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Foreword

Historical and recent developments at international financial markets show that it is
easy to loose money, while it is difficult to predict future developments and opti-
mize decision-making towards maximizing returns and minimizing risk. One of the
reasons of our inability to make reliable predictions and to make optimal decisions
is the growing complexity of the global economy. This is especially true for the for-
eign exchange market (FX market) which is considered as one of the largest and
most liquid financial markets. Its grade of efficiency and its complexity is one of the
starting points of this volume.

From the high complexity of the FX market, Christian Ullrich deduces the ne-
cessity to use tools from machine learning and artificial intelligence, e.g., support
vector machines, and to combine such methods with sophisticated financial model-
ing techniques. The suitability of this combination of ideas is demonstrated by an
empirical study and by simulation. I am pleased to introduce this book to its au-
dience, hoping that it will provide the reader with interesting ideas to support the
understanding of FX markets and to help to improve risk management in difficult
times.

Moreover, I hope that its publication will stimulate further research to contribute
to the solution of the many open questions in this area.

Karlsruhe, January 2009 Detlef G. Seese
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Preface

The growing complexity of many real world problems is one of the biggest chal-
lenges of our time. The area of international finance is one prominent example
where decision making is often fraud to mistakes, and tasks such as forecasting,
trading and hedging exchange rates seem to be too difficult to expect correct or at
least adequate decisions. Could it be that it is too complex for decision-makers to
arrive at an optimal solution from a computational complexity perspective?

As a first task we address the problem of forecasting daily exchange rate di-
rections. We challenge the widely believed idea of efficient markets as offered by
modern finance theory and represent the problem formally as a classification task
according to the binary classification problem (BCP), which is known to be NP-
complete. The BCP is addressed with support vector machines (SVM), a state-of-
the-art supervised learning system that has emerged from the fields of computa-
tional geometry and computational statistics and has proven to successfully exploit
patterns in many nonfinancial applications. Six SVM models with varying standard
kernels, along with one exotic p-Gaussian SVM are compared to investigate the
separability of Granger-caused input data in high-dimensional feature space. To as-
certain their potential value as out-of-sample forecasting and quantitative trading
tool, all SVM models are benchmarked against traditional forecasting techniques.
We find that hyperbolic SVMs perform well in terms of forecasting accuracy and
trading performance via a simulated strategy. Moreover, p-Gaussian SVMs perform
reasonably well in predicting EUR/GBP and EUR/USD directions.

Second, we address the fact that as business has become global, firms must pro-
tect themselves from the potential losses arising from fluctuating exchange rates.
Given a stochastic representation of the exchange rate, we investigate the problem
of optimally hedging foreign exchange exposure with a combination of linear and
nonlinear financial contracts such that the expected utility at the planning horizon is
maximized. A weighted mean–variance–skewness utility maximization framework
with linear constraints is embedded in a single-period stochastic combinatorial op-
timization problem (SCOP) formulation in order to find optimal combinations for
spot, forward, and European style straddle option contracts. The problem is shown
to be NP-complete. In order to derive near-optimal decisions within a reasonble
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amount of time, a simulation/optimization procedure is suggested. Exchange rate
behavior is modeled via a nonlinear smooth transition PPP reversion model. Opti-
mization is carried out with a variant of the scatter search metaheuristic. Dynamic
backtesting with real-world financial data is conducted to validate the model and
to show its applicability in a practical context. We find in our experiments that
scatter search is a search method that is both aggressive and robust. The simula-
tion/optimization approach adds value in terms of reducing risk and enhancing in-
come in comparison to several passive strategies.

The dissertation was supervised by Prof. Dr. D. Seese, Institute AIFB, University
of Karlsruhe, and has been written in English language.

München, January 2009 Christian Ullrich
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Chapter 1
Motivation

The growing complexity of many real-world problems is one of the biggest chal-
lenges of our time. Complexity is also one of the factors influencing decision mak-
ing in the area of international finance which has taken on great significance over
the last decade. As the result of structural shifts in the world economy and in the
international financial system, the foreign exchange market has been profoundly
transformed, not only in size, but also in coverage, architecture, and mode of op-
eration. Among the major developments that have occurred in the global financial
environment are the following:

1. A basic change in the international monetary system from the fixed exchange rate
requirements of Bretton Woods that existed until the early 1970s to the floating
exchange rate system of today.

2. A tidal wave of financial deregulation throughout the world, with massive elim-
ination of government controls and restrictions in nearly all countries, result-
ing in greater freedom for national and international financial transactions, and
in greatly increased competition among financial institutions, both within and
across national borders.

3. A fundamental move towards institutionalization and internationalization of sav-
ings and investment, with funds managers and institutions having vastly larger
sums available, which they are investing and diversifying across borders and cur-
rencies in novel ways.

4. A broadening and deepening trend towards international trade liberalization,
within a framework of multilateral trade agreements, such as the Tokyo and
the Uruguay Rounds of the General Agreement on Tariffs and Trade, the North
American Free Trade Agreement and U.S. bilateral trade initiatives with China,
Japan, India and the European Union.

5. Major advances in technology, making possible instantaneous real-time transmis-
sion of vast amounts of market information worldwide, immediate and sophis-
ticated manipulation of that information in order to identify and exploit market
opportunities, and rapid and reliable execution of financial transactions.

6. Breakthroughs in the theory and practice of finance, resulting not only in the
development of new financial instruments and derivative products, but also in

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 3
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 1,
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4 1 Motivation

advances in thinking that have changed market participants’ understanding of
the financial system and their techniques for operating within it.

The interplay of these forces, feeding off each other in a dynamic and synergistic
way, led to an environment where foreign exchange trading increased rapidly. With
world-wide daily trading at approximately three trillion US Dollars [39], the Foreign
Exchange market is by far the largest and most liquid market in the world, where
liquidity refers to currencies’ ability to be easily converted through an act of buying
or selling without causing a significant movement in the price and with minimum
loss of value.

While an exchange rate qualifies as a security because it is traded daily, it gen-
erates no cash flow like a bond, offers no dividend like a stock, and has neither a
discounted present value nor a terminal value as in any typical asset. Currencies have
been termed a medium of exchange and thus while traded like a security, they are not
an asset in the true sense of the word. Hence, one should not expect exchange rates
to have a return as they are just the grease to exchange products across different
geographical borders. However, because there are various forces that affect the sup-
ply and demand of currencies, currency values change almost continuously, thereby
generating return opportunities (positive or negative) even though theoretically they
should not. Hence, if currencies are in excess demand relative to a given rate be-
cause of an influx of foreign investors, the currency will appreciate, but through
changes in international trade and investment, the assets in the foreign country will
be overvalued leading to either a reduction in demand or an increase in the quantity
supplied leading to a subsequent depreciation.

Attempts to explain and predict exchange rate movements have largely remained
unsuccessful. For instance, many researchers have tried to predict future currency
levels using various structural and time series models and have come to the conclu-
sion that currencies are extremely hard to forecast and that these models perform
no better than a random walk model [287]. While there is a broad consensus about
long term movements over several years being driven by fundamental economic in-
dicators, there seem to be no reliable methods of forecasting exchange rates over
medium to short time horizons such as days, weeks, or even months. In fact, cur-
rency values in the short term can be very volatile and erratic for largely inexplicable
reasons. Krugman and Obstfeld [235] write:

If exchange rates are asset prices that respond immediately to changes in expectations and
interest rates, they should have properties similar to those of other asset prices, for example,
stock prices. Like stock prices, exchange rates should respond strongly to “news,” that is,
unexpected economic and political events; and, like stock prices, they therefore should be
very hard to forecast.

However, forecasting is necessary in order to give policy advice for prominent prac-
tical tasks involving trading and hedging currencies where decisions must be made
without advance knowledge of their consequences.

As a first task we take a data-driven approach in order to examine whether
there is any predictability in the behavior of daily exchange rate data. We chal-
lenge the widely believed idea of efficient markets as offered by modern finance
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theory [124,126] by using a new supervised learning forecasting technique that has
emerged from the fields of computational geometry and computational statistics.
This technique is called support vector machines (SVM) and has proven to success-
fully exploit patterns in many nonfinancial applications. In addition, SVM handles
the complexity of identifying the optimal decision function in a very interesting way.
It operates in a space with possibly infinite dimensions as opposed to the well known
approach of artificial neural networks (ANN), which is designed to approximate a
nonlinear function in input space. The hypothesis is, that with a different quantita-
tive approach which has the computational power to process a sufficient amount of
information, behavior that was previously believed random might become predic.

Second, we address the fact that as business becomes more global, more and
more nonfinancial companies are finding themselves increasingly exposed to foreign
currency exposure. On average, firms judge between a quarter and a third of their
revenues, costs and cashflows as being exposed to movements in exchange rates. It
is therefore not a surprise that multinational firms, according to Servaes and Tufano
[364], consider foreign exchange risk as the most costly type of corporate risk on a
six point scale (see Table 1.1).

In the absence of any reduction in exchange rate volatility, firms must protect
themselves from the potential losses arising from unexpected changes in exchange
rates provided that markets are imperfect in the sense of [298] and it is not possible
for the company’s shareholders to hedge the risk themselves. We investigate the
problem of an industrial corporation that seeks to optimally hedge its foreign ex-
change exposure with a combination of linear and nonlinear financial contracts

Table 1.1 “Without risk
management, how costly
would the following risks be
to your company over the
next 5 years, considering both
likelihood and magnitude of
loss?”

Factors %4 or 5 N

Foreign exchange risks 53% 239
Strategic risks 47% 232
Financing risks 40% 233
Competitive risks 39% 237
Failure of company projects 36% 236
Execution risks 35% 231
Reputational risks 33% 232
Commodity price risks 32% 238
Operational risks 31% 232
Interest rate risks 31% 239
Credit risks 28% 237
Regulatory or government risks 26% 238
Loss of key personnel 26% 235
Property and casualty risks 22% 236
Litigation risks 21% 233
Natural catastrophe risks 17% 237
Employee misdeeds 13% 234
Terrorism risks 13% 235
Political risks 11% 238
Pension or healthcare shortfalls 10% 228
Weather risks 9% 235

Scale is “Not Important” (0) to “Very Important” (5)
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given a stochastic representation about the underlying exchange rate. Despite a
large body of research, rooted in economics, international finance, portfolio theory,
statistics, and operations research having explored the optimal hedging of foreign
exchange risks, newspaper headlines regularly suggest, that firms have either not
found a recipe yet against adverse exchange rate fluctuations, or the applied meth-
ods and strategies do not provide sufficient protection against currency risks. De-
cision making in real life situations of high complexity is often fraud to mistakes,
and many problems seem to be too difficult to expect correct or at least adequate
decisions. Could it be that it is too complex for decision-makers to arrive at an op-
timal solution from a computational complexity perspective? First, firms may be
exposed to different sources of uncertainty. Not only is there uncertainty related to
the exchange rate of various currency pairs, but there usually exists uncertainty re-
garding the underlying exposures which must be estimated in order to determine
the appropriate volume of a potential derivative hedge. Second, derivative markets
offer a plethora of different products with different pay-off structures, and it is not
obvious which product or which combination of products is most appropriate for the
risk structure of a particular firm at a certain point in time. Third, decision-making
under uncertainty usually involves finding a good compromise between objectives
which may be contradictive and highly individual, random quantities with respect
to the information at the moment, and the inclusion of personal expectations. As a
consequence, there are open questions concerning the relation between the theoreti-
cal benefits of hedging, reduced volatilities, corporate performance, and the appetite
for risk. For instance, it is still an open question, whether hedging can do more than
just reducing potential losses and potential gains. It is therefore of both theoretical
and practical interest to examine how the problem of finding a particular hedging
strategy that optimally matches a firm’s preferences towards risk and reward can be
solved in a computationally efficient way and compares against static benchmark
strategies.



Chapter 2
Analytical Outlook

2.1 Foreign Exchange Market Predictability

Research in the area of exchange rates is vast and any attempt to survey the ex-
change rate theory in its totality would be impossible. Consequently, the objective
of Part II is more moderate. It provides a partial review of the classical concepts
of exchange rate determination theory and financial theory. In the last few decades,
exchange rate economics has seen a number of developments, with substantial con-
tributions to both the theory and empirics of exchange rate determination. Important
developments in econometrics and the increasing availability of high-quality data
have also been responsible for stimulating the large amount of empirical work
on exchange rates. We restrict ourselves to explore the fundamental parity condi-
tions purchasing power parity (PPP) and interest rate parity (IRP) as prerequisites
for the understanding of economic equilibrium along with explanations given by
economists on why exchange rates in reality do often not behave according to these
laws. Furthermore the notions of market efficiency are highlighted, upon which
standard finance theory is built.

While our understanding of exchange rates has significantly improved, empirical
studies have revealed a number of challenges and open questions in the exchange
rate debate which have remained unsolved. For instance, while all of the potential
explanations for deviations from equilibrium conditions appear fairly reasonable
and have theoretical merit, the PPP disconnect and PPP excess volatility puzzles,
along with the forward anomalie puzzle have not yet been convincingly explained
and continue to puzzle the international economics and finance profession. Further-
more, it is a well-known phenomenon that the forward rate is not an unbiased pre-
dictor for the expected exchange rate as the market efficiency hypothesis postulates.

It is argued that this inexplicability has nothing to do with economic and financial
theorists being not capable enough, but rather with the complex dynamics that drive
exchange rates, the computational complexity of behaving according to economic
theory, and the nature of complexity itself. For these reasons, selected proveable
mathematical results on the difficulty of calculating market equilibrium, and the
computational difficulties with market efficiency are provided.

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 7
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 2,
c© Springer-Verlag Berlin Heidelberg 2009
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2.2 Exchange Rate Forecasting with Support Vector Machines

In Part III, we address the problem of predicting daily exchange rate directions with
Support Vector Machines (SVM). The construction of machines capable of learning
from experience has for a long time been the object of both philosophical and tech-
nical debate. The technical aspect of the debate has received an enormous impetus
from the advent of electronic computers. They have demonstrated that machines can
display a significant level of learning ability, though the boundaries of this ability
are far from being clearly defined. The availability of reliable learning systems is
of strategic importance. When computers are applied to solve a practical problem
it is usually the case that the method of deriving the required output from a set of
inputs can be described explicitly. As computers are applied to solve more com-
plex problems, however, situations can arise in which there is no known method for
computing the desired output from a set of inputs, or where that computation may
be very expensive.

This motivates the use of an alternative strategy where the computer is instructed
to attempt to learn the input/output functionality from examples, which is generally
referred to as supervised learning, a sub-discipline of the machine learning field of
research. Machine learning models are rooted in artificial intelligence which dif-
fers from economic and econometric theory since statistical inferences are made
without any a priori assumptions about the data. Intelligent systems are therefore
designed to automatically detect patterns, i.e., any relations, regularities or struc-
ture inherent in a given dataset, that exists despite complex, nonlinear behavior. If
the patterns detected are significant, a system can be expected to make predictions
about new data coming from the same source. Thus, intelligent systems are data
driven learning methodologies that seek to approximate optimal solutions of prob-
lems of high dimensionality. Since, in contrast, theory driven approaches give rise
to precise specifications of the required algorithms for solving simplified models,
the search for patterns replaces the search for reasons.

Our starting point is to examine the degree of randomness inhibited in the chosen
EUR/USD, EUR/GBP, and EUR/USD time series. The strategy is to build econo-
metric models in order to extract statistical dependencies within a time series that
may be based on linear and/or nonlinear relationships. If such dependencies are sig-
nificant, then the time series is not totally random since it contains deterministic
components. These may be important indicators for the predictability of exchange
rate returns. Second, we use time series analysis methods for building empirical
models that will serve as benchmarks for the SVM specifications.

We represent the underlying problem of forecasting exchange rate ups and downs
as a classification task. In supervised learning, it is assumed that a functional re-
lationship is implicitly reflected within the input/output pairings. The estimate of
the target function which is learnt or output by the learning algorithm is known
as the solution of the learning problem. There exist many possible target functions
that can separate the data. However, there is only one that maximizes the distance
between itself and the nearest data point of each class. The problem of learning
this optimal target function is formally represented by the binary classification
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problem (BCP). The BCP is a known problem in the field of computational ge-
ometry, which is the branch of computer science that studies algorithms for solv-
ing geometric problems. The input to a computational-geometry problem is typi-
cally a description of a set of geometric objects, such as a set of points, a set of
line segments, or the vertices of a polygon. The output is a response to a query
about these objects, or even a new geometric object. In its most general form, the
case of whether two sets of points in general space can be separated by k hyper-
planes, the BCP is known to be NP-complete, i.e., not solvable by a polynomial time
algorithm.

In order to address the BCP, we propose the use of SVM, a state-of-the-art super-
vised learning system which, based on the laws of statistical learning theory [405],
maps the input dataset via kernel function into a high-dimensional feature space
in order to enable linear data classification. SVM has proven to be a principled and
very powerful method that in the few years since its introduction has already outper-
formed many other systems in a variety of applications. The forecasting approach
that we adopted is what we call a statistical or purely data driven approach that
borrows from both fundamental and technical analysis principles. It is fundamental
since it considers relationships between the exchange rate and other exogenous fi-
nancial market variables. However, our approach also has a technical component: it
is somewhat irrational in a financial context since it depends heavily on the concepts
of statistical inference.

Ever, since the introduction of the SVM algorithm, the question of choosing the
kernel has been considered as very important. This is largely due to the effect that
the performance highly depends on data preprocessing and less on the linear clas-
sification algorithm to be used. How to efficiently find out which kernel is optimal
for a given learning task is still a rather unexplored problem and subject to intense
current research. We choose to take a pragmatic approach by comparing a range of
kernels with regards to their effect on SVM performance. The argument is that even
if a strong theoretical rational for selecting a kernel is developed, it would have to
be validated using independent test sets on a large number of problems. The evalu-
ation procedure is twofold. Out-of-sample forecasts are evaluated both statistically
via confusion matrices and practically via trading simulations.

The results of Part III shed light on the existence of a particular kernel func-
tion which is able to represent properties of exchange rate returns generally well
in high dimensional space. In particular, it is found that hyperbolic SVMs perform
consistently well in terms of forecasting accuracy and trading performance via a
simulated strategy. Moreover, we find that p-Gaussian SVMs, which have hardly
been tested yet on real datasets, but in theory, have very interesting properties, per-
form reasonably well in predicting EUR/GBP and EUR/USD return directions. The
results can be valuable for both practitioners, including institutional investors, pri-
vate investors, risk managers, and researchers who will focus on SVM models and
their technical improvements. We strongly believe, that given the shortcomings of
economic and financial theories in explaining real-world market behaviors, modern
methods of machine learning, pattern recognition, and empirical inference will play
an essential role in coping with such complex environments.
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2.3 Exchange Rate Hedging in a Simulation/Optimization
Framework

In Part IV, it is implicitly assumed that a way to understand corporate hedg-
ing behavior is in the context of speculative motives that could arise from either
overconfidence or informational asymmetries. A model for managing currency
transaction risk is developed with the objective to find a possibly optimal combi-
nation of linear and nonlinear financial instruments to hedge currency risk over a
planning period such that the expected utility at the planning horizon is maximized.
We require the goal function to address the conflicting empirical finding that firms
do like to try to anticipate events, but that they also cannot base risk management
on second-guessing the market. For this purpose, we assume the fictitious firm to
have different future expectations than those implied by derivative prices. When
addressing these questions, one must recognize that traditional mean–variance or
mean–quantile-based performance measures may be misleading if products with
nonlinear payoff profiles such as options are used. In addition, the present knowl-
edge that underlies the field of decision making is simple principles that define
rationality in decision making and empirical facts about the cognitive limits that
lead us not to decide rationally. As such, it has become a stylized fact that individ-
uals perceive risk in a nonlinear fashion.

For these reasons, it is proposed to embed a mean–variance–skewness utility
maximization framework with linear constraints in a single-period stochastic com-
binatorial optimization problem (SCOP) formulation in order to find optimal combi-
nations for forward and European style straddle option contracts given preferences
among objectives. The advantage of using SCOPs over deterministic combinatorial
optimization problems (DCOPS) is that the solutions produced may be more easily
and better adapted to practical situations where uncertainty cannot be neglected.
The use of SCOPs instead of DCOPs naturally comes at a price: first, the objective
function is typically much more computationally demanding. Second, for a practical
application of SCOPs, there is the need to assess probability distributions from real
data or subjectively, a task that is far from trivial. We show that the proposed SCOP
is computationally hard and too difficult to be solved analytically in a reasonable
amount of time. This suggests the use of approximate methods, which sacrifice the
guarantee of finding optimal solutions for the sake of getting good solutions in a
significantly reduced amount of time. Furthermore, computation of the objective
function is nonconvex and nonsmooth. The solution space of the resulting optimiza-
tion problem therefore becomes fairly complex as it exhibits multiple local extrema
and discontinuities. In order to attack the given problem and derive near-optimal
decisions within a reasonable amount of time, a simulation/optimization procedure
is suggested. Simulation/optimization has become a large area of current research
in informatics, and is a general expression for solving problems where one has to
search for the settings of controllable decision variables that yield the maximum or
minimum expected performance of a stochastic system as presented by a simulation
model. Our approach to simulation/optimization addresses real-world complexity
by incorporating the following technical features.
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For modeling the exchange rate, a smooth transition nonlinear PPP reversion
model is presented. Its key feature is a mathematical function which allows for
smooth transition between exchange rate regimes, symmetric adjustment of the
exchange rate for deviations above and below equilibrium, and the potential in-
clusion of a neutral corridor where the exchange rate does not mean revert but
moves sideways. Apart from equilibrium which is given by PPP, only two param-
eters need to be estimated: the speed of PPP reversion and exchange rate volatility.
We believe that the proposed exchange rate model is very attractive. It includes a
long-run component (PPP), a medium-term component (adjustment speed), and a
short-term component (volatility) which, depending on their estimated values, may
overshadow each other and therefore cover a variety of phenomena observed in the
real foreign exchange market.

Optimization of complex systems has been for many years limited to problems
that could be formulated as mathematical programing models of linear, nonlin-
ear and integer types. The best-known optimization tool is without a doubt linear
programing. Linear programing solvers are designed to exploit the structure of a
well defined and carefully studied problem. The disadvantage to the user is that
in order to formulate the problem as linear program, simplifying assumptions and
abstractions may be necessary. This leads to the popular dilemma of whether to
find the optimal solution of models that do not necessarily represent the real system
or to create a model that is a good abstraction of the real system but for which
only very inferior solutions can be obtained. When dealing with the optimization
of stochastic systems, obtaining optimal values for decision variables generally re-
quires that one has to search for them in an iterative or ad hoc fashion. This involves
running a simulation for an initial set of values, analyzing the results, changing
one or more values, rerunning the simulation, and repeating the process until a
satisfactory (optimal) solution is found. This process can be very tedious and time
consuming and it is often not clear how to adjust the values from one simulation
to the next. The area of metaheuristics arose with the goal of providing something
better than simple searching strategies (e.g., grid search) by integrating high-level
intelligent procedures and fast computer implementations with the ability to escape
local optimal points. The specific metaheuristic we use is a variant of the scatter
search algorithm, which has proven to be highly successful for a variety of known
problems, such as the Vehicle Routing Problem, Tree Problems, Mixed Integer
Programing, or Financial Product Design.

In order to show our simulation/optimization model’s applicability in a prac-
tical context, a case study is presented, where a manufacturing company, located
in the EU, sells its goods via a US-based subsidiary to the end-customer in the
US. Since it is not clear what the EUR/USD spot exchange rate will be on fu-
ture transaction dates, the subsidiary is exposed to foreign exchange transaction
risk under the assumption that exposures are deterministic. We take the view that
it is important to establish whether optimal risk management procedures offer a
significant improvement over more ad hoc procedures. For the purpose of model
validation, historical data backtesting is carried out and it is assessed whether the
optimized mean–variance–skewness approach is able to outperform nonpredictive,
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fixed-weight strategies such as unitary spot, forward, and straddle, as well as a
mixed strategy over time. We compare the alternative strategies in dynamic back-
testing simulations using market data on a rolling horizon basis. The strategies are
evaluated both in terms of their ex ante objective function values, as well as in terms
of ex post development of net income.

We find in our experiments that scatter search is a search method that is both
aggressive and robust. It is aggressive because it finds high-quality solutions early in
the search. It is robust because it continues to improve upon the best solution when
allowed to search longer. We find that our approach to hedging foreign exchange
transaction risk adds value in terms of reducing risk and enhancing income. The
optimized mean–variance–skewness strategy provides superior risk-return results in
comparison to the passive strategies if earnings risk is perceived asymmetrically in
terms of downside risk. Even with low levels of predictability, there is a substantial
loss in opportunity when fixed-weight strategies (which assume no predictability)
are implemented relative to the dynamic strategy that incorporates conditioning
information. In particular, the pure forward strategy is found to have the lowest
return per unit of earnings risk whereas the European style straddle strategy and
the 1/3 strategy reveal similar risk-return characteristics. Interestingly, our research
also contrasts the finding that currency forward contracts generally yield better re-
sults in comparison to options, since a passive straddle strategy would have yielded
superior results compared to a forward strategy. Apart from our backtesting results,
it is believed that the proposed simulation/optimization procedure for determining
optimal solutions has important implications for policy making. Having easy access
to relevant solutions makes it easier for policy makers to explore and experiment
with the model while incorporating their own intuition before deciding on a final
plan of action. Despite the many problems that economic forecasts from economic
systems confront, these models offer a vehicle for understanding and learning from
failures, as well as consolidating our growing knowledge of economic behavior.



Chapter 3
Equilibrium Relationships

3.1 Purchasing Power Parity Theorem

Purchasing power parity (PPP) theory states that in the long run, the exchange rate
between the currencies of two countries should be equal to the ratio of the coun-
tries’ price levels. PPP theory has a long history in economics, dating back several
centuries, but the specific terminology was introduced in the years after World War
I during the international policy debate concerning the appropriate level for nom-
inal exchange rates among the major industrialized countries after the large-scale
inflations during and after the war [69]. Since then, the idea of PPP has become em-
bedded in how many international economists think about the world. For example,
Dornbusch and Krugman [102] noted:

Under the skin of any international economist lies a deep-seated belief in some variant of
the PPP theory of the exchange rate.

Rogoff [342] expressed much the same sentiment:

While few empirically literate economists take PPP seriously as a short-term proposition,
most instinctively believe in some variant of purchasing power parity as an anchor for long-
run real exchange rates.

Macroeconomic literature distinguishes between two notions of PPP: Absolute PPP
and Relative PPP.

3.1.1 Absolute PPP

PPP follows from the law of one price, which states that in competitive markets,
individual identical goods will sell for identical prices when valued in the same
currency at the same time. The reason why the law of one price should hold is based
on the idea of frictionless goods arbitraging: if prices were not identical, people
could make a riskless profit by shipping the goods from locations where the price

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 15
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 3,
c© Springer-Verlag Berlin Heidelberg 2009
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is low to locations where the price is high. If the same goods enter each market’s
basket used to construct the aggregate price level – and with the same weight –
then the law of one price implies that PPP exchange rate should hold between the
countries concerned.1

Absolute PPP holds when the purchasing power of a unit of currency is exactly
equal in the domestic economy and in a foreign economy, once it is converted into
foreign currency at the market exchange rate. Let Pt be the price of the standard
commodity basket in domestic terms and P∗

t the price of the same basket in a foreign
country. Formally, absolute PPP states that the real exchange rate Rt between two
countries should be

Rt = St
P∗

t

Pt
= 1 (3.1)

where St denotes the nominal exchange rate in domestic currency per unit of foreign
currency. Taking the natural logarithm, absolute PPP can be stated as

ln(St)+ ln

(
P∗

t

Pt

)
= 0 (3.2)

or
st = pt − p∗t (3.3)

Hence, the real exchange rate in its logarithmic form may be written as

rt = st + p∗t − pt (3.4)

3.1.2 Relative PPP

In a world where market participants have rational expectations, several factors
might doubt the existence of absolute PPP. For instance, it is unrealistic to assume
that all goods are identical, tradable, that there are no transportation costs, taxes,
tariffs, restrictions of trade, or border effects and that competition is perfect. Thus,
it has become common to test relative PPP, which holds if the percentage change
in the exchange rate over a given period just offsets the difference in inflation rates
in the countries concerned over the same period. If transportation costs and trade
restrictions are assumed to be constant (c), relative PPP can be written as

1 Nevertheless, the presence of any sort of tariffs, transport costs, and other nontariff barriers and
duties would induce a violation of the law of one price. Also the assumption of perfect substi-
tutability between goods across different countries is crucial for verifying the law of one price. In
reality, however, product differentiation across countries creates a wedge between domestic and
foreign prices of a product which is proportional to the freedom with which the good itself can be
traded. An example often cited in the literature is the product differentiation of McDonald’s ham-
burgers across countries. Examples for which the law of one price may be expected to hold are gold
and other internationally traded commodities [342]. For a discussion on the empirical evidence of
the law of one price see [357].
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ln(St) = c + ln

(
Pt

P∗
t

)
(3.5)

After taking first differences, price level changes determine the exchange rate
development

Δ ln(St) = Δ ln

(
Pt

P∗
t

)
(3.6)

The expected exchange rate change thus equals the difference in inflation of the
respective countries. Thus, if the EU price level rose 10% and the US price level
rose 5%, the Euro would depreciate 5%, offsetting the higher EU inflation and
leaving the relative purchasing power of the two currencies unchanged. If abso-
lute PPP holds, then relative PPP must also hold. However, if relative PPP holds,
then absolute PPP does not necessarily hold, since it is possible that common
changes in nominal exchange rates are happening at different levels of purchasing
power.

3.1.3 Empirical Evidence

The validity of absolute and relative PPP and the properties of PPP deviations have
been the subject of an ongoing controversy in economic and econometric literature.
Until the 1970s, early empirical studies have examined by ordinary least squares
(OLS) regression analysis, whether there is a significant linear relationship between
relative prices and the exchange rate. In general, such tests led to a rejection of
the PPP hypothesis except for countries exhibiting high inflation [136] which sug-
gested that PPP may represent an important benchmark in long-run exchange rate
modeling. However, the OLS method suffers from econometric weaknesses since it
ignores the econometric requirement that residuals of the estimated regression equa-
tion must be stationary. If stationarity is not given, the use of nonstationary data can
lead to a spurious regression, i.e., nonsense correlation [172], which makes it impos-
sible to validly undertake conventional OLS based statistical inference procedures.
Otherwise, if linear regression residuals are stationary, then although a strong long-
run linear relationship exists between exchange rates and relative prices, it is still
invalid to undertake conventional statistical inference because of the bias present in
the estimated standard errors [26, 116]. Thus, although some researchers could not
reject the argument that PPP deviations are nonstationary and therefore permanent
(for instance [6, 133, 343]), it does not necessarily mean that these findings must be
accepted.

In 1987, the concept of cointegration emerged [116, 209, 210] which seemed to
be an ideal approach to testing for PPP. A cointegrated system requires that any two
nonstationary series which are found to be integrated of the same order are coin-
tegrated if a linear combination of the two exists which is itself stationary. If this
is the case, then the nonstationarity of one series exactly offsets the nonstationar-
ity of the other series and a long-run relationship is established between the two
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variables. Testing for no cointegration led to mixed results. While some studies in
the late 1990s resulted in reports about the absence of significant mean reversion of
the real exchange rate for the recent floating experience [276], other applied work
on long-run PPP among the major industrialized economies has been more favor-
able towards the long-run PPP hypothesis (e.g., [72, 73, 82, 228]).

One important reason for the fact that statistical tests of the 1980s to examine
the long-run stability of the real exchange rate often failed was given by [133, 134]
(followed by [142, 268]) who argued that these tests are not powerful enough. This
power problem cannot simply be solved by increasing the sample size from monthly
to daily data, since increasing the amount of detail concerning short-run movements
can only give more information about short-run as opposed to long-run behavior
[367]. In order to get more information about the long-run behavior of a particular
real exchange rate, one approach is to use more years of data. However, long peri-
ods of data may span different exchange rate regimes, and therefore exhibit regime
switches or even structural breaks. In an early study in this spirit, using annual data
from 1869 to 1984 for the USD/GBP real exchange rate, [133] was able to reject the
hypothesis of a random walk at the 5% level. Similar results to Frankel’s were ob-
tained by [160], and [268] which were also unable to detect any significant evidence
of a structural break between the pre- and post-Bretton Woods period. Taylor [382]
extended the long-run analysis to a set of 20 countries over the period 1870–1996
and also finds support for PPP and coefficients that are stable in the long run. A dif-
ferent approach to providing a convincing test of real exchange rate stability, while
limiting the time frame to the post-Bretton Woods period, is to increase the panel by
using more countries. By increasing the amount of information employed in the tests
across exchange rates, the power of the test should be increased. Abuaf and Jorion
[2] examined a system of ten first-order autoregressive regressions for real dollar
exchange rates over the period 1973–1987, where the autocorrelation coefficient is
constrained to be the same in every case. Their results indicate a marginal rejection
of the null hypothesis of joint nonmean reversion at conventional significance levels,
which they interpret as evidence in favor of long-run PPP. In a more recent panel
data study on Euro exchange rates, [267] found strong rejections of the random walk
hypothesis. Taylor and Sarno [384], however, issued an important warning in inter-
preting these findings. The tests typically applied in these panel-data studies test the
null hypothesis that none of the real exchange rates under consideration are mean
reverting. If this null hypothesis is rejected, then the most that can be inferred is
that at least one of the rates is mean reverting. However, researchers tended to draw
a much stronger inference that all of the real exchange rates were mean reverting
and this broader inference is not valid. Some researchers have sought to remedy this
shortcoming by designing alternative tests. For example, [384] suggested testing the
hypothesis that at least one of the real exchange rates is nonmean reverting, rejec-
tion of which would indeed imply that they are all mean reverting. However, such
alternative tests are generally less powerful, so that their application has not led to
clear-cut conclusions [356, 384].

Another important stage in PPP literature was initialized in the mid-1980s when
[199] and others began to notice that even the studies that were interpreted as
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supporting the thesis that PPP holds in the long run, suggested that the speed at
which the real exchange rates adjusted to PPP was extremely slow. This involved
the computation of the so-called half-life of shocks to the real exchange rate, which
describes how long it would take for the effect of a shock to die out by 50%. By
including both long-span investigations and panel unit root tests of long-run PPP,
[342] finds that estimated half-lives of adjustment mostly tend to fall into the range
of 3–5 years. Some more recent studies have argued that half-lives are even longer
if estimation is not based on OLS (for example, [71, 302]). The apparently very
slow speed of adjustment of real exchange rates paired with further criticism on the
insufficiency of traditional linear statistical testing procedures led to an interesting
body of research which argues that failure to accept the long-run PPP hypothesis
could also be due to a different reason: the existence of nonlinear dynamics in the
real exchange rate. If nonlinear dynamics existed then the exchange rate would be-
come increasingly mean reverting with the size of the deviation from equilibrium
[106, 227].

To summarize, if exchange rates do tend to converge to PPP, economists have –
at least so far – had a hard time presenting strong evidence to support the claim. The
difficulty for validating PPP empirically has been captured in two PPP puzzles:

1. The disconnect puzzle states that the difficulty of detecting evidence for long-
run PPP suggests that the exchange rate is disconnected from PPP and therefore
violates the PPP theorem [312, 385, 386].

2. The excess volatility puzzle states that the enormous short-term volatility of
real exchange rates is contradicting to the extremely slow rate of adjustment
([342], p. 647).

Current consensus view on PPP research supports the hypothesis that only relative
PPP seems to hold in the long run. Structural and transitory effects influence the
real exchange rate permanently and make absolute PPP obsolete. PPP is generally
considered to be a meaningful element of macroeconomics for an open economy
in the long-run, at least as a benchmark for over- or undervaluation of a currency.
However, it offers no explanation for short term exchange rate variation. A second
stylized fact is that PPP seems to hold better for countries with relatively high rates
of inflation and underdeveloped capital markets [385].

3.1.4 Explanations for Deviations from PPP

The empirical failure to validate PPP has been subject to various explanations. From
an empirical perspective it has been argued that it is difficult to find a price index
that accurately measures the inflation rate for the countries being studied [136,254].
The problem of simultaneous determination of both price and the foreign exchange
rate is noted by [178]. Pippenger [325] claims that one obstacle to finding empirical
support for PPP may be due to the statistical procedures applied.



20 3 Equilibrium Relationships

From a theoretical perspective, macroeconomic literature has explained long run
departures from PPP by the Harrod–Balassa–Samuelson hypothesis which depends
on inter-country differences in the relative productivity of the tradable and non-
tradable sectors [23, 184, 353]. Another important explanation addressing short-run
departures from PPP was given by Dornbusch’s theory on how expansionary mone-
tary policy may lead to overshooting nominal exchange rates [102]. In short, prices
on goods are assumed to be sticky in the short-run while the exchange rate as a fi-
nancial market price quickly adjusts to disturbances initiated by monetary policy,
i.e., increases or decreases in the money supply. In the short-run, the exchange rate
is therefore determined by the supply and demand of financial assets. The portfolio
balance theory [101] extends Dornbusch’s sticky price monetary model by incor-
porating another important macroeconomic variable: the current account balance.
According to this theory, a monetary shock (e.g., increase in money supply) is ex-
pected to affect (increase) prices which affects net exports and hence influences the
current account balance. In turn, this will affect the level of wealth which feeds back
into the asset market, affecting the exchange rate during the adjustment to long-run
equilibrium. The general tenor on these traditional exchange rate theories is that,
although plausible, empirical work has neither favored a particular theory nor pro-
duced related models that are sufficiently statistically satisfactory to be considered
reliable and robust (see references in [357], Chap. 4). This shortcoming has led to a
rapid development of new open-economy models which avoid the formal simplicity
of the traditional models by offering a more rigorous analytical foundation through
fully specified microfoundations (see for instance [311]). In this spirit, [66] showed
that in a small open economy with sticky prices (i.e., prices exhibiting resistance to
change) and a nontraded sector, small monetary shocks can generate high levels of
exchange rate volatility. This could be an explanation for the second PPP puzzle.
However, the problem with open-economy models is that they are less universal and
robust. In addition they require assumptions which are difficult to test (see refer-
ences in [357], Chap. 5).

Econometric literature distinguishes between permanent (structural) or tempo-
rary (transitory) shocks to the exchange rate fashion by focusing on the employment
of vector autoregression (VAR) analyses, an econometric technique which intends to
capture the evolution and the interdependencies between multiple time series [42].
Overall, literature on identifying the source of structural and transitory shocks driv-
ing exchange rates has provided mixed results. While both nominal shocks (e.g.,
monetary shocks) and real shocks (initiated by real factors such as real income, fac-
tor endowment, productivity levels, interest rates, etc.) were shown to be sources
of exchange rate volatility leading to departures from PPP, their relative importance
varies across studies (see for instance [88, 244, 340]).

A promising avenue of research addressing both PPP puzzles at once investi-
gates the role of nonlinearities in real exchange rate dynamics. If adjustment to
long-run equilibrium occurs in a nonlinear fashion, then the speed of adjustment
varies depending on the magnitude of disequilibrium. Thus, while small shocks to
the real exchange rate around equilibrium will be highly persistent, larger shocks
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mean-revert much faster. This behavior may be motivated economically by market
frictions such as

• Barriers of international trade including transport costs , tariffs, nontariff barriers
[128, 342]

• Transaction costs [33, 106, 419]
• Heterogeneity of opinion [227]
• Central bank interventions [368, 383]

The nonlinear nature of the adjustment process has been investigated in terms of the
threshold autoregressive (TAR) model [313, 393] the smooth transition autoregres-
sive (STAR) model [174, 292, 386] and Markov switching models [232, 383].

3.2 Interest Rate Parity (IRP) Theorem

When an asset market is taken into account, then equilibrium theory follows the
essence of international manifestations of the law of one price. The interest rate
parity (IRP) theorem is an arbitrage condition which illustrates the idea that, in the
absence of market imperfections, risk-adjusted expected real returns on financial
assets will be the same in foreign markets as in domestic markets. Hence, returns
generated from borrowing in domestic currency, exchanging that currency for for-
eign currency and investing in interest-bearing foreign currency denominated assets,
while simultaneously purchasing forward contracts to convert the foreign currency
back at the end of the investment period should be equal to the returns from pur-
chasing and holding similar interest-bearing instruments of the domestic currency.
Let Ft,k denote the k-period forward rate, i.e., the rate agreed now for an exchange
of currencies k periods ahead. Let further be it,k and i∗t,k the nominal interest rates
available on similar domestic and foreign securities respectively with k periods to
maturity. Formally, IRP states that the ratio of the forward and spot exchange rates
should be

Ft,k

St
=

1 + i∗t,k
1 + it,k

(3.7)

IRP thus holds, if the ratio of the forward and spot exchange rates equals the ratio
of foreign and domestic nominal interest rates. If (3.7) does not hold, investors can
theoretically arbitrage and make risk-free returns. Academic literature commonly
distinguishes between two versions of the identity: covered interest rate parity (CIP)
and uncovered interest rate parity (UIP).

3.2.1 Covered Interest Rate Parity (CIP)

CIP is an arbitrage condition which postulates, that the interest rate difference be-
tween two countries’ currencies, is equal to the percentage difference between the



22 3 Equilibrium Relationships

forward exchange rate and the spot exchange rate. This requires the assumptions
that financial assets are perfectly mobile and similarly risky. Taking the natural log-
arithm in (3.7) and using the approximation ln(1 + x)≈ x, CIP holds if

ft,k − st = it,k − i∗t,k (3.8)

where ft,k is the logarithm of the k-period forward rate, st denotes the logarithm of
the spot exchange rate at time t, it,k and i∗t,k are the nominal interest rates available
on similar domestic and foreign securities, respectively, with k periods to maturity.

A direct implication of (3.8) is, that when the domestic interest rate is lower than
the foreign interest rate it,k − i∗t,k < 0 the forward price of the foreign currency will
be below the spot price ft,k − st < 0, i.e., the foreign currency is selling forward at
a premium. Conversely, if domestic interest rate is higher than the foreign interest
rate it,k − i∗t,k > 0, the forward price of the foreign currency will be above the spot
price ft,k − st > 0, i.e., the foreign currency is selling forward at a discount. Hence,
the national interest rate difference should be equal to, but opposite in sign, to the
forward rate premium or discount for the foreign currency.

3.2.2 Uncovered Covered Interest Rate Parity (UIP)

UIP postulates that the return on domestic currency deposit should be equal to the
expected return from converting the domestic currency into foreign currency, in-
vesting it in a foreign currency denominated asset and then converting the proceeds
back into the domestic currency at the future expected exchange rate. Formally, the
interest rate difference between two countries’ currencies is equal to the percentage
difference between the expected exchange rate and the spot exchange rate

E(st+k)− st = it,k − i∗t,k (3.9)

where E(st+k) denotes the market expectation for st in k periods based on informa-
tion at t. Unlike CIP, UIP is not an arbitrage condition since the expected exchange
rate E(st+k) is unknown at time t and therefore nonzero deviations from UIP do not
necessarily imply the existence of arbitrage profits due to the foreign exchange risk
associated with future exchange rate movements.

3.2.3 Empirical Evidence

In reality, spot and forward markets are not always in a state of equilibrium as de-
scribed by IRP. As a consequence, arbitrage opportunities exist. Arbitrageurs who
recognize a state of disequilibrium can borrow in the currencies exhibiting relatively
low interest rates and convert the proceeds into currencies which offer higher inter-
est rates. In case that the investor is hedged against any risk of the currency deviating
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by selling the currency forward, this is known as covered interest arbitrage (CIA). If
the investor does not sell the currency forward, thus remaining exposed to the risk
of the currency deviating, this is known as uncovered interest arbitrage (UIA). The
motivation for entering into UIA is seeking to profit from expected changes in the
exchange rate, i.e., rational speculation.

