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In general the position as regards all such new calculi is this. – That one cannot accomplish by them
anything that could not be accomplished without them. However, the advantage is, that, provided that
such a calculus corresponds to the inmost nature of frequent needs, anyone who masters it thoroughly
is able – without the unconscious inspiration which no one can command – to solve the associated
problems, even to solve them mechanically in complicated cases in which, without such aid, even
genius becomes powerless. . . . Such conceptions unite, as it were, into an organic whole, countless
problems which otherwise would remain isolated and require for their separate solution more or less
of inventive genius.

(Gauss Werke, Bd. 8, p. 298 (quoted by Moritz [24]))

For many purposes of physical reasoning, as distinguished from calculation, it is desirable to
avoid explicitly introducing . . . Cartesian coordinates, and to fix the mind at once on a point of
space instead of its three coordinates, and on the magnitude and direction of a force instead of its
three components. . . . I am convinced that the introduction of the idea [of vectors] will be of great
use to us in the study of all parts of our subject, and especially in electrodynamics where we have to
deal with a number of physical quantities, the relations of which to each other can be expressed much
more simply by [vectorial equations rather] than by the ordinary equations.

(Maxwell A Treatise on Electricity and Magnetism [21])

We [Halmos and Kaplansky] share a love of linear algebra. . . . And we share a philosophy about
linear algebra: we think basis-free, we write basis-free, but when the chips are down we close the
office door and compute with matrices like fury.

(Kaplansky in Paul Halmos: Celebrating Fifty Years of Mathematics [17])

Marco Polo describes a bridge, stone by stone.
‘But which is the stone that supports the bridge?’ Kublai Khan asks.
‘The bridge is not supported by one stone or another,’ Marco answers, ‘but by the line of the arch

that they form.’
Kublai Khan remains silent, reflecting. Then he adds: ‘Why do you speak to me of the stones? It

is only the arch that matters to me.’
Polo answers: ‘Without stones there is no arch.’

(Calvino Invisible Cities (translated by William Weaver) [8])
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Introduction

There exist several fine books on vectors which achieve concision by only looking at vectors
from a single point of view, be it that of algebra, analysis, physics or numerical analysis
(see, for example, [18], [19], [23] and [28]). This book is written in the belief that it is
helpful for the future mathematician to see all these points of view. It is based on those
parts of the first and second year Cambridge courses which deal with vectors (omitting the
material on multidimensional calculus and analysis) and contains roughly 60 to 70 hours
of lectured material.

The first part of the book contains first year material and the second part contains second
year material. Thus concepts reappear in increasingly sophisticated forms. In the first part
of the book, the inner product starts as a tool in two and three dimensional geometry and is
then extended to Rn and later to Cn. In the second part, it reappears as an object satisfying
certain axioms. I expect my readers to read, or skip, rapidly through familiar material, only
settling down to work when they reach new results. The index is provided mainly to help
such readers who come upon an unfamiliar term which has been discussed earlier. Where
the index gives a page number in a different font (like 389, rather than 389) this refers to
an exercise. Sometimes I discuss the relation between the subject of the book and topics
from other parts of mathematics. If the reader has not met the topic (morphisms, normal
distributions, partial derivatives or whatever), she should simply ignore the discussion.

Random browsers are informed that, in statements involving F, they may take F = R

or F = C, that z∗ is the complex conjugate of z and that ‘self-adjoint’ and ‘Hermitian’ are
synonyms. If T : A → B is a function we sometimes write T (a) and sometimes T a.

There are two sorts of exercises. The first form part of the text and provide the reader
with an opportunity to think about what has just been done. There are sketch solutions to
most of these on my home page www.dpmms.cam.ac.uk/∼twk/.

These exercises are intended to be straightforward. If the reader does not wish to attack
them, she should simply read through them. If she does attack them, she should remember
to state reasons for her answers, whether she is asked to or not. Some of the results are
used later, but no harm should come to any reader who simply accepts my word that they
are true.

The second type of exercise occurs at the end of each chapter. Some provide extra
background, but most are intended to strengthen the reader’s ability to use the results of the

xi



xii Introduction

preceding chapter. If the reader finds all these exercises easy or all of them impossible, she is
reading the wrong book. If the reader studies the entire book, there are many more exercises
than she needs. If she only studies an individual chapter, she should find sufficiently many
to test and reinforce her understanding.

My thanks go to several student readers and two anonymous referees for removing errors
and improving the clarity of my exposition. It has been a pleasure to work with Cambridge
University Press.

I dedicate this book to the Faculty Board of Mathematics of the University of Cambridge.
My reasons for doing this follow in increasing order of importance.

(1) No one else is likely to dedicate a book to it.
(2) No other body could produce Minute 39 (a) of its meeting of 18th February 2010 in

which it is laid down that a basis is not an ordered set but an indexed set.
(3) This book is based on syllabuses approved by the Faculty Board and takes many of its

exercises from Cambridge exams.
(4) I need to thank the Faculty Board and everyone else concerned for nearly 50 years

spent as student and teacher under its benign rule. Long may it flourish.
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Familiar vector spaces
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Gaussian elimination

1.1 Two hundred years of algebra

In this section we recapitulate two hundred or so years of mathematical thought.
Let us start with a familiar type of brain teaser.

Example 1.1.1 Sally and Martin go to The Olde Tea Shoppe. Sally buys three cream buns
and two bottles of pop for thirteen shillings, whilst Martin buys two cream buns and four
bottles of pop for fourteen shillings. How much does a cream bun cost and how much does
a bottle of pop cost?

Solution. If Sally had bought six cream buns and four bottles of pop, then she would have
bought twice as much and it would have cost her twenty six shillings. Similarly, if Martin
had bought six cream buns and twelve bottles of pop, then he would have bought three
times as much and it would have cost him forty two shillings. In this new situation, Sally
and Martin would have bought the same number of cream buns, but Martin would have
bought eight more bottles of pop than Sally. Since Martin would have paid sixteen shillings
more, it follows that eight bottles of pop cost sixteen shillings and one bottle costs two
shillings.

In our original problem, Sally bought three cream buns and two bottles of pop, which,
we now know, must have cost her four shillings, for thirteen shillings. Thus her three cream
buns cost nine shillings and each cream bun cost three shillings. �

As the reader well knows, the reasoning may be shortened by writing x for the cost
of one bun and y for the cost of one bottle of pop. The information given may then be
summarised in two equations

3x + 2y = 13

2x + 4y = 14.

In the solution just given, we multiplied the first equation by 2 and the second by 3 to obtain

6x + 4y = 26

6x + 12y = 42.

3



4 Gaussian elimination

Subtracting the first equation from the second yields

8y = 16,

so y = 2 and substitution in either of the original equations gives x = 3.
We can shorten the working still further. Starting, as before, with

3x + 2y = 13

2x + 4y = 14,

we retain the first equation and replace the second equation by the result of subtracting 2/3
times the first equation from the second to obtain

3x + 2y = 13

8

3
y = 16

3
.

The second equation yields y = 2 and substitution in the first equation gives x = 3.
It is clear that we can now solve any number of problems involving Sally and Martin

buying sheep and goats or yaks and xylophones. The general problem involves solving

ax + by = α

cx + dy = β.

Provided that a �= 0, we retain the first equation and replace the second equation by the
result of subtracting c/a times the first equation from the second to obtain

ax + by = α(
d − cb

a

)
y = β − cα

a
.

Provided that d − (cb)/a �= 0, we can compute y from the second equation and obtain x

by substituting the known value of y in the first equation.
If d − (cb)/a = 0, then our equations become

ax + by = α

0 = β − cα

a
.

There are two possibilities. Either β − (cα)/a �= 0, our second equation is inconsistent and
the initial problem is insoluble, or β − (cα)/a = 0, in which case the second equation says
that 0 = 0, and all we know is that

ax + by = α

so, whatever value of y we choose, setting x = (α − by)/a will give us a possible solution.
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There is a second way of looking at this case. If d − (cb)/a = 0, then our original
equations were

ax + by = α

cx + cb

a
y = β,

that is to say

ax + by = α

c(ax + by) = aβ

so, unless cα = aβ, our equations are inconsistent and, if cα = aβ, the second equation
gives no information which is not already in the first.

So far, we have not dealt with the case a = 0. If b �= 0, we can interchange the roles
of x and y. If c �= 0, we can interchange the roles of the two equations. If d �= 0, we can
interchange the roles of x and y and the roles of the two equations. Thus we only have a
problem if a = b = c = d = 0 and our equations take the simple form

0 = α

0 = β.

These equations are inconsistent unless α = β = 0. If α = β = 0, the equations impose no
constraints on x and y which can take any value we want.

Now suppose that Sally, Betty and Martin buy cream buns, sausage rolls and bottles of
pop. Our new problem requires us to find x, y and z when

ax + by + cz = α

dx + ey + f z = β

gx + hy + kz = γ.

It is clear that we are rapidly running out of alphabet. A little thought suggests that it may
be better to try and find x1, x2, x3 when

a11x1 + a12x2 + a13x3 = y1

a21x1 + a22x2 + a23x3 = y2

a31x1 + a32x2 + a33x3 = y3.

Provided that a11 �= 0, we can subtract a21/a11 times the first equation from the second
and a31/a11 times the first equation from the third to obtain

a11x1 + a12x2 + a13x3 = y1

b22x2 + b23x3 = z2

b32x2 + b33x3 = z3,
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where

b22 = a22 − a21a12

a11
= a11a22 − a21a12

a11

and, similarly,

b23 = a11a23 − a21a13

a11
, b32 = a11a32 − a31a12

a11
and b33 = a11a33 − a31a13

a11

whilst

z2 = a11y2 − a21y1

a11
and z3 = a11y3 − a31y1

a11
.

If we can solve the smaller system of equations

b22x2 + b23x3 = z2

b32x2 + b33x3 = z3,

then, knowing x2 and x3, we can use the equation

x1 = y1 − a12x2 − a13x3

a11

to find x1. In effect, we have reduced the problem of solving ‘3 linear equations in 3
unknowns’ to the problem of solving ‘2 linear equations in 2 unknowns’. Since we know
how to solve the smaller problem, we know how to solve the larger.

Exercise 1.1.2 Use the method just suggested to solve the system

x + y + z = 1

x + 2y + 3z = 2

x + 4y + 9z = 6.

So far, we have assumed that a11 �= 0. A little thought shows that, if aij �= 0 for some
1 ≤ i, j ≤ 3, then all we need to do is reorder our equations so that the ith equation becomes
the first equation and reorder our variables so that xj becomes our first variable. We can
then reduce the problem to one involving fewer variables as before.

If it is not true that aij �= 0 for some 1 ≤ i, j ≤ 3, then it must be true that aij = 0 for
all 1 ≤ i, j ≤ 3 and our equations take the peculiar form

0 = y1

0 = y2

0 = y3.

These equations are inconsistent unless y1 = y2 = y3 = 0. If y1 = y2 = y3 = 0, the equa-
tions impose no constraints on x1, x2 and x3 which can take any value we want.
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We can now write down the general problem when n people choose from a menu with
n items. Our problem is to find x1, x2, . . . , xn when

a11x1 + a12x2 + · · · + a1nxn = y1

a21x1 + a22x2 + · · · + a2nxn = y2

...

an1x1 + an2x2 + · · · + annxn = yn.

We can condense our notation further by using the summation sign and writing our system
of equations as

n∑
j=1

aij xj = yi [1 ≤ i ≤ n]. �

We say that we have ‘n linear equations in n unknowns’ and talk about the ‘n× n problem’.
Using the insight obtained by reducing the 3× 3 problem to the 2× 2 case, we see at

once how to reduce the n× n problem to the (n− 1)× (n− 1) problem. (We suppose that
n ≥ 2.)

Step 1. If aij = 0 for all i and j , then our equations have the form

0 = yi [1 ≤ i ≤ n].

Our equations are inconsistent unless y1 = y2 = . . . = yn = 0. If y1 = y2 = . . . = yn = 0,
the equations impose no constraints on x1, x2, . . . , xn which can take any value we want.
Step 2. If the condition of Step 1 does not hold, we can arrange, by reordering the equations
and the unknowns, if necessary, that a11 �= 0. We now subtract ai1/a11 times the first
equation from the ith equation [2 ≤ i ≤ n] to obtain

n∑
j=2

bij xj = zi [2 ≤ i ≤ n] ��

where

bij = a11aij − ai1a1j

a11
and zi = a11yi − ai1y1

a11
.

Step 3. If the new set of equations �� has no solution, then our old set � has no solution.
If our new set of equations �� has a solution xi = x ′i for 2 ≤ i ≤ n, then our old set �
has the solution

x1 = 1

a11

⎛
⎝y1 −

n∑
j=2

a1j x
′
j

⎞
⎠

xi = x ′i [2 ≤ i ≤ n].
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Note that this means that if �� has exactly one solution, then � has exactly one
solution, and if �� has infinitely many solutions, then � has infinitely many solutions.
We have already remarked that if �� has no solutions, then � has no solutions.

Once we have reduced the problem of solving our n× n system to that of solving an
(n− 1)× (n− 1) system, we can repeat the process and reduce the problem of solving the
new (n− 1)× (n− 1) system to that of solving an (n− 2)× (n− 2) system and so on.
After n− 1 steps we will be faced with the problem of solving a 1× 1 system, that is to
say, solving a system of the form

ax = b.

If a �= 0, then this equation has exactly one solution. If a = 0 and b �= 0, the equation has
no solution. If a = 0 and b = 0, every value of x is a solution and we have infinitely many
solutions.

Putting the observations of the two previous paragraphs together, we get the following
theorem.

Theorem 1.1.3 The system of simultaneous linear equations

n∑
j=1

aij xj = yi [1 ≤ i ≤ n]

has 0, 1 or infinitely many solutions.

We shall see several different proofs of this result (for example, Theorem 1.4.5), but the
proof given here, although long, is instructive.

1.2 Computational matters

The method just described for solving ‘simultaneous linear equations’ is called Gaussian
elimination. Those who rate mathematical ideas by difficulty may find the attribution
unworthy, but those who rate mathematical ideas by utility are happy to honour Gauss in
this way.

In the previous section we showed how to solve n× n systems of equations, but it is
clear that the same idea can be used to solve systems of m equations in n unknowns.

Exercise 1.2.1 If m, n ≥ 2, show how to reduce the problem of solving the system of
equations

n∑
j=1

aij xj = yi [1 ≤ i ≤ m] �

to the problem of solving a system of equations

n∑
j=2

bij xj = zi [2 ≤ i ≤ m]. ��
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Exercise 1.2.2 By using the ideas of Exercise 1.2.1, show that, if m, n ≥ 2 and we are
given a system of equations

n∑
j=1

aij xj = yi [1 ≤ i ≤ m], �

then at least one of the following must be true.
(i) � has no solution.
(ii) � has infinitely many solutions.
(iii) There exists a system of equations

n∑
j=2

bij xj = zi [2 ≤ i ≤ m] ��

with the property that if �� has exactly one solution, then � has exactly one solution, if
�� has infinitely many solutions, then � has infinitely many solutions, and if �� has
no solutions, then � has no solutions.

If we repeat Exercise 1.2.1 several times, one of two things will eventually occur. If
n ≥ m, we will arrive at a system of n−m+ 1 equations in one unknown. If m > n, we
will arrive at 1 equation in m− n+ 1 unknowns.

Exercise 1.2.3 (i) If r ≥ 1, show that the system of equations

aix = yi [1 ≤ i ≤ r]

has exactly one solution, has no solution or has an infinity of solutions. Explain when each
case arises.

(ii) If s ≥ 2, show that the equation

s∑
j=1

ajxj = b

has no solution or has an infinity of solutions. Explain when each case arises.

Combining the results of Exercises 1.2.2 and 1.2.3, we obtain the following extension
of Theorem 1.1.3

Theorem 1.2.4 The system of equations

n∑
j=1

aij xj = yi [1 ≤ i ≤ m]

has 0, 1 or infinitely many solutions. If m > n, then the system cannot have a unique
solution (and so will have 0 or infinitely many solutions).
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Exercise 1.2.5 Consider the system of equations

x + y = 2

ax + by = 4

cx + dy = 8.

(i) Write down non-zero values of a, b, c and d such that the system has no solution.
(ii) Write down non-zero values of a, b, c and d such that the system has exactly one

solution.
(iii) Write down non-zero values of a, b, c and d such that the system has infinitely many

solutions.
Give reasons in each case.

Exercise 1.2.6 Consider the system of equations

x + y + z = 2

x + y + az = 4.

For which values of a does the system have no solutions? For which values of a does the
system have infinitely many solutions? Give reasons.

How long does it take for a properly programmed computer to solve a system of n linear
equations in n unknowns by Gaussian elimination? The exact time depends on the details
of the program and the structure of the machine. However, we can get get a pretty good idea
of the answer by counting up the number of elementary operations (that is to say, additions,
subtractions, multiplications and divisions) involved.

When we reduce the n× n case to the (n− 1)× (n− 1) case, we subtract a multiple
of the first row from the j th row and this requires roughly 2n operations. Since we do
this for j = 2, 3, . . . , n− 1 we need roughly (n− 1)× (2n) ≈ 2n2 operations. Similarly,
reducing the (n− 1)× (n− 1) case to the (n− 2)× (n− 2) case requires about 2(n− 1)2

operations and so on. Thus the reduction from the n× n case to the 1× 1 case requires
about

2
(
n2 + (n− 1)2 + · · · + 22

)
operations.

Exercise 1.2.7 (i) Show that there exist A and B with A ≥ B > 0 such that

An3 ≥
n∑

r=1

r2 ≥ Bn3.

(ii) (Not necessary for our argument.) By comparing
∑n

r=1 r2 and
∫ n+1

1 x2dx, or other-
wise, show that

n∑
r=1

r2 ≈ n3

3
.
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Thus the number of operations required to reduce the n× n case to the 1× 1 case
increases like some multiple of n3. Once we have reduced our system to the 1× 1 case, the
number of operations required to work backwards and solve the complete system is less
than some multiple of n2.

Exercise 1.2.8 Give a rough estimate of the number of operations required to solve the
triangular system of equations

n∑
j=r

bjrxr = zr [1 ≤ r ≤ n].

[The roughness of the estimates is left to the taste of the reader.]

Thus the total number of operations required to solve our initial system by Gaussian
elimination increases like some multiple of n3.

The reader may have learnt another method of solving simultaneous equations using
determinants called Cramer’s rule. If not, she should omit the next two paragraph and wait
for our discussion in Section 4.5. Cramer’s rule requires us to evaluate an n× n determinant
(as well as lots of other determinants). If we evaluate this determinant by the ‘top row
rule’, we need to evaluate n minors, that is to say, determinants of size (n− 1)× (n− 1).
Each of these new determinants requires the evaluation of n− 1 determinants of size
(n− 2)× (n− 2), and so on. We will need roughly

An× (n− 1)× (n− 2)× · · · × 1 = An!

operations where A ≥ 1. Since n! increases much faster than n3, Cramer’s rule is obviously
unsatisfactory for large n.

The fact that Cramer’s rule is unsatisfactory for large n does not, of course, mean that
it is unsatisfactory for small n. If we have to do hand calculations when n = 2 or n = 3,
then Cramer’s rule is no harder than Gaussian elimination. However, I strongly advise the
reader to use Gaussian elimination in these cases as well, in order to acquire insight into
what is actually going on.

Exercise 1.2.9 (For devotees of Cramer’s rule only.) Write down a system of 4 linear
equations in 4 unknowns and solve it (a) using Cramer’s rule and (b) using Gaussian
elimination.

I hope never to have to solve a system of 10 linear equations in 10 unknowns, but I think
that I could solve such a system within a reasonable time using Gaussian elimination and
a basic hand calculator.

Exercise 1.2.10 What sort of time do I appear to consider reasonable?

It is clear that even a desktop computer can be programmed to find the solution of
200 linear equations in 200 unknowns by Gaussian elimination in a very short time.1

1 The author can remember when problems of this size were on the boundary of the possible for the biggest computers of the
epoch. The storing and retrieval of the 200× 200 = 40 000 coefficients represented a major problem.
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However, since the number of operations required increases with the cube of the number
of unknowns, if we multiply the number of unknowns by 10, the time taken increases by
a factor of 1000. Very large problems require new ideas which take advantage of special
features of the particular system to be solved. We discuss such a new idea in the second
half of Section 15.1.

When we introduced Gaussian elimination, we needed to consider the possibility that
a11 = 0, since we cannot divide by zero. In numerical work it is unwise to divide by
numbers close to zero since, if a is small and b is only known approximately, dividing b

by a multiplies the error in the approximation by a large number. For this reason, instead
of simply rearranging so that a11 �= 0 we might rearrange so that |a11| ≥ |aij | for all i

and j . (This is called ‘pivoting’ or ‘full pivoting’. Reordering rows so that the largest
element in a particular column occurs first is called ‘row pivoting’, and ‘column pivoting’
is defined similarly. Full pivoting requires substantially more work than row pivoting, and
row pivoting is usually sufficient in practice.)

1.3 Detached coefficients

If we think about how a computer handles the solution of a system of equations

3∑
j=1

aij xj = yi [1 ≤ i ≤ 3],

we see that it essentially manipulates an array

(A|y) =
⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
y1

y2

y3

⎞
⎠ .

Let us imitate our computer and solve

x + 2y + z = 1

2x + 2y + 3z = 6

3x − 2y + 2z = 9

by manipulating the array ⎛
⎝1 2 1

2 2 3
3 −2 2

∣∣∣∣∣∣
1
6
9

⎞
⎠ .

Subtracting 2 times the first row from the second row and 3 times the first row from the
third, we get ⎛

⎝1 2 1
0 −2 1
0 −8 −1

∣∣∣∣∣∣
1
4
6

⎞
⎠ .
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We now look at the new array and subtract 4 times the second row from the third to get⎛
⎝1 2 1

0 −2 1
0 0 −5

∣∣∣∣∣∣
1
4
−10

⎞
⎠

corresponding to the system of equations

x + 2y + z = 1

−2y + z = 4

−5z = −10.

We can now read off the solution

z = −10

−5
= 2

y = 1

−2
(4− 1× 2) = −1

x = 1− 2× (−1)− 1× 2 = 1.

The idea of doing the calculations using the coefficients alone goes by the rather pompous
title of ‘the method of detached coefficients’.

We call an m× n (that is to say, m rows and n columns) array

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎞
⎟⎟⎟⎠

an m× n matrix and write A = (aij )1≤j≤n
1≤i≤m or just A = (aij ). We can rephrase the work we

have done so far as follows.

Theorem 1.3.1 Suppose that A is an m× n matrix. By interchanging columns, interchang-
ing rows and subtracting multiples of one row from another, we can reduce A to an m× n

matrix B = (bij ) where bij = 0 for 1 ≤ j ≤ i − 1.

As the reader is probably well aware, we can do better.

Theorem 1.3.2 Suppose that A is an m× n matrix and p = min{n,m}. By interchanging
columns, interchanging rows and subtracting multiples of one row from another, we can
reduce A to an m× n matrix B = (bij ) such that bij = 0 whenever i �= j and 1 ≤ i, j ≤ r

and whenever r + 1 ≤ i (for some r with 0 ≤ r ≤ p).

In the unlikely event that the reader requires a proof, she should observe that Theo-
rem 1.3.2 follows by repeated application of the following lemma.

Lemma 1.3.3 Suppose that A is an m× n matrix, p = min{n,m} and 1 ≤ q ≤ p. Sup-
pose further that aij = 0 whenever i �= j and 1 ≤ i, j ≤ q − 1 and whenever q ≤ i and
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j ≤ q − 1. By interchanging columns, interchanging rows and subtracting multiples of one
row from another, we can reduce A to an m× n matrix B = (bij ) where bij = 0 whenever
i �= j and 1 ≤ i, j ≤ q and whenever q + 1 ≤ i and j ≤ q.

Proof If aij = 0 whenever q + 1 ≤ i, then just take A = B. Otherwise, by interchanging
columns (taking care only to move kth columns with q ≤ k) and interchanging rows (taking
care only to move kth rows with q ≤ k), we may suppose that aqq �= 0. Now subtract aiq/aqq

times the qth row from the ith row for each q ≤ i. �

Theorem 1.3.2 has an obvious twin.

Theorem 1.3.4 Suppose that A is an m× n matrix and p = min{n,m}. By interchanging
rows, interchanging columns and subtracting multiples of one column from another, we can
reduce A to an m× n matrix B = (bij ) where bij = 0 whenever i �= j and 1 ≤ i, j ≤ r

and whenever r + 1 ≤ j (for some r with 0 ≤ r ≤ p).

Exercise 1.3.5 Illustrate Theorem 1.3.2 and Theorem 1.3.4 by carrying out appropriate
operations on (

1 −1 3
2 5 2

)
.

Combining the twin theorems, we obtain the following result. (Note that, if a > b, there
are no c with a ≤ c ≤ b.)

Theorem 1.3.6 Suppose that A is an m× n matrix and p = min{n,m}. There exists
an r with 0 ≤ r ≤ p with the following property. By interchanging rows, interchanging
columns, subtracting multiples of one row from another and subtracting multiples of one
column from another, we can reduce A to an m× n matrix B = (bij ) with bij = 0 unless
i = j and 1 ≤ i ≤ r .

We can obtain several simple variations.

Theorem 1.3.7 Suppose that A is an m× n matrix and p = min{n,m}. Then there exists
an r with 0 ≤ r ≤ p with the following property. By interchanging columns, interchanging
rows and subtracting multiples of one row from another, and multiplying rows by non-zero
numbers, we can reduce A to an m× n matrix B = (bij ) with bii = 1 for 1 ≤ i ≤ r and
bij = 0 whenever i �= j and 1 ≤ i, j ≤ r and whenever r + 1 ≤ i.

Theorem 1.3.8 Suppose that A is an m× n matrix and p = min{n,m}. There exists an r

with 0 ≤ r ≤ p with the following property. By interchanging rows, interchanging columns,
subtracting multiples of one row from another and subtracting multiples of one column from
another and multiplying rows by a non-zero number, we can reduce A to an m× n matrix
B = (bij ) such that there exists an r with 0 ≤ r ≤ p such that bii = 1 if 1 ≤ i ≤ r and
bij = 0 otherwise.
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Exercise 1.3.9 (i) Illustrate Theorem 1.3.8 by carrying out appropriate operations on⎛
⎝1 −1 3

2 5 2
4 3 8

⎞
⎠ .

(ii) Illustrate Theorem 1.3.8 by carrying out appropriate operations on⎛
⎝2 4 5

3 2 1
4 1 3

⎞
⎠ .

By carrying out the same operations, solve the system of equations

2x + 4y + 5z = −3

3x + 2y + z = 2

4x + y + 3z = 1.

[If you are confused by the statement or proofs of the various results in this section, concrete
examples along the lines of this exercise are likely to be more helpful than worrying about
the general case.]

Exercise 1.3.10 We use the notation of Theorem 1.3.8. Let m = 3, n = 4. Find, with
reasons, 3× 4 matrices A, all of whose entries are non-zero, for which r = 3, for which
r = 2 and for which r = 1. Is it possible to find a 3× 4 matrix A, all of whose entries are
non-zero, for which r = 0? Give reasons.

1.4 Another fifty years

In the previous section, we treated the matrix A as a passive actor. In this section, we give
it an active role by declaring that the m× n matrix A acts on the n× 1 matrix (or column
vector) x to produce the m× 1 matrix (or column vector) y. We write

Ax = y

with
n∑

j=1

aij xj = yi for 1 ≤ i ≤ m.

In other words, ⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

...
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎠ =
⎛
⎜⎜⎜⎜⎜⎜⎝

y1

y2
...
...

ym

⎞
⎟⎟⎟⎟⎟⎟⎠ .
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We write Rn for the space of column vectors

x =

⎛
⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎠

with n entries. Since column vectors take up a lot of space, we often adopt one of the two
notations

x = (x1 x2 . . . xn)T

or x = (x1, x2, . . . , xn)T . We also write πix = xi . It seems reasonable to call x an arithmetic
vector.

As the reader probably knows, we can add vectors and multiply them by real numbers
(scalars).

Definition 1.4.1 If x, y ∈ Rn and λ ∈ R, we write x+ y = z and λx = w where

zi = xi + yi, wi = λxi.

We write 0 = (0, 0, . . . , 0)T , −x = (−1)x and x− y = x+ (−y).
The next lemma shows the kind of arithmetic we can do with vectors.

Lemma 1.4.2 Suppose that x, y, z ∈ Rn and λ,μ ∈ R. Then the following relations hold.
(i) (x+ y)+ z = x+ (y+ z).
(ii) x+ y = y+ x.
(iii) x+ 0 = x.
(iv) λ(x+ y) = λx+ λy.
(v) (λ+ μ)x = λx+ μx.
(vi) (λμ)x = λ(μx).
(vii) 1x = x, 0x = 0.
(viii) x− x = 0.

Proof This is an exercise in proving the obvious. For example, to prove (iv), we observe
that (if we take πi as above)

πi

(
λ(x+ y)

) = λπi(x+ y) (by definition)

= λ(xi + yi) (by definition)

= λxi + λyi (by properties of the reals)

= πi(λx)+ πi(λy) (by definition)

= πi(λx+ λy) (by definition).

�
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Exercise 1.4.3 I think it is useful for a mathematician to be able to prove the obvious. If
you agree with me, choose a few more of the statements in Lemma 1.4.2 and prove them. If
you disagree, ignore both this exercise and the proof above.

The next result is easy to prove, but is central to our understanding of matrices.

Theorem 1.4.4 If A is an m× n matrix x, y ∈ Rn and λ,μ ∈ R, then

A(λx+ μy) = λAx+ μAy.

We say that A acts linearly on Rn.

Proof Observe that
n∑

j=1

aij (λxj + μyj ) =
n∑

j=1

(λaij xj + μaijyj ) = λ

n∑
j=1

aij xj + μ

n∑
j=1

aij yj

as required. �
To see why this remark is useful, observe that it gives a simple proof of the first part of

Theorem 1.2.4.

Theorem 1.4.5 The system of equations

n∑
j=1

aij xj = bi [1 ≤ i ≤ m]

has 0, 1 or infinitely many solutions.

Proof We need to show that, if the system of equations has two distinct solutions, then it
has infinitely many solutions.

Suppose that Ay = b and Az = b. Then, since A acts linearly,

A
(
λy+ (1− λ)z

) = λAy+ (1− λ)Az = λb+ (1− λ)b = b.

Thus, if y �= z, there are infinitely many solutions

x = λy+ (1− λ)z = z+ λ(y− z)

to the equation Ax = b. �
With a little extra work, we can gain some insight into the nature of the infinite set of

solutions.

Definition 1.4.6 A non-empty subset of Rn is called a subspace of Rn if, whenever x, y ∈ E

and λ, μ ∈ R, it follows that λx+ μy ∈ E.

Theorem 1.4.7 If A is an m× n matrix, then the set E of column vectors x ∈ Rn with
Ax = 0 is a subspace of Rn.

If Ay = b, then Az = b if and only if z = y+ e for some e ∈ E.
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Proof If x, y ∈ E and λ, μ ∈ R, then, by linearity,

A(λx+ μy) = λAx+ μAy = λ0+ μ0 = 0

so λx+ μy ∈ E. The set E is non-empty, since

A0 = 0,

so 0 ∈ E.
If Ay = b and e ∈ E, then

A(y+ e) = Ay+ Ae = b+ 0 = b.

Conversely, if Ay = b and Az = b, let us write e = y− z. Then z = y+ e and e ∈ E

since

Ae = A(y− z) = Ay− Az = b− b = 0

as required. �

We could refer to z as a particular solution of Ax = b and E as the space of comple-
mentary solutions.2

1.5 Further exercises

Exercise 1.5.1 We work in R. Show that the system

ax + by + cz = 0

cx + ay + bz = 0

bx + cy + az = 0

has a unique solution if and only if a + b + c �= 0 and a, b and c are not all equal.

Exercise 1.5.2 A glass of lemonade, 3 sandwiches and 7 biscuits together cost 14 pence
(this is a Victorian puzzle), a glass of lemonade, 4 sandwiches and 10 biscuits together cost
17 pence. Required, to find the cost (1) of a glass of lemonade, a sandwich and a biscuit
and (2) the cost of 2 glasses of lemonade, 3 sandwiches and 5 biscuits. (Knot 7 from A
Tangled Tale by Lewis Carroll [10].)

Exercise 1.5.3 (i) Find all the solutions of the following system of equations involving real
numbers:

xy = 6

yz = 288

zx = 3.

2 Later, we shall refer to E as a null-space or kernel.
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(ii) Explain how you would solve (or show that there were no solutions for) the system
of equations

xayb = u

xcyd = v

where a, b, c, d, u, v ∈ R are fixed with u, v > 0 and x and y are strictly positive real
numbers to be found.

Exercise 1.5.4 (You need to know about modular arithmetic for this question.) Use Gaus-
sian elimination to solve the following system of integer congruences modulo 7:

x + y + z+ w ≡ 6

x + 2y + 3z+ 4w ≡ 6

x + 4y + 2z+ 2w ≡ 0

x + y + 6z+ w ≡ 2.

Exercise 1.5.5 The set S comprises all the triples (x, y, z) of real numbers which satisfy
the equations

x + y − z = b2

x + ay + z = b

x + a2y − z = b3.

Determine for which pairs of values of a and b (if any) the set S (i) is empty, (ii) contains
precisely one element, (iii) is finite but contains more than one element, or (iv) is infinite.

Exercise 1.5.6 We work in R. Use Gaussian elimination to determine the values of a, b, c

and d for which the system of equations

x + ay + a2z+ a3w = 0

x + by + b2z+ b3w = 0

x + cy + c2z+ c3w = 0

x + dy + d2z+ d3w = 0

in R has a unique solution in x, y, z and w.
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A little geometry

2.1 Geometric vectors

In the previous chapter we introduced column vectors and showed how they could be used
to study simultaneous linear equations in many unknowns. In this chapter we show how
they can be used to study some aspects of geometry.

There is an initial trivial, but potentially confusing, problem. Different branches of
mathematics develop differently and evolve their own notation. This creates difficulties
when we try to unify them. When studying simultaneous equations it is natural to use
column vectors (so that a vector is an n× 1 matrix), but centuries of tradition, not to
mention ease of printing, mean that in elementary geometry we tend to use row vectors
(so that a vector is a 1× n matrix). Since one cannot flock by oneself, I advise the reader
to stick to the normal usage in each subject. Where the two usages conflict, I recommend
using column vectors.

Let us start by looking at geometry in the plane. As the reader knows, we can use
a Cartesian coordinate system in which each point of the plane corresponds to a unique
ordered pair (x1, x2) of real numbers. It is natural to consider x = (x1, x2) ∈ R2 as a row
vector and use the same kind of definitions of addition and (scalar) multiplication as we
did for column vectors so that

λ(x1, x2)+ μ(y1, y2) = (λx1 + μy1, λx2 + μy2).

In school we may be taught that a straight line is the locus of all points in the (x, y)
plane given by

ax + by = c

where a and b are not both zero.
In the next couple of lemmas we shall show that this translates into the vectorial statement

that a straight line joining distinct points u, v ∈ R2 is the set

{λu+ (1− λ)v : λ ∈ R}.

20
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Lemma 2.1.1 (i) If u, v ∈ R2 and u �= v, then we can write

{λu+ (1− λ)v : λ ∈ R} = {v+ λw : λ ∈ R}
for some w �= 0.

(ii) If w �= 0, then

{v+ λw : λ ∈ R} = {λu+ (1− λ)v : λ ∈ R}
for some u �= v.

Proof (i) Observe that

λu+ (1− λ)v = v+ λ(u− v)

and set w = (u− v).
(ii) Reversing the argument of (i), we observe that

v+ λw = λ(w+ v)+ (1− λ)v

and set u = w+ v. �

Naturally we think of

{v+ λw : λ ∈ R}
as a line through v ‘parallel to the vector w’ and

{λu+ (1− λ)v : λ ∈ R}
as a line through u and v. The next lemma links these ideas with the school definition.

Lemma 2.1.2 If v ∈ R2 and w �= 0, then

{v+ λw : λ ∈ R} = {x ∈ R2 : w2x1 − w1x2 = w2v1 − w1v2}
= {x ∈ R2 : a1x1 + a2x2 = c}

where a1 = w2, a2 = −w1 and c = w2v1 − v2w2.

Proof If x = v+ λw, then

x1 = v1 + λw1, x2 = v2 + λw2

and

w2x1 − w1x2 = w2(v1 + λw1)− w1(v2 + λw2) = w2v1 − v2w1.

To reverse the argument, observe that, since w �= 0, at least one of w1 and w2 must
be non-zero. Without loss of generality, suppose that w1 �= 0. Then, if w2x1 − w1x2 =
w2v1 − v2w1 and we set λ = (x1 − v1)/w1, we obtain

v1 + λw1 = x1
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and

v2 + λw2 = w1v2 + x1w2 − v1w2

w1

= w1v2 + (w2v1 − w1v2 + w1x2)− w2v1

w1

= w1x2

w1
= x2

so x = v+ λw. �

Exercise 2.1.3 If a, b, c ∈ R and a and b are not both zero, find distinct vectors u and v
such that

{(x, y) : ax + by = c}
represents the line through u and v.

The following very simple exercise will be used later. The reader is free to check that
she can prove the obvious or merely check that she understands why the results are true.

Exercise 2.1.4 (i) If w �= 0, then either

{v+ λw : λ ∈ R} ∩ {v′ + μw : μ ∈ R} = ∅
or

{v+ λw : λ ∈ R} = {v′ + μw : μ ∈ R}.
(ii) If u �= u′, v �= v′ and there exist non-zero τ, σ ∈ R such that

τ (u− u′) = σ (v− v′),

then either the lines joining u to u′ and v to v′ fail to meet or they are identical.
(iii) If u, u′, u′′ ∈ R2 satisfy an equation

μu+ μ′u′ + μ′′u′′ = 0

with all the real numbers μ, μ′, μ′′ non-zero and μ+ μ′ + μ′′ = 0, then u, u′ and u′′ all
lie on the same straight line.

We use vectors to prove a famous theorem of Desargues. The result will not be used
elsewhere, but is introduced to show the reader that vector methods can be used to prove
interesting theorems.

Example 2.1.5 [Desargues’ theorem] Consider two triangles ABC and A′B ′C ′ with
distinct vertices such that lines AA′, BB ′ and CC ′ all intersect a some point V . If the lines
AB and A′B ′ intersect at exactly one point C ′′, the lines BC and B ′C ′ intersect at exactly
one point A′′ and the lines CA and CA′ intersect at exactly one point B ′′, then A′′, B ′′ and
C ′′ lie on the same line.
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Exercise 2.1.6 Draw an example and check that (to within the accuracy of the drawing)
the conclusion of Desargues’ theorem holds. (You may need a large sheet of paper and
some experiment to obtain a case in which A′′, B ′′ and C ′′ all lie within your sheet.)

Exercise 2.1.7 Try and prove the result without using vectors.1

We translate Example 2.1.5 into vector notation.

Example 2.1.8 We work in R2. Suppose that a, a′, b, b′, c, c′ are distinct. Suppose further
that v lies on the line through a and a′, on the line through b and b′ and on the line through
c and c′.

If exactly one point a′′ lies on the line through b and c and on the line through b′ and c′

and similar conditions hold for b′′ and c′′, then a′′, b′′ and c′′ lie on the same line.

We now prove the result.

Proof By hypothesis, we can find α, β, γ ∈ R, such that

v = αa+ (1− α)a′

v = βb+ (1− β)b′

v = γ c+ (1− α)c′.

Eliminating v between the first two equations, we get

αa− βb = −(1− α)a′ + (1− β)b′. �
We shall need to exclude the possibility α = β. To do this, observe that, if α = β, then

α(a− b) = (1− α)(a′ − b′).

Since a �= b and a′ �= b′, we have α, 1− α �= 0 and (see Exercise 2.1.4 (ii)) the straight lines
joining a and b and a′ and b′ are either identical or do not intersect. Since the hypotheses
of the theorem exclude both possibilities, α �= β.

We know that c′′ is the unique point satisfying

c′′ = λa+ (1− λ)b

c′′ = λ′a+ (1− λ′)b

for some real λ, λ′, but we still have to find λ and λ′. By inspection (see Exercise 2.1.9) we
see that λ = α/(α − β) and λ′ = (1− α)/(β − α) do the trick and so

(α − β)c′′ = αa− βb.

Applying the same argument to a′′ and b′′, we see that

(β − γ )a′′ = βb− γ c

(γ − α)b′′ = γ c− αa

(α − β)c′′ = αa− βb.

1 Desargues proved it long before vectors were thought of.
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Adding our three equations we get

(β − γ )a′′ + (γ − α)b′′ + (α − β)c′′ = 0.

Thus (see Exercise 2.1.4 (ii)), since β − γ , γ − α and α − β are all non-zero, a′′, b′′ and
c′′ all lie on the same straight line. �
Exercise 2.1.9 In the proof of Theorem 2.1.5 we needed to find λ and λ′ so that

λa+ (1− λ)b = λ′a+ (1− λ′)b,

knowing that

αa− βb = −(1− α)a′ + (1− β)b′. �

The easiest way to use � would be to have

λ

1− λ
= −α

β
.

Check that this corresponds to our choice of λ in the proof. Obtain λ′ similarly. (Of course,
we do not know that these choices will work and we now need to check that they give the
desired result.)

2.2 Higher dimensions

We now move from two to three dimensions. We use a Cartesian coordinate system in which
each point of space corresponds to a unique ordered triple (x1, x2, x3) of real numbers.
As before, we consider x = (x1, x2, x3) ∈ R3 as a row vector and use the same kind of
definitions of addition and scalar multiplication as we did for column vectors so that

λ(x1, x2, x3)+ μ(y1, y2, y3) = (λx1 + μy1, λx2 + μy2, λx3 + μy3).

If we say a straight line joining distinct points u, v ∈ R3 is the set

{λu+ (1− λ)v : λ ∈ R},
then a quick scan of our proof of Desargues’ theorem shows it applies word for word to the
new situation.

Example 2.2.1 [Desargues’ theorem in three dimensions] Consider two triangles ABC

and A′B ′C ′ with distinct vertices such that lines AA′, BB ′ and CC ′ all intersect at some
point V . If the lines AB and A′B ′ intersect at exactly one point C ′′, the lines BC and B ′C ′

intersect at exactly one point A′′ and the lines CA and CA′ intersect at exactly one point
B ′′, then A′′, B ′′ and C ′′ lie on the same line.

(In fact, Desargues’ theorem is most naturally thought about as a three dimensional
theorem about the rules of perspective.)

The reader may, quite properly, object that I have not shown that the definition of a
straight line given here corresponds to her definition of a straight line. However, I do not
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know her definition of a straight line. Under the circumstances, it makes sense for the author
and reader to agree to accept the present definition for the time being. The reader is free to
add the words ‘in the vectorial sense’ whenever we talk about straight lines.

There is now no reason to confine ourselves to the two or three dimensions of ordinary
space. We can do ‘vectorial geometry’ in as many dimensions as we please. Our points will
be row vectors

x = (x1, x2, . . . , xn) ∈ Rn

manipulated according to the rule

λ(x1, x2, . . . , xn)+ μ(y1, y2, . . . , yn) = (λx1 + μy1, λx2 + μy2, . . . , λxn + μyn)

and a straight line joining distinct points u, v ∈ Rn will be the set

{λu+ (1− λ)v : λ ∈ R}.
It seems reasonable to call x a geometric or position vector.

As before, Desargues’ theorem and its proof pass over to the more general context.

Example 2.2.2 [Desargues’ theorem in n dimensions] We work in Rn. Suppose that a,
a′, b, b′, c, c′ are distinct. Suppose further that v lies on the line through a and a′, on the
line through b and b′ and on the line through c and c′.

If exactly one point a′′ lies on the line through b and c and on the line through b′ and c′

and similar conditions hold for b′′ and c′′, then a′′, b′′ and c′′ lie on the same line.

I introduced Desargues’ theorem in order that the reader should not view vectorial
geometry as an endless succession of trivialities dressed up in pompous phrases. My next
example is simpler, but is much more important for future work. We start from a beautiful
theorem of classical geometry.

Theorem 2.2.3 The lines joining the vertices of triangle to the mid-points of opposite
sides meet at a point.

Exercise 2.2.4 Draw an example and check that (to within the accuracy of the drawing)
the conclusion of Theorem 2.2.3 holds.

Exercise 2.2.5 Try to prove the result by trigonometry.

In order to translate Theorem 2.2.3 into vectorial form, we need to decide what a mid-
point is. We have not yet introduced the notion of distance, but we observe that, if we
set

c′ = 1

2
(a+ b),

then c′ lies on the line joining a to b and

c′ − a = 1

2
(b− a) = b− c′,
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so it is reasonable to call c′ the mid-point of a and b. (See also Exercise 2.3.12.) Theo-
rem 2.2.3 can now be restated as follows.

Theorem 2.2.6 Suppose that a, b, c ∈ R2 and

a′ = 1

2
(b+ c), b′ = 1

2
(c+ a), c′ = 1

2
(a+ b).

Then the lines joining a to a′, b to b′ and c to c′ intersect.

Proof We seek a d ∈ R2 and α, β, γ ∈ R such that

d = αa+ (1− α)a′ = αa+ 1− α

2
b+ 1− α

2
c

d = βb+ (1− β)b′ = 1− β

2
a+ βb+ 1− β

2
c

d = γ c+ (1− γ )c′ = 1− γ

2
a+ 1− γ

2
b+ γ c.

By inspection, we see2 that α, β, γ = 1/3 and

d = 1

3
(a+ b+ c)

satisfy the required conditions, so the result holds. �
As before, we see that there is no need to restrict ourselves to R2. The method of proof

also suggests a more general theorem.

Definition 2.2.7 If the q points x1, x2, . . . , xq ∈ Rn, then their centroid is the point

1

q
(x1 + x2 + · · · + xq).

Exercise 2.2.8 Suppose that x1, x2, . . . , xq ∈ Rn. Let yj be the centroid of the q − 1
points xi with 1 ≤ i ≤ q and i �= j . Show that the q lines joining xj to yj for 1 ≤ j ≤ q

all meet at the centroid of x1, x2, . . . , xq .

If n = 3 and q = 4, we recover a classical result on the geometry of the tetrahedron.
We can generalise still further.

Definition 2.2.9 If each xj ∈ Rn is associated with a strictly positive real number mj for
1 ≤ j ≤ q, then the centre of mass3 of the system is the point

1

m1 +m2 + · · · +mq

(m1x1 +m2x2 + · · · +mqxq).

Exercise 2.2.10 (i) Suppose that xj ∈ Rn is associated with a strictly positive real number
mj for 1 ≤ j ≤ q. Let yj be the centre of mass of the q − 1 points xi with 1 ≤ i ≤ q and

2 That is we guess the correct answer and then check that our guess is correct.
3 Traditionally called the centre of gravity. The change has been insisted on by the kind of person who uses ‘Welsh rarebit’ for

‘Welsh rabbit’ on the grounds that the dish contains no meat.
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i �= j . Then the q lines joining xj to yj for 1 ≤ j ≤ q all meet at the centre of mass of
x1, x2, . . . , xq .

(ii) What mathematical (as opposed to physical) problem do we avoid by insisting that
the mj are strictly positive?

2.3 Euclidean distance

So far, we have ignored the notion of distance. If we think of the distance between the
points x and y in R2 or R3, it is natural to look at

‖x− y‖ =
⎛
⎝ n∑

j=1

(xj − yj )2

⎞
⎠1/2

.

Let us make a formal definition.

Definition 2.3.1 If x ∈ Rn, we define the norm (or, more specifically, the Euclidean norm)
‖x‖ of x by

‖x‖ =
⎛
⎝ n∑

j=1

x2
j

⎞
⎠1/2

,

where we take the positive square root.

Some properties of the norm are easy to derive.

Lemma 2.3.2 Suppose that x ∈ Rn and λ ∈ R. The following results hold.
(i) ‖x‖ ≥ 0.
(ii) ‖x‖ = 0 if and only if x = 0.
(iii) ‖λx‖ = |λ|‖x‖.

Exercise 2.3.3 Prove Lemma 2.3.2.

We would like to think of ‖x− y‖ as the distance between x and y, but we do not yet
know that it has all the properties we expect of distance.

Exercise 2.3.4 Use school algebra to show that

‖x− y‖ + ‖y− z‖ ≤ ‖y− z‖. �

(You may take n = 3, or even n = 2 if you wish.)

The relation � is called the triangle inequality. We shall prove it by an indirect approach
which introduces many useful ideas.

We start by introducing the inner product or dot product.4

4 For historical reasons it is also called the scalar product, but this can be confusing.
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Definition 2.3.5 Suppose that x, y ∈ Rn. We define the inner product x · y by

x · y = 1

4
(‖x+ y‖2 − ‖x− y‖2).

A quick calculation shows that our definition is equivalent to the more usual one.

Lemma 2.3.6 Suppose that x, y ∈ Rn. Then

x · y = x1y1 + x2y2 + · · · + xnyn.

Proof Left to the reader. �

In later chapters we shall use an alternative notation 〈x, y〉 for inner product. Other
notations include x.y and (x, y). The reader must be prepared to fall in with whatever
notation is used.

Here are some key properties of the inner product.

Lemma 2.3.7 Suppose that x, y, w ∈ Rn and λ, μ ∈ R. The following results hold.
(i) x · x ≥ 0.
(ii) x · x = 0 if and only if x = 0.
(iii) x · y = y · x.
(iv) x · (y+ w) = x · y+ x · w.
(v) (λx) · y = λ(x · y).
(vi) x · x = ‖x‖2.

Proof Simple verifications using Lemma 2.3.6. The details are left as an exercise for the
reader. �

We also have the following trivial, but extremely useful, result.

Lemma 2.3.8 Suppose that a, b ∈ Rn. If

a · x = b · x

for all x ∈ Rn, then a = b.

Proof If the hypotheses hold, then

(a− b) · x = a · x− b · x = 0

for all x ∈ Rn. In particular, taking x = a− b, we have

‖a− b‖2 = (a− b) · (a− b) = 0

and so a− b = 0. �

We now come to one of the most important inequalities in mathematics.5

5 Since this is the view of both Gowers and Tao, I have no hesitation in making this assertion.
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Theorem 2.3.9 [The Cauchy–Schwarz inequality] If x, y ∈ Rn, then

|x · y| ≤ ‖x‖‖y‖.
Moreover |x · y| = ‖x‖‖y‖ if and only if we can find λ, μ ∈ R not both zero such that

λx = μy.

Proof (The clever proof given here is due to Schwarz.) If x = y = 0, then the theorem is
trivial. Thus we may assume, without loss of generality, that x �= 0 and so ‖x‖ �= 0. If λ is
a real number, then, using the results of Lemma 2.3.7, we have

0 ≤ ‖λx+ y‖2

= (λx+ y) · (λx+ y)

= (λx) · (λx)+ (λx) · y+ y · (λx)+ y · y

= λ2x · x+ 2λx · y+ y · y

= λ2‖x‖2 + 2λx · y+ ‖y‖2

=
(

λ‖x‖ + x · y
‖x‖
)2

+ ‖y‖2 −
(

x · y
‖x‖
)2

.

If we set

λ = − x · y
‖x‖2

,

we obtain

0 ≤ (λx+ y) · (λx+ y) = ‖y‖2 −
(

x · y
‖x‖
)2

.

Thus

‖y‖2 −
(

x · y
‖x‖
)2

≥ 0 �

with equality only if

0 = ‖λx+ y‖
so only if

λx+ y = 0.

Rearranging the terms in � we obtain

(x · y)2 ≤ ‖x‖2‖y‖2

and so

|x · y| ≤ ‖x‖‖y‖
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with equality only if

λx+ y = 0.

We observe that, if λ′, μ′ ∈ R are not both zero and λ′x = μ′y, then |x · y| = ‖x‖‖y‖,
so the proof is complete. �

We can now prove the triangle inequality.

Theorem 2.3.10 Suppose that x, y ∈ Rn. Then

‖x‖ + ‖y‖ ≥ ‖x+ y‖
with equality if and only if there exist λ, μ ≥ 0 not both zero such that λx = μy.

Proof Observe that

(‖x‖ + ‖y‖)2 − ‖x+ y‖2 = (‖x‖ + ‖y‖)2 + (x+ y) · (x+ y)

= (‖x‖2 + 2‖x‖‖y‖ + ‖y‖2)− (‖x‖2 + 2x · y+ ‖y‖2)

= 2(‖x‖‖y‖ − x · y)

≥ 2(‖x‖‖y‖ − |x · y|) ≥ 0

with equality if and only if

x · y ≥ 0 and ‖x‖‖y‖ = |x · y|.
Rearranging and taking positive square roots, we see that

‖x‖ + ‖y‖ ≥ ‖x+ y‖.
Since (λx) · (μx) = λμ‖x‖2, it is easy to check that we have equality if and only if there
exist λ, μ ≥ 0 not both zero such that λx = μy. �

Exercise 2.3.11 Suppose that a, b, c ∈ Rn. Show that

‖a− b‖ + ‖b− c‖ ≥ ‖a− c‖.
When does equality occur?

Deduce an inequality involving the length of the sides of a triangle ABC.

Exercise 2.3.12 (This completes some unfinished business.) Suppose that a �= b. Show
that there exists a unique point x on the line joining a and b such that ‖x− a‖ = ‖x− b‖
and that this point is given by x = 1

2 (a+ b).

If we confine ourselves to two dimensions, we can give another characterisation of the
inner product.

Exercise 2.3.13 (i) We work in the plane. If ABC is a triangle with the angle between AB

and BC equal to θ , show, by elementary trigonometry, that

|BC|2 + |AB|2 − 2|AB| × |BC| cos θ = |AC|2
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where |XY | is the length of the side XY .
(ii) If a, c ∈ Rn show that

‖a‖2 + ‖c‖2 − 2a · c = ‖a− c‖2.

(iii) Returning to the plane R2, suppose that a, c ∈ R2, the point A is at a, the point C

is at c and θ is the angle between the line joining A to the origin and the line joining C to
the origin. Show that

a · c = ‖a‖‖c‖ cos θ.

Because of this result, the inner product is sometimes defined in some such way as ‘the
product of the length of the two vectors times the cosine of the angle between them’. This
is fine, so long as we confine ourselves to R2 and R3, but, once we consider vectors in R4

or more general spaces, this places a great strain on our geometrical intuition
We therefore turn the definition around as follows. Suppose that a, c ∈ Rn and a, c �= 0.

By the Cauchy–Schwarz inequality,

−1 ≤ a · c
‖a‖‖c‖ ≤ 1.

By the properties of the cosine function, there is a unique θ with 0 ≤ θ ≤ π and

cos θ = a · c
‖a‖‖c‖ .

We define θ to be the angle between a and c.

Exercise 2.3.14 Suppose that u, v ∈ Rn and u, v �= 0. Show that, if we adopt the definition
just given, and if the angle between u and v is θ , then the angle between v and u is θ and
the angle between u and −v is π − θ .

Most of the time, we shall be interested in a special case.

Definition 2.3.15 Suppose that u, v ∈ Rn. We say that u and v are orthogonal (or perpen-
dicular) if u · v = 0.

Exercise 2.3.16 Consider the 2n vertices of a cube in Rn and the 2n−1 diagonals. (Part of
the exercise is to decide what this means.) Show that no two diagonals can be perpendicular
if n is odd.

For n = 4, what is the greatest number of mutually perpendicular diagonals and why?
List all possible angles between the diagonals.

Note that our definition of orthogonality means that the zero vector 0 is perpendicu-
lar to every vector. The symbolism u ⊥ v is sometimes used to mean that u and v are
perpendicular.

Exercise 2.3.17 We work in R3. Are the following statements always true or sometimes
false? In each case give a proof or a counterexample.

(i) If u ⊥ v, then v ⊥ u.
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(ii) If u ⊥ v and v ⊥ w, then u ⊥ w.
(iii) If u ⊥ u, then u = 0.

Exercise 2.3.18 [Pythagoras extended] (i) If u, v ∈ R2 and u ⊥ v, show that

‖u‖2 + ‖v‖2 = ‖u+ v‖2.

Why does this correspond to Pythagoras’ theorem?
(ii) If u, v, w ∈ R3, u ⊥ v, v ⊥ w and w ⊥ u (that is to say, the vectors are mutually

perpendicular), show that

‖u‖2 + ‖v‖2 + ‖w‖2 = ‖u+ v+ w‖2.

(iii) State and prove a corresponding result in R4.

2.4 Geometry, plane and solid

We now look at some familiar geometric objects in a vectorial context. Our object is not to
prove rigorous theorems, but to develop intuition.

For example, we shall say that a parallelogram in R2 is a figure with vertices c, c+ a,
c+ b, c+ a+ b and rely on the reader to convince herself that this corresponds to her
pre-existing idea of a parallelogram.

Exercise 2.4.1 [The parallelogram law] If a, b ∈ Rn, show that

‖a+ b‖2 + ‖a− b‖2 = 2(‖a‖2 + ‖b‖2).

If n = 2, interpret the equality in terms of the lengths of the sides and diagonals of a
parallelogram.

Exercise 2.4.2 (i) Prove that the diagonals of a parallelogram bisect each other.
(ii) Prove that the line joining one vertex of a parallelogram to the mid-point of an

opposite side trisects the diagonal and is trisected by it.

Here is a well known theorem of classical geometry.

Example 2.4.3 Consider a triangle ABC. The altitude through a vertex is the line through
that vertex perpendicular to the opposite side. We assert that the three altitudes meet at a
point.

Exercise 2.4.4 Draw an example and check that (to within the accuracy of the drawing)
the conclusion of Example 2.4.3 holds.

Proof of Example 2.4.3 If we translate the statement of Example 2.4.3 into vector notation,
it asserts that, if x satisfies the equations

(x− a) · (b− c) = 0

(x− b) · (c− a) = 0,
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then it satisfies the equation

(x− c) · (a− b) = 0.

But adding the first two equations gives the third, so we are done. �
We consider the rather less interesting three dimensional case in Exercise 2.5.6 (ii). It

turns out that the four altitudes of a tetrahedron only meet if the sides of the tetrahedron
satisfy certain conditions. Exercises 2.5.7 and 2.5.8 give two other classical results which
are readily proved by similar means to those used for Example 2.4.3.

We have already looked at the equation

ax + by = c

(where a and b are not both zero) for a straight line in R2. The inner product enables us to
look at the equation in a different way. If a = (a, b), then a is a non-zero vector and our
equation becomes

a · x = c

where x = (x, y).
This equation is usually written in a different way.

Definition 2.4.5 We say that u ∈ Rn is a unit vector if ‖u‖ = 1.

If we take

n = 1

‖a‖a and p = c

‖a‖ ,

we obtain the equation for a line in R2 as

n · x = p,

where n is a unit vector.

Exercise 2.4.6 We work in R2.
(i) If u = (u, v) is a unit vector, show that there are exactly two unit vectors n = (n,m)

and n′ = (n′,m′) perpendicular to u. Write them down explicitly.
(ii) Given a straight line written in the form

x = a+ tc

(where c �= 0 and t ranges freely over R), find a unit vector n and p so that the line is
described by n · x = p.

(iii) Given a straight line written in the form

n · x = p

(where n is a unit vector), find a and c �= 0 so that the line is described by

x = a+ tc

where t ranges freely over R.
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If we work in R3, it is easy to convince ourselves that the equation

n · x = p,

where n is a unit vector, defines the plane perpendicular to n passing through the point pn.
(If the reader is worried by the informality of our arguments, she should note that we look
at orthogonality in much greater depth and with due attention to rigour in Chapter 7.)

Example 2.4.7 Let l be a straight line and π a plane in R3. One of three things can occur.
(i) l and π do not intersect.
(ii) l and π intersect at a point.
(iii) l lies inside π (so l and π intersect in a line).

Proof Let π have equation n · x = p (where n is a unit vector) and let l be described by
x = a+ tc (with c �= 0) where t ranges freely over R.

Then the points of intersection (if any) are given by x = a+ sc where

p = n · x = n · (a+ sc) = n · a+ sn · c

that is to say, by

sn · c = p − n · a. �

If n · c �= 0, then � has a unique solution in s and we have case (ii). If n · c = 0 (that
is to say, if n ⊥ c), then one of two things may happen. If p �= n · a, then � has no
solution and we have case (i). If p = n · a, then every value of s satisfies � and we have
case (iii). �

In cases (i) and (iii), I would be inclined to say that l is parallel to π .

Example 2.4.8 Let π and π ′ be planes in R3. One of three things can occur.
(i) π and π ′ do not intersect.
(ii) π and π ′ intersect in a line.
(iii) π and π ′ coincide.

Proof Let π be given by n · x = p and π ′ be given by n′ · x = p′.
If there exist real numbers μ and ν not both zero such that μn = νn′, then, in fact,

n′ = ±n and we can write π ′ as

n · x = q.

If p �= q, then the pair of equations

n · x = p, n · x = q

have no solutions and we have case (i). If p = q the two equations are the same and we
have case (ii).

If there do not exist real numbers μ and ν not both zero such that μn = νn′ (after
Section 5.4, we will be able to replace this cumbrous phrase with the statement ‘n and n′
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are linearly independent’), then the points x = (x1, x2, x3) of intersection of the two planes
are given by a pair of equations

n1x1 + n2x2 + n3x3 = p

n′1x1 + n′2x2 + n′3x3 = p′

and there do not exist exist real numbers μ and ν not both zero with

μ(n1, n2, n3) = ν(n′1, n
′
2, n

′
3).

Applying Gaussian elimination, we have (possibly after relabelling the coordinates)

x1 + cx3 = a

x2 + dx3 = b

so

(x1, x2, x3) = (a, b, 0)+ x3(−c,−d, 1)

that is to say

x = a+ tc

where t is a freely chosen real number, a = (a, b, 0) and c = (−c,−d, 1) �= 0. We thus
have case (ii). �
Exercise 2.4.9 We work in R3. If

n1 = (1, 0, 0), n2 = (0, 1, 0), n3 = (2−1/2, 2−1/2, 0),

p1 = p2 = 0, p3 = 21/2 and three planes πj are given by the equations

nj · x = pj ,

show that each pair of planes meet in a line, but that no point belongs to all three planes.
Give similar example of planes πj obeying the following conditions.
(i) No two planes meet.
(ii) The planes π1 and π2 meet in a line and the planes π1 and π3 meet in a line, but π2

and π3 do not meet.

Since a circle in R2 consists of all points equidistant from a given point, it is easy to
write down the following equation for a circle

‖x− a‖ = r.

We say that the circle has centre a and radius r . We demand r > 0.

Exercise 2.4.10 Describe the set

{x ∈ R2 : ‖x− a‖ = r}
in the case r = 0. What is the set if r < 0?
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In exactly the same way, we say that a sphere in R3 of centre a and radius r > 0 is given
by

‖x− a‖ = r.

Exercise 2.4.11 [Inversion] (i) We work in R2 and consider the map y : R2 \ {0} →
R2 \ {0} given by

y(x) = 1

‖x‖2
x.

(We leave y undefined at 0.) Show that y
(
y(x)
) = x.

(ii) Suppose that a ∈ R2, r > 0 and ‖a‖ �= r . Show that y takes the circle of radius r

and centre a to another circle. What are the radius and centre of the new circle?
(iii) Suppose that a ∈ R2, r > 0 and ‖a‖ = r . Show that y takes the circle of radius r

and centre a (omitting the point 0) to a line to be specified.
(iv) Generalise parts (i), (ii) and (iii) to R3.

[We refer to the transformation y as an inversion. We give a very pretty application in
Exercise 2.5.14.]

Exercise 2.4.12 [Ptolemy’s inequality] Let x, y ∈ Rn \ {0}. By squaring both sides of the
equation, or otherwise, show that∥∥∥∥ x

‖x‖2
− y
‖y‖2

∥∥∥∥ = 1

‖x‖‖y‖‖x− y‖.

Hence, or otherwise, show that, if x, y, z ∈ Rn,

‖z‖‖x− y‖ ≤ ‖y‖‖z− x‖ + ‖x‖‖y− z‖.
If x, y, z �= 0, show that we have equality if and only if the points ‖x‖−2x, ‖y‖−2y, ‖z‖−2z
lie on a straight line.

Deduce that, if ABCD is a quadrilateral in the plane,

|AB||CD| + |BC||DA| ≥ |AC||BD|. �

Use Exercise 2.4.11 to show that � becomes an equality if and only if A, B, C and D

lie on a circle or straight line.
The statement that, if ABCD is a ‘cyclic quadrilateral’, then

|AB||CD| + |BC||DA| = |AC||BD|,
is known as Ptolemy’s theorem after the great Greek astronomer. Ptolemy and his prede-
cessors used the theorem to produce what were, in effect, trigonometric tables.

2.5 Further exercises

Exercise 2.5.1 We work in R3. Let A, B, C be strictly positive constants and w a fixed
vector. Determine the vector x of smallest magnitude (i.e. with ‖x‖ as small as possible)
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which satisfies the simultaneous equations

Ax− By = 2w

x · y = C.

Exercise 2.5.2 Describe geometrically the surfaces in R3 given by the following equations.
Give brief reasons for your answers. (Formal proofs are not required.) We take u to be a
fixed vector with ‖u‖ = 1 and α and β to be fixed real numbers with 1 > |α| > 0 and
β > 0.

(i) x · u = α‖x‖.
(ii) ‖x− (x · u)u‖ = β.

Exercise 2.5.3 (i) By using the Cauchy–Schwarz inequality in R3, show that

x2 + y2 + z2 ≥ yz+ zx + xy

for all real x, y, z.
(ii) By using the Cauchy–Schwarz inequality in R4 several times, show that only one

choice of real numbers satisfies

3(x2 + y2 + z2 + 4)− 2(yz+ zx + xy)− 4(x + y + z) = 0

and find those numbers.

Exercise 2.5.4 Let a ∈ Rn be fixed. Suppose that vectors x, y ∈ Rn are related by the
equation

x+ (x · y)y = a.

Show that

(x · y)2 = ‖a‖2 − ‖x‖2

2+ ‖y‖2

and deduce that

‖x‖(1+ ‖y‖2) ≥ ‖a‖ ≥ ‖x‖.
Explain, with proof, the circumstances under which either of the two inequalities in the
formula just given can be replaced by equalities, and describe the relation between x, y and
a in these circumstances.

Exercise 2.5.5 We work in Rn. Show that, if w, x, y, z ∈ Rn, then

n∑
j=1

|wjxjyj zj | ≤
⎛
⎝ n∑

j=1

w4
j

n∑
j=1

x4
j

n∑
j=1

y4
j

n∑
j=1

z4
j

⎞
⎠1/4

.

(We take the positive root.)
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If we write ‖x‖4 =
(∑n

j=1 x4
j

)1/4
, show that the following results hold for all x, y ∈ R4,

λ ∈ R.
(i) ‖x‖4 ≥ 0.
(ii) ‖x‖4 = 0 ⇔ x = 0.
(iii) ‖λx‖4 = |λ|‖x‖4.
(iv) ‖x+ y‖4 ≤ ‖x‖4 + ‖y‖4.

Exercise 2.5.6 (i) We work in R3. Show that, if two pairs of opposite edges of a non-
degenerate6 tetrahedron ABCD are perpendicular, then the third pair are also perpendicular
to each other. Show also that, in this case, the sum of the lengths squared of the two opposite
edges is the same for each pair.

(ii) The altitude through a vertex of a non-degenerate tetrahedron is the line through the
vertex perpendicular to the opposite face. Translating into vectors, explain why x lies on
the altitude through a if and only if

(x− a) · (b− c) = 0 and (x− a) · (c− d) = 0.

Show that the four altitudes of a non-degenerate tetrahedron meet only if each pair of
opposite edges are perpendicular.

If each pair of opposite edges are perpendicular, show by observing that the altitude
through A lies in each of the planes formed by A and the altitudes of the triangle BCD, or
otherwise, that the four altitudes of the tetrahedron do indeed meet.

Exercise 2.5.7 Consider a non-degenerate triangle in the plane with vertices A, B, C given
by the vectors a, b, c.

Show that the equation

x = a+ t
(‖a− c‖(a− b)+ ‖a− b‖(a− c)

)
with t ∈ R defines a line which is the angle bisector at A (i.e. passes through A and makes
equal angles with AB and AC).

If the point X lies on the angle bisector at A, the point Y lies on AB in such a way
that XY is perpendicular to AB and the point Z lies on AC, in such a way that XZ is
perpendicular to AC, show, using vector methods, that XY and XZ have equal length.

Show that the three angle bisectors at A, B and C meet at a point Q given by

q = ‖a− b‖c+ ‖b− c‖a+ ‖c− a‖b
‖a− b‖ + ‖b− c‖ + ‖c− a‖ .

6 Non-degenerate and generic are overworked and often deliberately vague adjectives used by mathematicians to mean ‘avoiding
special cases’. Thus a non-degenerate triangle has all three vertices distinct and the vertices of a non-degenerate tetrahedron
do not lie in a plane. Even if you are only asked to consider non-degenerate cases, it is often instructive to think about what
happens in the degenerate cases.
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Show that, given three distinct lines AB, BC, CA, there is at least one circle which has
those three lines as tangents.7

Exercise 2.5.8 Consider a non-degenerate triangle in the plane with vertices A, B, C given
by the vectors a, b, c.

Show that the points equidistant from A and B form a line lAB whose equation you
should find in the form

nAB · x = pAB,

where the unit vector nAB and the real number pAB are to be given explicitly. Show that
lAB is perpendicular to AB. (The line lAB is called the perpendicular bisector of AB.)

Show that

nAB · x = pAB, nBC · x = pBC ⇒ nCA · x = pCA

and deduce that the three perpendicular bisectors meet in a point.
Deduce that, if three points A, B and C do not lie in a straight line, they lie on a circle.

Exercise 2.5.9 (Not very hard.) Consider a non-degenerate tetrahedron. For each edge we
can find a plane which which contains that edge and passes through the midpoint of the
opposite edge. Show that the six planes all pass through a common point.

Exercise 2.5.10 [The Monge point]8 Consider a non-degenerate tetrahedron with vertices
A, B, C, D given by the vectors a, b, c, d. Use inner products to write down an equation
for the so-called, ‘midplane’ πAB,CD which is perpendicular to AB and passes through the
mid-point of CD. Hence show that (with an obvious notation)

x ∈ πAB,CD ∩ πBC,AD ∩ πAD,BC ⇒ x ∈ πAC,BD.

Deduce that the six midplanes of a tetrahedron meet at a point.

Exercise 2.5.11 Show that

‖x− a‖2 cos2 α = ((x− a) · n
)2

,

with ‖n‖ = 1, is the equation of a right circular double cone in R3 whose vertex has position
vector a, axis of symmetry n and opening angle α. Two such double cones, with vertices
a1 and a2, have parallel axes and the same opening angle. Show that, if b = a1 − a2 �= 0,
then the intersection of the cones lies in a plane with unit normal

N = b cos2 α − n(n · b)√
‖b‖2 cos4 α + (n · b)2(1− 2 cos2 α)

.

7 Actually there are four. Can you spot what they are? Can you use the methods of this question to find them? The circle found
in this question is called the ‘incircle’ and the other three are called the ‘excircles’.

8 Monge’s ideas on three dimensional geometry were so useful to the French army that they were considered a state secret. I have
been told that, when he was finally allowed to publish in 1795, the British War Office rushed out and bought two copies of his
book for its library where they remained unopened for 150 years.
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Exercise 2.5.12 We work in R3. We fix c ∈ R and a ∈ R3 with c < a · a. Show that if

x+ y = 2a, x · y = c,

then x lies on a sphere. You should find the centre and radius of the sphere explicitly.

Exercise 2.5.13 We work in R3. Show that the equation of a sphere with centre c and
radius a is F (r) = 0, where

F (r) = r · r− 2r · c+ k

and k is a constant to be found explicitly.
Show that a line through d parallel to the unit vector b intersects the sphere in two

distinct points u and v if and only if

F (d) <
(
b · (d− c)

)2
and that, if this is the case,

(u− d) · (v− d) = F (d).

If the line intersects the sphere at a single point, we call it a tangent line. Show that a
tangent line passing through a point w on the sphere is perpendicular to the radius w− c
and, conversely, that every line passing through w and perpendicular to the radius w− c is
a tangent line. The tangent lines through w thus form a tangent plane.

Show that the condition for the plane r · n = p (where n is a unit vector) to be a tangent
plane is that

(p − c · n)2 = c2 − k.

If two spheres given by

r · r− 2r · c+ k = 0 and r · r− 2r · c′ + k′ = 0

cut each other at right angles, show that

2c · c′ = k + k′.

Exercise 2.5.14 [Steiner’s porism] Suppose that a circle �0 lies inside another circle �1.
We draw a circle �1 touching both �0 and �1. We then draw a circle �2 touching �0, �1

and �1 (and lying outside �1), a circle �3 touching �0, �1 and �2 (and lying outside �2),
. . . , a circle �j+1 touching �0, �1 and �j (and lying outside �j ) and so on. Eventually
some �r will either cut �1 in two distinct points or will touch it. If the second possibility
occurs, we say that the circles �1, �2, . . . , �r form a Steiner chain. There are excellent
pictures of Steiner chains in Wikipedia and elsewhere on the web

Steiner’s porism9 asserts that if one choice of �1 gives a Steiner chain, then all choices
will give a Steiner chain.

9 The Greeks used the word porism to denote a kind of corollary. However, later mathematicians decided that such a fine word
should not be wasted and it now means a theorem which asserts that something always happens or never happens.
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(i) Explain why Steiner’s porism is true for concentric circles.
(ii) Give an example of two concentric circles for which a Steiner chain exists and

another for which no Steiner chain exists.
(iii) Suppose that two circles lie in the (x, y) plane with centres on the real axis. Suppose

that the first circle cuts the x axis at a and b and the second at c and d. Suppose further that

0 <
1

a
<

1

c
<

1

d
<

1

b
and

1

a
+ 1

b
<

1

c
+ 1

d
.

By considering the behaviour of

f (x) =
(

1

a − x
+ 1

b − x

)
−
(

1

c − x
+ 1

d − x

)
as x increases from 0 towards b, or otherwise, show that there is an x0 such that

1

a − x0
+ 1

b − x0
= 1

c − x0
+ 1

d − x0
.

(iv) Using (iii), or otherwise, show that any two circles can be mapped to concentric
circles by using translations, rotations and inversion (see Exercise 2.4.11).

(v) Deduce Steiner’s porism.



3

The algebra of square matrices

3.1 The summation convention

In our first chapter we showed how a system of n linear equations in n unknowns could be
written compactly as

n∑
j=1

aij xj = bi [1 ≤ i ≤ n].

In 1916, Einstein wrote to a friend (see, for example, [26])

I have made a great discovery in mathematics; I have suppressed the summation sign every time that
the summation must be made over an index which occurs twice . . .

Although Einstein wrote with his tongue in his cheek, the Einstein summation convention
has proved very useful. When we use the summation convention with i, j , . . . running from
1 to n, then we must observe the following rules.

(1) Whenever the suffix i, say, occurs once in an expression forming part of an equation,
then we have n instances of the equation according as i = 1, i = 2, . . . or i = n.

(2) Whenever the suffix i, say, occurs twice in an expression forming part of an equation,
then i is a dummy variable, and we sum the expression over the values 1 ≤ i ≤ n.

(3) The suffix i, say, will never occur more than twice in an expression forming part of an
equation.

The summation convention appears baffling when you meet it first, but is easy when you
get used to it. For the moment, whenever I use an expression involving the summation, I
shall give the same expression using the older notation. Thus the system

aij xj = bi,

with the summation convention, corresponds to

n∑
j=1

aij xj = bi [1 ≤ i ≤ n]

42
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without it. In the same way, the equation

x · y =
n∑

i=1

xiyi,

without the summation convention, corresponds to

x · y = xiyi

with it.
Here is a proof of the parallelogram law (Exercise 2.4.1), using the summation conven-

tion.

‖a+ b‖2 + ‖a− b‖2 = (ai + bi)(ai + bi)+ (ai − bi)(ai − bi)

= (aiai + 2aibi + bibi)+ (aiai − 2aibi + bibi)

= 2aiai + 2bibi

= 2‖a‖2 + 2‖b‖2.

Here is the same proof, not using the summation convention.

‖a+ b‖2 + ‖a− b‖2 =
n∑

i=1

(ai + bi)(ai + bi)+
n∑

i=1

(ai − bi)(ai − bi)

=
n∑

i=1

(aiai + 2aibi + bibi)+
n∑

i=1

(aiai − 2aibi + bibi)

= 2
n∑

i=1

aiai + 2
n∑

i=1

bibi

= 2‖a‖2 + 2‖b‖2.

The reader should note that, unless I explicitly state that we are using the summation con-
vention, we are not. If she is unhappy with any argument using the summation convention,
she should first follow it with summation signs inserted and then remove the summation
signs.

3.2 Multiplying matrices

Consider two n× n matrices A = (aij ) and B = (bij ). If

Bx = y and Ay = z,
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then

zi =
n∑

k=1

aikyk =
n∑

k=1

aik

⎛
⎝ n∑

j=1

bkjxj

⎞
⎠

=
n∑

k=1

n∑
j=1

aikbkj xj =
n∑

j=1

n∑
k=1

aikbkj xj

=
n∑

j=1

(
n∑

k=1

aikbkj

)
xj =

n∑
j=1

cij xj

where

cij =
n∑

k=1

aikbkj �

or, using the summation convention,

cij = aikbkj .

Exercise 3.2.1 Write out the argument of the previous paragraph using the summation
convention.

It therefore makes sense to use the following definition.

Definition 3.2.2 If A and B are n× n matrices, then AB = C where C is the n× n matrix
such that

A(Bx) = Cx

for all x ∈ Rn.

The formula � is complicated, but it is essential that the reader should get used to
computations involving matrix multiplication.

It may be helpful to observe that, if we take

ai = (ai1, ai2, . . . , ain)T , bj = (b1j , b2j , . . . , bnj )T

(so that ai is the column vector obtained from the ith row of A and bj is the column vector
corresponding to the j th column of B), then

cij = ai · bj

and

AB =

⎛
⎜⎜⎜⎝

a1 · b1 a1 · b2 a1 · b3 . . . a1 · bn

a2 · b1 a2 · b2 a2 · b3 . . . a2 · bn

...
...

...
...

an · b1 an · b2 an · b3 . . . an · bn

⎞
⎟⎟⎟⎠ .
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Here is one way of explicitly multiplying two 3× 3 matrices

X =
⎛
⎝a b c

d e f
g h i

⎞
⎠ and Y =

⎛
⎝A B C
D E F
G H I

⎞
⎠ .

First write out three copies of X next to each other as⎛
⎝a b c a b c a b c

d e f d e f d e f
g h i g h i g h i

⎞
⎠ .

Now fill in the ‘row column multiplications’ to get

XY =
⎛
⎝aA+ bD + cG aB + bE + cH aC + bF + cI

dA+ eD + fG dB + eE + fH dC + eF + fI
gA+ hD + iG gB + hE + iH gC + hF + iI

⎞
⎠ .

3.3 More algebra for square matrices

We can also add n× n matrices, though the result is less novel. We imitate the definition
of multiplication.

Consider two n× n matrices A = (aij ) and B = (bij ). If

Ax = y and Bx = z

then

yi + zi =
n∑

j=1

aij xj +
n∑

j=1

bij xj =
n∑

j=1

(aij xj + bij xj ) =
n∑

j=1

(aij + bij )xj =
n∑

j=1

cij xj

where

cij = aij + bij .

It therefore makes sense to use the following definition.

Definition 3.3.1 If A and B are n× n matrices, then A+ B = C where C is the n× n

matrix such that

Ax+ Bx = Cx

for all x ∈ Rn.

In addition we can ‘multiply a matrix A by a scalar λ’.
Consider an n× n matrix A = (aij ) and a λ ∈ R. If

Ax = y,
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then

λyi = λ

n∑
j=1

aij xj =
n∑

j=1

λ(aij xj ) =
n∑

j=1

(λaij )xj =
n∑

j=1

cij xj

where

cij = λaij .

It therefore makes sense to use the following definition.

Definition 3.3.2 If A is an n× n matrix and λ ∈ R, then λA = C where C is the n× n

matrix such that

λ(Ax) = Cx

for all x ∈ Rn.

Once we have addition and the two kinds of multiplication, we can do quite a lot of
algebra.

We have already met addition and scalar multiplication for column vectors with n

entries and for row vectors with n entries. From the point of view of addition and scalar
multiplication, an n× n matrix is simply another kind of vector with n2 entries. We thus
have an analogue of Lemma 1.4.2, proved in exactly the same way. (We write 0 for the
n× n matrix all of whose entries are 0. We write −A = (−1)A and A− B = A+ (−B).)

Lemma 3.3.3 Suppose that A, B and C are n× n matrices and λ,μ ∈ R. Then the
following relations hold.

(i) (A+ B)+ C = A+ (B + C).
(ii) A+ B = B + A.
(iii) A+ 0 = A.
(iv) λ(A+ B) = λA+ λB.
(v) (λ+ μ)A = λA+ μA.
(vi) (λμ)A = λ(μA).
(vii) 1A = A, 0A = 0.
(viii) A− A = 0.

Exercise 3.3.4 Prove as many of the results of Lemma 3.3.3 as you feel you need to.

We get new results when we consider matrix multiplication (that is to say, when we
multiply matrices together). We first introduce a simple but important object.

Definition 3.3.5 Fix an integer n ≥ 1. The Kronecker δ symbol associated with n is defined
by the rule

δij =
{

1 if i = j

0 if i �= j
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for 1 ≤ i, j ≤ n. The n× n identity matrix I is given by I = (δij ).

Exercise 3.3.6 Show that an n× n matrix C satisfies the equation Cx = x for all x ∈ Rn

if and only if C = I .

The following remark often comes in useful when we use the summation convention.

Example 3.3.7 If we use the summation convention,

δij xj = xi and δij ajk = aik.

Proof Observe that, if we do not use the summation convention,
n∑

j=1

δij xj = xi and
n∑

j=1

δij ajk = aik,

so we get the required result when we do. �
Lemma 3.3.8 Suppose that A, B and C are n× n matrices and λ ∈ R. Then the following
relations hold.

(i) (AB)C = A(BC).
(ii) A(B + C) = AB + AC.
(iii) (B + C)A = BA+ CA.
(iv) (λA)B = A(λB) = λ(AB).
(v) AI = IA = A.

Proof (i) We give three proofs.
Proof by definition Observe that, from Definition 3.2.2,(

(AB)C
)
x = (AB)(Cx) = A

(
B(Cx)

) = A
(
(BC)x)

) = (A(BC)
)
x

for all x ∈ Rn and so (AB)C = A(BC).
Proof by calculation Observe that

n∑
k=1

⎛
⎝ n∑

j=1

aij bjk

⎞
⎠ ckj =

n∑
k=1

n∑
j=1

(aij bjk)ckj =
n∑

k=1

n∑
j=1

aij (bjkckj )

=
n∑

j=1

n∑
k=1

aij (bjkckj ) =
n∑

j=1

aij

(
n∑

k=1

bjkckj

)

and so (AB)C = A(BC).
Proof by calculation using the summation convention Observe that

(aij bjk)ckj = aij (bjkckj )

and so (AB)C = A(BC).
Each of these proofs has its merits. The author thinks that the essence of what is going

on is conveyed by the first proof and that the second proof shows the hidden machinery
behind the short third proof.
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(ii) Again we give three proofs.
Proof by definition Observe that, using our definitions and the fact that A(u+ v) = Au+
Av, (

(A(B + C)
)
x = A

(
(B + C)x

) = A(Bx+ Cx)

= A(Bx)+ A(Cx) = (AB)x+ (AC)x = (AB + AC)x

for all x ∈ Rn and so A(B + C) = AB + AC.
Proof by calculation Observe that

n∑
j=1

aij (bjk + cjk) =
n∑

j=1

(aij bjk + aij cjk) =
n∑

j=1

aij bjk +
n∑

j=1

aij cjk

and so A(B + C) = AB + AC.
Proof by calculation using the summation convention Observe that

aij (bjk + cjk) = aij bjk + aij cjk

and so A(B + C) = AB + AC.
We leave the remaining parts to the reader. �

Exercise 3.3.9 Prove the remaining parts of Lemma 3.3.8 using each of the three methods
of proof.

Exercise 3.3.10 By considering a particular n× n matrix A, show that

BA = A for all A ⇒ B = I.

However, as the reader is probably already aware, the algebra of matrices differs in two
unexpected ways from the kind of arithmetic with which we are familiar from school. The
first is that we can no longer assume that AB = BA, even for 2× 2 matrices. Observe that(

0 1
0 0

)(
0 0
1 0

)
=
(

0× 0+ 1× 1 0× 0+ 1× 0
0× 0+ 0× 1 0× 0+ 0× 0

)
=
(

1 0
0 0

)
,

but (
0 0
1 0

)(
0 1
0 0

)
=
(

0× 0+ 0× 1 0× 1+ 0× 0
1× 0+ 0× 0 1× 1+ 0× 0

)
=
(

0 0
0 1

)
.

The second is that, even when A is a non-zero 2× 2 matrix, there may not be a matrix
B with BA = I or a matrix C with AC = I . Observe that(

1 0
0 0

)(
a b

c d

)
=
(

1× a + 0× c 1× b + 0× d

0× a + 0× c 0× b + 0× d

)
=
(

a b

0 0

)
�=
(

1 0
0 1

)
and (

a b

c d

)(
1 0
0 0

)
=
(

a × 1+ b × 0 a × 0+ b × 0
c × 1+ d × 0 c × 0+ d × 0

)
=
(

a 0
c 0

)
�=
(

1 0
0 1

)
for all values of a, b, c and d .
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In the next section we discuss this phenomenon in more detail, but there is a further
remark to be made before finishing this section to the effect that it is sometimes possible to
do some algebra on non-square matrices. We will discuss the deeper reasons why this is so
in Section 11.1, but for the moment we just give some computational definitions.

Definition 3.3.11 If A = (aij )1≤j≤n
1≤i≤m, B = (bij )1≤j≤n

1≤i≤m, C = (cjk)1≤k≤p
1≤j≤n and λ ∈ R, we set

λA = (λaij )1≤j≤n
1≤i≤m,

A+ B = (aij + bij )1≤j≤n
1≤i≤m,

BC =
⎛
⎝ n∑

j=1

bij cjk

⎞
⎠1≤k≤p

1≤i≤m

.

Exercise 3.3.12 Obtain definitions of λA, A+ B and BC along the lines of Defini-
tions 3.3.2, 3.3.1 and 3.2.2.

The conscientious reader will do the next two exercises in detail. The less conscientious
reader will just glance at them, happy in my assurance that, once the ideas of this book are
understood, the results are ‘obvious’. As usual, we write −A = (−1)A.

Exercise 3.3.13 Suppose that A, B and C are m× n matrices, 0 is the m× n matrix with
all entries 0, and λ,μ ∈ R. Then the following relations hold.

(i) (A+ B)+ C = A+ (B + C).
(ii) A+ B = B + A.
(iii) A+ 0 = A.
(iv) λ(A+ B) = λA+ λB.
(v) (λ+ μ)A = λA+ μA.
(vi) (λμ)A = λ(μA).
(vii) 0A = 0.
(viii) A− A = 0.

Exercise 3.3.14 Suppose that A is an m× n matrix, B is an m× n matrix, C is an n× p

matrix, F is a p × q matrix and G is a k ×m matrix and λ ∈ R. Show that the following
relations hold.

(i) (AC)F = A(CF ).
(ii) G(A+ B) = GA+GB.
(iii) (A+ B)C = AC + AC.
(iv) (λA)C = A(λC) = λ(AC).

3.4 Decomposition into elementary matrices

We start with a general algebraic observation.

Lemma 3.4.1 Suppose that A, B and C are n× n matrices. If BA = I and AC = I , then
B = C.
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Proof We have B = BI = B(AC) = (BA)C = IC = C. �

Note that, if BA = I and AC1 = AC2 = I , then the lemma tells us that C1 = B = C2

and that, if AC = I and B1A = B2A = I , then the lemma tells us that B1 = C = B2.
We can thus make the following definition.

Definition 3.4.2 If A and B are n× n matrices such that AB = BA = I , then we say that
A is invertible with inverse A−1 = B.

The following simple lemma is very useful.

Lemma 3.4.3 If U and V are n× n invertible matrices, then UV is invertible and
(UV )−1 = V −1U−1.

Proof Note that

(UV )(V −1U−1) = U (V V −1)U−1 = UIU−1 = UU−1 = I

and, by a similar calculation, (V −1U−1)(UV ) = I . �

The following lemma links the existence of an inverse with our earlier work on equations.

Lemma 3.4.4 If A is an n× n square matrix with an inverse, then the system of equations

n∑
j=1

aij xj = yi [1 ≤ i ≤ n]

has a unique solution for each choice of the yi .

Proof If we set x = A−1y, then

Ax = A(A−1y) = (AA−1)y = Iy = y

so
∑n

j=1 aij xj = yi for all 1 ≤ i ≤ n and a solution exists.
Conversely, if

∑n
j=1 aij xj = yi for all 1 ≤ i ≤ n, then Ax = y and

x = Ix = (A−1A)x = A−1(Ax) = A−1y

so the xj are uniquely determined. �

Later, in Lemma 3.4.14, we shall show that, if the system of equations is always soluble,
whatever the choice of y, then an inverse exists. If a matrix A has an inverse we shall say
that it is invertible or non-singular.

The reader should note that, at this stage, we have not excluded the possibility that
there might be an n× n matrix A with a left inverse but no right inverse (in other words,
there exists a B such that BA = I , but there does not exist a C with AC = I ) or with a
right inverse but no left inverse. Later we shall prove Lemma 3.4.13 which shows that this
possibility does not arise.

There are many ways to investigate the existence or non-existence of matrix inverses
and we shall meet several in the course of this book. Our first investigation will use the
notion of an elementary matrix.
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We define two sorts of n× n elementary matrices. The first sort are matrices of the form

E(r, s, λ) = (δij + λδirδsj )

where 1 ≤ r, s ≤ n and r �= s. (The summation convention will not apply to r and s.) Such
matrices are sometimes called shear matrices.

Exercise 3.4.5 If A and B are shear matrices, does it follow that AB = BA? Give reasons.
[Hint: Try 2× 2 matrices.]

The second sort form a subset of the collection of matrices

P (σ ) = (δσ (i)j )

where σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a bijection. These are sometimes called permu-
tation matrices. (Recall that σ can be thought of as a shuffle or permutation of the integers
1, 2,. . . , n in which i goes to σ (i).) We shall call any P (σ ) in which σ interchanges only
two integers an elementary matrix. More specifically, we demand that there be an r and s

with 1 ≤ r < s ≤ n such that

σ (r) = s

σ (s) = r

σ (i) = i otherwise.

The shear matrix E(r, s, λ) has 1s down the diagonal and all other entries 0 apart from
the sth entry of the rth row which is λ. The permutation matrix P (σ ) has the σ (i)th entry
of the ith row 1 and all other entries in the ith row 0.

Lemma 3.4.6 (i) If we pre-multiply (i.e. multiply on the left) an n× n matrix A by
E(r, s, λ) with r �= s, we add λ times the sth row to the rth row but leave it otherwise
unchanged.

(ii) If we post-multiply (i.e. multiply on the right) an n× n matrix A by E(r, s, λ)
with r �= s, we add λ times the rth column to the sth column but leave it otherwise
unchanged.

(iii) If we pre-multiply an n× n matrix A by P (σ ), the ith row is moved to the σ (i)th
row.

(iv) If we post-multiply an n× n matrix A by P (σ ), the σ (j )th column is moved to the
j th column.

(v) E(r, s, λ) is invertible with inverse E(r, s,−λ).
(vi) P (σ ) is invertible with inverse P (σ−1).

Proof (i) Using the summation convention for i and j , but keeping r and s fixed,

(δij + λδirδsj )ajk = δij ajk + λδirδsj ajk = aik + λδirask.

(ii) Exercise for the reader.
(iii) Using the summation convention,

δσ (i)j ajk = aσ (i)k.
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(iv) Exercise for the reader.
(v) Direct calculation or apply (i) and (ii).
(vi) Direct calculation or apply (iii) and (iv). �

Exercise 3.4.7 Let r �= s. Show that E(r, s, λ)E(r, s, μ) = E(r, s, λ+ μ).

We now need a slight variation on Theorem 1.3.2.

Theorem 3.4.8 Given any n× n matrix A, we can reduce it to a diagonal matrix D = (dij )
with dij = 0 if i �= j by successive operations involving adding multiples of one row to
another or interchanging rows.

Proof This is easy to obtain directly, but we shall deduce it from Theorem 1.3.2. This tells
us that we can reduce the n× n matrix A, to a diagonal matrix D̃ = (d̃ij ) with d̃ij = 0 if
i �= j by interchanging columns, interchanging rows and subtracting multiples of one row
from another.

If we go through this process, but omit all the steps involving interchanging columns, we
will arrive at a matrix B such that each row and each column contain at most one non-zero
element. By interchanging rows, we can now transform B to a diagonal matrix and we are
done. �

Using Lemma 3.4.6, we can interpret this result in terms of elementary matrices.

Lemma 3.4.9 Given any n× n matrix A, we can find elementary matrices F1, F2, . . . , Fp

together with a diagonal matrix D such that

FpFp−1 . . . F1A = D.

A simple modification now gives the central theorem of this section.

Theorem 3.4.10 Given any n× n matrix A, we can find elementary matrices
L1, L2, . . . , Lp together with a diagonal matrix D such that

A = L1L2 . . . LpD.

Proof By Lemma 3.4.9, we can find elementary matrices Fr and a diagonal matrix D such
that

FpFp−1 . . . F1A = D.

Since elementary matrices are invertible and their inverses are elementary (see
Lemma 3.4.6), we can take Lr = F−1

r and obtain

L1L2 . . . LpD = F−1
1 F−1

2 . . . F−1
p Fp . . . F2F1A = A

as required. �

There is an obvious connection with the problem of deciding when there is an inverse
matrix.
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Lemma 3.4.11 Let D = (dij ) be a diagonal matrix.
(i) If all the diagonal entries dii of D are non-zero, D is invertible and the inverse

D−1 = E where E = (eij ) is given by eii = d−1
ii and eij = 0 for i �= j .

(ii) If some of the diagonal entries of D are zero, then BD �= I and DB �= I for all B.

Proof (i) If all the diagonal entries of D are non-zero, then, taking E as proposed, we have

DE = ED = I

by direct calculation.
(ii) If drr = 0 for some r , then, if B = (bij ) is any n× n matrix, we have

n∑
j=1

brj djk =
n∑

j=1

brj × 0 = 0,

so BD has all entries in the rth row equal to zero. Thus BD �= I . Similarly, DB has all
entries in the rth column equal to zero and DB �= I . �

Lemma 3.4.12 Let L1, L2, . . . , Lp be elementary n× n matrices and let D be an n× n

diagonal matrix. Suppose that

A = L1L2 . . . LpD.

(i) If all the diagonal entries dii of D are non-zero, then A is invertible.
(ii) If some of the diagonal entries of D are zero, then A is not invertible.

Proof Since elementary matrices are invertible (Lemma 3.4.6 (v) and (vi)) and the product
of invertible matrices is invertible (Lemma 3.4.3), we have A = LD where L is invertible.

If all the diagonal entries dii of D are non-zero, then D is invertible and so, by
Lemma 3.4.3, A = LD is invertible.

If A is invertible, then we can find a B with BA = I . It follows that (BL)D = B(LD) =
I and, by Lemma 3.4.11 (ii), none of the diagonal entries of D can be zero. �

As a corollary we obtain a result promised at the beginning of this section.

Lemma 3.4.13 If A and B are n× n matrices such that AB = I , then A and B are
invertible with A−1 = B and B−1 = A.

Proof Combine the results of Theorem 3.4.10 with those of Lemma 3.4.12. �

Later we shall see how a more abstract treatment gives a simpler and more transparent
proof of this fact.

We are now in a position to provide the complementary result to Lemma 3.4.4.

Lemma 3.4.14 If A is an n× n square matrix such that the system of equations

n∑
j=1

aij xj = yi [1 ≤ i ≤ n]

has a unique solution for each choice of yi , then A has an inverse.
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Proof If we fix k, then our hypothesis tells us that the system of equations

n∑
j=1

aij xj = δik [1 ≤ i ≤ n]

has a solution. Thus, for each k with 1 ≤ k ≤ n, we can find xjk with 1 ≤ j ≤ n such
that

n∑
j=1

aij xjk = δik [1 ≤ i ≤ n].

If we write X = (xjk) we obtain AX = I so A is invertible. �

3.5 Calculating the inverse

Mathematics is full of objects which are very useful for studying the theory of a particular
topic, but very hard to calculate in practice. Before seeking the inverse of an n× n matrix,
you should always ask the question ‘Do I really need to calculate the inverse or is there
some easier way of attaining my object?’ If n is large, you will need to use a computer and
you will either need to know the kind of problems that arise in the numerical inversion of
large matrices or need to consult someone who does.1

Since students are unhappy with objects they cannot compute, I will show in this section
how to invert matrices ‘by hand’. The contents of this section should not be taken too
seriously.

Suppose that we want to find the inverse of the matrix

A =
⎛
⎝1 2 −1

5 0 3
1 1 0

⎞
⎠ .

In other words, we want to find a matrix

X =
⎛
⎝x1 x2 x3

y1 y2 y3

z1 z2 z3

⎞
⎠

such that⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ = I = AX =

⎛
⎝x1 + 2y1 − z1 x2 + 2y2 − z2 x3 + 2y3 − z3

5x1 + 3z1 5x2 + 3z2 5x3 + 3z3

x1 + y1 x2 + y2 x3 + y3

⎞
⎠ .

1 A wise mathematician will, in any case, consult an expert.
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We need to solve the three sets of simultaneous equations

x1 + 2y1 − z1 = 1 x2 + 2y2 − z2 = 0 x3 + 2y3 − z3 = 0

5x1 + 3z1 = 0 5x2 + 3z2 = 1 5x3 + 3z3 = 0

x1 + y1 = 0 x2 + y2 = 0 x3 + y3 = 1.

Subtracting the third row from the first row, subtracting 5 times the third row from the
second row and then interchanging the third and first rows, we get

x1 + y1 = 0 x2 + y2 = 0 x3 + y3 = 1

−5y1 + 3z1 = 0 −5y2 + 3z2 = 1 −5y3 + 3z3 = −5

y1 − z1 = 1 y2 − z2 = 0 y3 − z3 = −1.

Subtracting the third row from the first row, adding 5 times the third row to the second row
and then interchanging the second and third rows, we get

x1 + z1 = −1 x2 + z2 = 0 x3 + z3 = 2

y1 − z1 = 1 y2 − z2 = 0 y3 − z3 = −1

−2z1 = 5 −2z2 = 1 −2z3 = −10.

Multiplying the third row by −1/2 and then adding the new third row to the second row
and subtracting the new third row from the first row, we get

x1 = 3/2 x2 = 1/2 x3 = −3

y1 = −3/2 y2 = −1/2 y3 = 4

z1 = −5/2 z2 = −1/2 z3 = 5.

We can save time and ink by using the method of detached coefficients and setting the
right-hand sides of our three sets of equations next to each other as follows

1 2 −1
5 0 3
1 1 −1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

Subtracting the third row from the first row, subtracting 5 times the third row from the
second row and then interchanging the third and first rows we get

1 1 0
0 −5 3
0 1 −1

∣∣∣∣∣∣
0 0 1
0 1 −5
1 0 −1

Subtracting the third row from the first row, adding 5 times the third row to the second row
and then interchanging the second and third rows, we get

1 0 1
0 1 −1
0 0 −2

∣∣∣∣∣∣
−1 0 2
1 0 −1
5 1 −10
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Multiplying the third row by −1/2 and then adding the new third row to the second row
and subtracting the new third row from the first row, we get

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
3/2 1/2 −3
−3/2 −1/2 4
−5/2 −1/2 5

and looking at the right-hand side of our expression, we see that

A−1 =
⎛
⎝ 3/2 1/2 −3
−3/2 −1/2 4
−5/2 −1/2 5

⎞
⎠ .

We thus have a recipe for finding the inverse of an n× n matrix A.
Recipe Write down the n× n matrix I and call this matrix the second matrix. By a sequence
of row operations of the following three types

(a) interchange two rows,
(b) add a multiple of one row to a different row,
(c) multiply a row by a non-zero number,

reduce the matrix A to the matrix I , whilst simultaneously applying exactly the same
operations to the second matrix. At the end of the process the second matrix will take the
form A−1. If the systematic use of Gaussian elimination reduces A to a diagonal matrix
with some diagonal entries zero, then A is not invertible.

Exercise 3.5.1 Let L1, L2, . . . , Lk be n× n elementary matrices. If A is an n× n matrix
with

LkLk−1 . . . L1A = I,

show that A is invertible with

LkLk−1 . . . L1I = A−1.

Explain why this justifies the use of the recipe described in the previous paragraph.

Exercise 3.5.2 Explain why we do not need to use column interchange in reducing A to I .

Earlier we observed that the number of operations required to solve an n× n system
of equations increases like n3. The same argument shows that the number of operations
required by our recipe also increases like n3. If you are tempted to think that this is all you
need to know about the matter, you should work through Exercise 3.6.1.

3.6 Further exercises

Exercise 3.6.1 Compute the inverse of the following 3× 3 matrix A using the method of
Section 3.5 (a) exactly, (b) rounding off each number in the calculation to three significant
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figures:

A =

⎛
⎜⎝1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎞
⎟⎠ .

[Moral: ‘Inverting a matrix on a computer’ is not as straightforward as one might hope.]

Exercise 3.6.2 The, almost trivial, result of this question is quite useful. Suppose that A,
B, C, D, E, F , G and H are n× n matrices. Check that the following equation involving
2n× 2n matrices holds:(

A B

C D

)(
E F

G H

)
=
(

(AE + BG) (AF + BH )
(CE +DG) (CF +DH )

)
.

Exercise 3.6.3 [Strassen–Winograd multiplication] Check that the method of multiply-
ing two n× n real matrices given in this book (and in general use) requires about n3

multiplications of real numbers.
Continuing with the notation of the previous question, show that 2(

A B

C D

)(
E F

G H

)
=
(

(S1 + S4 − S5 + S7) (S3 + S5)
(S2 + S4) (S1 − S2 + S3 + S6)

)
where

S1 = (A+D)(E +H ), S2 = (C +D)E, S3 = A(F −H ), S4 = D(G− E),

S5 = (A+ B)H, S6 = (C − A)(E + F ), S7 = (B −D)(G+H ).

Conclude that we can find the result of multiplying two 2n× 2n matrices by a method
that only involves multiplying 7 pairs of n× n matrices. By repeating the argument, show
that we can find the result of multiplying two 4n× 4n matrices by a method that involves
multiplying 49 = 72 pairs of n× n matrices.

Show, by induction, that we can find the result of multiplying two 2m × 2m matrices
by a method that only involves multiplying 7m pairs of 1× 1 matrices, that is to say, 7m

multiplications of real numbers. If n = 2m, show that we can find the result of multiplying
two n× n matrices by using nlog2 7 ≈ n2.8 multiplications of real numbers.3

On the whole, the complications involved in using the scheme sketched here are such
that it is of little practical use, but it raises a fascinating and still open question. How small
can β be if, when n is large, two n× n matrices can be multiplied using nβ multiplications
of real numbers? (For further details see [20], Volume 2.)

Exercise 3.6.4 We work with n× n matrices.
(i) Show that a matrix A commutes with every diagonal matrix D (that is to say

AD = DA) if and only if A is diagonal. Characterise those matrices A such that AB = BA

for every matrix B and prove your statement.

2 These formulae have been carefully copied down from elsewhere, but, given the initial idea that the result of this paragraph
might be both true and useful, hard work and experiment could produce them (or one of their several variants).

3 Because the ordinary method of adding two n× n matrices only involves n2 additions, it turns out that the count of the total
number of operations involved is dominated by the number of multiplications.
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(ii) Characterise those matrices A such that AB = BA for every invertible matrix B and
prove your statement.

(iii) Suppose that the matrix C has the property that FE = C ⇒ EF = C. By using
your answer to part (ii), or otherwise, show that C = λI for some λ ∈ R.

Exercise 3.6.5 [Construction of C from R] Consider the space M2(R) of 2× 2 matrices.
If we take

I =
(

1 0
0 1

)
and J =

(
0 −1
1 0

)
,

show that (if a, b, c, d ∈ R)

aI + bJ = cI + dJ ⇒ a = c, b = d

(aI + bJ )+ (cI + dJ ) = (a + c)I + (b + d)J

(aI + bJ )(cI + dJ ) = (ac − bd)I + (ad + bc)J.

Why does this give a model for C? (Answer this at the level you feel appropriate. We give
a sequel to this question in Exercises 10.5.22 and 10.5.23.)

Exercise 3.6.6 Let

A =
⎛
⎝1 0 0

1 −1 0
0 1 1

⎞
⎠ .

Compute A2 and A3 and verify that

A3 = A2 + A− I.

Deduce that A is invertible and calculate A−1 explicitly.
Show that

A2n = nA2 − (n− 1)I, A2n+1 = nA2 + A− nI.

Exercise 3.6.7 Consider the matrix

A =
(

0 1
−1 0

)
.

Compute A2 and A3.
If M is an n× n matrix, we write

exp M = I +
∞∑

j=1

Mj

j !
,

where we look at convergence for each entry of the matrix. (The reader can proceed more
or less formally, since we shall consider the matter in more depth in Exercise 15.5.19 and
elsewhere.)
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Show that exp tA = A sin t − A2 cos t and identify the map x �→ (exp tA)x. (If you
cannot do so, make a note and return to this point after Section 7.3.)

Exercise 3.6.8 Show that any m× n matrix A can be reduced to a matrix C = (cij ) with
cii = 1 for all 1 ≤ i ≤ k (for some k with 0 ≤ k ≤ min{n,m}) and cij = 0, otherwise, by
a sequence of elementary row and column operations. Why can we write

C = PAQ,

where P is an invertible m×m matrix and Q is an invertible n× n matrix?
For which values of n and m (if any) can we find an example of an m× n matrix A

which cannot be reduced, by elementary row operations, to a matrix C = (cij ) with cii = 1
for all 1 ≤ i ≤ k and cij = 0 otherwise? For which values of n and m (if any) can we find
an example of an m× n matrix A which cannot be reduced, by elementary row operations,
to a matrix C = (cij ) with cij = 0 if i �= j and cii ∈ {0, 1}? Give reasons for your answers.

Exercise 3.6.9 (This exercise is intended to review concepts already familiar to the reader.)
Recall that a function f : A → B is called injective if f (a) = f (a′) ⇒ a = a′, and sur-
jective if, given b ∈ B, we can find an a ∈ A such that f (a) = b. If f is both injective and
surjective, we say that it is bijective.

(i) Give examples of fj : Z → Z such that f1 is neither injective nor surjective, f2 is
injective but not surjective, f3 is surjective but not injective, f4 is bijective.

(ii) Let X be finite, but not empty. Either give an example or explain briefly why no such
example exists of a function gj : X → X such that g1 is neither injective nor surjective, g2

is injective but not surjective, g3 is surjective but not injective, g4 is bijective.
(iii) Consider f : A → B. Show that, if there exists a g : B → A such that (fg)(b) = b

for all b ∈ B, then f is surjective. Show that, if there exists an h : B → A such that
(hf )(a) = a for all a ∈ A, then f is injective.

(iv) Consider f : N → N (where N denotes the positive integers). Show that, if f is
surjective, then there exists a g : N → N such that (fg)(n) = n for every n ∈ N. Give an
example to show that g need not be unique. Show that, if f is injective, then there exists
a h : N → N such that (hf )(n) = n for every n ∈ N. Give an example to show that h need
not be unique.

(v) Consider f : A → A. Show that, if there exists a g : A → A such that (fg)(a) = a

for all a ∈ A and there exists an h : A → A such that (hf )(a) = a for all a ∈ A, then
h = g.

(vi) Consider f : A → B. Show that f is bijective if and only if there exists a g : B → A

such that (fg)(b) = b for all b ∈ B and such that (gf )(a) = a for all a ∈ A. Show that, if
g exists, it is unique. We write f −1 = g.
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The secret life of determinants

4.1 The area of a parallelogram

Let us investigate the behaviour of the area D(a, b) of the parallelogram with vertices 0, a,
a+ b and b.

