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In general the position as regards all such new calculi is this. — That one cannot accomplish by them
anything that could not be accomplished without them. However, the advantage is, that, provided that
such a calculus corresponds to the inmost nature of frequent needs, anyone who masters it thoroughly
is able — without the unconscious inspiration which no one can command — to solve the associated
problems, even to solve them mechanically in complicated cases in which, without such aid, even
genius becomes powerless. . . . Such conceptions unite, as it were, into an organic whole, countless
problems which otherwise would remain isolated and require for their separate solution more or less
of inventive genius.

(Gauss Werke, Bd. 8, p. 298 (quoted by Moritz [24]))

For many purposes of physical reasoning, as distinguished from calculation, it is desirable to
avoid explicitly introducing ... Cartesian coordinates, and to fix the mind at once on a point of
space instead of its three coordinates, and on the magnitude and direction of a force instead of its
three components. ... I am convinced that the introduction of the idea [of vectors] will be of great
use to us in the study of all parts of our subject, and especially in electrodynamics where we have to
deal with a number of physical quantities, the relations of which to each other can be expressed much
more simply by [vectorial equations rather] than by the ordinary equations.

(Maxwell A Treatise on Electricity and Magnetism [21])

We [Halmos and Kaplansky] share a love of linear algebra. ... And we share a philosophy about
linear algebra: we think basis-free, we write basis-free, but when the chips are down we close the
office door and compute with matrices like fury.

(Kaplansky in Paul Halmos: Celebrating Fifty Years of Mathematics [17])

Marco Polo describes a bridge, stone by stone.

‘But which is the stone that supports the bridge?’ Kublai Khan asks.

“The bridge is not supported by one stone or another,” Marco answers, ‘but by the line of the arch
that they form.’

Kublai Khan remains silent, reflecting. Then he adds: “Why do you speak to me of the stones? It
is only the arch that matters to me.’

Polo answers: ‘Without stones there is no arch.’

(Calvino Invisible Cities (translated by William Weaver) [8])
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Introduction

There exist several fine books on vectors which achieve concision by only looking at vectors
from a single point of view, be it that of algebra, analysis, physics or numerical analysis
(see, for example, [18], [19], [23] and [28]). This book is written in the belief that it is
helpful for the future mathematician to see all these points of view. It is based on those
parts of the first and second year Cambridge courses which deal with vectors (omitting the
material on multidimensional calculus and analysis) and contains roughly 60 to 70 hours
of lectured material.

The first part of the book contains first year material and the second part contains second
year material. Thus concepts reappear in increasingly sophisticated forms. In the first part
of the book, the inner product starts as a tool in two and three dimensional geometry and is
then extended to R” and later to C". In the second part, it reappears as an object satisfying
certain axioms. I expect my readers to read, or skip, rapidly through familiar material, only
settling down to work when they reach new results. The index is provided mainly to help
such readers who come upon an unfamiliar term which has been discussed earlier. Where
the index gives a page number in a different font (like 389, rather than 389) this refers to
an exercise. Sometimes I discuss the relation between the subject of the book and topics
from other parts of mathematics. If the reader has not met the topic (morphisms, normal
distributions, partial derivatives or whatever), she should simply ignore the discussion.

Random browsers are informed that, in statements involving I, they may take F = R
or F = C, that z* is the complex conjugate of z and that ‘self-adjoint’ and ‘Hermitian’ are
synonyms. If T : A — B is a function we sometimes write 7' (a) and sometimes Ta.

There are two sorts of exercises. The first form part of the text and provide the reader
with an opportunity to think about what has just been done. There are sketch solutions to
most of these on my home page www.dpmms.cam.ac.uk/~twk/.

These exercises are intended to be straightforward. If the reader does not wish to attack
them, she should simply read through them. If she does attack them, she should remember
to state reasons for her answers, whether she is asked to or not. Some of the results are
used later, but no harm should come to any reader who simply accepts my word that they
are true.

The second type of exercise occurs at the end of each chapter. Some provide extra
background, but most are intended to strengthen the reader’s ability to use the results of the

Xi
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preceding chapter. If the reader finds all these exercises easy or all of them impossible, she is
reading the wrong book. If the reader studies the entire book, there are many more exercises
than she needs. If she only studies an individual chapter, she should find sufficiently many
to test and reinforce her understanding.

My thanks go to several student readers and two anonymous referees for removing errors
and improving the clarity of my exposition. It has been a pleasure to work with Cambridge
University Press.

I dedicate this book to the Faculty Board of Mathematics of the University of Cambridge.
My reasons for doing this follow in increasing order of importance.

(1) No one else is likely to dedicate a book to it.

(2) No other body could produce Minute 39 (a) of its meeting of 18th February 2010 in
which it is laid down that a basis is not an ordered set but an indexed set.

(3) This book is based on syllabuses approved by the Faculty Board and takes many of its
exercises from Cambridge exams.

(4) I need to thank the Faculty Board and everyone else concerned for nearly 50 years
spent as student and teacher under its benign rule. Long may it flourish.
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Familiar vector spaces
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Gaussian elimination

1.1 Two hundred years of algebra

In this section we recapitulate two hundred or so years of mathematical thought.
Let us start with a familiar type of brain teaser.

