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Preface

Handbook of Functional Equations: Functional Inequalities consists of 20 chap-
ters written by eminent scientists from the international mathematical community
who present important research works in the field of mathematical analysis and
related subjects with emphasis to functional equations and functional inequalities.
As Richard Bellman has so elegantly stated at the second international conference
on general inequalities (Oberwolfach 1978), “There are three reasons for the study
of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he
said, “As has been pointed out, beauty is in the eye of the beholder. However, it
is generally agreed that certain pieces of music, art, or mathematics are beautiful.
There is an elegance to inequalities that makes them very attractive.” The chapters
of this book focus mainly on both old and recent developments on approximate
homomorphisms, on a relation between the Hardy–Hilbert and the Gabriel inequal-
ity, generalized Hardy–Hilbert type inequalities on multiple weighted Orlicz spaces,
half-discrete Hilbert-type inequalities, affine mappings, contractive operators, mul-
tiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the
Riemann–Stieltjes integral, means and related functional inequalities, weighted Gini
means, controlled additive relations, Szaz–Mirakyan operators, extremal problems
in polynomials and entire functions, applications of functional equations to Dirichlet
problem for doubly connected domains, nonlinear elliptic problems depending on pa-
rameters, strongly convex functions, as well as applications to some new algorithms
for solving general equilibrium problems, inequalities for the Fisher’s information
measures, financial networks, mathematical models of mechanical fields in media
with inclusions and holes.

It is our pleasure to express our thanks to all the contributors of chapters in this
book. I would like to thank Dr. Michael Batsyn and Dr. Dimitrios Dragatogiannis
for their invaluable help during the preparation of this publication. Last but not least,
I would like to acknowledge the superb assistance that the staff of Springer has
provided for the publication of this work.

Athens, Greece Themistocles M. Rassias
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On a Relation Between the Hardy–Hilbert
and Gabriel Inequalities

Vandanjav Adiyasuren and Tserendorj Batbold

Abstract In this chapter, we establish some new generalizations of Azar’s results,
which are relations between the Hardy–Hilbert inequality and the Gabriel inequality.
As an application, we obtain a sharper form of the general Hardy-Hilbert inequal-
ity. The integral analogues of our main results are also given. Some Gabriel-type
inequalities are also considered.

Keywords The Hardy–Hilbert inequality · The Gabriel inequality · The Hölder
inequality · Hardy’s method

Mathematics Subject Classification (2000): Primary 26D15, Secondary 05E05

1 Introduction

The classical Hardy–Hilbert inequality asserts that if p > 1, 1
p
+ 1

q
= 1, an, bn ≥

0, 0 <
∑∞
n=1 a

p
n <∞ and 0 <

∑∞
n=1 b

q
n <∞, then

∞∑

m=1

∞∑

n=1

ambn

m+ n <
π

sin (π
p

)

{ ∞∑

n=1

apn

} 1
p
{ ∞∑

n=1

bqn

} 1
q

, (1)

where the constant factor π/( sin π/p) is the best possible. Its integral form reads
as follows: If p > 1, 1

p
+ 1

q
= 1, f , g ≥ 0, 0 <

∫∞
0 f p(x)dx < ∞ and 0 <

∫∞
0 gq(x)dx <∞, then
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2 V. Adiyasuren and Ts. Batbold

∫ ∞

0

∫ ∞

0

f (x)g(y)

x + y dxdy <
π

sin (π
p

)

{∫ ∞

0
f p(x)dx

} 1
p
{∫ ∞

0
gq (x)dx

} 1
q

, (2)

where the constant factor π/( sin π/p ) is also the best possible (see e.g. [6]). These
two inequalities are important in analysis and its applications. Although classical,
they are still of interest to numerous authors, and during subsequent decades numer-
ous generalizations and refinements appeared in the literature (see e.g. [3, 4, 6, 8, 7
10]).

Recently, Das and Sahoo [4], obtained the following discrete version of the Hardy–
Hilbert inequality with conjugate parameters p and q, p > 1, as

∞∑

m=m0

∞∑

n=n0

ambn

(u(m)+ v(n))λ
< B(φp,φq )

{ ∞∑

m=m0

[u(m)]p(1−φq )−1[u′(m)]1−papm

} 1
p

×
{ ∞∑

n=n0

[v(n)]q(1−φp)−1[v′(n)]1−qbqn

} 1
q

, (3)

where am, bn ≥ 0, φp+φq = λ, u ∈ Hm0 (1−φq), v ∈ Hn0 (1−φq), and the constant
B(φp,φq) (B is the usual Beta function) is the best possible. The set of function
Hm0 (r) is described in the following definition.

Definition 1 Let r > 0 andm0 ∈ N. We denote byHm0 (r) the set of all non-negative
differentiable functions u : R+ → R satisfying the following conditions:

(a) u is strictly increasing in (m0 − 1,∞).
(b) u((m0 − 1)+ ) = 0, u(∞) = ∞, and u′(x)

[u(x)]r is decreasing in (m0 − 1,∞).

In 2009, Das and Sahoo [3], obtained the following integral version of the
inequality (3):

∫ b

a

∫ d

c

f (x)g(y)

(ϕ(x)+ ψ(y))λ
dxdy< B(φp,φq )

{∫ b

a

[ϕ(x)]p(1−φq )−1[ϕ′(x)]1−pf p(x)dx

} 1
p

×
{∫ d

c

[ψ(y)]q(1−φp )−1[ψ ′(y)]1−qgq (y)dy

} 1
q

, (4)

where f , g ≥ 0, φp + φq = λ, ϕ(x) and ψ(x) are differentiable strictly increasing
functions on (a, b)(−∞ ≤ a < b ≤ ∞) and (c, d)(−∞ ≤ c < d ≤ ∞) respectively,
such that ϕ(a + ) = ψ(c + ) = 0 and ϕ(b − ) = ψ(d − ) = ∞. In addition, the
constant B(φp,φq ) is the best possible. It should be noticed here that we assume the
convergence of series and integrals appearing in (3) and (4).

In particular, letting u(x) → αu(x), v(x) → βv(x), and ϕ(x) → αϕ(x),ψ(y) →
βψ(y), φp = 1− pA2,φq = 1− qA1, λ = s

r
(α,β > 0) in (3) and (4), we have
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∞∑

m=m0

∞∑

n=n0

ambn

(αu(m)+ βv(n))
s
r

< k(pA2)

{ ∞∑

m=m0

[u(m)]−1+pqA1 [u′(m)]1−papm

} 1
p

×
{ ∞∑

n=n0

[v(n)]−1+pqA2 [v′(n)]1−qbqn

} 1
q

, (5)

and

∫ b

a

∫ d

c

f (x)g(y)

(αϕ(m)+ βψ(n))
s
r

dxdy< k(pA2)

{∫ b

a

[ϕ(x)]−1+pqA1 [ϕ′(x)]1−pf p(x)dx

} 1
p

×
{∫ d

c

[ψ(y)]−1+pqA2 [ψ ′(y)]1−qgq (y)dy

} 1
q

,

(6)

where k(pA2) = B(1−pA2,1−qA1)
α1−qA1β1−pA2

,A1 ∈ (max{ 1− s
r

q
, 0}, 1

q
),A2 ∈ (max{ 1− s

r

p
, 0}, 1

p
) and

pA2 + qA1 = 2− s
r
.

Further, we recall some Carlson-type inequalities. In 1935, Carlson [2], proved
the following curious inequality: If a1, a2, . . . are real numbers, not all zero, then

( ∞∑

n=1

an

)2

< π

( ∞∑

n=1

a2
n

) 1
2
( ∞∑

n=1

n2a2
n

) 1
2

, (7)

where π is the best possible constant. In 1937, Gabriel [5] proved a more general
version of the Carlson inequality. In his work, Gabriel used a method similar to
Carlson’s original proof. However, he mentioned that Hardy’s method could also be
used. If p > 1, an ≥ 0 and 0 < δ ≤ p − 1, then

( ∞∑

n=1

an

)p

<
2

(2δ)p−1

(

B

(
1

2p − 2
,

1

2p − 2

))p−1

×
( ∞∑

n=1

np−1−δapn

) 1
2
( ∞∑

n=1

np−1+δapn

) 1
2

, (8)

and the constant 2
(2δ)p−1

(
B
(

1
2p−2 , 1

2p−2

))p−1
is the best possible. For more details

about the Carlson-type inequalities the reader is referred to [9].
Recently, Azar [1] gave a new discrete inequality with conjugate parameters p

and q, p > 1, which is a relation between the Hardy–Hilbert inequality (1) and the
Carlson inequality (7) as
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( ∞∑

m=1

∞∑

n=1

σm,n

)2

< L

{ ∞∑

n=1

m−1+pqA1apm

} 1
p
{ ∞∑

n=1

n−1+pqA2bqn

} 1
q

×
{ ∞∑

m=1

∞∑

n=1

mσ 2
m,n

ambn

}pA2
{ ∞∑

m=1

∞∑

n=1

nσ 2
m,n

ambn

}qA1

, (9)

where am, bn, σm,n > 0,A1 ∈
(

0, 1
q

)
,A2 ∈

(
0, 1
p

)
,pA2+qA1 = 1 and the constant

L = B(pA2,1−pA2)
(pA2)pA2 (qA1)qA1

is the best possible.
In this chapter, we establish a new inequality with the best constant factor, which

is a relation between the Hardy–Hilbert and the Gabriel inequalities. It is a general-
ization of Azar’s result (9). We employ Hardy’s method to prove our main results.
As an application we obtain a sharper form of the general Hardy–Hilbert inequality.
The integral analogues of our main results are also given and some Gabriel-type
inequalities are also considered.

Throughout this chapter, all the functions are assumed to be non-negative and
measurable. Also, all series and integrals are assumed to be convergent.

2 Main Results

In order to prove our results, we shall utilize the following simple property of the
usual Beta function:

B(t + 1, s) = B(s, t + 1) = t

s + t B(s, t), s, t > 0. (10)

2.1 A New Discrete Inequality

Theorem 1 Let p > 1, 1
p
+ 1
q
= 1, r > 1, 1

r
+ 1

s
= 1 and m0, n0 ∈ N. Suppose

that A1 ∈ (max{ 1− s
r

q
, 0}, 1

q
),A2 ∈ (max{ 1− s

r

p
, 0}, 1

p
),pA2 + qA1 = 2 − s

r
> 0,

u ∈ Hm0 (qA1) and v ∈ Hn0 (pA2). If {am}, {bn} and {σm,n} are positive sequences,
then

( ∞∑

m=m0

∞∑

n=n0

σm,n

)r

< C

{ ∞∑

m=m0

w1(m)apm

} r
ps
{ ∞∑

n=n0

w2(n)bqn

} r
qs

×
{ ∞∑

m=m0

∞∑

n=n0

u(m)σ rm,n

(ambn)
r
s

} r(1−qA1)
s
{ ∞∑

m=m0

∞∑

n=n0

v(n)σ rm,n

(ambn)
r
s

} r(1−pA2)
s

, (11)
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where w1(x) = [u(x)]−1+pqA1 [u′(x)]1−p , w2(x) = [v(x)]−1+pqA2 [v′(x)]1−q . In
addition, the constant

C = s[B(1− pA2, 1− qA1)]
r
s

r(1− qA1)
r(1−qA1)

s (1− pA2)
r(1−pA2)

s

is the best possible.

Proof Let α,β > 0. Utilizing the Hölder inequality and then, applying (5), we have

{ ∞∑

m=m0

∞∑

n=n0

σm,n

}r

=
{ ∞∑

m=m0

∞∑

n=n0

(
(ambn)

1
s

(αu(m)+ βv(n))
1
r

)(
(αu(m)+ βv(n))

1
r

(ambn)
1
s

σm,n

)}r

≤
{ ∞∑

m=m0

∞∑

n=n0

ambn

(αu(m)+ βv(n))
s
r

} r
s
{ ∞∑

m=m0

∞∑

n=n0

αu(m)+ βv(n)

(ambn)
r
s

σ rm,n

}

<
[B(1− pA2, 1− qA1)]

r
s

α
r(1−qA1)

s β
r(1−pA2)

s

{ ∞∑

m=m0

w1(m)apm

} r
ps
{ ∞∑

n=n0

w2(n)bqn

} r
qs

×
{

α

∞∑

m=m0

∞∑

n=n0

u(m)σ rm,n

(ambn)
r
s

+ β
∞∑

m=m0

∞∑

n=n0

v(n)σ rm,n

(ambn)
r
s

}

< [B(1− pA2, 1− qA1)]
r
s

{ ∞∑

m=m0

w1(m)apm

} r
ps
{ ∞∑

n=n0

w2(n)bqn

} r
qs

×
⎧
⎨

⎩

(
α

β

) r(1−pA2)
s

∞∑

m=m0

∞∑

n=n0

u(m)σ rm,n

(ambn)
r
s

+
(
β

α

) r(1−qA1)
s

∞∑

m=m0

∞∑

n=n0

v(n)σ rm,n

(ambn)
r
s

⎫
⎬

⎭
.

Now, set S = ∑∞
m=m0

∑∞
n=n0

u(m)σ rm,n

(ambn)
r
s

, T = ∑∞
m=m0

∑∞
n=n0

v(n)σ rm,n

(ambn)
r
s

, t = α
β

and

consider the function h(t) = t r(1−pA2)
s S + t r(qA1−1)

s T . Since

h′(t) = r(1− pA2)S

s
t
r(1−pA2)

s −2

(

t − (1− qA1)T

(1− pA2)S

)

,

it follows that h attains its minimum for t = (1−qA1)T
(1−pA2)S . Thus, letting α = (1−qA1)T

and β = (1− pA2)S, we obtain (11).
Now, in order to prove thatC is the best constant, suppose that ε > 0 is sufficiently

small, ãm = [u(m)]−qA1− ε
p u′(m), b̃n = [v(n)]−pA2− ε

q v′(n)(m ≥ m0, n ≥ n0), and
σ̃m,n = ãmb̃n

(u(m)+v(n))
s
r

. Then, considering the integral sums, we have
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1

ε[u(m0)]ε
=
∫ ∞

m0

[u(x)]−1−εd[u(x)] <
∞∑

m=m0

[u(m)]−1−εu′(m)

=
∞∑

m=m0

[u(m)]−1+pqA1 [u′(m)]1−pãpm

< [u(m0)]−1−εu′(m0)+
∫ ∞

m0

[u(x)]−1−εd[u(x)]

= [u(m0)]−1−εu′(m0)+ 1

ε[u(m0)]ε
,

and so
∑∞
m=m0

[u(m)]−1+pqA1 [u′(m)]1−pãpm = 1
ε[u(m0)]ε +O(1). Similarly,

∞∑

n=n0

[v(n)]−1+pqA2 [v′(n)]1−q b̃qn =
1

ε[v(n0)]ε
+O(1).

In addition, substituting the above defined sequences ãm, b̃n, and σ̃m,n in the
left-hand side of (11), we get the inequality

∞∑

m=m0

∞∑

n=n0

ãmb̃n

(u(m)+ v(n))
s
r

>

∫ ∞

m0

[u(x)]−qA1− ε
p

(∫ ∞

n0

[v(y)]−pA2− ε
q

(u(x)+ v(y))
s
r

v′(y)dy

)

u′(x)dx

=
∫ ∞

m0

[u(x)]−1−ε
(∫ ∞

v(n0)
u(x)

t
−pA2− ε

q

(1+ t) sr dt
)

u′(x)dx

=
∫ ∞

m0

[u(x)]−1−ε
(∫ ∞

0

t
−pA2− ε

q

(1+ t) sr dt −
∫ v(n0)

u(x)

0

t
−pA2− ε

q

(1+ t) sr dt
)

u′(x)dx

>
1

ε[u(m0)]ε
B

(

1− qA1 − ε
q

, 1− pA2 − ε
q

)

−
∫ ∞

m0

[u(x)]−1−εu′(x)
∫ v(n0)

u(x)

0
t
−pA2− ε

q dtdx

= 1

ε[u(m0)]ε
B

(

1− qA1 − ε
q

, 1− pA2 − ε
q

)

− 1

(1− pA2 − ε
q

)(1− pA2 + ε
p

)
· [v(n0)]1−pA2− ε

q

[u(m0)]1−pA2+ ε
p

= 1

ε[u(m0)]ε
B

(

1− qA1 − ε
q

, 1− pA2 − ε
q

)

−©(1).
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In the same way, utilizing (10), we have
∞∑

m=m0

∞∑

n=n0

u(m)̃σ rm,n

(ambn)
r
s

=
∞∑

m=m0

[u(m)]1−qA1− ε
p u′(m)

∞∑

n=n0

[v(n)]−pA2− εq v′(n)

(u(m)+ v(n))s

<

∞∑

m=m0

[u(m)]1−qA1− ε
p u′(m)

∫ ∞

0

[v(x)]−pA2− εq v′(x)

(u(m)+ v(x))s
dx

=
∞∑

m=m0

[u(m)]−1−εu′(m)
∫ ∞

0

t
−pA2− ε

q

(1+ t)s dt

= 1+ ε[u(m0)]εO(1)

ε[u(m0)]ε
B

(

s + pA2 + ε
q
− 1, 1− pA2 − ε

q

)

= 1+ ε[u(m0)]εO(1)

ε[u(m0)]ε
B

(

2− qA1 + ε
q

, 1− pA2 − ε
q

)

= 1+ ε[u(m0)]εO(1)

ε[u(m0)]ε
· r(1− qA1 + ε

q
)

s

× B
(

1− qA1 + ε
q

, 1− pA2 − ε
q

)

,

and similarly,
∞∑

m=m0

∞∑

n=n0

v(n)̃σ rm,n

(ambn)
r
s

<
1+ε[v(n0)]εO(1)

ε[v(n0)]ε
· r(1−pA2+ ε

p
)

s
B

(

1−pA2+ε
p

,1−qA1−ε
p

)

.

If the constant factor C in (11) is not the best possible, then there exists a positive
constant C̃(with C̃ < C), such that (11) is still valid when replacing C by C̃. In
particular, utilizing the derived inequalities, we have
(

1

ε[u(m0)]ε
B

(

1− qA1 − ε
q

, 1− pA2 − ε
q

)

−©(1)

)r

< C̃

{
1

ε[u(m0)]ε
+O(1)

} r
ps
{

1

ε[v(n0)]ε
+O(1)

} r
qs

×
{

1+ ε[u(m0)]εO(1)

ε[u(m0)]ε
· r(1−qA1+ ε

q
)

s
B

(

1−qA1+ ε
q

, 1−pA2− ε
q

)} r(1−qA1)
s

×
{

1+ ε[v(n0)]εO(1)

ε[v(n0)]ε
· r(1−pA2+ ε

p
)

s
B

(

1−pA2+ ε
p

, 1−qA1− ε
p

)} r(1−pA2)
s

.

Multiplying the above inequality by εr and then, letting ε→ 0+, it follows that

C = s[B(1− pA2, 1− qA1)]
r
s

r(1− qA1)
r(1−qA1)

s (1− pA2)
r(1−pA2)

s

≤ C̃,
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which contradicts with the fact that C̃ < C. Hence, the constant factor C in (11) is
the best possible. This completes the proof.

Considering Theorem 1 with σm,n = ambn

(u(m)+v(n))
s
r

, S =∑∞
m=m0

∑∞
n=n0

u(m)ambn
(u(m)+v(n))s ,

T = ∑∞
m=m0

∑∞
n=n0

v(n)ambn
(u(m)+v(n))s and S + T = ∑∞

m=m0

∑∞
n=n0

ambn

(u(m)+v(n))
s
r

, we obtain

the following consequence:

Corollary 1 Suppose the parameters p, q, r , s,A1,A2, and the functions u, v :
R+ → R are defined as in the statement of Theorem 1. If {am}, and {bn} are positive
sequences, then the following inequality holds:

∞∑

m=m0

∞∑

n=n0

ambn

(u(m)+ v(n))
s
r

< C1

{ ∞∑

m=m0

w1(m)apm

} 1
p
{ ∞∑

n=n0

w2(n)bqn

} 1
q

· R s
r . (12)

In addition, the constant factor

C1 =
( s

r

) s
r · B(1− pA2, 1− qA1)

is the best possible and

R =
(

S
1−qA1

) r(1−qA1)
s
(

T
1−pA2

) r(1−pA2)
s

S + T ,

w1(x) = [u(x)]−1+pqA1 [u′(x)]1−p, w2(x) = [v(x)]−1+pqA2 [v′(x)]1−q .
In particular, (I) for A,B,α,β > 0, setting u(x) = Axα, v(x) = Bxβ ,m0 =

n0 = 1, we have the inequality

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)
s
r

< C1

{ ∞∑

m=1

w1(m)apm

} 1
p
{ ∞∑

n=1

w2(n)bqn

} 1
q

· R s
r ,

where the constant

C1 =
( s

r

) s
r · B(1− pA2, 1− qA1)

A1−qA1B1−pA2α
1
q β

1
q

,

is the best possible and w1(m) = mp(αqA1−α+1)−1, w2(n) = nq(βpA2−β+1)−1.
(II) If α,β > 0, putting u(x) = α ln x, v(x) = β ln x,m0 = n0 = 2, we have

∞∑

m=2

∞∑

n=2

ambn

(α lnm+ β ln n)
s
r

< C1

{ ∞∑

m=2

w1(m)apm

} 1
p
{ ∞∑

n=2

w2(n)bqn

} 1
q

· R s
r ,

where

C1 =
( s

r

) s
r · B(1− pA2, 1− qA1)

α1−qA1β1−pA2
,
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is the best constant and w1(m) = ( lnm)−1+pqA1mp−1, w2(n) = ( ln n)−1+pqA2nq−1.
(III) For α,β > 0, set u(x) = α ln x, v(x) = βx,m0 = 2, n0 = 1. Then,

∞∑

m=2

∞∑

n=1

ambn

(α lnm+ βn)
s
r

< C1

{ ∞∑

m=2

w1(m)apm

} 1
p
{ ∞∑

n=1

w2(n)bqn

} 1
q

· R s
r ,

where

C1 =
( s

r

) s
r · B(1− pA2, 1− qA1)

α1−qA1β1−pA2

is the best constant and w1(m) = ( lnm)−1+pqA1mp−1, w2(n) = n−1+pqA2 .

Theorem 2 Inequality (12) is a refinement of inequality (5).

Proof Utilizing the well-known Young inequality, we have

R =
(

S
1−qA1

) r(1−qA1)
s
(

T
1−pA2

) r(1−pA2)
s

S + T

≤
r(1−qA1)

s
· S

1−qA1
+ r(1−pA2)

s
· T

1−pA2

S + T = r
s
.

Now, the inequality (5) follows from (12), which completes the proof.

Setting u(x) = v(x) = xα ,α = p−q
pq(qA1−pA2) > 0, am = m k

p , k = αp(1− qA1)−
1−p, bn = n lq , l = αq(1−pA2)− 1− q and σm,n = cmcn in Theorem 1, we obtain
the following Gabriel-type inequality:

Corollary 2 Suppose the parameters p, q, r , s,A1, and A2, are defined as in the
statement of Theorem 1. If {cm} is a positive sequence, then

( ∞∑

m=1

cm

)r

< C∗
{ ∞∑

m=1

m
α− rk

sp crm

} 1
2
{ ∞∑

m=1

m
− rl
sq crm

} 1
2

,

where the constant C∗ = √
C ·
(
π2

6α

) r
2 s

is the best possible.

2.2 An Associated Integral Form

Theorem 3 Let p > 1, 1
p
+ 1
q
= 1, and r > 1, 1

r
+ 1
s
= 1. Suppose that

A1 ∈ (max{ 1− s
r

q
, 0}, 1

q
), A2 ∈ (max{ 1− s

r

p
, 0}, 1

p
), pA2 + qA1 = 2− s

r
> 0, ϕ(x) and

ψ(y) are differentiable strictly increasing functions on (a, b) (−∞ ≤ a < b ≤ ∞)
and (c, d) ( −∞ ≤ c < d ≤ ∞) respectively, such that ϕ(a + ) = ψ(c + ) = 0
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and ϕ(b − ) = ψ(d − ) = ∞. If f (x), g(y) and G(x, y) are positive functions on
(a, b), (c, d) and (a, b)× (c, d) respectively, then the following inequality holds:

(∫ b

a

∫ d

c

G(x, y)dxdy

)r

< C

{∫ b

a

w1(x)f p(x)dx

} r
ps
{∫ d

c

w2(y)gq (y)dy

} r
qs

×
{∫ b

a

∫ d

c

ϕ(x)Gr (x, y)

(f (x)g(y))
r
s

dxdy

} r(1−qA1)
s

×
{∫ b

a

∫ d

c

ψ(y)Gr (x, y)

(f (x)g(y))
r
s

dxdy

} r(1−pA2)
s

. (13)

Here, w1(x) = [ϕ(x)]−1+pqA1 [ϕ′(x)]1−p , w2(y) = [ψ(y)]−1+pqA2 [ψ ′(y)]1−q and
the constant

C = s[B(1− pA2, 1− qA1)]
r
s

r(1− qA1)
r(1−qA1)

s (1− pA2)
r(1−pA2)

s

is the best possible.

Proof Using the Hölder inequality, the Hilbert-type inequality (6) and proceeding
as in the proof of Theorem 1, we have that (13) holds. Now, to prove the part with
the best constant, suppose that ε > 0 is sufficiently small, and let

f̃ (x) =
⎧
⎨

⎩

0, if x ∈ (a, a1)(a1 = ϕ−1(1))

[ϕ(x)]−qA1− ε
p ϕ′(x), if x ∈ [a1, b)

,

g̃(y) =
⎧
⎨

⎩

0, if y ∈ (c, c1)(c1 = ψ−1(1))

[ψ(y)]−pA2− ε
q ψ ′(x), if y ∈ [c1, d)

,

and G̃(x, y) = f̃ (x )̃g(y)

(ϕ(x)+ψ(y))
s
r

. Then we have

{∫ b

a

w1(x)f̃ p(x)dx

} r
ps
{∫ d

c

w2(y )̃gq (y)dy

} r
qs

=
(

1

ε

) r
s

,

and
∫ b

a

∫ d

c

G̃(x, y)dxdy =
∫ b

a

∫ d

c

f̃ (x )̃g(y)

(ϕ(x)+ ψ(y))
s
r

dxdy

=
∫ b

a1

[ϕ(x)]−1−εϕ′(x)
∫ ∞

1/ϕ(x)

u−pA2− ε
q

(1+ u)
s
r

dudx

=
∫ b

a1

[ϕ(x)]−1−εϕ′(x)
∫ ∞

0

u−pA2− ε
q

(1+ u)
s
r

dudx
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−
∫ b

a1

[ϕ(x)]−1−εϕ′(x)
∫ 1/ϕ(x)

0

u−pA2− ε
q

(1+ u)
s
r

dudx

>
1

ε
B

(

1− qA1 + ε
q

, 1− pA2 − ε
q

)

−
∫ b

a1

[ϕ(x)]−1−εϕ′(x)
∫ 1/ϕ(x)

0
u−pA2− ε

q dudx

= 1

ε
B

(

1− qA1 + ε
q

, 1− pA2 − ε
q

)

− 1

(1− pA2 − ε
q

)(1− pA2 + ε
p

)

= 1

ε
B

(

1− qA1 + ε
q

, 1− pA2 − ε
q

)

−©(1).

On the other hand, employing (10), it follows that

∫ b

a

∫ d

c

ϕ(x)G̃r(x, y)

(f̃ (x )̃g(y))
r
s

dxdy =
∫ b

a1

[ϕ(x)]−1−εϕ′(x)
∫ ∞

1/ϕ(x)

u−pA2− ε
q

(1+ u)s
dudx

<

∫ b

a1

[ϕ(x)]−1−εϕ′(x)
∫ ∞

0

u−pA2− ε
q

(1+ u)s
dudx

= 1

ε
B

(

2− qA1 + ε
q

, 1− pA2 − ε
q

)

= 1

ε

r(1−qA1+ ε
q

)

s
B

(

1− qA1 + ε
q

, 1− pA2 − ε
q

)

,

and similarly,
∫ b

a

∫ d

c

ψ(y)G̃r (x, y)

(f̃ (x )̃g(y))
r
s

dxdy<
1

ε

r(1− pA2 + ε
p

)

s
B

(

1− pA2 + ε
p

, 1− qA1 − ε
p

)

.

Assuming that the constant C in (13) is not the best possible, then there exists a
positive constant C̃ < C, such that (13) is still valid when we replace C by C̃. In
particular, utilizing the above inequalities, we have
(

1

ε
B

(

1− qA1 − ε
q

, 1− pA2 − ε
q

)

−©(1)

)r

< C̃

(
1

ε

) r
s

{
1+εO(1)

ε
· r(1−qA1+ ε

q
)

s
B

(

1−qA1+ ε
q

, 1−pA2− ε
q

)} r(1−qA1)
s

×
{

1+ εO(1)

ε
· r(1− pA2 + ε

p
)

s
B

(

1− pA2 + ε
p

, 1− qA1 − ε
p

)} r(1−pA2)
s

.
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Now, multiplying the above inequality by εr and then, letting ε→ 0+, it follows
that

C = s[B(1− pA2, 1− qA1)]
r
s

r(1− qA1)
r(1−qA1)

s (1− pA2)
r(1−pA2)

s

≤ C̃,

which is in contrast to C̃ < C. The proof is now complete.
Similarly to the discrete case, if G(x, y) = f (x)g(y)

(ϕ(x)+ψ(y))
s
r

, then, setting

S = ∫ b
a

∫ d
c

ϕ(x)f (x)g(y)
(ϕ(x)+ψ(y))s dxdy, T = ∫ b

a

∫ d
c

ψ(y)f (x)g(y)
(ϕ(x)+ψ(y))s dxdy, we easily obtain that S +

T = ∫ b
a

∫ d
c

f (x)g(y)

(ϕ(x)+ψ(y))
s
r
dxdy, and the Theorem 3 yields the following consequence:

Corollary 3 Suppose the parameters p, q, r , s,A1,A2, and the functions ϕ,ψ :
R+ → R are defined as in the statement of Theorem 3. If f (x) and g(x) are positive
functions on (0,∞), then the following inequality holds:

∫ b

a

∫ d

c

f (x)g(y)

(ϕ(x)+ ψ(y))
s
r

dxdy

< C1

{∫ b

a

w1(x)f p(x)dx

} 1
p
{∫ d

c

w2(y)gq (y)dy

} 1
q

· R s
r . (14)

In addition, the constant

C1 =
( s

r

) s
r · B(1− pA2, 1− qA1)

is the best possible and

R =
(

S
1−qA1

) r(1−qA1)
s
(

T
1−pA2

) r(1−pA2)
s

S + T ,

w1(x) = [ϕ(x)]−1+pqA1 [ϕ ′(x)]1−p, w2(y) = [ψ(y)]−1+pqA2 [ψ ′(y)]1−q .
It should be noticed here that the inequality (14) is more accurate than the

inequality (6).

Theorem 4 Inequality (14) is a refinement of inequality (6).

Proof The proof follows the lines of the proof of Theorem 2.

If ϕ(x) = ψ(x) = xα , 0 < α < min
{

1
1−qA1

, 1
1−pA2

}
, f (x) = g(x) = e−x

and G(x, y) = ω(x)ω(y), the Theorem 3 yields the following integral Gabriel-type
inequality:

Corollary 4 Suppose the parameters p, q, r , s,A1, and A2, are defined as in the
statement of Theorem 3. If ω(x) is a positive function on (0,∞), then

(∫ ∞

0
ω(x)dx

)r
< C∗

{∫ ∞

0
xαe

rx
s [ω(x)]rdx

} 1
2
{∫ ∞

0
e
rx
s [ω(x)]rdx

} 1
2

,
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where the constant factor C∗ = √
C
(

1
α

) r
2 s
(
Γ (μ)
pμ

) r
2 ps
(
Γ (ν)
pν

) r
2qs

is the best possible

and μ = p + αp(qA1 − 1), ν = q + αq(pA2 − 1).
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kernel. Bull. Acad. Ştiinţ. Repub. Mold. Mat. 67(3), 29–44 (2011)
5. Gabriel, R.M.: An extension of an inequality due to Carlson. J. Lond. Math. Soc. 12, 130–132

(1937)
6. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge

(1952)
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Mathematical Models of Mechanical Fields
in Media with Inclusions and Holes

Marta Bryla, Andrei V. Krupoderov, Alexey A. Kushunin, Vladimir Mityushev
and Michail A. Zhuravkov

Abstract Various problems of mechanics described by two-dimensional harmonic
and biharmonic functions are investigated by application of the generalized al-
ternating method of Schwarz (GMS). It is demonstrated that the GMS in zeroth
approximation coincides with the principle of superposition. Iterative schemes for
the R-linear problem on harmonic functions for multiply connected domains are
constructed and compared to the GMS. The method is applied in symbolic form
to the case when inclusions have elliptical shape. Two-dimensional problems for
biharmonic functions by application of the Kolosov–Muskhelishvili formulae are
considered by the principle of superposition to describe gas flows in rigid bodies.
Viscoelastic problems in porous media are solved by use of the method of finite
elements.

Keywords Alternating method of Schwarz · Functional equations for analytic
functions · Superposition principle · Elastic half plane with cavities

1 Introduction to the Generalized Alternating Method
of Schwarz (GMS)

Mechanical fields considered in this paper are described by two-dimensional har-
monic and biharmonic functions. Many problems of the mechanics and of composites
are stated as boundary value problems for domains with holes and inclusions when a
condition of the contact between the components is written as a conjugation condi-
tion for the limit values of the unknown functions and their derivatives [12, 13]. Such
problems have been the subject of research interest in porous media and composites
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(e.g. [1, 2, 3, 5, 14, 15, 16]. In the present chapter, attention is paid to the problem of
interactions of inclusions and its investigation by the generalized alternating method
of Schwarz (GMS) [19, 22, 26].

The main idea of the method can be presented by the R–linear problem on
harmonic functions for multiply connected domains. Let Dk be mutually disjoint
simply connected domains in the complex plane C bounded by smooth curves Lk
(k = 1, 2, . . ., n) and D be the complement of all closures of Dk to the extended
complex plane Ĉ = C ∪ {∞}. Below, the domains Dk are called by inclusions.
Denote by D+ the union of all inclusions Dk , i.e., the domain D+ consists of n
connected components. Let Lk are orientated in a counterclockwise direction. Let
ρ be a constant and c(t) be given Hölder continuous functions on L = ∪nk=1Lk , the
boundary of D+.

The R–linear conjugation problem with constant coefficients is stated as follows
[22]. To find a function ϕ(z) analytic in D and in all components of D+, continu-
ous by differentiable in the closures of the considered domains with the following
conjugation condition:

ϕ+(t) = ϕ−(t)− ρϕ−(t)+ c(t), t ∈ L. (1)

Here ϕ±(t) denotes the limit values of ϕ(z), as z tends to a point t ∈ L fromD+ and
fromD, respectively. Moreover, ϕ(z) vanishes at infinity. If |ρ| < 1, the problem has
a unique solution. This follows from a more general result obtained by Bojarski [6].

In order to describe the GMS we first recall the Sochocki–Plemelj formulae. The
curve L := ∪nk=1∂Dk divides the complex plane onto domains D+ and D. Here,
each curve ∂Dk is orientated in the clockwise sense. Letμ(t) be a Hölder continuous
function on L. Introduce the function

Φ(z) = 1

2πi

∫

L

μ(t)

t − z
dt (2)

It is continuous on the complex plane except L where its limit boundary values
Φ+(t) = limz→t∈D+ Φ(z) and Φ−(t) = limz→t∈D Φ(z) satisfy the jump condi-
tion [11]

Φ+(t)−Φ−(t) = μ(t), t ∈ L. (3)

The condition (1) can by written in the form (3) with Φ+(t) = ϕk(t) − f +(t),
Φ−(t) = ϕ(t)− f −(t), μ(t) = ρϕk(t), where the Cauchy integral

f (z) = 1

2πi

∫

L

c(t)

t − z
dt (4)

determines the function f (z) analytic outside of L. Then (1) yields

ϕk(z) = ρ
n∑

m=1

1

2πi

∫

∂Dm

ϕm(t)

t − z
dt + f (z). z ∈ Dk , k = 1, 2, . . . , n. (5)
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The function ϕ(z) is calculated by ϕm(z) as follows:

ϕ(z) = ρ
n∑

m=1

1

2πi

∫

∂Dm

ϕm(t)

t − z
dt + f (z), z ∈ D. (6)

One can consider (5) as a system of integral equations on ϕk(z) analytic inDk and
continuously differentiable in its closure. It is worth noting that the equations (5) are
not the classic integral equations of the potential theory. They correspond to integral
equations which are be deduced from the GMS. In order to analyse (5) we rewrite
them in the form

ϕk(z)− ρ

2πi

∫

∂Dk

ϕk(t)

t − z
dt = ρ

∑

m�=k

1

2πi

∫

∂Dm

ϕm(t)

t − z
dt + f (z), z ∈ Dk , k = 1, 2, . . . , n.

(7)

The equations (5) can be solved by the following two iterative schemes. First, the
direct iterations can be applied to (5)

ϕ
(0)
k (w) = f (z),

ϕ
(p+1)
k (z)=ρ

n∑

m=1

1

2πi

∫

∂Dm

ϕ
(p)
m (t)

t − z
dt+f (z), z ∈ Dk , k=1, 2, . . . , n, p=0, 1, 2, . . . ,

(8)

where ϕ(p)
k (w) denotes the pth approximation of ϕk(w). As it is proved in [21], the

iterations (8) uniformly converge for all |ρ| ≤ 1.
The second iterative scheme is constructed on the basis of the equations (7). The

zeroth approximation can be written in the form of the separate equations for each
k = 1, 2, . . . , n

ϕ
(0)
k (z)− ρ

2πi

∫

∂Dk

ϕ
(0)
k (t)

t − z
dt = f (z), z ∈ Dk. (9)

According to Bojarski [6], Eq. (9) has a unique solution. The pth approximation has
also the form of the equation on ϕ(p+1)

k (z) for each k = 1, 2, . . . , n

ϕ
(p+1)
k (z)− ρ

2πi

∫

∂Dk

ϕ
(p+1)
k (t)

t − z
dt = ρ

∑

m�=k

1

2πi

∫

∂Dm

ϕ
(p)
m (t)

t − z
dt + f (z), z ∈ Dk.

(10)

Contrary to the first algorithm (8), convergence results for the second algorithm
(9)–(10) are unknown.
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The integrals from (10) for m �= k and z ∈ Dk can be estimated as follows:

∣
∣
∣

∫

∂Dm

ϕ
(p)
m (t)

t − z
dt

∣
∣
∣ ≤ maxt∈∂Dm |ϕ(p)

m (t)|diam(Dk)

dkm
,

where dkm = inf t∈∂Dm z∈Dk |t − z|, diam(Dk) = supz1,2∈Dk |z1 − z2|.
The values dkm and diam(Dk) characterize the distance betweenDk andDm, and

the linear size of Dk . If the sum of the ratios
n∑

k=1

∑

m�=k

diam(Dk)

dkm
(11)

is sufficiently small, the zeroth approximation ϕ0
k (z) can be accepted as an

approximate solution of (5). Then, the approximation for ϕ(z) from (6) becomes

ϕ(0)(z) = ρ
n∑

m=1

1

2πi

∫

∂Dm

ϕ
(0)
m (t)

t − z
dt + f (z), z ∈ D. (12)

Formula (12) expresses the superposition principle used in physics when the field
in D is approximated by a sum of the separate fields induced by the inclusions Dm.
Therefore, the GMS applied within the zeroth approximation yields the superposition
principle. In Sect. 3, this principle is applied to complicated mechanical fields.

2 R–Linear Problem with Elliptical Inclusions

The present section is devoted to application of the GMS to the R–linear problem
with many inclusions of elliptic shapes. We follow Sect. 1 and the paper [20] where
this problem was considered in the case when all the ellipses have the same shape.
In this section, we consider the general case when each ellipse can have arbitrary
semi-axes and arbitrary size.

2.1 Statement of the Problem and Reduction to Integral Equations

Suppose that the elliptical inclusions Dm(m = 1, 2, . . ., n) do not overlap. For con-
venience, put the semiaxes equal to rm(1 + αm) and rm(1 − αm), respectively. The
parameter rm is positive and characterizes the size of inclusion, and αm is the shape
of themth ellipse (0 < αm < 1). The case αm = α (m = 1, 2, . . . , n) was considered
in [20]. Let an inclusion Dm be centred at (xm, ym) and the angle between the major
semiaxis of the ellipse and the x-axis be equal to θm. In accordance with Mityushev
[20], introduce the local coordinates (X,Y ) for a fixed inclusion Dm as follows:

X = 1

rm
[(x − xm) cos θm + (y − ym) sin θm], (13)
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Y = 1

rm
[(x − xm) sin θm + (y − ym) cos θm]. (14)

The local equation of the ellipse ∂Dm has the form

X2

(1+ αm)2
+ Y 2

(1− αm)2
= 1. (15)

The foci of the ellipse ∂Dm in the local coordinates are located at (± 2
√
αm, 0).

Let Z = X + iY be the local complex coordinate, z = x + iy and w = ξ + iζ
be global complex coordinates, where i denotes the imaginary unit. The Joukowsky
conformal mapping

Z = w+ αm
w

(16)

transforms the annulus
√
αm < |w| < 1 onto Dm − Γm, where Γm denotes the slit

(− 2
√
αm, 2

√
αm) along the X-axis. The inverse mapping to (16) has the form

w = 1

2

(
Z +

√
Z2 − 4αm

)
(17)

where the branch of the square root is chosen in such a way that

lim
X→±i0

√
Z2 − 4αm = ±i

√
4αm −X2 (18)

for −2
√
αm < X < 2

√
αm. Formulae (16)–(17) in the global coordinates become

z = sm(w+ αm
w
+ am) (19)

w = 1

2

⎡

⎣ z − am
sm

+
√(

z − am
sm

)2

− 4αm

⎤

⎦ , (20)

where sm = rmeiθm .
Let D denote the complement of the closures of all domains Dm to the extended

complex plane. We study the conductivity of the two-dimensional composite, when
the domainsD andDm are occupied by materials of unit and λ conductivity, respec-
tively, where 0 < λ <∞. Then, the potentials u(z) and um(z) are harmonic inD and
Dm (m = 1, 2, . . .n) and satisfies the conjugation (transmission) conditions

u = um,
∂u

∂n
= λ∂um

∂n
, on ∂Dm, m = 1, 2, . . . , n, (21)

where ∂/∂n denotes the outward normal derivative to the ellipses. For simplicity, it
is assumed that the potential u(z) has singularities only in the domain D described
by a function Ref (z), where f (z) is analytic in all inclusions Dk , Re stands for the
real part of a complex number.



20 M. Bryla et al.

Following Mityushev and Rogosin [22], introduce complex potentials ϕ(z) and
ϕm(z) analytic inD andDm, respectively, in such a way that u(z) and um(z) are related
to the complex potentials by

u(z) = Re[ϕ(z)+ f (z)], um(z) = 2

1+ λReϕm(z). (22)

Then the conditions (21) can by reduced to the R-linear problem (1), where c(t) =
f (z) and ρ denotes the contrast parameter

ρ = λ− 1

λ+ 1
. (23)

2.2 Solution to Integral Equations

It follows from Sect. 1 that the R-linear problem (1) is reduced to the integral
equations (5). We now reduce these equations for elliptic inclusions to a system
of functional equations (without integral terms).

Let k be fixed in (5). The doubly connected domain Dk − Γk is mapped onto the
annulus

√
αk < |w| < 1 by the conformal mapping (20);Dk is transformed onto the

unit circle |w| = 1, Γk onto the circle |w| = √
αk . Introduce the functions

Φk(w) = ϕk(z) = ϕk
[
sk

(
w+ αk

w

)
+ ak

]
(24)

analytic in
√
αk < |w| < 1 and continuous in

√
αk ≤ |w| ≤ 1. Substitute (24) in (5)

and change the variables in the integrals as follows:

t = sk
(
τ + αk

τ

)
+ ak. (25)

Then (5) becomes

Φk(w) = ρ
n∑

m=1

1

2πi

∫

|τ |=1

Φm(τ )(1− αm
τ 2 )dτ

τ + αm
τ
− sk
sm

(w+ αk
w )+ am−ak

sm

+ F (w), (26)

√
αk < |w| < 1, k = 1, 2, . . . , n,

where F (w) = f (z). Moreover, it follows from the continuity of ϕk(z) when z passes
the slit Γk that

Φk(τ ) = Φk
(αk

τ

)
, |τ | = √

αk. (27)

Equation (27) implies that Φk(w) is represented in the form

Φk(w) = φk(w)+ φk
(αk

w

)
, αk ≤ |w| ≤ 1, (28)
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where φk(w) is analytic in the unit disk |w| < 1. Equation (28) follows from the
representation ofΦk(w) in the form of the Laurent series in the annulus αk ≤ |w| ≤ 1
and form (27). The same arguments yield the representation of F (w) in the form
F (w) = gk(w)+gk(αkw ), where gk(w) is analytic in the unit disk. Substitution of (28)
into (26) yields

φk(w)+ φk
(αk

w

)
= ρ

n∑

m=1

[
Pkm(w)+Qkm(w)

]
+ gk(w)+ gk

(αk

w

)
, (29)

αk < |w| < 1, k = 1, 2, . . . , n,

where

Pkm(w) = 1

2πi

∫

|τ |=1

φm( 1
τ

)(1− αm
τ2 )dτ

τ + αm
τ
− sk
sm

(w+ αk
w )+ am−ak

sm

, (30)

Qkm(w) = 1

2πi

∫

|τ |=1

φm(αmτ )(1− αm
τ 2 )dτ

τ + αm
τ
− sk
sm

(w+ αk
w )+ am−ak

sm

. (31)

Here, the relation τ = 1
τ

on the unit circle is used.
The integrals (30)–(31) are analytically calculated by residues in [20]. Following

[20] consider the quadratic equation with respect to τ

τ 2 − s−1
m

[
sk

(
w+ αk

w

)
+ ak − am

]
τ + αm = 0. (32)

The cases of equal and non equal k and m have to be separately investigated.
a) Let k = m. Then Eq. (32) becomes

τ 2 −
(

w+ αk
w

)
τ + αk = 0. (33)

Its two solutions have the form

τ1 = w, τ2 = αk
w
. (34)

b) Let k �= m. In order to avoid a confusion with (34), the roots of (32) in this case
are denoted by w1 and w2

w1 = 1

2

⎧
⎨

⎩
s−1
m

[(
w+ αk

w

)
+ ak − am

]
−
√
[
sk(w+ αk

w )+ ak − am
sm

]2

− 4αm

⎫
⎬

⎭

(35)

w2 = 1

2

⎧
⎨

⎩
s−1
m

[
sk

(
w+ αk

w

)
+ ak − am

]
+
√
[
sk(w+ αk

w )+ ak − am
sm

]2

− 4αm

⎫
⎬

⎭
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The branch of the square root is chosen in accordance with (18). It was proved in
[20] that |w1| < 1 and |w2| > 1.

The integrals (30)–(31) were calculated in [20]. From m �= k it can be written in
the form

Pkm(w) = φm(0)− φm
(

w1

αm

)

, (m �= k), Pkk(w) = φk(0),

Qkm(w)=φm(0)− φm(αmw1) (m �= k),Qkk(w)=−φk(0)+ φk(αkw)+ φk
(
α2
k

w

)

,

where w1 and w2 are given by (35).

2.3 Functional Equations

Substituting (34)–(35) into (29) we transform the integral equations (29) to the
following functional equations:

φk(w)+ φk
(αk

w

)
= ρ

{
φk(αkw)+ φk

(
α2
k

w

)

− (36)

−
∑

m�=k

⎡

⎣−2φm(0)+ φm(αmβkm(w))+ φm
(
βkm(w)

αm

)⎤

⎦+ gk(w)+ gk
(
αm(w)

w

)}
,

√
αk < |w| < 1, k = 1, 2, . . . , n.

Here, for convenience the root w1 is written as the function of w

βkm(w) = 1

2

{
s−1
m

[
sk

(
w+ αk

w

)
+ ak − am

]
−√hkm(w)

}
, (37)

where

hkm(w) =
[
sk(w+ αk

w )+ ak − am
sm

]2

− 4αm. (38)

The right hand part of (36) consists of the functions φk(w) and φk
(
αm
w

)
analytic

in |w| < 1 and |w| > √
αm, respectively. Denote by P+ the project operator which

transforms a function analytic in
√
αm < |w| < 1 to its part analytic in the unit disk.

This operator can by considered as taking the regular part of the Laurent series or as
the integral operator 1

2πi

∫
|w|=1

• dw
w−ζ with |ζ | < 1. Application of P+ to (36) yields
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φk(w)+ φk(0) = ρ
{
φk(αmw)+ φk(0)− (39)

∑

m�=k

⎡

⎣−2φm(0)+ P+φm(αmβkm(w))+ P+φm
(
βkm(w)

αm

)⎤

⎦+ gk(w)+ gk(0)
}

,

|w| ≤ 1, k = 1, 2, . . . , n.

Here, the following relation is used:

P+φk
(
α2
k

w

)

= φk(0).

One can consider (39) as a system of functional equations on the functions φk(w)
analytic in the unit disk and continuous in its closure. The solution of (39) can be
found by the method of successive approximations corresponding to the algorithm
(8). The equations (39) can by considered as iterative functional equations with shift
into domain [20, 22], since |βkm(w)| < 1. It is worth noting that the equations (39)
do not contain integral terms and can be solved by use of the symbolic computations,
hence, the obtained results can be obtained in the form of approximate analytical
formulae.

3 Some Model Problems of Gas Flows in Rigid Bodies

3.1 Stress–Strain State of the Elastic Half Plane with Holes
Filled by Gas

One of the mathematical model approaches to creation describe the stress–strain state
of an elastic half plane with cavities that can contain gas, is discussed in this section.
We consider an elastic isotropic half plane with two holes which are far away from
the half-plane boundary and each other. This assumption allows us to apply the GMS
in the zeroth approximation (the method of superposition discussed in Sect. 1). All
the problems are considered in the plain strain condition. One of the holes is a circle
with radius R and centre at the origin. The second hole is an ellipse with semiaxes a
and b. The centre of the ellipse is placed at the point O1(x01, y01). The x-axis forms
the angle ε with O1O (see Fig. 1). Let the real axis and the boundary of holes be
denoted by L0,L1,L2, respectively, and the distance from the centre of the circle
to L0 be H . Let the homogeneous pressure p0 be given on the boundary L1 and
boundaries L0 and L2 be free.

The Kolosov–Muskhelishvili method will be used to solve this problem. Let S∗
be a domain bounded by contours L0,L1,L2 and S a domain bounded by L1 andL2.
The problem is described by the following equilibrium equations:

∂σ (1)
x

∂x
+ ∂τ

(1)
xy

∂y
= 0,
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P0

R

g

H

x01

y01

a

b

L2

L0

L1

x

y

O1

ε

Fig. 1 Scheme of model problem

∂τ (1)
xy

∂x
+ ∂σ

(1)
y

∂y
− ρg = 0,

Δ(σ (1)
x + σ (1)

y ) = 0 (40)

and the boundary conditions

σ (1)
x cos (n, x)+ τ (1)

xy cos (n, y) = 0, τ (1)
xy cos (n, x)+ σ (1)

y cos (n, y) = 0

on Lj (j = 0, 2), (41)

σ (1)
x cos (n, x)+ τ (1)

xy cos (n, y) = −P0 cos (n, x),

τ (1)
xy cos (n, x)+ σ (1)

y cos (n, y) = −P0 cos (n, y) on L1, (42)

where σij denote the stress components, ρ the media density, g the gravity
acceleration, and n the outward normal to the boundaries Lj .

Using the superposition principle we can represent the stress components as
follows:

σ (1)
x = σ (0)

x + σx , τ (1)
xy = τ 0

xy + τxy , σ (1)
y = σ (0)

y + σy , (43)

The sizes of holes are small in comparison with plane sizes. Therefore stresses σij are
negligible at large distance from holes, hence, σij vanish at infinity. It is evident that
the additional stresses satisfy homogeneous equilibrium equations. If the boundaries
L1 andL2 are far away from the boundaryL0, we can consider an infinite plane with
holes. The formulae for initial stresses are well known

σ (0)
x = ρg(y −H ), τ (0)

xy = 0, σ (0)
y = λρg(y −H ),
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where λ is the ratio of horizontal to vertical stress.
The boundary conditions for the additional stresses have the form

σy = τxy = 0 on L0; (44)

σx cos (n, x)+ τxy cos (n, y) = fi cos (n, x),

τxy cos (n, x)+ σy cos (n, y) = gi cos (n, y) on Lj , j = 1, 2,

where

f1 = pρgH − P0, g1 = ρgH − P0, f2 = pρg(H − y01), g2 = ρg(H − y01).

Following the Kolosov–Mushelishvili method we use the complex potentialsΦ(z)
and Ψ (z)

σx + σy = 2(Φ(z)−Φ(z)), σy − σx + 2τxy = 2(zΦ ′(z)− Ψ (z)).

Using the superposition principle and the well-known solutions for infinite plane
with elliptic and circular holes [23, 30] (with p = 1), we obtain

σx = Re[− Ψ1(x)+ 2Φ2(z1)−K(z1)],

τxy = Im[Ψ1(z)+K(z1)],

σy = Re[Ψ1(z)+ 2Φ2(z1)+K(z1)],

where

Ψ1(z) = P1R
2

z2 , z = x + iy, Φ2(z1) = ϕ′2(ς )
ω′(ς ) , z1 = e−is(z − z01), K(z1) =

e−2is(z1Φ
′
2(z1) + Ψ2(z1)), P1 = P0 − ρgh, z01 = x01 + iy01, ϕ′(ς ) =

ω′(ς )ϕ′′2 (ς )−ϕ′2(ς )ω′′(ς )
(ω′(ς ))2 , ϕ2(ς ) = P2Es

ς
, E = a+b

2 , s = a−b
a+b , ω(ς ) = E(ς + s/ς ),

ς = z1+
√

z2
1−4E2 s

2E , Ψ2(z1) = ψ ′2(ς )
ω′(ς ) , ψ2 = P2E

ς
+ P2Es

ς

1+sς2

ς2−s , P2 = ρg(H − y01),

Φ ′
2(z1) = ϕ′(ς )

ω′(ς ) .

The main stresses become

σ1 =
σ (1)
x + σ (1)

y

2
+ σ

(1)
x − σ (1)

y

2
cos (2θ )+ τ (1)

xy sin (2θ ),

σ2 =
σ (1)
x + σ (1)

y

2
− σ

(1)
x − σ (1)

y

2
cos (2θ )− τ (1)

xy sin (2θ ),

σ3 = ν(σ (1)
x + σ (1)

y ), (45)

where θ = 1
2 arctan 2τ (1)

xy

σ
(1)
x −σ (1)

y

and ν denotes Poisson’s ratio. Solutions to these

problems by other methods are described in [7, 18, 28, 29].
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Fig. 2 Scheme of model problem for two orthotropic half planes

3.2 Stress–Strain State of the Rock Massif and Applications
to Gas Dynamic Phenomena

We consider an orthotropic elastic body which consists of two half planes Dj (j =
1, 2) with different elastic constants. The line y = 0 be the boundary between the
half planes and let the y-axis be directed downward. Each half plane is orthotropic
in the local coordinate system (ξ , η) as displayed in Fig. 2.

Hooke’s law in the local coordinate system becomes

∂U (j )

∂ξ
= β (j )

11 σ
(j )
ξ + β (j )

12 σ
(j )
η ,

∂V (j )

∂η
= β(j )

12 σ
(j )
ξ + β (j )

22 σ
(j )
η ,

∂U (j )

∂η
+ ∂V

(j )

∂ξ
= β(j )

66 τ
(j )
ξη . (46)

where

β
(j )
11 =

1− ν(j )
31 ν

(j )
13

E
(j )
1

,β(j )
12 = −ν

(j )
21 + ν(j )

31 ν
(j )
23

E
(j )
2

,β(j )
22 =

1− ν(j )
23 ν

(j )
32

E
(j )
2

,β(j )
66 =

1

G
(j )
12

.

E
j

1 and Ej2 are Young’s modules in the principal directions ξ and η, respectively.
Here, Gj12 denotes the shear modulus in the plain (ξ , η), νjkl Poisson’s coefficients.
The angle between the local and global coordinate systems is denoted by αj .

Hooke’s law in the main coordinate system can be written in the form
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∂U (j )

∂x
= c(j )

11 σ
(j )
x + c(j )

12 σ
(j )
y + c(j )

16 τ
(j )
xy ,

∂V (j )

∂y
= c(j )

12 σ
(j )
x + c(j )

22 σ
(j )
y + c(j )

26 τ
(j )
xy ,

∂U (j )

∂y
+ ∂V

(j )

∂x
= c(j )

16 σ
(j )
x + c(j )

26 σ
(j )
y + c(j )

66 τ
(j )
xy . (47)

The coefficients cmn linearly depend on the coefficients βkl as follows:

c
(j )
11 = β (j )

11 cos4 (αj )+ B (j ) sin2 (αj ) cos2 (αj )+ β(j )
22 sin4 (αj ),

c
(j )
22 = β (j )

11 sin4 (αj )+ B (j ) sin2 (αj ) cos2 (αj )+ β(j )
22 cos4 (αj ),

c
(j )
12 = β (j )

12 + (β(j )
11 + β (j )

22 − B(j )) sin2 (αj ) cos2 (αj ),

c
(j )
66 = β (j )

66 + 4(β(j )
11 + β (j )

22 − B(j )) sin2 (αj ) cos2 (αj ),

c
(j )
16 = (2β(j )

22 sin2 (αj )− 2β (j )
11 cos2 (αj )+ B (j ) cos (2αj )) sin (αj ) cos (αj ),

c
(j )
26 = (2β(j )

22 cos2 (αj )− 2β (j )
11 sin2 (αj )− B (j ) cos (2αj )) sin (αj ) cos (αj ),

where B (j ) = 2β(j )
12 + β (j )

66 .
We will solve the problem when the body forces are absent. Then, the equilibrium

equations become

∂σ
(j )
x

∂x
+ ∂τ

(j )
xy

∂y
= 0,

∂τ
(j )
xy

∂x
+ ∂σ

(j )
y

∂y
= 0. (48)

The stress tensor components can be written in the form

σ (j )
x = ∂

2W (j )

∂y2
, σ (j )
y = ∂

2W (j )

∂x2
, τ (j )
xy = −∂

2W (j )

∂y∂x
, (49)

whereW (j ) denotes the Airy function. Then, the equilibrium equations are satisfied
and the compatibility equation becomes

c
(j )
22

∂4W (j )

∂x4
−2c(j )

26

∂4W (j )

∂x3∂y
+(2c(j )

12 +c(j )
66 )
∂4W (j )

∂x2∂y2
−2c(j )

16

∂4W (j )

∂x∂y3
+ c(j )

11

∂4W (j )

∂y4
=0.

(50)

We use the following representation for the functionW [9]

W (j ) = 2Re[F (j )
1 (z(j )

1 )+ F (j )
2 (z(j )

2 )], (51)

whereF (j )
i are analytical functions of the complex argument zjk = x+μjky(k = 1, 2).

The constants μjk will be defined below.
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We introduce the functions

dF
(j )
1 (z)

dz
= ϕ(j )

1 (z),
dF

(j )
2 (z)

dz
= ϕ(j )

2 (z),

dϕ
(j )
1 (z)

dz
= Φ (j )

1 (z),
dϕ

(j )
2 (z)

dz
= Φ (j )

2 (z).

Then, the stress components are calculated by the following formulae:

σ (j )
x = 2Re[(μ(j )

1 )2Φ
(j )
1 (z(j )

1 )+ (μ(j )
2 )2Φ

(j )
2 (z(j )

2 )],

σ (j )
y = 2Re[Φ(j )

1 (z(j )
1 )+Φ (j )

2 (z(j )
2 )],

τ (j )
xy = −2Re[μ(j )

1 Φ
(j )
1 (z(j )

1 )+ μ(j )
2 Φ

(j )
2 (z(j )

2 )]. (52)

The displacements components become

U (j ) = 2Re[p(j )
1 ϕ

(j )
1 (z(j )

1 )+ p(j )
2 ϕ

(j )
2 (z(j )

2 )],

V (j ) = 2Re[q (j )
1 ϕ

(j )
1 (z(j )

1 )+ q (j )
2 ϕ

(j )
2 (z(j )

2 )], (53)

where p(j )
k = c(j )

11 (μ(j )
k )2 + c(j )

12 − c(j )
16 μ

(j )
k , μ(j )

k q
(j )
k = c(j )

11 (μ(j )
k )2 + c(j )

22 − c(j )
26 μ

(j )
k .

The compatibility equation (50) with (52) and (53) yields

c
(j )
11 μ

4 − 2c(j )
16 μ

3 + (2c(j )
12 + c(j )

66 )μ2 − 2c(j )
26 μ+ c(j )

22 = 0. (54)

As shown in [17] this equation has two pairs of complex conjugate roots.
Let a concentrated force be applied at a pointM0(X0,Y0) of the domainDj . Then,

the complex potentials in a neighbourhood of this point become

ϕ
(j )
1 (z(j )

1 ) = a(j )
0 ln (z(j )

1 − τ (j )
1 )+ ϕ(j )

∗ (z(j )
1 ), z(j )

1 → τ
(j )
1 ,

ϕ
(j )
2 (z(j )

2 ) = b(j )
0 ln (z(j )

2 − τ (j )
2 )+ ψ (j )

∗ (z(j )
2 ), z(j )

2 → τ
(j )
2 , (55)

where ϕ(j )
∗ (z(j )

1 ) and ψ (j )
∗ (z(j )

2 ) are holomorphic functions in a vicinity of the point
M0.

The coefficients a(j )
0 , b(j )

0 are calculated by formulae [24]

a
(j )
0 = i(X0 + μ(j )

2 Y0)+m(j ) − n(j )μ
(j )
2

4π (μ(j )
1 − μ(j )

2 )
,

b
(j )
0 = − i(X0 + μ(j )

1 Y0)+m(j ) − n(j )μ
(j )
1

4π (μ(j )
1 − μ(j )

2 )
, (56)

where m(j ) = k
(j )
0 (δ(j )

1 X0−δ(j )
3 Y0)

(δ(j )
1 )2+δ(j )

2 δ
(j )
3

, n(j ) = k
(j )
0 (δ(j )

2 X0+δ(j )
1 Y0)

(δ(j )
1 )2+δ(j )

2 δ
(j )
3

, δ(j )
1 = Im[μ(j )

1 μ
(j )
2 ], δ(j )

2 =
Im[μ(j )

1 + μ(j )
2 ], δ(j )

3 = Im[(μ(j )
1 + μ(j )

2 )μ(j )
1 μ

(j )
2 ], k(j )

0 = Re[μ(j )
1 μ

(j )
2 ]− c

(j )
12

c
(j )
11

.
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3.2.1 Fundamental Solution

We determine the stress–strain state of the described body loaded by a concentrated
force P applied at the pointM0(x0, y0). It is assumed that the condition of the ideal
contact on the line y = 0 takes place

σ (1)
y = σ (2)

y , τ (1)
xy = τ (2)

xy , U (1) = U (2), V (1) = V (2) (57)

and all the stresses vanish at infinity.
The following stress functions are used:

Φ
(1)
1 (z(1)

1 ) = s1

z(1)
1 − τ (2)

1

+ s2

z(1)
1 − τ (2)

2

,

Φ
(1)
2 (z(1)

2 ) = l1

z(2)
2 − τ (2)

1

+ l2

z(2)
2 − τ (2)

2

,

Φ
(2)
1 (z(2)

1 ) = a
(2)
0

z(2)
1 − τ (2)

1

+ n1

z(2)
1 − τ (2)

1

+ n2

z(2)
1 − τ (2)

2

,

Φ
(2)
2 (z(2)

2 ) = b
(2)
0

z(2)
2 − τ (2)

2

+ m1

z(2)
2 − τ (2)

1

+ m2

z(2)
2 − τ (2)

2

, (58)

where s1, s2, l1, l2, n1, n2, m1, and m2 are arbitrary coefficients. The coefficients
si , li , ni , andmi are defined by the equations (57). Consider the case whenσ (1)

y = σ (2)
y .

For y = 0, we have

σ (1)
y = 2Re

[
s1

x − τ (2)
1

+ s2

x − τ (2)
2

+ l1

x − τ (2)
1

+ l2

x − τ (2)
2

]

,

σ (2)
y = Re

[
a

(2)
0

x − τ (2)
1

+ n1

x − τ (2)
1

+ n2

x − τ (2)
2

+ b
(2)
0

x − τ (2)
2

+ m1

x − τ (2)
1

+ m2

x − τ (2)
2

]

.

Comparing the coefficients at 1
1−τ2

1
and 1

1−τ2
2

we obtain, respectively

s1 + l1 − n1 −m1 = a(2)
0 , s2 + l2 − n2 −m2 = b(2)

0 .

Thus, the coefficients satisfy the following system of equations:

s1 + l1 − n1 −m1 = a(2)
0 ,

μ
(1)
1 s1 + μ(1)

2 l1 − μ(2)
1 n1 − μ(2)

2 m1 = μ(2)
1 a

(2)
0 ,

p
(1)
1 s1 + p(1)

2 l1 − p(2)
1 n1 − p(2)

2 m1 = p(2)
1 a

(2)
0 ,

q
(1)
1 s1 + q (1)

2 l1 − q (2)
1 n1 − q (2)

2 m1 = q (2)
1 a

(2)
0 , (59)
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Fig. 3 Scheme of model problem with circular hole in an orthotropic sectionally homogeneous
plane

s2 + l2 − n2 −m2 = b(2)
0 ,

μ
(1)
1 s2 + μ(1)

2 l2 − μ(2)
1 n2 − μ(2)

2 m2 = μ(2)
2 b

(2)
0 ,

p
(1)
1 s2 + p(1)

2 l2 − p(2)
1 n2 − p(2)

2 m2 = p(2)
2 b

(2)
0 ,

q
(1)
1 s2 + q (1)

2 l2 − q (2)
1 n2 − q (2)

2 m2 = q (2)
2 b

(2)
0 . (60)

Let this system be solved. Then, the stress functions would be given by (58) and
the stresses would be given by (52) and (53). These solutions were also obtained by
other methods [4, 8, 10, 27].

3.2.2 Example

We consider sectionally homogeneous infinite media with a circular hole when the
surface homogeneous pressure is applied as shown in the Fig. 3. It is assumed that
the stresses at infinity take the following values:

σ∞xj , σ∞y = ρgH , τ∞xy = 0.
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The complex potentials have the following asymptotic far away from the contact
surface:

Φ
(j )
1 (z1) = Γ1, Φ

(j )
2 (z2) = Γ2,

where Γ (j )
i are constants to be defined.

The equations (60) yield the following system of equations:

2Re[(μ(j )
1 )2Γ1 + (μ(j )

2 )2Γ2] = σ∞xj ,

2Re[Γ1 + Γ2] = σ∞y ,

2Re[μ(j )
1 Γ1 + μ(j )

2 Γ2] = 0. (61)

The last equation of (61) holds if

2(μ(j )
1 Γ1 + μ(j )

2 Γ2) = ir (j )
0 ,

where r (j )
0 is an arbitrary real constant. The system (61) can be easily solved and

Γ1 = i(r (1)
0 μ

(2)
2 − r (2)

0 μ
(1)
2 )/Δ,

Γ2 = i(r (2)
0 μ

(1)
1 − r (1)

0 μ
(2)
1 )/Δ, (62)

where Δ = μ(1)
1 μ

(2)
2 − μ(1)

2 μ
(2)
1 . Substitution of (62) into the first equation of (61)

yields

δ1r
(1)
0 + δ2r (2)

0 = −σ
∞
x1

2
,

δ3r
(1)
0 + δ4r (2)

0 = −σ
∞
x2

2
, (63)

where δ1 = Im[((μ(1)
1 )2μ

(2)
2 − (μ(1)

2 )2μ
(2)
1 )/Δ], δ2 = Im[(μ(1)

1 μ
(1)
2 (μ(1)

2 − μ(1)
1 )/Δ],

δ3 = Im[(μ(2)
1 μ

(2)
2 (μ(2)

1 − μ(2)
2 )/Δ], δ4 = Im[((μ(2)

2 )2μ
(1)
1 − (μ(2)

1 )2μ
(1)
2 )/Δ].

Therefore,

r
(1)
0 = δ1σ

∞
x2
− δ4σ∞x1

2(δ1δ4 − δ2δ3)
, r (2)

0 = δ3σ
∞
x1
− δ1σ

∞
x2

2(δ1δ4 − δ2δ3)
.

The second equation of (61) yields

(δ4δ5 − δ3δ6)σ∞x1
+ (δ1δ6 − δ2δ5)σ∞x2

= (δ1δ4 − δ2δ3)σ∞y , (64)

where

δ5 = Im[(μ(2)
2 − μ(2)

1 )/Δ], δ6 = Im[(μ(1)
1 − μ(1)

2 )/Δ].

Let the condition σ∞x1 = σ∞x2 hold at infinity. Then the value σ∞x is defined through
σ∞y .
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Fig. 4 Constant force acting
on the segment a a

ξ
dξ

F (ξ) = Pdξ

x

y

We will solve the source problem by the superposition principle for the following
two stress states. The first one is the stress state in the media without a hole and the
second one is characterized by the vanishing stresses at infinity and by the following
boundary conditions on the hole surface:

σs = (− p0 + σ∞x2
) cos (n, y)− (σ∞y − p0) cos (n, x),

σn = (− p0 + σ∞x2
) cos2 (n, x)+ (σ∞y − p0) cos2 (n, y). (65)

Then, the full stresses are defined by formulae at the upper and lower half planes

σ (1)
x2
= −σ∞x1

+ σ (1)
x , σ (1)

y2
= −σ∞y + σ (1)

y , τ (1)
xy2

= τ (1)
xy ,

σ (2)
x2
= −σ∞x2

+ σ (2)
x , σ (2)

y2
= −σ∞y + σ (2)

y , τ (2)
xy2

= τ (2)
xy . (66)

3.2.3 Method of Unknown Loads and its Numerical Realization

We consider a problem of the load uniformly distributed on the segment |x| ≤ a as
shown in the Fig. 4. Let it be solved by the method presented in the previous section.
Then, we define the stresses near the point (X0,Y0) as the functions of (x, y)

σ (j )
x = X0A

(j )
x (x, y)+ Y0B

(j )
x (x, y),

σ (j )
y = X0A

(j )
y (x, y)+ Y0B

(j )
y (x, y),

τ (j )
xy = X0A

(j )
xy (x, y)+ Y0B

(j )
xy (x, y). (67)

The following expressions for the stresses take place on the segment

σ (j )
x = PX0IA

(j )
x (x, y)+ PY0IB

(j )
x (x, y),

σ (j )
y = PX0IA

(j )
y (x, y)+ PY0IB

(j )
y (x, y),

τ (j )
xy = PX0IA

(j )
xy (x, y)+ PY0IB

(j )
xy (x, y), (68)
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Fig. 5 Scheme of model problem solving

where

IAx(j )(x, y) =
∫ a

−a
A(j )
x (x − ξ , y)dξ , IAy(j )(x, y) =

∫ a

−a
A(j )
y (x − ξ , y)dξ ,

IB(j )
x (x, y) =

∫ a

−a
B(j )
x (x − ξ , y)dξ , IB(j )

y (x, y) =
∫ a

−a
B(j )
y (x − ξ , y)dξ

IA(j )
xy (x, y) =

∫ a

−a
A(j )
xy (x − ξ , y)dξ , IB (j )

xy (x, y) =
∫ a

−a
B (j )
xy (x − ξ , y)dξ ,

PX0 =
∫ a

−a
X0dξ , PY0 =

∫ a

−a
Y0dξ.

The method of solution near the circular hole (see Fig. 5) can be presented as
follows. First, the circle is divided onto N segments. Unknown constant shear and
normal loads P js and P jn are applied (to each small segment). Using (67) and (68)
we can calculate the stresses at the middle points of each segment

σ is = ΣNk=1A
ik
ssP

k
s +ΣNk=1A

ik
snP

k
n ,

σ in = ΣNk=1A
ik
nsP

k
s +ΣNk=1A

ik
nnP

k
n , i = 1,N. (69)

The values P jn and P js can be found from the conditions at the centres of each
element. As a result we obtain the following system of equations:

(− p0 + σ∞x2
) cos (n, y)− (σ∞y − p0) cos (n, x) = ΣNk=1A

ik
ssP

k
s +ΣNk=1A

ik
snP

k
n ,

(− p0 + σ∞x2
) cos2 (n, x)+ (σ∞y − p0) cos2 (n, y) = ΣNk=1A

ik
nsP

k
s +ΣNk=1A

ik
nnP

k
n ,

i = 1,N. (70)
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Fig. 6 Stresses caused by
load of arbitrary orientation

β

x
y

y

xcx

cy

, y0x PP

Consider an example of the distributed force on the segment in the local coordinate
system (x, y) shown in Fig. 6. The segment is defined by equations: |x| ≤ a,y = 0.
The coordinate systems are related by equations

x = (x − cx) cos (β)+ (y − cy) sin (β), y = −(x − cx) sin (β)+ (y − cy) cos (β).
(71)

The stresses in the global coordinates have the form

σx = σx cos2 (β)− 2τxy sin (β) cos (β)+ σy sin2 (β),

σy = σx sin2 (β)+ 2τxy sin (β) cos (β)+ σy cos2 (β),

τxy = (σx − σy) sin (β) cos (β)+ τxy cos (2β). (72)

Moreover, we have

σ (j )
x = PX0

(IA(j )
x (x, y) cos2 (β)− 2IA(j )

xy (x, y) cos (β) sin (β)+
IA(j )

y (x, y) sin2 (β))+ PY0
(IB(j )

x (x, y) cos2 (β)−
2IB(j )

xy (x, y) cos (β) sin (β)+ IB(j )
y (x, y) sin2 (β)),

σ (j )
y = PX0

(IA(j )
x (x, y) sin2 (β)+ 2IA(j )

xy (x, y) cos (β) sin (β)+
IA(j )

y (x, y) cos2 (β))+ PY0
(IB(j )

x (x, y) sin2 (β)+
2IB(j )

xy (x, y) cos (β) sin (β)+ IB(j )
y (x, y) cos2 (β)),

τ (j )
xy = PX0

((IA(j )
x (x, y)− IA(j )

y (x, y)) sin (β) cos (β)+
IA(j )

xy (x, y)( cos2 (β)− sin2 (β)))+ PY0
((IB (j )

x (x, y)−
IB (j )

y (x, y)) sin (β) cos (β)+ IB (j )
xy (x, y)( cos2 (β)− sin2 (β))). (73)

In order to obtain the influence coefficients IA(j )
xy ,IA(j )

xy , . . . we choose the point
(x, y) as the centre of the j th element. The scheme for boundary elements is shown
in Fig. 7. The local coordinates of the ith point relative to the j th point have the form
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y'

2ai
[i]

x'

βi

yi

x

y

2a j
α

s

n
[j]

xy
β j

x j xi

y j

Fig. 7 Scheme for boundary elements

x = (xi − xj ) cos (βj )+ (yi − yj ) sin (βj ),

y = −(xi − xj ) sin (βj )+ (yi − yj ) cos (βj ) (74)

The stress components at the ith point relative to the j th point can be obtained
by (68)

σ
(k)i
x = P jx IA(k)

x (x, y)+ P jy IB(k)
x (x, y),

σ
(k)i
y = P jx IA(k)

y (x, y)+ P jy IB(k)
y (x, y),

τ
(k)i
xy = P jx IA(k)

xy (x, y)+ P jy IB(k)
xy (x, y), (75)

where k is the number of the half-plane; i, j elements numbers. Ultimately, we have

σ i(k)n = P js (IA(k)
x (x, y) sin2 (γ )− IA(k)

xy (x, y) sin (2γ )+ IA(k)
y (x, y) cos2 (γ ))+

P jn (IB(k)
x (x, y) sin2 (γ )− IB(k)

xy (x, y) sin (2γ )+ IB (k)
y (x, y) cos2 (γ )),

σ i(k)s = P js ((IA(j )
y (x, y)− IA(j )

x (x, y))
sin (2γ )

2
+ IA(j )

xy (x, y) cos (2γ ))+

P jn ((IB (j )
y (x, y)− IB (j )

x (x, y))
sin (2γ )

2
+ IB(j )

xy (x, y) cos (2γ )),

(76)

where γ = βi − βj . So we can find the influence coefficients expressed through
P
j
s and P jn in (76). Substituting them in (70) we arrive at a linear system. After its

solution the stress–strain state can be explicitly determined.
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Fault

Mined out space

km

km

Fig. 8 Four layered massive

3.3 Three-dimensional Models of Conjugative Processes in
Porous Media by Use of the Finite Element Method

We consider transversely an isotropic viscoelastic four-layered massif with intersec-
tion faults. There is also a mined out space. The scheme of the problem is displayed
in Fig. 8. The second layer from the top has porous liquid in its skeleton. We inves-
tigate the flow in the massif skeleton when a mined external space is moved to the
fault. The problem is described by the following equation:

1) Equilibrium equations with the fluid pressure have the form

∂σxx

∂x
+ ∂σxy
∂y

+ ∂σxz

∂z
− ∂p
∂x

= 0,

∂σxy

∂x
+ ∂σyy
∂y

+ ∂σyz

∂z
− ∂p
∂y

= 0,

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
− ∂p
∂z
+ ρg = 0.

2) Storage equation with the pressure terms [25]

∂p

∂t
= a

(
∂2 p

∂x2
+ ∂

2 p

∂y2
+ ∂

2 p

∂z2

)

− αp ∂
∂t

(
σxx + σyy + σzz

3

)

,

where a = k(1+ε)
γ (aν+εβ) , αp = aν

aν+εβ , ε is the porosity coefficient, β is the fluid com-
pressibility, aν is the rock hardening coefficient, k is the filtration coefficient, and t
is time.

3) The physical law yields

σxx = 1− νpzνzp

EpEzΔ
εxx + νp + νzpνzp

EpEzΔ
εyy + νzp + νzpνzp

EpEzΔ
εzz + 2D(ε̇xx − ε̇0),

σyy = νp + νzpνzp

EpEzΔ
εxx + 1− νpzνzp

EpEzΔ
εyy + νzp + νzpνzp

EpEzΔ
εzz + 2D(ε̇yy − ε̇0),
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σzz = νzp + νzpνzp

EpEzΔ
εxx + νzp + νzpνzp

EpEzΔ
εyy +

1− ν2
p

E2
pΔ

εzz + 2D(ε̇zz − ε̇0),

σxz = 2Gzpεxz + 2Dε̇xz, σyz = 2Gzpεyz + 2Dε̇yz, σxy = Ep

1+ νp εxy + 2Dε̇xy ,

where Ep, and νp are Young’s modulus and Poisson’s ratio respectively in the hor-
izontal plane; Ez, νzp, and Gzp are Young’s modulus, Poisson’s ratio, and the shear

modulus in the vertical plane; νpz = Ep

Ez
νzp ;Δ = (1+νp)(1−2νzpνpz)

E2
pEz ; and D is the

viscosity coefficient. Here, the Kelvin model is used.

4) Compatibility equations

∂2εxx

∂y2
+ ∂

2εyy

∂x2
= 2

∂2εxy

∂x∂y
,

∂2εxx

∂z2
+ ∂

2εzz

∂x2
= 2

∂2εxz

∂x∂z
,

∂2εzz

∂y2
+ ∂

2εyy

∂z2
= 2

∂2εyz

∂z∂y
,

∂2εxx

∂y∂z
− ∂

2εxy

∂x∂z
− ∂

2εxz

∂x∂y
+ ∂

2εyz

∂x2
= 0,

∂2εzz

∂x∂y
− ∂

2εxz

∂y∂z
− ∂

2εyz

∂x∂z
+ ∂

2εxy

∂z2
= 0,

∂2εyy

∂x∂z
− ∂

2εxy

∂y∂z
− ∂

2εyz

∂x∂y
+ ∂

2εxz

∂y2
= 0.

5) Cauchy’s relations

εij = 1

2

( ∂ui
∂xj

+ ∂uj
∂xi

)
.

6) Boundary and initial conditions:
a) On the left and right edges, i.e. with y = Ys , y = Yn: σyz = σxy = 0, uy =

0, p = 0
b) On the front and back edges, i.e. with x = Xw, x = Xe: σxz = σyx = 0,ux =

0,p = 0
c) At the bottom: ux = uy = uz = 0
d) At the upper surface: σxz = σyz = σzz

e) At the boundary of the water layer with the massif–impermeability condition
∂p

∂n
= 0

f) p = 0 for t = 0
g) Contact conditions on the faults surfaces
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Fig. 9 Pressure distribution
in horizontal plane after third
step of deleting elements

σn1 = σn2,

un1 = un2,

στ1 = στ2, |στ | < fσn,
uτ1 = uτ2, |στ | < fσn,

στ1 = στ2 = f σn, |στ | > fσn.
Here, σn and στ are the normal and shear stresses and f is the friction coefficient.

We are interested only in the additional pressure, which is caused by mining works.
Hence, we impose vanishing boundary and initial conditions for the pressure.

The problem is solved by a finite element package using the following scheme:

1) Calculate the initial stress–strain state of the massif caused by gravity. Hydrome-
chanical processes are not considered at this stage.

2) Step-by-step deletion of the elements which model the mined out space. Dimen-
sions of the mined out space are 2000×2000×10 m3. And on each step we delete
elements of size l × 2000× 10 m3. Hence, the mined out space is in movement
to the fault (on the first step l = 1200 m and on the following steps l = 200 m).
The velocity of movement is 1 km/year.

3) Calculation of the moment when the steady state of the massif is reached. We
used the following as the physical, mechanical, and geometry parameters of the
layers:
First layer: Ep = 0.3(GPa), Ez = 1(GPa), νp = νzp = 0.3, Gzp =
0.0577(GPa), top = 0, bottom = −130 m,
Second layer: Ep = 5(GPa), Ez = 5(GPa), νp = νzp = 0.3, Gzp =
0.288(GPa), top = −130, bottom = −400 m,
Third layer: Ep = 14(GPa), Ez = 14(GPa), νp = νzp = 0.3, Gzp =
0.8(GPa), top = −400, bottom = −1800 m,
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Fig. 10 Pressure distribution
in horizontal plane after fifth
step of deleting elements

Fig. 11 Pressure distribution
in horizontal plane after last
step of deleting elements

Fourth layer: Ep = 14(GPa), Ez = 14(GPa), νp = νzp = 0.3, Gzp =
0.8(GPa), top = −1800, bottom = −2200 m.

The fluid properties of the second layer are expressed by the parameters

k = 10−9 (m/s), β = 10−10 (Pa−1), ε = 0.11, aν = 10−9 (Pa−1)

Distribution of fluid pressure is shown In Figs. 9, 10, 11, 12, 13 and 14 at the
horizontal plane on the depth 250 m and at the vertical plane the middle of the mined
out space perpendicular to the x direction.

Remark: The fluid pressure has the same sign as the stresses, hence, at the
compressible pressure is negative.
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Fig. 12 Pressure distribution in vertical plane in the third step of deleting elements

Fig. 13 Pressure distribution in horizontal plane after fifth step of deleting elements

Fig. 14 Pressure distribution in horizontal plane after last step of deleting elements

One can see from the graphics that the water layer is in zones with high horizon-
tal stresses, because large sizes of the mined out space of compressible horizontal
stresses are greater than the tension of vertical stresses. Therefore, the additional
pressure of fluid is positive in the usual sense. We can also see the influence of the
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fault on the pressure distribution because the pressure distribution is different on both
sides of the fault.

The problem is solved by use of the finite difference approximation in time; a
finite element method is used at each time step for spacial variables. The package
T ochnog© is used for implementation of the finite element method.

Acknowledgements The authors are grateful to Dr. V.A. Savenkov for fruitful discussions during
the preparation of the chapter.
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Abstract Let W be a Banach space, (V ,+) be a commutative group, p be an
endomorphism of V , and p : V → V be defined by p(x) := x−p(x) for x ∈ V . We
present some results on the Hyers–Ulam type stability for the following functional
equation

f (p(x)+ p(x))+ f (p(x)+ p(y)) = f (x)+ f (y),

in the class of functions f : V → W .

Keywords Hyers–Ulam stability · p-Wright affine function · Polynomial function

1 Introduction

Let 0 < p < 1 be a fixed real number and P be a nonempty subset of a real linear
space X. Assume that P is p-convex, i.e., px + (1− p)y ∈ P for x, y ∈ P . We say
that a function f mapping P into the set of reals R is p-Wright convex (see, e.g.,
[7, 8, 14, 17, 26]) if it satisfies the inequality

f (px + (1− p)y)+ f ((1− p)x + py) ≤ f (x)+ f (y) x, y ∈ P. (1)

Note that we obtain (1) by adding the following usual p-convexity inequality

f (px + (1− p)y) ≤ pf (x)+ (1− p)f (y) x, y ∈ P (2)

to its corresponding version (with x and y interchanged)

f (py + (1− p)x) ≤ pf (y)+ (1− p)f (x) x, y ∈ P. (3)
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Department of Mathematics, Pedagogical University,
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Analogously, we say that g : P → R is p-Wright concave provided the
subsequent inequality holds:

f (px + (1− p)y)+ f ((1− p)x + py) ≥ f (x)+ f (y) x, y ∈ P.
The functions that are simultaneously p-Wright convex and p-Wright concave,

i.e., satisfy the functional equation

f (px + (1− p)y)+ f ((1− p)x + py) = f (x)+ f (y), (4)

are called p-Wright affine (see [7]).
Note that for p = 1/2, Eq. (4) is just the well-known Jensen functional equation

f

(
x + y

2

)

= f (x)+ f (y)

2
.

If p = 1/3, then Eq. (4) can be written in the form

f (x + 2y)+ f (2x + y) = f (3x)+ f (3y). (5)

Solutions and stability of the latter equation have been investigated in [16] (cf. [5]) in
connection with a generalized notion of the Jordan derivations on Banach algebras.
Solutions and stability of Eq. (4), for more arbitrary p, have been studied in [4, 6, 7]
(see also [13, 23]). (For further information and references on stability of functional
equations, we refer to, e.g., [3, 10, 11, 15, 18–22, 25]). In particular, the following
results have been obtained in [4] (C denotes the set of complex numbers).

Theorem 1 Let X be a normed space over a field F ∈ {R, C}, Y be a Banach
space, p ∈ F, A, k ∈ (0,∞), |p|k + |1− p|k < 1, and g : X→ Y satisfy

‖g(px + (1− p)y)+ g((1− p)x + py)− g(x)− g(y)‖ ≤ A(‖x‖k + ‖y‖k) (6)

for all x, y ∈ X. Then there is a unique solution G : X→ Y of Eq. (4) with

‖g(x)−G(x)‖ ≤ A‖x‖k
1− |p|k − |1− p|k x ∈ X. (7)

Theorem 2 Let X be a normed space over a field F ∈ {R, C}, Y be a Banach
space, p ∈ F, A, k ∈ (0,∞), |p|2k + |1− p|2k < 1, and g : X→ Y satisfy

‖g(px + (1− p)y)+ g((1− p)x + py)− g(x)− g(y)‖ ≤ A‖x‖k‖y‖k

for all x, y ∈ X. Then g is a solution to (4).
In this chapter, we complement these two theorems by considering the inequality

‖g(px + (1− p)y)+ g((1− p)x + py)− g(x)− g(y)‖ ≤ δ x, y ∈ X (8)

with a fixed positive real δ. In particular, we also obtain a description of solutions to
(4).
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Note that if we write p := 1− p, then Eq. (4) can be rewritten as follows:

f (px + py)+ f (px + py) = f (x)+ f (y). (9)

We use this form of (4) in the sequel. Moreover, we consider a generalization of it with
p and p being suitable functions, using the notions px := p(x) and px := px − x
(x ∈ X) for simplicity.

Actually, some results in such situation can be derived from [23]. Namely, from
[23, Theorem 2] we can deduce the following.

Theorem 3 Let δ ∈ (0,∞), (X,+) be a commutative group, p : X → X be
additive (i.e., p(x+y) = p(x)+p(y) for x, y ∈ X), p(X) = p(X), and g : X→ C

satisfy

|g(px + (1− p)y)+ g((1− p)x + py)− g(x)− g(y)| ≤ δ x, y ∈ X
for all x, y ∈ X. Then there is a solution G : X→ C of Eq. (4) with

sup
x∈X

|g(x)−G(x)| <∞. (10)

In this chapter, we provide a bit more precise estimations than (10), though we
apply reasonings similar to those in [23].

2 Auxiliary Information and Lemmas

Let us start with a result that follows easily from [2, 24] (cf. [9]). We need for it the
notion of the Fréchet difference operator. Let us recall that for a function f , mapping
a semigroup (S,+) into a group (G,+),

Δyf (x) = Δ1
y f (x) := f (x + y)− f (x) x, y ∈ S,

Δ2
t ,z := Δt ◦Δz, Δ2

t := Δ2
t , t t , z ∈ S,

Δ3
t ,u,z := Δt ◦Δu ◦Δz, Δ3

t := Δ3
t , t , t t , u, z ∈ S.

It is easy to check that

Δ2
t ,zf (x) = f (x + t + z)− f (x + t)− f (x + z)+ f (x) x, t , z ∈ S,

Δ3
t ,z,uf (x) = f (x + t + z + u)− f (x + t + z)− f (x + t + u)− f (x + z + u)

+f (x + t)+ f (x + z)+ f (x + u)− f (x) x, t , z, u ∈ S.
We refer to [12] for more information and further references concerning this subject.
From [2, Theorem 4] (cf. [10, Theorem 7.6]) and [24, Theorem 9.1] we can easily
derive the following proposition.
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Proposition 1 Let W be a normed space, (V ,+) be a commutative group, ε ≥ 0,
and G : V → W satisfy the inequality

‖(Δ3
yG)(x)‖ ≤ ε x, y ∈ V. (11)

Assume that one of the following two hypotheses is valid.

(a) ε = 0.
(b) W is complete and V is divisible by 6 (i.e., for each x ∈ V , there is y ∈ V with
x = 6y).

Then there exist a constant c ∈ W , an additive mapping a : V → W , and a
symmetric biadditive mapping b : V 2 → W such that

‖G(x)− b(x, x)− a(x)− c‖ ≤ 2ε

3
x ∈ V.

Let us now recall two more stability results (see, e.g., [10, p. 13 and Theorem 3.1]).

Lemma 1 Let (V ,+) be a commutative group, W be a Banach space, ε ≥ 0, and
g : V → W satisfy the inequality

‖g(x + y)− g(x)− g(y)‖ ≤ ε x, y ∈ V.
Then there exists the limit

A(x) = lim
n→∞ 2−ng(2nx) x ∈ V (12)

and the function A : V → W , defined in this way, is additive and

‖g(x)− A(x)‖ ≤ ε x ∈ V.

Lemma 2 Let (V ,+) be a commutative group, W be a Banach space, ε ≥ 0, and
g : V → W satisfy the inequality

‖g(x + y)+ g(x − y)− 2 g(x)− 2 g(y)‖ ≤ ε x, y ∈ V.
Then there exists the limit

b(x) = lim
n→∞ 4−ng(2nx) x ∈ V (13)

and the function b : V → W , defined in this way, is quadratic and fulfills the
inequality

‖g(x)− b(x)‖ ≤ ε
2

x ∈ V.
In what follows, given a function p mapping a group (V ,+) into itself, for the

sake of simplicity we write,

px := p(x), px := x − px x ∈ V.
The next proposition will be very useful in the proofs of our main results.
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Lemma 3 Let (V ,+) be a commutative group, ε ≥ 0, p : V → V be a homo-
morphism with p(V ) = p(V ), andW be a normed space. Assume that g : V → W

satisfies the inequality

‖g(px + py)+ g(px + py)− g(x)− g(y)‖ ≤ ε x, y ∈ V. (14)

Then the following two statements are valid.

(i) If g is odd, then ‖Δ2
z,ug(x)‖ ≤ 4ε for x, z, u ∈ V .

(ii) ‖Δ3
t ,u,z g(x)‖ ≤ 8ε for x, z, u, t ∈ V.

Proof This proof is patterned on some reasonings from [23].
Take z ∈ V . There exists w ∈ V with pw = −pz, because p(V ) = p(V ) is a

subgroup of V . Note that

p(x + z)+ p(y + w) = px + py x, y ∈ V ,

whence replacing x by x + z and y by y + w in (14), we get

‖g(px + py + pz + pw)+ g(px + py) (15)

− g(x + z)− g(y + w)‖ ≤ ε x, y ∈ V.
Now, (14) and (15) yield

‖g(x + z) − g(x)− g(px + py + pz + pw) (16)

+ g(px + py)+ g(y + w)− g(y)‖
≤‖g(px + py + pz + pw)+ g(px + py)− g(x + z)− g(y + w)‖
+ ‖g(px + py)+ g(px + py)− g(x)− g(y)‖ ≤ 2ε x, y ∈ V.

Take u ∈ V .Analogously as before, we deduce that there is v ∈ V withpv = −pu.
Clearly

p(x + u)+ p(y + v) = px + py x, y ∈ V.
Hence, replacing x by x + u and y by y + v in (16), we have

‖g(x + u+ z) − g(x + u)− g(px + py + pz + pw)+ g(px + py) (17)

+ g(y + w+ v)− g(y + v)‖ ≤ 2ε x, y ∈ V.
It is easily seen that (16) and (17) imply

‖g(x + u+ z)− g(x + u)− g(x + z)+ g(x) (18)

+ g(y + w+ v)− g(y + w)− g(y + v)+ g(y)‖
≤‖g(px + py + pz + pw)− g(px + py)
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− g(x + z)− g(y + w)+ g(x)+ g(y)‖
+‖g(px + py + pz + pw)− g(px + py)

− g(x + u+ z)− g(y + w+ v)

+ g(x + u)+ g(y + v)‖ ≤ 4ε x, y ∈ V ,

which with x replaced by x + t yields

‖g(x + t + u+ z) − g(x + t + u)− g(x + t + z)+ g(x + t)+ g(y + w+ v)

− g(y + w)− g(y + v)+ g(y)‖ ≤ 4ε t , x, y ∈ V.
Combining (18) and the latter inequality, we get statement (ii).

For the proof of (i), observe that (18) with x replaced by −x − z − u, under the
assumption of the oddness of g, brings

‖ − g(x) + g(x + z)+ g(x + u)− g(x + z + u) (19)

+ g(y + w+ v)− g(y + w)− g(y + v)+ g(y)‖ ≤ 4ε x, y ∈ V ,

whence and from (18) we have

‖2 g(x)− 2 g(x + z)− 2 g(x + u)+ 2 g(x + z + u)‖ ≤ 8ε x, y ∈ V. (20)

This yields statement (i). �

The next corollary provides a description of solutions to (9), which will be useful
in the sequel.

Corollary 1 Let V and W be as in Proposition 1 and p : V → V be a homo-
morphism with p(V ) = p(V ). Then f : V → W satisfies Eq. (9) if and only if there
exist c ∈ W , an additive a : V → W and a biadditive and symmetric L : V 2 → W

such that

f (x) = L(x, x)+ a(x)+ c x ∈ V , (21)

L(px,px) = 0 x ∈ V. (22)

Proof Let f : V → W be a solution of Eq. (9). Then (14) holds with ε = 0.
Consequently, according to Lemma 3 (ii),

(Δ3
yf )(x) = 0 x, y ∈ V.

Hence, on account of Proposition 1, there exist c ∈ W , an additive a : V → W , and
a quadratic b : V → W such that f (x) = b(x) + a(x) + c for x ∈ V . Further, it
is well known (see, e.g., [1]) that there exists a symmetric biadditive L : V 2 → W

such that b(x) = L(x, x) for x ∈ V , whence (21) holds. Now, it is easily seen that
(9) (with y = 0) and (21) yield

L(px,px)+ L(px,px) = L(x, x) x ∈ V
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and consequently

−2 L(px,px) = L(px,px)+ L(px,px)− L(x, x) = 0 x ∈ V , (23)

which gives (22).
The converse is a routine task. �

We need yet the following very simple lemma.

Lemma 4 Let (V ,+) be a commutative group,W be a normed space, a, a0 : V →
W be additive, L,L0 : V 2 → W be biadditive, c ∈ W and

M := sup
x∈V

‖a0(x)− a(x)+ L0(x, x)− L(x, x)+ c‖ <∞. (24)

Then a = a0 and L = L0.

Proof That proof is actually a routine by now, but we present it here for the
convenience of readers.

Note that

‖L0(x, x)− L(x, x)‖ ≤ ‖a(x)− a0(x)‖ + ‖c‖ +M x ∈ V ,

whence

‖L(x, x)− L0(x, x)‖ = n−2‖L(nx, nx)− L0(nx, nx)‖
≤ n−2(‖a(nx)− a0(nx)‖ + ‖c‖ +M)

= n−1‖a(x)− a0(x)‖ + n−2(‖c‖ +M) x ∈ V , n ∈ N,

which yields L = L0. Hence, by (24),

‖a(x)− a0(x)‖ = n−1‖a(nx)− a0(nx)‖
≤ n−1(‖c‖ +M) x ∈ V , n ∈ N,

and consequently a = a0. �

3 The Main Stability Results

We start with two theorems describing odd and even solutions of functional inequality
(14). They will help us to obtain the main result of the chapter (but they seem to be
interesting, as well).

Theorem 4 Let (V ,+) be a commutative group, ε ≥ 0, p : V → V be a homo-
morphism, p(V ) = p(V ), and W be a Banach space. Assume that g : V → W is
odd and satisfies the inequality

‖g(px + py)+ g(px + py)− g(x)− g(y)‖ ≤ ε x, y ∈ V. (25)
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Then there exists a unique additive function, A : V → W , such that

‖g(x)− A(x)‖ ≤ 4ε x ∈ V. (26)

Moreover, (12) holds and for every solution h : V → W of (9) such that

sup
x∈V

‖g(x)− h(x)‖ <∞,

the function A− h is constant.

Proof According to Lemma 3 (i),

‖g(x + z + u)− g(x + z)− g(x + u)+ g(x)‖ ≤ 4ε x, z, u ∈ V ,

which with x = 0 yields

‖g(z + u)− g(z)− g(u)‖ ≤ 4ε z, u ∈ V.
Hence Lemma 1 implies the existence and the form of A. It remains to show the
statements on the uniqueness of A.

So, suppose that A0 : V → W is additive and

sup
x∈V

‖g(x)− A0(x)‖ ≤ 4ε.

Then
sup
x∈V

‖A(x)− A0(x)‖ ≤ 8ε,

which implies that A = A0.
Now, let h : V → W be a solution of (9) such that

sup
x∈V

‖g(x)− h(x)‖ <∞.

Then
M := sup

x∈V
‖A(x)− h(x)‖ <∞.

Further, by Corollary 1, h(x) = a(x) + L(x, x) + c with some c ∈ W , an additive
a : V → W , and a biadditive and symmetric L : V 2 → W . So, Lemma 4 implies
that

L(x, x) = 0 x ∈ V
and A = a. �

Theorem 5 Let (V ,+) be a commutative group, ε ≥ 0, p : V → V be a homomor-
phism, p(V ) = p(V ), and W be a Banach space. Assume that g : V → W is even
and satisfies inequality (25). Then there exists a unique biadditive and symmetric
mapping L : V 2 → W such that

‖L(x, x)− g(x)+ g(0)‖ ≤ 4ε x ∈ V. (27)
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Moreover, (22) holds,

L(x, x) = lim
n→∞ 4−ng(2nx) x ∈ V (28)

and, for every solution h : V → W of (9) with

sup
x∈V

‖g(x)− h(x)‖ <∞,

there is c ∈ W such that h(x) = L(x, x)+ c for x ∈ V .

Proof Let g0 := g− g(0). Then g0 fulfills (25) as well. According to Lemma 3 (ii),

‖g0(x+ t + z + u)− g0(x + t + z)− g0(x + t + u)− g0(x + z + u)

+ g0(x + t)+ g0(x + z)+ g0(x + u)− g0(x)‖ ≤ 8ε x, t , z, u ∈ S,

whence (with x = 0 and u = −t) we obtain

‖g0(z)− g0(t + z)− g0(0)− g0(z − t)+ g0(t)+ g0(z)+ g0(− t)− g0(0)‖
≤ 8ε t , u, z ∈ V

and consequently

‖2g0(z)− g0(t + z)− g0(z − t)+ 2g0(t)‖ ≤ 8ε t , z ∈ V.
Hence Lemma 2 implies the existence of L and (28).

Now we show that (22) holds. Clearly, (25) (with y = 0) yields

‖g(px)+ g(px)− g(x)− g(0)‖ ≤ ε x ∈ V.
So, (27) implies that

‖L(px,px) + L(px,px)− L(x, x)‖ (29)

≤‖L(px,px)+ g(0)− g(px)‖
+ ‖L(px,px)+ g(0)− g(px)‖
+ ‖g(x)− L(x, x)− g(0)‖
+ ‖g(px)+ g(px)− g(x)− g(0)‖ ≤ 13ε x ∈ V.

Since b is biadditive and it is very easy to check that

−2 L(px,px) = L(px,px)+ L(px,px)− L(x, x) x ∈ V ,

from (29), we get

2k2‖L(px,px)‖ = ‖L(pkx,pkx)+ L(pkx,pkx)− L(kx, kx)‖ (30)

≤ 13ε x ∈ V , k ∈ N,
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which means that (22) holds.
It remains to show the statements on the uniqueness of L. So, first suppose that

L0 : V 2 → W is symmetric, biaddititve, and

sup
x∈V

‖L0(x, x)− g(x)+ g(0)‖ ≤ 4ε.

Then
sup
x∈V

‖L0(x, x)− L(x, x)‖ ≤ 8ε,

whence from Lemma 4 we deduce that L0 = L.
Now, assume that h : V → W is a solution of (9) with

sup
x∈V

‖g(x)− h(x)‖ <∞.

This implies that

M := sup
x∈V

‖L(x, x)− h(x)‖ <∞.

Further, according to Corollary 1,

h(x) = a(x)+ S(x, x)+ c x ∈ V
with some c ∈ W , an additive a : V → W , and a biadditive and symmetric
S : V 2 → W . Clearly, by Lemma 4, L = S and a(x) = 0 for every x ∈ V . Hence

h(x) = L(x, x)+c x ∈ V. �

In what follows, given a function g mapping a group (V ,+) into a real linear
spaceW , by go and ge, we denote the odd and even parts of g, i.e.,

go(x) := g(x)− g(− x)

2
x ∈ V ,

ge(x) := g(x)+ g(− x)

2
x ∈ V.

The next theorem is the main result in this chapter.

Theorem 6 Let (V ,+) be a commutative group, p : V → V be a homomorphism
such that p(V ) = p(V ), W be a Banach space, ε ≥ 0 and g : V → W satisfy
inequality (25). Then there exist a unique additive function a : V → W and a
unique biadditive function L : V 2 → W such that

‖g(x)− a(x)− L(x, x)− g(0)‖ ≤ 8ε x ∈ V. (31)

Moreover, (22) holds,

a(x) = lim
n→∞ 2−ngo(2nx), L(x, x) = lim

n→∞ 4−nge(2nx) x ∈ V (32)
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and, for every solution h : V → W of (9) with

sup
x∈V

‖g(x)− h(x)‖ <∞, (33)

there is c ∈ W such that h(x) = a(x)+ L(x, x)+ c for x ∈ V .
If V is divisible by 6, then there exists c0 ∈ W with

‖g(x)− a(x)− L(x, x)− c0‖ ≤ 16ε

3
x ∈ V. (34)

Proof It is easily seen that go and ge satisfy inequalities analogous to (25). So, by
Theorems 4 and 5, there exist an additive function a : V → W and a symmetric
biadditive function L : V 2 → W such that

‖go(x)− a(x)‖ ≤ 4ε, ‖ge(x)− L(x, x)− g(0)‖ ≤ 4ε x ∈ V. (35)

Moreover, (32) holds and, clearly,

‖g(x)− a(x)− L(x, x)− g(0)‖ ≤ ‖go(x)− a(x)‖ (36)

+‖ge(x)− L(x, x)− g(0)‖ ≤ 8ε x ∈ V.
Further, (25) (with y = 0) yields

‖ge(px)+ ge(px)− ge(x)− g(0)‖ ≤ ε x ∈ V.
Hence analogous to (29), from (35) we derive that

‖L(px,px)+ L(px,px)− L(x, x)‖ ≤ 13ε x ∈ V , (37)

whence (30) holds, which implies (22).
For the proof of uniqueness of a and L, suppose that a0 : V → W is additive,

L0 : V 2 → W is biadditive, and

‖g(x)− a0(x)− L0(x, x)− g(0)‖ ≤ 8ε x ∈ V. (38)

Then

‖a0(x)− a(x)− L0(x, x)− L(x, x)‖ ≤ 16ε x ∈ V (39)

and consequently, by Lemma 4, L = L0 and a = a0.
Now, let h : V → W be a solution of (9) fulfilling condition (33). Then, in view

of (31),

M := sup
x∈V

‖a(x)+ L(x, x)+ g(0)− h(x)‖ <∞ (40)

and, according to Corollary 1, h(x) = a0(x) + L0(x, x) + c with some c ∈ W , an
additive a0 : V → W and a biadditive and symmetric L0 : V 2 → W . Hence, again
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Lemma 4 implies that L = L0 and a = a0. Consequently h(x) = L(x, x)+ a(x)+ c
for x ∈ V .

Finally assume that V is divisible by 6. Then, in view of Lemma 3 (ii), we have

‖(Δ3
yg)(x)‖ ≤ 8ε x, y ∈ V.

Further, by Proposition 1, there are c0 ∈ W , an additive a0 : V → W and a biadditive
and symmetric b0 : V 2 → W such that

‖g(x)− b0(x, x)− a0(x)− c‖ ≤ 16

3
ε x ∈ V. (41)

In view of (31) and Lemma 4, we must have a0 = a and L0 = L. �

For some discussions on a special case of condition (22), we refer to [7] (see also
[6, 8, 13]).

Remark 1 There arises natural questions whether (under reasonable suitable as-
sumptions) we can get some better estimations than in (31) and (34) and whether
the assumption of divisibility of V by 6 is necessary to get (34). Also, it would be
interesting to know if we can have c0 = g(0) in (34).
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Multiplicative Ostrowski
and Trapezoid Inequalities

Pietro Cerone, Sever S. Dragomir and Eder Kikianty

Abstract We introduce the multiplicative Ostrowski and trapezoid inequalities, that
is, providing bounds for the comparison of a function f and its integral mean in the
following sense:

f (x) exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

andf (b)
b−x
b−a f (a)

x−a
b−a exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

.

We consider the cases of absolutely continuous and logarithmic convex functions.
We apply these inequalities to provide approximations for the integral of f ; and the
first moment of f around zero, that is,

∫ b
a
xf (x)dx; for an absolutely continuous

function f on [a, b].

Keywords Ostrowski inequality · Trapezoid inequality · Logarithmic convex
function

1 Introduction

Comparison between functions and integral means is incorporated in Ostrowski type
inequalities. The first result in this direction is due to Ostrowski [27].
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Theorem 1 Let f : [a, b] → R be a differentiable function on (a, b) with the
property that

∣
∣f ′(t)

∣
∣ ≤ M for all t ∈ (a, b). Then

∣
∣
∣
∣f (x)−

1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣ ≤
⎡

⎣1

4
+
(
x − a+b

2

b − a

)2
⎤

⎦ (b − a)M , x ∈ [a, b] . (1)

The constant 1
4 is the best possible in the sense that it cannot be replaced by a

smaller quantity.
More inequalities of Ostrowski type have been generalised for functions which

are not necessarily differentiable, namely, absolutely continuous, Hölder continuous,
and convex functions. We refer to Sect. 2 for the details of these inequalities.

Inequalities providing upper bounds for the quantity
∣
∣
∣
∣
(x − a) f (a)+ (b − x) f (b)

b − a − 1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣ , x ∈ [a, b] (2)

are known in the literature as generalized trapezoid inequalities. It has been shown
in Dragomir [7] (cf. [6]) that

∣
∣
∣
∣
(x − a) f (a)+ (b − x) f (b)

b − a − 1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣ ≤
[

1

2
+
∣
∣
∣
∣
∣

x − a+b
2

b − a

∣
∣
∣
∣
∣

]
b∨

a

(f )

(3)

for any x ∈ [a, b] , provided that f is of bounded variation on [a, b] . In particular,
we have the trapezoid inequality

∣
∣
∣
∣
f (a)+ f (b)

2
− 1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣ ≤

1

2

b∨

a

(f ) . (4)

The constant 1
2 is the best possible. The trapezoid inequalities have also been

developed for other types of functions, such as absolutely continuous and convex
functions. We refer to Sect. 2 for the details of these inequalities.

Motivated by the above results, we intend to develop the Ostrowski and trapezoid
inequalities. In particular, we are interested in the multiplicative Ostrowski and
trapezoid inequalities, that is, providing bounds for the comparison of a function f
and its integral mean in the following sense:

f (x) exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

andf (b)
b−x
b−a f (a)

x−a
b−a exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

.

We summarise the results concerning absolutely continuous functions and loga-
rithmic convex functions in Sect. 3. In Sect. 4, we apply these inequalities to provide
approximations for the integral of f and the first moment of f around zero, that is,

∫ b

a

f (x) dx and
∫ b

a

xf (x) dx

for an absolutely continuous function f on [a, b].
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2 Results Concerning the Ostrowski and Trapezoid Inequalities

This section serves as a reference point for the developments of the Ostrowski and
trapezoid inequalities. Readers who are familiar with these developments may skip
this section.

We start with the Ostrowski type inequalities. The following results for absolutely
continuous functions hold (cf. [19–21]).

Theorem 2 Let f : [a, b] → R be absolutely continuous on [a, b]. Then, for all
x ∈ [a, b], we have:
∣
∣
∣
∣f (x)−

1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1
4 +

(
x− a+b2
b−a

)2
]

(b − a) ∥∥f ′∥∥∞ , if f ′ ∈ L∞ [a, b] ;

1

(α+1)
1
α

[(
x−a
b−a
)α+1 + ( b−x

b−a
)α+1

] 1
α

(b − a) 1
α

∥
∥f ′
∥
∥
β

, if f ′ ∈ Lβ [a, b]

1
α
+ 1
β
= 1,α > 1;

[
1
2 +

∣
∣
∣
x− a+b2
b−a

∣
∣
∣
] ∥
∥f ′
∥
∥

1 ;

where ‖·‖[a,b],r (r ∈ [1,∞]) are the usual Lebesgue norms on Lr [a, b], that is,

‖g‖[a,b],∞ := ess sup
t∈[a,b]

|g(t)| and ‖g‖[a,b],r :=
(∫ b

a

|g(t)|rdt
) 1
r

, r ∈ [1,∞).

The constants 1
4 , 1

(α+1)
1
α

and 1
2 respectively are sharp in the sense presented in

Theorem 1.
The above inequalities can also be obtained from Fink’s result [23]. If one drops the
condition of absolute continuity and assumes that f is Hölder continuous, then one
may state the result (cf. Dragomir et al. [22] and the references therein for earlier
contributions):

Theorem 3 Let f : [a, b] → R be of r −H− Hölder type, that is,

|f (x)− f (y)| ≤ H |x − y|r , for all x, y ∈ [a, b], (5)

where r ∈ (0, 1] andH > 0 are fixed. Then, for all x ∈ [a, b] , we have the inequality:

∣
∣
∣
∣f (x)−

1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣ ≤

H

r + 1

[(
b − x
b − a

)r+1

+
(
x − a
b − a

)r+1
]

(b − a)r .
(6)

The constant 1
r+1 is also sharp in the above sense.
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Note that if r = 1, that is, f is Lipschitz continuous, then we get the following
version of Ostrowski’s inequality for Lipschitz continuous functions (with constant
L > 0) (cf. [8]):

∣
∣
∣
∣f (x)−

1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣ ≤
⎡

⎣1

4
+
(
x − a+b

2

b − a

)2
⎤

⎦ (b − a)L, (7)

where x ∈ [a, b] . Here the constant 1
4 is also best possible.

Moreover, if one drops the condition of the continuity of the function, and assumes
that it is of bounded variation, then the following result may be stated (cf. [11]).

Theorem 4 Assume that f : [a, b] → R is of bounded variation and denote by
b∨

a

(f ) its total variation. Then,

∣
∣
∣
∣f (x)−

1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣ ≤
[

1

2
+
∣
∣
∣
∣
∣

x − a+b
2

b − a

∣
∣
∣
∣
∣

]
b∨

a

(f ) (8)

for all x ∈ [a, b]. The constant 1
2 is the best possible.

If we further assume that f is monotonically increasing, then the inequality (8)
may be improved in the following manner [9] (cf. [18]).

Theorem 5 Let f : [a, b] → R be monotonic nondecreasing. Then for all x ∈
[a, b], we have the inequality:

∣
∣
∣f (x)− 1

b−a
∫ b
a
f (t)dt

∣
∣
∣

≤ 1
b−a
{

[2x − (a + b)]f (x)+ ∫ b
a

sgn(t − x)f (t)dt
}

≤ 1
b−a {(x − a)[f (x)− f (a)]+ (b − x)[f (b)− f (x)]}

≤
[

1
2 +

∣
∣
∣
x− a+b2
b−a

∣
∣
∣
]

[f (b)− f (a)].

(9)

All the inequalities in (9) are sharp and the constant 1
2 is the best possible.

The case for the convex functions is as follows [13]:

Theorem 6 Let f : [a, b] ⊂ R → R be a convex function on [a, b]. Then for any
x ∈ (a, b) one has the inequality

1

2

[
(b − x)2 f ′+ (x)− (x − a)2 f ′− (x)

]

≤
∫ b

a

f (t) dt − (b − a) f (x)
≤ 1

2

[
(b − x)2 f ′− (b)− (x − a)2 f ′+ (a)

]
.

(10)

The constant 1
2 is sharp in both inequalities. The second inequality also holds for

x = a or x = b.
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For other Ostrowski’s type inequalities for the Lebesgue integral, we refer to
Anastassiou [1], Cerone and Dragomir [2, 4], Cerone, Dragomir and Roumeliotis
[5], and Dragomir [8, 9, 16]. Inequalities for the Riemann–Stieltjes integral may be
found in Dragomir [10, 12]; while the generalization for isotonic functionals was
provided in Dragomir [15]. For the case of functions of self-adjoint operators on
complex Hilbert spaces, see the recent monograph by Dragomir [17].

Now we recall the results concerning the trapezoid type inequalities. If f is
absolutely continuous on [a, b] , then (see [3], p. 93)
∣
∣
∣
∣
(x − a) f (a)+ (b − x) f (b)

b − a − 1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣1

4
+
(
x − a+b

2

b − a

)2
⎤

⎦ (b − a) ∥∥f ′∥∥[a,b],∞, iff ′ ∈ L∞ [a, b] ;

1

(q + 1)1/q

[(
x − a
b − a

)q+1

+
(
b − x
b − a

)q+1
] 1
q

(b − a)1/q ∥∥f ′∥∥[a,b],p
, (11)

iff ′ ∈ Lp [a, b] , p > 1, 1
p
+ 1
q
= 1;

[
1

2
+
∣
∣
∣
∣
∣

x − a+b
2

b − a

∣
∣
∣
∣
∣

]
∥
∥f ′
∥
∥

[a,b],1,

for any x ∈ [a, b] . Here, ‖ · ‖[a,b],p are the usual Lebesgue norms.
In particular, we have
∣
∣
∣
∣
f (a)+ f (b)

2
− 1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣

≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

4
(b − a) ∥∥f ′∥∥∞, iff ′ ∈ L∞ [a, b] ; (12)

1

2 (q + 1)1/q
(b − a)1/q ∥∥f ′∥∥

p
, iff ′ ∈ Lp [a, b] , p > 1, 1

p
+ 1
q
= 1,

1

2

∥
∥f ′
∥
∥

1
.

The constants 1
4 , 1

2(q+1)1/q
and 1

2 are the best possible. Finally, for convex functions
f : [a, b] → R, we have [14]

1

2

[
(b − x)2 f ′+ (x)− (x − a)2 f ′− (x)

]

≤ (b − x) f (b)+ (x − a) f (a)−
∫ b

a

f (t) dt

≤ 1

2

[
(b − x)2 f ′− (b)− (x − a)2 f ′− (a)

]

(13)

for any x ∈ (a, b), provided that f ′− (b) and f ′+ (a) are finite. As above, the second
inequality also holds for x = a and x = b and the constant 1

2 is the best possible in
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both sides of (13). In particular, we have

1

8
(b − a)2

[

f ′+

(
a + b

2

)

− f ′−
(
a + b

2

)]

≤ f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (t) dt

≤ 1

8
(b − a) [f ′− (b)− f ′− (a)

]
.

(14)

The constant 1
8 is best possible in both inequalities. For other recent results on the

trapezoid inequality, we refer to Dragomir [13], Kechriniotis and Assimakis [24],
Liu [25], Mercer [26] and Ujevíc [28].

3 Results

We present our main results in this section. We start with the first of our main
theorems.

Theorem 7 Let f : [a, b] → (0,∞) be an absolutely continuous function and
γ ,Γ ∈ R such that

γf (t) ≤ f ′(t) ≤ Γf (t), for almost all t ∈ [a, b].

Then, we have

exp

[
γ (x − a)2 − Γ (b − x)2

2(b − a)

]

≤ f (x) exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

≤ exp

[
Γ (x − a)2 − γ (b − x)2

2(b − a)

]

, (15)

for any x ∈ [a, b]. In particular, we have

exp

[

−1

8
(Γ − γ )(b − a)

]

≤ f
(
a + b

2

)

exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

≤ exp

[
1

8
(Γ − γ )(b − a)

]

. (16)

The constant 1
8 is best possible in (16).

Proof We use the Montgomery identity

g(x)− 1

b − a
∫ b

a

g(t) dt = 1

b − a
[∫ x

a

(t − a)g′(t) dt +
∫ b

x

(t − b)g′(t) dt
]

(17)
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where g : [a, b] → C is absolutely continuous on [a, b]. If we write (17) for the
functions g(t) = log f (t), then we get

log f (x) = 1

b − a
∫ b

a

log f (t) dt

+ 1

b − a
[∫ x

a

(t − a)
f ′(t)
f (t)

dt +
∫ b

x

(t − b)
f ′(t)
f (t)

dt

]

.

(18)

Taking the exponential of (18), and multiplying the result by

exp
[
− 1
b−a
∫ b
a

log f (t) dt
]
, we have

f (x) exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

= exp

{
1

b − a
[∫ x

a

(t − a)
f ′(t)
f (t)

dt +
∫ b

x

(t − b)
f ′(t)
f (t)

dt

]} (19)

which can be considered as the multiplicative Montgomery identity. Now, since

γ ≤ f
′(t)
f (t)

≤ Γ , for almost all t ∈ [a, b],

it implies that

γ

∫ x

a

(t − a) dt ≤
∫ x

a

(t − a)
f ′(t)
f (t)

dt ≤ Γ
∫ x

a

(t − a) dt ,

which is equivalent to

1

2
γ (x − a)2 ≤

∫ x

a

(t − a)
f ′(t)
f (t)

dt ≤ 1

2
Γ (x − a)2. (20)

Also,

Γ

∫ b

x

(t − b) dt ≤
∫ b

x

(t − b)
f ′(t)
f (t)

dt ≤ γ
∫ b

x

(t − b) dt ,

which is equivalent to

−1

2
Γ (b − x)2 ≤

∫ b

x

(t − b)
f ′(t)
f (t)

dt ≤ −1

2
γ (b − x)2. (21)

Adding inequalities (20) and (21) and dividing the resulted inequalities by b−a >
0 gives us

1

2(b − a)

[
γ (x − a)2 − Γ (b − x)2

]

≤ 1

b − a
[∫ x

a

(t − a)
f ′(t)
f (t)

dt +
∫ b

x

(t − b)
f ′(t)
f (t)

dt

]

(22)

≤ 1

2(b − a)

[
Γ (x − a)2 − γ (b − x)2

]
,
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for x ∈ [a, b]. Utilising (19) and (22), we get (15); with (16) as its special case, that
is, when x = a+b

2 . The proof for the best possible constant is given in Remark 1 (via
the sharpness of 1

4 in (23)).

Remark 1 If |f ′(t)| ≤ Mf (t) for almost every t ∈ [a, b], then by (15), for γ = −M
and Γ = M , we get

exp

[

− M

b − a

((

x − a + b
2

)2

+ 1

4
(b − a)2

)]

≤ f (x) exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

≤ exp

[
M

b − a

((

x − a + b
2

)2

+ 1

4
(b − a)2

)]

.

In particular, we have

exp

[

−1

4
M(b − a)

]

≤ f
(
a + b

2

)

exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

≤ exp

[
1

4
M(b − a)

]

, (23)

with 1
4 as the best constant. To verify this, suppose that (23) holds for constantsA,B

instead of − 1
4 and 1

4 , respectively, that is,

exp [AM(b − a)] ≤ f
(
a + b

2

)

exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

(24)

exp [BM(b − a)] ≥ f
(
a + b

2

)

exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

. (25)

Suppose in (24), f (x) = exp (|x − a+b
2 |), thusM = 1, and we have

exp [A(b − a)] ≤ exp

[

−1

4
(b − a)

]

.

Since the exponential function is strictly increasing, we now have A(b − a) ≤
− 1

4 (b − a); which asserts that A ≤ − 1
4 since a < b. Now suppose in (25) that

f (x) = exp (− |x − a+b
2 |), again,M = 1 and we have

exp [B(b − a)] ≥ exp

[
1

4
(b − a)

]

.

By similar arguments, we conclude that B ≥ 1
4 .

We have the results for multiplicative trapezoid inequalities in the following.
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Theorem 8 Let f : [a, b] → (0,∞) be an absolutely continuous function and
γ ,Γ ∈ R such that

γf (t) ≤ f ′(t) ≤ Γf (t), for almost all t ∈ [a, b].

Then, we have

exp

[
γ (b − x)2 − Γ (x − a)2

2(b − a)

]

≤ f (b)
b−x
b−a f (a)

x−a
b−a exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

≤ exp

[
Γ (b − x)2 − γ (x − a)2

2(b − a)

]

, (26)

for any x ∈ [a, b]. In particular, we have

exp

[

−1

8
(Γ − γ )(b − a)

]

≤ √f (a)f (b) exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

≤ exp

[
1

8
(Γ − γ )(b − a)

]

. (27)

The constant 1
8 is best possible in (27).

Proof We use the generalised trapezoid identity

(b − x)g(b)+ (x − a)g(a)

b − a − 1

b − a
∫ b

a

g(t) dt = 1

b − a
∫ b

a

(t − x)g′(t) dt , (28)

that holds for any x ∈ [a, b] and g an absolutely continuous function. If we write
(28) for the function g(t) = log f (t), then we get

(b − x) log f (b)+ (x − a) log f (a)

b − a − 1

b − a
∫ b

a

log f (t) dt

= 1

b − a
∫ b

a

(t − x)
f ′(t)
f (t)

dt

= 1

b − a
[∫ x

a

(t − x)
f ′(t)
f (t)

dt +
∫ b

x

(t − x)
f ′(t)
f (t)

dt

]

, (29)

for x ∈ [a, b]. By taking the exponential of (29), we have

f (b)
b−x
b−a f (a)

x−a
b−a exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

= exp

{
1

b − a
[∫ x

a

(t − x)
f ′(t)
f (t)

dt +
∫ b

x

(t − x)
f ′(t)
f (t)

dt

]}

, (30)
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for x ∈ [a, b], which is the multiplicative generalised trapezoid identity. Similarly
to the expositions in the proof of Theorem 7 and using the assumption that

γ ≤ f
′(t)
f (t)

≤ Γ , for almost all t ∈ [a, b],

we have

1

2(b − a)

[
γ (b − x)2 − Γ (x − a)2

]

≤ 1

b − a
[∫ x

a

(t − x)
f ′(t)
f (t)

dt +
∫ b

x

(t − x)
f ′(t)
f (t)

dt

]

≤ 1

2(b − a)

[
Γ (b − x)2 − γ (x − a)2

]
. (31)

Taking the exponential of (31) and utilising (30), we get the desired result (26);
with (27) as a special case when x = a+b

2 . The proof for the best possible constant
is given in Remark 2 (by inequality (32)).

Remark 2 If |f ′(t)| ≤ Mf (t) for almost all t ∈ [a, b], then by (26) we get (for
γ = −M , Γ = M):

exp

{

− M

(b − a)

[(

x − a + b
2

)2

+ 1

4
(b − a)2

]}

≤ f (b)
b−x
b−a f (a)

x−a
b−a exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

≤ exp

{
M

(b − a)

[(

x − a + b
2

)2

+ 1

4
(b − a)2

]}

for any x ∈ [a, b]. In particular, we have

exp

[

−1

4
M(b − a)

]

≤ √f (a)f (b) exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

≤ exp

[
1

4
M(b − a)

]

, (32)

with 1
4 as the best constant. To verify this, suppose that (32) holds for constants C,D

instead of − 1
4 and 1

4 , respectively, that is,

exp [CM(b − a)] ≤ √f (a)f (b) exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

(33)

exp [DM(b − a)] ≥ √f (a)f (b) exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

. (34)
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Suppose in (33), f (x) = exp (− |x − a+b
2 |), thusM = 1, and we have

exp [C(b − a)] ≤ exp

[

−1

4
(b − a)

]

.

Since the exponential function is strictly increasing, we now have C(b − a) ≤
− 1

4 (b − a); which asserts that C ≤ − 1
4 since a < b. Now suppose in (34) that

f (x) = exp (|x − a+b
2 |), again,M = 1 and we have

exp [D(b − a)] ≥ exp

[
1

4
(b − a)

]

.

By similar arguments, we conclude that D ≥ 1
4 .

4 Applications

In this section, we apply the results from Sect. 3 to provide approximations for the
integral of f and the first moment of f around zero. We start with the inequalities for
logarithmic convex functions, as tools to help us in providing the above mentioned
approximations.

If f : [a, b] → (0,∞) is logarithmic convex, that is, log f is convex, then log f
is differentiable almost everywhere and

f ′+(a)

f (a)
≤ ( log f (t))′ = f

′(t)
f (t)

≤ f
′−(b)

f (b)
, t ∈ (a, b).

Also, by Hermite–Hadamard’s inequality we have the bounds

log f

(
a + b

2

)

≤ 1

b − a
∫ b

a

log f (t) dt

≤ log f (b)+ log f (a)

2
= log

√
f (b)f (a).

(35)

From (15), we have

exp

⎡

⎣

f ′+(a)
f (a) (x − a)2 − f ′−(b)

f (b) (b − x)2

2(b − a)

⎤

⎦ exp

(
1

b − a
∫ b

a

log f (t) dt

)

≤ f (x)

≤ exp

⎡

⎣

f ′−(b)
f (b) (x − a)2 − f ′+(a)

f (a) (b − x)2

2(b − a)

⎤

⎦ exp

(
1

b − a
∫ b

a

log f (t) dt

)

,

(36)



68 P. Cerone et al.

for all x ∈ [a, b]. Utilising (35), we have

f

(
a + b

2

)

exp

⎡

⎣

f ′+(a)
f (a) (x − a)2 − f ′−(b)

f (b) (b − x)2

2(b − a)

⎤

⎦

≤ f (x)

≤ √f (a)f (b) exp

⎡

⎣

f ′−(b)
f (b) (x − a)2 − f ′+(a)

f (a) (b − x)2

2(b − a)

⎤

⎦ ,

(37)

for all x ∈ [a, b]. From (26), we have

exp

⎡

⎣

f ′+(a)
f (a) (b − x)2 − f ′−(b)

f (b) (x − a)2

2(b − a)

⎤

⎦ exp

(
1

b − a
∫ b

a

log f (t) dt

)

≤ f (b)
b−x
b−a f (a)

x−a
b−a

≤ exp

⎡

⎣

f ′−(b)
f (b) (b − x)2 − f ′+(a)

f (a) (x − a)2

2(b − a)

⎤

⎦ exp

(
1

b − a
∫ b

a

log f (t) dt

)

,

(38)

for all x ∈ [a, b]. Utilising (35), we have

f

(
a + b

2

)

exp

⎡

⎣

f ′+(a)
f (a) (b − x)2 − f ′−(b)

f (b) (x − a)2

2(b − a)

⎤

⎦

≤ f (b)
b−x
b−a f (a)

x−a
b−a

≤ √f (a)f (b) exp

⎡

⎣

f ′−(b)
f (b) (b − x)2 − f ′+(a)

f (a) (x − a)2

2(b − a)

⎤

⎦ ,

(39)

for all x ∈ [a, b].
Recall the error functions:

erf(x) = 2√
π

∫ x

0
e−t

2
dt and erfi(z) = −i erf(iz).

Proposition 1 Let f : [a, b] → (0,∞) be an absolutely continuous function and
γ ,Γ ∈ R such that

γf (t) ≤ f ′(t) ≤ Γf (t), for almost all t ∈ [a, b].
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Then we have the following estimates for the integral of f on [a, b]:

√
π

2α

[

erf

(
Γ√
2α

)

− erf

(
γ√
2α

)]

exp

[
1

b − a
∫ b

a

log f (t) dt + γΓ
2α

]

≤
∫ b

a

f (x) dx

≤
√
π

2α

[

erfi

(
Γ√
2α

)

− erfi

(
γ√
2α

)]

exp

[
1

b − a
∫ b

a

log f (t) dt − γΓ
2α

]

;

where α = (Γ − γ )/(b − a). Furthermore, if f is log convex, then we have

√
π

2α

[

erf

(
Γ√
2α

)

− erf

(
γ√
2α

)]

f

(
a + b

2

)

exp

(
γΓ

2α

)

≤
∫ b

a

f (x) dx

≤
√
π

2α

[

erfi

(
Γ√
2α

)

− erfi

(
γ√
2α

)]
√
f (a)f (b) exp

(

−γΓ
2α

)

.

Proof First, we note some useful identities to help us in our calculations:

γ (x − a)2 − Γ (b − x)2

2(b − a)
= − Γ − γ

2(b − a)

(

x − bΓ − aγ
Γ − γ

)2

+ (b − a)γΓ

2(Γ − γ )
; (40)

Γ (x − a)2 − γ (b − x)2

2(b − a)
= Γ − γ

2(b − a)

(

x + bγ − aΓ
Γ − γ

)2

− (b − a)γΓ

2(Γ − γ )
. (41)

To simplify our calculations, we let

α = Γ − γ
b − a , β1 = bΓ − aγ

Γ − γ , β2 = aΓ − bγ
Γ − γ

so now (40) and (41) become

γ (x − a)2 − Γ (b − x)2

2(b − a)
= −α

2
(x − β1)

2 + γΓ
2α

; (42)

Γ (x − a)2 − γ (b − x)2

2(b − a)
= α

2
(x − β2)

2 − γΓ
2α
. (43)

We integrate (15) with respect to x over [a, b]. We observe the integral

∫ b

a

exp

[
γ (x − a)2 − Γ (b − x)2

2(b − a)

]

dx

= exp

(
γΓ

2α

)∫ b

a

exp
[
−α

2
(x − β1)

2
]
dx
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=
√

2

α
exp

(
γΓ

2α

)∫ − γ√
2α

− Γ√
2α

exp (− u2) du

=
√
π

2α
exp

(
γΓ

2α

)[

erf

(
Γ√
2α

)

− erf

(
γ√
2α

)]

.

Performing similar calculations, we get that:

∫ b

a

exp

[
Γ (x − a)2 − γ (b − x)2

2(b − a)

]

dx

= exp

(

−γΓ
2α

)∫ b

a

exp
[α

2
(x − β2)

2
]
dx

= −
√

2

α
exp

(

−γΓ
2α

)∫ i Γ√
2α

i
γ√
2α

i exp (− u2) du

=
√
π

2α
exp

(

−γΓ
2α

)[

erfi

(
Γ√
2α

)

− erfi

(
γ√
2α

)]

.

Thus (15) becomes:
√
π

2α
exp

(
γΓ

2α

)[

erf

(
Γ√
2α

)

− erf

(
γ√
2α

)]

≤
∫ b

a

f (x) dx exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

≤
√
π

2α
exp

(

−γΓ
2α

)[

erfi

(
Γ√
2α

)

− erfi

(
γ√
2α

)]

.

Multiplying the above by exp
[

1
b−a
∫ b
a

log f (t) dt
]

gives us the desired result. The

last set of inequalities follows from (37), coupled with the fact that both functions,
erf and erfi are monotonically increasing.

Proposition 2 Let 0 < a < b and f : [a, b] → (0,∞) be an absolutely continuous
function and γ ,Γ ∈ R such that

γf (t) ≤ f ′(t) ≤ Γf (t), for almost all t ∈ [a, b].

Then we have the following estimates for
∫ b
a
xf (x) dx:

exp

[
1

b − a
∫ b

a

log f (t) dt

]{
1

α

(

exp

(

−Γ (b − a)

2

)

− exp

(
γ (b − a)

2

))

+
√
π

2α
β1 exp

(
γΓ

2α

)[

erf

(
Γ√
2α

)

− erf

(
γ√
2α

)]}
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≤
∫ b

a

xf (x) dx

≤ exp

[
1

b − a
∫ b

a

log f (t) dt

]{
1

α

(

exp

(
Γ (b − a)

2

)

− exp

(

−γ (b − a)

2

))

+
√
π

2α
β2 exp

(

−γΓ
2α

)[

erfi

(
Γ√
2α

)

− erfi

(
γ√
2α

)]}

,

where

α = Γ − γ
b − a , β1 = bΓ − aγ

Γ − γ , β2 = aΓ − bγ
Γ − γ .

Proof We multiply (15) with x ≥ 0 and integrate the resulting inequality with
respect to x over [a, b]. We observe the integral

∫ b

a

x exp

[
γ (x − a)2 − Γ (b − x)2

2(b − a)

]

dx

= exp

(
γΓ

2α

)∫ b

a

x exp
[
−α

2
(x − β1)

2
]
dx

= exp

(
γΓ

2α

)[
2

α

∫ − γ√
2α

− Γ√
2α

u exp (− u2) du+
√

2

α
β1

∫ − γ√
2α

− Γ√
2α

exp (− u2) du

]

= exp

(
γΓ

2α

)[
1

α

(

− exp

(

−γ
2

2α

)

+ exp

(

−Γ
2

2α

))

+
√
π

2α
β1

(

erf

(
Γ√
2α

)

− erf

(
γ√
2α

))]

= 1

α

(

− exp

(
γ (b − a)

2

)

+ exp

(

−Γ (b − a)

2

))

+
√
π

2α
β1 exp

(
γΓ

2α

)[

erf

(
Γ√
2α

)

− erf

(
γ√
2α

)]

Performing similar calculations, we get that

∫ b

a

x exp

[
Γ (x − a)2 − γ (b − x)2

2(b − a)

]

dx

= exp

(

−γΓ
2α

)∫ b

a

x exp
[α

2
(x − β2)

2
]
dx

= exp

(

−γΓ
2α

)[

− 2

α

∫ Γ√
2α
i

γ√
2α
i

u exp (− u2) du+
√

2

α
β2

∫ Γ√
2α
i

γ√
2α
i

(− i) exp (− u2) du

]
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= exp

(

−γΓ
2α

)[
1

α

(

exp

(
Γ 2

2α

)

− exp

(
γ 2

2α

))

+
√
π

2α
β2

(

erfi

(
Γ√
2α

)

− erfi

(
γ√
2α

))]

= 1

α

(

exp

(
Γ (b − a)

2

)

− exp

(

−γ (b − a)

2

))

+
√
π

2α
β2 exp

(

−γΓ
2α

)[

erfi

(
Γ√
2α

)

− erfi

(
γ√
2α

)]

Thus (15) becomes:

1

α

(

exp

(

−Γ (b − a)

2

)

− exp

(
γ (b − a)

2

))

√
π

2α
β1 exp

(
γΓ

2α

)[

erf

(
Γ√
2α

)

− erf

(
γ√
2α

)]

≤
∫ b

a

xf (x) dx exp

[

− 1

b − a
∫ b

a

log f (t) dt

]

≤ 1

α

(

exp

(
Γ (b − a)

2

)

− exp

(

−γ (b − a)

2

))

+
√
π

2α
β2 exp

(

−γΓ
2α

)[

erfi

(
Γ√
2α

)

− erfi

(
γ√
2α

)]

.

Multiplying the above by exp
[

1
b−a
∫ b
a

log f (t) dt
]

gives us the desired result.

Remark 3 The inequalities in Proposition 2 can be simplified in the similar manner
to that of Proposition 1 by assuming that f is logarithmic convex and using the

estimates for exp
[

1
b−a
∫ b
a

log f (t) dt
]

in (37).
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A Survey on Ostrowski Type Inequalities
for Riemann–Stieltjes Integral

W. S. Cheung and Sever S. Dragomir

Abstract Some Ostrowski type inequalities for the Riemann–Stieltjes integral for
various classes of integrands and integrators are surveyed. Applications for the
midpoint rule and a generalised trapezoidal type rule are also presented.

Keywords Ostrowski type inequalities · Riemann–Stieltjes integral · Absolutely
continuous function · Trapezoidal rule

1 Introduction

The following result is known in the literature as Ostrowski’s inequality [27]:
Let f : [a,b] → R be a differentiable mapping on (a,b) with the property that∣

∣f ′(t)
∣
∣ ≤ M for all t ∈ (a, b). Then

∣
∣
∣
∣f (x)−

1

b − a
∫ b

a

f (t) dt

∣
∣
∣
∣ ≤
⎡

⎣1

4
+
(
x − a+b

2

b − a

)2
⎤

⎦ (b − a)M (1)

for all x ∈ (a, b). The constant 1
4 is best possible in the sense that it cannot be

replaced by a smaller constant.
The above result has been naturally extended for absolutely continuous functions

and Lebesgue p−norms of the derivative f ′ in [20–22] and can be stated as:

Theorem 1 Let f : [a, b] → R be absolutely continuous on [a, b]. Then for all
x ∈ [a, b] we have:
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∣
∣
∣
∣f (x)−

1

b − a
∫ b

a

f (t)dt

∣
∣
∣
∣

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1
4 +

(
x− a+b2
b−a

)2
]

(b − a) ∥∥f ′∥∥∞ if f ′ ∈ L∞ [a, b] ;

1

(p+1)
1
p

[(
x−a
b−a
)p+1 + ( b−x

b−a
)p+1

]
(b − a) 1

q

∥
∥f ′
∥
∥
q

if f ′ ∈ Lp [a, b] , 1
p
+ 1
q
= 1, p > 1;

[
1
2 +

∣
∣
∣
x− a+b2
b−a

∣
∣
∣
] ∥
∥f ′
∥
∥

1 ,

(2)

where ‖·‖r (r ∈ [1,∞]) are the usual Lebesgue norms onLr [a, b] , that is, we recall
that

‖g‖∞ := ess sup
t∈[a,b]

|g (t)| and ‖g‖r :=
(∫ b

a

|g (t)|r dt
) 1
r

, r ∈ [1,∞) .

The constants 1
4 , 1
(p+1)1/p

and 1
2 respectively are sharp in the sense mentioned above.

They can also be obtained, in a slightly different form, as particular cases of some
results established by A.M. Fink [23] for n−time differentiable functions.

For other Ostrowski-type inequalities concerning Lipschitzian and r−H−H ölder
type functions, see [11] and [18].

The cases of bounded variation functions and monotonic functions were consid-
ered in [14] and [10] while the case of convex functions was studied in [16].

In order to approximate the Riemann–Stieltjes integral
∫ b
a
p(x)dv(x), where

p, v : [a, b] → R are functions for which the above integral exists, S.S. Dragomir
established in [12] the following integral identity:

[u(b)− u(a)] f (x)−
∫ b

a

f (t)du(t)

=
∫ x

a

[u(t)− u(a)] df (t)+
∫ b

x

[u(t)− u(b)] df (t), x ∈ [a, b] (3)

provided that the involved Riemann–Stieltjes integrals exist. In the case u(t) = t ,
t ∈ [a, b], the above identity reduces to the celebrated Montgomery identity (see
[26], p. 565) that has been extensively used by many authors in obtaining various
inequalities of Ostrowski type. For a comprehensive recent collection of works, see
the book [19] and the papers [1–5, 7, 24, 28, 29, 30].

In an effort to obtain an Ostrowski-type inequality for the Riemann–Stieltjes inte-
gral, which obviously contains the weighted integrals case, S.S. Dragomir established
[12] the following result:

Theorem 2 Let f : [a, b] → R be a function of bounded variation and u : [a, b] →
R a function of r −H−Hölder type, i.e.,

|u(x)− u(y)| ≤ H |x − y|r for any x, y ∈ [a, b] , (4)
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where r ∈ (0, 1] and H > 0 are given. Then, for any x ∈ [a, b],
∣
∣
∣
∣[u (b)− u (x)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣

≤ H
[

(x − a)r
x∨

a

(f )+ (b − x)r
b∨

x

(f )

]

≤ H ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
(x − a)r + (b − x)r]

[
1
2

∨b
a (f )+ 1

2

∣
∣
∣
∨x
a (f )−

∨b
x (f )

∣
∣
∣
]

;

[
(x − a)qr + (b − x)qr] 1

q

[(∨x
a (f )

)p +
(∨b

x (f )
)p] 1

p

if p > 1, 1
p
+ 1
q
= 1;

[
1
2 (b − a)+

∣
∣x − a+b

2

∣
∣
]r∨b

a (f ) ,

(5)

where
∨d
c (f ) denotes the total variation of f on the interval [c, d].

The dual case was considered in [13] and can be stated as follows:

Theorem 3 Let u : [a, b] → R be a function of bounded variation on [a, b] and
f : [a, b] → R a function of r −H−Hölder type. Then
∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣ ≤ H

[
1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]r b∨

a

(u)

(6)

for any x ∈ [a, b] .
For other results concerning inequalities for Riemann–Stieltjes integrals, see [3],

[24] and [25].
The aim of the present survey paper is to present some results of Ostrowski-

type inequalities for Riemann–Stieltjes integrals
∫ b
a
f (t) du (t) discovered by the

authors. Applications to the midpoint rule and for a generalised trapezoidal rule are
also pointed out.

2 General Bounds for Absolutely Continuous Functions

The following representation result is of interest [8]:

Lemma 1 Let f : [a, b] → R be an absolutely continuous function on [a, b] and
u : [a, b] → R such that the Riemann–Stieltjes integrals
∫ b

a

f (t) du (t) and
∫ b

a

(x − t)
(∫ 1

0
f ′ [λt + (1− λ) x] dλ

)

du (t)

exist for each x ∈ [a, b] . Then

f (x)[u(b)− u(a)]−
∫ b

a

f (t)du(t)
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=
∫ b

a

(x − t)
(∫ 1

0
f ′ [λt + (1− λ) x] dλ

)

du(t) (7)

or, equivalently,
∫ b

a

u(t)df (t)− u(b)[f (b)− f (x)]− u(a)[f (x)− f (a)]

=
∫ b

a

(x − t)
(∫ 1

0
f ′ [λt + (1− λ)x] dλ

)

du(t) (8)

for each x ∈ [a, b].

Proof Since f is absolutely continuous on [a, b] , hence, for any x, t ∈ [a, b] with
x �= t , one has

f (x)− f (t)
x − t =

∫ x
t
f ′ (u) du

x − t =
∫ 1

0
f ′ [(1− λ) x + λt] dλ

giving the equality (see also [15]):

f (x) = f (t)+ (x − t)
∫ 1

0
f ′ [(1− λ) x + λt] dλ (9)

for any x, t ∈ [a, b] .
Integrating the identity (9) we deduce

f (x)
∫ b

a

du(t)=
∫ b

a

f (t)du(t)+
∫ b

a

(x − t)
(∫ 1

0
f ′ [(1− λ)x + λt] dλ

)

du(t),

which is exactly the desired inequality (7).
Now, on utilising the integration by parts formula for the Riemann–Stieltjes

integral, we have

f (x) [u (b)− u (a)]−
∫ b

a

f (t) du (t)

= f (x) [u (b)− u (a)]−
[

f (b) u (b)− f (a) u (a)−
∫ b

a

u (t) df (t)

]

=
∫ b

a

u (t) df (t)− u (b) [f (b)− f (x)]− u (a) [f (x)− f (a)]

and the representation (8) is also obtained. �

For an absolutely continuous function f : [a, b] → R, let us denote by

μ (f ; x, t) :=
∣
∣
∣
∫ 1

0 f
′ [λt + (1− λ) x] dλ

∣
∣
∣, where (t , x) ∈ [a, b]2 . It is obvious that,

by the Hölder inequality, we have

μ (f ; x, t) ≤
⎧
⎨

⎩

∥
∥f ′
∥
∥

[t ,x],∞ if f ′ ∈ L∞ [a, b] ;
∥
∥f ′
∥
∥

[t ,x],p if f ′ ∈ Lp [a, b] , p ≥ 1,
(10)
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where
∥
∥f ′
∥
∥

[t ,x],∞ : = sup
u ∈ [t , x]

(u ∈ [x, t])

∣
∣f ′(u)

∣
∣ ,

∥
∥f ′
∥
∥

[t ,x],p : =
∣
∣
∣
∣

∫ x

t

∣
∣f ′ (u)

∣
∣p du

∣
∣
∣
∣

1
p

, p ≥ 1

and t , x ∈ [a, b].
We can also state the following result of Ostrowski type for the Riemann–Stieltjes

integral [8]:

Theorem 4 Let f : [a, b] → R be an absolutely continuous function and u :
[a, b] → R a function of bounded variation on [a, b] . Then

∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣ ≤ M (x) , (11)

and, equivalently
∣
∣
∣
∣

∫ b

a

u (t) df (t)− u (b) [f (b)− f (x)]− u (a) [f (x)− f (a)]
∣
∣
∣
∣ ≤ M (x) , (12)

whereM (x) = M1 (x)+M2 (x) and

M1 (x) :=
x∨

a

(u) sup
t∈[a,x]

[(x − t) μ (f ; x, t)] ,

M2 (x) :=
b∨

x

(u) sup
t∈[x,b]

[(t − x)μ (f ; x, t)] ,

for x ∈ [a, b] .

Remark 1 Using the notations in Theorem 4, we have

M1 (x) ≤ (x − a)
x∨

a

(u) sup
t∈[a,x]

μ (f ; x, t)

≤ (x − a)
x∨

a

(u) ·
⎧
⎨

⎩

∥
∥f ′
∥
∥

[a,x],∞ if f ′ ∈ L∞ [a, b] ;
∥
∥f ′
∥
∥

[a,x],p
if f ′ ∈ Lp [a, b] , p ≥ 1,

M2 (x) ≤ (b − x)
b∨

x

(u) sup
t∈[x,b]

μ (f ; x, t)

≤ (b − x)
b∨

x

(u) ·
⎧
⎨

⎩

∥
∥f ′
∥
∥

[x,b],∞ if f ′ ∈ L∞ [a, b] ;
∥
∥f ′
∥
∥

[x,b],p if f ′ ∈ Lp [a, b] , p ≥ 1
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for any x ∈ [a, b] .

Proof We use the fact that, if p, v : [c, d] → R are such that p is continuous and
v is of bounded variation, then the Riemann–Stieltjes integral

∫ d
c
p (t) dv (t) exists

and

∣
∣
∣
∣

∫ d

c

p (x) dv (x)

∣
∣
∣
∣ ≤ sup

x∈[c,d]
|p (x)|

d∨

c

(v) .

Utilising the representation (7) we have

∣
∣
∣
∣f (x) [u (b)− u (a)]−

∫ b

a

f (t) du (t)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ x

a

(x − t)
(∫ 1

0
f ′ [λt + (1− λ) x] dλ

)

du (t)

+
∫ b

x

(x − t)
(∫ 1

0
f ′ [λt + (1− λ) x] dλ

)

du (t)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ x

a

(x − t)
(∫ 1

0
f ′ [λt + (1− λ) x] dλ

)

du (t)

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ b

x

(x − t)
(∫ 1

0
f ′ [λt + (1− λ) x] dλ

)

du (t)

∣
∣
∣
∣

≤
x∨

a

(u) sup
t∈[a,x]

[(x − t) μ (f ; x, t)]+
b∨

x

(u) sup
t∈[x,b]

[(t − x)μ (f ; x, t)]

≤ M1 (x)+M2 (x) =: M (x) .

The other inequalities for M1 and M2 are obvious from the inequality (10) and the
details are omitted. �

Remark 2 Hence, if we denote by
∥
∥f ′
∥
∥

[c,d],p
the p norm on the interval [c, d] ,

where 1 ≤ p ≤ ∞, then for f ′ ∈ Lp[a, b], we have

∣
∣
∣
∣f (x)[u(b)− u(a)]−

∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ (x − a)
x∨

a

(u)
∥
∥f ′
∥
∥

[a,x],p + (b − x)
b∨

x

(u)
∥
∥f ′
∥
∥

[x,b],p =: N (x), (13)
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where p ∈ [1,∞] and x ∈ [a, b].
Obviously one can derive many upper bounds for the function N (x) defined

above. We intend to present in the following only a few that are simple and perhaps
of interest for applications.

Estimate 1

N (x) ≤
[

(x − a)
x∨

a

(u)+ (b − x)
b∨

x

(u)

]
∥
∥f ′
∥
∥

[a,b],p

≤ ∥∥f ′∥∥
[a,b],p

·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {x − a, b − x}
[∨x

a (u)+
∨b
x (u)

]
;

[
(x − a)α + (b − x)α] 1

α

[
(∨x

a (u)
)β +

(∨b
x (u)

)β
] 1
β

if α > 1, 1
α
+ 1
β
= 1;

(b − a)max
{∨x

a (u) ,
∨b
x (u)

}

= ∥∥f ′∥∥
[a,b],p

·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1
2 (b − a)+

∣
∣x − a+b

2

∣
∣
]∨b

a (u) ;

[
(x − a)α + (b − x)α] 1

α

[
(∨x

a (u)
)β +

(∨b
x (u)

)β
] 1
β

if α > 1, 1
α
+ 1
β
= 1;

(b − a)
[

1
2

∨b
a (u)+ 1

2

∣
∣
∣
∨x
a (u)−

∨b
x (u)

∣
∣
∣
]

(14)

for any x ∈ [a, b] .

Estimate 2

N (x) ≤ max {x − a, b − x}
[
x∨

a

(u)
∥
∥f ′
∥
∥

[a,x],p +
b∨

x

(u)
∥
∥f ′
∥
∥

[x,b],p

]

=
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

] [ x∨

a

(u)
∥
∥f ′
∥
∥

[a,x],p
+

b∨

x

(u)
∥
∥f ′
∥
∥

[x,b],p

]

≤
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{∥
∥f ′
∥
∥

[a,x],p ,
∥
∥f ′
∥
∥

[x,b],p

}∨b
a (u) ;

[∥
∥f ′
∥
∥p

[a,x],p +
∥
∥f ′
∥
∥p

[x,b],p

] 1
p
[(∨x

a (u)
)q +

(∨b
x (u)

)q] 1
q

if p > 1, 1
p
+ 1
q
= 1;

[
1
2

∨b
a (u)+ 1

2

∣
∣
∣
∨x
a (u)−

∨b
x (u)

∣
∣
∣
] [∥
∥f ′
∥
∥

[a,x],p +
∥
∥f ′
∥
∥

[x,b],p

]
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=
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{∥
∥f ′
∥
∥

[a,x],p ,
∥
∥f ′
∥
∥

[x,b],p

}∨b
a (u) ;

∥
∥f ′
∥
∥

[a,b],p

[(∨x
a (u)

)q +
(∨b

x (u)
)q] 1

q

if p > 1, 1
p
+ 1
q
= 1;

[
1
2

∨b
a (u)+ 1

2

∣
∣
∣
∨x
a (u)−∨b

x (u)
∣
∣
∣
] [∥
∥f ′
∥
∥

[a,x],p +
∥
∥f ′
∥
∥

[x,b],p

]

for any x ∈ [a, b] .