Our first observation is that it appears that

D(a, b+ λa) = D(a, b).

To see this, examine Figure 4.1 showing the parallelogram OAXB having vertices O at
0, A at a, X at a+ b and B at b together with the parallelogram OAX′B ′ having vertices
O at 0, A at a, X′ at (1+ λ)a+ b and B ′ at λa+ b. Looking at the diagram, we see that
(using congruent triangles)

area OBB ′ = area AXX′

and so

D(a, b+ λa) = area OAX′B ′ = area OAXB + area AXX′ − area AXX′

= area OAXB = D(a, b).

A similar argument shows that

D(a+ λb, b) = D(a, b).

Encouraged by this, we now seek to prove that

D(a+ c, b) = D(a, b)+D(c, b) �

by referring to Figure 4.2. This shows the parallelogram OAXB having vertices O at 0, A

at a, X at a+ b and B at b together with the parallelogram APQX having vertices A at
a, P at a+ c, Q at a+ b+ c and X at a+ b. Looking at the diagram we see that (using
congruent triangles)

area OAP = area BXQ

60
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O

A

X ′
X

B

B ′

Figure 4.1 Shearing a parallelogram.

O

A

P

X

Q

B

Figure 4.2 Adding two parallelograms.

and so

D(a+ c, b) = area OPQB

= area OAXB + area APQX + area OAP − area BXQ

= area OAXB + area APQX = D(a, b)+D(c, b).

This seems fine until we ask what happens if we set c = −a in � to obtain

D(0, b) = D(a− a, b) = D(a, b)+D(−a, b).

Since we must surely take the area of the degenerate parallelogram1 with vertices 0, a, a, 0
to be zero, we obtain

D(−a, b) = −D(a, b)

and we are forced to consider negative areas.
Once we have seen one tiger in a forest, who knows what other tigers may lurk. If,

instead of using the configuration in Figure 4.2, we use the configuration in Figure 4.3, the
computation by which we ‘proved’ � looks more than a little suspect.

1 There is a long mathematical tradition of insulting special cases.
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O
A

P

X

Q

B

Figure 4.3 Adding two other parallelograms.

This difficulty can be resolved if we decide that simple polygons like triangles ABC

and parallelograms ABCD will have ‘ordinary area’ if their boundary is described anti-
clockwise (that is the points A, B, C of the triangle and the points A, B, C, D of the
parallelogram are in anti-clockwise order) but ‘minus ordinary area’ if their boundary is
described clockwise.

Exercise 4.1.1 (i) Explain informally why, with this convention,

area ABC = area BCA = area CAB

= −area ACB = −area BAC = −area CBA.

(ii) Convince yourself that, with this convention, the argument for � continues to hold
for Figure 4.3.

We note that the rules we have given so far imply

D(a, b)+D(b, a) = D(a+ b, b)+D(a+ b, a) = D(a+ b, a+ b)

= D(a+ b− (a+ b), a+ b) = D(0, a+ b) = 0,

so that

D(a, b) = −D(b, a).

Exercise 4.1.2 State the rules used in each step of the calculation just given. Why is the rule
D(a, b) = −D(b, a) consistent with the rule deciding whether the area of a parallelogram
is positive or negative?

If the reader feels that the convention ‘areas of figures described with anti-clockwise
boundaries are positive, but areas of figures described with clockwise boundaries are
negative’ is absurd, she should reflect on the convention used for integrals that∫ b

a

f (x) dx = −
∫ a

b

f (x) dx.
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Even if the reader is not convinced that negative areas are a good thing, let us agree for
the moment to consider a notion of area for which

D(a+ c, b) = D(a, b)+D(c, b) �

holds. We observe that if p is a strictly positive integer

D(pa, b) = D(a+ a+ · · · + a︸ ︷︷ ︸
p

, b)

= D(a, b)+D(a, b)+ · · · +D(a, b)︸ ︷︷ ︸
p

= pD(a, b).

Thus, if p and q are strictly positive integers,

qD(p
q

a, b) = D(pa, b) = pD(a, b)

and so

D(p
q

a, b) = p
q
D(a, b).

Using the rules D(−a, b) = −D(a, b) and D(0, b) = 0, we thus have

D(λa, b) = λD(a, b)

for all rational λ. Continuity considerations now lead us to the formula

D(λa, b) = λD(a, b)

for all real λ. We also have

D(a, λb) = −D(λb, a) = −λD(b, a) = λD(a, b).

We now put all our rules together to calculateD(a, b). (We use column vectors.) Suppose
that a1, a2, b1, b2 �= 0. Then

D
((

a1

a2

)
,

(
b1

b2

))
= D
((

a1

0

)
,

(
b1

b2

))
+D
((

0
a2

)
,

(
b1

b2

))

= D
((

a1

0

)
,

(
b1

b2

)
− b1

a1

(
a1

0

))
+D
((

0
a2

)
,

(
b1

b2

)
− b2

a2

(
0
a2

))

= D
((

a1

0

)
,

(
0
b2

))
+D
((

0
a2

)
,

(
b1

0

))

= D
((

a1

0

)
,

(
0
b2

))
−D
((

b1

0

)
,

(
0
a2

))

= (a1b2 − a2b1)D
((

1
0

)
,

(
0
1

))
= a1b2 − a2b1.

(Observe that we know that the area of a unit square is 1.)
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Exercise 4.1.3 (i) Justify each step of the calculation just performed.
(ii) Check that it remains true that

D
((

a1

a2

)
,

(
b1

b2

))
= a1b2 − a2b1

for all choices of aj and bj including zero values.

If

A =
(

a1 b1

a2 b2

)
,

we shall write

DA = D
((

a1

a2

)
,

(
b1

b2

))
= a1b2 − a2b1.

The mountain has laboured and brought forth a mouse. The reader may feel that five
pages of discussion is a ridiculous amount to devote to the calculation of the area of a
simple parallelogram, but we shall find still more to say in the next section.

4.2 Rescaling

We know that the area of a region is unaffected by translation. It follows that the area of a
parallelogram with vertices c, x+ c, x+ y+ c, y+ c is

D
((

x1

x2

)
,

(
y1

y2

))
= D
(

x1 y1

x2 y2

)
.

We now consider a 2× 2 matrix

A =
(

a1 b1

a2 b2

)

and the map x �→ Ax. We write e1 = (1, 0)T , e2 = (0, 1)T and observe that Ae1 = a, Ae2 =
b. The square c, δe1 + c, δe1 + δe2 + c, δe2 + c is therefore mapped to the parallelogram
with vertices

Ac, A(δe1 + c) = δa+ Ac,

A(δe1 + δe2 + c) = δa+ δb+ Ac, A(δe2 + c) = δb+ Ac

which has area

D
(

δa1 δb1

δa2 δb2

)
= δ2DA.

Thus the map takes squares of side δ with sides parallel to the coordinates (which have area
δ2) to parallelograms of area δ2DA.
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If we want to find the area of a simply shaped subset � of the plane like a disc, one
common technique is to use squared paper and count the number of squares lying within �.
If we we use squares of side δ, then the map x �→ Ax takes those squares to parallelograms
of area δ2DA. If we have N (δ) squares within � and x �→ Ax takes � to �′, it is reasonable
to suppose

area � ≈ N (δ)δ2 and area �′ ≈ N (δ)δ2DA

and so

area �′ ≈ area � ×DA.

Since we expect the approximation to get better and better as δ → 0, we conclude that

area �′ = � ×DA.

Thus DA is the area scaling factor for the map x �→ Ax under the transformation x �→ Ax.
When DA is negative, this tells us that the mapping x �→ Ax interchanges clockwise and
anti-clockwise.

Let A and B be two 2× 2 matrices. The discussion of the last paragraph tells us that
DA is the scaling factor for area under the transformation x �→ Ax and DB is the scaling
factor for area under the transformation x �→ Bx. Thus the scaling factor D(AB) for the
transformation x �→ ABx which is obtained by first applying the transformation x �→ Bx
and then the transformation x �→ Ax must be the product of the scaling factors DB and
DA. In other words, we must have

D(AB) = DB ×DA = DA×DB.

Exercise 4.2.1 The argument above is instructive, but not rigorous. Recall that

D
(

a11 a21

a21 a22

)
= a11a22 − a12a21.

Check algebraically that, indeed,

D(AB) = DA×DB.

By Theorem 3.4.10, we know that, given any 2× 2 matrix A, we can find elementary
matrices L1, L2, . . . , Lp together with a diagonal matrix D such that

A = L1L2 . . . LpD.

We now know that

DA = DL1 ×DL2 × · · · ×DLp ×DD.

In the last but one exercise of this section, you are asked to calculate DE for each of the
matrices E which appear in this formula.

Exercise 4.2.2 In this exercise you are asked to prove results algebraically in the manner
of Exercise 4.1.3 and then think about them geometrically.
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(i) Show that DI = 1. Why is this a natural result?
(ii) Show that, if

E =
(

0 1
1 0

)
,

then DE = −1. Show that E(x, y)T = (y, x)T (informally, E interchanges the x and y

axes). By considering the effect of E on points (cos t, sin t)T as t runs from 0 to 2π , or
otherwise, convince yourself that the map x → Ex does indeed ‘convert anti-clockwise to
clockwise’.

(iii) Show that, if

E =
(

1 λ

0 1

)
or E =

(
1 0
λ 1

)
,

then DE = 1 (informally, shears leave area unaffected).
(iii) Show that if

D
(

a 0
0 b

)
,

then DE = ab. Why should we expect this?

Our final exercise prepares the way for the next section.

Exercise 4.2.3 (No writing required.) Go through the chapter so far, working in R3 and
looking at the volume D(a, b, c) of the parallelepiped with vertex 0 and neighbouring
vertices a, b and c.

4.3 3× 3 determinants

By now the reader may be feeling annoyed and confused. What precisely are the rules
obeyed by D and can some be deduced from others? Even worse, can we be sure that they
are not contradictory? What precisely have we proved and how rigorously have we proved
it? Do we know enough about area and volume to be sure of our ‘rescaling’ arguments?
What is this business about clockwise and anti-clockwise?

Faced with problems like these, mathematicians employ a strategy which delights them
and annoys pedagogical experts. We start again from the beginning and develop the theory
from a new definition which we pretend has unexpectedly dropped from the skies.

Definition 4.3.1 (i) We set ε12 = −ε21 = 1, εrr = 0 for r = 1, 2.
(ii) We set

ε123 = ε312 = ε231 = 1

ε321 = ε213 = ε132 = −1

εrst = 0 otherwise [1 ≤ r, s, t ≤ 3].
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(iii) If A is the 2× 2 matrix (aij ), we define

det A =
2∑

i=1

εij ai1aj2.

(iv) If A is the 3× 3 matrix (aij ), we define

det A =
3∑

i=1

3∑
j=1

3∑
j=1

εijkai1aj2ak3.

We call det A the determinant of A.

Exercise 4.3.2 Secretly check that

DA = det A

(at least in the 2× 2 case).

Exercise 4.3.3 Check that

εrst = −εsrt = −εrts = −εtsr

for 1 ≤ r, s, t ≤ 3. (Thus interchanging two indices multiplies εrst by −1.)

The symbol εijk and its generalisations are sometimes called Levi-Civita symbols.2

In this section we develop the theory of determinants in the 3× 3 case, leaving the easier
2× 2 case to the reader. Note that, if we use the summation convention for i, j and k, then
the definition of the determinant takes the pleasing form

det A = εijkai1aj2ak3.

Lemma 4.3.4 We consider the 3× 3 matrix A = (aij ).
(i) If Ã is formed from A by interchanging two columns, then det Ã = − det A.
(ii) If A has two columns the same, then det A = 0.
(iii) If Ã is formed from A by adding a multiple of one column to another, then det Ã =

det A.
(iv) If Ã is formed from A by multiplying one column by λ, then det Ã = λ det A.
(v) det I = 1.

Proof (i) Suppose that we interchange the second and third columns. Then, using the
summation convention,

det Ã = εijkai1aj3ak2 (by the definition of det and Ã)

= εijkai1ak2aj3

= −εikj ai1ak2aj3 (by Exercise 4.3.3)

= −εijkai1aj2ak3 (since j and k are dummy variables)

= − det A.

2 When asked what he liked best about Italy, Einstein replied ‘Spaghetti and Levi-Civita’.
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The other cases follow in the same way.
(ii) Let Ã be the matrix formed by interchanging the identical columns. Then A = Ã, so

det A = det Ã = − det A

and det A = 0.
(iii) By (i), we need only consider the case when we add λ times the second column of

A to the first. Then

det Ã = εijk(ai1 + λai2)aj2ak3 = εijkai1aj2ak3 + λεijkai2aj2ak3 = det A+ 0 = det A,

using (ii) to tell us that the determinant of a matrix with two identical columns is zero.
(iv) By (i), we need only consider the case when we multiply the first column of A by

λ. Then

det Ã = εijk(λai1)aj2ak3 = λ(εijkai1aj2ak3) = λ det A.

(v) det I = εijkδi1δj2δk3 = ε123 = 1. �

We can combine the results of Lemma 4.3.4 with the results on post-multiplication by
elementary matrices obtained in Lemma 3.4.6.

Lemma 4.3.5 Let A be a 3× 3 matrix.
(i) det AEr,s,λ = det A, det Er,s,λ = 1 and det AEr,s,λ = det A det Er,s,λ.
(ii) Suppose that σ is a permutation which interchanges two integers r and s and

leaves the rest unchanged. Then det AP (σ ) = − det A, det P (σ ) = −1 and det AP (σ ) =
det A det P (σ ).

(iii) Suppose that D = (dij ) is a 3× 3 diagonal matrix (that is to say, a 3× 3 matrix with
all non-diagonal entries zero). If drr = dr , then det AD = d1d2d3 det A, det D = d1d2d3

and det AD = det A det D.

Proof (i) By Lemma 3.4.6 (ii), AEr,s,λ is the matrix obtained from A by adding λ times
the rth column to the sth column. Thus, by Lemma 4.3.4 (iii),

det AEr,s,λ = det A.

By considering the special case A = I , we have det Er,s,λ = 1. Putting the two results
together, we have det AEr,s,λ = det A det Er,s,λ.

(ii) By Lemma 3.4.6 (iv), AP (σ ) is the matrix obtained from A by interchanging the rth
column with the sth column. Thus, by Lemma 4.3.4 (i),

det AP (σ ) = −det A.

By considering the special case A = I , we have det P (σ ) = −1. Putting the two results
together, we have det AP (σ ) = det A det P (σ ).
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(iii) The summation convention is not suitable here, so we do not use it. By direct
calculation, AD = Ã where

ãij =
3∑

k=1

aikdkj = djaij .

Thus AD is the result of multiplying the j th column of A by dj for 1 ≤ j ≤ 3. Applying
Lemma 4.3.4 (iv) three times, we obtain

det AD = d1d2d3 det A.

By considering the special case A = I , we have det D = d1d2d3. Putting the two results
together, we have det AD = det A det D. �

We can now exploit Theorem 3.4.10 which tells us that, given any 3× 3 matrix A, we
can find elementary matrices L1, L2, . . . , Lp together with a diagonal matrix D such that

A = L1L2 . . . LpD.

Theorem 4.3.6 If A and B are 3× 3 matrices then det BA = det B det A.

Proof We know that we can write A in the form given in the paragraph above so

det BA = det(BL1L2 . . . LpD)

= det
(
BL1L2 . . . Lp) det D

= det
(
BL1L2 . . . Lp−1) det Lp det D

...

= det B det L1 det L2 . . . det Lp det D.

Looking at the special case B = I , we see that

det A = det L1 det L2 . . . det Lp det D,

and so det BA = det B det A. �

We can also obtain an important test for the existence of a matrix inverse.

Theorem 4.3.7 If A is a 3× 3 matrix, then A is invertible if and only if det A �= 0.

Proof Write A in the form

A = L1L2 . . . LpD

with L1, L2, . . . , Lp elementary and D diagonal. By Lemma 4.3.5, we know that, if E is
an elementary matrix, then | det E| = 1. Thus

| det A| = | det L1|| det L2| . . . | det Lp|| det D| = | det D|.
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Lemma 3.4.12 tells us that A is invertible if and only if all the diagonal entries of D

are non-zero. Since det D is the product of the diagonal entries of D, it follows that A is
invertible if and only if det D �= 0 and so if and only if det A �= 0. �

The reader may already have met treatments of the determinant which use row manipu-
lation rather than column manipulation. We now show that this comes to the same thing.

Definition 4.3.8 If A = (aij )1≤j≤m
1≤i≤n is an n×m matrix we define the transposed matrix (or,

more usually, the matrix transpose) AT = C to be the m× n matrix C = (crs)
1≤s≤n
1≤r≤m where

cij = aji .

Lemma 4.3.9 If A and B are two n× n matrices, then (AB)T = BT AT .

Proof Let A = (aij ), B = (bij ), AT = (ãij ) and BT = (b̃ij ). If we use the summation
convention with i, j and k ranging over 1, 2, . . . , n, then

ajkbki = ãkj b̃ik = b̃ikãkj .

�
Exercise 4.3.10 Suppose that A is an n×m and B an m× p matrix. Show that (AB)T =
BT AT . (Note that you cannot use the summation convention here.)

Lemma 4.3.11 We use our standard notation for 3× 3 elementary matrices.
(i) ET

r,s,λ = Es,r,λ.
(ii) If σ is a permutation which interchanges two integers r and s and leaves the rest

unchanged, then P (σ )T = P (σ ).
(iii) If D is a diagonal matrix, then DT = D.
(iv) If E is an elementary matrix or a diagonal matrix, then det ET = det E.
(v) If A is any 3× 3 matrix, then det AT = det A.

Proof Parts (i) to (iv) are immediate. Since we can find elementary matrices
L1, L2, . . . , Lp together with a diagonal matrix D such that

A = L1L2 . . . LpD,

part (i) tells us that

det AT = det DT LT
pLT

p−1L
T
p = det DT det LT

p det LT
p−1 . . . det LT

1

= det D det Lp det Lp−1 . . . det L1 = det A

as required. �
Since transposition interchanges rows and columns, Lemma 4.3.4 on columns gives us

a corresponding lemma for operations on rows.

Lemma 4.3.12 We consider the 3× 3 matrix A = (aij ).
(i) If Ã is formed from A by interchanging two rows, then det Ã = − det A.
(ii) If A has two rows the same, then det A = 0.
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(iii) If Ã is formed from A by adding a multiple of one row to another, then det Ã = det A.
(iv) If Ã is formed from A by multiplying one row by λ, then det Ã = λ det A.

Exercise 4.3.13 Describe geometrically, as well as you can, the effect of the mappings from
R3 to R3 given by x �→ Er,s,λx, x �→ Dx (where D is a diagonal matrix) and x �→ P (σ )x
(where σ interchanges two integers and leaves the third unchanged).

For each of the above maps x �→ Mx, convince yourself that det M is the appropriate
scaling factor for volume. (In the case of P (σ ) you will mutter something about right-
handed sets of coordinates being taken to left-handed coordinates and your muttering does
not have to carry conviction.3)

Let A be any 3× 3 matrix. By considering A as the product of diagonal and elemen-
tary matrices, conclude that det A is the appropriate scaling factor for volume under the
transformation x �→ Ax.
[The reader may feel that we should try to prove this rigorously, but a rigorous proof would
require us to produce an exact statement of what we mean by area and volume. All this can
be done, but requires more time and effort than one might think.]

Exercise 4.3.14 We shall not need the idea, but, for completeness, we mention that, if
λ > 0 and M = λI , the map x �→ Mx is called a dilation (or dilatation) by a factor of
λ. Describe the map x �→ Mx geometrically and state the associated scaling factor for
volume.

Exercise 4.3.15 (i) Use Lemma 4.3.12 to obtain the pretty and useful formula

εrst airajsakt = εijk det A.

(Here, A = (aij ) is a 3× 3 matrix and we use the summation convention.)
Use the fact that det A = det AT to show that

εijkairajsakt = εrst det A.

(ii) Use the formula of (i) to obtain an alternative proof of Theorem 4.3.6 which states
that det AB = det A det B.

Exercise 4.3.16 Let εijkl [1 ≤ i, j, k, l ≤ 4] be an expression such that ε1234 = 1 and
interchanging any two of the suffices of εijkl multiplies the expression by −1. If A = (aij )
is a 4× 4 matrix we set

det A = εijklai1aj2ak3al4.

Develop the theory of the determinant of 4× 4 matrices along the lines of the preceding
section.

3 We discuss this a bit more in Chapter 7, when we talk about O(Rn) and SO(Rn) and in Section 10.3, when we talk about the
physical implications of handedness.
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4.4 Determinants of n× n matrices

A very wide-awake reader might ask how we know that the expression εijkl of Exer-
cise 4.3.16 actually exists with the properties we have assigned to it.

Exercise 4.4.1 Does there exist a non-trivial expression

χijklm [1 ≤ i, j, k, l,m ≤ 5]

such that cycling three suffices multiplies the expression by −1? (More formally, if r, s, t

are distinct integers between 1 and 5, then moving the suffix in the rth place to the sth
place, the suffix in the sth place to the t th place and the suffix in the t th place to the rth
place multiplies the expression by −1.)
[We take a slightly deeper look in Exercise 4.6.2 which uses a little group theory.]

In the case of εijkl , we could just write down the 44 values of εijkl corresponding to
the possible choices of i, j , k and l (or, more sensibly, the 24 non-zero values of εijkl

corresponding to the possible choices of i, j , k and l with the four integers unequal).
However, we cannot produce the general result in this way.

Instead we proceed as follows. We start with a couple of definitions.

Definition 4.4.2 We write Sn for the collection of bijections

σ : {1, 2, . . . , n} → {1, 2, . . . , n}.
If τ, σ ∈ Sn, then we write (τσ )(r) = τ

(
σ (r)
)
.

Many of my readers will know Sn by the name of ‘the permutation group on
{1, 2, . . . , n}’.
Definition 4.4.3 We define the signature function ζ : Sn → {−1, 1} by

ζ (σ ) =
∏

1≤r<s≤n

(
σ (s)− σ (r)

)∏
1≤r<s≤n(s − r)

.

Thus, if n = 3,

ζ (σ ) =
(
σ (2)− σ (1)

)(
σ (3)− σ (1)

)(
σ (3)− σ (2)

)
(2− 1)(3− 1)(3− 2)

and, if τ (1) = 2, τ (2) = 3, τ (3) = 1,

ζ (τ ) = (3− 2)(1− 2)(1− 3)

(2− 1)(3− 1)(3− 2)
= 1.

Exercise 4.4.4 If n = 4, write out ζ (σ ) in full.
Compute ζ (τ ) if τ (1) = 2, τ (2) = 3, τ (3) = 1, τ (4) = 4. Compute ζ (ρ) if ρ(1) = 2,

ρ(2) = 3, ρ(3) = 4, ρ(4) = 1.

Lemma 4.4.5 Let ζ be the signature function for Sn.
(i) ζ (σ ) = ±1 for all σ ∈ Sn.
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(ii) If τ, σ ∈ Sn, then ζ (τσ ) = ζ (τ )ζ (σ ).
(iii) If ρ(1) = 2, ρ(2) = 1 and ρ(j ) = j otherwise, then ζ (ρ) = −1.
(iv) If τ interchanges 1 and i with i �= 1 and leaves the remaining integers fixed, then

ζ (κ) = −1.
(v) If κ interchanges two distinct integers i and j and leaves the rest fixed then ζ (κ) = −1.

Proof (i) Observe that each unordered pair {r, s}with r �= s and 1 ≤ r, s ≤ n occurs exactly
once in the set

� = {{r, s} : 1 ≤ r < s ≤ n
}

and exactly once in the set

�σ =
{{σ (r), σ (s)} : 1 ≤ r < s ≤ n

}
.

Thus ∣∣∣∣∣ ∏
1≤r<s≤n

(
σ (s)− σ (r)

)∣∣∣∣∣ = ∏
1≤r<s≤n

|σ (s)− σ (r)|

=
∏

1≤r<s≤n

|s − r| =
∏

1≤r<s≤n

(s − r) > 0

and so

|ζ (σ )| =
∣∣∏

1≤r<s≤n

(
σ (s)− σ (r)

)∣∣∏
1≤r<s≤n(s − r)

= 1.

(ii) Again, using the fact that each unordered pair {r, s} with r �= s and 1 ≤ r, s ≤ n

occurs exactly once in the set �σ , we have

ζ (τσ ) =
∏

1≤r<s≤n

(
τσ (s)− τσ (r)

)∏
1≤r<s≤n(s − r)

=
∏

1≤r<s≤n

(
τσ (s)− τσ (r)

)∏
1≤r<s≤n

(
σ (s)− σ (r)

) ∏1≤r<s≤n

(
σ (s)− σ (r)

)∏
1≤r<s≤n(s − r)

= ζ (τ )ζ (σ ).

(iii) For the given ρ,∏
3≤r<s≤n

(
ρ(s)− ρ(r)

) = ∏
3≤r<s≤n

(r − s),
∏

3≤s≤n

(
ρ(s)− ρ(1)

) = ∏
3≤s≤n

(s − 2),

∏
3≤s≤n

(
ρ(s)− ρ(2)

) = ∏
3≤s≤n

(s − 1).

Thus

ζ (ρ) = ρ(2)− ρ(1)

2− 1
= 1− 2

2− 1
= −1.

(iv) If i = 2, then the result follows from part (iii). If not, let ρ be as in part (iii) and
let α ∈ Sn be the permutation which interchanges 2 and i leaving the remaining integers
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unchanged. Then, by inspection,

αρα(r) = τ (r)

for all 1 ≤ r ≤ n and so αρα = τ . Parts (ii) and (i) now tell us that

ζ (τ ) = ζ (α)ζ (ρ)ζ (α) = ζ (α)2ζ (ρ) = −1.

(v) Use an argument like that of (iv). �
Exercise 4.4.6 (i) We use the notation of the proof just concluded. Check that αρα(r) =
τ (r) by considering the cases r = 1, r = 2, r = i and r /∈ {1, 2, i} in turn.

(ii) Write out the proof of Lemma 4.4.5 (v).

Exercise 4.6.1 shows that ζ is the unique function with the properties described in
Lemma 4.4.5.

Exercise 4.4.7 Check that, if we write

εσ (1)σ (2)σ (3)σ (4) = ζ (σ )

for all σ ∈ S4 and

εrstu = 0

whenever 1 ≤ r, s, t, u ≤ 4 and not all of the r, s, t, u are distinct, then εijkl satisfies all the
conditions required in Exercise 4.3.16.

If we wish to define the determinant of an n× n matrix A = (aij ) we can define εijk...uv

(with n suffices) in the obvious way and set

det A = εijk...uvai1aj2ak3 . . . au n−1avn

(where we use the summation convention with range 1, 2, . . . , n). Alternatively, but entirely
equivalently, we can set

det A =
∑
σ∈Sn

ζ (σ )aσ (1)1aσ (2)2 . . . aσ (n)n.

All the results we established in the 3× 3 case together with their proofs go though
essentially unaltered to the n× n case.

Exercise 4.4.8 We use the notation just established. Show that if σ ∈ Sn then ζ (σ ) =
ζ (σ−1). Use the definition

det A =
∑
σ∈Sn

ζ (σ )aσ (1)1aσ (2)2 . . . aσ (n)n

to show that det AT = det A.

The next exercise shows how to evaluate the determinant of a matrix that appears from
time to time in various parts of algebra and, in particular, in this book. It also suggests how
mathematicians might have arrived at the approach to the signature used in this section.
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Exercise 4.4.9 [The Vandermonde determinant]4 (i) Compute

det

(
1 1
x y

)
.

(ii) Consider the function F : R3 → R given by

F (x, y, z) = det

⎛
⎝ 1 1 1

x y z

x2 y2 z2

⎞
⎠ .

Explain why F is a multinomial of degree 3. By considering F (x, x, z), show that F has
y − x as a factor. Explain why F (x, y, z) = A(y − x)(z− y)(z− x) for some constant A.
By looking at the coefficient of yz2, or otherwise, show that

F (x, y, z) = (y − x)(z− y)(z− x).

(iii) Consider the n× n matrix V with vrs = xr−1
s . Show that, if we set

F (x1, x2, . . . , xn) = det V,

then

F (x1, x2, . . . , xn) =
∏
i>j

(xi − xj ).

(iv) Suppose that σ ∈ Sn, all the xr are distinct, and we set

ζ̃x(σ ) = F (xσ (1), xσ (2), . . . , xσ (n))

F (x1, x2, . . . , xn)
.

Show that ζ̃x is the signature function.

The reader should be aware of an alternative notation for determinants illustrated in the
equation ∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = det

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ .

4.5 Calculating determinants

Much of this section deals with how not to evaluate a determinant. We shall use the
determinant of a 4× 4 matrix A = (aij ) as a typical example, but our main interest is in
what happens if we compute the determinant of an n× n matrix when n is large.

4 Vandermonde was an important figure in the development of the idea of the determinant, but appears never to have considered
the determinant which bears his name.

In 1963, at the age of eighteen, I had never heard of matrices, but could evaluate 3× 3 Vandermonde determinants on sight.
Just as a palaeontologist is said to be able to reconstruct a dinosaur from a single bone, so it might be possible to reconstruct
the 1960s Cambridge mathematics entrance papers from this one fact.
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It is obviously foolish to work directly from the definition

det A =
4∑

i=1

4∑
j=1

4∑
k=1

4∑
l=1

εijklai1aj2ak3al4

since only 24 = 4! of the 44 = 256 terms are non-zero. The alternative definition

det A =
∑
σ∈S4

ζ (σ )aσ (1)1aσ (2)2aσ (3)3aσ (4)4

requires us to compute 24 = 4! terms using 3 = 4− 1 multiplications for each term and
then add them together. This is feasible, but the analogous method for an n× n matrix
involves the computation of n! terms and is thus impractical even for quite small n.

Exercise 4.5.1 Estimate the number of multiplications required for n = 10 and for n = 20.

However, matters are rather different if we have an upper triangular or lower triangular
matrix.

Definition 4.5.2 An n× n matrix A = (aij ) is called upper triangular (or right triangular)
if aij = 0 for j < i. An n× n matrix A = (aij ) is called lower triangular (or left triangular)
if aij = 0 for j > i.

Exercise 4.5.3 Show that a matrix which is both upper triangular and lower triangular
must be diagonal.

Lemma 4.5.4 (i) If A = (aij ) is an upper or lower triangular n× n matrix, and σ ∈ Sn,
then aσ (1)1aσ (2)2 . . . aσ (n)n = 0 unless σ is the identity map (that is to say, σ (i) = i for all
i).

(ii) If A = (aij ) is an upper or lower triangular n× n matrix, then

det A = a11a22 . . . ann.

Proof Immediate. �

We thus have a reasonable method for computing the determinant of an n× n matrix.
Use elementary row and column operations to reduce the matrix to upper or lower triangular
form (keeping track of any scale change introduced) and then compute the product of the
diagonal entries.

Exercise 4.5.5 (i) Suppose that A is an r × r matrix and B an s × s matrix. Let

C =
(

A 0
0 B

)
(in other words, cij = aij if 1 ≤ i, j ≤ r , cij = bi−r,j−r if r + 1 ≤ i, j ≤ r + s and cij = 0
otherwise). By using the ideas of the previous paragraph, or otherwise (there are lots of
ways of doing this exercise), show that

det C = det A det B.
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(ii) Find 2× 2 matrices A, B, C and D such that det A = det B = det C = det D = 0,
but

det

(
A B

C D

)
= 1.

[There is thus no general method for computing determinants ‘by blocks’ although special
cases like that in part (i) can be very useful.]

When working by hand, we may introduce various modifications as in the following
typical calculation:

det

⎛
⎝2 4 6

3 1 2
5 2 3

⎞
⎠ = 2 det

⎛
⎝1 2 3

3 1 2
5 2 3

⎞
⎠ = 2 det

⎛
⎝1 2 3

0 −5 −7
0 −8 −12

⎞
⎠

= 2 det

(−5 −7
−8 −12

)
= 8 det

(
5 7
2 3

)

= 8 det

(
5 2
2 1

)
= 8 det

(
1 0
2 1

)
= 8.

Exercise 4.5.6 Justify each step.

As the reader probably knows, there is another method for calculating 3× 3 matrices
called row expansion described in the next exercise.

Exercise 4.5.7 (i) Show by direct algebraic calculation (there are only 3! = 6 expressions
involved) that

det

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

= a11 det

(
a22 a23

a32 a33

)
− a12 det

(
a21 a23

a31 a33

)
+ a31 det

(
a21 a22

a31 a32

)
.

(ii) Use the result of (i) to compute

det

⎛
⎝2 4 6

3 1 2
5 2 3

⎞
⎠ .

Most people (including the author) use the method of row expansion (or mix row
operations and row expansion) to evaluate 3× 3 matrices but, as we remarked on page 11,
row expansion of an n× n matrix also involves about n! operations, so (in the absence of
special features) it should not be used for numerical calculation when n ≥ 4.

In the remainder of this section we discuss row and column expansion for n× n matrices
and Cramer’s rule. The material is not very important, but provides useful exercises for
keen students.5

5 Less keen students can skim the material and omit the final set of exercises.



78 The secret life of determinants

Exercise 4.5.8 [Column expansion] If A = (aij ) is a 4× 4 matrix, let us write

F (A) = a11 det

⎛
⎝a22 a23 a24

a32 a33 a34

a42 a43 a43

⎞
⎠− a21 det

⎛
⎝a12 a13 a14

a32 a33 a34

a42 a43 a44

⎞
⎠

+ a31 det

⎛
⎝a12 a13 a14

a22 a23 a24

a42 a43 a44

⎞
⎠− a41 det

⎛
⎝a12 a13 a14

a22 a23 a24

a32 a33 a34

⎞
⎠ .

(i) Show that, if Ã is the matrix formed from A by interchanging the first row and the
j th row (with 1 �= j ), then

F (Ã) = −F (A).

(ii) By applying (i) three times, or otherwise, show that, if Ã is the matrix formed from
A by interchanging the ith row and the j th row (with i �= j ), then

F (Ã) = −F (A).

Deduce that, if A has two rows identical, F (A) = 0.
(iii) Show that, if Ã is the matrix formed from A by multiplying the first row by λ,

F (Ã) = λF (A).

Deduce that, if Ā is the matrix formed from A by multiplying the ith row by λ,

F (Ā) = λF (A).

(iv) Show that, if Ã is the matrix formed from A by adding λ times the ith row to the first
row [i �= 1],

F (Ã) = F (A).

Deduce that, if Ā is the matrix formed from A by adding λ times the ith row to the j th
row [i �= j ],

F (Ā) = F (A).

(v) Use Theorem 3.4.8 to show that

F (A) = det A.

Since det AT = det A, the proof of the validity of column expansion given as Exer-
cise 4.5.8 immediately implies the validity of row expansion for a 4× 4 matrix A = (aij ):

D(A) = a11 det

⎛
⎝a22 a23 a24

a32 a33 a34

a42 a43 a44

⎞
⎠− a12 det

⎛
⎝a21 a23 a24

a31 a33 a34

a41 a43 a44

⎞
⎠

+ a13 det

⎛
⎝a21 a22 a24

a31 a32 a34

a41 a42 a44

⎞
⎠− a14 det

⎛
⎝a21 a22 a23

a31 a32 a33

a41 a42 a43

⎞
⎠ .
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It is easy to generalise our results to n× n matrices.

Definition 4.5.9 Suppose n ≥ 2. Let A be an n× n matrix. If Mij is the (n− 1)× (n− 1)
matrix formed by removing the ith row and j th column from A, we write

Aij = (−1)i+j det Mij .

The Aij are called the cofactors of A.

Exercise 4.5.10 Suppose n ≥ 2. Let A be an n× n matrix aij with cofactors Aij .
(i) Check that the argument of Exercise 4.5.7 and the paragraph that follows applies in

the general case and deduce that

n∑
j=1

a1jA1j = det A.

(ii) By considering the effect of interchanging rows, show that

n∑
j=1

aijAij = det A

for all 1 ≤ i ≤ n. (We talk of ‘expanding by the ith row’.)
(iii) By considering what happens when a matrix has two rows the same, show that

n∑
j=1

aijAkj = 0

whenever i �= k, 1 ≤ i, k ≤ n.
(iv) Summarise your results in the formula

n∑
j=1

aijAkj = δkj det A. �

If we define the adjugate matrix Adj A = B by taking bij = Aji (thus Adj A is the
transpose of the matrix of cofactors of A), then equation � may be rewritten in a way that
deserves to be stated as a theorem.

Theorem 4.5.11 If n ≥ 2 and A is an n× n matrix, then

A Adj A = (det A)I.

Theorem 4.5.12 Let A be an n× n matrix. If det A �= 0, then A is invertible with inverse

A−1 = 1

det A
Adj A.

If det A = 0, then A is not invertible.

Proof If det A �= 0, then we can apply �. If A−1 exists, then

det A det A−1 = det AA−1 = det I = 1
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so det A �= 0. �

Theorem 4.5.12 gives another proof of Theorem 4.3.7.
The next exercise merely emphasises part of the proof just given.

Exercise 4.5.13 If A is an n× n invertible matrix, show that det A−1 = (det A)−1.

Since the direct computation of Adj A involves finding n2 determinants of (n− 1)×
(n− 1) matrices, this result is more important in theory than in practical computation.

We conclude with Cramer’s rule. This topic was historically very important in popular-
ising the idea of a determinants. (It was said that success in the entry to the major French
engineering schools depended on mastering the rule.6) However, for the reasons already
explained, it not often useful in a modern context.

Exercise 4.5.14 [Cramer’s rule] Suppose that n ≥ 2, A is an n× n matrix and b a column
vector of length n. Write Bi for the n× n matrix obtained by replacing the ith column of A

by b. Show that

det Bj =
n∑

k=1

bkAkj .

If A is invertible and x is the solution of show that

xj = det Bj

det A
.

(This is Cramer’s rule.)

Exercise 4.5.15 According to one Internet site, ‘Cramer’s Rule is a handy way to solve for
just one of the variables without having to solve the whole system of equations.’ Comment.

Exercise 4.5.16 We can define the permanent of an n× n square matrix by

perm(A) =
∑
σ∈Sn

n∏
i=1

aσ (i)i .

(Compare our standard formula det A =∑σ∈Sn
ζ (σ )
∏n

i=1 aσ (i)i .)
(i) Show that perm AT = perm A.
(ii) Is it true that perm A �= 0 implies A invertible? Is is it true that A invertible implies

perm A �= 0? Give reasons.
[Hint: Look at the 2× 2 case.]

(iii) Explain how to calculate perm A by row expansion.
(iv) If |aij | ≤ K , show that | perm A| ≤ n!Kn. Give an example to show that this result

is best possible whatever the value of n.

6 ‘Cette méthode était tellement en faveur, que les examens aux écoles des services publics ne roulait pour ainsi dire que sur elle;
on était admis ou réjeté suivant qu’on la possedait bien ou mal.’ (Quoted in Chapter 1 of [25].)
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(v) If |aij | ≤ K , show that | det A| ≤ n!Kn. Can you do better? (Please spend a few
minutes on this, since, otherwise, when you see Hadamard’s inequality in Exercise 7.6.13,
you will say ‘I could have thought of that!’7)

Exercise 4.5.17 We say that an n× n matrix A with real entries is antisymmetric if A =
−AT . Which of the following result are true and which are false for n× n antisymmetric
matrices A? Give reasons.

(i) If n = 2 and A �= 0, then det A �= 0.
(ii) If n is even and A �= 0, then det A �= 0.
(iii) If n is odd, then det A = 0.

4.6 Further exercises

Exercise 4.6.1 Show that any permutation σ ∈ Sn can be written as

σ = τ1τ2 . . . τp

where τj is a transposition (that is to say, τj is a permutation which interchanges two
integers and leaves the rest fixed).

Suppose that ζ̃ : Sn → C has the following two properties.
(A) If σ, τ ∈ Sn, then ζ̃ (στ ) = ζ̃ (σ )ζ̃ (τ ).
(B) If τ (1) = 2, τ (2) = 1 and τ (j ) = j otherwise, then ζ̃ (τ ) = −1.

Show that ζ̃ is the signature function.
Explain why we have shown that, if a permutation is obtained from an even number

of transpositions, it cannot be obtained from an odd number of transpositions and, if a
permutation is obtained from an odd number of transpositions, it cannot be obtained from
an even number number of transpositions. In particular, the identity permutation cannot be
expressed as the composition of an odd number of permutations.
[If we had proved this result without using the signature, we could have used it to define
the signature ζ (σ ) as (−1)r when we can obtain σ as the product of r transpositions.]

Exercise 4.6.2 (This continues Exercise 4.6.1, but requires a tiny bit of knowledge of
group theory.)

(i) Show that C \ {0} is a group under multiplication.
(ii) By using the result of the first paragraph of Exercise 4.6.1, or otherwise, show that, if

n ≥ 2, the only homomorphisms θ : Sn → C are the trivial homomorphism θ with θσ = 1
for all σ ∈ Sn and the signature function ζ .

Exercise 4.6.3 If A and B are n× n matrices and AB = 0, show that either A = 0 or
B = 0 or det A = det B = 0.
[This is easy with the tools of this chapter, but, when we have talked about the rank of
mappings in the next chapter, the result will appear obvious.]

7 The idea is in plain sight, but, if you do discover Hadamard’s inequality independently, the author raises his hat to you.
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Exercise 4.6.4 Consider the equation

Ax = h

where A is an n× n matrix with integral entries (that is to say, aij ∈ Z) and h is a column
vector with integral entries. Show that the solution vector x will have integral entries if det A
divides each entry hi of h. Give an example to show that this condition is not necessary.

Now suppose that A and h have rational entries and det A = 0. Is it true that the equation
Ax = h always has a solution vector with rational entries? Is it true that every solution vector
must have rational entries? Is it true that, if there exists a solution vector, then there exists
a solution vector with rational entries? Give proofs or counterexamples as appropriate.

Exercise 4.6.5 Let

A =
(

a b

c d

)
.

Show that det(tI − A) = t2 + ut + v, where u and v are to be found in terms of a, b, c and
d.

Show by direct calculation that A2 + uA+ vI = 0.
[In Example 6.4.4 we shall see an easier proof which also indicates why the result is true.]

Exercise 4.6.6 If fr , gr are once times differentiable functions from R to R and

H (x) = det

(
f1(x) g1(x)
f2(x) g2(x)

)
,

show that

H ′(x) = det

(
f1(x) g1(x)
f ′

2(x) g′2(x)

)
+ det

(
f ′

1(x) g′1(x)
f2(x) g2(x)

)
.

If fr , gr , hr are once times differentiable functions from R to R and

F (x) = det

⎛
⎝f1(x) g1(x) h1(x)

f2(x) g2(x) h2(x)
f3(x) g3(x) h3(x)

⎞
⎠ ,

express F ′(x) as the sum of three similar determinants. If f , g, h are five times differentiable
and

G(x) = det

⎛
⎝ f (x) g(x) h(x)

f ′(x) g′(x) h′(x)
f ′′(x) g′′(x) h′′(x)

⎞
⎠ ,

compute G′(x) and G′′(x) as determinants.

Exercise 4.6.7 [Cauchy’s proof of L’Hôpital’s rule] (This question requires Rolle’s the-
orem from analysis.)



4.6 Further exercises 83

Suppose that u, v, w : [a, b] → R are continuous on [a, b] and differentiable on (a, b).
Let

f (t) = det

⎛
⎝u(a) u(b) u(t)

v(a) v(b) v(t)
w(a) w(b) w(t)

⎞
⎠ .

Verify that f satisfies the conditions of Rolle’s theorem and deduce that there exists a
c ∈ (a, b) such that

det

⎛
⎝u(a) u(b) u′(c)

v(a) v(b) v′(c)
w(a) w(b) w′(c)

⎞
⎠ = 0.

By choosing w appropriately, prove that, if v′(t) �= 0 for all t ∈ (a, b), there exists a
c ∈ (a, b) such that

u(b)− u(a)

v(b)− v(a)
= u′(c)

v′(c)
.

Suppose now that, in addition, u(a), v(a) = 0, but v(t) �= 0 for all t ∈ (a, b). If t ∈
(a, b), show that there exists a ct ∈ (a, t) such that u(t)/v(t) = u′(ct )/v′(ct ). If, in addition,
u′(x)/v′(x) → l as x → a through values x > a, deduce that u(t)/v(t) → l as t → a

through values t > a.

Exercise 4.6.8 State a condition in terms of determinants for the two sets of three equations
for xj , yj

ai1x1 + ai2x2 + ai3x3 = ci, bi1y1 + bi2y2 + bi3y3 = xi [i = 1, 2, 3]

to have a unique solution for the xi and for the yj . State a condition in terms of determinants
for the two sets of three equations to have a unique solution for the yj . Give reasons in both
cases.

Show that the equations

x1 + 2x2 = 2 3y1 + y2 + 4y3 = x1

x1 + x2 + x3 = 1 −y1 + 2y2 − 3y3 = x2

3x2 − x3 = k y1 + 5y2 − 2y3 = x3

are inconsistent if k �= 7 and find the most general solution for the xj and yj if k = 7.

Exercise 4.6.9 Let a1, a2, a3 be real numbers and write sr = ar
1 + ar

2 + ar
3. If

S =
⎛
⎝s0 s1 s2

s1 s2 s3

s2 s3 s4

⎞
⎠ ,

show that S = V V T where V is a suitable 3× 3 Vandermonde matrix (see Exercise 4.4.9)
and hence find det S.
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Generalise the result to n× n matrices.

Exercise 4.6.10 This short question uses Exercise 3.6.2. Suppose that C and S are n× n

matrices such that CS = SC and C2 + S2 = I . If

Z =
(

C S

−S C

)
and W =

(
C −S

S C

)
show that det Z = det W and calculate (det Z)2.

Exercise 4.6.11 Let A and B be n× n matrices. If

C =
(

I B

−A 0

)
and D =

(
I B

0 AB

)
,

show that the 2n× 2n matrix C can be transformed into the 2n× 2n matrix D by row
operations which you should specify. By considering the determinants of C and D, obtain
another proof that det AB = det A det B.

Exercise 4.6.12 If A is an invertible n× n matrix, show that det(Adj A) = (det A)n−1 and
that Adj(Adj A) = (det A)n−2A. What can you say if A is not invertible?
[If you have problems with the last sentence, you should note that we take the matter up
again in Exercise 5.7.10.]

Exercise 4.6.13 Let P (n) be the n× n matrix with pii(n) = a, pij (n) = b for i �= j . Find
det P (n). In particular, find the determinant of the n× n matrix A with diagonal entries 0
and all other entries 1. (In other words, aij = 1 if i �= j , aij = 0 if i = j .)

Exercise 4.6.14 Let A(n) be the n× n matrix given by

A(n) =

⎛
⎜⎜⎜⎜⎜⎝

a b 0 0 . . . 0 0 0
c a b 0 . . . 0 0 0
0 c a b . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 c a

⎞
⎟⎟⎟⎟⎟⎠ .

By considering row expansions, find a linear relation between det A(n), det A(n− 1) and
det A(n− 2).

(i) Find det A(n) if a = 1+ bc. (Look carefully at any special cases that arise.)
(ii) If a = 2 cos θ and b = c = 1, show that

det A(n) = sin(n+ 1)θ

sin θ

if sin θ �= 0. Find the values of det A(n) when sin θ = 0.

Exercise 4.6.15 Let A(n) = (aij (n)
)

be the n× n matrix given by

aij (n) =
{

i if i ≤ j ,

j otherwise.
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Find det A(n).

Exercise 4.6.16 Prove that

det

⎛
⎜⎜⎜⎝

1+ x1 x2 x3 . . . xn

x1 1+ x2 x3 . . . xn

...
...

...
. . .

...
x1 x2 x3 . . . 1+ xn

⎞
⎟⎟⎟⎠ = 1+ x1 + x2 + · · · + xn.

Use this result to find det P (n) with P (n) as in Exercise 4.6.13.

Exercise 4.6.17 Show that if A is an n× n matrix with all entries 1 or −1, then det A is a
multiple of 2n−1.

If B = (bij ) is the n× n matrix with bij = 1 if 1 ≤ i ≤ j ≤ n and bij = −1 otherwise,
show that det B = 2n−1.

Exercise 4.6.18 Let M2(R) be the set of all real 2× 2 matrices. We write

I =
(

1 0
0 1

)
, J =

(
0 1
1 0

)
, K =

(
0 0
1 0

)
, L =

(
1 0
0 0

)
.

Suppose that D : M2(R) → R is a function such that D(AB) = D(A)D(B) for all A, B ∈
M2(R) and D(I ) �= D(J ). Prove that D has the following properties.

(i) D(0) = 0, D(I ) = 1, D(J ) = −1, D(K) = D(L) = 0.
(ii) If B is obtained from A by interchanging its rows or its columns, then D(A) =

−D(B).
(iii) If one row or one column of A vanishes, then D(A) = 0.
(iv) D(A) = 0 if and only if A is singular.
Give an example of such a D which is not the determinant function.

Exercise 4.6.19 Consider four distinct points (xj , yj ) in the plane. Let us write

A =

⎛
⎜⎜⎝

x2
1 + y2

1 x1 y1 1
x2

2 + y2
2 x2 y2 1

x2
3 + y2

3 x3 y3 1
x2

4 + y2
4 x4 y4 1

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

1 −2x1 −2y1 x2
1 + y2

1

1 −2x2 −2y2 x2
2 + y2

2

1 −2x3 −2y3 x2
3 + y2

3

1 −2x4 −2y4 x2
4 + y2

4

⎞
⎟⎟⎠ .

(i) Show that the equation

A(1,−2x0,−2y0, x
2
0 + y2

0 − t)T = (0, 0, 0, 0)T

has a solution if and only if det A = 0.
(ii) Hence show that the four equations (xj − x0)2 + (yj − y0)2 = t [1 ≤ j ≤ 4] are

consistent if and only if det A = 0.
(iii) Use the fact that there is exactly one circle or straight line through three distinct

points in the plane to show that the four distinct points (xj , yj ) lie on the same circle or
straight line if and only if det A = 0.
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(iv) By considering the equations

B(x2
0 + y2

0 , x0, y0, 1)T = (0, 0, 0, 0)T ,

show that the four distinct points (xj , yj ) lie on the same circle or straight line if and only
if det B = 0.

(v) By computing ABT , show that the four distinct points (xj , yj ) lie on the same circle
or straight line if and only if

det

⎛
⎜⎜⎝

0 d12 d13 d14

d21 0 d23 d24

d31 d32 0 d34

d41 d42 d43 0

⎞
⎟⎟⎠ = 0,

where dij = (xi − xj )2 + (yi − yj )2.
(vi) Write down the corresponding result in three dimensions and check in as much

detail as you consider appropriate that the proof goes through in exactly the same manner.
[The kind of determinant which appears in part (v) is known as a Cayley–Menger
determinant.]

Exercise 4.6.20 If A = (ai,j ) is an n× n matrix and B = (bk,l) is an m×m matrix, we
set A⊗ B = C where C = (cr,s) is the nm× nm matrix given by the rule

cm(i−1)+k,m(j−1)+l = ai,j bk,l

for 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ m, 1 ≤ l ≤ m.
Show that A⊗ B = (A⊗ Im)(In ⊗ B) where Ip is the p × p identity matrix. Deduce

that det(A⊗ B) = (det A)m(det B)n.
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Abstract vector spaces

5.1 The space Cn

So far, in this book, we have only considered vectors and matrices with real entries.
However, as the reader may have already remarked, there is nothing in Chapter 1 on
Gaussian elimination which will not work equally well when applied to m linear equations
with complex coefficients in n complex unknowns. In particular, there is nothing to prevent
us considering complex row and column vectors (z1, z2, . . . , zn) and (z1, z2, . . . , zn)T with
zj ∈ C and complex m× n matrices A = (aij ) with aij ∈ C. (If we are going to make use
of the complex number i, it may be better to use other suffices and talk about A = (ars).)

Exercise 5.1.1 Explain why we cannot replace C by Z in the discussion of the previous
paragraph.

However, this smooth process does not work for the geometry of Chapter 2. It is
possible to develop complex geometry to mirror real geometry, but, whilst an ancient
Greek mathematician would have no difficulty understanding the meaning of the theorems
of Chapter 2 as they apply to the plane or three dimensional space, he or she1 would find the
complex analogues (when they exist) incomprehensible. Leaving aside the question of the
meaning of theorems of complex geometry, the reader should note that the naive translation
of the definition of inner product from real to complex vectors does not work very well.
(We shall give an appropriate translation in Section 8.4.)

Continuing our survey, we see that Chapter 3 on the algebra of n× n matrices carries over
word for word to the complex case. Something more interesting happens in Chapter 4. Here
the geometrical arguments of the first two sections (and one or two similar observations
elsewhere) are either meaningless or, at the least, carry no intuitive conviction when applied
to the complex case but, once we define the determinant algebraically, the development
proceeds identically in the real and complex cases.

Exercise 5.1.2 Check that, in the parts of the book where I claim this, there is, indeed, no
difference between the real and complex cases.

1 Remember Hypatia.
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5.2 Abstract vector spaces

We have already met several kinds of objects that ‘behave like vectors’. What are the
properties that we demand of a mathematical system in which the objects ‘behave like
vectors’? To deal with both real and complex vectors simultaneously we adopt the following
convention.

Convention 5.2.1 We shall write F to mean either C or R.

Our definition of a vector space is obtained by recasting Lemma 1.4.2 as a definition.

Definition 5.2.2 A vector space U over F is a set containing an element 0 equipped with
addition and scalar multiplication with the properties given below.2

Suppose that x, y, z ∈ U and λ,μ ∈ F. Then the following relations hold.
(i) (x+ y)+ z = x+ (y+ z).
(ii) x+ y = y+ x.
(iii) x+ 0 = x.
(iv) λ(x+ y) = λx+ λy.
(v) (λ+ μ)x = λx+ μx.
(vi) (λμ)x = λ(μx).
(vii) 1x = x and 0x = 0.

It seems reasonable to call the elements of U abstract vectors or just vectors.
As usual in these cases, there is a certain amount of fussing around establishing that the

rules do everything we want. (Exercise 5.7.7 provides some more fussing for those who
like that sort of thing.) We do this in the next lemma which the reader can more or less
ignore.

Lemma 5.2.3 Let U be the vector space of Definition 5.2.2.
(i) If x+ 0′ = x for all x ∈ U , then 0′ = 0. (In other words, the zero vector is unique.)
(ii) x+ (−1)x = 0 for all x ∈ U .
(iii) If x+ 0′ = x for some x ∈ U , then 0′ = 0.

Proof (i) By the stated properties of 0 and 0′

0′ = 0+ 0′ = 0.

(ii) We have

x+ (−1)x = 1x+ (−1)x = (1+ (−1)
)
x = 0x = 0.

2 If the reader feels this is insufficiently formal, she should replace the paragraph with the following mathematical boiler plate.
A vector space (U, F,+, .) is a set U containing an element 0 together with maps A : U2 → U and M : F× U → U such

that, writing x+ y = A(x, y) and λx = M(λ, x) [x, y ∈ U , λ ∈ F], the system has the properties given below.
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(iii) We have

0 = x+ (−1)x = (x+ 0′)+ (−1)x

= (0′ + x)+ (−1)x = 0′ + (x+ (−1)x)

= 0′ + 0 = 0′.

�
We shall write

−x = (−1)x, y− x = y+ (−x)

and so on. Since there is no ambiguity, we shall drop brackets and write

x+ y+ z = x+ (y+ z).

In abstract algebra, most systems give rise to subsystems, and abstract vector spaces are
no exception.

Definition 5.2.4 If V is a vector space over F, we say that U ⊆ V is a subspace of V if
the following three conditions hold.

(i) Whenever x, y ∈ U , we have x+ y ∈ U .
(ii) Whenever x ∈ U and λ ∈ F, we have λx ∈ U .
(iii) 0 ∈ U .

Condition (iii) is a convenient way of ensuring that U is not empty.

Lemma 5.2.5 If U is a subspace of a vector space V over F, then U is itself a vector
space over F (if we use the same operations).

Proof Proof by inspection. �

Lemma 5.2.6 Let X be a non-empty set and FX the collection of all functions f : X → F.
If we define the pointwise sum f + g of any f, g ∈ FX by

(f + g)(x) = f (x)+ g(x)

and pointwise scalar multiple λf of any f ∈ FX and λ ∈ F by

(λf )(x) = λf (x),

then FX is a vector space.

Proof The checking is lengthy, but trivial. For example, if λ, μ ∈ F and f ∈ FX, then(
(λ+ μ)f

)
(x) = (λ+ μ)f (x) (by definition)

= λf (x)+ μf (x) (by properties of F)

= (λf )(x)+ (μf )(x) (by definition)

= (λf + μf )(x) (by definition)
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for all x ∈ X and so, by the definition of equality of functions,

(λ+ μ)f = λf + μf,

as required by condition (v) of Definition 5.2.2. �

Exercise 5.2.7 Choose a couple of conditions from Definition 5.2.2 and verify that they
hold for FX. (You should choose the conditions which you think are hardest to verify.)

Exercise 5.2.8 If we take X = {1, 2, . . . , n} which, already known, vector space, do we
obtain? (You should give an informal but reasonably convincing argument.)

Lemmas 5.2.5 and 5.2.6 immediately reveal a large number of vector spaces.

Example 5.2.9 (i) The set C([a, b]) of all continuous functions f : [a, b] → R is a vector
space under pointwise addition and scalar multiplication.

(ii) The set C∞(R) of all infinitely differentiable functions f : R → R is a vector space
under pointwise addition and scalar multiplication.

(iii) The set P of all polynomials P : R → R is a vector space under pointwise addition
and scalar multiplication.

(iv) The collection c of all two sided sequences

a = (. . . , a−2, a−1, a0, a1, a2, . . .)

of complex numbers with a+ b the sequence with j th term aj + bj and λa the sequence
with j th term aj + bj is a vector space.

Proof (i) Observe that C([a, b]) is a subspace of R[a,b].
(ii) and (iii) Left to the reader.
(iv) Observe that c = CZ. �

In the next section we make use of the following improvement on Lemma 5.2.6.

Lemma 5.2.10 Let X be a non-empty set and V a vector space over F. Write L for
the collection of all functions f : X → V . If we define the pointwise sum f + g of any
f, g ∈ L by

(f + g)(x) = f (x)+ g(x)

and pointwise scalar multiple λf of any f ∈ L and λ ∈ F by

(λf )(x) = λf (x),

then L is a vector space.

Proof Left as an exercise to the reader to do as much or as little of as she wishes. �

In general, it is easiest to show that something is a vector space by showing that it is a
subspace of some FX or some L of the type described in Lemma 5.2.10 and to show that
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something is not a vector space by showing that one of the conditions of Definition 5.2.2
fails.3

Exercise 5.2.11 Which of the following are vector spaces with pointwise addition and
scalar multiplication? Give reasons.

(i) The set of all three times differentiable functions f : R → R.
(ii) The set of continuous functions f : R → R with f (t) ≥ 0 for all t ∈ R.
(iii) The set of all polynomials P : R → R with P (1) = 1.
(iv) The set of all polynomials P : R → R with P ′(1) = 0.
(v) The set of all polynomials P : R → R with

∫ 1
0 P (t) dt = 0.

(vi) The set of all continuous functions f : R → R with
∫ 1
−1 f (t)3 dt = 0.

(vii) The set of all polynomials of degree exactly 3.
(viii) The set of all polynomials of even degree.

5.3 Linear maps

If the reader has followed any course in abstract algebra she will have met the notion of a
morphism,4 that is to say a mapping which preserves algebraic structure. A vector space
morphism corresponds to the much older notion of a linear map.

Definition 5.3.1 Let U and V be vector spaces over F. We say that a function T : U → V

is a linear map if

T (λx+ μy) = λT x+ μT y

for all x, y ∈ U and λ, μ ∈ F.

Exercise 5.3.2 If T : U → V is a linear map, show that T (0) = 0.

Since the time of Newton, mathematicians have realised that the fact that a mapping is
linear gives a very strong handle on that mapping. They have also discovered an ever wider
collection of linear maps5 in subjects ranging from celestial mechanics to quantum theory
and from statistics to communication theory.

Exercise 5.3.3 Consider the vector space D of infinitely differentiable functions f : R →
R. Show that the following maps are linear.

(i) δ : D → R given by δ(f ) = f (0).
(ii) D : D → D given by (Df )(x) = f ′(x).
(iii) K : D → D where (Kf )(x) = (x2 + 1)f (x).
(iv) J : D → D where (Jf )(x) = ∫ x

0 f (t) dt .

3 Like all such statements, this is just an expression of opinion and carries no guarantee.
4 If not, she should just ignore this sentence.
5 Of course not everything is linear. To quote Swinnerton-Dyer, ‘The great discovery of the 18th and 19th centuries was that

nature is linear. The great discovery of the 20th century was that nature is not.’ But linear problems remain a good place to start.
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From this point of view, we do not study vector spaces for their own sake but for the
sake of the linear maps that they support.

Lemma 5.3.4 If U and V are vector spaces over F, then the set L(U,V ) of linear maps
T : U → V is a vector space under pointwise addition and scalar multiplication.

Proof We know, by Lemma 5.2.10, that the collection L of all functions f : U → V is a
vector space under pointwise addition and scalar multiplication, so all we need do is show
that L(U,V ) is a subspace of L.

Observe first that the zero mapping 0 : U → V given by 0u = 0 is linear, since

0(λ1u1 + λ2u2) = 0 = λ10+ λ20 = λ10u1 + λ20u2.

Next observe that, if S, T ∈ L(U,V ) and λ ∈ F, then

(T + S)(λ1u1 + λ2u2)

= T (λ1u1 + λ2u2)+ S(λ1u1 + λ2u2) (by definition)

= (λ1T u1 + λ2T u2)+ (λ1Su1 + λ2Su2) (since S and T are linear)

= λ1(T u1 + Su1)+ λ2(T u2 + Su2) (collecting terms)

= λ1(S + T )u1 + λ2(S + T )u2

and, by the same kind of argument (which the reader should write out),

(λT )(λ1u1 + λ2u2) = λ1(λT )u1 + λ2(λT )u2

for all u1, u2 ∈ U and λ1, λ2 ∈ F. Thus S + T and λT are linear and L(U,V ) is, indeed,
a subspace of L as required. �

From now on L(U,V ) will denote the vector space of Lemma 5.3.4. In more advanced
work the elements ofL(U,V ) are often called linear operators or just operators. We usually
write the zero map as 0 rather than 0.

Similar arguments establish the following simple, but basic, result.

Lemma 5.3.5 If U , V , and W are vector spaces over F and T ∈ L(U,V ), S ∈ L(V,W ),
then the composition ST ∈ L(U,W ).

Proof Left as an exercise for the reader. �

Lemma 5.3.6 Suppose that U , V , and W are vector spaces over F, that T , T1, T2 ∈
L(U,V ), S, S1, S2 ∈ L(V,W ) and that λ ∈ F. Then the following results hold.

(i) (S1 + S2)T = S1T + S2T .
(ii) S(T1 + T2) = ST1 + ST2.
(iii) (λS)T = S(λT ) = λ(ST ).

Proof To prove part (i), observe that, by repeated use of our definitions,(
(S1 + S2)T

)
u = (S1 + S2)(T u) = S1(T u)+ S2(T u)

= (S1T )u+ (S2T )u = (S1T + S2T )u
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for all u ∈ U and so, by the definition of what it means for two functions to be equal,
(S1 + S2)T = S1T + S2T .

The remaining parts are left as an exercise. �

The proof of the next result requires a little more thought.

Lemma 5.3.7 If U and V are vector spaces over F and T ∈ L(U,V ) is a bijection, then
T −1 ∈ L(V,U ).

Proof The statement that T is a bijection is equivalent to the statement that an inverse
function T −1 : V → U exists. We have to show that T −1 is linear. To see this, observe that

T
(
T −1(λx+ μy)

) = (λx+ μy) (definition)

= λT T −1x+ μT T −1y (definition)

= T
(
λT −1x+ μT −1y

)
(T linear)

so, applying T −1 to both sides (or just noting that T is bijective),

T −1(λx+ μy) = λT −1x+ μT −1y

for all x, y ∈ U and λ, μ ∈ F as required. �

Whenever we study abstract structures, we need the notion of isomorphism.

Definition 5.3.8 We say that two vector spaces U and V over F are isomorphic if there
exists a linear map T : U → V which is bijective. We write U ∼= V to mean that U and V

are isomorphic.

Since anything that happens in U is exactly mirrored (via the map u �→ T u) by what
happens in V and anything that happens in V is exactly mirrored (via the map v �→ T −1v)
by what happens in U , isomorphic vector spaces may be considered as identical from the
point of view of abstract vector space theory.

Definition 5.3.9 If U is a vector space over F then the identity map ι : U → U is defined
by ιx = x for all x ∈ U .

(The Greek letter ι is written as i without the dot and pronounced iota.)

Exercise 5.3.10 Let U be a vector space over F.
(i) Show that the identity map ι ∈ L(U,U ).
(ii) If α ∈ L(U,U ) is a bijection, show that α−1α = α−1α = ι. If α, β ∈ L(U,U ) and

αβ = βα = ι, show that α is a bijection and α−1 = β.
(iii) Let D, D and J be as in Exercise 5.3.3 and take U = D. Explain why DJ = ι, but

show that JD �= ι. Show that J is injective, but not surjective and D is surjective, but not
injective.
[This is possible because D is infinite dimensional. See Exercise 5.5.5.]

(iv) If α, β ∈ L(U,U ) are invertible, show that αβ is invertible and (αβ)−1 = β−1α−1.
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The following remark is often helpful.

Exercise 5.3.11 If U and V are vector spaces over F, then a linear map T : U → V is
injective if and only if T u = 0 implies u = 0.

Definition 5.3.12 If U is a vector space over F, we write GL(U ) or GL(U, F) for the
collection of bijective linear maps α : U → U .

The reader may well be familiar with the definition of group. If not the brief discussion
that follows provides all that is necessary for the purposes of this book. (A few exercises
such as Exercise 6.8.19 go a little further.)

Definition 5.3.13 A group is a set G equipped with a multiplication× having the following
properties.

(i) If a, b ∈ G, then a × b ∈ G.
(ii) If a, b, c ∈ G, then a × (b × c) = (a × b)× c.
(iii) There exists an element e ∈ G such that e × a = a × e = a.
(iv) If a ∈ G, then we can find an a−1 ∈ G such that a × a−1 = a−1 × a = e.

Exercise 5.3.14 If U is a vector space over F show that GL(U ) with multiplication defined
by composition satisfies the axioms for a group.6

Show that GL(R2) is not Abelian (that is to say, show that there exist α, β ∈ GL(R2)
with αβ �= βα).

We shall make very little use of the group concept, but we shall come across several
subgroups of GL(U ) which turn out to be useful in physics.

Definition 5.3.15 A subset H of GL(U ) is called a matrix group if it is a subgroup of
GL(U ), that is to say, the following conditions hold.

(i) ι ∈ H .
(ii) If α ∈ H , then α−1 ∈ H .
(iii) If α, β ∈ H , then αβ ∈ H .

If H and K are subgroups of GL(U ) and K ⊆ H , we say that K is a subgroup of H .

Exercise 5.3.16 Let U be a vector space over F. State, with reasons, which of the following
statements are always true.

(i) If a ∈ U , then the set of α ∈ GL(U ) with αa = a is a subgroup of GL(U ).
(ii) If a, b ∈ U , then the set of α ∈ GL(U ) with αa = b is a subgroup of GL(U ).
(iii) The set of α ∈ GL(U ) with α2 = ι is a subgroup of GL(U ).

[Exercises 6.8.40 and 6.8.41 give more practice in these ideas.]

6 GL(U ) is called the general linear group.



5.4 Dimension 95

5.4 Dimension

Just as our work on determinants may have struck the reader as excessively computational,
so this section on dimension may strike the reader as excessively abstract. It is possible to
derive a useful theory of vector spaces without determinants and it is just about possible to
deal with vectors in Rn without a clear definition of dimension, but in both cases we have
to imitate the participants of an elegantly dressed party determined to ignore the presence
of very large elephants.

It is certainly impossible to do advanced work without knowing the contents of this
section, so I suggest that the reader bites the bullet and gets on with it.

Definition 5.4.1 Let U be a vector space over F.
(i) We say that the vectors f1, f2, . . . , fn ∈ U span U if, given any u ∈ U , we can find

λ1, λ2, . . . , λn ∈ F such that
n∑

j=1

λj fj = u.

(ii) We say that the vectors e1, e2, . . . , en ∈ U are linearly independent if, whenever
λ1, λ2, . . . , λn ∈ F and

n∑
j=1

λj ej = 0,

it follows that λ1 = λ2 = . . . = λn = 0.
(iii) If the vectors e1, e2, . . . , en ∈ U span U and are linearly independent, we say that

they form a basis for U .

The reason for our definition of a basis is given by the next lemma.

Lemma 5.4.2 Let U be a vector space over F. The vectors e1, e2, . . . , en ∈ U form a
basis for U if and only if each x ∈ U can be written uniquely in the form

x =
n∑

j=1

xj ej

with xj ∈ F.

Proof We first prove the if part. Since e1, e2, . . . , en span U , we can certainly write

x =
n∑

j=1

xj ej

with xj ∈ F. We need to show that the expression is unique.
To this end, suppose that

x =
n∑

j=1

xj ej and x =
n∑

j=1

x ′j ej
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with xj , x ′j ∈ F. Then

0 = x− x =
n∑

j=1

xj ej −
n∑

j=1

x ′j ej =
n∑

j=1

(xj − x ′j )ej ,

so, since e1, e2, . . . , en are linearly independent, xj − x ′j = 0 and xj = x ′j for all j .
The only if part is even simpler. The vectors e1, e2, . . . , en automatically span U . To

prove independence, observe that, if

n∑
j=1

λj ej = 0,

then

n∑
j=1

λj ej =
n∑

j=1

0ej

so, by uniqueness, λj = 0 for all j . �

The reader may think of the xj as the coordinates of x with respect to the basis
e1, e2, . . . , en.

Exercise 5.4.3 Suppose that e1, e2, . . . , en form a basis for a vector space U over F. If
y ∈ U , it follows by the previous result that there are unique aj ∈ F such that

y = a1e1 + a2e2 + · · · + anen.

Suppose that y �= 0. Show that e1 + y, e2 + y, . . . , en + y are linearly independent if and
only if

a1 + a2 + · · · + an + 1 �= 0.

Lemma 5.4.4 Let U be a vector space over F which is non-trivial in the sense that it is
not the space consisting of 0 alone.

(i) If the vectors e1, e2, . . . , en span U , then either they form a basis or there exists one
of these vectors such that, when it is removed, the remaining vectors will still span U .

(ii) If e1 spans U , then e1 forms a basis for U .
(iii) Any finite collection of vectors which span U contains a basis for U .
(iv) U has a basis if and only if it has a finite spanning set.

Proof (i) If e1, e2, . . . , en do not form a basis, then they are not linearly independent, so
we can find λ1, λ2, . . . , λn ∈ F not all zero such that

n∑
j=1

λj ej = 0.
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By renumbering, if necessary, we may suppose that λn �= 0, so

en =
n−1∑
j=1

μj ej

with μj = −λj/λn.
We claim that e1, e2, . . . , en−1 span U . For, if u ∈ U , we know, by hypothesis, that

there exist νj ∈ F with

u =
n∑

j=1

νj ej

and so

u = νnen +
n−1∑
j=1

νj ej =
n−1∑
j=1

(νj + μjνn)ej .

(ii) If λe1 = 0 with λ �= 0, then

e1 = λ−1(λe1) = λ−10 = 0

which is impossible.
(iii) Use (i) repeatedly.
(iv) We have proved the ‘if’ part. The only if part follows by the definition of a basis. �

Consistency requires that we take the empty set ∅ to be the basis of the vector space
U = {0}.

Lemma 5.4.4 (i) is complemented by another simple result.

Lemma 5.4.5 Let U be a vector space over F. If the vectors e1, e2, . . . , en are linearly
independent, then either they form a basis or we may find a further en+1 ∈ U so that
e1, e2, . . . , en+1 are linearly independent.

Proof If the vectors e1, e2, . . . , en do not form a basis, then there exists an en+1 ∈ U such
that there do not exist μj ∈ F with en+1 =

∑n
j=1 μj ej .

If
∑n+1

j=1 λj ej = 0, then, if λn+1 �= 0, we have

en+1 =
n∑

j=1

(−λj/λn+1)ej

which is impossible by the previous paragraph. Thus λn+1 = 0 and

n∑
j=1

λj ej = 0,

so, by hypothesis, λ1 = λ2 = . . . = λn = 0. We have shown that e1, e2, . . . , en+1 are
linearly independent. �
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We now come to a crucial result in vector space theory which states that, if a vector
space has a finite basis, then all its bases contain the same number of elements. We use a
kind of ‘etherialised Gaussian elimination’ called the Steinitz replacement lemma.

Lemma 5.4.6 [The Steinitz replacement lemma] Let U be a vector space over F and let
m ≥ n− 1 ≥ r ≥ 0. If e1, e2, . . . , en are linearly independent and the vectors

e1, e2, . . . , er , fr+1, fr+2, . . . , fm

span U (if r = 0, this means that f1, f2, . . . , fm span U ), then m ≥ r + 1 and, after
renumbering the fj if necessary,

e1, e2, . . . , er , er+1, fr+2, . . . , fm

span the space.7

Proof Since e1, e2, . . . , er , fr+1, fr+2, . . . , fm span U , it follows, in particular, that there
exist λj ∈ F such that

er+1 =
r∑

j=1

λj ej +
n∑

j=r+1

λj fj .

If λj = 0 for r + 1 ≤ j ≤ m (and so, in particular if m = r), then

r∑
j=1

λj ej + (−1)er+1 = 0,

contradicting the hypothesis that the ej are independent.
Thus m ≥ r + 1 and, after renumbering the fj if necessary, we may suppose that λr+1 �=

0 so, after algebraic rearrangement,

fj+1 =
r+1∑
j=1

μj ej +
n∑

j=r+2

μj fj

where μj = −λj/λr+1 for j �= r + 1 and μr+1 = 1/λr+1.
We proceed to show that

e1, e2, . . . , er , er+1, fr+2, . . . , fm

span U . If u ∈ U , then, by hypothesis, we can find νj ∈ F such that

u =
r∑

j=1

νj ej +
n∑

j=r+1

νj fj ,

7 In science fiction films, the inhabitants of some innocent village are replaced, one by one, by things from outer space. In the
Steinitz replacement lemma, the original elements of the spanning collection are replaced, one by one, by elements from the
linearly independent collection.
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so

u =
r∑

j=1

(νj + νr+1μj )ej + νr+1μr+1er+1 +
n∑

j=r+2

(νj + νr+1μj )fj

and we are done. �

The Steinitz replacement lemma has several important corollaries.

Theorem 5.4.7 Let U be a vector space over F.
(i) If the vectors e1, e2, . . . , en are linearly independent and the vectors f1, f2, . . . , fm

span U , then m ≥ n.
(ii) If U has a finite basis, then all bases have the same number of elements.
(iii) If U has a finite basis, then any subspace of U has a finite basis.
(iv) If U has a basis with n elements, then any collection of n vectors which span U will

be a basis for U and any collection of n linearly independent vectors will be a basis for U .
(v) If U has a finite basis, then any collection of linearly independent vectors can be

extended to form a basis.

Proof (i) Suppose, if possible, that m < n. By applying the Steinitz replacement lemma m

times, we see that e1, e2, . . . , em span U . Thus we can find λ1, λ2, . . . , λm such that

en =
m∑

j=1

λj ej

and so
m∑

j=1

λj ej + (−1)en = 0

contradicting linear independence.
(ii) If the vectors e1, e2, . . . , en and f1, f2, . . . , fm are both bases, then, since the ej are

linearly independent and the fk span, part (i) tells us that m ≥ n. Reversing the roles, we
get n ≥ m, so n = m.

(iii) Let U have a basis with n elements and let V be a subspace. If we use Lemma 5.4.5
to find a sequence e1, e2, . . . of linearly independent vectors in V , then, by part (i), the
process must terminate after at most n steps and Lemma 5.4.5 tells us that we will then
have a basis for V .

(iv) By Lemma 5.4.4 (i), any collection of n vectors which spanned U and was not a
basis would contain a spanning collection with n− 1 members, which is impossible by
part (i). By Lemma 5.4.5 any collection of n linearly independent vectors which was not
a basis could be extended to a collection of n+ 1 linearly independent vectors which is
impossible by part (i).

(v) Suppose that e1, e2, . . . , ek are linearly independent and f1, f2, . . . , fn is a basis for
U . Applying the Steinitz replacement lemma k times we obtain possibly after renumbering
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the fj , a spanning set

e1, e2, . . . , ek, fk+1, fk+2, . . . , fn

which must be a basis by (iv). �

Theorem 5.4.7 enables us to introduce the notion of dimension.

Definition 5.4.8 If a vector space U over F has no finite spanning set, then we say that U

is infinite dimensional. If U is non-trivial and has a finite spanning set, we say that U is
finite dimensional with dimension the size of any basis of U . If U = {0}, we say that U has
zero dimension.

Theorem 5.4.7 immediately gives us the following result.8

Theorem 5.4.9 Any subspace of a finite dimensional vector space is itself finite dimen-
sional. The dimension of a subspace cannot exceed the dimension of the original space.

Here is a typical result on dimension. We write dim X for the dimension of X.

Lemma 5.4.10 Let V and W be subspaces of a vector space U over F.
(i) The sets V ∩W and

V +W = {v+ w : v ∈ V, w ∈ W }
are subspaces of U .

(ii) If V and W are finite dimensional, then so are V ∩W and V +W . We have

dim(V ∩W )+ dim(V +W ) = dim V + dim W.

Proof (i) Left as an easy, but recommended, exercise for the reader.
(ii) Since we are talking about dimension, we must introduce a basis. It is a good idea

in such cases to ‘find the basis of the smallest space available’. With this advice in mind,
we observe that V ∩W is a subspace of the finite dimensional space V and so is finite
dimensional with basis e1, e2, . . . , ek say. By Theorem 5.4.7 (iv), we can extend this to a
basis e1, e2, . . . , ek , ek+1, ek+2, . . . , ek+l of V and to a basis e1, e2, . . . , ek , ek+l+1, ek+l+2,
. . . , ek+l+m of W . We claim that e1, e2, . . . , ek , ek+1, ek+2, . . . , ek+l , ek+l+1, ek+l+2, . . . ,
ek+l+m form a basis of V +W .

First we show that the purported basis spans V +W . If u ∈ V +W , then we can find
v ∈ V and w ∈ W such that u = v+ w. By the definition of a basis we can find λ1, λ2, . . . ,
λk , λk+1, λk+2, . . . , λk+l ∈ F and μ1, μ2, . . . , μk , μk+l+1, μk+l+2, . . . , μk+l+m ∈ F such
that

v =
k∑

j=1

λj ej +
k+l∑

j=k+1

λj ej and w =
k∑

j=1

μj ej +
k+l+m∑

j=k+l+1

μj ej .

8 The result may appear obvious, but I recall a lecture by a distinguished engineer in which he correctly predicted the failure of a
US Navy project on the grounds that it required finding five linearly independent vectors in a space of dimension three.
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It follows that

u = v+ w =
k∑

j=1

(λj + μj )ej +
k+l∑

j=k+1

λj ej +
k+l+m∑

j=k+l+1

μj ej

and we have a spanning set.
Next we show that the purported basis is linearly independent. To this end, suppose that

λj ∈ F and

k+l+m∑
j=1

λj ej = 0.

We then have
k+l+m∑

j=k+l+1

λj ej = −
k+l∑
j=1

λj ej ∈ V

and, automatically

k+l+m∑
j=k+l+1

λj ej ∈ W.

Thus
k+l+m∑

j=k+l+1

λj ej ∈ V ∩W

and so we can find μ1, μ2, . . . , μk such that

k+l+m∑
j=k+l+1

λj ej =
k∑

j=1

μj ej .

We thus have
k∑

j=1

μj ej +
k+l+m∑

j=k+l+1

(−λj )ej = 0.

Since e1, e2, . . . , ek ek+l+1, ek+l+2, . . . , ek+l+m form a basis for W , they are independent
and so

μ1 = μ2 = . . . = μk = −λk+l+1 = −λk+l+2 = . . . = −λk+l+m = 0.

In particular, we have shown that

λk+l+1 = λk+l+2 = . . . = λk+l+m = 0.

Exactly the same kind of argument shows that

λk+1 = λk+2 = . . . = λk+l = 0.
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We now know that

k∑
j=1

λj ej = 0

so, since we are dealing with a basis for V ∩W , we have

λ1 = λ2 = . . . = λk = 0.

We have proved that λj = 0 for 1 ≤ j ≤ k + l +m so we have linear independence and
our purported basis is, indeed, a basis.

The dimensions of the various spaces involved can now be read off as follows.

dim(V ∩W ) = k, dim V = k + l, dim W = k +m, dim(V +W ) = k + l +m.

Thus

dim(V ∩W )+ dim(V +W ) = k + (k + l +m) = 2k + l +m

= (k + l)+ (k +m) = dim V + dim W

and we are done. �

Exercise 5.4.11 We work in R4. Let

U = {(x, y, z,w) : x + y − 2z+ w = 0, −x + y + z− 3w = 0},
V = {(x, y, z,w) : x − 2y + z+ 2w = 0, y + z− 3w = 0}.

Explain why U and V are subspaces of R4. Find a basis of U ∩ V , extend it to a basis of
U and extend the resulting basis to a basis of U + V .

Exercise 5.4.12 (i) Let V and W be subspaces of a finite dimensional vector space U over
F. By using Lemma 5.4.10, or otherwise, show that

min{dim U, dim V + dim W } ≥ dim(V +W ) ≥ max{dim V, dim W }.
(ii) Suppose that n, r , s and t are positive integers with

min{n, r + s} ≥ t ≥ max{r, s}.
Show that any vector space U over F of dimension n contains subspaces V and W such
that

dim V = r, dim W = s, dim(V +W ) = t.

The next exercise should always be kept in mind when talking about ‘standard bases’.

Exercise 5.4.13 Show that

E = {x ∈ R3 : x1 + x2 + x3 = 0}
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is a subspace of R3. Write down a basis for E and show that it is a basis. Do you think that
everybody who does this exercise will choose the same basis? What does this tell us about
the notion of a ‘standard basis’?
[Exercise 5.5.19 gives other examples where there are no ‘natural’ bases.]

The final exercise of this section introduces an idea which reappears throughout mathe-
matics.

Exercise 5.4.14 (i) Suppose that U is a vector space over F. Suppose that V is a non-empty
collection of subspaces of U . Show that, if we write⋂

V∈V
V = {e : e ∈ V for all V ∈ V},

then
⋂

V∈V V is a subspace of U .
(ii) Suppose that U is a vector space over F and E is a non-empty subset of U . If we

write V for the collection of all subspaces V of U with V ⊇ E, show that W =⋂V∈V V is
a subspace of U such that (a) E ⊆ W and (b) whenever W ′ is a subspace of U containing
E we have W ⊆ W ′. (In other words, W is the smallest subspace of U containing E.)

(iii) Continuing with the notation of (ii), show that if E = {ej : 1 ≤ j ≤ n}, then

W =
⎧⎨
⎩

n∑
j=1

λj ej : λj ∈ F for 1 ≤ j ≤ n

⎫⎬
⎭ .

We call the set W described in Exercise 5.4.14 the subspace of U spanned by E and
write W = span E.

5.5 Image and kernel

In this section we revisit the system of simultaneous linear equations

Ax = b

using the idea of dimension.

Definition 5.5.1 If U and V are vector spaces over F and α : U → V is linear, then the set

α(U ) = {αu : u ∈ U}
is called the image (or image space) of α and the set

α−1(0) = {u ∈ U : αu = 0}
is the kernel (or null-space) of α. We write ker α = α−1(0) and im α = α(U ).

Lemma 5.5.2 Let U and V be vector spaces over F and let α : U → V be a linear map.
(i) α(U ) is a subspace of V .
(ii) α−1(0) is a subspace of U .
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Proof It is left as a very strongly recommended exercise for the reader to check that the
conditions of Definition 5.2.4 apply. �

Exercise 5.5.3 Let U and V be vector spaces over F and let α : U → V be a linear map.
If v ∈ V , but v �= 0, is it (a) always true, (b) sometimes true and sometimes false or (c)
always false that

α−1(v) = {u ∈ U : αu = v}
is a subspace of U? Give reasons.

The proof of the next theorem requires care, but the result is very useful.

Theorem 5.5.4 [The rank-nullity theorem] Let U and V be vector spaces over F and
let α : U → V be a linear map. If U is finite dimensional, then α(U ) and α−1(0) are finite
dimensional and

dim α(U )+ dim α−1(0) = dim U.

Here dim X means the dimension of X. We call dim α(U ) the rank of α and dim α−1(0)
the nullity of α. We do not need V to be finite dimensional, but the reader will miss nothing
if she only considers the case when V is finite dimensional.

Proof I repeat the opening sentences of the proof of Lemma 5.4.10. Since we are talking
about dimension, we must introduce a basis. It is a good idea in such cases to ‘find the basis
of the smallest space available’. With this advice in mind, we choose a basis e1, e2, . . . , ek

for α−1(0). (Since α−1(0) is a subspace of a finite dimensional space, Theorem 5.4.9 tells
us that it must itself be finite dimensional.) By Theorem 5.4.7 (iv), we can extend this to
basis e1, e2, . . . , en of U .

We claim that αek+1, αek+2, . . . , αen form a basis for α(U ). The proof splits into two
parts. First observe that, if u ∈ U , then, by the definition of a basis, we can find λ1, λ2, . . . ,
λn ∈ F such that

u =
n∑

j=1

λj ej ,

and so, using linearity and the fact that αej = 0 for 1 ≤ j ≤ k,

α

⎛
⎝ n∑

j=1

λj ej

⎞
⎠ = n∑

j=1

λjαej =
n∑

j=k+1

λjαej .

Thus αek+1, αek+2, . . . , αen span α(U ).
To prove linear independence, we suppose that λk+1, λk+2, . . . , λn ∈ F are such that

n∑
j=k+1

λjαej = 0.
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By linearity,

α

⎛
⎝ n∑

j=k+1

λj ej

⎞
⎠ = 0,

and so
n∑

j=k+1

λj ej ∈ α−1(0).

Since e1, e2, . . . , ek form a basis for α−1(0), we can find μ1, μ2, . . . , μk ∈ F such that

n∑
j=k+1

λj ej =
k∑

j=1

μj ej .

Setting λj = −μj for 1 ≤ j ≤ k, we obtain

n∑
j=1

λj ej = 0.

Since the ej are independent, λj = 0 for all 1 ≤ j ≤ n and so, in particular, for all k + 1 ≤
j ≤ n. We have shown that αek+1, αek+2, . . . , αen are linearly independent and so, since
we have already shown that they span α(U ), it follows that they form a basis.

By the definition of dimension, we have

dim U = n, dim α−1(0) = k, dim α(U ) = n− k,

so

dim α(U )+ dim α−1(0) = (n− k)+ k = n = dim U

and we are done. �

Exercise 5.5.5 Let U be a finite dimensional space and let α ∈ L(U,U ). Show that the
following statements are equivalent.

(i) α is injective.
(ii) α is surjective.
(iii) α is bijective.
(iv) α is invertible.

[Compare Exercise 5.3.10 (iii). You may also wish to consider how obvious our abstract
treatment makes the result of Lemma 3.4.13.]

Exercise 5.5.6 Let U = V = R3 and let α : U → V be the linear map with

α

⎛
⎝1

0
0

⎞
⎠ =
⎛
⎝a

b

b

⎞
⎠ , α

⎛
⎝0

1
0

⎞
⎠ =
⎛
⎝b

a

b

⎞
⎠ and α

⎛
⎝0

0
1

⎞
⎠ =
⎛
⎝b

b

a

⎞
⎠ .
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Find the values of a and b, if any, for which α has rank 3, 2, 1 and 0. In each case find a
basis for α−1(0), extend it to a basis for U and identify a basis for α(U ).

We can extract a little extra information from the proof of Theorem 5.5.4 which will
come in handy later.

Lemma 5.5.7 Let U be a vector space of dimension n and V a vector space of dimension
m over F and let α : U → V be a linear map. We can find a q with 0 ≤ q ≤ min{n,m}, a
basis u1, u2, . . . , un for U and a basis v1, v2, . . . , vm for V such that

αuj =
{

vj for 1 ≤ j ≤ q,

0 otherwise.

Proof We use the notation of the proof of Theorem 5.5.4. Set q = n− k and uj = en+1−j .
If we take

vj = αuj for 1 ≤ j ≤ q,

we know that v1, v2, . . . , vq are linearly independent and so can be extended to a basis v1,
v2, . . . , vm for V . We have achieved the required result. �

We use Theorem 5.5.4 in conjunction with a couple of very simple results.

Lemma 5.5.8 Let U and V be vector spaces over F and let α : U → V be a linear map.
Consider the equation

αu = v, �

where v is a fixed element of V and u ∈ U is to be found.
(i) � has a solution if and only if v ∈ α(U ).
(ii) If u = u0 is a solution of �, then the solutions of � are precisely those u with

u ∈ u0 + α−1(0) = {u0 + w : w ∈ α−1(0)}.
Proof (i) This is a tautology.

(ii) Left as an exercise. �

Combining Theorem 5.5.4 and Lemma 5.5.8, gives the following result.

Lemma 5.5.9 Let U and V be vector spaces over F and let α : U → V be a linear map.
Suppose further that U is finite dimensional with dimension n. Then the set of solutions of

αu = 0

forms a vector subspace of U of dimension k, say.
The set of v ∈ V such that

αu = v �

has a solution, is a finite dimensional subspace of V with dimension n− k.
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If u = u0 is a solution of �, then the set

{u− u0 : u is a solution of �}
is a subspace of U with dimension k.

Proof Immediate. �
It is easy to apply these results to a system of m linear equations in n unknowns. We

introduce the notion of the column rank of a matrix.

Definition 5.5.10 Let A be an m× n matrix over F with columns the column vectors a1,
a2, . . . , an. The column rank9 of A is the dimension of the subspace of Fm spanned by a1,
a2, . . . , an.

Theorem 5.5.11 Let A be an m× n matrix over F with columns the column vectors a1, a2,
. . . , an and let b be a column vector with m entries. Consider the system of linear equations

Ax = b. �
(i) � has a solution if and only if

b ∈ span{a1, a2, . . . , an}
(that is to say, b lies in the subspace spanned by a1, a2, . . . , an).

(ii) � has a solution if and only if

rank A = rank(A|b),

where (A|b) is the m× (n+ 1) matrix formed from A by adjoining b as the n+ 1st
column.10

(iii) If we write

N = {x ∈ Fn : Ax = 0},
then N is a subspace of Fn of dimension n− rank A. If x0 is a solution of �, then the
solutions of � are precisely the x = x0 + u where u ∈ N .

Proof (i) We give the proof at greater length than is really necessary. Let α : Fn → Fn be
the linear map defined by

α(x) = Ax.

Then

α(Fn) = {α(x) : x ∈ Fn} = {Ax : x ∈ Fn}

=
⎧⎨
⎩

n∑
j=1

xj aj : xj ∈ F for 1 ≤ j ≤ n

⎫⎬
⎭

= span{a1, a2, . . . , an},

9 Often called simply the rank. Exercise 5.5.13 explains why we can drop the reference to columns.
10 (A|b) is sometimes called the augmented matrix.
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and so

� has a solution ⇔ there is an x such that α(x) = b

⇔ b ∈ α(Fn)

⇔ b ∈ span{a1, a2, . . . , an},
as stated.

(ii) Observe that, using part (i),

� has a solution ⇔ b ∈ span{a1, a2, . . . , an}
⇔ span{a1, a2, . . . , am, b} = span{a1, a2, . . . , an}
⇔ dim span{a1, a2, . . . , am, b} = dim span{a1, a2, . . . , an}
⇔ rank(A|b) = rank A.

(iii) Observe that N = α−1(0), so, by the rank-nullity theorem (Theorem 5.5.4), N is a
subspace of Fm with

dim N = dim α−1(0) = dim Fn − dim α(Fn) = n− rank A.

The rest of part (iii) can be checked directly or obtained from several of our earlier
results. �

Exercise 5.5.12 Compare Theorem 5.5.11 with the results obtained in Chapter 1.

Mathematicians of an earlier generation might complain that Theorem 5.5.11 just restates
‘what every gentleman knows’ in fine language. There is an element of truth in this, but it
is instructive to look at how the same topic was treated in a textbook, at much the same
level as this one, a century ago.

Chrystal’s Algebra [11] is an excellent text by an excellent mathematician. Here is how
he states a result corresponding to part of Theorem 5.5.11.

If the reader now reconsider the course of reasoning through which we have led him in the cases of
equations of the first degree in one, two and three variables respectively, he will see that the spirit of
that reasoning is general; and that by pursuing the same course step by step we should arrive at the
following general conclusion:–

A system of n− r equations of the first degree in n variables has in general a solution involving
r arbitrary constants; in other words has an r-fold infinity of of different solutions.

(Chrystal Algebra, Volume 1, Chapter XVI, section 14, slightly modified [11])

From our point of view, the problem with Chrystal’s formulation lies with the words in
general. Chrystal was perfectly aware that examples like

x + y + z+ w = 1

x + 2y + 3z+ 4w = 1

2x + 3y + 4z+ 5w = 1
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or

x + y = 1

x + y + z+ w = 1

2x + 2y + z+ w = 2

are exceptions to his ‘general rule’, but would have considered them easily spotted
pathologies.

For Chrystal and his fellow mathematicians, systems of linear equations were peripheral
to mathematics. They formed a good introduction to algebra for undergraduates, but a
professional mathematician was unlikely to meet them except in very simple cases. Since
then, the invention of electronic computers has moved the solution of very large systems of
linear equations (where ‘pathologies’ are not easy to spot) to the centre stage. At the same
time, mathematicians have discovered that many problems in analysis may be treated by
methods analogous to those used for systems of linear equations. The ‘nit picking precision’
and ‘unnecessary abstraction’ of results like Theorem 5.5.11 are the result of real needs
and not mere fashion.

Exercise 5.5.13 (i) Write down the appropriate definition of the row rank of a matrix.
(ii) Show that the row rank and column rank of a matrix are unaltered by elementary

row and column operations.
[There are many ways of doing this. You may find it helpful to observe that if a1, a2, . . . , ak

are row vectors in Fm and B is a non-singular m×m matrix then a1B, a2B, . . . , akB are
linearly independent if and only if a1, a2, . . . , ak are.]

(iii) Use Theorem 1.3.6 (or a similar result) to deduce that the row rank of a matrix
equals its column rank. For this reason we can refer to the rank of a matrix rather than its
column rank.
[We give a less computational proof in Exercise 11.4.18.]

Exercise 5.5.14 Suppose that a and b are real. Find the rank r of the matrix⎛
⎜⎜⎝

a 0 b 0
0 a 0 b

a 0 0 b

0 b 0 a

⎞
⎟⎟⎠

and, when r �= 0, exhibit a non-singular r × r submatrix.

Here is another application of the rank-nullity theorem.

Lemma 5.5.15 Let U , V and W be finite dimensional vector spaces over F and let
α : V → W and β : U → V be linear maps. Then

min{rank α, rank β} ≥ rank αβ ≥ rank α + rank β − dim U.
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Proof Let

Z = βU = {βu : u ∈ U}
and define α|Z : Z → W , the restriction of α to Z, in the usual way, by setting α|Zz = αz
for all z ∈ Z.

Since Z ⊆ V ,

rank αβ = rank α|Z = dim α(Z) ≤ dim α(V ) = rank α.

By the rank-nullity theorem

rank β = dim Z = rank α|Z + nullity α|Z ≥ rank α|Z = rank αβ.

Applying the rank-nullity theorem twice,

rank αβ = rank α|Z = dim Z − nullity α|Z
= rank β − nullity α|Z = dim U − nullity β − nullity α|Z. �

Since Z ⊆ V ,

{z ∈ Z : αz = 0} ⊆ {v ∈ V : αv = 0}
we have nullity α ≥ nullity α|Z and, using �,

rank αβ ≥ dim U − nullity β − nullity α = rank α + rank β − dim U,

as required. �

Exercise 5.5.16 By considering the product of appropriate n× n diagonal matrices A

and B, or otherwise, show that, given any integers n, r , s and t with

n ≥ max{r, s} ≥ min{r, s} ≥ t ≥ max{r + s − n, 0},
we can find linear maps α, β : Fn → Fn such that rank α = r , rank β = s and rank αβ = t .

If the reader is interested, she can glance forward to Theorem 11.2.2 which develops
similar ideas.

Exercise 5.5.17 [Fisher’s inequality] At the start of each year, the jovial and popular Dean
of Muddling (pronounced ‘Chumly’) College organises n parties for the m students in the
College. Each student is invited to exactly k parties, and every two students are invited to
exactly one party in common. Naturally, k ≥ 2. Let P = (pij ) be the m× n matrix defined
by

pij =
{

1 if student i is invited to party j

0 otherwise.

Calculate the matrix PP T and find its rank. Deduce that n ≥ m.
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After the Master’s cat has been found dyed green, maroon and purple on successive
nights, the other Fellows insist that next year k = 1. What will happen? (The answer
required is mathematical rather than sociological in nature.) Why does the proof that
n ≥ m now fail?

It is natural to ask about the rank of α + β when α, β ∈ L(U,V ). A little experimentation
with diagonal matrices suggests the answer.

Exercise 5.5.18 (i) Suppose that U and V are finite dimensional spaces over F and
α, β : U → V are linear maps. By using Lemma 5.4.10, or otherwise, show that

min{dim U, dim V, rank α + rank β} ≥ rank(α + β).

(ii) By considering α + β and −β, or otherwise, show that, under the conditions of (i),

rank(α + β) ≥ | rank α − rank β|.
(iii) Suppose that n, r , s and t are positive integers with

min{n, r + s} ≥ t ≥ |r − s|.
Show that, given any finite dimensional vector space U of dimension n, we can find
α, β ∈ L(U,U ) such that rank α = r , rank β = s and rank(α + β) = t .

Exercise 5.5.19 [Simple magic squares] Consider the set � of 3× 3 real matrices
A = (aij ) such that all rows and columns add up to the same number. (Thus A ∈ � if and
only if there is a K such that

∑3
r=1 arj = K for all j and

∑3
r=1 air = K for all i.)

(i) Show that � is a finite dimensional real vector space with the usual matrix addition
and multiplication by scalars.

(ii) Find the dimension of �. Find a basis for � and show that it is indeed a basis. Do
you think there is a ‘natural basis’?

(iii) Extend your results to n× n ‘simple magic squares’.
[We continue with these ideas in Exercise 5.7.11.]

5.6 Secret sharing

The contents of this section are not meant to be taken very seriously. I suggest that the
reader ‘just goes with the flow’ without worrying about the details. If she returns to this
section when she has more experience with algebra, she will see that it is entirely rigorous.

So far we have only dealt with vector spaces and systems of equations over F, where F

is R or C. But R and C are not the only systems in which we can add, subtract, multiply
and divide in a natural manner. In particular, we can do all these things when we consider
the integers modulo p, where p is prime.

If we imitate our work on Gaussian elimination, working with the integers modulo p,
we arrive at the following theorem.
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Theorem 5.6.1 Let A = (aij ) be an n× n matrix of integers and let bi ∈ Z. Then the
system of equations

n∑
j=1

aij xj ≡ bi [1 ≤ i ≤ n]

modulo p has a unique11 solution modulo p if and only if det A �≡ 0 modulo p.

This observation has been made the basis of an ingenious method of secret sharing. We
have all seen films in which two keys owned by separate people are required to open a safe.
In the same way, we can imagine a safe with k combination locks with the number required
by each separate lock each known to a separate person. But what happens if one of the k

secret holders is unavoidably absent? In order to avoid this problem we require n secret
holders, any k of whom acting together can open the safe, but any k − 1 of whom cannot
do so.

Here is the neat solution found by Shamir.12 The locksmith chooses a very large prime
(as the reader probably knows, it is very easy to find large primes) and then chooses a
random integer S with 0 ≤ S ≤ p − 1. She then makes a combination lock which can
only be opened using S. Next she chooses integers b1, b2, . . . , bk−1 at random subject to
0 ≤ bj ≤ p − 1, and distinct integers c1, c2, . . . , cn at random subject to 1 ≤ cj ≤ p − 1.

She now sets b0 = S and computes

P (r) ≡ b0 + b1cr + b2c
2
r + · · · + bk−1c

k−1
r mod p

choosing 0 ≤ P (r) ≤ p − 1. She calls on each ‘key holder’ in turn, telling the rth ‘key
holder’ their secret number pair (cr , P (r)). She then tells all the key holders the value of p

and burns her calculations.
Suppose that k secret holders r(1), r(2), . . . , r(k) meet together. By the properties of the

Vandermonde determinant (see Exercise 4.4.9)

det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 cr(1) c2
r(1) . . . ck−1

r(1)

1 cr(2) c2
r(2) . . . ck−1

r(2)

1 cr(3) c2
r(3) . . . ck−1

r(3)
...

...
...

. . .
...

1 cr(k) c2
r(k) . . . ck−1

r(k)

⎞
⎟⎟⎟⎟⎟⎟⎠ ≡ det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
cr(1) cr(2) cr(3) . . . cr(k)

c2
r(1) c2

r(2) c2
r(3) . . . c2

r(k)
...

...
...

. . .
...

ck−1
r(1) ck−1

r(2) ck−1
r(3) . . . ck−1

r(k)

⎞
⎟⎟⎟⎟⎟⎟⎠

≡
∏

1≤j<i≤k

(cr(i) − cr(j )) �≡ 0 mod p.

11 That is to say, if x and x′ are solutions, then xj ≡ x ′j modulo p.
12 A similar scheme was invented independently by Blakely.
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Thus the system of equations

x0 + cr(1)x1 + c2
r(1)x2 + · · · + ck−1

r(1) xk−1 ≡ P (cr(1))

x0 + cr(2)x1 + c2
r(2)x2 + · · · + ck−1

r(2) xk−1 ≡ P (cr(2))

x0 + cr(3)x1 + c2
r(3)x2 + · · · + ck−1

r(3) xk−1 ≡ P (cr(3))

...

x0 + cr(k)x1 + c2
r(k)x2 + · · · + ck−1

r(k) xk−1 ≡ P (cr(k))

has a unique solution x. But we know that b = (b0, b1, . . . , bk−1)T is a solution, so x = b
and the number of the combination lock S = b0 = x0.

On the other hand

det

⎛
⎜⎜⎜⎜⎜⎝

cr(1) c2
r(1) . . . ck−1

r(1)

cr(2) c2
r(2) . . . ck−1

r(2)

cr(3) c2
r(3) . . . ck−1

r(3)
...

...
. . .

...
cr(k−1) c2

r(k−1) . . . ck−1
r(k−1)

⎞
⎟⎟⎟⎟⎟⎠ ≡ cr(1)cr(2) . . . cr(k−1)

∏
1≤j<i≤k−1

(cr(i) − cr(j )) �≡ 0

modulo p, so the system of equations

x0 + cr(1)x1 + c2
r(1)x2 + · · · + ck−1

r(1) xk−1 ≡ P (cr(1))

x0 + cr(2)x1 + c2
r(2)x2 + · · · + ck−1

r(2) xk−1 ≡ P (cr(2))

x0 + cr(3)x1 + c2
r(3)x2 + · · · + ck−1

r(3) xk−1 ≡ P (cr(3))

...

x0 + cr(k−1)x1 + c2
r(k−1)x2 + · · · + ck−1

r(k−1)xk−1 ≡ P (cr(k−1))

has a solution, whatever value of x0 we take, and there is no way that k − 1 secret holders
can work out the number of the combination lock!

Exercise 5.6.2 Suppose that, with the notation above, we take p = 7, k = 2, b0 = 2, b1 =
2, c1 = 2, c2 = 4 and c3 = 5. Compute P (1), P (2) and P (3) and perform the recovery of b0

from the pair (P (1), c(1)) and (P (2), c(2)) and from the pair (P (2), c(2)) and (P (3), c(3)).

Exercise 5.6.3 We required that the cj be distinct. Why is it obvious that this is a good
idea? At what point in the argument did we make use of the fact that the cj are distinct?

We required that the cj be non-zero. Why is it obvious that this is a good idea? At what
point in the argument did we make use of the fact that the cj are non-zero?

Exercise 5.6.4 Suppose that, with the notation above, we take p = 6 (so p is not a prime),
k = 2, b0 = 1, b1 = 1, c1 = 1, c2 = 4. Show that you cannot recover b0 from (P (1), c(1))
and (P (2), c(2)) What part of our discussion of the case when p is prime fails?
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Exercise 5.6.5 (i) Suppose that, instead of choosing the cj at random, we simply take
cj = j (but choose the bs at random). Is it still true that k secret holders can work out the
combination but k − 1 cannot?

(ii) Suppose that, instead of choosing the bs at random, we simply take bs = s for
s �= 0 (but choose the cj at random). Is it still true that k secret holders can work out the
combination but k − 1 cannot?
[Note, however, that a guiding principle of cryptography is that, if something can be kept
secret, it should be kept secret.]

Exercise 5.6.6 The Dark Lord Y’Trinti has acquired the services of the dwarf Trigon who
can engrave pairs of very large integers on very small rings. The Dark Lord instructs Trigon
to use the method of secret sharing described above to engrave n rings in such a way that
anyone who acquires k of the rings and knows the Prime Perilous p can deduce the Integer
N of Power but owning k − 1 rings will give no information whatever.

For reasons to be explained in the prequel, Trigon engraves an (n+ 1)st ring with
random integers. A band of heroes (who know the Prime Perilous and all the information
given in this exercise) sets out to recover the rings. What, if anything, can they say, with
very high probability, about the Integer of Power if they have k rings (possibly including
the fake)? What can they say if they have k + 1 rings? What if they have k + 2 rings?

5.7 Further exercises

Exercise 5.7.1 Let A and B be n× n matrices. State and prove necessary and sufficient
conditions involving the row ranks of A and the n× 2n matrix (A B) for the existence of
an n× n matrix X with AX = B. When is X unique and why?

Find X when

A =
⎛
⎝4 1 1

1 2 1
0 3 1

⎞
⎠ and B =

⎛
⎝1 1 1

0 1 0
3 1 2

⎞
⎠ .

Exercise 5.7.2 Let V be a vector space over F with basis e1, e2, . . . , en where n ≥ 2. For
which values of n, if any, are the following bases of V ?

(i) e1 − e2, e2 − e3, . . . , en−1 − en, en − e1.
(ii) e1 + e2, e2 + e3, . . . , en−1 + en, en + e1.

Prove your answers.

Exercise 5.7.3 Consider the vector space P of real polynomials P : R → R with the usual
operations. Which of the following define linear maps from P to P? Give reasons for your
answers.

(i) (Dp)(t) = p′(t).
(ii) (Sp)(t) = p(t2 + 1).
(iii) (Tp)(t) = p(t)2 + 1.
(iv) (Ep)(t) = p(et ).
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(v) (Jp)(t) = ∫ t

0 p(s) ds.
(vi) (Kp)(t) = 1+ ∫ t

0 p(s) ds.
(vii) (Lp)(t) = p(0)+ ∫ t

0 p(s) ds.
(viii) (Mp)(t) = p(t2)− tp(t).
(ix) R and Q, where Rp and Qp are polynomials satisfying the conditions that p(t) =

(t2 + 1)(Qp)(t)+ (Rp)(t) with Rp having degree at most 1.

Exercise 5.7.4 Let A, B and C be subspaces of a finite dimensional vector space V over F

and let α : U → U be linear. Which of the following statements are always true and which
may be false? Give proofs or counterexamples as appropriate.

(i) If dim(A ∩ B) = dim(A+ B), then A = B.
(ii) α(A ∩ B) = αA ∩ αB.
(iii) (B + C) ∩ (C + A) ∩ (A+ B) = (B ∩ C)+ (C ∩ A)+ (A ∩ B).

Exercise 5.7.5 Suppose that W is a vector space over F with subspaces U and V . If U ∪ V

is a subspace, show that U ⊇ V and/or V ⊇ U .