Example 1.1.1 Sally and Martin go to The Olde Tea Shoppe. Sally buys three cream buns
and two bottles of pop for thirteen shillings, whilst Martin buys two cream buns and four
bottles of pop for fourteen shillings. How much does a cream bun cost and how much does
a bottle of pop cost?

Solution. If Sally had bought six cream buns and four bottles of pop, then she would have
bought twice as much and it would have cost her twenty six shillings. Similarly, if Martin
had bought six cream buns and twelve bottles of pop, then he would have bought three
times as much and it would have cost him forty two shillings. In this new situation, Sally
and Martin would have bought the same number of cream buns, but Martin would have
bought eight more bottles of pop than Sally. Since Martin would have paid sixteen shillings
more, it follows that eight bottles of pop cost sixteen shillings and one bottle costs two
shillings.

In our original problem, Sally bought three cream buns and two bottles of pop, which,
we now know, must have cost her four shillings, for thirteen shillings. Thus her three cream
buns cost nine shillings and each cream bun cost three shillings. U

As the reader well knows, the reasoning may be shortened by writing x for the cost
of one bun and y for the cost of one bottle of pop. The information given may then be
summarised in two equations

3x+2y=13
2x +4y = 14.

In the solution just given, we multiplied the first equation by 2 and the second by 3 to obtain

6x +4y =26
6x + 12y = 42.
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Subtracting the first equation from the second yields
8y =16,

so y = 2 and substitution in either of the original equations gives x = 3.
We can shorten the working still further. Starting, as before, with

3x+2y=13
2x +4y = 14,

we retain the first equation and replace the second equation by the result of subtracting 2/3
times the first equation from the second to obtain

3x4+2y=13
8 16
37773

The second equation yields y = 2 and substitution in the first equation gives x = 3.
It is clear that we can now solve any number of problems involving Sally and Martin
buying sheep and goats or yaks and xylophones. The general problem involves solving

ax+by =«
cx +dy = B.

Provided that a # 0, we retain the first equation and replace the second equation by the
result of subtracting c/a times the first equation from the second to obtain

Provided that d — (cb)/a # 0, we can compute y from the second equation and obtain x
by substituting the known value of y in the first equation.
If d — (¢b)/a = 0, then our equations become

ax +by =«
ca
0=8——.
a

There are two possibilities. Either 8 — (ca)/a # 0, our second equation is inconsistent and
the initial problem is insoluble, or 8 — (ca)/a = 0, in which case the second equation says
that 0 = 0, and all we know is that

ax +by =«

so, whatever value of y we choose, setting x = (« — by)/a will give us a possible solution.
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There is a second way of looking at this case. If d — (cb)/a = 0, then our original
equations were

ax +by =«
cb
ex + =y =B,
a
that is to say
ax+by =«

clax + by) = aB

s0, unless ca = af, our equations are inconsistent and, if ca = af, the second equation
gives no information which is not already in the first.

So far, we have not dealt with the case a = 0. If b # 0, we can interchange the roles
of x and y. If ¢ # 0, we can interchange the roles of the two equations. If d # 0, we can
interchange the roles of x and y and the roles of the two equations. Thus we only have a
problem if a = b = ¢ = d = 0 and our equations take the simple form

0=«

0=g.
These equations are inconsistent unless « = 8 = 0. If « = § = 0, the equations impose no
constraints on x and y which can take any value we want.

Now suppose that Sally, Betty and Martin buy cream buns, sausage rolls and bottles of
pop. Our new problem requires us to find x, y and z when

ax +by+cz=«
dxt+ey+ fz=§
gx+hy+kz=y.

It is clear that we are rapidly running out of alphabet. A little thought suggests that it may
be better to try and find x1, x», x3 when

ap Xy + apxy +apsxs =y
ar1X1 + anxs + axpx; =y
as X1 + asxpxy + azxz = ys.

Provided that a;; # 0, we can subtract ay; /a;; times the first equation from the second
and az;/a;; times the first equation from the third to obtain

ap Xy +apx; +apxs =y
byxy + by3xz = 22

b3xy + b3zxsz = z3,
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where
azap ajldaz —azia
by =axy — =
a ai
and, similarly,
ajpdazs —az a3 ajjaszy —asiag apjasz — aspa)3
b23 -, b32 = and b33 =
ap ap ap
whilst
apyz —azi i aplys —dasiyi
Zp=————""— and zz=————"—".
a a

If we can solve the smaller system of equations
byxy +byxs =25
b3xy + byzxs = z3,

then, knowing x, and x3, we can use the equation

_ Y1 T aipXp — 43X

ar

X1

to find x;. In effect, we have reduced the problem of solving ‘3 linear equations in 3
unknowns’ to the problem of solving ‘2 linear equations in 2 unknowns’. Since we know
how to solve the smaller problem, we know how to solve the larger.

Exercise 1.1.2 Use the method just suggested to solve the system

x+y+z=1
X+2y+3z=2
x+4y+9z=6.

So far, we have assumed that a;; # 0. A little thought shows that, if a;; # 0 for some
1 <i, j < 3, thenall we need to do is reorder our equations so that the ith equation becomes
the first equation and reorder our variables so that x; becomes our first variable. We can
then reduce the problem to one involving fewer variables as before.