CIA can be tested in two ways. The first approach relies on computing the actual
deviations from IRP to see if they differ significantly from zero. The significance
of departures from CIP is often defined with respect to a neutral band, which is de-
termined by transaction costs. Frenkel and Levich [138] calculated a band around
the IRP line within which no arbitrage is possible. Using weekly data for the period
1962–1975 and for three sub-periods, they found that around 80% of observations
are within the neutral band. They conclude that, after allowing for transaction costs
and ensuring that the arbitraged assets are comparable, CIA does not seem to entail
unexploited opportunities for profit. This finding is confirmed by [79] who shows
that deviations from CIP should be no greater than the minimum transaction costs
in one of three markets. On the basis of analysis of data for five major currencies
against the US dollar, Clinton finds that the neutral band should be within +0.06%
per annum from parity and that although the hypothesis of zero profitable deviations
from parity can be rejected,

empirically, profitable trading opportunities are neither large enough nor long-lived enough
to yield a flow of excess returns

over time to any factor. However, there also exists contrary evidence in favor of ar-
bitrage opportunities in the foreign exchange markets. By questioning the quality
of the data used by [138], various researchers have often arrived at different con-
clusions. Taylor [380, 381]), for instance, argues that in order to provide a proper
test of CIP it is important to have data on the appropriate exchange rate and inter-
est rates recorded at the same instant in time at which a dealer could have dealt.
For this purpose, he uses high-quality, high-frequency, contemporaneously sampled
data for spot and forward exchange rates and corresponding interest rates for a num-
ber of maturities and makes allowance for bid-offer spreads and brokerage costs in
his calculations. He finds that there are few profitable violations of CIP, even during
periods of market uncertainty and turbulence. In a more recent study, [25] examined
the dynamics of deviations from CIP using daily data on the GBP/USD spot and
forward exchange rates and interest rates over the period January 1974 to Septem-
ber 1993. They find, as opposed to [138] that a substantial number of instances in
the sample in which the CIP condition exceeds the transaction costs band, imply
arbitrage profit opportunities. In addition, [283] identified significant arbitrage op-
portunities from ten markets over a 12-day period. Some of these opportunities were
even observed to be persistent for a long time. Persistent interest rate arbitrage op-
portunities were also revealed by [79] and [1]. An alternative approach for testing
the validity of CIP is to estimate the regression coefficients of

ft,k − st = α + β (it − i∗t )+ εt (3.10)
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which are required to be (α,β ) = (0,1) and an uncorrelated error. Equation (3.10)
has been tested by a number of researchers for a variety of currencies and time pe-
riods (see, e.g., the early study by [59]). The main conclusion to be drawn from this
line of research is that, CIP is supported. Although there are significant deviations
from the condition α = 0 which might reflect the existence of nonzero transaction
costs, the estimates of b usually differ insignificantly from 1.

Assuming that CIP holds and market participants have rational expectations, UIP
implies that forward premium should be an unbiased predictor of the expected
change in the spot exchange rate. UIP can therefore be tested by estimating a re-
gression of the form:

st+k − st = α + β ( f k
t − st)+ εt+k (3.11)

Under UIP, (α,β ) = (0,1) and the rational expectations forecast error εt+k must
be uncorrelated with information available at time t [125]. Empirical studies gen-
erally report results which reject UIP (e.g., see the references in the surveys of
[193, 263, 357]) suggesting that it would have been possible to make speculative
gains in certain markets over certain periods of time. One reason is the empirical
finding that the spot exchange rate change on mostly free floating nominal exchange
rates up until 1990s appears to be negatively correlated (b < 0) with the lagged for-
ward premium or forward discount [143]. This observation implies that the more
the foreign currency is at a premium in the forward market, the less the home cur-
rency is predicted to depreciate, which has been referred to as the forward premium
anomaly or forward premium puzzle [20]. Fama [125] finds further but different em-
pirical evidence against UIP: forward rates are not unbiased but biased predictors of
future spot rates because a nonnegative interest rate differential would, on average,
result in an appreciating currency for the high interest rate country. This observation
has been referred to as forward bias puzzle ([263]). A simple rule to capitalize on
a forward rate bias would be to enter into a forward hedge whenever the foreign
currency is offered at a premium and never hedge when it is at a discount ([233]).

3.2.4 Explanations for Deviations from IRP

Different theoretical explanations have been proposed to explain empirical devia-
tions from CIP and UIP and the related rejection of the efficient markets hypothesis.
For instance, the existences of a risk premium due to risk-averse market partici-
pants is one prominent attempt to explain the UIP forward bias puzzle. If foreign
exchange market participants are risk-averse, the UIP condition may be distorted by
a risk premium ρt,k, because agents demand a higher rate of return than the interest
differential in return for the risk of holding foreign currency [125]. The difference
between the forward exchange rate and the spot exchange rate has always been used
as the measure of the risk premium that the marginal investor would be willing to
pay in order to reduce his exposure to exchange risk. The message which emerges
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from the empirical analysis of risk-premium models is that it is hard to explain
excess returns in forward foreign exchange by an appeal to risk premiums alone
[30,31,269,275]. Chinn [74] and McCallum [285] therefore propose to link the be-
havior of UIP deviations with monetary policy reaction functions.

A second explanation for the forward bias puzzle is that there is a failure of the
rational expectations component underlying the notion of market efficiency. Lit-
erature identifies several possible explanations for volatile expectations or depar-
tures from rational expectations that generate nonzero and potentially predictable
excess returns even when agents are risk neutral: for instance, learning about regime
shifts [261, 262] or about fundamentals, such as learning about the interest rate
process [169], the peso problem originally suggested by [341], or inefficient in-
formation processing [37]. This literature is well covered in several surveys (e.g.,
[114, 263, 357]).

Third, it could be possible that both the risk-aversion of market participants and a
departure from the rational expectations hypothesis are responsible for the rejection
of the efficient markets hypothesis. Important contributions in this area include the
work by [135] and [141].

A more general argument referring to the rejection of both CIP and UIP is that
the relationship between exchange rate and interest rate is not a linear, but a nonlin-
ear one. This could be for reasons such as transaction costs [24, 195, 363], central
bank intervention [277], limits to speculation ([270], pp. 206–220), or information
costs ([21], p. 50).



Chapter 4
Market Efficiency Concepts

4.1 Informational Efficiency

The theoretical concepts of informational and speculative market efficiency are
closely related to the IRP Theorem. According to [124] and [126], a financial mar-
ket is said to be (informationally) efficient, if prices in that market fully reflect all
the available and relevant information. The intuition is, that, if the market processes
that information immediately, price changes can only be caused by the arrival of
new information. However, since future information cannot be predicted, it is also
impossible to predict future price changes. Depending on the information set avail-
able, there are different forms of the market efficiency hypothesis (MEH):1

• Weak-form efficiency. No investor can earn excess returns by developing trading
rules based on historical price or return information. In other words, the informa-
tion in past prices or returns is not useful or relevant in achieving excess returns.

• Semistrong-form efficiency. No investor can earn excess returns by developing
trading rules based on publicly available information. Examples of publicly avail-
able information are annual reports of companies, investment advisory data, or
ticker tape information on TV.

• Strong-form efficiency. No investor can earn excess returns using any informa-
tion, whether publicly available or not. In other words, the information set con-
tains all information, including private or insider information.

If applied to the foreign exchange markets, informational efficiency means that the
current spot rate has to reflect all currently available information. This has one im-
portant implication: if expectations about the future exchange rate are rational [304]
they should all be incorporated in the forward rate. Hence, if the efficient market

1 Latham [245] and Rubinstein [349] have extended the definition of market efficiency by pointing
out that it is possible that people might disagree about the implications of a piece of information
so that some buy an asset and others sell in such a way that the market price remains unaffected.
As a consequence, they require not only that there be no price change but also that there be no
transactions. Still, theoretical and applied literature focuses on the efficiency definition as given by
[124] and [126], which will provide the foundation for the following considerations, too.

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 27
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 4,
c© Springer-Verlag Berlin Heidelberg 2009
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hypothesis holds true, the forward rate must be an “unbiased predictor” for the ex-
pected exchange rate ([137]). When the forward rate is termed an unbiased predictor,
then it over or underestimates the future spot rate with relatively equal frequency and
amount. It therefore misses the spot rate in a regular and orderly manner such that
the sum of the errors equals zero. As a direct consequence, it is not possible to make
arbitrage profits since active investment agents will exploit any arbitrage opportu-
nity in a financial market and thus will deplete it as soon as it may arise. Empirical
tests for a bias in forward rates have been based on testing the two principles of CIA
and UIA which have been referred to in Sect. 3.2.

4.2 Speculative Efficiency

A different concept of efficiency is speculative efficiency ([37,54], p. 67), which, in
contrast to informational efficiency does not imply that expectations about the future
exchange rate must be rational and should all be incorporated in the forward rate.
Instead, departures from the rational expectations hypothesis are allowed. The sup-
ply of speculative funds is infinitely elastic at the forward price, i.e., equal to the ex-
pected future spot price. The expected future spot price is a market price determined
as the solution to the underlying irrational expectations model. The speculative ef-
ficiency hypothesis is tested by formulating a trading strategy and then calculating
its profitability in simulated trading.



Chapter 5
Views from Complexity Theory

5.1 Introduction

The behavior of exchange rates is puzzling and hard to explain. While all of the po-
tential explanations for deviations from equilibrium conditions appear fairly reason-
able and have theoretical merit, PPP and IRP (forward premium anomaly) puzzles
have not yet been convincingly explained and continue to puzzle the international
economics and finance profession. However, this inexplicability has nothing to do
with economic and financial theorists being not capable enough but rather with the
complex dynamics that drive exchange rates and therefore, with the nature of com-
plexity itself. Shiller [366] notes that all economic models have one major flaw:
a gross oversimplification that is based on the assumption that economic agents
know the true state of economic structure and make rational decisions for their con-
sumption and investment. In a similar way, [351] argues that the inexplicability of
such complex systems may have to do with the existence of fundamental limits to
knowledge:

This would suggest that financial theory cannot hope to provide much more than a dis-
joint collection of highly simplified “toy models” which are either sufficiently stylized to be
solved analytically, or are simple enough to be approximately solved on digital computers.
In fact, conventional economic and financial theory does not choose to study the unfolding
of the patterns its agents create. By assuming behavioral equilibrium, it rather simplifies its
questions in order to seek analytical solutions. For example, standard theories of financial
markets assume rational expectations and ask: what forecasts (or expectations) are consis-
tent with – are on average validated by – the prices these forecasts and expectations together
create. But it does not account for actual market “anomalies” such as unexpected price bub-
bles and crashes, random periods of high and low volatility, and the use of heavy technical
trading.

Hence, it is legitimate to ask whether economic and financial theory can provide
sufficient explanations for reality.

Complex systems theory with regards to markets has its origins in the classical
eighteenth century political economy of the Scottish Enlightenment which realized
that order in market systems is spontaneous or emergent in that it is the result of

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 29
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 5,
c© Springer-Verlag Berlin Heidelberg 2009



30 5 Views from Complexity Theory

human action and not the execution of human design. This early observation, well
known also from the Adam Smith metaphor of the invisible hand, premises a dis-
junction between system wide outputs, the modeling capabilities of individuals at a
micro level, and the distinct absence of an external organizing force. It is therefore
postulated that macroscopic properties cannot be formally or analytically deduced
from the properties of its parts. This distinguishes the sciences of complexity theory
from traditional economic and financial science which relies on deductive formalis-
tic and analytical methods.

It was not until the twentieth century with two significant developments in the
foundations of mathematics and advances in computer technology that complex
adaptive systems could be investigated and formulated. First, [168, 329, 398] estab-
lished logical impossibility limits to formalistic calculation or deductive methods
providing first results on incompleteness, algorithmically unsolvable problems, and
the notion of computational complexity. Usually problems solvable by a determinis-
tic algorithm in polynomial time (i.e., the number of elementary computation steps
is polynomial in the size of the input) are considered to be “good” solutions. On the
contrary, a problem is considered as computationally intractable, if it is so hard that
no polynomial time algorithm can possibly solve it.

Definition 5.1. A polynomial time algorithm is defined to be one whose time com-
plexity function is O(p(n)) for some polynomial function p, where n is used to
denote the input length. Any algorithm whose time complexity function cannot be
so bounded is called an exponential time algorithm (although this definition includes
certain nonpolynomial time complexity functions which are not normally regarded
as exponential functions).

Problems that can be solved by a polynomial time algorithm are tractable in a sense
that they coincide with those that can be realistically solved by computers, and it
is held that every practical and efficient algorithm can be rendered as a polynomial
time bounded Turing machine (see [152, 320]). On the other hand, one of the earli-
est and most popular intractability results are the classical undecidability results of
[398], who proved that it is impossible to specify any algorithm which given an arbi-
trary computer program and an arbitrary input to that program, can decide whether
or not the program will eventually halt when applied to that input.

Parallel efforts to the search of powerful methods for proving problems in-
tractable have been made by focusing on learning more about the ways in which
various problems are interrelated with respect to their difficulty. The theory of NP-
completeness has introduced a variety of complexity classes with respect to certain
problem formulations [152]. There are two important classes of problems which can
be met in many areas of practical application.

Definition 5.2. The complexity class P is the set of decision problems that can be
solved by a deterministic algorithm in polynomial time in the size of the input.

This class corresponds to an intuitive idea of the problems which can be effectively
solved in the worst cases.
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Definition 5.3. The complexity class NP is the set of decision problems that can be
solved by a nondeterministic algorithm in polynomial time.

A nondeterministic algorithm is composed of two stages. The first stage is a guess-
ing stage where, given a problem instance I, a structure S is guessed. The second
stage is a checking stage, where given I and S as inputs, the algorithm behaves in
a deterministic manner and halts with either an answer “yes” or “no.” The class
NP contains many problems that people would like to be able to solve effectively.
Most of the apparently intractable problems encountered in practice, when phrased
as decision problems, belong to this class.

Definition 5.4. A problem is NP-hard, if each problem in NP is reducible to it in
polynomial time.

Definition 5.5. A problem is NP-complete, if it is NP-hard and inside the class NP
of problems.

Hence, the NP-complete problems are the hardest problems among all those that can
be solved by a nondeterministic algorithm in polynomial time and until today there
has not been any solution for such a problem by a deterministic algorithm in poly-
nomial time concerning the size of the input. The question of whether P is the same
set as NP has been called the most important open question in theoretical computer
science.

Apart from computational complexity, the second significant methodological de-
velopment is dynamic complexity which considers the use of computer based arti-
ficial environments to simulate dynamics from large numbers of interacting agents
with varying levels of computational and adaptive intelligence [14, 22, 194]. The
seminal work of [358] is one of the earliest examples of the use of computer sim-
ulation to demonstrate how simple microbehavioral rules result in a self-organized
macro outcome, an undesirable one of racial segregation, which could not have been
deduced from the initial rules. More recently, a number of economists and physicists
have got involved in the new computational agent based modeling in economics giv-
ing rise to very interesting and important new streams of literature called adaptive
computational economics [346] and econophysics [211].

In the following, it is not our purpose to provide an extensive summary on these
lively disciplines of research. Instead, we want to create awareness in the economic
and financial community, that both the computational and dynamic complexity of
economic calculations are proveably fundamental sources for real-world phenom-
ena such as disequilibrium and market inefficiencies. We think that this perspective
is important as it sheds some light on the feasibility of economic concepts such
as the equilibrium concept. Thus, if a Turing machine cannot efficiently compute
equilibrium then neither can a market. As we will show in the following, there are
provable results on the impossibility for market agents to behave according to tradi-
tional economic concepts such as equilibrium, rationality, and efficiency.
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5.2 Calculating Fixed Point Market Equilibrium

5.2.1 Computational Complexity of Centralized Equilibrium

The existence of equilibrium does not imply that it can actually be achieved. In
the classic Walrasian model [413], the price formation mechanism (Tâtonnement) is
simple and has the following properties:

• Agents truthfully reveal their preferences
• No trading takes place before the market-clearing price vector is announced
• All agents trade at exactly the same prices
• Final prices and allocations are completely determined from agent preferences

and endowments
• Agent behavior is very simple, involving nothing more than truthful reporting of

demands at announced prices.

Unfortunately, the job of the Walrasian auctioneer as the central entity to compute
the equilibrium price is extremely hard. Equilibrium computation requires a mech-
anism for converging to a fixed point in a finite length of time, using a bounded
amount of resources.

Definition 5.6. A fixed point of a function is a point that is mapped to itself by the
function. That is to say, x is a fixed point of the function f , if and only if f (x) = x.

Without such a mechanism there is little reason to believe that a fixed point would
ever be observed. Fixed-point theorems were introduced into economic theory by
von Neuman in his work on the input–output model [409, 410]. Since then, many
domains of economic theory have come to depend on fixed point theorems to prove
the existence of equilibria, notably general equilibrium theory, but also Nash equi-
libria in game theory [308]. For a recent perspective on this, see [153]. The Brouwer
fixed point theorem was one of the early achievements of algebraic topology, and
provided the basis of more general fixed point theorems, such as Brouwer and Kaku-
tani’s fixed point theorem.

Theorem 5.1. Let Bn be the n-dimensional closed unit ball and let f : Bn −→ Bn be
a continuous function. Then f has a fixed point: for some x ∈ Bn, f (x) = x.

The proof of Brouwer’s fixed point theorem assumes that either a triangle is being
mapped onto itself, or another two-dimensional space is being mapped onto a trian-
gle. Then a series of triangulations of decreasing size is constructed, and Sperner’s
Lemma is used to help conclude that the convergence of the series proves the exis-
tence of a fixed point.

Lemma 5.1. (Sperner’s Lemma). Suppose the interior of a triangle is triangulated
(that is, divided up internally into small triangles). The vertices of the triangle are
colored red, green, and blue, respectively. All other vertices, where lines meet inside
or around the outside edges of the triangle, are also colored red, green, or blue with
the restriction that no edge of the main triangle contains all three colors. Let TC
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be the number of small triangles whose vertices are colored red, green, and blue
in clockwise order; and let TA be the number of small triangles whose vertices are
colored red, green, and blue in anticlockwise order. Then

|TC −TA| = 1 (5.1)

In particular, the total number of small red–green–blue triangles must be odd, and
is certainly never zero.

One famous real-world example of this theorem is stirring a glass of water. When
the molecules stop moving, there will be one molecule that is in the same place it
was before the stirring began. Another example involves two identical pieces of pa-
per. If one of the pieces is crumpled and set on top of the other, there will be one
point on that paper that lies directly above the corresponding point of the uncrum-
ple paper.

Algorithms for computing Brouwer fixed points fall into a complexity class that
makes them among the hardest problems in all of computer science. For instance, the
lower bound for worst-case computation of Brouwer fixed points is exponential in
the dimension of the problem [192] where the dimension is the size of the commod-
ity space in the Arrow–Debreu version of general economic equilibrium [13]. Fur-
thermore, it has recently been shown that the computational complexity of Brouwer
and Kakutani fixed points are closely related to the complexity of the parity argu-
ment, the connection between the two being Sperner’s Lemma [319]. The construc-
tive problem arising from the application of Sperner’s Lemma to the Brouwer and
Kakutani fixed points of the Walrasian equilibrium model is that there are no poly-
nomial time algorithms for the general case with nonlinear utility functions. Such
results can only be obtained for linear utility functions.

5.2.2 Computational Complexity of Decentralized Equilibrium

It has been argued that the Walrasian model of exchange is problematic for several
reasons. Recent results on the computational complexity of Brouwer and Kakutani
fixed points suggest that real markets cannot possibly operate according to the Wal-
rasian model. Furthermore, the Walrasian market model has no empirical underpin-
nings (e.g., [185], p. 55) and therefore does not present a reasonable picture of how
an exchange economy works. The aggregation of information into the net demand
functions of the Walrasian model has long been known to be excessive. Hayek [186]
notes

We cannot expect that this problem will be solved by first communicating all this informa-
tion to a central board which, after integrating all knowledge, issues its orders [. . . ]. The
problem is to show how a solution is produced by interaction of people each of whom has
partial knowledge.

In addition, there are a variety of non-Walrasian exchange mechanisms that yield
equilibrium allocations that are Pareto optimal. These mechanisms are radically
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more decentralized than the Walrasian one, with its single uniform price vector,
and display a more realistic picture of real economic processes. Rust ([351]) recom-
mends using massively parallel computers and decentralized algorithms that allow
competitive equilibria to arise as emergent computations.

The reason why large scale computable general equilibrium problems are difficult for
economists to solve is that they are using the wrong hardware and software. Economists
should design their computations to mimic the real economy, using massively parallel com-
puters and decentralized algorithms that allow competitive equilibria to arise as “emergent
computations” [. . . ]. The most promising way for economists to avoid the computational
burdens associated with solving realistic large scale general equilibrium models is to adopt
an “agent-based” modeling strategy where equilibrium prices and quantities emerge en-
dogenously from the decentralized interactions of agents.

By using a decentralized k-lateral exchange model with local price formation mech-
anisms which studies the performance of market systems as a function of their scale,
i.e., the number of agents in the marketplace and the number of commodities being
traded, [19] analytically derives complexity properties for economies as large as a
million agents and 20,000 commodities per agent. These properties are better (i.e.,
less complex) than those of Walrasian exchange models. Due to the fact that poly-
nomial complexity is a prerequisite of real world equilibrium price formation mech-
anisms, [19] decentralized systems are the more plausible computational device.

5.2.3 Adaptive/Inductive Learning of Rational Expectations
Equilibria

A major part of the coordination processes in markets relies on the identification and
calculation of fixed point mappings of global signals such as equilibrium prices. By
forming rational expectations of fixed points of market equilibrium prices, economic
agents are meant to coordinate their activity and iron out inconsistent expectations.
Spear [374] was the first to show that the problem of identifying a set of fixed points
for market equilibrium price functions is algorithmically unsolvable.

The absence of a unique decision procedure or a deductive means by which to
select appropriate forecast models/functions has been intuitively justified as arising
from the self-referential character of the problem by [16]:

the expectational models investors choose affect the price sequence, so that [. . . ] their [. . . ]
very choices of models affect their data and so their choices of model.

Arthur et al. [16] refer to the above self-referential structure of the problem as caus-
ing it to be ill-defined. Likewise, in the El Farol game, [14] gives the classic proto-
type of a problem with a contrarian structure for which there is no deductive means
of arriving at a solution. These problems are well understood to be algorithmically
unsolvable [259, 260, 374, 407].
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Due to the absence of a unique decision procedure or a deductive means by which
to select appropriate forecast models/functions, it is questionable whether rational
agents exist at all. The best an agent can do is to find approximations to optimal so-
lutions. Given a limited amount of time, some algorithms will be able to find better
approximations than others. Given the same algorithm, the faster a computer is the
more potential that it can find better solutions. Therefore, when serious computation
is involved, the actual degree of an agent’s rationality depends on which algorithms
he uses, and what computing power he has access to.

However, computational complexity is not the only reason why the rationality as-
sumption is challenged. Challenges also come from cognitive reasoning [8] which
questions the behavior of optimal human beings and proposes a more realistic notion
of rationality. This notion is called bounded rationality [369] and describes the prop-
erty of an agent that behaves in a manner that is nearly as optimal with respect to its
goals as its resources will allow. These resources include processing power, algo-
rithm, and time available to the agent. Some of these resources are not always easy
to quantify. Therefore, any mathematical model that assumes rationality is subject
to the definition of resources available. By using faster computers and better algo-
rithms within a given time limit, it is therefore possible that an agent can become
“more rational.”

5.3 Computational Difficulties with Efficiency

5.3.1 Information Interpretation

Intellectual incoherency of the rationality concept [304] with the theory of effective
computability has also been used as major argument against the notion of market
efficiency. According to [103], even if we assume that all actual market analyses
would have equal merit (whether supported by human or machine), a new market
player could always take advantage of the older players unless the older analyses
were not merely the same, but also optimal. The assumption of rationality would
therefore imply that market players are equally endowed with intelligence, and that
this intelligence is nothing but maximal. It may be thought that by use of the most
sophisticated computational analyses, statistical techniques, etc. we may achieve
such optimality. But certainly we do not have such an optimal understanding of the
markets now. It seems hard to believe that market behavior is the uniquely best un-
derstood of all subjects of human science. In fact, most scientists would probably
tend to think the opposite. Moreover, the computational difficulties of optimally in-
terpreting information prior to acting in the market are severe in principle. Turing’s
halting problem tells us that the general case of finding a single computable function
amongst the class of all computable functions is undecidable [398]. In the context of
market modeling, this would mean that there is no algorithm which will guarantee
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the discovery of the best market model within finite time. Thus, not even the most
sophisticated method of inductive and statistical inference can guarantee to find the
best predictor function for any market.

Rather than looking for the very best model of market behavior – requiring of us
a general search through all computable functions – we might suppose that a lesser
concept of optimality may suffice. That is, by restricting the space of models the
computational difficulties will be lessened. For example, we could use linear regres-
sion using all available explanatory variables. In that case, there is a fairly quick
and simple computer program to find the best linear model of market behavior. At
the very least, we should like to select among the explanatory variables, rejecting
those which are irrelevant (insignificant) to price predictions. But even for func-
tional forms such as linear variable selection with Akaike’s information criterion
(AIC) this will be a computationally infeasible, i.e., NP-complete task under the
assumption that P �= NP holds (see [97]). Intuitively, the inclusion of more compli-
cated functional forms as compared to the linear one (e.g., logistic regression) will
require more complicated computations. We are therefore left with a choice between
grossly inadequate models or computational infeasibility. Thus, we are left either
with being satisfied with a suboptimal linear model or with being unable (within
feasible time) to find the optimal nonlinear model.

The application of heuristics therefore leads to an imperfect state of nature where
rational expectations remain but profit potential arises. As an immediate conse-
quence, agents become opponents which are effectively competing to win. In order
to exploit these profit opportunities, agents develop strategies and distinguish among
themselves. Thus, it is unlikely that there is any such thing as a typical agent. Fur-
thermore, agents adapt their strategies in the hope of improving performance. Arthur
[15] comments on this issue as follows:

Economic agents, be they banks, consumers, firms or investors, continually adjust their mar-
ket moves, buying decisions, prices, and forecasts to the situation these moves or decisions
or prices or forecasts together create. But unlike ions in a spin glass, which always react in a
simple way to their local magnetic field, economic “elements” – human agents – react with
strategy and foresight by considering outcomes that might result as a consequence of behav-
ior they might undertake. This adds a layer of complication to economics not experienced
in the natural sciences.

Apart from the inherent, and mostly severe, computational difficulties with the dis-
covery of optimal models (and the verification of optimality), there are also tech-
nological difficulties standing in the way of the optimal use of optimal models. The
reason is that any computation employed by the model will be constrained by the
speed and memory constraints imposed by the current level of technology. There-
fore, we would not even be able technically to identify the “very best” model of
market behavior. Since our analytic techniques are suboptimal and its use is con-
strained by the sophistication and power of the technology available to us, we can
anticipate that the introduction of new generations of computers and other tech-
nology will continue to generate new arbitrage opportunities. Statistics not having
been “solved,” we can also anticipate that the introduction of new techniques and
the refinement of existing techniques, of statistical analysis, machine learning, etc.
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will supply new means to take advantage of relevant information as it arises. This
suggests that arbitrage opportunities exist today and will continue to exist tomorrow.
None of which means that the arbitrage opportunities are constant: as old ones are
utilized they diminish, while new ones arise.

5.3.2 Computational Complexity of Arbitrage

Computational complexity of arbitrage has been studied for various frictional mar-
kets [95], including frictional markets in securities [96] and also foreign exchange
markets [67]. A frictional foreign exchange market is characterized by bid-offer
spreads, bound constraints, and integrality constraints. Bid-offer spreads reflect the
existence of transaction costs which may differ among traders. Bound and integral-
ity constraints refer to limited fixed integer traded amounts in multiples of hundreds,
thousands, or millions. For such markets, [67] first demonstrated that finding arbi-
trage opportunities is an undecideable problem:

Theorem 5.2. There exists a fixed amount of information ε > 0 available to par-
ticipating agents such that approximating the optimization version of the arbitrage
problem within a factor of nε is NP-hard.

It is only in two special cases that the maximum value of arbitrage revenue can be
computed in polynomial time.

Theorem 5.3. There are polynomial time algorithms for the optimization version
of the arbitrage problem if the number of currencies is a constant or the exchange
graph is star-shaped (i.e., there exist only exchanges between one “center” currency
and the other currencies in the market).

The results have important consequences towards the fundamental arbitrage-free
assumption which is implied in many theories of finance. The efficient markets hy-
pothesis, for instance, is based on the belief that if an arbitrage opportunity ever
existed, it would disappear in an arbitrarily short period of time. However, if gener-
ating an arbitrage opportunity is a computationally hard problem, then this assump-
tion may not hold in practice. In order for an agent to take advantage of an arbitrage
opportunity, he needs to be equipped with all of the information about an exchange
in order to generate arbitraging bids that are guaranteed to be in an optimal allo-
cation. However, agents are often constrained by time and computer power. The
computational complexity of detecting arbitrage in the foreign exchange markets
therefore presents one important reason why arbitrageurs often have to use heuris-
tics to support economic decisions.



Chapter 6
Conclusions

It is difficult for any model to describe adequately, and with a firm empirical ba-
sis, all features of modern economies that are relevant to determining exchange rate
movements. This reflects in part the difficulty of modeling international financial
markets and capital flows. Economists have developed a variety of methods to es-
timate equilibrium exchange rates [271]. The methods differ considerably in their
construction and in their estimations of equilibrium values. In some sense, com-
paring the models is similar to comparing “apples and oranges” because they can
radically differ in structure and can even use different measures of the real effec-
tive exchange rate. Often, they are attempting to measure entirely different kinds of
equilibrium. That does not mean the models do not provide useful information. To
the contrary, they provide valuable insights, but one must recognize that they are
limited by the use of somewhat simplified structures, which are often necessary if
they are to have a reasonable empirical underpinning.

Complexity matters in economics and finance and in the special case of for-
eign exchange markets. It prevents easy solutions, efficient algorithms to solve the
problems and often even efficient algorithms to approximate optimal solutions. But
nevertheless, in real life, decisions have to be made. For instance, despite the com-
plexity, traders in financial firms need to take bets on whether the exchange rate
is going to rise or fall within a certain time interval. In addition, risk managers of
nonfinancial firms need to decide on when and how to hedge their foreign exchange
exposures. The computational complexity of a given problem is therefore an ar-
gument that helps agents to choose the right tools to support their decisions. By
considering above results on the general computational impossibility of detecting
foreign exchange market inefficiencies, we know that it is suitable to use heuris-
tics, which are able to handle problems of high dimensionality such as exchange
rate forecasting or approximating the optimal solution to decision problems such as
exchange rate hedging.

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 39
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 6,
c© Springer-Verlag Berlin Heidelberg 2009



Chapter 7
Introduction

Over the past several decades, researchers and practitioners have used various fore-
casting methods to study foreign exchange market time series events, thus implicitly
challenging the concepts of informational and speculative efficiency. These fore-
casting methods largely stemmed from the fields of financial econometrics and ma-
chine learning. For example, the 1960s saw the development of a number of large
macroeconometric models purporting to describe the economy using hundreds of
macroeconomic variables and equations. It was found that although complicated
linear models can track the data very well over the historical period, they often per-
form poorly for out-of-sample forecasting [287]. This has often been interpreted that
the explanatory power of exchange rate models is extremely poor. Nelson [310] dis-
covered that univariate autoregressive moving average (ARMA) models with small
values for p and q produce more robust results than the big models. Box [58] de-
veloped the autoregressive integrated moving average (ARIMA) methodology for
forecasting time series events. The basic idea of ARIMA modeling approaches is the
assumption of linearity among the variables. However, there are many time series
events for which the assumption of linearity may not hold. Clearly, ARIMA mod-
els cannot be effectively used to capture and explain nonlinear relationships. When
ARIMA models are applied to processes that are nonlinear, forecasting errors often
increase greatly as the forecasting horizon becomes longer. To improve forecasting
nonlinear time series events, researchers have developed alternative modeling ap-
proaches. These include nonlinear regression models, the bilinear model [171], the
threshold autoregressive model [392], and the autoregressive heteroskedastic model
by [115]. Although these methods have shown improvement over linear models for
some specific cases, they tend to be application specific, lack generality, and are of-
ten harder to implement [424].

An alternative strategy is for the computer to attempt to learn the input/output
functionality from examples, which is generally referred to as supervised learning,
a subdiscipline of the machine learning field of research. Machine learning mod-
els are rooted in artificial intelligence which distinguishes itself from economic and
econometric theory by making statistical inferences without any a priori assump-
tions about the data. Intelligent systems are therefore designed to automatically

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 43
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 7,
c© Springer-Verlag Berlin Heidelberg 2009
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detect patterns in data, despite complex, nonlinear behavior.1 If the patterns de-
tected are significant, a system can expect to make predictions about new data com-
ing from the same source. An intelligent system can thus acquire generalization
power by learning something about the source generating the data. Intelligent sys-
tems are therefore data driven learning methodologies that seek to approximate op-
timal solutions of problems of high dimensionality. Since, in contrast, theory driven
approaches give rise to precise specifications of the required algorithms for solving
simplified models the search for patterns replaces the search for reasons.

Artificial neural networks (ANN) are general-purpose self-learning systems that
grew out of the cognitive and brain science disciplines for approximating the way
information is being processed [196]. Instead of analyzing the vertical relationship
between underlying cause and its derived effect, ANN learning models focus on
how effects reproduce themselves horizontally and what this reveals about their
inherent dynamics. Hence, instead of a linear cause–effect relation, ANN models
are able to exploit nonlinear data relationships by moving the effect in a constant
feedback loop. During the last decade, the application of ANNs as supervised learn-
ing methods has exploded in a variety of areas [191, 379, 425]. Within the realm
of financial forecasting, ANNs have been used to develop prediction algorithms
for financial asset prices, such as technical trading rules for stocks and commodi-
ties [130, 221, 223, 365, 377, 416,421]. The effectiveness of ANNs and their perfor-
mance in comparison to traditional forecasting methods has also been a subject of
many studies [91, 426]. ANNs have proven to be comprehensive and powerful for
modeling nonlinear dependencies in financial markets [336], notably for exchange
rates [48, 107, 234, 306]. However, ANN models have been criticized because of
their black-box nature, excessive training times, danger of overfitting, and the large
number of parameters required for training. As a result, deciding on the appropri-
ate network involves much trial and error. These shortcomings paired with the logic
that complex real-world problems might require more elaborate solutions led to
the idea of combining ANNs with other technologies to hybrid and modular solu-
tions [9]. For a survey of the application of ANN to forecasting problems in general
see [424, 426].

Support vector machines (SVM) [55, 405] are a new kind of supervised learn-
ing system which, based on the laws of statistical learning theory [405], maps the
input dataset via kernel into a high dimensional feature space in order to enable lin-
ear data classification and regression. SVM has proven to be a principled and very
powerful method that in the few years since its introduction has already outper-
formed many other systems in a variety of applications, such as text categorization
[207], image processing [328,333], hand-written digit recognition [247], and bioin-
formatic problems, for example, protein homology detection [203] and gene expres-
sion [64]. Subsequent applications in time series prediction [301] further indicated
the potential that SVMs have with respect to the economic and financial audience. In
the special case of predicting Australian foreign exchange rates, [219] showed that
moving average-trained SVMs have advantages over an ANN based model which

1 By patterns we understand any relations, regularities, or structure inherent in a given dataset.
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was shown to have advantages over ARIMA models [217]. Kamruzzaman et al.
[218] had a closer look at SVM regression and investigated how they perform with
different standard kernel functions. It was found that Gaussian radial basis and poly-
nomial kernels appeared to be a better choice in forecasting the Australian foreign
exchange market than linear or spline kernels. However, although Gaussian kernels
are adequate measures of similarity when the representation dimension of the space
remains small, they fail to reach their goal in high dimensional spaces [131].

This shortcoming has been addressed by [400–402]. They examined the suitabil-
ity of SVMs, equipped with p-Gaussian, as well as several standard kernel func-
tions and trained with exogenous financial market data in order to forecast EUR
exchange rate ups and downs. This research will be presented in detail in the fol-
lowing. The task is to examine the potential of SVM models to overcome foreign
exchange market efficiency in its weak-form. We therefore analyze the ability of
SVMs to correctly classify daily EUR exchange rate return data. If an SVM model
is able to outperform the nave prediction by exploiting nonlinear patterns in daily
EUR/GBP, EUR/JPY, and EUR/USD exchange rate returns, market efficiency in its
weak form can be rejected. Indeed, it is more useful for traders and risk managers to
forecast exchange rate fluctuations rather than their levels. To predict that the level
of the EUR/USD, for instance, is close to the level today is trivial. On the contrary,
to determine if the market will rise or fall is much more interesting. Since SVM
performance depends to the most extent on choosing the right kernel, we empiri-
cally verify the use of customized p-Gaussians by comparing them with a range of
standard kernels.

The chapter is organized as follows: in the next section, we conduct statistical
analyses of EUR/GBP, EUR/JPY, and EUR/USD time series. Chapter 9 outlines the
principles of support vector classification including a description of the binary clas-
sification problem which is the theoretic problem under consideration, and the idea
of learning in feature space. Chapter 10 describes the details of the empirical study,
such as the procedure for obtaining an explanatory input dataset (description model)
as well as the particular SVM model and kernel functions used (forecasting model).
Chapter 10 also provides the benchmarks and metrics used for model evaluation
along with the results.



Chapter 8
Statistical Analysis of Daily Exchange Rate Data

8.1 Time Series Predictability

A time series {yt} is a discrete time continuous state process where the variable y
is identified by the value that it takes at time t denoted yt . Time is taken at equally
spaced intervals from −∞ to +∞ and the finite sample size T of data on y is for
t = 1,2, . . . ,T . Time series {yt} may emerge from deterministic and/or stochastic
influences. For example, a time trend yt = t is a very simple deterministic time
series. If {yt} is generated by a deterministic linear process, it has high predictabil-
ity, and its future values can be forecasted very well from the past values. A basic
stochastic time series is white noise, yt = εt , where εt is an independent and iden-
tically distributed (i.i.d.) variable with mean 0 and variance σ2 for all t, written
εt ∼ i.i.d.(0,σ2). A special case is Gaussian white noise, where the εt are inde-
pendent and normally distributed variables with mean 0 and variance σ2 for all t,
written εt ∼ NID(0,σ2). A time series generated by a stochastic process has low
predictability, and its past values provide only a statistical characterization of the
future values. Predictability of a time series can therefore be considered as the sig-
nal strength of the deterministic component of the time series to the whole time
series. Usually, a given time series is not simply deterministic or stochastic, but
rather some combination of both:

yt = α + β t + εt (8.1)

8.2 Empirical Analysis

The purpose of this section is to examine the statistical properties of daily
EUR/GBP, EUR/JPY, and EUR/USD exchange rate data from 1 January 1997
to 31 August 2003. This is done for two reasons. First, according to above, time
series analysis gives an understanding on the degree of randomness inhibited in the
chosen time interval. The strategy is to build econometric models in order to extract

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 47
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statistical dependencies within a time series that may be based on linear and/or
nonlinear relationships. If such dependencies are significant, then the time series
is not totally random since it contains deterministic components. These may be
important indicators for the predictability of {yt}. Second, analysis of {yt} is useful
for building empirical time series models that will serve as benchmarks for our
SVM models. The advantage of our data-driven approach is that it allows variables
to speak for themselves, without the confines of economic or financial theories.

The investigation is based on publicly available London daily closing prices as
obtained from http://www.oanda.com/. When examining daily data, closing prices
are more relevant than opening prices since they represent the matching of supply
and demand at the end of the trading day. The series for the period from 1997 to
1998 were constructed by using the fixed EUR/DEM conversion rate agreed in
1998 (1 EUR = 1.95583 DEM), combined with the GBP/DEM, JPY/DEM, and
USD/DEM daily market rates. It is also important to note that we do not include the
period from 1 September 2003 to 31 December 2004 in our analysis since it will be
needed for out-of-sample forecasting and is not known beforehand.

Plots of the three time series are shown in Figs. 8.1–8.3 which demonstrate the
devaluation of the EUR since its introduction in 1998 until the end of 2000.

The devaluation had been followed by a rapid upward trend against the three
foreign currencies reaching to the end of the specified time window. A compari-
son of the magnitude of these upward and downward movements is visualized by
Fig. 8.4, which shows that among the three exchange rates EUR/JPY has been the
most volatile one, and EUR/GBP the least volatile one. The vertical bar drawn at
29 August 2003 divides the series into an insample period (left of the bar) and and
out-of-sample period (right of the bar).
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Fig. 8.3 EUR/USD nominal exchange rate

For means of comparison, all nominal exchange rates were scaled to basis 100
on 1 January 1997. The paths were then calculated on a continuously compounded
basis by sequentially adding log first differences.
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Fig. 8.4 Base currency EUR in terms of foreign currencies GBP, JPY, and USD

Every time series was examined in a hypothesis testing framework according to
the following criteria:

1. Stationarity
2. Normality
3. Linearity
4. Heteroskedasticity
5. Nonlinearity

In a hypothesis testing framework, there are always two hypotheses that go together,
known as the null hypothesis (H0) and the alternative hypothesis (H1). The null hy-
pothesis is the statement or the statistical hypothesis that is actually being tested.
The alternative hypothesis represents the remaining outcomes of interest. Hypoth-
esis tests were conducted via a test of significance approach which centers on a
statistical comparison of the estimated value of the coefficient and its value under
the null hypothesis. Generally, if the estimated value is a long way away from the hy-
pothesized value, the null hypothesis is likely to be rejected. Otherwise, if the value
under the null hypothesis and the estimated value are close to one another, the null
hypothesis is less likely to be rejected. Note that it is incorrect to state that if the
null hypothesis is not rejected it is accepted since it is impossible to know whether
the null is actually true or not.

8.2.1 Stationarity

As a first step we ensured that the time series data we work with are stationary,
which is an important property to apply for statistical inference procedures. A series
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is said to be strictly stationary, if the mean, the variance, and the covariance of the
underlying series remain constant over time ([180], p. 45):

E(yt) = μ = const.

Var(yt) = E
(
(yt − μ)2)= σ2 = const. (8.2)

Cov(yt ,yt+τ ) = E ((yt − μ)(yt+τ − μ)) = λ = const.

However, strict stationarity as represented in (8.2) is generally not fulfilled in finan-
cial and economic time series. For this reason, econometric theory shows a greater
interest in whether a time series is (weakly or covariance) stationary, which is the
case if the mean and variance are independent of time t, and if the series’ covariance
only depends on the time difference τ , but not on t itself:

Cov(yt ,yt+τ ) = E ((yt − μ)(yt+τ − μ)) = λτ (8.3)

Statistical tests of the null hypothesis that a time series is nonstationary against the
alternative that it is stationary are called unit root tests. The name derives from the
fact that a stochastic process is nonstationary if the characteristic polynomial has
a root that does not lie inside the unit circle. The unit root tests applied are the
augmented Dickey–Fuller (ADF) test [98], and the Philipps–Perron (PP) test [324].
The Kwiatkowski–Philipps–Schmidt–Shin (KPSS) test [236] which is additionally
applied differs from the above two tests in that the underlying time series is assumed
to be stationary under the null hypothesis.