Exercise 5.7.6 Show that C is a vector space over R if we use the usual definitions of
addition and multiplication. Prove that it has dimension 2.

State and prove a similar result about Cn.

Exercise 5.7.7 (i) By expanding (1+ 1)(x+ y) in two different ways, show that condition
(ii) in the definition of a vector space (Definition 5.2.2) is redundant (that is to say, can be
deduced from the other axioms).

(ii) Let U = R2 and define λ • x = λx · e where we use the standard inner product from
Section 2.3 and e is a fixed unit vector. Show that, if we replace scalar multiplication
(λ, x) �→ λx by the ‘new scalar multiplication’ (λ, x) �→ λ • x, the new system obeys all
the axioms for a vector space except that there is no λ ∈ R with λ • x = x for all x ∈ U .

Exercise 5.7.8 Let P , Q and R be n× n matrices. Use elementary row operations to show
the 2n× 2n matrices (

PQ 0
Q QR

)
and

(
0 PQR

Q 0

)

have the same row rank. Hence show that

rank(PQ)+ rank(QR) ≤ rank Q+ rank PQR.

Exercise 5.7.9 If A and B are 2× 2 matrices over R, is it necessarily true that

rank AB = rank BA?

Give reasons.
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Exercise 5.7.10 If A is an n× n matrix and n ≥ 2, show that

rank Adj A =

⎧⎪⎪⎨
⎪⎪⎩

n if rank A = n,

1 if rank A = n− 1,

0 if rank A < n− 1.

Show that, if n ≥ 3, and A is not invertible, then Adj Adj A = 0. Is this true if n = 2?
Give a proof or counterexample.

Exercise 5.7.11 We continue the discussion of Exercise 5.5.19 by looking at ‘diagonal
magic squares’.

(i) Let �′ be the set of 3× 3 real matrices A = (aij ) such that all rows, columns and
diagonals add up to the same value. (Thus A ∈ � if and only if there is a K such that

3∑
i=1

aij =
3∑

i=1

aji =
3∑

i=1

aii =
3∑

i=1

ai,3−i = K

for all j .) Show that �′ is a finite dimensional real vector space with the usual matrix
addition and multiplication by scalars and find its dimension.

(ii) Think about the problem of extending these results to n× n diagonal magic squares
and, if you feel it would be a useful exercise, carry out such an extension.
[Outside textbooks on linear algebra, ‘magic square’ means a ‘diagonal magic square’ with
integer entries. I think part (ii) requires courage rather than insight, but there is a solution
in an article ‘Vector spaces of magic squares’ by J. E.Ward [32].]

Exercise 5.7.12 Consider P the set of polynomials in one real variable with real coeffi-
cients. Show that P is a subspace of the vector space of maps f : R → R and so a vector
space over R.

Show that the maps T and D defined by

T

⎛
⎝ n∑

j=0

aj t
j

⎞
⎠ = n∑

j=0

aj

j + 1
t j+1 and D

⎛
⎝ n∑

j=0

aj t
j

⎞
⎠ = n∑

j=1

jaj t
j−1

are linear.
(i) Show that T is injective, but not surjective.
(ii) Show that D is surjective, but not injective. What is the kernel of D?
(iii) Show that DT is the identity, but T D is not.
(iv) Which polynomials p, if any, have the property that p(D) = 0? (In other words,

find all p(t) =∑n
j=0 bj t

j such that the linear map
∑n

j=0 bjD
j = 0.)

(v) Suppose that V is a subspace of P such that f ∈ V ⇒ Tf ∈ V . Show that V cannot
be finite dimensional.

(vi) Let W be a subspace of P . Show that W is finite dimensional if and only if there
exists an m such that Dmf = 0 for all f ∈ W .
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Exercise 5.7.13 Let U be a finite dimensional vector space over F and let α, β : U → U

be linear. State and prove necessary and sufficient conditions involving α(U ) and β(U ) for
the existence of a linear map γ : U → U with αγ = β. When is γ unique and why?

Explain how this links with the necessary and sufficient condition of Exercise 5.7.1.
Generalise the result of this question and its parallel in Exercise 5.7.1 to the case when

U , V , W are finite dimensional vector spaces and α : U → W , β : V → W are linear.

Exercise 5.7.14 [The circulant determinant] We work over C. Consider the circulant
matrix

C =

⎛
⎜⎜⎜⎜⎜⎝

x0 x1 x2 . . . xn

xn x0 x1 . . . xn−1

xn−1 xn x0 . . . xn−2
...

...
...

. . .
...

x1 x2 x3 . . . x0

⎞
⎟⎟⎟⎟⎟⎠ .

By considering factors of polynomials in n variables, or otherwise, show that

det C =
n∏

j=0

f (ζ j ),

where f (t) =∑n
j=0 xj t

j and ζ = exp
(
2πi/(n+ 1)

)
.

Exercise 5.7.15 If A and B are n× n matrices of complex numbers, show that

det

(
A −B

B A

)
= det(A+ iB) det(A− iB).

Exercise 5.7.16 If J is a real m×m matrix satisfying J 2 = −I , show that m = 2n for
some integer n and there exists an invertible matrix P with

P−1JP =
(

0 I

−I 0

)
,

where the matrix entries are themselves n× n matrices.
Find the dimension of the space of 2n× 2n real matrices such that

AT J + JA = 0.
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Linear maps from Fn to itself

6.1 Linear maps, bases and matrices

We already know that matrices can be associated with linear maps. In this section we show
how to associate every linear map α : Fn → Fn with an n× n matrix.

Definition 6.1.1 Let α : Fn → Fn be linear and let e1, e2, . . . , en be a basis. Then the
matrix A = (aij ) of α with respect to this basis is given by the rule

α(ej ) =
n∑

i=1

aij ei .

At first sight, this definition looks a little odd. The reader may ask why ‘aij ei’ and not
‘ajiei’? Observe that, if x =∑n

j=1 xj ej and α(x) = y =∑n
i=1 yiei , then

yi =
n∑

j=1

aij xj .

Thus coordinates and bases must go opposite ways. The definition chosen is conventional,1

but represents a universal convention and must be learnt.
The reader may also ask why our definition introduces a general basis e1, e2, . . . , en

rather than sticking to a fixed basis. The answer is that different problems may be most
easily tackled by using different bases. For example, in many problems in mechanics it is
easier to take one basis vector along the vertical (since that is the direction of gravity) but
in others it may be better to take one basis vector parallel to the Earth’s axis of rotation.
(For another example see Exercise 6.8.1.)

If we do use the so-called standard basis, then the following observation is quite
useful.

Exercise 6.1.2 Let us work in the column vector space Fn. If e1, e2, . . . , en is the standard
basis (that is to say, ej is the column vector with 1 in the j th place and zero elsewhere),

1 An Englishman is asked why he has never visited France. ‘I know that they drive on the right there, so I tried it one day in
London. Never again!’

118
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then the matrix A of a linear map α : Fn → Fn with respect to this basis has α(ej ) as its
j th column.

Our definition of ‘the matrix associated with a linear map α : Fn → Fn’ meshes well
with our definition of matrix multiplication.

Exercise 6.1.3 Let α, β : Fn → Fn be linear and let e1, e2, . . . , en be a basis. If α has
matrix A and β has matrix B with respect to the stated basis, then αβ has matrix AB with
respect to the stated basis.

Exercise 6.1.3 allows us to translate results on linear maps from Fn to itself into results
on square matrices and vice versa. Thus we can deduce the result

(A+ B)C = AB + AC

from the result

(α + β)γ = αγ + αγ

or vice versa. On the whole, I prefer to deduce results on matrices from results on linear
maps in accordance with the following motto:

linear maps for understanding, matrices for computation.

Since we allow different bases and since different bases assign different matrices to the
same linear map, we need a way of translating from one basis to another.

Theorem 6.1.4 [Change of basis] Let α : Fn → Fn be a linear map. If α has matrix
A = (aij ) with respect to a basis e1, e2, . . . , en and matrix B = (bij ) with respect to a basis
f1, f2, . . . , fn, then there is an invertible n× n matrix P such that

B = P−1AP.

The matrix P = (pij ) is given by the rule

fj =
n∑

i=1

pij ei .

Proof Since the ei form a basis, we can find unique pij ∈ F such that

fj =
n∑

i=1

pij ei .

Similarly, since the fi form a basis, we can find unique qij ∈ F such that

ej =
n∑

i=1

qij fi .
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Thus, using the definitions of A and B and the linearity of α,

n∑
i=1

bij fi = α(fj ) = α

(
n∑

r=1

prj er

)

=
n∑

r=1

prjαer =
n∑

r=1

prj

(
n∑

s=1

asres

)

=
n∑

r=1

prj

(
n∑

s=1

asr

(
n∑

i=1

qisfi

))

=
n∑

i=1

(
n∑

s=1

n∑
r=1

qisasrprj

)
fi .

Since the fi form a basis,

bij =
n∑

s=1

n∑
r=1

qisasrprj =
n∑

r=1

(
n∑

s=1

qisasr

)
prj

and so

B = Q(AP ) = QAP.

Since the result is true for any linear map, it is true, in particular, for the identity map ι.
Here A = B = I , so I = QP and we see that P is invertible with inverse P−1 = Q. �
Exercise 6.1.5 Write out the proof of Theorem 6.1.4 using the summation convention.

Theorem 6.1.4 is associated with a definition.

Definition 6.1.6 Let A and B be n× n matrices. We say that A and B are similar (or
conjugate2) if there exists an invertible n× n matrix P such that B = P−1AP .

Exercise 6.1.7 (i) Show that, if two n× n matrices A and B are similar, then, given a basis

e1, e2, . . . , en,

we can find a basis

f1, f2, . . . , fn

such that A and B represent the same linear map with respect to the two bases.
(ii) Show that two n× n matrices are similar if and only if they represent the same linear

map with respect to two bases.
(iii) Show that similarity is an equivalence relation by using the definition directly. (See

Exercise 6.8.34 if you need to recall the definition of an equivalence relation.)
(iv) Show that similarity is an equivalence relation by using part (ii).

2 The word ‘similar’ is overused and the word ‘conjugate’ fits in well with the rest of algebra, but the majority of authors use
‘similar’.
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Exercise 6.8.25 proves the useful, and not entirely obvious, fact that, if two n× n

matrices with real entries are similar when considered as matrices over C, they are similar
when considered as matrices over R.

In practice it may be tedious to compute P and still more tedious3 to compute P−1.

Exercise 6.1.8 Let us work in the column vector space Fn. If e1, e2, . . . , en is the standard
basis (that is to say, ej is the column vector with 1 in the j th place and zero elsewhere) and
f1, f2, . . . , fn, is another basis, explain why the matrix P in Theorem 6.1.4 has fj as its j th
column.

Exercise 6.1.9 Although we wish to avoid explicit computation as much as possible, the
reader ought, perhaps, to do at least one example. Suppose that α : R3 → R3 has matrix⎛

⎝ 1 1 2
−1 2 1
0 1 3

⎞
⎠

with respect to the standard basis e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T . Find the
matrix associated with α for the basis f1 = (1, 0, 0)T , f2 = (1, 1, 0)T , f3 = (1, 1, 1)T .

Although Theorem 6.1.4 is rarely used computationally, it is extremely important from
a theoretical view.

Theorem 6.1.10 Let α : Fn → Fn be a linear map. If α has matrix A = (aij ) with respect
to a basis e1, e2, . . . , en and matrix B = (bij ) with respect to a basis f1, f2, . . . , fn, then
det A = det B.

Proof By Theorem 6.1.4, there is an invertible n× n matrix such that B = P−1AP . Thus

det B = det P−1 det A det P = (det P )−1 det A det P = det A.

�
Theorem 6.1.10 allows us to make the following definition.

Definition 6.1.11 Let α : Fn → Fn be a linear map. If α has matrix A = (aij ) with respect
to a basis e1, e2, . . . , en, then we define det α = det A.

Exercise 6.1.12 Explain why we needed Theorem 6.1.10 in order to make this definition.

From the point of view of Chapter 4, we would expect Theorem 6.1.10 to hold. The
determinant det α is the scale factor for the change in volume occurring when we apply the
linear map α and this cannot depend on the choice of basis. However, as we pointed out
earlier, this kind of argument, which appears plausible for linear maps involving R2 and
R3, is less convincing when applied to Rn and does not make a great deal of sense when
applied to Cn. Pure mathematicians have had to look rather deeper in order to find a fully

3 If you are faced with an exam question which seems to require the computation of inverses, it is worth taking a little time to
check that this is actually the case.
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satisfactory ‘basis free’ treatment of determinants and we shall not consider the matter in
this book.

6.2 Eigenvectors and eigenvalues

As we emphasised in the previous section, the same linear map α : Fn → Fn will be
represented by different matrices with respect to different bases. Sometimes we can find a
basis with respect to which the representing matrix takes a very simple form. A particularly
useful technique for doing this is given by the notion of an eigenvector.4

Definition 6.2.1 If α : Fn → Fn is linear and α(u) = λu for some vector u �= 0 and some
λ ∈ F, we say that u is an eigenvector of α with eigenvalue λ.

Note that, though an eigenvalue may be zero, the zero vector cannot be an eigenvector.
When we deal with finite dimensional vector spaces, there is a strong link between

eigenvalues and determinants.5

Theorem 6.2.2 If α : Fn → Fn is linear, then λ is an eigenvalue of α if and only if
det(λι− α) = 0.

Proof Observe that

λ is an eigenvalue of α

⇔ (α − λι)u = 0 has a non-trivial solution

⇔ (α − λι) is not invertible

⇔ det(α − λι) = 0

⇔ det(λι− α) = 0

as stated. �
We call the polynomial χα(t) = det(t ι− α) the characteristic polynomial 6 of α.

Exercise 6.2.3 (i) Verify that

det

(
t

(
1 0
0 1

)
−
(

a b

c d

))
= t2 − (Tr A)t + det A,

where Tr A = a + d .
(ii) If A = (aij ) is a 3× 3 matrix, show that

det(tI − A) = t3 − (Tr A)t2 + ct − det A,

where Tr A = a11 + a22 + a33 and c depends on A, but need not be calculated explicitly.

4 The development of quantum theory involved eigenvalues, eigenfunctions, eigenstates and similar eigenobjects. Eigenwords
followed the physics from German into English, but kept their link with German grammar in which the adjective is strongly
bound to the noun.

5 However, the notion of eigenvalue generalises to infinite dimensional vector spaces and the definition of determinant does not,
so it is important to use Definition 6.2.1 as our definition rather than some other definition involving determinants.

6 Older texts sometimes talk about characteristic values and characteristic vectors rather than eigenvalues and eigenvectors.
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Exercise 6.2.4 Let A = (aij ) be an n× n matrix. Write bii(t) = t − aii and bij (t) = −aij

if i �= j . If

σ : {1, 2, . . . , n} → {1, 2, . . . , n}
is a bijection (that is to say, σ is a permutation) show that Pσ (t) =∏n

i=1 biσ (i)(t) is a
polynomial of degree at most n− 2 unless σ is the identity map. Deduce that

det(tI − A) =
n∏

i=1

(t − aii)+Q(t),

where Q is a polynomial of degree at most n− 2.
Conclude that

det(tI − A) = tn + cn−1t
n−1 + cn−2t

n−2 + · · · + c0

with cn−1 = −Tr A = −∑n
i=1 aii . By taking t = 0, or otherwise, show that c0 =

(−1)n det A. (Tr A is called the trace of A.)

In order to exploit Theorem 6.2.2 fully, we need two deep theorems from analysis.

Theorem 6.2.5 If P is polynomial of odd degree with real coefficients, then P has at least
one real root.

(Theorem 6.2.5 is a very special case of the intermediate value theorem.)

Theorem 6.2.6 [Fundamental Theorem of Algebra] If P is polynomial of degree at least
1 with coefficients in C, then P has at least one root in C.

Exercise 6.8.38 gives the proof, which the reader may well have met before, of the
associated factorisation theorem.

Theorem 6.2.7 [Factorisation of polynomials over C] If P is polynomial of degree n

with coefficients in C, then we can find c ∈ C and λj ∈ C such that

P (t) = c

n∏
j=1

(t − λj ).

The following lemma shows that our machinery gives results which are not immediately
obvious.

Lemma 6.2.8 Any linear map α : R3 → R3 has an eigenvector. It follows that there exists
some line l through 0 with α(l) ⊆ l.

Proof Since det(t ι− α) is a real cubic, the equation det(t ι− α) = 0 has a real root, say λ.
We know that λ is an eigenvalue and so has an associated eigenvector u, say. Let

l = {su : s ∈ R}.
�
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Exercise 6.2.9 Generalise Lemma 6.2.8 to linear maps α : R2n+1 → R2n+1.

If we consider real vector spaces of even dimension, it is easy to find linear maps with
no eigenvectors.

Example 6.2.10 Consider the linear map ρθ : R2 → R2 whose matrix with respect to the
standard basis (1, 0)T , (0, 1)T is

Rθ =
(

cos θ −sin θ

sin θ cos θ

)
.

The map ρθ has no eigenvectors unless θ ≡ 0 mod π . If θ ≡ 0 mod 2π , every non-zero
vector is an eigenvector with eigenvalue 1. If θ ≡ π mod 2π , every non-zero vector is an
eigenvector with eigenvalue −1.

Exercise 6.2.11 Prove the results of Example 6.2.10 by first showing that the equation
det(t ι− ρθ ) = 0 has no real roots unless θ ≡ 0 mod π and then looking at the cases when
θ ≡ 0 mod π .

The reader will probably recognise ρθ as a rotation through an angle θ . (If not, she can
wait for the discussion in Section 7.3.) She should convince herself that the result is obvious
if we interpret it in terms of rotations. So far, we have emphasised the similarities between
Rn and Cn. The next result gives a striking example of an essential difference.

Lemma 6.2.12 Any linear map α : Cn → Cn has an eigenvector. It follows that there
exists a one dimensional complex subspace

l = {we : w ∈ C}
(where e �= 0) with α(l) ⊆ l.

Proof The proof, which resembles the proof of Lemma 6.2.8, is left as an exercise for the
reader. �

The following observation is sometimes useful when dealing with singular n× n matri-
ces.

Lemma 6.2.13 If A is an n× n matrix over F, then there exists a δ > 0 such that A+ tI

is non-singular for all 0 �= |t | < δ.

Proof Since PA(t) = det(tI + A) is a non-trivial polynomial, it has only finitely many
roots and so there exists a δ > 0 such that PA(t) �= 0 and so A+ tI is non-singular for all
0 �= |t | < δ. �

Exercise 6.2.14 We use the hypotheses and notation of Lemma 6.2.13 and its proof.
(i) Show that PA(t) = (−1)nχA(−t) where χA(t) = det(tI − A).
(ii) Prove the following very simple consequence of Lemma 6.2.13. We can find tn → 0

such that tnI + A is non-singular.
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Exercise 6.2.15 Suppose that A and B are n× n matrices and A is non-singular. Use
the observation that det A det(tA−1 − B) = det(tI − AB) to show that χAB = χBA (where
χC denotes the characteristic polynomial of C). Use Exercise 6.2.14 (ii) to show that the
condition that A is non-singular can be removed.

Explain why, if χA = χB , then Tr A = Tr B. Deduce that Tr AB = Tr BA. Which of the
following two statements (if any) are true for all n× n matrices A,B and C?

(i) χABC = χACB .
(ii) χABC = χBCA.

Justify your answers.

Exercise 6.2.16 Let us say that an n× n matrix A is simple magic if the sum of the elements
of each row and the sum of the elements of each column all take the same value. (In other
words,

∑n
i=1 aiu =

∑n
j=1 avj = κ for all u and v and some κ .) Identify an eigenvector of

A.
If A is simple magic and BA = AB = I , show that B is simple magic. Deduce that, if

A is simple magic and invertible, then Adj A is simple magic. Show, more generally, that,
if A is simple magic, so is AdjA.

We give other applications of Exercise 6.2.14 (ii) in Exercises 6.8.8 and 6.8.11.

6.3 Diagonalisation and eigenvectors

As we said in the previous section, a linear map α : Fn → Fn may have many different
matrices associated with it according to our choice of basis. We asked whether there are
any bases with respect to which the associated matrix takes a particularly simple form. We
now specialise our question and ask whether there are any bases with respect to which the
associated matrix is diagonal. The next result is essentially a tautology, but shows that the
answer is closely bound up with the notion of an eigenvector.

Theorem 6.3.1 Suppose that α : Fn → Fn is linear. Then α has diagonal matrix D with
respect to a basis e1, e2, . . . , en if and only if the ej are eigenvectors. The diagonal entries
dii of D are the eigenvalues of the ei .

Proof If α has matrix A = (aij ) with respect to a basis e1, e2, . . . , en then, by definition,

αej =
n∑

i=1

aij ei .

Thus A is diagonal with aii = dii if and only if

αej = djj ej ,

that is to say, each ej is an eigenvector of α with associated eigenvalue djj . �

The next exercise prepares the way for a slightly more difficult result.
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Exercise 6.3.2 (i) Let α : F2 → F2 be a linear map. Suppose that e1 and e2 are eigenvectors
of α with distinct eigenvalues λ1 and λ2. Suppose that

x1e1 + x2e2 = 0. (6.1)

By applying α to both sides, deduce that

λ1x1e1 + λ2x2e2 = 0. (6.2)

By subtracting (2) from λ2 times (1) and using the fact that λ1 �= λ2, deduce that x1 = 0.
Show that x2 = 0 and conclude that e1 and e2 are linearly independent.

(ii) Obtain the result of (i) by applying α − λ2ι to both sides of (1).
(iii) Let α : F3 → F3 be a linear map. Suppose that e1, e2 and e3 are eigenvectors of α

with distinct eigenvalues λ1, λ2 and λ3. Suppose that

x1e1 + x2e2 + x3e3 = 0.

By first applying α − λ3ι to both sides of the equation and then applying α − λ2ι to both
sides of the result, show that x3 = 0.

Show that e1, e2 and e3 are linearly independent.

Theorem 6.3.3 If a linear map α : Fn → Fn has n distinct eigenvalues, then the associated
eigenvectors form a basis and α has a diagonal matrix with respect to this basis.

Proof Let the eigenvectors be ej with eigenvalues λj . We observe that

(α − λι)ej = (λj − λ)ej .

Suppose that

n∑
k=1

xkek = 0.

Applying

βn = (α − λ1ι)(α − λ2ι) . . . (α − λn−1ι)

to both sides of the equation, we get

xn

n−1∏
j=1

(λn − λj )en = 0.

Since an eigenvector must be non-zero, it follows that

xn

n−1∏
j=1

(λn − λj ) = 0

and, since λn − λj �= 0 for 1 ≤ j ≤ n− 1, we have xn = 0. A similar argument shows
that xj = 0 for each 1 ≤ j ≤ n and so e1, e2, . . . , en are linearly independent. Since every
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linearly independent collection of n vectors in Fn forms a basis, the eigenvectors form a
basis and the result follows. �

6.4 Linear maps from C2 to itself

Theorem 6.3.3 gives a sufficient but not a necessary condition for a linear map to be
diagonalisable. The identity map ι : Fn → Fn has only one eigenvalue but has the diagonal
matrix I with respect to any basis. On the other hand, even when we work in Cn rather than
Rn, not every linear map is diagonalisable.

Example 6.4.1 Let u1, u2 be a basis for F2. The linear map β : F2 → F2 given by

β(x1u1 + x2u2) = x2u1

is non-diagonalisable.

Proof Suppose that β is diagonalisable with respect to some basis. Then β would have
matrix representation

D =
(

d1 0
0 d2

)
,

say, with respect to that basis and β2 would have matrix representation

D2 =
(

d2
1 0

0 d2
2

)
with respect to that basis.

However,

β2(x1u1 + x2u2) = β(x2u1) = 0

for all xj , so β2 = 0 and β2 has matrix representation(
0 0
0 0

)

with respect to every basis. We deduce that d2
1 = d2

2 = 0, so d1 = d2 = 0 and β = 0 which
is absurd. Thus β is not diagonalisable. �

Exercise 6.4.2 Here is a slightly different proof that the mapping β of Example 6.4.1 is
not diagonalisable.

(i) Find the characteristic polynomial of β and show that 0 is the only eigenvalue of β.
(ii) Find all the eigenvectors of β and show that they do not span Fn.

Fortunately, the map just given is the ‘typical’ non-diagonalisable linear map for C2.

Theorem 6.4.3 If α : C2 → C2 is linear, then exactly one of the following three statements
must be true.
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(i) α has two distinct eigenvalues λ and μ and we can take a basis of eigenvectors e1, e2

for C2. With respect to this basis, α has matrix(
λ 0
0 μ

)
.

(ii) α has only one distinct eigenvalue λ, but is diagonalisable. Then α = λι and has
matrix (

λ 0
0 λ

)
with respect to any basis.

(iii) α has only one distinct eigenvalue λ and is not diagonalisable. Then there exists a
basis e1, e2 for C2 with respect to which α has matrix(

λ 1
0 λ

)
.

Note that e1 is an eigenvector with eigenvalue λ but e2 is not.

Proof As the reader will remember from Lemma 6.2.12, the fundamental theorem of
algebra tells us that α must have at least one eigenvalue.

Case (i) is covered by Theorem 6.3.3, so we need only consider the case when α has
only one distinct eigenvalue λ.

If α has matrix representation A with respect to some basis, then α − λι has matrix
representation A− λI and, conversely, if α − λι has matrix representation A− λI with
respect to some basis, then α has matrix representation A. Further α − λι has only one
distinct eigenvalue 0. Thus we need only consider the case when λ = 0.

Now suppose that α has only one distinct eigenvalue 0. If α = 0, then we have case (ii).
If α �= 0, there must be a vector e2 such that αe2 �= 0. Write e1 = αe2. We show that e1 and
e2 are linearly independent. Suppose that

x1e1 + x2e2 = 0. �

Applying α to both sides of �, we get

x1α(e1)+ x2e1 = 0.

If x1 �= 0, then e1 is an eigenvector with eigenvalue −x2/x1. Thus x2 = 0 and � tells us
that x1 = 0, contrary to our initial assumption. The only consistent possibility is that x1 = 0
and so, from �, x2 = 0. We have shown that e2 and e2 are linearly independent and so
form a basis for F2.

Let u be an eigenvector. Since e1 and e2 form a basis, we can find y1, y2 ∈ C such that

u = y1e1 + y2e2.

Applying α to both sides, we get

0 = y1αe1 + y2e1.
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If y1 �= 0 and y2 �= 0, then e1 is an eigenvector with eigenvalue −y2/y1 which is absurd. If
y1 = 0 and y2 = 0, we get u = 0, which is impossible since eigenvectors are non-zero. If
y1 = 0 and y2 �= 0, we get e1 = 0 which is also impossible.

The only remaining possibility7 is that y1 �= 0, y2 = 0 and αe1 = 0, that is to say,
case (iii) holds. �

The general case of a linear map α : Cn → Cn is substantially more complicated.
The possible outcomes are classified using the ‘Jordan normal form’ which is studied in
Section 12.4.

It is unfortunate that we cannot diagonalise all linear maps α : Cn → Cn, but the reader
should remember that the only cases in which diagonalisation may fail occur when the
characteristic polynomial does not have n distinct roots.

We have the following corollary to Theorem 6.4.3.

Example 6.4.4 [Cayley–Hamilton in two dimensions] If α : C2 → C2 is a linear map,
let us write Q(t) = det(t ι− α) for the characteristic polynomial of α. Then we have

Q(t) = t2 + at + b

where a, b ∈ C. The Cayley–Hamilton theorem states that

α2 + aα + bι = 0

or, more briefly,8 that Q(α) = 0.

We give the proof as an exercise.

Exercise 6.4.5 (i) Suppose that α : C2 → C2 has matrix

A =
(

λ 0
0 μ

)
(where λ and μ need not be distinct) with respect to some basis. Find the characteristic
polynomial Q(t) = t2 + at + b of α and show that A2 + aA+ bI = 0. Deduce that

α2 + aα + bι = 0.

(ii) Repeat the calculations of part (i) in the case when α : C2 → C2 has matrix

A =
(

λ 1
0 λ

)
with respect to some basis.

(iii) Use Theorem 6.4.3 to obtain the result of Example 6.4.4.

We shall extend this result to higher dimensions in Section 12.2.

7 How often have I said to you that, when you have eliminated the impossible, whatever remains, however improbable, must be
the truth.

(Conan Doyle The Sign of Four [12])
8 But more confusingly for the novice.
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The change of basis formula enables us to translate Theorem 6.4.3 into a theorem on
2× 2 complex matrices.

Theorem 6.4.6 We work in C. If A is a 2× 2 matrix, then exactly one of the following
three things must happen.

(i) There exists a 2× 2 invertible matrix P such that

P−1AP =
(

λ 0
0 μ

)

with λ �= μ.
(ii) A = λI .
(iii) There exists a 2× 2 invertible matrix P such that

P−1AP =
(

λ 1
0 λ

)
.

Here is a slightly stronger version of this result.

Exercise 6.4.7 By considering matrices of the form νP with ν ∈ C, show that we can
choose the matrix P in Theorem 6.4.6 so that det P = 1.

Theorem 6.4.6 gives us a new way of looking at simultaneous linear differential equations
of the form

x ′1(t) = a11x1(t)+ a12x2(t)

x ′2(t) = a21x1(t)+ a22x2(t),

where x1 and x2 are differentiable functions and the aij are constants. If we write

A =
(

a11 a12

a21 a22

)
,

then, by Theorem 6.4.6, we can find an invertible 2× 2 matrix P such that P−1AP = B,
where B takes one of the following forms:(

λ1 0
0 λ2

)
with λ1 �= λ2,

(
λ 0
0 λ

)
, or

(
λ 1
0 λ

)
.

If we set (
X1(t)
X2(t)

)
= P−1

(
x1(t)
x2(t)

)
,

then (
Ẋ1(t)
Ẋ2(t)

)
= P−1

(
ẋ1(t)
ẋ2(t)

)
= P−1A

(
x1(t)
x2(t)

)
= P−1AP

(
X1(t)
X2(t)

)
= B

(
X1(t)
X2(t)

)
.
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Thus, if

B =
(

λ1 0
0 λ2

)
with λ1 �= λ2,

then

Ẋ1(t) = λ1X1(t)

Ẋ2(t) = λ2X2(t),

and so, by elementary analysis (see Exercise 6.4.8),

X1(t) = C1e
λ1t , X2(t) = C2e

λ2t

for some arbitrary constants C1 and C2. It follows that(
x1(t)
x2(t)

)
= P

(
X1(t)
X2(t)

)
= P

(
C1e

λ1t

C2e
λ2t

)
for arbitrary constants C1 and C2.

If

B =
(

λ 0
0 λ

)
= λI,

then A = λI, ẋj (t) = λxj (t) and xj (t) = Cje
λt [j = 1, 2] for arbitrary constants C1 and

C2.
If

B =
(

λ 1
0 λ

)
,

then

Ẋ1(t) = λ1X1(t)+X2(t)

Ẋ2(t) = λ2X2(t),

and so, by elementary analysis,

X2(t) = C2e
λt ,

for some arbitrary constant C2 and

Ẋ1(t) = λX1(t)+ C2e
λt .

It follows (see Exercise 6.4.8) that

X1(t) = (C1 + C2t)e
λt

for some arbitrary constant C1 and(
x1(t)
x2(t)

)
= P

(
X1(t)
X2(t)

)
= P

(
(C1 + C2t)eλt

C2e
λt

)
.
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Exercise 6.4.8 (Most readers will already know the contents of this exercise.)
(i) If ẋ(t) = λx(t), show that

d

dt
(e−λtx(t)) = 0.

Deduce that e−λtx(t) = C for some constant C and so x(t) = Ceλt .
(ii) If ẋ(t) = λx(t)+Keλt , show that

d

dt

(
e−λtx(t)−Kt

) = 0

and deduce that x(t) = (C +Kt)eλt for some constant C.

Exercise 6.4.9 Consider the differential equation

ẍ(t)+ aẋ(t)+ bx(t) = 0.

Show that, if we write x1(t) = x(t) and x2(t) = ẋ(t), we obtain the equivalent system

ẋ1(t) = x2(t)

ẋ2(t) = −bx1(t)− ax2(t).

Show, by direct calculation, that the eigenvalues of the matrix

A =
(

0 1
−b −a

)

are the roots of the, so-called, auxiliary polynomial

λ2 + bλ+ a.

At the end of this discussion, the reader may ask whether we can solve any system of
differential equations that we could not solve before. The answer is, of course, no, but we
have learnt a new way of looking at linear differential equations and two ways of looking
at something may be better than just one.

6.5 Diagonalising square matrices

If we use the change of basis formula to translate our results on linear maps α : Fn → Fn

into theorems about n× n matrices, Theorem 6.3.3 takes the following form.

Theorem 6.5.1 We work in F. If A is an n× n matrix and the polynomial Q(t) =
det(tI − A) has n distinct roots in F, then there exists an n× n invertible matrix P such
that P−1AP is diagonal.
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Exercise 6.5.2 Let A = (aij ) be an n× n matrix with entries in C. Consider the system of
simultaneous linear differential equations

ẋj (t) =
n∑

j=1

aij xi(t).

If A has n distinct eigenvalues λ1, λ2, . . . , λn, show that

x1(t) =
n∑

j=1

μje
λj t

for some constants μj .
By considering the special case when A is diagonal show that, in some cases, it may not

be possible to choose the μj freely.

Bearing in mind our motto ‘linear maps for understanding, matrices for computation’ we
may ask how to convert Theorem 6.5.1 from a statement of theory to a concrete computation.

It will be helpful to make the following definitions, transferring notions already familiar
for linear maps to the context of matrices.

Definition 6.5.3 We work over F. If A is an n× n matrix, we say that the characteristic
polynomial χA of A is given by

χA(t) = det(tI − A).

If u is a non-zero column vector, we say that u is an eigenvector of A with associated
eigenvalue λ if

Au = λu.

We say that A is diagonalisable if we can find an invertible n× n matrix P and an n× n

diagonal matrix D with P−1AP = D.

Suppose that we wish to ‘diagonalise’ an n× n matrix A. The first step is to look at the
roots of the characteristic polynomial

χA(t) = det(tI − A).

If we work over R and some of the roots of χA are not real, we know at once that A is
not diagonalisable (over R). If we work over C or if we work over R and all the roots are
real, we can move on to the next stage. Either the characteristic polynomial has n distinct
roots or it does not. We shall discuss the case when it does not in Section 12.4. If it does,
we know that A is diagonalisable. If we find the n distinct roots (easier said than done
outside the artificial conditions of the examination room) λ1, λ2, . . . , λn, we know, without
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further computation, that there exists a non-singular P such that P−1AP = D where D

is a diagonal matrix with diagonal entries λj . Often knowledge of D is sufficient for our
purposes,9 but, if not, we proceed to find P as follows. For each λj , we know that the
system of n linear equations in n unknowns given by

(A− λj I )x = 0

(where x is a column vector) has non-zero solutions. Let ej be one of them so that

Aej = λj ej .

If P is the n× n matrix with j th column ej and uj is the column vector with 1 in the j th
place and 0 elsewhere, then P uj = ej and so P−1ej = uj . It follows that

P−1AP uj = P−1Aej = λjP
−1ej = λj uj = Duj

for all 1 ≤ j ≤ n and so

P−1AP = D.

If we need to know P−1, we calculate it by inverting P in some standard way.

Example 6.5.4 Diagonalise the matrix

Rθ =
(

cos θ −sin θ

sin θ cos θ

)
(with θ real) over C.

Calculation We have

det(tI − Rθ ) = det

(
t − cos θ sin θ

−sin θ t − cos θ

)
= (t − cos θ )2 + sin2 θ

= ((t − cos θ )+ i sin θ
)(

(t − cos θ )− i sin θ
)

= (t − eiθ )(t − e−iθ ).

If θ ≡ 0 mod π , then the characteristic polynomial has a repeated root. In the case
θ ≡ 0 mod 2π , Rθ = I . In the case θ ≡ π mod 2π , Rθ = −I . In both cases, Rθ is
already in diagonal form.

From now on we take θ �≡ 0 mod π , so that the characteristic polynomial has two
distinct roots eiθ and e−iθ . Without further calculation, we know that Rθ can be diagonalised
to obtain the diagonal matrix

D =
(

eiθ 0
0 e−iθ

)
.

9 It is always worthwhile to pause before indulging in extensive calculation and ask why we need the result.
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We now look for an eigenvector corresponding to the eigenvalue eiθ . We need to find a
non-zero solution to the equation Rθz = eiθ z, that is to say, to the system of equations

(cos θ )z1 − (sin θ )z2 = (cos θ + i sin θ )z1

(sin θ )z1 + (cos θ )z2 = (cos θ + i sin θ )z2.

Since θ �≡ 0 mod π , we have sin θ �= 0 and our system of equations collapses to the single
equation

z2 = −iz1.

We can choose any non-zero multiple of (1,−i)T as an appropriate eigenvector, but we
shall simply take our eigenvector as

u =
(

1
−i

)
.

To find an eigenvector corresponding to the eigenvalue e−iθ , we look at the equation
Rθz = e−iθz, that is to say,

(cos θ )z1 − (sin θ )z2 = (cos θ − i sin θ )z1

(sin θ )z1 + (cos θ )z2 = (cos θ − i sin θ )z2,

which reduces to

z1 = −iz2.

We take our eigenvector to be

v =
(

1
−i

)
.

With these choices

P = (u|v) =
(

1 −i

−i 1

)
.

Using one of the methods for inverting matrices (all are easy in the 2× 2 case), we get

P−1 = 1

2

(
1 i

i 1

)
and

P−1RθP = D.

A feeling for symmetry suggests that, instead of using P , we should use

Q = 1√
2
P,
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so that

Q = 1√
2

(
1 −i

−i 1

)
and Q−1 = 1√

2

(
1 i

i 1

)
.

This just corresponds to a different choice of eigenvectors. �

Exercise 6.5.5 Check, by doing the matrix multiplication, that

Q−1RθQ = D.

The reader will probably find herself computing eigenvalues and eigenvectors in several
different courses. This is a useful exercise for familiarising oneself with matrices, determi-
nants and eigenvalues, but, like most exercises, slightly artificial.10 Obviously, the matrix
will have been chosen to make calculation easier. If you have to find the roots of a cubic,
it will often turn out that the numbers have been chosen so that one root is a small integer.
More seriously and less obviously, polynomials of high order need not behave well and the
kind of computation which works for 3× 3 matrices may be unsuitable for n× n matrices
when n is large. To see one of the problems that may arise, look at Exercise 6.8.31.

6.6 Iteration’s artful aid

During the last 150 years, mathematicians have become increasingly interested in iteration.
If we have a map α : X → X, what can we say about αq , the map obtained by applying
α q times, when q is large? If X is a vector space and α a linear map, then eigenvectors
provide a powerful tool for investigation.

Lemma 6.6.1 We consider n× n matrices over F. If D is diagonal, P invertible and
PAP−1 = D, then

Aq = PDqP−1.

Proof This is immediate. Observe that A = PDP−1 so

Aq = (PDP−1)(PAP−1) . . . (PAP−1)

= PD(PP−1)D(PP−1) . . . (PP−1)DP = PDqP−1.

�

Exercise 6.6.2 (i) Why is it easy to compute Dq?
(ii) Explain the result of Lemma 6.6.1 by considering the matrix of the linear maps α

and αq with respect to two different bases.

Usually, it is more instructive to look at the eigenvectors themselves.

10 Though not as artificial as pressing an ‘eigenvalue button’ on a calculator and thinking that one gains understanding thereby.
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Lemma 6.6.3 Suppose that α : Fn → Fn is a linear map with a basis of eigenvectors e1,
e2, . . . , en with eigenvalues λ1, λ2, . . . , λn. Then

αq

n∑
j=1

xj ej =
n∑

j=1

λ
q
j xj ej .

Proof Immediate. �
It is natural to introduce the following definition.

Definition 6.6.4 If u(1), u(2), . . . is a sequence of vectors in Fn and u ∈ Fn, we say that
u(r) → u coordinatewise if ui(r) → ui as r →∞ for each 1 ≤ i ≤ n.

Lemma 6.6.5 Suppose that α : Fn → Fn is a linear map with a basis of eigenvectors e1,
e2, . . . , en with eigenvalues λ1, λ2, . . . , λn. If |λ1| > |λj | for 2 ≤ j ≤ n, then

λ
−q
1 αq

n∑
j=1

xj ej → x1e1

coordinatewise as q →∞.

Speaking very informally, repeated iteration brings out the eigenvector corresponding
to the largest eigenvalue in absolute value.

The hypotheses of Lemma 6.6.5 demand that α be diagonalisable and that the largest
eigenvalue in absolute value should be unique. In the special case α : C2 → C2 we can use
Theorem 6.4.3 to say rather more.

Example 6.6.6 Suppose that α : C2 → C2 is linear. Exactly one of the following things
must happen.

(i) There is a basis e1, e2 with respect to which A has matrix(
λ 0
0 μ

)
with |λ| > |μ|. Then

λ−qαq(x1e1 + x2e2) → x1e1

coordinatewise.
(i)′ There is a basis e1, e2 with respect to which α has matrix(

λ 0
0 μ

)
with |λ| = |μ| but λ �= μ. Then λ−qαq(x1e1 + x2e2) fails to converge coordinatewise except
in the special cases when x2 = 0.

(ii) α = λι with λ �= 0, so

λ−qαqu = u → u

coordinatewise for all u.
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(ii)′ α = 0 and

αqu = 0 → 0

coordinatewise for all u.
(iii) There is a basis e1, e2 with respect to which α has matrix(

λ 1
0 λ

)
with λ �= 0. Then

αq(x1e1 + x2e2) = (λqx1 + qλq−1x2)e1 + λqx2e2

for all q ≥ 0 and so

q−1λ−qαq(x1e1 + x2e2) → λ−1x2e1

coordinatewise.
(iii)′ There is a basis e1, e2 with respect to which α has matrix(

0 1
0 0

)
.

Then

αqu = 0

for all q ≥ 2 and so

αqu → 0

coordinatewise for all u.

Exercise 6.6.7 Check the statements in Example 6.6.6. Pay particular attention to part (iii).

As an application, we consider sequences generated by linear difference equations. A
typical example is given by the Fibonacci sequence11

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

where the nth term Fn is defined by the equation

Fn = Fn−1 + Fn−2

and we impose the condition F1 = F2 = 1.

Exercise 6.6.8 Find F10. Show that F0 = 0 and compute F−1 and F−2. Show that Fn =
(−1)n+1F−n.

More generally, we look at sequences un of complex numbers satisfying

un + aun−1 + bun−2 = 0

with b �= 0.

11 ‘Have you ever formed any theory, why in spire of leaves . . . the angles go 1/2, 1/3, 2/5, 3/8, etc. . . . It seems to me most
marvellous.’ (Darwin [13]).
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Exercise 6.6.9 What can we say if b = 0 but a �= 0? What can we say if a = b = 0?

Analogy with linear differential equations suggests that we look at vectors

u(n) =
(

un

un+1

)
.

We then have

u(n+ 1) = Au(n), where A =
(

0 1
−a −b

)
and so (

un

un+1

)
= An

(
u0

u1

)
.

The eigenvalues of A are the roots of

Q(t) = det(tI − A) = det

(
t −1
a t + b

)
= t2 + bt + a.

Since a �= 0, the eigenvalues are non-zero.
If Q has two distinct roots λ and μ with corresponding eigenvectors z and w, then we

can find real numbers p and q such that(
u0

u1

)
= pz+ qw,

so (
un

un+1

)
= An(pz+ qw) = λnpz+ μnqw

and, looking at the first entry of the column vector,

un = z1pλn + w1qμn.

Thus un = cλn + c′μn for some constants c and c′ depending on u0 and u1.

Exercise 6.6.10 If Q has only one distinct root λ show by a similar argument that

un = (c + c′n)λn

for some constants c and c′ depending on u0 and u1.

Exercise 6.6.11 Suppose that the polynomial P (t) = tm +∑m−1
j=0 aj t

j has m distinct non-
zero roots λ1, λ2, . . . , λm. Show, by an argument modelled on that just given in the case
m = 2, that any sequence un satisfying the difference equation

ur +
m−1∑
j=0

ajuj−m+r = 0 �
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must have the form

ur =
m∑

k=1

ckλ
r
k ��

for some constants ck . Show, conversely, by direct substitution in �, that any expression of
the form �� satisfies �.

If |λ1| > |λk| for 2 ≤ k ≤ m and c1 �= 0, show that ur �= 0 for r large and

ur

ur−1
→ λ1

as r →∞. Formulate a similar theorem for the case r →−∞.
[If you prefer not to use too much notation, just do the case m = 3.]

Exercise 6.6.12 Our results take a particularly pretty form when applied to the Fibonacci
sequence.

(i) If we write τ = (1+√5)/2, show that τ−1 = (−1+√5)/2. (The number τ is
sometimes called the golden ratio.)

(ii) Find the eigenvalues and associated eigenvectors for

A =
(

0 1
1 1

)
.

Write (0, 1)T as the sum of eigenvectors.
(iii) Use the method outlined in our discussion of difference equations to obtain Fn =

c1τ
n + c2τ

−n, where c1 and c2 are to be found explicitly.
(iv) Show that F (n) is the closest integer to τn/

√
5. Use more explicit calculations when

n is small to show that F (n) is the closest integer to τn/
√

5 for all n ≥ 0.
(v) Show that

An =
(

Fn−1 Fn

Fn Fn+1

)
for all n ≥ 1. Deduce, by taking determinants, that

Fn−1Fn+1 − F 2
n = (−1)n

for all n ≥ 1. (This is Casini’s identity.)
(vi) Are the results of (v) true for all n? Why?
(vii) Use the observation that AnAn = A2n to show that

F 2
n + F 2

n−1 = F2n−1.

Exercise 6.6.13 Here is another example of iteration. Suppose that we have m airports
called, rather unimaginatively, 1, 2, . . . , m. Some are linked by direct flights and some are
not. We are initially interested in whether it is possible to get from i to j in r flights.

(i) Let D = (dij ) be the m×m matrix such that dij = 1 if i �= j and there is a direct
flight from i to j and dij = 0 otherwise. If we write (d (n)

ij ) = Dn, show that d
(n)
ij is the
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number of journeys from i to j which involve exactly n flights. In particular, there is a
journey from i to j which involves exactly n flights if and only if d

(n)
ij > 0.

(ii) Let D̃ = (d̃ij ) be the m×m matrix such that d̃ij = 1 if there is a direct flight from
i to j or if i = j and d̃ij = 0 otherwise. If we write (d̃ (n)

ij ) = D̃n, interpret the meaning of

d̃
(n)
ij . Produce useful information along the lines of the last sentence of (i).

(iii) A peasant must row a wolf, a goat and a cabbage across a river in a boat that will
only carry one passenger at a time. If he leaves the wolf with the goat, then the wolf will
eat the goat. If he leaves the goat with the cabbage, then the goat will eat the cabbage. The
cabbage represents no threat to the wolf, nor the wolf to the cabbage. Explain (there is no
need to carry out the calculation) how to use the ideas above to find the smallest number
of trips the peasant must make. If the problem is insoluble will your method reveal the fact
and, if so, how?

6.7 LU factorisation

Although diagonal matrices are very easy to handle, there are other convenient forms of
matrices. People who actually have to do computations are particularly fond of triangular
matrices (see Definition 4.5.2).

We have met such matrices several times before, but we start by recalling some elemen-
tary properties.

Exercise 6.7.1 (i) If L is lower triangular, show that det L =∏n
j=1 ljj .

(ii) Show that a lower triangular matrix is invertible if and only if all its diagonal entries
are non-zero.

(iii) If L is lower triangular, show that the roots of the characteristic polynomial are
the diagonal entries ljj (multiple roots occurring with the correct multiplicity). Can you
identify one eigenvector of L explicitly?

If L is an invertible lower triangular n× n matrix, then, as we have noted before, it is
very easy to solve the system of linear equations

Lx = y,

since they take the form

l11x1 = y1

l21x1 + l22x2 = y2

l31x1 + l32x2 + l33x3 = y3

...

ln1x1 + ln2x2 + ln3x3 + · · · + lnnxn = yn.
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We first compute x1 = l−1
11 y1. Knowing x1, we can now compute

x2 = l−1
22 (y2 − l21x1).

We now know x1 and x2 and can compute

x3 = l−1
33 (y3 − l31x1 − l32x3),

and so on.

Exercise 6.7.2 Suppose that U is an invertible upper triangular n× n matrix. Show how
to solve Ux = y in an efficient manner.

Exercise 6.7.3 (i) If L is an invertible lower triangular matrix, show that L−1 is a lower
triangular matrix.

(ii) Show that the product of two lower triangular matrices is lower triangular.

Our main result is given in the next theorem. The method of proof is as important as the
proof itself.

Theorem 6.7.4 If A is an n× n invertible matrix, then, possibly after interchange of
columns, we can find a lower triangular n× n matrix L with all diagonal entries 1 and a
non-singular upper triangular invertible n× n matrix U such that

A = LU.

Proof We use induction on n. If we deal with 1× 1 matrices, then we have the trivial
equality (a)(1) = (a), so the result holds for n = 1.

We now suppose that the result is true for (n− 1)× (n− 1) matrices and that A is an
invertible n× n matrix.

Since A is invertible, at least one element of its first row must be non-zero. By inter-
changing columns,12 we may assume that a11 �= 0. If we now take

l =

⎛
⎜⎜⎜⎝

l11

l21
...

ln1

⎞
⎟⎟⎟⎠ =
⎛
⎜⎜⎜⎝

1
a−1

11 a21
...

a−1
11 an1

⎞
⎟⎟⎟⎠ and u =

⎛
⎜⎜⎜⎝

u11

u12
...

u1n

⎞
⎟⎟⎟⎠ =
⎛
⎜⎜⎜⎝

a11

a12
...

a1n

⎞
⎟⎟⎟⎠ ,

then luT is an n× n matrix whose first row and column coincide with the first row and
column of A.

12 Remembering the method of Gaussian elimination, the reader may suspect, correctly, that in numerical computation it may be
wise to ensure that |a11| ≥ |a1j | for 1 ≤ j ≤ n. Note that, if we do interchange columns, we must keep a record of what we
have done.
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We thus have

A− luT =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
0 b22 b23 . . . b2n

0 b32 b33 . . . b3n

...
...

...
...

0 bn2 bn3 . . . bnn

⎞
⎟⎟⎟⎟⎟⎠ .

We take B to be the (n− 1)× (n− 1) matrix (bij )2≤i,j≤n with

bij = aij − ai1a1j

a11
.

Using various results about calculating determinants, in particular the rule that adding
multiples of the first row to other rows of a square matrix leaves the determinant unchanged,
we see that

a11 det B = det

⎛
⎜⎜⎜⎜⎜⎝

a11 0 0 . . . 0
0 b22 b23 . . . b2n

0 b32 b33 . . . b3n

...
...

...
...

0 bn2 bn3 . . . bnn

⎞
⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1n

0 b22 b23 . . . b2n

0 b32 b33 . . . b3n

...
...

...
...

0 bn2 bn3 . . . bnn

⎞
⎟⎟⎟⎟⎟⎠ = det A.

Since det A �= 0, it follows that det B �= 0 and, by the inductive hypothesis, we can find
an n− 1× n− 1 lower triangular matrix L̃ = (lij )2≤i,j≤n with lii = 1 [2 ≤ i ≤ n] and a
non-singular n− 1× n− 1 upper triangular matrix Ũ = (uij )2≤i,j≤n such that B = L̃Ũ .

If we now define l1j = 0 for 2 ≤ j ≤ n and ui1 = 0 for 2 ≤ i ≤ n, then L = (lij )1≤i,j≤n

is an n× n lower triangular matrix with lii = 1 [1 ≤ i ≤ n], and U = (uij )1≤i,j≤n is an
n× n non-singular upper triangular matrix (recall that a triangular matrix is non-singular
if and only if its diagonal entries are non-zero) with

LU = A.

The induction is complete. �

This theorem is sometimes attributed to Turing. Certainly Turing was one of the first
people to realise the importance of LU factorisation for the new era of numerical analysis
made possible by the electronic computer.

Observe that the method of proof of our theorem gives a method for actually finding L

and U . I suggest that the reader studies Example 6.7.5 and then does some calculations of
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her own (for example, she could do Exercise 6.8.26) before returning to the proof. She may
well then find that matters are a lot simpler than at first appears.

Example 6.7.5 Find the LU factorisation of

A =
⎛
⎝ 2 1 1

4 1 0
−2 2 1

⎞
⎠ .

Solution Observe that ⎛
⎝ 1

2
−1

⎞
⎠ (2 1 1) =

⎛
⎝ 2 1 1

4 2 2
−2 −1 −1

⎞
⎠

and ⎛
⎝ 2 1 1

4 1 0
−2 2 1

⎞
⎠−
⎛
⎝ 2 1 1

4 2 2
−2 −1 −1

⎞
⎠ =
⎛
⎝0 0 0

0 −1 −2
0 3 2

⎞
⎠ .

Next observe that (
1
−3

)
(−1 −2) =

(−1 −2
3 6

)
and (−1 −2

3 2

)
−
(−1 −2

3 6

)
=
(

0 0
0 −4

)
.

Since (1)(−4) = (−4), we see that A = LU with

L =
⎛
⎝ 1 0 0

2 1 0
−1 −3 1

⎞
⎠ and U =

⎛
⎝2 1 1

0 −1 −2
0 0 −4

⎞
⎠ .

�
Exercise 6.7.6 Check that, if we take L and U as in Example 6.7.5, it is, indeed, true that
LU = A. (It is usually wise to perform this check.)

Exercise 6.7.7 We have assumed that det A �= 0. If we try our method of LU factorisation
(with column interchange) in the case det A = 0, what will happen?

Once we have an LU factorisation, it is very easy to solve systems of simultaneous equa-
tions. Suppose that A = LU , where L and U are non-singular lower and upper triangular
n× n matrices. Then

Ax = y ⇔ LUx = y ⇔ Ux = u where Lu = y.

Thus we need only solve the triangular system Lu = y and then solve the triangular system
Ux = u.
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Example 6.7.8 Solve the system of equations

2x + y + z = 1

4x + y = −3

−2x + 2y + z = 6

using LU factorisation.

Solution Using the result of Example 6.7.5, we see that we need to solve the systems of
equations

u = 1

2u+ v = −3

−u− 3v + w = 6

and

2x + y + z = u

−y − z = v

−4z = w.

Solving the first system step by step, we get u = 1, v = −5 and w = −8. Thus we need to
solve

2x + y + z = 1

−y − z = −5

−4z = −8

and a step by step solution gives z = 2, y = 1 and x = −1. �

The work required to obtain an LU factorisation is essentially the same as that required
to solve the system of equations by Gaussian elimination. However, if we have to solve the
same system of equations

Ax = y

repeatedly with the same A but different y, we need only perform the factorisation once
and this represents a major economy of effort.

Exercise 6.7.9 Show that the equation

LU =
(

0 1
1 0

)

has no solution with L a lower triangular matrix and U an upper triangular matrix. Why
does this not contradict Theorem 6.7.4?

Exercise 6.7.10 Suppose that L1 and L2 are lower triangular n× n matrices with all
diagonal entries 1 and U1 and U2 are non-singular upper triangular n× n matrices. Show,
by induction on n, or otherwise, that if

L1U1 = L2U2
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then L1 = L2 and U1 = U2. (This does not show that the LU factorisation given above is
unique, since we allow the interchange of columns.13)

Exercise 6.7.11 Suppose that L is a lower triangular n× n matrix with all diagonal
entries 1 and U is an n× n upper triangular matrix. If A = LU , give an efficient method
of finding det A. Give a reasonably efficient method for finding A−1.

Exercise 6.7.12 (i) If A is a non-singular n× n matrix, show that (rearranging columns
if necessary) we can find a lower triangular matrix L with all diagonal entries 1 and an
upper triangular matrix U with all diagonal entries 1 together with a non-singular diagonal
matrix D such that

A = LDU.

State and prove an appropriate result along the lines of Exercise 6.7.10.
(ii) In this section we proved results on LU factorisation. Do there exist corresponding

results on UL factorisation? Give reasons.
(iii) Is it true that (after reordering columns if necessary) every invertible n× n matrix

A can be written in the form A = BC where B = (bij ) and C = (cij ) are n× n matrices
with bij = 0 if i > j and cij = 0 if j > i? Give reasons.

6.8 Further exercises

Exercise 6.8.1 [The Lorentz transformation] Let r, v ∈ R3 with ‖v‖ < c and set γ =
c(c2 − ‖v‖2)−1/2. If

r′ = r+
(

(γ − 1)v · r
‖v‖2

− γ t

)
v, t ′ = γ

(
t − v · r

c2

)
,

prove the reciprocal relations

r = r′ +
(

(γ − 1)(−v) · r′

‖ − v‖2
− γ t ′
)

(−v), t = γ

(
t ′ − (−v) · r′

c2

)
,

that is to say, the relations

r = r′ +
(

(γ − 1)v · r′

‖v‖2
+ γ t ′
)

v, t = γ

(
t ′ + v · r′

c2

)
.

[Courageous students will tackle the calculations head on. Less gung ho students may
choose an appropriate coordinate system. Both sets of students should then try the alternative
method.]

13 Some writers do not allow the interchange of columns. LU factorisation is then unique, but may not exist, even if the matrix
to be factorised is invertible.
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Exercise 6.8.2 In this exercise we work in R. Find the eigenvalues and eigenvectors of

A =
⎛
⎝3 −1 2

0 4− s 2s − 2
0 −2s + 2 4s − 1

⎞
⎠

for all values of s.
For which values of s is A diagonalisable? Give reasons for your answer.

Exercise 6.8.3 The 3× 3 matrix A satisfies A3 = A. What are the possible values of det A?
Write down examples to show that each possibility occurs.

Write down an example of a 3× 3 matrix B with B3 = 0 but B �= 0.
If A satisfies the conditions of the first paragraph and B those of the second, what are

the possible values of det AB? Give reasons.

Exercise 6.8.4 We work in R3 (using column vectors) with the standard basis

e1 = (1, 0, 0)T , e1 = (0, 1, 0)T , e3 = (0, 0, 1)T .

Consider a non-singular linear map α : R3 → R3 with matrix A with respect to the
standard basis. If � is a plane through the origin with equation a · x = 0 for some a �= 0,
show that α� is the plane through the origin with equation

(
(AT )−1a

) · x = 0. Deduce the
existence of a plane through the origin such that α(�) = �.

Show, by means of an example, that there may not be any line l through the origin with
l ⊆ � and αl = l.

Exercise 6.8.5 We work with n× n matrices over F.
(i) Let P be a permutation matrix and E a non-singular diagonal matrix. If D is diagonal,

show that (PE)−1D(PE) is.
(ii) If D is a diagonal matrix with all diagonal entries distinct and B is a non-singular

matrix such that B−1DB is diagonal, show, by considering eigenvectors, or otherwise, that
B = PE where P is a permutation matrix and E a non-singular diagonal matrix.

(iii) Let A have n distinct eigenvalues. If Q is non-singular and Q−1AQ is diagonal, show
that the non-singular matrix R is such that R−1AR is diagonal if and only if R = PEQ

where P is a permutation matrix and E a non-singular diagonal matrix.
(iv) Does (ii) remain true if we drop the condition that all the diagonal entries of D are

distinct? Give a proof or a counterexample.

Exercise 6.8.6 (i) Show that a 2× 2 complex matrix A satisfies the condition A2 = 0 if
and only if it takes one of the forms(

a aλ

−aλ−1 −a

)
or

(
0 a

0 0

)
or

(
0 0
a 0

)
with a, λ ∈ C and λ �= 0.

(ii) We work with 2× 2 complex matrices. Is it always true that, if A and B satisfy
A2 + B2 = 0, then (A+ B)2 = 0? Is it always true that, if A and B are not diagonalisable,
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then A+ B is not diagonalisable? Is it always true that, if A and B are diagonalisable, then
A+ B is diagonalisable? Give proofs or counterexamples.

(iii) Let

A =
(

a b

b c

)
, B =

(
a b

b∗ c

)

with a, c ∈ R, b ∈ C. Is it always true that A is diagonalisable over C? Is it always true
that B is diagonalisable over C? Give proofs or counterexamples.

Exercise 6.8.7 We work with 2× 2 complex matrices. Are the following statements true
or false? Give a proof or counterexample.

(i) AB = 0 ⇒ BA = 0.
(ii) If AB = 0 and B �= 0, then there exists a C �= 0 such that AC = CA = 0.

Exercise 6.8.8 (i) Suppose that A,B,C and D are n× n matrices over F such that
AB = BA and A is invertible. By considering(

I 0
X I

)(
A B

C D

)
,

for suitable X, or otherwise, show that

det

(
A B

C D

)
= det(AD − BC).

(iii) Use Exercise 6.2.14 (ii) to show that the condition A invertible can be removed in
part (i).

(iv) Can the condition AB = BA be removed? Give a proof or counterexample.

Exercise 6.8.9 Explain briefly why the set Mn of all n× n matrices over F is a vector
space under the usual operations. What is the dimension of Mn? Give reasons.

If A ∈ Mn we define LA, RA : Mn → Mn by LAX = AX and RAX = XA for all X ∈
Mn. Show that LA and RA are linear,

det LA = (det A)n = det RA and det(LA − RA) = 0.

[Hint: Find an appropriate basis.]

Exercise 6.8.10 By first considering the case when A and B are non-singular, or otherwise,
show that, if A and B are n× n matrices over F, then

Adj AB = Adj B Adj A.

Exercise 6.8.11 [Sylvester’s determinant identity]
(i) Suppose that A and B are n× n matrices over F and A is invertible. Show that

det(I + AB) = det(I + BA).
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(ii) Use Exercise 6.2.14 to show that, if A and B are n× n matrices over F, then

det(I + AB) = det(I + BA).

(iii) Suppose that n ≥ m,A is an n×m matrix and B an m× n matrix. By considering
the n× n matrices (

A 0
)

and

(
B

0

)
obtained by adding columns of zeros to A and rows of zeros to B, show that

det(In + AB) = det(Im + BA)

where, as usual, Ir denotes the r × r identity matrix.
[This result is called Sylvester’s determinant identity.]

(iv) If u and v are column vectors with n entries show that

det(I + uvT ) = 1+ u · v.

If, in addition, A is an n× n invertible matrix show that

det(A+ uvT ) = (1+ vT A−1u) det A.

Exercise 6.8.12 [Alternative proof of Sylvester’s identity] Suppose that n ≥ m,A is an
n×m matrix and B an m× n matrix. Show that(

In 0
B Im

)(
In 0
0 Im − BA

)(
In A

0 Im

)
=
(

In A

B Im

)

=
(

In A

0 Im

)(
In − AB 0

0 Im

)(
In 0
B Im

)
and deduce Sylvester’s identity (Exercise 6.8.11).

Exercise 6.8.13 Let A be the n× n matrix all of whose entries are 1. Show that A is
diagonalisable and find an associated diagonal matrix.

Exercise 6.8.14 Let C be an n× n matrix such that Cm = I for some integer m ≥ 1. Show
that

I + C + C2 + · · · + Cm−1 = 0 ⇔ det(I − C) �= 0.

Exercise 6.8.15 We work over F. Let A be an n× n matrix over F. Show directly from
the definition of an eigenvalue (in particular, without using determinants) that the following
results hold.

(i) If λ is an eigenvalue of A, then λr is an eigenvalue of Ar for all integers r ≥ 1.
(ii) If A is invertible and λ is an eigenvalue of A, then λ �= 0 and λr is an eigenvalue of

Ar for all integers r . (We use the convention that A−r = (A−1)r for r ≥ 1 and that A0 = I .)
We now consider the characteristic polynomial χA(t) = det(tI − A). Use standard prop-

erties of determinants to prove the following results.



150 Linear maps from Fn to itself

(iii) χA2 (t2) = χA(t)χA(−t).
(iv) If A is invertible, then

χA−1 (t) = (det A)−1(−1)ntnχA(t−1)

for all t �= 0.
Suppose that F = C. If A2 has an eigenvalue μ, does it follow that A has an eigenvalue

λ with μ = λ2?
Suppose that F = C and n is a strictly positive integer. If An has an eigenvalue μ, does

it follow that A has an eigenvalue λ with μ = λn?
Suppose that F = R. If A2 has an eigenvalue μ, does it follow that A has an eigenvalue

λ with μ = λ2?
Give proofs or counterexamples as appropriate.

Exercise 6.8.16 Let A be an n×m matrix of row rank r . Show that (possibly after
reordering the columns of A) we can find B an n× r matrix and C an r ×m matrix such
that A = BC. Give an example to show why it may be necessary to reorder the columns
of A.

Explain why r is the least integer s such that A = B ′C ′ where B ′ is an m× s matrix
and C ′ is an s × n matrix. Use the relation (BC)T = CT BT to give another proof that the
row rank of A equals its column rank.

Exercise 6.8.17 (Requires elementary knowledge of linear differential equations.)
(i) Consider the differential equation⎛

⎝ẋ

ẏ

ż

⎞
⎠ =
⎛
⎝−1 2 −1

1 0 −1
1 −2 1

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ .

Obtain the general solution in the form x(t) = γ1(t)u1 + γ2(t)u2 + γ3(t)u3 where the uj

(to be found explicitly) form a basis of eigenvectors of the matrix.
(ii) For each real λ, find the general solution of⎛

⎝ẋ

ẏ

ż

⎞
⎠ =
⎛
⎝−1 2 −1

1 0 −1
1 −2 1

⎞
⎠
⎛
⎝x

y

z

⎞
⎠+ 2

⎛
⎝−λ

1
λ

⎞
⎠ e2t .

What particular phenomenon occurs when λ = 1?
(iii) Let λ = −1. Find a solution of the equation in (ii) which has x = (0, 1, 0)T when

t = 0.

Exercise 6.8.18 Explain why (if we are allowed to renumber columns) we can perform an
LU factorisation of an n× n matrix A so as to obtain A = LU where L is lower triangular
with diagonal elements 1 and all entries of modulus at most 1 and U is upper triangular.

If all the elements of A have modulus at most 1 show that all the entries of U have
modulus at most 2n−1.
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Perform the LU factorisation (without row pivoting) on the 3× 3 matrix

A =

⎛
⎜⎜⎝

1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

⎞
⎟⎟⎠

so as to obtain A = LU where L is lower triangular with diagonal elements 1 and all entries
of modulus at most 1 and U is upper triangular. By generalising this idea, show that the
result of the previous paragraph is best possible for every n.

Exercise 6.8.19 (This requires a little group theory and, in particular, knowledge of the
Möbius group M.)

Let SL(C2) be the set of 2× 2 complex matrices A with det A = 1.
(i) Show that SL(C2) is a group under matrix multiplication.
(ii) Let M be the group of maps T : C ∪ {∞} → C ∪ {∞} given by

T z = az+ b

cz+ d

where ad − bc �= 0. Show that the map θ : SL(C2) →M given by

θ

(
a b

c d

)
(z) = az+ b

cz+ d

is a group homomorphism. Show further that θ is surjective and has kernel {I,−I }.
(iii) Use (ii) and Exercise 6.4.7 to show that, given T ∈M, one of the following

statements must be true.
(1) T z = z for all z ∈ C ∪ {∞}.
(2) There exists an S ∈M such that S−1T Sz = λz for all z ∈ C and some λ �= 0.
(3) There exists an S ∈M such that either S−1T Sz = z+ 1 for all z ∈ C or S−1T Sz =

z− 1 for all z ∈ C.

Exercise 6.8.20 [The trace] If A = (aij ) is an n× n matrix over F, then we define the trace
Tr A by Tr A = aii (using the summation convention). There are many ways of showing
that

Tr B−1AB = Tr A �

whenever B is an invertible n× n matrix. You are asked to consider four of them in this
question.

(i) Prove � directly using the summation convention. (To avoid confusion, I suggest
you write C = B−1.)

(ii) If E is an n×m matrix and F is an m× n matrix explain why Tr EF and Tr FE

are defined. Show that

Tr EF = Tr FE,

and use this result to obtain �.
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(iii) Show that−Tr A is the coefficient of tn−1 in the characteristic polynomial det(tI −
A). Write det

(
B−1(tI − A)B

)
in two different ways to obtain �.

(iv) Show that if A is the matrix of the linear map α with respect to some basis,
then −Tr A is the coefficient of tn−1 in the characteristic polynomial det(t ι− α) and
explain why this observation gives �.

Explain why � means that, if U is a finite dimensional space and α : U → U a linear
map, we may define

Tr α = Tr A

where A is the matrix of α with respect to some given basis.

Exercise 6.8.21 If A and B are n× n matrices over F, we write [A,B] = AB − BA.
(We call [A,B] the commutator of A and B.) Show, using the summation convention, that
Tr[A,B] = 0.

If E(r, s) is the n× n matrix with 1 in the (r, s)th place and zeros everywhere else,
compute [E(r, s), E(u, v)]. Show that, given an n× n diagonal matrix D, with Tr D = 0
we can find A and B such that [A,B] = D.

Deduce that if C is a diagonalisable n× n matrix with Tr C = 0, then we can find F

and G such that [F,G] = C.
Suppose that we work over C. By using Theorem 6.4.3, or otherwise, show that if C is

any 2× 2 matrix with Tr C = 0, then we can find F and G such that [F,G] = C.
[In Exercise 12.6.24 we will use sharper tools to show that the result of the last paragraph
holds for n× n matrices.]

Exercise 6.8.22 We work with n× n matrices over F. Show that, if Tr AX = 0 for every
X, then A = 0.

Is it true that, if det AX = 0 for every X, then A = 0? Give a proof or counterexample.

Exercise 6.8.23 If C is a 2× 2 matrix over F with Tr C = 0, show that C2 is a multiple of
I (that is to say, C2 = λI for some λ ∈ F). Conclude that, if A and B are 2× 2 matrices,
then [A,B]2 is a multiple of I .
[Hint: Suppose first that F = C and use Theorem 6.4.3.]

If A and B are 2× 2 matrices, does it follow that [A,B] is a multiple of I? If A

and B are 4× 4 matrices does it follow that [A,B]2 is a multiple of I? Give proofs or
counterexamples.

Exercise 6.8.24 (i) Suppose that V is a vector space over F. If α, β, γ : V → V are linear
maps such that

αβ = βγ = ι

(where ι is the identity map), show by looking at α(βγ ), or otherwise, that α = γ .
(ii) Show that P , the space of polynomials with real coefficients, is a vector space over

R. If β(P )(t) = tP (t) show that β : P → P is a linear map. Show that there exists a linear
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map α : P → P such that αβ = ι, but that there does not exist a linear map γ : P → P
such that βγ = ι.

(iii) If P is as in (ii), find a linear map β : P → P such that there exists a linear map
γ : P → P with βγ = ι, but that there does not exist a linear map α : P → P such that
αβ = ι.

(iv) Let c = FN be the vector space introduced in Exercise 5.2.9 (iv). Find a linear map
β : c → c such that there exists a linear map γ : c → c with γβ = ι, but that there does
not exist a linear map α : c → c such that βα = ι. Find a linear map θ : c → c such that
there exists a linear map φ : c → c with θφ = ι, but that there does not exist a linear map
α : c → c such that αθ = ι.

(v) Do there exist a finite dimensional vector space V and linear maps α, β : V → V

such that αβ = ι, but not a linear map γ : V → V such that βγ = ι? Give reasons for your
answer.

Exercise 6.8.25 Let C be an n× n matrix over C. We write C = A+ iB with A and B

real n× n matrices. By considering the polynomial P (z) = det(A+ zB), show that, if C

is invertible, there must exist a real t such that A+ tB is invertible. Hence, show that, if R

and S are n× n matrices with real entries which are similar when considered over C (i.e.
there exists an invertible matrix C with entries in C such that R = C−1SC), then they are
similar when considered over R (i.e. there exists an invertible matrix P with entries in R

such that R = P−1SP ).

Exercise 6.8.26 Find an LU factorisation of the matrix

A =

⎛
⎜⎜⎝

2 −1 3 2
−4 3 −4 −2
4 −2 3 6
−6 5 −8 1

⎞
⎟⎟⎠

and use it to solve Ax = b where

b =

⎛
⎜⎜⎝
−2
2
4
11

⎞
⎟⎟⎠ .

Exercise 6.8.27 Let

A =

⎛
⎜⎜⎝

1 a a2 a3

a3 1 a a2

a2 a3 1 a

a a2 a3 1

⎞
⎟⎟⎠ .

Find the LU factorisation of A and compute det A. Generalise your results to n× n

matrices.
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Exercise 6.8.28 Suppose that A is an n× n matrix and there exists a polynomial f such
that B = f (A). Show that BA = AB.

Suppose that A is an n× n matrix with n distinct eigenvalues. Show that if B commutes
with A then, if A is diagonal with respect to some basis, so is B. By considering an appro-
priate Vandermonde determinant (see Exercise 4.4.9) show that there exists a polynomial
f of degree at most n− 1 such that B = f (A).

Suppose that we only know that A is an n× n diagonalisable matrix. Is it always true
that if B commutes with A then B is diagonalisable? Is it always true that, if B commutes
with A, then there exists a polynomial f such that B = f (A)? Give reasons.

Exercise 6.8.29 Matrices of the form

A =

⎛
⎜⎜⎜⎜⎜⎝

a0 a1 a2 . . . an

an a0 a1 . . . an−1

an−1 an a0 . . . an−2
...

. . .
...

a1 a2 a3 . . . a0

⎞
⎟⎟⎟⎟⎟⎠

are called circulant matrices. Show that, for certain values of η, to be found, e(η) =
(1, η, η2, . . . , ηn)T is an eigenvector of A.

Explain why the eigenvectors you have found form a basis for Cn+1. Use this result to
evaluate det A. (This gives another way of obtaining the result of Exercise 5.7.14.) Check
the result of Exercise 6.8.27 using the formula just obtained.

By using the basis discussed above, or otherwise, show that if A and B are circulants of
the same size, then AB = BA.

Exercise 6.8.30 We work in R. Let A be a diagonalisable and invertible n× n matrix and
B an n× n matrix such that AB = tBA for some real number t > 1.

(i) Show that B is nilpotent, that is to say, Bk = 0 for some positive integer k.
(ii) Suppose that we can find a vector v ∈ Rn such that Av = v and Bn−1v �= 0. Find the

eigenvalues of A.
What is the largest subset of X of R such that, if A is a diagonalisable and invertible

n× n matrix and B an n× n matrix such that AB = sBA for some s ∈ X, then B must be
nilpotent? Prove your answer.

Exercise 6.8.31 The object of this exercise is to show why finding eigenvalues of a large
matrix is not just a matter of finding a large fast computer.

Consider the n× n complex matrix A = (aij ) given by

aj j+1 = 1 for 1 ≤ j ≤ n− 1

an1 = κn

aij = 0 otherwise,
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where κ ∈ C is non-zero. Thus, when n = 2 and n = 3, we get the matrices

(
0 1
κ2 0

)
and

⎛
⎝ 0 1 0

0 0 1
κ3 0 0

⎞
⎠ .

(i) Find the eigenvalues and associated eigenvectors of A for n = 2 and n = 3. (Note
that we are working over C, so we must consider complex roots.)

(ii) By guessing and then verifying your answers, or otherwise, find the eigenvalues and
associated eigenvectors of A for for all n ≥ 2.

(iii) Suppose that your computer works to 15 decimal places and that n = 100. You
decide to find the eigenvalues of A in the cases κ = 2−1 and κ = 3−1. Explain why at least
one (and more probably both) attempts will deliver answers which bear no relation to the
true answers.

Exercise 6.8.32 [Bézout’s theorem] In this question we work in Z. Let r and s be non-zero
integers. Show that the set

� = {ur + vs : u, v ∈ Z and ur + vs > 0}
is a non-empty subset of the strictly positive integers. Conclude that � has a least element
c.

Show that we can find an integer a such that

0 ≤ r + ac < c.

Explain why either r + ac ∈ � or r + ac = 0 and deduce that r = −ac. Thus c divides r

and similarly c divides s. Deduce that c divides the highest common divisor of r and s. Use
the definition of � to show that the highest common divisor of r and s divides c and so c

must be the highest common divisor of r and s.
Conclude that, if d is the highest common divisor of r and s, then there exist u and v

such that

d = ur + vs.

If p is a prime and r is an integer not divisible by p, show, by setting p = s, that there
exists an integer u such that

1 ≡ ur (mod p).

Exercise 6.8.33 [Fermat’s little theorem] If p is a prime and k is an integer with 1 ≤ k ≤
p − 1, show that

(
p
k

)
is divisible by p. Deduce that

(r + 1)p ≡ rp + 1 (mod p)

for all integers u. Hence, or otherwise, deduce Fermat’s little theorem

rp ≡ r (mod p)

for all integers r .
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By multiplying both sides of the equation by the integer u defined in the last sentence
of the previous question, show that

r �≡ 0 (mod p) ⇔ rp−1 ≡ 1 (mod p)

and deduce that that (if r �≡ 0) we have u ≡ rp−2 (mod p)

Exercise 6.8.34 This question is intended as a revision of the notion of equivalence
relations and classes.

Recall that, if A is a non-empty set, a relation is a set R ⊆ A× A. We write aRb if
(a, b) ∈ R.

(I) We say that R is reflexive if aRa for all a ∈ A.
(II) We say that R is symmetric if aRb ⇒ bRa.
(III) We say that R is transitive if aRb ⇒ bRa.
By considering possible R when A = {1, 2, 3}, show that each of the eight possible

combinations of the type ‘not reflexive, symmetric, not transitive’ can occur.
A relation is called an equivalence relation if it is reflexive, symmetric and transitive. A

collection F of subsets of A is called a partition of A if the following conditions hold.
(i)
⋃

F∈F F = A.
(ii) If F, G ∈ F , then F ∩G �= ∅ ⇒ F = G.
Show that, if F is a partition of A, the relation RF defined by

aRFb ⇔ a, b ∈ F for some F ∈ F
is an equivalence relation.

Show that, if R is an equivalence relation on A, the collection A/R of sets of the form

[a] = {x ∈ A : aRx}
is a partition of A. We say that A/R is the quotient of A by R. We call the elements
[a] ∈ A/R equivalence classes.

Exercise 6.8.35 In this question we show how to construct Zp using equivalence classes.
(i) Let n be an integer with n ≥ 2. Show that the relation Rn on Z defined by

uRnv ⇔ u− v divisible by n

is an equivalence relation.
(ii) If we consider equivalence classes in Z/Rn, show that

[u] = [u′], [v] = [v′] ⇒ [u+ v] = [u′ + v′], [uv] = [u′v′].

Explain briefly why this allows us to make the definitions

[u]+ [v] = [u+ v], [u]× [v] = [uv].

We write Zn = Z/Rn and equip Zn with the addition and multiplication just defined.
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(iii) If n = 6, show that [2], [3] �= [0] but [2]× [3] = [0].
(iv) If p is a prime, verify that Zp satisfies the axioms for a field set out in Defi-

nition 13.2.1. (You you should find the verifications trivial apart from (viii) which uses
Exercise 6.8.32.) In practice, we often write r = [r].

(v) Show that Zn is a field if and only if n is a prime.

Exercise 6.8.36 (This question requires the notion of an equivalence class. See Exer-
cise 6.8.34.)

Let u be a non-zero vector in Rn. Write x ∼ y if x = y+ λu for some λ ∈ R. Show that
∼ is an equivalence relation on Rn and identify the equivalence classes

ly = {x : x ∼ y}
geometrically. Identify l0 specifically.

If L is the collection of equivalence classes show that the definitions

la + lb = la+b, λla = lλa

give well defined operations. Verify that L is a vector space. (If you only wish to do some
of the verifications, prove the associative law for addition

la + (lb + lc) = (la + lb)+ lc

and the existence of a zero vector to be identified explicitly.)
If u, b1, b2, . . . , bn−1 form a basis for Rn, show that lb1 , lb2 , . . . , lbn−1 form a basis for

L.
Suppose that n = 3, u = (1, 3,−1)T , and α : L→ L is the linear map with

αl(1,−1,0)T = l(2,4,−1)T , αl(1,1,0)T = l(−4,−2,1)T .

Find the matrix of α with respect to the basis l(1,0,0)T , l(0,1,0)T .

Exercise 6.8.37 (It looks quite hard to set a difficult question on equivalence relations, but,
in my opinion, the Cambridge examiners have managed it at least once. This exercise is
included for interest and will not be used elsewhere.)

If R and S are two equivalence relations on the same set A, we define

R ◦ S = {(x, z) ∈ A× A :

there exists a y ∈ A such that (x, y) ∈ R and (y, z) ∈ S}.
Show that the following conditions are equivalent.
(i) R ◦ S is a symmetric relation on A.
(ii) R ◦ S is a transitive relation on A.
(iii) R ◦ S is the smallest equivalence relation on A containing both R and S.
Show also that these conditions hold if A = Z and R and S are the relations of congruence

modulo m and modulo n for some integers m, n ≥ 2.
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Exercise 6.8.38 [Roots of equations] We work over C.
(i) By induction on the degree of P , or otherwise, show that, if P is a polynomial of

degree at least 1 and a ∈ C, we can find a polynomial Q of degree 1 less than the degree
of P and an r ∈ C such that

P (t) = (t − a)Q(t)+ r.

(ii) By considering the effect of setting t = a in (i), show that, if P is a polynomial with
root a, we can find a polynomial Q of degree 1 less than the degree of P such that

P (t) = (t − a)Q(t).

(iii) Use induction and the Fundamental Theorem of Algebra (Theorem 6.2.6) to show
that, if P is polynomial of degree at least 1, then we can find K ∈ C and λj ∈ C such that

P (t) = K

n∏
j=1

(t − λj ).

(iv) Show that a polynomial of degree n can have at most n distinct roots. For each
n ≥ 1, give a polynomial of degree n with only one distinct root.

Exercise 6.8.39 Linear differential equations are very important, but there are many other
kinds of differential equations and analogy with the linear case may then lead us astray.
Consider the first order differential equation

f ′(x) = 3f (x)2/3. �

Show that, if u ≤ v, the function

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

(x − u)3 if x ≤ u

0 if u < x < v

(x − v)3 if v ≤ x

is a once differentiable function satisfying �. (Notice that there are two constants involved
in specifying f .) Can you spot any other solutions?

Exercise 6.8.40 Let us fix a basis for Rn. Which of the following are subgroups of GL(Rn)
for n ≥ 2? Give proofs or counterexamples.

(i) The set H1 of α ∈ GL(Rn) with matrix A = (aij ) where a11 = 1.
(ii) The set H2 of α ∈ GL(Rn) with det α > 0.
(iii) The set H3 of α ∈ GL(Rn) with det α a non-zero integer.
(iv) The set H4 of α ∈ GL(Rn) with matrix A = (aij ), where aij ∈ Z and det A = 1.
(v) The set H5 of α ∈ GL(Rn) with matrix A = (aij ) such that exactly one element in

each row and column is non-zero.
(vi) The set H6 of α ∈ GL(Rn) with lower triangular matrix.

Exercise 6.8.41 Let us fix a basis for Cn. Which of the following are subgroups of GL(Cn)
for n ≥ 1? Give proofs or counterexamples.
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(i) The set of α ∈ GL(Cn) with matrix A = (aij ), where the real and imaginary parts of
the aij are integers.

(ii) The set of α ∈ GL(Cn) with matrix A = (aij ), where the real and imaginary parts
of the aij are integers and (det A)4 = 1.

(iii) The set of α ∈ GL(Cn) with matrix A = (aij ), where the real and imaginary parts
of the aij are integers and | det A| = 1.

The set T consists of all 2× 2 complex matrices of the form

A =
(

z w

−w∗ z∗

)
with z and w having integer real and imaginary parts. If Q consists of all elements of T with
inverses in T , show that the α with matrices in Q form a subgroup of GL(C2) with eight
elements. Show that Q contains elements α and β with αβ �= βα. Show that Q contains
six elements γ with γ 4 = ι but γ 2 �= ι. (Q is called the quaternion group.)



7

Distance preserving linear maps

7.1 Orthonormal bases

We start with a trivial example.

Example 7.1.1 A restaurant serves n different dishes. The ‘meal vector’ of a customer is
the column vector x = (x1, x2, . . . , xn)T , where xj is the quantity of the j th dish ordered. At
the end of the meal, the waiter uses the linear map P : Rn → R to obtain P (x) the amount
(in pounds) the customer must pay.

Although the ‘meal vectors’ live in Rn, it is not very useful to talk about the distance
between two meals. There are many other examples where it is counter-productive to saddle
Rn with things like distance and angle.

Equally, there are other occasions (particularly in the study of the real world) when it
makes sense to consider Rn equipped with the inner product

〈x, y〉 = x · y =
n∑

r=1

xryr ,

which we studied in Section 2.3 and the associated Euclidean norm

‖x‖ = 〈x, x〉1/2.

We change from the ‘dot product notation’ x · y to the ‘bracket notation’ 〈x, y〉 partly to
expose the reader to both notations and partly because the new notation seems clearer in
certain expressions. The reader may wish to reread Section 2.3 before continuing.

Recall that we said that two vectors x and y are orthogonal (or perpendicular) if
〈x, y〉 = 0.

Definition 7.1.2 We say that x, y ∈ Rn are orthonormal if x and y are orthogonal and both
have norm 1. We say that a set of vectors is orthonormal if any two distinct elements are
orthonormal.

Informally, x and y are orthonormal if they ‘have length 1 and are at right angles’.
The following observations are simple but important.

160
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Lemma 7.1.3 We work in Rn.
(i) If e1, e2, . . . , ek are orthonormal and

x =
k∑

j=1

λj ej ,

for some λj ∈ R, then λj = 〈x, ej 〉 for 1 ≤ j ≤ k.
(ii) If e1, e2, . . . , ek are orthonormal, then they are linearly independent.
(iii) Any collection of n orthonormal vectors forms a basis.
(iv) If e1, e2, . . . , en are orthonormal and x ∈ Rn, then

x =
n∑

j=1

〈x, ej 〉ej .

Proof (i) Observe that

〈x, er〉 =
〈

k∑
j=1

λj ej , er

〉
=

k∑
j=1

λj 〈ej , er〉 = λj .

(ii) If
∑k

j=1 λj ej = 0, then part (i) tells us that λj = 〈0, ej 〉 = 0 for 1 ≤ j ≤ k.
(iii) Recall that any n linearly independent vectors form a basis for Rn.
(iv) Use parts (iii) and (i). �

Exercise 7.1.4 (i) If U is a subspace of Rn of dimension k, show that any collection of k

orthonormal vectors in U forms a basis for U .
(ii) If e1, e2, . . . , ek form an orthonormal basis for the subspace U in (i) and x ∈ U ,

show that

x =
k∑

j=1

〈x, ej 〉ej .

If a basis for some subspace U of Rn consists of orthonormal vectors we say that it is
an orthonormal basis for U .

The next set of results are used in many areas of mathematics.

Theorem 7.1.5 [The Gram–Schmidt method] We work in Rn.
(i) If e1, e2, . . . , ek are orthonormal and x ∈ Rn, then

v = x−
k∑

j=1

〈x, ej 〉ej

is orthogonal to each of e1, e2, . . . , ek .
(ii) If e1, e2, . . . , ek are orthonormal and x ∈ Rn, then either

x ∈ span{e1, e2, . . . , ek}
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or the vector v defined in (i) is non-zero and, writing ek+1 = ‖v‖−1v, we know that e1,
e2, . . . , ek+1 are orthonormal and

x ∈ span{e1, e2, . . . , ek+1}.
(iii) Suppose that 1 ≤ k ≤ q ≤ n. If U is a subspace of Rn of dimension q and e1, e2,

. . . , ek are orthonormal vectors in U , we can find an orthonormal basis e1, e2, . . . , eq for
U .

(iv) Every subspace of Rn has an orthonormal basis.

Proof (i) Observe that

〈v, er〉 = 〈x, er〉 −
k∑

j=1

〈x, er〉〈ej , er〉 = 〈x, er〉 − 〈x, er〉 = 0

for all 1 ≤ r ≤ k.
(ii) If v = 0, then

x =
k∑

j=1

〈x, ej 〉ej ∈ span{e1, e2, . . . , ek}.

If v �= 0, then ‖v‖ �= 0 and

x = v+
k∑

j=1

〈x, ej 〉ej

= ‖v‖ek+1 +
k∑

j=1

〈x, ej 〉ej ∈ span{e1, e2, . . . , ek+1}.

(iii) If e1, e2, . . . , ek do not form a basis for U , then we can find

x ∈ U \ span{e1, e2, . . . , ek}.
Defining v as in part (i), we see that v ∈ U and so the vector ek+1 defined in (ii) lies in
U . Thus we have found orthonormal vectors e1, e2, . . . , ek+1 in U . If they form a basis
for U we stop. If not, we repeat the process. Since no set of q + 1 vectors in U can be
orthonormal (because no set of q + 1 vectors in U can be linearly independent), the process
must terminate with an orthonormal basis for U of the required form.

(iv) This follows from (iii). �

Note that the method of proof for Theorem 7.1.5 not only proves the existence of the
appropriate orthonormal bases, but gives a method for finding them.

Exercise 7.1.6 Work with row vectors. Find an orthonormal basis e1, e2, e3 for R3 with
e1 = 3−1/2(1, 1, 1). Show that it is not unique by writing down another such basis.

Here is an important consequence of the results just proved.
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Theorem 7.1.7 (i) If U is a subspace of Rn and a ∈ Rn, then there exists a unique point
b ∈ U such that

‖b− a‖ ≤ ‖u− a‖
for all u ∈ U .

Moreover, b is the unique point in U such that 〈b− a, u〉 = 0 for all u ∈ U .

In two dimensions, this corresponds to the classical theorem that, if a point B does not
lie on a line l, then there exists a unique line l′ perpendicular to l passing through B. The
point of intersection of l with l′ is the closest point in l to B. More briefly, the foot of the
perpendicular dropped from B to l is the closest point in l to B.

Exercise 7.1.8 State the corresponding results for three dimensions when U has dimension
2 and when U has dimension 1.

Proof of Theorem 7.1.7 By Theorem 7.1.5, we know that we can find an orthonormal basis
e1, e2, . . . , eq for U . If u ∈ U , then u =∑q

j=1 λj ej and

‖u− a‖2 =
〈

q∑
j=1

λj ej − a,

q∑
j=1

λj ej − a

〉

=
q∑

j=1

λ2
j − 2

q∑
j=1

λj 〈a, ej 〉 + ‖a‖2

=
q∑

j=1

(
λj − 〈a, ej 〉)2 + ‖a‖2 −

q∑
j=1

〈a, ej 〉2.

Thus ‖u− a‖ attains its minimum if and only if λj = 〈a, ej 〉. The first paragraph follows
on setting

b =
q∑

j=1

〈a, ej 〉ej .

To check the second paragraph, observe that, if 〈c− a, u〉 = 0 for all u ∈ U , then, in
particular, 〈c− a, ej 〉 = 0 for all 1 ≤ j ≤ q. Thus

〈c, ej 〉 = 〈a, ej 〉
for all 1 ≤ j ≤ q and so c = b. Conversely,〈

b− a,

q∑
j=1

λj ej

〉
=

q∑
j=1

λj

(〈b, ej − 〈a, ej 〉
) = q∑

j=1

λj 0 = 0

for all λj ∈ R, so 〈b− a, u〉 = 0 for all u ∈ U . �

The next exercise is a simple rerun of the proof above, but reappears as the important
Bessel’s inequality in the study of differential equations and elsewhere.
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Exercise 7.1.9 We work in Rn and take e1, e2, . . . , ek to be orthonormal vectors.
(i) We have ∥∥∥∥∥∥x−

k∑
j=1

λj ej

∥∥∥∥∥∥
2

≥ ‖x‖2 −
k∑

j=1

〈x, ej 〉2

with equality if and only if λj = 〈x, ej 〉 for each j .
(ii) (A simple form of Bessel’s inequality.) We have

‖x‖2 ≥
k∑

j=1

〈x, ej 〉2

with equality if and only if x ∈ span{e1, e2, . . . , ek}.
[We shall discuss the full form of Bessel’s inequality in Theorem 14.1.15.]

Exercise 7.6.7 gives another elegant geometric fact which can be obtained from Theo-
rem 7.1.5.

The results of the following exercise will be used later.

Exercise 7.1.10 If U is a subspace of Rn, show that

U⊥ = {v ∈ Rn : 〈v, u〉 = 0 for all u ∈ U}
is a subspace of Rn. Show, by using Theorem 7.1.7, that every a ∈ Rn can be written in one
and only one way as x = u+ v with u ∈ U , v ∈ U⊥. Deduce that

dim U + dim U⊥ = n.

7.2 Orthogonal maps and matrices

Recall from Definition 4.3.8 that, if A is the n× n matrix (aij ), then AT (the transpose of
A) is the n× n matrix (bij ) with bij = aji [1 ≤ i, j ≤ n].

Lemma 7.2.1 If the linear map α : Rn → Rn has matrix A with respect to some orthonor-
mal basis and α∗ : Rn → Rn is the linear map with matrix AT with respect to the same
basis, then

〈αx, y〉 = 〈x, α∗y〉
for all x, y ∈ Rn.

Further, if the linear map β : Rn → Rn satisfies

〈αx, y〉 = 〈x, βy〉
for all x, y ∈ Rn, then β = α∗.

Proof Suppose that α has matrix A = (aij ) with respect to some orthonormal basis e1, e2,
. . . , en and α∗ : Rn → Rn is the linear map with matrix AT with respect to the same basis.
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If x =∑n
i=1 xiei and y =∑n

i=1 yiei for some xi, yi ∈ R, then, writing cij = aji and
using the summation convention,

〈αx, y〉 = aij xjyi = xj cjiyi = 〈x, α∗y〉.
To obtain the conclusion of the second paragraph, observe that

〈x, βy〉 = 〈αx, y〉 = 〈x, α∗y〉
for all x and all y so (by Lemma 2.3.8)

βy = α∗y

for all y so, by the definition of the equality of functions, β = α∗. �

Exercise 7.2.2 Prove the first paragraph of Lemma 7.2.1 without using the summation
convention.

Lemma 7.2.1 enables us to make the following definition.

Definition 7.2.3 If α : Rn → Rn is a linear map, we define the adjoint α∗ to be the unique
linear map such that

〈αx, y〉 = 〈x, α∗y〉
for all x, y ∈ Rn.

Lemma 7.2.1 now yields the following result.

Lemma 7.2.4 If α : Rn → Rn is a linear map with adjoint α∗, then, if α has matrix A

with respect to some orthonormal basis, it follows that α∗ has matrix AT with respect to
the same basis.

Lemma 7.2.4 suggests the notation αT = α∗ which is, indeed, sometimes used, but does
not mesh well with the ideas developed in the second part of this text.

Lemma 7.2.5 Let α, β : Rn → Rn be linear and let λ, μ ∈ R. Then the following results
hold.

(i) (αβ)∗ = β∗α∗.
(ii) α∗∗ = α, where we write α∗∗ = (α∗)∗.
(iii) (λα + μβ)∗ = λα∗ + μβ∗.
(iv) ι∗ = ι.

Proof (i) Observe that

〈(αβ)∗x, y〉 = 〈x, (αβ)y〉 = 〈x, α(βy)〉 = 〈α(βy), x〉
= 〈βy, α∗x〉 = 〈y, β∗(α∗x)〉 = 〈y, (β∗α∗)x〉 = 〈(β∗α∗)x, y〉

for all x and all y, so (by Lemma 2.3.8)

(αβ)∗x = (β∗α∗)x



166 Distance preserving linear maps

for all x and, by the definition of the equality of functions, (αβ)∗ = β∗α∗.
(ii) Observe that

〈α∗∗x, y〉 = 〈x, α∗y〉 = 〈α∗y, x〉 = 〈y, αx〉 = 〈αx, y〉
for all x and all y, so

α∗∗x = αx

for all x and α∗∗ = α.
(iii) and (iv) Left as an exercise for the reader. �

Exercise 7.2.6 Let A and B be n× n real matrices and let λ, μ ∈ R. Prove the following
results, first by using Lemmas 7.2.5 and 7.2.4 and then by direct computations.

(i) (AB)T = BT AT .
(ii) AT T = A.
(iii) (λA+ μB)T = λAT + μBT .
(iv) IT = I .

The reader may, quite reasonably, ask why we did not prove the matrix results first and
then use them to obtain the results on linear maps. The answer that this procedure would
tell us that the results were true, but not why they were true, may strike the reader as mere
verbiage. She may be happier to be told that the coordinate free proofs we have given turn
out to generalise in a way that the coordinate dependent proofs do not.

We can now characterise those linear maps which preserve length.

Theorem 7.2.7 Let α : Rn → Rn be linear. The following statements are equivalent.
(i) ‖αx‖ = ‖x‖ for all x ∈ Rn.
(ii) 〈αx, αy〉 = 〈x, y〉 for all x, y ∈ Rn.
(iii) α∗α = ι.
(iv) α is invertible with inverse α∗.
(v) If α has matrix A with respect to some orthonormal basis, then AT A = I .

Proof (i)⇒(ii). If (i) holds, then the useful polarisation identity

4〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2

gives

4〈αx, αy〉 = ‖αx+ αy‖2 − ‖αx− αy‖2 = ‖α(x+ y)‖2 − ‖α(x− y)‖2

= ‖x+ y‖2 − ‖x− y‖2 = 4〈x, y〉
and we are done.

(ii)⇒(iii). If (ii) holds, then

〈(α∗α)x, y〉 = 〈α∗(αx), y〉 = 〈αx, αy〉 = 〈x, y〉
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for all x and all y, so

(α∗α)x = x

for all x and α∗α = ι.
(iii)⇒(i). If (iii) holds, then

‖αx‖2 = 〈αx, αx〉 = 〈α∗(αx), x〉 = 〈x, x〉 = ‖x‖2

as required.
Conditions (iv) and (v) are automatically equivalent to (iii). �

If, as I shall tend to do, we think of the linear maps as central, we refer to the collection
of distance preserving (or isometric) linear1 maps by the name O(Rn). If we think of the
matrices as central, we refer to the collection of real n× n matrices A with AAT = I by
the name O(Rn). In practice, most people use whichever convention is most convenient
at the time and no confusion results. A real n× n matrix A with AAT = I is called an
orthogonal matrix.

Lemma 7.2.8 O(Rn) is a subgroup of GL(Rn).

Proof We check the conditions of Definition 5.3.15.
(i) ι∗ = ι, so ι∗ι = ι2 = ι and ι ∈ O(Rn).
(ii) If α ∈ O(Rn), then α−1 = α∗, so

(α−1)∗α−1 = (α∗)∗α∗ = αα∗ = αα−1 = ι

and α−1 ∈ O(Rn).
(iii) If α, β ∈ O(Rn), then

(αβ)∗(αβ) = (β∗α∗)(αβ) = β∗(α∗α)β = β∗ιβ = ι

and so αβ ∈ O(Rn). �

We call O(Rn) the orthogonal group.
The following remark is often useful as a check in computation.

Lemma 7.2.9 The following three conditions on a real n× n matrix A are equivalent.
(i) A ∈ O(Rn).
(ii) The columns of A are orthonormal.
(iii) The rows of A are orthonormal.

Proof We leave the proof as a simple exercise for the reader. �

Exercise 7.2.10 Prove Lemma 7.2.9.
Are the following statements about a real n× n matrix A true? Give proofs or coun-

terexamples as appropriate.

1 We look at general distance preserving maps in Exercise 7.6.8.
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(i) If all the rows of A are orthogonal, then the columns of A are orthogonal.
(ii) If all the rows of A are row vectors of norm (i.e. Euclidean length) 1, then the

columns of A are column vectors of norm 1.
(iii) If A ∈ O(Rn), then any n− 1 rows determine the remaining row uniquely.
(iv) If A ∈ O(Rn) and det A = 1, then any n− 1 rows determine the remaining row

uniquely.

We recall that the determinant of a square matrix can be evaluated by row or by column
expansion and so

det AT = det A.

The next lemma is an immediate consequence.

Lemma 7.2.11 If α : Rn → Rn is linear, then det α∗ = det α.

Proof We leave the proof as a simple exercise for the reader. �
Lemma 7.2.12 If α ∈ O(Rn), then det α = 1 or det α = −1.

Proof Observe that

1 = det ι = det(α∗α) = det α∗ det α = (det α)2.

�
Exercise 7.2.13 Write down a 2× 2 real matrix A with det A = 1 which is not orthogonal.
Write down a 2× 2 real matrix B with det B = −1 which is not orthogonal. Prove your
assertions.

If we think in terms of linear maps, we define

SO(Rn) = {α ∈ O(Rn) : det α = 1}.
If we think in terms of matrices, we define

SO(Rn) = {A ∈ O(Rn) : det A = 1}.
Lemma 7.2.14 SO(Rn) is a subgroup of O(Rn).

The proof is left to the reader. We call SO(Rn) the special orthogonal group.
We restate these ideas for the three dimensional case, using the summation convention.

Lemma 7.2.15 The matrix L ∈ O(R3) if and only if, using the summation convention,

likljk = δij .

If L ∈ O(R3)

εijklir ljs lkt = ±εrst

with the positive sign if L ∈ SO(R3) and the negative sign otherwise.

The proof is left to the reader.
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7.3 Rotations and reflections in R2 and R3

In this section we shall look at matrix representations of O(Rn) and SO(Rn) when n = 2
and n = 3. We start by looking at the two dimensional case.

Theorem 7.3.1 (i) If the linear map α : R2 → R2 has matrix

A =
(

cos θ −sin θ

sin θ cos θ

)

relative to some orthonormal basis, then α ∈ SO(R2).
(ii) If α ∈ SO(R2), then its matrix A relative to a given orthonormal basis takes the

form

A =
(

cos θ −sin θ

sin θ cos θ

)

for some unique θ (depending on the basis) with −π ≤ θ < π .
(iii) If α ∈ SO(R2), then there exists a unique θ with 0 ≤ θ ≤ π such that, with respect

to any orthonormal basis, the matrix of α takes one of the two following forms:(
cos θ −sin θ

sin θ cos θ

)
or

(
cos(−θ ) −sin(−θ )
sin(−θ ) cos(−θ )

)
.

Observe that in part (ii) we have a given orthonormal basis, but that the more precise
part (iii) refers to any orthonormal basis. When the reader does Exercise 7.3.2, she will see
why we had to allow two possible forms.

Proof (i) Direct computation which is left to the reader.
(ii) Let

A =
(

a b

c d

)
.

We have (
1 0
0 1

)
= I = AAT =

(
a b

c d

)(
a c

b d

)
=
(

a2 + b2 ac + bd

ac + bd c2 + d2

)
.

Thus a2 + b2 = 1 and, since a and b are real, we can take a = cos θ , b = −sin θ for some
real θ . Similarly, we can can take a = sin φ, b = cos φ for some real φ. Since ac + bd = 0,
we know that

sin(θ − φ) = cos θ sin φ − sin θ cos φ = 0

and so θ − φ ≡ 0 modulo π .
We also know that

1 = det A = ad − bc = cos θ cos φ + sin θ sin φ = cos(θ − φ),
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so θ − φ ≡ 0 modulo 2π and

A =
(

cos θ −sin θ

sin θ cos θ

)
.

We know that, if a2 + b2 = 1, the equation cos θ = a, sin θ = b has exactly one solution
with −π ≤ θ < π , so the uniqueness follows.

(iii) Suppose that α has matrix representations

A =
(

cos θ −sin θ

sin θ cos θ

)
and B =

(
cos φ −sin φ

sin φ cos φ

)
with respect to two orthonormal bases. Since the characteristic polynomial does not depend
on the choice of basis,

det(tI − A) = det(tI − B).

We observe that

det(tI − A) = det

(
t −cos θ sin θ

−sin θ t − cos θ

)
= (t − cos θ )2 + sin θ2

= t2 − 2t cos θ + cos2 θ + sin θ2 = t2 − 2t cos θ + 1

and so

t2 − 2t cos θ + 1 = t2 − 2t cos φ + 1,

for all t . Thus cos θ = cos φ and so sin θ = ± sin φ. The result follows. �

Exercise 7.3.2 Suppose that e1 and e2 form an orthonormal basis for R2 and the linear
map α : R2 → R2 has matrix

A =
(

cos θ −sin θ

sin θ cos θ

)
with respect to this basis.

Show that e1 and −e2 form an orthonormal basis for R2 and find the matrix of α with
respect to this new basis.

Theorem 7.3.3 (i) If α ∈ O(R2) \ SO(R2), then its matrix A relative to an orthonormal
basis takes the form

A =
(

cos φ sin φ

sin φ −cos φ

)
for some unique φ with −π ≤ φ < π .

(ii) If α ∈ O(R2) \ SO(R2), then there exists an orthonormal basis with respect to which
α has matrix

B =
(−1 0

0 1

)
.
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(iii) If the linear map α : R2 → R2 has matrix

A =
(

cos θ sin θ

sin θ −cos θ

)
relative to some orthonormal basis, then α ∈ O(R2) \ SO(R2).

Proof (i) Exactly as in the proof of Theorem 7.3.1 (ii), the condition AAT = I tells us that

A =
(

cos θ −sin θ

sin φ cos φ

)
.

Since det A = −1, we have

−1 = cos θ cos φ + sin θ sin φ = cos(θ − φ),

so θ − φ ≡ −π modulo 2π and

A =
(

cos φ sin φ

sin φ −cos φ

)
.

(ii) By part (i),

det(t ι− α) =
(

t − cos θ sin θ

sin θ t + cos θ

)
= t2 − cos2 θ −sin2 θ = t2 − 1 = (t + 1)(t − 1).

Thus α has eigenvalues −1 and 1. Let e1 and e2 be associated eigenvectors of norm 1 with

αe1 = −e1 and αe2 = −e2.

Since α preserves the inner product,

〈e1, e2〉 = 〈αe1, αe2〉 = 〈−e1, e2〉 = −〈e1, e2〉
so e1 and e2 form an orthonormal basis with respect to which α has matrix

B =
(−1 0

0 1

)
.

(iii) Direct calculation which is left to the reader. �
Exercise 7.3.4 (i) Let e1 and e2 form an orthonormal basis for R2. Convince yourself that
the linear map with matrix representation(

cos θ −sin θ

sin θ cos θ

)
represents a rotation though θ about 0 and the linear map with matrix representation(−1 0

0 1

)
represents what the mathematician in the street would call a reflection in the line
{te1 : t ∈ e1}.
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[Of course, unless you have a formal definition of reflection and rotation, you cannot prove
this result.]

(ii) Let u1 and u2 form another orthonormal basis for R2. Suppose that the reflection α

has matrix (−1 0
0 1

)
with respect to the basis e1, e2 and matrix(

cos θ sin θ

sin θ −cos θ

)
with respect to the basis u1, u2. Prove a formula relating θ to φ where φ is the (appropriately
chosen) angle between e1 and u1.

The reader may feel that we have gone about things the wrong way and have merely
found matrix representations for rotation and reflection. However, we have done more,
since we have shown that there are no other distance preserving linear maps.

We can push matters a little further and deal with O(R3) and SO(R3) in a similar manner.

Theorem 7.3.5 If α ∈ SO(R3), then we can find an orthonormal basis such that α has
matrix representation

A =
⎛
⎝1 0 0

0 cos θ −sin θ

0 sin θ cos θ

⎞
⎠ .

If α ∈ O(R3) \ SO(R3), then we can find an orthonormal basis such that α has matrix
representation

A =
⎛
⎝−1 0 0

0 cos θ −sin θ

0 sin θ cos θ

⎞
⎠ .

Proof Suppose that α ∈ O(R3). Since every real cubic has a real root, the characteristic
polynomial det(t ι− α) has a real root and so α has an eigenvalue λ with a corresponding
eigenvector e1 of norm 1. Since α preserves length,

|λ| = ‖λe1‖ = ‖αe1‖ = ‖αe1‖ = 1

and so λ = ±1.
Now consider the subspace

e⊥1 = {x : 〈e1, x〉 = 0}.
This has dimension 2 (see Lemma 7.1.10) and, since α preserves the inner product,

x ∈ e⊥1 ⇒ 〈e1, αx〉 = λ−1〈αe1, αx〉 = λ−1〈e1, x〉 = 0 ⇒ αx ∈ e⊥1

so α maps elements of e⊥1 to elements of e⊥1 .
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Thus the restriction of α to e⊥1 is a norm preserving linear map on the two dimensional
inner product space e⊥1 . It follows that we can find orthonormal vectors e2 and e3 such that
either

αe2 = cos θe2 + sin θe3 and αe3 = −sin θe2 + cos θe3

for some θ or

αe2 = −e2 and αe3 = e3.

