic personal bias (covered in ‘Systematic 
errors’ above), there will remain errors which are a matter of chance 
and are subject to the laws of probability. In general, positive and nega-
tive errors are equally probable; small errors are more frequent than 
large ones, and very large random errors do not occur at all.
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		    In statistical terms, random errors cause readings to deviate from 
the correct value in the manner of a normal distribution—similar, for 
instance, to the scatter of heights to be found in a sample of adults. 
The scale of the scattering can therefore be defined by quoting the 
standard deviation (σ) of the distribution; two-thirds of all readings 
will lie within one standard deviation of the correct value (above or 
below), and 95% within two standard deviations. Alternatively, the 
standard deviation for the random element in an observation can be 
estimated by taking the measurement several times, and seeing what 
range of values covers the middle two-thirds of the readings; the size 
of this range is an estimate of (2 × σ).

		    Two other measures of quality are also used to define the accuracy 
of readings affected by random errors. The probable error, expressed 
as ±p, is such that 50% of a large number of readings differ from the 
correct value by less than p; for normally distributed errors, p is 0.675 
times the standard deviation of the readings. A more useful measure 
of accuracy is the 95% confidence value which, as explained above, 
is almost exactly two standard deviations.

		    Assuming that the observation errors from an instrument have a 
normal distribution (i.e., that they contain no gross or systematic 
errors), it can be shown that the standard deviation associated with 
the arithmetic mean of a set of n repeated observations is n1  times 
the standard deviation of a single observation. Thus if a single angle 
measurement can be read to one second of arc, the mean of four read-
ings should have a precision of 0.5 seconds. Taking the same mea-
surement several times can therefore be a valid way of increasing the 
overall accuracy of a survey.

2.1.2  Precision and Accuracy

In understanding the nature of measurement errors, it is important to 
appreciate the distinction between precision and accuracy. It is possible, 
for instance, to measure a distance to fairly high precision (0.5 mm or bet-
ter) using a simple tape measure—but if the marks have not been printed 
in the right places on the tape, the reading will not be accurate. Even when 
the greatest precautions are taken in making a reading (e.g., measuring the 
distance again, using a different part of the tape), systematic errors (e.g., the 
whole tape has become longer because of thermal expansion) may still 
dominate the results. Caution must therefore be used when estimating the 
standard deviation of a set of observations from the apparent ‘scatter’ of the 
results, as described above. A set of consistent readings indicates a consis-
tent instrument and a good observer, but not necessarily an accurate result.

It is good practice to avoid recording observations to a higher precision 
than is warranted by their accuracy. However, this is not always done, and 
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surveyors should be aware that observational data is sometimes consider-
ably less accurate than it appears to be.

2.2  REDUNDANCY

Given two points whose positions are known, the position of a third point 
in plain view can be found by (for instance) measuring the horizontal dis-
tances between it and the two known points. However, the accuracy of the 
calculated position can only be inferred from the quoted accuracy of the 
distance measurement device; and a gross error in one of the distance mea-
surements (or an error in the quoted position of one of the known points) 
will still give a seemingly plausible solution for the new point’s position.

To overcome both of these problems, a fundamental principle of survey-
ing is to take redundant readings: that is, to take more measurements than 
are strictly necessary to fix the unknown quantities. Any large inconsis-
tency in the readings will then indicate a gross error in the measurements 
or the data, while any small inconsistencies will give an unbiased indication 
of the likely accuracy to which the point has been fixed.

When several new points are to be fixed simultaneously, it can become 
quite difficult to ensure by simple inspection that enough suitable readings 
have been taken or planned to ensure redundancy throughout the network. 
This soon becomes apparent, though, when the readings are adjusted by 
computer (see Section 2.4 below). For this reason, many adjustment pro-
grams include a planning mode, which enables a proposed scheme of obser-
vations to be validated for redundancy before it is carried out. A surveyor 
is strongly advised to carry out such a check, if there is any doubt about the 
redundancy of a proposed scheme of observations.

2.3  STIFFNESS

In addition to being redundant, a network (and its associated observations) 
should also be ‘stiff’—in other words, the relative positions of control 
points and the scheme of observations should be arranged such that any 
significant movement of one of the points would cause a correspondingly 
significant change in at least one of the observations. This ensures that the 
positions of unknown points are established to the highest possible accu-
racy, using the instruments which are available.

There is an exact analogy (as with redundancy) between a ‘stiff’ network 
and a stiff structure. The pin-jointed structure shown in Figure 2.1(a) is stiff, 
because any given deflection of point C requires that member AC or BC (or 
both) must lengthen or shorten by a similar amount. In Figure 2.1(b), by 
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contrast, the structure is much less stiff since C can make quite large vertical 
movements with relatively small changes in the lengths of the two members.

The corresponding situation in surveying is shown in Figure 2.2, where 
points A and B are known points, and C is unknown; and the distances AC 
and BC have been measured. As with the structure, Figure 2.2(a) shows a 
stiff network, in which any significant movement of point C would involve 
equally significant changes to one or both of the measured distances; 
whereas in Figure  2.2(b), C could move significantly in the north/south 
direction without greatly affecting either of the distances.

If angle measurements are used as well, this corresponds to adding gus-
set plates to the structure, which increases its stiffness by removing the 
freedom in the pin joints.

As with redundancy, it can be quite difficult to determine by inspection 
whether a proposed scheme of observations will result in a stiff network. 
Again, though, an adjustment program with a ‘planning’ facility will pro-
vide a good prediction of how accurately the unknown points will be fixed, 
if the likely accuracy of the planned observations is known.

(a) (b)
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B
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B

Figure 2.1  �Stiff and non-stiff structural frameworks.
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Figure 2.2 � Stiff and non-stiff survey networks.
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2.4  ADJUSTMENT

As explained in Section 2.2, the position of new points should always be 
found by taking more observations than are strictly necessary. Inevitably, 
then, the resulting readings will be in conflict; because of the small random 
errors in the readings, there will be no single set of positions for the new 
points which will be in exact agreement with all the measurements.

To resolve this problem, some form of ‘adjustment’ is usually applied to 
the calculated position of the point, to give the best fit with the measurement 
data. The commonest method is called least-squares adjustment, which 
chooses positions for the new points such that the sum of the squares of the 
residual errors* is minimised. This gives the most likely positions for the 
new points, assuming that the observation errors are normally distributed.

A good understanding of what adjustment can, and cannot, achieve is 
important for a surveyor. Essentially, it is a statistical process which gives 
the most likely position for each new point, assuming that the observation 
errors are random and normally distributed. If this is not the case, the 
results may be misleading or inaccurate. In particular, least-squares adjust-
ment will give a false impression of accuracy if there are systematic errors 
present in the data, e.g., if all distance measurements are made using a 
device which is poorly calibrated. It will also generate misleading results if 
the user is tempted to reject any seemingly ‘bad’ observations purely on the 
grounds that they do not appear to agree well with the others.

Adjustment is described in greater detail in Chapter 11.

2.5  PLANNING AND RECORD KEEPING

A successful survey requires an appropriate set of measurements to be 
taken and recorded without unnecessary deployment of human resources 
or equipment. This can only be achieved by means of planning. The follow-
ing guidelines will improve the quality of any surveying work.

	 1.	Establish clearly what the purpose of the survey is and what addi-
tional uses it might be put to in the future. This will determine the 
number and locations of control points and the accuracy to which 
their positions must be found.

	 2.	Find a suitable map or satellite photograph of the site to be surveyed. 
This will help in the creation of a possible network of control points, 
in suitable locations and with adequate stiffness. It will also show the 

*	 The residual error is defined as the difference between an observed angle or distance, and 
the calculated value based on the assumed position(s) of the new point(s).
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approximate scale of the work and will help in detecting gross errors 
in angle and distance measurements.

	 3.	Visit the site if at all possible. Check whether control stations can 
be sited at the places indicated by Step 2, and make a note of what 
will be needed to build them. If conventional instruments are to be 
used, check whether the necessary lines of sight exist between the sta-
tion locations, using ranging rods if necessary. If GNSS is to be used, 
check that the relevant stations have a clear view of the sky. Make 
notes of any features on the site (cliffs, ditches, etc.) which might 
make it difficult to move from one station to another.

		    A few simple instruments may also help at this stage. A compass 
can be used to estimate horizontal angles, and a clinometer will mea-
sure approximate vertical angles. A hand-held GNSS receiver will give 
the approximate co-ordinates of points and estimates of the distances 
between them. If this is not possible, a hand-held laser measure can 
be used, or the distances can be paced.

	 4.	Plan a set of observations which will establish the control network to 
the required accuracy at minimum cost. This is generally best done 
by working ‘from the whole to the part’: accumulated errors are min-
imised by first forming an accurate framework covering the whole 
area, and then adding further control stations to whatever accuracy is 
necessary. Accurate measurements require expensive equipment and 
longer observation times, so this type of consistent approach will give 
the most economical result.

		    The planning function in an adjustment program is very useful here. 
The eventual quality of a network can be reliably predicted by enter-
ing approximate observations (such as the compass angles above), 
together with estimates of the accuracy to which the final measure-
ment will be made.* Different observations can then be included in 
the scheme, to see which combination will give an adequate accuracy 
for minimum investment. Make sure, though, that there are enough 
observations so that one or more could be rejected without unaccept-
able loss of accuracy or redundancy. The time spent travelling to and 
from a site is usually much greater than that needed to take a few 
‘spare’ measurements while an instrument is set up.

	 5.	Plan the fieldwork in detail to make sure that all the necessary mea-
surements are taken with the minimum deployment of people and 
equipment. Each member of the team should know who will take 
which measurements, at which locations, and with what instruments.

*	 The approximate observations establish the geometry of a network to sufficient accuracy 
for its eventual stiffness to be determined. This, combined with the accuracy of the final 
observations, determines the accuracy to which the points in the network will eventually 
be fixed.
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	 6.	If possible, arrange that all fieldwork has redundancy, and that the 
computations are carried out such that no gross error (Section 2.1.1) 
will pass undetected. If some of the error checks can be carried out in 
the field while the equipment is still set up on station, then the cost of 
correcting any error will be greatly reduced.

	 7.	Before leaving base, make sure that all batteries are fully charged and 
that any necessary co-ordinate data, transformations, etc., have been 
downloaded into those instruments that need them. Make sure that 
everyone is familiar with the instruments they will be using: get unfa-
miliar instruments out, read the instruction manuals, and practise 
their use.

	 8.	Ensure that each group of surveyors keeps a diary of what is done, 
including a summary of the weather, on each day. If an error is discov-
ered later, a good diary can be invaluable in pinpointing the source of 
the problem, and thus showing which measurements may need to be 
repeated.

	 9.	Make sure that observation records are complete, and will not degrade 
with time—the data generated during a surveying job may need to 
be consulted many years after it was initially made. Observations 
recorded on paper should be checked for legibility and completeness, 
and stored in a dry condition; electronic data should be stored on a 
long-term medium, such as a CD-ROM. For important jobs, copies 
of the data should be made and stored in a different location from the 
originals—the cost of this is minuscule compared to the cost of tak-
ing the measurements again. Finally, a brief summary of the data will 
greatly assist any subsequent attempt to re-inspect some part of it.
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Chapter 3

Principal Surveying Activities

Many surveying books start by explaining how the various instruments 
are used, and then describe the reasons for their use. This order has been 
reversed here, for the benefit of those who like to understand the ultimate 
purpose of a technique before studying it in detail. Some of the concepts 
mentioned in this chapter may therefore not be fully clear to readers who 
are new to this subject; such readers are encouraged to refer to later chap-
ters, as necessary.

3.1  ESTABLISHING CONTROL NETWORKS

Before any survey can yield useful results, it is necessary to establish a set of 
fixed stations whose positions relative to one another are known—usually 
to a higher accuracy than will be needed in the final result. A set of such 
stations is known as a control network.

If the scope of an engineering project is relatively small (up to 5 km 
square, say) and does not have to be tied in with work elsewhere, then it is 
usually easiest to set up a local Cartesian co-ordinate system for the work, 
and to use conventional surveying instruments rather than a global naviga-
tional satellite system (GNSS). Typically, the first control station* is estab-
lished at or near the southwest corner of the site, and defined to be the ‘site 
origin’, having the co-ordinates (0,0,0)†. A second station is then set up at 
the northwest corner of the site with its x co-ordinate defined to be 0. The 
horizontal line between the two stations defines the y-axis, or ‘site north’, 
and the z-axis is defined to be vertically upwards. An orthogonal Cartesian 
co-ordinate system is thus fully specified, such that any point on the site has 
a unique (x,y,z) or (easting, northing, height) co-ordinate.

*	 See Appendix B for a full discussion of control stations.
†	 Often a set of positive co-ordinates is chosen for the site origin, e.g., (100,100,100) so that 

no point on the site has negative co-ordinates.
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At least one further control station will also be needed on the site; each 
additional station is set up by first choosing a suitable location, then physi-
cally establishing the station, and finally taking measurements to find its 
co-ordinates. The two-dimensional (2-D) (x,y) position of each station is 
found by measuring horizontal angles and/or distances to or from other 
stations (see Chapters 4 and 5). If needed, the height (z) co-ordinates are 
usually found separately by levelling, as described in Chapter 6.

If just one further control station is to be added to the initial two points, 
there would be three unknowns in the 2-D co-ordinate system: namely, the 
y co-ordinate of site north, and the (x,y) co-ordinates of the third control 
station. Finding these unknowns with redundancy thus requires at least 
four measurements, of which at least two must be horizontal distance mea-
surements (if one distance and three angles were measured, there would be 
no check that the distance had been measured correctly). A typical scheme 
of measurements for fixing a third station is shown in Figure 3.1: here, a 
horizontal angle has been measured at Station 1, and the instrument has 
then been moved to Station 3, where a second angle and two distances have 
been measured.

If the final network is to consist of more than three control stations, then 
a minimum of (2n – 2) readings is required to achieve redundancy in two 
dimensions, where n is the total number of stations (i.e., including the site 
origin and site north). In addition, redundancy considerations require that:

	 1.	There should again be at least two distance measurements;
	 2.	Site north (which has one unknown) should be involved in at least two 

measurements; and
	 3.	Each subsequent point (which will have two unknowns) should be 

involved in at least three measurements.

Station 1:
Site origin

X-axis

= Co-ordinates fully de�ned = Measured distance

Station 3

Y-axis

= Co-ordinates partly de�ned

Station 2:
Site north

= Measured angle

Figure 3.1  �Survey network with three control stations.
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These requirements at least ensure that no gross error will pass unno-
ticed—but it is generally advisable to take several additional measurements 
over and above this minimum, so that any problematic reading can be elim-
inated from the set altogether, without loss of redundancy.

The total number of control stations required in the network, and their 
relative positions, will depend on the size of the site and the purposes for 
which they are needed. If the intention is to set out further points on the 
ground whose own relative positions must be guaranteed to be accurate 
(e.g., the foundation points for a prefabricated bridge), then there should 
ideally be three or more control stations near to each point, arranged so 
that the positions of the new points will be sufficiently accurate and totally 
error-proof when they are set out. If the purpose includes the production of 
some type of map, then each relevant feature of the landscape must be vis-
ible from (and not too far from) one of the control stations. Further control 
stations may also be needed, simply to ensure that the relative positions 
of the ‘useful’ stations are known to a sufficient degree of confidence and 
accuracy—and also to ensure that the site co-ordinate system will not be 
lost if one or both of the original stations is destroyed or displaced.

Many variants exist for establishing a local Cartesian system of the type 
described above. There is no need for ‘site north’ to be the same as true 
north, though it reduces the likelihood of mistakes if they are more or less 
in the same direction. Likewise, the station which defines the ‘site origin’ 
does not have to be the lowest point, or at the south-west corner of the 
site—but if it is not, then the chances of gross errors are again reduced if 
its co-ordinates are not (0,0,0) but are defined such that every point on or 
around the site has positive co-ordinates.

In larger surveys, it is often necessary or more convenient to use an exist-
ing regional co-ordinate system, or grid. This is typically done by using 
nearby existing control stations with known co-ordinates, to find the grid 
co-ordinates of the main control stations around the site. Such grid systems 
are usually orthogonal, but they often involve a scale factor; this means 
that one metre in the grid system does not exactly correspond to one metre 
of horizontal distance on the ground. On a very large survey, this scale fac-
tor will alter between one place and another; and this causes discrepancies 
between angles observed in the field and those measured between the cor-
responding straight lines drawn on the grid projection (see Chapter 9 for 
further details). There are also complications in using a national datum for 
height measurements, which are explained in Chapter 8.

3.1.1  Satellite Methods

Since about 1980, the most straightforward way to find the relative posi-
tions of stations has been to use differential GPS (or more recently, DGNSS). 
Navigational satellite receivers are simultaneously placed on two different 
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stations, and their relative positions are known to within about 5 mm after 
approximately half an hour’s ‘observation’. If national grid co-ordinates 
are required, one or more national GNSS control points (whose grid co-
ordinates are now typically published over the Internet) are also included 
in the scheme of observations. A particular advantage of using differential 
GNSS is that the stations do not need to have a line of sight between them. 
The use of GNSS is explained in Chapter 7.

GNSS has not, however, completely supplanted the more traditional ways 
of establishing control networks. It cannot be used if the control stations 
need to be near tall buildings, beneath trees, or in tunnels—and the param-
eters required to transform the data into a ground-based co-ordinate sys-
tem can only be checked by making conventional measurements between 
some of the control points as well. The equipment is also relatively expen-
sive and is potentially subject to undetectable systematic errors if used on 
its own; so again, it is reassuring to have an independent method of check-
ing the results it produces. The remainder of this section therefore describes 
the more traditional ways of establishing control networks.

3.1.2  Triangulation

Until about 1970, nearly all control networks were created by a process 
called triangulation. Two stations were established on the ground, and the 
distance between them (called the ‘base line’) was carefully measured* (usu-
ally in both directions). The relative position of a third station could then 
be fixed (with partial redundancy) by measuring all three angles in the 
triangle between it and the other two stations. No further distance needed 
to be measured, which was an advantage in the days when distances could 
only be measured by tape. More stations could subsequently be added (with 
redundancy) to the network by measuring angles between them and three 
or more of the stations already in the network.

For a given instrument accuracy and time budget, the best overall control 
network for a particular area using triangulation is obtained by distributing 
control stations as evenly over the area as possible, with well-conditioned† 
triangles, and all stations visible‡ from at least three others. Since comput-
ing power was also expensive prior to 1970, the total number of stations 
was kept as low as possible at this stage; if further control was subsequently 

*	 Accuracy is crucial here, since any error in this measurement will cause an undetectable 
‘scale error’ to propagate through the whole network.

†	 No angle in the triangle should be less than about 20° or greater than about 160°.
‡	 Two stations cannot be regarded as being visible from each other if the line of sight between 

them passes close to (‘grazes’) some piece of intervening ground. This will have the effect of 
bending the light path between them, greatly reducing the accuracy of angle and distance 
measurements.
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required in part of the area, more stations could be established nearby, and 
fixed with reference to the existing stations.*

The advent of electromagnetic distance measurement (EDM) in about 
1970 made distance measurement much easier and cheaper, and meant that 
many of the sides of the triangles in such networks could now be mea-
sured as well. This has the effect of making any network much ‘stiffer’, 
and eliminates the possibility of an undetected scale error. However, the 
use of distances to fix the grid positions of stations even in two dimensions 
requires knowledge of the altitudes of the endpoints, as will be shown in 
Chapter 10—so the use of distance measurements is often kept to a mini-
mum in conventional surveys, even now.

3.1.3  Traversing

When the area to be controlled is long and thin (e.g., a tunnel or a motor-
way), or when each station can only see two others, a system of interlock-
ing triangles is impracticable, and a so-called traverse is used instead. In 
its simplest form this consists of setting up a total station† over a station 
whose co-ordinates are known, observing another station (with known co-
ordinates) as a reference object, then observing the horizontal angle and 
distance to a station whose position is unknown, but which can now be cal-
culated from the information available. The instrument is now set up over 
the new station, and the process is repeated for each ‘unknown’ station in 
turn, finishing up on a final ‘known’ station. The agreement between the 
calculated co-ordinates and the known co-ordinates for this final station 
is a measure of the accuracy of the traverse; and there are two pieces of 
redundancy in the set of observations, which can be used to give improved 
estimates of the positions of all the unknown stations in the traverse.

In practice, most control networks are now established by some hybrid of 
triangulation, traverse, and GNSS. The key features of a good network are 
that it should be both stiff and fully redundant, as described in Chapter 2, 
and that, if possible, it should be free of any systematic error.

*	 This was the logic which dictated the construction of the first-order network over the 
United Kingdom by the Ordnance Survey between 1936 and 1951. There are approxi-
mately 480 first-order stations covering Great Britain, most of which are at the tops of hills 
or mountains; in flat parts of the country, church towers and water towers are used instead. 
A much larger network of second-order stations was subsequently established, using the 
first-order stations as fixed points; and these in turn provided fixed points for establishing 
third-order stations.

†	 The glossary gives an explanation of this term and of others which may be unfamiliar.



20  Plane and Geodetic Surveying﻿

3.2  MAPPING

Most civil engineering projects require the input of surveyors at two dif-
ferent stages—firstly to find out what currently exists on a site, and later 
to establish suitable markers for the new constructions that have been 
planned. The making of maps is often necessary at the first of these stages.

This book does not attempt to cover mapping to the depth required by 
cartographers; however, engineering surveyors will often need to make pre-
cise maps of small areas, so a few useful guidelines are given here.

	 1.	Decide what scale of map is required before starting. On a 1:1000 
map, a line of width 0.2 mm will represent 0.2 metres on the ground, 
so there is no value in recording the positions of points to better than 
this accuracy.

	 2.	For the same reason, there is no value in recording details of shapes 
which are too small to show up on the map. If a length of fence or 
hedge does not deviate from a straight line by more than one line’s 
width when plotted on the map, then only the positions of the end-
points need be recorded. (The eventual line on the map may of course 
be drawn as a wavy line, to show that the detail on the ground is not 
exactly straight.)

	 3.	The purpose(s) of the map will determine what details need to be 
recorded and how this should be done. If the map is to be used to plan 
the positions of new control points, then the line which records, say, 
the edge of a ditch should mark the closest point to the ditch where it 
would be sensible to establish a control point, rather than the water’s 
edge. Likewise, the diameter of a tree’s trunk might be of relevance 
for determining lines of sight on the ground, while the size of its can-
opy may be of relevance for GNSS observations.

	 4.	If the map is to be made back at base, it is useful to draw a freehand 
sketch of the intended map before starting to take measurements. This 
will indicate the amount of detail which can usefully be recorded, and 
the sketch can be marked up with numbers which relate to the points 
whose positions are actually measured.

	 5.	If points are to be recorded by means of a total station, it will first be 
necessary to establish control stations such that every point of interest 
can be observed from one control point or another. Also, each control 
station used for the mapping must have a line of sight to some other 
known point, which can be used as a reference bearing for the other 
measurements. If a control station is only needed for mapping pur-
poses, then its position probably doesn’t need to be known to better 
than decimetre accuracy—but it may be wise to establish it to higher 
accuracy than this, in case it is subsequently needed for some other 
purpose.
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	 6.	To make a map, the instrument is set up on one control station and 
sighted on another, which acts as a reference object. Some instru-
ments can then use the co-ordinates of the instrument position and 
reference object to ‘orient’ themselves, and calculate co-ordinates for 
all subsequent sightings—otherwise, the raw data is recorded and 
processed back in the office. A staff-holder then takes a detail pole 
(with a reflector) to each point of interest, and the bearing, vertical 
angle and slope distance are recorded by the instrument. So-called 
robotic total stations have stepping motors on their horizontal and 
vertical axes, and can follow the reflector automatically: the surveyor 
with the detail pole can then tell the instrument when to take the 
readings, by means of a radio link. This means that the job of col-
lecting detail can be done by a single surveyor—but there have been 
cases of robotic total stations being stolen, when the surveyor is too 
far away to prevent it!

	 7.	It is important to keep the detail pole vertical during measurements, 
so that its tip (which is resting on the ground) is directly below the 
reflector. If the detail pole is adjustable, its length is set to be the same 
as the height of the instrument (i.e., the trunnion axis) above its con-
trol station. This simplifies the mapping of heights, as the measured 
height difference from the instrument to the reflector can simply be 
added to the (known) height of the instrument’s control station to find 
the height of the feature that the detail pole is resting on.

	 8.	Small areas are now often mapped using real-time kinematic (RTK) 
differential GNSS. The operator walks from one point of interest to 
another, and records their positions using a GNSS receiver mounted 
on a detail pole. An electronic map can be produced simultaneously 
by joining the points with curves or straight lines and adding symbols 
or descriptive text, using a hand-held computer.

	 9.	Sometimes, the techniques described in (6) and (8) above are used 
simultaneously. A robotic total station is set up at a suitable (but 
arbitrary) position, and detail is collected by means of a detail pole 
equipped with a reflector and a GNSS receiver. The total station reads 
the angle and distance to the reflector, and also records the computed 
position of the GNSS receiver via a radio link. When the detail pole 
has been moved to a few different locations, the total station is able 
to compute its own position and orientation from this data; then, if 
GNSS reception is not possible at some of the places that the detail 
pole is taken to, its position can be calculated using the angle and 
distance measured by the total station.

As well as making land maps, surveyors sometimes need to ‘map’ com-
plex shapes such as the façade of a building or the steelwork of a bridge. 
This is now typically done using a LiDAR, or laser scanner; this can be 
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thought of as a high-speed robotic reflectorless total station* which can sys-
tematically scan and measure in any direction except (usually) downwards, 
and produces a three-dimensional (3-D) ‘point cloud’ of observations, at 
rates of up to 1 million points per second. These points are fed into soft-
ware which drapes a surface over the cloud and produces a computer model 
of the object. Most LiDAR scanners also incorporate a conventional digital 
camera, so that the surface of the model can be automatically rendered with 
the correct colours.

If (for instance) a whole building is to be mapped in this way, it becomes 
necessary to move the LiDAR sensor to different places and collect a 
separate point cloud from each location. If there is some overlap of detail 
between the various point clouds, the software is able to ‘stitch’ the clouds 
together and produce a complete, solid model. This principle can be carried 
further: a vehicle equipped with a LiDAR scanner and a GNSS receiver can 
drive down a road and map all the visible details on either side, or an air-
craft can create a detailed 3-D terrain model of the land it flies over.

3.3  SETTING OUT

The most common ultimate purpose of an engineering survey is to ‘set out’ 
points at predetermined positions, either on the ground or on partly-built 
structures—e.g., to mark where soil should be moved to, where foundation 
points should be built (perhaps for a prefabricated construction), or where the 
columns should be located on a partly-completed building for its next storey.

For much setting-out work, the accuracy does not need to be greater than 
a centimetre or so, which allows quicker, less precise techniques to be used. 
Redundancy is often not required either—if a large number of points are 
being set out (e.g., to mark out the centre line of a curved road or railway 
track), it is generally obvious when one point has been put in the wrong 
place. This makes the process quite simple: if differential GNSS is being 
used, the required co-ordinates are typed in and the system guides the sur-
veyor to the correct place. If a robotic total station is used, the process is 
very similar: the surveyor holds the detail pole and faces the instrument, 
which then transmits instructions of the form ‘x metres closer and y metres 
to your left’ to a display on the pole, to steer the surveyor to the correct 
location. When a manual total station is used, the process is essentially the 
reverse of a mapping exercise: the required co-ordinates are used to com-
pute a distance from one control point, and a horizontal angle with respect 
to a second control point. To fix the point, a total station is set up on the 
first control point, sited onto the second control point, and turned through 

*	 Some robotic total stations can be programmed to function in this way too; they are 
generally more accurate than a LIDAR scanner, but much slower.
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the calculated angle. A detail pole is then moved along the telescope’s line 
of sight, until the correct distance is measured.

Having located a point by one of these methods, a short wooden peg 
might be driven into the ground, with a nail in its top surface to mark the 
exact point. If two such pegs are set out, a straight line can be defined on 
the ground by means of a taut string between the two nails. If an exact 
height is needed, a taller post is driven into the ground and a level is used to 
mark a line of collimation (which will have a known height)* on the post, 
or on a taller ranging rod beside it. A horizontal board, called a sight rail, 
is then nailed to the post with its upper surface at the desired height.

The advent of GNSS has brought about some major changes in the tech-
niques of setting out, which are still in the process of rapid evolution. Most 
modern bulldozers, for instance, are equipped with at least two GNSS receiv-
ers (e.g., one on the cab roof and one on the top of the front blade) plus a digi-
tal radio link and servo controls; this allows a central computer to monitor 
the position and orientation of the bulldozer’s blade continuously, and thus 
create a soil surface at exactly the required height without the need for any 
sight rails or other physical markers on the site. This is both quicker and safer 
than the more conventional methods—surveyors do not need to go into sites 
where large vehicles may be operating to set out physical markers.

There is thus a wide and still-growing range of setting-out procedures 
for different engineering purposes. It is beyond the scope of this book to 
cover them all—and many of them are very well and fully described both 
in Schofield and Breach (2007) and in Uren and Price (2006). Instead, the 
remainder of this section describes how to set out single points to the high-
est possible accuracy; and Section 3.4 describes how to assess that accu-
racy, once the location has been fixed.

3.3.1  Setting Out in the Horizontal Plane

If the point is in a suitable place for GNSS observations† and the transfor-
mation between the GNSS and local co-ordinate system has been estab-
lished, then real-time kinematic GNSS can be used as described above to 
guide the operator to the desired point, usually to an accuracy of a centi-
metre or so. Prolonged observation at that provisional point will then deter-
mine its position to a higher accuracy, and an appropriate small movement 
can be made, if necessary, to improve the location of the point.

If GNSS is not available or appropriate, new points can most easily be set 
out in the horizontal plane by calculating their bearings and distances from 
an existing control station whose co-ordinates are known. A total station 
is set up on the existing station and sighted onto a second ‘known’ control 

*	 See Chapter 6 to learn how this is done.
†	 See Chapter 7 Section 7.4 for an explanation of why some places are unsuitable for this.
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station, which acts as a reference object. The angle to be turned through, 
and the distance to be measured*, are calculated by simple geometry; see 
Appendix F for a worked example of these calculations. The instrument 
is turned through the appropriate angle, and a target is moved along the 
telescope’s line of sight until the measured distance is correct, which places 
it at (or at least close to) the desired point. Many total stations can perform 
these calculations automatically, given the co-ordinates of the two control 
stations and the new point, and will make an audible noise when the tele-
scope is pointing in the right direction and again when the target is in the 
correct place.

For full accuracy, this process needs to be done twice—once with the 
instrument in the face 1 configuration, and again in face 2 (see Chapter 4 
for an explanation of what ‘face 1’ means, and why this is necessary). This 
results in two points being set out which should be fairly close to each 
other—the ‘best guess’ for the correct location of the point is then midway 
between them.

When isolated points are being set out for major construction work, it 
is essential to have some degree of redundancy, so that any error will be 
detected before the work starts. The simplest form of redundancy is to set 
the point out again, using a different method or (if only total stations are 
available) different control points as reference points. If the two resulting 
points are reasonably close to each other, the point halfway between them 
can be used, as described above; if the two points are not close to each 
other, this indicates a gross error which needs to be investigated further.

An alternative method, which generally avoids the use of distances, 
involves setting up total stations (or theodolites) over three nearby control 
points (not necessarily simultaneously) and sighting them along the rel-
evant bearing lines towards the set-out point, as described above. A small 
‘setting-out table’ is fixed in approximately the correct position, and the 
lines of sight (face 1 and face 2) from the three instruments are plotted on 
its surface, to give a figure similar to that shown in Figure 3.2.

Generally, the lines will not cross at a point, due to errors in the posi-
tions of the three control points, and in setting up the three lines of sight. 
However, they should very nearly do so—the sides of the triangle should 
not be greater than a centimetre or two. Assuming that the error is likely 
to be distributed equally between all three lines, the most likely position of 
the required point is at the centre of the inscribed circle, as shown in the 
figure, and the radius of the circle gives an indication of the likely accuracy 
to which the position of the point has been established.

The following points should be noted, when using this method:

*	 Remember that, for high accuracy, distances may need to be corrected for the local scale 
factor of the grid and for the heights of the two stations; see Chapters 9 and 10.
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	 1.	Three lines of sight from existing control stations are necessary to 
guard against the possibility of a gross error, e.g., in calculating one 
of the bearings. Two nonparallel lines of sight will always cross at a 
point; if the third one also passes nearby, it is reasonably unlikely that 
any gross error has occurred.

	 2.	The three control stations should be positioned such that the triangle 
formed by the three lines of sight is a reasonably well-conditioned one, 
as shown in Figure 3.2. If two lines of sight cross each other at a very 
acute angle (less than about 30°), then the accuracy of the final point 
will be degraded, as it would be strongly affected by a small movement 
of either of the two lines. Note, however, that this does not require the 
control stations to be spaced at near-120° intervals round the set-out 
point, as each station can be at either end of the line of sight.

	 3.	The three control stations should be reasonably close to the set-out 
point. As well as making it easier to walk between the instrument 
and setting-out table and instrument, this reduces the effect of any 
inaccuracy in the instrument’s sight line; if this inaccuracy is (say) 5 
seconds, this would cause an error of about 1 mm over a distance of 
50 metres, but 25 mm over a distance of 1 kilometre.

	 4.	By the same reasoning, the reference object should be as far away 
from the control point as possible, and at least as far away as the point 
to be set out. Otherwise, any inaccuracies in the relative positions of 
the reference object and control point will cause a larger inaccuracy 
in the setting out.

	 5.	It is good practice not to use the same reference object from all three 
control points. If the same reference object is used throughout, any 

Line of sight from
control point 2

Line of sight from
control point 3Line of sight from

control point 1

Guessed position
for point

Inscribed circle

Figure 3.2  �Establishing the best position for a set-out point.
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error in its position can propagate as a systematic error, and produce 
a triangle of lines which looks nice and small, but which is in entirely 
the wrong place. Always try to choose a different reference object for 
each control point if possible, so long as this does not violate Point 4 
above.

	 6.	The lines of sight are drawn on the table by first holding a small 
marker (perhaps a pencil) on the edge of the table nearest to the 
instrument, and allowing the observer to ‘steer’ it onto the telescope’s 
line of sight. This operation is repeated on the far edge of the table, 
and the two points are joined by a straight line.

	 7.	For greatest accuracy, each ‘line of sight’ will actually consist of two 
lines: one from using the instrument in its face 1 configuration, and 
one from face 2 (see Chapter 4, Section 4.4.1). The two lines should 
lie close to one another if the instrument is properly adjusted; and 
they should also be parallel, if the marker has been ‘steered’ carefully 
by the observer. A final line is then drawn halfway between the two 
observed lines and is taken as the ‘line of sight’ from that instrument.

	 8.	It is not necessary to have three instruments for this task. The table can 
be positioned, and the first two lines drawn, using two instruments set 
up on two of the control stations. When this has been done, one of the 
instruments is moved to the third control station, and the final line is 
drawn on the table. If only one total station is available, the table can 
be positioned using the line of sight and distance from the first control 
point, and the first line can then be drawn before the instrument is 
moved. If just one theodolite is available, the first ‘line of sight’ (from 
just one face) can be approximately recorded using two ranging rods, 
with a piece of string tied between them. The theodolite is then moved 
to the second control station, and the table is positioned where the sec-
ond line of sight crosses the taut string. Lines are now drawn on the 
table from the second station, and the theodolite is then moved back to 
the first station and on to the third station for the other lines.

	 9.	If three well-conditioned sets of lines cannot be sighted onto the table, 
then two sets are drawn, and a suitable target is set up above the inter-
section. The horizontal distance to the intersection is then measured 
from one control station and compared with the calculated distance. 
A third straight line can then be drawn on the table perpendicular to 
the corresponding line of sight and the appropriate distance from the 
intersection, to give a locus of all points on the table which are the 
‘correct’ distance from that control station. An inscribed circle can 
then be drawn to touch the three lines, as described above.

	 10.	When the most likely position of the point has been established on the 
setting-out table, a tripod can be set up over it and an optical or laser 
plummet sighted down onto the mark. The table can then be carefully 
removed and a more permanent marker established at the point where 
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the plummet sights onto the ground. (The drawing from the table 
should be kept as part of the record of the work.)

	 11.	The size of the triangle gives an indication of the accuracy to which the 
point has been set out, but only in relation to the points which were 
used in the setting out: remember to add in the inaccuracies of those 
points if the absolute accuracy of the set-out point is required. For an 
independent check of the work, and a better indication of its accuracy, 
the point should be resectioned, as described in the next section.

Whichever method of setting out is used, it is important to remember 
that a systematic error can give an apparently acceptable result which is, in 
fact, in the wrong place. An error in computing the positions of the local 
control points could have affected them all equally, and an error in specify-
ing a GNSS-to-grid transformation could give incorrect, yet quite consis-
tent, GNSS results. For important setting-out points, it is good practice to 
use as independent a method as possible to check the results. A mixture 
of GNSS and total stations might be used or, if four points have been set 
out to form the rectangular base of a building, the lengths of the sides and 
diagonals could be measured as a simple check. Additionally, of course, the 
point(s) can be resectioned—preferably, using some control points which 
were not used in the initial setting-out.

3.3.2  Setting Out Heights

This is a relatively easy process, compared to setting out in the horizontal 
plane. For greatest accuracy, a temporary benchmark (TBM) is established 
at the place where the height is to be set out, using the techniques described 
in Chapter 6. When the height of the TBM is known, a staff or tape can be 
used to measure up (or down) to the required height, where a horizontal 
wooden sight rail might be fixed. If the accuracy of the rail’s height is criti-
cal, it should be checked independently once it has been established, ideally 
by levelling to a staff resting on the top of the rail.

On building sites, height control is often achieved by means of a precisely 
horizontal laser beam which rotates about a vertical axis. This provides a 
constant height datum across the entire site, by painting a horizontal line 
on anything placed in its path. A similar technique can be used to ensure 
that steelwork, for instance, is erected vertically: here, the axis of rotation 
is set to be horizontal, so the rotating laser beam defines an exactly verti-
cal plane. Two such beams can be set up approximately at right angles to 
each other, to ensure that (for instance) a concrete column cast on site is 
exactly vertical.

Satellite surveying (i.e., GNSS) is not generally used for setting out 
heights accurately, because it tends to be slower and less accurate than the 
conventional methods. Usually, a set-out height needs to be accurate only 
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with respect to some nearby datum, and this is much more quickly and eas-
ily achieved using a level.

3.4  RESECTIONING

When a point has been set out and the final monument of its position has 
been established, it is often prudent to carry out further checks to ensure 
that the mark is in the correct place. The process of finding the exact hori-
zontal location of a single point with respect to other known stations is 
called resectioning.

If the area is suitable for satellite surveying, and if the point was initially 
set out by conventional means, then the obvious way of carrying out this 
task is by means of differential GNSS (see Chapter 7), as this provides a 
completely independent check of the point’s location.

However, if the point was initially established using real-time kinematic 
GNSS, it is good practice to use a conventional method to check it, as 
this will guard against the possibility of a systematic error in the GNSS 
observations or the data processing. This should involve the measurement 
of angles and (especially) distances with respect to nearby known stations. 
The process may be as simple as using a total station to check that the two 
foundation points for a bridge are the correct distance apart, or it may 
require all the set-out points to be independently resectioned into the con-
trol network.

To confirm the position of a point in two dimensions* with some degree 
of redundancy, three or more measurements will be required. This could be 
any combination of horizontal distances and horizontal angles—but note 
that measuring three horizontal angles from a point involves observing to 
four different control stations.

Normally, resectioning is done by taking all the necessary measure-
ments from the point whose position is to be determined. If (for instance) 
three control stations were used to set a point out initially, then two 
horizontal angles can be measured by observing those three stations; 
one or more of the distances to the stations can be measured as well, to 
provide redundancy.

Care is sometimes needed to ensure that the measurements which are 
taken are well-conditioned—i.e., that they will fix the position of the point 
to the best possible accuracy. With distance measurements, this is usually 
fairly obvious: if a point was resectioned by measuring distances to stations 
which were all nearly due east or west of it, there would be considerable 
uncertainty about its position in the north–south direction. In the case of 
angle measurements, the effect is more subtle, as shown in Figure 3.3. If 

*	 Height would normally be treated separately; see Chapter 6.
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the angle RPA is measured, a piece of information is obtained which will 
help fix the point P. Specifically, P is now known to lie somewhere on the 
circle labelled A, which passes through P, R and A. However, P could lie 
anywhere on this circle, and the same angle (α) would still be observed. 
Likewise, if the angle RPB were observed, P would be known to lie some-
where on circle B, which passes through P, R and B. If this was the same 
circle as circle A (i.e., if P, R, A and B all lay on a single circle) then noth-
ing further would be known about the position of P, despite the additional 
measurement. If (as shown) control station B does not quite lie on circle 
A, then the position of P will be fully determined by the second measure-
ment—but only to a very low degree of accuracy compared to the accuracy 
of the angle measurements. For instance, measurements taken from any 
point near P on circle A would yield an identical value for α, and an almost 
identical value for β.

Normally, the measurements taken to fix the position of P would be 
fed into a least-squares adjustment program (see Chapter 11) to find its 
most likely location. If the measurements were poorly conditioned, this 
would become obvious from the results, which would show a large ‘error 
ellipse’ for the position of P. The site would then have to be visited again to 
take further measurements, which is clearly undesirable. Surveyors should 
therefore be aware of the conditions under which measurements are likely 
to be ill-conditioned, even at the earlier stage of deciding where to position 
control points which might be used for subsequent resectioning.

Control
station A

Control
station B

Resection
point, P

α

β

Control
station R

Circle A

Circle B

Figure 3.3  �Poorly conditioned resection point.
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3.5  DEFORMATION MONITORING

A common requirement for an engineering surveyor is to monitor the pos-
sible movement or deformation of a structure—usually during the con-
struction of a new building or tunnel nearby, but sometimes over a much 
longer period.

This is achieved by attaching several small markers (usually small reflec-
tive stickers known as ‘targets’) to the face of the structure, and establish-
ing a suitable number of control stations on the ground in the vicinity. 
Once the co-ordinates of the control stations are known (including relative 
heights), the positions of the markers can be found by observing them using 
a total station set up over the control stations.

Typically, the horizontal angle between the marker and a known ref-
erence point would be observed, plus the vertical angle and distance* to 
the marker. These three pieces of data, plus the height of the instrument 
above the control station, define the position of the marker (but with no 
redundancy). Observing the same target from a second control station will 
provide adequate redundancy. This whole process can be (and often is) 
completely automated, by having permanently-mounted robotic total sta-
tions which are programmed to search out and measure a group of markers 
at regular intervals.†

If the distance to the marker cannot be measured, then observing the 
marker from two stations will still precisely define (in three dimensions) 
where it must be—namely, where the two lines of sight intersect. In fact, 
there is even a degree of redundancy, as the two lines will generally not 
quite intersect each other—so the most likely position for the marker is 
at the midpoint of the shortest link between the two lines, and the length 
of the link is an indication of the accuracy. Generally, though, it would 
be wise to obtain further redundancy (and further accuracy) by observing 
from a third station, under these circumstances.

Deformation monitoring is typically the most precise type of surveying, 
and often involves measuring the positions of points to the nearest 0.1 mm. 
All procedures therefore need to be carried out with special care, particu-
larly the setting up of instruments exactly above station marks, and mea-
suring their exact heights above those marks. If a nonrotating optical or 
laser plummet is used to set the instrument up above its mark, then its accu-
racy should be checked at regular intervals (see Chapter 4, Section 4.5.2).

The following guidelines are also useful:

*	 Even if the target is reflective, this would generally require the use of a reflectorless total 
station.

†	 These can often be seen in London’s underground stations.
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	 1.	The control stations should, if possible, be no more than about 50 
metres from the markers, to prevent unpredictable errors caused by 
the tendency of a light path to bend in the atmosphere (see Chapter 10, 
Section 10.2).

	 2.	Particular attention should be paid to the ‘error ellipses’ generated 
when the initial positions of the markers are found through least-
squares adjustment. Their sizes will indicate the smallest subsequent 
movement which can be detected with confidence.

	 3.	A surveyor must consider (and possibly take advice on) the possibility 
that some of the control stations may be affected by the same move-
ments which affect the structure. If this is unavoidable (e.g., to com-
ply with the 50 metre rule, above), then additional control stations 
must be established further away, and the ‘vulnerable’ stations resur-
veyed before subsequent measurements are made on the structure.

	 4.	The surveyor must also be clear what types of movement need to be 
measured when setting up the control network. It may or may not be 
necessary to detect movements which affect all the nearby terrain as 
well as the structure itself. If it is, then further, more distant control 
points must also be established. Ultimately, GNSS provides the best 
detection of movements of large areas of terrain, even including con-
tinental drift.

	 5.	Deformation monitoring using adhesive markers can be used in con-
junction with photogrammetry to monitor changes in shape of the 
structure (or rock face, etc.) at points away from the markers. If the 
markers are visible in the photographs, the position of any other dis-
tinguishable feature can be found using this technique; see Atkinson 
(2001). However, this technique has now been largely supplanted by 
laser scanning.

	 6.	For long-term work, it is advisable to have many more markers than 
necessary on the structure, as some are likely to be lost with the pas-
sage of time; and, of course, there should be enough control stations 
to ensure that the reference co-ordinate system is not lost if one or 
more of them is destroyed.
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Chapter 4

Angle Measurement

A number of the techniques discussed in Chapter 3 require the measure-
ment of angles, to a greater or lesser degree of accuracy. Horizontal and 
vertical angles can be measured approximately using a compass and cli-
nometer, respectively; for more accurate work, a total station or theodolite 
will be needed. This chapter explains in detail how angles are measured 
using these instruments.

4.1  THE SURVEYOR’S COMPASS

The standard surveyor’s compass is a hand-held device which shows the 
bearing of a line relative to magnetic north. A graduated circular card 
incorporating a bar magnet rests on a low-friction pivot; prisms or mirrors 
and sights are arranged so that the graduations on the card may be read 
whilst making a sighting on the distant point. Damping is incorporated, 
and there is usually a locking device for the card whilst the instrument is 
not in use. Bearings may be read to 0.5° (or 1 part in 120, when the angle 
is converted to radians).

The angle subtended by two stations at a third one can thus be estimated 
to within a degree by taking the magnetic bearings of the two stations from 
the third, and subtracting one reading from the other.

Note, however, that the individual bearings are shown with respect to 
magnetic north, rather than true north (where all the meridians meet), or 
grid north. The difference between these two bearings can be up to 25° on 
the main land masses of the world (and of course up to 180° near the poles) 
and is discussed further in Chapter 9.

4.2  THE CLINOMETER

In its simplest form, a clinometer consists of an optical sighting system 
with a pendulum attached to it. The pendulum has a protractor attached 
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to it, so that the inclination of the sight line can be measured. A distant 
object is observed through the sights, and a prism enables the protractor to 
be read at the same time, giving the vertical angle* of the line between the 
observer’s eye and the distant object to approximately 20 seconds. When 
using a clinometer, be sure to note whether a zenith angle is being read 
(i.e., the angle made with the vertical) or a slope angle (i.e., the angle made 
with the horizontal).

A variation on the clinometer is the sextant, which is typically used at 
sea to measure the vertical angle of the sun, or of another star or planet. 
Here, the horizon is used as a reference direction instead of a pendulum, 
and the optics of the device allow the difference in vertical angles to be 
observed. This is more useful on a boat at sea where (a) the horizon always 
defines a near-horizontal reference direction, and (b) a pendulum would 
be likely to oscillate.

4.3  THE TOTAL STATION

4.3.1  The Instrument

Horizontal and vertical angles (see Figure 1.1) are measured accurately using 
a total station (or a theodolite, which is a similar instrument but which lacks 
the ability to measure distances). Instruments are classified by the way in 
which angles are read—total stations are nearly always digital, and theodo-
lites are generally optical. They are also classified by the standard deviation 
of error which can be expected from a reading; thus, a half-second instru-
ment will give angle readings that have a 95% likelihood of being accurate to 
1 second (about 1/200,000 of a radian, i.e., 5 parts per million).†

Angles are normally measured in degrees (360 to one complete rota-
tion), minutes (60 to one degree) and seconds (60 to one minute). However 
some instruments measure in gons (400 to one complete rotation) and 
decimal fractions (0.001 gon = 1 milligon, 0.0001 gon = 1 centesimal sec-
ond). Some instruments also measure in radians (2π radians to one com-
plete rotation) and decimal fractions (e.g., milliradians). Radians used to 
be avoided in optical instruments, since there is not a rational number of 
radians in a full circle; this is less of a problem with digital instruments. 
The following discussion assumes an instrument which works in degrees, 
minutes and seconds.