If it is not true that a;; # 0 for some 1 < i, j < 3, then it must be true that a;; = 0 for
all 1 < i, j <3 and our equations take the peculiar form

0=
:y2
O=y3.

These equations are inconsistent unless y; = y, = y3 = 0. If y; = y, = y3 = 0, the equa-
tions impose no constraints on xi, x, and x3 which can take any value we want.
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We can now write down the general problem when n people choose from a menu with
n items. Our problem is to find xy, x», ..., x, when

apxy+apxy+ -+ apxy, = Yy1

X1+ apnxs + -+ aypXy = Y2

Ay X1 + ApaX2 + -+ -+ QX = Yn-

We can condense our notation further by using the summation sign and writing our system
of equations as

Za,»jx_,« =Yi [1 <i=<n] *
j=1

We say that we have ‘n linear equations in » unknowns’ and talk about the ‘n x n problem’.

Using the insight obtained by reducing the 3 x 3 problem to the 2 x 2 case, we see at
once how to reduce the n x n problem to the (n — 1) x (n — 1) problem. (We suppose that
n>2)

Step 1. If a;; = O for all i and j, then our equations have the form
0=y [1<i<n].

Our equations are inconsistentunless yy =y, =... =y, =0.Ify,=»=...=y, =0,
the equations impose no constraints on x, X, . . ., X, which can take any value we want.
Step 2. If the condition of Step 1 does not hold, we can arrange, by reordering the equations
and the unknowns, if necessary, that a;; # 0. We now subtract a;;/a;; times the first
equation from the ith equation [2 < i < n] to obtain

n
E bijxj =z [2<i=<n] *k
j=2
where
apnaij — a;1dyj anyi —apiyi
b,‘j = _— 7J and = ——————————".
apn ag

Step 3. If the new set of equations % % has no solution, then our old set % has no solution.
If our new set of equations Y has a solution x; = x; for 2 < i < n, then our old set %
has the solution

n
1 ’
X1 = — y1-§ ajx;
ar T
j=2

X = x| [2<i<n]
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Note that this means that if %y has exactly one solution, then v has exactly one
solution, and if Y has infinitely many solutions, then % has infinitely many solutions.
We have already remarked that if y % has no solutions, then % has no solutions.

Once we have reduced the problem of solving our n x n system to that of solving an
(n — 1) x (n — 1) system, we can repeat the process and reduce the problem of solving the
new (n — 1) x (n — 1) system to that of solving an (n — 2) x (n — 2) system and so on.
After n — 1 steps we will be faced with the problem of solving a 1 x 1 system, that is to
say, solving a system of the form

ax = b.

If a # 0, then this equation has exactly one solution. If ¢ = 0 and b # 0, the equation has
no solution. If a = 0 and b = 0, every value of x is a solution and we have infinitely many
solutions.

Putting the observations of the two previous paragraphs together, we get the following
theorem.

Theorem 1.1.3 The system of simultaneous linear equations

has 0, 1 or infinitely many solutions.

We shall see several different proofs of this result (for example, Theorem 1.4.5), but the
proof given here, although long, is instructive.

1.2 Computational matters

The method just described for solving ‘simultaneous linear equations’ is called Gaussian
elimination. Those who rate mathematical ideas by difficulty may find the attribution
unworthy, but those who rate mathematical ideas by utility are happy to honour Gauss in
this way.

In the previous section we showed how to solve n x n systems of equations, but it is
clear that the same idea can be used to solve systems of m equations in 7 unknowns.

Exercise 1.2.1 If m,n > 2, show how to reduce the problem of solving the system of
equations

Yayxj=y  [1<i<m] *
to the problem of solving a system of equations

Yobyxj=zu  [2<i=<m] **
j=2
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Exercise 1.2.2 By using the ideas of Exercise 1.2.1, show that, if m,n > 2 and we are
given a system of equations

Dajxi=y  [1<i<m] *
j=1

then at least one of the following must be true.
(i) % has no solution.
(ii) % has infinitely many solutions.
(iii) There exists a system of equations

Dobyxj=z  [2<i<m **
j=2

with the property that if %% has exactly one solution, then % has exactly one solution, if
Yk has infinitely many solutions, then Y has infinitely many solutions, and if %% has
no solutions, then % has no solutions.

If we repeat Exercise 1.2.1 several times, one of two things will eventually occur. If
n > m, we will arrive at a system of n — m + 1 equations in one unknown. If m > n, we
will arrive at 1 equation in m — n + 1 unknowns.

Exercise 1.2.3 (i) If r > 1, show that the system of equations
aix =y; [1=<i=<r]

has exactly one solution, has no solution or has an infinity of solutions. Explain when each
case arises.
(i) If s = 2, show that the equation

K
E ajxj =b
j=1

has no solution or has an infinity of solutions. Explain when each case arises.

Combining the results of Exercises 1.2.2 and 1.2.3, we obtain the following extension
of Theorem 1.1.3

Theorem 1.2.4 The system of equations
n
Zaijxj:yi [1<i=<m]
j=1

has 0, 1 or infinitely many solutions. If m > n, then the system cannot have a unique
solution (and so will have 0 or infinitely many solutions).



10 Gaussian elimination

Exercise 1.2.5 Consider the system of equations

x+y=2
ax +by =4
cx +dy =8.

(i) Write down non-zero values of a, b, ¢ and d such that the system has no solution.