Estimate 3

N (x) ≤ max

{
x∨

a

(u) ,
b∨

x

(u)

}
[
(x − a) ∥∥f ′∥∥[a,x],p

+ (b − x) ∥∥f ′∥∥[x,b],p

]

=
[

1

2

b∨

a

(u)+ 1

2

∣
∣
∣
∣
∣

x∨

a

(u)−
b∨

x

(u)

∣
∣
∣
∣
∣

]

x

[
(x − a) ∥∥f ′∥∥[a,x],p

+ (b − x) ∥∥f ′∥∥[x,b],p

]

≤
[

1

2

b∨

a

(u)+ 1

2

∣
∣
∣
∣
∣

x∨

a

(u)−
b∨

x

(u)

∣
∣
∣
∣
∣

]

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{∥
∥f ′
∥
∥

[a,x],p ,
∥
∥f ′
∥
∥

[x,b],p

}
(b − a) ;

[
(x − a)q + (b − x)q

] 1
q
∥
∥f ′
∥
∥

[a,b],p

if p > 1, 1
p
+ 1
q
= 1;

[
1
2 (b − a)+ ∣∣x − a+b

2

∣
∣
] [∥
∥f ′
∥
∥

[a,x],p
+ ∥∥f ′∥∥

[x,b],p

]

for each x ∈ [a, b].
In practical applications, the midpoint rule, that results for x = a+b

2 , is of obvious
interest due to its simpler form [8].

Corollary 1 With the assumptions in Theorem 4, we have the inequalities:

∣
∣
∣
∣[u (b)− u (a)] f

(
a + b

2

)

−
∫ b

a

f (t) du (t)

∣
∣
∣
∣

≤ 1

2
(b − a)

⎡

⎣

a+b
2∨

a

(u)
∥
∥f ′
∥
∥[
a, a+b2

]
,p
+

b∨

a+b
2

(u)
∥
∥f ′
∥
∥[

a+b
2 ,b

]
,p

⎤

⎦
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≤ 1

2
(b − a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
∥
∥f ′
∥
∥[
a, a+b2

]
,p

,
∥
∥f ′
∥
∥[

a+b
2 ,b

]
,p

}
∨b
a (u);

[
∥
∥f ′
∥
∥α[
a, a+b2

]
,p
+ ∥∥f ′∥∥α[ a+b

2 ,b
]
,p

] 1
α

×
[(∨ a+b

2
a (u)

)β +
(∨b

a+b
2

(u)
)β
] 1
β

if α > 1, 1
α
+ 1
β
= 1;

[
1
2

∨b
a (u)+ 1

2

∣
∣
∣
∨ a+b

2
a (u)−∨b

a+b
2

(u)
∣
∣
∣
]

×
[
∥
∥f ′
∥
∥[
a, a+b2

]
,p
+ ∥∥f ′∥∥[ a+b

2 ,b
]
,p

]

,

(15)

where p ∈ [1,∞] .
From the above, it is obvious that we can get some appealing inequalities as

follows:
∣
∣
∣
∣[u (b)− u (a)] f

(
a + b

2

)

−
∫ b

a

f (t) du (t)

∣
∣
∣
∣

≤ 1

2
(b − a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥f ′
∥
∥

[a,b],∞
∨b
a (u), if f ′ ∈ L∞[a, b];

∥
∥f ′
∥
∥

[a,b],p

[(∨ a+b
2
a (u)

)q +
(∨b

a+b
2

(u)
)q] 1

q

if p > 1, 1
p
+ 1
q
= 1, f ′ ∈ Lp[a, b];

[
1
2

∨b
a (u)+ 1

2

∣
∣
∣
∨ a+b

2
a (u)−∨b

a+b
2

(u)
∣
∣
∣
] ∥
∥f ′
∥
∥

[a,b],1 .

(16)

Remark 3 Similar inequalities can be obtained for the generalised trapezoidal rule.
We only state here the following simple results:

∣
∣
∣
∣

∫ b

a

u (t) df (t)− u (b)

[

f (b)− f
(
a + b

2

)]

− u (a)

[

f

(
a + b

2

)

− f (a)
]∣
∣
∣
∣

≤ 1

2
(b − a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥f ′
∥
∥

[a,b],∞
∨b
a (u), if f ′ ∈ L∞[a, b];

∥
∥f ′
∥
∥

[a,b],p

[(∨ a+b
2
a (u)

)q +
(∨b

a+b
2

(u)
)q] 1

q

if p > 1, 1
p
+ 1
q
= 1, f ′ ∈ Lp[a, b];

[
1
2

∨b
a (u)+ 1

2

∣
∣
∣
∨ a+b

2
a (u)−∨b

a+b
2

(u)
∣
∣
∣
] ∥
∥f ′
∥
∥

[a,b],1

provided that u is of bounded variation and f is absolutely continuous on [a, b].
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3 Bounds in the Case of
∣
∣f ′∣∣ a Convex Function

Some of the above results can be improved provided that a convexity assumption for∣
∣f ′
∣
∣ is in place [8]:

Theorem 5 Let f : [a, b] → R be an absolutely continuous function on [a, b] ,
u : [a, b] → R a function of bounded variation on [a, b] and x ∈ [a, b] . If

∣
∣f ′
∣
∣ is

convex on [a, x] and [x, b] (and the intervals can be reduced at a single point), then

∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣ (17)

≤ 1

2

[
x∨

a

(u) sup
t∈[a,x]

{
(x − t) ∣∣f ′ (t)∣∣}+

b∨

x

(u) sup
t∈[x,b]

{
(t − x) ∣∣f ′ (t)∣∣}

]

+ 1

2

∣
∣f ′ (x)

∣
∣

[

(x − a)
x∨

a

(u)+ (b − x)
b∨

x

(u)

]

≤ 1

2

[

(x − a)
x∨

a

(u)
∥
∥f ′
∥
∥

[a,x],∞ + (b − x)
b∨

x

(u)
∥
∥f ′
∥
∥

[x,b],∞

]

+ 1

2

∣
∣f ′ (x)

∣
∣

[

(x − a)
x∨

a

(u)+ (b − x)
b∨

x

(u)

]

for any x ∈ [a, b] .

Proof As in the proof of Theorem 4, we have

∣
∣
∣
∣f (x) [u (b)− u (a)]−

∫ b

a

f (t) du (t)

∣
∣
∣
∣

≤ sup
t∈[a,x]

[

(x − t)
∣
∣
∣
∣

∫ 1

0
f ′ [λt + (1− λ) x] dλ

∣
∣
∣
∣

] x∨

a

(u)

+ sup
t∈[x,b]

[

(t − x)
∣
∣
∣
∣

∫ 1

0
f ′ [λt + (1− λ) x] dλ

∣
∣
∣
∣

] b∨

x

(u)

≤ sup
t∈[a,x]

[

(x − t)
∫ 1

0

∣
∣f ′ [λt + (1− λ) x]

∣
∣ dλ

] x∨

a

(u)

+ sup
t∈[x,b]

[

(t − x)
∫ 1

0

∣
∣f ′ [λt + (1− λ) x]

∣
∣ dλ

] b∨

x

(u)

≤ sup
t∈[a,x]

[

(x − t)
∣
∣f ′ (t)

∣
∣+ ∣∣f ′ (x)∣∣

2

]
x∨

a

(u)
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+ sup
t∈[x,b]

[

(t − x)
∣
∣f ′ (t)

∣
∣+ ∣∣f ′ (x)∣∣

2

]
b∨

x

(u)

≤ 1

2

[

sup
t∈[a,x]

{
(x − t) ∣∣f ′ (t)∣∣} ·

x∨

a

(u)+ sup
t∈[x,b]

{
(t − x) ∣∣f ′ (t)∣∣} ·

b∨

x

(u)

]

+ 1

2

∣
∣f ′ (x)

∣
∣

[

(x − a)
x∨

a

(u)+ (b − x)
b∨

x

(u)

]

which proves the first inequality in (17).
The second inequality in (17) is obvious using properties of sup and the theorem

is completely proved. �

The midpoint inequality is of interest in applications and provides a much simpler
inequality [8]:

Corollary 2 If f and u are as above and
∣
∣f ′
∣
∣ is convex on

[
a, a+b2

]
and

[
a+b

2 , b
]

,
then

∣
∣
∣
∣[u (b)− u (a)] f

(
a + b

2

)

−
∫ b

a

f (t) du (t)

∣
∣
∣
∣ (18)

≤ 1

4
(b − a)

⎡

⎣
∥
∥f ′
∥
∥[
a, a+b2

]
,∞

a+b
2∨

a

(u)+ ∥∥f ′∥∥[ a+b
2 ,b

]
,∞

b∨

a+b
2

(u)

⎤

⎦

+ 1

4
(b − a)

∣
∣
∣
∣f

′
(
a + b

2

)∣
∣
∣
∣

b∨

a

(u)

≤ 1

4
(b − a)

b∨

a

(u)

[
∥
∥f ′
∥
∥

[a,b],∞ +
∣
∣
∣
∣f

′
(
a + b

2

)∣
∣
∣
∣

]

.

Remark 4 If we denote, from the second inequality in (17),

L1 (x) := 1

2

[

(x − a) ∥∥f ′∥∥[a,x],∞

x∨

a

(u)+ (b − x) ∥∥f ′∥∥[x,b],∞

b∨

x

(u)

]

and

L2 (x) := 1

2

∣
∣f ′ (x)

∣
∣

[

(x − a)
x∨

a

(u)+ (b − x)
b∨

x

(u)

]

for x ∈ [a, b] , then we can point out various upper bounds for the functions L1 and
L2 on [a, b] .

For instance, we have

L1 (x) ≤ 1

2

∥
∥f ′
∥
∥

[a,b],∞

[

(x − a)
x∨

a

(u)+ (b − x)
b∨

x

(u)

]
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and by (17) we can state the following inequality of interest:
∣
∣
∣
∣[u(b)− u(a)]f (x)−

∫ b

a

f (t)du(t)

∣
∣
∣
∣ (19)

≤ 1

2

[∥
∥f ′
∥
∥

[a,b],∞ +
∣
∣f ′(x)

∣
∣
]
[

(x − a)
x∨

a

(u)+ (b − x)
b∨

x

(u)

]

≤ 1

2

[∥
∥f ′
∥
∥

[a,b],∞ +
∣
∣f ′(x)

∣
∣
]
×

⎧
⎪⎨

⎪⎩

[
1
2 (b − a)+ ∣∣x − a+b

2

∣
∣
]∨b

a (u)
[

1
2

∨b
a (u)+ 1

2

∣
∣
∣
∨x
a (u)−∨b

x (u)
∣
∣
∣
]

(b − a)

for each x ∈ [a, b] .

Remark 5 A similar result to (19) can be stated for the generalised trapezoidal rule,
out of which we would like to note the following one that is of particular interest:
∣
∣
∣
∣

∫ b

a

u(t)df (t)− u(b)[f (b)− f (x)]− u(a)[f (x)− f (a)]

∣
∣
∣
∣

≤ 1

2

[∥
∥f ′
∥
∥

[a,b],∞ +
∣
∣f ′(x)

∣
∣
]
[

(x − a)
x∨

a

(u)+ (b − x)
b∨

x

(u)

]

≤ 1

2

[∥
∥f ′
∥
∥

[a,b],∞ +
∣
∣f ′(x)

∣
∣
]
×

⎧
⎪⎨

⎪⎩

[
1
2 (b − a)+ ∣∣x − a+b

2

∣
∣
]∨b

a (u)
[

1
2

∨b
a (u)+ 1

2

∣
∣
∣
∨x
a (u)−∨b

x (u)
∣
∣
∣
]

(b − a)

(20)

for each x ∈ [a, b] .
As in Corollary 2, the case x = a+b

2 in (20) provides the simple result
∣
∣
∣
∣

∫ b

a

u (t) df (t)− u (b)

[

f (b)− f
(
a + b

2

)]

− u (a)

[

f

(
a + b

2

)

− f (a)
]∣
∣
∣
∣

≤ 1

4
(b − a)

⎡

⎣
∥
∥f ′
∥
∥[
a, a+b2

]
,∞

a+b
2∨

a

(u)+ ∥∥f ′∥∥[ a+b
2 ,b

]
,∞

b∨

a+b
2

(u)

⎤

⎦

+ 1

4
(b − a)

∣
∣
∣
∣f

′
(
a + b

2

)∣
∣
∣
∣

b∨

a

(u)

≤ 1

4
(b − a)

b∨

a

(u)

[
∥
∥f ′
∥
∥

[a,b],∞ +
∣
∣
∣
∣f

′
(
a + b

2

)∣
∣
∣
∣

]

. (21)

Remark 6 Similar inequalities may be stated if one assumes either that
∣
∣f ′
∣
∣ is

quasi-convex or that
∣
∣f ′
∣
∣ is log-convex on [a, x] and [x, b] . The details are left to

the interested readers.
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4 The Case of Monotonic Integrators

The following result may be stated [9].

Theorem 6 Let f : [a, b] → R be a function of r-H -H ölder type with r ∈ (0, 1]
and H > 0, and u : [a, b] → R be a monotonic nondecreasing function on [a, b].
Then
∣
∣
∣
∣[u(b)− u(a)] f (x)−

∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ H
[

(b − x)ru(b)− (x − a)ru(a)+ r
{∫ x

a

u(t)

(x − t)1−r dt −
∫ b

x

u(t)

(t − x)1−r dt
}]

≤ H {(b − x)r [(u(b)− u(x)]+ (x − a)r [u(x)− u(a)]
}

≤ H
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]r
[u(b)− u(a)] (22)

for any x ∈ [a, b].

Proof First of all we remark that if p : [a, b] → R is continuous and v : [a, b] → R

is monotonic nondecreasing, then the Riemann–Stieltjes integral
∫ b
a
p(t)dv(t) exists

and:
∣
∣
∣
∣

∫ b

a

p(t)dv(t)

∣
∣
∣
∣ ≤
∫ b

a

|p(t)| dv(t). (23)

Making use of this property and the fact that f is of r-H -Hölder type, we can state
that

∣
∣
∣
∣[u(b)− u(a)] f (x)−

∫ b

a

f (t)du(t)

∣
∣
∣
∣ =
∣
∣
∣
∣

∫ b

a

[f (x)− f (t)]du(t)

∣
∣
∣
∣

≤
∫ b

a

|f (x)− f (t)| du(t)

≤ H
∫ b

a

|x − t |rdu(t). (24)

By the integration by parts formula for the Riemann-Stieltjes integral we have

∫ b

a

|x − t |rdu(t) =
∫ x

a

(x − t)rdu(t)+
∫ b

x

(t − x)rdu(t)

= (x − t)ru(t)
∣
∣x
a
+ r
∫ x

a

u(t)

(x − t)1−r dt + (t − x)ru(t)
∣
∣b
x
− r
∫ b

x

u(t)

(t − x)1−r dt

= (b − x)ru(b)− (x − a)ru(a)+ r
[∫ x

a

u(t)

(x − t)1−r dt −
∫ b

x

u(t)

(t − x)1−r dt
]

,

(25)



88 W.S. Cheung and S.S. Dragomir

which together with (24) proves the first inequality in (22).
Now, by the monotonicity property of u we have

∫ x

a

u(t)dt

(x − t)1−r ≤ u(x)
∫ x

a

dt

(x − t)1−r =
(x − a)ru(x)

r

and
∫ b

x

u(t)dt

(t − x)1−r ≥ u(x)
∫ b

x

dt

(t − x)1−r =
(b − x)ru(x)

r
,

giving that

∫ x

a

u(t)dt

(x − a)1−r −
∫ b

x

u(t)dt

(t − x)1−r ≤
1

r

[
(x − a)ru(x)− (b − x)ru(x)

]
. (26)

This inequality implies that

(b − x)ru(b)− (x − a)ru(a)+ r
[∫ x

a

u(t)

(x − t)1−r dt −
∫ b

x

u(t)

(t − x)1−r dt
]

≤ (b − x)ru(b)− (x − a)ru(a)+ (x − a)ru(x)− (b − x)ru(x)

= (b − x)r [u(b)− u(x)]+ (x − a)r [u(x)− u(a)]

and the second part of inequality (22) is also proved.
The last part is obvious by the property of max function and we omit the details

here. �

Remark 7 If f is assumed to be L-Lipschitzian, i.e.,

|f (x)− f (y)| ≤ L|x − y| for any x, y ∈ [a, b], (27)

where L > 0 is given, then for u : [a, b] → R being monotonic nondecreasing on
[a, b] the inequality (7) will produce the simple result:

∣
∣
∣
∣[u(b)− u(a)] f (x)−

∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ L
[

bu(b)+ au(a)− x [u(a)+ u(b)]+
∫ b

a

sgn(x − t)u(t)dt

]

≤ L [(b − x) [u(b)− u(x)]+ (x − a) [u(x)− u(a)]]

≤ L
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]

[u(b)− u(a)] (28)

for any x ∈ [a, b].
A particular case that may be useful in applications is the following midpoint-

type inequality [9].
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Corollary 3 With the assumptions in Theorem 6, we have:
∣
∣
∣
∣[u(b)− u(a)] f

(
a + b

2

)

−
∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ H
[

(b − a)r

2r
[u(b)− u(a)]+ r

{∫ a+b
2

a

u(t)dt

( a+b2 − t)1−r −
∫ b

a+b
2

u(t)dt

(t − a+b
2 )1−r

}]

≤ H (b − a)r

2r
[u(b)− u(a)] . (29)

In particular, if f is a L-Lipschitzian function, we have
∣
∣
∣
∣[u(b)− u(a)] f

(
a + b

2

)

−
∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ L
[

(b − a) [u(b)− u(a)]

2
+
∫ b

a

sgn

(
a + b

2
− t
)

u(t)dt

]

≤ L · (b − a)

2
[u(b)− u(a)] . (30)

Remark 8 We observe that the first inequality in (30) is sharp. Indeed, if we choose
f , u : [a, b] → R, f (t) = ∣

∣t − a+b
2

∣
∣, u(t) = t − a+b

2 , we notice that f is L-
Lipschitzian with the constant L = 1 and u is monotonic nondecreasing on [a, b].
Also:

[u(b)− u(a)]f

(
a + b

2

)

−
∫ b

a

f (t)dt = −
∫ b

a

∣
∣
∣
∣t −

a + b
2

∣
∣
∣
∣ dt = − (b − a)2

4
,

(b − a) [u(b)− u(a)]

2
+
∫ b

a

sgn

(
a + b

2
− t
)

u(t)dt

= (b − a)2

2
−
∫ b

a

∣
∣
∣
∣t −

a + b
2

∣
∣
∣
∣ dt =

(b − a)2

4

which shows that in both sides of (30) we have the same quantity (b−a)2

4 .

Remark 9 In terms of probability density functions, if w : [a, b] → [0,∞) is such
that

∫ b
a

w(s)ds = 1, then writing out the inequality (22) for u(t) := ∫ t
a

w(s)ds, we
obtain:

∣
∣
∣
∣f (x)−

∫ b

a

w(s)f (s)ds

∣
∣
∣
∣

≤ H
[

(b − x)r + r
{∫ x

a

W (t)

(x − t)1−r dt −
∫ b

x

W (t)

(t − x)1−r dt
}]

≤ H
[

(b − x)r
∫ b

x

w(s)ds + (x − a)r
∫ x

a

w(s)ds

]

≤ H
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]r
(31)
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for any x ∈ [a, b], where, as above, f is of r-H -Hölder type.
The Lipschitzian case provides the simpler inequality:

∣
∣
∣
∣f (x)−

∫ b

a

w(s)f (s)ds

∣
∣
∣
∣ ≤ L

[

b − x +
∫ b

a

sgn(x − t)W (t)dt

]

≤ L
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]

(32)

for any x ∈ [a, b].
Finally, the weighted trapezoidal inequality for Hölder continuous functions reads

as
∣
∣
∣
∣f

(
a + b

2

)

−
∫ b

a

w(s)f (s)ds

∣
∣
∣
∣

≤ H
[

(b − a)r

2r
+ r
{∫ a+b

2

a

W (t)

( a+b2 − t)1−r dt −
∫ b

a+b
2

W (t)dt

(t − a+b
2 )1−r

}]

≤ H (b − a)r

2r
, (33)

while for Lipschitzian functions it will have the form
∣
∣
∣
∣f

(
a + b

2

)

−
∫ b

a

w(s)f (s)ds

∣
∣
∣
∣

≤ L ·
[
b − a

2
+
∫ b

a

sgn

(
a + b

2
− t
)

W (t)dt

]

≤ 1

2
L(b − a). (34)

The uniform distribution w(s) = 1
b−a , s ∈ [a, b], will then provide the following

inequality:
∣
∣
∣
∣f (x)− 1

b − a
∫ b

a

f (t)dt

∣
∣
∣
∣

≤ H
[

(b − x)r + r

b − a
{∫ x

a

(t − a)

(x − t)1−r dt −
∫ b

x

(t − a)

(t − x)1−r dt
}]

( =: HT , say)

≤ H

b − a
[
(b − x)r+1 + (x − a)r+1

] ≤ H
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]r
. (35)

Since
∫ x

a

(t − a)

(x − t)1−r dt =
∫ x

a

(t − a)(x − t)r−1dt

= (x − a)r+1
∫ 1

0
s(1− s)r−1ds

= (x − a)r+1B(2, r) = (x − a)r+1

r(r + 1)
,
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where B(p, q) := ∫ 1
0 s

p−1(1− s)q−1ds, p, q > 0, is the Euler’s Beta function, and

∫ b

x

(t − a)

(t − x)1−r dt =
∫ b

x

t − b + b − a
(t − x)1−r dt

= (b − a)
∫ b

x

dt

(t − x)1−r −
∫ b

x

(b − t)dt
(t − x)1−r

= (b − a) · (b − x)r

r
−
∫ b

x

(b − t)(t − x)r−1dt

= (b − a) · (b − x)r

r
− (b − x)r+1

∫ 1

0
s(1− s)r−1ds

= (b − a) · (b − x)r

r
− (b − x)r+1B(2, r)

= (b − a)(b − x)r

r
− (b − x)r+1

r(r + 1)
,

hence T , defined above, has the form

T = (b − x)r + r

b − a
{

(x − a)r+1

r(r + 1)
− (b − a)(b − x)r

r
+ (b − x)r+1

r(r + 1)

}

= (x − a)r+1 + (b − α)r+1

r + 1
.

Therefore, from the first inequality in (35) we deduce

∣
∣
∣
∣f (x)− 1

b − a
∫ b

a

f (t)dt

∣
∣
∣
∣ ≤

H

r + 1

[(
x − a
b − a

)r+1

+
(
b − x
b − x

)r+1
]

(b − a)r

(36)

for any x ∈ [a, b], which has been obtained before (see for instance [10] and [19]).

5 The Case of Monotonic Integrands

It is natural now to investigate the dual case, that is, where the integrand f is assumed
to be monotonic nondecreasing while the integrator u is Hölder continuous [9].

Theorem 7 Let f : [a, b] → R be monotonic nondecreasing on [a, b] and u :
[a, b] → R of r-H -Hölder type. Then
∣
∣
∣
∣[u(b)− u(a)]f (x)−

∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ H
[
[
(x − a)r − (b − a)r

]
f (x)+ r

{∫ b

x

f (t)dt

(b − t)1−r −
∫ x

a

f (t)dt

(t − a)1−r

}]
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≤ H {(b − x)r [f (b)− f (x)]+ (x − a)r [f (x)− f (a)]
}

≤ H
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]r
[f (b)− f (a)] . (37)

Proof Utilising the integral identity (3) and the hypothesis, we have successively

∣
∣
∣
∣[u(b)− u(a)] f (x)−

∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤
∫ x

a

|u(t)− u(a)| df (t)+
∫ b

x

|u(s)− u(t)| df (t)

≤ H
[∫ x

a

(t − a)rdf (t)+
∫ b

x

(b − t)rdf (t)

]

= H
[

(t − a)rf (t)
∣
∣x
a
− r
∫ x

a

f (t)dt

(t − a)1−r + (b − t)rf (t)
∣
∣b
x
+ r
∫ b

x

f (t)dt

(b − t)1−r

]

= H
[

(x − a)rf (x)− (b − x)rf (x)+ r
{∫ b

x

f (t)dt

(b − t)1−r −
∫ x

a

f (t)dt

(t − a)1−r

}]

(38)

proving the first inequality in (37).
Since f is monotonic nondecreasing on [a, b], hence

∫ b

x

f (t)dt

(b − t)1−r ≤ f (b)
∫ b

x

dt

(b − t)1−r =
f (b)(b − x)r

r

and
∫ x

a

f (t)dt

(t − a)1−r ≥ f (a)
∫ x

a

dt

(t − a)1−r =
f (a)(x − a)r

r
,

giving that

∫ b

x

f (t)dt

(b − t)1−r −
∫ x

a

f (t)dt

(t − a)1−r ≤
1

r

[
f (b)(b − x)r − f (a)(x − a)r

]

which obviously implies that

(x − a)rf (x)−(b − x)rf (x)+ r
[∫ b

x

f (t)dt

(b − t)1−r −
∫ x

a

f (t)dt

(t − a)1−r

]

≤ (x − a)rf (x)− (b − x)rf (x)+ f (b)(b − x)r − f (a)(x − a)r

= (b − x)r [f (b)− f (x)]+ (x − a)r [f (x)− f (a)] ,

which together with (38) provides the second inequality in (37).
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The last inequality is obvious, since

(b − x)r [f (b)− f (x)]+ (x − a)r [f (x)− f (a)]

≤ max
{
(b − x)r , (x − a)r

}
[f (b)− f (a)]

= [max {b − x, x − a}]r [f (b)− f (a)]

=
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]r
[f (b)− f (a)]

for any x ∈ [a, b]. �

Remark 10 The particular case ofL-Lipschitzian functions provides a much simpler
result:

∣
∣
∣
∣[u(b)− u(a)]f (x)−

∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ L
[

(2x − a − b)f (x)+
∫ b

a

sgn(t − x)f (t)dt

]

≤ L {(b − x) [f (b)− f (x)]+ (x − a) [f (x)− f (a)]}

≤ L
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]

[f (b)− f (a)] (39)

for any x ∈ [a, b].
A particular case that can be useful in applications is the following one [9].

Corollary 4 With the assumptions in Theorem 5 we have:
∣
∣
∣
∣[u(b)− u(a)]f

(
a + b

2

)

−
∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ rH
{∫ b

a+b
2

f (t)dt

(b − t)1−r −
∫ a+b

2

a

f (t)dt

(t − a)1−r

}

≤ H (b − a)r

2r
[f (b)− f (a)]. (40)

In particular, for u a L-Lipschitizian function, we have
∣
∣
∣
∣[u(b)− u(a)] f

(
a + b

2

)

−
∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ L
∫ b

a

sgn

(

t − a + b
2

)

· f (t)dt ≤ 1

2
L [f (b)− f (a)] . (41)

Remark 11 The inequalities (41) are sharp. Indeed, if we take u, f : [a, b] → R,
u(t) = ∣∣t − a+b

2

∣
∣ and f (t) = sgn

(
t − a+b

2

)
, then u is L-Lipschitzian with L = 1

and f is monotonic nondecreasing on [a, b] . Also,
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[u(b)− u(a)]f

(
a + b

2

)

−
∫ b

a

f (t)du(t)

= −
[∫ a+b

2

a

(−1) · d
(
a + b

2
− t
)

+
∫ b

a+b
2

(+1) · dt
(

t − a + b
2

)]

= −(b − a),

and
∫ b

a

sgn

(

t − a + b
2

)

f (t)dt = b − a,

and then we get in all sides of the inequality (41) the same quantity (b − a).

Remark 12 In the case when u(t) = t , t ∈ [a, b], out of (39) we deduce the
Ostrowski-type inequality:

∣
∣
∣
∣f (x)− 1

b − a
∫ b

a

f (t)dt

∣
∣
∣
∣ ≤

1

b − a
[

[2x − (a + b)]+
∫ b

a

sgn(t − x)f (t)dt

]

≤ 1

b − a {(b − x)[f (b)− f (x)]+ (x − a)[f (x)− f (a)]}

≤
[

1

2
+ |x − a+b

2 |
b − a

]

[f (b)− f (a)]

that has been obtained in [10] (see also [19]).

6 Some Results for a Generalised Trapezoidal Rule

In [17], the authors have considered the following generalised trapezoidal formula:

[u(b)− u(x)] f (b)+ [u(x)− u(a)] f (a), x ∈ [a, b]

to approximate the Riemann–Stieltjes integral
∫ b
a
f (t)du(t). They proved the

inequality

∣
∣
∣
∣

∫ b

a

f (t)du(t)− [u(b)− u(x)] f (a)− [u(x)− u(a)]f (a)

∣
∣
∣
∣

≤ H
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]r b∨

a

(f ) (42)

for any x ∈ [a, b], provided that f : [a, b] → R is of bounded variation on [a, b]
and u is of r-H -Hölder type.
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The best inequality one can obtain from (42) is the following:
∣
∣
∣
∣

∫ b

a

f (t)du(t)−
[

u(b)− u

(
a + b

2

)]

f (a)−
[

u

(
a + b

2

)

− u(a)

]

f (a)

∣
∣
∣
∣

≤ H (b − a)

2r

b∨

a

(f ) . (43)

We observe that if p, v : [a, b] → R are a pair of functions for which the Riemann–
Stieltjes integral

∫ b
a
p(t)dv(t) exists, then, on application of the integration by parts

formula, we have

[v(b)− v(a)]p(x)−
∫ b

a

p(t)dv(t)

= [v(b)− v(a)]p(x)−
[

p(b)v(b)− p(a)v(a)−
∫ b

a

v(t)dp(t)

]

=
∫ b

a

v(t)dp(t)− v(a)[p(x)− p(a)]− v(b)[p(b)− p(x)]. (44)

Therefore, any inequality of Ostrowski type for the difference

[v(b)− v(a)]p(x)−
∫ b

a

p(t)dv(t)

would give a corresponding inequality for the generalised trapezoidal approximation
of the dual Riemann–Stieltjes integral:

∫ b

a

v(t)dp(t)− v(a) [p(x)− p(a)]− v(b) [p(b)− p(x)] .

If v is of r-H -Hölder type and p is of bounded variation, then by (5) and (44) we
recapture the result from [6]:

∣
∣
∣
∣

∫ b

a

v(t)dp(t)− v(a) [p(x)− p(a)]− v(b) [p(b)− p(x)]

∣
∣
∣
∣

≤ H
[

(x − a)r
x∨

a

(p)+ (b − x)r
b∨

x

(p)

]

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H [(x − a)r + (b − x)r ]

[
1

2

∨b
a (p)+ 1

2

∣
∣
∣
∨x
a (p)−∨b

x (p)
∣
∣
∣

]

;

H [(x − a)qr + (b − x)qr ]1/q
[[∨x

a (p)
]p +

[∨b
x (p)

]p] 1
p

if p > 1,
1

p
+ 1

q
= 1;

H

[
1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]r∨b
a (p)

(45)
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for x ∈ [a, b].
If we use (6) and the identity (44) above, then we can get the result in (42).
Now, if p is of r-H -Hölder type and v is monotonic nondecreasing, then by

Theorem 6 and (44) we have the inequality

∣
∣
∣
∣

∫ b

a

v(t)dp(t)− v(a) [p(x)− p(a)]− v(b) [p(b)− p(x)]

∣
∣
∣
∣

≤ H
{

(b − x)rv(b)− (x − a)rv(a)+ r
{∫ x

a

v(t)

(x − t)1−r dt −
∫ b

x

v(t)

(t − x)1−r dt
}}

≤ H {(b − x)r [v(b)− v(x)]+ (x − a)r [v(x)− v(a)]
}

≤ H
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]r
[v(b)− v(a)] (46)

for any x ∈ [a, b].
Finally, by employing Theorem 7 and the identity (44), we can state that for p

monotonic nondecreasing and v of r-H -Hö lder type, we have:

∣
∣
∣
∣

∫ b

a

v(t)dp(t)− v(a)[p(x)− p(a)]− v(b)[p(b)− p(x)]

∣
∣
∣
∣

≤ H
[
[
(x − a)r − (b − x)r

]
p(x)+ r

{∫ b

x

p(t)dt

(b − t)1−r −
∫ x

a

p(t)dt

(t − a)1−r

}]

≤ H [(b − x)r[p(b)− p(x)]+ (x − a)r [p(x)− p(a)]
]

≤ H
[

1

2
(b − a)+

∣
∣
∣
∣x −

a + b
2

∣
∣
∣
∣

]r
[p(b)− p(a)] (47)

for each x ∈ [a, b].

7 The Case of Hölder Continuous and Lipschitzian Functions

The following result may be stated [4]:

Theorem 8 Let f : [a, b] → R be a r −H−H ölder continuous function on [a, b] ,
i.e.,

|f (x)− f (y)| ≤ H |x − y|r for any x, y ∈ [a, b] , (48)

where r ∈ (0, 1] and H > 0 are given, and u : [a, b] → R is an L−Lipschitzian
function on [a, b] , that is,

|u (x)− u (y)| ≤ L |x − y|r for any x, y ∈ [a, b] , (49)
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then for any x ∈ [a, b] ,
∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣ ≤

LH

r + 1

[
(x − a)r+1 + (b − x)r+1

]
,

(50)

or, equivalently,
∣
∣
∣
∣

∫ b

a

u (t) df (t)− {u (b) [f (b)− f (x)]+ u (a) [f (x)− f (a)]}
∣
∣
∣
∣

≤ LH

r + 1

[
(x − a)r+1 + (b − x)r+1

]
. (51)

Proof Note that ifp : [a, b] → R is Riemann integrable on [a, b] and v : [a, b] → R

is L−Lipschitzian, then the Riemann–Stieltjes integral
∫ b
a
p (t) dv (t) exists and

∣
∣
∣
∣

∫ b

a

p (t) dv (t)

∣
∣
∣
∣ ≤ L

∫ b

a

|p (t)| dt. (52)

Utilising this property,
∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ b

a

[f (x)− f (t)] du (t)

∣
∣
∣
∣

≤ L
∫ b

a

|f (x)− f (t)| dt

≤ LH
∫ b

a

|x − t |r dt

= LH

r + 1

[
(x − a)r+1 + (b − x)r+1

]
,

and the inequality (50) is proved.
Since, by the integration by parts formula for Riemann–Stieltjes integrals we

have,

[u (b)− u (a)] f (x)−
∫ b

a

f (t) du (t)

=
∫ b

a

u (t) df (t)− u (b) [f (b)− f (x)]− u (a) [f (x)− f (a)] ,

hence (51) is a direct consequence of (50). �

Remark 13 If f is assumed to be K−Lipschitzian, then from (50) and (51) we get
the equivalent inequalities:

∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣ ≤ HL

⎡

⎣1

4
+
(
x − a+b

2

b − a

)2
⎤

⎦ (b − a)2

(53)
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and
∣
∣
∣
∣

∫ b

a

u (t) df (t)− u (b) [f (b)− f (x)]− u (a) [f (x)− f (a)]
∣
∣
∣
∣

≤ HL
⎡

⎣1

4
+
(
x − a+b

2

b − a

)2
⎤

⎦ (b − a)2

for each x ∈ [a, b] .
The midpoint inequality is useful for numerical implementation and is incorpo-

rated in the following corollary [4].

Corollary 5 With the assumptions of Theorem 8,
∣
∣
∣
∣[u (b)− u (a)] f

(
a + b

2

)

−
∫ b

a

f (t) du (t)

∣
∣
∣
∣ ≤

1

2r (r + 1)
LH (b − a)r+1 ,

(54)

and
∣
∣
∣
∣

∫ b

a

u(t)df (t)− u(b)

[

f (b)− f
(
a + b

2

)]

− u(a)

[

f

(
a + b

2

)

− f (a)

]∣
∣
∣
∣

≤ 1

2r (r + 1)
LH (b − a)r+1 , (55)

respectively.

Remark 14 If u (t) = t in the above, then the results for the Riemann integral
obtained in [18] are recaptured.

Remark 15 In terms of probability density functions, if w : [a, b] → [0,∞) is such
that w ∈ L∞ [a, b] , i.e., ‖w‖[a,b],∞ := ess supt∈[a,b] |w (t)| <∞, and

∫ b
a

w (s) ds =
1, then the function u (t) = ∫ t

a
w (s) ds is L−Lipschitzian with the constant L =

‖w‖[a,b],∞ and the inequalities (50) and (51) can be written as:

∣
∣
∣
∣f (x)−

∫ b

a

w(t)f (t)dt

∣
∣
∣
∣ ≤

H ‖w‖[a,b],∞
r + 1

[
(x − a)r+1 + (b − x)r+1

]
(56)

and
∣
∣
∣
∣

∫ b

a

(∫ t

a

w(s)ds

)

df (t)− f (b)− f (x)

∣
∣
∣
∣

≤ H ‖w‖[a,b],∞
r + 1

[
(x − a)r+1 + (b − x)r+1

]
(57)

for any x ∈ [a, b] .
The dual case, that is, when f is Lipschitzian and u is Hölder continuous admits

some slight variations as follows [4].
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Theorem 9 Let x ∈ [a, b] and assume that f is L1− Lipschitzian on the interval
[a, x] and L2−Lipschitzian on the interval [a, b] (L1,L2 > 0) while the function
u : [a, b] → R satisfies some local Hölder conditions (properties), namely,

|u (t)− u (a)| ≤ H1 |t − a|α1 for any t ∈ [a, x] (58)

and

|u (b)− u (t)| ≤ H2 |t − b|α2 for any t ∈ [x, b] , (59)

where H1,H2 > 0, α1,α2 ∈ (−1,∞) (notice the difference for α1,α2), then,
∣
∣
∣
∣[u(b)− u(a)]f (x)−

∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ L1H1(x − a)α1+1

α1 + 1
+ L2H2(b − x)α2+1

α2 + 1
(60)

or, equivalently,
∣
∣
∣
∣

∫ b

a

u(t)df (t)− u(b)[f (b)− f (x)]− u(a)[f (x)− f (a)]

∣
∣
∣
∣

≤ L1H1(x − a)α1+1

α1 + 1
+ L2H2(b − x)α2+1

α2 + 1
. (61)

Proof We use the following generalisation of the Montgomery identity for the
Riemann–Stieltjes integral established by S.S. Dragomir [12]:

[u(b)− u(a)]f (x)−
∫ b

a

f (t)du(t)

=
∫ x

a

[u(t)− u(a)]df (t)+
∫ b

x

[u(t)− u(b)]df (t) (62)

for any x ∈ [a, b] .
Taking the modulus we have

∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ x

a

[u (t)− u (a)] df (t)

∣
∣
∣
∣+
∣
∣
∣
∣

∫ b

x

[u (t)− u (b)] df (t)

∣
∣
∣
∣

≤ L1

∫ x

a

|u (t)− u (a)| dt + L2

∫ b

x

|u (t)− u (b)| dt

≤ H1L1

∫ x

a

(t − a)α1 dt +H2L2

∫ b

x

(b − x)α2 dt

= H1L1 (x − a)α1+1

α1 + 1
+ H2L2 (b − x)α2+1

α2 + 1
,

and the inequality (60) is obtained. �
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Remark 16 It is obvious that, if we assume that f is K−Lipschitzian on the whole
interval [a, b] while u is of the q−Hö lder type with q ∈ (0, 1], then from Theorem
9 we can obtain the following inequality which is the dual of (50):

∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣ ≤

KH

q + 1

[
(x − a)q+1 + (b − x)q+1

]

(63)

for any x ∈ [a, b] . �

Remark 17 From the tools utilised in the proofs of Theorem 8 and 9, one can
easily realise that if in the first result it is natural to assume the global property of
r − H−Hölder continuity for the integrand and L−Lipschitzian property for the
integrator, then in the second theorem the local properties around the end-points
a and b qualify as natural as well. Moreover, we observe that in (51) the order of
approximation is min (α1,α2)+1 which can be higher than the order of approximation
in (50) which is r + 1 (maximum 2 for r = 1). However, this can be improved if
some local conditions around x ∈ [a, b] are assumed.

If u is T1−Lipschitzian on [a, x] and T2− Lipschitzian on [x, b] and the function
f satisfies around x the following conditions

|f (t)− f (x)| ≤ V1 |t − x|β1 , t ∈ [a, x] ,

and

|f (t)− f (x)| ≤ V2 |t − x|β2 , t ∈ [x, b] ,

where V1,V2 > 0, β1,β2 ∈ (−1,∞) are given, then, following the proof of Theorem
8, we have,

∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ x

a

(f (x)− f (t)) du (t)+
∫ b

x

(f (x)− f (t)) du (t)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ x

a

(f (x)− f (t)) du (t)

∣
∣
∣
∣+
∣
∣
∣
∣

∫ b

x

(f (x)− f (t)) du (t)

∣
∣
∣
∣

≤ T1

∫ x

a

|f (x)− f (t)| dt + T2

∫ b

x

|f (x)− f (t)| dt

≤ T1V1 (x − a)β1+1

β1 + 1
+ T2V2 (b − x)β2+1

β2 + 1
,

giving a similar result to the one in Theorem 9.
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8 The Case of Monotonic and Lipschitzian Functions

The case where the integrator is monotonic nondecreasing is incorporated in the
following result [4]:

Theorem 10 Let x ∈ [a, b] and assume that f : [a, b] → R is monotonic nonde-
creasing on [a, x] and [x, b] (it may not be monotonic nondecreasing on the whole
of [a, b]). If u is L1−Lipschitzian on [a, x] and L2−Lipschitzian on [x, b] , then,

∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣

≤ L2

∫ b

x

f (t) dt − L1

∫ x

a

f (t) dt − [L2 (b − x)− L1 (x − a)] f (x)

≤ L2 (b − x) [f (b)− f (x)]+ L1 (x − a) [f (x)− f (a)]
≤ max {L1,L2} ((b − x)[f (b)− f (x)]+ (x − a)[f (x)− f (a)])

≤ max {L1,L2}

⎧
⎪⎨

⎪⎩

[
1
2 (b − a)+ ∣∣x − a+b

2

∣
∣
]

[f (b)− f (a)];
[

1
2 [f (b)− f (a)]+ 1

2

∣
∣
∣f (x)− f (a)+f (b)

2

∣
∣
∣
]

(b − a),
(64)

and a similar inequality holds for the generalised trapezoidal rule.

Proof As in the proof of Theorem 8 above, we have,
∣
∣
∣
∣[u (b)− u (a)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣

≤ L1

∫ x

a

|f (x)− f (t)| dt + L2

∫ b

x

|f (x)− f (t)| dt

= L1 (x − a) f (x)− L1

∫ x

a

f (t) dt + L2

∫ b

x

f (t) dt − L2 (b − x) f (x)

= L2

∫ b

x

f (t) dt − L1

∫ x

a

f (t) dt − [L2 (b − x)− L1 (x − a)] f (x) ,

proving the first inequality in (64).
Now, on utilising the monotonicity property of f on both intervals, we have
∫ b

x

f (t) dt ≤ (b − x) f (b) and
∫ x

a

f (t) dt ≥ (x − a) f (a) ,

which implies that,

L2

∫ b

x

f (t) dt − L1

∫ x

a

f (t) dt − [L2 (b − x)− L1 (x − a)] f (x)

≤ L2 (b − x) f (b)− L1 (x − a) f (a)− [L2 (b − x)− L1 (x − a)] f (x)
= L2 (b − x) [f (b)− f (x)]+ L1 (x − a) [f (x)− f (a)] ,

that is, the second inequality in (64).
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The last part is obvious by the property of the max function and we omit the
details. �

Corollary 6 If f : [a, b] → R is monotonic nondecreasing on
[
a, a+b2

]
and

[
a+b

2 , b
]

and u is L1−Lipschitzian on the first interval and L2− Lipschitzian on
the second, then

∣
∣
∣
∣[u(b)− u(a)]f

(
a + b

2

)

−
∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ L2

∫ b

a+b
2

f (t)dt − L1

∫ a+b
2

a

f (t)dt − b − a
2

(L2 − L1) f

(
a + b

2

)

≤ b − a
2

[L2[f (b)− f (x)]+ L1[f (x)− f (a)]]

≤ b − a
2

max {L1,L2} [f (b)− f (a)]. (65)

Remark 18 The case u (t) = t (therefore L1 = L2 = 1) retrieves the results
obtained earlier for the Riemann integral in [10].

The dual case is incorporated in the following result [4]:

Theorem 11 Let x ∈ [a, b] and assume that u is monotonic nondecreasing on both
[a, x] and [x, b], then,

∣
∣
∣
∣[u(b)− u(x)]f (x)−

∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ L2(b − x)u(b)+ L1(x − a)u(a)+ L1

∫ x

a

u(t)dt − L2

∫ b

x

u(t)dt

≤ L1(x − a)(u(x)− u(a))+ L2(b − x)(u(b)− u(x))

≤ max {L1,L2} [(x − a)(u(x)− u(a))+ (b − x)(u(b)− u(x))]

≤ max {L1,L2}
⎧
⎨

⎩

[
1
2 (b − a)+ ∣∣x − a+b

2

∣
∣
]

[u(b)− u(a)];
[

1
2 [u(b)− u(a)]+ 1

2

∣
∣u(x)− u(a)+u(b)

2

∣
∣
]

(b − a),
(66)

and a similar inequality holds for the generalised trapezoidal rule.

Proof As in the proof of Theorem 9 above, we have,
∣
∣
∣
∣[u (b)− u (x)] f (x)−

∫ b

a

f (t) du (t)

∣
∣
∣
∣

≤ L1

∫ x

a

|u (t)− u (a)| dt + L2

∫ b

x

|u (t)− u (b)| dt

= L1

∫ x

a

u (t) dt − L1 (x − a) u (a)+ L2 (b − x) u (b)− L2

∫ b

x

u (t) dt
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and the first inequality in (66) is proved.
By the monotonicity of u in both intervals [a, x] and [x, b] we have,

∫ x

a

u (t) dt ≤ (x − a) u (x) and
∫ b

x

u (t) dt ≥ (b − x) u (x) ,

which gives

L1

∫ x

a

u (t) dt − L1 (x − a) u (a)+ L2 (b − x) u (b)− L2

∫ b

x

u (t) dt

≤ L1 (x − a) u (x)− L1 (x − a) u (a)+ L2 (b − x) u (b)− L2 (b − x) u (x)

= L1 (x − a) [u (x)− u (a)]+ L2 (b − x) [u (b)− u (x)]

and the second part of (66) also holds.
The last part is obvious and the details are omitted. �

Corollary 7 If u is monotonic on
[
a, a+b2

]
and

[
a+b

2 , b
]

while f is L1−Lipschitzian
on the first interval and L2−Lipschitzian on the second, then

∣
∣
∣
∣[u(b)− u(a)]f

(
a + b

2

)

−
∫ b

a

f (t)du(t)

∣
∣
∣
∣

≤ b − a
2

[L2u(b)− L1u(a)]+ L1

∫ a+b
2

a

u(t)dt − L2

∫ b

a+b
2

u(t)dt

≤ b − a
2

{

L1

[

u

(
a + b

2

)

− u(a)

]

+ L2

[

u(b)− u

(
a + b

2

)]}

≤ b − a
2

max {L1,L2} [u(b)− u(a)]. (67)
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1. Aglić-Aljinović, A., PečArić, J.: On some Ostrowski type inequalities via Montgomery identity
and Taylor’s formula. Tamkang J. Math. 36(3), 199–218 (2005)
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Invariance in the Family of Weighted
Gini Means

Iulia Costin and Gheorghe Toader
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Abstract Given two meansM andN , the meanP is called (M ,N )-invariant ifP (M ,
N ) = P.At the same time the meanN is called complementary toM with respect to
P . We use the method of series expansion of means to determine the complementary
with respect to a weighted Gini mean. The invariance in the family of weighted
Gini means is also studied. The computer algebra Maple was used for solving some
complicated systems of equations.

Keywords Weighted Gini mean · Complementary mean · Invariance in a class of
means.

1 Means

A mean is a functionM : R
2+ → R+, with the property

min(a, b) ≤ M(a, b) ≤ max(a, b), ∀a, b > 0.

Each mean is reflexive, that is

M(a, a) = a, ∀a > 0.

A mean is symmetric iff

M(b, a) = M(a, b), ∀a, b > 0,
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homogeneous iff

M(ta, tb) = tM(a, b), ∀a, b, t > 0,

it is strict iff

[M(a, b)− a] [M(a, b)− b] �= 0, for a �= b,

and strictly isotone iff for each a, b > 0, the functionsM(a, .) andM(., b) are strictly
increasing.

A reflexive functionM : R
2+ → R+ is called also a pre-mean.

We shall refer here to the following families of means:

• the weighted Gini means(or sum means) Sp,q;λ, defined for p �= q by

Sp,q;λ(a, b) =
(
λap + (1− λ)bp

λaq + (1− λ)bq

) 1
p−q

, λ ∈ (0, 1) ;

• the weighted Lehmer means (or generalized counter-harmonic means) Cp;λ =
Sp,p−1;λ;

• the weighted power means Pq;λ = Sq,0;λ;
• the weighted arithmetic means Aλ = P1;λ;
• the weighted harmonic means Hλ = P−1;λ;
• the weighted geometric means Gλ, defined by

Gλ(a, b) = aλb1−λ.

The symmetric means Sp,q;1/2, Cp;1/2, Pq;1/2, A1/2, H1/2 and G1/2 are written
simply as Sp,q , Cp, Pq , A, H respectively G. For λ = 0 or λ = 1, we have

Sp,q;0 = Π2 and Sp,q;1 = Π1,∀p, q ∈ R ,

where Π1 and Π2 are the projections defined by

Π1(a, b) = a, Π2(a, b) = b, ∀a, b > 0,

respectively. For λ /∈ [0, 1], Sp,q;λ are only pre-means for all p, q ∈ R.

Some families of means are defined with respect to arbitrary functions. For in-
stance, given a fixed mean M and a bijection f : R+ → R+, we can construct a
meanM(f ) defined by

M(f )(a, b) = f −1(M(f (a), f (b))), ∀a, b > 0.

If we takeM = Aλ, we get the family of weighted quasi-arithmetic means. In
a similar way, the Beckenbach-Gini means are defined by

Cf (a, b) = af (a)+ bf (b)

f (a)+ f (b)
, ∀a, b > 0,
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where f is a positive function. A generalized quasi-arithmetic mean A[f ,g], is defined
by

A[f ,g](a, b) = (f + g)−1 (f (a)+ g (b)) ,

where f , g : R+ → R+ and f + g is a bijection. A Lagrangian quasi-arithmetic
mean A[f ]

[μ] is defined by

A[f ]
[μ] (a, b) = f −1

(∫ 1

0
f (tx + (1− t) y) dμ(t)

)

,

where f : [0, 1] → [0, 1] is a bijection.
More details on means can be found in [5]. Let us underline that the notations can

be different from one paper to another.

2 Invariance of Means

Given three functionsM ,N ,P : R
2+ → R+, we can compose them, obtaining a new

function P (M ,N ) : R
2+ → R+, defined by

P (M ,N )(a, b) = P (M(a, b),N (a, b)), ∀a, b > 0.

If M ,N ,P are means (pre-means) then P (M ,N ) is also a mean (respectively a
pre-mean).

Definition 1 The function P is called (M ,N )− invariant if it verifies

P (M ,N ) = P.
Obviously we have the following duality property:

Lemma 1 If the symmetric mean P is (M ,N )− invariant, then it is also (N ,M)−
invariant.

The following property was proved in [36].

Lemma 2 If the meansM and N are symmetric and P is (M ,N )− invariant, then
P is also symmetric.

A similar result can be also proved.

Lemma 3 If the means P andM are symmetric, P is strictly isotonic and (M ,N )−
invariant, then N is also symmetric.

Proof We have

P (M(a, b),N (a, b)) = P (a, b),P (M(b, a),N (b, a)) = P (b, a), ∀a, b ∈ J.
As P andM are symmetric, the second equality gives

P (M(a, b),N (b, a)) = P (a, b), ∀a, b ∈ J ,
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thus

P (M(a, b),N (a, b)) = P (M(a, b),N (b, a)), ∀a, b ∈ J.
The strict isotony of P implies the symmetry of N. �

These properties are related to the following problem. Given two functionsM ,N :
R

2+ → R+ and two numbers a0, b0 ∈ R+, we can define a (Gaussian) double
sequence by:

an+1 = M(an, bn), bn+1 = N (an, bn), ∀n > 0.

If M ,N are means which have some properties (for instance, one of them is
continuous and strict (see [34])), the sequences (an)n≥0 and (bn)n≥0 are convergent
to a common limit P (a0, b0). Moreover P also defines a mean. C. F. Gauss was the
first author who related the problem of determining the common limit of the double
sequences, to the invariance of the mean P with respect to (M ,N ), in the special
case in which M is the arithmetic mean while N is the geometric mean. A general
invariance principle was proved in [3]. It was generalized for pre-means in [37]:

Theorem 1 Let P be a continuous pre-mean andM and N be two functions such
that P is (M ,N )− invariant. If the sequences (an)n≥0 and (bn)n≥0 are convergent to
a common limit l, then l = P (a0, b0).

3 Invariance in a Family of Means

Given a family Z of means, we can consider three problems of invariance:

• A first problem is that of the study of the invariance of a given mean P with
respect to the family Z . This means the determining of all the pairs of means
(M ,N) from Z such that P is (M ,N )− invariant.

• A second problem is named invariance in the family Z . It consists of determining
all the triples of means (P ,M ,N) from Z such that P is (M ,N )− invariant.

• A third type of problem was called reproducing identities and assumes
determining quadruples of means (P ,M ,N ,Q) from Z such that

P (M ,N) = Q. (1)

This problem has the trivial solution

P (M ,M) = M , (2)

the solutions of the invariance problem

P (M ,N) = P , (3)

but it can have other solutions also.
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Many problems of the first type were formulated as functional equations. The first
one was related to the invariance of the arithmetic mean A with respect to the family
of quasi-arithmetic means A(f ). It was solved in [33] for analytical functions f and
in [30] for the second order continuously differentiable functions f . It was called
the Matkowski-Sutô problem (see [16]). The regularity assumptions were weakened
step-by step in [19, 16, 17], arriving at simple continuity hypothesis on the functions
f.

The problem of invariance of the arithmetic mean A was studied later:

• with respect to the family of Lagrangian means, in [32];
• with respect to the family of Beckenbach-Gini means, in [20];
• with respect to the family of weighted quasi-arithmetic means Aλ(f ), in [1] and

[18];
• with respect to the family of generalized quasi-arithmetic means A[f ,g], in [29];
• with respect to the family of Lagrangian quasi-arithmetic means A[f ]

[μ], in [32].

The problem of invariance of the geometric mean G with respect to the family of
Lagrangian means was studied in [22].

The problem of invariance was studied in the family of Beckenbach-Gini means
in [31], in the family of Greek means in [35], and in the family of weighted quasi-
arithmetic means in [27] and [26].

The first reproducing identities problem was studied in [4] for the families of
Lehmer means and for that of power means.

4 Complementary of a Mean with Respect to Another Mean

Given two means M and N , it is very difficult to find a mean P which is (M ,N )
-invariant, as can be seen in the case considered by C. F. Gauss: M = A and
N = G (see [3]). Another method was considered to overcome this situation. The
idea was taken from [21] where two means M and N are called complementary
(with respect to A) ifM +N = 2A. We remark that for every meanM , the function
2 ·A−M is again a mean. Thus the complementary of every meanM exists and it is
denoted by cM. The most interesting example of a mean defined on this way is the
contraharmonic mean given by C = cH. A second notion of this type also considered
in [21] is the following: two meansM and N are called inverses (with respect to G)
if M · N = G2. Again, for every (nonvanishing) mean M , the expression G2/M

gives a mean, the inverse ofM , which we denote by iM. For example we have
iA = H.

In [34] and then in [30] it was proposed a generalization of complementariness
and of inversion.

Definition 2 A mean N is called complementary toMwith respect to P (or P−
complementary toM) if it verifies

P (M ,N ) = P.
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Remark 1 Of course this is equivalent with the property thatP is (M ,N )—invariant,
but sometimes we can easier determine the meanN which is the P—complementary
ofM , than to determine the mean P which is (M ,N )—invariant.

Remark 2 The P—complementary of a given mean does not necessarily exist nor
is unique. For example the Π1—complementary of Π1 is any mean M , but no
mean M �= Π1 has a Π1—complementary. If a given mean M has a unique P—
complementary mean N , we denote it by PM .

Proposition 1 For every meanM we have

MM = M , (4)

MΠ1 = Π2, (5)

Π2M = Π2 (6)

and if P is a symmetric mean then

PΠ2 = Π1. (7)

Remark 3 In what follows, we shall call these results as trivial cases of comple-
mentariness. We shall denote also

Π1Π1 = M , (8)

meaning that Π1 (Π1,M) = Π1.

Remark 4 Of course, we are interested in determining non trivial cases. The com-
plementariness with respect to Pm;λ for λ �= 1 was considered in [8]. If we denote it
by P(m;λ)M , we find the expression

P(m;λ)M =
[(

Pm;λ
)m − λ ·Mm

1− λ

] 1
m

, m �= 0,

while, for m = 0 we have

G(λ)M =
( Gλ
Mλ

) 1
1−λ
.

Lemma 4 The pre-mean P(m;λ)M is a mean for every meanM and each m ∈ R if
and only if 0 ≤ λ ≤ 1

2 .

Remark 5 This complementary can exist also for 1/2 < p < 1, but only for some
means. For example, we have

G(λ)Gμ = G λ(1−μ)
1−λ

, (9)

and the result is a mean for 0 < λ ≤ 1
2−μ .We shall refer also to the following special

cases
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G(λ)G 3λ−1
2λ
= G; (10)

G(λ)G = G λ
2(1−λ)

; (11)

G(λ)G 2λ−1
λ
= Π1; (12)

G(1/3)Π2 = G; (13)

G(2/3)G = Π1; (14)

and

GGμ = G1−μ. (15)

5 Series Expansion of Means

For the study of some problems related to means, the power series expansions
was used in [28]. Let M be a symmetric and homogeneous mean. Without loss
of generality we may assume thatM acts on the positive numbers a ≥ b and

M(a, b) = aM(1, b/a) = aM(1, 1− t),
where

0 ≤ t = 1− b/a < 1.

For many problems it suffices to consider only the normalized functionM(1, 1−t)
even if the mean M is not symmetric nor homogeneous. We shall give explicit
Taylor series coefficients of the normalized function for some means. In order to
avoid complicating the presentation, we shall call them series expansions of the
corresponding means. For some means, determining all the coefficients is impossible.
In these cases, a recurrence relation for the coefficients will be very useful. It gives a
way to calculate as many coefficients as desired. Such a formula was given by Euler
(see [23]) in the following:

Theorem 2 If the function f has the Taylor series

f (x) =
∞∑

n=0

an · xn,

p is a real number and

[f (x)]p =
∞∑

n=0

bn · xn,
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then we have the recurrence relation

n∑

k=0

[k(p + 1)− n] · ak · bn−k = 0, n ≥ 0. (16)

In [11] it was proved the following

Theorem 3 The first terms of the power series expansion of the weighted Gini mean
Sp,p−r;t , with r �= 0, t ∈ (0, 1) are

Sp,p−r;t (1, 1− x) = 1− (1− t) · x + t (1− t) (2p − r − 1) · x
2

2! − t

· (1− t) [t (6p2 − 6p (r + 1)+ (r + 1) (2r + 1)
)− 3p (p − r)− (r − 1) (r + 1)

] · x
3

3!
−t (1− t) · [t2(− 24p3 + 36p2 (r + 1)− 12p (r + 1) (2r + 1)+ (r + 1) (2r + 1)

· (3r + 1) )+ t(24p3 − 12p2 (3r + 1)+ 12p (r + 1) (2r − 1)− 3 (r + 1) (2r + 1)

· (r − 1) )− 4p3 + 6p2 (r − 1)− 2p
(
2r2 − 3r − 1

)+ (r − 2) (r − 1) (r + 1)
] · x

4

4! −
−t (1− t) · [t3 (120p4 − 240p3 (r + 1)+ 120p2(r + 1)(2r + 1)−
−20p(r + 1)(2r + 1)(3r + 1)+ (r + 1)(2r + 1)(3r + 1)(4r + 1))+

+t2 (−180p4 + 180p3(2r + 1)− 90p2(r + 1)(4r − 1)+ 30p(r + 1)(2r + 1)

·(3r − 2)− 6(r − 1)(r + 1)(2r + 1)(3r + 1))+ t (70p4 − 20p3(7r − 2)+ 10p2

·(14r2 − 6r − 9)− 10p(r + 1)(7r2 − 12r + 3)+ (r − 1)(2r + 1)(7r − 11)(r + 1)
)

−5p4 + 10p3(r − 2)− 5p2(2r2 − 6r + 3)+ 5p(r − 2)(r2 − 2r − 1)

−(r + 1)(r − 1)(r − 2)(r − 3)] · x
5

5! + · · ·

Taking r = 1 we get the first terms of the weighted Lehmer mean Cp;t . The first
terms of Cp were given in [24]. Also, for r = p we get the first terms of the weighted
power mean Pp;t which were determined in [6]. Its first part was given for Pp in
[28].

Using series expansion of means, in [28] it was proved that the families of means
Pq and Cp have in common only the arithmetic mean, geometric mean, and harmonic
mean. More generally in [11] is proved the following result:

Theorem 4 The families of weighted means Pq;t and Cp;s have in common only the
weighted arithmetic mean At , the geometric mean G, the weighted harmonic mean
Ht , and the first and the second projection Π1 and Π2.
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6 Generalized Inverses of Means

The basic results related to generalized inverses of means, that is to complementary
with respect to Gλ, were given in [6]. We denote the Gλ−complementary of M by
G(λ)M . For λ = 1/2 we use the simpler notation GM.

Theorem 5 If the meanM has the series expansion

M(1, 1− x) = 1+
∞∑

n=1

anx
n,

then the first terms of the series expansion of its generalized inverse G(λ)M are

G(λ)M(1, 1− x) = 1− (1+ α · a1) · x + α
2

[
(α + 1) · a2

1 + 2 (a1 − a2)
] · x2

−α
6

[
(α + 1) (α + 2) · a3

1 + 3 (α + 1) · a1 (a1 − 2a2)+ 6 (a3 − a2)
] · x3

+ α
24

[
(α + 1) (α + 2) (α + 3) · a4

1 + 4a2
1 (α + 1) (α + 2) (a1 − 3a2)

+12 (α + 1)
(
a2

2 − 2a1 (a2 − a3)
)+ 24 (a3 − a4)

] · x4 − α
5! [(α + 1) (α + 2) ·

· (α + 3) (α + 4) · a5
1 + 5a3

1 (α + 1) (α + 2) (α + 3) (a1 − 4a2)− 60a2
1 ·

· (α + 1) (α + 2) (a2 − a3)+ 60a1 (α + 1)
(
(α + 2) a2

2 + 2 (a3 − a4)
)

+60a2 (α + 1) (a2 − 2a3)− 120 (a4 − a5)] · x5 + · · · ,

where

α = λ

1− λ.

The series expansion of the generalized inverse of Sp,p−r;μ was given in [7].

Corollary 1 The first terms of the series expansion of the generalized inverse of
Sp,p−q;μ are

G(λ)Sp,p−q;μ (1, 1− x) = 1− (αμ− α + 1) · x − α (1− μ) [(α + 2p − q)μ

− (α − 1)] · x
2

2! + α (1− μ)
{[

6p2 + 6 (α − q) p + (α − q) (α − 2q)
]
μ2 − [3p2

−3 (q − 2α) p + (2α − q) (α − q)]μ+ (α − 1) (α + 1)} · x
3

3! − α (1− μ)
{[

24p3

+36 (α − q) p2 + 12 (α − q) (α − 2q) p + (α − q) (α − 2q) (α − 3q)]μ3 + [−24p3

·p2 − 12 (2α − 2q + 1) (α − q) p − (α − 2q) (α − q) (3α + 2− 3q)]μ2 + [4p3

+12 (3q − 4α − 1)+ 6 (2α − q + 1) p2 + 2
(
6α (2α − 2q + 1)− 3q + 2q2 − 1

)
p

+(α − q)(3α2 + 4α − 3qα − 2q + q2 −1)]μ− (α − 1) (α + 1) (α + 2)} · x
4

4!
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+α (1− μ) {[120p4 + 240 (α − q) p3 + 120 (α − q) (α − 2q) p2

+20 (α − q) (α − 2q) (α − 3q) p + (α − q) (α − 2q) (α − 3q) (α − 4q)]μ4

+ [−180p4 + 60 (6q − 7α − 2) p3 − 90 (α − q) (3α − 4q + 2) p2 − 30 (α − q)
· (α − 2q) (2α + 2− 3q) p − (α − q) (α − 2q) (α − 3q) (4α + 5− 6q)]μ3

+ [70p4 + 20 (10α − 7q + 6) p3 + 10
(−30qα + 18α2 + 24α + 3+ 14q2 − 18q

)

·p2 + 10 (α − q) (6α2 + 12α − 12qα + 7q2 − 12q + 3
)
p + (6α2

−12qα + 15α + 5+ 7q2 −15q) (α − 2q) (α − q)]μ2 + [−5p4 + 10 (q − 2− 2α)

·p3 + (30qα − 30α2 − 60α − 15 −10q2 + 30q
)
p2 − 52α + (2− q) (2α2

−2qα + 4α − 2q + q2 −1) p − (α − q) (4α3 − 6qα2 + 15α2 − 15qα + 10α

+4q2α − 5+ 5q2 − q3 −5q)]μ+ (α − 1) (α + 1) (α + 2) (α + 3)} · x
5

5! + · · · ,

where α = λ
1−λ .

Remark 6 For q = pwe get the first terms of the series of G(λ)Pp;μ (1, 1− x), while
for q = 1 we have also the first terms of the series of G(λ)Cp;μ (1, 1− x) .

Using the above results, the following property was proved in [12].

Theorem 6 The relation

G(λ)Sp,q;μ = Sr ,s;ν

holds if and only if we are in one of the following cases: (4), (5), (6), (7), (13), (14),
or

GSp,q;μ = S−p,−q;1−μ. (17)

Remark 7 Of course, we have also some other equivalent cases, taking into account
the property Ss,r;ν = Sr ,s;ν . We have in view this property in all the results that
follows.

7 Complementariness with Respect to Weighted Power Means

Basic results related to complementariness with respect to power means were given
in [8]. Denote the Pm;λ− complementary ofM by P(m;λ)M , or by P(m)M if λ = 1/2.

Corollary 2 If the meanM has the series expansion

M(1, 1− x) = 1+
∞∑

n=0

anx
n,

then the first terms of the series expansion of P(m;λ)M , for m �= 0 and λ �= 0, 1 are
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P(m;λ)M(1, 1− x) = 1− (1+ α · a1) · x + α
2

[
(1−m) (2a1 + a2

1 + αa2
1

)− 2a2
] · x2

+α
6

{
(1−m) [(2α2m− α2 + 3αm− 3α +m− 2

)
a3

1 + 3 (2αm− α +m− 1) a2
1

+3ma1 + 6a2 + 6 (α + 1) a1a2]− 6a3} · x3 + α

24
{(1−m) · [(6α3m2 − 5α3m

+α3 + 12α2m2 − 18α2m+ 6α2 + 7αm2 − 18αm+ 11α + m2 − 5m+ 6
)
a4

1

+4
(
6α2m2 − 5α2m+ α2 + 6αm2 − 9αm+ 3α +m2 − 3m+ 2

)
a3

1 + 6
(
4αm2

−2αm +m2 −m) a2
1 + 4m(m+ 1) a1 + 12ma2 + 24 (2αm− α +m− 1) a1a2

+12
(
2α2m − α2 + 3αm− 3α +m− 2) a2

1a2 + 24 (α + 1) a1a3 + 24a3

+12 (α + 1) a2
2

] −24a4} · x4 + · · · ,

where

α = λ

1− λ.

Using them, the following consequence was proved in [10].

Theorem 7 The first terms of the series expansion of the Pm;λ− complementary of
Pp;μ are

P(m;λ)Pp;μ(1, 1− x) = 1− (αμ− α + 1) x − α
2
(μ− 1) (μm− αμ+ αμm

−μp + α − 1− αm+m) x2 − α
6
(μ− 1)

(
3αμ2m2 − 3μ2mp − 3αμ2m

−3α2μ2m− 3αμ2mp + 3αμ2p + 2α2μ2m2 + α2μ2 + μ2m2 + 2μ2p2

+3αμmp − μp2 − 4α2μm2 − 3αμp + 6α2μm− 2α2μ+ μm2 − 1− 3α2m

+α2 − 3αm2 + 3αm+ 2α2m2 +m2
)
x3 − α

24
(μ− 1)

(−2− α − αmμ+ 6α2mμ

+6α2mμ3 − 18α2m2μ3 − 6αμp − 12α2mμ2 + 10α2m2μ− 33α3m2μ− 6αmμ2

+3αm2μ2 − 6mμ2p + 6αμ2p + 22α2m2μ2 + 33α3m2μ2 + 3αm2μ− 11α3m2μ3

−7αm2μ3 + 18α3mμ− 18α3mμ2 + 6α3mμ3 − 6α2μp + 12α2μ2p − 6α2μ3p

+2α2 − 11αμ3p2 + 15αμ2p2 − 4αμp2 + 7αm−m+ 18mαμ3p − 18mαμ2p

+2α2μ2 − 4α2μ+ αμ−mμ+ μp + αm2 − 14α2m2 + 2m2 + 2m2μ2 + 2m2μ

−2μp2 + 4μ2p2 + 18α2mμp + 18α2mμ3p − 36α2mμ2p + α3 + 11α3m2

−6α3m− α3μ3 + 3α3μ2 − 3α3μ+ 6m2αμp − 18m2αμ3p + 12m2αμ2p

−12α2m2μp − 12α2m2μ3p + 24α2m2μ2p + 11mαμ3p2 − 15mαμ2p2

+4mαμp2 − 7αm3 + 12α2m3 − 6α3m3 − μp3 + 6μ2p3 − 6μ3p3
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+12α2m3μ3 − 6m2μ3p − 12α2m3μ+ 18α3m3μ+ 3αm3μ2 − 18α3m3μ2

−3αm3μ+ 6α3m3μ3 + 7αm3μ3 − 7mμ2p2 + 11mμ3p2 +m3μ

+m3μ2 +m3μ3 +m3 − 12μ2α2m3)x4 + · · · ,

where

α = λ

1− λ.

The problem of invariance in the family of weighted power means was solved in
[9].

Theorem 8 We have

P(m;λ)Pp;μ = Pq;ν ,m �= 0,

if and only if we are in one of the non-trivial cases:

P(m;λ)Pm;μ = P
m; λ(1−μ)1−λ

; (18)

P(m;λ)Π2 = Pm; λ
1−λ

; (19)

P(m;λ)Pm; 2λ−1
λ
= Π1; (20)

P(m;λ)Pm
2 ;2λ−1 = Pm

2 ;2λ; (21)

P(m;1/5)Pm
2 ;−1 = G; (22)

P(m;4/5)G = Pm
2 ;2. (23)

Remark 8 Some of the complementaries in the above theorem are only pre-means.

Remark 9 The problem of invariance in the class of weighted quasi-arithmetic
means was solved by other method in [27] and [26]. Of course, the weighted power
means are weighted quasi-arithmetic means, but the above results include pre-means
as complementaries. The problem of invariance in the class of (symmetric) power
means was solved in [28]. The problem of reproducing identities for power means,

Pm
(
Pp, Pq

) = Pr ,

was solved in [4]. Only the trivial solution,

Pm
(
Pp, Pp

) = Pp,

and the solutions of the invariance problem,

Pm
(
Pp, Pq

) = Pm,

exist.
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Remark 10 The problem of invariance of a weighted power mean with respect to
the set of weighted Gini means was studied in [14]. The following result was proved.

Theorem 9 We have

P(m;λ)Sr ,s;μ = Su,w;ν ,m �= 0,

if we are in one of the non-trivial cases: (19), (20), (21), (22),

P(m;λ)Pm; 3λ−1
2
= Pm (24)

and

P(m)Sr ,r+m;μ = S−r ,m−r;1−μ; (25)

including its special cases

P(m)Sr−m,r;μ = Sm−r ,2m−r;1−μ; (26)

P(m)Sr ,r+m = S−r ,m−r ; (27)

P(m)Sr−m,r = Sm−r ,2m−r ; (28)

P(2r)Sr ,3r = G; (29)

P(2r)G = Sr ,3r . (30)

Remark 11 Taking into account the warning that “solutions may have been lost” in
solving some systems of equations using the computer algebra Maple, it is not sure
that “if” in the enunciation of the previous theorem can be replaced by “if and only
if”.

8 Complementariness with Respect to Weighted Lehmer Means

Denote the Cp;λ− complementary of the meanM by C(p;λ)M , or by C(p)M if λ = 1/2.
Using Euler’s formula, the following result was established in [36].

Theorem 10 If the meanM has the series expansion

M(1, 1− x) = 1+
∞∑

n=0

anx
n,

then the first terms of the series expansion of C(p;λ)M , for λ �= 0, 1, are

C(p;λ)M(1, 1− x) = 1− 1− λ+ λa1

1− λ x − λ

(1− λ)2 [(p − 1) a1 (a1 + 2 (1− λ))

+ a2 (1− λ)] · x2 − λ

2 (1− λ)3
[
a1 (p − 1)

(
2λ3p − λ2 (p + 2)− 4λ (p − 1)+ 3p
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−2)+ a2
1 (p − 1)

(
2λ2 (1− 3p)+ λ (3p + 2)+ 3p − 4

)+ a3
1 (p − 1) (2λp + p − 2)

+4a2 (p − 1) (1− λ)2 + 4a1a2 (p − 1) (1− λ) +2a3 (1− λ)2
] · x3 + · · ·

MC(q;ν)(1, 1− x) = 1− (1+ α · a1) · x − α
[
a2

1 (αq − α + q − 1)− 2a1 + a2
] · x2

− α

2(1+ α)

[
a1
(
2α − 5q − 7αq + 2+ 3q2 + 5αq2)

+a2
1

(
10α − 15qα2 − 10αq + 6α2 + 4− 7q − 12qα + 9q2α2 +12q2α + 3q2)

+a3
1 (2 + 6α + 6α2 + α3 − 3q − 11qα − 13qα2 − 5qα3 + 5q2α + 7q2α2

+3q2α3 +q2)+ 2a2(1+ α) (2q − r − 1)+ 2a1a2(1+ α)2 (2q − r − 1)

+2a3(1+ α)] · x3 + · · · ,

where α = ν/(1− ν).
Using this formula, in [13] is deduced the following results.

Corollary 3 The first terms of the series expansion of C(p;λ)Cr;μ are

C(p;λ)Cr;μ(1, 1− x) = 1− 1− 2λ+ λμ
1− μ x + λ (1− μ)

(1− λ)2 [p (1− 2λ+ μ)

+μr (λ− 1)− 1+ 2λ− λμ]x2 +
λ (1− μ)
(1− λ)3

[
p2
(
2λ3 + 2λμ2 − 6λ2μ− λμ+ 5λ2 + μ2 + μ− 5λ+ 1

)

+4pr
(
λμ2 + λμ− λ2μ −μ2

)+ r2
(
2λμ− 4λμ2 − λ2μ− μ+ 2μ2

)

+p (2λ2μ2 + 12λ2μ− 6λμ2 − 2λ3 − 9λ2

+μ2 −λμ+ 7λ− μ− 1)+ r (5λ2μ− 4λ2μ2

+4λμ2 −6λμ+ μ)+ 2λ2μ2 + 4λ2 − 6λ2μ +2λμ− 2λ] x3 + · · ·

Corollary 4 We have

C(p;λ)Cr;μ = Cu;ν

if we are in one of the following non-trivial cases:

C(1;λ)C1; 2λ−1
λ
= Cu;1; (31)

C(0;λ)C0; 2λ−1
λ
= Cu;1; (32)

C(1)Cr;μ = C2−r;1−μ; (33)

C(1/2)Cr;μ = C1−r;1−μ; (34)

C(0)Cr;μ = C−r;1−μ; (35)

C(1;λ)C1; 3λ−1
2λ
= C1; (36)

C(0;λ)C0; 3λ−1
2λ
= C0; (37)
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C(1;1/3)Cr;0 = C1; (38)

C(0;1/3)Cr;0 = C0; (39)

C(1;λ)C1 = C1; λ
2−2λ

; (40)

C(0;λ)C0 = C0; λ
2−2λ

; (41)

C(2;1/4)C1;−1/2 = C1; (42)

C(2;3/4)C1 = C1;3/2; (43)

C(−1;1/4)C0;−1/2 = C0; (44)

C(−1;3/4)C0 = C0;3/2. (45)

Remark 12 We are not sure that these are the only solutions of the above problem.
It is easy to verify that the solutions (31), (32), (33), (34), (35), (36), (37), (38), (39),
(40), (41) are special cases of (20), (20), (25), (17), (25), (18), (18), (19), (19), (18)
respectively (18).

Remark 13 The cases involving C1;λ = Aλ and C0;λ = Hλ, have no similar for
C1/2;λ. Instead, the following results:

G(λ)G 2λ−1
λ
= Π1,G(1/3) Π2 = G, G(λ)G 3λ−1

2λ
= G, G(λ)G = G λ

2(1−λ)
,

are valid, but Gλ is not a weighted Lehmer mean.

Corollary 5 For symmetric means we have

Cp(Cr , Cu) = Cp

if and only if we are in the following non-trivial cases:

i) C0(Cr , C−r ) = C0;

ii) C1/2(Cr , C1−r ) = C1/2;

iii) C1(Cr , C2−r ) = C1.

Remark 14 This problem of invariance was solved in [28]. The problem of
reproducing identities,

Cp(Cr , Cu) = Cv,

was solved in [4]. The solution contains the above cases i)-iii) and the trivial case

Cp(Cr , Cr ) = Cr .



120 I. Costin and G. Toader

Remark 15 The problem of invariance of a weighted Lehmer mean with respect to
the set of weighted Gini means was studied in [15]. The following result was proved.

Theorem 11 We have

C(p;λ)Sr ,q;μ = Su,t ;ν

if C(p;λ)Cr;μ = Cu;ν (with q = r − 1 and t = u− 1), or

C(1)S 3
2 , 1

2
= Su,−u; (46)

C(1;1/5)S 1
2 ,0;−1 = Su,−u; (47)

C(1;λ)S1,0; 2λ−1
λ
= Π1; (48)

C(1)Sr+1,r;μ = S1−r ,−r;1−μ; (49)

C(1;4/5)Sr ,−r = S0,1/2;2; (50)

C(1;λ)Π2 = S1,0; λ
1−λ

; (51)

C(1/2)Sr ,s;μ = S−r ,−s;1−μ; (52)

C(0)S− 3
2 ,− 1

2
= Su,−u; (53)

C(0;1/5)S− 1
2 ,0;−1 = Su,−u; (54)

C(0;λ)S−1,0; 2λ−1
λ
= Π1; (55)

C(0)Sr+1,r;μ = S−r−1,−r−2;1−μ; (56)

C(0;4/5)Sr ,−r = S0,−1/2;2; (57)

respectively

C(0;λ)Π2 = S0,−1; λ
1−λ
. (58)

Remark 16 In fact, (46), (47), (48), (49), (50), (51), (52), (53), (54), (55), (56),
(57), and (58) are special cases of (29), (25), (20), (33), (23), (19), (17), (29), (25),
(20), (35), (23), respectively (19).

9 Complementariness with Respect to Weighted Gini Means

In [2] it was solved the problem of invariance in the family of Gini means:

Theorem 12 We have

S(p,q)Sr ,s = Su,w,
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if and only if (4), (17), (27), (29) or (30) hold.
We pass now to the complementariness with respect to the weighted Gini means.

Denote the Sq,q−r;ν− complementary of the meanM by S(q,q−r;ν)M , and by S(q,q−r)M
if ν = 1/2.

Theorem 13 If the meanM has the series expansion

M(1, 1− x) = 1+
∞∑

n=1

anx
n,

then S(q,q−r;ν)M has, for r �= 0 and ν �= 0, 1, the series expansion

S(q,q−r;ν)M(1, 1− x) = 1+
∞∑

n=1

dnx
n,

where

d0 = 1, d1 = e1

r
,

dn = − 1

nr

n−1∑

k=0

[k (r + 1)− n] · dk · en−k , n ≥ 2,

with

e1 = (α + 1) β1 − αb1,α = ν

1− ν ,

en = βn −
n−1∑

k=1

fk (en−k − βn−k)+ α
[

βn − bn +
n−1∑

k=1

ck (βn−k − bn−k)
]

, n ≥ 2,

bn, cn, fn and βn denoting the coefficients of the reduced series expansion of Mr ,
Mq−r , Nq−r respectively Srq,q−r;ν .

Proof Denoting S(q,q−r;ν)M = N , the condition Sq,q−r;ν(M ,N ) = Sq,q−r;ν gives

Nq−r
(
Nr − Srq,q−r;ν

) = αMq−r (Srq,q−r;ν −Mr
)
.

Taking the values a = 1 and b = 1− x and denoting the coefficients of the reduced
series expansion ofMr ,Mq−r , Nr , Nq−r and Srq,q−r;ν by bn, cn, en, fn respectively
βn, we get
[

1+
∞∑

n=1

fnx
n

][ ∞∑

n=1

(en − βn) xn
]

= α
[

1+
∞∑

n=1

cnx
n

][ ∞∑

n=1

(βn − bn) xn
]

.

This gives

e1 − β1 = α (β1 − b1) ,
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en − βn +
n−1∑

k=1

fk (en−k − βn−k) = α
[

βn − bn +
n−1∑

k=1

ck (βn−k − bn−k)
]

,

for n ≥ 2. Therefore, we have a recurrence relation for en and using Euler’s formula
(16) we can deduce the expression of dn. �

Corollary 6 If the meanM has the series expansion

M(1, 1− x) = 1+
∞∑

n=0

anx
n,

then the first terms of the series expansion of S(q,q−r;ν)M , for r �= 0 and ν �= 0, 1,
are

S(q,q−r;ν)M(1, 1− x) = 1− (1+ α · a1) · x − α2 [a1 (2q − r − 1) (2+ αa1 + a1)+ 2a2]

·x2 − α

6(1+ α)

[
3a1
(
αr − 3rq − 2αq + αr2 − 5rαq − 2q + r2 + 3q2 + r + 5αq2)

+3a2
1

(
3r2α − 6qα2 − 10αq + 2r2α2 + 3rα2 + 5rα + 1+ 2r + 2α + α2 + r2

−4q − 12qrα − 9qrα2 − 3qr + 9q2α2 +12q2α + 3q2)+ a3
1

(
2+ r2 + 3r

+5α + 4α2 − 15qrα − 21qrα2 − 9qrα3 + α3 + 5r2α2 + 2r2α3 + 9rα2 + 3rα3

+4r2α + 9rα − 6qα3 − 18qα2 − 18αq − 3qr + 15q2α + 21q2α2 + 9q2α3 − 6q +3q2
)

+6a2(1+ α) (2q − r − 1)+ 6a1a2(1+ α)2 (2q − r − 1) +6a3(1+ α)] · x3 · · · ,

where α = ν
1−ν .

As a consequence we obtain:

Corollary 7 The first terms of the series expansion of the Sp,p−q;λ− complementary
of Sr ,r−s;μ are

S(p,p−q;λ)Sr ,r−s;μ(1, 1− x) = 1− 1− 2λ+ λμ
1− λ x

− λ(1− μ)

2(1− λ)2
(λμ− 2rμλ+ sμλ+ qμ− 2pμ− sμ+ 2rμ− 2λ+ 1+ 4pλ− 2p − 2qλ

+q) · x2 + λ(1− μ)

6(1− λ)3
(− 1+ 15pqλ+ q2 − 3pμ2q + 3μ2p2 + 6qλ2 + 6q2λ2 − 15qλ2p

+3p2 − 18p2μλ2 + 18pμqλ2 − 6pμ2qλ+ 3μqsλ− 6μqrλ− 6qμ2rλ+ 3rsμ

−5q2λ− 6qλ3p + 6p2μ2λ+ 6p2λ3 − s2μ− 3r2μ+ 6r2μ2 − 6sμ2r + q2μ+ 2s2μ2 + μ2λ2

−3pμq − 3q2μλ2 + q2μ2λ+ 2λ+ 12μprλ− 6μpsλ+ 12pμ2rλ− 6pμ2sλ

+3qμ2sλ− 3p2μλ− 12pλ2 − 15p2λ+ 15p2λ2 − 12pλ2rμ+ 6pλ2sμ+ 6qλ2rμ

−3qλ2sμ− 3qp − 3qλ+ 6pλ+ 3rsμλ2 − 6sμ2rλ2 − 6rsμλ+ 12sμ2rλ+ 6r2μλ

−12r2μ2λ− 4s2μ2λ− s2μλ2 − 3r2μλ2 + 6r2μ2λ2 + 2s2μ2λ2 + 2s2μλ+ 6qμ2r

−3qμ2s + q2μ2 + 3μp2 − 12pμ2r + 6pμ2s − 2q2μλ+ 3qμ2λ− 6qμλ2 − 2λ2μ
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−6pμ2λ+ 12pμλ2 + 3pμqλ− 6rμλ+ 3sμλ+ 6rμ2λ− 3sμ2λ+ 6rμλ2 − 3sμλ2

−6r2μλ2 + 3sμ2λ2) · x3 + · · ·

Remark 17 The next coefficient needs two pages for printing.
We can study the problem of invariance in the family of weighted Gini means.

Theorem 14 We have

S(p,m;λ)Sr ,k;μ = Su,t ;ν ,

if we are in one of the following non-trivial cases:

S(p,−p)Sr ,t ;μ = S−r ,−t ;1−μ; (59)

S(0,0;λ)S0,0;(3λ−1)/2λ = Su,−u; (60)

S(0,0;1/3)Π2 = Su,−u; (61)

S(0,0;2/3)Sr ,−r = Π1; (62)

S(p,0)Sr ,r+p;μ = S−r ,−r+p;1−μ, (63)

S(p,0)Sr ,r−p;μ = S2p−r ,p−r;1−μ, (64)

S(p,0;λ)Π2 = Sp,0;λ/(1−λ); (65)

S(p,0;λ)Sp,0;(2λ−1) = Π1; (66)

S(2p,0;1/5)Sp,0;−1 = Su,−u; (67)

or

S(p,−p)Sr ,t ;μ = S−r ,−t ;1−μ. (68)

Proof Denote m = p − q, k = r − s, t = u − w.We have to determine the set of
nine parameters (p, q, r , s, u, w, λ,μ, ν) such that

S(p,p−q;λ)Sr ,r−s;μ(1, x) = Su,u−w;ν(1, x), for allx > 0. (69)

We do this in more rounds. In each one we choose a fixed n and solve the system
of equations obtained by equating the coefficients of xj in the two members of the
equality (69), for j = 1, . . ., n.

I) For n = 1, the equality of the coefficients of x gives

ν = (1+ ν − μ) λ.
We have the following cases:

1) λ = 0, implying ν = 0, thus (6);
2) ν = 0, implying λ = 0, thus again (6), or μ = 1 giving (5);
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3) μ = 1, implying ν = 0, thus (5), or λ = 1 giving (7);
4) λ = 1 implying μ = 1 thus (7);
5) 1+ ν − μ = 0, implying ν = 0 and then μ = 1, thus (5);
6) μ = 0 and ν = λ/(1− λ);
7) ν = 1 and μ = 2− 1/λ;
8) ν = λ (1− μ) / (1− λ) .
The first five cases give only trivial solutions. To solve the last three cases, we have
to go further. The equations being more and more complicated, for the following
cases we used the computer algebra Maple (see [25]).

II) For n = 2, we get the special case 6.1) μ = 0, ν = 1, λ = 1/2 giving (8) and
the relation 2p = q − s + 2r in the case 7).

III) For n = 3, we get the special cases:
7.1) ν = 1,μ = 1/2, λ = 2/3,p = 0, q = s − 2r;
7.2) ν = 1, μ = 2− 1/λ,p = r = 0, q = s, giving (66);
8.1) λ = μ = ν = 1/2, 2u = 4p − 2q − 2r + s + w;
8.2) ν = 1/2,μ = (3λ− 1) / (2λ) .
IV) For n = 6, we get the special cases:
7.1) ν = 1,μ = 1/2, λ = 2/3,p = 0, q = 0, s = 2r , thus (62);
7.3.1) ν = 1, μ = 2− 1/λ,p = q = r = s, thus (66);
7.3.2) ν = 1, μ = 2− 1/λ,p = q, r = 0, s = −p, thus (66);
7.3.3) ν = 1, μ = 2− 1/λ,p = 0,−q = r = s, thus (66);
8) 15λ4 − 27λ3 + 24λ2 − 11λ+ 2 = 0, but this equation has no solution. Unfor-

tunately we get also the warning that solutions may have been lost. That is why we
have considered some more rounds.

V) For ν = 1 and n = 7, we get only 6.1), 7.1), 7.2), 7.3.1), 7.3.2) and 7.3.3).
Thus the case 7) is completely solved.

VI) For ν = 1/2 and n = 7, we get:
6.2.1) μ = 0, λ = 1/3,p = q = 0, w = 2u, thus (61);
8.1.1) λ = μ = 1/2, q = 2p, s = 2r , w = 2u, thus (4);
8.1.2) λ = μ = 1/2, p = 0, s = q, q = −2r , w = 2u, thus (68);
8.1.3) λ = μ = 1/2, p = 0, s = −q, 3q = −2r , w = 2u, thus (68);
8.1.4) λ = μ = 1/2, p = q, s = q, 3q = 2r , w = 2u, thus (68);
8.1.5) λ = μ = 1/2, p = q, s = −q, q = 2r , w = 2u, thus (68);
8.2.1) μ = (3λ− 1) / (2λ) ,p = q = r = s = 0, w = 2u, thus (60);
8.2.2) λ = 1/5,μ = −1,p = 0, 2s = −q, s = r , w = 2u, thus (67);
8.2.3) λ = 1/5, μ = −1,p = r = 0, q = 2s, w = 2u, thus (67);
8.2.4) λ = 1/5, μ = −1,p = q = 2s, s = r , w = 2u, thus (67);
8.2.5) λ = 1/5, μ = −1,p = q = −2s, r = 0, w = 2u, thus (67).
VII) For μ = 0 and n = 7, we get again the cases 1), 6.1), 6.2.1), and the new

cases:
6.3.1) ν = λ/(1− λ), p = 0, u = w = −q, thus (65);
6.3.2) ν = λ/(1− λ), p = q, u = 0, w = −q, thus (65);
6.3.3) ν = λ/(1 − λ), p = u = 0, w = q, thus (65). So the case 6) is also

completely solved.
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VIII) For λ = 1/2 and n = 7, we get the new cases:
8.1.6) μ = ν = 1/2, p = 0, s = q = w, u = −r thus (63);
8.1.7) μ = ν = 1/2, p = u = r , s = q = w, thus (4);
8.1.8) μ = ν = 1/2, p = s = q = w, u = 2q − r thus (64);
8.1.9) μ = ν = 1/2, p = 0, s = q, u = −q − r , w = −q thus (63);
8.1.10) μ = ν = 1/2, p = r , s = q = −w, u = r − q thus (4);
8.1.11) μ = ν = 1/2, p = s = q = −w, u = q − r thus (64);
8.1.12) μ = ν = 1/2, p = 0, s = −q = w, u = −r − 2q thus (64);
8.1.13) μ = ν = 1/2, p = r + q, s = −q = w, u = r thus (4);
8.1.14) μ = ν = 1/2, p = −s = q = −w, u = −r thus (63);
8.1.15) μ = ν = 1/2, q = 2p, s = w, u = s − r thus (59);
8.1.16) μ = ν = 1/2, p = 0, s = −q = −w, u = −q − r thus (64);
8.1.17) μ = ν = 1/2, p = r + q, u = q + r , w = q thus (4);
8.1.18) μ = ν = 1/2, p = q = −s = w, u = q − r thus (63);
8.1.19) μ = ν = 1/2, 2p = q, s = −w, u = −r thus (59);
8.3.1) ν = 1− μ, 2p = q, s = w, u = s − r thus (59);
8.3.2) ν = 1− μ, 2p = q, s = −w, u = −r thus (59);
8.3.3) ν = 1− μ, p = q = s = w, u = 2s − r thus (64);
8.3.4) ν = 1− μ, p = q = −s = −w, u = −r thus (63);
8.3.5) ν = 1− μ, p = q = s = w, u = 2s − r thus (64);
8.3.6) ν = 1− μ, p = 0, s = −q = w, u = 2s − r thus (64);
8.3.7) ν = 1− μ, p = 0, q = s = w, u = −r thus (63);
8.3.8) ν = 1− μ, p = q = −s = w, u = −r − s thus (63);
8.3.9) ν = 1− μ, p = q = s = −w, u = s − r thus (64);
8.3.10) ν = 1− μ, p = 0, q = −s = w, u = s − r thus (64);
8.3.11) ν = 1− μ, p = 0, q = s = −w, u = −r − s thus (63);
IX) For p = q = 0 we get the results from Proposition 1, Remarks 3 and 5,

Theorem 6.
X) For p = q �= 0 we get the results from Theorems 8 and 9.
XI) For q = 1 we get the results from Theorem 11 and Corollary 4. �

Remark 18 We are in a case indicated by one of the following items: Proposition 1,
Remarks 3 and 5, Theorems 6, 8, 9, 11, and 12, or Corollary 4. Taking into account
the warning that solutions may have been lost in solving the round IV), we cannot
be sure that “if” in the enunciation of the previous theorem can be replaced by “if
and only if”.
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Functional Inequalities and Analysis
of Contagion in the Financial Networks

P. Daniele, S. Giuffè, M. Lorino, A. Maugeri and C. Mirabella

Abstract In very recent papers, using delicate tools of functional analysis, a general
equilibrium model of financial flows and prices is studied. In particular, without using
a technical language, but using the universal language of mathematics, some signif-
icant laws, such as the Deficit formula, the Balance law and the Liability formula
for the management of the world economy are provided. Further a simple but useful
economical indicatorE(t) is considered. In this paper, considering the Lagrange dual
formulation of the financial model, the Lagrange variables called “deficit” and “sur-
plus” variables are considered. By means of these variables, we study the possible
insolvencies related to the financial instruments and their propagation to the entire
system, producing a “financial contagion”.

Keywords Financial networks · Deficit and surplus variables · Shadow market ·
Balance law · Financial contagion

1 Introduction

In the papers [4–7], the authors study a general model of financial flows and prices
related to individual entities called sectors. They are able to provide the equilibrium
conditions and to express them in terms of a variational inequality. Then, they study
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the governing variational inequality and provide existence theorems, develop the
Lagrange duality theory, and introduce an appropriate Evaluation Index E(t). As
a byproduct of the Lagrange duality, they get a dual formulation of the financial
equilibrium in which the significance Lagrange functions ρ∗1

j (t) and ρ∗2
j (t) appear.

These functions ρ∗1
j (t), ρ∗2

j (t), j = 1, . . . , n represent the deficit and the surplus,
respectively, for the financial instrument j shared by the sectors. Studying the balance
of all sectors given by

n∑

j=1

ρ∗1
j (t)−

n∑

j=1

ρ∗2
j (t)

and the single difference

ρ∗1
j (t)− ρ∗2

j (t) j = 1, . . . , n

we are able to study the possible insolvencies related to the financial instruments
and to understand when they propagate to the entire system, producing a “financial
contagion”.

2 The Financial Network and the Equilibrium Flows and Prices

The first authors to develop a multi-sector, multi-instrument financial equilibrium
model using the variational inequality theory were Nagurney et al. [34]. These results
were, subsequently, extended by Nagurney in [30, 31] to include more general
utility functions and by Nagurney and Siokos in [32, 33] to the international domain
(see also [24, 36] for related papers). In [18], the authors apply for the first time
the methodology of projected dynamical systems to develop a multi-sector, multi-
instrument financial model, whose set of stationary points coincided with the set of
solutions to the variational inequality model developed in [30], and then to study it
qualitatively, providing stability analysis results.

Now, we describe in detail the model we are dealing with. We consider a financial
economy consisting of m sectors, for example, households, domestic businesses,
banks and other financial institutions, as well as state and local governments, with
a typical sector denoted by i, and of n instruments, for example mortgages, mutual
funds, saving deposits, money market funds, with a typical financial instrument
denoted by j , in the time interval [0, T ]. Let si(t) denote the total financial volume
held by sector i at time t as assets, and let li(t) be the total financial volume held by
sector i at time t as liabilities. Then, unlike previous papers (see [9–13] and [15]),
we allow markets of assets and liabilities to have different investments si(t) and
li(t), respectively. Since we are working in the presence of uncertainty and of risk
perspectives, the volumes si(t) and li(t) held by each sector cannot be considered
stable with respect to time and may decrease or increase. For example, depending on
the crisis periods, a sector may decide not to invest on instruments and to buy goods
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as gold and silver. At time t , we denote the amount of instrument j held as an asset
in sector i’s portfolio by xij (t) and the amount of instrument j held as a liability in
sector i’s portfolio by yij (t). The assets and liabilities in all the sectors are grouped
into the matrices

x(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1(t)

. . .

xi(t)

. . .

xn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11(t) . . . x1j (t) . . . x1n(t)

. . . . . . . . . . . . . . .

xi1(t) . . . xij (t) . . . xin(t)

. . . . . . . . . . . . . . .

xm1(t) . . . xmj (t) . . . xmn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

y(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1(t)

. . .

yi(t)

. . .

yn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11(t) . . . y1j (t) . . . y1n(t)

. . . . . . . . . . . . . . .

yi1(t) . . . yij (t) . . . yin(t)

. . . . . . . . . . . . . . .

ym1(t) . . . ymj (t) . . . ymn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We denote the price of instrument j held as an asset at time t by rj (t) and the
price of instrument j held as a liability at time t by (1 + hj (t))rj (t), where hj
is a nonnegative function defined into [0, T ] and belonging to L∞([0, T ]). We in-
troduce the term hj (t) because the prices of liabilities are generally greater than
or equal to the prices of assets in order to describe, in a more realistic way, the
behaviour of the markets for which the liabilities are more expensive than the as-
sets. In such a way, this paper appears as an improvement in various directions of
the previous ones ([9–13] and [15]). We group the instrument prices held as as-
sets into the vector r(t) = [r1(t), r2(t), . . . , ri(t), . . . , rn(t)]T and the instrument
prices held as liabilities into the vector (1 + h(t))r(t) = [(1 + h1(t))r1(t), (1 +
h2(t))r2(t), . . . , (1 + hi(t))ri(t), . . . , (1 + hn(t))rn(t)]T . In our problem, the prices
of each instrument appear as unknown variables. Under the assumption of perfect
competition, each sector will behave as if it has no influence on the instrument prices
or on the behaviour of the other sectors, whereas the instrument prices depend on
the total amount of the investments and the liabilities of each sector. In order to
express the time dependent equilibrium conditions by means of an evolutionary vari-
ational inequality, we choose as a functional setting the very general Lebesgue space
L2([0, T ], Rp) = {f : [0, T ] → R

p :
∫ T

0 ‖f (t)‖2
pdt < +∞}. Then, the set of

feasible assets and liabilities for each sector i = 1, . . . ,m, becomes

Pi =
{

(xi(t), yi(t)) ∈ L2
(
[0, T ], R2n

)
:

n∑

j=1

xij (t) = si(t),
n∑

j=1

yij (t) = li(t)

a.e. in [0, T ], xi(t) ≥ 0, yi(t) ≥ 0, a.e. in [0, T ]
}

∀i = 1, . . . ,m.
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In such a way, the set of all feasible assets and liabilities becomes

P =
{

(x(t), y(t)) ∈ L2
(
[0, T ], R2mn

)
:

n∑

j=1

xij (t) = si(t),
n∑

j=1

yij (t) = li(t),

∀ i= 1, . . . ,m, a.e. in [0, T ], xi(t) ≥ 0, yi(t) ≥ 0, ∀ i= 1, . . . ,m, a.e. in [0, T ]
}
.

Now, in order to improve the model of competitive financial equilibrium described
in [4], which represents a significant but still partial approach to the complex problem
of financial equilibrium, we consider the possibility of policy interventions in the
financial equilibrium conditions and incorporate them in the form of taxes and price
controls and, mainly, we consider a more complete definition of equilibrium prices
r(t), based on the demand–supply law, imposing that the equilibrium prices vary
between floor and ceiling prices.

To this aim, denote the ceiling price associated with instrument j by rj and the
nonnegative floor price associated with instrument j by rj , with rj (t) > rj (t), a.e. in
[0, T ]. The floor price rj (t) is determined on the basis of the official interest rate fixed
by the central banks, which in turn take into account the consumer price inflation.
Then, the equilibrium prices r∗j (t) cannot be less than these floor prices. The ceiling
price rj (t) derives from the financial need to control the national debt arising from
the amount of public bonds and of the rise in inflation. It is a sign of the difficulty
on the recovery of the economy. However, it should be not overestimated because it
produced an availability of money.

In detail, the meaning of the lower and upper bounds is that to each investor a
minimal price rj for the assets held in the instrument j is guaranteed, whereas each
investor is requested to pay for the liabilities in any case a minimal price

(
1+ hj

)
rj .

Analogously each investor cannot obtain for an asset a price greater than rj and as a
liability the price cannot exceed the maximum price

(
1+ hj

)
rj .

Denote the given tax rate levied on sector i’s net yield on financial instrument j ,
as τij . Assume that the tax rates lie in the interval [0, 1) and belong to L∞([0, T ]).
Therefore, the government in this model has the flexibility of levying a distinct tax
rate across both sectors and instruments.

Let us group the instrument ceiling prices rj into the column vector rj (t) =
[r1(t), . . . , ri(t), . . . , rn(t)]

T , the instrument floor prices rj into the column vector
rj (t) = [r1(t), . . . , ri(t), . . . , rn(t)]

T , and the tax rates τij into the matrix

τ (t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

τ11(t) . . . τ1j (t) . . . τ1n(t)

. . . . . . . . . . . . . . .

τi1(t) . . . τij (t) . . . τin(t)

. . . . . . . . . . . . . . .

τm1(t) . . . τmj (t) . . . τmn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The set of feasible instrument prices becomes:

R = {r ∈ L2([0, T ], Rn) : rj (t) ≤ rj (t) ≤ rj (t), j = 1, . . . , n, a.e. in [0, T ]
}

,

where r and r are assumed to belong to L2([0, T ], Rn).
In order to determine for each sector i, the optimal composition of instruments

held as assets and as liabilities, we consider, as usual, the influence due to risk-
aversion and the process of optimization of each sector in the financial economy,
namely, the desire to maximize the value of the asset holdings while minimizing
the value of liabilities. An example of risk aversion is given by the well-known
Markowitz quadratic function based on the variance–covariance matrix denoting
the sector’s assessment of the standard deviation of prices for each instrument
(see [25, 26]).

In our case, however, the Markowitz utility or other more general ones are consid-
ered time-dependent in order to incorporate the adjustment in time which depends
on the previous equilibrium states. A way in order to obtain the adjustments is to
introduce a memory term as it happens in other deterministic models (see [1–3, 8,
20–22, 29]). Then, we introduce the utility function Ui(t , xi(t), yi(t), r(t)), for each
sector i, defined as follows

Ui(t , xi(t), yi(t), r(t)) = ui(t , xi(t), yi(t))

+
n∑

j=1

rj (t)(1− τij (t))
[
xij (t)−

(
1+ hj (t)

)
yij (t)

]
,

where the term −ui(t , xi(t), yi(t)) represents a measure of the risk of the financial
agent and rj (t)

(
1− τij (t)

) [
xi(t)−

(
1+ hj (t)

)
yi(t)

]
represents the value of the dif-

ference between the asset holdings and the value of liabilities. We suppose that the
sector’s utility function Ui(t , xi(t), yi(t)) is defined on [0, T ] × R

n × R
n, is mea-

surable in t and is continuous with respect to xi and yi . Moreover, we assume that
∂ui/∂xij and ∂ui/∂yij exist and that they are measurable in t and continuous with
respect to xi and yi . Further, we require that ∀i = 1, . . . ,m, ∀j = 1, . . . , n, and a.e.
in [0, T ] the following growth conditions hold true:

|ui(t , x, y)| ≤ αi(t)‖x‖‖y‖, ∀x, y ∈ R
n, (1)

and
∣
∣
∣
∣
∂ui(t , x, y)

∂xij

∣
∣
∣
∣ ≤ βij (t)‖y‖,

∣
∣
∣
∣
∂ui(t , x, y)

∂yij

∣
∣
∣
∣ ≤ γij (t)‖x‖, (2)

where αi , βij , γij are nonnegative functions of L∞([0, T ]). Finally, we suppose that
the function ui(t , x, y) is concave.

We remind that the Markowitz utility function verifies conditions (1) and (2).
In order to determine the equilibrium prices, we establish the equilibrium con-

dition which expresses the equilibration of the total assets, the total liabilities and
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the portion of financial transactions per unit Fj employed to cover the expenses of
the financial institutions including possible dividends and manager bonus, as in [4].
Hence, the equilibrium condition for the price rj of instrument j is the following:

m∑

i=1

(
1− τij (t)

) [
x∗ij (t)−

(
1+ hj (t)

)
y∗ij (t)

]+Fj (t)

⎧
⎪⎪⎨

⎪⎪⎩

≥ 0 if r∗j (t) = rj (t)
= 0 if rj (t) < r

∗
j (t) < rj (t)

≤ 0 if r∗j (t) = rj (t)
(3)

where (x∗, y∗, r∗) is the equilibrium solution for the investments as assets and as
liabilities and for the prices.

In other words, the prices are determined taking into account the amount of the
supply, the demand of an instrument and the charges Fj , namely, if there is an actual
supply excess of an instrument as assets and of the charges Fj in the economy, then
its price must be the floor price. If the price of an instrument is positive, but not at
the ceiling, then the market of that instrument must clear. Finally, if there is an actual
demand excess of an instrument as liabilities and of the charges Fj in the economy,
then the price must be at the ceiling.

Now, we can give different but equivalent equilibrium conditions, each of which
is useful to illustrate the particular features of the equilibrium.

Definition 1 A vector of sector assets, liabilities and instrument prices (x∗(t), y∗(t),
r∗(t)) ∈ P × R is an equilibrium of the dynamic financial model if and only if
∀i = 1, . . . ,m,∀j = 1, . . . , n, and a.e. in [0, T ], it satisfies the system of inequalities

−∂ui(t , x∗, y∗)
∂xij

− (1− τij (t)
)
r∗j (t)− μ(1)∗

i (t) ≥ 0, (4)

−∂ui(t , x∗, y∗)
∂yij

+ (1− τij (t)
) (

1+ hj (t)
)
r∗j (t)− μ(2)∗

i (t) ≥ 0, (5)

and equalities

x∗ij (t)
[

−∂ui(t , x∗, y∗)
∂xij

− (1− τij (t)
)
r∗j (t)− μ(1)∗

i (t)

]

= 0, (6)

y∗ij (t)
[

−∂ui(t , x∗, y∗)
∂xij

+ (1− τij (t)
) (

1+ hj (t)
)
r∗j (t)− μ(2)∗

i (t)

]

= 0, (7)

where μ(1)∗
i (t), μ(2)∗

i (t) ∈ L2([0, T ]) are Lagrange multipliers, and verifies condition
(3) a.e. in [0, T ].

Let us explain the meaning of the above conditions. To each financial volumes
si and li held by sector i, we associate the functions μ(1)∗

i (t),μ(2)∗
i (t), related, re-

spectively, to the assets and to the liabilities, and which represent the “equilibrium
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disutilities” per unit of the sector i. Then, (4) and (6) mean that the financial vol-
ume invested in instrument j as assets x∗ij is greater than or equal to zero if the j th

component −∂ui(t , x∗, y∗)
∂xij

− (1 − τij (t))r∗j (t) of the disutility is equal to μ(1)∗
i (t),

whereas if −∂ui(t , x∗, y∗)
∂xij

− (1− τij (t))r∗j (t) > μ(1)∗
i (t), then x∗ij (t) = 0. The same

occurs for the liabilities and the meaning of (3) is already illustrated.
The functions μ(1)∗

i (t) and μ(2)∗
i (t) are Lagrange multipliers associated a.e. in

[0, T ] with the constraints
n∑

j=1

xij (t) − si(t) = 0 and
n∑

j=1

yij (t) − li(t) = 0, respec-

tively. They are unknown a priori, but this fact has no influence because we will prove
in the following theorem that Definition 1 is equivalent to a variational inequality in
which μ(1)∗

i (t) and μ(2)∗
i (t) do not appear.

The following Theorem is proved in [6] (see Theorem 2.1).

Theorem 1 A vector
(
x∗, y∗, r∗

) ∈ P × R is a dynamic financial equilibrium if
and only if it satisfies the following variational inequality:

Find (x∗, y∗, r∗) ∈ P ×R:

m∑

i=1

∫ T

0

⎧
⎨

⎩

n∑

j=1

[

−∂ui(t , x∗i (t), y∗i (t))

∂xij
− (1− τij (t))r∗j (t)

]

× [xij (t)− x∗ij (t)
]

+
n∑

j=1

[

−∂ui(t , x∗i (t), y∗i (t))

∂yij
+ (1− τij (t))r∗j (t)(1+ hj (t))

]

× [yij (t)− y∗ij (t)
]
⎫
⎬

⎭
dt

+
n∑

j=1

∫ T

0

m∑

i=1

{(
1− τij (t)

) [
x∗ij (t)− (1+ hj (t))y∗ij (t)

]+ Fj (t)
}

× [rj (t)− r∗j (t)]dt ≥ 0, ∀(x, y, r) ∈ P ×R. (8)

We are also able to provide existence theorems for the variational inequality (8).
To this end, we remind some definitions (see [27, 35]). LetX be a reflexive Banach

space and let K be a subset of X and X∗ be the dual space of X.

Definition 2 A mapping A : K → X∗ is pseudomonotone in the sense of Brezis
(B-pseudomonotone) iff

1. For each sequence un weakly converging to u (in short un ⇀ u) in K and such
that lim supn〈Aun, un − v〉 ≤ 0, it results that:

lim inf
n

〈Aun, un − v〉 ≥ 〈Au, u− v〉, ∀v ∈ K.

2. For each v ∈ K, the function u �→ 〈Au, u− v〉 is lower bounded on the bounded
subset of K.
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Definition 3 A mapping A : K → X∗ is hemicontinuous in the sense of Fan (F-
hemicontinuous) iff for all v ∈ K the function u �→ 〈Au, u − v〉 is weakly lower
semicontinuous on K.

Now, we recall the following hemicontinuity definition, which will be used
together with some kinds of monotonicity assumptions.

Definition 4 A mappingA : K → X∗ is lower hemicontinuous along line segments,
iff the function ξ �→ 〈Aξ , u− v〉 is lower semicontinuous for all u, v ∈ K on the line
segments [u, v].

Definition 5 The map A : K → X∗ is said to be pseudomonotone in the sense of
Karamardian (K-pseudomonotone) iff for all u, v ∈ K

〈Av, u− v〉 ≥ 0 �⇒ 〈Au, u− v〉 ≥ 0.

Then, the following existence theorems hold (see [27]). The first one does not
require any kind of monotonicity assumptions.

Theorem 2 Let K ⊂ X be a nonempty closed convex bounded set and let A :
K ⊂ E → X∗ be B-pseudomonotone or F-hemicontinuous. Then, the variational
inequality

〈Au, v− u〉 ≥ 0 ∀v ∈ K (9)

admits a solution.
The next theorem requires the K-pseudomonotonicity assumption.

Theorem 3 Let K ⊂ X be a closed convex bounded set and let A : K → X∗ be a
K-pseudomonotone map which is lower hemicontinuous along line segments. Then,
variational inequality (9) admits solutions.

We can apply such theorems to our model, setting:

v =
((
xij
)
i=1,... ,m j=1,... ,n ,

(
yij
)
i=1,... ,m j=1,... ,n ,

(
rj
)
j=1,... ,n

)
;

A : L2
(
[0, T ], R2mn+n)→ L2

(
[0, T ], R2mn+n) ,

A(v) =
([

−∂ui(x, y)

∂xij
− (1− τij )rj

]

i=1,... ,m j=1,... ,n

,

[

−∂ui(x, y)

∂yij
+ (1− τij )(1+ hj )rj

]

i=1,... ,m j=1,... ,n

,

[
m∑

i=1

(1− τij )
(
xij − (1+ hj )yij

)
]

j=1,... ,n

⎞

⎠ ;

K = P ×R =
{

v ∈ L2
(
[0, T ], R2mn+n) : xi(t) ≥ 0, yi(t) ≥ 0, a.e. in [0, T ],
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n∑

j=1

xij (t) = si(t),
n∑

j=1

yij (t) = li(t) a.e. in [0, T ], ∀i = 1, . . . ,m,

rj (t) ≤ rj (t) ≤ rj (t), a.e. in [0, T ], ∀j = 1, . . . , n
}
.

Hence, evolutionary variational inequality (8) becomes (9) and we can apply
Theorems 2 and 3, assuming that A is B-pseudomonotone or K-hemicontinuous, or
assuming that A is K-pseudomonotone, lower hemicontinuous along line segments
and noting that K is a nonempty closed convex and bounded set.

Moreover, we recall that condition (2) is sufficient to guarantee that the operator
A is lower hemicontinuous along line segments (see [19]).

3 The Lagrange Dual Problem. The Deficit
and Surplus Variables

First, let us present the infinite dimensional Lagrange duality, which represents an
important and very recent achievement (see [14, 16, 17, 28]) and which we will use.

First, we recall the definition of the tangent cone. IfX denote a real normed space
and C is a subset of X, given an element x ∈ X, the set:

TC(x) =
{
h ∈ X :

h = lim
n→∞λn(xn − x), λn ∈ R, λn > 0, ∀n ∈ N, xn ∈ C ∀n ∈ N, lim

n→∞ xn = x
}

is called the tangent cone to C at x (see [23]).
Now, let us present the new duality principles for a convex optimization problem.

Let X be a real normed space and S a nonempty convex subset of X; let (Y , ‖ · ‖)
be a real normed space partially ordered by a convex cone C, with C∗ = {λ ∈ Y ∗ :
〈λ, y〉 ≥ 0 ∀y ∈ C} the dual cone ofC, Y ∗ topological dual of Y , and let (Z, ‖·‖Z) be
a real normed space with topological dual Z∗. Let us set −C = {−x ∈ Y : x ∈ C}.
Let f : S → R and g : S → Y be two convex functions and let h : S → Z be an
affine-linear function.

Let us consider the problem

min
x∈K

f (x) (10)

where K = {x ∈ S : g(x) ∈ −C, h(x) = θZ} and the dual problem

max
λ∈C∗
μ∈Z∗

inf
x∈S{f (x)+ 〈λ, g(x)〉 + 〈μ,h(x)〉}. (11)

Remember that λ and μ are the so-called Lagrange multipliers, associated to the
sign constraints and to equality constraints, respectively. They play a fundamental
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role to better understand the behaviour of the financial equilibrium. Moreover, as it
is well known, it always results:

min
x∈K

f (x) ≤ max
λ∈C∗
μ∈Z∗

inf
x∈S{f (x)+ 〈λ, g(x)〉 + 〈μ,h(x)〉}, (12)

and, if problem (10) is solvable, and in (12), the equality holds, we say that the strong
duality between primal problem (10) and dual problem (11) holds. When we have
the strong duality, we may consider the so-called “shadow market", namely, the dual
Lagrange problem associated to the primal problem.

In order to obtain the strong duality, we need that delicate conditions, called
“constraint qualification conditions”, hold. In the infinite dimensional settings, the
next assumption, the so-called Assumption S, results to be a necessary and sufficient
condition for the strong duality (see [14, 16, 17, 28]).

Definition of Assumption S We shall say that Assumption S is fulfilled at a point
x0 ∈ K, if it results to be

TM̃ (0, θY , θZ) ∩ (]−∞, 0[× {θY } × {θZ}
) = ∅, (13)

where

M̃ = {(f (x)− f (x0)+ α, g(x)+ y,h(x)) : x ∈ S \K, α ≥ 0, y ∈ C}.
The following theorem holds (see Theorem 1.1 in [17] for the proof).

Theorem 4 Under the above assumptions on f , g, h and C, if problem (10) is
solvable and Assumption S is fulfilled at the extremal solution x0 ∈ K, then also
problem (11) is solvable, the extreme values of both problems are equal, namely, if
(x0, λ∗,μ∗) ∈ K× C∗ × Z∗ is the optimal point of problem (11),

f (x0) = min
x∈K

f (x) = f (x0)+ 〈λ∗, g(x0)〉 + 〈μ∗,h(x0)〉
= max
λ∈C∗
μ∈Z∗

inf
x∈S
{f (x)+ 〈λ, g(x)〉 + 〈μ,h(x)〉} (14)

and, it results to be:

〈λ∗, g(x0)〉 = 0.

Let us recall that the following one is the so-called Lagrange functional

L(x, λ,μ) = f (x)+ 〈λ, g(x)〉 + 〈μ,h(x)〉, ∀x ∈ S, ∀λ ∈ C∗, ∀μ ∈ Z∗. (15)

Using the Lagrange functional, (14) may be rewritten as

f (x0) = min
x∈K

f (x) = L(x0, λ∗,μ∗) = max
λ∈C∗
μ∈Z∗

inf
x∈S

L(x, λ,μ).

By means of Theorem 4, it is possible to show the usual relationship between a
saddle point of the Lagrange functional and the solution of the constraint optimization
problem (10) (see Theorem 5 in [16] for the proof).
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Theorem 5 Let us assume that the assumptions of Theorem 4 are satisfied. Then,
x0 ∈ K is a minimal solution to problem (10) if and only if there exist λ ∈ C∗ and
μ ∈ Z∗ such that (x0, λ,μ) is a saddle point of the Lagrange functional (15), namely,

L(x0, λ,μ) ≤ L(x0, λ∗,μ∗) ≤ L(x, λ∗,μ∗), ∀x ∈ S, λ ∈ C∗, μ ∈ Z∗

and, moreover, it results that

〈λ∗, g(x0)〉 = 0. (16)

Now, we apply the infinite dimensional duality theory to our general model. To
this end, as usual, let us set

f (x, y, r) =
∫ T

0

{ m∑

i=1

n∑

j=1

[

−∂ui(t , x∗(t), y∗(t))
∂xij

− (1− τij (t))r∗j (t)

]

× [xij (t)− x∗ij (t)]

+
m∑

i=1

n∑

j=1

[

−∂ui(t , x∗(t), y∗(t))
∂yij

+ (1− τij (t))(1+ hj (t))r∗j (t)

]

× [yij (t)− y∗ij (t)]

+
n∑

j=1

[
m∑

i=1

(1− τij (t))
[
x∗ij (t)− (1+ hj (t))y∗ij (t)

]+ Fj (t)
]

× [rj (t)− r∗j (t)
] }
dt.

Then, the Lagrange functional is

L
(
x, y, r , λ(1), λ(2),μ(1),μ(2), ρ(1), ρ(2)

) = f (x, y, r)−
m∑

i=1

n∑

j=1

∫ T

0
λ

(1)
ij (t)xij (t) dt

−
m∑

i=1

n∑

j=1

∫ T

0
λ

(2)
ij yij (t) dt −

m∑

i=1

∫ T

0
μ

(1)
i (t)

⎛

⎝
n∑

j=1

xij (t)− si(t)
⎞

⎠ dt

−
m∑

i=1

∫ T

0
μ

(2)
i (t)

⎛

⎝
n∑

j=1

yij (t)− li(t)
⎞

⎠ dt +
n∑

j=1

∫ T

0
ρ

(1)
j (t)(rj (t)− rj (t)) dt

+
n∑

j=1

∫ T

0
ρ

(2)
j (t)(rj (t)− rj (t)) dt , (17)

where (x, y, r) ∈ L2([0, T ], R2mn+n), λ(1), λ(2) ∈ L2([0, T ], Rmn+ ), μ(1),μ(2) ∈
L2([0, T ], R

m), ρ(1), ρ(2) ∈ L2([0, T ], Rn+).
Remember that λ(1), λ(2), ρ(1), ρ(2) are the Lagrange multipliers associated, a.e.

in [0, T ], to the sign constraints xi(t) ≥ 0, yi(t) ≥ 0, rj (t) − rj (t) ≥ 0, rj (t) −
rj (t) ≥ 0, respectively. The functionsμ(1)(t) andμ(2)(t) are the Lagrange multipliers
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associated, a.e. in [0, T ], to the equality constraints
n∑

j=1

xij (t) − si(t) = 0 and

n∑

j=1

yij (t)− li(t) = 0, respectively.

The following theorem holds (see [6] Theorem 6.1).

Theorem 6 Let (x∗, y∗, r∗) ∈ P × R be a solution to variational inequality (8)
and let us consider the associated Lagrange functional (17). Then, Assumption S is
satisfied and the strong duality holds and there exist λ(1)∗, λ(2)∗ ∈ L2([0, T ], Rmn+ ),
μ(1)∗,μ(2)∗ ∈ L2([0, T ], Rm), ρ(1)∗, ρ(2)∗ ∈ L2([0, T ], Rn+) such that (x∗, y∗, r∗, λ(1)∗,
λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗) is a saddle point of the Lagrange functional, namely,

L
(
x∗, y∗, r∗, λ(1), λ(2),μ(1),μ(2), ρ(1), ρ(2)

)

≤ L(x∗, y∗, r∗, λ(1)∗, λ(2)∗,μ(1)∗,μ(2)∗, ρ(1)∗, ρ(2)∗) (18)

≤ L(x, y, r , λ(1)∗, λ(2)∗,μ(1)∗,μ(2)∗, ρ(1)∗, ρ(2)∗)

∀(x, y, r) ∈ L2
(
[0, T ], R2mn+n) , ∀λ(1), λ(2) ∈ L2([0, T ], R

mn+ ), ∀μ(1),μ(2) ∈
L2([0, T ], R

m), ∀ρ(1), ρ(2) ∈ L2([0, T ], Rn+) and, a.e. in [0, T ],

−∂ui(t , x∗(t), y∗(t))
∂xij

− (1− τij (t))r∗j (t)− λ(1)∗
ij (t)− μ(1)∗

i (t) = 0,

∀i = 1, . . . ,m, ∀j = 1 . . . , n;

−∂ui(t , x∗(t), y∗(t))
∂yij

+ (1− τij (t))(1+ hj (t))r∗j (t)− λ(2)∗
ij (t)− μ(2)∗

i (t) = 0,

∀i = 1, . . . ,m, ∀j = 1 . . . , n;

m∑

i=1

(1− τij (t))
[
x∗ij (t)− (1+ hj (t))y∗ij (t)

]+ Fj (t)+ ρ(2)∗
j (t) = ρ(1)∗

j (t),

∀j = 1, . . . , n; (19)

λ
(1)∗
ij (t)x∗ij (t) = 0, λ

(2)∗
ij (t)y∗ij (t) = 0, ∀i = 1, . . . ,m, ∀j = 1, . . . , n (20)

μ
(1)∗
i (t)

⎛

⎝
n∑

j=1

x∗ij (t)− si(t)
⎞

⎠ = 0, μ
(2)∗
i (t)

⎛

⎝
n∑

j=1

y∗ij (t)− li(t)
⎞

⎠ = 0,

∀i = 1, . . . ,m (21)
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ρ
(1)∗
j (t)(rj (t)− r∗j (t)) = 0, ρ

(2)∗
j (t)(r∗j (t)− rj (t)) = 0, ∀j = 1, . . . , n. (22)

Let us now call Balance Law the following one

m∑

i=1

li(t) =
m∑

i=1

si(t)−
m∑

i=1

n∑

j=1

τij (t)
[
x∗ij (t)−y∗ij (t)

]−
m∑

i=1

n∑

j=1

(1− τij (t))hj (t)y∗ij (t)

+
n∑

j=1

Fj (t)−
n∑

j=1

ρ
(1)∗
j (t)+

n∑

j=1

ρ
(2)∗
j (t).

The following theorem holds.

Theorem 7 Let
(
x∗, y∗, r∗

) ∈ P × R be the dynamic equilibrium solution to
variational inequality (8), then the Balance Law

m∑

i=1

li(t) =
m∑

i=1

si(t)−
m∑

i=1

n∑

j=1

τij (t)
[
x∗ij (t)−y∗ij (t)

]−
m∑

i=1

n∑

j=1

(1− τij (t))hj (t)y∗ij (t)

+
n∑

j=1

Fj (t)−
n∑

j=1

ρ
(1)∗
j (t)+

n∑

j=1

ρ
(2)∗
j (t) (23)

is verified.

Remark 1 Let us recall that from the Liability Formula we get the following index
E(t), called “Evaluation Index”, that is very useful for the rating procedure:

E(t) =

m∑

i=1

li(t)

m∑

i=1

s̃i(t)+
n∑

j=1

F̃j (t)

,

where we set

s̃i(t) = si(t)

1+ i(t) , F̃j (t) = Fj (t)

1+ i(t)− θ (t)− θ (t)i(t)
.

From the Liability Formula, we obtain

E(t)=1−

n∑

j=1

ρ
(1)∗
j (t)

(1− θ (t))(1+ i(t))
⎛

⎝
m∑

i=1

s̃i(t)+
n∑

j=1

F̃j (t)

⎞

⎠
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+

n∑

j=1

ρ
(2)∗
j (t)

(1− θ (t))(1+ i(t))
⎛

⎝
m∑

i=1

s̃i(t)+
n∑

j=1

F̃j (t)

⎞

⎠

(24)

4 Analysis of Financial Contagion

Let us consider (19), namely, the Deficit Formula for the generic instrument j
m∑

i=1

(1− τij (t))
[
x∗ij (t)− (1+ hj (t))y∗ij (t)

]+ Fj (t)+ ρ(2)∗
j (t) = ρ(1)∗

j (t),

∀j = 1, . . . , n a.e. in [0, T ]

together with the complementary Eq. (22)

ρ
(1)∗
j (t)(rj (t)− r∗j (t)) = 0, ρ(2)∗

j (t)(r∗j (t)− rj (t)) = 0, ρ(1)∗
j (t) · ρ(2)∗

j (t) = 0

∀j = 1, . . . , n a.e. in [0, T ].

Let us note that if ρ(1)∗
j (t) > 0

r∗j (t) = rj (t)
and hence, ρ(2)∗

j (t) = 0. From (19), we get

m∑

i=1

(1− τij (t))x∗ij (t) >
m∑

i=1

(1− τij (t))(1+ hj (t))y∗ij (t)+ Fj (t),

namely, the amount of the assets exceeds the one of the liabilities and of the expenses
Fj (t). Then, all the individual entities i, i = 1, . . . ,m, have the deficit

m∑

i=1

(1− τij (t))x∗ij (t)ρ(1)∗
j (t)−

m∑

i=1

(1− τij (t))(1+ hj (t))y∗ij (t)rj (t)− Fj (t)r∗j (t)

= ρ(1)∗
j (t)rj (t) > 0

because for the sectors, the quantity
m∑

i=1

(1− τij (t))x∗ij (t)ρ(1)
j (t)

represents the outcome, whereas
m∑

i=1

(1− τij (t))(1+ hj (t))y∗ij (t)rj (t)− Fj (t)r∗j (t)

represents the income.
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Then, when ρ∗(1)
j (t) is positive, formula (19) represents the deficit, whereas when

ρ
∗(2)
j (t) > 0, formula (19) represents the surplus. From formula (19), the Balance

Law is derived as

m∑

i=1

si(t)−
m∑

i=1

li(t)−
m∑

i=1

n∑

j=1

τij (t)
[
x∗ij (t)− y∗ij (t)

]−
m∑

i=1

n∑

j=1

(
1− τij (t)

)
hj (t)y

∗
ij (t)

+
n∑

j=1

Fj (t) =
n∑

j=1

ρ
(1)∗
j (t)−

n∑

j=1

ρ
(2)∗
j (t)

and we see that the balance of all the financial entities depends on the difference

n∑

j=1

ρ
(1)∗
j (t)−

n∑

j=1

ρ
(2)∗
j (t).

If

n∑

j=1

ρ
(1)∗
j (t) >

n∑

j=1

ρ
(2)∗
j (t), (25)

the balance is negative, the whole deficit exceeds the sum of all the surplus and
a negative contagion appears and the insolvencies of individual entities propagate
through the entire system. As we can see, it is sufficient that only one deficit ρ(1)∗

j (t)

is large to obtain, even if the other ρ(2)∗
j (t) are lightly positive, a negative balance for

all the system. Moreover, we can obtain ρ∗j (t) > 0 even if for only a sector has a big
insolvency.

Remark 2 When condition (25) is verified, we get E(t) ≤ 1 and, hence, also E(t)
is a significant indicator that the financial contagion happens.

5 The “Shadow Financial Market”

We remark that the financial problem can be considered from two different perspec-
tives: one from the Point of View of the Sectors which try to maximize the utility
and a second point of view, that we can call System Point of View, which regards the
whole equilibrium, namely, the respect of the previous laws. For example, from the
point of view of the sectors, li(t), for i = 1, . . . ,m, are liabilities, whereas for the
economic system they are investments and, hence, the Liability Formula, from the
system point of view, can be called Investments Formula. The system point of view
coincides with the dual Lagrange problem (the so-called “shadow market") in which
ρ

(1)
j (t) and ρ(2)

j (t) are the dual multipliers, representing the deficit and the surplus
per unit arising from instrument j . Formally, the dual problem is given as follows.
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Find
(
ρ(1)∗, ρ(2)∗) ∈ L2([0, T ], R2n+ ) such that

n∑

j=1

∫ T

0

(
ρ

(1)
j (t)− ρ(1)∗

j (t)
) (
rj (t)− r∗j (t)

)
dt +

n∑

j=1

∫ T

0

(
ρ

(2)
j (t)− ρ(2)∗

j (t)
)

(
r∗j (t)− rj (t)

)
dt ≤ 0, ∀ (ρ(1), ρ(2)

) ∈ L2
(
[0, T ], R2n

+
)
. (26)

In fact, taking into account the inequality in the left hand side of (18), we get

−
m∑

i=1

n∑

j=1

∫ T

0

(
λ

(1)
ij (t)− λ(1)∗

ij (t)
)
x∗ij (t) dt −

m∑

i=1

n∑

j=1

∫ T

0

(
λ

(2)
ij − λ(2)∗

ij

)
y∗ij (t) dt

−
m∑

i=1

∫ T

0

(
μ

(1)
i (t)− μ(1)∗

i (t)
)
⎛

⎝
n∑

j=1

x∗ij (t)− si(t)
⎞

⎠ dt

−
m∑

i=1

∫ T

0

(
μ

(2)
i (t)− μ(2)∗

i (t)
)
⎛

⎝
n∑

j=1

y∗ij (t)− li(t)
⎞

⎠ dt

+
n∑

j=1

∫ T

0

(
ρ

(1)
j (t)− ρ(1)∗

j (t)
) (
rj (t)− r∗j (t)

)
dt

+
n∑

j=1

∫ T

0

(
ρ

(2)
j (t)− ρ(2)∗

j (t)
) (
r∗j (t)− rj (t)

)
dt ≤ 0

∀λ(1), λ(2) ∈L2
(
[0, T ], Rmn+

)
, μ(1),μ(2) ∈L2([0, T ], Rm), ρ(1), ρ(2) ∈L2([0, T ], Rn+).

Choosing λ(1) = λ(1)∗, λ(2) = λ(2)∗, μ(1) = μ(1)∗, μ(2) = μ(2)∗, we obtain the dual
problem (26).

Note that, from the System Point of View, also the expenses of the institutions
Fj (t) are supported by the liabilities of the sectors.
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Comparisons of Means and Related Functional
Inequalities

Włodzimierz Fechner

Abstract We provide a survey of several results on functional inequalities stemming
from inequalities between classical means. Further, we recall a few problems in this
field which according to the best of author’s knowledge remain open. Last section
of this paper is devoted to a new, more general functional inequality and a joint
generalization of several earlier results is obtained.

Keywords Functional inequality · Mean · Quasi-arithmetic mean · Inequalities
between means · Recurrence equation · Schur stability

1 Preliminaries

Throughout the paper it is assumed that the symbol C stands for the complex plane,
R denotes the set of real numbers, Q is the set of rationals, N stands for the set
of nonnegative integers, and N

+ = N \ {0}. Further, we will denote the set of
positive reals by R

+ and the set of nonnegative reals by R
+
0 . Moreover, for a, b ∈

R ∪ {−∞,+∞} or for a, b ∈ R open and closed intervals with endpoints a and b
are denoted by (a, b) and [a, b], respectively.

Now, let us denote the arithmetic, geometric, and logarithmic mean of two
numbers by the respective letters A, G, and L:

A(s, t) = s + t
2

,

G(s, t) = √
s · t ,

L(s, t) = t − s
log t − log s

for s �= t and L(s, s) = s

for s, t ∈ R for the arithmetic mean and for s, t ∈ R
+
0 for the geometric and the

logarithmic means.
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Next section of the paper contains a brief review of several inequalities involving
the three above-mentioned means. In Sect. 3, we deal with functional inequalities
stemming from estimates presented in Sect. 2 and we overview known results about
these functional inequalities. Also, we recall some unsolved problems connected
with them. In the last section of this paper, we introduce a more general functional
inequality. We will state and prove a result which yields a joint generalization to a
number of earlier results mentioned in Sect. 3. In the last corollary of this paper,
we establish a connection between a special case of this inequality and Schur stable
polynomials. In particular, we show that the Routh–Hurwitz stability criterion can
be applied to deal with this functional inequality.

2 Inequalities Between Means

The following inequality between the arithmetic, geometric, and logarithmic means
is well known:

G(s, t) ≤ L(s, t) ≤ A(s, t), (1)

for all s, t > 0 (see e.g., Burk [4]). Moreover, the following refinement of (1) holds
true:

G
2
3 (s, t) · A 1

3 (s, t) ≤ L(s, t) ≤ 2

3
G(s, t)+ 1

3
A(s, t) (2)

for all s, t > 0. Clearly, (1) follows immediately from (2) if we have the estimate

G(s, t) ≤ A(s, t)

for all s, t > 0, which is elementary. Moreover, the constants 2
3 and 1

3 are best
possible for both sides of (2).

The first inequality of (2) was proved in 1983 by Leach and Sholander [27],
whereas the second inequality of (2) was obtained in 1972 by Carlson [5] (see also
Burk [4]), and earlier also by Pólya and Szegő [44]. Finally, let us note that some
further refinements of both estimates are due to Chu and Long [6, 28], Leach and
Sholander [25, 26], Matejíčka [34], Qian and Zheng [45], Sándor [46, 47], and
references therein, among others.

Now, fix arbitrary x, y ∈ R such that x �= y, put s := ex and t := ey and
substitute s and t in (1) and (2). We conclude that the exponential function satisfies
the following estimates:

e
x+y

2 ≤ e
y − ex
y − x ≤ e

x + ey
2

(3)

and

6e
2
3 · x+y2

[
ex + ey

2

] 1
3

≤ 6
ey − ex
y − x ≤ 4e

x+y
2 + ex + ey (4)
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for each x, y ∈ R such that x �= y. Therefore, inequalities between means have
been equivalently transformed into respective inequalities involving the exponential
function. In the next section, we will discuss functional inequalities stemming from
estimates (3) and (4). We replace the exponential function in (3) and (4) by an
unknown mapping f and in this manner we obtain functional inequalities which will
be of our interest in the present paper. Our aim is to provide a characterization of all
solutions of these functional inequalities.

3 Functional Inequalities

A well-known characterization of the exponential function by means of the functional
equations and inequalities is due to Kuczma [22]; see also Kuczma, Choczewski and
Ger [24, Chap. 10.2B]. He proved that without any additional regularity assumptions
the mapϕ = exp is the only real-to-real solution of the following system of functional
equations and inequalities of a single variable:

ϕ(x) > 0,

ϕ(x) ≥ 1+ x,

ϕ(2x) = [ϕ(x)]2,

ϕ(− x) = [ϕ(x)]−1,

postulated for all x ∈ R. An earlier result of Kuczma [21] (see also M. Kuczma [23,
Chap.VI, § 12]) states that all the solutions of a related functional equation of a single
variable, which satisfy some additional smoothness, are of the form ϕ = c · exp with
some real c.

In 1988, Poonen answering a problem proposed by Shelupsky [44] proved that
the general solution f : R → R of the double inequality:

min{f (x), f (y)} ≤ f (y)− f (x)

y − x ≤ max{f (x), f (y)} (x �= y) (5)

is of the form f = c · exp, where c ≥ 0 is an arbitrary constant.
Note that if we insert f = exp into (5), then we obtain an estimate which is

essentially weaker than (3) and thus also weaker than (4). Therefore, in subsequent
studies, we need to focus on single functional inequalities rather than on systems.

The above mentioned result of Shelupsky and Poonen was an inspiration for
the research of Alsina and Garcia Roig published in [2] in 1990. They studied the
following two functional inequalities which are motivated by the second part of the
estimate (3):

f (y)− f (x)

y − x ≤ f (x)+ f (y)

2
(x �= y), (6)
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and

0 ≤ f (y)− f (x)

y − x ≤ f (x)+ f (y)

2
(x �= y). (7)

Among others, they have proved the following two theorems.

Theorem 1 [2, Theorem 1] A function f : R → R satisfies (6) if and only if there
exists a nonincreasing function d : R → R such that f (x) = d(x)ex for all x ∈ R.

Theorem 2 [2, Theorem 2] A function f : R → R satisfies (7) if and only if there
exists a continuous nonincreasing function d : R → R such that f (x) = d(x)ex for
x ∈ R and d(x + t) ≥ e−t d(x) for all x ∈ R and t > 0 .

Remark 1 At the beginning of the proof of Theorem 1, the authors observed that
the inequality (6) can be rewritten equivalently in the following form:

f (x + h) ≤ 2+ h
2− h

f (x) (for all x ∈ R and h ∈ (0, 2) ). (8)

It should be clear that (8) is a particular case of a more general functional inequality
(23), which will be studied in Sect. 4.

Moreover, an inspection of the original proofs of the two foregoing theorems
shows that as the domain of mapping f one can take an arbitrary nonempty open
interval instead of the whole real line.

The following functional inequality, which corresponds to the first part of the
estimate (3):

f

(
x + y

2

)

≤ f (y)− f (x)

y − x (x �= y) (9)

was considered by Alsina and Ger [3] and later by Fechner [14]. It turns out that
the two functional inequalities (6) and (9) do not behave in a fully symmetric way.
Namely, (9) is more difficult to deal with. However, under some additional assump-
tions a result analogous to Theorem 1 holds true. We should expect that all solutions
of (9) on an open interval I , which enjoy some regularity properties, are of the form
f (x) = i(x)ex for all x ∈ I with a nondecreasing map i. The following theorem,
which generalizes some earlier results of Alsina and Ger from [3], is published in
[14].

Theorem 3 [14, Theorem 1] Assume that I is an open nonvoid interval, f : I → R

satisfies (9), and

lim sup
h→0+

f (x + h) ≥ f (x) (for all x ∈ I ). (10)

Then, there exists a nondecreasing map i : I → R such that f (x) = i(x)ex for all
x ∈ I .
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Remark 2 In the proof of Theorem 3, it is observed that the inequality (9) can be
rewritten equivalently in the following form:

f (x + 2 h) ≥ 2hf (x + h)+ f (x), (11)

with x ∈ I and h > 0 such that x + 2 h ∈ I (see [14, formula (11)]). Therefore,
similarly, like in the case of (8), we conclude that (11) is a particular case of the
functional inequality (23), which will be discussed in Sect. 4 (one needs to replace
f by −f to obtain the converse inequality to (11), which is precisely a special case
of (23)).

Let us recall the following two open problems connected with Theorem 3.

Problem 1 [16, Problem 1] The converse of Theorem 3 is not true (see [14,
Remark 1]). For example, take I = R and define f : R → R as follows:

f (x) = −ex (for all x ∈ R).

It is clear that f is of the form

f (x) = i(x)ex (12)

with i(x) = −1 for all x ∈ R. Moreover, f as a continuous mapping satisfies
condition (10). However, one can see that inequality (9) fails to hold.

Find and prove an additional condition upon mapping i from Theorem 3 to obtain
the “if and only if” result, i.e., to get that each function which is of the form (12)
solves functional inequality (9).

Problem 2 [16, Problem 2] Is it possible to drop or weaken the assumption (10) in
Theorem 3? Compare this also with assumption (26) which appears in Theorem 8.

One more result from [14] shows that solutions of (9) satisfy some functional-
integral inequality.

Theorem 4 [14, Theorem 2] If f : I → R is a Riemann-integrable solution of (9),
then it satisfies the following functional-integral inequality:

1

y − x
∫ y

x

f (t)dt ≤ f (y)− f (x)

y − x (for all x, y ∈ I such that x < y). (13)

There is also an analogue of this theorem for functional inequality (6).

Theorem 5 [14, Theorem 4] If f : I → R is a Riemann-integrable solution of (6)
then f satisfies the following functional-integral inequality:

f (y)− f (x)

y − x ≤ 1

y − x
∫ y

x

f (t)dt (for all x, y ∈ I such that x < y). (14)

A more general result in this spirit for continuous solutions of some more general
functional inequality was proved in [15].
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Theorem 6 [15, Theorem 1] Assume that I ⊂ R is a nonempty open interval and
mappingsM1,M2 : I × I → R and N : R× R → R are arbitrary means, i.e.:

min{x, y} ≤ Mi(x, y) ≤ max{x, y} (for all x, y ∈ I and i = 1, 2),

min{x, y} ≤ N (x, y) ≤ max{x, y} (for all x, y ∈ R).

Further, assume that f : I → R is arbitrary, g : I → R is continuous and the
following functional inequality

f (y)− f (x)

y − x ≤ N (g(M1(x, y)), g(M2(x, y))) (for all x, y ∈ I ), (15)

is fulfilled. Then

f (y)− f (x) ≤
∫ y

x

g(t)dt (for all x, y ∈ I such that x ≤ y). (16)

Finally, we will quote a result which describes solutions of the following
functional inequality:

6
f (y)− f (x)

y − x ≤ 4 f

(
x + y

2

)

+ f (x)+ f (y) (17)

(for all x, y ∈ I such that x �= y),

which is motivated by the second part of estimate (4).

Theorem 7 [15, Theorem 2] Assume that I ⊂ R is a nonempty open interval and
f : I → R is a solution of (17) which satisfies

lim inf
h→0+

f (x + h) ≤ f (x) (for all x ∈ I ). (18)

Then, there exists a nonincreasing map d : I → R such that f (x) = d(x)ex for all
x ∈ I .

Remark 3 The assertion of the foregoing theorem and of Theorem 1 of Alsina and
Garcia Roig can be rewritten equivalently in the form of the following inequality:

f (y) ≥ ey−xf (x) (x ≤ y). (19)

Moreover, assertion of Theorem 3 is equivalent to the converse inequality to (19).

Remark 4 In the proof of Theorem 7, it is observed that the inequality (17) can be
rewritten equivalently in the following form:

f (x + 2 h) ≥ α(h)f (x + h)+ β(h)f (x), (20)

for all x ∈ I and h > 0 such that x + 2 h ∈ I , where functions α and β are given by

α(h) = 4 h

3− h
, β(h) = 3+ h

3− h
.

(see [15, formula (15)]). Therefore, similar to functional inequalities (8) and (11), we
see that, after replacing f by −f , (20) is a particular case of the general functional
inequality (23).
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One can ask about a functional inequality motivated by the first part of estimate
(4). We do not know affirmative results in this direction which can be viewed as a
counterpart to Theorem 7. Therefore, let us formulate the following open problem.

Problem 3 Assume that I ⊂ R is a nonempty open interval and assume that f :
I → R is a solution of the following functional inequality:

f

(
x + y

2

)2

· f (x)+ f (y)

2
≤
[
f (y)− f (x)

y − x
]3

, (21)

which is postulated to hold for all x, y ∈ I such that x �= y. Is it true that (under
some regularity conditions) there exists a nondecreasing map i : I → R such that f
is of the form (12) for all x ∈ I?

Now, let us mention a possible application of the foregoing results in the theory
of Hyers–Ulam stability of functional equations.

Remark 5 Using the abovementioned results, it is possible to obtain Hyers–Ulam
stability results for some functional equations related to Riedel–Sahoo functional
equations, for details see [17]. Moreover, in [17], the stability of the functional-
differential equationf = f ′ is investigated for mappingf having values in a reflexive
normed linear space.

Next, we will discuss the relation of the abovementioned theorems with other
known results concerning comparisons of quasi-arithmetic means. We begin with
the definition of a quasi-arithmetic mean.

Definition 1 Assume that f : I → R is a continuous and strictly increasing
mapping. Then, the following formula defines a mean on I × I :

M(s, t) = f −1

(
f (s)+ f (t)

2

)

(for all s, t ∈ I ).

MeanM of the above form is called a quasi-arithmetic mean.
For a detailed discussion of the topic of quasi-arithmetic means, the reader is

referred to the monograph ofAczél and Dhombres [1, Chaps. 15 and 17]. In particular,
it is known that the only two quasi-arithmetic means which are homogeneous (with
respect to each variable) are the geometric mean G and the power meansMp given
by

Mp(s, t) = (sp + tp)
1
p (for all s, t ∈ R

+)

with a real parameter p. On the other hand, the logarithmic meanL is homogeneous.
Therefore, we conclude thatL is not a quasi-arithmetic mean. A much deeper result in
this direction is due to Ger and Kochanek [19]. They studied the following functional
equation:

f (M(x, y)) = N (f (x), f (y)), (22)

whereM and N are abstract means, and one of them is quasi-arithmetic and one is
not. They showed that every solution of the Eq. (22) is equal to a constant function



154 W. Fechner

(with no regularity assumptions). Therefore, applying the result of Ger and Kochanek
forM = L and L = A, we deduce that L cannot be a quasi-arithmetic mean.

To conclude the section, let us mention some papers which are devoted to various
functional inequalities and related problems which are motivated by comparisons of
means. Daróczy in [11] dealt with a general inequality for means defined with the aid
of deviations. Further results in this direction were obtained by Daróczy and Páles
in [12, 13, 36, 42], among others. Minkowski-type and Hölder-type inequalities for
means were studied by Losonczi, Páles, and Czinder in [7–10, 29–33, 35, 37–41]
among others. A one more related result in this field is due to Páles [43].

4 A General Functional Inequality

Let I be a nonvoid open interval, k ∈ N and let c ∈ R
+ ∪ {+∞} be arbitrarily

fixed and denote U = (0, c). Further, assume that we are given some mappings
α0,α1, . . . ,αk : U → R

+
0 and f : I → R is an unknown function. We are interested

in the following functional inequality:

f (x + (k + 1)h) ≤
k∑

i=0

αi(h)f (x + ih), (23)

which is assumed to be satisfied for all x ∈ I and h ∈ U such that x+ (k+ 1)h ∈ I .
As we have already noticed in Sect. 3, previously discussed functional inequalities

(6), (9), and (17) are special cases of (23) with given constants c and k and with
specified mappings αi .

Let us introduce an auxiliary double sequence of mappings ξj ,n : U → R, where
j ∈ {0, 1, . . . , k} and n ∈ N. For j , n ∈ {0, 1, . . . , k} and for h ∈ U , we put

ξj ,n(h) = δj ,n, (24)

where δj ,n denotes the Kronecker delta (equals to 1 if j = n and equals to 0
otherwise). Further, we define

ξj ,n+k+1(h) =
k∑

i=0

αi(h)ξj ,n+i(h) (25)

for j ∈ {0, 1, . . . , k}, n ∈ N and for h ∈ U .
It is clear that for each j = 0, 1, . . . , k, the sequence (ξj ,n : n ∈ N) is well defined

recursively. Moreover, we can see that ξj ,n(h) ≥ 0 and αj (h) = ξj ,k+1(h) for each
h ∈ U and for all j ∈ {0, 1, . . . , k} and all n ∈ N.

Our main result concerning (23) reads as follows.

Theorem 8 Assume that f : I → R satisfies functional inequality (23) jointly with

lim sup
h→0+

f (x + h) ≤ f (x) (for all x ∈ I ). (26)
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If for every h ∈ U , there exists a strictly increasing sequence of positive integers
(Nn : n ∈ N

+) such that the following limit exists:

Λ(h) = lim
n→+∞

k∑

i=0

ξi,Nn

(
h

Nn

)

, (27)

then the following inequality holds true:

f (x + h) ≤ Λ(h)f (x) (28)

for all x ∈ I and h ∈ U such that x + h ∈ I .

Proof We will verify inductively the following auxiliary inequality:

f (x + (n+ k)h) ≤
k∑

i=0

ξi,n+k(h)f (x + ih). (29)

We claim that (29) is valid for alln ∈ N
+, x ∈ I , andh ∈ U such thatx+(n+k)h ∈

I . It is clear that for n = 1, inequality (29) is identical with (23). Next, assume that
n ∈ N is arbitrary and the estimate (29) is valid for all positive integers not greater
than n and for all x ∈ I and h ∈ U such that x + (n+ k)h ∈ I . Fix x ∈ I arbitrarily
and h ∈ U such that x + (n+ k + 1)h ∈ I . Using inequality (23) and in the second
line inequality (29), we obtain:

f (x + (n+ k + 1)h) = f (x + nh+ (k + 1)h)

≤
k∑

i=0

αi(h)f (x + (n+ i)h)

≤
k∑

i=0

αi(h)
k∑

j=0

ξj ,n+i(h)f (x + jh)

=
k∑

j=0

k∑

i=0

αi(h)ξj ,n+i(h)f (x + jh)

=
k∑

j=0

ξj ,n+k+1(h)f (x + jh).

Next step is to replace h by (n+ k)−1h in inequality (29) to derive the following
estimation:

f (x + h) ≤
k∑

i=0

ξi,n+k
(
h

n+ k
)

f

(

x + i

n+ k h
)

. (30)

Observe that inequality (30) is valid for every n ∈ N
+ and for all x ∈ I and h ∈ U

such that x + h ∈ I .
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Now, fix for a moment x ∈ I and h ∈ U in such a way that x + h ∈ I .
Condition (26) says that for arbitrarily fixed ε ∈ R

+ we can find a sufficiently large
N ∈ N such that for every n ≥ N and for every i ∈ {0, 1, . . . , k}, we have the
following estimate

f

(

x + i

n+ k h
)

≤ f (x)+ ε.

Therefore, we obtain

f (x + h) ≤
k∑

i=0

ξi,n+k
(
h

n+ k
)

(f (x)+ ε)

for n ≥ N . From this, we deduce that

f (x + h) ≤ lim
n→+∞

k∑

i=0

ξi,Mn+k
(

h

Mn + k
)

(f (x)+ ε) = Λ(h)(f (x)+ ε),

where Mn = Nn − k for n ∈ N
+ and the sequence (Nn : n ∈ N

+) is postulated in
assumption (27). This eventually leads to estimation (28).

Observe that if for a fixed h ∈ U , the numbers αi(h) for i = 0, 1, . . . , k are
explicitly known, then it may be possible to calculate the exact formula of the limit
Λ(h). To visualize this, observe that (25) is homogeneous linear recurrence with
constant coefficients (in a sense that the coefficients do not depend upon n, but
they can be dependent upon h). Let us consider the characteristic equation of this
recurrence:

w(z) = zk+1 −
k∑

i=0

αi(h)zi = 0. (31)

Note that all the roots of this characteristic equation are in fact functions of the
variable h ∈ U .