In construction, the instrument is a telescopic sighting device (described 
below) mounted on a horizontal axis (called the trunnion axis) whose 

*	 The meaning of this term is explained more fully in Section 4.3
†	 Note that, on optical instruments, the classification sometimes refers to the precision to 

which the instrument can be read and not to the accuracy of the angle which has been 
obtained as a result.
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bearings are in turn mounted on a vertical axis. Thus the telescope can be 
pointed freely in any direction. In particular, the telescope may be rotated 
through 180° about the trunnion axis without altering any other setting; 
this is known as transiting. A protractor, or ‘circle’, is mounted in a plane 
perpendicular to the trunnion axis, and to one side of the telescope, for 
measuring vertical angles; when the telescope, viewed from the eyepiece 
end, has this circle on the user’s left, it is said to be in the ‘circle-left’ (CL) 
position; if the telescope is then transited, it will be in the ‘circle-right’ 
(CR) position. On most digital instruments, however, it is impossible to 
see where the vertical circle is; such instruments therefore have a way of 
displaying a I or II to the observer, to show whether they are in ‘face 1’ 
(F1) or ‘face 2’ (F2) configuration; F1 always corresponds to CL, and F2 to 
CR. Because most instruments are now digital, F1 and F2 will be used to 
describe an instrument’s configuration in the rest of this chapter.

For vertical angles, it is conventional to measure the zenith angle; this 
angle is zero when the telescope is pointing vertically upwards, 90° when it is 
horizontal in the F1 position, and 270° when horizontal and in F2. However, 
most digital instruments can also be configured to show a slope angle, which 
is zero when the telescope is horizontal, 90° when it is pointing vertically 
upwards, and −90° when it is pointing vertically downwards (on either face).

Each motion, horizontal and vertical, may have a clamping screw; when 
this is tight (never more than finger-tight), a tangent screw provides a limited 
range of fine adjustment. Some instruments use a friction system in place of a 
clamp—this makes the instrument or telescope slightly harder to rotate, but 
avoids the need to tighten a clamp before the tangent screw will work.

The instrument as a whole may be levelled using a spirit level so that its 
“vertical axis” is in fact exactly vertical; the horizontal axis is constructed 
so as to be accurately perpendicular to the vertical axis, though provision 
is made for adjustment if this becomes necessary. Usually, the instrument 
is mounted on a tripod, which allows it to be placed directly above a fixed 
marker on the ground: such centring is normally carried out using either 
a plumb-bob, or an optical or laser plummet. Often the instrument is 
mounted on a tribrach, which in turn is mounted on the tripod.

The telescope of a total station or theodolite is an aiming device with 
four essential parts:

	 1.	The object-glass, the optical centre* of which is effectively the fore-
sight of the telescope’s sighting system.

	 2.	The reticle, usually a glass diaphragm, carrying an engraved cross, 
with a horizontal and a vertical line, which is set to be on the optical 

*	 A lens acts in the same way as a pinhole, except that it collects more light and has a specific 
focal length; the optical centre of the lens can be thought of as the position of the equivalent 
pinhole.
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axis of the telescope, and which forms the backsight of the sighting 
system.

	 3.	An internal focussing lens which is used to focus, in the plane of the 
reticle, the image of the target formed by the object-glass.

	 4.	The eyepiece, which magnifies the reticle and the image of the target, 
and allows them to be viewed comfortably.

The exact form of the reticle lines (commonly called hairs since on early 
instruments that is what they were) engraved on the diaphragm varies, but 
most instruments have a single full-width horizontal line and two shorter 
horizontal lines, called the stadia lines, one above and one below the full-
width line.* For all vertical readings, the central horizontal line is used. 
Vertically, some instruments have a single full-depth central line, and oth-
ers have a single line on one side of the horizontal line and a pair of lines 
on the other (see Figure 4.1).

A very common error when sighting the telescope vertically is to use one or 
the other stadia line instead of the central full-width line. Always make sure 
that you can see all the lines engraved on the reticle before taking a reading.

For angle readings, an engraved disk or ‘circle’ is mounted on each axis. 
In digital instruments, these circles are engraved with bar codes which are 
scanned by an optical reader and converted to digital angle readings. In 
an optical instrument, the circles are pieces of glass engraved with degrees 
and minutes, which are read directly by the observer; the reading system 
incorporates a vernier (usually optical) to enable the full accuracy of the 
measurement to be obtained.

As shown in Figure 1.1, horizontal angles are measured with respect to a 
reference object, so always involve subtracting one horizontal angle reading 
from another. This process is straightforward on a digital instrument—the 
displayed horizontal angle is set to zero by pressing a button when the tele-
scope is pointing at the reference object, and the instrument then does all 
the necessary subtractions internally. On an optical instrument, the hori-
zontal circle may itself be rotated about the vertical axis, so that the angle 

*	 The purpose of these lines is explained in Chapter 5, Section 5.3.

Stadia lines

Figure 4.1 � Typical reticle designs.
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reading to the reference object can be set to a convenient value; the circle 
must then, of course, remain undisturbed relative to the axis throughout 
each subsequent reading.

The vertical circle also rotates about its (horizontal) axis, so that its zero 
can be set to the vertical. This may either be done manually, with the aid 
of a special spirit level (called the alidade bubble) attached to the circle, or 
(now more commonly) automatically, using a damped pendulum.

A special type of theodolite, called a gyrotheodolite, incorporates a gyro-
scope which is able to align itself with the spin axis of the earth. This means 
that (except near the north or south pole) the instrument is able to read an 
azimuth* angle as its horizontal angle, without the need for a physical ref-
erence object. Gyrotheodolites are specialist instruments which need addi-
tional training to use, but they are valuable for ensuring that a long traverse 
(e.g., down a tunnel) has not deviated from its measured direction as a result 
of refraction effects. See Schofield and Breach (2007) for further details.

4.3.2  Handling

Total stations and theodolites, whether optical or digital, are delicate and 
expensive instruments. They should be handled with great care. Do not jar 
or knock them, or use the slightest force on them. Do not touch or rub the 
lenses; if these get wet, they can be blotted gently with a tissue.

In the field, the instrument is normally put in its container for every 
move, and not carried on its tripod. If (for short moves in steady conditions) 
it is ever carried on its tripod, see that it is secure on the tripod, not too far 
up on its foot-screws, and that any clamps are just tight. When carrying an 
instrument in this way, keep it vertical; it is not designed to resist stresses 
at any other angle.

When being transported in a vehicle, these instruments are vulnerable to 
high-frequency vibration, which can cause large accelerations even at small 
amplitude. It is good practice to transport them in a foam surround, or 
with the container held on the lap of a passenger.

Take special care if the instrument has to be set up, even temporarily, on 
a hard surface. The legs of a tripod are very liable to slip, and should be 
placed in a ‘spider’ or chained together for safety. Never leave an instrument 
unattended—children and animals are very inquisitive. The instrument 
should always be protected from rain and, for precise work, from the sun.

*	 The angle with respect to the meridian on which the instrument is located. All meridians 
meet at the north and south poles which, in the case of a gyrotheodolite, are defined to be 
where the spin axis of the earth passes through its surface.
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4.3.3  Setting Up, Centring and Levelling

There is no one best way of centring and levelling a tripod. The method 
described below is simple and works well for centring over a station mark 
on reasonably level ground. The ability to set up tripods quickly and accu-
rately over a station mark is necessary when working with targets and global 
navigational satellite system (GNSS) receivers, as well as total stations.

	 1.	Position the tripod so that its top is roughly horizontal and above 
the station mark, using a plumb-bob if desired. The top should be 
approximately level—this can be achieved without affecting its posi-
tion over the mark by moving the tripod feet tangentially, rather than 
radially. On sloping ground, it is better to have one leg directly uphill 
and, if the legs are adjustable, shorter than the others.

	 2.	Attach the instrument to the tripod; if it has a detachable tribrach 
with its own plummet, this may conveniently be used on its own for 
the initial adjustments. The instrument or tribrach should be set at the 
centre of the tripod head, with the foot-screws about halfway along 
their travel. The optical or laser plummet will now be roughly vertical, 
and should point within one or two centimetres of the ground mark: 
if it is more than about 5 cm from the mark, recheck the orientation 
of the tripod head and make sure it is approximately horizontal.

	 3.	If necessary, focus the eyepiece of the optical plummet so that the 
reticle and station mark both appear sharp (some optical plummets 
have separate focussing rings for these two functions). If your tripod 
has legs whose length can be adjusted, tread the feet of the tripod 
firmly into the ground at this stage.

	 4.	Adjust the levelling screws of the instrument or tribrach until the sta-
tion mark is on the crosshairs of the optical plummet—or, if using a 
laser plummet, until the mark is illuminated by the laser.

	 5.	Level the cup bubble on the instrument or tribrach by adjusting the 
lengths of one tripod leg followed by another, without moving the 
feet. As shown in Figure 4.2, this allows the tribrach to be levelled 
while hardly altering the point on the ground observed by the plum-
met. If the tripod has fixed-length legs, you can achieve the same 
effect by moving one foot at a time radially, as they have not yet been 
trodden in. You should find that the plummet is still very nearly point-
ing at the station mark; if it is not, repeat Steps 4 and 5.

	 6.	Fully tighten the leg clamps if the tripod has adjustable legs, or tread 
in the feet if it has fixed-length legs. Make final levelling adjustments 
to the cup bubble on the instrument or tribrach using the levelling 
screws, and then use the tripod centring adjustment to bring the opti-
cal or laser plummet onto the station mark. If the centring adjustment 
has insufficient travel, you will have to return to Step 4.
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	 7.	If the plummet is built into the instrument rather than the tribrach, 
rotate the instrument through 360° and watch the position of the 
sighting point or laser spot on the ground as you do so. If it moves 
in a circle, this indicates that its line of sight is not aligned with the 
vertical axis of the instrument; the effect of this misalignment can be 
eliminated by moving the instrument on the tripod so that the station 
lies at the centre of the circle.

	 8.	For targets, GNSS antennae and self-levelling instruments*, the pro-
cess is now complete. If manual levelling is necessary, rotate the 
instrument so that the horizontal plate bubble (physical or electronic) 
lies parallel with an imaginary line between two of the foot-screws. 
Centre the plate bubble by turning these foot-screws equally in oppo-
site directions—you will find that the bubble follows your left thumb. 
Swing the instrument† through 90° and centre it again by turning the 
third foot-screw only. Return the instrument to its first position and 
re-centre the plate bubble if necessary, repeating until the bubble is 
centred in both positions. Swing through 180°, note how much the 
bubble has moved, and bring it halfway back. Swing through 90° 
and bring the bubble to the same position with the third foot-screw. 
The plate bubble should now remain in this position (not necessarily 

*	 Most total stations have a so-called compensator, which sets their horizontal circle to be 
exactly horizontal provided the cup bubble on the instrument (or on the tribrach) lies inside 
its circular ring. However, the pendulum used to achieve this is susceptible to buffeting 
when the instrument is used in windy conditions, and this can make it impossible to take a 
reading. Such instruments therefore have the option to turn the compensator off; if this is 
done, then the instrument must be levelled manually, as described in this paragraph.

†	 Some instruments have two electronic plate ‘bubbles’, making it unnecessary to swing 
through 90°.

Optical
or laser
plummet

Tribrach or
instrument

Adjust length
of this leg

Top of tripod
rotates about
line between

these feet

Sight line of plummet
remains tangential to

this circle

Figure 4.2 � Centring a tribrach over a ground mark.
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central) through whatever angle the instrument is swung. If it does 
not, repeat the procedure. Levelling in this context really means set-
ting the vertical axis vertical, and should not be confused with the 
levelling process described in Chapter 6.

	 9.	Check that the instrument is still above the station, and at least to 
an acceptable degree of accuracy. If it is not, this indicates a bubble 
error in the cup bubble used for Steps 5 and 6. This can be rectified 
by moving the instrument on the tripod so that the sighting point is 
again over the station, and then returning to Step 8.

Note that the alignment of an optical or laser plummet which is built 
into a tribrach cannot be checked in the manner described in Step 7, even 
though a misalignment may be present. For this reason, such tribrachs must 
be regularly serviced and should always be handled with particular care, 
despite their robust appearance.

4.3.4  Focusing the Telescope

The ability to focus a telescope correctly and thus eliminate parallax in 
the readings is possibly the single most important factor in obtaining good 
readings from any conventional surveying instrument, including digital 
ones. A proper understanding of the next three paragraphs is therefore cru-
cial to almost all surveying.

The objective lens of a telescope creates an image of the distant object on 
a plane (inside the body of the telescope) whose position can be altered by 
adjusting an internal focussing lens; the eyepiece has a separate focussing 
adjustment which allows the observer to view that plane comfortably. To 
eliminate parallax, it is important that the image of the distant object lies 
on the plane of the reticle—when it does, the crosshairs will not appear 
to move against the image of the distant object, even when viewed from 
slightly different directions. Parallax is therefore eliminated by first using 
the eyepiece to bring the crosshairs into comfortable focus, and then focus-
sing the objective lens until the image of the distant object is also in com-
fortable focus; if this is done carefully, the crosshairs and the image should 
be in the same plane.

Before observing, set the internal focussing lens right out of focus so that 
no image of the target is visible; and then, with your eye relaxed*, focus the 
eyepiece so that the reticle is as clear as possible. This adjustment depends 
only on your eyesight, and not on the distance to any target; once made, it 
should only need to be altered if your eye starts to get tired.

*	 It is usually easier to relax your eye if you can manage to keep your other eye open, and not 
tightly shut.
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For each observation, adjust the internal focussing lens so that the image 
of the target is also sharp. This image should then be in the plane of the 
reticle, on which the eyepiece is focussed. Check this by moving your eye 
from side to side; there should be no relative movement of the target and the 
reticle, i.e., no parallax. If there is any, remove it by adjusting the internal 
focussing lens, not the eyepiece. Having done this, it may seem that the tar-
get is no longer exactly in focus; in this case, refocus the eyepiece so that it 
is, and check that the parallax has disappeared. If it has not, repeat the pro-
cedure above, using the internal focussing lens followed (if necessary) by 
the eyepiece. Note that parallax can neither be eliminated nor introduced 
by adjusting the eyepiece—though it may wrongly appear to be present if 
the eyepiece is badly adjusted for the observer.

4.3.5  Observing the Target

Having eliminated parallax, the crosshairs must be carefully sighted onto 
the target. Depending on what the target is, it might be easier to bisect it 
with the single crosshair, or to ‘straddle’ it with the double crosshairs. If 
possible, use the same part of the crosshair to sight on each target: this will 
eliminate any errors due to the crosshairs not being exactly horizontal or 
vertical. Always use a part of the relevant crosshair (vertical for horizontal 
angles, and vice versa) which is close to the place where the crosshairs meet.

It is helpful to be aware of the precision with which a sighting must be 
made, to achieve a given level of repeatability. If a target is 100 metres away, 
the crosshairs must be sighted onto it with a precision of better than ±1.5 mm, 
for a reading which is repeatable to within 5 seconds. If the instrument and 
target are removed and then replaced, it is unlikely that such a level of repeat-
ability could be achieved at all, given the inherent errors of centring over the 
stations. This understanding is useful when assessing whether a round of 
observations has ‘closed’ properly (see Section 4.4.4), or when estimating the 
accuracy of a horizontal angle for least-squares adjustment (see Chapter 11, 
Section 11.5). Repeatability can also be affected by changes in light condi-
tions, particularly if the target has a cylindrical or conical shape. If the sun 
shines on one side of the target, there is a subconscious tendency to sight the 
crosshairs onto the sunny side, rather than centrally. This error, known as a 
phase error, disappears when the target is illuminated evenly.

4.3.6  Reading the Angle

In digital instruments with pendulum compensation, this simply consists 
of reading the numbers on the display. Reading other instruments is a little 
more complex and is discussed in this subsection.

Every pattern of optical instrument is different in the details of circle 
reading. Most will have one or more circle-illuminating mirrors, which 
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must be adjusted to obtain even illumination of the circle being observed. 
Most will have an eyepiece with provision for focussing, through which the 
circles may be read. In some cases, both circles are visible together, and a 
single optical vernier applies to both; in other cases, a prism is rotated to 
select which circle is seen, and separate optical verniers may be used. In 
each case, rotating the optical vernier causes the scale images to move, by 
tilting a parallel-sided glass plate in the light path between the circles and 
the eyepiece. This movement is solely optical and should not be confused 
with a rotation of the instrument. In higher-precision instruments, the 
reading system automatically takes the mean of the readings on opposite 
sides of the circle.

Every time, before reading the vertical circle, level the alidade bubble; 
this ensures a consistent circle reading when the telescope is truly horizon-
tal. On most modern instruments, this operation is rendered unnecessary 
by provision of automatic vertical circle indexing (i.e., a pendulum), but 
without that facility it is essential to check the bubble every time when 
reading vertical angles.

Common errors in reading are to read 10 minutes or a degree out; to read 
the horizontal circle instead of the vertical circle or vice versa; to fail to 
level the alidade bubble before reading the vertical circle; or to misread the 
optical vernier. If you have any doubt on the latter point, it is good practice 
to turn the vernier to zero, and make your best estimate of what the angle 
reading should be. Then, turn the vernier to take the reading, watching 
carefully what happens in the main display as you do so. This always pro-
vides the clearest possible indication of how the vernier should be read, in 
any particular instrument.

4.3.7 � Errors Due to Maladjustment 
of the Instrument

The permanent adjustments to total stations and theodolites are explained 
in detail in Section 4.5. However it is helpful to outline what these adjust-
ments entail before describing how observations are made, as many steps 
in this process are directed at eliminating the effects of any maladjustment.

In a properly adjusted instrument:

	 1.	The line of sight of the optical/laser plummet should be along the 
vertical axis.

	 2.	The trunnion axis should be perpendicular to the vertical axis.
	 3.	The line of sight through the intersection of the crosshairs (called the 

line of collimation) should be perpendicular to the trunnion axis.
	 4.	The line of collimation should pass through the trunnion and vertical 

axes.
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	 5.	The horizontal and vertical crosshairs should be parallel to the trun-
nion and vertical axes respectively.

	 6.	When the instrument and alidade bubble are levelled, and the line of 
collimation is horizontal, the vertical angle should read exactly 0º, 
90º, or 270º (depending on how the instrument is configured).

	 7.	For convenience in setting up, the horizontal plate bubble should be 
central when the vertical axis is vertical.

These points can be checked and permanent adjustments can be made 
to all of them. (All these adjustments are called ‘permanent’ to distinguish 
them from the ‘station’ adjustments, which are made every time the instru-
ment is set up.)

As well as the requirements listed above, there are others which cannot 
be adjusted. For example:

	 8.	The horizontal circle should be perpendicular to the vertical axis, and 
the vertical circle perpendicular to the trunnion axis.

	 9.	The centre of the horizontal circle should coincide with the vertical 
axis, and the centre of the vertical circle with the trunnion axis.

	 10.	The circles should be accurately graduated.
	 11.	There should be no backlash.

Tests to check the correct setting of instruments may be made, and are 
described in Section 4.5. If the instrument under test proves to be out of 
adjustment, refer to the maker’s handbook for details. It is unwise to attempt 
any permanent adjustment to a surveying instrument without prior training.

Although maladjusted instruments can be tiresome to use, most of their 
effects on observations are eliminated by the observation techniques which 
are described in the next section.

4.4  MAKING OBSERVATIONS

4.4.1  Principles

It is neither necessary nor possible to ensure that the permanent adjust-
ments described above are always faultless. The effects of these and other 
instrumental imperfections can be almost eliminated, and careless mis-
takes can be avoided, by suitable methods of observation.

In measuring horizontal angles, errors due to maladjustment of the trun-
nion axis are reversed in sign on changing face.* Such errors are therefore 
eliminated by taking the mean of F1 and F2 measurements.

*	 Transiting the telescope, then rotating the instrument through 180º about its vertical axis.
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All collimation errors are also reversed on changing face and are there-
fore eliminated in the same way. This applies to both horizontal and verti-
cal angles. Since horizontal angles are obtained from the difference of two 
readings of the instrument, the effect of any error in horizontal collimation 
is largely (though not totally) eliminated by subtraction. Vertical angles, 
on the other hand, are measured from a zero in the instrument itself (the 
alidade bubble or pendulum), and measurements taken on one face only 
are therefore burdened with the whole vertical collimation error, as well as 
any error in the alidade bubble or pendulum. It is therefore essential to take 
F1 and F2 observations for all vertical angles, and for all horizontal angles 
where the full accuracy of the instrument is expected.

Errors due to eccentric mounting and inaccurate graduation of the hori-
zontal circle are reduced by repeating the observations (on both faces) using 
a different part of the circle. This is relatively easy to do on optical instru-
ments which (as mentioned above) allow the horizontal circle to be rotated 
about the vertical axis. On a digital instrument, the only way to physically 
rotate the horizontal circle is to rotate the entire instrument—either by 
unclamping the tribrach and rotating it with respect to the top of the tri-
pod, or (more quickly but less flexibly) by lifting the instrument out of the 
tribrach, rotating it by 120º, and putting it back in.

It is common practice to swing the instrument to the right (SR) to 
observe successive stations when the instrument is face 1 (or CL), and to 
swing it to the left (SL) when it is in face 2 (or CR). Errors due to any 
backlash in the instrument are reduced by using the mean of SR and SL 
measurements, by turning the tangent (slow-motion) screws clockwise for 
their final adjustment, and by always making any final vernier adjustments 
in one direction.

Besides eliminating certain instrument errors, taking the average of a 
number of measurements is desirable in itself; any gross errors in circle 
reading will be detected and can be discarded. Also, the standard deviation 
of error (from random causes) of the mean of n measurements varies 
inversely as √n.

All the above precautions are included in the system of observing and 
booking suggested below.

4.4.2  Practical Points

Before taking any measurements, see that there is no play in the hinges 
between the legs and the tripod. If the lengths of the tripod legs can be 
adjusted, see that the clamps are tight. Focus any eyepieces before level-
ling the instrument, to reduce the risk of disturbing things later. Start with 
the tangent screws near the middle of their runs. Once the instrument is 
levelled, do not jar the tripod or even rest your hands on it. Avoid stepping 
near the tripod’s feet if the ground is soft. Swing the instrument by holding 
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the vertical frames which support the telescope, not the telescope itself. Use 
the minimum of force on clamping screws.

No routine of observation eliminates errors caused by inaccurate level-
ling of the instrument, or inaccurate centring over the station mark.

4.4.3  Recording Observations

Most instruments which display readings digitally are also capable of 
recording them onto a memory card at the touch of a button. (Some of 
these instruments can also take a photograph at the same time, to provide 
a definitive record of what has just been observed.) The remainder of this 
subsection covers cases where the readings are to be recorded manually.

Haphazard observation and random booking on loose paper lead to mis-
takes. For speed and accuracy, a system is essential. The one given here is 
the result of more than a century of experience in combating human and 
instrumental error.

For efficient work using an optical instrument, a separate observer and 
booker are necessary. With a digital instrument it is possible for one person 
to observe and do the booking as well, as there is less arithmetic to be done 
in the field.

Record all necessary data in an observation book. Use a fresh page for 
each station occupied. Book with a ballpoint pen or pencil, and make your 
figures neat and clear. Do not erase; make corrections by drawing a single 
line through the incorrect figures, leaving them legible, and writing the 
correct figures beside or above them. A fair copy may be made later on 
another page if necessary (check carefully for copying errors), but the origi-
nal pages must not be discarded. Notice that single-figure entries are writ-
ten 06° 08′ 05′′, not 6° 8′ 5′′

The booker fills in the heading and the stations to be observed while the 
observer is setting up the instrument. The observer calls out the readings; 
the booker records them and then reads back what (s)he has written; the 
observer then rechecks the reading and replies ‘correct’ (or not). Do not 
omit this seemingly pedantic precaution—it ensures that there is a ‘closed 
loop’ between what is visible in the instrument and what is written in the 
book.

It is the booker’s duty to detect inconsistencies (such as excessive discrep-
ancy between F1 and F2 readings); if one occurs, the observer is at once 
told to check, but is not told what is wrong. In the case of an optical instru-
ment, the booker works out reduced angles* while the observer is observing 
the next target. After a bit of practice, mental arithmetic is both quicker 

*	 Note that this is not the same as the booker repeating what he or she has just heard!
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and less error-prone than use of a calculator in the field.* The booker is 
also responsible for ensuring that the stations are observed in the right 
order. Both surveyors should do their own jobs and not interfere with the 
other. Ideally, the observer checks the booker’s arithmetic, and both initial 
the sheet before leaving the station.

Remember that in practice, the time taken in going to and from a station is 
large compared with the time actually spent there. So take every reasonable 
precaution to ensure that carelessness does not make a second visit necessary.

4.4.4  Horizontal Angles

Take at least one full round of observations, i.e., F1/SR and F2/SL. In the 
F1 position, sight onto the reference object (R.O.) and, on a digital instru-
ment, set the horizontal angle to zero. On an optical instrument, rotate 
the horizontal circle so as to show a random value just over 0°, as this will 
simplify the subsequent arithmetic. Do not attempt to set it up to show an 
exact angle, but set it reasonably close to the value you want, and then use 
the vernier to measure exactly what you have achieved.

Record the reading then, and by swinging right throughout, take and 
record readings for all the other points to be observed from the station. 
Always close the round by re-observing the R.O.; the difference in the 
two readings is called the closing error. A standard for acceptable closing 
errors will depend on the instrument in use and on the quality of the work 
required—a typical value might be 5 seconds.† If there is an unacceptable 
closing error, all the readings should be discarded and a fresh start made.

Change face by transiting the telescope and swinging through 180°. Sight 
back on to the R.O. again, and set the horizontal angle to zero again if 
using a digital instrument. On an optical instrument, change the position 
of the horizontal circle just slightly—ideally by about half the travel of the 
vernier scale. (This evens out any systematic inaccuracies in the vernier 
scale and also guards against repeated misreading of the scales or uncon-
scious memories of previous readings.)

Record the new reading to the R.O. (0° for a digital instrument, or just 
over 180° for an optical one) and, swinging now from right to left, take 
the readings for all the points to be observed from the station, in the order 
of reaching them—i.e., the opposite order from the F1 readings. Close the 
half-round again as before.

*	 A calculator can be used when the booking sheet is checked, especially if this is done in the 
office—doing so provides a fully independent check of the arithmetic done in the field.

†	 Careful selection of a reference object can help in obtaining a small closing error. If the 
object is too far away, atmospheric distortions can impair the repeatability of the observa-
tion; if it is too close, the size of the target in the eyepiece will make it hard to sight the 
instrument in exactly the same way. Remember that 1 second represents a distance of 1 mm 
at a range of 200 metres.
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When booking, it is always best to write the points for SL in the same 
order as for SR, and to book from the bottom of the form upwards on SL. 
After the first half round, and throughout a repeated round, the booker is 
in a position know in advance what the next reading should be, and should 
ask the observer to check if there is an unacceptable discrepancy.

When a full round of horizontal angle observations has been completed, 
the booker should enter the mean of the F1 and F2 angles (reduced, if nec-
essary—see Figure 4.4) in the top part of the right-hand column. The bot-
tom part of the same column can be used to record any horizontal or slope 
distances which are observed. Figure 4.3 shows a competed booking sheet 
for a digital instrument, while Figure 4.4 shows the same round observed 
by an optical instrument. Note that instrument heights are only needed 
when vertical angles or slope distances are measured, and that tempera-
tures and pressures are only required when ‘raw’ distances are recorded, 
for subsequent correction in the office.

4.4.5  Vertical Angles

For vertical angles, always take sets of observations both on F1 and on F2 
(see Figure 4.5). There is no virtue in swinging left or right, and there is 
no R.O. to close on. The horizontal crosshair may not be quite horizontal, 
so always intersect with the same part of it, just to one side of the vertical 
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hair—remember that the left-hand side of the reticle on F1 becomes the 
right-hand side on F2.

The booker records the height of the instrument’s trunnion axis above 
the station mark—note that, without this measurement, all vertical angle 
observations will be useless! If a target on a tripod is being observed, 
the height of the target above the station will also be needed, and can be 
recorded in the lower part of the right-hand column. If some nonstandard 
target is being observed (e.g., part of a weathervane), the observer should 
make a sketch in the observation book, indicating by an arrow the exact 
point intersected on the object.

Assuming that the instrument measures zenith angles, the horizontal will 
appear as 90° on F1 and 270° on F2. Next to the F2 readings, the booker 
should record the value obtained by subtracting each reading from 360°. 
The differences between these and the F1 observations can be booked in 
the upper part of the right-hand column, and should remain nearly con-
stant; the constant is zero only if the permanent adjustment on the vertical 
circle is perfect. If any difference varies significantly from the norm, the 
booker should demand a check.

Finally, the column beside the F1 observations should be used to record the 
accepted vertical angle for each observation, namely the average of F1 and 
(360° − F2). This exactly cancels out any maladjustment of the vertical circle.

If the instrument measures slope angles, then there is no need to sub-
tract 360° from the F2 readings; otherwise, the procedure is exactly as 
described above.

If the instrument does not have a compensator, always centre the alidade 
bubble before taking each reading of the vertical circle.

4.4.6  Setting Out Angles

As mentioned in Chapter 3, it is often necessary to set up an instrument to 
sight in a predetermined direction, rather than simply to record the direc-
tion it is sighted in when observing a target. Usually the starting point is 
a known horizontal angle which must be swung through, once a reference 
object has been observed.

With a digital instrument, the process is quite simple. A booking sheet 
can be filled out beforehand with the stations and observed angles (except 
for the check on the R.O.), as a convenient way of carrying the data out to 
the field. Sight on the reference object with the instrument in face 1, and 
set the horizontal angle to zero. Then swing the instrument to approxi-
mately the right direction, clamp it if necessary, and turn the horizontal 
tangent screw until the required horizontal angle is displayed. Markers can 
then be set up at any point along the line of sight. Finally, the reference 
object is sighted again (and its angle recorded), to ensure that no setting has 
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been disturbed. For accurate work, this process is then repeated with the 
instrument in F2, and an average of the two sight lines is used.

With an optical instrument, a booking sheet such as the one in Figure 4.4 
is partially filled in before going out into the field, with the ‘Circle/swing’, 
‘Station,’ and ‘Reduced Angle’ columns all completed using the known data. 
Once out in the field, the reference object is observed in circle left, and the 
observed angle is recorded in the usual way. The reduced angle of the required 
direction(s) is then added to this reading, and written down in the ‘Observed 
Angle’ column against the point(s) to be set out. The observer is told to swing 
the instrument to this angle, and does so by first setting the optical vernier to 
read the appropriate number of minutes and seconds, then swinging the instru-
ment and using the horizontal tangent screw until the entire correct reading is 
shown in the display.* As with the digital instrument, the reference object is 
then re-observed (and booked), and the process repeated in circle right.

See Appendix F for a worked example in calculating an angle for setting 
out, including the preparation of a booking sheet for a digital instrument.

4.5  CHECKS ON PERMANENT ADJUSTMENTS

It is usually impossible to make corrections to permanent adjustments in the 
field—and often unwise to attempt them back at base either, unless clear 
instructions are given in the instrument manual. However, it is necessary 
at least to know when an instrument needs to be professionally serviced, 
and to give the correct diagnosis of the problem. The following guidelines 
should assist in this; the simpler adjustments are described first.

4.5.1  Bubble Errors

If there is a significant error in the plate bubble when levelling the instru-
ment (see Section 4.3.3 above on setting up, Step 8), this can be removed 
by first levelling the instrument carefully, then adjusting the plate bubble 
so that it lies in the centre of its glass. In a level instrument with no plate 
bubble error, the instrument can be rotated about its vertical axis and the 
bubble will always return to the centre point.

If the instrument has been levelled using the plate bubble, and the cup 
bubble on the tribrach is no longer central, then this indicates a bubble 
error on the tribrach. Again, this can be removed by levelling the instru-
ment using its plate bubble, and then adjusting the mounts for the tribrach 
bubble until it too is centred.

*	 The horizontal angle between each station and the reference object. This is displayed directly 
on a digital instrument, but must be calculated (by subtracting the reading for the reference 
object from the reading for each successive station) when an optical instrument is used.
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If there is a significant and consistent difference between the F1 and 
(360º − F2) readings on zenith angle observations, this indicates a bubble 
error in the alidade bubble. Putting this right is more complex. The proce-
dure is to make a vertical observation, and calculate the average of the F1 
and (360° − F2) readings. With the instrument observing the target in F1, 
adjust the alidade bubble until, with the bubble central, the average read-
ing is obtained. Then re-observe on F2 and check that (360° − F1) gives the 
same angle.

4.5.2  Plummet Errors

If the plummet (laser or optical) rotates with the instrument, it is easy to 
see whether there is a plummet error by simply rotating the instrument. 
If the line of collimation makes a circle, then there is an error; this can be 
removed by keeping the instrument still, and adjusting the line of collima-
tion of the plummet to point at the centre of the circle. Details of how to do 
this should be given in the instrument’s manual.

If the plummet does not rotate (e.g., it is fixed to a tribrach), then errors 
are harder to detect. One simple method is periodically to lay an instru-
ment on its side on a bench, with the tribrach attached and the vertical 
axis clamped. Secure the instrument from rocking, sight through the plum-
met, and mark the point on the wall* that lies on the line of collimation. 
Unclamp the vertical axis, rotate the tribrach through approximately 120°, 
and repeat; then rotate through a further 120°, and repeat again. If the 
three marks on the wall are in different places, the plummet has an error. 
Correcting such an error generally requires a special instrument or profes-
sional servicing.

4.5.3  Reticle Errors

Reticle errors should only be corrected by an instrument maker, but are 
relatively easy to diagnose. To check the vertical reticle, sight on a suitable 
target with some part of the reticle, then rotate the telescope about the 
trunnion axis and see whether all parts of the vertical reticle align with the 
target. The horizontal reticle is similarly checked, by rotating the telescope 
about the vertical axis. These tests show whether the horizontal and verti-
cal crosshairs are at right angles to the vertical and trunnion axes respec-
tively, but not whether the two crosshairs (or the two axes) are at right 
angles to each other.

*	 There is no need to make a mark on the wall itself—a piece of paper can be fixed to the wall 
with masking tape.
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4.5.4  Collimation Errors

Collimation errors in the horizontal plane can be detected by sighting on 
a target at a similar height to the instrument and taking a horizontal angle 
reading; then transit the instrument, and take the reading again. If the two 
readings do not differ by exactly 180°, then this is probably due to col-
limation error. The target should be as close as possible to the instrument 
(consistent with being able to focus on it, and repeat each reading reliably), 
as this magnifies the effect of any collimation error. As explained above, 
this error is relatively unimportant since it partially cancels when one hori-
zontal observation is subtracted from another, provided the two targets are 
at a similar distance from the instrument—and it cancels further when the 
mean of F1 and F2 readings is used.

Collimation errors in the vertical plane have no real meaning in instru-
ments with an alidade bubble: any such error is effectively treated as a bubble 
error. In pendulum instruments, any discrepancy between F1 and (360° − F2) 
zenith angle readings is likewise compensated for by adjusting the pendulum.

4.5.5  Trunnion Axis Misalignment

If the F1 and F2 horizontal angles between two objects are seen to differ 
when the two objects are at similar distances from the instrument but at 
different heights, the most likely cause is misalignment of the trunnion 
axis. The simplest way to check for this is the so-called spire test, which 
involves setting up the instrument where it can observe a well-defined tar-
get along a steeply sloping line of sight—e.g., a church spire. Sight onto the 
target, then rotate the telescope about the horizontal axis until it is sighting 
onto a patch of ground about 10 or 15 metres in front of the instrument. 
Check that it is possible to focus the telescope (sight a bit further away, if 
not), lay a ruler or tape measure on the same patch of ground such that it 
is parallel with the horizontal crosshair, and record the reading (in milli-
metres) where the vertical crosshair intersects it. Change face, sight on the 
target again, swing the telescope down, and see where the vertical crosshair 
now crosses the ruler. A difference of 1 mm in the two readings suggests 
(using reasonable estimations of the likely geometry) that the trunnion axis 
is misaligned by about 10 seconds. On a 1-second instrument, a misalign-
ment of this magnitude should be corrected—usually by the manufacturer.
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Chapter 5

Distance Measurement

5.1  GENERAL

Distances may be measured by five methods: tape, optical, electromagnetic, 
ultrasonic or GNSS. The method used on any particular job depends upon 
the number and size of the distances to be measured, the nature of the 
ground, the accuracy required, the time available, and the availability of 
suitable equipment. For all but the smallest or largest tasks, electromag-
netic distance measurement (EDM) is the simplest choice for terrestrial 
measurement. GNSS measurements provide interpoint distances over any 
distance and without the need for intervisibility, but the procedure is rather 
more complex.

Before making any measurement, it is always wise to obtain an estimate 
of its value by an approximate method, to reduce the possibility of gross 
errors. At least three methods are available for this:

	 1.	Pacing is used for rough measurements and to check accurate mea-
surements against gross errors. Test your natural pace over a mea-
sured distance, rather than trying to pace metres. The accuracy on 
smooth ground is about 1 part in 50.

	 2.	A perambulator is a wheel fitted with a revolution counter, and is 
wheeled along the line to be measured. It is more accurate than pac-
ing, and is frequently used in measurement for costing of highway 
repairs.

	 3.	If a suitable map is available, scaling from it will give a close 
approximation.

5.2  TAPE MEASUREMENTS

Tapes are now mainly used for the quick measurements of short distances 
(horizontal or vertical). However, they used to be the most accurate method 
of measuring all distances, so their use was developed to a fine art by 
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surveyors in the first part of the 20th century. This involved suspending the 
tape from a tripod at each end under a known tension (such that it formed a 
catenary), and reading the point where the tape passed over each tripod using 
a micrometer. For further details, see Bannister, Raymond and Baker (1998).

Tape measurements are subject to the following sources of error:

	 1.	Inaccuracy in the markings on the tape
	 2.	Variations in the length of the tape due to changes in temperature
	 3.	Variations in the length of the tape due to changes in tension
	 4.	Slope (since it is usually the horizontal component of the length 

that is required)
	 5.	Sag on any unsupported spans, if this is not allowed for in the 

calculations
	 6.	Errors at the junction of tape lengths

Fabric tapes made of linen or (preferably) fibreglass are used for low-
accuracy or detail work. Steel bands or tapes are more accurate but are 
easily damaged if kinked or trodden on. On smooth ground an accuracy of 
about 1/2000 is attainable. For the highest accuracy:

	 1.	Calibrate the tape against a known distance, at the same temperature 
and tension as will be used on the job.

	 2.	Avoid large changes of temperature by working early, late, or on a 
cloudy day.

	 3.	Use a steady pull, ideally by means of a spring balance.
	 4.	Correct for slope: if there are marked changes of gradient, measure 

the gradient and note the (slope) length of each section.
	 5.	Use the longest tape possible, if the distance is greater than one tape 

length.
	 6.	Take the mean of two measurements in opposite directions.

5.3  OPTICAL METHODS (TACHYMETRY)

The stadia lines (see Figure 4.1) on the reticle of an instrument’s telescope 
subtend a particular angle α, usually 0.01 radians. Thus, if a distant verti-
cal staff is viewed horizontally by means of (say) a level, the distance D 
from the instrument to the staff is given by s/α (i.e., usually 100 s) where s 
is the length of the staff between the two stadia lines. Either an ordinary 
levelling staff or a specially-made tachymetry staff may be used.

This method of determining distance is perfectly straightforward when 
the line of sight is horizontal—and modern digital levels also use this prin-
ciple to measure the distance to their (bar-coded) levelling staves. However, it 
becomes more complex if the line of sight needs to be inclined by some angle 



Distance Measurement  55

to the horizontal in order to observe the staff. It is not practicable to hold the 
distant staff perpendicular to such a line of sight; instead, it is still held verti-
cal by means of a bubble, and the two readings (plus the vertical angle of the 
telescope) can be used to obtain both the horizontal distance to the staff, and 
the height difference between the instrument and the base of the staff.

The calculations for this form of tachymetry are tiresome, and the tech-
nique is now obsolete*. In any case, the accuracy of vertical staff tachym-
etry is always limited by the fact that lines of sight defined by the two stadia 
hairs are differently affected by atmospheric refraction.

For distances up to about 50 m, a more accurate form of horizontal 
staff tachymetry, known as subtense, is still occasionally used. A special 
staff called a subtense bar, usually 2 m or 3 m long, is mounted horizon-
tally and at right angles to the instrument’s direction of view. The hori-
zontal angle subtended at the instrument is then measured, and the slope 
distance between the instrument and the staff can be deduced by simple 
trigonometry.

5.4 � ELECTROMAGNETIC DISTANCE 
MEASUREMENT (EDM)

5.4.1  Principles

The principle of the method depends on measuring the transit time of an 
electromagnetic wave which is transmitted along the line and reflected back 
to the transmitter. Some devices such as LiDAR laser scanners transmit a 
pulsed laser beam, and simply measure the time taken for the pulse to be 
reflected—this can be done without the need for a special reflector at the 
far end of the line, and so is sometimes known as a ‘reflectorless’ system. 
Others use a carrier wave, modulated at a known frequency, and measure 
the phase change of the reflected modulation to calculate the distance (see 
Figure 5.1). Errors can arise from difficulties in knowing the exact point of 
measurement within the instrument (a matter of a few millimetres), from 
inaccuracies in measurement (about 2 or 3 parts per million for a modulat-
ing device) and from variations in air density along the path of the wave (up 
to about 20 parts per million, if no correction is made).

The reflectors (for those instruments which require them) take the form 
of ‘corner cubes’ with precisely ground faces, so that incoming radiation is 
reflected back in the exact direction that it came from. It is important to 
use only the correct type of reflector with a given instrument, since each 
type has a different ‘reflector constant’, depending on the path length of 

*	 The formulae, if needed, are given in Uren and Price (3rd ed., 1994), p. 144.
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the optics and the density of the glass.* Neglect of this factor will lead to a 
systematic error in all measurements.

Most modulating EDM devices now use infrared or a visible laser (wave-
length of a few microns) as the carrier wave, modulated at around 1 GHz 
to give a modulation wavelength of about 30 cm. Their range can be up to 
30 km, though measurements of more than about 5 km are now generally 
done using GNSS. Some earlier instruments used microwaves (wavelength 
of a few cm) as a carrier, and were capable of measuring up to 100 km, 
provided that the end stations were intervisible.

The total distance travelled by the modulated wave, 2D, will be equal to 
a number of whole wavelengths nλ plus a fraction of a wavelength δλ (see 
Figure 5.1). δ is relatively easy to determine by comparing the phase of the 
reflected wave with that of the transmitted wave. Some possible methods are:

	 1.	To use a phase discriminator circuit to compare phases directly.
	 2.	To shift the phase of the reflected signal by a known amount until it 

gives a null with the reference signal.
	 3.	To use a digital count of time signals between the reference null and 

the reflected null, then multiply by the modulation frequency to find 
the phase difference.

The value of n can be found by increasing the modulation frequency by 
a small fraction, and measuring the change in δ. Typically, the modulation 
frequency is increased by 1%; the resulting fractional change in δ is then 
multiplied by 100 and rounded down to the nearest integer to give the value 
of n. The change in δ is measured by changing to the new frequency and 
subtracting the new value of δ from the old value, adding one whole cycle 
in cases where δ appears to have decreased. However, this method only 
works properly when n is less than 100: any multiples of 100 would pass 

*	 Most modern total stations allow their reflector constant to be changed, so they can work 
with different reflectors—but it is important that this constant is correctly set for the reflec-
tor that is being used.

D

n λ + δλ

Instrument Reflector

Figure 5.1  �Electromagnetic distance measurement (modulated carrier wave).
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undetected. Such multiples can, however, be counted by altering the fre-
quency by 0.01% (1% of 1%) and again measuring the fractional change in 
δ. Long-range machines may thus need to make several changes of modula-
tion frequency to compute the distance properly.

5.4.2  Use of EDM

For short-range work, hand-held laser devices can be used to measure dis-
tances with an accuracy of around 3 mm, without the need for a reflecting 
target at the far end of the ray. These devices measure to the exact point 
which is illuminated by the laser measurement system; the more sophisti-
cated ones include an on-board camera and liquid crystal display to show 
the user which point is being illuminated, when this is too far away to be 
seen by the naked eye.

EDM systems mounted on tripods (typically in the form of total stations) 
are used for high accuracy (2 or 3 parts per million) measurements of dis-
tances between, say, 10 m and 5 km. (Longer distances are now generally 
measured using differential GNSS, as described in Section 5.6.)

The basic measurement made by an EDM device is a slope distance 
between the instrument and target, uncorrected for atmospheric condi-
tions. On most instruments, it is possible to correct for atmospheric condi-
tions while in the field. Temperature and pressure are measured near the 
instrument and, for accurate work, near the target. On some instruments 
these readings are typed in and the instrument uses a built-in formula to 
calculate the correction; on others, a nomogram or chart is provided to 
convert these readings into a parts-per-million correction, which is then 
entered into the instrument. To guard against undetected errors, it is wise 
also to record the temperature, pressure and the uncorrected distance, so 
that the field correction can be checked back in the office.

Some EDMs do not always show the whole of the distance that they are 
measuring; for instance, the display might show 2,345.678, when the dis-
tance is actually 12,345.678. A 10 kilometre error should not easily pass 
unnoticed; but a useful field check is to record the readings obtained with 
the atmospheric correction set first to +50 parts per million, and then to 
−50 ppm. The difference between the two readings, when multiplied by 
104, gives the approximate distance—and any ‘overflow’ in the display will 
then be detected quite easily.

In addition to slope distance, most EDMs are also able to calculate the 
horizontal and vertical distance between the instrument and target. In the 
case of horizontal distance, this has the advantage that the heights of the 
instrument and target above their stations do not need to be measured, since 
the horizontal distance between the instrument and target will also be the 
horizontal distance between their respective stations. (For the other distance 
measurements to be useful, it is vital that these measurements are recorded.)
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To make a calculation of horizontal or vertical distance, the micropro-
cessor inside the EDM must know the vertical angle between the instru-
ment and target. This means that the instrument must be carefully aimed at 
the target—it is not sufficient simply to sight it well enough for the radiated 
signal to be returned. If necessary, the alidade bubble on the instrument 
should also be adjusted to show the correct vertical angle.

For precise or long-distance work, however, these calculated distances 
must be treated with caution. A fully accurate ‘horizontal distance’ calcu-
lation involves knowing the height of the instrument above sea level; and 
both calculations have to make some assumption about how light curves 
in the atmosphere, which may not be valid at the time of the measurement. 
Chapter 10 discusses both of these issues in detail.

5.5  ULTRASONIC METHODS

Ultrasonic distance measuring devices work in a similar way to reflector-
less EDM devices; namely, by transmitting a pulse of very high frequency 
sound and measuring the time taken for it to be reflected. They are gener-
ally cheaper than hand-held EDM devices, but they have a shorter range 
(typically less than 20 metres) and are less accurate (about 1 part in 200). 
They often incorporate a laser beam, which can make them appear to be an 
EDM device—but the purpose of the laser is simply to show the operator 
where the device is pointing when the measurement is taken. However, the 
sound pulse has a much wider beam angle than the laser, so the distance 
measurement can be erroneous if it is reflected more strongly from a surface 
other than the one which the laser is illuminating.

The accuracy and reliability of ultrasonic devices depends on the hard-
ness of the surface to which the distance is being measured, rather than its 
light-reflecting properties; this makes ultrasonic devices less effective than 
EDMs for measuring distance to soft surfaces such as foam rubber, but bet-
ter than EDMs for measuring the distance to transparent surfaces such as 
a sheet of glass or the surface of a clear liquid. Ultrasonic devices thus have 
some valuable applications, but their lack of range and accuracy mean that 
they cannot properly be considered as a tool for surveying.

5.6  GNSS

As explained in Chapter 7, differential GNSS (two instruments in different 
locations, receiving signals from the same satellites simultaneously) is able 
to find the relative positions of the two locations to an accuracy of about 
2 mm per kilometre of separation, i.e., an accuracy of 2 parts per million. 
This makes DGNSS a useful distance measuring tool, particularly as it does 



Distance Measurement  59

not require a line of sight between the endpoints. Moreover, there is no need 
to apply any co-ordinate transformation to the results—the fundamental 
positions reported by GNSS receivers are Cartesian co-ordinates as defined 
by WGS84, and the slope distance can be found by simply computing

	 x x y y z z( ) ( ) ( )2 1
2

2 1
2

2 1
2− + − + − ,

where the subscripts refer to the two receiver locations.
Although the instruments required for DGNSS are more expensive, they 

are slightly more accurate than EDM and they save time, especially in rough 
country and in conditions where the line being measured is obstructed 
(e.g., by buildings) or is subject to interference by traffic.
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Chapter 6

Levelling

Surveyors frequently need to find the relative heights of two or more control 
stations. There are various ways of doing this, including GNSS techniques 
(Chapter 7) and trigonometric heighting (Chapter 12), but for points which 
are close to each other, the simplest and most accurate process is called 
levelling.

The method involves an instrument called a level, and a staff. A level is a 
telescope mounted on a tripod, with some means for setting the line of col-
limation (the sighting line) to be exactly horizontal. A staff is simply a long 
ruler; an optical staff is usually graduated in centimetres and a digital staff 
has a long bar code which can be read by a digital level. Most digital staves* 
also have a conventional (i.e., optical) scale on the other side of the staff.