Table 8.1 shows that the results of the three tests are consistent for the series of
exchange rate levels yt . In the case of the unit root tests, we cannot reject the null
hypothesis that daily price data are generated by a nonstationary stochastic process.
Otherwise, in the case of the KPSS test, we reject the null hypothesis that daily
price data are generated by a stationary stochastic process at the 1% significance
level which matches the result of the unit root tests.

A time series that is nonstationary, but can be stationarized by d-fold differentia-
tion is called integrated of order d, i.e., I(d) [58]. Accordingly, log first differences
Δyt = ln(yt)− ln(yt−1) of the price data for the period from 2 January 1997 to
31 December 2003 were taken, as visualized by Figs. 8.5–8.7, the same tests were

Table 8.1 Testing for (non-) stationarity

Null hypothesis Test Input Output

EUR/GBP EUR/JPY EUR/USD

Nonstationarity ADF yt , Δyt −2.28, −43.98∗∗∗ −1.31, −40.48∗∗∗ −1.34, −44.70∗∗∗
PP yt , Δyt −2.10, −44.14∗∗∗ −1.33, −40.47∗∗∗ −1.41, −44.64∗∗∗

Stationarity KPSS yt , Δyt 0.79∗∗∗, 0.03 0.90∗∗∗, 0.07 0.81∗∗∗, 0.07

The columns from left to right denote the null hypothesis, name of the test applied, time series
input, and the test statistic output per currency pair. ∗, ∗∗, and ∗∗∗ indicate rejection of the null
hypothesis at the 10%, 5%, and 1% significance level
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Fig. 8.5 Log first differences of daily EUR/GBP nominal exchange rate data
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Fig. 8.6 Log first differences of daily EUR/JPY nominal exchange rate data

conducted subsequently. Again, the vertical bar drawn at 29 August 2003 divides
the series into in-sample period (left of the bar) and out-of-sample period (right of
the bar).

Test statistics suggest that now all three exchange rate series are strongly
difference-stationary, i.e., integrated of order one (I(1)).
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Fig. 8.7 Log first differences of daily EUR/USD nominal exchange rate data

8.2.2 Normal Distribution

In a second step, the empirical probability distributions of Δyt were tested for de-
partures from the normal distribution. The normality assumption Δyt ∼ N(0,σ2) is
required in order to conduct hypothesis tests about the model parameters. One of the
most commonly applied tests for normality is the Jarque–Bera (JB) test [206]. JB
uses the property of a normally distributed random variable which characterizes the
entire distribution by its first two moments, i.e., the mean and the variance. The stan-
dardized third and fourth moments of a distribution are known as its skewness (SK)
and kurtosis (KU). The coefficient of SK measures the extent to which a distribution
is not symmetric about its mean value and is expressed as

SK =
E[y3]

(σ2)3/2
(8.4)

A normal distribution is defined to have SK = 0. KU measures how fat the tails of
the distribution are and is expressed as

KU =
E[y4]

(σ2)2 (8.5)

A normal distribution is defined to have a coefficient of kurtosis of KU = 3. In-
stead of KU , it is also common to use the coefficient of excess kurtosis (EK),
given by EK = KU − 3, which must be zero for a normal distribution. JB tests
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Table 8.2 Testing for normality

Null hypothesis Test Input Output

EUR/GBP EUR/JPY EUR/USD

– SK Δyt 0.09 −0.34 0.06
– KU Δyt 3.74 6.85 3.62
Normal Distribution JB Δyt 42.11∗∗∗ 1106.89∗∗∗ 29.18∗∗∗

The columns from left to right denote the null hypothesis, name of the test ap-
plied, time series input, and the test statistic output per currency pair. ∗, ∗∗, and
∗∗∗ indicate rejection of the null hypothesis at the 10%, 5%, and 1% significance
level

whether the coefficient of SK and the coefficient of EK are jointly zero by the test
statistic

JB = T

[
SK2

6
+

(KU −3)2

24

]
(8.6)

where T is the sample size. The test statistic asymptotically follows a χ2(2) under
the null hypothesis that the series is symmetric and mesokurtic.

Table 8.2 summarizes the results of our tests for normality. We observe that
EUR/GBP and EUR/USD are slightly skewed to the right (positive signs) whereas
EUR/JPY is skewed to the left (negative sign). We further observe that all three se-
ries have positive excess kurtosis indicating that there is more weight in both tails
of the distribution than in the normal distribution. Probability distributions exhibit-
ing this phenomenon are said to be leptokurtic or fat-tailed. Among the three series,
EUR/JPY exhibits the most leptokurtic behavior whereas EUR/GBP and EUR/USD
show weaker signs of fat tails. This is confirmed by the JB test statistics which re-
ject the null hypothesis of normal data at high levels. The empirical observation of
leptokurtic exchange rate returns has been mentioned in countless studies (see, for
instance, [375], p. 148).

8.2.3 Linearity

A major objective when analyzing stationary time series is to detect linear depen-
dencies among the data through identifying an appropriate linear model. Univariate
time series models can only be explained by their own lagged values, i.e., by au-
toregressive (AR) terms as explanatory variables in their representation. The autore-
gressive model of order 1, the AR(1) model is

yt = c + αyt−1 + εt (8.7)

where εt ∼ i.i.d.(0,σ2). The constant term c models a trend in the series either up-
wards (c > 0) or downwards (c < 0). The lag coefficient α determines the stability
of the process. If |α| > 1 the time series will explode, that is, yt → ±∞ as t → ∞.
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The special case |α| = 1 gives the random walk model and it is only when |α| < 1
that the process defined by (8.7) will be stationary.

Furthermore, if the underlying process is stochastic and stationary, the errors can
be linear combinations of white noise at different lags, so the moving average (MA)
part of the model refers to the structure of the error term εt . The first-order moving
average model MA(1) is

yt = c + εt + β εt−1 (8.8)

where εt ∼ i.i.d.(0,σ2). This model is a stationary representation for any values
of c or b, since E(yt) = c. The most general model for a stationary process is an
integrated autoregressive moving average model ARIMA(p, q, r)

yt = c + α1yt−1 + α2yt−2 + . . .+ αpyt−p + εt + β1εt−1 + βqεt−q (8.9)

with p autoregressive terms, q moving average terms, integration order r, with r = 1
in our case, and εt ∼ i.i.d.(0,σ2). ARIMA(p, q, 1) models are also simply denoted as
ARMA(p, q) models. The parameters p and q are commonly estimated by visually
inspecting the autocorrelation function (ACF) and partial autocorrelation function
(PACF) for MA models and low-order AR models [180]. ACF and PACF functions
characterize the pattern of temporal, linear dependence that is existent in the series.
Since independent variables are always uncorrelated, testing for linear independency
is equivalent to testing for zero autocorrelation. We first calculated Durbin–Watson
(DW) test statistics [108] for Δyt . DW is a test for first order autocorrelation, i.e.,
it only tests for a relationship between an error and its immediately previous value.
The test statistic is

DW ≈ 2(1− ρ̂) (8.10)

with ρ̂ ∈ [−1,1] denoting the correlation between Δyt and Δyt−1. Thus if DW = 2
ρ̂ = 0 there is no autocorrelation in the residuals and the null hypothesis would not
be rejected. Otherwise if DW = 0 (ρ̂ = 1) there is perfect positive autocorrelation
in the residuals and, if DW = 4 (ρ̂ = −1) there is perfect negative autocorrelation
in residuals. The DW test does not follow a standard statistical distribution but is
divided up into regions including an upper and lower critical value.

Second, Ljung–Box (LB) Q-statistics [266]

Q∗ = T (T + 2)
m

∑
k=1

τ̂2
k

T − k
∼ χ2 (8.11)

were calculated to test the joint hypothesis that all m of the τk correlation coeffi-
cients are simultaneously equal to zero.

It is interesting to see from Table 8.3 that for the EUR/JPY series no signifi-
cant linear relationships among the data can be identified and thus, one would not
necessarily need to estimate a linear model.

However, we decided at this point to obtain clearer statistical results by also
removing some insignificant linearities through

Δyt = 0.0287
(1.20)

Δyt−1 + εt (8.12)
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Table 8.3 Testing for linear dependencies

Null
hypothesis

Test Input Output

EUR/GBP EUR/JPY EUR/USD

No AC LB Δyt , k = 1: 4.95∗∗, 0.00 k = 1: 1.42, 0.00 k = 1: 8.36∗∗∗, 0.03
ARMA- k = 2: 4.98∗, 0.13 k = 2: 1.44, 0.02 k = 2: 10.49∗∗∗, 0.07
Residuals k = 3: 10.43∗∗, 0.14 k = 3: 2.00, 0.56 k = 3: 11.85∗∗∗, 0.07
of Δyt k = 4: 10.60∗∗, 0.15 k = 4: 2.41, 0.97 k = 4: 13.07∗∗, 0.34

k = 5: 10.61∗∗, 0.17 k = 5: 3.02, 1.67 k = 5: 13.18∗∗, 0.54
k = 6: 10.65∗, 0.18 k = 6: 4.38, 3.13 k = 6: 13.21∗∗, 0.55
k = 7: 10.70, 0.23 k = 7: 4.48, 3.24 k = 7: 14.10∗∗, 1.66
k = 8: 12.38, 2.23 k = 8: 5.24, 4.19 k = 8: 15.74∗∗, 2.99
k = 9: 13.39, 3.20 k = 9: 5.52, 4.29 k = 9: 16.83∗, 3.06
k = 10: 14.19, 3.74 k = 10: 6.59, 5.27 k = 10 : 16.79∗, 4.44
k = 15: 16.44, 5.58 k = 15: 9.67, 8.27 k = 15: 21.03, 7.55
k = 20: 22.49, 11.46 k = 20: 15.70, 14.71 k = 20: 23.88, 11.78
k = 24: 32.93, 19.77 k = 24: 15.84, 14.85 k = 24: 26.82, 14.51

BG ARMA- 0.8617 0.6836 0.8975
Residuals
of Δyt

DW Δyt , 1.9939, 1.9988 1.9995, 1.9995 1.9928, 2.0021
ARMA-
Residuals
of Δyt

The columns from left to right denote the null hypothesis, name of the test applied, time series
input, and the test statistic output per currency pair. ∗, ∗∗, and ∗∗∗ indicate rejection of the null
hypothesis at the 10%, 5%, and 1% significance level. k denotes the number of lags included in the
test regression

For the other two series, linear dependencies are obviously existent. To remove
them, it was sufficient to specify the following simple linear models

Δyt = −0.0526
(−2.20)

Δyt−1 −0.0562
(−2.35)

Δyt−3 + εt (8.13)

for the EUR/GBP series and

Δyt = −0.5959
(−3.01)

Δyt−1 + 0.5323
(2.55)

εt−1 + εt (8.14)

for the EUR/USD series. T-statistics are given in brackets below the parameter es-
timates. Each model’s residuals series {εt} was retested according to LB and the
Breusch–Godfrey Lagrange Multiplier (LM) test which, like LB, is a more gen-
eral test for autocorrelation up to the rth order. The model for the errors under this
test is

εt = β1εt−1 + β2εt−2 + . . .+ βrεt−r + νt (8.15)
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and the null hypothesis is that the current error is not related to any of its r previous
values, i.e., β1 = β2 = . . . = βr = 0. This kind of test is known as a test on omitted
variables. The test statistic of the Breusch–Godfrey LM test is given by

(T − r)R2 ∼ χ2
r (8.16)

The test statistics indicate that serial dependencies have now disappeared at any
lag. Hence, the models are statistically adequate. However, although linear indepen-
dency can be inferred for all three series, nonlinear dependencies might still exist.

8.2.4 Heteroskedasticity

In a next step, we investigated the origin of nonnormal behavior by focusing on the
phenomenon of heteroskedastic processes [115]. The classical regression model as-
sumes that the error process εt in the model is homoskedastic. In other words, εt is
assumed to have a constant variance Var(εt) = σ2. Heteroskedasticity is motivated
by the observation that in many financial time series the variance of et appears to
be related to the variance of recent residuals, i.e., Vart(εt) = σ2

t . This phenomenon
which is referred to as volatility clustering [45, 273], indicates that returns Δyt are
not in fact independent but rather, they follow some sort of nonlinear dynamic pro-
cess. In order to detect these second-moment dependencies, we tested according to
[286]. We first calculated the autocorrelations of the squared residuals and com-
puted the LB Q-statistics for the corresponding lags. If there is no autoregressive
conditional heteroskedasticity (ARCH) in the residuals, autocorrelations and partial
autocorrelations should be zero at all lags and the Q-statistics should not be signifi-
cant. In order to find out whether these results can be confirmed by a different test,
we apply the ARCH LM test which tests the null hypothesis that there is no ARCH
up to order q in the residuals. The test statistic is computed from the auxiliary re-
gression

ε2
t = β0 + β1ε2

t−1 + β2ε2
t−2 + . . .+ βqε2

t−q + νt (8.17)

where ε is the residual. The F-statistic is used as an omitted variable test for the joint
significance of all lagged squared residuals.

According to Table 8.4, LB outputs reject the null hypothesis of “No ARCH”
at very high significance levels for all three series of squared ARMA residuals.
The ARCH-LM F-statistics confirms the results for the squared ARMA residuals of
EUR/GBP and EUR/JPY: the null hypothesis of zero heteroskedasticity is clearly
rejected for all selected lags at the 1% level.

The result for EUR/USD is less clear: according to both, Q-statistics and ARCH-
LM testing results, the hypothesis of a constant variance can only be rejected at
higher lags and with slightly lower confidence. This brings us to an important re-
sult, which has also been reported in literature ([99], p. 10): ARCH processes are
leptokurtic, or fat-tailed, relative to the normal. The slightly weaker test statistics
for EUR/USD may perhaps be explained by a skewness and kurtosis that are closer
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Table 8.4 Testing for Heteroskedasticity

Null Test Input Output

EUR/GBP EUR/JPY EUR/USD

No
ARCH LB (ARMA-, k = 1: 20.40, 0.06 k = 1: 82.96, 0.59 k = 1: 0.21, 0.01

Residuals)2 k = 2: 27.86, 0.55 k = 2: 97.67∗∗∗ , 1.18 k = 2: 0.35, 0.19
of Δ yt , k = 3: 52.93∗∗∗ , 0.67 k = 3: 98.78∗∗∗ , 1.58 k = 3: 5.09∗∗ , 0.41
(GARCH- k = 4: 56.64∗∗∗ , 0.69 k = 4: 107.73∗∗∗ , 1.58 k = 4: 5.41∗ , 0.70
Residuals)2 k = 5: 76.08∗∗∗ , 0.70 k = 5: 117.94∗∗∗ , 1.62 k = 5: 11.42∗∗ , 1.34
of Δ yt k = 6: 87.65∗∗∗ , 0.78 k = 6: 131.67∗∗∗ , 6.05 k = 6: 15.64∗∗∗ , 1.73

k = 7: 111.06∗∗∗ , 2.57 k = 7: 132.71∗∗∗ , 6.21 k = 7: 17.12∗∗∗ , 1.77
k = 8: 113.33∗∗∗ , 3.86 k = 8: 137.94∗∗∗ , 6.86 k = 8: 17.84∗∗∗ , 1.77
k = 9: 117.60∗∗∗ , 3.88 k = 9: 141.91∗∗∗ , 6.94 k = 9: 20.37∗∗∗ , 1.96
k = 10: 124.61∗∗∗ , 4.02 k = 10: 142.09∗∗∗ , 8.15 k = 10: 23.13∗∗∗ , 1.99
k = 15: 143.77∗∗∗ , 5.35 k = 15: 151.57∗∗∗ , 10.13 k = 15: 38.50∗∗∗ , 5.76
k = 20: 172.06∗∗∗ , 11.12 k = 20: 209.19∗∗∗ , 12.42 k = 20: 46.12∗∗∗ , 11.42

ARCH ARMA- k = 1: 20.59∗∗∗ , 0.06 k = 1: 86.81∗∗∗ , 0.59 k = 1: 0.21, 0.01
LM Residuals k = 4: 11.91∗∗∗ , 0.18 k = 4: 24.61∗∗∗ , 0.39 k = 4: 1.33, 0.17

of Δ yt , k = 8: 10.15∗∗∗ , 0.48 k = 8: 14.02∗∗∗ , 0.85 k = 8: 2.03∗∗ , 0.21
(GARCH- k = 12 : 7.34∗∗∗ , 0.42 k = 12: 9.74∗∗∗ , 0.73 k = 12: 1.74∗ , 0.32
Residuals)2

of Δ yt

The columns from left to right denote the null hypothesis, name of the test applied, time series
input, and the test statistic output per currency pair. ∗, ∗∗, and ∗∗∗ indicate rejection of the null
hypothesis at the 10%, 5%, and 1% significance level. k denotes the number of lags included in the
test regression

to the ones of a normal distribution. It is possible to remove heteroskedastic ef-
fects within the time series by estimating ARCH models, a family of models that
was introduced by [115] and generalized as GARCH (Generalized ARCH) by [49].
A GARCH model consists of two equations. The first is the conditional mean equa-
tion which has already been estimated in (8.12)–(8.14). The second equation is the
conditional variance equation whose form determines the type of GARCH model.

Academic literature has proposed many different types of GARCH models (see
[50,51,318] for good surveys). The generic GARCH(1,1) model with one error term
and one autoregressive term is

σ2
t = (1−α −β )σ2 + αε2

t−1 + β σ2
t−1 (8.18)

= σ2 + α(ε2
t−1 −σ2)+ β (σ2

t−1 −σ2)

where
σ2 =

ω
1−α −β

(8.19)

with ω denoting the GARCH constant, α ≥ 0 denoting the GARCH error coeffi-
cient, and β ≥ 0 denoting the GARCH lag coefficient. An ordinary ARCH model is
a special case of a GARCH specification in which there are no lagged forecast vari-
ances in the conditional variance equation. The GARCH(1,1) process is the most
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prominent specification for GARCH volatility models, being relatively easy to esti-
mate and generally having robust coefficients that are interpreted naturally in terms
of longterm volatilities and short-run dynamics. Many financial markets, including
stock and bond markets, have been successfully characterized by such models. Since
there is a convergence in term structure forecasts to the long-term average volatility
level, the time series of any GARCH volatility forecast will be stationary. How-
ever, currencies tend to have volatilities that are not as mean-reverting as the ones of
other types of financial assets [151] or that may not mean-revert at all. In this case
the usual stationary GARCH models will not apply. Thus it might be more useful
in the currency markets to use a component GARCH model in order to regain the
convergence in GARCH term structures, by allowing for a time-varying long-term
volatility [117,119,120]. In components GARCH, σ2 is replaced by a time-varying
permanent component given by

qt = ω + ρ(qt−1 −ω)+ ζ (ε2
t−1 −σ2

t−1) (8.20)

Therefore the conditional variance equation in the components GARCH model is

σ2
t = qt + α(ε2

t−1 −qt−1)+ β (σ2
t−1 −qt−1) (8.21)

Equations (8.20) and (8.21) together define the components model. If ρ = 1, the per-
manent component to which long-term volatility forecasts mean-revert is just a ran-
dom walk. While the components model has an attractive specification for currency
markets, parameter estimates may lack robustness and therefore specification has to
pass diagnostic tests. We estimated the component GARCH model for EUR/GBP
returns as

Δyt = −0.0382
(−1.56)

Δyt−1 −0.0462
(−1.86)

Δyt−3 + εt

qt = 3.05E −05
(7.31)

+ 0.9825
(137.39)

(qt−1 −3.05E−05
(7.31)

) (8.22)

+0.0513
(5.59)

(ε2
t−1 −σ2

t−1)

σ2
t = qt + 0.0568

(4.67)
(ε2

t−1 −qt−1)− 0.9092
(−29.01)

(σ2
t−1 −qt−1)

For EUR/USD returns the following model was estimated:

Δyt = −0.6253
(−3.24)

Δyt −1 + 0.5666
(2.79)

εt−1

qt = 4.11E −05
(11.78)

+ 0.9869
(161.67)

(qt−1−4.11E −05
(11.78)

) (8.23)

+0.0227
(3.29)

(ε2
t−1 −σ2

t−1)

σ2
t = qt −0.0348

(−2.02)
(ε2

t−1 −qt−1)+ 0.5296
(−1.33)

(σ2
t−1 −qt−1)



60 8 Statistical Analysis of Daily Exchange Rate Data

The estimates of persistence in the long run component are ρ̂ = 0.9825 for
EUR/GBP and ρ̂ = 0.9869 for EUR/USD, indicating that in both models the
long run component converges very slowly to the steady state. The short run volatil-
ity component also appears to be significantly different from zero in both models.
LB Q-statistics as well as the F-statistics of the ARCH-LM test in Table 8.4 demon-
strate that second-moment dependencies in the squared residuals of the component
GARCH models have now disappeared at any lag. However, this could not be
achieved for EUR/JPY returns. The reason could be that volatility is higher in a
falling EUR/JPY market than it is in a rising market. This observation is known
as leverage effect (see [120]). In other words volatility in the EUR/JPY market is
an asymmetric phenomenon which cannot be captured by a symmetric component
GARCH model that is only able to model ordinary volatility clustering. Conse-
quently, for EUR/JPY it is better to specify an asymmetric component GARCH
model

qt = ω + ρ(qt−1 −ω)+ φ(ε2
t−1 −σ2

t−1)+ θ1z1t

σ2
t = qt + α(ε2

t−1 −qt−1)+ γ(ε2
t−1 −qt−1)dt−1 (8.24)

+β (σ2
t−1 −qt−1)+ θ2z2t

where dt = 1 if εt < 0, and 0 otherwise. In this model positive shocks (εt > 0), and
negative shocks (εt < 0) have different effects on the conditional variance. Positive
shocks have an impact of α , while negative shocks have an impact of (α + γ). If
γ > 0 we say that a leverage effect exists in that negative shocks increase volatility.
If γ �= 0, the news impact is asymmetric. The asymmetric component model for
EUR/JPY returns was estimated as

Δyt = 0.0314
(1.29)

Δyt−1 + εt

qt = 6.75E −05
(5.14)

+ 0.9932
(339.60)

(qt−1 −6.75E−05
(5.14)

)

+0.0369
(5.38)

(ε2
t−1 −σ2

t−1) (8.25)

σ2
t = qt −0.0477

(−1.94)
(ε2

t−1 −qt−1)+ 0.2132
(5.91)

(ε2
t−1 −qt−1)dt−1

−0.0013
(−0.01)

(σ2
t−1 −qt−1)

We observe that in (8.25) the leverage effect term γ is significantly positive and so
it appears that there is indeed an asymmetric effect. Note that it is important that
we use the quasi-likelihood robust standard errors (z-values in brackets) since the
residuals are highly leptokurtic.
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8.2.5 Nonlinearity

Finally, we investigated the existence of nonlinear dependencies within the data.
Hsieh [197] divides the realm of nonlinear dependencies into two broad categories
– additive nonlinear dependence and multiplicative nonlinear dependence. Addi-
tive nonlinearity, also known as nonlinearity-in-mean, enters a process through its
mean or expected value, so that each element in the sequence can be expressed as
the sum of a zero-mean random element and a nonlinear function of past elements.
With multiplicative nonlinearity, or nonlinearity-in-variance, each element can be
expressed as the product of a zero-mean random element and a nonlinear function
of past elements, so that the nonlinearity affects the process through its variance.
Lee [248] examined the performance of a range of tests on nonlinear dependencies
across a variety of data generating processes. They find that no single test dominates
all the others. In the light of this finding, it is advisable to use more than one test.
One of the most general and widely used tests for detecting nonlinear dependencies
in a time series is the BDS test [60]. The BDS statistic has its origins in the correla-
tion dimension plots of [175], which were developed for studying low-dimensional
chaos in time series in physics applications. A chaotic dynamic process is a com-
plex, but deterministic, nonlinear dynamic process. A simple example is the logistic
map yt = 4yt−1(1− yt−1) where yt ∈ (0,1). Such a process may look random, but
is, at least in theory, potentially perfectly predictable. However, financial time series
are more likely to follow nonlinear dynamic processes that are stochastic, rather than
ones that are chaotic and deterministic (additive nonlinearities). The BDS statistic
was developed to detect the existence of any type of either of these two categories
of nonlinear dynamics. Thus if the null hypothesis of i.i.d. is rejected, it is still not
clear which of the two is the reason. For this reason we additionally apply Ramsey’s
RESET Test [335] and the McLeod and Li Test [286]. The Ramsey RESET-Test
checks the null hypothesis of a correctly specified linear model by adding a certain
number n of higher order fitted terms. If the coefficients of these terms are sig-
nificantly different from zero, it can be inferred that the linear model is not good
enough due to existing additive nonlinear dynamics. In contrast, the McLeod and Li
Test whose results have been separately discussed above, is useful for detecting mul-
tiplicative nonlinearities. For EUR/GBP and EUR/JPY, the test results on squared
ARMA residuals, as depicted in Table 8.5, seem to correspond. The McLeod Li
test finds significant multiplicative nonlinearities at the 1% level. In addition, the
Ramsey RESET test identifies additive nonlinearities at the 1% level, which is a
particularly interesting result if we consider that such nonlinearities are generally
thought to be of second order nature. Since these two results are consistent with the
strong rejections of the null hypothesis at the 1% level by the BDS test statistic, it
can be concluded that linear model residuals of the EUR/GBP and EUR/JPY series
are significantly determined by first and second order nonlinearities.

After having removed multiplicative nonlinearities by the component GARCH
models from (8.22) and (8.25), the BDS test statistic still rejects the null hypothe-
sis of i.i.d. for both currency pairs. There are two possible explanations. First, al-
though the McLeod Li Test results suggest the opposite, one might still think that
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Table 8.5 Testing against Linearity

Null Test Input Output

EUR/GBP EUR/JPY EUR/USD

Linearity RESET ARMA-, n = 1: 2.81∗ n = 1: 0.00 n = 1: 0.0015
Residuals n = 2: 6.03∗∗∗ n = 2: 6.64∗∗∗ n = 2: 0.1662
of Δyt n = 3: 4.83∗∗∗ n = 3: 4.68∗∗∗ n = 3: 3.2273∗∗

n = 4: 4.04∗∗∗ n = 4: 4.59∗∗∗ n = 4: 2.4309∗∗

i.i.d. BDS ARMA- m = 2: 0.0099∗∗∗ m = 2: 0.0076∗∗∗ m = 2: −0.0007
Residuals m = 3: 0.0172∗∗∗ m = 3: 0.0178∗∗∗ m = 3: 0.0001
of Δyt m = 4: 0.0235∗∗∗ m = 4: 0.0248∗∗∗ m = 4: 0.0014

m = 5: 0.0268∗∗∗ m = 5: 0.0288∗∗∗ m = 5: 0.0025

GARCH(1,1)- m = 2: 0.0101∗∗∗ m = 2: 0.0076∗∗∗ m = 2: −0.0007
Residuals m = 3: 0.0175∗∗∗ m = 3: 0.0178∗∗∗ m = 3: 0.0002
of Δyt m = 4: 0.0237∗∗∗ m = 4: 0.0248∗∗∗ m = 4: 0.0014

m = 5: 0.0271∗∗∗ m = 5: 0.0288∗∗∗ m = 5: 0.0025

The columns from left to right denote the null hypothesis, name of the test applied, time series
input, and the test statistic output per currency pair. ∗, ∗∗, and ∗∗∗ indicate rejection of the null
hypothesis at the 10%, 5%, and 1% significance level. n denotes the number of fitted terms included
in the test regression. m denotes the number of correlation dimensions for which the test statistic
is computed. For Ramsey’s RESET, the test statistics from the F-test are provided

the component GARCH models are prone to misspecification. Consequently, the re-
jection of the null would be due to excess multiplicative nonlinearities. Hsieh [197]
examined the daily foreign exchange rates versus the USD for five major currencies
– the GBP, the CAD, the DEM, the JPY, and the CHF. All five of these time series
exhibit highly significant BDS statistics even after autocorrelation effects and linear
holiday and day-of-the-week effects have been filtered out, thereby indicating the
existence of strong nonlinear dependencies within these data series. Hsieh further
finds that a GARCH(1,1) model with either a Student’s t or a generalized error dis-
tribution can describe the Canadian Dollar and the Swiss Franc exchange rates very
well and the Deutsche Mark exchange rate reasonably well. While a GARCH(1,1)
model can also account for most of the nonlinear serial dependencies within the
GBP and the JPY exchange rates, such GARCH models do not fit either of these
time series very well. Similarly, [198] finds for value-weighted, size-decile port-
folios of weekly stock returns from 1963 to 1987 that these returns also exhibit
nonlinear serial dependencies and that conditional heteroskedasticity could be the
source of these nonlinearities, but that none of the ARCH models seem to ade-
quately describe these data. However, we argue that based on our previous analyses,
the presence of additive nonlinearities is more likely. Thus, although it is possible
for exchange rates to be linearly uncorrelated and nonlinearly dependent ([197],
p. 340), as is the case for the EUR/JPY time series, it is not only the changing
of variances that is responsible for the rejection of i.i.d. in exchange rate changes
([197], p. 359), but also the changing of the mean. For EUR/USD, contradictive
results were obtained. On the one hand, additive and multiplicative nonlinearities
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could be detected separately by the RESET test and the McLeod Li test. On the
other hand, these results could not be confirmed by the BDS test which would im-
ply that ARMA residuals are i.i.d. The reason for this phenomenon could be found
in the power of the BDS test itself. According to [61], applying the BDS test to
residuals from some preliminary estimation of a fitted model can be problematic
since the resultant “nuisance parameter” problem affects the behavior of the BDS
statistic in finite samples and leads to the BDS test’s having an actual size greater
than its nominal size. This problem is exacerbated and exists even for large samples
when the residuals come from a GARCH-type model, in which case the BDS test
will lack power to reject a false model.

8.2.6 Results

The purpose of above analysis was to examine the degree of randomness of
EUR/GBP, EUR/JPY, and EUR/USD time series statistically, in order to justify
our SVM approach to exchange rate forecasting. In supervised learning, it is as-
sumed that a functional relationship is implicitly reflected within the input/output
pairings. However, this assumption may be questionable if the output data does
not contain structure, but instead is severely corrupted by noise. Then it may be
difficult to identify a reliable functional relationship. It was shown that all three
time series contain statistically significant structure. EUR/GBP exhibits both linear
dependencies, as well as nonlinear dependencies in the first and second moment.
EUR/JPY does not exhibit linear dependencies but is significantly determined by
first and second order nonlinearities. For EUR/USD, linear dependencies could
be detected, but contradictive test results were obtained when examining potential
nonlinearities. Still it remains to be seen whether SVMs are able to exploit nonlinear
relationships out-of-sample and how they compare to linear benchmark models.



Chapter 9
Support Vector Classification

9.1 Binary Classification Problem (BCP)

Computational geometry is the branch of computer science that studies algorithms
for solving geometric problems. The input to a computational-geometry problem
is typically a description of a set of geometric objects, such as a set of points, a
set of line segments, or the vertices of a polygon. The output is a response to a
query about these objects (such as whether any of the lines intersect), or even a new
geometric object (such as a convex hull or a separating hyperplane). The problem
under consideration is the linear separability problem [112]. In the special case of
finding whether two sets of points in general space can be separated, the linear
separability problem becomes the binary classification problem (BCP). The most
general form of the BCP is the case of whether two sets of points in general space
can be separated by k hyperplanes. This problem is referred to as the k-polyhedral
separability problem which has been formulated by [288] as follows:

Problem 9.1. Given a sample of l points X = (x1, . . . ,xl)′, a partition of this sample
into two disjoint sets S1 = {π1, . . . ,πp} ⊂ Rd and sets S2 = {ρ1, . . . ,ρq} ⊂ Rd , and
an integer k, recognize whether there exist k hyperplanes (that is k nonzero vectors
w ∈ Rd and k numbers b) Hj = {z : zT wj = b j}(wj ∈ Rd,b j ∈ R, j = 1, . . . ,k) that
separate the sets S1 and S2 through a boolean formula as follows. Associate with
each hyperplane Hj a boolean variable ξ j. The variable ξ j is true at a point z if
zT wj > b j and false if zT wj < b j. It is not defined at points lying on the hyperplane
itself. A Boolean formula φ = φ(ξ1, . . . ,ξk) separates the sets S1 and S2 if φ is true
at each of the points π1, . . . ,πp and false at each of the points ρ1, . . . ,ρq.

9.2 On the Computational Complexity of the BCP

The BCP is a well examined in computational geometry. Let us first consider the
case of separating S1 and S2 with one hyperplane, i.e., k = 1.

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 65
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 9,
c© Springer-Verlag Berlin Heidelberg 2009
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Problem 9.2. Given a sample of l points X = (x1, . . . ,xl)′, and a partition of this
sample into two disjoint sets S1 = {π1, . . . ,πp}⊂ Rd and sets S2 = {ρ1, . . . ,ρq}
⊂ Rd , recognize whether there exist a hyperplane (that is a nonzero vector w ∈ Rd

and one number b) H = {z ∈ Rd : wT z = b} (characterized by a nonzero vector
w ∈ Rd , and a scalar b) that separates the sets S1 and S2 in the sense that for each
point πi ∈ S1, (πi)T wi < b and for each point ρi ∈ S2,(ρi)T wi > b.

If k = 1, the BCP can be formulated as a linear programing problem and is therefore
solvable in polynomial time. However, when two sets cannot be separated by one
hyperplane, a natural problem is to find the minimum number of hyperplanes that
is required for their separation. For instance, if k = 1 the problem can be stated as
follows.

Problem 9.3. Given a sample of l points X = (x1, . . . ,xl)′, and a partition of this
sample into two disjoint sets S1 = {π1, . . . ,πp} ⊂ Rd and sets S2 = ρ1, . . . ,ρq}⊂ Rd ,
recognize whether there exist two hyperplanes H1 = {z : wT

1 z = b1} and H2 = {z :
wT

2 z = b2}(w1,w2 ∈ Rd;b1,b2 ∈ R) that separates the sets S1 and S2 in the sense
expressed by the following conditions: (i) For each point πi ∈ S1,both (πi)T w1 < b1

and (πi)T w2 < b2, (ii) For each point ρi ∈ S2, either (ρi)T w1 > b1 or (ρi)T w2 > b2.

If k = 2, the problem becomes NP-complete and therefore cannot be solved by a
polynomial time algorithm. This can be proven by reducing the reversible satisfi-
ability problem with six literals per clause (Reversible 6-SAT), which is known to
be NP-complete, to the 2-BCP (see [288]). As a natural extension, the k-linear sep-
arability problem which generalizes the 2-linear separability problem must also be
NP-complete.

Moreover, it has been proven that for every fixed k and d the k-linear separa-
bility problem in Rd can be solved in polynomial time. If two sets S1,S2 ∈ Rd are
separable with k hyperplanes, then there exist k pairs of complementary subsets
Ai,Bi ⊂ S1 ∪S2 (that is Ai ∪Bi = S1 ∪S2, i = 1, . . . ,k) such that Hi separates Ai from
Bi. It thus follows that the separating hyperplanes can be chosen from a finite set.
Each of the candidate hyperplanes is determined by some set of at most d +1 points,
together with a choice of at most d equalities wj = ±1. The number of such sets of
at most d + 1 points is polynomial in the cardinality of S1 ∪ S2. Thus, the number
of combinations of k such sets is also polynomial. It follows that all the relevant
configurations of hyperplanes can be enumerated in polynomial time. Furthermore,
it takes polynomial time to check whether a given configuration actually separates
S1 from S2 which establishes the proof.

Another important result on the computational complexity of the BCP has been
given by [187] who proved that the following problem is NP-hard: given a set of
labeled examples, find the hyperplane that minimizes the number of misclassified
examples both above and below the hyperplane. This result implies that any method
for finding the optimal split is likely to have exponential cost if we assume that
P �= NP. We find this proof very relevant in the present context since classifiers are
usually judged by how many points they classify correctly. Unfortunately, it is com-
putationally infeasible to enumerate all 2d(l,d)T distinct hyperplanes and choose
the best. In order to cope with computational complexity, heuristic search methods



9.3 Supervised Learning 67

have been employed [188, 303]. However, any nonexhaustive deterministic algo-
rithm is prone to getting stuck in a local minimum. A second possibility is to define
error measures for which the problem of finding optimal hyperplanes can be solved
in polynomial time. For example, if one minimizes the sum of distances of mis-
classified examples, then the optimal solution can be found using linear programing
methods.

9.3 Supervised Learning

We approach the task of solving the BCP via machine learning. The field of machine
learning is concerned with the question of how to construct computer programs that
automatically improve with experience [297]. More specifically, we concentrate on
supervised learning which is also known as learning from examples.

Definition 9.1. Let y = f (x) denote an unknown functional relationship of an input
x and an output y. The goal is to learn the function f from a limited number of
training examples. The examples of input/output functionality as expressed by a set

D = ((x1,y1), ...,(xl ,yl)) , x ∈ Rn, y ∈ {−1,+1} (9.1)

are referred to as training data.

In supervised learning, it is therefore assumed that a functional relationship f also
known as the target function is implicitly reflected within the input/output pairings.
The estimate of the target function which is learnt or output by the learning algo-
rithm is known as the solution of the learning problem. In the case of classification
this function is referred to as the decision function h. The decision function parti-
tions the underlying vector space into two sets, one for each class. The classifier will
classify all the points on one side of the decision boundary as belonging to one class
and all those on the other side as belonging to the other class. If the decision func-
tion is a hyperplane, then the classification problem is called linear, and the classes
are called linearly separable. The decision function is chosen from a set of candi-
date functions, also known as hypotheses H, which map from the input space to the
output domain. The choice of the set of hypotheses determines the hypothesis space
and represents the first important concept of the learning strategy. The algorithm
which takes the training data as input and selects a hypothesis from the hypothesis
space is termed learning algorithm and represents the second important ingredient.

In order to obtain a reliable estimate of h by the learning algorithm, several as-
pects must be considered. First, the learnt function should be able to explain the
examples, i.e., h(x1) = y1, h(x2) = y2, h(xl) = yl , as good as possible. Figure 9.1
shows that there is also a second reason. The depicted training examples are per-
fectly explained by the dotted function as opposed to the linear function. Neverthe-
less, one is inclined to have more confidence in the straight line since it is more
likely to generalize better, i.e., work better on unseen examples.
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Fig. 9.1 Linear and nonlinear
classifier

Fig. 9.2 Generalization error
as the sum of estimation and
approximation error
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The complexity of the hypothesis space, i.e., the class of functions which is au-
thorized for solving the BCP, thus influences our confidence in the solution found.
The formalization of this insight provides the core of statistical learning theory
where the generalization ability is commonly quantified with respect to some er-
ror measure to the underlying function in the target space. This error measure is
termed generalization error and represents the sum of two errors which may arise
out of the following two cases as is visualized in Fig. 9.2:
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• Case 1: The hypothesis space is smaller than the target space. As a consequence,
the underlying function may lie outside the hypothesis space. A poor choice of
the model space will result in a model mismatch which is measured by the ap-
proximation error.

• Case 2: The technique for selecting a model from the hypothesis space is not
optimal. As a consequence, there is an error that is attributed to the learning
procedure. This type of error is referred to as estimation error.

If we account for the importance of choosing an appropriate hypothesis space, the
BCP can be summarized as follows. Given a set of decision functions H ∈ {±1}X

and a set of training examples according to (9.1) which are randomly generated ac-
cording to a fixed unknown probability distribution P(x,y), the goal is to choose
a function h∗ which best reflects the relationship between x and y for a set of test
examples, drawn from the same probability distribution. The relationship between
x and y is modeled by a probability distribution P(x,y) which contains as a special
case the possibility of a deterministic relationship y = f (x). The best function is the
one which reproduces the relationship between x and y best on average. This func-
tion can be found by minimizing the expected risk defined as the average probability
of misclassified test examples

R[ f ] =
1
2

∫
| f (x)− y|dP(x,y) (9.2)

However, since the true probability distribution which generates the relationship
between x and y is unknown, an inference procedure is required in order to at least
approximate the function based on the observed training data.

9.4 Structural Risk Minimization

An intuitive and widespread inference procedure is empirical risk minimization
(ERM), which considers the average probability of misclassified training examples
in order to approximate (9.2)

Remp[ f ] =
1
l

l

∑
i=1

| f (xi)− yi| (9.3)

However, it has been argued that ERM is an incomplete inductive principle [295]
since it is does not guarantee high generalization ability: an out-of-sample example
generated by the same probability distribution does not necessarily lie on the dotted
line from Fig. 9.1. In other words, it is problematic to infer from low empirical risk
to low expected risk. In order to do so the capacity/complexity of the hypothesis
space has to be examined which can be measured by the Vapnik–Chervonenkis-
(VC-) Dimension.

The VC-dimension is an important property of a hypothesis space H and can be
defined for a variety of hypotheses spaces. If a given set of l training points can be
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labeled in all possible 2l ways, and for each labeling, a member of the hypothesis
space can be found which correctly assigns those labels, the set of points is said to
be shattered by that set of functions Sp.

Definition 9.2. The VC-dimension for the set of functions Sp is defined as the max-
imum number of training points that can be shattered by Sp.

If the VC-dimension is p, then there exists at least one set of p points that can be
shattered, but in general it will not be true that every set of p points can be shattered.
For instance, suppose that R2 is the space in which the training data live and that for
given separating lines, all points on the one side are assigned the class 1, and all
points on the other side the class −1. According to Fig. 9.3, which is taken from
[361], p. 10, there exist 23 = 8 possibilities to divide 3 training points into 2 classes.
While it is possible to find three points that can be shattered by this set of functions,
it is not possible to find four. Thus the VC-dimension of the set of oriented lines in
R2 is p = 3. Hence p is referred to as the VC-dimension of a hypothesis space Sp, if
and only if there exists a set of points {xi}p

i=1 such that these points can be separated
in all 2p possible configurations and that no set {xi}q

i=1 exists where q > p satisfies
this property.

The trade-off between ERM and hypothesis space capacity as measured by the
VC-dimension is described by probabilistic bounds whose study is a major subject
of statistical learning theory. The meaning of these bounds can be explained as fol-
lows: if it is possible to explain the training data (i.e., to keep the empirical risk low)
by a simple model (i.e., a hypothesis space whose VC-dimension is small compared
to the number of training examples), there is good reason for assuming that the true
functional relationship has been found. Otherwise, if the training data can only be
explained by a hypothesis space of higher VC-dimension, this is not the case, since
the machine may have used its capacity to memorize the single training examples
(overfitting) instead of learning a more compact underlying regularity. Accordingly,
it cannot be expected that out-of-sample examples can be reliably classified. The
principle of structural risk minimization (SRM) uses probabilistic bounds in order to
minimize the expected risk by controlling both empirical risk and VC-dimension in
order to find a function that generalizes well on new unseen examples [85,404,405]

min
Sh

Remp[ f ]+

√√√√ p ln
(

2l
p + 1

)
− ln

(
δ
4

)
l

(9.4)

Fig. 9.3 Vapnik–
Chervonenkis (VC-)
dimension
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In this sense, SRM adapts the complexity of the learning machine to the problem
under consideration and is therefore superior to the traditional ERM principle [176]
which has been used in many traditional neural network approaches.