It is well known that if some λ ∈ C is a root of the (complex) polynomial w of
order d ∈ {1, 2, . . . , k + 1}, then every following sequence:

(λn : n ∈ N), (nλn : n ∈ N), . . . , (nd−1λn : n ∈ N)

provides a solution of the recurrence (25) and moreover every solution of (25) is a
linear combination of the foregoing sequences for all complex roots of (31) (see e.g.,
the book of Greene and Knuth [20]). Next, using the initial conditions (24), one is able
to derive the exact formula of the sequences (ξj ,n(h) : n ∈ N) for j = 0, 1, . . . , k.
The final step is to employ these formulas to calculate the limit (27).

In what follows, we will exhibit a special case of the foregoing discussion. Namely,
we will consider the situation when the coefficients αi do not depend upon h ∈ U
and we provide an easy to verify condition which implies that the limit (27) is equal
to zero (and thus, due to Theorem 8, every solution of (23) is nonpositive on I ).
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Therefore, let us assume that we are given constants α0,α1, . . . ,αk ∈ R
+
0 and we

want to solve the following functional inequality:

f (x + (k + 1)h) ≤
k∑

i=0

αif (x + ih), (32)

with unknown mapping f : I → R, which is assumed to be satisfied for all x ∈ I
and h ∈ U such that x + (k + 1)h ∈ I . Note that for every j ∈ {0, 1, . . . , k}, the
sequences (ξj ,n : n ∈ N) defined by (24) and (25) do not depend upon h. Therefore,
the limit (27), if it exists, does not depend upon h as well.

The following notions and facts regarding the stability of polynomials can be
conferred with the monograph of Gantmacher [18]. A complex polynomial is called
Hurwitz stable if all its roots lie in the open left halfplane. Moreover, a complex
polynomial is called Schur stable if all its roots lie in the open unit ball. The two
notions are related by the fact that the Möbius transform

C � z → z + 1

z − 1
∈ C

maps the left halfplane into the unit ball. Therefore, polynomial w of degree d ∈ N
+

is Schur stable if and only if the polynomial p (of the same degree) given by

p(z) = (z − 1)dw

(
z + 1

z − 1

)

(for all z ∈ C) (33)

is Hurwitz stable. Further, a necessary condition for a polynomial to be Hurwitz
stable is that all its coefficients are of the same sign. Moreover, a sufficient condition
for this fact is that the coefficients are positive and they form a strictly increasing
sequence. A more elaborated result is the Routh–Hurwitz stability criterion, which
provides a necessary and sufficient condition for the Hurwitz stability. Assume that
for some n ∈ N

+ we are given a polynomial

p(z) = a0 + a1z + . . .+ anzn

with an �= 0 and a0 > 0. Moreover, agree that am = 0 whenever m > n. The
Routh–Hurwitz criterion says that p is Hurwitz stable if and only if every principal
minor of the following n× n matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 a0 0 0 . . . 0

a3 a2 a1 a0 . . . 0

a5 a4 a3 a2 . . . 0
...

...
...

...
. . .

...

a2n−1 a2n−2 a2n−3 a2n−4 . . . an

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(34)

is positive.
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Our last observation that if the characteristic polynomial (31) of the recur-
rence (25) is Schur stable, then regardless of the initial conditions for every
j ∈ {0, 1, . . . , k}, the sequence (ξj ,n : n ∈ N) is a linear combination of the sequences
of the form

(ndj tj
n : n ∈ N)

with |tj | < 1 and with some dj ∈ N
+. Consequently,

lim
n→+∞ ξj ,n = 0

for every j = 0, 1, . . . k. This easily implies that the limit in (27) exists and is equal
to 0. Therefore, we have proved the following corollary from Theorem 8, which is a
criterion for the nonpositivity of all solutions of the functional inequality (32).

Corollary 1 Assume that α0,α1, . . . ,αk ∈ R
+
0 and f : I → R satisfies functional

inequality (32) jointly with (26). If the polynomial w : C → C given by

w(z) = zk+1 −
k∑

i=0

αiz
i (for all z ∈ C)

is Schur stable, then f is nonpositive on I .
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Constructions and Extensions of Free
and Controlled Additive Relations

Tamás Glavosits and Árpád Száz

Abstract By using several auxiliary results on relations and their intersection con-
volutions, we give some necessary and sufficient conditions in order that a certain
additive partial selection relation Φ of a relation F of one group X to another Y
could be extended to a total, additive selection relation Ψ of the relation F +Φ(0).

The results obtained extend some Hahn–Banach type extension theorems of B.
Rodríguez-Salinas, L. Bou, Z. Gajda, A. Smajdor, W. Smajdor, and the second author.
Moreover, they can be used to prove some alternate forms of the Hyers–Ulam type
selection theorems of Z. Gajda, R. Ger, R. Badora, Zs. Páles, and the second author.

Keywords Additive and homogeneous relations · Intersection convolutions of
relations · Extensions of additive partial selection relations

1 Introduction

The origin of the following generalization of the classical Hahn–Banach extension
theorem goes back to Kaufman [28]. It is a particular case of [13, Corollary 1.3] by
Fuchssteiner. (For some more readable treatments, see also Fuchssteiner and Lusky
[15, Theorem 1.3.2] and Száz [64, Theorem 3.3].)

Theorem 1 If p is a subadditive function of a commutative semigroup X to R and
ϕ is an additive function of a subsemigroup V of X to R such that:

(1) ϕ(v) ≤ p(v) for all v ∈ V ,
(2) ϕ(u+ v) ≤ p(u)+ ϕ(v) for all u ∈ X and v ∈ V with u+ v ∈ V ,
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then ϕ can be extended to an additive function ψ of X to R such that ψ(x) ≤ p(x)
for all x ∈ X.

Remark 1 To see that condition (2) is also necessary, note that if ψ is as above,
then for any u ∈ X and v ∈ V with u + v ∈ V we have ϕ(u + v) = ψ(u + v) =
ψ(u)+ ψ(v) ≤ p(u)+ ϕ(v).

Moreover, it is also worth noticing that, by using the infimal convolution

(f ∗ g)(x) = inf
{
f (u)+ g(v) : x = u+ v, u ∈ Df , v ∈ Dg

}

of functions f and g studied mainly by Moreau [34], Strömberg [51], and the present
authors [21, 64], condition (2) can be briefly expressed by writing that ϕ(x) ≤
(p ∗ ϕ)(x) for all x ∈ V .

In [20], to have a close analogue of Theorem 1, we have proved the following
simple generalization of the classical Hyers–Ulam stability theorem [25]. (For a
predecessor and some direct generalizations, see Pólya and Szegő [42, Aufgabe 99],
Rätz [44], Székelyhidi [73], Forti [12], Hyers et al. [26], and Száz [59].)

Theorem 2 If f is an ε-approximately additive function of a commutative
semigroup X to a Banach space Y , for some ε ≥ 0, in the sense that

‖f (x + y)− f (x)− f (y)‖ ≤ ε
for all x, y ∈ X, and ϕ is a 2-homogeneous function of a subsemigroup V of X to Y
which is δ-near to f , for some δ ≥ 0, in the sense that

‖f (v)− ϕ(v)‖ ≤ δ
for all v ∈ V , then ϕ can be extended to an additive function ψ of X to Y that is
ε-near to f .

Remark 2 To see that this theorem is somewhat more general than that of Hyers
and Ulam, note that if in particular X has a zero element 0, then ‖f (0)‖ ≤ ε. Thus,
ϕ = {(0, 0)} is an additive function of the subgroup {0} of X to Y such that ϕ is
ε-near to f . Therefore, by the above theorem, there exists an additive function ψ of
X to Y which is ε-near to f .

The extensive references of a recent semisurvey paper [70] of the second author
show that the Hahn–Banach and the Hyers–Ulam theorems have been generalized
by a great number of authors in an enormous variety of directions. However, among
these generalizations, we are only interested here in the set-valued ones.

For this, we can note that if p and ϕ are as in Theorem 1, then by defining a
relation F of X to R such that

F (x) = ]−∞, p(x)]

for all x ∈ X, we have ϕ(v) ∈ F (v) for all v ∈ V .
While, if f and ϕ are as in Theorem 2, then by defining a relation F of X to Y

such that

F (x) = f (x)+ Bδ(0), with Bδ(0) = {y ∈ Y : ‖y‖ ≤ δ},
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for all x ∈ X, we again have ϕ(v) ∈ F (v) for all v ∈ V .
Therefore, the essence of Theorems 1 and 2 is nothing else but the statement that

an additive partial selection function ϕ of a certain relation F of X to R and Y ,
respectively, can be extended to a total, additive selection function of ψ of F .

The corresponding fact in connection with the classical Hahn–Banach extension
theorem was already recognized by Rodríguez-Salinas and Bou [46]. (For some
further developments, see Ioffe [27], Gajda et al. [18], Smajdor and Szczawińska
[50], and Száz [53].)

Moreover, Smajdor [49] and Gajda and Ger [17] observed that the essence of
the classical Hyers–Ulam stability theorem is the existence of an additive selection
function of a certain relation. (For some further developments, see Gajda [16], Badora
[2], Popa [43], Badora et al. [4], Nikodem and Popa [38], Piao [41], Lu and Park
[32], and Száz [57, 61].)

The importance of the above set-valued considerations was soon recognized by
Fuchssteiner and Horváth [14], Rassias [45], and Czerwik [8]. Moreover, the second
author has been motivated to continue his early investigations on additive and linear
relations. (See [72] and [53, 57, 61].) In [53], by introducing a particular case the
intersection convolution

(F ∗G)(x) =
⋂

{F (u)+G(v) : x = u+ v, u ∈ DF , v ∈ DG}

of relations F and G, the second author has proved the following generalization of
[46, Theorem 1] of Rodríguez-Salinas and Bou.

Theorem 3 If F is a sublinear relation of one vector space X to another Y over
K such that F (x) ∈ B for all x ∈ X, for some translation-invariant Nachbin system
B of subsets of Y , and Φ is a superlinear relation of a subspace V of X to Y such
that Φ ⊂ F , then Φ can be extended to a linear relation Ψ of X to Y such that
Ψ ⊂ F +Φ(0).

Remark 3 Here the sublinearity of F means only that F (λx) ⊂ λF (x) and F (x +
y) ⊂ F (x) + F (y) for all λ ∈ K0 and x, y ∈ X, where K0 = K \ {0}. This is a
natural weakening of the linearity studied by Cross [7] and his predecessors.

Moreover, a family B of sets is called here a Nachbin system if for every subfamily
C of B, having the binary intersection property in the sense that U ∩ V �= ∅ for all
U ,V ∈ C, we also have

⋂
C �= ∅.

The primary example for such a Nachbin system is the family of all closed,
bounded intervals in R, or more generally the family of all closed balls in the
supremum-normed space of all bounded functions of a nonvoid set U to R.

Now, by improving the arguments of [53], we shall prove the following
generalization of [18, Theorem 1] of Gajda et al.

Theorem 4 If F is a subodd, N-subhomogeneous, subadditive relation of a com-
mutative group X to a vector space Y over Q such that F (x) ∈ B for all x ∈ X,
for some admissible Nachbin system B of subsets of Y , and Φ is a superodd, N-
subhomogeneous, superadditive relation of a subgroupV ofX toY such thatΦ ⊂ F ,
then Φ can be extended to a Z0-homogeneous, additive relation Ψ of X to Y such
that Ψ ⊂ F +Φ(0).
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Remark 4 Here, in accordance with Remark 3, the superoddness, N-
subhomogeneity, and superadditivity of Φ mean only that −Φ(v) ⊂ Φ( − v),
Φ(nv) ⊂ nΦ(v), and Φ(u) + Φ(v) ⊂ Φ(u + v) for all n ∈ N and u, v ∈ V ,
respectively.

Moreover, the Nachbin systemB is called admissible if in addition to its translation
invariance, we also have n−1B ∈ B for all n ∈ N and B ∈ B. That is, in addition to
that y +B = B for all y ∈ Y , we also have n−1B ⊂ B for all n ∈ N, or equivalently
B ⊂ nB for all n ∈ N.

To simplify Theorem 4, one may assume that B is effective in the sense that every
B-valued, odd subadditive relation Ω of a group U to Y is N-subhomogeneous.
However, our only example for such B is the family of all subsets B of Y which are
N
−1-convex in the sense that n−1B + (1− n−1

)
B ⊂ B for all n ∈ N.

Unfortunately, by using the convolutional method of the second author, we have
not been able to extend Theorem 3 to commutative semigroups. However, the several
auxiliary results leading to Theorem 4 are much more general than those used for
the proof Theorem 3. They are mostly formulated in terms of semigroups.

In the next preparatory sections, to keep the paper self-contained, we shall list
several basic facts on semigroups, relations, and intersection convolutions which are
certainly unfamiliar to the reader. These only slightly improve some earlier obser-
vations [70, 63] of the second author. Therefore, the proofs are usually omitted.

2 A Few Basic Facts on Relations and Groupoids

A subset F of a product set X×Y is called a relation on X to Y . If in particular
F ⊂ X2, with X2 = X×X, then we may simply say that F is a relation on X. In
particular, ΔX = {(x, x) : x ∈ X} is called the identity relation of X.

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X, the sets F (x) =
{y ∈ Y : (x, y) ∈ F } and F [A] = ⋃a∈A F (a) are called the images of x and A
under F , respectively.

Moreover, the sets DF = {x ∈ X : F (x) �= ∅} and RF = F [DF ] are called the
domain and range of F , respectively. If in particularDF = X, then we say that F is
a relation of X to Y , or that F is a total relation on X to Y .

If F is a relation on X to Y , then F = ⋃x∈X{x}×F (x). Therefore, the values
F (x), where x ∈ X, uniquely determine F . Thus, the inverse relation F−1 can be
naturally defined such that F−1(y) = {x ∈ X : y ∈ F (x)} for all y ∈ Y .

Moreover, if in addition, G is a relation on Y to Z, then the composition relation
G ◦ F can be naturally defined such that (G ◦ F )(x) = G[F (x)] for all x ∈ X.
Thus, we also have (G ◦ F )[A] = G[F [A]] for all A ⊂ X.

Now, a relation F onX may, for instance, be naturally called reflexive, transitive,
symmetric, and antisymmetric if ΔX ⊂ F , F ◦F ⊂ F , F−1 = F , and F ∩F−1 ⊂
ΔX, respectively.

As is customary, a transitive (symmetric) reflexive relation is called a preorder
(tolerance) relation. Moreover, a symmetric (antisymmetric) preorder relation is
called an equivalence (partial order) relation.
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In particular, a relation f on X to Y is called a function if for each x ∈ Df there
exists y ∈ Y such that f (x) = {y}. In this case, by identifying singletons with their
elements, we may simply write f (x) = y in place of f (x) = {y}.

If F is a relation on X to Y and Ai ⊂ X for all i ∈ I , then in general we only
have F

[⋃
i∈I Ai

] =⋃i∈I F [Ai]. However, if in particular f is a function, then all
set-theoretic operations are preserved under the relation f −1.

If F is a relation on X to Y , then a subset Φ of F is called a partial selection
relation of F . Thus, we also have DΦ ⊂ DF . Therefore, a partial selection relation
Φ of F may be called total if DΦ = DF .

The total selection relations of a relation F will usually be simply called the
selection relations of F . Thus, the axiom of choice can be briefly expressed by
saying that every relation F has a selection function.

If F is a relation on X to Y and U ⊂ DF , then the relation F |U = F ∩ (U×Y )
is called the restriction of F toU . Moreover, if F andG are relations onX to Y such
that DF ⊂ DG and F = G|DF , then G is called an extension of F .

In particular, a function ! of a set X to itself is called an unary operation in X.
While, a function ∗ of X2 to X is called a binary operation in X. And, for any
x, y ∈ X, we write x! and x ∗ y instead of !(x) and ∗((x, y)), respectively.

An ordered pair X(+ ) = (X,+), consisting of a set X and a binary operation +
in X, is called a groupoid. Instead of groupoids, it is usually sufficient to consider
only semigroups (associative groupoids), or even monoids (semigroups with zero).

However, several definitions on semigroups can be naturally extended to
groupoids. For instance, if X is a groupoid, then for any n ∈ N and x ∈ X we
may naturally define nx = x if n = 1 and nx = (n − 1)x + x if n �= 1. Thus, by
induction, we can easily prove the following.

Theorem 5 If X is a semigroup, then for any x ∈ X and n,m ∈ N we have
(1) (n+m)x = nx +mx, (2) (nm)x = n(mx).
Moreover, if in addition y ∈ X such that x + y = y + x, then we also have
(3) nx +my = my + nx, (4) n(x + y) = nx + ny.

Hint Note that (2) is a consequence of (1). Moreover, (3) and (4) are consequences
of the m = 1 particular case of (3).

If in particular X is a groupoid with zero, then for any x ∈ X, we may also
naturally define 0x = 0. Moreover, if more specially X is a group, then for any
n ∈ N and x ∈ X, we may also naturally define (− n)x = n(− x).

Now, by using −x + x = 0 = x + ( − x) and Theorem 5, we can at once see
that n(− x)+ nx = n(− x + x) = n0 = 0, and thus (− n)x = n(− x) = −(nx).
Moreover, we can also easily prove the following.

Theorem 6 If X is a group, then for any x ∈ X and k, l ∈ Z we have
(1) (k + l)x = kx + lx, (2) (kl)x = k(lx).
Moreover, if in addition y ∈ X such that x + y = y + x, then we also have
(3) kx + ly = ly + kx, (4) k(x + y) = kx + ky.
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Remark 5 Thus, in particular, a commutative groupX is already a module over the
ring Z of all integers. Therefore, instead of commutative groups, we should rather
work with modules in the sequel.

If X is a groupoid, then for any n ∈ N and U ,V ⊂ X, we may also naturally
define nU = {nu : u ∈ U} and U + V = {u + v : u ∈ U , v ∈ V }. Thus, for
instance, 2U can be easily confused with the possibly larger set U + U .

If in particular, X has a zero, or more specially X is a group, then we may also
quite similarly define 0U and kU for all k ∈ Z, respectively. Moreover, if X is a
group, then we may also naturally write −U = (− 1)U and U − V = U + (− V ).

Thus, by using Theorem 6, we can easily establish several useful properties of the
corresponding operations in the family P(X) of all subsets of a group X. However,
in general, P(X) is only a monoid and (k + l)U ⊂ kU + lU .

A subset U of a groupoid X is called left-translation invariant if x + U = U for
all x ∈ X. Note that if in particularX is a group and either x+U ⊂ U for all x ∈ X
or U ⊂ x + U for all x ∈ X, then U is already left-translation invariant.

Moreover, a subset U of a groupoid X is called normal if x + U = U + x for
all x ∈ X. Note that if in particular X is a group and either x + U ⊂ U + x for all
x ∈ X or U + x ⊂ x + U for all x ∈ X, then U is already normal.

Furthermore, a subset U of groupoid X is called subadditive (superadditive) if
U ⊂ U + U (U + U ⊂ U ). Thus, U is a subgruopoid of X if and only if it is a
superadditive subset of X.

Moreover, a subset U of a groupoid X is called n-subhomogeneous (n-super-
homogeneous), for some n ∈ N, if U ⊂ nU (nU ⊂ U ). And U is called A-
subhomogeneous, for some A ⊂ N, if it is n-subhomogeneous for all n ∈ A.

In particular, a subset U of a group X is called symmetric if −U = U . Note that
if either −U ⊂ U or U ⊂ −U , then U is already symmetric. Moreover, U is a
subgroup of X if and only if it is a nonvoid, symmetric, superadditive subset of X.

In the sequel, for a subset U of a groupoid X with zero, we shall briefly write
U0 = U \ {0} if 0 ∈ U and U0 = U ∪ {0} if 0 /∈ U . Moreover, as is customary,
we shall use the common notation K for the number fields Q, R, and C.

3 Divisible and Cancellable Subsets of Groupoids

Definition 1 For some n ∈ N, a subset U of gruopoid X is called

(1) n-divisible if U is n-subhomogeneous,
(2) n-cancellable if nu = nv implies u = v for all u, v ∈ U .

Now, U may be naturally called A-divisible (A-cancellable), for some A ⊂ N,
if it is n-divisible (n-cancellable) for all n ∈ A.

Remark 6 Note that if (1) holds, then U ⊂ nU . Therefore, for each u ∈ U , there
exists v ∈ U such that u = nv.
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While, if both (1) and (2) hold, then U is uniquely n-divisible in the sense that
for each u ∈ U , there exists a unique v ∈ U such that u = nv. Therefore, n−1u can
be defined by this v.

By using Theorem 6 and an obvious analogue of Definition 1, we can easily prove
the following two theorems.

Theorem 7 If U is a k-cancellable subset of a group X, for some k ∈ Z, then U is
also−k-cancellable. Therefore, ifU is N-cancellable, thenU is also Z0-cancellable.

Theorem 8 If U is a k-divisible, symmetric subset of a group X, for some k ∈ Z,
thenU is also−k-divisible. Therefore, ifU is N-divisible, thenU is also Z0-divisible.

Proof If x ∈ U , then by the k-divisibility ofU , there exists y ∈ U such that x = ky.
Hence, by Theorem 6 and the corresponding definitions, we can see that

x = ky = ((− k)(− 1))y = (− k)((− 1)y) = (− k)(1(− y)) = (− k)(− y).

Therefore, since now −y ∈ −U = U also holds, the required assertion is also true.

Remark 7 If U is an n-cancellable subset of a groupoid X with zero, for some
n ∈ N, such that 0 ∈ U , and u ∈ U such that nu = 0, then we also have nu = n0,
and hence u = 0.

In this respect, it is also worth noticing that the following theorem is also true.

Theorem 9 If X is a commutative group, then for each k ∈ Z, the following
assertions are equivalent:
(1) X is k-cancellable; (2) kx = 0 implies x = 0 for all x ∈ X.
Therefore, if nx = 0 implies x = 0 for all n ∈ N and x ∈ X, then X is already
Z0-cancellable.

Moreover, in addition to this theorem, we can also easily prove the following.

Theorem 10 If X is an N-cancellable group, then kx = lx implies k = l for all
k, l ∈ Z and x ∈ X0. Thus, kx = 0 implies k = 0 for all k ∈ Z and x ∈ X0.

Remark 8 It can be shown that if X is a uniquely N-divisible, commutative group,
then by defining (m/n)x = m(n−1x) for all n ∈ N, m ∈ Z and x ∈ X the module X
can be turned into a vector space over Q.

Remark 9 Note that if in particular X is a vector space over K , then every subset
U is K0-cancellable.

Moreover, a subsetU ofX is λ-divisible (uniquely λ-divisible), for some λ ∈ K0,
if and only if λ−1U ⊂ U .

Remark 10 If X is only a groupoid, then having in mind the case of vector spaces,
we may also naturally define n−1x = {y ∈ X : x = ny} and n−1U = ⋃u∈U n−1u
for all n ∈ N, x ∈ X and U ⊂ X.

Thus, we can easily prove several remarkable characterizations of divisible and
cancellable sets. However, in this more general setting, several useful rules of com-
putation with sets in vector spaces are no longer true. For instance, in general we
only have n(n−1U) ⊂ U ⊂ n−1(nU ) for all n ∈ N and U ⊂ X.
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4 The Most Important Additivity and Homogeneity Properties
of Relations

Definition 2 Let F be a relation on one groupoid X to another Y , and let Ω be a
relation on X. Then, F is called

(1) Ω-subadditive if F (x + y) ⊂ F (x)+ F (y) for all (x, y) ∈ Ω ,
(2) Ω-superadditive if F (x)+ F (y) ⊂ F (x + y) for all (x, y) ∈ Ω .

Remark 11 Now, the relation F may, for instance, be naturally called superadditive
if it is X2-superadditive.

Note that thus F is superadditive if and only if F + F ⊂ F . That is, F is a
subgroupoid of the groupoid X×Y .

Remark 12 Moreover, it is also worth mentioning that if in particularF is a reflexive,
superadditive relation of X to itself, then F is already a translation relation [54, 55]
in the sense that x + F (y) ⊂ F (x + y) for all x, y ∈ X.

Remark 13 Note also that if F is only D2
F -superadditive, then F is already

superadditive.
However, the corresponding assertion is not true even for DF×X-subadditivity.

Therefore, we shall need the following weakenings of global subadditivity.

Definition 3 A relation F on one groupoid X to another Y is called

(1) semisubadditive if it is D2
F -subadditive;

(2) left-quasisubadditive if it is DF×X-subadditive.

Remark 14 Now, the relation F may be naturally called quasisubadditive if it both
left-quasisubadditive and right-quasisubadditive. (The latter is defined by the relation
X×DF .)

Moreover, F may be naturally called quasiadditive if it is both quasisubaddi-
tive and superadditive. Later, we shall see that quasiadditivity is a quite important
additivity property.

In the sequel, by considering some more special ground sets, we shall need some
further weakenings of global additivities.

Definition 4 A relation F on a groupoid X with zero to an arbitrary groupoid Y is
called

(1) left-zero-subadditive if it is {0}×X-subadditive;
(2) left-zero-superadditive if it is {0}×X-superadditive.

Remark 15 Note that ifF is only {0}×DF -subadditive ({0}×DF -superadditive), then
F is already left-zero-subadditive (left-zero-superadditive). Therefore, in contrast to
Definition 3, even zero-semisubadditivity need not be defined. Concerning zero-
additivities, we can easily establish the following.
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Theorem 11 A relation F on one groupoid X with zero to another Y , then
(1) F is zero-subadditive if 0 ∈ F (0),
(2) F is zero-superadditive if F (0) ⊂ {0}.
Remark 16 To feel the importance of zero-additivity, note that if for instance F
is right-zero-additive, then F (x) = F (x) + F (0) for all x ∈ X. Therefore, F is a
left-representing selection relation for F .

Analogously to Definition 4, we may also naturally introduce the following.

Definition 5 A relation F on a group X to a groupoid Y is called

(1) inversion-subadditive if it is {(x,−x) : x ∈ X}-subadditive,
(2) inversion-superadditive if it is {(x,−x) : x ∈ X}-superadditive.

Remark 17 Note that if F is only {(x,−x) : x ∈ DF }-superadditive, then F is
already inversion-superadditive.

However, the corresponding assertion is not true for inversion subadditivity.
Therefore, analogously to Definition 3, F may be naturally called inversion-semi-
subadditive if it is {(x,−x) : x ∈ DF }-subadditive.

Remark 18 Note that if F is inversion-semi-subadditive, then for any x ∈ DF , we
have F (0) ⊂ F (x) + F ( − x). Hence, if 0 ∈ DF , i.e., F (0) �= ∅, we can infer that
F (− x) �= ∅, i.e., −x ∈ DF . Therefore, we also have F (0) ⊂ F (− x)+ F (x).

Definition 6 For some n ∈ N, a relationF on one groupoidX to another Y is called

(1) n-subhomogeneous if F (nx) ⊂ nF (x) for all x ∈ X,
(2) n-superhomogeneous if nF (x) ⊂ F (nx) for all x ∈ X.

Remark 19 Note that if we only have nF (x) ⊂ F (nx) for all x ∈ DF , then F is
already n-superhomogeneous.

However, the corresponding assertion is not true for n-subhomogeneity. There-
fore, in accordance with Definition 3, F may be naturally called n-semi-
subhomogeneous if F (nx) ⊂ nF (x) for all x ∈ DF .

Remark 20 Now, F may, for instance, be naturally called n-semihomogeneous if
it is both n-semi-subhomogeneous and n-superhomogeneous.

Moreover, for some A ⊂ N, the relation F may, for instance, be naturally called
A-semihomogeneous if it is n-semihomogeneous for all n ∈ A.

By induction, we can easily prove the following.

Theorem 12 If F is a superadditive relation on one groupoidX to another Y , then
DF is a subgroupoid of X and F is N-superhomogeneous.

Remark 21 Note that if F is a relation on one groupoid X with zero to another Y
such that 0 ∈ F (0), then we have 0F (x) ⊂ {0} ⊂ F (0) = F (0x) for all x ∈ X.
Therefore, F is 0-superhomogeneous.

Now, we can also easily prove the following.
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Theorem 13 If f is a superadditive function on one groupoidX to another Y , then
Df is a subgroupoid of X and f is semiadditive and N-semihomogeneous.

Proof If n ∈ N, then by Theorem 12 we have nf (x) ⊂ f (nx) for all x ∈ X. Hence,
since f (x) is a singleton for all x ∈ Df , we can infer that nf (x) = f (nx) for all
x ∈ Df . Therefore, f is n-semihomogeneous.

On the other hand, by the superadditivity of f , we have f (x)+ f (y) ⊂ f (x+ y)
for all x, y ∈ X. Hence, since f (x) is a singleton for all x ∈ Df , we can infer that
f (x)+ f (y) = f (x + y) for all x, y ∈ Df . Therefore, f is semiadditive.

Remark 22 Note that if f is, for instance, a right-zero-superadditive function on
a groupoid X with zero to a groupoid Y such that 0 ∈ Df , then f is actually
right-zero-additive.

Moreover, we have f (0) + f (0) = f (0), and thus f (0) = 0 if in particular Y
is a group. Therefore, we also have f (0x) = 0f (x) for all x ∈ Df , and thus f is
zero-semihomogeneous.

Now, in addition to Theorems 12, we can also easily prove the following

Theorem 14 If F is a N
−1-convex-valued, subadditive (right-quasisubadditive)

relation on a groupoid X to a vector space Y over K, then F is N-subhomogeneous
( N-semi-subhomogeneous).

Proof Note that if n ∈ N such that F (nx) ⊂ nF (x) for all x ∈ DF , then by the
right-quasisubadditivity of F and the n−1-convexity of F (x) we also have

F((n+ 1)x) = F (nx + x) ⊂ F (nx)+ F (x) = F (x)+ nF (x)

= (n+ 1)
(
(n+ 1)−1F (x)+ (1− (n+ 1)−1)F (x)

) ⊂ (n+ 1)F (x)

for all x ∈ DF . Therefore, in the right-quasisubadditive case, F is N-semi-
subhomogeneous.

Remark 23 Note that if F is a relation on one groupoid X with zero to another Y
such that either 0 /∈ DF , or DF = X and F (0) ⊂ {0}, then F (0x) = F (0) ⊂ 0F (x)
for all x ∈ X. Therefore, F is zero-subhomogeneous. While, if only F (0) ⊂ {0} is
assumed, then we can only state that F is zero-semi-subhomogeneous.

Moreover, in addition to Theorem 13, we can also easily establish the following.

Theorem 15 If f is a subadditive (right-quasisubadditive) function of one groupoid
X to another Y , then f is N-subhomogeneous (N-semi-subhomogeneous).

Remark 24 Note that if f is, for instance, a right-zero-subadditive function on a
groupoid X with zero to a groupoid Y such that 0 ∈ Df , then f is actually right-
zero-additive. Therefore, if in particular Y is a group, then by Remark 22, we can
see that f is zero-semihomogeneous.



Constructions and Extensions of Free and Controlled Additive Relations 171

5 Some Further Important Homogeneity Properties
of Relations

Definition 7 A relation F on a groupX to a set Y is called even if F (− x) = F (x)
for all x ∈ X.

While, a relationF on one groupX to another Y is called odd ifF (−x) = −F (x)
for all x ∈ X.

Remark 25 Note that if the above equalities are required to hold only for all x ∈ DF ,
then DF is already symmetric, and thus they also hold for all x ∈ X. Therefore,
semieven and semiodd relations need not be introduced.

However, by using the notations of [70], or rather [68], the above definition and
the following obvious theorem can be more briefly formulated.

Theorem 16 If F is a relation on on groupX to a set (group) Y , then the following
assertions are equivalent:

(1) F is even (odd),
(2) F (− x) ⊂ F (x) (F (− x) ⊂ −F (x)) for all x ∈ X,
(3) F (x) ⊂ F (− x) (−F (x) ⊂ F (− x)) for all x ∈ DF .

Remark 26 Note that in assertion (3) we can writeX in place ofDF , but in assertion
(2) we cannot write DF in place of X.

Therefore, the relation F may be naturally called semi-subeven (semi-subodd) if
F (− x) ⊂ F (x) (F (− x) ⊂ −F (x)) for all x ∈ DF .

Remark 27 In addition to Theorem 16, it is also worth noticing that the relation F
is odd if and only if −F ⊂ F , and thus −F = F . That is, F is a symmetric subset
of the group X×Y .

Hence, by using that −(F−1) = ( − F )−1, we can at once see that F−1 is odd
if and only if F is odd. However, the corresponding assertion is not true for even
relations. Namely, we have the following

Theorem 17 If F is a relation on a group X to a groupoid Y , then the following
assertions are equivalent:
(1) F−1 is even;
(2) F is symmetric-valued.

Proof If x ∈ X and y ∈ −F (x), then −y ∈ F (x), and thus x ∈ F−1( − y).
Hence, if (1) holds, we can infer that x ∈ F−1(y), and thus y ∈ F (x). Therefore,
−F (x) ⊂ F (x), and thus −F (x) = F (x). Therefore, (2) also holds.

Corollary 1 An even relation F on one group X to another Y is odd if and only if
its inverse F−1 is even.

Remark 28 Note that if a function f on one group X to another Y is both even and
odd, then we have f (x) = −f (x), and hence 2f (x) = 0 for all x ∈ Df . Therefore,
if in particular Y is 2-cancellable, then f (x) = 0 for all x ∈ Df .
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The next obvious theorems, together with the above remark, will show that odd
relations are much more important than the even ones.

Theorem 18 If f is an inversion-semi-subadditive function on one group X to
another Y such that 0 ∈ Df , then Df is symmetric, f (0) = 0, and f is odd and
inversion-semiadditive.

Corollary 2 If f is a nonvoid, inversion-superadditive function on one group X
to another Y with a symmetric domain, then f (0) = 0 and f is odd and inversion-
semiadditive.

Remark 29 Note that if F is an inversion-semi-subadditive relation on a group to a
groupoid Y such that 0 ∈ DF , thenDF is symmetric. Moreover, if in particular F is
inversion-subadditive, then DF = X. Thus, F is total.

By using some obvious analogues of Definition 6 and Remark 19, we can also
easily prove the following:

Theorem 19 If F is an odd, k-superhomogeneous (k-subhomogeneous, resp. k-
semi-subhomogeneous) relation on one group X to another Y , for some k ∈
Z, then F is also −k-superhomogeneous (−k-subhomogeneous, resp. −k-semi-
subhomogeneous).

Corollary 3 If F is an odd, N-superhomogeneous ( N-subhomogeneous, resp.
N-semi-subhomogeneous) relation on one group X to another Y , then F is Z0-
superhomogeneous ( Z0-subhomogeneous, resp. Z0-semi-subhomogeneous).

Now, in addition to Theorem 12 and Corollary 3, we can also easily prove

Theorem 20 If F is a nonvoid odd, superadditive relation on one group X to
another Y , then DF is a subgroup of X, 0 ∈ F (0), and F is quasiadditive and
Z-superhomogeneous.

Proof Because of F �= ∅, we haveDF �= ∅. Moreover, since F is odd and superad-
ditive, −DF ⊂ DF and DF +DF ⊂ DF . Therefore, DF is a subgroup of X. Now,
by taking x ∈ DF , we can see that 0 ∈ F (x)− F (x) = F (x)+ F (− x) ⊂ F (0).

Moreover, if x ∈ X and y ∈ DF , then by using that 0 ∈ F ( − y) + F (y) we
can see that F (x + y) = F (x + y) + {0} ⊂ F (x + y) + F ( − y) + F (y) ⊂
F (x)+ F (y). Therefore, F is right-quasisubadditive. The left-quasisubadditivity of
F can be proved even more easily.

Moreover, as an immediate consequence of this theorem and Corollary 2, we can
also state

Theorem 21 If f is a nonvoid, superadditive function on one group X to another
Y , with a symmetric domain, then Df is a subgroup of X and f (0) = 0, and f is
odd, quasiadditive and Z-semihomogeneous.

On the other hand, as an immediate consequence of Theorem 14 and Corollary 3,
we can also state

Theorem 22 If F is an odd, N
−1-convex-valued, subadditive (left or right-

quasisubadditive) relation on a group X to a vector space Y over K, then F is
Z0-subhomogeneous ( Z0-semi-subhomogeneous).
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Moreover, as an immediate consequence of Theorems 15 and 18 and Corollary
3, we can also state

Theorem 23 If f is a subadditive (left or right-quasisubadditive) function on one
group X to another Y such that 0 ∈ Df , then f is Z0-subhomogeneous ( Z-semi-
subhomogeneous).

Remark 30 From our former results on additive and homogeneous relations on one
groupoid X to another Y , one can easily derive some results on a subset U of X by
using the relation F = U 2 ∪G, withG = ∅, G = ΔUc ,G = (Uc)2, G = Uc×U ,
or G = Uc×X, for instance.

In the theory of generalized uniform spaces, it is quite usual to associate the
Davis–Pervin relation FU = U 2 ∪ Uc×X with the set U ⊂ X, and more generally
the Császár–Hunsaker–Lindgren relation F(U ,V ) = U× V ∪ Uc× Y with the sets
U ⊂ X and V ⊂ Y . (See [52, 58].)

The latter relations seem to be the most natural totalizations of the box relations
Γ(U ,V ) = U×V studied by the second author in [65–67]. In a later paper [69], the
same natural totalization has also been applied to a particular subadditive relation of
Zs. Páles published first in Gajda and Ger [17].

6 The Importance of Quasi-odd Relations and Odd-like
Selections

Definition 8 A relationF on a groupX to a groupoidY with zero is called quasi-odd
if 0 ∈ F (x)+ F (− x) for all x ∈ DF
Remark 31 Thus, an odd relation is, in particular, quasi-odd. Moreover, each
semireflexive relation on X, with a symmetric domain, is quasi-odd.

Furthermore, we can also note that if 0 ∈ F (0) and F is inversion-semi-
subadditive, then F is quasi-odd. Thus, quasi-oddness a rather weak property.

Now, analogously to Theorem 20, we can also easily prove the following

Theorem 24 If F is a nonvoid, quasi-odd, superadditive relation on a group X to
a monoid Y , then DF is a subgroup of X, 0 ∈ F (0), and F is quasiadditive and
N-superhomogeneous.

Moreover, as some useful reformulations of a particular case of Definition 8, we
can also easily establish the following theorem which can again be more briefly
formulated by using the notations of [70], or rather [68].

Theorem 25 A relation F on one group X to another Y , then the following
assertions are equivalent:

(1) F is quasi-odd,
(2) −F (x) ∩ F (− x) �= ∅ for all x ∈ DF ,
(3) F (x) ∩ (−F (− x)) �= ∅ for all x ∈ DF .
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Definition 9 A partial selection relationΦ of a relationF on one groupX to another
Y is called odd-like if −Φ(x) ⊂ F (− x) for all x ∈ X.

Remark 32 Note that if Φ is an odd partial selection relation of F , then −Φ(x) =
Φ(− x) ⊂ F (− x) for all x ∈ X. Therefore, Φ is odd-like.

Moreover, if Φ is a partial selection relation of F and F is odd, then −Φ(x) ⊂
−F (x) = F ( − x) for all x ∈ X. Therefore, Φ is again odd-like. Now, by using
Theorem 25 and the axiom of choice, we can also easily establish

Theorem 26 If F is a relation on one group X to another Y , then the following
assertions are equivalent:
(1) F is quasi-odd;
(2) F has an odd-like selection function.

Remark 33 In [19], by using Zorn’s lemma, we have proved that a relationF on one
group X to another Y has an odd selection function ϕ if and only if F is quasi-odd
and for any x ∈ DF , with 2x = 0, there exists a y ∈ F (x) such that 2y = 0.

Definition 10 A relation Φ on a groupoid X with zero to an arbitrary groupoid Y
is called a left representing for a relation F onX to Y if F (x) = Φ(x)+F (0) for all
x ∈ X.

Remark 34 Note that if in particular F (0) is a normal subset of Y , then we also
have F (x) = F (0) + Φ(x) for all x ∈ X. Therefore, Φ is also a right representing,
and thus a representing relation for F .

The importance of odd-like selections is also quite obvious from the following

Theorem 27 If F is a right-zero-superadditive, inversion-superadditive relation
on one group X to another Y and Φ is an odd-like selection relation of F , then Φ is
a left-representing selection relation of F .

Proof For any x ∈ X, we have Φ(x)+ F (0) ⊂ F (x)+ F (0) ⊂ F (x) and

F (x) = {0}+F (x) ⊂ Φ(x)−Φ(x)+F (x) ⊂ Φ(x)+F (−x)+F (x) ⊂ Φ(x)+F (0).

Therefore, F (x) = Φ(x)+ F (0), and thus the required assertion is also true.

Remark 35 If ϕ is a selection function of a left-zero-superadditive relation F on
a groupoid X to a group Y such that F (x) ⊂ ϕ(x) + F (0) for all x ∈ DF and
−ϕ[DF ] ⊂ ϕ[DF ], then it can be shown that ϕ is already a representing selection
function of F .

However, it is now more important to note that, as an immediate consequence of
Theorems 26 and 27, we can also state

Corollary 4 If F is a quasi-odd, inversion-superadditive relation on one group X
to another Y such that F (0) ⊂ {0}, then F is already a function.

Remark 36 Some deeper sufficient conditions, in order that a relation should be a
function, have been given by Nikodem and Popa [37].
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Remark 37 Because of Corollary 2 and Theorem 27, it seems an important problem
to find an additive selection function f of a superadditive relation F .

However, the set-valued generalizations of the classical Hyers–Ulam and Hahn–
Banach theorems, mentioned in the Introduction, revealed that the same problem is
even more important for subadditive relations.

Actually, they have shown that one has to find some sufficient conditions in order
that an additive partial selection function ϕ of a certain subadditive relation F could
be extended to an additive total selection function f of F .

7 Direct Sum Decompositions of Groupoids

Definition 11 If U , V , and W are subsets of a groupoid X such that for every
x ∈ W there exists a unique pair (ux , vx) ∈ U × V such that x = ux + vx , then we
say thatW is the direct sum of U and V , and we writeW = U ⊕ V .

Remark 38 Thus, in particular we haveW = U + V . Hence, if in addition X has a
zero such that 0 ∈ V , we can infer that U ⊂ W .

Moreover, in this particular case for any x ∈ U we have x = x + 0. Hence, by
using the unicity of ux and vx , we can infer that ux = x and vx = 0.

Remark 39 Therefore, if W = U ⊕ V , and in particular X has a zero such that
0 ∈ U ∩ V , then in addition toW = U + V , we can also state that U ∪ V ⊂ W and
U ∩ V = {0}.

Namely, by Remark 38 and its dual, we have U ⊂ W and V ⊂ W , and thus
U ∪ V ⊂ W . Moreover, if x ∈ U ∩ V , i.e., x ∈ U and x ∈ V , then we have vx = 0
and ux = 0, and thus x = ux + vx = 0.

In this respect, we can also easily prove the following

Theorem 28 If U andV are subgroups of a monoidX, then the following assertions
are equivalent:

(1) X = U ⊕ V ,
(2) X = U + V and U ∩ V = {0}.

Hint If x ∈ X such that x = u1 + v1 and x = u2 + v2 for some u1, u2 ∈ U and
v1, v2 ∈ V , then u1 + v1 = u2 + v2, and thus −u2 + u1 = v2 − v1. Moreover, we
also have −u2 + u1 ∈ U and v2 − v1 ∈ V . Hence, if the second part of (2) holds,
we can infer that −u2 + u1 = 0 and v2 − v1 = 0. Therefore, u1 = u2, and v1 = v2

also hold.

Remark 40 Note that if U andV are subgroups of a monoidX such thatX = U+V ,
then for any x ∈ X there exist u ∈ U and v ∈ V such that x = u + v. Hence, by
taking y = −v − u, we can see that x + y = 0 and y + x = 0. Therefore, −x = y,
and thus X is also a group.

Now, as a useful consequence of Theorem 28, we can also state
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Corollary 5 If V is an N-divisible subgroup of an N-cancellable group X and
a ∈ X \ V such that, under the notation U = Za = {ka : k ∈ Z}, we have
X = U + V , then we actually have X = U ⊕ V .

Proof To show that U ∩ V ⊂ {0}, note that if x ∈ U , then there exists k ∈ Z such
that x = ka. Moreover, if x �= 0, then k �= 0. Therefore, if x ∈ V also holds, then
by Theorem 8 there exists v ∈ V such that x = kv. Thus, we have ka = kv. Hence,
by Theorem 7, it follows that a = v, and thus a ∈ V , which is a contradiction.

Moreover, to clarify the origin of the notion of direct sums, we can also state

Example 1 If G is a group, then the Descartes product X = G2 = G×G, with
the coordinatewise addition, is also a group. Moreover, U = {(x, 0) : x ∈ G} and
V = {(0, y) : y ∈ G} are subgroups ofX such thatX = U+V andU∩V = {(0, 0)}.
Therefore, by Theorem 28, we have X = U ⊕ V .

Moreover, it is also worth noticing thatU and V are now elementwise commuting
in the sense that u+ v = v+ u for all u ∈ U and v ∈ V .

The importance of elementwise commuting sets is already apparent from the
following two theorems.

Theorem 29 IfU and V are elementwise commuting subgroupoids of a semigroup
X such that X = U ⊕ V , then the mappings x �→ ux and x �→ vx , where x ∈ X,
are additive. Thus, in particular, they are N-homogeneous.

Remark 41 Note that if in particularX has a zero such that 0 ∈ V , then by Remark
38 the mapping x �→ ux , where x ∈ X, is idempotent. Moreover, if 0 ∈ U also
holds, then u0 = 0. Thus, the above mapping is also zero-homogeneous.

Remark 42 While, if in particular X, U , and V are groups, then the mappings
considered in Theorem 29 are odd. Therefore, by Theorem 29 and Corollary 3 and
Remark 41, they are Z-homogeneous.

Theorem 30 If U and V are subsets of a semigroupX such thatX = U +V , then
the following assertions are equivalent:

(1) X is commutative;
(2) U and V are commutative and elementwise commuting.

Concerning elementwise commuting sets, we can also easily prove the following

Theorem 31 If U and V are subsets of a groupoid X such that X = U ⊕ V , then
the following assertions are equivalent:

(1) U and V are elementwise commuting,
(2) u+ V = V + u and v+ U = U + v for all u ∈ U and v ∈ V ,
(3) u+ V ⊂ V + u and v+ U ⊂ U + v for all u ∈ U and v ∈ V .

Remark 43 Note that if U is a subgroup of a monoid X, then for any V ⊂ X, the
following assertions are also equivalent:

(1) u+ V = V + u for all u ∈ U ,
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(2) u+ V ⊂ V + u for all u ∈ U .

Remark 44 It is well known that if U is a subspace of a vector space X, then there
exists a subspace V of X such that X = U ⊕V . (This, in contrast to [74, p. 43], can
be proved more easily by using Zorn’s lemma, than Hamel bases.)

From this decomposition theorem, by using Remark 8, we can immediately infer
that if U is an N-divisible subgroup of a uniquely N-divisible, commutative group
X, then there exists an N-divisible subgroup V of X such that X = U ⊕ V .

To see the necessity of the N-divisibility of the subgroupU in the above statement,
note, for instance, that Z is a subgroup of the vector space Q such that for any
N-superhomogeneous subset V of Q with Z ∩ V = {0}, we have V = {0}.
Remark 45 Much more generally, Baer [5] proved that if U is an N-divisible sub-
group of a commutative group X, then there exists a subgroup V of X such that
X = U ⊕ V .

Moreover, Kertész [30] proved that if X is a commutative group such that the
order of each element of X is a square-free number, then for every subgroup U of
X, there exists a subgroup V of X such that X = U ⊕ V .

Surprisingly, the above two results were already considered to be well known by
R. Baer in 1936 and 1946, respectively. Moreover, it is also worth mentioning that
Hall [23], analogously to A. Kertész, also proved an “if and only if result.”

8 Constructions of Additive Relations on Cyclic Sets

Theorem 32 LetX andY be monoids. Suppose that a ∈ X0, b ∈ Y and∅ �= C ⊂ Y
such that

(1) C = C + C and b + C = C + b,
(2) na = ma implies nb + C = mb + C for all n,m ∈ N0.

Then, there exists a unique additive relation F of the monoid U = N0a to Y such
that F (0) = C and F (a) = b + C. Moreover, we have F (na) = nb + C for all
n ∈ N0.

Proof To prove the existence of F , note that by (2), we may unambiguously define
a relation F of U to Y such that F (na) = nb+C for all n ∈ N0. Thus, we evidently
have F (0) = C and F (a) = b + C.

Moreover, from (1) by induction, we can see that nb+C = C+nb for all n ∈ N0.
Hence, by Theorem 5, it is clear that

F (na +ma) = F((n+m)a) = (n+m)b + C
= nb +mb + C + C = nb + C +mb + C = F (na)+ F (ma)

for all n,m ∈ N0. Therefore, F is additive.
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Remark 46 If in particular C is n-divisible for some n ∈ N, then in addition to
nC ⊂ C, we also have C ⊂ nC, and thus C = nC.

Moreover, if in particular b commutes with the elements of C, then by using
Theorem 5, we can see that n(mb)+ nC = n(mb + C) for all m ∈ N0.

Therefore, if the above assumptions also hold, then we have F(n(ma)) =
F((nm)a) = (nm)b + C = n(mb)+ nC = n(mb + C) = nF (ma) for all m ∈ N0.
Thus, F is also n-homogeneous.

Analogously to the above theorem, we can also prove the following

Theorem 33 Let X and Y be groups. Suppose that a ∈ X0, b ∈ Y , and C is a
subgroup of Y such that

(1) b + C = C + b,
(2) na = 0 implies nb ∈ C for all n ∈ N.

Then, there exists a unique odd, additive relation F of the group U = Za to Y such
that F (0) = C and F (a) = b + C. Moreover, we have F (ka) = kb + C for all
k ∈ Z.

Proof If F is as above, then by the proof of Theorem 32, we have F (na) = nb+C
for all n ∈ N0. Moreover, we can also note that

F((− n)a) = F (− na) = −F (na)

= −(nb + C) = −(C + nb) = −nb − C = (− n)b + C
for all n ∈ N. Therefore, the unicity of F is true.

Quite similarly, we can also note that if n ∈ N such that ( − n)a = 0, then we
also have −na = 0, and thus na = 0. Hence, by (2), it follows that nb ∈ C. Thus,
(− n)b = −nb ∈ −C = C also holds. Moreover, we can note that 0b = 0 ∈ C is
also true. Therefore, ka = 0 implies kb ∈ C for all k ∈ Z.

Now, to prove the existence of F , we can note that if k, l ∈ Z such that ka = la,
then

(− l + k)a = (− l)a + ka = −la + ka = 0.

Hence, by the above mentioned extension of (2), we can infer that

−lb + kb = (− l)b + kb = (− l + k)b ∈ C.
Now, since C is a group, we can also easily see that

−lb + kb + C = C, and thus kb + C = lb + C.
Therefore, we may unambiguously define a relation F of U to Y such that F (ka) =
kb + C for all k ∈ Z. Thus, we evidently have F (0) = C and F (a) = b + C.

Moreover, in addition to our observation on b and C in the proof of Theorem 32,
we can see that

(− n)b + C = −nb − C = −(C + nb) = −(nb + C) = −C − nb = C + (− n)b

for all n ∈ N. Therefore, kb+C = C+ kb holds for all k ∈ Z. Hence, it is clear that

F (− ka) = F((− k)a) = (− k)b + C
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= C + (− k)b = −C − kb = −(kb + C) = −F (ka)

for all k ∈ Z. Therefore, F is odd. Moreover, quite similarly as in the proof of
Theorem 32, we can see that F (ka+ la) = F (ka)+F (la) for all k, l ∈ Z. Therefore,
F is also additive.

Remark 47 If in particular C is n-divisible, for some n ∈ N, and b commutes
with the elements of C, then analogously to Remark 46 we can see that F is n-
homogeneous. Hence, by Theorem 19, we can also state that F is−n-homogeneous.

9 Constructions of Additive Relations on Sum Sets

Definition 12 Two relations F and G of some subsets U and V of a set X to a
groupoid Y , respectively, are called pointwise commuting (pointwise–elementwise
commuting) if the sets F (u) andG(v) are commuting (elementwise-commuting) for
all u ∈ U and v ∈ V .

Remark 48 Note that, in contrast to the above definition, two relations F andG are
usually called commuting if F ◦G = G ◦ F .

Now, in addition to Theorems 32, we can also prove the following

Theorem 34 Suppose that U and V are elementwise commuting submonoids of a
monoid of X such that X = U ⊕ V .

Moreover, assume that F and G are pointwise commuting, additive relations of
U and V to a semigroup Y , respectively, such that F (0) = G(0).

Then, there exists a unique additive relationH ofX to Y that extends both F and
G. Moreover, we have H (u+ v) = F (u)+G(v) for all u ∈ U and v ∈ V .

Proof To prove the existence of H , define a relationH of X to Y such thatH (x) =
F (ux)+G(vx) for all x ∈ X. Then, by Theorem 29 and Remark 38 and its dual, for
any s ∈ U and t ∈ V we have

H (s + t) = F (us+t )+G(vs+t )

= F (us + ut )+G(vs + vt ) = F (s + 0)+ F (0+ t) = F (s)+G(t).

Hence, it is clear that H (s) = H (s + 0) = F (s)+G(0) = F (s)+ F (0) = F (s) and
H (t) = H (0 + t) = F (0) + G(t) = G(0) + G(t) = G(t). Therefore, H extends
both F and G.

Moreover, by taking ω ∈ U and w ∈ V , we can also easily see that

H((s + t)+ (ω + w)) = H((s + ω)+ (t + w))

= F (s + ω)+G(t + w) = (F (s)+ F (ω))+ (G(t)+G(w))

= (,F (s)+G(t))+ (F (ω)+G(w))

= H (s + t)+H (ω + w).
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Therefore, H is also additive.

Remark 49 If in particular F and G are n-subhomogeneous for some n ∈ N, then
by Theorem 12 they are actually n-homogeneous.

Therefore, if in addition F and G are pointwise–elementwise commuting, then
we have H(n(s + t)) = H (ns + nt) = F (ns) + G(nt) = nF (s) + nG(t) =
n(F (s) + G(t)) = nH (s + t) for all s ∈ U and t ∈ V . Therefore, H is also
n-homogeneous.

However, it is now more interesting that in addition to Theorem 33, we can also
easily prove the following

Theorem 35 Suppose that U and V are elementwise commuting subgroups of a
group X such that X = U + V .

Moreover, assume that F and G are pointwise commuting, additive relations of
U and V to a semigroup Y , respectively, such that F (x) = G(x) for all x ∈ U ∩ V .

Then, there exists a unique additive relationH ofX to Y that extends both F and
G. Moreover, we have H (u+ v) = F (u)+G(v) for all u ∈ U and v ∈ V .

Proof To prove the existence of H , note that if u1, u2 ∈ U and v1, v2 ∈ V such that

u1 + v1 = u2 + v2,

then −u2 + u1 = v2 − v1. Hence, it is clear that, in addition to −u2 + u1 ∈ U and
v2 − v1 ∈ V , we also have −u2 + u1 ∈ V and v2 − v1 ∈ U . Thus, in particular by
the hypothesis F (v2 − v1) = G(− u2 + u1) also holds. Now, by observing that

F (u1) = F (u2 + v2 − v1) = F (u2)+ F (v2 − v1) = F (u2)+G(− u2 + u1),

G(v1) = G(− u1+ u2+ v2) = G(−(− u2+ u1)+ v2) = G(−(− u2+ u1))+G(v2),

we can already see that

F (u1)+G(v1)

= F (u2)+G(− u2 + u1)+G(−(− u2 + u1))+G(v2) = F (u2)+G(0)+G(v2)

= F (u2)+G(v2).

Therefore, we may unambiguously define a relationH ofX = U +V to Y such that
H (u + v) = F (u) + G(v) for all u ∈ U and v ∈ V . Now, quite similarly as in the
proof of Theorem 34, we can see thatH extends both F andG. Moreover,H is also
additive.

Remark 50 If in particular Y is also a group, and F and G are odd, then we have
H(−(u + v)) = H(−(v + u)) = H ( − u + ( − v)) = F ( − u) + G( − v) =
G( − v) + F ( − u) = −G(v) + (−F (u)) = −(F (u) +G(v)) = −H (u + v) for all
u ∈ U and v ∈ V . Therefore, H is also odd.

While, if in particular F and G are n-subhomogeneous, for some n ∈ N, and F
and G are pointwise–elementwise commuting, then analogously to Remark 49, we
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can see that H is n-homogeneous. Hence, if in addition, Y is also a group, and F
and G are odd, then by Theorem 19 we can also state that H is −n-homogeneous.

From Theorem 35, by taking F = U ×G(0), we can immediately derive

Corollary 6 Suppose that U and V are elementwise commuting subgroups of a
group X such that X = U + V . Moreover, assume that G is an additive relation of
V to a semigroup Y such that G(x) = G(0) for all x ∈ U ∩ V .

Then, G can be uniquely extended to an additive relation H of X to Y such that
H (u) = G(0) for all u ∈ U . Moreover, we have H (u+ v) = G(v) for all u ∈ U and
V ∈ V .

Remark 51 If in particular G is odd, then we can easily see that F = U ×G(0) is
also odd. Thus, by Remark 50, H is also odd.

While, if in particular G is n-subhomogeneous, for some n ∈ N, then we can
easily see that H is also n-homogeneous. Hence, if in particular G is odd, then by
Theorem 19 we can see that H is also −n-homogeneous.

10 One-step Extensions of Additive Relations

Now, by using Theorems 32 and 34, we can easily prove the following

Theorem 36 Let X and Y be monoids. Suppose that G is an additive relation of a
submonoid V of X to Y . Moreover, assume that a ∈ X \ V and b ∈ Y such that

(1) X = U ⊕ V holds with U = N0a,
(2) a + v = v+ a and b +G(v) = G(v)+ b for all v ∈ V ,
(3) na = ma implies nb +G(0) = mb +G(0) for all n,m ∈ N0.

Then, there exists a unique additive relation H of X to Y extending G such that
H (a) = b +G(0). Moreover, we have H (na + v) = nb +G(v) for all n ∈ N0 and
v ∈ V .

Proof To prove the existence ofH , note that in particular, we have a �= 0, G(0) �= ∅,
G(0) = G(0)+G(0), and b+G(0) = G(0)+ b. Thus, by Theorem 32, there exists
an additive relation F of U to Y such that F (0) = G(0) and F (a) = b + G(0).
Moreover, we have F (na) = nb +G(0) for all n ∈ N0.

On the other hand, from (2) by induction, we can see that na + v = v + na and
nb+G(v) = G(v)+ nb also hold for all n ∈ N0 and v ∈ V . Therefore, U and V are
elementwise commuting. Moreover, we can see that

F (na)+G(v) = nb +G(0)+G(v) = nb +G(v)

= nb +G(v)+G(0) = G(v)+ nb +G(0) = G(v)+ F (na)

for all n ∈ N0 and v ∈ V . Therefore, F and G are pointwise commuting.
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Now, by Theorem 34, we can state that there exists an additive relation H of
X to Y that extends both F and G. Moreover, since a ∈ U , we can also note
H (a) = F (a) = b +G(0).

Remark 52 If in particular G is n-subhomogeneous for some n ∈ N, then by
Theorem 12 we can state that G is actually n-homogeneous.

Moreover, if in addition, b commutes with the elements of G(v) for all v ∈ V ,
then by using Theorem 5, we can see that that H(n(ma + v)) = H (nma + nv) =
nmb + G(nv) = nmb + nG(v) = n(mb + G(v))= nH (ma + v) for all m ∈ N0.
Therefore, H is also n-homogeneous.

Now, by using Theorems 33 and 34, we can also easily prove the following

Theorem 37 Let X and Y be groups. Suppose that G is an odd, superadditive
relation of a subgroup V of X to Y . Moreover, assume that a ∈ X \ V and b ∈ Y
such that

(1) X = U ⊕ V holds with U = Za,
(2) na = 0 implies nb ∈ G(0) for all n ∈ N,
(3) a + v = v+ a and b +G(v) = G(v)+ b for all v ∈ V .

Then, there exists a unique odd, additive relationH ofX to Y extendingG such that
H (a) = b + G(0). Moreover, we have H (ka + v) = kb + G(v) for all k ∈ Z and
v ∈ V .

Proof To prove the existence of H , note that we now have a �= 0, G(0) �= ∅, and
G(0) − G(0) = G(0) + G(0) ⊂ G(0). Thus, G(0) is a subgroup of Y . Moreover,
by (3), we have b + G(0) = G(0) + b. Therefore, by Theorem 33, there exists an
odd, additive relation F of U to Y such that F (0) = G(0) and F (a) = b + G(0).
Moreover, we have F (ka) = kb +G(0) for all k ∈ Z.

On the other hand, from Theorem 20, we can see thatG is now actually additive.
Moreover, in addition to our observations on a and v and b and G(v) made in the
proof of Theorem 36, we can now see that

(− n)a + v = −na + v = −(− v+ na) = −(na − v) = v− na = v+ (− n)a

and

(− n)b +G(v) = −nb +G(v) = −(−G(v)+ nb)
= −(G(− v)+ nb) = −(nb +G(− v)) = −G(− v)− nb = G(v)+ (− n)b

also hold for all n ∈ N. Therefore, we now have ka + v = v + ka and kb +
G(v) = G(v) + kb for all k ∈ Z and v ∈ V . Thus, U and V are elementwise
commuting. Moreover, quite similarly to the proof of Theorem 36, we can see that
F (ka) + G(v) = G(v) + F (ka) for all k ∈ Z and v ∈ V . Therefore, F and G are
pointwise commuting.

Now, by Theorem 34, we can state that there exists an additive relation H of X
to Y that extends both F and G. Moreover, from Remark 50, we can see that H is
also odd.
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Remark 53 If in particularX is N-cancellable, then by Remark 7, we have na �= 0
for all n ∈ N. Therefore, (2) automatically holds.

Moreover, if in addition V is N-divisible, then by Corollary 5, the equality X =
U + V already implies that X = U ⊕ V . Therefore, instead of (1) it is enough to
assume only that X = U + V .

Remark 54 While, if in particular G is n-subhomogeneous, for some n ∈ N, and b
commutes with the elements of G(v) for all v ∈ V , then analogously to Remark 52,
we can see that H is n-homogeneous. Hence, by Theorem 19, we can also state that
H is −n-homogeneous.

However, it is now more interesting that, by using Theorems 33 and 35, we can
also prove the following

Theorem 38 Let X and Y be groups. Suppose that G is an odd, N-sub-
homogeneous, superadditive relation of a subgroup V of X to Y . Moreover, assume
that a ∈ X \ V and b ∈ Y such that

(1) X = U + V holds with U = Za,
(2) a + v = v+ a and b +G(v) = G(v)+ b for all v ∈ V ,
(3) nb ∈ G(na) and Y is n-cancellable for some n ∈ N.

Then, there exists a unique odd, additive relationH ofX to Y extendingG such that
H (a) = b + G(0). Moreover, we have H (ka + v) = kb + G(v) for all k ∈ Z and
v ∈ V .

Proof To prove the existence of H , define

L = {k ∈ Z : ka ∈ V }.
Then, by using Theorem 6, it can be easily seen that L is an ideal in Z. Moreover, if
n is as in (3), then we can note that na ∈ V , and thus n ∈ L.

On the other hand, from Theorem 20, we can see that G is now actually Z0-
homogeneous. Thus, we have

n(kb) = k(nb) ∈ kG(na) = G(k(na)) = G(n(ka)) = nG(ka)

for all k ∈ L0. Hence, by using the n-cancellabilty of Y , we can infer that kb ∈ G(ka)
for all k ∈ L0. Moreover, from Theorem 20, we can see that 0 ∈ G(0), and thus
0b = 0 ∈ G(0) = G(0a) also holds. Therefore, we actually have kb ∈ G(ka) for all
k ∈ L. Hence, by Remark 32 and Theorem 27, it is clear that G(ka) = kb + G(0)
for all k ∈ L.

Moreover, we can note that if m ∈ Z such that ma = 0, then m ∈ L. Therefore,
mb ∈ G(ma) = G(0). Now, by using Theorem 33, and the corresponding properties
of G(0), we can see that there exists an odd, additive relation F of U to Y such that
F (0) = G(0) and F (a) = b +G(0). Moreover, we have F (ka) = kb +G(0) for all
k ∈ Z.

Thus, in particular F (ka) = kb + G(0) = G(ka) for all k ∈ L. Hence, by the
definition of L, we can infer that F (x) = G(x) for all x ∈ U ∩ V . Moreover, from
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Theorem 20, we know that G is also additive. And, from the proofs of Theorems
36 and 37, we can see that U and V are elementwise commuting, and F and G are
pointwise commuting.

Thus, by Theorem 35 and Remark 50, there exists an odd additive relation H of
X to Y that extends both F and G.

Remark 55 If in particular b commutes with the elements of G(v) for all v ∈ V ,
then analogously to Remark 52, we can see that H is also Z0-homogeneous.

11 The Intersection Convolution of Relations

Definition 13 If X is a groupoid, then we define a relation " on X to X2 such that

"(x) = {(u, v) ∈ X2 : x = u+ v} for all x ∈ X.

Remark 56 Thus, it can be easily seen that " is just the inverse relation of the
operation + in X. Therefore, several properties of " can be immediately derived
from those of + by some inversion–invariance theorems.

Definition 14 If X is a groupoid, then for any x ∈ X and U ,V ⊂ X, we define

"(x,U ,V ) = "(x) ∩ "(U ,V ), where "(U ,V ) = U×V.

Remark 57 Thus, the properties of the relation "(x,U ,V ) can be easily derived
from those of " and "(U ,V ).

However, in the sequel, we shall rather use that, for any u, v ∈ X, we have
(u, v) ∈ "(x,U ,V ) ⇐⇒ u ∈ U , v ∈ V , x = u+ v.

Definition 15 If F and G are relations on one groupoid X to another Y , then we
define a relation F ∗G on X to Y such that

(F ∗G)(x) =
⋂

{F (u)+G(v) : (u, v) ∈ "(x,DF ,DG)}
for all x ∈ X. The relationF ∗G is called the intersection convolution of the relations
F and G.

Remark 58 This definition has been introduced in [63] to extend the results of [53].
For some closely related notions, see also the infimal convolutions of [34, 51, 62,
64].

The intersection convolution of relations is closely related not only to the infimal
convolution of functions [11], but also to the global sum, and the composition and
box products of relations [60].

The treatment of [53] has also been closely followed and substantially genera-
lized by Beg [6]. He did not refer to [53], but in a letter he informed the second
author that this was not intentional.
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In particular, in [63], the second author has proved the following

Theorem 39 If F and G are relations on a group X to a groupoid Y , then for any
x ∈ X we have

(F ∗G)(x) =
⋂

{F (x − v)+G(v) : v ∈ (−DF + x) ∩DG} =
=
⋂

{F (u)+G(− u+ x) : u ∈ DF ∩ (x −DG)}.

Hence, by using that −X + x = X and x −X = X, we can immediately derive

Corollary 7 If F and G are relations on a group X to a groupoid Y , then for any
x ∈ X we have

(1) (F ∗G)(x) =⋂v∈DG(F (x − v)+G(v)) whenever F is total,

(2) (F ∗G)(x) =⋂u∈DF (F (u)+G(− u+ x)) whenever G is total.

Remark 59 The multiplicative form of the DG = X particular case of (1) closely
resembles to the definition of the ordinary convolution of integrable functions.

By using the corresponding definitions, we can also easily prove the following
two theorems.

Theorem 40 If F andG are pointwise commuting relations on one groupoid X to
another Y such that their domains DF and DG are elementwise commuting, then
F ∗G = G ∗ F .

Remark 60 To prove the above theorem, one can also note that Γ (x,V ,U ) =
Γ (x,U ,V )−1 for all x ∈ X and elementwise commuting subsets U and V of X.

Theorem 41 If F and G are odd relations on one group X to another Y , then for
any x ∈ X we have

(F ∗G)(− x) = −(G ∗ F)(x).

Proof If x ∈ X and (v, u) ∈ Γ (x,DG,DF ), then v ∈ DG and u ∈ DF such that
x = v+u. Hence, by using the symmetry ofDF andDG, we can infer that−v ∈ DG
and −u ∈ DF . Moreover, we can also note that −x = −u + ( − v). Therefore,
( − u,−v) ∈ Γ ( − x,DF ,DG). Hence, by using the oddness of F and G, we can
infer that

(F ∗G)(− x) =
⋂

{F (s)+G(t) : (s, t) ∈ Γ (− x,DF ,DG)}
⊂ F (− u)+G(− v) = −F (u)+ (−G(v)) = −(G(v)+ F (u)).

Hence, since the mapping y �→ −y, where y ∈ Y , is injective, we can also see that

(F ∗G)(− x) ⊂
⋂

{−(G(v)+ F (u)) : (v, u) ∈ Γ (x,DG,DF )}
= −

⋂
{G(v)+ F (u) : (v, u) ∈ Γ (x,DG,DF )} = −(G ∗ F)(x).
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Now, by using writing G in place of F , F in place of G, and −x in place of x, we
can see that the converse inclusion is also true.

Remark 61 To prove the above theorem, one can also note that Γ (−x,−U ,−V ) =
−Γ (x,V ,U )−1 for all x ∈ X and U ,V ⊂ X. Thus, in particular Γ ( − x,U ,V ) =
−Γ (x,V ,U )−1 whenever U and V are symmetric.

Now, as an immediate consequence of Theorems 40 and 41, we can also state the
following generalization of [53, Theorem 4.3].

Corollary 8 If F and G are odd, pointwise commuting relations on one group X
to another Y such thatDF andDG are elementwise commuting, then F ∗G is also
odd.

12 Additivity and Homogeneity Properties
of the Intersection Convolution

Now, as an extension of [53, Theorem 4.1], we can also prove the following

Theorem 42 If F is an arbitrary andG is a superadditive relation on a monoid X
to a semigroup Y such that DG is a subgroup of X, then for any x, y ∈ X we have

(F ∗G)(x)+G(y) ⊂ (F ∗G)(x + y).

Proof If (u, v) ∈ Γ (x+y,DF ,DG), then u ∈ DF and v ∈ DG such thatx+y = u+v.
Hence, if in particular G(y) �= ∅, i.e., y ∈ DG, we can infer that x = u+ v− y and
v− y ∈ DG. Therefore, (u, v− y) ∈ Γ (x,DF ,DG). Hence, it is clear that

(F ∗G)(x) =
⋂

{F (s)+G(t) : (s, t) ∈ Γ (x,DF ,DG)} ⊂ F (u)+G(v− y).

Therefore, (F ∗G)(x)+G(y) ⊂ F (u)+G(v− y)+G(y) ⊂ F (u)+G(v). Hence,
it is clear that

(F ∗G)(x)+G(y)

⊂
⋂

{F (u)+G(v) : (u, v) ∈ Γ (x + y,DF ,DG)} = (F ∗G)(x + y).

Simple applications of the above theorem give the following

Corollary 9 If F is an arbitrary and G is a superadditive relation on one monoid
X to another Y such that DG is a subgroup of X and G is quasi-odd, then for any
x ∈ X and y ∈ DG we have

(F ∗G)(x + y) = (F ∗G)(x)+G(y).

Proof Now, because of 0 ∈ G(− y)+G(y) and Theorem 42, we also have

(F ∗G)(x + y) ⊂ (F ∗G)(x + y)+G(− y)+G(y) ⊂ (F ∗G)(x)+G(y).
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Remark 62 Note that if F and G are as above, then in particular we have
(F ∗G)(x) = (F ∗G)(x)+G(0) for all x ∈ X, and (F ∗G)(y) = (F ∗G)(0)+G(y)
and (F ∗G)(0) = (F ∗G)(− y)+G(y) for all y ∈ DG.

Moreover, if in particular 0 ∈ (F ∗G)(0), then from the second equality, we can
infer that G ⊂ F ∗ G. However, in general, F ∗ G need not be an extension of G.
Namely, because of the third equality, we usually have (F ∗G)(0) �= {0}.
Remark 63 The above theorem and its corollary show that, analogously to continuity
properties of pairs of relations studied in [71], additivity and homogeneity properties
of pairs of relations should have also been investigated in Sects. 4–6.

Analogously to [53, Theorem 4.4], we can also easily prove the following two
theorems.

Theorem 43 If F and G are n-superhomogeneous relations on an n-cancellable
semigroup X to an arbitrary semigroup Y , for some n ∈ N, such that

(1) F and G are pointwise-elementwise commuting,
(2) DF and DG are n-divisible and elementwise commuting, then F ∗ G is also

n-superhomogeneous.

Theorem 44 If F and G are n-semi-subhomogeneous relations on an arbitrary
semigroup X to an n-cancellable semigroup Y , for some n ∈ N, such that

(1) F and G are pointwise–elementwise commuting,
(2) DF andDG are n-superhomogeneous and elementwise commuting, then F ∗G

is n-subhomogeneous.

Proof If x ∈ X and (u, v) ∈ Γ (x,DF ,DG), then u ∈ DF and v ∈ DG such
that x = u + v. Hence, by using (2) and Theorem 5, we can infer that nu ∈ DF ,
nv ∈ DG, and nx = nu+ nv. Therefore, (nu, nv) ∈ Γ (nx,DF ,DG). Now, by using
the n-semi-subhomogeneity of F and G, and condition (1) and Theorem 5, we can
see that

(F ∗G)(nx) =
⋂

{F (ω)+G(w) : (ω, w) ∈ Γ (nx,DF ,DG)}
⊂ F (nu)+G(nv) ⊂ nF (u)+ nG(v) = n(F (u)+G(v)).

Hence, we can already infer that

(F ∗G)(nx) ⊂
⋂

{n(F (u)+G(v)) : (u, v) ∈ Γ (x,DF ,DG)}
= n

⋂
{F (u)+G(v) : (u, v) ∈ Γ (x,DF ,DG)} = n(F ∗G)(x).

Namely, by then-cancellability ofY , the mapping y �→ ny, where y ∈ Y , is injective.
Now, as an immediate consequence of Theorems 43 and 44, we can state
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Corollary 10 If F and G are pointwise–elementwise commuting, n-
semihomogeneous relations on one n-cancellable semigroup X to another Y , for
some n ∈ N, such thatDF andDG are n-divisible and elementwise commuting, then
F ∗G is n-homogeneous.

Moreover, from Theorems 43 and 44 by using Corollary 8 and Theorem 19, we
can also immediately get the following two theorems.

Theorem 45 If F and G are odd, N-superhomogeneous relations on an N-
cancellable group X to an arbitrary group Y such that
(1) F and G are pointwise–elementwise commuting,
(2) DF and DG are N-divisible and elementwise commuting,

then F ∗G is Z0-superhomogeneous.

Theorem 46 If F and G are odd, N-semi-subhomogeneous relations on an
arbitrary group X to an N-cancellable group Y such that

(1) F and G are pointwise–elementwise commuting,
(2) DF and DG are N-superhomogeneous and elementwise commuting,

then F ∗G is Z0-subhomogeneous.
Hence, it is clear that in particular we also have

Corollary 11 If F and G are pointwise–elementwise commuting, odd N-
semihomogeneous relations on one N-cancellable groupX to anotherY such thatDF
andDG are N-divisible and elementwise commuting, thenF ∗G is Z0-homogeneous.

Remark 64 To guarantee the 0-superhomogeneity of F ∗ G, note by Theorem 39
we have 0 ∈ (F ∗G)(0) if and only if 0 ∈ F (x)+G(− x) for all x ∈ DF ∩ (−DG).
Thus, in particular the relation F is quasi-odd if and only if DF is symmetric and
0 ∈ (F ∗ F )(0).

13 Selection and Inclusion Properties of the Intersection
Convolution

In the sequel, we shall also need some consequences of the corresponding results of
[9]. A few direct proofs are included here for the reader’s convenience.

Theorem 47 If F is a relation on a monoid X to a groupoid Y , and Φ is a semi-
subadditive partial selection relation of F such that DΦ is a subgroup of X, then
Φ ⊂ F ∗Φ.

Proof If x ∈ X and u ∈ DF and v ∈ DΦ such that x = u + v, then since v has
an additive inverse −v in DΦ , we also have u = x − v. Moreover, if in particular
Φ(x) �= ∅, i.e., x ∈ DΦ , we can see that u ∈ DΦ . Hence, it is clear that

Φ(x) = Φ(u+ v) ⊂ Φ(u)+Φ(v) ⊂ F (u)+Φ(v).
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Therefore,

Φ(x) ⊂
⋂

{F (u)+Φ(v) : (u, v) ∈ Γ (x,DF ,DΦ)} = (F ∗Φ)(x).

Remark 65 By [10, Example 6.1], a semiadditive partial selection relation Φ of
a relation F of one group X to another Y can only be, in general, extended to an
additive, total selection relation of the relation F +Φ(0).

Therefore, it is also necessary to prove the following

Theorem 48 If F is a relation on a groupoid X with zero to an arbitrary groupoid
Y and Φ is a right-zero-subadditive partial selection relation of F , then Φ is also a
partial selection relation of F +Φ(0).

Proof Φ(x) ⊂ Φ(x)+Φ(0) ⊂ F (x)+Φ(0) = (F +Φ(0))(x) for all x ∈ X.
Now, by Theorem 11, we can also state

Corollary 12 If F is a relation on one groupoidX with zero to another Y andΦ is
a partial selection relation ofF such that 0 ∈ Φ(0), thenΦ is also a partial selection
relation of F +Φ(0).

However, it is now more important to note that in addition to Theorem 47, we can
also prove the following

Theorem 49 If F is a relation on a groupoid X with zero to a semigroup Y , and
moreover Φ is a left-zero-superadditive relation on X to Y and Ψ is a DF × DΦ-
subadditive partial selection relation of F + Φ(0) such that Ψ (v) ⊂ Φ(v) for all
v ∈ DΦ , then Ψ ⊂ F ∗Φ.

Proof If x ∈ X and u ∈ DF and v ∈ DΦ such that x = u+v, then by the hypotheses

Ψ (x) = Ψ (u+ v) ⊂ Ψ (u)+ Ψ (v)

⊂ (F +Φ(0))(u)+Φ(v) = F (u)+Φ(0)+Φ(v) ⊂ F (u)+Φ(v).

Therefore,

Ψ (x) ⊂
⋂

{F (u)+Φ(v) : (u, v) ∈ Γ (x,DF ,DΦ)} = (F ∗Φ)(x).

From this theorem, we can immediately derive the following

Corollary 13 IfF is a total andΦ is a left-zero-superadditive relation on a groupoid
X with zero to a semigroup Y such that Φ(0) �= ∅ and there exists an X×DΦ-
subadditive total selection relation Ψ of F + Φ(0) such that Ψ (v) ⊂ Φ(v) for all
v ∈ DΦ , then F ∗Φ is also a total relation on X to Y .

Remark 66 This corollary gives an important necessary condition in order that a
left-zero-additive partial selection relationΦ of an arbitrary relation F of a groupoid
X with zero to a semigroup Y could be extended to an X×DΦ-subadditive total
selection relation Ψ of F +Φ(0).

In addition to Theorem 48, we can also prove the following
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Theorem 50 If F and G are relations on one groupoid X with zero to another Y ,
then
(1) F ⊂ F +G(0) if 0 ∈ G(0),
(2) F +G(0) ⊂ F if F is right-zero-superadditive and G(0) ⊂ F (0).

Proof If the conditions of (2) hold, then we have (F +G(0))(x) = F (x)+G(0) ⊂
F (x)+ F (0) ⊂ F (x) for all x ∈ X. Therefore, the conclusion of (2) also holds.

Now, as an immediate consequence of this theorem, we can also state

Corollary 14 If F is a right-zero-superadditive and G is an arbitrary relation on
one groupoid X with zero to another Y such that 0 ∈ G(0) ⊂ F (0), then F =
F +G(0).

Moreover, in addition to Theorem 47, we can also prove the following

Theorem 51 If F is a total and G is an arbitrary relation on a groupoid X with
zero to an arbitrary groupoid Y such that G(0) �= ∅, then F ∗G ⊂ F +G(0).

Proof If x ∈ X, then because of the assumptions DF = X and 0 ∈ DG we have
(x, 0) ∈ Γ (x,DF ,DG). Therefore,

(F ∗G)(x) =
⋂

{F (u)+G(v) : (u, v) ∈ Γ (x,DF ,DG)}
⊂ F (x)+G(0) = (F +G(0))(x).

Now, combining Theorems 47 and 51, we can also state

Corollary 15 If F is a relation of a monoid X to a groupoid Y , and Φ is a semi-
subadditive partial selection relation of F such that DΦ is a subgroup of X, then
Φ ⊂ F ∗Φ ⊂ F +Φ(0).

Moreover, in addition to Theorem 51, we can also prove

Theorem 52 IfF is a superadditive relation on a groupX to a semigroupY andΦ is
an inversion-semi-subadditive partial selection relation ofF , then F+Φ(0) ⊂ F∗Φ.

Proof If x ∈ X, then by Remark 18 we have

(F +Φ(0))(x) = F (x)+Φ(0)

⊂ F (x)+Φ(− v)+Φ(v) ⊂ F (x)+ F (− v)+Φ(v) ⊂ F (x − v)+Φ(v)

for all v ∈ DΦ . Therefore, by Theorem 39, we also have

(F +Φ(0))(x) ⊂
⋂

{F (x − v)+Φ(v) : v ∈ (−DF + x) ∩DΦ} = (F ∗Φ)(x).

Now, as a consequence of Theorems 51 and 52, we can also state

Corollary 16 If F is a superadditive relation of a groupX to a semigroup Y andΦ
is an inversion-semi-subadditive partial selection relation of F such that Φ(0) �= ∅,
then F ∗Φ = F +Φ(0).

Finally, we note that the following theorem is also true.
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Theorem 53 If F and G are relations on a groupoid X with zero to a semigroup
Y , then
(1) F ∗G ⊂ (F +G(0)) ∗G if G is left-zero-subadditive,
(2) (F +G(0)) ∗G ⊂ F ∗G if G is left-zero-superadditive and G(0) �= ∅.

Hence, it is clear that in particular we also have

Corollary 17 If F and G are relations on a groupoid X with zero to a semigroup
Y such that G is left-zero-additive and G(0) �= ∅, then F ∗G = (F +G(0)) ∗G.

14 One-step Extensions of Additive Partial Selection Relations

In this section, by using the intersection convolution, we shall prove some partial
generalizations of Theorems 36–38.

Theorem 54 Let F be a relation of one monoid X to another Y . Suppose that Φ is
an additive relation of a subgroup V of X to Y such that Φ ⊂ F . Moreover, assume
that a ∈ X \ V and b ∈ Y such that

(1) X = U ⊕ V holds with U = N0a,
(2) nb ∈ (F ∗Φ)(na) for all n ∈ N,
(3) a + v = v+ a and b +Φ(v) = Φ(v)+ b for all v ∈ V ,
(4) na = ma implies nb +Φ(0) = mb +Φ(0) for all n,m ∈ N0.

Then, there exists a unique additive selection relation Ψ of F + Φ(0) extending Φ
such that Ψ (a) = b + Φ(0). Moreover, we have Ψ (na + v) = nb + Φ(v) for all
n ∈ N0 and v ∈ V .

Proof Now, by Theorem 36, there exists a unique additive relation Ψ of X to Y
extendingΦ such thatΨ (a) = b+Φ(0). Moreover, we haveΨ (na+v) = nb+Φ(v)
for all n ∈ N0 and v ∈ V .

Thus, we need only to show that Ψ ⊂ F +Φ(0) also holds. For this, note that by
(2) and Theorems 42 and 51, we have

Ψ (na + v) = nb +Φ(v) ⊂ (F ∗Φ)(na)+Φ(v)

⊂ (F ∗Φ)(na + v) ⊂ (F +Φ(0))(na + v)

for all n ∈ N and v ∈ V . Moreover, by Theorems 47 and 51, we also have

Ψ (0a + v) = 0b +Φ(v) = Φ(v) ⊂ (F ∗Φ)(v)

⊂ (F +Φ(0))(v) ⊂ (F +Φ(0))(0a + v).

Therefore, we have Ψ (na + v) ⊂ (F +Φ(0))(na + v) for all n ∈ N0 and v ∈ V .

Remark 67 Note that now Φ is superadditive as a relation on X to Y . Thus, by
Theorem 12, Φ is N-superhomogeneous.

Therefore, if in particular X is N-cancellable, X and V are N-divisible, V is
commutative, F is N-superhomogeneous, and F and Φ are pointwise–elementwise
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commuting, then by Theorem 43, F ∗ Φ is also N-superhomogeneous. Thus, we
have nb ∈ n(F ∗Φ)(a) ⊂ (F ∗Φ)(na) for all n ∈ N and b ∈ (F ∗Φ)(a).

Now, by using Theorem 37 instead of Theorem 36, we can quite similarly prove

Theorem 55 Let F be an odd relation of one group X to another Y . Suppose that
Φ is an odd, superadditive relation of a commutative subgroup V ofX to Y such that
Φ ⊂ F , and moreover F and Φ are pointwise commuting. Furthermore, assume
that a ∈ X \ V and b ∈ Y such that

(1) X = U ⊕ V holds with U = Za,
(2) nb ∈ (F ∗Φ)(na) for all n ∈ N,
(3) na = 0 implies nb ∈ Φ(0) for all n ∈ N,
(4) a + v = v+ a and b +Φ(v) = Φ(v)+ b for all v ∈ V .

Then, there exists a unique odd, additive selection relation Ψ of F +Φ(0) extending
Φ such that Ψ (a) = b + Φ(0). Moreover, we have Ψ (ka + v) = kb + Φ(v) for all
k ∈ Z and v ∈ V .

Proof Now, by Theorem 37, there exists a unique odd, additive relationΨ ofX to Y
extendingΦ such thatΨ (a) = b+Φ(0). Moreover, we haveΨ (ka+v) = kb+Φ(v)
for all k ∈ Z and v ∈ V .

On the other hand, from (1), the commutativity of V , and the first part of (4), it
is clear that now X and V are elementwise commuting. Hence, by Corollary 8, we
can see that F ∗G is also odd. Thus, by (2), we also have

(− n)b = −nb ∈ −(F ∗Φ)(na) = (F ∗Φ)(− na) = (F ∗Φ)((− n)a)

for all n ∈ N. Moreover, since 0 ∈ −F (v)+Φ(v) = F (0− v)+Φ(v) for all v ∈ V ,
by Corollary 7 we can also see that

0b = 0 ∈
⋂

v∈V
(F (0− v)+Φ(v)) = (F ∗Φ)(0) = (F ∗Φ)(0a).

Therefore, now we actually have kb ∈ (F ∗Φ)(ka) for all k ∈ Z.
Now, quite similarly as in the proof of Theorem 54, we can see that

Ψ (ka + v) ⊂ (F +Φ(0))(ka + v)

for all k ∈ Z and v ∈ V .

Remark 68 Note that if (2) holds, then by Theorem 51 we have

nb ∈ (F ∗Φ)(na) ⊂ (F +Φ(0))(na) = F (na)+Φ(0)

for all n ∈ N. Thus, if in particular n ∈ N such that na = 0, and moreover
F (0) = Φ(0), then we also have nb ∈ F (0) + Φ(0) = Φ(0) + Φ(0) ⊂ Φ(0).
Therefore, in this particular case, (2) implies (3).

Now, by using Theorem 38 instead of Theorem 37, we can also easily prove
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Theorem 56 Let F be an n-subhomogeneous relation of an arbitrary group X
to an n-cancellable group Y for some n ∈ N. Suppose that Φ is an odd, N-
subhomogeneous, superadditive relation of a subgroupV ofX toY such thatΦ ⊂ F .
Moreover, assume that a ∈ X \ V and b ∈ Y such that

(1) nb ∈ Φ(na),
(2) X = U + V holds with U = Za,
(3) a + v = v+ a and b + w = w+ b for all v ∈ V and w ∈ Φ(v).

Then, there exists a unique Z0-homogeneous, additive selection relation Ψ of F
extendingΦ such that Ψ (a) = b+Φ(0). Moreover, we haveΨ (ka+v) = kb+Φ(v)
for all k ∈ Z and v ∈ V .

Proof Now, by Theorem 38 and Remark 55, there exists a unique Z0-homogeneous
additive relation Ψ of X to Y extending Φ such that Ψ (a) = b + Φ(0). Moreover,
we have Ψ (ka + v) = kb +Φ(v) for all k ∈ Z and v ∈ V .

Now, since kb also commutes with the elements of Φ(v) for all k ∈ Z and v ∈ V ,
and Φ is also Z0-homogeneous and additive, we can already see that

nΨ (ka + v) = n(kb +Φ(v)) = n(kb)+ nΦ(v) = k(nb)+Φ(nv)

⊂ kΦ(na)+Φ(nv) = Φ(k(na))+Φ(nv) = Φ(k(na)+ nv)

⊂ F(k(na)+ nv) = F(n(ka)+ nv) = F(n(ka + v)) ⊂ nF (ka + v)

for all k ∈ Z0 and v ∈ V . Hence, by using the n-cancellability of Y , we can infer
that

Ψ (ka + v) ⊂ F (ka + v)

for all k ∈ Z0 and v ∈ V . Moreover, we can also note that

Ψ (0a + v) = Ψ (v) = Φ(v) ⊂ F (v) = F (0a + v)

for all v ∈ V . Therefore, we have Ψ (ka + v) ⊂ F (ka + v) for all k ∈ Z and v ∈ V .

Remark 69 Note that if in particular X �= U ⊕ V , then by Theorem 28, we have
U ∩ V �= {0}. Thus, there exists n ∈ N such that na ∈ V . Therefore, there exists
y ∈ Y such that y ∈ Φ(na).

Now, if in addition, Y is n-divisible, then we can state that there exists b ∈ Y such
that y = nb. Hence, we can see that nb = y ∈ Φ(na). Therefore, in this particular
case, condition (1) automatically holds.

However, note that if in particular V is N-divisible and X is N-cancellable, then
by Corollary 5, X = U + V implies that X = U ⊕ V . Therefore, in this particular
case, the above remark and Theorem 56 cannot be applied.
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15 Admissible Partial Selection Relations and Functions

Because of the two possibilities occurring in Theorems 55 and 56, it seems necessary
to introduce the following

Definition 16 Let F be a relation of one group X to another Y , and suppose that
Φ is an odd, N-semi-subhomogeneous, superadditive partial selection relation of F .

Moreover, denote by F , the family of all odd, Z0-semihomogeneous, quasiaddi-
tive partial selection relations Ψ of F +Φ(0) that extend Φ.

Then, the above partial selection relationΦ ofF will be called admissible if every
maximal member Ψ of F has the following two properties:

(1) for each a ∈ X \DΨ , with Na ∩DΨ �= ∅, there exist b ∈ Y and n ∈ N such
that nb ∈ Ψ (na),

(2) for each a ∈ X \ DΨ , with Na ∩ DΨ = ∅, there exists b ∈ Y such that
nb ∈ (F ∗ Ψ )(na) for all n ∈ N.

Remark 70 Note that if Ψ is only a nonvoid odd, superadditive relation on X to Y ,
then by Theorem 20, DΨ is a subgroup of X, 0 ∈ Ψ (0), and Ψ is quasiadditive and
Z-superhomogeneous.

Remark 71 Therefore, if Ψ is an odd, N-semi-subhomogeneous, superadditive
partial selection relation of F +Φ(0) extending Φ, then we already have Ψ ∈ F .

Also by Theorem 20, we have 0 ∈ Φ(0). Therefore, by Corollary 12, Φ is also a
partial selection relation of F +Φ(0). Thus, in particular we have Φ ∈ F .

Remark 72 Note that if Ψ is a relation on X to Y , then for every a ∈ X, with
Na ∩DΨ �= ∅, there exists n ∈ N such that na ∈ DΨ . Therefore, Ψ (na) �= ∅, and
thus there exists y ∈ Y such that y ∈ Ψ (na).

Moreover, if in particular, Y is N-divisible, then there exists b ∈ Y such that
y = nb, and thus nb ∈ Ψ (na). Therefore, in this particular case, condition (1)
automatically holds. However, the N-divisibility of Y is a too strong restriction.

Remark 73 While, if in particular Ψ ∈ F , then by using Theorem 47 and Corollary
17, we can see that

Ψ ⊂ (F +Φ(0)) ∗ Ψ = (F + Ψ (0)) ∗ Ψ = F ∗ Ψ.
Hence, by using the Z-superhomogeneity of Ψ , we can already infer that

ky ∈ kΨ (x) ⊂ Ψ (kx) ⊂ (F ∗ Ψ )(kx)

for all k ∈ Z, x ∈ DΨ and y ∈ Ψ (x).

Remark 74 Therefore, if Ψ ∈ F such that condition (2) holds, then for each x ∈ X
there exists y ∈ Y such that ny ∈ (F ∗ Ψ )(nx) for all n ∈ N.

Moreover, if F is odd and X and Y are commutative, then by Corollary 8, F ∗Ψ
is also odd. Therefore, we also have ky ∈ (F ∗ Ψ )(kx) for all k ∈ Z0.

In addition to Remark 71, we can also easily prove the following
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Theorem 57 If G is a nonvoid chain in the family F considered in Definition 16,
then

⋃
G ∈ F .

Proof Define Ψ = ⋃G. Then, since G ⊂ F + Φ(0) for all G ∈ G, it is clear that
Ψ ⊂ F +Φ(0). Thus, Ψ is also a partial selection relation of F +Φ(0).

Moreover, we can also note that

Ψ (x) = (
⋃

G∈G
G
)
(x) =

⋃

G∈G
G(x)

for all x ∈ X. Thus, in particular we also have DΨ =⋃G∈G DG.
Furthermore, since each member of G is an extension of Φ and G �= ∅, we can

also see that
Ψ (v) =

⋃

G∈G
G(v) =

⋃

G∈G
Φ(v) = Φ(v)

for all v ∈ DΦ . Therefore, Ψ is also an extension of Φ.
On the other hand, since relations preserve unions, we can also see that

Ψ (− x) =
⋃

G∈G
G(− x) =

⋃

G∈G
−G(x) = −

⋃

G∈G
G(x) = −Ψ (x)

for all x ∈ X. Therefore, Ψ is also odd.
Moreover, if x, y ∈ X and z ∈ Ψ (x) and w ∈ Ψ (y), then by the definition of Ψ ,

there exist G1,G2 ∈ G such that z ∈ G1(x) and w ∈ G2(y). Moreover, since G is a
chain, we have either G1 ⊂ G2 or G2 ⊂ G1. Hence, it is clear that either

z + w ∈ G1(x)+G2(y) ⊂ G2(x)+G2(y) ⊂ G2(x + y) ⊂ Ψ (x + y)

or

z + w ∈ G1(x)+G2(y) ⊂ G1(x)+G1(y) ⊂ G1(x + y) ⊂ Ψ (x + y)

holds. Therefore, we haveΨ (x)+Ψ (y) ⊂ Ψ (x+y), and thus,Ψ is also superadditive.
Furthermore, if x ∈ DΨ , n ∈ N and y ∈ Ψ (nx), then by the definition Ψ there

exist G1,G2 ∈ G such that x ∈ DG1 and y ∈ G2(nx). Moreover, since G is a chain,
we have either G1 ⊂ G2 or G2 ⊂ G1. If G1 ⊂ G2 holds, then x ∈ DG1 implies
x ∈ DG2 . Therefore, we have

y ∈ G2(nx) ⊂ nG2(x) ⊂ nΨ (x).

While, if G2 ⊂ G1 holds, then by using that x ∈ DG1 we can see that

y ∈ G2(nx) ⊂ G1(nx) ⊂ nG1(x) ⊂ nΨ (x).

Therefore, we have Ψ (nx) ⊂ nΨ (x). Thus, Ψ is also N-semi-subhomogeneous.
Hence, by Remark 71, we can infer that Ψ ∈ F .
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Remark 75 Note that if in particular the members of F were supposed to be N-
homogeneous, then we could more easily prove that the relation Ψ defined in the
above proof is also N-homogeneous.

However, in contrast to the N-semi-subhomogeneity, the assumption of the N-
subhomogeneity of the partial selection function Φ is a very strong restriction.
Namely, in this case, we have nx ∈ X \DΦ for all n ∈ N and x ∈ X \DΦ .

Remark 76 On the other hand, it is also worth noticing that if Ψ ∈ F , then by
Remark 32 and Theorem 27 we have Ψ (x) = ψ(x)+ Ψ (0) = ψ(x)+Φ(0) for any
x ∈ X and selection function ψ of Ψ .

Remark 77 Note that if in particular Φ is a function, then because of 0 ∈ Φ(0), we
have Φ(0) = {0}.

Therefore, by Remark 76 and the equality F + Φ(0) = F , every member Ψ of
F is a partial selection function F .

Remark 78 Now, we can also note that if ϕ is only a nonvoid, superadditive function
on X to Y , with a symmetric domain, then by Theorem 21 Df is a subgroup of X,
ϕ(0) = 0, and ϕ is odd, quasiadditive and Z-semihomogeneous.

Therefore, by Definition 16, we can speak of the admissibility of ϕ as well.
Moreover, we also have F + ϕ(0) = F .

From the latter remarks, it is clear that in particular we also have the following

Theorem 58 Let F be a relation of one group X to another Y , and suppose that ϕ
is a nonvoid, superadditive partial selection function of F with a symmetric domain.

Moreover, denote by F the family of all odd, Z-semihomogeneous, quasiadditive
partial selection functions ψ of F that extend ϕ.

Then, the above ϕ is admissible, in the sense of Definition 16, if and only if every
maximal member ψ of F has the following two properties:

(1) for each a ∈ X \Dψ , with Na ∩Dψ �= ∅, there exist b ∈ Y and n ∈ N such
that nb = ψ(na);

(2) for each a ∈ X \ Dψ , with Na ∩ Dψ = ∅, there exists b ∈ Y such that
nb ∈ (F ∗ ψ)(na) for all n ∈ N.

Remark 79 Note that, because of Corollary 4, we do not need the widely used fact
that chained unions of functions are also functions.

16 The Main Extension Theorems of Additive Partial
Selection Relations

Now, by using Theorems 55 and 56, we can easily prove the following

Theorem 59 Suppose that F is an odd, N-subhomogeneous relation of a commu-
tative group X to an N-cancellable, commutative group Y .

Then, every admissible, nonvoid odd, N-semi-subhomogeneous, superadditive
partial selection relation Φ of F can be extended to a total, Z0-homogeneous,
additive selection relation Ψ of F +Φ(0).
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Proof Let F be as in Definition 16. Then, by Remark 71, we have Φ ∈ F and thus
F �= ∅. Moreover, by Theorem 57, we have

⋃
G ∈ F for any nonvoid chain G in F .

Therefore, by a particular case of Zorn lemma [29, p. 33], there exists a maximal
elementΨ of F . Thus, in particularΨ is an odd, Z0-semihomogeneous, quasiadditive
partial selection relation of F +Φ(0) extending Φ such thatDΨ is a subgroup of X
and 0 ∈ Ψ (0).

Therefore, to complete the proof, we need only to show that DΨ = X. For
this, assume on the contrary that there exists a ∈ X such that a /∈ DΨ , and define
Z = U +DΨ with U = Za.

Then, since U and DΨ are subgroups of X and X is commutative, it is clear that
Z is a subgroup ofX. Moreover, we can also note that a ∈ Z andDΨ ⊂ Z. Thus, in
particular DΨ �= Z since a /∈ DΨ .

Furthermore, by using the oddness and N-semi-subhomogeneity of F andΦ, and
the commutativity of Y , we can also easily see that

(F +Φ(0))(− x) = F (− x)+Φ(0) = F (− x)+Φ(− 0)

⊂ −F (x)−Φ(0) = −(F (x)+Φ(0)) = −(F +Φ(0))(x)

and

(F +Φ(0))(nx) = F (nx)+Φ(0) = F (nx)+Φ(n0)

⊂ nF (x)+ nΦ(0) = n(F (x)+Φ(0)) = n(F +Φ(0))(x)

for all n ∈ N and x ∈ X. Therefore, F +Φ(0) is also odd and N-subhomogeneous.
Now, if Na ∩DΨ �= ∅, then by (1) in Definition 16, we can state that there exist

b ∈ Y and n ∈ N such that nb ∈ Ψ (na). Hence, by using Theorem 56 and the
commutativity of X and Y , we can see that there exists a Z0-homogeneous, additive
relation Ω of Z to Y extending Ψ such that Ω ⊂ F +Φ(0).

While, if Na ∩ DΨ = ∅, then by using the symmetry of DΨ , we can note that
U ∩ DΨ = {0}. Therefore, by Theorem 28, now we actually have Z = U ⊕ DΨ .
Moreover, by (2) in Definition 16, we can state that there exists b ∈ Y such that
nb ∈ (F ∗ Ψ )(na) for all n ∈ N. Hence, by using Remark 73, we can infer that

nb ∈ ((F +Φ(0)) ∗ Ψ ) (na)

also holds for all n ∈ N. Moreover, now we can also note that na �= 0 for all n ∈ N.
Thus, by Theorem 55 and the commutativity of X and Y , we can state that there
exists an odd, additive relationΩ of Z to Y extending Ψ such that

Ω ⊂ F +Φ(0)+ Ψ (0) = F +Φ(0)+Φ(0) = F +Φ(0).

Moreover, by Theorem 55, we also have Ω(ka + v) = kb + Ψ (v) for all k ∈ Z and
v ∈ DΨ . Hence, by using the Z0-semihomogeneity of Ψ and the commutativity of
X and Y , we can easily see that

Ω(l(ka + v)) = Ω(lka + lv) = lkb + Ψ (lv)



198 T. Glavosits and Á. Száz

= lkb + lΨ (v) = l(ka + Ψ (v)) = lΩ(ka + v)

for all v ∈ DΨ and k, l ∈ Z with l �= 0. Therefore, Ω is also Z0-homogeneous as a
relation of Z to Y .

Thus, in both cases,Ω is a Z0-homogeneous, additive relation ofZ to Y extending
Ψ such that Ω ⊂ F + Φ(0). Hence, since Z is a subgroup of X, we can easily see
that Ω is an odd, Z0-semihomogeneous and quasiadditive as a relation on X to Y .
Thus, since Ω is an extension of Φ too, we can see that Ω ∈ F . Hence, by the
maximality of Ψ in F , we can infer that Ω = Ψ , and thus Z = DΩ = DΨ . This
contradiction proves that DΨ = X.

Now, from the above theorem, by using Remarks 77 and 78, we can easily get

Corollary 18 If F is as in Theorem 59, then every admissible, nonvoid, superad-
ditive partial selection function ϕ of F , with a symmetric domain, can be extended
to a total, Z-homogeneous, additive selection function ψ of F .

Moreover, by using Theorem 59, we can also easily prove the following
counterpart of [56, Theorem 9.1].

Theorem 60 Suppose thatF is an odd, N-subhomogeneous, superadditive relation
of a commutative group X to an N-cancellable, commutative group Y .

Then, every nonvoid odd, N-semi-subhomogeneous, superadditive partial selec-
tion relation Φ of F can be extended to a total, Z0-homogeneous, additive selection
relation Ψ of F .

Proof Now, by Theorem 20 and the assumptionΦ ⊂ F , we have 0 ∈ Φ(0) ⊂ F (0).
Therefore, by Corollary 14, we have F = F +Φ(0). Thus, by Theorem 59, we need
only to show that Φ is admissible in the sense of Definition 16.

For this, assume that if Θ is an odd, Z0-semihomogeneous, quasiadditive partial
selection relation of F +Φ(0) that extendsΦ. Then, since F = F +Φ(0),Θ is also
such a partial selection relation of F . Moreover, since 0 ∈ Φ(0) = Θ(0), we also
have Θ(0) �= ∅. Thus, by Corollary 16,

F ∗Θ = F +Θ(0) = F +Φ(0) = F.
Moreover, by Theorem 12, we can see that F is, in particular, N-superhomogeneous.
Therefore,

ny ∈ nF (x) ⊂ F (nx) = (F ∗Θ)(nx)

for all n ∈ N, x ∈ X and y ∈ F (x). Thus, the conditions (1) and (2) of Definition
16, with Θ in place of Ψ , are substantially satisfied. Therefore, Φ is admissible.

From the above theorem, by taking Φ = {0} ×Φ(0), we can easily derive

Corollary 19 Suppose thatF is as in Theorem 60, andZ is an N-divisible subgroup
of Y such that Z ⊂ F (0).

Then, there exists a Z0-homogeneous, additive selection relationΨ of F such that
Ψ (0) = Z.

From this corollary, by taking Z = {0}, we can immediately get
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Corollary 20 IfF is as in Theorem 60, then there exists a Z-homogeneous, additive
selection function ψ of F .

17 Some Further Theorems on the Extensions of Additive
Partial Selection Relations

Now, by using Corollaries 18 and 20, we can also prove the following

Theorem 61 Suppose that F is an odd, N-subhomogeneous relation of a commu-
tative group X to an N-cancellable, commutative group Y .

Moreover, assume that each nonvoid odd, Z-semihomogeneous, quasiadditive
partial selection function ϕ of F is admissible.

Then, each nonvoid odd, N-semi-subhomogeneous, superadditive partial selec-
tion relation Φ of F can be extended to a total, Z0-homogeneous, additive selection
relation Ψ of F +Φ(0).

Proof If Φ is as above, then by Theorem 20 and Corollary 3, we can see that DΦ
is a subgroup of X, 0 ∈ Φ(0), and Φ is a Z0-homogeneous, additive relation of DΦ
to Y . Thus, in particular, by Corollary 20, there exists a Z-homogeneous, additive
selection function ϕ of Φ.

Note that now ϕ is a nonvoid odd, Z-semihomogeneous, quasiadditive partial
selection function of F . Namely, the semioddness of ϕ implies the oddness of ϕ by
Remark 25. And the semiadditivity of ϕ implies the quasiadditivity of ϕ by Remark
13 and Theorem 20.

Therefore, by the assumption of the theorem, ϕ is admissible. Thus, in particular,
by Corollary 18, ϕ can be extended to a total, Z-homogeneous, additive selection
function ψ of F .

Define Ψ = ψ +Φ(0). Then, since

Ψ (x) = (ψ +Φ(0))(x) = ψ(x)+Φ(0)

for all x ∈ X, and Φ(0) �= ∅, it is clear that Ψ is a relation of X to Y .
Moreover, by using the corresponding homogeneity and additivity properties of

ψ and Φ, and the commutativity of Y , we can also easily see that

Ψ (kx) = ψ(kx)+Φ(0) = ψ(kx)+Φ(k0)

= kψ(x)+ kΦ(0) = k(ψ(x)+Φ(0)) = kΨ (x)

and

Ψ (x + y) = ψ(x + y)+Φ(0) = ψ(x + y)+Φ(0+ 0)

= ψ(x)+ ψ(y)+Φ(0)+Φ(0)

= ψ(x)+Φ(0)+ ψ(y)+Φ(0) = Ψ (x)+ Ψ (y)
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for all k ∈ Z0 and x, y ∈ X. Therefore, Ψ is also Z0-homogeneous and additive.
On the other hand, since ψ is a selection function of F , it is clear that

Ψ (x) = ψ(x)+Φ(0) ⊂ F (x)+Φ(0) = (F +Φ(0))(x)

for all x ∈ X, and thus Ψ is a selection relation of F +Φ(0).
Moreover, by using the corresponding properties of ϕ, and Remark 32 and

Theorem 27, we can also easily see that

Ψ (x) = ψ(x)+Φ(0) = ϕ(x)+Φ(0) = Φ(x)

for all x ∈ DΦ . Therefore, Ψ is an extension of Φ.
Moreover, as a certain converse to Theorem 61, we can also prove

Theorem 62 Suppose that F is a relation of one group X to another Y such that
every nonvoid odd, Z0-semihomogeneous, quasiadditive partial selection relationΘ
of F can be extended to a total, N-superhomogeneous, subadditive selection relation
Ω of F +Θ(0).

Then, every nonvoid odd, N-semi-subhomogeneous, superadditive partial selec-
tion relation Φ of F , with F +Φ(0) = F , is admissible.

Proof Suppose that Φ is as above, and Ψ is an odd, Z0-semihomogeneous,
quasiadditive partial selection relation F +Φ(0) extending Φ.

Then, because of F +Ψ (0) = F +Φ(0) = F and the assumption of the theorem,
Ψ can be extended to a total, N-superhomogeneous, subadditive selection relation
Ω of F .

Now, by taking x ∈ X and y ∈ Ω(x), we can see that

ny ∈ nΩ(x) ⊂ Ω(nx) = Ψ (nx)

for all n ∈ N with nx ∈ DΨ .
Moreover, by using Theorem 47 and Corollary 7, we can also see that Ω ⊂

F ∗Ω ⊂ F ∗ Ψ . Hence, by taking x ∈ X and y ∈ Ω(x), we can see that

ny ∈ nΩ(x) ⊂ Ω(nx) ⊂ (F ∗ Ψ )(nx)

for all n ∈ N. Thus, the conditions (1) and (2) of Definition 16 are substantially
satisfied. Therefore, Φ is admissible.

Remark 80 Note that if in particular Φ is a function, then because of Φ(0) = {0},
we have F +Φ(0) = F .

While, if in particular F is right-zero-superadditive, then because of 0 ∈ Φ(0) ⊂
F (0) and Corollary 14, we also have F +Φ(0) = F .

Now, as an immediate consequence of Theorems 61 and 62, we can also state

Corollary 21 If F is as in Theorem 61, then the following are equivalent:

(1) each nonvoid odd, Z-semihomogeneous, quasiadditive partial selection function
ϕ of F is admissible;

(2) each nonvoid odd, N-semi-subhomogeneous, superadditive partial selection re-
lation Φ of F can be extended to a total, Z0-homogeneous, additive selection
relation Ψ of F +Φ(0).
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18 A Strong Totality Property of the Intersection Convolution

Definition 17 A family B of sets is said to have the binary intersection property if
U ∩ V �= ∅ for all U ,V ∈ B.

Remark 81 This terminology differs from that of Nachbin [35] and his close fol-
lowers. But, it is in accordance with the usual definition of the finite intersection
property [29, p. 135]. Now, by extending an argument of Gajda et al. [18], we can
prove the following counterpart of an improvement [53, Theorem 5.4] of the second
author.

Theorem 63 Suppose that F and G are relations on a group X to a vector space
Y over K such that:

(1) F (x) ∩G(x) �= ∅ for all x ∈ DF ∩DG;
(2) F and G are odd, semi-subadditive, and N-semi-subhomogeneous;
(3) DF and DG are closed under addition and elementwise commuting with X.

Then, for any x ∈ X, the family

{
n−1(F (nx − v)+G(v)) : n ∈ N, v ∈ (−DF + nx) ∩DG

}

has the binary intersection property.

Proof Suppose that n,m ∈ N, and

v ∈ (−DF + nx) ∩DG and t ∈ (−DF +mx) ∩DG.
Then, v ∈ −DF + nx and t ∈ −DF + mx, and v, t ∈ DG. Hence, since DG is
symmetric and closed under addition, it is clear that

nt −mv ∈ nDG −mDG ⊂ DG −DG = DG +DG ⊂ DG.
Moreover, sinceDF is symmetric, closed under addition, and elementwise commutes
with X, by using Theorem 6 and the corresponding definitions, we can also see that

nt −mv ∈ n(−DF +mx)−m(−DF + nx)
= −nDF + nmx +mDF −mnx = −nDF +mDF + nmx − nmx
= −nDF +mDF ⊂ −DF +DF = DF +DF ⊂ DF .

Therefore, nt −mv ∈ DF ∩DG. Hence, by using (1), we can infer that

F (nt −mv) ∩G(nt −mv) �= ∅, and thus 0 ∈ F (nt −mv)−G(nt −mv).

On the other hand, we can also note that

nx − v ∈ nx − (−DF + nx) = nx − nx +DF = DF
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and
mx − t ∈ mx − (−DF +mx) = mx −mx +DF = DF .

Now, since DG is symmetric, closed under addition, and elementwise commutes
with X, by using Theorem 6, condition (2) and Theorem 19, we can see that

F (nt −mv) = F (−mv+ nt) = F (mnx − nmx −mv+ nt)
= F (mnx −mv− nmx + nt) = F(m(nx − v)− n(mx − t))
⊂ F(m(nx − v))+ F(−n(mx − t)) ⊂ mF (nx − v)− nF (mx − t)

and
G(nt −mv) ⊂ G(nt)+G(−mv) ⊂ nG(t)−mG(v).

Hence, by the commutativity of Y , it is clear that

F (nt −mv)−G(nt −mv) ⊂ mF (nx − v)− nF (mx − t)− nG(t)+mG(v)

= mF (nx − v)+mG(v)− nF (mx − t)− nG(t)

= m(F (nx − v)+G(v))− n(F (mx − t)−G(t))

Now, by using that 0 ∈ F (nt −mv)−G(nt −mv), we can also see that

0 = (nm)−10 ∈ (nm)−1(F (nt −mv)−G(nt −mv))

⊂ (nm)−1 (m(F (nx − v)+G(v))− n(F (mx − t)− nG(t)))

= n−1(F (nx − v)+G(v))−m−1(F (mx − t)+G(t)).

Therefore,

n−1(F (nx − v)+G(v)) ∩m−1(F (mx − t)+G(t)) �= ∅,

and thus the required assertion is also true.
The following plausible terminology was first introduced in [53].

Definition 18 A family B of subsets of a set Y is called a Nachbin system in Y if for
every subfamily C of B, having the binary intersection property, we have

⋂
C �= ∅.

Remark 82 Quite similarly, a family of subsets of a set may be called a Riesz
system if every subfamily of it having the finite intersection property has a nonvoid
intersection.

Moreover, a family of subsets of a uniform space may be called a Cantor system if
every subfamily of it containing small sets and having the finite intersection property
has a nonvoid intersection.

Namely, according to Kelley [29, pp. 136, 193], this terminology allows us to
briefly state that a topological (uniform) space is compact (complete) if and only if
the family of its closed subsets forms a Riesz (Cantor) system.

Example 2 It can be easily seen that the family B of all closed balls in R is a Nachbin
system. (This generalization of Cantor’s nested interval property was already used
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by E. Helly in 1912.) Unfortunately, the same assertion is no longer true in R
2. (The

appropriate generalization to convex subsets of R
n was found in 1913 by E. Helly

who could not publish it until 1923.)
However, as a straightforward, but less important generalization of Example 2,

one can easily establish the following example. (The results of E. Helly and some
more delicate examples for Nachbin systems can be found in the expository paper
[14] of Fuchssteiner and Horváth.)

Example 3 If S is a nonvoid set, then the family B of all closed balls in the
supremum-normed space B(X, R) of all bounded functions of S to R is also Nachbin
system.

Remark 83 In this respect, it is also worth noticing that the family B of all closed
balls in a normed space Y over K is invariant under translation by x ∈ X and
multiplication by λ ∈ K0.

Now, as a useful consequence of Theorems 63 and 39, we can also state

Corollary 22 If F andG are as in Theorem 63, and there exists a Nachbin system
B in Y such that
(4) n−1(F (nx− v)+G(v)) ∈ B for all n ∈ N, x ∈ X and v ∈ (−DF +nx)∩DG,

then we have
∞⋂

n=1

n−1(F ∗G)(nx) �= ∅ for all x ∈ X.

Proof Now, by Theorems 39 and 63, it is clear that

∞⋂

n=1

n−1(F ∗G)(nx)

=
∞⋂

n=1

n−1
⋂

{F (nx − v)+G(v) : v ∈ (−DF + nx) ∩DG}

=
∞⋂

n=1

⋂{
n−1(F (nx − v)+G(v)) : v ∈ (−DF + nx) ∩DG

}

=
⋂{

n−1(F (nx − v)+G(v)) : n ∈ N, v ∈ (−DF + nx) ∩DG
} �= ∅.

Remark 84 By using the notation F! =⋂∞
n=1 Fn of [70], with Fn(x) = n−1F (nx),

the assertion the above theorem can be briefly expressed by saying that (F ∗G)! is
a total relation on X to Y .

19 A General Hahn–Banach Type Extension Theorem

Because of Remark 83, we may naturally introduce the following

Definition 19 A family B of subsets of a vector space Y over K will be called
admissible if
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(1) n−1B ∈ B for all n ∈ N and B ∈ B;
(2) y + B ∈ B for all y ∈ Y and B ∈ B.

Remark 85 By using our former conventions, the above properties can be briefly
expressed by writing that:

(1) n−1B ⊂ B for all n ∈ N, or equivalently B ⊂ nB for all n ∈ N;
(2) y + B ⊂ B for all y ∈ Y , or equivalently y + B = B for all y ∈ Y .

Therefore, (1) and (2) are certain N-divisibility and translation–invariance properties
of the family B in the space P(Y ) of all subsets of Y .

By using the above terminology, we can now briefly formulate the next useful
consequence of Corollary 22.

Theorem 64 Suppose that F is a relation and g is a function on a group X to a
vector space Y over K, and B is an admissible Nachbin system in Y such that:

(1) F (x) ∈ B for all x ∈ DF ,
(2) g(x) ∈ F (x) for all x ∈ DF ∩Dg ,
(3) DF and Dg are subgroups of X and elementwise commuting with X,
(4) F is odd, semi-subadditive and N-semi-subhomogeneous, and g is semi-

subadditive.

Then, we have
∞⋂

n=1

n−1(F ∗ g)(nx) �= ∅ for all x ∈ X.

Proof If n ∈ N and v ∈ (− DF + nx) ∩ Dg , then v ∈ −DF + nx and v ∈ Dg .
Hence, we can see that nx − v ∈ DF . Thus, F (nx − v) ∈ B and g(v) ∈ Y .

Hence, since B is admissible, we can already see that

n−1(F (nx − v)+ g(v)) = n−1F (nx − v)+ n−1g(v) ∈ B.

Thus, Corollary 22 can be applied to get the required assertion.
Namely, now we have not only g(x + y) ⊂ g(x) + g(y), but also g(x + y) =

g(x) + g(y) for all x, y ∈ Dg , since Dg is closed under addition. Thus, by Remark
13, g is superadditive. Moreover, by Theorem 21, g is odd and Z-semihomogeneous,
since Dg is now also symmetric.

From the above theorem, it is clear that in particular we also have

Corollary 23 Suppose that F is an odd, N-subhomogeneous, subadditive relation
of a commutative groupX to a vector space Y over K, and there exists an admissible
Nachbin system B in Y such that F (x) ∈ B for all x ∈ X.

Then, we have
∞⋂

n=1

n−1(F ∗ ϕ)(nx) �= ∅

for any x ∈ X and semi-subadditive partial selection function ϕ of F such that Dϕ
is a subgroup of X.
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Now, as an important consequence ofTheorems 61, we can also easily establish the
following straightforward generalization [18, Theorem 1] of Z. Gajda, A. Smajdor,
and W. Smajdor.

Theorem 65 Suppose that F is an odd, N-subhomogeneous, subadditive relation
of a commutative groupX to a vector space Y over K, and there exists an admissible
Nachbin system B in Y such that F (x) ∈ B for all x ∈ X.

Then, each nonvoid odd, N-semi-subhomogeneous, superadditive partial selec-
tion relation Φ of F can be extended to a total, Z0-homogeneous, additive selection
relation Ψ of F +Φ(0).

Proof By Theorem 61, it is enough to show only that each nonvoid odd, Z-
semihomogeneous, quasiadditive partial selection function ϕ of F is admissible
in the sense of Definition 16.

For this, by Theorem 58, we may assume that ψ is an odd, Z-semihomogeneous,
quasiadditive partial selection function of F that extends ϕ. Then, by Theorem 20,
Dψ is a subgroup of X.

Hence, by Corollary 23, we can see that
⋂∞
n=1 n

−1(F ∗ψ)(nx) �= ∅ for all x ∈ X.
Thus, for each x ∈ X, there exists y ∈ Y such that y ∈ n−1(F ∗ ψ)(nx), and thus
ny ∈ (F ∗ ψ)(nx) for all n ∈ N. Therefore, the condition (2) of Theorem 58 is
satisfied.

Moreover, we can also note that if x ∈ X such that nx ∈ Dψ for some n ∈ N,
then there exists z ∈ Y such that z = ψ(nx). Hence, by taking y = n−1z, we can see
that y = n−1z = n−1ψ(nx), and thus ny = ψ(nx). Therefore, the condition (1) of
Theorem 58 is also satisfied.

Now, from this theorem, by using Remarks 77 and 78, we can derive

Corollary 24 If F is as in Theorem 65, then every nonvoid, superadditive selection
function φ ofF with a symmetric domain can be extended to a total, Z-homogeneous,
additive selection function ψ of F .

Moreover, by using Theorem 65, we can also easily prove the following

Corollary 25 Suppose that F is as in Theorem 65. Moreover, assume that Z is a
subspace of Y such that Z ⊂ F (0).

Then, there exists a Z0-homogeneous, additive selection relationΨ of F +Z such
that Ψ (0) = Z.

Hence, it is clear that in particular we also have

Corollary 26 If F is as in Theorem 65 and 0 ∈ F (0), then there exists a Z-
homogeneous, additive selection function ψ of F .

Concluding Remarks We note that certain converses of our former results on con-
structions and extensions of additive relations are also true. Moreover, by using the
arguments applied in Kuczma [31, Chap. 8], some of our extension theorems can
certainly be subtantially improved.

The existence of additive selections and Hahn–Banach type extension theorems
for set-valued functions have formerly been investigated not only by the authors
mentioned in the introduction, but also by Godini [22], Nikodem [36], A. Smajdor
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[48], Sablik [47]; and Abreu and Etcheberry [1], Meng [33], Peng et al. [40], and
Zǎlinescu [75], respectively.

To prove Hyers–Ulam type stability theorems, in contrast to the direct methods,
the techniques of invariant means and fixed point theorems, Hahn–Banach type
extension and separation theorems seem to have been used only by Gajda et al. [18],
Páles [39], Badora [3], and Huang and Li [24]. Therefore, it would be of some interest
to prove some alternate forms of the Hyers–Ulam type stability theorems with the
help of Theorem 65.
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50. Smajdor, W., Szczawińska, J.: A theorem of the Hahn–Banach type. Demonstr. Math. 28,
155–160 (1995)

51. Strömberg, T.: The operation of infimal convolution. Diss. Math. 352, 1–58 (1996)
52. Száz, Á.: Structures derivable from relators. Singularité 3, 14–30 (1992)
53. Száz, Á.: The intersection convolution of relations and the Hahn–Banach type theorems. Ann.

Pol. Math. 69, 235–249 (1998)
54. Száz, Á.: Translation relations, the building blocks of compatible relators. Math. Montisnigri

12, 135–156 (2000)
55. Száz, Á.: Relationships between translation and additive relations. Acta Acad. Paedagog.

Agriensis Sect. Math. (N.S.) 30, 179–190 (2003)
56. Száz, Á.: Linear extensions of relations between vector spaces. Comment. Math. Univ. Carol.

44, 367–385 (2003)
57. Száz, Á.: An extension of an additive selection theorem of Z. Gajda and R. Ger. Tech. Rep.,

Inst. Math., Univ. Debr. 2006/8, 24 pp. (This is the first and best paper on stabity of the second
author. Its publication was rejected after several year considerations by the editors of the “Math.
Inequal. Appl.” and “Rev. Colomb. Mat.” Moreover, it has not been cited by K. Nikodem, D.
Popa and several other mathematicians who had received copies of it.)

58. Száz, Á.: Minimal structures, generalized topologies, and ascending systems should not be
studied without generalized uniformities. Filomat 21, 87–97 (2007)

59. Száz, Á.: An instructive treatment of a generalization of Hyers’s stability theorem. In: Rassias,
Th.M., Andrica, D. (eds.) Inequalities and Applications, pp. 245–271. Cluj University Press,
Romania (2008)

60. Száz, Á.: Relationships between the intersection convolution and other important operations
on relations. Math. Pannon. 20, 99–107 (2009)

61. Száz, Á.: Applications of relations and relators in the extensions of stability theorems for
homogeneous and additive functions. Aust. J. Math. Anal. Appl. 6, 1–66 (2009)

62. Száz, Á.: A reduction theorem for a generalized infimal convolution. Tech. Rep. Inst. Math.
Univ. Debr. 2009/11, 4 pp

63. Száz, Á.: The intersection convolution of relations on one groupoid to another. Creat. Math.
Inf. 19, 209–217 (2010)

64. Száz, Á.: The infimal convolution can be used to derive extension theorems from the sandwich
ones. Acta Sci. Math. (Szeged) 76, 489–499 (2010)

65. Száz, Á.: Inclusions on box and totalization relations. Tech. Rep. Inst. Math. Univ. Debr.
2010/11, 24 pp

66. Száz, Á.: Relation theoretic operations on box and totalization relations. Tech. Rep. Inst. Math.
Univ. Debr. 2010/13, 22 pp

67. Száz, Á.: Set theoretic operations on box and totalization relations. Int. J. Math. Sci. Appl. 1,
19–41 (2011)

68. Száz, Á.: Sets and posets with inversions. Publ. Inst. Math. (Beograd) (N.S.) 90, 111–123
(2011)

69. Száz, Á.: An instructive treatment and some natural extensions of a set-valued function of Zsolt
Páles. Tech. Rep. Inst. Math., Univ. Debr. 2011/4, 26 pp

70. Száz, Á.: The Hyers–Ulam and Hahn–Banach theorems and some elementary operations on re-
lations motivated their set-valued generalizations In: Pardalos, P.M., Georgiev, P.G., Srivastava
H.M. (eds.) Stability, Approximations, and Inequalities. In Honor of Themistocles M. Rassias
on the Occasion of His 60th Birthday. Springer Optimization and Its Applications, vol. 68,
pp. 631–705 (2012)

71. Száz, Á.: Lower semicontinuity properties of relations in relator spaces. Adv. Stud. Contemp.
Math. (Kyungshang) 23, 107–158 (2013)

72. Száz, Á., Száz, G.: Additive relations. Publ. Math. Debr. 20, 259–272 (1973)
73. Székelyhidi, L.: Remark 17. Aequ. Math. 29, 95–96 (1985)
74. Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis. Krieger, Malabar (1986)
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Extremal Problems in Polynomials and Entire
Functions
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Abstract The subject of extremal problems for polynomials and related classes of
functions plays an important and crucial role in obtaining inverse theorems in approx-
imation theory. Frequently, the further progress in inverse theorems has depended
upon first obtaining the corresponding analogue or generalization of Markov’s and
Bernstein’s inequalities, and these inequalities have been the starting point of a
considerable literature in Mathematics.

In this chapter, we begin with the earliest results in the subject (Markov’s and
Bernstein’s inequalities), and present some of their generalizations and refinements.
In the process, some of the problems that are still open have also been mentioned.
Since there are many results in this subject, we have concentrated here mainly on
results concerning Bernstein’s inequality.

The chapter contains four sections, with Sect. 1 dealing with introduction to
Bernstein’s and Markov’s inequalities along with some of their generalizations. In
Sect. 2, we discuss some constrained Bernstein type inequalities, that is Bernstein
type inequalities for some classes of polynomials, while in Sect. 3 the extension
to entire functions of exponential type for some of the results of Sect. 2 has been
discussed. Finally, Sect. 4 contains some of the open problems, discussed in the text
of this chapter, that could be of interest to some of the readers.
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1 Introduction

Boas [15] in his paper describes the chemical problem that Mendeleev, the inventor
of the periodic table of the elements, was interested in and how he arrived at the
question about the upper bound for the first derivative of an algebraic polynomial.
In mathematical term, Mendeleev was interested in knowing how large |f ′(x)| can
be on the interval [− 1, 1], where f (x) = ax2 + bx + c is a quadratic polynomial
such that |f (x)| ≤ 1 for−1 ≤ x ≤ 1. Even though he was a chemist, he was able to
prove that |f ′(x)| ≤ 4 and even managed to show that the estimate is best possible
in a sense that there is a quadratic polynomial f (x) = 1− 2x2 for which |f (x)| ≤ 1
on [− 1, 1] but |f ′(± 1)| = 4. Mendeleev shared his result with his contemporary
mathematician A. A. Markov who investigated the more general case of polynomial
of degree n, which later came to be known as Markov’s Theorem [62]. Markov’s
result was published in Russian language. The English translation of the paper is
prepared by Carl de Boor and Olga Holtz [70]. It is stated below.

Theorem 1 Let f (x) = ∑n
ν=0 aνx

ν be an algebraic polynomial of degree n such
that |f (x)| ≤ 1 for −1 ≤ x ≤ 1. Then

|f ′(x)| ≤ n2 (− 1 ≤ x ≤ 1). (1)

The inequality is sharp. Equality holds only if f (x) = γ Tn(x), where γ is a
complex number such that |γ | = 1 and

Tn(x) = cos
(
n cos−1 x

) = 2n−1Πnν=1

{

x − cos

((

ν − 1

2

)

π/n

)}

(2)

is the nth degree Tchebycheff polynomial of the first kind. It can be easily verified
that |Tn(x)| ≤ 1 for −1 ≤ x ≤ 1 and |T ′n(1)| = n2.

Once a sharp inequality for the derivative of a polynomial is known, it is quite
natural to ask: What will be the corresponding inequality for the kth order derivative
where k ≤ n, the degree of the polynomial? Since the derivative of an nth degree
polynomial is a polynomial of degree n− 1, Morkov’s theorem can be successively
applied to f , f ′ · · · to obtain the following estimate for the polynomials considered
in Theorem 1.

|f (k)(x)| ≤ n2(n− 1)2 . . . (n− k + 1)2.

This approach however, does not produce the sharp estimate for |f (k)(x)| on the
interval [ − 1, 1]. V. Markov (half brother of A. Markov) in his paper entitled On
functions deviating least from zero in a given interval proved the extension of The-
orem 1 for the higher order derivatives. His original paper was in Russian language
but later on it was translated into German, with a short foreword by Bernstein [63].

Theorem 2 Let f (x) = ∑n
ν=0 aνx

ν be an algebraic polynomial of degree n such
that |f (x)| ≤ 1 for −1 ≤ x ≤ 1. Then

|f (k)(x)| ≤ (n2 − 12)(n2 − 22) · · · (n2 − (k − 1)2)

1.3 · · · (2k − 1)
(− 1 ≤ x ≤ 1). (3)
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The inequality is sharp. Equality holds only if f (x) = γ Tn(x) with
|γ | = 1. It can be easily verified that |T (k)

n (1)| = (n2 − 12)(n2 −
22) · · · (n2 − (k − 1)2

)
/1.3 · · · (2k − 1).

Let f (x) = xn +∑n−1
ν=0 aνx

ν be a monic polynomial of degree n. Tchebycheff
proved that

‖f ‖ = ‖xn + an−1x
n−1 + · · · a0‖ ≥ 1

2n−1
(4)

where ‖f ‖ = max−1≤x≤1|f (x)| represents the uniform norm of f on the interval
[− 1, 1].

It is worth mentioning that a special case of Theorem 2 is contained in the above
result on monic polynomials which Tchebycheff proved some 38 years [18] before
the proof of Theorem 2 was published. Since ‖f (n)‖ = n!, inequality (4) may be
written as

‖f (n)‖ ≤ 2n−1n!‖f ‖
which is nothing but the special case (k = n) of Theorem 2.

It was S. Bernstein who recognized the significance of the works ofA. Markov and
V. Markov when he started his studies in the theory of approximation of functions by
polynomials in order to answer the following question posed by de la Vallee Poussin.
Is it possible to approximate every polygonal line by polynomials of degree n with
an error of o(1/n)?

In that connection, he proved and made considerable use of the following
inequality in answering the question raised by de la Vallee Poussin in the negative.

Theorem 3 Let f (x) = ∑n
ν=0 aνx

ν be an algebraic polynomial of degree n such
that |f (x)| ≤ 1 for −1 ≤ x ≤ 1. Then

|f ′(x)| ≤ n(1− x2)−1/2 (− 1 < x < 1). (5)

The equality is attained at the points x = xν = cos (2ν − 1)π/2n, 1 ≤ ν ≤ n if
and only if f (x) = γ Tn(x) where γ is a complex number such that |γ | = 1.

Note that the above theorem provides a point-wise estimate of the derivative on the
interval (− 1, 1). A. Markov’s inequality given in Theorem 1 gives a global estimate
that is valid on the interval [− 1, 1]. However, as is easy to see in the neighborhood
of origin Theorem 3 gives a sharper bound than the one obtainable from Theorem 1.

Let f be as given in Theorem 3 and t(θ ) = f ( cos θ ) = ∑n
ν=0 aν cosν θ be a

trigonometric cosine polynomial. Applying Theorem 3 on t(θ ), we get

|t ′(θ )| ≤ n (−∞ < θ <∞). (6)

If f is as given in Theorem 1, then t(θ ) = f ( sin θ ) = ∑n
ν=0 aν sinν θ is a

trigonometric sine polynomial. Bernstein proved that (6) holds true for sine polyno-
mials also. However, he did not prove the inequality (6) for the general trigonometric
polynomials.



212 N. K. Govil and Q. M. Tariq

Recall that a trigonometric polynomial t(θ ) of degree n is an expression of the
form

t(θ ) =
n∑

ν=0

aν cos νθ + bν sin νθ , (7)

where aν , bν (0 ≤ ν ≤ n) are complex numbers. Using Euler’s formula, the
trigonometric polynomial (7) can be written as

t(θ ) =
n∑

ν=−n
aνe

iνθ (8)

also, where aν −n ≤ ν ≤ n are complex numbers.
It was M. Reisz [82] who proved the extension of Theorem 3 for the general

trigonometric polynomials. He proved that

Theorem 4 If t(θ ) =∑n
ν=−n aνeiνθ is a trigonometric polynomial of degree n, then

max
0≤θ≤2π

|t ′(θ )| ≤ n max
0≤θ≤2π

|t(θ )|. (9)

Equality attains for polynomials t(θ ) = sin n(θ − θ0) where θ0 ∈ R .
In this chapter, Pn will denote the class of polynomials

∑n
ν=0 aνz

ν of degree at
most n, where aν (0 ≤ ν ≤ n) are complex numbers, and z a complex variable.

Analogue of Markov’s Theorem for polynomials of complex variable with norm
on the unit disk has also found applications in many areas of mathematics. It may be
formulated as follows:
Let f belong to Pn. How large |f ′(z)| can be when z is on the unit disk {z : |z| = 1}?

The answer of this question is contained in the Theorem 4 which was proved by
M. Riesz for the first time.

Theorem 5 If f ∈ Pn, then

max|z|=1
|f ′(z)| ≤ nmax|z|=1

|f (z)| (f ∈ Pn) . (10)

Equality holds only for polynomials of the form λzn, λ �= 0 is a complex number.
Alternate proof of Theorem 5 was given by O’Hara [67], and for some refinements

of Theorem 5 we refer to Frappier et al. [26], and the paper of Sharma and Singh [84].
A function of the form L(z) = ∑n

ν=−n aνzν , where aν ∈ C for −n ≤ ν ≤ n,
is called a Laurent polynomial. Riesz even proved the following result for Laurent
polynomials also which contains Theorem 5 as a special case.

Theorem 6 If L(z) =∑n
ν=−n aνzν is a Laurent polynomial, then

max|z|=1
|L′(z)| ≤ nmax|z|=1

|L(z)|. (11)

Equality holds if and only if L(z) = αzn + βz−n.
Any complex number z on the unit circle {z : |z| = 1} can be written as z = eiθ ,

where θ ∈ R. In view of this, Theorem 6 provides yet another representation of
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Theorem 4. For some recent results dealing with inequalities for Laurent polynomials,
see Govil et al. [52].

Even though Theorem 5 was proved by M. Reisz, but the resulting inequality goes
under the name of Bernstein [82]. Bernstein [10], however proved the following more
general result than that given in Theorem 5.

Theorem 7 Let F (z) = ∑n
ν=0Aνz

ν whose zeros lie in |z| ≤ 1 belong to Pn. Let
f (z) =∑n

ν=0 aνz
ν be a polynomial in Pn such that |f (z)| ≤ |F (z)| for |z| = 1. Then

|f ′(z)| ≤ |F ′(z)| (|z| ≥ 1). (12)

Equality holds in (12), if f (z) = γF (x), where γ is a complex number such that
|γ | = 1.

To see that it is a generalization of Theorem 5, take F (z) = zn which has a zero of
multiplicity n at origin. The condition |f (z)| ≤ |F (z)| for |z| = 1 in the Theorem 7
means |f (z)| ≤ 1 for |z| = 1. Then |f ′(z)| ≤ n|zn−1| for |z| ≥ 1. If we take |z| = 1,
we have the conclusion of Theorem 5.

Recently, the following generalization of Theorem 7 has been proved by Govil et
al. [53].

Theorem 8 Let F (z) be a polynomial whose zeros lie in |z| ≤ 1. Let f (z) be
a polynomial such that degree of f (z) does not exceed that of F (z) and |f (z)| ≤
|F (z)| for |z| = 1. Then for any complex number β with |β| ≤ 1 and R > r ≥ 1,

|f (Rz)− βf (rz)| ≤ |F (Rz)− βF (rz)| (|z| ≥ 1). (13)

Equality holds for the polynomial f (z) = γF (x), where γ is a complex number
such that |γ | = 1.

To obtain Theorem 7 from the Theorem 8, simply take β = 1, r = 1, divide the
two sides of (13) by (R − 1) and make R→ 1.

Szegö [86] proved inequality (10) under a weaker condition. Precisely, he [86]
proved that

Theorem 9 If f ∈ Pn, then

max|z|=1
|f ′(z)| ≤ nmax|z|=1

|Ref (z)|. (14)

Equality holds for f (z) = λzn with λ ∈ C.
Alternate proof of the above Theorem 9 was provided by Mohapatra, O’Hara and

Rodriguez [65], and their proof is by using Lagrange’s Interpolation Formula.
Malik [60] has given a proof of the above theorem based on a result of de Bruijn

[20]. In the same paper, he [60] also proved the following improvement of Bernstein’s
inequality (also see Rahman [74]):

Theorem 10 If f ∈ Pn and g(z) = znf (1/z̄) be the conjugate polynomial
associated with f , then on |z| = 1

|f ′(z)| + |g′(z)| ≤ nmax|z|=1
|f (z)|. (15)
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Further generalizations can be found in [25] and [26]. Frappier et al. [26, Theorem
8] also provided the following generalization:

Theorem 11 If f ∈ Pn and z1, z2, . . . , z2n are any 2n equally spaced points on
|z| = 1, then

max
|z|=1

|f ′(z)| ≤ n max
1≤k≤2n

|f (zk)|.

Let f ∈ Pn and p > 0 be any real number. It is well known [71] that

lim
p→∞

(
1

2π

∫ 2π

0
|f (eiθ

) |pdθ
) 1
p

= max
|z|=1

|f (z)|,

and thus
(

1
2π

∫ 2π
0 |f (eiθ

) |pdθ
) 1
p

can be seen as a generalization of max|z|=1|f (z)|.
In view of this observation, the following inequality by Zygmund [89] can be seen
as a generalization of the Bernstein’s inequality (10).

Theorem 12 If f ∈ Pn, then

(∫ 2π

0
|f ′(eiθ )|pdθ

) 1
p

≤ n
(∫ 2π

0
|f (eiθ )|pdθ

) 1
p

(p ≥ 1). (16)

The above inequality is best possible with equality holds true for f (z) = λzn.
Obviously, it would be of interest to know what happens when 0 < p < 1 in

the above theorem. In his proof of Theorem 12, Zygmund used the convexity of the
function φ : x → xp which is valid only if p ≥ 1. Attempts to resolve this were
made by Klein [58], Ivanov [56], and Storoženko et al. [85]. Surprisingly, it took
almost 50 years to solve the problem completely, and almost 40 years to make some
definite progress when Osval’d [69] proved

Theorem 13 If f ∈ Pn, then

(∫ 2π

0
|f ′ (eiθ ) |pdθ

) 1
p

≤ nCp
(∫ 2π

0
|f (eiθ) |pdθ

) 1
p

(0 < p < 1). (17)

where Cp is a constant that depends only on p.
In 1979, Paul Nevai [66] proved that in the above inequality Cp ≤ (8/p)1/p. It is

in fact less than or equal to (11)1/p, see Maté and Nevai [61].
The problem was completely resolved by Arestov [2] who used subharmonic

functions and Jensen’s formula to derive the following sharp bound.

Theorem 14 If f ∈ Pn, then

(∫ 2π

0
|f ′(eiθ )|pdθ

) 1
p

≤ n
(∫ 2π

0
|f (eiθ )|pdθ

) 1
p

(0 < p <∞). (18)

The above inequality is best possible. Equality holds true for f (z) = λzn.
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Golitschek and Lorentz [34] gave a simpler proof of this inequality and also
obtained its generalization. The sharp inequality analogous to (18) when f has no
zeros in |z| < 1 was obtained by Rahman and Schmeisser [76].

For historical details on these theorems and related literatures on the development
of approximation theory, we refer readers to [47, 64, 70, 78]. For some generaliza-
tions of Bernstein’s inequality for rational functions, we refer readers to [46], where
polynomial inequalities and their generalizations to rational functions have been
studied.

The chapter is expository in nature. Having discussed some of the generalizations
of Bernstein’s and Markov’s inequalities in this Sect. 1, we will discuss constrained
Bernstein type inequalities, that is, inequalities for different classes of polynomials
in Sect. 2. Then Sect. 3 deals with the extension of some of the results of Sect. 2 for
entire functions of exponential type, and finally, Sect. 4 contains some of the open
problems, discussed in the text of this chapter, that could be of interest to some of
the readers.

2 Constrained Bernstein Type Inequalities for Polynomials

As mentioned in Sect. 1, in this section we will discuss Bernstein type inequalities
for some classes of polynomials, along with some Bernstein type inequalities in the
Lp norm.

2.1 Polynomials Having No Zeros Inside a Circle

Since the equality holds in the Bernstein inequality given in Eq. (10) if and only if
f (z) = λzn which has all its zeros at the origin, one would expect that there is a
relationship between the bound n and the distance of the zeros of the polynomial
from the origin. This fact was observed by Erdös [24] who conjectured that if the
polynomial f (z) has no zero in |z| < 1, then max|z|=1|f ′(z)| ≤ (n/2)max|z|=1|f (z)|.
This conjecture was proved in the special case when f (z) has all its zeros on |z| = 1
independently by Polya and Szegö [59]. In the general case the conjecture was proved
for the first time by Lax [59].

Theorem 15 If f ∈ Pn such that f (z) �= 0 in |z| < 1, then

max|z|=1
|f ′(z)| ≤ n

2
max
|z|=1

|f (z)|. (19)

Equality in (19) holds for any polynomial which has all its zeros on |z| = 1.
Simpler proofs of this result were given by de Bruijn [20] andAziz and Mohammad

[6]. In this section we will be discussing some of them.
It was proposed by Professor R. P. Boas to obtain inequalities analogous to (19)

for polynomials having no zeros in |z| < K . In this connection following partial
result is due to Malik [60].
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Theorem 16 If f ∈ Pn such that f (z) �= 0 in |z| < K where K ≥ 1, then

max|z|=1
|f ′(z)| ≤

(
n

1+K
)

max|z|=1
|f (z)|. (20)

Equality holds for f (z) = (z +K)n.
For quite some time it was believed that if f (z) �= 0 in |z| < K where K ≤ 1,

then the inequality analogous to (19) should be

max|z|=1
|f ′(z)| ≤ n

1+Knmax|z|=1
|f (z)|, (21)

till E. B. Saff gave the example f (z) = (z − 1
2 )(z + 1

3 ) to counter this belief. For
this polynomial, max|z|=1|f ′(z)| ≈ 2 · 1666 while the right hand side of (21) is
(2/(1+ (1/3)2))max|z|=1|f (z)| ≈ 2 · 144 < 2 · 166 and so (21) does not hold for
this polynomial. Govil [37], however proved that if f in Pn has no zero in |z| < K ,
K ≤ 1, then

max|z|=1
|f ′(z)| ≤ n

Kn +Kn−1
max|z|=1

|f (z)|. (22)

It is clear that the above bound is of interest only if Kn +Kn−1 > 1. For another
result in this direction, see Govil [38].

Govil and Rahman [48] found an extension of Theorem 16 for higher order
derivatives. They proved that

Theorem 17 If f ∈ Pn such that f (z) �= 0 in |z| < K where K ≥ 1, then

max|z|=1
|f (s)(z)| ≤ n(n− 1) . . . (n− s + 1)

1+Ks max|z|=1
|f (z)|. (23)

For s = 1, (23) reduces to (20).
A polynomial of the form f (z) = a0 +∑n

ν=1 aνz
mν , where 0 < m1 < . . . < mn

are given integers, is called Lacunary polynomial. Chan and Malik [17] proved the
following extension of Theorem 16 for a special class of Lacunary polynomials.

Theorem 18 If f (z) = a0 +∑n
ν=μ aνzν is a polynomial in Pn such that f (z) �= 0

in |z| < K where K ≥ 1, then

max
|z|=1

|f ′(z)| ≤ n

1+Kμmax
|z|=1

|f (z)|. (24)

f (z) = (zμ+Kμ)n/μ shows that the inequality is sharp where n is a multiple ofμ.
Let f (z) = ∑n

ν=0 aνz
ν be a polynomial in Pn. It can be shown that if f (z) �= 0

in |z| < K , K ≥ 1 then the equality in (20) can hold if and only if |a1/a0| = n/K
and hence it should be possible to improve upon (20) if |a1/a0| ≤ cn/K where
0 ≤ c ≤ 1. This fact was observed by Govil et al. [51] who obtained a bound in
terms of the coefficients a0, a1, and a2. They proved
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Theorem 19 If f (z) = ∑n
ν=0 aνz

ν is a polynomial in Pn such that f (z) �= 0 in
|z| < K where K ≥ 1, then

max|z|=1
|f ′(z)| ≤ n|a0| +K2|a1|

(1+K2)n|a0| + 2K2|a1| max|z|=1
|f (z)|; (25)

furthermore

max|z|=1
|f ′(z)| ≤

(
n

1+K
)

(1− |λ|)(1+K2|λ|)+K(n− 1)|μ− λ2|
(1− |λ|)(1−K +K2 +K|λ|)+K(n− 1)|μ− λ2| max|z|=1

|f (z)|, (26)

where

λ = Ka1

na0
, μ = 2K2

n(n− 1)

a2

a0
.

Both the above inequalities are best possible. For even n, the equality in (25)
holds for

f (z) = a0

Kn

(
zeiγ +Keiα)n/2 (zeiγ +Ke−iα)n/2 ,

where γ and α are arbitrary real numbers. Whether n is even or odd, equality holds
in (26) for

f (z) = a0

Kn
(z +K)n1

(

z2 + 2Kz
na − n1

n− n1
+K2

)(n−n1)/2

,

and in fact for f (zeiγ ) for all real γ , if n1 is an integer such that n/3 ≤ n1 ≤
n, (n− n1) is even, and (3n1 − n)/(n+ n1) ≤ a ≤ 1.

It is worth noting that the bound in inequality (20) due to Malik [60] depends only
on the zero with the smallest modulus. To illustrate it, take f1(z) = (z + K)n and
f2(z) = (z+K)(z+K+$)n−1, K ≥ 1, $ > 0. One can see that (20) gives the same
bound for these polynomials. So, it is of interest to look for a bound that depends
upon the location of all the zeros rather than just on the location of the the zero of
smallest modulus. In this direction, Govil and Labelle [44] proved the following

Theorem 20 Let f (z) = anΠnν=1(z − zν), an �= 0, be a polynomial of degree n. If
|zν | ≥ Kν ≥ 1, 1 ≤ ν ≤ n, then

max|z|=1
|f ′(z)| ≤ n

{(
n∑

ν=1

1

Kν − 1

)

/

(
n∑

ν=1

Kν + 1

Kν − 1

)}

max|z|=1
|f (z)|. (27)

Equality holds for f (z) = (z +K)n, K ≥ 1.

Remark 1 It can be easily verified, that the right hand side of the inequality (27) is
in fact equal to

n

2

{

1− 1

1+ 2
n

∑n
ν=1

1
Kν−1

}

max|z|=1
|f (z)|. (28)
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If Kν ≥ K , K ≥ 1 for 1 ≤ ν ≤ n, then clearly

n∑

ν=1

1

Kν − 1
/

n∑

ν=1

Kν + 1

Kν − 1
≤ 1

1+K ,

so, the bound in (27) is in general at least as sharp as in Malik’s bound (20). In fact,
except for the case when the polynomial f (z) has all its zeros on |z| = K , K > 1,
the bound obtained by (27) is always sharper than the bound obtainable from (20). If
Kν = 1 for some ν, 1 ≤ ν ≤ n, then the inequality (27) reduces to Lax’s inequality
(19).

The statement of the Theorem 20 might suggest that one needs to know all the
zeros of the polynomial but it is not so. No doubt, the usefulness of the theorem
will be heightened if the polynomial is given in terms of the zeros. If in particular,
the polynomial f (z) is the product of two or more polynomials having zeros in
|z| ≥ K1 > 1, |z| ≥ K2 > 1, etc., each of norm ≤ 1, then f (z) would be of norm
≤ 1, and one would have a better estimate for max|z|=1|f ′(z)| by (27) than from (20).

Aziz and Dawood [5] considered the problem given in Theorem 15 under an
additional condition that the min|z|=1|f (z)| is also given. In this direction, they proved
that

Theorem 21 If f ∈ Pn such that f (z) �= 0 in |z| < 1, then

max
|z|=1

|f ′(z)| ≤ n
2
{max
|z|=1

|f (z)| −min
|z|=1

|f (z)|}. (29)

The result is best possible and equality holds for f (z) = αzn+β where |β| ≥ |α|.
The above result of Aziz and Dawood [5] was generalized by Govil [40] who

proved that

Theorem 22 If f ∈ Pn such that f (z) �= 0 in |z| < K where K ≥ 1, then

max|z|=1
|f (s)(z)| ≤ n(n− 1) · · · (n− s + 1)

1+Ks {max|z|=1
|f (z)| − min|z|=K|f (z)|} (30)

which sharpens Theorem 17 due to Govil and Rahman [48].
Also, for s = 1, the Theorem 22 reduces to

Theorem 23 If f ∈ Pn such that f (z) �= 0 in |z| < K where K ≥ 1, then

max|z|=1
|f ′(z)| ≤

(
n

1+K
)

{max|z|=1
|f (z)| − min|z|=K|f (z)|}. (31)

Equality is attained for f (z) = (z +K)n.
For polynomials not vanishing in |z| < 1, de Bruijn [20] proved the following

generalization of Theorem 15.

Theorem 24 If f ∈ Pn such that f (z) �= 0 in |z| < 1, then for p ≥ 1,

(
1

2π

∫ 2π

0
|f ′ (eiθ) |pdθ

) 1
p

≤ nc
1
p
p

(
1

2π

∫ π

0
|f (eiθ ) |pdθ

) 1
p

(32)



Extremal Problems in Polynomials and Entire Functions 219

where cp = 2−p
√
πΓ

(
1
2p + 1

)
/Γ
(

1
2p + 1

2

)
. The result is sharp and the equality

holds for f (z) = (α + βzn), |α| = |β|.
To obtain Lax’s inequality (19) from (32), simply make p → ∞ and note that

limp→∞ c
1/p
p = 1/2. For an alternate proof of Theorem 24, see Rahman [74]. The

inequality (32) in fact holds forp > 0 and this was proved by Rahman and Schmeisser
[61]. A simpler proof and a generalization of Theorem 24 were given by Aziz [4].

For polynomials not vanishing in |z| < K , K ≥ 1, Govil and Rahman [48]
proved

Theorem 25 If f ∈ Pn such that f (z) �= 0 in |z| < K where K ≥ 1, then for
p ≥ 1,

(
1

2π

∫ 2π

0
|f ′(eiθ )|pdθ

) 1
p

≤ n E
1
p
p

(
1

2pi

∫ π

0
|f (eiθ )|pdθ

) 1
p

(33)

where Ep = 2π/
∫ 2π

0 |K + eiα|pdα.