6.1  THEORY

To find the difference in level between two points A and B (see Figures 6.1 
and 6.2), the observer sets up the instrument at an arbitrary third point I1. 
An assistant holds the staff vertical with its foot resting on A. The observer 
rotates the telescope about its vertical axis until the staff appears in the 
centre of the field of view, sets the line of collimation to be horizontal, and 
then reads the scale of the staff against the horizontal crosshair (distance a 
in Figure 6.1). The staff is then moved to B and the observer again directs 
the telescope onto it, obtaining reading b. The difference in level between 
A and B is then (a − b), since, if the instrument is correctly adjusted, both 
lines of collimation are horizontal. The height of the instrument at I1 does 
not affect the calculation.

If the height of a third point C, beyond B, is required, the instrument 
is moved to I2, between B and C. The difference in level between B and C 
is then found in the same way. By repeating this process, the difference in 
level between points at any distance apart can be found.

*	 The plural of staff.
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In levelling from a mark at A whose level is known (e.g., a site datum or 
other benchmark), the observation I1A is called a backsight. This estab-
lishes the height of the instrument (called the line of collimation) at I1. The 
observation I1B is called a foresight. Similarly I2B is a backsight, I2C is a 
foresight and so on.

A line of levelling is usually started at one benchmark of known height 
and, if possible, finished at a different one. A long line should be broken 
into in a series of bays, of between one and five instrument positions. Each 
bay should be ‘closed’ by being levelled out and then back to its starting 
point, as a check against error. Each bay should run between two well-
defined markers which can support the staff and which will not change 
in height: either a permanent benchmark such as those provided by the 
Ordnance Survey in the UK, or a temporary one, such as a stout peg. It is 
helpful if the point on which the staff stands is convex, so that there is a 
uniquely defined ‘highest point’ on it, which is taken as its height.

Figure 6.2 shows a line of levelling in plan view. The first bay runs from 
a benchmark at A out to C (via B) and then back to A (via D); points B 
and D are called change points, and point C is a temporary benchmark 
or TBM. A second, smaller bay then runs from C to E and then back to 
C. Finally an ‘open’ bay is run from E to Z; if this gives a height for the 
closing benchmark which is in good agreement with its published height, 
then there is no particular need to close that bay back to its starting point, 
and the calculated heights of all points in the line can be accepted. If the 
agreement is not good, then the bay should be closed; if it closes well, then 
it raises the possibility that the first or last benchmark might have subsided 
since its height was last checked.

If the heights of further points are required, the staff is held (say) at P 
and Q and at R and S, and readings are taken from I1 and I2 respectively. If 
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Figure 6.1  �Measurement of height differences using a level.
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these intermediate points lie in a straight line, and the horizontal distances 
between them are measured, a vertical section of the ground (called a level-
section) can be plotted.

Another use for intermediate points arises when a given height needs to 
be set out, typically on a vertical wooden post driven into the ground. The 
level is sighted at the post, and a pencil mark is made at the height of the 
line of collimation, i.e., where the horizontal crosshair intersects the post. 
The height of this mark can be calculated by simple arithmetic, and a tape 
measure can then be used to measure up or down the post to the required 
height level.

Observations to intermediate points are called intermediate sights. They 
can be made more quickly than sightings to change points, because several 
sightings can be made from each instrument position; but they are also more 
prone to undetected errors, because they do not form part of a closed bay.

Note the following:

	 1.	When the staff is moved, the instrument must remain stationary; and 
when the staff remains stationary, the instrument must move, to guard 
against a reading error going undetected. (If the instrument was not 
moved from I5 to I6 in the second bay, then a misreading to the staff 
at E would ‘cancel out’ to give a bay which appeared to close well, yet 
gave the wrong height for E.) The only times when the instrument and 
staff both move are at the start of a new bay or at the end of the job.

	 2.	The instrument positions I1, I2, etc. need not be on the straight lines 
between AB and BC, etc. The only requirement is to have a clear line 
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Figure 6.2 � Typical line of levelling (plan view).
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of sight between the instrument and the staff, and (if possible) for the 
backsight and the foresight to be approximately the same length.

	 3.	It is important that there is something definite to stand the staff on at 
the temporary benchmarks (positions C and E in Figure 6.2), because 
both these stations are left and then revisited later in the job. By con-
trast, change-point stations B, D and F are only visited once, so do not 
necessarily need to be found again later.

	 4.	There is no independent check on the heights recorded for stations P, 
Q, R and S. Any point whose height is critical should form part of a 
levelling line, rather than being taken as an intermediate sight.

	 5.	A team of experienced levellers might level from benchmark A to 
benchmark Z (Figure 6.2) with a single open bay, involving five or 
more instrument positions. If all goes well, this is very efficient—but 
if the bay does not close, the whole job must be repeated. By contrast, 
a team of novice surveyors would be well advised to make their first 
bay as small as possible, such as the one between C and E.

6.2  THE INSTRUMENT

A basic optical level consists of a telescope with a reticle similar to that in 
a total station (see Figure 4.1), which can be rotated about a vertical axis. 
The instrument has a cup bubble which is first used to set the vertical axis 
approximately vertical, a tangent screw to aim the telescope, and a more 
sensitive bubble to allow the line of sight to be set exactly horizontal once 
the telescope has been sighted on the staff. On such instruments, it is nec-
essary to adjust the instrument using the sensitive bubble each time the 
telescope is sighted in a new direction.

The stadia lines on the reticle allow the instrument to be used for mea-
suring distances approximately. The two lines typically subtend an angle of 
0.01 radians, which means that every centimetre of difference between the 
upper and lower readings implies a metre of distance between the instru-
ment and the staff.

In a self-setting or automatic level, a stabiliser or pendulum automati-
cally levels the line of collimation for every sighting. The stabiliser consists 
of one prism fixed internally to the telescope casing and two prisms which 
are suspended freely as a pendulum within the telescope. When setting up, 
a cup bubble is first centred to ensure that rotational axis of the telescope 
axis is not more than about ±20ʹ from the vertical. The pendulum is then 
automatically released from its clamps and the staff can be read at once. 
This type of instrument saves much time when running a line of levels. It is, 
however, more subject to interference in windy conditions.

A digital level typically has a stabiliser and can be used to read a conven-
tional staff in the same way as an optical level. In addition, though, it has 
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the capacity to read a digital staff, usually to a higher degree of accuracy, 
and display the results (height reading and distance to the staff) on a screen. 
More accurate digital levels will take a reading several times and display 
the average (and standard deviation) of the results; the observer should be 
prepared to reject a set of readings if the standard deviation is too high, as 
this implies that the staff was not being held absolutely steady. Most digital 
levels also have the ability to record their readings electronically.

Digital levels differ from optical levels in that they do not just read the 
part of the staff which lies behind the horizontal crosshair, but scan the 
staff a short distance above and below that point. This means that a digital 
level is unable to read to the very top (or very bottom) of a staff. When 
planning a reading, it is therefore good practice to ensure that neither the 
top nor the bottom of the staff is visible in the field of view of the telescope. 
It is also important to focus the telescope carefully on the staff and to elimi-
nate parallax (see Chapter 4, Section 4.3.4), as this will affect the accuracy 
of the digital readings.

In a tilting level, the telescope and the sensitive bubble are pivoted on a 
horizontal axis, and can be slightly elevated or depressed by means of a 
micrometer screw. The instrument can be used as described above for level-
ling—but predetermined slopes can also be set out, using a graduated ring 
mounted on the drum of the micrometer screw.

On a basic optical level, the staff is read by estimating the reading which 
lies exactly behind the horizontal crosshair. Since most optical staves are 
graduated in centimetres, this makes it hard to measure a height to better 
than about 2 mm. To obtain higher accuracy, optical levels may incorpo-
rate a device known as a parallel plate micrometer—a thick disc of glass 
with a high refractive index and surfaces which are exactly parallel, which 
lies on the light path between the main telescope and the distant object. 
This disc pivots about a horizontal axis which is parallel to its two circular 
surfaces and perpendicular to the telescope’s line of collimation. When the 
two surfaces of the disc are vertical, this has no effect on the view through 
the telescope—but as the disc is rotated (by means of a micrometer), the 
image of the staff appears to move up and down against the horizontal 
crosshair, as shown in Figure 6.3. The observer rotates the disc until one of 
the height markers on the staff coincides with the horizontal crosshair, and 
then reads the graduated micrometer to see how much additional height 
should be added to the value observed on the staff.

At normal ranges (up to about 50 m), simple optical levels permit read-
ings to be estimated quite easily to within 5 mm, while standard digital 
levels are typically accurate to about ±1 mm. For work requiring greater 
accuracy, precise digital levels or optical levels with parallel plate microm-
eters allow readings to be taken to submillimetre accuracy, and even down 
to 0.01 mm. Levelling to this degree of accuracy is called ‘precise level-
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ling’ and involves special staves and techniques which are fully described 
in Section 6.6.

Measurements of distance (whether using the stadia lines on an optical 
instrument or a digital readout) rely on a method called tachymetry (see 
Chapter 5, Section 5.3) and are not particularly accurate; if the stadia lines 
are being read to ±5 mm, the distance will only be accurate to about 1 metre 
at best. The particular system in each instrument is simply designed to be 
accurate enough for its intended purpose—namely, to keep the distances of 
foresights and backsights approximately equal, as discussed below.

6.3  TECHNIQUE

Most modern levels (especially precise levels) read the staff digitally; some of 
the guidance below is only for optical levels, but most is relevant to both types.

Set up, focus and eliminate parallax as with a total station (see Chapter 4, 
Section 4.3.4)—this is vital for accurate readings, even with a digital instru-
ment. Level the instrument if necessary, as described above. Never rest your 
hands on the tripod while observing.

We have assumed that the line of collimation is horizontal when the 
instrument is levelled. This is only true if the instrument is in exact adjust-
ment. If the permanent adjustments are not perfect, the line of collimation 
will point up (or down) slightly when the instrument is levelled, and all 
staff readings contain a ‘collimation error’. Since this error is proportional 
to the distance of the staff from the instrument, it will cause equal errors 
in sights of equal length. Consequently, since the carrying forward of the 
height depends on the difference between backsights and foresights, the 
errors will cancel out if, at each position of the instrument, the foresight 
and backsight distances are equal: i.e., I1A should equal I1B in Figure 6.1. 

(a) (b)

Sta�

Parallel plate

Telescope

Sta�

Telescope

Plate rotated
on pivot

Line of collimation
still horizontal

Figure 6.3 � Parallel plate micrometer.
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In practice, such errors will be kept small if the instrument is properly 
adjusted and the difference in distances is less than about 5 metres. Note, 
however, the errors introduced into intermediate sights do not cancel out, 
so these readings may have much larger errors unless the distance are short 
or the instrument is in very good adjustment.

The line of collimation can also deviate from the horizontal as a result 
of the tendency of light paths to bend in a vertical plane (see Chapter 10, 
Section 10.2). The effect of this varies with the square of the length of the 
line of sight and does not remain constant. With ordinary instruments, 
therefore, do not take sights longer than 50 metres.

When optical instruments are mounted at an awkward height, it is very 
easy accidentally to use one of the stadia lines (see Figure 4.1) instead of the 
main horizontal crosshair when taking a height reading. On a typical sight 
length of 30 m, this will introduce an error of approximately 15 cm, which 
should be apparent on checking. It is, of course, preferable not to make the 
mistake in the first place—so before taking a reading optically, always be 
sure that you can see all three horizontal hairs on the reticle.

On some instruments, the staff is seen upside-down in the telescope; 
do not correct this by holding the staff itself upside-down! Before starting 
work, study the scale carefully, both with the naked eye and through the 
telescope. Note the difficulty of distinguishing sixes from nines.

When levelling down a slope, it is easy to overestimate the length over 
which a reading can be made and to find that the instrument, when lev-
elled, is either looking over the top of the staff or into the ground below 
it. For optical levels it is obviously necessary for the main crosshair (and 
perhaps the stadia hairs) to intersect the staff; and digital levels need to see 
a reasonable length of bar code above and below the crosshair, before they 
can take a reading.

To take a reading, the staff-holder faces the staff towards the instrument 
and stands behind it with one hand on each side so as not to hide the scale. 
It is clearly important that the staff should be held vertical, but this can be 
difficult to achieve, especially in windy conditions. Most staves (including 
all digital ones) have a cup bubble built into them, and the staff-holder must 
centre this and hold the staff steady* while the reading is being taken. When 
using an optical staff without a bubble, the observer can see if it is leaning 
sideways by means of the vertical hair in the telescope and can signal to 
the staff-holder accordingly. However, neither party can see if it is leaning 
forwards or backwards, so the staff-holder should therefore swing the top 
of the staff slowly towards and away from the instrument, passing through 
the vertical position. The observer then records the smallest numerical staff 

*	 In windy conditions, it is helpful to have two poles about 1.5 metres long, and use these to 
‘brace’ the staff by forming a tripod. If the staff is assembled from sections, it can also be 
helpful to remove any upper sections which are not needed for the reading.
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reading that appears behind the crosshair, since this corresponds with the 
vertical position of the staff.

At change points, rest the foot of the staff on something firm and convex. 
If necessary drive a peg—preferably with a dome-headed nail driven into 
it—so that the foot of the staff is always in contact with the highest point 
when the staff is vertical. If no dome-headed nail is available, it is good 
practice to drive the peg in at a slight angle so that one corner is uppermost, 
rather than attempting to get the top face of the peg exactly level.

When levelling round a closed bay, it is important that the instrument 
should be moved (even if only slightly) for each set of observations. In 
Figure 6.2, for instance, it might not seem necessary for I2 and I3 to be 
separate physical positions. If they are not, though, there is the possibility 
that any misreading of the staff at point C will cancel out—the bay may 
then appear to close well, but there will be a height error at point C. This 
is even more important in a smaller bay such as C to E—the instrument 
must be moved from I5 to I6, even if this only involves pulling the tripod 
out of the ground and treading it back in again at almost (but not exactly) 
the same place.*

6.4  BOOKING

As mentioned above, most digital instruments can record their readings 
electronically, which makes booking unnecessary. This is undoubtedly effi-
cient for surveyors who use a particular type of level frequently and are 
familiar with the relevant booking system; but for the first-time or casual 
user, it can be helpful to write the readings down in a book, even if they are 
also being recorded electronically. This is often useful when earlier read-
ings need to be repeated, e.g., when a backsight has been taken and it then 
turns out to be impossible to read the required foresight—editing the elec-
tronically stored results can sometimes be challenging. It is therefore useful 
to know how to book levelling results manually—and, of course, there is 
no choice when an optical instrument is being used.

Figure 6.4 shows one standard method of booking. Successive rows of 
entries on the form refer to successive staff stations; the foresight from I1 
and the backsight from I2 (both to staff position B, in Figure 6.2) are there-
fore booked on the same line. At each instrument station, the height of the 
line of collimation is obtained from the backsight, and then the reduced level 
of the next foresight is calculated by subtracting the relevant staff reading.

The booker, who may well also be the observer, books each reading in the 
field book as it is taken, using a pencil or ballpoint pen. Fill in a name for 
each staff station; the entries in the distance columns generally need only be 

*	 To save time, the instrument can be left mounted on the tripod when this is done.
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accurate to a metre or so, and can be judged by pacing.* Do not erase; make 
corrections by drawing a single line through the incorrect figures, leaving 
them legible, and writing the correct figures above them. A fair copy can 
be made later on another page if necessary—but take care to avoid copying 
errors, and do not destroy the original papers. Sign and date the work.

Immediately after booking a reading, verify it by again looking through 
the instrument; beware of gross errors of a metre or a tenth of a metre. 
Then, if the instrument has one, look at the sensitive bubble again to verify 
that the telescope is level.

When the bay is complete, the booker should add up the total of all 
the backsights (upwards movements) and of all the foresights (downwards 
movements), as shown in Figure  6.4. The difference between these two 
quantities should be the same as the calculated difference in height over the 
bay (in this case, 4 mm). If it is not, it means there is an arithmetic error 
somewhere on the booking sheet. This check is useful in that it might ‘res-
cue’ a bay which appears to have closed badly—conversely, it will also flag 
a bay which appears to have closed well as a result of two errors cancelling 
each other. Note, though, that it does not detect errors in the observations 
themselves. If the bay has closed acceptably and the arithmetic has been 
checked, the height of all points in the bay can be accepted. If desired, these 

*	 The stadia hairs provide a useful alternative when pacing is impossible, e.g., if the line of 
sight passes over a stream.

LEVELLING From: _Bench Mark A_ To:__Temporary BM C_  GROUP:__A2__
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Date: __28/3/03___________   Booker: ____B. Jones ________          ____Control_
Weather: __Light drizzle______ Checker: _______ ___________          ___________
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heights can also be ‘adjusted’ to their most likely values, given any misclo-
sure in the bay. In the case shown, point A has closed 4 mm higher than it 
should; the most likely assumption is that there has been a steady upwards 
‘drift’ around the bay, meaning that the calculated heights for points B, C 
and D should be adjusted downwards by 1 mm, 2 mm and 3 mm respec-
tively. The relevant adjustment is shown for point C in Figure 6.3, as the 
starting height for the next bay.

A further useful check is to add up the total distances for all the fore-
sights and backsights in the bay, as shown in Figure 6.4. In this example the 
individual backsights and foresights from each instrument position (25/28, 
27/31, 20/25, 31/34) are all individually within tolerance, but there has 
been a slight systematic bias towards having longer foresights than back-
sights, as shown by the totals. If the instrument has a collimation error, this 
accumulating difference will introduce errors into the recorded heights—
and might, in this case, explain why the bay has not closed especially well.

6.5  PERMANENT ADJUSTMENTS

The permanent adjustments which can be made to a level ensure that the 
line of collimation is horizontal when the instrument has been levelled. 
Alterations to these adjustments should only be undertaken back at base, 
but it is sometimes useful to check them in the field, particularly if the 
instrument has just been subjected to a heavy impact.

A simple field test called the ‘two-peg test’ involves driving two pegs 
into the ground, a measured distance x (usually 25 m) apart, as shown in 
Figure 6.5. Set the instrument up approximately in line with (but not in 
between) the two pegs, and observe to the staff on each peg in turn (read-
ings a and b in Figure 6.5). Move the instrument to the other end of the line 
(so that the peg which was near to the instrument is now the far one) and 
repeat the process, to obtain readings a′ and b′.

The slope error of the instrument (in radians) is given by the expression
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Figure 6.5 � ‘Two-peg test’ for a level.
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when all distances are expressed in metres and a positive value denotes an 
upwards slope. If the absolute value is less than 1 × 10−4, then the instru-
ment is fine; remember that even a value of 2 × 10−4 would cancel com-
pletely if the foresights and backsights are of equal length, and would only 
produce 1 mm of error if the sight lengths differed by 5 metres.

For information about tests and adjustments for a particular instrument, 
refer to the maker’s handbook. Some digital instruments, for instance, have 
built-in software for computing the results of a two-peg test automatically.

6.6  PRECISE LEVELLING

A slower but much more accurate type of levelling is known as precise lev-
elling, in which differences in heights are typically read to 0.01 mm, and 
bays might be expected to close to within 0.1 mm. The overall principles 
are identical to those described above, but some extra details are required 
to achieve the higher precision:

	 1.	The staff is never rocked backwards and forwards as described above, 
but is made precisely vertical by means of a cup bubble. For a staff of 
more than 2 metres in length, this usually involves support by some 
form of tripod. The scale on the staff (optical or digital) is printed 
onto a strip of invar* held under constant tension in the frame of the 
staff, to minimise errors caused by thermal expansion.

	 2.	For best efficiency (and certainly when using staves supported in tri-
pods), a pair of staves is often used—one for the backsight, and one 
for the foresight. Since the two staves may not have identical offsets 
between the zero on the scale and the base of the staff, it is essential 
that bays always start and end using the same staff. This means that 
open bays must always have an even number of instrument positions. 
The smallest possible ‘closed’ bay (from a known benchmark to a 
new station and back to the known one) will therefore involve four 
instrument positions, so that the same staff is always placed on all the 
temporary benchmarks which are to be used as the starting point of a 
new bay. Thus, the bay from A to C and back in Figure 6.2 would be 
a valid bay for two-staff precise levelling, but the bay from C to E and 
back is too small.

*	 A ferrous alloy, typically consisting of 64% iron and 36% nickel, with a very low coef-
ficient of thermal expansion.
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		    The alternative approach is to use a single staff and carry it to 
and fro between the backsight and foresight positions—but this can 
involve a lot of walking, given the observation system described below. 
This approach is only viable if the staff is short enough to be held suffi-
ciently steady by the observer—in practice this means the staff should 
not be more than 2 metres in length, which (in turn) means that the 
sight lines will be quite short when going up or down a steep hill.

	 3.	A more elaborate system of observing is used to compensate for any 
changes in temperature which would cause even an invar staff to 
change slightly in length. The procedure is called ‘BFFB’ and involves 
reading a backsight, then a foresight, then a second foresight, and 
finally a second backsight. The time interval between readings 1 and 
2 is kept small, and the interval between readings 3 and 4 is made 
to be the same length. Averaging the two results thus eliminates any 
temperature effects, assuming that the temperature is rising (or fall-
ing) at a constant rate. In an even more elaborate procedure, called 
‘alternating BFFB’ or just ‘aBFFB’, the next instrument position 
observes foresight, backsight, backsight and foresight (i.e., FBBF), 
and this sequence of BFFB-FBBF is repeated throughout the bay.

	 4.	Halfway through the observations at each instrument position, it is 
good practice to alter the foot-screws on the tribrach of a digital level 
slightly, so as to change the height of the instrument by 1 mm or so. 
This means that the two backsights and the two foresights are each 
taken to slightly different places on the staff, which helps to compen-
sate for any nonlinearities in the digital interpolation system. Staves 
for optical precise levels usually have two scales, offset by one half of 
the range of the parallel plate micrometer, for the same reason.

	 5.	The possibility of errors from any collimation error in the instrument 
is more important—either at one instrument position or cumulatively 
round a bay. To guard against this, the cumulative totals of distances 
to the backsights and foresights in a bay are recorded at each step 
and are steered to be as close to one another as possible (typically 
to within a few centimetres) throughout each bay. These distances 
are generally recorded by tachymetry (optical or digital) during the 
observation process, but steel tapes would also be used for planning 
the positions of the instrument and the staves.

	 6.	The importance of finding a firm support on which to stand the staves 
is much greater. The staves are heavy and may settle by a millimetre 
or more while the readings are being taken, if they are resting on soft 
ground. Foot plates are generally used to support the staves when they 
can be placed on hard ground—they should be gently ‘bedded in’ to 
the surface, before the staff is placed on top. On softer ground, it may 
be possible to drive in a wooden peg, or a steel rod, having a domed 
top on which the staff can stand. Really soft ground (e.g., marshy 
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areas) should be avoided altogether. Whatever the surface, it is advis-
able to let each staff rest on its support for a minute or two before 
taking the first reading.

	 7.	It is generally unwise to observe over a distance of more than about 
30 metres, because of the atmospheric effects mentioned above. It 
is also unwise to observe to the limits (top or bottom) of the staves 
when going up or down a slope; if this is done on the outward half of 
a closed bay, it may prove impossible to complete the return half using 
the same number of instrument positions.

As with ‘ordinary’ levelling, the manual booking of precise levelling 
results is often a good idea, even if the level is capable of recording its 
readings electronically. Figure 6.6 shows a method for booking the results 
obtained from four instrument positions, running from a known bench-
mark to a temporary one. The readings are taken in the order suggested in 
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Figure 6.6  �Booking precise levels (digital instrument).
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Point 3 above, starting with the one marked by the black dot in each case. 
If two staves are being used, the same staff would always be placed in the 
position suggested by the black dot, too.

When the four height readings and two distances have been recorded 
at the first instrument position (BMA to pt1), the difference between each 
backsight and its corresponding foresight is calculated and booked as a 
‘rise’ or a ‘fall’, depending on whether the foresight station is higher or 
lower than the backsight station; in this case, it is clearly a ‘fall’ as the fore-
sight readings are larger than the backsight readings.

On the final line for the first instrument position, the sums of the two 
foresights and backsights are written down (1.67883 and 3.80345 respec-
tively), followed by the cumulative totals of the distances to the backsight 
and foresight (8.01 and 8.00) and the average of the rise or fall.

This process is repeated for three further instrument positions; note how 
the distances to backsight and foresight are being managed to ensure that 
the accumulating totals always stay within a few centimetres of each other.

When the observations have been completed, the totals of all eight back-
sight readings and all eight foresight readings are computed and recorded. 
The smaller number is then subtracted from the larger number, to leave a 
difference of 7.19662 metres, in this case. Likewise, the two ‘rise’ values 
and the six ‘fall’ values are also summed up, and a second difference is com-
puted. If all the arithmetic has been done correctly, these two differences 
should be the same. As a final check (or as a way of determining which of 
the two differences is in error if they disagree), the three average falls are 
summed and the single average rise is subtracted from this total, to give (in 
this case) a net fall of 3.59830 metres which is booked as a ‘Difference of 
means’ in the bottom right corner of the form.

Finally, the exact change of height is computed by halving one of the 
‘Difference of Σ′s’ numbers to give (in this case) a net fall of 3.59831 metres. 
This may differ slightly from the ‘Difference of means’ result (and does, in 
this case) because of the rounding errors introduced when computing the 
averages. If the height of the first station is known, this can be recorded in 
the bottom left area of the chart, and the height of the final point can be com-
puted using the computed change in heights. Note that the height of TBM1 
has been recorded to a much higher precision than that of the start point; this 
is to ensure that rounding errors do not unnecessarily reduce the accuracy 
of the overall result, if a large number of bays are measured and combined.

Having completed a sheet such as that shown in Figure 6.6, the next task 
would probably be to level from TBM1 back to BMA, filling in a further 
sheet in the process. It is not necessary or desirable to use exactly the same 
change points for both tasks; but it can be helpful to leave pt2 in place 
on the outward journey, and to use it again on the way back, as shown in 
Figure 6.7. Then, if the two overall height differences do not tally, it will at 
least be possible to see whether the problem lies between pt2 and BMA or 
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between pt2 and TBM1. Levelling the problem section for a third time will 
then indicate whether the error arose on the outward or return journey.

6.7  CONTOURS

Contours (Bannister, Raymond and Baker 1998) are the best method of 
showing variations in level on a plan; they can be thought of as the tide 
marks left by a flood as it falls by successive vertical intervals. Manual con-
touring is laborious; the following methods are used:

	 1.	The contours are pegged out on the ground with a level and staff, 
and then surveyed (perhaps by a total station). The staff may have an 
adjustable marker set at the same height as that of the telescope above 
the required contour level, to speed its positioning.

	 2.	A total station is set up and oriented as for mapping (see Chapter 3, 
Section 3.2), above a station of known height. A detail pole is set to 
the height of the instrument above its station, so that any height dif-
ference between instrument and reflector is always the same as the 
height difference between the station and the foot of the staff. The 
height difference from the station to the required contour is calcu-
lated, and the staff-holder follows the ground line which gives this 
height difference, with the instrument recording the staff position at 
suitable intervals. The contour is then plotted in the same way as 
other mapping detail.

	 3.	The spot levels of points where the slope of the ground changes are 
taken, usually with a total station, and the contours are interpo-
lated—usually by computer. This is a common method in engineering 
work; it is less accurate than method (2), but much quicker.

1 32 4

5678

Bay 1

Bay 2

BM A

pt 1

pt 2

pt 3

pt 4pt 5

TBM 1

Steel pin or stud in wooden peg
Sta� support

Figure 6.7  �Bays for precise levelling (plan view).
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	 4.	Heights are measured at evenly-spaced points on an (x,y) grid, and 
the contours are drawn by interpolation. This method is particularly 
useful if the volume of earth in an area needs to be estimated, as part 
of a mass-haul calculation; see Allan (1997) for details. Some total 
stations can ‘steer’ the detail pole to the necessary places and perform 
the associated volume calculations automatically.

	 5.	Over larger areas, contours are most easily plotted by means of aerial 
or satellite photogrammetry. Contours on published maps are now gen-
erally plotted by digital photogrammetry (see Egels and Kasser 2001).

	 6.	Contours may also be plotted by kinematic GNSS; see Chapter 7.

6.8  LEVELLING OVER LONGER DISTANCES

If the points are close to each other and only their relative heights are 
needed, these can be found as described above, using an arbitrary height 
datum (e.g., giving the first point a ‘height’ of 100.000 metres*). If, however, 
heights are required with respect to a national datum, e.g., for compari-
son with other points elsewhere in a country, then the scheme of levelling 
must include at least one point whose height is known with respect to that 
datum. This would typically be done by taking GNSS observations from 
one or more of the points (see Chapters 7 and 8). Although such observa-
tions are only accurate to a centimetre or so (meaning that the height dif-
ference may be in error by up to 2 cm), this is a much quicker (and possibly 
more accurate) approach than running a line of levels between two points 
which are several kilometres apart.

If no GNSS equipment is available, the scheme of observations can 
instead be tied into one or more nearby benchmarks of known height. The 
heights of benchmarks around Britain, for instance, are published by the 
Ordnance Survey (March 2013) at http://benchmarks.ordnancesurvey.
co.uk—but these cannot now be fully relied upon as most of them are no 
longer checked regularly, as explained in Chapter 8. It is therefore good 
practice to use at least two (and possibly more) such benchmarks, to be 
certain that a reliable orthometric height has been established.

The most common benchmarks in the UK consist of a horizontal v-shaped 
slot cut into a brick or stone wall. They are used by inserting a bracket 
into the slot and standing a staff on the bracket. (The technical name for 
such a bracket is a ‘bench’, hence the term ‘benchmark’.) In some places 
(e.g., on Ordnance Survey triangulation pillars) a brass ‘flush bracket’ is 
cemented into a wall to form a benchmark; this requires a more sophisti-
cated bracket on which to stand the staff. Figure 6.8 shows how these two 

*	 Avoid using a datum height of zero metres, as this may cause some other points to have 
negative heights.
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types of benchmarks are used when levelling with a staff; the brackets typi-
cally incorporate an adjusting screw, so that (with the aid of a spirit level) 
the staff support can be adjusted to the same height as the reference mark, 
when the wall is not vertical.

Finally, trigonometric heighting (see Chapter 12) can be used to find 
height differences over longer distances. As discussed in Section 12.6, this 
technique is able to provide results which are accurate to about 4 mm per 
kilometre of separation, which makes it competitive with GNSS over dis-
tances up to about 5 kilometres.

(a) Cut mark (b) Flush bracket

Reference
height

Bracket

Wall

Wall

Side view
Adjusting screw

Cement

Staff Staff

Front view

Figure 6.8 � Use of Ordnance Survey bench marks.
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Chapter 7

Satellite Surveying

7.1  INTRODUCTION

The human race has used objects in space to navigate for many years. In 
around 1000 BCE, the Phoenicians discovered that the maximum observ-
able elevation attained by any particular star was a function of the observer’s 
latitude, and they used this knowledge to navigate in an east–west direction 
across the Mediterranean Sea. With the advent of accurate chronometers 
in the 18th century, it became possible for navigators to determine their 
longitude as well as their latitude by means of astronomical observations.

The first use of satellites for position fixing began in 1964 with the 
Transit system, which consisted of six satellites in polar orbits and provided 
submetre accuracy after about two days of observations. The American 
GPS (global positioning system) came into service in the mid-1980s, and 
was originally set up as a military navigation aid; the Russian GLONASS 
(global navigational satellite system) started life in a similar way, a few 
years later.

At present, GPS and GLONASS satellites are both freely available to non-
military users, and several other similar systems are in the process of being 
designed or commissioned. The European Galileo system now has four vali-
dation satellites in orbit, and is (at the time of writing) expected to be fully 
operational by 2020. The Chinese Beidou (or Compass) system is following 
a similar developmental path, and India is also planning a more limited 
system called IRNSS (Indian Regional Navigational Satellite System).

Collectively, these systems are now known as GNSS, or global navi-
gational satellite systems. Most new navigational satellite receivers can 
receive signals from more than one of these systems, although GPS remains 
the single most important system for surveyors and other users. The tech-
nical details given in this chapter mainly therefore refer to GPS; the other 
systems mentioned above all work (or will work) in broadly similar ways.

The significance of GNSS to surveyors is profound. With care, it can 
now be used to measure positions on the earth’s surface to subcentimetre 
accuracy after just a minute or two of observations; and it has the huge 
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advantage (by comparison with earlier methods of surveying) that control 
stations do not need to be intervisible. This means that national networks 
of ‘known’ stations (provided around Great Britain by the Ordnance Survey 
and others) no longer need to be located on hilltops or tall buildings but 
can, for instance, be positioned on the verges of quiet roads.

7.2  HOW GPS WORKS

The GPS system consists of a set of about 24 satellites, each of which is in 
a near-circular orbit about the earth with a period of 12 hours* and there-
fore a radius of approximately 26,000 km. The orbits are all inclined at 
about 55° to the plane of the equator, and lie in six different planes, equally 
spaced around the equator. As a result, there are at least four satellites vis-
ible at all times everywhere on the surface of the earth, unless blocked by 
terrestrial obstructions. In most places and for most of the time, the num-
ber is greater than this, often up to eight or ten.

Each satellite broadcasts a set of orbital parameters (its ‘ephemeris’) 
which allow its position at any instant to be calculated to within about 20 
metres, plus two digital signals whose ‘bits’ are transmitted at very precise 
times. By recording the time at which it receives the digital signal (and 
knowing the speed of light), a GPS receiver is able to determine how far it 
is away from the satellite (the ‘pseudorange’†), and thus to position itself 
somewhere on a sphere with a known centre and radius.

When a second satellite is detected, another sphere is calculated; the 
locus of possible positions for the receiver becomes the circle of intersec-
tion between the two spheres. A third satellite provides yet another sphere, 
which will intersect this circle at just two points. One of these will typically 
lie many thousands of kilometres away from the surface of the earth—dis-
carding this will give one possible position for the receiver.

At this point, the principal error in the calculation is caused by the clock 
in the receiver (the satellites have atomic clocks, which are highly accurate). 
Because light travels at 300 mm/s, an error of just 1 microsecond in the 
receiver’s clock will cause an error of 300 metres in the calculated radii of 
all the spheres, and thus a large error in the calculated position. For this 
reason a fourth satellite must be detected, and a fourth sphere calculated—
the radii of all four spheres are then adjusted by an equal amount, such 
that they all touch at one single point. This point is taken as the position of 

*	 Strictly, 12 sidereal hours (a sidereal day being the time for the earth to complete one 
revolution with respect to the stars, rather than the sun). A given constellation of satellites 
therefore recurs twice each day, and about 4 minutes earlier on each subsequent day.

†	 The pseudorange of the satellite is the distance calculated by measuring the time when the 
digital signal is received, not allowing for clock errors in the receiver or satellite, or for 
delays caused by the earth’s atmosphere.
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the receiver, and the required adjustment in the radii (divided by the speed 
of light) is taken to be the receiver clock error. The receiver’s clock is then 
adjusted accordingly, and this error is eliminated from the pseudoranges.

If more than four satellites are visible, the extra information can be used 
to provide redundancy in the calculation, and the receiver will report a 
position based on the best fit of the available data.

If only three satellites are visible, some systems will also provide a ‘two-
dimensional’ (2-D) solution, by assuming that the receiver is at sea level. 
Figure 7.1 is a plan view of the earth’s surface which shows how three satel-
lites can provide such a 2-D solution, and correct the receiver clock error. 
The three solid circles are the loci of all points on the earth’s surface which 
are the appropriate distance from each satellite, as calculated from the 
pseudoranges. As can be seen, there is no one place on the earth’s surface 
which lies on all three circles. However, if the receiver’s clock is running 
slow, this would cause it to underestimate its distance from each satellite; 
advancing the receiver’s clock appropriately and recalculating the ranges 
gives the three dotted circles, which do meet at a point.

The method described above will enable a single GPS receiver to calcu-
late its so-called ‘navigational’ position to within about 10 metres.* This 
accuracy can be improved to better than 1 metre by leaving the receiver in 
the same place for an hour or more, and averaging the readings. Note that 
these figures have improved significantly since the US military withdrew 
‘selective availability’ (the deliberate downgrading of the data provided by 

*	 The accuracy in vertical position is always about 2.5 times poorer that the accuracy in 
horizontal position, due to the fact that the satellites being observed are always above the 
plane of the horizon. This factor also applies to all subsequent accuracies described in this 
chapter.

Initial
Pseudoranges

Satellite 1

Computed point

Satellite 3

Satellite 2

Adjusted ranges

Figure 7.1  �Receiver clock adjustment in 2-D satellite surveying.
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the satellites) in May 2000—earlier literature quoted much higher errors 
than this.

The accuracy of a result is also determined by other factors, such as 
the relative positions of the satellites being observed, which will affect the 
geometry of the computation. The effect of these factors is referred to as the 
geometric dilution of precision (GDOP),* and is expressed as a multiplying 
factor for the potential error—a GDOP of less than 2 is very good, but it 
could rise to 20 or more if all the visible satellites lie in a near-straight line 
across the sky. Also, some cheap receivers only use the so-called ‘coarse 
acquisition’ (C/A) digital signals from the satellites to compute pseudor-
anges, while others also use the more precise P-code, which has a 10-times 
higher ‘chipping rate.’† Finally, the best receivers are dual frequency—they 
receive the P-code from the satellites on carrier waves at two slightly dif-
ferent frequencies‡ and can use the difference of the two resulting pseu-
doranges to estimate (and thus largely eliminate) the effect of the earth’s 
atmosphere on the speed of propagation of the signals.

The accuracy discussed above refers to the absolute position of the 
receiver on the surface of the earth and is considerably higher than any-
thing which could be achieved prior to the 1960s, using astronomical 
observations. However, it is insufficient for many engineering purposes, 
which typically require the differences between stations to be known to a 
few millimetres. For this reason, surveyors tend to use differential GNSS, 
or DGNSS, which is described in the next section.

7.3  DIFFERENTIAL GNSS (DGNSS)

The factors which most affect the accuracy of a single high-quality GNSS 
receiver are errors in the positions of the satellites, errors in the satellite 
clocks, and the effects of the earth’s atmosphere on the speed at which 
the satellite signals travel. If two such receivers are within, say, 10 km of 
each other, the effects of these factors will be virtually identical and the 
difference vector in their navigated positions will be correct to within a 
decimetre or two. If the distance between the receivers is greater than this, 
the accuracy of a simple difference calculation is degraded by the fact that 
the two receivers will be observing the same satellites but from somewhat 
different angles—so that the errors mentioned above will all have slightly 

*	 Sometimes broken down into the ‘positional dilution of precision’ (PDOP) for the accuracy 
of the positioning on a horizontal plane, and ‘vertical dilution of precision’ (VDOP) for 
height information, due to the general difference in accuracy of these two calculations, 
mentioned above.

†	 The rate at which bits are transmitted in the satellite’s binary signal.
‡	 These are known as the L1 frequency (1575.42 MHz) and the L2 frequency (1227.60 

MHz).
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different effects on the calculated positions of the two receivers. The sat-
ellite clock and position errors can be eliminated if one of the receivers 
(known as the ‘base station’) is at a known position for an extended period 
of time—the processing software corrects the positions of the satellites 
using the data recorded by that receiver, and then applies those corrections 
to the other receiver (known as the ‘rover’). This can be done in real time if 
the base station is equipped with a radio transmitter with which to send its 
corrections to the rover; alternatively, both stations can simply record their 
observations, for subsequent post-processing.

The fact that signals to the two receivers are passing through different 
parts of the earth’s atmosphere, and will therefore suffer different propa-
gation effects, is harder to correct*. This effect ultimately constrains the 
overall accuracy of differential GNSS (DGNSS) to about 2 mm in the hori-
zontal plane and 5 mm vertically for every kilometre of separation between 
the two receivers (i.e., 2 and 5 parts per million), up to the point where the 
two receivers can no longer see the same satellites.

The final precision of differential GNSS is achieved by measuring the 
phase of the carrier wave onto which the P-code is modulated. The chip-
ping rate of the P-code is 10.23 MHz, which means the bits in the signal 
are about 30 m apart. By contrast, the L1 carrier wave has a frequency 
of 1575.42 MHz, and thus a wavelength of about 19 cm. Interpolation 
of the phase of the carrier signal will yield a differential positional accu-
racy of a few millimetres, provided it has been possible to use the P-code 
to obtain a result to within about 20 cm beforehand. If not, the carrier 
phase information cannot be used because of the uncertain number of 
whole wavelengths between the satellite and the receiver. The attempt to 
determine the number of whole carrier wavelengths is called ‘ambiguity 
resolution’. It is usually possible to resolve ambiguities when the receiv-
ers are up to 30 km apart, given a good GDOP and enough observation 
time—and it is usually unwise to attempt it† if the receivers are more than 
50 km apart, because of the unknown differences in atmospheric delays 
along the two paths. Note, therefore, that the term ‘DGNSS’ can imply 
a wide range of relative positioning accuracy, from about 2 mm up to 
2 decimetres or so.

A final factor which is important at the top level of precision, is ‘mul-
tipath’, i.e., the reception of signals which have not come directly from the 
satellite but which have bounced off (for instance) a nearby building—this 
can cause errors of up to half a metre in the calculated position of the 

*	 Some commercial solutions to this have now been developed and are discussed below.
†	 Processing the data under these circumstances may yield a seemingly plausible solution—

which might, in fact, be incorrect by one or more whole wavelengths. Software from 
responsible suppliers will warn a surveyor against using results unless the statistical likeli-
hood of their correctness is high. Even then, however, it is impossible to guarantee that the 
calculation has yielded the correct result.
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receiver. For this reason, surveying GNSS stations should always be sited 
well away from buildings and large metal objects. In particular, DGNSS 
cannot always be relied upon to produce accurate results in the middle of 
a construction site; it is often good practice to use DGNSS to fix control 
stations around the edge of the site, and then to use the more conventional 
surveying methods within the site.

7.3.1  Base Stations for Differential GNSS

One requirement for the accurate computation of a DGNSS difference vec-
tor is that the absolute position of the base station is known to within 
about 1 metre before the calculation is done. If a completely ‘local’ co-
ordinate system is to be used for a project, it is perfectly acceptable to 
base the whole system on a point which has been fixed as a navigational 
solution, provided it is observed for long enough to fix it to that accuracy. 
All difference vectors built out from that point will be of high accuracy, 
and all points fixed using those vectors will also therefore have an absolute 
accuracy of less than 1 metre, so can in turn be used as base stations for 
further vectors.

Often, however, it is necessary to tie in new GNSS stations to a country’s 
national mapping system. This can be done in four different ways, using 
three different types of ‘known’ stations.

7.3.1.1  Passive Stations

Many countries, including the UK, provide a network of stations with known 
(and published) co-ordinates. These are often sited on roadsides or other 
public places, and so can be occupied without obtaining permission. Using 
one or (preferably) more of these stations as base stations will tie all new sta-
tions into the national co-ordinate system to a reasonable level of accuracy.

7.3.1.2  Active Stations

In addition to passive stations, several organizations maintain ‘active’ base 
stations, at known positions. These record GNSS data which are subse-
quently published (usually via the Internet) and which can be downloaded 
for post-processing in conjunction with data recorded by a roving receiver. 
This system allows users with only one GNSS receiver to carry out DGNSS, 
and increases the productivity of users with more than one receiver. The 
format of the data is normally RINEX (receiver-independent exchange for-
mat), which is the standard for transferring GNSS observations between 
different manufacturers’ equipment. The published co-ordinates of these 
active stations are of a higher general quality than those of the passive sta-
tions described above, so the results will be correspondingly more accurate.
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Before using this service, it is wise to check the frequency at which the 
chosen active station records its observations (typically once every 15 sec-
onds), and to set your own receiver to record at the same frequency; this 
simplifies, and improves the quality of, the subsequent post-processing. Be 
prepared also to return from recording your own observations only to find 
that they cannot be used to full effect because the nearest active station 
wasn’t working that day!

The fact that the base and roving stations may be using different types 
of antennae may also cause problems, as they will have different offsets. 
The documentation for the post-processing software should explain how 
to allow for this—but any error in inputting this information will poten-
tially go undetected. As a check, download some further data from another 
active station, with yet another antenna type, and check that the two dif-
ferential vectors produce compatible results.

It is in any case good practice to download data from several (five, say) 
nearby active stations, and treat them all as ‘base stations’ when post-
processing the data. As well as detecting systematic errors of the type 
mentioned above, this will help cancel out atmospheric effects—and the 
accuracy to which the differential vectors meet together at a single point 
will give a good estimate of the accuracy of the observations. Ideally, these 
active stations should form a ‘ring’ around the point being measured—this 
is made easier in the UK by the fact that at least half of the 100-odd active 
stations maintained by the Ordnance Survey are sited on, or near, the coast.

7.3.1.3  Broadcasting Stations

An emerging service in several countries is the permanent installation of 
GNSS receivers which act as base stations, and broadcast their data via 
short-wave radio to any nearby receiver. Surveyors who have paid to use the 
service, and who have suitably equipped receivers, can use this information 
to show their position to within a centimetre or so in real time. This system 
is typically used at airports, enabling DGNSS to be used as a precision 
landing aid.

7.3.2  Network Real-Time Kinematic Services

More recently, commercial services have started to appear which maintain 
a network of receivers at known points, and use the data from these receiv-
ers to estimate the current satellite errors and also to generate a model of 
how the atmosphere is delaying signals from those satellites. When a suitably 
equipped roving GNSS receiver starts to operate, it first determines its ‘navi-
gational’ position, which it reports (via a mobile phone) to the service. The 
service then uses its data to compute the errors (satellite and atmospheric) 
which a fixed base station would experience if it were placed at the position 
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reported by the roving receiver, and gives the receiver the appropriate cor-
rections; effectively, it creates a ‘virtual active station’ within a few metres of 
the receiver. This allows very quick position fixing by a single receiver, to an 
accuracy which is mainly governed by the quality of the atmospheric model.

7.4  USING DGNSS IN THE FIELD

Differential GNSS relies on the same satellites being observed at the same 
time by the two receivers. If one receiver is recording while the other is not, 
those observations will be unusable. There are a number of ways of using 
DGNSS in practice, depending on the size and purpose of the survey. The 
principal ones are as follows.

7.4.1  Static

When the two receivers are more than about 15 kilometres apart, it is nec-
essary for them to remain simultaneously in position for an hour or more, 
recording observations every 15 seconds or so. The time period allows the 
satellites to move through significant distances and for a larger number of 
satellites to be observed by both receivers simultaneously—and the number 
of observations ensures a good chance of resolving ambiguities if that is 
possible, or of obtaining a well-averaged result if it is not. Static survey is 
usually used for the establishment of new control stations in an area well 
away from any existing ‘known’ stations.

7.4.2  Rapid Static

If the distance between the receivers (the ‘baseline’) is less than about 15 
km, the observing time can be reduced because the atmospheric effects 
will be nearly identical for each receiver. The time required depends on 
the length of the baseline, the number of satellites, the GDOP, and the 
algorithms in the receivers. The instruction manual should give advice on 
the observation time required; failing that, about 10 minutes is probably 
prudent in most cases. With lines shorter than 5 km, five or more satellites, 
and a GDOP of less than 8, five minutes will probably be adequate.

7.4.3  Stop and Go

In this procedure the roving receiver makes a rapid static fix at its first sta-
tion, and is then moved to other stations while maintaining a lock on the 
satellites which it is observing. Subsequent points can then be fixed very 
quickly, in about 10 seconds. This procedure is suitable for collecting the 
positions of a large number of points in open country—but if fewer than 
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four satellites can be tracked at any point, a new ‘chain’ must be started by 
doing another rapid static fix.

7.4.4  Kinematic

This procedure also starts with a rapid static fix,* after which the roving 
receiver moves continuously, recording its position at regular time intervals 
(perhaps as frequently as once per second). As with ‘stop and go’, satellite 
lock must be maintained at all times. This technique is typically used for 
surveying boundaries and other line features.

7.4.5  Real-Time Kinematic (RTK)

If two suitably equipped receivers are less than about 5 km apart and have 
a near line of sight between them, it is possible for the base station to trans-
mit its position and observations to the roving receiver using a short-wave 
radio. The roving receiver can then carry out the DGNSS calculations in 
real time, and display its current position in the WGS84 or ETRS89 co-
ordinate system (see Section 7.6). If a suitable transform and/or projection 
has also been downloaded, the roving receiver can also display its position 
in the local co-ordinate system. Using RTK, the operator of the roving 
station can be confident that enough observations have been recorded to 
resolve ambiguities while still out in the field, so can carry out rapid static 
or stop-and-go procedures more quickly. In addition, RTK can be used to 
set out a station at a predetermined location, albeit without any redundancy 
or independent check of its accuracy, as discussed in the next section.

Whichever method is used, there are some fundamental rules which 
should be followed when using GNSS to maximise the chances of accurate 
results:

	 1.	Avoid using satellites which are at a low elevation (less than 15° above 
the horizon, say), as the signals from these satellites will be greatly 
affected by atmospheric effects, due to their long path through the 
atmosphere. Most surveying receivers will ignore all such satellites, 
by default.