(i) Write down non-zero values of a, b, ¢ and d such that the system has exactly one
solution.

(iii) Write down non-zero values of a, b, ¢ and d such that the system has infinitely many
solutions.

Give reasons in each case.

Exercise 1.2.6 Consider the system of equations

x+y+z=2
x+y+az=4.

For which values of a does the system have no solutions? For which values of a does the
system have infinitely many solutions? Give reasons.

How long does it take for a properly programmed computer to solve a system of n linear
equations in n unknowns by Gaussian elimination? The exact time depends on the details
of the program and the structure of the machine. However, we can get get a pretty good idea
of the answer by counting up the number of elementary operations (that is to say, additions,
subtractions, multiplications and divisions) involved.

When we reduce the n x n case to the (n — 1) x (n — 1) case, we subtract a multiple
of the first row from the jth row and this requires roughly 2n operations. Since we do
this for j =2, 3,...,n — 1 we need roughly (n — 1) x (2n) ~ 2n? operations. Similarly,
reducing the (n — 1) x (n — 1) case to the (n — 2) x (n — 2) case requires about 2(n — 1)2
operations and so on. Thus the reduction from the n x n case to the 1 x 1 case requires
about

2(n* +(m— 17+ +27)
operations.
Exercise 1.2.7 (i) Show that there exist A and B with A > B > 0 such that
An® > Zrz > Bn’.
r=1

(it) (Not necessary for our argument.) By comparing y__, r? and fln+1 x%dx, or other-
wise, show that

n

Zz n’
r %?

r=1
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Thus the number of operations required to reduce the n x n case to the 1 x 1 case
increases like some multiple of 7°. Once we have reduced our system to the 1 x 1 case, the
number of operations required to work backwards and solve the complete system is less
than some multiple of 7.

Exercise 1.2.8 Give a rough estimate of the number of operations required to solve the
triangular system of equations

Y bpx, =z [l=<r=<nl
j=r

[The roughness of the estimates is left to the taste of the reader.]

Thus the total number of operations required to solve our initial system by Gaussian
elimination increases like some multiple of n?.

The reader may have learnt another method of solving simultaneous equations using
determinants called Cramer’s rule. If not, she should omit the next two paragraph and wait
for our discussion in Section 4.5. Cramer’s rule requires us to evaluate an n x n determinant
(as well as lots of other determinants). If we evaluate this determinant by the ‘top row
rule’, we need to evaluate n minors, that is to say, determinants of size (n — 1) x (n — 1).
Each of these new determinants requires the evaluation of n — 1 determinants of size
(n —2) x (n — 2), and so on. We will need roughly

Anx(n—1)xm—-2)x---x1=An!

operations where A > 1. Since n! increases much faster than n*, Cramer’s rule is obviously
unsatisfactory for large n.

The fact that Cramer’s rule is unsatisfactory for large n does not, of course, mean that
it is unsatisfactory for small n. If we have to do hand calculations when n =2 or n = 3,
then Cramer’s rule is no harder than Gaussian elimination. However, I strongly advise the
reader to use Gaussian elimination in these cases as well, in order to acquire insight into
what is actually going on.

Exercise 1.2.9 (For devotees of Cramer’s rule only.) Write down a system of 4 linear
equations in 4 unknowns and solve it (a) using Cramer’s rule and (b) using Gaussian
elimination.

I hope never to have to solve a system of 10 linear equations in 10 unknowns, but I think
that I could solve such a system within a reasonable time using Gaussian elimination and
a basic hand calculator.

Exercise 1.2.10 What sort of time do I appear to consider reasonable?
It is clear that even a desktop computer can be programmed to find the solution of

200 linear equations in 200 unknowns by Gaussian elimination in a very short time.'

! The author can remember when problems of this size were on the boundary of the possible for the biggest computers of the
epoch. The storing and retrieval of the 200 x 200 = 40 000 coefficients represented a major problem.
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However, since the number of operations required increases with the cube of the number
of unknowns, if we multiply the number of unknowns by 10, the time taken increases by
a factor of 1000. Very large problems require new ideas which take advantage of special
features of the particular system to be solved. We discuss such a new idea in the second
half of Section 15.1.

When we introduced Gaussian elimination, we needed to consider the possibility that
aj; = 0, since we cannot divide by zero. In numerical work it is unwise to divide by
numbers close to zero since, if @ is small and b is only known approximately, dividing b
by a multiplies the error in the approximation by a large number. For this reason, instead
of simply rearranging so that a;; # 0 we might rearrange so that |a;| > |a;;| for all i
and j. (This is called ‘pivoting’ or ‘full pivoting’. Reordering rows so that the largest
element in a particular column occurs first is called ‘row pivoting’, and ‘column pivoting’
is defined similarly. Full pivoting requires substantially more work than row pivoting, and
row pivoting is usually sufficient in practice.)