Since limp→∞ E
1/p
p = 1/(1+K), we get (20) by taking p → ∞ in (33). For

K = 1, Theorem 25 reduces to Theorem 24 of de Bruijn [20].
Gardner and Govil [30] have generalized the above result of Govil and Rahman

[48] by proving the following theorem.

Theorem 26 Let f (z) = anΠnν=1(z − zν), an �= 0, be a polynomial of degree n. If
|zν | ≥ Kν ≥ 1, 1 ≤ ν ≤ n, then for p > 0,

(
1

2π

∫ 2π

0
|f ′(eiθ )|pdθ

) 1
p

≤ n F
1
p
p

(
1

2π

∫ π

0
|f (eiθ )|pdθ

) 1
p

(34)

where Fp = {2π/ ∫ 2π
0 |t0 + eiθ |pdθ}, and t0 = {1 + n/∑n

ν=1
1

Kν−1 }, if Kν > 1 for
all ν, 1 ≤ ν ≤ n, and t0 = 1 if Kν = 1 for some ν, 1 ≤ ν ≤ n. The result is best
possible in the caseKν = 1, 1 ≤ ν ≤ n, and the equality holds for f (z) = (1+ z)n.

The above result in the case p ≥ 1 was also proved by Gardner and Govil [28].
IfKν = 1 for some ν, 1 ≤ ν ≤ n then t0 = 1 and (34) reduces to the inequality (32)
due to de Bruijn [20]. If Kν ≥ K for some K > 1, 1 ≤ ν ≤ n, then as it is easy

to verify that Fp ≤ {2π/ ∫ 2π
0 |K + eiα|pdα} 1

p , and so the above inequality reduces
to the inequality (33) due to Govil and Rahman [48]. Further, if in Theorem 26, we
make p→∞, we get Theorem 20, due to Govil and Labelle [44].

2.2 Polynomials Having All the Zeros in a Circle

We again begin with Bernstein’s inequality that if f ∈ Pn, then

max|z|=1
|f ′(z)| ≤ nmax|z|=1

|f (z)| . (35)
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Equality in (35) holds only for polynomials of the form λzn, λ �= 0 is a complex
number.

As it is evident from λzn (λ a complex number), it is not possible to improve upon
the bound in (35), if f (z) has all its zeros in |z| ≤ 1. Hence it would be of interest to
obtain an inequality in the reverse direction and this was done by Turán [88], who
proved

Theorem 27 If f (z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then

max|z|=1
|f ′(z)| ≥ n

2
max
|z|=1

|f (z)|. (36)

The result is best possible and the equality holds for all polynomials of degree n
which have all their zeros on |z| = 1.

It will obviously be of interest to obtain an inequality analogous to (36) for poly-
nomials having all their zeros in |z| ≤ K , K > 0. In this regard, Malik [60]
considered the case when K ≤ 1, and by using his theorem (see Theorem 16), he
obtained

Theorem 28 If f (z) is a polynomial of degree n, having all its zeros in |z| ≤ K ≤ 1,
K > 0, then

max|z|=1
|f ′(z)| ≥ n

1+K max|z|=1
|f (z)|. (37)

Equality holds for the polynomial f (z) = (z +K)n.
A simple and direct proof of this result was given by Govil [35] which is as follows.
If f (z) = anΠ

n
ν=1(z − zν) is a polynomial of degree n having all its zeros in

|z| ≤ K ≤ 1, then
∣
∣
∣
∣
f ′(eiθ )
f (eiθ )

∣
∣
∣
∣ ≥ Re

(

eiθ
f ′(eiθ )
f (eiθ )

)

=
n∑

ν=1

Re

(
eiθ

eiθ − zν

)

≥
n∑

ν=1

1

1+K ,

that is,

|f (eiθ )| ≥ n

1+K |f (eiθ )|,
where θ is real. Choosing θ0 such that |f (eiθ0 )| = max

0≤θ<2π
|f (eiθ )|, we get

|f ′(eiθ0 )| ≥ n

1+K max
0≤θ<2π

|f (eiθ )|,

from which (37) follows.
The above argument does not hold for K > 1 because then Re

(
eiθ /(eiθ − zν)

)

may not be greater than or equal to 1/(1+K). Govil [35] also settled the case when
K > 1, by proving

Theorem 29 If f (z) is a polynomial of degree n having all its zeros in |z| ≤ K ,
K ≥ 1, then

max|z|=1
|f ′(z)| ≥ n

1+Knmax|z|=1
|f (z)|. (38)
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The result is best possible and the equality holds for the polynomial f (z) =
zn + Kn.

A simpler proof of this result was later given by Datt [19]. Note that for K > 1,
the extremal polynomial turns out to be of the form (zn + Kn) while for K < 1,
it has the form (z + K)n. Thus K = 1 is a critical value of the parameter under
consideration and one should not expect the same kind of reasoning to work for both
K < 1 and K > 1.

The following refinement of Theorem 29 was done by Giroux et al. [33].

Theorem 30 Let f (z) = anΠnν=1(z − zν) be a polynomial of degree n such that
|zν | ≤ 1 for 1 ≤ ν ≤ n, then

max|z|=1
|f ′(z)| ≥

n∑

ν=1

1

1+ |zν |max|z|=1
|f (z)|. (39)

Equality holds in (39), if the zeros are all positive.
A generalization of the above Theorem was obtained by Aziz [3].

Theorem 31 Let f (z) = anΠnν=1(z − zν) be a polynomial of degree n such that
|zν | ≤ K for 1 ≤ ν ≤ n, then

max|z|=1
|f ′(z)| ≥ 2

1+Kn
n∑

ν=1

K

K + |zν |max|z|=1
|f (z)|. (40)

Equality holds again for f (z) = zn +Kn.
Inequality (40) is also a refinement of the inequality (38) due to Govil [35].
Although, the Theorem 29 due to Govil [35] is sharp, but as is easy to see, it

has two drawbacks. First, the bound in (38) depends only on the zero of largest
modulus, and not on other zeros even if some of the zeros are very close to the
origin. Second, since the extremal polynomial in (38) is (zn + Kn), it should be
possible to improve upon the bound for polynomials

∑n
ν=0 aνz

ν , where not all the
coefficients a1, a2, . . . an−1 are zero. This was observed by Govil [39] who proved
the following refinement of Theorem 29.

Theorem 32 Let f (z) = ∑ν
ν=0 aνz

ν = anΠnν=1(z − zν ), an �= 0 be a polynomial
of degree n ≥ 2, |zν | ≤ Kν , 1 ≤ ν ≤ n, and let K = max (K1,K2, . . . ,Kn) ≥ 1.
Then, for n > 2

max
|z|=1

|f ′(z)| ≥ 2

1+Kn
(

n∑

ν=1

K

K +Kν

)

max|z|=1
|f (z)| + |a1|

(

1− 1

K2

)

+ 2|an−1|
1+Kn

n∑

ν=1

1

K +Kν
(
Kn − 1

n
− K

n−2 − 1

n− 2

)

, (41)

and, if n = 2
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max
|z|=1

|f ′(z)| ≥ 2

1+Kn
(

n∑

ν=1

K

K +Kν

)

max|z|=1
|f (z)| (42)

+ |a1|
(

1− 1

K

)

+ (K − 1)n

1+Kn |a1|
n∑

ν=1

1

K +Kν .

In these estimates equality holds for f (z) = zn +Kn.
The case n = 1 in Theorem 32 is trivial because in that case max|z|=1|f ′(z)| =

(1/(1+K))max|z|=1|f (z)|, where K is the modulus of the zero of f (z).
Since K/(K +Kν) ≥ 1/2 (1 ≤ ν ≤ n), from Theorem 32 follows trivially

Theorem 33 If f (z) = anΠnν=1(z−zν), aν �= 0, is a polynomial of degree n having
all its zeros in |z| ≤ K where K ≥ 1, then for n > 2

max|z|=1
|f ′(z)| ≥ n

1+Knmax|z|=1
|f (z)|

+ |a1|
(

1− 1

K2

)

+ n|an−1|
K(1+Kn)

(
Kn − 1

n
− K

n−2 − 1

n− 2

)

, (43)

and, if n = 2

max|z|=1
|f ′(z)| ≥ n

1+Knmax
|z|=1

|f (z)| + |a1|
(

(K − 1)n

K(1+K)n
+ K − 1

K

)

. (44)

Inequalities (43) and (44) together provide a refinement of Theorem 29 because
as can be easily verified that for K > 1 and n > 2, we have

Kn − 1

n
− K

n−2 − 1

n− 2
> 0.

A refinement of Theorem 27 was given by Aziz and Dawood [5] which is as
follows.

Theorem 34 If f (z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then

max|z|=1
|f ′(z)| ≥ n

2
{max
|z|=1

|f (z)| +min|z|=1
|f (z)|}. (45)

Equality holds for f (z) = αzn + β, |β| ≤ |α|.
The above theorem has been generalized by Govil [40] who proved the following

more general

Theorem 35 If f (z) is a polynomial of degree n, having all its zeros in |z| ≤ K ,
then

max|z|=1
|f ′(z)| ≥ n

1+Kmax
|z|=1

|f (z)| + n

Kn−1(1+K)
min
|z|=K|f (z)|, (46)

if K ≤ 1, and for K ≥ 1

max|z|=1
|f ′(z)| ≥ n

1+K {max|z|=1
|f (z)| + min|z|=K|f (z)|}. (47)
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Both the above inequalities are best possible. In the first case the equality is
attained for f (z) = (z +K)n and in the second for f (z) = zn +Kn.

For generalization of the above inequalities for polar derivative, we refer to the
papers of Aziz and Rather [7] and Govil and McTume [45].

2.3 Self-Inversive and Self-Reciprocal Polynomials

In this section we will discuss some inequalities concerning self-inversive and self-
reciprocal polynomials. We begin with the definition of self-inversive polynomials.

Definition 1 A polynomial f in Pn is called n-self inversive (self inversive), if it

satisfies the condition znf (1/z) ≡ f (z).
We represent the class of self-inversive polynomials of degree at most n by P∼

n .
If f ∈ Pn and g(z) := znf (1/z), then, from Theorem 10, one gets

|f ′(z)| + |g′(z)| ≤ nmax|z|=1
|f (z)| (|z| = 1) .

In particular, if f ∈ P∼
n then f (z) ≡ g(z) and hence f ′(z) ≡ g′(z). Thus, from the

above inequality, we have

max|z|=1
|f ′(z)| ≤ n

2
max|z|=1

|f (z)| . (48)

Let f be a polynomial of degree n, and z0 a point on the unit circle such that
|f (z0)| = max|z|=1|f (z)|. Then, |f ′(z0)| = |g′(z0)| = |n f (z0) − z0f

′(z0)| ≥
n |f (z0)| − |f ′(z0)|. Hence,

max|z|=1
|f ′(z)| ≥ |f ′(z0| ≥ n

2
|f (z0)| = n

2
max|z|=1

|f (z)|. (49)

Now, if we combine (48) and (49), we get the following result (see Govil [35,
Lemma 4].

Theorem 36 If f (z) is a self-inversive polynomial of degree n, then

max|z|=1
|f ′(z)| = n

2
max|z|=1

|f (z)|. (50)

The above result also appears in a paper of O’Hara and Rodriguez [68] and Saff
and Shiel-Small [83].

The Lp inequality for self-inversive polynomials was obtained by Dewan and
Govil [21], and in this regard they proved the following.

Theorem 37 If f (z) is a self-inversive polynomial of degree n, then for p ≥ 1

(∫ 2π

0
|f ′(eiθ )|pdθ

) 1
p

≤ nc
1
p
p

(∫ 2π

0
|f (eiθ )|pdθ

) 1
p

, (51)
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where cp = 2−p
√
π Γ (p/2+1)
Γ (p/2+1/2) . The above inequality is best possible and it reduces to

equality for f (z) = (zn + 1).
Later on Govil and Jain [43] proved the following more complete result.

Theorem 38 If f (z) is a self-inversive polynomial of degree n, then for p ≥ 1

n

2

(∫ 2π

0
|f (eiθ )|pdθ

) 1
p

≤
(∫ 2π

0
|f ′(eiθ )|pdθ

) 1
p

≤ nc
1
p
p

(∫ 2π

0
|f (eiθ )|pdθ

) 1
p

(52)

where cp = 2−p
√
π Γ (p/2+1)
Γ (p/2+1/2) . Both the inequalities are best possible and they both

reduce to equality for f (z) = (zn + 1).
The above result of Govil and Jain [43] has been extended for p > 0 by Govil

[41].
It can be seen that limp→∞ c

1/p
p = 1/2, and limp→∞ ((1/2π )

∫ 2π
0 |f (eiθ )|pdθ )(1/p)

= max|z|=1|f (z)|, and thus from (52), we get once again the conclusion of
Theorem 36 that if f (z) is a self-inversive polynomial of degree n, then

max|z|=1
|f ′(z)| = n

2
max|z|=1

|f (z)|.

Now we will study the class of self-reciprocal polynomials.

Definition 2 A polynomial f in Pn is called n self reciprocal (self reciprocal), if it
satisfies the condition znf (1/z) ≡ f (z).

Following Rahman and Schmeisser [78], the class of self-reciprocal polynomials
of degree at most n will be denoted by P∨

n .
Let f (z) = ∑n

ν=0 aνz
ν be a self-reciprocal polynomial. Then the following

observations are evident from its definition.

• aν = an−ν , for 0 ≤ ν ≤ n.
• If ζ �= 0 is a zero of f then so is 1/ζ .Thus self-reciprocal polynomials have at

least half of their zeros outside the open unit disk. It is assumed that a polynomial
f belonging to Pn but of degree m < n has n−m of its zeros at ∞.

• If the degree of f is odd then it has a zero at −1.

We will now discuss the Bernstein’s inequality given in (10) for this class. Let us
start with a polynomial f in P∨

1 . From the Bullet 3 given above, f (z) = c(z + 1),
where c ∈ C. We have max|z|=1|f ′(z)| = |c| and max|z|=1|f (z)| = 2|c|. Thus

max|z|=1
|f ′(z)| = 1

2
max
|z|=1

|f (z)| (
f ∈ P∨

1

)
(53)

which is consistent with Theorem 36, as P∨
1 and P∼

1 are the same.
Next, let f belong to P∨

2 . From Bullet 1, we can write f (z) = a(z2 + 1) + bz,
and without loss of generality, we can take a = 1.

max|z|=1
|f ′(z)| = max|z|=1

|2z + b| = 2+ |b|. (54)
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Then

max|z|=1
|f (z)| = max|z|=1

|(z2 + 1)+ bz|

= max
0≤θ≤2π

|(e2iθ + 1)+ beiθ | = 2 max
0≤θ≤2π

| cos θ + b
2
| ≥
√

4+ |b|2. (55)

So, from (54) and (55), we have

max|z|=1|f ′(z)|
max|z|=1|f ′(z)| ≤

2+ |b|
√

4+ |b|2 . (56)

It can be easily verified that for x ≥ 0,

2+ x√
4+ x2

≤ √2. (57)

Therefore from (56) and (57), we conclude that

max|z|=1
|f ′(z)| ≤ √2 max

|z|=1
|f (z)| (f ∈ P∨

2 ), (58)

and equality holds in (58) for f (z) = z2 + 2iz + 1.
Thus, we have a sharp estimate in the Bernstein inequality for P∨

2 . For n ≥ 3, the
sharp estimate in Bernstein equality remains unknown even though the class is under
investigation for well over 40 years.

Frappier et al. [26, p. 97] constructed a polynomial f (z) := {(1− iz)2 + zn−2(z−
i)2}/4 of degree n for which f (z) = znf (1/z) holds and

max|z|=1
|f (z)| = 1 = |f (i)| whereas |f ′(− i)| = n− 1 .

This example exhibits the existence of a polynomial f in P∨
n for which

max|z|=1
|f ′(z)| ≥ |f ′(− i)| = (n− 1)max|z|=1

|f (z)|. (59)

Thus the bound in the Bernstein inequality for P∨
n is atleast n− 1.

Frappier et al. [27, Theorem 2] studied another class of polynomials f (z) :=∑n
ν=0 aν zν whose constant term a0 is equal to the coefficient of the leading term

an. For such polynomials they proved that

max|z|=1
|f ′(z)| ≤

(

n− 1

2
+ 1

2(n+ 1)

)

max
|z|=1

|f (z)|. (60)

As noted above in bullet 1, f belongs to P∨
n if and only if aν = an−ν for each

0 ≤ ν ≤ n. Hence, in particular, ν = 0, which gives a0 = an. Thus the inequality
(60) holds for polynomials in P∨

n as well. Combining inequalities (59) and (60), one
gets

(n− 1)max|z|=1
|f (z)| ≤ max|z|=1

|f ′(z)| ≤
(

n− 1

2
+ 1

2(n+ 1)

)

max|z|=1
|f (z)| (61)
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which shows that in general there will be no meaningful improvement in (10) for
P∨
n . This is quite surprising as the class P∨

n is quite restrictive in some sense. For
example it has as many zeros inside the unit disk as it has outside.

We can, however obtain improvements in (10) if we impose some additional
restrictions on P∨

n . We will consider two types of conditions here; restrictions on the
location of zeros and restrictions on the coefficients of polynomials. We will start
with the following theorem of Govil et al. [50].

Theorem 39 Let f belong to P∨
n such that all its zeros are either in the left-half

plane or in the right-half plane. Then

max
|z|=1

|f ′(z)| ≤ n√
2

max
|z|=1

|f (z)|. (62)

The result is sharp. Equality holds for polynomial f (z) = c(1+ z)n if all the zeros
are in the left-half plane and for polynomial f (z) = c(1− z)n if all the zeros are in
the right-half plane.

Recently, Tariq [87] has noted a property of polynomials in P∨
n whose zeros lie

in the left-half plane. His observation is given in the next theorem.

Theorem 40 Let f belong to P∨
n such that all its zeros are in the left-half plane.

In addition, suppose that its zeros in the second quadrant are of modulus at most 1.
Then

|f ′(e−iθ )| ≤ |f ′(eiθ )| (0 ≤ θ ≤ π ). (63)

As an application of above theorem, he proved the following:

Theorem 41 Let f belong to P∨
n such that all its zeros are in the left-half plane.

In addition, suppose that its zeros in the second quadrant are of modulus at most 1.
Further assume that|f (e−iθ )| ≤ M for 0 ≤ θ ≤ π . Then

|f ′(e−iθ )| ≤ M n

2
(0 ≤ θ ≤ π ). (64)

The examplef (z) = (z2 + 1)n/2, shows that the estimate is sharp when n is even.
For odd n, the equality holds for f (z) = (z + 1)n.

Now, we will discuss some Bernstein type inequalities for P∨
n that are obtained by

considering restrictions on the coefficients of polynomials. Aziz [3] investigated the
polynomials in P∨

n whose coefficients lie in the first quadrant. For such polynomials,
he proved the following

Theorem 42 Let f (z) =∑n
ν=0 (αν + iβν)zν , αν ≥ 0, βν ≥ 0, ν = 0, 1, 2, . . . n be

a polynomial in P∨
n . Then

max|z|=1
|f ′(z)| ≤ n√

2
max|z|=1

|f (z)|. (65)

The result is sharp when n is even. Equality holds for the polynomial f (z) =
zn + 2izn/2 + 1.
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Proof Let us write f (z) = f1(z) + if2(z), where f1(z) = ∑n
ν=0 ανz

ν , and f2(z) =∑n
ν=0 βνz

ν . Since αν ≥ 0 and βν ≥ 0, we have max|z|=1|f1(z)| = |f1(1)| = f1(1)
and max|z|=1|f2(z)| = |f2(1)| = f2(1). Also, note that f1 and f2 are self-inversive
polynomials. Thus, we have max|z|=1|f ′1(z)| = (n/2)max|z|=1|f1(z)| = (n/2)f1(1)
and max|z|=1|f ′2(z)| = (n/2)max|z|=1|f2(z)| = (n/2)f2(1). Let θ0 be the number such
that max|z|=1|f ′(z)| = |f ′(eiθ0 )|. Then

max|z|=1|f ′(z)| = |f ′(eiθ0 )| ≤ |f ′1(eiθ0 )| + |f ′2(eiθ0 )| = n
2
{f1(1)+ f2(1)} (66)

Since, {f1(1)+ f1(1)} ≤
√

2{f 2
1 (1)+ f 2

2 (1)} = √
2|f (1)| ≤ √2max|z|=1|f (z)|, we

get the desired result from (66). �
If f is a polynomial in P∨

n whose zeros lie in a sector of opening π/2, say in,
ψ ≤ arg z ≤ ψ + π/2, for some real ψ , then the polynomial g(z) = e−iψf (z)
belongs to P∨

n such that its coefficients lie in the first quadrant of the complex plane.
Moreover max|z|=1|g(z)| = max|z|=1|f (z)| and max|z|=1|g′(z)| = max|z|=1|f ′(z)|. So
applying Theorem 42 on g(z) one can get the following result in Jain [57].

Theorem 43 Let f (z) = ∑n
ν=0 aνz

ν where aν = ανeiφ + βνeiψ , αν ≥ 0, βν ≥ 0,
where 0 ≤ ν ≤ n, 0 ≤ |φ − ψ | ≤ π/2, be a polynomial in P∨

n . Then

max|z|=1
|f ′(z)| ≤ n√

2
max|z|=1

|f (z)|. (67)

The result is best possible. Equality holds for the polynomialp(z) = zn+2izn/2+1,
n being an even integer.

Govil and Vetterlein [49] considered the class of self-reciprocal polynomials
whose coefficients lie in a sector of an angle γ centered at origin. Their estimate for
max|z|=1|f ′(z)| depends on the angle γ and contains Theorem 42 and Theorem 43
as special cases. More precisely, their result is

Theorem 44 Let f (z) = ∑n
ν=0 aνz

ν , whose coefficients lie in a sector of opening
γ with vertex at the origin, belong to P∨

n . Then

max|z|=1
|f ′(z)| ≤ n

2 cos (γ /2)
max|z|=1

|f (z)|
(

0 ≤ γ ≤ 2π

3

)

. (68)

Equality holds for the polynomial f (z) = zn + 2eiγ zn/2 + 1, where n is an even
integer.

It is important to note that the above theorem produces better estimate than (10)
only for |γ | ≤ 2π/3.

For a polynomial f in P∨
n , in general max|z|=1|f (z)| can occur at any point on the

unit circle; not necessarily at z = 1. Rahman and Tariq [79] observed that, under the
condition of Theorem 44, a sharp estimate for max|z|=1|f ′(z)| in (68) can be obtained
in terms of |f (1)| rather than max|z|=1|f (z)|. Then it makes sense to take γ in [0,π )
instead of [0, 2π/3]. They used the theory of entire functions of exponential type to
prove the following theorem.
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Theorem 45 Let f (z) = ∑n
ν=0 aνz

ν , whose coefficients lie in a sector of opening
γ with vertex at the origin, belong to P∨

n . Then

max|z|=1
|f ′(z)| ≤ n

2 cos (γ /2)
|f (1)|. (69)

In the case where n is even, the polynomial p(z) := zn+ 2 eiγ zn/2+ 1 shows that
the above inequality is sharp for any γ ∈ [0,π ).

Next, we will discuss few integral inequalities of Bernstein type associated with
self-reciprocal polynomials. We will start with a result of Aziz and Zerger [8] who
considered the L2 analogue of (10) for polynomials in P∨

n and proved that

Theorem 46 If f (z) belongs to P∨
n , then

n2

4

∫ 2π

0
|f (eiθ )|2dθ ≤

∫ 2π

0
|f ′(eiθ )|2dθ ≤ n

2

2

∫ 2π

0
|f (eiθ )|2dθ. (70)

Both estimates are sharp. Equality holds on the right side of the inequality for
f (z) = c(z+1)n for all n ≥ 1. On the left side, equality holds for f (z) = czn/2 when
n is even.

Alzer [1] extended the above result for higher order derivatives. He used ideas
from discrete mathematics and obtained the following generalization.

Theorem 47 Let f (z) be a polynomial in P∨
n and k an integer such that 1 ≤ k ≤ n.

Then

αn(k)
∫ 2π

0
|f (eiθ )|2dθ ≤

∫ 2π

0
|f (k)(eiθ )|2dθ ≤ βn(k)

∫ 2π

0
|f (eiθ )|2dθ (71)

where

αn(k) =
⎧
⎨

⎩

Πk−1
j=0

(
n
2 − j

)2
n is even

1
2

{
Πk−1
j=0

(
n+1

2 − j)2 +Πk−1
j=0

(
n−1

2 − j)2
}
n is odd

βn(k) = 1

2
Πk−1
j=0 (n− j )2.

The inequalities are best possible. Equality holds on the right side of inequality
for w(z) = zn + 1. On the left-hand side, the equality holds for u(z) = zn/2 if n is
even and for v(z) = zn−1/2(1+ z) if n is odd.

Using Theorem 40 discussed earlier, Tariq [87] has found an Lp inequality for
P∨
n that is valid for p ≥ 1. More precisely he proved the following

Theorem 48 Letf , which has all its zeros in the left-half plane, belong to P∨
n .

Furthermore, the zeros in the second quadrant are in the unit disk {z : |z| ≤ 1} .
Then, for p ≥ 1

∫ 0

−π
|f ′(eiθ )|p dθ ≤ np Cp

∫ 0

−π
|f (eiθ )|p dθ , (72)
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where Cp is as given by

Cp = 2π
∫ π
−π |1+ eiα|pdα

= 2−p
√
π Γ (p/2+ 1)

Γ (p/2+ 1/2)
. (73)

Recall that for a polynomial f in Pn, ‖f ‖p = (1/2π
∫ 2π

0 |f (eiθ )|pdθ )1/p and
‖f ‖∞ = max|z|=1|f (z)| denote the Lp and uniform norms respectively. Qazi [72]
investigated a Bernstein type inequality in which he considered the Lp norm of the
derivative f ′ and L∞ norm of f and asked the question:

What is the best value forAn in the following ‖f ′‖p ≤ An‖f ′‖∞, where f ∈ P∨
n ?

In this direction, he proved the following

Theorem 49 Let f (z) =∑n
ν=0 aνz

ν be a polynomial in P∨
n and 0 ≤ p ≤ 2? Then

1

2π

∫ π

−π
|f ′(eiθ )|p dθ ≤ np

2p/2
{‖f ‖2

∞ − 2|a0|}p/2. (74)

The example f (z) = 1+ zn shows that the above inequality is sharp.
We will close this section with an inequality in the opposite direction. Let f be

a self-reciprocal polynomial. From the definition, we have znf (1/z) ≡ f (z). If we
differentiate both sides with respect to z, we get f ′(z) = nzn−1f (1/z)− zn−2f ′(1/z).
Choose the complex number z0 on the unit circle {z : |z| = 1}, such that |f (1/z0)| =
max|z|=1|f (z)|. Then, we have

nmax|z|=1
|f (z)| = n|f (1/z0)| = |f ′(z0)+ zn−2f ′(1/z0)| ≤ 2max|z|=1

|f ′(z)|.

Thus we have the following theorem of Dewan and Govil [22].

Theorem 50 If f ∈ P∨
n , then

max|z|=1
|f ′(z)| ≥ n

2
max
|z|=1

|f (z)|. (75)

The result is sharp. Equality holds for polynomial f (z) = c(1+ z)n.
Although the class P∨

n has been extensively studied among others by Frappier
and Rahman [25] and Frappier et al. [27], Govil et al. [50], a sharp Bernstein’s type
inequality for this class is still unknown for n ≥ 3.

3 Entire Functions of Exponential Type

In this section, we will study the extensions of results about polynomials, discussed
in Sect. 2, to the entire functions of exponential type. We will start with the following
definition of entire functions of exponential type.

Definition 3 An entire function f is said to be an entire function of exponential
type τ if for every ε > 0 there is a constant k(ε) depending only on ε but not on z
such that |f (z)| < k(ε) e(τ+ε)|z| for all z ∈ C.
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Letf be an entire function and r be any positive real number. Denote the maximum
modulus of the function f on the circle of radius r by Mf (r). That is Mf (r) :=
max|z|=r |f (z)|. If there is no ambiguity, we writeMf (r) = M(r).
The order of an entire function f , denoted by ρ, is defined by

ρ := lim sup
r→∞

log logM(r)

log r
. (76)

It is a convention to take the order of a constant function of modulus less than or
equal to one as 0.
An entire function of finite order ρ is said to have type T , where T is given by

T := lim sup
r→∞

logM(r)

rρ
. (77)

It is clear that entire functions of order less than 1 are of exponential type τ , where
τ can be taken to be any number greater than or equal to 0. Also entire functions of
order 1 and type T ≤ τ are of exponential type τ .

Examples of entire functions of exponential type include polynomials with com-
plex coefficients, t(z) = ∑n

ν=0 aν cos νz + bν sin νz, where coefficients belong to
C, etc.

Definition 4 Let f be an entire function of exponential type. The function

hf (θ ) := lim sup
r→∞

log |f (reiθ )|
r

, (0 ≤ θ < 2π ) (78)

is called the indicator function of f . It describes the growth of the function along
a ray {z : argz = θ}. It is finite or −∞. Unless hf (θ ) ≡ −∞, it is a continuous
function of θ . If f is an entire function of exponential type τ , then hf (θ ) ≤ τ , for
0 ≤ θ ≤ 2π .

Bernstein (see [9, p. 102]) himself found the extension of inequality (10) for the
entire functions of exponential type. He proved that

Theorem 51 If f is an entire function of exponential type τ , then

sup
−∞<x<∞

|f ′(x)| ≤ τ sup
−∞<x<∞

|f (x)| . (79)

Equality holds if and only if f (z) = a eiτ z + b e−iτ z, where a, b ∈ C and |a| +
|b| > 0.

Genčev [31] observed that the conclusion of above theorem is still valid even if one
considers the supremum of |Ref (x)| instead of |f (x)| over R in (79). Using Levitan
polynomials [55], he proved the following extension of Bernstein’s inequality.

Theorem 52 If f is an entire function of exponential type τ such that hf (π/2) ≤ 0,
then

sup
−∞<x<∞

|f ′(x)| ≤ τ sup
−∞<x<∞

|Re f (x)| . (80)
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Equality holds for f (z) = a eiτ z.
This result may be seen as a generalization of the result of Szeg̈o (Theorem 9).

For various other refinements of Theorem 51, we refer readers to [13, Chap. 11].
Let p > 0 be a real number. We say that a function f belongs to Lp on the real

line if,
∫∞
−∞ |f (x)|p dx <∞. It can be verified that limp→∞ (

∫∞
−∞ |f (x)|p dx)1/p =

sup−∞<x<∞ |f (x)|. In view of this, the following generalization of Theorem 51 is
given in the next theorem [13, p. 211].

Theorem 53 Let f be an entire function of exponential typeτ that belongs to Lp

on the real line, where p ≥ 1 is a real number. Then
∫ ∞

−∞
|f ′(x)|p dx ≤ τp

∫ ∞

−∞
|f (x)|p dx. (81)

For various refinements and extensions of above result, we refer readers to the
paper of Rahman and Schmeisser [77].
As an Lp analogue of Theorem 52, Dostanić [23] has recently proved the following

Theorem 54 If f is an entire function of exponential type τ such that hf (π/2) ≤ 0,
then

∫ ∞

−∞
|f ′(x)|p dx ≤ Cpτp

∫ ∞

−∞
|Ref (x)|p dx (p ≥ 1) (82)

where Cp is given by (73).

3.1 Bernstein Type Inequalities for Entire Functions Having No
Zero in the Upper-Half Plane

In this section, we will discuss few inequalities about entire functions of exponential
type when the function has no zero in the open upper-half plane {z : Im(z) > 0}. The
theorems discussed here may be seen as extension of results in Sect. 2.1 for entire
functions of exponential type.

To motivate ourself, let us take a polynomial g in Pn such that g(z) �= 0 in
|z| < 1. From Theorem 15, max|z|=1|g′(z)| ≤ (n/2)max|z|=1|g(z)|. Define a function
f (z) = g(eiz). It is obvious that f is an entire function of exponential type n. Since
g has no zero in |z| < 1, f has no zero in the open-half plane {z : Im(z) > 0} and
hf (π/2) = 0. Thus, if we can obtain a bound for sup−∞<x<∞ |f ′(x)| in terms of
sup−∞<x<∞ |f (x)|, then it will give us a generalization of Lax’s result, Theorem 15.

Perhaps, in view of these observations, Boas [14] (see also [75]) formulated and
proved the following general result for entire functions of exponential type.

Theorem 55 Letf be an entire function of exponential type τ such thathf (π/2) = 0
and f (x + iy) �= 0 for y > 0 . Then

sup
−∞<x<∞

|f ′(x)| ≤ τ

2
sup

−∞<x<∞
|f (x)|. (83)
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Equality is attained for f (x) = (1+ eiτ z)/2.
For generalizations of the above inequality of Boas to polar derivatives of entire

functions, see Gardner and Govil [29].
It is worth pointing out that the condition hf (π/2) = 0 in the theorem is indeed

necessary. To see it, let f (z) = cos τ z, τ > 0. The function f is an entire function of
exponential type τ with only real zeros. Furthermore, sup−∞<x<∞ |f (x)| = 1 and

hf

(π

2

)
= lim sup

y→∞

log
(

e−τy+eτy

2

)

y
= τ > 0

and
sup

−∞<x<∞
|f ′(x)| = τ = τ sup

−∞<x<∞
|f (x)|

which contradicts the conclusion of the theorem.
In 1959, Professor R.P. Boas asked the following question concerning the gener-

alization of Theorem 55, a partial answer to which was given by Govil and Rahman
[48].

Let f be an entire function of exponential type τ such that |f (x)| ≤ 1 for real x,
hf (π/2) = 0 and f (x + iy) �= 0 for y > k, where −∞ < k < ∞. Then what can
be said about the bound for |f ′(x)|?
The hypothesis f (x + iy) �= 0 for y > k is a more general than f (x + iy) �= 0
for y > 0, if k < 0. So one might expect an improved estimate in (83) under this
restriction. However, the following example of Govil and Rahman [48] shows that
it is not the case.
Example

Let n1, n2, and n3 be positive integers, τ = n1/n2, a = 1/n3n2, and k ≤ 0.
Define a function fa as follows

fa(z) =
{
eiaz − e−ak
1+ e−ak

}τ/a

.

It is clear that fa(z) is an entire function of exponential type τ with hfa (π/2) = 0,
sup−∞<x<∞ |fa(x)| = 1, and fa(z) ≡ fa(x + iy) has all its zeros on y = k. Also

sup
−∞<x<∞

|f ′a(x)| = sup
−∞<x<∞

{
eiaz − e−ak
1+ e−ak

}τ/a−1
τ

1+ e−ak =
τ

1+ e−ak >
τ

2
− ε

by making a sufficiently small.
Thus the bound in (83) cannot be improved in general by simply taking f (z) �= 0

in a larger half plane unless some more conditions are imposed on the function. In
addition to the already given conditions, Govil and Rahman [48] added a restriction
on the indicator function of f ′ and found the following extension of Theorem 55.

Theorem 56 Let f be an entire function of exponential type τ such that f (x+iy) =
0 for y = k where k ≤ 0. If hf (π/2) = 0, hf ′ (π/2) = −c < 0, then

sup
−∞<x<∞

|f ′(x)| ≤ τ

1+ ec|k| sup
−∞<x<∞

|f (x)|. (84)
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The inequality is sharp. Equality holds for

fc(z) =
{
eicz − e−ak
1+ e−ck

}τ/c

(85)

if τ/c is a positive integer.
Even though the zero free-half plane {z : Im(z) > k}, k ≤ 0 in Theorem 56 is

larger than {z : Im(z) > 0} but the condition that requires all the zeros of f to lie
on a horizontal line y = k is still too restrictive. Govil and Rahman [48] were able
to relax this restriction also by imposing one more condition on the conjugate of the
function f . The conjugate of an entire function f of exponential type τ is a function
g defined by g(z) = eiτ zf (z). They proved the following theorem.

Theorem 57 Let f be an entire function of exponential type τ such that f (x +
iy) �= 0 for y > k where k ≤ 0. If hf (π/2) = 0, hf ′ (π/2) = −c < 0, and
hg′ (π/2) = −c < 0 where g(z) = eiτ zf (z). Then

sup
−∞<x<∞

|f ′(x)| ≤ τ

1+ ec|k| sup
−∞<x<∞

|f (x)|. (86)

If τ/c is a positive integer, then the function

fc(z) =
{
eicz − e−ak
1+ e−ck

}τ/c

satisfies the condition of the above theorem and

sup
−∞<x<∞

|f ′c (x)| = τ

1+ ec|k| sup
−∞<x<∞

|fc(x)|.

It may be remarked that although Theorem 57 answers question raised by Profes-
sor R. P. Boas, Jr. in the case when f (x + iy) �= 0 for y > k where k ≤ 0, the case
when f (x + iy) �= 0 for y > k where k ≥ 0 is still completely unsolved.
Theorem 57 generalizes the result of Malik [60] discussed in Sect. 2.1. To see this,
let p(z) =∑n

ν=0 aνz
ν be a polynomial such that p(z) �= 0 in |z| ≤ K whereK ≥ 1.

The function f (z) =∑n
ν=0 aνe

iνz is an entire function of exponential type n. Since
p(z) �= 0 in the disk |z| < K , f (z) has all its zeros in y > k and hf (π/2) = 0. For
z = iy, we have f ′(iy) = ∑n

ν=1 i ν aνe−νy . Thus |f ′(iy)| ≤ e−y(1 + φ(y)), where
φ(y) → 0 as y → 0. Thus we have hf ′(π/2) ≤ −1. The conjugate of f is given
by g(z) = ∑n

ν=0 an−νeiνz. Similar reasoning as used in the case of hf ′ (π/2), gives
hg′ (π/2) ≤ −1 as well. So all the conditions of Theorem 57 are satisfied. Thus we
have

|f ′(x)| ≤ n

1+ e|k| sup
−∞<x<∞

|f (x)|.

If p is a nonconstant polynomial such that |p(z)| ≥ m > 0 on the unit circle,
then |p(z)| > m in the open unit disk U provided that p(z) �= 0 in U . Therefore
p(z) − λm �= 0 in U for any λ such that |λ| ≤ 1. This fact plays an important
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role in obtaining a generalization of a Theorem of Aziz and Dawood [5], which is a
refinement of Erdös conjecture proved by Lax [59]. However, if f is a nonconstant
transcendental entire function of exponential type such that |f (x)| ≥ m > 0 on the
real axis, then it may be that |f (z)| is not greater thanm at any point of the upper-half
plane H := {z : Im(z) > 0}, even if f (z) �= 0 in H , as the example f (z) := eiz
shows.

Note that for the function f (z) = eiz, which is an entire function of exponential
type, we have hf (π/2) = −1, but if we assume that hf (π/2) ≥ 0, and that f has
no zeros in H , it turns out that |f (z)| > m everywhere in H . Keeping this in view,
Govil et al. [52] have proved the following more general result.

Theorem 58 Let f be an entire function of exponential type having no zeros in
the closed upper-half plane H , and suppose that |f (x)| ≥ m > 0 on the real axis.
Furthermore, let hf (π/2) = a. Then

|f (x + iy)| > mea y (y > 0 , x ∈ R) (87)

except for f (z) := c e−iaz, c ∈ C, |c| = m.
Making use of the above Theorem 58, Govil et al. in [52] have proved the following

sharpening of Theorem 55.

Theorem 59 Letf be an entire function of exponential type τ such thathf (π/2) = 0
and f (x+ iy) �= 0 for y > 0. Assume that for x ∈ R, 0 ≤ m ≤ |f (x)| ≤ M where
M = sup−∞<x<∞ |f (x)|. Then

sup
−∞<x<∞

|f ′(x)| ≤ M −m
2

τ. (88)

Equality is attained for f (x) = (M +m)/2eiα + (M −m)/2eiβeiτ z,α,β ∈ R.
The theorem reduces to Theorem 55, when m = 0, and includes the theorem of

Aziz and Dawood (29) discussed in Sect. 2.1.
Next, we will discuss the Lp analogues of Theorem 55 and Theorem 57. Rahman

[75] found the following result which provides the Lp analogue of Theorem 55 of
Boas [14].

Theorem 60 If f is an entire function of exponential type τ in Lp, p ≥ 1 such that
f (x + iy) �= 0 for y > 0, hf (π/2) = 0, then

∫ ∞

−∞
|f ′(x)|p dx ≤ τp Cp

∫ ∞

−∞
| f (x)|pdx ,

where Cp is as given in (73).
TheLp inequality corresponding to Theorem 57 has been given by Govil and Rahman
[48]. They in fact proved the following.

Theorem 61 Let f be an entire function of exponential type τ such that f (x +
iy) �= 0 for y > k where k ≤ 0. If hf (π/2) = 0, h′f (π/2) = −c < 0, and



Extremal Problems in Polynomials and Entire Functions 235

h′g(π/2) = −c < 0 where g(z) = eiτ zf (z). Then for p ≥ 1

∫ ∞

−∞
|f ′(x)|p dx ≤ τp Dp

∫ ∞

−∞
| f (x)|pdx ,

where Dp is as given by

Dp = 2π
∫ π
−π |ec|k| + eiα|pdα

. (89)

3.2 Bernstein Type Inequalities for Entire Functions Having No
Zero in the Lower-Half Plane

In this section, we will study the Bernstein’s type inequalities for entire functions of
exponential type which has no zero in the lower open-half plane {z : Im(z) < 0}.
The theorems discussed here may be seen as extensions of results in Sect. 2.2 for
entire functions of exponential type.

Let us take a polynomial g in Pn such that g(z) �= 0 for |z| > 1. From Theorem
27, max|z|=1|g′(z)| ≥ (n/2)max|z|=1|g(z)|. Define a function f (z) = g(eiz). Clearly,
f is an entire function of exponential type n and has no zero in the open-half plane
{z : Im(z) < 0}. Also hf (π/2) ≤ 0, and therefore to obtain generalization of
Theorem 27 of Turan [88] for entire functions of exponential type, Rahman [73]
proved the following.

Theorem 62 Letf be an entire function of exponential type τ such that f (z) ≡
f (x + iy) �= 0 for y < 0, hf (π/2) ≤ 0 and hf (− π/2) ≤ τ . Then

sup
−∞<x<∞

|f ′(x)| ≥ τ

2
sup

−∞<x<∞
|f (x)|. (90)

Equality is attained for f (x) = (1+ eiτ z)/2.
Govil [36] considered the following generalization of the above theorem. Let

f be an entire function of exponential type τ such that |f (x)| ≤ 1 f or x ∈ R,
hf (π/2) ≤ 0, hf (−π/2) = τ and f (x + iy) �= 0 for y < k ≤ 0 . What is the best
bound for |f ′(x)|?
In this direction, he proved that

Theorem 63 If f is an entire function of exponential type of order 1, type τ such
that f (x + iy) �= 0 for y < k ≤ 0, hf (π/2) ≤ 0, hf (− π/2) = τ , then

sup
−∞<x<∞

|f ′(x)| ≥ τ

1+ eτ |k| sup
−∞<x<∞

|f (x)|. (91)
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The result is best possible. Equality holds for the function

f (z) = e
iτ z − e−τk
1+ e−τk .

Let us study another generalization of Theorem 62. One of the hypotheses in
the theorem states that the function f has no zero in the open-lower-half plane
{z : Im(z) < 0}. Govil et al. [52] looked for the improvement in the conclusion
under the assumption that |f (x)| ≥ m ≥ 0 for x ∈ R. If m > 0, then f will have no
zero in the closed-half plane {z : Im(z) ≤ 0} and one should expect a better estimate
in Theorem 62. Using Theorem 59, they obtained the following result which can be
seen as yet another generalization of Theorem 62.

Theorem 64 Letf be an entire function of order-one type τ such that f (x+iy) �= 0
for y < 0. For x ∈ R, 0 ≤ m ≤ |f (x)| ≤ M whereM = sup−∞<x<∞ |f (x)| <∞,
and hf (π/2) ≤ 0. Then

sup
−∞<x<∞

|f ′(x)| ≥ M +m
2

τ. (92)

Theorem 64 reduces to Theorem 62, when m = 0 and includes the theorem of
Aziz and Dawood (45) discussed in Sect. 2.2.

3.3 Bernstein Type Inequalities for Subclass of Entire Functions
Satisfying f (z) = eiτ zf (− z)

In this section, we will discuss some results for the class of entire functions
of exponential type that can be seen as an extension of class of self-reciprocal
polynomials.

Note that if g(z) is a polynomial of degree n then the function f (z) = g(eiz) is an
entire function of exponential type n. Further, if the polynomial g(z) is self reciprocal
then, as is easy to see, the function f (z) will satisfy the condition

f (z) ≡ einzf (−z). (93)

Therefore, the class of entire functions of exponential type τ whose elements
satisfy the condition f (z) ≡ eiτ zf (− z) is a natural extension of the class of self-
reciprocal polynomials. Let us denote the class of such entire functions of exponential
type by F∨

τ .
Govil [42] considered this class and proved several results. For example, he

proved the following theorem which is a generalization of (75) for entire functions of
exponential type. He deduced the conclusion as a consequence of another inequality
he proved for this class. In this chapter we will give a direct proof.

Theorem 65 If f ∈ F∨
τ , then

sup
−∞<x<∞

|f ′(x)| ≥ τ

2
sup

−∞<x<∞
|f (x)| . (94)
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The result is best possible and the equality holds for f (z) = (1+ eiτ z).

Proof Let f be a function in F∨
τ and x, an arbitrary real number. On the real line,

the function f satisfies the condition f (x) ≡ eiτxf (− x). Differentiating both sides
with respect to x, we get f ′(x) + eiτxf ′( − x) = iτeiτxf (−x). Using triangle
inequality, we get |τf (− x)| ≤ |f ′(x)| + |f ′(− x)| ≤ 2| sup−∞<x<∞ |f ′(x)|. Since
x is an arbitrary real number, we get sup−∞<x<∞ |f (x)| ≤ 2 sup−∞<x<∞ |f ′(x)| and
the result follows. �

We know from Theorem 51 that equality in (79) holds if and only if the function
is of the form a eiτ z + b e−iτ z, where a, b ∈ C and |a| + |b| > 0. It is obvious that
the functions in F∨

τ cannot be of the form a eiτ z + b e−iτ z and hence equality cannot
hold in (79) for functions in F∨

τ . Thus, for any f in F∨
τ

sup−∞<x<∞ |f ′(x)|
sup−∞<x<∞ |f (x)| < τ.

So the question is: what is the best estimate in Theorem 51, if f ∈ F∨
τ ?

Rahman and Tariq [80] have shown that it could be as close to τ as one wish. In
fact, the following result holds true.

Theorem 66 Given any number ε ∈ (0 , τ ), we can find an entire function fε ∈ F∨
τ

such that
sup

−∞<x<∞
|f ′ε(x)| ≥ (τ − ε) sup

−∞<x<∞
|fε(x)| .

This theorem may be seen as an extension of (59) for entire functions of
exponential type.

Recently, Tariq [87] has investigated the functions in F∨
τ whose zeros satisfy

certain conditions. Let f belong to F∨
τ and ζ , a zero of f . From the definition of

F∨
τ , −ζ is also a zero of f . Thus f has half of its zero in the upper-half plane. Also

if ζ lies in the first quadrant then −ζ will lie in the third quadrant. Tariq [87] has
recently observed the following property of functions in F∨

τ whose zeros lie in the
first and the third quadrants.

Theorem 67 Letf , which has all its zeros in the first and the third quadrants,
belong toF∨

τ . Then

|f ′(−x)| ≤ |f ′(x)| (x > 0). (95)

Using above observation, he has obtained few new inequalities for functions in
F∨
τ . We will state one of them here [87].

Theorem 68 Let f , which has all its zeros in the first and the third quadrants,
belong toF∨

τ . Further assume that|f (x)| ≤ M on (−∞, 0). Then

|f ′(x)| ≤ Mτ
2

(x ≤ 0). (96)

The estimate is sharp as the exampleM (1+ eiτ z)/2 shows.
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Rahman and Tariq [80] formulated and proved a theorem that can be seen as a
generalization of Theorem 44, which is due to Govil and Vetterlien [49]. The main
issue they encountered while deciding about the extension of Theorem 44 to the
entire function of exponential type was:

What class of entire functions of exponential type would admit an extension of
Theorem 44?

If one simply takes functions of the form f (z) = p(eiz) = ∑n
ν=0 aν eiνz and re-

quired coefficients to lie in a sector, then it is indeed an entire function of exponential
type but too restrictive as an arbitrary entire function of exponential type, in general,
cannot be expressed as a finite or infinite sum of the form

∑
aν eiνz. According to

Rahman and Tariq [80] an appropriate class of entire functions of exponential type
for which Theorem 45 would admit an extension is the one whose elements are uni-
formly almost periodic on the real line. For the definition and the related materials
on uniformly almost periodic functions, we refer readers to [11, 16, 80].

Under certain conditions, functions that are uniformly almost periodic on the
real line will have a Fourier series expansion of the form

∑
aν eiλν z. The aν’s are

called Fourier coefficients and λν’s are called Fourier exponents. By putting certain
restrictions on the Fourier coefficients, Rahman and Tariq [80] formulated and proved
the following theorem for entire functions of exponential type which can be seen as
an extension of Theorem 45.

Theorem 69 Letf ∈ F∨
τ be uniformly almost periodic on the real axis, with Fourier

seriesf (x) ∼ ∑∞
n=1An eiΛnx , where the coefficientsA1,A2, . . . lie in a sector of

opening γ ∈ [0 , π ) with vertex at the origin. Then

sup
−∞<x<∞

|f ′(x)| ≤ τ

2 cos (γ /2)
|f (0)| . (97)

The examplef (z) := eiτ z + 2 eiγ eiτ z/2 + 1 shows that the estimate is sharp.
Let us now turn our attention to some integral inequalities associated with F∨

τ . It
is well known, see for example [11, p. 15], that if a function f is uniformly almost
periodic on the real line, then

lim
T→∞

1

T

∫ T

0
f (x)dx = lim

T→∞
1

T

∫ 0

−T
f (x)dx = lim

T→∞
1

2 T

∫ T

−T
f (x)dx (98)

exists. These integrals are called the mean value of the function. We will denote
the mean value of f by M(f ). It is also known that the absolute value |f | and the
derivative f ′ of a uniformly almost periodic function f are also uniformly almost
periodic [11, pp. 3–6]. These two results ensure that M(|f |) and M(|f ′|) exist. Thus
the following theorem is a generalization of (70) for entire functions of exponential
type.

Theorem 70 Letf ∈ F∨
τ be a uniformly almost periodic function on the real line.

Then

τ 2

4
M(|f |2) ≤ M(|f ′|2) ≤ τ

2

2
M(|f |2). (99)
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The right side of the above inequality is sharp as equality holds for f (z) :=
(1+ eiτ z)/2. By taking f (z) := eiτ z/2, we see that the left-hand side of the inequality
is also sharp.

The right side of the inequality was proved earlier by Rahman and Tariq [81].
However for the sake of completeness, we will outline the proof of both sides of the
inequality.

Proof Let f , a uniformly periodic function on R, belong to F∨
τ and λ be an arbitrary

real number. It is well known that M{e−iλxf (x)}, the mean value of e−iλxf (x), is 0
except for at the most countably many λ’s where [11, p. 18]

M{e−iλxf (x)} = lim
T→∞

1

T

∫ T

0
e−iλxf (x)dx. (100)

Let Λ = {Λ1,Λ2, · · · } be the collections of λ’s for which M
{
e−iλxf (x)

} �= 0.
The elements of Λ are called Fourier exponents of the function f . Let Λν be a
Fourier exponent. The mean value M{e−iΛνxf (x)} is called the Fourier coefficient
corresponding to Fourier exponent Λν and is denoted by Aν .

One can associate a series (see [11, p. 18]) called Fourier series
∑∞
ν=0 Aνe

iΛνx

with a uniformly almost periodic function f . We denote it by f (x) ∼∑∞
ν=0 Aνe

iΛνx .
From Bohr’s fundamental theorem ([16], p. 17), we have

M(|f |2) =
∞∑

ν=0

|Aν |2. (101)

Since, eiτx is periodic and hence uniformly almost periodic, andf (x) is given to be
uniformly almost periodic, the product g(x) = eiτxf (− x) is also uniformly almost
periodic [11, p. 6]. Thus the Fourier series of g(x) can be obtained by multiplying the
Fourier series of f ( − x) by eiτx . So g(x) ∼∑∞

ν=0Aνe
i(τ−Λν )x . Since f (x) ≡ g(x)

for x ∈ R, f (x) ∼ ∑∞
ν=0Aνe

iΛνx and g(x) ∼ ∑∞
ν=0Aνe

i(τ−Λν )x have to be the
same. We conclude that τ −Λν is a Fourier exponent of f if Λν is.

From a result of Boas [12] (also see [80, Lemma 3]), one has |Λν | ≤ τ and
|τ −Λν | ≤ τ for each ν, which actually implies that 0 ≤ Λν ≤ τ .
f ′ and g′ are also uniformly almost periodic (see [11, Chap. 3]) with f ′(x) ∼∑∞
ν=0 Aν iΛνe

iΛνx and g′(x) ∼∑∞
ν=0Aν i(τ −Λν )ei(τ−Λν )x respectively. Once again

from Bohr’s Theorem, M(|f ′|2) =∑∞
ν=0 |Aν |2Λ2

ν and M(|g′|2) =∑∞
ν=0 |Aν |2(τ−

Λν)2. Since f (x) ≡ g(x), we have f ′(x) = g′(x) as well and hence M(|f ′|2) =
M(|g′|2). Thus

M(|f ′|2) = M(|f ′|2)+M(|g′|2)

2
=

∞∑

ν=0

(τ −Λν)2 +Λ2
ν

2
|Aν |2. (102)

It can be easily checked that for 0 ≤ Λν ≤ τ ,

τ 2

4
≤ (τ −Λν)2 +Λ2

ν

2
≤ τ

2

2
.
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So, we have

τ 2

4

∞∑

ν=0

|Aν |2 ≤
∞∑

ν=0

(τ −Λν)2 +Λ2
ν

2
|Aν |2 ≤ τ

2

2

∞∑

ν=0

|Aν |2. (103)

From (101), (102), and (103) we get

τ 2

4
M(|f |2) ≤ M(|f ′|2) ≤ τ

2

2
M(|f |2)

and the proof is complete.
f (z) := eiτ z/2 shows that the left-hand inequality is sharp, because M(|f |2) = 1,
f ′(x) = τ/2eiτx/2, and M(|f ′|2) = τ 2/4. So M(|f ′|2) = τ 2/4M(|f |2). To see
that the right-hand inequality is sharp, take f (z) := (1 + eiτ z)/2 and note that
M(|f ′|2) = τ 2/4, and M(|f |2) is limT→∞ (1/T )

∫ T
0 (1 + eiτx/2)dx = 1/2. So

M(|f ′|2) = τ 2/2 M(|f |2). �
For functions in F∨

τ which belong to L2 on the real line, Rahman and Tariq [81]
have proved the following

Theorem 71 Let f belong to F∨
τ such that

∫∞
∞ |f (x)|2dx <∞. Then

∫ ∞

−∞
|f ′(x)|2dx ≤ τ

2

2

∫ ∞

−∞
|f (x)|2dx (104)

The coefficient (τ 2/2) in (104) can not be replaced by a smaller number.
We observe that under the condition given in Theorem 71, one can even prove

that

τ 2

4

∫ ∞

−∞
|f (x)|2dx ≤

∫ ∞

−∞
|f ′(x)|2dx ≤ τ

2

2

∫ ∞

−∞
|f (x)|2dx. (105)

Then (105) can be seen as an extension of Theorem 46 for entire functions of
exponential type.

We end this section by stating an inequality recently obtained by Tariq [87]. It is
an Lp analogue of Theorem 48 on the half line (−∞, 0).

Theorem 72 Letf , which has all its zeros in the first and the third quadrants, belong
toF∨

τ . Further suppose thatf ∈ Lp on (−∞, 0). Then, for p ≥ 1

∫ 0

−∞
|f ′(x)|p dx ≤ τp Cp

∫ 0

−∞
|f (x)|p dx (106)

where Cp is as given in (73).
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4 Some Open Problems

In this section, we present some of the problems discussed in Sects. 1–3 of this
chapter, which we believe are still open. Since some of these problems have been
open for quite some time, there is a possibility that some of them might have already
been solved or a significant progress made toward their solution, of which we may
not be aware.

Also, it may be remarked that none of these problems are due to authors of this
chapter. In fact, these problems were told to the authors of this chapter by other
mathematicians and the authors only worked to solve these problems, and in some
cases, made some progress.

Problem 1 The problem of finding a sharp inequality analogous to the inequality
(20) due to Malik [60] when K < 1 is still open. The sharp inequality is not known
even for n = 2 except in the case where both the zeros lie on |z| = K . This problem
was told to us by Professor Q. I. Rahman.

Problem 2 We believe that the inequality (23) in Theorem 17, which is due to Govil
and Rahman [48] is not sharp, and thus the problem of finding a sharp inequality
would be of interest and is open.

Problem 3 The problem of obtaining sharp bound in Theorem 25, which is due
to Govil and Rahman [48], is open. The inequality obtained in Theorem 25 is not
best possible and the best possible inequality is not available even in the case when
p = 2. Similarly, the problem of obtaining a sharp inequality in Theorem 26 is also
open.

Problem 4 It was proposed by late Professor R. P. Boas, Jr. to obtain an inequality
corresponding to Bernstein’s inequality when the polynomial f has k (0 < k < n)
zeros inside the unit circle. In this connection, it was shown by Giroux and Rahman
[32] that for every positive integer n, there exists a polynomial f (z) of degree n
having a zero on |z| = 1, such that

max|z|=1
|f ′(z)| ≥ (n− c/n)max|z|=1

|f (z)|.
On the other hand for an arbitrary polynomial f (z) of degree n having a zero on

|z| = 1, they showed that

max|z|=1
|f ′(z)| ≤

(

n− 1− sin 1

4πn

)

max|z|=1
|f (z)|.

Also, S. Ruscheweyh, in 1986 has shown that there exist polynomials f (z) of
degree n having all but one zero on |z| = 1, such that

max|z|=1
|f ′(z)| = [An+ o(n)]max|z|=1

|f (z)|,
where A " 0.884, thus showing that even if we assume that all but one zeros lie
on |z| = 1, bound in the Bernstein’s inequality cannot really be very significantly
improved.
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Problem 5 The Bernstein’s inequality for the class of self-reciprocal polynomials
discussed in Sect. 2.3 is unknown for n ≥ 3. If f is a self-reciprocal polynomial, we
only know that

(n− 1)max|z|=1
|f (z)| ≤ max

|z|=1
|f ′(z)| ≤

(

n− 1

2
+ 1

2(n+ 1)

)

max
|z|=1

|f (z)|

which itself is quite remarkable, as half of its zeros are in the unit disk. The problem
of obtaining Bernstein type inequality for the the class of self-reciprocal polynomials
was proposed to us by Professor Q. I. Rahman.

Problem 6 Although, Theorem 57 answers question raised by late Professor R. P.
Boas, Jr. in the case when f (x + iy) �= 0 for y > k where k ≤ 0, but the case when
f (x + iy) �= 0 for y > k where k > 0 is still completely unsolved.

Problem 7 For entire functions of exponential type satisfying the condition f (z) ≡
eiτ zf (− z), the result of Rahman and Tariq (Theorem 71) gives an Lp analogue of
Theorem 53 for p = 2. Recently, Tariq [87] has found an Lp inequality on the half
line under certain restrictions on the zeros of f . However an Lp inequality for this
class in full generality is still an open problem.

Problem 8 Let f (z) := ∑n
ν=0 cνz

ν , cn �= 0 be a polynomial of a degree n having
all its zeros in the open-unit disk. We define

Mp(f ; R) :=
(

1

2π

∫ π

−π

∣
∣f
(
Reiθ

)∣
∣p dθ

)1/p

(p �= 0 ; R ≥ 1) . (107)

This is the usual definition of the mean Mp(f ; R) , p > 0 when the zeros of f
are not restricted to lie in the open unit disk; the integral in (107) may not exist for
p ≤ −1/n if f has zeros on |z | = R.

It is known (see [5, Theorem 1] or [64, p. 686, Theorem 3.1.21]) that if f (z) is a
polynomial of degree n having all its zeros in the open-unit disk {z : |z| < 1} such
that |f (z)| ≥ μ for |z| = 1, then

max|z|=1
|f ′(z)| ≥ μn. (108)

In view of the fact (for example, see [54, p. 143 in § 193] that Mp(f ; 1) →
min|z|=1|f (z)| andMp(f ′ ; 1) → min|z|=1|f ′(z)| as p→−∞, for any given p < 0

the problem of obtaining the best possible bound for Mp(f ′ ; 1)
Mp(f ; 1) , where f is a polyno-

mial of degree n having all its zeros in |z| < 1 will obviously be of interest, because
it will, in particular, generalize the above inequality (108). This problem was also
proposed to us by Professor Q. I. Rahman.
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On Approximation Properties
of Szász–Mirakyan Operators

Vijay Gupta

Abstract In the present chapter, we present approximation properties of the well-
known Szász-Mirakyan operators. These operators were introduced in the middle
of last century and because of their important properties, researchers continued to
work on such operators and their different modifications. Although there are several
modifications of the Szász-Mirakyan operators available in the literature viz. integral
modifications due to Kantorovich, Durrmeyer and mixed operators, but here we
discuss only the discrete modifications of these operators which were proposed by
several researchers in last 60 years. In the recent years, overconvergence properties
were studied by considering the complex version of Szász-Mirakyan operators. In
the last section, we consider complex Szász-Stancu operators and establish upper
bound and a Voronovskaja type result with quantitative estimates for these operators
attached to analytic functions of exponential growth on compact disks.

Keywords Bernstein polynomials · Divided differences · Linear combinations ·
Asymptotic expansion · Rate of convergence · q integer ·

1 Introduction

In the middle of last century, O. Szász [28], J. Favard [8] and G. M. Mirakyan [22]
(also spelled Mirakian or Mirakjan) generalized the Bernstein polynomials to an
infinite interval and proposed an important operators for f ∈ C[0,∞), x ∈ [0,∞)
and n ∈ N as

Sn(f , x) =
∞∑

k=0

e−nx
(nx)k

k! f
(
k

n

)

. (1)

Szász [28] showed that the operator (1) converges uniformly to f (x), if f (t) is
bounded on every finite subinterval of [0,∞), equal to O(t k) for some k > 0 as
t →∞ and is continuous at a point t = x.
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Mirakyan [22] considered the partial sum of the operators Sn(f , x) as

Sn,m(f , x) =
m∑

k=0

e−nx
(nx)k

k! f
(
k

n

)

and he proved that lim
n→∞ Sn,m(f , x) = f (x) uniformly in [0, r ′], if lim

n→∞
m

n
= r <

r ′ > 0.
In the year 1977, Hermann [15] proved the following result and showed that the

operatorsSn(f , x) does not converge iff (t) ≥ tφ(t).t , whereφ(t) is any monotonically
increasing function such that lim

t→∞φ(t) = ∞.
Theorem 1 [15] If f is continuous on [0,∞) and is equal toO(eαx) for some α > 0
as t →∞, then for all A > 0, we have

Sn(f , x)− f (x) = O(ω2A(f , n−1/2)), x ∈ [0,A],

where
ωA(f , δ) = sup

x∈[0,A]
{|f (x + t)− f (x)| : |t | ≤ δ}.

Totik [29] represented the Szász operators in the form of difference function as

Sn(f , x) :=
∞∑

k=0

(− nx)k

k!
∞∑

k=0

f

(
k

n

)
(nx)k

k! =
∞∑

k=0

Δk1/n(f ; 0)
(nx)k

k! ,

where

Δkh(f ; x) =
k∑

i=0

(− 1)k−i
(
k

i

)

f (x + ih).

If f is of exponential growth on [0,∞), then Lupas [19] observed that the Szász-
Mirakyan operators can be written in terms of divided differences, i.e.

Sn(f , x) =
∞∑

k=0

[0, 1/n, . . ., k/n; f ]xk ,

where [0, 1/n, · · · , j/n; f ] denotes the divided difference of f on the knots
0, 1/n, · · · , j/n. The quantitative estimates in approximation of Szász-Mirakyan
operators were also established by several researchers. We mention below some of
the important results on these operators: Stancu [25] obtained the following result
on uniform norm, using probabilistic methods:

Theorem 2 [25] Let f ∈ C1[0, a], a > 0, then for n ∈ N, we have

||Sn(f , .)− f || ≤ (a +√a).
1√
n
ω(f ′, 1/

√
n).

Singh [24] obtained the following sharp estimate in simultaneous approximation:
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Theorem 3 [24] Let f ∈ Cr+1[0, a], a > 0, then for n ∈ N, we have

||S(r)
n (f , .)− f (r)|| ≤ r

n
||f (r+1)|| +Kn,r .

1√
n
ω(f (r+1), 1/

√
n),

where Kn,r = [(a/2)+ (r/2
√
n)+ (r2/4n)((r2/4n)+ a)1/2.(1+ (r/2

√
n))].

ByCB[0,∞), we mean the space of all real valued continuous bounded functions
f defined on [0,∞). Totik [29] obtained the following equivalence results for the
Szász operators. The modified modulus of smoothness considered in [29] is defined
as

ω(δ) = sup
0≤x<∞
0<h≤δ

|Δ2
h
√
x
(f ; x)|, δ > 0,

for an absolute constant K , ω(λδ) ≤ Kλ2ω(δ), λ ≥ 1.

Theorem 4 [29] Let f ∈ CB[0,∞), the following are equivalent:
(i) Sn(f , x)− f (x) = o(1), n→∞.
(ii) ω(δ) = o(1), δ→ 0.
(iii) f (x + h√x)− f (x) = o(1), as h→ 0 uniformly in x.
(iv) the function f (x2) is uniformly continuous.

Totik showed that equivalence of (ii) ⇔ (i) holds even if f ∈ CB [0,∞) is replaced
by weaker assumption on f ∈ C[0,∞),ω(1) <∞.
Theorem 5 [29] Let 0 < α ≤ 1. For f ∈ CB[0,∞), the following are equivalent
(i) Sn(f , x)− f (x) = o(n−α).
(ii) ω(δ) = O(δ2α).

Kasana and Arawal [17] extended the studies and estimated a result for linear com-
binations of Szász operators. The kth order linear combinations Sn(f , k, x) of the
operators Sdj n(f , x), discussed in [21] are given by

Sn(f , k, x) =
k∑

j=0

C(j , k)Sdj n(f , x),

where

C(j , k) =
k∏

i=0i �=j

dj

dj − di , k �= 0;C(0, 0) = 1

and d0, d1, . . ..., dk are arbitrary but fixed distinct positive integers. In an alternate
form, the linear combinations Sn(f , k, x) can be represented in the following form.

Sn(f , k, x) = 1

$

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Sd0n(f , x) d−1
0 d−2

0 . . .. . ... d−k0

Sd1n(f , x) d−1
1 d−2

1 . . .. . .. d−k1

.. .. .. .. ..

.. .. .. .. ..

Sdkn(f , x) d−1
k d−2

k . . .. . ... d−kk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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where $ is the Vandermonde determent obtained by replacing the operator column
of the above determent by the entries 1. The following error estimation was done in
[17].

Theorem 6 [17] Let f be bounded on every finite subinterval of [0,∞) and f (t) =
O(tαt ) as t → ∞, for some α > 0. If f (r+1) ∈ C < a, b >, then for n sufficiently
large ∣

∣
∣
∣S(r)
n (f , k, .)− f (r)

∣
∣
∣
∣ ≤ C1n

−1/2ω(f (r+1), n−1/2)+ C2n
−(k+1),

where C1 = C1(k, r),C2 = C2(k, r , f ) and ω(f (r+1), δ) is the modulus of continuity
of f (r) on < a, b >, which denotes an open interval in [0,∞) continuing the closed
interval [a, b].

2 Asymptotic Expansion for Szász-Mirakyan Operators

In the year 2007, Abel et al. [1] established an asymptotic expansion of the
Szász-Mirakyan operators. They took advantage of Stirling numbers to obtain the
asymptotic expansion. Usually the Stirling numbers of first s(n, k) are defined by the
equation

xn =
n∑

k=0

s(n, k)xk , n = 0, 1, 2, . . .

where xk = x(x − 1) . . . (x − k + 1), x0 = 1, is the falling factorial.
Also the Stirling numbers of second kind S(n, k) can be computed from the

generating relation

xn =
n∑

k=0

S(n, k)xk , n = 0, 1, 2, . . .

It was given in [7] that Stirling numbers of second kind possess the representations

S(n, k) = 1

k!
k∑

j=0

(− 1)k−j
(
k

j

)

jn

and

S(n, n− k) =
2k∑

j=k

(
n

j

)

S2(j , j − k),

where S2 are the associated Stirling numbers of second kind defined by the double
generating functions

∑

n,k≥0

S2(n, k)tnuk/n! = exp (u(et − 1− t))).
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It was observed that after simple computation

S2(n, k) = 1

k!
k−1∑

j=0

(− 1)j
(
k

j

) j∑

l=0

(
j

l

)
n!

(n− l)! (k − j )n−l , (n ≥ k)

otherwise S2(n, k) = 0.Abel et al. [1] derived the following asymptotic expansion:

Theorem 7 [1] Let q ∈ N0. Assume that f ∈ Cq[0,∞) and f (q) is uniformly
continuous. Then, the Szász-Mirakyan operators possess the representation

Sn(f , x) =
q∑

k=0

n−k
max{q,2k}∑

s=k

f (s)(x)

s! xs−kS2(s, s − k)+ R[q]
n (x).

The remainder satisfies the estimate

∣
∣R[q]
n (x)

∣
∣ ≤ Mq.1+ x

q+1

nq/2
ω(f (q), n−1/2),

with a constantMq independent of f.

3 Jain Modification of Szász-Mirakyan Operators

In the year 1972, Jain [16] proposed a new operator with the help of a Poisson
distribution. He considered its convergence properties and gave its degree of approx-
imation. The special case of the operators of Jain turns out to be Szász-Mirakyan
operators. The operators are defined as

Sβn (f , x) =
∞∑

k=0

wβ(k, nx)f (k/n),

where wβ(k,α) = α(α + kβ)k−1e−(α+kβ)/k! with 0 < α < ∞ and 0 ≤ β < 1. The
parameter β may depend on the natural number n. It is easy to see that for β = 0,
these operators reduce to the Szász-Mirakjan operators.

Theorem 8 [16] If f ∈ C[0,∞) and β → 0 as n → ∞, then the sequence
{Sβn (f , x)} converges uniformly to f (x) in [a, b], where 0 ≤ a < b <∞.
Theorem 9 [16] If f ∈ C[0, λ] and 1 > β ′/n ≥ β ≥ 0 then

∣
∣Sβn (f , x)− f (x)

∣
∣ ≤ [1+ λ1/2(1+ λββ ′)1/2]ω(n−1/2),

where ω(δ) = sup |f (x2) − f (x1)|; x1, x2 ∈ [0, λ], δ being a positive number such
that |x2 − x1| < δ.
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Theorem 10 [16] If f ∈ C ′[0, λ] and 1 > β ′/n ≥ β ≥ 0 then
∣
∣Sβn (f , x)− f (x)

∣
∣ ≤ λ1/2(1+ λββ ′)1/2[1+ λ1/2(1+ λββ ′)1/2]ω−1/2

1 )/
√
n,

where ω1(δ) is the modulus of continuity of f ′.
We may observe here that not much work on these operators has been done as of

its complicated behavior.

4 Szász-Chlodovsky Operators

The Szász-Chlodovsky operators considered in 1974 by Stypińki [26] are defined as

Sn(f , x,hn) =
∞∑

v=0

sn,v

(
x

hn

)

f

(
vhn
n

)

,

wheref denotes a function defined on 〈0,∞) and bounded on every segment 〈0,h〉 ⊂
〈0,∞) and sn,v(x) = e−nx (nx)v

v! , v = 0, 1, 2, . . . n ∈ N {hn}, n = 1, 2, . . . denotes a
sequence of positive numbers increasing to infinity. It was observed in [26] that the
inequality 0 ≤ z ≤ 3

2

√
nt , t ∈ 〈0,h〉,h > 0 implies that

∑

|v−nt |≥2z
√
nt

sn,v(t) ≤ 2ze−z2
.

Also, if Ln,4(t) =∑∞
v=0 (v− nt)4sn,v(t), then Ln,4(t) = 3(nt)2 + nt.

The following Voronovskaja type asymptotic formula was proved by Stypińki
[26].

Theorem 11 [26] If

1. hn > 0, lim
n→∞hn = ∞, lim

n→∞
hn

n
= 0.

2. lim
n→∞M(hn)

n

hn
e−α

n

hn
= 0 for every α > 0.

3. f ′′(x) exists at a fixed point x ≥ 0, then

lim
n→∞

n

hn
[ |Sn(f , x,hn)− f (x)| ] = 1

2
xf ′′(x).

5 Rate of Convergence

The important topic in the last thirty years is to obtain the rate of convergence for
function of bounded variation. In this direction, Cheng [6] first estimated the rate of
convergence for Szász-Mirakyan Operators and proved the following result.
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Theorem 12 [6] Let f be a function of bounded variation on every finite subinterval
of [0,∞) and letf (t) = O(tαt ) for someα > 0 as t →∞. If x ∈ (0,∞) is irrational,
then for n sufficiently large, we have

∣
∣
∣
∣Sn(f , x)− (f (x + )+ f (x − ))

2

∣
∣
∣
∣ ≤

(3+ x)x−1

n

n∑

k=1

V
x+x/√k
x−x/√k (gx)

+ O(x−1/2)

n1/2
|f (x + )− f (x − )|

+O(1)(4x)4αx(nx)−1/2
( e

4

)n
x,

where V ba (g) is the total variation of g on [a, b] and the auxiliary function is defined
by

gx(t) =

⎧
⎪⎪⎨

⎪⎪⎩

f (t)− f (x − ), 0 ≤ t < x
0, t = x,

f (t)− f (x + ), x < t <∞
Sun [27] gave an estimate in simultaneous approximation on functions of bounded

variation with growth of orderO(tαt ).He considered the following class of functions
of generalized bounded variation as

B (α)
r = {f : f (r−1) ∈ C[0,∞), f (r)

± (x) exists everywhere and are bounded

on every finite subinterval of [0,∞) and f (r)
± (t) = O(tαt ), (t →∞)

for some α > 0},
where f (0)

± (x) means f (x ± ). Sun [27] obtained the following estimates for the rate
of convergence:

Theorem 13 [27] If f ∈ B (α)
r , r ∈ N

⋃{0}, then for n ≥ 3+ 4r2, we have
∣
∣
∣
∣
∣
S(r)
n (f , x)− (f (r)

+ (x)+ f (r)
− (x))

2

∣
∣
∣
∣
∣
≤ (73Δ(x)/n)

n∑

k=1

wx(
√
Δ(x)/k)

+ 73
√
Δ(x)/nwx(x + 3)+O(e−cn)

+ |f (r)
+ (x)− f (r)

− (x)|/(1+√nx),

where the sign O is independent of f and n but depends on x and α and wx(t) =
wx(hr , t) is the point-wise modulus of continuity of hr at x, Δ(x) = max{1, x} and
hr is defined as

hr (x) =

⎧
⎪⎪⎨

⎪⎪⎩

f (r)(t)− f (r)
− (x), x ≤ t < 0

0, t = x
f (r)(t)− f (r)

+ (x), 0 ≤ t <∞
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Theorem 14 [27] If f ∈ B(α)
r+1, then for x ∈ [0,A](A > 0) and n ≥ 4r2, we have

∣
∣S(r)
n (f , x)− f (r)(x)

∣
∣ ≤ (21Δ(x)/n)

n∑

k=1

wx(
√
Δ(x)/k)

√
Δ(x)/k

+ (3/2)|f (r+1)
+ (x)− f (r+1)

− (x)|
+√Δ(x)/n+O(1/n),

where the sign O is independent of x, n and f but depends on α and A.
He remarked that for continuous derivatives his estimate does not include the

case f ′ ∈ Lip 1 on every finite subinterval of [0,∞). He obtained in such case
S(r)
n (f , x) − f (r)(x) = O( log n/n), r = 0, 1, 2, . . . which is worse than the usual

order of approximation O(1/n). Sun also put up a question of whether a unified
approach can be developed which may improve the estimate for the class f ′ ∈ Lip 1
on every finite subinterval of [0,∞).

Zeng and Piriou [33] improved the estimate of Theorem 12 by considering a more
general class of functions than BVloc[0,∞), namely

Iloc,B = {f : f is bounded in every finite subinterval of [0,∞)}.
Set

Ω(x, f , λ) = sup
t∈[x−λ,x+λ]

|f (t)− f (x)|,

where f ∈ Iloc,B , x ∈ [0,∞) is fixed and λ ≥ 0.

Theorem 15 [33] Assume that Iloc,B and f (t) = O(tαt ) for some α > 0 as t →∞.
If f (x + ) and f (x − ) exist at a fixed point x ∈ (0,∞), then for n sufficiently large,
we have

∣
∣
∣
∣Sn(f , x)− f (x + )+ f (x − )

2
− v(f , n, x)√

2πnx

∣
∣
∣
∣

≤ 5+ x
nx + 1

n∑

k=1

Ω(x, gx , x/
√
k)+O(n−1),

where gx(t) is defined as in Theorem 12, O(n−1) depends on x and

v(f , n, x) = (f (x + )− f (x − ))(nx − [nx]− 2/3)+ (f (x)− f (x − ))δ[nx](nx),

[nx] denotes the greatest integer not exceeding nx.
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6 Rate of Convergence For Szász-Bézier Operators

For α > 0, Zeng [32] proposed the Bézier variant of Szász-Mirakyan operators as

Sn,α(f , x) =
∞∑

k=0

Qαn,k(x)

(
k

n

)

,

where Qαn,k(x) = J αn,k(x) − J αn,k+1(x), Jn,k(x) = ∑∞
j=k sn,j (x) with the Szász basis

function given by sn,k(x) = e−nx (nx)k

k! . It was observed in [32] that

1. Jn,k(x)− Jn,k+1(x) = sn,k(x), k = 0, 1, 2, . . .
2. J ′n,k(x) = nsn,k−1(x), k = 1, 2, 3, . . .
3. Jn,k(x) = n ∫ x0 sn,k−1(u)du, k = 1, 2, 3, . . .
4.
∑∞
k=1 Jn,k(x) = n ∫ x0

∑∞
k=1 sn,k−1(u)du = nx

5. Jn,0(x) > Jn,1(x) > . . . > Jn,k(x) > Jn,k+1(x) > . . .

and for every natural number k, 0 ≤ Jn,k(x) < 1 and Jn,k(x) increase strictly on
[0,∞). The following convergence theorems were studied.

Theorem 16 [32] Let f be a function of bounded variation on every finite subinter-
val of [0,∞) and let f (t) = O(eβ.t ) for some β > 0 as t →∞. Then, for x ∈ [0,∞)
and n sufficiently large, we have

∣
∣
∣
∣Sn,α(f , x)− 1

2α
f (x + )−

(

1− 1

2α

)

f (x − )

∣
∣
∣
∣

≤ (3+ x)α

nx + 1/2

n∑

k=1

V
x+x/√k
x−x/√k (gx)

+ (0.8
√

1+ 3x + 1/2)α√
nx + 1

|f (x + )− f (x − )|

+ α/
√
α2π + 1√
nx + 1

|f (x)− f (x − )|

+O(1)
α(2x + 1)(2x+1)β

√
nx + 1

( e

4

)nx
,

where

εn(x) =
⎧
⎨

⎩

1, if x = k′/n for some k′ ∈ N

0, if x �= k/n for all k ∈ N

when x = 0, we set 1/2αf (x + ) + (1 − 1/2α)f (x − ) = f (0). Also V ba (gx) is the
total variation of gx on [a, b].



256 V. Gupta

Theorem 17 [32] Let f ∈ BV [0,∞), x ∈ [0,∞) and f be normalized at x. Then,
for n ≥ 1, we have

∣
∣
∣
∣Sn,α(f , x)− 1

2α
f (x + )−

(

1− 1

2α

)

f (x − )

∣
∣
∣
∣

≤ (2x + 1)α

n

n∑

k=0

VIk (gx)+
α.min{2x + 2, 2

√
2+ 2}√

nx + 1
|f (x + )− f (x − )|,

where I0 = [0,∞), Ik = [x − 1/
√
k, x + 1/

√
k] ∩ [0,∞), k = 1, 2, . . . , n.

7 q Szász-Mirakyan Operators

The applications of q calculus has been a new area for last 25 years. Several new
operators were introduced and their convergence behaviors were discussed. We refer
the readers to the recent book by Aral-Gupta-Agarwal [5] in which a collection of
some of the papers is presented. We first mention here some basic definitions. Given
the value of q > 0, we define the q-integer [n]q by

[n]q =
⎧
⎨

⎩

1−qn
1−q , q �= 1

n, q = 1
,

for n ∈ N. The q factorial is defined as

[n]q ! =
⎧
⎨

⎩

[n]q[n− 1]q . . . [1]q , n = 1, 2, . . .

1 n = 0.
,

for n ∈ N.

We define the q-binomial coefficients by
⎡

⎣
n

k

⎤

⎦

q

= [n]q !
[k]q ![n− k]q ! , 0 ≤ k ≤ n,

for n, k ∈ N.A q-analogue of classical exponential function ex is defined as

eq (x) =
∞∑

k=0

xk

[k]q ! =
1

((1− q)x; q)∞
, |x| < 1

1− q , |q| < 1

Another q-analogue of classical exponential function is given by

Eq (x) =
∞∑

k=0

q
k(k−1)

2
xk

[k]q ! = (−(1− q)x; q)∞ x ∈ R, |q| < 1
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where (x; q)∞ =∏∞
k=1 (1− xqk−1). It is observed that

eq (x)Eq (−x) = Eq (x) eq (−x) = 1.

For 0 < q < 1, Aral [3] defined new operators that we call the q-Szász-Mirakyan
operators as

Sqn (f , x) :=
∞∑

k=0

s
q

n,k(x)f

(
[k]qbn
[n]q

)

= Eq
(

−[n]q
x

bn

) ∞∑

k=0

f

(
[k]qbn
[n]q

) (
[n]qx

)k

[k]q ! (bn)k
,

where 0 ≤ x < αq (n), αq (n) := bn
(1−q)[n]q

, f ∈ C (R0) and (bn) is a sequence of
positive numbers such that lim

n→∞bn = ∞.We observe that these operators are pos-

itive and linear. Furthermore, as a special case if q = 1, we recapture the classical
Szász-Mirakyan operators. Depending on the selection of q, the q-Szász-Mirakyan
operators are more flexible than the classical Szász-Mirakyan operators while retain-
ing their approximation properties. A Voronovskaya-type relation for these operators
is as follows:

Theorem 18 [3] Let f ∈ C(R0) be a bounded function and (qn) denote a sequence
such that 0 < qn < 1 and qn → 1 as n→ ∞. Suppose that the second derivative
D2
qn
f (x) exists at a point x ∈ [0, αqn (n)) for n large enough. If lim

n→∞
bn

[n]qn
= 0, then

lim
n→∞

[n]qn
bn

(
Sqnn (f , x)− f (x)) = 1

2
x lim
qn→1

D2
qn
f (x) .

Let Bρ(R0) be the set of all functions f satisfying the condition |f (x)| ≤
Mfρ(x), x ∈ R0 with some constantMf depending only on f.We denote byCρ(R0)
the space of all continuous functions belonging to Bρ(R0).Also

C0
ρ (R0) =

{

f ∈ Cρ(R0) : lim
x→∞

|f (x)|
ρ(x)

<∞
}

.

The following result is in the weighted spaces.

Theorem 19 [3] Let (qn) denote a sequence such that 0 < qn < 1 and qn → 1 as
n→∞. For any function f ∈ C0

2 m (R0) , if lim
n→∞

bn
[n]qn

= 0, then

lim
n→∞ sup

0≤x≤αqn (n)

∣
∣S
qn
n (f , x)− f (x)∣∣

1+ x2 m
= 0.

Moreover, for n large enough

sup
0≤x≤αqn (n)

∣
∣S
qn
n (f , x)− f (x)∣∣

1+ x2 m
≤
(

2+√2
)
ω

(

f ;

√
bn

[n]qn

)

,

where ω (f ; ·) is the classical modulus of continuity.
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Aral [3] also gave two representations of rth q-derivative of the q-Szász-Mirakyan
operators in terms of the q-differences and the divided differences. In this continua-
tion, Aral and Gupta [4] extended the studies and obtained some important properties
for the q-Szász-Mirakyan operators. We mention some of the results below.

Theorem 20 [4] Let Drqf ∈ C[0,∞) for some r and q, r ≥ 0 and 0, q < 1. If
m ≤ Drq(f )(x) ≤ M for x ∈ [0,∞) then there exist, q̂ ∈ (0, 1) such that, for all
q ∈ (̂q, 1) and for x ∈ [0, bn/(1− qn)), the inequality

mqr(r−1)/2

2r
< Drq (S

q
n (f , x)) ≤ qr(r−1)/2M

holds for sufficiently large n.

Theorem 21 [4] Let bn = o([n]q ) as n→ ∞ and q → 1. If Drq(f ) ∈ Cx2 [0,∞)
for some integer r , then for all x ∈ [0,A], we have

lim
n→∞
q→ 1

Drq(S
q
n (f , x)) = lim

q→1
Drq(f )(x)

Theorem 22 [4] Let r ≥ 0 and s ≥ 1 be natural numbers. Suppose qn → 1 as
n→∞. If bn = o([n]qn ) as n→∞, then

lim
n→∞

[n]qn
bn

[

Drqn(S
qn
n (t r+s , x))− [r + s]qn

[s]qn !
q (r+s)(r+s−1)/2
n xs

]

≤ (r + s − 1)!
(r − 1)!

(r + s − 1)(r + s)
2

xs−1.

The following theorem gives a Stancu-type remainder of the q- Szász-Mirakyan
operators, which reduces to the formula for remainder of classical Szász-Mirakjan
operators.

Theorem 23 [4] If x ∈ (0, bn/(1− qn)) \
{

[j ]q bn
[n]q

: j = 0, 1, 2, . . .
}

, then

Sqn (f , x)− f (x) =
x
(

1+ (1− qn) x
bn

)
bn

[n]q

×
∞∑

j=0

f [x,
[j ]qbn
[n]q

,
[j + 1]qbn

[n]q
]sqn,j (qx).

Theorem 24 [4] If f (x) is convex on [0,∞), then

Sqn (f , x) > Sq
n
⊕
bn

(f , x),
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for all n ≥ 0 and x ∈ [0, bn/(1 − qn)) such that 0 < q < 1. If f is linear, then
S
q
n (f , x) = Sq

n
⊕
bn

(f , x), where

(
x
⊕

y
)j =

j∑

n=0

⎡

⎣
n

j

⎤

⎦

q

xnyj−n, j = 0, 1, 2, . . .

It was pointed out in [4] that above theorem states whether or not Sqn (f , x)
decreases when f is convex. This is still an open problem.

8 Modified Szász-Mirakjan Operators

In the last decade, Walczak [30] defined Szász-Mirakjan Operators as

Sn(f ;m, x) := 1

g((nx + 1)2;m)

∞∑

k=0

(nx + 1)2k

(k +m)! f
(
k +m
n(nx + 1)

)

, (2)

where x ∈ [0,∞) and g(t ;m) =
∞∑

k=0

t k

(k +m)! , t ∈ [0,∞).

Walczak [30] considered the space Cp,p ∈ N0, associated with the weight func-
tion w0(x) := 1, wp(x) := (1 + xp)−1,p ≥ 1 and composed of all real-valued
functions on [0,∞), for which wp(x)f (x) is uniformly continuous and bounded on
[0,∞). The norm on Cp is defined as ||f ||p := supx∈[0,∞) wp(x)|f (x)|. In [30], it
was proved that if f ∈ Cp, then for the operators (2), one has the following estimate:

||Sn(f ;m, .)− f ||p ≤ M0ω

(

f ;Cp;
1

n

)

,m, n ∈ N,

where M0 is an absolute constant and the modulus of continuity ω(f ;Cp; t) :=
sup0≤h≤t ||f (x + h) − f (x)||p, t ∈ [0,∞). In particular, if f ∈ C1

p := {f ∈ Cp :
f ′ ∈ Cp},p ∈ N0, then

||Sn(f ;m, .)− f ||p ≤ M1

n
,

whereM1 is an absolute constant.
It was observed in [31] that the Szász-Mirakjan operators are defined in terms of

a sample of the given function f on the points k/n, called knots. For the operators
Sn(f ;m, x), the knots are the numbers (k + m)/(n(nx + 1)) for fixed m. Thus, the
question arises, whether the knots (k+m)/(n(nx+1)) cannot be replaced by a given
subset of points, which are independent of x, provided this will not change the degree
of convergence. In connection with this question, Walczak and Gupta [31] introduced
the operators Ln(f ;p; r; s, x) for f ∈ Bp,p ∈ N, which is a class of all real valued



260 V. Gupta

continuous functions f (x), on [0,∞) for which wp(x)xkf (k)(x), k = 0, 1, 2, . . . ,p
is continuous and bounded on [0,∞) and f (p)(x) is uniformly continuous on [0,∞).

Ln(f ;p; r; s, x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1
Ir (nsx)

∞∑

k=0

(nsx)2k+r

22k+r k!Γ (r + k + 1)

p∑

j=0

f (j )
(

2k
ns

) (
x − 2k

ns

)j

j ! , x > 0

f (0), x = 0

(3)

where Ir is the modified Bessel’s function

Ir :=
∞∑

k=0

t2k+r

22k+r k!Γ (r + k + 1)
.

Walczak and Gupta [31] estimated the rate of convergence of the operators
Ln(f ;p; r; s, x).

Theorem 25 Fix p ∈ N0, r ∈ [0,∞) and s > 0. Then, there exists a positive
constantM ≡ M(p, r , s) such that for f ∈ B2 p+1, we have

||Ln(f ; 2 p + 1; r; s, .)− f ||2 p+1 ≤ Mω
(
f (2 p+1);C0; n−s

)
.

Theorem 26 Fix p ∈ N0, r ∈ [0,∞) and s > 0. Then, there exists a positive
constantM ≡ M(p, r , s) such that for f ∈ B2 p+2, we have

||Ln(f ; 2 p + 2; r; s, .)− f ||2 p+2 ≤ M(p, r , s)

ns
||f (2 p+2)||0.

9 Complex Szász-Mirakjan-Type Operator

The convergence of the Bernstein polynomials in the complex plane was initiated in
[18]. In the recent book [10], S. G. Gal collected and presented theVoronovskaja-type
results with quantitative estimates for several operators like the complex Bern-
stein, complex q-Bernstein, complex Baskakov, complex Favard-Szász-Mirakjan,
complex Bernstein–Kantorovich, complex Balázs-Szabados and complex Stancu-
Kantorovich operators attached to analytic functions on compact disks and the exact
order of simultaneous approximation for such complex operators.

Very recently Gal and Gupta (see [11–13]) and Mahmudov-Gupta [20] established
quantitative results for different versions of well-known Bernstein–Durrmeyer oper-
ators in complex domain. Agarwal and Gupta [2] extended the studies and obtained
results for the q analogue of certain Bernstein–Durrmeyer operators in complex do-
main. In order to make the convergence faster to a function being approximated, very
recently Ren and Zeng [23] introduced a kind of complex modified q-Durrmeyer type
operators which can reproduce constant and linear functions. They obtained the order
of simultaneous approximation and a Voronovskaja-type result with a quantitative
estimate for the modified complex q-Durrmeyer type operators attached to analytic
functions on compact disks.
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Recently Gal [9] obtained quantitative estimate in the Vornonvskaja’s theorem
and the exact bounds in the approximation of analytic functions without exponential
growth by complex Favard-Szász-Mirakjan operators. He considered the function
f : [0,∞) → C bounded on [0,∞). In [9], the class DR = {z ∈ C : |z| < R} was
considered.

Theorem 27 [9] Let DR = {z ∈ C : |z| < R} be with 2 < R < +∞ and
suppose that f : [R,+∞) ∪ DR → C is bounded on [0,+∞) and analytic in DR

i.e. f (z) =∑∞
k=0 ckz

k , for all z ∈ DR.

(i) Let 1 ≤ r < R
2 be arbitrary fixed. Then, for all |z| ≤ r and n ∈ N , we have

|Sn(f , z)− f (z)| ≤ Cr ,f
n

,

where Cr ,f = 6
∑∞
k=2 |ck|(k − 1)(2r)k−1 <∞.

(ii) For the simultaneous approximation by complex Favard-Szász-Mirakjan oper-
ators, we have: if 1 ≤ r < r1 < R

2 are arbitrary fixed, then for all |z| ≤ r and
n,p ∈ N,

|S(p)
n (f , z)− f (p)(z)| ≤ p!r1Cr1,f

n(r1 − r)p+1
,

where Cr1,f is as given in (i) above.

Theorem 28 [9] Let DR = {z ∈ C : |z| < R} be with 2 < R < +∞ and
suppose that f : [R,+∞) ∪ DR → C is bounded on [0,+∞) and analytic in DR

i.e. f (z) =∑∞
k=0 ckz

k , for all z ∈ DR.

If 1 ≤ r < R
2 be arbitrary fixed. Then, for all |z| ≤ r and n ∈ N , we have

∣
∣
∣Sn(f , z)− f (z)− z

2n
f ′′(z)

∣
∣
∣ ≤ Mr ,f |z|

n2
,

whereMr ,f = 26
∑∞
k=3 |ck|(k − 1)2(k − 2)(2r)k−3 <∞.

Theorem 29 [9] Let DR = {z ∈ C : |z| < R} be with 2 < R < +∞ and
suppose that f : [R,+∞) ∪ DR → C is bounded on [0,+∞) and analytic in DR

i.e. f (z) =∑∞
k=0 ckz

k , for all z ∈ DR.

If 1 ≤ r < R
2 be arbitrary fixed and if f is not a polynomial of degree ≤ 1, then

we have

||Sn(f )− f ||r ≥
Cr (f )

n
, n ∈ N,

where the constantCr (f ) depends only onf and r and ||f ||r = max{|f (z)| : |z| ≤ r}.
Also, with exponential growth, Gal [10] estimated the quantitative estimates for

overconvergence of Favard-Szász-Mirakjan operators.
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Theorem 30 [10] Let DR = {z ∈ C : |z| < R} be with 1 < R < +∞ and suppose
that f : [R,+∞) ∪ DR → C is continuous in (R,+∞) ∪ DR, analytic in DR , i.e.
f (z) = ∑∞

k=0 ckz
k , for all z ∈ DR, and suppose that there exist M ,C,B > 0 and

A ∈ ( 1
R

, 1), with the property that |ck| ≤ MAk

k! , for all k = 0, 1, . . ., (which implies
|f (z)| ≤ MeA|z| for all z ∈ DR) and |f (x)| ≤ CeBx , for all x ∈ [R,+∞).

(i) Let 1 ≤ r < 1
A

. Then, for all |z| ≤ r and n ∈ N , we have

|Sn(f , z)− f (z)| ≤ Cr ,A
n

,

where Cr ,A = M
2r

∑∞
k=2 (k + 1)(rA)k <∞;

(ii) If 1 ≤ r < r1 < 1
A

are arbitrary fixed, then for all |z| ≤ r and n,p ∈ N,

|S(p)
n (f )(z)− f (p)(z)| ≤ p!r1Cr1,A

n(r1 − r)p+1
,

where Cr1,A is given as at the above point (i).

Theorem 31 [10] Let DR = {z ∈ C : |z| < R} be with 1 < R < +∞ and suppose
that f : [R,+∞) ∪ DR → C is continuous in (R,+∞) ∪ DR, analytic in DR , i.e.
f (z) = ∑∞

k=0 ckz
k , for all z ∈ DR, and suppose that there exist M ,C,B > 0 and

A ∈ ( 1
R

, 1), with the property that |ck| ≤ M Ak

(2k)! , for all k = 0, 1, . . ., (which implies

|f (z)| ≤ MeA|z| for all z ∈ DR) and |f (x)| ≤ CeBx , for all x ∈ [R,+∞). Suppose
that 1 ≤ r < 1

A
.

(i) Then, following upper estimate in the Voronovskaja-type formula holds

∣
∣
∣Sn(f , z)− f (z)− z

2n
f ′′(z)

∣
∣
∣ ≤ 3MA|z|

r2n2

∞∑

k=2

(k + 1)(rA)k−1,

for all n ∈ N, |z| ≤ r.
(ii) We have the following equivalence in the Voronovskaja’s formula

∣
∣
∣
∣
∣
∣Sn(f )− f − e1

2n
f ′′
∣
∣
∣
∣
∣
∣
r
∼ 1

n2
,

where the constants in the equivalence depend on f and r but independent
of n.

10 Complex Szász-Stancu Operator

The Szász-Stancu operator of real variable x ∈ [0,∞) is defined by

Sα,β
n (f , x) =

∞∑

ν=0

sn,ν(x)f

(
ν + α
n+ β

)

,
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where sn,ν(x) = e−nx (nx)ν

ν! and α,β are two given parameters satisfying the
conditions 0 ≤ α ≤ β. For α = β = 0, we recapture the classical Szász operator.

Sα,β
n (f , z) =

∞∑

ν=0

[
α

n+ β ,
α + 1

n+ β , . . .,
α + ν
n+ β ; f

]

zν ,

which was studied in the book by Gal [10], pp. 104–114. Here, [x0, x1, . . ., xm; f ]
denotes the divided difference of the function f on the distinct points x0, x1, . . ., xm.

As suggested by the above mentioned Lupas’ representation, we deal with the fol-
lowing complex form for the Szász-Stancu operators, these operators were recently
studied by Gupta and Verma [14], who obtained some results for bounded functions
in complex domain. The first main result is the upper estimate.

Theorem 32 [14] For 2 < R < +∞, let f : [R,+∞) ∪ DR → C be bounded on
[0,+∞) and analytic in DR , that is f (z) =∑∞

k=0 ckz
k , for all z ∈ DR .

(a) Suppose that 0 ≤ α ≤ β and 1 ≤ r < R
2 are arbitrary fixed. Then, for all |z| ≤ r

and n ∈ N, we have

|Sα,β
n (f , z)− f (z)| ≤ α + βr

n+ β
∞∑

k=1

|ck|rk−1 + Ar (f )

n+ β +
αBr (f )

n+ β + βCr (f )

n+ β ,

where
∞∑

k=1

|ck|rk−1<+∞,Br(f )=
∞∑

k=1

|ck|krk−1 < +∞,Cr (f ) =
∞∑

k=1

|ck|krk < +∞ andAr(f ) = 2
∞∑

k=1

|ck |(k − 1)(2r)k−1 < +∞.

(b) Suppose that 0 ≤ α ≤ β and 1 ≤ r < r1 < R
2 , then for all |z| ≤ r and n ∈ N,

we have

|[Sα,β
n (f , z)](p) − f (p)(z)| ≤ p!r1

(r1 − r)p+1
· Mr1 (f )

n+ β ,

whereMr1 (f ) = (α + βr1)
∑∞
k=1 |ck| · rk−1

1 + Ar1 (f )+ Br1 (f )+ Cr1 (f ).

The next main result is a Voronovskaja-type asymptotic formula.

Theorem 33 [14] For 2 < R < +∞, let f : [R,+∞) ∪ DR → C be bounded
on [0,+∞) and analytic in DR , that is f (z) = ∑∞

k=0 ckz
k , for all z ∈ DR . Also, let

1 ≤ r < R
2 and 0 ≤ α ≤ β. Then, for all |z| ≤ r and n ∈ N, we have the following

Voronovskaja-type result

∣
∣
∣
∣S
α,β
n (f , z)− f (z)− α − βz

n+ β f
′(z)− z

2n
f ′′(z)

∣
∣
∣
∣ ≤

M1,r (f )

n2
+
∑6
j=2Mj ,r (f )

(n+ β)2
,

where

M1,r (f ) = 26
∞∑

k=3

|ck|(k − 1)2(k − 2)(2r)k−2 < +∞,



264 V. Gupta

M2,r (f ) =
(
α2

2
+ 2α

)

·
∞∑

k=2

|ck| · k(k − 1)(2r)k−2 < +∞,

M3,r (f ) = β
2

2

∞∑

k=2

|ck |k(k − 1)(2r)k< +∞,

M4,r (f ) = β
∞∑

k=2

|ck|k(k − 1)(2r)k−1<+∞,

M5,r (f ) = αβ
∞∑

k=0

|ck|k(k − 1)rk−1 < +∞,

M6,r (f ) = β2
∞∑

k=0

|ck|k(k − 1)rk < +∞.

Following exactly the lines from the p. 104, in the book by Gal [10], we get that
if f is of exponential growth on [0,∞), then the operator Sα,β

n (f , z) is also well
defined for all z ∈ C. In this section below, we present the over convergence of the
Szász-Stancu operators having exponential growth. To prove the main results for
growth, we need the following two lemmas:

Lemma 1 [14] For all n, k ∈ N ∪ {0}, 0 ≤ α ≤ β, z ∈ C, let us define

Sα,β
n (ek , z) =

∞∑

ν=0

[
α

n+ β ,
α + 1

n+ β , . . .,
α + ν
n+ β ; ek]z

ν ,

where ek(z) = zk . Then, Sα,β
n (e0, z) = 1 and we have the following recurrence

relation:

Sα,β
n (ek+1, z) = z

n+ β (Sα,β
n (ek , z))′ + nz + α

n+ β S
α,β
n (ek , z).

Consequently

Sα,β
n (e1, z) = nz + α

n+ β , Sα,β
n (e2, z) = nz

(n+ β)2
+ (nz + α)2

(n+ β)2
.

Lemma 2 [14] Let α, β be satisfying 0 ≤ α ≤ β. Denoting S0,0
n (ej ) by Sn(ej ), for

all n, k ∈ N ∪ {0}, we have the following recursive relation:

Sα,β
n (ek , z) =

k∑

j=0

(
k

j

)
njαk−j

(n+ β)k
Sn(ej , z).

The results for unbounded functions have different approximation properties and
analysis is different. Here, we deal with unbounded functions of exponential growth
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on compact disks. We study the rate of approximation of analytic functions of ex-
ponential growth and the Voronovskaja type result for the Szász-Stancu operator
S
α,β
n (f , z). Also, the exact order of approximation by this operator is obtained.

Our first main result is the following theorem for upper bound.

Theorem 34 Let DR = {z ∈ C : |z| < R} be with 1 < R < +∞ and suppose
that f : [R,+∞) ∪ DR → C is continuous in (R,+∞) ∪ DR , analytic in DR,
i.e. f (z) = ∑∞

k=0 ckz
k , for all z ∈ DR , and suppose that there exist M > 0 and

A ∈ ( 1
R

, 1), with the property that |ck| ≤ MAk

k! , for all k = 0, 1, . . ., (which implies
|f (z)| ≤ MeA|z| for all z ∈ DR) and |f (x)| ≤ CeBx , for all x ∈ [R,+∞).
Suppose that 0 ≤ α ≤ β and 1 ≤ r < 1

A
. Then, for all |z| ≤ r and n ∈ N , we have

|Sα,β
n (f , z)− f (z)| ≤ (α + βr)

(n+ β)r

∞∑

k=1

M
(rA)k

k! +
∞∑

k=1

M(rA)k
(k + 1)

2nr
.

Proof By using the recurrence relation of Lemma 1, we have

Sα,β
n (ek+1, z) = z

n+ β (Sα,β
n (ek , z))′ + nz + α

n+ β S
α,β
n (ek , z),

for all z ∈ C, k ∈ {0, 1, 2, . . ..}, n ∈ N . From this, we immediately get the recurrence
formula

Sα,β
n (ek , z)− zk = z

n+ β
[
(Sα,β
n (ek−1, z))− zk−1

]′ + nz + α
n+ β

[
Sα,β
n (ek−1, z)− zk−1

]

+ (k − 1)+ α − βz

n+ β zk−1,

for all z ∈ C, k, n ∈ N . Clearly, Sα,β
n (e0, z)− e0 = 0 and from the above relation, we

have

|Sα,β
n (e1, z)− e1(z)| =

∣
∣
∣
∣
α − βz

n+ β
∣
∣
∣
∣ ≤

α + βr
n+ β .

Now let 1 ≤ r < R if we denote the norm-||.||r in C(Dr ), where Dr = {z ∈ C :
|z| ≤ r}, then by a linear transformation, the Bernstein’s inequality in the closed
unit disk becomes |P ′k(z)| ≤ k

r
||Pk||r , for all |z| ≤ r , where Pk(z) is a polynomial of

degree ≤ k. Thus, from the above recurrence relation, we get

||Sα,β
n (ek , .)− ek ||r ≤ r

n+ β ||(S
α,β
n (ek−1, .))− ek−1||r (k − 1)

r

+ r||Sα,β
n (ek−1, .)− ek−1||r

+ (k − 1)+ α + βr
n+ β rk−1,

implying

||Sα,β
n (ek , .)− ek||r ≤

(

r + k − 1

n+ β
)

||(Sα,β
n (ek−1, .))− ek−1||r
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+ (k − 1)+ α + βr
n+ β rk−1,

Proceeding along the lines of p. 106 of [10], we see by mathematical induction with
respect to k that the above recurrence implies

||Sα,β
n (ek , .)− ek||r ≤ (k + 1)!

2n
rk−1 + α + βr

n+ β r
k−1.

Thus, we have

Sα,β
n (f , z) =

∞∑

k=0

ckS
α,β
n (ek , z),

which implies

|Sα,β
n (f , z)− f (z)| ≤

∞∑

k=1

|ck| · |Sα,β
n (ek , z)− zk|

≤ α + βr
n+ β

∞∑

k=1

|ck| · rk−1 +
∞∑

k=1

|ck| (k + 1)!
2n

rk−1

≤ (α + βr)
(n+ β)r

∞∑

k=1

M
(rA)k

k! +
∞∑

k=1

M
Ak

k!
(k + 1)!

2n
rk−1.

This proves the theorem.
The next main result is a Voronovskaja-type asymptotic formula.

Theorem 35 Let 0 ≤ α ≤ β. Suppose that the hypothesis on the function f and on
the constants R,M ,C,B,A in the statement of Theorem 32 hold and let 1 ≤ r < 1

A

be fixed. We have the following Voronovskaja-type result
∣
∣
∣
∣S
α,β
n (f , z)− f (z)− α − βz

n+ β f
′(z)− nz

2(n+ β)2
f ′′(z)

∣
∣
∣
∣

≤ βMA2

2(n+ β)3
M1,r (f )+ |z|MA[3+ 4(α + βr)]

n(n+ β)r2
M2,r (f )+ MA2

(n+ β)2
M3,r (f ),

where by |ck| ≤ MAk

k! ,

M1,r (f ) =
∞∑

k=2

(k − 1)(k − 2)[(2k − 3)+ (α + βr)](rA)k−2,

M2,r (f ) =
∞∑

k=2

(k + 1)(rA)k−1,
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and

M3,r (f ) =
∞∑

k=2

[
(α + βr)(k − 1)(k − 2)+ (α + βr)2

+ (k − 1)(k − 2)2

2
+ (k − 1)(k − 2)(α + βr)

2

]
(rA)k−2.

Proof Denoting ek(z) = zk and πn,k(z) = Sα,β
n (f , z), we obtain

∣
∣
∣
∣S
α,β
n (f , z)− f (z)− α − βz

n+ β f
′(z)− z

2(n+ β)2
f ′′(z)

∣
∣
∣
∣

≤
∞∑

k=1

|ck|
∣
∣
∣
∣πn,k(z)− ek(z)+ kz

k−1(βz − α)

n+ β − nzk−1k(k − 1)

2(n+ β)2

∣
∣
∣
∣ .

By Lemma 1, we have

πn,k+1(z) = z

n+ β π
′
n,k(z)+ nz + α

n+ β πn,k(z), z ∈ C.

If we denote

En,k(z) = πn,k(z)− ek(z)+ kz
k−1(βz − α)

n+ β − nzk−1k(k − 1)

2(n+ β)2
,

then it is clear that En,k(z) is a polynomial of degree ≤ k and by above recurrence
relation, we have

En,k(z) = z

n+ βE
′
n,k−1(z)+ nz + α

n+ β En,k−1(z)+Xn,k(z),

where

Xn,k(z) = (k − 1)

n+ β zk−1 + α(k − 1)(k − 2)

(n+ β)2
zk−2 − β(k − 1)2

(n+ β)2
zk−1

+ n(k − 1)(k − 2)2

2(n+ β)3
zk−2 + α

n+ β zk−1 + n

n+ β zk

+ nα(k − 1)

(n+ β)2
zk−1 + α

2(k − 1)

(n+ β)2
zk−2 − nβ(k − 1)

(n+ β)2
zk

− αβ(k − 1)

(n+ β)2
zk−1 + n

2(k − 1)(k − 2)

2(n+ β)3
zk−1 + αn(k − 1)(k − 2)

2(n+ β)3
zk−2

− zk − αk

n+ β zk−1 + βk

n+ β zk − k(k − 1)n

2(n+ β)2
zk−1
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= zk−1

n+ β [(k − 1)+ α + nz − αk + βkz]− zk

+ (k − 1)zk−2

(n+ β)2

[

α(k − 2)−βz(k − 1)+ αnz + α2 − nβz2−αβz − knz

2

]

+ (k − 1)(k − 2)zk−2

2(n+ β)3
[n(k − 2)+ n2z + αn].

Using α + nz = (α − βz)+ (n+ β)z, we have

Xn,k(z) = zk−1

n+ β [(k − 1)+ (α − βz)+ (n+ β)z − αk + βkz]− zk

+ (k − 1)zk−2

(n+ β)2

[
α(k − 2)− βz(k − 1)+ (α − βz)α + (n+ β)αz − βz(α − βz)

− (n+ β)βz2 − knz

2

]
+ (k − 1)(k − 2)zk−2

2(n+ β)3
[n(k − 2)+ n(α − βz)+ (n+ β)nz]

= zk−1(k−1)

n+β [1− α+βz]+ (k−1)zk−2

(n+β)2

[

α(k−2)−βz(k−1)+(α−βz)α−βz(α−βz)− knz

2

]

+ (k−1)αzk−1

(n+β)
− (k−1)βzk

(n+β)
+ (k−1)(k−2)zk−2

2(n+β)3
[n(k−2)+n(α−βz)]+n(k−1)(k−2)zk−1

2(n+β)2

= zk−1(k − 1)

n+ β + (k − 1)zk−2

(n+ β)2
[α(k − 2)− βz(k − 1)+ (α − βz)α − βz(α − βz)]

− k(k − 1)nzk−1

2(n+ β)2
+ (k − 1)(k − 2)zk−2

2(n+ β)3
[n(k − 2)+ n(α − βz)]+ n(k − 1)(k − 2)zk−1

2(n+ β)2

= zk−1(k − 1)

n+ β + (k − 1)zk−2

(n+ β)2
[α(k − 2)− βz(k − 1)+ (α − βz)2]

+ (k − 1)(k − 2)zk−2

2(n+ β)3
[n(k − 2)+ n(α − βz)]− n(k − 1)zk−1

(n+ β)2

= (k − 1)zk−2

(n+ β)2
[α(k − 2)− βz(k − 1)+ (α − βz)2]

+ (k − 1)(k − 2)zk−2

2(n+ β)2
[(k − 2)+ (α − βz)]

− β(k − 1)(k − 2)zk−2

2(n+ β)3
[(k − 2)+ (α − βz)]+ β(k − 1)zk−1

(n+ β)2

= (k − 1)zk−2

(n+ β)2

[

(α − βz)(k − 2)+ (α − βz)2 + (k − 2)2

2
+ (k − 2)(α − βz)

2

]

− β(k − 1)(k − 2)zk−2

2(n+ β)3
[(k − 2)+ (α − βz)].

Thus, for all |z| ≤ r , k ≥ 2, we have

|En,k(z)| ≤ |z|
2(n+ β)

[2||E′n,k−1(z)||r ]+ n|z| + α
n+ β |En,k−1(z)| + |Xn,k(z)|
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≤ r|En,k−1(z)| + |z|
2(n+ β)

2(k − 1)

r
||En,k−1(z)||r + |Xn,k(z)|

≤ r|En,k−1(z)| + |z|
2(n+ β)

2(k − 1)

r

[
||πn,k−1(z)− ek−1(z)||r

+ (k − 1)zk−2(βz − α)

n+ β − nzk−2(k − 1)(k − 2)

2(n+ β)2

]
+ |Xn,k(z)|

≤ r|En,k−1(z)| + |z|
2(n+ β)

2(k − 1)

r

[ k!
2n
rk−2 + α + βr

n+ β r
k−2

+ (k − 1)zk−2(βz − α)

n+ β − nzk−2(k − 1)(k − 2)

2(n+ β)2

]
+ |Xn,k(z)|

≤ r|En,k−1(z)| + |z|
2(n+ β)

[2(k − 1)

r

k!
2n
rk−2

+ 2(k − 1)

r

α + βr
n+ β r

k−2 + 2(k − 1)

r

(k − 1)rk−2(βz + α)

n+ β

+ 2(k − 1)

r

rk−2(k − 1)(k − 2)

2(n+ β)
+ 2(k − 1)

r

β(k − 1)(k − 2)rk−2

2(n+ β)2

]
+ |Xn,k(z)|

≤ r|En,k−1(z)| + |z|
2(n+ β)

[ (k + 1)!
n

rk−3[3+ 4(α + βr)]+ β(k − 1)2(k − 2)

(n+ β)2
rk−3

]

+ (k − 1)rk−2

(n+ β)2

[

(α + βr)(k − 2)+ (α + βr)2 + (k − 2)2

2
+ (k − 2)(α + βr)

2

]

+ β(k − 1)(k − 2)rk−2

2(n+ β)3
[(k − 2)+ (α + βr)]

≤ r|En,k−1(z)| + |z|(k + 1)!
2n(n+ β)

rk−3[3+ 4(α + βr)]

+ (k − 1)rk−2

(n+ β)2

[

(α + βr)(k − 2)+ (α + βr)2 + (k − 2)2

2
+ (k − 2)(α + βr)

2

]

+ β(k − 1)(k − 2)rk−2

2(n+ β)3
[(2k − 3)+ (α + βr)].

Taking k = 2, 3, . . . in the last inequality step by step, we obtain

∣
∣
∣
∣S
α,β
n (f , z)− f (z)− α − βz

n+ β f
′(z)− nz

2(n+ β)2
f ′′(z)

∣
∣
∣
∣ ≤

∞∑

k=2

|ck||En,k(z)|

≤ |z|MA
n(n+ β)r2

[3+ 4(α + βr)]
∞∑

k=2

(k + 1)(rA)k−1

+ MA2

(n+ β)2

∞∑

k=2

[
(α + βr)(k − 1)(k − 2)+ (α + βr)2

+ (k − 1)(k − 2)2

2
+ (k − 1)(k − 2)(α + βr)

2

]
(rA)k−2
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+ βMA2

2(n+ β)3

∞∑

k=2

(k − 1)(k − 2)[(2k − 3)+ (α + βr)](rA)k−2,

which immediately proves the theorem.

Remark 1 For α = β = 0, the Theorems 32 and 33 become some of the results in
the book Gal [10, pp. 104–113].
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Generalized Hardy–Hilbert Type Inequalities
on Multiple Weighted Orlicz Spaces

Jichang Kuang

Abstract In this paper, we introduce the multiple weighted Orlicz spaces. We also
give a multiple generalized Hardy-Hilbert type integral inequality with the general
kernel on these new spaces. It includes many famous results as the special cases.

Keywords Hardy-Hilbert inequality ·Weighted Orlicz space · Norm inequality

1 Introduction

Throughout this paper, we write

‖f ‖p,ω =
(∫

R
n+
|f (x)|pω(x)dx

)1/p

, R
n
+

= {x = (x1, x2, . . . , xn) : xk ≥ 0, 1 ≤ k ≤ n},

Lp(ω) = {f : f is measurable and ‖f ‖p,ω <∞}; ‖x‖ =
(

n∑

k=1

|xk|2
)1/2

.

∫ ∞

0

∫ ∞

0

f (x)g(y)

x + y dxdy ≤ π

sin
(
π
p

)‖f ‖p‖g‖q (1)

is called the Hilbert’s inequalities, where 1 < p < ∞, ( 1
p

) + ( 1
q

) = 1, and the
constant factors π

sin
(
π
p

) is the best value (see [1]). Further, the following inequality

of the form
∫ ∞

0

∫ ∞

0
K(x, y)f (x)g(y)dxdy ≤ C(p, q)‖f ‖p,ω1‖g‖q,ω2 (2)
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is called the Hardy-Hilbert’s inequalities with the general kernel. In view of the
mathematical importance and applications, Hilbert’s and Hardy-Hilbert’s inequali-
ties are field of interest of numerous mathematicians and were generalized in many
different ways (see, e.g. [2–8] and the references cited therein). However, much less
attention has been given to inequalities on the Orlicz spaces. In 2007, Kuang and
Debnath obtained in [9] the Hilbert’s inequalities with the homogeneous kernel on
the weighted Orlicz spaces. The aim of this paper is to introduce the new multiple
weighted Orlicz spaces and establish a new multiple generalized Hardy-Hilbert type
inequality with the general kernel on these new spaces. It includes many famous
results as the special cases.

2 Definitions and Statement of the Main Results

Definition 1 (see [9–12]) We call ϕ a Young’s function if it is a non-negative
increasing convex function on (0,∞) with ϕ(0) = 0,ϕ(u) > 0, u > 0, and

lim
u→0

ϕ(u)

u
= 0, lim

u→∞
ϕ(u)

u
= ∞.

To Young’s function ϕ, we can associate its convex conjugate function denoted
by ψ = ϕ∗ and defined by

ψ(v) = ϕ∗(v) = sup{uv− ϕ(u) : u ≥ 0}, v ≥ 0. (3)

We note that ψ = ϕ∗ is also a Young’s function and ψ∗ = (ϕ∗)∗ = ϕ. From the
definition of ψ = ϕ∗, we get Young’s inequality

uv ≤ ϕ(u)+ ψ(v), u, v > 0. (4)

Let ϕ−1 be inverse function of ϕ, we have

v ≤ ϕ−1(v)ψ−1(v) ≤ 2v, v ≥ 0. (5)

The aim of this paper is to introduce the following new multiple weighted Orlicz
spaces.

Definition 2 Let ϕ be a Young’s function on (0,∞), for any measurable function f
and non-negative weight function ω on R

n+, the multiple weighted Luxemburg norm
is defined as follows:

‖f ‖ϕ,ω = inf
{

λ > 0 :
∫

R
n+
ϕ

( |f (x)|
λ

)

ω(x)dx ≤ 1

}

. (6)

The multiple weighted Orlicz space is defined as follows:

Lϕ(ω) = {f : ‖f ‖ϕ,ω <∞
}
. (7)



Generalized Hardy–Hilbert Type Inequalities on Multiple Weighted Orlicz Spaces 275

In particular, if ϕ(u) = up, 1 < p < ∞, then Lϕ(ω) is the weighted Lebesgue
spaces Lp(ω); if ϕ(u) = u(log(u + c))q , q ≥ 0, c > 0, then Lϕ(ω) is the weighted
spaces L(ω)(logL(ω))q .

Definition 3 (see [9, 10])We call theYoung’s functionϕ on (0,∞) submultiplicative
if

ϕ(uv) ≤ ϕ(u)ϕ(v) f or all u, v ≥ 0. (8)

Remark 1 If ϕ satisfies (8), then ϕ also satisfies Orlicz ∇2- condition, that is, there
exists a constant C > 1 such that

ϕ(2u) ≤ Cϕ(u) f or all u ≥ 0.

Our main result is the following theorem:

Theorem 1 Let the conjugate Young’s functions ϕ,ψ on (0,∞) submultiplicative;
K(‖x‖, ‖y‖) be a non-negative measurable function on R

n+ × R
n+ and satisfies:

K(‖x‖, ‖ty‖) = t−λ2K

(

t
−
(
λ2
λ1

)

‖x‖, ‖y‖
)

, t > 0, (9)

where λ1, λ2 are real numbers and λ1λ2 �= 0. Let f ∈ Lϕ (ω1) , g ∈ Lψ (ω2) and

‖f ‖ϕ,ω1 > 0, ‖g‖ψ ,ω2 > 0, where ω1(x) = ‖x‖−λλ1+ (nλ1)
λ2 , ω2(y) = ‖y‖−λλ2+ (nλ2)

λ1 ,
λ > 0. If

C1 = πn/2λ1

2n−1Γ (n/2)λ2

∫ ∞

0
Kλ(u, 1)ψ−1(u)u

λλ1−
(
nλ1
λ2

)
−1
du <∞; (10)

C2 = πn/2

2n−1Γ (n/2)

∫ ∞

0
Kλ(u, 1)ψ

(
1

ϕ−1(ψ−1(u))

)

un−1du <∞, (11)

then
∫

R
n+

∫

R
n+
Kλ(‖x‖, ‖y‖)f (x)g(y)dxdy ≤ C(ϕ,ψ)‖f ‖ϕ,ω1‖g‖ψ ,ω2 , (12)

where C(ϕ,ψ) = C1 + C2 is defined by (10) and (11).
We obtain the following Corollary 1 by taking ϕ(u) = up,ψ(v) = vq , 1 < p, q <

∞,
(

1
p

)
+
(

1
q

)
= 1, in Theorem 1:

Corollary 1 Let K(x, y), λ1, λ2, λ,ω1 and ω2 satisfy the conditions of Theorem 1.
If f ∈ Lp(ω1), g ∈ Lq (ω2), 1 < p <∞, 1

p
+ 1
q
= 1, then

∫

R
n+

∫

R
n+
Kλ(‖x‖, ‖y‖)f (x)g(y)dxdy ≤ C(p, q)‖f ‖p,ω1‖g‖q,ω2 , (13)
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where

C(p, q) = πn/2

2n−1Γ (n/2)

{
λ1

λ2

∫ ∞

0
Kλ(u, 1)u

−1
p +λλ1−

(
nλ1
λ2

)

du+
∫ ∞

0
Kλ(u, 1)u

−1
p +n−1

du

}

. (14)

In particular, if λ1 = λ2 = λ = 1 in Corollary 1, then
∫

R
n+

∫

R
n+
K(‖x‖, ‖y‖)f (x)g(y)dxdy ≤ C(p, q)‖f ‖p‖g‖q ; (15)

where

C(p, q) = πn/2

2n−1Γ (n/2)

{∫ ∞

0
K(u, 1)u((1/q)−n)du+

∫ ∞

0
K(u, 1)u−(1/p)+n−1du

}

.

(16)

Remark 2 If n = 1, λ = 1, and λ1 = λ2 = λ0 > 0, then

K(tx, ty) = t−λ0K(t−1(tx), y) = t−λ0K(x, y),

that is,K(x, y) is the homogeneous kernel of degree (−λ0), thus Theorem 1 reduces
to the results of [9].

3 Proof of Theorem 1

We require the following lemmas to prove our result:

Lemma 1 (see [13]) If ak , bk ,pk > 0, 1 ≤ k ≤ n,f be a measurable function on

[0, 1]. Let D =
{
(x1, x2, . . . , xn) :

∑n
k=1

(
xk
ak

)bk ≤ 1, xk ≥ 0
}

, then

∫

D

f

(
n∑

k=1

(
xk

ak

)bk
)

x
p1−1
1 · · · xpn−1

n dx1 · · · dxn (17)

=
∏n
k=1 (ak)pk
∏n
k=1 bk

·
∏n
k=1 Γ

(
pk
bk

)

Γ
(∑n

k=1
pk
bk

) ·
∫ 1

0
f (t)t

(∑n
k=1

pk
bk
−1
)

dt.

From (17), we have the following lemma:

Lemma 2 Let f be a measurable function on [0,∞), then

∫

R
n+
f
(‖x‖2

)
dx = πn/2

2nΓ (n/2)

∫ ∞

0
f (t)t (n/2)−1dt. (18)

Proof of Theorem 1
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Proof Applying (5) and Young’s inequality (4), we obtain
∫

R
n+

∫

R
n+
Kλ(‖x‖, ‖y‖)f (x)g(y)dxdy

≤
∫

R
n+

∫

R
n+

{|f (x)|ϕ−1
(
Kλ(‖x‖, ‖y‖)

)} {|g(y)|ψ−1
(
Kλ(‖x‖, ‖y‖)

)}
dxdy

=
∫

R
n+

∫

R
n+

{

|f (x)|ϕ−1
(
Kλ(‖x‖, ‖y‖)

)
ϕ−1

(

ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

)))}

⎧
⎪⎪⎨

⎪⎪⎩

|g(y)|ψ−1
(
Kλ(‖x‖, ‖y‖)

) 1

ϕ−1

(

ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

)))

⎫
⎪⎪⎬

⎪⎪⎭

dxdy

≤
∫

R
n+

∫

R
n+
ϕ

{

|f (x)|ϕ−1
(
Kλ(‖x‖, ‖y‖)

)
ϕ−1

(

ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

)))}

dxdy

(19)

+
∫

R
n+

∫

R
n+
ψ

⎧
⎪⎪⎨

⎪⎪⎩

|g(y)|ψ−1
(
Kλ(‖x‖, ‖y‖)

) 1

ϕ−1

(

ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

)))

⎫
⎪⎪⎬

⎪⎪⎭

dxdy

= I1 + I2.
Since ϕ on (0,∞) is submultiplicative, we have

ϕ

{

|f (x)|ϕ−1(Kλ(‖x‖, ‖y‖))ϕ−1(ψ−1(‖x‖ · ‖y‖−(
λ2
λ1

)))

}

≤ ϕ(|f (x)|)ϕ{ϕ−1(Kλ(‖x‖, ‖y‖))ϕ−1(ψ−1(‖x‖ · ‖y‖−( λ2
λ1 ))} (20)

≤ ϕ(|f (x)|)Kλ(‖x‖, ‖y‖)ψ−1(‖x‖ · ‖y‖−( λ2
λ1

)).

Then, we have

I1 ≤
∫

R
n+

∫

R
n+
ϕ(|f (x)|)Kλ(‖x‖, ‖y‖)ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

))

dxdy

=
∫

R
n+
ϕ(|f (x)|)

{∫

R
n+
‖y‖−λλ2Kλ

(

‖x‖ · ‖y‖−
(
λ2
λ1

)

, 1

)

ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

))

dy

}

dx.

(21)

By (18), we have

∫

R
n+
‖y‖−λλ2Kλ

(

‖x‖ · ‖y‖−
(
λ2
λ1

)

, 1

)

ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

))

dy
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= πn/2

2nΓ (n/2)

∫ ∞

0
t
−
(
λλ2

2

)

Kλ(‖x‖ · t−
(
λ2
2λ1

)

, 1)ψ−1

(

‖x‖ · t−
(
λ2

2λ1

))

t (n/2)−1dt.

(22)

Let u = ‖x‖ · t− λ2
2λ1 , and by (21), (22) and (10), we get

I1 ≤ πn/2λ1

2n−1Γ (n/2)λ2

∫

R
n+

∫ ∞

0
ϕ(|f (x)|)‖x‖−λλ1+ nλ1

λ2 ·Kλ(u, 1)ψ−1(u)u
λλ1− nλ1

λ2
−1
dudx

= πn/2λ1

2n−1Γ (n/2)λ2
·
{∫ ∞

0
Kλ(u, 1)ψ−1(u)uλλ1− nλ1

λ2
−1
du

}

·
{∫

R
n+
ϕ(|f (x)|)‖x‖−λλ1+ nλ1

λ2 dx

}

= C1

∫

R
n+
ϕ(|f (x)|)ω1(x)dx. (23)

Similarly, we have

ψ

⎧
⎪⎪⎨

⎪⎪⎩
|g(y)|ψ−1(Kλ(‖x‖, ‖y‖))

1

ϕ−1

(

ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

)))

⎫
⎪⎪⎬

⎪⎪⎭

≤ ψ(|g(y)|)Kλ(‖x‖, ‖y‖)ψ

⎧
⎪⎪⎨

⎪⎪⎩

1

ϕ−1

(

ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

)))

⎫
⎪⎪⎬

⎪⎪⎭
(24)

≤ ψ(|g(y)|)‖y‖−λλ2Kλ
(

‖x‖ · ‖y‖−
(
λ2
λ1

)

, 1

)

ψ

⎧
⎪⎪⎨

⎪⎪⎩

1

ϕ−1

(

ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

)))

⎫
⎪⎪⎬

⎪⎪⎭
.

By (18), we have

∫

R
n+
‖y‖−λλ2Kλ

(

‖x‖ · ‖y‖−
(
λ2
λ1

)

, 1

)

ψ

⎧
⎪⎪⎨

⎪⎪⎩

1

ϕ−1

(

ψ−1

(

‖x‖ × ‖y‖−
(
λ2
λ1

)))

⎫
⎪⎪⎬

⎪⎪⎭

dx

=‖y‖−λλ2
πn/2

2nΓ (n/2)

∫ ∞

0
Kλ
(

t1/2 · ‖y‖−
(
λ2
λ1

)

, 1

)

ψ

⎧
⎪⎪⎨

⎪⎪⎩

1

ϕ−1

(

ψ−1

(

t1/2 · ‖y‖−
(
λ2
λ1

)))

⎫
⎪⎪⎬

⎪⎪⎭
t (n/2)−1dt.

(25)

Let u = t1/2 · ‖y‖−
(
λ2
λ1

)

, and by (24), (25) and (11), we get

I2=
∫

R
n+

∫

R
n+
ψ

⎧
⎪⎪⎨

⎪⎪⎩
|g(y)|ψ−1(Kλ(‖x‖, ‖y‖))

1

ϕ−1

(

ψ−1

(

‖x‖ · ‖y‖−
(
λ2
λ1

)))

⎫
⎪⎪⎬

⎪⎪⎭
dxdy
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= πn/2

2n−1Γ (n/2)

∫ ∞

0
Kλ(u, 1)ψ

{
1

ϕ−1(ψ−1(u))

}

un−1du

×
∫

R
n+
ψ(|g(y)|)‖y‖−λλ2+ nλ2

λ1 dy (26)

= C2

∫

R
n+
ψ(|g(y)|)ω2(y)dy.

Thus, by (23) and (26), we obtain
∫

R
n+

∫

R
n+
Kλ(‖x‖, ‖y‖)f (x)g(y)dxdy

≤ C1

∫

R
n+
ϕ(|f (x)|)ω1(x)dx + C2

∫

R
n+
ψ(|g(y)|)ω2(y)dy. (27)

It follows that
∫

R
n+

∫

R
n+
Kλ(‖x‖, ‖y‖)

(
f (x)

‖f ‖ϕ,ω1

)(
g(y)

‖g‖ψ ,ω2

)

dxdy

≤ C1

∫

R
n+
ϕ

( |f (x)|
‖f ‖ϕ,ω1

)

ω1(x)dx + C2

∫

R
n+
ψ

( |g(y)|
‖g‖ψ ,ω2

)

ω2(y)dy

≤ C1 + C2 = C(ϕ,ψ).

Hence,
∫

R
n+

∫

R
n+
Kλ(‖x‖, ‖y‖)f (x)g(y)dxdy ≤ C(ϕ,ψ)‖f ‖ϕ,ω1‖g‖ψ ,ω2 .

The proof is complete.
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Inequalities for the Fisher’s Information
Measures

Christos P. Kitsos and Thomas L. Toulias

Abstract The objective of this chapter is to provide a thorough discussion on in-
equalities related to the entropy measures in connection to the γ -order generalized
normal distribution (γ –GND). This three-term (position, scale and shape) family
of distributions plays the role of the usual multivariate normal distribution in infor-
mation theory. Moreover, the γ –GND is the appropriate family of distributions to
support a generalized version of the entropy type Fisher’s information measure. This
generalized (entropy type) Fisher’s information is also discussed as well as the gener-
alized entropy power, while the γ -GND heavily contributes to these generalizations.
The appropriate bounds and inequalities of these measures are also provided.

Keywords Fisher’s entropy type information measure · Shannon entropy · General-
ized normal distribution

1 Introduction

The well-known normal distribution, introduced by Gauss and, therefore, also known
as Gaussian or normal distribution, plays an important role to all statistical problems.
Interest is focused on the Information Theory and Statistics. An exponential power
generalization of the normal distribution called the generalized γ -order normal distri-
bution (γ -GND) has been discussed in [15], and studied in [19] and [21]. Moreover,
new entropy measures were introduced in [16] and extensively discussed and proved
in [15].

Entropy since the time of Clausius, 1865, plays an important role joining physi-
cal experimentation and statistical analysis. For the principle of maximum entropy,
the normal distribution is essential and eventually is related with the energy and the
variance involved. Moreover, the channel capacity is dependent on the entropy, since
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the time of Shannon, 1948. Therefore, we would like to know how entropy, energy
and variance are related under the normal distribution, for practical problems. To
proceed, we need a solid mathematical background to cover Statistics and Physics,
despite the applicable form of this procedure. This is why these definitions are in-
troduced in Sect. 2 under a mathematical analysis point of view, while they are so
applicable (channel capacity etc.). Moreover, their relations through inequalities,
either Poincaré or Sobolev, are briefly discussed.

There is also a connection with the optimal design theory. Fisher’s parametric
information measure is applied to the experimental design theory. The following
example is presented. Let us consider two experimentsEX ≡ (X, ξ ) andEY ≡ (Y , δ)
with X and Y being the design spaces while ξ and δ are the corresponding design
measures from the design spaces Ξ and Δ, respectively, see for details [9, 27]. In
practice, the design space is where the experimenter performs the experiment and the
design measure is, eventually, due to some mathematical insight, the proportion of
the observations devoted for each design point. We shall say that the experiment EX
is sufficient for the experiment Y if there exist a transformation ofX, say t(X), such
that t(X) and Y have identical design measure, or coming from the same distribution.
We shall writeEX ≥ EY . In such a case, the Shannon information obtained fromEX,
say HX, is at least as that obtained inEY , say HX, i.e. HX ≥ HY . Moreover, the same
ordering occurs for the Fisher information in terms that Iθ (X)−Iθ (Y ) is non-negative
definite, so |Iθ (X)| ≥ |Iθ (Y )|, and therefore, one could say that D–optimal designs,
see [9], between EX and EY , the EY is more preferable. Consider two experiments,
one coming from the Gaussian N (0, σ 2) and the other from the Gaussian N (0, κ2σ 2).
These experiments are equivalent in terms that the one is sufficient for the other. This
is trivially true if all the observations of the first multiplied by κ , or divide all the
observations of the second by κ . This is a brief explanation why there is an interest to
have at least inequalities among various statistical–analytical measures concerning
the Gaussian: to be able to compare the “information” obtained for an experiment.
Usually it is assumed that the experimenter works with the Gaussian. Thus, it is of
great importance to information theory.

Poincaré and Sobolev inequalities presented in Sect. 2 play an important role in
the foundation of the generalized Fisher’s entropy type information measure. Both
these classes of inequalities offer a number of bounds for a number of physical
applications, the most well known being the energy, among others. The Gaussian
kernel or the error function (which produces the normal distribution), is certainly
known, with two parameters—the mean and the variance. For the Gaussian kernel, an
extra parameter was then introduced in [15], and therefore, a generalized form of the
normal distribution was obtained. Specifically, the generalized Gaussian is obtained
as an extremal for the logarithm Sobolev inequality (LSI) and is referred as the γ -
order generalized distribution (γ -GND). In addition, the Poincaré inequality (PI)
offers also the “best” constant for the Gaussian measure, and therefore is of interest
to see how Poincaré and Sobolev inequalities are acting on the normal distribution.

That is, this chapter attempts to bridge the mathematical–analytical framework
with statistical background as far as the Fisher’s information measures (parametric
and entropy type) is concerned. Emphasis is given to the entropy type Fisher’s
information and the generalization introduced.
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2 Background

The PI is the most well-known result in the theory of Sobolev spaces, i.e. bounds
can be obtained on a function f belonging to the Sobolev space H

1(Rp ,μ) = {f ∈
L2(Rp,μ) : Eμ(f ) < ∞} using the bounds on the derivatives, while the domain
is still important. The energy Eμ(f ) of a local μ–integrable function f with ∇f ∈
L2(Rp,μ) is defined to be

Eμ(f ) = Expμ(‖∇f ‖2).

The corresponding Poincaré constant, cP, can easily be evaluated when the domain
is convex. It holds that

Varμ(f ) ≤ cPEμ(f ), (1)

where Expμ(f ) and Varμ(f ) are the expected value and the variance of f, respec-
tively, corresponding to the probability measure μ, i.e. Expμ(f ) = ∫

f dμ and
Varμ(f ) = Expμ([f −Expμ(f )]2) = Expμ(f 2)−Expμ(f )2. Under some regularity
conditions for the measure μ, there exists a constant cP ∈ (0,+∞) such that the PI
as in (1), is

Varμ(f ) ≤ cP

p∫

R

‖∇f ‖2 dμ,

with f as a differentiable function having compact support. That is, bounds have to
be evaluated for the variance and, therefore, for the information, either the parametric
or the entropy type.

The entropy Entμf of a μ-integrable positive function f is defined to be

Entμf := Expμ(f log f )− Expμf log Expμf , (2)

where Exp is the expected value. Applying the inequality uυ ≤ u log u − u + eυ ,
u ∈ R+, υ ∈ R, the so-called variational formula for the entropy is obtained,

Entμf := sup
{
Expμ(fg) : Expμe

g = 1
}
. (3)

The quantity Entμf is finite if and only if f sup (0, log f ) is μ-integrable. Notice
that when the expected value of f vanishes the definition (2) is simplified. Relation
(3) is equivalent to the following inequality, known as entropy inequality,

Expμ(fg) ≤ 1
t
Expμf log Expμe

tg + 1
t
Entμ(f ), (4)

where f is every positive and square integrable function, g is a square integrable
function and t > 0. The following Proposition 1 refers to the product probability
space, as far as its variance and entropy concern.
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Proposition 1 Let (Ei ,Fi ,μi), i = 1, 2, . . . ,p) be p probability spaces and
(Ep,Fp,μp) the product probability space. Then,

Varμp (f ) ≤
p∑

i=1

Expμp (Varμi (f )),

Entμp (f ) ≤
p∑

i=1

Expμp (Entμi f ).

Proof Let a function g defined on E
p such that Expμpe

g = 1 and

g =
p∑

i=1

gi
def.=

p∑

i=2

log

∫
egdμ1(x1) · · · dμi−1(xi−1)
∫
egdμ1(x1) · · · dμi(xi) ,

with gi = g− log
∫
egdμi(xi), i = 1, 2, . . . ,p. Hence, using the variational formula

(3), for μi :
p∑

i=1

Expμi (fgi) ≤
p∑

i=1

Expμi
(
Entμi (fgi)

)
.

On the other hand

Expμp (fg)=
p∑

i=1

Expμp (fgi) ≤
p∑

i=1

Expμp
(
Expμi (fgi)

)

≤
p∑

i=1

Expμ
(
Entμi f

)
.

Combining the above two relationships, the result of the Proposition 1 is derived.
Notice that, neither statistical properties, discussed for the above introduced functions
of variance and entropy, nor physical properties are going to be discussed for the
below defined energy.

In the case of E = R
p, the energy Enerμf of a local integrable function f with

∇f ∈ L2(Rp,μ) is defined to be

Enerμf := Expμ‖∇f ‖2, (5)

where ∇f is, as usual, the gradient of f . Hence, the energy is positive and invariant
under the translations. Both variance and energy are crucial for the definition of the
PI. Indeed the measureμ satisfies the PI for a certain function class FP (E,μ) if there
exists a constant c ∈ R+ such that

Varμ(f ) ≤ cEnerμf. (6)

for each function f ∈ FP (E,μ).
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Example 1 For example, one may consider FP (E,μ) to be the Sobolev space
S

1(Rp,μ) = {f ∈ L2(Rp,μ) : Enerμf < ∞}. The best constant cP (μ) for
the PI, for f not μ, a.e. constant, is defined to be

cP (μ) :=
(

inf

{
Enerμf

Varμ(f )
: f ∈ FP (E,μ)

})−1

. (7)

The measure μ satisfies the LSI for a certain function class FLS(E,μ), if there exists
a constant c ∈ R

∗+ = (0,+∞) such that

Entμf
2 ≤ cEnerμf , (8)

for each function f ∈ FLS(E,μ).

Example 2 One may consider FLS(E,μ) to be the Sobolev space S
1(Rp,μ). The

best constant cLS(μ) for the LSI, for f not μ, a.e. constant, is defined to be

cLS(μ) :=
(

inf

{
Enerμf

Varμ(f )
: f ∈ FLS(E,μ)

})−1

. (9)

Since
Entμf

2 := sup
{
Expμ(f 2 g) : Expμe

g = 1
}

,

we have that the constant

cLS(μ) = sup
{
c(g) : Expμe

g = 1
}

,

where (with Enerμf > 1)

c(g) :=
(

sup

{
Expμ(f 2 g)

Enerμf
: f ∈ FLS(E,μ)

})−1

.

Under some regularity conditions for the measure μ, the PI as in (6) is

Varμ(f ) ≤ c
∫

E

‖∇f ‖2dμ,

with f a differentiable function having compact support, see [1] and the references
there. The constant c is known as Poincaré constant and will be denoted as cP in this
chapter.

In principle, LSI attempts to estimate the lower order derivatives of a given func-
tion in terms of higher order derivatives. The well-known Sobolev inequalities were
introduced in 1938, see [28] for details. The introductory and well-known LSI is

⎛

⎝
∫

Ep

‖f (x)‖ 2p
p−2 dμ(x)

⎞

⎠

p−2
2p

≤ cS

⎛

⎝

p∫

E

‖∇f (x)‖2dμ(x)

⎞

⎠

1/2

, (10)
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or, in a compact form, through the norm

‖f ‖q ≤ cS‖∇f ‖2, q = 2p
p−2 .

The constant cS is known as Sobolev constant. Since then, various attempts were
tried to generalize (10). The first optimal Sobolev inequality was of the form

⎛

⎝
∫

Ep

‖f (x)‖ np
p−n dx

⎞

⎠

p−n
np

≤ Cp,n

⎛

⎝
∫

Ep

‖∇f (x)‖ndx
⎞

⎠

1/n

, (11)

with n ∈ [1,p).

Recall the inequalities (6), (8), (10) and (86). These inequalities are dependent on
a constant c, which is being evaluated, in the optimal sense as in (7) and (9) for the PI
and LSI, respectively. Therefore, in all these integral inequalities the crucial points
are: the exponent, and the value of the critical constant, which is usually dependent
on the gamma function. This is clear on the generalized form of normal distribution,
introduced in [15] and discussed in [16] and [18].

The PI and the LSI are linked with the parametric Fisher’s information measure,
as it is briefly discussed in the next section.

3 PI and LSI for the Parametric Fisher’s Information

One of the merits that normal distribution offers to the information theory is that for
any random variable X and the estimator estX, the following inequality holds:

Exp (X − estX)2 ≥ (2πe)−1 exp{2 h(X)},
with h(X) being the differential entropy. The equality holds if and only if X is
normally distributed and Exp(X) is the mean of X. This very useful result can also
be extended even when side information is given for the estimator [6].

Moreover, the normal distribution is adopted for the noise acting additively to
the input variable when an input–output time discrete channel is formed. There-
fore, the Gaussian distribution needs a special treatment evaluating Poincaré and
Sobolev inequalities. Both the PI and LSI are applied to statistical distributions to
evaluate the bounds between variance, entropy and energy. Moreover, the devel-
opment of the PI and LSI for the normal distribution depends on the development
on the Bernoulli measure due to a theoretical insight, which is not presented here.
Therefore, a discussion of the Bernoulli case is first provided.

If E = {0, 1}, the Bernoulli measure βn of E with the parameter n ∈ (0, 1) is the
following probability measure:

βn := nδ0 +mδ1, (12)
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wherem = 1−n and δa is the Dirac measure at a. It is Expβnf = nf (0)+mf (1) and
the energy is evaluated to be Enerβnf = nm‖f (0) − f (1)‖2. A simple calculation
gives Varβn(f ) = Enerβnf that leads to the PI for the Bernoulli measure.

Theorem 1 (PI for the Bernoulli Measure)

Varβn (f ) ≤ Enerβnf , i.e. cP (βn) = 1.

Next the sharp LSI for Bernoulli measure is given, so that to clear the application
and the comparison between the continuous and the discrete case.

Theorem 2 (LSI for Bernoulli Measure) The best constant for the inequality

Entβnf
2 ≤ cLSEnerβnf , (13)

is

cLS =
⎧
⎨

⎩

2, if n = 1
2

logm−log n
m−n , otherwise.

Proof By symmetry we are restricted to the case 0 < p ≤ 1
2 . The variational formula

cLS(βp) = sup{c(g) : Expβp e
g = 1},

is used where

c(g) := sup

{
Expβp (f 2g)

Eβpf
: f ∈ CLS(E,βp), Expβpf > 0

}

.

Let α = g(0) and b = g(1). It is then

Expβp (eg) = peα + qeb = 1 = e0,

and hence, αb < 0. Note that Expβp |f | ≤ Expβpf . So, f ≥ 0 is assumed. For
x = f (0) with x > 0, it is

pqc(g) = sup
{
pαx2 + qb

(x − 1)2
: x > 0 and x �= 1

}

.

The supremum is attained for x = −qb/pα and it is c(g) = (p
b
+ q

α
)−1. Therefore,

cLS(pδ0 + qδ1) = (inf
{
p

b
+ q

α
: peα + qeb = 1

})−1
.

Let t = eα, s = eb = 1−pt
q

and define ϕ(t)
def= p

log s + q

log t . Since αb < 0,

cLS(pδ0 + qδ1) = (inf {ϕ(t) : t ∈ (0, 1) ∪ (1, 1/p)})−1 .
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The definition domain of ϕ can be extended by setting ϕ(0) = − p

log q , ϕ(1) = 1
2

and ϕ(p−) = − q

logp . Remark that 1 is a local minimum if and only if p = 1
2 . Then

ϕ′(t) = p2

qs( log s)2
− q

t(logt)2
.

Notice that the constant cLS is a concave function of the parameter n. It diverges
to +∞ as p tends to 0 and has minimum for n = 1/2, (as one could expect for the
Bernoulli trials) and then the constant depends only on the parameter n. Therefore,
considering E = {a, b} and βn := nδa + mδb, we have the same constant for the
inequality. In this case, the energy is evaluated as Enerβnf = nm‖f (b)− f (a)‖2.

Using the tensorisation property of variance and entropy, the PI as well as the
LSI for Gaussian measure are obtained from the above inequalities and the Bernoulli
measure. Let E = R. The Gaussian probability measure is

dγ = (2π )−1/2e−‖x‖
2/2dx. (14)

Theorem 3 (PI for the Gaussian on R) For f ∈ H
1(R, γ ):

Varγ (f 2) ≤ Enerγ f , i.e. cP (γ ) = 1. (15)

Theorem 4 (LSI for the Gaussian on R) For f ∈ H
1(R, γ ):

Entγ f
2 ≤ 2 Enerγ f , i.e. cLS(γ ) = 2. (16)

Proof The proof is a step by step transfer of the proof of Theorem 3 using the
tensorisation property of entropy. �

Let E = R
p and the Gaussian probability measure on R

p,

dγ p(x) = (2π )−p/2 exp{−‖x‖2/2}dx.
The next Theorem 5 gives the best constants for the Poincaré and LSI for the

Gaussian measure on R
p, i.e. for the variance of f and the entropy of f 2. Using the

following result

Enerγ pf = Expγ p‖∇f ‖2 =
p∑

i=1

Expγ p‖∂if ‖2

=
p∑

i=1

Expγ p
(
Expγ ‖∂if ‖2

) =
p∑

i=1

Expγ p
(
Expγ (Enerγ fi)

)
,

the Poincaré and LSI for the Gaussian measure on R
p can be deduced from Theorem

4. It is interesting to notice the simplicity of the involved constants, with values 1
and 2, for PI and LSI, respectively. Then:
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Theorem 5 (PI and LSI for Gaussian Measure on R
p) For f ∈ H

1(Rp, γ p) the
following are true:

Varγ p (f ) ≤ Enerγ pf , i.e. cP (γ p) = 1, (17)

Entγ pf
2 ≤ 2 Enerγ pf , i.e. cLS(γ p) = 2. (18)

Notice that the values of the constants, as it has already mentioned, are rather
nice and easy to be adopted in applications, as the involved constants for the mul-
tivariate normal discussed below, see relations (20) and (21). Therefore, there is a
simplification in the real life problems.

Consider now the multivariate normal distribution N p(μ,*) with mean vector
μ ∈ R

p and scale matrix * ∈ R
p×p, i.e. with p.d.f. of the form

f (x) = f (x; μ,*) = (2π )−p/2| det*|−1/2 exp
{− 1

2 (x − μ)*−1(x − μ)T
}

, (19)

with aT ∈ R
1×p being the transpose of the vector a ∈ R

p. In this general case of the
Gaussian measure, the Poincaré and LSI are the following:

Varγ p (f ) ≤ σ*Expγ p‖∇f ‖2, (20)

Entγ pf
2 ≤ 2σ*Expγ p‖∇f ‖2, (21)

respectively.
Moreover, as far as the entropy of a p-variate random vector X is concerned, say

H(X), considering the following proposition a bound for it is obtained, depending
only on the scale matrix.

Proposition 2 Let the random vector X has zero mean and covariance matrix *.
Then

H(X) ≤ 1
2 log

{
(2πe)p| det*|} ,

with equality if and only if X ∼ N (0,*).
This proposition is crucial and clarifies that the entropy for the normal distribution

is depending, eventually, only on the variance–covariance matrix, while equality
holds whenX is following the (multivariate) normal distribution, a result quite often
applied in engineering problems, and information systems.

4 The γ -Order Generalized Normal Distribution (γ -GND)

Through the LSI approach, a construction of an exponential power generalization
of the usual normal distribution is provided as an extremal of (an Euclidean) LSI.
Following [15], the gross logarithm inequality with respect to the Gaussian weight,
[14], is of the form

∫

Rp

‖g‖2 log ‖g‖2 dm ≤ 1
π

∫

Rp

‖∇g‖2 dm, (22)



290 C. P. Kitsos and T. L. Toulias

where ‖g‖2 = 1, dm = exp{−π |x|2}dx (‖g‖2 =
∫

Rp
‖g(x)‖2dx is the norm in

L2(Rp, dm)). Inequality (22) is equivalent to the (Euclidean) LSI,

∫

Rp

‖u‖2 log ‖u‖2dx ≤ p

2 log

⎧
⎨

⎩
2
πpe

∫

Rp

‖∇u‖2dx

⎫
⎬

⎭
, (23)

for any function u ∈ W1,2(Rp) with ‖u‖2 = 1, see [15] for details. This inequality
is is optimal, in the sense that

2
πpe

= inf

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

Rp

‖∇u‖2dx

exp

(
2
n

∫

Rp

‖u‖2 log ‖u‖2dx

) : u ∈ W1,2(Rn), ‖u‖2 = 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

see [31]. Extremals for (23) are precisely the Gaussians u(x) = (πσ/2)−p/4
exp{−σ−1‖x − μ‖2} with σ > 0 and μ ∈ R

p, see [4, 5] for details.
Now, consider the extension of Del Pinto and Dolbeault in [7] for the LSI as in

(23). For any u ∈ W1,2(Rp) with ‖u‖γ = 1, the γ -LSI holds, i.e.