We observe that e1, e2, e3 form an orthonormal basis for R3 with respect to which α has
matrix taking one of the following forms

A1 =
⎛
⎝1 0 0

0 cos θ −sin θ

0 sin θ cos θ

⎞
⎠ , A2 =

⎛
⎝−1 0 0

0 cos θ −sin θ

0 sin θ cos θ

⎞
⎠ ,

A3 =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠ , A4 =

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ .

In the case when we obtain A3, if we take our basis vectors in a different order, we can
produce an orthonormal basis with respect to which α has matrix⎛

⎝−1 0 0
0 1 0
0 0 1

⎞
⎠ =
⎛
⎝1 0 0

0 cos 0 −sin 0
0 sin 0 cos 0

⎞
⎠ .

In the case when we obtain A4, if we take our basis vectors in a different order, we can
produce an orthonormal basis with respect to which α has matrix⎛

⎝1 0 0
0 −1 0
0 0 −1

⎞
⎠ =
⎛
⎝1 0 0

0 cos π −sin π

0 sin π cos π

⎞
⎠ .

Thus we know that there is always an orthogonal basis with respect to which α has one
of the matrices A1 or A2. By direct calculation, det A1 = 1 and det A2 = −1, so we are
done. �

We have shown that, if α ∈ SO(R3), then there is an orthonormal basis e1, e2, e3 with
respect to which α has matrix ⎛

⎝1 0 0
0 cos θ −sin θ

0 sin θ cos θ

⎞
⎠ .

This is naturally interpreted as saying that α is a rotation through angle θ about an axis
along e1. This result is sometimes stated as saying that ‘every rotation has an axis’.
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However, if α ∈ O(R3) \ SO(R3), so that there is an orthonormal basis e1, e2, e3 with
respect to which α has matrix ⎛

⎝−1 0 0
0 cos θ −sin θ

0 sin θ cos θ

⎞
⎠ , �

then α is clearly not a rotation.
It is natural to call SO(3) the set of rotations of R3.

Exercise 7.3.6 By considering eigenvectors, or otherwise, show that the α just considered,
with matrix given in �, is a reflection in a plane only if θ ≡ 0 modulo 2π and a reflection
in the origin2 only if θ ≡ π modulo 2π .

A still more interesting example occurs if we consider a linear map α : R4 → R4 whose
matrix with respect to some orthonormal basis is given by⎛

⎜⎜⎝
cos θ −sin θ 0 0
sin θ cos θ 0 0

0 0 cos φ −sin φ

0 0 sin φ cos φ

⎞
⎟⎟⎠ .

Direct calculation gives α ∈ SO(R4) but, unless θ and φ take special values, there is no
‘axis of rotation’ and no ‘angle of rotation’. (Exercise 7.6.18 goes deeper into the matter.)

Exercise 7.3.7 Show that the α just considered has no eigenvalues (over R) unless θ or φ

take special values to be determined.

In classical physics we only work in three dimensions, so the results of this section are
sufficient. However, if we wish to look at higher dimensions, we need a different approach.

7.4 Reflections in Rn

The following approach goes back to Euler. We start with a natural generalisation of the
notion of reflection to all dimensions.

Definition 7.4.1 If n is a vector of norm 1, the map ρ : Rn → Rn given by

ρx = x− 2〈x, n〉n
is said to be a reflection in

π = {x : 〈x, n〉 = 0}.
Lemma 7.4.2 The following two statements about a map ρ : Rn → Rn are equivalent.

2 Ignore this if you do not know the terminology.
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(i) ρ is a reflection in

π = {x : 〈x, n〉 = 0}
where n has norm 1.

(ii) ρ is a linear map and there is an orthonormal basis e1, e2, . . . , en with respect to
which ρ has a diagonal matrix D with d11 = −1, dii = 1 for all 2 ≤ i ≤ n.

Proof (i)⇒(ii). Suppose that (i) is true. Set e1 = n and choose an orthonormal basis e1, e2,
. . . , en. Simple calculations show that

ρej =
{

e1 − 2e1 = −e1 if j = 1,

ej − 0ej = ej otherwise.

Thus ρ has matrix D with respect to the given basis.
(ii)⇒(i). Suppose that (ii) is true. Set n = e1. If x ∈ Rn, we can write x =∑n

j=1 xj ej

for some xj ∈ Rn. We then have

ρx = ρ

⎛
⎝ n∑

j=1

xj ej

⎞
⎠ = n∑

j=1

xjρej = −x1e1 +
n∑

j=2

xj ej ,

and

x− 2〈x, n〉n =
n∑

j=1

xj ej − 2

〈
n∑

j=1

xj ej , e1

〉
e1

=
n∑

j=1

xj ej − 2x1e1 = −x1e1 +
n∑

j=2

xj ej ,

so that

ρ(x) = x− 2〈x, n〉n
as stated. �
Exercise 7.4.3 We work in Rn. Suppose that n is a vector of norm 1. If x ∈ Rn, show that

x = u+ v

where u = 〈x, n〉n and v ⊥ n. Show that, if ρ is the reflection given in Definition 7.4.1,

ρx = −u+ v.

Lemma 7.4.4 If ρ is a reflection, then ρ has the following properties.
(i) ρ2 = ι.
(ii) ρ ∈ O(Rn).
(iii) det ρ = −1.

Proof The results follow immediately from condition (ii) of Lemma 7.4.2 on observing
that D2 = I , DT = D and det D = −1. �
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The main result of this section depends on the following observation.

Lemma 7.4.5 If ‖a‖ = ‖b‖ and a �= b, then we can find a unit vector n such that the
associated reflection ρ has the property that ρa = b. Moreover, we can choose n in such a
way that, whenever u is perpendicular to both a and b, we have ρu = u.

Exercise 7.4.6 Prove the first part of Lemma 7.4.5 geometrically in the case when n = 2.

Once we have done Exercise 7.4.6, it is more or less clear how to attack the general case.

Proof of Lemma 7.4.5 Let n = ‖a− b‖−1(a− b) and set

ρ(x) = x− 2〈x, n〉n.

Then, since ‖a‖ = ‖b‖,

〈a, a− b〉 = ‖a‖2 − 〈a, b〉 = 1

2
(‖a‖2 − 2〈a, b〉 + ‖b‖2) = 1

2
‖a− b‖2,

and so

ρ(a) = a− 2‖a− b‖−2〈a, a− b〉(a− b) = a+ (b− a) = b.

If u is perpendicular to both a and b, then u is perpendicular to n and

ρ(u) = u− (2× 0)u = u

as required. �

We can use this result to ‘fix vectors’ as follows.

Lemma 7.4.7 Suppose that β ∈ O(Rn) and β fixes the orthonormal vectors e1, e2, . . . ,
ek (that is to say, β(er ) = er for 1 ≤ r ≤ k). Then either β = ι or we can find a ek+1 and a
reflection ρ such that e1, e2, . . . , ek+1 are orthonormal and ρβ(er ) = er for 1 ≤ r ≤ k + 1.

Proof If β �= ι, then there must exist an x ∈ Rn such that βx �= x and so, setting

v = x−
k∑

j=1

〈x, ej 〉ej and er+1 = ‖v‖−1v,

we see that there exists a vector er+1 of norm 1 perpendicular to e1, e2, . . . , ek such that
βer+1 �= er+1.

Since β preserves norm and inner product (recall Theorem 7.2.7, if necessary), we know
that βer+1 has norm 1 and is perpendicular to e1, e2, . . . , ek . By Lemma 7.4.5 we can find
a reflection ρ such that

ρ(βer+1) = er+1 and ρej = ej for all 1 ≤ j ≤ k.

Automatically (ρβ)ej = ej for for all 1 ≤ j ≤ k + 1. �
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Theorem 7.4.8 If α ∈ O(Rn), then we can find reflections ρ1, ρ2, . . . , ρk with 0 ≤ k ≤ n

such that

α = ρ1ρ2 . . . ρk.

In other words, every norm preserving linear map α : Rn → Rn is the product of at most
n reflections. (We adopt the convention that the product of no reflections is the identity
map.)

Proof We know that Rn can contain no more than n orthonormal vectors. Thus by applying
Lemma 7.4.7 at most n times, we can find reflections ρ1, ρ2, . . . , ρk with 0 ≤ k ≤ n such
that

ρkρk−1 . . . ρ1α = ι

and so

α = (ρ1ρ2 . . . ρk)(ρkρk−1 . . . ρ1)α = ρ1ρ2 . . . ρk.

�

Exercise 7.4.9 If α is a rotation through angle θ in R2, find, with proof, all the pairs of
reflections ρ1, ρ2 with α = ρ1ρ2. (It may be helpful to think geometrically.)

We have a simple corollary.

Lemma 7.4.10 Consider a linear map α : Rn → Rn. We have α ∈ SO(Rn) if and only if α

is the product of an even number of reflections. We have α ∈ O(Rn) \ SO(Rn) if and only
if α is the product of an odd number of reflections.

Proof Take determinants. �

Exercise 7.6.18 shows how to use the ideas of this section to obtain a nice matrix
representation (with respect to some orthonormal basis) of any orthogonal linear map.

7.5 QR factorisation

(Note that, in this section, we deal with n×m matrices to conform with standard statistical
notation in which we have n observations and m explanatory variables.)

If we measure the height of a mountain once, we get a single number which we call
the height of the mountain. If we measure the height of a mountain several times, we get
several different numbers. None the less, although we have replaced a consistent system of
one apparent height for an inconsistent system of several apparent heights, we believe that
taking more measurements has given us better information.3

3 These are deep philosophical and psychological waters, but it is unlikely that those who believe that we are worse off with more
information will read this book.
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In the same way, if we are told that two distinct points (u1, v1) and (u2, v2) are close to
the line

{(u, v) ∈ R2 : u+ hv = k}
but not told the values of h and k, we can solve the equations

u1 + h′v1 = k′

u2 + h′v2 = k′

to obtain h′ and k′ which we hope are close to h and k. However, if we are given two new
points (u3, v3) and (u4, v4) which are close to the line, we get a system of equations

u1 + h′v1 = k′

u2 + h′v2 = k′

u3 + h′v3 = k′

u4 + h′v4 = k′

which will, in general, be inconsistent. In spite of this we believe that we must be better off
with more information.

The situation may be generalised as follows. (Note that we change our notation quite
substantially.) Suppose that A is an n×m matrix4 of rank m and b is a column vector of
length n. Suppose that we have good reason to believe that A differs from a matrix A′ and
b from a vector b′ only because of errors in measurement and that there exists a column
vector x′ such that

A′x′ = b′.

How should we estimate x′ from A and b? In the absence of further information, it seems
reasonable to choose a value of x which minimises

‖Ax− b‖.
Exercise 7.5.1 (i) If m = 1 ≤ n, and ai1 = 1, show that we will choose x = (x) where

x = n−1
n∑

i=1

bi.

How does this relate to our example of the height of a mountain? Is our choice reasonable?
(ii) Suppose that m = 2 ≤ n, ai1 = 1, ai2 = vi and the vi are distinct. Suppose, in

addition, that
∑n

i=1 vi = 0 (this is simply a change of origin to simplify the algebra). By

4 In practice, it is usually desirable, not only that n should be large, but also that m should be very small. If the reader remembers
nothing else from this book except the paragraph that follows, her time will not have been wasted. In it, Freeman Dyson recalls
a meeting with the great physicist Fermi who told him that certain of his calculations lacked physical meaning.

‘In desperation I asked Fermi whether he was not impressed by the agreement between our calculated numbers and his
measured numbers. He replied, “How many arbitrary parameters did you use for your calculations?” I thought for a moment
about our cut-off procedures and said, “Four.” He said, “I remember my friend Johnny von Neumann used to say, with four
parameters I can fit an elephant, and with five I can make him wiggle his trunk”. With that, the conversation was over.’ [15]
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using calculus, or otherwise, show that we will choose x = (μ, κ) where

μ = n−1
n∑

i=1

bi, κ =
∑n

i=1 vibi∑n
i=1 v2

i

.

Taking x1 = k, x2 = h, explain how this relates to our example of a straight line? Is our
choice reasonable? (Do not puzzle too long over this if you cannot come to a conclusion.)

There are of course many other more or less reasonable choices we could make. For
example, we could decide to minimise

n∑
i=1

∣∣∣∣∣∣
m∑

j=1

aij xj − bi

∣∣∣∣∣∣ or max
1≤i≤n

∣∣∣∣∣∣
m∑

j=1

aij xj − bi

∣∣∣∣∣∣ .
Exercise 7.5.2 Examine the problem of minimising the various penalty functions

n∑
i=1

⎛
⎝ m∑

j=1

aij xj − bi

⎞
⎠2

,

n∑
i=1

∣∣∣∣∣∣
m∑

j=1

aij xj − bi

∣∣∣∣∣∣ and max
1≤i≤n

∣∣∣∣∣∣
m∑

j=1

aij xj − bi

∣∣∣∣∣∣ .
You should look at the case when m and n are small but bear in mind that the procedures
you suggest should work when n is large.

If the reader puts some work in to the previous exercise, she will see that computational
ease should play a major role in our choice of penalty function and that, judged by this
criterion,

n∑
i=1

⎛
⎝ m∑

j=1

aij xj − bi

⎞
⎠2

is particularly adapted for calculation.5

It is one thing to state the objective of minimising ‖Ax− b‖, it is another to achieve it.
The key lies in the Gram–Schmidt method discussed earlier. If we write the columns of A

as column vectors a1, a2, . . . , am, then the Gram–Schmidt method gives us orthonormal
column vectors e1, e2, . . . , em such that

a1 = r11e1

a2 = r12e1 + r22e2

a3 = r13e1 + r23e2 + r33e3

...

am = r1me1 + r2me2 + r3me3 + · · · + rmmem

5 The reader may feel that the matter is rather trivial. She must then explain why the great mathematicians Gauss and Legendre
engaged in a priority dispute over the invention of the ‘method of least squares’.
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for some rij [1 ≤ j ≤ i ≤ m] with rii �= 0 for 1 ≤ i ≤ m. If we now set rij = 0 when i < j

we have

aj =
m∑

i=1

rij ei . �

Using the Gram–Schmidt method again, we can now find em+1, em+2, . . . , en so that the
vectors ej with 1 ≤ j ≤ n form an orthonormal basis for the space Rn of column vectors.
If we take Q to be the n× n matrix with j th column ej , then Q is orthogonal. If we take
rij = 0 for m < i ≤ n, 1 ≤ j ≤ m and let R be the n×m matrix R as (rij ) then R is ‘thin
upper triangular’6 and condition � gives

A = QR.

Exercise 7.5.3 (i) In order to simplify matters, we assume throughout this section, with the
exception outlined in the next sentence, that rank A = m. In this exercise and Exercise 7.5.4,
we look at what happens if we drop this assumption. Show that, in general, if A is an n×m

matrix (where m ≤ n) then, possibly after rearranging the order of columns in A, we
can still find an n× n orthogonal matrix Q and an n×m thin upper triangular matrix
R = (rij ) such that

aij =
n∑

k=1

qikrkj

or, more briefly

A = QR.

(ii) Suppose that A = QR with Q an n× n orthogonal matrix and R an n×m right
triangular matrix [m ≤ n]. State and prove a necessary and sufficient condition for R to
satisfy rii �= 0 for 1 ≤ i ≤ m.

How does the factorisation A = QR help us with our problem? Observe that, since
orthogonal transformations preserve length,

‖Ax− b‖ = ‖QRx− b‖ = ‖QT (QRx− b)‖ = ‖Rx− c‖,
where c = QT b. Our problem thus reduces to minimising ‖Rx− c‖.

Since

‖Rx− c‖2 =
n∑

i=1

⎛
⎝ m∑

j=1

rij xj − ci

⎞
⎠2

=
m∑

i=1

⎛
⎝ m∑

j=1

rij xj − ci

⎞
⎠2

+
n∑

i=m+1

c2
i ,

6 The descriptions ‘right triangular’ and ‘upper triangular’ are firmly embedded in the literature as describing square n× n
matrices and there seems to be no agreement on what to call n×m matrices R of the type described here.
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we see that the unique vector x which minimises ‖Rx− c‖ is the solution of

m∑
i=1

rij xj = ci

for 1 ≤ j ≤ m. We have completely solved the problem we set ourselves.

Exercise 7.5.4 (i) Suppose that A is an n×m matrix with m ≤ n, but the rank of A is
strictly less than m. Let b be a column vector with n entries. Explain, on general grounds,
why there will always be an x which minimises ‖Ax− b‖. Explain why it will not be unique.

(ii) In this section we looked at QR factorisation. Do there exist corresponding results
on QL, RQ and LQ factorisation? If they exist, do they lend themselves as easily to the
discussion (beginning ‘How does the factorisation’) which preceded this exercise?

Exercise 7.5.5 [The Householder transformation] Suppose that a and b are non-zero
column vectors in Rn. Explain why, if ‖a‖ �= ‖b‖, there cannot exist a reflection ρ with
ρ(a) = b. If ‖a‖ = ‖b‖ and b �= ±a set c = (a− b)/2. Find λ and μ such that

ρx = λx+ μ〈c, x〉c
describes a reflection with ρa = b and ρx = x whenever 〈x, a〉 = 〈x, b〉 = 0. (Having
found, or guessed, λ and μ you should check that ρ does indeed have the stated properties.)
Write down the matrix T = (tij ) associated with ρ (for the standard basis). (You may use
the summation convention if you wish.)

If A is a matrix (not necessarily a square matrix) with first column a show that T A is
a matrix with first column b. By taking b = (‖a‖, 0, 0, . . . , 0)T show that we can find a
matrix T1 representing a reflection (or the identity) such that T1A has all the entries in the
first column 0 except possibly the first. Now show that we can find a matrix T2 with first
row and column consisting of zeros apart from the (1, 1)th place which has value 1 such
that T2 represents a reflection (or the identity) and T2T1A has all entries zero in the first
two columns except possibly the (1, 1), (1, 2) and (2, 2)th.

Continuing in this way, show that we can find an m and reflection (or identity) matrices
Tj such that

Tm−1Tm−2 . . . T1A = R

is thin upper triangular. Explain why Q = T1T2 . . . Tm−1 is orthonormal and A = QR.
This is a perfectly practical method of performing QR factorisation. The Tj are called

Householder transformations or Householder reflections.7

Exercise 7.5.6 Reduce the matrix

A =
⎛
⎝1 2 0

2 2 1
2 3 1

⎞
⎠

7 Some people are so lost to any sense of decency that they refer to Householder transformations as ‘rotations’. The reader should
never do this. The Householder transformations are reflections.
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to upper triangular form using a Householder reflection (and, possibly, interchange of
rows). (The numbers have been chosen so that one Householder reflection suffices.)

Exercise 7.5.7 Use an appropriate QR factorisation via the Householder transformation
to find the ‘best fit solution’ (in the sum of squares sense) to⎛

⎜⎜⎝
1 3
0 2
0 2
0 −1

⎞
⎟⎟⎠ x =

⎛
⎜⎜⎝

4
1
4
1

⎞
⎟⎟⎠ .

Verify your answer by using calculus (or completing the square) to find the x which
minimises

(x1 + 3x2 − 4)2 + (2x2 − 1)2 + (2x2 − 4)2 + (x2 + 1)2.

Exercise 16.5.35 gives another treatment of QR factorisation based on the Cholesky
decomposition which we meet in Theorem 16.3.10, but I think the treatment given in this
section is more transparent.

7.6 Further exercises

Exercise 7.6.1 We work in R3 with the standard coordinate system. Write down the
matrices Rα and Rβ representing rotation through angles α and β about the x3 axis. By
considering RαRβ , show that

cos(α + β) = cos α cos β −sin α sin β,

sin(α + β) = sin α cos β + cos α sin β.

Write down the matrix Rγ representing rotation through an angle γ about the x1 axis.
Compute Rγ Rα and Rγ Rα checking explicitly that your answers lie in O(R3). Find neces-
sary and sufficient conditions for Rγ Rα and Rγ Rα to be equal.

Exercise 7.6.2 Consider the matrices

M =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ , N =

⎛
⎝1 −2 −2

0 1 −2
0 0 1

⎞
⎠ , P = 1

3

⎛
⎝ 1 −2 −2
−2 1 −2
−2 −2 1

⎞
⎠ .

For each matrix, find as many linearly independent eigenvectors as possible with eigenvalues
1.

Show that one of the matrices represents a rotation and find the axis and angle of rotation.
Show that another represents a reflection and find the plane of reflection. Show that the
third is neither a rotation nor a reflection.

State, with reasons, which of the matrices are diagonalisable over R and which are
diagonalisable over C.
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Exercise 7.6.3 Let

A =

⎛
⎜⎜⎜⎝

1
2

1
2

√
1
2

1
2

1
2 −

√
1
2

−
√

1
2

√
1
2 0

⎞
⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎝

1
2

1
2

√
1
2

1
2

1
2 −

√
1
2√

1
2 −
√

1
2 0

⎞
⎟⎟⎟⎠ .

Show that A represents a rotation and find the axis and angle of rotation. Show that B is
orthonormal but neither a rotation nor a reflection.

Exercise 7.6.4 In this exercise we consider n× n real matrices. We say that S is skew-
symmetric if ST = −S.

If S is skew-symmetric and I + S is non-singular, show that the matrix

A = (I + S)−1(I − S)

is orthogonal and det A = 1, that is to say, A ∈ SO(Rn).
Show that, if A is orthogonal and I + A is non-singular, then we can find a skew-

symmetric matrix S such that I + S is non-singular and A = (I + S)−1(I − S).
The first paragraph tells us that, if A is expressible in a certain way, then A ∈ SO(Rn).

The second paragraph tells us that any A ∈ O(Rn) with I + A non-singular can be expressed
in this way. Why are the two paragraphs compatible with the observation that O(Rn) �=
SO(Rn)?

Write out the matrix A when A = (I + S)−1(I − S) and

S =
(

0 r

−r 0

)
.

Exercise 7.6.5 Let α : Rm → Rm be a linear map. Prove that

E = {x ∈ Rm : ‖αnx‖ → 0 as n →∞}

and

F = {x ∈ Rm : sup
n≥1

‖αnx‖ < ∞}}

are subspaces of Rn.
Give an example of an α with E �= {0}, F �= E and Rm �= F .

Exercise 7.6.6 (i) We can look at O(R2) in a slightly different way by defining it to be the
set of

A =
(

a b

c d

)

which have the property that, if y = Ax, then y2
1 + y2 = x2

1 + x2
2 .
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By considering x = (1, 0)T , show that, if A ∈ O(R2), then there is a real θ such that
a = cos θ , b = sin θ . By using other test vectors, show that

A =
(

cos θ −sin θ

sin θ cos θ

)
or A =

(
cos θ sin θ

sin θ −cos θ

)
.

Show, conversely, that any A of these forms is in the set O(R2) as just defined.
(ii) Now let L(R2) be the set of A ∈ GL(R2) with the property that, if y = Ax, then

y2
1 − y2

2 = x2
1 − x2

2 . Characterise L(R2) in the manner of (i).
[In Special Relativity ‘ordinary distance’ x2 + y2 + z2 is replaced by ‘space-time distance’
x2 + y2 + z2 − ct2. Groups like L are called Lorentz groups after the great Dutch physicist
who first formulated the transformation rules (see Exercise 6.8.1) which underlie the Special
Theory of Relativity.]

(iii) The rest of this question requires elementary group theory. Let SO(R2) be the
collection of A ∈ O(R2) with

A =
(

cos θ −sin θ

sin θ cos θ

)

for some θ . Show that SO(R2) is a normal subgroup of O(R2) and SO(R2) is the union
the two disjoint cosets SO(R2) and R

(
SO(R2)

)
with

R =
(

1 0
0 −1

)
.

(iv) Let L0 be the collection of matrices A with

A =
(

cosh t sinh t

sinh t cosh t

)
,

for some real t . Show that L0 is a normal subgroup of L and L is the union the four disjoint
cosets EjL, where

E1 = I, E2 = −I, E3 =
(

1 0
0 −1

)
, E4 =

(−1 0
0 1

)
.

Exercise 7.6.7 (i) If U is a subspace of Rn of dimension n− 1, a, b ∈ Rn and a and b do
not lie in U , show that there exists a unique point c ∈ U such that

‖c− a‖ + ‖c− b‖ ≤ ‖u− a‖ + ‖u− b‖
for all u ∈ U .

Show that c is the unique point in U such that

‖c− b‖〈c− a, u〉 + ‖c− a‖〈c− b, u〉 = 0

for all u ∈ U .
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(ii) When a ray of light is reflected in a mirror the ‘angle of incidence equals the angle
of reflection and so light chooses the shortest path’. What is the relevance of part (i) to this
statement?

(iii) How much of part (i) remains true if a ∈ U and b /∈ U? How much of part
(i) remains true if a, b ∈ U?

Exercise 7.6.8 In this question we find the most general distance preserving map (or
isometry) α : R2 → R2.

(i) Show that, if α is distance preserving, we can write α = ρβ, where ρx = a+ x for
some fixed a ∈ R2 and β is a distance preserving map with β(0) = 0.

(ii) Suppose that β is a distance preserving map with β(0) = 0. By thinking about the
equality case in the triangle inequality, show that β(λx) = λβ(x) for all λ with 0 ≤ λ ≤ 1
and all x. Deduce, first, that β(λx) = λβ(x) for all λ with 0 ≤ λ and all x and, then, that
β(λx) = λβ(x) for all λ ∈ R and all x.

(iii) Let β be as in (ii). Show that β
(

1
2 (x+ y)

) = 1
2 (βx+ βy) and thus

β(x+ y) = βx+ βy.

Now use the equality 4〈c, d〉 = ‖c+ d‖2 + ‖c− d‖2 to show that

〈β(x), β(y)〉 = 〈x, y〉
for all x, y ∈ R2. Deduce that we can write β = τγ , where τ ∈ O(R2) and γ is a distance
preserving map which fixes the points (0, 0), (1, 0) and (1, 0).

(iv) Show that, if γ has the properties stated in (iii), then γ is the identity map. Conclude
that the most general distance preserving map has the form

αx = a+ τx

with τ ∈ O(R2).
(v) State the corresponding result for R3 and provide a brief sketch of a proof.

Exercise 7.6.9 (i) Consider the maps T : R2 → R2 given by

T x = Ax+ b,

where A is orthogonal. (We saw, in the previous question, that these are the isometries of
R2.) We say that a is a fixed point of T if T a = a.

If A /∈ SO(R2) (so T is an orientation reversing isometry), identify the fixed points of
A. If A ∈ SO(R2) (so T is an orientation preserving isometry), show that T has a fixed
point unless A is a particular matrix. If A is that matrix, show that T has no fixed point
unless b takes a particular value.

(ii) Consider the maps T : R3 → R3 given by

T x = Ax+ b

where A is orthogonal. (We saw in the previous question that these are the isometries of
R3.)
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Make precise and prove the following statement. ‘An orientation preserving isometry of
R3 usually has no fixed point, but an orientation reversing isometry usually does.’ Identify
the exceptional cases.

Exercise 7.6.10 (i) We work in R3 with row vectors. We have defined reflection in a plane
passing through 0, but not reflection in a general plane. Explain why we should expect
reflection in a plane π passing through a to be a map S given by

Sx = a+ R(x− a),

where R is a reflection in a plane passing through 0. Show algebraically that S does not
depend on the choice of a ∈ π . We call S a general reflection. Write down a similar
definition for a general rotation.

(ii) If S is a general reflection, show that

det

⎛
⎝Se− Sh

Sf − Sh
Sg− Sh

⎞
⎠ = − det

⎛
⎝e− h

f − h
g− h

⎞
⎠ .

(iii) Suppose that S1 and S2 are general reflections. Show that S1S2 is either a translation
x �→ c+ x or a general rotation. (It may help to think geometrically, but the final proof
should be algebraic.) Show that every translation and every general rotation is the compo-
sition of two general reflections. Show, by considering when the product of two general
reflections has a fixed point, or otherwise, that only the identity is both a translation and a
general rotation.

(iv) Show that every isometry is the product of at most four general reflections.
(v) Consider the map M : R3 → R3 given by (x, y, z) = (−x,−y, z+ 1). Show that

M is an isometry. Show that M is not the composition of two or fewer general reflections.
By using (ii), or otherwise, show that M is not the composition of three or fewer general
reflections.

Exercise 7.6.11 [Cauchy–Riemann equations] (This exercise requires some knowledge
of partial derivatives.) Suppose that u, v : R2 → R are well behaved functions. Explain in
general terms (this is not a book on analysis) why(

u(x + δx, y + δy)
v(x + δx, y + δy)

)
−
(

u(x, y)
v(x, y)

)
=
(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)(
δx

δy

)
+ error term

with the error term decreasing faster than max(|δx|, |δy|).
A well behaved function f : C → C is called analytic if

f (z+ δz)− f (z) = f ′(z)δz+ error term

with the error term decreasing faster than |δz|. Let us write

u(x, y) = �f (x + iy), v(x, y) = �f (x + iy).
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Show that, if f ′(z) = reiθ , with r ≥ 0 and θ real, we must have(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
= r

(
cos θ −sin θ

sin θ cos θ

)
. �

Deduce the famous Cauchy–Riemann equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Interpret � geometrically.

Exercise 7.6.12 Use a sequence of Householder transformations to find the matrix R in a
QR factorisation of the matrix

A =
⎛
⎝1 1 1

2 12 1
2 13 3

⎞
⎠

and so solve the equation

Ax =
⎛
⎝ 1
−9
−8

⎞
⎠ .

[You are not asked to find Q explicitly.]

Exercise 7.6.13 [Hadamard’s inequality] We know (or suspect) that the area of a paral-
lelogram with given non-zero side lengths is greatest when the parallelogram is a rectangle
and the volume of a parallelepiped with given non-zero side lengths is greatest when the
edges meet at right angles. Check that the second statement is equivalent to the statement
that if A is a 3× 3 real matrix with columns a1, a2, a3, then

| det A| ≤ ‖a1‖‖a2‖‖a3‖
and formulate a similar inequality for 2× 2 matrices.

In higher dimensions our hold on the idea of volume is less strong, but, if the reader
keeps the three dimensional case in mind, she will see that the following argument is very
natural. Let A be an n× n real matrix with columns a1, a2, . . . , an. It is reasonable to use
Gram–Schmidt orthogonalisation to find an orthonormal basis qj with

ar ∈ span{q1, q2, . . . , qr}.
In terms of matrices, we consider the factorisation

A = QR

where Q is an orthogonal matrix and R is an upper triangular matrix given by rij = 〈ai , qj 〉.
Use the fact that (det A)2 = det AT det A to show that

(det A)2 = (det R)2
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and deduce that

(det A)2 ≤
n∏

j=1

‖aj‖2

with equality if and only if rij = 0 for all i �= j .
Deduce the following version of Hadamard’s inequality.

|det A| ≤
n∏

j=1

‖aj‖

with equality if and only if one of the columns is the zero vector or all the columns of A

are orthonormal.

Exercise 7.6.14 Use the result of the previous question to prove the following version of
Hadamard’s inequality. If A is an n× n real matrix with all entries |aij | ≤ K , then

|det A| ≤ Knnn/2.

For the rest of the question we take K = 1. Show that

|det A| = nn/2

if and only if every entry aij = ±1 and A is a scalar multiple of an orthogonal matrix. An
n× n matrix with these properties is called a Hadamard matrix.

Show that there are no k × k Hadamard matrices with k odd and k ≥ 3.
By looking at matrices H0 = (1) and

Hn =
(

Hn−1 Hn−1

−Hn−1 Hn−1

)
show that there are 2k × 2k Hadamard matrices for all k.
[It is known that, if H is a k × k Hadamard matrix, then k = 1, k = 2 or k is a multiple of
4. It is, I believe, still unknown whether there exist Hadamard matrices for all k a multiple
of 4.]

Exercise 7.6.15 This question links Exercise 4.5.16 with the previous two exercises.
Let Mn be the collection of n× n real matrices A = (aij ) with |aij | ≤ 1. If you know

enough analysis, explain why

ρ(n) = max
A∈Mn

| perm A| and τ (n) = max
A∈Mn

| det A|

exist. (Otherwise, take this as obvious.)
By using Stirling’s formula, or otherwise, show that, given any ε > 0, we have

τ (n) ≤ ρ(n)1/2+ε

for all sufficiently large n. Show also that

τ (2m) ≥ ρ(2m)1/2−ε

for all sufficiently large m.
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Find an A ∈M2 such that perm A = 1 and det A = 0. Find a B ∈M2 such that
perm B = 0 and det B = 1.

Exercise 7.6.16 Write down the matrix S corresponding to a rotation through π/2 about the
x axis (with the standard coordinate system) and the matrix T corresponding to a rotation
through π/2 about the y axis. Show, by calculating T S and ST explicitly, that T S �= ST .
Confirm this by experimenting with an orange or something similar.

In the rest of the question, θ and φ will be real numbers with |θ |, |φ| < ε. We write

A = O(εr )

if the 3× 3 matrix A = A(θ, ψ) = (aij (θ, ψ)
)

satisfies the condition

ε−r max
|θ |,|ψ |≤ε

|aij (θ, ψ)| remains bounded as ε → 0 through positive values

for all (i, j ). Show that, if Sθ is a rotation through an angle θ about the x-axis, then
I − Sθ = O(ε). Deduce that, if Rθ is a rotation through an angle θ about any fixed axis,
I − Rθ = O(ε).

If A, B = O(ε) show that

(I + A)(I + B)− (I + B)(I + A) = O(ε2).

Hence, show that if Rθ is a rotation through an angle θ about some fixed axis and Sφ is a
rotation through φ about some fixed axis, then

RθSφ − SφRθ = O(ε2).

In the jargon of the trade, ‘infinitesimal rotations commute’.

Exercise 7.6.17 We use the standard coordinate system for R3. A rotation through π/4
about the x axis is followed by a rotation through π/4 about the z axis. Show that this is
equivalent to a single rotation about an axis inclined at equal angles

cos−1 1√
(5− 2

√
2)

to the x and z axes.

Exercise 7.6.18 (i) Let n ≥ 2. If α : Rn → Rn is an orthogonal map, show that one of the
following statements must be true.

(a) α = ι.
(b) α is a reflection.
(c) We can find two orthonormal vectors e1 and e2 together with a real θ such that

αe1 = cos θe1 + sin θe2 and αe2 = −sin θe1 + cos θe2.

(ii) Let n ≥ 3. If α : Rn → Rn is an orthogonal map, show that there is an orthonormal
basis of Rn with respect to which α has matrix(

C O2,n−2

On−2,2 B

)
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where Or,s is an r × s matrix of zeros, B is an (n− 2)× (n− 2) orthogonal matrix and

C =
(

cos θ −sin θ

sin θ cos θ

)

for some real θ .
(iii) Show that, if n = 4, then, if α is special orthogonal, we can find an orthonormal

basis of R4 with respect to which α has matrix

⎛
⎜⎜⎝

cos θ1 −sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 cos θ2 −sin θ2

0 0 sin θ2 cos θ2

⎞
⎟⎟⎠ ,

for some real θ1 and θ2, whilst, if β is orthogonal but not special orthogonal, we can find
an orthonormal basis of R4 with respect to which β has matrix

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 cos θ −sin θ

0 0 sin θ cos θ

⎞
⎟⎟⎠ ,

for some real θ .
(iv) What happens if we take n = 5? What happens for general n?

Exercise 7.6.19 (i) If A ∈ O(R2) is such that AB = BA for all B ∈ O(R2), show that
A = ±I .

(ii) If A ∈ O(Rn) is such that AB = BA for all B ∈ O(Rn), show that A = ±I .
(iii) Show that, if A, B ∈ SO(R2), then AB = BA.
(iv) If A ∈ SO(R3) is such that AB = BA for all B ∈ SO(Rn), show that A = I .
(v) If n ≥ 3 and A ∈ SO(Rn) is such that AB = BA for all B ∈ SO(Rn), show that

A = I if n is odd and A = ±I if n is even.

Exercise 7.6.20 We work over R.
Let SLn be the collection of n× n matrices A with det A = 1. Show that SLn is a group

under matrix multiplication.
Let Sp2n be the collection of 2n× 2n matrices which satisfy MT JM = J where

J =
(

0n In

−In 0n

)
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with In the n× n identity matrix and 0n the n× n zero matrix. Prove the following results.
(i) M ∈ Sp2n ⇒ det M = ±1.
(ii) Sp2n is a group under matrix multiplication.
(iii) M ∈ Sp2n ⇒ MT ∈ Sp2n.
(iv) Show that Sp2 = SL2, but Sp4 �= SL4.
(v) Is the map θ : Sp2n → Sp2n given by θM = MT a group isomorphism? Give reasons.



8

Diagonalisation for orthonormal bases

8.1 Symmetric maps

In an earlier chapter we dealt with diagonalisation with respect to some basis. Once we
introduce the notion of inner product, we are more interested in diagonalisation with respect
to some orthonormal basis.

Definition 8.1.1 A linear map α : Rn → Rn is said to be diagonalisable with respect to an
orthonormal basis e1, e2, . . . , en if we can find λj ∈ R such that αej = λj ej for 1 ≤ j ≤ n.

The following observation is trivial but useful.

Lemma 8.1.2 A linear map α : Rn → Rn is diagonalisable with respect to an orthonormal
basis if and only if we can find an orthonormal basis of eigenvectors.

Proof Left to the reader. (Compare Theorem 6.3.1.) �

We need the following definitions.

Definition 8.1.3 (i) A linear map α : Rn → Rn is said to be symmetric if 〈αx, y〉 = 〈x, αy〉
for all x, y ∈ Rn.

(ii) An n× n real matrix A is said to be symmetric if AT = A.

Lemma 8.1.4 (i) If the linear map α : Rn → Rn is symmetric, then it has a symmetric
matrix with respect to any orthonormal basis.

(ii) If a linear map α : Rn → Rn has a symmetric matrix with respect to some orthonor-
mal basis, then it is symmetric.

Proof (i) Simple verification. Suppose that the vectors ej form an orthonormal basis. We
observe that

aij =
〈

n∑
r=1

arj er , ei

〉
= 〈αej , ei〉 = 〈ej , αei〉 =

〈
ej ,

n∑
r=1

arier ,

〉
= aji .

(ii) Simple verification which is left to the reader. �

We note the following simple consequence.

192
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Lemma 8.1.5 If the linear map α : Rn → Rn is diagonalisable with respect to some
orthonormal basis, then α is symmetric.

Proof If α is diagonalisable with respect to some orthonormal basis, then, since a diagonal
matrix is symmetric, Lemma 8.1.4 (ii) tells us that α is symmetric. �

We shall see that the converse is true (that is to say, every symmetric map is diagonalisable
with respect to some orthonormal basis), but the proof will require some work.

The reader may wonder whether symmetric linear maps and matrices are not too special
to be worth studying. However, mathematics is full of symmetric matrices like the Hessian

H =
(

∂2f

∂xi∂xj

)
,

which occurs in the study of maxima and minima of functions f : Rn → R, and the
covariance matrix

E = (EXiXj )

in statistics.1 In addition, the infinite dimensional analogues of symmetric linear maps play
an important role in quantum mechanics.

If we only allow orthonormal bases, Theorem 6.1.4 takes a very elegant form.

Theorem 8.1.6 [Change of orthonormal basis] Let α : Rn → Rn be a linear map. If
α has matrix A = (aij ) with respect to an orthonormal basis e1, e2, . . . , en and matrix
B = (bij ) with respect to an orthonormal basis f1, f2, . . . , fn, then there is an orthogonal
n× n matrix P such that

B = P T AP.

The matrix P = (pij ) is given by the rule

pij = 〈ei , fj 〉.
Proof Observe that, if we write

fj =
n∑

k=1

pkj ek and ej =
n∑

k=1

qkj fk,

then Theorem 6.1.4 tells us that P is invertible with P−1 = Q and B = P−1AP . We now
note that

〈ei , fj 〉 = pij and 〈fi , ej 〉 = qij ,

whence

qij = 〈ej , fi〉 = pji

and P−1 = Q = P T as required. �

1 These are just introduced as examples. The reader is not required to know anything about them.
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At some stage, the reader will see that it is obvious that a change of orthonormal basis
will leave inner products (and so lengths) unaltered and P must therefore obviously be
orthogonal. However, it is useful to wear both braces and a belt.

Part (ii) of the next exercise provides an improvement of Theorem 8.1.6 which is
sometimes useful.

Exercise 8.1.7 (i) Show, by using results on matrices, that, if P is an orthogonal matrix,
then P T AP is a symmetric matrix if and only if A is.

(ii) Let D be the n× n diagonal matrix (dij ) with d11 = −1, dii = 1 for 2 ≤ i ≤ n

and dij = 0 otherwise. By considering Q = PD, or otherwise, show that, if there exists a
P ∈ O(Rn) such that P T AT is a diagonal matrix, then there exists a Q ∈ SO(Rn) such
that QT AQ is a diagonal matrix.

When we talk about Cartesian tensors we shall need the following remarks.

Lemma 8.1.8 (i) If e1, e2, . . . , en and f1, f2, . . . , fn are orthonormal bases, then there is
an orthogonal n× n matrix L such that, if

x =
n∑

r=1

xrer =
n∑

r=1

x ′r fr ,

then x ′i =
∑n

j=1 lij xj . The matrix L = (lij ) is given by the rule

lij = 〈ei , fj 〉.
(ii) Suppose that e1, e2, . . . , en is an orthonormal basis and there is an orthogonal n× n

matrix L and vectors f1, f2, . . . , fn such that, if x ′i =
∑n

j=1 lij xj , then

n∑
r=1

xrer =
n∑

r=1

x ′r fr .

Then f1, f2, . . . , fn form an orthonormal basis.

Proof (i) The proof is very close to that in Theorem 8.1.6. Observe, that if

x =
n∑

r=1

xrer =
n∑

r=1

x ′r fr ,

then

x ′i = 〈x, fi〉 =
n∑

r=1

xr〈er , fi〉

and so

x ′i =
n∑

r=1

lirxr

with lir = 〈ei , fr〉. Theorem 8.1.6 tells us that LLT = I .



8.2 Eigenvectors for symmetric linear maps 195

(ii) If we set xj = lsj , then

x ′i =
n∑

j=1

lij xj =
n∑

j=1

lij lsj = δis

and so
n∑

r=1

lsrer =
n∑

r=1

δir fr = fi .

Thus

〈fi , fj 〉 =
〈

n∑
r=1

lirer ,

n∑
s=1

lsj es

〉

=
n∑

r=1

n∑
s=1

lir ljs〈er , es〉

=
n∑

r=1

lir ljr = δij

as required. �

Once again, I suspect that, with experience, the reader will come to see Lemma 8.1.8 as
‘geometrically obvious’.

In situations like Lemma 8.1.8 we speak of an ‘orthonormal change of coordinates’.
We shall be particularly interested in the case when n = 3. If the reader recalls the

discussion of Section 7.3, she will consider it reasonable to refer to the case when L ∈
SO(R3) as a ‘rotation of the coordinate system’.

8.2 Eigenvectors for symmetric linear maps

We start with an important observation.

Lemma 8.2.1 Let α : Rn → Rn be a symmetric linear map. If u and v are eigenvectors
with distinct eigenvalues, then they are perpendicular.

Proof We give the same proof using three different notations.
(1) If αu = λu and αv = μv with λ �= μ, then

λ〈u, v〉 = 〈λu, v〉 = 〈αu, v〉 = 〈u, αv〉 = 〈u, μv〉 = μ〈u, v〉.
Since λ �= μ, we have 〈u, v〉 = 0.

(2) Suppose that A is a symmetric n× n matrix and u and v are column vectors such
that Au = λu and Av = μv with λ �= μ. Then

λuT v = (Au)T v = uT AT v = uT Av = uT (μv) = μuT v

so 〈u, v〉 = uT v = 0.
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(3) Let us use the summation convention with range 1, 2, . . . , n. If akj = ajk , akjuj = λuk

and akj vj = μvk , but λ �= μ, then

λukvk = akjujvk = ajkujvk = ujajkvk = μujvj = μukvk,

so ukvk = 0. �

Exercise 8.2.2 Write out proof (3) in full without using the summation convention.

It is not immediately obvious that a symmetric linear map must have any real
eigenvalues.2

Lemma 8.2.3 If α : Rn → Rn is a symmetric linear map, then all the roots of the charac-
teristic polynomial det(t ι− α) are real.

This result is usually stated as ‘all the eigenvalues of a symmetric linear map are real’.

Proof Consider the matrix A = (aij ) of α with respect to an orthonormal basis. The entries
of A are real, but we choose to work in C rather than R. Suppose that λ is a root of the
characteristic polynomial det(tI − A). We know there is a non-zero column vector z ∈ Cn

such that Az = λz. If we write z = (z1, z2, . . . , zn)T and then set z∗ = (z∗1, z
∗
2, . . . , z

∗
n)T

(where z∗j is the complex conjugate of zj ), we have (Az)∗ = λ∗z∗ so, taking our cue from
the third method of proof of Lemma 8.2.1, we note that (using the summation convention)

λzkz
∗
k = akj zj z

∗
k = a∗jkzj z

∗
k = zj (ajkzk)∗ = λ∗zj z

∗
j ,

so λ = λ∗. Thus λ is real and the result follows. �

This proof may look a little more natural after the reader has studied Section 8.4. A
proof which does not use complex numbers (but requires substantial command of analysis)
is given in Exercise 8.5.8.

We have the following immediate consequence. (The later Theorem 8.2.5 is stronger,
but harder to prove.)

Lemma 8.2.4 (i) If α : Rn → Rn is a symmetric linear map and all the roots of the
characteristic polynomial det(t ι− α) are distinct, then α is diagonalisable with respect to
some orthonormal basis.

(ii) If A is an n× n real symmetric matrix and all the roots of the characteristic
polynomial det(tI − A) are distinct, then we can find an orthogonal matrix P and a
diagonal matrix D such that

P T AP = D.

Proof (i) By Lemma 8.2.3, α has n distinct eigenvalues λj ∈ R. If we choose ej to be an
eigenvector of norm 1 corresponding to λj , then, by Lemma 8.2.1, we obtain n orthonormal

2 When these ideas first arose in connection with differential equations, the analogue of Lemma 8.2.3 was not proved until twenty
years after the analogue of Lemma 8.2.1.
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vectors which must form an orthonormal basis of Rn. With respect to this basis, α is
represented by a diagonal matrix with j th diagonal entry λj .

(ii) This is just the translation of (i) into matrix language. �

Because problems in applied mathematics often involve symmetries, we cannot dismiss
the possibility that the characteristic polynomial has repeated roots as irrelevant. Fortu-
nately, as we said after looking at Lemma 8.1.5, symmetric maps are always diagonalisable.
The first proof of this fact was due to Hermite.

Theorem 8.2.5 (i) If α : Rn → Rn is a symmetric linear map, then α is diagonalisable
with respect to some orthonormal basis.

(ii) If A is an n× n real symmetric matrix, then we can find an orthogonal matrix P

and a diagonal matrix D such that

P T AP = D.

Proof (i) We prove the result by induction on n.
If n = 1, then, since every 1× 1 matrix is diagonal, the result is trivial.
Suppose now that the result is true for n = m and that α : Rm+1 → Rm+1 is a symmetric

linear map. We know that the characteristic polynomial must have a root and that all its
roots are real. Thus we can can find an eigenvalue λ1 ∈ R and a corresponding eigenvector
e1 of norm 1. Consider the subspace

e⊥1 = {u : 〈e1, u〉 = 0}.
We observe (and this is the key to the proof) that

u ∈ e⊥1 ⇒ 〈e1, αu〉 = 〈αe1, u〉 = λ1〈e1, u〉 = 0 ⇒ αu ∈ e⊥1 .

Thus we can define α|e⊥1 : e⊥1 → e⊥1 to be the restriction of α to e⊥1 . We observe that
α|e⊥1 is symmetric and e⊥1 has dimension m so, by the inductive hypothesis, we can find
m orthonormal eigenvectors of α|e⊥1 in e⊥1 . Let us call them e2, e3, . . . , em+1. We observe
that e1, e2, . . . , em+1 are orthonormal eigenvectors of α and so α is diagonalisable. The
induction is complete.

(ii) This is just the translation of (i) into matrix language. �

Exercise 8.2.6 Let

A =
(

2 0
0 1

)
and P =

(
1 0
1 1

)
.

Compute PAP−1 and observe that it is not a symmetric matrix, although A is. Why does
this not contradict the results of this chapter?

Exercise 8.2.7 We have shown that every real symmetric matrix is diagonalisable. Give
an example of a non-zero symmetric 2× 2 matrix A with complex entries whose only
eigenvalues are zero. Explain why such a matrix cannot be diagonalised over C.
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We shall see that, if we look at complex matrices, the correct analogue of a real symmetric
matrix is a Hermitian matrix. (See Exercises 8.4.15 and 8.4.18.)

Moving from theory to practice, we see that the diagonalisation (using an orthogonal
matrix) follows the same pattern as ordinary diagonalisation (using an invertible matrix).
The first step is to look at the roots of the characteristic polynomial

χA(t) = det(tI − A).

By Lemma 8.2.3, we know that all the roots are real. If we can find the n roots (in
examinations, n will usually be 2 or 3 and the resulting quadratics and cubics will have
nice roots) λ1, λ2, . . . , λn (repeating repeated roots the required number of times), then we
know, without further calculation, that there exists an orthogonal matrix P with

P T AP = D,

where D is the diagonal matrix with diagonal entries dii = λi .
If we need to go further, we proceed as follows. If λj is not a repeated root, we know

that the system of n linear equations in n unknowns given by

(A− λj I )x = 0

(with x a column vector) defines a one dimensional subspace of Rn. We choose a non-zero
vector uj from that subspace and normalise by setting

ej = ‖uj‖−1uj .

If λj is a repeated root,3 we may suppose that it is a k times repeated root and λj =
λj+1 = . . . = λj+k−1. We know that the system of n linear equations in n unknowns given
by

(A− λj I )x = 0

(with x ∈ Rn a column vector) defines a k-dimensional subspace of Rn. Pick k orthonormal
vectors ej , ej+1, . . . , ej+k−1 in the subspace.4

Unless we are unusually confident of our arithmetic, we conclude our calculations by
checking that, as Lemma 8.2.1 predicts,

〈ei , ej 〉 = δij .

If P is the n× n matrix with j th column ej , then, from the formula just given, P is
orthogonal (i.e., PP T = I and so P−1 = P T ). We note that, if we write vj for the unit
vector with 1 in the j th place, 0 elsewhere, then

P T AP vj = P−1Aej = λjP
−1ej = λj vj = Dvj

3 Sometimes, people refer to ‘repeated eigenvalues’. However, it is not the eigenvalues which are repeated, but the roots of the
characteristic polynomial. (We return to the matter much later in Exercise 12.4.14.)

4 This looks rather daunting, but turns out to be quite easy. You should remember the Franco–British conference where a French
delegate objected that ‘The British proposal might work in practice, but would not work in theory’.
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for all 1 ≤ j ≤ n and so

P T AP = D.

Our construction gives P ∈ O(Rn), but does not guarantee that P ∈ SO(Rn). If det P = 1,
then P ∈ SO(Rn). If det P = −1, then replacing e1 by −e1 gives a new P in SO(Rn).

Here are a couple of simple worked examples.

Example 8.2.8 (i) Diagonalise

A =
⎛
⎝1 1 0

1 0 1
0 1 1

⎞
⎠

using an appropriate orthogonal matrix.
(ii) Diagonalise

B =
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠

using an appropriate orthogonal matrix.

Solution. (i) We have

det(tI − A) = det

⎛
⎝t − 1 −1 0
−1 t −1
0 −1 t − 1

⎞
⎠

= (t − 1) det

(
t −1
−1 t − 1

)
+ det

(−1 −1
0 t − 1

)
= (t − 1)(t2 − t − 1)− (t − 1) = (t − 1)(t2 − t − 2)

= (t − 1)(t + 1)(t − 2).

Thus the eigenvalues are 1,−1 and 2.
We have

Ax = x ⇔

⎧⎪⎪⎨
⎪⎪⎩

x + y = x

x + z = y

y + z = z

⇔
{

y = 0

x + z = 0.

Thus e1 = 2−1/2(1, 0,−1)T is an eigenvector of norm 1 with eigenvalue 1.
We have

Ax = −x ⇔

⎧⎪⎪⎨
⎪⎪⎩

x + y = −x

x + z = −y

y + z = −z

⇔
{

y = −2x

y = −2z.

Thus e2 = 6−1/2(−1, 2,−1)T is an eigenvector of norm 1 with eigenvalue 1.
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We have

Ax = 2x ⇔

⎧⎪⎪⎨
⎪⎪⎩

x + y = 2x

x + z = 2y

y + z = 2z

⇔
{

y = x

y = z.

Thus e3 = 3−1/2(1, 1, 1)T is an eigenvector of norm 1 with eigenvalue 2.
If we set

P = (e1|e2|e3) =
⎛
⎝2−1/2 −6−1/2 3−1/2

0 2× 6−1/2 3−1/2

2−1/2 −6−1/2 3−1/2

⎞
⎠ ,

then P is orthogonal and

P T AP =
⎛
⎝1 0 0

0 −1 0
0 0 2

⎞
⎠ .

(ii) We have

det(tI − B) = det

⎛
⎝t − 1 0 0

0 t −1
0 −1 t

⎞
⎠ = (t − 1) det

(
t −1
−1 t

)

= (t − 1)(t2 − 1) = (t − 1)2(t + 1).

Thus the eigenvalues are 1 and −1.
We have

Bx = x ⇔

⎧⎪⎪⎨
⎪⎪⎩

x = x

z = y

y = z

⇔ z = y.

By inspection, we find two orthonormal eigenvectors e1 = (1, 0, 0)T and e2 =
2−1/2(0, 1, 1)T corresponding to the eigenvalue 1 which span the space of solutions of
Bx = x.

We have

Bx = −x ⇔

⎧⎪⎪⎨
⎪⎪⎩

x = −x

z = −y

y = −z

⇔
{

x = 0

y = −z.

Thus e3 = 2−1/2(0,−1, 1)T is an eigenvector of norm 1 with eigenvalue −1.
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If we set

Q = (e1|e2|e3) =
⎛
⎝1 0 0

0 2−1/2 21/2

0 −2−1/2 2−1/2

⎞
⎠ ,

then Q is orthogonal and

QT BQ =
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ .

�

Exercise 8.2.9 Why is part (ii) more or less obvious geometrically?

Exercise 8.2.10 If A is an n× n real symmetric matrix show that either (i) there exist
exactly 2nn! distinct orthogonal matrices P with P T AP diagonal or (ii) there exist infinitely
many distinct orthogonal matrices P with P T AP diagonal. When does case (ii) occur?

8.3 Stationary points

If f : R2 → R is a well behaved function, then Taylor’s theorem tells us that f behaves
locally like a quadratic function. Thus, near 0 = (0, 0),

f (x, y) ≈ c + (ax + by)+ 1

2
(ux2 + 2vxy + wy2).

The formal theorem, which we shall not prove, runs as follows.

Theorem 8.3.1 If f : R2 → R is three times continuously differentiable in the neighbour-
hood of (0, 0), then

f (h, k) = f (0, 0)+
(

∂f

∂x
(0, 0)h+ ∂f

∂y
(0, 0)k

)

+ 1

2

(
∂2f

∂x2
(0, 0)h2 + 2

∂2f

∂x∂y
(0, 0)hk + ∂2f

∂y2
(0, 0)k2

)
+ ε(h, k)(h2 + k2),

where ε(h, k) → 0 as (h2 + k2)1/2 → 0.

If a = b = 0 we say that we have a stationary point.
Let us investigate the behaviour near (0, 0) of the polynomial in two variables given by

p(x, y) = c + (ax + by)+ 1

2
(ux2 + 2vxy + wy2).

If a �= 0 or b �= 0, the term ax + by dominates the term 1
2 (ux2 + 2vxy + wy2) and p

cannot have a maximum or minimum at (0, 0).
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If a = b = 0, then

2
(
p(x, y)− p(0, 0)

) = ux2 + 2vxy + wy2 = (x, y)

(
u v

v w

)(
x

y

)
or, more briefly using column vectors,5

2
(
p(x)− p(0)

) = xT Ax,

where A is the symmetric matrix given by

A =
(

u v

v w

)
.

We know that there exists a matrix R ∈ SO(R2) such that

RART =
(

u v

v w

)
= D =

(
λ1 0
0 λ2

)
and A = RT DR. If we put (

X

Y

)
= R

(
x

y

)
,

then

xT Ax = xT RT DRx = XT DX = λ1X
2 + λ2Y

2.

(We could say that ‘by rotating axes we reduce our system to diagonal form’.)
If λ1, λ2 > 0, we see that p has a minimum at 0 and, if λ1, λ2 < 0, we see that p has

a maximum at 0. If λ1 > 0 > λ2, then λ1X
2 has a minimum at X = 0 and λ2Y

2 has a
maximum at Y = 0. The surface

{X : λ1X
2 + λ2Y

2}
looks like a saddle or pass near 0. Inhabitants of the lowland town at X = (−1, 0)T ascend
the path X = t , Y = 0 as t runs from −1 to 0 and then descend the path X = t , Y = 0 as t

runs from 0 to 1 to reach another lowland town at X = (1, 0)T . Inhabitants of the mountain
village at X = (0,−1)T descend the path X = 0, Y = t as t runs from −1 to 0 and then
ascend the path X = 0, Y = t as t runs from 0 to 1 to reach another mountain village at
X = (0, 1)T . We refer to the origin as a minimum, maximum or saddle point. The cases
when one or more of the eigenvalues vanish must be dealt with by further investigation
when they arise.

Exercise 8.3.2 Let

A =
(

u v

v w

)
.

5 This change reflects a culture clash between analysts and algebraists. Analysts tend to prefer row vectors and algebraists column
vectors.
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(i) Show that the eigenvalues of A are non-zero and of opposite sign if and only if
det A < 0.

(ii) Show that A has a zero eigenvalue if and only if det A = 0.
(iii) If det A > 0, show that the eigenvalues of A are strictly positive if and only if

Tr A > 0. (By definition, Tr A = u+ w, see Exercise 6.2.3.)
(iv) If det A > 0, show that u �= 0. Show further that, if u > 0, the eigenvalues of A are

strictly positive and that, if u < 0, the eigenvalues of A are both strictly negative.
[Note that the results of this exercise do not carry over as they stand to n× n matrices. We
discuss the more general problem in Section 16.3.]

Exercise 8.3.3 Extend the ideas of this section to functions of n variables.
[This will be done in various ways in the second part of the book, but it is a useful way
of fixing ideas for the reader to run through this exercise now, even if she only does it
informally without writing things down.]

Exercise 8.3.4 Suppose that a, b, c ∈ R. Show that the set

{(x, y) ∈ R2 : ax2 + 2bxy + cy2 = d}
is an ellipse, a point, the empty set, a hyperbola, a pair of lines meeting at (0, 0), a pair of
parallel lines, a single line or the whole plane.
[This is an exercise in careful enumeration of possibilities.]

Exercise 8.3.5 Show that the equation

8x2 − 2
√

6xy + 7y2 = 10

represents an ellipse and find its axes of symmetry.

8.4 Complex inner product

If we try to find an appropriate ‘inner product’ for Cn, we cannot use our ‘geometric
intuition’, but we can use our ‘algebraic intuition’ to try to discover a ‘complex inner
product’ that will mimic the real inner product ‘as closely as possible’. It is quite possible
that our first few guesses will not work very well, but experience will show that the following
definition has many desirable properties.

Definition 8.4.1 If z, w ∈ Cn, we set

〈z, w〉 =
n∑

r=1

zrw
∗
r .

We develop the properties of this inner product in a series of exercises which
should provide a useful test of the reader’s understanding of the proofs in the last two
chapters.
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Exercise 8.4.2 If z, w, u ∈ Cn and λ ∈ C, show that the following results hold.
(i) 〈z, z〉 is always real and positive.
(ii) 〈z, z〉 = 0 if and only if z = 0.
(iii) 〈λz, w〉 = λ〈z, w〉.
(iv) 〈z+ u, w〉 = 〈z, w〉 + 〈u, w〉.
(v) 〈w, z〉 = 〈z, w〉∗.
Rule (v) is a warning that we must tread carefully with our new complex inner product

and not expect it to behave quite as simply as the old real inner product. However, it turns
out that

‖z‖ = 〈z, z〉1/2

behaves just as we wish it to behave. (This is not really surprising, if we write zr = xr + iyr

with xr and yr real, we get

‖z‖2 =
n∑

r=1

x2
r +

n∑
r=1

y2
r

which is clearly well behaved.)

Exercise 8.4.3 [Cauchy–Schwarz] If z, w ∈ Cn, show that

|〈z, w〉| ≤ ‖z‖‖w‖.
Show that |〈z, w〉| = ‖z‖‖w‖ if and only if we can find λ, μ ∈ C not both zero such that

λz = μw.
[One way of proceeding is first to prove the result when 〈z, w〉 is real and positive and then
to consider 〈eiθ z, w〉.]
Exercise 8.4.4 If z, w ∈ Cn and λ, μ ∈ C, show that the following results hold.

(i) ‖z‖ ≥ 0.
(ii) ‖z‖ = 0 if and only if z = 0.
(iii) ‖λz‖ = |λ|‖z‖.
(iv) ‖z+ w‖ ≤ ‖z‖ + ‖w‖.

Definition 8.4.5 (i) We say that z, w ∈ Cn are orthogonal if 〈z, w〉 = 0.
(ii) We say that z, w ∈ Cn are orthonormal if z and w are orthogonal and ‖z‖ = ‖w‖ =

1.
(iii) We say that a set E of vectors is orthonormal if any two distinct members of E are

orthonormal.

Exercise 8.4.6 (i) Show that any collection of n orthonormal vectors in Cn form a basis.
(ii) If e1, e2, . . . , en are orthonormal vectors in Cn and z ∈ Cn, show that

z =
n∑

j=1

〈z, ej 〉ej .
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(iii) Suppose that e1, e2, . . . , en are orthonormal vectors in Cm and z ∈ Cm. Does the
relation z =∑n

j=1〈ej , z〉ej always hold? Give a proof or a counterexample.

Exercise 8.4.7 Suppose that 1 ≤ k ≤ q ≤ n. If U is a subspace of Cn of dimension q and
e1, e2, . . . , ek are orthonormal vectors in U , show that we can find an orthonormal basis
e1, e2, . . . , eq for U .

Exercise 8.4.8 We work in Cn and take e1, e2, . . . , ek to be orthonormal vectors. Show
that the following results hold.

(i) We have ∥∥∥∥∥∥z−
k∑

j=1

λj ej

∥∥∥∥∥∥
2

≥ ‖z‖2 −
k∑

j=1

|〈z, ej 〉|2,

with equality if and only if λj = 〈z, ej 〉.
(ii) (A simple form of Bessel’s inequality.) We have

‖z‖2 ≥
k∑

j=1

〈z, ej 〉2,

with equality if and only if z ∈ span{e1, e2, . . . , ek}.
Exercise 8.4.9 If z, w ∈ Cn, prove the polarisation identity

‖z+ w‖2 − ‖z− w‖2 + i‖z+ iw‖2 − i‖z− iw‖2 = 4〈z, w〉.
Exercise 8.4.10 If α : Cn → Cn is a linear map, show that there is a unique linear map
α∗ : Cn → Cn such that

〈αz, w〉 = 〈z, α∗w〉
for all z, w ∈ Cn.

Show, if you have not already done so, that, if α has matrix A = (aij ) with respect to some
orthonormal basis, then α∗ has matrix A∗ = (bij ) with bij = a∗ji (the complex conjugate of
aij ) with respect to the same basis.

Show that det α∗ = (det α)∗.

We call α∗ the adjoint of α and A∗ the adjoint of A.

Exercise 8.4.11 Let α : Cn → Cn be linear. Show that the following statements are
equivalent.

(i) ‖αz‖ = ‖z‖ for all z ∈ Cn.
(ii) 〈αz, αw〉 = 〈z, w〉 for all z, w ∈ Cn.
(iii) α∗α = ι.
(iv) α is invertible with inverse α∗.
(v) If α has matrix A with respect to some orthonormal basis, then A∗A = I .
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(vi) If α has matrix A with respect to some orthonormal basis, then the columns of A

are orthonormal.

If αα∗ = ι, we say that α is unitary. We write U (Cn) for the set of unitary linear maps
α : Cn → Cn. We use the same nomenclature for the corresponding matrix ideas.

Exercise 8.4.12 (i) Show that U (Cn) is a subgroup of GL(Cn).
(ii) If α ∈ U (Cn), show that | det α| = 1. Is the converse true? Give a proof or

counterexample.

Exercise 8.4.13 Find all diagonal orthogonal n× n real matrices. Find all diagonal
unitary n× n matrices.

Show that, given θ ∈ R, we can find α ∈ U (Cn) such that det α = eiθ .

Exercise 8.4.13 marks the beginning rather than the end of the study of U (Cn), but we
shall not proceed further in this direction. We write SU (Cn) for the set of α ∈ U (Cn) with
det α = 1.

Exercise 8.4.14 Show that SU (Cn) is a subgroup of GL(Cn).

The generalisation of the symmetric matrix has the expected form. (If you have any
problems with the exercises look at the corresponding proofs for symmetric matrices.)

Exercise 8.4.15 Let α : Cn → Cn be linear. Show that the following statements are
equivalent.

(i) 〈αz, w〉 = 〈z, αw〉 for all w, z ∈ Cn.
(ii) If α has matrix A with respect to some orthonormal basis, then A = A∗.

We call α and A, having the properties just described, Hermitian or self-adjoint.

Exercise 8.4.16 Show that, if A is Hermitian, then det A is real. Is the converse true? Give
a proof or a counterexample.

Exercise 8.4.17 If α : Cn → Cn is Hermitian, prove the following results:
(i) All the eigenvalues of α are real.
(ii) The eigenvectors corresponding to distinct eigenvalues of α are orthogonal.

Exercise 8.4.18 (i) Show that the map α : Cn → Cn is Hermitian if and only if there exists
an orthonormal basis of eigenvectors of Cn with respect to which α has a diagonal matrix
with real entries.

(ii) Show that the n× n complex matrix A is Hermitian if and only if there exists a
matrix P ∈ SU (Cn) such that P ∗AP is diagonal with real entries.

Exercise 8.4.19 If

A =
(

5 2i

−2i 2

)
find a unitary matrix U such that U ∗AU is a diagonal matrix.
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Exercise 8.4.20 Suppose that γ : Cn → Cn is unitary. Show that there exist unique Her-
mitian linear maps α, β : Cn → Cn such that

γ = α + iβ.

Show that αβ = βα and α2 + β2 = ι.
What familiar ideas reappear if you take n = 1? (If you cannot do the first part, this will

act as a hint.)

8.5 Further exercises

Exercise 8.5.1 The following idea goes back to the time of Fourier and has very important
generalisations.

Let A be an n× n matrix over R such that there exists a basis of (column) eigenvectors
ei for Rn with associated eigenvalues λi .

If y =∑n
j=1 Yj ej and μ is not an eigenvalue, show that

Ax− μx = y

has a unique solution and find it in the form x =∑n
j=1 Xj ej . What happens if μ is an

eigenvalue?
Now suppose that A is symmetric and the ei are orthonormal. Find Xj in terms of 〈y, ej 〉.
If n = 3

A =
⎛
⎝1 0 0

0 1 1
0 1 1

⎞
⎠ , y =

⎛
⎝1

2
1

⎞
⎠ and μ = 3

find appropriate ej and Xj . Hence find x as a column vector (x1, x2, x3)T .

Exercise 8.5.2 Consider the symmetric 2× 2 real matrix

A =
(

a b

b c

)
.

Are the following statements always true? Give proofs or counterexamples.
(i) If A has all its eigenvalues strictly positive, then a, b > 0.
(ii) If A has all its eigenvalues strictly positive, then c > 0.
(iii) If a, b, c > 0, then A has at least one strictly positive eigenvalue.
(iv) If a, b, c > 0, then all the eigenvalues of A are strictly positive.

[Hint: You may find it useful to look at xT Ax.]

Exercise 8.5.3 Which of the following are subgroups of the group GL(Rn) of n× n real
invertible matrices for n ≥ 2? Give proofs or counterexamples.

(i) The lower triangular matrices with non-zero entries on the diagonal.
(ii) The symmetric matrices with all eigenvalues non-zero.
(iii) The diagonalisable matrices with all eigenvalues non-zero.

[Hint: It may be helpful to ask which 2× 2 lower triangular matrices are diagonalisable.]
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Exercise 8.5.4 Suppose that a particle of mass m is constrained to move on the curve
z = 1

2κx2, where z is the vertical axis and x is a horizontal axis (we take κ > 0). We wish
to find the equation of motion for small oscillations about equilibrium. The kinetic energy
E is given exactly by E = 1

2m(ẋ2 + ż2), but, since we deal only with small oscillations, we
may take E = 1

2mẋ2. The potential energy U = mgz = 1
2mgκx2. Conservation of energy

tells us that U + E is constant. By differentiating U + E, obtain an equation relating ẍ and
x and solve it.

A particle is placed in a bowl of the form

z = 1
2k(x2 + 2λxy + y2)

with k > 0 and |λ| < 1. Here x, y, z are rectangular coordinates and z is vertical. By
using an appropriate coordinate system, find the general equation for

(
x(t), y(t)

)
for small

oscillations. (If you can produce a solution with four arbitrary constants, you may assume
that you have the most general solution.)

Find (x(t), y(t)) if the particle starts from rest at x = a, y = 0, t = 0 and both k and a

are very small compared with 1. If |λ| is very small compared with 1 but non-zero, show
that the motion first approximates to motion along the x axis and then, after a long time τ ,
to be found, to circular motion and then, after a further time τ has elapsed, to motion along
the y axis and so on.

Exercise 8.5.5 We work over R. Consider the n× n matrix A = I + uuT where u is
a column vector in Rn. By identifying an appropriate basis, or otherwise, find simple
expressions for det A and A−1.

Verify your answers by direct calculation when n = 2 and u = (u, v)T .

Exercise 8.5.6 Are the following statements true for a symmetric 3× 3 real matrix A =
(aij ) with aij = aji Give proofs or counterexamples.

(i) If A has all its eigenvalues strictly positive, then arr > 0 for all r .
(ii) If arr is strictly positive for all r , then at least one eigenvalue is strictly positive.
(iii) If arr is strictly positive for all r , then all the eigenvalues of A are strictly positive.
(iv) If det A > 0, then at least one of the eigenvalues of A is strictly positive.
(v) If Tr A > 0, then at least one of the eigenvalues of A is strictly positive.
(vii) If det A, Tr A > 0, then all the eigenvalues of A are strictly positive.
If a 4× 4 symmetric matrix B has det B > 0, does it follow that B has a positive

eigenvalue? Give a proof or a counterexample.

Exercise 8.5.7 Find analogues for the results of Exercise 7.6.4 for n× n complex matrices
S with the property that S∗ = −S (such matrices are called skew-Hermitian).

Exercise 8.5.8 Let α : Rn → Rn be a symmetric linear map. If you know enough analysis,
prove that there exists a u ∈ Rn with ‖u‖ ≤ 1 such that

|〈αv, v〉| ≤ |〈αu, u〉|
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whenever ‖v‖ ≤ 1. Otherwise, accept the result as obvious. By replacing α by −α, if
necessary, we may suppose that

〈αv, v〉 ≤ 〈αu, u〉
whenever ‖v‖ ≤ 1.

(i) If h ⊥ u, ‖h‖ = 1 and δ ∈ R, show that

‖u+ δh‖ = 1+ δ2

and deduce that

〈α(u+ δh), u+ δh〉 ≤ (1+ δ2)〈αu, u〉.
(ii) Use (i) to show that there is a constant A, depending only on u and h, such that

2〈αu, h〉δ ≤ Aδ2.

By considering what happens when δ is small and positive or small and negative, show that

〈αu, h〉 = 0.

(iii) We have shown that

h ⊥ u ⇒ h ⊥ αu.

Deduce that αu = λu for some λ ∈ R.
[Exercise 15.5.7 runs through a similar argument.]

Exercise 8.5.9 Let V be a finite dimensional vector space over C and α : V → V a linear
map such that αr = ι for some integer r ≥ 1. We write ζ = exp(2πi/r).

If x is any element of V , show that

(ζ kαr−1 + ζ 2kαr−2 + · · · + ζ (r−1)kα + ι)x

is either the zero vector or an eigenvector of α. Hence show that x is the sum of eigenvectors.
Deduce that V has a basis of eigenvectors of α and that any n× n complex matrix A with
Ar = I is diagonalisable.

For each r ≥ 1, give an example of a 2× 2 complex matrix such that As �= I for
1 ≤ s ≤ r − 1 but Ar = I .

Exercise 8.5.10 Let A be a 3× 3 antisymmetric matrix (that is to say, AT = −A) with real
entries. Show that iA is Hermitian and deduce that, if we work over C, there is a non-zero
vector w such that Az = −iθz with θ real.

We now work over R. Show that there exist non-zero real vectors x and y and a real
number θ such that

Ax = θy and Ay = −θx.

Show further that A has a real eigenvector u with eigenvalue 0 perpendicular to x and y.
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Exercise 8.5.11 Let A be an n× n antisymmetric matrix (that is to say, AT = −A) with
real entries. Show that vT Av = 0 for all real column vectors v ∈ Rn.

Now suppose that λ = μ+ iν is a complex eigenvalue with associated complex eigen-
vector z = x+ iy where μ and ν are real and x and y are real column vectors.

(i) Find expressions for Ax and Ay in terms of x, y, μ and ν.
(ii) By considering xT Ax+ yT Ay, or otherwise, show that μ = 0.
Now suppose that ν �= 0 (i.e. λ �= 0).
(iii) Show that xT y = 0 (i.e. x and y are orthogonal) and ‖x‖ = ‖y‖.
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Cartesian tensors

9.1 Physical vectors

When we discussed the use of vectors in geometry, I did not set up the axioms of geometry,
but appealed to the reader’s knowledge and intuition concerning planes and lines. It is
useful and instructive to see how Euclidean geometry can be developed from axioms, but
it would have taken us far away from our main topic.

In the next two chapters we shall develop the idea of a Cartesian tensor. Cartesian tensors
are mainly used in physics, so we shall encounter ‘point masses’, ‘smoothly varying
functions of position’ and similar slightly louche characters. In addition, matters which
would be made explicit by a pure mathematician will be allowed to remain implicit.
Repeated trials have shown that it is rarely useful or instructive to try to develop physics
from axioms and it seems foolish to expound a theory in a different language to that spoken
by its users.

If the reader is unwilling to adopt a less rigorous approach than that used elsewhere in
this book, she may simply omit these chapters which will not be used later. She should,
however, recall that

. . . a well-schooled man is one who searches for that degree of precision in each kind of study which
the nature of the subject at hand admits.

(Aristotle Nicomachean Ethics [2])

Unless otherwise explicitly stated, we will work in the three dimensional space R3 with
the standard inner product and use the summation convention. When we talk of a coordinate
system we will mean a Cartesian coordinate system with perpendicular axes.

One way of making progress in mathematics is to show that objects which have been
considered to be of the same type are, in fact, of different types. Another is to show that
objects which have been considered to be of different types can be considered to be of the
same type. I hope that by the time she has finished this book the reader will see that there
is no universal idea of a vector but there is instead a family of related ideas.

In Chapter 2 we considered position vectors

x = (x1, x2, x3)

211
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which gave the position of points in space. In the next two chapters we shall consider
physical vectors

u = (u1, u2, u3)

which give the measurements of physical objects like velocity or the strength of a magnetic
field.1

In the Principia, Newton writes that the laws governing the descent of a stone must be
the same in Europe and America. We might interpret this as saying that the laws of physics
are translation invariant. Of course, in science, experiment must have the last word and we
can never totally exclude the possibility that we are wrong. However, we can say that we
would be most reluctant to accept a physical theory which was not translation invariant.

In the same way, we would be most reluctant to accept a physical theory which was not
rotation invariant. We expect the laws of physics to look the same whether we stand on our
head or our heels.

There are no landmarks in space; one portion of space is exactly like every other portion, so that we
cannot tell where we are. We are, as it were, on an unruffled sea, without stars, compass, soundings,
wind or tide, and we cannot tell in which direction we are going. We have no log which we can cast
out to take dead reckoning by; we may compute our rate of motion with respect to the neighbouring
bodies, but we do not know how these bodies may be moving in space.

(Maxwell Matter and Motion [22])

If we believe that our theories must be rotation invariant then it is natural to seek a
notation which reflects this invariance. The system of Cartesian tensors enables us to write
down our laws in a way that is automatically rotation invariant.

The first thing to decide is what we mean by a rotation. The Oxford English Dictionary
tells us that it is ‘The action of moving round a centre, or of turning round (and round) on
an axis; also, the action of producing a motion of this kind’. In Chapter 7 we discussed
distance preserving linear maps in R3 and showed that it was natural to call SO(R3) the
set of rotations of R3. Since our view of the matter is a great deal clearer than that of the
Oxford English Dictionary, we shall use the word ‘rotation’ as a synonym for ‘member of
SO(R3)’. It makes very little difference whether we rotate our laboratory (imagined far out
in space) or our coordinate system. It is more usual to rotate our coordinate system in the
manner of Lemma 8.1.8.

We know that, if position vector x is transformed to x′ by a rotation of the coordinate
system2 with associated matrix L ∈ SO(R3), then (using the summation convention)

x ′i = lij xj .

We shall say that an observed ordered triple u = (u1, u2, u3) (think of three dials showing
certain values) is a physical vector or Cartesian tensor of order 1 if, when we rotate the

1 In order to emphasise that these are a new sort of object we initially use a different font, but, within a few pages, we shall drop
this convention.

2 This notation means that ′ is no longer available to denote differentiation. We shall use ȧ for the derivative of a with respect
to t .
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coordinate system S in the manner just indicated, to get a new coordinate system S ′, we get
a new ordered triple u′ with

u′i = lij uj . �

In other words, a Cartesian tensor of order 1 behaves like a position vector under rotation
of the coordinate system.

Lemma 9.1.1 With the notation just introduced

ui = lj iu
′
j .

Proof Observe that, by definition, LLT = I so, using the summation convention,

lj iu
′
j = lj i ljkuk = δkiuk = ui.

�

In the next exercise the reader is asked to show that the triple (x4
1 , x4

2 , x
4
3 ) (where x is a

position vector) fails the test � and is therefore not a tensor.

Exercise 9.1.2 Show that

L =
⎛
⎝1 0 0

0 2−1/2 −2−1/2

0 2−1/2 2−1/2

⎞
⎠ ∈ SO(R3),

but there exists a point whose position vector satisfies x ′4i �= lij x
4
j .

In the same way, the ordered triple u = (u1, u2, u3), where u1 is the temperature, u2

the pressure and u3 the electric potential at a point, does not obey � and so cannot be a
physical vector.

Example 9.1.3 (i) The position vector x = x of a particle is a Cartesian tensor of order 1.
(ii) If a particle is moving in a smooth manner along a path x(t), then the velocity

u(t) = ẋ(t) = (ẋ1(t), ẋ2(t), ẋ3(t))

is a Cartesian tensor of order 1.
(iii) If φ : R3 → R is smooth, then

v =
(

∂φ

∂x1
,

∂φ

∂x2
,

∂φ

∂x3

)
is a Cartesian tensor of order 1.

Proof (i) Direct from the definition.
(ii) Observe that (using the summation convention)

x ′i(t) = lij xj (t)
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so, differentiating both sides and observing that lij is constant,

u′i(t) = ẋ ′i(t) = lij ẋj (t) = lij uj (t).

(iii) (This is a deeper result.) By Lemma 9.1.1

xi = lj ix
′
j .

It follows, since lj i is constant, that

∂xi

∂x ′j
= lj i .

Now we are looking at the same point in our physical system, so

v′ =
(

∂φ

∂x ′1
,

∂φ

∂x ′2
,

∂φ

∂x ′3

)
,

and the chain rule yields

v′i =
∂φ

∂x ′i
= ∂φ

∂xj

∂xj

∂x ′i
= ∂φ

∂xj

∂xj

∂x ′i
= lij

∂φ

∂xj

as required. �

Exercise 9.1.4 (i) If u is a Cartesian tensor of order 1, show that (provided it changes
smoothly in time) so is u̇.

(ii) Show that the object F occurring in the following version of Newton’s third law

F = mẍ

is a Cartesian tensor of order 1.

9.2 General Cartesian tensors

So far, we have done nothing very interesting, but, as Maxwell observed,

There are physical quantities of another kind which are related to directions in space, but which
are not vectors. Stresses and strains in solid bodies are examples of these, and so are some of the
properties of bodies considered in the theory of elasticity and of double refraction. Quantities of this
class require for their definition nine numerical specifications.

(Maxwell Treatise on Electricity and Magnetism [21])

To deal with Maxwell’s observation, we introduce a new type of object. We shall say
that an observed ordered 3× 3 array

a =
⎛
⎝a11 a12 a13

a21 a22 a23

a21 a22 a23

⎞
⎠
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(think of nine dials showing certain values) is a Cartesian tensor of order 2 (or a Cartesian
tensor of rank 2) if, when we rotate the coordinate system S in our standard manner to get
the coordinate system S ′, we get a new ordered 3× 3 array with

a′ij = lir ljsars

(where, as throughout this chapter, we use the summation convention).
It is not difficult to find interesting examples of Cartesian tensors of order 2.

Exercise 9.2.1 (i) If u and v are Cartesian tensors of order 1 and we define a = u⊗ v to
be the 3× 3 array given by

aij = uivj

in each rotated coordinate system, then u⊗ v is a Cartesian tensor of order 2. (In older
texts u⊗ v is called a dyad.)

(ii) If u is a smoothly varying Cartesian tensor of order 1 and a is the 3× 3 array given
by

aij = ∂uj

∂xi

in each rotated coordinate system, then a is a Cartesian tensor of order 2.
(iii) If φ : R3 → R is smooth and a is the 3× 3 array given by

aij = ∂2φ

∂xi∂xj

in each rotated coordinate system, then a is a Cartesian tensor of order 2.

Lemma 9.2.2 If a is the 3× 3 array given by

aij = δij

(with δij the standard Kronecker delta) in each rotated coordinate system, then a is a
Cartesian tensor of order 2.

Proof Observe that

lir ljsδrs = lir ljr = δij

as required. �

Whereas an ordinary tensor of order 2 may be thought of as a 3× 3 array of dials
which move in a complicated interdependent way when we rotate our coordinate system,
the ‘Kronecker tensor’ of Lemma 9.2.2 consists of nine dials painted on a block of wood
which remain unchanged under rotation.
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9.3 More examples

Physicists are busy people and like to condense definitions by making implicit what pure
mathematicians like to make explicit. In accordance with this policy, they would say that
‘aij is a second order Cartesian tensor if it transforms according to the rule a′ij = lir ljsars’.
Since Cartesian tensors are used more by physicists than by pure mathematicians, we shall
adopt the shorter usage from now on.

We can clearly generalise further and say that aij...m (with N suffices) is a Cartesian
tensor of order or rank3 N if it transforms according to the rule

a′ij ...m = lipljq . . . lmtapq...t .

Observe that a Cartesian tensor a of order 0 consists of a single real number which remains
unchanged under rotation of our coordinate system. As an example, the mass m of a particle
is a Cartesian tensor of order 0.

Exercise 9.3.1 Produce Cartesian tensors of order 3 along the lines of each of the three
parts of Exercise 9.2.1.

The following remarks are more or less obvious.

(1) The coordinatewise sum of two Cartesian tensors of order N is a Cartesian tensor of
order N .

(2) If aij...p is a Cartesian tensor of order N and bqr...t is a Cartesian tensor of order M ,
then the product aij...pbqr...t is a Cartesian tensor of order N +M .

(3) If aij...p is a Cartesian tensor of order N and we set two suffices equal (so the summation
convention operates) the result is a Cartesian tensor of order N − 2. (This operation is
called contraction.)

(4) If aij...p is a Cartesian tensor of order N whose value varies smoothly as a function of
time, then ȧij ...p is a Cartesian tensor of order N .

(5) If ajk...p is a Cartesian tensor of order N whose value varies smoothly as a function of
position, then

∂aj...p

∂xi

is a Cartesian tensor of order N + 1. (A pure mathematician would replace this by a
much longer and more exact statement.)

The general proofs involve lots of notation, so I shall simply prove some typical
cases.4

Example 9.3.2 (i) If aijkp and bijkp are Cartesian tensors of order 4, then so is aijkp + bijkp.
(ii) If aijk is a Cartesian tensor of order 3 and bmn is a Cartesian tensor of order 2, then

aijkbmn is a Cartesian tensor of order 5.

3 Many physicists use the word ‘rank’, but this clashes unpleasantly with the definition of rank used in this book.
4 If the reader objects, then she can do the general proofs as exercises.
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(iii) If aijkp is a Cartesian tensor of order 4, then aijip is a Cartesian tensor of order 2.
(iv) If aijk is a Cartesian tensor of order 3 whose value varies smoothly as a function of

time, then ȧijk is a Cartesian tensor of order 3.
(v) If ajkmn is a Cartesian tensor of order 4 whose value varies smoothly as a function

of position, then

∂ajkmn

∂xi

is a Cartesian tensor of order 5.

Proof (i) Observe that

(aijkp + bijkp)′ = a′ijkp + b′ijkp = lir ljs lkt lpuarstu + lir ljs lkt lpubrstu

= lir ljs lkt lpu(arstu + brstu).

(ii) Observe that

(aijkbmn)′ = a′ijkb
′
mn = lir ljs lkt arst lmplnqbpq = lir ljs lkt lmplnq(arstbpq).

(iii) Observe that

a′ij ip = lir ljs lit lpuarstu = δrt ljs lpuarstu = ljs lpuarsru.

(iv) Left to the reader.
(v) We use the same argument as in Example 9.1.3 (iii).
By Lemma 9.1.1,

xi = lj ix
′
j .

It follows, since lj i is constant, that

∂xi

∂x ′j
= lj i .

Now we are looking at the same point in our physical system, so the chain rule yields(
∂ajkmn

∂xi

)′
= ∂a′jkmn

∂x ′i
= ∂

∂x ′i
ljr lks lmt lnuarstu

= ljr lks lmt lnu

∂arstu

∂x ′i
= ljr lks lmt lnu

∂arstu

∂xv

∂xv

∂x ′i

= ljr lks lmt lnuliv
∂arstu

∂xv

as required. �

There is another way of obtaining Cartesian tensors called the quotient rule which is
very useful. We need a trivial, but important, preliminary observation.
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Lemma 9.3.3 Let αij...m be a 3× 3× · · · × 3︸ ︷︷ ︸
n

array. Then, given any specified coordinate

system, we can find a tensor a with aij...m = αij...m in that system.

Proof Define

a′ij ...m = lir ljs . . . lmuαrs...u,

so the required condition for a tensor is obeyed automatically. �

Theorem 9.3.4 [The quotient rule] If aij bj is a Cartesian tensor of order 1 whenever bj

is a tensor of order 1, then aij is a Cartesian tensor of order 2.

Proof Observe that, in our standard notation

ljka
′
ij bk = a′ij b

′
j = (aij bj )′ = lir (arj bj ) = lirarkbk

and so

(ljka
′
ij − lirark)bk = 0.

Since we can assign bk any values we please in a particular coordinate system, we must
have

ljka
′
ij − lirark = 0,

so

lir lmkark = lmk(lirark) = lmk(ljka
′
ij ) = lmkljka

′
ij = δmja

′
ij = a′im

and we have shown that aij is a Cartesian tensor. �

It is clear that the quotient rule can be extended but, once again, we refrain from the
notational complexity of a general proof.

Exercise 9.3.5 (i) If aibi is a Cartesian tensor of order 0 whenever bi is a Cartesian tensor
of order 1, show that ai is a Cartesian tensor of order 1.

(ii) If aij bicj is a Cartesian tensor of order 0 whenever bi and cj are Cartesian tensors
of order 1, show that aij is a Cartesian tensor of order 2.

(iii) Show that, if aijuij is a Cartesian tensor of order 0 whenever uij is a Cartesian
tensor of order 2, then aij is a Cartesian tensor of order 2.

(iv) If aijkmbkm is a Cartesian tensor of order 2 whenever bkm is a Cartesian tensor of
order 2, show that aijkm is a Cartesian tensor of order 4.

The theory of elasticity deals with two types of Cartesian tensors of order 2, the stress
tensor eij and the strain tensor pij . On general grounds we expect them to be connected by
a linear relation

pij = cijkmekm.

If the stress tensor ekm could be chosen freely, the quotient rule given in Exercise 9.3.5 (iv)
would tell us that cijkm is a Cartesian tensor of order 4.
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Exercise 9.3.6 In fact, matters are a little more complicated since the definition of the
stress tensor ekm yields ekm = emk . (There are no other constraints.)

We expect a linear relation

pij = c̃ijkmekm,

but we cannot now show that c̃ijkm is a tensor.
(i) Show that, if we set cijkm = 1

2 (c̃ijkm + c̃ijmk), then we have

pij = cijkmekm and cijkm = cijmk.

(ii) If bkm is a general Cartesian tensor of order 2, show that there are tensors emk and
fmk with

bmk = emk + fmk, ekm = emk, fkm = −fmk.

(iii) Show that, with the notation of (ii),

cijkmekm = cijkmbkm

and deduce that cijkm is a tensor of order 4.

The next result is trivial but notationally complicated and will not be used in our main
discussion.

Lemma 9.3.7 In this lemma we will not apply the summation convention to A, B, C and
D. If t, u, v and w are Cartesian tensors of order 1, we define c = t⊗ u⊗ v⊗ w to be the
3× 3× 3× 3 array given by

cijkm = tiuj vkwm

in each rotated coordinate system.
Let the order 1 Cartesian tensors e(A) [A = 1, 2, 3] correspond to the arrays

(e1(1), e2(1), e3(1)) = (1, 0, 0)

(e1(2), e2(2), e3(2)) = (0, 1, 0)

(e1(3), e2(3), e3(3)) = (0, 0, 1),

in a given coordinate system S. Then any Cartesian tensor a of order 4 can be written
uniquely as

a =
3∑

A=1

3∑
B=1

3∑
C=1

3∑
D=1

λABCDe(A)⊗ e(B)⊗ e(C)⊗ e(D) �

with λABCD ∈ R.

Proof If we work in S, then � yields λABCD = aABCD , where aijkm is the array corre-
sponding to a in S.

Conversely, if λABCD = aABCD , then the 3× 3× 3× 3 arrays corresponding to the
tensors on either side of the equation � are equal. Since two tensors whose arrays agree in
any one coordinate system must be equal, the tensorial equation � must hold. �
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Exercise 9.3.8 Show, in as much detail as you consider desirable, that the Cartesian
tensors of order 4 form a vector space of dimension 34.

State the general result for Cartesian tensors of order n.

It is clear that a Cartesian tensor of order 3 is a new kind of object, but a Cartesian tensor
of order 0 behaves like a scalar and a Cartesian tensor of order 1 behaves like a vector. On
the principle that if it looks like a duck, swims like a duck and quacks like a duck, then it is
a duck, physicists call a Cartesian tensor of order 0 a scalar and a Cartesian tensor of order
1 a vector. From now on we shall do the same, but, as we discuss in Section 10.3, not all
ducks behave in the same way.

Henceforward we shall use u rather than u to denote Cartesian tensors of order 1.

9.4 The vector product

Recall that we defined the Levi-Civita symbol εijk by taking ε123 = 1 and using the rule
that interchanging two indices changed the sign. This gave

εαβγ =

⎧⎪⎪⎨
⎪⎪⎩

1 if (α, β, γ ) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},
−1 if (α, β, γ ) ∈ {(3, 2, 1), (1, 3, 2), (2, 1, 3)},
0 otherwise.

Lemma 9.4.1 εijk is a tensor.

Proof Observe that

lir ljs lkt εrst = det

⎛
⎝li1 li2 li3

lj1 lj2 lj3

lk1 lk2 lk3

⎞
⎠ = εijk det

⎛
⎝l11 l12 l13

l21 l22 l23

l31 l32 l33

⎞
⎠ = εijk = ε′ijk,

as required. �

There are very few formulae which are worth memorising, but part (iv) of the next
theorem may be one of them.

Theorem 9.4.2 (i) We have

εijk = det

⎛
⎝δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

⎞
⎠ .

(ii) We have

εijkεrst = det

⎛
⎝δir δis δit

δjr δjs δjt

δkr δks δkt

⎞
⎠ .
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(iii) We have

εijkεrst = δirδjsδkt + δit δjrδks + δisδjt δkr − δirδksδjt − δit δkrδjs − δisδkt δjr .

(iv) [The Levi-Civita identity] We have

εijkεist = δjsδkt − δksδjt .

(v) We have εijkεij t = 2δkt and εijkεijk = 6.

Note that the Levi-Civita identity of Theorem 9.4.2 (iv) asserts the equality of two
Cartesian tensors of order 4, that is to say, it asserts the equality of 3× 3× 3× 3 = 81
entries in two 3× 3× 3× 3 arrays. Although we have chosen a slightly indirect proof of
the identity, it will also yield easily to direct (but systematic) attack.

Proof of Theorem 9.4.2. (i) Recall that interchanging two rows of a determinant multiplies
its value by −1 and that the determinant of the identity matrix is 1.

(ii) Recall that interchanging two columns of a determinant multiplies its value by −1.
(iii) Compute the determinant of (ii) in the standard manner.
(iv) By (iii),

εijkεist = δiiδjsδkt + δit δjiδks + δisδjt δki − δiiδksδjt − δit δkiδjs − δisδkt δji

= 3δjsδkt + δjt δks + δjt δks − 3δksδjt − δkt δjs − δkt δjs = δjsδkt − δksδjt .

(v) Left as an exercise for the reader using the summation convention. �

Exercise 9.4.3 Show that εijkεklmεmni = εnlj .

Exercise 9.4.4 Let εijk...q be the Levi-Civita symbol of order n (with the obvious definition).
Show that

εijk...qεijk...q = n!

We now define the vector product (or cross product) c = a× b of two vectors a and b
by

ci = εijkaj bk

or, more briefly, by saying

(a× b)i = εijkajbk.

Notice that many people write the vector product as a ∧ b and sometimes talk about the
‘wedge product’.

If we need to calculate a specific vector product, we can unpack our definition to obtain

(a1, a2, a3)× (b1, b2, b3) = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1). �

The algebraic definition using the summation convention is simple and computationally
convenient, but conveys no geometric picture. To assign a geometric meaning, observe that,
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since tensors retain their relations under rotation, we may suppose, by rotating axes, that

a = (a, 0, 0) and b = (b cos θ, b sin θ, 0)

with a, b > 0 and 0 ≤ θ ≤ π . We then have

a× b = (0, 0, ab sin θ )

so a× b is a vector of length ‖a‖‖b‖| sin θ | (where, as usual, ‖x‖ denotes the length of x)
perpendicular to a and b. (There are two such vectors, but we leave the discussion as to
which one is chosen by our formula until Section 10.3.)

Our algebraic definition makes it easy to derive the following properties of the cross
product.

Exercise 9.4.5 Suppose that a, b and c are vectors and λ is a scalar. Show that the
following relations hold.

(i) λ(a× b) = (λa)× b = a× (λb).
(ii) a× (b+ c) = a× b+ a× c.
(iii) a× b = −b× a.
(iv) a× a = 0.

Exercise 9.4.6 Is R3 a group (see Definition 5.3.13) under the vector product? Give
reasons.

We also have the dot product5 a · b of two vectors a and b given by

a · b = aibi .

The reader will recognise this as our usual inner product under a different name.

Exercise 9.4.7 Suppose that a, b and c are vectors and λ is a scalar. Use the definition
just given and the summation convention to show that the following relations hold.

(i) λ(a · b) = (λa) · b = a · (λb).
(ii) a · (b+ c) = a · b+ a · c.
(iii) a · b = b · a.

Theorem 9.4.8 [The triple vector product] If a, b and c are vectors, then

a× (b× c) = (a · c)b− (a · b)c.

Proof Observe that(
a× (b× c)

)
i
= εijkaj (b× c)k = εijkaj (εkrsbrcs)

= εkij εkrsaj brcs = (δirδjs − δisδjr )ajbrcs

= asbics − arbrci =
(
(a · c)b− (a · b)c

)
i
,

as required. �

5 Some British mathematicians, including the present author, use a lowered dot a.b, but this is definitely old fashioned.
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Exercise 9.4.9 (i) Prove Theorem 9.4.8 from the formula

(a1, a2, a3)× (b1, b2, b3) = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

without using the summation convention. (This is neither difficult nor time consuming,
provided that you start with a sufficiently large piece of paper.)

(ii) Think about how you would go about proving Theorem 9.4.8 from our geometric
description of the vector product. (Only write down a proof if you can find a nice one.)

Exercise 9.4.10 Show that

(a× b)× c = (a · c)b− (b · c)a.

Write down explicit vectors x, y and z such that

(x× y)× z �= x× (y× z).

[An algebraist would say that the vector product does not obey the associative rule.]

Exercise 9.4.11 Show that

a× (b× c)+ b× (c× a)+ c× (a× b) = 0.

Exercise 9.4.12 Use the summation convention (recall, as usual, that suffices must not
appear more than twice) to show that

(a× b) · (a× b)+ (a · b)2 = ‖a‖2‖b‖2.

To what well known trigonometric formula does this correspond?

There is another natural way to ‘multiply three vectors’. We write

[a, b, c] = a · (b× c)

and call the result the scalar triple product (or just triple product). Observe that

[a, b, c] = εijkaibj ck = det

⎛
⎝a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞
⎠ .

In particular, interchanging two entries in the scalar triple product multiplies the result
by −1. We may think of the scalar triple product [a, b, c] as the (signed) volume of a
parallelepiped with one vertex at 0 and adjacent vertices at a, b and c.

Exercise 9.4.13 Give one line proofs of the relation

(a× b) · a = 0

using the following ideas.
(i) Summation convention.
(ii) Orthogonality of vectors.
(iii) Volume of a parallelepiped.



224 Cartesian tensors

Exercise 9.4.14 By applying the triple vector product formula to

(a× b)× (c× d),

or otherwise, show that

[a, b, c]d = [b, c, d]a+ [c, a, d]b+ [a, b, d]c.

Show also that

(a× b)× (a× c) = [a, b, c]a.

Exercise 9.4.15 If a, b and c are linearly independent, we know that any x can be written
uniquely as

x = λa+ μb+ νc

with λ, μ, ν ∈ R. Find λ by considering the dot product (that is to say, inner product) of
x with a vector perpendicular to b and c. Write down μ and ν similarly.

Exercise 9.4.16 (i) By considering a matrix of the form AAT , or otherwise, show that

[a, b, c]2 = det

⎛
⎝a · a a · b a · c

b · a b · b b · c
c · a c · b c · c

⎞
⎠ .

(ii) (Rather less interesting.) If ‖a‖ = ‖b‖ = ‖c‖ = ‖a+ b+ c‖ = r , show that

[a, b, c]2 = 2(r2 + a · b)(r2 + b · c)(r2 + c · a).

Exercise 9.4.17 Show that

(a× b) · (c× d)+ (a× c) · (d× b)+ (a× d) · (b× c) = 0.

The results in the next lemma and the following exercise are unsurprising and easy to
prove.

Lemma 9.4.18 If a, b are smoothly varying vector functions of time, then

d

dt
a× b = ȧ× b+ a× ḃ.

Proof Using the summation convention,

d

dt
εijkajbk = εijk

d

dt
ajbk = εijk(ȧj bk + aj ḃk) = εijkȧj bk + εijkaj ḃk,

as required. �

Exercise 9.4.19 Suppose that a, b are smoothly varying vector functions of time and φ is
a smoothly varying scalar function of time. Prove the following results.

(i)
d

dt
φa = φ̇a+ φȧ.
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(ii)
d

dt
a · b = ȧ · b+ a · ḃ.

(iii)
d

dt
a× ȧ = a× ä.

Hamilton, Tait, Maxwell and others introduced a collection of Cartesian tensors based on
the ‘differential operator’6 ∇. (Maxwell and his contemporaries called this symbol ‘nabla’
after an oriental harp ‘said by Hieronymus and other authorities to have had the shape ∇’.
The more prosaic modern world prefers ‘del’.) If φ is a smoothly varying scalar function
of position, then the vector ∇φ is given by

(∇φ)i = ∂φ

∂xi

.

If u is a smoothly varying vector function of position, then the scalar ∇ · u and the vector
∇ × u are given by

∇ · u = ∂ui

∂xi

and (∇ × u)i = εijk

∂uj

∂xk

.

The following alternative names are in common use

grad φ = ∇φ, div u = ∇ · u, curl u = ∇ × u.

We speak of the ‘gradient of φ’, the ‘divergence of u’ and the ‘curl of u’.
We write

∇2φ = ∇ · (∇φ) = ∂2φ

∂xi∂xi

and call ∇2φ the Laplacian of φ. We also write

(∇2u
)
i
= ∂2ui

∂xj ∂xj

.

The following, less important, objects occur from time to time. Let a be a vector function
of position, φ a smooth function of position and u a smooth vector function of position. We
define

(a · ∇)φ = ai

∂φ

∂xi

and
(
(a · ∇)u

)
j
= ai

∂uj

∂xi

.

Lemma 9.4.20 (i) If φ is a smooth scalar valued function of position and u is a smooth
vector valued function of position, then

∇ · (φu) = (∇φ) · u+ φ∇ · u.

(ii) If φ is a smooth scalar valued function of position, then

∇ × (∇ · φ) = 0.

6 So far as we are concerned, the phrase ‘differential operator’ is merely decorative. We shall not define the term or use the idea.
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(ii) If u is a smooth vector valued function of position, then

∇ × (∇u) = ∇(∇ · u)− ∇2u.

Proof (i) Observe that

∂

∂xi

φui = ∂φ

∂xi

ui + φ
∂ui

∂xi

.

(ii) We know that partial derivatives of a smooth function commute, so

εijk

∂

∂xj

(
∂φ

∂xk

)
= εijk

∂2φ

∂xj∂xk

= εijk

∂2φ

∂xk∂xj

= εijk

∂

∂xk

(
∂φ

∂xj

)
= −εijk

∂

∂xj

(
∂φ

∂xk

)
.

Thus

εijk

∂

∂xj

(
∂φ

∂xk

)
= 0,

which is the stated result.
(iii) Observe that, using Levi-Civita’s formula,

(∇ × (∇u)
)
i
= εijk

∂

∂xj

(
εkrs

∂us

∂xr

)
= εkij εkrs

∂2us

∂xj ∂xr

= (δirδjs − δisδjr )
∂2us

∂xj ∂xr

= ∂2uj

∂xj∂xi

− ∂2ui

∂xj ∂xj

= ∂

∂xi

∂uj

∂xj

− ∂2ui

∂xj ∂xj

= (∇(∇ · u)−∇2u
)
i
,

as required. �
Exercise 9.4.21 (i) If φ is a smooth scalar valued function of position and u is a smooth
vector valued function of position, show that

∇ × (φu) = (∇φ)× u+ φ∇ × u.

(ii) If u is a smooth vector valued function of position, show that

∇ · (∇ × u) = 0.

(iii) If u and v are smooth vector valued functions of position, show that

∇ × (u× v) = (∇ · v)u+ v · ∇u− (∇ · u)v− u · ∇v.

Although the∇ notation is very suggestive, the formulae so suggested need to be verified,
since analogies with simple vectorial formulae can fail.

The power of multidimensional calculus using ∇ is only really unleashed once we
have the associated integral theorems (the integral divergence theorem, Stokes’ theorem
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and so on). However, we shall give an application of the vector product to mechanics in
Section 10.2.

Exercise 9.4.22 The vector product is so useful that we would like to generalise it from
R3 to Rn. If we look at the case n = 4, we see one possible generalisation. Using the
summation convention with range 1, 2, 3, 4, we define

x ∧ y ∧ z = a

by

ai = εijklxj ykzl.

(i) Show that, if we make the natural extension of the definition of a Cartesian tensor
to four dimensions,7 then, if x, y, z are vectors (i.e. Cartesian tensors of order 1 in R4), it
follows that x ∧ y ∧ z is a vector.

(ii) Show that, if x, y, z, u are vectors and λ, μ scalars, then

(λx+ μu) ∧ y ∧ z = λx ∧ y ∧ z+ μu ∧ y ∧ z

and

x ∧ y ∧ z = −y ∧ x ∧ z = −z ∧ y ∧ x.

(iii) Write down the appropriate definition for n = 5.
In some ways this is satisfactory, but the reader will observe that, if we work in Rn,

the ‘generalised vector product’ must involve n− 1 vectors. In more advanced work,
mathematicians introduce ‘generalised vector products’ involving r vectors from Rn, but
these ‘wedge products’ no longer live in Rn.

9.5 Further exercises

Exercise 9.5.1 Show directly from the definition of a Cartesian tensor that, if Tij is a second
order Cartesian tensor, then ∂Tij /∂xj is a vector.

Exercise 9.5.2 Show that, if v is a smooth function of position,

(v · ∇)v = ∇( 1
2‖v‖2)− v× (∇ × v).

Exercise 9.5.3 If we write

Di = εijkxj

∂

∂x k
,

show that

(D1D2 −D2D1)φ = −D3φ

7 If the reader wants everything spelled out in detail, she should ignore this exercise.
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for any smooth function φ of position. (If we were thinking about commutators, we would
write [D1,D2] = −D3.)

Exercise 9.5.4 We work in R3. Give a geometrical interpretation of the equation

n · r = b �

and of the equation

u× r = c, ��

where b is a constant, n, u, c are constant vectors, ‖n‖ = ‖u‖ = 1, u · c = 0 and r is a
position vector. Your answer should contain geometric interpretations of n and u.

Determine which values of r satisfy equations � and �� simultaneously, (a) assuming
that u · n �= 0 and (b) assuming that u · n = 0. Interpret the difference between the results
for (a) and (b) geometrically.

Exercise 9.5.5 Let a and b be linearly independent vectors in R3. By considering the vector
product with an appropriate vector, show that, if the equation

x+ (a · x)a+ a× x = b (9.1)

has a solution, it must be

x = b− a× b
1+ ‖a‖2

. (9.2)

Verify that this is indeed a solution.
Rewrite equations (1) and (2) in tensor form as

Mijxj = bi and xj = Njkbk.

Compute MijNjk and explain why you should expect the answer that you obtain.

Exercise 9.5.6 Let a, b and c be linearly independent. Show that the equation

(a× b+ b× c+ c× a) · x = [a, b, c] �

defines the plane through a, b and c.
What object is defined by � if a and b are linearly independent, but c ∈ span{a, b}?

What object is defined by � if a �= 0, but b, c ∈ span{a}? What object is defined by � if
a = b = c = 0? Give reasons for your answers.

Exercise 9.5.7 Unit circles with centres at r1 and r2 are drawn in two non-parallel planes
with equations r · k1 = p1 and r · k2 = p2 respectively (where the kj are unit vectors and
the pj ≥ 0). Show that there is a sphere passing through both circles if and only if

(r1 − r2) · (k1 × k2) = 0 and (p1 − k1 · r2)2 = (p2 − k2 · r1)2.

Exercise 9.5.8 (i) Show that

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
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(ii) Deduce that

(a× b) · (a× c) = ‖a‖2(b · c)− (a · b)(a · c).

(iii) Show, from (ii), that

(a× b) · (a× b) = ‖a‖2‖b‖2 − (a · b)2.

Deduce the Cauchy–Schwarz inequality in three dimensions.

Exercise 9.5.9 [Some formulae from spherical trigonometry]

Let him that is melancholy calculate spherical triangles.
(Robert Burton The Anatomy of Melancholy [7])

Consider three points A, B and C on the unit sphere with centre O at 0 in R3.
We write a for the position vector of A. We write a for the angle between the lines OB

and OC satisfying 0 ≤ a ≤ π and A for the angle between the plane πA,B containing O,
A, B and the plane πA,C containing O, A, C. (There are two possible choices for A even if
we impose the condition 0 ≤ A ≤ π . We resolve the ambiguity later.)