	 2.	Avoid working close to large buildings. In the northern hemisphere, 
a building to the south will tend to block out some visible satellites, 
while buildings anywhere else may cause multipath effects. The com-
bination of these two effects is potentially serious!

*	 Increasingly, the processing software is capable of resolving phase ambiguities even while 
the roving receiver is moving—but a user would normally wish to wait at the first point 
until enough readings had been taken to resolve ambiguities, in order to fix the position of 
that point.
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	 3.	Working beneath the canopy of a tree can also block the signals from 
satellites. When working in stop-and-go or kinematic mode, just pass-
ing briefly beneath the canopy of a tree can cause loss of lock, result-
ing in reduced accuracy for all subsequent readings in the chain until 
the phase ambiguities are resolved again.

	 4.	Some GNSS processing systems allow a surveyor to check in advance 
what the GDOP of the satellite constellation will be at the time when 
it is planned to take readings. If only one satellite constellation is 
available, this simple precaution can avoid long periods wasted out in 
the field waiting for the GDOP to improve to the point where useful 
readings can be taken. For receivers capable of using more than one 
system, the total number of satellites makes such delays unlikely.

7.4.6  Building a Network of Stations

Usually, the goal of a satellite survey is to establish the precise location of 
a number of fixed stations in the field. Logically, this is achieved by fixing 
the position of an ‘unknown’ station with respect to one or more ‘known’ 
ones using DGNSS. The unknown point then becomes known and can be 
used (if required) as the basepoint for further differential vectors, to find 
the position of other unknown points.

In practice, there is no need for the sequence of observations to follow 
this logical order—it is simply necessary for the results to be processed in 
that order. Nor is it necessary for one receiver always to act as the base sta-
tion, while the other always acts as the roving station; it is quite permissible 
for them to ‘leapfrog’ each other, taking the role of base and rover respec-
tively as a chain of points is visited.

It is, however, important to plan in advance what readings need to be 
taken, and then to plan a sequence of movements for the receiver(s) to 
ensure that they are, in fact, taken. A clear written record of what observa-
tions have been taken by each receiver (together with a note of the height 
of the antenna above the station) will also greatly simplify the subsequent 
processing and archiving of the data. A form for this purpose is given in 
Appendix G.

7.5  REDUNDANCY

Attentive readers of this book will be aware of the need for redundancy 
in all surveying measurements. Although properly post-processed DGNSS 
results are the average of many individual ‘observations’, there is still the 
possibility of a systematic error (e.g., the height of one receiver not being 
correctly recorded) which will cause an erroneous result.
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The straightforward solution to this is to establish each new station by 
setting up DGNSS vectors from at least two ‘known’ stations. A gross error 
will then quickly be detected if the two vectors do not meet at almost the 
same point. Furthermore, the post-processing software supplied with the 
GNSS equipment will probably contain a least-squares adjustment facil-
ity, which will find a ‘best’ position for each unknown point, based on the 
co-ordinates of the known points and the DGNSS vectors which have been 
collected. Clearly, collecting more ‘redundant’ vectors will result in a more 
accurate result with a smaller chance of an undetected gross error.

If time is limited, redundancy can be achieved by conducting a GNSS 
‘traverse’, similar to the conventional traverse described in Chapter 2. The 
first unknown point is fixed with respect to an initial known station, and 
is then used to fix the next point. This then becomes the base station for 
the third point, etc., finally finishing on another known point (preferably 
not the one where the traverse started). If the position of the final point as 
calculated by the traverse is in good agreement with its known position, it 
can be assumed that all has gone well. This approach does, however, have 
two drawbacks:

	 1.	It is possible that a satisfactory result masks two errors which have 
cancelled out, e.g., the height of an antenna was wrongly measured at 
one station along the traverse.

	 2.	If an error is detected, it will not be possible to determine the leg in 
which it occurred, and another visit to the site will be necessary. It 
may, therefore, be sensible to take more redundant readings on the 
first visit, since this might allow a faulty reading to be eliminated 
without another site visit.

Ultimately, though, all surveyors should be aware that GNSS has the ten-
dency to be a ‘black box’ science, in which a large amount of information is 
collected, and may not be fully checked by the user. There is a distinct pos-
sibility of some overall systematic error in the collection or processing of 
GNSS information (the inappropriate use of a program, the wrong settings 
in a transformation, or even a software bug) which might cause a com-
pletely undetected error in the final result. If absolute confidence is required 
in a set of new stations for a major project, it is strongly advised that a few 
checks are made by conventional surveying techniques. The remeasurement 
of some distances using EDM, for example, is perhaps less accurate than 
DGNSS—but will clearly show if a scaling error has inadvertently been 
introduced into the GNSS results. This is simply the modern equivalent of 
the old practice of pacing a distance which has been measured by tape, to 
check that the number of complete tape lengths has not been miscounted.

Height information obtained from DGNSS needs particular care—partly 
because it is less accurate anyway, and partly because of the nature of the 
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co-ordinate system used by GNSS, which is described in the next section. 
If the heights of stations fixed by GNSS are to be relied upon, it is strongly 
recommended that the relative heights of some stations in the network are 
checked by conventional means, such as levelling (Chapter 6) or by trigo-
nometric heighting (Chapter 12). Again, these conventional methods may 
be less accurate than GNSS—but if any discrepancies are too large to be 
accounted for by their inaccuracy, then there is clearly a potential problem 
with the GNSS results.

7.6  PROCESSING GNSS RESULTS

The ephemeris information of all GNSS satellites, and thus the navigational 
position of a single GNSS receiver, is expressed in terms of a co-ordinate 
system called WGS84.* In its basic form, WGS84 is defined as a set of right-
handed orthogonal axes, with its origin at the centre of mass of the earth, 
the x- and y-axes lying in the equatorial plane, and the positive z-axis pass-
ing through the north pole.

The exact orientation of the axes was originally set up to coincide with 
the equatorial plane as defined by the Bureau Internationale de l’Heure at 
the very start of 1984, with the x-axis passing through the ‘prime meridian’ 
(approximately the Greenwich meridian) at the same instant. Subsequently, 
the orientation of the x- and y-axes has been defined such that the mean drift 
of all the tectonic plates on the earth’s surface is zero with respect to them.

This Cartesian system is complemented with a biaxial ellipsoid† of 
defined shape (close to the overall shape of the earth), with its centroid 
at the origin and its axis of rotational symmetry lying along the z-axis, 
as shown in Figure 7.2. This gives a more natural way of defining a point 
on the earth’s surface, in terms of its geodetic latitude (the angle  ϕ), its 
longitude (the angle λ), and its height above the ellipsoid (h). These two 
co-ordinate systems are called Cartesian and geodetic respectively, and are 
explained in more detail in Chapter 8.

This is a properly ‘global’ co-ordinate set for a global positioning sys-
tem—but unfortunately it does not suit any single country particularly 
well, for two principal reasons:

	 1.	The positions of ‘fixed’ points on the earth’s surface (e.g., concrete 
blocks set into the ground) do not have constant co-ordinates in the 
WGS84 system, because of continental drift. On the Eurasian tec-
tonic plate (which includes the UK), this drift is in excess of 2 cm per 
year—in some parts of the world, it is up to 10 cm per year.

*	 World Geodetic System, 1984.
†	 The three-dimensional shape created by spinning an ellipse about its minor axis.
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	 2.	The heights reported by GNSS measurements are heights above 
the surface of the WGS84 ellipsoid, which is in general not coinci-
dent with, or even closely parallel to, the surface of zero height (the 
‘geoid’—see Chapter 8) in any particular country. Thus, the difference 
in ellipsoidal heights between two stations measured by differential 
GPS might be somewhat different from the difference in their ortho-
metric heights, as measured using a level. A naïve surveyor might be 
surprised to find that water can flow from a point with a low WGS84 
height to another point with a greater WGS84 height!

To make proper use of GNSS results, it is therefore necessary to under-
stand about the relationship between WGS84 and the heighting and map-
ping co-ordinate systems used within a particular country.

In Europe, the first step was to select a number of ground stations around 
Europe (all on the Eurasian tectonic plate) and to establish a co-ordinate 
system similar to WGS84 which is defined to be the best fit between those 
physical stations and their accepted WGS84 co-ordinate values at the start 
of 1989. This definition forms part of a system called ETRS89,* and the 
set of ground stations which ‘realise’ it (i.e., make it real, and available to 
surveyors) is called the European Terrestrial Realisation Frame, or ETRF. 
No geologically stable ground station in Europe moves within this co-ordi-

*	 European Terrestrial Realisation System, 1989. This system also specifies that the WGS84 
ellipsoid should be used to convert between Cartesian and geodetic co-ordinates.
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Figure 7.2 � Cartesian and geodetic co-ordinate systems in WGS84.
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nate system*—so ETRS89 effectively eliminates the first of the two prob-
lems described above by slowly drifting away from WGS84. The definitive 
ETRS89 co-ordinates of several control points around the UK are pub-
lished by the Ordnance Survey; by setting up a base station (or using an 
active station) on one or more of these control points and using differential 
GNSS, the ETRS89 co-ordinates of any other point can be found.†

For surveying work, it is usually necessary to convert the ETRS89 co-
ordinates (Cartesian or geodetic) into suitable local mapping co-ordinates. 
Facilities for setting up and applying such conversions are usually provided 
in the post-processing software attached to a GNSS system. Within such 
software, there are generally two principal types of transform which can be 
set up for this purpose:

	 1.	The ‘one-step’ transform. If the transform is only to be used over a 
small area of land (up to 10 km square, say) a localised transform 
can be set up by quoting the 3-D positions of three or more‡ points 
in the local co-ordinate system (i.e., easting, northing and height in 
the country’s mapping system, or a site co-ordinate system) and also 
in ETRS89. Provided the points are well distributed over the area in 
which the transformation is to be used,§ the errors inherent in this 
type of transform are small by comparison with the errors inherent in 
differential GNSS. All other points whose positions have been found 
in ETRS89 can then be processed through the transform to find their 
local co-ordinates.

	 2.	The ‘classical’ transform. In all mapping projection systems there is 
a scale factor, which varies from place to place, by which a distance 
measured on the ellipsoid must be multiplied before it can be plot-
ted on the projection (see Chapter 9). The ‘one step’ transform can 
accommodate this, but assumes that the scale factor is constant over 
the area for which the calculated transformation is to be used. If the 
area is too big for this assumption to be valid, it is necessary first 
to use the so-called ‘classical’ or Helmert transform, which trans-
forms the WGS84/ETRS89 Cartesian co-ordinates into another set 
of Cartesian co-ordinates, centred on whatever ellipsoid has been 
used for the mapping projection (often Airy, in the UK). These are 

*	 The published co-ordinates of a station may change from time to time, though, as a result 
of more accurate measurements of its position. This is discussed later in this chapter.

†	 Although the ETRS89 co-ordinates of the base station will differ by a few centimetres from 
its WGS84 co-ordinates, this difference is too small to impair the accuracy of the DGNSS 
calculation described in Section 7.3.1.

‡	 If more than three points are available, a least-squares fit will be used to generate the best 
transformation between the two co-ordinate systems.

§	 The accuracy of the transform will be compromised if the points lie in a near-straight line. 
This will not matter, however, if the area of the survey is itself a near-straight line, e.g., a 
pipeline or road.
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then converted to geodetic co-ordinates (latitude and longitude) for 
the relevant ellipsoid (see Chapter 8). Next, the appropriate projec-
tion system (and, sometimes, a co-ordinate shift system) is applied to 
give map co-ordinates of easting, northing and height above the local 
ellipsoid, as explained in Chapter 9. Finally, a ‘geoid model’ is needed 
to convert the height above the local ellipsoid into a height above the 
geoid (called an orthometric height). A complete roadmap of this pro-
cess is shown in Figure 7.3.

A classical transform will produce valid results over a much larger area 
than a one-step transform. In order to set it up, it is necessary to know 
the co-ordinates of three or more points in both systems—i.e., in WGS84 
(or a local variant of WGS84 such as ETRS89), and also in the local map-
ping projection system. Typically, a surveyor in Europe will have measured 
the ETRS89 co-ordinates of three or more stations, and will also know 
their map (or grid) co-ordinates, plus their ellipsoidal heights. The trans-
form software can use this data, plus details of the ellipsoid and projection 
method used to make the map, to generate two sets of Cartesian co-ordi-
nates for the stations, and then use a least-squares process to generate the 
‘best fit’ Helmert transform between them.

Both transforms allow for full 3-D rotation and translation, to convert 
from one co-ordinate system to the other. In addition, they both make provi-
sion for a scale factor to be introduced, to give the best possible fit between 
the two systems. This can be useful, but the scale factor must then be applied 
to any length which is to be converted from a distance on the ground to one 
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in the local co-ordinate system, or vice versa. In the case of the classical 
transform, this scale factor is additional to any scale factor implied by the 
projection method—so when setting up classical transforms, it is often bet-
ter to insist that the transformational scale factor is kept at unity.

It is clear from the descriptions above that the ‘one-step’ transform is 
the easier one to use, provided the area of application is sufficiently small. 
Exact details of how to set up and apply both these types of transforms will 
be found in the user manual for the post-processing software provided by 
the GNSS supplier. The mathematical details of conformal transforms are 
explained in Chapter 8, Section 8.5.

7.7 � THE INTERNATIONAL TERRESTRIAL 
REFERENCE SYSTEM

The orbital parameters of navigational satellites are established by observ-
ing them from ground stations whose WGS84 co-ordinates are precisely 
known. In the early days of GPS, this was done exclusively via the GPS 
‘control segment’, whose six tracking stations thus effectively defined the 
realisation of WGS84 on the earth’s surface. Subsequently, the International 
Earth Rotation Service (IERS) established the International Terrestrial 
Reference System (ITRS) in terms almost identical to those of WGS84, and 
now measures the positions (and relative velocities) of a much larger net-
work of ground stations with respect to this co-ordinate system with ever-
increasing accuracy. All the GPS satellites are now tracked by a number of 
these stations, and the results are used to publish the ‘precise ephemeris’ 
data (i.e., the orbital parameters as measured while the surveying observa-
tions are being made) which are used to process GPS results to the highest 
possible accuracy. In this way, the ITRS has effectively taken over from the 
original GPS tracking stations as the definitive realisation of WGS84 on the 
earth’s surface.

From time to time, the IERS publishes its latest estimates of the positions 
and velocities of the ITRS stations, under the name ITRFyyyy, where yyyy 
is the year in which (on 1 January) the published positions are correct: the 
most recent ITRFs are ITRF2000, ITRF2005, and ITRF2008. In addition, 
parameters are provided to allow conformal transformations between the 
latest ITRF and all previous ones.

While the main purpose of ETRS89 is to provide a system in which all 
European ground stations are stationary, it is clearly desirable to take 
advantage of the more accurate measurements of the relative positions 
of these stations, which have become possible since 1989. Accordingly, 
ETRS89 generates new co-ordinate data for its ground stations from 
time to time, under the name ETRFyyyy, which takes the data from the 
corresponding ITRFyyyy and then ‘winds the clock back’ to find the 
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best estimate of where the stations must have been in 1989. The current 
ETRF is ETRF2000, which is (of course) based on the data published 
in ITRF2000.

7.8  FURTHER DETAILS OF GPS AND GALILEO

The GPS system is still the mainstay of satellite navigation around the world, 
so some further details of how it works will be of interest to surveyors; the 
other systems work in similar ways, but with slightly different details.

The GPS system consists of three so-called segments:

	 1.	The Control Segment. This comprises the computing power neces-
sary to track the satellites, and to predict their orbits for 24 hours 
in advance using a highly sophisticated model of the earth’s gravi-
tational field. Tracking is done by a network of six tracking stations 
around the world, which then feed information back to the main con-
trol centre in Colorado. The orbital predictions are uploaded to the 
satellites every 24 hours. Corrections to the satellites’ clocks are also 
uploaded by the control segment. It is interesting to note that the four 
atomic clocks carried by each satellite run at a slightly different rate 
once the satellites have been launched, due to the speed at which the 
satellites are travelling (about 4 kilometres per second) and the effects 
of relativity.

		    If a satellite’s orbital parameters drift outside certain limits, the satel-
lite is marked as ‘unhealthy’, so that GPS receivers will not use it; the 
satellite’s orbit is then adjusted using small on-board rocket motors, 
and its new orbit is tracked for a while. Once the new orbital param-
eters have been uploaded, the satellite is returned to a ‘healthy’ state.

	 2.	The Space Segment. This is the set of (nominally) 24 satellites, each of 
which receives and stores its predicted orbital parameters, and trans-
mits this and other information to . . . 

	 3.	The User Segment. The rest of the GPS community.

Despite the huge expense of deploying and maintaining the satellite 
network, an expense borne by the US Department of Defense, the US 
Government is currently committed to maintaining a level of free civilian 
access to the system.

7.8.1  The GPS Signal

Each of the satellites transmits signals on two carrier frequencies, both 
derived from a fundamental oscillator running at 10.23 MHz. The two 
frequencies are called L1, 1575.42 MHz or 154 times the fundamental, 
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and L2, 1227.60 MHz or 120 times the fundamental. As explained earlier, 
the purpose of having two frequencies is to enable the correction of errors 
caused by ionospheric effects.

Each satellite also transmits a number of digital signals modulated on the 
L1 and L2 signals. It is important to realise that, since the signal strength 
is so weak in relation to the background noise and all the satellites transmit 
at the same frequencies, a particular transmission can only be recognised 
by knowing in advance what code is modulated onto it, and thus what to 
‘listen’ for.* These codes are:

	 1.	The coarse acquisition or C/A code, a pseudo-random† bit sequence of 
length 1023 bits, different for each satellite and with a repetition time 
of 1 ms. The C/A code enables the receiver to distinguish between 
transmissions from the different satellites. It is used in low-cost navi-
gation receivers as the basis for measurements. The bits are released 
at a rate of 1.023 Mb/s (the so-called chipping rate, derived from 
the fundamental oscillator), so one bit corresponds to a distance of 
approximately 300 m. The C/A code hence gives access to what is 
known as the standard positioning service.

	 2.	The precise or P-code, also a pseudo-random bit sequence, but at 
ten times the frequency of the C/A code, with a chipping rate of 
10.23 Mb/s. The cycle length of the complete P-code is in excess of 
37 weeks, and each of the satellites is allocated a different ‘week’, so 
that each satellite effectively has its own P-code. The code for all satel-
lites is reset every week at midnight on Saturday/Sunday. Contrary to 
what is said in much of the early literature, the P-code is not restricted 
to military use in itself—the generation algorithm is, and always was, 
in the public domain. However, its use can sometimes be denied to 
the civilian user by the substitution of an encrypted form of P-code 
known as the Y-code. The encryption algorithm is not publicly avail-
able. Encryption is known as anti-spoofing or AS, since its purpose is 
to prevent an enemy force from setting up a ‘spoof’ transmitter which 
could make the US military receivers indicate false positions.

	 3.	The navigation message, a digital data stream running at 50 b/s. This 
message contains, amongst other things, orbital information (called 
the ephemeris) for the transmitting satellite, repeated every 30 s, and 
less precise ‘almanac’ information to tell the receiver which other sat-
ellites are likely to be visible. Reception of the almanac for the whole 
constellation takes 12.5 minutes.

*	 Somewhat similar to hearing one’s name spoken on the other side of a room full of people 
talking.

†	 The bit pattern in the code looks as though it is random, and would pass most ‘randomness’ 
tests—but it is in fact entirely predetermined.
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The navigation message and the P- or Y-code are carried on both L1 and 
L2 frequencies, whereas normally the C/A code only appears on L1. This 
makes acquisition of L2 signals difficult when AS is present, but the manu-
facturers of survey receivers have developed ingenious ways of avoiding the 
problem.

7.8.2  Ionospheric Effects in GPS

As mentioned earlier, these can be estimated by comparison of pseudor-
anges measured on both L1 and L2 frequencies. (It should be noted that 
the ionosphere delays the code parts of the signals, but advances the carrier 
phase by an equal amount.) Single-frequency receivers thus have greater 
difficulty in resolving phase ambiguities, since they have no estimate of the 
ionospheric effect, which dual-frequency receivers can derive from the dif-
ferent delays in the code transmissions on the two frequencies.

7.8.3  GPS Time

The fundamental measure of time used in the world is called universal 
co-ordinated time, or UTC. The length of a UTC second is defined by the 
decay rate of caesium. To ensure that midnight continues to occur in the 
middle of the night on average, ‘leap seconds’ are introduced into UTC 
when necessary, which means that the final minute in June or December 
occasionally lasts for 61 seconds instead of 60.*

GPS time is measured in weeks and seconds from 0:00:00, on Sunday, 
6 January 1980. It is established by averaging the clock readings from all 
the satellites plus a ground-based master clock, and is then steered so that 
its seconds increment within one microsecond of UTC seconds. However, 
GPS time has no leap seconds, so now runs ahead of UTC by more than 15 
seconds. A further complication is that the ‘week counter’ is only 10 bits 
long, so ‘rolls over’ to zero every 1024 weeks. This occurred for the first 
time on 22 August 1999, causing problems in many receivers. It will hap-
pen again on 7 April 2019.

A simple method for finding the GPS week number (useful for down-
loading precise ephemeris data, as described in Section 7.9.2) is to type the 
date of the previous Sunday into an Excel® spreadsheet, using (say) cell A1. 
Then, type the formula = (A1 − 29226)/7 into another cell—this will show 
the GPS week which started on that Sunday.

*	 Prior to this definition, the length of a second was defined as 1/86,400 of the time taken 
for the earth to rotate once with respect to the sun, averaged over the year—hence the term 
Greenwich mean time. Although this avoided the problem of leap seconds, it meant that 
no-one knew exactly how long a second was, until the end of the year!
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7.8.4  Galileo

Galileo is conceptually quite similar to GPS, and also works by measuring 
the time taken for signals to travel from a satellite to a receiver. However 
it broadcasts signals on three different frequency bands (1164–1215 
MHz, 1260–1300 MHz and 1559–1591 MHz) which should significantly 
improve the calculation of atmospheric delays. In addition, some of the 
signals incorporate an integrity check, intended to guard against false indi-
cations of position.

As it becomes fully operational,* Galileo will bring two major benefits to 
the surveying community:

	 1.	It will improve accuracy and reduce observation times by providing 
more satellites: GDOPs of greater than 6 will cease to occur.

	 2.	It should perform noticeably better than GPS in built-up areas, due to 
the integrity checks in the signals.

On the other hand, Galileo is planned as a commercial venture, in which 
the users will pay for the deployment and maintenance of the system. In 
particular, it is intended that commercial users (such as surveyors) should 
pay for the enhanced positioning services that they will need, by means of 
access-protection keys on their receivers.

7.9  ENHANCEMENT OF GNSS

7.9.1  Overlay Systems

To enhance the accuracy of GNSS in certain areas, several countries have 
already developed regional augmentation to the GPS signals, using geosta-
tionary satellites. These include WAAS (Wide Area Augmentation System) 
in the United States, MSAS in Japan, GAGAN in India, and EGNOS 
(European Geostationary Navigation Overlay System) in Europe. The 
satellites in these systems firstly improve accuracy by transmitting navi-
gational signals just like any other GPS satellite; this means that receivers 
can generally ‘see’ one or more extra satellites in addition to the normal 
constellation, which reduces the likelihood of periods when the number of 
visible satellites is too low (or the GDOP is too high) for reliable observa-
tions. In addition, these geostationary satellites broadcast more recent, and 
therefore more accurate, ephemeris data for the constellation—and they 
also rapidly send out warnings about any satellite which is suspected of 
giving erroneous data. These features make such augmentation systems 

*	 With four operational satellites in orbit, Galileo can now (just) be used as an independent 
system—but even when all four satellites are visible, the GDOP is often high.
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very useful (and perhaps essential) in allowing GNSS to be used for certain 
safety-critical purposes, such as providing landing aids for aircraft.

7.9.2  Precise Ephemerides

The ephemeris data transmitted by each satellite is not a report of its 
actual orbit, but a prediction of its expected orbit, made up to six hours in 
advance. The accuracy of satellite surveys is clearly dependent on the accu-
racy to which the satellites’ positions are known—so for the highest accu-
racy, the satellite observations are recorded and subsequently processed in 
conjunction with so-called precise ephemeris data, created by observing 
the satellite’s actual orbit and publishing the most accurate results about 
12 days later. Precise ephemeris data for GPS satellite orbits is available 
from the international GNSS, and can be downloaded (March 2013) from 
http://igscb.jpl.nasa.gov/components/prods_cb.html.
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Chapter 8

Geoids, Ellipsoids and 
Co-ordinate Transforms

8.1  DEFINITION OF THE GEOID

The purpose of engineering surveying is to establish the relative positions 
of points in three dimensions, so a three-dimensional co-ordinate system is 
needed to record the findings. The one absolute direction which can always 
be found is ‘up’, using nothing more sophisticated than a plumb-bob. For 
this reason alone, it makes sense to define one axis of the co-ordinate sys-
tem in the upwards direction. The other two axes can then be conveniently 
defined to form an orthogonal set with the first axis, and can be thought of 
as lying at right angles to each other on the surface of a bowl of water held 
at the foot of the plumb-bob.

Extended over a hundred metres or so, this water surface is virtually 
a flat plane*—so a simple Cartesian co-ordinate system, with the z-axis 
pointing upwards, is ideal for small-scale work. When extended part or 
all of the way round the world, however, the surface (which is actually a 
surface of constant gravitational potential energy) is not flat, and ‘up’ is not 
always in the same direction—so a more elaborate co-ordinate system is 
needed for larger surveys.

There is an infinite number of surfaces of constant gravitational poten-
tial around the earth, each at a different height. The one used by survey-
ors to define zero height is called the geoid, and can be thought of as the 
surface defined by the sea level around the world, in the absence of wind 
or tidal effects.

The geoid is thus straightforward to define, but its exact position in any 
part of the world can be quite hard to find. In Great Britain, a local realisa-
tion of the geoid was created by observing the mean tide height at Newlyn 
in Cornwall between 1915 and 1921, and establishing a physical datum 
mark at the resulting average point†. All so-called orthometric heights in 
Great Britain are measured with respect to this datum. In fact, the shape 

*	 Even over this distance, the direction of the vertical will alter by about 3 seconds.
†	 This is called Ordnance Datum Newlyn, or ODN.
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and position of the geoid is steadily changing, due to effects such as con-
tinental drift and global warming. Thus, all countries tend in practice to 
define their own geoid by measuring heights from a fixed datum close to the 
geoid, rather than using a common geoid.

8.2  THE NEED FOR AN ELLIPSOID

The geoid forms a potentially useful basis for a global co-ordinate system, 
in that it provides a surface which is exactly horizontal at any point around 
the earth. If a co-ordinate system could be set up having one axis perpen-
dicular to the surface of the geoid, and two others lying in the surface, then 
any point on or near the earth’s surface could be specified in terms of co-
ordinates which identify its horizontal position and its height.

Unfortunately, the exact shape of the geoid is complex and irregular. It 
dips in the middle of deep oceans, and rises in mountainous areas. However, 
it does correspond fairly closely (to within 100 metres or so) to a biaxial 
ellipsoid*—the three-dimensional shape achieved by rotating an ellipse 
about its minor axis. Taking a suitable ellipsoid to define the basic shape of 
the earth allows us to define a single co-ordinate system in which we can 
model the concept of a horizontal plane and a vertical axis anywhere on the 
earth’s surface. This system is known as the geodetic co-ordinate system 
or sometimes as the geographic co-ordinate system; in it, the positions of 
points on or near the earth’s surface are defined in terms of geodetic lati-
tude (ϕ), longitude (λ), and height (h) above an earth-shaped ellipsoid, as 
shown for point P in Figure 8.1. Varying ϕ and/or λ allows movement on 
a surface which is always (very nearly) horizontal, while varying h causes 
movement in a near-vertical direction.

Note that:

	 1.	The line PR is the line passing through P which is perpendicular to 
the surface of the ellipsoid at the place where it passes through it. It 
does not, in general, pass through the centre of the ellipsoid.

	 2.	When the size of the ellipsoid’s major and minor axes (a and b in 
Figure 8.1) are known, the geodetic co-ordinates of P (ϕ, λ, h) can be 
converted into (x, y, z) co-ordinates in a Cartesian system having its 
origin at the centre of the ellipsoid, the z-axis lying along the minor 
axis of the ellipse, and the x-axis passing through the zero (Greenwich) 
meridian. Section 8.5 explains how (and why) this is done.

	 3.	The distance h is called the ellipsoidal height. It is not the same as 
the orthometric height described in Section 8.1, since no ellipsoid can 
match the geoid exactly.

*	 Sometimes also called an oblate spheroid in the literature.



Geoids, Ellipsoids and Co-ordinate Transforms  103

Historically, there was no obvious reason for every country to use the 
same ellipsoid for mapping purposes—so different countries each tended 
to choose an ellipsoid whose surface corresponded closely to the geoid 
within their area of interest. These local ellipsoids all have slightly dif-
ferent shapes, and different positions and orientations with respect to 
the earth’s crust. Moreover, since the position of each ellipsoid tends to 
be defined in terms of fixed points in the country which adopted it, the 
relationship between them is continually changing, because of continen-
tal drift.

In Great Britain, the Airy 1830 ellipsoid was adopted for mapping pur-
poses—this corresponds quite closely to the geoid over the British Isles, 
being about 1 metre above it along much of the east coast, and about 3 to 4 
metres below it along the west coast, as shown in Figure 8.2.

With the advent of GNSS, all countries are now tending to adopt the 
WGS84 ellipsoid for mapping. This gives the best fit with the geoid over 
the earth as a whole, but is inevitably less good than the ‘national’ ellipsoid 
for individual countries. In the UK, the separation between the geoid and 
the ETRS89 ellipsoid (an image of the WGS84 ellipsoid that was fixed rela-
tive to the UK in 1989) varies between 45 metres and 56 metres across the 
country, as shown in Figure 8.3. (Note that the geoid has been defined in 
slightly different ways in Figures 8.2 and 8.3; this difference is negligible, 
however, compared to the difference between the two ellipsoids.)

The fact that the surface of the geoid is not parallel to any particular 
ellipsoid gives rise to two effects which need to be considered:
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Figure 8.1  �Cartesian and geodetic co-ordinates.
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	 1.	If a short plumb-bob was hung from the point P in Figure  8.1, it 
would not lie exactly along the line PN. Moreover, the neighbour-
ing surfaces of constant gravitational potential are not even exactly 
parallel to each other—so if the string of the plumb-bob was made 
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Figure 8.2  �The British geoid on the Airy ellipsoid.
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longer, it might point in yet another direction.* This discrepancy is 
known as the deviation of the vertical, and its effect is generally fairly 

*	 Assuming it is light compared to the plumb -bob, the string will always show the direction 
of ‘up’ (i.e., the direction normal to the gravitational equipotential surface) at the position 
of the plumb-bob.
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Figure 8.3 � The British geoid on the WGS84 ellipsoid.
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small: in the UK, the angle between true vertical and the normal to 
the Airy ellipsoid is nowhere more than about 7.5 seconds of arc. If 
the ETRS89 ellipsoid is used then the effect is somewhat larger, hav-
ing a maximum value of about 12 seconds of arc; for a point 500 m 
above the ellipsoid, this deviation would cause a discrepancy of 3 cm 
when projected onto the ellipsoid, depending on whether it is pro-
jected along a surface normal, or along a line which is truly vertical.

	 2.	More importantly, the difference in ellipsoidal heights between two 
points on the earth’s surface will not be the same as the difference in 
their orthometric heights (i.e., their heights above the geoid, or the 
height difference found by levelling). To convert between the two, it 
is necessary to know the ‘geoid-ellipsoid separation’ (usually denoted 
N, and defined as positive if the geoid lies above the ellipsoid) at each 
of the two points. In Figure 8.4, it can be seen the difference in the 
orthometric heights of two points (H2 − H1) is given by:

	 H H h h N N( ) ( )2 1 2 1 2 1− = − − − 	 8.1

Both of these effects become more significant as a result using the WGS84 
ellipsoid (or a locally-fixed version of it, such as ETRS89) in place of a 
national ellipsoid; for the UK, a comparison between Figures 8.2 and 8.3 
clearly shows that, as well as becoming generally larger, N also varies more 
between one place and another.

8.3  ORTHOMETRIC HEIGHTS AND BENCHMARKS

The procedure for determining orthometric heights in Britain, mentioned 
briefly at the start of Chapter 6, can now be explained in greater detail.

During the first half of the 20th century, a number of fundamental 
benchmarks (FBMs) were established across Britain by precise levelling 
from the Newlyn datum. A large number of additional benchmarks were 
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Figure 8.4  �Difference between orthometric and ellipsoidal heights.
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subsequently established, using the nearby FBMs as reference heights. To 
find the orthometric height of any point in the UK, a surveyor would simply 
level from the nearest BM, as described in Chapter 6. Effectively, the shape 
of the British geoid was defined (or realised) by the physical positions and 
published heights of those benchmarks.

FBMs consist of elaborately-constructed underground chambers in geo-
logically stable places, containing the actual benchmark. These are topped 
off with a small pillar which protrudes just above the ground and which 
carries a domed brass marker, whose height is published and upon which a 
levelling staff can be placed. The top mark is then normally used for level-
ling—but if it is destroyed, it can be rebuilt and its height re-established 
from the FBM below. By contrast, ordinary BMs are cut into walls of build-
ings, etc., and are much more liable to subsidence and destruction.

The task of regularly checking all BMs throughout the UK and publish-
ing any changes in their heights was a massive and expensive one, and has 
now been abandoned by the Ordnance Survey because of the advent of 
GNSS. The positions and heights of all BMs in the UK are still published on 
the Ordnance Survey’s website, but they have not been checked for many 
years and must now be used with increasing caution, especially in areas 
liable to subsidence.

Instead of defining the British geoid through a network of BMs, the 
Ordnance Survey now does so by means of a numerical model called 
OSGM02.* This was constructed by comparing the orthometric heights 
of 179 FBMs around the country (measured as described above) with their 
ellipsoidal heights in the ETRS89 system (measured by differential GNSS) 
to give known values for the separation between the British geoid and 
the ETRS89 ellipsoid at various places around Britain. These values were 
incorporated into an interpolation algorithm which then gives an estimated 
value for the geoid–ellipsoid separation at any other place in the country.†

This change has been made possible by the fact that an ellipsoidal height can 
now be found anywhere in the world to within about 1 cm, using differential 
GNSS. One receiver is placed at the point whose height is required; another 
is placed on a GNSS ‘passive’ station with known co-ordinates, or data are 
downloaded from a set of nearby ‘active’ stations. After recording data for 
about 24 hours (necessary because of the comparative inaccuracy of height 
readings from GNSS), the co-ordinates of the new station (including its ellip-
soidal height) are computed. In the UK, the OSGM02 model then provides the 
value of N (Figure 8.4) and hence the orthometric height of the station.

*	 This supplants OSGM91, used for the production of Figure 8.3.
†	 Note that this method does not necessarily provide the exact shape of the true geoid passing 

through the Newlyn datum, as the FBMs may have changed their heights since they were 
measured, due to subsidence and land uplift. The inaccuracies inherent in the definition of 
OSGM02 are, however, probably small by comparison with the errors inherent in making 
practical use of it.
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To find differences in heights over a short distance, it is more accurate 
and often quicker to use levelling or trigonometric heighting techniques 
(fixing one height by GNSS and a geoid model if absolute orthometric 
heights are also required) than to fix both heights independently by GNSS. 
However, the best accuracy which can be expected even from precise lev-
elling is about 2√d millimetres, where d is the distance between the two 
points in kilometres; if the two points are more than 25 km apart, it is 
probably more accurate (and certainly much quicker!) to find their relative 
heights by means of two separate GNSS observations.

8.4  GEOMETRY OF THE ELLIPSE

It is not the intention of this book to explain all aspects of ellipses, but simply 
those which are necessary for a proper understanding of geodetic surveying.

8.4.1  Defining the Shape of an Ellipse

The shape of an ellipse is most simply defined by the size of its major and 
minor semi-axes, which are generally labelled a and b, as in Figure 8.5. In 
geodesy, ellipses are generally nearly circular, and their shapes are therefore 
defined in terms of their major semi-axis and either their flattening (f) or 
their reciprocal of flattening (r), where

	 r
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a b

1= =
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	 8.2
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The formula for the ellipse can then be simply expressed as
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Another useful characteristic of an ellipse is its eccentricity, e, which is 
defined by

	 e
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The value of e can also be obtained directly from the reciprocal of flat-
tening, using the formula

	 e
r
r

2 12
2= −

	 8.6

There are various ways to define a position on an ellipse. The one mainly 
used in surveying is the geodetic latitude, ϕ, defined as the point on the 
ellipse where the surface normal makes an angle of ϕ with the x-axis (or the 
plane of the equator, if on the surface of the earth) as shown in Figure 8.5. 
The same point can also be defined by its geocentric latitude, namely the 
angle between the x-axis and the line ON (omitted from Figure 8.5 for clar-
ity), or by its parametric latitude (θ) as shown in the figure. The latter angle 
(also known as the reduced latitude or, in the context of orbital theory, the 
eccentric anomaly) defines a point Q on the auxiliary circle (see Figure 8.5) 
which lies exactly above the point on the ellipse and serves as a useful 
parameter for defining the shape of the ellipse, namely,

	 x = a cos θ and y = b sin θ	 8.7
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Figure 8.5  �Definition of an ellipse.
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8.4.2  Curvature on an Ellipse

To find the curvature at a point on an ellipse, we first need the distance 
NS (S being where the normal through N intersects with the y-axis) in 
Figure 8.5, which we will call rN. This can be found as follows.

First, using the relationships in Equation 8.7, the slope of the ellipse at 
any point can be defined in terms of its parametric latitude:

	
dy
dx

dy d
dx d

b
a

cot= θ
θ

= − θ 	 8.8

But this slope can also be defined as being (−cotϕ), so we can write

	 θ = φb
a

tan tan 	 8.9

We can also see that the x co-ordinate of point N (which we can simply 
call x) can be expressed in two ways:

	 = θ = φx a rNcos cos 	 8.10

This equation can be re-arranged to give:

	 = θ
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	 8.11

Substituting for tanθ using Equation 8.9 and then eliminating b using the 
second relationship for e from Equation 8.5 gives:

	 =
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	 8.12

The distance NR (labelled d) on Figure 8.5 can be found in a similar 
manner, by first expressing the y co-ordinate of point N in two ways:

	 y = b sin θ = d sin ϕ

whence

	 = θ
φ

=
φ θ

=
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d
b b bsin
sin sin sin sin (1 cot 1)2 2 2 2

	 8.13
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This can be simplified in a similar way to Equation 8.12:
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and can then be combined with the result of Equation 8.12 to give

	 d e rN(1 )2= − 	 8.15

To obtain the curvature of the ellipse at N, we start with the standard 
formula which defines the curvature κ at any point on a line in two dimen-
sions, namely
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But = φx rN cos  so we can express rN using Equation 8.12 and write
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Substituting this result into Equation 8.17, and then putting the expres-
sions for dy/dx and d2y/dx2 into Equation 8.16 gives

	 κ = − φ
φ − + φ

= ± − φ
−

e
a e

e
a e

(1 sin )
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2 2 3 2
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2 	 8.19

The ambiguity of sign in Equation 8.19 reflects the fact that positive 
curvature is (by convention) upwards—so the curvature of our ellipse is 
negative above the x-axis, and positive below it. We know that, for an 



112  Plane and Geodetic Surveying﻿

ellipse, the curvature is always inwards and e is always less than unity—so 
the (inwards) radius of curvature can simply be written as

	 =
κ

= −
− φ

r
a e
e

M
1 (1 )

(1 sin )

2

2 2 3 2 	 8.20

which will always yield a positive number. This radius of curvature is con-
ventionally referred to as rM (or just as M, in some literature) because it 
becomes the curvature of a meridian when the ellipse is spun around its 
minor axis to form an ellipsoid.

8.5  TRANSFORMATIONS BETWEEN ELLIPSOIDS

Because points on the earth’s surface can be expressed in terms of different 
Cartesian/geodetic co-ordinate systems, there is often a need to convert a 
point’s co-ordinates from one system to another. This is particularly the 
case when GNSS information (which is measured in the WGS84 system, 
or perhaps in a local realisation such as ETRS89) needs to be expressed 
in terms of a national ellipsoid, such as Airy 1830. The bottom half of 
Figure 7.3 shows how this conversion forms a key stage in the processing 
of GNSS observations.

The central step of the conversion is done in Cartesian space, using a 
transform matrix. Such matrices are always conformal, meaning that they 
preserve the shape of a set of points during the transform, but they some-
times have a scale factor incorporated, to allow the size of the set to change.

Before it can be used, a transform matrix has to be defined. It is easier to 
understand the definition process once the method of use is understood, so 
the two topics are explained in that order.

8.5.1  Using a Transform Matrix

Typically, a set of geodetic co-ordinates in one system (system A, say) need 
to be converted to another system (system B). The process for doing this is 
as follows.

First, the (ϕ,λ,h) (i.e., latitude, longitude, ellipsoidal height) co-ordinates 
of a point in system A are converted into the corresponding (x,y,z) co-
ordinates, as set out in Figure 8.1 This requires the shape parameters of the 
ellipse in question which, as explained above, are normally given in terms 
of the semi-major axis and the reciprocal of flattening. The eccentricity of 
the ellipse can then be obtained using Equation 8.6.



Geoids, Ellipsoids and Co-ordinate Transforms  113

The distance NS in Figure 8.6 is rN, which is given by Equation 8.12; and 
the distance NR is d, which is given by Equation 8.14. The Cartesian co-
ordinates of P are then easily obtained by the following formulae:

	 = + φ λx r hN( )cos cos 	 8.21

	 = + φ λy r hN( )cos sin 	 8.22

	 ( )= + φ = − + φz d h r e hN( )sin {1 } sin2 	 8.23
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Figure 8.6 � Converting from geodetic to Cartesian co-ordinates.
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The next step is to transform the (x,y,z) co-ordinates of P in system A 
into corresponding co-ordinates in system B, which we will term (x′,y′,z′). 
This transformation consists of a translation and rotation to accommo-
date the fact that the two ellipsoids have different centres and orientations. 
Sometimes, though, a scale factor is also defined as part of the transform. 
This is fundamentally illogical, since 1 metre in system A should equal 
1 metre in system B, albeit in a different orientation. The purpose, however, 
is to allow for the fact that the sets of fixed markers which still define some 
ellipsoids are not the exact distance apart that they have been defined to be, 
due to the difficulty of measuring accurate distances at the time when the 
co-ordinates of the markers were established.

Any change in orientation in three-dimensional space can be thought 
of as a rotation of a given magnitude about an axis lying in a given direc-
tion. The vector re can be used to define this rotation, with the unit vector 
e = [ex ey ez]T defining the direction of the axis, and r the magnitude of the 
rotation in radians. The scalar values of rex, rey and rez are the so-called 
Euler angles, which define the change in orientation—and are more simply 
written as rx, ry and rz.

The transformation caused to the point (x, y, z) by a rotation through an 
angle r about the axis e passing through the origin, is given by:
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where c = cos r and s = sin r. When r is in radians and is very small (as 
it usually is between two ellipsoids),* this formula can be simplified by 
assuming that cos r = 1 and sin r = r. The transformation then becomes:
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The origin shift t and the scale factor s (which is usually expressed as a 
fractional increase or decrease, so must have 1 added to it) can now be 
incorporated into the transformation. Adding these elements to Equation 
8.25 gives

*	 Note that if a one-step transformation is being established (see Chapter 7, Section 7.6) the 
rotation will generally not be small. Then, the full expression given in equation 8.24 must 
be used.
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It is important to realise that Equation 8.26 is not actually being used to 
move the point at (x, y, z)! Rather, it is being used to re-express the point’s 
co-ordinates in terms of a different (x′, y′, z′) set of axes, which are not 
exactly co-incident with the original (x, y, z) axes.

Finally, the transformed (x′,y′,z′) co-ordinates are converted back into 
(ϕ′,λ′,h′) co-ordinates on ellipsoid B. Inspection of Equations 8.21 to 8.23 
will show that this is not as straightforward as converting from (ϕ,λ,h) to 
(x,y,z), but it can be done as follows.

The value of λ′ can be found by dividing Equation 8.22 by Equation 8.21 
and re-arranging to give:

	 ′λ = ′
′







− y

x
tan 1 	 8.27

remembering that, if x′ is negative, then λ′ lies between 90° and 270° west 
of Greenwich.

ϕ′ is most easily found by iteration. Equations 8.21 and 8.22 can be com-
bined to give

	 ′ + ′ ′φ = ′ + ′r h x yN( )cos 2 2 	 8.28

Since h is generally much smaller than rN, a good first guess for ϕ′ is to 
assume that h′ is zero, and use Equation 8.28 to write:

	 ′ ′φ ≈ ′ + ′rN cos x y2 2 	 8.29

Likewise, we use Equation 8.23 with h′ set to zero, to obtain

	 ′ ′φ ≈ ′
− ′

r
z
e

N sin
1 2 	 8.30

Dividing Equation 8.30 by Equation 8.29 gives a first guess for ϕ′:

	 ′φ = ′
′ ′ + ′













− z

- e x y
tan
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1

2 2 2
	 8.31
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This value is then used in Equation 8.12 to obtain a first guess for r′N 
(with n = 1):

	 ′ = ′
− ′ ′φ

r
a

e
Nn

n1 sin2 2
	 8.32

Equation 8.23 can now be rewritten as:

	 ′ + ′ ′φ = ′+ ′ ′ ′φr h z r eN N( )sin sin2 	 8.33

and combined with Equation 8.28 to obtain an improved guess for ϕ′:

	 ′φ = ′ ′ ′ ′φ
′ + ′


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
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− z + r e
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2 2
	 8.34

Equations 8.32 and 8.34 are now used repeatedly to get improved values 
of rN′ and ϕ′ respectively, until the changes in ϕ′ are within the accuracy 
required. Finally, h′ is obtained from Equation 8.28, using the final values 
for r′N and ϕ′:

	 ′ =
′ + ′

′φ
− ′h

x y
rN

cos

2 2

	 8.35

A worked example of this process is given in Appendix C. It is worth 
noting that there are several other ways of converting from Cartesian to 
geodetic co-ordinates, some of which are arguably more efficient than the 
method shown here. However, this method is reliable, and relatively easy 
to understand.

The following points are useful when applying the transform:

	 1.	Be sure to use the given parameters correctly in Equation 8.26. The 
values of rx, ry and rz must be in radians, and the value of (1 + s) should 
be very close to unity. (The given angles are often quoted in seconds 
of arc, and the scale factor is often quoted in parts per million.)

	 2.	Remember that if (say) millimetre precision is required from the con-
version, this is about one part in 1010, compared with the (x,y,z) co-
ordinate of the point. All calculations must therefore be done to 10 
significant figures, and ‘double precision arithmetic’ should be used in 
computer programs.

	 3.	It is useful to have at least one point whose position is already known 
in both systems to test that the transform has been set up correctly 
before further points are transformed.



Geoids, Ellipsoids and Co-ordinate Transforms  117

	 4.	A reverse transform can be obtained by changing the signs of the 
shifts, rotations and scale factor quoted for the forward transform 
and using Equation 8.26. Note that this reverse transform is not the 
exact inverse of the original transform matrix, so any transformed 
points will not return exactly to their original positions; the resulting 
position errors will be of the order of δ2/RE, where δ is the movement 
caused by the rotational part of the transform and RE is the earth’s 
radius (6.37 × 106 m). This is because Equation 8.26 is based on the 
approximate version of the transform matrix shown in Equation 
8.25, rather than the exact (and conformal) version given in Equation 
8.24. The resulting errors are usually negligible, but might become 
significant for Euler angles larger than 1 second.

8.5.2  Making a Transform Matrix

The process of making a transform matrix is computationally similar to 
least-squares adjustment (see Chapter 11) and several computer programs 
offer the necessary functionality, so it need not be explained in detail here. 
A brief overview is, however, useful for surveyors.

The process starts with an initial set of three or more points with 
Cartesian co-ordinates in two different systems (A and B), and involves 
adjusting the seven variables in Equation 8.26 so as to map all the points 
in the first system as closely as possible onto their counterparts in the sec-
ond system.

An exact match can only be achieved if the relative positions of the points 
are identical in both systems—and this is not usually the case if those rela-
tive positions were surveyed in different ways, in the two systems. The 
goal is to minimise the sum of the squares of the distances between each 
transformed point from system A and its counterpart in system B, and this 
becomes easier if the scale factor (s, in Equation 8.26) is allowed to vary. 
Sometimes, though, it is desirable to constrain this to be zero—this ensures 
that the distance measurements made in system A (which may be much 
more accurate than those in system B) will be preserved during the trans-
form process. If system B has the more accurate distances, then it would 
first be necessary to find the best transform from system B to system A, and 
then invert the transform as described at the end of Section 8.5.1.

A minimum of three points (in each system) is required to set up the 
transform, for the same reason that a table needs a minimum of three legs 
for stability. If more points are used, the robustness of the process will be 
improved, as it will become possible to detect any points which have been 
incorrectly specified in one system or the other. Following the ‘table’ anal-
ogy above, it is also important that the points are well spread out and do 
not lie in a near-straight line, as this will make the transform unreliable if 
it is applied to further points which do not lie close to the same line. This 
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is a problem which is particularly likely to be encountered by road or rail 
engineers, whose site may be long and straight.