∫

Rp

‖u‖γ log ‖u‖dx ≤ p

γ 2 log

⎧
⎨

⎩
Kγ

∫

Rp

‖∇u‖γ dx
⎫
⎬

⎭
, (24)

with the optimal constant Kγ equals to

Kγ = γ

p

(
γ−1
e

)γ−1
π−γ /2(ξpγ )γ /p, (25)

where

ξpγ =
"(p2 + 1)

"(p γ−1
γ
+ 1)

, (26)

and "( · ) the usual gamma function.
Inequality (24) is optimal and the equality holds when u(x) = fXγ (x) is conside-

red, where Xγ follows the multivariate distribution with p.d.f. fXγ defined as

fXγ (x; μ,*, γ ) = Cpγ (*) exp
{
− γ−1

γ
Qθ (x)

γ
2(γ−1)

}
, x ∈ R

p, (27)

with normalizing factor

Cpγ = Cpγ (*) = π−p|*|−1/2ξpγ

(
γ−1
γ

)p γ−1
γ

, (28)

and p-quadratic form Qθ (x) = (x − μ)*−1(x − μ)T where θ = (μ,*) ∈ R
p ×

R
p×p. The function φ(δ) = fXδ (x)1/δ with * = (σ 2/δ)2(δ−1)/δ

Ip corresponds to the
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extremal function for the LSI due to [7]. The essential result is that the defined p.d.f
fXγ works as an extremal function to a generalized form of the LSI.

We shall write Xγ ∼ N p
γ (μ,*) where N p

γ (μ,*) is an exponential power gen-
eralization of the usual normal distribution N p(μ,*) with mean vector μ ∈ R

p,
scale matrix * ∈ R

p×p involving a new shape parameter γ ∈ R \ [0, 1]. These
distributions shall be referred to as the γ -order normal distributions or γ -GND. No-
tice that for γ = 2, the second-ordered normal N p

2 (μ,*) is reduced to to the usual
multivariate normal N p(μ,*), i.e. N p

2 (μ,*) = N p(μ,*). One of the merits of the
γ -order normal distribution defined above belongs to the symmetric Kotz type dis-
tributions family, [22], as N p

γ (μ,*) = Kotzm,r,s(μ,*) with m = 1, r = (γ − 1)/γ
and s = γ /(2γ − 2).

It is commented here that the introduced univariate γ -order normal Nγ (μ, σ 2) =
N 1
γ (μ, σ 2) coincides with the existent generalized normal distribution introduced in

[25], with density function

f (x; μ,α,β) = β

2α"(1/β)
exp
{
− ∣∣ x−μ

α

∣
∣β
}

,

where α = ( γ

γ−1 )(γ−1)/γ σ and β = γ

γ−1 , while the multivariate case of the γ -

order normal N p
γ (μ,*) coincides with the existent multivariate power exponential

distribution PEP (μ,*′,β), as introduced in [11], where *′ = 22(γ−1)/γ* and β =
γ

2(γ−1) . See also [12, 23, 24]. These existent generalizations are technically obtained
(involving an extra power parameter β) and not as a theoretical result of a strong
mathematical background as the LSI offer.

Recall now the multivariate and elliptically contoured uniform Up(μ,*) and
Laplace Lp(μ,*) distributions, as well as the degenerate Dirac distribution Dp(μ)
with p.d.f. fU , fL, fD as follows:

fU (x) = "(p2 + 1)

(πp det*)1/2
, x ∈ R

p with Qθ (x) ≤ 1, (29)

fL(x) = "(p2 + 1)

p!(πp det*)1/2
exp
{
−Q1/2

θ (x)
}

, x ∈ R
p, (30)

fD(x) =
⎧
⎨

⎩

+∞, x = μ,

0, x ∈ R
p \ μ. (31)

The following theorem states that the above distributions, as well as the multi-
variate normal with p.d.f. fN as in (19), are members of the γ -GND family for
certain values of the shape parameter γ . Thus, the order γ , eventually, “bridges”
distributions with complete different shape as well as “tailing” behaviour.

Theorem 6 The multivariate γ -GND r.v. Xγ , i.e. Xγ ∼ N p
γ (μ,*) with p.d.f. fXγ ,

coincides for different values of the shape parameter γ with the uniform, normal,
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Laplace and Dirac distributions, as

fXγ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

fD, for γ = 0 and p = 1, 2,

0, for γ = 0 and p ≥ 3,

fU , for γ = 1,

fN , for γ = 2,

fL, for γ = ±∞.

(32)

Proof From the p.d.f. definition (27) of N p
γ (μ,*), parameter γ is defined over

R \ [0, 1], i.e. γ is a real number outside the interval [0, 1]. Denote g = γ−1
γ

and Eθ
the p–ellipsoidQθ (x) = 1, x ∈ R

p. The following cases are distinguished:

i. The uniform case γ = 1. From (27) with x ∈ R
p inside the p-ellipsoid Eθ , i.e.

Qθ (x) ≤ 1, it holds that

lim
γ→1+

fγ (x; μ,*) = "(p2 + 1)

πp/2
√| det*|

(

lim
g→0+

gg
)(

lim
g→0+

exp
{−gQθ (x)−1/(2g)

}
)

= "(p2 + 1)

πp/2
√| det*| · 1 · e0,

while, for x ∈ R
p outside Eθ , i.e.Q(x) > 1, it is

lim
γ→1+

fγ (x; μ,*) = "(p2 + 1)

πp/2
√| det*|

(

lim
g→0+

gg
)(

lim
g→0+

exp
{−gQθ (x)1/(2g)

}
)

= "(p2 + 1)

πp/2
√| det*| · 1 · 0,

due to the fact thatgx1/g →+∞ asg→ 0+ for allx ∈ R
∗+ = R

∗+\0. Therefore,
from (29), the first branch of (32) holds true as fX1 := limγ→1+ fXγ = fU , or
N p

1 (μ,*) := limγ→1+ N p
γ (μ,*) = Up(μ,*). That is, the multivariate first-

ordered normal distribution coincides with the elliptically contoured uniform
distribution.

ii. The Gaussian case γ = 2. It is clear that N p

2 (μ,*) = N p(μ,*), as fX2

coincides with the multivariate (and elliptically contoured) Gaussian den-
sity function fN as in (19). That is, the multivariate second-ordered normal
distribution coincides with the usual elliptically contoured normal distribution.

iii. The Laplace case γ = ±∞. For the limiting g = γ−1
γ

= 1 (as γ →
±∞), it holds that that N p

±∞(μ,*) := limγ→±∞ N p
γ (μ,*) = Lp(μ,*)

as fX±∞ := limγ→±∞ fXγ coincides with the multivariate (and elliptically
contoured) Laplace density fL as in (30). That is, the multivariate infinite-
ordered normal distribution coincides with the elliptically contoured Laplace
distribution.
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iv. The degenerate Dirac case γ = 0. First, it is assumed that x = μ, i.e.Qθ (x) =
0, and hence, from definition (27),

fXγ (μ) = π−p/2| det*|−1/2"
(
p

2 + 1
) gpg

"(pg + 1)
. (33)

From the fact that

fX0 (μ) := lim
γ→0−

fXγ (μ) = lim
g= γ−1

γ
→+∞

fXγ (μ) = lim
k=[pg]→∞fXγ (μ),

where [x] being the integer value of x ∈ R, it is

fX0 (μ) = "(p2 + 1)

πp/2
√| det*|

(

lim
k→∞

kk

pkk!
)

. (34)

Utilizing now the Stirling’s asymptotic formula k! ≈ √
2πk( k

e
)k as k → ∞,

(34) implies

fX0 (μ) = "(p2 + 1)

πp/2
√| det*|

[

lim
k→∞

1√
2πk(p

e
)k

]

, (35)

and thus, for p ≥ 3 > e, (35) implies fX0 (μ) = 0 while, for p = 1 or p = 2
implies fX0 (μ) = +∞.
Assuming now x �= μ and using (34), it holds that

fX0 (x) = lim
γ→0−

fXγ (μ)

[

lim
g→+∞ exp

{−gQ(x)1/(2g)
}
]

, (36)

hence, for p ≥ 3 > e, (36) implies fX0 (x) = 0 (due to gx1/g → 0 as g→+∞
for all x ∈ R

∗+) while, for p = 1 orp = 2, applying (35) into (36), it is obtained
that

fX0 (x) = "(p2 + 1)

πp/2
√| det*|

⎡

⎣ lim
k→∞

exp
{

1− 1
p
Qθ (x)p/(2k)

}

pk
√

2πk

⎤

⎦ = 0.

Therefore, for p = 1, 2, it is clear that N p

0 (μ,*) := limγ→0− N p
γ (μ,*) =

Dp(μ) as fX0 coincides with the multivariate Dirac density function fD as
in (31), i.e. the univariate and bivariate zero-ordered normals are in fact the
(univariate and bivariate) degenerate Dirac distributions, while the p-variate,
p ≥ 3, zero-ordered normals are the degenerate vanishing distributions.

Considering the above cases of (i), (iii) and (iv), the defining values of parameter
γ of Nγ distributions can be safely extended to include the limiting values of γ =
0, 1,±∞, respectively, i.e. γ can now be defined outside the real open interval (0, 1).
Eventually, the uniform, normal, Laplace and also the degenerate distributions as the
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Dirac or the vanishing ones can be considered as members of the γ -GND family of
distributions. �

Notice that N 1
1 (μ, σ ) coincides with the known (continuous) uniform distribution

U(μ − σ ,μ + σ ). Specifically, for every uniform distribution expressed with the
usual notation U(a, b), it holds that U(a, b) = N 1

1 ( a+b2 , b−a2 ) = U1(μ, σ ). Also
N2(μ, σ 2) = N (μ, σ 2), N±∞(μ, σ 2) = L(μ, σ ) and finally N0(μ, σ ) = D(μ).
Therefore, the following holds.

Corollary 1 The univariate γ -ordered normal distributions N 1
γ (μ, σ 2) for order

values γ = 0, 1, 2,±∞ coincides with the usual (univariate) Dirac D(μ), uniform
U(μ− σ ,μ+ σ ), normal N (μ, σ 2) and Laplace L(μ, σ ) distributions, respectively.

Notice that for the r.v. X from the p-variate normal and A a given p × p matrix,
it holds

X ∼ N p(μ,*) ⇒ AX ∼ N p(Aμ, A*AT). (37)

The linear relation described in (37) for the multivariate normal is valid for the γ -
GND, in the sense that for given A an appropriate matrix and b an appropriate vector,
then

X ∼ N p
γ (μ,*) ⇒ AX + b ∼ N p

γ (Aμ+ b, A*AT). (38)

Simple calculation also proves that if the matrix A is reduced to an appropriate
vector, relation (38) is still valid.

For the multivariate normally distributed X ∼ N p(μ,*), it is clear, from (19),
that the maximum density value maxfX = fX(μ) = (2π )−p/2| det*|−1/2 decreases
as dimension p ∈ N rises, providing “flattened” probability densities. This is also
true for the multivariate Laplace distributed X ∼ Lp(μ,*) = N p

±∞(μ,*). In fact,
from (30), we have that maxfX = π−p/2 1

p!"(p2 + 1)| det*|−1/2 and therefore, the
high-dimensional Laplace distribution densities are “flattened”, since the maximum
density values decreases asp ∈ N increases. This is true because, for dimensions 2p,
with maxfX = Cp±∞(*) = π−p/2 1

(p+1)(p+2)...2p | det*|−1/2. Hence, as in the normal
distribution case, X provides, in principle, heavy tails as the dimension increases.
However, this is not the case for the multivariate (and elliptically contoured) uniform
distributed X ∼ Up(μ,*) = N p

1 (μ,*), because the volume of the corresponding
p-elliptical-cylinder shape of their density functions, as in (29), must always equal
1, although Up have no tails to “absorb” probability mass when dimension increases,
as the normal or the Laplace distributions does. Considering the above remark, the
following proposition shows that, among all elliptical multivariate uniform distribu-
tions Up(μ,*) with fixed scale matrix *, the U5(μ,*) has the minimum maxfX,
see [21].

Theorem 7 For the elliptically contoured uniformly distributedX ∼ Up(μ,*), we
have

min
p∈N

{maxfX} = 15
6π2 | det*|−1 = max U5(μ,*),

i.e. the 5-dimensional uniform distribution provides the least of all maximum density
values among all Up(μ,*) with fixed scale matrix *.
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The γ -GND N p
γ (μ,*) is, in general, an elliptically contoured distribution, and

therefore every Xγ ∼ N p
γ (μ,*) admits a stochastic representation Xγ = μ +√

V*−1/2U where U is uniformly distributed r.v. on the unit sphere of R
p and V

and U are independent.

Proposition 3 For the random variable Xγ = μ+
√
Vγ*

−1/2U ∼ N p
γ (μ,*), the

2t–th moments of Vγ are given by

E(V 2t
γ ) =

"
(

(p+ 2t) γ−1
γ

)

"
(

p γ−1
γ

)
(
γ

γ−1

)2t γ−1
γ

. (39)

Using Theorem 2.8 in [8], the product moments of X are obtained, i.e.

E
(

X2t1
1 · · ·X2tp

p

)
= E(V 2t

γ )

πp/2

"(p2 )

"(p2 + t)
p∏

k=1

"
(

1
2 + tk

)

= π−p/2
(
γ − 1

γ

)2t
γ−1
γ "

(
(p + 2t) γ−1

γ

)
"(p2 )

"(p γ−1
γ

)"(p2 + t)
p∏

k=1

"( 1
2 + tk),

where ti ≥ 1, i = 1, . . .,p are integers and t1 + t2 + · · · + tp = t .
Consequently, the expected value and the covariance of Xγ =

√
Vγ*

−1/2U are
respectively E(Xγ ) = μ for every order values γ ∈ R \ [0, 1], and

Cov(Xγ ) =
"
(

(p+ 2) γ−1
γ

)

"
(

p γ−1
γ

)
(
γ

γ−1

)2 γ−1
γ

(rank*)−1*. (40)

Theorem 8 An explicit analytic form of the characteristic function ϕXγ of Xγ ∼
N p
γ (0, Ip) is given by

ϕXγ (t) = e−itTμ
γ

2(γ−1)"(p/2)

"(p γ−1
γ

)

∞∑

k=0

(− 1)k
(
γ−1
γ

)k+p γ−1
γ

qk ‖t‖
kγ
γ−1−p , (41)

where

qk = 2p+k
γ
γ−1

πk! "
(
k

γ

2(γ−1) +
p

2

)
"
(

kγ

2(γ−1) + 1
)

sin
(
π
(

1+ k
2
γ

γ−1

))
.

The series in (41) is absolutely convergent for any t ∈ R
p \0, see [21] for details.

Recall now the cumulative distribution function (c.d.f.) ΦZ(z) of the standardized
normally distributed Z ∼ N (0, 1), i.e.

ΦZ(z) = 1
2 + 1

2 erf
(

z
2

)
, z ∈ R, (42)
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with erf( · ) being the usual error function. For the γ -GND the generalized error
function, [13], Erfγ /(γ−1) is involved. Indeed, the following holds.

Theorem 9 Let X be a random variable from the univariate γ -GND, i.e. X ∼
N p
γ (μ, σ 2) with p.d.f. fγ . If FX is the c.d.f. ofX and+Z the c.d.f. of the standardized
Z = 1

σ
(X − μ) ∼ Nγ (0, 1), then

FX(x) = +Z ( x−μ
σ

) = 1
2 +

√
π

2"( γ−1
γ

)"( γ

γ−1 )
Erf γ

γ−1

{(
γ−1
γ

) γ−1
γ x−μ

σ

}

, x ∈ R.

(43)

Proof From the definition of the c.d.f. of X it is

FX(x) =
x∫

0

fX(t)dt = C1
γ (σ )

x∫

−∞
exp
{
− γ−1

γ

∣
∣ x−μ
σ

∣
∣
γ
γ−1
}
dt.

Applying the linear transformation w = t−μ
σ

, the above is reduced to

FX(x) = C1
γ (1)

x−μ
σ∫

−∞
exp
{
− γ−1

γ
|w| γ

γ−1

}
dw = +Z ( x−μ

σ
), (44)

where +Z is the c.d.f. of the standardized γ -GND with Z = 1
σ

(X − μ) ∼ Nγ (0, 1).
Moreover, +Z can be expressed in terms of the generalized error function. In
particular,

+Z (z)= C1
γ (1)

z∫

−∞
exp
{
− γ−1

γ
|w| γ

γ−1

}
dw = +Z (0)+C1

γ (1)

z∫

0

exp
{
− γ−1

γ
|w| γ

γ−1

}
dw,

and as fZ is a symmetric density function around zero, we have

+Z (z)= 1
2+C1

γ (1)

z∫

0

exp
{
− γ−1

γ
|w| γ

γ−1

}
dw= 1

2+C1
γ (1)

z∫

0

exp

⎧
⎨

⎩
−
∣
∣
∣
∣
∣

(
γ−1
γ

) γ−1
γ

w

∣
∣
∣
∣
∣

γ
γ−1

⎫
⎬

⎭
dw,

and thus

+Z (z) = 1
2 + C1

γ (1)
(
γ

γ−1

) γ−1
γ

( γ−1
γ

)
γ−1
γ z∫

0

exp
{
−u

γ
γ−1

}
du. (45)

Substituting the normalizing factor, as in (28), it is

+Z (z) = 1
2 +

√
π

2"( γ−1
γ
+ 1)"( 2γ−1

γ−1 )
Erf γ

γ−1

{(
γ−1
γ

) γ−1
γ

z

}

, z ∈ R, (46)
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Fig. 1 Graph of all density
functions fXγ (x) with
Xγ ∼ Nγ (0, 1) along x and γ

through the definition of the generalized error function, i.e. (43) holds. �

Figure 1 illustrates Corollary 1 in a compact form including the density functions
fXγ (x) for all γ ∈ [− 10, 0) ∪ [1, 10], Xγ ∼ Nγ (0, 1) with x ∈ [− 3, 3].

The known densities of uniform (γ = 1) and normal (γ = 2) distributions are also
depicted. Moreover, the densities of Nγ=±10 (0, 1) which approximate the density
of Laplace distribution L(0, 1) = N±∞(0, 1) as well as the density of N−0.005(0, 1)
which approximates the degenerate Dirac distribution D(0) are clearly presented.
Notice also the smooth-bringing between these significant distributions included
into the family of the γ -order normals, as shown in Theorem 6.

5 Generalized Entropy Type Fisher’s Information Measure

Let X be a multivariate r.v. with parameter vector θ = (θ1, θ2, . . . , θp) ∈ R
p and

p.d.f. fθ on R
p. The parametric type Fisher’s information matrix IF (X; θ ) (also

denoted as Iθ (X)) defined as the covariance of∇θ log fθ (X) (where∇θ is the gradient
with respect to the parameters θi , i = 1, 2, . . . ,p) is a parametric type information
measure, expressed also as

Iθ (X)= Cov (∇θ log fθ (X)) = Eθ
(∇θ log fθ (X) · ∇θ log fθ (X)T

)

= Eθ
(‖∇θ log fθ (X)‖2

)
.

On the other hand the Fisher’s entropy type information measure J(X) of a r.v. X
with p.d.f. f on R

p is defined, as J(X) = E(‖∇ log f (X)‖2). Moreover, J(X) can be
written as

J(X)=
∫

Rp

f (x)‖∇ log f (x)‖2dx =
∫

Rp

f (x)−1‖∇f (x)‖2dx

=
∫

Rp

∇f (x) · ∇ log f (x)dx = 4
∫

Rp

‖∇√f (x)‖2dx.
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The generalized Fisher’s entropy type information measure, or δ-GFI, is an
exponential power generalization of J(X), defined as

Jδ(X) = E
(‖∇ log f (X)‖δ) , δ ≥ 1, see also [30] (47)

The 2-GFI is reduced to the usual J, i.e. J2(X) = J(X).
From the definition of the δ-GFI above, we can obtain

Jδ(X)=
∫

Rp

‖∇ log f (x)‖δf (x)dx =
∫

Rp

‖∇f (x)‖δf 1−δ(x)dx

= δδ
∫

Rp

‖∇f 1/δ(x)‖δdx, see also [16, 17] (48)

Recall that the Shannon entropy H of a r.v. X is defined as, [6] and [26],

H(X) =
∫

Rp

f (x) log f (x)dx, (49)

while the entropy power is defined

N(X) = νe 2
pH(X), (50)

with ν = (2πe)−1. The extension of the entropy power, the generalized entropy
power (δ-GEP) is defined for δ ∈ R \ [0, 1], as

Nδ(X) = νδe δpH(X), (51)

where

νδ =
(
δ−1
δe

)δ−1
π−δ/2(ξpδ )δ/p, δ ∈ R \ [0, 1], (52)

with ξδp as in (26). In technical applications, such as signal I/O systems, the gener-
alized entropy power can still be the power of the white Gaussian noise having the
same entropy. Trivially, when δ = 2, (51) is reduced to the existing entropy power
N(X), i.e. N2(X) = N(X) as ν2 = ν.

From the δ-GEP, a generalized version of the usual Shannon entropy can be
produced, referred as the generalized δ-order Shannon entropy Hδ , i.e. Nδ(X) =
ν exp{ 2

p
Hδ(X)}. Therefore, from (51) a linear relation between the generalized

Shannon entropy Hδ(X) and the usual Shannon entropy H(X) is obtained, i.e.

Hδ(X) = p

2 log νδ
ν
+ δ

2 H(X). (53)

Practically, (53) represents a linear transformation of H(X) which depends on
the parameter δ and dimension the p ∈ N. It is also clear that the second-ordered
Shannon entropy is the usual Shannon entropy, i.e. H2 = H.

The following result about the information inequality is essential.
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Theorem 10 (Information Inequality for the δ-GFI) The information inequality still
holds under δ-GFI and δ-GEP, i.e.

Jδ(X)Nδ(X) ≥ p. (54)

Proof For u = f 1/δ , we have ∇g = ∇f 1/δ = 1
δ
f

1−δ
δ ∇f and therefore (24) gives

1
δ

∫

Rp

f log f dx ≤ p

δ2 log

⎧
⎨

⎩
Kδ

∫

Rp

δ−δf 1−δ‖∇f ‖δdx
⎫
⎬

⎭
,

while applying (48), we have
∫

Rp

f log f dx ≤ log
{
Kδδ

−δJδ(X)
}p/δ

,

or

exp

⎧
⎨

⎩
δ
p

∫

Rp

f log f dx

⎫
⎬

⎭
≤ Kδδ−δJδ(X),

while, through νδ as in (52),

ν−1
δ exp

{
δ
p

∫

Rp

f log f dx

}

≤ ν−1
δ Kδδ

−δJδ(X).

Since ν−1
δ Kδδ

−δ = 1
p

, (54) is eventually obtained. �

Moreover, the Cramér–Rao inequality can be extended, [15], as

[
2πe
p

Var(X)
]1/2 [

νδ
p

Jδ(X)
]1/δ ≥ 1. (55)

Under the normality parameter δ = 2, (55) is reduced to the usual Cramér–Rao
inequality form, [6]

J(X) Var(X) ≥ p. (56)

Furthermore, the classical entropy inequality

Var(X) ≥ pN(X) = p

2πe e
2
p

H(X) or H(X) ≤ p

2 log
{

2πe
p

Var(X)
}

, (57)

can be extended into the form

Var(X) ≥ p(2πe)
δ−4
δ ν

2/δ
δ N2/δ

δ (X) = p(2πe)
δ−2
δ ν

2/δ
δ e

4
pδ

Hδ (X), (58)

through the generalized Shannon entropy Hδ defined earlier. Under the “normal”
parameter value δ = 2, the inequality (58) is reduced to the usual entropy inequality
as in (57).
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Fig. 2 Graphs of generalized
entropy Hα with respect to H
for various α parameter
values

Figure 2 presents the linear expressions between the generalized Hδ and the usual
Shannon entropy H. The area E described by the envelop region of the family of
lines Hδ = Hδ(H) as in (53), indicates no relation between Hδ and H as it lies
asymptotically between the lines H0(H) and H1(H). This was expected in the sense
that the parameter δ ∈ R but δ /∈ [0, 1], see (51).

The Blachman–Stam inequality, [3, 4, 29] is generalized through the δ-GFI.
Indeed:

Theorem 11 (Blachman–Stam inequality for the δ-GFI) For given two p-variate
and independent random variables X and Y , it holds

Jδ
(
λ1/δX + (1− λ)1/δY

) ≤ λJδ(X)+ (1− λ)Jδ(Y ), λ ∈ (0, 1). (59)

The equality holds when X and Y are normally distributed with the same
covariance matrix.

Proof Let fX, fY be the density function of X and Y , respectively. Then, if

f (x, y) := fX
(
λ1/δx − (1− λ)1/δy

)
fY
(
(1− δ)1/δy + λ1/δx

)
, λ ∈ (0, 1),

on R
p, the marginal

∫
F (x, y)dpx is the density of λ1/δX + (1− λ)1/δY . Also,

∫

Rp

∫

Rp

∥
∥∇yf 1/δ(x, y)

∥
∥δ dxdy = λJδ(X)+ (1− λ)Jδ(Y).

Recall now the Minkowski-type inequality of Theorem 2 in [4], i.e.

∫

Rn

∥
∥
∥
∥
∥
∇y
(∫

Rm

‖f (x, y)‖δdmx
)1/δ

∥
∥
∥
∥
∥

δ

dny ≤
∫

Rn

∫

Rm

∥
∥∇yf (x, y)

∥
∥δ dmxdny, (60)

for any function f in Lp(Rm × R
n, dmxdny) ⊗ W1,p(Rn) where ∇y denotes the

partial distributional gradient for y variables, and whenever there is equality it holds
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‖f (x, y)‖ = ‖f1(x)‖ · ‖f2(y)‖. Thus, (60) asserts

∫

Rp

∥
∥
∥
∥
∥
∇y
(∫

Rp

∥
∥f 1/δ(x, y)

∥
∥δ dx

)1/δ
∥
∥
∥
∥
∥

δ

dy ≤
∫

Rp

∫

Rp

∥
∥∇yf 1/δ(x, y)

∥
∥δ dxdy,

and hence, (59) holds true with equality implying that F is a product of densities
in x and y, that occurs only when X and Y are normally distributed with the same
covariance (see Theorem 1 in [4]). �

Recall now that corresponding to any orthogonal decomposition R
p = R

r ⊕R
s ,

p = s + t , the marginal densities are given by

f1(x) =
∫

Rs

f (x, y)dsy, f2(y) =
∫

Rt

f (x, y)dtx. (61)

with f being a probability density on R
p. Then, as far as the superadditivity of the

δ-GFI is concerned, the following theorem is stated and proved which is a direct
analog of the well-known theorem asserting strict subadditivity of the entropy.

Theorem 12 (Strict Superadditivity for the δ-GFI) With f , f1 and f2 defined and
related as above,

Jδ(f ) ≥ Jδ(f1)+ Jδ(f2), (62)

with equality holds when f (x, y) = f1(x)f2(y) almost everywhere.

Proof Let g(x, y) = f 1/δ(x, y). Then, from the definition of the δ-GFI (48),

Jδ(f ) = δδ
∫

Rp

‖∇xg(x, y)‖δ dsxdty + δδ
∫

Rp

∥
∥∇yg(x, y)

∥
∥δ dtydsx. (63)

The inequality (60) gives

∫

Rp

‖∇xg(x, y)‖δdsxdty ≥
∫

Rs

∥
∥
∥
∥
∥
∇
(∫

Rt

gδ(x, y)dty

)1/δ
∥
∥
∥
∥
∥

δ

dsx,

and
∫

Rp

‖∇yg(x, y)‖δdsxdty ≥
∫

Rs

∥
∥
∥
∥
∥
∇
(∫

Rt

gδ(x, y)dty

)1/δ
∥
∥
∥
∥
∥

δ

dsx,

and hence, (63) becomes

Jδ(f ) ≥ δδ
∫

Rs

∥
∥
∥
∥
∥
∇x
(∫

Rt

gδ(x, y)dty

)1/δ
∥
∥
∥
∥
∥

δ

dsx + δδ
∫

Rt

∥
∥
∥
∥
∥
∇y
(∫

Rs

gδ(x, y)dsx

)1/δ
∥
∥
∥
∥
∥

δ

dt y

= Jδ(f1)+ Jδ(f2).

By the conditions for equality in the previous inequality where (60) were applied,
we must have f (x, y) = f1(x)f2(y), as f , f1, f2 are positive. �

For the “normal” parameter δ = 2, we are reduced to the known supperadditivity
of Fisher’s information measure, see [4].
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6 Entropy and Information Measures for the γ -GND

For the Shannon entropy of an r.v. Xγ ∼ N p
γ (μ,*) it holds,

H(X) = p γ−1
γ
− 1

2 logCpγ (*), (64)

see [16, 15]) while for the δ-GEP of the γ -GND we have, through (50) and (64), the
following.

Theorem 13 LetXγ an elliptically contoured γ -GND r.v.Xγ ∼ N p
γ (μ,*). It holds

Nδ(Xγ ) = ( δ−1
eδ

)δ−1
(
eγ

γ−1

)δ γ−1
γ

ξ
p

δ,γ | det*| δ2p , (65)

where

ξ
p

δ,γ =
ξ
p

δ

ξ
p
γ

=
"
(
p
γ−1
γ
+ 1
)

"
(
p δ−1

δ
+ 1
) . (66)

Example 3 For the usual entropy power of the γ -GND, i.e. for the second-GEP of
the r.v. XγNγ (μ,*), it holds

N(Xγ ) = 1
2e

(
eγ

γ−1

)2 γ−1
γ

(ξpγ )2/p| det*|1/p. (67)

Theorem 14 The Shannon entropy for the multivariate and elliptically countered
uniform, normal and Laplace distributedX (for γ = 1, 2,±∞, respectively) is given
by

H(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log π
p/2√| det*|
"( p2 +1)

, X ∼ N p

1 (μ,*) = Up(μ,*),

log
√

(2πe)p| det*|, X ∼ N p

2 (μ,*) = N p(μ,*),

log p!eπp/2√| det*|
"( p2+1)

, X ∼ N p
±∞(μ,*) = Lp(μ,*),

(68)

while H(X) is infinite when X ∼ N p

0 (μ,*).

Proof Applying Theorem 6 into (64), we obtain (68). Consider now the limiting
case of γ = 0. We can write (64) in the form

H(Xγ ) = log

{
πp/2

√| det*|
"(p2 + 1)

· "(pg + 1)

( g
e
)pg

}

,

where g = γ−1
γ

. We then have,

lim
γ→0−

H(Xγ ) = log

{
πp/2

√| det*|
"(p2 + 1)

lim
k=p[g]→∞

pkk!
( k
e
)k

}

, (69)
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and using the Stirling’s asymptotic formula k! ≈ √
2πk( k

e
)k as k→∞, (69) finally

implies

lim
γ→0−

H(Xγ ) = log

{
√

2π | det*| πp/2

"( p
2 + 1)

lim
k→∞pk

√
k

}

= +∞,

which proves the theorem. �

Example 4 For the univariate case p = 1, we are reduced to

H(X) =

⎧
⎪⎪⎨

⎪⎪⎩

log 2σ , X ∼ N1(μ, σ ) = U(μ− σ ,μ+ σ ),

log
√

2πeσ , X ∼ N2(μ, σ 2) = N (μ, σ 2),

1+ log 2σ , X ∼ N±∞(μ, σ ) = L(μ, σ ).

Theorem 15 The generalized Shannon entropy Hδ of the multivariate Xγ ∼
Nγ (μ,*) is given by

Hδ(Xγ ) = 2γ−δ
2γ p + p

2 log

⎧
⎨

⎩
2π
(
δ−1
δ

)δ−1
(
γ

γ−1

)δ γ−1
γ

[
"(p γ−1

γ
+ 1)

"(p δ−1
δ
+ 1)

] δ
p

| det*| δ2p
⎫
⎬

⎭
.

(70)

For δ = γ , it is Hγ (Xγ ) = 1
2 log{(2πe)p| det*|γ /2}. Moreover, for a random

variable X following the multivariate uniform, normal and Laplace distributions
(γ = 1, 2,±∞, respectively), it is

Hδ(X) =

⎧
⎪⎨

⎪⎩

2−δ
2 p + hpγ ,a , X ∼ N p

1 (μ,*),

p + δ
2 log

{
(2/e)p/2"(p2 + 1)

}+ hpγ ,δ, X ∼ N p

2 (μ,*),

p + p

2 logp! + hpγ ,a , X ∼ N p
±∞(μ,*),

(71)

where hpγ ,δ = δ
2 log{(2π )p/δ( δ−1

δ
)p(δ−1)/δ["(p δ−1

δ
+1)]−1√| det*|}. For the limiting

degenerate case of γ = 0, we obtain Hδ(X0) = (sgn δ)( + ∞), for δ �= 0 while
H0(X0) = p log

√
2πe.

Proof Substituting (52) and (64) into (53), we obtain

Hδ(Xγ ) = p

2 log
{

2π
2−δ

2 e
2γ−δ
γ ( δ−1

δ
)δ−1
}
+ δ

2 log

{

πp/2
(
γ

γ−1

)p γ−1
γ
"(p γ−1

γ
+ 1)

"(p δ−1
δ
+ 1)

√| det*|
}

,

and after some algebra we derive (70). In case of δ = γ we have Hγ (Xγ ) =
p

2 log{2πe| det*|γ /(2p)}.
Recall Theorem 6. For the order values γ = 1, γ = 2 and γ = ±∞, the

δ-Shannon entropies Hδ of the uniformly, normally and Laplace distributed X1 ∼
Up(μ,*), X2 ∼ N p(μ,*) and X±∞ ∼ Lp(μ,*), respectively, are given by (71).
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Consider now the limiting case of γ = 0. We can write (70) in the form

Hδ(Xγ ) = p

2 (2− δ + γα)+ p

2 log

⎧
⎨

⎩
2π (α−1

α
)δ−1α−αδ

[
"(pα + 1)

√| det*|
"(p δ−1

δ
+ 1)

] δ
p

⎫
⎬

⎭

= log

⎧
⎨

⎩
(2π )p/2

(
δ−1
δ

)p δ−1
2

[
"(pα + 1)

(α
e
)pα"(p δ−1

δ
+ 1)

] δ
2

| det*|δ
⎫
⎬

⎭
,

where α = γ−1
γ

. We then have,

lim
γ→0−

Hδ(Xγ ) = log

⎧
⎨

⎩
(2π )p/2( δ−1

δ
)p
δ−1

2

[

lim
k=p[α]→∞

pkk!
( k
e
)k

] δ
2

| det*|δ
⎫
⎬

⎭
. (72)

Using the Stirling’s asymptotic formula (similar as in Theorem 14), (72) finally
implies

lim
γ→0−

Hδ(Xγ ) = log

{

(2π )p/2
(
δ−1
δ

)p δ−1
2 | det*|δ

(

lim
k→∞ pk

√
k

) δ
2

}

= (sgnδ)(+∞),

where sgnδ is the sign of parameter δ, which proves the theorem. �

Notice that despite the rather complicated form of the Hδ(Xγ ) with δ �= γ , the
generalized Shannon entropy of a δ-order normally distributedXδ has a very compact
expression.

Recall now the known relation of the Shannon entropy of a normally distributed
random variable Z ∼ N (μ,*), i.e. H(Z) = 1

2 log{(2πe)p| det*|}. Therefore,
Hγ (Xγ ) generalizes H(Z) = H2(X2) preserving the simple formulation for every
γ , as parameter γ affects only the scale matrix * (as a power).

Another interesting fact about Hγ (Xγ ) is that, H0(X0) = p

2 log{2πe} or H0(X0) =
−p4 log ν. According to Theorem 14 the Shannon entropy diverges to +∞ for the
degenerated Dirac distribution D(μ) = N0. However, the 0-Shannon entropy H0 (in
limit) for a Dirac distributed r.v. converges to H0(X0) = log

√
2πe = − 1

2 log ν ≈
1.4189, which is the same value as the Shannon entropy of the standardized normally
distributed Z ∼ N (0, 1). Thus, the generalized Shannon entropy can “handle” the
Dirac distribution in a more “coherent” way than the usual Shannon entropy (i.e. not
diverging to infinity).

We can mention also that (70) expresses the generalized δ-Shannon entropy of
the multivariate uniform, normal and Laplace distributions relative to each other. For
example, the difference between these entropies of uniform and Laplace is indepen-
dent of the same scale matrix*, i.e. Hδ(X±∞)−Hδ(X1) = p+ p

p
logp!+ δ−2

δ
while

for the usual Shannon entropy, H(X±∞)− H(X1) = p + p

p
logp!, i.e. the Shannon

entropies differ in a dimension-depending constant.
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Theorem 16 The generalized Fisher’s information Jδ of an r.v. Xγ ∼ N p
γ (μ, λ*∗)

where λ ∈ R+\0 and*∗ is a real orthogonal matrix with det* = 1, i.e.*∗ ∈ R
p×p
⊥ ,

is given by

Jδ(Xγ ) =
(
γ

γ−1

) δ
γ
"
(
δ+p(γ−1)

γ

)

λδ/2"
(
p
γ−1
γ

) . (73)

Proof From (48), we have

Jδ(Xγ ) = δδ
∫

Rp

∥
∥
∥∇f 1/δ

Xγ
(x)
∥
∥
∥
δ

dx,

while from the definition of the density function fXγ , in (27), we have

Jδ(Xγ ) = δδCpγ
∫

Rp

∥
∥
∥∇ exp

{
− γ−1

δγ
Q(x)

γ
2(γ−1)

}∥
∥
∥
δ

dx

= δδ( γ−1
δγ

)δCpγ

∫

Rp

exp
{
− γ−1

γ
Q

γ
2(γ−1) (x)

} ∥
∥
∥∇Q γ

2(γ−1) (x)
∥
∥
∥
δ

dx. (74)

For the gradient of the quadratic form Q(x), we have ∇Q(x) = λ−1∇{(x − μ)
*∗−1(x − μ)T} = 2λ−1*∗−1(x − μ)T while from the fact that *∗ is an orthogonal
matrix, we have ‖*∗−1(x − μ)T‖ = ‖x − μ‖. Therefore, (74) can be written as

Jδ(Xγ ) = λ−δCpγ
∫

Rp

exp
{
− γ−1

γ
Q

γ
2(γ−1) (x)

}
Q

δγ
2(γ−1)−δ(x) ‖x − μ‖δ dx.

Applying the linear transformation z = (x − μ)(λ*)∗−1/2 in Jδ above, it is dx =
d(x − μ) = √

λp |det*∗|dz = λp/2dz, the quadratic formQ is reduced to

Q(x) = (x−μ)(λ*)∗−1(x−μ)T = (x−μ)(λ*∗)−1/2[(x−μ)(λ*∗)−1/2]T = ‖z‖2 ,

and thus,

Jδ(Xγ ) = λ(p−δ)/2Cpγ

∫

Rp

‖z‖ δ
γ−1 exp

{
− γ−1

γ
‖z‖ γ

γ−1

}
dz.

Switching to hyperspherical coordinates, we get

Jδ(Xγ ) = λ(p−δ)/2Cpγ ωp−1

+∞∫

0

ρ
δ
γ−1 exp

{
− γ−1

γ
ρ

γ
γ−1

}
ρp−1dρ,

where ωp−1 = 2πp/2

"(p/2) is the volume of the (p − 1)-sphere, Sp−1, and hence

Jδ(Xγ ) = 2
πp/2

"(π2 )
λ(p−δ)/2Cpγ

+∞∫

0

ρ
δ+(p−1)(γ−1)

γ−1 exp
{
− γ−1

γ
ρ

γ
γ−1

}
dρ.
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From the fact that d( γ−1
γ
ρ

γ
γ−1 ) = ρ

1
γ−1 dρ and the definition of the gamma

function, we obtain successively

Jδ(Xγ ) = 2
πp/2

"(π2 )
λ(p−δ)/2Cpγ

+∞∫

0

ρ
δ+(p−1)(γ−1)

γ−1 − 1
γ−1 exp

{
− γ−1

γ
ρ

γ
γ−1

}
d( γ−1

γ
ρ

γ
γ−1 )

= 2
πp/2

"( π2 )
λ(p−δ)/2Cpγ

+∞∫

0

ρ
δ+pγ−γ−p

γ−1 exp
{
− γ−1

γ
ρ

γ
γ−1

}
d( γ−1

γ
ρ

γ
γ−1 )

= 2
πp/2

"(π2 )
λ(p−δ)/2( γ

γ−1 )
δ−γ+p(γ−1)

γ Cpγ ×
+∞∫

0

( γ−1
γ
ρ

γ
γ−1 )

δ−γ+p(γ−1)
γ exp

{
− γ−1

γ
ρ

γ
γ−1

}
d( γ−1

γ
ρ

γ
γ−1 )

= 2
πp/2

"(π2 )
λ(p−δ)/2( γ

γ−1 )
δ−γ+p(γ−1)

γ Cpγ "( δ+p(γ−1)
γ

),

and, finally, applying the normalizing factor Cpγ as in (28), we derive (73) and the
theorem has been proved. �

Corollary 2 The generalized Fisher’s information Jδ of a spherically contoured r.v.
Xγ ∼ N p

γ (μ, σ 2
Ip) where σ ∈ R+ \ 0, is given by

Jδ(Xγ ) = ( γ

γ−1 )
δ
γ

"
(
δ+p(γ−1)

γ

)

σ δ"
(
p
γ−1
γ

) . (75)

In the following proposition, we provide some inequalities for the generalized
Fisher’s entropy type information measure Jδ for the family of the γ -GND distributed
r.v. considering parameters α, γ > 1. We denote "min ≈ 1.4628 the point of
minimum for the positive gamma function, i.e. minx∈R+{"(x)} = "("min).

Proposition 4 The generalized Fisher’s information Jδ of an r.v.Xγ ∼ N p
γ (μ, λ*∗)

where λ ∈ R+ \ 0 and *∗ ∈ R
p×p
⊥ with order value γ > γp = p

p+1−"min ≈
2 p

2 p−1 ,
satisfies the inequalities

Jδ(Xγ )

⎧
⎪⎪⎨

⎪⎪⎩

> pλ−δ/2, for δ > γ ,

= pλ−δ/2, for δ = γ ,

< pλ−δ/2, for gp < δ < γ ,

(76)

where gp = γ ("0 − p)+ p ≈ γ

2 (3− 2 p)+ p.
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Proof For the proof of the first branch of (76), it is assumed that δ > γ , i.e. δ
γ
> 1.

Then, it is δ+p(γ−1)
γ

> 1+ p γ−1
γ

. This implies,

"( δ+p(γ−1)
γ

) > "(1+ p γ−1
γ

) = p γ−1
γ
"(p γ−1

γ
), (77)

if 1 + p γ−1
γ
≥ "min. That is, if the inequality x = 1 + pγ−1

γ
≥ "min holds, then

"(x) ≥ "("min), as the gamma function is an increasing function for x ≥ "0.
Inequality, 1 + p γ−1

γ
≥ "min, is equivalent to, γ ≥ p

p+1−"min ≈ p

p−0.4628 > 1. As a
result, (77) holds indeed, for order values γ ≥ p

p+1−"min , and so,

"( δ+p(γ−1)
γ

)

"(pγ−1
γ

)
> p

γ−1
γ
. (78)

Our assumption δ
γ
> 1, together with the fact that γ

γ−1 > 1 for all defined order

values γ ∈ R \ [0, 1], leads us to ( γ

γ−1 )δ/γ > γ

γ−1 . Then, inequality (78) provides

(
γ

γ−1

) δ
γ
"( δ+p(γ−1)

γ
)

"(p γ−1
γ

)
>

γ

γ−1p
γ−1
γ
= p,

and, using (73), it holds that Jδ(Xγ ) > pλ−δ for δ > γ ≥ γp, where γp = p

p+1−"min ,
i.e. the first branch of (76) holds. The order of inequalities, δ > γ ≥ γp > 1, is
valid, as γp > 1 is valid. This is true, because "min > 1 implies p+ 1−"0 < p, i.e.
γp = p

p+1−"min > 1. The values of γp is decreasing and 1 < γp ≤ γ1 ≈ 1.8615 < 2

for all p ≥ 1. Moreover, γp = p

p+1−"min ≈ p

p−0.4628 <
p

p−1/2 = 2 p
2 p−1 .

For the proof of the third branch of (76), it is assumed now that δ < γ , i.e. δ
γ
< 1,

or δ+p(γ−1)
γ

< 1+ p γ−1
γ

. This implies,

"( δ+p(γ−1)
γ

) < "(1+ p γ−1
γ

) = p γ−1
γ
"(p γ−1

γ
), (79)

if "min ≤ δ
γ
+ pγ−1

γ
. That is, if the inequality "min ≤ δ

γ
+ pγ−1

γ
= x holds, then

"("min) ≤ "(x), as the gamma function is an increasing function for x ≥ "min.
Inequality, "min ≤ δ

γ
+ p γ−1

γ
, is equivalent to δ ≥ γ ("min − p) + p. As a result,

(79) holds indeed, for order values γ such that, γ ("min − p) ≤ δ − p, and so,

"( δ+p(γ−1)
γ

)

"(pγ−1
γ

)
< p

γ−1
γ
. (80)

From the assumption δ
γ
< 1, together with the fact that γ

γ−1 > 1 for all defined

order values γ , leads us to ( γ

γ−1 )δ/γ < γ

γ−1 . Then, inequality (80) provides

(
γ

γ−1

) δ
γ
"( δ+p(γ−1)

γ
)

"(p γ−1
γ

)
<

γ

γ−1p
γ−1
γ
= p,

and, using (73), it holds that Jδ(Xγ ) < pλ−δ for γ ("min − p)+ p ≤ δ < γ , i.e. the
third branch of (76). These inequalities have a valid order when γ ("min−p)+p < γ
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is valid, i.e. if γ > γp = p

p+1−"min assumed. Therefore, gp ≤ δ < γ , where
gp = γ ("min − p)+ p ≈ γ

2 (3− 2 p)+ p as "min ≈ 1.4628 ≈ 3/2.
Finally, assuming δ = γ , it holds from (73) that Jδ(Xγ ) = pλ−δ , i.e. the middle

branch of (76) holds true. In this case, the restriction of γ > γp is not needed.
Therefore, Proposition 4 shows that, as the quantity pλ−δ is in fact the known

Fisher’s information with respect to the multivariate normal distribution, the δ-GFI
accepts values greater than pλ−δ when δ > γ and lower than pλ−δ when gp <
δ < γ . �

From the above Proposition 4, recall (76). As the number of the involved variables,
p, increases then γp → 1; for example, γ6 ≈ 12

11 ≈ 1.09. Moreover, gp < 1 as p
increases. Therefore, Proposition 4 holds, without practically the restrictions of
γ > γp and gp < δ, for large enough values of dimension p.

Corollary 3 The generalized entropy type information measure Jδ of a random
variable Xγ ∼ N p

γ (μ, λ*∗), λ ∈ R+ \ 0, *∗ ∈ R
p×p
⊥ and with γ ≥ 2 and p ≥ 2,

satisfy the inequalities

Jδ(Xγ )

⎧
⎪⎪⎨

⎪⎪⎩

> pλ−δ/2,for δ > γ ,

= pλ−δ/2,for δ = γ ,

< pλ−δ/2,for δ < γ.

Proof Applying Proposition 4 for p ≥ 2, we get gp = γ ("min − p) + p < 1,
because, when γ ("0 − p) + p > 1 it holds γ < p−1

p−"min <
p

p+1−"min = γp < 2 (as

1 < γp < 4
3 holds for p ≥ 2), which is not valid due to the assumption γ ≥ 2.

Moreover, γ ≥ 2 > 4
3 > γp, and therefore, from Proposition 4, Corollary 3 indeed

holds. �

Due to the classification as in (32) and the above Corollary 3, depicted in Fig. 3,
the following result is obtained for the multivariate Laplace distribution, in contrast
with the multivariate normal distribution.

Corollary 4 The generalized Fisher’s information measure Jδ of an r.v.X following
the p-variate, p ≥ 2, Laplace distribution Lp(μ, λ*∗), λ ∈ R+ \0 and*∗ ∈ R

p×p
⊥ ,

is always lower than pλ−δ for all the parameter values δ, i.e.

Jδ(X) < pλ−δ/2, δ > 1.

For the normal case, i.e. for X ∼ N p(μ, λ*) with p ≥ 2, we have

Jδ(X)

⎧
⎨

⎩

> pλ−δ/2,for δ > 2,

< pλ−δ/2,for δ < 2,

while J2(X) is reduced to the known Fisher’s information for the multivariate normal,
i.e. J2(X) = pλ−2.
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Proof The normal case is straightforward from Corollary 3. For the Laplace case,
as N p

∞(μ, λ*∗) = Lp(μ, λ*∗) from 32, it is Jδ(X∞) < pλ−δ for δ < ∞, i.e. the
inequality holds for all the values of δ, and the corollary has been proved. �

Theorem 17 For the γ -GFI Jδ of a random variableXγ ∼ N p
γ (μ, λ*∗), λ ∈ R+\0,

*∗ ∈ R
p×p
⊥ and with γ ≥ 2 and p ≥ 2, it holds that

1 < min
δ
{Jδ(Xγ )} ≤ "(p+1

2 )

"(p2 )

√
2/λ < p

√
λ/λ. (81)

Proof From the proof of the Proposition 4, Jδ(Xγ ) is an increasing function for all
δ ≥ 1, provided that γ ≥ 2. Thus,

min
δ
{Jδ(Xγ )} = J1(Xγ ), (82)

and J1(Xγ ) < Jδ(Xγ ) for δ ≥ 1, and therefore, together with (76), we get
minδ{Jδ(Xγ )} < pλ−δ/2.

It is assumed now that, γ ≥ p/(p − "min) ≈ 2 p/(2 p − 3) with "min( ≈ 3/2)
being the minimum value point of the positive gamma function. Equivalently,
p
γ−1
γ
≥ "min. Then, it is 1

γ
+ pγ−1

γ
> p

γ−1
γ
≥ "min, and thus, "( 1

γ
+ pγ−1

γ
) >

"(p γ−1
γ

). As a result, from (73),

J1(Xγ ) = ( γ

γ−1 )
1
γ

"( 1
γ
+ p γ−1

γ
)√

λ"(p γ−1
γ

)
> λ−1/2( γ

γ−1 )
1
γ >

√
λ
λ

,

and using (82), the left-side inequality of (81) holds for γ ≥ p

p−"min > 4. Moreover,
it is true that

min
δ
{Jδ(Xγ )} >

√
λ
λ

,

not just for γ > 4 but for γ ≥ 2. We have d
dγ

J1(Xγ ) = γ−2A
p
γ J1(Xγ ), where

Apγ = (p − 1)Ψ ( 1
γ
+ p γ−1

γ
)− pΨ (p γ−1

γ
)− 1

γ−1 + log γ−1
γ

, (83)

with γ > 1 and p ≥ 1. The fact that, Ψ (x) < log x for every x > 0, (83) provides
that

Apγ < log ( 1
γ
+ p γ−1

γ
)p−1 − log (p γ−1

γ
)p − 1

γ−1 + log γ−1
γ

< p log
(

1
p(γ−1) + 1

)
− 1
γ−1 + log γ−1

γ
,

while using the known logarithmic inequality log (x + 1) < x, x > 0,

Apγ < p
1

p(γ−1) − 1
γ−1 + log γ−1

γ
= log γ−1

γ
,

as γ−1
γ
< 1 for any positive order value γ > 1. Thus, Apγ < 0, and so d

dγ
J1(Xγ ) =

A
p
γ J1(Xγ ) < 0, as J1(Xγ ) > 0 for every γ > 1. Therefore, J1(Xγ ) is a decreasing
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Fig. 3 Graphs of Jα(Xγ )
across α > 1, for various
bivariate γ -ordered normally
distributed r.v.
Xγ ∼ N 2

γ (μ, I2)

function of γ > 1. As a result, J1(Xγ ) > J1(X+∞) = limγ→+∞ J1(Xγ ) = 1 holds
for any order value γ > 1. Therefore, using (82), the left-side inequality of (81)
indeed holds for γ ≥ 2.

Finally, due to the fact that J1(Xγ ) is a decreasing function, we have

J1(Xγ ) ≤ J1(X2) = "(p+1
2 )

"(p2 )

√
2/λ, (84)

for γ ≥ 2. Using Corollary 3, we get J1(X2) < p, and applying (82) to (84), it is
concluded that the right-side inequality of (81) indeed holds for J1(X2) < p, see
Fig. 3. �

From the proof of the above theorem, notice that

1 < J1(Xγ ) ≤ "(p+1
2 )

"(p2 )

√
2/λ < p

holds for all the positive order values γ > 1, i.e. without the restriction of γ ≥ 2, as
J1(Xγ ) is a decreasing function of any γ > 1.

Figure 3 depicts the generalized information measure Jδ(Xγ ) with Xγ ∼
N 2
γ (μ, I2) where Jδ(Xγ ) expressed as a function of the involved parameter δ ≥ 1. This

figure confirms Theorem 17, for the positive integer order values γ = 2, 3, . . . , 10.
Moreover, it clearly shows (at least for the bivariate case p = 2) that the boundaries
as in (81) hold, not only for order values greater than the “normal” order γ = 2, but
for all positive orders γ > 1.

Corollary 5 Let Xγ ∼ N p
γ (μ, σ 2

Ip) with p ≥ 2. The lower bound of the gener-
alized entropy type information measure Jδ(Xγ ) with δ ≥ 2, is the known Fisher’s
entropy-type information measure J(Xγ ) while it is the upper bound of Jδ(Xγ ) for
1 ≤ δ ≤ 2.

Proof From the proof of the Proposition 4, Jδ(Xγ ) is an increasing function for all
δ ≥ 1, provided that γ ≥ 2. Thus, J2(Xγ ) < Jδ(Xγ ) for δ ≥ 2, while J2(Xγ ) >
Jδ(Xγ ) for 1 ≤ δ ≤ 2. Therefore, corollary has been proved, as J2 coincides with the
usual Fisher’s entropy type information measure J. �
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7 Discussion

The LSI [28] as well as the PI [2] provide food for thought and a solid mathemat-
ical framework for statistics problems, especially when the normal distribution is
involved. Briefly speaking the PI is of the form

Varμ(f ) ≤ cp
∫

|∇f |2dμ, (85)

for f differentiable function on R
p with compact support while μ is an appropriate

measure, and is related to Fisher’s parametric form of information. The constant cp
is known as the Poincaré constant. The Sobolev inequality is of the form

‖s‖q ≤ cs‖∇f ‖2, q = 2p
p−2 . (86)

The constant cs is known as the Sobolev constant, related to the Fisher’s entropy
type information. Both PI and LSI are applied to information theory so that to evaluate
the appropriate bounds for the variance, entropy, energy, i.e. on statistical measures,
see [16, 18].

One of the merits of the family of γ -GND is that includes a number of well-known
distributions while the singularity of the Dirac distribution being also one of them.
Moreover, the extra parameter γ offers, in principle, different shape approaches and
therefore heavy-tailed distributions can easily obtained altering parameter γ which
effects kurtosis.

Although a number of papers were presented on the generalized normal, [11,
12, 23], we are still investigating more extensions. We believe we can cover all the
possible applications extending the normal distribution case. Recall that there are
cases (for example when non-negative time is considered) where a “truncation” of
the Normal distribution is needed. Such cases might be possible either for truncation
to the right or to the left. We extend this idea to the γ -GND. Let X be a univariate
r.v. from Nγ (μ, σ 2) with p.d.f. fγ as in (27) and c.d.f. Fγ as in (43). We shall say
that X follows the γ -GND truncated to the right at x = ρ with p.d.f. fγ ,ρ when

fγ ;ρ(x) =
⎧
⎨

⎩

0, if x > ρ,
fγ (x)

Fγ ( ρ−μ
σ

)
= C1

γ (σ )

Fγ ( ρ−μ
σ

)
exp
{
− γ−1

γ

∣
∣ x−μ
σ

∣
∣
γ
γ−1
}

, if x ≤ ρ,
(87)

Similarly, it would be truncated to the left at x = τ

fγ ;τ (x) =
⎧
⎨

⎩

0, if x < τ ,
fγ (x)

1−Fγ ( τ−μ
σ

)
= C1

γ (σ )

1−Fγ ( τ−μ
σ

)
exp
{
− γ−1

γ

∣
∣ x−μ
σ

∣
∣
γ
γ−1
}

, if x ≥ τ ,
(88)

The lognormal distribution can be also nicely extended to the γ -order lognormal
distribution or γ -GLND, in the sense that if X ∼ N 1

γ (μ, σ 2) then eX will follow the
γ -GLND, i.e. eX ∼ LN γ (μ, σ ) with p.d.f.

gγ (x) = 1
x
fγ ( log x) = C1

γ (σ )x−1 exp

{

− γ−1
γ

∣
∣
∣

log x−μ
σ

∣
∣
∣

γ
γ−1

}

, x ∈ R
∗
+. (89)
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Moreover, if X ∼ LN γ (μ, σ ) then logX ∼ N 1
γ (μ, σ 2). These afore mentioned

cases are under investigation for a future work.
In practical problems, such as in Economics where heavy-tailed distributions

are needed [10], the γ -GND seems useful. The large positive-ordered GND’s pro-
vide heavy-tailed distributions as N p

γ (μ,*) approaches the multivariate Laplace
distributions, while further heavier-tailed distributions can be extracted through the
negative-ordered GND’s especially close to zero-ordered GND, i.e. close to the Dirac
case. Nevertheless, the higher the dimension gets the heavier the tails become for all
multivariate γ -GND’s unless γ -GND is considered close to the N p

1 (μ,*), i.e. close
to the (elliptically contoured) uniform distribution.
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Applications of Functional Equations to Dirichlet
Problem for Doubly Connected Domains

Vladimir Mityushev

Abstract The Dirichlet problem with prescribed vortices for the two-dimensional
Laplace equation can be considered as a modification of the classical Dirichlet prob-
lem. The modified problem for doubly connected circular domains is reduced to the
Riemann–Hilbert boundary value problem and solved by iterative functional equa-
tions. The solution of functional equations is derived in terms of the absolutely and
uniformly convergent series. The obtained solution can be applied to the minimization
of the Ginzburg–Landau functional.

Keywords Multiply connected domain ·Riemann–Hilbert boundary value problem ·
Iterative functional equation · Ginzburg–Landau functional

1 Introduction

The Dirichlet problem for multiply connected circular domains bounded by mutually
disjoint circles on the complex plane is one of the fundamental problem of mathemat-
ical physics. This problem and the general Riemann–Hilbert boundary value problem
were solved in [6, 9]. The crucial point in solution was reduction of the problem to
iterative functional equations for analytic functions. The application of successive
iterations to the functional equations yields the famous Poincaré θ2–series associ-
ated to the Schottky group [7]. Iterative functional equations in classes of analytic
functions were discussed in [4]; see also extended review in the book [9].

In the present paper, we discuss the Dirichlet problem for doubly connected
circular domains in a class of functions having prescribed vortices. Let d be a given
real constant. Let ∂/∂n denote the outward normal derivative when Lk = {z ∈
C : |z − ak| = rk} is positively oriented, i.e., leaves the mutually disjoint disk
Dk = {z ∈ C : |z − ak| ≤ rk} (k = 1, 2) on the left. Consider the following
problem for the functionU (z) continuously differentiable in the closure of the doubly
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connected domain D = {z ∈ C : |z − ak| > rk , k = 1, 2}:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΔU = 0, z ∈ D,

U (t) = ck , t ∈ Lk (k = 1, 2),

U (∞) = 0,
1

2π

∫
L1

∂U
∂n
ds = − 1

2π

∫
L2

∂U
∂n
ds = d,

(1)

whereΔ stands for the Laplace operator, the constants ck are undetermined and have
to be found during solution to the problem.

This problem (1) generalizes the modified Dirichlet problem [5, 9] and has direct
applications to the Ginzburg–Landau functional [1]. Namely, let H 1(D; S1) denote
the Sobolev space of functions defined in D and having its values on the unit circle
S1 of the complex plane C. Consider the class of maps

V = {v ∈ H 1
(
D; S1

)
: deg (v,Lk) = dk

}
, (2)

where deg (v,Lk) stands for the Brouwer degree, i.e., the winding number of v along
the curve Lk . Following [1], we introduce the energy functional

E[v] = 1

2

∫

D

|∇v|2dx1dx2, (3)

where z = x1 + ix2 and i denotes the imaginary unit. It is demonstrated in [1] that

inf
v∈V
E[v] = 1

2

∫

D

|∇U |2dx1dx2, (4)

where U is a solution of the problem (1). It is worth noting that the solution U of
the problem (1) is unique up to an arbitrary additive constant and U minimizes the
functional

F [v] = 1

2

∫

D

|∇v|2dx1dx2 + 2πid
(
v|L1 − v|L2

)
(5)

in the class {v ∈ H 1(D; R) : v(t) = constant t ∈ Lk}.
In the present paper, we discuss doubly connected domains to show applications

of the simple iterative functional equations in classes of analytic functions [4] and
to demonstrate in details the method of functional equations. The case of general
multiply connected domains will be discussed in a separate paper.

2 R-Linear Problem

The second condition in the problem (1) for doubly connected domains can be
presented in the form

U (t) = c1, |t − a1| = r1, (6)
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U (t) = c2, |t − a2| = r2. (7)

The function U (z) as a function harmonic in the doubly connected domain D can
be presented in the form [9]

U (z) = Re ϕ(z) = Re

(

φ(z)+ A ln
z − a1

z − a2

)

, (8)

where A is a real constant, the functions ϕ(z) and φ(z) are analytic in D and con-
tinuously differentiable in the closure of D, φ(z) is single-valued. A branch of the
logarithm is arbitrary fixed. It does not impact on the result (8) since U (z) depends
only on

ln

∣
∣
∣
∣
z − a1

z − a2

∣
∣
∣
∣ .

The functions ϕ(z) and φ(z) vanish at infinity: ϕ(∞) = φ(∞) = 0.
We now demonstrate thatA = d in (8). Let ϕ(z) = U (z)+ iV (z), whereU (z) and

V (z) stand for the real and imaginary parts of ϕ(z). Let s denote the natural parameter
of Lk . It is related with the complex coordinate t ∈ Lk by formula

t = ak + rk exp

(
is

rk

)

. (9)

The Cauchy–Riemann equations imply [2] that

∂U

∂n
= ∂V
∂s
. (10)

Calculate the integral

1

2π

∫

L1

∂U

∂n
ds = 1

2π

∫

L1

∂V

∂s
ds = 1

2π
[V ]L1 , (11)

where [V ]Lk denotes the increment of V along Lk . Equation (8) yields

1

2π
[V ]|L1 = A,

1

2π
[V ]|L2 = −A, (12)

since φ(z) is single-valued and
[

ln
z − a1

z − a2

]

L1

= 2πi.

Equations (10)–(12) and the fourth condition (1) yield A = d in the representation
(8).

Using (9) we can calculate the differentials

dt = i t − ak
rk

ds, dt = −i t − ak
rk

ds, t ∈ Lk , (13)
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where the bar denotes the complex conjugation. Using (8), we can write the boundary
condition (6)–(7) in terms of the analytic function

ϕ(t)+ ϕ(t) = 2c1, |t − a1| = r1, (14)

ϕ(t)+ ϕ(t) = 2c2, |t − a2| = r2. (15)

One may differentiate the boundary conditions (14)–(15) on the natural parameter
s. Application of (13) yields

t − ak
rk

ψ(t)− t − ak
rk

ψ(t) = 0, t ∈ Lk (k = 1, 2), (16)

where the function ψ(z) = ϕ′(z) is single-valued in D. Using the relation

t − ak = r2
k

t − ak , t ∈ Lk (k = 1, 2) (17)

we arrive at the Riemann–Hilbert problem [8]

Im (t − ak)ψ(t) = 0, t ∈ Lk (k = 1, 2) (18)

on the functionψ(z) analytic in the domain D and continuous in its closure. Following
[8], one can reduce the Riemann–Hilbert problem to the R–linear problem

(t − ak) ψ(t) = (t − ak) ψk(t)+ (t − ak) ψk(t)+ βk , |t − ak| = rk , k = 1, 2,
(19)

where ψk are analytic in |z − ak| < rk and continuous in |z − ak| ≤ rk; βk are
undetermined real constants.

Lemma 1 [8] The boundary value problems (18) and (19) are equivalent in the
following sense:

(i) If ψ(z) and ψk(z) are solutions of (19), then ψ(z) satisfies (18).
(ii) If ψ(z) is a solution of (18), there exist such functions ψk(z) and real constants

βk (k = 1, 2) that the R–linear condition (19) is fulfilled.

3 Method of Functional Equations

We now proceed to solve the R–linear problem (19) written in the form

ψ(t) = ψk(t)+
(
rk

t − ak
)2

ψk(t)+ βk

t − ak , |t − ak| = rk , k = 1, 2. (20)

The R–linear problem (18) is reduced to functional equations. Consider the
inversion with respect to the circle Lk

z∗(k) := r2
k

z − ak + ak , (k = 1, 2). (21)
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Introduce the function

Φ(z) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ1(z)−
(
r2

z−a2

)2
ψ2
(
z∗(2)

)− β2
z−a2

, |z − a1| ≤ r1,

ψ2(z)−
(
r1

z−a1

)2
ψ1
(
z∗(1)

)− β1
z−a1

, |z − a2| ≤ r2,

ψ(z)−∑m=1,2

(
rm

z−am
)2
ψm
(
z∗(m)

)−∑m=1,2
βm

z−am , z ∈ D.

The functionΦ(z) is analytic in the disk |z−a1| < r1 and continuous in |z−a1| ≤ r1
since all their components are analytic therein including the functionψ2

(
z∗(2)

)
analytic

in |z − a2| > r2. Along similar lines Φ(z) is analytic in |z − a2| < r2, D and
continuous in the closures of the considered domains (in one-side limit topology
separately introduced for |z − a1| ≤ r1, |z − a2| ≤ r2 and D).

Calculate the jump of Φ(z) across the circle Lk

Δk := Φ+(t)−Φ−(t), |t − ak| = rk ,
whereΦ+ (t) := limz→t z∈DΦ (z) , Φ− (t) := limz→t z∈Dk

Φ (z). Using (20), we get
Δk = 0. It follows from the Analytic Continuation Principle that Φ(z) is analytic
in the extended complex plane. Moreover, ψ(∞) = 0 yields Φ(∞) = 0. Then,
Liouville’s theorem implies that Φ(z) ≡ 0. The definition of Φ(z) in |z − ak| ≤ rk
yields the following system of functional equations

ψ1(z) =
(

r2

z − a2

)2

ψ2
(
z∗(2)

)+ β2

z − a2
, |z − a1| ≤ r1, (22)

ψ2(z) =
(

r1

z − a1

)2

ψ1
(
z∗(1)

)+ β1

z − a1
, |z − a2| ≤ r2. (23)

It follows from the definition ofΦ(z) in D that the general solution of the Riemann–
Hilbert problem (18) is constructed via ψk(z)

ψ(z) =
∑

m=1,2

(
rm

z − am
)2

ψm
(
z∗(m)

)+
∑

m=1,2

βm

z − am , z ∈ D ∪ ∂D. (24)

Introduce the space CA(Dk) of functions analytic in the domain Dk = {z ∈ C :
|z−ak| < rk} and continuous in its closure. This is a Banach space endowed with the
norm ||f || = max|t−ak |=rk |f (t)|. Maximum Principle convergence in CA(Dk) means
uniform convergence in Dk .

Lemma 2 ([9, Lemma 4.8, p. 167]) The systems (22) and (23) have a unique
solution in CA(Dk) (k = 1, 2). This solution can be found by the method of successive
approximations.

Let ψk(z) be a solution to the system of functional Eqs. (22) and (23). Let w ∈ D

be a fixed point. Introduce the functions

ϕm(z) =
∫ z

w∗(m)

ψm(t)dt + ϕm(w∗
(m)), m = 1, 2 (25)
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and

ω(z) = −
∑

m=1,2

[
ϕm
(
z∗(m)

)− ϕm
(
w∗

(m)

)]+
∑

m=1,2

βm ln
z − am
w− am . (26)

Here, the following relation is used [9]

d

dz

[
ϕm
(
z∗(m)

)] = −
(

rk

z − ak
)2
dϕm

dz

(
z∗(m)

)
, |z − ak | > rk. (27)

The functions ω(z) and ϕm(z) belong to CA(D) and to CA(Dm), respectively. One
can see from (25) that the function ϕm(z) is determined by ψm(z) up to an additive
constant which vanishes in (26). The function ω(z) vanishes at z = w. The function
ω(z) differs from the function ϕ(z) introduced in (8) by an additive constant. One
can see that

ω(z) = ϕ(z)− ϕ(w). (28)

Therefore, these functions have the same logarithmic coefficients: β1 = A = d
and β2 = −A = −d. Therefore, the systems of functional Eqs. (22) and (23) become

ψ1(z) =
(

r2

z − a2

)2

ψ2
(
z∗(2)

)− d

z − a2
, |z − a1| ≤ r1, (29)

ψ2(z) =
(

r1

z − a1

)2

ψ1
(
z∗(1)

)+ d

z − a1
, |z − a2| ≤ r2. (30)

We now demonstrate that the systems (29)–(31) are closely related to the simple
iterative functional equation [4]. It follows from (29) that

ψ2
(
z∗(2)

) =
(

r1

z∗(2) − a1

)2

ψ1[α(z)]+ d

z∗(2) − a1

, |z − a2| ≥ r2, (31)

where

α(z) := (z∗(2)

)∗
(1)
= r2

1 (z − a2)

r2
2 − (a1 − a2)(z − a2)

+ a1. (32)

The Möbius function α(z) maps the disk |z− a1| ≤ r1 into the disk |z− a1| < r1,
since the inversion z∗(2) maps |z− a1| ≤ r1 onto a disk lying in |z− a2| < r2 and the
latter disk is mapped by z∗(1) onto a disk in |z − a1| < r1. The next iterations yield
a sequence of shrink disks convergent to a fixed point of α(z). The fixed points z1

and z2 of α(z) can be found from the quadratic equation α(z) = z (or equivalently
z∗(2) = z∗(1)) (Fig. 1):

z1 = a1 + a2

2
+ a1 − a2

2

⎡

⎣

√

1+
(
r2

1 − r2
2

)2

4|a2 − a1|4 − 2
r2

1 + r2
2

|a2 − a1|2 −
r2

1 − r2
2

|a2 − a1|2

⎤

⎦ ,

(33)



Applications of Functional Equations to Dirichlet Problem . . . 321

Fig. 1 Two circles (bold
lines) and level lines of α(z)
(solid lines) transformed onto
concentric circles
|ζ | = constant by (50)

a1 z1 z2 a2

r1
r2

–3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3

z2 = a1 + a2

2
− a1 − a2

2

⎡

⎣

√

1+
(
r2

1 − r2
2

)2

4|a2 − a1|4 − 2
r2

1 + r2
2

|a2 − a1|2 +
r2

1 − r2
2

|a2 − a1|2

⎤

⎦ .

One can see that the fixed point z1 belongs to |z − a1| < r1, z2 belongs to
|z − a2| < r2 and

(z1)∗(2) = z2, (z2)∗(1) = z1. (34)

Substituting (31) into (29) yields

ψ1(z) = α′(z)ψ1[α(z)]+ g(z), |z − a1| ≤ r1, (35)

where

α′(z) =
(

r1r2

r2
2 − (a1 − a2)(z − a2)

)2

(36)

and

g(z) = d
[(

r2

z − a2

)2 1

z∗(2) − a1

− 1

z − a2

]

= d(a1 − a2)

r2
2 − (a1 − a2)(z − a2)

. (37)

Lemma 3 [4] The functional equation (35) has a unique solution in CA(D1). This so-
lution can be found by the method of successive approximations uniformly convergent
in |z − a1| ≤ r1.
Integrating (35) yields (see (25))

ϕ1(z) = ϕ1[α(z)]+G(z)−G0, |z − a1| ≤ r1, (38)
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where G0 denotes a constant of integration and

G(z) = −d ln
[
r2

2 − (a1 − a2)(z − a2)
]
. (39)

The logarithmic branch can be arbitrarily fixed in |z − a1| ≤ r1 since the singular
point z = (a1)∗(2) lies out of the disk |z − a1| ≤ r1. Substitution of the fixed point
z = z1 into (39) gives formula

G0 = −d ln
[
r2

2 − (a1 − a2)(z1 − a2)
]
. (40)

The functional equation (38) can be written in the form

ϕ1(z) = ϕ1[α(z)]+ h(z), |z − a1| ≤ r1, (41)

where

h(z) = −d ln
r2

2 − (a1 − a2)(z − a2)

r2
2 − (a1 − a2)(z1 − a2)

. (42)

Lemma 4 ([4, 9]) Let αn(z) denotes the nth iteration of α(z). The general solution
of the functional equation (41) in CA(D1) is given by formula

ϕ1(z) =
∞∑

k=0

h[αn(z)]+ h0, |z − a1| ≤ r1, (43)

whereh0 is an arbitrary constant. The series (43) converges absolutely and uniformly
in the disk |z − a1| ≤ r1.

Differentiating (43) terms by terms yields

ψ1(z) =
∞∑

k=0

g[αn(z)][αn(z)]′, |z − a1| ≤ r1, (44)

where

[αn(z)]′ =
n∏

$=1

α′
[
αn−$(z)

]
. (45)

Further, the functionψ2(z) is calculated by (30) andψ(z) is given by formula (see
(24))

ψ(z) =
∑

m=1,2

(
rm

z − am
)2

ψm
(
z∗(m)

)+ d

z − a1
− d

z − a2
, z ∈ D ∪ ∂D. (46)

The function ϕ(z) is determined by integrating (45) (see formulae (25)–(28)) up to
an arbitrary additive constant.
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Another method to construct the function ϕ(z) is based on the functional equations
obtained by integrating (29) and (30) (see formulae (25) and (27))

ϕ1(z) = −ϕ2
(
z∗(2)

)− d ln
z − a2

z1 − a2
+ C1, |z − a1| ≤ r1, (47)

ϕ2(z) = −ϕ1
(
z∗(1)

)+ d ln
z − a1

z2 − a1
+ C2, |z − a2| ≤ r2, (48)

where Cj are undetermined constants. Substituting z = z1 into (47) and z = z2 into
(48) implies that C2 = C1. The systems (47) and (48) are reduced to the functional
equation (41). Its solution ϕ1(z) has the form (43). Further, the function ϕ2(z) is
constructed by (48) and ϕ(z) by (27) and (28).

The function U (z) is calculated by (8) and depends on a real arbitrary additive
constant.

4 Case of Equal Radii

In the present section, we present a method to find U (z) based on a conformal
mapping. For simplicity, we consider the case of the equal radii r1 = r2 = r when
the centers a1 = −a/2 and a2 = a/2 lie on the real axis (a > 0). The latter condition
is not an essential restriction on geometry. Then, formula (33) becomes

z1 = −a
2

√

1− 4
r2

a2
, z2 = a

2

√

1− 4
r2

a2
. (49)

The Möbius function

ζ = z − z2

z − z1
(50)

maps the domain D onto the annulus

D =
{

ζ ∈ C :
1

R
< |ζ | < R

}

,

where the positive constant R has the form [10]

R =
r
a
+ 1

2

(

1+
√

1− 4r2

a2

)

r
a
+ 1

2

(

1−
√

1− 4r2

a2

) . (51)

The disks |z − a1| < r and |z − a2| < r are conformally mapped onto |ζ | > R and
|ζ | < 1/R, respectively, the imaginary axis onto the unit circle |ζ | = 1. The inverse
function has the form

z = z1ζ − z2

ζ − 1
. (52)
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Here, we use the property that symmetric points are mapped onto symmetric
points by the Möbius transformations. The symmetric points z1 and z2 (see (34))
are transformed onto the symmetric points ζ = ∞ and ζ = 0, respectively, which
can be symmetric only with respect to the concentric circles. Hence, the circles of
symmetry |z−a1| = r and |z−a2| = r are transformed onto concentric circles. The
radii are found by straight calculations.

Using (52), we introduce the functionsΦ1(ζ ) = ϕ1(z),Φ(ζ ) = ϕ(z) andΦ2(ζ ) =
ϕ2(z) analytic in |ζ | > R, 1/R < |ζ | < R and |ζ | < 1/R, respectively. Then, the
functional equation (41) becomes

Φ1(ζ ) = Φ1
(
R4ζ

)+H (ζ ), |ζ | ≥ R, (53)

where

H (ζ ) = −d ln
r2

2 − (a1 − a2)
(

z1ζ−z2
ζ−1 − a2

)

r2
2 − (a1 − a2)(z1 − a2)

. (54)

The shift R4ζ is composed by two inversions ζ → R2

ζ
and ζ → 1

R2ζ
. It corre-

sponds to the shift (32) composed by the inversions z∗(2) and z∗(1). One can see that
H (∞) = 0, hence, in accordance with Lemma 4, Eq. (53) is solvable and its general
solution has the form

Φ1(ζ ) =
∞∑

k=0

H
[
R4kζ

]+H0, |ζ | ≥ R, (55)

where H0 is an arbitrary constant. One can see that the rate of convergence of the
series (55) is equal to R−4.

The functional equations can also be solved with the use of the Taylor expansion
near infinity. Let

H (ζ ) =
∞∑

m=1

Hmζ
−m. (56)

Then

Φ1(ζ ) =
∞∑

m=1

Hm

1− R−4 m
ζ−m +H0. |ζ | > R. (57)

It follows from the Cauchy–Hadamard formula that the series (57) has the same
radius of convergence that (56). One can find solution of the functional equation
(53) in terms of the elliptic functions in [3].

The function U (z) is constructed by the scheme described at the end of Sect. 3.
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Sign-Changing Solutions for Nonlinear Elliptic
Problems Depending on Parameters

D. Motreanu and V. V. Motreanu

Abstract This chapter is concerned with parametric Dirichlet boundary value prob-
lems involving the p-Laplacian operator. Specifically, this chapter gives an account
of recent results that establish the existence and multiplicity of solutions according
to different types of nonlinearities in the problem. More precisely, we focus on prob-
lems exhibiting nonlinearities of concave–convex type and nonlinearities that are
asymptotically (p − 1)-linear. In each situation, we point out significant qualitative
properties of the solutions, especially, we establish the existence of sign-changing
(that is, nodal) solutions.

Keywords Elliptic equation · Boundary value problem · p-Laplacian · Variational
method · Upper and lower solutions · Sign-changing solution

1 Introduction

Let , ⊂ R
N , N ≥ 1, be a bounded domain, 1 < p < +∞ and consider the p-

Laplacian operator-p : W 1,p
0 (,) → W−1,p′(,) = W 1,p

0 (,)∗ ( 1
p
+ 1
p′ = 1), which is

given by-pu = div (|∇u|p−2∇u) for all u ∈ W 1,p
0 (,). This is expressed as follows

〈−-pu, v〉 =
∫

,

|∇u|p−2∇u · ∇v dx for all u, v ∈ W 1,p
0 (,).
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In the present chapter, we study the parametric problem
⎧
⎨

⎩

−-p u = f (x, u(x), λ) in ,,

u = 0 on ∂,,
(1)

where λ is a parameter belonging to an interval 0 := (0,λ) with λ > 0
and the right-hand side of the equation in (1) is described through a function
f : ,× R×0→ R.

An important class of problems as in (1) is the one whose right-hand side consists
of the so-called concave–convex nonlinearities

f (x, s, λ) = λ|s|q−2s + |s|r−2s with 1 < q < p < r < p∗, (2)

where p∗ denotes the critical exponent of p, i.e., p∗ = Np

N−p ifN > p and p∗ = +∞
ifN ≤ p. This class of nonlinearities was first studied byAmbrosetti–Brezis–Cerami
[2] in the semilinear case, i.e., for p = 2. Their study was then extended to the
case of p-Laplacian equations by García Azorero–Manfredi–Peral Alonso [13] (for
1 < p < +∞) and by Guo–Zhang [17] (for p ≥ 2). In these works, the authors
establish the existence of two positive solutions and symmetrically two negative
solutions of the problem provided the parameter λ > 0 is sufficiently small.

This chapter is based on the works [19] and [20], which are actually concerned
with two generalizations of the nonlinearities in (2). First, our study mainly focuses
on the case

f (x, s, λ) = λh(x, s)+ |s|r−2s. (3)

Here, h denotes a “concave term” that can be typically of the form h(x, s) = |s|q−2s

(see Example 1) but our assumptions also incorporate the case where h is asymp-
totically (p − 1)-linear near the origin (see Example 2). Second, we target the
situation

f (x, s, λ) = λ|s|q−2s + g(x, s), (4)

where g is a Carathéodory function (typically we can take g(x, s) = |s|r−2s; see also
Example 3). In fact, here, we consider the more general problem

⎧
⎨

⎩

−-pu = β(x)|u(x)|q−2u(x)+ g(x, u(x)) in ,,

u = 0 on ∂,,
(5)

where the parameter λ is replaced by a nonnegative function β ∈ L∞(,) \ {0} (with
sufficiently small L∞-norm). In both cases, we study the existence of constant sign,
extremal constant sign, and sign-changing (that is, nodal) solutions for the corre-
sponding problem (1). In this respect, it is worth mentioning that a fundamental
idea to obtain sign-changing solutions is to seek them between extremal oppo-
site constant sign solutions. This approach for p-Laplacian equations originates in
Carl-Perera [8] and Carl–Motreanu [6, 7].

Our precise results are formulated in the next section. These results are then proved
in Sects. 3 and 4.
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2 Statements of Main Results

We first recall basic notation and facts that are used in the statements of our results.
Let λ2 > λ1 > 0 be the first two eigenvalues of the negative Dirichlet p-Laplacian
−-p onW 1,p

0 (,). Recall that λ1 admits the variational characterization

λ1 = inf

{‖∇u‖pp
‖u‖pp : u ∈ W 1,p

0 (,), u �= 0

}

(6)

(where the notation ‖·‖p stands for the norms in both spacesLp(,) andLp(,, RN )),
while λ2 is introduced as

λ2 = inf{λ : λ is an eigenvalue of−-p and λ > λ1}.
By û1, we denote the Lp-normalized positive eigenfunction of −-p correspond-

ing to the first eigenvalue λ1. Through the strong maximum principle, we know that
û1 ∈ int (C1

0 (,)+), where

int (C1
0 (,)+) = {u ∈ C1

0 (,)+ : u(x) > 0 for all x ∈ ,,
∂u

∂n
(x) < 0 for all x ∈ ∂,}

is the interior of the positive cone C1
0 (,)+ = {u ∈ C1

0(,) : u(x) ≥ 0 for all x ∈ ,}
of the Banach space C1

0 (,) = {u ∈ C1(,) : u(x) = 0 for all x ∈ ∂Ω}, where n(·)
stands for the outward unit normal on ∂,.

In what follows, we state our main results under different sets of hypotheses on
the nonlinearity f (x, s, λ). We set forth the results into two subsections depending
on whether the nonlinearity is of type (3) or (4).

2.1 Results for Nonlinearities of Type (3)

We start with the existence of solutions for problem (1) in the situation where the non-
linearity f (x, s, λ) is typically of type (3), in the sense that the considered hypotheses
are adequate to the situation of (3).

First we deal with constant sign solutions. Note that, in the following set of
hypotheses, we only suppose a polynomial growth condition on the nonlinearity
f with arbitrary exponent, not necessarily subcritical (see H(f )±1 (i) below), and
nonuniform nonresonance condition at the first eigenvalue λ1 (see H(f )±1 (ii) below).

H(f )+1 (i) for every λ ∈ (0, λ̄), f (·, ·, λ) is Carathéodory (that is, f (·, s, λ) is mea-
surable for all s ∈ R and f (x, ·, λ) is continuous for almost all x ∈ ,) with
f (x, 0, λ) = 0 a.e. in ,, for all λ ∈ 0; moreover, there are a(λ) > 0 with
a(λ) → 0 as λ ↓ 0, and c > 0, r > p (both independent of λ) such that

|f (x, s, λ)| ≤ a(λ)+ c|s|r−1 for a.a. x ∈ ,, all s ∈ R, all λ ∈ 0;
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(ii) for every λ ∈ 0, there exists ηλ ∈ L∞(,) such that ηλ ≥ λ1 a.e. in ,,
ηλ �= λ1 and

ηλ(x) ≤ lim inf
s↓0

f (x, s, λ)

sp−1
uniformly for a.a. x ∈ ,.

Symmetrically, we formulate the following conditions:

H(f )−1 (i) f satisfies H(f )+1 (i);
(ii) for every λ ∈ 0, there exists ηλ ∈ L∞(,) such that ηλ ≥ λ1 a.e. in ,,
ηλ �= λ1 and

ηλ(x) ≤ lim inf
s↑0

f (x, s, λ)

|s|p−2s
uniformly for a.a. x ∈ , .

Proposition 1 (a) Under H(f )+1 , for all b > 0, there exists λ∗ ∈ 0 such that,
for λ ∈ (0, λ∗), problem (1) has a solution uλ ∈ int (C1

0(,)+) with ‖uλ‖∞ < b.
(b) Under H(f )−1 , for all b > 0, there exists λ∗ ∈ 0 such that, for λ ∈ (0, λ∗),
problem (1) has a solution vλ ∈ −int (C1

0 (,)+) with ‖vλ‖∞ < b.

More insight in the study of existence of constant sign solutions is obtained by
producing extremal constant sign solutions for problem (1). To do this, we rely
on strengthened versions of hypotheses H(f )±1 which require that the nonlinearity
f (x, ·, λ) is asymptotically (p − 1)-linear near the origin (see H(f )±2 (ii)).

H(f )+2 (i) f satisfies H(f )+1 (i);
(ii) for all λ ∈ 0, there exist ηλ, η̂λ ∈ L∞(,) such that ηλ(x) ≥ λ1 a.e. in ,,
ηλ �= λ1 and

ηλ(x) ≤ lim inf
s↓0

f (x, s, λ)

sp−1
≤ lim sup

s↓0

f (x, s, λ)

sp−1
≤ η̂λ(x)

uniformly for a.a. x ∈ ,.

Symmetrically, we consider:

H(f )−2 (i) f satisfies H(f )+1 (i);
(ii) for all λ ∈ 0, there exist ηλ, η̂λ ∈ L∞(,) such that ηλ(x) ≥ λ1 a.e. in ,,
ηλ �= λ1 and

ηλ(x) ≤ lim inf
s↑0

f (x, s, λ)

|s|p−2s
≤ lim sup

s↑0

f (x, s, λ)

|s|p−2s
≤ η̂λ(x)

uniformly for a.a. x ∈ ,.

Proposition 2 (a) Under H(f )+2 , for all b > 0, there exists λ∗ ∈ 0 such that for
λ ∈ (0, λ∗), problem (1) has a smallest positive solution uλ,+ with ‖uλ,+‖∞ < b and
which in addition satisfies uλ,+ ∈ int (C1

0 (,)+).
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(b) Under H(f )−2 , for all b > 0, there exists λ∗ ∈ 0 such that for λ ∈ (0, λ∗),
problem (1) has a biggest negative solution vλ,− with ‖vλ,−‖∞ < b and which in
addition satisfies vλ,− ∈ −int (C1

0 (,)+).

Next, we deal with the existence of a nontrivial solution of (1) that is intermediate
between the extremal constant sign solutions obtained in Proposition 2. To this end,
we need to strengthen conditions H(f )±1 (ii) to have nonuniform nonresonance from
below at the second eigenvalue λ2 (see H(f )±2 (ii.a)). In addition, by strengthen-
ing conditions H(f )±2 (ii) (see H(f )±2 (ii.b) below), the intermediate solution can be
chosen to be sign changing. We state:

H(f )3 (i) f satisfies H(f )+1 (i);
(ii) there holds:

(ii.a) for all λ ∈ 0, there exists θλ > λ2 such that

θλ < lim inf
s→0

f (x, s, λ)

|s|p−2s
uniformly for a.a. x ∈ ,;

or the stronger condition
(ii.b) for all λ ∈ 0, there exist θλ > λ2 and η̂λ ∈ L∞(,) such that

θλ < lim inf
s→0

f (x, s, λ)

|s|p−2s
≤ lim sup

s→0

f (x, s, λ)

|s|p−2s
≤ η̂λ(x)

uniformly for a.a. x ∈ ,.

Theorem 1 (a) Assume that H(f )3 holds. Then, for all b > 0, there exists λ∗ ∈ 0
such that, for λ ∈ (0, λ∗), problem (1) has at least three distinct, nontrivial solutions:
uλ ∈ int (C1

0 (,)+), vλ ∈ −int (C1
0 (,)+), and yλ ∈ C1

0(,) with

−b < vλ ≤ yλ ≤ uλ < b in ,.

(b) If, in addition, H(f )3 (ii.b) holds, then yλ can be chosen to be sign changing.

Next, we are concerned with the existence of additional constant sign solutions of
(1). This is done in the case where f satisfies a nonuniform version of the so-called
Ambrosetti–Rabinowitz condition (see H(f )±4 (iii) below) and a uniform unilateral
sign condition (i.e., in a neighborhood of 0 which is independent of λ, see H(f )±4 (iv)
below). Note that hypothesis H(f )±4 (iii) below forces the nonlinearity f to be (p−
1)-superlinear at infinity, but we do not require that ess infx∈,

∫ s
0 f (x, t , λ) dt >

0 (contrary to the classical Ambrosetti–Rabinowitz condition). Also, note that a
nonuniform sign condition (i.e., satisfied by f (x, s, λ) for a fixedλ) is already implied
by hypothesis H(f )±1 (ii).

H(f )+4 (i) f satisfies H(f )+1 (i) with r < p∗;
(ii) f satisfies H(f )+1 (ii);
(iii) for every λ ∈ 0, there existMλ > 0 and μλ > p such that

0 < μλF (x, s, λ) ≤ f (x, s, λ)s for a.a. x ∈ ,, all s ≥ Mλ,
where F (x, s, λ) = ∫ s0 f (x, t , λ) dt ;
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(iv) there exists ρ > 0 such that f (x, s, λ) > 0 for a.a. x ∈ ,, all s ∈ (0, ρ), all
λ ∈ 0.

Symmetrically, we state:

H(f )−4 (i) f satisfies H(f )+4 (i);
(ii) f satisfies H(f )−1 (ii);
(iii) for every λ ∈ 0, there existMλ > 0 and μλ > p such that

0 < μλF (x, s, λ) ≤ f (x, s, λ)s for a.a. x ∈ ,, all s ≤ −Mλ ;

(iv) there exists ρ > 0 such that f (x, s, λ) < 0 for a.a. x ∈ ,, all s ∈ (−ρ, 0),
all λ ∈ 0.

Theorem 2 (a) Under H(f )+4 , for all b > 0, there exists λ∗ ∈ 0

such that, for λ ∈ (0, λ∗), problem (1) has at least two distinct so-
lutions uλ, ûλ ∈ int (C1

0 (,)+) with uλ ≤ ûλ in , and ‖uλ‖∞ < b.
(b) Under H(f )−4 , for all b > 0, there exists λ∗ ∈ 0 such that, for λ ∈ (0, λ∗),
problem (1) has at least two distinct solutions vλ, v̂λ ∈ −int (C1

0 (,)+) with v̂λ ≤ vλ
in , and ‖vλ‖∞ < b.

Combining Theorems 1 and 2, we obtain the existence of five nontrivial solutions.
Precisely, we consider the following conditions on f (x, s, λ):

H(f )5 (i) f satisfies H(f )+4 (i);
(ii) f satisfies H(f )3 (ii.a);
(iii) f satisfies H(f )+4 (iii) and H(f )−4 (iii), that is, for every λ ∈ 0, there exist
Mλ > 0 and μλ > p such that

0 < μλF (x, s, λ) ≤ f (x, s, λ)s for a.a. x ∈ ,, all s ∈ R with |s| ≥ Mλ ;

(iv) f satisfies H(f )+4 (iv) and H(f )−4 (iv), that is, there exists ρ > 0 such that
f (x, s, λ)s > 0 for a.a. x ∈ ,, all s ∈ [−ρ, ρ], all λ ∈ 0.

Theorem 3 (a) Assume that H(f )5 holds. Then, for all b > 0, there exists λ∗ ∈ 0
such that, for λ ∈ (0, λ∗), problem (1) has at least five distinct, nontrivial solutions:
uλ, ûλ ∈ int (C1

0 (,)+), vλ, v̂λ ∈ −int (C1
0 (,)+), and yλ ∈ C1

0 (,) with

v̂λ ≤ vλ ≤ yλ ≤ uλ ≤ ûλ in ,, ‖uλ‖∞ < b, and ‖vλ‖∞ < b.
(b) If, in addition, H(f )3 (ii.b) holds, then yλ can be chosen to be sign changing.

Example 1 As announced in (3), a typical nonlinearity fulfilling H(f )5 is of the
form

f (x, s, λ) = λh(x, s)+ |s|r−2s, (7)

where p < r < p∗ and h : ,×R → R is a Carathéodory function with h(x, 0) = 0
a.e. in ,, which satisfies the following conditions



Sign-Changing Solutions for Nonlinear Elliptic Problems Depending on Parameters 333

(i) there exist ĉ0 > 0 and 1 ≤ q < p such that

|h(x, s)| ≤ ĉ0(1+ |s|q−1) for a.a. x ∈ ,, all s ∈ R ;

(ii) lim inf
s→0

h(x, s)

|s|p−2s
= +∞ uniformly for a.a. x ∈ , ;

(iii) there existM0 > 0, μ ∈ (p, r), c1, c2 > 0 and r0 ∈ [0, r) such that

−c1|s|r ≤ μH (x, s) ≤ h(x, s)s + c2|s|r0 for a.a. x ∈ ,, all |s| ≥ M0 ,

where H (x, s) = ∫ s0 h(x, t) dt ;
(iv) there exists ρ > 0 such that h(x, s)s ≥ 0 for a.a. x ∈ ,, all s ∈ [−ρ, ρ].

Under these conditions, it can be seen that f given in (7) satisfies H(f )5 for λ ∈
0 := (0, μ

rc1
). Thus, Theorem 3 (a) yields five nontrivial solutions for problem (1):

two positive, two negative, and an intermediate one. A particular case of h fulfilling
(i)–(iv) above is h(x, s) = |s|q−2s with q ∈ (1,p), so in this case

f (x, s, λ) = λ|s|q−2s + |s|r−2s. (8)

Therefore, Theorem 3 (a) extends the corresponding result in García Azorero–
Manfredi–Peral Alonso [13] dealing with the case in (8). It also brings new
information even in the case of (2) by guaranteeing the existence of five nontriv-
ial solutions for problem (1). In fact, for the particular case of the nonlinearity in
(8), more insight will be achieved by Corollary 1 below, showing that actually the
intermediate solution can be chosen sign changing.

We can obtain an additional sign-changing solution by strengthening H(f )5:

H(f )6 (i) f : , × R × 0 → R is such that f (·, ·, λ) is a continuous function,
f (x, 0, λ) = 0 for all x ∈ ,, all λ ∈ 0; moreover, there are a(λ) > 0 with
a(λ) → 0 as λ ↓ 0, and c > 0, r ∈ (p,p∗) (both independent of λ) such that

|f (x, s, λ)| ≤ a(λ)+ c|s|r−1 for all x ∈ ,, all s ∈ R, all λ ∈ 0;

(ii) for all λ ∈ 0, there exist θλ > λ2 and η̂λ ∈ L∞(,) such that

θλ < lim inf
s→0

f (x, s, λ)

|s|p−2s
≤ lim sup

s→0

f (x, s, λ)

|s|p−2s
≤ η̂λ(x)

uniformly for all x ∈ ,;
(iii) for every λ ∈ 0, there existMλ > 0 and μλ > p such that

0 < μλF (x, s, λ) ≤ f (x, s, λ)s for all x ∈ ,, all s ∈ R with |s| ≥ Mλ ;

(iv) there exist ρ− < 0 < ρ+ such that for all λ ∈ 0 we have

f (x, ρ−, λ) = 0 = f (x, ρ+, λ) for all x ∈ ,,

f (x, s, λ)s > 0 for all x ∈ ,, all s ∈ (ρ−, ρ+), s �= 0.
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Theorem 4 Assume that H(f )6 holds. Then, there exists λ∗ ∈ 0 such that, for all
λ ∈ (0, λ∗), problem (1) has at least six distinct, nontrivial solutions: uλ, ûλ ∈
int (C1

0 (,)+), vλ, v̂λ ∈ −int (C1
0 (,)+), and yλ, wλ ∈ C1

0(,) both sign-changing.

Example 2 For λ ∈ (0,+∞), we consider the following nonlinearity

f (x, s, λ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|s|r−2s + 1 if s ≤ −1,

−θ (x, s)min{λ, |s|p−1} if−1 < s ≤ 0,

θ (x, s)min{λ, sp−1} if 0 < s ≤ 1,

sr−1 −1 if s > 1,

where r ∈ (p,p∗) and θ : , × [−1, 1] → R is a continuous function satisfying
θ (x, 0) > λ2, θ (x,−1) = θ (x, 1) = 0 for all x ∈ ,, and θ (x, s) > 0 for all x ∈ ,,
all s ∈ (−1, 1). For example, we can take θ (x, s) = (e|x| + λ2)(1 − |s|). Then, the
function f (x, s, λ) fulfills H(f )6 with ρ− = −1, ρ+ = 1. Therefore, Theorem 4
implies that, for the above nonlinearity f and λ > 0 small, problem (1) admits at
least six nontrivial solutions: two positive, two negative, and two sign-changing.

As illustrated by Examples 1 and 2, the sets of hypotheses H(f )1–H(f )6 mainly
address the case where the nonlinearity f (x, s, λ) is of the form (3). In the next
subsection, we focus on nonlinearities of type (4).

2.2 Results for Nonlinearities of Type (4)

In this subsection, we study problem (5), that is, the considered nonlinearity is of the
form

β(x)|s|q−2s + g(x, s),

where β ∈ L∞(,)+ \ {0} and g is a Carathéodory function. Later in this subsection,
we will suppose that β ≡ λ is constant.

First, we look for constant sign solutions for problem (5). We denote G(x, s) =∫ s
0 g(x, t) dt . We note that we assume that for a.a. x ∈ ,, G(x, ·) is p-superlinear

near+∞ (see H(g)+1 (iii.a) below), but we do not require theAmbrosetti–Rabinowitz
condition that is common in such cases. In addition, we assume that near zero,
g(x, ·) satisfies a nonuniform nonresonance condition at the first eigenvalue λ1 of
the negative Dirichlet p-Laplacian (see H(g)+1 (ii) below). Precisely, we consider the
following hypotheses:

H(g)+1 (i) g : ,× R → R is a Carathéodory function with g(x, 0) = 0, a.e. in ,,
and there are c > 0 and r ∈ (p,p∗) such that

|g(x, s)| ≤ c(1+ |s|r−1) for a.a. x ∈ ,, all s ∈ R ;

(ii) there exist ϑ , ϑ̂ ∈ L∞(,)+ such that ϑ(x) ≤ λ1 a.e. in ,, ϑ �= λ1, and

−ϑ̂(x) ≤ lim inf
s↓0

g(x, s)

sp−1
≤ lim sup

s↓0

g(x, s)

sp−1
≤ ϑ(x)

uniformly for a.a. x ∈ ,;



Sign-Changing Solutions for Nonlinear Elliptic Problems Depending on Parameters 335

(iii) the following asymptotic conditions at ±∞ are satisfied:

(iii.a) lim
s→+∞

G(x, s)

sp
= +∞ uniformly for a.a. x ∈ ,,

(iii.b) there exist τ ∈ ((r − p)max{N
p

, 1},p∗), τ > q, and γ0 > 0 such that

lim inf
s→+∞

g(x, s)s − pG(x, s)

sτ
≥ γ0 uniformly for a.a. x ∈ ,.

Theorem 5 Assume that H(g)+1 holds. Then, there is λ∗ > 0 such that, whenever
‖β‖∞ < λ∗, problem (5) has two distinct solutions u0, û ∈ int (C1

0 (,)+).

Next we are concerned with existence of a smallest positive solution for a restricted
version of problem (5) in which β(·) ≡ λ is constant, namely,

⎧
⎨

⎩

−-pu = λ|u(x)|q−2u(x)+ g(x, u(x)) in ,,

u = 0 on ∂,,
(9)

with λ > 0 and q ∈ (1,p). We assume that g satisfies an arbitrary polynomial growth
condition and a stronger hypothesis near the origin, in particular, by requiring a local
sign condition. Precisely, we consider the following hypotheses:

H(g)+2 (i) g : , × R → R is a Carathéodory function with g(x, 0) = 0 a.e. in ,
and there exist c > 0 and r ∈ [1,+∞) such that

|g(x, s)| ≤ c(1+ |s|r−1) for a.a. x ∈ ,, all s ∈ R ;

(ii) lim
s↓0

g(x, s)

sp−1
= 0 uniformly for a.a. x ∈ ,;

(iii) there exists δ0 > 0 such that g(x, s) ≥ 0 for a.a. x ∈ ,, all s ∈ [0, δ0].

Proposition 3 Assume that H(g)+2 holds. Then, there is λ∗ > 0 such that, for
λ ∈ (0, λ∗), problem (9) has a smallest positive solution uλ,+ ∈ int (C1

0 (,)+).
Furthermore, it satisfies ‖uλ,+‖∞ < δ0.

Now, we gather the above hypotheses H(g)+1 and H(g)+2 together with their
counterparts on the negative half-line:

H(g)3 (i) g satisfies H(g)+1 (i);

(ii) lim
s→0

g(x, s)

|s|p−1
= 0 uniformly for a.a. x ∈ ,;

(iii) there exist τ ∈ ((r − p) max{N
p

, 1},p∗), τ > q, and γ0 > 0 such that

lim
s→±∞

G(x, s)

|s|p = +∞ and lim inf
s→±∞

g(x, s)s − pG(x, s)

|s|τ ≥ γ0

uniformly for a.a. x ∈ ,;
(iv) there exists δ0 > 0 such that g(x, s)s ≥ 0 for a.a. x ∈ ,, all s ∈ [−δ0, δ0].
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Theorem 6 Assume that H(g)3 holds. Then, there exists λ∗ > 0 such that, for
λ ∈ (0, λ∗), problem (9) has at least five distinct, nontrivial solutions: uλ, ûλ ∈
int (C1

0 (,)+), vλ, v̂λ ∈ −int (C1
0 (,)+), and yλ ∈ C1

0(,) sign-changing.

Remark 1 The nodal solutionyλ inTheorem 6 satisfies the a priori estimate‖yλ‖∞ <
δ0, with the constant δ0 > 0 in hypothesis H(g)3 (iv). In Theorem 6, we can choose
vλ to be the biggest negative solution and uλ the smallest positive solution, and thus
we can order the solutions as v̂λ ≤ vλ ≤ yλ ≤ uλ ≤ ûλ.

Example 3 The functions g1(s) = |s|r−2s for all s ∈ R, with p < r < p∗, and
g2(s) = |s|p−2s ln (1 + |s|p) for all s ∈ R satisfy H(g)3. Note that g1 satisfies the
Ambrosetti–Rabinowitz condition, but g2 does not.

From Theorem 6 and Example 3, we have:

Corollary 1 Assume that f (x, s, λ) = λ|s|q−2s + |s|r−2s with 1 < q < p < r <
p∗. Then, there exists λ∗ > 0 such that, for λ ∈ (0, λ∗), problem (1) has at least five
distinct, nontrivial solutions: uλ, ûλ ∈ int (C1

0 (,)+), vλ, v̂λ ∈ −int (C1
0 (,)+), and

yλ ∈ C1
0 (,) sign-changing.

3 Preliminary Results

3.1 Upper and Lower Solutions Method

This subsection deals with a location result through the upper and lower solutions
method for problem (1). The basic definition is the following.

Definition 1 Given λ ∈ 0, we say that u ∈ W 1,p(,) is an upper (resp. lower)
solution of problem (1) if u|∂, ≥ 0 (resp. u|∂, ≤ 0), f (·, u(·), λ) ∈ Lq′ (,) ( 1

q
+ 1
q ′ =

1) for some q ∈ (1,p∗), and
∫

,

|∇u|p−2∇u · ∇v dx −
∫

,

f (x, u(x), λ)v(x) dx is ≥ 0 (resp. ≤ 0)

for all v ∈ W 1,p
0 (,) with v ≥ 0 a.e. in ,.

Let λ ∈ 0, and let uλ and uλ be lower and upper solutions, respectively, such that
uλ(x) ≤ uλ(x) for a.a. x ∈ ,. We define the order interval

[uλ, uλ] := {u ∈ W 1,p
0 (,) : uλ(x) ≤ u(x) ≤ uλ(x) for a.a. x ∈ ,}

and the Carathéodory function f[uλ,uλ] : ,× R → R given by

f[uλ,uλ](x, s) =

⎧
⎪⎪⎨

⎪⎪⎩

f (x, uλ(x), λ) if s ≤ uλ(x),

f (x, s, λ) if uλ(x) < s < uλ(x),

f (x, uλ(x), λ) if s ≥ uλ(x)

(10)
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for a.a. x ∈ ,, all s ∈ R. Setting F[uλ,uλ](x, s) = ∫ s0 f[uλ,uλ](x, t) dt , we introduce the

functional ϕ[uλ,uλ] ∈ C1(W 1,p
0 (,), R) by

ϕ[uλ,uλ](u) = 1

p
‖∇u‖pp −

∫

,

F[uλ,uλ](x, u(x)) dx for all u ∈ W 1,p
0 (,). (11)

We start with the following location result.

Proposition 4 Assume H(f )+1 (i) (or H(f )−1 (i)). Given λ ∈ 0, an upper solution
uλ and a lower solution uλ of problem (1) with uλ ≤ uλ a.e. in ,, if u ∈ W 1,p

0 (,) is
a critical point of ϕ[uλ,uλ], then u ∈ [uλ, uλ] ∩ C1

0 (,) and u is a solution of (1).

Proof Let u be a critical point of ϕ[uλ,uλ], that is u solves the problem

⎧
⎨

⎩

−-pu = f[uλ,uλ](x, u(x)) in ,,

u = 0 on ∂,.
(12)

Then, the regularity theory (see [18]) implies that u ∈ C1
0 (,).

We check that u ∈ [uλ, uλ]. Since uλ is a lower solution of (1), we have in particular
that u− uλ ≥ 0 on ∂,, hence, (u− uλ)

− ∈ W 1,p
0 (,) (see, e.g., [9, p. 35]). Acting on

(12) with the test function (u− uλ)
− and using that uλ is a lower solution of (1) yield

∫

{u<uλ}
|∇u|p−2∇u · ∇(u− uλ) dx =

∫

{u<uλ}
f (x, uλ(x), λ)(u(x)− uλ(x)) dx

≤
∫

{u<uλ}
|∇uλ|p−2∇uλ · ∇(u− uλ) dx.

Invoking the strict monotonicity of the map ξ �→ |ξ |p−2ξ for ξ ∈ R
N , we obtain

that the set {x ∈ , : u(x) < uλ(x)} has Lebesgue measure zero. Thus, uλ ≤ u, a.e.
in ,. Similarly, we can show that u ≤ uλ, a.e. in ,. Thus, u ∈ [uλ, uλ].

Finally, we note that u ∈ [uλ, uλ] implies that f[uλ,uλ](x, u(x)) = f (x, u(x), λ) for
a.a. x ∈ ,. Consequently, from (12), we conclude that u is a solution of (1). �

The next result provides existence of a solution between any lower and upper
solutions.

Proposition 5 (a) Assume H(f )+1 . Given λ ∈ 0, an upper solution uλ ∈
int (C1

0 (,)+) and a lower solution uλ ∈ W
1,p
0 (,) of problem (1) with uλ ≥

uλ ≥ 0, a.e. in ,, there exists a solution uλ ∈ int (C1
0(,)+) of (1) satisfy-

ing uλ ∈ [uλ, uλ] and which is a global minimizer of the functional ϕ[uλ,uλ].
(b) Assume H(f )−1 . Given λ ∈ 0, a lower solution vλ ∈ −int (C1

0(,)+) and an
upper solution vλ ∈ W 1,p

0 (,) of (1) with vλ ≤ vλ ≤ 0, a.e. in ,, there exists a
solution vλ ∈ −int (C1

0 (,)+) of (1) satisfying vλ ∈ [vλ, vλ] and which is a global
minimizer of the functional ϕ[vλ,vλ].
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Proof By H(f )+1 and using that uλ, uλ ∈ L∞(,), we have |f[uλ,uλ](x, s)| ≤ cλ for
a.a. x ∈ ,, all s ∈ R, all λ ∈ 0, with cλ > 0. Using the continuity of the embedding
W

1,p
0 (,) ↪→ L1(,), we obtain

ϕ[uλ,uλ](u) ≥ 1

p
‖∇u‖pp − cλ‖u‖1 ≥ 1

p
‖∇u‖pp − c̃λ‖∇u‖p for all u∈ W 1,p

0 (,),

for some constant c̃λ > 0. Hence, ϕ[uλ,uλ] is coercive. Sinceϕ[uλ,uλ] is also sequentially

weakly lower semicontinuous, it has a global minimizer uλ ∈ W 1,p
0 (,). Hence, uλ is

a critical point of ϕ[uλ,uλ], and so, by Proposition 4, we have uλ ∈ [uλ, uλ] ∩ C1
0 (,)

and uλ is a solution of (1).
Let us justify that uλ �= 0. It suffices to check this when uλ = 0. Letting ηλ ∈

L∞(,)+ be as in hypothesis H(f )+1 (ii), we have that

γ := λ1 −
∫

,

ηλ(x)û1(x)p dx =
∫

,

(λ1 − ηλ(x))û1(x)p dx < 0.

From H(f )+1 (ii) we know that, for each ε ∈ (0,−γ ), there is δ = δ(ε) > 0 such
that

1

p
(ηλ(x)− ε)sp ≤

∫ s

0
f (x, t , λ) dt for a.a. x ∈ ,, all s ∈ [0, δ).

Since uλ ∈ int (C1
0 (,)+), we can find t ∈ (0, δ

‖û1‖∞ ) such that 0 < t û1(x) ≤ uλ(x)
for all x ∈ ,. Then, by (11), we have

ϕ[0,uλ](t û1) ≤ λ1t
p

p
− tp

p

∫

,

(ηλ(x)− ε)û1(x)p dx ≤ t
p

p
(γ + ε) < 0 = ϕ[0,uλ](0).

As uλ is a global minimizer of ϕ[0,uλ], we deduce that uλ �= 0.
Recalling that uλ ≥ 0, from H(f )+1 , we find a constant c0(λ) > 0 such that

-puλ = −f (·, uλ, λ) ≤ c0(λ)up−1
λ inW−1,p′ (,). (13)

Then, by the strong maximum principle (see [24]), we conclude that
uλ ∈ int (C1

0 (,)+). This proves part (a) of Proposition 5(a). Part (b) can be established
similarly. �

3.2 Antimaximum Principle

This subsection is devoted to a version of the antimaximum principle for the p-
Laplacian operator with weight, which we will need in the proof of Proposition 2.
This result is related to the following eigenvalue problem:

⎧
⎨

⎩

−-pu = λξ (x)|u|p−2u in ,,

u = 0 on ∂,.
(14)
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Here, ξ ∈ L∞(,)+ \ {0}. Let λ̂1(ξ ) > 0 be the first eigenvalue for problem (14).
The next result is due to Motreanu–Motreanu–Papageorgiou [19] and states that the
antimaximum principle of Godoy–Gossez–Paczka [14, Theorem 5.1, Remark 5.5]
holds L∞-locally uniformly with respect to the weight.

Theorem 7 Given ξ ,h ∈ L∞(,)+ \ {0}, there is a number δ > 0 such that, if
ζ ∈ L∞(,)+ \ {0} and λ ∈ R satisfy ‖ζ − ξ‖∞ < δ and λ̂1(ζ ) < λ < λ̂1(ζ ) + δ,
then any weak solution of the problem

⎧
⎨

⎩

−-pu = λζ (x)|u|p−2u+ h(x) in ,,

u = 0 on ∂,

belongs to −int (C1
0 (,)+).

Proof Arguing by contradiction, assume that there exist sequences {ζn}n≥1 ⊂
L∞(,)+ with ζn → ξ uniformly on,, {λn}n≥1 ⊂ R with λ̂1(ζn) < λn < λ̂1(ζn)+ 1

n
,

and {un}n≥1 ⊂ W 1,p
0 (,) such that
⎧
⎨

⎩

−-pun = λnζn(x)|un|p−2un + h(x) in ,,

un = 0 on ∂,
(15)

and un �∈ −int (C1
0 (,)+). If {un}n≥1 were bounded in L∞(,) (note that un ∈ L∞(,)

by the Moser iteration technique), then due to the a priori elliptic estimates (see [18]),
{un}n≥1 would be bounded in C1,α(,), for some α ∈ (0, 1), so along a subsequence,
un → u in C1(,), with u ∈ C1(,) solving

⎧
⎨

⎩

−-pu = λ̂1(ξ )ξ (x)|u|p−2u+ h(x) in ,,

u = 0 on ∂,,

contradicting [14, Proposition 4.3, Remark 5.5]. Thus, along a relabeled subse-
quence, we have that ‖un‖∞ → +∞ as n→∞. Let vn = un

‖un‖∞ . By (15), we have
that

⎧
⎨

⎩

−-pvn = λnζn(x)|vn|p−2vn + h(x)

‖un‖p−1∞
in ,,

vn = 0 on ∂,.
(16)

The sequence {vn}n≥1 is bounded in C1,α(,) for some α ∈ (0, 1) (by [18]), hence,
up to considering a subsequence, we have vn → v in C1(,) as n → ∞, for some
v ∈ C1(,). Passing to the limit in (16), we obtain

⎧
⎨

⎩

−-pv = λ̂1(ξ )ξ (x)|v|p−2v in ,,

v = 0 on ∂,.
(17)
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Moreover, ‖v‖∞ = lim
n→∞‖vn‖∞ = 1, hence, v �= 0. So, v is an eigenfunction

corresponding to λ̂1(ξ ), and therefore, either v ∈ int(C1
0 (,)+) or v ∈ −int(C1

0 (,)+).
The case where v ∈ int(C1

0 (,)+) cannot occur because otherwise we would have
vn ∈ C1

0 (,)+ for n large enough, but then (16) contradicts [14, Proposition 4.3,
Remark 5.5]. The case v ∈ −int(C1

0(,)+) is also impossible because, as we have
vn → v in C1(,), it implies that vn ∈ −int(C1

0 (,)+) for n large enough, which
contradicts the assumption that un �∈ −int (C1

0 (,)+). Thus, the proof of the theorem
is complete. �

4 Proofs of Main Results

4.1 Proof of Proposition 1

The proof is based on Proposition 5 and the following lemmas.

Lemma 1 There exists e ∈ int (C1
0(,)+) such that −-pe = 1 inW−1,p′ (,).

Proof The operator −-p : W 1,p
0 (,) → W−1,p′(,) is maximal monotone and

coercive, so it is surjective. Hence, there is e ∈ W 1,p
0 (,), e �= 0, with −-pe = 1

in W−1,p′(,). It follows that ‖∇e−‖pp =
∫
,

(−e−) dx ≤ 0, thus e ≥ 0 in ,. By the
regularity theory (see [18]) and the strong maximum principle (see [24]), we infer
that e ∈ int (C1

0 (,)+). �

Lemma 2 For all b > 0, there exists λ∗ ∈ 0 such that, for all λ ∈ (0, λ∗), there is
tλ ∈ (0, b

‖e‖∞ ) satisfying

a(λ)+ c(tλ‖e‖∞)r−1 < t
p−1
λ ,

where a(λ), c > 0 and r > p are as in H(f )+1 (i).

Proof Arguing by contradiction, suppose that there exist b > 0 and a sequence
{λn}n≥1 ⊂ 0 such that λn → 0 as n→∞ and

a(λn)+ c(t‖e‖∞)r−1 ≥ tp−1 for all t ∈ (0,
b

‖e‖∞ ), all n ≥ 1.

Because a(λn) → 0 as n → ∞ (see H(f )+1 (i)), letting n → ∞ in the above
inequality, we obtain that c‖e‖r−1∞ t r−p ≥ 1 for all t ∈ (0, b

‖e‖∞ ). Since r − p > 0,
we arrive at a contradiction. �

In what follows, we fix b > 0.

Lemma 3 For every λ ∈ (0, λ∗) (with λ∗ in Lemma 2), problem (1) has an upper
solution uλ ∈ int (C1

0 (,)+) with ‖uλ‖∞ < b.

Proof Fix λ ∈ (0, λ∗) and let tλ ∈ (0, b
‖e‖∞ ) be given by Lemma 2. We set uλ = tλe.

Then, uλ ∈ int (C1
0 (,)+), ‖uλ‖∞ < b, and we have −-puλ = tp−1

λ in W−1,p′(,).
By Lemma 2 and hypothesis H(f )+1 (i), we see that

−-puλ > a(λ)+ c‖uλ‖r−1
∞ ≥ f (x, s, λ) for a.a. x ∈ ,, all s ∈ [0, uλ(x)]. (18)
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Thus, uλ is an upper solution of problem (1). �

Proof of Proposition 1 Part (a) of Proposition 1 follows by applying Proposition 5(a)
with the upper solution uλ and the lower solution 0. Part (b) of Proposition 1 can be
similarly deduced by applying Proposition 5(b) with the upper solution 0. �

4.2 Proof of Proposition 2

We need the following property of lower and upper solutions.

Lemma 4 Assume H(f )±1 (i) and let λ ∈ 0.
(a) If u1, u2 ∈ L∞(,) are upper solutions of problem (1), then, u := min{u1, u2} is
also an upper solution of problem (1).
(b) If v1, v2 ∈ L∞(,) are lower solutions for problem (1), then, v := max{v1, v2} is
also a lower solution of problem (1).

Proof We only prove part (a) because part (b) can be similarly established. Given
ε > 0, we define τ̂ε : R → R by

τ̂ε(s) =

⎧
⎪⎪⎨

⎪⎪⎩

−ε if s ≤ −ε
s if − ε < s < ε
ε if s ≥ ε .

Then, for every u ∈ W 1,p(,), we have τ̂ε(u(·)) ∈ W 1,p(,) and

∇ τ̂ε(u) =
⎧
⎨

⎩

0 a.e. in {x ∈ , : |u(x)| ≥ ε},
∇u a.e. in {x ∈ , : |u(x)| < ε}. (19)

Let ψ ∈ C∞c (,) with ψ ≥ 0 in ,. Since u1, u2 are upper solutions of (1), we have
∫

,

f (x, u1, λ)τ̂ε((u1 − u2)−)ψ dx ≤ 〈−-pu1, τ̂ε((u1 − u2)−)ψ〉, (20)

∫

,

f (x, u2, λ)(ε − τ̂ε((u1 − u2)−))ψ dx ≤ 〈−-pu2, (ε − τ̂ε((u1 − u2)−))ψ〉.
(21)

Moreover, in view of (19), we have

〈−-pu1, τ̂ε((u1 − u2)−)ψ〉 + 〈−-pu2, (ε − τ̂ε((u1 − u2)−))ψ〉

≤
∫

,

|∇u1|p−2(∇u1 · ∇ψ) τ̂ε((u1 − u2)−) dx

+
∫

,

|∇u2|p−2(∇u2 · ∇ψ) (ε − τ̂ε((u1 − u2)−)) dx . (22)
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Adding (20), (21) and using (22), we obtain
∫

,

f (x, u1, λ)
1

ε
τ̂ε((u1 − u2)−)ψ dx+

∫

,

f (x, u2, λ)

(

1− 1

ε
τ̂ε((u1 − u2)−)

)

ψ dx

≤
∫

,

|∇u1|p−2(∇u1 · ∇ψ)
1

ε
τ̂ε((u1 − u2)−) dx

+
∫

,

|∇u2|p−2(∇u2 · ∇ψ)

(

1− 1

ε
τ̂ε((u1 − u2)−)

)

dx. (23)

Note that
1

ε
τ̂ε((u1 − u2)−(x)) → χ{u1<u2}(x) a.e. in , as ε ↓ 0.

Hence, passing to the limit as ε ↓ 0 in (23), we get
∫

,

f (x, u, λ)ψ dx ≤
∫

,

|∇u|p−2∇u · ∇ψ dx.

SinceC∞c (,) is dense inW 1,p
0 (,), the above inequality holds for allψ ∈ W 1,p

0 (,)
such that ψ ≥ 0, a.e. in ,, which completes the proof of the lemma. �

A first step in proving Proposition 2 is to show the existence of extremal constant
sign solutions between each lower solution and each upper solution of problem (1).

Proposition 6 (a) If hypotheses H(f )+1 hold, then for each λ ∈ 0, each upper
solution uλ ∈ int (C1

0(,)+) and each lower solution uλ ∈ W 1,p
0 (,) of (1) with

uλ ≥ uλ ≥ 0, a.e. in ,, uλ �= 0, problem (1) admits a smallest solution u∗λ in the
ordered interval [uλ, uλ]. In addition, u∗λ ∈ int (C1

0(,)+).
(b) If hypotheses H(f )−1 hold, then for each λ ∈ 0, each lower solution vλ ∈
−int (C1

0 (,)+) and each upper solution vλ ∈ W 1,p
0 (,) of (1) with vλ ≤ vλ ≤ 0,

a.e. in ,, vλ �= 0, problem (1) admits a biggest solution vλ,∗ in [vλ, vλ]. In addition,
vλ,∗ ∈ −int (C1

0 (,)+).

Proof We only prove part (a) because part (b) can be obtained similarly. Let λ ∈ 0,
and let uλ and uλ be as in the statement. Set

S = {u ∈ [uλ, uλ] : u is a solution of (1)}.
By the strong maximum principle of Vázquez [24] (see (13)), since uλ ≥ 0, uλ �= 0,
we have that S ⊂ int(C1

0 (,)+). Moreover, S is nonempty (by Proposition 5). In
order to show the proposition, we need to check that S has a smallest element. This
will be done through the following claims.

Claim 1 For every u1, u2 ∈ S, there exists u ∈ S such that u ≤ u1 and u ≤ u2.
Let u1, u2 ∈ S . By virtue of Lemma 4 (a), û := min{u1, u2} ∈ W 1,p

0 (,) is an
upper solution of (1). Applying Proposition 5(a) for the pair {uλ, û} of lower and
upper solutions, we find a solution u of (1) such that uλ ≤ u ≤ û = min{u1, u2}. This
shows Claim 1.

Claim 2 There is α ∈ (0, 1) such that the set S is a bounded subset of C1,α(,).
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The claim follows from the regularity up to the boundary result of Lieberman [18]
because for each u ∈ S, we have ‖u‖∞ ≤ ‖uλ‖∞.

Let {xk}k≥1 be a dense subset of ,. For each k ≥ 1, we let mk = inf
u∈S

u(xk) ≥ 0.

Claim 3 For all n ≥ 1, there is un ∈ S such that

mk ≤ un(xk) ≤ mk + 1

n
for all k ∈ {1, . . . , n}.

By definition of mk , we find un,1, . . . , un,n ∈ S with un,k(xk) ≤ mk + 1
n

for
all k ∈ {1, . . . , n}. By Claim 1, we can find un ∈ S such that un ≤ un,k for all
k ∈ {1, . . . , n}. This function un satisfies the Claim 3.

Let {un}n≥1 ⊂ S be the sequence given in Claim 3. By Claim 2, this sequence
is bounded in C1,α(,), so up to considering a subsequence we may assume that
un → u0 in C1(,) as n → ∞, for some u0 ∈ C1(,). It is clear that u0 ∈ S.
Moreover, passing to the limit as n → ∞ in the inequality in Claim 3, we have
u0(xk) = mk for all k ≥ 1. Hence, u0(xk) ≤ u(xk) for all k ≥ 1, all u ∈ S. Since
{xk}k≥1 is dense in ,, we deduce that u0 ≤ u for all u ∈ S. Therefore, u0 is the
smallest element of S. This completes the proof. �

The next step is to produce positive lower solutions and negative upper solutions.

Proposition 7 (a) Under H(f )+1 , for each λ ∈ 0 and each uλ ∈ int (C1
0 (,)+), there

exists a lower solution uλ ∈ int (C1
0 (,)+) of (1) satisfying uλ − uλ ∈ int (C1

0 (,)+).
Moreover, for every ε ∈ (0, 1), εuλ is a lower solution of (1).
(b) Under H(f )−1 , for eachλ ∈ 0 and each vλ ∈ −int (C1

0 (,)+), there exists an upper
solution vλ ∈ −int (C1

0 (,)+) of (1) satisfying vλ − vλ ∈ int (C1
0 (,)+). Moreover, for

every ε ∈ (0, 1), εvλ is an upper solution of (1).

Proof Let V := {u ∈ W 1,p
0 (,) :

∫
,

ûp−1
1 u dx = 0}. We have the direct sum

decompositionW 1,p
0 (,) = Rû1 ⊕ V . We claim that

λV := inf

{‖∇u‖pp
‖u‖pp : u ∈ V , u �= 0

}

> λ1. (24)

Indeed, arguing by contradiction, assume that there is a sequence {un}n≥1 ⊂ V
such that ‖un‖p = 1 and ‖∇un‖pp → λ1 as n → ∞ (see (6)). Then, {un}n≥1 is

bounded in W 1,p
0 (,), so we may assume that un

w→ u in W 1,p
0 (,) and un → u

in Lp(,) as n → ∞, for some u ∈ W 1,p
0 (,). Hence, u ∈ V , ‖u‖p = 1, and

‖∇u‖pp ≤ λ1. Since the inf in (6) is attained exactly on {t û1 : t ∈ R \ {0}}, we reach
a contradiction with the fact that u ∈ V . This yields (24).

Let δ > 0 be given by Theorem 7 applied for h := ûp−1
1 and ξ := λ1. For

ζ ∈ L∞(,)+ \ {0}, recall that λ̂1(ζ ) > 0 denotes the first eigenvalue of −-p with
respect to the weight ζ . Since the map ζ �→ λ̂1(ζ ) is continuous on L∞(,)+ \ {0},
we find ε > 0 such that for all ζ ∈ L∞(,) with ‖ζ − λ1‖∞ ≤ ε a.e. in ,, we have
|λ̂1(ζ )− 1| < δ. We may assume that 0 < ε < min{λV − λ1, λ2 − λ1, δ}. We define



344 D. Motreanu and V. V. Motreanu

the weight

ζ := min{ηλ, λ1 + ε} ∈ L∞(,)+, (25)

with ηλ ∈ L∞(,)+ as in H(f )+1 (ii). Thus, λ1 ≤ ζ < λ2, a.e. in ,, ζ �= λ1, so we
get

1− δ < λ̂1(ζ ) < λ̂1(λ1) = 1 = λ̂2(λ2) < λ̂2(ζ ), (26)

where λ̂2(ζ ) > 0 denotes the second eigenvalue of −-p with respect to ζ . Here,
we use the monotonicity properties of λ̂1( · ) and λ̂2( · ). We consider the auxiliary
boundary value problem

⎧
⎨

⎩

−-pu = ζ (x)|u|p−2u− û1(x)p−1 in ,,

u = 0 on ∂,.
(27)

The functional ϕ0 : W 1,p
0 (,) → R defined by

ϕ0(u) = 1

p
‖∇u‖pp −

1

p

∫

,

ζ |u|p dx +
∫

,

ûp−1
1 u dx for all u ∈ W 1,p

0 (,)

is of class C1 and its critical points are the solutions of (27).

Claim 1 ϕ0 satisfies the Palais–Smale condition, that is, every sequence {un}n≥1 ⊂
W

1,p
0 (,) such that

{ϕ0(un)}n≥1 is bounded and ϕ′0(un) → 0 inW−1,p′ (,) (28)

admits a strongly convergent subsequence.
Let {un}n≥1 ⊂ W 1,p

0 (,) be a sequence satisfying (28). First, we show that {un}n≥1

is bounded in W 1,p
0 (,). Arguing by contradiction, we assume that along a subse-

quence ‖∇un‖p →+∞ as n→∞ and set yn = un
‖∇un‖p for n ≥ 1. We may suppose

that yn
w→ y in W 1,p

0 (,) and yn → y in Lp(,), for some y ∈ W 1,p
0 (,). Since

ϕ′0(un) → 0, it follows that 〈−-pyn, yn − y〉 → 0 as n→∞. Because −-p is an
operator of type (S)+, we deduce that yn → y inW 1,p

0 (,), and so ‖∇y‖p = 1 and

−-py = ζ |y|p−2y in W−1,p′ (,). (29)

By (26), we infer that y = 0, which is a contradiction. So {un}n≥1 ⊂ W 1,p
0 (,) is

bounded, and along a relabeled subsequence, we have un
w→ u in W

1,p
0 (,) and

un → u in Lp(,), for some u ∈ W 1,p
0 (,). As before, we deduce that un → u in

W
1,p
0 (,). Claim 1 is thus proved.

Claim 2 ϕ0|V ≥ 0.
This claim follows from the definition of ϕ0 since ζ (x) ≤ λ1 + ε < λV , a.e. in ,

(see (25)).

Claim 3 For t > 0 large, we have ϕ0(± t û1) < 0.
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Using that ‖û1‖p = 1, for t > 0, we see that

ϕ0(± t û1) = t
p

p
β ± t , where β :=

∫

,

(λ1 − ζ (x))û1(x)p dx.

Since ζ ≥ λ1 a.e. in ,, ζ �= λ1 (see (25)), we have β < 0. This yields Claim 3.

Claim 4 The auxiliary problem (27) has a solution û ∈ int (C1
0(,)+).

Claims 1–3 allow us to apply the saddle point theorem (see [22]), which provides
û ∈ W 1,p

0 (,) such that ϕ′0(û) = 0, thus û is a solution of problem (27), hence, û �= 0.
Since‖ζ−λ1‖∞ < δ (by (25) and because 0 < ε < δ) and λ̂1(ζ ) < 1 < λ̂1(ζ )+δ (see
(26)), we can applyTheorem 7 to the function−û, which yields that û ∈ int (C1

0 (,)+).
This establishes Claim 4.

Since û1 ∈ int (C1
0 (,)+) and û ∈ C1

0 (,), we can find t > 0 such that

û1 − t û ∈ int (C1
0 (,)+). (30)

By (25) and hypothesis H(f )+1 (ii), we can find δ̃λ = δ̃λ(t) > 0 such that

(ζ (x)− tp−1)sp−1 ≤ f (x, s, λ) for a.a. x ∈ ,, all s ∈ [0, δ̃λ]. (31)

Finally, since uλ ∈ int (C1
0 (,)+) and û ∈ C1

0 (,), there is ρλ > 0 satisfying

uλ − ρλû ∈ int (C1
0(,)+) and 0 ≤ ρλû(x) ≤ δ̃λ for all x ∈ ,. (32)

We set uλ := ρλû . By Claim 4, we have that uλ ∈ int (C1
0 (,)+), whereas (32)

yields uλ − uλ ∈ int (C1
0 (,)+). Using (30) and (31), we infer that

−-puλ = ζup−1
λ − ρp−1

λ ûp−1
1 < (ζ − tp−1)up−1

λ ≤ f (·, uλ(·), λ) a.e. in ,. (33)

This implies that uλ is a lower solution of problem (1) (see Definition 1). Clearly, εuλ
is also a lower solution of (1) for all ε ∈ (0, 1). This proves part (a) of the proposition.
The proof of part (b) proceeds in the same way. �

Proof of Proposition 2 We only prove part (a) of Proposition 2, since the proof of part
(b) can be performed in a similar way. Let b > 0, and λ∗ ∈ 0 be given by Proposition
1(a), and let λ ∈ (0, λ∗). By Proposition 1(a), we know that problem (1) has a solution
uλ ∈ int (C1

0 (,)+) with ‖uλ‖∞ < b. Let uλ ∈ int (C1
0 (,)+) be the lower solution

of problem (1) obtained in Proposition 7(a) applied to the upper solution (in fact
solution) uλ. We fix a sequence {εn}n≥1 ⊂ (0, 1) converging to 0 and, for n ≥ 1, we
set uλ,n = εnuλ, which is also a lower solution of (1) by Proposition 7(a). Proposition
6(a) guarantees that problem (1) admits a smallest solution u∗λ,n in the ordered interval
[uλ,n, uλ]. From the equality−-pu∗λ,n = f (·, u∗λ,n(·), λ), hypothesis H(f )+2 (i), and the

fact that 0 < u∗λ,n ≤ uλ, we see that the sequence {u∗λ,n}n≥1 is bounded inW 1,p
0 (,), so
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we may assume that u∗λ,n
w→ uλ,+ inW 1,p

0 (,) and u∗λ,n → uλ,+ in Lp(,) as n→∞,

for some uλ,+ ∈ W 1,p
0 (,). As in Claim 1 of the proof of Proposition 7, we have

u∗λ,n → uλ,+ in W 1,p
0 (,) as n→∞. (34)

From (34), it follows that uλ,+ is a solution of (1). Moreover, up to considering a
subsequence, we may assume that we have u∗λ,n(x) → uλ,+(x) for a.a. x ∈ ,. This
implies that uλ,+ ∈ [0, uλ] (in particular, ‖uλ,+‖∞ ≤ ‖uλ‖∞ < b).

Claim 1 uλ,+ �= 0.

Arguing by contradiction, suppose that uλ,+ = 0. For n ≥ 1, we set yn = u∗λ,n
‖∇u∗λ,n‖p .

We may suppose that yn
w→ y in W 1,p

0 (,), yn → y in Lp(,) as n→∞, for some

y ∈ W 1,p
0 (,). Denoting hn := f (·,u∗λ,n(·),λ)

‖∇u∗λ,n‖p−1
p

, we have

−-pyn = hn in W−1,p′ (,) for all n ≥ 1. (35)

Hypothesis H(f )+2 implies that there exists c0(λ) > 0 such that

|f (x, s, λ)| ≤ c0(λ)sp−1 for a.a. x ∈ ,, all s ∈ [0, ‖uλ‖∞].

Thus, {hn}n≥1 is bounded in Lp
′
(,). Therefore, acting on (35) with the test func-

tion yn − y ∈ W 1,p
0 (,), we obtain lim

n→∞〈−-pyn, yn − y〉 = 0, thereby yn → y

in W 1,p
0 (,) (because −-p is an operator of type (S)+) and ‖∇y‖p = 1. Since

yn(x) → y(x) for a.a. x ∈ , (at least along a subsequence), we have y ≥ 0, a.e. in
,, y �= 0.

Since {hn}n≥1 is bounded in Lp
′
(,), we may assume that hn

w→ h in Lp
′
(,), for

some h ∈ Lp′(,). For a while, we fix ε > 0. Then, hypothesis H(f )+2 (ii) implies
that for a.a. x ∈ ,,

(ηλ(x)− ε)yn(x)p−1 ≤ hn(x) ≤ (η̂λ(x)+ ε)yn(x)p−1

for n sufficiently large (recall that u∗λ,n(x) → 0 for a.a. x ∈ ,). Taking into account

that yn → y in W 1,p
0 (,) and hn

w→ h in Lp
′
(,), invoking Mazur’s theorem (see,

e.g., [5, p. 61]), we obtain

(ηλ(x)− ε)y(x)p−1 ≤ h(x) ≤ (η̂λ(x)+ ε)y(x)p−1 for a.a. x ∈ ,.
As ε > 0 is arbitrary, we get

ηλ(x)y(x)p−1 ≤ h(x) ≤ η̂λ(x)y(x)p−1 for a.a. x ∈ ,.
Therefore, h(x) = κ(x)y(x)p−1 a.e. in , with κ ∈ L∞(,) such that ηλ ≤ κ ≤ η̂λ
a.e. in,. Passing to the limit as n→∞ in (35), we obtain that y solves the problem

⎧
⎨

⎩

−-py = κyp−1 in ,,

y = 0 on ∂,.
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Since y �= 0, we deduce that 1 is an eigenvalue of −-p with respect to the weight
κ and, since y has constant sign, we deduce that 1 = λ̂1(κ). On the other hand, by
H(f )+2 (ii), we see that κ ≥ λ1 a.e. in , with strict inequality on a set of positive
measure, hence, by virtue of the monotonicity property of λ̂1(·), we have that λ̂1(κ) <
λ̂1(λ1) = 1, a contradiction. This proves Claim 1.

Claim 2 For every nontrivial solution u of (1) belonging to [0, uλ], we have uλ,+ ≤ u
in ,.

Let u be a nontrivial solution of (1) belonging to [0, uλ]. Then, we have u ∈
int (C1

0 (,)+) (from the regularity theory and strong maximum principle). Using that
the sequence {εn}n≥1 converges to 0, for n large enough, we have uλ,n = εnuλ ≤ u ≤
uλ in,. Since u∗λ,n is the smallest solution of (1) in [uλ,n, uλ] , we derive that u∗λ,n ≤ u
in ,. It follows from (34) that uλ,+ ≤ u in ,, which shows Claim 2.

The proposition is obtained by combining Claims 1 and 2. �

4.3 Proof of Theorem 1

Let b > 0 and consider λ∗ given by Proposition 1(a). Fix λ ∈ (0, λ∗). Then, Propo-
sition 1 shows that problem (1) admits at least two solutions uλ ∈ int (C1

0 (,)+) and
vλ ∈ −int (C1

0 (,)+) such that ‖uλ‖∞ ≤ b and ‖vλ‖∞ ≤ b. Moreover, in the case
(b) of Theorem 1 (when H(f )3 (ii.b) is satisfied), uλ and vλ can be chosen to be the
smallest positive solution and the biggest negative solution of (1), respectively, given
by Proposition 2.

We consider the C1-functionals ϕ[0,uλ], ϕ[vλ,0], and ϕ[vλ,uλ], obtained by truncation
with respect to the pairs {0, uλ}, {vλ, 0}, and {vλ, uλ}, respectively (see (11)).

By hypothesis H(f )3 (ii), we find μ ∈ (λ2, θλ) and δ > 0 such that

f (x, s, λ)

|s|p−2s
> μ for a.a. x ∈ ,, all s ∈ [−δ, δ], s �= 0. (36)

For ε > 0 with εû1(x) ≤ min{δ, uλ(x),−vλ(x)} in ,, by (36), we see that

max{ϕ[vλ,0](−εû1), ϕ[0,uλ](εû1)} < ε
p

p

∫

,

(λ1 − μ)û1(x)p dx < 0. (37)

Note that, in case (b) of Theorem 1, the minimality of uλ implies that 0, uλ are
the only critical points of ϕ[0,uλ] (see Proposition 4) and similarly, 0, vλ are the only
critical points of ϕ[vλ,0]. In case (a) of Theorem 1, we may also suppose that 0, uλ are
the only critical points of ϕ[0,uλ] and that 0, vλ are the only critical points of ϕ[vλ,0]

(because otherwise, we deduce that there is a third nontrivial solution of problem (1)
belonging either to [0, uλ] or to [vλ, 0], and we are done). From Proposition 5 and
(37), we derive that

uλ is the unique global minimizer of ϕ[0,uλ] (38)



348 D. Motreanu and V. V. Motreanu

and

vλ is the unique global minimizer of ϕ[vλ,0]. (39)

Since the restrictions of the functionals ϕ[0,uλ] and ϕ[vλ,uλ] to C1
0 (,)+ coincide, from

(38), we infer that uλ is a local minimizer of ϕ[vλ,uλ] with respect to the topology of
C1

0 (,). Then, it turns out that uλ is a local minimizer of ϕ[vλ,uλ] with respect to the
topology ofW 1,p

0 (,) (see [13]). Similarly, we can see that vλ is a local minimizer of
ϕ[vλ,uλ].

Note that we may assume that vλ, uλ are isolated critical points of ϕ[vλ,uλ] (because
otherwise we find a sequence of distinct solutions of (1) belonging to the order interval
[vλ, uλ], so in case (a) of Theorem 1, we infer the existence of a third nontrivial
solution yλ ∈ [vλ, uλ] of (1) whereas in case (b) of Theorem 1 the extremality of vλ
and uλ implies that yλ is sign changing).

From Proposition 5, we know that ϕ[vλ,uλ] has a global minimizer zλ ∈ [vλ, uλ]
and we have ϕ[vλ,uλ](zλ) < 0 (see (37)), hence, zλ �= 0. If zλ �= uλ and zλ �= vλ , then
zλ is the third desired solution of (1) (sign changing in case (b) of Theorem 1).

It remains to study the case where zλ = uλ or zλ = vλ . Say zλ = uλ (the other
case can be analogously treated). Since vλ, uλ are strict local minimizers of ϕ[vλ,uλ]

and ϕ[vλ,uλ] satisfies the Palais–Smale condition (because it is coercive and −-p is
an operator of type (S)+), we can apply the mountain pass theorem (see [1]) which
yields a critical point yλ ∈ W 1,p

0 (,) of ϕ[vλ,uλ] satisfying

ϕ[vλ,uλ](uλ) ≤ ϕ[vλ,uλ](vλ) < ϕ[vλ,uλ](yλ) = inf
γ∈Γ max

t∈[−1,1]
ϕ[vλ,uλ](γ (t)) , (40)

where Γ = {γ ∈ C([−1, 1],W 1,p
0 (,)) : γ (−1) = vλ, γ (1) = uλ}. Since yλ is a

critical point of ϕ[vλ,uλ], we derive from Proposition 4 that yλ is a solution of problem
(1) belonging to C1

0 (,) ∩ [vλ, uλ] (see [18]). Clearly, (40) implies that yλ is distinct
of vλ, uλ. If we know that yλ �= 0, then yλ is the desired third nontrivial solution of
problem (1) (sign changing in case (b) in view of the extremality of vλ, uλ). Hence,
to complete the proof of Theorem 1, it remains to check that yλ �= 0. To do this, we
show that

ϕ[vλ,uλ](yλ) < 0. (41)

Taking (40) into account, to prove (41), it is sufficient to construct a path γ 0 ∈ Γ
such that

ϕ[vλ,uλ](γ 0(t)) < 0 for all t ∈ [−1, 1]. (42)

The rest of the proof is devoted to the construction of a path γ 0 ∈ Γ satisfying
(42).

Denote S = {u ∈ W 1,p
0 (,) : ‖u‖p = 1} endowed with theW 1,p

0 (,)-topology and
SC = S ∩ C1

0 (,) equipped with the C1
0 (,)-topology. Since SC is dense in S in the

W
1,p
0 (,)-topology, setting Γ0 = {γ ∈ C([− 1, 1], S) : γ (− 1) = −û1, γ (1) = û1}
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and Γ0,C = {γ ∈ C([−1, 1], SC) : γ (−1) = −û1, γ (1) = û1}, we have that Γ0,C is
dense in Γ0 . Recall from [11], the following variational characterization of λ2:

λ2 = inf
γ∈Γ0

max
u∈γ ([−1,1])

‖∇u‖pp .

Since μ > λ2 (see (36)), we can find γ̂0 ∈ Γ0,C such that

max{‖∇u‖pp : u ∈ γ̂0([−1, 1])} < μ . (43)

We see that there exists ε > 0 such that

‖εu‖∞ ≤ δ and εu ∈ [vλ, uλ] for all u ∈ γ̂0([−1, 1]). (44)

Indeed, the set γ̂0([−1, 1]) being compact, it is bounded in C1
0 (,), and so in

L∞(,). Thus, we can find ε1 > 0 satisfying the first inequality in (44). To show
the second inequality in (44), note that for each u ∈ γ̂0([−1, 1]), we can find a
constant εu > 0 such that −vλ − εuu ∈ int (C1

0 (,)+) and uλ − εuu ∈ int (C1
0 (,)+)

(because −vλ, uλ ∈ int (C1
0 (,)+)). Then, there exists a neighborhood Vu ⊂ C1

0 (,)
such that−vλ−εuv ∈ int (C1

0(,)+) and uλ−εuv ∈ int (C1
0(,)+) for all v ∈ Vu. Since

γ̂0([−1, 1]) is compact, it is covered by a finite number Vu1 , . . . ,Vu$ of such neigh-
borhoods. It follows that the number ε2 := min{εu1 , . . . , εu$} satisfies the second
inequality in (44). Thus, taking ε := min{ε1, ε2}, we see that (44) holds true.

Fix ε > 0 as in (44). Then, from (36), (43), and since γ̂0([−1, 1]) ⊂ S, we obtain

ϕ[vλ,uλ](εu) ≤ ε
p

p
‖∇u‖pp −

εp

p
μ‖u‖pp < 0 for all u ∈ γ̂0([−1, 1]).

So the path γ0 := εγ̂0 joining −εû1 and εû1 verifies

ϕ[vλ,uλ](u) < 0 for all u ∈ γ0([−1, 1]). (45)

Next we construct a path γ+ joining εû1 with uλ along which ϕ[vλ,uλ] is negative.
To do this, we may assume that uλ �= εû1 (otherwise the path γ+ ≡ uλ satisfies our
requirements). Let a = ϕ[0,uλ](uλ) and b = ϕ[0,uλ](εû1). Note that a < b < 0 (see
(37) and (38)). Moreover, uλ is the only critical point of ϕ[0,uλ] with critical value
a (by (37) and (38)) and (a, b] contains no critical value of ϕ[0,uλ] (since 0, uλ are
the only critical points of ϕ[0,uλ]). These properties together with the fact that ϕ[0,uλ]

satisfies the Palais–Smale condition (because it is coercive) allow us to apply the
second deformation lemma (see [10, p. 23]), which provides a continuous mapping
h : [0, 1] × ϕb[0,uλ] → ϕb[0,uλ] , where ϕb[0,uλ] = {u ∈ W 1,p

0 (,) : ϕ[0,uλ](u) ≤ b}, such
that for all u ∈ ϕb[0,uλ], we have

h(0, u) = u, h(1, u) = uλ, and ϕ[0,uλ](h(t , u)) ≤ ϕ[0,uλ](u) for all t ∈ [0, 1]

(recall that ϕa[0,uλ] = {uλ}, see (38)). Then, we consider the path γ+ : [0, 1] →
W

1,p
0 (,) defined by

γ+(t) = h(t , εû1)+ for all t ∈ [0, 1].

Clearly, γ+ is continuous and we have γ+(0) = εû1 and γ+(1) = uλ. We see that

ϕ[vλ,uλ](u) < 0 for all u ∈ γ+([0, 1]). (46)
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Indeed, let u ∈ γ+([0, 1]), and thus u = h(t , εû1)+, for some t ∈ [0, 1]. Observing
that F[0,uλ](−h(t , εû1)−) = 0, we deduce that ϕ[0,uλ](u) ≤ ϕ[0,uλ](h(t , εû1)), whence

ϕ[vλ,uλ](u) = ϕ[0,uλ](u) ≤ ϕ[0,uλ](h(t , εû1)) ≤ ϕ[0,uλ](εû1) < 0,

where the last inequality follows from (45). Therefore, (46) holds true.
Similarly, applying the second deformation lemma to the functional ϕ[vλ,0] , we

construct a path γ− : [0, 1] → W
1,p
0 (,) such that γ−(0) = −εû1 and γ−(1) = vλ,

and satisfying

ϕ[vλ,uλ](u) < 0 for all u ∈ γ−([0, 1]). (47)

Concatenating the paths γ− , γ0 , γ+ , we obtain a path γ 0 ∈ Γ which fulfills (42)
(see (45)–(47)). This implies (41). The proof of Theorem 1 is complete.

4.4 Proof of Theorem 2

We only prove part (a) of Theorem 2, since the proof of part (b) is similar. Note that,
while dealing with min{b, ρ} instead of b, we may assume that b ≤ ρ where ρ is as
in H(f )+4 (iv).

Applying Proposition 1(a) to b yields λ∗ ∈ 0 such that, for every λ ∈ (0, λ∗),
there exists uλ ∈ int (C1

0(,)+) solution of (1) with ‖uλ‖∞ < b and uλ ∈ [0, uλ],
where uλ is the upper solution of (1) constructed in the proof of Lemma 3.

Fix λ ∈ (0, λ∗). Since uλ ≤ uλ in ,, we can consider the truncation f[uλ,uλ] and
the functional ϕ[uλ,uλ] (see (10) and (11)). Applying Proposition 5, we find ũλ ∈
C1

0 (,) ∩ [uλ, uλ], global minimizer of ϕ[uλ,uλ] and solution of (1).
We may assume that uλ = ũλ (otherwise ũλ is a second positive solution of (1)),

and thus

uλ is a global minimizer of ϕ[uλ,uλ]. (48)

Claim 1 uλ − uλ ∈ int (C1
0 (,)+).

Using H(f )+4 (iv), the facts that ‖uλ‖∞ < b ≤ ρ and uλ is a solution of (1),
H(f )+4 (i), the fact that 0 ≤ uλ ≤ uλ in ,, Lemma 2, and the construction of uλ in
the proof of Lemma 3, we have that

0 ≤ −-puλ = f (x, uλ(x), λ) < tp−1
λ = −-puλ,

for some tλ ∈ (0, b
‖e‖∞ ). Invoking [16, Proposition 2.2], Claim 1 ensues.

Now, we consider the truncation

f̂ (x, s) =
⎧
⎨

⎩

f (x, uλ(x), λ) if s ≤ uλ(x)

f (x, s, λ) if s > uλ(x)
(49)
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for a.a. x ∈ ,, all s ∈ R, the primitive F̂ (x, s) = ∫ s0 f̂ (x, t) dt , and the corresponding

C1-functional ϕ̂ : W 1,p
0 (,) → R given by

ϕ̂(u) = 1

p
‖∇u‖pp −

∫

,

F̂ (x, u(x)) dx for all u ∈ W 1,p
0 (,),

which is well defined due to the growth condition in H(f )+4 (i) (where r ∈ (p,p∗)).
Let us show that the functional ϕ̂ admits a critical point ûλ ∈ W 1,p

0 (,) with
ûλ �= uλ. First, note that the functionals ϕ̂ and ϕ[uλ,uλ] coincide on the set

V := {u ∈ C1
0 (,) : uλ − u ∈ int (C1

0 (,))},
which is an open subset of C1

0 (,). By (48), we have that uλ is a minimizer of ϕ[uλ,uλ]

on V . Thus, uλ is a local minimizer of ϕ̂ with respect to the topology of C1
0 (,).

Therefore uλ is a local minimizer of ϕ̂ with respect to the topology ofW 1,p
0 (,) (see

[13]). In the case where uλ is not a strict local minimizer of ϕ̂, we deduce the existence
of further critical points of ϕ̂ and we are done. Hence, we may assume that

uλ is a strict local minimizer of ϕ̂. (50)

Claim 2 The functional ϕ̂ satisfies the Palais–Smale condition.
Let {wn}n≥1 ⊂ W

1,p
0 (,) be a sequence such that {ϕ̂(wn)}n≥1 is bounded and

ϕ̂′(wn) → 0 inW−1,p′ (,) as n→∞. Then, we have that

1

p
‖∇wn‖pp −

∫

,

F̂ (x, wn) dx ≤ M1 for all n ≥ 1, (51)

for someM1 > 0, and

〈−-pwn, v〉 −
∫

,

f̂ (x, wn)v dx ≤ εn‖∇v‖p for all v ∈ W 1,p
0 (,), all n ≥ 1, (52)

with εn → 0 as n→∞. Acting on (52) with v = −w−
n ∈ W 1,p

0 (,) and using (49),
H(f )+4 (iv), and the fact that ‖uλ‖∞ < b ≤ ρ, we see that

‖∇w−n ‖pp ≤ ‖∇w−n ‖pp +
∫

,

f̂ (x, wn)w
−
n dx ≤ εn‖∇w−

n ‖p for all n ≥ 1.