(i) Show, by thinking about the angle between a× b and a× c, or otherwise, that

(a× b) · (a× c) = sin c sin b cos A,

provided that we choose A appropriately. By applying the formula in Exercise 9.5.8, show
that

cos a = cos b cos c ± sin b sin c cos A.

(ii) Explain why (if 0 < a, b, c < π )

sin A = |(a× b)× (a× c)|
|a× b||a× c|

and deduce that

sin A

sin a
= sin B

sin b
= sin C

sin c
= 6 Vol(OABC)

sin a sin b sin c
.

(iii) Given the latitude and longitude of London and Los Angeles and the radius of the
Earth, explain how you would calculate the distance covered in a direct flight. How would
you calculate the compass direction relative to true North that the aircraft captain should
choose for such a flight?
[The formulae given in parts (i) and (ii) appear in De Triangulis, written in 1462–1463 by
Regiomontanus, but spherical trigonometry was invented by the ancient Greeks for use in
astronomy. For reasons which will be clear if you did part (iii), they were interested in the
case when the angle A was a right angle.]
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Exercise 9.5.10 [Frenet–Serret formulae] In this exercise we are interested in under-
standing what is going on, rather than worrying about rigour and special cases. You should
assume that everything is sufficiently well behaved to avoid problems.

(i) Let r : R → R3 be a smooth curve in space. If φ : R → R is smooth, show that

d

dt
r
(
φ(t)
) = φ′(t)r′

(
φ(t)
)
.

Explain why (under reasonable conditions) we can restrict ourselves to studying r such
that ‖r′(s)‖ = 1 for all s. Such a function r is said to be parameterised by arc length. For
the rest of the exercise we shall use this parameterisation.

(ii) Let t(s) = r′(s). (We call t the tangent vector.) Show that t(s) · t′(s) = 0 and deduce
that, unless ‖t′(s)‖ = 0, we can find a unit vector n(s) such that ‖t′(s)‖n(s) = t′(s). For the
rest of the question we shall assume that we can find a smooth function κ : R → R with
κ(s) > 0 for all s and a smoothly varying unit vector n : R → R3 such that t′(s) = κ(s)n(s).
(We call n the unit normal.)

(iii) If r(s) = (R−1 cos Rs,R−1 sin Rs, 0), verify that we have an arc length parameter-
isation. Show that κ(s) = R−1. For this reason κ(s)−1 is called the ‘radius of the circle of
curvature’ or just ‘the radius of curvature’.

(iv) Let b(s) = t(s)× n(s). Show that there is a unique τ : R → R such that

n′(s) = −κ(s)t(s)+ τ (s)b(s).

Show further that

b′(s) = −τ (s)n(s).

(v) A particle travels along the curve at variable speed. If its position at time t is given
by x(t) = r

(
ψ(t)
)
, express the acceleration x′′(t) in terms of (some of) t, n, b and κ , τ , ψ

and their derivatives.8 Why does the vector b rarely occur in elementary mechanics?

Exercise 9.5.11 We work in R3 and do not use the summation convention. Explain geo-
metrically why e1, e2, e3 are linearly independent (and so form a basis for R3) if and only
if

(e1 × e2) · e3 �= 0. �

For the rest of this question we assume that � holds.
(i) Let E be the matrix with j th row ej . By considering the matrix EÊT , or otherwise,

show that there is a unique matrix Ê with ith row êj such that

ei · êj = δij .

8 The reader is warned that not all mathematicians use exactly the same definition of quantities like κ(s). In particular, signs may
change from + to − and vice versa.
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(ii) If x ∈ R3, show that

x =
3∑

j=1

(x · êj )ej .

(iii) Show that ê1, ê2, ê3 form a basis and that, if x ∈ R3,

x =
3∑

j=1

(x · ej )êj .

(iv) Show that ˆ̂ej = ej .
(v) Show that

ê1 = e2 × e3

(e1 × e2) · e3

and write down similar expressions for ê2 and ê3. Find an expression for(
(e3 × e1)× (e1 × e2)

) · (e2 × e3)

in terms of (e1 × e2) · e3.
(vi) Find ê1, ê2, ê3 in the special case when e1, e2, e3 are orthonormal and det E > 0.

[The basis ê1, ê2, ê3 is sometimes called the dual basis of e1, e2, e3, but we shall introduce a
much more general notion of dual basis elsewhere in this book. The ‘dual basis’ considered
here is very useful in crystallography.]

Exercise 9.5.12 Let r = (x1, x2, x3) be the usual position vector and write r = ‖r‖. If a is
a constant vector, find the divergence of the following functions.

(i) rna (for r �= 0).
(ii) rn(a× r) (for r �= 0).
(iii) (a× r)× a.
Find the curl of ra and r2r× a when r �= 0. Find the grad of a · r.
If ψ is a smooth function of position, show that

∇ · (r×∇ψ) = 0.

Suppose that f : (0,∞) → R is smooth and φ(r) = f (r). Show that

∇φ = f ′(r)

r
r and ∇2φ = 1

r2

d

dr

(
r2f ′(r)

)
.

Deduce that, if ∇2φ = 0 on R3 \ {0}, then

φ(r) = A+ B

r

for some constants A and B.
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Exercise 9.5.13 Let r = (x1, x2, x3) be the usual position vector and write r = ‖r‖. Sup-
pose that f, g : (0,∞) → R are smooth and

Rij (x) = f (r)xixj + g(r)δij

on R3 \ {0}. Explain why Rij is a Cartesian tensor of order 2. Find

∂Rij

∂xi

and εijk

∂Rkl

∂xj

in terms of f and g and their derivatives. Show that, if both expressions vanish identically,
f (r) = Ar−5 for some constant A.
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More on tensors

10.1 Some tensorial theorems

This section deals mainly with tensors having special properties. We first look at isotropic
tensors. These are tensors like δij and εijk which remain unchanged under rotation of our
coordinate system. They are important because many physical systems (for example, empty
space) look the same when we rotate them. We would expect such systems to be described
by isotropic tensors.

Theorem 10.1.1 (i) Every Cartesian tensor of order 0 is isotropic.
(ii) The zero tensor is the only Cartesian tensor of order 1 which is isotropic.
(iii) The isotropic Cartesian tensors of order 2 have the form λδij with λ a real number.
(iv) The isotropic Cartesian tensors of order 3 have the form λεijk with λ a real number.

Proof (i) Automatic.
(ii) Suppose that ai is an isotropic Cartesian tensor of order 1.
If we take

L =
⎛
⎝1 0 0

0 0 1
0 −1 0

⎞
⎠ ,

then LLT = I and det L = 1, so L ∈ SO(R3). (The reader should describe L geometri-
cally.) Thus

a3 = a′3 = l3iai = −a2 and a2 = a′2 = l2iai = a3.

It follows that a2 = a3 = 0 and, by symmetry among the indices, we must also have a1 = 0.
(iii) Suppose that aij is an isotropic Cartesian tensor of order 2.
If we take L as in part (ii), we obtain

a22 = a′22 = l2i l2j aij = a33

so, by symmetry among the indices, we must have a11 = a22 = a33. We also have

a12 = a′12 = l1i l2j aij = −a13 and a13 = a′13 = l1i l3j aij = a12.

233
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It follows that a12 = a13 = 0 and, by symmetry among the indices,

a12 = a13 = a21 = a23 = a31 = a32 = 0.

Thus aij = λδij .
(iv) Suppose that aijk is an isotropic Cartesian tensor of order 3.
If we take L as in part (ii) we obtain

a123 = a′123 = l1i l2j l3kaijk = −a132

a122 = a′122 = l1i l2j l2kaijk = a133

a211 = a′211 = l2i l1j l1kaijk = −a311

a222 = a′122 = l1i l2j l3kaijk = −a333

a333 = a′333 = l3i l3j l3kaijk = a222.

Using symmetry among the indices, we can also see that

a122 = a133 = −a122,

so a122 = 0. Symmetry among the indices now gives aijk = λεijk as required. �

Matters become more complicated when the order is greater than 3.

Exercise 10.1.2 Show that, if α, β and γ are real, then

αδij δkl + βδikδjl + γ δilδjk �

is an isotropic Cartesian tensor.
Show that, if

αδij δkl + βδikδjl + γ δilδjk = 0,

then α = β = γ = 0.
Exercise 10.5.9 sketches a proof that the expression in � is the most general isotropic

tensor of order 4, but requires the reader to work quite hard.
Use the statement that � is, indeed, the most general isotropic tensor of order 4 to

produce a proof of the the Levi-Civita identity

εijkεist = δjsδkt − δksδjt .

Recall the tensorial equation

pij = cijkmekm

governing the relation between the stress tensor ekm and the strain tensor pij in elasticity.
If we deal with a material like steel, which looks the same in all directions, we must have
cijkm isotropic.

By the results stated in Exercise 10.1.2, we have

cijkm = αδij δkm + βδikδjm + γ δimδjk
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and so

pij = 3αδij ekk + βeij + γ eji

for some constants α, β and γ . In fact, eij = eji, so the equation reduces to

pij = λδij ekk + 2μeij

showing that the elastic behaviour of an isotropic material depends on two constants λ

and μ.
Sometimes we get the ‘opposite of isotropy’ and a problem is best considered with a

very particular set of coordinate axes. The wide-awake reader will not be surprised to see
the appearance of a symmetric Cartesian tensor of order 2, that is to say, a tensor aij ,
like the stress tensor in the paragraph above, with aij = aji . Our first task is to show that
symmetry is a tensorial property.

Exercise 10.1.3 Suppose that aij is a Cartesian tensor. If aij = aji in one coordinate
system S, show that a′ij = a′ji in any rotated coordinate system S ′.

Exercise 10.1.4 According to the theory of magnetostriction, the mechanical stress is a
second order symmetric Cartesian tensor σij induced by the magnetic field Bi according
to the rule

σij = aijkBk,

where aijk is a third order Cartesian tensor which depends only on the material. Show that
σij = 0 if the material is isotropic.

A 3× 3 matrix and a Cartesian tensor of order 2 are very different beasts, so we must
exercise caution in moving between these two sorts of objects. However, our results on
symmetric matrices give us useful information about symmetric tensors.

Theorem 10.1.5 If aij is a symmetric Cartesian tensor, there exists a rotated coordinate
system S ′ in which ⎛

⎝a′11 a′12 a′13

a′21 a′22 a′23

a′31 a′32 a′33

⎞
⎠ =
⎛
⎝λ 0 0

0 μ 0
0 0 ν

⎞
⎠ .

Proof Let us write down the matrix

A =
⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ .

By Theorem 8.1.6, we can find a 3× 3 matrix M ∈ O(R3) such that

MAMT = D,
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where D is the matrix given by

D =
⎛
⎝λ 0 0

0 μ 0
0 0 ν

⎞
⎠

for some λ, μ, ν ∈ R.
If M ∈ SO(R3), we set L = M . If M /∈ SO(R3), we set L = −M . In either case,

L ∈ SO(R3) and

LALT = D.

Let

L =
⎛
⎝l11 l12 l13

l21 l22 l23

l31 l32 l33

⎞
⎠ .

If we consider the coordinate rotation associated with lij , we obtain the tensor relation

a′ij = lir ljsars

with ⎛
⎝a′11 a′12 a′13

a′21 a′22 a′23

a′31 a′32 a′33

⎞
⎠ =
⎛
⎝λ 0 0

0 μ 0
0 0 ν

⎞
⎠

as required. �

Remark 1 If you want to use the summation convention, it is a very bad idea to replace λ,
μ and ν by λ1, λ2 and λ3.
Remark 2 Although we are working with tensors, it is usual to say that if aijuj = λui with
ui �= 0, then u is an eigenvector and λ an eigenvalue of the tensor aij . If we work with
symmetric tensors, we often refer to principal axes instead of eigenvectors.

We can also consider antisymmetric Cartesian tensors, that is to say, tensors aij with
aij = −aji .

Exercise 10.1.6 (i) Suppose that aij is a Cartesian tensor. If aij = −aji in one coordinate
system, show that a′ij = −a′ji in any rotated coordinate system.

(ii) By looking at 1
2 (bij + bji) and 1

2 (bij − bji), or otherwise, show that any Cartesian
tensor of order 2 is the sum of a symmetric and an antisymmetric tensor.

(iii) Show that, if we consider the vector space of Cartesian tensors of order 2 (see
Exercise 9.3.8), then the symmetric tensors form a subspace of dimension 6 and the anti-
symmetric tensors form a subspace of dimension 3.

If we look at the antisymmetric matrix⎛
⎝ 0 σ3 −σ2

−σ3 0 σ1

σ2 −σ1 0

⎞
⎠

long enough, the following result may present itself.
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Lemma 10.1.7 If aik is an antisymmetric tensor and ωj = 1
2εijkaik , then

aik = εijkωj .

Proof By the Levi-Civita identity,

εijkωj = 1
2εijkεrjsars = 1

2εjkiεjsrars = 1
2 (δksδir − δkrδis)ars

= 1
2 (aik − aki) = aik

as required. �
Exercise 10.1.8 Using the minimum of computation, identify the eigenvectors of the tensor
εijkωj where ω is a non-zero vector. (Note that we are working in R3.)

10.2 A (very) little mechanics

We illustrate the use of the vector product by looking at the behaviour of a collection of
particles in Newtonian mechanics. We suppose that the αth particle has position xα and
mass mα for 1 ≤ α ≤ N . We do not apply the summation convention to the integers α and
β. The αth particle is subject to a force Fα,β due to the βth particle [β �= α] and an external
force Fα . Newton’s laws tell us that forces are vectors and

mα ẍα = Fα +
∑
β �=α

Fα,β .

In addition since ‘action and reaction are equal and opposite’

Fα,β = −Fβ,α.

These laws hold whether we consider a galaxy of stars with the stars as particles or a falling
raindrop with the constituent molecules as particles.

In order to get some idea of the nature of the motion, we introduce a new vector called
the centre of mass

xG = M−1
∑

α

mαxα,

where M =∑α mα is the total mass of the system, and observe that

M ẍG =
∑

α

mα ẍα

=
∑

α

⎛
⎝Fα +

∑
β �=α

Fα,β

⎞
⎠ =∑

α

Fα +
∑

α

∑
β �=α

Fα,β

=
∑

α

Fα +
∑

1≤β<α≤N

(Fα,β + Fβ,α)

=
∑

α

Fα +
∑

1≤β<α≤N

0 = F
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where F =∑α Fα . Thus the centre of mass behaves like a particle of mass M (the total
mass of the system) under a force F (the total vector sum of the external forces on the
system). This represents one of the most important results in mechanics, since it allows us,
for example, when considering the orbit of the Earth (a body with unknown and complicated
internal forces) round the Sun (whose internal forces are likewise unknown) to take the two
bodies as point masses. We call

M ẋG =
∑

α

mα ẋα

the momentum of the system.
If we make the additional assumption that the force exerted by one particle on the other

acts along the line of centres (that is to say,

Fα,β = λα,β(xα − xβ),

for some scalar λα,β), then we can find another ‘global equation’ which does not involve
internal forces by using the vector product. We define the angular momentum H of the
system about the origin by the formula

H =
∑

α

mαxα × ẋα.

Our assumptions that the forces are opposite and act along the line of centres tell us that

xα × Fα,β + xβ × Fβ,α = (xα − xβ )× Fα,β = λα,β (xα − xβ)× (xα − xβ) = 0

and so

Ḣ =
∑

α

mα

d

dt
xα × ẋα =

∑
α

mα(ẋα × ẋα + xα × ẍα)

=
∑

α

mαxα × ẍα =
∑

α

xα ×
⎛
⎝Fα +

∑
β �=α

Fα,β

⎞
⎠

=
∑

α

xα × Fα +
∑

1≤β<α≤N

(xα × Fα,β + xβ × Fβ,α)

=
∑

α

xα × Fα +
∑

1≤β<α≤N

0 = G,

where G =∑α xα × Fα is called the total couple of the external forces.
Thus, in the absence of external forces, the angular momentum, like the momentum,

remains unchanged.

Exercise 10.2.1 It is interesting to consider what happens if we look at matters relative to
the centre of mass. If, using the notation of this section, we write rα = xα − xG, show that

H = MxG × ẋG +
∑

α

mαrα × ṙα.

Describe this result in words.
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Exercise 10.2.2 Suppose that particle α experiences an external force

Fα = −kmα ẋ.

Show that the angular momentum H = H0e
−kt , where H0 is constant.

For the rest of the section, we look at what happens when we rotate a rigid body (fixed
so that the point at the origin does not move) round a fixed axis through the origin.

It is important to understand that lij itself is not a tensor. If we look at the relation

x ′i = lij xj ,

we can think of lij standing with one foot i in the rotated coordinate system and with the
other foot j in the original coordinate system. On the other hand, we can think of rotation
about the origin within a single coordinate system as the map which takes the vector y to
the vector x according to the rule

xi = kij yj .

By the quotient rule, kij is a second order tensor.
If the rotation is about a fixed axis, we may choose a coordinate system in which the

array associated with the tensor takes the form

(kij ) =
⎛
⎝1 0 0

0 cos θ sin θ

0 −sin θ cos θ

⎞
⎠ .

If we consider kij as changing with time (but with fixed axis of rotation) then, in our chosen
coordinate system,

k̇ij =
⎛
⎝0 0 0

0 −sin θ cos θ

0 −cos θ −sin θ

⎞
⎠ θ̇ .

If we make a further simplification by choosing our coordinate system in such a way that
θ = 0 at the time that we are considering, then

(k̇ij ) =
⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠ θ̇ ,

so

k̇ij = εirjωr

where ω is the vector which (in our chosen system) corresponds to the array (ω1, ω2, ω3) =
(θ̇ , 0, 0).

Since a tensor equation which is true in one system is true in all systems, we have shown
the existence of a vector ω such that k̇ij = εirjωr . In particular, if

xi = kij yj ,
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then

ẋi = k̇ij yj + kij ẏj = εirj yjωr + kij ẏj .

We now specialise this rather general result. Since we are dealing with a rigid body fixed
at the origin, ẏj = 0 and so ẋi = εirjωrxj , that is to say,

ẋ = ω × y.

Finally, we remark that we can choose to observe our system at the instant when y = x and
so

ẋ = ω × x.

Thus, if our collection of particles form a rigid system revolving round the origin, the αth
particle in position xα has velocity ω × xα . If the reader feels that we have spent too much
time proving the obvious or, alternatively, that we have failed to provide a proper proof of
anything, she may simply take the previous sentence as our definition of the equation of
motion of a point in a rigid body fixed at the origin revolving round an axis. The vector ω

is called the angular velocity of the body.
By definition, the angular momentum of our body is given by

H =
∑

α

mαxα × ẋα =
∑

α

mαxα × (ω × xα) =
∑

α

mα

(
(xα · xα)ω − (xα · ω)xα

)
.

We can rewrite this equation in tensor form to get

Hi =
∑

α

mα(xαkxαkωi − xαjωjxαi) = Iijωj ,

where

Iij =
∑

α

mα(xαkxαkδij − xαixαj ).

(Note that, as throughout this section, the i, j and k are subject to the summation convention,
but α is not.)

We call Iij the inertia tensor of the rigid body. Passing from the discrete case of a finite
set of point masses to the continuum case of a lump of matter with density ρ, we obtain the
expression

Iij =
∫

(xkxkδij − xixj )ρ(x) dV (x)

for the inertia tensor for such a body. The notion of angular momentum H and the total
couple G can be extended in a similar way to give us

Hi = Iijωj , Ḣi = Gi

and so

Iij ω̇j = Gi.
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Exercise 10.2.3 [The parallel axis theorem] Suppose that one lump of matter with centre
of mass at the origin has density ρ(x), total mass M , and moment of inertia Iij whilst a
second lump of matter has density ρ(x− a) and moment of inertia Jij . Prove that

Jij = Iij +M(akakδij − aiaj ).

If the reader takes some heavy object (a chair, say) and attempts to spin it, she will find
that it is much easier to spin it in certain ways than in others. The inertia tensor tells us why.

Of course, we need to decide what we mean by ‘easy to spin’, but a little thought suggests
that we should mean that applying a couple G produces rotation about the axis defined by
G, that is to say, we want ω̇ to be a multiple of G and so

Iijwj = λwi

with w = ω̇ and G = λ−1w for some non-zero scalar λ and some non-zero vector w. (In
other words, w is an eigenvector with eigenvalue λ.)

Observe that

Iji =
∫

(xkxkδji − xjxi)ρ(x) dV (x) =
∫

(xkxkδij − xixj )ρ(x) dV (x) = Iij ,

so Iij is a symmetric Cartesian tensor of order 2. It follows, by Theorem 10.1.5, that we
can find a coordinate system in which the array associated with the inertia tensor takes the
simple form ⎛

⎝A 0 0
0 B 0
0 0 C

⎞
⎠ .

Exercise 10.2.4 Show that, if we work in the coordinate system of the previous sentence,

A =
∫∫∫

(y2 + z2)ρ(x, y, z) dx dy dz ≥ 0

and write down similar formulae for B and C.

If A, B and C are all unequal, we see that we can ‘easily spin’ the body about each of
the three coordinate axes of our specially chosen system and about no other axis. If B = C

but A �= B, we can ‘easily spin’ the body about the axis corresponding to A and about any
axis perpendicular to this (passing through the origin).

The reader who thinks that Cartesian tensors are a long winded way of stating the
obvious should ask herself why it is obvious (as the discussion above shows) that, if we
can ‘easily spin’ a rigid body about two axes through a fixed point, we can ‘easily spin’ the
body about the axis perpendicular to both.

Rugby is a thugs’ game played by gentlemen, soccer is a gentlemen’s game played by
thugs and Australian rules football is an Australian game played by Australians. The soccer
ball is essentially spherical (so, by symmetry, A = B = C), but the balls used in rugby,
Australian rules football and American football have A > B = C. When watching games
with A > B = C, we are watching an inertia tensor in flight.
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10.3 Left-hand, right-hand

We say that a 3× 3× · · · × 3 array aij...m is a Cartesian tensor if it transforms according
to the rule

a′ij ...m = lir ljs . . . lmuars...u

for a rotation of the coordinate system corresponding to L ∈ SO(R3). I claimed that this
was a useful idea because we expect the laws of physics to be unchanged under rotation.

Why not use some other test? In particular, why not allow L ∈ O(R3)? Let us call aij...m

an ‘extended Cartesian tensor’ (this is non-standard terminology) if it transforms according
to the rule

a′ij ...m = lir ljs . . . lmuars...u

for a transformation of the coordinate system corresponding to L ∈ O(R3) (so that the
coordinate axes remain orthogonal). If we do so, we get a rather nasty surprise.

Lemma 10.3.1 The array εijk is not an extended Cartesian tensor.

Proof The argument of Lemma 9.4.1 shows that

lir ljs lkt εrst = εijk det L = −εijk

if L ∈ O(R3) \ SO(R3). �
Exercise 10.3.2 (i) Show that δij is an extended Cartesian tensor.

(ii) Show that there are no non-zero isotropic extended Cartesian tensors of order 3.
(iii) If a, b and c are extended Cartesian tensors of order 1 (so Cartesian tensors of

order 1) and (a× b) · c �= 0, show that (a× b) · c is not an extended Cartesian tensor.
(iv) If a, b are extended Cartesian tensors of order 1 show that aibi is an extended

Cartesian tensor of order 0.
(v) If a and b are extended Cartesian tensors of order 1 (so Cartesian tensors of order

1) and a× b �= 0, show that a× b is not an extended Cartesian tensor.

Exercise 10.3.2 (iii) can be expressed more vividly. If we form the apparent scalar
(a× b) · c �= 0 and then look in the mirror, the result will have changed sign! (Of course,
if we remember the ideas discussed in Section 4.1, we may be less flabbergasted at seeing
a signed volume.)

Do the laws of nature remain the same when we look in a mirror? Tartaric acid derived
from wine lees rotates the plane of polarisation when polarised light passes through it.
Tartaric acid obtained by chemical synthesis does not. In 1849 Pasteur observed that
when chemically derived tartaric acid crystallised it produced two types of crystals which
(like your left-hand and right-hand) were mirror images but not rotational images. He
sorted the crystals according to their handedness and discovered that a solution of ‘left-
handed’ crystals rotated the plane of polarisation one way and a solution of ‘right-handed’
crystals rotated it the other way. A mixture of the two solutions produced no rotation. This
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extraordinary result excited much scepticism and Pasteur was invited to demonstrate his
result in the presence of Biot, one of the grand old men of French science. After Pasteur had
done the separation of the crystals in his presence, Biot performed the rest of the experiment
himself. Pasteur recalled that ‘When the result became clear he seized me by the hand and
said “My dear boy, I have loved science so much during my life that this touches my very
heart.”’1

Pasteur’s discovery showed that, in some sense life is ‘handed’. In 1952, Weyl wrote

. . . the deeper chemical constitution of our human body shows that we have a screw, a screw that is
turning the same way in every one of us. Thus our body contains the dextro-rotatory form of glucose
and the laevo-rotatory form of fructose. A horrid manifestation of this genotypical asymmetry is
a metabolic disease called phenylketonuria, leading to insanity, that man contracts when a small
quantity of laevo-phenylalanine is added to his food, while the dextro-form has no such deleterious
effects.

(Weyl Symmetry [33], Chapter 1)

In 1953, Crick and Watson showed that DNA had the structure of a double helix. We now
know that the instructions for making an Earthly living thing are encoded on this ‘handed’
double helix. If life is discovered elsewhere in the solar system, one of our first questions
will be whether it is ‘handed’ and, if so, whether it has the same handedness as us.

A first look at Maxwell’s equations for electromagnetism

∇ · D = ρ,

∇ · B = 0,

∇ × E = −∂B
∂t

,

∇ ×H = j+ ∂D
∂t

,

D = εE, B = μH, j = σE,

seem to show handedness (or, to use the technical term, exhibit chirality), since they involve
the vector product. However, suppose that we were in indirect communication with beings
in a different part of the universe and we tried to use Maxwell’s equations to establish
the difference between left- and right-handedness. We would talk about the magnetic field
B and explain that it is the force experienced by a unit ‘north pole’, but we would be
unable to tell our correspondents which of the two possible poles we mean. Maxwell’s
electromagnetic theory is mirror symmetric if we change the pole naming convention when
we reflect.

Of course, experiment trumps philosophy, so it may turn out that the universe is
handed, though, even then, most people would prefer to ascribe the observed left- or
right-handedness to chance.

1 ‘Mon cher enfant, j’ai tant aimé les sciences dans ma vie que cela fait battre le coeur.’ See, for example, [14].
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Be that as it may, many physical theories including Newtonian mechanics and Maxwell’s
electromagnetic theory are mirror symmetric. How should we deal with the failure of some
Cartesian tensors to ‘transform correctly’ under reflection? A common sense solution is
simply to check that our equations remain correct under reflection. In order to ensure
that terrestrial mathematicians can talk to each other about things like vector products we
introduce the ‘right-hand convention’ or ‘right-hand rule’. ‘If the forefinger of the right-
hand points in the direction of the vector a and the middle finger in the direction of b,
then the thumb points in the direction of a× b.’ If the reader is a pure mathematician or
lacks digital dexterity, she may prefer to note that this is equivalent to using a ‘right-handed
coordinate system’ so that when the right hand is held easily with the forefinger in the
direction of the vector (1, 0, 0) and the middle finger in the direction of (0, 1, 0) then the
thumb points in the direction of (0, 0, 1).

10.4 General tensors

Some physicists refer to Cartesian tensors which change sign under reflection as ‘pseudo-
tensors’, so, if a, b and c are linearly independent extended Cartesian tensors of order 1,
then a× b, is a ‘pseudo-vector’ and a · (b× c) is a pseudo-scalar. Since Maxwell, Gibbs
and Heaviside considered a× b to be a vector, the author thinks this is an unfortunate
choice of phrase. It seems more reasonable to say that a physical vector is an object which
transforms in a certain way for certain choices of coordinate transformations. As we change
our choice of transformations, so we change our notion of a physical vector.

What happens if we choose the most general collection of invertible linear transforma-
tions? The answer is very interesting, but requires the introduction of a new notation. In
this section we write our position vectors as

x =
⎛
⎝x1

x2

x3

⎞
⎠ ,

that is to say, we use upper indices and consider x as a column vector. We write the matrix
of an invertible linear map as lij so that lij is the entry in the ith (upper index) row and j th
(lower index) column.

If we make a change of coordinate system from our initial system S to a new system S̄

(note the use of an upper bar rather than a dash), we have a relation

x̄i = lij x
j ,

where we sum over the j which occurs once as an upper index and once as a lower index and
lij is a 3× 3 invertible matrix. We call any column a = (a1, a2, a3)T with three elements a
contravariant vector if it transforms according to the rule

āi = lij a
j .

Notice that the position vector is automatically a contravariant vector.
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The reader should have no difficulty with the next exercise.

Exercise 10.4.1 (i) If u and v are contravariant vectors, λ, μ ∈ R and we set wi =
λui + μvi , then w is a contravariant vector.

(ii) If a contravariant vector u(t) varies in a smooth manner with time, then

u̇(t) = (u̇1(t), u̇2(t), u̇3(t))T

is a contravariant vector.

However, matters become more complicated when we seek an analogue of Lemma 9.1.1.

Lemma 10.4.2 If u is a contravariant vector, then, with the notation just introduced,

ui = mi
j ū

j

where, in matrix notation, M = (LT )−1.

Note that, in our upper and lower index notation, the definition of M is equivalent to

mi
kl

k
j = likm

k
j = δi

j ,

where our new Kronecker delta δi
j corresponds to a 3× 3 array with 1s on the diagonal and

0s off the diagonal.

Proof of Lemma 10.4.2 Observe that

mi
j ū

j = mi
j l

j
k uk = δi

ku
k = ui,

as required. �

Exercise 10.4.3 Show that mi
j = lij if and only if L ∈ O(R3).

The new aspect of matters just revealed comes to the fore when we look for an analogue
of Example 9.1.3.

Lemma 10.4.4 If φ : R3 → R is smooth, then(
∂φ

∂x1
,

∂φ

∂x2
,

∂φ

∂x3

)
transforms according to the rule

∂φ

∂x̄i
= m

j
i

∂φ

∂xj
.

Proof By the chain rule

∂φ

∂x̄i
= ∂φ

∂xj

∂xj

∂x̄i
= ∂φ

∂xj

∂m
j
k x̄

k

∂x̄i
= ∂φ

∂xj
m

j
kδ

k
i = m

j
i

∂φ

∂xj

as stated. �
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We get round this difficulty by introducing a new kind of vector.2 We call any row
a = (a1, a2, a3) with three elements a covariant vector if it transforms according to
the rule

āi = m
j
i aj .

With this definition, Lemma 10.4.4 may be restated as follows.

Lemma 10.4.5 If φ : R3 → R is smooth, then, if we write

ui = ∂φ

∂xi
,

u is a covariant vector.

To go much further than this would lead us too far afield, but the reader will proba-
bly observe that we now get three sorts of tensors of order 2, Rij , Si

j and T ij with the
transformation rules

R̄ij = lui lvj Ruv, S̄i
j = mi

ul
v
j S

u
v , T̄ ij = mi

um
j
vT

uv.

Exercise 10.4.6 (i) Show that δ
j
i is second order tensor (in the sense of this section) but

δij is not.
(ii) Write down the appropriate transformation rules for the fourth order tensor akn

ij .
(iii) Let akn

ij = δk
i δ

n
j . Check that akn

ij is a fourth order tensor. Show that ain
ij is a second

order tensor but akn
ii and ann

ij are not.
(iv) Write down the appropriate transformation rules for the fourth order tensor an

ijk .
Show that an

ijn is a second order tensor.

Exercise 10.4.6 indicates that our indexing convention for general tensors should run
as follows. ‘No index should appear more than twice. If an index appears twice it should
appear once as an upper and once as a lower suffix and we should then sum over that index.’

At this point the reader is entitled to say that ‘This is all very pretty, but does it lead
anywhere?’ So far as this book goes, all it does is to give a fleeting notion of covariance
and contravariance which pervade much of modern mathematics. (We get another glimpse
in Exercise 11.4.6.)

In a wider context, tensors have their roots in the study by Gauss and Riemann of surfaces
as ‘objects in themselves’ rather than ‘objects embedded in a larger space’. Ricci-Curbastro
and his pupil Levi-Civita developed what they called ‘absolute differential calculus’ and
would now be called ‘tensor calculus’, but it was not until Einstein discovered that tensor
calculus provided the correct language for the development of General Relativity that the
importance of these ideas was generally understood.

2 ‘When I use a word,’ Humpty Dumpty said in a rather scornful tone, ‘it means just what I choose it to mean – neither more
nor less.’

‘The question is,’ said Alice, ‘whether you can make words mean so many different things.’
‘The question is,’ said Humpty Dumpty, ‘who is to be Master – that’s all.’

(Lewis Carroll Through the Looking Glass, and What Alice Found There [9])
.



10.5 Further exercises 247

Later, when people looked to see whether the same ideas could be useful in classical
physics, they discovered that this was indeed the case, but it was often more appropriate to
use what we now call Cartesian tensors.

10.5 Further exercises

Exercise 10.5.1 Suppose that E(x, t) and B(x, t) satisfy Maxwell’s equations in vacuum

∇ · D = 0, ∇ · B = 0,

∇ × E = −∂B
∂t

, ∇ ×H = ∂D
∂t

,

D = ε0E, B = μ0H.

Show that

∂2Ei

∂xj ∂xj

− c−2 ∂2Ei

∂t2
= 0 and

∂2Bi

∂xj∂xj

− c−2 ∂2Bi

∂t2
= 0,

where c2 = (ε0μ0)−1. Show, by substitution, that the equations of the first paragraph are
satisfied by

E = e cos(ωt − k · x+ φ) and B = b cos(ωt − k · x+ φ)

where φ, k and e are freely chosen constants and ω and b are to be determined.3

Exercise 10.5.2 Consider Maxwell’s equations for a uniform conducting medium

∇ · D = ρ, ∇ · B = 0,

∇ × E = −∂B
∂t

, ∇ ×H = j+ ∂D
∂t

,

D = εE, B = μH, j = σE.

(Here ε, μ, σ > 0.) Show that the charge ρ decays exponentially to zero at all points
(more precisely ρ(x, t) = e−κtρ(x, 0) for some κ > 0 to be found).
[In order to go further, we would need to introduce the ideas of boundaries and boundary
conditions.]

Exercise 10.5.3 Lorentz showed that a charged particle of mass m and charge q moving
in an electromagnetic field experiences a force

F = q(E+ ṙ× B),

where r is the position vector of the particle, E is the electric field and B is the magnetic
field. In this exercise we shall assume that E and B are constant in space and time and that
they are non-zero.

3 ‘The precise formulation of the time-space laws was the work of Maxwell. Imagine his feelings when the differential equations
he had formulated proved to him that electromagnetic fields spread in the form of polarised waves and with the speed of light!
To few men in the world has such an experience been vouchsafed.’ (Einstein writing in the journal Science [16]. The article is
on the web.)
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Suppose that E · B = 0. By taking an appropriate set of orthogonal coordinates, writing
the equations of motion for these coordinates and solving the resulting differential equations
(you will get one simple equation and a pair of simultaneous equations), show that the
motion of the particle consists, in general, of circular movement in a plane perpendicular to
B about a centre which moves with constant velocity u+ v, where u is a multiple of E× B
depending on the initial conditions and v is a multiple of B with ‖v‖ = ‖E‖/‖B‖. What is
the period of the circular motion?

Someone tells you that the result above cannot be right because, as the magnetic field
gets smaller, the speed of the centre of the circular motion gets larger. (If we keep E fixed,
‖E‖/‖B‖ → ∞ as ‖B‖ → 0.) Answer your interlocutor’s doubts.

If we remove the condition E · B = 0, show that the motion is similar, but now the
particle experiences a constant acceleration in the direction of B.

Exercise 10.5.4 (i) If Tij is an antisymmetric Cartesian tensor of order 2, show that we can
find vectors vi and ui such that Tij = uivj − ujvi . Are the vectors ui and vi unique? Give
reasons.

(ii) Show that it is not always possible, given Uij , a symmetric Cartesian tensor of order
2, to find vectors ri and si such that Uij = risj + rj si .

Exercise 10.5.5 Let vi be a non-zero vector. By finding a, b, ci and dij explicitly, show
that any symmetric Cartesian tensor tij of order 2 can be written uniquely as

tij = aδij + bvivj + (civj + cjvi)+ dij ,

where a and b are scalars, ci is a vector and dij is a symmetric Cartesian tensor of order 2
such that

civi = 0, dii = 0, dij vj = 0.

Exercise 10.5.6 The relation between the stress σij and strain eij for an isotropic medium
is

σij = λekkδij + 2μeij .

Use the fact that eij is symmetric to show that σij is symmetric. Show that the two tensors
σij and eij have the same principal axes.

Show that the stored elastic energy density E = 1
2σij eij is non-negative for all eij if and

only if μ ≥ 0 and λ ≥ − 2
3μ.

If λ �= − 2
3μ, show that

eij = pδij + dij ,

where p is a scalar and dij is a traceless tensor (that is to say dii = 0) both to be determined
explicitly in terms of σij . Find σij in terms of p and dij .

Exercise 10.5.7 A homogeneous, but anisotropic, crystal has the conductivity tensor

σij = αδij + γ ninj ,
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where α and γ are real constants and n is a fixed unit vector. The electric current J is given
by the equation

Ji = σijEj ,

where E is the electric field.
(i) Show that there is a plane passing through the origin such that, if E lies in the plane,

then J = λE for some λ to be specified.
(ii) If α �= 0 and α �= −γ , show that

E �= 0 ⇒ J �= 0.

(iii) If Dij = εijknk , find the value of γ which gives σijDjkDkm = −σim.

Exercise 10.5.8 (In parts (i) to (iii) of this question you may use the results of Theo-
rem 10.1.1, but should make no reference to formulae like � in Exercise 10.1.2.) Suppose
that Tijkm is an isotropic Cartesian tensor of order 4.

(i) Show that εijkTijkm = 0.
(ii) Show that δijTijkm = αδkm for some scalar α.
(iii) Show that εijuTijkm = βεkmu for some scalar β.
Verify these results in the case Tijkm = λδij δkm + μδikδjm + νδimδjk , finding α and β

in terms of λ, μ and ν.

Exercise 10.5.9 [The most general isotropic Cartesian tensor of order 4] In this
question A, B, C, D ∈ {1, 2, 3, 4} and we do not apply the summation convention to
them.

Suppose that aijkm is an isotropic Cartesian tensor.
(i) By considering the rotation associated with

L =
⎛
⎝1 0 0

0 0 1
0 −1 0

⎞
⎠ ,

or otherwise, show that aABCD = 0 unless A = B = C = D or two pairs of indices are
equal (for example, A = C, B = D). Show also that a1122 = a2211.

(ii) Suppose that

L =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ .

Show algebraically that L ∈ SO(R3). Identify the associated rotation geometrically. By
using the relation

aijkm = lir ljs lkt lmuarstu

and symmetry among the indices, show that

aAAAA = κ, aAABB = λ, aABAB = μ, aABBA = ν

for all A, B ∈ {1, 2, 3, 4} with A �= B and some real κ , λ, μ, ν.
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(iii) Deduce that

aijkm = λδij δkm + μδikδjm + νδimδjk + (κ − λ− μ− ν)vijkm,

where vABCD = 1 if A = B = C = D and vABCD = 0 otherwise.
(iv) Explain why (κ − λ− μ− ν)vijkm must be a tensor of order 4 and

(κ − λ− μ− ν)vijkmxixjxkxm

must be a scalar. Show that

vijkmxixjxkxm = x4
1 + x4

2 + x4
3 + x4

4

is not invariant under rotation of axes and so cannot be a scalar. Conclude that

κ − λ− μ− ν = 0

and

aijkm = λδij δkm + μδikδjm + νδimδjk.

Exercise 10.5.10 Use the fact that the most general isotropic tensor of order 4 takes the
form

aijkm = λδij δkm + μδikδjm + νδimδjk

to evaluate

bijkm =
∫

r≤a

xixj

∂2

∂xk∂xm

(
1

r

)
dV,

where x is the position vector and r = ‖x‖.

Exercise 10.5.11 (This exercise presents an alternative proof of the ‘master identity’ of
Theorem 9.4.2 (iii).)

Show that, if a Cartesian tensor Tijkrst of order 6 is isotropic and has the symmetry
properties

Tijkrst = Tkijrst = −Tjikrst ,

then Tijkrst is a scalar multiple of εijkεrst .
Deduce that

εijkεrst = δirδjsδkt + δit δjrδks + δisδjt δkr − δirδksδjt − δit δkrδjs − δisδkt δjr .

Exercise 10.5.12 Show that εijkδlm is an isotropic tensor. Show that εijkδlm, εjklδim and
εkliδjm are linearly independent.

Now admire the equation

εijkδlm − εjklδim + εkliδjm − εlij δkm = 0

and prove it by using ideas from the previous question, or otherwise.
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[Clearly this is about as far as we can get without some new ideas. Such ideas do exist (the
magic word is syzygy) but they are beyond the scope of this book and the competence of
its author.]

Exercise 10.5.13 Consider two particles of mass mα at xα [α = 1, 2] subject to forces
F1 = −F2 = f(x1 − x2). Show directly that their centre of mass x̄ has constant velocity. If
we write s = x1 − x2, show that

x1 = x̄+ λ1s and x2 = x̄+ λ2s,

where λ1 and λ2 are to be determined. Show that

μs̈ = f(s),

where μ is to be determined.
(i) Suppose that f(s) = −ks. If the particles are initially at rest at distance d apart,

calculate how long it takes before they collide.
(ii) Suppose that f(s) = −k‖s‖−3s. If the particles are initially at rest at distance d apart,

calculate how long it takes before they collide.
[Hint: Recall that dv/dt = (dx/dt)(dv/dx).]

Exercise 10.5.14 We consider the system of particles and forces described in the first para-
graph of Section 10.2. Recall that we define the total momentum and angular momentum
for a given origin O by

P =
∑

α

mα ẋα and L =
∑

α

mαxα × ẋα.

If we choose a new origin O ′ so that particle α is at x′α = xα − b, show that the new
total momentum and angular momentum satisfy

P′ = P, L′ = L− b× P.

Compute L′ · P′ and L′ × P′ in terms of P and L.
Show that, if P �= 0, we can choose b in a manner to be specified so that L′ = λP′ for

some λ > 0.

Exercise 10.5.15 [Conservation of energy] We consider the system of particles and forces
described in the first paragraph of Section 10.2. Suppose that there are no external forces,
that is to say, Fα = 0 for all α, and that the internal forces are derived from a potential
φα,β = φβ,α , that is to say,

Fαi = −
∑
β �=α

∂φα,β

∂xαi

(‖xα − xβ‖
)
.

Show that, if we write

U =
∑
α>β

φα,β

(‖xα − xβ‖
)
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(so we might consider U as the total potential energy of the system) and

T =
∑

α

1

2
mα‖ẋα‖2

(so T corresponds to kinetic energy), then Ṫ + U̇ = 0. Deduce that T + U does not change
with time.

Exercise 10.5.16 Consider the system of the previous question, but now specify

φα,β(x) = −Gmαmβ‖x‖−1

(so we are describing motion under gravity). If we take

J = 1

2

∑
α

mα‖xα‖2,

show that

d2J

dt2
= 2T + U.

Hence show that, if the total energy T + U > 0, then the system must be unbounded both
in the future and in the past.

Exercise 10.5.17 Consider a uniform solid sphere of mass M and radius a with centre
the origin. Explain why its inertia tensor Iij satisfies the equation Iij = Kδij for some K

depending on a and M and, by computing Iii , show that, in fact,

Iij = 3

5
Ma2δij .

(If you are interested, you can compute I11 directly. This is not hard, but I hope you will
agree that the method of the question is easier.)

If the centre of the sphere is moved to (b, 0, 0), find the new inertia tensor (relative to
the origin).

What are eigenvectors and eigenvalues of the new inertia tensor?

Exercise 10.5.18 It is clear that an important question to ask about a symmetric tensor aij

of order 2 is whether all its eigenvalues are strictly positive.
(i) Consider the cubic

f (t) = t3 − b2t
2 + b1t − b0

with the bj real and strictly positive. Show that the real roots of f must be strictly positive.
(ii) By looking at g(t) = (t − λ1)(t − λ2)(t − λ3), or otherwise, show that the real num-

bers λ1, λ2, λ3 are strictly positive if and only if λ1 + λ2 + λ3 > 0, λ1λ2 + λ2λ3 + λ3λ1 > 0
and λ1λ2λ3 > 0.
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(iii) Show that the eigenvalues of aij are strictly positive if and only if

arr > 0,

arrass − arsars > 0,

arrassatt − 3arsarsatt + 2arsastatr > 0.

Exercise 10.5.19 A Cartesian tensor is said to have cubic symmetry if its components are
unchanged by rotations through π/2 about each of the three coordinate axes. What is the
most general tensor of order 2 having cubic symmetry? Give reasons.

Consider a cube of uniform density and side 2a with centre at the origin with sides
aligned parallel to the coordinate axes. Find its inertia tensor.

If we now move a vertex to the origin, keeping the sides aligned parallel to the coordinate
axes, find the new inertia tensor. You should use a coordinate system (to be specified) in
which the associated array is a diagonal matrix.

Exercise 10.5.20 A rigid thin plate D has density ρ(x) per unit area so that its inertia tensor
is

Mij =
∫

D

(xkxkδij − xixj )ρ dS.

Show that one eigenvector is perpendicular to the plate and write down an integral expression
for the corresponding eigenvalue λ.

If the other two eigenvalues are μ and ν, show that λ = μ+ ν.
Find λ, μ and ν for a circular disc of uniform density, of radius a and mass m having its

centre at the origin.

Exercise 10.5.21 Show that the total kinetic energy of a rigid body with inertia tensor Iij

spinning about an axis through the origin with angular velocity ωj is 1
2ωiIijωj . If ‖ω‖ is

fixed, how would you minimise the kinetic energy?

Exercise 10.5.22 It may be helpful to look at Exercise 3.6.5 to put the next two exercises
in context.

(i) Let � be the set of all 2× 2 matrices of the form A = a0I + a1K with ar ∈ R and

I =
(

1 0
0 1

)
, K =

(
0 1
−1 0

)
.

Show that � is a vector space over R and find its dimension.
Show that K2 = −I . Deduce that � is closed under multiplication (that is to say,

A, B ∈ � ⇒ AB ∈ �).
(ii) Let � be the set of all 2× 2 matrices of the form A = a0I + a1J + a2K + a3L with

ar ∈ R and

I =
(

1 0
0 1

)
, J =

(
i 0
0 −i

)
, K =

(
0 1
−1 0

)
, L =

(
0 i

i 0

)
,

where, as usual, i is a square root of −1.



254 More on tensors

Show that � is a vector space over R and find its dimension.
Show that JKL = −I and prove that � is closed under multiplication (that is to say,

A, B ∈ � ⇒ AB ∈ �).

Exercise 10.5.23 For many years, Hamilton tried to find a generalisation of the complex
numbers a0 + a1i. Whilst walking along the Royal Canal near Maynooth he had a flash of
inspiration and carved

ijk = −1

in the stone of the nearest bridge.4

His idea was to consider the system Q of ‘numbers’ of the form

a = a0 + a1i + a2j + a3k

manipulated following the ‘standard rules of algebra’5 and the rule i2 = j 2 = k2 = ijk =
−1. Explain why Exercise 10.5.22 (ii) shows that such a system exists. (Hamilton used a
geometric argument.)

(i) Use the rules just given to show that

ij = −ji = k, jk = −kj = i, ki = −ik = j.

(ii) Let us write

(a0 + a1i + a2j + a3k)∗ = a0 − a1i − a2j − a3k

and

‖a0 + a1i + a2j + a3k‖ = (a2
0 + a2

1 + a2
2 + a2

3)1/2.

Show that

aa∗ = ‖a‖2

and deduce that, if a �= 0, there exists a b such that

ab = ba = 1.

(iii) Show, in as much detail as you consider appropriate, that (Q,+,×) satisfies the
same laws of arithmetic as R except that multiplication does not commute.6

(iv) Hamilton called the elements ofQ quaternions. Show that, if a and b are quaternions,
then

‖ab‖ = ‖a‖‖b‖.

4 The equation has disappeared, but the Maynooth Mathematics Department celebrates the discovery with an annual picnic at the
site. The farmer on whose land they picnic views the occasion with bemused benevolence.

5 If the reader objects to this formulation, she is free to translate back into the language of Exercise 10.5.22 (ii).
6 That is to say, Q satisfies all the conditions of Definition 13.2.1 (supplemented by 1× a = a in (vii) and a−1 × a = 1 in (viii))

except for (v) which fails in certain cases.
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Deduce the following result of Euler concerning integers. If A = a2
0 + a2

1 + a2
2 + a2

3 and
B = b2

0 + b2
1 + b2

2 + b2
3 with aj , bj ∈ Z, then there exist cj ∈ Z such that

AB = c2
0 + c2

1 + c2
2 + c2

3.

In other words, the product of two sums of four squares is itself the sum of four squares.
(v) Let a = (a1, a2, a3) ∈ R3 and b = (b1, b2, b3) ∈ R3. If c = a× b, the vector product

of a and b, and we write c = (c1, c2, c3), show that

(a1i + a2j + a3k)(b1i + b2j + b3k) = −a · b+ c1i + c2j + c3k.

The use of vectors in physics began when (to cries of anguish from holders of the pure
quaternionic faith) Maxwell, Gibbs and Heaviside extracted the vector part a1i + a2j +
a3k from the quaternion a0 + a1i + a2j + a3k and observed that the vector part had an
associated inner product and vector product.7

7 Quaternions still have their particular uses. A friend of mine made a (small) fortune by applying them to lighting effects in
computer games.
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11

Spaces of linear maps

11.1 A look at L(U,V )

In the first part of this book we looked at n-dimensional vector spaces as generalisations of
two and three dimensional spaces. In this part we look at n-dimensional vector spaces with
an eye to generalisation to infinite dimensional spaces.

We looked mainly at linear maps of a vector space into itself (the so-called endomor-
phisms). For various reasons, some of which we consider in the next section, these are often
the most interesting, but it is worth looking at the more general case.

Let us start with the case when U and V are finite dimensional. We begin by generalising
Definition 6.1.1.

Definition 11.1.1 Let U and V be vector spaces over F with bases e1, e2, . . . , en and f1,
f2, . . . , fm. If α : U → V is linear, we say that α has matrix A = (aij )1≤j≤n

1≤i≤m with respect to
the given bases if

α(ej ) =
m∑

i=1

aij fi .

The next few exercises are essentially revision.

Exercise 11.1.2 Let U and V be vector spaces over F with bases e1, e2, . . . , en and f1, f2,
. . . , fm. Show that, if α, β : U → V are linear and have matrices A and B with respect to
the given bases, then α + β has matrix A+ B and, if λ ∈ F, λα has matrix λA.

Exercise 11.1.3 Let U , V and W be vector spaces over F with bases e1, e2, . . . , en, f1, f2,
. . . , fm and g1, g2, . . . , gp. If α : V → W and β : U → V are linear and have matrices A

and B with respect to the appropriate bases, show that αβ has matrix AB with respect to
the appropriate bases.

Exercise 11.1.4 (i) Let U , V and W be (not necessarily finite dimensional) vector spaces
over F and let α, β ∈ L(U,V ), γ ∈ L(W,V ). Show that

(α + β)γ = αγ + βγ.

259
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(ii) Use (i) to show that, if A and B are m× n matrices over F and C is an n× p matrix
over F, we have

(A+ B)C = AC + BC.

(iii) Show that (i) follows from (ii) if U , V and W are finite dimensional.
(iv) State the results corresponding to (i) and (ii) when we replace the equation in (i) by

γ (α + β) = γα + γβ.

(Be careful to make γ a linear map between correct vector spaces.)

We need a more general change of basis formula.

Exercise 11.1.5 Let U and V be finite dimensional vector spaces over F and suppose that
α ∈ L(U,V ) has matrix A with respect to bases e1, e2, . . . , en for U and f1, f2, . . . , fm for
V . If α has matrix B with respect to bases e′1, e′2, . . . , e′n for U and f′1, f′2, . . . , f ′m for V , then

B = P−1AQ,

where P is an m×m invertible matrix and Q is an n× n invertible matrix.
If we write P = (pij ) and Q = (qrs), then

f′j =
m∑

i=1

pij fi [1 ≤ j ≤ m]

and

e′s =
n∑

r=1

qrser [1 ≤ s ≤ n].

Lemma 11.1.6 Let U and V be finite dimensional vector spaces over F and suppose
that α ∈ L(U,V ). Then we can find bases e1, e2, . . . , en for U and f1, f2, . . . , fm for V

with respect to which α has matrix C = (cij ) such that cii = 1 for 1 ≤ i ≤ r and cij = 0
otherwise (for some 0 ≤ r ≤ min{n,m}).
Proof By Lemma 5.5.7, we can find bases e1, e2, . . . , en for U and f1, f2, . . . , fm for V

such that

α(ej ) =
{

fj for 1 ≤ j ≤ r

0 otherwise.

If we use these bases, then the matrix has the required form. �

The change of basis formula has the following corollary.

Lemma 11.1.7 If A is an m× n matrix we can find an m×m invertible matrix P and an
n× n invertible matrix Q such that

P−1AQ = C,
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where C = (cij ), such that cii = 1 for 1 ≤ i ≤ r and cij = 0 otherwise for some 0 ≤ r ≤
min(m, n).

Proof Left to the reader. �

A particularly interesting case occurs when we consider a linear map α : U → U , but
give U two different bases.

Lemma 11.1.8 (i) Let U be a finite dimensional vector space over F and suppose that
α ∈ L(U,U ). Then we can find bases e1, e2, . . . , en and f1, f2, . . . , fn for U with respect
to which α has matrix C = (cij ) with cii = 1 for 1 ≤ i ≤ r and cij = 0 otherwise for some
0 ≤ r ≤ n.

(ii) If A is an n× n matrix we can find n× n invertible matrices P and Q such that

P−1AQ = C

where C = (cij ) is such that cii = 1 for 1 ≤ i ≤ r and cij = 0 otherwise for some 0 ≤ r ≤
n.

Proof Immediate. �

The reader should compare this result with Theorem 1.3.2 and may like to look at
Exercise 3.6.8.

Exercise 11.1.9 The object of this exercise is to look at one of the main themes of this book
in a unified manner. The reader will need to recall the notions of equivalence relation and
equivalence class (see Exercise 6.8.34) and the notion of a subgroup (see Definition 5.3.15).
We work with matrices over F.

(i) Let G be a subgroup of GL(Fn), the group of n× n invertible matrices, and let X be
a non-empty collection of n×m matrices such that

P ∈ G, A ∈ X ⇒ PA ∈ X.

If we write A ∼1 B whenever A, B ∈ X and there exists a P ∈ G with B = PA, show that
∼1 is an equivalence relation on X.

(ii) Let G be a subgroup of GL(Fn), H a subgroup of GL(Fm) and let X be a non-empty
collection of n×m matrices such that

P ∈ G, Q ∈ H, A ∈ X ⇒ P−1AQ ∈ X.

If we write A ∼2 B whenever A, B ∈ X and there exist P ∈ G, Q ∈ H with B = P−1AQ,
show that ∼2 is an equivalence relation on X.

(iii) Suppose that n = m, X is the set of n× n matrices and H = G = GL(Fn). Show
that there are precisely n+ 1 equivalence classes for ∼2.

(iv) Let G be a subgroup of GL(Fn) and let X be a non-empty collection of n× n

matrices such that

P ∈ G, A ∈ X ⇒ P−1AP ∈ X.
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If we write A ∼3 B whenever A, B ∈ X and there exists P ∈ G with B = PAP−1, show
that ∼3 is an equivalence relation on X.

(v) Suppose F = R, X is the collection of real symmetric n× n matrices and G = O(Fn),
the group of orthogonal n× n matrices. Show that there are infinitely many equivalence
classes for∼3 and give a criterion in terms of characteristic equations for two members of
X to be equivalent.

(vi) Let G be a subgroup of GL(Rn) and let X be a non-empty collection of n× n

matrices such that

P ∈ G, A ∈ X ⇒ P T AP ∈ X.

If we write A ∼4 B whenever A, B ∈ X and there exists P ∈ G with B = P T AP , show
that ∼4 is an equivalence relation on X.

(vii) Suppose that X is the collection of real symmetric n× n matrices and G = GL(Rn).
Show that there are only finitely many equivalence classes for ∼4. (We shall identify them
precisely in Section 16.2.)

If we think along the lines of this exercise, the various ‘diagonalisation theorems’ and
‘Jordan normal form theorems’ (see, for example, our earlier Theorem 6.4.3 and the later
Section 12.4) in this book may be thought of as identifying typical elements of equivalence
classes for different equivalence relations.

Algebraists are very fond of quotienting. If the reader has met the notion of the quotient
of a group (or of a topological space or any similar object), she will find the rest of the
section rather easy. If she has not, then she may find the discussion rather strange.1 She
should take comfort from the fact that, although a few of the exercises will involve quotients
of vector spaces, I will not make use of the concept outside them.

Definition 11.1.10 Let V be a vector space over F with a subspace W . We write

[x] = {v ∈ V : x− v ∈ W }.
We denote the set of such [x] with x ∈ V by V/W .

Lemma 11.1.11 With the notation of Definition 11.1.10,

[x] = [y] ⇔ x− y ∈ W.

Proof The reader who is happy with the notion of equivalence class will be able to construct
her own proof. If not, we give the proof that

[x] = [y] ⇒ x− y ∈ W.

If [x] = [y], then, since 0 ∈ W , we have x ∈ [x] = [y] and so

y− x ∈ W.

1 I would not choose quotients of vector spaces as a first exposure to quotients.
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Thus, using the fact that W is a subspace,

z ∈ [y] ⇒ y− z ∈ W ⇒ x− z = (y− z)− (y− x) ∈ W ⇒ z ∈ [x].

Thus [y] ⊆ [x]. Similarly [x] ⊆ [y] and so [x] = [y].
The proof that

x− y ∈ W ⇒ [x] = [y]

is left as a recommended exercise for the reader. �

Theorem 11.1.12 Let V be a vector space over F with a subspace W . Then V/W can be
made into a vector space by adopting the definitions

[x]+ [y] = [x+ y] and λ[x] = [λx].

Proof The key point to check is that the putative definitions do indeed make sense. Observe
that

[x′] = [x], [y′] = [x] ⇒ x′ − x, y′ − y ∈ W

⇒ (x′ + y′)− (x+ y) = (x′ − x)+ (y′ − y) ∈ W

⇒ [x′ + y′] = [x+ y],

so that our definition of addition is unambiguous. The proof that our definition of scalar
multiplication is unambiguous is left as a recommended exercise for the reader.

It is easy to check that the axioms for a vector space hold. The following verifications
are typical:

[x]+ [0] = [x+ 0] = [x]

(λ+ μ)[x] = [(λ+ μ)x] = [λx+ μx] = λ[x]+ μ[x].

We leave it to the reader to check as many further axioms as she pleases. �

If the reader has met quotients elsewhere in algebra, she will expect an ‘isomorphism
theorem’ and, indeed, there is such a theorem following the standard pattern. To bring out
the analogy we recall the following synonyms.2 If α ∈ L(U,V ), we write

im α = α(U ) = {αu : u ∈ U},
ker α = α−1(0) = {u ∈ U : αu = 0}.

Generalising an earlier definition, we say that im α is the image or image space of α and
that ker α is the kernel or null-space of α.

We also adopt the standard practice of writing

[x] = x+W and [0] = 0+W = W.

2 If the reader objects to my practice, here and elsewhere, of using more than one name for the same thing, she should reflect that
all the names I use are standard and she will need to recognise them when they are used by other authors.
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This is a very suggestive notation, but the reader is warned that

0(x+W ) = 0[x] = [0x] = [0] = W.

Should she become confused by the new notation, she should revert to the old.

Theorem 11.1.13 [Vector space isomorphism theorem] Suppose that U and V are vector
spaces over F and α : U → V is linear. Then U/ ker α is isomorphic to im α.

Proof We know that ker α is a subspace of U . Further,

u1 + ker α = u2 + ker α ⇒ u1 − u2 ∈ ker α ⇒ α(u1 − u2) = 0 ⇒ α(u1) = α(u2).

Thus we may define α̃ : U/ ker α → im α unambiguously by

α̃(u+ ker α) = α(u).

We observe that

α̃
(
λ1(u1 + ker α)+ λ2(u2 + ker α)

) = α̃
(
(λ1u1 + λ2u2)+ ker α

)
= α(λ1u1 + λ2u2) = λ1α(u1)+ λ2α(u2)

= λ1α̃(u1 + ker α)+ λ2α̃(u2 + ker α)

and so α̃ is linear.
Since our spaces may be infinite dimensional, we must verify both that α̃ is surjective

and that it is injective. Both verifications are easy. Since

α(u) = α̃(u+ ker α),

it follows that α̃ is surjective. Since α̃ is linear and

α̃(u+ ker α) = 0 ⇒ αu = 0 ⇒ u ∈ ker α ⇒ u+ ker α = 0+ ker α,

it follows that α̃ is injective. Thus α̃ is an isomorphism and we are done. �

The dimension of a quotient space behaves as we would wish.

Lemma 11.1.14 If V is a finite dimensional space with a subspace W , then

dim V = dim W + dim V/W.

Proof Observe first that, if u1, u2, . . . , um span V , then u1 +W , u2 +W , . . . , um +W

span V/W . Thus V/W is finite dimensional.
Let e1, e2, . . . , ek form a basis for W and ek+1 +W , ek+2 +W , . . . , en +W form a

basis for V/W . We claim that e1, e2, . . . , en form a basis for V .
We start by showing that we have a spanning set. If v ∈ V , then, since ek+1 +W ,

ek+2 +W , . . . , en +W span V/W , we can find λk+1, λk+2, . . . , λn ∈ F such that

v+W =
n∑

j=k+1

λj (ej +W ) =
⎛
⎝ n∑

j=k+1

λj ej

⎞
⎠+W.
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We now have

v−
n∑

j=k+1

λj ej ∈ W,

so we can find λ1, λ2, . . . , λk ∈ F such that

v−
n∑

j=k+1

λj ej =
k∑

j=1

λj ej

and so

v =
n∑

j=1

λj ej .

Thus we have a spanning set.
Next we want to show linear independence. To this end, suppose that λ1, λ2, . . . , λn ∈ F

and
n∑

j=1

λj ej = 0.

Since
∑k

j=1 λj ej ∈ W ,

n∑
j=k+1

λj (ej +W ) =
⎛
⎝ n∑

j=1

λj ej

⎞
⎠+W = 0+W,

so, since ek+1 +W , ek+2 +W , . . . , en +W , are linearly independent, λj = 0 for k + 1 ≤
j ≤ n. We now have

k∑
j=1

λj ej = 0

and so λj = 0 for 1 ≤ j ≤ k. Thus λj = 0 for all 1 ≤ j ≤ n and we are done.
We now know that

dim W + dim V/W = k + (n− k) = n = dim V

as required. �

Exercise 11.1.15 Use Theorem 11.1.13 and Lemma 11.1.14 to obtain another proof of the
rank-nullity theorem (Theorem 5.5.4).

The reader should not be surprised by the many different contexts in which we meet
the rank-nullity theorem. If you walk round the countryside, you will see many views of
the highest hills. Our original proof and Exercise 11.1.15 show two different aspects of the
same theorem.
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Exercise 11.1.16 Suppose that we have a sequence of finite dimensional vector spaces Cj

with Cn+1 = C0 = {0} and linear maps αj : Cj → Cj−1 as shown in the next line

Cn+1
αn+1→ Cn

αn→ Cn−1
αn−1→ Cn−2

αn−2→ . . .
α2→ C1

α1→ C0

such that αj−1αj = 0 [n ≥ j ≥ 2]. Let Zj = α−1
j (0), Bj−1 = αj (Cj ), and take Hj =

Bj/Zj [n ≥ j ≥ 1] . Show that

n∑
j=1

(−1)j dim Cj = −
n∑

j=1

(−1)j dim Hj .

11.2 A look at L(U,U )

In the next few chapters we study the special spaces L(U,U ) and L(U, F). (Recall that
elements of L(U,U ) are often called endomorphisms. Invertible endomorphisms are called
automorphisms. Although we use the notation L(U,U ), many authors use the notation
E(U ) for the vector space of endomorphisms.) The reader may ask why we do not simply
study the more general space L(U,V ) where U and V are any vector spaces and then
specialise by setting V = U or V = F.

The special treatment of L(U,U ) is easy to justify. If α, β ∈ L(U,U ), then αβ ∈
L(U,U ). We get an algebraic structure which is much more intricate than that of L(U,V )
in general. The next exercise is included for the reader’s amusement.

Exercise 11.2.1 Explain why P , the collection of real polynomials, can be made into a
vector space over R by using the standard pointwise addition and scalar multiplication.

(i) Let h ∈ R. Check that the following maps belong to L(P,P):

D given by (DP )(t) = P ′(t),

M given by (MP )(t) = tP (t),

Eh given by EhP = P (t + h).

(ii) Identify the map DM −MD.
(iii) Suppose that α0, α1, α2, . . . are elements of L(P,P) with the property that, for each

P ∈ P , we can find an N (P ) such that αj (P ) = 0 for all j > N (P ). Show that, if we set

∞∑
j=0

αjP =
N(P )∑
j=0

αjP,

then
∑∞

j=0 αj is a well defined element of L(P,P).
(iv) Show that the sequence αj = Dj has the property stated in the first sentence

of (iii). Does the sequence αj = Mj ? Does the sequence αj = Ej ? Does the sequence
αj = Eh − ι? Give reasons.
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(v) Suppose that α ∈ L(P,P) has the property that, for each P ∈ P , we can find an
N (P ) such that αj (P ) = 0 for all j > N(P ). Show that we can define

exp α =
∞∑

j=0

1

j !
αj

and

log(ι− α) =
∞∑

j=1

1

j
αj .

Explain why we can define log(exp α). By considering coefficients in standard power series,
or otherwise, show that log(exp α) = α.

(vi) Show that

exp hD = Eh.

Deduce from (v) that, writing !h = Eh − ι, we have

hD =
∞∑

j=1

(−1)j+1

j
!j

h.

(vii) Let λ ∈ R. Show that

(ι− λD)
∞∑

j=0

λrDrP = P

for each P ∈ P and deduce that

(ι− λD)
∞∑

j=0

λrDr = ι =
∞∑

j=0

λrDr (ι− λD).

Solve the equation

(ι− λD)P = Q

with P and Q polynomials.
Find a solution to the ordinary differential equation

f ′(x)− f (x) = x2.

We are taught that the solution of such an equation must have an arbitrary constant. The
method given here does not produce one. What has happened to it?3

[The ideas set out in this exercise go back to Boole in his books A Treatise on Differential
Equations [5] and A Treatise on the Calculus of Finite Differences [6].]

3 Of course, a really clear thinking mathematician would not be a puzzled for an instant. If you are not puzzled for an instant, try
to imagine why someone else might be puzzled and how you would explain things to them.
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As we remarked earlier, mathematicians are very interested in iteration and, if α ∈
L(U,U ), we can iterate the action of α on U (in other words, apply powers of α). The
following result is interesting in itself and provides the opportunity to revisit the rank-nullity
theorem (Theorem 5.5.4). The reader should make sure that she can state and prove the
rank-nullity theorem before proceeding.

Theorem 11.2.2 Suppose that U is a finite vector space of dimension n over F. Then there
exists an m ≤ n such that

rank αk = rank αm

for k ≥ m and rank αk > rank αm for 0 ≤ k < m. If m > 0 we have

n > rank α > rank α2 > . . . > rank αm.

Further

n− rank α ≥ rank α − rank α2 ≥ . . . ≥ rank αm−1 − rank αm.

Proof Automatically U ⊇ αU , so applying αj to both sides of the inclusion we get αjU ⊇
αj+1U for all j ≥ 0. (This result will be used repeatedly in our proof.) By the observation
in our first sentence,

rank αj = dim αjU ≥ dim αj+1U = rank αj+1

and

n ≥ rank α ≥ rank α2 ≥ . . . .

A strictly decreasing sequence of positive integers whose first element is n cannot contain
more than n+ 1 terms, so there must exist a 0 ≤ k ≤ n with rank αk = rank αk+1. Let m

be the least such k.
Since αmU ⊇ αm+1U and

dim αmU = rank αm = rank αm+1 = dim αm+1U,

we have αmU = αm+1U . Applying αj to both sides of the equality, we get αm+jU =
αm+j+1U for all j ≥ 0. Thus rank αk = rank αm for all k ≥ m.

Applying the rank-nullity theorem to the restriction α|αj U : αjU → αjU of α to αjU ,
we get

rank αj = dim αjU = rank α|αj U + nullity α|αj U

= dim αjU + dim Nj+1 = rank αj+1 + dim Nj+1,

where

Nj+1 = {u ∈ αjU : αu = 0} = αjU ∩ α−1(0).

Thus

rank αj − rank αj+1 = dim Nj+1.
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Since αjU ⊇ αj+1U , it follows that Nj ⊇ Nj+1 and dim Nj ≥ dim Nj+1 for all j . Thus

rank αj − rank αj+1 = dim Nj+1 ≥ dim Nj+2 = rank αj+1 − rank αj+2.

�
We give a further development of these ideas in Exercise 12.1.7.

Exercise 11.2.3 Suppose that U is a vector space over F of dimension n. Use Theo-
rem 11.2.2 to show that, if α is a nilpotent endomorphism (that is to say, αm = 0 for some
m), then αn = 0.

Prove that, if α has rank r and αm = 0, then r ≤ n(1−m−1).

Exercise 11.2.4 Show that, given any sequence of integers

n = s0 > s1 > s2 > . . . > sm ≥ 0

satisfying the condition

s0 − s1 ≥ s1 − s2 ≥ s2 − s3 ≥ . . . ≥ sm−1 − sm > 0

and a vector space U over F of dimension n, we can find a linear map α : U → U such that

rank αj =
{

sj if 0 ≤ j ≤ m,

sm otherwise.

[We look at the matter in a slightly different way in Exercise 12.5.2.]

Exercise 11.2.5 Suppose that V is a vector space over F of even dimension 2n. If α ∈
L(U,U ) has rank 2n− 2 and αn = 0, what can you say about the rank of αk for 2 ≤ k ≤
n− 1? Give reasons for your answer.

11.3 Duals (almost) without using bases

For the rest of this chapter we look at the dual space of U , that is to say, at U ′ = L(U, F).
The elements of U ′ are called functionals or linear functionals. So long as we only look
at finite dimensional spaces, it is not easy to justify paying particular attention to linear
functionals, but many important mathematical objects are linear functionals for infinite
dimensional spaces.

Exercise 11.3.1 Let C∞(R) be the space of infinitely differentiable functions f : R → R.
Show that C∞(R) is a vector space over R under pointwise addition and scalar
multiplication.

Show that the following definitions give linear functionals for C∞(R). Here a ∈ R.
(i) δaf = f (a).
(ii) δ′af = −f ′(a). (The minus sign is introduced for consistency with more advanced

work on the topic of ‘distributions’.)
(iii) Jf = ∫ 1

0 f (x) dx.



270 Spaces of linear maps

Because of the connection with infinite dimensional spaces, we try to develop as much
of the theory of dual spaces as possible without using bases, but we hit a snag right at the
beginning of the topic.

Definition 11.3.2 (This is a non-standard definition and is not used by other authors.) We
shall say that a vector space U over F is separated by its dual if, given u ∈ U with u �= 0,
we can find a T ∈ U ′ such that T u �= 0.

Given any particular vector space, it is always easy to show that it is separated by its
dual.4 However, when we try to prove that every vector space is separated by its dual, we
discover (and the reader is welcome to try for herself) that the axioms for a general vector
space do not provide enough information to enable us to construct an appropriate T using
the rules of reasoning appropriate to an elementary course.5

If we have a basis, everything becomes easy.

Lemma 11.3.3 Every finite dimensional space is separated by its dual.

Proof Suppose that u ∈ U and u �= 0. Since U is finite dimensional and u is non-zero, we
can find a basis e1 = u, e2, . . . , en for U . If we set

T

⎛
⎝ n∑

j=1

xj ej

⎞
⎠ = x1 [xj ∈ F],

then T is a well defined function from U to F. Further, if xj , yj , λ, μ ∈ F, then

T

⎛
⎝λ

⎛
⎝ n∑

j=1

xj ej

⎞
⎠+ μ

⎛
⎝ n∑

j=1

xj ej

⎞
⎠
⎞
⎠ = T

⎛
⎝ n∑

j=1

(λxj + μyj )ej

⎞
⎠

= λx1 + μy1

= λT

⎛
⎝ n∑

j=1

xj ej

⎞
⎠+ μT

⎛
⎝ n∑

j=1

yj ej

⎞
⎠ ,

so T is linear and T ∈ U ′. Since T u = T e1 = 1 �= 0, we are done. �
From now on until the end of the section, we will see what can be done without bases,

assuming that our spaces are separated by their duals. We shall write a generic element of
U as u and a generic element of U ′ as u′.

We begin by proving a result linking a vector space with the dual of its dual.

Lemma 11.3.4 Let U be a vector space over F separated by its dual. Then the map
� : U → U ′′ given by

(�u)u′ = u′(u)

4 This statement does leave open exactly what I mean by ‘particular’.
5 More specifically, we require some form of the so-called axiom of choice.
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for all u ∈ U and u′ ∈ U ′ is an injective linear map.

Remark. Suppose that we wish to find a map � : U → U ′′. Since a function is defined by
its effect, we need to know the value of �u for all u ∈ U . Now �u ∈ U ′′, so �u is itself
a function on U ′. Since a function is defined by its effect, we need to know the value of
(�u)u′ for all u′ ∈ U ′. We observe that (�u)u′ depends on u and u′. The simplest way of
combining u and u′ is u′(u), so we try the definition (�u)u′ = u′(u). Either it will produce
something interesting, or it will not, and the simplest way forward is just to see what
happens.

Proof of Lemma 11.3.4 We first need to show that �u : U ′ → F is linear. To this end,
observe that, if u′1, u′2 ∈ U ′ and λ1, λ2 ∈ F, then

�u(λ1u′1 + λ2u′2) = (λ1u′1 + λ2u′2)u (by definition)

= λ1u′1(u)+ λ2u′2(u) (by definition)

= λ1�u(u′1)+ λ2�u(u′2) (by definition)

so �u ∈ U ′′.
Now we need to show that � : U → U ′′ is linear. In other words, we need to show that,

whenever u1, u2 ∈ U ′ and λ1, λ2 ∈ F,

�(λ1u1 + λ2u2) = λ1�u1 + λ2�u2.

The two sides of the equation lie in U ′′ and so are functions. In order to show that two
functions are equal, we need to show that they have the same effect. Thus we need to show
that

(
�(λ1u1 + λ2u2)

)
u′ = (λ1�u1 + λ2�u2)u′

for all u′ ∈ U ′. Since

(
�(λ1u1 + λ2u2)

)
u′ = u′(λ1u1 + λ2u2) (by definition)

= λ1u′(u1)+ λ2u′(u2) (by linearity)

= λ1�(u1)u′ + λ2�(u2)u′ (by definition)

= (λ1�u1 + λ2�u2)u′ (by definition)

the required result is indeed true and � is linear.
Finally, we need to show that � is injective. Since � is linear, it suffices (as we observed

in Exercise 5.3.11) to show that

�(u) = 0 ⇒ u = 0.
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In order to prove the implication, we observe that the two sides of the initial equation lie in
U ′′ and two functions are equal if they have the same effect. Thus

�(u) = 0 ⇒ �(u)u′ = 0u′ for all u′ ∈ U ′

⇒ u′(u) = 0 for all u′ ∈ U ′

⇒ u = 0

as required. In order to prove the last implication we needed the fact that U ′ separates U .
This is the only point at which that hypothesis was used. �

In Euclid’s development of geometry there occurs a theorem6 that generations of school-
masters called the ‘Pons Asinorum’ (Bridge of Asses) partly because it is illustrated by a
diagram that looks like a bridge, but mainly because the weaker students tended to get stuck
there. Lemma 11.3.4 is a Pons Asinorum for budding mathematicians. It deals, not simply
with functions, but with functions of functions, and represents a step up in abstraction. The
author can only suggest that the reader writes out the argument repeatedly until she sees
that it is merely a collection of trivial verifications and that the nature of the verifications is
dictated by the nature of the result to be proved.

Note that we have no reason to suppose, in general, that the map � is surjective.
Our next lemma is another result of the same ‘function of a function’ nature as

Lemma 11.3.4. We shall refer to such proofs as ‘paper tigers’, since they are fearsome
in appearance, but easily folded away by any student prepared to face them with calm
resolve.

Lemma 11.3.5 Let U and V be vector spaces over F.
(i) If α ∈ L(U,V ), we can define a map α′ ∈ L(V ′, U ′) by the condition

α′(v′)(u) = v′(αu).

(ii) If we now define � : L(U,V ) → L(V ′, U ′) by �(α) = α′, then � is linear.
(iii) If, in addition, V is separated by V ′, then � is injective.

We call α′ the dual map of α.
Remark. Suppose that we wish to find a map α′ : V ′ → U ′ corresponding to α ∈ L(U,V ).
Since a function is defined by its effect, we need to know the value of α′v′ for all v′ ∈ V ′.
Now α′v′ ∈ U ′, so α′v′ is itself a function on U . Since a function is defined by its effect,
we need to know the value of α′v′(u) for all u ∈ U . We observe that α′v′(u) depends on
α, v′ and u. The simplest way of combining these elements is as v′α(u), so we try the
definition α′(v′)(u) = v′(αu). Either it will produce something interesting, or it will not,
and the simplest way forward is just to see what happens.

The reader may ask why we do not try to produce an α̃ : U ′ → V ′ in the same way.
The answer is that she is welcome (indeed, strongly encouraged) to try but, although
many people must have tried, no one has yet (to my knowledge) come up with anything
satisfactory.

6 The base angles of an isosceles triangle are equal.
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Proof of Lemma 11.3.5 By inspection, α′(v′)(u) is well defined. We must show that α′(v′) :
U → F is linear. To do this, observe that, if u1, u2 ∈ U ′ and λ1, λ2 ∈ F, then

α′(v′)(λ1u1 + λ2u2) = v′
(
α(λ1u1 + λ2u2)

)
(by definition)

= v′(λ1αu1 + λ2αu2) (by linearity)

= λ1v′(αu1)+ λ2v′(αu2) (by linearity)

= λ1α
′(v′)u1 + λ2α

′(v′)u2 (by definition).

We now know that α′ maps V ′ to U ′. We want to show that α′ is linear. To this end,
observe that if v′1, v′2 ∈ V ′ and λ1, λ2 ∈ F, then

α′(λ1v′1 + λ2v′2)u = (λ1v′1 + λ2v′2)α(u) (by definition)

= λ1v′1(αu)+ λ2v′2(αu) (by definition)

= λ1α
′(v′1)u+ λ2α

′(v′2)u (by definition)

= (λ1α
′(v′1)+ λ2α

′(v′2)
)
u (by definition)

for all u ∈ U . By the definition of equality for functions,

α′(λ1v′1 + λ2v′2) = λ1α
′(v′1)+ λ2α

′(v′2)

and α′ is linear as required.
(ii) We are now dealing with a function of a function of a function. In order to establish

that

�(λ1α1 + λ2α2) = λ1�(α1)+ λ2�(α2)

when α1, α2 ∈ L(U,V ) and λ1, λ2 ∈ F, we must establish that

�(λ1α1 + λ2α2)(v′) = (λ1�(α1)+ λ2�(α2)
)
(v′)

for all v′ ∈ V and, in order to establish this, we must show that(
�(λ1α1 + λ2α2)(v′)

)
u = ((λ1�(α1)+ λ2�(α2)

)
v′
)
u

for all u ∈ U .
As usual, this just a question of following things through. Observe that(

�(λ1α1 + λ2α2)(v′)
)
(u) = ((λ1α1 + λ2α2)′(v′)

)
(u) (by definition)

= v′
(
(λ1α1 + λ2α2)u

)
(by definition)

= v′(λ1α1u+ λ2α2u) (by linearity)

= λ1v′(α1u)+ λ2v′(α2u) (by linearity)

= λ1(α′1v′)u+ λ2(α′2v′)u (by definition)

= (λ1(α′1v′)+ λ2(α′2v′)
)
u (by definition)

= ((λ1α
′
1 + λ2α

′
2)(v′)
)
u (by definition)

= ((λ1�(α1)+ λ2�(α2)
)
(v′)
)
u (by definition)

as required.
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(iii) Finally, if V ′ separates V , then

�(α) = 0 ⇒ α′ = 0 ⇒ α′(v′) = 0 for all v′ ∈ V ′

⇒ α′(v′)u = 0 for all v′ ∈ V ′ and all u ∈ U

⇒ v′(αu) = 0 for all v′ ∈ V ′ and all u ∈ U

⇒ αu = 0 for all u ∈ U ⇒ α = 0.

Thus � is injective �

We call α′ the dual map of α.

Exercise 11.3.6 Write down the reasons for each implication in the proof of part (iii) of
Lemma 11.3.5.

Here are a further couple of paper tigers.

Exercise 11.3.7 Suppose that U , V and W are vector spaces over F.
(i) If α ∈ L(U,V ) and β ∈ L(V,W ), show that (βα)′ = α′β ′.
(ii) Consider the identity map ιU : U → U . Show that ι′U : U ′ → U is the identity map

ιU ′ : U ′ → U ′. (We shall follow standard practice by simply writing ι′ = ι.)
(iii) If α ∈ L(U,V ) is invertible, show that α′ is invertible and (α′)−1 = (α−1)′.

Exercise 11.3.8 Suppose that V ′′ is separated by V ′. Show that, with the notation of the
two previous lemmas,

α′′(�u) = αu

for all u ∈ U and α ∈ L(U,V ).

The remainder of this section is not meant to be taken very seriously. We show that, if
we deal with infinite dimensional spaces, the dual U ′ of a space may be ‘very much bigger’
than the space U .

Exercise 11.3.9 Consider the space s of all sequences

a = (a1, a2, . . .)

with aj ∈ R. (In more sophisticated language, s = NR.) We know that, if we use pointwise
addition and scalar multiplication, so that

a+ b = (a1 + b1, a2 + b2, . . .) and λa = (λa1, λa2, . . .),

then s is a vector space.
(i) Show that, if c00 is the set of a with only finitely many aj non-zero, then c00 is a

subspace of s.
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(ii) Let ej be the sequence whose j th term is 1 and whose other terms are all 0. If T ∈ c00

and T ej = aj , show that

T x =
∞∑

j=1

ajxj

for all x ∈ c00. (Note that, contrary to appearances, we are only looking at a sum of a finite
set of terms.)

(iii) If a ∈ s, show that the rule

Tax =
∞∑

j=1

ajxj

gives a well defined map Ta : c00 → R. Show that Ta ∈ c′00. Deduce that c′00 separates c00.
(iv) Show that, using the notation of (iii), if a, b ∈ s and λ ∈ R, then

Ta+b = Ta + Tb, Tλa = λTa and Ta = 0 ⇔ a = 0.

Conclude that c′00 is isomorphic to s.

The space s = c′00 certainly looks much bigger than c00. To show that this is actually
the case we need ideas from the study of countability and, in particular, Cantor’s diagonal
argument. (The reader who has not met these topics should skip the next exercise.)

Exercise 11.3.10 (i) Show, if you have not already done so, that the vectors ej defined
in Exercise 11.3.9 (ii) span c00. In other words, show that any x ∈ c00 can be written as a
finite sum

x =
N∑

j=1

λj ej with N ≥ 0 and λj ∈ R.

[Thus c00 has a countable spanning set. In the rest of the question we show that s and so
c′00 does not have a countable spanning set.]

(ii) Suppose that f1, f2, . . . , fn ∈ s. If m ≥ 1, show that we can find bm, bm+1, bm+2, . . . ,
bm+n+1 such that if a ∈ s satisfies the condition ar = br for m ≤ r ≤ m+ n+ 1, then the
equation

n∑
j=1

λj fj = a

has no solution with λj ∈ R [1 ≤ j ≤ n].
(iii) Suppose that fj ∈ s [j ≥ 1]. Show that there exists an a ∈ s such that the equation

n∑
j=1

λj fj = a
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has no solution with λj ∈ R [1 ≤ j ≤ n] for any n ≥ 1. Deduce that c′00 is not isomorphic
to c00.

Exercises 11.3.9 and 11.3.10 suggest that the duals of infinite dimensional vector spaces
may be very large indeed. Most studies of infinite dimensional vector spaces assume the
existence of a distance given by a norm and deal with functionals which are continuous
with respect to that norm.

11.4 Duals using bases

If we restrict U to be finite dimensional, life becomes a lot simpler.

Lemma 11.4.1 (i) If U is a vector space over F with basis e1, e2, . . . , en, then we can find
unique ê1, ê2, . . . , ên ∈ U ′ satisfying the equations

êi(ej ) = δij for 1 ≤ i, j ≤ n.

(ii) The vectors ê1, ê2, . . . , ên, defined in (i) form a basis for U ′.
(iii) The dual of a finite dimensional vector space is finite dimensional with the same

dimension as the initial space.

We call ê1, ê2, . . . , ên the dual basis corresponding to e1, e2, . . . , en.

Proof (i) Left to the reader. (Look at Lemma 11.3.3 if necessary.)
(ii) To show that the êj are linearly independent, observe that, if

n∑
j=1

λj êj = 0,

then

0 =
⎛
⎝ n∑

j=1

λj êj

⎞
⎠ ek =

n∑
j=1

λj êj (ek) =
n∑

j=1

λjδjk = λk

for each 1 ≤ k ≤ n.
To show that the êj span, suppose that u′ ∈ U ′. Then⎛

⎝u′ −
n∑

j=1

u′(ej )êj

⎞
⎠ ek = u′(ek)−

n∑
j=1

u′(ej )δjk

= u′(ek)− u′(ek) = 0

so, using linearity, ⎛
⎝u′ −

n∑
j=1

(
u′(ej )
)
êj

⎞
⎠ n∑

k=1

xkek = 0
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for all xk ∈ F. Thus ⎛
⎝u′ −

n∑
j=1

(
u′(ej )
)
êj

⎞
⎠ x = 0

for all x ∈ U and so

u′ =
n∑

j=1

(
u′(ej )
)
êj .

We have shown that the êj span and thus we have a basis.
(iii) Follows at once from (ii). �

Exercise 11.4.2 Consider the vector space Pn of real polynomials P

P (t) =
n∑

j=0

aj t
j

(where t ∈ [a, b]) of degree at most n. If x0, x1, . . ., xn are distinct points of [a, b] show
that, if we set

ej (t) =
∏
k �=j

t − xk

xj − xk

,

then e0, e1, . . . , en form a basis for Pn. Evaluate êjP where P ∈ Pn.

We can now strengthen Lemma 11.3.4 in the finite dimensional case.

Theorem 11.4.3 Let U be a finite dimensional vector space over F. Then the map � :
U → U ′′ given by

(�u)u′ = u′(u)

for all u ∈ U and u′ ∈ U ′ is an isomorphism.

Proof Lemmas 11.3.4 and 11.3.3 tell us that � is an injective linear map. Lemma 11.4.1
tells us that

dim U = dim U ′ = dim U ′′

and we know (for example, by the rank-nullity theorem) that an injective linear map between
spaces of the same dimension is surjective, so bijective and so an isomorphism. �

The reader may mutter under her breath that we have not proved anything special, since
all vector spaces of the same dimension are isomorphic. However, the isomorphism given
by � in Theorem 11.4.3 is a natural isomorphism in the sense that we do not have to
make any arbitrary choices to specify it. The isomorphism of two general vector spaces of
dimension n depends on choosing a basis and different choices of bases produce different
isomorphisms.
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Because of the natural isomorphism we usually identify U ′′ with U by writing u = �(u).
With this convention,

u(u′) = u′(u)

for all u ∈ U , u′ ∈ U ′. We then have

U = U ′′ = U ′′′′ = . . . and U ′ = U ′′′ = . . . .

Exercise 11.4.4 Let U be a vector space over F with basis e1, e2, . . . , en. If we identify
U ′′ with U in the standard manner, find the dual basis of the dual basis, that is to say, find
the vectors identified with ˆ̂e1, ˆ̂e2, . . . , ˆ̂en.

Exercise 11.4.5 Consider a vector space U over F with basis e1 and e2. Let ê1, ê2 be the
dual basis of U ′.

In each of the following cases, you are given a basis f1 and f2 for U and asked to find
the corresponding dual basis f̂1, f̂2 in terms of ê1, ê2. You are then asked to find the matrix
Q with respect to the bases e1, e2 of U and ê1, ê2 of U ′ for the linear map α : U → U ′ with
γ ej = f̂j . (If you skip at once to (iv), look back briefly at what your general formula gives
in the particular cases.)

(i) f1 = e2, f2 = e1.
(ii) f1 = 2e1, f2 = e2.
(iii) f1 = e1 + e2, f2 = e2.
(iv) f1 = ae1 + be2, f2 = ce1 + de2 with ad − bc �= 0.

Exercise 11.4.6 [Change of basis and contravariance] Consider a vector space U over
F with two bases e1, e2, . . . , en and f1, f2, . . . , fn. If L = (lij ) and K = (krs) are the n× n

matrices defined by

fj =
n∑

i=1

lij ei ,

f̂s =
n∑

r=1

krs êr ,

show that K = (LT )−1. (The reappearance of the formula from Lemma 10.4.2 is no coin-
cidence.)

Lemma 11.3.5 strengthens in the expected way when U and V are finite dimensional.

Theorem 11.4.7 Let U and V be finite dimensional vector spaces over F.
(i) If α ∈ L(U,V ), then we can define a map α′ ∈ L(V ′, U ′) by the condition

α′(v′)(u) = v′(αu).

(ii) If we now define � : L(U,V ) → L(V ′, U ′) by �(α) = α′, then � is an isomorphism.
(iii) If we identify U ′′ and U and V ′′ and V in the standard manner, then α′′ = α for all

α ∈ L(U,V ).



11.4 Duals using bases 279

Proof (i) This is Lemma 11.3.5 (i).
(ii) Lemma 11.3.5 (ii) tells us that � is linear and injective. But

dimL(U,V ) = dim U × dim V = dim U ′ × dim V ′ = dimL(V ′, U ′),

so � is an isomorphism.
(iii) We have

(α′′u)v′ = u(α′v′) = (α′v′)u = v′αu = (αu)v′

for all v′ ∈ V and u ∈ U . Thus

α′′u = αu

for all u ∈ U and so α′′ = α. (Compare Exercise 11.3.8.) �

If we use bases, we can link the map α �→ α′ with a familiar matrix operation.

Lemma 11.4.8 If U and V are finite dimensional vector spaces over F and α ∈ L(U,V )
has matrix A with respect to given bases of U and V , then α′ has matrix AT with respect
to the dual bases.

Proof Let e1, e2, . . . , en be a basis for U and f1, f2, . . . , fm a basis for V . Let the
corresponding dual bases be ê1, ê2, . . . , ên and f̂1, f̂2, . . . , f̂m. If α has matrix (aij ) with
respect to the given bases for U and V and α′ has matrix (crs) with respect to the dual
bases, then, by definition,

crs =
n∑

k=1

cksδrk =
n∑

k=1

cks êker

=
(

n∑
k=1

cks êk

)
er = α′(f̂s)er

= f̂s(αer ) = f̂s

(
m∑

l=1

alr fl

)

=
m∑

l=1

alrδsl = asr

for all 1 ≤ r ≤ n, 1 ≤ s ≤ m. �

Exercise 11.4.9 Use results on the map α �→ α′ and Exercise 11.3.7 (ii) to recover the
familiar results

(A+ B)T = AT + BT , (λA)T = λAT , AT T = A, IT = I

for appropriate matrices.
Use Exercise 11.3.7 to prove that (AB)T = BT AT for appropriate matrices. Show,

similarly, that, if A is an n× n invertible matrix then AT is invertible and (AT )−1 = (A−1)T .
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The reader may ask why we do not prove the result of Exercise 11.3.7 (at least for
finite dimensional spaces) by using direct calculation to obtain Exercise 11.4.9 and then
obtaining the result on maps from the result on matrices. An algebraist would reply that
this would tell us that (i) was true but not why it was true.

However, we shall not be overzealous in our pursuit of algebraic purity.

Exercise 11.4.10 Suppose that U is a finite dimensional vector space over F. If α ∈
L(U,U ), use the matrix representation to show that det α = det α′.

Hence show that det(t ι− α) = det(t ι− α′) and deduce that α and α′ have the same
eigenvalues. (See also Exercise 11.4.19.)

Use the result det(t ι− α) = det(t ι− α′) to show that Tr α = Tr α′. Deduce the same
result directly from the matrix representation of α.

We now introduce the notion of an annihilator.

Definition 11.4.11 If W is a subspace of a vector space U over F, we define the annihilator
of W 0 of W by taking

W 0 = {u′ ∈ U ′ : u′w = 0 for all w ∈ W }.

Exercise 11.4.12 Show that, with the notation of Definition 11.4.11, W 0 is a subspace of
U ′.

Lemma 11.4.13 If W is a subspace of a finite dimensional vector space U over F, then

dim U = dim W + dim W 0.

Proof Since W is a subspace of a finite dimensional space, it has a basis e1, e2, . . . , em,
say. Extend this to a basis e1, e2, . . . , en of U and consider the dual basis ê1, ê2, . . . , ên.

We have

n∑
j=1

yj êj ∈ W 0 ⇒
⎛
⎝ n∑

j=1

yj êj

⎞
⎠w = 0 for all w ∈ W

⇒
⎛
⎝ n∑

j=1

yj êj

⎞
⎠ ek = 0 for all 1 ≤ k ≤ m

⇒ yk = 0 for all 1 ≤ k ≤ m.

On the other hand, if w ∈ W , then we have w =∑m
j=1 xj ej for some xj ∈ F so (if yr ∈ F)

(
n∑

r=m+1

yr êr

)⎛⎝ m∑
j=1

xj ej

⎞
⎠ = n∑

r=m+1

m∑
j=1

yrxj δrj =
n∑

r=m+1

m∑
j=1

0 = 0.
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Thus

W 0 =
{

n∑
r=m+1

yr êr : yr ∈ F

}

and

dim W + dim W 0 = m+ (n−m) = n = dim U

as stated. �

We have a nice corollary.

Lemma 11.4.14 Let W be a subspace of a finite dimensional vector space U over F. If
we identify U ′′ and U in the standard manner, then W 00 = W .

Proof Observe that, if w ∈ W , then

w(u′) = u′(w) = 0

for all u′ ∈ W 0 and so w ∈ W 00. Thus

W 00 ⊇ W.

However,

dim W 00 = dim U ′ − dim W 0 = dim U − dim W 0 = dim W

so W 00 = W . �

Exercise 11.4.15 (An alternative proof of Lemma 11.4.14.) By using the bases ej and êk

of the proof of Lemma 11.4.13, identify W 00 directly.

The next lemma gives a connection between null-spaces and annihilators.

Lemma 11.4.16 Suppose that U and V are vector spaces over F and α ∈ L(U,V ). Then

(α′)−1(0) = (αU )0.

Proof Observe that

v′ ∈ (α′)−1(0) ⇔ α′v′ = 0

⇔ (α′v′)u = 0 for all u ∈ U

⇔ v′(αu) = 0 for all u ∈ U

⇔ v′ ∈ (αU )0,

so (α′)−1(0) = (αU )0. �

Lemma 11.4.17 Suppose that U and V are finite dimensional spaces over F and α ∈
L(U,V ). Then, making the standard identification of U ′′ with U and V ′′ with V , we have

α′V ′ = (α−1(0)
)0

.
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Proof Applying Lemma 11.4.16 to α′ ∈ L(V ′, U ′), we obtain

α−1(0) = (α′′)−1(0) = (α′V ′)0

so, taking the annihilator of both sides, we obtain(
α−1(0)

)0 = (α′V ′)00 = α′V ′

as stated. �
We can summarise the results of the last two lemmas (when U and V are finite dimen-

sional) in the formulae

ker α′ = (im α)0 and im α′ = (ker α)0.

We can now obtain a computation free proof of the fact that the row rank of a matrix equals
its column rank.

Lemma 11.4.18 (i) If U and V are finite dimensional spaces over F and α ∈ L(U,V ),
then

dim im α = dim im α′.

(ii) If A is an m× n matrix, then the dimension of the space spanned by the rows of A

is equal to the dimension of the space spanned by the columns of A.

Proof (i) Using the rank-nullity theorem we have

dim im α = dim U − ker α = dim(ker α)0 = dim im α′.

(ii) Let α be the linear map having matrix A with respect to the standard basis ej (so ej

is the column vector with 1 in the j th place and 0 in all other places). Since Aej is the j th
column of A

span columns of A = im α.

Similarly

span columns of AT = im α′,

so

dim(span rows of A) = dim(span columns of AT ) = dim im α′

= dim im α = dim(span columns of A)

as stated. �
Exercise 11.4.19 Suppose that U is a finite dimensional space over F and α ∈ L(U,U ).
By applying one of the results just obtained to λι− α, show that

dim{u ∈ U : αu = λu} = dim{u′ ∈ U ′ : α′u = λu′}.
Interpret your result.
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Exercise 11.4.20 Let V be a finite dimensional space over F. If α is an endomorphism of
V and U is a subspace of V , show that α′(αU )0 is a subspace of U 0. Give examples (with
U �= {0}, V and α �= 0, ι) when α′(αU )0 = U 0 and when α′(αU )0 �= U 0.

11.5 Further exercises

Exercise 11.5.1 We work over F. We take A to be an m× n matrix, B to be the set of
all n×m matrices and Ip to be the p × p identity matrix. Prove the following results by
working with the corresponding linear maps.

(i) The equation AB = Im has a solution B ∈ B if and only if m ≤ n and rank A = m.
(ii) The equation AB = Im has a unique solution B ∈ B if and only if m = n and

rank A = m.
(iii) State and prove similar results for the equation BA = In.
Prove these results by using our earlier work on simultaneous linear equations.

Exercise 11.5.2 If α is a singular endomorphism (that is to say, a non-invertible endomor-
phism) of the finite dimensional vector space V �= {0}, show that we can find a non-zero
endomorphism β such that β2 = βα = 0.

Exercise 11.5.3 Let V be a finite dimensional vector space over C and let U be a
non-trivial subspace of V (i.e. a subspace which is neither {0} nor V ). Without assum-
ing any other results about linear mappings, prove that there is a linear mapping of V

onto U .
Are the following statements (a) always true, (b) sometimes true but not always true,

(c) never true? Justify your answers in each case.
(i) There is a linear mapping of U onto V (that is to say, a surjective linear map).
(ii) There is a linear mapping α : V → V such that αU = U and αv = 0 if v ∈ V \ U .
(iii) Let U1, U2 be non-trivial subspaces of V such that U1 ∩ U2 = {0} and let α1, α2 be

linear mappings of V into V . Then there is a linear mapping α : V → V such that

αv =
{

α1v if v ∈ U1,

α2v if v ∈ U2.

(iv) Let U1, U2, α1, α2 be as in part (iii), and let U3, α3 be similarly defined with
U1 ∩ U3 = U2 ∩ U3 = {0}. Then there is a linear mapping α : V → V such that

αv =

⎧⎪⎪⎨
⎪⎪⎩

α1v if v ∈ U1,

α2v if v ∈ U2,

α3v if v ∈ U3.
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Exercise 11.5.4 Let α : U → V and β : V → W be maps between finite dimensional
spaces, and suppose that ker β = im α. Show that bases may be chosen for U , V and W

with respect to which α and β have matrices(
Ir 0
0 0

)
and

(
0 0
0 In−r

)
.

Exercise 11.5.5 (i) If V is an infinite dimensional space with a finite dimensional subspace
W , show that V/W is infinite dimensional.

(ii) Let n ≥ 0. Give an example of an infinite dimensional space V with a subspace W

such that

dim V/W = n.

(iii) Give an example of an infinite dimensional space V with an infinite dimensional
subspace W such that V/W is infinite dimensional.

Exercise 11.5.6 Suppose that W is a finite dimensional vector space over F with subspaces
U and V . Show that U ∩ V and

U + V = {u+ v : u ∈ U, v ∈ V }
are subspaces of W . Show that (U + V )/U is isomorphic to V/(U ∩ V ).

Exercise 11.5.7 Let U, V, W, X be finite dimensional spaces, let α ∈ L(U,V ) have rank
r and let β ∈ L(W,X) have rank s. Show that �(θ ) = βθα defines a linear map from
L(V,W ) to L(U,X) and find its rank.

Exercise 11.5.8 Let U and V be finite dimensional vector spaces over F. If α : U → V is
linear, show that there is a linear map β : V → U such that αβα = α. Show that the linear
maps β such that αβα is a scalar multiple of α (that is to say, αβα = λα for some λ ∈ F)
form a subspace of L(U,V ) and find its dimension in terms of the dimensions of U and V

and the rank of α.

Exercise 11.5.9 Let U and V be finite dimensional spaces over F and let θ : U → V be a
linear map.

(i) Show that θ is injective if and only if, given any finite dimensional vector space W

over F and given any linear map α : U → W , there is a linear map α̂ : V → W such that
α = θα̂.

(ii) Show that θ is surjective if and only if, given any finite dimensional vector space W

over F and given any linear map β : W → V , there is a linear map β̂ : W → U such that
β = β̂θ .

Exercise 11.5.10 Let α1, α2, . . . , αk be endomorphisms of an n-dimensional vector space
V . Show that

dim(α1α2 . . . αnV ) ≥
k∑

i=1

dim(αjV )− n(k − 1).
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Hence show that, if α is an endomorphism of V ,

dim V + dim α2V ≥ 2 dim αV.

Show, more generally, that

1
2 (dim αjV + dim αj+2V ) ≥ dim αj+1V.

Exercise 11.5.11 (Variation on a theme.) If U is a finite dimensional vector space over F

and α, β, γ ∈ L(U,U ) show that

rank α + rank αβγ ≥ rank αβ + rank βγ.

[Exercise 5.7.8 gives a proof involving matrices, but you should provide a proof in the style
of this chapter.]

Exercise 11.5.12 Suppose that V is a vector space over F with subspaces U1, U2, . . . , Um.
Show that

(U1 + U2 + · · · + Um)0 = U 0
1 ∩ U 0

2 ∩ . . . ∩ U 0
k .

If V is finite dimensional, show that

(U1 ∩ U2 ∩ . . . ∩ Uk)0 = U 0
1 + U 0

2 + · · · + U 0
m.

Exercise 11.5.13 Let V be a vector space over F. We make V × V into a vector space in
the usual manner by setting

λ(x, y) = (λx, λy) and (x, y)+ (u, v) = (x+ u, y+ v).

Prove the following results.
(i) The equation

(αφ)(x, y) = 1
2

(
φ(x, y)− φ(y, x)

)
for all x, y ∈ V , φ ∈ L(V × V, F) defines an endomorphism α of L(V × V, F).

(ii) α is a projection (that is to say, α2 = α).
(iii) α has rank 1

2n(n− 1) and nullity 1
2n(n+ 1).

(iv) If θ is an endomorphism of V , the equation

(θ̃φ)(x, y) = φ(θx, θy)

for all x, y ∈ V , φ ∈ L(V × V, F) defines an endomorphism θ̃ of L(V × V, F).
(v) With the notation above θ̃α = αθ̃ .
(vi) State and sketch proofs for the corresponding results for β given by

(βφ)(x, y) = 1
2

(
φ(x, y)+ φ(y, x)

)
.

What is α + β?
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Exercise 11.5.14 Are the following statements true or false. Give proofs or counterexam-
ples. In each case U and V are vector spaces over F and α : U → V is linear.

(i) If U and V are finite dimensional, then α : U → V is injective if and only if the
image α(e1), α(e2), . . . , α(en) of every finite linearly independent set e1, e2, . . . , en is
linearly independent.

(ii) If U and V are possibly infinite dimensional, then α : U → V is injective if and
only if the image α(e1), α(e2), . . . , α(en) of every finite linearly independent set e1, e2, . . . ,
en is linearly independent.

(iii) If U and V are finite dimensional, then the dual map α′ : V ′ → U ′ is surjective if
and only if α : U → V is injective.

(iv) If U and V are finite dimensional, then the dual map α′ : V ′ → U ′ is injective if
and only if α : U → V is surjective.

Exercise 11.5.15 In the following diagram of finite dimensional spaces over F and linear
maps

U1
φ1−−−−→ V1

ψ1−−−−→ W1

α

⏐⏐0 β

⏐⏐0 γ

⏐⏐0
U2

φ2−−−−→ V2
ψ2−−−−→ W2

φ1 and φ2 are injective, ψ1 and ψ2 are surjective, ψ−1
i (0) = φi(Ui) (i = 1, 2) and the two

squares commute (that is to say φ2α = βφ1 and ψ2β = γψ1). If α and γ are both injective,
prove that β is injective. (Start by asking what follows if βv1 = 0. You will find yourself
at the first link in a long chain of reasoning where, at each stage, there is exactly one
deduction you can make. The reasoning involved is called ‘diagram chasing’ and most
mathematicians find it strangely addictive.)

By considering the duals of all the maps involved, prove that if α and γ are surjective,
then so is β.

The proof suggested in the previous paragraph depends on the spaces being finite
dimensional. Produce an alternative diagram chasing proof.

Exercise 11.5.16 (It may be helpful to have done the previous question.) Suppose that we
are given vector spaces U , V1, V2, W over F and linear maps φ1 : U → V1, φ2 : U → V2,
ψ1 : V1 → W , ψ2 : V2 → W , and β : V1 → V2. Suppose that the following four conditions
hold.

(i) φ−1
i ({0}) = {0} for i = 1, 2.

(ii) ψi(Vi) = W for i = 1, 2.
(iii) ψ−1

i ({0}) = φ1(Ui) for i = 1, 2.
(iv) φ1α = φ2 and αψ2 = ψ1.

Prove that β : V1 → V2 is an isomorphism. You may assume that the spaces are finite
dimensional if you wish.
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Exercise 11.5.17 In the diagram below A, B, A1, B1, C1, B2, C2 are vector spaces over F

and α, α1, β1, β2, φ, ψ , ψ1, η1 are linear maps between the spaces indicated such that

(a) ψα = α1φ, (b) η1β1 = β2ψ1, (c) φ is surjective, (d) η1 is injective.

A
α−−−−→ B

φ

⏐⏐0 ψ

⏐⏐0
A1

α1−−−−→ B1
β1−−−−→ C1

ψ1

⏐⏐0 η1

⏐⏐0
B2

β2−−−−→ C2

Prove the following results.
(i) If the null-space of β1 is contained in the image of α1, then the null-space of ψ1 is

contained in the image of ψ .
(ii) If ψ1ψ is a zero map, then so is β1α1.

Exercise 11.5.18 We work in the space Mn(R) of n× n real matrices. Recall the definition
of a trace given, for example, in Exercise 6.8.20.

If we write t(A) = Tr(A), show the following.
(i) t : Mn(R) → R is linear.
(ii) t(P−1AP ) = t(A) whenever A,P ∈ Mn(R) and P is invertible.
(iii) t(I ) = n.
Show, conversely, that, if t satisfies these conditions, then t(A) = Tr A.

Exercise 11.5.19 Consider Mn the vector space of n× n matrices over F with the usual
matrix addition and scalar multiplication. If f is an element of the dual M ′

n, show that

f (XY ) = f (YX)

for all X, Y ∈ Mn if and only if

f (X) = λ Tr X

for all X ∈ Mn and some fixed λ ∈ F.
Deduce that, if A ∈ Mn is the sum of matrices of the form [X, Y ] = XY − YX, then

Tr A = 0. Show, conversely, that, if Tr A = 0, then A is the sum of matrices of the form
[X, Y ]. (In Exercise 12.6.24 we shall see that a stronger result holds.)

Exercise 11.5.20 Let Mp,q be the usual vector space of p × q matrices over F. Let A ∈
Mn,m be fixed. If B ∈ Mm,n we write

τAB = Tr AB.