Quite often, the two sets of co-ordinates will not be in Cartesian form—
they may be geodetic co-ordinates or grid co-ordinates (as discussed in 
Chapter 9). If so, then the computer program will also require the necessary 
projection details to convert the grid co-ordinates to geodetic form, and the 
parameters of the ellipsoid to convert the geodetic co-ordinates to Cartesian 
form. (The steps in this conversion process are shown in Figure 7.3.)

Having set up such a transform, it is important to inspect the results 
returned by the computer program. In particular, the residual errors should 
be checked to see whether there are any outlier points which may have 
been wrongly measured or specified, and which may be adversely affecting 
the transform. If many points are available to define the transform, it is 
instructive to split them into two groups, generate a transform from each 
group, and then compare the two transforms.

8.6 � ETRS89 AND THE INTERNATIONAL 
TERRESTRIAL REFERENCE SYSTEM

A common application of ellipsoid transformations is the conversion of 
co-ordinates between the physical realisation of WGS84 on a particular 
continent (done via ETRS89 in Europe) and the International Terrestrial 
Reference Frame (ITRF), which now provides the definitive realisation of 
WGS84 on the earth’s surface through measurement of the WGS84 co-
ordinates of a number of ‘fixed’ points around the world.

As explained in Chapter 7, ETRS89 is based on the WGS84 co-ordi-
nates that a number of European control stations had on 1 January 1989, 
but it also takes advantage of subsequent (and more accurate) measure-
ments of the relative positions of those stations. At the time of writing, 
ETRS89 is realised by means of a reference frame called ETRF2000, which 
consists of the ground stations themselves plus the current best estimates 
of where those stations were in the WGS84 system on 1 January 1989. 
These estimates were made by using the positions and velocities of those 
stations on 1 January 2000 (as published in ITRF2000) to see where they 
would have been on 1 January 1989. A best-fit transform was then gen-
erated between ITRF2000 and ETRF2000, as described in the previous 
section, and this can be used to convert the ITRF2000 co-ordinates of any 
other point into ETRS89 co-ordinates. The parameters of this transform 
are given in Appendix A. Note that these parameters include a time element 
since ITRF2000 co-ordinates change with time, as defined by the published 
velocities of its ground stations. Thus, if the ITRF2000 co-ordinate of a 
point is established on, say, 1 October 2014, the value of t in Appendix A 
would be set to 2014.75 to find its co-ordinates in ETRS89.
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Since 2000, though, two further ITRFs have been published—the latest 
one is ITRF2008, whose published positions and velocities will be used 
to estimate the WGS84 co-ordinates of control stations around the world 
until the publication of the next ITRF. This includes the control stations 
that are used to observe the constellation of GNSS satellites, from which 
‘precise ephemeris’ data is computed.

The most accurate GNSS observations are processed using precise ephem-
eris data, and the most accurate DGNSS makes use of the ITRF co-ordi-
nates of any base stations*; so the results are always in terms of the current 
ITRF (i.e., no longer in terms of ITRF2000). Fortunately, each new ITRF 
is provided with a set of associated transforms which allow conversion to 
the earlier ITRFs. These transforms are also time-dependent, to allow for 
the slightly different station velocities given in the different ITRFs. In par-
ticular, ITRF2008 provides a transform to ITRF2000, whose parameters 
are shown in Appendix A.

The process for generating ETRS89 co-ordinates from GNSS observa-
tions using precise ephemeris data is thus a two-stage one, at present. First, 
the ITRF2008 to ITRF2000 transform is used to convert the results to 
ITRF2000 co-ordinates, with the time (t) set to the average time at which 
the observations were made. Then, the ITRF2000 to ETRS89 transform is 
applied, with t once again set to the time of the observations.

8.7  FURTHER PROPERTIES OF ELLIPSOIDS

A few more properties of ellipsoids now also need to be explained, as they 
will be needed in the next chapter.

8.7.1  Curvature on an Ellipsoid

8.7.1.1  Principal Curvatures

At any point on a smoothly curved surface, a tangent plane and surface 
normal vector can be found, as shown in Figure 8.7; and if a direction along 
the tangent plane is then chosen, a normal plane is defined which contains 
the point, the chosen direction, and the surface normal. A path on the 
surface is also defined, where this normal plane cuts through the surface.

*	 ETRS89 co-ordinates are becoming compromised by the fact that its stations are all mov-
ing around the earth, rather than in parallel straight lines over its surface—and the dis-
tances they have moved since 1989 mean that the difference between ETRS89 and WGS84 
is now starting to show a rotational element in addition to simple translation. This does 
not matter for most surveying purposes, but it makes ETRS89 unsuitable for very high 
accuracy surveying work within Europe—and ETRS89 is in any case inappropriate for 
work which extends to other tectonic plates.
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If a second surface normal vector is established a short distance along 
such a path, it will in general not lie in the normal plane used to make the 
path.* There are always two directions, however, where this second surface 
normal does lie in the normal plane, i.e., where there is no torsion along the 
path; these two directions are called the principal directions, and the local 
curvatures of the associated paths are called the principal curvatures at the 
point.† In general one of these two paths will have a higher curvature than 
the other—and paths on all other normal planes through the point will 
have local curvatures whose magnitude lies somewhere between those two 
limits, plus some degree of torsion.

In the special case of a sphere, the curvature of every direction through 
a point is the same, and any two orthogonal directions can be taken as the 
principal directions. On an ellipsoid, however, the curvature varies (except 
at the poles): one of the principal directions always lies along the meridian 
which passes through the point; the other principal direction is perpen-
dicular to that, and its associated normal plane (which is orthogonal to the 
tangent plane and to the plane of the meridian) is called the prime vertical. 
These are shown in Figure 8.7.

*	 This is because the orientation of the surface twists with respect to the direction of the 
path, a behaviour which is known as geodetic torsion.

†	 The proof of this was published by Leonard Euler in 1760, and it is known as Euler’s 
theorem.
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Figure 8.7  �Tangent and prime vertical planes on an ellipsoid.
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We have already (Equation 8.20) derived an expression for the radius 
of curvature of the meridian running through a point on the surface of an 
ellipsoid, so we can write:

	 κ = = − φ
−r

e
a e

M
M

1 (1 sin )
( 1)

2 2 3 2

2 	 8.36

The curvature of the path in the prime vertical can also be found quite 
easily. One formulation of Meusnier’s theorem* states that

	 N I cosκ = κ α 	 8.37

where κN is the curvature of a surface path lying in a normal plane, κI is the 
curvature of the surface path lying an inclined plane (containing the point 
and the chosen direction, but not the surface normal), and α is the angle 
between these two planes.

Looking at Figure 8.8, and taking the prime vertical at N as the normal 
plane, we can see that a suitable inclined plane is the one which contains the 
parallel passing through N, known as the parallel of latitude. The surface 
path lying in this inclined plane is of course the parallel itself, which is a circle 
of radius rN cos ϕ. The surface path therefore has a curvature of 

	
φrN

1
cos

.

*	 Named after the French mathematician Jean-Baptiste Meusnier, who proved it in 1779.
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Figure 8.8  �Prime vertical and parallel of latitude
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We can also see that the parallel of latitude is inclined to the prime verti-
cal at an angle ϕ. Applying Equation 8.37 therefore gives

	 κ = κ φ = φ
φ

=
r r

N I
N N

cos
cos
cos

1
	 8.38

which (very conveniently) shows that the radius of curvature in the prime 
vertical is rN. We can therefore use Equation 8.12 and write:

	 κ =
− φe

a
N

1 sin2 2

	 8.39

We now have formulae to compute the radius of curvature along the merid-
ian and along the prime vertical at any latitude. Figure 8.9 shows how these 
principal radii of curvature vary with geodetic latitude on the WGS84 ellipsoid.

8.7.1.2  Curvature in Other Directions

Once the magnitudes and directions of the two principal curvatures have 
been found at a point, the curvature along any other direction is also 
defined. A straightforward way of finding these is to use the Mohr’s cir-
cle construction, which is traditionally used to calculate plane and shear 
stress in nonprincipal directions. The construction for this is shown in 
Figure 8.10; in addition to calculating the curvature along any path, it can 
also calculate the torsion (known as the geodetic torsion when computed 
on an earth-shaped ellipsoid).
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As can be seen from Figure 8.9, the (convex) curvature along the merid-
ian is always higher than that along the prime vertical, so the principal 
curvatures will always appear along the horizontal axis of the diagram in 
the order shown in Figure 8.10. We first draw a circle centred on the axis of 
curvature which passes through these two points, and then travel round it 
clockwise by an angle of 2α from the reference direction (i.e., northwards 
along the meridian). The x and y co-ordinates of the point thus defined 
give the curvature and torsion of the surface along a direction at an angle α 
clockwise from the reference direction, i.e., along a path having a bearing 
(or azimuth) of α with respect to true north.

By inspection of the diagram, the circle is centred at (κM + κN)/2, and has 
a radius of (κM − κN)/2. The formulae for the curvature and torsion along 
the line with bearing α can therefore be expressed as:

	 M N M N M N

2 2
cos2

(1 cos2 )
2

(1 cos2 )
2

κ = κ + κ + κ − κ





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α 	 8.40

and

	 M N
N M

2
sin2 ( )sin cosτ = − κ − κ






 α = κ − κ α αα 	 8.41

where κM and κN are defined in Equations 8.36 and 8.39 respectively and 
positive torsion implies clockwise rotation as viewed in the direction of 
travel, i.e., a ‘right-hand thread’.
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Figure 8.10 � Mohr’s circle construction for curvature and torsion.
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Using the standard result cos 2α = cos2 α – sin2 α on Equation 8.40 gives:

	 M Ncos sin2 2κ = κ α + κ αα 	 8.42

which is known as Euler’s formula, and which also formed part of Euler’s 
theorem. Using the relationship r = 1/κ, we can also write the formula for 
the radius of curvature along the bearing α, namely:

	 r
r r

r r
r rM N

M N

N M

1
cos sin cos sin2 2 2 2=

α + α
=

α + αα 	 8.43

where rM and rN are defined by Equations 8.20 and 8.12 respectively.
As will be shown later, the curvature of an ellipsoid in a given direction 

is actually only needed when working to exceptionally high precision over 
very long distances. For all other work, it is adequate (and much easier) 
to use an average curvature which depends on the latitude of the line but 
not on its bearing; or, more usually, to use a single mean curvature for the 
entire ellipsoid. Methods for calculating both of these are given below.

8.7.1.3  Average Curvature at a Point

There are two possible approaches to finding an average radius of curva-
ture at a point on the ellipsoid. One is to find the average curvature of all 
the paths running through the point: this can be seen to be (κM + κN)/2 by 
inspection of Figure 8.10, or can be formally evaluated as follows:

	 d dAV M N
M N∫ ∫κ =

π
κ α =

π
κ α + κ α α = κ + κ

α

π π

1
2

1
2

( cos sin )
20

2

2 2

0

2

	 8.44

Then, an average radius of curvature can be evaluated:
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where rM and rN are defined by Equations 8.20 and 8.12 respectively.
The second approach is to evaluate an average radius of curvature 

directly, using Equation 8.43:
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This second average radius is the reciprocal of the geometric mean of the 
principal curvatures, whereas the first one is the reciprocal of their arith-
metic mean. In the case of an earth-shaped ellipsoid, the difference between 
these two values is nowhere greater than about 10 parts per million, and 
the resulting effect on subsequent calculations is several orders of magni-
tude smaller than this—so the arguments for using one in preference to the 
other are fairly academic.

8.7.1.4  Mean Curvature of an Ellipsoid

As with the average curvature at a point, there are several possible 
approaches to specifying a mean radius of curvature for the whole ellipsoid. 
One obvious approach is to use the radius of the sphere which has the same 
volume as the ellipsoid:

	
π = π

R a bE
4
3

4
3

3 2  whence =R a bE
23 	 8.47

where RE is the mean earth radius, and a and b are the major and minor 
semi-axes of the ellipsoid. Another approach is the one specified by the 
International Union of Geodesy and Geophysics, namely
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	 8.48

For a near-spherical ellipsoid (such as the earth), the difference between 
these two approaches is negligible: using the parameters for the WGS84 ellip-
soid, they give values of 6,371,001 metres and 6,371,009 metres, respectively.

A third possible approach is to take the arithmetic mean between the 
maximum curvature on the ellipsoid (along a meridian at the equator) and 
the minimum value (at either pole, in any direction). The reciprocal of this 
mean gives a radius of 6,367,353 metres on the WGS84 ellipsoid. This 
approach is of interest because it comes closer than the others to minimis-
ing the largest error that can be caused by using a single average value of RE 
in place of the correct value, when calculating a distance over the ellipsoid 
at any place in the world. However, the improvement by comparison with 
the two methods described above is not very significant, so 6,371 km can 
confidently be taken as a suitable mean radius for the earth.

8.7.2  Geodesics

An important concept in surveying is the horizontal distance between 
two points. In the context of geodesy, this translates into the length of the 
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shortest line over the surface of the ellipsoid, between the places where the 
two points project onto it.

On an earth-shaped ellipsoid, the mathematical term for such a line is 
a geodesic. If the ellipsoid was a perfect sphere, the geodesic line would 
lie along a great circle—a circle with its centre at the centre of the sphere, 
and passing through the two projected points. Great circle geodesics are 
relatively easy to compute and analyse, as their radius is constant and they 
lie in the plane defined by the centre of the sphere and the two endpoints. 
On an ellipsoid, though, things become more difficult—firstly because the 
geodesics do not in general lie in planes; and secondly because their lengths 
cannot be expressed by a single explicit formula but need to be evaluated 
by numerical integration.

It will be shown in this chapter and the next that a full understanding 
of geodesics is not often required, even when surveying to high accuracy. 
However, surveyors should at least have a basic understanding of their 
nature, so a brief introduction is presented here.

At any point on a curved line in three-dimensional space we can define a 
direction of travel; by taking two further points a short distance on either 
side of the first one, we can also define a plane in which the line is curv-
ing—since the line is curved, the three points will not lie in a straight line, 
so the plane is fully defined. If a circle is now drawn in this plane so as to 
pass through the three points, its centre will be at the local centre of cur-
vature of the line. This circle is known as the osculating circle of the curve 
(from the Latin word ‘osculare’, to kiss) because it provides the circular arc 
which gives the closest possible fit to the curve in the region of interest. The 
plane of the circle is known as the osculating plane.

On a geodesic, the osculating plane of the curve is always a normal plane 
of the surface, as defined in Section 8.7.1 above. The French mathematician 
Alexis Clairaut (1713–1765) developed a key formula from this insight, 
which is known as Clairaut’s relation:*

	 r sin α = constant	 8.49

where r is the distance between the point on the geodesic and the polar axis 
of the ellipsoid, and α is the local bearing (or azimuth angle) of the geodesic. 
Noting that

	 r = rN cos ϕ	 8.50

*	 A simple explanation of Clairaut’s relation is as follows. Imagine a particle P which is free 
to slide over the surface of the ellipsoid, but constrained to remain on it. The force on P will 
always act in a direction perpendicular to its movement, so the magnitude of P’s velocity 
(v, say) will stay constant. Also, the line of the force always passes through the axis of the 
ellipsoid, so P’s moment of momentum about the axis (given by r×v sinα) will stay con-
stant. Since v is constant, this means that r sinα must also stay constant.
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from Figure 8.8, we can use Clairaut’s relation and Equation 8.12 to relate 
the bearing of the geodesic to its latitude:

	
− φ

φ α =
e

1

1 sin
cos sin constant

2 2
	 8.51

The ‘direct problem’ in geodesic literature takes a starting point (ϕ, λ), a 
starting bearing (α) and a length for the geodesic as ‘input’, and calculates 
the resulting endpoint as the ‘output’. To solve this, the given values of e, 
ϕ and α are first used to find the value of the constant in Equation 8.51. A 
small movement is then made in the direction defined by α, the distance 
moved and new values of ϕ and λ are computed, and Equation 8.51 is used 
to find a new value of α. This process is repeated until the geodesic has the 
required length, and the final position on the ellipsoid can be returned.

A more typical problem in surveying is to find the length of the geodesic 
between two known points on the ellipsoid, and its bearing at each end. 
This is known as the ‘inverse problem’ in the literature, and is slightly harder 
to solve than the ‘direct problem’. The process involves guessing a starting 
value for α, and solving the direct problem until the geodesic reaches its 
closest point of approach to the given endpoint. Then, an improved guess 
for the initial value of α is computed, and the process is repeated until the 
geodesic passes through (or acceptably close to) the endpoint.

There is a large and still-growing quantity of literature on computing 
geodesics, as the problem is also of active interest to several scientific fields 
apart from surveying. The main focus of this literature is to find computa-
tionally efficient methods which solve the two problems mentioned above 
to a high level of accuracy, and the details of this are beyond the scope 
of this book. One useful (and freely available) algorithm is described in 
Karney (2012) and was used to generate the statistics reported in this book.

The properties of geodesics which all surveyors should be aware of are:

	 1.	The equator and all meridians are geodesics. They are also the only 
geodesics on the earth’s surface which lie in a plane, and the only ones 
which form closed loops around the world—the others are endless 
paths, which never repeat.

	 2.	Geodesics are very similar in shape to great circles, except that they 
deviate more towards the nearest pole, to take advantage of the flat-
tening of the earth at higher latitudes.

	 3.	For any two points up to 250 km apart on the surface of the WGS84 
ellipsoid, the difference between their geodesic separation and their 
separation along a great circle (assuming the two points lie on a 
spherical earth of radius 6371 km) is less than one part per million. 
The maximum differences occur near the equator and near the poles, 
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where the local curvature reaches its extreme values (see Figure 8.9); 
elsewhere on the earth’s surface, and especially over smaller distances, 
the difference is always lower than this. If the appropriate spherical 
radius is calculated at one end of the line using Equation 8.43, then 
the difference is never more than 0.25 parts per million.
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Chapter 9

Map Projections

9.1  THE NEED FOR PROJECTIONS

Chapter 8 has shown how the three-dimensional positions of points on or 
near the earth’s surface can be expressed in terms of their latitude, lon-
gitude, and height above an ellipsoid of defined shape. This geodetic co-
ordinate system is useful as it gives a precise and straightforward definition 
of any point’s location, in terms of three parameters (east, north and up*) 
which are convenient to use everywhere around the world.

For many surveying applications it is conventional—and helpful—to rep-
resent the positions of points by showing their horizontal positions graphi-
cally, and using some other convention to represent their height. Geodetic 
co-ordinates are shown in this way on ‘physical’ globes of the earth, which 
are scale models of an earth-shaped ellipsoid that show terrain of different 
heights in different colours.

Physical globes with regular ellipsoidal surfaces already incorporate a 
projection: the peaks of mountains are projected down onto the surface 
of the ellipsoid, rather than being shown some distance above it. This is 
a very useful first stage in projection, as it maps all terrestrial detail onto 
an earth-shaped mathematical surface with very little distortion. However, 
there are several reasons why this projection by itself is not sufficient for all 
surveying needs:

	 1.	The ellipsoidal surface is not flat; in fact, it is doubly curved, which 
means that it cannot be developed (i.e., flattened out, or unwrapped) 
in the way that is possible with the surface of a cone or a cylinder. 
This means that the topographic detail on a globe cannot easily be 
shown on a flat map.

	 2.	There is no fixed or simple relationship between changes in latitude or 
longitude and movement over the surface of the earth. For instance, 

*	 Not exactly ‘up’ as defined by a plumb-bob, since the ellipsoid is not necessarily exactly par-
allel to the geoid. The difference in the two directions is called the deviation of the vertical.
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an observer on the equator would need to move 1,855 metres to the 
east to increase his or her longitude by 1 minute; whereas at 40° north 
(the approximate latitude of New York or Madrid) a movement of just 
1,423 metres would have the same effect. Similarly, movements to the 
north cause increases in latitude which vary depending on the starting 
position, though the effect is different: movements of 1,843 metres 
and 1,851 metres respectively would be needed in the example above, 
to cause an increase of 1 minute in latitude.

	 3.	In surveying, it is often necessary to calculate how far apart two 
points are when their co-ordinates are known, i.e., the length of the 
shortest horizontal line between them; and also the angle between 
two such lines, when they meet or cross at a point.* These calcula-
tions are not particularly straightforward to do exactly on the surface 
of an ellipsoid. The shortest line over a surface representing the earth 
between two points on that surface is called a geodesic; and because 
an ellipsoidal surface is based on an ellipse, the shape and length of 
an ellipsoidal geodesic can only be calculated using elliptic integrals, 
which do not in general have a closed form (i.e., they do not yield an 
explicit equation).

One possible solution to Points 2 and 3 above would be to use a sphere 
rather than an ellipsoid as a mathematical approximation of the geoid. This 
greatly simplifies the resulting mathematics as geodesics then become great 
circles, which always lie in a plane and whose lengths are relatively easy to 
compute. The disadvantage of this solution is that the deviation of the verti-
cal and the geoid-sphere separation both increase considerably, to the point 
where the mapping of topographic detail onto a spherical surface becomes 
insufficiently accurate for modern surveying. It was, however, what was 
routinely done in past times, and much of the early theory of map projec-
tion is based on the idea of a spherical earth.

Nowadays, topographic detail is first projected onto an ellipsoid and then 
either onto a planar surface, or onto a cylinder or a cone—both of which 
can then be developed (i.e., unwrapped) into a flat surface. The resulting 
flat surface is then scaled down to form a map.

The remainder of this chapter discusses the main classes of projection 
used for map making, and the properties which determine their value for 
surveying purposes.

*	 These two calculations are done repeatedly when performing least-squares adjustment of 
distance and horizontal angle measurements, as described in Chapter 11.
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9.2  USEFUL PROPERTIES OF PROJECTIONS

It is not possible to project a doubly-curved surface onto a planar or devel-
opable surface in such a way that the scale of the full-size projection is unity 
at all places and in all directions. Thus, all such projections involve some 
degree of distortion on the resulting map, except at certain points or along 
particular lines. By varying the exact method of projection, it is possible to 
manipulate the changes in scale so as to reduce or avoid some aspects of 
distortion on a map, but usually at the expense of causing increased distor-
tion in other respects. In particular, there are three important properties 
which maps may have, as follows:

	 1.	A conformal projection manages the scaling effects such that, at 
any point on the projection, the scale in all directions is the same.* 
Such maps are also orthomorphic, which means that small shapes 
on the ellipsoidal surface (e.g., buildings or fields) are shown as the 
same shape on the map. One result of this is that the angle at which 
any two horizontal lines cross on the earth’s surface is preserved 
exactly on the map. However, the shortest distance over the ellipsoid 
between two points on its surface (i.e., a geodesic) does not in gen-
eral plot as a straight line on the map. In fact, since meridians and 
the equator are the only geodesics which lie in a plane, they are also 
the only geodesics which can ever appear as exactly straight lines on 
any standard projection.

	 2.	An equal area projection manages scaling such that, if the scale at 
a point is unavoidably increased in one direction, then it is corre-
spondingly reduced in the orthogonal direction. Thus, the area of any 
feature (e.g., a country) is exactly preserved on an equal area map, 
subject to the quoted scale of the map. However, the shape of the 
area will not be preserved exactly; and at any point on the map, the 
scale in one direction (e.g., north–south) will generally differ from the 
scale in any other direction (e.g., east–west). Small circles drawn on 
the surface of the earth would thus plot on the projection as ellipses 
with the same area, but with greater eccentricities in places where the 
distortion of the projection is higher.

	 3.	In an equidistant projection, the scale of the projection is maintained 
at unity along a particular family of geodesics. This enables distances 
along those geodesics to be found by simply taking accurate measure-
ments off the map.

*	 On a full-size projection, this scale is called the scale factor. If it is greater than 1, then the 
size of an object on the projection is greater than its size on the ellipsoid.
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No projection can have more than one of these properties over an 
extended area—and some have none of them, preferring instead to strike a 
compromise. Conformal projections are generally preferred for surveying 
purposes, partly because horizontal angles measured in the field (e.g., using 
total stations) can be plotted directly onto the map.

It is also helpful to think of map projections as having two distinct func-
tions. One is simply to present a region of the world in a form such that the 
shapes of countries and the distance between features can be estimated to a 
reasonable accuracy (which will always be limited by the accuracy to which 
a map can be printed or displayed). The second is to provide a platform for 
some type of two-dimensional grid system, which can be used to describe 
the positions of features to very high precision. The amount of distortion 
which is acceptable in a projection depends on which of these functions it 
fulfils, and this in turn determines the size of the area that can be mapped. 
For surveying purposes, the typical requirements are that the scale factor of 
the grid should not deviate from unity by more than about 1 part in 2000, 
and that the bearings of geodesics up to 5 km in length should not differ by 
more than about 5 seconds from that of a straight line plotted on the grid. 
The guidelines on mapping areas given below are based on these targets.

9.3  COMMON CLASSES OF PROJECTIONS

Aside from the general properties discussed above, there are three impor-
tant classes of projection, depending on the type of surface onto which the 
projection is made. These are described below.

9.3.1  Azimuthal Projections

Azimuthal projections were invented (and much used) in classical times, 
when the shape of the earth was taken to be a sphere. Many of their prop-
erties depend on the earth being modelled as a sphere, so the discussion 
below is presented on that basis.

At any point on the earth’s surface, the azimuthal plane is defined as 
the plane passing through the point, and lying normal to the vertical at 
that point (this is the same as the tangent plane shown in Figure 8.7). An 
azimuthal projection involves projecting the surrounding region onto that 
plane; this can be done so as to give a conformal, equal area, or equidistant 
projection. The point where the plane touches the earth’s surface is called 
the central point (or sometimes the tangent point)—but note that it does 
not necessarily appear at the centre of the resulting map, which may have 
been cropped in such a way as to place it off-centre. These projections 
are called azimuthal because the azimuth (i.e., horizontal) angles between 
any two straight lines passing through the central point are preserved on 
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the map. Also, all great circles passing through the central point project 
as straight lines—so any straight line on the map which passes though 
the central point marks out the shortest path between all the points that it 
passes through.

An azimuthal projection at the north pole (Figure 9.1) would show the 
north pole as the central point, with lines of constant latitude (known as 
parallels) appearing as concentric circles around it. For equidistant and 
equal area projections, the whole world can be projected, with the south 
pole appearing as the outermost circle. Meridians would appear as radial 
lines, crossing the parallels at 90°. If the projection is equidistant, then the 
parallels would be equally spaced, as in Figure 9.1.

Azimuthal projections can be made at any point on the earth’s (spherical) 
surface, and have distortion which is zero at the central point, and which 
increases as a function of distance from that point.

As shown in Figure 9.2, the commonest types of azimuthal projection are:

	 1.	Orthographic, where each point on the sphere is projected onto the 
plane along a projector which lies normal to the plane (i.e., the projec-
tion point is at infinity). Only half of the earth can be mapped, using 
one such projection; the earth appears as it would in a photograph 
taken from a distant point, such as another planet.

	 2.	Perspective, where the projectors all pass through a point on the axis 
normal to the plane which runs through the central point. This gives a 
view of the earth as it would appear to an astronaut in an orbit round 
the earth.

	 3.	Gnomonic (sometimes call gnomic), a special case of a perspective 
projection in which the projectors all radiate from the centre of the 
earth. Since this point lies in the plane of all great circles, the result is 
that the equator, all meridians, and all shortest paths between any two 

North Pole

South Pole

Meridians

Parallels

Azimuthal plane

Figure 9.1 � Azimuthal projection at the north pole.
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points, project as straight lines on the map. Parallels (lines of constant 
latitude) project as curves similar to those traced out by the shadow of 
the gnomon on a sundial, which gives the projection its name.

	 4.	Stereographic, another special case of a perspective projection, in which 
the projectors all radiate from the antipode of (i.e., the point exactly 
opposite) the central point. Some simple trigonometry shows that this 
gives stereographic projections the property of being conformal.

	 5.	Equidistant, this preserves a scale of unity along all the straight 
lines radiating out from the central point to other points on the 
map. Equidistant azimuthal projections were particularly useful to 
bygone emperors who would (of course) use their capital city as the 
central point, and could then easily see how long it would take to get 
a message (or perhaps an army) to any part of their empire.

Projection plane

Projection point

(a) Orthographic projection (b) Perspective projection

(c) Gnomonic projection (d) Stereographic projection

Projection point

Projection plane

Figure 9.2 � Types of azimuthal projection.
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	 6.	Equal area, because the scale in the tangential direction increases 
with distance from the central point, an equal area projection has to 
reduce the scale in the radial direction by a corresponding amount. 
This gives rise to quite severe distortions in shape in areas which are 
distant from the central point.

The value of azimuthal projections to surveyors is limited by the fact 
that they model the earth as a sphere. Although the earth is very nearly 
spherical (its diameter at the equator is only about 0.3% greater than the 
distance between the north and south poles) the level of accuracy needed 
for surveying is lost if its ellipsoidal shape is modelled as a spherical surface 
over large areas. For this reason, azimuthal projections of any kind are 
generally unsuitable for surveying work involving distances greater than 
about 100 km.*

However, they are often useful for surveying over small areas which are 
approximately square or circular in shape—and an orthographic azimuth 
projection is of course what is being used de facto when a simple grid is set 
up for a construction site, in which the curvature of the earth is ignored 
altogether.

9.3.2  Cylindrical Projections

The classical cylindrical projection can be visualised as wrapping a sheet of 
paper round the earth’s equator to form a cylinder, and projecting points 
on the earth’s surface out onto it, as shown in Figure 9.3. The distance y is 
a function of the geodetic latitude, ϕ, of a given point; the function can be 
defined so as to give an equal area projection, a conformal projection or an 
equidistant projection in which all meridians are shown with true length.

When the paper is unwrapped, the resulting projection shows parallels as 
straight horizontal lines, and the meridians as straight, equally-spaced ver-
tical lines. Geodesics running in a north–south direction (i.e., along merid-
ians) are therefore all shown as straight lines. This type of projection has 
no distortion of shape on the equator and low distortion nearby—so it is 
particularly suitable for mapping tropical countries.

The transverse form of a cylindrical projection involves wrapping the 
sheet of paper round a meridian (called the central meridian) rather than 
the equator, as shown in Figure 9.4. (Actually, this is not strictly a cylindri-
cal projection when used on an ellipsoid, since the meridians are ellipses 
rather than circles.) The only geodesic which projects as an exactly straight 
line on a transverse cylindrical projection is the central meridian; geodesics 

*	 A larger region (perhaps up to 600 km across) can be mapped if the central point of a con-
formal azimuthal projection is at or near the north or south pole, as the earth is more nearly 
spherical in the polar regions. 
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which cross the central meridian at right angles project as lines which are 
very nearly straight, but not precisely so. Transverse cylindrical projections 
give maps which have no distortion of shape on the central meridian and 
low distortion on either side of it, which makes them suitable for countries 
at any latitude which run in a predominantly north–south direction.

Oblique cylindrical projections also exist—but (like azimuthal projec-
tions) they require that the earth is treated as a sphere rather than an ellip-
soid, such that the cylinder touches its surface round a great circle other than 
the equator or a meridian. Such projections are useful for mapping regions 

North Pole

Equator

Central meridian

Figure 9.4 � Transverse cylindrical projection.
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Figure 9.3 � Cylindrical projection.
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which lie along such a line, and work quite well in the polar regions,* where 
the earth’s shape is almost spherical (see Figure 8.9); however, they are less 
suitable for high-accuracy surveying work over large areas in other parts 
of the world.

9.3.3  Conical Projections

Conical projections are generally made onto a cone whose axis passes 
through the north and south poles, and whose surface cuts through the 
surface of the earth along two parallels, known as the standard parallels. 
Points on the earth’s surface are projected inwards or outwards onto the 
surface of the cone, along projectors which pass through its axis; the cone’s 
surface is then developed to give a map of the shape shown in Figure 9.5. 
As in a polar azimuthal projection, parallels project as concentric circular 
arcs, and the meridians are straight radial lines which cross those arcs at 
right angles. The spacing of the parallels can be arranged so as to give a 
projection which is conformal, equal area, or equidistant (with all merid-
ians being shown true length).

The resulting projection has a scale factor of unity on the standard paral-
lels, and no distortion of shape on the parallel midway† between them. A 
suitable choice of standard parallels can thus give a low-distortion projec-
tion of a country running in a predominantly east–west direction.

The angle between neighbouring meridians, and thus the shape of the 
developed map, depends on the shape of the initial cone, which in turn 
depends on which two parallels are chosen as the standard parallels. At 

*	 The ‘panhandle’ of Alaska is generally mapped using an oblique cylindrical projection.
†	 Strictly, the parallel at the geodetic latitude equal to the cone angle, where the ellipsoidal 

surface is exactly parallel to the conical surface.

Parallels

Meridians

ConeStandard
parallels

Figure 9.5 � Conical projection.
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one extreme, the cone becomes a flat circular disc and the result is a polar 
azimuthal projection, as described above. At the other extreme, the cone 
becomes a cylinder—either having standard parallels which are equally 
spaced to the north and south of the equator, or just touching the earth at 
the equator itself; this, of course, is a cylindrical projection.

9.4  INDIVIDUAL PROJECTIONS

There are over 60 different types of projection in use around the world, 
usually selected to give the least overall distortion in the context of the size, 
shape and location of the area which is to be mapped. It is beyond the scope 
of this book to describe all of these to a useful level of detail; the reader is 
referred to Bugayevskiy and Snyder (1995) in the first instance. Four projec-
tions will, however, be described in further detail, as they are likely to be 
encountered by all surveyors around the world.

9.4.1  The Lambert Conformal Projection

The Lambert conformal projection is a conical projection, as described in 
Section 9.3.3—and, as its name suggests, the spacing of the parallels is 
arranged so as to give maps which are conformal. An ellipsoidal shape and 
two standard parallels must be specified to define the projection fully. The 
scale factor of the projection is unity on these two parallels; between them 
it is less than unity (meaning that projected features would be smaller than 
life size on a full-sized map), and outside them it is greater than unity. It 
rises to infinity at the pole which is furthest from the apex of the cone, so 
this pole cannot be shown on the map. For surveying purposes, a Lambert 
conical projection can cover a region lying within about 300 km of the 
parallel which is midway between the two standard parallels.

The USA is typically mapped by means of the Lambert conformal pro-
jection: the parallels at 33° North and 45° North are normally used when 
mapping the entire country, though the size of this projection makes it 
unsuitable for surveying purposes.

As with all conformal projections, geodesics generally project as curves—
and allowance for this must be made for large surveys, as described in 
Section 9.5. However those geodesics which run north–south (i.e., which 
lie on meridians) do project as exactly straight lines.

Note that there are several other types of ‘Lambert projections’. As noted 
above, cylindrical and azimuthal projections can be seen as special cases of 
conical projections, so can be classed as Lambert projections; and Lambert 
projections are sometimes plotted as equal area projections rather than as 
conformal ones.
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9.4.2  The Mercator Projection

The Mercator projection is a conformal cylindrical projection, with the 
cylinder touching the earth around its equator. The scale factor of the pro-
jection is a function of latitude only: it is unity on the equator, and rises to 
infinity at the poles. It is therefore impossible for a Mercator projection to 
show latitudes of greater than about ±80°, and the Mercator projection can 
only be used for surveying purposes within about 300 km of the equator.

A Mercator projection shows all meridians as straight vertical lines, and 
all parallels as straight horizontal lines. It thus has the useful property that 
a straight line drawn between two points on the map cuts each meridian it 
crosses at the same angle: this is a ‘rhumb line’, which a navigator could set 
as a constant compass bearing to travel between the two points. However, 
rhumb lines are not generally the shortest path between two points, and the 
corresponding geodesic between the same two points will thus, in general, 
plot as a curved line on the map. A drawback of this projection is that, 
above latitudes of about 30°, the scale factor of the map starts to change 
significantly with increasing latitude. This makes countries near the poles 
look much larger than they really are by comparison with those near the 
equator; and also means that, in a country such as Great Britain, the north 
of Scotland is plotted at a noticeably larger scale than the south of England.

9.4.3  The Transverse Mercator Projection

Also known as the Gauss–Lambert projection, the transverse Mercator 
(TM) projection is a conformal version of the transverse cylindrical pro-
jection described in Section 9.3.2 (see Figure 9.4), and is fully defined by 
specifying the shape of the ellipsoid, a central meridian, and the value of 
the scale factor along that meridian (known as the central scale factor). The 
scale factor rises as a function of distance from the central meridian, and 
the projection is suitable for surveying purposes over an area extending to 
about 300 km on either side of the chosen meridian.

Great Britain is mapped using a transverse Mercator projection, for the 
reasons described in Section 9.3. The Airy 1830 ellipsoid is used in classi-
cal versions of the mapping, and the 2° West meridian is used as the central 
meridian because it (more or less) runs up the middle of the country.

If the central scale factor for Britain was set to unity on the central 
meridian, it would rise to about 1.0008 at the extreme east and west of the 
country. When making a grid for surveying, it is desirable to have the scale 
factor as near to unity as possible over the whole of the grid: so the central 
scale factor for the projection of Britain is actually defined to be about 
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0.9996* on the central meridian, rising to about 1.0004 at the extreme east 
and west of the country. This can be visualised as having the cylinder lying 
slightly inside the central meridian, and cutting through the earth’s surface 
about 180 kilometres on either side of it: features between the two cutting 
lines are reduced in size when projected onto the cylinder, and those outside 
them are enlarged.

9.4.4  The Universal Transverse Mercator Projection

The universal transverse Mercator (UTM) projection system provides 
a low-distortion projection of the whole world, and consists of separate 
transverse Mercator projections of 60 segments of the earth’s surface called 
zones, lying between specified meridians. Each zone covers a 6° band of 
longitude: Zone 1 runs between 180° W and 174° W, with its central merid-
ian at 177° W, and subsequent zones follow on in an easterly direction. 
Thus, the central meridian of Zone 29 is 9° W, that of Zone 30 is 3° W, and 
that of Zone 31 is 3° E. (These are the three zones which are of relevance 
to the UK.) The central scale factor of each zone is exactly 0.9996, for the 
reasons discussed above.

The UTM projection is traditionally used in conjunction with the 
International 1924 ellipsoid, whose dimensions are given in Appendix A. 
However, it is now also used in conjunction with other ellipsoids (e.g., Clarke 
1866 in the USA, and GRS80 or WGS84 elsewhere), so it is important to 
check which ellipsoid has been used before processing UTM data.

UTM is a useful global projection system, but it is not a universal pana-
cea, because a region which does not wholly lie within 3º of one of the 60 
central meridians cannot strictly be plotted on a single UTM zone. This 
can sometimes be solved by extending a zone slightly; as stated above, TM 
projections have acceptably low distortion up to 300 km on either side of 
the central meridian, which would (for instance) allow a variation in lon-
gitude of up to 5° from the central meridian, at a latitude of 55°. A further 
option is to use a nonstandard meridian as the central meridian, as in the 
British mapping system. The option of butting two or more neighbouring 
UTM zones together in the region of interest is inappropriate for surveying 
purposes. As shown in Figure 9.6, the boundaries of neighbouring zones 
(sometimes called ‘gores’) are not straight when their underlying cylinders 
are developed, so can only touch one another at a single latitude. Thus any 
other point on the common boundary would map to two separate places 
on the projection, and most lines spanning the boundary would appear 
discontinuous on the map, where they jump from one zone to the next.

*	 The exact value at the central meridian is 0.9996012717. This (rather improbable) value 
was chosen to give the best possible fit between the current mapping system in the UK 
(OSGB36) and its predecessor.
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9.5  DISTORTIONS IN CONFORMAL PROJECTIONS

As explained at the start of this chapter, the best way of processing topo-
graphic data for most surveying purposes is to project it twice—first onto 
the surface of a suitable ellipsoid, and from there onto a developable sur-
face. Of the various properties which can be retained during the second of 
these steps, the most useful for surveyors is conformality, i.e., the preserva-
tion of small shapes and the angles at which lines on the ellipsoidal surface 
cross each other. This section therefore concentrates on conformal projec-
tions, and discusses what needs to be done to manage the distortions which 
are (inevitably) present in such projections.

Distortions on a conformal map only become obvious to the naked eye 
about 45° away from the point or line of zero distortion (which depends 
on the projection, as explained above). However, some distortion of shape 
or scale is present over virtually the entire projection, so should always be 
considered by surveyors.

The two important types of distortion in a conformal projection are (a) 
that the scale factor varies across the projection, and (b) that the shortest 
path between two points does not in general plot as a straight line. The 
standard methods for dealing with both of these are described below.

9.5.1  Scale Factor Distortions

The local scale factor of a projection should be taken into account when-
ever horizontal distances in the field are converted to distances on the 
projection. Such distances are routinely measured and recorded to just a 
few parts per million, so a local scale factor which lies outside the range 
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Figure 9.6 � Zones of the universal transverse Mercator projection.
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0.999999–1.000001 may make a significant difference. The scale factor 
on a projection is defined as projected length/true length on the full-size 
projection—so any horizontal distance measured on the ellipsoid must be 
multiplied by the local scale factor before it can be treated as a distance on 
a conformal projection. (Slope distances, or horizontal distances measured 
above or below the reference ellipsoid, require additional processing before-
hand, as explained in Chapter 10.)

In all conformal projections, the scale factor is the same in all directions 
and is a function of the central scale factor, plus (mainly) the distance from 
the point or line of zero distortion. For short lines (< 10 km), the local scale 
factor will be reasonably constant along the whole length of the line, so a 
single scale factor can be applied; ideally, this would be determined at the 
midpoint of the line.

For longer lines, the scale factors should be found at both endpoints, and 
at the midpoint of the line; a mean scale factor can then be estimated using 
Simpson’s rule, i.e.,

	 S = S S S /mean mid( 4 ) 61 2+ + × 	 9.1

The formula for calculating the scale factor at a point depends on the 
details of the projection. A precise formula for Lambert conformal pro-
jections is given in a document entitled “State Plane Coordinate System 
of 1983—NOAA Manual NOS NGS 5”* and the formula for calculating 
scale factors in all transverse Mercator projections is given in Appendix D.

In both Lambert conformal and transverse Mercator projections, the 
local scale factor depends mostly on the distance from the line of zero dis-
tortion. A useful approximation (which assumes a spherical earth) is:
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where S0 is the central scale factor, d is the distance of the point from the 
line of zero distortion, and RE is the mean radius of the earth (which can be 
taken as 6.371 × 106 m). For points within 200 km of the line, this formula 
gives a result which is accurate to within about 2 parts per million; at 500 
km from the line, the accuracy is about 12 parts per million.

9.5.2  Distortions of Shortest Paths between Points

As discussed in Chapter 8, the shortest path over the surface of an earth-
shaped ellipsoid between two points is called a geodesic. In conformal 

*	 This is available (May 2013) from http://www.ngs.noaa.gov/PUBS_LIB/ManualNOSNGS5 
.pdf.
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conical projections, the only geodesics which project as straight lines are 
the meridians; in transverse Mercator (TM) projections, they are the cen-
tral meridian itself, and (with negligible error*) those geodesics which cross 
the central meridian at right angles. All other geodesics appear to bulge in 
the direction of higher scale factor (i.e., away from the central meridian, 
on a TM projection), when projected. The angles which these lines make 
with other lines they meet or cross are, however, exactly the same as on the 
earth’s surface.

The effect of this distortion can be seen by reference to Figure 9.7, which 
is a transverse Mercator plot of three stations, A, B and C. If a total station 
is set up on station B and stations A and C are observed, the two lines of 
sight made by the total station will plot as the curved lines on the figure. 
Because these lines in general ‘bulge’ by different amounts, the angles they 
make at B with the corresponding straight lines on the projection (labelled 
‘t’) are different—so the angle between the two lines labelled ‘T’ (i.e., the 
horizontal angle observed by a total station) will be slightly different from 
the angle ABC as calculated by trigonometry from the (x,y) co-ordinates 
of A, B and C.

The angles between the T lines and their corresponding t lines at a point 
can be calculated (or at least estimated to a higher accuracy than is ever 
likely to be needed) if the shape of the ellipsoid, the projection parameters, 
and the positions of both endpoints are known: this calculation is called 
a ‘(t – T)† correction’ or sometimes, an ‘arc-to-chord correction’. For the 
British national grid (and, by extension, for all other transverse Mercator 

*	 In the UK, a geodesic of length 600 km which crosses the central meridian at right angles, 
and is bisected by it, projects as a curved line with a maximum arc-to-chord separation of 
16 to 18 mm (depending on its latitude). This is less than 30 parts per billion.

†	 Pronounced ‘tee to tee’.
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Figure 9.7 � The (t – T) correction.
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projections), the calculation is described fully in the Ordnance Survey 
(1950), pages 14–16. The Ordnance Survey also provides a spreadsheet* for 
many co-ordinate calculations including the (t – T) correction, and plans to 
include the formulae in future versions of their document entitled ‘A guide 
to coordinate systems in Great Britain’, available (February 2013) as a.pdf 
file from the Ordnance Survey website.†

For distances of less than 1 kilometre which lie within 200 kilometres of 
the central meridian, the (t – T) correction is never more than about 0.5 sec-
onds, so can probably be ignored. Outside these limits, however, it must be 
taken into account for high-accuracy work. In Figure 9.8, for example, the 
7° W meridian should ideally project as a straight line between the latitudes 
50° N and 58° N, since it is a geodesic; in fact, it cuts the 54° N latitude 
at a point which is about 800 metres west of the intercept made by linear 
interpolation on the projection between the same endpoints. The (t – T) 
correction for this line is about 12 minutes at each end of the ray.

The (t – T) calculation is tedious to carry out by hand and would nor-
mally be done by computer, in the context of adjusting horizontal angle 
observations. A surveyor should therefore ensure that any adjustment soft-
ware which works with projected (as opposed to geodetic) co-ordinates 
takes account of this correction,‡ before using it for a large-scale survey.

9.6  GRIDS

Having developed (i.e., unwrapped) one of the projections described in 
Section 9.4 into a plane, it is often convenient to superimpose a right-
handed, rectangular Cartesian grid system onto it. This enables the plan 
position of any point on the map (or ground) to be identified by an (x,y) co-
ordinate. The y-axis of the grid is usually defined to lie along a meridian; 
on a transverse Mercator projection the central meridian is used, and on a 
Lambert projection the chosen meridian is often called the ‘central merid-
ian’. The resulting x and y co-ordinates are then known as Eastings and 
Northings, respectively, and are usually measured in metres.

The grid system is positioned by specifying the latitude and longitude of 
a reference point, which is called the true origin of the system. However, if 
the true origin is given the co-ordinates (0,0), it will usually lead to some 
points having negative co-ordinates, which is undesirable. The true origin 
may therefore be given a different set of co-ordinates; these are known as 
“the false co-ordinates of the true origin” (or simply the ‘false co-ordinates’), 

*	 Available (May 2013) at http://www.ordnancesurvey.co.uk/oswebsite/support/os-net/ 
coordinate-calculations-spreadsheet.html.

†	 Available (May 2013) at http://www.ordnancesurvey.co.uk/oswebsite/docs/support/guide-
coordinate-systems-great-britain.pdf.

‡	 LSQ, provided on the book’s CRC Press webpage, does so for UTM and British national 
grid projections.
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and the point which thereby acquires the co-ordinates (0,0) is known as the 
false origin.

The grid is attached to the full-size projection, after the central scale fac-
tor has been applied. This means that a horizontal distance measured over 
the surface of the ellipsoid must be multiplied by the local scale factor to 

Reproduced from Ordnance Survey map
data by permission of the Ordnance Survey
© Crown copyright 2001.
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convert it to a distance on the grid; likewise, a grid distance must be divided 
by the scale factor when converting it to a ‘real’ distance on the ellipsoid.

The approximate calculation for a scale factor on a transverse Mercator 
grid is straightforward to use, as the line of zero distortion is the central 
meridian which, by definition has a constant value of Easting. The value 
of d in Equation 9.2 can thus be found by subtracting this value from the 
Easting of the point at which the scale factor is required. For the UK, the 
equation therefore becomes:

	 S
E

0.99960127 1
( 400,000)

81.179282 10

2

12= + −
×









 	 9.3

9.6.1  UTM Grids

UTM grids are defined in metres, and the true origin for each zone is where 
the central meridian crosses the equator. The false co-ordinates of each true 
origin are (500,000 E, 0 N) for the northern hemisphere, so that all points in 
the zone have positive Eastings and Northings. For the southern hemisphere, 
the false co-ordinates are usually set to (500,000 E, 10,000,000 N), so that 
the Northings of these points are positive also. To distinguish points with 
the same co-ordinates in different UTM zones, the zone number is attached 
to the Easting as a prefix: thus the point 1 metre north of the equator with 
a latitude of 3° W would have UTM co-ordinates of (30,500,000 E, 1 N).