Sincep > 1, it follows that {w−n }n≥1 is bounded inW 1,p
0 (,). Letμλ > p andMλ > 0

be as in H(f )+4 (iii). Taking v = w+
n in (52), combining with (51), and using (49) and

H(f )+4 (i), we obtain

(
μλ

p
− 1

)

‖∇w+
n ‖pp +

∫

{wn≥M0}
(f (x, wn, λ)wn − μλF (x, wn, λ)) dx

≤ M2(1+ ‖∇w+
n ‖p) for all n ≥ 1,
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with some M2 > 0, where M0 := max{Mλ, ‖uλ‖∞}. From H(f )+4 (iii), we obtain
that {w+

n }n≥1 is bounded inW 1,p
0 (,). Therefore, {wn}n≥1 is bounded inW 1,p

0 (,), so

along a relabeled subsequence we have wn
w→ u in W 1,p

0 (,), wn → u in Lr (,), for
some u ∈ W 1,p

0 (,). Taking v = wn−u in (52), it follows that 〈−-pwn, wn−u〉 → 0
as n → ∞. Then, since −-p is an operator of type (S)+, we infer that wn → u
in W 1,p

0 (,). Therefore, ϕ̂ satisfies the Palais–Smale condition, and thus Claim 2 is
established.

Claim 3 lim
t→+∞ ϕ̂(t û1) = −∞.

Note that hypotheses H(f )+4 (i), (iii) imply that F (x, s, λ) ≥ c1s
μλ − c2 for a.a.

x ∈ , and all s ≥ 0, with c1, c2 > 0. Whence

F̂ (x, s) ≥ c1s
μλ − c̃2 for a.a. x ∈ ,, all s ≥ 0,

for some c̃2 > 0 (see (49)). We infer that

ϕ̂(t û1) ≤ t
p

p
‖∇û1‖pp − c1t

μλ‖û1‖μλμλ + c̃2|,|N →−∞ as t →+∞, (53)

where |,|N denotes the Lebesgue measure of ,. This proves Claim 3.

Combining (50) with Claims 2 and 3, we can apply the mountain pass theorem
(see [1]) which yields a critical point ûλ �= uλ of the functional ϕ̂. As in the proof
of Proposition 4, we can show that ûλ ≥ uλ, and so ûλ is a second positive solution
of (1). The regularity theory (see [18]) implies that ûλ ∈ C1

0(,). Since ûλ ≥ uλ and
uλ ∈ int (C1

0 (,)+), we conclude that ûλ ∈ int (C1
0 (,)+).

4.5 Proof of Theorem 4

Applying Theorem 1(b) with b := min{ρ+, |ρ−|}, we find λ∗ ∈ 0 such that, for
λ ∈ (0, λ∗), problem (1) admits five solutions uλ, ûλ ∈ int (C1

0 (,)+), vλ, v̂λ ∈
−int (C1

0 (,)+), yλ ∈ C1
0 (,) sign-changing, and moreover ‖yλ‖∞ < b. An addi-

tional sign-changing solution wλ ∈ C1
0 (,) such that ‖wλ‖∞ ≥ max{ρ+, |ρ−|} is

obtained from Bartsch–Liu–Weth [3, Theorem 1.1] (since hypotheses H(f )6 are
stronger than the ones in [3, Theorem 1.1]). The fact that ‖yλ‖∞ < b ≤ ‖wλ‖∞
guarantees that yλ �= wλ. The proof of Theorem 4 is complete.

4.6 Proof of Theorem 5

We need the following preliminary result.

Lemma 5 Let ζ ∈ L∞(,)+ be such that ζ (x) ≤ λ1 for a.a. x ∈ ,, with strict
inequality on a set of positive measure. Then, there exists a constant c1 > 0 such
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that

ψζ (u) := ‖∇u‖pp −
∫

,

ζ (x)|u(x)|p dx ≥ c1‖∇u‖pp for all u ∈ W 1,p
0 (,).

Proof From (6), we have that ψζ ≥ 0. Arguing by contradiction, suppose that the
lemma is not true. Then, we can find a sequence {un}n≥1 ⊂ W 1,p

0 (,) such that

‖∇un‖p = 1 for all n ≥ 1 and ψζ (un) → 0 as n→∞.
By passing to a relabeled subsequence if necessary, we may assume that

un
w→ u inW 1,p

0 (,), un → u in Lp(,), un(x) → u(x) a.e. in ,,

and |un(x)| ≤ k(x) a.e. in ,, for all n ≥ 1, with some k ∈ Lp(,)+ . Since

‖∇u‖pp ≤ lim inf
n→∞ ‖∇un‖pp and

∫

,

ζ (x)|un(x)|p dx →
∫

,

ζ (x)|u(x)|p dx,

from the convergence ψζ (un) → 0, we obtain

‖∇u‖pp ≤
∫

,

ζ (x)|u(x)|p dx ≤ λ1‖u‖pp . (54)

From (54) and (6), we infer that

‖∇u‖pp = λ1‖u‖pp , and so u = t û1 with t ∈ R. (55)

If u = 0, from the fact that ψζ (un) → 0 and since
∫
,
ζ (x)|un(x)|p dx → 0, it

follows that ‖∇un‖p → 0, which is a contradiction to the fact that ‖∇un‖p = 1 for
all n ≥ 1. Thus, u = t û1 with t �= 0. Then, from the first inequality in (54) and
since ζ < λ1 on a set of positive measure and û1(x) > 0 for all x ∈ ,, we deduce
‖∇u‖pp < λ1‖u‖pp , which contradicts (55). �

Proof of Theorem 5 Let f (x, s) = β(x)|s|q−2s + g(x, s) for a.a. x ∈ ,, all s ∈ R.
We consider the truncation f̂+(x, s) = β(x)(s+)q−1+g(x, s+) and the corresponding
functional

ϕ̂+(u) = 1

p
‖∇u‖pp −

1

q

∫

,

β(x)(u+)q dx −
∫

,

G(x, u+) dx for all u ∈ W 1,p
0 (,).

Step 1 Every nontrivial critical point of ϕ̂+ is a solution of (5) belonging to
int (C1

0 (,)+).
As in the proof of Proposition 4, we can see that a critical point u ∈ W 1,p

0 (,)\ {0}
of ϕ̂+ is a solution of (5) belonging to C1

0 (,)+. Moreover, by H(g)+1 (i), (ii) and the



354 D. Motreanu and V. V. Motreanu

boundedness of u, we have that−-pu ≥ −c̃up−1 inW−1,p′ (,), for some c̃ > 0. By
the strong maximum principle (see [24]), it follows that u ∈ int (C1

0(,)+).

Step 2 ϕ̂+ satisfies the Cerami condition, that is, every sequence {un}n≥1 ⊂ W 1,p
0 (,)

satisfying

|ϕ̂+(un)| ≤ M1 for all n ≥ 1, (56)

with someM1 > 0, and

(1+ ‖∇un‖p)ϕ̂′+(un) → 0 in W−1,p′ (,) as n→∞ (57)

admits a strongly convergent subsequence.
Consider a sequence {un}n≥1 ⊂ W 1,p

0 (,) such that (56) and (57) hold. From (57),
we have
∣
∣
∣
∣〈−-pun, v〉 −

∫

,

β(x)(u+n )q−1v dx −
∫

,

g(x, u+n )v dx

∣
∣
∣
∣ ≤

εn‖∇v‖p
1+ ‖∇un‖p (58)

for all v ∈ W 1,p
0 (,), all n ≥ 1, with εn → 0. Choosing v = −u−n ∈ W 1,p

0 (,) in (58),
we obtain ‖∇u−n ‖pp ≤ εn for all n ≥ 1, from which we infer that

u−n → 0 inW 1,p
0 (,) as n→∞. (59)

Next, we show that

{u+n }n≥1 is bounded inW 1,p
0 (,). (60)

Choosing v = u+n ∈ W 1,p
0 (,) in (58), we have

−‖∇u+n ‖pp +
∫

,

β(x)(u+n )q dx +
∫

,

g(x, u+n )u+n dx ≤ εn. (61)

On the other hand, from (56), it follows that

‖∇u+n ‖pp −
p

q

∫

,

β(x)(u+n )q dx −
∫

,

pG(x, u+n ) dx ≤ pM1 for all n ≥ 1. (62)

Adding (61) and (62), we obtain

∫

,

(g(x, u+n )u+n − pG(x, u+n )) dx ≤ M2 + ‖β‖∞
(
p

q
− 1

)

‖u+n ‖qq for all n ≥ 1,

(63)

for someM2 > 0. By means of hypotheses H (g)+1 (i), (iii.b), we can find constants
γ1 ∈ (0, γ0) andM3 > 0 such that

γ1s
τ −M3 ≤ g(x, s)s − pG(x, s) for a.a. x ∈ ,, all s ≥ 0. (64)
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Using (63), (64), and the fact that τ > q, we findM4 > 0 such that

γ1‖u+n ‖ττ ≤ M4(1+ ‖u+n ‖qτ ) for all n ≥ 1. (65)

From (65) and since τ > q, it follows that

{u+n }n≥1 is bounded in Lτ (,). (66)

Choosing v = u+n ∈ W 1,p
0 (,) in (58) and using H(g)+1 (i) also show that

‖∇u+n ‖pp ≤ εn +M5(1+ ‖u+n ‖qq + ‖u+n ‖rr ) for all n ≥ 1, (67)

for someM5 > 0. If τ ≥ r , then (60) follows from (66), (67), the continuity of the
inclusion W 1,p

0 (,) ↪→ Lq (,), and the fact that q < p. Thus, we may suppose that
τ < r . The assumption that τ ∈ ((r − p)max{N

p
, 1},p∗) implies that we can always

find $ ∈ (r ,p∗) such that $ > pτ

p+τ−r . Since τ < r < $, we can find t ∈ (0, 1) such
that

1

r
= 1− t

τ
+ t
$
. (68)

By the interpolation inequality (see, e.g., [5, p. 93]), we have‖u+n ‖r ≤ ‖u+n ‖1−t
τ ‖u+n ‖t$

for all n ≥ 1. Due to (66) and the continuity of the inclusion W 1,p
0 (,) ↪→ L$(,),

there isM6 > 0 such that

‖u+n ‖rr ≤ M6‖∇u+n ‖trp for all n ≥ 1. (69)

The fact that $ > pτ

p+τ−r ensures that the number t ∈ (0, 1) from (68) satisfies tr < p.

Taking into account (69), the continuity of the inclusion W 1,p
0 (,) ↪→ Lq (,), and

the fact that q < p, we conclude from (67) that (60) holds true.
From (59) and (60), it follows that {un}n≥1 is bounded inW 1,p

0 (,). Then, along a
relabeled subsequence, we have

un
w→ u inW 1,p

0 (,) and un → u inLp(,) as n→∞. (70)

Choosing v = un − u in (58) and passing to the limit as n → ∞, we obtain that
lim
n→∞〈−-pun, un − u〉 = 0. Since −-p is an operator of type (S)+, we deduce that

un → u inW 1,p
0 (,). This completes Step 2.

Step 3 There exists λ∗ > 0 such that for ‖β‖∞ < λ∗ we find ρ = ρ(‖β‖∞) > 0
with

η̂ρ := inf{ϕ̂+(u) : ‖∇u‖p = ρ} > 0.

By hypotheses H(g)+1 (i), (ii), given ε > 0, we can find cε > 0 such that

G(x, s) ≤ 1

p
(ϑ(x)+ ε)sp + cεsr for a.a. x ∈ ,, all s ≥ 0. (71)
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Then, using (71), Lemma 5, and (6), we have

ϕ̂+(u) ≥ 1

p

(

c1 − ε

λ1

)

‖∇u‖pp−‖β‖∞ c2‖∇u‖qp−cεc3‖∇u‖rp for all u ∈ W 1,p
0 (,),

with c1, c2, c3 > 0. Choosing ε ∈ (0, c1λ1), we obtain

ϕ̂+(u) ≥ (c4 − ‖β‖∞ c2‖∇u‖q−pp − c5‖∇u‖r−pp

)‖∇u‖pp for all u ∈ W 1,p
0 (,), (72)

with constants c4, c5 > 0 (depending on the choice of ε). Consider the function
σ : (0,+∞) → R defined by

σ (t) = ‖β‖∞ c2t
q−p + c5t

r−p for all t > 0. (73)

There is a unique t0 > 0 such that σ (t0) = inf
(0,+∞)

σ , namely

t0 =
(‖β‖∞ c2(p − q)

c5(r − p)

) 1
r−q .

Then, estimating σ (t0) (from (73)), we can findλ∗ > 0 such that σ (t0) < c4 whenever
‖β‖∞ < λ∗. From (72), it follows that inf{ϕ̂+(u) : ‖∇u‖p = ρ} > 0 for ρ =
ρ(‖β‖∞) := t0. This completes the proof of Step 3.

Step 4 For every u ∈ C1
0 (,)+ \ {0}, we have ϕ̂+(tu) →−∞ as t →+∞.

By hypotheses H(g)+1 (i), (iii.a), given M > 0, we find M7 = M7(M) > 0 such
that

G(x, s) ≥ Msp −M7 for a.a. x ∈ ,, all s ≥ 0.

Thus

ϕ̂+(tu) ≤ t
p

p
‖∇u‖pp −Mtp‖u‖pp +M7|,|N for all t ≥ 0,

where |,|N denotes the Lebesgue measure of ,. Since M > 0 is arbitrary, we can
choose it such thatM‖u‖pp > 1

p
‖∇u‖pp . The conclusion of Step 4 follows.

Step 5 ϕ̂+ admits a critical point u0 ∈ W 1,p
0 (,) \ {0} with ϕ̂+(u0) > 0.

Steps 2–4 permit the application of the mountain pass theorem (see [1]), which
yields u0 ∈ W 1,p

0 (,) critical point of ϕ̂+ such that

ϕ̂+(u0) ≥ η̂ρ > 0 = ϕ̂+(0).

This completes Step 5.

Step 6 ϕ̂+ admits a local minimizer û ∈ W 1,p
0 (,) \ {0} with ϕ̂+(û) < 0.

Let ρ, η̂ρ > 0 be as in Step 3. We consider the ball Bρ (0) = {u ∈ W 1,p
0 (,) :

‖∇u‖p < ρ}. In view of H(g)+1 (i), we know that inf
Bρ (0)

ϕ̂+ ∈ (−∞, 0]. Thus, we have

η0 := η̂ρ − inf
Bρ (0)

ϕ̂+ > 0. Let ε ∈ (0, η0). By the Ekeland variational principle (see

[12]), there exists vε ∈ Bρ(0) such that

ϕ̂+(vε) ≤ inf
Bρ (0)

ϕ̂+ + ε (74)
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and

ϕ̂+(vε) ≤ ϕ̂+(y)+ ε‖∇(y − vε)‖p for all y ∈ Bρ (0). (75)

Since ε < η0, from (74), we have ϕ̂+(vε) < η̂ρ , hence, vε ∈ Bρ(0). So, for any
h ∈ W 1,p

0 (,), we have that vε + th ∈ Bρ (0) whenever t > 0 is sufficiently small.
Taking y = vε + th in (75), dividing by t , and then letting t → 0, we obtain
−ε‖∇h‖p ≤ 〈ϕ̂′+(vε),h〉. This establishes that

‖ϕ̂′+(vε)‖ ≤ ε. (76)

Consider a sequence εn ↓ 0 and denote un = vεn . Then, from (76), we have
ϕ̂′+(un) → 0 in W−1,p′ (,) and also (1 + ‖∇un‖p)ϕ̂′+(un) → 0 in W−1,p′ (,) as
n→ ∞ (recall that un ∈ Bρ (0) for all n ≥ 1). Step 2 implies that we may assume
that un → û inW 1,p

0 (,) as n→∞, for some û ∈ Bρ(0). From (74), we have

ϕ̂+(û) = inf
Bρ (0)

ϕ̂+ ≤ 0. (77)

Since inf
∂Bρ (0)

ϕ̂+ = η̂ρ > 0, we have û ∈ Bρ(0), thus û is a local minimizer of ϕ̂+.

We claim that

inf
Bρ (0)

ϕ̂+ < 0. (78)

By virtue of hypothesis H(g)+1 (ii), we can find c6 > 0 and δ̂ > 0 such that

G(x, s) ≥ −c6s
p for a.a. x ∈ ,, all s ∈ [0, δ̂]. (79)

Let v ∈ int (C1
0(,)+) with ‖v‖∞ ≤ δ̂. Due to (79), for t ∈ (0, 1), we have

ϕ̂+(tv) ≤ t
p

p
‖∇v‖pp −

t q

q

∫

,

β(x)vq dx + tpc6‖v‖pp .

Since q < p, choosing t ∈ (0, 1) small, we have ϕ̂+(tv) < 0 and tv ∈ Bρ(0).
This yields (78). Finally, comparing (77) and (78), we obtain that û fulfills the
requirements of Step 6.

Theorem 5 follows by combining Steps 1, 5, and 6. �

4.7 Proof of Proposition 3

Let e ∈ int (C1
0(,)+) be the unique solution of the equation−-pe = 1 inW−1,p′ (,)

(see Lemma 1). We fix ε ∈ (0, 1
‖e‖p−1∞

). By H(g)+2 (ii), we can find δε ∈ (0, δ0) (see

H(g)+2 (iii)) such that

0 ≤ g(x, s) ≤ εsp−1 for a.a. x ∈ ,, all s ∈ [0, δε]. (80)
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Set λ∗ = δp−qε (‖e‖1−p
∞ − ε) > 0 and fix λ ∈ (0, λ∗). It is straightforward to check

that the number ηλ := (λ‖e‖q−1
∞ (1− ε‖e‖p−1

∞ )−1)
1
p−q satisfies

0 < ηλ‖e‖∞ < δε and λ(ηλ‖e‖∞)q−1 + ε(ηλ‖e‖∞)p−1 = ηp−1
λ . (81)

Let uλ = ηλe ∈ int (C1
0 (,)+). Then, by (80) and (81), we see that

−-puλ = ηp−1
λ = λ(ηλ‖e‖∞)q−1 + ε(ηλ‖e‖∞)p−1 ≥ λuq−1

λ + g(x, uλ)

in W−1,p′ (,), hence, uλ is an upper solution of problem (9). Moreover, we have
‖uλ‖∞ < δε < δ0.

Note that the function f (x, s, λ) = λ|s|q−2s + g(x, s) fulfills hypothesis H(f )+1 .
Thus, we can apply Proposition 7(a) which yields uλ ∈ int (C1

0 (,)+) satisfying
uλ ≤ uλ in, and such that ε̃uλ is a lower solution of problem (9) whenever ε̃ ∈ (0, 1].
Then, we fix a sequence {ε̃n}n≥1 ⊂ (0, 1] with ε̃n → 0 as n → ∞ and we let
uλ,n = ε̃nuλ. From Proposition 6(a), we know that problem (9) has a smallest solution
u∗λ,n in the order interval [uλ,n, uλ] and in addition u∗λ,n ∈ int (C1

0 (,)+). Thus

−-pu∗λ,n = λ(u∗λ,n)
q−1 + g(x, u∗λ,n) inW−1,p′ (,), for all n ≥ 1. (82)

From (82), the fact that 0 ≤ u∗λ,n ≤ u < δε in ,, and (80), we see that {u∗λ,n}n≥1 is

bounded inW 1,p
0 (,), thus there is uλ,+ ∈ W 1,p

0 (,) such that

u∗λ,n
w→ uλ,+ inW 1,p

0 (,) and u∗λ,n → uλ,+ in Lp(,) as n→∞ (83)

along a relabeled subsequence. Acting on (82) with u∗λ,n − uλ,+ ∈ W 1,p
0 (,), then

letting n→∞ and using (80) and (83), we obtain lim
n→∞〈−-pu∗λ,n, u∗λ,n − uλ,+〉 = 0.

Since −-p is an operator of type (S)+, it follows that

u∗λ,n → uλ,+ inW 1,p
0 (,) as n→∞. (84)

Passing to the limit in (82) and using (84), we obtain that uλ,+ is a solution of (9).
We show that uλ,+ ∈ int (C1

0 (,)+). To this end, note that there is ũ ∈ int (C1
0 (,)+)

such that
−-pũ(x) = λũ(x)q−1 in W−1,p′ (,)

(see [21]). Since u∗λ,n ∈ int (C1
0 (,)+), we know that there exists t > 0 such that

t ũ ≤ u∗λ,n in ,. Let tn = max{t > 0 : t ũ ≤ u∗λ,n in,} for all n ≥ 1. We claim that
tn ≥ 1 for all n ≥ 1. Suppose that there is n ≥ 1 with tn < 1. Using H(g)+2 (iii) and
the fact that 0 ≤ u∗λ,n ≤ uλ < δ0 in ,, we have that

−-pu∗λ,n=λu∗λ,n(x)q−1+g(x, u∗λ,n(x)) ≥ λ(tnũ(x))q−1 > λtp−1
n ũ(x)q−1 = −-p(tnũ)

a.e. in ,. Invoking [16, Proposition 2.2], we infer that u∗λ,n − tnũ ∈ int (C1
0 (,)+),

which contradicts the maximality of tn. Therefore, we obtain that tn ≥ 1 for all
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n ≥ 1. Hence, we have u∗λ,n ≥ ũ in , for all n ≥ 1. Letting n→∞, we derive that
uλ,+ ≥ ũ in ,. Since ũ ∈ int (C1

0 (,)+), we deduce that uλ,+ ∈ int (C1
0 (,)+).

Finally, we claim that uλ,+ is the smallest positive solution of (9). To justify this, let
u ∈ W 1,p

0 (,) be a nontrivial solution of (9) such that u ≥ 0 a.e. in,. As in Step 1 of
the proof of Theorem 5, we have that u ∈ int (C1

0 (,)+). In view of Lemma 4, we note
that u0 := min{u, uλ} is an upper solution of (9). Using that u, uλ ∈ int (C1

0 (,)+),
for n ≥ 1, large we have uλ,n = ε̃nuλ ≤ u0 in ,. By Proposition 5(a), there exists a
solution ũn of (9) in the ordered interval [uλ,n, u0]. Since u∗λ,n is the smallest solution
of (9) in [uλ,n, uλ], it follows that u∗λ,n ≤ ũn ≤ u0 ≤ u in ,, which yields uλ,+ ≤ u in
,. This proves the minimality of uλ,+.

4.8 Proof of Theorem 6

From Theorem 5 and Proposition 3, we know that there exists λ∗ > 0 such that, given
λ ∈ (0, λ∗), problem (9) admits two distinct positive solutions uλ, ûλ ∈ int (C1

0 (,)+)
as well as a smallest positive solution uλ,+ ∈ int (C1

0 (,)+) with ‖uλ,+‖∞ < δ0

(possibly equal to uλ or ûλ). Since the hypotheses are symmetric with respect to
the origin, the same reasoning as in Theorem 5 and Proposition 3 shows that, up to
choosing λ∗ > 0 smaller, there exist vλ, v̂λ ∈ −int (C1

0 (,)+) distinct solutions of
(9) as well as a biggest negative solution vλ,− ∈ −int (C1

0 (,)+) with ‖vλ,−‖∞ < δ0.
It remains to show that we can find a solution yλ ∈ C1

0 (,) of (9) in the ordered
interval [vλ,−, uλ,+] distinct from 0, vλ,−, uλ,+, because then the extremality property
of vλ,−, uλ,+ will ensure that yλ must be sign changing.

Recall that we denote f (x, s, λ) = λ|s|q−2s + g(x, s). We consider the
Carathéodory function f[vλ,− ,uλ,+] obtained by truncation:

f[vλ,−,uλ,+](x, s) =

⎧
⎪⎪⎨

⎪⎪⎩

λ|vλ,−(x)|q−2vλ,−(x)+ g(x, vλ,−(x)) if s < vλ,−(x)

λ|s|q−2s + g(x, s) if vλ,−(x) ≤ s ≤ uλ,+(x)

λuλ,+(x)q−1 + g(x, uλ,+(x)) if s > uλ,+(x)

and the corresponding C1-functional ϕ[vλ,− ,uλ,+] defined as in (11). According to
Proposition 4, it suffices to show that ϕ[vλ,−,uλ,+] admits a critical point distinct from 0,
vλ,−, uλ,+. We may assume that ϕ[vλ,− ,uλ,+] has only a finite number of critical points
(otherwise we are done).

Claim 1 vλ,− and uλ,+ are strict local minimizers of ϕ[vλ,−,uλ,+].
We only argue for uλ,+ (the proof in the case of vλ,− is similar). Consider the

truncation ϕ[0,uλ,+] (see (11)). From Proposition 5(a), we know that ϕ[0,uλ,+] admits a
global minimizer v ∈ C1

0 (,)∩[0, uλ,+]. Arguing as at the end of Step 6 in the proof of
Theorem 5, we can see that ϕ[0,uλ,+](tuλ,+) < 0 for t ∈ (0, 1) small, which guarantees
that v �= 0. By the minimality of uλ,+ and Proposition 4, we get that uλ,+ = v is
the unique global minimizer of ϕ[0,uλ,+]. Since the functionals ϕ[0,uλ,+] and ϕ[vλ,−,uλ,+]
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coincide on C1
0 (,)+, we have that uλ,+ is a local minimizer of ϕ[vλ,−,uλ,+] with respect

to the topology ofC1
0 (,) and so uλ,+ is a local minimizer of ϕ[vλ,−,uλ,+] with respect to

the topology of W 1,p
0 (,) (see [13]). In fact, uλ,+ is a strict local minimizer because

ϕ[vλ,−,uλ,+] is assumed to have only a finite number of critical points. This proves
Claim 1.

The rest of the proof relies on techniques of Morse theory based on the notion
of critical groups that we recall first. Given two topological spaces A ⊂ Y and
an integer k ≥ 0, we denote by Hk(Y ,A) the kth singular homology group with
integer coefficients (see, e.g., [23] for the definition and the properties of the singular
homology). Given a Banach space X, a functional ϕ ∈ C1(X, R), and an isolated
critical point x ∈ X of ϕ with ϕ(x) = c, the kth critical group of ϕ at x is defined as

Ck(ϕ, x) = Hk(ϕc ∩ U ,ϕc ∩ U \ {x}),
where ϕc = {y ∈ X : ϕ(y) ≤ c}, and U ⊂ X is any neighborhood of x which does
not contain other critical points of ϕ (the excision property of singular homology
guarantees that the definition is independent of the choice of U ).

Claim 2 There is yλ ∈ W 1,p
0 (,) critical point of ϕ[vλ,− ,uλ,+] which is distinct from

vλ,− and uλ,+ such that C1(ϕ[vλ,−,uλ,+], yλ) �= 0.
Say that ϕ[vλ,−,uλ,+](vλ,−) ≤ ϕ[vλ,−,uλ,+](uλ,+) (the analysis is similar in the other

situation). Since uλ,+ is a strict local minimizer of ϕ[vλ,−,uλ,+] (see Claim 1), we can
find ρ0 > 0 such that

ϕ[vλ,− ,uλ,+](u) > ϕ[vλ,−,uλ,+](uλ,+) for all u ∈ Bρ0 (uλ,+) \ {uλ,+}. (85)

Then, there exists ρ > 0 such that for all ρ ∈ (0, ρ0) we have

ηρ := inf{ϕ[vλ,−,uλ,+](u) : ‖∇(u− uλ,+)‖p = ρ} > ϕ[vλ,− ,uλ,+](uλ,+). (86)

To see this, we argue by contradiction. Assume that ηρ = ϕ[vλ,− ,uλ,+](uλ,+) for some

ρ ∈ (0, ρ0). It follows that we can find a sequence {un}n≥1 ⊂ W 1,p
0 (,) such that

‖∇(un − uλ,+)‖p = ρ and ϕ[vλ,− ,uλ,+](un) ≤ ϕ[vλ,−,uλ,+](uλ,+) + 1
n2 for all n ≥ 1. By

the Ekeland variational principle (see [12]), there is a sequence {vn}n≥1 such that

ϕ[vλ,−,uλ,+](vn) ≤ ϕ[vλ,−,uλ,+](un), ‖∇(vn − un)‖p ≤ 1

n
, and ‖ϕ′[vλ,− ,uλ,+](vn)‖ ≤

1

n
(87)

for all n ≥ 1. For n > 1
ρ0−ρ , we have ‖∇(vn−uλ,+)‖p ≤ ‖∇(un−uλ,+)‖p+ 1

n
< ρ0,

and so ϕ[vλ,− ,uλ,+](uλ,+) ≤ ϕ[vλ,−,uλ,+](vn) ≤ ϕ[vλ,− ,uλ,+](un) ≤ ϕ[vλ,−,uλ,+](uλ,+) + 1
n2 .

It follows that ϕ[vλ,−,uλ,+](vn) → ϕ[vλ,−,uλ,+](uλ,+) as n → ∞. From this and the
third relation in (87), since ϕ[vλ,− ,uλ,+] satisfies the Palais–Smale condition (because
it is coercive), we obtain that the sequence {vn}n≥1 admits a strongly conver-
gent subsequence {vnk }k≥1 whose limit, denoted by v0, satisfies ϕ[vλ,−,uλ,+](v0) =
ϕ[vλ,−,uλ,+](uλ,+). Moreover, by the second relation in (87), unk → v0 as k → ∞,
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hence, ‖∇(v0 − uλ,+)‖p = ρ, which contradicts (85). This establishes (86). Now,
Claim 2 follows in view of (86) (see [10, p. 90]).

Claim 3 Ck(ϕ[vλ,−,uλ,+], 0) = 0 for all k ≥ 0.
By H(g)3 (i), (ii) and the boundedness of vλ,− and uλ,+, we have

F[vλ,−,uλ,+](x, s) :=
∫ s

0
f[vλ,− ,uλ,+](x, t) dt = λ

q
|s|q +G(x, s) ≥ λ

q
|s|q − c1|s|p

for a.a. x ∈ , and all s ∈ [vλ,−(x), uλ,+(x)], with a constant c1 > 0. Recalling that
uλ,+,−vλ,− ∈ int (C1

0 (,)+), for each u ∈ W 1,p
0 (,), we can find t∗ = t∗(u) > 0 such

that vλ,−(x) ≤ tu(x) ≤ uλ,+(x) for a.a. x ∈ , and all t ∈ (0, t∗). Since q < p,
corresponding to each u ∈ W 1,p

0 (,), u �= 0, we choose t∗ = t∗(u) > 0 smaller if
necessary such that

ϕ[vλ,−,uλ,+](tu) ≤ 1

p
tp‖∇u‖pp −

λ

q
tq‖u‖qq + c1t

p‖u‖pp < 0 for all t ∈ (0, t∗). (88)

Setting

Tx(s) =

⎧
⎪⎪⎨

⎪⎪⎩

vλ,−(x) if s < vλ,−(x)

s if vλ,−(x) ≤ s ≤ uλ,+(x)

uλ,+(x) if uλ,+(x) < s,

we note that |Tx(s)| ≤ |s| and

f[vλ,− ,uλ,+](x, s) = g(x, Tx(s))+ λ|Tx(s)|q−2Tx(s).

Fix μ ∈ (q,p). Using hypotheses H(g)3 (ii), (iv), there exist constants c2, c3 > 0
and δ ∈ (0, δ0) such that

μF[vλ,−,uλ,+](x, s)− f[vλ,−,uλ,+](x, s)s ≥ λ
(
μ

q
− 1

)

|Tx(s)|q − g(x, Tx(s))Tx(s)

≥ c2|Tx(s)|q − c3|Tx(s)|p ≥ 0

for a.a. x ∈ , and all |s| < δ. Then, taking into account H(g)3 (i), as well as the
boundedness of vλ,− and uλ,+, we obtain

μF[vλ,−,uλ,+](x, s)− f[vλ,− ,uλ,+](x, s)s ≥ −c4|s|r for a.a. x ∈ , and all s ∈ R ,

for a constant c4 > 0. Then, for u ∈ W 1,p
0 (,) with ϕ[vλ,−,uλ,+](u) = 0, we have

d

dt
ϕ[vλ,−,uλ,+](tu)

∣
∣
t=1 = 〈ϕ′[vλ,−,uλ,+](u), u〉 − μϕ[vλ,−,uλ,+](u)

=
(

1− μ
p

)

‖∇u‖pp +
∫

,

(μF[vλ,−,uλ,+](x, u(x))− f[vλ,−,uλ,+](x, u(x))u(x)) dx

≥
(

1− μ
p

)

‖∇u‖pp − c5‖∇u‖rp,
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with c5 > 0. Since r ∈ (p,p∗), we can find ρ > 0 such that

d

dt
ϕ[vλ,−,uλ,+](tu)

∣
∣
t=1 > 0 for all u with 0 < ‖∇u‖p < ρ and ϕ[vλ,− ,uλ,+](u) = 0.

(89)

We claim that

Bρ(0) ∩ (ϕ[vλ,−,uλ,+])
0 is contractible in itself, (90)

where Bρ(0) = {w ∈ W 1,p
0 (,) : ‖∇w‖p < ρ} and (ϕ[vλ,− ,uλ,+])0 = {w ∈ W 1,p

0 (,) :

ϕ[vλ,−,uλ,+](w) ≤ 0}. Let u ∈ W 1,p
0 (,) with 0 < ‖∇u‖p < ρ and ϕ[vλ,−,uλ,+](u) ≤ 0.

We show that

ϕ[vλ,− ,uλ,+](tu) ≤ 0 for all t ∈ [0, 1]. (91)

Arguing indirectly, assume that there exists t0 ∈ (0, 1) such that ϕ[vλ,−,uλ,+](t0u) > 0.
Since ϕ[vλ,−,uλ,+](u) ≤ 0 and ϕ[vλ,−,uλ,+] is continuous, we can define

t1 = min{t ∈ (t0, 1] : ϕ[vλ,− ,uλ,+](tu) = 0} > t0 > 0,

which results in

ϕ[vλ,−,uλ,+](tu) > 0 for all t ∈ [t0, t1). (92)

Let v = t1u. We have 0 < ‖∇v‖p ≤ ‖∇u‖p < ρ and ϕ[vλ,−,uλ,+](v) = 0. Therefore,
by virtue of (89), we have

d

dt
ϕ[vλ,−,uλ,+](tv)

∣
∣
t=1 > 0. (93)

On the other hand, from (92), we have ϕ[vλ,− ,uλ,+](t1u) = 0 < ϕ[vλ,−,uλ,+](tu) for all
t ∈ [t0, t1), and thus

d

dt
ϕ[vλ,−,uλ,+](tv)

∣
∣
t=1 = t1

d

dt
ϕ[vλ,−,uλ,+](tu)

∣
∣
t=t1 = t1 lim

t↑t1
ϕ[vλ,−,uλ,+](tu)

t − t1 ≤ 0. (94)

Comparing (93) and (94), we reach a contradiction. This proves (91).
Let h : [0, 1] × (Bρ(0) ∩ (ϕ[vλ,−,uλ,+])0) → Bρ(0) ∩ (ϕ[vλ,− ,uλ,+])0 be defined by

h(t , u) = (1 − t)u. By (91), we see that h is well defined and continuous, so h is a
homotopy between h0(0, ·) = idBρ (0)∩(ϕ[vλ,− ,uλ,+])0 and h0(1, ·) = 0. This establishes
(90).

Given u ∈ Bρ (0) \ {0} such that ϕ[vλ,−,uλ,+](u) > 0, we claim that there exists
t(u) ∈ (0, 1] (necessarily unique) such that ϕ[vλ,− ,uλ,+](t(u)u) = 0 and

ϕ[vλ,−,uλ,+](tu) < 0 if t ∈ (0, t(u)) and ϕ[vλ,− ,uλ,+](tu) > 0 if t ∈ (t(u), 1]. (95)

Indeed, set t(u) = sup{t ∈ (0, 1] : ϕ[vλ,−,uλ,+](tu) ≤ 0}. By (88), we have that
t(u) ∈ (0, 1]. By construction we have ϕ[vλ,− ,uλ,+](t(u)u) = 0 and ϕ[vλ,−,uλ,+](tu) > 0
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for t ∈ (t(u), 1], whereas (91) implies that ϕ[vλ,−,uλ,+](tu) ≤ 0 for t ∈ (0, t(u)). If
there is t̂ ∈ (0, t(u)) such that ϕ[vλ,−,uλ,+](t̂u) = 0, then, using (91), we see that

d

dt
ϕ[vλ,−,uλ,+](t t̂u)

∣
∣
t=1 = lim

t↓1

ϕ[vλ,−,uλ,+](t t̂u)− ϕ[vλ,−,uλ,+](t̂u)

t − 1
≤ 0,

which contradicts (89). We have shown (95).
We further set t(u) = 1 if u ∈ Bρ(0) \ {0} is such that ϕ[vλ,−,uλ,+](u) ≤ 0. The

so-obtained map t : Bρ(0) \ {0} → (0, 1] is well defined.
We claim that the map u �→ t(u) is continuous on Bρ(0) \ {0}. It is sufficient to

check the continuity of t on the closed subsets {u ∈ Bρ(0) \ {0} : ϕ[vλ,− ,uλ,+](u) ≤ 0}
and {u ∈ Bρ(0) \ {0} : ϕ[vλ,− ,uλ,+](u) ≥ 0} of Bρ (0) \ {0}. The continuity on the first
subset is immediate, so it remains to check the continuity on the second subset. Let
{un}n≥1 ⊂ Bρ(0) \ {0} be such that ϕ[vλ,−,uλ,+](un) ≥ 0 for all n ≥ 1 and lim

n→∞ un =
u ∈ Bρ(0)\{0}. Up to taking a subsequence, we may assume that t(un) → t ∈ [0, 1].
Assume by contradiction that t < t(u), hence fixing t̂ ∈ (t , t(u)), for every n ≥ 1
large enough, we have t(un) < t̂ , and so (95) implies ϕ[vλ,− ,uλ,+](t̂un) > 0. Thereby,
ϕ[vλ,−,uλ,+](t̂u) = lim

n→∞ϕ[vλ,− ,uλ,+](t̂un) ≥ 0, which contradicts (95). This yields t ≥
t(u), and similarly we can prove that t ≤ t(u), so t = t(u). This proves the continuity
of u �→ t(u) on Bρ(0) \ {0}.

By the continuity of u �→ t(u), the map ζ : Bρ(0) \ {0} → Bρ (0)∩ (ϕ[vλ,− ,uλ,+])0 \
{0} defined by ζ (u) = t(u)u is a well-defined retraction. Since W 1,p

0 (,) is infinite
dimensional, Bρ(0)\{0} is contractible (see [4]). From this and (90), for ρ > 0 small
enough, we derive that

Ck(ϕ[vλ,−,uλ,+], 0) = Hk(Bρ(0) ∩ (ϕ[vλ,−,uλ,+])
0,Bρ(0) ∩ (ϕ[vλ,− ,uλ,+])

0 \ {0}) = 0 (96)

for all k ≥ 1 (see e.g., [15, p. 389]). Claim 3 ensues.
Comparing Claims 2 and 3, we obtain that yλ is a critical point ofϕ[vλ,−,uλ,+] distinct

from vλ,−, uλ,+, 0. The proof of Theorem 6 is complete.
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On Strongly Convex Functions and Related
Classes of Functions

Kazimierz Nikodem

Abstract Many results on strongly convex functions and related classes of func-
tions obtained in the last few years are collected in the paper. In particular, Jensen,
Hermite–Hadamard- and Fejér-type inequalities for strongly convex functions are
presented. Counterparts of the classical Bernstain–Doetsch and Sierpiński theorems
for strongly midconvex functions are given. New characterizations of inner prod-
uct spaces involving strong convexity are obtained. A representation of strongly
Wright-convex functions and a characterization of functions generating strongly
Schur-convex sums are presented. Strongly n-convex and Jensen n-convex functions
are investigated. Finally, a relationship between strong convexity and generalized
convexity in the sense of Beckenbach is established.

Keywords Strongly convex (midconvex, Wright-convex, Schur-convex, h-convex,
n-convex) function · Jensen (Hermite–Hadamard, Fejér) inequality · Inner product
space · Generalized convex function

1 Introduction

Convexity is one of the most natural, fundamental, and important notions in math-
ematics. Convex functions were introduced by J. L. W. V. Jensen over 100 years
ago and since then they were a subject of intensive investigations. There are many
papers, books, and monographs devoted to the theory and various applications of
convex functions (cf. e.g., [19, 20, 27, 35, 48] and the references therein).

In this paper we investigate strongly convex functions, that is functions satisfying
the following condition stronger than the usual convexity.

Let (X, ‖ · ‖) be a normed space, D be a convex subset of X, and c be a positive
constant. A function f : D→ R is called:
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• Strongly convex with modulus c if

f (tx + (1− t)y) ≤ tf (x)+ (1− t)f (y)− ct(1− t)‖x − y‖2 (1)

for all x, y ∈ D and t ∈ [0, 1];
• Strongly midconvex (or strongly Jensen convex) with modulus c if (1) is assumed

only for t = 1
2 , that is

f

(
x + y

2

)

≤ f (x)+ f (y)

2
− c

4
‖x − y‖2, x, y ∈ D. (2)

We say that f is strongly convex or strongly midconvex if it satisfies the condition
(1) or (2), respectively, with some c > 0. The usual notions of convex and midconvex
functions correspond to relations (1) and (2) with c = 0, respectively.

Strongly convex functions have been introduced by Polyak [44] and they play an
important role in optimization theory and mathematical economics. Many properties
and applications of them can be found in the literature (see, for instance, [22, 32, 43,
44, 48, 53, 55]).

The aim of this chapter is to collect and bring together many results on strongly
convex functions and other related classes of functions obtained by the author with
coauthors in the last few years in the papers [4–6, 18, 30, 31, 40, 41]. In Sect. 2
we present a support theorem and counterparts of the discrete and integral Jensen
inequalities for strongly convex functions. We give also conditions under which two
functions can be separated by a strongly convex function and, as a consequence, ob-
tain a Hyers–Ulam-type stability result for strongly convex functions. In Sect. 3 we
discuss properties of strongly midconvex functions. We present, in particular, some
versions of the classical theorems of Bernstein–Doetsch, Ostrowski, and Sierpiński.
We give also a counterpart of the theorem of Kuhn, stating that strongly t-convex
functions are strongly midconvex. Section 4 contains new characterizations of inner
product spaces among normed spaces involving the notion of strong convexity. In
particular, it is shown that a normed space (X, ‖ · ‖) is an inner product space if
and only if every function f : X → R strongly convex with modulus c > 0 is of
the form f = g + c‖ · ‖2 with a convex function g. Section 5 is devoted to the
Hermite–Hadamard and Fejér inequalities for strongly convex functions. In Sect. 6
we introduce, motivated by recent results of S. Varos̆anec, the notion of strongly
h-convex functions and present a Hermite–Hadamard-type inequality for them. Sec-
tion 7 is devoted to strongly Wright-convex functions. We present there an Ng-type
representation theorem for such functions. In Sect. 8 we establish a relationship be-
tween strongly Wright-convex functions and the strong Schur-convexity. Referring
to the classical result of Hardy, Littlewood, and Pólya, we show that strongly convex
functions generate strongly Schur-convex sums and prove a counterpart of the Ng
theorem on functions generating strongly Schur-convex sums. In Sect. 9 the notion
of strongly n-convex functions is investigated. Relationships between such functions
and n-convex functions in the sense of Popoviciu and characterizations via deriva-
tives are presented. Some results on strongly Jensen n-convex functions are also
given. Finally, in Sect. 10, a relationship between strong convexity and generalized
convexity in the sense of Beckenbach is shown.



On Strongly Convex Functions and Related Classes of Functions 367

2 Strongly Convex Functions

Strongly convex functions have properties useful in optimization, mathematical
economics and other branches of pure and applied mathematics. For instance, if
f : I → R is strongly convex, then it is bounded from below, its level sets
{x ∈ I : f (x) ≤ λ} are bounded for each λ and f has a unique minimum on
every closed subinterval of I (cf. [48, p. 268]). Since strong convexity is a strength-
ening of the notion of convexity, some properties of strongly convex functions are
just “stronger versions” of known properties of convex functions. For instance, a
function f : I → R is strongly convex with modulus c if and only if for every
x0 ∈ intI there exists a number l ∈ R such that

f (x) ≥ c(x − x0)2 + l(x − x0)+ f (x0), x ∈ I , (3)

i.e., f has a quadratic support at x0. For differentiable f , f is strongly convex with
modulus c if and only if f ′ is strongly increasing, i.e., (f ′(x) − f ′(y))(x − y) ≥
2c(x−y)2, x, y ∈ I . For twice differentiable f , f is strongly convex with modulus
c if and only if f ′′ ≥ 2c (cf. [48, p. 268]; see also [20] for counterparts of these
properties in R

n). In this section we present further properties of strongly convex
functions.

We start with a useful characterization of strongly convex functions defined on
a convex set D ⊂ X in the case where X is a real inner product space (that is, the
norm ‖ · ‖ in X is induced by an inner product: ‖x‖2 = 〈x, x〉). In the case X = R

n

this result can be found in [20, Proposition 1.1.2].

Lemma 1 [40] Let (X, ‖ · ‖) be a real inner product space, D be a convex subset
of X, and c be a positive constant. A function f : D → R is strongly convex with
modulus c if and only if the function g = f − c‖ · ‖2 is convex.

Proof Assume that f is strongly convex with modulus c. Using elementary
properties of the inner product we get

g(tx + (1− t)y) = f (tx + (1− t)y)− c‖tx + (1− t)y‖2

≤ tf (x)+ (1− t)f (y)− ct(1− t)‖x − y‖2 − c‖tx + (1− t)y‖2

≤ tf (x)+ (1− t)f (y)− c(t(1− t)(‖x‖2 − 2〈x|y〉 + ‖y‖2)

+ t2‖x‖2 + 2t(1− t)〈x|y〉 + (1− t)2‖y‖2
)

= tf (x)+ (1− t)f (y)− ct‖x‖2 − c(1− t)‖y‖2

= tg(x)+ (1− t)g(y),

which proves that g is convex. Conversely, if g is convex, then

f (tx + (1− t)y) = g(tx + (1− t)y)+ c‖tx + (1− t)y‖2

≤ tg(x)+ (1− t)g(y)+ c (t2‖x‖2 + 2t(1− t)〈x|y〉 + (1− t)2‖y‖2
)
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= t (g(x)+ c‖x‖2
)+ (1− t) (g(y)+ c‖y‖2

)

− ct(1− t) (‖x‖2 − 2〈x|y〉 + ‖y‖2
)

= f (x)+ (1− t)f (y)− ct(1− t)‖x − y‖2,

which shows that f is strongly convex with modulus c.

Remark 1 It is shown in Sect. 4 that the assumption that (X, ‖·‖) is an inner product
space is not redundant in the above lemma. Moreover, the condition that for every
f : D→ R, f is strongly convex if and only if f −‖ · ‖2 is convex, characterizes
inner product spaces among all normed spaces.

Now, recall that a function h : D → R is said to be a support for the function
f : D→ R at a point x0 ∈ D, if h(x0) = f (x0) and h(x) ≤ f (x) for all x ∈ D.

As a consequence of Lemma 1 we get the following support theorem. In the case
where X = R this result reduces to (3) and can be found in [48, p. 268].

Theorem 1 Let (X, ‖ · ‖) be a real inner product space, let D be an open convex
subset of X , and let c > 0. A function f : D→ R is strongly convex with modulus
c if and only if, at every point x0 ∈ D, f has support of the form

h(x) = c‖x − x0‖2 + L(x − x0)+ f (x0),

where L : X→ R is a linear function (depending on x0).

Proof Suppose that f : D→ R is strongly convex with modulus c and fix x0 ∈ D.
Then, by Lemma 1, there exists a convex function g : D→ R such that

f (x) = g(x)+ c‖x‖2

for all x ∈ D. Being convex g has support at x0 of the form

h1(x) = L1(x − x0)+ g(x0), x ∈ D,

where L1 : X→ R is a linear function. Hence, the function h : D→ R defined by

h(x) := c‖x‖2 + L1(x − x0)+ g(x0)

supports f at x0. Since g(x0) = f (x0)− c‖x0‖2, we can express h in the form

h(x) = c (‖x‖2 − ‖x0‖2
)+ L1(x − x0)+ f (x0)

= c‖x − x0‖2 + 2 c 〈x0, x − x0〉 + L1(x − x0)+ f (x0)

= c‖x − x0‖2 + L(x − x0)+ f (x0),

where L := L1 + 2 c 〈x0, ·〉 is also a linear function.
To prove the converse, fix arbitrary x, y ∈ D and t ∈ (0, 1). Put z0 := tx +

(1− t)y and take a support of f at z0 of the form

h(z) = c‖z − z0‖2 + L(z − z0)+ f (z0), z ∈ D.
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Then

f (x) ≥ c (‖x − z0‖2)+ L(x − z0)+ f (z0)

and

f (y) ≥ c (‖y − z0‖2
)+ L(y − z0)+ f (z0).

Hence

tf (x)+ (1− t)f (y) ≥ c(t‖x − z0‖2 + (1− t)‖y − z0‖2)

+ t(L(x − z0)+ (1− t)L(y − z0))+ f (z0).

Since

t‖x − z0‖2 + (1− t)‖y − z0‖2 = t(1− t)‖x − y‖2,

and the linearity of L implies that

tL(x − z0)+ (1− t)L(y − z0) = 0,

we conclude that

f (tx + (1− t)y) = f (z0) ≤ tf (x)+ (1− t)f (y)− ct(1− t)‖x − y‖2,

which proves that f is strongly convex with modulus c.
Now we will present Jensen-type inequalities for strongly convex functions.

Let x1, x2 ∈ I , t ∈ [0, 1] and x̄ = tx1 + (1− t)x2. Since

t(1− t)‖x1 − x2‖2 = t‖x1 − x̄‖2 + (1− t)‖x2 − x̄‖2

we can rewrite condition (1) in the definition of strongly convex functions in the form

f (tx1 + (1− t)x2) ≤ tf (x1)+ (1− t)f (x2)− c (t‖x1 − x̄‖2 + (1− t)‖x2 − x̄‖2
)
.

Extending this relation to convex combinations ofn points we obtain the following
version of the classical discrete Jensen inequality (for X = R see [30]).

Theorem 2 Let (X, ‖ · ‖) be a real inner product space, let D be an open convex
subset of X , and let c > 0. If f : D→ R is strongly convex with modulus c, then

f

(
n∑

i=1

tixi

)

≤
n∑

i=1

tif (xi)− c
n∑

i=1

ti (xi − x̄)2 ,

for all x1, . . . , xn ∈ D, t1, . . . , tn > 0 with t1+· · ·+tn = 1 and x̄ = t1x1+· · ·+tnxn.
Proof Fix x1, . . . , xn ∈ D and t1, . . . , tn > 0 such that t1 + · · · + tn = 1. Put
x̄ = t1x1 + · · · + tnxn and take a function g : D → R of the form g(x) = c‖x −
x̄‖2 + L(x − x̄)+ f (x̄) supporting f at x̄. Then, for every i = 1, . . . , n, we have

f (xi) ≥ g(xi) = c‖xi − x̄‖2 + a(xi − x̄)+ f (x̄).
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Multiplying both sides by ti and summing up we get

n∑

i=1

tif (xi) ≥ c
n∑

i=1

ti‖xi − x̄‖2 + a
n∑

i=1

ti(xi − x̄)+ f (x̄).

Since
∑n
i=1 ti(xi − x̄) = 0, we obtain

f (x̄) ≤
n∑

i=1

tif (xi)− c
n∑

i=1

ti‖xi − x̄‖2,

which was to be proved.
In a similar way we can prove a counterpart of the integral Jensen inequality for

strongly convex functions defined on I ⊂ R.

Theorem 3 [30] Let (X,Σ ,μ) be a probability measure space, I be an open interval
and ϕ : X→ I be a Lebesgue square-integrable function. If f : I → R is strongly
convex with modulus c, then

f

(∫

X

ϕ(x)dμ

)

≤
∫

X

f (ϕ(x))dμ− c
∫

X

(ϕ(x)−m)2dμ,

where m = ∫
X
ϕ(x)dμ.

Proof Put m = ∫
X
ϕ(x)dμ and take a function g : I → R of the form g(x) =

c(x −m)2 + l(x −m)+ f (m) supporting f at m. Then f (ϕ(x)) ≥ g(ϕ(x)), for all
x ∈ X. Integrating both sides over X, we obtain
∫

X

f (ϕ(x))dμ ≥ c
∫

X

(ϕ(x)−m)2dμ+ l
∫

X

(ϕ(x)−m)dμ+
∫

X

f (m)dμ.

Hence, using the fact that
∫

X

(ϕ(x)−m)dμ = 0 and
∫

X

f (m)dμ = f (m),

we obtain

f (m) ≤
∫

X

f (ϕ(x))dμ− c
∫

X

(ϕ(x)−m)2dμ,

which finishes the proof.
We will present also a probabilistic characterization of strong convexity obtained

recently by Rajba and Wąsowicz [46]. Given a random variable X we denote by
E[X] and D2[X] the expected value and the variance of X, respectively (in what
follows we assume that E[X] and D2[X] do exist). It is known that if a function
f : I → R is convex then for every random variable X taking values in I

f (E[X]) ≤ E[f (X)]. (4)
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Conversely, if (4) holds for every X, then f is convex. For strongly convex
functions we have the following counterpart of this result.

Theorem 4 [46] A function f : I → R is strongly convex with modulus c if and
only if

f (E[X]) ≤ E[f (X)]− cD2[X] (5)

for any random variable X taking values in I .

Proof By Lemma 1 f is strongly convex with modulus c if and only if g(x) =
f (x)− cx2 is convex. By (4) this is equivalent to

f (E[X])− c (E[X])2 ≤ E[f (X)]− cE[X2].

Because E[X2]− (E[X])2 = D2[X], the proof is finished.
Now we will present a sandwich theorem and a Hyers–Ulam stability theorem for

strongly convex functions. It is proved in [7] that two functions f , g : I → R can
be separated by a convex function if and only if

f (tx + (1− t)y) ≤ tg(x)+ (1− t)g(y), x, y ∈ I , t ∈ [0, 1].

The following theorem is a counterpart of that result for strongly convex functions.

Theorem 5 [30] Let f , g : I → R and c > 0. There exists a strongly convex
function h : I → R such that f ≤ h ≤ g on I if and only if

f (tx + (1− t)y) ≤ tg(x)+ (1− t)g(y)− ct(1− t)(x − y)2,

x, y ∈ I , t ∈ [0, 1]. (6)

Proof The “only if ” part is obvious. To prove the “if” part assume that f , g satisfy
(6) and consider the functions f1, g1 : I → R defined by

f1(x) = f (x)− cx2, g1(x) = g(x)− cx2, x ∈ I.
Using (6) we get

f1(tx + (1− t)y) = f (tx + (1− t)y)− c (tx + (1− t)y))2

≤ tg(x)+ (1− t)g(y)− ct(1− t)(x − y)2 − c(tx + (1− t)y))2

= tg(x)+(1− t)g(y)−ctx2−c(1− t)y2= tg1(x)+(1− t)g1(y),

for all x, y ∈ I , t ∈ [0, 1]. Hence, by the Baron–Matkowski–Nikodem theorem [7],
there exists a convex function h1 : I → R such that f1 ≤ h1 ≤ g1 on I . Define
h(x) = h1(x)+ cx2, x ∈ I . Then, by Lemma 1, h is strongly convex with modulus
c and f ≤ h ≤ g on I .

As a consequence of the above sandwich theorem we obtain the following Hyers–
Ulam-type stability result for strongly convex functions (see [21] for the classical
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Hyers–Ulam theorem). Let ε > 0.We say that a function f : I → R is ε-strongly
convex with modulus c if

f (tx + (1− t)y) ≤ tf (x)+ (1− t)f (y)− ct(1− t)(x − y)2 + ε,
for all x, y ∈ I , t ∈ [0, 1].

Corollary 1 [30] If f : I → R is ε-strongly convex with modulus c, then there
exists a function h : I → R strongly convex with modulus c such that

|f (x)− h(x)| ≤ ε
2

, x ∈ I.

Proof Put g = f + ε. By the ε-strong convexity of f it follows that f and g satisfy
(6). Hence, according to Theorem (5), there exists a function h1 : I → R strongly
convex with modulus c and such that f ≤ h1 ≤ g = f +ε on I . Putting h = h1− ε

2 ,
we get

|f (x)− h(x)| ≤ ε
2

, x ∈ I ,

and, clearly, h is also strongly convex with modulus c.

3 Strongly Midconvex and t-Convex Functions

In this section we present some results on strongly midconvex functions. Condition
(2) defining such functions appears in [48] and [54], but no properties are stated.
Obviously, every strongly convex function is strongly midconvex, but not conversely.
For instance, if a : R → R is an additive discontinuous function and f : R → R is
given as f (x) := a(x) + x2, then f is strongly midconvex with modulus 1, but it is
not strongly convex (with any modulus) because it is not continuous. In the class of
continuous functions, strong midconvexity is equivalent to strong convexity because
of the following lemma.

Lemma 2 [6] Let D be a convex subset of a normed space (X, ‖ · ‖) and let c > 0.
If f : D→ R is strongly midconvex with modulus c then

f

(
k

2n
x +

(

1− k

2n

)

y

)

≤ k
2n
f (x)+

(

1− k

2n

)

f (y)− c k
2n

(

1− k

2n

)

‖x − y‖2,

(7)

for all x, y ∈ D and all k, n ∈ N such that k < 2n.

Proof The proof is by induction on n. For n = 1 (7) reduces to (2). Assuming (7)
to hold for some n ∈ N and all k < 2n, we will prove it for n+ 1. Fix x, y ∈ D and
take k < 2n+1. Without loss of generality we may assume that k < 2n. Then, by (2)
and the induction assumption, we get
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f

(
k

2n+1
x +

(

1− k

2n+1

)

y

)

= f
(

1

2

(
k

2n
x +

(

1− k

2n

)

y

)

+ 1

2
y

)

≤ 1

2
f

(
k

2n
x +

(

1− k

2n

)

y

)

+ 1

2
f (y)− c

4
‖ k

2n
x +

(

1− k

2n

)

y − y‖2

≤ 1

2

(
k

2n
f (x)+

(

1− k

2n

)

f (y)− c k
2n

(

1− k

2n

)

‖x − y‖2

)

+ 1

2
f (y)− c

4

k2

22n
‖x − y‖2

≤ k

2n+1
f (x)+

(

1− k

2n+1

)

f (y)− c k

2n+1

(

1− k

2n+1

)

‖x − y‖2,

which finishes the proof.
Since the set of dyadic numbers from [0, 1] is dense in [0, 1], we get the following

result as an immediate consequence of Lemma 2 .

Corollary 2 [6] Let D be a convex subset of a normed space and c > 0. Assume
that f : D → R is continuous. Then f is strongly convex with modulus c if and
only if it is strongly midconvex with modulus c.

In fact, strong convexity can be deduced from strong midconvexity under condi-
tions formally much weaker than continuity. We present a few results of such type.
They are versions of the classical theorems of Bernstein–Doetsch, Ostrowski, and
Sierpiński (see [27, 48]).

Theorem 6 [6] Let D be an open convex subset of a normed space and let c > 0.
If f : D→ R is strongly midconvex with modulus c and bounded from above on a
set with nonempty interior, then it is continuous and strongly convex with modulus c.

Proof Being strongly midconvex, f is also midconvex. Since f is bounded from
above on a set with nonempty interior, it is continuous in view of the Bernstein–
Doetsch theorem. Consequently, by Corollary 2, it is strongly convex with modulus c.

Theorem 7 [6] Let D be an open convex subset of R
n and let c > 0. If f : D→ R

is strongly midconvex with modulus c and bounded from above on a setA ⊂ D with
positive Lebesgue measure, then it is continuous and strongly convex with modulus c.

Proof Suppose that f ≤ M on A. Since f is strongly midconvex

f

(
x + y

2

)

≤ f (x)+ f (y)

2
− c

4
‖x − y‖2 ≤ M

for all x, y ∈ A. This means that f is bounded from above on the set A+A
2 .

Since λ(A) > 0, it follows, by the classical theorem of Steinhaus (cf. [27]), that
int(A+A2 ) �= ∅. This proves the theorem in view of Theorem 6.

Theorem 8 [6] Let D be an open convex subset of R
n and let c > 0. If f : D→ R

is Lebesgue measurable and strongly midconvex with modulus c, then it is continuous
and strongly convex with modulus c.
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Proof For each m ∈ N, define the set Am := {x ∈ D : f (x) ≤ m}. Since
D = ⋃Am, there exists m0 ∈ N such that λ(Am0 ) > 0. Hence, f is bounded
from above on a set of positive Lebesgue measure, which in view of Theorem 7
completes the proof.

Let t be a fixed number in (0, 1) and let c > 0.We say that a function f : D→ R

is strongly t-convex with modulus c if

f (tx + (1− t)y) ≤ tf (x)+ (1− t)f (y)− ct(1− t)‖x − y‖2 (8)

for all x, y ∈ D. It is known by Kuhn’s Theorem [28] that t-convex functions (i.e.,
those that satisfy (8) with c = 0) are midconvex. The following result is a counterpart
of that theorem for strongly t-convex functions. In the proof we apply the idea used
in [12].

Theorem 9 [6] Let D be a convex subset of a normed space X, and let t ∈ (0, 1)
be a fixed number. If f : D→ R is strongly t-coe.g.nvex with modulus c, then it is
strongly midconvex with modulus c.

Proof Fix x, y ∈ D and put z := x+y
2 .

Consider the points u := t x + (1 − t) z and v := t z + (1 − t) y. Then, one can
easily check that

z = (1− t) u+ t v.

Applying condition (8) three times in the definition of strong t-convexity, we
obtain

f (z) = (1− t) f (u)+ t f (v)− c t (1− t) ‖u− v‖2

≤ (1− t) [t f (x)+ (1− t) f (z)− c t (1− t) ‖x − z‖2]

+ t[t f (z)+ (1− t) f (y)− c t (1− t) ‖z − y‖2]

− t(1− t) ‖u− v‖2

= t(1− t) [f (x)+ f (y)] + [
(1− t)2 + t2] f (z)

− c t (1− t) [(1− t) ‖x − z‖2 + t‖z − y‖2 + ‖u− v‖2],

and from this last inequality, after regrouping and simplifying, we get

2 f (z) ≤ f (x)+ f (y) − c [(1− t) ‖x − z‖2 + t‖z − y‖2 + ‖u− v‖2]. (9)

Now, since ‖x − z‖ = ‖z − y‖ = ‖u− v‖ = ‖x−y‖
2 , we have

(1− t) ‖x − z‖2 + t‖z − y‖2 + ‖u− v‖2 = ‖x − y‖2

2
.

Consequently, inequality (9) can be written as

f

(
x + y

2

)

= f (z) ≤ f (x)+ f (y)

2
− c

4
‖x − y‖2,
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which shows that f is strongly midconvex with modulus c. This finishes the proof.
It is well known that convex functions are characterized by having affine support

at every point of their domains (see e.g., [48]). An analogous result for midconvex
functions, stating that they have Jensen support (that is, an additive function plus
a constant), is due to Rodé [49] (cf. also [26, 38] for simpler proofs). We present
a counterpart of that result for strongly midconvex functions. In the proof we will
use the following characterization of strongly midconvex functions in inner product
spaces.

Lemma 3 [39] Let X be an inner product space, let D be a convex subset ofX and
let c > 0. A function f : D→ R is strongly midconvex with modulus c if and only
if the function g = f − c‖ · ‖2 is midconvex.

Proof Assume first that f : D→ R is strongly midconvex with modulus c. Define

g(x) := f (x)− c‖x‖2.

Then, applying the Jordan–von Neumann parallelogram law, we obtain

g

(
x + y

2

)

= f
(
x + y

2

)

− c‖x + y
2

‖2

≤ f (x)+ f (y)

2
− c

4
‖x − y‖2 − c

4
‖x + y‖2

= f (x)+ f (y)

2
− c

4

(
2‖x‖2 + 2‖y‖2

)

= g(x)+ g(y)

2

which proves that g is midconvex.
The converse implication follows analogously.

Remark 2 It is shown in the next section that the assumption that (X, ‖ · ‖) is an
inner product space is essential in Lemma 3. Moreover, the condition that for every
f : D → R, f is strongly midconvex if and only if f − ‖ · ‖2 is midconvex,
characterizes inner product spaces among all normed spaces.

Using the above lemma we obtain the following support theorem.

Theorem 10 [6] Let (X, 〈·, ·〉) be a real inner product space, let D be an open
convex subset ofX and let c > 0. A function f : D→ R is strongly midconvex with
modulus c if and only if, at every point x0 ∈ D, f has support of the form

h(x) = c‖x − x0‖2 + a(x − x0)+ f (x0),

where a : X→ R is an additive function (depending on x0).

Proof Suppose that f : D → R is strongly midconvex with modulus c and fix
x0 ∈ D. Then, by Lemma 3, there exists a midconvex function g : D → R such
that

f (x) = g(x)+ c‖x‖2
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for all x ∈ D. By Rodé’s Theorem, the function g has support at x0 of the form

h1(x) = a1(x − x0)+ g(x0), x ∈ D,

where a1 : X→ R is an additive function. Hence, the function h : D→ R defined
by

h(x) := c‖x‖2 + a1(x − x0)+ g(x0)

supports f at x0. Now, since g(x0) = f (x0)− c‖x0‖2, we can express h as

h(x) = c (‖x‖2 − ‖x0‖2
)+ a1(x − x0)+ f (x0)

= c‖x − x0‖2 + 2 c 〈x0, x − x0〉 + a1(x − x0)+ f (x0)

= c‖x − x0‖2 + a(x − x0)+ f (x0),

where a := a1 + 2 c 〈x0, ·〉 is also an additive function.
To prove the converse, fix arbitrary x, y ∈ D, put z0 := x+y

2 and take a support
of f at z0 of the form

h(z) = c‖z − z0‖2 + a(z − z0)+ f (z0), z ∈ D.
Then

f (x) ≥ c(‖x − z0‖2)+ a(x − z0)+ f (z0)

and

f (y) ≥ c(‖y − z0‖2)+ a(y − z0)+ f (z0).

Hence

f (x)+ f (y)

2
≥ c

2

(‖x − z0‖2 + ‖y − z0‖2
)+ 1

2
(a(x − z0)+ a(y − z0))+ f (z0).

Finally, since

c

2

(‖x − z0‖2 + ‖y − z0‖2
) = c

4
‖x − y‖2,

and the additivity of a implies that

a(x − z0)+ a(y − z0) = 0,

we conclude that

f

(
x + y

2

)

= f (z0) ≤ f (x)+ f (y)

2
− c

4
‖x − y‖2,

which proves that f is strongly midconvex with modulus c.
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As an application of the above support theorem we get the following version of
the Jensen inequality for strongly midconvex functions.

Theorem 11 [6] Let D be an open and convex subset of an inner product space
X. If f : D → R is strongly midconvex with modulus c, then for all n ∈
N and x1, x2, . . . , xn ∈ D :

f

(
n∑

i=1

xi

n

)

≤ 1

n

n∑

i=1

f (xi)− c
n

n∑

i=1

‖xi − s‖2,

where s = 1
n

n∑

i=1
xi.

Proof Fix x1, x2, . . . , xn ∈ D and put s := 1
n

n∑

i=1
xi . By Theorem 3 there exists an

additive function a such that f has at s support of the form

h(x) = c‖x − s‖2 + a(x − s)+ f (s).

Thus, for each i = 1, 2, . . . , n,

f (xi) ≥ h(xi) = c‖xi − s‖2 + a(xi − s)+ f (s).

Summing up these n inequalities, and using the fact that

n∑

i=1

a(xi − s) = a

(
n∑

i=1

xi − ns
)

= 0,

we have

n∑

i=1

f (xi) ≥ c
n∑

i=1

‖xi − s‖2 + nf (s),

or

f

(
n∑

i=1

xi

n

)

= f (s) ≤ 1

n

n∑

i=1

f (xi)− c
n

n∑

i=1

‖xi − s‖2,

which was to be proved.
Now we extend the above result to convex combinations with arbitrary rational

coefficients.

Theorem 12 [6] Let D be an open and convex subset of an inner product spaceX.
If f : D→ R is strongly midconvex with modulus c, then

f

(
n∑

i=1

qixi

)

≤
n∑

i=1

qif (xi)− c
n∑

i=1

qi‖xi − s‖2,
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for all x1, . . . , xn ∈ D, q1, . . . , qn ∈ Q∩(0, 1) with q1+· · ·+qn = 1 and s =
n∑

i=1
qixi .

Proof Fix x1, . . . , xn ∈ D and q1 = k1/l1, . . . , qn = kn/ ln ∈ Q ∩ (0, 1) with
q1+· · ·+qn = 1.Without loss of generality we may assume that l1 = · · · = ln =: l.
Then k1 + · · · + kn = l. Put y11 = · · · = y1k1 =: x1, y21 = · · · = y2k2 =: x2, . . . ,
yn1 = · · · = ynkn =: xn. Then

s =
n∑

i=1

qixi = 1

l

n∑

i=1

ki∑

j=1

yij .

Hence, using Theorem 11, we obtain

f

(
n∑

i=1

qixi

)

= f
⎛

⎝1

l

n∑

i=1

ki∑

j=1

yij

⎞

⎠ ≤ 1

l

n∑

i=1

ki∑

j=1

f
(
yij
)− c

l

n∑

i=1

ki∑

j=1

‖yij − s‖2

=
n∑

i=1

qif (xi)− c
n∑

i=1

qi‖xi − s‖2,

which finishes the proof.

4 Characterizations of Inner Product Spaces Involving
Strong Convexity

It is well known that in a normed space (X, ‖ ·‖) the following Jordan–von Neumann
parallelogram law

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ X,

holds if and only if the norm ‖ · ‖ is derivable from an inner product. In the litera-
ture one can find many other conditions characterizing inner product spaces among
normed spaces. A rich collection of such characterizations is contained in the cel-
ebrated book of D. Amir [3] (cf. also [1, Chap. 11], [2, 47]). In this section we
present a new result of this type involving strongly convex and strongly midconvex
functions.

We already know (see Lemmas 1 and 3) that for functions defined on a convex
subsetD of a real inner product space (X, ‖ · ‖) the following characterization holds:
A function f : D → R is strongly convex (strongly midconvex) with modulus c if
and only if the function g = f − c‖ · ‖2 is convex (midconvex).

The following example shows that the assumption thatX is an inner product space
is essential in that result.

Example 1 Let X = R
2 and ‖x‖ = |x1| + |x2|, for x = (x1, x2). Take f = ‖ · ‖2.

Then g = f −‖·‖2 is convex being the zero function. However, f is neither strongly
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convex nor strongly midconvex with modulus 1. Indeed, for x = (1, 0) and y = (0, 1)
we have

f

(
x + y

2

)

= 1 > 0 = f (x)+ f (y)

2
− 1

4
‖x − y‖2,

which contradicts (2).
It appears that something stronger can be proved: the assumption that X is

an inner product space is necessary in Lemmas 1 and 3. Namely, the following
characterizations of inner product spaces hold.

Theorem 13 [40] Let (X, ‖ · ‖) be a real normed space. The following conditions
are equivalent to each other:

1. For all c > 0 and for all functions f : D→ R, f is strongly convex with modulus
c if and only if g = f − c‖ · ‖2 is convex;

2. For all c > 0 and for all functions f : D → R, f is strongly midconvex with
modulus c if and only if g = f − c‖ · ‖2 is midconvex;

3. There exists c > 0 such that, for all functions g : D→ R, g is convex if and only
if f = g + c‖ · ‖2 is strongly convex with modulus c;

4. There exists c > 0 such that, for all functions g : D→ R, g is midconvex if and
only if f = g + c‖ · ‖2 is strongly midconvex with modulus c;

5. ‖ · ‖2 : X→ R is strongly convex with modulus 1;
6. ‖ · ‖2 : X→ R is strongly midconvex with modulus 1;
7. (X, ‖ · ‖) is an inner product space.

Proof We will show the following chains of implications: 1 ⇒ 3 ⇒ 5 ⇒ 7 ⇒ 1
and 2 ⇒ 4 ⇒ 6 ⇒ 7 ⇒ 2.

Implications 1 ⇒ 3 and 2 ⇒ 4 are obvious. To show 3 ⇒ 5 and 4 ⇒ 6 take
g = 0. Then f = c‖·‖2 is strongly convex (resp. strongly midconvex) with modulus
c. Consequently, 1

c
f = ‖ · ‖2 is strongly convex (resp. strongly midconvex) with

Modulus 1.
To see that 5 ⇒ 7 and 6 ⇒ 7 also hold, observe that, by the strong convexity or

strong midconvexity with modulus 1 of ‖ · ‖2 we have

∥
∥x + y

2

∥
∥2 ≤ ‖x‖2 + ‖y‖2

2
− 1

4
‖x − y‖2

and hence

‖x + y‖2 + ‖x − y‖2 ≤ 2‖x‖2 + 2‖y‖2 (10)

for all x, y ∈ X. Now, putting u = x + y and v = x − y in (10), we get

2‖u‖2 + 2‖v‖2 ≤ ‖u+ v‖2 + ‖u− v‖2, u, v ∈ X. (11)

Conditions (10) and (11) mean that the norm ‖ · ‖ satisfies the parallelogram law,
which implies that (X, ‖ · ‖) is an inner product space.

Implications 7 ⇒ 1 and 7 ⇒ 2 follow by Lemmas 1 and 3.
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5 Hermite–Hadamard and Fejér Inequalities

In this section we present counterparts of the classical Hermite–Hadamard and Féjer
inequalities for strongly convex functions. If a function f : I → R is convex then

f

(
a + b

2

)

≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)

2
(12)

for all a, b ∈ I , a < b. This classical Hermite–Hadamard inequality plays an
important role in convex analysis and in the theory of inequalities, and it has a huge
literature dealing with its applications, various generalizations, and refinements (see
for instance [9, 14, 35], and the references therein). It is also known that if f is
continuous, then each of the two sides of (12) characterizes the convexity of f
(cf. [10, 35]). In this section we present a counterpart of the Hermite–Hadamard
inequality for strongly convex functions.

Theorem 14 [30] If a function f : I → R is strongly convex with modulus c then

f

(
a + b

2

)

+ c

12
(b − a)2 ≤ 1

b − a
∫ b

a

f (x) dx ≤ f (a)+ f (b)

2
− c

6
(b − a)2,

(13)

for all a, b ∈ I , a < b.

Proof The right-hand side of (13) (denoted by (R)) follows by integrating the
inequality (1) over the interval [0, 1].

To prove the left-hand side of (13) (denoted by (L)), fix a, b ∈ I , a < b, and put
s = a+b

2 . Take a function g : I → R of the form g(x) = c(x−s)2+m(x−s)+f (s)
supporting f at s and integrate both sides of the inequality g(x) ≤ f (x) over [a, b].

Remark 3 Similarly as in the case of the classical Hermite–Hadamard inequality,
each of the two sides of (13) characterizes strongly convex functions under the
continuity assumption. Indeed, if f is continuous and satisfies (L) or (R), then
g : I → R given by g(x) = f (x) − cx2, x ∈ I , is also continuous and satisfies
the left- or the right-hand side of the Hermite–Hadamard inequality, respectively. In
both cases this implies that g is convex. Consequently, by Lemma 1, f is strongly
convex with modulus c.

Now we present a refinement of the above Hermite–Hadamard-type inequalities
(13) for strongly convex functions. A similar result for convex functions can be found
in [35, Remark 1.9.3].

Theorem 15 [5] If a function f : [a, b] → R is strongly convex function with
modulus c, then

f

(
a + b

2

)

+ c

12
(b − a)2 ≤ 1

2

[

f

(
3a + b

4

)

+ f
(
a + 3b

4

)]

+ c

48
(b − a)2

≤ 1

b − a
∫ b

a

f (x)dx (14)
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≤ 1

2

[

f

(
a + b

2

)

+ f (a)+ f (b)

2

]

− c

24
(b − a)2 ≤ f (a)+ f (b)

2
− c

6
(b − a)2.

Proof Applying the Hermite–Hadamard-type inequalities (13) on each of the
intervals

[
a, a+b2

]
and

[
a+b

2 , b
]

we obtain

f

(
3a + b

4

)

+ c

48
(b − a)2≤ 2

b − a
∫ a+b

2

a

f (x) dx≤ f (a)+ f ( a+b2

)

2
− c

24
(b − a)2

and

f

(
a + 3b

4

)

+ c

48
(b − a)2≤ 2

b − a
∫ b

a+b
2

f (x) dx≤ f
(
a+b

2

)+ f (b)

2
− c

24
(b − a)2.

Summing up these inequalities we get

f

(
3a + b

4

)

+ f
(
a + 3b

4

)

+ 2c

48
(b − a)2 ≤ 2

b − a
∫ b

a

f (x) dx

≤ f (a)+ f (b)

2
+ f

(
a + b

2

)

− 2c

24
(b − a)2. (15)

Now, using the strong convexity of f and (15), we obtain

f

(
a + b

2

)

+ c

12
(b − a)2 = f

(
3a+b

4 + a+3b
4

2

)

+ c

12
(b − a)2

≤ 1

2

[

f

(
3a + b

4

)

+ f
(
a + 3b

4

)]

− c
4

(
b − a

2

)2

+ c

12
(b − a)2

= 1

2

[

f

(
3a + b

4

)

+f
(
a + 3b

4

)]

+ c

48
(b − a)2 ≤ 1

b − a
∫ b

a

f (x) dx.

Similarly, using once more (15) and the strong convexity of f , we get

1

b − a
∫ b

a

f (x)dx ≤ 1

2

[

f

(
a + b

2

)

+ f (a)+ f (b)

2

]

− c

24
(b − a)2

≤ 1

2

[
f (a)+ f (b)

2
+ f (a)+ f (b)

2
− c

4
(b − a)2

]

− c

24
(b − a)2

= f (a)+ f (b)

2
− c

6
(b − a)2,

which finishes the proof.
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Remark 4 As a consequence of the above theorem we obtain that in the Hermite–
Hadamard-type inequalities (13) the left-hand side inequality is stronger than the
right-hand one, that is

1

b − a
∫ b

a

f (x) dx −
[

f
(a + b

2

)+ c

12
(b − a)2

]

≤
[
f (a)+ f (b)

2
− c

6
(b − a)2

]

− 1

b − a
∫ b

a

f (x) dx.

It follows immediately from the third inequality in (14). For the classical Hermite–
Hadamard inequalities an analogous observation is given in [42, p. 140].

It is known (see [45]; cf. also [42, p. 145]) that if a function f : I → R is convex
and x1 < x2 < . . . < xn are equidistant points in I then the following discrete
analogues of the Hermite–Hadamard inequalities are valid:

f

(
x1 + xn

2

)

≤ 1

n

n∑

i=1

f (xi) ≤ f (x1)+ f (xn)

2
.

The following theorem is a counterpart of that result for strongly convex functions.

Theorem 16 [5] Let f : [a, b] → R be a strongly convex function with modulus c
and a = x1 < x2 < . . . < xn = b be equidistant points. Then

f

(
a + b

2

)

+ c(n+ 1)

12(n− 1)
(b − a)2 ≤ 1

n

n∑

i=1

f (xi)

≤ f (a)+ f (b)

2
− c(n− 2)

6(n− 1)
(b − a)2. (16)

Proof Since the points x1, . . . , xn are equidistant, we have 1
n

n∑

i=1
xi = x1+xn

2 . Hence,

by Theorem 11, we get

f

(
a + b

2

)

= f
(

1

n

n∑

i=1

xi

)

≤ 1

n

n∑

i=1

f (xi)− c
n

n∑

i=1

(xi − s)2, (17)

where s = 1
n

n∑

i=1
xi = a+b

2 . To finish the left-hand side inequality in (16) we will

show that

1

n

n∑

i=1

(xi − s)2 = n+ 1

12(n− 1)
(b − a)2.

Putting h = b−a
n−1 , we have xi = a + (i − 1)h, i = 1, . . . , n. From here

1

n

n∑

i=1

(xi − s)2 = 1

n

n∑

i=1

(xi)
2 − s2 = 1

n

n∑

i=1

(a2 + 2ah(i − 1)+ (i − 1)2 h2)− s2
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= a2 + 2ah

n

n∑

i=1

(i − 1)+ h
2

n

n∑

i=1

(i − 1)2 − s2.

Consequently, using the formulas

n∑

i=1

(i − 1) = n(n− 1)

2
and

n∑

i=1

(i − 1)2 = (n− 1)n(2n− 1)

6
,

we obtain

1

n

n∑

i=1

(xi − s)2 = a2 + a(b − a)+ 2n− 1

6(n− 1)
(b − a)2 −

(
a + b

2

)2

= n+ 1

12(n− 1)
(b − a)2,

which was to be proved.
To show the right-hand inequality in (16) note that

xi = (1− qi)a + qib, where qi = i − 1

n− 1
, i = 1, . . . , n.

Hence, by the strong convexity of f ,

f (xi) = f ((1− qi)a + qib) ≤ (1− qi)f (a)+ qif (b)− cqi(1− qi)(b − a)2.

Summing up the above inequalities and using the fact that the numbers (1 −
qi)f (a)+ qif (b) are terms of an arithmetic sequence, we get

1

n

n∑

i=1

f (xi) ≤ f (a)+ f (b)

2
− c

n(n− 1)2

n∑

i=1

(i − 1)(n− i)(b − a)2.

Now, applying the formula

n∑

i=1

(i − 1)(n− i) = (n− 2)(n− 1)n

6
,

we obtain

1

n

n∑

i=1

f (xi) ≤ f (a)+ f (b)

2
− c(n− 2)

6(n− 1)
(b − a)2,

which finishes the proof.

Remark 5 Note that the sums b−a
n

n∑

i=1
f (xi) are the Riemann approximate sums

of the integral
∫ b
a
f (x) dx. Therefore, letting n→ ∞ in (16), we get the Hermite–

Hadamard-type inequalities (13).
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The Hermite–Hadamard double inequality (14) was generalized by Fejér [16] by
proving that if g : [a, b] → [0,∞) is a symmetric density function on [a, b] (that
is, g(a + b − x) = g(x) for all x ∈ [a, b], and

∫ b
a
g(x) dx = 1), and a function

f : [a, b] → R is convex then

f

(
a + b

2

)

≤
∫ b

a

f (x)g(x)dx ≤ f (a)+ f (b)

2
. (18)

Of course, if g(x) = 1
b−a , then (18) coincides with (14).

However, the example below shows that the Fejér-type generalization of (13) of
the form

f

(
a + b

2

)

+ c

12
(b − a)2 ≤

∫ b

a

f (x)g(x) dx ≤ f (a)+ f (b)

2
− c

6
(b − a)2,

(19)

does not hold, in general, for any symmetric density function g : [a, b] → [0,∞)
and a strongly convex function f : I → R.

Example 2 Let f (x) = x2 and [a, b] = [−1, 1]. Clearly, f is strongly convex
with modulus c = 1. Take the density function g on [−1, 1] given by

g(x) =
{

1, if x∈ [− 1
2 , 1

2

]

0, if x∈ [−1,− 1
2 ) ∪ ( 1

2 , 1
]
.

Then
∫ 1

−1
x2 g(x) dx =

∫ 1
2

− 1
2

x2 dx = 1

12
<

1

3
= f

(−1+ 1

2

)

+ 1

12
(1+ 1)2,

which shows that the left-hand side inequality in (19) does not hold.
Now, take the density function g on [−1, 1] defined by

g(x) =
{

1, ifx ∈ [−1,− 1
2

] ∪ [ 1
2 , 1
]

0, ifx ∈ (− 1
2 , 1

2

)
.

Then
∫ 1

−1
x2 g(x) dx = 2

∫ 1

1
2

x2 dx = 7

12
>

1

3
= f (− 1)+ f (1)

2
− 1

6
(1+ 1)2,

which shows that the right-hand side inequality in (19) does not hold.
The following theorem is a counterpart of the Fejér inequalities for strongly convex

functions.

Theorem 17 [5] Let g : [a, b] → [0,∞) be a symmetric density function on [a, b]
and f : [a, b] → R be a strongly convex function with modulus c > 0. Then

f
(a + b

2

)+ c
[∫ b

a

x2 g(x) dx −
(
a + b

2

)2
]

≤
∫ b

a

f (x)g(x) dx
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≤ f (a)+ f (b)

2
− c
[
a2 + b2

2
−
∫ b

a

x2 g(x) dx

]

. (20)

Remark 6 Using the Fejér inequalities (18) for the function f (x) = x2, we get

(
a + b

2

)2

≤
∫ b

a

x2 g(x) dx ≤ a
2 + b2

2

for every symmetric density function g on [a, b]. Therefore the terms

∫ b

a

x2 g(x) dx −
(
a + b

2

)2

and
a2 + b2

2
−
∫ b

a

x2 g(x) dx

on the left- and the right-hand side of (20) are nonnegative. Consequently, inequalities
(20) are a strengthening of the Fejér inequalities (18). Note also that inequalities (20)
generalize the Hermite–Hadamard-type inequalities (13). Indeed, for g(x) = 1

b−a
we have
∫ b

a

x2 g(x) dx−
(
a + b

2

)2

= (b − a)2

12
and

a2 + b2

2
−
∫ b

a

x2 g(x) dx= (b − a)2

6

and then (20) reduces to (13).

Remark 7 If g is any symmetric density function on [a, b], then

∫ b

a

xg(x) dx = a + b
2
.

Indeed, putting s = a+b
2 and using the fact that g(2s − x) = g(x), we obtain

∫ b

a

xg(x) dx =
∫ s

a

xg(x) dx +
∫ b

s

yg(y) dy

=
∫ s

a

xg(x) dx +
∫ s

a

(2 s − x)g(x) dx = 2 s
∫ s

a

g(x) = s = a + b
2
.

Proof of Theorem 17 To prove the left-hand side of (20) put s = a+b
2 , and take a

function h : [a, b] → R of the form h(x) = c(x− s)2+m(x− s)+f (s) supporting
f at s. Then

∫ b

a

f (x)g(x) dx ≥
∫ b

a

h(x)g(x) dx

= c
∫ b

a

x2 g(x) dx + (−2cs +m)
∫ b

a

xg(x) dx

+ (cs2 −ms + f (s))
∫ b

a

g(x) dx.
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Hence, using the integrals

∫ b

a

g(x) dx = 1 and
∫ b

a

xg(x) dx = a + b
2

= s, (21)

we obtain
∫ b

a

f (x)g(x) dx ≥ c
∫ b

a

x2 g(x) dx − cs2 + f (s)

= f
(
a + b

2

)

+ c
[∫ b

a

x2 g(x) dx −
(
a + b

2

)2
]

.

In the proof of the right-hand side of (20) we use inequality (1).

∫ b

a

f (x)g(x) dx =
∫ b

a

f

(
b − x
b − a a +

x − a
b − a b

)

g(x) dx

≤
∫ b

a

(
b − x
b − a f (a)+ x − a

b − a f (b)− c (b − x)(x − a)

(b − a)2
(b − a)2

)

g(x) dx

=
∫ b

a

(
bf (a)− af (b)

b − a + f (b)− f (a)

b − a x − c((a + b)x − ab − x2)

)

g(x) dx.

Now, using the integrals (21), we get

∫ b

a

f (x)g(x) dx ≤ bf (a)− af (b)

b − a + f (b)− f (a)

b − a
a + b

2

− c
[

(a + b)2

2
− ab −

∫ b

a

x2 g(x) dx

]

= f (a)+ f (b)

2
− c
[
a2 + b2

2
−
∫ b

a

x2 g(x) dx

]

.

This finishes the proof.

Remark 8 Using the probabilistic characterization of strong convexity given in
Theorem 4 we can derive, alternatively, the left-hand side inequality of (20). Indeed,
if X is a random variable with values in [a, b] having a symmetric density function
g : [a, b] → [0,∞), then

E[X] =
∫ b

a

xg(x) dx = a + b
2

,

E[X2] =
∫ b

a

x2 g(x) dx,

D2[X] = E[X2]− (E[X])2 =
∫ b

a

x2 g(x) dx −
(
a + b

2

)2

,
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E[f (X)] =
∫ b

a

f (x)g(x) dx.

Thus, if a function f : [a, b] → R is strongly convex with modulus c then,
substituting the above values to (5), we obtain the left-hand side of (20).

6 Strongly h-Convex Functions

In this section we introduce the notion of strongly h-convex functions and present
a Hermite–Hadamard-type inequality for such functions. Let I be an interval in R

and h : (0, 1) → (0,∞) be a given function. Following S. Varos̆anec [53], a function
f : I → R is said to be h-convex if

f (tx + (1− t)y) ≤ h(t)f (x)+ h(1− t)f (y) (22)

for all x, y ∈ I and t ∈ (0, 1). This notion unifies and generalizes the known classes of
convex functions, s - convex functions, Godunova–Levin functions, andP -functions,
which are obtained by putting in (22) h(t) = t , h(t) = t s , h(t) = 1

t
, and h(t) = 1,

respectively. Many properties of such functions can be found, for instance, in [14].
We say that a function f : I → R is strongly h-convex with modulus c if

f (tx + (1− t)y) ≤ h(t)f (x)+ h(1− t)f (y)− ct(1− t)(x − y)2 (23)

for all x, y ∈ D and t ∈ (0, 1).
The following result is a counterpart of the Hermite–Hadamard inequality for

strongly h-convex functions.

Theorem 18 [4] Let h : (0, 1) → (0,∞) be a given function. If a function f : I →
R is Lebesgue integrable and strongly h-convex with modulus c > 0, then

1

2h( 1
2 )

[

f

(
a + b

2

)

+ c

12
(b − a)2

]

≤ 1

b − a
∫ b

a

f (x) dx

≤ (f (a)+ f (b))
∫ 1

0
h(t) dt − c

6
(b − a)2

for all a, b ∈ I , a < b.

Proof Fix a, b ∈ I , a < b, and take u = ta + (1 − t)b, v = (1 − t)a + tb. Then,
the strong h-convexity of f implies

f
(a + b

2

) = f (u+ v

2

)

≤ h
(

1

2

)

f (u)+ h
(

1

2

)

f (v)− c
4

(u− v)2

= h
(

1

2

)

[f (ta + (1− t)b)+ f ((1− t)a + tb)]− c
4

(
(2t − 1)a + (1− 2t)b

)2
.
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Integrating the above inequality over the interval (0, 1), we obtain

f

(
a + b

2

)

≤h
(

1

2

)[ ∫ 1

0
f (ta + (1− t)b)dt +

∫ 1

0
f ((1− t)a + tb)dt

]

− c
4

∫ 1

0

(
(2t − 1)a + (1− 2t)b

)2
dt

=h
(

1

2

)
2

b − a
∫ b

a

f (x)dx − c

12
(b − a)2,

which gives the left-hand side inequality of (18).
For the proof of the right-hand side inequality of (18) we use inequality (23).

Integrating over the interval (0, 1), we get

1

b − a
∫ b

a

f (x)dx =
∫ 1

0
f ((1− t)a + tb)dt

≤ f (a)
∫ 1

0
h(1− t)dt+f (b)

∫ 1

0
h(t)dt−c(b − a)2

∫ 1

0
t(1− t)dt

= (f (a)+ f (b)
)
∫ 1

0
h(t)dt − c

6
(b − a)2,

which gives the right-hand side inequality of (18).

Remark 9

1. In the case c = 0, the Hermite–Hadamard-type inequalities (18) coincide with
the Hermite–Hadamard-type inequalities for h-convex functions proved by M. Z.
Sarikaya, A. Saglam, and H. Yildirim in [51].

2. If h(t) = t , t ∈ (0, 1), then the inequalities (18) reduce to the Hermite–Hadamard-
type inequalities (13) for strongly convex functions. For c = 0 we get the classical
Hermite–Hadamard inequalities.

3. If h(t) = t s , t ∈ (0, 1), then the inequalities (18) give

2s−1
[
f
(a + b

2

)+ c

12
(b − a)2

]
≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)

s + 1
− c

6
(b − a)2.

For c = 0 it reduces to the Hermite–Hadamard-type inequalities for s-convex
functions proved by S. S. Dragomir and S. Fitzpatrik [13].

4. If h(t) = 1
t
, t ∈ (0, 1), then the inequalities (18) give

1

4
f
(a + b

2

)+ c

48
(b − a)2 ≤ 1

b − a
∫ b

a

f (x)dx ( ≤ +∞).

The case c = 0 corresponds to the Hermite–Hadamard-type inequalities for
Godunova–Levin functions obtained by S. S. Dragomir, J. Pec̆arić, and L. E.
Persson [15].
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5. If h(t) = 1, t ∈ (0, 1), then the inequalities (18) reduce to

1

2
f
(a + b

2

)+ c

24
(b − a)2 ≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)− c
6

(b − a)2.

In the case c = 0 it gives the Hermite–Hadamard-type inequalities for P -convex
functions proved by S. S. Dragomir, J. Pec̆arić, and L. E. Persson in [15].

7 Strongly Wright-Convex Functions

Let (X, ‖ · ‖) be a normed space, D a convex subset of X and let c > 0.A function
f : D→ R is called strongly Wright-convex with modulus c if

f (tx + (1− t)y)+ f ((1− t)x + ty) ≤ f (x)+ f (y)− 2ct(1− t)‖x − y‖2 (24)

for all x, y ∈ D and t ∈ [0, 1].
We say that f is strongly Wright-convex if it satisfies condition (24) with some

c > 0. The usual notion of Wright-convexity correspond to the case c = 0. Note
that every strongly convex function is strongly Wright-convex, and every strongly
Wright-convex function is strongly midconvex (with the same modulus c), but not
the converse.

Example 3 Let a : R → R be an additive discontinuous function and f1(x) =
a(x)+ x2, x ∈ R. By simple calculation one can check that f1 is strongly Wright-
convex with modulus 1. However, f1 is not strongly convex (even it is not convex)
because it is not continuous. Now, take the function f2(x) = |a(x)| + x2, x ∈ R.
Clearly, f2 is strongly midconvex, but it is not strongly Wright-convex (even it is
not Wright-convex) because it is discontinuous and bounded from below (see [37,
Proposition 2]).

In [33] Ng proved that a function f defined on a convex subset of R
n is Wright-

convex if and only if it can be represented in the form f = f1 + a, where f1 is a
convex function and a is an additive function (see also [37]). Kominek [24] extended
that result to functions defined on algebraically open subset of a vector space. In
this section we present a similar representation theorem for strongly Wright-convex
functions. We start with the following useful fact.

Lemma 4 [31] LetD be a convex subset of a normed space and c > 0. If a function
f : D → R is convex and strongly midconvex with modulus c, then it is strongly
convex with modulus c.

Proof Fix arbitrary x, y ∈ D, x �= y, and t ∈ (0, 1). Since f is strongly midconvex
with modulus c, it satisfies the condition

f (qx + (1− q)y) ≤ qf (x)+ (1− q)f (y)− cq(1− q)‖x − y‖2, (25)
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for all dyadic q ∈ (0, 1) (see Lemma 2). Consider the function g : [0, 1] → R

defined by

g(s) = f (sx + (1− s)y), s ∈ [0, 1].

By (25) we have

g(q) ≤ qg(1)+ (1− q)g(0)− cq(1− q)‖x − y‖2, (26)

for all dyadic q ∈ (0, 1). Since f is convex, also g is convex and hence it is continuous
on the open interval (0, 1). Take a sequence (qn) of dyadic numbers in (0, 1) tending
to t . Using (26) for q = qn and the continuity of g at t , we obtain

g(t) ≤ tg(1)+ (1− t)g(0)− ct(1− t)‖x − y‖2.

Now, by the definition of g, we get

f (tx + (1− t)y) ≤ tf (x)+ (1− t)f (y)− ct(1− t)‖x − y‖2,

which finishes the proof.

Theorem 19 [31] LetD be an open convex subset of a normed spaceX and c > 0.
A function f : D→ R is strongly Wright-convex with modulus c if and only if there
exist a function f1 : D→ R strongly convex with modulus c and an additive function
a : X→ R such that

f (x) = f1(x)+ a(x), x ∈ D. (27)

Proof Assume first that f is strongly Wright-convex with modulus c. Then f is also
Wright-convex and hence, by the result of Kominek [24], f can be represented in the
form f = f1 + a, with some convex function f1 and additive function a. Since f is
strongly Wright-convex with modulus c, the function f −a is also strongly Wright-
convex with modulus c and, consequently, it is strongly midconvex with modulus c.
Hence, by Lemma 1, f1 = f − a is strongly convex with modulus c, which proves
that f has the representation (27). The converse implication is obvious.

Using the above theorem and the representation of strongly convex functions in
inner product spaces given in Theorem 13, we obtain the following characterization
of strongly Wright-convex functions in inner product spaces.

Corollary 3 [31] Let (X, ‖ · ‖) be a real inner product space,D be an open convex
subset of X and c > 0. A function f : D → R is strongly Wright-convex with
modulus c if and only if there exist a convex function g : D → R and an additive
function a : X→ R such that

f (x) = g(x)+ a(x)+ c‖x‖2, x ∈ D.
It is known that if a midconvex function f is bounded from above by a midconcave

function g then f is Wright-convex and g is Wright-concave. Moreover, there exist
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a convex function f1, a concave function g1, and an additive function a such that
f = f1+a and g = g1+a (see [25, 34, 36]). In this section we present a counterpart
of that result for strongly midconvex functions. We say that a function f is strongly
concave (strongly midconcave) with modulus c if −f is strongly convex (strongly
midconvex) with modulus c. In the proof of the theorem below we adopt the method
used in [25].

Theorem 20 [31] Let D be an open convex subset of a normed space X and c be a
positive constant. Assume that f : D → R is strongly midconvex with modulus c,
g : D → R is strongly midconcave with modulus c and f ≤ g on D. Then there
exist an additive function a : X → R, a continuous function f1 : D → R strongly
convex with modulus c and a continuous function g1 : D → R strongly concave
with modulus c such that

f (x) = f1(x)+ a(x) and g(x) = g1(x)+ a(x) (28)

for all x ∈ D.

Proof Since f is strongly midconvex, it is also midconvex. Therefore, by the theo-
rem of Rodé [49], there exists a Jensen function a1 : D→ R such that a1(x) ≤ f (x),
x ∈ D. This function is of the form

a1(x) = a(x)+ b, x ∈ D,

where a : X→ R is an additive function and b is a constant (see [27]). The function
g1 = g − a is midconcave and

g1(x) = g(x)− a(x) ≥ f (x)− a(x) ≥ b, x ∈ D.
Therefore by the Bernstein–Doetsch theorem (see [27, 48]), g1 is continuous

and concave. On the other hand, the function f1 = f − a is midconvex and
f1 ≤ g1 on D. Hence, applying the Bernstein–Doetsch theorem once more, we
infer that f1 is continuous and convex. Using Lemma 1 we obtain that f1 is
strongly convex with modulus c and g1 is strongly concave with modulus c. Thus
we get the representations (28), which completes the proof.

8 Strongly Schur-Convex Functions

In this session we present a relationship between strongly Wright-convex functions
and the strong Schur-convexity.

Let I ⊂ R be an interval and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ In, where
n ≥ 2. Following I. Schur (cf. e.g., [29, 50]) we say that x is majorized by y,
and write x , y, if there exists a doubly stochastic n × n matrix P (ie. matrix
containing nonnegative elements with all rows and columns summing up to 1) such
that x = y · P . A function F : I n → R is said to be Schur-convex if F (x) ≤ F (y)
whenever x , y, x, y ∈ I n.
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It is known, by the classical works of Schur [50], Hardy–Littlewood–Pólya [19]
and Karamata [23] that if a function f : I → R is convex then it generates Schur-
convex sums, that is the function F : In → R defined by

F (x) = F (x1, . . . , xn) = f (x1)+ · · · + f (xn)

is Schur-convex. It is also known that the convexity of f is a sufficient but not neces-
sary condition under which F is Schur-convex. C. T. Ng [33] proved that a function
generates Schur-convex sums if and only if it is Wright-convex. In this section we
introduce the notion of strong Schur-convexity and we present a counterpart of the
Ng representation theorem for functions generating strongly Schur-convex sums.

Let (X, ‖·‖) be a (real) inner product space. We consider the space Xn (n ≥ 2)
with the product norm

|‖x|‖ =
√
‖x1‖2 + · · · + ‖xn‖2, x = (x1, . . . , xn) ∈ Xn.

Similarly as in the classical case we define the majorization in Xn. Namely, given
two n–tuples x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Xn we say that x is majorized
by y, written x � y, if

(x1, . . . , xn) = (y1, . . . , yn) · P
for some doubly stochastic n× n matrix P .

Note that if x � y then |‖x|‖2 ≤ |‖y|‖2. It follows, for instance, from the fact that
the function ‖·‖2 : X → R is convex and so it generates Schur-convex sums (the
proof is exactly the same as in the classical case of X = R; cf. also the proof of
Theorem 21 below, where we repeat the argument for the sake of completeness).

Motivated by the definition of strongly convex functions we propose a strengthen-
ing of the notion of Schur-convexity. LetD be a convex subset ofX, c > 0 and n ≥ 2.
We say that a function F : Dn → R is strongly Schur-convex with modulus c if

x � y �⇒ F (x) ≤ F (y)− c (|‖y|‖2 − |‖x|‖2
)

for all x, y ∈ D. Note that the usual Schur-convexity corresponds to the case c = 0.
Now, we will prove that strongly convex functions generate strongly Schur-convex

sums and functions generating strongly Schur-convex sums are strongly Jensen–
convex.

Theorem 21 [41] Let D be a convex subset of an inner product space (X, ‖·‖) and
c > 0. If a function f : D → R is strongly convex with modulus c, then for every
n ≥ 2 the function F : Dn → R given by

F (x1, . . . , xn) = f (x1)+ · · · + f (xn), (x1, . . . , xn) ∈ Dn,
is strongly Schur-convex with modulus c.

Proof Assume that f : D → R is strongly convex with modulus c. Since X is an
inner product space, the function h : D→ R given by h(x) = f (x)−c‖x‖2, x ∈ D,



On Strongly Convex Functions and Related Classes of Functions 393

is convex (cf. Lemma 1). Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Dn and x � y.
There exists a doubly stochastic n× n matrix P = [tij ] such that x = y · P . Then

xj =
n∑

i=1

tij yi , j = 1, . . . , n,

and, by the convexity of h, we obtain

h(x1)+ · · · + h(xn) =
n∑

j=1

h
( n∑

i=1

tij yi
) ≤

n∑

j=1

n∑

i=1

tij h(yi)

=
n∑

i=1

n∑

j=1

tijh(yi) =
n∑

i=1

h(yi)
n∑

j=1

tij = h(y1)+ · · · + h(yn).

Consequently,

F (x) = f (x1)+ · · · + f (xn)

= h(x1)+ · · · + h(xn)+ c
(‖x1‖2 + · · · + ‖xn‖2

)

≤ h(y1)+ · · · + h(yn)+ c
(‖x1‖2 + · · · + ‖xn‖2

)

= f (y1)+ · · · + f (yn)− c
(‖y1‖2 + · · · + ‖yn‖2

)+ c (‖x1‖2 + · · · + ‖xn‖2
)

= F (y)− c (|‖y|‖2 − |‖x|‖2
)
.

This shows that F is strongly Schur-convex with modulus c, which was to be
proved.

Remark 10 The converse theorem is not true. For instance, if a : R → R is an
additive discontinuous function, then f : R → R given by f (x) = a(x) + x2,
x ∈ R, is not strongly convex with any c > 0 (because it is not continuous) but
it generates strongly Schur-convex sums. To see this take x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ R

n (n ≥ 2) such that x � y. Then x = y · P for some doubly
stochastic n× n matrix P = [tij ]. By the additivity of a we have

a(x1)+ · · · + a(xn) = a(x1 + · · · + xn) = a
( n∑

j=1

n∑

i=1

tij yi
)

= a(
n∑

i=1

n∑

j=1

tij yi
) = a(

n∑

i=1

yi

n∑

j=1

tij
) = a(y1)+ · · · + a(yn).

Hence,

f (x1)+ · · · + f (xn) = a(x1)+ · · · + a(xn)+ x2
1 + · · · + x2

n

= a(y1)+ · · · + a(yn)+ y2
1 + · · · + y2

n − (y2
1 + · · · + y2

n − x2
1 − · · · − x2

n)
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= f (y1)+ · · · + f (yn)−
(‖y‖2 − ‖x‖2

)
.

This proves that F : R
n → R defined by F (x1, . . . , xn) = f (x1) + · · · + f (xn) is

strongly Schur-convex with modulus 1.

Theorem 22 [41] Let D be a convex subset of an inner product space (X, ‖·‖),
c > 0 and f : D→ R . If for some n ≥ 2 the function F : Dn → R given by

F (x1, . . . , xn) = f (x1)+ · · · + f (xn), (x1, . . . , xn) ∈ Dn

is strongly Schur-convex with modulus c, then f is strongly Jensen-convex with
modulus c.

Proof Take y1, y2 ∈ D and put x1 = x2 = 1
2 (y1 + y2). Consider the points

y = (y1, y2, y2, . . . , y2), x = (x1, x2, y2, . . . , y2)

(if n = 2, then we take y = (y1, y2), x = (x1, x2)). Now, if

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2 0 · · · 0

1
2

1
2 0 · · · 0

0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

then x = y · P and x � y. Therefore, by the strong Schur-convexity of F ,

F (x) ≤ F (y)− c (|‖y|‖2 − |‖x|‖2
)

,

whence

2 f
(y1 + y2

2

) ≤ f (y1)+ f (y2)− c(‖y1‖2 + ‖y2‖2 − 2
∥
∥y1 + y2

2

∥
∥2)
. (29)

By the parallelogram law we have

‖y1‖2 + ‖y2‖2 = 1

2
‖y1 + y2‖2 + 1

2
‖y1 − y2‖2.

Consequently, by (29),

f

(
y1 + y2

2

)

≤ f (y1)+ f (y2)

2
− c

4
‖y1 − y2‖2,

which means that f is strongly Jensen-convex with modulus c.

Remark 11 The converse theorem is not true. For instance, let a : R → R be an
additive discontinuous function such that a(1) = 0 and let t ∈ (0, 1) with a(t) �= 0.
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Then the function f : R → R given by f (x) = |a(x)| + x2, x ∈ R, is strongly
Jensen-convex with modulus 1 (because x �→ f (x)−x2 = |a(x)| is a Jensen-convex
function, (cf. Lemma 3), but it does not generate strongly Schur-convex sums with
modulus 1. Indeed, if n = 2, x = (t , 1− t) and y = (1, 0), then x � y, but

F (x) = |a(t)| + |a(1− t)| + t2+(1− t)2 > t2 + (1− t)2=F (y)−(‖y‖2 − ‖x‖2
)
.

The following result is a counterpart of the theorem of Ng [33]. It characterizes
the functions generating strongly Schur-convex sums.

Theorem 23 [41] Let D be a convex subset of an inner product space (X, ‖·‖),
f : D→ R and c > 0. The following conditions are equivalent:

(i) For every n ≥ 2 the function F : Dn → R defined by

F (x1, . . . , xn) = f (x1)+ · · · + f (xn), (x1, . . . , xn) ∈ Dn, (30)

is strongly Schur-convex with modulus c.
(ii) For some n ≥ 2 the function F given by (30) is strongly Schur-convex with

modulus c.
(iii) The function f is strongly Wright-convex with modulus c.
(iv) There exist a convex function g : D→ R and an additive function a : X→ R

such that

f (x) = g(x)+ a(x)+ c‖x‖2, x ∈ D. (31)

Proof The implication (i) �⇒ (ii) is obvious.
To prove (ii) �⇒ (iii) fix y1, y2 ∈ D and t ∈ (0, 1). Put

x1 = ty1 + (1− t)y2, x2 = (1− t)y1 + ty2

and, if n > 2, take additionally xi = yi = z ∈ D for i = 3, . . . , n. Then, by the
similar argumentation as in the proof of Theorem 22, we have

x = (x1, . . . , xn) � y = (y1, . . . , yn).

Therefore, using the strong convexity of F , we obtain

F (x) ≤ F (y)− c (|‖y|‖2 − |‖x|‖2
)

,

and hence

f (ty1 + (1− t)y2)+ f ((1− t)y1 + ty2) ≤ f (y1)+ f (y2)

− c (‖y1‖2 + ‖y2‖2 − ‖ty1 + (1− t)y2‖2 − ‖(1− t)y1 + ty2‖2
)
. (32)

Using elementary properties of the inner product we get

‖y1‖2 + ‖y2‖2 − ‖ty1 + (1− t)y2‖2 − ‖(1− t)y1 + ty2‖2
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= ‖y1‖2 + ‖y2‖2

− (t2‖y1‖2 + (1− t)2‖y2‖2 + (1− t)2‖y1‖2 + t2‖y2‖2 + 4t(1− t)〈y1|y2〉
)

= 2t(1− t) (‖y1‖2 − 2〈y1|y2〉 + ‖y2‖2
) = 2t(1− t)‖y1 − y2‖2.

Consequently, from (32) we get

f (ty1 + (1− t)y2)+ f ((1− t)y1 + ty2) ≤ f (y1)+ f (y2)− 2ct(1− t)‖y1 − y2‖2,

which means that f is strongly Wright-convex with modulus c.
The implication (iii) �⇒ (iv) follows from Corollary 3.
To see that (iv) �⇒ (i) assume that f has the representation (31). Then the

function h = g+c‖·‖2 is strongly convex with modulus c and hence, by Theorem 21,
it generates strongly Schur-convex. Therefore, for any x = (x1, . . . , xn) � y =
(y1, . . . , yn) we have

h(x1)+ · · · + h(xn) ≤ h(y1)+ · · · + h(yn)− c
(|‖y|‖2 − |‖x|‖2

)
.

Consequently, using the additivity of a (similarly as in Remark 10), we arrive at

F (x) = f (x1)+ · · · + f (xn) = h(x1)+ · · · + h(xn)+ a(x1)+ · · · + a(xn)

≤ h(y1)+ · · · + h(yn)− c
(|‖y|‖2 − |‖x|‖2

)+ a(y1)+ · · · + a(yn)

= f (y1)+ · · · + f (yn)− c
(|‖y|‖2 − |‖x|‖2

) = F (y)− c (|‖y|‖2 − |‖x|‖2
)

,

which shows thatF is strongly Schur-convex with modulus c. This finishes the proof.

9 Strongly Convex Functions of Higher Order

In the classical theory of convex functions their natural generalization are convex
functions of higher order. Let us recall the definition. Let n ∈ N and x0, . . . , xn
be distinct points in I . Denote by [x0, . . . , xn; f ] the divided difference of f at
x0, . . . , xn defined by the recurrence

[x0; f ] = f (x0),

[x0, . . . , xn; f ] = [x1, . . . , xn; f ]− [x0, . . . , xn−1; f ]

xn − x0
, n ∈ N.

Following Hopf and Popoviciu a function f : I → R is called convex of order n
(or n-convex) if

[x0, . . . , xn+1; f ] ≥ 0

for all x0 < . . . < xn+1 in I . It is well known (and easy to verify) that 1-convex
functions are ordinary convex functions. Many results on n-convex functions one
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can found, among others, in [45, 27, 48]. In this section we introduce the notion of
strongly n-convex functions and investigate properties of this class of functions. Let
c be a positive constant and n ∈ N. We say that a function f : I → R is strongly
convex of order n with modulus c (or strongly n-convex with modulus c) if

[x0, . . . , xn+1; f ] ≥ c, (33)

for all x0 < . . . < xn+1 in I . Note that for n = 1 condition (33) reduces to

f (x0)

(x0 − x1)(x0 − x2)
+ f (x1)

(x1 − x0)(x1 − x2)
+ f (x2)

(x2 − x0)(x2 − x1)
≥ c,

or

f (x1) ≤ x2 − x1

x2 − x0
f (x0)+ x1 − x0

x2 − x0
f (x2)− c(x2 − x1)(x1 − x0), x0 < x1 < x2.

Hence, putting t = x2−x1
x2−x0

and, consequently, 1− t = x1−x0
x2−x0

and x1 = tx0 + (1−
t)x2, we get

f (tx0 + (1− t)x2) ≤ tf (x0)+ (1− t)f (x2)− ct(1− t)(x2 − x0)2

for all x0, x2 ∈ I and t ∈ (0, 1), which means that f is strongly convex with
modulus c.

The following theorem gives a relationship between strongly n-convex and n-
convex functions. It plays a crucial role in proving results of this section. For n = 1
it reduces to Lemma 1.

Theorem 24 [18] Let I ⊂ R be an interval, n ∈ N and c > 0. A function f : I → R

is strongly n-convex with modulus c if and only if the function g(x) = f (x)− cxn+1,
x ∈ I , is n-convex.

The proof of this theorem is based on the following simple facts whose proofs are
straightforward.

Lemma 5 For each distinct x0, . . . , xn ∈ R the operator [x0, . . . , xn; ·] is linear.

Lemma 6 [x0, . . . , xn; xn] = 1 for each n ∈ N and distinct x0, . . . , xn ∈ R .
Proof of Theorem 24 If f is strongly n-convex with modulus c and g(x) =

f (x)− cxn+1, then, by Lemma 5 and Lemma 6, we get

[x0, . . . , xn+1; g] = [x0, . . . , xn+1; f ]− [x0, . . . , xn+1; cxn+1] ≥ c − c = 0,

which means that g is n-convex. Conversely, if g is n-convex then for f (x) =
g(x)+ cxn+1 we have

[x0, . . . , xn+1; f ] = [x0, . . . , xn+1; g]+ [x0, . . . , xn+1; cxn+1] ≥ 0+ c = c,
which proves that f is strongly n-convex with modulus c.
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It is known that a function f : I → R defined on an open interval I is n-convex
with n > 1 if and only if it is of the class Cn−1 in I and its (n−1)th derivative f (n−1)

is convex (see [27, Thm. 15.8.4]). Moreover, if f is of the class Cn in I then it is
n-convex if and only if f (n) is increasing in I , and also if f is of the class Cn+1 in
I then it is n-convex if and only if f (n+1) is nonnegative in I (see [27, Thm 15.8.5,
Thm 15.8.6]). The following theorems are counterparts of these results for strongly
n-convex functions.

Theorem 25 [18] Let I ⊂ R be an open interval, c > 0, and n > 1. A function
f : I → R is strongly n-convex with modulus c if and only if it is of the class Cn−1

in I and its (n− 1)th derivative f (n−1) is strongly convex with modulus c2 (n+ 1)!.
Proof (⇒) Assume that f is strongly n-convex with modulus c. By Theorem 24 f
can be represented in the form f (x) = g(x)+ cxn+1, x ∈ I , where g is an n-convex
function. Hence

f (n−1)(x) = g(n−1)(x)+ c
2

(n+ 1)! x2, x ∈ I.

Since g(n−1) is convex, this representation means that f (n−1) is strongly convex
with modulus c2 (n+ 1)!.
(⇐ ) By the assumption and Theorem 24 f (n−1) is of the form f (n−1)(x) = g(x) +
c
2 (n + 1)! x2, x ∈ I , with a convex function g. Integrating both sides n − 1 times,
we obtain

f (x) = G(x)+ cxn+1, x ∈ I ,

whereG is an n-convex function. Thus, by Theorem 24, f is strongly n-convex with
modules c.

The next theorem shows that f is strongly n-convex if and only if its nth derivative
is strongly increasing in some sense.

Theorem 27 [18] Let I ⊂ R be an open interval and f : I → R be of the class
Cn in I . Then f is strongly n-convex with modulus c if and only if f (n) satisfies the
condition

(f (n)(x)− f (n)(y))(x − y) ≥ c(n+ 1)!(x − y)2, x, y ∈ I. (34)

Proof (⇒ ) By Theorem 24 f is of the form f (x) = g(x)+ cxn+1, x ∈ I , with an
n-convex g. Hence

f (n)(x) = g(n)(x)+ c(n+ 1)!x, x ∈ I.
Since g(n) is increasing, we have

(g(n)(x)− g(n)(y))(x − y) ≥ 0, x, y ∈ I.
Thus, for all x, y ∈ I ,

(f (n)(x)− f (n)(y))(x − y) = (g(n)(x)− g(n)(y))(x − y)+ c(n+ 1)!(x − y)2
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≥ c(n+ 1)!(x − y)2.

(⇐ ) Assume (34) and put g(x) = f (x)− cxn+1, x ∈ I. Then

(g(n)(x)− g(n)(y))(x − y) = (f (n)(x)− f (n)(y))(x − y)− c(n+ 1)!(x − y)2 ≥ 0,

which means that g is n-convex. Thus, by Theorem 24 again, f is strongly n-convex
with modulus c.

Theorem 27 [18] Let I ⊂ R be an open interval and f : I → R be of the class
Cn+1 in I . Then f is strongly n-convex with modulus c if and only if f (n+1) ≥
c(n+ 1)! x ∈ I.
Proof (⇒ ) Since f (x) = g(x)+ cxn+1, x ∈ I , with an n-convex g, we have

f (n+1)(x) = g(n+1)(x)+ c(n+ 1)! ≥ c(n+ 1)! x ∈ I.
(⇐ ) Put g(x) = f (x)− cxn+1, x ∈ I. Then

g(n)(x) = f (n)(x)− c(n+ 1)! ≥ 0, x ∈ I ,

which means that g is n-convex. Hence f is strongly n-convex with modulus c.
Now, we recall the definition of Jensenn-convex functions and extend it to strongly

Jensen n-convex functions.
Let $nh be the difference operator of nth order with increment h > 0 defined by

the recurrence:

$0
hf (x) = f (x), $nhf (x) = $n−1

h f (x + h)−$n−1
h f (x), n ∈ N.

A function f : I → R is said to be n-convex in the sense of Jensen (or Jensen
n-convex) if

$n+1
h f (x) ≥ 0

for all x ∈ I and h > 0 such that x + (n+ 1)h ∈ I (cf. e.g., [27, 48]).
We say that a function f : I → R is strongly n-convex with modulus c > 0 in the

sense of Jensen (or strongly Jensen n-convex with modulus c) if

$n+1
h f (x) ≥ c(n+ 1)! hn+1 (35)

for all x ∈ I and h > 0 such that x + (n + 1)h ∈ I. Note that for n = 1 condition
(35) reduces to

$2
hf (x) ≥ 2ch2

or

f (x + 2h)− 2f (x + h)+ f (x) ≥ 2ch2.
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Putting u = x and v = x + 2h, we obtain

f

(
u+ v

2

)

≤ f (u)+ f (v)

2
− c

4
(u− v)2, u, v ∈ I ,

which means that f is strongly Jensen convex with modulus c.

Remark 12 Every function f : I → R strongly n-convex with modulus c is
strongly Jensen n-convex with modulus c. It follows from the fact that if points
x0 < . . . < xn+1 are equally spaced, that is xi = x0 + ih, i = 1, . . . , n + 1, with
some h > 0, then

[x0, . . . , xn+1; f ] = $n+1
h f (x0)

(n+ 1)! hn+1

(see Kuczma [27, Lem. 15.2.5]). If f is strongly n-convex with modulus c, then
[x0, . . . , xn+1; f ] ≥ c for all x0 < . . . < xn+1 in I . In particular, for equally spaced
points we get

$n+1
h f (x0) = [x0, . . . , xn+1; f ](n+ 1)! hn+1 ≥ c(n+ 1)! hn+1,

which means that f is strongly Jensen n-convex with modulus c.
The next result is analogous to Theorem 24 and gives a relationship between

strongly Jensen n-convex functions and Jensen n-convex functions.

Theorem 28 [18] Let I ⊂ R be an interval, n ∈ N and c > 0. A function f :
I → R is strongly Jensen n-convex with modulus c if and only if the function
g(x) = f (x)− cxn+1, x ∈ I , is Jensen n-convex.

The proof of this theorem is based on the following simple facts.

Lemma 7 [27, Lem. 15.1.1] The operator $nh is linear.

Lemma 8 $nh xn = n!hn, for every n ∈ N, x ∈ R and h > 0 .
Proof of Theorem 28 (⇒) Using the strong Jensen n-convexity of f and Lemmas

7 and 8 we get

$n+1
h g(x) = $n+1

h f (x)−$n+1
h xn+1 ≥ c(n+ 1)! hn+1 − c(n+ 1)! hn+1 = 0,

which shows that g is Jensen n-convex.
(⇐) By the Jensen n-convexity of g we have

$n+1
h f (x) = $n+1

h g(x)+$n+1
h xn+1 ≥ c(n+ 1)! hn+1,

which proves that f is strongly Jensen n-convex with modulus c. �

It is known that Jensen n-convex functions need not be continuous (and hence
they need not be n-convex). However, for continuous functions the concepts of n-
convexity and Jensen n-convexity are equivalent. There are also many theorems
giving relatively weak conditions under which Jensen n-convex functions are con-
tinuous (cf. e.g., [27, Chap. 15], [11, 17, 48] and the references therein). Similar
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results hold for strongly Jensen n-convex functions. We present here, as an example,
a counterpart of the classical theorem of Ciesielski [11] (cf. also Ger [17]).

Theorem 29 [18] Let I be an open interval and n ∈ N. If a function f : I → R is
strongly Jensen n-convex with modulus c > 0 and bounded on a set A ⊂ I having
positive Lebesgue measure (or of the second category and with the Baire property),
then f is continuous on I and strongly n-convex with modulus c.

Proof By Theorem 28, f is of the form f (x) = g(x) + cxn+1, x ∈ I , where g is
Jensen n-convex. If f is bounded onA, then g is also bounded onA (without loss of
generality we may assume that A is bounded). Hence, by the theorem of Ciesielski,
g is continuous and n-convex. Consequently, f is continuous and strongly n-convex
with modulus c.

10 Connections with Beckenbach Generalized Convexity

The fact that a function f : I → R is convex means, geometrically, that for any
two distinct points on the graph of f the segment joining these points lies above the
corresponding part of the graph. Beckenbach [8] generalized this idea by replacing
the segments by graphs of continuous functions belonging to a two-parameter family
F of functions. The generalized convex functions obtained in such a way have many
properties known for the classical convex functions (cf. e.g., [8, 39, 48]). In this
section we will show that strong convexity is equivalent to generalized convexity
with respect to a certain two-parameter family.

Let F be a family of continuous real functions defined on an interval I ⊂ R.
Following Beckenbach [8] we say that F is a two-parameter family if for any two
points (x1, y1), (x2, y2) ∈ I × R with x1 �= x2 there exists exactly one ϕ ∈ F such
that

ϕ(xi) = yi for i = 1, 2.

The unique function ϕ ∈ F determined by the points (x1, y1), (x2, y2) will be
denoted by ϕ(x1,y1), (x2,y2). A function f : I → R is said to be convex with respect to
F (briefly, F–convex) if for any x1, x2 ∈ I , x1 < x2

f (x) ≤ ϕ(x1,f (x1)),(x2,f (x2))(x) for all x ∈ [x1, x2].

The definition above is motivated by consideration of the class

F = {ax + b : a, b ∈ R}.
It is clear that F is a two-parameter family and F–convexity coincides with the

classical convexity. In a similar way we can characterize the strong convexity.Given
a fixed number c > 0 define

Fc = {cx2 + ax + b : a, b ∈ R}.
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Clearly, Fc is also a two-parameter family and the following theorem holds.

Theorem 30 [30] A function f : I → R is strongly convex with modulus c if and
only if f is Fc–convex.

Proof Fix x1, x2 ∈ I and take ϕ = ϕ(x1,f (x1)),(x2,f (x2)) ∈ Fc. Then ϕ(x) =
cx2+ ax+ b, where the coefficients a, b are uniquely determined by the conditions
ϕ(xi) = f (xi), i = 1, 2. Hence, for every t ∈ [0, 1], we have

ϕ(tx1 + (1− t)x2) = c (tx1 + (1− t)x2)
2 + a(tx1 + (1− t)x2)+ b

= c (t2x2
1 + 2t(1− t)x1x2 + (1− t)2x2

2

)+ a(tx1 + (1− t)x2)+ b
= t(cx2

1 + ax1 + b)+ (1− t)(cx2
2 + ax2 + b)− ct(1− t) (x2

1 − 2x1x2 + x2
2

)

= tf (x1)+ (1− t)f (x2)− ct(1− t)(x1 − x2)2.

From here, if f is Fc-convex, then

f (tx1 + (1− t)x2) ≤ ϕ(x1,f (x1)),(x2,f (x2))(tx1 + (1− t)x2)

= tf (x1)+ (1− t)f (x2)− ct(1− t)(x1 − x2)2,

which means that f is strongly convex with modulus c.
Conversely, if f is strongly convex with modulus c, then

f (tx1 + (1− t)x2) ≤ tf (x1)+ (1− t)f (x2)− ct(1− t)(x1 − x2)2

= ϕ(x1,f (x1)),(x2,f (x2))(tx1 + (1− t)x2),

which shows that f is Fc-convex.
Due to Tornheim [52], the idea of Beckenbach has been extended by taking

n-parameter families. The so obtained generalized convex functions have many prop-
erties known for n-convex functions (see e.g., [8, 9, 39, 48, 52]). We will show that
strong n-convexity is equivalent to generalized convexity with respect to a certain
n-parameter family.

Let n ≥ 2. A family F of continuous real functions defined on an interval I ⊂ R

is called an n-parameter family if for any n points (x1, y1), . . . , (xn, yn) ∈ I×R with
x1 < . . . < xn there exists exactly one ϕ ∈ F such that

ϕ(xi) = yi for i = 1, . . . , n.

The unique function ϕ ∈ F determined by the points (x1, y1), . . . , (xn, yn) will be
denoted by ϕ(x1,y1),... ,(xn,yn) . A function f : I → R is said to be convex with respect
to the n-parameter family F (briefly, F-convex) if for any x1 < . . . < xn in I

f (x) ≤ ϕ(x1,f (x1)),... ,(xn,f (xn))(x), x ∈ [xn−1, xn].

It is well known that if

Fn = {anxn + · · · + a1x + a0 : a0, . . . an ∈ R},
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i.e., Fn is the set of all polynomials of degree at mostn, then Fn is an (n+1)-parameter
family and the generalized convexity with respect to Fn coincides with n-convexity
(cf. [48, 52]). In a similar way we can characterize the strong n-convexity. Let c > 0
be a fixed number and

Fn,c = {cxn+1 + anxn + · · · + a1x + a0 : a0, . . . an ∈ R}.
Clearly, Fn,c is also an (n+1)-parameter family and the following theorem holds.

Theorem 31 [18] A function f : I → R is strongly n-convex with modulus c if and
only if f is Fn,c-convex.

Proof Fix arbitrarily points x1, . . . , xn+1 in I . Let ϕ be the unique polynomial in
Fn,c determined by ϕ(xi) = f (xi), i = 1, . . . , n+ 1. Then ψ defined by

ψ(x) = ϕ(x)− cxn+1, x ∈ I ,

belongs to Fn and is uniquely determined by ψ(xi) = f (xi) − cxn+1
i , i =

1, . . . , n + 1. Clearly,

f (x) ≥ ϕ(x), x ∈ [xn, xn+1]

if and only if

f (x)− cxn+1 ≥ ψ(x), x ∈ [xn, xn+1
]
.

This means that f is Fn,c-convex if and only if f (x)−cxn+1 is Fn-convex. Since
the Fn-convexity is equivalent to the n-convexity, we obtain, by Theorem 24, that
Fn,c-convexity is equivalent to the strong n-convexity with modulus c.
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15. Dragomir, S.S., Pec̆arić, J., Persson, L.E.: Some inequalities of Hadamard type. Soochow J.
Math. 21, 335–341 (1995)

16. Fejér, L.: Über die Fourierreihen, II. Math. Naturwiss, Anz. Ungar. Wiss. 24, 369–390 (1906).
(In Hungarian)

17. Ger, R.: Convex functions of higher order in Euclidean spaces. Ann. Polon. Math. 25, 293–302
(1972)

18. Ger, R., Nikodem, K.: Strongly convex functions of higher order. Nonlinear Anal. 74, 661–665
(2011)

19. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press (1952)
20. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin

(2001)
21. Hyers, D.H., Ulam, S.M.: Approximately convex functions. Proc. Am. Math. Soc. 3, 821–828

(1952)
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46. Rajba, T., Wąsowicz, S.: Probabilistic characterization of strong convexity. Opusc. Math. 31,

97–103 (2011)
47. Rassias, Th.M.: New characterizations of inner product spaces. Bull. Sci. Math. 108, 95–99

(1984)
48. Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York (1973)
49. Rodé, G.: Eine abstrakte Version des Satzes von Hahn–Banach. Arch. Math. 31, 474–481

(1978)
50. Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantenthe-

orie. Sitzungsber. Berl. Math. Ges. 22, 9–20 (1923)
51. Sarikaya, M.Z., Saglam, A., Yildirim, H.: On some Hadamard-type inequalities for h-convex

functions. J. Math. Inequal. 2, 335–341 (2008)
52. Tornheim, L.: On n-parameter families of functions and associated convex functions. Trans.

Am. Math. Soc. 69, 457–467 (1950)
53. Varos̆anec, S.: On h-convexity. J. Math. Anal. Appl. 326, 303–311 (2007)
54. Vial, J.P.: Strong convexity of sets and functions. J. Math. Econ. 9, 187–205 (1982)
55. Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8, 231–259 (1983)



Some New Algorithms for Solving General
Equilibrium Problems

Muhammad A. Noor and Themistocles M. Rassias

Abstract In this chapter, we investigate some unified iterative methods for solv-
ing the general equilibrium problems using the auxiliary principle technique. The
convergence of the proposed methods is analyzed under some suitable conditions.
As special cases, we obtain a number of known and new classes of equilibrium and
variational inequality problems. Results obtained in this chapter continue to hold for
these new and previously known problems. The ideas and techniques of this chapter
may inspire the interested readers to explore applications of the general equilibrium
problems in pure and applied sciences.

Keywords Variational inequalities ·Algorithms ·Auxiliary principle · Convergence
analysis · Fixed point problems

1 Introduction

Equilibrium problems theory provides us a natural, novel, and unified framework
to study a wide class of problems arising in economics, finance, transportation,
network, and structural analysis, elasticity and optimization. Equilibrium problems
were introduced by Blum and Oettli [1] and Noor and Oettli [20] in 1994. Since then,
the ideas and techniques of this theory are being used in a variety of diverse areas
and proved to be productive and innovative; see [1, 2, 3–22]. Equilibrium problems
also include variational inequalities and related optimization problems as special
cases. Inspired and motivated by the recent research work going in this field, Noor
and Rassias [19] considered and investigated a new class of equilibrium problems,
which is called mixed quasi general equilibrium problems. There are several meth-
ods including projection and its variant forms, Wiener–Hopf equations, and auxiliary
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principle for solving variational inequalities. It is known that projection methods and
variant forms including Wiener–Hopf equations can not be extended for equilibrium.
This fact has motivated to use the auxiliary principle technique. Glowinski, Lions,
and Tremolieres [5] used this technique to study the existence of a solution of the
mixed variational inequalities, whereas Noor–Noor–Rassias [11] used this technique
to suggest and analyze an iterative method for solving mixed quasi variational in-
equalities. It is well known that a substantial number of numerical methods can be
obtained as special cases from this technique; see [5, 13–15, 17–19]. We again use
the auxiliary principle technique to suggest a class of new iterative methods for solv-
ing mixed quasi general equilibrium problems. The convergence of these methods
requires only the jointly monotonicity of the trifunction in conjunction with skew
symmetry of the bifunction. Since mixed quasi general equilibrium problems include
equilibrium, general variational inequalities, and complementarity problems as spe-
cial cases, results obtained in this chapter continue to hold for these problems. Our
results can be considered an important and significant extension of the known results
for solving equilibrium, variational inequalities, and complementarity problems.

2 Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and
‖.‖ respectively. Let K be a nonempty and closed set in H. We recall the following
concepts and notations, which are needed.

Definition 1 ([3, 21]). Let K be any set in H. The set K is said to be g-convex
(relative convex), if there exists a function g : K −→ K such that

g(u)+ t(g(v)− g(u)) ∈ K , ∀u, v ∈ H : g(u), g(v) ∈ K , t ∈ [0,1].

Note that every convex set is a relative convex, but the converse is not true, see
[3, 21]. In passing, we remark that the notion of the relative convex set was introduced
by Noor [10] implicitly in 1988.

Definition 2 The function f : K −→ H is said to be g-convex (relative convex),
if there exists a function g such that

f (g(u)+ t(g(v)− g(u))) ≤ (1− t)f (g(u))+ tf (g(v)),

∀u, v ∈ H : g(u), g(v) ∈ K , t ∈ [0,1].

Clearly every convex function is relative convex, but the converse is not true;
see [3, 21]. For the properties, applications and other aspects of the relative convex
functions and convex sets, see [1, 12, 16, 17] and the references therein.

For given continuous trifunction F (., ., .) : K × K × K −→ R, continuous
bifunction ϕ(., .) : H ×H −→ R ∪ {∞} and nonlinear operators T , g : H −→ H ,
consider the problem of finding u ∈ H : g(u) ∈ K such that

F (g(u), T (g(u)), g(v))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K ,
(1)
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which is called the mixed quasi general equilibrium problem with trifunction,
introduced and studied by Noor and Rassias [19].

We now discuss some special cases.

I. If g ≡ I , where I is the identity operator, then problem (1) is equivalent to
finding u ∈ K such that

F (u, T (u), v)+ ϕ(v, u)− ϕ(u, u) ≥ 0, ∀v ∈ K , (2)

which is the mixed quasi equilibrium problem with trifunction, introduced and
studied by Noor [15, 17].

II. We note that for F (g(u), T (g(u)), g(v)) = 〈T (g(u)), g(v) − g(v)〉, problem (1)
is equivalent to finding u ∈ H : g(u) ∈ K such that

〈T (g(u)), g(v)− g(u)〉 + ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K.
(3)

Inequality (3) is known as the mixed quasi general variational inequality, which
was introduced by Noor [15].

III. If ϕ(., .) = ϕ(.) is the indicator function of a closed and relative convex-valued
set K(u), then problem (1) reduces to finding u ∈ H : g(u) ∈ K(u) such that

F (g(u), T (g(u)), g(v)) ≥ 0, ∀v ∈ H : g(v) ∈ K(u), (4)

which is called the general quasi equilibrium problem and appears to be a new
one.

IV. IfF (g(u), T (g(u)), g(v) = 〈T (g(u)), g(v)−g(u)〉, then problem (4) is equivalent
to finding u ∈ H : g(u) ∈ K(u) such that

〈T (g(u)), g(v)− g(u)〉 ≥ 0,∀v ∈ H : g(v) ∈ K(u), (5)

which is known as the general quasi variational inequality introduced by Noor
[15]. For the applications and numerical methods of general quasi variational
inequalities; see [3–20] and the references therein.

V. If g = I , the identity operator, the general quasi variational inequalities (3) are
equivalent to finding u ∈ K such that

〈T u, v− u〉 + ϕ(v, u)− ϕ(u, u) ≥ 0, ∀ v ∈ K , (6)

which are known as the mixed quasi variational inequalities; see [3–19].
VI. We note that for F (g(u), T (g(u)), g(v)) = B(g(u)), T (g(u)), g(v) − g(v)〉,

problem (1) is equivalent to finding u ∈ H : g(u) ∈ K such that

B(g(u), T (g(u)), g(v)− g(u))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0,

∀v ∈ H : g(v) ∈ K. (7)

Inequality (7) is known as the mixed quasi general trifunction variational inequality,
which appears to be new one.
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It is clear that problems (2)–(7) are special cases of the general equilibrium prob-
lems (1). In brief, for a suitable and appropriate choice of the operators T, g, and
the space H, one can obtain a wide class of equilibrium, variational inequalities,
and complementarity problems. This clearly shows that problem (1) is quite general
and unifying one. Furthermore, problem (1) has important applications in various
branches of pure and applied sciences; see [1, 2, 3–22].

Definition 3 [19]. The trifunction F (., ., .) : K ×K ×K → R with respect to the
operators T , g, is said to be:

(i) partially relaxed jointly strongly monotone, if there exists a constant α > 0 such
that

F (g(u), T (g(u))g(v))+ F (g(v), T (g(v)), g(z)) ≤ α‖g(z)− g(u)‖2, ∀u, v, z ∈ K.
(ii) jointly monotone, if

F (g(u), T (g(u)), g(v))+ F (g(v), T (g(v)), g(u)) ≤ 0, ∀u, v ∈ K.
(iii) jointly pseudomonotone, if

F (g(u), T (g(u)), g(v))+ ϕ(g(v)− g(u))− ϕ(g(u), g(u)) ≥ 0

�⇒
− F (g(v), T (g(v)), g(u))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀u, v ∈ K.

(iv) jointly hemicontinuous, ∀u, v ∈ K , t ∈ [0,1], if the mapping F (g(u)+ t(g(v)−
g(u)), T (g(u)+ t(g(v)− g(u)), g(v)) is continuous.

We remark that if z = u, then partially relaxed jointly strongly monotonicity is
exactly jointly monotonicity of the operatorF (., ., .). For g ≡ I , the identity operator,
Definition 2.1 reduces to the standard definition of partially relaxed jointly strongly
monotonicity, jointly monotonicity, and jointly pseudomonotonicity. It is known
that monotonicity implies pseudomonotonicity, but not conversely. This implies that
the concepts of partially relaxed strongly monotonicity and pseudomonotonicity are
weaker than monotonicity.

Noor and Rassias [19] have proved that problem (1) is equivalent to its dual
problem under some conditions. We include this result due to its importance. We
include all the details for the sake of completeness and to convey the main idea of
the technique involved.

Lemma 1 Let F (., ., .) be jointly pseudomonotone, jointly hemicontinuous, and
relative convex with respect to third argument. If the bifunction ϕ(., .) is relative
convex with respect to first argument, then the general equilibrium problem (1) is
equivalent to finding u ∈ H : g(u) ∈ K such that

−F (g(v), T (g(v)), g(u))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K.
(8)
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Proof Let u ∈ H : g(u) ∈ K be a solution of (1). Then

F (g(u), T (g(u)), g(v))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K
which implies

−F (g(v), T (g(v)), g(u))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K ,
(9)

since F (., ., .) is jointly monotone
Conversely, let u ∈ K satisfy (8). Since K is a g-convex set, ∀u, v ∈ H :

g(u), g(v) ∈ K , t ∈ [0,1], g(vt ) = g(u)+ t(g(v)− g(u)) ≡ (1− t)g(u)+ tg(v) ∈ K.
Taking g(v) = g(vt ) in (9), we have

F (g(vt ), T (g(vt )), g(u)) ≤ ϕ(g(vt ), g(u))− ϕ(g(u), g(u))

≤ t{ϕ(g(v), g(u))− ϕ(g(u), g(u))}. (10)

Now using (10) and relative convexity of F (., .) with respect to third argument,
we have

0 ≤ F (g(vt ), T (g(vt )), g(vt ))

= F (g(vt ), T (g(vt )), (1− t)g(u)+ tg(v))

≤ tF (g(vt ), T (g(vt )), g(v))+ (1− t)F (g(vt ), T (g(vt )), g(u))

≤ tF (g(vt ), T (g(vt )), g(v))+ t(1− t){ϕ(g(v), g(u))− ϕ(g(u), g(u))} (11)

Dividing (11) by t and letting t −→ 0, we have

F (g(u), T (g(u)), g(v))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ K ,

the required (1). �

Remark 1 Problem (8) is known as the dual mixed quasi general equilibrium prob-
lem. One can easily show that the solution set of problem (8) is closed and relative
convex set. From Lemma 2.1, it follows that the solution set of problems (1) and
(8) are the same. This inter relationship has played an important role in the study of
well-posedness of equilibrium problems and variational inequalities. In fact, Lemma
2.1 can be viewed as a natural generalization and extension of a well-known Minty’s
Lemma in variational inequalities theory; see [5, 6, 8].

Definition 4 The bifunction ϕ(., .) : H × H −→ R ∪ {+∞} is called skew
symmetric, if and only if,

ϕ(u, u)− ϕ(u, v)− ϕ(v, u)− ϕ(v, v) ≥ 0, ∀u, v ∈ H.
Clearly if the skew-symmetric bifunction ϕ(., .) is bilinear, then

ϕ(u, u)− ϕ(u, v)− ϕ(v, u)+ ϕ(v, v) = ϕ(u− v, u− v) ≥ 0, ∀u, v ∈ H.
This shows that the bifunction ϕ(., .) is positive.
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3 Main Results

In this section, we suggest and analyze some new iterative methods for solving the
problem (1) by using the auxiliary principle technique [5] as developed by Noor
[13, 15, 17] and Noor et al. [18] in recent years.

For a given u ∈ H : g(u) ∈ K satisfying (1), consider the problem of finding a
unique w ∈ H : g(w) ∈ K such that

ρF (g(w), T (g(w)), g(v))+ 〈(1− λ)(g(w)− g(u)), g(v)− g(w)〉
≥ ρ{ϕ(g(w), g(w))− ϕ(g(v), g(w))}, ∀v ∈ H : g(v) ∈ K , (12)

which is called the auxiliary mixed quasi general equilibrium problem and where
ρ > 0 is a constant.

We note that if w = u, then clearly w is a solution of the nonconvex equilibrium
problems (1). This observation enables us to suggest the following method for solving
(1).

Algorithm 1 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative schemes

ρF (g(un+1), T (g(un+1)), g(v))+ 〈(1− λ)(g(un+1 − g(un)), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀v ∈ H : g(v) ∈ K , (13)

where λ > 0 is a constant. Algorithm 1 is called the implicit method for solving (1).
We may write Algorithm 1 in the following equivalent form, which is useful to

derive other iterative methods for solving (1) and related problems.

Algorithm 2 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative schemes

ρF (g(un), T (g(un)), g(v))+ 〈g(yn − g(un), g(v)− g(un+1)〉
≥ ρ{ϕ(g(yn), g(yn)− ϕ(g(v), g(yn))}, ∀g(v) ∈ K
ρF (g(yn), T (g(yn)), g(v))+ 〈g(un+1 − g(un)− λ(g(yn)− g(un)), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀g(v) ∈ K

For λ = 0, Algorithm 2 collapses to:

Algorithm 3 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative schemes

ρF (g(un), T (g(un)), g(v))+ 〈g(yn − g(un), g(v)− g(un+1)〉
≥ ρ{ϕ(g(yn), g(yn)− ϕ(g(v), g(yn))}, ∀g(v) ∈ K
ρF (g(yn), T (g(yn)), g(v))+ 〈g(un+1 − g(un), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀g(v) ∈ K.
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Algorithm 3 is analogues of the extragradient method of Korpelevich, see [16] and
appears to be a new one.

For λ = 1, Algorithm 3.2 reduces to the following two-step iterative method
for solving (1). Such type of methods have been studied and investigated by Noor
[16, 17] for general variational inequalities.

Algorithm 4 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative schemes

ρF (g(un), T (g(un)), g(v))+ 〈g(yn − g(un), g(v)− g(un+1)〉
≥ ρ{ϕ(g(yn), g(yn)− ϕ(g(v), g(yn))}, ∀g(v) ∈ K
ρF (g(yn), T (g(yn)), g(v))+ 〈g(un+1 − g(yn), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀g(v) ∈ K

For λ = 1
2 , Algorithm 2 reduces to:

Algorithm 5 [17]. For a given u0 ∈ H , compute the approximate solution un+1 by
the iterative schemes

ρF (g(un), T (g(un)), g(v))+ 〈g(yn − g(un), g(v)− g(un+1)〉
≥ ρ{ϕ(g(yn), g(yn)− ϕ(g(v), g(yn))}, ∀g(v) ∈ K

ρF (g(yn), T (g(yn)), g(v))+ 〈g(un+1 − 1

2
(g(yn)+ g(un)), g(v)− g(un+1)〉

≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀g(v) ∈ K
Note that if g ≡ I , the identity operator, Algorithm 1 reduces to a method for

solving the equilibrium problems with trifunction (2), which are mainly due to Noor
[17].

Algorithm 6 For a given u0 ∈ H , compute un+1 by the iterative scheme

ρF (un+1, T (un+1, v)+ (1− λ)(un+1 − un), v− un+1〉
≥ ρ{ϕ(un+1, un+1)− ϕ(v, un+1)} ≥ 0,∀v ∈ K.

For the convergence analysis of Al; Algorithm 6, see Noor [17].
For F (g(u), T (g(u)), (v)) = 〈T (g(u)), g(v)− g(u)〉, Algorithm 1 reduces to:

Algorithm 7 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative scheme

〈ρT (g(un+1))+ (1− λ)(g(un+1 − (g(un)), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1))− ϕ(g(v), g(un+1))}, ∀v ∈ K ,

for solving mixed quasi general variational inequalities [17].
For suitable and appropriate choice of the operators and the space H, one can

obtain various new and known methods for solving general equilibrium, variational
inequalities, and complementarity problems.

We now study the convergence analysis of Algorithm 1.



414 M. A. Noor and T. M. Rassias

Theorem 1 Let the trifunction F (., ., .) be jointly pseudomonotone. If the bifunc-
tion ϕ(., .) is skew symmetric, then the approximate solution un+1obtained from
Algorithm 1 satisfies the inequality

‖g(u)− g(un+1)‖2 ≤ ‖g(u)− g(un)‖2 − ‖g(un)− g(un+1)‖2, (14)

where u is the exact solution of (1).

Proof Let u ∈ H : g(u) ∈ K be a solution of (1). Then

F (g(u), T (g(u)), g(v)) ≥ ϕ(g(u), g(u))− ϕ(g(v), g(u))∀v ∈ H : g(v) ∈ K ,

which implies that

−F (g(v), T (g(v), g(u)) ≥ ϕ(g(u), g(u))− ϕ(g(v), g(u)), ∀v ∈ H : g(v) ∈ K , (15)

since F (., ., .) is jointly pseudomonotone.
Taking v = un+1 in (15), we have

−F (g(un+1), T (g(un+1)), g(u)) ≥ ϕ(g(u), g(u))− ϕ(g(un+1), g(u)) (16)

Taking v = u in (13), we have

ρF (g(un+1), T (g(un+1)), g(u))+ 〈(1− λ)(g(un+1)− g(un)), g(u)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(u), g(un+1))}. (17)

From (16) and (17), we have

(1− λ)〈g(un+1)− g(un)〉
≥ ρ{ϕ(g(un), g(un))− ϕ(g(n+1), g(u))− ϕ(g(u), g(un+1)+ ϕ(g(un+1), g(un+1))}
≥ 0, (18)

where we have used the fact that the bifunction ϕ(., .) is a skew symmetric.
From (18) and using the inequality

2〈v, u〉 = ‖u+ v‖2 − ‖u‖2 − ‖v‖2, ∀u, v ∈ H ,

we obtain

‖g(u)− g(un+1)‖2 ≤ ‖g(u)− g(u)‖2 − ‖g(un)− g(un+1)‖2,

which is the required result. �
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Theorem 2 Let H be a finite dimensional space. Let the trifunction F (., ., .) be
jointly pseudomonotone and the bifunction ϕ(., .) be skew symmetric. If un+1 is the
approximate solution obtained from Algorithm 3.1, and g−1 exists, then

lim
n−→∞ un = u,

where u ∈ H ; g(u) ∈ K is a solution of (1).

Proof Let u ∈ H : g(u) ∈ K be a solution of (1). From (14), we see that the
sequences {‖g(u) − g(un)‖} is nonincreasing under the assumptions of Theorem 2
and consequently {g(un)} is bounded. Also from (14), we have

∞∑

n=0

‖g(un+1 − g(un)‖2 ≤ ‖g(u)− g(un)‖2,

which implies that

lim
n−→∞‖un+1 − un‖ = 0, (19)

since g−1 exists.
Let û be a cluster point of {un} and the subsequence {uni } of this sequence con-

verges to û ∈ H : g(û) ∈ K. Replacing un by uni in (13) and taking the limit as
ni −→∞ and using (19), we have

F (g(û), T (g(û)), g(v))+ ϕ(g(v), g(û))− ϕ(g(û), g(û)) ≥ 0, ∀v ∈ H : g(v) ∈ K ,

which shows that û solves (1) and

‖g(un+1)− g(û)‖ ≤ ‖g(un)− g(û)‖2.

Thus, it follows that from the above inequality that the sequence {un} has exactly
one cluster point and

lim
n−→∞ = û,

the required result. �

Algorithm 1 is an implicit method, which is its difficult to implement. In order to
overcome this drawback, we again use the auxiliary principle technique to suggest
an explicit iterative method for solving problem (1). This is the main motivation of
next Algorithm.

For a given u ∈ H : g(u) ∈ K satisfying (1), consider the problem of finding a
unique w ∈ H : g(w) ∈ K such that

ρF (g(u), T (g(u)), g(v))+ 〈(1− λ)(g(w)− g(u)), g(v)− g(w)〉
≥ ρ{ϕ(g(w), g(w))− ϕ(g(v), g(w))}, ∀v ∈ H : g(v) ∈ K , (20)

which is called the auxiliary mixed quasi general equilibrium problem. we would
like to emphasize that problems (12) and (20) are quite different from each other.

We note that if w = u, then clearly w is a solution of the nonconvex equilibrium
problems (1). This observation enables us to suggest the following method for solving
(1).
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Algorithm 8 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative schemes

ρF (g(un+1), T (g(un+1)), g(v))+ 〈(1− λ)(g(un+1 − g(un)), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀v ∈ H : g(v) ∈ K.

Algorithm 1 is called the explicit method for solving (1). Using the technique of
Theorem 1 and Theorem 2, one can study the convergence analysis of Algorithm 8.

Conclusion In this chapter, we have suggested some new unified iterative methods for
solving a class of mixed quasi general equilibrium problems, introduced and studied
by Noor and Rassias [19]. The comparison of these methods with other methods is an
interesting and fascinating problem for future research. One may find the novel and
innovative applications of these general equilibrium problems in various branches
of pure and applied sciences.
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Contractive Operators in Relational
Metric Spaces

Mihai Turinici

Abstract In Sect. 1, some fixed point results for altering contractive maps on (amor-
phous) metric spaces are given, extending the one due to Khan, Swaleh and Sessa
[Bull Aust Math Soc 30:1–9, 1984]. In Sect. 2, a class of monotone contractions is
analyzed, via coupled fixed point techniques, in the realm of quasi-ordered metric
spaces. Note that, a highly unusual feature of the related fixed point techniques is
that, in many cases with a practical relevance, no coupled starting point hypothesis
for these operators is needed. Finally, in Sect. 3, some fixed point results are given
for contractive operators acting on relational metric spaces.

Keywords Metric space · Picard operator ·Altering contractive map · Quasi-order ·
Monotone application · Ran–Reurings theorem · Coupled fixed point · Relation ·
Meir–Keeler contraction

1 Altering Contractive Maps

1.1 Introduction

Let X be a nonempty set; and d : X × X → R+ := [0,∞[ be a metric over it.
Call the subset Y of X, almost singleton (in short: asingleton) provided y1, y2 ∈ Y
implies y1 = y2; and singleton, if, in addition, Y is nonempty; note that, in this
case, Y = {y}, for some y ∈ X. Further, let T ∈ F(X) be a selfmap of X.
(Here, for each couple A,B of nonempty sets, F(A,B) stands for the class of all
functions from A to B; when A = B, we write F(A) in place of F(A,A)). Denote
Fix(T ) = {x ∈ X; x = T x}; each point of this set is referred to as fixed under T . The
determination of such elements is to be performed in the context below, comparable
with the one in Rus [34, Chap. 2, Sect. 2.2]:

(1a)We say thatT is a Picard operator (modulod) if, for eachx ∈ X, (T nx; n ≥ 0)
is d-convergent
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(1b) We say that T is a strong Picard operator (modulo d) if, for each x ∈ X,
(T nx; n ≥ 0) is d-convergent and limn (T nx) belongs to Fix(T )

(1c) We say that T is a globally strong Picard operator (modulo d) if it is a strong
Picard operator (modulo d), and Fix(T ) is an asingleton (hence, a singleton).

In this perspective, a basic result to the question we deal with is the 1922 one due
to Banach [2]: it states that, whenever T is (d;α)-contractive, i.e.,

(a01) d(T x, Ty) ≤ αd(x, y), ∀x, y ∈ X,

for some α ∈ [0, 1[, then T is a globally strong Picard operator (modulo d). This
result found a multitude of applications in operator equations theory; so, it was the
subject of many extensions. For example, a natural way of doing this is by considering
“functional” contractive conditions of the form

(a02) d(T x, Ty) ≤ F (d(x, y), d(x, T x), d(y, Ty), d(x, Ty), d(y, T x)),
∀x, y ∈ X;

where F : R5+ → R+ is an appropriate function. For more details about the possible
choices of F , we refer to the 1977 paper by Rhoades [33]; see also Turinici [40].
Here, we shall be concerned with a 2004 contribution in the area due to Berinde [4].
Given α, λ ≥ 0, let us say that T is a weak (d;α, λ)-contraction, provided

(a03) d(T x, Ty) ≤ αd(x, y)+ λd(T x, y), for all x, y ∈ X.