Show that τ is a linear map from Mm,n to F. If we set �(A) = τA show that � : Mn,m →
M ′

m,n is an isomorphism.
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Exercise 11.5.21 [The Binet–Cauchy formula] (This is included as a mathematical
curiosity. It may be helpful to experiment with small matrices.) Let B be an m× n matrix
and C an n×m matrix over F. If m ≤ n the m×m matrix formed from B by using the
ir th column of B as the rth column of the new matrix is called Bi1i2...im . The m×m matrix
formed from C by using the ir th row of C as the rth row of the new matrix is called Ci1i2...im .
The Binet–Cauchy formula states that

det BC =
∑

det Bi1i2...im det Ci1i2...im

where the sum is over all i1, i2, . . . , im with

1 ≤ i1 < i2 < . . . < im.

(i) By considering row operations on B and column operations on C, show that the
full Binet–Cauchy formula will follow from the special case when B has first row b1 =
(1, 0, 0, . . . , 0) and C has first column c1 = (1, 0, 0, . . . , 0)T .

(ii) By using (i), or otherwise, show that if the Binet–Cauchy formula holds when
m = p, n = q − 1 and when m = p − 1, n = q − 1, then it holds for m = p, n = q [2 ≤
p ≤ q − 1]. Deduce that the Binet–Cauchy formula holds for all 1 ≤ m ≤ n.

(iii) What can you say about det AB if m > n?
(iv) Prove the Binet–Cauchy identity

(
n∑

i=1

aibi

)⎛⎝ n∑
j=1

cjdj

⎞
⎠ =
(

n∑
i=1

aidi

)⎛⎝ n∑
j=1

bj cj

⎞
⎠+ ∑

1≤i<j≤n

(aibj − ajbi)(cidj − cjdi)

for all ai, bi, ci, di ∈ F and deduce Lagrange’s identity

(
n∑

i=1

a2
i

)⎛⎝ n∑
j=1

c2
j

⎞
⎠ =
(

n∑
i=1

aici

)2

+
∑

1≤i<j≤n

(aicj − aj ci)
2.

(v) Use Lagrange’s identity to prove the Cauchy–Schwarz inequality in Rn, identifying
the cases of equality.
[Cauchy and Binet were the first to prove the result which we would now write
det AB = det A det B. As with many other topics in mathematics, Cauchy’s work marked
the beginning of the modern era.]

Exercise 11.5.22 (Requires elementary group theory.) Show that the set of matrices(
0 0
0 x

)

with x real and non-zero forms a group under matrix multiplication.



11.5 Further exercises 289

Let V be a vector space over F and let G be a set of linear maps α : V → V which
forms a group under composition. Show that either every α ∈ G is invertible or no α ∈ G

is invertible.
Show that all α ∈ G have the same image space E = α(V ) and the same null-space

α−1(0).
For each α ∈ G define T (α) : E → E by

T (α)(x) = α(x).

Show that T is group isomorphism between G and G̃ a group of invertible linear mappings
on E.

Give an example to show that G̃ need not contain all the invertible linear mappings on
E.

Exercise 11.5.23 Consider the set FX of functions f : X → F. We have seen in
Lemma 5.2.6 how to make FX into a vector space (FX,×,+, F) over F.

Suppose that we make FX into a vector space V� = (FX,�,�, F) over F. Show that
the point evaluation functions φx : V� → F, defined by φx(f ) = f (x), are linear maps for
each x ∈ X if and only if λ � f = λ× f and f � g = f + g for all λ ∈ F and f, g ∈ FX.
(More succinctly, the standard vector space structure on FX is the only one for which point
evaluations are linear maps.)
[Your answer may be shorter than the statement of the exercise.]

Exercise 11.5.24 Suppose that X is a subset of a vector space U over F. Show that

X0 = {u′ ∈ U ′ : u′x = 0 for all x ∈ X}

is a subspace of U ′.
If U is finite dimensional and we identify U ′′ and U in the usual manner, show that

X00 = span X.

Exercise 11.5.25 The object of this question is to show that the mapping � : U → U ′′

defined in Lemma 11.3.4 is not bijective for all vector spaces U . I owe this example to
Imre Leader and the reader is warned that the argument is at a slightly higher level of
sophistication than the rest of the book. We take c00 and s as in Exercise 11.3.9. We write
�U = � to make the space U explicit.

(i) Show that, if a ∈ c00 and (�c00 a)b = 0 for all b ∈ c00, then a = 0.
(ii) Consider the vector space V = s/c00. By looking at (1, 1, 1, . . .), or otherwise, show

that V is not zero dimensional. (That is to say, V �= {0}.)
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(iii) If V ′ is zero dimensional, explain why V ′′ is zero dimensional and so �V is not
injective.

(iv) If V ′ is not zero dimensional, pick a non-zero T ∈ V ′. Define T̃ : s → R by

T̃ a = T (a+ c00).

Show that T ∈ s ′ and T �= 0, but T b = 0 for all b ∈ c00. Deduce that �c00 is not injective.
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Polynomials in L(U, U )

12.1 Direct sums

In this section we develop some of the ideas from Section 5.4 which the reader may wish
to reread. We start with some useful definitions.

Definition 12.1.1 Let U be a vector space over F with subspaces Uj [1 ≤ j ≤ m].
(i) We say that U is the sum of the subspaces Uj and write

U = U1 + U2 + · · · + Um

if

U = {u1 + u2 + · · · + um : uj ∈ Uj }.
(ii) We say that U is the direct sum of the subspaces Uj and write

U = U1 ⊕ U2 ⊕ . . .⊕ Um

if U = U1 + U2 + · · · + Um and, in addition, the equation

0 = v1 + v2 + · · · + vm

with vj ∈ Uj implies

v1 = v2 = . . . = vm = 0.

[We discuss a related idea in Exercise 12.6.4.]

Before starting the discussion that follows, the reader should recall the useful result
about dim(V +W ) which we proved in Lemma 5.4.10.

Exercise 12.1.2 Let U be a vector space over F with subspaces Uj [1 ≤ j ≤ m]. Show
that U = U1 ⊕ U2 ⊕ . . .⊕ Um if and only if the equation

u = u1 + u2 + · · · + um

has exactly one solution with uj ∈ Uj for each u ∈ U .

291
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The following exercise is easy, but the result is useful.

Exercise 12.1.3 Let U be a vector space over F which is the direct sum of subspaces Uj

[1 ≤ j ≤ m].
(i) If Uj has a basis ejk with 1 ≤ k ≤ n(j ) for 1 ≤ j ≤ m, show that the vectors ejk

[1 ≤ k ≤ n(j ), 1 ≤ j ≤ m] form a basis for U .
(ii) Show that U is finite dimensional if and only if all the Uj are.
(iii) If U is finite dimensional, show that

dim U = dim U1 + dim U2 + · · · + dim Um.

Exercise 12.1.4 Let U and W be subspaces of a finite dimensional vector space V . Show
that there exist subspaces A, B and C of V such that

U = A⊕ B, W = B ⊕ C, U +W = U ⊕ C = W ⊕ A.

Show that B is specified uniquely by the conditions just given. Is the same true for A and
C? Give a proof or counterexample.

Lemma 12.1.5 Let U be a vector space over F which is the direct sum of subspaces Uj

[1 ≤ j ≤ m]. If U is finite dimensional, we can find linear maps πj : U → Uj such that

u = π1u+ π2u+ · · · + πmu.

Automatically πj |Uj
= ι|Uj

(i.e. πj u = u whenever u ∈ Uj ).

Proof Let Uj have a basis ejk with 1 ≤ k ≤ n(j ). Then, as remarked in Exercise 12.1.3,
the vectors ejk [1 ≤ k ≤ n(j ), 1 ≤ j ≤ m] form a basis for U . It follows that, if u ∈ U ,
there are unique λjk ∈ F such that

u =
m∑

j=1

n(j )∑
k=1

λjkejk

and we may define πj u ∈ Uj by

πj u =
n(j )∑
k=1

λjkejk.

We note that

πj

(
λ

m∑
r=1

n(r)∑
k=1

λrkerk +μ

m∑
r=1

n(r)∑
k=1

μrkerk

)
= πj

(
m∑

r=1

n(r)∑
k=1

(λλrk + μμrk)erk

)

=
n(j )∑
k=1

(λλjk + μμjk)ejk

= λ

n(j )∑
k=1

λjkejk + μ

n(j )∑
k=1

μjkejk

= λπj

(
m∑

r=1

n(r)∑
k=1

λrkerk

)
+ μπj

(
m∑

r=1

n(r)∑
k=1

μrkerk

)
.
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Thus πj : U → Uj is linear. The equality

u = π1u+ π2u+ · · · + πmu

follows directly from our definition of πj .
The final remark follows from the fact that we have a direct sum. �

Exercise 12.1.6 Suppose that V is a finite dimensional vector space over F with subspaces
V1 and V2. Which of the following possibilities can occur? Prove your answers.

(i) V1 + V2 = V , but dim V1 + dim V2 > dim V .
(ii) V1 + V2 = V , but dim V1 + dim V2 < dim V .
(iii) dim V1 + dim V2 = dim V , but V1 + V2 �= V .

The next exercise develops the ideas of Theorem 11.2.2.

Exercise 12.1.7 A subspace V of a vector space U over F is said to be an invariant
subspace of an α ∈ L(V, V ) if V ⊆ αV . We say that V is a maximal invariant subspace
of α if V is an invariant space of α and, whenever W is an invariant subspace of α with
W ⊇ V , it follows that W = V .

Show that, if U is finite dimensional, and α is an endomorphism of U , the following
statements are true.

(i) There is a non-negative integer m such that αmU is the unique maximal invariant
subspace of α.

(ii) If we write M = αmU and N = (αm)−1(0), then U = M ⊕N .
(iii) α(M) ⊆ M , α(N ) ⊆ N .
(iv) If we define β : M → M by βu = αu for u ∈ M and γ : N → N by γ u = αu for

u ∈ N , then β is an automorphism and γ is nilpotent (that is to say, γ r = 0 for some
r ≥ 1).

(v) Suppose that M̃ and Ñ are subspaces of U such that V = M̃ ⊕ Ñ , β̃ is an automor-
phism on M̃ and γ̃ : M → M is a nilpotent linear map. If

α(a+ b) = β̃a+ γ̃ b

for all a ∈ M̃ , b ∈ Ñ , show that M̃ = M , Ñ = N , β̃ = β and γ̃ = γ .
(vi) If A is an n× n matrix over F, show that we can find an invertible n× n matrix P ,

an invertible r × r matrix B and a nilpotent n− r × n− r matrix C such that

P−1AP =
(

B 0
0 C

)
.

As the previous exercise indicates, we are often interested in decomposing a space into
the direct sum of two subspaces.

Definition 12.1.8 Let U be a vector space over F with subspaces U1 and U2. If U is the
direct sum of U1 and U2, then we say that U2 is a complementary subspace of U1.

It is very important to remember that complementary subspaces are not unique in general.
The following simple example should be kept constantly in mind.
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Example 12.1.9 Consider F2 as a row vector space over F. If

U1 = {(x, 0), x ∈ F}, U2 = {(0, y), y ∈ F}, U3 = {(t, t), t ∈ F},
then the Uj are subspaces and both U2 and U3 are complementary subspaces of U1.

We give some variations on this theme in Exercise 12.6.29. When we consider inner prod-
uct spaces, we shall look at the notion of an ‘orthogonal complement’ (see Lemma 14.3.6).

We shall need the following result.

Lemma 12.1.10 Every subspace V of a finite dimensional vector space U has a comple-
mentary subspace.

Proof Since V is the subspace of a finite dimensional space, it is itself finite dimensional
and has a basis e1, e2, . . . , ek , say, which can be extended to basis e1, e2, . . ., en of U . If we
take

W = span{ek+1, ek+2, . . . , en},
then W is a complementary subspace of V . �

Exercise 12.1.11 Let V be a subspace of a finite dimensional vector space U . Show that
V has a unique complementary subspace if and only if V = {0} or V = U .

We use the ideas of this section to solve a favourite problem of the Tripos examiners in
the 1970s.

Example 12.1.12 Consider the vector space Mn(R) of real n× n matrices with the usual
definitions of addition and multiplication by scalars. If θ : Mn(R) → Mn(R) is given by
θ (A) = AT , show that θ is linear and that

Mn(R) = {A ∈ Mn(R) : θ (A) = A} ⊕ {A ∈ Mn(R) : θ (A) = −A}.
Hence, or otherwise, find det θ .

Solution. Suppose that A = (aij ) ∈ Mn(R), B = (bij ) ∈ Mn(R) and λ, μ ∈ R. If C =
(λA+ μB)T and we write C = (cij ), then

cij = λaji + μbji,

so θ (λA+ μB) = λθ (A)+ μθ (B). Thus θ is linear.
If we write

U = {A ∈ Mn(R) : θ (A) = A}, V = {A ∈ Mn(R) : θ (A) = −A},
then U is the null-space of ι− θ and V is the null-space of ι+ θ , so U and V are subspaces
of Mn(R).

To see that U + V = Mn(R), observe that, if A ∈ Mn(R), then

A = 2−1(A+ AT )+ 2−1(A− AT )
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and 2−1(A+ AT ) ∈ U , 2−1(A− AT ) ∈ V . To see that U ∩ V = {0} observe that

A ∈ U ∩ V ⇒ AT = A, AT = −A ⇒ A = −A ⇒ A = 0.

Next observe that, if 1 ≤ s < r ≤ n and F (r, s) is the matrix (δirδjs − δisδjr ) (that is to
say, with entry 1 in the r, sth place, entry −1 in the s, rth place and 0 in all other places),
then Fr,s ∈ V . Further, if A = (aij ) ∈ V,

A =
∑

1≤s<r≤n

λr,sFr,s ⇔ λr,s = ar,s for all 1 ≤ s < r ≤ n.

Thus the set of matrices F (r, s) with 1 ≤ s < r ≤ n form a basis for V . This shows that
dim V = n(n− 1)/2.

A similar argument shows that the matrices E(r, s) given by (δirδjs + δisδjr ) when r �= s

and (δirδjr ) when r = s [1 ≤ s ≤ r ≤ n] form a basis for U which thus has dimension
n(n+ 1)/2.

If we give Mn(R) the basis consisting of the E(r, s) [1 ≤ s ≤ r ≤ n] and F (r, s) [1 ≤
s < r ≤ n], then, with respect to this basis, θ has an n2 × n2 diagonal matrix with dim U

diagonal entries taking the value 1 and dim V diagonal entries taking the value −1. Thus

det θ = (−1)dim V = (−1)n(n−1)/2.

�
Exercise 12.1.13 We continue with the notation of Example 12.1.12.

(i) Suppose that we form a basis for Mn(R) by taking the union of bases of U and V (but
not necessarily those in the solution). What can you say about the corresponding matrix
of θ?

(ii) Show that the value of det θ depends on the value of n modulo 4. State and prove the
appropriate rule for obtaining det θ from the value of n modulo 4.

Exercise 12.1.14 Consider the real vector space C(R) of continuous functions f : R → R

with the usual pointwise definitions of addition and multiplication by a scalar. If

U = {f ∈ C(R) : f (x) = f (−x) for all x ∈ R},
V = {f ∈ C(R) : f (x) = −f (−x) for all x ∈ R, },

show that U and V are complementary subspaces.

The following exercise introduces some very useful ideas.

Exercise 12.1.15 [Projection] Prove that the following three conditions on an endomor-
phism α of a finite dimensional vector space V are equivalent.

(i) α2 = α.
(ii) V can be expressed as a direct sum U ⊕W of subspaces in such a way that α|U is

the identity mapping of U and α|W is the zero mapping of W .
(iii) A basis of V can be chosen so that all the non-zero elements of the matrix representing

α lie on the main diagonal and take the value 1.
[You may find it helpful to use the identity ι = α + (ι− α).]
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An endomorphism of V satisfying any (and hence all) of the above conditions is called
a projection.1

Consider the following linear maps αj : R2 → R2 (we use row vectors). Which of them
are projections and why?

α1(x, y) = (x, 0), α2(x, y) = (0, x), α3(x, y) = (y, x), α4(x, y) = (x + y, 0),

α5(x, y) = (x + y, x + y), α6(x, y) = ( 12 (x + y), 1
2 (x + y)

)
.

Exercise 12.1.16 If α is an endomorphism of a finite dimensional space V , show that α is
a projection if and only if ι− α is.

Exercise 12.1.17 Suppose that α, β ∈ L(V, V ) are both projections of V . Prove that, if
αβ = βα, then αβ is also a projection of V . Show that the converse is false by giving
examples of projections α, β such that (a) αβ is a projection, but βα is not, and (b) αβ and
βα are both projections, but αβ �= βα.

Exercise 12.1.18 Suppose that α, β ∈ L(V, V ) are both projections of V .
(i) By considering what happens if we multiply by α on the left and what happens if we

multiply by α on the right, show that

αβ = −βα ⇒ αβ = βα = 0.

(ii) Show that α + β is a projection if and only if αβ = βα = 0.
(iii) Show that α − β is a projection if and only if αβ = βα = β.

Exercise 12.1.19 Let V be a finite dimensional vector space over F and α an endomor-
phism. Show that α is diagonalisable if and only if there exist distinct λj ∈ F and projections
πj such that πkπj = 0 when k �= j ,

ι = π1 + π2 + · · · + πm and α = λ1π1 + λ2π2 + · · · + λmπm.

12.2 The Cayley–Hamilton theorem

We start with a couple of observations.

Exercise 12.2.1 Show, by exhibiting a basis, that the space Mn(F) of n× n matrices
(with the standard structure of vector space over F) has dimension n2. Deduce that we can
find aj ∈ C, not all zero, such that

∑n2

j=0 ajA
j = 0. Conclude that there is a non-trivial

polynomial P of degree at most n2 such that P (A) = 0.

In Exercise 12.6.13 we show that Exercise 12.2.1 can be used to give a quick proof,
without using determinants, that, if U is a finite dimensional vector space over C, every
α ∈ L(U,U ) has an eigenvalue.

1 We discuss orthogonal projection in Exercise 14.3.14.



12.2 The Cayley–Hamilton theorem 297

Exercise 12.2.2 (i) If D is an n× n diagonal matrix over F with j th diagonal entry λj ,
write down the characteristic polynomial

χD(t) = det(tI −D)

as the product of linear factors.
If we write χD(t) =∑n

k=0 bkt
k with bk ∈ F [t ∈ F], show that

n∑
k=0

bkD
k = 0.

More briefly, we say that χD(D) = 0.
(ii) If A is an n× n diagonalisable matrix over F with characteristic polynomial

χA(t) = det(tI − A) =
n∑

k=0

ckt
k,

show that χA(A) = 0, that is to say,

n∑
k=0

ckA
k = 0.

Exercise 12.2.3 Recall that the trace of an n× n matrix A = (aij ) is given by Tr A =∑n
j=1 ajj . In this exercise A and B will be n× n matrices over F.
(i) If B is invertible, show that Tr B−1AB = Tr A.
(ii) If I is the identity matrix, show that QA(t) = Tr(tI − A) is a (rather simple) poly-

nomial in t . If B is invertible, show that QB−1AB = QA.
(iii) Show that, if n ≥ 2, there exists an A with QA(A) �= 0. What happens if n = 1?

Exercise 12.2.2 suggests that the following result might be true.

Theorem 12.2.4 [Cayley–Hamilton over C] If U is a vector space of dimension n over
C and α : U → U is linear, then, writing

χα(t) =
n∑

k=0

akt
k = det(t ι− α),

we have
∑n

k=0 akα
k = 0 or, more briefly, χα(α) = 0.

We sometimes say that ‘α satisfies its own characteristic equation’.
Exercise 12.2.3 tells us that any attempt to prove Theorem 12.2.4 by ignoring the

difference between a scalar and a linear map (or matrix) and ‘just setting t = A’ is bound
to fail.

Exercise 12.2.2 tells us that Theorem 12.2.4 is true when α is diagonalisable, but we
know that not every linear map is diagonalisable, even over C.
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However, we can apply the following useful substitute for diagonalisation.

Theorem 12.2.5 If V is a finite dimensional vector space over C and α : V → V is linear,
we can find a basis for V with respect to which α has a upper triangular matrix A (that is
to say, a matrix A = (aij ) with aij = 0 for i > j ).

Proof We use induction on the dimension m of V . Since every 1× 1 matrix is upper
triangular, the result is true when m = 1. Suppose that the result is true when m = n− 1
and that V has dimension n.

Since we work over C, the linear map α must have at least one eigenvalue λ1 with
a corresponding eigenvector e1. Let W be a complementary subspace for span{e1}. By
Lemma 12.1.5, we can find linear maps τ : V → span{e1} and π : V → W such that

u = τu+ πu.

Now (πα)|W is a linear map from W to W and W has dimension n− 1 so, by the inductive
hypothesis, we can find a basis e2, e3, . . . , en with respect to which (πα)|W has an upper
triangular matrix. The statement that (πα)|W has an upper triangular matrix means that

(πα)ej ∈ span{e2, e3, . . . , ej } �
for 2 ≤ j ≤ n.

Since W is a complementary space of span{e1}, it follows that e1, e2, . . . , en form a
basis of V . But � tells us that

αej ∈ span{e1, e2, . . . , ej }
for 2 ≤ j ≤ n and the statement

αe1 ∈ span{e1}
is automatic. Thus α has upper triangular matrix with respect to the given matrix and the
induction is complete �

A slightly different proof using quotient spaces is outlined in Exercise 12.6.21 (If we
deal with inner product spaces, then, as we shall see later, Theorem 12.2.5 can be improved
to give Theorem 15.2.1.)

Exercise 12.2.6 By considering roots of the characteristic polynomial, or otherwise, show,
by example, that the result corresponding to Theorem 12.2.5 is false if V is a finite dimen-
sional vector space of dimension greater than 1 over R. What can we say if dim V = 1?

Exercise 12.2.7 (i) Let r be a strictly positive integer. Use Theorem 12.2.5 to show that,
if we work over C and α : U → U is an endomorphism of a finite dimensional space U ,
then αr has an eigenvalue μ if and only if α has an eigenvalue λ with λr = μ.

(ii) State and prove an appropriate corresponding result if we allow r to take any integer
value.

(iii) Does the result of (i) remain true if we work over R? Give a proof or counterexample.
[Compare the treatment via characteristic polynomials in Exercise 6.8.15.]
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Now that we have Theorem 12.2.5 in place, we can quickly prove the Cayley–Hamilton
theorem for C.

Proof of Theorem 12.2.4 By Theorem 12.2.5, we can find a basis e1, e2, . . . , en for U with
respect to which α has matrix A = (aij ) where aij = 0 if i > j . Setting λj = ajj we see,
at once that,

χα(t) = det(t ι− α) = det(tI − A) =
n∏

j=1

(t − λj ).

Next observe that

αej ∈ span{e1, e2, . . . , ej }
and

(α − λj ι)ej = 0,

so

(α − λj ι)ej ∈ span{e1, e2, . . . , ej−1}
and, if k �= j ,

(α − λkι)ej ∈ span{e1, e2, . . . , ej }.
Thus

(α − λj ι)
(

span{e1, e2, . . . , ej }
) ⊆ span{e1, e2, . . . , ej−1}

and, using induction on n− j ,

(α − λj ι)(α − λj+1ι) . . . (α − λnι)U ⊆ span{e1, e2, . . . , ej−1}.
Taking j = n, we obtain

(α − λ1ι)(α − λ2ι) . . . (α − λnι)U = {0}
and χα(α) = 0 as required. �

Exercise 12.2.8 (i) Prove directly by matrix multiplication that⎛
⎝0 a12 a13

0 a22 a23

0 0 a33

⎞
⎠
⎛
⎝b11 b12 b13

0 0 b23

0 0 b33

⎞
⎠
⎛
⎝c11 c12 c13

0 c22 c23

0 0 0

⎞
⎠ =
⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ .

State and prove a general theorem along these lines.
(ii) Is the product⎛

⎝c11 c12 c13

0 c22 c23

0 0 0

⎞
⎠
⎛
⎝b11 b12 b13

0 0 b23

0 0 b33

⎞
⎠
⎛
⎝0 a12 a13

0 a22 a23

0 0 a33

⎞
⎠

necessarily zero?
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Exercise 12.2.9 Let U be a vector space. Suppose that α, β ∈ L(U,U ) and αβ = βα.
Show that, if P and Q are polynomials, then P (α)Q(β) = Q(β)P (α).

The Cayley–Hamilton theorem for C implies a Cayley–Hamilton theorem for R.

Theorem 12.2.10 [Cayley–Hamilton over R] If U is a vector space of dimension n over
R and α : U → U is linear, then, writing

χα(t) =
n∑

k=0

akt
k = det(t ι− α),

we have
∑n

k=0 akα
k = 0 or, more briefly, χα(α) = 0.

Proof By the correspondence between matrices and linear maps, it suffices to prove the
corresponding result for matrices. In other words, we need to show that, if A is an n× n

real matrix, then, writing χA(t) = det(tI − A), we have χA(A) = 0.
But, if A is an n× n real matrix, then A may also be considered as an n× n complex

matrix and the Cayley–Hamilton theorem for C tells us that χA(A) = 0. �

Exercise 12.6.14 sets out a proof of Theorem 12.2.10 which does not depend on the
Cayley–Hamilton theorem for C. We discuss this matter further on page 332.

Exercise 12.2.11 Let A be an n× n matrix over F with det A �= 0. Explain why

det(tI − A) =
n∑

j=0

aj t
j

with a0 �= 0. Show that

A−1 = −a−1
0

n∑
j=1

ajA
j−1.

Is this likely to be a good way of computing A−1 and why?

In case the reader feels that the Cayley–Hamilton theorem is trivial, she should note that
Cayley merely verified it for 3× 3 matrices and stated his conviction that the result would
be true for the general case. It took twenty years before Frobenius came up with the first
proof.

Exercise 12.2.12 Suppose that U is a vector space over F of dimension n. Use the Cayley–
Hamilton theorem to show that, if α is a nilpotent endomorphism (that is to say, αm = 0
for some m), then αn = 0. (Of course there are many other ways to prove this of which the
most natural is, perhaps, that of Exercise 11.2.3.)
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12.3 Minimal polynomials

As we saw in our study of the Cayley–Hamilton theorem and elsewhere in this book, the
study of endomorphisms (that is to say, members of L(U,U )) for a finite dimensional
vector space over C is much easier when all the roots of the characteristic polynomial are
unequal. For the rest of this chapter we shall be concerned with what happens when some
of the roots are equal.

The reader may object that the ‘typical’ endomorphism has all the roots of its character-
istic polynomial distinct (we shall discuss this further in Theorem 15.2.3) and it is not worth
considering non-typical cases. This is a little too close to the argument ‘the typical number
is non-zero so we need not bother to worry about dividing by zero’ for comfort. The reader
will recall that, when we discussed differential and difference equations in Section 6.4, we
discovered that the case when several of the roots were equal was particularly interesting
and this phenomenon may be expected to recur.

Here are some examples where the roots of the characteristic polynomial are not distinct.
We shall see that, in some sense, they are typical.

Exercise 12.3.1 (i) (Revision) Find the characteristic polynomials of the following
matrices.

A1 =
(

0 0
0 0

)
, A2 =

(
0 1
0 0

)
.

Show that there does not exist a non-singular matrix B with A1 = BA2B
−1.

(ii) Find the characteristic polynomials of the following matrices.

A3 =
⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ , A4 =

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ , A5 =

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ .

Show that there does not exist a non-singular matrix B with Ai = BAjB
−1 [3 ≤ i < j ≤ 5].

(iii) Find the characteristic polynomials of the following matrices.

A6 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , A7 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ .

Show that there does not exist a non-singular matrix B with A6 = BA7B
−1. Write down

three further matrices Aj with the same characteristic polynomial such that there does not
exist a non-singular matrix B with Ai = BAjB

−1 [6 ≤ i < j ≤ 10] explaining why this is
the case.

We now get down to business.

Theorem 12.3.2 If U is a vector space of dimension n over F and α : U → U a linear
map, then there is a unique monic2 polynomial Qα of smallest degree such that Qα(α) = 0.

2 That is to say, having leading coefficient 1.
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Further, if P is any polynomial with P (α) = 0, then P (t) = S(t)Qα(t) for some poly-
nomial S.

More briefly we say that there is a unique monic polynomial Qα of smallest degree
which annihilates α. We call Qα the minimal polynomial of α and observe that Q divides
any polynomial P which annihilates α.

The proof takes a form which may be familiar to the reader from elsewhere (for example,
from the study of Euclid’s algorithm3).

Proof of Theorem 12.3.2 Consider the collection P of polynomials P with P (α) = 0. We
know, from the Cayley–Hamilton theorem (or by the simpler argument of Exercise 12.2.1),
that P \ {0} is non-empty. Thus P \ {0} contains a polynomial of smallest degree and, by
multiplying by a constant, a monic polynomial of smallest degree. If Q1 and Q2 are two
monic polynomials in P \ {0} of smallest degree, then Q1 −Q2 ∈ P and Q1 −Q2 has
strictly smaller degree than Q1. It follows that Q1 −Q2 = 0 and Q1 = Q2 as required. We
write Qα for the unique monic polynomial of smallest degree in P .

Suppose that P (α) = 0. We know, by long division, that

P (t) = S(t)Qα(t)+ R(t)

where R and S are polynomial and the degree of the ‘remainder’ R is strictly smaller than
the degree of Qα . We have

R(α) = P (α)− S(α)Qα(α) = 0− 0 = 0

so R ∈ P and, by minimality, R = 0. Thus P (t) = S(t)Qα(t) as required. �

Exercise 12.3.3 (i) Making the usual switch between linear maps and matrices, find the
minimal polynomials for each of the Aj in Exercise 12.3.1.

(ii) Find the characteristic and minimal polynomials for

A =

⎛
⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 2 1
0 0 0 2

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

1 0 0 0
1 1 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠ .

The minimal polynomial becomes a powerful tool when combined with the following
observation.

Lemma 12.3.4 Suppose that λ1, λ2, . . . , λr are distinct elements of F. Then there exist
qj ∈ F with

1 =
r∑

j=1

qj

∏
i �=j

(t − λi).

3 Look at Exercise 6.8.32 if this is unfamiliar.
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Proof Let us write

qj =
∏
i �=j

(λj − λi)
−1

and

R(t) =
⎛
⎝ r∑

j=1

qj

∏
i �=j

(t − λi)

⎞
⎠− 1.

Then R is a polynomial of degree at most r − 1 which vanishes at the r points λj . Thus R

is identically zero (since a polynomial of degree k ≥ 1 can have at most k roots) and the
result follows �

Theorem 12.3.5 [Diagonalisability theorem] Suppose that U is a finite dimensional
vector over F. Then a linear map α : U → U is diagonalisable if and only if its minimal
polynomial factorises completely into linear factors and no factor is repeated.

Proof If D is an n× n diagonal matrix whose diagonal entries take the distinct values λ1,
λ2, . . . , λr , then

∏r
j=1(D − λjI ) = 0, so the minimal polynomial of D can contain no

repeated factors. The necessity part of the proof is immediate.
We now prove sufficiency. Suppose that the minimal polynomial of α is

∏r
i=1(t − λi).

By Lemma 12.3.4, we can find qj ∈ F such that

1 =
r∑

j=1

qj

∏
i �=j

(t − λi)

and so, writing

θj = qj

∏
i �=j

(α − λiι),

we have

ι = θ1 + θ2 + · · · + θm and (α − λj ι)θj = 0 for 1 ≤ j ≤ m.

It follows at once that, if u ∈ U and we write uj = θj u, we have

u = u1 + u2 + · · · + um and αuj = λj uj for 1 ≤ j ≤ m.

Observe that, if we write

Uj = {v : αv = λj v},
then Uj is a subspace of U (we call Uj the eigenspace corresponding to λj ) and we have
shown that

U = U1 + U2 + · · · + Um.
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If uj ∈ Uj and

m∑
p=1

uj = 0,

then, using the same idea as in the proof of Theorem 6.3.3, we have

0 =
∏
i �=j

(α − λj ι)0 =
∏
i �=j

(α − λj ι)
m∑

p=1

up

=
m∑

p=1

∏
i �=j

(λp − λi)up =
∏
p �=j

(λp − λj )uj

and so uj = 0 for each 1 ≤ j ≤ m. Thus

U = U1 ⊕ U2 ⊕ . . .⊕ Um.

If we take a basis for each subspace Uj and combine them to form a basis for U , then
we will have a basis of eigenvectors for U . Thus α is diagonalisable. �

Exercise 12.6.33 indicates an alternative, less constructive, proof.

Exercise 12.3.6 (i) If D is an n× n diagonal matrix whose diagonal entries take the
distinct values λ1, λ2, . . . , λr , show that the minimal polynomial of D is

∏r
i=1(t − λi).

(ii) Let U be a finite dimensional vector space and α : U → U a diagonalisable linear
map. If λ is an eigenvalue of α, explain, with proof, how we can find the dimension of the
eigenspace

Uλ = {u ∈ U : αu = λu}
from the characteristic polynomial of α.

Exercise 12.3.7 (i) If a polynomial P has a repeated root, show that P and its derivative
P ′ have a non-trivial common factor. Is the converse true? Give a proof or counterexample.

(ii) If A is an n× n matrix over C with Am = I for some integer m ≥ 1 show that A is
diagonalisable. If A is a real symmetric matrix, show that A2 = I .

We can push these ideas a little further by extending Lemma 12.3.4.

Lemma 12.3.8 If m(1), m(2), . . . , m(r) are strictly positive integers and λ1, λ2, . . . , λr

are distinct elements of F, show that there exist polynomials Qj with

1 =
r∑

j=1

Qj (t)
∏
i �=j

(t − λi)
m(i).

Since the proof uses the same ideas by which we established the existence and prop-
erties of the minimal polynomial (see Theorem 12.3.2), we set it out as an exercise for
the reader.
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Exercise 12.3.9 Consider the collection A of polynomials with coefficients in F. Let P be
a non-empty subset of A such that

P, Q ∈ P, λ, μ ∈ F ⇒ λP + μQ ∈ P and P ∈ P, Q ∈ A⇒ P ×Q ∈ P.

(In this exercise, P ×Q(t) = P (t)Q(t).)
(i) Show that either P = {0} or P contains a monic polynomial P0 of smallest degree.

In the second case, show that P0 divides every P ∈ P .
(ii) Suppose that P1, P2, . . . , Pr are non-zero polynomials. By considering

P =
⎧⎨
⎩

r∑
j=1

Tj × Pj : Tj ∈ A
⎫⎬
⎭ ,

show that we can find Qj ∈ A such that, writing

P0 =
r∑

j=1

Qj × Pj ,

we know that P0 is a monic polynomial dividing each Qj . By considering the given
expression for P0, show that any polynomial dividing each Pj also divides P0. (Thus P0 is
the ‘greatest common divisor of the Pj ’.)

(iii) Prove Lemma 12.3.4.

We also need a natural definition.

Definition 12.3.10 Suppose that U is a vector space over F with subspaces Uj such that

U = U1 ⊕ U2 ⊕ . . .⊕ Ur.

If αj : Uj → Uj is linear, we define α1 ⊕ α2 ⊕ . . .⊕ αr as a function from U to U by

(α1 ⊕ α2 ⊕ · · · ⊕ αr )(u1 + u2 + · · · + ur ) = α1u1 + α2u2 + · · · + αrur .

Exercise 12.3.11 Explain why, with the notation and assumptions of Definition 12.3.10,
α1 ⊕ α2 ⊕ . . .⊕ αr is well defined. Show that α1 ⊕ α2 ⊕ · · · ⊕ αr is linear.

We can now state our extension of Theorem 12.3.5.

Theorem 12.3.12 Suppose that U is a finite dimensional vector space over F. If the linear
map α : U → U has minimal polynomial

Q(t) =
r∏

j=1

(t − λj )m(j ),

where m(1), m(2), . . . , m(r) are strictly positive integers and λ1, λ2, . . . , λr are distinct
elements of F, then we can find subspaces Uj and linear maps αj : Uj → Uj such that αj

has minimal polynomial (t − λj )m(j ),

U = U1 ⊕ U2 ⊕ . . .⊕ Ur and α = α1 ⊕ α2 ⊕ . . .⊕ αr .
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The proof is so close to that of Theorem 12.3.2 that we set it out as another exercise for
the reader.

Exercise 12.3.13 Suppose that U and α satisfy the hypotheses of Theorem 12.3.12. By
Lemma 12.3.4, we can find polynomials Qj with

1 =
r∑

j=1

Qj (t)
∏
i �=j

(t − λi)
m(i). �

Set

Uk = {u ∈ U : (α − λkι)
m(k)u = 0}.

(i) Show, using �, that

U = U1 + U2 + · · · + Ur.

(ii) Show, using �, that, if u ∈ Uj , then

Qj (α)
∏
i �=j

(α − λiι)
m(i)u = 0 ⇒ u = 0

and deduce that ∏
i �=j

(α − λiι)
m(i)u = 0 ⇒ u = 0.

Hence, or otherwise, show that

U = U1 ⊕ U2 ⊕ . . .⊕ Ur.

(iii) Show that αUj ⊆ Uj , so that we can define a linear map αj : Uj → Uj by taking
αj (u) = αu for all u ∈ Uj . Show that

α = α1 ⊕ α2 ⊕ . . .⊕ αr .

(iv) Show that αj has minimal polynomial (t − λj )p(j ) for some p(j ) ≤ m(j ). Show that
α has minimal polynomial dividing

∏r
j=1(t − λj )m(j ) and deduce that p(j ) = m(j ).

Exercise 12.3.14 Suppose that U and V are subspaces of a finite dimensional vector space
W with U ⊕ V = W . If α ∈ L(U,U ) and β ∈ L(V, V ), show, by choosing an appropriate
basis for W , that det(α ⊕ β) = det α det β. Find, with proof, the characteristic and minimal
polynomials of α ⊕ β in terms of the characteristic and minimal polynomials of α and β.

Exercise 12.3.15 We work over C.
(i) Explain why the following statement is false. Given monic polynomials P , Q and S

with

P (t) = S(t)Q(t),

we can find a matrix with characteristic polynomial P and minimal polynomial Q.
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(ii) Write down an n× n matrix A with characteristic polynomial tn and minimal
polynomial tm [n ≥ m ≥ 1]. What are the characteristic and minimal polynomials of
A− λI?

(iii) Show that, given monic polynomials P , Q, S and R with

P (t) = S(t)Q(t)

such that Q(z) = 0 ⇒ S(z) = 0, we can find a matrix with characteristic polynomial P

and minimal polynomial Q.

12.4 The Jordan normal form

If α : U → U is a linear map such that αm = 0 for some m ≥ 0, we say that α is nilpotent.
If we work over C, Theorem 12.3.12 implies the following result.

Theorem 12.4.1 Suppose that U is a finite dimensional vector space over C. Then, given
any linear map α : U → U , we can find r ≥ 1, λj ∈ C, subspaces Uj and nilpotent linear
maps βj : Uj → Uj such that, writing ιj for the identity map on Uj we have

U = U1 ⊕ U2 ⊕ . . .⊕ Ur,

α = (β1 + λ1ι1)⊕ (β2 + λ2ι2)⊕ . . .⊕ (βr + λrιr ).

Proof Since we work over C, the minimal polynomial Q of α will certainly factorise in
the manner required by Theorem 12.3.12. Setting βj = αj − λj ιj we have the required
result. �

Thus, in some sense, the study of L(U,U ) for finite dimensional vector spaces U over
C reduces to the study of nilpotent linear maps. We shall see that the study of nilpotent
linear maps can be reduced to the study of a particular type of nilpotent linear map.

Lemma 12.4.2 (i) If U is a vector space over F, α is a nilpotent linear map on U and e
satisfies αme �= 0, then e, αe, . . . , αme are linearly independent.

(ii) If U is a vector space of dimension n over F, α is a nilpotent linear map on U and e
satisfies αn−1e �= 0, then e, αe, . . . , αn−1e form a basis for U .

Proof (i) If e, αe, . . . αme are not independent, then we must be able to find a j with
1 ≤ j ≤ m, a λj �= 0 and λj+1, λj+2, . . . , λm such that

λjα
j e+ λj+1α

j+1e+ · · · + λmαme = 0.

Since α is nilpotent there must be an N ≥ m with αN+1e = 0 but αNe �= 0. We observe
that

0 = αN−j 0

= αN−j (λjα
j e+ λj+1α

j+1e+ · · · + λmαme)

= λjα
Ne,
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and so λj = 0 contradicting our initial assumption. The required result follows by reductio
ad absurdum.

(ii) Any linearly independent set with n elements is a basis. �
Exercise 12.4.3 If the conditions of Lemma 12.4.2 (ii) hold, write down the matrix of α

with respect to the given basis.

Exercise 12.4.4 Use Lemma 12.4.2 (i) to provide yet another proof of the statement that,
if α is a nilpotent linear map on a vector space of dimension n, then αn = 0.

We now come to the central theorem of the section. The general view, with which this
author concurs, is that it is more important to understand what it says than how it is proved.

Theorem 12.4.5 Suppose that U is a finite dimensional vector space over F and α : U →
U is a nilpotent linear map. Then we can find subspaces Uj and nilpotent linear maps

αj : Uj → Uj such that α
dim Uj−1
j �= 0,

U = U1 ⊕ U2 ⊕ . . .⊕ Ur and α = α1 ⊕ α2 ⊕ . . .⊕ αr .

The proof given here is in a form due to Tao. Although it would be a very long time
before the average mathematician could come up with the idea behind this proof,4 once the
idea is grasped, the proof is not too hard.

We make a temporary and non-standard definition which will not be used elsewhere.5

Definition 12.4.6 Suppose that U is a finite dimensional vector space over F and α : U →
U is a nilpotent linear map. If

E = {e1, e2, . . . , em}
is a finite subset of U not containing 0, we say that E generates the set

gen E = {αkei : k ≥ 0, 1 ≤ i ≤ m}.
If gen E spans U , we say that E is sufficiently large.

Exercise 12.4.7 Why is gen E finite?

We set out the proof of Theorem 12.4.5 in the following lemma of which part (ii) is the
key step.

Lemma 12.4.8 Suppose that U is a vector space over F of dimension n and α : U → U

is a nilpotent linear map.
(i) There exists a sufficiently large set.
(ii) If E is a sufficiently large set and gen E contains more than n elements, we can find

a sufficiently large set F such that gen F contains strictly fewer elements.
(iii) There exists a sufficiently large set E such that gen E has exactly n elements.
(iv) The conclusion of Theorem 12.4.5 holds.

4 Fitzgerald says to Hemingway ‘The rich are different from us’ and Hemingway replies ‘Yes they have more money’.
5 So the reader should not use it outside this context and should always give the definition within this context.
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Proof (i) Any basis for E will be a sufficiently large set.
(ii) Suppose that

E = {e1, e2, . . . , em}
is a sufficiently large set, but gen E > n. We define Ni by the condition αNi ei �= 0 but
αNi+1ei = 0.

Since gen E > n, gen E cannot be linearly independent and so we can find λik , not all
zero, such that

m∑
i=1

Ni∑
k=0

λikα
kei = 0.

Rearranging, we obtain ∑
1≤i≤m

Pi(α)ei

where the Pi are polynomials of degree at most Ni and not all the Pi are zero. By
Lemma 12.4.2 (ii), this means that at least two of the Pi are non-zero.

Factorising out the highest power of α possible, we have

αl
∑

1≤i≤m

Qi(α)ei = 0

where the Qi are polynomials of degree at most Ni − l, N (i) ≥ l whenever Qi is non-zero,
at least two of the Qi are non-zero and at least one of the Qi has non-zero constant term.
Multiplying by a scalar and renumbering if necessary we may suppose that Q1 has constant
term 1 and Q2 is non-zero. Then

αl

(
e1 + αR(α)e1 +

∑
2≤i≤m

Qi(α)ei

)
= 0

where R is a polynomial.
There are now three possibilities.

(A) If l = 0 and αR(α)e1 = 0, then

e1 ∈ span gen{e2, e3, . . . , em},
so we can take F = {e2, e3, . . . , em}.
(B) If l = 0 and αR(α)e1 �= 0, then

e1 ∈ span gen{αe1, e2, . . . , em},
so we can take F = {αe1, e2, . . . , em}.
(C) If l ≥ 1, we set f = e1 + αR(α)e1 +

∑
1≤i≤m Qi(α)ei and observe that

e1 ∈ span gen{f, e2, . . . , em},
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so the set F = {f, e2, . . . , em} is sufficiently large. Since αlf = 0, αN1 e1 �= 0 and l ≤ N1,
gen F contains strictly fewer elements than gen E.

It may be useful to note note the general resemblance of the argument in (ii) to Gaussian
elimination and the Steinitz replacement lemma.

(iii) Use (i) and then apply (ii) repeatedly.
(iv) By (iii) we can find a set of non-zero vectors

E = {e1, e2, . . . , em}

such that gen E has n elements and spans U . It follows that gen E is a basis for U . If we set

Ui = span gen{ei}

and define αi : Ui → Ui by αiu = αu whenever u ∈ U , the conclusions of Theorem 12.4.5
follow at once. �

Combining Theorem 12.4.5 with Theorem 12.4.1, we obtain a version of the Jordan
normal form theorem.

Theorem 12.4.9 Suppose that U is a finite dimensional vector space over C. Then, given
any linear map α : U → U , we can find r ≥ 1, λj ∈ C, subspaces Uj and linear maps
βj : Uj → Uj such that, writing ιj for the identity map on Uj , we have

U = U1 ⊕ U2 ⊕ . . .⊕ Ur,

α = (β1 + λ1ι1)⊕ (β2 + λ2ι2)⊕ . . .⊕ (β + λrιr ),

β
dim Uj−1
j �= 0 and β

dim Uj

j = 0 for 1 ≤ j ≤ r.

Proof Left to the reader. �

Using Lemma 12.4.2 and remembering the change of basis formula, we obtain the
standard version of our theorem.

Theorem 12.4.10 [The Jordan normal form] We work over C. We shall write Jk(λ) for
the k × k matrix

Jk(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 0 . . . 0 0
0 λ 1 0 . . . 0 0
0 0 λ 1 . . . 0 0
...

...
...

...
...

...
0 0 0 0 . . . λ 1
0 0 0 0 . . . 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If A is any n× n matrix, we can find an invertible n× n matrix M , an integer r ≥ 1,
integers kj ≥ 1 and complex numbers λj such that MAM−1 is a matrix with the matrices
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Jkj
(λj ) laid out along the diagonal and all other entries 0. Thus

MAM−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Jk1 (λ1)
Jk2 (λ2)

Jk3 (λ3)
. . .

Jkr−1 (λr−1)
Jkr

(λr )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof Left to the reader. �

The Jk(λ) are called Jordan blocks.

Exercise 12.4.11 Why is a diagonal matrix already in Jordan form?

Exercise 12.4.12 (i) We adopt the notation of Theorem 12.4.10 and use column vectors.
If λ ∈ C, find the dimension of

{x ∈ Cn : (λI − A)kx = 0}

in terms of the λj and kj .
(ii) Consider the matrix A of Theorem 12.4.10. If M̃ is an invertible n× n matrix, r̃ ≥ 1,

k̃j ≥ 1 λ̃j ∈ C and

M̃AM̃−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Jk̃1
(λ̃1)

Jk̃2
(λ̃2)

Jk̃3
(λ̃3)

. . .

Jk̃r−1
(λ̃r̃−1)

Jk̃r̃
(λ̃r̃ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

show that, r̃ = r and, possibly after renumbering, λ̃j = λj and k̃j = kj for 1 ≤ j ≤ r .

Theorem 12.4.10 and the result of Exercise 12.4.12 are usually stated as follows. ‘Every
n× n complex matrix can be reduced by a similarity transformation to Jordan form. This
form is unique up to rearrangements of the Jordan blocks.’ The author is not sufficiently
enamoured with the topic to spend time giving formal definitions of the various terms in
this statement. Notice that we have shown that ‘two complex matrices are similar if and
only if they have the same Jordan form’. Exercise 6.8.25 shows that this last result remains
useful when we look at real matrices.

Exercise 12.4.13 We work over C. Let Pn be the usual vector space of polynomials of
degree at most n in the variable z. Find the Jordan normal form for the endomorphisms T

and S given by (Tp)(z) = p′(z) and (Sp)(z) = zp′(z).
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Exercise 12.4.14 Suppose that U is a vector space of dimension n over F. If α ∈ L(U,U ),
we say that λ has algebraic multiplicity ma(λ) if λ is a root of multiplicity m of the
characteristic polynomial χα of α. (That is to say, (t − λ)ma (λ) is a factor of χα(t), but
(t − λ)ma (λ)+1 is not.) We say that λ has geometric multiplicity

mg(λ) = dim{u : (α − λι)(u) = 0}.
(i) Show that, if λ is a root of χα , then

1 ≤ mg(λ) ≤ ma(λ).

(ii) Show that if λk ∈ F, 1 ≤ ng(λk) ≤ na(λk) [1 ≤ k ≤ r] and
∑r

k=1 na(λk) = n we can
find an α ∈ L(U,U ) with mg(λk) = ng(λk) and ma(λk) = na(λk) for 1 ≤ k ≤ r .

(iii) Suppose now that F = C. Show how to compute ma(λ) and mg(λ) from the Jordan
normal form associated with α.

12.5 Applications

The Jordan normal form provides another method of studying the behaviour of α ∈
L(U,U ).

Exercise 12.5.1 Use the Jordan normal form to prove the Cayley–Hamilton theorem over
C. Explain why the use of Exercise 12.2.1 enables us to avoid circularity.

Exercise 12.5.2 (i) Let A be a matrix written in Jordan normal form. Find the rank of Aj

in terms of the terms of the numbers of Jordan blocks of certain types.
(ii) Use (i) to show that, if U is a finite vector space of dimension n over C, and

α ∈ L(U,U ), then the rank rj of αj satisfies the conditions

n = r0 > r1 > r2 > . . . > rm = rm+1 = rm+2 = . . . ,

for some m ≤ n together with the condition

r0 − r1 ≥ r1 − r2 ≥ r2 − r3 ≥ . . . ≥ rm−1 − rm.

Show also that, if a sequence sj satisfies the condition

n = s0 > s1 > s2 > . . . > sm = sm+1 = sm+2 = . . .

for some m ≤ n together with the condition

s0 − s1 ≥ s1 − s2 ≥ s2 − s3 ≥ . . . ≥ sm−1 − sm > 0,

then there exists an α ∈ L(U,U ) such that the rank of αj is sj .
[We thus have an alternative proof of Theorem 11.2.2 in the case when F = C. If the reader
cares to go into the matter more closely, she will observe that we only need the Jordan
form theorem for nilpotent matrices and that this result holds in R. Thus the proof of
Theorem 11.2.2 outlined here also works for R.]
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It also enables us to extend the ideas of Section 6.4 which the reader should reread. She
should do the following exercise in as much detail as she thinks appropriate.

Exercise 12.5.3 Write down the five essentially different Jordan forms of 4× 4 nilpotent
complex matrices. Call them A1, A2, A3, A4, A5.

(i) For each 1 ≤ j ≤ 5, write down the the general solution of

x′(t) = Aj x(t)

where x(t) = (x1(t), x2(t), x3(t), x4(t)
)T

, x′(t) = (x ′1(t), x ′2(t), x ′3(t), x ′4(t)
)T

and we
assume that the functions xj : R → C are well behaved.

(ii) If λ ∈ C, obtain the the general solution of

y′(t) = (λI + Aj )x(t)

from general solutions to the problems in (i).
(iii) Suppose that B is an n× n matrix in normal form. Write down the general solution

of

x′(t) = Bx(t)

in terms of the Jordan blocks.
(iv) Suppose that A is an n× n matrix. Explain how to find the general solution of

x′(t) = Ax(t).

If we wish to solve the differential equation

x(n)(t)+ an−1x
(n−1)(t)+ · · · + a0x(t) = 0 �

using the ideas of Exercise 12.5.3, then it is natural to set xj (t) = x(j )(t) and rewrite the
equation as

x′(t) = Ax(t),

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −an−2 −an−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. ��
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Exercise 12.5.4 Check that the rewriting is correct.

If we now try to apply the results of Exercise 12.5.3, we run into an immediate difficulty.
At first sight, it appears there could be many Jordan forms associated with A. Fortunately,
we can show that there is only one possibility.

Exercise 12.5.5 Let U be a vector space over C and α : U → U be a linear map. Show
that α can be associated with a Jordan form⎛

⎜⎜⎜⎜⎜⎜⎝

Jk1 (λ1)
Jk2 (λ2)

Jk3 (λ3)
. . .

Jkr−1 (λr−1)
Jkr

(λr )

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

with all the λj distinct, if and only if the characteristic polynomial of α is also its minimal
polynomial.

Exercise 12.5.6 Let A be the matrix given by ��. Suppose that a0 �= 0 By looking at⎛
⎝n−1∑

j=0

bjA
j

⎞
⎠ e,

where e = (1, 0, 0, . . . , 0)T , or otherwise, show that the minimal polynomial of A must
have degree at least n. Explain why this implies that the characteristic polynomial of A

is also its minimal polynomial. Using Exercise 12.5.5, deduce that there is a Jordan form
associated with A in which all the blocks Jk(λk) have distinct λk .

Exercise 12.5.7 (i) Find the general solution of � when the Jordan normal form associated
with A is a single Jordan block.

(ii) Find the general solution of � in terms of the structure of the Jordan form associated
with A.

We can generalise our previous work on difference equations (see for example Exer-
cise 6.6.11 and the surrounding discussion) in the same way.

Exercise 12.5.8 (i) Prove the well known formula for binomial coefficients(
r

k − 1

)
+
(

r

k

)
=
(

r + 1

k

)
[1 ≤ k ≤ r].

(ii) If k ≥ 0, we consider the k + 1 two sided sequences

uj = (. . . , uj (−3), uj (−2), uj (−1), uj (0), uj (1), uj (2), uj (3), . . .)
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with −1 ≤ j ≤ k. (More exactly, consider the functions uj : Z → F with −1 ≤ j ≤ k.)
Consider the system of k + 1 equations

ur (−1) = 0

ur (0)− ur−1(0) = ur (−1)

ur (1)− ur−1(1) = ur (0)

ur (2)− ur−1(2) = ur (1)

...

ur (k)− ur−1(k) = ur (k − 1)

where r ranges freely over Z.
Show that ur (0) = b0 with b0 constant. Show that ur (1) = b0r + b1 (with b0 and b1

constants). Find, with proof, the solution for all k ≥ 0.
(ii) Let λ ∈ F and λ �= 0. Find, with proof, the general solution of

vr (−1) = 0

vr (0)− λvr−1(0) = vr (−1)

vr (1)− λvr−1(1) = vr (0)

vr (2)− λvr−1(2) = vr (1)

...

vr (k)− λvr−1(k) = vr (k − 1).

(iii) Use the ideas of this section to find the general solution of

ur +
n−1∑
j=0

ajuj−n+r = 0

(where a0 �= 0 and r ranges freely over Z) in terms of the roots of

P (t) = tn +
n−1∑
j=0

aj t
j .

(iv) When we worked on differential equations we did not impose the condition a0 �= 0.
Why do we impose it for linear difference equations but not for linear differential equations?

Students are understandably worried by the prospect of having to find Jordan normal
forms. However, in real life, there will usually be a good reason for the failure of the roots
of the characteristic polynomial to be distinct and the nature of the original problem may
well give information about the Jordan form. (For example, one reason for suspecting that
Exercise 12.5.6 holds is that, otherwise, we would get rather implausible solutions to our
original differential equation.)
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In an examination problem, the worst that might happen is that we are asked to find a
Jordan normal form of an n× n matrix A with n ≤ 4 and, because n is so small,6 there are
very few possibilities.

Exercise 12.5.9 Write down the six possible types of Jordan forms for a 3× 3 matrix.
[Hint: Consider the cases all characteristic roots the same, two characteristic roots the
same, all characteristic roots distinct.]

A natural procedure runs as follows.

(a) Think. (This is an examination question so there cannot be too much calculation
involved.)

(b) Factorise the characteristic polynomial χ (t).
(c) Think.
(d) We can deal with non-repeated factors. We now look at each repeated factor (t − λ)m.
(e) Think.
(f) Find the general solution of (A− λI )x = 0. Now find the general solution of (A−

λI )x = y with y a general solution of (A− λI )y = 0 and so on. (But because the
dimensions involved are small there will be not much ‘so on’.)

(g) Think.

Exercise 12.5.10 Let A be a 5× 5 complex matrix with A4 = A2 �= A. What are the
possible minimal and characteristic polynomials of A? How many possible Jordan forms
are there? Give reasons. (You are not asked to write down the Jordan forms explicitly. Two
Jordan forms which can be transformed into each other by renumbering rows and columns
should be considered identical.)

Exercise 12.5.11 Find a Jordan normal form J for the matrix

M =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 0
0 −1 2 0
0 0 0 2

⎞
⎟⎟⎠ .

Determine both the characteristic and the minimal polynomial of M .
Find a basis of C4 with respect to which the linear map corresponding to M for the

standard basis has matrix J . Write down a matrix P such that P−1MP = J .

12.6 Further exercises

Exercise 12.6.1 Let U , V , W and X be finite dimensional vector spaces over F. Suppose
that α ∈ L(U,V ) and β ∈ L(V,W ) are such that the image of α is the null-space of β.

If σ ∈ L(V,X) is such that σα = 0, show that there exists a τ ∈ L(W,X) with τβ = σ .
Is τ necessarily unique? Give a proof or or a counterexample.

6 If n ≥ 5, then there is some sort of trick involved and direct calculation is foolish.
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Exercise 12.6.2 Suppose that U1, U2, . . . , Un are subspaces of a vector space V over F.
Show that V = U1 ⊕ U2 ⊕ . . .⊕ Un if and only if

(i) V =∑n
j=1 Uj

(ii) Ui ∩
∑

j �=i Uj = {0} for each i = 1, 2, . . . , n.
Let F = R and V = R3. Show that there are distinct one dimensional subspaces Uj

such that U1 + U2 + U3 + U4 = V and Ui ∩ (Uj + Uk) = {0} whenever i, j , k are distinct
integers taken from {1, 2, 3, 4}, but V is not the direct sum of the Ui .

Exercise 12.6.3 Let V and W be finite dimensional vector spaces over F, let U be a
subspace of V and let α : V → W be a surjective linear map. Which of the following
statements are true and which may be false? Give proofs or counterexamples.

(i) There exists a linear map β : V → W such that β(v) = α(v) if v ∈ U , and β(v) = 0
otherwise.

(ii) There exists a linear map γ : W → V such that αγ is the identity map on W .
(iii) If X is a subspace of V such that V = U ⊕X, then W = αU ⊕ αX.
(iv) If Y is a subspace of V such that W = αU ⊕ αY , then V = U ⊕ Y .

Exercise 12.6.4 Suppose that U and V are vector spaces over F. Show that U × V is a
vector space over F if we define

(u1, v1)+ (u2, v2) = (u1 + u2, v1 + v2) and λ(u, v) = (λu, λv)

in the natural manner.
Let

Ũ = {(u, 0) : u ∈ U} and Ṽ = {(0, v) : v ∈ V }.
Show that there are natural isomorphisms7 θ : U → Ũ and φ : V → Ṽ . Show that

Ũ ⊕ Ṽ = U × V.

[Because of the results of this exercise, mathematicians denote the space U × V , equipped
with the addition and scalar multiplication given here, by U ⊕ V . They call U ⊕ V the
exterior direct sum (or the external direct sum).]

Exercise 12.6.5 If C(R) is the space of continuous functions f : R → R and

X = {f ∈ C(R) : f (x) = f (−x)},
show that X is subspace of C(R) and find two subspaces Y1 and Y2 of C(R) such that
C(R) = X ⊕ Y1 = X ⊕ Y2 but Y1 ∩ Y2 = {0}.

Show, by exhibiting an isomorphism, that if V , W1 and W2 are subspaces of a vector space
U with U = V ⊕W1 = V ⊕W2, then W1 is isomorphic to W2. If V is finite dimensional,
is it necessarily true that W1 = W2? Give a proof or a counterexample.

7 Take natural as a synonym for defined without the use of bases.
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Exercise 12.6.6 (A second bite at the cherry.)
(i) Let U be a vector space over F.
If V and W are subspaces of U with U = V ⊕W show that there is an isomorphism

θ : W → U/V . Deduce that if A, B, C are subspaces of a vector space X over F, then

A⊕ B = A⊕ C ⇒ B ∼= C

(where, as usual, B ∼= C means that B is isomorphic to C).
(ii) Let P be the standard real vector space of polynomials on R with real coefficients.

Let

Qn = {Q ∈ P : Q(x) = xnP (x) for some P ∈ P}.
Show that Qn is a subspace of P with P ∼= Qn for all n.

If A, B, C are subspaces of a vector space X over F and A⊕ B ∼= A⊕ C, does it follow
that B ∼= C? Give reasons for your answer.

Exercise 12.6.7 Let W1, W2 and W3 be subspaces of a finite dimensional vector space V .
Which of the following statements are true and which are false? Give proofs or counterex-
amples as appropriate.

(i) If V = W1 ⊕W2, then dim W3 = dim(W1 ∩W3)+ dim(W2 ∩W3).
(ii) If dim W1 + dim W2 + dim W3 = dim V and

dim(W1 ∩W2) = dim(W2 ∩W3) = dim(W3 ∩W1) = 0,

then V = W1 ⊕W2 ⊕W3.
(iii) If W1 ∩W2 ⊆ W3, then W3/(W1 ∩W2) is isomorphic with

(W1 +W2 +W3)/(W1 +W2).

Exercise 12.6.8 Let P and Q be real polynomials with no non-trivial common factor. If
M is an n× n real matrix and we write A = f (M), B = g(M), show that x is a solution of
ABx = 0 if and only if we can find y and z with Ay = Bz = 0 such that x = y+ z.

Is the same result true for general n× n real matrices A and B? Give a proof or
counterexample.

Exercise 12.6.9 Let V be a vector space of dimension n over F and consider L(V, V ) as a
vector space in the usual way. If α ∈ L(V, V ) has rank r , show that

X = {β ∈ L(V, V ) : βα = 0} and Y = {β ∈ L(V, V ) : αβ = 0}
are subspaces of L(V, V ) and find their dimensions.

Suppose that n ≥ r ≥ 1. Is it always true that X = Y ? Is it never true that X = Y ? Give
proofs or counterexamples.

Exercise 12.6.10 Let U and V be finite dimensional vector spaces over F and let φ : U →
V be linear. We take Uj to be subspace of U . Which of the following statements are true
and which are false? Give proofs or counterexamples as appropriate.
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(i) If U1 + U2 = U3, then φ(U1)+ φ(U2) = φ(U3).
(ii) If U1 ⊕ U2 = U3, then φ(U1)⊕ φ(U2) = φ(U3).
(iii) If U2 ⊆ U3 and V1 is a subspace of V such that V1 ⊕ φ(U2) = φ(U3), then there

exists a subspace U1 of U such that U1 ⊕ U2 = U3 and φ(U1) = V1.

Exercise 12.6.11 Are the following statements about a linear map α : Fn → Fn true or
false? Give proofs of counterexamples as appropriate.

(i) α is invertible if and only if its characteristic polynomial has non-zero constant
coefficient.

(ii) α is invertible if and only if its minimal polynomial has non-zero constant coefficient.
(iii) α is invertible if and only if α2 is invertible.

Exercise 12.6.12 Let W be a subspace of a finite dimensional vector space V over F.
Suppose that α is an endomorphism of V such that α(W ) ⊆ W . Let β = α|W be the
restriction of α to V . Show that the minimal polynomial mβ of β divides the minimal
polynomial mα of α.

Let F = R and V = R4. Find an α and two subspaces W1, W2 of dimension 2 with
α(Wj ) ⊆ Wj such that, writing βj = α|Wj

, we have mβ1 = mα and mβ2 has degree at least
1, but mβ2 �= mα .

Exercise 12.6.13 [Eigenvalues without determinants] Suppose that U is a vector space
of dimension n over C and let α ∈ L(U,U ). Explain, without using any results which
depend on determinants, why there is a monic polynomial P such that P (α) = 0.

Since we work over C, we can write

P (t) =
N∏

j=1

(t − μj )

for some μj ∈ C [1 ≤ j ≤ N ]. Explain carefully why there must be some k with 1 ≤ k ≤ N

such that μkι− α is not invertible. Let us write μ = μk . Show that there is a non-zero vector
uk such that

αu = μu.

[If the reader needs a hint, she should look at Exercise 12.2.1 and the rank-nullity theorem
(Theorem 5.5.4). She should note that both theorems are proved without using determinants.
Sheldon Axler wrote an article entitled ‘Down with determinants’ ([3], available on the
web) in which he proposed a determinant free treatment of linear algebra. Later he wrote a
textbook Linear Algebra Done Right [4] to carry out the program.]

Exercise 12.6.14 [A direct proof of Cayley–Hamilton over R] In this question we deal
with the space Mn(R) of real n× n matrices. (Any reader interested in the matter should
note that the proof will work over any field.)
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(i) Suppose that Br ∈ Mn(R) and

R∑
r=0

Brt
r = 0

for all t ∈ R. By looking at matrix entries, or otherwise, show that Br = 0 for all 0 ≤ r ≤ R.
(ii) Suppose that Cr , B, C ∈ Mn(R) and

(tI − C)
R∑

r=0

Crt
r = B

for all t ∈ R. By using (i), or otherwise, show that CR = 0. Hence show that Cr = 0 for all
0 ≤ r ≤ R and conclude that B = 0.

(iii) Let χA(t) = det(tI − A). Verify that

(tkI − Ak) = (tI − A)(tk−1I + tk−2A+ tk−3A+ · · · + Ak−1),

and deduce that

χA(t)I − χA(A) = (tI − A)
n−1∑
j=0

Bj t
j

for some Bj ∈ Mn(R).
(iv) Use the formula

(tI − A) Adj(tI − A) = det(tI − A)I,

from Section 4.5, to show that

χA(t)I = (tI − A)
n−1∑
j=0

Cj t
j

for some Cj ∈ Mn(R).
Conclude that

χA(A) = (tI − A)
n−1∑
j=0

Aj t
j

for some Aj ∈ Mn(R) and deduce the Cayley–Hamilton theorem in the form χA(A) = 0.

Exercise 12.6.15 Let A be an n× n matrix over F with characteristic polynomial

det(tI − A) =
n∑

j=0

bj t
j .

If A is non-singular and n ≥ 0, show that

Adj A = (−1)n+1
n∑

j=1

bjA
j−1.

Use a limiting argument to show that the result is true for all A.
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Exercise 12.6.16 Let V be vector space over F of dimension n and T an endomorphism
of V . If x ∈ V , show that

U = {P (T )x : P a polynomial}
is a subspace of V . If U = V , we say that x is cyclic for T .

(i) If T has a cyclic vector, show that the minimal and characteristic polynomials of T

coincide.
(ii) If T has a cyclic vector and the eigenvectors of T span V , show that T has n distinct

eigenvalues.
(iii) If T has n distinct eigenvalues, show that T has a cyclic vector. (If you need a hint,

think for five more minutes and then look at Exercise 4.4.9.)
(iv) If T n = 0 but T n−1 �= 0, explain why we can find a vector v such that T n−1v �= 0

and show that v is cyclic. What are the eigenvalues of T ?
(v) If T has a cyclic vector, show that an endomorphism S commutes with T if and only

if S = Q(T ) for some polynomial Q.
(vi) Give an example of two commuting endomorphisms S and T such that there does

not exist a polynomial Q with S = Q(T ).

Exercise 12.6.17 Let V be a finite dimensional vector space over F and let � be a collection
of endomorphisms of V . A subspace U of V is said to be stable under � if θU ⊆ U for all
θ ∈ � and � is said to be irreducible if the only stable subspaces under � are {0} and V .

(i) Show that, if an endomorphism α commutes with every θ ∈ �, then ker α, im α and
the eigenspaces

Eλ = {v ∈ V : αv = λv}
are all stable under �.

(ii) If F = C, show that, if � is irreducible, the only endomorphisms which commute
with every θ ∈ � are the scalar multiples of the identity isomorphism ι.

(iii) Suppose that F = R and V = R2. By thinking geometrically, or otherwise, find an
irreducible � such that it is not true that the only endomorphisms which commute with
every θ ∈ � are the scalar multiples of the identity isomorphism ι.

Exercise 12.6.18 Suppose that V is a vector space over F and α, β, γ ∈ L(V, V ) are
projections. Show that α + β + γ = ι implies that

αβ = βα = γβ = βγ = γα = αγ = 0.

Deduce that if α and β are projections, α + β is a projection if and only if αβ = βα = 0.

Exercise 12.6.19 [Simultaneous diagonalisation] Suppose that U is an n-dimensional
vector space over F and α and β are endomorphisms of U . The object of this question is to
show that there exists a basis e1, e2, . . . , en of U such that each ej is an eigenvector of both
α and β if and only if α and β are separately diagonalisable (that is to say, have minimal
polynomials all of whose roots lie in F and have no repeated roots) and αβ = βα.
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(i) (Easy.) Check that the condition is necessary.
(ii) From now on, we suppose that the stated condition holds. If λ is an eigenvalue of β,

write

E(λ) = {e ∈ U : βe = λe}.
Show that E(λ) is a subspace of U such that, if e ∈ E(λ), then αe ∈ E(λ).

(iii) Consider the restriction map α|E(λ) : E(λ) → E(λ). By looking at the minimal
polynomial of α|E(λ), show that E(λ) has a basis of eigenvectors of α.

(iv) Use (iii) to show that there is a basis for U consisting of vectors which are eigen-
vectors of both α and β.

(v) Is the following statement true? If α and β are simultaneously diagonalisable (i.e.
satisfy the conditions of (i)) and we write

E(λ) = {e ∈ U : βe = λe}, F (μ) = {f ∈ U : αe = μe}
then at least one of the following occurs: F (μ) ⊇ E(λ) or E(λ) ⊇ F (μ) or E(λ) ∩ F (μ) =
{0}. Give a proof or counterexample.

Exercise 12.6.20 Suppose that U is an n-dimensional vector space over F and α1, α2, . . . ,
αm are endomorphisms of U . Show that there exists a basis e1, e2, . . . , en of U such that
each ek is an eigenvector of all the αj if and only if the αj are separately diagonalisable
and αjαk = αkαj for all 1 ≤ k, j ≤ m.

Exercise 12.6.21 Suppose that V is a finite dimensional space with a subspace U and that
α ∈ L(V, V ) has the property that αU ⊆ U .

(i) Show that, if v1 + U = v2 + U , then α(v1) = α(v2). Conclude that the map α̃ :
V/U → U/V given by

α̃(u+ U ) = α(u)+ U

is well defined. Show that α̃ is linear.
(ii) Suppose that e1, e2, . . . , ek is a basis for U and ek+1 + U , ek+2 + U , . . . , en + U is a

basis for V/U . Explain why e1, e2, . . . , en is a basis for V . If α|U : U → U (the restriction
of α to U ) has matrix B with respect to the basis e1, e2, . . . , ek of U and α̃ : V/U → V/U

has matrix C with respect to the basis ek+1 + U , ek+2 + U , . . . , en + U for V/U , show
that the matrix A of α with respect to the basis e1, e2, . . . , en can be written as

A =
(

B G

0 C

)
where 0 is a matrix of the appropriate size consisting of zeros and G is a matrix of the
appropriate size.

(iii) Show that the characteristic polynomials satisfy the relation

χα(t) = χα|U (t)χα̃(t).

Does a similar result hold for minimal polynomials? Give reasons for your answer.
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(iv) Explain why, if V is a finite dimensional vector space over C and α ∈ L(V, V ),
we can always find a one-dimensional subspace U with α(U ) ⊆ U . Use this result and
induction to prove Theorem 12.2.5.
[Of course, this proof is not very different from the proof in the text, but some people will
prefer it.]

Exercise 12.6.22 Suppose that α and β are endomorphisms of a (not necessarily finite
dimensional) vector space U over F. Show that, if

αβ − βα = ι, �

then

βαm − αmβ = mαm−1

for all integers m ≥ 0.
By considering the minimal polynomial of α, show that � cannot hold if U is finite

dimensional.
Let P be the vector space of all polynomials p with coefficients in F. If α is the

differentiation map given by (αp)(t) = p′(t), find a β such that � holds.
[Recall that [α, β] = αβ − βα is called the commutator of α and β.]

Exercise 12.6.23 Suppose that α and β are endomorphisms of a vector space U over F

such that

αβ − βα = ι.

Suppose that y ∈ U is a non-zero vector such that αy = 0. Let W be the subspace spanned
by y, βy, β2y, . . . . Show that αβy ∈ W and find a simple expression for it. More generally
show that αβny ∈ W and find a simple formula for it.

By using your formula, or otherwise, show that y, βy, β2y, . . . , βny are linearly
independent for all n.

Find U , β and y satisfying the conditions of the question.

Exercise 12.6.24 Recall, or prove that, if we deal with finite dimensional spaces, the
commutator of two endomorphisms has trace zero.

Suppose that T is an endomorphism of a finite dimensional space over F with a basis
e1, e2, . . . , en such that

T ej ∈ span{e1, e2, . . . , ej }.
Let S be the endomorphism with Se1 = 0 and Sej = ej−1 for 2 ≤ j ≤ n. Show that, if
Tr T = 0, we can find an endomorphism such that SR − RS = T .

Deduce that, if γ is an endomorphism of a finite dimensional vector space over C, with
Tr γ = 0 we can find endomorphisms α and β such that

γ = αβ − βα.
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[Shoda proved that this result also holds for R. Albert and Muckenhoupt showed that it
holds for all fields. Their proof, which is perfectly readable by anyone who can do the
exercise above, appears in the Michigan Mathematical Journal [1].]

Exercise 12.6.25 Let us write Mn for the set of n× n matrices over F.
Suppose that A ∈ Mn and A has 0 as an eigenvalue. Show that we can find a non-singular

matrix P ∈ Mn such that P−1AP = B and B has all entries in its first column zero. If B̃ is
the (n− 1)× (n− 1) matrix obtained by deleting the first row and column from B, show
that Tr B̃k = Tr Bk for all k ≥ 1.

Let C ∈ Mn. By using the Cayley–Hamilton theorem, or otherwise, show that, if Tr Ck =
0 for all 1 ≤ k ≤ n, then C has 0 as an eigenvalue. Deduce that C = 0.

Suppose that F ∈ Mn and Tr Fk = 0 for all 1 ≤ k ≤ n− 1. Does it follow that F has 0
as an eigenvalue? Give a proof or counterexample.

Exercise 12.6.26 We saw in Exercise 6.2.15 that, if A and B are n× n matrices over F,
then the characteristic polynomials of AB and BA are the same. By considering appropri-
ate nilpotent matrices, or otherwise, show that AB and BA may have different minimal
polynomials.

Exercise 12.6.27 (i) Are the following statements about an n× n matrix A true or false if
we work in R? Are they true or false if we work in C? Give reasons for your answers.

(a) If P is a polynomial and λ is an eigenvalue of P , then P (λ) is an eigenvalue of
P (A).

(b) If P (A) = 0 whenever P is a polynomial with P (λ) = 0 for all eigenvalues λ

of A, then A is diagonalisable.
(c) If P (λ) = 0 whenever P is a polynomial and P (A) = 0, then λ is an eigenvalue

of A.
(ii) We work in C. Let

B =

⎛
⎜⎜⎝

a d c b

b a d c

c b a d

d c b a

⎞
⎟⎟⎠ and A =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ .

By computing powers of A, or otherwise, find a polynomial P with B = P (A) and find the
eigenvalues of B. Compute det B.

(iii) Generalise (ii) to n× n matrices and then compare the results with those of Exer-
cise 6.8.29.

Exercise 12.6.28 Let V be a vector space over F with a basis e1, e2, . . . , en. If σ is a
permutation of 1, 2, . . . , n we define ασ to be the unique endomorphism with

ασ ej = eσj

for 1 ≤ j ≤ n. If F = R, show that ασ is diagonalisable if and only if σ 2 is the identity
permutation. If F = C, show that ασ is always diagonalisable.
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Exercise 12.6.29 Consider V = Fn with the usual inner product.
By using an appropriate orthonormal basis, or otherwise (there are lots of ways of doing

this), show that, if E is a subspace of V and a /∈ E, then we can find a δ > 0 such that

‖x− a‖ < δ ⇒ x /∈ E.

Show also that, if E is a proper subspace of V (so E �= V ), then, given any v ∈ V and
any δ > 0, we can find a /∈ E with

‖v− a‖ < δ.

Deduce that, given any 1 ≤ p ≤ n, we can find a sequence a1, a2, . . . of distinct vectors
in V such that any collection of p members of the sequence is linearly independent, but no
collection of p + 1 members is.

Since all vector spaces over F of the same dimension are isomorphic, the result holds
for all finite dimensional vector spaces.8

Exercise 12.6.30 (This continuation of Exercise 12.6.29 requires the notion of a Cauchy
sequence in Rm and the knowledge of analysis which goes with it.) Consider V = Rm with
the usual inner product.

If E1, E2, . . . are proper subspaces of V , show that we can find inductively an and
δn > 0, with a0 = 0 and δ0 = 1, satisfying the following conditions.

(i) ‖an − an−1‖ < δn−1/4.
(ii) ‖x− an‖ < δn ⇒ x /∈ En.
(iii) δn < δn−1/4.
Show that the an form a Cauchy sequence and deduce that there exists an a ∈ V with

‖an − a‖ → 0. Show that ‖ak − a‖ ≤ δk/3 for each k ≥ 1 and deduce that a /∈ V .
Thus a finite dimensional vector space over R cannot be the countable union of proper

subspaces. (The same argument works for C.)

Exercise 12.6.31 We work in a finite dimensional vector space V over F. Show that any
two subspaces U1, U2 of the same dimension have a common complementary subspace. In
other words, show that there is a subspace W such that

U1 ⊕W = U2 ⊕W = V.

Exercise 12.6.32 Let U and V be vector spaces over F of dimensions m and n respectively.
Suppose that X and Y are subspaces of U with X ⊆ Y , that Z is a subspace of V and that

dim X = r, dim Y = s, dim Z = t.

Show that the set L0 of all α ∈ L(U,V ) such that X ⊆ ker α and α(Y ) ⊆ Z is a subspace
of L(U,V ) with dimension

mn+ st − rt − sn.

8 This is an ugly way of doing things, but, as we shall see in the next chapter (for example, in Exercise 13.4.1), we must use some
‘non-algebraic’ property of R and C.
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Exercise 12.6.33 Here is another proof of the diagonalisation theorem (Theorem 12.3.5).
Let V be a finite dimensional vector space over F. If αj ∈ L(V, V ) show that the nullities
satisfy

n(α1α2) ≤ n(α1)+ n(α2)

and deduce that

n(α1α2 · · ·αk) ≤ n(α1)+ n(α2)+ · · · + n(αk).

Hence show that, if α ∈ L(V, V ) satisfies p(α) = 0 for some polynomial p which factorises
into distinct linear terms, then α is diagonalisable.

Exercise 12.6.34 In our treatment of the Jordan normal form we worked over C. In this
question you may not use any result concerning C, but you may use the theorem that every
real polynomial factorises into linear and quadratic terms.

Let α be an endomorphism on a finite dimensional real vector space V . Explain briefly
why there exists a real monic polynomial m with m(α) = 0 such that, if f is a real
polynomial with f (α) = 0, then m divides f .

Show that, if k is a non-constant polynomial dividing m, there is a non-zero subspace
W of V such that k(W ) = {0}. Deduce that V has a subspace U of dimension 1 or 2 such
that α(U ) ⊆ U (that is to say, U is an α-invariant subspace).

Let α be the endomorphism of R4 whose matrix with respect to the standard basis is

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
−1 0 −2 0

⎞
⎟⎟⎠ .

Show that R4 has an α-invariant subspace of dimension 2 but no α-invariant subspaces of
dimension 1 or 3.

Exercise 12.6.35 Suppose that V is a finite dimensional space over F and α : V → V is a
linear map such that αn = ι. Show that, if V1 is a subspace with αV1 ⊆ V1, then there is a
subspace V2 such that V = V1 ⊕ V2 and α(V2) ⊆ V2.
[Hint: Let π be a projection with π (V ) ⊆ V1 and πu = u for all u ∈ V1. Consider the map
ρ defined by ρ(v) = n−1∑n−1

j=0 αjπα−j (v).]

Exercise 12.6.36 (i) Let U be a vector space over F and let α : U → U be a linear map
such that αm = 0 for some m (that is to say, a nilpotent map). Show that

(ι− α)(ι+ α + α2 + · · · + αm−1) = ι

and deduce that ι− α is invertible.
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(ii) Let Jm(λ) be an m×m Jordan block matrix over F, that is to say, let

Jm(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 0 . . . 0 0
0 λ 1 0 . . . 0 0
0 0 λ 1 . . . 0 0
...

...
...

...
...

...
0 0 0 0 . . . λ 1
0 0 0 0 . . . 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Show that Jm(λ) is invertible if and only if λ �= 0. Write down Jm(λ)−1 explicitly in the
case when λ �= 0.

(iii) Use the Jordan normal form theorem to show that, if U is a vector space over C and
α : U → U is a linear map, then α is invertible if and only if the equation αx = 0 has a
unique solution.
[Part (iii) is for amusement only. It would require a lot of hard work to remove any suggestion
of circularity.]

Exercise 12.6.37 Let Qn be the space of all real polynomials in two variables

Q(x, y) =
n∑

j=0

n∑
k=0

qjkx
jyk

of degree at most n in each variable. Let

(αQ)(x, y) =
(

∂

∂x
+ ∂

∂y

)
Q(x, y), (βQ)(x, y) = Q(x + 1, y + 1).

Show that α and β are endomorphisms of Qn and find the associated Jordan normal forms.
[It may be helpful to look at simple cases, but just looking for patterns without asking the
appropriate questions is probably not the best way of going about things.]

Exercise 12.6.38 We work over C. Let A be an invertible n× n matrix. Show that λ is an
eigenvalue of A if and only if λ−1 is an eigenvalue of A−1. What is the relationship between
the algebraic and geometric multiplicities of λ as an eigenvalue of A and the algebraic
and geometric multiplicities of λ−1 as an eigenvalue of A−1? Obtain the characteristic
polynomial of A−1 in terms of the characteristic polynomial of A. Obtain the minimal
polynomial of A−1 in terms of the minimal polynomial of A. Give reasons.

Exercise 12.6.39 Given a matrix in Jordan normal form, explain how to write down the
associated minimal polynomial without further calculation. Why does your method work?

Is it true that two n× n matrices over C with the same minimal polynomial must have
the same rank? Give a proof or counterexample.

Exercise 12.6.40 By first considering Jordan block matrices, or otherwise, show that every
n× n complex matrix is conjugate to its transpose AT (in other words, there exists an
invertible n× n matrix P such that AT = PAP−1).
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Exercise 12.6.41 We work with n× n matrices over C. We say that an n× n matrix U is
unipotent if U − I is nilpotent.

(i) Show that U is unipotent if and only if its only eigenvalue is 1.
(ii) If A is an invertible n× n matrix, show, by considering the Jordan normal form, that

there exists an invertible matrix P such that

PAP−1 = D0 +N

where D0 is an invertible diagonal matrix, N is an upper triangular matrix with zeros on
the diagonal and D0N = ND0.

(iii) If we now set D = P−1D0P , show that U = D−1A is unipotent.
(iv) Conclude that any invertible matrix A can be written in the form A = DU where D

is diagonalisable, U is unipotent and DU = UD.
(v) Is it true that every n× n matrix A can be written in the form A = DU where D is

diagonalisable, U is unipotent and DU = UD? Is it true that, if an n× n matrix A can be
written in the form A = DU where D is diagonalisable, U is unipotent and DU = UD,
then A is invertible? Give reasons for your answers.

Exercise 12.6.42 Let α, β ∈ L(U,U ), where U is a finite dimensional vector space over
C. Show that, if αβ = βα, then we can triangularise the two endomorphisms simultane-
ously. In other words, we can find a basis e1, e2, . . . , en such that

αer , βer ∈ span{e1, e2, . . . , er}.
If we can triangularise α, β ∈ L(U,U ) simultaneously, does it follow that αβ = βα?

Give reasons for your answer.
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Vector spaces without distances

13.1 A little philosophy

There are at least two ways that the notion of a finite dimensional vector space over R or
C can be generalised. The first is that of the analyst who considers infinite dimensional
spaces. The second is that of the algebraist who considers finite dimensional vector spaces
over more general objects than R or C.

It appears that infinite dimensional vector spaces are not very interesting unless we
add additional structure. This additional structure is provided by the notion of distance or
metric. It is natural for analysts to invoke metric considerations when talking about finite
dimensional spaces, since they expect to invoke metric considerations when talking about
infinite dimensional spaces.

It is also natural for numerical analysts to talk about distances, since they need to measure
the errors in their computations, and for physicists to talk about distances, since they need
to measure the results of their experiments.

Algebraists dislike mixing up concepts in this way. They point out that many results in
vector space theory from Desargues’ theorem (see Exercise 13.4.9) to determinants do not
depend on the existence of a distance and that it is likely that the most perspicacious way
of viewing these results will not involve this extraneous notion. They will also point out
that many generalisations of the idea of vector spaces (including the ones considered in this
chapter) produce structures which do not support a linked metric.1

In Chapters 14 and 15 we shall plunge eagerly into the world of distances, but in this
chapter we look at the world through the eyes of the algebraist. Although I hope the reader
will think about the contents of this chapter, she should realise that it only scratches the
surface of its subject.

13.2 Vector spaces over fields

The simplest generalisation of the real and complex number systems is the notion of a field,
that is to say an object which behaves algebraically like those two systems. We formalise
this idea by writing down an axiom system.

1 They may support metrics, but these metrics will not reflect the algebraic structure.

329
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Definition 13.2.1 A field (G,+,×) is a set G containing elements 0 and 1, with 0 �= 1, for
which the operations of addition and multiplication obey the following rules (we suppose
that a, b, c ∈ G).

(i) a + b = b + a.
(ii) (a + b)+ c = a + (b + c).
(iii) a + 0 = a.
(iv) Given a, we can find −a ∈ G with a + (−a) = 0.
(v) a × b = b × a.
(vi) (a × b)× c = a × (b × c).
(vii) a × 1 = a.
(viii) Given a �= 0, we can find a−1 ∈ G with a × a−1 = 1.
(ix) a × (b + c) = a × b + a × c.

We write ab = a × b and refer to the field G rather than to the field (G,+,×). The
axiom system is merely intended as background and we shall not spend time checking that
every step is justified from the axioms.2

It is easy to see that the rational numbers Q form a field and that, if p is a prime, the
integers modulo p give rise to a field which we call Zp.

Exercise 13.2.2 (i) Write down addition and multiplication tables for Z2. Check that
x + x = 0, so x = −x for all x ∈ Z2.

(ii) If G is a field which satisfies the condition 1+ 1 �= 0, show that x = −x ⇒ x = 0.

Exercise 13.2.3 We work in a field G.
(i) Show that, if cd = 0, then at least one of c and d must be zero.
(ii) Show that if a2 = b2, then a = b or a = −b (or both).
(iii) If G is a field with k elements which satisfies the condition 1+ 1 �= 0, show that k

is odd and exactly (k + 1)/2 elements of G are squares.
(iv) How many elements of Z2 are squares?

If G is a field, we define a vector space U over G by repeating Definition 5.2.2 with F

replaced by G. All the material on solution of linear equations, determinants and dimension
goes through essentially unchanged. However, in general, there is no analogue of our work
on Euclidean distance and inner product.

One interesting new vector space that turns up is described in the next exercise.

Exercise 13.2.4 Check that R is a vector space over the field Q of rationals if we
define vector addition +̇ and scalar multiplication ×̇ in terms of ordinary addition + and
multiplication × on R by

x+̇y = x + y, λ×̇x = λ× x

for x, y ∈ R, λ ∈ Q.

2 But I shall not lie to the reader and, if she wants, she can check that everything is indeed deducible from the axioms. If you are
going to think about the axioms, you may find it useful to observe that conditions (i) to (iv) say that (G,+) is an Abelian group
with 0 as identity, that conditions (v) to (viii) say that (G \ {0},×) is an Abelian group with 1 as identity and that condition (ix)
links addition and multiplication through the ‘distributive law’.
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The world is divided into those who, once they see what is going on in Exercise 13.2.4,
smile a little and those who become very angry.3 Once we are clear what the definition
means, we replace +̇ and ×̇ by + and ×.

The proof of the next lemma requires you to know about countability.

Lemma 13.2.5 The vector space R over Q is infinite dimensional.

Proof If e1, e2, . . . , en ∈ R, then, since Q, and so Qn is countable, it follows that

E =
⎧⎨
⎩

n∑
j=1

λj ej : λj ∈ Q

⎫⎬
⎭

is countable. Since R is uncountable, it follows that R �= E. Thus no finite set can
span R. �

Linearly independent sets for the vector space just described turn up in number theory
and related disciplines.

The smooth process of generalisation comes to a halt when we reach eigenvalues. It
remains true that every root of the characteristic equation of an n× n matrix corresponds
to an eigenvalue, but, in many fields, it is not true that every polynomial has a root.

Exercise 13.2.6 (i) Suppose that we work over a field G in which 1+ 1 �= 0. Let

A =
(

0 1
a 0

)
with a �= 0. Show that there exists an invertible 2× 2 matrix M with MAM−1 diagonal if
and only if t2 = a has a solution.

(ii) What happens if a = 0?
(iii) Does a suitable M exist if G = Q and a = 2?
(iv) Suppose that G is a finite field with 1+ 1 �= 0 (for example, G = Zp with p ≥ 3).

Use Exercise 13.2.3 to show that we cannot diagonalise A for all non-zero a.
(v) Suppose that we drop the condition in (i) and consider G = Z2. Can we diagonalise

A =
(

0 1
1 0

)
?

Give reasons.
Find an explicit invertible M such that MAM−1 is lower triangular.

There are many other fields besides the ones just discussed.

Exercise 13.2.7 Consider the set Z2
2. Suppose that we define addition and multiplication

for Z2
2, in terms of standard addition and multiplication for Z2, by

(a, b)+ (c, d) = (a + c, b + d),

(a, b)× (c, d) = (ac + bd, ad + bc + bd).

3 Not a good sign if you want to become a pure mathematician.
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Write out the addition and multiplication tables and show that Z2
2 is a field for these

operations. How many of the elements are squares?
[Secretly, (a, b) = a + bω with ω2 = 1+ ω and there is a theory which explains this choice,
but fiddling about with possible multiplication tables would also reveal the existence of this
field.]

The existence of fields in which 2 = 0 (where we define 2 = 1+ 1) such as Z2 and the
field described in Exercise 13.2.7 produces an interesting difficulty.

Exercise 13.2.8 (i) If G is a field in which 2 �= 0, show that every n× n matrix over G

can be written in a unique way as the sum of a symmetric and an antisymmetric matrix.
(That is to say, A = B + C with BT = B and CT = −C.)

(ii) Show that an n× n matrix over Z2 is antisymmetric if and only if it is symmetric.
Give an example of a 2× 2 matrix over Z2 which cannot be written as the sum of a
symmetric and an antisymmetric matrix. Give an example of a 2× 2 matrix over Z2 which
can be written as the sum of a symmetric and an antisymmetric matrix in two distinct
ways.

Thus, if you wish to extend a result from the theory of vector spaces over C to a vector
space U over a field G, you must ask yourself the following questions.

(1) Does every polynomial in G have a root? (If it does we say that G is algebraically
closed.)

(2) Is there a useful analogue of Euclidean distance? If you are an analyst, you will then
need to ask whether your metric is complete (that is to say, every Cauchy sequence
converges).

(3) Is the space finite or infinite dimensional?
(4) Does G have any algebraic quirks? (The most important possibility is that 2 = 0.)

Sometimes the result fails to transfer. It is not true that every endomorphism of finite
dimensional vector spaces V over G has an eigenvector (and so it is not true that the
triangularisation result Theorem 12.2.5 holds) unless every polynomial with coefficients G

has a root in G. (We discuss this further in Exercise 13.4.3.)
Sometimes it is only the proof which fails to transfer. We used Theorem 12.2.5 to

prove the Cayley–Hamilton theorem for C, but we saw that the Cayley–Hamilton theorem
remains true for R although the triangularisation result of Theorem 12.2.5 now fails. In fact,
the alternative proof of the Cayley–Hamilton theorem given in Exercise 12.6.14 works for
every field and so the Cayley–Hamilton theorem holds for every finite dimensional vector
space U over any field. (Since we do not know how to define determinants in the infinite
dimensional case, we cannot even state such a theorem if U is not finite dimensional.)

Exercise 13.2.9 Here is another surprise that lies in wait for us when we look at general
fields.
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(i) Show that, if we work in Z2,

x2 + x = 0

for all x. Thus a polynomial with non-zero coefficients may be zero everywhere.
(ii) Show that, if we work in any finite field, we can find a polynomial with non-zero

coefficients which is zero everywhere.

The reader may ask why I do not prove all results for the most general fields to which
they apply. This is to view the mathematician as a worker on a conveyor belt who can always
find exactly the parts that she requires. It is more realistic to think of the mathematician as
a tinkerer in a garden shed who rarely has the exact part she requires, but has to modify
some other part to make it fit her machine. A theorem is not a monument, but a signpost
and the proof of a theorem is often more important than its statement.

We conclude this section by showing how vector space theory gives us information
about the structure of finite fields. Since this is a digression within a digression, I shall use
phrases like ‘subfield’ and ‘isomorphic as a field’ without defining them. If you find that
this makes the discussion incomprehensible, just skip the rest of the section.

Lemma 13.2.10 Let G be a finite field. We write

k̄ = 1+ 1+ · · · + 1︸ ︷︷ ︸
k

for k a positive integer. (Thus 0̄ = 0 and 1̄ = 1.)
(i) There is a prime p such that

H = {r̄ : 0 ≤ r ≤ p − 1}
is a subfield of G and H is isomorphic as a field to Zp.

(iii) G may be considered as a vector space over H.
(iv) There is an n ≥ 1 such that G has exactly pn elements.

Thus we know, without further calculation, that there is no field with 22 elements. It can
be shown that, if p is a prime and n a strictly positive integer, then there does, indeed, exist
a field with exactly pn elements, but a proof of this would take us too far afield.

Proof of Lemma 13.2.10 (i) Since G is finite, there must exist integers u and v with
0 ≤ v < u such that ū = v̄ and so, setting w = u− v, there exists an integer w > 0 such
that w̄ = 0. Let p be the least strictly positive integer such that p̄ = 0. We must have p

prime, since, if 1 ≤ r ≤ s ≤ p,

p = rs ⇒ 0 = r̄ s̄ ⇒ r̄ = 0 and/or s̄ = 0 ⇒ s = p.

(ii) Suppose that r and s are integers with r ≥ s ≥ 0 and r̄ = s̄. We know that r − s =
kp + q for some integer k ≥ 0 and some integer q with p − 1 ≥ q ≥ 0, so

0 = r̄ − s̄ = r − s = kp + q = q̄,



334 Vector spaces without distances

so q = 0 and r ≡ s modulo p. Conversely, if r ≡ s modulo p, then an argument of a similar
type shows that r̄ = s̄. We have established a bijection [r] ↔ r̄ which matches the element
[r] of Zp corresponding to the integer r to the element r̄ . Since rs = r̄ s̄ and r + s = r̄ + s̄,
this bijection preserves addition and multiplication.

(iii) Just as in Exercise 13.2.4, any field H with subfield K may be considered as a
vector space over K by defining vector addition to correspond to ordinary field addition
for H and multiplication of a vector in H by a scalar in K to correspond to ordinary field
multiplication for H.

(iv) Consider G as a vector space over H. Since G is finite, it has a finite spanning set
(for example, G itself) and so is finite dimensional. Let e1, e2, . . . , en be a basis. Then each
element of G corresponds to exactly one expression

n∑
j=1

λj ej with λj ∈ H [1 ≤ j ≤ n]

and so G has pn elements. �

The theory of finite fields has applications in the theory of data transmission and storage.
(We discussed ‘secret sharing’ in Section 5.6 and the next section discusses an error
correcting code, but many applications require deeper results.)

13.3 Error correcting codes

In this section we use vector spaces over Z2 to discuss some simple error correcting codes.
We start with some easy exercises to get the reader used to working with Z2.

Exercise 13.3.1 Do Exercise 13.2.2 if you have not already done it.
If U is a vector space over the field Z2, show that a subset W of U is a subspace if and

only if
(i) 0 ∈ W and
(ii) u, v ∈ W ⇒ u+ v ∈ W .

Exercise 13.3.2 Show that the following statements about a vector space U over the field
Z2 are equivalent.

(i) U has dimension n.
(ii) U is isomorphic to Zn

2 (that is to say, there is a linear map α : U → Zn
2 which is a

bijection).
(iii) U has 2n elements.

Exercise 13.3.3 If p ∈ Zn
2 , show that the mapping α : Zn

2 → Z2 defined by

α(e) =
n∑

j=1

pjej
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is linear. (In the language of Sections 11.3 and 11.4, we have α ∈ (Zn
2)′ the dual space

of Zn
2 .)

Show, conversely, that, if α ∈ (Zn
2)′, then we can find a p ∈ Zn

2 such that

α(e) =
n∑

j=1

pjej .

Early computers received their instructions through paper tape. Each line of paper tape
had a pattern of holes which may be thought of as a ‘word’ x = (x1, x2, . . . , x8) with xj

either taking the value 0 (no hole) or 1 (a hole). Although this was the fastest method of
reading in instructions, mistakes could arise if, for example, a hole was mispunched or a
speck of dust interfered with the optical reader. Because of this, x8 was used as a check
digit defined by the relation

x1 + x2 + · · · + x8 ≡ 0 (mod 2).

The input device would check that this relation held for each line. If the relation failed for
a single line the computer would reject the entire program.

Hamming had access to an early electronic computer, but was low down in the priority
list of users. He would submit his programs encoded on paper tape to run over the weekend,
but often he would have his tape returned on Monday because the machine had detected
an error in the tape. ‘If the machine can detect an error’ he asked himself ‘why can the
machine not correct it?’ and he came up with the following idea.

Hamming’s scheme used seven of the available places so his words had the form
c = (c1, c2, . . . , c7) ∈ {0, 1}7. The codewords4 c are chosen to satisfy the following three
conditions, modulo 2,

c1 + c3 + c5 + c7 ≡ 0

c2 + c3 + c6 + c7 ≡ 0

c4 + c5 + c6 + c7 ≡ 0.

By inspection, we may choose c3, c5, c6 and c7 freely and then c1, c2 and c4 are completely
determined.

Suppose that we receive the string x ∈ F7
2. We form the syndrome (z1, z2, z4) ∈ F3

2

given by

z1 ≡ x1 + x3 + x5 + x7

z2 ≡ x2 + x3 + x6 + x7

z4 ≡ x4 + x5 + x6 + x7

where our arithmetic is modulo 2. If x is a codeword, then (z1, z2, z4) = (0, 0, 0). If one
error has occurred then the place in which x differs from c is given by z1 + 2z2 + 4z4 (using
ordinary addition, not addition modulo 2).

4 There is no suggestion of secrecy here or elsewhere in this section. A code is simply a collection of codewords and a codeword
is simply a permitted pattern of zeros and ones. Notice that our codewords are row vectors.
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Exercise 13.3.4 Construct a couple of examples of Hamming codewords c and change
them in one place. Check that the statement just made holds for your examples.

Exercise 13.3.5 Suppose that we use eight hole tape with the standard paper tape code
and the probability that an error occurs at a particular place on the tape (i.e. a hole
occurs where it should not or fails to occur where it should) is 10−4, errors occurring
independently of each other. A program requires about 10 000 lines of tape (each line
containing eight places) using the paper tape code. Using the Poisson approximation,
direct calculation (possible with a hand calculator, but really no advance on the Poisson
method), or otherwise, show that the probability that the tape will be accepted as error free
by the decoder is less than 0.04%.

Suppose now that we use the Hamming scheme (making no use of the last place in
each line). Explain why the program requires about 17 500 lines of tape but that any
particular line will be accepted as error free and correctly decoded with probability about
1− (21× 10−8) and the probability that the entire program will be accepted as error free
and be correctly decoded is better than 99.6%.

Hamming’s scheme is easy to implement. It took a little time for his company to realise
what he had done,5 but they were soon trying to patent it. In retrospect, the idea of an error
correcting code seems obvious (Hamming’s scheme had actually been used as the basis of
a Victorian party trick) but Hamming’s idea opened up an entirely new field.6

Why does the Hamming scheme work? It is natural to look at strings of 0s and 1s as row
vectors in the vector space Zn

2 over the field Z2. Let us write

A =
⎛
⎝1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎠ �

and let ei ∈ Z7
2 be the row vector with 1 in the ith place and 0 everywhere else.

Exercise 13.3.6 We use the notation just introduced.
(i) Show that c is a Hamming codeword if and only if AcT = 0 (working in Z2).
(ii) If j = a1 + 2a2 + 4a3 in ordinary arithmetic with a1, a2, a3 ∈ {0, 1} show that,

working in Z2,

AeT
j =
⎛
⎝a1

a2

a3

⎞
⎠ .

5 Experienced engineers came away from working demonstrations muttering ‘I still don’t believe it’.
6 When Fillipo Brunelleschi was in competition to build the dome for the Cathedral of Florence he refused to show his plans

‘. . . proposing instead . . . that whosoever could make an egg stand upright on a flat piece of marble should build the cupola,
since thus each man’s intellect would be discerned. Taking an egg, therefore, all those craftsmen sought to make it stand
upright, but not one could find the way. Whereupon Filippo, being told to make it stand, took it graciously, and, giving one end
of it a blow on the flat piece of marble, made it stand upright. The craftsmen protested that they could have done the same;
but Filippo answered, laughing, that they could also have raised the cupola, if they had seen his design.’ Vasari Lives of the
Artists [31].
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Deduce that, if c is a Hamming codeword,

A(c+ ej )T =
⎛
⎝a1

a2

a3

⎞
⎠ .

Explain why the statement made in the paragraph preceding Exercise 13.3.4 holds.

Exercise 13.3.7 We can make a few more observations. We take ei as in the previous
exercise.

(i) If 1 ≤ i, j ≤ 7 and i �= j , explain why AeT
i �= AeT

j and deduce that

A(eT
i + eT

j ) �= 0T . �

Conclude that, if we make two errors in transcribing a Hamming codeword, the result will
not be a Hamming codeword. (Thus the Hamming system will detect two errors. However,
you should look at the second part of the question before celebrating.)

(ii) If 1 ≤ i, j ≤ 7 and i �= j , show, by using �, or otherwise, that

A(eT
i + eT

j ) = AeT
k

for some k �= i, j . Show that, if we make three errors in transcribing a Hamming codeword,
the result will be a Hamming codeword. Deduce, or prove otherwise, that, if we make two
errors, the Hamming system will indeed detect that an error has been made, but will always
choose the wrong codeword.

The Hamming code is a parity check code.

Definition 13.3.8 If A is an r × n matrix with values in Z2 and C consists of those row
vectors c ∈ Zn

2 with AcT ∈ 0T , we say that C is a parity check code with parity check
matrix A.

If W is a subspace of Zn
2 we say that W is a linear code with codewords of length n.

Exercise 13.3.9 We work in Zn
2 . By using Exercise 13.3.3, or otherwise, show that C ⊆ Zn

2

is a parity code if and only if we can find αj ∈ (Zn
2)′ [1 ≤ j ≤ r] such that

c ∈ C ⇔ αj c = 0 for all 1 ≤ j ≤ r.

Exercise 13.3.10 Show that any parity check code is a linear code.

Our proof of the converse for Exercise 13.3.9 makes use of the idea of an annihilator.
(See Definition 11.4.11. The cautious reader may check that everything runs smoothly
when F is replaced by Z2, but the more impatient reader can accept my word.)

Theorem 13.3.11 Every linear code is a parity check code.

Proof Let us write V = Zn
2 and let U be a linear code, that is to say, a subspace of V . We

look at the annihilator (called the dual code in coding theory)

W 0 = {α ∈ U ′ : α(w) = 0 for all w ∈ C}.
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Automatically W 0 is a subspace of V ′ and Lemma 11.4.14 gives us W = W 00. Taking
a basis α1, α2, . . . , αr for W 0 we have

u ∈ U ⇔ αu = 0 for all α ∈ W 0

⇔ αj u = 0 for 1 ≤ j ≤ r.

Thus, using Exercise 13.3.9, we see that U is a parity check code. �

Exercise 13.3.12 Consider a parity check code C of length n given by an n× r parity
check matrix A of rank r . Show, by using some version of the rank-nullity theorem, or
otherwise, that C has dimension n− r and so contains 2n−r members.

Exercise 13.3.13 Suppose that C is a linear code of dimension r with codewords of
length n.

(i) Show, by thinking about elementary row and column operations, that (possibly after
interchanging the order in which we write the elements of vectors) we can find a basis e(j )
for C in which ek(j ) = δkj for 1 ≤ j, k ≤ r .

(ii) Find such a basis for the Hamming code.
(iii) Explain why the map α : Zr

2 → Zn
2 given by

α(x1, x2, . . . , xr ) =
r∑

j=1

xj e(j )

is an injective linear map. Show that if we write

αx = (x, βx)

then β : Zr
2 → Zn−r

2 is a linear map.
(iv) Consider the map β defined in (iv). Is β necessarily injective if 2r ≥ n? Is β

necessarily surjective if n ≥ 2r? Give proofs or counterexamples.

Looking at Exercise 13.3.5 again, we see that the Hamming code worked well because
the probability of an error involving a particular hole (or to use the more modern terminology
bit) was already fairly small.

Exercise 13.3.14 We consider the same setup as in Exercise 13.3.5. Suppose that the
probability that an error occurs at a particular place is 10−1 and we use the Hamming
scheme (making no use of the last place in each line). Show that the probability that the
tape will be correctly read by the decoder is negligible.

Hamming’s scheme ceases to be useful when the probability of error is high and an enor-
mous amount of work has been done to find codes that will work under these circumstances.
(We give a simple example in Exercise 13.4.6.)

Exercise 13.3.15 Why is it impossible to recover the original message when the probability
of an error in one bit is 1/2 (independent of what happens to the other bits)? Why are we
only interested in error probabilities p with p < 1/2?
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A different problem arises if the probability of error is very low. Observe that an n bit
message is swollen to about 7n/4 bits by Hamming encoding. Such a message takes 7/4
times as long to transmit and its transmission costs 7/4 times as much money. Can we use
the low error rate to cut down the length of of the encoded message?

A simple generalisation of Hamming’s scheme does just that.

Exercise 13.3.16 Suppose that j is an integer with 1 ≤ j ≤ 2n − 1. Then, in ordinary
arithmetic, j has a binary expansion

j =
n∑

i=1

aij (n)2i−1

where aij (n) ∈ {0, 1}. We define An to be the n× (2n − 1) matrix with entries aij (n).
(i) Check that that A1 = (1),

A2 =
(

1 0 1
0 1 1

)

and A3 = A where A is the Hamming matrix defined in � on page 336. Write down A4.
(ii) By looking at columns which contain a single 1, or otherwise, show that An has

rank n.
(iii) (This is not needed later.) Show that

An+1 =
(

An aT
n An

cn 1 bn

)

with an the row vector of length n with 0 in each place, bn the row vector of length 2n−1 − 1
with 1 in each place and cn the row vector of length 2n−1 − 1 with 0 in each place.

Exercise 13.3.17 Let An be defined as in the previous exercise. Consider the parity check
code Cn of length 2n − 1 with parity check matrix An.

Show how, if a codeword is received with a single error, we can recover the original
codeword in much the same way as we did with the original Hamming code. (See the
paragraph preceding Exercise 13.3.4.)

How many elements does Cn have?

Exercise 13.3.18 I need to transmit a message with 5× 107 bits (that is to say, 0s and 1s).
If the probability of a transmission error is 10−7 for each bit (independent of each other),
show that the probability that every bit is transmitted correctly is negligible.

If, on the other hand, I split the message up in to groups of 57 bits, translate them into
Hamming codewords of length 63 (using Exercise 13.3.13 (iv) or some other technique)
and then send the resulting message, show that the probability of the decoder failing to
produce the correct result is negligible and we only needed to transmit a message about
63/57 times as long to achieve the result.
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13.4 Further exercises

Exercise 13.4.1 If G is a finite field, show that the vector space G2 over G is the union of
a finite collection of one dimensional subspaces. If G is an infinite field, show that G2 is
not the union of a finite collection of one dimensional subspaces. If G = R, show that G2

is not the union of a countable collection of one dimensional subspaces.