1.3 Detached coefficients

If we think about how a computer handles the solution of a system of equations
3
Yajxi=y  [1<i<3],
j=1

we see that it essentially manipulates an array

apin  aiz ai| )i
(Aly)=|aa axn axs|»
asy a4z asz| y3

Let us imitate our computer and solve
x+2y+z=1
2x4+2y+3z=6
3x—2y+2z=9

by manipulating the array

12 1)1
2 2 3|6
3 =2 2|9

Subtracting 2 times the first row from the second row and 3 times the first row from the
third, we get

1 2 1|1
0 -2 114
0 -8 -—-1/6
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We now look at the new array and subtract 4 times the second row from the third to get

1 2 1 1
0o -2 1| 4
0 0 =5 -10

corresponding to the system of equations

x+2y+z=1
—2y+z=4
—5z = —10.
We can now read off the solution
—10
= — = 2
‘TS

1
=—@d-1x2)=-1
y _2( x 2)
x=1-2x(-1)—-1x2=1.

The idea of doing the calculations using the coefficients alone goes by the rather pompous
title of ‘the method of detached coefficients’.
We call an m x n (that is to say, m rows and n columns) array

ap an Aln
azy a o
A=
am1 am2 e Amn
<j<n

an m x n matrix and write A = (¢; j)} Zi=m Orjust A = (a;;). We can rephrase the work we
have done so far as follows.

Theorem 1.3.1 Suppose that A is an m x n matrix. By interchanging columns, interchang-
ing rows and subtracting multiples of one row from another, we can reduce A to anm X n
matrix B = (b;j) where bj; =0 for1 < j <i — 1.

As the reader is probably well aware, we can do better.
Theorem 1.3.2 Suppose that A is an m x n matrix and p = min{n, m}. By interchanging
columns, interchanging rows and subtracting multiples of one row from another, we can

reduce A to an m x n matrix B = (b;;) such that b;; = 0 wheneveri # jand1 <i,j <r
and whenever r + 1 < i (for some r with0 <r < p).

In the unlikely event that the reader requires a proof, she should observe that Theo-
rem 1.3.2 follows by repeated application of the following lemma.

Lemma 1.3.3 Suppose that A is an m X n matrix, p = min{n, m} and 1 < q < p. Sup-
pose further that a;; = 0 whenever i # j and 1 <1i, j < q — 1 and whenever q < i and



14 Gaussian elimination

J < q — 1. By interchanging columns, interchanging rows and subtracting multiples of one
row from another, we can reduce A to an m x n matrix B = (b;;) where b;; = 0 whenever
i#jandl <i, j < q and wheneverq +1 <iand j <gq.

Proof If a;; = 0 whenever ¢ + 1 < i, then just take A = B. Otherwise, by interchanging
columns (taking care only to move kth columns with g < k) and interchanging rows (taking
care only to move kthrows withg < k), we may suppose thata,, # 0. Now subtracta;,/a,q
times the gth row from the ith row for each g < i. [l

Theorem 1.3.2 has an obvious twin.

Theorem 1.3.4 Suppose that A is an m x n matrix and p = min{n, m}. By interchanging
rows, interchanging columns and subtracting multiples of one column from another, we can
reduce A to an m x n matrix B = (b;;) where bjj = 0 whenever i # j and 1 <i,j <r
and whenever r + 1 < j (for some r with0 <r < p).

Exercise 1.3.5 Illustrate Theorem 1.3.2 and Theorem 1.3.4 by carrying out appropriate

operations on
1 -1 3
2 5 2)°

Combining the twin theorems, we obtain the following result. (Note that, if a > b, there
are no ¢ witha <c¢ <b.)

Theorem 1.3.6 Suppose that A is an m x n matrix and p = min{n, m}. There exists
an r with 0 <r < p with the following property. By interchanging rows, interchanging
columns, subtracting multiples of one row from another and subtracting multiples of one
column from another, we can reduce A to an m x n matrix B = (b;;) with b;; = 0 unless
i=jandl <i <r.

We can obtain several simple variations.

Theorem 1.3.7 Suppose that A is an m x n matrix and p = min{n, m}. Then there exists
anr with 0 < r < p with the following property. By interchanging columns, interchanging
rows and subtracting multiples of one row from another, and multiplying rows by non-zero
numbers, we can reduce A to an m x n matrix B = (b;;) with b;; =1 for 1 <i <r and
bij = 0 wheneveri # jand 1 <i, j <r and wheneverr +1 < i.

Theorem 1.3.8 Suppose that A is an m x n matrix and p = min{n, m}. There exists an r
with0 < r < p with the following property. By interchanging rows, interchanging columns,
subtracting multiples of one row from another and subtracting multiples of one column from
another and multiplying rows by a non-zero number, we can reduce A to an m X n matrix
B = (b;j) such that there exists an r with 0 < r < p such that b;; =1if 1 <i <r and
bi; = 0 otherwise.
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Exercise 1.3.9 (i) lllustrate Theorem 1.3.8 by carrying out appropriate operations on

1 -1 3
2 5 2
4 3 8

(i) Hllustrate Theorem 1.3.8 by carrying out appropriate operations on

2 4 5
3 2 1
4 1 3

By carrying out the same operations, solve the system of equations
2x+4y+5z=-3
3x+2y+z=2
4x+y+3z=1.

[If you are confused by the statement or proofs of the various results in this section, concrete
examples along the lines of this exercise are likely to be more helpful than worrying about
the general case.)

Exercise 1.3.10 We use the notation of Theorem 1.3.8. Let m = 3, n = 4. Find, with
reasons, 3 X 4 matrices A, all of whose entries are non-zero, for which r = 3, for which
r = 2 and for which r = 1. Is it possible to find a 3 x 4 matrix A, all of whose entries are
non-zero, for which r = 0? Give reasons.