Theorem 1 Suppose that T is a weak (d;α, λ)-contraction, where α ∈ [0, 1[. In
addition, let (X, d) be complete. Then, T is a strong Picard operator (modulo d).

In a subsequent paper devoted to the same question, Berinde [3] claims that
this class of contractions introduced by him is for the first time considered in the
literature. Unfortunately, his assertion is not true: conclusions of Theorem 1 are
“almost” covered by a related 1984 statement due to Khan et al. [20], in the context
of altering distances. This, among others, motivated us to propose an appropriate
extension of the quoted statement. Also, for completeness reasons, we provide a
“functional” extension of Berinde’s result.

1.2 Preliminaries

Let (X, d) be a metric space. We say that the sequence (xn) in X, d-converges to

x ∈ X (and write this as: xn
d−→ x), iff d(xn, x) → 0; that is

(b01) ∀ε > 0, ∃p = p(ε): p ≤ n �⇒ d(xn, x) ≤ ε.
Denote limn (xn) = {x ∈ X; xn

d−→ x}; when the underlying set is nonempty,
(xn) is called d-convergent. Note that, in this case, limn (xn) is a singleton, {z}; as
usually, we write limn (xn) = z. Further, let us say that (xn) is d-Cauchy, provided
d(xm, xn) → 0 as m, n→∞, m < n; that is
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(b02) ∀ε > 0, ∃q = q(ε): q ≤ m < n �⇒ d(xm, xn) ≤ ε.
Clearly, any d-convergent sequence is d-Cauchy too; when the reciprocal holds

too, (X, d) is called complete. Concerning this aspect, note that any d-Cauchy
sequence (xn; n ≥ 0) is d-semi-Cauchy, i.e.,

(b03) ρn := d(xn, xn+1) → 0 (hence, d(xn, xn+i) → 0, ∀i ≥ 1), as n→∞.

The following result about such objects is useful in the sequel. Given the sequence
(rn; n ≥ 0) in R and the point r ∈ R, let us write

rn → r+ (respectively, rn → r ++), if rn → r and
rn ≥ r (respectively, rn > r), for all n ≥ 0 large enough.

Proposition 1 Suppose that (xn; n ≥ 0) is d-semi-Cauchy, but not d-Cauchy. There
exists then η > 0, j (η) ∈ N and a couple of rank sequences (m(j ); j ≥ 0), (n(j );
j ≥ 0), in such a way that

j ≤ m(j ) < n(j ), α(j ) := d(xm(j ), xn(j )) > η, ∀j ≥ 0 (1)

n(j )−m(j ) ≥ 2, β(j ) := d(xm(j ), xn(j )−1) ≤ η, ∀j ≥ j (η) (2)

α(j ) → η ++ (hence, α(j ) → η) as j →∞ (3)

αp,q(j ) := d(xm(j )+p, xn(j )+q) → η, as j →∞, ∀p, q ∈ {0, 1}. (4)

A proof of this may be found in Khan et al. [20]. For completeness reasons, we
supply an argument which differs, in part, from the original one.

Proof (Proposition 1) As (xn; n ≥ 0) is not d-Cauchy, there exists η > 0 with

A(j ) := {(m, n) ∈ N ×N ; j ≤ m < n, d(xm, xn) > η} �= ∅, ∀j ≥ 0.

Having this precise, denote, for each j ≥ 0,

m(j ) = minDom(A(j )), n(j ) = minA(m(j )).

As a consequence, the couple of rank-sequences (m(j ); j ≥ 0), (n(j ); j ≥ 0)
fulfills (1). On the other hand, letting the index j (η) ≥ 0 be such that

d(xk , xk+1) < η, ∀k ≥ j (η), (5)

it is clear that (2) holds too. Finally, by the triangular property,

η < α(j ) ≤ β(j )+ ρn(j )−1 ≤ η + ρn(j )−1, ∀j ≥ j (η);

and this yields (3); hence, the case (p = 0, q = 0) of (4). Combining with

α(j )− ρn(j ) ≤ d(xm(j ), xn(j )+1) ≤ α(j )+ ρn(j ), ∀j ≥ j (η)

establishes the case (p = 0, q = 1) of the same. The remaining situations are
deductible in a similar way.
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1.3 Main Result

Let (X, d) be a metric space; and ϕ ∈ F(R+) be an altering function; i.e.,

(c01) ϕ is continuous, increasing, and reflexive-sufficient [ϕ(t) = 0 iff t = 0].

The associated map (from X ×X to R+)

(c02) e(x, y) = ϕ(d(x, y)), x, y ∈ X
has the immediate properties

e(x, y) = e(y, x), ∀x, y ∈ X (e is symmetric) (6)

e(x, y) = 0⇐⇒x = y (e is reflexive-sufficient). (7)

So, it is a (reflexive sufficient) symmetric, under the Hicks–Rhoades terminol-
ogy [13]. In general, e(., .) is not endowed with the triangular property; but, in
compensation to this, one has (as ϕ is increasing and continuous)

e(x, y) > e(u, v) �⇒ d(x, y) > d(u, v) (8)

xn
d−→ x, yn

d−→ y implies e(xn, yn) → e(x, y). (9)

Let in the following, T ∈ F(X) be a selfmap ofX. The formulation of the problem
involving Fix(T ) is the already sketched one. In the following, we are trying to solve
it in the precise context. Denote, for x, y ∈ X,

(c03) M1(x, y) = e(x, y),M2(x, y) = (1/2)[e(x, T x)+ e(y, Ty)],
M3(x, y) = min{e(x, Ty), e(T x, y)},
M(x, y) = max{M1(x, y),M2(x, y),M3(x, y)}.

Further, given ψ ∈ F(R+), we say that T is (d, e;M ,ψ)-contractive, provided

(c04) e(T x, Ty) ≤ ψ(d(x, y))M(x, y), ∀x, y ∈ X, x �= y.

The properties of ψ to be used here write

(c05) ψ is strictly subunitary on R0+ := ]0,∞[: ψ(s) < 1, ∀s ∈ R0+
(c06) ψ is right Boyd–Wong on R0+: lim supt→s+ψ(t) < 1, ∀s ∈ R0+.

This is related to the developments in Boyd and Wong [10]; we do not give details.
The main result of this exposition is as follows.

Theorem 2 Suppose thatT is (d, e;M ,ψ)-contractive, whereψ ∈ F(R+) is strictly
subunitary and right Boyd–Wong on R0+. In addition, let (X, d) be complete. Then,
T is a globally strong Picard operator (modulo d).

Proof First, let us check the asingleton property for Fix(T ). Let z1, z2 ∈ Fix(T ) be
such that z1 �= z2; hence δ := d(z1, z2) > 0, ε := e(z1, z2) > 0. By definition,

M1(z1, z2) = ε, M2(z2, z2) = 0, M3(x, y) = ε; henceM(x, y) = ε.
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By the contractive condition (written at (z1, z2))

ε = e(z1, z2) = e(T z1, T z2) ≤ ψ(δ)M(z1, z2) = ψ(δ)ε;

hence, 1 ≤ ψ(δ) < 1; contradiction; and the asingleton property follows. It remains
now to verify the strong Picard property. Fix some x0 ∈ X; and put (xn = T nx0;
n ≥ 0). If xn = xn+1 for some n ≥ 0, we are done; so, without loss, one may assume

(c07) ρn := d(xn, xn+1) > 0 (hence, σn := e(xn, xn+1) > 0), for all n.

There are several steps to be passed.
(I) For the arbitrary fixed n ≥ 0, we have

M1(xn, xn+1) = σn,
M2(xn, xn+1) = (1/2)[σn + σn+1] ≤ max{σn, σn+1},
M3(xn, xn+1) = 0; hence,M(xn, xn+1) ≤ max{σn, σn+1}.

By the contractive condition (written at (xn, xn+1)),

σn+1 ≤ ψ(ρn) max{σn, σn+1}, ∀n.
This, by the working condition, yields (as ψ is strictly subunitary on R0+)

σn+1/σn ≤ ψ(ρn) < 1, ∀n. (10)

As a direct consequence,

σn > σn+1 (hence, ρn > ρn+1), for all n.

The sequence (ρn; n ≥ 0) is therefore strictly descending in R+; hence, ρ :=
limn (ρn) exists inR+ and ρn > ρ, ∀n. Likewise, the sequence (σn = ϕ(ρn); n ≥ 0) is
strictly descending in R+; hence, σ := limn (σn) exists; with, in addition, σ = ϕ(ρ).
We claim that ρ = 0. Assume by contradiction that ρ > 0; hence σ > 0. Passing to
lim sup as n→∞ in (10) yields

1 ≤ lim sup
n

ψ(ρn) ≤ lim sup
t→ρ+

ψ(t) < 1;

contradiction. Hence, ρ = 0; i.e.,

ρn := d(xn, xn+1) → 0, as n→∞. (11)

(II) We now show that (xn; n ≥ 0) is d-Cauchy. Suppose that this is not true.
By Proposition 1, there exist η > 0, j (η) ∈ N and a couple of rank sequences
(m(j ); j ≥ 0), (n(j ); j ≥ 0), in such a way that (1)–(4) hold. Denote for simplicity
ζ = ϕ(η); hence, ζ > 0. By the notations used there, we may write as j →∞

λj := e(xm(j )+1, xn(j )+1) = ϕ(α1,1(j )) → ζ.
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In addition, we have (again under j →∞)

M1(xm(j ), xn(j )) = ϕ(α(j )) → ζ

M2(xm(j ), xn(j )) = (1/2)[ϕ(ρm(j ))+ ϕ(ρn(j ))] → 0

M3(xm(j ), xn(j )) = min{ϕ(α0,1(j )),ϕ(α1,0(j ))} → ζ ;

and this, by definition, yields

μj := M(xm(j ), xn(j )) → ζ as j →∞.
From the contractive condition (written at (xm(j ), xn(j )))

λj/μj ≤ ψ(α(j )), ∀j ≥ j (η);

so that, passing to lim sup as j →∞
1 ≤ lim sup

j

ψ(α(j )) ≤ lim sup
t→η+

ψ(t) < 1;

contradiction. Hence, (xn; n ≥ 0) is d-Cauchy, as claimed.

(III) As (X, d) is complete, there exists z ∈ X with xn
d−→ z; hence, γn :=

d(xn, z) → 0 as n→∞.
Two alternatives are open before us:
(i) For each h ∈ N , there exists k > h with xk = z. In this case, there ex-

ists a sequence of ranks (m(i); i ≥ 0) with m(i) → ∞ as i → ∞ such that
xm(i) = z (hence, xm(i)+1 = T z), ∀i. Letting i tend to infinity and using the fact that
(yi := xm(i)+1; i ≥ 0) is a subsequence of (xi ; i ≥ 0), we get z = T z.

(ii) There exists h ∈ N such that n ≥ h �⇒ xn �= z (whence, γn > 0). Suppose
that z �= T z; i.e., θ := d(z, T z) > 0; hence, ω := e(z, T z) > 0. Note that, in such a
case, δn := d(xn, T z) → θ . From our previous notations, we have (as n→∞)

λn := e(xn+1, T z) = ϕ(δn+1) → ϕ(θ ) = ω.
In addition (again under n→∞),

M1(xn, z) = ϕ(γn) → 0, M2(xn, z) = (1/2)[σn + ω] → ω/2

M3(xn, z) = min{ϕ(δn),ϕ(γn+1)} → 0;

wherefrom,
(0 < )μn := M(xn, z) → ω/2, as n→∞.

By the contractive condition (written at (xn, z))

λn ≤ ψ(γn)μn < μn, ∀n ≥ h
we then have (passing to limit as n → ∞), ω ≤ ω/2; hence ω = 0. This yields
θ = 0; contradiction. Hence, z is fixed under T and the proof is complete.
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In particular, the right Boyd–Wong on R0+ property of ψ is assured when this
function is strictly subunitary and decreasing onR0+. As a consequence, the following
particular version of our main result is available:

Theorem 3 Suppose thatT is (d, e;M ,ψ)-contractive, whereψ ∈ F(R+) is strictly
subunitary and decreasing on R0+. In addition, let (X, d) be complete. Then, T is
globally strong Picard (modulo d).

Let a, b, c ∈ F(R+) be a triple of functions. We say that the selfmap T of X is
(d, e; a, b, c)-contractive if

(c08) e(T x, Ty) ≤ a(d(x, y))e(x, y)+ b(d(x, y))[e(x, T x)+ e(y, Ty)]
+ c(d(x, y))min{e(x, Ty), e(T x, y)}, ∀x, y ∈ X, x �= y.

Denote for simplicity ψ = a + 2b + c; it is clear that, under such a condition,
T is (d, e;M;ψ)-contractive. Consequently, the following statement is a particular
case of Theorem 2 above:

Theorem 4 Suppose thatT is (d, e; a, b, c)-contractive, where the triple of functions
a, b, c ∈ F(R+) is such that the associated function ψ = a + 2b + c is strictly
subunitary and right Boyd–Wong on R0+. In addition, let (X, d) be complete. Then,
conclusions of Theorem 2 hold.

In particular, when a, b, c are all decreasing onR0+, the right Boyd–Wong property
on R0+ of the function ψ is retainable; note that, in this case, Theorem 4 is also
reducible to Theorem 3. This is just the 1984 fixed point result in Khan et al. [20].

Finally, it is worth mentioning that the nice contributions of these authors were
the starting point for a series of results involving altering contractions, like the ones
in Bhaumik et al. [9], Nashine and Samet [27], or Sastry and Babu [39]; see also
Pathak and Shahzad [30]. However, according to the developments in Jachymski
[17], most of these (including the Dutta-Choudhury’s contribution [12]) are in fact
reducible to standard techniques; we do not give details.

1.4 Further Aspects

Let again (X, d) be a metric space, andT ∈ F(X) be a selfmap ofX.A basic particular
case of Theorem 4 corresponds to the choices ϕ = identity and [a, b, c = constants].
The corresponding form of Theorem 4 is comparable with Theorem 1. However,
the inclusion between these is not complete. This raises the question of determining
proper extensions of Theorem 1, close enough to Theorem 4. A direct answer to this
is provided as follows.

Theorem 5 Let the numbers a, b ∈ R+ and the function K ∈ F(R+) be such that

(d01) d(T x, Ty) ≤ ad(x, y)+b[d(x, T x)+d(y, Ty)]+K(d(T x, y)), ∀x, y ∈ X
(d02) a + 2b < 1 and K(t) → 0 = K(0) as t → 0.

In addition, let (X, d) be complete. Then, T is a strong Picard map (modulo d).
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Proof Take an arbitrary fixed u ∈ X. By the very contractive condition (written at
(T nu, T n+1u)), we have the evaluation

d(T n+1u, T n+2u) ≤ λd(T nu, T n+1u), ∀n ≥ 0. (12)

where λ := (a + b)/(1− b) < 1. This yields

d(T nu, T n+1u) ≤ λnd(u, T u), ∀n ≥ 0. (13)

Consequently, (T nu; n ≥ 0) is d-Cauchy; whence (by completeness)

T nu
d−→ z := T∞u, for some z ∈ X.

From the contractive condition (written at (T nu, z)),

d(T n+1u, T z) ≤ ad(T nu, z)+ b[d(T nu, T n+1u)+ d(z, T z)]+K(d(T n+1u, z)), ∀n.
Passing to limit as n → ∞ gives (by the imposed conditions) d(z, T z) ≤

bd(z, T z); so that (as 0 ≤ b < 1/2), d(z, T z) = 0; hence z = T z. The proof is
thereby complete.

In particular, when b = 0 andK(.) is linear (K(t) = λt , t ∈ R+, for some λ ≥ 0),
this result is just Theorem 1. Note that, from (13), one has for these “limit” fixed
points, the error approximation formula

d(T nu, T∞u) ≤ [λn/(1− λ)]d(u, T u), ∀n ∈ N. (14)

However, the non-singleton property of Fix(T ) makes this “local” evaluation to
be without practical effect, by the highly unstable character of the map u �→ T∞u.
In fact, assume for simplicity that T is continuous; and fix in the following u0 ∈ X.
Given ε > 0, there exists δ > 0 such that x ∈ X(u0, δ) implies T x ∈ X(T u0, ε);
here, for each x ∈ X, ρ > 0, X(x, ρ) = {y ∈ X; d(x, y) < ρ} (the open sphere with
center x and radius ρ). The above evaluation (14) gives a “local-global” relation like

d(T nu, T∞u) ≤ [λn/(1− λ)]μ(u0), ∀n ≥ 0, ∀u ∈ X(u0, δ); (15)

where, by definition, μ(u0) = sup{d(x, T x); x ∈ X(u0, δ)}. Now, in practice, the
starting point u0 is approximated by a certain v0 ∈ X(u0, δ); with, in general, v0 �= u0.
Suppose that the iterates (T nv0; n ≥ 0) are calculated in a complete (and exact) way.
The approximation formula (15) gives, for the point in question,

d(T nv0, T∞v0) ≤ [λn/(1− λ)]μ(u0), ∀n ≥ 0. (16)

This yields a good evaluation for the fixed point T∞v0; but, it may have no impact
upon the fixed point T∞u0 (that we want to approximate), as long as it is distinct
from the preceding fixed point.

Summing up, any such contraction T is Hyers–Ulam unstable, whenever Fix(T )
is not a singleton. But, when Fix(T ) is a singleton, T is Hyers–Ulam stable. Some
related facts may be found in the 1998 monograph by Hyers, Isac and Rassias [14].
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2 Monotone Contractive Maps

2.1 Introduction

Let X be a nonempty set. Take a metric d(., .) on it; as well as a quasi-order ( ≤ )
(i.e.: reflexive and transitive relation) over X. Call the subset Y of X, (≤ )-almost-
singleton (in short: (≤ )-asingleton) provided y1, y2 ∈ Y and y1 ≤ y2 imply y1 = y2;
and ( ≤ )-singleton, if, in addition, Y is nonempty. Further, let T ∈ F(X) be a
selfmap of X; endowed with the properties

(a01) T is (≤ )-increasing: x ≤ y implies T x ≤ Ty
(a02) T is almost (≤ )-progressive: X(T ,≤ ) := {x ∈ X; x ≤ T x} �= ∅.

The determination of elements in Fix(T ) is to be performed in the context below,
comparable with the one in Turinici [42]:

(1a) We say that T is a Picard operator (modulo (d,≤ )) if, for each x ∈ X(T ,≤ ),
(T nx; n ≥ 0) is d-convergent

(1b) We say that T is a strong Picard operator (modulo (d,≤ )) if, for each
x ∈ X(T ,≤ ), (T nx; n ≥ 0) is d-convergent and limn (T nx) belongs to Fix(T )

(1c) We say that T is a globally strong Picard operator (modulo (d,≤ )) if it is
a strong Picard operator (modulo (d,≤ )), and Fix(T ) is ( ≤ )-asingleton (hence,
necessarily, (≤ )-singleton).

A useful result in the area is the 2008 one obtained by Agarwal, El-Gebeily
and O’Regan [1]. This needs some conventions and specific requirements. Given
ϕ ∈ F(R+), let us introduce the condition

(a03) T is (d,≤;ϕ)-contractive: d(T x, Ty) ≤ ϕ(d(x, y)), for all x, y ∈ X, x ≤ y.

The functions to be taken into consideration here are as follows. Call ϕ ∈ F(R+)
(strongly) regressive, provided: ϕ(0) = 0 and ϕ(t) < t , ∀t ∈ R0+. The class of
all these will be denoted as F(re)(R+); and the subclass of all increasing ϕ ∈
F(re)(R+) is indicated as F(re, in)(R+). Given ϕ ∈ F(re, in)(R+), let us say that
it is Matkowski admissible, provided

(a04) ϕn(t)
d−→ 0 as n→∞, for all t ∈ R0+;

here, for each n ≥ 0, ϕn denotes the nth iterate of ϕ. This concept is related to the
developments in Matkowski [24]; we do not give details.

Theorem 6 Suppose thatT is (d,≤;ϕ)-contractive, for some Matkowski admissible
function ϕ ∈ F(re, in)(R+). In addition, let (X, d) be complete and one of the
assumptions below hold:

(i) T is continuous: xn
d−→ x implies T xn

d−→ T x

(ii) (≤ ) is d-selfclosed: the d-limit of each ascending sequence is an upper bound
of it (with respect to (≤ )).

Then, T is a strong Picard operator (modulo (d,≤ )).
Now, for technical reasons (to be explained a bit further) it would be useful for us

to determine under which conditions upon these data, T is a globally strong Picard
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operator (modulo d). A basic contribution in the area is the 2004 one obtained by
Ran and Reurings [32].

(A) Let (X, d,≤ ) be an ordered metric space. Define a relation (<> ) on X, as

(a05) x <> y iff either x ≤ y or y ≤ x (i.e.: x and y are comparable).

This relation is reflexive and symmetric; but not in general transitive. Further, let
T be a selfmap of X. The following conditions are to be used here:

(a06) (X,≤ ) is (up/down)-directed: ∀x, y ∈ X, {x, y} has upper and lower
bounds
(a07) T is almost progressive (regressive): x ≤ T x (x ≥ T x), for at least one
x ∈ X
(a08) T is almost progressive/regressive: x <> T x, for at least one x ∈ X
(a09) T is monotone (increasing or decreasing).

Finally, given α > 0, let us say that T is (d,≤;α)-contractive, if

(a10) d(T x, Ty) ≤ αd(x, y), ∀x, y ∈ X, x ≤ y;

note that, by the preceding convention, this may be also expressed as:

(a11) d(T x, Ty) ≤ αd(x, y), ∀x, y ∈ X, x <> y.

The announced answer may now be written as below:

Theorem 7 Assume that T is (d,≤;α)-contractive, for some α ∈ ]0, 1[. In ad-
dition, let (X, d) be complete, (X,≤ ) be (up/down)-directed, and T be almost
progressive/regressive, monotone, d-continuous. Then, T is a globally strong Picard
operator (modulo d).

According to many authors (cf. [1, 28, 29] and the references therein), this result
(referred to as: Ran–Reurings theorem) is credited to be the first extension of the 1922
Banach theorem [2] to the realm of (partially) ordered metric spaces. Unfortunately,
the assertion is not true; some early statements of this type have been obtained two
decades ago by Turinici [41], in the context of ordered metrizable uniform spaces.

Now, as Ran–Reurings theorem (expressed in a quasi-order setting) extends Ba-
nach’s, it is natural to discuss its position within the classification scheme proposed
by Rhoades [33]. The conclusion to be derived reads: the Ran–Reurings theorem is
but a particular case of the 1968 fixed point statement in Maia [23]. Further, an ap-
plication of this result is given to functional type coupled fixed point statements. The
obtained facts are then applied to fixed point problems involving component-wise
monotone operators acting on product quasi-ordered metric spaces.

2.2 Ran–Reurings Results

In the following, some extended variants are given for the Ran–Reurings result above.
(A) Let X be a nonempty set. Take a metric d(., .) on it; and let ( ≤ ) be a

quasi-order (i.e., reflexive and transitive relation) over X; the triple (X, d,≤ ) will
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be referred to as a quasi-ordered metric space. Further, let T be a selfmap of X.
As before, we are interested to determine sufficient conditions involving these data
so as T be globally strong Picard (modulo d). Technically speaking, we have: (I)
conditions upon (X, d,≤ ), and (II) conditions upon T .

The first category of conditions refers to completeness and chain properties.
(I-a) The following completeness properties of our structure are to be used here:

(b01) (X, d) is complete: each d-Cauchy sequence in X is d-convergent
(b02) (X, d) is ( ≤ )-complete: each ascending d-Cauchy sequence in X is d-
convergent.

Clearly, the former of these implies the latter; the reciprocal is not in general valid.
(I-b) The next condition upon the same structure needs a lot of conventions. For

each x, y ∈ X, denote: x <> y iff either x ≤ y or y ≤ x (i.e., x and y are
comparable). This relation is reflexive and symmetric; but not in general transitive.
Given x, y ∈ X and k ≥ 2, any element A = (z1, . . ., zk) ∈ Xk with z1 = x,
zk = y, and (zi <> zi+1, i ∈ {1, . . ., k − 1}), will be referred to as a k-dimensional
(<> )-chain between x and y; in this case, k = dim(A) (the dimension of A) and
Λ(A) = d(z1, z2)+. . .+d(zk−1, zk) is the length ofA; the class of all these chains will
be denoted as Ck(x, y;<> ). Further, put C(x, y;<> ) = ∪{Ck(x, y;<> ); k ≥ 2};
any element of it will be referred to as a (<> )-chain in X joining x and y. Let (∼ )
stand for the relation over X

x ∼ y iff C(x, y;<> ) is nonempty.

Clearly, (∼ ) is reflexive and symmetric; so is (<> ). Moreover, (∼ ) is transitive;
hence, it is an equivalence over X. Assume in the following that

(b03) (∼ ) is total: x ∼ y, for each x, y ∈ X.

The second category of conditions has four basic components.
(II-a) Concerning the monotone type properties of T , the following conditions

enter into our discussion:

(b04) T is (≤ )-increasing: x ≤ y implies T x ≤ Ty
(b05) T is (<> )-increasing: x <> y implies T x <> Ty.

Clearly, the former of these implies the latter; but, the reciprocal is not in general
valid.

(II-b) Further, the starting type properties of T are being expressed as:

(b06) T is almost (≤ )-progressive: X(T ,≤ ) := {x ∈ X; x ≤ T x} is nonempty.

(II-c) Passing to the contractive properties of T , the following condition is to be
used:

(b07) T is (d,≤;ϕ)-contractive: d(T x, Ty) ≤ ϕ(d(x, y)), ∀x, y ∈ X, x ≤ y;

here, ϕ ∈ F(R+) is a function. Note that, by the symmetry of d(., .), this may also
be written as
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(b08) T is (d,<>;ϕ)-contractive: d(T x, Ty) ≤ ϕ(d(x, y)), ∀x, y ∈ X, x <> y.

The functions to be taken into consideration here are as follows. Remember that
ϕ ∈ F(R+) is (strongly) regressive, provided [ϕ(0) = 0 and ϕ(t) < t , ∀t ∈ R0+]. The
class of all these will be denoted as F(re)(R+); and the subclass of all increasing
ϕ(re)(R+) is indicated as F(re, in)(R+). Given ϕ ∈ F(re, in)(R+), let us say that it
is Matkowski (respectively, strongly Matkowski) admissible, provided

(b09) limn ϕ
n(t) = 0 (respectively,

∑
n ϕ

n(t) <∞), ∀t ∈ R0+.

Note that a strongly Matkowski admissible function is Matkowski admissible
as well; but the reciprocal is not in general true. These concepts are related to the
developments in Matkowski [24]; we do not give details.

(II-d) Finally, the continuity properties ofT are to be considered in the perspective
of conditions below:

(b10) T is d-continuous: xn
d−→ x implies T xn

d−→ T x

(b11) T is (d,≤ )-continuous: (xn) is ascending and xn
d−→ x implies T xn

d−→
T x.

Note that, the former of these implies the latter; but the reciprocal is not in general
true.

(B) Having these precise, we may now pass to the question we just formulated.
Our first main result is as follows.

Theorem 8 Assume that T is (d,≤;ϕ)-contractive, for some Matkowski admissible
ϕ ∈ F(re, in)(R+). In addition, let (X, d) be (≤ )-complete, (∼ ) be total, and T be
(≤ )-increasing, almost (≤ )-progressive, (d,≤ )-continuous. Then, T is a globally
strong Picard operator (modulo d); precisely,

(i) Fix(T ) = {z}, for some (uniquely determined) z ∈ X,

(ii) T nx
d−→ z as n→∞, for each x ∈ X.

Proof Let x, y ∈ X be arbitrary fixed. As (∼ ) is total, there exists a k-dimensional
(<> )-chain A = (z1, . . ., zk) ∈ Xk (where k ≥ 2) joining x and y. This, along with
T being (≤ )-increasing, yields for all n ≥ 0

T nzi <> T
nzi+1, ∀i ∈ {1, . . ., k − 1};

so that, T n(A) = (T nz1, . . ., T nzk) ∈ Xk is a k-dimensional ( <> )-chain joining
T nx and T ny. Moreover, by the contractive property, one gets (for the same n)

d(T nzi , T
nzi+1) ≤ ϕn(d(zi , zi+1)), ∀i ∈ {1, . . ., k − 1}.

Taking the triangular inequality into account, gives

d(T nx, T ny) ≤
k−1∑

i=1

ϕn(d(zi , zi+1)), ∀n ≥ 0.

As a direct consequence of this, one has, as ϕ is Matkowski admissible,

limn d(T nx, T ny) = 0, for each couple x, y ∈ X; (17)
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referred to as: T is asymptotic constant. In particular, this tells us that Fix(T ) is
a singleton; for, if z1, z2 ∈ Fix(T ), we have (by the above relation) d(z1, z2) = 0;
whence, z1 = z2. It remains to establish the strong Picard property (modulo d). The
argument will be divided into several parts.

Part 1 As T is almost (≤ )-progressive,X(T ,≤ ) is nonempty. Let x0 be an element
of it; and put (xn = T nx0; n ≥ 0); note that, as T is (≤ )-increasing, (xn; n ≥ 0) is
ascending. By the contractive property,

d(xn+1, xn+2) ≤ ϕ(d(xn, xn+1)), ∀n;

so that, inductively, we get (as ϕ is increasing)

d(xn, xn+1) ≤ ϕn(d(x0, x1)), ∀n.
Combining this with the Matkowski property of ϕ gives

d(xn, xn+1) → 0, as n→∞, (18)

which means (cf. a previous convention): (xn; n ≥ 0) is d-semi-Cauchy.

Part 2 Let us now establish that (xn; n ≥ 0) is d-Cauchy. Fix in the following ε > 0.
By the d-semi-Cauchy property above, there exists a rank j (ε) such that

d(xn, xn+1) < ε − ϕ(ε), ∀n ≥ j (ε). (19)

We now claim that

(∀p ≥ 1) : [d(xn, xn+p) < ε, ∀n ≥ j (ε)]; (20)

and, from this, the required property is clear. To verify the assertion, an induction
argument is to be used with respect to p. The case p = 1 is clear, by the d-semi-
Cauchy property of our sequence. Assume that the property in question holds for
some p ≥ 1; we show that it holds as well for p+ 1. From the inductive hypothesis
and contractive condition (applied to (xn, xn+p)), one gets (as ϕ is increasing)

d(xn+1, xn+p+1) ≤ ϕ(d(xn, xn+p)) ≤ ϕ(ε).

This, along with the triangular inequality, gives

d(xn, xn+p+1) ≤ d(xn, xn+1)+ d(xn+1, xn+p+1) ≤ ε − ϕ(ε)+ ϕ(ε) = ε;
and establishes our assertion.

Part 3 As (X, d) is (≤ )-complete, xn
d−→ z for some (uniquely determined) z ∈ X.

This, along with T being (d,≤ )-continuous, tells us that (yn := T xn; n ≥ 0), d-
converges towards T z. On the other hand, (yn = xn+1; n ≥ 0) is a subsequence of

(xn; n ≥ 0); whence, yn
d−→ z. Combining these, gives z = T z; wherefrom (by the

singleton property we just derived) Fix(T ) = {z}.
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Part 4 Finally, let x ∈ X be arbitrary fixed. By a preceding step, we have

lim
n
d(T nx, z) = lim

n
d(T nx, T nz) = 0;

wherefrom T nx
d−→ z. The proof is complete.

Remark 1 In particular, ( ∼ ) is total whenever (X,≤ ) is up-directed. For, let
x, y ∈ X be arbitrary fixed. As (X,≤ ) is up-directed, there exists u ∈ X such that
x ≤ u, y ≤ u. This yields x <> u, u <> y; wherefrom x ∼ y; so that, (∼ ) is total,
as claimed.

Concerning the imposed conditions, it is to be noted that the almost ( ≤ )-
progressive property of T is a pretty hard one; so, we may ask whether it may be
removed. An affirmative answer to this is possible; but with the price of the function
ϕ (appearing in the contractive assumption) being strongly Matkowski.

Precisely, the following variant of the statement above is available, as our second
main result:

Theorem 9 Assume that T is (d,<>;ϕ)-contractive, for some strongly Matkowski
admissible ϕ ∈ F(re, in)(R+). In addition, let (X, d) be complete, (∼ ) be total, and
T be (<> )-increasing, d-continuous. Then, T is a globally strong Picard operator
(modulo d).

Proof Let x, y ∈ X be arbitrary fixed. As (∼ ) is total, there exists a k-dimensional
( <> )-chain A = (z1, . . ., zk) ∈ Xk (where k ≥ 2) joining x and y. As T is
(<> )-increasing, we have, for all n ≥ 0

T nzi <> T
nzi+1, ∀i ∈ {1, . . ., k − 1};

so that, T n(A) = (T nz1, . . ., T nzk) ∈ Xk is a k-dimensional ( <> )-chain joining
T nx and T ny. Moreover, by the contractive property, one gets (for the same n)

d(T nzi , T
nzi+1) ≤ ϕn(d(zi , zi+1)), ∀i ∈ {1, . . ., k − 1}.

This, by the triangular inequality, yields

d(T nx, T ny) ≤
k−1∑

i=1

ϕn(d(zi , zi+1)), ∀n ≥ 0;

As a direct consequence of this, one has, as ϕ is strongly Matkowski admissible,

∑
n d(T nx, T ny) <∞, for each couple x, y ∈ X; (21)

referred to as: T is strongly asymptotic constant. In particular, T is asymptotic
constant (see above); wherefrom, by the same way as the one used in our first main
result, Fix(T ) is a singleton. It then remains for us to establish that T is a strong
Picard operator (modulo d).
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Let x ∈ X be arbitrary fixed. From the strong asymptotic constant property of T ,
we have (with y = T x) ∑

n

d(T nx, T n+1x) <∞;

wherefrom, the sequence (T nx; n ≥ 0) is d-Cauchy. As (X, d) is complete, T nx
d−→

z, for some z ∈ X; and since T is d-continuous, (T n+1x = T (T nx); n ≥ 0), d-
converges to T z. On the other hand the sequence (T n+1x; n ≥ 0) d-converges to
z; because, it is a subsequence of (T nx; n ≥ 0); and this yields (as d is sufficient)
z = T z; i.e. (see above) Fix(T ) = {z}. Finally, let y ∈ X be arbitrary fixed. From

the asymptotic constant property of T we then have T ny
d−→ z; and this ends the

argument.
Finally, the following combination of these is our third main result (useful in

applications):

Theorem 10 Assume that T is (d,≤;ϕ)-contractive, for some ϕ ∈ F(re, in)(R+).
In addition, let (X, d) be complete, (X,≤ ) be up-directed, and T be ( ≤ )-increasing,
d-continuous. Finally, assume that one of the extra conditions below holds:

(i) T is almost (≤ )-progressive and ϕ is Matkowski admissible
(ii) ϕ is strongly Matkowski admissible.
Then, T is a globally strong Picard operator (modulo d).
In particular, when ϕ is linear (ϕ(t) = αt , t ∈ R+, for some α ∈ ]0, 1[), these

results are directly comparable with the related ones in Turinici [42], established by
means of the Maia theorem [23].

2.3 Coupled Fixed Points

In the following, a basic application of these facts to coupled fixed point theorems
is discussed.

Let (X, d;≤ ) be a quasi-ordered metric space. Denote, for simplicity, X2 =
X × X; define a quasi-ordered metric structure and a conjugate map over it as: for
the pair z = (x, y), w = (u, v) in X2,

(c01) Δ(z, w) = max{d(x, u), d(y, v)}; z , w iff x ≤ u, y ≥ v; z∗ = (y, x).

The basic relationships between these are: for each z = (x, y) and w = (u, v) in
X2,

Δ(z, w) = Δ(z∗, w∗); z , w if and only if w∗ , z∗; (z∗)∗ = z. (22)

Having these precise, let F : X2 → X be a map; and Φ : X2 → X2 be the
associated coupled operator

(c02) Φ(z) = (F (z),F (z∗)), for z := (x, y) ∈ X2;
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note that it is compatible with the conjugation

Φ(z∗) = (Φ(z))∗, for each z ∈ X2. (23)

Further, let T : X → X be the diagonal operator generated by F , in the sense:
T (x) = F (x, x), x ∈ X. Denote, as usually, Fix(Φ) = {z ∈ X2; z = Φ(z)}; note that

z = (u, v) ∈ Fix(Φ) whenever u = F (u, v), v = F (v, u);

we then say that (u, v) is a coupled fixed point of F . As we shall see below, there
exists a very strong connection between the fixed points of T and the ones of Φ.
This, ultimately, allows us to determine Fix(T ) as long as we have information about
Fix(Φ).

Lemma 1 Under these conventions, we have
(i) Fix(Φ) is conjugation-invariant: c := (a, b) ∈ Fix(Φ) if and only if c∗ :=

(b, a) ∈ Fix(Φ)
(ii) if Fix(Φ) is a singleton, {c = (a, b)}, then a = b; hence, c = (a, a); moreover,

Fix(T ) = {a}.
Proof (i) Evident, by the compatible property.

(ii) From the previous part, c∗ = (b, a) ∈ Fix(Φ); and then, c = c∗; wherefrom,
a = b and Fix(Φ) = {(a, a)}. In this case, by definition, a ∈ Fix(T ). Suppose
that b ∈ Fix(T ). Then, again by definition, (b, b) ∈ Fix(Φ); so, by the above
representation of Fix(Φ), (a, a) = (b, b); wherefrom a = b. The proof is complete.

In the following, we list conditions under which an existence and uniqueness
property for the fixed points ofΦ is to be reached. These, by the auxiliary fact above,
yield an existence and uniqueness property for the associated to F diagonal operator
T . We distinguish between (I) conditions about (X2,Δ,, ) (expressed in terms of
(X, d,≤ )), and (II) conditions about Φ (expressed in terms of F ).

(I-a) Suppose that (X, d) is complete. Then, evidently, (X2,Δ) is complete too.
(I-b) Suppose that

(c03) (X,≤ ) is (up/down)-directed: for each x, y ∈ X, the subset {x, y} has
upper and lower bounds.

Note that, in this case (X2,, ) is up-directed. In fact, given z1 = (x1, y1), z2 =
(x2, y2) in X2, an upper bound (modulo ( , )) of {z1, z2} is w = (u, v); where u is an
upper bound of {x1, x2} and v is a lower bound of {y1, y2}; hence, the assertion.

(II-a) A basic condition about F is to be written as

(c04) F is mixed monotone: (x, y) , (u, v) implies F (x, y) ≤ F (u, v).

Note that, in such a situation,

Φis ( , )-increasing : (x, y) , (u, v) implies Φ(x, y) , Φ(u, v). (24)

In fact, let (x, y) and (u, v) in X2 be such that (x, y) , (u, v); i.e., x ≤ u, y ≥ v.
Then (by the mixed monotone property)

F (x, y) ≤ F (u, v), F (v, u) ≤ F (y, x) (hence, F (y, x) ≥ F (v, u));

and the claim follows.
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A simpler way of expressing this is the following. Let us say that the function F
is (1-increasing,2-decreasing), if it is increasing in the first variable and decreasing
in the second one:

∀(a, b) ∈ X2: F (., b) = increasing, F (a, .) = decreasing.

Lemma 2 The mapping F is mixed monotone iff it is (1-increasing,2-decreasing).

Proof (i) Assume that F is mixed monotone; and let (a, b) ∈ X2 be arbitrary fixed.
If x1 ≤ x2 then, as (x1, b) , (x2, b), we must have, by hypothesis F (x1, b) ≤
F (x2, b). Likewise, take y1, y2 ∈ X with y1 ≥ y2; then, as (a, y1) , (a, y2), one gets
F (a, y1) ≤ F (a, y2).

(ii)Assume thatF is (1-increasing,2-decreasing); and let (x1, y1), (x2, y2) inX2 be
such that (x1, y1) , (x2, y2); i.e., x1 ≤ x2, y1 ≥ y2. Then (by the admitted property),
F (x1, y1) ≤ F (x2, y1) ≤ F (x2, y2); and this ends the argument.

(II-b) Another basic condition imposed upon F may be written as

(c05) F has coupled starting points (u, v), in the sense: u ≤ F (u, v), v ≥ F (v, u).

Then, evidently, w = (u, v) is ( , )-starting for Φ, in the sense: w , Φ(w).
(II-c) Further, given ϕ ∈ F(re, in)(R+), call F , (d,,;ϕ)-contractive, provided

(c06) d(F (x, y),F (u, v)) ≤ ϕ(Δ((x, y), (u, v))), when (x, y) , (u, v).

A direct consequence of this is

Φ is (Δ,,;ϕ)− contractive :

Δ(Φ(x, y),Φ(u, v)) ≤ ϕ(Δ((x, y), (u, v))), when (x, y) , (u, v).
(25)

(II-d) Finally, suppose that F is (Δ, d)-continuous: zn
e−→ z implies F (zn)

d−→
F (z). Then, Φ is Δ-continuous: zn

e−→ z implies Φ(zn)
e−→ Φ(z).

Putting these together we have, by the third main result above (applied to (X2,
Δ,, ) and Φ):

Theorem 11 Assume that F is (d,,;ϕ)-contractive, for some ϕ ∈ F(re, in)(R+).
In addition, let (X, d) be complete, (X,≤ ) be (up/down)-directed, F be mixed
monotone, d-continuous. Finally, assume that one of the extra conditions below
holds:

(i) ϕ is Matkowski admissible and F admits coupled starting points
(ii) ϕ is strongly Matkowski admissible.
Then, the following conclusions are available:
(a) F has a unique coupled fixed point (a, a), with a ∈ X
(b) the associated to F diagonal operator T fulfills Fix(T ) = {a}; where a ∈ X

is the above one
(c) for each (x0, y0) ∈ X2, the iterative process

(xn+1 = F (xn, yn), yn+1 = F (yn, xn); n ≥ 0)

converges towards (a, a); whence, xn
d−→ a, yn

d−→ a.
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In particular, when the second extra condition above is taken as
(iii) ϕ is strongly Matkowski admissible and F admits coupled starting points,
this result is just the one in Bhaskar and Lakshmikantham [8]; if, in addition,

ϕ is linear. So, according to the authors, only mappings F with coupled starting
points may have coupled fixed points. However, as explicitly stated above, existence
of coupled starting points is superfluous when ϕ is strongly Matkowski admissible;
hence, all the more linear. Further aspects may be found in Berinde [5].

2.4 Monotone Operators

Let {(Xi , di ;≤i ); 1 ≤ i ≤ r} be a system of quasi-ordered metric spaces. Denote
X = ∏{Xi ; 1 ≤ i ≤ r} (the Cartesian product of the ambient sets); and put, for
x = (x1, . . ., xr) and y = (y1, . . ., yr ) in X

(d01) d(x, y) = max{d1(x1, y1), . . ., dr (xr , yr )},
(d02) x ≤ y iff xi ≤i yi , i ∈ {1, . . ., r}.
Clearly, d(., .) is a (standard) metric onX; and (≤ ) acts as a quasi-ordering over the

same. As a consequence of this, we may now introduce all previous conventions. Note
that, by the very definitions above, we have, for the sequence (xn = (xn1 , . . ., xnr ); n ≥
0) in X and the point x = (x1, . . ., xr) in X,

xn
d−→ x iff di(xni , xi) → 0 as n→∞, for all i ∈ {1, . . ., r} (26)

(xn; n ≥ 0) is d-Cauchy iff (xni ; n ≥ 0) is di-Cauchy, ∀i ∈ {1, . . ., r}. (27)

Let (Ti : X → Xi ; 1 ≤ i ≤ r) be a system of maps; it generates an associated
selfmap T of X, according to the convention

(d03) T x = (T1x, . . ., Trx), x = (x1, . . ., xr) ∈ X.

In the following, some basic monotone conditions upon this map are discussed.
(I) LetP be a subset of {1, . . ., r}; note that, the case ofP = ∅ orP = {1, . . ., r} is

not excluded; this is also true for its complementP c := {1, . . ., r}\P . For each couple
u = (u1, . . ., ur ), v = (v1, . . ., vr ) in X, let (u, v;P ) be the point w = (w1, . . ., wr ) ∈
X, introduced as

(d04) wh = uh, h ∈ P ; wk = vk , k ∈ P c.
The following property is almost immediate; so, we do not give details.

Lemma 3 The mapping (u, v) �→ (u, v;P ) is continuous in the sense

(xn = (xn1 , . . ., xnr )), (yn = (yn1 , . . ., ynr ))⊆X, x, y ∈ X,

xn
d−→ x, yn

d−→ y imply (xn, yn;P )
d−→ (x, y;P ).

(28)
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(B) Let i ∈ {1, . . ., r} be arbitrary fixed; and Pi be a subset of {1, . . ., r} (under
the general meaning above). Call Ti , Pi-monotone, provided:

(d05) for each pair (x, y), (u, v) ∈ X2 with x ≤ u, y ≥ v,
we have Ti(x, y;Pi) ≤i Ti(u, v;Pi).

A characterization of this concept may be given along the lines below. Define the
quasi-order ( /i ) over X, as: for each x = (x1, . . ., xr ), y = (y1, . . ., yr) in X,

(d06) x /i y iff: (xh ≤h yh, h ∈ Pi), (xk ≥k yk , k ∈ P ci ).

Call Ti , Pi-coupled-monotone, in case

(d07) x, y ∈ X, x /i y implies Ti(x) ≤i Ti(y).

Lemma 4 We have: Ti is Pi-monotone iff Ti is Pi-coupled-monotone.

Proof (i) Suppose that Ti is Pi-monotone; and let x, y ∈ X be such that x /i y.
This yields a := (x, y;Pi) ≤ b := (y, x;Pi); hence, b = (y, x;Pi) ≥ a = (x, y;Pi).
By the imposed condition, we have Ti(a, b;Pi) ≤i Ti(b, a;Pi); or, equivalently,
Ti(x) ≤i Ti(y); i.e., Ti is Pi-coupled-monotone.

(ii) Suppose that Ti is Pi-coupled-monotone; and let the pair (x, y), (u, v) ∈ X2 be
such that x ≤ u, y ≥ v. By definition, (x, y;Pi) /i (u, v;Pi); so that, by hypothesis,
Ti(x, y;Pi) ≤i Ti(u, v;Pi); wherefrom, Ti is Pi-monotone.

Another characterization of this property is by means of the component variables.
For each j ∈ {1, . . ., r}, let us say thatTi is j-increasing (resp., j-decreasing) provided,
for each a = (a1, . . ., ar) ∈ X,

(d08) x, y ∈ X, x ≤ y imply
Ti(x, a; {j}) ≤i Ti(y, a; {j}) (resp., Ti(x, a; {j}) ≥i Ti(y, a; {j});

or, equivalently, Ti is increasing (resp., decreasing) with respect to the j th variable.
If one of these properties holds, then Ti is called j -monotone; and if this is valid for
all j ∈ {1, . . ., r}, we say that Ti is component-wise monotone. Denote, in this last
case (for each i ∈ {1, . . ., r})

(d09) inc(Ti)={j ∈ {1, . . ., r}; Ti is j -increasing},
dec(Ti)={j ∈ {1, . . ., r}; Ti is j -decreasing}.

Proposition 2 The following are valid:
(i) If Ti is Pi-coupled monotone, then it is component-wise monotone, with Pi =

inc(Ti), P ci = dec(Ti)
(ii) If Ti is component-wise monotone, then it isPi-monotone, wherePi = inc(Ti).

Proof (i) Suppose that Ti is Pi-coupled-monotone; and let a ∈ X be fixed in the
sequel. Further, take some pair x, y ∈ X with x ≤ y. Given j ∈ Pi , the pair u =
(x, a; {j}), v = (y, a; {j}) in X fulfills u /i v; so that, by hypothesis, Ti(u) ≤i Ti(v);
wherefrom, Ti is j -increasing. Likewise, given j ∈ P ci , the pair u = (x, a; {j}),
v = (y, a; {j}) inX fulfills v /i u; so that, by hypothesis, Ti(v) ≤i Ti(u); wherefrom,
Ti is j -decreasing.
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(ii) Suppose that Ti is component-wise monotone; and denote Pi = inc(Ti). We
show that, for each a ∈ X,

x ≤ y�⇒Ti(x, a;Pi) ≤i Ti(y, a;Pi)

x ≥ y�⇒Ti(a, x;Pi) ≤i Ti(a, y;Pi);
(29)

and, from this, conclusion follows as: for each pair (x, y), (u, v) ∈ X2,

(x ≤ u, y ≥ v)�⇒Ti(x, y;Pi) ≤ Ti(u, y;Pi) ≤ Ti(u, v;Pi).

By duality reasons, it will suffice verifying its first half. Let Pi = {m1, . . .,mq}
be the representation of this index set, where m1 < . . . < mq ; and let x, y ∈ X be
such that x ≤ y. Denote u0 = (x, a;Pi); clearly, u0 = (x, u0; {m1}). So, if we put
u1 = (y, u0; {m1}), the component-wise property above gives (by the definition of
Pi) Ti(u0) ≤i Ti(u1). Further, u1 = (x, u1; {m2}); so, if we put u2 = (y, u1; {m2}), the
same component-wise property above gives (by the definition ofPi)Ti(u1) ≤i Ti(u2).
By a finite induction it is clear that, after q steps, one gets the desired fact.

2.5 Main Result

Let {(Xi , di ;≤i ); 1 ≤ i ≤ r} be a system of quasi-ordered metric spaces. Denoting
X = ∏{Xi ; 1 ≤ i ≤ r}, let us introduce a “product” metric d(., .) over X and
a “product” quasi-order ( ≤ ) over the same under the lines we already sketched.
Further, put X2 = X × X; remember that a quasi-ordered metrical structure and a
conjugate operator over it are to be introduced as: for z = (x, y), w = (u, v) in X2

Δ(z, w) = max{d(x, u), d(y, v)}; z , w iff x ≤ u, y ≥ v; z∗ = (y, x).

Further, let (Ti : X → Xi ; 1 ≤ i ≤ r) be a system of maps; it generates an
associated selfmap T of X, under the convention

T x = (T1x, . . ., Trx), x = (x1, . . ., xr ) ∈ X.

In the following, we list the conditions to be imposed upon our data. These,
roughly speaking, are (I) conditions/properties involving the ambient spaces, and
(II) conditions/properties imposed upon the introduced operators.

The first group of conditions involves the ambient quasi-ordered metric spaces.
(I-a) Assume in the following that (Xi , di) is complete, ∀i ∈ {1, . . ., r}. Note that,

in such a case, (X, d) and (X2,Δ) are complete too.
(I-b) Suppose that

(e01) for each i ∈ {1, . . ., r}, (Xi ,≤i ) is (up/down)-directed: for each xi , yi ∈ X,
{xi , yi} has upper and lower bounds (modulo ( ≤i )).

Then, by definition, (X,≤ ) is (up/down)-directed; wherefrom, (X2,, ) is up-
directed.
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The second group of conditions refers to the system T = (T1, . . ., Tr ).
(II-a) A basic one is related to the monotonicity of our underlying system:

(e02) for each i ∈ {1, . . ., r}, there exists a subset Pi of {1, . . ., r}, such that Ti is
Pi-monotone;

the system of all such properties will be referred to as: T is (P1, . . .,Pr)-monotone.
Remember that this holds whenever Ti is component-wise monotone, for i ∈
{1, . . ., r}; it will suffice taking Pi = inc(Ti), i ∈ {1, . . ., r}. An important
consequence of the described fact is as follows. For each i ∈ {1, . . ., r}, denote

(e03) Fi(x, y) = Ti(x, y;Pi), x, y ∈ X.

This is a mapping in F(X2,Xi), endowed with the property (cf. the preceding
part)

(x, y), (u, v) ∈ X2, x ≤ u, y ≥ v�⇒Fi(x, y) ≤i Fi(u, v). (30)

Note that, as a consequence, the mapping in F(X2,X) introduced via

(e04) F (x, y) = (F1(x, y), . . .,Fr(x, y)), x, y ∈ X
is mixed monotone; i.e., (see above)

(x, y), (u, v) ∈ X2, x ≤ u, y ≥ v�⇒F (x, y) ≤ F (u, v). (31)

(II-b) Another basic condition to be considered upon T = (T1, . . ., Tr ) writes

(e05) T has (P1, . . .,Pr )-coupled starting points (u = (u1, . . ., ur ), v =
(v1, . . ., vr )), in the sense: ui ≤i Ti(u, v;Pi), vi ≥i Ti(v, u;Pi), for all i ∈
{1, . . ., r}.
Note that, in such a case, the associated map F admits (u, v) as coupled starting

point: u ≤ F (u, v), v ≥ F (v, u).
(II-c)A special condition upon T = (T1, . . ., Tr ) is of contractive type; there exists

ϕ ∈ F(re, in)(R+), such that

(e06) ∀i ∈ {1, . . ., r}: di(Ti(x), Ti(y)) ≤ ϕ(d(x, y)), ∀x, y ∈ X, x /i y;

referred to as: T is (P1, . . .,Pr ;ϕ)-contractive. Note that, as a direct consequence,
one has an evaluation like:

∀i ∈ {1, . . ., r} : di(Fi(z),Fi(w)) ≤ ϕ(Δ(z, w)), ∀z, w ∈ X2, z , w. (32)

Indeed, take some i ∈ {1, . . ., r}; and let (x, y), (u, v) ∈ X2 be such that (x, y) ,
(u, v). Then, (x, y;Pi) /i (u, v;Pi); so that, by the contractive hypothesis,

di(Fi(x, y),Fi(u, v)) ≤ ϕ(d((x, y;Pi), (u, v;Pi))) ≤ ϕ(Δ((x, y), (u, v)));

hence, the claim. Passing to the “vectorial” map F , it results from this that

d(F (z),F (w)) ≤ ϕ(Δ(z, w)), ∀z, w ∈ X2, z , w; (33)
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or, equivalently (see above): F is (d,,;ϕ)-contractive.
(II-d) Suppose that

(e07) for each i ∈ {1, . . ., r}, Ti is (d, di)-continuous (on X).

Note that, in such a case, by the continuity properties of the maps (x, y) �→ (x.y;P )
discussed in a previous place, one has

∀i ∈ {1, . . ., r}: Fi is (Δ, di)-continuous; so, F is (Δ, d)-continuous. (34)

(II-e) Finally, as a distinct consequence of these conventions, one has

Ti(x) = Fi(x, x), ∀i ∈ {1, . . ., r}; hence, T (x) = F (x, x); (35)

or, in other words: T is the diagonal operator attached to F .
Putting these together, we have (by the coupled fixed point result above):

Theorem 12 Suppose that, there exists a system of subsets (P1, . . .,Pr) in {1, . . ., r},
such that: T is (P1, . . .,Pr )-monotone and (P1, . . .,Pr ;ϕ)-contractive. for some ϕ ∈
F(re, in)(R+). In addition, let (Xi , di) be complete, (Xi ,≤i ) be (up/down)-directed,
and Ti be (d, di)-continuous, for each i ∈ {1, . . ., r}. Finally, assume that one of the
extra conditions below holds:

(i) ϕ is Matkowski admissible and T has (P1, . . .,Pr)-coupled starting points
(ii) ϕ is strongly Matkowski admissible.
Then, the following conclusions hold
(a) F has a unique coupled fixed point, (a, a) with a = (a1, . . ., ar) ∈ X
(b) the vectorial operator T fulfills Fix(T ) = {a}, where a ∈ X is as before
(c) for any couple x0 = (x0

1 , . . ., x0
r ) and y0 = (y0

1 , . . ., y0
r ) in X, the iterative

process (xn+1 = F (xn, yn), yn+1 = F (yn, xn); n ≥ 0) converges towards (a, a);

whence, xn
d−→ a, yn

d−→ a.
In particular, when the second extra condition is taken as
(iii) ϕ is strongly Matkowski admissible and T has (P1, . . .,Pr )-coupled starting

points,
this result is comparable with the one in Rus [36]. Precisely, according to the

author, the only mappings F for which a couple fixed point is to be reached are
those admitting at least one (P1, . . .,Pr)-coupled starting point. However, as explic-
itly stated above, the existence of such points is superfluous when ϕ is strongly
Matkowski admissible; hence, all the more linear (like in his example of boundary
value problem). Further aspects may be found in Rus [35].

2.6 An Application

Let (M , e,≤ ) be a quasi-ordered metric space. For technical reasons, the following
notations will be introduced:

(X1, d1,≤1 ) = (X2, d2,≤2 ) = (X3, d3,≤3 ) = (M , e,≤ );

X = X1 ×X2 ×X3 = M3,X2 = X ×X.
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According to these notations, let d be the “product” metric of (d1, d2, d3), and (≤ )
be the “product” quasi-order of ( ≤1,≤2,≤3 ). Also, let us endowX2 with the metric
Δ(., .) and the quasi-order ( , ) we just introduced.

Further, let J : M3 → M be a mapping. In the following, we are intending to
establish sufficient conditions under which the system of equations

x1 = J (x1, x2, x3), x2 = J (x2, x1, x3), x3 = J (x3, x2, x1) (36)

should have a (unique) solution a = (a1, a2, a3) ∈ X = M3; referred to as a tripled
fixed point of J . Clearly, this is nothing else than a fixed point of the vectorial operator
T = (T1, T2, T3) in F(X), introduced as: for each x = (x1, x2, x3) ∈ X,

(f01) T1(x) = J (x1, x2, x3), T2(x) = J (x2, x1, x3), T3(x) = J (x3, x2, x1).

To solve this problem, it will suffice applying the previous developments.
In the following, we list the conditions to be imposed upon our data; as well

as the associated properties. These, roughly speaking, are (I) conditions/properties
regarding the ambient spaces (in fact: conditions imposed upon (M , e,≤ )), and
(II) conditions/properties involving the introduced operators. (in fact: conditions
imposed upon J ).

Concerning the first group, we have two basic conditions.
(I-a) Suppose that

(f02) (M , e) is complete (each e-Cauchy sequence is e-convergent).

Note that, in this case, (Xi , di) is complete, for each i ∈ {1, 2, 3}. In addition, the
metric spaces (X, d) and (X2,Δ) are complete too.

(I-b) Suppose that

(f03) (M ,≤ ) is (up/down)-directed.

This yields, in a formal way: for each i ∈ {1, 2, 3}, (Xi ,≤i ) is (up/down)-directed.
Consequently, by the very definitions above, (X,≤ ) is (up/down)-directed and
(X2,, ) is up-directed.

We are now passing to the second group of conditions, related to the map J .
(II-a) The basic one involves the monotonicity of our underlying map:

(f04) J is 1-increasing, 2-decreasing, 3-increasing.

By the very definition of the associated maps (T1, T2, T3), one gets directly

T1 is 1-increasing, 2-decreasing, 3-increasing

T2 is 1-decreasing, 2-increasing, 3-increasing

T3 is 1-increasing, 2-decreasing, 3-increasing.

(37)

An important consequence of this is the following. Define the mappings F1, F2,
F3 in F(X2,M), according to: for each x = (x1, x2, x3), y = (y1, y2, y3) in X,
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(f05) F1(x, y) = T1(x1, y2, x3) = J (x1, y2, x3),
F2(x, y) = T2(y1, x2, x3) = J (x2, y1, x3),
F3(x, y) = T3(x1, y2, x3) = J (x3, y2, x1).

By the imposed properties, these maps fulfill

(x, y), (u, v) ∈ X2, x ≤ u, y ≥ v�⇒Fi(x, y) ≤i Fi(u, v), i ∈ {1, 2, 3}. (38)

This, in turn, tells us that the mapping in F ∈ F(X2,X) introduced as

(f06) F (x, y) = (F1(x, y),F2(x, y),F3(x, y)), x, y ∈ X
is mixed monotone. in the sense

(x, y), (u, v) ∈ X2, x ≤ u, y ≥ v�⇒F (x, y) ≤ F (u, v). (39)

(II-b) The second condition upon J is of (linear) contractive type: there exists
α ∈ ]0, 1[ such that

(f07) e(J (x), J (y)) ≤ αd(x, y), for each
x = (x1, x2, x3), y = (y1, y2, y3) in X with x1 ≤ y1, x2 ≥ y2, x3 ≤ y3.

Then, we have contractive properties for the maps T1,T2, T3, expressed as: for
each x = (x1, x2, x3), y = (y1, y2, y3) in X,

e(T1(x), T1(y)) ≤ αd(x, y), whenever x1 ≤ y1, x2 ≥ y2, x3 ≤ y3

e(T2(x), T2(y)) ≤ αd(x, y), whenever x1 ≥ y1, x2 ≤ y2, x3 ≤ y3

e(T3(x), T3(y)) ≤ αd(x, y), whenever x1 ≤ y1, x2 ≥ y2, x3 ≤ y3.

(40)

This yields corresponding contractive properties for the mappings F1, F2, F3, and
F = (F1,F2,F3); we do not give details.

(II-c) The third condition is continuity:

(f08) J is continuous from X = M3 toM .

Note that, in such a case, the maps T1, T2, T3 are continuous; in addition, the maps
F1, F2, F3 and F = (F1,F2,F3) are continuous too.

(II-d) Finally, as a distinct consequence of these, one has the diagonal property:

Ti(x) = Fi(x, x), ∀i ∈ {1, 2, 3}; hence, T (x) = F (x, x); (41)

or, in other words: T is the diagonal operator attached to F .
Putting these together, we have (via Theorem 12 above):

Theorem 13 Assume that conditions (f02)–(f04) and (f07)–(f08) hold. Then,
(i) F has a unique coupled fixed point, (a, a) with a = (a1, a2, a3) ∈ X
(ii) the vectorial operator T fulfills Fix(T ) = {a}, where a ∈ X is as before
(iii) for each couple x0 = (x0

1 , x0
2 , x0

3 ) and y0 = (y0
1 , y0

2 , y0
3 ) in X, the iterative

process (xn+1 = F (xn, yn), yn+1 = F (yn, xn); n ≥ 0) converges towards (a, a); so

that, necessarily, xn
d−→ a, yn

d−→ a.



Contractive Operators in Relational Metric Spaces 443

In particular, when in addition,

(f09) there exists a couple x0 = (x0
1 , x0

2 , x0
3 ) and y0 = (y0

1 , y0
2 , t03 ) in X,

with x0 ≤ F (x0, y0), y0 ≥ F (y0, x0),

this result is deductible from the one in Rus [36]. Further aspects may be found in
Turinici [43].

3 Relational Metric Spaces

3.1 Introduction

Let X be a nonempty set. Remember that the subset Y of X is almost-singleton
(in short: asingleton) provided y1, y2 ∈ Y implies y1 = y2; and singleton, if, in
addition, Y is nonempty; note that, in this case, Y = {y}, for some y ∈ X. Take
a metric d : X × X → R+ over X; as well as a selfmap T ∈ F(X). Denote
Fix(T ) = {x ∈ X; x = T x}; each point of this set is referred to as fixed under T .
Concerning the existence and uniqueness of such points, a basic result is the 1922
one due to Banach [2]. Call the selfmap T , (d;α)-contractive (where α ≥ 0), if

(a01) d(T x, Ty) ≤ αd(x, y), for all x, y ∈ X.

Theorem 14 Assume that T is (d;α)-contractive, for some α ∈ [0, 1[. In addition,
let (X, d) be complete. Then,

(i) Fix(T ) is a singleton, {z}
(ii) T nx

d−→ z as n→∞, for each x ∈ X.
This result (referred to as: Banach’s fixed point theorem) found some basic ap-

plications to the operator equations theory. Consequently, a multitude of extensions
for it were proposed. Here, we shall be interested in the relational way of enlarging
Theorem 14, based on contractive conditions like

(a02) F (d(T x, Ty), d(x, y), d(x, T x), d(y, Ty), d(x, Ty), d(y, T x)) ≤ 0,
for all x, y ∈ X with xRy;

where F : R6+ → R is a function and R is a relation over X. Note that, when
R = X × X (the trivial relation over X), a large list of such contractive maps is
provided in Rhoades [33]. Further, when R is an order onX, an early 1986 result was
obtained by Turinici [41], in the realm of ordered metrizable uniform spaces. Two
decades after, this fixed point statement was rediscovered (in the ordered metrical
setting) by Ran and Reurings [32]; see also Nieto and Rodriguez-Lopez [28]; and,
since then, the number of such results increased rapidly. On the other hand, when R
is an amorphous relation over X, an appropriate statement of this type is the 2012
one due to Samet and Turinici [37]. The “intermediary” particular case of R being
finitely transitive was recently obtained by Karapinar and Berzig [18], under a class
of (αψ ,βϕ)-contractive conditions suggested by Popescu [31]. It is our aim in the
following to give further extensions of these results, when
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(i) the contractive conditions are taken after the model in Meir and Keeler [26]
(ii) the finite transitivity of R is being assured in a “local” way.
Further aspects occasioned by these developments will be also discussed.

3.2 Preliminaries

Throughout this exposition, the ambient axiomatic system is Zermelo–Fraenkel’s
(abbreviated: (ZF)), as described by Cohen [11, Chap. 2, Sect. 3]. In fact, the
reduced system (ZF–AC) will suffice; here, (AC) stands for the Axiom of Choice.
The notations and basic facts about these are more or less usual. Some important
ones are described below.

(A) Let X be a nonempty set. By a relation over X, we mean any nonempty part
R⊆X × X. For simplicity, we sometimes write (x, y) ∈ R as xRy. Note that R
may be regarded as a mapping betweenX and P(X) (=the class of all subsets inX).
Precisely, denote for x ∈ X: X(x, R) = {y ∈ X; xRy} (the section of R through
x); then, the desired mapping representation is [R(x) = X(x, R), x ∈ X].

Among the classes of relations to be used, the following ones (listed in a
“decreasing” scale) are important for us:

(P0) R is trivial; i.e., R = X ×X; note that, in this case, xRy, ∀x, y ∈ X
(P1) R is an order; i.e., it is reflexive [xRx, ∀x ∈ X], transitive [xRy and yRz
imply xRz] and antisymmetric [xRy and yRx imply x = y]
(P2) R is a quasi-order; i.e., it is reflexive and transitive
(P3) R is transitive (see above).

A basic ordered structure is (N ,≤ ); here, N = {0, 1, . . .} is the set of natural
numbers and (≤ ) is defined as: m ≤ n iff m + p = n, for some p ∈ N . For each
natural number n ≥ 1, let N (n,> ) := {0, . . ., n − 1} stand for the initial interval
(in N ) induced by n. Any set P with P ∼ N (in the sense: there exists a bijection
from P to N ) will be referred to as effectively denumerable. In addition, given some
natural number n ≥ 1, any setQwithQ ∼ N (n,> ) will be said to be n-finite; when
n is generic here, we say that Q is finite. Finally, the (nonempty) set Y is called (at
most) denumerable iff it is either effectively denumerable or finite.

Given the relations R, S over X, define their product R ◦ S as

(b01) (x, z) ∈ R ◦ S if, there exists y ∈ X with (x, y) ∈ R, (y, z) ∈ S.

This allows us to introduce the powers of a relation R as

(b02) R0 = I, Rn+1 = Rn ◦R, n ∈ N .

(Here, I = {(x, x); x ∈ X} is the identical relation over X). The following
properties of these will be useful in the sequel:

Rm+n = Rm ◦Rn, (Rm)n = Rmn, ∀m, n ∈ N. (42)
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Given k ≥ 2, let us say that R is k-transitive provided Rk⊆R; clearly, transitive
is identical with 2-transitive. We may now complete the decreasing scale above as

(P4) R is finitely transitive; i.e., R is k-transitive for some k ≥ 2
(P5) R is locally finitely transitive; i.e., for each (effectively) denumerable subset
Y ofX, there exists k = k(Y ) ≥ 2, such that the restriction toY ofR is k-transitive.
(P6) R is amorphous; i.e., it has no specific properties at all.

(B) Let (X, d) be a metric space. We introduce a d-convergence and d-Cauchy
structure on X as follows. By a sequence in X, we mean any mapping x : N → X.
For simplicity reasons, it will be useful to denote it as (x(n); n ≥ 0), or (xn; n ≥ 0);
moreover, when no confusion can arise, we further simplify this notation as (x(n))
or (xn), respectively. Also, any sequence (yn := xi(n); n ≥ 0) with i(n) → ∞ as
n→∞ will be referred to as a subsequence of (xn; n ≥ 0). Given the sequence (xn)

in X and the point x ∈ X, we say that (xn), d-converges to x (written as: xn
d−→ x)

provided d(xn, x) → 0 as n→∞; i.e.,

∀ε > 0, ∃i = i(ε) : i ≤ n�⇒d(xn, x) < ε.

The set of all such points x will be denoted limn (xn); note that, it is an asingleton,
because d is triangular. If limn (xn) is nonempty, then (xn) is called d-convergent.

We stress that the introduced convergence concept (
d−→ ) does match the standard

requirements in Kasahara [19]. Further, call the sequence (xn), d-Cauchy when
d(xm, xn) → 0 as m, n→∞, m < n; i.e.,

∀ε > 0, ∃j = j (ε) : j ≤ m < n�⇒d(xm, xn) < ε.

As d is triangular, any d-convergent sequence is d-Cauchy too; but, the reciprocal
is not in general true.

The introduced concepts allow us to give a useful property.

Lemma 5 The mapping (x, y) �→ d(x, y) is d-Lipschitz, in the sense

|d(x, y)− d(u, v)| ≤ d(x, u)+ d(y, v), ∀(x, y), (u, v) ∈ X ×X. (43)

As a consequence, this map is d-continuous; i.e.,

xn
d−→ x, yn

d−→ y imply d(xn, yn) → d(x, y). (44)

The verification is by using the triangular property of d; we do not give details.
(C) Let (X, d) be a metric space; and R⊆X × X be a (nonempty) relation over

X; the triple (X, d, R) will be referred to as a relational metric space. Further,
take some T ∈ F(X). Call the subset Y of X, R-almost-singleton (in short: R-
asingleton) provided y1, y2 ∈ Y , y1Ry2 �⇒ y1 = y2; and R-singleton when, in
addition, Y is nonempty. We have to determine circumstances under which Fix(T )
be nonempty; and, if this holds, to establish whether T is fix-R-asingleton (i.e.,
Fix(T ) is R-asingleton); or, equivalently T is fix-R-singleton (in the sense, Fix(T )
is R-singleton); To do this, we start from the basic hypotheses
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(b03) T is R-semi-progressive: X(T , R) := {x ∈ X; xRT x}�= ∅
(b04) T is R-increasing: xRy implies T xRTy.

In this setting, the basic directions under which the investigations to be conducted
are described in the list below, comparable with the one in Turinici [42] (see also
Rus [34, Chap. 2, Sect. 2.2]):

(2a) We say that T is a Picard operator (modulo (d, R)) if, for each x ∈ X(T , R),
(T nx; n ≥ 0) is d-convergent

(2b) We say that T is a strong Picard operator (modulo (d, R)) when, for each
x ∈ X(T , R), (T nx; n ≥ 0) is d-convergent; and limn (T nx) belongs to Fix(T )

(2c) We say that T is a globally strong Picard operator (modulo (d, R)) when
it is a strong Picard operator (modulo (d, R)) and T is fix-R-asingleton (hence,
fix-R-singleton).

The sufficient (regularity) conditions for such properties are being founded on
ascending orbital concepts (in short: (a-o)-concepts). Namely, call the sequence
(zn; n ≥ 0) in X, R-ascending, if ziRzi+1 for all i ≥ 0; and T -orbital, when it is a
subsequence of (T nx; n ≥ 0), for some x ∈ X; the intersection of these notions is
just the precise one.

(2d) Call (X, d), (a-o)-complete, provided (for each (a-o)-sequence) d-Cauchy
�⇒ d-convergent

(2e) We say that T is (a−o, d)-continuous, if ((zn)=(a-o)-sequence and zn
d−→ z)

imply T zn
d−→ T z

(2f) Call R, (a−o, d)-almost-selfclosed, if: whenever the (a-o)-sequence (zn; n ≥
0) in X and the point z ∈ X fulfill zn

d−→ z, there exists a subsequence (wn :=
zi(n); n ≥ 0) of (zn; n ≥ 0) with wnRz, for all n ≥ 0.

When the orbital properties are ignored, these conventions give us ascending
notions (in short, a-notions). Precisely, call (X, d), a-complete, provided (for each a-
sequence)d-Cauchy�⇒d-convergent. Further, let us say thatT is (a, d)-continuous,

if ((zn)= a-sequence and zn
d−→ z) imply T zn

d−→ T z. Finally, call R, (a, d)-almost-
self-closed, if: whenever the a-sequence (zn; n ≥ 0) in X and the point z ∈ X fulfill

zn
d−→ z, there exists a subsequence (wn; n ≥ 0) of (zn; n ≥ 0) with wnRz, for all

n ≥ 0.
Concerning these properties, the following auxiliary fact is useful for us.

Lemma 6 Let the R-ascending sequence (zn; n ≥ 0) inX, and the natural number
k ≥ 2, be such that

(b05) R is k-transitive on the subset Z := {zn; n ≥ 0}.
Then, necessarily,

(∀r ≥ 0) : [(zi , zi+1+r(k−1)) ∈ R, ∀i ≥ 0]. (45)

Proof We make use of an induction argument with respect to r . First, by the
R-ascending property, (zi , zi+1) ∈ R, ∀i ≥ 0; whence, the case of r = 0 holds.
Moreover, again from our choice, (zi , zi+k) ∈ Rk ; and this, along with the k-transitive
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property, gives (zi , zi+k) ∈ R; hence, the case of r = 1 holds too. Suppose that this
property holds for some r ≥ 1; we claim that it holds as well for r + 1. In fact, given
i ≥ 0, the R-ascending property gives (zi+1+r(k−1), zi+1+(r+1)(k−1)) ∈ Rk−1; so that,
by the inductive hypothesis (and properties of relational product)

(zi , zi+1+(r+1)(k−1)) ∈ R ◦Rk−1 = Rk;

and this, along with the k-transitive condition, yields (zi , zi+1+(r+1)(k−1)) ∈ R. The
proof is thereby complete.

3.3 Meir–Keeler Contractions

Let (X, d, R) be a relational metric space; and T be a selfmap of X; supposed to be
R-semi-progressive and R-increasing. The basic directions and sufficient regularity
conditions under which the problem of determining the fixed points of T be solved
were already listed. As a completion of them, we must formulate the metrical con-
tractive type conditions upon our data. These, essentially, consist in a “relational”
variant of the Meir–Keeler condition [26]. Denote, for x, y ∈ X:

H (x, y) = max{d(x, T x), d(y, Ty)}, L(x, y) = (1/2)[d(x, Ty)+ d(T x, y)],
G1(x, y) = d(x, y), G2(x, y) = max{G1(x, y),H (x, y)},
G3(x, y) = max{G2(x, y),L(x, y)} = max{G1(x, y),H (x, y),L(x, y)}.
Given G ∈ {G1,G2,G3}, we say that T is Meir–Keeler (d, R;G)-contractive, if

(c01) [xRy, G(x, y) > 0] implies d(T x, Ty) < G(x, y)
(T is strictly (d, R;G)-nonexpansive)
(c02) ∀ε > 0, ∃δ > 0: [xRy, ε < G(x, y) < ε + δ] �⇒ d(T x, Ty) ≤ ε
(T has the Meir–Keeler property).

Note that, by the former of these, the Meir–Keeler property may be written as

(c03) ∀ε > 0, ∃δ > 0: [xRy, 0 < G(x, y) < ε + δ] �⇒ d(T x, Ty) ≤ ε.
In the following, two basic examples of such contractions will be given.
(A) Let F(re)(R+) stand for the class of allϕ ∈ F(R+) with the (strong) regressive

property: [ϕ(0) = 0; ϕ(t) < t , ∀t > 0]. We say that ϕ ∈ F(re)(R+) is Meir–Keeler
admissible, if

(c04) ∀γ > 0, ∃β ∈ ]0, γ [, (∀t): γ ≤ t < γ + β�⇒ϕ(t) ≤ γ ;
or, equivalently: ∀γ > 0, ∃β ∈ ]0, γ [, (∀t): 0 ≤ t < γ + β�⇒ϕ(t) ≤ γ .

Now, given G ∈ {G1,G2,G3}, ϕ ∈ F(R+), call T , (d, R;G,ϕ)-contractive, if

(c05) d(T x, Ty) ≤ ϕ(G(x, y)), ∀x, y ∈ X, xRy.

Lemma 7 Assume that T is (d, R;G,ϕ)-contractive, where ϕ ∈ F(re)(R+) is
Meir–Keeler admissible. Then, T is Meir–Keeler (d, R;G)-contractive.
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Proof (i) Let x, y ∈ X be such that xRy andG(x, y) > 0. The contractive condition,
and (ϕ = regressive), yield d(T x, Ty) < G(x, y); so that, the first part of the Meir–
Keeler contractive condition holds.

(ii) Let ε > 0 be arbitrary fixed; and δ ∈ ]0, ε[ be the number assured by the
Meir–Keeler admissible property of ϕ. Further, let x, y ∈ X be such that xRy and
ε < G(x, y) < ε + δ. By the contractive condition and admissible property,

d(T x, Ty) ≤ ϕ(G(x, y)) ≤ ε;
so that, the second part of the Meir–Keeler contractive condition holds too.

Some important classes of such functions are given below.
(I) For any ϕ ∈ F(re)(R+) and any s ∈ R0+, put

(c06) Λ+ϕ(s) = infε>0Φ(s + )(ε); where Φ(s + )(ε) = supϕ(]s, s + ε[);
(c07) Λ+ϕ(s) = sup{ϕ(s),Λ+ϕ(s)}.
By this very definition, we have the representation (for all s ∈ R0+)

Λ+ϕ(s) = infε>0Φ[s + ](ε); where Φ[s + ](ε) = sup{ϕ([s, s + ε[). (46)

From the regressive property of ϕ, these limit quantities are finite; precisely,

0 ≤ ϕ(s) ≤ Λ+ϕ(s) ≤ s, ∀s ∈ R0
+. (47)

The following consequence of this will be useful. Remember that, given the
sequence (rn; n ≥ 0) in R and the point r ∈ R, we denoted

rn → r+ (respectively, rn → r ++), if rn → r and
rn ≥ r (respectively, rn > r), for all n ≥ 0 large enough.

Lemma 8 Let ϕ ∈ F(re)(R+) and s ∈ R0+ be arbitrary fixed. Then,
(i) lim supn (ϕ(tn)) ≤ Λ+ϕ(s), for each sequence (tn) inR0+ with tn → s+; hence,

in particular, for each sequence (tn) in R0+ with tn → s ++
(ii) there exists a sequence (rn) in R0+ with rn → s+ and ϕ(rn) → Λ+ϕ(s).

Proof (i) Given ε > 0, there exists a rank p(ε) ≥ 0 such that s ≤ tn < s+ ε, for all
n ≥ p(ε); hence

lim sup
n

(ϕ(tn)) ≤ sup{ϕ(tn); n ≥ p(ε)} ≤ Φ[s + ](ε).

It suffices taking the infimum over ε > 0 in this relation to get the desired fact.
(ii) When Λ+ϕ(s) = 0, the written conclusion is clear, with (rn = s; n ≥ 0); for,

in this case, ϕ(s) = 0. Suppose now that Λ+ϕ(s) > 0. By definition,

∀ε ∈ ]0,Λ+ϕ(s)[, ∃δ ∈ ]0, ε[ : Λ+ϕ(s)−ε < Λ+ϕ(s) ≤ Φ[s+](δ) < Λ+ϕ(s)+ε.
This tells us that there must be some r in [s, s + δ[ with

Λ+ϕ(s)− ε < ϕ(r) < Λ+ϕ(s)+ ε.
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Taking a sequence (εn) in ]0,Λ+ϕ(s)[ with εn → 0, there exists a corresponding
sequence (rn) in R0+ with rn → s+ and ϕ(rn) → Λ+ϕ(s).

Call ϕ ∈ F(re)(R+), Boyd–Wong admissible, if

(c08) Λ+ϕ(s) < s (or, equivalently: Λ+ϕ(s) < s), for all s > 0.

(This convention is related to the developments in Boyd and Wong [10]; we do
not give details). In particular, ϕ ∈ F(re)(R+) is Boyd–Wong admissible provided
it is upper semicontinuous at the right on R0+:

Λ+ϕ(s) = ϕ(s), (or, equivalently: Λ+ϕ(s) ≤ ϕ(s)), ∀s ∈ R0+.

Note that this is fulfilled when ϕ is continuous at the right on R0+; for, in such a
case, Λ+ϕ(s) = ϕ(s), ∀s ∈ R0+.

(II) Call ϕ ∈ F(re)(R+), Matkowski admissible [24], provided

(c09) ϕ is increasing and ϕn(t) → 0 as n→∞, for all t > 0.

(Here, ϕn stands for the nth iterate of ϕ). Note that the obtained class of functions
is distinct from the above introduced one, as simple examples show.

Now, let us say that ϕ ∈ F(re)(R+) is Boyd–Wong–Matkowski admissible (ab-
breviated: BWM-admissible) if it is either Boyd–Wong admissible or Matkowski
admissible. The following auxiliary fact will be useful (cf. Jachymski [16]):

Lemma 9 Let ϕ ∈ F(re)(R+) be a BWM-admissible function. Then, ϕ is Meir–
Keeler admissible (see above).

Proof (i) Suppose that ϕ ∈ F(re)(R+) is Boyd–Wong admissible; and let γ > 0;
hence, Λ+ϕ(γ ) < γ . Let the number η > 0 be such that Λ+ϕ(γ ) < η < γ . By
definition, there existsβ = β(η) > 0 such that γ ≤ t < γ+β implies ϕ(t) < η < γ .
On the other hand, if t < γ , then ϕ(t) ≤ t < γ ; and conclusion follows.

(ii) Assume that ϕ ∈ F(re)(R+) is Matkowski admissible. If the underlying
property fails, then (for some γ > 0):

∀β > 0, ∃t ∈ [0, γ + β[, such that ϕ(t) > γ (hence, γ < t < γ + β).

As ϕ is increasing, this yields ϕ(t) > γ , ∀t > γ . By induction, we get [ϕn(t) > γ ,
∀n, ∀t > γ ]; hence, taking some t > γ and passing to limit as n → ∞, one gets
0 ≥ γ ; contradiction. This ends the argument.

(B) Let us say that (ψ ,ϕ) is a pair of weak generalized altering functions in
F(R+), if it fulfills the following conditions

(c10) ψ is increasing and ϕ(0) = 0
(c11) (∀ε > 0): lim supn ϕ(tn) > ψ(ε + 0)− ψ(ε), whenever tn → ε ++
(c12) (∀ε > 0): ϕ(ε) > ψ(ε)− ψ(ε − 0).

A basic example of such couples is the following. Let us say that (ψ ,ϕ) is a pair
of generalized altering functions in F(R+), if

(c13) ψ is increasing continuous, ϕ(0) = 0, and [ϕ(t) > 0, ∀t > 0]
(c14) (∀ε > 0): lim supn ϕ(tn) > 0, whenever tn → ε ++.
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Lemma 10 Suppose that (ψ ,ϕ) is a pair of generalized altering functions in F(R+).
Then, (ψ ,ϕ) is a pair of weak generalized altering functions in F(R+).

Proof Assume that (ψ ,ϕ) is as in the premise above. By the continuity of ψ , (c11)
is just (c14). On the other hand, by the same reason, (c12) means: ϕ(ε) > 0, ∀ε > 0;
which is assured via (c13), and then, the conclusion follows.

Given G ∈ {G1,G2,G3} and the couple (ψ ,ϕ) of functions in F(R+), let us say
that T is (d, R;G, (ψ ,ϕ))-contractive, provided

(c15) ψ(d(T x, Ty)) ≤ ψ(G(x, y))− ϕ(G(x, y)), ∀x, y ∈ X, xRy.

Lemma 11 Suppose that T is (d, R;G, (ψ ,ϕ))-contractive, for a pair (ψ ,ϕ) of
weak generalized altering functions in F(R+). Then, T is Meir–Keeler (d, R;G)-
contractive (see above).

Proof (i) Let x, y ∈ X be such that xRy and G(x, y) > 0. Then, ϕ(G(x, y)) >
0; wherefrom ψ(d(T x, Ty)) < ψ(G(x, y)). This, via (ψ = increasing), yields
d(T x, Ty) < G(x, y); so, the first part of the Meir–Keeler contractive condition
holds.

(ii) Assume by contradiction that the second part of the Meir–Keeler contractive
condition fails, i.e., for some ε > 0,

∀δ > 0, ∃xδ , yδ ∈ X : [xδRyδ , ε < G(xδ, yδ) < ε + δ, d(T xδ , Tyδ) > ε].

Taking a zero converging sequence (δn) in R0+, we get a couple of sequences
(xn; n ≥ 0) and (yn; n ≥ 0) in X, so as

(∀n) : xnRyn, ε < G(xn, yn) < ε + δn, d(T xn, Tyn) > ε. (48)

By the contractive condition (and ψ = increasing), we get

ψ(ε) ≤ ψ(G(xn, yn))− ϕ(G(xn, yn)), ∀n;

or, equivalently,

ϕ(G(xn, yn)) ≤ ψ(G(xn, yn))− ψ(ε), ∀n. (49)

By (48), G(xn, yn) → ε ++; so that, passing to lim sup as n→∞,

lim sup
n

ϕ(G(xn, yn)) ≤ ψ(ε + 0)− ϕ(ε).

But, from the hypothesis about (ψ ,ϕ), these relations are contradictory. This ends
the argument.

3.4 Main Result

Let (X, d, R) be a relational metric space. Further, let T be a selfmap ofX; supposed
to be R-semi-progressive and R-increasing. The basic directions and sufficient reg-
ularity conditions under which the problem of determining the fixed points of T is
to be solved were already listed.



Contractive Operators in Relational Metric Spaces 451

The main result of this exposition is as follows.

Theorem 15 Assume that T is Meir–Keeler (d, R;G)-contractive, for some
G ∈ {G1,G2,G3}. In addition, let R be locally finitely transitive, (X, d) be
(a-o)-complete, and one of the following conditions hold:

(i) T is (a − o, d)-continuous
(ii) R is (a − o, d)-almost-selfclosed and G = G1

(iii) R is (a − o, d)-almost-selfclosed and T is (d, R;G,ϕ)-contractive, for a
certain Meir–Keeler admissible function ϕ ∈ F(re)(R+)

(iv) R is (a − o, d)-almost-selfclosed and T is (d, R;G, (ψ ,ϕ))-contractive, for
a certain pair (ψ ,ϕ) of weak generalized altering functions in F(R+).

Then T is a globally strong Picard operator (modulo (d, R)).

Proof First, we check the fix-R-asingleton property. Let z1, z2 ∈ Fix(T ) be such
that z1Rz2; and assume by contradiction that z1 �= z2; whence (by sufficiency),
d(z1, z2) > 0. From the very definitions above,

G1(z1, z2) = G2(z1, z2) = G3(z1, z2) = d(z1, z2).

This, along with the strict (d, R;G)-nonexpansive condition, yields

d(z1, z2) = d(T z1, T z2) < d(z1, z2);

contradiction; hence, the claim. It remains now to establish the strong Picard property
(modulo (d, R)). The argument will be divided into several steps.

Part 1 We first assert that

G(x, T x) = d(x, T x), whenever xRT x, x �= T x. (50)

The case G = G1 is clear; so, it remains to discuss the case G ∈ {G2,G3}. Let
x ∈ X be such that xRT x, x �= T x. By the strict (d, R;G)-nonexpansive property
of the selfmap T , we must have d(T x, T 2x) < G(x, T x). On the other hand, as

L(x, T x) = (1/2)[d(x, T 2x)+ d(T x, T x)] ≤ (1/2)[d(x, T x)+ d(T x, T 2x)] ≤
max{d(x, T x), d(T x, T 2x)} = H (x, T x),

it results that G2(x, T x) = G3(x, T x) = H (x, T x). This, along with

d(T x, T 2x) < H (x, T x)�⇒d(T x, T 2x) < d(x, T x)

�⇒H (x, T x) = d(x, T x),

gives the desired fact.

Part 2 Take some x0 ∈ X; and put (xn = T nx0; n ≥ 0). If xn = xn+1 for some
n ≥ 0, we are done; so, without loss, one may assume that

(d02) xn �= xn+1 (hence, ρn := d(xn, xn+1) > 0), ∀n.
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From the preceding part, we derive

ρn+1 = d(T xn, T xn+1) < G(xn, xn+1) = ρn, ∀n;

so that, the sequence (ρn; n ≥ 0) is strictly descending. As a consequence, ρ :=
limn ρn exists as an element of R+. Assume by contradiction that ρ > 0; and let
δ > 0 be the number given by the Meir–Keeler (d , R;G)-contractive condition upon
T . By definition, there exists a rank n(δ) such that n ≥ n(δ) implies ρ < ρn < ρ+δ;
hence (by a previous representation), ρ < G(xn, xn+1) = ρn < ρ + δ. This, by the
Meir–Keeler contractive condition we just quoted, yields (for the same n), ρn+1 =
d(T xn, T xn+1) ≤ ρ; contradiction. Hence, ρ = 0; so that,

d(xn, T xn) = d(xn, xn+1) → 0, as n→∞. (51)

Part 3 Suppose that

(d03) there exist i, j ∈ N such that i < j , xi = xj .
Denoting p = j − i, we thus have p > 0 and xi = xi+p; so that

xi = xi+np, xi+1 = xi+np+1, for all n ≥ 0.

By the introduced notations, we then have ρi = ρi+np, for all n ≥ 0. This, along
with ρi+np → 0 as n → ∞, yields ρi = 0; in contradiction with the initial choice
of (ρn; n ≥ 0). Hence, our working hypothesis cannot hold; wherefrom

for all i, j ∈ N : i �= j implies xi �= xj . (52)

Part 4 As a consequence of this, the map n �→ xn is injective; hence, Y := {xn; n ≥
0} is effectively denumerable. Denote by k := k(Y ) ≥ 2 the transitivity constant
of R over Y (assured by the choice of this relation). Further, let ε > 0 be arbitrary
fixed; and δ > 0 be the number associated by the Meir–Keeler (d, R;G)-contractive
property; without loss, one may assume that δ < ε. By a previous part, there exists
some rank n(δ) ≥ 0, such that

(∀n ≥ n(δ)) : d(xn, xn+1) < δ/4k; whence

d(xn, xn+h) < hδ/4k ≤ δ/4, ∀h ∈ {1, . . ., k}. (53)

(The second evaluation above follows at once by the triangular property). We
claim that the following relation holds

(∀s ≥ 1) : [d(xn, xn+s) < ε + δ/2, ∀n ≥ n(δ)]; (54)

wherefrom, (xn; n ≥ 0) is d-Cauchy. To do this, an induction argument upon s will
be used. The case s ∈ {1, . . ., k} is evident, by the preceding evaluation. Assume
that it holds for all s ∈ {1, . . .,p}, where p ≥ k; we must establish its validity for
s = p + 1; or, in other words,

d(xn, xn+p+1) < ε + δ/2, ∀n ≥ n(δ). (55)
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As p ≥ k (hence, p − 1 ≥ k − 1), we have

p − 1 = i(k − 1)+ j , for some i ≥ 1, j ∈ {0, . . ., k − 2}.
Denote for simplicity q = 1 + i(k − 1); hence, 2 ≤ k ≤ q ≤ p = q + j ;

in addition, by Lemma 6, xnRxn+q . From the inductive hypothesis, (53), and the
preceding part,

0 < d(xn, xn+q) < ε + δ/2 < ε + δ,
d(xn, xn+1), d(xn+q , xn+q+1) < δ/4k < ε + δ;

wherefrom (by definition), H (xn, xn+q) < ε + δ. On the other hand, from the same
premises (and the triangular inequality),

d(xn, xn+q+1) ≤ d(xn, xn+q)+ d(xn+q , xn+q+1) < ε + δ/2+ δ/4k,
d(xn+1, xn+q) = d(xn+1, xn+1+q−1) < ε + δ/2;

wherefrom (again by definition), L(xn, xn+q) < ε + δ; and, from this, one gets (in
any case) 0 < G(xn, xn+q) < ε + δ. Taking the Meir–Keeler (d, R;G)-contractive
property of T into account, gives

d(xn+1, xn+q+1) = d(T xn, T xn+q) ≤ ε;
so that, by the triangular inequality (and (53) again)

d(xn, xn+p+1) ≤ d(xn, xn+1)+ d(xn+1, xn+q+1)+ d(xn+q+1, xn+p+1)

≤ ε + δ/4k + jδ/4k < ε + δ/8+ δ/4 = ε + 3δ/8 < ε + δ/2;

and our claim follows.

Part 5 As (X, d) is (a-o)-complete, xn
d−→ z, for some (uniquely determined)

z ∈ X. If there exists a sequence of ranks (i(n); n ≥ 0) with i(n) →∞ as n→∞
such that xi(n) = z (hence, xi(n)+1 = T z) for all n, then, as (xi(n)+1; n ≥ 0) is a
subsequence of (xn; n ≥ 0), one gets z = T z; i.e., z ∈ Fix(T ). So, in the following,
we may assume that the opposite alternative is true:

(d04) ∃h ≥ 0: n ≥ h �⇒ xn �= z.

There are several cases to discuss.

Case 5a Suppose that T is (a − o, d)-continuous. Then, yn := T xn
d−→ T z as

n → ∞. On the other hand, (yn = xn+1; n≥ 0) is a subsequence of (xn); and this
yields (as d is sufficient), z = T z.
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Case 5b Suppose that R is (a−o, d)-almost-selfclosed. By definition, there exists a
subsequence (un := xi(n); n ≥ 0) of (xn; n ≥ 0), such that unRz, ∀n. As limn i(n) =
∞, one may arrange for i(n) ≥ n, ∀n; so, from the accepted condition,

i(n) ≥ h, ∀n ≥ h; whence un �= z, ∀n ≥ h. (56)

This, along with (T un = xi(n)+1; n ≥ 0) being as well a subsequence of (xn; n ≥
0), gives (via (53) and Lemma 5)

d(un, z), d(T un, z) → 0, d(un, T un) → 0,

d(un, T z) → d(z, T z), d(T un, T z) → d(z, T z);

whence,H (un, z) → d(z, T z),L(xn, z) → (1/2)d(z, T z).

(57)

Two alternatives must now be treated.

Alter 1 Suppose that G = G1. By the Meir–Keeler contractive condition,

d(T un, T z) < d(un, z), ∀n ≥ h;

hence, T un
d−→ T z. On the other hand, as (T un = xi(n)+1; n ≥ 0) is a subsequence

of (xn; n ≥ 0), we have T un
d−→ z. Combining these, gives (as d is sufficient),

z = T z; i.e., z ∈ Fix(T ).

Alter 2 Suppose that G ∈ {G2,G3}. If z �= T z, we must have b := d(z, T z) > 0.
The above convergence properties of (un; n ≥ 0) tell us that, for a certain rank
n(b) ≥ h, we must have

d(un, T un), d(un, z), d(T un, z) < b/2, ∀n ≥ n(b).

This, by the d-Lipschitz property of d(., .), gives

|d(un, T z)− b| ≤ d(un, z) < b/2, ∀n ≥ n(b),

wherefrom: b/2 < d(un, T z) < 3b/2, ∀n ≥ n(b). Combining these, yields

G(un, z) = b, ∀n ≥ n(b). (58)

Two sub-cases are now under discussion.

Alter 2a Suppose that T is (d, R;G,ϕ)-contractive, for a certain Meir–Keeler ad-
missible function ϕ ∈ F(re)(R+). The case G = G1 was already clarified; so,
assume that G ∈ {G2,G3}. By (58) and this contractive property,

d(T un, T z) ≤ ϕ(b), ∀n ≥ n(b).

Passing to limit as n→∞ gives (by (57) above) b ≤ ϕ(b); contradiction; hence,
z = T z; i.e., z ∈ Fix(T ).
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Alter 2b Suppose that T is (d, R;G, (ψ ,ϕ))-contractive, for a certain pair (ψ ,ϕ) of
weak generalized altering functions in F(R+). As before, the case G = G1 is clear;
so, assume that G ∈ {G2,G3}. By this contractive condition,

ψ(d(T un, T z)) ≤ ψ(G(un, z))− ϕ(G(un, z)), ∀n ≥ n(b);

or, equivalently (combining with (58) above)

0 < ϕ(b) ≤ ψ(b)− ψ(d(T un, T z)), ∀n ≥ n(b). (59)

Note that, as a consequence, d(T un, T z) < b, ∀n ≥ n(b). Passing to limit as
n → ∞ and taking (57) into account, yields ϕ(b) ≤ ψ(b) − ψ(b − 0). This,
however, contradicts the choice of the pair (ψ ,ϕ); so that, z = T z. The proof is
complete.

In particular, when T is (d, R;G1,ϕ)-contractive and ϕ ∈ F(re)(R+) is Boyd–
Wong admissible, our main result includes the cyclical fixed point theorem due to
Kirk et al. [21]. On the other hand, when R is transitive, this result is comparable
with the one in Turinici [42]. Note that, further extensions of these developments are
possible, in the realm of triangular symmetric spaces, taken as in Hicks and Rhoades
[13]; or, in the setting of partial metric spaces, introduced under the lines in Matthews
[25]; we do not give details.

3.5 Further Aspects

In the following, some basic particular cases of the main result are discussed. Tech-
nically speaking, there are three categories of such statements; according to the
alternatives of Theorem 15 we already listed.

Case 1 Let (X, d, R) be a relational metric space; and T be a selfmap of X. By
Theorem 15, we then get

Theorem 16 Assume thatT is R-semi-progressive, R-increasing, and Meir–Keeler
(d, R;G)-contractive, for some G ∈ {G1,G2,G3}. In addition, let R be finitely
transitive, (X, d) be (a-o)-complete and T be (a − o, d)-continuous. Then, T is a
globally strong Picard operator (modulo (d, R)).

In particular, let γ be a function in F(X×X,R+); and C stand for the associated
relation: [xCy iff γ (x, y) ≥ 1]. Then, if we take R := C and G = G1, this result
includes the one in Berzig and Rus [7].

Case 2 Let (X, d, R) be a relational metric space. Remember that ϕ ∈ F(re)(R+) is
BWM-admissible, when it is either Boyd–Wong admissible or Matkowski admissible.
Further, let T be a selfmap of X. As another consequence of Theorem 15, we have
the following statement (with practical value):

Theorem 17 Assume that T is R-semi-progressive, R-increasing, and
(d, R;G,ϕ)-contractive, for someG ∈ {G1,G2,G3} and a certain BWM-admissible
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function ϕ ∈ F(re)(R+). In addition, let R be finitely transitive, (X, d) be (a-o)-
complete (each d-Cauchy R-ascending T -orbital sequence in X is d-convergent),
and one of the conditions below holds:

(i1) T is (a−o, d)-continuous: for each R-ascending T -orbital sequence (xn; n ≥
0) in X with xn

d−→ x, we have T xn
d−→ T x

(i2) R is (a − o, d)-almost-selfclosed: whenever the R-ascending T -orbital se-

quence (zn; n ≥ 0) in X and the point z ∈ X fulfill zn
d−→ z, there exists a

subsequence (wn; n ≥ 0) of (zn; n ≥ 0) with wnRz, for all n ≥ 0.
Then T is a globally strong Picard operator (modulo (d, R)).
The following particular cases of this result are to be noted.
(a1) Suppose that R = X × X (= the trivial relation over X). Then, if G = G1,

Theorem 16 includes the Boyd–Wong’s result [10] whenϕ is Boyd–Wong admissible;
and, respectively, the Matkowski’s result [24] when ϕ is Matkowski admissible.
Moreover, when G = G3, Theorem 16 includes the result in Leader [22]; see also
Jachymski [15].

(a2) Suppose that R is an order on X. Then, if G ∈ {G1,G3}, Theorem 16
includes the results in Agarwal et al. [1]; see also O’Regan and Petruşel [29].

Case 3 Let again (X, d, R) be a relational metric space; and T be a selfmap of X.
As a final consequence of Theorem 15, we have the following

Theorem 18 Assume in the following that T is R-semi-progressive, R-increasing,
and (d, R;G, (ψ ,ϕ))-contractive, for a certain G ∈ {G1,G2,G3} and some pair
(ψ ,ϕ) of generalized altering functions in F(R+). In addition, let R be finitely
transitive, (X, d) be a-complete (each d-Cauchy R-ascending sequence in X is
d-convergent), and one of the conditions below holds:

(j1) T is (a, d)-continuous: for each R-ascending sequence, (xn; n ≥ 0) with

xn
d−→ x, we have T xn

d−→ T x.
(j2) R is (a, d)-almost-selfclosed: whenever the R-ascending sequence (zn; n ≥

0) in X and the point z ∈ X fulfill zn
d−→ z, there exists a subsequence (wn; n ≥ 0)

of (zn; n ≥ 0) with wnRz, for all n ≥ 0.
Then T is a globally strong Picard operator (modulo (d, R)).
In particular, let α,β be a couple of functions in F(X × X,R+); and A, B stand

for the associated relations

xAy iff α(x, y) ≤ 1; xBy iff β(x, y) ≥ 1.

Then, if we take R := A∩B andG = G1, this result includes the one in Karapinar
and Berzig [18], based on global contractive conditions like

(e02) ψ(d(T x, Ty)) ≤ α(x, y)ψ(d(x, y))− β(x, y)ϕ(d(x, y)), ∀x, y ∈ X;

referred to as: T is (αψ ,βϕ)-contractive. In fact, the quoted result (stated in terms
of ψ ∈ F(R+,R)) is not in general correct; because, a relation like

α(x, y) ≤ 1�⇒α(x, y)ψ(d(x, y)) ≤ ψ(d(x, y))
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is not true, as long as ψ(d(x, y)) < 0. But, when one assumes that ψ ∈ F(R+), the
reasoning above is retainable. In this perspective, note that the quoted statement is
an extension of the one in Samet et al. [38]; hence, so is Theorem 18 above. It is to
be stressed that none of these corollaries may be viewed as a genuine extension for
the fixed point statement in Samet and Turinici [37]; because, in the quoted result,
the ambient relation R is not subjected to any kind of transitive type requirements.
Further aspects (involving the same general setting) may be found in Berzig [6].
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Abstract In this chapter, using the methods of weight functions and technique of
real analysis, a half-discrete Hilbert-type inequality with a homogeneous kernel and
a best possible constant factor is provided. Some equivalent representations, two
types of reverses, the operator expressions as well as some particular examples are
obtained. Furthermore, we also consider some strengthened versions of half-discrete
Hilbert’s inequality relating to Euler constant, the related inequalities and operators
with the non-homogeneous kernel, and two kinds of compositions of two operators
in certain conditions.
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1 Introduction

Suppose that p > 1, 1
p
+ 1
q
= 1, f (x), g(y) ≥ 0, f ∈ Lp(R+), g ∈ Lq(R+), ||f ||p

= {∫∞0 f p(x)dx
} 1
p > 0, ||g||q > 0.We have the following Hardy–Hilbert’s integral

inequality (cf. [1]):
∫ ∞

0

∫ ∞

0

f (x)g(y)

x + y dxdy <
π

sin(π/p)
||f ||p||g||q , (1)

where the constant factor π
sin(π/p) is the best possible. If am, bn ≥ 0, a = {am}∞m=1 ∈

lp, b = {bn}∞n=1 ∈ lq , ||a||p =
{∑∞

m=1 a
p
m

} 1
p > 0, ||b||q > 0, then we have the
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following discrete Hardy–Hilbert’s inequality with the same best constant π
sin(π/p) (cf.

[1]):

∞∑

m=1

∞∑

n=1

ambn

m+ n <
π

sin(π/p)
||a||p||b||q . (2)

Inequalities (1) and (2) are important in analysis and its applications (cf. [1–6]).
In 1998, by introducing an independent parameter λ ∈ (0, 1], Yang [7] gave an

extension of (1) for p = q = 2. In 2009 and 2011, Yang [3, 4] gave some extensions
of (1) and (2) as follows: If λ1, λ2, λ ∈ R, λ1 + λ2 = λ, kλ(x, y) is a non-negative
homogeneous function of degree −λ, with

k(λ1) =
∫ ∞

0
kλ(t , 1)tλ1−1dt ∈ R+,

φ(x) = xp(1−λ1)−1,ψ(y) = yq(1−λ2)−1, f (x), g(y) ≥ 0,

f ∈ Lp,φ(R+) =
{

f ; ||f ||p,φ :=
{∫ ∞

0
φ(x)|f (x)|pdx

} 1
p

<∞
}

,

g ∈ Lq,ψ (R+), ||f ||p,φ , ||g||q,ψ > 0, then

∫ ∞

0

∫ ∞

0
kλ(x, y)f (x)g(y)dxdy < k(λ1)||f ||p,φ||g||q,ψ , (3)

where the constant factor k(λ1) is the best possible. Moreover, if kλ(x, y) is finite
and kλ(x, y)xλ1−1

(
kλ(x, y)yλ2−1

)
is decreasing with respect to x > 0(y > 0), then

for am,bn ≥ 0,

a ∈ lp,φ =
⎧
⎨

⎩
a; ||a||p,φ :=

{ ∞∑

n=1

φ(n)|an|p
} 1
p

<∞
⎫
⎬

⎭
,

b = {bn}∞n=1 ∈ lq,ψ , ||a||p,φ , ||b||q,ψ > 0, we have

∞∑

m=1

∞∑

n=1

kλ(m, n)ambn < k(λ1)||a||p,φ||b||q,ψ , (4)

where, the constant factor k(λ1) is still the best possible.
Clearly, for λ = 1, k1(x, y) = 1

x+y , λ1 = 1
q

, λ2 = 1
p

, (3) reduces to (1), while (4)
reduces to (2). Some other results including multi-dimensional Hilbert-type integral
inequalities are provided by [8–21].

About the topic of half-discrete Hilbert-type inequalities with the non-
homogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But
they did not prove that the constant factors are the best possible. However, Yang [22]
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gave a result with the kernel 1
(1+nx)λ by introducing a variable and proved that the con-

stant factor is the best possible. In 2011, Yang [23] gave the following half-discrete
Hardy-Hilbert’s inequality with the best possible constant factor B (λ1, λ2):

∫ ∞

0
f (x)

∞∑

n=1

an

(x + n)λ dx < B (λ1, λ2) ||f ||p,φ||a||q,ψ , (5)

where, λ1λ2 > 0, 0 ≤ λ2 ≤ 1, λ1 + λ2 = λ,

B (u, v) =
∫ ∞

0

1

(1+ t)u+v
tu−1dt(u, v > 0)

is the beta function. Zhong et al. [24–30] investigated several half-discrete Hilbert-
type inequalities with particular kernels.

Applying the way of weight functions and the techniques of discrete and in-
tegral Hilbert-type inequalities with some additional conditions on the kernel, a
half-discrete Hilbert-type inequality with a general homogeneous kernel of degree
−λ ∈ R and a best constant factor k (λ1) is obtained as follows:

∫ ∞

0
f (x)

∞∑

n=1

kλ(x, n)andx < k(λ1)||f ||p,φ ||a||q,ψ , (6)

which is an extension of (5) (see Yang and Chen [31]). At the same time, a half-
discrete Hilbert-type inequality with a general non-homogeneous kernel and a best
constant factor is given by Yang [32] .

Remark 1 (1) Many different kinds of Hilbert-type discrete, half-discrete and inte-
gral inequalities with applications are presented in recent 20 years. Special attention
is given to new results proved during 2009–2012. Included are many generaliza-
tions, extensions and refinements of Hilbert-type discrete, half-discrete and integral
inequalities involving many special functions such as Riemann zeta, beta, gamma,
hypergeometric, trigonometric, hyperbolic, zeta, Bernoulli functions, Bernoulli
numbers and Euler constant et al. The following references [33–41] provide an
extensive theory and applications of Analytic Number Theory that will provide a
source study for further research on Hilbert-type inequalities.

(2) In his five books, Yang [3–6, 42] presented many new results on Hilbert-type
operators with general homogeneous kernels of degree of real numbers and two pairs
of conjugate exponents as well as the related inequalities. These research monographs
contained recent developments of discrete, multiple half-discrete and integral types
of operators and inequalities with proofs, examples and applications.

In this chapter, using the methods of weight functions and technique of real
analysis, a half-discrete Hilbert-type inequality with a homogeneous kernel and a
best possible constant factor is provided. Some equivalent representations, two types
of reverses, the operator expressions as well as some particular examples are obtained.
Furthermore, we also consider some strengthened versions of half-discrete Hilbert’s
inequality relating to Euler constant, the related inequalities and operators with the
non-homogeneous kernel, and two kinds of compositions of two operators in certain
conditions.
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2 Half-Discrete Hilbert-Type Inequalities with the General
Homogeneous Kernel and Operator Expressions

In this section, we agree that p ∈ R\{0, 1}, 1
p
+ 1
q
= 1, λ, λ1, λ2 ∈ R, λ1 + λ2 = λ,

kλ(x, y)( ≥ 0) is a finite homogeneous function of degree −λ in R2
+, satisfying for

any u, x, y ∈ R+, kλ(ux, uy) = u−λkλ(x, y).

2.1 Lemmas and Some Equivalent Inequalities

Definition 1 For x ∈ R+, n ∈ N, define two weight functions ωλ(λ2, n) and
4λ(λ1, x) as follows:

ωλ (λ2, n) := nλ2

∫ ∞

0
kλ(x, n)

1

x1−λ1
dx, (7)

4λ(λ1, x) := xλ1

∞∑

n=1

kλ(x, n)
1

n1−λ2
. (8)

Setting u = x/n, we find

ωλ(λ2, n) = nλ2

∫ ∞

0
kλ(nu, n)

ndu

(nu)1−λ1

=
∫ ∞

0
kλ(u, 1)uλ1−1du. (9)

Lemma 1 If4λ(λ1, x) is finite for x ∈ R+, f (x), an ≥ 0, and

k(λ1) :=
∫ ∞

0
kλ(u, 1)uλ1−1du ∈ R+, (10)

then (i) for p > 1, we have the following inequality:

J1 :=
{ ∞∑

n=1

npλ2−1

(∫ ∞

0
kλ(x, n)f (x)dx

)p
} 1
p

≤ [k(λ1)]
1
q

{∫ ∞

0
4λ(λ1, x)xp(1−λ1)−1f p(x)dx

} 1
p

, (11)

J̃2 :=
{∫ ∞

0

xqλ1−1

[4λ(λ1, x)]q−1

( ∞∑

n=1

kλ(x, n)an

)q

dx

} 1
q

≤
{

k(λ1)
∞∑

n=1

nq(1−λ2)−1aqn

} 1
q

; (12)



Half-Discrete Hilbert-Type Inequalities, Operators and Compositions 463

(ii) for p < 0, or 0 < p < 1, we have the reverses of (11) and (12).

Proof (i) For p > 1, by Hölder’s inequality with weight (cf. [47]), it follows
∫ ∞

0
kλ(x, n)f (x)dx

=
∫ ∞

0
kλ(x, n)

[
x(1−λ1)/q

n(1−λ2)/p
f (x)

] [
n(1−λ2)/p

x(1−λ1)/q

]

dx

≤
{∫ ∞

0
kλ(x, n)

x(1−λ1)(p−1)

n1−λ2
f p(x)dx

} 1
p

×
{∫ ∞

0
kλ(x, n)

n(1−λ2)(q−1)

x1−λ1

} 1
q

= [ωλ(λ2, n)]
1
q n

1
p−λ2

{∫ ∞

0
kλ(x, n)

x(1−λ1)(p−1)

n1−λ2
f p(x)dx

} 1
p

. (13)

Then by Lebesgue term, by term integration theorem (cf. [43]), in view of (9), we
have

J1 ≤ [k(λ1)]
1
q

{ ∞∑

n=1

∫ ∞

0
kλ(x, n)

x(1−λ1)(p−1)

n1−λ2
f p(x)dx

} 1
p

= [k(λ1)]
1
q

{∫ ∞

0

∞∑

n=1

kλ(x, n)
x(1−λ1)(p−1)

n1−λ2
f p(x)dx

} 1
p

= [k(λ1)]
1
q

{∫ ∞

0
4λ(λ1, x)xp(1−λ1)−1f p(x)dx

} 1
p

. (14)

Hence, (11) follows.
By the same way as in obtaining (13), we obtain

∞∑

n=1

kλ(x, n)an ≤ [4λ(λ1, x)]
1
p x

1
q
−λ1

×
{ ∞∑

n=1

kλ(x, n)
n(1−λ2)(q−1)

x1−λ1
aqn

} 1
q

, (15)

then by Lebesgue term, by term integration theorem and the same way as in obtaining
(14), we have (12).

(ii) For p < 0, or 0 < p < 1, by the reverse Hölder’s inequality with weight
(cf. [47]), we obtain the reverses of (13) and (14). Then by Lebesgue term by term
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integration theorem, we still can obtain the reverses of (11) and (12). The lemma is
proved.

Lemma 2 As the assumptions of Lemma 1, then (i) forp > 1, we have the following
inequality equivalent to (11) and (12):

I :=
∞∑

n=1

∫ ∞

0
kλ(x, n)anf (x)dx

≤
{∫ ∞

0
4λ(λ1, x)xp(1−λ1)−1f p(x)dx

} 1
p

×
{

k(λ1)
∞∑

n=1

nq(1−λ2)−1aqn

} 1
q

; (16)

(ii) for p < 0 or 0 < p < 1, we have the reverse of (16) equivalent to the reverses
of (11) and (12).

Proof (i) For p > 1, by Hölder’s inequality (cf. [47]), it follows

I =
∞∑

n=1

n
1
q
−(1−λ2)

[∫ ∞

0
kλ(x, n)f (x)dx

] [
n

(1−λ2)− 1
q an

]

≤ J1

{ ∞∑

n=1

nq(1−λ2)−1aqn

} 1
q

. (17)

Then by (11), we have (16). On the other hand, assuming that (16) is valid, we set

bn := npλ2−1

(∫ ∞

0
kλ(x, n)f (x)dx

)p−1

, n ∈ N.

Then it follows Jp1 = ∑∞
n=1 n

q(1−λ2)−1a
q
n . If J1 = 0, then (11) is trivially valid;

if J1 = ∞, then by (14), (11) keeps the form of equality (= ∞). Suppose that
0 < J1 <∞. By (16), we have

0 <
∞∑

n=1

nq(1−λ2)−1aqn = Jp1 = I

≤
{∫ ∞

0
4λ(λ1, x)xp(1−λ1)−1f p(x)dx

} 1
p

×
{

k(λ1)
∞∑

n=1

nq(1−λ2)−1aqn

} 1
q

.

It follows

J1 =
{ ∞∑

n=1

nq(1−λ2)−1aqn

} 1
p
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≤ [k(λ1)]
1
q

{∫ ∞

0
4λ(λ1, x)xp(1−λ1)−1f p(x)dx

} 1
p

,

and then (11) follows. Hence, (11) and (16) are equivalent.
By Hölder’s inequality and the same way, we can obtain

I ≤
{∫ ∞

0
4λ(λ1, x)xp(1−λ1)−1f p(x)dx

} 1
p

J̃2. (18)

Then by (12), we have (16). On the other hand, assuming that (16) is valid, we set

f (x) = xqλ1−1

[4λ(λ1, x)]q−1

( ∞∑

n=1

kλ(x, n)an

)q−1

(x ∈ R+).

Then it follows J̃ q2 = ∫∞
0 4λ(λ1, x)xp(1−λ1)−1f p(x)dx. By (16) and the same

way, we can obtain

J̃2 =
{∫ ∞

0
4λ(λ1, x)xp(1−λ1)−1f p(x)dx

} 1
q

≤
{

k(λ1)
∞∑

n=1

nq(1−λ2)−1aqn

} 1
q

,

and then (12) is equivalent to (16).
Hence inequalities (11), (12) and (16) are equivalent.
(ii) For p < 0 or 0 < p < 1, by the same way, we can obtain the reverse of (16)

equivalent to the reverses of (11) and (12). The lemma is proved.
By Lemma 2, we still have

Theorem 1 As the assumptions of Lemma 1, there exists a function θλ1 (x) ∈ (0, 1),
such that

k(λ1)(1− θλ1 (x)) < 4λ(λ1, x) < k(λ1)(x ∈ R+). (19)

If 0 <
∫∞

0 xp(1−λ1)−1f p(x)dx <∞, and 0 <
∑∞
n=1 n

q(1−λ2)−1a
q
n <∞, then

(i) for p > 1, we have the following equivalent inequalities:

I =
∞∑

n=1

∫ ∞

0
kλ(x, n)anf (x)dx

< k(λ1)

{∫ ∞

0
xp(1−λ1)−1f p(x)dx

} 1
p

{ ∞∑

n=1

nq(1−λ2)−1aqn

} 1
q

, (20)
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J1 =
{ ∞∑

n=1

npλ2−1

(∫ ∞

0
kλ(x, n)f (x)dx

)p
} 1
p

< k(λ1)

{∫ ∞

0
xp(1−λ1)−1f p(x)dx

} 1
p

, (21)

J2 :=
{∫ ∞

0
xqλ1−1

( ∞∑

n=1

kλ(x, n)an

)q

dx

} 1
q

< k(λ1)

{ ∞∑

n=1

nq(1−λ2)−1aqn

} 1
q

; (22)

(ii) for p < 0(0 < q < 1), we have the equivalent reverses of (20), (21) and (22);
(iii) for 0 < p < 1(q < 0), we have the following equivalent inequalities:

I =
∞∑

n=1

∫ ∞

0
kλ(x, n)anf (x)dx

> k(λ1)

{∫ ∞

0
(1− θλ1 (x))xp(1−λ1)−1f p(x)dx

} 1
p

×
{ ∞∑

n=1

nq(1−λ2)−1aqn

} 1
q

, (23)

J1 =
{ ∞∑

n=1

npλ2−1

(∫ ∞

0
kλ(x, n)f (x)dx

)p
} 1
p

> k(λ1)

{∫ ∞

0
(1− θλ1 (x))xp(1−λ1)−1f p(x)dx

} 1
p

, (24)

Ĵ2 :=
{∫ ∞

0

xqλ1−1

(1− θλ1 (x))q−1

( ∞∑

n=1

kλ(x, n)an

)q

dx

} 1
q

> k(λ1)

{ ∞∑

n=1

nq(1−λ2)−1aqn

} 1
p

. (25)

Lemma 3 Suppose that h(t) is a non-negative measurable function in R+, a ∈ R,
and there exists a constant δ0 > 0, such that for any δ ∈ [0, δ0),

k(a ± δ) :=
∫ ∞

0
h(t)t (a±δ)−1dt ∈ R.
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Then we have

k(a ± δ) = k(a)+ o(1)(δ→ 0+). (26)

Proof For any δ ∈ [0, δ02
)

, it follows

h(t)t (a±δ)−1 ≤ g(t) :=
⎧
⎨

⎩

h(t)t
(
a− δ02

)
−1

, t ∈ (0, 1],

h(t)t
(
a+ δ02

)
−1

, t ∈ (1,∞).

Since we find

0 ≤
∫ ∞

0
g(t)dt =

∫ 1

0
h(t)t

(
a− δ02

)
−1
dt +

∫ ∞

1
h(t)t

(
a+ δ02

)
−1
dt

≤
∫ ∞

0
h(t)t

(
a− δ02

)
−1
dt +

∫ ∞

0
h(t)t

(
a+ δ02

)
−1
dt

= k
(

a − δ0

2

)

+ k
(

α + δ0

2

)

∈ R,

then by Lebesgue control convergence theorem (cf. [43]), it follows

k(a ± δ) =
∫ ∞

0
h(t)t (a±δ)−1dt

=
∫ ∞

0
h(t)ta−1dt + o(1)(δ→ 0+),

namely, (26) follows. The lemma is proved

Theorem 2 If there exists a constant δ0 > 0, such that for any λ̃i ∈ (λi − δ0, λi +
δ0)(i = 1, 2), λ̃1 + λ̃2 = λ, k(̃λ1) = ∫∞0 kλ(u, 1)uλ̃1−1du ∈ R+, θ̃λ1

(x) ∈ (0, 1) and

k
(
λ̃1
)

(1− θ̃λ1
(x)) < 4λ

(
λ̃1, x

)
< k

(
λ̃1
)

(x ∈ R+), (27)

where, θ̃λ1
(x) = O

(
1

xδ(̃λ1)

)
(x ∈ [1,∞); δ

(
λ̃1
)
> 0), then the constant factor k(λ1)

in Theorem 1 is the best possible.

Proof (i) For p > 1, by Hölder’s inequality, we can obtain

I ≤ J1

{ ∞∑

n=1

nq(1−λ2)−1aqn

} 1
q

, (28)

I ≤
{∫ ∞

0
xp(1−λ1)−1f p(x)dx

} 1
p

J2. (29)

For 0 < ε < qδ0, we set f̃ (x), ãn as follows:

f̃ (x) :=
⎧
⎨

⎩

0, 0 < x < 1,

x
λ1− ε

p
−1, x ≥ 1,



468 B. Yang

ãn := n
(
λ2− εq

)
−1

, n ∈ N.

Then for λ̃1 = λ1 + ε
q

(
λ̃2 = λ2 − ε

q

)
, by (27), we find

{∫ ∞

0
xp(1−λ1)−1f̃ p(x)dx

} 1
p

{ ∞∑

n=1

nq(1−λ2)−1ãqn

} 1
q

=
{∫ ∞

1
x−1−εdx

} 1
p

{

1+
∞∑

n=2

n−1−ε
} 1
q

<

{
1

ε

} 1
p
{

1+
∫ ∞

1
y−1−εdy

} 1
q

= 1

ε
{ε + 1} 1

q ,

Ĩ :=
∫ ∞

0

∞∑

n=1

kλ(x, n)̃anf̃ (x)dx =
∫ ∞

1
x−1−ε4λ

(
λ̃1, x

)
dx

≥ k (λ̃1
)
∫ ∞

1
x−1−ε

(

1−O
(

1

xδ(̃λ1)

))

dx

= 1

ε
k(̃λ1)

[
1− εOλ̃1

(1)
]
.

If there exists a constant k ≤ k(λ1), such that (20) is valid when replacing k(λ1)
by k, then in particular, we have

k
(
λ̃1
) [

1− εOλ̃1
(1)
] ≤ εĨ < εk

{∫ ∞

0
xp(1−λ1)−1f̃ p(x)dx

} 1
p

×
{ ∞∑

n=1

nq(1−λ2)−1ãqn

} 1
q

< k {ε + 1} 1
q ,

and then by (26), we find k(λ1) ≤ k(ε→ 0+). Hence k = k(λ1) is the best possible
constant factor of (20).

By the equivalency, we can prove that the constant factor k(λ1) in (21) (22) is
the best possible. Otherwise, we would reach a contradiction by (28) (29) that the
constant factor k(λ1) in (20) is not the best possible.

(ii) For p < 0, by the reverse Hölder’s inequality, we can obtain the reverses
of (28) and (29). For 0 < ε < qδ0, we set f̃ (x), ãn as (i). Then for λ̃1 = λ1 +
ε
q

(
λ̃2 = λ2 − ε

q

)
, by (27), we find

{∫ ∞

0
xp(1−λ1)−1f̃ p(x)dx

} 1
p

{ ∞∑

n=1

nq(1−λ2)−1ãqn

} 1
q
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=
{∫ ∞

1
x−1−εdx

} 1
p

{ ∞∑

n=1

n−1−ε
} 1
q

>

{∫ ∞

1
x−1−εdx

} 1
p
{∫ ∞

1
y−1−εdy

} 1
q = 1

ε
,

Ĩ =
∫ ∞

0

∞∑

n=1

kλ(x, n)̃anf̃ (x)dx =
∫ ∞

1
x−1−ε4λ

(
λ̃1, x

)
dx

< k(̃λ1)
∫ ∞

1
x−1−εdx = 1

ε
k(̃λ1).

If there exists a constant K ≥ k(λ1), such that the reverse of (20) is valid when
replacing k(λ1) by K , then in particular, we have

k(̃λ1) > εĨ

> εK

{∫ ∞

0
xp(1−λ1)−1f̃ p(x)dx

} 1
p

{ ∞∑

n=1

nq(1−λ2)−1ãqn

} 1
q

> K ,

and then by (26), k(λ1) ≥ K(ε → 0+). Hence K = k(λ1) is the best possible
constant factor of the reverse of (20).

By the equivalency, we can prove that the constant factor k(λ1) in the reverses of
(21) and (22) is the best possible. Otherwise, we would reach a contradiction by the
reverses of (28) and (29) that the constant factor k(λ1) in the reverse of (20) is not
the best possible.

(iii) For 0 < p < 1, by the reverse Hölder’s inequality, we can obtain

I ≥ J1

{ ∞∑

n=1

nq(1−λ2)−1aqn

} 1
q

, (30)

I ≥
{∫ ∞

0
(1− θλ1 (x))xp(1−λ1)−1f p(x)dx

} 1
p

Ĵ2. (31)

For 0 < ε < |q|δ0, we set f̃ (x), ãn as (i). Then for λ̃1 = λ1 + ε
q

(
λ̃2 = λ2 − ε

q

)
,

by (27), we find

{∫ ∞

0
(1− θλ1 (x))xp(1−λ1)−1f̃ p(x)dx

} 1
p

{ ∞∑

n=1

nq(1−λ2)−1ãqn

} 1
q

=
{∫ ∞

1

(

1−O
(

1

xδ(λ1)

))

x−1−εdx
} 1
p

{

1+
∞∑

n=2

n−1−ε
} 1
q
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>

{∫ ∞

1

(

1−O
(

1

xδ(λ1)

))

x−1−εdx
} 1
p
{

1+
∫ ∞

1
y−1−εdy

} 1
q

= 1

ε
{1− εOλ1 (1)} 1

p {ε + 1} 1
q ,

Ĩ =
∫ ∞

0

∞∑

n=1

kλ(x, n)̃anf̃ (x)dx

=
∫ ∞

1
x−1−ε4λ(̃λ1, x)dx <

1

ε
k(̃λ1).

If there exists a constant K ≥ k(λ1), such that the (23) is valid when replacing
k(λ1) by K , then in particular, we have

k(̃λ1) > εĨ > εK

{∫ ∞

0
(1− θλ1 (x))xp(1−λ1)−1f̃ p(x)dx

} 1
p

×
{ ∞∑

n=1

nq(1−λ2)−1ãqn

} 1
q

> K{1− εOλ1 (1)} 1
p {ε + 1} 1

q ,

and then by (26), k(λ1) ≥ K(ε → 0+). Hence K = k(λ1) is the best possible
constant factor of (23).

By the equivalency, we can prove that the constant factor k(λ1) in (24) (25) is
the best possible. Otherwise, we would reach a contradiction by (30) (31) that the
constant factor k(λ1) in (23) is not the best possible. The theorem is proved.

Lemma 4 Suppose that h(t)( > 0) is strictly decreasing with respect to t ∈ R+. If∫∞
0 h(t)dt <∞, then we have

∫ ∞

1
h(t)dt <

∞∑

n=1

h(n) <
∫ ∞

0
h(t)dt. (32)

Proof Since h(t) is a strict decreasing function, we have

h(t) < h(n) < h(t − 1)(t ∈ (n, n+ 1); n ∈ N),
∫ n+1

n

h(t)dt <
∫ n+1

n

h(n)dt = h(n) <
∫ n+1

n

h(t − 1)dt ,

and then ∫ ∞

1
h(t)dt =

∞∑

n=1

∫ n+1

n

h(t)dt <
∞∑

n=1

h(n)

<

∞∑

n=1

∫ n+1

n

h(t − 1)dt =
∫ ∞

1
h(t − 1)dt =

∫ ∞

0
h(u)du.

Hence (32) follows. The lemma is proved.
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Corollary 1 If there exists a constant δ0 > 0, such that for any λ̃i ∈ (λi − δ0, λi +
δ0)(i = 1, 2), λ̃1 + λ̃2 = λ, k(̃λ1) ∈ R+, kλ(x, y)yλ̃2−1 is strictly decreasing with
respect to y ∈ R+, and there exist constants L > 0 and η1 > λ̃1, satisfying

kλ(u, 1) ≤ L

uη1
(u ∈ [1,∞)),

then the constant factor k(λ1) in Theorem 1 is the best possible.

Proof In view of (32), we find

4λ
(
λ̃1, x

) = xλ̃1

∞∑

n=1

kλ(x, n)
1

n1−̃λ2

< xλ̃1

∫ ∞

0
kλ(x, y)

1

y1−̃λ2
dy

=
∫ ∞

0
kλ(u, 1)

1

u1−λ̃1
du = k(̃λ1),

4λ(̃λ1, x) > xλ̃1

∫ ∞

1
kλ(x, y)

1

y1−̃λ2
dy

=
∫ x

0
kλ(u, 1)

1

u1−λ̃1
du

= k(̃λ1)
[
(1− θ̃λ1

(x))
]

(x ∈ R+),

where,

θ̃λ1
(x) := 1

k(̃λ1)

∫ ∞

x

kλ(u, 1)
1

u1−̃λ1
du ∈ (0, 1).

For x ∈ [1,∞), we find

0 < θ̃λ1
(x) ≤ 1

k(̃λ1)

∫ ∞

x

L

uη1

1

u1−λ̃1
du

= L

(η1 − λ̃1)k(̃λ1)

1

xδ(̃λ1)

(
δ(̃λ1) = η1 − λ̃1

)
,

namely, θ̃λ1
(x) = O

(
1

xδ(̃λ1)

)
(x ∈ [1,∞); δ(̃λ1) > 0). Then we have (27). Therefore,

the constant factor k(λ1) in Theorem 1 is the best possible. The corollary is proved.
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2.2 Operator Expressions and Some Particular Examples

For p > 1, we set ϕ(x) = xp(1−λ1)−1(x ∈ R+) and ψ(n) = nq(1−λ2)−1(n ∈ N),
wherefrom

[ψ(n)]1−p = npλ2−1, [ϕ(x)]1−q = xqλ1−1.

We define two real weight normal spaces Lp,ϕ(R+) and lq,ψ as follows:

Lp,ϕ(R+) :=
{

f ; ||f ||p,ϕ =
{∫ ∞

0
ϕ(x)|f (x)|pdx

} 1
p

<∞
}

,

lq,ψ :=
⎧
⎨

⎩
a = {an}; ||a||q,ψ =

{ ∞∑

n=1

ψ(n)|an|q
} 1
q

<∞
⎫
⎬

⎭
.

As the assumptions of Theorem 1, in view of

J1 < k(λ1)||f ||p,ϕ , J2 < k(λ1)||a||q,ψ ,

we may give the following definition:

Definition 2 Define a first kind of half-discrete Hilbert-type operator T1 : Lp,ϕ(R+)
→ lp,Ψ 1−p as follows: For f ∈ Lp,ϕ(R+), there exists a unique representation T1f ∈
lp,Ψ 1−p , satisfying

(T1f )(n) :=
∫ ∞

0
kλ(x, n)f (x)dx(n ∈ N). (33)

For a ∈ lq,ψ , we define the following formal inner product ofT1f and a as follows:

(T1f , a) :=
∞∑

n=1

an

∫ ∞

0
kλ(x, n)f (x)dx.

Define a second kind of half-discrete Hilbert-type operator T2 : lq,ψ →
Lq,ϕ1−q (R+) as follows: For a ∈ lq,ψ , there exists a unique representation T2a ∈
Lq,ϕ1−q (R+), satisfying

(T2a)(x) :=
∞∑

n=1

kλ(x, n)an(x ∈ R+). (34)

For f ∈ Lp,ϕ(R+), we define the following formal inner product of f and T2a as
follows:

(f , T2a) :=
∫ ∞

0
kλ(x, n)anf (x)dx.

Then by Theorem 1, for 0 < ||f ||p,ϕ , ||a||q,ψ < ∞, we have the following
equivalent inequalities:

(T1f , a) = (T2a, f ) < k(λ1)||f ||p,ϕ||a||q,ψ , (35)
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||T1f ||p,ψ1−p < k(λ1)||f ||p,ϕ , (36)

||T2a||q,ϕ1−q < k(λ1)||a||q,ψ . (37)

It follows that T1 and T2 are bounded with

||T1|| := sup
f ( �=θ )∈Lp,ϕ (R+)

||T1f ||p,ψ1−p

||f ||p,ϕ
≤ k(λ1),

||T2|| := sup
a( �=θ )∈lq,ψ

||T2a||q,ϕ1−q

||a||q,ψ
≤ k(λ1).

Since in Theorem 2 or Corollary 1, the constant factor k(λ1) in (36) and (37) is
the best possible, we have

||T1|| = ||T2|| = k(λ1) =
∫ ∞

0
kλ(u, 1)uλ1−1du. (38)

Note. If we define

(T1f )(n) := nλ−1
∫ ∞

0
kλ(x, n)f (x)dx(n ∈ N),

then we have ||T1f ||p,ϕ < k(λ1)||f ||p,ϕ , and then T1f ∈ lp,ϕ ; if we define

(T2a)(x) := xλ−1
∞∑

n=1

kλ(x, n)an(x ∈ R+),

then we have ||T2a||q,ψ < k(λ1)||a||q,ψ and T2a ∈ Lq,ψ (R+).

Example 1 (i) We set

kλ(x, y) = 1

(x + y)λ
(λ, λ1 > 0, 0 < λ2 < 1).

For δ0 = 1
2 min{λ1, λ2, 1−λ2} > 0, and λ̃i ∈ (λi−δ0, λi+δ0)(i = 1, 2), λ̃1+ λ̃2 = λ,

it follows

k(̃λ1) =
∫ ∞

0

1

(t + 1)λ
t λ̃1−1dt = B (̃λ1, λ̃2) ∈ R+,

and
∂

∂y

(
1

(x + y)λ
yλ̃2−1

)

< 0.

Setting η1 ∈ (λ1 + δ0, λ), then it follows η1 > λ̃1. Since uη1

(u+1)λ
→ 0(u → ∞),

there exists a constant L > 0, such that

kλ(u, 1) = 1

(u+ 1)λ
≤ L

uη1
(u ∈ [1,∞)).
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Then by Corollary 1 and (38), we have

||T1|| = ||T2|| = B(λ1, λ2).

(ii) We set

kλ(x, y) = ln (x/y)

xλ − yλ (λ, λ1 > 0, 0 < λ2 < 1).

For δ0 = 1
2 min{λ1, λ2, 1 − λ2} > 0 and λ̃i ∈ (λi − δ0, λi + δ0)(i = 1, 2),

λ̃1 + λ̃2 = λ, it follows

k(̃λ1) =
∫ ∞

0

ln t

tλ − 1
t λ̃1−1dt

= 1

λ2

∫ ∞

0

ln v

v− 1
v
λ̃1
λ
−1dv

=
[

π

λ sinπ (̃λ1/λ)

]2

∈ R+,

and
∂

∂y

(
ln (x/y)

xλ − yλ y
λ̃2−1

)

< 0.

Setting η1 ∈ (λ1 + δ0, λ), then it follows η1 > λ̃1. Since ( ln u)uη1

uλ−1
→ 0(u →∞),

there exists a constant L > 0, such that

kλ(u, 1) = ln u

uλ − 1
≤ L

uη1
(u ∈ [1,∞)).

Then by Corollary 1 and (38), we have

||T1|| = ||T2|| =
[

π

λ sinπ
(
λ1
λ

)

]2

. (39)

Lemma 5 If C is the set of complex numbers and C∞ = C ∪ {∞}, zk ∈
C\{z|Rez ≥ 0, Imz = 0} (k = 1, 2, · · · , n) are different points, the function f (z)
is analytic in C∞ except for zi(i = 1, 2, · · · , n), and z = ∞ is a zero point of f (z)
whose order is not less than 1, then for α ∈ R, we have

∫ ∞

0
f (x)xα−1dx = 2πi

1− e2παi

n∑

k=1

Res [f (z)zα−1, zk], (40)

where, 0 < Im ln z = arg z < 2π . In particular, if zk(k = 1, · · · , n) are all poles of
order 1, setting ϕk(z) = (z − zk)f (z)(ϕk(zk) �= 0), then

∫ ∞

0
f (x)xα−1dx = π

sinπα

n∑

k=1

(−zk)
α−1ϕk(zk). (41)
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Proof By [44] (P.118), we have (40). We find

1− e2παi = 1− cos 2πα − i sin2πα

= −2i sinπα( cosπα + i sinπα) = −2ieiπα sinπα.

In particular, since f (z)zα−1 = 1
z−zk

(
ϕk(z)zα−1

)
, it is evident that

Res
[
f (z)zα−1,−ak

] = zk
α−1ϕk(zk) = −eiπα(−zk)

α−1ϕk(zk).

Then by (40), we obtain (41). The lemma is proved.

Example 2 (i) For s ∈ N, we set

kλ(x, y) = 1
∏s
k=1 (xλ/s + akyλ/s) (0 < a1 < · · · < as ,

λ, λ1 > 0, 0 < λ2 < 1).

For δ0 = 1
2 min{λ1, λ2, 1 − λ2} > 0 and λ̃i ∈ (λi − δ0, λi + δ0)(i = 1, 2),

λ̃1 + λ̃2 = λ, by (41), it follows

ks (̃λ1) =
∫ ∞

0

1
∏s
k=1 (tλ/s + ak) t

λ̃1−1dt

= s

λ

∫ ∞

0

1
∏s
k=1 (u+ ak)u

sλ̃1
λ
−1du

= πs

λ sin
(
πsλ̃1
λ

)
s∑

k=1

a
sλ̃1
λ
−1

k

s∏

j=1(j �=k)

1

aj − ak ∈ R+,

and
∂

∂y

(
yλ̃2−1

∏s
k=1

(
xλ/s + akyλ/s

)

)

< 0.

Setting η1 ∈ (λ1 + δ0, λ), then it follows η1 > λ̃1. Since

uη1

∏s
k=1 (uλ/s + ak) → 0(u →∞),

there exists a constant L > 0, such that

kλ(u, 1) = 1
∏s
k=1 (uλ/s + ak) ≤

L

uη1
(u ∈ [1,∞)).

Then by Corollary 1 and (38), we have

||T1|| = ||T2|| = πs

λ sin
(
πsλ1
λ

)

s∑

k=1

a
sλ1
λ
−1

k

s∏

j=1(j �=k)

1

aj − ak . (42)
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In particular, for s = a1 = 1, we have kλ(x, y) = 1
xλ+yλ and ||T1|| = ||T2|| =

π
λ sinπ (λ1/λ) .

(ii) We set

kλ(x, y) = 1

xλ +√c(xy)λ/2 cos γ + c
4y
λ

(0 < γ <
π

2
, λ, λ1 > 0, 0 < λ2 < 1).

For δ0 = 1
2 min{λ1, λ2, 1 − λ2} > 0 and λ̃i ∈ (λi − δ0, λi + δ0)(i = 1, 2),

λ̃1 + λ̃2 = λ, by (41), it follows

k(̃λ1) =
∫ ∞

0

1

tλ +√ctλ/2 cos γ + c
4

t λ̃1−1dt

=
(√
c

2

) 2̃λ1
λ 2π sinγ

(
1− 2̃λ1

λ

)

λ sinγ sin
(

2πλ̃1
λ

) ∈ R+,

and

∂

∂y

(
yλ̃2−1

xλ +√c(xy)λ/2 cos γ + c
4y
λ

)

< 0.

Setting η1 ∈ (λ1 + δ0, λ), then it follows η1 > λ̃1. Since

uη1

uλ +√cuλ/2 cos γ + c
4

→ 0(u →∞),

there exists a constant L > 0, such that

kλ(u, 1) = 1

uλ +√cuλ/2 cos γ + c
4

≤ L

uη1
(u ∈ [1,∞)).

Then by Corollary 1 and (38), we have

||T1|| = ||T2|| =
(√
c

2

) 2λ1
λ 2π sinγ

(
1− 2λ1

λ

)

λ sinγ sin
( 2πλ1
λ

) . (43)

Example 3 (i) We set

k0(x, y) = ln

(
bxγ + yγ
axγ + yγ

)

(0 ≤ a < b, γ > 0,

0 < −λ1 = λ2 = σ < γ ).
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For δ0 = 1
2 min{σ , γ −σ } > 0, and λ̃i ∈ (λi − δ0, λi + δ0)(i = 1, 2), λ̃1+ λ̃2 = λ,

it follows

k(̃λ1) =
∫ ∞

0
ln

(
btγ + 1

atγ + 1

)

t λ̃1−1dt = 1

λ̃1

∫ ∞

0
ln

(
btγ + 1

atγ + 1

)

dt λ̃1

= 1

λ̃1

[

t λ̃1 ln

(
btγ + 1

atγ + 1

)

|∞0

−γ
∫ ∞

0

(
b

btγ + 1
− a

atγ + 1

)

t λ̃1+γ−1dt

]

= 1

λ̃1

(

b
− λ̃1
γ − a− λ̃1

γ

)∫ ∞

0

1

u+ 1
u
(

1+ λ̃1
γ

)
−1
du

= −1

λ̃1

(

b
− λ̃1
γ − a− λ̃1

γ

)
π

sinπ
(
−̃λ1
γ

) ∈ R+,

and
∂

∂y

(

ln

(
bxγ + yγ
axγ + yγ

)

yλ̃2−1

)

< 0.

Setting η1 ∈ (−σ + δ0, 0), then it follows η1 > λ̃1. Since

uη1 ln

(
buγ + 1

auγ + 1

)

→ 0(u →∞),

there exists a constant L > 0, such that

k0(u, 1) = ln

(
buγ + 1

auγ + 1

)

≤ L

uη1
(u ∈ [1,∞)).

Then by Corollary 1 and (38), we have

||T1|| = ||T2|| =
(
b
σ
γ − a σγ

)
π

σ sinπ ( σ
γ

)
. (44)

(ii) We set

k0(x, y) = e−ρ( yx )γ (ρ > 0, 0 < −λ1 = λ2 = σ < γ ).

For δ0 = 1
2 min{σ , γ − σ } > 0 and λ̃i ∈ (λi − δ0, λi + δ0)(i = 1, 2), λ̃1 + λ̃2 = λ,

it follows

k(̃λ1) =
∫ ∞

0
e−

ρ

tγ t λ̃1−1dt = 1

γ
ρ
λ̃1
γ

∫ ∞

0
e−uu−

λ̃1
γ
−1
du

= 1

γ
ρ
λ̃1
γ Γ

(

− λ̃1

γ

)

∈ R+,
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and ∂
∂y

(e−ρ( yx )γ yλ̃2−1) < 0. Setting η1 ∈ (−σ + δ0, 0), then it follows η1 > λ̃1. Since

uη1e−
ρ

uγ → 0(u →∞), there exists a constant L > 0, such that

k0(u, 1) = e− ρ

uγ ≤ L

uη1
(u ∈ [1,∞)).

Then by Corollary 1 and (38), we have

||T1|| = ||T2|| = 1

γρ
σ
γ

Γ

(
σ

γ

)

. (45)

(iii) We set

k0(x, y) = arctan ρ

(
x

y

)γ
(ρ > 0, 0 < −λ1 = λ2 = σ < γ ).

For δ0 = 1
2 min{σ , γ − σ } > 0 and λ̃i ∈ (λi − δ0, λi + δ0)(i = 1, 2), λ̃1 + λ̃2 = λ,

it follows

k(̃λ1) =
∫ ∞

0
t λ̃1−1(arctan ρtγ )dt = 1

λ̃1

∫ ∞

0
(arctan ρtγ )dt λ̃1

= 1

λ̃1

[

(arctan ρtγ )t λ̃1 |∞0 −
∫ ∞

0

γρt λ̃1+γ−1

1+ (ρtγ )2
dt

]

= −ρ− λ̃1
γ

2̃λ1

∫ ∞

0

1

1+ u
u
(
λ̃1
2γ + 1

2

)
−1
du

= −ρ− λ̃1
γ π

2̃λ1 sinπ
(
λ̃1
2γ + 1

2

) = −ρ− λ̃1
γ π

2̃λ1 cosπ
(
λ̃1
2γ

) ∈ R+,

and ∂
∂y

(yλ̃2−1 arctan ρ( x
y

)γ ) < 0. Setting η1 ∈ (−σ + δ0, 0), then it follows η1 > λ̃1.
Since uη1 arctan ρuγ → 0(u →∞), there exists a constant L > 0, such that

k0(u, 1) = arctan ρuγ ≤ L

uη1
(u ∈ [1,∞)).

Then by Corollary 1 and (38), we have

||T1|| = ||T2|| = ρ
σ
γ π

2σ cosπ
(
σ
2γ

) . (46)
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Example 4 (1) We set

kλ(x, y) = (min{x, y})γ
(max{x, y})λ+γ (λ1 > −γ ,−γ < λ2 < 1− γ ).

For δ0 = 1
2 min{λ1+γ , λ2+γ , 1−γ−λ2} > 0 and λ̃i ∈ (λi−δ0, λi+δ0)(i = 1, 2),

λ̃1 + λ̃2 = λ, it follows

k(̃λ1) =
∫ ∞

0

(min{t , 1})γ
(max{t , 1})λ+γ t

λ̃1−1dt

=
∫ 1

0
t λ̃1+γ−1dt +

∫ ∞

1

1

tλ+γ
t λ̃1−1dt

= λ+ 2γ

(̃λ1 + γ )(̃λ2 + γ )
∈ R+.

We find that

kλ(x, y)yλ̃2−1 = (min{x, y})γ
(max{x, y})λ+γ y

λ̃2−1

=
⎧
⎨

⎩

yγ +̃λ2−1

xλ+γ , 0 < y < x,
xγ

yλ̃1+γ+1 , y ≥ x
is a strict decreasing function with respect to y ∈ R+. There exists a constant
η1 ∈ (λ1 + δ0, λ+ γ ), such that η1 > λ1 + δ0 > λ̃1 and λ+ γ − η1 > 0. Hence, in
view of

uη1kλ(u, 1) = uη1 (min{u, 1})γ
(max{u, 1})λ+γ =

⎧
⎨

⎩

uγ+η1 , 0 < u < 1,
1

uλ+γ−η1
, u ≥ 1,

we have uη1kλ(u, 1) → 0(u →∞), and then there exists a constantL > 0, satisfying

kλ(u, 1) ≤ L

uη1
(u ∈ [1,∞)).

Therefore, by Corollary 1 and (38), it follows

||T1|| = ||T2|| = λ+ 2γ

(λ1 + γ )(λ2 + γ )
. (47)

2.3 Some Strengthened Versions of Half-Discrete Hilbert’s
Inequality

Definition 3 For r > 1, 1
r
+ 1
s
= 1, we define the following weight functions:

ω(s, n) := n 1
s

∫ ∞

1

1

(x + n)x1/s
dx(n ∈ N), (48)
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4 (r , x) := x 1
r

∞∑

n=1

1

(x + n)n1/r
(x ∈ [1,∞)). (49)

Setting u = x/n, we find

ω(s, n) =
∫ ∞

1/n

1

(u+ 1)u1/s
du

=
∫ ∞

0

du

(u+ 1)u1/s
−
∫ 1/n

0

du

(u+ 1)u1/s

>
π

sin
(
π
r

) −
∫ 1/n

0

du

u1/s
= π

sin
(
π
r

) − r

n1/r
. (50)

We set the following decomposition:

ω(s, n) =
∫ ∞

1
n

du

(u+ 1)u1/s
= π

sin
(
π
r

) − θr (n)

n1/r
, (51)

where,

θr(x) := x 1
r

∫ 1
x

0

du

(u+ 1)u1/s
(x ≥ 1).

Then we obtain

∂

∂x
θr (x) = 1

r
x
−1
s

∫ 1
x

0

du

(u+ 1)u1/s
− 1

x + 1
.

Setting f (y) as follows

f (y) :=
∫ y

0

du

(u+ 1)u1/s
− ry1/r

1+ y (0 ≤ y ≤ 1),

we find f (0) = 0 and

f ′(y) = 1

(y + 1)y1/s
− y

−1/s

1+ y +
ry1/r

(1+ y)2
> 0.

Then it follows f (y) > 0(0 < y ≤ 1) and

∂

∂x
θr(x) = 1

r
x
−1
s f

(
1

x

)

> 0(x ≥ 1). (52)

Therefore,

θr (x) ≥ inf
x≥1
θr(x) = θr(1) =

∫ 1

0

u
1
r
−1

u+ 1
du. (53)
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Since we obtain
(∫ 1

0

u
1
r
−1du

u+ 1

)′

r

= − 1

r2

∫ 1

0

u
1
r
−1 ln udu

u+ 1
> 0,

then it follows

θr (1) > inf
r>1
θr (1) = lim

r→1+
θr (1)

=
∫ 1

0

du

u+ 1
= ln 2 = 0.6931+. (54)

By (50), (51), (53) and (54), we have

Lemma 6 For n ∈ N,

π

sin
(
π
r

) − r

n1/r
< ω(s, n) <

π

sin
(
π
r

) − ln 2

n1/r
, (55)

where the constant ln 2 = 0.6931+ is the best possible.

Lemma 7 If (−1)iF (i)(t) > 0(t ∈ (0,∞); i = 0, 1, 2, 3), then we have (cf. [4, 45])

− 1

12
F (1) <

∫ ∞

1
P1(t)F (t)dt < − 1

12
F

(
3

2

)

, (56)

where, P1(t) = t − [t]− 1
2 is Bernoulli function of one-order.

For x ≥ 1, setting f (t) := 1
(x+t)t1/r (t > 0), we find

f ′(t) = −1

(x + t)2t1/r
− 1

r(x + t)t1+(1/r)

= − (r + 1)t + y
r(x + t)2t1+(1/r)

.

By Euler–Maclaurin summation formula (cf. [4]), it follows

4λ(r , x) = x 1
r

∞∑

n=1

1

(x + n)n1/r

= x 1
r

[∫ ∞

1
f (t)dt + 1

2
f (1)+

∫ ∞

1
P1(t)f ′(t)dt

]

= x 1
r

∫ ∞

0
f (t)dt − x 1

r

∫ 1

0
f (t)dt

+ 1

2
x

1
r f (1)+ x 1

r

∫ ∞

1
P1(t)f ′(t)dt

= π

sin(π
r

)
− 1

x1/s

[

x
1
s

∫ 1
x

0

u− 1
r du

1+ u
− x

2(x + 1)
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+ x
∫ ∞

1
P1(t)

(r + 1)t + x
r(x + t)2t1+(1/r)

dt

]

. (57)

Setting G(t , x) := (r+1)tx+x2

r(x+t)2t1+(1/r) ,

A(x) := x1− 1
r

∫ 1
x

0

u− 1
r

1+ u
du,

B(x) := ∫∞1 P1(t)G(t , x)dt and

θ (r , x) := A(x)+ B(x)− x

2(x + 1)
(x ∈ [1,∞)),

then by (57), we have the following decomposition:

4 (r , x) = π

sin
(
π
r

) − θ (r , x)

x1/s
(x ≥ 1). (58)

Lemma 8 For r > 1, we have

min
x≥1
θ (r , x) = θ (r , 1) = π

sin
(
π
r

) −4 (r , 1). (59)

Proof By Lemma 1 of [46], we have

∫ 1
x

0

u−
1
r du

1+ u
≥ r(2r − 1)x

1
r

(r − 1)[(2r − 1)x + r − 1]
(x ≥ 1).

Then we find

A′(x) =
(

1− 1

r

)

x
−1
r

∫ 1
x

0

u− 1
r du

1+ u
− 1

x + 1

≥
(
1− 1

r

)
r(2r − 1)

(r − 1)[(2r − 1)x + r − 1]
− 1

x + 1

= (2r − 1)

(2r − 1)x + r − 1
− 1

x + 1

= r

(x + 1)[(2r − 1)x + r − 1]
.