In some cases, the VC-dimension is equal to the number of parameters of the
hypothesis space which in turn is related to the dimensionality of the observations
xi. Therefore, the number of free parameters is sometimes considered as a measure
of complexity or capacity of a hypothesis space. However, this is not always true
with the negative consequence that the estimation of the capacity of a hypothesis
space cannot be reduced to counting of parameters, but in fact may be a difficult
mathematical problem. On the other hand, the advantage is that one may still hope to
be capable of generalizing even if the data is high-dimensional. A class of learning
algorithms which have confirmed these hopes in various areas are support vector
machines (SVM), or more generally, kernel algorithms.

9.5 Support Vector Machines

The difficulty in estimating the capacity of hypothesis spaces is that measures such
as the VC-Dimension are of combinatorial nature. This leads to a dilemma: good
estimates exist particularly for simple (i.e., linear) hypothesis spaces. However, in
order to analyze complex phenomena in the scientific domain, the goal is often to
construct learning algorithms for nonlinear hypothesis spaces. SVMs are kernel al-
gorithms which solve this dilemma in an elegant way by focusing on two major
principles: in a first step, SVMs map training examples in a high-dimensional fea-
ture space in order to construct a hyperplane which separates the two classes in a
second step. This will be explained in more detail in the following two subsections.

9.5.1 Learning in Feature Space

Definition 9.3. SVMs are kernel algorithms which apply a mapping φ from the orig-
inal input space X into a high-dimensional feature space F

X = ((x1,y1), . . . ,(xl ,yl)) → F = φ(X) = (φ(x1,y1), . . . ,φ(xl ,yl)) (9.5)

where F is a Hilbert space, i.e., a complete vector space provided with an inner
product.

Figure 9.4 shows a conceptual example of such a feature mapping from a two-
dimensional input space to a two dimensional feature space ([85], p. 28). The
data cannot be separated by a linear function in the input space. However, the
transformed feature vectors φ(xi,yi) can be separated by a linear function in fea-
ture space. The decision boundary which is linear in F corresponds to a nonlinear
decision boundary in X .
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Fig. 9.4 Mapping from input space to feature space

A feature map can therefore simplify the classification task. But how can one
identify the possibly best feature map for a given classification task? In the machine
learning community, the task of choosing the most suitable representation of the
data is known as feature selection. The objective of feature selection is to identify
the smallest set of features that still conveys the essential information contained in
the original attributes. This requires reducing the dimensionality of a given dataset
which is beneficial since both the computational and generalization performance can
degrade as the number of features grow. However, transforming the vectors in the
training set D into a higher-dimensional space may incur computational problems.
For very large training sets, the high dimensionality of F makes it very expensive,
both in terms of memory and time, to represent the feature vectors φ(xi,yi) corre-
sponding to the training vectors (xi,yi).

9.5.2 Kernel Functions

For a formal definition of a kernel function we refer to [85], p. 30.

Definition 9.4. A kernel is a symmetric function K : X ×X → R so that for all xi and
x j in X , K〈φ(xi),φ(x j)〉 where φ is a (nonlinear) mapping from the input space X
into the Hilbert space F provided with the inner product K〈., .〉.
The inner product, therefore, does not need to be evaluated in the feature space
which provides a way of addressing the curse of dimensionality and has been
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referred to as the so called kernel trick [360]. However, the computation is still
critically dependent upon the number of training patterns.

A characterization of when a function K〈x,z〉 is a kernel has been provided by
Mercer’s theorem [289] which is founded on reproducing Kernel Hilbert spaces
(RKHS) (see for instance [11, 412]):

Theorem 9.1. (Mercer’s Theorem). Let X be a compact subset of Rn. Suppose K is
a continuous symmetric function such that the integral operator TK : L2(X)→ L2(X)

(TK f )(.) =
∫

X
K(.,X) f (x)dx (9.6)

is positive, that is ∫ ∫
K(x,z) f (x) f (z)dxdz ≥ 0 (9.7)

for all f ∈ L2(X). Then we can expand K〈x,z〉 in a uniformly convergent series (on
X ×X) in terms of TK’s eigenfunctions φ j ∈ L2(X), normalized in such a way that
‖φ j‖L2, and positive associated eigenvalues λ j ≥ 0,

K(x,z) =
∞

∑
j=1

λ jφ j(x)φ j(z) (9.8)

Hence, an inner product in feature space has an equivalent kernel in input space,
K(x,z) = 〈φ(x),φ(z)〉 if K is a symmetric positive definite function that satisfies
Mercer’s conditions as represented by (9.6) and (9.7).

The main attraction of kernel functions is not only the fact that the application
of kernel algorithms has proven to be very successful and includes world records
on famous benchmark data [92, 415]. Kernels are also very interesting from a the-
oretical perspective since they deal with three fundamental problems of empirical
inference:

• Data representation: a kernel K(x,z) induces an imbedding of the data in the
vector space

• Similarity: a kernel K(x,z) can be perceived as a (nonlinear) measure of similar-
ity which can be used for comparing data points

• A-priori-knowledge: the solutions of kernel learning algorithms may be generally
expressed as kernel developments in the training data. For this reason, a kernel
K(x,z) parameterizes the hypothesis space which contains the solution, i.e., the
knowledge which enters the learning process jointly with the training data.

9.5.3 Optimal Separating Hyperplane

Once the training examples are mapped into a high-dimensional feature space, the
goal is to construct a hyperplane in order to separate the two classes. There ex-
ist many possible linear classifiers that can separate the data and therefore solve
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Fig. 9.5 Optimal separating
hyperplane

the BCP. However, there is only one that maximizes the distance between itself
and the nearest data point of each class. This linear classifier is termed the optimal
separating hyperplane or maximum margin classifier. By explicitly maximizing the
margin, the advantage of this sort of classifier is that it reduces the function capac-
ity/complexity and therefore, minimizes bounds on the generalization error. It has
maximal stability because it ensures the lowest probability of misclassification. This
can be explained by using geometric arguments paired with the ideas from Sect. 9.4.
Consider the example in Fig. 9.5 which illustrates the binary classification toy prob-
lem of separating white from black dots.

The data can be separated in different ways with margins indicated by the slim
lines. The optimal separating hyperplane is represented by the fat line. Figure 9.5
also shows how a linear discriminant that separates two classes with a small margin
has more capacity to fit the data than one with a large margin. The capacity of a
linear discriminant is a function of the margin of separation. A hyperplane with a
small margin has more capacity since it can take many possible orientations and still
strictly separate all the data. On the other hand, a hyperplane with a large margin
has limited flexibility to separate the data and has, therefore, a lower capacity than
a small margin one. In general, it is thought that the capacity of a linear function is
being determined by the number of variables. However, the size of the margin is not
directly dependent on the dimensionality of the data. Thus, if the margin is fat, then
the capacity of a function as measured by its VC-dimension can be low even if the
number of variables is very high. As a consequence, problems caused by overfitting
of high-dimensional data are greatly reduced and good performance, even for very
high-dimensional data, can be expected.

Formally, the set of training examples D belonging to two different classes is said
to be optimally separated by the hyperplane

〈w,x〉+ b = 0 (9.9)
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Fig. 9.6 Separating hyper-
plane (w, b) for a two dimen-
sional training set

b
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xj

d(w,b;x)

if it is separated without error and the distance between the closest vector to the
hyperplane is maximal. The parameters (w,b) determine the weight vector and bias,
and must be learned from the data by a given learning methodology. A geometric
interpretation is given in Fig. 9.6 where the hyperplane is the dark line with the
positive region (black dots) above and the negative region (white dots) below. The
vector w defines a direction perpendicular to the hyperplane, while varying the value
of b moves the hyperplane parallel to itself.

The functional margin of a training example (xi,yi) with respect to a hyperplane
(w,b) is described by

dF(w,b;xi) = yi(〈w,xi〉+ b) (9.10)

The distribution of the margins of the examples in a training set S is the functional
margin distribution of (w,b). The minimum of the functional margin distribution is
called the functional margin of (w,b) with respect to S and is given by

dF = min
i

dF(w,b;xi) (9.11)

Equation 9.9 can be simplified without loss of generality by considering a canonical
hyperplane [404], where the parameters w and b are constrained by

min
i
|〈w,xi〉+ b|= 1 (9.12)

It states that the norm of the weight vector should be equal to the inverse of the dis-
tance of the nearest point in the data set to the hyperplane. A separating hyperplane
in canonical form must satisfy the following constraints

d(w,b;xi) = yi(〈w,xi〉+ b)≥ 1 (9.13)
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According to above, the distance d(w,b;xi) of a point xi from the canonical hyper-
plane (w,b) is termed geometric margin of xi from (w,b). The distribution of the
geometric margins of the examples in a training set S is the geometric margin dis-
tribution of (w,b). The minimum of the functional margin distribution is called the
geometric margin of (w,b) with respect to S and is given by

d(w,b;x) = min
i

1
‖w‖d(w,b;xi) (9.14)

and measures the Euclidean distances of the points from the decision boundary in
the input space. Thus, the geometric margin d will equal the functional margin if
the weight vector is a unit vector. Figure 9.6 illustrates the geometric margin at two
points xi and x j with respect to a hyperplane in two dimensions. The maximum geo-
metric margin over all hyperplanes is referred to as the margin ξ of a training set S.
A hyperplane realizing this maximum is known as a maximum margin hyperplane.
The optimal hyperplane is given by maximizing the margin

ξ (w,b) = min
xi:yi=−1

d(w,b;xi)+ min
xi:yi=−1

d(w,b;xi)

= min
xi:yi=−1

(|〈w,xi〉+ b|)
‖w‖ + min

xi:yi=+1

(|〈w,xi〉+ b|)
‖w‖ (9.15)

=
1

‖w‖
(

min
xi:yi=−1

|〈w,xi〉+ b|+ min
xi:yi=+1

|〈w,xi〉+ b|
)

=
2

‖w‖
Hence, the hyperplane that optimally separates the data is the one that minimizes

Φ(w) =
1
2
‖w‖2 (9.16)

It is independent of b because provided (9.13) is satisfied (i.e., it is a separating
hyperplane), changing b will move it in the normal direction to itself. Accordingly,
the margin remains unchanged but the hyperplane is no longer optimal in that it
will be nearer to one class than the other. To consider how minimizing (9.16) is
equivalent to implementing the SRM principle, suppose that the following bound
holds,

‖w‖ < A (9.17)

Then from (9.13) and (9.14),

d(w,b;x) ≥ 1
A

(9.18)

Accordingly, the hyperplanes cannot be nearer than (1/A) to any of the data points.
This reduces the amount of possible hyperplanes and hence, the capacity. The
VC-dimension p, of the set of canonical hyperplanes in n dimensional space is
bounded by

p ≤ min
[
R2A2,n

]
+ 1 (9.19)
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where R is the radius of a hypersphere enclosing all the data points. Hence, min-
imizing (9.16) is equivalent to minimizing an upper bound on the VC-dimension.
The solution to the optimization problem of (9.16) under the constraints of (9.13) is
given by the saddle point of the Lagrange function [296].

Φ(w,b,α) =
1
2
‖w‖2 −∑

i=1
αi (yi[〈w,xi〉+ b]−1) (9.20)

where α are the Lagrange multipliers. (9.20) has to be minimized with respect to w
and b, and maximized with respect to α ≥ 0. Classical Lagrangian duality enables
the primal problem, (9.20), to be transformed to its dual problem, which is easier to
solve. The dual problem is given by

max
α

W (α) = max
α

(
min
w,b

Φ(w,b,α)
)

(9.21)

The minimum with respect to w and b of the Lagrange function Φ is given by

∂Φ
∂b

= 0 ⇒
l

∑
i=1

αiyi = 0 (9.22)

∂Φ
∂w

= 0 ⇒ w =
l

∑
i=1

αiyixi

Hence, from (9.20)–(9.22), the dual problem is

max
α

W (α) = max
α

−1
2

l

∑
i=1

l

∑
j=1

αiα jyiy j〈xi,x j〉+
l

∑
k=1

αk (9.23)

The solution to the problem is given by

α∗ = argmin
α

−1
2

l

∑
i=1

l

∑
j=1

αiα jyiy j〈xi,x j〉−
l

∑
k=1

αk

w.r.t. (9.24)

αi ≥ 0, i = 1, . . . , l

l

∑
j=1

α jy j = 0

where the sign of the coefficient of xi is given by the classification of yi, the αi are
positive values proportional to the number of times misclassification of xi has caused
the weight to be updated. Points that have caused fewer mistakes will have smaller
αi, whereas difficult points will have larger values. Thus, in the case of nonseparable
data, the coefficients of misclassified points must grow indefinitely.
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Solving (9.24) determines the Lagrange multipliers. The optimal separating hy-
perplane is then given by

w∗ =
l

∑
i=1

αiyixi (9.25)

b∗ = −1
2
〈w∗,xr + xs〉

where xr and xs are any support vector from each class satisfying

αr,αs > 0, yr = −1, ys = +1 (9.26)

The hard classifier is then

f (x) = sgn(〈w∗,x〉+ b) (9.27)

Alternatively, a soft classifier may be used which linearly interpolates the margin

f (x) = h(〈w∗,x〉+ b), where h(z) =

⎧⎨
⎩

−1 : z < −1
z : −1 ≤ z ≤ 1
1 : z > 1

(9.28)

This may be more appropriate than the hard classifier of (9.27) in cases where the
training data is linearly separable except for some exceptions. The soft classifier
produces a real valued output between −1 and 1 when the classifier is queried within
the margin, where no training data resides. From the Karush–Kuhn–Tucker (KKT)
conditions

αi(yi[〈w,xi〉+ b]−1) = 0, i = 1, . . . , l (9.29)

and hence only the points xi which satisfy

yi[〈w,xi〉+ b] = 1 (9.30)

will have nonzero Lagrange multipliers. These points are termed support vectors
(SV). If the data is linearly separable all the SV will lie on the margin and hence the
number of SV can be very small. Consequently, the hyperplane is determined by a
small subset of the training set; the other points could be removed from the train-
ing set and recalculating the hyperplane would produce the same answer. Hence,
SVM can be used to summarize the information contained in a data set by the SV
produced. If the data is linearly separable the following equality will hold

‖w‖2 =
l

∑
i=1

αi = ∑
i∈SV

αi = ∑
i∈SV

∑
j∈SV

αiα jyiy j〈xi,x j〉 (9.31)

Hence, from (9.19) the VC dimension of the classifier is bounded by

p ≤ min

[
R2 ∑

i∈SV

,n

]
+ 1 (9.32)



9.5 Support Vector Machines 79

and if the training data X is normalized to lie in the unit hypersphere, the VC-
dimension of the classifier is bounded by

p ≤ 1 + min

[
∑

i∈SV

,n

]
(9.33)

9.5.4 Generalized Optimal Separating Hyperplane

So far the discussion has been restricted to the case where the training data is
(strictly) linearly separable. However, this must not be the case. Figure 9.7 shows
that there is no linear classifier that is able to separate the two classes without error
in the input space. Linear separation of input points does, therefore, not work well:
a reasonably sized margin requires misclassifying four points.

There are two approaches to generalizing the problem, which are dependent upon
prior knowledge of the problem and an estimate of the noise on the data. In the case
where it is expected or possibly even known that a hyperplane can correctly separate
the data, it is appropriate to focus on a different measure of the margin distribution,
an additional cost function associated with misclassification, which generalizes the
notion of margin to account for a more global property of the training sample.

Alternatively, a more complex function can be used to describe the boundary (see
Sect. 9.5.2). To enable the optimal separating hyperplane method to be generalized,
[83] introduced a nonnegative margin slack variable ζi of an example (xi,yi) with
respect to the hyperplane (w,b) as

ζi = ζ ((xi,yi),(w,b),d(w,b;x)) (9.34)

= max(0,d(w,b;x)− yi(〈w,xi〉+ b))

Fig. 9.7 Generalized optimal
separating hyperplane

ζi

ζ j

d(w,b;xj)
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given a fixed target margin d(w,b;x). Informally, this quantity measures how much
a point fails to have a margin of d(w,b;x) from the hyperplane. If ζi > d(w,b;x),
then xi is misclassified by (w,b). The norm ‖ζ‖2 measures the amount by which the
training set fails to have a margin d(w,b;x) and takes into account any misclassifi-
cations of the training data. Figure 9.7 shows the size of the margin slack variables
for two misclassified points for a hyperplane with unit norm. All of the other points
in the figure have their slack variable equal to zero since they have a positive margin
of more than d(w,b;x).

The slack variables are associated with a penalty function

Fσ (ζ ) = ∑
i

ζ σ
i , σ > 0 (9.35)

where ζi are a measure of the classification errors. The optimization problem is
to minimize the classification error as well as minimizing the bound on the VC-
dimension of the classifier. The constraints of (9.13) are modified for the nonsepa-
rable case to

yi(〈w,xi〉+ b)≥ 1− ζi (9.36)

where ζi ≥ 0. The generalized optimal separating hyperplane is determined by the
vector w, that minimizes the function

Φ(w,ζ ) =
1
2
‖w‖2 +C∑

i

ζi (9.37)

where C is a given value subject to the constraints of (9.36). The solution to the
optimization problem of (9.37) under the constraints of (9.36) is given by the saddle
point of the Lagrange function [296]

Φ(w,b,α,ζ ,β ) =
1
2
‖w‖2 +C∑

i
ζi

−
l

∑
i=1

αi(yi[wT xi + b]−1 + ζi) (9.38)

−
l

∑
j=1

βiζi

where α , β are the Lagrange multipliers. The Lagrangian has to be minimized with
respect to w, b, x, and maximized with respect to α , β . As before, classical La-
grangian duality enables the primal problem, (9.37), to be transformed to its dual
problem. The dual problem is given by,

max
α

W (α,β ) = max
α ,β

W

(
min
w,b,ζ

Φ(w,b,α,ζ ,β )
)

(9.39)



9.5 Support Vector Machines 81

The minimum with respect to w, b, ζ of the Lagrangian F is given by

∂Φ
∂b

= 0 ⇒
l

∑
i=1

αiyi = 0

∂Φ
∂w

= 0 ⇒ w =
l

∑
i=1

αiyixi (9.40)

∂Φ
∂ζ

= 0 ⇒ αi + βi = C

Hence, from (9.38)–(9.40), the dual problem becomes

max
α

W (α) = max
α

− 1
2

l

∑
i=1

l

∑
j=1

αiα jyiy j〈xi,x j〉+
l

∑
k=1

αk (9.41)

and the solution to the problem is given by,

α∗ = arg min
α

1
2

l

∑
i=1

l

∑
j=1

αiα jyiy j〈xi,x j〉−
l

∑
k=1

αk

w.r.t. (9.42)

0 ≤ αi ≤C, i = 1, . . . , l
l

∑
j=1

α jy j = 0

9.5.5 Generalization in High Dimensional Feature Space

There are some restrictions on the nonlinear mapping that can be employed (see
Sect. 9.5.1). The optimization problem of (9.42) becomes,

α∗ = arg min
α

1
2

l

∑
i=1

l

∑
j=1

αiα jyiy jK〈xi,x j〉−
l

∑
k=1

αk

w.r.t. (9.43)

0 ≤ αi ≤C, i = 1, . . . , l
l

∑
j=1

α jy j = 0

(9.44)

where K(x,x′) is the kernel function performing the nonlinear mapping into fea-
ture space, and the constraints are unchanged. Solving Problem 9.43 determines
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the Lagrange multipliers, and a hard classifier implementing the optimal separating
hyperplane in the feature space is given by

f (x) = sgn

(
∑

i∈SV

αiyiK(xi,x)+ b

)
(9.45)

where

〈w∗,x〉 =
l

∑
i=1

αiyiK(xi,x) (9.46)

b∗ = −1
2

l

∑
i=1

αiyi[K(xi,xr)+ K(xi,xr)]

The bias is computed using two support vectors, but can be computed using all the
SV on the margin for stability [406]. If the kernel contains a bias term, the bias can
be accommodated within the kernel, and hence the classifier is

f (x) = sgn

(
∑

i∈SV

αiK(xi,x)

)
(9.47)

Many employed kernels have a bias term and any finite Kernel can be made to
have one [158]. This simplifies the optimization problem by removing the equality
constraint of (9.43). However, even though SVMs implement the SRM principle and
hence can generalize well, a choice of the kernel function is necessary to produce
a classification boundary that is topologically appropriate. It is always possible to
map the input space into a dimension greater than the number of training points and
produce a classifier with no classification errors on the training set. However, this
will generalize badly since the function learnt is very complex.



Chapter 10
Description of Empirical Study and Results

In the following two sections we will focus on the task of predicting a rise (labeled
“+1”) or fall (labeled “−1”) of daily EUR/GBP, EUR/JPY, and EUR/USD exchange
rate returns. To predict that the level of the EUR/USD, for instance, is close to the
level today, is trivial. On the contrary, to determine if the market will rise or fall
is much more interesting for a currency trader whose primary focus is to buy the
base currency if the exchange rate went down and to sell the base currency if the
exchange rate went up.

All of the following experiments were performed on a PC equipped with an In-
tel Pentium M Processor 750 and running at 1,866 MHz with 1,024 MB of system
memory under the Windows XP operating system. The simulations were programed
in the R environment [201], an open source and high-level programing language that
provides powerful tools for statistical analysis. The R packages 1071 [70] and kern-
lab [220] were adopted for the SVM model fitting. These packages use the SMO
algorithm that is implemented by the LIBSVM tool [70].

10.1 Explanatory Dataset

Exchange rate forecasting methods generally fall into one of the following three
categories: fundamental forecasts, technical forecasts, or mixed forecasts. The fore-
casting approach that we adopted is what we call a statistical or purely data driven
approach that borrows from both fundamental and technical analysis principles. It
is fundamental since it considers relationships between the exchange rate and other
exogenous financial market variables. However, our approach also has a technical
component: it is somewhat irrational in a financial context since it depends heav-
ily on the concepts of statistical inference. The fact that the input data is publicly
available lets us challenge the EMH in its semi-strong version. The procedure of
obtaining an exploratory dataset was divided into two phases according to [327]:

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 83
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 10,
c© Springer-Verlag Berlin Heidelberg 2009
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1. Specifying and collecting a large amount of data
2. Reducing the dimensionality of the dataset by selecting a subset of that data for

efficient training (feature extraction)

Since there is a trade-off between accuracy as represented by the entire dataset and
the computational overheads of retaining all parameters without application of fea-
ture extraction/selection techniques, the data selection procedure is also referred to
as the curse of dimensionality which was first noted by [32]. The merit of feature
extraction is to avoid multicollinearity, a problem that is common to all sorts of
regression models. If multicollinearity exists, explanatory variables have a high de-
gree of correlation between themselves meaning that only a few important sources
of information in the data are common to many variables. In this case, it may not be
possible to determine their individual effects.

10.1.1 Phase One: Input Data Selection

The obvious place to start selecting data, along with the EUR/GBP, EUR/JPY, and
EUR/USD is with the other leading traded exchange rates. In addition, we selected
related financial market data, including stock market price indices, 3-month interest
rates, 10-year government bond yields and spreads, the price of Brent Crude oil, and
the prices of silver, gold, and platinum. Due to the bullish commodity markets, we
also decided to include daily prices of assorted metals being traded on the London
Metal Exchange, as well as agricultural commodities. Fundamental variables hardly
play a role in daily FX movements and were disregarded. The reason is that such
macroeconomic data are collected on a monthly, quarterly, or annual basis only and
that it is thus believed to be more suitable for longer-run exchange rate predictions.
All data were obtained from Bloomberg.

All the series span a 7-year time period from 1 January 1997 to 31 December
2004, totaling 2,349 trading days. The data is divided into two periods: the first pe-
riod runs from 1 January 1997 to 31 August 2003 (1,738 observations), is used for
model estimation and is classified in-sample. The second period, from 1 Septem-
ber 2003 to 31 December 2004 (350 observations), is reserved for out-of-sample
forecasting and evaluation. Missing observations on bank holidays were filled by
linear interpolation, which is a quick and easy approach to smoothen out these
irregularities.

10.1.2 Phase Two: Dimensionality Reduction

Having collected an extensive list of candidate variables, the explanatory viability
of each variable was evaluated. The aim was to remove those input variables that
do not contribute significantly to model performance. For this purpose, we took a
two-step procedure.
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First, pair-wise Granger Causality tests [170] with lagged values until k = 20
were performed on stationary I(1) candidate variables. The Granger approach to
the question of whether an independent variable x causes a dependent variable y is
to see how much of the current y can be explained by past values of y and then to
see whether adding lagged values of x can improve the explanation. The variable y
is said to be Granger-caused by x if x helps in the prediction of y, or equivalently if
the coefficients on the lagged x’s are statistically significant. The pair-wise Granger
causality test is carried out by running bivariate regressions of the form

yt = α0 + α1yt−1 + . . .+ αlyt−l + β1xt−1 + . . .+ βlxt−l + εt (10.1)

xt = α0 + α1xt−1 + . . .+ αlxt−l + β1yt−1 + . . .+ βlyt−l + ut

for all possible pairs of (x,y) series in the group. In general it is better to use more
rather than fewer lags in the test regressions, since the theory is couched in terms of
the relevance of all past information. It is also important that the lag length picked
corresponds to reasonable beliefs about the longest time over which one of the vari-
ables could help predict the other. The reported F-statistics are the Wald statistics
for the joint hypothesis:

β1 = β2 = . . . = βl = 0 (10.2)

for each equation. The null hypothesis is that x does not Granger-cause y in the
first regression and that y does not Granger-cause x in the second regression. The
major advantage of the Granger causality principle is that it is able to distinguish
causation from correlation. Hence the known problem of spurious correlations can
be avoided [173]. Still, it is important to note that the statement “x Granger causes
y” does not imply that y is the effect or the result of x. Granger causality measures
precedence and information content but does not by itself indicate causality in the
more common use of the term. Tables 10.1–10.3 summarize the variables that were
found to be relevant for explaining the single exchange rates as can be seen by the
values of the F-statistic which leads at least to a rejection of the null hypothesis at
the 10% significance level. Note that only the first regression from (10.1) has to be
considered in our context.

We find that EUR/GBP is Granger-caused by 11 variables, namely

• EUR/USD, JPY/USD, and EUR/CHF exchange rates
• IBEX, MIB30, CAC, and DJST stock market indices
• The prices of platinum (PLAT) and nickel (LMNIDY)
• Ten-year Australian (GACGB10) and Japanese (GJGB10) government bond

yields

Further, we identify ten variables that significantly Granger-cause EUR/JPY,
namely

• EUR/CHF exchange rate
• IBEX stock market index
• The price of silver (SILV)
• Australian 3-month interest rate (AU0003M)
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Table 10.1 Granger causality test results for EUR/GBP (k = 20)

Null hypothesis F-Statistic

EUR/USD does not Granger cause EUR/GBP 1.4366∗
GACGB10 does not Granger cause EUR/GBP 1.4297∗
GJGB10 does not Granger cause EUR/GBP 1.4250∗
IBEX does not Granger cause EUR/GBP 1.7812∗∗
JPY/USD does not Granger cause EUR/GBP 1.6432∗∗
LMNIDY does not Granger cause EUR/GBP 1.4927∗
MIB30 does not Granger cause EUR/GBP 1.9559∗∗∗
PLAT does not Granger cause EUR/GBP 1.4732∗
CAC does not Granger cause EUR/GBP 1.7350∗∗
CHF/USD does not Granger cause EUR/GBP 1.6131∗∗
DJST does not Granger cause EUR/GBP 1.8096∗∗

Table 10.2 Granger causality test results for EUR/JPY (k = 20)

Null hypothesis F-Statistic

GACGB10 does not Granger cause EUR/JPY 1.6036∗∗
GDBR10 does not Granger cause EUR/JPY 1.5556∗
GJGB10 does not Granger cause EUR/JPY 1.7328∗∗
GSWISS10 does not Granger cause EUR/JPY 1.4303∗
GT10 does not Granger cause EUR/JPY 1.4502∗
IBEX does not Granger cause EUR/JPY 1.5328∗
SILV does not Granger cause EUR/JPY 1.5305∗
AU0003M does not Granger cause EUR/JPY 2.1236∗∗∗
BPSW10-GUKG10 does not Granger cause EUR/JPY 1.5779∗∗
EUR/CHF does not Granger cause EUR/JPY 2.1408∗∗∗

Table 10.3 Granger causality test results for EUR/USD (k = 20)

Null hypothesis F-Statistic

LMSNDY does not Granger cause EUR/USD 1.4905∗
LMZSDY does not Granger cause EUR/USD 1.5742∗
KC1 does not Granger cause EUR/USD 1.6184∗∗
LMCADY does not Granger cause EUR/USD 1.5256∗
SPX does not Granger cause EUR/USD 2.1828∗∗∗
AUD/USD does not Granger cause EUR/USD 1.4324∗
CO1 does not Granger cause EUR/USD 1.8744∗∗

• Australian (GACGB10), German (GDBR10), Japanese (GJGB10), Swiss
(GSWISS10), and US (GT10) government bond yields

• UK bond spreads (BPSW10-GUKG10)

For EUR/USD, Granger causality tests yield seven significant explanatory
variables:

• AUD/USD exchange rate
• SPX stock market index
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• The prices of copper (LMCADY), tin (KMSNDY), zinc (LMZSDY), coffee
(KC1), and cocoa (CO1)

Second, we carried out linear principal component analysis (PCA) on Granger
caused explanatory datasets in order to check for computational overheads. PCA is
generally considered as a very efficient method for dealing with the problem of mul-
ticollinearity. It allows for reducing the dimensionality of the underlying dataset by
excluding highly intercorrelated explanatory variables. This results in a meaningful
input for the learning machine.

The procedure is based on an eigenvalue and eigenvector analysis of V = X ′X/T ,
the k× k symmetric matrix of correlations between the variables in X . Each prin-
cipal component is a linear combination of these columns where the weights are
chosen in such a way that

• The first principal component explains the greatest amount of the total variation
in X , the second component explains the greatest amount of the remaining vari-
ation, and so on

• The principal components are uncorrelated with each other

The results of the PCAs for the respective exchange rates are given by
Tables 10.4–10.6. The column headed by “C1” and “V1” corresponds to the first
principal component, “C2” and “V2” denote the second principal component and
so on. The row labeled “Eigenvalue” reports the eigenvalues of the sample second
moment matrix in descending order from left to right. The “Variance Prop.” row
displays the variance proportion explained by each principal component. This value
is simply the ratio of each eigenvalue to the sum of all eigenvalues. The “Cumula-
tive Prop.” row displays the cumulative sum of the Variance Prop. row from left to
right and is the variance proportion explained by principal components up to that

Table 10.4 PCA test results for EUR/GBP

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Eigenvalue 3.69 1.37 1.09 1.01 0.98 0.95 0.84 0.61 0.21 0.20 0.05
Var. Prop. 0.34 0.12 0.10 0.09 0.09 0.09 0.08 0.06 0.02 0.02 0.01
Cum. Prop. 0.34 0.46 0.56 0.65 0.74 0.83 0.90 0.96 0.98 0.99 1.00

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

EUR/USD 0.03 −0.20 −0.04 0.68 −0.64 0.03 −0.29 −0.01 0.02 −0.01 −0.01
GACGB10 0.07 0.20 −0.70 0.02 −0.30 0.02 −0.61 0.07 0.01 −0.04 0.00
GJGB10 0.05 0.26 −0.61 −0.11 −0.43 −0.09 0.58 0.15 0.01 0.01 0.00
IBEX 0.47 0.08 0.09 −0.04 −0.05 −0.02 −0.02 0.07 −0.61 −0.61 −0.11
JPY/USD −0.08 0.66 0.14 −0.11 −0.25 −0.07 −0.18 −0.66 0.02 −.01 0.00
LMNIDY 0.08 0.27 −0.02 0.48 0.33 0.69 0.30 −0.10 0.00 −0.02 0.00
CAC 0.49 0.06 0.06 −0.03 −0.02 −0.01 −0.05 0.02 −0.09 0.60 −0.61
MIB30 0.47 −0.05 0.10 −0.05 −0.02 −0.03 −0.01 0.06 0.79 −0.37 −0.08
PLAT −0.02 0.51 0.29 −0.08 −0.18 0.17 −0.21 0.71 0.01 0.04 0.00
CHF/USD −0.20 0.50 0.29 −0.08 −0.18 0.17 −0.21 0.71 0.01 0.04 0.00
DJST 0.502 0.06 0.07 −0.02 −0.02 −0.01 −0.04 0.03 −0.08 0.35 0.78
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Table 10.5 PCA test results for EUR/USD

C1 C2 C3 C4 C5 C6 C7

Eigenvalue 1.76 1.07 0.99 0.97 0.91 0.75 0.55
Var. Prop. 0.25 0.15 0.14 0.14 0.13 0.11 0.08
Cum. Prop. 0.25 0.40 0.55 0.68 0.81 0.92 1.00

V1 V2 V3 V4 V5 V6 V7

LMSNDY 0.49 −0.02 −0.15 0.21 0.05 0.80 −0.22
LMZSDY 0.56 −0.08 −0.07 0.11 −0.01 −0.55 −0.60
KC1 0.03 −0.44 −0.67 0.59 0.01 0.01 0.04
LMCADY 0.60 −0.01 −0.02 0.10 0.02 −0.19 0.77
SPX 0.21 −0.23 0.60 −0.51 −0.52 0.13 −0.04
AUDUSD 0.18 0.52 0.16 −0.56 0.59 0.03 −0.06
CO1 0.05 0.69 −0.37 −0.10 −0.61 −0.01 −0.01

Table 10.6 PCA test results for EUR/JPY

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Eigenvalue 2.30 1.22 1.05 1.02 1.01 0.96 0.79 0.67 0.65 0.33
Var. Prop. 0.23 0.12 0.11 0.10 0.10 0.10 0.08 0.07 0.07 0.03
Cum. Prop. 0.23 0.35 0.46 0.56 0.66 0.76 0.84 0.90 0.97 1.00

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

GACGB10 0.35 0.45 0.12 −0.26 −0.14 0.08 −0.03 −0.09 −0.75 −0.06
GDBR10 0.55 −0.08 −0.15 0.25 −0.00 0.04 −0.09 −0.06 0.17 −0.75
GJGB10 0.16 −0.01 −0.06 −0.49 −0.18 −0.81 −0.13 0.04 0.17 −0.02
GSWISS10 0.50 −0.04 −0.17 0.13 0.05 0.03 −0.16 −0.58 0.16 0.55
GT10 0.45 −0.10 0.10 0.31 −0.12 −0.06 0.01 0.74 −0.05 0.35
IBEX 0.25 −0.41 0.17 −0.31 0.24 0.03 0.76 −0.07 −0.05 0.00
SILV 0.00 −0.12 −0.30 −0.24 −0.82 0.35 0.17 0.01 0.14 0.03
AU0003M 0.16 0.60 0.34 −0.27 0.10 0.25 0.10 0.11 0.57 0.02
BPSW10-
GUKG10

−0.06 −0.02 0.70 0.39 −0.44 −0.23 0.13 −0.30 0.03 −0.05

EURCHF 0.08 −0.48 0.44 −0.38 0.03 0.30 −0.57 0.03 −0.01 −0.02

order. The second part of the output table displays the eigenvectors corresponding to
each eigenvalue. The first principal component is computed as a linear combination
of the series in the group with weights given by the first eigenvector. The second
principal component is the linear combination with weights given by the second
eigenvector and so on. Per cumulative R2, which we required to be not lower than
0.99, significant multicollinearity could not be detected for any dependent variable.
Consequently, the datasets were not reduced any further and all variables were kept.
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10.2 SVM Model

We use the C-support vector classification (C-SVC) algorithm as described in [83,
405] and implemented in R packages “e1071” [70] and “kernlab” [220]:

Problem 10.1. Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and a
vector y ∈ Rl such that y ∈ {+1,−1}, C-SVC solves the following problem:

min
w,b,ζ

1
2

wT w+C
l

∑
i=1

ζi

w.r.t.

yi
(
wT φ(xi)+ b

)≥ 1− ζi (10.3)

ζi ≥ 0, i = 1, . . . , l

Its dual representation is

min
α

1
2

αT Qα − eT α

w.r.t. (10.4)

0 ≤ αi ≤C, i = 1, . . . , l

yT α = 0

where e is the vector of all ones, C is the upper bound, Q is an l× l positive semidef-
inite matrix, Qi j ≡ yiy jK(xi,x j), and K(xi,x j) ≡ φ(xi)T φ(x j) is the kernel, which
maps training vectors xi into a higher dimensional, inner product feature space by
the function φ . The decision function is

f (x) = sgn

(
l

∑
i=1

yiy jK(xi,x)+ b

)
(10.5)

10.3 Sequential Minimization Optimization (SMO) Algorithm

Training of a SVM requires the solution of a quadratic programing problem (QP),
i.e., maximizing a convex quadratic form subject to linear constraints. Such convex
quadratic programs have no local maxima and their solution can always be found
analytically. Furthermore, the dual representation of the problem showed how train-
ing can be successfully affected even in very high dimensional feature spaces. The
problem of minimizing differentiable functions of many variables has been widely
studied, especially in the convex case, and many standard approaches can be directly
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applied to SVM training.1 For large learning problems with many training examples,
however, the constrained quadratic optimization approach to solving SVMs quickly
becomes intractable in terms of time and memory requirements. For instance, a
training set of 50,000 examples will yield a Q-matrix with 2.5 billion elements,
which cannot fit easily into the memory of a standard computer. Consequently, tra-
ditional optimization algorithms, such as Newton or Quasi-Newton, cannot be di-
rectly applied. Several researchers have proposed decomposition methods to solve
this optimization problem [55, 207, 222, 274, 317,326,404].

Vapnik et al. describe a “chunking” method [55] using the fact that the solution
of a QP problem is the same if we remove the rows and columns of the matrix Q that
correspond to zero Lagrange multipliers. Thus, a large QP problem can be decom-
posed into a series of smaller QP subproblems in which all of the nonzero Lagrange
multipliers are identified and all zero Lagrange multipliers are discarded. After all
the nonzero Lagrange multipliers in Q have been identified, the last step then solves
the remaining QP problem. While chunking reduces the size of the matrix from N2

(where N is the number of training examples) to the number of nonzero Lagrange
multipliers, it still does not handle large scale training problems since the matrix
still may not fit in the memory. Osuna [317] proposed a new decomposition algo-
rithm for solving the SVM QP problem by showing that a large QP problem can
be broken into a series of subproblems by maintaining a small working set. At each
iteration step one or more examples that violate the KKT conditions are added to the
smaller QP. Osuna’s decomposition algorithm uses a constant size matrix for every
subproblem and adds/subtracts one example at every step. Since the working set is
usually small, this method does not have memory problems. However, a numerical
QP solver is still required which raises numerical precision issues. Joachims [207]
improves Osuna’s methods with a strategy to select good working sets.

The algorithm that is opted for in the underlying context, however, is Platt’s se-
quential minimization optimization (SMO) algorithm [326]. SMO is based on the
idea that the quadratic programing problems can be broken up into a series of small-
est possible QP problems which can be solved analytically. SMO solves the smallest
possible optimization problem at every step, by

• Creating working sets of size 2 (involving two Lagrange multipliers) with a set
of heuristics

• Jointly optimizing the two Lagrange multipliers

The main advantage is that the solution for the multipliers at each step is analytic
and no QP solver is used. By avoiding the large matrix computation, SMO can
handle very large training sets in between linear and quadratic time with a linear

1 The first iterative algorithm for separating points from two populations by means of a hyperplane
is the perceptron algorithm proposed by [345]. This algorithm starts with an initial weight vector
w0 = 0 and adapts it each time a training point is misclassified by the current weights. In its primal
form the algorithm updates the weight vector and bias directly whereas in its dual form the final
hypothesis is a linear combination of the training points. This procedure is guaranteed to converge
provided there exists a hyperplane (i.e., there is a hyperplane whose geometric margin is positive)
that correctly classifies the training data. In this case the data are said to be linearly separable. If
no such hyperplane exists the data are said to be nonseparable.
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amount of memory in the training set size. For comparison, standard approaches
such as chunking and Osuna’s algorithm can be on the order of cubic time. SMO
can therefore be seen as a special case of the Osuna decomposition algorithm, which
at the same time improves the latter method. Comparative testing against other al-
gorithms, done by Platt, has shown that SMO is often much faster and has better
scaling properties [326].

10.4 Kernel Selection

Ever since the introduction of the SVM algorithm, the question of choosing the
kernel has been considered as very important. This is largely due to the effect that
the performance highly depends on data preprocessing and less on the linear clas-
sification algorithm to be used. How to efficiently find out which kernel is optimal
for a given learning task is still a rather unexplored problem and subject to intense
current research. One approach is to use cross validation to select the parameters
of the kernels and SVMs [104, 291] with varying degrees of success. The notion
of Kernel target alignment [86, 87] uses the objective function of kernels spanned
by the eigenvectors of the kernel matrix of the combined training and test data. The
semidefinite programing (SDP) approach [241] uses a more general class of kernels,
namely a linear combination of positive semidefinite matrices. They minimize the
margin of the resulting SVM using a SDP for kernel matrices with constant trace.
Similar to this, [56] further restrict the class of kernels to the convex hull of the ker-
nel matrices normalized by their trace. This restriction, along with minimization of
the complexity class of the kernel, allows them to perform gradient descent to find
the optimum kernel. Using the idea of boosting, [84] optimize where are the weights
used in the boosting algorithm. The class of base kernels is obtained from the nor-
malized solution of the generalized eigenvector problem. Another possibility is to
learn the kernel using Bayesian methods by defining a suitable prior, and learning
the hyperparameters by optimizing the marginal likelihood [417, 418]. As an ex-
ample of this, when other information is available, an auxiliary matrix can be used
with the EM algorithm for learning the kernel [397]. Furthermore, [314] recently
proposed a statistical inference framework for making kernels that are adaptive and
allow independent scales for each dimension. This can be achieved by defining a
reproducing Kernel Hilbert space (RKHS) on the space of kernels itself in order to
let hyperkernels parameterize the kernels for each dimension.