9.6.2  The British National Grid

In the British national grid (BNG), the unit of length is the metre, and the 
true origin has latitude 49° N and longitude 2° W, with false co-ordinates 
(400,000 E, −100,000 N). This places the false origin somewhere to the 
south-west of the Scilly Isles. All points in the British Isles thus have posi-
tive grid co-ordinates, and all points on the mainland can be specified to a 
precision of 1 metre using two six-figure co-ordinates. The specification is 
completed by quoting the ellipsoid (Airy 1830) and the projection (trans-
verse Mercator with 2° W as the central meridian, and a central scale factor 
of 0.9996012717).

The British grid is sometimes broken down into 100-kilometre squares 
with two-letter designators for approximate referencing purposes, as 
shown in Figure  9.8; thus the co-ordinates of the Cambridge University 
library’s tower (a second-order control point in OSGB36*) can be quoted 
to the nearest centimetre as (544166.76 E, 258409.19 N), or to the nearest 
kilometre as TL4458.

*	 Unfortunately now destroyed by some recent work on the roof.
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The formulae to convert between the geodetic (ϕ,λ) co-ordinates of a 
point and its Eastings and Northings in the British grid are fairly complex, 
and are unlikely to be needed by most engineering surveyors. If required, 
they can be found in Ordnance Survey (1950), or in the document entitled 
‘A guide to coordinate systems in Great Britain’.*

9.6.3  The State Plane Co-ordinate System

For the USA, the size of the country means that using a single projection 
would cause unacceptable levels of distortion; and most states have decided 
that the scale factor distortion in each projection should not exceed 100 
parts per million. This, plus the wish of each state to have its own self-
contained mapping system, means that a total of 107 different projections 
and associated grid systems (collectively called zones) are used across the 
main body of the USA, plus a further 16 to cover Alaska, Hawaii, Puerto 
Rico and the Virgin Islands; collectively, these are known as the state plane 
co-ordinate system.

Twelve states have just a single zone—either by virtue of their size or 
shape, or because they chose to accept a slightly larger scale factor distor-
tion. At the other end of the scale, Texas uses five zones, California six, 
and Alaska ten. Sixty-eight of the projections are Lambert conformal and 
54 are transverse Mercator, with one in Alaska being oblique Mercator. 
Forty-seven states use a single projection method for all their zones, but 
three do not; Alaska uses all three methods, in different places. The metre 
is the fundamental unit of length in all states except Arizona—however, 
much local work is still done in imperial units (the international foot or the 
U.S. survey foot), using defined conversion factors. The GRS80 ellipsoid is 
used throughout the system, having supplanted the Clarke spheroid of 1866 
which was formerly used for the main body of the USA.

The projection and grid details of all these zones, and the associ-
ated methods for calculating local scale factors and (t – T) corrections, 
are summarised in NOAA Manual NOS NGS 5 entitled ‘State Plane 
Coordinate System of 1983’, which can be downloaded (May 2013) from 
http://www.ngs.noaa.gov/PUBS_LIB/ManualNOSNGS5.pdf.

9.7  BEARINGS ON GRIDS

In surveying, all bearings are measured in a clockwise direction from 
‘north’, as on a compass. However, ‘north’ can have different meanings, 

*	 Available (May 2013) from the web page www.ordnancesurvey.co.uk/oswebsite/support/
os-net/coordinate-calculations-spreadsheet.html. This page also provides a downloadable 
Excel spreadsheet, for performing this and similar calculations.
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and so the bearing of a line between two points can have different values, 
as follows:

	 1.	True bearings are measured with respect to the meridian running 
through a point. True north is where the meridians all meet, on 
the ellipsoid in use; note that true north on the Airy ellipsoid (for 
instance) is not in the same physical place as true north on the 
WGS84 ellipsoid.

	 2.	Magnetic bearings are measured with respect to magnetic north, the 
point on the earth’s surface which lies on its magnetic axis. This point 
is neither stationary, nor coincident with true north on any ellipsoid. 
The angle between true north and magnetic north is called the mag-
netic variation (or sometimes, the magnetic declination), and can be 
looked up on some types of map (e.g., aviation maps). If the magnetic 
variation is west, then magnetic north is to the west of true north, and 
the variation should therefore be subtracted from the magnetic bear-
ing to obtain a true bearing.* In Great Britain, magnetic variation is 
currently between about 1° and 4.5° West (depending on location), 
and reducing by about 6 minutes annually. In the USA, magnetic 
declination (as it is more commonly known in that country) varies 
between about 17° East and 19° West, and changes by up to ±12 min-
utes per year, depending on location.

	 3.	Compass bearings (the actual reading from a compass) may differ 
from magnetic bearings because of nearby ferrous objects, particu-
larly if the compass is mounted in a vehicle. The correction which 
must be applied to a compass reading to get a magnetic bearing 
is called the deviation of the compass, and is usually plotted as a 
function of the compass reading. If the deviation is west, then the 
‘compass north’ is to the west of magnetic north, and the deviation 
should be subtracted from a compass reading to obtain a magnetic 
bearing.

	 4.	Grid bearings are measured with respect to grid north, i.e., the y-axis 
on the grid system. In the case of a transverse Mercator projection, the 
y-axis is aligned with the central meridian, so grid north is the same 
as true north for any point along the central meridian. Elsewhere, the 
angle between grid north and true north is called the convergence 
of the meridian, and can be calculated as a function of the grid co-
ordinates of the point (Ordnance Survey 1950, 21). Convergence is 
defined as being positive when true north appears to be to the west 

*	 A useful mnemonic is ‘variation west, magnetic best [i.e., biggest]—variation east, mag-
netic least’.
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of grid north—on transverse Mercator projections, it is therefore 
positive at all points to the east of the central meridian. Convergence 
should be subtracted from a true bearing to obtain a grid bearing—so 
the grid bearing is smaller than the true bearing when convergence is 
positive, and larger when it is negative.

The relationship between these directions and angles is summarised in 
Figure 9.9, for the bearing from point A to point B. Note that the conver-
gence is shown as being positive, and the variation and deviation are both 
shown as being west.

9.8 � THE REALISATION OF THE 
BRITISH NATIONAL GRID

Section 9.6.2 explained how the BNG is defined in principle; it is useful for 
surveyors in Britain also to understand how it is realised in practice.

Between 1936 and 1951, about 480 so-called first-order stations were 
established around mainland Britain, and the geodetic co-ordinates of a 
few of them were determined as accurately as possible by astronomic obser-
vations. Their relative positions were then found by means of triangula-
tion, plus the measurement of a single base line on the Salisbury Plain. The 
difficulty of measuring distances accurately—and the lack of computing 
power for adjusting all the observations simultaneously—contributed to 
inaccuracies in the computed positions of those stations, which are now 
apparent with the benefit of modern technology. In the meantime, however, 
all published mapping in Britain has been based on the grid co-ordinates 
which were originally published for those stations, collectively known as 
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Figure 9.9 � Relationship between bearings.
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OSGB36.* Until the year 2000, the British national grid was realised (and 
thus effectively defined) in terms of the physical positions and published 
co-ordinates of the first-order stations which comprise OSGB36.

The true grid positions of some first-order stations, particularly those in 
northern Scotland, are now known to be up to 20 metres different from 
those quoted in OSGB36. These discrepancies would be sufficient to cause 
serious confusion over the actual positions of boundaries, etc. compared 
to their positions as shown on existing maps, and to invalidate many GIS† 
databases which use positional data from maps and observations based on 
OSGB36. There is therefore a requirement for the Ordnance Survey to sup-
port some kind of transformation between ETRS89‡ and OSGB36, so that 
data collected by GNSS equipment can be fully compatible with existing 
maps and GIS databases.

In response to this requirement, the British Ordnance Survey has devel-
oped a transform called OSTN02™ (supplanting the earlier OSTN97™) 
which converts ETRS89 Cartesian co-ordinates to grid co-ordinates that 
are very close to those that would be found§ using OSGB36. The added 
benefit of this development is that it has allowed the Ordnance Survey 
to abandon the network of first-order stations as a means of defining the 
OSGB36 reference frame. Instead, a frame which closely resembles the old 
OSGB36 is now defined by means of the ETRS89 reference frame, plus 
the algorithm of OSTN02. OSTN02 is freely available in several forms, 
including a co-ordinate converter program called GridInQuest,¶ and is now 
the definitive means for obtaining the OSGB36 grid co-ordinates of any 
point whose ETRS89 co-ordinates are known. As such, it complements 
the OSGM02 national geoid model, which has similarly supplanted the 
national network of benchmarks.

The nature of the errors in the original OSGB36 data means that no simple 
or homogeneous transformation would provide a satisfactory conversion of 
co-ordinates between ETRS89 and OSGB36, so a two-stage process is used. 
Referring to Figure 7.3, the ETRS89 Cartesian co-ordinates are first converted 
to ‘local’ geodetic co-ordinates using a GRS80 ellipsoid without any transfor-
mation. The transverse Mercator projection and British grid (as defined above) 
are then applied, to give some initial Eastings and Northings (which are at this 
stage about 200 metres different from OSGB36 co-ordinates). These are now 

*	 In modern parlance, the physical positions and published co-ordinates of these stations is 
collectively known as a terrestrial realisation frame, or TRF.

†	 Geographical information system
‡	 See Chapter 7, Section 7.6 for a full definition of this terrestrial realisation frame.
§	 By measuring angles and distances from nearby OSGB36 control points, and using the 

published co-ordinates of those control points to determine the co-ordinates of the point in 
question.

¶	 This is downloadable (May 2013) from the Ordnance Survey’s OS Net website at http://
www.ordnancesurvey.co.uk/oswebsite/support/os-net/grid-inquest.html. GridInQuest also 
includes the OSGM02 geoid model.
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converted to OSGB36 Eastings and Northings using a ‘co-ordinate shift mod-
el’—a piecewise bilinear interpolation (which can be thought of as a ‘rubber 
sheet’ transformation) which firstly takes account of the different shapes and 
positions of the GRS80 and Airy ellipsoids, but also models the many local 
distortions present in OSGB36. The accuracy of this conversion process is 
quoted as 0.4 metres (for 95% of data), though the relative accuracy between 
nearby points can be expected to be somewhat better than that.* The process 
is therefore quite accurate enough to map GNSS points onto the correct places 
on an OSGB36 map, but it may cause unacceptable errors in a large engineer-
ing project which requires high internal accuracy.

9.9 � CO-ORDINATE SYSTEMS FOR 
ENGINEERING WORKS IN BRITAIN

As explained above, a simple conversion of GNSS data to OSGB36 co-
ordinates using OSTN02 will not produce a fully conformal framework of 
points. In particular, the scale factor might differ from its theoretical value 
by up to 20 parts per million, and might also depend on the bearing of 
the line in question. Also, the scale factor changes unpredictably from one 
region of the country to another, because of the piecewise method origi-
nally used to adjust the network of first-order control points.

Many engineering works require a higher precision than this, so an alter-
native method of establishing a fully conformal grid must be used. Four 
possible approaches can be summarised as follows:

	 1.	A simple localised co-ordinate system can be used in areas of up to 5 
km square, which do not need to be ‘tied in’ to any larger system. The 
method for doing this is described in Chapter 3, Section 3.1. Initially, 
the co-ordinate system would need to be established by conventional 
means, i.e., using total stations and levels. If necessary, GNSS obser-
vations can be incorporated by creating a one-step transform between 
the local and the ETRS89 co-ordinates of three control points (see 
Chapter 7, Section 7.6).† The scale factor in the transform should be 
constrained to be unity.

	 2.	For a larger area, the major control points would typically be sur-
veyed in by GNSS, and the data can be converted directly into UTM 

*	 The co-ordinates obtained using GPS and OSTN02 are likely to be only a few cm different 
from those which might be obtained by resectioning from nearby OSGB36 control points, 
using their published co-ordinates; however, both sets of co-ordinates may be much further 
from the ‘correct’ values which follow from the formal definition of the British national 
grid, and which were subsequently published by the Ordnance Survey as ‘scientific net-
works’ with names such as OS(SN)70 and Ossn80.

†	 Most GNSS post-processing packages include a facility for doing this.
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co-ordinates on the WGS84 or GRS80* ellipsoid. This can usually be 
done quite easily in the GNSS post-processing software; alternatively, 
GridInQuest (see above) and the spreadsheet mentioned in Section 
9.5.2 both perform this function for ETRS89 data. Subsequent obser-
vations might be made by a mixture of GNSS and conventional meth-
ods, and a suitable least-squares adjustment program (such as LSQ) 
will adjust all the observations to high accuracy, using the scale factor 
calculations and (t – T) corrections described earlier in this chapter. A 
geoid model would also be required, to convert the ellipsoidal heights 
recorded by GNSS to the orthometric heights required for the project. 
This is important, since the local geoid may not be parallel to the 
WGS84 ellipsoid, so differences in ellipsoidal heights (as measured 
by GNSS) may differ significantly from differences in orthometric 
heights (as measured by a level).

	 3.	If the project needs to be tied in with the British national grid, then 
a fully homogenous co-ordinate system can be set up which will cor-
respond to OSGB36 as closely as possible in the area of interest. First, 
the OSGB36 Eastings and Northings of three points can simply be 
picked off a map, and GridInQuest can be used to find their ETRS89 
co-ordinates. The points should form an approximately equilateral 
triangle whose sides should be at least 500 metres long—the places 
where these points and sides lie will be where the planned transform 
will fit best with OSGB36.

		    The orthometric heights of the three OSGB36 points are set to zero, 
and GridInQuest is used to generate the corresponding ETRS geodetic 
co-ordinates. A GNSS post-processing package can then be used to gen-
erate a best-fit Helmert transform between the two sets of co-ordinates, 
as described in Chapter 8, Section 8.5.2. Further information will also 
be needed at this stage: the WGS84 ellipsoid for the ETRS89 geodetic 
co-ordinates, and the full projection details (as detailed in Section 
9.6.2) for the OSGB36 co-ordinates. The OSGB36 points should be 
specified as having an ellipsoidal height of zero; the transformed Airy 
ellipsoid will then be fitted to the local geoid, and the ellipsoidal heights 
from the transform will also be orthometric heights.

		    The scale factor of the transform should be constrained to be unity, 
so that the scale factor of the projection gives the correct relationship† 
between grid distances and distances on the ground. The accuracy to 
which the transformed points will map onto the OSGB36 system will 
vary depending on the size and location of the project; an indication 

*	 The GRS80 ellipsoid has the advantage of being the basis for the OSGM02 geoid model, 
which facilitates the conversion of ellipsoidal heights to orthometric heights.

†	 See Section 9.5.1.
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will be given by the residual errors which are generated when the 
transform is computed, which will be reported back by the software.

	 4.	Finally, the Ordnance Survey has published a set of classical trans-
formation parameters to map ETRF89 co-ordinates into OSGB36 
(effectively stating the position of the Airy ellipsoid in relation to the 
ETRS89 ellipsoid). The transform is quoted as having an accuracy of 
5 m. The advantage of this transform is that it is fully conformal—in 
other words, it does not distort the relative positions of points in any 
way; its drawbacks are (a) that it has a scale factor of 20 parts per mil-
lion, which would need to be included in all distance computations; 
and (b), unlike OSTN02 points, these transformed points might have 
co-ordinates up to 5 m different from those obtained by conventional 
measurements to nearby OSGB36 control points. (This difference is 
large enough to make a control point appear to be on the wrong side 
of a nearby road, when plotted on a map.) The parameters of the 
transform are given in Appendix A; its main purpose is to provide a 
simple means for hand-held GNSS devices to show a user’s position 
on the national grid to a level of accuracy which is comparable with 
that of the device.

Overall, it is probably advisable to use Option 2 for surveying purposes, 
wherever possible. No transformation is involved, so there is no danger of a 
‘hidden’ scale factor. Also, there is no danger of co-ordinates from different 
sources, or from slightly different transforms, being mistakenly used in the 
same calculation or adjustment; UTM co-ordinates are sufficiently differ-
ent from national grid co-ordinates for their origins to be obvious.
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Chapter 10

Reduction of Distance 
Measurements

The reduction of distance measurements means the process of converting a 
measured slope distance between two points to the ‘reduced’ distance over 
the ellipsoid between the projections of the two points onto the ellipsoid.

It is useful to start by thinking of the simple geometry which would arise 
if the reference ellipsoid was a flat surface and electromagnetic radiation 
travelled in a straight line, as shown in Figure 10.1. The relevant quantities 
which can be measured by a total station are the zenith angle z and the 
slope distance s. It is clear that we can then write:

	 d = dR = s sin z	 10.1

and

	 Δh = s cos z	 10.2

To a first approximation, these quantities will always be correct, even 
when the curvature of light and of the ellipsoid are considered—but they 
are not sufficiently accurate to be used directly in surveying calculations.

10.1 � CORRECTION FOR THE CURVATURE 
OF THE ELLIPSOID

The effect of the curvature of the reference ellipsoid is shown (greatly exag-
gerated) in Figure 10.2. Again, the objective is to reduce the measured dis-
tance s to dR, the reduced distance over the ellipsoid (i.e., the geodesic) 
between points A0 and B0, being the places where lines through points A 
and B pass normally* through the surface of the ellipsoid.

*	  In other words, the two lines are normal to the piece of the ellipsoid surface that they each 
pass through.
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The first difficulty which arises is that the lines AA0 and BB0 do not lie 
in a single plane.

If we suppose that the points A, A0 and B0 lie exactly in the plane of 
the paper in Figure 10.2, then the geodetic torsion of the ellipsoid will (in 
general)* mean that point B, and the lines AB and BB0 are not quite in the 
plane of the paper. In addition, the geodesic between points A0 and B0 will 
not generally lie wholly in the plane either.

*	 There is no geodetic torsion along the meridians or around the equator. Geodetic torsion in 
other places can be calculated using Equation 8.41.
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These effects, though, are small. Firstly, the maximum geodetic torsion 
anywhere on the earth’s surface is about 0.11 seconds per kilometre*—so 
if the distance AB is less than 250 km, then the angle between the line 
BD and the plane can never be more than 28 seconds. Thus, even if point 
B has an ellipsoidal height of, say, 2000 metres, it will lie less than 300 
mm away from the plane. This means that the true distance AB will differ 
from its apparent distance (as seen in Figure 10.2) by less than 1 part in 
1012. Secondly, as mentioned at the end of Chapter 8, the geodesic distance 
from A0 to B0, and the distance which would be calculated by assuming 
that both points lie on a spherical earth of radius 6371 km, will not exceed 
1 part per million for distances up to 250 km.

It is acceptably accurate, therefore, is to assume that all the lines shown 
in Figure 10.2 lie in a single plane, and that the path between A0 and B0 is 
a circular arc of radius 6371 km. For any value of s up to 250 km, and for 
any values of h and h′ between 0 and 2000 metres, this basis for calculat-
ing dR results in an error of less than 1 part per million compared to the 
true geodesic distance between points A0 and B0. If the formula given in 
Equation 8.43 is used to calculate a ‘local’ value for RE at one end of the 
line, then this error drops below 0.25 parts per million, for all distances up 
to 250 km and for all values of h and h′ between −500 and +10,000 metres. 
Few surveyors are likely to encounter longer distances or more extreme 
ellipsoidal heights than these.

In Figure 10.2, we can see that:

	 d = (RE + h) ϕ	 10.3

where RE is the local radius of curvature of the earth, and ϕ is the angle (in 
radians) subtended by the two points at the centre of the earth. But we can 
also see that:

	 φ =
+ +
s z

R h s zE

tan
sin

( ) cos
	 10.4

so we can write:

	 d R h
s z

R h s z
E

E

( )tan
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( ) cos
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+ +






− 	 10.5

For all realistic combinations of h, s and z, it turns out that the value of d 
changes by less than one part per million if h is simply assumed to be zero 

*	 This maximum torsion occurs if A and B lie on either side of the equator, with the line 
between them crossing the equator at 45°; elsewhere on the earth, or for shorter distances, 
it will be less.
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in Equation 10.5. This makes it possible for a total station, or other electro-
magnetic distance measurement (EDM) device, to calculate the horizontal 
distance between two stations to a reasonable degree of accuracy,* given a 
built-in average value for RE and no information about the height of either 
station. When the value of h is known, this distance can subsequently be 
converted to the reduced distance dR, using the simple formula:

	 d
R

R h
dR

E

E( )
=

+
	 10.6

where RE can be taken to be 6.371 × 106 m. To preserve an accuracy of 
one part per million, this reduction requires h to be known to an accuracy 
of RE × 10−6, or about ±5 m. Note that h is the height of the geoid above 
the ellipsoid (see Figure 8.4) plus the height of the observing station above 
the geoid (i.e., the orthometric height of the station) plus the height of the 
instrument above the station.

We can also write

	 (RE + h′) sin ϕ = s sin z	 10.7

i.e.,

	 h
s z

R
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E′ =

ϕ
− 	 10.8

Substituting for ϕ using Equation 10.4, and noting that h′ = h + Δh gives:
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As with Equation 10.5, the value of Δh returned by this equation remains 
virtually unchanged if h is simply assumed to be zero: for distances of up to 
20 kilometres and for values of h up to 4000 metres, the resulting error in 
the value of Δh will be less than one millionth of the measured slope distance.

10.2  CORRECTION FOR LIGHT CURVATURE

A further complication arises, however, from the fact that light (or indeed 
any other electromagnetic radiation) does not travel in a straight line 

*	 Subject to an accurate measurement of the angle z, which is more problematic; see Sections 
10.2 and 10.4 below.
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through the earth’s atmosphere. This is because the refractive index of the 
atmosphere reduces with height, making it act like a giant lens. To see the 
effect of this, first consider what happens when part of a wave front of light 
travels from a medium with refractive index n1 to one with lower refractive 
index n2, as shown in Figure 10.3. During the time in which the left end of 
the wave front travels from A to A′, the right end (which is still in the denser 
medium) only travels from B to B′. Thus the wave front changes from mak-
ing an angle a with the interface to making an angle b with it, where a and 
b are related by the equation:

	
x b
x a

b
a

n
n

sin
sin

sin
sin

1

2

= = 	 10.10

Now consider light travelling with a zenith angle z from air with refrac-
tive index n into air with refractive index (n + δn), as shown in Figure 10.4. 
Using Equation 10.10, we can write:

	
z z

z
n

n n
n n

n
sin( )

sin
+ δ =

+ δ
≈ − δ
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Figure 10.3 � Refraction of light (step change of refractive index).
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Figure 10.4 � Refraction of light (continuous change of refractive index).
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Expanding the sin term gives:

	
z z z z

z
n n

n
sin cos cos sin

sin
δ + δ = − δ

	 10.12

so, since δz is small,

	
z z z

z
n n

n
sin cos

sin
+ δ = − δ

	 10.13

i.e.,

	 z z
z

n
n

cos
sin

δ = − δ 	 10.14

where δz is measured in radians. But δs cos z = δh, so we can rewrite 
Equation 10.14 as

	
h z
s z

n
nsin

δ × δ
δ

= − δ
	 10.15

whence

	
dz
ds

z
n

dn
dh RP

sin 1= − = 	 10.16

where RP is the radius of curvature of light which is travelling at a zenith 
angle z through the atmosphere. Conveniently, it turns out that the quantity 

	
n

dn
dh

1 ,

which is a property of the atmosphere, is more or less constant through-
out the atmosphere, for a given wavelength of light. It is also negative, 
which means that the light tends to curve towards the earth, as shown in 
Figure 10.4.

The actual light path in Figure 10.2 is therefore not a straight line as 
shown, but a curved line bulging above the straight line joining the instru-
ment and target. The geometry of Figure 10.2 can be used, however, if one 
imagines a distortion of the picture in which the left edge of the picture is 
rotated clockwise and the right edge is rotated anticlockwise, so that the 
curved light path is bent back to become a straight line. The effect of this 
distortion would be to make the vertical lines through the instrument and 
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target intersect further down the paper, i.e., to increase RE. It turns out that 
the effect of light curvature can be allowed for in exactly this way, by using 
an ‘effective earth radius’ which is slightly larger than its actual radius. The 
mathematical derivation of this effective radius is given below.

Figure  10.5 shows the effect of light curvature on the geometry of 
Figure 10.2, again greatly exaggerated—the light is assumed to have con-
stant curvature of radius RP, based on the mean zenith angle of the light 
path. We can write:

	 φ = − ′ =z z
d
R

R

E

	 10.17

whence

	
R

z z
dR

1 ( )

E

= − ′
	 10.18

It can be seen that, in the absence of light curvature, the change in zenith 
angle between instrument and target is (z – z′). With light curvature, it 
becomes (z1 – z1′), where
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s 
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β
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z1'z'
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Figure 10.5 � Effect of light curvature on zenith angle measurements.
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	 − ′ = φ − β = φ −z z
s

RP

21 1 	 10.19

Letting R1 represent the effective earth radius described above, we can 
therefore write the equivalent of Equation 10.18, namely:
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1

1 1= − ′
	 10.20

Using Equations 10.17 and 10.19 then gives:
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Because the difference between the actual earth curvature and the effec-
tive earth curvature is small, we can now use the approximate formula 
given in Equation 10.1 to say:

	
R R R zP

1 1 1
sin1 E

= − 	 10.22

whence, using Equation 10.16,
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where κ is called the refraction constant. Because

	
n

dn
dh

1

is nearly constant at different heights for any given wavelength, κ is a 
dimensionless factor which can also be assumed to be constant for a given 
wavelength of radiation.* Typically, κ is quoted as being about 1/7 for vis-
ible (or infrared) radiation, and 1/4 for microwave radiation. Using these 
values for κ, together with a value of 6.37 × 106 m for RE, gives values for 
R1 of 7.43 × 106 m in the case of visible light, and 8.49 × 106 m for micro-
waves. Other values quoted for the effective earth radius in the literature 
are 7.52 × 106 m for visible light, and 8.62 × 106 m for microwaves.

*	 κ can be defined as being the curvature of light travelling horizontally, as a fraction of the 
mean curvature of the earth.
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We can therefore allow for the effect of light curvature by adapting 
Equations 10.5 and 10.9 (with h set to zero, as discussed) to give:
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and
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where R1 is the effective radius of earth curvature for visible light, and z1 is 
the actual zenith angle observed by the instrument. The appropriate value 
for R1 can be built into an EDM device, enabling it to calculate reasonably 
accurate horizontal and vertical distances for any sighting within its oper-
ating range.

For precise work, however, it is unsatisfactory to simply use the ‘horizon-
tal’ distance reported by an EDM device, even allowing for the fact that it 
has not been reduced to the ellipsoid. There are three main reasons for this: 
firstly, it is not always possible to find out exactly how a given instrument 
computes its ‘horizontal’ distances; secondly and most importantly, local 
atmospheric conditions may mean that κ differs from the values quoted 
above by up to 100% in either direction,* making the value of R1 used 
by the instrument when applying Equations 10.24 and 10.25 quite inap-
propriate; and thirdly, it is generally better practice to measure an ‘uncor-
rected’ slope distance in the field, and compute precise corrections to it 
subsequently in the office. These corrections will be discussed next.

10.3 � CORRECTIONS TO SLOPE 
DISTANCE MEASUREMENTS

The correction of raw measured distances involves three steps. First, the 
mean velocity (and therefore wavelength) of electromagnetic radiation along 
the straight line between instrument and target is not a known, constant 
value, but depends on the density (largely governed by the temperature and 
pressure) of the air along the line. For some types of radiation, the humidity 

*	 On a ‘grazing ray’ in particular, when the light path passes close to the surface of the earth, 
the change in temperature with height can mean that the air nearer the ground is less dense 
than the air higher up. This causes the light path to bend upwards rather than downwards, 
giving negative values for κ and values for R1 which are smaller than RE.
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of the air must also be taken into account. If this is done manually,* the cor-
rection should be made using a formula or table supplied by the instrument 
manufacturer, as it is a function of the wavelength and modulation of the 
radiation used by the instrument. The atmospheric conditions used for this 
correction are usually the mean values of those measured at each end of the 
ray; this will be reasonably accurate for pressure, but note that it may be 
substantially inaccurate for temperature if, say, the instrument and target 
are on opposite sides of a deep valley.

Secondly, allowance must be made for the fact that the air above the 
straight line path is slightly less dense than the air on the straight line 
path, so the radiation will in fact propagate more quickly through it; this, 
after all, is what causes the light path between the stations to curve as 
described in Section 10.2. It is therefore necessary to calculate the path 
through the atmosphere along which the radiation will propagate in the 
minimum time, and allow for the fact that the mean wavelength along this 
new path will be longer than the value calculated above. Finally, having 
now effectively calculated the distance along this new curved path, an ‘arc 
to chord’ calculation must be carried out to find the distance along the 
original straight path.

These last two adjustments are both very small, and indeed tend to can-
cel each other out. It is therefore common to roll them together into a single 
correction formula, which makes use of our earlier assumption about the 
way in which the refractive index (and therefore the propagation veloc-
ity) varies with altitude in the earth’s atmosphere. The formula quoted by 
Bomford (1980) is:

	 ′ = − κ − κ








s s

s
RE

1
24

(2 )
2

2
2 	 10.26

where s is the distance corrected for mean atmospheric conditions, and κ is 
the refraction constant defined in Equation 10.23.

In addition to being small, this correction is not particularly sensitive 
to the variations in κ which can be encountered, as discussed above—so 
it is generally safe to use the standard value for the electromagnetic radia-
tion used to measure the distance. However, if the EDM uses near-visible 
(e.g., infrared) radiation, and if the vertical angles at each end of the ray are 
measured at around the same time as the slope distance, the appropriate 
value for κ can be found and used in Equation 10.26. The process for doing 
this is explained in Chapter 12, Section 12.5.

*	 Many total stations can do this correction automatically, given the correct temperature and 
pressure.
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10.4 � FINAL CALCULATION OF REDUCED DISTANCE

Having made these corrections to s, it might now seem reasonable to calcu-
late dR using Equation 10.24 followed by Equation 10.6. For really accurate 
work, however, this is still precluded by unknown effects on the observed 
vertical angle (z1) caused by the exact atmospheric conditions at the time of 
the observation; these effects mean that Equation 10.24 may give an erro-
neous result, particularly along a steeply sloping ray. Variations in atmo-
spheric conditions quite frequently cause the observed vertical angle to alter 
by up to 20 seconds*—and an error of this magnitude will cause an error of 
8 parts per million in horizontal distance, if the slope between the station 
is 5°; if the slope angle is 10°, this error rises to 15 parts per million. The 
effect on vertical distances is even more severe: a 20-second error in the 
vertical angle will cause an error in Δh of almost 10 cm over a distance of 
1 kilometre, or 100 parts per million.

If the height of station A and the height difference of the endpoints (h 
and Δh respectively, in Figure  10.6) are known to reasonable accuracy,† 
however, then the value of dR can be calculated without the need for an 
observed vertical angle. One way of doing this calculation would be to 
apply the cosine rule (Appendix A) to the triangle ABO (O being the point 

*	 Variations of up to 30 seconds have been noted, but these are less common.
†	 These values need to be known to within about 5 metres and 10 mm per kilometre of sepa-

ration, respectively; see the discussion below.
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Figure 10.6 � Calculation of reduced distance using known heights.



166  Plane and Geodetic Surveying﻿

at the centre of the earth where the lines AA0 and BB0 meet), to calculate 
the angle ϕ:

	 φ = + + + + ∆ − ′
+ + + ∆
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whence
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where ϕ is expressed in radians.
However, this method loses accuracy when ϕ becomes small, because 

the value of cos ϕ has a turning point at ϕ = 0. If the evaluation of cos−1 is 
done to (say) 10-figure accuracy, computational inaccuracies will start to 
exceed one part per million when the rate of change of cos ϕ with respect to 
ϕ (i.e., sin ϕ) falls below 1 × 10−4. This happens when ϕ is less than 0.0001 
radians, i.e., when dR is less than about 600 metres.

A more reliable approach, which works for all measurable distances, is to 
use the cosine rule to calculate the value of cos z, in Figure 10.6:
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And then use Equation 10.5 substituted into Equation 10.6 to calculate dR:
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The accuracy delivered by Equations 10.29 and 10.30 depends (of course) 
on the accuracy to which s has been measured, plus an additional error 
which is mainly governed by the slope angle of the line AB and the accuracy 
to which h and Δh are known. For slope angles of up to 20°, this additional 
error will not exceed 3 parts per million provided the value of h is correct 
to ±5 metres, and the value of Δh is correct to within 5 mm per kilometre 
of separation; for slope angles below 10°, an accuracy of 3 parts per million 
will be maintained even when the value of Δh is only known to10 mm per 
kilometre of separation. These levels of error remain fairly constant for all 
distances between 10 m and 250 km, and reduce to 2 parts per million if h 
is known to within ±0.5 metres.

Depending on the distance between A and B, the required accuracy for 
Δh can be achieved by levelling, by GNSS, or by trigonometric heighting 



Reduction of Distance Measurements  167

as described in Chapter 12. Note, however, that the value of Δh used in 
Equation 10.29 involves the heights of the tripods at each end of the mea-
sured distance, as well as the height difference between the two stations 
(see Figure 10.6).

10.5  SLOPE DISTANCES

An alternative approach is to use the station-to-station slope distance rather 
than dR, when compiling data for an adjustment calculation. If this route is 
taken, then it may involve one further operation on the distance computed 
in Equation 10.26; since this is a distance from instrument to target, it will 
probably need to be adjusted manually to give a slope distance between the 
two actual stations before it can be fed into a network adjustment program. 
An approximate formula for this correction can be derived with reference 
to Figure 10.7, in which A and B represent the instrument and target, and 
E and F the stations over which they are positioned.

We start by rotating the line AB about X, the point where it crosses the 
angular bisector of OA and OB (where O is the centre of the earth), until 
it is parallel with the line between the two stations. This gives the line A′B′, 
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Figure 10.7 � Correction of measured slope distance.
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which is then trimmed down to give the line CD. Because ϕ is small, the 
lengths AC and BD are both approximately (h2 – h1)/2, so we can write:
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i.e., recognising that ϕ is very small and using Equation 10.2,
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The triangles OCD and OEF are similar, so we can now use the approxi-
mate distances OY and OX shown in the figure, and write:
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The binomial theorem then gives
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Substituting for CD using Equation 10.32 gives
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which, ignoring third-order terms, gives
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Our best estimate of the distance AB is s′ (as defined by Equation 10.26), 
so we can now write
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where H1 and H2 are the ellipsoidal heights of the two stations, and h1 and 
h2 are the heights of the instrument and target above their respective sta-
tions. For normal distance measurements, the value of (h2 + h1) is so small 
in comparison to RE that we can ignore H1 and H2 in the second term of 
Equation 10.37 and write
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This means that we do not need to know the absolute values of H1 and H2 
to find s′′, but merely the difference between them—which typically only 
needs to be known to within about 0.1 m to preserve an accuracy of 1 part 
per million* in Equation 10.38. The values of h1 and h2 need to be known to 
within about 2 mm, which can easily be achieved by measuring the heights 
of instrument and target with a tape. A suitable value for (H2 – H1) would 
nowadays typically be found using GNSS; where this is not practicable, it 
can be found by levelling, or by using trigonometric heighting as described 
in Chapter 12.

The station-to-station slope distance can also be used to calculate the 
reduced distance, dR: simply apply Equations 10.29 and 10.30 using s′′ 
in place of s′, and taking Δh to be the station-to-station height difference, 
rather than the instrument-to-target value.

A worksheet for adjusting measured slope distances using the formulae 
developed in Sections 10.3 and 10.5 is given in Appendix H.

10.6  SUMMARY

The essential points covered by this chapter are as follows:

	 1.	Total stations are capable of calculating horizontal distances, but 
only at the altitude of the observing station. To obtain a reduced hori-
zontal distance on the ellipsoid, Equation 10.6 must be applied.

	 2.	All observed vertical angles are affected by atmospheric effects. It is 
possible to make some allowance for this by using an effective earth 
radius in place of the real one, but this makes assumptions about the 
atmosphere which may not be true at the time of observation. Under 
these circumstances, the calculation of a vertical distance from an 

*	 The suggestions for accuracy given throughout this chapter are only guidelines for mea-
surements taken in normal terrain. A surveyor who is in any doubt about the effect that 
approximate data might have on a formula should compute the formula twice, using 
extreme values for the data, and see whether the change is significant.
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observed slope distance and vertical angle will be in error—as will the 
horizontal distance, if the ray has a slope of more than a few degrees.

	 3.	The remedy is to calculate the reduced distance or the station-to sta-
tion slope distance using the height difference between the two sta-
tions, which must therefore be known. Although the atmospheric 
effects mentioned above also affect the measurement of slope distance 
itself, the effect is very small in practice.

	 4.	A measured and corrected slope distance (instrument to target) can 
be directly converted to a reduced horizontal distance between the 
stations, if the height of one station is known to better than 5 metres. 
It can also be converted to a station-to-station slope distance, if this 
data can be used by an adjustment program.
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Chapter 11

Adjustment of Observations

11.1  INTRODUCTION

The term ‘adjustment’ suggests that some form of cheating might take place 
during the process of converting surveying observations into results. This is 
not necessarily the case. As explained in Chapter 2, surveying observations 
always have two particular properties:

	 1.	They contain errors (random, systematic, and the occasional gross 
error).

	 2.	The system of observations should always be such that more observa-
tions have been taken than would be strictly necessary to obtain the 
required result (i.e., there is redundancy in the system).

This combination of properties means that no set of surveying observa-
tions is ever exactly consistent. If, for instance, the purpose of the observa-
tions is to fix the position of a new station, there will be no position which 
will exactly concur with all the data. All we can do is to choose a position 
for the point which gives the best agreement with the observational data 
that we have, and say that this is the most likely position of the point. The 
process of finding this ‘best’ position is called adjustment. It only involves 
cheating if, in computing a ‘best’ position for the point, we ignore some of 
our observations for the sole reason that they do not appear to agree well 
with the other observations.

The adjustment of large quantities of observations involving several sta-
tions whose positions are unknown is a tedious job, and is best done by 
computer. Several programs exist for this purpose, and are able to take 
detailed account of what constitutes the ‘best’ fit of the available data. The 
process they use is called least-squares adjustment, and will be described 
later in this chapter. Often, though, it is adequate to use a simpler method 
which does not need elaborate computer software; one such method is 
called a Bowditch adjustment, and a simplified version of this adjustment is 
described in the next section.
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11.2  THE BOWDITCH ADJUSTMENT

This adjustment method is best suited to a traverse (either in a horizontal 
plane or in the vertical direction). A basic version of the general method 
will be described, with reference to a simple example. All distances will be 
assumed to be small, so that the (t – T) corrections described in Chapter 9 
can be ignored.

A classic traverse to find the grid* positions of two new stations is shown 
in Figure 11.1. The grid positions of stations A, B, E, and F are already 
known, and the positions of stations C and D need to be found.

The typical scheme of observations to find these positions with some 
degree of redundancy is also shown on the figure. Angles are measured as 
shown, at stations B, C, D and E; and the horizontal distances BC, CD 
and DE are also measured. Note that the angles are measured using the 
previous station as the reference object: at D, for instance, C is used as the 
reference object, giving an observed angle CDE greater than 180°.

Given these data, it is first possible to calculate the grid bearing of the 
line BA by simple trigonometry—then, by simply adding the measured 
angle ABC, the grid bearing of the line BC. Knowing this bearing, and the 
length of the line BC,† we can calculate a preliminary grid position for C.

We can now repeat this process, to calculate preliminary grid positions 
for D, and then for E. If all the readings were totally error-free, the prelimi-
nary grid position we would calculate for E would be exactly the same as its 
known grid position, which we already have as part of our data.

*	 As defined in Chapter 9, Section 9.6
†	 The measured distance must first be reduced to an ellipsoidal distance (Chapter 10) and 

then multiplied by the local scale factor (Chapter 9) to convert it to a grid distance.

A

B
E

C

D

F

Known point
Unknown point
Measured distance

Figure 11.1  �Four-point traverse.
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Inevitably, though, this will not be the case, and the fact that E has not 
turned out to be exactly where it is known to be means that the calculated 
positions for C and D are probably not correct either.

In its simplest form, the Bowditch adjustment assumes that the errors in 
observation, which have given rise to the misplacement of E, are uniformly 
distributed throughout the traverse: so that C (which is 1/3 of the way 
through the traverse) should be adjusted by 1/3 of the amount by which 
E must be adjusted, and D (which is 2/3 of the way through the traverse) 
should be adjusted by 2/3 of the same amount. Suppose, for instance, that 
the calculated position for E turns out to be 18 mm north and 12 mm west 
of the correct position: the best guess for the actual position of C is to sub-
tract 6 mm from the Northing and add 4 mm to the Easting of the prelimi-
nary position. Likewise for D, we subtract 12 mm from the Northing, and 
add 8 mm to the Easting.

More elaborate forms of the adjustment also exist. Suppose, for instance, 
that the distance BC is 1/5 of the total distance BC + CD + DE. A better 
adjustment might be to adjust C by 1/5 of the adjustment needed for E, 
rather than by 1/3 as described above. In general, however, the extra work 
involved in these more elaborate adjustments does not result in a noticeably 
better set of co-ordinates for the unknown points.

A calculation sheet for the application of a simple Bowditch adjustment 
to a two-point traverse of the type described above is shown in Figure 11.2. 
The calculation starts by filling in all the shaded squares, which are either 
data or observations.

The next stage is to calculate all the bearings down the right-hand side of 
the sheet. The bearing of the line from B to A is calculated first, from the 
given grid co-ordinates. Adding the angle ABC* to this value, and subtract-
ing 360° if necessary, gives the bearing from B to C. Adding or subtracting 
180° now gives the bearing from C to B, and the process can be repeated 
until a computed value of the bearing from E to F is obtained. This is then 
compared with the value which is computed from the known co-ordinates 
of E and F.

If the agreement between these bearings is reasonable (i.e., not more than 
about twice the error that might be expected from a single angle measure-
ment†), the main calculation can now proceed. The next step is to convert 
all the observed horizontal distances to grid distances, filling in the spaces 
provided. This typically involves two operations:

*	 Defined as the angle measured at B, using A as a reference object and swinging round to C.
†	 If n measurements with standard deviation σ are added together, the standard deviation of 

the result is nσ . Since there are four angle measurements in this traverse, we might expect 
the final bearing to be in error by twice that of an individual measurement.
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	 1.	Multiplying the measured horizontal distance by the factor

		  
R

R h
E

E + ,

		  where RE is the radius of the earth (6.371 × 106 m), and h is the height 
of the instrument above the ellipsoid (see Chapter 10, up to Equation 
10.6). Note that the ellipsoidal height of the instrument includes the 
height of the instrument above the geoid (i.e., its orthometric height), 
plus the height of the geoid above the ellipsoid in the area where the 
observation is made. Note also that this adjustment changes the dis-
tance by less than 5 parts per million if h is less than about ±25 m.

	 2.	Multiplying the distance calculated above by the local scale factor, as 
described in Chapter 9, Section 9.5.1. For all but the largest traverses, 
this factor will be the same for all the distances in the traverse.

Having done this, the Easting and Northing components of the vector 
BC can be calculated, using the computed bearing and distance from B to 

BAd
ABCm
BC

CB
BCDm
CD

CD
CDEm
DE

ED
DEFm
EF

Ad
Bd
Ad-Bd

C-Bd
C
-e/3
C*

BCm
BCgr

D-C

D
-2e/3

D*

E-D
E
Ed
e = E-Ed

CDm
BCgr

DEm
DEgr

Fd
Fd-Ed

KEY
d   Data value
m  Measured value

       Input
 gr  Grid length
 *    Accepted value

EFd

Eastings Northings Distances

tan–1 (∆E/∆N)

tan–1 (∆E/∆N)

L sin (θ) || L cos (θ)

L sin (θ) || L cos (θ)

L sin (θ) || L cos (θ)

Compare

θ

θ

θ
L

L

L

°      '      "

Angles
&

Bearings

±180°

±180°

±180°

Figure 11.2 � Worksheet for Bowditch adjustment.
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C. Adding the grid co-ordinates of B to this vector gives the preliminary 
co-ordinates for C. This process is then repeated to find preliminary co-
ordinates for D and E as well.

Finally, the co-ordinates which have just been computed for E are com-
pared with its known co-ordinates, and the error or misclosure is found. 
As described above, 1/3 of this misclosure is now subtracted from C, and 
2/3 from D, to yield accepted values (i.e., best guesses) for the co-ordinates 
of these two points.

A sample calculation of a Bowditch adjustment is given in Appendix E.

11.3  LEAST-SQUARES ADJUSTMENT

The goal of adjustment is to choose the most likely co-ordinates for points 
whose positions are unknown, given the available readings. Once these co-
ordinates have been chosen, the calculated angles and distances between 
these points and the fixed points will not all be exactly the same as those 
which were observed; any difference between each calculated and observed 
value must be presumed to be the error in the reading. Assuming that these 
errors have a statistically normal distribution, it can be shown that the most 
likely co-ordinates for the unknown points are those which yield the smallest 
value when the squares of all the errors are added together. The process of 
finding these co-ordinates is therefore known as least-squares adjustment.

The exact process involved in least-squares adjustment* is best explained 
by reference to a simple example. Suppose we wish to find the most likely 
Easting and Northing co-ordinates of the unknown point C in Figure 11.3, 
and have used two known points, A and B to take three measurements: (1) 

*	 In fact, there are two distinct methods for carrying out least-squares adjustment; this one 
is called ‘variation of co-ordinates’.

A

Known point
Unknown point
Measured distance

B
C

Figure 11.3 � Sample problem for least-squares adjustment.
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the distance AC, (2) the distance BC, and (3) the angle BAC. Because of 
errors in these measurements, it will not in general* be possible to find any 
position for C which will exactly concur with all the data.

The process starts by taking a guessed position for C, and then seeing 
how this guess should be altered, in the hope of bringing the sum of the 
squares of the errors to a minimum. Taking the (known) co-ordinates of A 
and the (guessed) co-ordinates of C to be (AN,AE) and (CN,CE) respectively, 
we can calculate the distance and bearing from A to this position for C 
(Figure 11.4):

	 = − + −d C A C AAC N N E E( ) ( )2 2 	 11.1

	 α = −
−







− C A

C A
E E

N N

tan 1 	 11.2

This calculated distance will in general not be equal to the measured 
distance, labelled as m1 in Figure 11.4. We define the difference between 
the calculated value and the measured value† to be the current error for this 
reading, i.e.,

	 = −e d m1 AC 1 	 11.3

Now consider the two degrees of freedom we have for altering the position 
of C, denoted as x1 and x2 in Figure 11.4. In Figure 11.5, we can see that add-
ing the quantity x1 to C’s Easting will increase the calculated distance AC 

*	 It is always possible that the errors in a set of observations will cancel each other out, to 
give the impression that they do not exist at all. Adding further redundancy to a set of 
observations reduces the likelihood of this undesirable possibility.

†	 The actual distance measured must first be reduced to the ellipsoid (see Chapter 10), and 
must then be multiplied by the local grid scale factor before being used in this equation.

A

α

C

m1

e1
x1

x2
N

Figure 11.4 � Error in a distance measurement.
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by approximately (x1 sin α), provided x1 is small compared to dAC. Likewise 
in Figure 11.6, we can see that adding the quantity x2 to C’s Northing will 
increase AC by approximately (x2 cos α), again provided x2 is small.

We can therefore expand Equation 11.3 to include the effects of x1 and 
x2, as follows:

	 = + α + α −e d x x msin cos1 AC 1 2 1 	 11.4

Likewise, for the second measurement, we can write:

	 = + β + β −e d x x msin cos2 BC 1 2 2 	 11.5

where β is the calculated bearing from B to the current position of C, and 
m2 is the measured distance from B to C.

The third measurement is an angle, and so must be treated slightly 
differently. Looking at Figure  11.7, we can first write the equivalent of 
Equation 11.3:

	 = α − γ + π −e m( 2 )3 3 	 11.6

A

α

C

dAC

x1

x1 sin α

≈ dAC

≈ αN

Figure 11.5 � Change in distance when C moves east.

A

C 

dAC

x2
x2 cos α

≈ dAC ≈ α

N

α

Figure 11.6 � Change in distance when C moves north.
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where γ is the calculated bearing* from A to B, based on their (known) 
co-ordinates.

Now in Figure 11.8 we can see that adding x1 to C’s Easting will increase 
the calculated bearing from A to C by approximately

	
x

dAC

cos1 α

provided x1 is small compared to dAC, while Figure 11.9 shows that adding 
x2 to C’s Northing will reduce the calculated bearing by approximately

	
x

dAC

sin2 α
.

*	 If the distances are long, the bearings α and γ first need to be adjusted using the (t − T) cor-
rection, as described in Chapter 9, Section 9.5.2.

A

B
C

m3

e3

N

2π – γ

γ

α

Figure 11.7 � Error in an angle measurement.

A

C

dAC

dAC

x1

x1 cos α

x1 cos α

≈ α

α
≈ dAC

N

Figure 11.8 � Change in bearing when C moves east.
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We can therefore write the equivalent of Equation 11.4 for angular mea-
surements, namely:

	 = α + γ − π + α − α −e
x

d
x

d
m

AC AC

( 2 )
cos sin

3
1 2

3 	 11.7

Equations 11.4, 11.5 and 11.7 can now be written in matrix form, giving:
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
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
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α α
β β
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sin cos
sin cos

cos sin ( 2 )

1

2

3

1

2

1

2

3

	 11.8

or

	 e = A x − k	 11.9

which shows that the three-dimensional vector e is a linear function of the 
two-dimensional vector x (correct provided the elements in x are small), 
with A and k containing only constants. Clearly the goal is to set the ele-
ments in x so as to make the components in e as small as possible.