1.4 Another fifty years

In the previous section, we treated the matrix A as a passive actor. In this section, we give
it an active role by declaring that the m x n matrix A acts on the n x 1 matrix (or column
vector) X to produce the m x 1 matrix (or column vector) y. We write

Ax =Yy

with
n
Za,»jszy,- forl <i <m.
j=1

In other words,

ap app v Aain 1
X1
as) a Aop 2
X2 .
Xn

am1 am? e Amn Ym
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We write R” for the space of column vectors

X1
X2

Xn

with n entries. Since column vectors take up a lot of space, we often adopt one of the two
notations

T
X=(x1 X2 ... Xp)
orx = (x1, x2, . .., x,)' . We also write ;X = x;. It seems reasonable to call x an arithmetic
vector.

As the reader probably knows, we can add vectors and multiply them by real numbers
(scalars).

Definition 1.4.1 Ifx,y € R" and ) € R, we write X +y = z and AX = W where
Zi =Xi +yi, Wi =Ax;.

We write 0 = (0,0,...,0)7, -x = (=Dxandx —y = x + (-y).
The next lemma shows the kind of arithmetic we can do with vectors.

Lemma 1.4.2 Suppose thatX,y,z € R" and A, i € R. Then the following relations hold.
OEx+y)+z=x+(y+12).
@ x+y=y-+x
@iHx+0=x
() M(x +y) = Ax 4 Ay.
W) A+ wx = Ax 4+ ux
VD) Au)x = A(ux).
i) Ix =x,0x = 0.

i) x —x = 0.

Proof This is an exercise in proving the obvious. For example, to prove (iv), we observe
that (if we take 7; as above)

7 (Mx+y) = Ami(x+y) (by definition)
= A(x; + yi) (by definition)
= Ax; + Ay (by properties of the reals)
= 7;(AX) + m; (1Y) (by definition)
=m(AX + Ay) (by definition).
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Exercise 1.4.3 [ think it is useful for a mathematician to be able to prove the obvious. If
you agree with me, choose a few more of the statements in Lemma 1.4.2 and prove them. If
you disagree, ignore both this exercise and the proof above.

The next result is easy to prove, but is central to our understanding of matrices.
Theorem 1.4.4 If A isanm X n matrix X,y € R" and A, u € R, then
AAX 4 py) = LAX + nAy.
We say that A acts linearly on R”".

Proof Observe that

n

n n n
Z aij(Axj + py;) = Z()“aijxj + naijyj) = r Z aijXj + 1 Zaifyf

Jj=1 Jj=1 Jj=1 Jj=1
as required. U

To see why this remark is useful, observe that it gives a simple proof of the first part of
Theorem 1.2.4.

Theorem 1.4.5 The system of equations

has 0, 1 or infinitely many solutions.

Proof We need to show that, if the system of equations has two distinct solutions, then it
has infinitely many solutions.
Suppose that Ay = b and Az = b. Then, since A acts linearly,

ALy + (1 —Mz) = LAy + (1 — M)Az =21b+ (1 — )b =b.
Thus, if y # z, there are infinitely many solutions
X=Ay+{1—-NMNz=z+Ay—12)
to the equation Ax = b. O

With a little extra work, we can gain some insight into the nature of the infinite set of
solutions.

Definition 1.4.6 A non-empty subset of R" is called a subspace of R" if, wheneverx, y € E
and A, n € R, it follows that Ax + py € E.

Theorem 1.4.7 If A is an m x n matrix, then the set E of column vectors x € R" with
AXx = 0 is a subspace of R".
If Ay = b, then Az = b ifand only ifz =y + e for some e € E.
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Proof If X, y € E and XA, p € R, then, by linearity,
AAX 4 pny) = AAX+ Ay =204+ u0=0
so AX + uy € E. The set E is non-empty, since
A0 =0,

so0 e E.
If Ay =bande € E, then

Aly+e)=Ay+Ae=b+0=Dh.
Conversely, if Ay =b and Az=Db, letus writte =y —z. Thenz=y+eandec E
since
Ae=Ay—z)=Ay—Az=b—-b=0
as required. O

We could refer to z as a particular solution of Ax = b and E as the space of comple-

mentary solutions.”

1.5 Further exercises

Exercise 1.5.1 We work in R. Show that the system

ax+by+cz=0
cx+ay+bz=0
bx +cy+az=0

has a unique solution if and only if a + b 4 ¢ # 0 and a, b and c are not all equal.

Exercise 1.5.2 A glass of lemonade, 3 sandwiches and 7 biscuits together cost 14 pence
(this is a Victorian puzzle), a glass of lemonade, 4 sandwiches and 10 biscuits together cost
17 pence. Required, to find the cost (1) of a glass of lemonade, a sandwich and a biscuit
and (2) the cost of 2 glasses of lemonade, 3 sandwiches and 5 biscuits. (Knot 7 from A
Tangled Tale by Lewis Carroll [10].)

Exercise 1.5.3 (i) Find all the solutions of the following system of equations involving real
numbers:

xy==6
yz = 288
zx =3.