We choose to take a pragmatic approach by comparing a range of kernels with re-
gards to their effect on SVM performance. The argumentation is that even if a strong
theoretical method for selecting a kernel is developed, unless this can be validated
using independent test sets on a large number of problems, methods such as boot-
strapping and cross validation will remain the preferred method for kernel selection.
In addition, with the inclusion of many mappings within one framework it is eas-
ier to make a comparison. Standard kernels, which satisfy Mercer’s conditions and
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whose performance is compared within the underlying classification task, include
the following:

Linear : k(x,x′) = 〈x,x′〉
Polynomial : k(x,x′) = (scale · 〈x,x′〉+ offset)degree

Laplace : k(x,x′) = exp(−σ ‖ x− x′ ‖)
Gaussian Radial Basis Function : k(x,x′) = exp(−σ ‖ x− x′ ‖2) (10.6)

Hyperbolic : k(x,x′) = tanh(scale · 〈x,x′〉+ offset)

Bessel : k(x,x′) =
Besselnν+1(σ ‖ x− x′ ‖)

(‖ x− x′ ‖)−n(ν+1)

The estimated parameters are provided in Table 10.7. In addition, we verify the
use of the exotic p-Gaussian kernel

K(xi,x j) = exp

(
−d(xi,x)p

σ p

)
(10.7)

To our knowledge, the p-Gaussian has hardly been tested yet on real datasets, but
in theory, has interesting properties. Compared to the widely used RBF kernels, p-
Gaussians include a supplementary degree of freedom in order to better adapt to the
distribution of data in high-dimensional spaces [131]. The p-Gaussian is therefore
determined by two parameters p,σ ∈ R which define the Euclidean distance

d(xi,x) =

(
n

∑
i=1

‖xi − x‖2

)1/2

(10.8)

between data points. The two parameters depend on the specific input set for each
exchange rate return time series and are calculated as proposed in [131]:

p =
ln
(

ln(0.05)
ln(0.95)

)
ln
(

dF
dN

) ; σ =
dF

(− ln(0.05))1/p
=

dN

(− ln(0.95))1/p
(10.9)

In the case of EUR/USD, for instance, we are considering 1,737 eight-dimensional
objects from which we calculate the kernel matrix. We consider 1,737 eight-
dimensional objects because at each 1 ≤ t ≤ 1,737, the similarity among the eight
variables, as expressed by their Euclidean distance, has to be determined. The ele-
ments of the kernel matrix are then given by the single Euclidean distances of one
variable to the remaining variables of the same system according to (10.8). For this
reason 1,737× 1,737 Euclidean distances, based on eight coordinates, have to be
calculated in order to compute the 5% (dN) and 95% (dF) percentiles in that dis-
tribution which are needed to estimate p and s. The estimated parameters for all
exchange rates are provided in Table 10.8.
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Table 10.7 SVM parameter estimates with standard kernel functions

Linear Polynomial

EUR/GBP EUR/JPY EUR/USD EUR/GBP EUR/JPY EUR/USD

SVs 1,663 1,684 1,650 1,646 1,611 1,629
Cost 1 1 1 1 1 1
Degree – – – – – –
Scale – – – – – –
Gamma 0.09 0.10 0.14 0.09 0.10 0.14
Coef 0 – – – – – –
Offset – – – – – –
σ – – – – – –

Laplace Gaussian

EUR/GBP EUR/JPY EUR/USD EUR/GBP EUR/JPY EUR/USD

SVs 1,688 1,709 1,685 1,636 1,662 1,630
Cost 1 1 1 1 1 1
Degree – – – – – –
Scale – – – – – –
Gamma – – – 0.09 0.10 0.14
Coef 0 – – – – – –
Offset – – – – – –
σ 0.04 0.05 0.06 – – –

Hyperbolic Bessel

EUR/GBP EUR/JPY EUR/USD EUR/GBP EUR/JPY EUR/USD

SVs 878 912 930 1,182 1,268 1,472
Cost 1 1 1 1 1 1
Order – – – 1 1 1
Degree – – – 1 1 1
Scale 1 1 1 – – –
Gamma – – – – – –
Coef 0 – – – – – –
Offset 1 1 1 – – –
σ – – – 1 1 1

Table 10.8 p-Gaussian
model estimates

EUR/GBP EUR/JPY EUR/USD

SVs 1571 1584 1571
Cost 1 1 1
dF 0.1207 0.1781 0.1039
dN 0.0307 0.0338 0.0254
p 2.9678 2.4482 2.8854
σ 0.0834 0.1138 0.0711
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10.5 Cross Validation

The development of multivariate models generally requires checking their valid-
ity. Whereas the reliability of linear models is normally expressed by theoretically
justified metrics, such as R2, it is more difficult to examine the reliability of non-
linear methods, such as supervised learning methods. Cross validation is a common
technique for estimating the quality (accuracy) of a classifier induced by supervised
learning algorithms. In addition, cross validation may be used for reasons of model
selection, i.e., choosing a classifier from a given set or combination of classifiers
([420]). In k-fold cross validation, the dataset D is randomly split into k mutually
exclusive subsets of approximately equal size. Each time t ∈ {1, . . . ,k}, the learning
algorithm is trained on D\Dt and tested k times on Dt . The cross validation accuracy
is the overall number of correct classifications, divided by the number of instances
in the dataset, i.e., the average accuracy rate of the k single runs. Formally, if D(i)
denotes the test set that includes instance xi = (xi,yi), then the cross validation ac-
curacy is given by

accCV =
1
n ∑

(xi,yi)∈D

δ
(
Γ (D\D(i),xi),yi

)
(10.10)

Complete cross validation is the average of all possibilities for choosing m/k in-
stances out of m. However, this can be a very time consuming process. In our case,
the underlying in-sample dataset consisting of 1,737 instances is divided into k = 5,
k = 10, k = 15, and k = 20 subsets. Now k test runs are initiated where (k− 1)/k
instances are considered for training and 1/k are considered for testing. This pro-
cess is being repeated for all subsets until every subset has been considered once
for testing. Tables 10.9 and 10.10 display the computing times required for training
above specified SVMs per currency pair. Table 10.9 describes the runtime behav-
ior of SVMs with standard kernels, whereas Table 10.10 separately summarizes the
computational expenses obtained when training the SVMs with a p-Gaussian.

Obviously, the more subsets we choose to validate a model, the more increases
training time. Moreover, if we rank the SVM models from lowest to highest with
regards to their required running-times, we end up at the following ordering: Linear
< Hyperbolic < Gaussian RBF < Polynomial < Laplace < Bessel < p-Gaussian.
This can be explained by the input lengths of the different kernel functions (see
(10.6)). The most basic kernel function requiring the least arithmetic operations
is the linear kernel. The most sophisticated kernel, requiring by far the most the
computing time, is the p-Gaussian (compare Tables 10.9 and 10.10). This can be
attributed to a noninteger p in the exponent of the Euclidean distance matrix. It
should also be mentioned that due to the random nature of dividing the data into
subsets, the single accuracy rates change each time. This leads to a change of the
total accuracy rate. If the change is significant, which could not be confirmed in our
analyses, it is often recommended to change or optimize the SVM parameter.
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Table 10.9 Runtime behavior of standard kernels

Linear Polynomial

EUR/GBP EUR/JPY EUR/USD EUR/GBP EUR/JPY EUR/USD

No CV 00:02 00:01 00:01 00:02 00:01 00:01
5-fold CV 00:05 00:04 00:03 00:05 00:04 00:05
10-fold CV 00:09 00:07 00:06 00:10 00:11 00:10
15-fold CV 00:12 00:11 00:09 00:15 00:15 00:15
20-fold CV 00:16 00:15 00:12 00:20 00:21 00:21

Laplace Gaussian

EUR/GBP EUR/JPY EUR/USD EUR/GBP EUR/JPY EUR/USD

No CV 00:05 00:05 00:05 00:02 00:02 00:01
5-fold CV 00:11 00:11 00:10 00:05 00:05 00:05
10-fold CV 00:17 00:17 00:15 00:10 00:10 00:09
15-fold CV 00:22 00:22 00:20 00:14 00:14 00:14
20-fold CV 00:27 00:27 00:26 00:18 00:18 00:17

Hyperbolic Bessel

EUR/GBP EUR/JPY EUR/USD EUR/GBP EUR/JPY EUR/USD

No CV 00:02 00:02 00:02 00:08 00:08 00:10
5-fold CV 00:04 00:04 00:04 00:17 00:17 00:20
10-fold CV 00:07 00:07 00:07 00:22 00:23 00:26
15-fold CV 00:11 00:10 00:10 00:27 00:29 00:32
20-fold CV 00:16 00:14 00:13 00:32 00:35 00:38

Table 10.10 Runtime behav-
ior of p-Gaussian

p-Gaussian

EUR/GBP EUR/JPY EUR/USD

No CV 02:02 02:01 01:55
5-fold CV 05:55 05:55 05:42
10-fold CV 10:52 10:50 10:39
15-fold CV 18:32 18:27 18:25
20-fold CV 28:15 28:06 27:52

10.6 Benchmark Models

Letting yt represent the exchange rate at time t, we forecasted the variable

sgn(Δyt+h) = sgn(yt+h − yt) (10.11)

where h = 1 for a one-period forecast with daily data. Even small tremors were in-
terpreted as real changes of directions.

Kernel-dependent SVM forecasts were compared to the forecasts of two kinds
of benchmark models: the naive model and the ARMA(p,q) model. The naive
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strategy assumes that the most recent period change is the best predictor of the
future, i.e.,

sgn(Δ ŷt+1) = sgn(Δyt) (10.12)

where Δyt is the actual rate of return at period t and Δ ŷt+1 is the predicted rate of
return for the next period.

The ARMA(p,q) model as described in Sect. 8.2.3 is the most general family
of models for representing stationary processes and therefore represents a suitable
benchmark. We use the model estimates as given by (8.12)–(8.14)

• Δyt = −0.0526Δyt−1−0.0562Δyt−3 + εt for the EUR/GBP series
• Δyt = 0.0287Δyt−1 + εt for the EUR/JPY series
• Δyt = −0.5959Δyt−1 + 0.5323εt−1 + εt for the EUR/USD series

The EUR/GBP and EUR/JPY models are AR(p) models. Dynamic forecasting with
AR(p) models is done by generating the one-step ahead forecast and then using this
for a two-step-ahead forecast and so on. That is, the optimal one-step-ahead predic-
tion at time T is the conditional expectation of yT+1 given {yT ,yT−1,yT−2, . . .}:

ŷT+1 − ĉ = α̂1(yT − ĉ)+ α̂2(yT−1 − ĉ)+ . . .+ α̂p(yT−p+1 − ĉ) (10.13)

and the two-step prediction is:

ŷT+2 − ĉ = α̂1(yT+1 − ĉ)+ α̂2(yT − ĉ)+ . . .+ α̂p(yT−p+2 − ĉ) (10.14)

and so on. Since in our case ĉ = 0, the s-step-ahead forecast for the EUR/GBP model
is given by

ŷT+s = α̂1yT+s−1 + α̂3yT+s−3 (10.15)

and the s-step-ahead forecast for the EUR/JPY model is

ŷT+s = α̂1yT+s−1 (10.16)

For a general ARMA(p,q) model the s-step-ahead predictions are

ŷT+s − ĉ = α̂1(ŷT+s−1 − ĉ)
+ α̂2(ŷT+s−2 − ĉ)+ . . .+ α̂p(ŷT+s−p − ĉ) (10.17)

+ β̂sεT + β̂s+1εT−1 + . . .+ β̂qεT−q−s

for s ≤ q. For s > q only the AR part determines the forecasts. The EUR/USD model
is an ARMA(1,1) model with ĉ = 0 whose s-step-ahead predictions are therefore

ŷt+s = α̂1yT+s−1 + β̂s + εt (10.18)

Note that the GARCH models, as estimated in Sect. 8.2.4 are not useful for serving
as benchmark models within the realm of tackling the BCP. The purpose of this
family of models is to describe the development of the second statistical moment,
whereas the task here is to predict directional movements, i.e., ups and downs of the
exchange rate.
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10.7 Evaluation Procedure

The evaluation procedure is twofold. Out-of-sample forecasts are evaluated both
statistically via confusion matrices and practically via trading simulations.

10.7.1 Statistical Evaluation

Generally, a predictive test is a single evaluation of the model performance based on
comparison of actual data with the values predicted by the model. We consider the
BCP where, formally, each instance I is mapped to one element of the set {−1,+1}
of positive and negative class labels by a classification model. Given a classification
model and an instance, there are four possible outcomes. If the instance is positive
and it is classified as positive, it is counted as a true positive. If it is classified as
negative, it is counted as a false negative. If the instance is negative and it is classified
as negative, it is counted as a true negative. If it is classified as positive, it is counted
as a false positive. Given a classification model and a set of instances (the test set),
a two-by-two confusion matrix (also called a contingency table), as is illustrated in
Fig. 10.1, can be constructed representing the dispositions of the set of instances.
This confusion matrix forms the basis for many statistical performance metrics (see
for instance [127], pp. 2–4). Since we are equally interested in predicting ups and
downs, the accuracy rate

Accuracy =
T P+ TN

P+ N
(10.19)

defined as the sum of true positives T P and true negatives T N divided by the sum of
the total amount of positive observations P and negative observations N is the right
statistical performance measure to apply.

Fig. 10.1 Confusion matrix
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10.7.2 Operational Evaluation

However, potential evidence for the predictability of exchange rate returns does not
necessarily imply market inefficiency. It is likely that the small average excess re-
turns would not generate net gains when employed in a trading strategy once trans-
action costs have been taken into account. This idea has been referred to as the con-
cept of speculative efficiency which implies the absence of unexploited speculative
profits. Therefore, under this definition of market efficiency, these markets would
not be classified as inefficient. Practical or operational evaluation methods focus on
the context in which the prediction is used by imposing a metric on prediction re-
sults which permits testing above hypothesis. More generally, when predictions are
used for trading or hedging purposes, the performance of a trading or hedging met-
ric provides a measure of the model’s success. We formulate a trading simulation
and calculate its profitability in simulated trading. First of all, return predictions yt

were translated into positions. Next, a decision framework was established that tells
us when the underlying asset is bought or sold depending on the level of the price
forecast.

It =

⎧⎨
⎩

1 : ŷt < yt−1 − τ
−1 : ŷt > yt−1 + τ

0 : otherwise
(10.20)

If the model predicts a negative return, the trader finds himself in a long position
(It = 1). A long position is characterized by a “sell” signal concerning the base cur-
rency (EUR) as per today. The intuition is as follows: if the exchange rate is believed
to go down tomorrow, then one should sell the base currency today, since 1 EUR is
worth more in terms of foreign currency today than it will be tomorrow. Otherwise,
if the model predicts a positive return, the trader finds himself in a short position
(It = −1). A short position is characterized by a “buy” signal concerning the base
currency (EUR) as per today. The intuition is as follows: if the exchange rate is be-
lieved to go up tomorrow, then one should buy the base currency today, since it is
cheaper in terms of foreign currency than it will be tomorrow.

The parameter t describes a subjective threshold, which can be added to the last
price change leading to different signals. This may be useful if one intends to fol-
low a longer run strategy where t guarantees that the base currency will not be
bought/sold above/below a certain level. We decided to set t = 0.

For measuring prediction performance on the operational level, the following
nine metrics were chosen: cumulated P/L, shape ratio as the quotient of annualized
P/L and annualized volatility, maximum daily profit, maximum daily loss, maximum
drawdown, value-at-risk with 95% confidence, average gain/loss ratio, and trader’s
advantage. A formal definition for each of these metrics is given in Table 10.11.
Note that every metric is somewhat dependent on the gain or loss

πt = It−1(yt − yt−1) (10.21)

on the position at time t but makes a unique statement. Accounting for transaction
costs (TC) is important in order to assess trading performance in a realistic way.
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Table 10.11 Operational performance measures

Measure Definition

Cumulated profit and loss PLC
T = ∑T

t=1 πt

Sharpe ratio SR = PLA

σA , with PLA
T = 252× 1

T ∑T
t=1 πt and

σ A
T =

√
252×

√
1

T−1 ×∑T
t=1(πt − π̄)2

Maximum daily profit max(π1,π2, . . . ,πT )
Maximum daily loss min(π1,π2, . . . ,πT )
Maximum drawdown MD = min(PLC

t −maxi=1,...,t(PLC
i ))

Value-at-Risk VaR = μ −Q(π ,0.05), μ = 0
Net cumulated profit and loss NPLC

T = ∑T
t=1(πt − It ×TC), where It = 1 if πt−1×πt < 0,

else It = 0

Average gain/loss AG
AL = (Sum of all πt>0)/# up

(Sum of all πt<0)/# down

Trader’s advantage TA = 0.5×
(

1+
(

(WT×AG)+(LT×AL)√
(WT×AG2)+(LT×AL2)

))
with W T :=

number of winning trades, LT := number of losing trades,
AG := average gain in up periods, and AL := average loss
in down periods

Between market-makers an average cost of three pips (0.0003) per trade for a trad-
able amount of typically 10–20 million EUR is considered as a reasonable guess
and thus incorporated in net cumulated profit.

10.8 Numerical Results and Discussion

In order to compare forecasts for the same series across different models, accu-
racy rates for the out-of-sample period are depicted by bar charts as shown in
Figs. 10.2–10.4.

One immediate drawback may be the obtained accuracy, which is only 5% better
for the best SVM models compared to the simple naive predictor. However, it should
be stressed that the tested datasets are very small due to the short history of the
Euro. As argued by [246], there are important data mining applications where the
data is scarce and more research is needed towards methods that can deal with such
datasets. This work backs this claim.

Furthermore, Part II has shown that forecasting exchange rate directions is a very
difficult task. Foreign exchange markets are highly liquid and considered as very ef-
ficient, and it is difficult to gain superior information out of publicly available data.
Consequently, if SVM accuracy rates outperform those of nave or random strate-
gies, the SVM technique can be generally justified to predict exchange rate return
directions. This is the case for all three exchange rates. In particular, we find that hy-
perbolic SVMs deliver superior performance for out-of-sample prediction across all
three currency pairs. In the case of EUR/GBP, the Laplace SVM performs equally
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Fig. 10.2 Statistical evaluation: EUR/GBP
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Fig. 10.3 Statistical evaluation: EUR/JPY

well as the hyperbolic SVM. Other models are out-performed by the hyperbolic ker-
nel SVM more clearly in the cases of EUR/JPY and EUR/USD. This observation
makes hyperbolic kernels promising candidates to map all sorts of financial market
return data into high dimensional feature spaces.

Tables 10.12–10.14 give the results of the trading simulation. The depicted val-
ues simply represent an aggregation of the EUR returns bought or sold with foreign
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Fig. 10.4 Statistical evaluation: EUR/USD

Table 10.12 Operational performance: EUR/GBP

Naive ARMA Linear Polyn. RBF Hyper. Laplace Bessel p-Gauss.

PLT
C −0.0075 −0.0911 −0.0936 −0.0936 −0.0390 0.1036 0.0155 −0.0411 0.0596

SR −0.0797 −0.9670 −0.9937 −0.9937 −0.4135 1.0994 0.1641 −0.4367 0.6323
maxP 0.0149 0.0149 0.0168 0.0168 0.0168 0.0149 0.0168 0.0139 0.0123
maxL −0.0168 −0.0168 −0.0149 −0.0149 −0.0139 −0.0168 −0.0139 −0.0168 −0.0168
MD −0.0381 −0.0381 −0.0362 −0.0362 −0.0350 −0.0381 −0.0351 −0.0356 −0.0381
VaR −0.0070 −0.0077 −0.0075 −0.0075 −0.0073 −0.0070 −0.0069 −0.0074 −0.0069
NPLT

C −0.0612 −0.1955 −0.1275 −0.1275 −0.0903 −0.0559 −0.0196 −0.0921 0.0143
AG/AL 1.0581 0.9279 0.8037 0.8037 0.9171 1.0398 0.8993 0.8823 1.0189
TA 0.0000 0.4185 0.5300 0.5300 0.4872 0.4814 0.5899 0.3935 0.4351

Table 10.13 Operational performance: EUR/JPY

Naive ARMA Linear Polyn. RBF Hyper. Laplace Bessel p-Gauss.

PLT
C 0.0544 0.0525 −0.0948 −0.0948 −0.2191 −0.1387 −0.2867 −0.3114 −0.2498

SR 0.3868 0.3729 −0.6743 −0.6743 −1.5568 −0.9862 −2.0360 −2.2112 −1.746
maxP 0.0219 0.0219 0.0207 0.0207 0.0207 0.0217 0.0207 0.0207 0.0205
maxL −0.0205 −0.0217 −0.0219 −0.0219 −0.0219 −0.0219 −0.0219 −0.0219 −0.0219
MD −0.0853 −0.0866 −0.0648 −0.0648 −0.0867 −0.0620 −0.0867 −0.0648 −0.0867
VaR −0.0100 −0.0097 −0.0109 −0.0109 −0.0111 −0.0108 −0.0113 −0.0115 −0.0113
NPLT

C 0.0028 0.0522 −0.1527 −0.1527 −0.2761 −0.1984 −0.3446 −0.3618 0.3026
AG/AL 1.0411 1.0033 0.9000 0.9000 0.8828 0.8646 0.8332 0.8375 0.8218
TA 0.0000 1.0000 0.4301 0.4301 0.4325 0.4365 0.4115 0.4035 0.4014
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Table 10.14 Operational performance: EUR/USD

Naive ARMA Linear Polyn. RBF Hyper. Laplace Bessel p-Gauss.

PLT
C −0.1807 −0.1035 −0.1326 −0.1326 −0.093 0.0480 −0.1005 −0.1617 0.1018

SR −1.2345 −0.7052 −0.9043 −0.9043 −0.0630 0.3252 −0.6851 −1.1037 0.6890
maxP 0.0196 0.0196 0.0167 0.0167 0.0196 0.0196 0.0189 0.0187 0.0189
maxL −0.0189 −0.0187 −0.0196 −0.0196 −0.0187 −0.0189 −0.0196 −0.0196 −0.0196
MD −0.0417 −0.0439 −0.0448 −0.0448 −0.0439 −0.0441 −0.0448 −0.0448 −0.0448
VaR −0.0125 −0.0110 −0.0126 −0.0126 −0.0118 −0.0108 −0.0118 −0.0117 −0.0112
NPLT

C −0.2368 −0.2079 −0.1743 −0.1743 −0.0597 0.0000 0.1452 −0.2106 0.0511
AG/AL 0.9471 1.0579 0.8812 0.8812 1.0362 0.9627 0.9457 0.9457 1.1087
TA 0.0000 0.4536 0.6253 0.6253 0.5683 0.5531 0.5838 0.4219 0.4992

currency independent of the notional amount. The following conclusions can be
drawn. The hypothesis of speculative efficiency may be rejected if NPLT

C > 0 holds
for a particular strategy, i.e., if the cumulated profit after transaction costs over the
considered trading period is positive. Consider Table 10.12. It is interesting to ob-
serve that only SVMs equipped with hyperbolic, Laplace, and p-Gaussian kernels
are able to achieve a positive net cumulated profit.

However, if we look at the results for EUR/JPY as given in line 7 of Table 10.13,
one may have serious concerns on whether SVMs are able to make speculative prof-
its. In fact, all trading strategies result in a negative net cumulated profit and the nave
strategy is the only one generating a positive net cumulated profit. For EUR/USD,
however, the p-Gaussian SVM is able to reject the hypothesis of speculative effi-
ciency by generating positive net cumulated profit. To summarize, we can reject the
speculative efficiency hypothesis since for all three exchange rates speculative prof-
its can be made. The SVM approach has only merit for EUR/GBP and EUR/USD.
Thus, in the spirit of computational complexity, the superior models seem to be ac-
ceptable approximations to a hypothetical optimal forecasting technique that would
have total knowledge about new information.

A different way of analyzing the results could be as follows: let the best fore-
casting technique be the one that does not only satisfy one criterion best, but that
is superior with regards to multiple trading metrics. Dominant strategies are repre-
sented by the maximum value(s) in each row. Operational evaluation results confirm
statistical ones in the case of EUR/GBP. Both the hyperbolic and the Laplace SVM
give best results along with the RBF SVM. For EUR/JPY and EUR/USD the re-
sults differ. The statistical superiority of hyperbolic SVMs cannot be confirmed on
an operational level which is contradictory to the EUR/JPY and EUR/USD opera-
tional results at first glance. The reason for this phenomenon stems from the fact
that operational evaluation techniques do not only measure the number of correctly
predicted exchange rate ups and downs, they also include the magnitude of returns.
Consequently, if local extremes can be exploited, forecasting methods with less sta-
tistical performance may yield higher profits than methods with greater statistical
performance. Thus, in the case of EUR/USD, the trader would have been better
off applying a p-Gaussian SVM in order to maximize profit. Regarding EUR/JPY,
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we find that no single model is able to outperform the nave strategy. The hyper-
bolic SVM, however, still dominates two performance measures. We also see that
p-Gaussian SVMs perform reasonably well in predicting EUR/GBP and EUR/USD
return directions but not EUR/JPY. For the EUR/GBP and EUR/USD currency pairs,
p-Gaussian data representations in high dimensional space lead to better generaliza-
tion than standard Gaussians due to an additional degree of freedom p.

To our knowledge, this is the first time, financial time series directions in gen-
eral, and exchange rate directions in particular have been approached by SVMs.
Further exploratory research therefore needs to be performed which could focus on
SVM model improvements, for instance, examination of other sophisticated kernels,
proper adjustment of kernel parameters and the development of data mining and op-
timization techniques for selecting the appropriate kernel. In light of this research,
it would also be interesting to see if the dominance of hyperbolic SVMs can be
confirmed in further empirical investigations on financial market return prediction.
Moreover, if we consider the evidence for second moment nonlinear dependencies
from Sect. 8.2.4, another interesting avenue of future research could be to use SVMs
in order to predict financial market volatilities.



Chapter 11
Introduction

International investing and trade has one unintended consequence: the creation of
currency risk which may cause the local currency value of a firm’s foreign receiv-
ables, liabilities or investments to fluctuate dramatically because of pure currency
spot movements. In their corporate risk management survey, [364] stated that in-
dustrial corporations rank foreign exchange risks as the most costly risk with 93%
of firms reporting some kind of foreign exchange exposure, and, on average, firms
judging between a quarter and a third of their revenues, costs and cash flows as be-
ing exposed to movements in exchange rates.

Protection against foreign exchange risks may be achieved through internal or ex-
ternal hedging. Internal hedging refers to the exploitation of possibilities of chang-
ing the currency of cash outflows to better align them with inflows. Instruments in-
clude invoicing imports and exports in the home currency, contracting currency and
foreign exchange clauses, speeding up or slowing down payments (leading or lag-
ging), matching or netting claims, currency reserves, changing debt/claim structures,
adjusting credit conditions and prices, etc. [109, 396]. This can be done by chang-
ing vendors, by relocating production facilities abroad or by foreign-denominated
debt, that is, by funding itself in the foreign currency. Such hedges can act as substi-
tutes to currency derivatives [154, 307, 331]. External hedging instruments, besides
derivatives, include export factoring and forfaiting, international leasing, and for-
eign exchange insurance [109]. However, because hedging normally refers to the
use of off-balance-sheet instruments, that is forward-based and option-based con-
tracts in the case of exchange rate hedging, only such currency derivatives shall be
considered in the following.

Academic literature on currency and commodity hedging has developed several
theories to explain an individual’s incentive to hedge. The characteristics of the old-
est concept go back to the works of [190,215,226] and are as follows. First, hedging
made the hedger’s position certain. He sold his product forward and made delivery
under the contract. The sole purpose for an individual to hedge was certainty, or in
other words, reduction of income variability. Keynes [226] is explicit that hedging
eliminates risk:

If this [futures] price shows a profit on his costs of production, then he can go full steam
ahead, selling his product forward and running no risk. [. . . ]. If supply and demand are
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balanced, the spot price must exceed the forward price by the amount which the producer is
ready to sacrifice in order to hedge himself, i.e., to avoid the risk of price fluctuations during
his production period.

Hicks [190], although taking over Keynes’s theory speaks of the risk of a price
change being reduced rather than avoided:

The ordinary businessman only enters into a forward contract if by doing so he can hedge –
that is to say the forward transaction lessens the riskiness of his position.

Kaldor [215] describes hedgers as

[. . . ] those who have certain commitments independent of any transactions in the forward
market, [. . . ] and who enter the forward market in order to reduce the risks arising out of
these commitments.

He therefore speaks of hedging as reducing rather than eliminating risks. The sec-
ond characteristic of the early concept of hedging is that a hedger does not act on
his expectations, i.e., he always sold/bought forward irrespective of any expecta-
tions about the future price. Keynes, Hicks, and Kaldor do not say explicitly that
hedgers have no expectations, but they do not give the expected price any role in the
hedger’s actions. Regarding currency risk, [322] advocated a fully hedged currency
position on the basis of foreign currency risk not offering a commensurate return.
In what they deem a “free lunch,” they argue that as a result of its zero long-term
expected return, currency risk can be removed without the portfolio suffering any
reduction in long-term return. Therefore, many analysts incorrectly came to the con-
clusion that the availability of extreme liquidity (and hence low bid-ask spreads), a
long term zero return and an apparent lack of predictive power of academic currency
models meant that investors and corporations should naively remove currency risk
by implementing passive hedges back into the base currency as one could reduce
volatility without paying for it.

Froot et al. [144] took exactly the opposite approach and suggested that investors
should do nothing and leave investments unhedged and unmanaged. He argued that
over long investment horizons, real exchange rates revert back to their means ac-
cording to the theory of PPP and investors should maintain an unhedged foreign
currency position. He also concludes that even over shorter horizons, the small trans-
action costs and counterparty risks associated with maintaining a currency hedge
add up over time and cause the optimal hedge ratio to decline as the investment
timeframe increases. Still, [144] does acknowledge that real exchange rates may de-
viate from their theoretical fair value over shorter horizons and currency hedging
in this context is beneficial in dampening volatility. One decade earlier, [105] chal-
lenged the Miller–Modigliani hypothesis – which states that the issue of hedging
and corporate risk management, in general, is closely linked to the irrelevance of
a firm’s financial policy in complete and frictionless capital markets [298] – in its
pure form and demonstrated that hedging can add value if markets are imperfect and
somewhat disconnected from neoclassical parity conditions. In the 1990s, a more
detailed theoretical discussion evolved about these market imperfections and their
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effect on corporate practices for hedging foreign exchange risk and other financial
risks [144, 145, 307, 370]. Market imperfections that justify static risk management
policies are:

• Information asymmetry [93, 94]: Management knows about the firm’s exposure
position much better than investors. Thus, the management of the firm, not its
investors, should manage exchange exposure.

• Managerial interests [370]: Large portions of managers’ wealth are related to
the well-being of the firm in the form of income and, possibly, share ownership.
Since managers are not fully diversified, they have an incentive to hedge the risks
inherent in their position.

• Differential transaction costs: The firm is in a position to acquire low-cost hedges
whereas transaction costs for individual investors can be substantial. In addition,
the firm has access to hedging tools that are not available to private investors.

• Default costs [370]: If default costs are significant, corporate hedging would be
justifiable because it will reduce the probability of default. Perception of a re-
duced default risk, in turn, can lead to a better credit rating and lower financing
costs.

• Progressive corporate taxes [284, 370]: Under progressive corporate tax rates,
stable before-tax earnings lead to lower corporate taxes than volatile earnings
with the same average value. This happens, because under progressive tax rates,
the firm pays more taxes in high-earning periods than it saves in low-earning
periods.

• Financing investments [144]: Firms should hedge to ensure they always have
sufficient cashflow to fund their planned investment program.

Apart from these reasons, recent empirical studies find that aspirations of risk man-
agement programs also instill a culture within an organization which improves risk-
based decision making among employees [364]. However, risk management also
incorporates several difficulties. First, it creates transaction costs associated with the
purchase of derivatives and insurance contracts. Second, potential upside in hedged
risks may be eliminated. Third, establishing a risk management function creates di-
rect organizational costs such as salaries for staff and costs of IT systems. Fourth,
risk management also creates additional risks, for example, the possibility of trading
losses. Finally, risk management is inherently difficult itself and therefore hard to
communicate to investors and board members.

The hedging policy to time currency and commodity markets with forward con-
tracts has been referred to as selective hedging [376]. This technique supports the
early ideas of [422] who argued that hedging is essentially not a risk reduction tech-
nique only, but speculation in the basis which is given by the difference between
the spot and forward price. He makes clear that hedging in his sense contains a
speculative element when he says ([422], p. 320):

Such discretionary hedging involving a firm in the practice of both hedging and speculation,
[. . . ] seems to be especially prevalent among dealers and processors who handle commodi-
ties such as wool and coffee.
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For his theoretical work on hedging, Working is considered as a pioneer for many
researchers arguing that individuals hedge to maximize profits, taking into account
expected changes in prices. The association in the literature of hedging with the mo-
tive of an uncertain profit is a reasonable consequence of the fact that hedging does
not result in certainty. If hedging leaves risk, then expectations become relevant;
and if a loss from hedging is expected it would be unwise to hedge. On the other
hand, if a profit is expected it would appear advantageous to hedge. It is interesting
to notice, that although financial markets are, per definition, not the core business
of nonfinancial companies, they seem to be confident enough to take views on the
future development of the exchange rate that will turn out to increase the firms’ cash-
flows. Empirical evidence suggests that European firms are more inclined than US
firms to accept open foreign exchange positions based on exchange rate forecasts
[47]. In fact, selective hedging is also the approach that most German companies
adopt [159]. In its corporate risk management survey, [364] have lately supported
this result stating that

although risk management of FX rates [. . . ] is common, risks are rarely totally eliminated.

It must be concluded that firms implicitly reject the efficient market hypothesis in its
semi-strong version, by forming different expectations than those conveyed by for-
ward prices.1 Under the efficient market view of forward prices, hedgers are unlikely
to profit consistently from forward pricing strategies, so risk aversion becomes the
primary motive for using forward markets. However, if hedgers have different ex-
pectations from those portrayed by forward prices, then their use of forward markets
can be for the purpose of increasing profits as a result of those differing expectations,
rather than managing risk. A large body of research has derived optimal hedging
rules under this assumption [213, 242, 305, 321, 352]. However, one can also argue
that financial markets in reality display a high degree of information efficiency be-
cause so many private and professional market participants are continuously striving
to gain access to new and better information and to analyze the available informa-
tion very carefully. This argument may be seen as a warning for selective hedgers.
In order to achieve the goal of increasing cashflows, firms willingly accept the risk
of currency losses due to the open positions. The speculative nature of the selective
hedging strategy has been pointed out very sharply by [252], pp. 198–199:

In fact, to the extent that it includes a speculative element by factoring possible gains into
the hedging decision, [selective hedging] differs little from staking the assistant treasurer
with a sum of money to be used to speculate on stock options, pork bellies or gold.

Stulz [376] stretches that selective hedging will increase shareholder value if
managers have an informational advantage relative to other market participants.
However, if managers believe they have informational advantages when they do not,
selective hedging will merely result in an increase in the variability of cash flows
that could potentially reduce shareholder value. In fact, [65] reports that economic
gains to selective hedging are very small and less than for an alternative technical

1 A strict interpretation of the efficiency hypothesis is not very plausible because in this case
nobody would have an incentive to invest in the production or analysis of new information.
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trading strategy. He also finds no evidence that selective hedging leads to superior
operating or financial performance, nor is it associated with proxies for superior
market information. These results emphasize that the main advantage of the se-
lective hedging strategy, namely the granted flexibility for the decision-maker to
actively react to market events, may inhibit a lot of risk. Finding an acceptable or
possibly optimal balance between risk and reward is therefore relevant for any firm
pursuing a selective strategy to hedging its currency risk.

In this context, the popular concept of maximizing income subject to a given
level of risk [279], or alternatively, maximizing the level of expected utility de-
rived from the activities being considered [411] becomes relevant.2 The two ap-
proaches of hedging in order to reduce/eliminate risk [190, 215, 226] and hedging
in order to maximize profit [422] become special cases of Markowitz’s portfolio-
theoretic approach when either risk or return is considered to be extremely im-
portant. While the mean, as the central moment of a probability distribution, is
commonly accepted as a measure of (average) return, the adequacy of different
kinds of risk measures has been and is still being discussed to an increasing extent
[3,4,17,177,212,279,294,315,334,339]. Mean-variance analysis is consistent with
the expected utility theorem only when returns are normally distributed and the
decision-maker has a quadratic utility function [279]. Mean-variance results may
also be acceptable if higher moments than the second are small or relatively unim-
portant to the decision-maker. However, mean-variance or mean-quantile-based
performance measures, such as mean-value-at-Risk, may be misleading if decision-
makers want to incorporate products with nonlinear payoff profiles, such as options,
in their hedging strategies. In this case, symmetrical measures of risk, like the vari-
ance or the standard deviation are not suitable, as option positions typically follow
an asymmetrical risk-return-profile [52, 53]. In addition, quantile-based risk mea-
sures are not able to account for asymmetry. Furthermore, it has become a stylized
fact in experimental economics that individuals perceive risk in a nonlinear fashion.
Evidence suggests that most individuals perceive a low probability of a large loss
to be far more risky than a high probability of a small loss [229]. This empirical
finding expresses a preference towards positively skewed probability distributions.

While above studies have enhanced our understanding of what motivates indi-
viduals or corporations to manage risk, less attention has been directed towards
understanding precisely how a firm should hedge. One problem is that currency risk
is a rather broad and subjective concept. For example, the risk of a trader/speculator
is different to a hedger’s perception of risk. Furthermore, there may even exist
different priorities about managing risk among hedgers. Consider the case of a
multinational nonfinancial firm. First, since there naturally exist different kinds
of foreign currency exposure, such as transaction exposure, translation exposure
and economic exposure, all of which may be conflicting, firms may have differ-
ent perceptions on what kind of exposure matters most to them. Second, hedging

2 Expected utility theory states that the decision maker chooses between risky or uncertain
prospects by comparing their expected utility values. This can be achieved by specifying a util-
ity function G : R → R and then optimizing its expected value.
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decisions, are often based on currency managers’ fundamental beliefs as to how
currency markets operate. Naturally, these beliefs will vary from individual to indi-
vidual. As in all decision-making processes involving human beings, these beliefs
can be engraved in cultural norms, traditions, or political factors. This means that
presented with exactly the same analysis, two different people might come out with
totally different interpretations of what it means to them, and what it would require
in terms of action. Due to this paradigm it is practically impossible to come up with
a universal answer to the question of how a firm should hedge. A large body of
research, rooted in economics, international finance, portfolio theory, statistics, and
operations research has explored the optimal hedging of foreign exchange risks. Due
to the very specific nature of foreign exchange risk, this literature is often tailored
to a very specific industry, such as agriculture, electricity, insurance, banking, or in-
dustrial firms exporting or importing goods to or from a foreign market. Depending
on the nature of the context, hedging models may therefore contain very specific
views, assumptions, and modeling techniques. For instance, hedging models may
not only differ by sources of uncertainty and instruments permitted, but also by their
formal descriptions. Since a comprehensive discussion would go beyond the scope
of the dissertation, we will only summarize the kind of literature that has motivated
our approach. In corporate contexts, it is often essential to use risk management to
engineer cash flows. Hence, an important part of this thesis is the comparison and
combination of alternative instruments and tactics for managing currency risk. We
distinguish between linear contracts where the payoff of the contract is a straight
line (forwards), and nonlinear contracts, where the payoff is not (options). There is
no consensus in the literature regarding a universally preferable strategy to hedge
currency risk, although the majority of results indicate that currency forwards gen-
erally yield better performance than single protective put options [7, 121, 282].

Important early insights into the simultaneous choice of linear and nonlinear
instruments were provided by agricultural risk-management literature. Lapan et al.
[242] proposed a one-period model wherein utility-maximizing managers face price
risk (but not quantity risk) and choose among both forwards and options when mak-
ing their hedging decisions. Assuming normally distributed prices (which allow
for negative prices), they showed that the optimal hedging position will consist
only of forward contracts as options become redundant. Under the assumption
of nonincreasing risk-aversion and a specific strike price, they conclude that a
speculative forward position is generally accompanied by a long straddle option
position. Lence et al. [251] extended this model into a multiperiod framework and
found that in the presence of unbiased forward and options prices, options play an
important role. Another extension of the [242] model can be found in [352] who
note that the optimal hedging position usually will include options, in addition to
forward contracts. Reference [323] has analyzed the optimal position in forwards
and straddles by comparative-static analyses plus numeric examples for various
risk-utility functions. His main result is that the optimal mix of linear and non-
linear instruments depends on the specific stochastic exchange rate process that is
assumed by a firm, as well as on its degree of risk aversion. Volosov et al. [408]
formulate a two-stage stochastic programing decision model for foreign exchange
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exposure management that is based on a vector error correction model in order to
predict the random behavior of the forward, as well as spot rates connecting USD
and GBP. The model computes currency hedging strategies which provide rolling
decisions of how much forward contracts should be bought and how much should
be liquidated. Backtesting results show that the computed strategies improve the
passive “spot only” strategy considerably. However their analysis does not include
option instruments which are frequently used in practice. Topaloglou at al. [395] ex-
tended their own multistage dynamic stochastic programing model for international
portfolio, as introduced in [394], by introducing positions in currency options to
the decision set at each stage in addition to forward contracts. They find empirical
evidence that portfolios with optimally selected forward contracts outperform those
that involve a single protective put option per currency. However, it is also found
that trading strategies involving suitable combinations of currency options have the
potential to produce better performance. In summary, while many of these models
are able to explain certain empirical features of hedging practices (such as partial
hedging, nonlinear or dynamic strategies, etc.), none appear to explicitly account
for all observed features. In particular, most models appear to come up short in two
areas. First, most models do not predict substantial time-series variation in hedge
ratios. Second, the models do not explicitly model the impact of managers’ market
views. In our opinion, these two phenomena are likely closely related and it is for
this reason that we subsequently explore the potential impact of managerial views
on hedging behavior.

We demonstrate how industrial corporations and investors can develop an ap-
proach to managing currency transaction risk, thereby adding real economic value
from currency fluctuations. Our objective is to find a possibly optimal combination
of linear and nonlinear financial instruments to hedge currency risk over a planning
period such that the expected utility at the planning horizon is maximized. We
require the goal function to address the conflicting empirical finding that firms do
like to try to anticipate events, but that they also cannot base risk management on
second-guessing the market. Our analysis therefore argues that a way to understand
corporate hedging behavior is in the context of speculative motives that could arise
from either overconfidence or informational asymmetries. For this purpose, we as-
sume the firm to have different future expectations than those implied by derivative
prices. If investors believe that the currency is going to move in an unfavorable di-
rection, what should they use as a tool to hedge? If they expect the currency to move
favorably, but are not entirely sure, should they use a different risk management
strategy? When addressing these questions, one must recognize that traditional
mean-variance or mean-quantile-based performance measures may be misleading
if products with nonlinear payoff profiles, such as options, are used [52, 53]. In
addition, it has become a stylized fact that individuals perceive risk in a nonlinear
fashion. Preferences for positive skewness have been shown to hold theoretically
by [10, 362], and empirically by, e.g., [229, 258, 372, 373]. For these reasons, we
propose to embed a mean-variance-skewness utility maximization framework with
linear constraints in a single-period Stochastic Combinatorial Optimization Prob-
lem (SCOP) formulation in order to find optimal combinations for forward and
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European straddle option contracts given preferences among objectives. We show
that the proposed SCOP is computationally hard and too difficult to be solved ana-
lytically in a reasonable amount of time. More specifically, the problem is NP-hard
and cannot be solved in polynomial time which directly suggests that solutions can
only be approximated [152, 320]. Second, computation of the objective function is
nonconvex and nonsmooth. The resulting optimization problem therefore becomes
fairly complex as it exhibits multiple local extrema and discontinuities.

In order to attack the given problem and derive near-optimal decisions within
a reasonable amount of time, we propose a simulation/optimization procedure.
Simulation/optimization has become a large area of current research in informatics,
and is a general expression for solving problems where one has to search for the
settings of controllable decision variables that yield the maximum or minimum
expected performance of a stochastic system as presented by a simulation model
[148]. For modeling the EUR/USD exchange rate a smooth transition nonlinear
PPP reversion model is presented. The simulation model is very attractive in the
present context and unique to our knowledge. It addresses both, the first and the
second PPP puzzle, and provides a theoretically valid and visually intuitive view
on the corridor of future EUR/USD spot development. The key feature is a smooth
transition function [387,403] which allows for smooth transition between exchange
rate regimes, symmetric adjustment of the exchange rate for deviations above and
below equilibrium, and the potential inclusion of a neutral corridor where the ex-
change rate does not mean revert but moves sideways. Another advantage is that it
requires estimating only two parameters, namely the speed of mean reversion and
exchange rate volatility.