Setting F1(t) = 1
(x+t)2t1/r

and F2(t) = 1
(x+t)3t1/r

, then by Lemma 7, it follows

B ′(x) =
∫ ∞

1
P1(t)G′x(t , x)dt

= r + 1

r

∫ ∞

1
P1(t)F1(t)dt − 2x

∫ ∞

1
P1(t)F2(t)dt
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>
r + 1

r

(

− 1

12
F1(1)

)

+ 2x

12
F2

(
3

2

)

= − r + 1

12r(x + 1)2
+ 4x

3(2x + 3)3

(
2

3

) 1
r

.

Then we have

θ ′x(r , x) = A′(x)+ B ′(x)− 1

2(x + 1)2

= r

(x + 1)[(2r − 1)x + r − 1]
− r + 1

12r(x + 1)2

+ 4x

3(2x + 3)3

(
2

3

) 1
r

− 1

2(x + 1)2

= (−2r2 + 5r + 1)x + (5r2 + 6r + 1)

12r(x + 1)2[(2r − 1)x + r − 1]

+ 4x

3(2x + 3)3

(
2

3

) 1
r

.

(1) If 1 < r < 5
2 ,−2r2 + 5r + 1 > 0, then we have θ ′y(r , x) > 0;

(2) If r ≥ 5
2 ,
(

2
3

) 1
r > 4

5 , then we obtain

θ ′x(r , x) >

(−2r2 + 5r + 1
)
x + (5r2 + 6r + 1

)

12r(x + 1)2[(2r − 1)x + r − 1]
+ 16x

15(2x + 3)3

= 5[(−2r2 + 5r + 1)x + (5r2 + 6r + 1)](2x + 3)3

60r(x + 1)2(2x + 3)3[(2r − 1)x + r − 1]

+ 64rx(x + 1)2[(2r − 1)x + r − 1]

60r(x + 1)2(2x + 3)3[(2r − 1)x + r − 1]

>
(48r2 − 44r + 40)x4 + (160r2 + 1076r + 92)x3

60r(x + 1)2(2x + 3)3[(2r − 1)x + r − 1]

> 0(x ≥ 1).

Hence, θ (r , x) is strictly increasing with respect to x ∈ [1,∞), and then we have
(59). The lemma is proved.

Lemma 9 If k ∈ N, k ≥ 5, then the function

I (r , k) :=
∫ k

0

u−
1
r du

1+ u
− k− 1

r

2(1+ k) −
k−1∑

m=1

m−
1
r

1+m

is strictly decreasing with respect to r ∈ (1,∞).
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Proof For k ≥ 5, we find

I ′r(r , k) =
1

r2

{

− k
− 1
r ln k

2(1+ k)

+
[∫ 4

0

u− 1
r ln u

1+ u
du− ln 2

3 · 2
1
r

− ln 3

4 · 3
1
r

]

−
[
k−1∑

m=4

m−
1
r lnm

1+m −
∫ k

4

u−
1
r ln u

1+ u
du

]}

.

It is obvious that for u ≥ 4,

d

du

(
u− 1

r ln u

1+ u

)

= u− 1
r

1+ u

(

− ln u

ru
− ln u

1+ u
+ 1

u

)

<
u− 1

r

1+ u

(
1

u
− ln u

1+ u

)

< 0,

and then u− 1
r ln u

1+ u is decreasing with respect to u ≥ 4. It follows that

k−1∑

m=4

m−1/r lnm

1+m −
∫ k

4

u− 1
r ln u

1+ u
du ≥ 0.

Setting u = e−y , we obtain

J (r) :=
∫ 4

0

u− 1
r ln u

1+ u
du = −

∫ ∞

− ln 4

ye(−1+ 1
r )y

1+ e−y dy

< −1

5

∫ ∞

− ln 4
ye(−1+ 1

r )ydy

= r41− 1
r

5(r − 1)

(

ln 4− r

r − 1

)

= s4
1
s

5
( ln 4− s).

If 1 < s = r
r−1 < ln 4, namely, r > ln 4

ln 4−1 = 3.5887+, then we find

d

ds

[
s4

1
s

5
( ln 4− s)

]

= 4
1
s

5
( ln 4− s)

(

1− ln 4

s

)

− s4
1
s

5
< 0,

and s4
1
s

5 ( ln 4− s) < 4
5 ( ln 4− 1). In this case,

∫ 4

0

u− 1
r ln u

1+ u
du− ln 2

3 · 2
1
r

− ln 3

4 · 3
1
r
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<
4

5
( ln 4− 1)− ln 2

3 · 21/3.5887
− ln 3

4 · 31/3.5887

< −0.083996 < 0.

If ln 4 ≤ r
r−1 , then it is obvious that J (r) < 0.

Therefore, we have I ′r (r , k) < 0 and then I (r , k) is strictly decreasing with respect
to r ∈ (1,∞). The lemma is proved.

Lemma 10 If r > 1, 1
r
+ 1
s
= 1, then for x ≥ 1, we have the following inequalities:

π

sin
(
π
r

) − s

x1/s
< 4 (r , x) <

π

sin
(
π
r

) − 1− γ
x1/s

, (60)

where, 1− γ = 0.4227+is the best value (γ is Euler constant).

Proof Similarly to (50), it follows

4 (r , x) > x
1
r

∫ ∞

1

dy

(x + y)y1/r
= π

sin(π
r

)
− s

x1/s
.

For k ∈ N, k ≥ 5, we have

θ (r , 1) = π

sin(π
r

)
−4 (r , 1)

=
∫ ∞

0

u− 1
r

1+ u
du−

∞∑

m=1

m− 1
r

1+m

=
∫ k

0

u− 1
r

1+ u
du+

∫ ∞

k

u− 1
r

1+ u
du

−
k−1∑

m=1

m−
1
r

1+m −
∞∑

m=k

m−
1
r

1+m.

Setting g(t) := 1
(1+t)t1/r , then by Euler–Maclaurin summation formula (cf. [4]),

we have ∫ ∞

k

u− 1
r du

1+ u
+ u− 1

r

2(1+ k) <
∞∑

m=k

m− 1
r

1+m

<

∫ ∞

k

u−
1
r du

1+ u
+ u− 1

r

2(1+ k) −
g′(k)
12
.

It follows

I (r , k)+ g
′(k)
12

< θ (r , 1) < I (r , k),

inf
r>1
I (r , k)+ 1

12
inf
r>1
g′(k)
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≤ inf
r>1
θ (r , 1) ≤ inf

r>1
I (r , k)(k ≥ 5).

Since for any k ≥ 5,

0 ≥ inf
r>1
g′(k) = − sup

r>1

[
1

(1+ k)2k1/r
+ 1

r(1+ k)k1+(1/r)

]

≥ −
[

1

(1+ k)2
+ 1

(1+ k)k
]

→ 0(k→∞),

then it follows lim
k→∞ inf

r>1
g′(k) = 0. Hence by Lemma 4, we obtain

inf
r>1
θ (r , 1) = lim

k→∞
inf
r>1
I (r , k) = lim

k→∞
lim
r→∞ I (r , k)

= lim
k→∞

[∫ k

0

du

1+ u
− 1

2(1+ k) −
k−1∑

m=1

1

1+m

]

= 1− lim
k→∞

[
k+1∑

m=1

1

m
− ln (1+ k)− 1

2(k + 1)

]

= 1− γ.
By (58), in view of inf

x≥1
θ (r , x) = θ (r , 1), we have

4 (r , x) ≤ π

sin(π
r

)
− θ (r , 1)

x1/s

<
π

sin(π
r

)
−

inf
r>1
θ (r , 1)

x1/s

= π

sin(π
r

)
− 1− γ
x1/s

(x ≥ 1).

It is obvious that the constant 1 − γ in (60) is the best possible. The lemma is
proved.

Lemma 11 If p, r > 1, 1
p
+ 1
q
= 1

r
+ 1
s
= 1, an ≥ 0(n ∈ N), f (x) is a non-negative

measurable function in [1,∞), then we have the following equivalent inequalities:

I :=
∫ ∞

1

∞∑

n=1

anf (x)

n+ x dx

≤
{ ∞∑

n=1

ω(s, n)n
p
r
−1apn

} 1
p {∫ ∞

1
4 (r , x)x

q
s
−1f q (x)dx

} 1
q

, (61)

J1 :=
{∫ ∞

1

x
p
r
−1

[4 (r , x)]p−1

[ ∞∑

n=1

an

x + n

]p

dx

} 1
p
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≤
{ ∞∑

n=1

ω(s, n)n
p
r −1apn

} 1
p

, (62)

L1 :=
{ ∞∑

n=1

n
q
s
−1

[ω(s, n)]q−1

[∫ ∞

1

f (x)

x + ndx
]q
} 1
q

≤
{∫ ∞

1
4 (r , x)x

q
s −1f q (x)dx

} 1
q

; (63)

Proof By Hölder’s inequality (cf. [47]), it follows

∞∑

n=1

an

x + n =
∞∑

n=1

1

x + n

[
n

1
rq

x
1
sp

an

][
x

1
sp

n
1
rq

]

≤
{ ∞∑

n=1

1

x + n
n
p
rq

x
1
s

apn

} 1
p
{ ∞∑

n=1

1

x + n
x
q
sp

n
1
r

} 1
q

= x 1
s
− 1
q {4 (r , x)} 1

q

{
1

x1/s

∞∑

n=1

n
1
s

x + nn
p
r
−1apn

} 1
p

. (64)

Then by Lebesgue term, by term integration theorem (cf. [43]), we have

J1 ≤
{∫ ∞

1

1

x1/s

∞∑

n=1

n
1
s

x + nn
p
r
−1apn dx

} 1
p

=
{ ∞∑

n=1

[

n
1
s

∫ ∞

1

1

x + n
1

x1/s
dx

]

n
p
r −1apn

} 1
p

=
{ ∞∑

n=1

ω(s, n)n
p
r
−1apn

} 1
p

, (65)

and then (62) follows.
By Hölder’s inequality (cf. [47]), we have

I =
∫ ∞

1

x
1
q− 1

s

(4 (r , x))
1
q

[ ∞∑

n=1

an

n+ x

]
[
(4 (r , x))

1
q x

1
s
− 1
q f (x)

]
dx

≤ J1

{∫ ∞

1
4 (r , x)x

q
s
−1f q (x)dx

} 1
q

. (66)

Then by (62), we have (61).
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On the other hand, assuming that (61) is valid, we set

f (x) := x
p
r −1

[4 (r , x)]p−1

[ ∞∑

n=1

an

x + n

]p−1

, x ≥ 1.

Then we find

J
p

1 =
∫ ∞

1
4 (r , x)x

q
s −1f q (x)dx.

If J1 = 0, then (62) is trivially valid; if J1 = ∞, then by (65), (62) is the form of
equality (= ∞). Suppose that 0 < J1 <∞. By (61), it follows

∫ ∞

1
4 (r , x)x

q
s
−1f q (x)dx = Jp1 = I

≤
{ ∞∑

n=1

ω(s, n)n
p
r
−1apn

} 1
p {∫ ∞

1
4 (r , x)x

q
s
−1f q (x)dx

} 1
q

,

J1 =
{∫ ∞

1
4 (r , x)x

q
s −1f q (x)dx

} 1
p

≤
{ ∞∑

n=1

ω(s, n)n
p
r −1apn

} 1
p

.

Hence we have (65), and then (61) and (62) are equivalent.
Still by Hölder’s inequality, it follows

∫ ∞

1

f (x)

x + ndx =
∫ ∞

1

1

x + n

[
n

1
rq

x
1
sp

][
x

1
sp

n
1
rq

f (x)

]

dx

≤
{∫ ∞

1

1

x + n
n
p
rq

x1/s
dx

} 1
p
{∫ ∞

1

1

x + n
x
q
sp

n1/r
f q (x)dx

} 1
q

= n 1
r
− 1
p {ω(s, n)} 1

p

{∫ ∞

1

1

x + n
x

1
r

n1/r
x
q
s −1f q (x)dx

} 1
q

. (67)

Then by Lebesgue term, by term integration theorem (cf. [43]), we have

L1 ≤
{ ∞∑

n=1

∫ ∞

1

1

x + n
x

1
r

n1/r
x
q
s −1f q(x)dx

} 1
q

=
{∫ ∞

1
4 (r , x)x

q
s
−1f q(x)dx

} 1
q

, (68)

and then (63) follows.
By Hölder’s inequality, we have

I =
∞∑

n=1

[
(ω(s, n))

1
p n

1
r
− 1
p an

]
[
n

1
p
− 1
r

(ω(s, n))
1
p

∫ ∞

1

f (x)

n+ x dx
]
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≤
{ ∞∑

n=1

ω(s, n)n
p
r −1apn

} 1
p

L1. (69)

Then by (63), we have (61).
On the other hand, assuming that (61) is valid, we set

an := n
q
s
−1

[ω(s, n)]q−1

[∫ ∞

1

f (x)

x + ndx
]q−1

, n ∈ N.

Then we find

L
q

1 =
∞∑

n=1

ω(s, n)n
p
r
−1apn .

If L1 = 0, then (63) is trivially valid; if L1 = ∞, then by (68), (63) is the form
of equality. Suppose that 0 < L1 <∞. By (61), it follows

∞∑

n=1

ω(s, n)n
p
r −1apn = Lq1 = I

≤
{ ∞∑

n=1

ω(s, n)n
p
r
−1apn

} 1
p {∫ ∞

1
4 (r , x)x

q
s
−1f q (x)dx

} 1
q

,

L1 =
{ ∞∑

n=1

ω(s, n)n
p
r
−1apn

} 1
q

≤
{∫ ∞

1
4 (r , x)x

q
s
−1f q (x)dx

} 1
q

.

Hence we have (63), and then (61) and (63) are equivalent.
Therefore, (61), (62) and (63) are equivalent. The lemma is proved.

Theorem 3 If p, r > 1, 1
p
+ 1
q
= 1

r
+ 1

s
= 1, an ≥ 0, 0 <

∑∞
n=1 n

p
r −1a

p
n < ∞,

f (x) ≥ 0, 0 <
∫∞

0 x
q
s −1f q (x)dx < ∞, then we have the following equivalent

inequalities (cf. [19]):

I =
∫ ∞

1
f (x)

∞∑

n=1

an

n+ x dx

<

{ ∞∑

n=1

[
π

sin(π
r

)
− ln 2

n1/r

]

n
p
r
−1apn

} 1
p

×
{∫ ∞

1

[
π

sin(π
r

)
− 1− γ
x1/s

]

x
q
s −1f q(x)dx

} 1
q

, (70)

J : =
⎧
⎨

⎩

∫ ∞

1

x
p
r
−1

[ π
sin( π

r
) − 1−γ

x1/s ]p−1

[ ∞∑

n=1

an

x + n

]p

dx

⎫
⎬

⎭

1
p
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<

{ ∞∑

n=1

[
π

sin(π
r

)
− ln 2

n1/r

]

n
p
r −1apn

} 1
p

, (71)

L : =
{ ∞∑

n=1

n
q
s
−1

[ π
sin( π

r
) − ln 2

n1/r ]q−1

[∫ ∞

1

f (x)

x + ndx
]q
} 1
q

≤
{∫ ∞

1

[
π

sin(π
r

)
− 1− γ
x1/s

]

x
q
s −1f q(x)dx

} 1
q

, (72)

with the same best possible constant factor π
sin( πr ) .

Proof In view of the assumptions, (65), (60), (61), (62) and (63), we have the
equivalent inequalities (70), (71) and (72).

For any 0 < ε < p

s
, we set ãn, f̃ (x) as follows:

ãn := n−1
r
− ε
p (n ∈ N), f̃ (x) := x −1

s
− ε
q (x ≥ 1).

Putting R = ( 1
r
+ ε
p

)−1, S = ( 1
s
− ε
p

)−1, then we have R > 1, 1
R
+ 1
S
= 1 and by

(60), it follows

Ĩ :=
∫ ∞

1

∞∑

n=1

ãnf̃ (x)

n+ x dx =
∫ ∞

1

∞∑

n=1

n
−1
r
− ε
p

n+ x x
−1
s
− ε
q dx

=
∫ ∞

1
x−1−ε

[ ∞∑

n=1

x1/R

n+ x
1

n1/R

]

dx

=
∫ ∞

1
x−1−ε4 (R, x)dx >

∫ ∞

1
x−1−ε

[
π

sin( π
R

)
− S

x1/S

]

dx

= 1

ε

π

sin( π
R

)
− S2

Sε + 1
. (73)

If there exists a constant k ≤ π
sin( π

r
) , such that (70) is valid when replacing π

sin( π
r

)

by k, then in particular, by (73), we have

π

sin( π
R

)
− εS2

Sε + 1

< εĨ < εk

{ ∞∑

n=1

n
p
r
−1ãpn

} 1
p {∫ ∞

1
x
q
s
−1f̃ q (x)dx

} 1
q

= εk
{

1+
∞∑

n=2

n−ε−1

} 1
p {∫ ∞

1
x−ε−1dx

} 1
q
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< εk

{

1+
∫ ∞

1
y−ε−1dy

} 1
p
{∫ ∞

1
x−ε−1dx

} 1
q

= k(ε + 1)
1
p ,

and then π
sin( π

r
) ≤ k(ε → 0+). Hence k = π

sin( π
r

) is the best possible constant factor
of (70).

We confirm that the constant factor π
sin( πr ) in (71) (72) is the best possible. Other-

wise, by (66) (69), we would reach a contradiction that the constant factor π
sin( πr ) in

(70) is not the best possible. The theorem is proved.

Corollary 2 If p, r > 1, 1
p
+ 1
q
= 1

r
+ 1
s
= 1, an ≥ 0, 0 <

∑∞
n=1 n

p
r
−1a

p
n < ∞,

f (x) ≥ 0, 0 <
∫∞

1 x
q
s
−1f q (x)dx < ∞, then we have the following equivalent

inequalities with the best possible constant factor π
sin( π

r
) :

I <

{ ∞∑

n=1

[
π

sin(π
r

)
− r

n1/r + n−1/s

]

n
p
r
−1apn

} 1
p

×
{∫ ∞

1

[
π

sin(π
r

)
− 1

2x1/s + x−1/r

]

x
q
s −1f q (x)dx

} 1
q

. (74)

⎧
⎪⎨

⎪⎩

∫ ∞

1

x
p
r
−1

[
π

sin( π
r

) − 1
2x1/s+x−1/r

]p−1

[ ∞∑

n=1

an

x + n

]p

dx

⎫
⎪⎬

⎪⎭

1
p

<

{ ∞∑

n=1

[
π

sin(π
r

)
− r

n1/r + n−1/s

]

n
p
r
−1apn

} 1
p

, (75)

⎧
⎪⎨

⎪⎩

∞∑

n=1

n
q
s
−1

[
π

sin( π
r

) − r

n1/r+n−1/s

]q−1

[∫ ∞

1

f (x)

x + ndx
]q
⎫
⎪⎬

⎪⎭

1
q

≤
{∫ ∞

1

[
π

sin(π
r

)
− 1

2x1/s + x−1/r

]

x
q
s
−1f q (x)dx

} 1
q

. (76)

Proof By (52), ∂
∂x
θr (x) > 0 implies θr(n) > rn

n+1 . By (51), we have

ω(s, n) <
π

sin(π
r

)
− rn

n1/r (n+ 1)

= π

sin(π
r

)
− r

n1/r + n−1/s
(n ∈ N). (77)
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In view of (61), for showing the corollary, we need to prove only the following
inequality:

4 (r , x) <
π

sin(π
r

)
− 1

2x1/s + x−1/r
(x ≥ 1). (78)

For x ≥ 1, we find

A(x) = x1− 1
r

∫ 1
x

0

u− 1
r

1+ u
du

= x1− 1
r

∫ 1
x

0

∞∑

k=0

(−1)kuk−
1
r du

= x1− 1
r

∞∑

k=0

(−1)k
∫ 1

x

0
uk−

1
r du

=
∞∑

k=0

(−1)k
(
k + 1

s

)
xk
>

3∑

k=0

(−1)k
(
k + 1

s

)
xk

,

B(x) =
∫ ∞

1
P1(t)G(t , x)dt

=
∫ ∞

1
P1(t)

[
x

(x + t)2t1/r
+ x

r(x + t)t1+1/r

]

dt

> − 1

12

[
x

(x + 1)2
+ x

r(x + 1)

]

.

For x ≥ 1, 1
x2 > 0 is equivalent to

x

x + 1
< 1− 1

x
+ 1

x2
,

and 4
x2 + 3

x3 > 0 is equivalent to

x

(x + 1)2
<

1

x

(

1− 2

x
+ 3

x2

)

.

Then we have

θ (r , x) = A(x)+ B(x)− x

2(x + 1)

> f (s, x)+ g(s, x)(x ≥ 1),

where,

f (s, x) : = s + 1

12s
+ 1

(1+ s)x
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+ 1

12sx2
+ 1

3(1+ 3s)x3
,

g(s, y) : = − 1

12sx
− 1

2(1+ 2s)x2

− 7

12
− 1

2x
+ 1

12x2
− 7

12x3
.

For s > 1, x ≥ 1, we find

f ′s (s, x) = 1− 1

12s2
− 1

(1+ s)2x

− 1

12s2x2
− 1

(1+ 3s)2x3

> 1− 1

12
− 1

4
− 1

12
− 1

16
> 0,

g′s(s, x) = 1

12s2x
+ 1

(1+ 2s)2x2
> 0.

Then we obtain

θ (r , x) > f (s, x)+ g(s, x) > lim
s→1+

(f (s, x)+ g(s, x))

= 1

2
− 1

12x
− 1

2x3
.

For x ≥ 2.5, since
(

1

2
− 1

12x
− 1

2x3

)(

1+ 1

2x

)

= 1

2
+ 1

x

(
1

6
− 1

24x
− 1

2x2
− 1

4x3

)

>
1

2
,

we have
1

2
− 1

12x
− 1

2x3
>

1

2
(
1+ 1

2x

) = 1

2+ x−1
,

and then we find

4 (r , x) = π

sin(π
r

)
− θ (r , x)

x
1
s

<
π

sin(π
r

)
− 1

x
1
s

(
1

2
− 1

12x
− 1

2x3

)

<
π

sin(π
r

)
− 1

x
1
s (2+ x−1)

= π

sin(π
r

)
− 1

2x
1
s + x− 1

r

(x ≥ 2.5).
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For 1 ≤ x < 2.5, x < 1−γ
2γ−1 = 2.73+, we find

1− γ
x

1
s

>
1

2x
1
s + x− 1

r

and

4 (r , x) <
π

sin(π
r

)
− 1− γ

x
1
s

<
π

sin(π
r

)
− 1

2x
1
s + x− 1

r

.

Hence, (78) is valid for x ≥ 1. Then by the same way of proving Theorem 3, we
can prove the corollary.

By Theorem 3, we can reduce the following corollary:

Corollary 3 If p, r > 1, 1
p
+ 1
q
= 1

r
+ 1
s
= 1, an ≥ 0, 0 <

∑∞
n=1 n

p
r
−1a

p
n < ∞,

f (x) ≥ 0, 0 <
∫∞

1 x
q
s
−1f q (x)dx < ∞, then we have the following equivalent

inequalities with the same best possible constant factor π
sin( π

r
) :

∫ ∞

1
f (x)

∞∑

n=1

an

n+ x dx =
∞∑

n=1

an

∫ ∞

1

f (x)

n+ x dx

<
π

sin(π
r

)

{ ∞∑

n=1

n
p
r
−1apn

} 1
p {∫ ∞

1
x
q
s
−1f q (x)dx

} 1
q

, (79)

{∫ ∞

1
x
p
r
−1

[ ∞∑

n=1

an

x + n

]p

dx

} 1
p

<
π

sin(π
r

)

{ ∞∑

n=1

n
p
r
−1apn

} 1
p

, (80)

{ ∞∑

n=1

n
q
s
−1

[∫ ∞

1

f (x)dx

x + n
]q
} 1
q

<

{∫ ∞

1
x
q
s
−1f q (x)dx

} 1
q

. (81)

In particular, for r = p, s = q, we have the following equivalent half-discrete
Hilbert’s inequalities:

∫ ∞

1
f (x)

∞∑

n=1

an

n+ x dx =
∞∑

n=1

an

∫ ∞

1

f (x)

n+ x dx

<
π

sin(π
p

)

{ ∞∑

n=1

apn

} 1
p {∫ ∞

1
f q (x)dx

} 1
q

, (82)

{∫ ∞

1

[ ∞∑

n=1

an

x + n

]p

dx

} 1
p

<
π

sin(π
p

)

{ ∞∑

n=1

apn

} 1
p

, (83)
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{ ∞∑

n=1

[∫ ∞

1

f (x)

x + ndx
]q
} 1
q

<

{∫ ∞

1
f q (x)dx

} 1
q

; (84)

for r = q, s = p, we have the equivalent dual forms as follows:

∫ ∞

1
f (x)

∞∑

n=1

an

n+ x dx =
∞∑

n=1

an

∫ ∞

1

f (x)

n+ x dx

<
π

sin(π
p

)

{ ∞∑

n=1

np−2apn

} 1
p {∫ ∞

1
xq−2f q (x)dx

} 1
q

, (85)

{∫ ∞

1
xp−2

[ ∞∑

n=1

an

x + n

]p

dx

} 1
p

<
π

sin(π
r

)

{ ∞∑

n=1

np−2apn

} 1
p

, (86)

{ ∞∑

n=1

nq−2

[∫ ∞

1

f (x)

x + ndx
]q
} 1
q

<

{∫ ∞

1
xq−2f q (x)dx

} 1
q

. (87)

Remark 2 Inequalities (70) and (74) are different strengthened versions of (79) with
the same best constant factor π

sin( π
r

) .

3 Half-Discrete Hilbert-Type Inequalities with the General
Non-Homogeneous Kernel and Operator Expressions

In this section, we agree that p ∈ R\{0, 1}, 1
p
+ 1

q
= 1, h(t)(> 0) is a finite

measurable function with respect to t ∈ R+.

3.1 Some Equivalent Inequalities

Definition 4 For σ , x ∈ R+, n ∈ N, we define two weight functions ω(σ , n) and
4 (σ , x) as follows:

ω(σ , n) := nσ
∫ ∞

0
h(xn)

dx

x1−α , (88)

4 (σ , x) := xσ
∞∑

n=1

h(xn)
1

n1−σ . (89)

Setting u = xn, we find

ω(σ , n) = nσ
∫ ∞

0
h(u)

n1−σ du

nu1−σ =
∫ ∞

0
h(u)uσ−1du. (90)
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Lemma 12 As the assumptions of Definition 4, if

K(σ ) :=
∫ ∞

0
h(u)uσ−1du ∈ R+, (91)

f (x), an ≥ 0, then (i) for p > 1, we have the following inequality:

H1 :=
{ ∞∑

n=1

npσ−1

(∫ ∞

0
h(xn)f (x)dx

)p
} 1
p

≤ [K(σ )]
1
q

{∫ ∞

0
4 (σ , x)xp(1−σ )−1f p(x)dx

} 1
p

, (92)

H̃2 :=
{∫ ∞

0

xqσ−1

[4 (σ , x)]q−1

( ∞∑

n=1

h(xn)an

)q

dx

} 1
q

≤
{

K(σ )
∞∑

n=1

nq(1−σ )−1aqn

} 1
q

; (93)

(ii) for p < 0, or 0 < p < 1, we have the reverses of (92) and (93).

Proof (i) For p > 1, by Hölder’s inequality with weight (cf. [47]), it follows

∫ ∞

0
h(xn)f (x)dx =

∫ ∞

0
h(xn)

[
x(1−σ )/q

n(1−σ )/p
f (x)

] [
n(1−σ )/p

x(1−σ )/q

]

dx

≤
{∫ ∞

0
h(xn)

x(1−σ )(p−1)

n1−σ f p(x)dx

} 1
p
{∫ ∞

0
h(xn)

n(1−σ )(q−1)

x1−σ

} 1
q

= [ω(σ , n)]
1
q n

1
p−σ

{∫ ∞

0
h(xn)

x(1−σ )(p−1)

n1−σ f p(x)dx

} 1
p

. (94)

Then by Lebesgue term, by term integration theorem (cf. [43]) and (91), we have

J1 ≤ [K(σ )]
1
q

{ ∞∑

n=1

∫ ∞

0
h(xn)

x(1−σ )(p−1)

n1−σ f p(x)dx

} 1
p

= [K(σ )]
1
q

{∫ ∞

0

∞∑

n=1

h(xn)
x(1−σ )(p−1)

n1−σ f p(x)dx

} 1
p

= [K(σ )]
1
q

{∫ ∞

0
4 (σ , x)xp(1−σ )−1f p(x)dx

} 1
p

. (95)

Hence, (92) follows.
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By the same way, we obtain

∞∑

n=1

h(xn)an ≤ [4 (σ , x)]
1
p x

1
q
−σ

×
{ ∞∑

n=1

h(xn)
n(1−σ )(q−1)

x1−σ aqn

} 1
q

, (96)

then by Lebesgue term, by term integration theorem and the same way as in obtaining
(95), we have (93).

(ii) For p < 0 or 0 < p < 1, by the reverse Hölder’s inequality with weight
(cf. [47]), we obtain the reverses of (94) and (96). Then by Lebesgue term, by term
integration theorem, we still can obtain the reverses of (92) and (93).

Lemma 13 As the assumptions of Lemma 12, (i) for p > 1, we have the following
inequality equivalent to (92) and (93):

H :=
∞∑

n=1

∫ ∞

0
h(xn)anf (x)dx

≤
{∫ ∞

0
4 (σ , x)xp(1−σ )−1f p(x)dx

} 1
p

{

K(σ )
∞∑

n=1

nq(1−σ )−1aqn

} 1
q

; (97)

(ii) for p < 0 or 0 < p < 1, we have the reverse of (97) equivalent to the reverses
of (92) and (93).

Proof (i) For p > 1, by Hölder’s inequality (cf. [47]), it follows

H =
∞∑

n=1

n
1
q
−(1−σ )

[∫ ∞

0
h(xn)f (x)dx

] [
n

(1−σ )− 1
q an

]

≤ H1

{ ∞∑

n=1

nq(1−σ )−1aqn

} 1
q

. (98)

Then by (92), we have (97). On the other hand, assuming that (97) is valid, we set

bn := npσ−1

(∫ ∞

0
h(xn)f (x)dx

)p−1

, n ∈ N.

Then it follows Hp1 = ∑∞
n=1 n

q(1−σ )−1a
q
n . If H1 = 0, then (92) is trivially valid;

if H1 = ∞, then by (95), (92) keeps the form of equality (= ∞). Suppose that
0 < H1 <∞. By (97), we have

0 <
∞∑

n=1

nq(1−σ )−1aqn = Hp1 = H
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≤
{∫ ∞

0
4 (σ , x)xp(1−σ )−1f p(x)dx

} 1
p

×
{

K(σ )
∞∑

n=1

nq(1−σ )−1aqn

} 1
q

<∞.

It follows

H1 = [K(σ )]
1
q

{ ∞∑

n=1

nq(1−σ )−1aqn

} 1
p

≤ [K(σ )]
1
q

{∫ ∞

0
4 (σ , x)xp(1−σ )−1f p(x)dx

} 1
p

,

and then (92) follows. Hence, (92) and (97) are equivalent.
By Hölder’s inequality and the same way, we can obtain

H ≤
{∫ ∞

0
4 (σ , x)xp(1−σ )−1f p(x)dx

} 1
p

H̃2. (99)

Then by (93), we have (97). On the other hand, assuming that (97) is valid, we set

f (x) = xqσ−1

[4 (σ , x)]q−1

( ∞∑

n=1

h(xn)an

)q−1

(x ∈ R+).

Then it follows

H̃
q

2 =
∫ ∞

0
4 (σ , x)xp(1−σ )−1f p(x)dx.

By (97) and the same way, we can obtain

H̃2 =
{∫ ∞

0
4 (σ , x)xp(1−σ )−1f p(x)dx

} 1
q

≤
{

K(σ )
∞∑

n=1

nq(1−σ )−1aqn

} 1
q

,

and then (93) is equivalent to (97).
Hence (92), (93) and (97) are equivalent.
(2) for p < 0 or 0 < p < 1, by the same way, we have the reverse of (97)

equivalent to the reverses of (92) and (93). The lemma is proved.

Theorem 4 As the assumptions of Lemma 12, if θσ (x) ∈ (0, 1),

K(σ )(1− θσ (x)) < 4 (σ , x) < K(σ )(x ∈ R+), (100)
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0 <
∫∞

0 xp(1−σ )−1f p(x)dx < ∞, 0 <
∑∞
n=1 n

q(1−σ )−1a
q
n < ∞, then (i) for p > 1,

we have the following equivalent inequalities:

H =
∞∑

n=1

∫ ∞

0
h(xn)anf (x)dx

< K(σ )

{∫ ∞

0
xp(1−σ )−1f p(x)dx

} 1
p

{ ∞∑

n=1

nq(1−σ )−1aqn

} 1
q

, (101)

H1 =
{ ∞∑

n=1

npσ−1

(∫ ∞

0
h(xn)f (x)dx

)p
} 1
p

< K(σ )

{∫ ∞

0
xp(1−σ )−1f p(x)dx

} 1
p

, (102)

H2 :=
{∫ ∞

0
xqσ−1

( ∞∑

n=1

h(xn)an

)q

dx

} 1
q

< K(σ )

{ ∞∑

n=1

nq(1−σ )−1aqn

} 1
q

; (103)

(ii) for p < 0(0 < q < 1), we have the equivalent reverses of (101), (102) and
(103);

(iii) for 0 < p < 1(q < 0), we have the following equivalent inequalities:

H =
∞∑

n=1

∫ ∞

0
h(xn)anf (x)dx

> K(σ )

{∫ ∞

0
(1− θσ (x))xp(1−σ )−1f p(x)dx

} 1
p

×
{ ∞∑

n=1

nq(1−σ )−1aqn

} 1
q

, (104)

H1 =
{ ∞∑

n=1

npσ−1

(∫ ∞

0
h(xn)f (x)dx

)p
} 1
p

> K(σ )

{∫ ∞

0
(1− θσ (x))xp(1−σ )−1f p(x)dx

} 1
p

, (105)

Ĥ2 : =
{∫ ∞

0

xqσ−1

(1− θσ (x))q−1

( ∞∑

n=1

h(xn)an

)q

dx

} 1
q
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> K(σ )

{ ∞∑

n=1

nq(1−σ )−1aqn

} 1
p

. (106)

Theorem 5 If there exists a constant δ0 > 0, such that for any σ̃ ∈ (σ −δ0, σ +δ0),
K (̃σ ) = ∫∞0 h(u)uσ̃−1du ∈ R+, θσ̃ (x) ∈ (0, 1) and

K (̃σ )(1− θσ̃ (x)) < 4 (̃σ , x) < K (̃σ )(x ∈ R+), (107)

where, θσ̃ (x) = O(xδ(̃σ ))(x ∈ (0, 1]; δ(̃σ ) > 0), then the constant factor K(σ ) in
Theorem 4 is the best possible.

Proof (i) For p > 1, by Hölder’s inequality, we find

H ≤ H1

{ ∞∑

n=1

nq(1−σ )−1aqn

} 1
q

, (108)

H ≤
{∫ ∞

0
xp(1−σ )−1f p(x)dx

} 1
p

H2. (109)

For 0 < ε < qδ0, we set f̃ (x), ãn as follows:

f̃ (x) : =
⎧
⎨

⎩

x
σ+ ε

p
−1, 0 < x ≤ 1,

0, x > 1,

ãn : = n(σ− ε
q

)−1, n ∈ N.

Then for σ̃ = σ − ε
q

, by (107), we find

{∫ ∞

0
xp(1−σ )−1f̃ p(x)dx

} 1
p

{ ∞∑

n=1

nq(1−σ )−1ãqn

} 1
q

=
{∫ 1

0
x−1+εdx

} 1
p

{

1+
∞∑

n=2

n−1−ε
} 1
q

<

{
1

ε

} 1
p
{

1+
∫ ∞

1
y−1−εdy

} 1
q

= 1

ε
{ε + 1} 1

q ,

H̃ :=
∫ ∞

0

∞∑

n=1

h(xn)̃anf̃ (x)dx =
∫ 1

0
x−1+ε4λ(̃σ , x)dx

≥ K (̃σ )
∫ 1

0
x−1+ε (1−O(xδ(̃σ ))

)
dx
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= K (̃σ )

ε
[1− εOσ̃ (1)] .

If there exists a constant k ≤ K(σ ), such that (104) is valid when replacingK(σ )
by k, then in particular, we have

K (̃σ ) [1− εOσ̃ (1)] ≤ εH̃ < εk
{∫ ∞

0
xp(1−σ )−1f̃ p(x)dx

} 1
p

×
{ ∞∑

n=1

nq(1−σ )−1ãqn

} 1
q

< k {ε + 1} 1
q ,

and then by (26),K(σ ) ≤ k(ε→ 0+).Hence k = K(σ ) is the best possible constant
factor of (101).

By the equivalency, we can prove that the constant factorK(σ ) in (102) and (103)
is the best possible. Otherwise, we would reach a contradiction by (108) and (109)
that the constant factor K(σ ) in (101) is not the best possible.

(ii) For p < 0, by the reverse Hölder’s inequality, we have the reverses of (108)
and (109). For 0 < ε < qδ0, we set f̃ (x), ãn as (i). Then for σ̃ = σ − ε

q
, by (107),

we find

{∫ ∞

0
xp(1−σ )−1f̃ p(x)dx

} 1
p

{ ∞∑

n=1

nq(1−σ )−1ãqn

} 1
q

=
{∫ 1

0
x−1+εdx

} 1
p

{ ∞∑

n=1

n−1−ε
} 1
q

>

{
1

ε

} 1
p
{∫ ∞

1
y−1−εdy

} 1
q

= 1

ε
,

H̃ =
∫ ∞

0

∞∑

n=1

h(xn)̃anf̃ (x)dx =
∫ 1

0
x−1+ε4λ(̃σ , x)dx <

1

ε
K (̃σ ).

If there exists a constant K ≥ K(σ ), such that the reverse of (101) is valid when
replacing K(σ ) by K , then in particular, we have

K (̃σ ) > εH̃

> εK

{∫ ∞

0
xp(1−σ )−1f̃ p(x)dx

} 1
p

{ ∞∑

n=1

nq(1−σ )−1ãqn

} 1
q

> K ,

and then by (26), K(σ ) ≥ K(ε → 0+). Hence K = K(σ ) is the best possible
constant factor of the reverse of (101).
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By the equivalency, we can prove that the constant factorK(σ ) in the reverses of
(102) and (103) is the best possible. Otherwise, we would reach a contradiction by
the reverses of (108) and (109) that the constant factor K(σ ) in the reverse of (101)
is not the best possible.

(iii) For 0 < p < 1, by the reverse Hölder’s inequality, we find

H ≥ H1

{ ∞∑

n=1

nq(1−σ )−1aqn

} 1
q

, (110)

H ≥
{∫ ∞

0
(1− θσ (x))xp(1−σ )−1f p(x)dx

} 1
p

Ĥ2. (111)

For 0 < ε < |q|δ0, we set f̃ (x), ãn as (i). Then for σ̃ = σ − ε
q

, by (107), we find

{∫ ∞

0
(1− θσ (x))xp(1−σ )−1f̃ p(x)dx

} 1
p

{ ∞∑

n=1

nq(1−σ )−1ãqn

} 1
q

=
{∫ 1

0
(1−O(xδ(σ )))x−1+εdx

} 1
p

{

1+
∞∑

n=2

n−1−ε
} 1
q

>

{∫ 1

0
(1−O(xδ(σ )))x−1+εdx

} 1
p
{

1+
∫ ∞

1
y−1−εdy

} 1
q

= 1

ε
{1− εOσ (1)} 1

p {ε + 1} 1
q ,

H̃ =
∫ ∞

0

∞∑

n=1

h(xn)̃anf̃ (x)dx =
∫ 1

0
x−1+ε4 (̃σ , x)dx

< K (̃σ )
∫ 1

0
x−1+εdx = 1

ε
K (̃σ ).

If there exists a constantK ≥ K(σ ), such that (104) is valid when replacingK(σ )
by K , then in particular, we have

K (̃σ ) > εH̃ > εK

{∫ ∞

0
(1− θσ (x))xp(1−σ )−1f̃ p(x)dx

} 1
p

×
{ ∞∑

n=1

nq(1−σ )−1ãqn

} 1
q

> K{1− εOσ (1)} 1
p {ε + 1} 1

q ,

and then by (26), K(σ ) ≥ K(ε → 0+). Hence K = K(σ ) is the best possible
constant factor of (104).
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By the equivalency, we can prove that the constant factor K(σ ) in (105) (106) is
the best possible. Otherwise, we would reach a contradiction by (110) (111) that the
constant factor K(σ ) in (104) is not the best possible. The theorem is proved.

Corollary 4 If there exists a constant δ0 > 0, such that for any σ̃ ∈ (σ−δ0, σ+δ0),
K (̃σ ) ∈ R+, h(xy)yσ̃−1 is strictly decreasing with respect to y ∈ R+, and there exist
constants L > 0 and η0 > −σ̃ , satisfying

h(u) ≤ Luη0 (u ∈ (0, 1]), (112)

then the constant factor K(σ ) in Theorem 5 is the best possible.

Proof In view of (32), we find

4 (̃σ , x) = xσ̃
∞∑

n=1

h(xn)
1

n1−σ̃ < x
σ̃

∫ ∞

0
h(xy)

1

y1−σ̃ dy

=
∫ ∞

0
h(u)uσ̃−1du = K (̃σ ),

4 (̃σ , x) > xσ̃
∫ ∞

1
h(xy)

1

y1−σ̃ dy

=
∫ ∞

x

h(u)uσ̃−1du = K (̃σ )[(1− θσ̃ (x))](x ∈ R+),

where,

θσ̃ (x) := 1

K (̃σ )

∫ x

0
h(u)uσ̃−1du ∈ (0, 1).

For x ∈ (0, 1],

0 < θσ̃ (x) ≤ L

K (̃σ )

∫ x

0
uη0uσ̃−1du

= L

(η0 + σ̃ )
xδ(̃σ )(δ(̃σ ) = η0 + σ̃ ),

namely, θσ̃ (x) = O(xδ(̃σ ))(x ∈ (0, 1]; δ(̃σ ) > 0). Then we have (107). Therefore, the
constant factor K(σ ) in Theorem 5 is the best possible. The corollary is proved.

3.2 Operator Expressions and Examples

For p > 1, we set Φ(x) = xp(1−σ )−1(x ∈ R+) and Ψ (n) = nq(1−σ )−1(n ∈ N),
wherefrom

[Ψ (n)]1−p = npσ−1, [Φ(x)]1−q = xqσ−1.

We define two real weight normal spaces Lp,Φ (R+) and lq,Ψ as follows:

Lp,Φ(R+) : =
{

f ; ||f ||p,Φ =
{∫ ∞

0
Φ(x)|f (x)|pdx

} 1
p

<∞
}

,
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lq,Ψ : =
⎧
⎨

⎩
a = {an}; ||a||q,Ψ =

{ ∞∑

n=1

Ψ (n)|an|q
} 1
q

<∞
⎫
⎬

⎭
.

As the assumptions of Theorem 4, in view of

H1 < K(σ )||f ||p,Φ ,H2 < K(σ )||a||q,Ψ ,

we can give the following definition:

Definition 5 Define a first kind of half-discrete Hilbert-type operator T̃1 : Lp,Φ (R+)
→ lp,Ψ 1−p as follows: For f ∈ Lp,Φ (R+), there exists a unique representation
T̃1f ∈ lp,Ψ 1−p , satisfying

(T̃1f )(n) :=
∫ ∞

0
h(xn)f (x)dx(n ∈ N). (113)

For a ∈ lq,Ψ , we define the following formal inner product of T̃1f and a as follows:

(T̃1f , a) :=
∞∑

n=1

an

∫ ∞

0
h(xn)f (x)dx. (114)

Define a second kind of half-discrete Hilbert-type operator T̃2 : lq,Ψ →
Lq,Φ1−q (R+) as follows: For a ∈ lq,Ψ , there exists a unique representation T̃2a ∈
Lq,Φ1−q (R+), satisfying

(
T̃2a
)

(x) :=
∞∑

n=1

kλ(x, n)an(x ∈ R+). (115)

For f ∈ Lp,Φ (R+), we define the following formal inner product of f and T̃2a as
follows:

(
f , T̃2a

)
:=
∫ ∞

0
kλ(x, n)anf (x)dx. (116)

Then by Theorem 4, for 0 < ||f ||p,Φ , ||a||q,Ψ < ∞, we have the following
equivalent inequalities:

(T̃1f , a) = (T̃2a, f ) < K(σ )||f ||p,Φ ||a||q,Ψ , (117)

||T̃1f ||p,Ψ 1−p < K(σ )||f ||p,Φ , (118)

||T̃2a||q,Φ1−q < K(σ )||a||q,Ψ . (119)

It follows that T̃1 and T̃2 are bounded with

||T̃1|| := sup
f ( �=θ )∈Lp,Φ (R+)

||T̃1f ||p,Ψ 1−p

||f ||p,Φ
≤ K(σ ),
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||T̃2|| := sup
a( �=θ )∈lq,Ψ

||T̃2a||q,Φ1−q

||a||q,Ψ
≤ K(σ ).

Since by Theorem 5 or Corollary 4, the constant factor K(σ ) in (118) and (119)
is the best possible, we have

||T̃1|| = ||T̃2|| = K(σ ) =
∫ ∞

0
h(u)uσ−1du. (120)

Note. If we define

(T̃1f )(n) := n2σ−1
∫ ∞

0
h(xn)f (x)dx(n ∈ N),

then we have ||T̃1f ||p,Φ < K(σ )||f ||p,Φ and T̃1f ∈ lp,Φ ; if we define

(T̃2a)(x) := x2σ−1
∞∑

n=1

kλ(x, n)an(x ∈ R+),

then we have ||T̃2a||q,Ψ < K(σ )||a||q,Ψ and T̃2a ∈ Lq,Ψ (R+).

Example 5 (i) We set

h(t) = 1

(t + 1)λ
(0 < σ < min{1, λ}).

For δ0 = 1
2 min{σ , λ− σ , 1− σ } > 0, and σ̃ ∈ (σ − δ0, σ + δ0), it follows

K (̃σ ) =
∫ ∞

0

1

(t + 1)λ
t σ̃−1dt = B (̃σ , λ− σ̃ ) ∈ R+,

and
∂

∂y

(
1

(xy + 1)λ
yσ̃−1

)

< 0.

Setting η0 = 0 > −σ̃ , there exists a constant L > 0, such that

h(u) = 1

(u+ 1)λ
≤ Luη0 (u ∈ (0, 1]).

Then by Corollary 4 and (120), we have

||T̃1|| = ||T̃2|| = B(σ , λ− σ ). (121)

(ii) We set

h(t) = ln t

tλ − 1
(0 < σ < min{1, λ}).

For δ0 = 1
2 min{σ , λ− σ , 1− σ } > 0 and σ̃ ∈ (σ − δ0, σ + δ0), it follows

K (̃σ ) =
∫ ∞

0

t σ̃−1 ln t

tλ − 1
dt = 1

λ2

∫ ∞

0

v
σ̃
λ
−1 ln v

v− 1
dv
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=
[

π

λ sin π (̃σ/λ)

]2

∈ R+,

and ∂
∂y

(
ln(xy)

(xy)λ−1y
σ̃−1
)
< 0.We set η0 = − σ

2 > −σ̃ . Since u−η0 ln u
uλ−1 → 0(u → 0+),

there exists a constant L > 0, such that

h(u) = ln u

uλ − 1
≤ Luη0 (u ∈ (0, 1]).

Then by Corollary 4 and (120), we have

||T̃1|| = ||T̃2|| =
[

π

λ sinπ ( σ
λ

)

]2

.

Example 6 For s ∈ N, we set

h(t) = 1
∏s
k=1 (tλ/s + ak) (0 < a1 < · · · < as ,

0 < σ < min

{

1,
λ

s

})

.

For δ0 = 1
2 min{σ , λ

s
−σ , 1−σ } > 0, and σ̃ ∈ (σ −δ0, σ +δ0), by (41), it follows

Ks (̃σ ) =
∫ ∞

0

t σ̃−1dt
∏s
k=1 (tλ/s + ak) =

s

λ

∫ ∞

0

u
sσ̃
λ
−1du

∏s
k=1 (u+ ak)

= πs

λ sin
(
πsσ̃
λ

)
s∑

k=1

a
sσ̃
λ
−1

k

s∏

j=1(j �=k)

1

aj − ak ∈ R+,

and
∂

∂y

(
yσ̃−1

∏s
k=1 [(xy)λ/s + ak]

)

< 0.

Setting η0 = 0 > −σ̃ , there exists a constant L > 0, such that

h(u) = 1
∏s
k=1 (uλ/s + ak) ≤ Luη0 (u ∈ (0, 1]).

Then by Corollary 4 and (120), we have

||T̃1|| = ||T̃2|| = πs

λ sin
(
πsσ
λ

)
s∑

k=1

a
sσ
λ
−1

k

s∏

j=1(j �=k)

1

aj − ak . (122)

(ii) We set

h(t) = 1

tλ +√ctλ/2 cos γ + c
4
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(0 < γ <
π

2
, 0 < σ < min{1, λ}).

For δ0 = 1
2 min{σ , λ−σ , 1−σ } > 0, and σ̃ ∈ (σ − δ0, σ + δ0), by (41), it follows

K (̃σ ) =
∫ ∞

0

1

tλ +√ctλ/2 cos γ + c
4

t σ̃−1dt

=
(√
c

2

) 2σ̃
λ 2π sinγ

(
1− 2σ̃

λ

)

λ sinγ sin
(

2πσ̃
λ

) ∈ R+,

and
∂

∂y

(
yσ̃−1

(xy)λ +√c(xy)λ/2 cos γ + c
4

)

< 0.

Setting η0 = 0 > −σ̃ , there exists a constant L > 0, such that

h(u) = 1

uλ +√cuλ/2 cos γ + c
4

≤ Luη0 (u ∈ (0, 1]).

Then by Corollary 4 and (120), we have

||T̃1|| = ||T̃2|| =
(√
c

2

) 2σ
λ 2π sinγ

(
1− 2σ

λ

)

λ sinγ sin
(

2πσ
λ

) . (123)

Example 7 (i) We set

h(t) = ln

(
b + tγ
a + tγ

)

(0 ≤ a < b, 0 < σ < min{1, γ }).

For δ0 = 1
2 min{σ , γ − σ , 1 − σ } > 0, and σ̃ ∈ (σ − δ0, σ + δ0), by Example

3(i), it follows

K (̃σ ) =
∫ ∞

0
ln

(
b + tγ
a + tγ

)

t σ̃−1dt

=
∫ ∞

0
ln

(
byγ + 1

ayγ + 1

)

y−σ̃−1dy

= 1

σ̃

(
b
σ̃
γ − a σ̃γ

) π

sinπ ( σ̃
γ

)
∈ R+,

and
∂

∂y

[

yσ̃−1 ln

(
b + (xy)γ

a + (xy)γ

)]

< 0.
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Setting η0 = 0 > −σ̃ , there exists a constant L > 0, such that

h(t) = ln

(
b + tγ
a + tγ

)

≤ Ltη0 (t ∈ (0, 1]).

Then by Corollary 4 and (120), we have

||T̃1|| = ||T̃2|| =
(
b
σ
γ − a σγ

)
π

σ sinπ ( σ
γ

)
. (124)

(ii) We set h(t) = e−ρtγ (ρ, γ > 0, 0 < σ < 1). For δ0 = 1
2 min{σ , 1 − σ } > 0,

and σ̃ ∈ (σ − δ0, σ + δ0), it follows

K (̃σ ) =
∫ ∞

0
e−ρt

γ

t σ̃−1dt = 1

γ
ρ
− σ̃
γ

∫ ∞

0
e−uu

σ̃
γ
−1
du

= 1

γρ
σ̃
γ

Γ

(
σ̃

γ

)

∈ R+,

and ∂
∂y

(
e−ρ(xy)γ yσ̃−1

)
< 0. Setting η0 = 0 > −σ̃ , there exists a constant L > 0,

such that
h(t) = e−ρtγ ≤ Ltη0 (t ∈ (0, 1]).

Then by Corollary 4 and (120), we have

||T̃1|| = ||T̃2|| = 1

γρ
σ
γ

Γ

(
σ

γ

)

. (125)

(iii) We set

h(t) = arctan ρt−γ (ρ, γ > 0, 0 < σ < min{1, γ }).
For δ0 = 1

2 min{σ , γ − σ , 1− σ } > 0 and σ̃ ∈ (σ − δ0, σ + δ0), it follows

K (̃σ ) =
∫ ∞

0
t σ̃−1(arctan ρt−γ )dt = 1

σ̃

∫ ∞

0
(arctan ρt−γ )dt σ̃

= 1

σ̃

[

(arctan ρt−γ )t σ̃ |∞0 +
∫ ∞

0

γρtσ̃−γ−1

1+ (ρt−γ )2
dt

]

= ρ
σ̃
γ

2σ̃

∫ ∞

0

1

1+ u
u
(
− σ̃

2γ + 1
2

)
−1
du

= ρ
σ̃
γ π

2σ̃ sin π
(
− σ̃

2γ + 1
2

) = ρ
σ̃
γ π

2σ̃ cosπ
(
σ̃

2γ

) ∈ R+,
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and ∂
∂y

(yσ̃−1 arctan ρ(xy)−γ ) < 0.We set η0 = 0 > −σ̃ . Since

t−η0 arctan ρt−γ → π

2
(t → 0+),

there exists a constant L > 0, such that

h(t) = arctan ρt−γ ≤ Ltη0 (t ∈ (0, 1]).

Then by Corollary 4 and (120), we have

||T̃1|| = ||T̃2|| = ρ
σ
γ π

2σ cosπ
(
σ

2γ

) . (126)

Example 8 We set

h(t) = (min{t , 1})γ
(max{t , 1})λ+γ (−γ < σ < min{λ+ γ , 1− γ }).

For δ0 = 1
2 min{σ + γ , λ+ γ − σ , 1− σ − γ } > 0 and σ̃ ∈ (σ − δ0, σ + δ0), it

follows

K (̃σ ) =
∫ ∞

0

(min{t , 1})γ t σ̃−1

(max{t , 1})λ+γ dt =
λ+ 2γ

(̃σ + γ )(λ− σ̃ + γ )
∈ R+.

We find

h(xy)yσ̃−1 = (min{xy, 1})γ
(max{xy, 1})λ+γ y

σ̃−1

=
⎧
⎨

⎩

xγ yγ+σ̃−1, 0 < y < x,
1

xλ+γ yλ+γ−σ̃+1 , y ≥ x,

is strictly decreasing with respect to y ∈ R+.
There exists a constant η0, such that η0 ∈ (− σ̃ , γ ). In view of

t−η0h(t) = t
−η0 (min{t , 1})γ
(max{t , 1})λ+γ =

⎧
⎨

⎩

tγ−η0 , 0 < t < 1,
1

tλ+γ+η0
, t ≥ 1,

we have t−η0h(t) → 0(t → 0+), and then there exists a constant L > 0, satisfying
h(t) ≤ Ltη0 (t ∈ (0, 1]).

Therefore, by Corollary 4 and (120), it follows

||T̃1|| = ||T̃2|| = λ+ 2γ

(σ + γ )(λ− σ + γ )
. (127)
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4 Two Kinds of Compositions of Two Half-Discrete
Hilbert-Type Operators

4.1 The Case That the First Kernel Is Homogeneous

For p > 1, we set ϕ(x) = xp(1−λ1)−1,ψ(y) = yq(1−λ2)−1(x, y ∈ R+), and define
three normal spaces as follows:

lp,ϕ : =
⎧
⎨

⎩
a = {am}∞m=1; ||a||p,ϕ =

{ ∞∑

m=1

ϕ(m)|am|p
} 1
p

<∞
⎫
⎬

⎭
,

Lp,ϕ : =
{

f ; ||f ||p,ϕ =
{∫ ∞

0
ϕ(x)|f (x)|pdx

} 1
p

<∞
}

,

lq,ψ : =
⎧
⎨

⎩
b = {bn}∞n=1; ||b||q,ψ =

{ ∞∑

n=1

ψ(n)|bn|q
} 1
q

<∞
⎫
⎬

⎭
.

In the following, we agree that p > 1, 1
p
+ 1

q
= 1, λ, λ1, λ2 ∈ R, λ1 + λ2 =

λ, k(i)
λ (x, y) (i = 1, 2, 3) are non-negative finite homogeneous functions of degree

−λ in R2
+, with

k(i)(λ1) :=
∫ ∞

0
k

(i)
λ (u, 1)uλ1−1du ∈ R+,

and k(1)
λ (x, y) is symmetric.

Definition 6 If k ∈ N, we define two functions F̃k(y) and G̃k(x) as follows:

F̃k(y) : = yλ−1
∫ ∞

1
k

(2)
λ (x1, y)x

λ1− 1
pk
−1

1 dx1, y ∈ [1,∞), (128)

G̃k(x) : = xλ−1
∫ ∞

1
k

(3)
λ (x, y1)y

λ2− 1
qk
−1

1 dy1, x ∈ [1,∞). (129)

Lemma 14 If there exists a constant δ0 > 0, such that k(i)(λ1 ± δ0) ∈ R+ (i =
1, 2, 3), and there exist constants δ1 ∈ (0, δ0) andL > 0, satisfying for any u ∈ [1,∞),

k
(2)
λ (1, u)uλ2+δ1 ≤ L, k(3)

λ (u, 1)uλ1+δ1 ≤ L, (130)

then for k ∈ N, k > 1
δ1

max{ 1
p

, 1
q
}, setting functions Fk(y) and Gk(x) as follows:

Fk(y) : = yλ1− 1
pk
−1
k(2)

(

λ1 − 1

pk

)

− F̃k(y), y ∈ [1,∞),

Gk(x) : = xλ2− 1
qk
−1
k(3)

(

λ1 + 1

qk

)

− G̃k(x), x ∈ [1,∞),
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we have

0 ≤ Fk(y) = O(yλ1−δ1−1)(y ∈ [1,∞)), (131)

0 ≤ Gk(x) = O(xλ2−δ1−1)(x ∈ [1,∞)). (132)

Proof Setting u = x1/y in (128), we obtain

F̃k(y) = yλ1− 1
pk
−1
∫ ∞

1/y
k

(2)
λ (u, 1)uλ1− 1

pk
−1
du

= yλ1− 1
pk−1

∫ ∞

0
k

(2)
λ (u, 1)uλ1− 1

pk−1
du

− yλ1− 1
pk
−1
∫ 1/y

0
k

(2)
λ (u, 1)uλ1− 1

pk
−1
du

= yλ1− 1
pk
−1
k(2)

(

λ1 − 1

pk

)

− yλ1− 1
pk−1

∫ 1/y

0
k

(2)
λ (u, 1)uλ1− 1

pk−1
du.

Hence, it follows

Fk(y) = yλ1− 1
pk
−1
k(2)

(

λ1 − 1

pk

)

− F̃k(y)

= yλ1− 1
pk−1

∫ 1/y

0
k

(2)
λ (u, 1)uλ1− 1

pk−1
du

= yλ1− 1
pk
−1
∫ ∞

y

k
(2)
λ (1, v)vλ2+ 1

pk
−1
dv ≥ 0(y ∈ [1,∞)).

In view of (130), we have

0 ≤ Fk(y) ≤ yλ1− 1
pk
−1
L

∫ ∞

y

v−λ2−δ1vλ2+ 1
pk
−1
dv

= yλ1− 1
pk−1

L

∫ ∞

y

v−δ1+
1
pk−1

dv = Ly
λ1−δ1−1

δ1 − 1
pk

,

and then Fk(y) = O(yλ1−δ1−1)(y ∈ [1,∞)).
Still setting u = x/y1, we find

G̃k(x) = xλ2− 1
qk−1

∫ x

0
k

(3)
λ (u, 1)uλ1+ 1

qk−1
du

= xλ2− 1
qk−1

k(3)

(

λ1 + 1

qk

)

− xλ2− 1
qk−1

∫ ∞

x

k
(3)
λ (u, 1)uλ1+ 1

qk−1
du.

Hence, it follows

Gk(x) = xλ2− 1
qk
−1
k(3)

(

λ1 + 1

qk

)

− G̃k(x)



512 B. Yang

= xλ2− 1
qk
−1
∫ ∞

x

k
(3)
λ (u, 1)uλ1+ 1

qk
−1
du ≥ 0.

By (90), we have

0 ≤ Gk(x) ≤ xλ2− 1
qk
−1
L

∫ ∞

x

u−δ1+
1
qk
−1
du = Lx

λ2−δ1−1

δ1 − 1
qk

,

and then Gk(x) = O(xλ2−δ1−1)(x ∈ [1,∞)). The lemma is proved.

Lemma 15 As the assumptions of Lemma 14, we have

Lk := 1

k

∫ ∞

1

(∫ ∞

1
k

(1)
λ (x, y)xλ2− 1

qk
−1
y
λ1− 1

pk
−1
dx

)

dy

= k(1)(λ1)+ o(1)(k→∞). (133)

Proof Setting u = y/x, since k(1)
λ (x, y) is symmetric, by (26), it follows

Lk = 1

k

∫ ∞

1
y−

1
k
−1

(∫ y

0
k

(1)
λ (1, u)uλ1+ 1

qk
−1
du

)

dy

= 1

k

[∫ ∞

1
y−

1
k
−1

(∫ 1

0
k

(1)
λ (u, 1)uλ1+ 1

qk
−1
du

)

dy

+
∫ ∞

1
y−

1
k−1

(∫ y

1
k

(1)
λ (u, 1)uλ1+ 1

qk−1
du

)

dy

]

=
∫ 1

0
k

(1)
λ (u, 1)uλ1+ 1

qk
−1
du

+ 1

k

∫ ∞

1

(∫ ∞

u
y−

1
k
−1dy

)

k
(1)
λ (u, 1)uλ1+ 1

qk
−1
du

=
∫ 1

0
k

(1)
λ (u, 1)uλ1+ 1

qk
−1
du+

∫ ∞

1
k

(1)
λ (u, 1)uλ1− 1

pk
−1
du

=
∫ ∞

0
k

(1)
λ (u, 1)uλ1−1du+ o(1).

Hence, (133) is valid. The lemma is proved.

Lemma 16 As the assumptions of Lemma 14, if λ, λ1, λ2 ≤ 1, k(i)
λ (x, y) (i = 1, 2, 3)

are decreasing with respect to x (y) ∈ R+, setting

Ãλ(n) : = nλ−1
∫ ∞

1
k

(2)
λ (x1, n)x

λ1− 1
pk
−1

1 dx1,
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B̃λ(x) : = xλ−1
∞∑

n1=1

k
(3)
λ (x, n1)n

λ2− 1
qk
−1

1 ,

then we have

Ĩk : = 1

k

∫ ∞

0

∞∑

n=1

k
(1)
λ (x, n)Ãλ(n)B̃λ(x)dx

≥
3∏

i=1

k(i)(λ1)+ o(1)(k→∞). (134)

Proof By (32), Definition 6 and Lemma 14, it follows

Ĩk ≥ 1

k

∫ ∞

1

∫ ∞

1
k

(1)
λ (x, y)F̃k(y)G̃k(x)dxdy

= 1

k

∫ ∞

1

∫ ∞

1
k

(1)
λ (x, y)

[

y
λ1− 1

pk
−1
k(2)

(

λ1 − 1

pk

)

− Fk(y)

]

×
[

x
λ2− 1

qk−1
k(3)

(

λ1 + 1

qk

)

−Gk(x)

]

dxdy

≥ I1 − I2 − I3,

where, Ii(i = 1, 2, 3) are defined by

I1 : = k(2)

(

λ1 − 1

pk

)

k(3)

(

λ1 + 1

qk

)

× 1

k

∫ ∞

1

∫ ∞

1
k

(1)
λ (x, y)xλ2− 1

qk
−1
y
λ1− 1

pk
−1
dxdy,

I2 : = k(3)

(

λ1 + 1

qk

)

× 1

k

∫ ∞

1

(∫ ∞

1
k

(1)
λ (x, y)xλ2− 1

qk−1
dx

)

Fk(y)dy,

I3 : = k(2)

(

λ1 − 1

pk

)

× 1

k

∫ ∞

1

(∫ ∞

1
k

(1)
λ (x, y)yλ1− 1

pk
−1
dy

)

Gk(x)dx.

By Lemma 15, we have

I1 = (k(1)(λ1)+ o(1))k(2)

(

λ1 − 1

pk

)

k(3)

(

λ1 + 1

qk

)

.

Since 0 ≤ Fk(y) = O(yλ1−δ1−1), there exists a constantL2 > 0 such thatFk(y) ≤
L2y

λ1−δ1−1(y ∈ [1,∞)), and then

0 ≤ I2 ≤ k(3)

(

λ1 + 1

qk

)
L2

k

∫ ∞

1

(∫ ∞

0
k

(1)
λ (x, y)xλ2− 1

qk
−1
dx

)

yλ1−δ1−1dy
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= k(3)

(

λ1 + 1

qk

)
L2

k

∫ ∞

1

(∫ ∞

0
k

(1)
λ (u, 1)uλ1+ 1

qk
−1
du

)

y
−δ1− 1

qk
−1
dy

= 1

k
k(3)

(

λ1 + 1

qk

)

k(1)

(

λ1 + 1

qk

)
L2

δ1 + 1
qk

.

Hence, I2 → 0(k→∞).
Since 0 ≤ Gk(x) = O(xλ2−δ1−1), there exists a constant L3 > 0 such that

Gk(x) ≤ L3x
λ2−δ1−1(x ∈ [1,∞)), and then

0 ≤ I3 ≤ k(2)

(

λ1 − 1

pk

)
L3

k

×
∫ ∞

1

(∫ ∞

0
k

(1)
λ (x, y)yλ1− 1

pk−1
dy

)

xλ2−δ1−1dx

= k(2)

(

λ1 − 1

pk

)
L3

k

×
∫ ∞

1

(∫ ∞

0
k

(1)
λ (u, 1)uλ1− 1

pk
−1
du

)

x
−δ1− 1

pk
−1
dx

= 1

k
k(2)

(

λ1 − 1

pk

)

k(1)

(

λ1 − 1

pk

)
L3

δ1 + 1
pk

.

Hence, I3 → 0(k→∞). Therefore,

Ĩk ≥ I1 − I2 − I3 →
3∏

i=1

k(i)(λ1)(k→∞),

and then (134) follows. The lemma is proved.

Theorem 6 Suppose that for λ1, λ2 < 1, λ ≤ 1, k(i)
λ (x, y) (i = 1, 2, 3) are

decreasing with respect to x (y) ∈ R+, there exists a constant δ0 > 0 such that

k(i)(λ1 ± δ0) ∈ R+(i = 1, 2, 3),

and there exist constants δ1 ∈ (0, δ0) and L > 0 satisfying for any u ∈ [1,∞),

k
(2)
λ (1, u)uλ2+δ1 ≤ L, k(3)

λ (u, 1)uλ1+δ1 ≤ L.
If f (x1),B(x) ≥ 0, f ∈ Lp,ϕ ,B ∈ Lq,ψ , ||f ||p,ϕ , ||B||q,ψ > 0, setting

Aλ(n) := nλ−1
∫ ∞

0
k

(2)
λ (x1, n)f (x1)dx1(n ∈ N),

then we have the following equivalent inequalities:

I :=
∫ ∞

0

∞∑

n=1

k
(1)
λ (x, n)Aλ(n)B(x)dx

< k(1)(λ1)k(2)(λ1)||f ||p,ϕ||B||q,ψ , (135)
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J1 :=
[∫ ∞

0
xpλ2−1

( ∞∑

n=1

k
(1)
λ (x, n)Aλ(n)

)p

dx

] 1
p

< k(1)(λ1)k(2)(λ1)||f ||p,ϕ , (136)

where the constant factor k(1)(λ1)k(2)(λ1) is the best possible.
In particular, if bn1 ≥ 0, b = {bn1}∞n1=1 ∈ lq,ψ , ||b||q,ψ > 0, setting

B(x) = Bλ(x) := xλ−1
∞∑

n1=1

k
(3)
λ (x, n1)bn1 (x ∈ R+),

then we still have

∫ ∞

0

∞∑

n=1

k
(1)
λ (x, n)Aλ(n)Bλ(x)dx <

3∏

i=1

k(i)(λ1)||f ||p,ϕ||b||q,ψ , (137)

where the constant factor
∏3
i=1 k

(i)(λ1) is still the best possible.

Proof By (22) and (21), we have J1 ≤ k(1)(λ1)||Aλ||p,ϕ , and

||Aλ||p,ϕ =
{ ∞∑

n=1

np(1−λ1)−1A
p

λ (n)

} 1
p

=
{ ∞∑

n=1

npλ2−1

(∫ ∞

0
k

(2)
λ (x1, n)f (x1)dx1

)p
} 1
p

< k(2)(λ1)||f ||p,ϕ ,

then we have (136). By Hölder’s inequality, we find

I =
∫ ∞

0

(

x
λ2− 1

p

∞∑

n=1

k
(1)
λ (x, n)Aλ(n)

)
(
x

1
p
−λ2B(x)

)
dx ≤ J ||B||q,ψ . (138)

Then by (136), we have (135). On the other hand, assuming that (135) is valid,
we set

B(x) := xpλ2−1

( ∞∑

n=1

k
(1)
λ (x, n)Aλ(n)

)p−1

(x ∈ R+).

Then we find ||B||qq,ψ = Jp1 . If J1 = 0, then (136) is trivially valid; if J1 = ∞,
then it is impossible to (136). For 0 < J1 <∞, by (137), it follows

||B||qq,ψ = Jp1 = I < k(1)(λ1)k(2)(λ1)||f ||p,ϕ||B||q,ψ ,

J1 = ||B||q−1
q,ψ < k

(1)(λ1)k(2)(λ1)||f ||p,ϕ ,

and then we have (136). Hence, inequalities (135) and (136) are equivalent.
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Since ||Bλ||q,ψ ≤ k(3)(λ1)||b||q,ψ , for B(x) = Bλ(x), by (135), we have (137).
In the following, we first prove that the constant factor in (137) is the best possible.

For k ∈ N, k > 1
δ1

max{ 1
p

, 1
q
}, we set

f̃ (x1) : =
⎧
⎨

⎩

0, 0 < x1 < 1,

x
λ1− 1

pk−1

1 , x1 ≥ 1,

b̃n1 : = nλ2− 1
qk−1

1 (n1 ∈ N).

Then it follows

Ãλ(n) = nλ−1
∫ ∞

0
k

(2)
λ (x1, n)f̃ (x1)dx1,

B̃λ(x) = xλ−1
∞∑

n1=1

k
(3)
λ (x, n1)̃bn1 .

If there exists a positive constantK ≤∏3
i=1 k

(i)(λ1) such that (137) is valid when
replacing

∏3
i=1 k

(i)(λ1) by K , then in particular, it follows

Ĩk = 1

k

∫ ∞

0

∞∑

n=1

k
(1)
λ (x, n)Ãλ(n)B̃λ(x)dx

<
1

k
K||f̃ ||p,ϕ||̃b||q,ψ = K

k
k

1
p

(

1+
∞∑

n1=2

n
− 1
k
−1

1

) 1
q

<
K

k
k

1
p

(

1+
∫ ∞

1
y−

1
k
−1dy

) 1
q

= K
(

1+ 1

k

) 1
q

.

In view of (94), we find

3∏

i=1

k(i)(λ1)+ o(1) ≤ Ĩk = K
(

1+ 1

k

) 1
q

,

and then
∏3
i=1 k

(i)(λ1) ≤ K(k→∞). Hence K =∏3
i=1 k

(i)(λ1) is the best possible
constant factor of (137).

We can prove that the constant factor in (135) is the best possible. Otherwise, for
B(x) = Bλ(x), we would reach a contradiction that the constant factor in (137) is
not the best possible. In the same way, we can prove that the constant factor in (136)
is the best possible. Otherwise, we would reach a contradiction by (138) that the
constant factor in (135) is not the best possible. The theorem is proved.

By the same way, we still have
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Theorem 7 Suppose that for λ1, λ2 < 1, λ ≤ 1, k(i)
λ (x, y) (i = 1, 2, 3) are

decreasing with respect to x (y) ∈ R+, there exists a constant δ0 > 0 such that

k(i)(λ1 ± δ0) ∈ R+(i = 1, 2, 3),

and there exist constants δ1 ∈ (0, δ0) and L > 0 satisfying for any u ∈ [1,∞),

k
(2)
λ (1, u)uλ2+δ1 ≤ L, k(3)

λ (u, 1)uλ1+δ1 ≤ L.
If A(n), bn1 ≥ 0, b = {bn1}∞n1=1 ∈ lq,ψ ,A = {A(n)}∞n=1 ∈ lp,ϕ , ||b||q,ψ ,

||A||p,ϕ > 0, setting

Bλ(x) = xλ−1
∞∑

n1=1

k
(3)
λ (x, n1)bn1 (x ∈ R+),

then we have the following equivalent inequalities:

∫ ∞

0

∞∑

n=1

k
(1)
λ (x, n)A(n)Bλ(x)dx < k(1)(λ1)k(3)(λ1)||A||p,ϕ||b||q,ψ , (139)

J2 =
[ ∞∑

n=1

nqλ1−1

(∫ ∞

0
k

(1)
λ (x, n)Bλ(x)dx

)q
] 1
q

< k(1)(λ1)k(3)(λ1)||b||q,ψ , (140)

where the constant factor k(1)(λ1)k(3)(λ1) is the best possible.
In particular, if f (x1) ≥ 0, f ∈ Lp,ϕ , ||f ||p,ϕ > 0, setting

A(n) = Aλ(n) = nλ−1
∫ ∞

0
k

(2)
λ (x1, n)f (x1)dx1(n ∈ N),

then we still have

∫ ∞

0

∞∑

n=1

k
(1)
λ (x, n)Aλ(n)Bλ(x)dx <

3∏

i=1

k(i)(λ1)||f ||p,ϕ||b||q,ψ , (141)

where the constant factor
∏3
i=1 k

(i)(λ1) is still the best possible.

Definition 7 As the assumptions of Theorem 6, we define a Hilbert-type operator
T (1) : lp,ϕ → Lp,ϕ as follows: For Aλ = {Aλ(n)}∞n=1 ∈ lp,ϕ , there exists a unique
representation T (1)Aλ ∈ Lp,ϕ , satisfying

(T (1)Aλ)(x) = xλ−1
∞∑

n=1

k
(1)
λ (x, n)Aλ(n)(x ∈ R+). (142)
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Similarly to (22), we can find ||T (1)Aλ||p,ϕ ≤ k(1)(λ1)||Aλ||p,ϕ , where the constant
factor k(1)(λ1) is the best possible. Hence, it follows

||T (1)|| = k(1)(λ1) =
∫ ∞

0
k

(1)
λ (t , 1)tλ1−1dt ∈ R+. (143)

Definition 8 As the assumptions of Theorem 6, we define a Hilbert-type operator
T (2) : Lp,ϕ → lp,ϕ as follows: For f ∈ Lp,ϕ , there exists a unique representation
T (2)f ∈ lp,ϕ , satisfying

(T (2)f )(n) = Aλ(n) = nλ−1
∫ ∞

0
k

(2)
λ (x1, n)f (x1)dx1(n ∈ N). (144)

We can find ||T (2)f ||p,ϕ ≤ k(2)(λ1)||f ||p,ϕ , where, the constant factor k(2)(λ1) is
the best possible. Hence, it follows

||T (2)|| = k(2)(λ1) =
∫ ∞

0
k

(2)
λ (t , 1)tλ1−1dt ∈ R+. (145)

Definition 9 As the assumptions of Theorem 6, we define a Hilbert-type operator
T (0) : Lp,ϕ → Lp,ϕ as follows: For f ∈ Lp,ϕ , there exists a unique representation
T (0)f ∈ lp,ϕ , satisfying

(T (0)f )(x) = (T (1)Aλ)(x) = xλ−1
∞∑

n=1

k
(1)
λ (x, n)Aλ(n)

= xλ−1
∞∑

n=1

k
(1)
λ (x, n)nλ−1

[∫ ∞

0
k

(2)
λ (x1, n)f (x1)dx1

]

(x ∈ R+). (146)

Since for any f ∈ Lp,ϕ , we have

T (0)f = T (1)Aλ = T (1)(T (2)f ) = (T (1)T (2))f ,

then it follows that T (0) = T (1)T (2), i.e. T (0) is a composition of T (1) and T (2). It is
evident that

||T (0)|| = ||T (1)T (2)|| ≤ ||T (1)|| · ||T (2)|| = k(1)(λ1)k(2)(λ1).

By (136), we have

||T (0)f ||p,ϕ = ||T (1)Aλ||p,ϕ = J1 < k
(1)(λ1)k(2)(λ1)||f ||p,ϕ ,

where, the constant factor k(1)(λ1)k(2)(λ1) is the best possible. It follows that ||T (0)|| =
k(1)(λ1)k(2)(λ1), and then we have the following theorem:

Theorem 8 As the assumptions of Theorem 6, the operators T (1) and T (2) are
respectively defined by Definitions 7 and 8, then we have

||T (1)T (2)|| = ||T (1)|| · ||T (2)|| = k(1)(λ1)k(2)(λ1). (147)
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Definition 10 As the assumptions of Theorem 7, we define a Hilbert-type operator
T1 : Lq,ψ → lq,ψ as follows: For Bλ ∈ Lq,ψ , there exists a unique representation
T1Bλ ∈ lq,ψ , satisfying

(T1Bλ)(n) = nλ−1
∫ ∞

0
k

(1)
λ (x, n)Bλ(x)dx(x ∈ N). (148)

We can find ||T1Bλ||q,ψ ≤ k(1)(λ1)||Bλ||q,ψ , where, the constant factor k(1)(λ1) is
the best possible. Hence, it follows

||T1|| = k(1)(λ1) =
∫ ∞

0
k

(1)
λ (t , 1)tλ1−1dt ∈ R+. (149)

Definition 11 As the assumptions of Theorem 7, we define a Hilbert-type oper-
ator T2 : lq,ψ → Lq,ψ as follows: For b = {bn1} ∈ lq,ψ , there exists a unique
representation T2b ∈ Lq,ψ , satisfying

(T2b)(x) = Bλ(x) = xλ−1
∞∑

n1=1

k
(3)
λ (x, n1)bn1 (x ∈ R+). (150)

We can find ||T2b||q,ψ ≤ k(3)(λ1)||b||q,ψ , where, the constant factor k(3)(λ1) is the
best possible. Hence, it follows

||T2|| = k(3)(λ1) =
∫ ∞

0
k

(3)
λ (t , 1)tλ1−1dt ∈ R+. (151)

Definition 12 As the assumptions of Theorem 7, we define a Hilbert-type operator
T0 : lq,ψ → lq,ψ as follows: For b ∈ lq,ψ , there exists a unique representation
T0b ∈ lq,ψ , satisfying

(T0b)(n) = (T1Bλ)(n) = nλ−1
∫ ∞

0
k

(1)
λ (x, n)Bλ(x)dx

= nλ−1
∫ ∞

0
k

(1)
λ (x, n)xλ−1

[ ∞∑

n1=1

k
(3)
λ (x, n1)bn1

]

dx(n ∈ N). (152)

Since for any b ∈ lq,ψ , we have

T0b = T1Bλ = T1(T2b) = (T1T2)b,

then it follows that T0 = T1T2, i.e. T0 is a composition of T1 and T2. It is evident that

||T0|| = ||T1T2|| ≤ ||T1|| · ||T2|| = k(1)(λ1)k(3)(λ1).

By (140), we have

||T0b||q,ψ = ||T1Bλ||q,ψ = J2 < k
(1)(λ1)k(3)(λ1)||b||q,ψ ,

where, the constant factor k(1)(λ1)k(3)(λ1) is the best possible. It follows that ||T0|| =
k(1)(λ1)k(3)(λ1), and then we have the following theorem:
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Theorem 9 As the assumptions of Theorem 7, the operators T1 and T2 are
respectively defined by Definitions 10 and 11, then we have

||T1T2|| = ||T1|| · ||T2|| = k(1)(λ1)k(3)(λ1). (153)

Example 9 (i) For 0 < λ ≤ 1, 0 < λ1, λ2 < 1,

k
(i)
λ (x, y) = 1

xλ + yλ ,
1

(x + y)λ
,

ln (x/y)

xλ − yλ ,
1

(max{x, y})λ (i = 1, 2, 3)

are satisfied using Theorems 8 and 9. If fact, since 0 < λi + δ1 < λ(i = 1, 2),we
find

k
(2)
λ (1, u)uλ2+δ1 → 0, k(3)

λ (u, 1)uλ1+δ1 → 0(u →∞).

(ii) For

k
(1)
λ (x, y) = 1

xλ + yλ , k(2)
λ (x, y) = 1

(max{x, y})λ
in Definitions 7, 8 and 9, it follows

(T (1)Aλ)(x) = xλ−1
∞∑

n=1

1

xλ + nλAλ(n)(x ∈ R+),

(T (2)f )(n) = nλ−1
∫ ∞

0

1

(max{x1, n})λ f (x1)dx1(n ∈ N),

(T (0)f )(x) = xλ−1
∞∑

n=1

nλ−1

xλ + nλ
[∫ ∞

0

f (x1)dx1

(max{x1, n})λ
]

(x ∈ R+).

Then by Theorem 8, we have

||T (0)|| = ||T (1)T (2)|| = ||T (1)|| · ||T (2)|| = π

λ sinπ ( λ1
λ

)

λ

λ1λ2

= π

λ1λ2 sin π
(
λ1
λ

) , (154)

(iii) For

k
(1)
λ (x, y) = 1

xλ + yλ , k(3)
λ (x, y) = 1

(max{x, y})λ
in Definitions 10, 11 and 12, it follows

(T1Bλ)(n) = nλ−1
∫ ∞

0

1

xλ + nλBλ(x)dx(n ∈ N),
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(T2b)(x) = xλ−1
∞∑

n1=1

1

(max{x, n1})λ bn1 (x ∈ R+),

(T0b)(n) = nλ−1
∫ ∞

0

xλ−1

xλ + nλ
[ ∞∑

n1=1

bn1

(max{x, n1})λ
]

dx(n ∈ N).

Then by Theorem 9, we have

||T0|| = ||T1T2|| = ||T1|| · ||T2|| = π

λ1λ2 sin π
(
λ1
λ

) . (155)

4.2 The Case That the First Kernel Is Non-Homogeneous

For p > 1, set Φ(x) = xp(1− λ2 )−1,Ψ (y) = yq(1− λ2 )−1(x, y ∈ R+), and we define
three normal spaces as follows:

lp,Φ :=
⎧
⎨

⎩
a = {am}∞m=1; ||a||p,Φ =

{ ∞∑

m=1

Φ(m)|am|p
} 1
p

<∞
⎫
⎬

⎭
,

Lp,Φ :=
{

f ; ||f ||p,Φ =
{∫ ∞

0
Φ(x)|f (x)|pdx

} 1
p

<∞
}

,

lq,Ψ :=
⎧
⎨

⎩
b = {bn}∞n=1; ||b||q,Ψ =

{ ∞∑

n=1

Ψ (n)|bn|q
} 1
q

<∞
⎫
⎬

⎭
.

In the following, we agree that p > 1, 1
p
+ 1
q
= 1, λ ∈ R, k(i)

λ (x, y) (i = 2, 3) are

non-negative finite homogeneous functions of degree −λ in R2
+, with

K (i)

(
λ

2

)

:=
∫ ∞

0
k

(i)
λ (u, 1)u

λ
2−1du ∈ R+, (156)

and h(t) is a non-negative finite measurable function with

K (1)

(
λ

2

)

:=
∫ ∞

0
h(u)u

λ
2−1du ∈ R+. (157)

Definition 13 If k ∈ N, define two functions F̂k(y) and Ĝk(x) as follows:

F̂k(y) : = yλ−1
∫ 1

0
k

(2)
λ (x1, y)x

λ
2+ 1

pk
−1

1 dx1, y ∈ (0, 1], (158)

Ĝk(x) : = xλ−1
∫ ∞

1
k

(3)
λ (x, y1)y

λ
2− 1

qk
−1

1 dy1, x ∈ [1,∞). (159)
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Lemma 17 If there exists a constant δ0 > 0, such that K (i)
(
λ
2 ± δ0

) ∈ R+ (i =
1, 2, 3), and there exist constants δ1 ∈ (0, δ0) andL > 0, satisfying for any u ∈ [1,∞),

k
(2)
λ (u, 1)u

λ
2+δ1 ≤ L, k(3)

λ (u, 1)u
λ
2+δ1 ≤ L, (160)

then for k ∈ N, k > 1
δ1

max{ 1
p

, 1
q
}, setting functions Fλ(y) and Gλ(x) as follows:

Fλ(y) := y λ2+ 1
pk
−1
K (2)

(
λ

2
+ 1

pk

)

− F̂k(y), y ∈ (0, 1],

Gλ(x) := x λ2− 1
qk
−1
K (3)

(
λ

2
+ 1

qk

)

− Ĝk(x), x ∈ [1,∞),

we have

0 ≤ Fλ(y) = O
(
y
λ
2+δ1−1

)
(y ∈ (0, 1]), (161)

0 ≤ Gλ(x) = O
(
x
λ
2−δ1−1

)
(x ∈ [1,∞)). (162)

Proof Setting u = x1/y, we obtain

F̂k(y) = y λ2+ 1
pk
−1
∫ 1/y

0
k

(2)
λ (u, 1)u

λ
2+ 1

pk
−1
du

= y λ2+ 1
pk
−1
∫ ∞

0
k

(2)
λ (u, 1)u

λ
2+ 1

pk
−1
du

− y λ2+ 1
pk
−1
∫ ∞

1/y
k

(2)
λ (u, 1)u

λ
2+ 1

pk
−1
du

= y λ2+ 1
pk
−1
K (2)

(
λ

2
+ 1

pk

)

− y λ2+ 1
pk−1

∫ ∞

1/y
k

(2)
λ (u, 1)u

λ
2+ 1

pk−1
du.

Hence, it follows

Fλ(y) = y λ2+ 1
pk
−1
K (2)

(
λ

2
+ 1

pk

)

− F̂k(y)

= y λ2+ 1
pk−1

∫ ∞

1/y
k

(2)
λ (u, 1)u

λ
2+ 1

pk−1
du

≥ 0(y ∈ (0, 1]).

In view of (160), we have

0 ≤ Fλ(y) ≤ y λ2+ 1
pk
−1
L

∫ ∞

1/y
u−

λ
2−δ1u

λ
2+ 1

pk
−1
du
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= y λ2+ 1
pk
−1
L

∫ ∞

1/y
u−δ1+

1
pk
−1
dv = Ly

λ
2+δ1−1

δ1 − 1
pk

,

and then Fλ(y) = O(y
λ
2+δ1−1)(y ∈ (0, 1]).

Still setting u = x/y1, we find

Ĝk(x) = x λ2− 1
qk
−1
∫ x

0
k

(3)
λ (u, 1)u

λ
2+ 1

qk
−1
du

= x λ2− 1
qk
−1
K (3)

(
λ

2
+ 1

qk

)

− x λ2− 1
qk
−1
∫ ∞

x

k
(3)
λ (u, 1)u

λ
2+ 1

qk
−1
du.

Hence it follows

Gλ(x) = x λ2− 1
qk
−1
K (3)

(
λ

2
+ 1

qk

)

− Ĝk(x)

= x λ2− 1
qk
−1
∫ ∞

x

k
(3)
λ (u, 1)u

λ
2+ 1

qk
−1
du ≥ 0.

By (160), we have

0 ≤ Gλ(x) ≤ x λ2− 1
qk
−1
L

∫ ∞

x

u−δ1+
1
qk
−1
du = Lx

λ
2−δ1−1

δ1 − 1
qk

,

and then Gλ(x) = O(x
λ
2−δ1−1)(x ∈ [1,∞)). The lemma is proved.

Lemma 18 As the assumptions of Lemma 17, we have

Lk := 1

k

∫ 1

0

(∫ ∞

1
h(xy)x

λ
2− 1

qk
−1
y
λ
2+ 1

pk
−1
dx

)

dy

= K (1)

(
λ

2

)

+ o(1)(k→∞). (163)

Proof Setting u = xy, by (26), it follows

Lk = 1

k

∫ 1

0
y

1
k
−1

(∫ ∞

y

h(u)u
λ
2− 1

qk
−1
du

)

dy

= 1

k

[∫ 1

0
y

1
k
−1

(∫ 1

y

h(u)u
λ
2− 1

qk
−1
du

)

dy

+
∫ 1

0
y

1
k
−1

(∫ ∞

1
h(u)u

λ
2− 1

qk
−1
du

)

dy

]
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= 1

k

∫ 1

0

(∫ u

0
y

1
k−1dy

)

h(u)u
λ
2− 1

qk−1
du

+
∫ ∞

1
h(u)u

λ
2− 1

qk
−1
du

=
∫ 1

0
h(u)u

λ
2+ 1

pk
−1
du+

∫ ∞

1
h(u)u

λ
2− 1

qk
−1
du

=
∫ ∞

0
h(u)u

λ
2−1du+ o(1)(k→∞).

Hence, (123) is valid. The lemma is proved.

Lemma 19 As the assumptions of Lemma 17, if λ ≤ 1,h(xy) is decreasing with
respect to y ∈ R+, and k(i)

λ (x, y) (i = 2, 3) are decreasing with respect to x (y) ∈ R+,
setting

Âλ(n) : = nλ−1
∫ 1

0
k

(2)
λ (x1, n)x

λ
2+ 1

pk
−1

1 dx1,

B̂λ(x) : = xλ−1
∞∑

n1=1

k
(3)
λ (x, n1)n

λ
2− 1

qk
−1

1 ,

then we have

Îk : = 1

k

∫ ∞

0

∞∑

n=1

h(xn)Âλ(n)B̂λ(x)dx

≥
3∏

i=1

K (i)

(
λ

2

)

+ o(1)(k→∞). (164)

Proof By (32), Definition 13 and Lemma 14, it follows

Îk ≥ 1

k

∫ 1

0

∫ ∞

1
h(xy)F̂k(y)Ĝk(x)dxdy

= 1

k

∫ 1

0

∫ ∞

1
h(xy)

[

y
λ
2+ 1

pk
−1
K (2)

(
λ

2
+ 1

pk

)

− Fλ(y)

]

×
[

x
λ
2− 1

qk
−1
K (3)

(
λ

2
+ 1

qk

)

−Gλ(x)

]

dxdy

≥ Î1 − Î2 − Î3, (165)
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where, Îi(i = 1, 2, 3) are defined by

Î1 : = K (2)

(
λ

2
+ 1

pk

)

K (3)

(
λ

2
+ 1

qk

)

× 1

k

∫ 1

0

(∫ ∞

1
h(xy)x

λ
2− 1

qk
−1
y
λ
2+ 1

pk
−1
dx

)

dy,

Î2 : = K (3)

(
λ

2
+ 1

qk

)

× 1

k

∫ 1

0

(∫ ∞

1
h(xy)x

λ
2− 1

qk
−1
dx

)

Fλ(y)dy,

Î3 : = K (2)

(
λ

2
+ 1

pk

)

× 1

k

∫ ∞

1

(∫ 1

0
h(xy)y

λ
2+ 1

pk
−1
dy

)

Gλ(x)dx.

By Lemma 18, we have

Î1 = (K (1)

(
λ

2

)

+ o(1))K (2)

(
λ

2
+ 1

pk

)

K (3)

(
λ

2
+ 1

qk

)

.

Since 0 ≤ Fλ(y) = O(y
λ
2+δ1−1), there exists a constantL2 > 0 such that Fλ(y) ≤

L2y
λ
2+δ1−1(y ∈ (0, 1]), and then

0 ≤ Î2 ≤ K (3)

(
λ

2
+ 1

qk

)
L2

k

∫ 1

0

(∫ ∞

0
h(xy)x

λ
2− 1

qk
−1
dx

)

y
λ
2+δ1−1dy

= K (3)

(
λ

2
+ 1

qk

)
L2

k

∫ 1

0

(∫ ∞

0
h(u)u

λ
2− 1

qk−1
du

)

y
δ1+ 1

qk−1
dy

= 1

k
K (3)

(
λ

2
+ 1

qk

)

K (1)

(
λ

2
− 1

qk

)
L2

δ1 + 1
qk

.

Hence, Î2 → 0(k→∞).

Since 0 ≤ Gλ(x) = O
(
x
λ
2−δ1−1

)
, there exists a constant L3 > 0 such that

Gk(x) ≤ L3x
λ
2−δ1−1(x ∈ [1,∞)), and then

0 ≤ Î3 ≤ K (2)

(
λ

2
+ 1

pk

)
L3

k

∫ ∞

1

(∫ ∞

0
h(xy)y

λ
2+ 1

pk
−1
dy

)

x
λ
2−δ1−1dx

= K (2)

(
λ

2
+ 1

pk

)
L3

k

∫ ∞

1

(∫ ∞

0
h(u)u

λ
2+ 1

pk
−1
du

)

x
−δ1− 1

pk
−1
dx

= 1

k
K (2)

(
λ

2
+ 1

pk

)

K (1)

(
λ

2
+ 1

pk

)
L3

δ1 + 1
pk

.
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Hence, Î3 → 0(k→∞). Therefore,

Îk ≥ Î1 − Î2 − Î3 →
3∏

i=1

K (i)

(
λ

2

)

(k→∞),

namely, (165) follows. The lemma is proved.

Theorem 10 Suppose that for λ ≤ 1,h(xy) is decreasing with respect to y ∈ R+,
and k(i)

λ (x, y) (i = 2, 3) are decreasing with respect to x (y) ∈ R+, there exists a
constant δ0 > 0 such that

K (i)

(
λ

2
± δ0

)

∈ R+(i = 1, 2, 3),

and there exist constants δ1 ∈ (0, δ0) and L > 0 satisfying for any u ∈ [1,∞),

k
(2)
λ (u, 1)u

λ
2+δ1 ≤ L, k(3)

λ (u, 1)u
λ
2+δ1 ≤ L.

If f (x1),B(x) ≥ 0, f ∈ Lp,Φ ,B ∈ Lq,Ψ , ||f ||p,Φ , ||B||q,Ψ > 0, setting

Aλ(n) = nλ−1
∫ ∞

0
k(2)(x1, n)f (x1)dx1(n ∈ N),

then we have the following equivalent inequalities:

Î :=
∫ ∞

0

∞∑

n=1

h(xn)Aλ(n)B(x)dx

< K (1)

(
λ

2

)

K (2)

(
λ

2

)

||f ||p,Φ ||B||q,Ψ , (166)

Ĵ1 :=
[∫ ∞

0
x
pλ
2 −1

( ∞∑

n=1

h(xn)Aλ(n)

)p

dx

] 1
p

< K (1)

(
λ

2

)

K (2)

(
λ

2

)

||f ||p,Ψ , (167)

where the constant factor K (1)
(
λ
2

)
K (2)

(
λ
2

)
is the best possible.

In particular, if bn1 ≥ 0, b = {bn1}∞n1=1 ∈ lq,Ψ , ||b||q,Ψ > 0, setting

B(x) = Bλ(x) = xλ−1
∞∑

n1=1

k
(3)
λ (x, n1)bn1 (x ∈ R+),

then we still have

∫ ∞

0

∞∑

n=1

h(xn)Aλ(n)Bλ(x)dx <
3∏

i=1

K (i)

(
λ

2

)

||f ||p,Φ ||b||q,Ψ , (168)
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where the constant factor
∏3
i=1K

(i)
(
λ
2

)
is still the best possible.

Proof Since we have Ĵ1 ≤ K (1)
(
λ
2

) ||Aλ||p,Φ , and the following inequality:

||Aλ||p,Φ =
{ ∞∑

n=1

np(1− λ2 )−1A
p

λ (n)

} 1
p

=
{ ∞∑

n=1

n
pλ
2 −1

(∫ ∞

0
k

(2)
λ (x1, n)f (x1)dx1

)p
} 1
p

< K (2)

(
λ

2

)

||f ||p,Φ ,

then we have (167). By Hölder’s inequality, we find

Î =
∫ ∞

0

(

x
λ
2− 1

p

∞∑

n=1

h(xn)Aλ(n)

)
(
x

1
p
− λ2B(x)

)
dx ≤ Ĵ1||B||q,Ψ . (169)

Then by (167), we have (166). On the other hand, assuming that (166) is valid,
we set

B(x) := x pλ2 −1

( ∞∑

n=1

h(xn)Aλ(n)

)p−1

(x ∈ R+).

Then we find ||B||qq,Ψ = Ĵ p1 . If Ĵ1 = 0, then (167) is trivially valid; if Ĵ1 = ∞,
then it is impossible to (167).

For 0 < Ĵ1 <∞, by (166), it follows

||B||qq,Ψ = Ĵ p1 = Î < K (1)

(
λ

2

)

K (2)

(
λ

2

)

||f ||p,Φ ||B||q,Ψ ,

Ĵ1 = ||B||q−1
q,Ψ < K

(1)

(
λ

2

)

K (2)

(
λ

2

)

||f ||p,Ψ ,

and then we have (167). Hence, inequalities (166) and (167) are equivalent.
Since ||B||q,Ψ ≤ K (3)( λ2 )||b||q,Ψ , by (166), we have (168). In the following,

we first prove that the constant factor in (168) is the best possible. For k ∈ N,
k > 1

δ1
max{ 1

p
, 1
q
}, we set

f̂ (x1) :=
⎧
⎨

⎩

x
λ
2+ 1

pk
−1

1 , 0 < x1 ≤ 1,

0, x1 > 1,

b̂n1 := n
λ
2− 1

qk
−1

1 (n1 ∈ N).

Then it follows

Âλ(n) = nλ−1
∫ ∞

0
k

(2)
λ (x1, n)f̂ (x1)dx1,
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B̂λ(x) = xλ−1
∞∑

n1=1

k
(3)
λ (x, n1)̂bn1 .

If there exists a positive constantK ≤∏3
i=1K

(i)( λ2 ) such that (168) is valid when

replacing
∏3
i=1K

(i)( λ2 ) by K , then in particular, it follows that

Îk = 1

k

∫ ∞

0

∞∑

n=1

h(xn)Âλ(n)B̂λ(x)dx

<
1

k
K||f̂ ||p,Φ ||̂b||q,Ψ = K

k
k

1
p

(

1+
∞∑

n1=2

n
− 1
k
−1

1

) 1
q

<
K

k
k

1
p

(

1+
∫ ∞

1
y−

1
k
−1dy

) 1
q

= K
(

1+ 1

k

) 1
q

.

By (165), we find

3∏

i=1

K (i)

(
λ

2

)

+ o(1) ≤ Îk = K
(

1+ 1

k

) 1
q

,

and then
∏3
i=1K

(i)( λ2 ) ≤ K(k→∞).HenceK =∏3
i=1K

(i)
(
λ
2

)
is the best possible

constant factor of (168).
We can prove that the constant factor in (166) is the best possible. Otherwise, for

B(x) = Bλ(x), we would reach a contradiction that the constant factor in (168) is
not the best possible. In the same way, we can prove that the constant factor in (167)
is the best possible. Otherwise, we would reach a contradiction by (169) that the
constant factor in (166) is not the best possible. The theorem is proved.

By the same way, we still have

Theorem 11 Suppose that for λ ≤ 1,h(xy) is decreasing with respect to y ∈
R+, k(i)

λ (x, y) (i = 2, 3) are decreasing with respect to x (y) ∈ R+, there exists a
constant δ0 > 0 such that

K (i)

(
λ

2
± δ0

)

∈ R+(i = 1, 2, 3),

and there exist constants δ1 ∈ (0, δ0) and L > 0 satisfying for any u ∈ [1,∞),

k
(2)
λ (u, 1)u

λ
2+δ1 ≤ L, k(3)

λ (u, 1)u
λ
2+δ1 ≤ L.

If A(n), bn1 ≥ 0, b = {bn1}∞n1=1 ∈ lq,Ψ ,A = {A(n)}∞n=1 ∈ lp,Φ , ||b||q,Ψ , ||A||p,Φ >

0, setting

Bλ(x) = xλ−1
∞∑

n1=1

k
(3)
λ (x, n1)bn1 (x ∈ R+),

then we have the following equivalent inequalities:
∫ ∞

0

∞∑

n=1

h(xn)A(n)Bλ(x)dx < K (1)

(
λ

2

)

K (3)

(
λ

2

)

||A||p,Φ ||b||q,Ψ , (170)
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Ĵ2 =
[ ∞∑

n=1

n
qλ
2 −1

(∫ ∞

0
h(xn)Bλ(x)dx

)q
] 1
q

< K (1)

(
λ

2

)

K (3)

(
λ

2

)

||b||q,Ψ , (171)

where the constant factor K (1)
(
λ
2

)
K (3)

(
λ
2

)
is the best possible.

In particular, if f (x1) ≥ 0, f ∈ Lp,Φ , ||f ||p,Φ > 0, setting

A(n) = Aλ(n) = nλ−1
∫ ∞

0
k

(2)
λ (x1, n)f (x1)dx1(n ∈ N),

then we still have
∫ ∞

0

∞∑

n=1

h(xn)Aλ(n)Bλ(x)dx <
3∏

i=1

K (i)

(
λ

2

)

||f ||p,Φ ||b||q,Ψ , (172)

where the constant factor
∏3
i=1K

(i)
(
λ
2

)
is the best possible.

Definition 14 As the assumptions of Theorem 10, we define a Hilbert-type operator
T̂ (1) : lp,Φ → Lp,Φ as follows: For Aλ = {Aλ(n)}∞n=1 ∈ lp,Φ , there exists a unique
representation T̂ (1)Aλ ∈ Lp,Φ , satisfying

(T̂ (1)Aλ)(x) = xλ−1
∞∑

n=1

h(xn)Aλ(n)(x ∈ R+). (173)

We can find

||T̂ (1)Aλ||p,Φ ≤ K (1)

(
λ

2

)

||Aλ||p,Φ ,

where, the constant factor K (1)
(
λ
2

)
is the best possible. Hence, it follows

||T̂ (1)|| = K (1)

(
λ

2

)

=
∫ ∞

0
h(t)t

λ
2−1dt ∈ R+. (174)

Definition 15 As the assumptions of Theorem 10, we define a Hilbert-type operator
T̂ (2) : Lp,Φ → lp,Φ as follows: For f ∈ Lp,Φ , there exists a unique representation
T̂ (2)f ∈ lp,Φ , satisfying

(T̂ (2)f )(n) = Aλ(n) = nλ−1
∫ ∞

0
k

(2)
λ (x1, n)f (x1)dx1(n ∈ N). (175)

We can find

||T̂ (2)f ||p,Φ ≤ K (2)

(
λ

2

)

||f ||p,Φ ,

where, the constant factor K (2)
(
λ
2

)
is the best possible. Hence, it follows

||T̂ (2)|| = K (2)

(
λ

2

)

=
∫ ∞

0
k

(2)
λ (t , 1)t

λ
2−1dt ∈ R+. (176)



530 B. Yang

Definition 16 As the assumptions of Theorem 10, we define a Hilbert-type operator
T̂ (0) : Lp,Φ → Lp,Φ as follows: For f ∈ Lp,Φ , there exists a unique representation
T̂ (0)f ∈ lp,Φ , satisfying

(T̂ (0)f )(x) = (T̂ (1)Aλ)(x) = xλ−1
∞∑

n=1

h(xn)Aλ(n)

= xλ−1
∞∑

n=1

h(xn)nλ−1

[∫ ∞

0
k

(2)
λ (x1, n)f (x1)dx1

]

(x ∈ R+). (177)

Since for any f ∈ Lp,Φ , we have

T̂ (0)f = T̂ (1)Aλ = T̂ (1)(T̂ (2)f ) = (T̂ (1)T̂ (2))f ,

then it follows that T̂ (0) = T̂ (1)T̂ (2), i.e. T̂ (0) is a composition of T̂ (1) and T̂ (2). It is
evident that

||T̂ (0)|| = ||T̂ (1)T̂ (2)|| ≤ ||T̂ (1)|| · ||T̂ (2)|| = K (1)

(
λ

2

)

k(2)

(
λ

2

)

.

By (167), we have

||T̂ (0)f ||p,Φ = ||T̂ (1)Aλ||p,Φ = Ĵ1 < K
(1)

(
λ

2

)

k(2)

(
λ

2

)

||f ||p,Φ ,

where, the constant factor K (1)
(
λ
2

)
k(2)
(
λ
2

)
is the best possible. It follows that

||T̂ (0)|| = K (1)
(
λ
2

)
k(2)
(
λ
2

)
, and then we have the following theorem:

Theorem 12 As the assumptions of Theorem 10, the operators T̂ (1) and T̂ (2) are
respectively defined by Definitions 14 and 15, then we have

||T̂ (1)T̂ (2)|| = ||T̂ (1)|| · ||T̂ (2)|| = K (1)

(
λ

2

)

k(2)

(
λ

2

)

. (178)

Definition 17 As the assumptions of Theorem 11, we define a Hilbert-type operator
T̂1 : Lq,Ψ → lq,Ψ as follows: For Bλ ∈ Lq,Ψ , there exists a unique representation
T̂1Bλ ∈ lq,Ψ , satisfying

(T̂1Bλ)(n) = nλ−1
∫ ∞

0
h(xn)Bλ(x)dx(x ∈ R+). (179)

We can find ||T̂1Bλ||q,Ψ ≤ K (1)
(
λ
2

) ||Bλ||q,Ψ , where the constant factor K (1)
(
λ
2

)

is the best possible. Hence, it follows

||T̂1|| = K (1)

(
λ

2

)

=
∫ ∞

0
h(t)t

λ
2−1dt ∈ R+. (180)
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Definition 18 As the assumptions of Theorem 11, we define a Hilbert-type operator
T̂2 : lq,Ψ → Lq,Ψ as follows: For b = {bn1}∞n1=1 ∈ lq,Ψ , there exists a unique
representation T̂2b ∈ Lq,Ψ , satisfying

(T̂2b)(x) = Bλ(x) = xλ−1
∞∑

n1=1

k
(3)
λ (x, n1)bn1 (x ∈ R+). (181)

We can find ||T̂2b||q,Ψ ≤ K (3)( λ2 )||b||q,Ψ , where, the constant factor K (3)
(
λ
2

)
is

the best possible. Hence, it follows

||T̂2|| = K (3)

(
λ

2

)

=
∫ ∞

0
k

(3)
λ (t , 1)t

λ
2−1dt ∈ R+. (182)

Definition 19 As the assumptions of Theorem 11, we define a Hilbert-type operator
T̂0 : lq,Ψ → lq,Ψ as follows: For b ∈ lq,Ψ , there exists a unique representation
T̂0b ∈ lq,Ψ , satisfying

(T̂0b)(n) = (T̂1Bλ)(n) = nλ−1
∫ ∞

0
h(xn)Bλ(x)dx

= nλ−1
∫ ∞

0
h(xn)xλ−1

[ ∞∑

n1=1

k
(3)
λ (x, n1)bn1

]

dx(x ∈ R+). (183)

Since for any b ∈ lq,Ψ , we have

T̂0b = T̂1Bλ = T̂1(T̂2b) = (T̂1T̂2)b,

then it follows that T̂0 = T̂1T̂2, i.e. T̂0 is a composition of T̂1 and T̂2. It is obvious that

||T̂0|| = ||T̂1T̂2|| ≤ ||T̂1|| · ||T̂2|| = K (1)

(
λ

2

)

K (3)

(
λ

2

)

.

By (171), we have

||T̂0b||q,Ψ = ||T̂1Bλ||q,Ψ = Ĵ2 < K
(1)

(
λ

2

)

K (3)

(
λ

2

)

||b||q,Ψ ,

where, the constant factor K (1)
(
λ
2

)
K (3)

(
λ
2

)
is the best possible. It follows that

||T̂0|| = K (1)
(
λ
2

)
K (3)

(
λ
2

)
, and then we have the following theorem:

Theorem 13 As the assumptions of Theorem 11, the operators T̂1 and T̂2 are
respectively defined by Definitions 17 and 18, then we have

||T̂1T̂2|| = ||T̂1|| · ||T̂2|| = K (1)

(
λ

2

)

K (3)

(
λ

2

)

. (184)
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Example 10 (i) For 0 < λ ≤ 1, 0 < λ1, λ2 < 1,

h(xy) = 1

(xy)λ + 1
,

1

(xy + 1)λ
,

ln (xy)

(xy)λ − 1
,

1

(max{xy, 1})λ ,

k
(i)
λ (x, y) = 1

xλ + yλ ,
1

(x + y)λ
,

ln (x/y)

xλ − yλ ,
1

(max{x, y})λ (i = 2, 3)

are satisfied using Theorems 12 and 13. In fact, since 0 < λ
2 + δ1 < λ, we find

k
(2)
λ (u, 1)u

λ
2+δ1 → 0, k(3)

λ (u, 1)u
λ
2+δ1 → 0(u →∞).

(ii) For

h(xy) = 1

(xy)λ + 1
, k(2)
λ (x, y) = 1

(max{x, y})λ
in Definitions 14, 15 and 16, it follows

(T̂ (1)Aλ)(x) = xλ−1
∞∑

n=1

1

(xn)λ + 1
Aλ(n)(x ∈ R+),

(T̂ (2)f )(n) = nλ−1
∫ ∞

0

1

(max{x1, n})λ f (x1)dx1(n ∈ N),

(T̂ (0)f )(x) = xλ−1
∞∑

n=1

nλ−1

(xn)λ + 1

[∫ ∞

0

f (x1)dx1

(max{x1, n})λ
]

(x ∈ R+).

Then by Theorem 12, we have

||T̂ (0)|| = ||T̂ (1)T̂ (2)|| = ||T̂ (1)|| · ||T̂ (2)|| = π
λ

4

λ
= 4π

λ2
. (185)

(iii) For

h(xy) = 1

(xy)λ + 1
, k(3)
λ (x, y) = 1

(max{x, y})λ
in Definitions 17, 18 and 19, it follows

(T̂1Bλ)(n) = nλ−1
∫ ∞

0

1

(xn)λ + 1
Bλ(x)dx(x ∈ R+),

(T̂2b)(x) = xλ−1
∞∑

n1=1

1

(max{x, n1})λ bn1 (x ∈ R+),

(T̂0b)(n) = nλ−1
∫ ∞

0

xλ−1

(xn)λ + 1

[ ∞∑

n1=1

bn1

(max{x, n1})λ
]

dx(x ∈ R+).

Then by Theorem 13, we have

||T̂0|| = |||T̂1T̂2|| = ||T̂1|| · ||T̂2|| = π
λ

4

λ
= 4π

λ2
. (186)
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Some Results Concerning Hardy and Hardy
Type Inequalities

Nikolaos B. Zographopoulos

Abstract We review some recent results concerning functional aspects of the Hardy
and Hardy type inequalities. Our main focus is the formulation of such inequalities,
for functions having bad behavior at the singularity points. It turns out that Hardy’s
singularity terms appear in certain cases as a loss to the Hardy’s functional, while in
other cases are additive to it. Surprisingly, in the latter case, Hardy’s functional may
be negative. Thus, the validity of the Hardy’s inequality is actually based on these
singularity terms.

We also discuss the two topics: nonexistence of H 1
0 minimizers and improved

Hardy–Sobolev inequalities. These topics may be seen as a consequence of the
connection of the Hardy and Hardy type inequalities with the Sobolev inequality
defined in the whole space.

Keywords Hardy inequality · Sobolev inequality · Optimal inequalities

1 Introduction

In this work we review some recent results concerning functional properties of the
Hardy’s inequality

∫

Ω

|∇u|2 dx >
(
N − 2

2

)2 ∫

Ω

u2

|x|2 dx, (1)

which is well known to hold for any u ∈ C∞0 (Ω). The constant

(N − 2)2

4

in (1) is sharp and not achieved. The literature concerning Hardy and Hardy type
inequalities and their applications is extensive; it is not in the purpose of this work
to cover this. For some relevant works, cf. [15, 26, 38, 44, 45, 49].
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We introduce the Hardy functional

IΩ [φ] :=
∫

Ω

|∇φ|2 dx −
(
N − 2

2

)2 ∫

Ω

φ2

|x|2 dx , (2)

φ ∈ C∞0 (Ω), which is positive and different lower bounds have been obtained (see
discussion below). Note that the expression is finite for u ∈ H 1

0 (Ω), but it can also be
finite as an improper integral for other functions having a strong singularity at x = 0,
due to cancelations between the two terms. Our goal will be the generalization for
functions, for which the Hardy functional is well defined in the sense of principal
value or is not well defined or is infinite.

The motivation for this is explained in [53]; In the study of the corresponding
parabolic problem, we have to work with functions u which do not belong toH 1

0 (Ω).
More precisely, it came from a functional difficulty we found in interpreting the work
[55], where the following singular evolution problem was studied:

⎧
⎪⎪⎨

⎪⎪⎩

ut = Δu+ c∗ |x|−2 u, x ∈ Ω , t > 0,

u(x, 0) = u0(x), for x ∈ Ω ,

u(x, t) = 0 in ∂Ω , t > 0 .

(3)

with critical coefficient c∗ = (N − 2)2/4. The space dimension is N ≥ 3 and Ω
is a bounded domain in R

N containing 0, or Ω = R
N .

The separation of variables analysis produces some singular solutions. In par-
ticular, the maximal singularity (corresponding to the first mode of separation of
variables) behaves like |x|−(N−2)/2 near x = 0, and this function does not belong to
H 1

0 (Ω). Now, this solution must belong to the space H associated to the quadratic
form, hence the conclusionH �= H 1

0 (Ω). We recall that this is a peculiar phenomenon
for the equation with critical exponent c∗ = (N − 2)2/4. For values of c < c∗, the
maximal singularity is still in H 1

0 (Ω). To consider this possibility into account, the
Hilbert space H was introduced in [55] as the completion of the C∞0 (Ω) functions
under the norm

||φ||2H (Ω) = IΩ [φ], φ ∈ C∞0 (Ω). (4)

However, we have realized that with the proposed definition of H , there exists a
problem with the solutions of the evolution problem having the maximal singularity.
The verification is quite simple in the case where Ω = B1, the unit ball in R

N

centered at the origin. In that case, the minimization problem

minu∈H
||u||2H
||u||2

L2

(5)

admits as a solution to the function e1(r) = r−(N−2)/2 J0(z0,1 r), where r = |x|, J0 is
the Bessel function with J0(0) = 1, up to normalization and z0,1 denotes the first zero
of J0. This function plays a big role in the asymptotic behavior of general solutions of
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Problem (3). The minimum value of (5) is μ1 = z2
0,1. Moreover, the quantity IB1 (e1)

is well defined as a principal value. Assuming that

||e1||2H = IB1 (e1), (6)

from the definition of H , for any ε > 0, we should find a C∞0 -function φ, such that
||e1 − φ||2H < ε. However, we may prove that ||e1 − φ||2H ≥ c > 0, for any C∞0 -
function φ, which is a contradiction. It seems that e1 fails to be inH , since it cannot
be approximated by C∞0 -functions and this will happen for every function with the
maximal singularity. What is really happening in this case is that for functions with
certain bad behavior, the norm of H is not given by (4).

Next we present the results of Vázquez and Zographopoulos [53, 54], which have
their own interest, as they may be seen as generalizations of the Hardy and Hardy
type inequalities.

1. We start with the Hardy inequality (1) defined on a bounded domain. Let N ≥
3 and Ω be a bounded domain of R

N , containing the origin. Then, Hardy’s
inequality (on a bounded domain), takes the form

lim
ε→0

(
IBcε [u]−Λε(u)

)
> 0, (7)

for any function u �≡ 0, u ∈ H.With Λε we denote the quantity:

Λε(u) = N − 2

2
ε−1

∫

Sε

u2 dS , (8)

where dS denotes the surface measure. Actually the left hand side of (7) represents
the norm of H (Ω). As we discuss in Sect. 2, Λε may have a bad behavior;
oscillating or tending to infinity. In these cases, the Hardy functional Iε has the
same behavior withΛε, so that the sum of them to become a positive real number.

2. Next we consider the case of the Hardy inequality (1) defined on an exterior
domain. Let N ≥ 3 and Ω = R

N\B1(0) be an exterior domain. We note that
the inverse square potential corresponds to singular phenomena also at infinity.
We consider the Hilbert space H (Ω) as the completion of the C∞0 (Ω) functions
under the norm (4). Then, Hardy’s inequality (on an exterior domain), takes the
form

lim
ε→0

(
IBc1/ε [w]+Λ1/ε(w)

)
> 0, (9)

for any function u �≡ 0, u ∈ H . Actually the left hand side of (9) represents
the norm of H (Ω). The Hardy functional posed in the exterior domain is not
necessarily a positive quantity; functions which belong in H and behaving at
infinity like |x|−(N−2)/2 may be negative; for an example see [53]. Thus, the
validity of (9), is actually based on Λ1/ε.

3. For the case of the whole spaceΩ , whereΩ = R
N , the Hardy inequality is sharp;

we cannot expect a Hardy–Poincaré inequality to hold, for any smooth function.
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To overcome this difficulty, the authors in [55] made use of the similarity variables.
They introduced the following weighted Hardy inequality:

IK [w] ≥ 0, (10)

for any C∞0 (RN ) function, where

IK [w] :=
∫

RN

K |∇w|2 dy −
(
N − 2

2

)2 ∫

RN

K
w2

|y|2 dy. (11)

and K(|y|) = exp (|y|2/4).Also, in this case,

(N − 2)2

4
,

is the best constant for (11).
As above, we introduce the Hilbert space H (K) as the completion of the space
of C∞0 (RN ) functions under the norm

||φ||2H (K) = IK [φ], φ ∈ C∞0 (RN ). (12)

Then, this weighted Hardy’s inequality, takes the form

lim
ε→0

(
IK ,Bcε [w]−ΛK ,ε(w)

)
, (13)

for any function u �≡ 0, u ∈ H (K), where ΛK ,ε is defined as:

ΛK ,ε(w) := N − 2

2
ε−1

∫

Sε

K w2 dS, (14)

For the details we refer to [54].
4. The following inequality is derived from the previous one, by replacing

K(|y|) = exp (|y|2/4) with K̃(|y|) = exp (1/(4|y|2)).

The weighted Hardy functional is now considered:

IK̃ [w̃] :=
∫

RN

K̃ |∇w̃|2 dỹ −
(
N − 2

2

)2 ∫

RN

K̃
w̃2

|ỹ|2 dỹ. (15)

What is interesting here is that IK̃ is not necessarily a positive quantity; functions
which behave at infinity like |y|−(N−2)/2 might be negative. However, in this case,
we may prove that this weighted Hardy’s inequality, takes the form

lim
ε→0

(
IK̃ ,ε[w̃]+ΛK̃ ,1/ε(w̃)

)
+ N − 2

2
||w̃||2

L2(K̃ |ỹ|−4)
≥ 0, (16)

for any function belonging to the corresponding space andΛK̃ ,1/ε is given by (14).

We emphasize the existence in (16), of the L2(K̃ |ỹ|−4) norm. It turns out that it
might be crucial for the validity of (16). For an example, see [54, pp. 5477–5478].
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5. Next, we consider an improved Hardy inequality. Consider the weights

Vk(x) = 1

4

k∑

i=1

1

|x|2X
2
1

( |x|
D

)

X2
2

( |x|
D

)

. . . X2
i

( |x|
D

)

, k = 1, 2, . . . (17)

with D > D0 := sup{|x|, x ∈ Ω} and

X1(t) = (1− log t)−1, Xk(t) = X1(Xk−1(t)), k = 2, 3, . . . .

This study is motivated by the work [30], where the authors have provided an
answer to a question raised in [16] concerning the improvements of the Hardy in-
equality. They proved that the Hardy inequality has an infinite series improvement,
such that the k-improved Hardy functional (kIHT)

Ik[u] =
∫

Ω

|∇u|2 dx −
(
N − 2

2

)2 ∫

Ω

u2

|x|2 dx

− 1

4

k∑

i=1

∫

Ω

1

|x|2X
2
1X

2
2 . . . X

2
i u

2 dx. (18)

is positive for any u ∈ C∞0 (Ω) and any k = 1, 2, . . .. Related topics concerning
improvements of the Hardy inequality are discussed in the sequel.
We introduce the Hilbert spaceHk(K) as the completion of the space of C∞0 (Ω)-
functions, Ω is a bounded domain, under the norm

||φ||2Hk = Ik[φ], φ ∈ C∞0 (Ω). (19)

Thus, this improved Hardy’s inequality, takes the form

lim
ε→0

(
Ik,Bcε [u]−Λk,ε(u)

)
, (20)

for any function u �≡ 0, u ∈ H (K). With ΛK ,ε we denote the quantity:

Λk,ε(u) = −1

2

∫

Sε

φ−1
k φ

′
k u2 ds, (21)

where

φk(|x|) = |x|−(N−2)
k∏

i=1

X−1
i , (22)

and

φ′k
φk
= −1

r

[

(N − 2)+
k∑

i=1

X1 · · ·Xi
]

, (23)
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As we discuss in Sect. 2, Λk,ε may have a bad behavior; oscillating or tending to
infinity. In these cases, the Hardy functional Ik,ε becomes negative and accepts
the same behavior with Λk,ε , so that the sum of them becomes a positive real
number.

6. Finally, we explore the existence of an analogue of the k-Hardy singularity energy
for problems posed in exterior domains. Consider the weights

Ṽk(|y|) = 1

4

k∑

i=1

1

|y|2X
2
1

(
1

D |y|
)

X2
2

(
1

D |y|
)

. . . X2
i

(
1

D |y|
)

, k = 1, 2, . . .

(24)

with D > δ, c∗ = (N − 2)2/4 is the critical coefficient, Bcδ = R
N\Bδ(0) is the

standard exterior domain and δ > 0. Without loss of generality, we set δ = 1. We
introduce the Hardy type functional

Ik,Bc1 (0)[φ] =
∫

RN\B1(0)
|∇φ|2 dx −

(
N − 2

2

)2 ∫

RN \B1(0)

φ2

|x|2 dx

−
k∑

i=1

Ṽk(|x|)φ2 dx, (25)

which is positive for any compactly supported function φ ∈ C∞(Bc1(0)) that
vanishes on the boundary. We denote by Ik,ε and Ik,1/ε, the Hardy type functional
defined on B1(0)\Bε and B1/ε(0)\B1(0), respectively.

We consider the Hilbert space Hk(K) as the completion of the space of C∞0 (RN )-
functions under the norm

||φ||2Hk = Ik,Bc1(0)[φ], φ ∈ C∞0 (RN ). (26)

Then, this improved Hardy’s inequality, takes the form

lim
ε→0

(
Ik,1/ε[w]+Λk,1/ε(w)

)
. (27)

Recall that Λk,ε(u) is given by (21). For more details, we refer to [54].
We also mention the recent results obtained in [22], where analogous results where

obtained for the Hardy inequality, defined on a bounded domain and the singularity
being at the boundary.

The proof of the above results was based mainly on a more convenient variable
by means of the formulay means of the formula

u(x) = |x|−(N−2)/2 v(x). (28)

We will consider the transformation as u = T (v). Clearly, this is an isometry
from the space X = L2(Ω) into the space X̃ = L2(dμ,Ω), with dμ = |x|2−Ndx.
This transformation (28), was first used in [16] and from then, it is a basic tool in the
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study of Hardy’s inequalities. The great advantage of this formula is that it simplifies
IΩ (u), at least for smooth functions, such that

I1(v) :=
∫

Ω

|x|−(N−2)|∇v|2 dx . (29)

It is easily checked that IΩ (u) = I1(v) for functions u ∈ C∞0 (Ω) and the equiv-
alence fails for functions with a singularity of the type |x|−(N−2)/2 at the origin. It
is clear, that this change of variables relates the study of Hardy inequality with the
critical case of the Caffarelli–Kohn–Nirenberg Inequalities (see [19, 21]).

Moreover, Hardy and Hardy type inequalities might also be connected with the
Sobolev inequality in R

N ;

Proposition 1 For some radial function u we set

w(t) = |x|N−2
2 u(|x|), t =

(

− log

( |x|
R

))− 1
N−2

. (30)

Then, u ∈ Hr (BR), the radial subspace of H , if and only if w ∈ D1,2
r (RN ) and

||u||2Hr (BR ) = (N − 2)−1 ||w||2
D

1,2
r (RN )

, (31)

where D1,2
r (RN ) is the radial subspace of D1,2(RN ), which is defined as the closure

of C∞0 (RN ), with respect to the norm

||φ||D1,2(RN ) =
∫

RN

|∇φ|2 dx.

For more details about this space, we refer to the classical book [1].
Two consequences of this relation are the existence of non H 1

0 minimizers and
the formulation of improved Hardy–Sobolev inequalities.

Nonexistence of H 1
0 minimizers was implied in [16], where they had calculated

exactly the first eigenpair of the problem (5). However, a general proof was given for
the first time in [30] for the minimizing problem minu∈H ||u||2H/||u||2L2

V

, in the case

of certain weights V . The connection of Hardy and Hardy type inequalities with the
Sobolev inequality, enable us to provide a much more easier proof, which applies also
to the problem minu∈H ||u||2H/||u||2Lp , 1 < p < 2∗, as well as, to more general Hardy-
type inequalities. Moreover, we may obtain the exact behavior of the minimizer at the
singularity. For example, in the case of problems minu∈H ||u||2H/||u||2Lp , 1 < p < 2∗,
their behavior at the origin is exactly |x|−(N−2)/2. However, in case 5, the minimizers
are more singular; as k grows they are getting slightly more singular. It is interesting
that contrary to the simple case, the k-improved Hardy functional for these functions
is not well defined. Their behavior at the origin is precisely |x|−(N−2)/2

∏k
i=1X

−1/2
i .

We discuss about these results in Sect. 3.
In the following, we consider improved Hardy–Sobolev inequalities (IHS). In the

last years much attention was given for the study of various versions of improved
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Hardy and Hardy type inequalities. Their applications extend from the stability of
solutions of elliptic and parabolic equations in the asymptotic behavior, the control-
lability of solutions of heat equations with singular potentials, and the stability of
eigenvalues in elliptic problems. For some of these results one is referred to [3, 5–7,
9–14, 20, 22–25, 27–35, 41–43, 46–48, 50–57].

In the case of the critical Sobolev exponent, the following inequality

I [u] ≥
∫

Ω

|u| 2 N
N−2 dx, (32)

cannot hold for any u ∈ C∞0 (Ω), where Ω is bounded. For example, take a radial
function which behaves at the origin like |x|−(N−2)/2. It is clear from the previous
discussion that the Hardy functional I [u] is well defined and it is finite as a principal
value. On the other hand, the right hand side of (32) is infinite.

However, in [30] the following IHS inequality was proved: Let Ω be a bounded
domain in R

N , N ≥ 3, containing the origin, D0 = supx∈Ω |x| and D > D0, then
the following inequality

∫

Ω

|∇u|2 dx ≥
(
N − 2

2

)2 ∫

Ω

u2

|x|2 dx

+ CHS(Ω)

(∫

Ω

|u| 2 N
N−2

(

− log

( |x|
D

))− 2(N−1)
N−2

dx

)N−2
N

(33)

holds for any u ∈ C∞0 (Ω\{0}). We note that (33) is sharp in the sense that X1+ N
N−2

cannot be replaced by a smaller power of X. From the discussion in [30, 47], it is
clear that the nature of (33) depends on the distance of D from D0, for instance in
the case where D = D0. R. Musina [47] proved that the inequality cannot hold if
one considers nonradial functions.

On the other hand, as it is shown in [57], inequality (33) holds in the case where
D = D0

∫

BR

|∇u(|x|)|2 dx ≥
(
N − 2

2

)2 ∫

BR

u2(|x|)
|x|2 dx

+ CHS
(∫

BR

|u(|x|)| 2 N
N−2

(

− log

( |x|
R

))− 2(N−1)
N−2

dx

)N−2
N

, (34)

in the radial case, i.e., whereBR is the open ball in R
N ,N ≥ 3, of radiusR centered at

the origin and u ∈ C∞0 (BR\{0}) is a radially symmetric function. This was done using
transformation (30). It is interesting to mention that (34) cannot have a minimizer
(for a proof see Sect. 3). However, the minimization problem

||u||H (BR )dx ≥ CHS
(∫

BR

|u(|x|)| 2 N
N−2

(

− log

( |x|
R

))− 2(N−1)
N−2

dx

)N−2
N

, (35)
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accepts a solution, which behaves at the origin like |x|−(N−2)/2. More precisely, the
minimizers of (35) are

um,n(|x|) = |x|−N−2
2

(

μ2 + ν2

(

− log

( |x|
R

))− 2
N−2

)− N−2
2

, (36)

for nonzero μ and ν.
We note that the best constant of (33), was obtained in [6], using basically trans-

formation (30) and the connection of (33) with the Sobolev inequality in a bounded
domain. The best constant of (33), in the radial case, was obtained independently
from [6], in [57], using transformation (30) and the connection of (33) with the
Sobolev inequality in R

N .
The arguments of [57] may be applied to more general cases; the difficulty in

these cases is to find the proper weight function that makes such an inequality to
hold. Transformation (30) may provide us with an answer. For instance in the case
3; we have to consider the singularity at zero and the behavior at infinity. In the
bounded domain case, the weight function was a logarithm; in the case of R

N , the
proper function turns to be the exponential integral E(r). More precisely, we have

Theorem 1 Let N ≥ 3 and α > 0 be an arbitrary real number. For any w ∈
C∞0 (RN ), the following inequality holds

∫

RN

K |∇w|2 dy −
(
N − 2

2

)2 ∫

RN

K
w2

|y|2 dy

≥ c
⎛

⎝
∫

RN

K−1

(
1

2
E

( |y|2
4

)

+ α
)− 2(N−1)

N−2

|w| 2 N
N−2 dy

⎞

⎠

N−2
N

.

(37)

The best constant is

CHS := S(N ) (N − 2)−2(N−1)/N , if α ≥ 1

N − 2
(38)

and

α
2(N−1)
N S(N ), if 0 < α <

1

N − 2
, (39)

where S(N ) is the best constant in the Sobolev inequality and there exists no
minimizer.

In order to clarify the use of (28) in obtaining improved Hardy–Sobolev
inequalities, we state Lemma 1 in Sect. 3 and an application for the case 5.

Finally, we make a reference to works studying applications of the Hardy in-
equality in pde’s. First we note that c∗, which is the best constant in the inequality,
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is also critical for the basic theory of the evolution equation. Indeed, the usual
variational theory applies to the subcritical cases: ut = Δu + c u/|x|2 with
c < c∗, using the standard space H 1

0 (Ω), and a global in time solution is then
produced. On the other hand, there are no positive solutions of the equation for
c > c∗ (instantaneous blow-up), [8, 18, 37]. In the critical case we still get ex-
istence but the functional framework changes; this case serves as an example of
interesting functional analysis and more complex evolution. Problems with inverse
square appear in Schrödinger equations and in combustion theory (See for e.g.,
[3, 4, 8, 13, 14, 16–18, 20, 22, 29, 32–43, 48, 50, 52–56] and the references therein).

2 Hardy and Hardy Type Inequalities

In this section we make some comments concerning the cases 1–6. The proof of these
inequalities might be found in [53, 54] and actually is based on the transformation
(30). More precisely, we consider the weighted space H̃ = W 1,2

0 (dμ,Ω), which is
the completion of the space of C∞0 (Ω)-functions under the norm

||v||2H̃ =
∫

Ω

|x|−(N−2) |∇v|2 dx . (40)

We may prove that the space of C∞0 (Ω\{0})-functions is dense in H̃. Next, we
introduce the space H as the isometric space of H̃ = W 1,2

0 (|x|−(N−2)dx,Ω) under
the transformation T given by (28). In other words, H is defined as the completion
of the set

{
u = |x|−N−2

2 v, v ∈ C∞0 (Ω)
}
= T (C∞0 (Ω)),

under the norm N (u) = ‖u‖H defined by

||u||2H =
∫

Ω

|x|−(N−2) |∇
(
|x|N−2

2 u
)
|2 dx. (41)

Then, we are able to prove that the spaces H and H are actually the same space
and the norm of H is defined by

||u||2H = lim
ε→0

(
IBcε [u]−Λε(u)

)
. (42)

This is exactly inequality (7). As it follows from (42), inequality (7) is sharp
concerning the behavior at the singularity.

For this, we explain next the connection of the norm of space H with the Hardy
functional (2). We distinguish the following four cases:

• If u ∈ H 1
0 (Ω), then u ∈ H and we have

Λ(u) := lim
ε→0
Λε(u) = 0,

Note that the converse is not true; IfΛ(u) = 0, it does not imply that u ∈ H 1
0 (Ω).

For example, take a function u such that v behaves at zero like (− log |x|)−1/2.
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• If v ∈ H̃ is such that lim|x|→0 v2(x) = v2(0) exists as a real positive number; then
it follows that u ∈ H but u �∈ H 1

0 (Ω). In this case

Λ(u) = N (N − 2)

2
ωN v2(0), (43)

where ωN denotes the Lebesgue measure of the unit ball in R
N . Λ(u) is then

a well-defined positive number. We note that this is the case of the principal
eigenfunction and the case of the minimizer of the improved Hardy–Sobolev
inequality, see [57], in the radial case. Actually, this is the case for the minimizers
of

min
u ∈ H

||u||2H
||u||pLp

, 1 ≤ p < 2N

N − 2
. (44)

• If v ∈ H̃ is such that v at zero is bounded but the limx→0 v2(x) does not exist, i. e.,
v oscillates near zero. For example, let

v ∼ sin
(
(− log |x|)a) , |x| → 0.

Then, v belongs in H̃ if 0 < a < 1/2, thus u = |x|−(N−2)v ∈ H. In this case, the
limit L(u) does not exist, since it oscillates, and we have that the same holds true
for the Hardy functional, in the sense that

lim
ε→0

(
IBcε [u]−Λε(u)

) = ||v||2H̃. (45)

• If v ∈ H̃ is such that limx→0 v2(x) = ∞. For example, let

v ∼ (− log |x|)a , |x| → 0.

Then, v belongs to H̃ if 0 < a < 1/2, thus u = |x|−(N−2)v ∈ H. It is clear that
Λ(u) = ∞, and we have that the same holds true for the Hardy functional, in the
sense that (45) holds.

Note that in all these cases, Λε is a nonnegative quantity, for every ε > 0 and so
is IBcε [u]. As a consequence, we obtain a generalized form of the Hardy inequality
valid in the limiting case of (45), when the Hardy functional is not defined or it is
infinite.

The other cases (2–4) are similar to the above discussion and we refer to [53, 54].
The cases that are more delicate are the fifth and the sixth.

By k-improved Hardy functional, we refer to Ik(u) defined in (18) with limits
taken in the sense of principal value if the integrals diverge. Denote by Bε, the ball
centered at the origin with radius ε, and by Bcε , its complement in Ω . Assume now
that u ∈ Hk , so that v = φ−1/2

k u ∈ H̃k . Then, we have that

Ik,Bcε [u] =
∫

Bcε

|∇u|2 dx −
(
N − 2

2

)2∫

Bcε

u2

|x|2 dx −
1

4

k∑

i=1

∫

Bcε

1

|x|2X
2
1X

2
2 . . . X

2
i u

2 dx.
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Applying change of variables and integration by parts, the following remarkable
formula is obtained:

Ik,Bcε [u] = ||v||2H̃k(Bcε )
− 1

2

∫

Sε

φ−1
k φ

′
k u2 dS, (46)

where dS is the surface measure. From this definition, we obtain the connection of
Λk,ε(u) with Λε(u), see (8), which for some fixed v ∈ C∞0 (Ω), is given by

Λk,ε(u1) = Λε
(
k∏

i=1

X
−1/2
i u2

)

+ lower order terms, (47)

as ε ↓ 0, where v = T (u2) and v = Tk(u1). While for a fixed u ∈ Hk , holds that

Λk,ε(u) = Λε(u) + lower order terms, (48)

as ε ↓ 0. It is also clear that

lim
ε→0

||v||2H̃k(Bcε )
= ||v||2H̃k

.

In order to take the limit ε→ 0, in (46) we distinguish the following cases:

• If u ∈ H 1
0 (Ω), then u ∈ Hk and we have

Λk(u) := lim
ε→0
Λk,ε(u) = 0,

thus the limit as ε→ 0, in (46), implies the well-known formula

Ik,Ω[u] = ||v||2H̃k
= N2

k (u),

which holds for any u ∈ H 1
0 (Ω). Note that the converse is not true; IfΛk(u) = 0,

it does not imply that u ∈ H 1
0 (Ω). For example, assume a function v that behaves

at zero like
∏k
i=1Xi .

• If u behaves at zero like c |x|−(N−2), which means that v ∼ c ∏k
i=1X

1/2
i , we have

that u ∈ H(K). In this case

Λk(u) = N (N − 2)

2
ωN c

2,

Λk(u) is a well-defined positive number and (46) implies that

IΩ [u] = ||v||2H̃k
+Λk(u).

Note that, in terms of u, this is exactly the same as in the simple Hardy case.
However, in the case of k-improved Hardy we must have v(0) = 0.
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• If v ∈ H̃k is such that
∏k
i=1X

−1/2
i v at zero is bounded but the

lim|x|→0

k∏

i=1

X
−1/2
i v2(x)

does not exist, i.e., v oscillates near zero. For example, let

v ∼
k∏

i=1

X
1/2
i sin

(
X−ak+1

)
, |x| → 0.

Then, v belongs to H̃k for some 0 < a < 1/2. In this case, the limit Λk(u) does
not exist, since it oscillates, and from (46) we have that the same happens to the
(kIHT), in the sense that

lim
ε→0

(
Ik,Bcε [u]−Λk,ε(u)

) = ||v||2H̃k
. (49)

• If v ∈ C∞0 (Ω) is such that v(0) = 1. Then, v belongs to H̃k and

lim
ε→0
Λk,ε(u) = ∞.

From (46) we have that the same happens to the k-improved Hardy functional,
in the sense that (49) holds. We emphasize that, in contrast with Λε, we can find
v ∈ H̃k , such that v(0) = 0 and Λk,ε → ∞. For example let v ∼ ∏k

i=1X
1/4
i , at

the origin.
Moreover, this last case applies for certain minimizers, see the next section; These
not only fail to be inH 1

0 , but also fail to have a finite k-improved Hardy functional,
as a principal value, contrary to the case 1. More precisely, they behave at the
origin like |x|−(N−2)/2

∏k
i=1X

−1/2
i . In addition, as k grows, the minimizers are

getting slightly more singular.

Note that in all cases, Λk,ε is a positive quantity, for every ε > 0 and so is Ik,Bcε [u].
As a consequence, we obtain a generalized form of the k-improved Hardy inequality
in the limiting case of (49), when the k-improved Hardy functional is not defined or
is infinite.

Finally, we give the inclusion between the spaces Hk;

H 1
0 (Ω) ⊂ H ⊂ H1 ⊂ . . .Hk ⊂ Hk+1. . . ⊂ ∩1≤q<2W

1,q(Ω). (50)

Note that, every one of each imbedding is dense and strict.

3 Critical Inequalities and the Sobolev Inequality on R
N

In this section, we discuss some applications of transformation (30) concerning
nonexistence of H 1

0 -minimizers and the formulation of improved Hardy–Sobolev
inequalities. As already stated in the introduction, with the use of (30), Hardy and
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Hardy type inequalities are related with the Sobolev inequality in R
N , in the radial

case.
The best constant in the Sobolev inequality in R

N :

∫

RN

|∇u|2 dx ≥ S
(∫

RN

|u| 2 N
N−2 dx

)N−2
N

, (51)

as it is well known, is

S(N ) = N (N − 2)

4
|SN |2/N = 22/N π1+1/N Γ

(
N + 1

2

)−2/N

,

where SN is the area of the N-dimensional unit sphere and the extremal functions are

ψμ,ν(|x|) =
(
μ2 + ν2|x|2)−(N−2)/2

,

for μ �= 0, and ν �= 0.

Nonexistence of H 1
0 -Minimizers Transformation (30) provides us with an extra

argument concerning the nonexistence of H 1
0 -minimizers. In fact, we are able to

obtain the exact behavior of these minimizers at the singularity. We shall prove that
these minimizers belong to H , they do not belong to H 1

0 and their behavior at the
origin is exactly |x|−(N−2)/2.

Assume on the contrary that u ∈ H 1
0 is a minimizer of the problem

min
u ∈ H

||u||2H
||u||2

L2

.

Then, u may be chosen to be a nonnegative and radial function, i.e., satisfying
u(x) = u(r) ≥ 0. Let w be the transformation of u, through (30). Since u ∈ H 1

0 , we
obtain that

w(0) = 0. (52)

Moreover, we have that w ∈ D1,2(RN ) is a minimizer of

1

(N − 2)2

∫
RN
|∇w|2 dx

∫
RN
V (|x|) w2 dx

, (53)

where V (|x|) = |x|−2(N−1) e−2 |x|−(N−2)
. Note that if we set V (0) = 0, V is a con-

tinuous function. Then, w should be a nonnegative solution of the Euler–Lagrange
equation corresponding to (53):

−Δw = c(N )V (|x|) w, w ∈ D1,2(RN ).

However, application of the maximum principle contradicts (52), hence (5)
does not admit an H 1

0 -minimizer. This argument might be applied to more general
problems;
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Proposition 2 Let Ω be a bounded domain of R
N , N ≥ 3, containing the origin.

Then, minimizers of

min
u ∈ H

||u||2H (Ω)∫
Ω
|u|q dx , 1 ≤ q < 2N

N − 2
, (54)

do not exist in H 1
0 (Ω).

The caseq = 2N
N−2 , as we know from (36) has the same quantitative behavior (in the

radial case) and this maybe also obtained following the same argument. Moreover, the
principal eigenvalue and the minimizer of the improved Hardy–Sobolev inequality
(in the radial case) behave at the origin like |x|−(N−2)/2. Then, the Hardy functional
for these functions is a well-defined positive number, although it does not represent
their H -norm. These functions do not belong to the “worst” cases, where IΩ is not
well defined or is infinite. As a corollary of the previous argument, we have that the
same happens to every minimizer uΩ ,q of (54).

Corollary 1 Every minimizer uΩ ,q of (54) behaves at the origin like |x|−(N−2)/2.
In the cases of Hardy type inequalities, similar results may be obtained, except

the case 5 where the minimizers not only fail to be inH 1
0 , but also fail to have a finite

k-improved Hardy functional, as a principal value. More precisely, they behave at
the origin like |x|−(N−2)/2 ∏k

i=1X
−1/2
i , as we will see in the case of the minimizer of

the k-Improved Hardy–Sobolev inequality (radial case). Their norm given by (20) is
such that both

Ik,Bcε →∞ and Λk,ε →∞,

as ε → 0. Moreover, as k grows, the minimizers are getting slightly more singular.
We consider the minimization problems

min
u ∈ Hk

||u||2Hk(Ω)
(∫
Ω
|u|q dx)2/q

, 1 ≤ q < 2 N

N − 2
. (55)

Proposition 3 Let Ω be a bounded domain of R
N , N ≥ 3, containing the origin.

Then the minimizers of (55) cannot exist in H 1
0 (Ω). Moreover, every minimizer uk,q

of (55) behaves at the origin like |x|−(N−2)/2
∏k
i=1X

−1/2
i .

For the proof of the above results, we refer to [53, 54].

Improved Hardy–Sobolev Inequalities Transformation (30) applies also to im-
proved Hardy–Sobolev inequalities. More precisely, it might give us the formulation
of the inequality, providing us with the proper weight function, such that the
inequality holds.

The key result is the following Lemma, which actually relates critical inequalities
with the Sobolev inequality on the space R

N . Then, the best constants and the
minimizers are related with the ones of the Sobolev inequality. All the arguments
considered the radial case since this case is the delicate one. With the exception of
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inequality (37), we state also an inequality related to the case 5. For further details,
one is referred to [54, 57].

Lemma 1 Let a ∈ (0,∞] be fixed andK(r), r ∈ (0, a), a positive function. Assume
that the function E(r), with

E′(r) = r−1K−1(r),

is a well-defined negative function. Moreover, we assume that

lim
r→0
E(r) = −∞ and lim

r→a E(r) = 0.

Then, inequality

∫ a

0
r K (v′)2 dr ≤ c

(∫ a

0
r−1K−1 (−E(r))−

2(N−1)
N−2 |v| 2 N

N−2 dr

)N−2
N

, (56)

is equivalent to the inequality

∫ ∞

0
tN−1 (w′)2 dt ≤ c (N − 2)−

2(N−1)
N

(∫ ∞

0
tN−1 |w| 2 N

N−2 dt

)N−2
N

, (57)

with the use of transformation

w(t) = v(r), t = (−E(r))−
1
N−2 .

It is clear that the best constant in (56) is

c = S(N ) (N − 2)−2(N−1)/N ,

and the minimizers are

ψμ,ν

(
(−E(r))−

1
N−2

)
,

where S(N ) and ψμ,ν are the best constant and the minimizers, respectively, of the
Sobolev inequality in R

N .
Next, we state the k-improved Hardy Sobolev inequality (kIHS) in the radial

case. In the general case, this inequality was proved in [30] and the best constant was
obtained in [6]. For the radial case, we consider almost the same inequality, with a
small difference, to than in [30, Lemma 7.1], following the procedure followed in
[57]. For the sake of the representation, we assume that Ω = B1, the unit sphere on
RN , and in the definition of the Xi’s we take D = 1.

Lemma 2 For any radial function h ∈ C∞0 (B1), the following inequality holds

∫ 1

0
r

k∏

i=1

X−1
i |h′|2 dr ≥ c

(∫ 1

0
r−1

k∏

i=1

Xi (Xk+1 − 1)
2(N−1)
N−2 |h| 2 N

N−2 dr

)N−2
N

. (58)
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The best constant is given in (38) and it is achieved by

hμ,ν(r) = ψμ,ν

(
(Xk+1(r)− 1)

1
N−2

)
, (59)

where ψμ,ν are the minimizers of the Sobolev inequality in R
N .

Proof we set

h(r) = h̃(t), t = (Xk+1(r)− 1)
1
N−2 = (− logXk)

− 1
N−2 .

Using the fact that

(Xk+1)
′ = r−1

k∏

i=1

Xi X
2
k+1,

we have

dt = 1

N − 2
tN−1 r−1

k∏

i=1

Xi dr.

Then, (58) is equivalent to

1

N − 2

∫

RN

|∇h̃|2 dy ≥ c
(

(N − 2)
∫

RN

|h̃| 2 N
N−2 dy

)N−2
N

,

and the result follows.
As a consequence of the above lemma, we obtain the following (kIHS) inequality

in the radial case.

Theorem 2 For any radial function u ∈ Hk(B1), the following inequality holds

||u||Hk(B1) ≥ c
(∫

B1

k∏

i=1

X
2(N−1)
N−2
i (Xk+1(r)− 1)

2(N−1)
N−2 |u| 2 N

N−2 dx

)N−2
2 N

. (60)

The best constant is given in (38) and it is achieved by

hμ,ν(|x|) = |x|−N−2
2

k∏

i=1

X
− 1

2
i ψμ,ν

(
(Xk+1(r)− 1)

1
N−2 (|x|)

)
, (61)

where ψμ,ν are the minimizers of the Sobolev inequality in R
N .

Note that, hμ,ν not only fail to be in H 1
0 but also fail to have a well-defined k-

improved Hardy functional, as a principal value. As we saw in Sect. 2, this is the
case for certain minimizers in Hk . In this sense, inequality (60) is different from the
inequality

Ik(u) ≥ c
(∫

B1

k∏

i=1

X
2(N−1)
N−2
i (Xk+1(r)− 1)

2(N−1)
N−2 |u| 2 N

N−2 dx

)N−2
2 N

.

The latter cannot hold as an equality for some radial function in Hk(B1).
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Nonexistence of Minimizers for Inequality (34) Finally, we provide a nonexis-
tence result for inequality (34). We emphasize that inequality (35) has a minimizer
and is given by (36). The difference of these two inequalities is actually the norm of
H , which is given by (42) and the fact that the minimizers of (35) have a singularity
at the origin of the type |x|−(N−2)/2. The procedure here is based on this fact.

Theorem 3 A minimizing sequence for (34) is

φn(|x|) = |x|− N−2
2 ψn

((

− log

( |x|
R

))− 1
N−2

)

, x ∈ BR\{0}, φn|∂BR = 0. (62)

where

ψn(|x|) =
(
μ2
n + ν2|x|)2

)−(N−2)/2
, μn →∞, ν �= 0,

is for each n, the extremal of the Sobolev inequality and there exists no minimizer.

Proof of Theorem 3 We define the functionals I : H (BR) → R and J :
D1,2(RN ) → R as follows

I (u) :=
∫

BR

|∇u|2 dx −
(
N − 2

2

)2 ∫

BR

u2

|x|2 dx

− CHS
(∫

BR

|u| 2 N
N−2

(

− log

( |x|
R

))− 2(N−1)
N−2

dx

)N−2
N

and

J (w) :=
∫

RN

(∇w(t))2 dt − C
(∫

RN

|w(t)| 2 N
N−2 dt

) N−2
N + N (N − 2)2

2
ωNw2(0).

By direct calculation we get that IC1 (u) ≥ 0 if and only if JC(r−(N−2/2)u) ≥ 0,
and IC1 (u) = 0 if and only if JC(r−(N−2/2)u) = 0, with C1 = C (N − 2)−2(N−1)/N .
It is clear now that the best constant for JC to be positive is S(N ); assume that for
some C > S(N ), JC(w) ≥ 0, for any w. Then, JC(ψ) ≥ 0, for ψ an extreme of the
Sobolev inequality. This implies that

−(C − S)

(∫

RN

|ψ(t)| 2 N
N−2 dt

)N−2
N

+ N (N − 2)

2
ωNψ

2(0) ≥ 0.

or

c1

(∫ ∞

0
tN−1|ψ(t)| 2 N

N−2 dt

)N−2
N ≤ c2 ψ

2(0). (63)

Letψ(t) = (μ2+ν2 t2)−(N−2)/2 for some μ and b. We will prove that (63) cannot
hold for every ψ i.e., we will find some μ and b such that (63) is not satisfied. From
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(63) we compute the value of

c1

∫ ∞

0
tN−1

(
μ2 + ν2 t2

)−N
dt ≤ c2μ

−2(N−2).

We compute the first integral by setting t = μ

ν
tanω and we obtain that

c1
1

νN
L ≤ c2μ

−3N+2,

where

L =
∫ π/2

0
( tanω)N−1( cosω)2 N dω =

∫ π/2

0
( sinω)N−1( cosω)N−1 dω

= c
∫ π

0
( sin ζ )N−1 dζ > 0,

and it is independent of μ and ν. Thus, we can find a ψ such that (63) is not satisfied
and the best constant for J to be positive is S(N ). Then, the best constant for (34)
is given by (38). In this case, one minimizing sequence for JS → 0 is ψn and there
exists no minimizer for JS and so for ICHS . Thus the proof is complete. �
Remark 1 It is clear that ψn are minimizers of JS in the level sets w(0) = c,
c > 0 fixed number. This implies that these solve the corresponding Euler–Lagrange
equation

−Δw(t) = (N − 2)2 w
N+2
N−2 (t), t ∈ R+. (64)

In this direction, φn may be seen as the minimizers of ICHS in the level set with
lim|x|→0 |x|N−2

2 u = c, c > 0 fixed number, so these satisfy the Euler–Lagrange
equation

−Δu−
(
N − 2

2

)2 u

|x|2 =
(

− log

( |x|
R

))− 2(N−1)
N−2

u
N+2
N−2 (65)

u|∂Ω = 0.
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