Exercise 13.4.2 (i) Let G be a field such that the equation x2 = −1 has no solution in G.
Prove that, if x and y are elements of G such that x2 + y2 = 0, then x = y = 0.

Prove that G2 is made into a field by the operations

(x, y)+ (z,w) = (x + y, z+ w),

(x, y)× (z,w) = (xz− yw, xw + yz).

(ii) Let p be a prime of the form 4m+ 3. By using Fermat’s little theorem (see Exer-
cise 6.8.33), or otherwise, show that −1 is not a square modulo p. Deduce that there is a
field with exactly p2 elements.

Exercise 13.4.3 [Eigenvalues and algebraic closure] In this question, K and G are fields.
(i) Suppose that K is algebraically closed. If V is a finite dimensional vector space over

K, show that every endomorphism α : V → V has an eigenvalue (and so an eigenvector).
(ii) Suppose that every endomorphism α : Gn → Gn has an eigenvalue (and so an

eigenvector) for all n ≥ 1. By considering matrices of the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
−a0 −a1 −a2 −a3 . . . −an−2 −an−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

or otherwise, show that every non-constant polynomial with coefficients in G has a root
in G.

(iii) Suppose that G is a field such that every endomorphism α : V → V of a finite
dimensional vector space over G has an eigenvalue. Explain why G is algebraically closed.

(iv) Show that the analogue of Theorem 12.2.5 is true for all V with F replaced by G if
and only if G is algebraically closed.

Exercise 13.4.4 (Only for those who share the author’s taste for this sort of thing. You will
need to know the meaning of ‘countable’, ‘complete’ and ‘dense’.)

We know that field R is complete for the usual Euclidean distance, but is not algebraically
closed. In this question we give an example of a subfield of C which is algebraically closed,
but not complete for the usual Euclidean distance.

(i) Let X ⊆ C. If G is the collection of subfields of C containing X, show that gen X =⋂
G∈G G is a subfield of R containing X.
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(ii) If X is countable, show that gen X is countable.
(iii) If Y ⊆ C, is countable, show that the set PY of polynomials with coefficients in Y

is countable and deduce that the set of roots of polynomials in PY is countable.
(iv) Deduce that, given a countable subfield H of C, we can find a countable subfield H′

of C containing all the roots of polynomials with coefficients in H.
(v) Let H0 = Q. By (iv), we can find countable subfields Hn of C such that Hn contains

all the roots of polynomials with coefficients in Hn−1 [n ≥ 1]. Show that H = ∪∞n=0Hn is
countable and algebraically closed.

(vi) Show that H1 is dense in C and so H is. On the other hand, H is countable so H �= C.
Deduce that H is not complete in the usual metric.

Exercise 13.4.5 [The Hill cipher] In a simple substitution code, letters are replaced by
other letters, so, for example, A is replaced by C and B by Q and so on. Such secret codes
are easy to break because of the statistical properties of English. (For example, we know
that the most frequent letter in a long message will probably correspond to E.) One way
round this is to substitute pairs of letters so that, for example, AN becomes RQ and AM

becomes T C. (Such a code is called a digraph cipher.) We could take this idea further
and operate on n letters at a time (obtaining a polygraphic cipher), but this requires an
enormous codebook. It has been suggested that we could use matrices instead.

(i) Suppose that our alphabet has five elements which we write as 0, 1, 2, 3, 4. If we
have a message b1b2 . . . b2n, we form the vectors bj = (b2j−1, b2j )T and consider cj = Abj

where we do our arithmetic modulo 5 and A is an invertible 2× 2 matrix. The encoded
message is c1c2 . . . c2n where cj = (c2j−1, c2j )T .

If

A =
(

2 4
1 3

)
,

n = 3 and b1b2b3b4b5b6 = 340221, show that c1c2 = 20 and find c1c2c3c4c5c6.
Find A−1 and use it to recover b1b2b3b4b5b6 from c1c2c3c4c5c6.
In general, we want to work with an alphabet of p elements (and so do arithmetic modulo

p) where p is a prime and to break up our message into vectors of length n. The next part
of the question investigates how easy it is to find an invertible n× n matrix ‘at random’.

(ii) We work in the vector space Zn
p. If e1, e2, . . . , er are linearly independent and we

choose a vector u at random,7 show that the probability that

u /∈ span{e1, e2, . . . , er}
is 1− pr−n. Hence show that, if we choose n vectors from Zn

p at random, the probability that
they form a basis is

∏n
r=1(1− p−r ). Deduce that, if we work in Zp and choose the entries

of an n× n matrix A at random, the probability that A is invertible is
∏n

r=1(1− p−r ).

7 We say that we choose ‘at random’ from a finite set X if each element of X has the same probability of being chosen. If we
make several choices ‘at random’, we suppose the choices to be independent.
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(iii) Show, by using calculus, that log(1− x) ≥ −x for 0 < x ≤ 1. Hence, or otherwise,
show that

n∏
r=1

(1− p−r ) ≥ exp

(
− 1

p − 1

)
.

Conclude that, if we choose a matrix A at random, it is quite likely to be invertible. (If it is
not, we just try again until we get one which is.)

(iv) We could take p = 29 (giving us 26 letters and 3 other signs). If n is reasonably
large and A is chosen at random, it will not be possible to break the code by the simple
statistical means described in the first paragraph of this question. However, the code is not
secure by modern standards. Suppose that you know both a message b1b2b3 . . . bmn and its
encoding c1c2c3 . . . cmn. Describe a method which has a good chance of deducing A and
explain why it is likely to work (at least, if m is substantially larger than n).

Although the Hill cipher by itself does not meet modern standards, it can be combined
with modern codes to give an extra layer of security.

Exercise 13.4.6 Recall, from Exercise 7.6.14, that a Hadamard matrix is a scalar multiple
of an n× n orthogonal matrix with all entries ±1.

(i) Explain why, if A is an m×m Hadamard matrix, then m must be even and any two
columns will differ in exactly m/2 places.

(ii) Explain why, if you are given a column of 4k entries with values ±1 and told that
it comes from altering at most k − 1 entries in a column of a specified 4k × 4k Hadamard
matrix, you can identify the appropriate column.

(iii) Given a 4k × 4k Hadamard matrix show how to produce a set of 4k codewords
(strings of 0s and 1s) of length 4k such that you can identify the correct codeword provided
that there are less than k − 1 errors.

Exercise 13.4.7 In order to see how effective the Hadamard codes of the previous question
actually are we need to make some simple calculus estimates.

(i) If we transmit n bits and each bit has a probability p of being mistransmitted, explain
why the probability that we make exactly r errors is

pr =
(

n

r

)
pr (1− p)n−r .

(ii) Show that, if r ≥ 2np, then

pr

pr−1
≤ 1

2
.

Deduce that, if n ≥ m ≥ 2np,

Pr(m errors or more) =
n∑
m

pr ≤ 2pm.
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(iii) Consider a Hadamard code based on a 128× 128 = 27 × 27 Hadamard matrix.
(Recall that Exercise 7.6.14 gave a simple procedure for constructing 2n × 2n Hadamard
matrices.) Suppose that p = 1/20. Show, using (ii) and Stirling’s formula (or direct calcu-
lation if you do not know Stirling’s formula, but do have a good scientific calculator), that
the probability of having 31 errors or more when you send a codeword is negligible. (On
the other hand, your message will be 128/7 ≈ 18.3 times longer in the coded form than in
an unencoded form.)

Exercise 13.4.8 (A simple remark.) Although Zn
2 does not carry distances linked to its

structure as a vector space over Z2, it does have distances associated with it. Let

d0(x, y) =
{

0 if x = y

1 otherwise

and d1(x, y) equal the number of places in which x and y disagree. (We call d0 the discrete
metric and d1 the Hamming metric.)

Prove the following results for j = 0 and j = 1. (Throughout, x, y and z are general
elements of Zn

2.)
(i) dj (x, y) ≥ 0 with equality if and only if x = y.
(ii) dj (x, y) = dj (y, x).
(iii) dj (x, y)+ dj (y, z) ≥ dj (x, z).
Show also that nd0(x, y) ≥ d1(x, y) ≥ d0(x, y).

Exercise 13.4.9 Show that, if we use the appropriate notion of a line, Desargues’ theorem
(see Theorem 2.1.5) holds in any vector space over any field.

Exercise 13.4.10 (i) Let p be a prime. If a1, a2, . . . , ap+1 ∈ Zp show that we can find
1 = r ≤ s ≤ p + 1 such that

∑s
j=r aj = 0.

(ii) Let V be a finite dimensional vector space over a field G such that there exists a
w : V × V → G with

(a) w(x, x) = 0 ⇒ x = 0,
(b) w(x, y) = w(x, y),
(c) w(λx+ μy, z) = λw(x, z)+ μw(y, z),

for all x, y, z ∈ V and λ, μ ∈ G.
By following the ideas of the Gram–Schmidt method, show that V has a basis of vectors

ej with w(ei , ej ) = 0 if i �= j . (Note that you cannot assume that every element of G has a
square root.)

(iii) If G = Zp and V = Z
p+1
p , show that no function w with the properties stated in (ii)

can exist.



14

Vector spaces with distances

14.1 Orthogonal polynomials

After looking at one direction that the algebraist might take, let us look at a direction that
the analyst might take.

Earlier we introduced an inner product on Rn defined by

〈x, y〉 = x · y =
n∑

j=1

xjyj

and obtained the properties given in Lemma 2.3.7. We now turn the procedure on its head
and define an inner product by demanding that it obey the conclusions of Lemma 2.3.7.

Definition 14.1.1 If U is a vector space over R, we say that a function M : U 2 → R is an
inner product if, writing

〈x, y〉 = M(x, y),

the following results hold for all x, y, w ∈ U and all λ, μ ∈ R.
(i) 〈x, x〉 ≥ 0.
(ii) 〈x, x〉 = 0 if and only if x = 0.
(iii) 〈y, x〉 = 〈x, y〉.
(iv) 〈x, (y+ w)〉 = 〈x, y〉 + 〈x, w〉.
(v) 〈λx, y〉 = λ〈x, y〉.
We write ‖x‖ for the positive square root of 〈x, x〉.
When we wish to recall that we are talking about real vector spaces, we talk about

real inner products. We shall consider complex inner product spaces in Section 14.3.
Exercise 14.1.3, which the reader should do, requires the following result from analysis.

Lemma 14.1.2 Let a < b. If F : [a, b] → R is continuous, F (x) ≥ 0 for all x ∈ [a, b]
and ∫ b

a

F (t) dt = 0,

then F = 0.

344
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Proof If F �= 0, then we can find an x0 ∈ [a, b] such that F (x0) > 0. (Note that we might
have x0 = a or x0 = b.) By continuity, we can find a δ with 1/2 > δ > 0 such that |F (x)−
F (x0)| ≥ F (x0)/2 for all x ∈ I = [x0 − δ, x0 + δ] ∩ [a, b]. Thus F (x) ≥ F (x0)/2 for all
x ∈ I and ∫ b

a

F (t) dt ≥
∫

I

F (t) dt ≥
∫

I

F (x0)

2
dt ≥ δF (x0)

2
> 0,

giving the required contradiction. �
Exercise 14.1.3 Let a < b. Show that the set C([a, b]) of continuous functions f :
[a, b] → R with the operations of pointwise addition and multiplication by a scalar (thus
(f + g)(x) = f (x)+ g(x) and (λf )(x) = λf (x)) forms a vector space over R. Verify that

〈f, g〉 =
∫ b

a

f (x)g(x) dx

defines an inner product for this space.

We obtained most of our results on our original inner product by using Lemma 2.3.7
rather than the definition and these results must remain true for all real inner products.

Exercise 14.1.4 (i) Show that, if U is a real inner product space, then the Cauchy–Schwarz
inequality

〈x, y〉 ≤ ‖x‖‖y‖
holds for all x, y ∈ U . When do we have equality? Prove your answer.

(ii) Show that, if U is a real inner product space, then the following results hold for all
x, y ∈ U and λ ∈ R.

(a) ‖x‖ ≥ 0 with equality if and only if x = 0.
(b) ‖λx‖ = |λ|‖x‖.
(c) ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

[These results justify us in calling ‖ ‖ the norm derived from the inner product.]
(iii) If f, g ∈ C([a, b]), show that(∫ b

a

f (t)g(t) dt

)2

≤
∫ b

a

f (t)2 dt

∫ b

a

g(t)2 dt.

Whenever we use a result about inner products, the reader can check that our earlier
proofs, in Chapter 2 and elsewhere, extend to the more general situation.

Let us consider C([−1, 1]) in more detail. If we set qj (x) = xj , then, since a polynomial
of degree n can have at most n roots,

n∑
j=0

λjqj = 0 ⇒
n∑

j=0

λjx
j = 0 for all x ∈ [−1, 1] ⇒ λ0 = λ1 = . . . = λn = 0

and so q0, q1, . . . , qn are linearly independent. Applying the Gram–Schmidt orthogonali-
sation method, we obtain a sequence of non-zero polynomials p0, p1, . . . , pn, . . . given
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by

pn = qn −
n−1∑
j=0

〈qn, pj 〉
‖pj‖2

pj .

Exercise 14.1.5 (i) Prove, by induction, or otherwise, that pn is a monic polynomial of
degree exactly n. Compute p0, p1 and p2.

(ii) Show that the collection Pn of polynomials of degree n or less is a subspace of
C([−1, 1]). Show that Pn has dimension n+ 1 and that, using the inner product introduced
above, the functions ‖pj‖−1pj with 0 ≤ j ≤ n form an orthonormal basis for Pn.

(iii) Show that pn+1 is the unique monic polynomial P of degree n+ 1 such that
〈P, p〉 = 0 whenever p is a polynomial of degree n or less.

The polynomials pj are called the Legendre polynomials and turn up in several places in
mathematics.1 We give an alternative approach to Legendre polynomials in Exercise 14.4.3.

The next few lemmas lead up to a beautiful idea of Gauss.

Lemma 14.1.6 The Legendre polynomial pn has n distinct roots θ1, θ2, . . . , θn. All these
roots are real and satisfy the condition −1 < θj < 1.

Proof Suppose that pn has θ1, θ2, . . . , θk as roots of odd order2 with

−1 < θ1 < θ2 < . . . θk < 1

and no other roots θ of odd order with −1 < θ < 1.
If we set Q(t) =∏k

j=1(t − θj ), then Q is a polynomial of order k and Q(t)pn(t) cannot
change sign on [−1, 1] (that is to say, either pn(t)Q(t) ≥ 0 for all t ∈ [−1, 1] or pn(t)Q(t) ≤
0 for all t ∈ [−1, 1]). By Lemma 14.1.2, it follows that

〈pn,Q〉 =
∫ 1

−1
pn(t)Q(t) dt �= 0

and so, by Exercise 14.1.5 (iii), k ≥ n. Since a polynomial of degree n has at most n roots,
counting multiplicities, we have k = n. It follows that all the roots θ of pn are distinct, real
and satisfy −1 < θ < 1. �

Suppose that we wish to estimate
∫ 1
−1 f (t) dt for some well behaved function f from its

values at points t1, t2, . . . , tn. The following result is clearly relevant.

Lemma 14.1.7 Suppose that we are given distinct points t1, t2, . . . , tn ∈ [−1, 1]. Then
there are unique λ1, λ2, . . . , λn ∈ R such that∫ 1

−1
P (t) dt =

n∑
j=1

λjP (tj )

1 Depending on context, the Legendre polynomial of degree j refers to aj pj , where the particular writer may take aj = 1,
aj = ‖pj ‖−1, aj = pj (1)−1 or make some other choice.

2 Recall that α is a root of order r of the polynomial P if (t − α)r is a factor of P (t), but (t − α)r+1 is not.
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for every polynomial P of degree n− 1 or less.

Proof Let us set

ek(t) =
∏
j �=k

t − tj

tk − tj
.

Then ek is a polynomial of degree n− 1 with ek(tj ) = δkj . It follows that, if P is a
polynomial of degree at most n− 1 and we set

Q = P −
n∑

j=1

P (tj )ej ,

then Q is a polynomial of degree at most n− 1 which vanishes at the n points tk . Thus
Q = 0 and

P (t) =
n∑

j=1

P (tj )ej (t).

Integrating, we obtain ∫ 1

−1
P (t) dt =

n∑
j=1

λjP (tj )

with λj =
∫ 1
−1 ej (t) dt .

To prove uniqueness, suppose that∫ 1

−1
P (t) dt =

n∑
j=1

μjP (tj )

for every polynomial of degree n− 1 or less. Taking P = ek , we obtain

μk =
n∑

j=1

μjek(tj ) =
∫ 1

−1
ek(t) dt = λk

as required. �

At first sight, it seems natural to take the tj equidistant, but Gauss suggested a different
choice.

Theorem 14.1.8 [Gaussian quadrature] If we choose the tj in Lemma 14.1.7 to be the
roots of the Legendre polynomial pn, then∫ 1

−1
P (t) dt =

n∑
j=1

λjP (tj )

for every polynomial P of degree 2n− 1 or less.
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Proof If P has degree 2n− 1 or less, then

P = Qpn + R,

where Q and R are polynomials of degree n− 1 or less. Thus∫ 1

−1
P (t) dt =

∫ 1

−1
Q(t)pn(t) dt +

∫ 1

−1
R(t) dt = 〈Q,pn〉 +

∫ 1

−1
R(t) dt

= 0+
∫ 1

−1
R(t) dt =

n∑
j=1

λjR(tj )

=
n∑

j=1

λj

(
pn(tj )Q(tj )+ R(tj )

) = n∑
j=1

λjP (tj )

as required. �

This is very impressive, but Gauss’ method has a further advantage. If we use equidistant
points, then it turns out that, when n is large,

∑n
j=1 |λj | becomes very large indeed and small

changes in the values of the f (tj ) may cause large changes in the value of
∑n

j=1 λjf (tj )
making the sum useless as an estimate for the integral. This is not the case for Gaussian
quadrature.

Lemma 14.1.9 If we choose the tk in Lemma 14.1.7 to be the roots of the Legendre
polynomial pn, then λk > 0 for each k and so

n∑
j=1

|λj | =
n∑

j=1

λj = 2.

Proof If 1 ≤ k ≤ n, set

Qk(t) =
∏
j �=k

(t − tj )2.

We observe that Qk is an everywhere non-negative polynomial of degree 2n− 2 and so

λkQk(tk) =
n∑

j=1

λjQk(tj ) =
∫ 1

−1
Qk(t) dt > 0.

Thus λk > 0.
Taking P = 1 in the quadrature formula gives

2 =
∫ 1

−1
1 dt =

n∑
j=1

λj .

�

This gives us the following reassuring result.
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Theorem 14.1.10 Suppose that f : [−1, 1] → R is a continuous function such that there
exists a polynomial P of degree at most 2n− 1 with

|f (t)− P (t)| ≤ ε for all t ∈ [−1, 1]

for some ε > 0. Then, if we choose the tj in Lemma 14.1.7 to be the roots of the Legendre
polynomial pn, we have ∣∣∣∣∣∣

∫ 1

−1
f (t) dt −

n∑
j=1

λjf (tj )

∣∣∣∣∣∣ ≤ 4ε.

Proof Observe that

∣∣∣∣
∫ 1

−1
f (t) dt −

n∑
j=1

λjf (tj )

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∫ 1

−1
f (t) dt −

n∑
j=1

λjf (tj )−
∫ 1

−1
P (t) dt +

n∑
j=1

λjP (tj )

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∫ 1

−1

(
f (t)− P (t)

)
dt −

n∑
j=1

λj

(
f (tj )− P (tj )

)∣∣∣∣∣∣
≤
∫ 1

−1
|f (t)− P (t)| dt +

n∑
j=1

|λj ||f (tj )− P (tj )|

≤ 2ε + 2ε = 4ε,

as stated. �

The following simple exercise may help illustrate the point at issue.

Exercise 14.1.11 Let ε > 0, n ≥ 1 and distinct points t1, t2, . . . , t2n ∈ [−1, 1] be given.
By Lemma 14.1.7, there are unique λ1, λ2, . . . , λ2n ∈ R such that

∫ 1

−1
P (t) dt =

n∑
j=1

λjP (tj ) =
2n∑

j=n+1

λjP (tj )

for every polynomial P of degree n− 1 or less.
(i) Explain why

∑n
j=1 |λj | ≥ 2 and

∑2n
j=n+1 |λj | ≥ 2.

(ii) If we set μj = (ε−1 + 1)λj for 1 ≤ j ≤ n and μj = −ε−1λj for n+ 1 ≤ j ≤ 2n,
show that ∫ 1

−1
P (t) dt =

2n∑
j=1

μjP (tj )
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for all polynomials P of degree n or less. Find a piecewise linear function f such that

|f (t)| ≤ ε for all t ∈ [−1, 1], but
2n∑

j=1

μjf (tj ) ≥ 2.

The following strongly recommended exercise acts as revision for our work on Legendre
polynomials and shows that the ideas can be pushed much further.

Exercise 14.1.12 Let r : [a, b] → R be an everywhere strictly positive continuous func-
tion. Set

〈f, g〉 =
∫ b

a

f (x)g(x)r(x) dx.

(i) Show that we have defined an inner product on C([a, b]).
(ii) Deduce that(∫ b

a

f (x)g(x)r(x) dx

)2

≤
(∫ b

a

f (x)2r(x) dx

)(∫ b

a

g(x)2r(x) dx

)
for all continuous functions f, g : [−1, 1] → R.

(iii) Show that we can find a monic polynomial Pn of degree n such that∫ b

a

Pn(x)Q(x)r(x) dx = 0

for all polynomials Q of degree n− 1 or less.
(iv) Develop a method along the lines of Gaussian quadrature for the numerical estima-

tion of ∫ b

a

f (x)r(x) dx

when f is reasonably well behaved.

The various kinds of polynomials Pn that arise for different r are called orthogonal
polynomials. We give an interesting example in Exercise 14.4.4.

The subject of orthogonal polynomials is rich in elegant formulae.

Example 14.1.13 [Recurrence relations for orthogonal polynomials] Let P0, P1,
P2, . . . be a sequence of orthogonal polynomials of the type given in Exercise 14.1.12.
Show that there exists a ‘three term recurrence relation’ of the form

Pn+1(x)+ (An − x)Pn(x)+ BnPn−1(x) = 0

for n ≥ 0. Determine An and Bn.

Solution Since ∫ b

a

(
f (x)h(x)

)
g(x)r(x) dx =

∫ b

a

f (x)
(
h(x)g(x)

)
r(x) dx,
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the inner product defined in Exercise 14.1.12 has a further property (which is not shared
by inner products in general3) that 〈f h, g〉 = 〈f, gh〉. We make use of this fact in what
follows.

Let q(x) = x and Qn = Pn+1 − qPn. Since Pn+1 and Pn are monic polynomials of
degree n+ 1 and n, Qn is polynomial of degree at most n and

Qn =
n∑

j=0

ajPj .

By orthogonality

〈Qn, Pk〉 =
n∑

j=0

aj 〈Pj , Pk〉 =
n∑

j=0

aj δjk‖Pk‖2 = ak‖Pk‖2.

Now Pr is orthogonal to all polynomials of lower degree and so, if k ≤ n− 2,

〈Qn, Pk〉 = 〈Pn+1 − qPn, Pk〉 = 〈Pn+1 − qPn, Pk〉
= 〈Pn+1, Pk〉 − 〈qPn, Pk〉 = −〈Pn, qPk〉 = 0.

Thus Qn = AnPn + BnPn−1 and our argument shows that

An = 〈Pn, qPn〉
‖Pn‖2

, Bn = 〈Pn, qPn−1〉
‖Pn−1‖2

.

�
For many important systems of orthogonal polynomials, An and Bn take a simple

form and we obtain an efficient method for calculating the Pn inductively (or, in more
sophisticated language, recursively). We give examples in Exercises 14.4.4 and 14.4.5.

Exercise 14.1.14 By considering qPn−1 − Pn, or otherwise, show that, using the notation
of the discussion above, Bn > 0.

Once we start dealing with infinite dimensional inner product spaces, Bessel’s inequality,
which we met in Exercise 7.1.9, takes on a new importance.

Theorem 14.1.15 [Bessel’s inequality] Suppose that e1, e2, . . . is a sequence of orthonor-
mal vectors (that is to say, 〈ej , ek〉 = δjk for j, k ≥ 1) in a real inner product space U .

(i) If f ∈ U , then ∥∥∥∥∥∥f −
n∑

j=1

aj ej

∥∥∥∥∥∥
attains a unique minimum when

aj = f̂(j ) = 〈f, ej 〉.

3 Indeed, it does not make sense in general, since our definition of a general vector space does not allow us to multiply two
vectors.
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We have ∥∥∥∥∥∥f −
n∑

j=1

f̂(j )ej

∥∥∥∥∥∥
2

= ‖f‖2 −
n∑

j=1

|f̂(j )|2.

(ii) If f ∈ U , then
∑∞

j=1 |f̂(j )|2 converges and

∞∑
j=1

|f̂(j )|2 ≤ ‖f‖2.

(iii) We have∥∥∥∥∥∥f −
n∑

j=1

f̂(j )ej

∥∥∥∥∥∥→ 0 as n →∞⇔
∞∑

j=1

|f̂(j )|2 = ‖f‖2.

Proof (i) Following a familiar path, we have∥∥∥∥∥∥f −
n∑

j=1

aj ej

∥∥∥∥∥∥
2

=
〈

f −
n∑

j=1

aj ej , f −
n∑

j=1

aj ej

〉

= ‖f‖2 − 2
n∑

j=1

aj f̂(j )+
n∑

j=1

a2
j .

Thus ∥∥∥∥∥∥f −
n∑

j=1

f̂(j )ej

∥∥∥∥∥∥
2

= ‖f‖2 −
n∑

j=1

|f̂(j )|2

and ∥∥∥∥∥∥f −
n∑

j=1

aj ej

∥∥∥∥∥∥
2

−
∥∥∥∥∥∥f −

n∑
j=1

f̂(j )ej

∥∥∥∥∥∥
2

=
n∑

j=1

(aj − f̂(j ))2.

The required results can now be read off.
(ii) We use the theorem4 from analysis which tells us that an increasing sequence

bounded above tends to a limit. Elementary analysis tell us that the limit is no greater than
the upper bound.

(iii) This follows at once from (i). �

The reader may, or may not, need to be reminded that the type of convergence discussed
in Theorem 14.1.15 is not the same as she is used to from elementary calculus.

4 Or, in many treatments, axiom.
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Exercise 14.1.16 Consider the continuous function fn : [−1, 1] → R defined by

fn(x) =
r=2n−1∑

r=−2n+1

2n max(0, 1− 28n|x − r2−n|).

Show that ∫ 1

1
fn(x)2 dx → 0

so ‖fn‖ → 0 in the norm given by the inner product of Exercise 14.1.3 as n →∞, but
fn(u2−m) →∞ as n →∞, for all integers u with |u| ≤ 2m − 1 and all integers m ≥ 1.

14.2 Inner products and dual spaces

As I have already said, we can obtain any result we want on general finite dimensional real
inner product spaces by imitating the proof for Rn with the standard inner product.

Exercise 14.2.1 If U is a finite dimensional real vector space with inner product 〈 , 〉
show, by using the Gram–Schmidt orthogonalisation process, that U has an orthonormal
basis e1, e2, . . . , en say. Show that the map θ : U → Rn given by

θ

⎛
⎝ n∑

j=1

xj ej

⎞
⎠ = (x1, x2, . . . , xn)T

for all xj ∈ R is a well defined vector space isomorphism which preserves inner products
in the sense that

θu · θv = 〈u, v〉
for all u, v where · is the dot product of Section 2.3.

The reader need hardly be told that it is better mathematical style to prove results for
general inner product spaces directly rather than to prove them for Rn with the dot product
and then quote Exercise 14.2.1.

Bearing in mind that we shall do nothing basically new, it is, none the less, worth taking
another look at the notion of an adjoint map. We start from the simple observation in three
dimensional geometry that a plane through the origin can be described by the equation

x · b = 0

where b is a non-zero vector. A natural generalisation to inner product spaces runs as
follows.

Lemma 14.2.2 If V is an n− 1 dimensional subspace of an n dimensional real vector
space U with inner product 〈 , 〉, then we can find a b �= 0 such that

V = {x ∈ U : 〈x, b〉 = 0}.
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Proof Let V have an orthonormal basis e1, e2, . . . , en−1. By using the Gram–Schmidt
process, we can find en such that e1, e2, . . . , en are orthonormal and so a basis for U .
Setting b = en, we have the result. �
Exercise 14.2.3 Suppose that V is a subspace of a finite dimensional real vector space U

with inner product 〈 , 〉 and derived norm ‖ ‖. If a ∈ U , show that there is a unique b ∈ V

such that

‖a− b‖ ≤ ‖a− v‖
for all v ∈ V .

Show, also, that x = b is the unique vector with x ∈ V such that

〈a− x, v〉 = 0

for all v ∈ V .
[Hint: Choose an orthonormal basis for V and use Bessel’s inequality (Theorem 14.1.15).]

Lemma 14.2.2 leads on to a finite dimensional version of a famous theorem of Riesz.

Theorem 14.2.4 [Riesz representation theorem]5 Let U be a finite dimensional real
vector space with inner product 〈 , 〉. If α ∈ U ′, the dual space of U , then there exists a
unique a ∈ U such that

αu = 〈u, a〉
for all u ∈ U .

Proof Uniqueness. If αu = 〈u, a1〉 = 〈u, a2〉 for all u ∈ U , then

〈u, a1 − a2〉 = 0

for all u ∈ U and, choosing u = a1 − a2, we conclude, in the usual way, that a1 − a2 = 0.
Existence. If α = 0, then we set a = 0. If not, then α has rank 1 (since α(U ) = R) and, by
the rank-nullity theorem, α has nullity n− 1. In other words,

α−1(0) = {u : αu = 0}
has dimension n− 1. By Lemma 14.2.2, we can find a b �= 0 such that

α−1(0) = {x ∈ U : 〈x, b〉 = 0},
that is to say,

α(x) = 0 ⇔ 〈x, b〉 = 0.

If we now set

a = ‖b‖−2α(b)b,

5 There are several Riesz representation theorems, but this is the only one we shall refer to. We should really use the longer form
‘the Reisz Hilbert space representation theorem’.
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we have

αx = 0 ⇔ 〈x, a〉 = 0

and

αa = ‖b‖−2α(b)2 = 〈a, a〉.
Now suppose that u ∈ U . If we set

x = u− αu
αa

a,

then αx = 0, so 〈x, a〉 = 0, that is to say,

0 =
〈
u− αu

αa
a, a
〉
= 〈u, a〉 − αa

〈a, a〉αu = 〈u, a〉 − αu

and we are done. �

Exercise 14.2.5 Draw diagrams to illustrate the existence proof in two and three dimen-
sions.

Exercise 14.2.6 We can obtain a quicker (but less easily generalised) proof of the existence
part of Theorem 14.2.4 as follows. Let e1, e2, . . . , en be an orthonormal basis for a real
inner product space U . If α ∈ U ′ set

a =
n∑

j=1

α(ej )ej .

Verify that

αu = 〈u, a〉
for all u ∈ U .

We note that Theorem 14.2.4 has a trivial converse.

Exercise 14.2.7 Let U be a finite dimensional real vector space with inner product 〈 , 〉.
If a ∈ U , show that the equation

αu = 〈u, a〉
defines an α ∈ U ′.

Lemma 14.2.8 Let U be a finite dimensional real vector space with inner product 〈 , 〉.
The equation

θ (a)u = 〈u, a〉
with a, u ∈ U defines an isomorphism θ : U → U ′.
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Proof Exercise 14.2.7 tells us that θ maps U to U ′. Next we observe that

θ (λa+ μb)u = 〈u, λa+ μb〉 = λ〈u, a〉 + μ〈u, b〉
= λθ (a)u+ μθ (b)u = (λθ (a)+ μθ (b)

)
u,

for all u ∈ U . It follows that

θ (λa+ μb) = λθ (a)+ μθ (b)

for all a, b ∈ U and λ, μ ∈ R. Thus θ is linear. Theorem 14.2.4 tells us that θ is bijective
so we are done. �

The sharp eyed reader will note that the function θ of Lemma 14.2.8 is, in fact, a natural
(that is to say, basis independent) isomorphism and ask whether, just as we usually identify
U ′′ with U for ordinary finite dimensional vector spaces, so we should identify U with
U ′ for finite dimensional real inner product spaces. The answer is that mathematicians
whose work only involves finite dimensional real inner product spaces often make the
identification, but those with more general interests do not. There are, I think, two reasons
for this. The first is that the convention of identifying U with U ′ for finite dimensional real
inner product spaces makes it hard to compare results on such spaces with more general
vector spaces. The second is that the natural extension of our ideas to complex vector spaces
does not produce an isomorphism.6

We now give a more abstract (but, in my view, more informative) proof than the one we
gave in Lemma 7.2.1 of the existence of the adjoint.

Lemma 14.2.9 Let U be a finite dimensional real vector space with inner product 〈 , 〉. If
α ∈ L(U,U ), there exists a unique α∗ ∈ L(U,U ) such that

〈αu, v〉 = 〈u, α∗v〉
for all u, v ∈ U .

The map � : L(U,U ) → L(U,U ) given by �α = α∗ is an isomorphism.

Proof Observe that the map βv : U → R given by

βvu = 〈αu, v〉
is linear, so, by the Riesz representation theorem (Theorem 14.2.4), there exists a unique
av ∈ U such that

βvu = 〈u, av〉
for all u ∈ U . Setting α∗v = av, we obtain a map α∗ : U → U such that

〈αu, v〉 = 〈u, α∗v〉.

6 However, it does produce something very close to it. See Exercise 14.3.9.
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The rest of the proof is routine. Observe that

〈u, α∗(λv+ μw)〉 = 〈αu, λv+ μw〉
= λ〈αu, v〉 + μ〈αu, w〉
= λ〈u, α∗v〉 + μ〈αu, α∗w〉
= 〈u, λα∗v+ μα∗w〉

for all u ∈ U , so

α∗(λv+ μw) = λα∗v+ μα∗w

for all v, w ∈ U and all λ, μ ∈ R. Thus α∗ is linear.
A similar ‘paper tiger proof’, which is left as a strongly recommended exercise for the

reader, shows that � is linear. We now remark that

〈αu, v〉 = 〈u, α∗v〉 = 〈α∗v, u〉
= 〈v, α∗∗u〉 = 〈α∗∗u, v〉

for all v ∈ U , so

αu = α∗∗u

for all u ∈ U whence

α = α∗∗

for all α ∈ L(U,U ). Thus � is bijective with �−1 = � and we have shown that � is,
indeed, an isomorphism. �

Exercise 14.2.10 Supply the missing part of the proof of Lemma 14.2.9 by showing that,
if α, β ∈ L(U,U ) and λ, μ ∈ F, then

〈u,�(λα + μβ)v〉 = 〈u, (λ�(α)+ μ�(β))v〉
for all u, v ∈ U and deducing that � is linear.

We call the α∗ obtained in Lemma 14.2.9 the adjoint of α. The next lemma shows that
this definition is consistent with our usage earlier in the book.

Lemma 14.2.11 Let U be a finite dimensional real vector space with inner product 〈 , 〉.
Let e1, e2, . . . , en be an orthonormal basis of U . If α ∈ L(U,U ) has matrix A with respect
to this basis, then α∗ has matrix AT with respect to the same basis.

Proof Let A = (aij ) let α∗ have matrix B = (bij ). We then have

bij =
〈

ei ,

n∑
k=1

bkj ek

〉
= 〈ei , α

∗ej 〉 = 〈αei , ej 〉 =
〈

n∑
k=1

akiek.ej

〉
= aji

as required. �
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The reader will observe that it has taken us four or five pages to do what took us one
or two pages at the beginning of Section 7.2. However, the notion of an adjoint map is
sufficiently important for it to be worth looking at in various different ways and the longer
journey has introduced a simple version of the Riesz representation theorem and given us
practice in abstract algebra.

The reader may also observe that, although we have tried to make our proofs as basis
free as possible, our proof of Lemma 14.2.2 made essential use of bases and our proof of
Theorem 14.2.4 used the rank-nullity theorem. Exercise 15.5.7 shows that it is possible to
reduce the use of bases substantially by using a little bit of analysis, but, ultimately, our
version of Theorem 14.2.4 depends on the fact that we are working in finite dimensional
spaces and therefore on the existence of a finite basis.

However, the notion of an adjoint appears in many infinite dimensional contexts. As a
simple example, we note a result which plays an important role in the study of second order
differential equations.

Exercise 14.2.12 Consider the spaceD of infinitely differentiable functions f : [0, 1] → R

with f (0) = f (1) = 0. Check that, if we set

〈f, g〉 =
∫ 1

0
f (t)g(t) dt

and use standard pointwise operations, D is an infinite dimensional real inner product
space.

If p ∈ D is fixed and we write

(αf )(t) = d

dt

(
p(t)f ′(t)

)
,

show that α : D → R is linear and α∗ = α. (In the language of this book α is a self-adjoint
linear functional.)

Restate the result given in the first sentence of Example 14.1.13 in terms of self-adjoint
linear functionals.

It turns out that, provided our infinite dimensional inner product spaces are Hilbert
spaces, the Riesz representation theorem has a basis independent proof and we can define
adjoints in this more general context.

At the beginning of the twentieth century, it became clear that many ideas in the theory
of differential equations and elsewhere could be better understood in the context of Hilbert
spaces. In 1925, Heisenberg wrote a paper proposing a new quantum mechanics founded
on the notion of observables. In his entertaining and instructive history, Inward Bound [27],
Pais writes: ‘If the early readers of Heisenberg’s first paper on quantum mechanics had
one thing in common with its author, it was an inadequate grasp of what was happen-
ing. The mathematics was unfamiliar, the physics opaque.’ However, Born and Jordan
realised that Heisenberg’s key rule corresponded to matrix multiplication and introduced
‘matrix mechanics’. Schrödinger produced another approach, ‘wave mechanics’ via partial
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differential equations. Dirac and then Von Neumann showed that these ideas could be
unified using Hilbert spaces.7

The amount of time we shall spend studying self-adjoint (Hermitian) and normal linear
maps reflects their importance in quantum mechanics, and our preference for basis free
methods reflects the fact that the inner product spaces of quantum mechanics are infinite
dimensional. The fact that we shall use complex inner product spaces (see the next section)
reflects the needs of the physicist.

14.3 Complex inner product spaces

So far in this chapter we have looked at real inner product spaces because we wished to
look at situations involving real numbers, but there is no obstacle to extending our ideas to
complex vector spaces.

Definition 14.3.1 If U is a vector space over C, we say that a function M : U 2 → R is an
inner product if, writing

〈z, w〉 = M(z, w),

the following results hold for all z, w, u ∈ U and all λ, μ ∈ C.
(i) 〈z, z〉 is always real and positive.
(ii) 〈z, z〉 = 0 if and only if z = 0.
(iii) 〈λz, w〉 = λ〈z, w〉.
(iv) 〈z+ u, w〉 = 〈z, w〉 + 〈u, w〉.
(v) 〈w, z〉 = 〈z, w〉∗.
We write ‖z‖ for the positive square root of 〈z, w〉.
The reader should compare Exercise 8.4.2. Once again, we note the particular form of

rule (v). When we wish to recall that we are talking about complex vector spaces, we talk
about complex inner products.

Exercise 14.3.2 Most physicists use a slightly different definition of an inner product. The
physicist’s inner product 〈 , 〉P obeys all the conditions of our inner product except that
(iii) is replaced by

(iii)P 〈λz, w〉P = λ∗〈z, w〉P .
Show that 〈z, λw〉P = λ〈z, w〉P .
Show that, if 〈 , 〉P is a physicist’s inner product, then

〈w, z〉M = 〈w, z〉∗P
defines 〈 , 〉M as a mathematician’s inner product.

7 Of course the physics was vastly more important and deeper than the mathematics, but the pre-existence of various mathematical
theories related to Hilbert space theory made the task of the physicists substantially easier.

Hilbert studied specific spaces. Von Neumann introduced and named the general idea of a Hilbert space. There is an
apocryphal story of Hilbert leaving a seminar and asking a colleague ‘What is this Hilbert space that the youngsters are talking
about?’.
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Derive a physicist’s inner product from a mathematician’s inner product.

Exercise 14.3.3 Let a < b. Show that the set C([a, b]) of continuous functions f :
[a, b] → C with the operations of pointwise addition and multiplication by a scalar (thus
(f + g)(x) = f (x)+ g(x) and (λf )(x) = λf (x)) forms a vector space over C. Verify that

〈f, g〉 =
∫ b

a

f (x)g(x)∗ dx

defines an inner product for this space.

Some of our results on orthogonal polynomials will not translate easily to the complex
case. (For example, the proof of Lemma 14.1.6 depends on the order properties of R.) With
exceptions such as these, the reader will have no difficulty in stating and proving the results
on complex inner products which correspond to our previous results on real inner products.

Exercise 14.3.4 Let us work in a complex inner product vector space U . Naturally we say
that e1, e2, . . . are orthonormal if 〈er , es〉 = δrs .

(i) There is one point were we have to be careful. If e1, e2, . . . , en are orthonormal and

f =
n∑

j=1

aj ej

show that aj = 〈f, ej 〉. What is the value of 〈ej , f〉?
(ii) Consider the system in Exercise 14.3.3 with [a, b] = [0, 1]. If en : [0, 1] → C is

given by en(t) = exp(2πint) [n ∈ Z] show that the en are orthonormal.

Here is the translation of Theorem 7.1.5 to the complex case.

Exercise 14.3.5 We work in a finite dimensional complex inner product space U .
(i) If e1, e2, . . . , ek are orthonormal and x ∈ U , show that

v = x−
k∑

j=1

〈x, ej 〉ej

is orthogonal to each of e1, e2, . . . , ek .
(ii) If e1, e2, . . . , ek are orthonormal and x ∈ U , show that either

x ∈ span{e1, e2, . . . , ek}
or the vector v defined in (i) is non-zero and, writing ek+1 = ‖v‖−1v, we know that e1, e2,
. . . , ek+1 are orthonormal and

x ∈ span{e1, e2, . . . , ek+1}.
(iii) If U has dimension n, k ≤ n and e1, e2, . . . , ek are orthonormal vectors in U , show

that we can find an orthonormal basis e1, e2, . . . , en for U .

Here is a typical result that works equally well in the real and complex cases.
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Lemma 14.3.6 If U is a real or complex inner product finite dimensional space with a
subspace V , then

V ⊥ = {u ∈ U : 〈u, v〉 = 0 for all v ∈ V }
is a complementary subspace of U .

Proof We observe that 〈0, v〉 = 0 for all v, so that 0 ∈ V ⊥. Further, if u1, u2 ∈ V ⊥ and
λ1, λ2 ∈ C, then

〈λ1u1 + λ2u2, v〉 = λ1〈u1, v〉 + λ2〈u2, v〉 = 0+ 0 = 0

for all v ∈ V and so λ1u1 + λ2u2 ∈ V ⊥.
Since U is finite dimensional, so is V and V must have an orthonormal basis e1, e2, . . . ,

em. If u ∈ U and we write

τu =
m∑

j=1

〈u, ej 〉ej , π = ι− τ,

then τu ∈ V and

τu+ πu = u.

Further

〈πu, ek〉 =
〈

u−
m∑

j=1

〈u, ej 〉ej , ek

〉

= 〈u, ek〉 −
m∑

j=1

〈u, ej 〉〈ej , ek〉

= 〈u, ek〉 −
m∑

j=1

〈u, ej 〉δjk = 0

for 1 ≤ k ≤ m. It follows that〈
πu,

m∑
j=1

λj ej

〉
=

m∑
j=1

λ∗j 〈πu, ej 〉 = 0

so 〈πu, v〉 = 0 for all v ∈ V and πu ∈ V ⊥. We have shown that

U = V + V ⊥.

If u ∈ V ∩ V ⊥, then, by the definition of V ⊥,

‖u‖2 = 〈u, u〉 = 0,

so u = 0. Thus

U = V ⊕ V ⊥.

�
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We call the set V ⊥ of Lemma 14.3.6 the orthogonal complement (or perpendicular
complement) of V . Note that, although V has many complementary subspaces, it has only
one orthogonal complement.

The next exercises parallel our earlier discussion of adjoint mappings for the real case.
Even if the reader does not do all these exercises, she should make sure she understands
what is going on in Exercise 14.3.9.

Exercise 14.3.7 If V is an n− 1 dimensional subspace of an n dimensional complex
vector space U with inner product 〈 , 〉, show that we can find a b �= 0 such that

V = {x ∈ U : 〈x, b〉 = 0}.
Exercise 14.3.8 [Riesz representation theorem] Let U be a finite dimensional complex
vector space with inner product 〈 , 〉. If α ∈ U ′, the dual space of U , show that there exists
a unique a ∈ U such that

αu = 〈u, a〉
for all u ∈ U .

The complex version of Lemma 14.2.8 differs in a very interesting way from the real
case.

Exercise 14.3.9 Let U be a finite dimensional complex vector space with inner product
〈 , 〉. Show that the equation

θ (a)u = 〈u, a〉,
with a, u ∈ U , defines an anti-isomorphism θ : U → U ′. In other words, show that θ is a
bijective map with

θ (λa+ μb) = λ∗θ (a)+ μ∗θ (b)

for all a, b ∈ U and all λ, μ ∈ C.

The fact that the mapping θ is not an isomorphism but an anti-isomorphism means that
we cannot use it to identify U and U ′, even if we wish to.

Exercise 14.3.10 The natural first reaction to the result of Exercise 14.3.9 is that we
have somehow made a mistake in defining θ and that a different definition would give an
isomorphism. I very strongly recommend that you spend at least ten minutes trying to find
such a definition.

Exercise 14.3.11 Let U be a finite dimensional complex vector space with inner product
〈 , 〉. If α ∈ L(U,U ), show that there exists a unique α∗ ∈ L(U,U ) such that

〈αu, v〉 = 〈u, α∗v〉
for all u, v ∈ U .

Show that the map � : L(U,U ) → L(U,U ) given by �α = α∗ is an anti-isomorphism.
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Exercise 14.3.12 Let U be a finite dimensional real vector space with inner product 〈 , 〉.
Let e1, e2, . . . , en be an orthonormal basis of U . If α ∈ L(U,U ) has matrix A with respect
to this basis, show that α∗ has matrix A∗ with respect to the same basis.

The reader will see that the fact that � in Exercise 14.3.11 is anti-isomorphic should
have come as no surprise to us, since we know from our earlier study of n× n matrices
that (λA)∗ = λ∗A∗.

Exercise 14.3.13 Let U be a real or complex inner product finite dimensional space with
a subspace V .

(i) Show that (V ⊥)⊥ = V .
(ii) Show that there is a unique π : U → U such that, if u ∈ U , then πu ∈ V and

(ι− π )u ∈ V ⊥.
(iii) If π is defined as in (ii), show that π ∈ L(U,U ), π∗ = π and π2 = π .

The next exercise forms a companion to Exercise 12.1.15.

Exercise 14.3.14 Prove that the following conditions on an endomorphism α of a finite
dimensional real or complex inner product space V are equivalent.

(i) α∗ = α and α2 = α.
(ii) αV and (ι− α)V are orthogonal complements and α|αV is the identity map on αV ,

α|(ι−α)V is the zero map on (ι− α)V .
(ii) There is a subspace U of V such that α|U is the identity mapping of U and α|U⊥ is

the zero mapping of U⊥.
(iii) An orthonormal basis of V can be chosen so that all the non-zero elements of the

matrix representing α lie on the main diagonal and take the value 1.
[You may find it helpful to use the identity ι = α + (ι− α).]

An endomorphism of V satisfying any (and hence all) of the above conditions is called
an orthogonal projection8 of V . Explain why an orthogonal projection is automatically a
projection in the sense of Exercise 12.1.15 and give an example to show that the converse
is false.

Suppose that α, β are both orthogonal projections of V . Prove that, if αβ = βα, then
αβ is also an orthogonal projection of V .

We can thus call the π considered in Exercise 14.3.13 the orthogonal projection of U

onto V .

Exercise 14.3.15 Let U be a real or complex inner product finite dimensional space. If W

is a subspace of V , we write πW for the orthogonal projection onto W .
Let ρW = 2πW − ι. Show that ρWρW = ι and ρW is an isometry. Identify ρWρW⊥ .

8 Or, when the context is plain, just a projection.
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14.4 Further exercises

Exercise 14.4.1 Let V be a finite dimensional real vector space and let 〈 , 〉1 and 〈 , 〉2 be
two inner products on V . Prove the following results.

(i) There exists a unique endomorphism α : V → V such that 〈u, v〉2 = 〈u, αv〉1 for all
u, v ∈ V .

(ii) α is self-adjoint with respect to 〈 , 〉1.
(iii) If β : V → V is an endomorphism which is self-adjoint with respect to 〈 , 〉1, then

β is self-adjoint with respect to 〈 , 〉2 if and only if α and β commute.

Exercise 14.4.2 Let V be vector space over R of dimension n.
(i) Show that, given n− 1 different inner products 〈 , 〉j , and x ∈ V we can find a

non-zero y ∈ V with 〈x, y〉j = 0 for all 1 ≤ j ≤ n− 1.
(ii) Give an example with n = 2 to show that we cannot replace n− 1 by n in (i).
(iii) Show that, if n ≥ 2, then, given n different inner products 〈 , 〉j , we can find

non-zero x, y ∈ V with 〈x, y〉j = 0 for all 1 ≤ j ≤ n.

Exercise 14.4.3 If we write

qn(x) = dn

dxn
(x2 − 1)n,

prove, by repeated integration by parts, that∫ 1

−1
qn(x)qm(x) dx = δnm

2n+ 1

for all non-negative integers n and m with n �= m. Compute q0, q1 and q2.
Show that qn is a polynomial of degree n and find the coefficient an of xn. Explain why,

if we define pn as in Exercise 14.1.5, we have pn = a−1
n qn.

Exercise 14.4.4 [Tchebychev polynomials] Recall de Moivre’s theorem which tells us
that

cos nθ + i sin nθ = (cos θ + i sin θ )n.

Deduce that

cos nθ =
∑
2r≤n

(−1)r
(

n

2r

)
cosn−2r θ (1− cos2 θ )r

and so

cos nθ = Tn(cos θ )

where Tn is a polynomial of degree n. We call Tn the nth Tchebychev polynomial. Compute
T0, T1, T2 and T3 explicitly.

By considering (1+ 1)n − (1− 1)n, or otherwise, show that the coefficient of tn in Tn(t)
is 2n−1 for all n ≥ 1. Explain why |Tn(t)| ≤ 1 for |t | ≤ 1. Does this inequality hold for all
t ∈ R? Give reasons.
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Show that ∫ 1

−1
Tn(x)Tm(x)

1

(1− x2)1/2
dx = δnman,

where a0 = π and an = π/2 otherwise. (Thus, provided we relax our conditions on r a
little, the Tchebychev polynomials can be considered as orthogonal polynomials of the type
discussed in Exercise 14.1.12.)

Verify the three term recurrence relation

Tn+1(t)− 2tTn(t)+ Tn−1(t) = 0

for |t | ≤ 1. Does this equality hold for all t ∈ R? Give reasons.
Compute T4, T5 and T6 using the recurrence relation.

Exercise 14.4.5 [Hermite polynomials] (Do this question formally if you must and rig-
orously if you can.)

(i) Show that

e2tx−t2 =
∞∑

n=0

Hn(x)

n!
tn �

where Hn is a polynomial. (The Hn are called Hermite polynomials. As usual there are
several versions differing only in the scaling chosen.)

(ii) By using Taylor’s theorem (or, more easily justified, differentiating both sides of �
n times with respect to t and then setting t = 0), show that

Hn(x) = (−1)nex2 dn

dxn
e−x2

and deduce, or prove otherwise, that Hn is a polynomial of degree exactly n.
[Hint: e2tx−t2 = ex2

e−(t−x)2
.]

(iii) By differentiating both sides of � with respect to x and then equating coefficients,
obtain the relation

H ′
n(x) = 2nHn−1(x).

(iv) By integration by parts, or otherwise, show that∫ ∞

∞
Hm(x)Hn(x)e−x2

dx = δn,m2nn!π1/2.

Observe (without looking too closely at the details) the parallels with Exercise 14.1.12.
(v) By differentiating both sides of � with respect to t and then equating coefficients,

obtain the three term recurrence relation

Hn+1(x)− 2xHn−1(x)+ 2nHn+1(x) = 0.

(iv) Show that H0(x) = 1 and H1(x) = 2x. Compute H2, H3 and H4 using (iv).
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Exercise 14.4.6 Suppose that U is a finite dimensional inner product space over C. If
α, β : U → U are Hermitian (that is to say, self-adjoint) linear maps, show that αβ + βα

is always Hermitian, but that αβ is Hermitian if and only if αβ = βα. Give, with proof, a
necessary and sufficient condition for αβ − βα to be Hermitian.

Exercise 14.4.7 Suppose that U is a finite dimensional inner product space over C. If
a, b ∈ U , set

Ta,bu = 〈u, b〉a

for all u ∈ U . Prove the following results.
(i) Ta,b is an endomorphism of U .
(ii) T ∗

a,b = Tb,a.
(iii) Tr Ta,b = 〈a, b〉.
(iv) Ta,bTc,d = Ta,〈b,c〉d.
Establish a necessary and sufficient condition for Ta,b to be self-adjoint.

Exercise 14.4.8 (i) Let V be a vector space over C. If φ : V 2 → C is an inner product on
V and γ : V → V is an isomorphism, show that

ψ(x, y) = φ(γ x, γ y)

defines an inner product ψ : V 2 → C.
(ii) For the rest of this exercise V will be a finite dimensional vector space over C and

φ : V 2 → C an inner product on V . If ψ : V 2 → C is an inner product on V , show that
there is an isomorphism γ : V → V such that

ψ(x, y) = φ(γ x, γ y)

for all (x, y) ∈ V 2.
(iii) If A is a basis a1, a2, . . . , an for V and E is a φ-orthonormal basis e1, e2, . . . , en for

V , we set

μφ(A, E) = det α

where α is the linear map with αaj = ej . Show that μφ(A, E) is independent of the choice
of E , so we may write μφ(A) = μφ(A, E).

(iv) If γ and ψ are as in (i), find μφ(A)/μψ (A) in terms of γ .

Exercise 14.4.9 In this question we work in a finite dimensional real or complex vector
space V with an inner product.

(i) Let α be an endomorphism of V . Show that α is an orthogonal projection if and only
if α2 = α and αα∗ = α∗α. (In the language of Section 15.4, α is a normal linear map.)
[Hint: It may be helpful to prove first that, if αα∗ = α∗α, then α and α∗ have the same
kernel.]
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(ii) Show that, given a subspace U , there is a unique orthogonal projection τU with
τU (V ) = U . If U and W are two subspaces,show that

τUτW = 0

if and only if U and W are orthogonal. (In other words, 〈u, w〉 = 0 for all u ∈ U , v ∈ V .)
(iii) Let β be a projection, that is to say an endomorphism such that β2 = β. Show that

we can define an inner product on V in such a way that β is an orthogonal projection with
respect to the new inner product.

Exercise 14.4.10 Let V be the usual vector space of n× n matrices. If we give V the basis
of matrices E(i, j ) with 1 in the (i, j )th place and zero elsewhere, identify the dual basis
for V ′.

If B ∈ V , we define τB : V → R by τB(A) = Tr(AB). Show that τB ∈ V ′ and that the
map τ : V → V ′ defined by τ (B) = τB is a vector space isomorphism.

If S is the subspace of V consisting of the symmetric matrices and S0 is the annihilator
of S, identify τ−1(S0).

Exercise 14.4.11 (If you get confused by this exercise just ignore it.) We remarked that
the function θ of Lemma 14.2.8 could be used to set up an identification between U and
U ′ when U was a real finite dimensional inner product space. In this exercise we look at
the consequences of making such an identification by setting u = θu and U = U ′.

(i) Show that, if e1, e2, . . . , en is an orthonormal basis for U , then the dual basis êj = ej .
(ii) If α : U → U is linear, then we know that it induces a dual map α′ : U ′ → U ′. Since

we identify U and U ′, we have α′ : U → U . Show that α′ = α∗.

Exercise 14.4.12 The object of this question is to show that infinite dimensional inner
product spaces may have unexpected properties. It involves a small amount of analysis.

Consider the space V of all real sequences

u = (u1, u2, . . .)

where n2un → 0 as n →∞. Show that V is real vector space under the standard coordi-
natewise operations

u+ v = (u1 + v1, u2 + v2, . . .), λu = (λu1, λu2, . . .)

and an inner product space under the inner product

〈u, v〉 =
∞∑

j=1

ujvj .

Show that the set M of all sequences u with only finitely many uj non-zero is a subspace
of V . Find M⊥ and show that M +M⊥ �= V .

Exercise 14.4.13 Here is another way in which infinite inner product spaces may exhibit
unpleasant properties.
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Consider the space M of all real sequences

u = (u1, u2, . . .)

with only finitely many of the uj non-zero. Show that M is a real vector space under the
standard coordinatewise operations and an inner product space under the inner product

〈u, v〉 =
∞∑

j=1

ujvj .

Show that αu =∑∞
j=1 uj is a well defined linear map from M to R, but that there does

not exist an a ∈ M with

αu = 〈u, a〉.
Thus the Riesz representation theorem does not hold for M .



15

More distances

15.1 Distance on L(U,U )

When dealing with matrices, it is natural to say that that the matrix

A =
(

1 10−3

10−3 1

)

is close to the 2× 2 identity matrix I . On the other hand, if we deal with 104 × 104 matrices,
we may suspect that the matrix B given by bii = 1 and bij = 10−3 for i �= j behaves very
differently from the identity matrix. It is natural to seek a notion of distance between n× n

matrices which would measure closeness in some useful way.
What do we wish to mean by saying that we want to ‘measure closeness in some useful

way’? Surely, we do not wish to say that two matrices are close when they look similar,
but, rather, to say that two matrices are close when they act similarly, in other words, that
they represent two linear maps which act similarly.

Reflecting our motto

linear maps for understanding, matrices for computation,

we look for an appropriate notion of distance between linear maps in L(U,U ). We decide
that, in order to have a distance on L(U,U ), we first need a distance on U . For the rest
of this section, U will be a finite dimensional real or complex inner product space, but
the reader will loose nothing if she takes U to be Rn with the standard inner product
〈x, y〉 =∑n

j=1 xjyj .
Let α, β ∈ L(U,U ) and suppose that we fix an orthonormal basis e1, e2, . . . , en for U .

If α has matrix A = (aij ) and β matrix B = (bij ) with respect to this basis, we could define
the distance between A and B by

d∞(A,B) = max
i,j

|aij − bij |, d1(A,B) =
∑
i,j

|aij − bij |,

d2(A,B) =
⎛
⎝∑

i,j

|aij − bij |2
⎞
⎠1/2

.

369



370 More distances

Exercise 15.1.1 Check that, for the dj just defined, we have dj (A,B) = ‖A− B‖j with
(i) ‖A‖j ≥ 0,
(ii) ‖A‖j = 0 ⇒ A = 0,
(iii) ‖λA‖j = |λ|‖A‖j ,
(iv) ‖A+ B‖j ≤ ‖A‖j + ‖B‖j .

[In other words, each dj is derived from a norm ‖ ‖j .]

However, all these distances depend on the choice of basis. We take a longer and more
indirect route which produces a basis independent distance.

Lemma 15.1.2 Suppose that U is a finite dimensional inner product space over F and
α ∈ L(U,U ). Then

{‖αx‖ : ‖x‖ ≤ 1}
is a non-empty bounded subset of R.

Proof Fix an orthonormal basis e1, e2, . . . , en for U . If α has matrix A = (aij ) with respect
to this basis, then, writing x =∑n

j=1 xj ej , we have

‖αx‖ =
∥∥∥∥∥∥

n∑
i=1

⎛
⎝ n∑

j=1

aij xj

⎞
⎠ ei

∥∥∥∥∥∥ ≤
n∑

i=1

∣∣∣∣∣∣
n∑

j=1

aij xj

∣∣∣∣∣∣
≤

n∑
i=1

n∑
j=1

|aij ||xj | ≤
n∑

i=1

n∑
j=1

|aij |

for all ‖x‖ ≤ 1. �

Exercise 15.1.3 We use the notation of the proof of Lemma 15.1.2. Use the Cauchy–
Schwarz inequality to obtain

‖αx‖ ≤
⎛
⎝ n∑

i=1

n∑
j=1

|aij |2
⎞
⎠1/2

for all ‖x‖ ≤ 1.

Since every non-empty bounded subset of R has a least upper bound (that is to say,
supremum), Lemma 15.1.2 allows us to make the following definition.

Definition 15.1.4 Suppose that U is a finite dimensional inner product space over F and
α ∈ L(U,U ). We define

‖α‖ = sup{‖αx‖ : ‖x‖ ≤ 1}.
We call ‖α‖ the operator norm of α. The following lemma gives a more concrete way

of looking at the operator norm.
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Lemma 15.1.5 Suppose that U is a finite dimensional inner product space over F and
α ∈ L(U,U ).

(i) ‖αx‖ ≤ ‖α‖‖x‖ for all x ∈ U .
(ii) If ‖αx‖ ≤ K‖x‖ for all x ∈ U , then ‖α‖ ≤ K .

Proof (i) The result is trivial if x = 0. If not, then ‖x‖ �= 0 and we may set y = ‖x‖−1x.
Since ‖y‖ = 1, the definition of the supremum shows that

‖αx‖ = ‖α(‖x‖y)‖ = ∥∥‖x‖αy
∥∥ = ‖x‖‖αy‖ ≤ ‖α‖‖x‖

as stated.
(ii) The hypothesis implies

‖αx‖ ≤ K for ‖x‖ ≤ 1

and so, by the definition of the supremum, ‖α‖ ≤ K . �

Theorem 15.1.6 Suppose that U is a finite dimensional inner product space over F,
α, β ∈ L(U,U ) and λ ∈ F. Then the following results hold.

(i) ‖α‖ ≥ 0.
(ii) ‖α‖ = 0 if and only if α = 0.
(iii) ‖λα‖ = |λ|‖α‖.
(iv) ‖α + β‖ ≤ ‖α‖ + ‖β‖.
(v) ‖αβ‖ ≤ ‖α‖‖β‖.

Proof The proof of Theorem 15.1.6 is easy. However, this shows, not that our definition is
trivial, but that it is appropriate.

(i) Observe that ‖αx‖ ≥ 0.
(ii) If α �= 0 we can find an x such that αx �= 0 and so ‖αx‖ > 0, whence

‖α‖ ≥ ‖x‖−1‖αx‖ > 0.

If α = 0, then

‖αx‖ = ‖0‖ = 0 ≤ 0‖x‖
so ‖α‖ = 0.

(iii) Observe that

‖(λα)x‖ = ‖λ(αx)‖ = |λ|‖αx‖.
(iv) Observe that∥∥(α + β

)
x
∥∥ = ‖αx+ βx‖ ≤ ‖αx‖ + ‖βx‖
≤ ‖α‖‖x‖ + ‖β‖‖x‖ = (‖α‖ + ‖β‖)‖x‖

for all x ∈ U .
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(v) Observe that ∥∥(αβ)x
∥∥ = ∥∥α(βx)

∥∥ ≤ ‖α‖‖βx‖ ≤ ‖α‖‖β‖‖x‖
for all x ∈ U . �

Important note In Exercise 15.5.6 we give a simple argument to show that the operator
norm cannot be obtained in an obvious way from an inner product. In fact, the operator
norm behaves very differently from any norm derived from an inner product and, when
thinking about the operator norm, the reader must be careful not to use results or intu-
itions developed when studying inner product norms without checking that they do indeed
extend.

Exercise 15.1.7 Suppose that π is a non-zero orthogonal projection (see Exercise 14.3.14)
on a finite dimensional real or complex inner product space V . Show that ‖π‖ = 1.

Let V = R2 with the standard inner product. Show that, given any K > 0, we can find
a projection α (see Exercise 12.1.15) with ‖α‖ ≥ K .

Having defined the operator norm for linear maps, it is easy to transfer it to matrices.

Definition 15.1.8 If A is an n× n matrix with entries in F then

‖A‖ = sup{‖Ax‖ : ‖x‖ ≤ 1}
where ‖x‖ is the usual Euclidean norm of the column vector x.

Exercise 15.1.9 Let α ∈ L(U,U ) where U is a finite dimensional inner product space
over F. If α has matrix A with respect to some orthonormal basis, show that ‖α‖ = ‖A‖.

Exercise 15.1.10 Give examples of 2× 2 real matrices Aj and Bj with ‖Aj‖ = ‖Bj‖ = 1
having the following properties.

(i) ‖A1 + B1‖ = 0.
(ii) ‖A2 + B2‖ = 2.
(iii) ‖A3B3‖ = 0.
(iv) ‖A4B4‖ = 1.

To see one reason why the operator norm is an appropriate measure of the ‘size of a
linear map’, look at the the system of n× n linear equations

Ax = y.

If we make a small change in x, replacing it by x+ δx, then, taking

A(x+ δx) = y+ δy,

we see that

‖δy‖ = ‖y− A(x+ δx)‖ = ‖Aδx‖ ≤ ‖A‖‖δx‖
so ‖A‖ gives us an idea of ‘how sensitive y is to small changes in x’.
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If A is invertible, then x = A−1y. A−1(y+ δy) = x+ δx and

‖δx‖ ≤ ‖A−1‖‖δy‖
so ‖A−1‖ gives us an idea of ‘how sensitive x is to small changes in y’. Just as dividing
by a very small number is both a cause and a symptom of problems, so, if ‖A−1‖ is large,
this is both a cause and a symptom of problems in the numerical solution of simultaneous
linear equations.

Exercise 15.1.11 (i) Let η be a small but non-zero real number, take μ = (1− η)1/2 (use
the positive square root) and

A =
(

1 μ

μ 1

)
.

Find the eigenvalues and eigenvectors of A. Show that, if we look at the equation,

Ax = y

‘small changes in x produce small changes in y’, but write down explicitly a small y for
which x is large.

(ii) Consider the 4× 4 matrix made up from the 2× 2 matrices A, A−1 and 0 (where A

is the matrix in part (i)) as follows

B =
(

A 0
0 A−1

)
.

Show that det B = 1, but, if η is very small, both ‖B‖ and ‖B−1‖ are very large.

Exercise 15.1.12 Suppose that A is a non-singular square matrix. Numerical analysts often
use the condition number c(A) = ‖A‖‖A−1‖ as a miner’s canary to warn of troublesome
n× n non-singular matrices.

(i) Show that c(A) ≥ 1.
(ii) Show that, if λ �= 0, c(λA) = c(A). (This is a good thing, since floating point arith-

metic is unaffected by a simple change of scale.)
[We shall not make any use of this concept.]

If it does not seem possible1 to write down a neat algebraic expression for the norm ‖A‖
of an n× n matrix A, Exercise 15.5.15 shows how, in principle, it is possible to calculate
it. However, the main use of the operator norm is in theoretical work, where we do not need
to calculate it, or in practical work, where very crude estimates are often all that is required.
(These remarks also apply to the condition number.)

Exercise 15.1.13 Suppose that U is an n-dimensional inner product space over
F and α ∈ L(U,U ). If α has matrix (aij ) with respect to some orthonormal basis,

1 Though, as usual, I would encourage you to try.
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show that

n−2
∑
i,j

|aij | ≤ max
r,s

|ars | ≤ ‖α‖ ≤
∑
i,j

|aij | ≤ n2 max
r,s

|ars |.

Use Exercise 15.1.3 to show that

‖α‖ ≤
⎛
⎝∑

i,j

a2
ij

⎞
⎠1/2

.

As the reader knows, the differential and partial differential equations of physics are
often solved numerically by introducing grid points and replacing the original equation by
a system of linear equations. The result is then a system of n equations in n unknowns of
the form

Ax = b, �

where n may be very large indeed. If we try to solve the system using the best method we
have met so far, that is to say, Gaussian elimination, then we need about Cn3 operations.
(The constant C depends on how we count operations, but is typically taken as 2/3.)

However, the A which arise in this manner are certainly not random. Often we expect x
to be close to b (the weather in a minute’s time will look very much like the weather now)
and this is reflected by having A very close to I .

Suppose that this is the case and A = I + B with ‖B‖ < ε and 0 < ε < 1. Let x∗ be the
solution of � and suppose that we make the initial guess that x0 is close to x∗ (a natural
choice would be x0 = b). Since (I + B)x∗ = b, we have

x∗ = b− Bx∗ ≈ b− Bx0

so, using an idea that dates back many centuries, we make the new guess x1, where

x1 = b− Bx0.

We can repeat the process as many times as we wish by defining

xj+1 = b− Bxj .

Now

‖xj+1 − x∗‖ = ∥∥(b− Bxj )− (b− Bx∗)
∥∥ = ‖Bx∗ − Bxj‖

= ∥∥B(xj − x∗)
∥∥ ≤ ‖B‖‖xj − x∗‖.

Thus, by induction,

‖xk − x∗‖ ≤ ‖B‖k‖x0 − x∗‖ ≤ εk‖x0 − x∗‖.
The reader may object that we are ‘merely approximating the true answer’ but, because

computers only work to a certain accuracy, this is true whatever method we use. After only
a few iterations, a term bounded by εk‖x0 − x∗‖ will be ‘lost in the noise’ and we will have
satisfied � to the level of accuracy allowed by the computer.
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It requires roughly 2n2 additions and multiplications to compute xj+1 from xj and so
about 2kn2 operations to compute xk from x0. When n is large, this is much more efficient
than Gaussian elimination.

Sometimes things are even more favourable and most of the entries in the matrix A are
zero. (The weather at a given point depends only on the weather at points close to it a
minute before.) Such matrices are called sparse matrices. If B only has ln non-zero entries,
then it will only take about 2lkn operations2 to compute xk .

The King of Brobdingnag (in Swift’s Gulliver’s Travels [29]) was of the opinion ‘that
whoever could make two ears of corn, or two blades of grass, to grow upon a spot of
ground where only one grew before, would deserve better of mankind, and do more
essential service to his country, than the whole race of politicians put together.’ Those
who devise efficient methods for solving systems of linear equations deserve well of
mankind.

In practice, we usually know that the system of equations Ax = b that we wish to solve
must have a unique solution x∗. If we undertake theoretical work and do not know this
in advance, a sufficient condition for existence and uniqueness is given by ‖I − A‖ < 1.
The interested reader should do Exercise 15.5.16 or 15.5.17 and then Exercise 15.5.18.
(Alternatively, she could invoke the contraction mapping theorem, if she has met it.)

A very simple modification of the preceding discussion gives the Gauss–Jacobi method.

Lemma 15.1.14 [Gauss–Jacobi] Let A be an n× n matrix with non-zero diagonal entries
and b ∈ Fn a column vector. Suppose that the equation

Ax = b

has the solution x∗. Let us write D for the n× n diagonal matrix with diagonal entries the
same as those of A and set B = A−D. If x0 ∈ Rn and

xj+1 = D−1(b− Bxj )

then

‖xj − x∗‖ ≤ ‖D−1B‖j‖x0 − x∗‖
and ‖xj − x∗‖ → 0 whenever ‖D−1B‖ < 1.

Proof Proof left to the reader. �

Note that D−1 is easy to compute.
Another, slightly more sophisticated, modification gives the Gauss–Siedel method.

Lemma 15.1.15 [Gauss–Siedel] Let A be an n× n matrix with non-zero diagonal entries
and b ∈ Fn a column vector. Suppose that the equation

Ax = b

2 This may be over optimistic. In order to exploit sparsity, the non-zero entries must form a simple pattern and we must be able
to exploit that pattern.
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has the solution x∗. Let us write A = L+ U where L is a lower triangular matrix and U a
strictly upper triangular matrix (that is to say, an upper triangular matrix with all diagonal
terms zero). If x0 ∈ Fn and

Lxj+1 = (b− Uxj ), �

then

‖xj − x∗‖ ≤ ‖L−1U‖j‖x0 − x∗‖
and ‖xj − x∗‖ → 0 whenever ‖L−1U‖ < 1.

Proof Proof left to the reader. �

Note that, because L is lower triangular, the equation � is easy to solve. We have stated
our theorems for real and complex matrices but, of course, in practice, they are used for
real matrices.

We shall look again at conditions for the convergence of these methods when we discuss
the spectral radius in Section 15.3. (See Lemma 15.3.9 and Exercise 15.3.11.)

15.2 Inner products and triangularisation

If we deal with complex inner product spaces, we have a more precise version of
Theorem 12.2.5.

Theorem 15.2.1 If V is a finite dimensional complex inner product vector space and
α : V → V is linear, we can find an orthonormal basis for V with respect to which α has
an upper triangular matrix A (that is to say, a matrix A = (aij ) with aij = 0 for i > j ).

Proof We use induction on the dimension m of V . Since every 1× 1 matrix is upper
triangular, the result is true when m = 1. Suppose that the result is true when m = n− 1
and that V has dimension n.

Let a11 be a root of the characteristic polynomial of α and let e1 be a correspond-
ing eigenvector of norm 1. Let W = span{e1}, let U = W⊥ and let π be the orthogonal
projection of V onto U .

Now (πα)|U is a linear map from U to U and U has dimension n− 1, so, by the inductive
hypothesis, we can find an orthonormal basis e2, e3, . . . , en for U with respect to which
(πα)|U has an upper triangular matrix. The statement that (πα)|U has an upper triangular
matrix means that

παej ∈ span{e2, e3, . . . , ej } �

for 2 ≤ j ≤ n.
Now e1, e2, . . . , en form a basis of V . But � tells us that

αej ∈ span{e1, e2, . . . , ej }
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for 2 ≤ j ≤ n and the statement

αe1 ∈ span{e1}
is automatic. Thus α has upper triangular matrix (aij ) with respect to the given basis. �

Exercise 15.2.2 By considering roots of the characteristic polynomial or otherwise,
show, by example, that the result corresponding to Theorem 15.2.1 is false if V is a
finite dimensional vector space of dimension greater than 1 over R. What can we say if
dim V = 1?

Why is there no contradiction between the example asked for in the previous paragraph
and the fact that every square matrix has a QR factorisation?

We know that it is more difficult to deal with α ∈ L(U,U ) when the charac-
teristic polynomial has repeated roots. The next result suggests one way round this
difficulty.

Theorem 15.2.3 If U is a finite dimensional complex inner product vector space and
α ∈ L(U,U ), then we can find αn ∈ L(U,U ) with ‖αn − α‖ → 0 as n →∞ such that the
characteristic polynomials of the αn have no repeated roots.

Proof of Theorem 15.2.3 By Theorem 15.2.1 we can find an orthonormal basis with respect
to which α is represented by upper triangular matrix A. We can certainly find d

(n)
jj → 0

such that the ajj + d
(n)
jj are distinct for each n. Let Dn be the diagonal matrix with diagonal

entries d
(n)
jj . If we take αn to be the linear map represented by A+Dn, then the characteristic

polynomial of αn will have the distinct roots ajj + d
(n)
jj . Exercise 15.1.13 tells us that

‖αn − α‖ → 0 as n →∞, so we are done. �

If we use Exercise 15.1.13, we can translate Theorem 15.2.3 into a result on matrices.

Exercise 15.2.4 If A = (aij ) is an m×m complex matrix, show, using Theorem 15.2.3,
that we can find a sequence A(n) = (aij (n)

)
of m×m complex matrices such that

max
i,j

|aij (n)− aij | → 0 as n →∞

and the characteristic polynomials of the A(n) have no repeated roots.

As an example of the use of Theorem 15.2.3, let us produce yet another proof of the
Cayley–Hamilton theorem. We need a preliminary lemma.

Lemma 15.2.5 Consider the space of m×m matrices Mm(C). The multiplication
map Mm(C)×Mm(C) → Mm(C) given by (A,B) �→ AB, the addition map Mm(C)×
Mm(C) → Mm(C) given by (A,B) �→ A+ B and the scalar multiplication map C×
Mm(C) → Mm(C) given by (λ,A) → λA are all continuous.

Proof We prove that the multiplication map is continuous and leave the other verifications
to the reader.
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To prove that multiplication is continuous, we observe that, whenever ‖An − A‖,
‖Bn − B‖ → 0, we have

‖AnBn − AB‖ = ‖(A− An)B + (B − Bn)An‖
≤ ‖(A− An)B‖ + ‖(B − Bn)An‖
≤ ‖A− An‖‖B‖ + ‖B − Bn‖‖An‖
≤ ‖A− An‖‖B‖ + ‖B − Bn‖(‖A‖ + ‖A− An‖)

→ 0+ 0(‖A‖ + 0) = 0

as n →∞. This is the desired result. �
Theorem 15.2.6 [Cayley–Hamilton for complex matrices] If A is an m×m matrix and

PA(t) =
m∑

k=0

akt
k = det(tI − A),

we have PA(A) = 0.

Proof By Theorem 15.2.3, we can find a sequence An of matrices whose characteristic
polynomials have no repeated roots such that ‖A− An‖ → 0 as n →∞. Since the Cayley–
Hamilton theorem is immediate for diagonal and so for diagonalisable matrices, we know
that, setting

m∑
k=0

ak(n)t k = det(tI − An),

we have
m∑

k=0

ak(n)Ak
n = 0.

Now ak(n) is some multinomial3 in the the entries aij (n) of A(n). Since Exercise 15.1.13
tells us that aij (n) → aij , it follows that ak(n) → ak . Lemma 15.2.5 now yields∥∥∥∥∥

m∑
k=0

akA
k

∥∥∥∥∥ =
∥∥∥∥∥

m∑
k=0

akA
k −

m∑
k=0

ak(n)Ak
n

∥∥∥∥∥→ 0

as n →∞, so ∥∥∥∥∥
m∑

k=0

akA
k

∥∥∥∥∥ = 0

and
m∑

k=0

akA
k = 0. �

Before deciding that Theorem 15.2.3 entitles us to neglect the ‘special case’ of multiple
roots, the reader should consider the following informal argument. We are often interested

3 That is to say, some polynomial in several variables.
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in m×m matrices A, all of whose entries are real, and how the behaviour of some system
(for example, a set of simultaneous linear differential equations) varies as the entries in
A vary. Observe that, as A varies continuously, so do the coefficients in the associated
characteristic polynomial

t k +
k−1∑
j=0

akt
k = det(tI − A).

As the coefficients in the polynomial vary continuously so do the roots of the polynomial.4

Since the coefficients of the characteristic polynomial are real, the roots are either real
or occur in conjugate pairs. As the matrix changes to make the number of non-real roots
increase by 2, two real roots must come together to form a repeated real root and then
separate as conjugate complex roots. When the number of non-real roots reduces by 2 the
situation is reversed. Thus, in the interesting case when the system passes from one regime
to another, the characteristic polynomial must have a double root.

Of course, this argument only shows that we need to consider Jordan normal forms
of a rather simple type. However, we are often interested not in ‘general systems’ but in
‘particular systems’ and their ‘particularity’ may be reflected in a more complicated Jordan
normal form.

15.3 The spectral radius

When we looked at iterative procedures like Gauss–Siedel for solving systems of lin-
ear equations, we were particularly interested in the question of when ‖Anx‖ → 0. The
following result gives an almost complete answer.

Lemma 15.3.1 If A is a complex m×m matrix with m distinct eigenvalues, then ‖Anx‖ →
0 as n →∞ if and only if all the eigenvalues of A have modulus less than 1.

Proof Take a basis uj of eigenvectors with associated eigenvalues λj . If |λk| ≥ 1 then

‖Anuk‖ = |λk|n‖uk‖ �→ 0.

On the other hand, if |λj | < 1 for all 1 ≤ j ≤ m, then∥∥∥∥∥∥An

m∑
j=1

xj uj

∥∥∥∥∥∥ =
∥∥∥∥∥∥

m∑
j=1

xjA
nuj

∥∥∥∥∥∥
=
∥∥∥∥∥∥

m∑
j=1

xjλ
n
j uj

∥∥∥∥∥∥
≤

m∑
j=1

xj |λj |n‖uj‖ → 0

as n →∞. Thus ‖Anx‖ → 0 as n →∞ for all x ∈ Cm. �

4 This looks obvious and is, indeed, true, but the proof requires complex variable theory. See Exercise 15.5.14 for a proof.
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Note that, as the next exercise shows, although the statement that all the eigenvalues
of A are small tells us that ‖Anx‖ tends to zero, it does not tell us about the behaviour of
‖Anx‖ when n is small.

Exercise 15.3.2 Let

A =
( 1

2 K

0 1
4

)
.

What are the eigenvalues of A? Show that, given any integer N ≥ 1 and any L > 0, we
can find a K such that, taking x = (0, 1)T , we have ‖ANx‖ > L.

In numerical work, we are frequently only interested in matrices and vectors with real
entries. The next exercise shows that this makes no difference.

Exercise 15.3.3 Suppose that A is a real m×m matrix. Show, by considering real and
imaginary parts, or otherwise, that ‖Anz‖ → 0 as n →∞ for all column vectors z with
entries in C if and only if ‖Anx‖ → 0 as n →∞ for all column vectors x with entries in
R.

Life is too short to stuff an olive and I will not blame readers who mutter something
about ‘special cases’ and ignore the rest of this section which deals with the situation when
some of the roots of the characteristic polynomial coincide.

We shall prove the following neat result.

Theorem 15.3.4 If U is a finite dimensional complex inner product space and α ∈
L(U,U ), then

‖αn‖1/n → ρ(α) as n →∞,

where ρ(α) is the largest absolute value of the eigenvalues of α.

Translation gives the equivalent matrix result.

Lemma 15.3.5 If A is an m×m complex matrix, then

‖An‖1/n → ρ(A) as n →∞,

where ρ(A) is the largest absolute value of the eigenvalues of A.

We call ρ(α) the spectral radius of α. At this level, we hardly need a special name,
but a generalisation of the concept plays an important role in more advanced work. Here
is the result of Lemma 15.3.1 without the restriction on the roots of the characteristic
equation.

Theorem 15.3.6 If A is a complex m×m matrix, then ‖Anx‖ → 0 as n →∞ if and only
if all its eigenvalues have modulus less than 1.

Proof of Theorem 15.3.6 using Theorem 15.3.4 Suppose that ρ(A) < 1. Then we can find
a μ with 1 > μ > ρ(A). Since ‖An‖1/n → ρ(A), we can find an N such that ‖An‖1/n ≤ μ
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for all n ≥ N . Thus, provided n ≥ N ,

‖Anx‖ ≤ ‖An‖‖x‖ ≤ μn‖x‖ → 0

as n →∞.
If ρ(A) ≥ 1, then, choosing an eigenvector u with eigenvalue having absolute value

ρ(A), we observe that ‖Anu‖ � 0 as n →∞. �

In Exercise 15.5.1, we outline an alternative proof of Theorem 15.3.6, using the Jordan
canonical form rather than the spectral radius.

Our proof of Theorem 15.3.4 makes use of the following simple results which the reader
is invited to check explicitly.

Exercise 15.3.7 (i) Suppose that r and s are non-negative integers. Let A = (aij ) and
B = (bij ) be two m×m matrices such that aij = 0 whenever 1 ≤ i ≤ j + r , and bij = 0
whenever 1 ≤ i ≤ j + s. If C = (cij ) is given by C = AB, show that cij = 0 whenever
1 ≤ i ≤ j + r + s + 1.

(ii) If D is a diagonal matrix show that ‖D‖ = ρ(D).

Exercise 15.3.8 By means of a proof or counterexample, establish whether the result of
Exercise 15.3.7 remains true if we drop the restriction that r and s should be non-negative.

Proof of Theorem 15.3.4 Let U have dimension m. By Theorem 15.2.1, we can find an
orthonormal basis for U with respect to which α has an upper triangular m×m matrix A

(that is to say, a matrix A = (aij ) with aij = 0 for i > j ). We need to show that ‖An‖1/n →
ρ(A).

To this end, write A = B +D where D is a diagonal matrix and B = (bij ) is strictly
upper triangular (that is to say, bij = 0 whenever i ≥ j ). Since the eigenvalues of a triangular
matrix are its diagonal entries,

ρ(A) = ρ(D) = ‖D‖.
If D = 0, then ρ(A) = 0 and An = 0 for n ≥ m− 1, so we are done. From now on, we
suppose that D �= 0 and so ‖D‖ > 0.

Let n ≥ m. If m ≤ k ≤ n, it follows from Exercise 15.3.7 that the product of k copies
of B and n− k copies of D taken in any order is 0. If 0 ≤ k ≤ m− 1 we can multiply k

copies of B and n− k copies of D in
(
n
k

)
different orders, but, in each case, the product C,

say, will satisfy ‖C‖ ≤ ‖B‖k‖D‖n−k . Thus

‖An‖ = ‖(B +D)n‖ ≤
m−1∑
k=0

(
n

k

)
‖B‖k‖D‖n−k.

It follows that

‖An‖ ≤ Knm−1‖D‖n

for some K depending on m, B and D, but not on n.
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If λ is an eigenvalue of A with largest absolute value and u is an associated eigenvalue,
then

‖An‖‖u‖ ≥ ‖Anu‖ = ‖λnu‖ = |λ|n‖u‖,
so ‖An‖ ≥ |λ|n = ρ(A)n. We thus have

ρ(A)n ≤ ‖An‖ ≤ Knm−1‖D‖n = Knm−1ρ(A)n,

whence

ρ(A) ≤ ‖An‖1/n ≤ K1/nn(m−1)/nρ(A) → ρ(A)

and ‖An‖1/n → ρ(A) as required. (We use the result from analysis which states that n1/n →
1 as n →∞.) �

Theorem 15.3.6 gives further information on the Gauss–Jacobi, Gauss–Siedel and similar
iterative methods.

Lemma 15.3.9 [Gauss–Siedel revisited] Let A be an n× n matrix over F with non-zero
diagonal entries and b ∈ Fn a column vector. Suppose that the equation

Ax = b

has the solution x∗. Let us write A = L+ U where L is a lower triangular matrix and U a
strictly upper triangular matrix (that is to say, an upper triangular matrix with all diagonal
terms zero). If x0 ∈ Fn and

Lxj+1 = b− Uxj ,

then ‖xj − x∗‖ → 0 whenever ρ(L−1U ) < 1. If ρ(L−1U ) ≥ 1 we can choose x0 so that
‖xj − x∗‖ �→ 0.

Proof Left to reader. Note that Exercise 15.3.3 tells that, whether we work over C

or R, it is the size of the spectral radius which tells us whether we always have
convergence. �

Lemma 15.3.10 Let A be an n× n matrix with

|arr | >
∑
s �=r

|ars | for all 1 ≤ r ≤ n.

Then the Gauss–Siedel method described in the previous lemma will converge. (More
specifically ‖xj − x∗‖ → 0 as j →∞.)

Proof Suppose, if possible, that we can find an eigenvector y of L−1U with eigenvalue λ

such that |λ| ≥ 1. Then L−1Uy = λy and so Uy = λLy. Thus

aiiyi = λ−1
i−1∑
j=1

aij yj −
n∑

j=i+1

aij yj
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and so

|aii ||yi | ≤
∑
j �=i

|aij ||yj |

for each i.
Summing over all i and interchanging the order of summation, we get (bearing in mind

that y �= 0 and so |yj | > 0 for at least one value of j )

n∑
i=1

|aii ||yi | <
n∑

i=1

∑
j �=i

|aij ||yj | =
n∑

j=1

∑
i �=j

|aij ||yj |

=
n∑

j=1

|yj |
∑
i �=j

|aij | <
n∑

j=1

|yj ||ajj | =
n∑

i=1

|aii ||yi |

which is absurd.
Thus all the eigenvalues of A have absolute value less than 1 and Lemma 15.3.9

applies. �

Exercise 15.3.11 State and prove a result corresponding to Lemma 15.3.9 for the Gauss–
Jacobi method (see Lemma 15.1.14) and use it to show that, if A is an n× n matrix
with

|ars | >
∑
s �=r

|ars | for all 1 ≤ r ≤ n,

then the Gauss–Jacobi method applied to the system Ax = b will converge.

15.4 Normal maps

In Exercise 8.4.18 the reader was invited to show, in effect, that a Hermitian map is char-
acterised by the fact that it has orthonormal eigenvectors with associated real eigenvalues.
Here is an alternative (though, in my view, less instructive) proof using Theorem 15.2.1.

Theorem 15.4.1 If V is a finite dimensional complex inner product vector space and
α : V → V is linear, then α∗ = α if and only if we can find a an orthonormal basis for V

with respect to which α has a diagonal matrix with real diagonal entries.

Proof Sufficiency is obvious. If α is represented with respect to some orthonormal basis by
the diagonal matrix D with real entries, then α∗ is represented by D∗ = D and so α = α∗.

To prove necessity, observe that, by Theorem 15.2.1, we can find an orthonormal basis
for V with respect to which α has an upper triangular matrix A (that is to say, a matrix
A = (aij ) with aij = 0 for i > j ). Now α∗ = α, so A∗ = A and

aij = a∗ji = 0 for j < i

whilst a∗jj = ajj for all j . Thus A is, in fact, diagonal with real diagonal entries. �
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It is natural to ask which endomorphisms of a complex inner product space have an
associated orthogonal basis of eigenvalues. Although it might take some time and many
trial calculations, it is possible to imagine how the answer could have been obtained.

Definition 15.4.2 If V is a complex inner product space, we say that α ∈ L(V, V ) is
normal5 if α∗α = αα∗.

Exercise 15.4.3 Let V be a finite dimensional complex inner product space with an
orthonormal basis. Show that α ∈ L(V, V ) is normal if and only if its matrix A relative
to the given basis satisfies A∗A = AA∗. (Such a matrix A is naturally called a normal
matrix.)

Theorem 15.4.4 If V is a finite dimensional complex inner product vector space and
α : V → V is linear, then α is normal if and only if we can find a an orthonormal basis for
V with respect to which α has a diagonal matrix.

Proof Sufficiency is obvious. If α is represented with respect to some orthonormal basis
by the diagonal matrix D, then α∗ is represented by D∗ = D. Since diagonal matrices
commute, DD∗ = D∗D and so αα∗ = α∗α.

To prove necessity, observe that, by Theorem 15.2.1, we can find an orthonormal basis
for V with respect to which α has an upper triangular matrix A (that is to say, a matrix
A = (aij ) with aij = 0 for i > j ). Now αα∗ = α∗α so AA∗ = A∗A and

n∑
j=1

arj a
∗
sj =

n∑
j=1

a∗jrajs =
n∑

j=1

ajsa
∗
jr

for all n ≥ r, s ≥ 1. It follows that∑
j≥max{r,s}

arj a
∗
sj =

∑
j≤min{r,s}

ajsa
∗
jr

for all n ≥ r, s ≥ 1. In particular, if we take r = s = 1, we get
n∑

j=1

a∗1j a1j = a11a
∗
11,

so
n∑

j=2

|a1j |2 = 0.

Thus a1j = 0 for j ≥ 2.
If we now set r = s = 2 and note that a12 = 0, we get

n∑
j=3

|a2j |2 = 0,

5 The use of the word normal here and elsewhere is a testament to the deeply held human belief that, by declaring something to
be normal, we make it normal.
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so a2j = 0 for j ≥ 3. Continuing inductively, we obtain aij = 0 for all j > i and so A is
diagonal. �

If our object were only to prove results and not to understand them, we could leave
things as they stand. However, I think that it is more natural to seek a proof along the lines
of our earlier proofs of the diagonalisation of symmetric and Hermitian maps. (Notice that,
if we try to prove part (iii) of Theorem 15.4.5, we are almost automatically led back to
part (ii) and, if we try to prove part (ii), we are, after a certain amount of head scratching,
led back to part (i).)

Theorem 15.4.5 Suppose that V is a finite dimensional complex inner product vector
space and α : V → V is normal.

(i) If e is an eigenvector of α with eigenvalue 0, then e is an eigenvalue of α∗ with
eigenvalue 0.

(ii) If e is an eigenvector of α with eigenvalue λ, then e is an eigenvalue of α∗ with
eigenvalue λ∗.

(iii) α has an orthonormal basis of eigenvalues.

Proof (i) Observe that

αe = 0 ⇒ 〈αe, αe〉 = 0 ⇒ 〈e, α∗αe〉 = 0

⇒ 〈e, αα∗e〉 = 0 ⇒ 〈αα∗e, e〉 = 0

⇒ 〈α∗e, α∗e〉 = 0 ⇒ α∗e = 0.

(ii) If e is an eigenvalue of α with eigenvalue λ, then e is an eigenvalue of β = λι− α

with associated eigenvalue 0.
Since β∗ = λ∗ι− α∗, we have

ββ∗ = (λι− α)(λ∗ι− α∗) = |λ|2ι− λ∗α − λα∗ + αα∗

= (λ∗ι− α∗)(λι− α) = β∗β.

Thus β is normal, so, by (i), e is an eigenvalue of β∗ with eigenvalue 0. It follows that e is
an eigenvalue of α∗ with eigenvalue λ∗.

(iii) We follow the pattern set out in the proof of Theorem 8.2.5 by performing an
induction on the dimension n of V .

If n = 1, then, since every 1× 1 matrix is diagonal, the result is trivial.
Suppose now that the result is true for n = m, that V is an m+ 1 dimensional complex

inner product space and that α ∈ L(V, V ) is normal. We know that the characteristic
polynomial must have a root, so we can find an eigenvalue λ1 ∈ C and a corresponding
eigenvector e1 of norm 1. Consider the subspace

e⊥1 = {u : 〈e1, u〉 = 0}.
We observe (and this is the key to the proof) that

u ∈ e⊥1 ⇒ 〈e1, αu〉 = 〈α∗e1, u〉 = 〈λ∗1e1, u〉 = λ∗1〈e1, u〉 = 0 ⇒ αu ∈ e⊥1 .
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Thus we can define α|e⊥1 : e⊥1 → e⊥1 to be the restriction of α to e⊥1 . We observe that
α|e⊥1 is normal and e⊥1 has dimension m so, by the inductive hypothesis, we can find m

orthonormal eigenvectors of α|e⊥1 in e⊥1 . Let us call them e2, e3, . . . ,em+1. We observe
that e1, e2, . . . , em+1 are orthonormal eigenvectors of α and so α is diagonalisable. The
induction is complete. �

(We give yet another proof of Theorem 15.4.4 in Exercise 15.5.9.)

Exercise 15.4.6 [A spectral theorem]6 Let U be a finite dimensional inner product space
over C and α an endomorphism. Show that α is normal if and only if there exist distinct
non-zero λj ∈ C and orthogonal projections πj such that πkπj = 0 when k �= j ,

ι = π1 + π2 + · · · + πm and α = λ1π1 + λ2π2 + · · · + λmπm.

State the appropriate theorem for self-adjoint linear maps.

The unitary maps (that is to say, the linear maps α with α∗α = ι) are normal.

Exercise 15.4.7 Explain why the unitary maps are normal. Let α be an automorphism of
a finite dimensional complex inner product space. Show that β = α−1α∗ is unitary if and
only if α is normal.

Theorem 15.4.8 If V is a finite dimensional complex inner product vector space, then
α ∈ L(V, V ) is unitary if and only if we can find an orthonormal basis for V with respect
to which α has a diagonal matrix

U =

⎛
⎜⎜⎜⎜⎜⎝

eiθ1 0 0 . . . 0
0 eiθ2 0 . . . 0
0 0 eiθ3 . . . 0
...

...
...

...
0 0 0 . . . eiθn

⎞
⎟⎟⎟⎟⎟⎠

where θ1, θ2, . . . , θn ∈ R.

Proof Observe that, if U is the matrix written out in the statement of our theorem, we have

U ∗ =

⎛
⎜⎜⎜⎜⎜⎝

e−iθ1 0 0 . . . 0
0 e−iθ2 0 . . . 0
0 0 e−iθ3 . . . 0
...

...
...

...
0 0 0 . . . e−iθn

⎞
⎟⎟⎟⎟⎟⎠

so UU ∗ = I . Thus, if α is represented by U with respect to some orthonormal basis, it
follows that αα∗ = ι and α is unitary.

6 Calling this a spectral theorem is rather like referring to Mr and Mrs Smith as royalty on the grounds that Mr Smith is 12th
cousin to the Queen.
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We now prove the converse. If α is unitary, then α is invertible with α−1 = α∗. Thus

αα∗ = ι = α∗α

and α is normal. It follows that α has an orthonormal basis of eigenvectors ej . If λj is the
eigenvalue associated with ej , then, since unitary maps preserve norms,

|λj | = |λj |‖ej‖ = ‖λj ej‖ = ‖αej‖ = ‖ej‖ = 1

so λj = eiθj for some real θj and we are done. �

The next exercise, which is for amusement only, points out an interesting difference
between the group of norm preserving linear maps for Rn and the group of norm preserving
linear maps for Cn.

Exercise 15.4.9 (i) Let V be a finite dimensional complex inner product space and consider
L(V, V ) with the operator norm. By considering diagonal matrices whose entries are of
the form eiθj t , or otherwise, show that, if α ∈ L(V, V ) is unitary, we can find a continuous
map

f : [0, 1] → L(V, V )

such that f (t) is unitary for all 0 ≤ t ≤ 1, f (0) = ι and f (1) = α.
Show that, if β, γ ∈ L(V, V ) are unitary, we can find a continuous map

g : [0, 1] → L(V, V )

such that g(t) is unitary for all 0 ≤ t ≤ 1, g(0) = β and g(1) = γ .
(ii) Let U be a finite dimensional real inner product space and consider L(U,U ) with

the operator norm. We take ρ to be a reflection

ρ(x) = x− 2〈x, n〉n
with n a unit vector.

If f : [0, 1] → L(U,U ) is continuous and f (0) = ι, f (1) = ρ, show, by consider-
ing the map t �→ det f (t), or otherwise, that there exists an s ∈ [0, 1] with f (s) not
invertible.

15.5 Further exercises

Exercise 15.5.1 The object of this question is to give a more algebraic proof of Theo-
rem 15.3.6. This states that, if U is a finite dimensional complex inner product vector space
over C and α ∈ L(U,U ) is such that all the roots of its characteristic polynomial have
modulus strictly less than 1, then ‖αnx‖ → 0 as n →∞ for all x ∈ U .

(i) Suppose that α satisfies the hypothesis and u1, u2, . . . , um is a basis for U (but not
necessarily an orthonormal basis). Show that the required conclusion will follow if we can
show that ‖αn(uj )‖ → 0 as n →∞ for all 1 ≤ j ≤ m.
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(ii) Suppose that β ∈ L(U,U ) and

βuj =
{

λuj + uj+1 if 1 ≤ j ≤ k − 1,

λuk if j = k.

Show that there exists some constant K (depending on the uj but not on n) such that

‖βnu1‖ ≤ Knk−1|λ|n

and deduce that, if |λ| < 1,

‖βnu1‖ → 0

as n →∞.
(iii) Use the Jordan normal form to prove the result stated at the beginning of the question.

Exercise 15.5.2 Show that 〈A,B〉 = Tr(AB∗) defines an inner product on the vector space
of n× n matrices with complex matrices. Deduce that

Tr(AB∗)2 ≤ Tr(AA∗) Tr(BB∗),

giving necessary and sufficient conditions for equality.
If n = 2 and

C =
(

1 1
2 0

)
, D =

(
1 1
0 −2

)
,

find an orthonormal basis for (span{C, D})⊥.
Suppose that A is normal (that is to say, AA∗ = A∗A). By considering

〈A∗B − B∗A,A∗B − B∗A〉, show that if B commutes with A, then B commutes with A∗.

Exercise 15.5.3 Let U be an n-dimensional complex vector space and let α ∈ L(U,U ).
Let λ1, λ2, . . . , λn be the roots of the characteristic polynomial of α (multiple roots counted
multiply) and let μ1, μ2, . . . , μn be the roots of the characteristic polynomial of αα∗

(multiple roots counted multiply). Explain why all the μj are real and positive.
By using triangularisation, or otherwise, show that

|λ1|2 + |λ2|2 + · · · + |λn|2 ≤ μ1 + μ2 + · · · + μn

with equality if and only if α is normal.

Exercise 15.5.4 Let U be an n-dimensional complex vector space and let α ∈ L(U,U ).
Show that α is normal if and only if we can find a polynomial such that α∗ = P (α).

Exercise 15.5.5 Consider the matrix

A =

⎛
⎜⎜⎜⎝

1
μ

1 0 0

−1 1
μ

1 0

0 −1 1
μ

1

0 0 −1 1
μ

⎞
⎟⎟⎟⎠
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with μ real and non-zero. Construct the appropriate matrices for the solution of Ax = b by
the Gauss–Jacobi and by the Gauss–Seidel methods.

Determine the range of μ for which each of the two procedures converges.

Exercise 15.5.6 [The parallelogram law revisited] If 〈 , 〉 is an inner product on a vector
space V over F and we define ‖u‖2 = 〈u, u〉1/2 (taking the positive square root), show that

‖a+ b‖2
2 + ‖a− b‖2

2 = 2(‖a‖2
2 + ‖b‖2

2)

for all a, b ∈ V .
Show that if V is a finite dimensional space over F of dimension at least 2 and we use

the operator norm ‖ ‖, there exist T , S ∈ L(V, V ) such that

‖T + S‖2 + ‖T − S‖2 �= 2(‖T ‖2 + ‖S‖2).

Thus the operator norm does not come from an inner product.

Exercise 15.5.7 The object of this question is to give a proof of the Riesz representation
theorem (Theorem 14.2.4) which has some chance of carrying over to an appropriate infinite
dimensional context. Naturally, it requires some analysis. We work in Rn with the usual
inner product.

Suppose that α : Rn → R is linear. Show, by using the operator norm, or otherwise, that

‖xn − x‖ → 0 ⇒ αxn → αx

as n →∞. Deduce that, if we write

� = {x : αx = 0},
then

xn ∈ �, ‖xn − x‖ → 0 ⇒ x ∈ �.

Now suppose that α �= 0. Explain why we can find c /∈ � and why

{‖x− c‖ : x ∈ �}
is a non-empty subset of R bounded below by 0.

Set M = inf{‖x− c‖ : x ∈ �}. Explain why we can find yn ∈ � with ‖yn − c‖ → M .
The Bolzano–Weierstrass theorem for Rn tells us that every bounded sequence has
a convergent subsequence. Deduce that we can find xn ∈ � and a d ∈ � such that
‖xn − c‖ → M and ‖xn − d‖ → 0.

Show that d ∈ � and ‖d− c‖ = M . Set b = c− d. If u ∈ �, explain why

‖b+ ηu‖ ≥ ‖b‖
for all real η. By squaring both sides and considering what happens when η take very small
positive and negative values, show that 〈a, u〉 = 0 for all u ∈ �.

Deduce the Riesz representation theorem.
[Exercise 8.5.8 runs through a similar argument.]
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Exercise 15.5.8 In this question we work with an inner product on a finite dimensional
complex vector space U . However, the results can be extended to more general situations
so you should prove the results without using bases.

(i) If α ∈ L(U,U ), show that α∗α = 0 ⇒ α = 0.
(ii) If α and β are Hermitian, show that αβ = 0 ⇒ βα = 0.
(iii) Using (i) and (ii), or otherwise, show that, if φ and ψ are normal,

φψ = 0 ⇒ ψφ = 0.

Exercise 15.5.9 [Simultaneous diagonalisation for Hermitian maps] Suppose that U is
a complex inner product n-dimensional vector space and α and β are Hermitian endomor-
phisms. Show that there exists an orthonormal basis e1, e2, . . . , en of U such that each ej

is an eigenvector of both α and β if and only if αβ = βα.
If γ is a normal endomorphism, show, by considering α = 2−1(γ + γ ∗) and β =

2−1i(γ − γ ∗) that there exists an orthonormal basis e1, e2, . . . , en of U consisting of
eigenvectors of γ . (We thus have another proof that normal maps are diagonalisable.)

Exercise 15.5.10 [Square roots] In this question and the next we look at ‘square roots’ of
linear maps. We take U to be a vector space of dimension n over F.

(i) Let U be a finite dimensional vector space over F. Suppose that α, β : U → U are
linear maps with β2 = α. By observing that αβ = β3, or otherwise, show that αβ = βα.

(ii) Suppose that α, β : U → U are linear maps with αβ = βα. If α has n dis-
tinct eigenvalues, show that every eigenvector of α is an eigenvector of β. Deduce that
there is a basis for Fn with respect to which the matrices associated with α and β are
diagonal.

(iii) Let F = C. If α : U → U is a linear map with n distinct eigenvalues, show, by
considering an appropriate basis, or otherwise, that there exists a linear map β : U → U

with β2 = α. Show that, if zero is not an eigenvalue of α, the equation β2 = α has exactly
2n distinct solutions. (Part (ii) may be useful in showing that there are no more than 2n

solutions.) What happens if α has zero as an eigenvalue?
(iv) Let F = R. Write down a 2× 2 symmetric matrix A with two distinct eigenvalues

such that there is no real 2× 2 matrix B with B2 = A. Explain why this is so.
(v) Consider the 2× 2 real matrix

Rθ =
(

cos θ sin θ

sin θ −cos θ

)
.

Show that R2
θ = I for all θ . What geometric fact does this reflect? Why does this result not

contradict (iii)?
(vi) Let F = C. Give, with proof, a 2× 2 matrix A such that there does not exist a matrix

B with B2 = A. (Hint: What is our usual choice of a problem 2× 2 matrix?) Why does
your result not contradict (iii)?

(vii) Run through this exercise with square roots replaced by cube roots. (Part (iv) will
need to be rethought. For an example where there exist infinitely many cube roots, it may
be helpful to consider maps in SO(R3).)
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Exercise 15.5.11 [Square roots of positive semi-definite linear maps] Throughout this
question, U is a finite dimensional inner product vector space over F. A self-adjoint map
α : U → U is called positive semi-definite if 〈αu, αu〉 ≥ 0 for all u ∈ U . (This concept is
discussed further in Section 16.3.)

(i) Suppose that α, β : U → U are self-adjoint linear maps with αβ = βα. If α has an
eigenvalue λ and we write

Eλ = {u ∈ U : αu = λu}

for the associated eigenspace, show that βEλ ⊆ Eλ. Deduce that we can find an orthonormal
basis for Eλ consisting of eigenvectors of β. Conclude that we can find an orthonormal
basis for U consisting of vectors which are eigenvectors for both α and β.

(ii) Suppose that α : U → U is a positive semi-definite linear map. Show that there is a
unique positive semi-definite β such that β2 = α.

(iii) Briefly discuss the differences between the results of this question and Exer-
cise 15.5.10.

Exercise 15.5.12 (We use the notation and results of Exercise 15.5.11.)
(i) Let us say that a self-adjoint map α is strictly positive definite if 〈αu, αu〉 > 0 for all

non-zero u ∈ U . Show that a positive semi-definite symmetric linear map is strictly positive
definite if and only if it is invertible. Show that the positive square root of a strictly positive
definite linear map is strictly positive definite.

(ii) If α : U → U is an invertible linear map, show that α∗α is a strictly positive self-
adjoint map. Hence, or otherwise, show that there is a unique unitary map γ such that
α = γβ where β is strictly positive definite.

(iii) State the results of part (ii) in terms of n× n matrices. If n = 1 and we work over
C, to what elementary result on the representation of complex numbers does the result
correspond?

Exercise 15.5.13 (i) By using the Bolzano–Weierstrass theorem, or otherwise, show that,
if A(m) = (aij (m)

)
is a sequence of n× n complex matrices with |aij (m)| ≤ K for all

1 ≤ i, j ≤ n and all m, we can find a sequence m(k) →∞ and a matrix A = (aij ) such
that aij

(
m(k)
)→ aij as k →∞.

(ii) Deduce that if αm is a sequence of endomorphisms of a complex finite dimensional
inner product space with ‖αm‖ bounded, we can find a sequence m(k) →∞ and an
endomorphism α such that ‖αm(k) − α‖ → 0 as k →∞.

(iii) If γm is a sequence of unitary endomorphisms of a complex finite dimensional inner
product space and γ is an endomorphism such that ‖γm − γ ‖ → 0 as m →∞, show that
γ is unitary.

(iv) Show that, even if we drop the condition α invertible in Exercise 15.5.12, there
exists a factorisation α = βγ with γ unitary and β positive definite.