For the task of optimization, we propose the use of a metaheuristic combi-
natorial search algorithm. Metaheuristics are modern heuristics which have been
first introduced by [162]. For a good and recent overview of metaheuristics in
combinatorial optimization, we refer to [46]. In short, a metaheuristic refers to
an intelligent master strategy that guides and modifies other heuristic methods to
produce solutions beyond those that are normally generated in a quest for local
optimality. The specific metaheuristic we use is scatter search, a generalized form
of path relinking [166, 167] which has proven to be highly successful for a variety
of known problems, such as vehicle routing [18, 337, 338], tree problems [68, 423],
mixed integer programing [165] or financial product design [81]. The seminal ideas
of scatter search originated in the late 1960s. A first description appeared in [161],
the modern version of the method is described in [239].

In order to show our simulation/optimization model’s applicability in a practical
context, a situation is presented, where a manufacturing company, located in the
EU, sells its goods via a US-based subsidiary to the end-customer in the US. Since
it is not clear what the EUR/USD spot exchange rate will be on future transaction
dates, the subsidiary is exposed to foreign exchange transaction risk under the
assumption that exposures are deterministic. We take the view that it is impor-
tant to establish whether optimal risk management procedures offer a significant
improvement over more ad hoc procedures. For the purpose of model validation,
historical data backtesting was carried out and it was assessed whether the optimized
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mean-variance-skewness approach is able to outperform passive strategies such as
unitary spot, forward, and straddle, as well as a mixed strategy over time. The
passive strategies are nonpredictive since they do not allow the hedge to time-vary,
but are fixed-weight strategies and therefore, do not use the history of market infor-
mation. We compare the alternative strategies in dynamic backtesting simulations
using market data on a rolling horizon basis. The strategies were evaluated both
in terms of their ex ante objective function values – as well as in terms of ex post
development of net income. We find that the optimized mean-variance-skewness
strategy provides superior risk-return results in comparison to the passive strategies
if earnings risk is perceived asymmetrically in terms of downside risk. The pure
forward strategy is found to have the lowest return per unit of earnings risk, whereas
the straddle strategy and the 1/3 strategy reveal similar risk-return characteristics.

Our results demonstrate that first, currency hedging is a hard problem from a
computational complexity perspective and optimal solutions can be approximated at
best. We demonstrate through extensive numerical tests the viability of a simulation/
optimization model as a decision support tool for foreign exchange management.
We find in our experiments that scatter search is a search method that is both ag-
gressive and robust. It is aggressive because it finds high-quality solutions early in
the search. It is robust because it continues to improve upon the best solution when
allowed to search longer. Our approach to hedging foreign exchange transaction
risk selectively is based on exchange rate expectations, considers real market data
and incorporates flexible weights. It is found that the approach adds value in terms
of reducing risk and enhancing income (which contrasts literature). Interestingly,
it also contrasts the finding that currency forward contracts generally yield better
results in comparison to options. The main reason for this is the forward’s ability
to transfer income across states of nature, concentrating the payments on the firm’s
downside. Thus, a smaller hedge ratio is required, which makes risk management
less costly.

The chapter is organized as follows: in Chap. 12 we introduce the principles used
to express preferences over probability distribution functions, including the normal
distribution and the concept of expected utility maximization. In particular, Chap. 12
introduces how preferences over probability distributions can be realized using fi-
nancial instruments and defines the composition of the probability distribution
function to be optimized. Chapter 13 gives the exact formal representation of the
currency hedging problem and describes its computational complexity. Chapter 14
describes the idea of simulation/optimization, including a formal description of
the exchange rate simulation model, as well as a description of the metaheuristic
optimization routine proposed. Finally, Chap. 15 describes the real-world context
in which the model was applied, as well as the backtesting approach, evaluation
procedure, computational tests and the empirical results.



Chapter 12
Preferences over Probability Distributions

12.1 Currency Hedging Instruments

12.1.1 Forward

A forward contract is an agreement between two parties to buy/sell an asset at a
certain future time for a certain price. One of the parties to a forward contract as-
sumes a long position and agrees to buy the underlying asset on a certain specified
future date for a certain specified price. The other party assumes a short position
and agrees to sell the asset on the same date for the same price. A forward contract
therefore has a symmetric distribution of rights and obligations. The payoff from a
long position in a forward contract on one unit of an asset is

FT = ωT − f0,T (12.1)

where f0,T is the price in t = 0 for a forward contract with maturity T , and ωT is
the spot price of the asset at maturity of the contract. Long positions enable hedgers
to protect themselves against price increases in the currency. Conversely, the payoff
from a short position in a forward contract on one unit of an asset is

FT = f0,T −ωT (12.2)

Short positions protect hedgers against price decreases. The fact that the payoffs
resulting from long and short positions in forward contracts can be symmetrically
positive or negative is illustrated in Fig. 12.1 [200]. The gain, when the value of the
underlying asset moves in one direction, is equal to the loss, when the value of the
asset moves by the same amount in the opposite direction. Since it costs nothing
to enter into a forward contract, the payoff from the contract is also the firm’s total
gain or total loss from the contract.

A forward contract fixes the nominal exchange rate and the price until settlement.
Thereby, hedging prevents transaction exposure. Since a forward contract does not
hedge changes in real foreign exchange rates, economic exposure still remains.

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 117
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 12,
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 12.1 Payoff functions from a forward contract

There can still be some foreign exchange gain or loss. When real exchange rates
remain stable, long-term fixing of the nominal exchange rates can even create an
economic exposure that would not have existed otherwise [332]. Since forwards
can be privately arranged, that is traded over-the-counter, the terms of such a for-
ward, for example, the maturity date and the characteristics of the underlying asset,
can be customized for the users. However, liquidity and transaction costs are greater
because of this customization [154].

According to the principle of risk neutral valuation, the market value of a forward
contract at t < T is a linear function

Ft = e−r f (T−t)Et [ωT− f0,t ] (12.3)

In t = 0 the forward price f0,T is determined such that its market value equals zero,

F0 = e−r f ×T Et [ωT − f0,T ] = 0 (12.4)

It follows that the forward price f0,T equals the risk-neutral expected value of the
exchange rate from a capital market view.

f0,T = E [ωT ] (12.5)

Forward contracts are widely used instruments in currency hedging since they are
able to inexpensively transfer risk, and reduce cashflow volatility [40, 299]. In the-
ory, a full forward hedge is optimal, if the firm does not have any concrete expecta-
tions about the future course of the exchange rate and believes in market consensus
[190, 215, 226, 322]. On the other hand, if a firm dares to deviate from risk-neutral
market expectations, this would imply a speculative engagement which must re-
sult in a forward position deviating from the full hedge [422]. Typically, a selective
hedger would enter into a full hedge if he expected an adverse future exchange rate
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development. The brighter his expectations on the future exchange rate become, the
more he would reduce the hedge amount. If expectations were totally optimistic, the
exposure would be left open. It is interesting that compared with theoretical results,
firms in reality tend to hedge a constant amount between 0% and 100% (often 50%),
if they do not have distinct expectations about the future course of the exchange rate
[63, 159]. This behavior is called partial hedging and is justified by arguing that a
full hedge (zero hedge) accompanied by a favorable (adverse) exchange rate devel-
opment would lead to high losses, such that hedging 50% seems reasonable in the
absence of concrete expectations.

12.1.2 Plain Vanilla Option

In contrast to forward contracts, options have an asymmetric distribution of rights
and obligations. A call option gives the holder the right (but not the obligation) to
buy the underlying asset by a certain date for a certain price. A put option gives the
holder the right to sell the underlying asset by a certain date for a certain price.
The price in the contract is known as the exercise price or strike price X . The date in
the contract is known as the maturity. American options can be exercised at any time
up to the expiration date. European options can be exercised only on the expiration
date itself.

The fact that an option gives the holder the right to do something does not mean
that the right must be exercised. This fact distinguishes options from forwards,
where the holder is obligated to buy or sell the underlying asset. Hence, there is a
fundamental difference between the use of forward contracts and options for hedg-
ing. Forward contracts are designed to neutralize transaction risk by fixing the price
that the agent will pay or receive for the underlying asset. Options, in contrast, pro-
vide insurance by offering a way for agents to protect themselves against adverse
price movements in the future while still allowing them to benefit from favorable
price movements. The latter feature comes at an up-front fee which is referred to as
the option premium P.

If we disregard the initial cost of the option, the payoff from a long position in a
European call option at maturity t = T is

CT = max(ωT −X ,0) =
{

ωT −X : ωT > X
0 : ωT ≤ X

(12.6)

Equation 12.6 reflects the fact that the option will be exercised if ωT > X and will
not be exercised if ωT ≤ X . The asymmetric nature of a long position in a European
call option is well captured by its payoff function (Fig. 12.2a). Short positions in
European call options are obtained conversely (Fig. 12.2b).

The payoff to the holder of a long position in a European put option is

PT = max(X −ωT ,0) =
{

X −ωT : ωT < X
0 : ωT ≥ X

(12.7)



120 12 Preferences over Probability Distributions

Payoff

0 0
X XST ST

– P

P

Payoff

Long Call

(a)

(b)
Short Call(a) (b)

Fig. 12.2 Payoff functions of a European call option

If we take into account the option premium to be paid in t = 0, the payoff function
of the call is given by the difference between CT and the option premium multiplied
by the risk free interest rate. The payoff functions for long and short positions in a
European put option are depicted in Fig. 12.3a and Fig. 12.3b.

According to the principle of risk neutral valuation, the market value of Euro-
pean call and put option contracts at t < T are given by the Black and Scholes
formulae [41]

CT = ωT × e−r∗f (T−t)N(d1)−X × e−r f (T−t)N(d2) (12.8)

PT = X × e−r f (T−t)N(−d2)−ωt × e−r∗f (T−t)N(−d1) (12.9)

with
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and N denoting the cumulative standard normal distribution.
Literature has recommended plain vanilla option strategies as an alternative to

the selective hedging strategy in order to avoid losses that may result from having
entered into a forward position when the exchange rate, ex post, took a positive
direction. First, the firm has a view on future exchange rate levels and wants to
participate from favorable exchange rate movements while being protected against
adverse ones. In fact, it is this insurance property, i.e., the asymmetric profile, that is
considered widely as the fundamental advantage of an option [40,299]. It guarantees
protection against adverse exchange rate developments while allowing participation
from movements in the agent’s favor. Thus, options can be motivated if a firm has
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Fig. 12.3 Payoff functions of a European put option

missing expectations about the future exchange rate, if its exchange rate expecta-
tions from the past have not been successful, or if foreign exchange markets are
volatile. Under homogeneous expectations about the underlying stochastic process
of the exchange rate and therefore, also about its probability distribution, hedging
with options cannot be optimal, since there is no deviating view from the risk-neutral
value of the option. In addition, the future payoff of the option is uncertain. Hence,
a full forward hedge resulting in a deterministic outcome would be optimal. Deviat-
ing expectations from those of market consensus imply a speculative position. The
use of options for income enhancement has been analyzed by a streak of literature
that examined whether firms incorporate exchange rate expectations in their hedging
strategies [57, 237].

12.1.3 Straddle

The problem that arises when a combined position of forwards and plain vanilla
option instruments has to be found is that the two instruments are coupled with
complementarity and substitution between them. First, the payoff profile from a
long forward can be replicated by a combined position in a long call and a short
put according to put-call parity ([200], pp. 174–175). Second, both market value
functions depend on the expected future exchange rate. The call option can only
be distinguished from the forward by its functional dependency on the foreign ex-
change market’s expected standard deviation of the underlying. The first-moment
overlapping in the determinants of the price formation may lead to the problem
that the different characteristics of forwards and options are being disguised. This
problem can be avoided if straddles are used instead of plain vanilla options ([323],
pp. 166–167).

A long straddle involves buying a call and a put with the same strike price and
maturity date. Consequently, the payoff function of a long straddle is the result of
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Fig. 12.4 Payoff function of a
long straddle
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ST = |ωT −X |=
{

ωT −X : ωT > X
X −ωT : ωT ≤ X

(12.10)

The payoff function of a long straddle is shown in Fig. 12.4. If the exchange rate
is close to the strike price at maturity of the options, the straddle leads to a loss.
However, for large movements in either direction, a profit can be realized. If the
price goes up (down) enough, the call (put) option comes into effect and the put
(call) option is ignored.

The advantage of the “buy straddle” investment tactic is that the firm still has
unlimited profit potential without knowing precisely what direction the exchange
rate will move in, while total loss is limited to the price of purchasing the call and
put options. As long as prices do not stagnate, the firm has limited risk and a big
potential for gain. Hence, the main motivation of a long straddle is to take a position
on volatility play. If an upcoming news report is expected to cause an increase in
volatility or rate changes for a certain currency, a straddle strategy generates better
returns if the realized volatility is as expected.

12.2 Formal Relationship Between Firm and Capital Market
Expectations

It is argued that a way to understand corporate hedging behavior is in the context
of speculative motives that could arise from either overconfidence or informational
asymmetries. For this purpose, we assume the firm to have different future expecta-
tions than those implied by derivative prices.

In the following, we assume that both the probabilistic perceptions of the firm
and the risk-neutral idea of the capital market can be described by a normal distri-
bution. Following [323], we describe deviating beliefs completely by the first two
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moments of the normal probability distribution. In order to model these deviations
it is interesting to focus on the connection between exchange rate realizations with
the same probabilities of occurrence. Formally, we refer to the connection between
the exchange rate from a firm’s perspective ωu, and the risk-neutral exchange rate
from a capital market’s view ωm as follows:

ωu = ωm + α (12.11)

with α denoting the difference in exchange rate expectations. Differing ideas on the
variability of the exchange rate under homogenuous beliefs on the expected value
can be modeled by introducing a mean-preserving spread [90]:

ωu = E[ωu]+ εu = E[ωu]+ β × εm (12.12)

where εu denotes the residual term from a firm’s perspective with E[εu] = 0, εm

denotes the residual term from capital market’s perspective with E[εm] = 0, and
β > 0 represents the coefficient of deviation.

From (12.11) and (12.12) we receive

ωu = E[ωm]+ α + β × εm (12.13)

The uncertainty regarding the exchange rate realization from a firm’s and capital
market’s view results from the error term εm, respectively, εu, which additively over-
lays the risk-neutral expected value E[εm] = 0, respectively E[εu] = 0. The deviating
probabilistic perceptions between firm and capital market are captured by α �= 0 and
β �= 1, with α �= 0 representing deviating perceptions regarding the first moment,
and β �= 1 representing deviating perceptions regarding the second moment.

12.3 Specification of Probability Distribution Function

We demonstrate how industrial corporations and investors can develop an approach
to managing currency transaction risk, thereby adding economic value from cur-
rency fluctuations. Empirical studies on corporate hedging behavior suggest that
firms are facing a conflict. On the one hand, they like to try to anticipate events. On
the other hand, they cannot base risk management on second-guessing the market.
For instance, if investors believe that the currency is going to move in an unfavor-
able direction, what should they use as a tool to hedge? If they expect the currency
to move favorably, but are not entirely sure, should they use a different risk manage-
ment strategy? The following is useful for formalizing the dilemma that reduction
of transaction exposure with hedging instruments directly creates economic risk.

Definition 12.1. Given a finite set S of decision variables S = {xF
t , xO

t , xS
t } ∈ [0,1]

where xF
t , xO

t , and xS
t denote the forward, straddle option, and spot weights with

xF
t + xO

t + xS
t = 1, and t = 1, . . . ,T . Let the discrete probability distribution function

of transaction exposure be



124 12 Preferences over Probability Distributions

v(x,w) =
T

∑
t=1

zt × (xs
t ×ωt + xF

t × f0,t + xO
t ×X0,t) (12.14)

and the discrete probability distribution function of economic exposure be

w(x,ω) =
T

∑
t=1

zt(xF
t × (ωt − f0,t) (12.15)

+ xO
t × (|ωt −X0,t|− p0,tωt=0 − c× (xF

t + xO
t ))

where z denotes the transaction exposure and c the transaction cost for a single
transaction as imposed by the counterparty. The expressions in brackets, as given
in (12.15), denote the payoffs of long forward and straddle option contracts which
are used to reduce transaction exposure in (12.14). The random variable at t is given
by the spot exchange rate ωt , t = 1, . . . ,T . For purposes of this analysis, it is as-
sumed that an investor holds one unit of foreign exchange, i.e., zt = 1. The effects
of marking-to-market and margin requirements are disregarded since they are purely
accounting related and do not impact economic performance.

12.4 Expected Utility Maximization and Three-Moments
Ranking

12.4.1 Preference Structures over Lotteries

The objective of finding a possibly optimal combination of linear and nonlinear
financial instruments to hedge currency risk over a planning period requires for-
mulating a goal function incorporating (12.14) and (12.15), as well as defining a
measure of preference in order to evaluate the quality of a feasible solution. In de-
cision theory, utility is a measure of the desirability of consequences of courses of
action in a decision made under uncertain conditions. Utility theory was formalized
mathematically by the classic work of [411]. Von Neumann and Morgenstern intro-
duced a set of necessary and sufficient axioms for the rational decision-maker, and
promoted the development of methods to measure utilities on numerical scales, re-
sulting in real numbers representing personal values – such that one alternative with
probabilistic consequences is preferred to another if and only if its expected utility
is greater than that of the alternative. The axiomatic system is based on preference
structures and their numerical representations in form of utility functions which will
be described in the following.

Definition 12.2. A preference structure can be formulated as a binary preference
relation. Suppose Z is a set of outcomes resulting from an agent’s decisions. We as-
sume that the agent’s preference structure over Z is captured by a preference relation
� on Z, defined as a binary relation with the following property: for all outcomes
A,B ∈ Z
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• A is preferred over B if and only if A � B
• A is indifferent to B if and only if A ∼ B, that is neither A � B nor A ≺ B
• A � B if and only if A � B or A ∼ B

Lemma 12.1. The preference relation � is a total order, that is, every pair of out-
comes are comparable. Formally, the relation �, as induced by � and thus ∼, is a
binary relation with the following three properties:

• Reflexivity: For all outcomes A ∈ Z, A ∼ A
• Orderability: For all outcomes A,B∈ Z, exactly one of the following holds A�B,

B � A, or A ∼ B
• Transitivity: For all outcomes A,B,C ∈ Z, if A � B, and A �C, then B �C.

Preference structures can be extended to uncertain outcomes. Uncertain outcomes
are represented using (discrete) probability distributions over Z, referred to as
lotteries.

Definition 12.3. A lottery L with a finite number of distinct outcomes C1,C2, . . . ,Cn

∈ Z and respective probabilities p1, p2, . . . , pn is written as L = {(p1,C1),
(p2,C2), . . . , (pn,Cn)} where ∑n

i=1 pi = 1, pi ≥ 0, i = 1, . . . ,n.

Corollary 12.1. A lottery is degenerate if n = 1, in which case the probability in the
notation can be omitted. A lottery can also have a countably infinite number of dis-
tinct outcomes C1,C2, . . . ,Cn, . . . ∈ Z with respective probabilities p1, p2, . . . , pn, . . .
which can be written L = {(p1,C1),(p2,C2), . . . ,(pn,Cn), . . .} where ∑∞

i=1 pi = 1,
pi ≥ 0, i = 1, . . . ,n, . . . .

We denote as L(Z) the set of all lotteries over the outcome set Z. The agent’s prefer-
ence relation is correspondingly extended to lotteries, and we still use the notation
� for the preference relation on lotteries.

Lemma 12.2. Preference structures over lotteries have additional properties that
are consistent with human intuition about preference structures involving uncer-
tainty:

• Continuity: For all lotteries A,B,C ∈ Z, if A � B �C, then there exists p ∈ [0,1]
such that ((p,A),(1− p,C)) ∼ B

• Substitutability: For all lotteries A,B ∈ L(Z), if A ∼ B then for all lotteries C ∈
L(Z) and all p ∈ [0,1], ((p,A),(1− p,C))∼ ((p,B),(1− p,C))

• Monotonicity: For all lotteries A,B ∈ L(Z), if A � B then for all lotteries p,q ∈
[0,1], p ≥ q if and only if ((p,A),(1− p,B)) ∼ ((q,B),(1−q,B))

• Decomposability: For all lotteries A,B,C ∈ Z and all p,q ∈ [0,1], ((p,A),
(1− p, [(q,B), (1−q,C)]))∼ ((p,A), ((1− p)q,B),(1− p)(1−q),C)).

These properties imply that the extended preference relation is also a total order on
L(Z). We will refer to the above set of seven properties as the utility axioms.



126 12 Preferences over Probability Distributions

12.4.2 Preference Structures over Utility Functions

For practical decision problems under uncertainty, however, it is more convenient to
define preference structures based on real-valued functions on L(Z).

Lemma 12.3. A real-valued function on L(Z) can define a preference structure sat-
isfying the utility axioms if and only if it satisfies the functional form of the utility
axioms, namely

• Continuity: For all lotteries A,B,C ∈ L(Z), if U(A) > U(B) > U(C), then there
exists p ∈ [0,1] such that U((p,A),(1− p,C)) = B

• Substitutability: For all lotteries A,B∈ L(Z), if U(A) =U(B) then for all lotteries
C ∈ L(Z) and all p ∈ [0,1], U((p,A),(1− p,C)) = U((p,B),(1− p,C))

• Monotonicity: For all lotteries A,B ∈ L(Z), if U(A) = U(B) then for all lotteries
p,q ∈ [0,1], p ≥ q if and only if U((p,A),(1− p,B))∼U((q,B),(1−q,B))

• Decomposability: For all lotteries A,B,C ∈ L(Z) and all p,q ∈ [0,1], U((p,A),
(1− p, [(q,B),(1−q,C)])) = U((p,A),((1− p)q,B),((1− p)(1−q),C))

Since the relation ≥ is a total order on R, the first three utility axioms: reflexivity,
orderability, and transitivity do not need to be included.

12.4.3 Expected Utility Maximization

The underlying assumption in utility theory is that the decision maker always
chooses the alternative for which the expected utility is maximized. To determine
the expected utility, a utility value has to be assigned to each of the possible conse-
quences of each alternative. A utility function maps utility to the range of outcomes
of a decision, depending on the decision maker’s preferences and attitude toward
risk. Utility theory is therefore intrinsically related to the concepts of risk and un-
certainty in decision making.

Lemma 12.4. If the extended preference relation satisfies the utility axioms, then
there exists a utility function U : L(Z) → R such that for all lotteries A,B ∈ L(Z),
A � B if and only if U(A) ≥U(B) where the utility of a lottery L is the expectation
of the utilities of its components

U(L) = U((p1,C1),(p2,C2), . . . ,(pn,Cn), . . .) =
∞

∑
i=1

pi ×U(Ci) = E[U(z)] (12.16)

where z is the random variable for the outcomes of lottery L.

Therefore, the utility function only needs to be defined for elements in Z, and its
definition on L(z) can be obtained using (12.16).

Definition 12.4. A is preferred to B if and only if terminal wealth satisfies
E[U(zA)]−E[U(zB)] ≥ 0 with at least one strict inequality U(zA)−U(zB) ≥ 0.
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It must be emphasized, by convention, utility is purely an ordinal measure. In other
words, utility can be used to establish the rank ordering of outcomes, but cannot be
used to determine the degree to which one is preferred over the other. For example,
consider two outcomes A and B with corresponding utilities of 100 and 25. We can
say that A is preferred over B, but we cannot say that A is four times more preferred
than B. As a consequence of this ordinality, utility functions unique up to a positive
linear transformation, that is, both U1(·) and U2(·) = a×U1(·)+ b (where a > 0),
are utility functions corresponding to the same preference structure.1

12.4.4 Increasing Wealth Preference

Firms can have different risk attitudes, that is, different ways of evaluating a (non-
degenerate) lottery. Risk attitudes can be modeled using utility functions. Based on
the utility function, different types of risk attitudes can be identified [139].

Definition 12.5. A utility function possesses increasing wealth preference if and
only if U ′(z) ≥ 0 for all z with at least one strict inequality.

This feature captures the “more wealth is better” (non-satiability) philosophy of
firm behavior and is generally considered a universal feature of utility functions. For
greater wealth to be preferred, the utility function must be monotonically increasing.

12.4.5 Risk Aversion Preference

This feature captures the willingness of a firm to purchase insurance (i.e., to pay
more than the expected loss to transfer an insurable loss). This is a subset of in-
creasing wealth preference, a firm may have increasing wealth preference with or
without exhibiting risk aversion, and is also generally considered a universal feature
of utility functions. Mathematically this is expressed as:

Definition 12.6. A utility function possesses risk aversion if and only if it satisfies
the conditions for increasing wealth preference and U ′′(z) ≤ 0 for all z with at least
one strict inequality.

This mathematical definition of risk aversion is equivalent to the behavioral defini-
tion given above. Note, that Definition 12.6 defines a concave function. By applying
Jensen’s inequality this yields E[U(z)] ≤ U(E[z]), i.e., under risk aversion the ex-
pected utility of a risky investment is less than the utility of the expected outcome.
The reason for this phenomenon is that, by proposition, the firm has penalized the
utility of the investment for the possibility of unfavorable outcomes. If we rewrite
Jensen’s inequality with a strict inequality we can show that E[U(z)] =U(E[z]−π).

1 For proof of this proposition, see [179].
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This shows that the firm is indifferent between the return on a risky investment or
a lower, risk-free wealth equal to E[z]−π where π is the premium that the firm is
willing to pay to eliminate risk.

Corollary 12.2. If E[U(z)] = U(E[z]) for all z, then the utility function is risk-
neutral. Otherwise, if E[U(z)] > U(E[z]) for all z, then the utility function is
risk-seeking.

Pratt [330] defined local properties of risk attitudes, as well as a measure of risk
sensitivity, which are convenient for risk attitudes involving both risk aversion and
risk seekingness, such as the risk attitude of an agent who buys insurance and lottery
tickets at the same time. The local risk property is related to the local convexity of
the utility function.

Definition 12.7. If the utility function is twice differentiable and strictly monoton-
ically increasing then the degree of absolute risk aversion is given by a local risk
measure

λ (z) = −U ′′(z)
U ′(z)

(12.17)

which relates to the global risk properties as follows: if λ (z) = 0 everywhere, then
the utility function is linear, and thus the agent is risk-neutral. If λ (z) > 0 every-
where, then the utility function is strictly concave, and thus the agent is risk-averse.
If λ (z) < 0 everywhere, then the utility function is strictly convex, and thus the agent
is risk-seeking.

12.4.6 Ruin Aversion Preference

Investors typically distinguish between upside and downside risks implying that
more than the mean and variance of returns is priced in equilibrium. Negatively
skewed probability distributions imply that the risk for a substantial loss is bigger
than the chance of a substantial gain, and firms are hence, averse to it. Positively
skewed distributions imply that the chance of a substantial gain is bigger than the
risk for a substantial loss which is typically a desirable state for an investor or a firm.
Preferences for positive skewness have been shown to hold theoretically by [10,
362], and empirically by, e.g., [258,372,373]. The preference for positive skewness
is classically presented as an individual’s willingness to play the lottery: to accept
a small, almost certain loss in exchange for the remote possibility of huge returns.
A firm’s concern, however, is with the opposite situation: unwillingness to accept
small, almost certain gain in exchange for the remote possibility of ruin [229]. The
logic is therefore that a firm would be ready to trade off some average return for a
lower risk of high negative returns. Ruin aversion is a subset of risk aversion. A firm
may have risk aversion with or without exhibiting ruin aversion.

Definition 12.8. A utility function possesses ruin aversion if and only if it satisfies
the conditions for risk aversion and U ′′′(z) ≥ 0 for all z with at least one strict in-
equality.
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As with risk aversion, it is not intuitively clear that the mathematical and behavioral
definitions of ruin aversion are consistent. Formally, a positive skewness preference
is related to the positivity of the third derivative of the utility function. This can be
illustrated by taking a Taylor series expansion of the expected utility

U(z) = U(E[z])+U ′(E[z])× (z−E[z])

+
U ′′(E[z])

2!
× (z−E[z])2 (12.18)

+
U ′′′(E[z])

3!
× (z−E[z])3

which leads to the expression

E[U(z)] = U(E[z])+
U ′′(E[z])

2!
×Var[z]+

U ′′′(E[z])
3!

×Sk[z] (12.19)

From this expression it can be seen that U ′′(E[z]) and U ′′′(E[z]) are, respectively,
related to variance and skewness. While a negative second derivative U ′′′(E[z]) < 0
of the utility function implies variance aversion, a positive third derivative of the
utility function U ′′′(E[z]) > 0, entails a preference for positive skewness. Hence,
any investment feature that decreases variance and increases positive skewness (or
reduces negative skewness) acts to increase expected utility.

Proof. From Definition 12.7, decreasing absolute risk aversion or constant absolute
risk aversion as an upper bound is present, if

∂λ (z)
z

=
−u′ ×u′′′+(u′′)2

(u′)2 ≤ 0 (12.20)

which implies u′′′ > (u′′)2 × (u′)−1 > 0 in case of decreasing absolute risk aversion
and u′′′ = (u′′)2 × (u′)−1 > 0 in case of constant absolute risk aversion. ��
Nondecreasing absolute risk aversion therefore implies a preference for positive
skewness (lower negative skewness) on the distribution of wealth.

12.5 Specification of Utility Function

Like many other real world problems, our problem requires the simultaneous op-
timization of multiple competing criteria. Utility theory proposes to compute solu-
tions to such problems by combining them into a single criterion to be optimized,
according to some utility function. For half a century, Markowitz’s two-moment
mean-variance model has been the default model in financial engineering and the
benchmark model for new theories of portfolio choice [278–281]. In this model, the
choice of asset allocations is asserted to depend solely on the expected return (mean)
and risk (variances and covariances) of the admissible assets. From the outset,
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portfolio selection was conceived as a two-step procedure: the determination of the
efficient set of portfolios as the first step, preparing the selection of an optimal port-
folio for a given preference structure in the second step. The idea of utility maxi-
mization as a methodology for portfolio optimization problems, based on the utility
theory founded by [411], can be traced back at least to [391], and also appeared
in the early assessments of the mean-variance approach (e.g., [257, 347, 348]).
Risk-sensitive utility functions are defined in order to identify a (possibly) optimal
portfolio. Levy and Markowitz [257] showed for various utility functions and empir-
ical returns distributions, that the expected utility maximizing agent could typically
do very well if he acted knowing only the mean and the variance of a probability
distribution. This makes the model simple to apply, but it is based on the assumption
that either (1) the return distribution is normal or that (2) investors are indifferent
to higher moments and equally averse to downside and upside risk.2 Regarding the
first argument there has been extensive debate: in reality, financial returns rarely are
normal – more often than not, skewness and kurtosis deviate from normality, mak-
ing the mean-variance approximation unlikely to select the true optimal portfolio
[250, 273]. With regards to the second argument, it has become a stylized fact that
individuals perceive risk in a nonlinear fashion. Apart from a firm’s natural desire
to avoid large economic losses from derivative hedging, we motivate the skewness
criterion for a more practical reason: empirical literature on the hedging behavior
of firms states that both currency forward and option vehicles are used to hedge
against currency risk. However, probability distributions cannot be formally distin-
guished by their first and second moments, if nonlinear instruments such as options
[52, 53] and/or dynamic strategies are considered [189, 350]. As a result, we extend
the concept of mean-variance trade-off to include the skewness criterion in the cur-
rency hedging problem. A kurtosis criterion is not incorporated due to the above
mentioned fact that a consideration of long horizon returns does usually not involve
significant kurtosis.

Definition 12.9. Let the standard measure of return be defined by mean, and the
standard measure of risk be defined by variance and skewness. With respect to
Definition 12.8, this results in a three-order polynomial utility function

U(v,w) = E[w]−{λVar[v]−κSk[w]} (12.21)

= E[w]−{λ E[(v−E[v])2]−κE[([w]−E[w])3]}

where λ > 0 denotes the coefficient of absolute risk aversion, and κ > 0 denotes the
coefficient of absolute prudence.

Equation 12.21 is a multiobjective cubic function defined over the random variable
ω . As [200] notes on pp. 240–241, the expected rate of return is an ambiguous
concept. Unless otherwise stated, it will be used to refer to E[w] = μ . The maximum

2 These limitations of the mean-variance approach were established at an early point by, e.g.,
[12,75,129,182,183,279,330,391]. Rothschild and Stiglitz [347] showed from several perspectives
that the usage of variance as a definition of risk is insufficient. More recent assessments of the
mean-variance approach include, e.g., [76, 77, 272, 293].
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value function for the firm is then determined for a given set of parameters (λ ,κ)> 0
representing the degree for absolute risk aversion and absolute prudence. Typical
values of absolute risk aversion and prudence have been suggested to lie in the
range of 1–5 [110, 111, 290].

Equation 12.21 is independent of a firm’s wealth level. In particular, a change in
wealth just causes a parallel shift for the model which will not affect the risk attitude
and the choice behavior of the firm. For symmetric distributions or distributions not
highly skewed, such that E[(v−E[v])2] > cE[(w−E[w])3], the model will be risk-
averse. However, for highly positively skewed distributions, such that the skewness
of the distribution of derivative payoffs overwhelms the variance of the distribution
of transaction exposure , i.e., E[(v−E[v])2] < cE[(w−E[w])3], the model will be
ruin-averse.



Chapter 13
Problem Statement and Computational
Complexity

13.1 Problem Statement

In order to find possibly optimal combinations between spot, forward, and European
straddle option contracts, it is proposed to embed the three-moment utility function
as formulated in Definition 12.9 in a single-period stochastic combinatorial opti-
mization problem (SCOP) framework with linear constraints. Decisions are made
solely at t = 0 and cannot be revised in subsequent periods. The decision horizon is
finite and set to T = 1. Due to the current popularity of multiperiod financial mod-
els, a single-period description of the problem might be considered as disputable.
In a dynamic modeling context, decisions are optimized in stages, because uncertain
information is not revealed all at once. In our context this would require building an
integrated dynamic simulation model that additionally describes the future develop-
ment of the forward rates as well as the option premiums over the next 12 months in
a stochastic manner. Obviously, such an approach would be much more difficult to
model than our single-factor approach, contain significantly higher model risk (three
risk factors plus interactions), and would require more computational resources. It
is therefore doubtful if such a model would indeed be advantageous, especially if
we consider the underlying decision context. In practice, firms’ currency hedging
decisions are hardly enforced by speculative behavior towards future price develop-
ments of hedging vehicles. Instead, they rather concentrate on reward/risk estimates
that depend solely on the underlying risk factor, i.e., the exchange rate in our case.
Any further assumptions or risks are usually avoided. Hence, although a multiperiod
decomposition of reward and risk poses an interesting theoretical problem, we argue
that it is less relevant in practice. Therefore, only forward rates and option prices as
known in t = 0 are relevant. Future prices of hedging vehicles are irrelevant and
thus, not considered. The single-period SCOP is stated as follows:1

Problem 13.1. (BEST HEDGE). Given a probability space (Ω ,Σ ,P), where Ω is
the domain of random variables ω (typically a subset of Rk), Σ is a family of events,

1 For the general definition see [216].

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 133
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 13,
c© Springer-Verlag Berlin Heidelberg 2009
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that is subsets of Ω , and P is a probability distribution Σ with P(Ω) = 1. Consider
also a finite set S of decision variables x. S is typically a subset of Rn. Given a finite
set of feasible solutions x, a real-valued utility function U(v(x,ω),w(x,ω)) of the
two variables (x,ω) ∈ (S,Ω) and constraint functions Hi, i = 1,2, . . . ,m mapping
(x,ω) ∈ (S,Ω) to R find

max
x∈s

U(v(x,ω),w(x,ω)) (13.1)

subject to Hi(w,ω) ≤ 0, i = 1, . . . ,m

where, U(v(x,ω),w(x,ω)) is given by

U(v,w) = E[w]−{λVar[v]−κSk[w]} (13.2)

= E[w]−{λ E[(v−E[v])2]−κE[(w−E[w])3]}

according to Definition 12.9, and

v(x,w) =
T

∑
t=1

zt × (xs
t ×ωt + xF

t × f0,t + xO
t ×X0,t)

w(x,ω) =
T

∑
t=1

zt(xF
t × (ωt − f0,t) (13.3)

+ xO
t × (|ωt −X0,t|− p0,tωt=0)− c× (xF

t + xO
t ))

according to Definition 12.1.
Single-period SCOP formulations have been originally proposed in the context of

mathematical programing applied to SCOPs, and this field is also called in the liter-
ature stochastic integer programing (SIP), a subset of the broader field of stochastic
programing [38]. Surveys on SIP include [181,225]. Single-period SCOPs are char-
acterized by the fact that decisions, or equivalently, the identification of a possibly
optimal solution is done before the actual realization of the random variables. This
framework is applicable when a given solution may be applied with no modifica-
tions (or very small ones) once the actual realization of the random variables are
known.

Global optimization is the task of finding the absolutely best set of decision vari-
ables to optimize its objective function. In general, there can be solutions that are
locally optimal but not globally optimal.

Definition 13.1. A local maximizer x∗ of U(v(x,ω),w(x,ω)) is a point such that
there exists a neighborhood B of x∗ with:

U(v(x∗,ω),w(x∗,ω)) ≥U(v(x,ω),w(x,ω)),∀x ∈ B (13.4)

Many local maxima may exist with substantially different function values. For prob-
lems with multiple maxima we may be interested in finding the best maximum.
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Definition 13.2. The global maximization problem for a function U(v(x∗,ω),
w(x∗,ω)) ≥U(v(x,ω), w(x,ω)) is to find x∗ such that:

U(v(x∗,ω),w(x∗,ω)) ≥U(v(x,ω),w(x,ω)), ∀x ∈ S (13.5)

All practical optimization methods, whether local or global, are iterative in nature
and typically proceed from a starting point, which is an estimate of x∗, via a se-
quence of points with increasing function value, until some termination condition is
satisfied. Local optimization problems can be solved more easily than global ones
since a local solution can be characterized by computable information at x∗ (positive
definiteness of the Hessian and zero gradient), whilst for the case of a global opti-
mum no such criteria exist, in general. The aim of global optimization is to find the
points in S for which the function reaches its highest value, the global maximum.

In order to investigate the computational complexity of Problem 13.1, we focus
on the theory of NP-completeness [152, 320]. This theory is designed to be applied
only to decision problems, i.e., problems whose solution is either “yes” or “no.”
The standard formulation of a decision problem consists of two parts: the first part
specifies a generic instance of the problem in terms of various components such as
sets, graphs, functions, numbers, etc. The second part states a yes/no question asked
in terms of the generic instance.

Problem 13.2. (BEST HEDGE Decision Problem). Given a probability space
(Ω ,Σ ,P) a finite set of feasible solutions x, a real-valued utility function U(w(x,ω))
of the two variables (x,ω) ∈ (S,Ω), and an integer bound B, is there a solution x
such that

u(x) := EP(U(v(x,ω),w(x,ω))) ≤ B? (13.6)

(That is, is there a vector x such that a given utility target level can be realized?)

13.2 Computational Complexity Considerations

13.2.1 Complexity of Deterministic Combinatorial Optimization

If the exchange rate over the planning horizon was known today, then Problem 13.1
would correspond to a deterministic combinatorial optimization problem (DCOP).
All information would be available at the decision stage and could be used by an
optimization algorithm to find a possibly optimal solution. The concrete application
of a solution found would lead exactly to the cost of the solution as computed by
the optimization algorithm. Therefore DCOPs are also considered static problems
because from the point of view of the decision maker, there is nothing else to be
decided after the optimization took place.

Note that in Problem 13.1 the size of the choice set has already been reduced by
permitting only two kinds of hedging instruments. The size of the true choice set in
Problem 13.1 is determined by the number of permitted hedging instruments n, the
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degree of discretization d, the speculation constraint, and the length of the planning
horizon T . In absence of speculation and possible budget constraints, a collection of
m = T × (n× (d + 1))! binary decisions is given, each regarding the purchase of a
combination of instruments at price p. With budget I the firm faces a subset of I/p
combinations out of the complete set of binary decisions. The more budget is at the
firm’s disposal, the more “optionality” can be added to standard forward hedges,
and thus the more combinations must be considered. However, absence of a budget
constraint does not mean that optionality can be added infinitely. It is the speculation
constraint that restricts the firm in purchasing more forwards/options than are actu-
ally required to close the open positions. The speculation constraint therefore rep-
resents a bound on the number of combinations to be considered. At the maximum,
the firm must answer m binary decision problems which takes time proportional to
(n×d)! which is not a polynomial bound.

Proposition 13.1. The deterministic version of Problem 13.1 is NP-hard as the
MINIMUM COVER Problem is a special case of the deterministic decision version
of Problem 13.1.

Proof. The result can be proven in a similar way as [156] prove their Consumer
Problem to be NP-complete. This is done by reducing the problem MINIMUM
COVER ([SP5]) as represented in [152], p. 222, to the deterministic version of De-
cision Problem 13.1. ��
Problem 13.3. (MINIMUM COVER). Given a collection C of subsets of a finite
set S, and a positive integer K ≤ |C|, does C contain a cover for S of size K or less,
that is, a subset C′ ⊆C with C′ ≤ |K| and such that

⋃
c∈C′ c = S?

Let there be given an instance of MINIMUM COVER: A finite set S ≡ {1, . . . ,r}
of length |S| = r, a collection of subsets C = {S1, . . . ,Sq} of length |C| = q, and a
positive integer k ≤ q. Let (yi j)i≤q, j≤r denote the incidence matrix, namely yi j = 1
if j ∈ Si and yi j = 0 if j �∈ Si.

We now define the associated hedging problem. Let n = q. For i ≤ n, let pi = 1,
and define I = t. Next, define u(x) by u(x1, . . . ,xn) = Π j≤r ∑i≤n yi jxi. Finally, set
ū = 1. A bundle satisfies ∑i≤n pixi ≤ 1 and u(x1, . . . ,xn)≥ ū if and only if ∑i≤n xi ≤ t
and ∑i≤n yi jxi ≥ 1 for every j ≤ r. In other words, the firm has a feasible bundle
x ≡ (x1, . . . ,xn) obtaining the utility of 1 if and only if:

1. No more than t products of 1, . . . ,n are purchased at a positive quantity at x, and
2. The subsets Si corresponding to the positive xi form a cover of S = {1, . . . ,r}.

The construction above can be performed in linear time. It is then left to show
that we have obtained a legitimate utility function u. Continuity holds because
this is a well-defined function that is described by an algebraic formula. Since
yi j ≥ 0, u is nondecreasing in the xi’s. We turn to prove that it is quasi-concave.
If there exists j ≤ r such that yi j = 0 for all i ≤ n, u(x1, . . . ,xn) = 0, and u is quasi-
concave. Let us therefore assume that this is not the case. Hence u is the product
of r expressions, each of which is a simple summation of a nonempty subset of
{x1, . . . ,xn}. On the domain {x|u(x) > 0}, define v = log(u). It is sufficient to show
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that v(x1, . . . ,xn) = ∑ j≤r log(∑i≤n yi jxi) is quasi-concave. Obviously, for every j ≤ r,
log(∑i≤n yi jxi) is a concave function, and the sum of concave functions is concave.
This completes the proof of Proposition 13.1.

Thus (assuming P �= NP), it is impossible for a nondeterministic Turing machine
to verify in polynomial time whether there exists a bundle of instruments such that
a firm can obtain a given level of utility without violating its speculation constraint.
The result suggests that it is hard to maximize a utility function over a large choice
set – even in the absence of uncertainty. As rational as investors can possibly be,
it is unlikely that they can solve, in their minds, problems that prove intractable
for computer scientists equipped with the latest technology. Correspondingly, it is
always possible that a firm will fail to even consider some of the bundles available to
it. In addition, utility maximization may not give an answer on how firms choose a
bundle in the feasible set. It follows, that one cannot simply teach firms to maximize
their utility functions.