2 Later, we shall refer to E as a null-space or kernel.
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(i1) Explain how you would solve (or show that there were no solutions for) the system
of equations

where a, b, ¢, d, u, v € R are fixed with #, v > 0 and x and y are strictly positive real
numbers to be found.

Exercise 1.5.4 (You need to know about modular arithmetic for this question.) Use Gaus-
sian elimination to solve the following system of integer congruences modulo 7:
x+y+z+w=6
x+2y+3z4+4w =6
x+4y+2z4+2w=0
x+y+6z+w=2
Exercise 1.5.5 The set S comprises all the triples (x, y, z) of real numbers which satisfy
the equations
x+y—z=>5
x+ay+z=0>
x+a’y—z="0
Determine for which pairs of values of a and b (if any) the set S (i) is empty, (ii) contains

precisely one element, (iii) is finite but contains more than one element, or (iv) is infinite.

Exercise 1.5.6 We work in R. Use Gaussian elimination to determine the values of a, b, ¢
and d for which the system of equations
x+ay+a’z+atw=0
x+by+b*z+bw=0
x4+cey+ctz+w=0
x+dy+d*z+dw=0

in R has a unique solution in x, y, z and w.
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A little geometry

2.1 Geometric vectors

In the previous chapter we introduced column vectors and showed how they could be used
to study simultaneous linear equations in many unknowns. In this chapter we show how
they can be used to study some aspects of geometry.

There is an initial trivial, but potentially confusing, problem. Different branches of
mathematics develop differently and evolve their own notation. This creates difficulties
when we try to unify them. When studying simultaneous equations it is natural to use
column vectors (so that a vector is an n x 1 matrix), but centuries of tradition, not to
mention ease of printing, mean that in elementary geometry we tend to use row vectors
(so that a vector is a 1 x n matrix). Since one cannot flock by oneself, I advise the reader
to stick to the normal usage in each subject. Where the two usages conflict, I recommend
using column vectors.

Let us start by looking at geometry in the plane. As the reader knows, we can use
a Cartesian coordinate system in which each point of the plane corresponds to a unique
ordered pair (x1, x2) of real numbers. It is natural to consider x = (xy, x3) € R? as a row
vector and use the same kind of definitions of addition and (scalar) multiplication as we
did for column vectors so that

Alxy, x2) + uly1, y2) = (Axy + uy1, Axa + uys).

In school we may be taught that a straight line is the locus of all points in the (x, y)
plane given by

ax+by=c
where a and b are not both zero.
In the next couple of lemmas we shall show that this translates into the vectorial statement

that a straight line joining distinct points u, v € R? is the set

{Au+ {0 —=21v: 1 eR}

20
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Lemma 2.1.1 (i) Ifu, v € R? and u # v, then we can write
ffu+d—-Av:2eR}={v+iw: AR}

for some w # 0.
@) If w # 0, then

(v+aw: AeR} = u+(1—-A)v: AeR}
for some w # v.
Proof (i) Observe that
am+(1—-—Av=v+Ai(u—v)

and setw = (u — V).
(ii) Reversing the argument of (i), we observe that

V+Aw=AW+vVv)4+ (1 =)V
and setu = w4+ v. U
Naturally we think of
{(v+iw : A e R}
as a line through v ‘parallel to the vector w’ and
{Au+ ({1 =2)yv : 1 eR}
as a line through u and v. The next lemma links these ideas with the school definition.
Lemma 2.1.2 Ifv € R? and w # 0, then

{(Vv+aiw : A ER}:{XER2 D WX — WXy = WV — WiV}

={xe€ R? : aix| + axx, = ¢}
where a; = w», a, = —w; and ¢ = wyV; — VLWs.
Proof If x = v + Aw, then
X1 =V +Awy, X2 =1v+ AW,
and
wax; — wixy = wa(vy +Awy) — wi(v2 + Awz) = wrvy — V2w,

To reverse the argument, observe that, since w # 0, at least one of w; and w, must
be non-zero. Without loss of generality, suppose that w; # 0. Then, if wyx; — wix, =
w,ov; — vrw; and we set A = (x; — v1)/w;, we obtain

v + Awp = X
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and
WiV + Xjwy — VW
vy +Awy =
wi
w1V + (Wav1 — WiV + WiX2) — Wavy
w1
w1X2
= = _x2
wq
SOX =V -+ Aw. O

Exercise 2.1.3 Ifa, b, ¢ € R and a and b are not both zero, find distinct vectors u and v
such that

{(x,y) : ax + by =c}
represents the line through u and v.

The following very simple exercise will be used later. The reader is free to check that
she can prove the obvious or merely check that she understands why the results are true.

Exercise 2.1.4 (i) If w # 0, then either
(v+aw: LeRIN{V+uw: peR} =0
or
(v+aw : LeR} =V +uw : ucR}.
(i) If u # W, v #£ V' and there exist non-zero T, o € R such that
ta—u)=0(v-Y),

then either the lines joining u to W and v to V' fail to meet or they are identical.
(i) If u, W', w’ e R? satisfy an equation

pu+ M/U/ + M//u// -0

with all the real numbers , u', w" non-zero and p + ' + 1’ =0, then u, W’ and u” all
lie on the same straight line.

We use vectors to prove a famous theorem of Desargues. The result will not be used
elsewhere, but is introduced to show the reader that vector methods can be used to prove
interesting theorems.