(v) Can we take β strictly positive definite in (iv)? Is the factorisation in (iv) always
unique? Give reasons.
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Exercise 15.5.14 (Requires the theory of complex variables.) We work in C. State Rouché’s
theorem. Show that, if an �= 0 and the equation

n∑
j=0

aj z
j = 0

has roots λ1, λ2, . . . , λn (multiple roots represented multiply), then, given ε > 0, we can
find a δ > 0 such that, whenever |bj − aj | < δ for 0 ≤ j ≤ n, we can find roots μ1, μ2,
. . . , μn (multiple roots represented multiply) of the equation

n∑
j=0

bj z
j = 0

with |μk − λk| < ε [1 ≤ k ≤ n].

Exercise 15.5.15 [Finding the operator norm for L(U,U )] We work on a finite dimen-
sional real inner product vector space U and consider an α ∈ L(U,U ).

(i) Show that 〈x, α∗αx〉 = ‖α(x)‖2 and deduce that

‖α∗α‖ ≥ ‖α‖2.

Conclude that ‖α∗‖ ≥ ‖α‖.
(ii) Use the results of (i) to show that ‖α‖ = ‖α∗‖ and that

‖α∗α‖ = ‖α‖2.

(iii) By considering an appropriate basis, show that, if β ∈ L(U,U ) is symmetric, then
‖β‖ is the largest absolute value of its eigenvalues, i.e.

‖β‖ = max{|λ| : λ an eigenvalue of β}.
(iv) Deduce that ‖α‖ is the positive square root of the largest absolute value of the

eigenvalues of α∗α.
(v) Show that all the eigenvalues of α∗α are positive. Thus ‖α‖ is the positive square

root of the largest eigenvalues of α∗α.
(vi) State and prove the corresponding result for a complex inner product vector space

U .
[Note that a demonstration that a particular quantity can be computed shows neither that it
is desirable to compute that quantity nor that the best way of computing the quantity is the
one given.]

Exercise 15.5.16 [Completeness of the operator norm] Let U be an n-dimensional inner
product space over F. The object of this exercise is to show that the operator norm is
complete, that is to say, every Cauchy sequence converges. (If the last sentence means
nothing to you, go no further.)

(i) Suppose that α(r) ∈ L(U,U ) and ‖α(r)− α(s)‖ → 0 as r, s →∞. If we fix an
orthonormal basis for U and α(r) has matrix A(r) = (aij (r)) with respect to that basis,
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show that

|aij (r)− aij (s)| → 0 as r, s →∞
for all 1 ≤ i, j ≤ n. Explain why this implies the existence of aij ∈ F with

|aij (r)− aij | → 0 as r →∞
as n →∞.

(ii) Let α ∈ L(U,U ) be the linear map with matrix A = (aij ). Show that

‖α(r)− α‖ → 0 as r →∞.

Exercise 15.5.17 The proof outlined in Exercise 15.5.16 is a very natural one, but goes
via bases. Here is a basis free proof of completeness.

(i) Suppose that αr ∈ L(U,U ) and ‖αr − αs‖ → 0 as r, s →∞. Show that, if x ∈ U ,

‖αrx− αsx‖ → 0 as r, s →∞.

Explain why this implies the existence of an αx ∈ F with

‖αrx− αx‖ → 0 as r →∞
as n →∞.

(ii) We have obtained a map α : U → U . Show that α is linear.
(iii) Explain why

‖αrx− αx‖ ≤ ‖αsx− αx‖ + ‖αr − αs‖‖x‖.
Deduce that, given any ε > 0, there exists an N (ε), depending on ε, but not on x, such that

‖αrx− αx‖ ≤ ‖αsx− αx‖ + ε‖x‖
for all r, s ≥ N (ε).

Deduce that

‖αrx− αx‖ ≤ ε‖x‖
for all r ≥ N (ε) and all x ∈ U . Conclude that

‖αr − α‖ → 0 as r →∞.

Exercise 15.5.18 Once we know that the operator norm is complete (see Exercise 15.5.16
or Exercise 15.5.17), we can apply analysis to the study of the existence of the inverse. As
before, U is an n-dimensional inner product space over F and α, β, γ ∈ L(U,U ).

(i) Let us write

Sn(α) = ι+ α + · · · + αn.

If ‖α‖ < 1, show that ‖Sn(α)− Sm(α)‖ → 0 as n, m →∞. Deduce that there is an S(α) ∈
L(U,U ) such that ‖Sn(α)− S(α)‖ → 0 as n →∞.
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(ii) Compute (ι− α)Sn(α) and deduce carefully that (ι− α)S(α) = ι. Conclude that β

is invertible whenever ‖ι− β‖ < 1.
(iii) Show that, if U is non-trivial and c ≥ 1, there exists a β which is not invertible with

‖ι− β‖ = c and an invertible γ with ‖ι− γ ‖ = c.
(iv) Suppose that α is invertible. By writing

β = α
(
ι− α−1(α − β)

)
,

or otherwise, show that there is a δ > 0, depending only on the value of ‖α‖−1, such that
β is invertible whenever ‖α − β‖ < δ.

(v) (If you know the meaning of the word open.) Check that we have shown that the
collection of invertible elements in L(U,U ) is open. Why does this result also follow from
the continuity of the map α �→ det α?
[However, the proof via determinants does not generalise, whereas the proof of this exercise
has echos throughout mathematics.]

(vi) If αn ∈ L(U,U ), ‖αn‖ < 1 and ‖αn‖ → 0, show, by the methods of this question,
that

‖(ι− αn)−1 − ι‖ → 0

as n →∞. (That is to say, the map α �→ α−1 is continuous at ι.)
(iv) If βn ∈ L(U,U ), βn is invertible, β is invertible and ‖βn − β‖ → 0, show that

‖β−1
n − β−1‖ → 0

as n →∞. (That is to say, the map α �→ α−1 is continuous on the set of invertible elements
of L(U,U ).)
[We continue with some of these ideas in Questions 15.5.19 and 15.5.22.]

Exercise 15.5.19 We continue with the hypotheses and notation of Exercise 15.5.18.
(i) Show that there is a γ ∈ L(U,U ) such that∥∥∥∥∥∥

n∑
j=0

1

j !
αj − γ

∥∥∥∥∥∥→ 0 as n →∞.

We write exp α = γ .
(ii) Suppose that α and β commute. Show that∥∥∥∥∥

n∑
u=0

1

u!
αu

n∑
v=0

1

v!
βv −

n∑
k=0

1

k!
(α + β)k

∥∥∥∥∥
≤

n∑
u=0

1

u!
‖α‖u

n∑
v=0

1

v!
‖β‖v −

n∑
k=0

1

k!
(‖α‖ + ‖β‖)k

(note the minus sign) and deduce that

exp α exp β = exp(α + β).
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(iii) Show that exp α is invertible with inverse exp(−α).
(iv) Let t ∈ F. Show that

|t |−2

∥∥∥∥exp(tα)− ι− tα − t2

2
α2

∥∥∥∥→ 0 as t → 0.

(v) We now drop the assumption that α and β commute. Show that

t−2
∥∥ exp(tα) exp(tβ)− exp

(
t(α + β)

)∥∥→ 1

2
‖αβ − βα‖

as t → 0.
Deduce that, if α and β do not commute and t is sufficiently small, but non-zero, then

exp(tα) exp(tβ) �= exp
(
t(α + β)

)
.

Show also that, if α and β do not commute and t is sufficiently small, but non-zero, then
exp(tα) exp(tβ) �= exp(tβ) exp(tα).

(vi) Show that∥∥∥∥∥
n∑

k=0

1

k!
(α + β)k −

n∑
k=0

1

k!
αk

∥∥∥∥∥ ≤
n∑

k=0

1

k!
(‖α‖ + ‖β‖)k −

n∑
k=0

1

k!
‖α‖k

and deduce that

‖ exp(α + β)− exp α‖ ≤ e‖α‖+‖β‖ − e‖α‖.

Hence show that the map α �→ exp α is continuous.
(vii) If α has matrix A and exp α has matrix C with respect to some basis of U , show

that, writing

S(n) =
n∑

r=0

Ar

r!
,

we have sij (n) → cij as n →∞ for each 1 ≤ i, j ≤ n.

Exercise 15.5.20 By considering Jordan normal forms, or otherwise, show that, if A is an
n× n complex matrix,

det

(
n∑

r=0

Ar

r!

)
→ exp(Tr A).

If you have done the previous question, conclude that

det exp α = exp Tr α.

Exercise 15.5.21 Let A and B be m×m complex matrices and let μ ∈ C. Which, if any,
of the following statements about the spectral radius ρ are true and which are false? Give
proofs or counterexamples as appropriate.

(i) ρ(μA)) = |μ|ρ(A).
(ii) ρ(A) = 0 ⇒ A = 0.
(iii) If ρ(A) = 0, then A is nilpotent.
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(iv) If A is nilpotent, then ρ(A) = 0.
(v) ρ(A+ B) ≤ ρ(A)+ ρ(B).
(vi) ρ(AB) ≤ ρ(A)ρ(B).
(vii) ρ(AB) ≥ ρ(A)ρ(B).
(viii) If A and B commute, then ρ(A+ B) = ρ(A)+ ρ(B).
(ix) If A and B commute, then ρ(AB) = ρ(A)ρ(B).
(x) If A and B commute, then ρ(AB) ≤ ρ(A)ρ(B).
(xi) det A ≤ ρ(A)m.
(xii) det A = 0 ⇒ ρ(A) = 0.
(xiii) Given K ≥ 1 we can find an m×m matrix C with ρ(C) = 0, ‖C‖ ≥ K and

‖Cr+1‖ ≥ K‖Cr‖ for all 1 ≤ r ≤ m− 2.

Exercise 15.5.22 In this question we look at the spectral radius using as much analysis and
as little algebra as possible. As usual, U is a finite dimensional complex inner product vector
space over C and α, β ∈ L(U,U ). Naturally you must not use the result of Theorem 15.3.4.

(i) Write ρB(α) = lim infn→∞ ‖αn‖1/n. If ε > 0, then, by definition, we can find an N

such that ‖αN‖1/N ≤ ρB(α)+ ε. Show that, if r is fixed,

‖αkN+r‖ ≤ Cr (ρB(α)+ ε)Nk+r ,

where Cr is independent of N . Deduce that

lim sup
n→∞

‖αn‖1/n ≤ ρB(α)+ ε

and conclude that ‖αn‖1/n → ρB(α).
(ii) Let ε > 0. Show that we can we choose K so that

‖αr‖ ≤ K(ρB(α)+ ε)r and ‖βr‖ ≤ K(ρB(β)+ ε)r

for all r ≥ 0. If we choose such a K , show that

‖(α + β)n‖ ≤ K(ρB(α)+ ρB(β)+ 2ε)n

for all n ≥ 0. Deduce that

ρB(α + β) ≤ ρB(α)+ ρB(β).

(iii) If βm = 0 for some m, show that

ρB(α + β) ≤ ρB(α).

(iv) Show, in the manner of Exercise 15.5.18, that, if ρB(α) < 1, then ι− α is invertible
and ∥∥∥∥∥∥

n∑
j=1

αj − (ι− α)−1

∥∥∥∥∥∥→ 0.

(v) Using (iv), show that t ι− α is invertible whenever t > ρB(α). Deduce that ρB(α) ≥ λ

whenever λ is an eigenvalue of α.
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(vi) If β is invertible, show that ρB(β−1αβ) = ρB(α).
(vii) Explain why Theorem 12.2.5 tells us that we can find β, γ, δ ∈ L(U,U ) such that

βm = 0 for some m, γ is invertible, δ has the same eigenvalues as α,

ρB(δ) = max{|λ| : λ an eigenvalue of δ} = ρ(δ)

and

α = γ−1(δ + β)γ.

Hence show that

ρB(α) = max{|λ| : λ an eigenvalue of δ} = ρ(α).

(ix) Show that, if B is an m×m matrix satisfying the condition

brr = 1 >
∑
s �=r

|brs | for all 1 ≤ r ≤ m,

then B is invertible.
By considering DB, where D is a diagonal matrix, or otherwise, show that, if A is an

m×m matrix with

|arr | >
∑
s �=r

|ars | for all 1 ≤ r ≤ m

then A is invertible. (This is relevant to Lemma 15.3.9 since it shows that the system Ax = b
considered there is always soluble. A short proof, together with a long list of independent
discoverers in given in ‘A recurring theorem on determinants’ by Olga Taussky [30].)

Exercise 15.5.23 [Over-relaxation] The following is a modification of the Gauss–Siedel
method for finding the solution x∗ of the system

Ax = b,

where A is a non-singular m×m matrix with non-zero diagonal entries. Write A as the
sum of m×m matrices A = L+D + U where L is strictly lower triangular (so has zero
diagonal entries), D is diagonal and U is strictly upper triangular. Choose an initial x0 and
take

(D + ωL)xj+1 =
(− ωU + (1− ω)D

)
xj + ωb.

with ω �= 0.
Check that, if ω = 1, this is the Gauss–Siedel method. Check also that, if ‖xj − x‖ → 0,

as j →∞, then x = x∗.
Show that the method will certainly fail to converge for some choices of x0 unless 0 <

ω < 2. (However, in appropriate circumstances, taking ω close to 2 can be very effective.)
[Hint: If | det B| ≥ 1 what can you say about ρ(B)?]

Exercise 15.5.24 (This requires elementary group theory.) Let G be a finite Abelian group
and write C(G) for the set of functions f : G → C.
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(i) Show that

〈f, g〉 =
∑
x∈G

f (x)g(x)∗

is an inner product on C(G). We use this inner product for the rest of this question.
(ii) If y ∈ G, we define αyf (x) = f (x + y). Show that αy : C(G) → C(G) is a unitary

linear map and so there exists an orthonormal basis of eigenvectors of αy .
(iii) Show that αyαw = αwαy for all y, w ∈ G. Use this result to show that there exists

an orthonormal basis B0 each of whose elements is an eigenvector for αy for all y ∈ G.
(iv) If φ ∈ B0, explain why φ(x + y) = λyφ(x) for all x ∈ G and some λy with |λy | = 1.

Deduce that |φ(x)| is a non-zero constant independent of x. We now write

B = {φ(0)−1φ : φ ∈ B0}
so that B is an orthogonal basis of eigenvectors of each αy with χ ∈ B ⇒ χ (0) = 1.

(v) Use the relation χ (x + y) = λyχ (x) to deduce that χ (x + y) = χ (x)χ (y) for all
x, y ∈ G.

(vi) Explain why

f = |G|−1
∑
χ∈B

〈f, χ〉χ,

where |G| is the number of elements in G.
[Observe that we have produced a kind of Fourier analysis on G.]
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Quadratic forms and their relatives

16.1 Bilinear forms

In Section 8.3 we discussed functions of the form

(x, y) �→ ux2 + 2vxy + wy2.

These are special cases of the idea of a bilinear function.

Definition 16.1.1 If U , V and W are vector spaces over F, then α : U × V → W is a
bilinear function if the map

α,v : U → W given by α,v(u) = α(u, v)

is linear for each fixed v ∈ V and the map

αu, : V → W given by αu,(v) = α(u, v)

is linear for each fixed u ∈ U .

Exercise 16.5.1 discusses a result on general bilinear functions which is important
in multivariable analysis, but, apart from this one exercise, we shall only discuss the
special case when we take U = V and W = F. Although much of the algebra involved
applies to both R and C (and indeed to more general fields), it is often more natural to
look at sesquilinear functions (see Exercise 16.1.26) rather than bilinear functions (see
Exercise 16.2.10) when considering C. For this reason, we will make a further restriction
and, initially, only consider the case when F = R.

Definition 16.1.2 If U is a vector space over R, then a bilinear function α : U × U → R

is called a bilinear form.

Before discussing what a bilinear form looks like, we note a link with dual spaces. The
following exercise is a small paper tiger.

Lemma 16.1.3 Suppose that U is vector space over R and α : U × U → R is a bilinear
form. If we set

θL(x)y = α(x, y) and θR(y)x = α(x, y)

399
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for x, y ∈ U , we have θL(x), θR(y) ∈ U ′. Further θL and θR are linear maps from U

to U ′.

Proof Left to the reader as an exercise in disentangling notation. �

Lemma 16.1.4 We use the notation of Lemma 16.1.3. If U is finite dimensional and

α(x, y) = 0 for all y ∈ U ⇒ x = 0,

then θL : U → U ′ is an isomorphism.

Proof We observe that the stated condition tells us that θL is injective since

θL(x) = 0 ⇒ θL(x)(y) = 0 for all y ∈ U

⇒ α(x, y) = 0 for all y ∈ U

⇒ x = 0.

Since dim U = dim U ′, it follows that θL is an isomorphism. �

Exercise 16.1.5 State and prove the corresponding result for θR .
[In lemma 16.1.7 we shall see that things are simpler than they look at the moment.]

Lemma 16.1.4 is a generalisation of Lemma 14.2.8. Our proof of Lemma 14.2.8 started
with the geometric observation that (for an n dimensional inner product space) the null-
space of a non-zero linear functional is an n− 1 dimensional subspace, so we could use
an appropriate vector perpendicular to that subspace to obtain the required map. Our proof
of Lemma 16.1.4 is much less constructive. We observe that a certain linear map between
two vector spaces of the same dimension is injective and conclude that is must be bijective.
(However, the next lemma shows that, if we use a coordinate system, it is easy to write
down θL and θR explicitly.)

We now introduce a specific basis.

Lemma 16.1.6 Let U be a finite dimensional vector space over R with basis e1, e2, . . . ,
en.

(i) If A = (aij ) is an n× n matrix with entries in R, then

α

⎛
⎝ n∑

i=1

xiei ,

n∑
j=1

yj ej

⎞
⎠ = n∑

i=1

n∑
j=1

xiaij yj

(for xi, yj ∈ R) defines a bilinear form.
(ii) If α : U × U is a bilinear form, then there is a unique n× n real matrix A = (aij )

with

α

⎛
⎝ n∑

i=1

xiei ,

n∑
j=1

yj ej

⎞
⎠ = n∑

i=1

n∑
j=1

xiaij yj

for all xi, yj ∈ R.
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(iii) We use the notation of Lemma 16.1.3 and part (ii) of this lemma. If we give U ′ the
dual basis (see Lemma 11.4.1) ê1, ê2, . . . , ên, then θL has matrix AT with respect to the
bases we have chosen for U and U ′ and θR has matrix A.

Proof Left to the reader. Note that aij = α(ei , ej ). �

We know that A and AT have the same rank and that an n× n matrix is invertible if and
only if it has full rank. Thus part (iii) of Lemma 16.1.6 yields the following improvement
on Lemma 16.1.4.

Lemma 16.1.7 We use the notation of Lemma 16.1.3. If U is finite dimensional, the
following conditions are equivalent.

(i) α(x, y) = 0 for all y ∈ U ⇒ x = 0.

(ii) α(x, y) = 0 for all x ∈ U ⇒ y = 0.

(iii) If e1, e2, . . . , en is a basis for U , then the n× n matrix with entries α(ei , ej ) is
invertible.

(iv) θL : U → U ′ is an isomorphism.
(v) θR : U → U ′ is an isomorphism.

Definition 16.1.8 If U is finite dimensional and α : U × U → R is bilinear, we say that
α is degenerate (or singular) if there exists a non-zero x ∈ U such that α(x, y) = 0 for all
y ∈ U .

Exercise 16.1.9 (i) If β : R2 × R2 → R is given by

β
(
(x1, x2)T , (y1, y2)T

) = x1y2 − x2y1,

show that β is a non-degenerate bilinear form, but β(x, x) = 0 for all x ∈ U .
Is it possible to find a degenerate bilinear form α associated with a vector space U of

non-zero dimension with α(x, x) �= 0 for all x �= 0? Give reasons.

Exercise 16.1.17 shows that, from one point of view, the description ‘degenerate’ is not
inappropriate. However, there are several parts of mathematics where degenerate bilinear
forms are neither rare nor useless, so we shall consider general bilinear forms whenever we
can.

Bilinear forms can be decomposed in a rather natural way.

Definition 16.1.10 Let U be a vector space over R and let α : U × U → R be a bilinear
form.

If α(u, v) = α(v, u) for all u, v ∈ U , we say that α is symmetric.
If α(u, v) = −α(v, u) for all u, v ∈ U , we say that α is antisymmetric (or skew-

symmetric).

Lemma 16.1.11 Let U be a vector space over R. Every bilinear form α : U × U → R

can be written in a unique way as the sum of a symmetric and an antisymmetric bilinear
form.
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Proof This should come as no surprise to the reader. If α1 : U × U → R is a symmetric
and α2 : U × U → R an antisymmetric form with α = α1 + α2, then

α(u, v) = α1(u, v)+ α2(u, v)

α(v, u) = α1(u, v)− α2(u, v)

and so

α1(u, v) = 1

2

(
α(u, v)+ α(v, u)

)
α2(u, v) = 1

2

(
α(u, v)− α(v, u)

)
.

Thus the decomposition, if it exists, is unique.
We leave it to the reader to check that, conversely, if α1, α2 are defined using the

second set of formulae in the previous paragraph, then α1 is a symmetric linear form, α2 an
antisymmetric linear form and α = α1 + α2. �

Symmetric forms are closely connected with quadratic forms.

Definition 16.1.12 Let U be a vector space over R. If α : U × U → R is a symmetric
form, then q : U → R, defined by

q(u) = α(u, u),

is called a quadratic form.

The next lemma recalls the link between inner product and norm.

Lemma 16.1.13 With the notation of Definition 16.1.12,

α(u, v) = 1

4

(
q(u+ v)− q(u− v)

)
for all u, v ∈ U .

Proof The computation is left to the reader. �

Exercise 16.1.14 [A ‘parallelogram’ law] We use the notation of Definition 16.1.12. If
u, v ∈ U , show that

q(u+ v)+ q(u− v) = 2
(
q(u)+ q(v)

)
.

Remark 1 Although all we have said applies when we replace R by C, it is more natural
to use Hermitian and skew-Hermitian forms when working over C. We leave this natural
development to Exercise 16.1.26 at the end of this section.

Remark 2 As usual, our results can be extended to vector spaces over more general fields
(see Section 13.2), but we will run into difficulties when we work with a field in which
2 = 0 (see Exercise 13.2.8) since both Lemmas 16.1.11 and 16.1.13 depend on division
by 2.
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The reason behind the usage ‘symmetric form’ and ‘quadratic form’ is given in the next
lemma.

Lemma 16.1.15 Let U be a finite dimensional vector space over R with basis e1, e2, . . . ,
en.

(i) If A = (aij ) is an n× n real symmetric matrix, then

α

⎛
⎝ n∑

i=1

xiei ,

n∑
j=1

yj ej

⎞
⎠ = n∑

i=1

n∑
j=1

xiaij yj

(for xi, yj ∈ R) defines a symmetric form.
(ii) If α : U × U is a symmetric form, then there is a unique n× n real symmetric matrix

A = (aij ) with

α

⎛
⎝ n∑

i=1

xiei ,

n∑
j=1

yj ej

⎞
⎠ = n∑

i=1

n∑
j=1

xiaij yj

for all xi, yj ∈ R.
(iii) If α and A are as in (ii) and q(u) = α(u, u), then

q

(
n∑

i=1

xiei

)
=

n∑
i=1

n∑
j=1

xiaij xj

for all xi ∈ R.

Proof Left to the reader. Note that aij = α(ei , ej ). �

Exercise 16.1.16 If B = (bij ) is an n× n real matrix, show that

q

(
n∑

i=1

xiei

)
=

n∑
i=1

n∑
j=1

xibij xj

(for xi ∈ R) defines a quadratic form. Find the associated symmetric matrix A in terms of
B.

Exercise 16.1.17 This exercise may strike the reader as fairly tedious, but I think that it
is quite helpful in understanding some of the ideas of the chapter. Describe, or sketch, the
sets in R3 given by

x2
1 + x2

2 + x2
3 = k, x2

1 + x2
2 − x2

3 = k,

x2
1 + x2

2 = k, x2
1 − x2

2 = k, x2
1 = k, 0 = k

for k = 1, k = −1 and k = 0.

We have a nice change of basis formula.
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Lemma 16.1.18 Let U be a finite dimensional vector space over R. Suppose that e1,
e2, . . . , en and f1, f2, . . . , fn are bases with

fj =
n∑

i=1

mij ei

for 1 ≤ i ≤ n. Then, if

α

⎛
⎝ n∑

i=1

xiei ,

n∑
j=1

yj ej

⎞
⎠ = n∑

i=1

n∑
j=1

xiaij yj ,

α

⎛
⎝ n∑

i=1

xifi ,
n∑

j=1

yj fj

⎞
⎠ = n∑

i=1

n∑
j=1

xibij yj ,

and we write A = (aij ), B = (bij ), M = (mij ), we have B = MT AM .

Proof Observe that

α(fr , fs) = α

⎛
⎝ n∑

i=1

mirei ,

n∑
j=1

mjsej

⎞
⎠

=
n∑

i=1

n∑
j=1

mirmjsα(ei , ej ) =
n∑

i=1

n∑
j=1

miraijmjs

as required. �

Although we have adopted a slightly different point of view, the reader should be aware
of the following definition. (See, for example, Exercise 16.5.3.)

Definition 16.1.19 If A and B are symmetric n× n matrices, we say that the quadratic
forms x �→ xT Ax and x �→ xT Bx are equivalent (or congruent) if there exists a non-singular
n× n matrix M with B = MT AM .

It is often more natural to consider ‘change of coordinates’ than ‘change of basis’.

Lemma 16.1.20 Let A be an n× n real symmetric matrix, let M be an invertible n× n

real matrix and take

q(x) = xT Ax

for all column vectors x. If we set X = Mx, then

q(X) = xT MT AMx.

Proof Immediate. �

Remark Note that, although we still deal with matrices, they now represent quadratic forms
and not linear maps. If q1 and q2 are quadratic forms with corresponding matrices A1 and
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A2, then A1 + A2 corresponds to q1 + q2, but it is hard to see what meaning to give to
A1A2. The difference in nature is confirmed by the very different change of basis formulae.
Taking one step back and looking at bilinear forms, the reader should note that, though
these have a very useful matrix representation, the moment we look at trilinear forms (the
definition of which is left to the reader) the natural associated array does not form a matrix.
Notwithstanding this note of warning, we can make use of our knowledge of symmetric
matrices.

Theorem 16.1.21 Let U be a real n-dimensional inner product space. If α : U × U → R

is a symmetric form, then we can find an orthonormal basis e1, e2, . . . , en and real numbers
d1, d2, . . . , dn such that

α

⎛
⎝ n∑

i=1

xiei ,

n∑
j=1

yj ej

⎞
⎠ = n∑

k=1

dkxkyk

for all xi, yj ∈ R. The dk are the roots of the characteristic polynomial of α with multiple
roots appearing multiply.

Proof Choose any orthonormal basis f1, f2, . . . , fn for U . We know, by Lemma 16.1.15,
that there exists a symmetric matrix A = (aij ) such that

α

⎛
⎝ n∑

i=1

xifi ,
n∑

j=1

yj fj

⎞
⎠ = n∑

i=1

n∑
j=1

xiaij yj

for all xi, yj ∈ R. By Theorem 8.2.5, we can find an orthogonal matrix M such that
MT AM = D, where D is a diagonal matrix whose entries are the eigenvalues of A appear-
ing with the appropriate multiplicities. The change of basis formula now gives the required
result. �

Recalling Exercise 8.1.7, we get the following a result on quadratic forms.

Lemma 16.1.22 Suppose that q : Rn → R is given by

q(x) =
n∑

i=1

n∑
j=1

xiaij xj

where x = (x1, x2, . . . , xn)T with respect to some orthogonal coordinate system S. Then
there exists another coordinate system S ′ obtained from the first by rotation of axes such
that

q(y) =
n∑

i=1

diy
2
i

where y = (y1, y2, . . . , yn)T with respect to S ′.

Exercise 16.1.23 Explain, using informal arguments (you are not asked to prove anything,
or, indeed, to make the statements here precise), why the volume of an ellipsoid given by
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j=1 xiaij xj ≤ L (where L > 0 and the matrix (aij ) is symmetric with all its eigenvalues

strictly positive) in ordinary n-dimensional space is (det A)−1/2Ln/2Vn, where Vn is the
volume of the unit sphere.

Here is an important application used the study of multivariate (that is to say, multidi-
mensional) normal random variables in probability.

Example 16.1.24 Suppose that the random variable X = (X1, X2, . . . , Xn)T has density
function

fX(x) = K exp

⎛
⎝−1

2

n∑
i=1

n∑
j=1

xiaij xj

⎞
⎠ = K exp(− 1

2 xT Ax)

for some real symmetric matrix A. Then all the eigenvalues of A are strictly positive and
we can find an orthogonal matrix M such that

X = MY

where Y = (Y1, Y2, . . . , Yn)T , the Yj are independent, each Yj is normal with mean 0 and
variance d−1

j and the dj are the roots of the characteristic polynomial for A with multiple
roots counted multiply.

Sketch proof (We freely use results on probability and integration which are not part of
this book.) We know, by Exercise 8.1.7 (ii), that there exists a special orthogonal matrix P

such that

P T AP = D,

where D is a diagonal matrix with entries the roots of the characteristic polynomial of A.
By the change of variable theorem for integrals (we leave it to the reader to fill in or ignore
the details), Y = P−1X has density function

fY(y) = K exp

⎛
⎝−1

2

n∑
j=1

djy
2
j

⎞
⎠

(we know that rotation preserves volume). We note that, in order that the integrals converge,
we must must have dj > 0. Interpreting our result in the standard manner, we see that the
Yj are independent and each Yj is normal with mean 0 and variance d−1

j .
Setting M = P T gives the result. �

Exercise 16.1.25 (Requires some knowledge of multidimensional calculus.) We use the
notation of Example 16.1.24. What is the value of K in terms of det A?

We conclude this section with two exercises in which we consider appropriate analogues
for the complex case.

Exercise 16.1.26 If U is a vector space over C, we say that α : U × U → C is a sesquilin-
ear form if

α,v : U → C given by α,v(u) = α(u, v)
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is linear for each fixed v ∈ U and the map

αu, : U → C given by αu,(v) = α(u, v)∗

is linear for each fixed u ∈ U . We say that a sesquilinear form α : U × U → C is
Hermitian if α(u, v) = α(v, u)∗ for all u, v ∈ U . We say that α is skew-Hermitian if
α(v, u) = −α(u, v)∗ for all u, v ∈ U .

(i) Show that every sesquilinear form can be expressed uniquely as the sum of a Hermitian
and a skew-Hermitian form.

(ii) If α is a Hermitian form, show that α(u, u) is real for all u ∈ U .
(iii) If α is skew-Hermitian, show that we can write α = iβ where β is Hermitian.
(iv) If α is a Hermitian form show that

4α(u, v) = α(u+ v, u+ v)− α(u− v, u− v)+ iα(u+ iv, u+ iv)− iα(u− iv, u− iv)

for all u, v ∈ U .
(v) Suppose now that U is an inner product space of dimension n and α is Hermitian.

Show that we can find an orthonormal basis e1, e2, . . . , en and real numbers d1, d2, . . . , dn

such that

α

(
n∑

r=1

zrer ,

n∑
s=1

wses

)
=

n∑
t=1

dtztw
∗
t

for all zr , ws ∈ C.

Exercise 16.1.27 Consider Hermitian forms for a vector space U over C. Find and prove
analogues for those parts of Lemmas 16.1.3 and 16.1.4 which deal with θR . You will need
the following definition of an anti-linear map. If U and V are vector spaces over C, then a
function φ : U → V is an anti-linear map if φ(λx+ μy) = λ∗φx+ μ∗φy for all x, y ∈ U

and all λ, μ ∈ C. A bijective anti-linear map is called an anti-isomorphism.
[The treatment of θL would follow similar lines if we were prepared to develop the theme
of anti-linearity a little further.]

16.2 Rank and signature

Often we we need to deal with vector spaces which have no natural inner product or with
circumstances when the inner product is irrelevant. Theorem 16.1.21 is then replaced by
the Theorem 16.2.1.

Theorem 16.2.1 Let U be a real n-dimensional vector space. If α : U × U → R is a
symmetric form, then we can find a basis e1, e2, . . . , en and positive integers p and m with
p +m ≤ n such that

α

⎛
⎝ n∑

i=1

xiei ,

n∑
j=1

yj ej

⎞
⎠ = p∑

k=1

xkyk −
p+m∑

k=p+1

xkyk

for all xi, yj ∈ R.
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By the change of basis formula of Lemma 16.1.18, Theorem 16.2.1 is equivalent to the
following result on matrices.

Lemma 16.2.2 If A is an n× n symmetric real matrix, we can find positive integers p

and m with p +m ≤ n and an invertible real matrix B such that BT AB = E where E is a
diagonal matrix whose first p diagonal terms are 1, whose next m diagonal terms are −1
and whose remaining diagonal terms are 0.

Proof By Theorem 8.2.5, we can find an orthogonal matrix M such that MT AM = D

where D is a diagonal matrix whose first p diagonal entries are strictly positive, whose next
m diagonal terms are strictly negative and whose remaining diagonal terms are 0. (To obtain
the appropriate order, just interchange the numbering of the associated eigenvectors.) We
write dj for the j th diagonal term.

Now let � be the diagonal matrix whose j th entry is δj = |dj |−1/2 for 1 ≤ j ≤ p +m

and δj = 1 otherwise. If we set B = M�, then B is invertible (since M and � are) and

BT AB = �T MT AM� = �D� = E

where E is as stated in the lemma. �

We automatically get a result on quadratic forms.

Lemma 16.2.3 Suppose that q : Rn → R is given by

q(x) =
n∑

i=1

n∑
j=1

xiaij xj

where x = (x1, x2, . . . , xn)T with respect to some (not necessarily orthogonal) coordinate
system S. Then there exists another (not necessarily orthogonal) coordinate system S ′ such
that

q(y) =
p∑

i=1

y2
i −

p+m∑
i=p+1

y2
i

where y = (y1, y2, . . . , yn)T with respect to S ′.

Exercise 16.2.4 Obtain Lemma 16.2.3 directly from Lemma 16.1.22.

If we are only interested in obtaining the largest number of results in the shortest time,
it makes sense to obtain results which do not involve inner products from previous results
involving inner products. However, there is a much older way of obtaining Lemma 16.2.3
which involves nothing more complicated than completing the square.

Lemma 16.2.5 (i) Suppose that A = (aij )1≤i,j≤n is a real symmetric n× n matrix with
a11 �= 0, and we set bij = |a11|−1(|a11|aij − a1ia1j ). Then B = (bij )2≤i,j≤n is a real sym-
metric matrix. Further, if x ∈ Rn and we set

y1 = |a11|1/2

⎛
⎝x1 +

n∑
j=2

a1j |a11|−1/2xj

⎞
⎠
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and yj = xj otherwise, we have
n∑

i=1

n∑
j=1

xiaij xj = εy2
1 +

n∑
i=2

n∑
j=2

yibij yj

where ε = 1 if a11 > 0 and ε = −1 if a11 < 0.
(ii) Suppose that A = (aij )1≤i,j≤n is a real symmetric n× n matrix. Suppose further that

σ : {1, 2, . . . , n} →: {1, 2, . . . , n} is a permutation (that is to say, σ is a bijection) and we
set cij = aσi σj . Then C = (cij )1≤i,j≤n is a real symmetric matrix. Further, if x ∈ Rn and
we set yj = xσ (j ), we have

n∑
i=1

n∑
j=1

xiaij xj =
n∑

i=1

n∑
j=1

yicij yj .

(iii) Suppose that n ≥ 2, A = (aij )1≤i,j≤n is a real symmetric n× n matrix and a11 =
a22 = 0, but a12 �= 0. Then there exists a real symmetric n× n matrix C with c11 �= 0 such
that, if x ∈ Rn and we set y1 = (x1 + x2)/2, y2 = (x1 − x2)/2, yj = xj for j ≥ 3, we have

n∑
i=1

n∑
j=1

xiaij xj =
n∑

i=1

n∑
j=1

yicij yj .

(iv) Suppose that A = (aij )1≤i,j≤n is a non-zero real symmetric n× n matrix. Then
we can find an n× n invertible matrix M = (mij )1≤i,j≤n and a real symmetric (n− 1)×
(n− 1) matrix B = (bij )2≤i,j≤n such that, if x ∈ Rn and we set yi =

∑n
j=1 mijxj , then

n∑
i=1

n∑
j=1

xiaij xj = εy2
1 +

n∑
i=2

n∑
j=2

yibij yj

where ε = ±1.

Proof The first three parts are direct computation which is left to the reader, who should not
be satisfied until she feels that all three parts are ‘obvious’.1 Part (iv) follows by using (ii),
if necessary, and then either part (i) or part (iii) followed by part (i). �

Repeated use of Lemma 16.2.5 (iv) (and possibly Lemma 16.2.5 (ii) to reorder the
diagonal) gives a constructive proof of Lemma 16.2.3. We shall run through the process in
a particular case in Example 16.2.11 (second method).

It is clear that there are many different ways of reducing a quadratic form to our standard
form
∑p

j=1 x2
j −
∑p+m

j=p+1 x2
j , but it is not clear that each way will give the same value of p

and m. The matter is settled by the next theorem.

Theorem 16.2.6 [Sylvester’s law of inertia] Suppose that U is a vector space of dimension
n over R and q : U → Rn is a quadratic form. If e1, e2, . . . , en is a basis for U such that

q

⎛
⎝ n∑

j=1

xj ej

⎞
⎠ = p∑

j=1

x2
j −

p+m∑
j=p+1

x2
j

1 This may take some time.
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and f1, f2, . . . , fn is a basis for U such that

q

⎛
⎝ n∑

j=1

yj fj

⎞
⎠ = p′∑

j=1

y2
j −

p′+m′∑
j=p′+1

y2
j ,

then p = p′ and m = m′.

Proof The proof is short and neat, but requires thought to absorb fully.
Let E be the subspace spanned by e1, e2, . . . , ep and F the subspace spanned by fp′+1,

fp′+2, . . . , fn. If x ∈ E and x �= 0, then x =∑p
j=1 xj ej with not all the xj zero and so

q(x) =
p∑

j=1

x2
j > 0.

If x ∈ F , then a similar argument shows that q(x) ≤ 0. Thus

E ∩ F = {0}

and, by Lemma 5.4.10,

dim(E + F ) = dim E + dim F − dim(E ∩ F ) = dim E + dim F.

But E + F is a subspace of U , so n ≥ dim(E + F ) and

n ≥ dim(E + F ) = dim E + dim F = p + (n− p′).

Thus p′ ≥ p. Symmetry (or a similar argument) shows that p ≥ p′, so p = p′. A similar
argument (or replacing q by −q) shows that m = m′. �

Remark 1. In the next section we look at positive definite forms. Once you have looked at
that section, the argument above can be thought of as follows. Suppose that p ≥ p′. Let us
ask ‘What is the maximum dimension p̃ of a subspace W for which the restriction of q is
positive definite?’ Looking at E we see that p̃ ≥ p, but this only gives a lower bound and
we cannot be sure that W ⊇ U . If we want an upper bound we need to find ‘the largest
obstruction’ to making W large and it is natural to look for a large subspace on which q is
negative semi-definite. The subspace F is a natural candidate.

Remark 2. Sylvester considered his law of inertia to be obvious. By looking at Exer-
cise 16.1.17, convince yourself that it is, indeed, obvious if the dimension of U is 3 or less
(and you think sufficiently long and sufficiently geometrically). However, as the dimension
of U increases, it becomes harder to convince yourself (and very much harder to con-
vince other people) that the result is obvious. The result was rediscovered and proved by
Jacobi.
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Definition 16.2.7 Suppose that U is vector space of dimension n over R and q : U → R

is a quadratic form. If e1, e2, . . . , en is a basis for U such that

q

⎛
⎝ n∑

j=1

xj ej

⎞
⎠ = p∑

j=1

x2
j −

p+m∑
j=p+1

x2
j ,

we say that q has rank p +m and signature2 p −m.

Naturally, the rank and signature of a symmetric bilinear form or a symmetric matrix is
defined to be the rank and signature of the associated quadratic form.

Exercise 16.2.8 Let q : R2 → R be given by q(x, y) = x2 − y2. Sketch

A = {(x, y) ∈ R2 : q(x, y) ≥ 0} and B = {(x, y) ∈ R2 : q(x, y) = 0}.
Is either of A or B a subspace of R2? Give reasons.

Exercise 16.2.9 (i) If A = (aij ) is an n× n real symmetric matrix and we define q : Rn →
R by q(x) =∑n

i=1

∑n
j=1 xiaij xj , show that the ‘signature rank’ of q is the ‘matrix rank’

(that is to say, the ‘row rank’) of A.
(ii) Given the roots of the characteristic polynomial of A with multiple roots counted

multiply, explain how to compute the rank and signature of q.

Exercise 16.2.10 Although we have dealt with real quadratic forms, the same tech-
niques work in the complex case. Note, however, that we must distinguish between complex
quadratic forms (as discussed in this exercise) which do not mesh well with complex inner
products and Hermitian forms (see the remark at the end of this exercise) which do.

(i) Consider the complex quadratic form γ : Cn → C given by

γ (z) =
n∑

u=1

n∑
v=1

auvzuzv = zT Az

where A is a symmetric complex matrix (that is to say, AT = A). Show that, if P is an
invertible n× n matrix,

γ (P z) = zT (P T AP )z.

(ii) We continue with the notation of (i). Show that we can choose P so that

γ (P z) =
r∑

u=1

z2
u

for some r .

2 This is the definition of signature used in the Fenlands. Unfortunately there are several definitions of signature in use. The
reader should always make clear which one she is using and always check which one anyone else is using. In my view, the
convention that the triple (p, m, n) forms the signature of q is the best, but it is not worth making a fuss.
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(iii) Show, by considering the rank of appropriate matrices, or otherwise, that, if Q is
an invertible n× n matrix such that

γ (Qz) =
r ′∑

u=1

z2
u

for some r ′, we must have r = r ′.
(iv) Show that there does not exist a non-zero subspace U of Cn such that

z ∈ U, z �= 0 ⇒ γ (z) real and strictly positive.

(v) Show that, if n ≥ 2m, there exists a subspace E of Cn of dimension m such that
γ (z) = 0 for all z ∈ E.

(vi) Show that if γ1, γ2, . . . , γk are quadratic forms on Cn and n ≥ 2k , there exists a
non-zero z ∈ Cn such that

γ1(z) = γ2(z) = . . . = γk(z) = 0.

[Of course, it is often more interesting to look at Hermitian forms
∑n

u=1

∑n
v=1 auvzuz

∗
v with

avu = a∗uv . We do this in Exercise 16.2.13.]

We now turn to actual calculation of the rank and signature.

Example 16.2.11 Find the rank and signature of the quadratic form q : R3 → R

given by

q(x1, x2, x3) = x1x2 + x2x3 + x3x1.

Solution We give three methods. Most readers are only likely to meet this sort of problem
in an artificial setting where any of the methods might be appropriate, but, in the absence
of special features, the third method is not appropriate and I would expect the arithmetic
for the first method to be rather horrifying. Fortunately the second method is easy to apply
and will always work. (See also Theorem 16.3.10 for the case when you are only interested
in whether the rank and signature are both n.)
First method Since q and 2q have the same signature, we need only look at 2q. The
quadratic form 2q is associated with the symmetric matrix

A =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ .
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We now seek the eigenvalues of A. Observe that

det(tI − A) = det

⎛
⎝ t −1 −1
−1 t −1
−1 −1 t

⎞
⎠

= t det

(
t −1
−1 t

)
+ det

(−1 −1
−1 t

)
− det

(−1 t

−1 −1

)
= t(t2 − 1)− (t + 1)− (t + 1) = (t + 1)

(
t(t − 1)− 2)

= (t + 1)(t2 − t − 2) = (t + 1)2(t − 2).

Thus the characteristic polynomial of A has one strictly positive root and two strictly
negative roots (multiple roots being counted multiply). We conclude that q has rank 1+ 2 =
3 and signature 1− 2 = −1.
Second method We use the ideas of Lemma 16.2.5. The substitutions x1 = y1 + y2, x2 =
y1 − y2, x3 = y3 give

q(x1, x2, x3) = x1x2 + x2x3 + x3x1

= (y1 + y2)(y1 − y2)+ (y1 − y2)y3 + y3(y1 + y2)

= y2
1 − y2

2 + 2y1y3

= (y1 + y3)2 − y2
2 − y2

3 ,

so q has rank 1+ 2 = 3 and signature 1− 2 = −1.
The substitutions w1 = y1 + y3, w2 = y2, w3 = y3 give

q(x1, x2, x3) = w2
1 − w2

2 − w2
3,

but we do not need this step to determine the rank and signature.
Third method This method will only work if we have some additional insight into where
our quadratic form comes from or if we are doing an examination and the examiner gives
us a hint. Observe that, if we take

E1 = {(x1, x2, x3) : x1 + x2 + 2x3 = 0},
E2 = {(x1, x2, x3) : x1 = x2, x3 = 0},

then q(e) < 0 for e ∈ E1 \ {0} and q(e) > 0 for e ∈ E2 \ {0}. Since dim E1 = 2 and
dim E2 = 1 it follows, using the notation of Definition 16.2.7, that p ≥ 1 and m ≥ 2.
Since R3 has dimension 3, p +m ≤ 3 so p = 1, m = 2 and q must have rank 3 and
signature −1. �

Exercise 16.2.12 Find the rank and signature of the real quadratic form

q(x1, x2, x3) = x1x2 + x2x3 + x3x1 + ax2
1

for all values of a.
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Exercise 16.2.13 Suppose that we work over C and consider Hermitian rather than
symmetric forms and matrices.

(i) Show that, given any Hermitian matrix A, we can find an invertible matrix P such
that P ∗AP is diagonal with diagonal entries taking the values 1, −1 or 0.

(ii) If A = (ars) is an n× n Hermitian matrix, show that
∑n

r=1

∑n
s=1 zrarsz

∗
s is real for

all zr ∈ C.
(iii) Suppose that A is a Hermitian matrix and P1, P2 are invertible matrices such that

P ∗
1 AP1 and P ∗

2 AP2 are diagonal with diagonal entries taking the values 1,−1 or 0. Prove
that the number of entries of each type is the same for both diagonal matrices.

16.3 Positive definiteness

For many mathematicians the most important quadratic forms are the positive definite
quadratic forms.

Definition 16.3.1 Let U be a vector space over R. A quadratic form q : U → R is said to
be positive semi-definite if

q(u) ≥ 0 for all u ∈ U

and strictly positive definite if

q(u) > 0 for all u ∈ U with u �= 0.

As might be expected, mathematicians sometimes use the words ‘positive definite’ to
mean ‘strictly positive definite’ and sometimes to mean ‘strictly positive definite or positive
semi-definite’.3

Naturally, a symmetric bilinear form or a symmetric matrix is said to be positive semi-
definite or strictly positive definite if the associated quadratic form is.

Exercise 16.3.2 (i) Write down definitions of negative semi-definite and strictly negative
definite quadratic forms in the style of Definition 16.3.1 so that the following result holds. A
quadratic form q : U → R is strictly negative definite (respectively negative semi-definite)
if and only if −q is strictly positive definite (respectively positive semi-definite).

(ii) Show that every quadratic form over a real finite dimensional vector space is the sum
of a positive semi-definite and a negative semi-definite quadratic form. Is the decomposition
unique? Give a proof or a counterexample.

Exercise 16.3.3 (Requires a smidgen of probability theory.) Let X1, X2, . . . , Xn be
bounded real valued random variables. Show that the matrix E = (EXiXj ) is symmet-
ric and positive semi-definite. Show that E is not strictly positive definite if and only if we
can find ci ∈ R not all zero such that

Pr(c1X1 + c2X2 + · · · + cnXn = 0) = 1.

3 Compare the use of ‘positive’ sometimes to mean ‘strictly positive’ and sometimes to mean ‘non-negative’.
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Exercise 16.3.4 Show that a quadratic form q over an n-dimensional real vector space
is strictly positive definite if and only if it has rank n and signature n. State and prove
conditions for q to be positive semi-definite. State and prove conditions for q to be negative
semi-definite.

The next exercise indicates one reason for the importance of positive definiteness.

Exercise 16.3.5 Let U be a real vector space. Show that α : U 2 → R is an inner product
if and only if α is a symmetric form which gives rise to a strictly positive definite quadratic
form.

An important example of a quadratic form which is neither positive nor negative semi-
definite appears in Special Relativity4 as

q(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 − x2

4

or, in a form more familiar in elementary texts,

qc(x, y, z, t) = x2 + y2 + z2 − c2t2.

The reader who has done multidimensional calculus will be aware of another important
application.

Exercise 16.3.6 (To be answered according to the reader’s background.) Suppose that
f : Rn → R is a smooth function.

(i) If f has a minimum at a, show that (∂f /∂xi) (a) = 0 for all i and the Hessian matrix(
∂2f

∂xi∂xj

(a)

)
1≤i,j≤n

is positive semi-definite.
(ii) If (∂f /∂xi) (a) = 0 for all i and the Hessian matrix(

∂2f

∂xi∂xj

(a)

)
1≤i,j≤n

is strictly positive definite, show that f has a strict minimum at a.
(iii) Give an example in which f has a strict minimum but the Hessian is not strictly

positive definite. (Note that there are examples with n = 1.)
[We gave an unsophisticated account of these matters in Section 8.3, but the reader may
well be able to give a deeper treatment.]

Exercise 16.3.7 Locate the maxima, minima and saddle points of the function f : R2 → R

given by f (x, y) = sin x sin y.

4 Because of this, non-degenerate symmetric forms are sometimes called inner products. Although non-degenerate symmetric
forms play the role of inner products in Relativity theory, this nomenclature is not consistent with normal usage. The analyst
will note that, since conditional convergence is hard to handle, the theory of non-degenerate symmetric forms will not generalise
to infinite dimensional spaces in the same way as the theory of strictly positive definite symmetric forms.



416 Quadratic forms and their relatives

If the reader has ever wondered how to check whether a Hessian matrix is, indeed,
strictly positive definite when n is large, she should observe that the matter can be settled
by finding the rank and signature of the associated quadratic form by the methods of
the previous section. The following discussion gives a particularly clean version of the
‘completion of squares’ method when we are interested in positive definiteness.

Lemma 16.3.8 If A = (aij )1≤i,j≤n is a strictly positive definite matrix, then a11 > 0.

Proof If x1 = 1 and xj = 0 for 2 ≤ j ≤ n, then x �= 0 and, since A is strictly positive
definite,

a11 =
n∑

i=1

n∑
j=1

xiaij xj > 0. �

Lemma 16.3.9 (i) If A = (aij )1≤i,j≤n is a real symmetric matrix with a11 > 0, then there
exists a unique column vector l = (li1)1≤i≤n with l11 > 0 such that A− llT has all entries
in its first column and first row zero.

(ii) Let A and l be as in (i) and let

bij = aij − li lj for 2 ≤ i, j ≤ n.

Then B = (bij )2≤i,j≤n is strictly positive definite if and only if A is.

(The matrix B is called the Schur complement of a11 in A, but we shall not make use of
this name.)

Proof (i) If A− llT has all entries in its first column and first row zero, then

l2
1 = a11,

l1li = ai1 for 2 ≤ i ≤ n.

Thus, if l11 > 0, we have lii = a
1/2
11 , the positive square root of a11, and li = ai1a

−1/2
11 for

2 ≤ i ≤ n.
Conversely, if l11 = a

1/2
11 , the positive square root of a11, and li = ai1a

1/2
11 for 2 ≤ i ≤ n

then, by inspection, A− llT has all entries in its first column and first row zero.
(ii) If B is strictly positive definite,

n∑
i=1

n∑
j=1

xiaij xj = a11

(
x1 +

n∑
i=2

ai1a
−1/2
11 xi

)2

+
n∑

i=2

n∑
j=2

xibij xj ≥ 0

with equality if and only if xi = 0 for 2 ≤ i ≤ n and

x1 +
n∑

i=2

ai1a
−1/2
11 xi = 0,

that is to say, if and only if xi = 0 for 1 ≤ i ≤ n. Thus A is strictly positive definite.
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If A is strictly positive definite, then setting x1 = −∑n
i=2 ai1a

−1/2
11 yi and xi = yi for

2 ≤ i ≤ n, we have

n∑
i=2

n∑
j=2

yibij yj = a11

(
x1 +

n∑
i=2

ai1a
−1/2
11 xi

)2

+
n∑

i=2

n∑
j=2

xibij xj

=
n∑

i=1

n∑
j=1

xiaij xj ≥ 0

with equality if and only if xi = 0 for 1 ≤ i ≤ n, that is to say, if and only if yi = 0 for
2 ≤ i ≤ n. Thus B is strictly positive definite. �

The following theorem is a simple consequence.

Theorem 16.3.10 [The Cholesky factorisation] An n× n real symmetric matrix A is
strictly positive definite if and only if there exists a lower triangular matrix L with all
diagonal entries strictly positive such that LLT = A. If the matrix L exits, it is unique.

Proof If A is strictly positive definite, the existence and uniqueness of L follow by induc-
tion, using Lemmas 16.3.8 and 16.3.9. If A = LLT , then

xT Ax = xT LLT x = ‖LT x‖2 ≥ 0

with equality if and only if LT x = 0 and so (since LT is triangular with non-zero diagonal
entries) if and only if x = 0. �

Exercise 16.3.11 If L is a lower triangular matrix with all diagonal entries non-zero,
show that A = LLT is a symmetric strictly positive definite matrix.

If L̃ is a lower triangular matrix, what can you say about Ã = L̃L̃T ? (See also Exer-
cise 16.5.33.)

The proof of Theorem 16.3.10 gives an easy computational method of obtaining the
factorisation A = LLT when A is strictly positive definite. If A is not positive definite, then
the method will reveal the fact.

Exercise 16.3.12 How will the method reveal that A is not strictly positive definite and
why?

Example 16.3.13 Find a lower triangular matrix L such that LLT = A where

A =
⎛
⎝ 4 −6 2
−6 10 −5
2 −5 14

⎞
⎠ ,

or show that no such matrix L exists.
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Solution If l1 = (2,−3, 1)T , we have

A− l1lT1 =
⎛
⎝ 4 − 6 2
−6 10 − 5
2 − 5 14

⎞
⎠−
⎛
⎝ 4 − 6 2
−6 9 − 3
2 − 3 1

⎞
⎠ =
⎛
⎝0 0 0

0 1 − 2
0 − 2 13

⎞
⎠ .

If l2 = (1,−2)T , we have(
1 −2
−2 13

)
− l2lT2 =

(
1 − 2
−2 13

)
−
(

1 − 2
−2 4

)
=
(

0 0
0 9

)
.

Thus A = LLT with

L =
⎛
⎝ 2 0 0
−3 1 0
1 − 2 3

⎞
⎠ .

�
Exercise 16.3.14 Show, by attempting the factorisation procedure just described, that

A =
⎛
⎝ 4 − 6 2
−6 8 − 5
2 − 5 14

⎞
⎠ ,

is not positive semi-definite.

Exercise 16.3.15 (i) Check that you understand why the method of factorisation given by
the proof of Theorem 16.3.10 is essentially just a sequence of ‘completing the squares’.

(ii) Show that the method will either give a factorisation A = LLT for an n× n sym-
metric matrix or reveal that A is not strictly positive definite in less than Kn3 operations.
You may choose the value of K .
[We give a related criterion for strictly positive definiteness in Exercise 16.5.27.]

Exercise 16.3.16 Apply the method just given to

H3 =

⎛
⎜⎝1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎞
⎟⎠ and H4(λ) =

⎛
⎜⎜⎜⎝

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6 λ

⎞
⎟⎟⎟⎠ .

Find the smallest λ0 such that λ > λ0 implies H4(λ) strictly positive definite. Compute
1
7 − λ0.

Exercise 16.3.17 (This is just a slightly more general version of Exercise 10.5.18.)
(i) By using induction on the degree of P and considering the zeros of P ′, or otherwise,

show that, if aj > 0 for each j , the real roots of

P (t) = tn +
n∑

j=1

(−1)n−j aj t
j

(if any) are all strictly positive.
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(ii) Let A be an n× n real matrix with n real eigenvalues λj (repeated eigenvalues being
counted multiply). Show that the eigenvalues of A are strictly positive if and only if

n∑
j=1

λj > 0,
∑
j �=i

λiλj > 0,
∑

i,j,k distinct

λiλjλk > 0, . . . .

(iii) Find a real 2× 2 matrix A = (aij ) such that

det(tI − A) = t2 − b1t + b0

with b1, b0 > 0, but A has no real eigenvalues.
(iv) Let A = (aij ) be a diagonalisable 3× 3 real matrix with 3 real eigenvalues. Show

that the eigenvalues of A are strictly positive if and only if

Tr A = a11 + a22 + a33 > 0

a11a22 + a22a33 + a33a22 − a12a21 − a23a32 − a31a13 > 0

det A > 0.

If the reader reflects, she will see that using a ‘nice explicit formula’ along the lines
of (iii) for an n× n matrix A amounts to using row expansion to evaluate det(tI − A)
which is computationally a very bad idea when n is large.

The ideas of this section come in very useful in mechanics. It will take us some time to
come to the point of the discussion, so the reader may wish to skim through what follows
and then reread it more slowly. The next paragraph is not supposed to be rigorous, but it
may be helpful.

Suppose that we have two strictly positive definite forms p1 and p2 in R3 with the usual
coordinate axes. The equations p1(x, y, z) = 1 and p2(x, y, z)=1 define two ellipsoids �1

and �2. Our algebraic theorems tell us that, by rotating the coordinate axes, we can ensure
that the axes of symmetry of �1 lie along the new axes. By rescaling along each of the new
axes, we can convert �1 to a sphere �′1. The rescaling converts �2 to a new ellipsoid �′2.
A further rotation allows us to ensure that axes of symmetry of �′2 lie along the resulting
coordinate axes. Such a rotation leaves the sphere �′1 unaltered.

Replacing our geometry by algebra and strengthening our results slightly, we obtain the
following theorem.

Theorem 16.3.185 If A is an n× n strictly positive definite real symmetric matrix and B is
an n× n real symmetric matrix, we can find an invertible matrix M such that MT AM = I

and MT BM is a diagonal matrix D. The diagonal entries of D are the roots of

det(tA− B) = 0

multiple roots being counted multiply.

5 This is a famous result of Weierstrass. If the reader reflects, she will see that it is not surprising that mathematicians were
interested in the diagonalisation of quadratic forms long before the ideas involved were used to study the diagonalisation of
matrices.
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Proof Since A is positive definite, we can find an invertible matrix P such that P T AP = I .
Since P T BP is symmetric, we can find an orthogonal matrix Q such that QT P T BPQ = D

a diagonal matrix. If we set M = PQ, it follows that M is invertible and

MT AM = QT P T APQ = QT IQ = QT Q = I, MT BM = QT P T BPQ = D.

Since

det(tI −D) = det MT (tA− B)M

= det M det MT det(tA− B) = (det M)2 det(tA− B),

we know that det(tI −D) = 0 if and only if det(tA− B) = 0, so the final sentence of the
theorem follows. �

Exercise 16.3.19 We work with the real numbers.
(i) Suppose that

A =
(

1 0
0 − 1

)
and B =

(
0 1
1 0

)
.

Show that, if there exists an invertible matrix P such that P T AP and P T BP are diagonal,
then there exists an invertible matrix M such that MT AM = A and MT BM is diagonal.

By writing out the corresponding matrices when

M =
(

a b

c d

)
show that no such M exists and so A and B cannot be simultaneously diagonalisable. (See
also Exercise 16.5.21.)

(ii) Show that the matrices A and B in (i) have rank 2 and signature 0. Sketch

{(x, y) : x2 − y2 ≥ 0}, {(x, y) : 2xy ≥ 0} and {(x, y) : ux2 − vy2 ≥ 0}
for u > 0 > v and v > 0 > u. Explain geometrically, as best you can, why no M of the
type required in (i) can exist.

(iii) Suppose that

C =
(−1 0

0 − 1

)
.

Without doing any calculation, decide whether C and B are simultaneously diagonalisable
and give your reason.

We now introduce some mechanics. Suppose that we have a mechanical system whose
behaviour is described in terms of coordinates q1, q2, . . . , qn. Suppose further that the
system rests in equilibrium when q = 0. Often the system will have a kinetic energy
E(q̇) = E(q̇1, q̇2, . . . , q̇n) and a potential energy V (q). We expect E to be a strictly positive
definite quadratic form with associated symmetric matrix A. There is no loss in generality
in taking V (0) = 0. Since the system is in equilibrium, V is stationary at 0 and (at least to
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the second order of approximation) V will be a quadratic form. We assume that (at least
initially) higher order terms may be neglected and we may take V to be a quadratic form
with associated matrix B.

We observe that

Mq̇ = d

dt
Mq

and so, by Theorem 16.3.18, we can find new coordinates Q1, Q2, . . . , Qn such that the
kinetic energy of the system with respect to the new coordinates is

Ẽ(Q̇) = Q̇2
1 + Q̇2

2 + · · · + Q̇2
n

and the potential energy is

Ṽ (Q) = λ1Q
2
1 + λ2Q

2
2 + · · · + λnQ

2
n

where the λj are the roots of det(tA− B) = 0.
If we take Qi = 0 for i �= j , then our system reduces to one in which the kinetic energy

is Q̇2
j and the potential energy is λjQ

2
j . If λj < 0, this system is unstable. If λj > 0, we

have a harmonic oscillator frequency λ
1/2
j . Clearly the system is unstable if any of the roots

of det(tA− B) = 0 are strictly negative. If all the roots λj are strictly positive it seems
plausible that the general solution for our system is

Qj (t) = Kj cos(λ1/2
j t + φj ) [1 ≤ j ≤ n]

for some constants Kj and φj . More sophisticated analysis, using Lagrangian mechanics,
enables us to make precise the notion of a ‘mechanical system given by coordinates q’ and
confirms our conclusions.

The reader may wish to look at Exercise 8.5.4 if she has not already done so.

16.4 Antisymmetric bilinear forms

In view of Lemma 16.1.11 it is natural to seek a reasonable way of looking at antisymmetric
bilinear forms.

As we might expect, there is a strong link with antisymmetric matrices (that is to say,
square matrices A with AT = −A).

Lemma 16.4.1 Let U be a finite dimensional vector space over R with basis e1, e2, . . . ,
en.

(i) If A = (aij ) is an n× n real antisymmetric matrix, then

α

⎛
⎝ n∑

i=1

xiei ,

n∑
j=1

yj ej

⎞
⎠ = n∑

i=1

n∑
j=1

xiaij yj

(for xi, yj ∈ R) defines an antisymmetric form.
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(ii) If α : U × U → R is an antisymmetric form, then there is a unique n× n real
antisymmetric matrix A = (aij ) with

α

⎛
⎝ n∑

i=1

xiei ,

n∑
j=1

yj ej

⎞
⎠ = n∑

i=1

n∑
j=1

xiaij yj

for all xi, yj ∈ R.

The proof is left as an exercise for the reader.

Exercise 16.4.2 If α and A are as in Lemma 16.4.1 (ii), find q(u) = α(u, u).

Exercise 16.4.3 Suppose that A is an n× n matrix with real entries such that AT = −A.
Show that, if we work in C, iA is a Hermitian matrix. Deduce that the eigenvalues of A

have the form λi with λ ∈ R.
If B is an antisymmetric matrix with real entries and M is an invertible matrix with real

entries such that MT BM is diagonal, what can we say about B and why?

Clearly, if we want to work over R, we cannot hope to ‘diagonalise’ a general antisym-
metric form. However, we can find another ‘canonical reduction’ along the lines of our first
proof that a symmetric matrix can be diagonalised (see Theorem 8.2.5). We first prove a
lemma which contains the essence of the matter.

Lemma 16.4.4 Let U be a vector space over R and let α be a non-zero antisymmetric
form.

(i) We can find e1, e2 ∈ U such that α(e1, e2) = 1.
(ii) Let e1, e2 ∈ U obey the conclusions of (i). Then the two vectors are linearly inde-

pendent. Further, if we write

E = {u ∈ U : α(e1, u) = α(e2, u) = 0},
then E is a subspace of U and

U = span{e1, e2} ⊕ E.

Proof (i) If α is non-zero, there must exist u1, u2 ∈ U such that α(u1, u2) �= 0. Set

e1 = 1

α(u1, u2)
u1 and e2 = u2.

(ii) We leave it to the reader to check that E is a subspace. If

u = λ1e1 + λ2e2 + e

with λ1, λ2 ∈ R and e ∈ E, then

α(u, e1) = λ1α(e1, e1)+ λ2α(e2, e1)+ α(e, e1) = 0− λ2 + 0 = −λ2,

so λ2 = −α(u, e1). Similarly λ1 = α(u, e2) and so

e = u− α(u, e2)e1 + α(u, e1)e2.
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Conversely, if

v = α(u, e2)e1 − α(u, e1)e2 and e = u− v,

then

α(e, e1) = α(u, e1)− α(u, e2)α(e1, e1)+ α(u, e1)α(e2, e1)

= α(u, e1)− 0− α(u, e1) = 0

and, similarly, α(e, e2) = 0, so e ∈ E.
Thus any u ∈ U can be written in one and only one way as

u = λ1e1 + λ2e2 + e

with e ∈ E. In other words,

U = span{e1, e2} ⊕ E. �

Theorem 16.4.5 Let U be a vector space of dimension n over R and let α : U 2 → R be
an antisymmetric form. Then we can find an integer m with 0 ≤ 2m ≤ n and a basis e1,
e2, . . . , en such that

α(ei , ej ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = 2r − 1, j = 2r and 1 ≤ r ≤ m,

−1 if i = 2r , j = 2r − 1 and 1 ≤ r ≤ m,

0 otherwise.

Proof We use induction. If n = 0 the result is trivial. If n = 1, then α = 0 since

α(xe, ye) = xyα(e, e) = 0,

and the result is again trivial. Now suppose that the result is true for all 0 ≤ n ≤ N where
N ≥ 1. We wish to prove the result when n = N + 1.

If α = 0, any choice of basis will do. If not, the previous lemma tells us that we can find
e1, e2 linearly independent vectors and a subspace E such that

U = span{e1e2} ⊕ E,

α(e1, e2) = 1 and α(e1, e) = α(e2, e) = 0 for all e ∈ E. Automatically, E has dimension
N − 1 and the restriction α|E2 of α to E2 is an antisymmetric form. Thus we can find an m

with 2m ≤ N + 1 and a basis e3, e4, . . . , eN+1 such that

α(ei , ej ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = 2r − 1, j = 2r and 2 ≤ r ≤ m,

−1 if i = 2r , j = 2r − 1 and 2 ≤ r ≤ m,

0 otherwise.
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The vectors e1, e2, . . . , eN+1 form a basis such that

α(ei , ej ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = 2r − 1, j = 2r and 2 ≤ r ≤ m,

−1 if i = 2r , j = 2r − 1 and 2 ≤ r ≤ m,

0 otherwise,

so the induction is complete. �

Part (ii) of the next exercise completes our discussion.

Exercise 16.4.6 (i) If A is an n× n real antisymmetric matrix, show that there is an n× n

real invertible matrix M , such that MT AM is a matrix with matrices taking the form

(0) or

(
0 1
−1 0

)
laid out along the diagonal and all other entries 0.

(ii) Show that if α is fixed in the statement of Theorem 16.4.5, then m is unique.

Exercise 16.4.7 If U is a finite dimensional vector space over R and there exists a
non-singular antisymmetric form α : U 2 → R, show that the dimension of U is even.

Exercise 16.4.8 Which of the following statements about an n× n real matrix A are true
for all appropriate A and all n and which are false? Give reasons.

(i) If A is antisymmetric, then the rank of A is even.
(ii) If A is antisymmetric, then its characteristic polynomial has the form PA(t) =

tn−2m(t2 + 1)m.
(iii) If A is antisymmetric, then its characteristic polynomial has the form PA(t) =

tn−2m
∏m

j=1(t2 + d2
j ) with dj real.

(iv) If the characteristic polynomial of A takes the form

PA(t) = tn−2m

m∏
j=1

(t2 + d2
j )

with dj real, then A is antisymmetric.
(v) Given m with 0 ≤ 2m ≤ n and dj real, there exists a real antisymmetric matrix A

with characteristic polynomial PA(t) = tn−2m
∏m

j=1(t2 + d2
j ).

Exercise 16.4.9 If we work over C, we have results corresponding to Exercise 16.1.26 (iii)
which make it very easy to discuss skew-Hermitian forms and matrices.

(i) Show that, if A is a skew-Hermitian matrix, then there is a unitary matrix P such that
P ∗AP is diagonal and its diagonal entries are purely imaginary.

(ii) Show that, if A is a skew-Hermitian matrix, then there is an invertible matrix P such
that P ∗AP is diagonal and its diagonal entries take the values i, −i or 0.

(iii) State and prove an appropriate form of Sylvester’s law of inertia for skew-Hermitian
matrices.
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16.5 Further exercises

Exercise 16.5.1 The result of this exercise is important for the study of Taylor’s theorem
in many dimensions. However, the reader should treat it as just another exercise involving
functions of functions of the type we have referred to as paper tigers.

Let E, F and G be finite dimensional vector spaces over R. We write B(E,F ; G) for
the space of bilinear maps α : E × F → G. Define

(�(α)(u))(v) = α(u, v)

for all α ∈ B(E,F ; G), u ∈ E and v ∈ F .
(i) Show that �(α)(u) ∈ L(F,G).
(ii) Show that, if v is fixed,(

�(α)(λ1u1 + λ2u2)
)
(v) = (λ1�(α)(u1)+ λ2�(α)(u2)

)
(v)

and deduce that

�(α)(λ1u1 + λ2u2) = λ1�(α)(u1)+ λ2�(α)(u2)

for all λ1, λ2 ∈ R and u1, u2 ∈ E. Conclude that �(α) ∈ L(E,L(F,G)).
(iii) By arguments similar in spirit to those of (ii), show that � : B(E,F ; G) →

L(E,L(F,G)) is linear.
(iv) Show that if (�(α)(u))(v) = 0 for all u ∈ E, v ∈ F , then α = 0. Deduce that � is

injective.
(v) By computing the dimensions of B(E,F ; G) and L(E,L(F,G)), show that � is an

isomorphism.

Exercise 16.5.2 Let β be a bilinear form on a finite dimensional vector space V over R

such that

β(x, x) = 0 ⇒ x = 0.

Show that we can find a basis e1, e2, . . . , en for V such that β(ej , ek) = 0 for n ≥ k > j ≥ 1.
What can you say in addition if β is symmetric? What result do we recover if β is an inner
product?

Exercise 16.5.3 What does it mean to say that two quadratic forms xT Ax and xT Bx are
equivalent? (See Definition 16.1.19 if you have forgotten.) Show, using matrix algebra,
that equivalence is, indeed, an equivalence relation on the space of quadratic forms in n

variables.
Show that, if A and B are symmetric matrices with xT Ax and xT Bx equivalent, then the

determinants of A and B are both strictly positive, both strictly negative or both zero.
Are the following statements true? Give a proof or counterexample.
(i) If A and B are symmetric matrices with strictly positive determinant, then xT Ax and

xT Bx are equivalent quadratic forms.
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(ii) If A and B are symmetric matrices with det A = det B > 0, then xT Ax and xT Bx
are equivalent quadratic forms.

Exercise 16.5.4 Consider the real quadratic form

c1x1x2 + c2x2x3 + · · · + cn−1xn−1xn,

where n ≥ 2 and all the ci are non-zero. Explain, without using long calculations, why both
the rank and signature are independent of the values of the ci .

Now find the rank and signature.

Exercise 16.5.5 (i) Let f1, f2, . . . , ft , ft+1, ft+2, . . . , ft+u be linear functionals on the
finite dimensional real vector space U . Let

q(x) = f1(x)2 + · · · + ft (x)2 − ft+1(x)2 − · · · − ft+u(x)2.

Show that q is a quadratic form of rank p + q and signature p − q where p ≤ t and q ≤ u.
Give an example with all the fj non-zero for which p = t = 2, q = u = 2 and an

example with all the fj non-zero for which p = 1, t = 2, q = u = 2 .
(ii) Consider a quadratic form Q on a finite dimensional real vector space U . Show

that Q has rank 2 and signature 0 if and only if we can find linearly independent linear
functionals f and g such that Q(x) = f (x)g(x).

Exercise 16.5.6 Let q be a quadratic form over a real vector space U of dimension n. If
V is a subspace of U having dimension n−m, show that the restriction q|V of q to V has
signature l differing from k by at most m.

Show that, given l, k, m and n with 0 ≤ m ≤ n, |k| ≤ n, |l| ≤ m and |l − k| ≤ m we
can find a quadratic form q on Rn and a subspace V of dimension n−m such that q has
signature k and q|V has signature l.

Exercise 16.5.7 Suppose that V is a subspace of a real finite dimensional space U . Let
V have dimension m and U have dimension 2n. Find a necessary and sufficient condition
relating m and n such that any antisymmetric bilinear form β : V 2 → R can be written as
β = α|V 2 where α is a non-singular antisymmetric form on U .

Exercise 16.5.8 Let V be a real finite dimensional vector space and let α : V 2 →
R be a symmetric bilinear form. Call a subspace U of V strictly positive defi-
nite if α|U 2 is a strictly positive definite form on U . If W is a subspace of V ,
write

W⊥ = {v ∈ V : α(v, w) = 0 for all w ∈ W }.
(i) Show that W⊥ is a subspace of V .
(ii) If U is strictly positive definite, show that V = U ⊕ U⊥.
(iii) Give an example of V , α and a subspace W such that V is not the direct sum of W

and W⊥.
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(iv) Give an example of V , α and a subspace W such that V = W ⊕W⊥, but W is not
strictly positive definite.

(v) If p is the largest number such that V has a strictly positive definite subspace of
dimension p, establish that every strictly positive definite subspace U is a subspace of a
strictly positive definite subspace X of dimension p. Is X necessarily uniquely determined
by U? Give a proof or counterexample.

(vi) Let V = Mn, the vector space of n× n real matrices. If we set α(A,B) = Tr AB,
show that α is a symmetric bilinear form. Find a strictly positive definite subspace of V of
maximum dimension, justifying your answer.

Exercise 16.5.9 [Hadamard’s inequality revisited] We work over C. Let M be an n× n

matrix with columns mi satisfying ‖mi‖ ≤ 1 for the Euclidean norm. If we set P = MM∗,
show that P is a positive semi-definite symmetric matrix all of whose entries pij satisfy
|pij | ≤ 1.

By applying the arithmetic-geometric inequality to the eigenvalues λ1, λ2, . . . , λn of P ,
show that

(det P )1/n ≤ n−1 Tr P ≤ 1.

Deduce that | det M| ≤ 1. Show that we have equality (that is to say, | det M| = 1) if and
only if M is unitary.

Deduce that if A is a complex n× n matrix with columns aj

| det A| ≤
n∏

j=1

‖aj‖

with equality if and only if either one of the columns is the zero vector or the column
vectors are orthogonal.

Exercise 16.5.10 Let Pn be the set of strictly positive definite n× n symmetric matrices.
Show that

A ∈ Pn, t > 0 ⇒ tA ∈ Pn

and

A, B ∈ Pn, 1 ≥ t ≥ 0 ⇒ tA+ (1− t)B ∈ Pn.

(We say that Pn is a convex cone.)
Show that, if A ∈ Pn, then

log det A− Tr A+ n ≤ 0

with equality if and only if A = I .
If A ∈ Pn, let us write φ(A) = − log det A. Show that

A, B ∈ Pn, 1 ≥ t ≥ 0 ⇒ φ
(
tA+ (1− t)B

) ≤ tφ(A)+ (1− t)φ(B).
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(We say that φ is a convex function.)
[Hint: Recall that, under appropriate circumstances, we can find a non-singular P such that
P T AP and P T BP are both diagonal.]

Exercise 16.5.11 [Drawing a straight line] Suppose that we have a quantity y that we
believe satisfies the equation

y = a + bt �

with a and b unknown. We make observations of y at n distinct times t1, t2, . . . , tn (with
n ≥ 2), obtaining y1, y2, . . . , yn, but, because there will be errors in our observations, we
do not expect to have yj = a + btj .

The discussion of the method of least squares in Section 7.5 suggests that we should
estimate a and b as â and b̂, where â, b̂ are the values of a and b which minimise

n∑
j=1

(
yj − (a + btj )

)2
.

Find â and b̂.
Show that we can find α and β such that, writing sj = βtj + α, we have

n∑
j=1

sj = 0 and
n∑

j=1

s2
j = 1.

Find u and v so that, writing s = βt + α, � takes the form

y = u+ vs.

Find û and v̂ so that
∑n

j=1(yj − (u+ vsj ))2 is minimised when u = û, v = v̂ and write â

and b̂ in terms of û and v̂.

Exercise 16.5.12 (Requires a small amount of probability theory.) Suppose that we make
observations Yj at time tj which we believe are governed by the equation

Yj = a + btj + σZj

where Z1, Z2, . . . , Zn are independent normal random variables each with mean 0 and vari-
ance 1. As usual, σ > 0. (So, whereas in the previous question we just talked about errors,
we now make strong assumptions about the way the errors arise.) The discussion in the
previous question shows that there is no loss in generality and some gain in computational
simplicity if we suppose that

n∑
j=1

tj = 0 and
n∑

j=1

t2
j = 1.

We shall suppose that n ≥ 3 since we can always fit a line through two points.
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We are interested in estimating a, b and σ 2. Check, from the results of the last question,
that the least squares method gives the estimates

â = Ȳ = n−1
n∑

j=1

Yj and b̂ =
n∑

j=1

tj Yj .

We can get some feeling6 for the size of σ by looking at

σ̂ 2 = (n− 2)−1
n∑

j=1

(
Yj − (â + b̂tj )

)2
.

Show that, if we write ã = â − a and b̃ = b̂ − b, we have

ã = σZ̄ = σn−1
n∑

j=1

Zj , b̂ = σ

n∑
j=1

tjZj , σ̂ 2 = σ 2(n− 2)−1
n∑

j=1

(
Zj − (ã + b̃tj )

)2
.

In this question we shall derive the joint distribution of ã, b̃ and σ̂ 2 (and so of â, b̂ and σ̂ 2)
by elementary matrix algebra.

(i) Show that e1 = (n−1/2, n−1/2, . . . , n−1/2)T and e2 = (t1, t2, . . . , tn)T are orthogonal
column vectors of norm 1 with respect to the standard inner product on Rn. Deduce that
there exists an orthonormal basis e1, e2, . . . , en for Rn. If we let M be the n× n matrix
whose rth row is eT

r , explain why M ∈ O(Rn) and so preserves inner products.
(ii) Let W1, W2, . . . , Wn be the set of random variables defined by

W = MZ

that is to say, by Wi =
∑n

j=1 eijZj . Show that Z1, Z2, . . . , Zn have joint density function

f (z1, z2, . . . , zn) = (2π )−n/2 exp(−‖z‖2/2)

and use the fact that M ∈ O(Rn) to show that W1, W2, . . . , Wn have joint density function

g(w1, w2, . . . , wn) = (2π )−n/2 exp(−‖w‖2/2).

Conclude that W1, W2, . . . , Wn are independent normal random variables each with mean
0 and variance 1.

(iii) Explain why

W 2
1 +W 2

2 + · · · +W 2
n = Z2

1 + Z2
2 + · · · + Z2

n.

Show that ã = n−1/2σW1, b̃ = σW2 and

n∑
j=1

(
Zj − (ã + b̃tj )

)2 = W 2
3 +W 2

4 + · · · +W 2
n .

6 This sentence is deliberately vague. The reader should simply observe that σ̂ 2, or something like it, is likely to be interesting.
In particular, it does not really matter whether we divide by n− 2, n− 1 or n.
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(iv) Deduce the following results. The random variables â, b̂ and σ̂ 2 are independent.7

The random variable â is normally distributed with mean a and variance σ 2/n. The random
variable b̂ is normally distributed with mean b and variance σ 2. The random variable
(n− 2)σ−2σ̂ 2 is distributed like the sum of the squares of n− 2 independent normally
distributed random variables with mean 0 and variance 1.

Exercise 16.5.13 Suppose that we make observations X1, X2 . . . , Xn which we believe to
be independent normal random variables each with mean μ and variance σ 2.

(i) Suppose that μ = 0 and σ = 1. By imitating the arguments of the previous question,
show that

X̄ = n−1
n∑

j=1

Xj and σ̂ 2 = (n− 1)−1
n∑

j=1

(Xj − X̄)2

are independent and find their distributions.
(ii) Now let μ and σ 2 take general values. Show that X̄ and σ̂ 2 remain independent and

find their distributions.

Exercise 16.5.14 Let V be the vector space of n× n matrices over R. Show that

q(A) = Tr(A2)− (Tr A)2

is a quadratic form on V . By considering the subspaces V1 consisting of matrices λI , V2

consisting of matrices of trace 0, and V3 consisting of antisymmetric matrices, or otherwise,
find the signature of q.

Exercise 16.5.15 Two quadratic forms h and k on R3 are defined by

h(x, y, z) = 2x2 + 5y2 + 4z2 + 6xy + 14yz+ 8zx

and

k(x, y, z) = 2x2 + 14y2 + 3z2 + 10xy − 4yz.

Show that one of these forms is strictly positive definite and one of them is not. Determine
λ, μ and ν so that, in an appropriate coordinate system, the form of the strictly positive
definite one becomes X2 + Y 2 + Z2 and the form of the other becomes λX2 + μY 2 + νZ2.

Exercise 16.5.16 Find a linear transformation that simultaneously reduces the quadratic
forms

2x2 + y2 + 2z2 + 2yz− 2zx

x2 + 2y2 + 2z2 + 4yz

to the forms X2 + Y 2 + Z2 and λX2 + μY 2 + νZ2 where λ, μ and ν are to be found.

7 Observe that, if random variables are independent, their joint distribution is known once their individual distributions are known.
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Exercise 16.5.17 Let n ≥ 2. Find the eigenvalues and corresponding eigenvectors of the
n× n matrix

A =

⎛
⎜⎜⎜⎝

1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

⎞
⎟⎟⎟⎠ .

If the quadratic form F is given by

C

n∑
r=1

x2
r +

n∑
r=1

n∑
s=r+1

xrxs,

explain why there exists an orthonormal change of coordinates such that F takes the form∑n
r=1 μry

2
y with respect to the new coordinate system. Find the μr explicitly.

Exercise 16.5.18 (A result required for Exercise 16.5.19.) Suppose that n is a strictly
positive integer and x is a positive rational number with x2 = n. Let x = p/q with p and
q positive integers with no common factor. By considering the equation

p2 ≡ nq2 (mod q),

show that x is, in fact, an integer.
Suppose that aj ∈ Z. Show that any rational root of the monic polynomial tn +

an−1t
n−1 + · · · + a0 is, in fact, an integer.

Exercise 16.5.19 Let A be the Hermitian matrix⎛
⎝ 1 i 2i

−i 3 −i

−2i i 5

⎞
⎠ .

Show, using Exercise 16.5.18, or otherwise, that there does not exist a unitary matrix U

and a diagonal matrix E with rational entries such that U∗AU = E.
Setting out your method carefully, find an invertible matrix B (with entries in C) and a

diagonal matrix D with rational entries such that B∗AB = D.

Exercise 16.5.20 Let f (x1, x2, . . . , xn) =∑1≤i,j≤n aij xixj where A = (aij ) is a real sym-
metric matrix and g(x1, x2, . . . , xn) =∑1≤i≤n x2

i . Show that the stationary points and
associated values of f , subject to the restriction g(x) = 1, are given by the eigenvectors of
norm 1 and associated eigenvalues of A. (Recall that x is such a stationary point if g(x) = 1
and

‖h‖−1|f (x+ h)− f (x)| → 0

as ‖h‖ → 0 with g(x+ h) = 1.)
Deduce that the eigenvectors of A give the stationary points of f (x)/g(x) for x �= 0.

What can you say about the eigenvalues?
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Exercise 16.5.21 (This continues Exercise 16.3.19 (i) and harks back to Theorem 7.3.1
which the reader should reread.) We work in R2 considered as a space of column vectors.

(i) Take α to be the quadratic form given by α(x) = x2
1 − x2

2 and set

A =
(

1 0
0 −1

)
.

Let M be a 2× 2 real matrix. Show that the following statements are equivalent.
(a) α(Mx) = αx for all x ∈ R2.
(b) MT AM = A.
(c) There exists a real s such that

M = ±
(

cosh s sinh s

sinh s cosh s

)
or M = ±

(
cosh s sinh s

−sinh s −cosh s

)
.

(ii) Deduce the result of Exercise 16.3.19 (i).
(iii) Let β(x) = x2

1 + x2
2 and set B = I . Write down results parallelling those of part (i).

Exercise 16.5.22 (i) Let φ1 and φ2 be non-degenerate bilinear forms on a finite dimensional
real vector space V . Show that there exists an isomorphism α : V → V such that

φ2(u, v) = φ1(u, αv)

for all u, v ∈ V .
(ii) Show, conversely, that, if ψ1 is a non-degenerate bilinear form on a finite dimensional

real vector space V and β : V → V is an isomorphism, then the equation

ψ2(u, v) = ψ1(u, βv)

for all u, v ∈ V defines a non-degenerate bilinear form ψ2.
(iii) If, in part (i), both φ1 and φ2 are symmetric, show that α is self-adjoint with respect

to φ1 in the sense that

φ1(αu, v) = φ1(u, αv)

for all u, v ∈ V . Is α necessarily self-adjoint with respect to φ2? Give reasons.
(iv) If, in part (i), both φ1 and φ2 are inner products (that is to say, symmetric and

strictly positive definite), show that, in the language of Exercise 15.5.11, α is strictly
positive definite. Deduce that we can find an isomorphism γ : V → V such that γ is
strictly positive definite and

φ2(u, v) = φ1(γ u, γ v)

for all u, v ∈ V .
(v) If ψ1 is an inner product on V and γ : V → V is strictly positive definite, show that

the equation

ψ2(u, v) = ψ1(γ u, γ v)

for all u, v ∈ V defines an inner product.
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Exercise 16.5.23 Let U be a real vector space of dimension n and φ a non-degenerate
symmetric bilinear form on U . If M is a subspace of U show that

M⊥ = {y ∈ U : φ(x, y) = 0 for all x ∈ M}
is a subspace of M .

By recalling Lemma 11.4.13 and Lemma 16.1.7, or otherwise, show that

dim M + dim M⊥ = n.

If U = R2 and

φ
(
(x1, x2)T , (y1, y2)T

) = x1y1 − x2y2,

find one dimensional subspaces M1 and M2 such that M1 ∩M⊥
1 = {0} and M2 = M⊥

2 .
If M is a subspace of U with M⊥ = M show that dim M ≤ n/2.

Exercise 16.5.24 (A short supplement to Exercise 16.5.23.) Let U be a real vector space
of dimension n and φ a symmetric bilinear form on U . If M is a subspace of U show that

M⊥ = {y ∈ U : φ(x, y) = 0 for all x ∈ M}
is a subspace of M . By using Exercise 16.5.23, or otherwise, show that

dim M + dim M⊥ ≥ n.

Exercise 16.5.25 We continue with the notation and hypotheses of Exercise 16.5.23. An
automorphism γ of U is said to be an φ-automorphism if it preserves φ (that is to say

φ(γ x, γ y) = φ(x, y)

for all x, y ∈ U ). A vector x ∈ U is said to be isotropic (with respect to φ) if φ(x, x) = 0.
We shall call a subspace M of U non-isotropic if M ∩M⊥ = {0}. Prove the following
results.

(i) There exist vectors which are not isotropic.
(ii) If γ is a φ-automorphism, then γM = M ⇔ γM⊥ = M⊥.
(iii) If M is a non-isotropic subspace, there exists a unique φ-automorphism θM (the

symmetry with respect to M) such that

θMx =
{

x if x ∈ M,

−x if x ∈ M⊥.

Let α be a φ-automorphism and e1 a non-isotropic vector. Show that the two vectors
αe1 ± e1 cannot both be isotropic and deduce that there exists a non-isotropic subspace
M1 of dimension 1 or n− 1 such that θM1αe1 = e1. By using induction on n, or otherwise,
show that every φ-automorphism is the product of at most n symmetries with respect to
non-isotropic subspaces.

To what earlier result on distance preserving maps does this result correspond?
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Exercise 16.5.26 Let A be an n× n matrix with real entries such that AAT = I . Explain
why, if we work over the complex numbers, A is a unitary matrix. If λ is a real eigenvalue,
show that we can find a basis of orthonormal vectors with real entries for the space

{z ∈ Cn : Az = λz}.
Now suppose that λ is an eigenvalue which is not real. Explain why we can find a

0 < θ < 2π such that λ = eiθ . If z = x+ iy is a corresponding eigenvector such that the
entries of x and y are real, compute Ax and Ay. Show that the subspace

{z ∈ Cn : Az = λz}
has even dimension 2m, say, and has a basis of orthonormal vectors with real entries e1,
e2, . . . , e2m such that

Ae2r−1 = cos θe2r−1 + i sin θe2r

Ae2r = −sin θe2r−1 + i cos θe2r .

Hence show that, if we now work over the real numbers, there is an n× n orthogonal
matrix M such that MAMT is a matrix with matrices Kj taking the form

(1), (−1) or

(
cos θj −sin θj

sin θj cos θj

)
laid out along the diagonal and all other entries 0.
[The more elementary approach of Exercise 7.6.18 is probably better, but this method
brings out the connection between the results for unitary and orthogonal matrices.]

Exercise 16.5.27 [Routh’s rule]8 Suppose that A = (aij )1≤i,j≤n is a real symmetric matrix.
If a11 > 0 and B = (bij )2≤i,j≤n is the Schur complement given (as in Lemma 16.3.9) by

bij = aij − li lj for 2 ≤ i, j ≤ n,

show that

det A = a11 det B.

Show, more generally, that

det(aij )1≤i,j≤r = a11 det(bij )2≤i,j≤r .

Deduce, by induction, or otherwise, that A is strictly positive definite if and only if

det(aij )1≤i,j≤r > 0

for all 1 ≤ r ≤ n (in traditional language ‘all the leading minors of A are strictly positive’).

8 Routh beat Maxwell in the Cambridge undergraduate mathematics exams, but is chiefly famous as a great teacher. Rayleigh,
who had been one of his pupils, recalled an ‘undergraduate [whose] primary difficulty lay in conceiving how anything could
float. This was so completely removed by Dr Routh’s lucid explanation that he went away sorely perplexed as to how anything
could sink!’ Routh was an excellent mathematician and this is only one of several results named after him.
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Exercise 16.5.28 Use the method of the previous question to show that, if A is a real
symmetric matrix with non-zero leading minors

Ar = det(aij )1≤i,j≤r ,

the real quadratic form
∑n

1≤i,j≤n xiaij xj can reduced by a real non-singular change of
coordinates to

∑n
i=1(Ai/Ai−1)y2

i (where we set A0 = 1).

Exercise 16.5.29 (A slightly, but not very, different proof of Sylvester’s law of inertia).
Let φ1, φ2, . . . , φk be linear forms (that is to say, linear functionals) on Rn and let W be a
subspace of Rn. If k < dim W , show that there exists a non-zero y ∈ W such that

φ1(y) = φ2(y) = . . . = φk(y) = 0.

Now let f be the quadratic form on Rn given by

f (x1, x2, . . . , xn) = x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q

with p, q ≥ 0 and p + q ≤ n. Suppose that ψ1, ψ2, . . . , ψr+s are linear forms on Rn such
that

f (y) = ψ1(y)2 + · · · + ψr (y)2 − ψr+1(y)2 − ψr+s(y)2.

Show that p ≤ r .
Deduce Sylvester’s law of inertia.

Exercise 16.5.30 [An analytic proof of Sylvester’s law of inertia] In this question we
work in the space Mn(R) of n× n matrices with distances given by the operator norm.

(i) Use the result of Exercise 7.6.18 (or Exercise 16.5.26) to show that, given any special
orthogonal n× n matrix P1, we can find a continuous map

P : [0, 1] → Mn(R)

such that P (0) = I , P (1) = P1 and P (s) is special orthogonal for all s ∈ [0, 1].
(ii) Deduce that, given any special orthogonal n× n matrices P0 and P1, we can find a

continuous map

P : [0, 1] → Mn(R)

such that P (0) = P0, P (1) = P1 and P (s) is special orthogonal for all s ∈ [0, 1].
(iii) Suppose that A is a non-singular n× n matrix. If P is as in (ii), show that

P (s)T AP (s) is non-singular and so the eigenvalues of P (s)T AP (s) are non-zero for all
s ∈ [0, 1]. Assuming that, as the coefficients in a polynomial vary continuously, so do the
roots of the polynomial (see Exercise 15.5.14), deduce that the number of strictly positive
roots of the characteristic polynomial of P (s)T AP (s) remains constant as s varies.

(iv) Continuing with the notation and hypotheses of (ii), show that, if P (0)T AP (0) = D0

and P (1)T AP (1) = D1 with D0 and D1 diagonal, then D0 and D1 have the same number
of strictly positive and strictly negative terms on their diagonals.
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(v) Deduce that, if A is a non-singular symmetric matrix and P0, P1 are special orthogonal
with P T

0 AP0 = D0 and P T
1 AP1 = D1 diagonal, then D0 and D1 have the same number

of strictly positive and strictly negative terms on their diagonals. Thus we have proved
Sylvester’s law of inertia for non-singular symmetric matrices.

(vi) To obtain the full result, explain why, if A is a symmetric matrix, we can find εn → 0
such that A+ εnI and A− εnI are non-singular. By applying part (v) to these matrices,
show that, if P0 and P1 are special orthogonal with P T

0 AP0 = D0 and P T
1 AP1 = D1

diagonal, then D0 and D1 have the same number of strictly positive, strictly negative terms
and zero terms on their diagonals.

Exercise 16.5.31 Consider the quadratic forms an, bn, cn : Rn → R given by

an(x1, x2, . . . , xn) =
n∑

i=1

n∑
j=1

xixj ,

bn(x1, x2, . . . , xn) =
n∑

i=1

n∑
j=1

xi min{i, j }xj ,

cn(x1, x2, . . . , xn) =
n∑

i=1

n∑
j=1

xi max{i, j }xj .

By completing the square, find a simple expression for an. Deduce the rank and signature
of an.

By considering

bn(x1, x2, . . . , xn)− bn−1(x2, . . . , xn),

diagonalise bn. Deduce the rank and signature of bn.
Find a simple expression for

cn(x1, x2, . . . , xn)+ bn(xn, xn−1, . . . , x1)

in terms of an(x1, x2, . . . , xn) and use it to diagonalise cn. Deduce the rank and signature
of cn.

Exercise 16.5.32 The real non-degenerate quadratic form q(x1, x2, . . . , xn) vanishes if
xk+1 = xk+2 = . . . = xn = 0. Show, by induction on t = n− k, or otherwise, that the form
q is equivalent to

y1yk+1 + y2yk+2 + · · · + yky2k + p(y2k+1, y2k+2, . . . , yn),

where p is a non-degenerate quadratic form. Deduce that, if q is reduced to diagonal form

w2
1 + · · · + w2

s − w2
s+1 − · · · − w2

n

we have k ≤ s ≤ n− k.

Exercise 16.5.33 (i) If A = (aij ) is an n× n positive semi-definite symmetric matrix,
show that either a11 > 0 or ai1 = 0 for all i.
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(ii) Let A be an n× n real matrix. Show that A is a positive semi-definite symmetric
matrix if and only if A = LT L, where L is a real lower triangular matrix.

Exercise 16.5.34 Use the ‘Cholesky method’ to determine the values of λ ∈ R for which⎛
⎝ 2 −4 2
−4 10+ λ 2+ 3λ

2 2+ 3λ 23+ 9λ

⎞
⎠

is strictly positive definite and find the Cholesky factorisation for those values.

Exercise 16.5.35 (i) Suppose that n ≥ 1. Let A be an n× n real matrix of rank n. By
considering the Cholesky factorisation of B = AT A, prove the existence and uniqueness
of the QR factorisation

A = QR

where Q is an n× n orthogonal matrix and R is an n× n upper triangular matrix with
strictly positive diagonal entries.

(ii) Suppose that we drop the condition that A has rank n. Does the QR factorisation
always exist? If the factorisation exists it is unique? Give proofs or counterexamples.

(iii) In parts (i) and (ii) we considered an n× n matrix. Use the method of (i) to prove
that if n ≥ m ≥ 1 and A is an n×m real matrix of rank m then we can find an n× n

orthogonal matrix Q and an n×m thin upper triangular matrix R such that A = QR.
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adjoint maps and matrices
complex cases, 205
computational approach, 164
geometric approach, 356

adjugate matrix, 79
algebraically closed field, 332
angular momentum, 238
annihilator, 280
anti-isomorphism, 362
antisymmetric

bilinear form, 401, 421
Cartesian tensor, 236
matrix, 81, 210

Aristotle, on a well-schooled man, 211
automorphism, 266
axioms

for a field, 330
for a group, 94
for a vector space, 88

axis, every rotation has an, 173

basis, 95
Bessel’s inequality, 351
Bézout’s theorem, 155
bijective function, i.e. bijection, 59
bilinear form

antisymmetric, 421
definition, 399
degenerate, 401
singular, i.e. degenerate, 401
symmetric, 401

bilinear function, 399
block multiplication of matrices, 57
Boole and finite differences, 267

Cartesian tensor
antisymmetric, 236
contraction, 216
definition, 216
isotropic, 233
order, 216
quotient rule, 218

rank, i.e. order, 216
symmetric, so diagonalisable, 235

Casini’s identity, 140
Cauchy–Riemann equations, 186
Cauchy–Schwarz inequality, 29, 204
Cayley–Hamilton theorem

for general fields, 319
in two dimensions, 129
non-trivial, 300
over C, 297
over R, 300
via Jordan forms, 312
via perturbation, 378
via triangularisation, 299

centre of gravity, i.e. centre of mass, 26
centre of mass, 26, 237
change of basis

for different spaces, 260
for orthonormal bases, 193
for quadratic form, 404
for same space, 119

chap, bright, 289
characteristic polynomial, 122
Cholesky factorisation, 417
Chrystal, on simultaneous equations, 108
circulant

determinant, 117
matrix, 154

code
dual, 337
Hadamard, 342
Hamming, 335
Hamming, general, 339
linear, 337
parity check, 337
secret, 341

cofactors of a matrix, 79
commutator, 152, 323
complementary solutions, i.e. kernel, 18
complementary subspace, 293
condition number, 373
contravariant object, 244
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coordinatewise convergence, 137
couple, in mechanics, 238
covariant object, 246
Cramer’s rule, 11, 80
cross product, i.e. vector product, 221
crystallography, 231
curl, 225
cyclic vector, 321

δij , Kronecker delta, 46
∇, del or nabla, 225
∇2, Laplacian, 225
degenerate, see non-degenerate
Desargues’ theorem, 22
detached coefficients, 13
determinant

alternative notation, 75
as volume, 71
Cayley–Menger, 85
circulant, 117
definition for 3× 3 matrix, 66
definition for n× n matrix, 74
how not to calculate, 76
reasonable way to calculate, 76
Vandermonde, 75

diagonalisation
computation for symmetric matrices, 198
computation in simple cases, 133
necessary and sufficient condition, 303
quadratic form, 405
simultaneous, 321

diagram chasing, 286
difference equations (linear), 138, 314
dilation, i.e. dilatation, 71
direct sum

definition, 291
exterior (i.e. external), 317

distance preserving linear maps
are the orthogonal maps, 167
as products of reflections, 176

distance preserving maps in R
2 and R3, 185

div, divergence, 225
dot product, i.e. inner product, 27
dual

basis, 276
code, 337
crystallographic, 231
map, 272
space, 269

dyad, 215

εijk , Levi-Civita symbol, 66
E(U ), space of endomorphisms, 266
eigenspace, 303
eigenvalue

and determinants, 122
definition, 122

multiplicity, 312
without determinants, 319

eigenvector, definition, 122
Einstein, obiter dicta, 42, 67, 247
elephant, fitting with four parameters, 178
endomorphism, 266
equation

of a line, 20
of a plane, 34
of a sphere, 36

equivalence relations
as unifying theme, 261
discussion, 156

Euclidean norm, i.e. Euclidean distance, 27
Euler, isometries via reflections, 174
examiner’s art, example of, 157
exterior (i.e. external) direct sum, 317

F, either R or C, 88
factorisation

LU lower and upper triangular, 142
QR orthogonal and upper triangular, 177
Cholesky, 417
into unitary and positive definite, 391

fashion note, 194
Fermat’s little theorem, 155
field

algebraically closed, 332
definition, 330
finite, structure of, 333

Frenet–Serret formulae, 230
functional, 269

Gauss–Jacobi method, 375
Gauss–Siedel method, 375
Gaussian

elimination, 6–9
quadrature, 347

general tensors, 244–246
generic, 38
GL(U ), the general linear group, 94
grad, gradient, 225
Gram–Schmidt orthogonalisation, 161
groups

Lorentz, 184
matrix, 94
orthogonal, 167
permutation, 72
special orthogonal, 168
special unitary, 206
unitary, 206

Hadamard
inequality, 187
matrix, 188
matrix code, 342

Hamilton, flash of inspiration, 254
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Hamming
code, 335–337
code, general, 339
motivation, 335

handedness, 242
Hermitian (i.e. self-adjoint) map

definition, 206
diagonalisation via geometry, 206
diagonalisation via triangularisation, 383

Hill cipher, 341
Householder transformation, 181

image space of a linear map, 103, 263
index, purpose of, xi
inequality

Bessel, 351
Cauchy–Schwarz, 29
Hadamard, 187
triangle, 27

inertia tensor, 240
injective function, i.e. injection, 59
inner product

abstract, complex, 359
abstract, real, 344
complex, 203
concrete, 27

invariant subspace for a linear
map, 285

inversion, 36
isometries in R

2 and R
3, 185

isomorphism of a vector space, 93
isotropic Cartesian tensors, 233
iteration

and eigenvalues, 136–141
and spectral radius, 380
Gauss–Jacobi, 375
Gauss–Siedel, 375

Jordan blocks, 311
Jordan normal form

finding in examination, 316
finding in real life, 315
geometric version, 308
statement, 310

kernel, i.e. null-space, 103, 263
Kronecker delta

as tensor, 215
definition, 46

LU factorisation, 142
L(U,V ), linear maps from U to

V , 92
Laplacian, 225
least squares, 178, 428
Legendre polynomials, 346
Let there be light, 247

Levi-Civita
and spaghetti, 67
identity, 221
symbol, 66

linear
codes, 337
difference equations, 138, 314
functionals, 269
independence, 95
map, definition, 91
map, particular types, see matrix
operator, i.e. map, 92
simultaneous differential equations, 130,

313–314
simultaneous equations, 8

Lorentz
force, 247
groups, 184
transformation, 146

magic
squares, 111, 116, 125
word, 251

matrix
adjugate, 79
antisymmetric, 81, 210
augmented, 107
circulant, 154
conjugate, i.e. similar, 120
covariance, 193
diagonal, 52
elementary, 51
for bilinear form, 400
for quadratic form, 403
Hadamard, 188, 342
Hermitian, i.e. self-adjoint, 206
Hessian, 193
inverse, hand calculation, 54
invertible, 50
multiplication, 44
nilpotent, 154
non-singular, i.e. invertible, 50
normal, 384
orthogonal, 167
permutation, 51
rotation in R

2, 169
rotation in R

3, 173
self-adjoint, i.e. Hermitian, 206
shear, 51
similar, 120
skew-Hermitian, 208
skew-symmetric, 183
sparse, 375
square roots, 390–391
symmetric, 192
thin right triangular, 180
triangular, 76
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Maxwell explains
relativity, 212
why we use tensors, 214
why we use vectors, v

Maxwell’s equations, 243
minimal polynomial

and diagonalisability, 303
existence and uniqueness, 301

momentum, 238
Monge point, 39
monic polynomial, 301
multiplicity, algebraic and geometric, 312
multivariate normal distributions, 406, 428

natural isomorphism, 277
Newton, on the laws of nature, 212
nilpotent linear map, 307
non-degenerate

bilinear form, 401
general meaning, 38

non-singular, i.e. invertible, 50
norm

Euclidean, 27
from inner product, 345
operator, 370

normal map
definition, 384
diagonalisation via geometry, 385
diagonalisation via Hermitian, 390
diagonalisation via triangularisation, 384

null-space, i.e. kernel, 103, 263
nullity, 104

olives, advice on stuffing, 380
operator norm, 370
operator, i.e. linear map, 92
order of a Cartesian tensor, 216
O(Rn), orthogonal group, 167
orthogonal

complement, 362
group, 167
projection, 363
vectors, 31

orthonormal
basis, 161
set, 160

over-relaxation, 397

paper tigers, 272
parallel axis theorem, 241
parallelogram law, 32, 389, 402
particular solution, i.e. member of image

space, 18
permanent of a square matrix, 80
permutation, 409
perpendicular, i.e. orthogonal, 31
pivoting, 12

polarisation identity
complex case, 205
real case, 166

polynomials
Hermite, 365
Legendre, 345–350, 364
Tchebychev, 364

Pons Asinorum, 272
positive definite quadratic form, 414
principal axes, 236
projection

general, 295
orthogonal, 363

pseudo-tensor (usage deprecated), 244

QR factorisation
into orthogonal and upper triangular, 180
via Gram–Schmidt, 180
via Householder transformation, 181

quadratic form
and symmetric bilinear form, 402
congruent, i.e. equivalent, 404
definition, 402
diagonalisation, 405
equivalent, 404
positive definite, 414
rank and signature, 411

quaternions, 253–255
quotient rule for tensors, 218

radius of curvature, 230
rank

column, 107
i.e. order of a Cartesian tensor, 216
of linear map, 104
of matrix, 107, 109
of quadratic form, 411
row, 109

rank-nullity theorem, 104
reflection, 174
Riesz representation theorem, 354
right-hand rule, 244
rotation

in R
2, 169

in R
3, 173

Routh’s rule, 434
row rank equals column rank, 109,

282

Sn, permutation group, 72
scalar product, 27
scalar triple product, 223
Schur complement, 416
secret

code, 341
sharing, 112

separated by dual, 270
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Shamir and secret sharing, 112
signature

of permutation, 72
of quadratic form, 411

similar matrices, 120
simultaneous

linear differential equations, 130, 313–314
linear equations, 8
triangularisation, 328

simultaneous diagonalisation
for general linear maps, 321
for Hermitian linear maps, 390

singular, see non-singular
span E, 103
spanning set, 95
SO(Rn), special orthogonal group, 168
SU (Cn), special unitary group, 206
spectral radius, 380
spectral theorem in finite dimensions, 386
spherical trigonometry, cure for melancholy, 229
square roots linear maps, 390–391
standard basis

a chimera, 103
for R

n, 118
Steiner’s porism, 40
Strassen–Winograd multiplication, 57
subspace

abstract, 89
complementary, 293
complementary orthogonal, 362
concrete, 17
spanned by set, 103

suffix notation, 42
summation convention, 42
surjective function, i.e. surjection, 59
Sylvester’s determinant identity, 148
Sylvester’s law of inertia

statement and proof, 409
via homotopy, 435

symmetric
bilinear form, 401
linear map, 192

Tao, 28, 308
tensor, see under Cartesian or general
theorem, not a monument but a signpost, 333

three term recurrence relation, 350
trace, 123, 151
transpose of matrix, 70
transposition (type of element of Sn), 81
triangle inequality, 27
triangular matrix, 76
triangularisation

for complex inner product spaces, 376
over C, 298
simultaneous, 328

triple product, 223
Turing and LU factorisation, 143

U ′, dual of U , 269
unit vector, 33
U (Cn), unitary group, 206
unitary map and matrix, 206

Vandermonde determinant, 75
vector

abstract, 88
arithmetic, 16
cyclic, 321
geometric or position, 25
physical, 212

vector product, 221
vector space

anti-isomorphism, 362
automorphism, 266
axioms for, 88
endomorphism, 266
finite dimensional, 100
infinite dimensional, 100
isomorphism, 93
isomorphism theorem, 264

wedge (i.e. vector) product, 221
Weierstrass and simultaneous diagonalisation,

419
wolf, goat and cabbage, 141

xylophones, 4

yaks, 4

Zp is a field, 156
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