13.2.2 Complexity of Stochastic Combinatorial Optimization

Realistic utility maximization problems, such as Problem 13.1, are likely to be bur-
dened with two sources of difficulty: first, the utility function may not be known
for many bundles that have not been consumed. In this context, psychological lit-
erature suggests that people do not seem to be particularly successful in predicting
their own well-being as a result of future consumption. That is, consumers do not
excel in affective forecasting (see [155, 214]). Firms may be uncertain about their
utility functions, and they may learn them through the experience of hedging. In this
sense, a firm is faced with a familiar trade off between exploration and exploitation:
trying new options in order to gain information and selecting among known options
in an attempt to use this information for maximization of well-being. By contrast,
Problem 13.1 ignores this difficulty of learning the utility function. We assume that
the utility function is given, as an easily applicable formula, and that, given a par-
ticular bundle, there is uncertainty regarding the utility derived from it due to the
existence of uncertainty about the future exchange rate.

One possibility with problem formulations involving uncertainty is to describe
uncertain information by means of random variables of known probability distri-
butions. Under this assumption, the optimization problem is stochastic, and the ob-
jective function strongly depends on the probabilistic structure of the model. The
advantage of using SCOPs over DCOPs is that the solutions produced may be more
easily and better adapted to practical situations where uncertainty cannot be ne-
glected. However, this comes at a price: first, for a practical application of SCOPs,
there is the need to assess probability distributions from real data or subjectively,
which is a task that is far from trivial. Second, the objective function is typically
much more computationally demanding in SCOPs than in DCOPs. Although the
problem is formulated as a single-period SCOP, one can distinguish a time before
the actual realization of the random variables, and a time after the random variables
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are revealed, because the associated random events happen. Hence, our problem
formulation is consistent with the probabilistic combinatorial optimization prob-
lem (PCOP) framework as presented in [34, 35]. In PCOPs, one is confronted with
a valid probabilistic data set in the first stage. In a second stage, the actual data set
materializes. There are two possible strategies for solving this sort of problem: reop-
timization and a priori optimization which have both been shown to be NP-complete
problems [34, 35].

13.2.2.1 Computational Complexity of Reoptimization

In the above application, one finds that after solving a given instance of a combinato-
rial optimization problem, it becomes necessary to solve repeatedly many variations
of the instance solved originally. The most obvious approach in dealing with such
cases is to attempt to solve optimally (or near-optimally) every potential instance of
the original problem. Such an approach is called a reoptimization strategy. Similar
to [34], p. 91, who considered the probabilistic traveling salesman problem (PTSP),
it can be shown that the proof of this problem is straightforward.

Problem 13.4. (PTSP1). Given a set of instances D from a complete graph G =
(V,E), |V | = n, a cost f : E → R, probability p(d) that the single instances materi-
alize and a bound B, does there exist a tour τ such that

E[Lτ ] = ∑
d⊆D

p(d)Lτ(d) ≤ B? (13.7)

If every possible subset of the node set V may or may not be present on any given
instance of the optimization problem then there are 2n possible instances of the
problem, namely all the possible subsets of V . Hence, one has to compute O(2n)
terms, each of which requires the evaluation of a classical TSP problem which is
known to be NP-complete (see Problem [ND22] in [152], pp. 211–212). Thus, even
in the simple case where we assume binary scenarios, an exponential number of
classical TSPs has to be solved. Our underlying problem represents a generalization
of this idea including stochastic demands which are not only binary (demand of one
unit with a certain probability), but can be any random variable. Nevertheless, the
problem size will be exponential in n.

13.2.2.2 Computational Complexity of A Priori Optimization

The reoptimization approach suffers from two disadvantages. Since the combinato-
rial optimization problem considered is NP-complete, one has to solve exponentially
many instances of a hard problem. However, in financial applications it is usually
necessary to find a solution to each new instance quickly, but one might not have
the required computing power or other resources for doing so. A priori optimiza-
tion is a strategy that differs from reoptimization (see [35, 204, 243]). Given a set
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of first-stage probabilistically valid input data, one optimizes a priori over this data
in order to be able to efficiently modify this solution as needed to fit the actually
realized second-stage data. Let D denote the first-stage probabilistically valid data
set and X(D) denote the a priori solution on D. Furthermore, let M denote a modi-
fication strategy which modifies the a priori solution so that it fits the second-stage
realized data. The value of the solution output by M for an a priori solution X(D)
and a materialized valid data set d ⊆D is then M(X(D),d). The a priori optimization
rule requires that we obtain an a priori solution X(D) over D such that the expected
outcome of the modification strategy is minimized

E[M] = ∑
d⊆D

p(d)M(S(D),d) (13.8)

It is important to note three points in this context. First, PCOP problems, such as the
PTSP, differ with respect to the particular modification strategy M. Second, although
the design process of solving a PCOP problem is a two-stage procedure, the robust-
ness criterion of an optimum expectation pertains only to the second stage outcome.
Third, optimizing E[M] essentially requires probabilistic analysis of the modifica-
tion strategy M over a distribution of input data. The decision problem of the a priori
optimization version of the PTSP can be expressed as follows.

Problem 13.5. Given a set of instances D from a complete graph G = (V,E),
|V | = n, a cost f : E → R, probability p(d) that the single instances materialize,
an updating method M, and a bound B, does there exist a tour τ of length (“cost”) L
such that

E[LM(τ)] = ∑
d⊆D

p(d)LM(τ)(d) ≤ B? (13.9)

In other words, the goal is to minimize the “weighted average” over all problem
instances of the values LM(τ)(d) obtained by applying the updating method M to the
a priori solution t.

Theorem 13.1. [34]. Problem PTSP2 is NP-complete.

Noticeably, no general approximation technique has emerged under the PCOP
framework. This is mainly due to the fact that PCOP concerns probabilistic anal-
ysis of a modification strategy over a distribution of input data, given an a priori
solution. Therefore, analysis is always heavily dependent on the characteristics of
the modification strategy used, as much as on the structure of the underlying deter-
ministic problem studied under the PCOP framework.

13.2.3 Objective Function Characteristics

Apart from structural reasons concerning the problem as a whole, the decision to
incorporate skewness in evaluating hedging instruments makes the optimal selec-
tion procedure more complicated than a mean-variance based evaluation procedure.
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Whereas, the latter one implies evaluating a quadratic function, the mean-variance-
skewness objective function is cubic, and practical problems arise when a noncon-
vex and nonsmooth objective function has to be optimized.2 Deterministic gradient
search methods might be comfortable to solve the optimization problem, as long
as the considered measures have sufficient differentiability properties and the func-
tion is monotonically in- or decreasing. However, the proof of such differentiability
properties can be rather difficult for random variables with a discrete probability
distribution. In addition, the mean-variance-skewness function may have multiple
feasible regions and multiple locally optimal points within each region. Thus, using
derivative or gradient information in order to determine the direction in which the
function is increasing (or decreasing) may be time-consuming. On a one-processor
computer, a gradient algorithm would have to be started many times with a differ-
ent set of decision variables (“brute-force”), as one might be frequently stuck in a
local maxima and the situation at one possible solution gives very little information
about where to look for a better solution. Many methods used to circumvent this
problem have been restricted to goal programing or linear programing techniques.
For example, [240] gave a goal programing procedure that performs portfolio selec-
tion based on competing and conflicting objectives by maximizing both expected
return and skewness while minimizing the risk associated with the return (i.e.,
variance). Similarly, [253] provided a goal programing algorithm to solve a mean-
variance-skewness model with the aid of the general Minkovski distance. Diverging
from previous studies, [414] transformed the mean-variance-skewness model into
a parametric linear programing problem by maximizing the skewness under given
levels of mean and variance. Likewise, [265] also transformed the mean-variance-
skewness model with transaction costs into a linear programing problem and verified
its efficiency via a numerical example. However, the main disadvantage of these al-
gorithms is that they generally converge slowly, if at all [224]. It is impractical and
inefficient to exhaustively enumerate all of the possible solutions and pick the best
one, even on a fast computer. Furthermore, most existing studies only present some
numerical examples with artificial data.

2 A set S ⊆ Rn is convex if: x′,x′′ ∈ S ⇒ αx′ +(1−α)x′′ ∈ S, 0 ≤ α ≤ 1. A function f (x) is convex
on S if x′,x′′ ∈ S, 0 ≤α ≤ 1, f (αx′+(1−α)x′′)≤ α f (x′)+(1−α) f (x′′). In other words, the line
joining x′ and x′′ is never below the function value at that point. The fact that the objective function
is nonconvex also implies that it is nonlinear, as it is a well known fact that a linear function is
always convex (and concave).



Chapter 14
Model Implementation

14.1 Simulation/Optimization

In the absence of a tractable mathematical structure of Problem 13.1, we study the
behavior of heuristics, “quick and dirty” algorithms which return feasible solutions
that are not necessarily optimal. In particular, we apply a methodology called Sim-
ulation/Optimization which is a general expression for solving problems where one
has to search for the settings of controllable decision variables that yield the max-
imum or minimum expected performance of a stochastic system as presented by a
simulation model [146, 148]. For a compact picture of the field, see the reviews of
the Winter Simulation Conference [147, 149].

Given the analogies between the TSP and the PTSP, it is reasonable to expect
that, like in the TSP, a good heuristic for the problem may be obtained by the
integration of

1. A solution construction algorithm generating candidate solutions
2. A local search algorithm, which tries to improve as much as possible the candi-

date solution

The sequence construction and improvement of a solution is repeated several times
until a good solution or some other termination criterion is not satisfied. With re-
spect to Fig. 14.1, this involves running a simulation for an initial set of values,
analyzing the results, changing one or more values, rerunning the simulation, and
repeating the process until a satisfactory (optimal) solution is found ([123], p. 13).

This process can be very tedious and time-consuming since not all of these values
improve the objective function. The accuracy of the results therefore depends on the
time limit granted for searching, the number of trials per simulation, the number of
decision variables, and complexity of the objective function. It has been shown that
even when there is no uncertainty, optimization can be very difficult if the number
of decision variables is large, and little is known about the structure of the objective
function. By definition, the main difference between the PTSP requiring simulation
for estimating the objective function and the TSP with an exactly computable ob-
jective function is that, in the first-mentioned case, it is not possible to decide with

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 141
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 14,
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 14.1 Coordination of optimization and simulation

certainty whether a solution is better than another one. This can only be tested by
statistical sampling, obtaining a correct comparison result only with a certain prob-
ability. The PTSP therefore adds an additional complication to the TSP because
the performance of a particular candidate solution cannot be evaluated exactly, but
instead must be estimated. It may be therefore not possible to conclusively deter-
mine if one candidate solution is better than another one which makes it difficult
for optimization algorithms to move in improving directions. Theoretically, one can
eliminate this complication by generating so many replications, or such long runs,
at each candidate solution that the performance estimate has essentially no variance.
In practice, however, this could mean that very few alternative candidate solutions
will be explored due to the time required to simulate each one ([27], p. 488).

14.2 Simulation Model

14.2.1 Datasets

Given its launch on 1 January 1999, when the Euro became the currency for 11
member states of the European Union, the Euro exchange rate has a rather short his-
tory. As a result, it is not straightforward to scrutinize the evolution of the Euro
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over this period against longer term trends. In order to overcome this obstacle,
it has become common practice to use a proxy measure for the Euro for the pe-
riod before its actual existence. Either the DEM [80], which was de facto the an-
chor currency among the European currencies participating in the exchange rate
mechanism, or a “synthetic” Euro exchange rate [309], i.e., a weighted average
of the Euro legacy currencies has been commonly used. We decided for the first
alternative and construct the EUR/USD series for the period from January 1975
to December 1998 by using the fixed EURP/DEM conversion rate agreed in 1998
(1 EUR = 1.95583 DEM). From January 1999 until March 2007, we use the regular
EUR/USD exchange rate. The data we use are historical monthly averaged nominal
exchange rate data as obtained from Bloomberg which total to 387 values.

14.2.2 Component 1: Equilibrium

According to economic theory, exchange rates are determined by relative price dif-
ferentials in the long run. The relationship between price indices and the exchange
rate is referred to as PPP which is one of the central doctrines in international
economics (see Sect. 3.1). PPP is expressed by the price differential between two
countries, which is given by the differential between the consumer price index (CPI)
in the United States and the CPI of the Eurozone. Monthly CPI data was obtained
from the OECD database for the same period of time as above. In order to adjust for
the level of the exchange rate, the price differential was multiplied by the respective
average spot rates over the observation period

PPPt =

(
1
T

T

∑
t=1

St

)
P∗

t

Pt
(14.1)

14.2.2.1 Visual Inspection

The EUR/USD exchange rate series and the equilibrium rate as determined by (14.1)
is shown in Fig. 14.2.

Visual inspection seems to support that the EUR/USD real exchange rate oscil-
lates around a mean in the long run. Between the January 1999 and October 2000,
the EUR depreciated by around 20% in nominal effective terms. This reflected a sig-
nificant weakening of the EUR against the currencies of major trading partners such
as the US dollar (−26%). After reaching a trough in October 2000, the EUR bot-
tomed out. Following a period of protracted weakness, the EUR moved in 2002 onto
a steady recovery track to trade by March 2007 well above the levels observed at its
launch, before reverting again somewhat in 2005 and also, well above equilibrium.
The fact that rigorous statistical tests, such as the conventional unit root test, com-
monly fail to confirm such mean reverting properties [231, 359] should not prevent
us from drawing inferences from PPP analysis. For example, if a unit root would



144 14 Model Implementation

Fig. 14.2 EUR/USD equilibrium

indeed mimic the true data generating process of the real exchange rate, it would
behave like a random walk without a systematic tendency to revert towards its PPP
equilibrium. Figure 14.2 illustrates, however, that this is not the case. According to
the first PPP puzzle, the so-called disconnect puzzle (see Sect. 3.1.3), exchange rates
often get too far out of line with macroeconomic fundamentals in the medium term.

This is better illustrated by Fig. 14.3 which displays the nominal effective ex-
change rate as a percentage deviation from equilibrium.

We make three observations.

1. The EUR/USD exchange rate seems to be more persistent when it is in the prox-
imity of the long-run mean, whereas reversion towards the mean happens more
rapidly when the absolute size of PPP deviation is large. In fact, the further away
the real exchange rate moves from PPP, the stronger the adjustment intensity
becomes.

2. This behavior can be observed in both states of positive disequilibrium and neg-
ative disequilibria, which gives rise to a symmetric kind of adjustment behavior.

3. Within more than 30 years of data, the mean is crossed only 18 times which
indicates a remarkable degree of persistence of the real exchange rate.

The observations are consistent with a strand of literature focusing on the exis-
tence of nonlinear dynamics in the real exchange rate, implying that the speed of
mean reversion is state dependent [387, 403]. This literature suggests that the ob-
served real exchange rates may be stationary around a trend, albeit persistent, and
that it is very persistent in the neighborhood of PPP, while being mean-reverting
at a faster speed when the deviation from PPP gets larger. Such models are called
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Fig. 14.3 EUR/USD disequilibrium

regime-switching models or (smooth) transition autoregressive ((S)TAR) models.
References [387,388,403] have suggested a data-based modeling cycle for estimat-
ing STAR models. While this is certainly a rigorous procedure, it may lack eco-
nomic intuition. We therefore propose a modeling procedure that is based on our
observations and economic reasoning.

14.2.3 Component 2: Nonlinear Mean Reversion

14.2.3.1 Transition Function

Let G[st ;γ,c] be a continuous function (transition function) that determines the
degree of mean reversion and has the following properties: G[st ;γ,c] is bounded
between 0 and 1 and is itself governed by

• The transition variable st which is assumed to be a lagged endogenous variable
[387], that is st = rt−d for certain integer delay parameter d > 0.1

• The parameter γ > 0 which effectively determines the speed of mean reversion.
• The locality parameter c which determines where the transition occurs. In case

the exchange rate is located close to equilibrium, there is high uncertainty about

1 The transition variable can also be represented by an exogenous variable, or a function of lagged
endogenous variables, or a function of a linear time trend, as given by [264].
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its future short-term course. Thus, it might be useful to determine a (close) cor-
ridor of exchange rate bandwidths that the future exchange rate is likely to pass
through.

The regime that occurs at time t can be determined by the observable variable st

and the associated value of G[st ;γ,c]. Different choices for the transition function
G[st ;γ,c] give rise to different types of regime-switching behavior. One popular
choice includes the first-order logistic function G[st ;γ,c] = (1+exp{−γ(st −c)})−1

which has been used for modeling asymmetric cycles of the underlying, for exam-
ple, business cycle asymmetry to distinguish expansions and recessions [389, 390].
However, in the case of exchange rates, this may not make sense. Our visual in-
spections and economic reasoning rather imply the existence of a symmetric band
around the equilibrium rate in which there is no tendency of the real exchange rate
to revert to its equilibrium value (inner regime). Outside this band (outer regime),
commodity arbitrage becomes profitable, which forces the real exchange rate back
towards the band. If regime-switching of this form has to be captured, it appears
more appropriate to specify the transition function such that the regimes are asso-
ciated with small and large absolute values of st . This can be achieved by using
the exponential (E)STAR function G[st ;γ,c] = 1− exp{−γ(st − c)2} according to
[174]. The ESTAR function has been successfully applied to real exchange rates by
([292, 386]) and to real effective exchange rates by [355]. However, according to
[403], a drawback of the exponential function is that for either γ → 0 or γ → ∞ the
function collapses to a constant (equal to 0 and 1, respectively). Hence, the model
becomes linear in both cases and the ESTAR model does not nest a self-exciting
(SE)TAR model as a special case, as would be given by the second-order logistic
function

G[st ;γ,c] = (1 + exp{−γ(st − c1)(st − c2)})−1, c1 ≤ c2, γ ≥ 0 (14.2)

where now c = (c1,c2)′, as proposed by [205]. The properties of the second-order
logistic function are depicted in Fig. 14.4.

In this case, if γ → 0, the model becomes linear, whereas if γ → ∞ and c1 �= c2,
the function G[st ;γ,c] is equal to 1 for st < c1 and st < c2 and equal to 0 in between.
Hence, the STAR model with this particular transition function nests a restricted
three-regime SETAR model, where the restriction is that the outer regimes are iden-
tical. Note that for moderate values of γ , the minimum value of the second-order
logistic function, attained for st = (c1 + c2)/2 remains between 0 and 0.5, unless
γ → ∞. In the latter case, the minimum value does equal zero. This has to be kept in
mind when interpreting estimates from models with this particular transition func-
tion.

14.2.3.2 Illustration and Theoretical Rational

Let us further illustrate the concept of mean reversion by translating the logistic
transition function of second order into the classical price chart. The future spot rate
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describes the deterministic sum of the PPP level at t = 0 and the future real exchange
rate r̂t+1

ŝt+1 = PPPt=0 + r̂t+1 (14.3)

where

r̂t+1 =
{

rt : c1 ≤ st ≤ c2

rt ×G[st=0;γ,c] : else
(14.4)

Hence, the future real exchange rate is dependent on the value of the transition
function G[st ;γ,c] if st lies in the outer regime, i.e., st < c1 or st > c1.

Figure 14.5 illustrates the smooth adjustment of future spot to the level of PPP
at March 2005 according to (14.3) with PPPt=0 = 1.1250 and G[st=0 = 1.3184,γ =
50,(c1,c2) = (0,0)]. Equilibrium theory states that if exchange rates get too far out
of line with macroeconomic fundamentals, “gravitational forces” must bring the
system back to equilibrium. These forces lead to nonlinearities in the adjustment
of exchange rates which can be justified from both a goods and a financial mar-
ket perspective. As international goods arbitrage involves transaction costs, such as
costs of transportation and storage of goods, arbitrage sets in once the real exchange
rate protractedly moves outside certain limits. Consequently, commodity arbitrage
does not compensate for the costs involved in the necessary transactions for small
deviations from the equilibrium real exchange rate. From an asset market perspec-
tive, differing trading strategies could play a role with chartists dominating market
dynamics when the exchange rate is close to some perceived equilibrium, while
fundamentalists being at play once the exchange rate is increasingly misaligned.
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14.2.4 Component 3: Gaussian Random Walk

14.2.4.1 Definition

According to the second PPP puzzle, the so called excess volatility puzzle (see
Sect. 3.1.3), the enormous short-term volatility of real exchange rates is contradict-
ing to the extremely slow rate of adjustment. As we observed, despite the mean-
reverting behavior, the real exchange rate also indicates a remarkable degree of per-
sistence. We therefore assume that in the short term volatility becomes increasingly
important. In fact, the adjustment process can be overshadowed/dominated by mar-
ket volatility. This phenomenon is modeled by a simple one-dimensional random
walk which is given by the AR(1) process

ŝt+1 = st + ε̂t+1 (14.5)

where ε̂t+1 ∼ NID(0,σ2) with constant mean and finite variance.
The normal distribution is based on the central limit theorem, which describes

a tendency as the number of observations becomes infinitely large. Typically, this
assumption is not made because it allows to model financial markets more accu-
rately than competing frameworks, but because it is transparent and tractable. For
example, the assumption of normally distributed returns need not imply that we be-
lieve that returns have been normal in the past, or expect them to be normal in the
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future. We may simply believe that forecasts based on the normal distribution have
not done significantly worse than those based on other more sophisticated models.
Or, even if we believe that other models have done better in the past, we may be
unable to predict that they will do better in the future. In addition, it is clear that
our way of attempting to model the market is first and foremost determined by the
sampling frequency of interest. In contrast to many financial firms, industrial firms
naturally view their financial market exposures over monthly, or quarterly periods
of time. As a consequence, there is no need to sample the market on a daily or even
high-frequency basis and thus there is no need for modeling excess kurtosis, i.e.,
fat tails. As the news flow to markets causes less variation in returns when compar-
ing longer periods, extreme values are averaged out and therefore, normality tends
to become more pronounced as the sampling frequency of price changes decreases
([375], pp. 145–165).

14.2.4.2 Simulation of a One-Dimensional Random Walk

Exchange rate returns can be computer-simulated by randomly (independently)
drawing from historically observed returns (historical simulation), or drawing ran-
domly (independently) percentiles from a certain probability distribution (Monte
Carlo simulation). “Independently” means that every simulated exchange rate re-
turn εt is independent of εt−1. We opt for the simple Monte Carlo method [202],
in which the range of probable values for an uncertain input parameter is divided
into ordered segments of equal probability. The values are sampled in such a way as
to generate samples from all the ranges of possible values, producing information
about the extremes of the output probability distributions. Compared to variance-
reduction sampling techniques, such as the Latin Hypercube method, which reduces
the number of solutions (and may therefore neglect the likelihood of extremes) in
order to decrease computation time, the simple method is found to be more appro-
priate in our context, that is for financial problems involving the assessment of risk.
Based on today’s value of the spot rate s0, randomly generated future exchange rate
returns are linked to paths of length T .

The exchange rate st is derived from the exchange rate at st−1 to which the sim-
ulated change εt was added, where εt can be either positive or negative. According
to this principle exchange rate paths of any length can be simulated. The procedure
can be summarized in four steps as follows:

1. Determine s0 (which is the spot rate in our case), I (which is the number of
scenarios), T (which denotes the simulation horizon)

2. Simulation: Set i = 1. Generate the ith scenario εi,t for every period t = 1,2, . . . ,T
within the simulation horizon

3. Path Linking: st = s0 + εi,1 + εi,2 + . . .+ εi,T

4. Iteration: set i = i+ 1; εi,t , i = 1,2, . . . , I; t = 1,2, . . . ,T until i = I.
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Fig. 14.6 Random walk without drift

Figure 14.6 illustrates 10 out of 10,000 randomly generated, driftless, exchange
rate scenarios starting at a spot rate of EUR/USD = 1.3184 as per March 2005 and
an estimated standard deviation of σ = 0.025. The dotted bold black lines represent
the 5% and 95%, i.e., according to our assumptions there is a 90% probability that
the exchange rate will move within this bandwidth.

14.2.5 Aggregation of Components

14.2.5.1 Gaussian Random Walk with Nonlinear Drift

The aggregation of the three single components results in a random walk model with
nonlinear drift. Let Δt+1 = rt+1 − rt be the difference of the real exchange rate from
the next state to the state of today and let rt+1 be defined according to (14.4). Then
(14.5) can be written as

st+1 = PPPt=0 + rt+1 = st + Δt+1 (14.6)

From (14.6) and (14.5) we obtain

st+1 = st + Δt+1 + εt+1, t = 0,1,2 . . . ,T (14.7)

where εt+1 ∼ NID(Δt+1,σ).
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Fig. 14.7 Random walk with nonlinear drift

14.2.5.2 Illustration

The behavior of the model is illustrated by Fig. 14.7 and illustrates 10 out of
10,000 randomly generated, exchange rate scenarios starting at a spot rate of
EUR/USD = 1.3184 as per March 2005 and an estimated standard deviation of
σ = 0.025. The drift is modeled by smooth adjustment of future spot to the level
of PPP as per March 2005 with PPPt=0 = 1.1250 and G[st=0 = 1.3184,γ = 50,
(c1,c2) = (0,0)]. Accordingly, while the Euro real exchange rate can be well ap-
proximated by a random walk if PPP deviations are small, in periods of significant
deviations, gravitational forces are set to take root and bring the exchange rate back
towards its long-term trend. Exchange rate scenarios are PPP-reverting as shown by
the 5% and 95% bandwidths. Still, there may be scenarios where PPP adjustment
is overshadowed by market volatility and no direct adjustment can be recognized.
This behavior is realistic since it matches the second PPP puzzle.

14.2.6 Calibration of Parameters

14.2.6.1 Estimation of γ and c

We recommend to estimate the slope parameter γ and the location parameter c of
(14.4) in three steps as follows:
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1. Given the current market circumstances, identify c subjectively
2. Estimate γ by OLS, conditional on c
3. Undertake maximum likelihood estimation of the selected nonlinear model from

Step 2, including estimation of γ and c

We found this procedure to work well in practice. Recall that the locality param-
eter c determines where the transition occurs. From an asset market perspective,
we recommend to estimate c subjectively, rather than determining it by a purely
data driven approach [387, 403]. If “chartists” dominate market dynamics, then
there usually exists something like a “perceived equilibrium,” i.e., a critical short
term threshold. This may be hard to determine based on historical exchange rate
data since it depends on market expectations. Instead, one might use short-term
information about technical equilibria as obtained from banks and brokers. Alterna-
tively, companies might also use the interest rate differential as given by the forward
rate, as an indicator for short-term equilibrium value. For instance, one could per-
ceive technical equilibrium to be 5% above/(below) fundamental equilibrium, i.e.,
c = (c1,c2) = ((1− δ )PPPt=0,(1 + δ )PPPt=0) with δ = 0.05. This would imply
that, in case the exchange rate approaches c, there will be no further adjustment
towards PPP since the model collapses to a Gaussian random walk without drift.

Given c, we estimated γ by OLS, i.e.,

minZ =
T

∑
t=1

I

∑
i=1

(ri − r̂i)2 (14.8)

with r̂i according to (14.4) and t = 1,2, . . . ,T describes the backtesting period. The
index i = 1,2, . . . , I describes the forecasting period for γ which was set to I =
36 months. OLS was performed with the Microsoft Excel 2000’s standard solver
([150]) in order to derive optimal values for γ .

14.2.6.2 Estimation of σ

The standard deviation of ε̂t+1 from (14.7) was estimated by taking the square root
of an unbiased estimate of the empirical variance

σ̂t =

√
1

t −1

t

∑
i=t−23

(si − s̄)2 (14.9)

where s̄ is the mean of EUR/USD first differences over the last 24 months.

14.3 Optimization Model

14.3.1 Solution Construction Algorithm

We propose the use of a metaheuristic combinatorial search algorithm. The moti-
vation is twofold. First, we have shown that our problem is NP-hard and cannot
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be solved in polynomial time which directly suggests that solutions can only be
approximated. Second, the problem is nonconvex and nonsmooth which makes it
difficult to find an optimal solution since one cannot simply follow the gradient of
the objective function.

Metaheuristics are modern heuristics which have been first introduced in [161,
162], and have proven to be a very exciting and practical development in approxi-
mate optimization techniques. They have had widespread successes in attacking a
variety of difficult combinatorial optimization problems that arise in many practical
areas. Osman and Laporte [316] conducted a comprehensive list of 1,380 references
on the theory and application of metaheuristics. A more recent survey on meta-
heuristics in stochastic combinatorial optimization has been conducted by [36]. Un-
til today, there is no commonly accepted definition, although researchers have made
many attempts (see, for instance, [46, 316]). In short, a metaheuristic refers to a
master strategy that guides and modifies other heuristic methods to produce solu-
tions beyond those that are normally generated in a quest for local optimality. In
order to do so, metaheuristics incorporate a dynamic balance between intensifica-
tion and diversification. The term intensification refers to the exploitation of the
accumulated search experience, whereas the term diversification, generally refers to
the exploration of the search space.2 Some researchers consider these two require-
ments to be naturally conflicting [28], others to be interplaying [163]. Regarding the
latter, the distinction between intensification and diversification is often interpreted
with respect to the temporal horizon of the search.

In some instances we may conceive of intensification as having the function of an interme-
diate term strategy, while diversification applies to considerations that emerge in the longer
run. [163]

Short-term search strategies can therefore be seen as the iterative application of
tactics with a strong intensification character. When the horizon is enlarged, usu-
ally strategies referring to some sort of diversification come into play. Either way,
a balance between intensification and diversification must be found, on the one
hand to quickly identify regions in the search space with high quality solutions,
and on the other hand not to waste too much time in regions of the search space
which are either already explored or which do not provide high quality solutions.
The balance between intensification and diversification might be quite different not
only across different metaheuristics, but also for different components, which are
generally understood as operators, actions, or strategies of a specific metaheuristic
algorithm.

2 Note that diversification is not the same as randomization. Whereas the goal of diversification is
to produce solutions that differ from each other in significant ways, and that yield productive alter-
natives in the context of the problem considered, the goal of randomization, is to produce solutions
that may differ from each other in any way, as long as the differences are entirely “unsystematic.”
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14.3.2 Scatter Search and Path Relinking

14.3.2.1 Pseudocode Template

We use a procedure that is based on the scatter search methodology, but incorpo-
rates innovative mechanisms to exploit the knowledge of the problem and to create
a trade-off between intensification and diversification for an efficient search. The
seminal ideas of scatter search originated in the late 1960s. A first description of
scatter search appeared in [161]. The modern version of the method is described in
[239]. Scatter search and its generalized form, called path relinking [166,167], have
proven to be highly successful for a variety of known problems, such as vehicle
routing [18, 337, 338], tree problems [68, 423], mixed integer programing [165], or
financial product design [81].

Scatter search is a search strategy that operates on a set of solutions, the refer-
ence set, by generating linear combinations of the reference solutions to create new
ones. The resulting solutions are called trial solutions. These trial solutions may be
infeasible solutions and are therefore modified by means of a repair procedure that
transforms them into feasible solutions. A heuristic improvement mechanism is then
applied in order to try to improve the set of trial solutions. These improved solutions
form the set of dispersed solutions. The new set of reference solutions that will be
used in the next iteration is selected from the current set of reference solutions and
the newly created set of dispersed solutions. The coupling of heuristic improvement
with solution combination strategies, as is the case in scatter search, has inaugurated
the term memetic algorithms (see, e.g., [300]). The Pseudocode template for scatter
search, according to [163], has served as the main reference for most of the scatter
search implementation and can be stated as according to Fig. 14.8. The template is
divided into two phases: an initial phase that generates a first set of dispersed solu-
tions, and a scatter search or path relinking phase that seeks to improve the initial
solution by iteratively searching through the trajectory.

The six components processes may be sketched in basic outline as follows:

1: Initial Phase:
2: Seed Generation()
3: Repeat
4: Diversification Generator()
5: Improvement()
6: ReferenceSetUpdate()
7: Until the reference is of cardinality n
8: Scatter Search/Path Relinking Phase:
9: Repeat

10: Subset Generation()
11: Solution Combination() //Path Relinking
12: Improvement()
13: ReferenceSetUpdate //Tabu List
14: Until termination criteria met

Fig. 14.8 Scatter Search pseudocode template
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1. Seed: create one or more seed solutions, i.e., arbitrary trial solutions used to
initiate the remainder of the method.

2. Diversification Generation Method: generate a collection of diverse trial solu-
tions, using one or more seed solutions as an input. Check feasibility of trial
solutions and repair solution if it is infeasible.

3. Improvement Method: transform a trial solution into one or more enhanced trial
solutions.

4. Reference Set Update Method: build and maintain a reference set consisting of
the b best solutions found, organized to provide efficient accessing by other parts
of the solution procedure. Several alternative criteria may be used to add solu-
tions to the reference set and delete solutions from the reference set.

5. Subset Generation Method: operate on the reference set to produce a subset of its
solutions as a basis for creating combined solutions. The most common subset
generation method is to generate all pairs of reference solutions.

6. Solution Combination Method: transform a given subset of solutions produced
by the Subset Generation Method into one or more combined solutions.

The interconnection between above methods is described in Pseudocode form by
Fig. 14.9 [163] and will be explained in more detail in the next paragraphs. The
scatter search methodology is very flexible since each of its above methods can
be implemented in a variety of ways and degrees of sophistication. The advanced
features of scatter search are therefore related to the way these methods are imple-
mented. That is, the sophistication comes from the implementation of she scatter
search methods instead of the decision to include or exclude certain elements (as in
the case of tabu search or other metaheuristics).

14.3.2.2 Implementation

Diversification Generation Method

The diversification generation method is used only once to build a large set of PSize
different solutions P at the beginning of the search, where PSize is 10 times the size
of RefSet, and is never employed again. An initial reference set of solutions (RefSet)
is created which consists of b = PSize/10 distinct and maximally diverse solutions.
Consider the midpoint of the initial population

xi = li +
(ui − li)

2
, i = 1, . . . ,n (14.10)

where L = {li : i = 1, . . . ,n} is the set of lower bound values and U = {ui : i =
1, . . . ,n} is the set of upper bound values for all candidate solutions xi ∈ X . Addi-
tional points are generated with the goal of creating a diverse population. A popula-
tion is considered diverse if its elements are significantly different from one another.
An Euclidean distance measure d(x,y) is used to determine how “close” a potential
new point x, i.e., a candidate solution, is from the points y already in the population
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1. Start with P = �.

• Use the diversification generation method to construct a solution y
• Apply the improvement method to y. Let x be the final solution
• If x /∈ P then add x to P (i.e., P = P∪ x), otherwise, discard x
• Repeat step until |P| = PSize. Build RefSet = {x1 , . . .,xb} with b diverse solutions in P

2. Evaluate the solutions in RefSet and order them according to their objective function value
such that x1 is the best solution and xb the worst. Make NewSolutions =TRUE.

while (NewSolutions) do

3. Generate NewSubsets, which consists of all pairs of solutions in RefSet that include at
least one new solution. Make NewSolutions =FALSE.

while (NewSubsets �= �) do

4. Select the next subset s (i.e., the next pair (x′,x′′)) in NewSubsets.

5. Apply the Solution Combination Method to s in order to obtain one or more new
solutions y.

//Path Relinking

Produce the sequence x′ = x(1),x(2), . . . ,x(r) = x′′

for i = 1 to i < r/NumImp do

6. Apply the Improvement Method to x(NumImp× i).

end for

7. Apply the Relinking Method to produce the sequence x′′ = y(1),y(2), . . . ,y(s) = x′

for i = 1 to i < s/NumImp do

8. Apply the Improvement Method to y(NumImp× i) and obtain x.

end for

for (each generated solution x)

if (x is not in RefSet and f (x) < f (xb)) then

9. Make xb = x and reorder RefSet.

10. Make NewSolutions =TRUE.

end if

end for

11. Delete s = (x′,x′′) from NewSubsets.

end while

end while

Fig. 14.9 Scatter Search/Path Relinking pseudocode
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(in RefSet), in order to decide whether the point is included or discarded. That is,
for each candidate solution x in P−RefSet and reference set solution y in RefSet, a
measure of distance or dissimilarity d(x,y) is calculated. The candidate solution is
selected which maximizes

dmin(x) = miny∈RefSet{d(x,y)} (14.11)

Since linear constraints are imposed on a solution x, every reference point x is sub-
ject to a feasibility test before it is evaluated, i.e., before the simulation model is run
to determine the value of f (x). The feasibility test consists of checking whether the
linear constraints imposed are satisfied. An infeasible point x is made feasible by
formulating and solving a linear programing (LP) problem with the goal of finding
a feasible x∗ that minimizes the absolute deviation between x and x∗.

mind− + d+

subject to AX∗ ≤ B (14.12)

X −X∗+ d−+ d+ = 0

L ≤ X∗ ≤ U

where d− and d+ are negative and positive deviations from the feasible point x∗ to
the infeasible reference point x.

Improvement Method

Once the population is generated, the procedure iterates in search of improved out-
comes. In each iteration two reference points are selected to create four offsprings.
Let the parent-reference points be x1 and x2, then the offspring x3 to x6 are found as
follows:

x3 = x1 + d

x4 = x1 −d (14.13)

x5 = x2 + d

x6 = x2 −d

where d = (x1 − x2)/3. The selection of x1 and x2 is dependent on the objective
function values f (x1) and f (x2), as well as the search history. An advanced form
of Tabu Search (see e.g., [164]) is superimposed to control the composition of
reference points at each stage. In its simplest manifestations, adaptive memory is
exploited to prohibit the search from reinvestigating solutions that have already
been evaluated. However, the use of memory of the applied algorithm is much more
advanced and calls upon memory functions that encourage search diversification
and intensification in order to allow the search to escape from locally optimal so-
lutions and possibly find a globally optimal solution. For instance, in the course of
searching for a global optimum, the population may contain many reference points
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with similar characteristics. That is, in the process of generating offspring from a
mixture of high-quality reference points and ordinary reference point members of
the current population, the diversity of the population may tend to decrease and the
likelihood increases that the system gets stuck in a local optimum. A strategy that
remedies this situation considers the creation of a new population by a restarting
mechanism which intends to create a population that is a blend of high quality
points found in earlier explorations (referred to as elite points) complemented with
points generated in the same way as during the initialization phase. The restarting
mechanism, therefore, injects diversity through newly generated points and pre-
serves quality through the inclusion of elite points. Diversity is achieved by means
of an age strategy, a form of long-term memory, which assigns to each candidate
solution of a population a measure of “attractiveness.” Since some of the points in
the initial population may have poor objective function values with a high prob-
ability, they may never be chosen to play the role of a parent and would remain
in the population until restarting. To additionally diversify the search, the system
increases the attractiveness of these unused points over time. Thus, at the start of
the search process, all the reference points x in a population of size p have an age of
zero. At the end of the first iteration, there will be p− 1 reference points from the
original population and one new offspring. The ages of the p− 1 reference points
are set to one and that of the new offspring is set to zero. The same logic is followed
in subsequent iterations and therefore, the age of every reference point increases
by one in each iteration except for the age of the new population member which
is initialized to zero. Each reference point in the population has an associated age
and an objective function value. These two values are used to define a function of
attractiveness that makes an old high-quality point the most attractive. Low-quality
points become more attractive as their age increases.

In order to speed up the system’s search engine, a neural network is used to as
a prediction model to help the system accelerate the search by avoiding the need
for evaluating f (x) for a newly created reference point x, in situations where the
f (x) value can be predicted to be of low quality [239]. During the search, the neural
network is trained by historical values of x and fα(x) which are collected for a
number of past iterations, where α denotes a percentage of the total number of
simulation trials. The predicted value of the objective function for x as determined
by the neural network is therefore given by f̂ (x, fα (x)). During each training round,
an error value is calculated which reflects the accuracy of the network as a prediction
model. That is, if the network is used to predict f (x) for a newly created x, then
the error indicates how good the prediction is expected to be. The error term is
calculated by computing the differences between the known f (x) and the predicted
f̂ (x, fα (x)) objective function values. The training continues until the error falls
within a specified maximum value.

Reference Set Update Method

The RefSet Update method accompanies each application of the improvement
method. The update operation is to maintain a record of the b best solutions found.
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Let bNow denote the current number of solutions in RefSet. Initially, bNow begins
at zero, and is increased each time a new solution is added to RefSet, until reach-
ing the value bMax. At each step, RefSet stores the best solutions in an array x[i],
i = 1 to bNow. An associated location array loc(i), i = 1 to bNow, indicates the
ranking of the solutions. That is, x[loc(1)] (the x vector stored in location loc(1)) is
the best solution, x[loc(2)] is the next best solution, and so on. A solution x = x′ is
not permitted to be recorded, if it duplicates another already in RefSet. The search
terminates when no new solutions are admitted to RefSet.

Subset Generation Method

Another important feature relates to the strategy for selecting particular subsets of
solutions to combine. According to Step 3 in Fig. 14.9, NewSubsets is constructed
by systematically including all those pairs of RefSet elements that contain at least
one new solution. This means that the procedure does not allow for two solutions
to be subjected to the solution combination method more than once. We consider
subsets of size 2, and specify that the cardinality of NewSubsets corresponding to the
initial reference set is given by (b2 −b)/2, which accounts for all pairs of solutions
in RefSet.

Solution Combination (Path Relinking) Method

After NewSubsets is constructed and NewSolutions is switched to FALSE, the algo-
rithm chooses two elements of the reference set out of NewSubsets in lexicograph-
ical order and the solution combination method is applied to all pairs of solutions
in the RefSet in order to generate one or more solutions in Step 5. Solutions are
combined in a linear way through path relinking, an approach that was originally
suggested to integrate intensification and diversification strategies in the context of
tabu search ([164]). Here, path relinking extends the combination mechanisms of
scatter search. Instead of directly producing a new solution when combining two
or more original solutions, path relinking generates paths between and beyond the
selected solutions in the neighborhood space. The desired paths are generated by
selecting moves that perform the following role: upon starting from an initiating so-
lution x′, the moves must progressively contain attributes from a guiding solution x′′
(or reduce the distance between attributes of the initiating and guiding solutions).
Consider the creation of paths that join two selected reference solutions x′ and x′′,
restricting attention to the part of the path that lies between the solutions, producing
a solution sequence x′ = x(1),x(2), . . . ,x(r) = x′′. The combinations are based on
the following three types:

• x = x′ −d
• x = x′ + d
• x = x′′ −d

where d = r× (x′′ − x′)/2, and r is a random number in the range (0,1).
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Combinations beyond the segment [x′,x′′], “outside” of x′′ (i.e., nonconvex com-
binations), are generated by three strategies:

• Strategy 1: Computes the maximum value of r that yields a feasible solution x
when considering both the bounds and the constraints in the model.

• Strategy 2: Considers the fact that variables may hit bounds before leaving the
feasible region relative to other constraints. The first departure variable from the
feasible region may happen because some variable hits a bound, which is fol-
lowed by the others, before any of the linear constraints is violated. In such a
case, the departing variable is fixed at its bound when it hits it, and the explo-
ration continues with this variable held constant. This is done with each variable
encountering a bound before other constraints are violated. The process finishes
when the boundary defined by the other constraints is reached.

• Strategy 3: Considers that the exploration hits a boundary that may be defined by
either bounds or any of the linear constraints. When this happens, one or more
constraints are binding and the corresponding r-value cannot be increased with-
out causing the violation of at least one constraint. At this point, OCL chooses
a variable to make a substitution that geometrically corresponds to a projection
that makes the search continue on a line that has the same direction, relative
to the constraint that was reached, as it did upon approaching the hyperplane
defined by the constraint. The process continues until the last unfixed variable
hits a constraint. At this point, the value of all the previously fixed variables is
computed.