However, there is one further complication to be overcome first: whereas 
e1 and e2 are distances, e3 is an angle, so its value cannot be compared 
directly with the other two values. Even in the case of the two distance 
measurements, it may be that one measurement is known to be much more 
accurate than the other, so that, say, a 1 mm error in measurement 1 is as 
likely as a 10 mm error in measurement 2.

A

C

dAC

dAC

x2

x2 sin α

x2 sin α

≈ α

α

≈ dAC

N

Figure 11.9 � Change in bearing when C moves north.
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To overcome this problem, weighted errors are used in place of the actual 
errors, obtained by dividing each error by the estimated standard deviation 
(ESD) which might be expected in repeated observations of the same mea-
surement. We define a weighted vector v such that
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
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3

	 11.10

or

	 v = R e	 11.11

where R contains the reciprocal of the ESD for each reading along its diago-
nal. Substituting for e using Equation 11.9 gives:

	 v = R A x − R k	 11.12

and now the goal is to find the values for x which give the smallest result 
when the scalar elements of v are squared, and added together (i.e., the dot 
product of v with itself).

It is clear at this stage that Equation 11.12 can be used for problems 
involving more than three observations or two variables, as in our simple 
example. For bigger problems, v, R, A and k have a row for each measure-
ment, with the elements in A and k being calculated from the initial guessed 
geometry, as shown in the example. The remainder of this explanation will 
therefore assume that there are m measurements, and n variables—with m 
being larger than n, to reflect the redundancy in the system of measurements.

Consider now how the ith element in v is obtained from Equation 11.12. 
We can write:

	 vi = rii ai1 x1 + rii ai2 x2 + . . . + rii ain xn – rii ki	 11.13

where the first subscript refers to the row of the matrix, and the second to 
the column.

Now consider the partial differential of vi with respect to one of the vari-
ables, xj say. If all the other elements in x are held constant, this is:

	
∂
∂

=v
x

r ai

j
ii ij 	 11.14
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The partial differential of the square of vi with respect to xj is therefore:

	
v
x

i

j

( )2∂
∂

 = 2 vi 
v
x

i

j

∂
∂

 = 2 vi rii aij	 11.15

The partial differential of the sum of the squares of all the elements in v with 
respect to xj is equal to the sum of the individual partial differentials,* i.e.,
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 = 2(v1 r11 a1j + v2 r22 a2j + . . . + vm rmm amj)	 11.16

The sum of the squares of the elements in v can be thought of as a sca-
lar field, which is a function of the n-dimensional space defined by x. At 
the minimum,† the partial differential of this scalar field will be zero with 
respect to each variable in x; in other words, the expression on the right-
hand side of Equation 11.16 must be equal to zero for all values of j between 
1 and n. Expressing this requirement in matrix form gives:
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Noting that the left-most matrix is in fact the transpose of A, dividing 
both sides by 2, and using Equation 11.12 to substitute for v, we can there-
fore write:

	 AT R v = AT R R A x − AT R R k = 0	 11.18

or

	 AT W A x = AT W k	 11.19

where W = (R × R), and is called the weight matrix. This then gives a solu-
tion for x, namely:

*	 This is quite a difficult sentence to understand properly, but it is worth the effort!
†	 Another way of stating the (first-order) conditions for the minimum of a scalar field is that 

the grad vector should be zero, which is what Equation 11.17 expresses.
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	 x = (AT W A)–1 − 1 AT W k	 11.20

Provided the errors vary linearly with the elements in x, these adjust-
ments, when applied to the current positions of all the unknown points, 
will yield the lowest possible sum of the squares of the errors. In practice, 
of course, the variations in the errors are not exactly linear with respect to 
the adjustments, even when the adjustments are quite small, but provided 
they are reasonably linear, the new positions for the unknown points will 
be much closer to the optimum positions than the old ones. The next stage 
therefore is to adjust the positions of the unknown points as indicated, 
recompute the values in A and k, and re-apply Equation 11.20. This process 
is then repeated until the required adjustments become negligible, i.e., until 
x ≈ 0. Essentially this is a form of Newton’s method for finding the roots 
of an expression—and just as in Newton’s method, it is essential that the 
initial guesses for the unknown quantities are reasonably close to the cor-
rect values, for the method to converge.

11.4  ERROR ELLIPSES

An extremely useful by-product of the least-squares adjustment process is 
an indication of the likely accuracy to which the unknown points have been 
found, based on the geometry of the observations plus the apparent distri-
bution of errors at the end of the adjustment.

The first stage is to see whether the initial estimates for the standard devi-
ations on the readings appear to be valid, now that the residual weighted 
errors have been reduced to their smallest possible size. If they were valid, 
then the standard deviation of the values in the weighted error vector v 
should be close to unity.

Statistically, if m independent samples (v1 to vm) are drawn from a popu-
lation whose average value is already known, the standard deviation of the 
population can be estimated by the equation:

	 ∑σ = −
=m

v vv i
i

m1
( )2 2

1
	 11.21

where σv is the standard deviation, vi is one of the samples, and v is the 
known average.

In the case of the samples contained in the weighted error vector v, the 
average value is in fact known: v is assumed only to contain random errors, 
which must by definition have an average value of zero. The summation in 
Equation 11.21 can be evaluated for all the elements in v using Equation 
11.12—noting that x is now zero, we can write:
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	 vi
i

m
2

1
∑

=
 = v T v = (R k)T (R k) = kT RT R k = kT W k	 11.22

Note that the final step in this equation can be made because R is a 
diagonal matrix (i.e., R = RT), and W = R × R.

However, although the vector v does indeed contain m elements, they 
cannot be considered to be fully independent of each other, because the n 
variables contained in x have already been deliberately used to make

	 vi
i

m
2

1
∑

=

as small as possible. Instead of dividing by m, therefore, we should divide 
by (m − n) to give:*

	 v

Tk W kσ =
−m n

	 11.23

If the standard deviations in the initial readings were estimated correctly, 
then the RHS of Equation 11.23 (commonly known as the estimated stan-
dard deviation [ESD] scale factor) will evaluate to around unity, once the 
least-squares iteration has converged. If the factor is greater than unity, it 
indicates that the estimates appear to have been on the optimistic (i.e., small) 
side, given the residual values. A value less than unity suggests either that 
the estimates were generally on the pessimistic (i.e., large) side, or that the 
framework of observations is poorly conditioned (i.e., not stiff enough), 
allowing the standard deviation of the residuals to be brought artificially 
low. Note, however, that the ESD scale factor is only an overall measure 
of the estimates—even if the value is unity, it is possible that some ESDs 
were too large, and some too small. For each individual reading, though, 
the quoted ESD is known as the a priori estimate of its standard deviation, 
and its ESD multiplied by σv is known as the a posteriori estimate of its SD.

Assuming that the relative sizes of the ESDs are more or less correct, the 
best estimate for the actual standard deviation of the population in v is now 
given by σv, and the calculation can proceed to the next stage.

If two variables, x1 and x2, can both be expressed as linear functions of 
m further variables, we can write this in the form:

*	 A detailed justification of this is given in Wolf and Ghilani (1997). A rough-and-ready justi-
fication is to consider the case when m = n, i.e., the number of measurements is equal to the 
number of variables, and there is no redundancy. Then, the variables can be adjusted until 
v = 0, even if errors are present. Under these circumstances, we would expect the expres-
sion for σv

2 to yield an indeterminate result.
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2  or x = C v + d	 11.24

where v contains the m variables, and C and d contain constants and/or 
zeroes. Basic statistics defines the variance of a variable to be the square of 
its standard deviation, and tells us that if the standard deviation of the ith 
element in v is σvi, and all the variables in v are independent of one another, 
then the variance of x1 will be:

	 σx1
2 = c11

2 σv1
2 + c12

2 σv2
2 + . . . + c1m

2 σvm
2	 11.25

with x2 having a similar expression. In addition, we must take into account 
the fact that statistical variations in x2 as a result of variations in v will be 
partly coupled to variations in x1 (and vice versa), if both are functions of 
the same elements in v. This is expressed by means of a covariance between 
the two variables, which is defined by:

	 σx1x2
 = σx2x1

 = (c11 c21) σv1
2 + (c12 c22) σv2

2 + . . . + (c1m c2m) σvm
2	 11.26

Bearing in mind that the standard deviation of each variable in v has 
been estimated to be σv, we can thus set up a variance/covariance matrix 
for x1 and x2, as follows:
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or, in a more compact form,

	 σx = C CT σv
2	 11.28

In the context of least-squares adjustment, x is an n-dimensional vector of 
variables which we can express in terms of the variables in v by re-arrang-
ing Equation 11.12:

	 R A x = v − R k	 11.29
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whence

	 x = (R A)−1v − (R A)−1(R k)	 11.30

The second term on the RHS is constant, so by comparing Equation 11.24 
with Equation 11.30, we can see that C equates to (R A)−1 in the context of 
least-squares adjustment. We can thus rewrite Equation 11.28 in the form:

	 σx = (R A)−1 [(R A)−1]T σv
2	 11.31

Elementary matrix identities then allow us to write:

	 σx = A−1 R−1 [A−1 R−1]T σv
2	= A−1 R−1 (R−1) T (A−1)T σv

2

		  = A−1 R−1 (RT) −1 (AT)−1 σv
2

	           ∴σx = (AT RT R A)−1 σv
2 = (AT W A)−1 σv

2	 11.32

Since the term (AT W A)−1 has already been evaluated for the final adjust-
ments in x (Equation 11.20), the variance/covariance matrix for x is easy 
to compute.

The variance/covariance matrix given by Equation 11.32 contains the 
covariances between all the elements in x. Generally, we are only interested 
in the covariance between the Easting and Northing at one of the points 
which we are trying to fix, such as that shown in the example (Figure 11.3). 
A typical 2 × 2 matrix fragment for such a point (point i, say) could be 
written as:

	 σ =
σ σ

σ σ











i

i i i

i i i

EN
E

2
E N

N E N
2

	 11.33

One standard deviation in the east or north direction is given by σiE and 
σiN

 respectively. To find the size of one standard deviation in any other 
direction, we need some further statistics. If two quantities x1 and x2 are 
functions of two variables v1 and v2 which are not wholly independent of 
each other, then the variance of x1 is given by:
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where σv1
 v2

 is the covariance between v1 and v2; and the covariance between 
x1 and x2 is given by:
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On the EN plane in Figure 11.10, we can write the expression for a move-
ment in the U direction, which makes an angle θ with the E-axis, as:

	 δU = δE cos θ + δN sin θ	 11.36

whence

	
U
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U
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∂
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

 = θsin 	 11.37

Rewriting Equation 11.34 with U, E and N in place of x1, v1 and v2 gives 
us the variance in the U direction:

	 σU
2 = cos2 θ σE

2 + sin2 θ σN
2 + 2 sin θ cos θ σEN	 11.38

Equations 11.34 and 11.35 can likewise be used to express the variance in 
the V direction, and the covariance between the U and V directions. These 
results can be combined and expressed in the following compact form:
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Readers who are familiar with eigenvectors will now realise that there 
will be one orientation of the UV axes (i.e., one value of θ) for which σUV 
will be zero, with σU

2 larger than σV
2. At that orientation, U and V rep-

resent the principal directions of the variance/covariance matrix for the 
point, with the maximum possible variance occurring in the U direction 
and the minimum in the V direction. The sizes of these principal variances 
are of course the two eigenvalues of the (symmetric) σEN matrix, with the U 
and V directions being given by the corresponding (orthogonal) eigenvec-
tors. Alternatively, the sizes and directions of the principal variances can 
be obtained from a Mohr’s circle construction, similar to that used in 2-D 
stress calculations*—with variances in place of plane stress, and covari-
ances in place of shear stress.

One standard deviation in any particular direction is of course given by 
the root of the variance in that direction; and normally, an engineer would 
simply be concerned to ensure that the largest standard deviation (i.e., the 
root of the largest eigenvalue of σEN) was adequately small for the job in 
hand. If needed, though, the standard deviations in other directions can be 
found: either by using Equation 11.38, or via a Mohr’s circle, or more visu-
ally by means of the graphical construction shown in Figure 11.11. Here, 
an ellipse has been drawn on the UV axes, with semi-major and semi-
minor axes of σU and σV, respectively. This is the so-called error ellipse 
for the point. The size of one standard deviation in any direction is found 
by proceeding along a line in that direction until a perpendicular can be 

*	 Also used for curvature, as described in Chapter 8, Section 8.6.1.
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Figure 11.11 � Error ellipse and pedal curve.
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dropped which is tangential to the error ellipse. The resulting locus of 
points is known as the pedal curve of the error ellipse. As can be seen, 
the largest standard deviation is given by the major semi-axis of the error 
ellipse—but note the standard deviation in almost every other direction is 
very nearly as large as this.

11.5  LEAST-SQUARES ADJUSTMENT BY COMPUTER

The mathematical methods described in the preceding two sections are 
clearly more suited to computer programs than to hand calculation—
though it is worth remembering that the adjustment of the first-order con-
trol points in OSGB36 was done by hand, using 10-figure logarithm tables 
and mechanical adding machines to multiply the numbers!

Several programs are available for the least-squares adjustment of both 
conventional and GNSS surveying data; one such is LSQ, which was devel-
oped in the Cambridge University Engineering Department for student use, 
and is included with this book.

LSQ is essentially a ‘batch’ program which processes an input file of 
control points and observations, to produce a results file of residual errors 
and likely positions for the ‘adjustable’ points. The observations are all pro-
cessed in a grid system, as opposed to being converted to geodetic co-ordi-
nates for processing, and back to grid co-ordinates afterwards. This means 
that reduction to the ellipsoid, scale factors and (t – T) corrections must be 
applied to the measured distances and angles; LSQ takes all of these into 
account when calculating the exact observations that would result from the 
current positions of the adjustable points, which it then compares with the 
actual observations to find the residual errors.

Also, any adjustment program which accepts vertical angle observa-
tions must either make corrections for atmospheric and earth curvature 
effects itself or require that the observations are corrected before entry (see 
Chapter 12). LSQ takes zenith angle observations to be ‘raw’ input, and 
makes the appropriate corrections—while slope angles are taken to be cor-
rected values, which have been computed using the method explained in 
Chapter 12, Section 12.5.

As mentioned in Section 11.3, the adjustment method only converges 
reliably if the adjustable points are in approximately the correct positions 
at the start. Thus, the iteration in LSQ may fail if the initial guesses for 
adjustable co-ordinates are poor, or if some observations have large gross 
errors in them.

The format for the input data, and the facilities for finding errors in 
the data and maximising confidence in the results, are fully explained in 
the user manual, which forms the help system for the program. A sample 
adjustment using LSQ is given in Appendix E.
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11.6  INTERPRETING LEAST-SQUARES RESULTS

The results of any least-squares adjustment should be inspected carefully 
before they are accepted. In particular, the following points should be checked:

	 1.	Check that the standard deviation of the weighted residual errors (the 
ESD scale factor in LSQ parlance) is reasonably close to unity. If it 
is greater than about 1.5, it means you have either been excessively 
optimistic in your estimate of likely standard deviations for the read-
ings, or that there is at least one nonrandom error amongst the data. 
Try eliminating the observation which has the largest weighted error, 
and running the adjustment again. If everything works well this time 
(and there are still enough readings to provide redundancy), it means 
that there was almost certainly a gross error of some kind in that 
observation.

	 2.	If the ESD scale factor is less than about 0.7, then you may have been 
overly pessimistic in your estimates of the likely error present in each 
reading. Alternatively, it may be that there are not enough suitable 
readings to fix the unknown points with sufficient certainty: a large 
number of adjustable points which are only loosely tied into two or 
three distant known points may produce a network which appears 
adequately stiff but which is not, in fact, very well constrained. There 
is always a statistical possibility that the random errors have all come 
out close to zero. However, the probability that errors are present but 
are hidden because they appear to ‘cancel out’ will generally be greater.

	 3.	If the ESD scale factor is around unity, check that the distribution of 
the weighted errors is similar to what would be expected from a nor-
mal* distribution. Typically, two-thirds of the weighted errors should 
be less than unity, about one in 20 should be greater than 2, and 
virtually none greater than 3. If the distribution differs significantly 
from this profile, further investigation is called for.

	 4.	If the program has the facility, check that there is still redundancy 
in the remaining data—but note that it is possible to falsely simulate 
redundancy, e.g., by including some observations twice in the dataset.

	 5.	If the program has no redundancy check, then check that no weighted 
error is exactly zero. If one or more is, then it almost certainly means 
that there is no other measurement in the data to provide an indepen-
dent check of the quantity which it is measuring—in other words, 
there is no redundancy in that part of the scheme.

	 6.	Finally, check that the sizes of the error ellipses are acceptable. If 
an error ellipse has a large eccentricity (i.e., it is long and thin), it 
indicates that the point is well fixed in one direction but poorly fixed 

*	 In the statistical sense of the word.
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in another (see the example in Chapter 2, Section 2.3). Further (and 
different) observations will then be needed to improve matters and 
make the error ellipse more circular. Note that the shape of the error 
ellipses is principally determined by the geometry of the observation 
scheme, rather than by the accuracy of the measurements themselves. 
The shapes of the ellipses can in fact be found without taking a single 
measurement, provided the likely relative accuracies of angle and dis-
tance measurements are known. Thus, the best set of measurements 
to produce near-circular error ellipses can (and should) be determined 
at the planning stage; a highly eccentric ellipse in the results probably 
means that the planning was poorly done.

11.7  SUMMARY

Least-squares adjustment is a powerful tool for the surveyor, but needs to be 
used with care and skill to produce reliable results. A few final guidelines are:

	 1.	Make sure you have planned to take enough observations to fix each 
and every variable in the adjustment with some degree of redundancy—
simply having more observations than unknowns is not necessarily 
sufficient.

	 2.	If possible, use the adjustment package before any measurements have 
been taken, to ensure that the intended measurements will produce 
well-shaped (i.e., near-circular) error ellipses. Most least-squares pro-
grams have the ability to be used in this ‘planning’ mode; the details 
of how to do this will depend on the package used.

	 3.	Most least-squares programs will require initial guesses for the posi-
tions of the ‘unknown’ points. Make reasonably precise initial guesses 
for these, such that the initial calculated angles will not differ from 
the observed angles by more than about 20°. If this is not done, the 
iteration may not converge.

	 4.	Take care to check how the program interprets a ‘horizontal dis-
tance’—this might be a reduced distance, or a distance measured at 
some altitude above the ellipsoid. LSQ, for instance, assumes that any 
horizontal distance is at the altitude of the observing station, i.e., that 
it has been calculated as suggested by Equation 10.5. (To make accu-
rate use of such data, LSQ requires that the orthometric height of the 
observing station and the geoid-ellipsoid separation are both correct to 
within about 5 metres; see Chapter 10, Section 10.1 for further details.)

	 5.	Be careful when including slope distances in the input data. If the 
heights of the stations at each end of the ray are fixed, then the height 
difference must be sufficiently accurate to allow the program to ‘fit’ 
the reduced distance into the network without needing inappropriate 
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adjustments in the horizontal plane. If the height of one or both sta-
tions is adjustable, and not appropriately constrained in some other 
way, then this freedom will allow the program to accommodate small 
errors in the measured slope distance by making large changes in the 
height difference. This is particularly problematic when the slope dis-
tance is very nearly horizontal—under these conditions, the behav-
iour becomes analogous to buckling. One practical solution to this 
problem is always to combine a slope distance measurement with a 
slope angle measurement, as indicated in Figure 12.5.

	 6.	Be careful not to exclude any observation for no better reason than 
that it appears to disagree with your other observations. Being selec-
tive in this way can lead to a totally false indication of accuracy in the 
final result. It is, of course, perfectly acceptable to investigate such an 
observation further, to see whether there was some reason why it may 
not have been as accurate or reliable as the other observations. If you 
already have another measurement of the same observation which fits 
the other observations better, then it is probably safe to reject the prob-
lematic one; if you do not, it is good practice to go and measure it again.

	 7.	Sometimes, the quality of data for the ‘known’ points may not be 
as good as you have been led to expect, and this may result in some 
of your observations appearing to disagree with each other. If you 
suspect this to be the case, and you have enough readings, you may 
be able to identify possible errors in the known data by making the 
known points ‘stiff’ rather than ‘rigid’, and seeing whether the quality 
of the result suddenly improves. Again, further observations may be 
necessary to confirm this to an acceptable level of confidence.

	 8.	Be careful not to assign small ESDs to observations which do not war-
rant them. If they do not fit with other observations which have larger 
ESDs, then the adjustment process will load the residual error onto 
those other observations, because this is the ‘cheapest’ way to resolve 
the discrepancy in terms of weighted residual errors. This will give the 
impression that the readings with large ESDs (which may be perfectly 
good) are all at fault, and the reading with the low ESD (which may 
be poor) is correct.

	 9.	Check all results against the criteria listed in Section 11.6 before 
accepting them.
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Chapter 12

Trigonometric Heighting

12.1  INTRODUCTION

The height differences between control points are often explicitly required 
in engineering surveying work. Even when they are not, they must, for 
instance, be found before distance measurements can be used in accurate 
surveying work, as shown in Chapter 10.

The methods for measuring height differences covered earlier in this 
book are levelling (for short distances, or for maximum accuracy up to 
about 25 km), and GNSS for longer distances, or for shorter distances not 
requiring the accuracy available from levelling.

GNSS gives the absolute heights of stations to a more than adequate 
accuracy for the processing of distance measurements, but the relative 
heights may not be sufficiently accurate if the ray between the two stations 
has a steep slope (see Chapter 10, Section 10.4). Other issues which may 
influence the use of GNSS for height differences are:

	 1.	GNSS may not work near buildings, in excavations, or beneath tree 
canopies—and it certainly won’t work in tunnels.

	 2.	Height information from GNSS is inevitably less accurate than hori-
zontal positioning information. Differential GNSS can measure height 
differences to about 1 cm per kilometre of separation, but fairly long 
observation periods are required to achieve this.

	 3.	The conversion of GNSS height differences to differences in ortho-
metric height requires an accurate and reliable geoid model.*

	 4.	There is no fully independent check to ensure that results from GNSS 
observations are correct. Redundancy can be achieved by making 
additional GNSS observations, but all the results are subsequently 

*	 This is not a problem in the context of processing distances, as ellipsoidal heights are 
required for this purpose—but a transform may be required if an ellipsoid other than 
WGS84 is being used.
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processed in the same way. Any systematic errors (e.g., in the antenna 
offsets, the transformation parameters, or the geoid model) are likely 
to remain undetected.

Conventional surveying methods provide a solution to some of these 
problems, but conventional levelling over long distances or large height 
differences is extremely time-consuming. In addition, some height differ-
ences are simply unsuitable for measurement by levelling: the height of a 
tall building or a cliff face, for instance. One solution for such problems is 
trigonometric heighting, which finds height differences by observing along 
a line of sight which is not horizontal (as in levelling) but sloped.

12.2  METHODS FOR TRIGONOMETRIC HEIGHTING

In its simplest form, trigonometric heighting consists of sighting a total 
station at a distant target and letting the instrument use the distance and 
vertical angle to compute a height difference, using Equation 10.9 from 
Chapter 10 (or something similar). As discussed in Section 10.4, though, 
the resulting height difference may be in error by up to 10 cm per kilometre 
of separation, due to the difficulty of measuring the vertical angle reliably.

A solution to this difficulty is to measure the vertical angle from both 
stations simultaneously—as can be seen from Figure 12.1, the mean slope 
angle* of the light ray (σ) stays almost constant regardless of how much the 
light path bend as it travels through the atmosphere.† As will be shown later, 
the value of σ can be found quite easily from the two zenith angles zA and 
zB—so most of the atmospheric effects can be eliminated if these two angles 
are both known. The use of reciprocal vertical angles (or RVs), as such mea-
surements are called, can therefore enable the height difference between two 
stations to be calculated to a high degree of accuracy, with an observation 
time which is short by comparison with other available methods.

12.3 � PROCEDURE FOR RECIPROCAL 
VERTICAL MEASUREMENTS

To take RV measurements between two stations, total stations or theodo-
lites are set up over each station; and for maximum accuracy, targets are set 
up on auxiliary stations, a short distance from each instrument. The two 

*	 The slope angle of even a straight line changes along its length because of the curvature of 
the earth. The mean slope angle of a ray is defined as the slope angle at its midpoint.

†	 This assumes that the curvature of the light path is approximately constant, which is usu-
ally (but not always) the case.
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targets are set up such that the bearing from each instrument to its nearby 
target is perpendicular to the bearing between the two instruments. Both 
these offsets are also in the same direction, so that the two lines of sight 
between each instrument and its distant target cross each other, as shown 
in plan in Figure 12.2.

Each auxiliary station is set up by observing the distant main station 
approximately from the local main station (an accuracy of 1 minute is suf-
ficient), then swinging the instrument through 90° and setting the auxil-
iary station between 2 and 4 metres away* on the given line of sight. If the 
layout of the land near the two main stations means that the auxiliary sta-

*	 The distance should be small enough for the two lines of sight in Figure 11.1 to pass 
through the same body of air, and for the instrument-to-target distances to be very similar 
to the instrument-to-instrument distance. However, it needs to be large enough for the 
nearby instrument to be able to focus on the target, and to avoid the danger of the observer 
knocking into the target.
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Figure 12.1 � Slope angles for different light paths.
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Figure 12.2  �Equipment layout for reciprocal vertical angle observations.
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tions have to be on opposite bearings from their main stations, one of the 
targets is now put on the main station, with the instrument on the auxiliary 
station, so that the lines of sight between each instrument and its distant 
target still cross. The heights of both the instrument and target above their 
nearby main station are now found, at each end of the operation. This can 
be done by using the vertical circle to set the telescope horizontal, and then 
using the instrument as a level.

A scheme for recording the information needed to find the necessary 
heights is shown as part of the booking sheet for RV observations, in 
Appendix G, Figure G.7. Typically, the height of the instrument above the 
main station is first measured, using a tape measure. The tape is then held 
vertically against the target in some way, and two readings are taken: one 
at the level of the target’s centre, and one on the line of collimation from 
the instrument. The difference between the two readings gives the differ-
ence in height between the target and the instrument. It is very important 
to check explicitly whether the instrument is higher or lower than the tar-
get, as this will not be obvious when the readings and computations are 
checked back at base. On the form shown in Appendix G, this is done by 
filling in the ‘target higher’ or ‘target lower’ section, as appropriate. Two 
boxes are provided for each reading, so that height measurements can be 
taken both before and after the main observations. It is also good practice 
to use face 1 for the initial measurement and face 2 for the final one—when 
the two readings are averaged, this will cancel our any vertical circle error, 
as described in Chapter 4, Section 4.4. Given the small distance involved, 
though, this error is unlikely to result in a difference of more than 1 or 
2 millimetres—so if the difference is greater than this, there is probably 
another cause, e.g., the telescope was not set exactly horizontal for one of 
the readings, or the offset target has moved during the main observations.

If time is at a premium and visibility is good, then RV measurements 
can be speeded up by sighting each instrument onto the objective lens of 
the other instrument’s telescope, rather than using an offset target. This 
avoids the need to set up and measure the heights of the two offset sta-
tions—and any loss in accuracy is arguably outweighed by the reduced 
likelihood of making a mistake when processing the various instrument 
and target heights needed for the slope angle correction. The only value 
that then needs to be recorded on the booking sheet shown in Figure G.7 is 
the ‘Instrument height above main station’ for each instrument.

Simultaneous vertical angle observations are now taken by each total sta-
tion to the distant target. Greatest accuracy is achieved if all the readings 
are truly simultaneous, as the curvature of the light path can change quite 
quickly, especially during intermittent sunshine. This goal is best achieved 
by having an observer and booker at each station, with the bookers in 
radio contact. As the agreed time for the first observation approaches, 
each observer should ensure that his or her instrument is on face 1, and 
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that the sighting of the telescope is approximately correct. (If appropriate, 
the vernier setting should also be approximately correct, and the alidade 
bubble should be set exactly—this will reduce the time between the two 
readings, which can be advantageous.) At the end of a short count-down 
(e.g., ‘3 – 2 – 1 – go’) from one booker, each observer makes the final exact 
adjustment to the vertical tangent screw, and takes the first measurement. 
This is recorded by the booker, together with the number and time of the 
observation. Each instrument is then transited to face 2 as quickly as pos-
sible, and the telescope is again aimed at the target. When one station is 
ready to measure again, the booker transmits a message such as “Station 
B is ready for face 2” over the radio—and when the other station is also 
ready, the booker at that station immediately initiates a countdown for the 
face 2 measurement.

For best accuracy, this entire process should then be repeated four 
more times (typically at about 5-minute intervals) to obtain a total of five 
(face1 + face2) observations. For convenience, observations 2 and 4 can 
start on face 2, as this will be the configuration of the instrument after the 
previous observation—but for reasons explained below, it is important that 
both instruments always use the same face at the same time.

Each observation should be processed as soon as it has been made. The 
face 2 zenith reading is subtracted from 360°, and the corresponding face 1 
reading is then subtracted from this (see the booking sheet in Appendix G). 
The result should be in the range ±30 seconds—this seemingly large value 
is acceptable as it includes any collimation and vertical circle errors on the 
instrument, which exactly cancel out when the average of the two sightings 
is computed.* Under ideal conditions, this difference will remain constant 
for each observation, but in practice it will probably vary by up to 10 sec-
onds—either because of observation error, or because of a change in atmo-
spheric conditions between the face 1 and face 2 readings (e.g., if one was 
done in full sunlight and the other when the sun was behind a cloud.)

After five observations have been completed, one team should pass their 
five differences over to the team at the other station, who should subtract 
them from their own corresponding differences. If both instruments have 
always read the same face at the same time, the resulting five ‘differences 
of differences’ (final column in the booking sheet at Appendix G) will be 
less affected† by any atmospheric changes during the course of an observa-
tion—so any remaining variation in the values is more likely to be due to 
observer error.

*	 A higher value suggests that the instrument requires servicing, but should not affect the 
accuracy of the final result.

†	 If the light always travels along a circular path, the atmospheric effects will cancel exactly. 
The effects of a noncircular path are reduced by minimising the time between the two read-
ings of an observation.
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If the five values do not differ by more than about 5 seconds, then an 
acceptable result has probably been achieved. If the spread is greater than 
this, then further observations should be taken until there are five observa-
tions which meet this criterion.

When enough acceptable observations have been obtained, the heights of 
the instrument and target at each station are remeasured, using the same 
procedure as before (but with the instrument on the other face). A slope dis-
tance might then be measured as well, using a total station above one main 
station, and a reflector above the other. This measurement will be useful 
for converting the instrument-to-target vertical angles into station-to-sta-
tion values; but it will probably also be used to find the reduced distance 
or slope distance between the two stations, as described in Chapter 10, 
Sections 10.4 and 10.5.

12.4  SCHEME OF OBSERVATIONS

Reciprocal vertical angles can be taken between just two stations, as 
described above; the scheme of observations is designed to ensure that any 
gross error is unlikely to pass unnoticed. However, it is strongly recom-
mended that a ‘closed bay’ of observations is taken, e.g., between stations 
A and B, B and C, then C and A. The vertical closure of this bay will give 
a good indication of the accuracy of the observations: if the three stations 
form an approximately equilateral triangle, their relative heights from RV 
measurements can be compared with GNSS results to verify the quality of 
the transform parameters used for the latter.

More elaborate schemes of RV observations can also be devised, similar 
to the schemes for levelling shown in Chapter 6. In addition, RV results can 
be freely mixed with other levelling results, to provide a fully redundant 
scheme of vertical control.

12.5  CALCULATIONS

The first stage of the calculation is to find the amount by which the verti-
cal angles measured from each instrument must be altered to allow for 
the height of the instrument above the local station, and the height of the 
target above the remote station. This correction depends only on the dif-
ference between these heights; if the two heights were the same, no cor-
rection would need to be made. Note, however, that a different correction 
must be made for the two sets of observations: if offset targets have been 
used as described above, the height differences in the two observed rays 
will not be the same.
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As shown in Figure 12.3, the correction α which must be added onto 
each zenith angle measurement is given by the formula:

	 α = − − φ + αh h z
s

sin
( )sin( )2 1 	 12.1

However, because z is in the region of π/2, and α and ϕ are both very 
small, this formula simplifies to:

	
h h z

s
α = −( )sin2 1 	 12.2

where α is of course in radians. Note that s need not be especially accurate 
in this equation, since α is small: a simple instrument-to-target distance 
will be perfectly accurate enough, so the corrections described in Sections 
10.3 and 10.5 of Chapter 10 need not be applied at this stage.

Once the observed zenith angles have been corrected by this amount, the 
mean slope angle of the line between the two stations can be calculated. 
Figure 12.4 shows the geometry of the situation between the two stations 
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Figure 12.3 � Correction of measured vertical angles.
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(E and F), including the fact that the light path between the two stations is 
not a straight line but tends, in general, to curve above that line.

Looking at point F in the figure, we can see that

	 z2 + z1 – ϕ + 2β = π	 12.3

whence

	 z2 + z1 = π + ϕ – 2β	 12.4

Now looking at point G, we can write:

	 σ = π/2 – (z1 – ϕ/2 + β)	 12.5

which, on substituting from Equation 12.4, gives:

	 z zσ = −
2

2 1 	 12.6

A mean value of σ can therefore be found by taking an average of all the 
sets of readings, and it can be seen that the difference in heights between 
the two stations is given by:

	
( )

∆ = σ
φ

≈ σh
s

s
sin

cos 2
sin 	 12.7

This final approximation is justified, since ϕ is generally very small; if s is 
less than 20 km, then ϕ will be less than 3 × 10−3 radians, and cos(ϕ/2) will 
differ from unity by less than 1 part per million.
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Figure 12.4 � Derivation of mean slope angle and height difference.



Trigonometric Heighting  201

Equation 12.7 can be used to calculate the (H2 − H1) term needed in 
Equation 10.38. It is not necessary to use the station-to-station slope dis-
tance for this (and that probably won’t be available yet anyway, if Equation 
10.38 is being used)—the instrument-to-target distance will provide suf-
ficient accuracy for the calculation to proceed.

Note that the curvature of the earth and the curvature of the light path 
have cancelled out in Equation 12.6, as a result of measuring the zenith 
angle at both ends of the ray. It should be borne in mind that this only 
works if the curvature of the light path is constant, or nearly so; if the ray 
grazes the ground at any point, for instance, the accuracy of Equation 12.6 
may be considerably reduced.

Assuming that the light path does have constant curvature, however, we 
can use the value of β computed from Equation 12.4 to estimate a value for 
the refraction constant defined in Equation 10.23. Comparing Figures 10.5 
and 12.4, we can see that the angle labelled z1′ in Figure 10.5 is equal to 
(z1 − ϕ + 2β) in Figure 12.4. So by substituting for z1′ in Equation 10.20 and 
then using the approximation of Equation 10.1 for dR, we can write:

	 = − − φ + β ≈ φ − β
σR

z z
d sR

1 ( 2 ) 2
cos1

1 1 	 12.8

Now applying Equation 10.23 to the LHS and Equation 12.4 to the 
RHS, we can say:

	
R

z z
sE

− κ ≈ + − π
σ

1
(1 )

cos
2 1 	 12.9

which gives

	 R z z
s

Eκ ≈ − + − π
σ

1
( )

cos
2 1 	 12.10

The value for κ obtained from Equation 12.10 can be compared with the 
commonly-accepted value of 1/7 for visible light. If visible or infrared radia-
tion has been used to measure the slope distance between the two stations as 
part of the same exercise, then this calculated value of κ (which derives from 
the actual atmospheric conditions at the time of the measurement) should 
be used in Equation 10.26 for the precise adjustment of that slope distance.

Finally, when an accurate station-to-station slope distance has been com-
puted using Equation 10.38, Equation 12.7 can be used again to provide a 
fully accurate estimate of the height difference between the two stations. 
Height differences computed in this way should be used when evaluating 
the closure of the bays mentioned in Section 12.4.
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A worksheet for processing the results of reciprocal vertical angle obser-
vations is given in Appendix H; note that the formulae have been adapted 
to work with angles recorded in degrees, minutes and seconds, rather than 
in radians. Finally, the flowchart in Figure 12.5 shows how slope distance 
measurements and RV angle observations can be processed together, to 
provide suitable data for a least-squares adjustment.

Reciprocal vertical
angle observations

Measured slope distance
(instrument to target)

Reciprocal Vertical
Angle Calculations

(Section 12.5 / Fig. H.3)

Slope Distance Corrections
(Sections 10.3 & 10.5 / Fig. H.2)

Refraction
constant

Height di�erence
(to ~ 20 mm)

Mean slope angle
(station – station) Slope distance

(station to station)

∆h = s sin σ

Height di�erence
(to ~ 5 mm)

Calculation for
Reduced Distance

(Equations 10.29 & 10.30)

Reduced distance

Slope distance
(to ~ 100 mm)

Alternative inputs for
least-squares adjustment

Height of station 1
to < 5 m (e.g. map
contours or GNSS)

Only valid if distance is
measured using visible
or infra-red radiation

Figure 12.5 � Processing reciprocal vertical angles and slope distances.
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12.6 � ACCURACY OF RECIPROCAL VERTICAL ANGLES

Surveying exercises at Cambridge University have now accumulated ample 
empirical data to show that, using instruments capable of measuring verti-
cal angles to 1 second of accuracy, closed RV bays consisting of four con-
trol points and a total circuit length of around 5 km will reliably close to 
within 2 cm. This suggests an accuracy in the region of 4 mm per kilome-
tre of separation, or an accuracy in the slope angles of about 1 second—
i.e., the accuracy of the instruments used to make the observations. It is 
therefore possible that even higher accuracy could be achieved with better 
instruments, though the typical spread of results used in the lower half of 
the ‘Calculation for Reciprocal Vertical Angles’ form (Appendix H) sug-
gests that this is unlikely.

Even with this level of accuracy, though, RV observations fill a very 
useful gap in precise surveying. Chapter 10 has indicated that an accu-
racy of 5 mm per km is required for the precise computation of reduced 
distances when the slope angle is around 20°, and this is certainly within 
the capabilities of RV observations. Differential GNSS observations are 
just about able to achieve this accuracy on differential height measure-
ments (see Chapter 7, Section 7.3), but this would typically involve more 
expensive equipment and a longer observation time than is needed for the 
equivalent RV observations. Conventional levelling (especially precise lev-
elling) can certainly provide similar or greater accuracy, but is likely to be 
far more time consuming—especially when, for instance, the height dif-
ference is required between two points which are on either side of a deep 
valley. Thus, at least for slope angles of 15° or more, RV observations are 
probably the most economic method of measuring height differences to the 
required accuracy.
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Appendix A:  
Constants, Formulae, Ellipsoid 
and Projection Data

USEFUL CONSTANTS AND FORMULAE

Approximate mean earth radius: 6.371 × 106 m
Speed of light in vacuo: 299.792 458 × 106 ms–1

1 radian = 57.295 779 513°

Sin rule: a
A

b
B

c
C

= =
sin sin sin

Cosine rule: c2 = a2 + b2 − 2ab cos C

Common ellipsoids

Name
Semi-major axis, 
a (metres)

Reciprocal 
of flattening Uses

Airy 1830 6 377 563.396 299.3249646 British National Grid 
(OSGB36)

Bessel 1841 6 377 397.2 299.15 Central Europe, Chile, 
Indonesia

Clarke 1866 6 378 206.4 294.98 North America, Philippines
Clarke 1880 6 378 249.2 293.47 Africa, France
Everest 1830 6 377 276.3 300.80 India, Burma, Afghanistan, 

Thailand
GRS 80 (1980) 6 378 137.0 298.2572221 North America 

OSTN02/OSGM02
International 1924 
(Hayford 1909)

6 378 388.0 297.0 UTM

International 
Astronomical Union 
1968

6 378 160 298.25 Australia

Krasovsky 1940 6 378 245 298.3 Russia
WGS72 (1972) 6 378 135 298.26 Oil industry
WGS84 (1984) 6 378 137.0 298.2572236 WGS84, ETRS89, ITRS

B

C A
a

b

c
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Data for transverse Mercator projections

Name
Location  
of true origin

False co-ordinates  
of true origin Central scale factor

British National Grid 49º N, 2º W 400 000 E  –100 000 N 0.999 601 272
UTM Zone 1	 0º N, 177º W
UTM Zone 30	 0º N, 3º W
UTM Zone 60	 0º N, 177º E

500 000 E  0 N 
(northern hemisphere)

500 000 E  10 000 000 N 
(southern hemisphere)

0.999 600 000

Useful conformal transforms

From ITRF2008 ITRF2000 ETRS89
To ITRF2000 ETRS89 OSGB36*

tx (metres) −0.0019 + 0.0001 × (t − 2000.0) 0.054 −446.448
ty (metres) −0.0017 + 0.0001 × (t − 2000.0) 0.051 125.157
tz (metres) −0.0105 + 0.0018 × (t − 2000.0) −0.048 −542.060
s (1340 + 80 × (t − 2000.0)) × 10−12 0 20.4894 × 10−6

rx (seconds) 0 0.000081 × (t − 1989.0) −0.1502
ry (seconds) 0 0.000490 × (t − 1989.0) −0.2470
rz (seconds) 0 −0.000792 × (t − 1989.0) −0.8421

Note: t is the time at which the input data for the transform was valid, expressed in decimal years. 
Other symbols are as defined in Equation 8.26.
*	 Note that this is only an approximate transform between ETRS89 and OSGB36—the definitive 

(but nonconformal) transform is provided by OSTN02.

}
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Appendix B: Control Stations

WHAT IS A CONTROL STATION?

The essence of a control station is a small mark set immovably into the 
ground, such that an instrument (e.g., a total station or satellite receiver) or 
optical target can be set up above it, to an accuracy of about 1 mm in the 
horizontal plane.

WHERE ARE THEY PLACED?

Control stations are not usually placed in an exactly predetermined posi-
tion. The normal process is to choose a location where a control station 
would be useful, and to place the station somewhere in that locality. Having 
built the station, precise measurements are then taken to determine exactly 
where it has, in fact, been placed.

The factors which influence the positioning of a control station are as follows

	 1.	If it is to be used for setting out, mapping, or for deformation moni-
toring, then it should be placed where all relevant places and features 
can be easily seen, without the line of sight passing close to another 
object such as a building or hillside (a ‘grazing ray’). If the station is to 
be used in conjunction with other similar stations for these purposes 
(as is usually the case), then the different lines of sight from the sta-
tions should form a well-conditioned shape, so that the positions of 
the observed points will be found to the greatest possible accuracy.

	 2.	If the exact position of a new control station is to be fixed by conven-
tional means, then it must be visible from at least two other control 
stations (and preferably from more). Sometimes, additional control 
stations are introduced into a network simply because they will be 
visible to several ‘useful’ stations, and will therefore improve the 
accuracy to which the positions of those stations are known.
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	 3.	If the station is to be used for GNSS, then a large area of sky should 
be visible at the station (particularly towards the equator), and there 
should not be any high walls nearby which might reflect satellite sig-
nals towards the receiver.

	 4.	If an instrument is to be left unattended at a station (e.g., a motorised 
total station or a reference GNSS receiver), then the station must be in 
a secure place, such that the instrument cannot be stolen or disturbed 
while the surveyor is elsewhere.

	 5.	As far as possible, a station should be sited in a place where it will 
be easy and safe to use (away from noise, vibration, traffic, etc.) and 
unlikely to be disturbed or destroyed during its anticipated useful life. 
Stations sited near roads or on tarmac pathways are always at risk of 
being covered over and lost without trace. Stations in the middle of 
building sites are at risk of being dug up or run over by heavy con-
struction traffic. The latter may not destroy a station, but it could 
move it slightly—and thus cause all subsequent observations involv-
ing the station to be subtly inconsistent with those made beforehand.

WHAT DO CONTROL STATIONS LOOK LIKE?

The physical appearance of a control station depends mainly on the place 
where it is sited, and its anticipated useful lifespan. In open ground, a short-
term control station might be a 1 mm diameter hole or ‘centre-pop’ in a 
brass tack driven into a short (30 cm) wooden stake, which is then ham-
mered into the ground; on tarmac, it might be a centre mark on a stainless 
steel ‘road bolt’, which is likewise hammered into the ground. Such road 
bolts normally have a hemispherical head with a diameter of about 5 mm, 
on top of a fixed disk about 20 mm in diameter—this makes them suitable 
places on which to stand a levelling staff. They may also have a coloured 
plastic washer and/or a circle or triangle painted round them, for identifica-
tion purposes.

For a more permanent marker in open ground, a precast reinforced con-
crete block with a suitable marker on its surface might be set into the ground, 
so that only its top surface is visible. Alternatively, a hole can be dug with 
some ferrous reinforcing bars arranged inside it, and a quantity of concrete 
poured in, with a nonrusting marker fixed so as to emerge slightly above the 
surface of the concrete when it has set: a small solid brass doorknob, some 
threaded steel rod which it will screw onto, a hand drill (to make a centre-
pop), some ready-mix concrete for fence posts and a bucket of water is all 
that is required. This gives an extremely durable station at very modest cost, 
which has the added advantage that it can be covered over with a piece of 
turf or layer of soil, and thus escape the risk of being vandalised when not 
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in use. If the upper surface of the marker is spherical, then its highest point 
can also conveniently be taken to be the height of the station.

A control station on a construction site would normally be surrounded 
by a low rectangular ‘fence’, made of brightly-painted wood, to warn driv-
ers of its existence. This reduces the likelihood of the station being run over 
by a heavy vehicle; and a broken fence gives a helpful indication that this 
may have happened.

In Britain there are still many ‘trig pillars’ to be found on hilltops, which 
formed part of the conventional control network used until the advent of 
GNSS. Despite their robust appearance, these are intricately designed mon-
uments and act as a housing for the actual station marker, which is near 
ground level inside the pillar (the height marker is a separate benchmark on 
the side of the pillar). In addition, there is a secondary station marker in a 
buried chamber directly beneath the main marker, so that the station can 
be recovered if the main pillar is destroyed. Such pillars are highly durable, 
but nonetheless needed regular inspection to detect and repair the damage, 
both accidental and deliberate, which they sometimes suffer.

Some of these trig pillars are nonetheless still maintained, and form part 
of the newer network of GNSS stations around the UK. However most 
passive GNSS control stations are markers set in concrete slightly below 
ground level, as described above.

HOW CAN THEY BE FOUND?

As implied above, the less obtrusive a control station is, the less likely it is 
to suffer damage. Recently-constructed stations can therefore be virtually 
impossible to find, unless you know exactly where to look.

When a new station is constructed, an essential part of the process is 
therefore to draw a small sketch-map of the area, called a finding map, 
showing clearly where the station is in relation to other recognisable fea-
tures nearby. At least three measurements should be taken from the sta-
tion to definite ‘measurable’ reference points—such as a tree, the corner 
of a manhole cover, a nail driven into the top of a particular fencepost, or 
the perpendicular distance to the edge of a nearby road. These should be 
taken with a tape measure, correct at least to the nearest 5 centimetres; 
and should be arranged such that the station could still be found even if it 
is well buried, and one or more of the reference points have subsequently 
disappeared. It is helpful to show the approximate direction of magnetic 
north on the sketch, too.

To find a buried station, a surveyor should ideally be equipped with a 
paper copy of the finding map described above, the co-ordinates of the sta-
tion, a hand-held GNSS receiver, two 30-m tape measures, a metal detec-
tor, a ranging rod and a spade.
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The hand-held receiver and the station co-ordinates will narrow the 
search to about 10 metres, such that the features on the finding map are 
clearly recognisable. Measuring simultaneously from two of the reference 
points should then indicate where to dig, and the metal detector can be 
used in cases of doubt, assuming the concrete contains some ferrous metal 
(as recommended above). If it does not, the ranging rod can be used to stab 
into the ground until the surface of the concrete is detected.
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Appendix C: Worked Example 
in Transforming between Ellipsoids

This example shows how the geodetic co-ordinates of a station can be con-
verted from one system to another, following the method given in Chapter 8, 
Section 8.5. In this case, the initial co-ordinates are quoted in the ETRS89 
system, so are based on the WGS84 ellipsoid; and they are to be converted 
to the Airy ellipsoid, whose position and orientation was defined so as to 
conform closely with the British geoid. A transform between these two 
systems is published by the Ordnance Survey, and is given in Appendix A.

Note that 1 second of arc at the centre of the earth subtends about 31 
metres on the earth’s surface—so to preserve accuracy to 1 cm, latitude, 
longitude and rotation must be quoted to four decimal places of seconds.