Each of these three boundary strategies generates a boundary solution xb outside
x′′. A fourth solution is being generated in the midpoint between xb and x′′. Inter-
changing the role of x′ and x′′ gives the extension outside the “other end” of the line
segment.

The Improvement Method is applied every NumImp steps of the relinking pro-
cess in each path (Steps 6 and 8). Each of the generated solutions, in each path,
including also those obtained after the application of the Improvement Method, is
checked to see whether it improves upon the worst solution currently in RefSet.
If so, the new solution replaces the worst and RefSet is reordered in Step 6. The
NewSolutions flag is switched to TRUE and the pair (x′,x′′) that was just combined
is deleted from NewSubsets in Step 11. The number of solutions created from the
linear combination of two reference solutions depends on the quality of the solutions
being combined. Specifically, when the best two reference solutions are combined,
they generate up to five new solutions, while when the worst two solutions are com-
bined they generate only one. In the course of searching for a global optimum, the
combination method may not be able to generate solutions of enough quality to
become members of the reference set. If the reference set does not change and all
the combinations of solutions have been explored, a diversification step is triggered.
This step consists of rebuilding the reference set to create a balance between solu-
tion quality and diversity. To preserve quality, a small set of the best (elite) solutions
in the current reference set is used to seed the new reference set. The remaining
solutions are eliminated from the reference set. Then, the diversification generation
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method is used to repopulate the reference set with solutions that are diverse with
respect to the elite set. This reference set is used as the starting point for a new round
of combinations.

The structured combinations produced by scatter search are designed with the
goal of creating weighted centers of selected sub-regions. These include nonconvex
combinations that project new centers into regions that are external to the original
reference solutions. The dispersion patterns created by such centers and their exter-
nal projections are therefore based on both current and past evaluations of inputs.
The procedure carries out a nonmonotonic search, where the successively generated
inputs produce varying evaluations, not all of them improving, but which over time
provide a highly efficient trajectory to the best solutions. The process continues un-
til an appropriate termination criterion is satisfied, such as a particular amount of
iterations or an amount of time to be devoted to the search.



Chapter 15
Simulation/Optimization Experiments

15.1 Practical Motivation

A situation is presented, where a manufacturing company, located in Eurozone, sells
its goods via foreign subsidiaries to the end-customer in the United States.

Generally, a strong foreign currency (weak EUR) is considered to be beneficial
for the company because of a larger purchasing power for the customer abroad.
Since one unit of foreign currency is worth more units of home currency, Eurozone
manufactured goods – if prices remain constant – are cheaper which in theory has
a positive effect on international sales. Foreign exchange risk arises at the United
States subsidiary, which on the 15th of every month needs to exchange its USD
turnover into EUR in order to meet its liabilities with the Eurozone parent company.
Since it is not clear what the spot exchange rates for the given currencies will be on
the future transaction dates, the subsidiary is exposed to foreign exchange transac-
tion risk. In this case, risk consists in an appreciating EUR against foreign currency.
For the US subsidiary, a stronger EUR is associated with higher cost of goods and a
lower turnover at period end as a consequence. The described situation is illustrated
in Fig. 15.1.

15.2 Model Backtesting

15.2.1 Overview

For the purpose of model validation, historical data backtesting was carried out via
a dynamic rolling window approach. We split the historical data into two parts.
Part 1 comprises 168 monthly observations (January 1985 to December 1998) and
Part 2 comprises 72 months (January 1999 to December 2004) of the total 96 months
(January 1999 to December 2006). We do not conduct backtesting of the decision

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 163
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 15,
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 15.1 Case study for
hedging EUR/USD Customer

Goods USD

EUR

EU

Goods

US

Backtesting period

January 1999
t = 169

January 1985
t = 1

January 2005
t = 241

January 2007
t = 265

Calibration of simulation parameters, determination of hedge intensities

Fig. 15.2 Backtesting procedure

model over the remaining 24 months of the historical sample (January 2005 to
December 2006) because when solving the model we need 24 months of future
actual realized exchange rates.

Thus, the last roll of the decision model should be 24 months before the end of
the historical sample of exchange rates. In Fig. 15.2 we explain this using a time
line where January 1999 and January 2005 indicate the months, when backtesting
starts and ends, respectively. The experimental set up is progressively described in
the following.

15.2.2 Data Inputs and Parameters

15.2.2.1 Exposures

Exposures are assumed to be deterministic and set to 1 at any time. This allows us
to focus solely on exchange rate effects, and eases interpretation of results. If we
consider the fact that in a multinational firm, exposure forecasting is not a typical
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risk management discipline but rather a sales planning task that is usually taken as
given in practice, assuming deterministic exposures is not an unrealistic assumption
either.

15.2.2.2 Hedge Intensity

The intensity of a hedge is a fraction of the total estimated exposure within a certain
period of time.

It is formally captured by the variable z in Problem 13.1. The hedge intensity
is calculated according to the procedure described in Fig. 15.3. In a PPP-reverting
world, the cheaper it is to buy EUR according to the equilibrium rate, the higher
should be the intensity of a hedge. This logic is captured by the simple Pseudocode
as written in Fig. 15.3. For instance let min = 0.6850, max = 1.5508 and I = 24.
Then the grid range is evenly divided into 24 slots of size b = 0.0361. If current
spot is 0.9815, then t∗ = 15 is returned, suggesting that the exposures for the next
15 months should be hedged. Note that according to Problem 13.1, z is nonneg-
ative and hence, imposes a speculation constraint. The minimum intensity must
therefore be t∗ = 0 months, in case the spot exchange rate exceeds the historical
maximum and is thus, considered to be very unfavorable. The maximum inten-
sity is t∗ = 24 months in case the spot exchange rate is lower than the historical
minimum.

Figure 15.4 gives the results of the routine as applied on the period from January
1985 to December 2004. Hedge intensities are depicted by bar charts which refer
to the y-axis on the right-hand side. The chart demonstrates that according to the
proposed procedure, hedge intensities are perfectly correlated with the degree of
disequilibrium. Hence, this approach of determining hedge intensities is consistent
to the broader logic of foreign exchange hedging in a PPP-reverting context.

1. Determine grid range:

• from January 1985 until ‘current date’: identify minimum spot rate (minspot) and maximum
spot rate (maxspot)

2. Set maximum hedge intensity to I = 24
3. Calculate grid slot size b = (maxspot −minspot)/I
4. Set up grid:

• define array of length I +1
• for 0 ≤ i ≤ I: calculate g[i] = minspot +b× i

5. Determine hedge intensity for current month:

• Check in which grid slot current spot falls
• for 0 ≤ i ≤ I: if current spot ≤ g[i], return hedge intensity i

Fig. 15.3 Pseudocode template for calculation of hedge intensity
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Fig. 15.4 Historical hedge intensities

15.2.2.3 Exchange Rate Data

For the 15th of every month in the backtesting period, historical spot exchange rates,
forward exchange rates, strike prices and option premia for the following 24 months
were obtained from Bloomberg. According to CIP, the no-arbitrage price of the
forward contract or the forward price is determined by the spot rate today and the
interest rate differential between the two currencies for the relevant maturity, also
known as the forward premium. Figure 15.5 depicts EUR/USD forward premia,
which correspond to the interest rate differentials between Eurozone and the United
States for maturities from 1 to 24 months [43]. The forward rate at a certain date for
a particular maturity is simply obtained by adding the respective forward premium
on this date’s spot rate.

Without loss of generality, it is assumed that the firm uses a single type of Euro-
pean option. Due to the existence of transaction costs, it is never optimal to combine
options with different strike prices in this setting. In particular, a forward contract
can be replicated with two options by put-call parity [200]. However, the synthetic
forward produced in this way is dominated by the outright forward because trans-
actions costs are doubled. Specifically, we consider option contracts with maturities
ranging from one to 24 months. So, at maturity, an option which has been purchased
at some decision stage is either exercised, if it yields a positive payoff, or is simply
left to expire. Option strike prices for European style straddle options with maturi-
ties from 1 month to 24 months, as depicted in Fig. 15.6, were specified exogenously
as inputs to the model and were obtained from the Bloomberg database [44].
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Fig. 15.5 At-the-money forward rates
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Fig. 15.6 At-the-money strike prices for European style straddle options

Strike prices for given maturities were chosen by taking the arithmetic mean
between the firm’s expected exchange rate for that maturity as given by the PPP
reverting simulation model, and the exchange rate as expected by the market which
is given by the at-the-money straddle premium. It is only under this circumstance
that the firm and the capital market expect equal payoffs and hence, the straddle can
be considered as fairly valued from the firm’s point of view [323].
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Fig. 15.7 Historical transition function estimates

15.2.2.4 Simulation Parameters

An exchange rate scenario is a sequence of values for a single exchange rate over the
analysis period. The purpose of scenario generation is to come up with levels for the
exchange rate path between t = 0 and T = 24. For a single factor the discrete form of
the evolution equation for the exchange rate st is given by (14.7). For ease of model
calibration, we assume c1 = c2 = PPP. The variables γ and σ were estimated on
the 15th of every month according to (14.8) and (14.9) for the time period between
January 1985 and December 2004 (252 months).

Figure 15.7 illustrates the resulting estimated values for the transition function
G over the backtesting period. Obviously, G is strongly reacting to the degree of
disequilibrium. Figure 15.8 displays the estimated values for σ , where each estimate
refers to the standard deviation of EUR/USD moves of the past 24 months. Since
only one exchange rate is considered there is no need to make assumptions about
dependence structures.

15.2.2.5 Optimization Parameter Settings

In order to derive decisions on the mix of instruments, we consider the SCOP prob-
lem with a mean-variance-skewness objective as formulated in Problem 4.1. The
decision variables are represented by the amount of the hedge that is to be allocated
to each of the hedging vehicles. The optimal solution is represented by the alloca-
tion of instruments x∗ = (x∗F ,x∗O,x∗S) that yields the minimal objective function value.
For exposition purposes, the optimal weight sets used to construct the hedges given
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Fig. 15.8 Historical standard deviation estimates

the firm’s preference are set to λ = κ = 1. This preference set is a compromise case
where the weights for mean, variance, and skewness are equal, indicating that mean,
variance, and skewness of return are of equal importance to the firm. The starting
values for the decision variables were set to x∗F = 0.33, x∗O = 0.33, and x∗S = 0.34 in
order to provide a neutral start for the search. The step size for the decision variables
was set to 0.01, and according to Problem 13.1, 0 and 1 provide the lower and upper
bounds for xF ,xO,xS whose sum must equal 1. We further specify that the search
stops after 150 simulations with each simulation comprising 10,000 replications of
the exchange rate with the same initial population given a specific pseudorandom
generator seed. The latter reduces the variance between runs and makes the search
for an optimum more efficient. All tests were carried out on a standard desktop PC
(2 GHz single CPU) with Windows XP.

15.2.2.6 Algorithmic Reference

The commercial Monte Carlo spreadsheet add-in, Crystal Ball version 7.02, was
used for generating exchange rate scenarios.1 To estimate optimal values for the de-
cision variables, we applied the scatter search/path relinking algorithm according to
[238]. The algorithm is implemented in the commercial OptQuest package, a stand-
alone optimization routine that is bundled with Crystal Ball. Being a completely
separate software package, OptQuest treats the simulation model as a black box,
i.e., it observes only the input/output of the simulation model.

1 Crystal Ball’s random number generator has a period of length 231−2 which means that the cycle
of random numbers repeats after several billion trials.
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15.2.3 Evaluation Procedure

The role of the historical market data, the exposure data, their interaction with the
decision model and backtesting are described in the following. The experimental
setup requires that we dynamically:

1. Use market data in order to revalue the forward and straddle positions
2. Record the decisions made in the current step of the model as an input of the

starting position of the next “roll” of the model

As we stepped through time the model database was updated with the most cur-
rently available equilibrium, spot, forward and straddle rates. Once the current for-
ward exposures for the next 24 months were accessed, the favorability of the current
exchange rate was evaluated resulting in a recommendation on the future exposure
to be hedged, i.e., a target hedge intensity. If this number was equal or higher than
the current amount of months hedged, a decision on the composition of the hedge
had to be made. In this case, OptQuest was used to solve the resulting optimization
problem. For instance, consider the situation on 15 November 2000. The suggested
hedge intensity according to Fig. 15.4 is 19 months. Since 18 months have been
hedged in the past, a decision on the instrument mix had to be made for month 19,
i.e., June 2002 only.

Figure 15.9 shows the performance graph that resulted from an OptQuest run of
100 simulations. The graph shows the value of the objective for the best alternative
found as the search progresses. The search began from a solution with an expected
objective function value of 2.5454, which happened to be a goal-feasible solution.
The best solution was found on the 70th simulation and had an objective function
value of 2.5522. One can also observe that the best value changes quickly early
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Table 15.1 Best solution
found

Simulation Objective Spot Forward Straddle

1 2.54536 0.34 0.33 0.33
2 2.55112 0.00 0.50 0.50
20 2.55176 0.00 0.46 0.54
28 2.55198 0.00 0.44 0.56
68 2.55213 0.00 0.42 0.58
69 2.55221 0.00 0.40 0.60
70 2.55222 0.00 0.38 0.62

Table 15.2 Robustness of best solution found

Name Best Minimum Average Maximum Std. Dev.

Objective 2.5522 2.5204 2.5414 2.5522 0.0093
Spot 0.00 0.00 0.2336 1.00 0.2954
Forward 0.38 0.00 0.3526 1.00 0.2681
Straddle 0.62 0.00 0.4139 1.00 0.2904

in the run, as improvements are being found frequently, and then it changes more
slowly as better solutions become harder to find. We find in our experiments that
scatter search is a search method that is both aggressive and robust. It is aggressive
because it finds high-quality solutions early in the search. It is robust because it
continues to improve upon the best solution when allowed to search longer.

The details of this run are reported in Table 15.1, where each row gives the val-
ues of the decision variables in case they led to a higher objective function value.
The best solution was achieved in the 70th run which recommends to hedge the ex-
posure completely with a combination of 38% forwards and 62% straddles. These
selections meet the category bounds specified in Problem 13.1, and provide a single
good solution, thereby guiding policy for increasing mean-variance-skewness.

Given a set of solutions, all possible of increasing mean-variance-skewness, it is
interesting to ask how similar these solutions are in terms of their suggested alloca-
tions. If all these solutions suggest a similar strategy, then one can be more confident
that this policy is robust to small changes in the amounts allocated. Alternatively,
if these solutions correspond to extremely different allocations, then this implies
that the solution is extremely sensitive to the amounts allocated. We identified 101
solutions that had an objective within 10% of the best objective.

The solution report given by Table 15.2 provides evidence that the objective func-
tion value is relatively noisy. This is not the result of a low number of simulation
trials but due to the relatively wide spreads between the minimum and maximum
values for the decision variables from the set of solutions that fell within the analy-
sis range.

Furthermore, we analyze the runtime behavior of the respective algorithm by the
required computing time on the reference PC. Under the settings described, solving
the problem for three decision variables took approximately 12 min and solving the
problem for six decision variables came at the expense of approximately 20 min.
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On the one hand, the computing time should not be overinterpreted because it is
dependent on the reference machine and on implementation details, but on the other
hand, it is an indication for real-world applications.

In order to validate the model over time, we calculated its effect on net income
via a rolling window approach where the objective function is given by

U(w) =
T

∑
t=1

U(wt) (15.1)

As per 31 December 1998, we assumed that the firm’s net income was USD 100.
As per 15 January 1999, a hedge intensity of ten months (covering February 1999
to November 1999) was suggested by the procedure described in Fig. 15.4. Nine
months, i.e., February 1999 to October 1999, were assumed to be covered in the
past, each by a proportion of 1/3 forwards and 1/3 straddle options. The remaining
1/3 of the following 9 months’ exposure, along with the exposures from month 11
to month 24, were assumed to remain unhedged. In order to obtain a recommen-
dation on the composition of the hedge for maturity November 1999, the simula-
tion/optimization procedure was started. Upon determination of the search, the best
values for the decision variables as obtained by OptQuest were recorded. The cost
of the hedge was calculated (straddle premium + transaction cost of 3 pips) and de-
ducted from last month’s net income. Next, the clock was advanced by one month,
and the financial losses or gains made on the forward and straddle positions were
determined. Thus, on 15th January 1999, the first day of the backtesting period,
all cashflow maturities have decreased by one month (i.e., the exposure in month
2 becomes an exposure in month 1, the exposure in month 3 becomes an exposure
in month 2, etc.) and a new exposure in month 24 appears in the 24 months time
window. In realigning the forward and straddle contracts to the current spot levels
either some profit on the currently held contracts is realized or the selective hedge
has led to a loss. Since the decision model uses data sets, which were updated as we
stepped through time, the scenario generator created a completely new set of sce-
narios in each month looking ahead over a time horizon of T = 24 months. Given
that the decisions were made altogether 72 times, by stepping through the time line
we processed the corresponding simulation/optimization model 72 times using the
Crystal Ball/Optquest system. To verify whether multiproduct hedging with variable
weights has advantages over simpler approaches, the dynamic rolling procedure was
not only applied to the mean-variance-skewness optimization model but also to four
benchmark strategies:

1. 100% spot strategy (no hedging), i.e., xS = 1 and xF = xO = 0, for t = 0, . . . ,T
2. 100% forward strategy, i.e.,

• xF(t∗) =
{

1 : t = 0, . . . ,t∗
0 : t = t∗, . . . ,T

• xO = 0 for t = 0, . . . ,T

• xS(t∗) =
{

0 : t = 0, . . . ,t∗
1 : t = t∗, . . . ,T
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3. 100% straddle strategy, i.e.,

• xF = 0 for t = 0, . . . ,T

• xO(t∗) =
{

1 : t = 0, . . . ,t∗
0 : t = t∗, . . . ,T

• xS(t∗) =
{

0 : t = 0, . . . ,t∗
1 : t = t∗, . . . ,T

4. Mixed strategy consisting of 1/3 at-the-money forwards, 1/3 at-the-money strad-
dle call options, and 1/3 spot, i.e.,

• xF(t∗) =
{

0.33 : t = 0, . . . ,t∗
0 : t = t∗, . . . ,T

• xO(t∗) =
{

0.33 : t = 0, . . . ,t∗
0 : t = t∗, . . . ,T

• xS(t∗) =
{

0.34 : t = 0, . . . ,t∗
1 : t = t∗, . . . ,T

Strategies 1–4 are nonpredictive beyond the given grid recommendation since they
do not allow the hedge to time-vary but are fixed-weight strategies and therefore do
not seek to exploit the history of market information.

15.3 Results

15.3.1 Ex Ante Performance

Figure 15.10 plots the objective function values of the proposed mean-variance-
skewness utility function against the four benchmark strategies over the 8 year out-
of-sample backtesting period from January 1999 to December 2006. Grey bars indi-
cate times when decisions on the optimal combination of instruments were delayed
in order to reduce hedge intensities.

On 15 December 1998 – as mentioned above – all four strategies start with
same initial product mix, a hedge intensity of ten future months (covering February
1999 to November 1999) with each of them being covered by a proportion of 1/3
forwards and 1/3 straddle options. The remaining 1/3 of the following 9 months’
exposure along with the exposures from M11 to M24 remained unhedged.

We observe that from here on the utility of the spot strategy gradually declines
over the next 9 months, and in September 1999 jumps down to a utility value be-
low zero. Since no further hedges are made, the strategy has the highest variance
consistently over time which is punished by the objective function. In addition,
since it does not represent a hedge, the payoff distribution from which the mean and
skewness values are derived becomes irrelevant. This explains the smooth path of
the spot strategy at a negative level of utility.

Visual inspection of Fig. 15.10 further reveals that the forward strategy pro-
vides the most volatile objective function values taking on relatively high – albeit
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Fig. 15.10 Historical comparison of objective function values

volatile – utility values from January 1999 to May 2003, and a low level of utility
from May 2003 onwards. This can be explained as follows. According to PPP, the
USD is strong compared to the EUR from January 1999 to May 2003. Relatively
few USD have to be given up in order to buy one EUR. Since the USD is overval-
ued, we expect that it will become weaker in the future which is expressed by the
stochastic smooth transition PPP process incorporating a nonlinear positive trend in
the exchange rate scenarios towards equilibrium. This in turn implies that forward
hedges implemented in the past are in-the-money which results in a positive mean
of the payoff-distribution. From May 2003 onwards, the exact opposite holds. The
USD overvaluation cycle has ended and the spot rate enters into a phase of USD
undervaluation. The mean of the probability distribution of payoffs becomes nega-
tive because it is expected that – due to gravitation – future spot is likely to go down
at a pace γ that is linked to the degree of USD undervaluation and forward hedges
implemented in the past are therefore out-of-the-money. To sum up, entering into
a forward contract always includes a directional bet on the future path of the spot
exchange rate while the variance of the open position is symmetrically reduced and
third-moment effects do not exist.

The straddle strategy clearly dominates both the spot and forward strategies
throughout the whole period. The reason is twofold. First, like forwards, straddles
eliminate exchange rate risk as measured by σ . Second, unlike forwards, they
provide a profit/loss potential beyond the forward contract depending on whether
exchange rate volatility expectations were closer to reality ex post than those of
the counterparty selling the straddle. If exchange rate volatility was expected to be
higher than implied volatility in the capital market, this had a direct positive impact
on the mean of the straddle contract’s payoff distribution, and vice versa. From



15.3 Results 175

January 1999 to May 2003, spot upward movements were predicted to be large
enough by the smooth transition PPP model to activate the call option of the strad-
dle and offset the premium paid. On average, the contribution of the mean payoff
on the objective function value was higher than the skewness contribution. From
May 2003 onwards, EUR/USD downward movements were predicted to be large
enough to activate the put option of the straddle which kept the strategy profitable.
Still, expected straddle profits were not expected to be as high as the ones in the
first half of the backtesting period. One reason is that the estimated values for γ
continually decline within our estimation procedure as a result of averaging. This
results in a slowing adjustment and therefore implies smaller profit potential for
straddles. The other reason is that hedge intensities were reduced during this period
which implies smaller profit potential due to less hedges. Instead, the skewness
contribution increased in the second half.

A comparison of the strategies confirms our expectation that the variable-weight
mean-variance-skewness strategy’s utility level (black line) dominates the tra-
ditional fixed weight allocation prescriptions over time. The optimized mean-
variance-skewness strategy is closely mirrored by the straddle strategy. Then, from
August 2003 onwards the two strategies diverge and the proposed strategy is better
mirrored by the 1/3 strategy. This is a natural result of the scatter search optimiza-
tion routine tending to select the best of both worlds: completely closed positions up
to the recommended hedge intensity with an emphasis on straddles during the USD
overvaluation period from January 1999 until April 2003, and just as many hedges
as necessary to suffice the given degree of risk-aversion during the USD underval-
uation. In particular, it was the skewness criterion that drove decisions from April
2003 – the turning point in the backtesting period when the USD overvaluation
(EUR undervaluation) cycle turns into a USD undervaluation (EUR undervalua-
tion) phase – onwards. Although in the aftermath of April 2003, the mean of the
straddle’s payoff distribution is consistently higher than the mean of the optimized
payoff distribution, this comes at a tremendous cost of skewness. This seemed at
first surprising since the optimized strategy picks – on average – less straddle con-
tracts (−21%), but a higher proportion of forwards (+10%) and a noticeably higher
spot proportion (+11%) instead. Hence, despite the strategy containing less options,
it is more positively skewed since the probabilistic losses of the forward proportion
offset part of the straddle’s probabilistic profits (asymmetric distribution). Further
note, that in the first half of the backtesting period there were months when the
optimized strategy fell below the straddle strategy, and in the second half of the
backtesting period there exist months when the optimized strategy fell below the
mixed strategy of 1/3 spot, 1/3 forwards, and 1/3 options. The reason is, that at times
when hedging intensities were reduced (“do nothing”), i.e., exposures were left un-
covered and completely exposed to spot rate fluctuations, worse objective function
values were achieved due to lower skewness if the optimized strategy included less
straddle contracts than the competitive strategies. Overall, the straddle, forward, and
spot strategies perform significantly worse than the mixed strategies. The problem
with the straddle strategy is that option premia are expensive and reduce the mean,
in particular, at times when volatility in the market was lower than expected. In
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contrast, the forward’s purpose to cheaply reduce or eliminate income volatility
turns out to be problematic if spot moves in the opposite direction. One can benefit
from such moves by following a pure spot strategy and leave the exposure totally
open, however the high variability of results is punished by the objective function.

15.3.2 Ex Post Performance

An ex post comparison of the different hedging strategies’ net income is given in
Fig. 15.11.

There is no dominant strategy that outperforms the other ones constantly
over time. However, both the straddle strategy and the optimized mean-variance-
skewness strategy seem to be clearly preferable over the other strategies. All five
strategies started with a net income of USD 100 which was reduced to USD 99.82
in January 1999 as a result of paying straddle option premia on 1/3 of the exposed
amounts for the next 9 months. The simplest approach, presented by the red line is
that of no hedge at all. In this case, the portfolio simply comprises a long position in
the spot market having zero payoff from October 1999 on, when the initial positions
were settled.

The forward strategy leads to the most volatile P&L as a result of the forward
bias, a phenomenon vastly described in both academic [114, 125] and practical
literature [29]. What this literature implies is that historically, rather than the USD
depreciating as suggested by the forward rate, the USD was actually appreciating
from January 1999 until the beginning of 2002 causing large losses of the forward
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strategy at expiry. This led to a minimum net income of USD 96.3 in January
2002. In contrast, positive returns were achieved by the forward strategy over the
following months due to a forward premium discount bias, i.e., the USD turned
out to be weaker as initially expected by the forward rate. Hence, the realized net
income recovered since January 2002 exceeding the initial USD 100 two years later
in January 2004, reaching the maximum of USD 101.95 in May 2005, and moving
sideways until the end of the backtesting period. The 1/3 strategy is the least volatile
in terms of profit/loss, mainly due to its large spot proportion which limits upside,
as well as downside profit potential. The straddle strategy seems to provide very
desirable results over time. One possible explanation is that the capital markets un-
derestimated future EUR/USD volatility when pricing the options. Santa-Clara and
Saretto [354] examined various strategies, including naked and covered position in
options, straddles, strangles, and calendar spreads, and find support for mispricing
in the options markets which cannot be arbitraged away due to high trading costs
and margin requirements.

The mean-variance-skewness strategy generates a growth path with similar pat-
terns to those of the 1/3 strategy until December 2002, then rises strongly and
outperforms the 1/3 strategy and even the straddle strategy. The latter fact comes
at the expense of increasing volatility. Therefore, the firm implementing the mul-
tiproduct optimal hedging model will be significantly less than fully hedged. One
possible interpretation of the better performance of the dynamically optimized
strategy over the naive hedges is that it uses short-run information, while the naive
static hedges are driven by long-run considerations and an assumption that the
relationship between spot and forward price movements is 1:1. For instance, if the
indication is in favor of a USD appreciation, then being less than fully hedged will
lead to gains in the spot market conversion, and lower losses (or no losses) on the
forward contract leading to much better financial results. On the other hand, if the
indication is in favor of a depreciation of the foreign currency, then being hedged is
preferable to being unhedged and will lead to gains in the forward contracts.

An alternative way of presenting ex post results of the rolling decision model is
given by Fig. 15.12 which provides a histogram of the different strategies’ realized
profit/loss. In addition to Fig. 15.12, Table 15.3 provides the associated summary
statistics of the backtested hedging strategies’ probability distributions.

The forward strategy has the longest left tail and implies the highest risk of a
shortfall in net income. With a standard deviation of 1.95, it is also the most volatile
strategy. From a risk-return perspective, the forward strategy has the lowest Sharpe
Ratio and the weakest return per unit of earnings-at-risk (EaR) which was calculated
as the difference between the initial amount USD 100 and the 5% quantile of the re-
spective probability distribution of realized profit/loss. The straddle strategy and the
1/3 strategy reveal similar risk-return characteristics if compared by their Mean/EaR
ratios with the straddle strategy at 79.84 being slightly better. However, if compared
against traditional Sharpe Ratio, superior results are provided by the 1/3 strategy
which is due to the lowest standard standard deviation among all strategies. The op-
timized mean-variance-skewness strategy provides superior out-of-sample results if
profit/loss risk is not perceived symmetrically but in terms of downside risk. In fact,
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Table 15.3 Summary statistics of the hedging strategies backtested

Mean SD EaR Min Max Mean/SD Mean/EaR

M-V-S 100.40 1.49 1.10 98.80 102.47 67.45 91.28
Forward 99.29 1.95 3.64 96.30 101.95 50.93 27.28
Straddle 100.32 1.02 1.26 98.68 101.94 97.88 79.84
1/3 99.82 0.90 1.27 98.67 101.21 110.95 78.75

most corporations and investors would be foolish to not accept the good risk, but
would be negligent to not eliminate the bad risk.

Still, the explanatory power of the results is limited, especially if we consider
that exchange rate adjustment is a long-term phenomenon. We can only get a vague
idea on whether the forecasts from a STAR model are always superior to those of
the linear models out-of-sample. Evaluating forecast performance is therefore in-
trinsically problematic. As noted by [403], even though nonlinear time series often
capture certain characteristics of the data better than do linear or random walk mod-
els, the forecast performance of the former is not always superior, and is sometimes
even worse. Hence, there is no guarantee that the estimated LSTAR models will
produce superior forecasts. A necessary condition for that to happen would seem
to be that the forecasting period contains nonlinear features [180]. For instance, a
nonlinear model may be expected to be superior to a linear one when the forecast-
ing period contains the aftermath of a large negative shock. If that is not the case, a
linear autoregressive model is likely to perform as well as a nonlinear one. Another
possible reconciliation is offered by [89], who suggest that regime switching models
may forecast poorly owing to the difficulty of forecasting the regime that the series
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will be in. Thus, any gain from a good fit of the model within the regime will be
lost if the model forecasts the regime incorrectly. Estimated values of parameters
μ , σ , and γ in the exchange rate process using MCS are therefore indicative but
not perfectly predictive of similar parameters for future exchange rate returns. This
will be true for the parameters of any parametric exchange rate evolution model.
Therefore, there is an inherent uncertainty associated with mean, standard devia-
tion, adjustment speed, etc. of future exchange rate returns. As a result, the apparent
precision of an exact solution is somewhat deceptive since the problem may itself
be viewed as not exactly defined due to lack of precision in the problem parameters.
Therefore, precision of the parametric solution is a problem only if the parameters
for exchange rate dynamics are known with greater precision. In case parameters are
known with higher precision, a different parameterization may be used for a better
approximation. This will however, result in a larger problem size. Despite the many
problems that economic forecasts from economic systems confront, these models
offer a vehicle for understanding and learning from failures, as well as consolidat-
ing our growing knowledge of economic behavior.



Chapter 16
Exchange Rate Forecasting with Support
Vector Machines

This thesis is an interdisciplinary work that combines computer science, economet-
rics and financial engineering in order to support human decision-making in the
context of trading and hedging the foreign exchange market. The first part of the
dissertation provides an introduction to basic macroeconomic and financial theo-
ries on exchange rates. While this part does not advance any new ideas, it presents
an original synthesis of existing work from different research directions, stressing
the relevance of computational complexity theory to address financial market phe-
nomena which cannot be explained by conventional financial and macroeconomic
theories. The remainder of the dissertation makes the following contributions.

Abstract – Purpose: Part II examines and analyzes the general ability of sup-
port vector machine (SVM) models to correctly predict and trade daily EUR/GBP,
EUR/JPY, and EUR/USD exchange rate return directions. When computers are ap-
plied to solve a practical problem, it is usually the case that the method of deriving
the required output from a set of inputs can be described explicitly. As computers
are applied to solve more complex problems, however, situations can arise in which
there is no known method for computing the desired output from a set of inputs,
or where that computation may be very expensive. Forecasting financial time series
events such as daily exchange rate directions, for instance, is a problem that is very
relevant for the financial community and known to be very difficult in practice. We
formally represent this problem as a classification task which is described by the
linear separability problem. In the special case of finding whether two sets of points
(namely exchange rate ups and downs) in general space can be separated, the linear
separability problem becomes the binary classification problem whose most general
form, the case of whether two sets of points in general space can be separated by k
hyperplanes, is known to be NP-complete. It is generally believed that NP-complete
problems cannot be solved efficiently.

Design/Methodology/Approach: We approach the task of solving the BCP in
the context of predicting daily exchange rate directions with supervised learning,
a learning methodology for the computer that attempts to learn the input/output
functionality from historical training examples. In particular, we opt for SVM as a

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 183
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 16,
c© Springer-Verlag Berlin Heidelberg 2009



184 16 Exchange Rate Forecasting with Support Vector Machines

supervised learning algorithm. SVM has been found to work well for classification
tasks across a variety of scientific disciplines. The basic idea is to project the input
data via kernel into a more expressive, high dimensional feature space where the
SVM algorithm finds a linear decision plane that has maximum distance from the
nearest training patterns. Using a kernel function guarantees that linear classifica-
tion in feature space is equal to nonlinear classification in input space. Our experi-
ment is to compare six SVM models with varying standard kernels along with one
exotic p-Gaussian SVM in order to investigate their quality in separating Granger-
caused input data in high dimensional feature space. To ascertain their potential
value as out-of-sample forecasting and quantitative trading tools, all SVM models
are benchmarked against traditional forecasting techniques.

Practical Implications: Apart from pure statistical evaluation, the performance
of SVM was tested in a real-world environment. We set up a trading simulation
where return predictions were translated into positions first. Next, a decision frame-
work was established that indicates when the underlying asset was bought or sold,
depending on the SVM output. Several trading metrics were imposed on the fore-
casting results to measure the models’ success.

Results/Findings: It is found that hyperbolic SVMs perform consistently well
in terms of forecasting accuracy and trading performance via a simulated strategy.
Moreover, p-Gaussian SVMs perform reasonably well in predicting EUR/GBP and
EUR/USD return directions.

Originality/Value: The results of Part III shed light on the existence of a partic-
ular kernel function which is able to represent properties of exchange rate returns,
generally well, in high dimensional space. The fact that hyperbolic kernels are such
promising candidates can be valuable for institutional investors, private investors,
and risk managers of nonfinancial corporations.

Future research: Future research direction will focus on SVM models and their
technical improvements. In light of this research, it would also be interesting to
see if the dominance of hyperbolic SVMs can be confirmed in further empirical in-
vestigations on financial market return prediction. We believe that modern methods
of the machine learning, pattern recognition, and empirical inference will play an
essential role in coping with a complex world.



Chapter 17
Exchange Rate Hedging
in a Simulation/Optimization Framework

Abstract – Purpose: Part III considers another relevant practical problem involving
uncertainty about future exchange rate developments: the problem of finding a pos-
sibly optimal combination of linear and nonlinear financial instruments in order to
hedge foreign exchange transaction risk over a specified planning period. While
much research has been done in order to find answers on why multinational firms in
reality hedge their exchange rate exposures, newspapers regularly suggest that more
research should be directed towards how hedgers can improve their decision making
procedures. Hedges are trades designed with the motivation to reduce or eliminate
risk which distinguishes them from pure speculation. Still real-world hedging poli-
cies often involve a speculative component in terms of exchange rate expectations
which may deviate from those implied by derivative prices. For instance, if a hedger
believes that the currency is going to move in an unfavorable direction, he may ask
about the appropriate strategy in terms of instrument selection. In contrast, if the
currency is expected to move favorably, but the hedger is not entirely sure, should
he use a different risk management strategy?

Design/Methodology/Approach: We address the conflicting empirical finding
that firms do like to try to anticipate events, but that they also cannot base risk
management on second-guessing the market. Our analysis therefore argues that a
way to understand corporate hedging behavior is in the context of speculative mo-
tives that could arise from either overconfidence or informational asymmetries. The
problem is addressed in a formal way, taking into account one single source of un-
certainty (the exchange rate), a given set of instruments consisting of spot, forward,
and European straddle option contracts that the hedger is allowed to choose from,
and his particular attitudes towards risk and return. Regarding the latter, financial
literature has shown that traditional mean-variance or mean-quantile-based perfor-
mance measures may be misleading if products with nonlinear payoff profiles, such
as options, are used. In addition, literature on bounded rationality suggests that in-
dividuals perceive risk in a nonlinear fashion which is expressed by a preference for
positive skewness in the probability distribution of future payoffs. For these reasons,
a weighted mean-variance-skewness utility maximization framework with linear

C. Ullrich, Forecasting and Hedging in the Foreign Exchange Markets, Lecture Notes 185
in Economics and Mathematical Systems 623, DOI: 10.1007/978-3-642-00495-7 17,
c© Springer-Verlag Berlin Heidelberg 2009



186 17 Exchange Rate Hedging in a Simulation/Optimization Framework

constraints is embedded in a single-period stochastic combinatorial optimization
problem (SCOP) formulation with the goal to maximize expected utility at the plan-
ning horizon. Stochastic combinatorial optimization is the process of finding the
best, or optimal solution for problems with a discrete set of feasible solutions in
a stochastic system. The single-period approach suggests that hedge ratios can-
not be altered once hedging decisions are made. While much progress has been
made in finding exact (proveably optimal) solutions to some combinatorial opti-
mization problems, using techniques such as dynamic programing, cutting planes,
and branch-and-cut methods, reaching “optimal solutions” is in many cases mean-
ingless, as in practice we are often dealing with models that are rough simplifications
of reality. The underlying SCOP is proveably NP-hard and therefore, too difficult to
be solved analytically in polynomial time which requires the use of good heuristic
methods. In addition, the optimization problem exhibits multiple local extrema and
discontinuities. In the absence of a tractable mathematical structure, we study the
behavior of heuristics, “quick and dirty” algorithms, which return feasible solutions
that are not necessarily optimal. In particular, we apply a methodology called Sim-
ulation/Optimization which is a general expression for solving problems where one
has to search for the settings of controllable decision variables that yield the max-
imum or minimum expected performance of a stochastic system as presented by a
simulation model. For modeling the EUR/USD exchange rate, a smooth transition
nonlinear PPP reversion model is presented. The simulation model is very attrac-
tive in the present context and unique to our knowledge. It addresses both, the first
and the second PPP puzzle, and provides a theoretically valid and visually intuitive
view on the corridor of future EUR/USD spot development. The key feature is a
smooth transition function which allows for smooth transition between exchange
rate regimes, symmetric adjustment of the exchange rate for deviations above and
below equilibrium, and the potential inclusion of a neutral corridor where the ex-
change rate does not mean revert but moves sideways. Another advantage is that
only two parameters need to be estimated, the speed of mean reversion and ex-
change rate volatility, which makes the model straightforward to use in practice.
For the task of optimization, we propose the use of a metaheuristic combinatorial
search algorithm. A metaheuristic refers to an intelligent master strategy that guides
and modifies other heuristic methods to produce solutions beyond those that are
normally generated in a quest for local optimality. The specific metaheuristic we
use is a variant of scatter search, a generalized form of path relinking, which in
many practical problems has proven to be an effective and efficient approach due to
its flexibility to accommodate variations in problem structure and in the objectives
considered for the evaluation of solutions.

Practical Implications: In order to show our simulation/optimization model’s
applicability in a practical context, a situation is presented, where a manufacturing
company, located in the EU, sells its goods via a US-based subsidiary to the end-
customer in the US. Since it is not clear what the EUR/USD spot exchange rate
will be on future transaction dates, the subsidiary is exposed to foreign exchange
transaction risk under the assumption that exposures are deterministic. We take the
view that it is important to establish whether optimal risk management procedures
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offer a significant improvement over more ad hoc procedures. We demonstrate that
the establishment of simple rules which adjust the recommended hedge dynamically
(without rebalancing) based on easily observed current market factors can lead to
better performance and risk management than various nave static hedges. For the
purpose of model validation, historical data backtesting was carried out and it was
assessed whether the optimized mean-variance-skewness approach is able to out-
perform passive strategies such as unitary spot, forward, and straddle, as well as a
mixed strategy over time. The passive strategies are nonpredictive since they do not
allow the hedge to time-vary but are fixed-weight strategies and therefore do not use
the history of market information. We compare the alternative strategies in dynamic
backtesting simulations using market data on a rolling horizon basis. The strategies
were evaluated both in terms of their ex ante objective function values – as well as
in terms of ex post development of net income.

Findings: Financial markets are perfect examples of dynamic systems of com-
plex human behavior. Unsurprisingly to either algorithm designers or theorists, we
provide proveable results that incomplete information about the state of the system
hinders computation. Although we model only one “simple” random price move-
ment, the EUR/USD exchange rate, our results demonstrate that currrency hedging
in practice may be a hard problem from a computational complexity perspective
and that optimal solutions to real-world hedging problems can be approximated at
best. We demonstrate through extensive numerical tests the viability of a simula-
tion/optimization model as a decision support tool for foreign exchange manage-
ment. We find in our experiments that scatter search is a search method that is both
aggressive and robust. It is aggressive because it finds high-quality solutions early in
the search. It is robust because it continues to improve upon the best solution when
allowed to search longer. Our approach to hedging foreign exchange transaction risk
is based on exchange rate expectations, considers real market data and incorporates
flexible weights. We find that the approach adds value in terms of reducing risk
and enhancing income. The optimized mean-variance-skewness strategy provides
superior risk-return results in comparison to the passive strategies if earnings risk
is perceived asymmetrically in terms of downside risk. Conditioning information
therefore seems to be important. Even with low levels of predictability, there is a
substantial loss in opportunity when fixed-weight strategies (which assume no pre-
dictability) are implemented relative to the dynamic strategy that incorporates condi-
tioning information. The pure forward strategy is found to have the lowest return per
unit of earnings risk whereas the straddle strategy and the 1/3 strategy reveal similar
risk-return characteristics. Interestingly, our research also contrasts the finding that
currency forward contracts generally yield better results in comparison to options
since a passive straddle strategy would have yielded superior results compared to a
forward strategy. Our results are as follows. Apart from our backtesting results, it is
believed that the proposed simulation/optimization procedure for determining opti-
mal solutions has important implications for policy making. Having easy access to
relevant solutions makes it easier for policy makers to explore and experiment with
the model while incorporating their own intuition before deciding on a final plan of
action. Despite the many problems that economic forecasts from economic systems
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confront, these models offer a vehicle for understanding and learning from failures,
as well as consolidating our growing knowledge of economic behavior.

Future research: The only way to guarantee the best possible combination is to
know in advance whether the currency will move in one’s favor or not. Hence, there
will always be a natural desire to foresee the future by improving on forecasting.
This may require more complex models than our “simple” stochastic representation
of the exchange rate. Where our model only describes statistically some restricted
aspects of this rich complexity, real-world complexity is associated with a range of
behaviors and functions that go way beyond our approximation. Thus, it can be ar-
gued that more complex behavior needs more complex models. For instance, one
important additional element adding to real-world complexity is that risk manage-
ment objectives are often perceived towards different reference levels, such as ex-
posure, target exchange rates as established from their own budgeting and planning
processes, or even personal anchor points that may involve expert forecasts. Sec-
ond, hedging policies are often benchmark-orientated, position adjustment is done
in terms of market values, and exposures are uncertain. Third, a hedger’s perception
of risk may depend on different states of nature, which makes it a multidimen-
sional phenomenon. These considerations call for a more in-depth model of hedg-
ing, which would allow the hedge ratios to have a stochastic nature. Another, more
popular field of research, involves modeling departures from the normal distribu-
tion of exchange rate returns in order to better capture the probability of tail events.
Throughout Part IV, we assumed that the individual utility function is known and
given as an easily applicable formula. We therefore ignored the difficulty of learning
one’s utility function which may consitute another interesting real-world problem.
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