Station: �Active GPS receiver at Ordnance Survey Headquarters, 
Southampton, UK

ETRS89 geodetic co-ordinates:	� ϕ = 50° 55′ 52.60562′′ N 
λ = 1° 27′ 1.85155′′ W 
h = 100.399 m

Data for WGS84 ellipsoid:	 a = 6378137.000
(from Appendix A)	 r = 298.2572236
From Equation 8.6:	 e2 = 6.694379989 × 10−3

From the data above:	 sin2 ϕ = 0.6027823555
Using Equation 8.12:	 rN = 6391044.780
From Equation 8.21:	 x = 4026741.601
From Equation 8.22:	� y = −101963.784  

λ is west of Greenwich, so sin (λ) is 
negative

From Equation 8.23:	 z = 4928807.847
Transform parameters:	 tx = −446.448
(from Appendix A)	 ty = 125.157
		  tz = −542.060
		  s = 20.4894 × 10–6

		  rx = −0.1502′′ = −728.2 × 10−9 radians
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		  ry = −0.2470′′ = −1197.5 × 10−9 radians
		  rz = −0.8421′′ = −4082.6 × 10−9 radians
From Equation 8.26:	 x′ = 4026371.340
		  y′ = −101853.567
		  z′ = 4928371.671
From Equation 8.27:	� λ′ = 1° 26′ 56.68889′′ W 

(since y′ is negative and x′ is positive)
Data for Airy ellipsoid:	 a′ = 6377563.396
  (from Appendix A)	 r′ = 299.3249646
From Equation 8.6:	 e′ 2 = 6.670540000 × 10−3

Using Equation 8.31:	 (1 – e′ 2) = 0.9933294600
		  x y′ + ′2 2  = 4027659.410
		  so ϕ′1 = 50° 55′ 50.60667′′ N
From Equation 8.32:	 r′N1 = 6390423.710
From Equation 8.34:	 ϕ′2 = 50° 55′ 50.60104′′ N
From Equation 8.32:	 r′N2 = 6390423.709
From Equation 8.34:	 ϕ′3 = 50° 55′ 50.60102′′ N
From Equation 8.32:	 r′N3 = 6390423.709
From Equation 8.34:	� ϕ′4 = 50° 55′ 50.60102′′ N 

This has now converged, so the current 
values of ϕ′ and r′N can be accepted.

From Equation 8.35:	 h′ = 53.245 m

Note that h′ is an ellipsoidal height; the orthometric height of the sta-
tion is about 0.5 m less than this, as shown for the Southampton area in 
Figure  8.2. As a check that the transformation has been applied in the 
correct direction, the original ellipsoidal height of 100.4 metres, minus the 
local geoid-ellipsoid separation of 47 metres shown in Figure 8.3, gives a 
reasonably similar orthometric height.
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Appendix D: Calculation of Local 
Scale Factors in Transverse 
Mercator Projections

D.1  QUICK CALCULATION

The ‘quick’ formula for calculating a scale factor is

	 S S
E E

RE

= + −
×









1

( )
2

0
0

2

2 	 D.1

where S0 is the central scale factor, E0 is the false Easting of the true origin, 
and RE is the mean radius of the earth.

This formula is accurate to 2 parts per million at all places within 200 
kilometres of the central meridian, and to 12 parts per million up to 500 
kilometres, at the latitude of the UK.

D.2  PRECISE CALCULATION

This calculation is a simplified (but no less accurate) adaptation of the for-
mulae given in Ordnance Survey (1950). As far as possible, the same symbols 
have been used here, to enable comparison between the two approaches.

The data needed to start the calculation are as follows:

•	 the semi-major axis (a) and some other property (semi-minor axis, 
reciprocal of flattening, or eccentricity) of the ellipsoid;

•	 the central scale factor (F0), and the false Easting of the true origin 
(E0); and

•	 the exact Easting (E) and approximate Northing (N) of P, the point 
where the local scale factor is to be calculated.
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	 1.	The first step is to calculate e2, the square of the eccentricity of the 
ellipsoid. If this is not directly available, it can be calculated from

	     = − = −
e

a b
a

e
r
r

or
2 12

2 2

2
2

2 	 D.2

		  where b is the semi-minor axis of the ellipsoid, and r is the reciprocal 
of flattening.

	 2.	Use E and N to estimate ϕ, the geodetic latitude of P. This needs to be 
estimated to the nearest 0.2° to achieve an accuracy of eight signifi-
cant figures—but even an error of 5° will only affect the final answer 
by less than 1 part per million.

		    (Strictly the value which should be used in the calculations below 
is ϕ′, the latitude of the point on the central meridian with the same 
Northing as P. However, the difference between ϕ and ϕ′ is never more 
than 0.1°, provided the difference in the longitudes of the two points 
is less than 4°—so the distinction has little practical significance.)

	 3.	Set

	     ν =
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η = − φ
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e
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	 4.	Set

	     X
E E

F
= −






 × + η

ν
10

0

2 2

2 	 D.4

	 5.	The local scale factor is then given by:

	     F F
X X= + + + η







1

2
(1 4 )
24

0

2 2

	 D.5

D.3  EXAMPLE

Local scale factor at Framingham, UK, on the British national grid:
Framingham is a first-order control point in the British national grid, 

towards the eastern edge of the projection. Its co-ordinates are quoted as 
626 238 249 E, 302 646 415 N. This example has been used because it is 
also used as an example in Ordnance Survey (1950).
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Precise calculation:
From Appendix A:

a = 6377563.396	 r = 299.3249646	 for the Airy ellipsoid
E0 = 400,000.0	 F0 = 0.999 601 272	 for the British national grid

	 1.	From D.2: e2 = 0.006 670 540
	 2.	ϕ ≈ 52.5º (to the nearest 0.1º, by estimation from an atlas). Note that 

the longitude, λ, of the point is about 1.3º E, i.e., about 3.3º east of 
the central meridian.

	 3.	From D.3: ν2 = 4.08448 × 1013  η2 = 2.48864 × 10−3

	 4.	From D.4: X = (5.12246 × 1010) × (2.45439 × 10−14) = 1.25725 × 10−3

	 5.	From D.5: F �= 0.999 601 27(1 + 0.000 628 62 + 0.000 000 07) 
= 1.000 229 7

Note that although just six significant figures have been shown in Steps 1 
to 4, this is quite sufficient to form a final answer which is correct to eight 
significant figures in Step 5. Note also that the final term in expression D.4 
need only be included if eight or more significant figures are required.

Quick calculation:
Applying the ‘quick’ formula to the same example gives:

	
S = × + −

× ×









 =0.99960127 1

(626238.249 400000)
2 (6.371 10 )

1.000 231 5
2

6 2

This differs from the ‘accurate’ value by just under 2 parts per million.
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Appendix E: Worked 
Examples in Adjustment

E.1  BOWDITCH ADJUSTMENT

This example shows how the Bowditch calculation sheet, introduced in 
Chapter 11, is used in a simple traverse to fix the positions of two unknown 
points (C and D, in Figure E.1).

The scheme of observations is as shown in Figure E.1, with stations A, 
B, E and F having known co-ordinates. Note that Figure E.1 is not a scale 
drawing but is sketched sufficiently accurately so that the bearings are cor-
rect to within 30° or so. It is helpful to make such a sketch before starting 
the calculations (and even before making the observations) to guard against 
gross errors.

The first stage in the calculation is to transfer the initial data (i.e., the 
Eastings and Northings of the known stations, in the British national grid) 
and the observations (i.e., the measured angles and distances) into the 
shaded boxes on the calculation sheet, as shown in Figure E.2.

The next step is to enter the differences in Eastings and Northings for 
point A relative to B (Ad–Bd on the calculation sheet) and for point F rela-
tive to E (Fd–Ed on the sheet). These are used to work out the bearings 

A

B

C

D

E

F

Figure E.1  Scheme of observations for a four-point traverse.
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from B to A and from E to F. In the case of BA, the calculation is straight-
forward, since A is to the north and east of B, as shown in Figure E.3. For 
EF the situation is more complex, and a simple sketch like the one shown 
in Figure E.3 is helpful to make sure that the correct angle is calculated.

Once these bearings have been entered on the sheet (BAd and EFd respec-
tively), the remaining angle boxes can be filled in. Starting at the top of the 
right-hand column, the bearing from B to C is calculated by simply adding 
the measured angle at B to the bearing from B to A. The bearing from C 
to B is then obtained by adding 180° to this value, since the bearing BC is 
itself less than 180°. The same process is then repeated to obtain the bearing 
CD, except that 360° is subtracted from the result to bring it into the range 
0–360°. The same thing occurs when bearing DE is calculated; and bearing 
ED is found by subtracting 180° from DE, since DE is greater than 180°. 
Finally, bearing EF is calculated, and the sheet is as shown in Figure E.4.

It can be seen that the two calculated bearings for ED (one based on obser-
vations and one based purely on data) differ by 7 seconds. This is reasonable 

KEY
d Data value
m Measured value

Input
gr Grid length
* Accepted value

Ad 545490.840
Bd 544777.449
Ad-Bd

C-Bd
C
-e/3
C*

D-C
D
-2e/3
D*

E-D
E
Ed 545070.428
e=E-Ed

257348.371

Fd 544988.927
Fd-Ed

257720.098

BCm 21.821
BCgr

CDm 86.298
BCgr

DEm 90.541
DEgr

257766.590
257343.916

BAd
ABCm 19 26  00
BC

CB
BCDm 206 54  12
CD

DC
CDEm 161 42  44
DE

ED
DEFm 80 13  58
EF
EFd

tan–1 (∆ E / ∆ N)

tan–1 (∆ E / ∆ N)

Compare

L sin(θ) || L cos(θ)

L sin(θ) || L cos(θ)

L sin(θ) || L cos(θ)

±180°

L

L

L

θ

θ

θ

±180°

±180°

Eastings Distances Angles
&

Bearings

Northings

° ' "

Figure E.2  Bowditch calculation, step 1: data and observations.
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B

A
713.391

422.674 371.727

–81.501
F

E
Bearing = tan–1 (713.391/422.674)

Bearing =360° – tan–1 (81.501/371.727)

Figure E.3  Calculation of bearings from grid co-ordinates.

KEY
d Data value
m Measured value

Input
gr Grid length
* Accepted value

Ad 545490.840
Bd 544777.449
Ad-Bd 713.391

C-Bd
C
-e/3
C*

D-C
D
-2e/3
D*

E-D
E
Ed 545070.428
e=E-Ed

257348.371

Fd 544988.927
Fd-Ed –81.501

257720.098
371.727

BCm 121.821
BCgr

CDm 86.298
BCgr

DEm 90.541
DEgr

257766.5900
257343.916

422.674
BAd 59 21  14
ABCm 19 26  00
BC 78 47  14

CB 258 47 14
BCDm 206 54  12
CD 105 41 26

DC 285 41 26
CDEm 161 42  44
DE 87 24 10

ED 267 24 10
DEFm 80 13  58
EF 347 38 08
EFd 347 38 01

tan–1 (∆ E / ∆ N)

tan–1 (∆ E / ∆ N)

Compare

L sin(θ) || L cos(θ)

L sin(θ) || L cos(θ)

L sin(θ) || L cos(θ)

±180°

L

L

L

θ

θ

θ

±180°

±180°

Eastings Distances Angles
&

Bearings

Northings

° ' "

Figure E.4  Bowditch calculation, step 2: calculation of bearings.
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assuming the error of each measured angle has a standard deviation of (say) 5 
seconds, the standard deviation of the sum of the four measurements would 
be ×5 4  seconds.

Having passed this test, the calculation moves on to the next stage. The 
measured horizontal distances (corrected for atmospheric effects) are first 
converted to reduced distances if necessary, using Equation 10.6; and then 
to grid distances (if appropriate) by applying the local grid scale factor.

In this case, the survey is taking place in Cambridge, where heights above 
sea level are negligible. A scale factor must, however, be calculated, since 
the British national grid is being used; in this case, the size of the traverse 
means that a single value can be calculated and used for all distance mea-
surements. The survey is less than 200 km from the central meridian, and 
an accuracy of 2 parts per million will be more than adequate, so Equation 
D.1 can be used.

A suitable mean Easting is 545000 metres, and E0 and S0 are given in 
Appendix A. Putting these into Equation D.1 gives:

	 S = × + −
× ×









 =0.999601 1

(545000 400000)
2 (6.381 10 )

0.999859
2

6 2

All the measured lengths (e.g., BCm on the calculation sheet) are multi-
plied by this value, to convert them into grid distances (e.g., BCgr).

The vector from B to C is then calculated from the bearing BC and the 
grid distance BC, and the Easting and Northing components are entered 
on the form (box C–Bd). These vector components are added to the co-
ordinates of B, to give an initial estimate of C’s position, which is entered 
in box C. This process is repeated for D and then E, after which the form 
is as shown in Figure E.5.

At this point, it can be seen that the calculated position for point E differs 
from its actual position by just a few millimetres in Easting and Northing, 
showing that no gross errors have occurred in either the observations or 
the calculation. The final stage is to make the best possible guesses for C 
and D by ‘distributing’ the error which has accumulated during the traverse 
from B to E. We have arrived slightly to the east and south of where we 
should be, so C and D should be moved to the west and north. This is done 
by subtracting portions of the final error from the initial estimates, to give 
final estimates for C and D as shown in Figure E.6.

E.2  LEAST-SQUARES ADJUSTMENT

The same adjustment can be done using a least-squares adjustment pro-
gram. In the case of LSQ, the data is entered as shown in Figure E.7.
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The input file follows the rules given in the LSQ help system. The first line 
is a title, and is followed by a line which specifies the projection (in this case, 
the British national grid), to enable the local scale factor(s) to be calculated.

The next group of lines describes the control stations. Stations A, B, E 
and F are entered with their known Eastings and Northings, which are 
each ‘fixed’ by the letter F which follows them. Stations C and D are given 
approximate co-ordinates, which are set to be adjustable by the letter A. 
The heights of all the stations are fixed, as this is a 2-D adjustment – a rea-
sonable height has been chosen for each station, so that LSQ will generate 
the correct reduced distances from the quoted horizontal distances.

The horizontal angle observations are entered next, in degrees, minutes 
and seconds; the final number is an estimate (in seconds) of the standard 
deviation of the error which might be expected in each observation. Two 
seconds is a typical value for an observation made under favourable condi-
tions using a good quality instrument.

KEY
d Data value
m  Measured value

  Input
gr  Grid length
*  Accepted value

Ad      545490.840 
Bd      544777.449 
Ad-Bd       713.391

C-Bd          119.478
C        544896.927
-e/3       
C*   

  23.685
257367.601

       
   

D-C             83.070
D       544979.997
-2e/3       
D*   

–23.335
257344.266

       
   

E-D             90.435
E       545070.432
Ed       545070.428
e=E-Ed   

4.102
257348.368
257348.371

   
Fd       544988.927
Fd-Ed        –81.501

257720.098
   371.727

BCm    121.821
BCgr   121.803

CDm     86.298
BCgr     86.285

DEm      90.541
DEgr     90.528

257766.5900
257343.916

  422.674
BAd           59 21  14
ABCm        19 26  00
BC            78 47  14

CB          258 47  14
BCDm     206 54  12
CD          105 41  26

DC          285 41  26
CDEm      161 42  44
DE             87 24  10

ED          267 24  10
DEFm         80 13  58
EF           347 38  08
EFd         347 38  01

tan–1 (∆ E / ∆ N)

tan–1 (∆ E / ∆ N)

Compare

L sin(θ) || L cos(θ)

L sin(θ) || L cos(θ)

L sin(θ) || L cos(θ)

±180°

L

L

L

θ

θ

θ

±180°

±180°

Eastings Distances Angles
&

Bearings

Northings

°    '    "

Figure E.5  Bowditch calculation, step 3: preliminary grid positions.
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KEY
d Data value
m Measured value

Input
gr Grid length
* Accepted value

Ad 545490.840
Bd 544777.449
Ad-Bd 713.391

C-Bd 119.478
C 544896.927
-e/3 –0.002
C* 544896.925

  23.685
257367.601

0.001
257367.602

D-C 83.070
D 544979.997
-2e/3 –0.003
D* 544979.994

–23.335
257344.266

0.002
257344.268

E-D 90.435
E 545070.432
Ed 545070.428
e=E-Ed 0.005

4.102
257348.368
257348.371

–0.003
Fd 544988.927
Fd-Ed –81.501

257720.098
   371.727

BCm 121.821
BCgr 121.803

CDm 86.298
BCgr 86.285

DEm 90.541
DEgr 90.528

257766.5900
257343.916

  422.674
BAd 59 21  14
ABCm 19 26  00
BC 78 47  14

CB 258 47  14
BCDm 206 54  12
CD 105 41  26

DC 285 41  26
CDEm 161 42  44
DE 87 24  10

ED 267 24  10
DEFm 80 13  58
EF 347 38  08
EFd 347 38  01

tan–1 (∆ E / ∆ N)

tan–1 (∆ E / ∆ N)

Compare

L sin(θ) || L cos(θ)

L sin(θ) || L cos(θ)

L sin(θ) || L cos(θ)

±180°

L

L

L

θ

θ

θ

±180°

±180°

Eastings Distances Angles
&

Bearings

Northings

° ' "

Figure E.6  Bowditch calculation, step 4: adjusted grid positions.

Four Point Traverse
Projection BNG

A 545490.840 F 257766.590 F 10 F
B 544777.449 F 257343.916 F 10 F
E 545070.428 F 257348.371 F 10 F
F 544988.927 F 257720.098 F 10 F
C 544800 A 257500 A 10 F
D 544900 A 257300 A 10 F

HA A B C 19 26 0 2
HA B C D 206 54 12 2
HA C D E 161 42 44 2
HA D E F 80 13 58 2

HD B C 121.821 .005
HD C D 86.298 .005
HD D E 90.541 .005

Figure E.7  Four-point traverse: input data for LSQ.
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The last group of lines records the measured horizontal distances, in 
metres; again, the final number is the estimated standard deviation (ESD) 
of the reading. Typically, most EDM devices have a standard deviation of 
±5 mm, even on short rays such as these.

Running LSQ produces the result shown in Figure E.8, after nine cycles 
of adjustment. It turns out that this number of cycles is necessary for the 
adjustment to converge, because of the relatively poor initial guess for the 
position of C.

The co-ordinates which LSQ has chosen for C and D are about 1 mm dif-
ferent from those found in the Bowditch adjustment above. These small dif-
ferences arise from the different relative weightings that LSQ is able to give 
to angle and distance measurements, and from the fact that the Bowditch 
method only uses the measured angle DEF as a check, and not as part of 
the adjustment.

ESD Scale Factor = 1.131 after 9 cycles

Biggest errors:
WDIFF 1.20 0.99 0.78 0.60 0.52 0.43
Obs ID 4 3 2 5 1 7
Status
Rejection limit: (None)

Four Point Traverse

* Program: LSQ V-8.80 Date: 15/05/2013 Time: 11:29:35 Cycles: 9
* Projection: BNG (British National Grid) Ellipsoid: Airy 1830
Projection BNG Airy 0

* Station co-ordinates (Adjustable co-ordinates updated) Error ellipses
* EASTING NORTHING HEIGHT MAJOR MINOR AZ HEIGHT

A 545490.8400 F 257766.5900 F 10.0000 F
B 544777.4490 F 257343.9160 F 10.0000 F
E 545070.4280 F 257348.3710 F 10.0000 F
F 544988.9270 F 257720.0980 F 10.0000 F
C 544896.9245 A 257367.6011 A 10.0000 F * 0.0041 0.0008 84
D 544979.9951 A 257344.2669 A 10.0000 F * 0.0045 0.0007 88

* Analysis of readings:
* REF INST OBS OBSERVED ESD HT-HI CALCULATED DIFF WDIFF ID
HA A B C 19 26 0.00 2.00 ¦ 19 25 58.97 1.0307 0.52 1
HA B C D 206 54 12.00 2.00 ¦ 206 54 10.44 1.5581 0.78 2
HA C D E 161 42 44.00 2.00 ¦ 161 42 42.02 1.9822 0.99 3
HA D E F 80 13 58.00 2.00 ¦ 80 13 55.60 2.4012 1.20 4
HD B C 121.8210 0.005 ¦ 121.8180 0.0030 0.60 5
HD C D 86.2980 0.005 ¦ 86.2978 0.0002 0.03 6
HD D E 90.5410 0.005 ¦ 90.5389 0.0021 0.43 7

Initial co-ordinates and shifts for adjustable co-ordinates:

STN OLD EASTING & SHIFT OLD NORTHING & SHIFT OLD HEIGHT & SHIFT

C 544800.0000 96.9245 257500.0000 ******** 10.0000 (n/a)

D 544900.0000 79.9951 257300.0000 44.2669 10.0000 (n/a)

Figure E.8  Four-point traverse: LSQ results.
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Usefully, LSQ is also able to show the likely accuracy to which C and D 
have been found, by means of the error ellipses shown on the printout. The 
major semi-axis of each ellipse is 4 mm, so there is a 95% confidence that 
C and D lie within 8 mm of their calculated positions (assuming, of course, 
that the positions of the other points are error-free).

The next block of results compares the readings which were observed 
with those which would result from the calculated positions of the adjust-
able points. The differences, or residual errors, are shown both in seconds 
or millimetres (as appropriate), and also as weighted differences using the 
ESD quoted for the reading.

Below this the ‘ESD scale factor’ is shown. This is the calculated stan-
dard deviation of the weighted residual errors, and so indicates whether the 
residual errors are generally bigger or smaller than might have been expected 
from the quoted ESDs. An ESD scale factor of 2 or more would indicate that 
either the quoted ESDs were optimistically small, or that there errors other 
than observation errors in the data. Here, the ESD scale factor looks fine.
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Appendix F: Worked 
Example in Setting Out

The purpose of conducting a traverse of the type described in Appendix E 
would typically be to establish additional local control points, in order to 
set out specified points for construction work

Suppose now that it is required to set out a foundation point X at the co-
ordinates (544850.000 E, 257200.000 N), to high accuracy. The accepted 
co-ordinates of the nearby stations can be taken from the LSQ results 
shown in Figure E.8, and summarised as

Point	 Easting	 Northing
	 A	 545490.840	 257766.590
	 B	 544777.449	 257343.916
	 C	 544896.925	 257367.601
	 D	 544979.995	 257344.267
	 E	 545070.428	 257348.371
	 F	 544988.927	 257720.098

From a simple sketch map (Figure F.1) it is clear that stations B, C and 
D would be suitable for setting out X. It is good practice to use a station 
as far away as possible as a reference object, so we will use station A as a 
reference for B and C. To avoid the possibility of a systematic error caused 
by a mistranscription of A’s co-ordinates, we will use station F as a refer-
ence for station D.

F.1  MANUAL CALCULATION

To calculate the angle which must be turned through at B, we need the 
bearings BA and BX. The first of these has already been calculated, as 
shown in Figures E.3 and E.4. The other is calculated in a similar manner, 
as shown in Figure F.2.
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The results can be summarised as:

Angle	 °	 '	 "
BX	 153	 14	 47
BA	 59	 21	 14
ABX = BA − BX	 93	 53	 33

The angles for stations C and D are calculated in the same way.
As a field check, it is useful also to know the distances to the new point. For 

point B, the grid distance is given by +143.916 72.5512 2  = 161.169 metres. 
To convert this into a horizontal distance on the ellipsoid, we must divide 
by the local scale factor (0.999859, as calculated by Equation D.1; this gives 

B

C

D

FA

X

Figure F.1  Sketch map for setting out point X.

B

X
72.551

143.916

Bearing = 180° – tan–1 (72.551/143.916)

Figure F.2  Calculation of bearing from B to X.
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161.192 metres. This can also be accepted as the horizontal distance without 
further calculation, as the ellipsoidal heights of all the points are small. Again, 
the distances from points C and D are calculated in the same way.

A sample booking sheet, prepared for setting out the angle from point B 
to point X using A as a reference object, is shown in Figure F.3. The blank 
areas in the form will be filled out in the field, as described in Chapter 4, 
Section 4.4.3.

F.2  CALCULATION USING LSQ

The above calculation can be done more quickly (and with fewer chances 
of mistakes) using LSQ. If the ‘Data: Update’ command is applied after the 
adjustment shown in Figure E.8, the ‘guessed’ co-ordinates for stations C 
and D in the input file are replaced with the calculated ones. The input file 
can then be manually edited in LSQ’s built-in editor, as follows:

	 1.	Set the co-ordinates of C and D to be ‘Fixed’.
	 2.	Add station X and its co-ordinates, also ‘Fixed’.

HORIZONTAL/VERTICAL OBSVNS AT: Station B GROUP: A2
Date: Instrument: Observer: JOB: 
Time: Ht of inst: Booker:    out
Weather: Checker:  
Temperature (°C): Pressure (mm Hg): 

PAGE

Face / 
swing

Stations and points Observed Angle
° ' "

Mean F1/F2
° ' "

Raw/Corrected HD/SD
(delete as necessary)

F1
SR Station A (R.O.) 

Station X 
R.O. (check)

00 00 00
93 53 33 161.169

360° - VA Target height
F2
SL

R.O. (check) 
Station X 
Station A (R.O.)

93 53 33
00 00 00

Figure F.3  Booking data for setting-out (digital instrument).
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	 3.	Remove all the original observations, and replace them with ‘dummy’ 
observations, representing the readings whose values we need to 
know, i.e. the horizontal angles ABX, ACX and FDX plus the hori-
zontal distances BX, CX and DX.

	 4.	Make an appropriate change to the title.

After these changes, the input file will look as shown in Figure F.4. Note 
that any value can be used as an ‘observed’ horizontal angle (zero has been 
used in this case) but that observed distances cannot be zero, so a nominal 
‘1’ has been used here. Likewise, the ESDs are dummy values, but must be 
positive to be legal.

Loading this file into LSQ and simply viewing the results (adjusting the 
data has no effect, so is unnecessary) gives the output shown in Figure F.5. 
The relevant information is the set of ‘CALCULATED’ values for each 
of the dummy observations, which shows what angles and distances LSQ 
would have expected from the given input data.

As can be seen, the angle ABX and the distance BX are the same as in 
the manual calculation above; and all the other angles and distances have 
been calculated as well.

Data for setting out X
Projection BNG

A 545490.8400 F 257766.5900 F 10.0000 F
B 544777.4490 F 257343.9160 F 10.0000 F
E 545070.4280 F 257348.3710 F 10.0000 F
F 544988.9270 F 257720.0980 F 10.0000 F
C 544896.9245 F 257367.6011 F 10.0000 F
D 544979.9951 F 257344.2669 F 10.0000 F
X 544850 F 257200 F 10 F

HA A B X 0 0 0 1
HA A C X 0 0 0 1
HA F D X 0 0 0 1

HD B X 1 1
HD C X 1 1
HD D X 1 1

Figure F.4  LSQ input data after editing for setting-out.
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ESD Scale Factor = 555971.279 after 0 cycles

Biggest errors:
WDIFF 502322.23 501625.05 338012.90 193.22 173.07 160.19
Obs ID 2 3 1 6 5 4
Status
Rejection limit: (None)

Data for setting out X

* Program: LSQ V-8.80 Date: 15/05/2013  Time: 11:40:54 Cycles: 0
* Projection: BNG (British National Grid) Ellipsoid: Airy 1830
Projection BNG Airy 0

* Station co-ordinates (Adjustable co-ordinates updated) Error ellipses
* EASTING NORTHING HEIGHT MAJOR MINOR AZ HEIGHT

A
B
E
F
C
D
X

545490.8400 F
544777.4490 F
545070.4280 F
544988.9270 F
544896.9245 F
544979.9951 F
544850.0000 F

257766.5900 F
257343.9160 F
257348.3710 F
257720.0980 F
257367.6011 F
257344.2669 F
257200.0000 F

10.0000 F
10.0000 F
10.0000 F
10.0000 F
10.0000 F
10.0000 F
10.0000 F

* Analysis of readings:
* REF INST OBS OBSERVED ESD HT-HI CALCULATED DIFF WDIFF ID
HA A B X 0 0 0.00 1.00 ¦ 93 53 32.90 ******** ****** 1
HA A C X 0 0 0.00 1.00 ¦ 139 32 2.23 ******** ****** 2
HA F D X 0 0 0.00 1.00 ¦ 220 39 34.95 ******** ****** 3
HD B X 1.0000 1.000 ¦ 161.1921 ******** 160.19 4
HD C X 1.0000 1.000 ¦ 174.0709 ******** 173.07 5
HD D X 1.0000 1.000 ¦ 194.2226 ******** 193.22 6

Figure F.5  LSQ results for setting out.
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Appendix G: Booking Sheets

These sheets were developed for use at Cambridge University, and may be 
freely copied.

HORIZONTAL/VERTICAL OBSVNS AT: GROUP:
Date: Instrument: Observer: JOB: 
Time: Ht of inst: Booker:    
Weather: Checker:  

PAGE

Face/
swing

Stations and 
points

Observed Angle
° ' "

Mean F1/F2
° ' "

Raw/Corrected HD/SD
(delete as necessary)

Target Height360° - VA

Temperature (°C): Pressure (mm Hg):

Figure G.1  Booking sheet for total stations.
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HORIZONTAL/VERTICAL OBSVNS AT: GROUP:
Date: Instrument: Observer: JOB: 
Time: Ht of inst: Booker:    
Weather: Checker:  

PAGE

Circle / 
swing

Stations and 
points

Observed Angle
° ' "

Reduced Angle
° ' "

Mean CL/CR
° ' "

HD / SD / Target Height

Figure G.2  Booking sheet for theodolites.

LEVELLING From: To: GROUP: 
Instrument:  Observer: JOB: 
Date:  Booker:
Weather:  Checker:  

PAGE

Distance to 
Foresight

Foresight Reduced 
Level

Distance to 
Backsight

Backsight Line of 
Collimation

Figure G.3  Booking sheet for levels.
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PRECISE DIGITAL LEVELLING OBSERVATIONS

From: To: Date:
Instrument: Staves: Weather:
Observer: Booker: Sta	holder:

St 1 → St 2 Backsight Foresight Distance (m)
Ht 1    Temp (m) (m) Back Fore Rise Fall

•

•

•

•

Totals Totals

Σ’s Σ’s
Level of m x ½
Level of m

Notes: Minimise delay between backsight and foresight observations. Keep running totals 
of distances nearly equal. With 2 staves, each bay of the line must have an even number of 
instrument positions. Mark one of the staves and always read it �rst.•

Order of reading and booking:

1
6

3
5 2 4 (1)-(3)

(6)-(5)
Sum Sum Cum Tot Cum Tot Mean

9
11

7
12 10 8 (7)-(9)

(12)-(11)
Sum Sum Cum Tot Cum Tot Mean

Figure G.4  Booking sheet for precise digital levelling.
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GNSS OBSERVATIONS

Date: Type of observation: Card name:
Observer: Antenna type/Serial no:

Station 
name

Antenna
Mount 
A to E 
see

Start Interval Finish
CommentTime Height 

see 
(secs) Time Height

Type Name Record height (above, in metres) to: 

A AT502 Beacon top of silver mounting post 0.010
B AT502 Carrier lower shoulder of carrier 0.110
C AT502 Pillar threaded silver base of antenna 0.000
D AT502 Pole default height is 2.000m 

(includes grey adapter)
0.000

E AT502 Tripod white line on height hook 0.360

Figure G.5  Booking sheet for GNSS observations.
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No. Time
Zenith Angles 360-②

③
° ' "

③-①
④
"

Mean of
① & ③

° ' "
④-④'CL/F1 ①

° ' "
CR/F2 ②

° ' "

RECIPROCAL VERTICAL ANGLE OBSERVATIONS

At (station): To (station):

On (Main/Aux): To (Main/Aux):

Instrument: Observer:

Date: Booker:

Weather: Checker:

Figure G.6  Booking sheet for reciprocal vertical angles (main observations).
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HEIGHT INFORMATION

If the centre of the target is higher than the trunnion axis of the instrument, complete Section 1, 
otherwise complete Section 2. To reduce error the horizontal line of sight shown in the diagrams 
should be set using face 1 (90˚) before the observations are made and face 2 (270˚) afterwards.

Before 
m

After 
m

Mean 
m

A. Tape reading: instrument cross-hair

B. Tape reading: centre of target
C. Height of target centre above trunnion 
axis of instrument. Calculate: |A – B|
D. Instrument height above main station 
Measure if instrument is directly over main 
station, otherwise calculate: E – C
E. Target height above main station 
Measure if target is directly over main station, 
otherwise calculate: D + C

Before 
m

After 
m

Mean 
m

A. Tape reading: instrument cross-hair

B. Tape reading: centre of target
C. Height of trunnion axis of instrument 
above target centre. Calculate: |A – B|
D. Instrument height above main station 
Measure if instrument is directly over main 
station, otherwise calculate: E + C
E. Target height above main station 
Measure if target is directly over main station, 
otherwise calculate: D – C

STATION LAYOUT (OFFSET STATIONS)

Complete the plan view below by ticking the boxes to show the positions of the main stations, 
auxiliary stations, instruments and targets.

Remote station: 

Main
or
Auxiliary

Instrument
or
Target

Main
or
Auxiliary

Instrument
or
Target

Main
or
Auxiliary

Instrument
or
Target

Main
or
Auxiliary

Instrument
or
Target

Horizontal

Likely tape zero Tape reading: target
Tape reading: instrument

1 TARGET HIGHER

Horizontal

Likely tape zero Tape reading: target
Tape reading: instrument

2 TARGET LOWER

Figure G.7  Booking sheet for reciprocal vertical angles (station heights and layout).
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Appendix H: Calculation Sheets

These sheets were developed for use at Cambridge University and may be 
freely copied.
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gr  Grid value
*    Accepted value
       Input

Calculations for Four-Point Traverse

  Area: ____________________________    Prepared by:  ________________________________
  Scale Factor: ______________________   Checked by:   ________________________________

BAd

BC

CB

CD

CD

DE

ED

EF

Ad
Bd
Ad-Bd

C-Bd
C
-e/3
C*

BCm
BCgr

D-C
D
-2e/3
D*

E-D
E
Ed
e = E-Ed

CDm
BCgr

DEm
DEgr

Fd
Fd-Ed

KEY
d   Data
m  Measured value

EFd

E N Distances

tan–1 (∆E/∆N)

tan–1 (∆E/∆N)

L sin (θ) || L cos (θ)

L sin (θ) || L cos (θ)

L sin (θ) || L cos (θ)

Compare

°      '      "

Angles
&

Bearings

±180°

±180°

±180°

ABCm

BCDm

CDEm

DEFm

Figure H.1  Calculation sheet for Bowditch adjustment.
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Summary Sheet for Slope Distance Measurements
Observing Station: ___________________________________

Ellipsoidal height (H1, metres):  _____________ Instrument:  _____________________________

Prepared by:  _________________________ Checked by:  _________________________________

Name of observed (target) station 2
Date of observation
Time of observation
Uncorrected observed distance D0 m
Zero Correction (see table below) C0 m
D0 + C0 D1 m
Mean temperature along light path T °C
Mean pressure along light path P mm Hg

Atmospheric correction (Formula A) C1 ppm
D1 × (1 + (C1 × 10–6)) D2 m
Refraction const. (visible light, if measured) κ
Propagation correction (Formula B) C2 m
Relative altitude of station 2 (nearest cm) H2–H1 m
Instrument ht above station 1 (nearest mm) h1 m
Target height above station 2 (nearest mm) h2 m
Height correction (Formula C) C3 m
Accepted Slope Distance (D2 + C2 + C3) m

Instrument Wave-
length C0 Formula A (ppm) Accuracy

AGA 14A infra-red 0 275 – (106P / (273 + T)) 10mm + 3ppm
AGA 120 infra-red 0 275 – (106P / (273 + T)) 5mm + 7ppm
TC-403L infra-red 0 282 – (105.5P / (273 + T)) 3mm + 3ppm
TC-405L infra-red 0 282 – (105.5P / (273 + T)) 2mm + 2ppm

Formula B: C2 =

Formula C: C3 =–

 × (2κ – κ2)D2
3 1

24RE
2

D2 2RE
+

(H2 – H1) × (h2 – h1) D2 × (h2 – h1)

with κ as above or

and RE = Earth’s radius = 6.371 × 106 m
7

1for infra-red, for microwaves
4

Notes:
1. “nearest cm” or similar indicates the accuracy typically required for 1ppm accuracy in this
      calculation, not how a more accurate figure should be rounded.
2. 2RE in formula C should be replaced by 2(RE + H1) if the ellipsoidal height of the observing
     station is greater than ~5000 metres

Figure H.2  Calculation sheet for slope distance measurements.
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Calculations for Reciprocal Vertical Angles

Prepared by:_____________________________ Checked by:________________________________

 Observing from station 1 Observing from station 2

Name of observing station
Name of observed station
Observing from (main/aux)
Observing to (main/aux)
Height of instrument above
observing station               m

Height of target above
observed station                m

Height difference [ – ]  m

Approx. observed zenith
angle (nearest minute)      
Slope distance (nearest cm)
(Use D2 from distance
sheet)                                (sd)

m

Correction to be added * "

* Correction (in seconds) is: 180 × 3600 ×  × sin( )/(sd × π)

Zenith Angles Excess
+ –180°

°         '        "

Difference
–

°         '        "

At station 1 At station 2
Observed
°       '       "

Corrected 
°         '        "

Observed
°       '      "

Corrected 
°         '        "

Mean Excess in seconds (xs):______________

Calculated refraction constant (κ)

= 1 – :_____________
RE × xs × π

sd cos(SA) × 180 × 3600
 where RE = Earth’s radius ≈ 6.371 × 106 m
(Compare with standard refraction constant
for visible light, κ = 1/7 ≈ 0.1429)

Mean Difference (MD)

Slope Angle (SA)MD
2

Approx. height of station 2
above station 1 (to 1 cm)
[sd × sin(SA)] (H2 – H1)

Exact ∆h (using fully
corrected slope distance)

Note: “nearest minute” (or similar) is an indication of the minimum accuracy required, not an
indication of how a more accurate value should be rounded.

Figure H.3  Calculation sheet for reciprocal vertical angles.
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Glossary

This section contains brief descriptions of terms which may be unfamiliar to 
the reader. See the index for a fuller discussion of each term in the main text.

Alidade bubble  The bubble (usually a split bubble) used to set the verti-
cal circle, usually so that the zero degree marker is pointing directly 
upwards.

Azimuth angle  The angle measured clockwise at a point on the earth’s 
surface from the direction of true north (i.e. along a meridian through 
the point) to another horizontal line passing through the point.

Backlash  The looseness or ‘play’ in a mechanism which means that not 
all parts of the mechanism are always in the same place when one part 
of it is moved to a particular position. This can, for instance, affect the 
angle read from some types of theodolites for a given sighting, depend-
ing upon whether the final adjustments to the telescope and vernier 
were made in a clockwise or anticlockwise direction.

Backsight  The sighting from a level to a staff positioned on a point whose 
height is known. The level’s line of collimation can then be calculated. 
See Foresight.

Bay  A sequence of levelling backsights and foresights which either closes 
on itself, or which runs from one point of known height to another. 
The ‘closure’ of the bay is an indication of the accuracy of the readings 
within it.

Bearing  See Azimuth angle.
Bubble error  The maladjustment of a spirit bubble such that a piece of 

equipment is not exactly horizontal (or vertical) when the bubble indi-
cates that it is.

Change point  The point occupied by a levelling staff when the instrument 
is moved, to level the next part of the bay.

Circle  One of the two protractors in a total station or theodolite, on 
which horizontal or vertical angles are measured.

Clinometer  A simple optical device incorporating a pendulum (or spirit 
level) and protractor, for estimating vertical angles.
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Closure  A check on the consistency of a set of observations, e.g.,: (1) 
Re-observing a reference object after taking a set of horizontal angles. 
A reading which differs from the original reading by more than the 
accuracy of the instrument makes the other readings suspect. (2) Seeing 
whether the height of an object given by a set of levelling measurements 
corresponds with its known height.

Collimation, line of  The line of sight between the centre of the crosshairs 
in the eyepiece of a telescope and the distant object they appear to 
intersect, once parallax has been removed. In levelling, the height of 
that (horizontal) line.

Cup bubble  A circular ‘spirit level’ bubble, used for setting a tribrach or 
instrument approximately horizontal.

Detail pole  An extendable pole about 1–2 metres in length, equipped with 
a reflector, used for collecting detail for mapping. Colloquially known 
as a ‘pogo’.

DGNSS  See Differential GNSS, below.
Differential GNSS  The simultaneous reception of satellite signals by two 

receivers, one of which is a known position. The position of the other 
receiver can then be calculated to high accuracy.

EDM  Electromagnetic distance measurement. Measurement of distance 
by counting the number of cycles (between a transmitter/receiver and 
reflector) of an electromagnetic wave whose wavelength is known; or 
by measuring the time taken for a laser pulse to be reflected back from 
a distant object.

Ephemeris  The orbital parameters of a satellite, which are used to deter-
mine its position in space at a given point in time.

EGNOS  The European Geostationary Navigation Overlay System, which 
enhances accuracy of the GPS system over Europe.

Epoch  An instant in time, e.g. 00:00 hours on January 1, 1989.
Error ellipse  An indication of the accuracy to which a point’s position is 

known, following least-squares adjustment.
Face  An alternative name for the vertical circle on a total station or 

theodolite.
Foresight  The sighting from a level (whose line of collimation is known) 

to a staff positioned on a point whose height is required. See Backsight.
GDOP  Geometric Dilution Of Position. The ration between the accuracy 

with which a GNSS receiver can determine its location and the accuracy 
with which it can measure its distance from the satellites it is observing. 
Its value is affected by the positions of the observed satellites in the sky, 
and their estimated clock errors.

Geodesic  The shortest path over the surface of an ellipsoid between two 
points on that surface.

Geoid  The irregularly-shaped surface defined by the locus of all points 
around the earth with the same gravitational potential as some given 
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datum; in the British Isles, the datum is a marker near the mean sea 
level at Newlyn, in Cornwall.

Geodetic  The co-ordinate system which defines the position of a point 
by quoting its latitude, longitude and distance above the surface of an 
ellipsoid.

Geomatics  A term sometimes used to describe the type of surveying cov-
ered by this book, emphasising the elements of geodesy and informatics 
used within the discipline.

GIS  Geographic Information System. Any system for organising geographic 
data to inform decision-making. This includes, but is not limited to, the 
spatial data which is collected to help plan engineering works.

GLONASS  Globalnaya NAvigatsionnaya Sputnikovaya Sistema (or 
Global Navigational Satellite System): the network of navigational sat-
ellites managed by the Russian Aerospace Defence Forces, which works 
in a similar way to GPS (see below).

GNSS  Global Navigational Satellite System: A collective term for all the 
available navigational satellite systems, such as GPS (see below) and 
GLONASS (see above).

GPS  Global Positioning System: the network of satellites managed by the 
USA, which enables the position of a station to be determined by mea-
suring its distance from four or more of them.

HDOP  Horizontal Dilution Of Positions. The horizontal elements of 
PDOP (see below), used to estimate the accuracy with which a GNSS 
receiver can measure its position in the horizontal plane.

Homogeneous  In the context of surveying, this means ‘only containing 
the mathematically predictable distortions inherent in the system of 
projection’.

Horizontal circle  See Circle.
Level  A telescope designed to have a horizontal line of collimation, used 

for comparing the heights of two stations.
Meridian  A line of constant longitude on the earth’s surface; the line pro-

duced when the earth is cut by a planar surface which contains the 
polar axis.

Navigational GNSS  The use of GNSS data to calculate the position of a 
single receiver, without reference to any other receivers.

Orthometric height  A height measured from the local geoid.
Parallax  The spatial separation between, for instance, the image of a dis-

tant object and the crosshairs in an instrument, which causes the two 
to appear to move relative to each other depending on the position of 
the observer’s eye.

Parallel  A line of constant latitude on the earth’s surface; the line produced 
when a planar cut is made through the earth normal to the polar axis.

PDOP  Positional Dilution Of Position. Similar to GDOP (see above) but 
based soley on the positions of the satellites. Typically quoted in place of 



246  Glossary

GDOP when insufficient satellites are visible for their clock errors to be 
estimated.

Photogrammetry  A technique for determining the relative three-dimen-
sional positions of points by taking photographs of the points from two 
different places. Two overlapping photographs taken from an aeroplane 
or satellite can be used to create topographic maps by this technique.

Plate  An alternative term for the horizontal circle on a total station or 
theodolite.

Plate bubble  A levelling bubble, usually tubular, built into a total station 
or theodolite to set its plate (i.e. horizontal circle) level.

Prime vertical  The plane passing through a point on the ellipsoid which 
contains the surface normal and the east–west vector passing through 
the point. It can also be defined as the plane which is perpendicular to 
the tangent plane and the plane of the meridian at the point.

Ranging rod  A striped pole, pointed at one end, used for checking lines of 
sight. The stripes are usually a decimetre wide, enabling the rod to be 
used as a crude ‘ruler’.

Real-time kinematic  A method of differential GNSS survey in which the 
two receivers are in radio contact with each other, and can thus calcu-
late the exact difference in their positions in real time.

Redundancy  The principle of taking more measurements than are strictly 
required to fix the positions of unknown points, so that any errors in 
the measurement data become apparent. This is analogous to a ‘redun-
dant’ structure, which has more bracing than necessary to prevent it 
falling down.

Reciprocal vertical  A method of observing vertical angles simultaneously 
from both ends of a ray, to cancel out atmospheric effects.

Reference object  A station observed at the start and end of a set of hori-
zontal angle observations, whose reading on the horizontal circle is 
used as a datum for the other readings. The co-ordinates of the refer-
ence object need not necessarily be known at the time of observation—
it is more important that the observation should be one which it is easy 
to take consistently.

Resectioning  Establishing the position of a station by mounting an instru-
ment over it, and measuring angles and distances to other known stations.

RINEX  Receiver-INdependent EXchange. A format used to transfer 
GNSS data between receivers and post-processing software.

Round  A complete set of horizontal angles, measured circle left and circle 
right, of one or more stations, with respect to a reference object.

RTK  See Real-time kinematic.
RV  See Reciprocal vertical.
Scale factor  The factor by which the actual scale of a map at a given local-

ity differs from its nominal scale. A local scale factor of, say, 1.25 on a 
1:50,000 map would give a local scale of 1:40,000.
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Slope angle  The angle between a sloping line and a horizontal plane.
Split bubble  A bubble with an optical arrangement which shows its oppo-

site ends side by side. The bubble is centred by lining up the images of 
the two ends. This is more precise and repeatable than using engraved 
marks on the glass, but it does not eliminate bubble error.

Stadia hairs  Two (usually horizontal) hairs parallel to the main crosshairs 
in a telescope, subtending a fixed angle of observation, and used in 
tachymetry.

Staff  A graduated rod, used for levelling and tachymetry.
Station  A fixed point on the ground, whose position is known or required.
Staves  The plural of staff.
Swing  The term for rotating a total station or theodolite about its vertical 

axis. ‘Swing left’ means rotate anticlockwise, as seen from above.
Tachymetry  The measurement of distance by observing the length along 

a distant staff which subtends a known angle at the instrument, usually 
by using the stadia hairs in the telescope.

Tangent screw  An adjustment screw tangential to the horizontal or verti-
cal axis of an instrument, which enables precise aiming of the telescope.

Target  A visual reference mounted over a station, designed for precise and 
repeatable observations of angles to that station.

Temporary benchmark  A point established at (usually) the extreme end of 
a levelling bay, which will be used as the starting point for another bay.

Theodolite  A telescope equipped with protractors in the horizontal and 
vertical planes, capable of precise measurement of azimuth and eleva-
tion angles.

Total station  An integrated theodolite and EDM device which can mea-
sure angles and distances, and often has the capability to record read-
ings electronically.

Transit  The act of turning the telescope on a total station or theodolite 
through the vertical, e.g. when changing from face 1 to face 2.

Traverse  The establishment of successive station co-ordinates by finding 
bearings and distances from a previous station. A traverse is usually 
‘closed’ by using a known station as the final one.

Tribrach  An adjustable platform which fixes to a tripod, and provides a 
location for an instrument or target which is level, and directly above a 
station. Tribrachs have footscrews for levelling, and may incorporate a 
plate bubble and an optical or laser plummet.

TRF  Terrestrial Reference Frame. A set of fixed points on the earth’s sur-
face, with published co-ordinates, which effectively define the TRS (see 
below) with respect to the earth. Inevitably, there will be small incon-
sistencies in a TRF due to the impossibility of measuring the relative 
positions of the points exactly, plus the fact that the points may move 
relative to one another after the measurements have been made.
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TRS  Terrestrial Reference System. A set of Cartesian axes, with an asso-
ciated ellipsoid of defined size and shape, whose position with respect 
to the earth is defined in some way. The system may also include a spec-
ified method for updating the co-ordinates of fixed stations, when more 
accurate measurements of their relative positions become available.

Trunnion axis  The horizontal axis in a total station or theodolite; the 
bearings which support the telescope.

VDOP  Vertical Dilution Of Position. The vertical element of PDOP (see 
above), used to estimate the accuracy with which a GNSS receiver can 
measure its ellipsoidal height.

Vernier  A mechanism for reading a scale to greater precision. An optical 
vernier bends a light path until two markers line up, and then indicates 
the amount by which the path was bent.

Vertical circle  See Circle.
Zenith angle  The angle between a line of sight and the vertical at the 

point of observation.
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he has taught surveying for over thirty years.
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