Example 2.1.5 [Desargues’ theorem] Consider two triangles ABC and A’B'C’ with
distinct vertices such that lines AA', BB' and CC’ all intersect a some point V. If the lines
AB and A’ B’ intersect at exactly one point C”, the lines BC and B'C’ intersect at exactly
one point A" and the lines C A and C A’ intersect at exactly one point B”, then A”, B” and
C” lie on the same line.
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Exercise 2.1.6 Draw an example and check that (to within the accuracy of the drawing)
the conclusion of Desargues’ theorem holds. (You may need a large sheet of paper and
some experiment to obtain a case in which A", B"” and C" all lie within your sheet.)

Exercise 2.1.7 Try and prove the result without using vectors."
We translate Example 2.1.5 into vector notation.

Example 2.1.8 We work in R%. Suppose that a, a', b, V', ¢, ¢ are distinct. Suppose further
that v lies on the line through a and @', on the line through b and b’ and on the line through
candc.

If exactly one point 2" lies on the line through b and ¢ and on the line through b’ and ¢
and similar conditions hold for b" and ¢, then a”, b" and ¢ lie on the same line.

We now prove the result.
Proof By hypothesis, we can find «, B, y € R, such that
v=coa+ (1 —a)ad
v=pb+ (- B
v=yc+ (1l —a).
Eliminating v between the first two equations, we get
aa— Bb=—(1—a)a + (1 - pB)b. *
We shall need to exclude the possibility « = 8. To do this, observe that, if « = 8, then
a(@a—b)= (1 —a)a —b).

Sincea £ banda’ # b’,wehave«, 1 — « # 0and (see Exercise 2.1.4 (ii)) the straight lines
joining a and b and a’ and b’ are either identical or do not intersect. Since the hypotheses
of the theorem exclude both possibilities, o # 8.

We know that ¢” is the unique point satisfying

¢ =xa+(1-21b
¢ =XNa+({1-1)b

for some real A, A’, but we still have to find A and A’. By inspection (see Exercise 2.1.9) we
seethat L = /(e — B) and A’ = (1 — «)/(B — «) do the trick and so

(a — B)¢” = aa — Bb.
Applying the same argument to a” and b”, we see that
(B—y)a"=pb—yc
(y —a)b'=yc—caa
(a — B)¢” = aa — Bb.

! Desargues proved it long before vectors were thought of.



24 A little geometry

Adding our three equations we get
(B—ya"+(y —ab” +(@—p)"=0.

Thus (see Exercise 2.1.4 (ii)), since B — y, ¥ — « and o — B are all non-zero, a”, b” and
¢” all lie on the same straight line. O

Exercise 2.1.9 In the proof of Theorem 2.1.5 we needed to find ). and )\ so that
ra+(1—2b=XNa+ (1 —1)b,

knowing that

aa—pBb=—(1—a)a + (1 - pB)b. *
The easiest way to use % would be to have
A
1—-x» B

Check that this corresponds to our choice of M in the proof. Obtain )’ similarly. (Of course,
we do not know that these choices will work and we now need to check that they give the
desired result.)

2.2 Higher dimensions

We now move from two to three dimensions. We use a Cartesian coordinate system in which
each point of space corresponds to a unique ordered triple (x;, x», x3) of real numbers.
As before, we consider x = (x1, x2, x3) € R as a row vector and use the same kind of
definitions of addition and scalar multiplication as we did for column vectors so that

Axr, X2, x3) 4 (1, y2. ¥3) = (Axy 4 @yr, Axa + pya, Axsz + iys).
If we say a straight line joining distinct points u, v € R? is the set
{Au+ (1 —=2v : xeR},

then a quick scan of our proof of Desargues’ theorem shows it applies word for word to the
new situation.

Example 2.2.1 [Desargues’ theorem in three dimensions] Consider two triangles ABC
and A’ B'C’ with distinct vertices such that lines AA’, BB' and CC’ all intersect at some
point V. If the lines AB and A’ B’ intersect at exactly one point C", the lines BC and B'C’
intersect at exactly one point A" and the lines CA and C A’ intersect at exactly one point
B, then A”, B” and C" lie on the same line.

(In fact, Desargues’ theorem is most naturally thought about as a three dimensional
theorem about the rules of perspective.)

The reader may, quite properly, object that I have not shown that the definition of a
straight line given here corresponds to her definition of a straight line. However, I do not
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know her definition of a straight line. Under the circumstances, it makes sense for the author
and reader to agree to accept the present definition for the time being. The reader is free to
add the words ‘in the vectorial sense’ whenever we talk about straight lines.

There is now no reason to confine ourselves to the two or three dimensions of ordinary
space. We can do ‘vectorial geometry’ in as many dimensions as we please. Our points will
be row vectors

X =(x,x,...,%x,) € R"
manipulated according to the rule
MX1, X25 + vy Xp) + VL, Y25 e ey Ya) = (AXT + Uy1, Axo + 1y2, oo, AXy + 4Yn)
and a straight line joining distinct points u, v € R” will be the set
{Au+ 1 —=2v: A eR}.

It seems reasonable to call x a geometric or position vector.
As before, Desargues’ theorem and its proof pass over to the more general context.

Example 2.2.2 [Desargues’ theorem in n dimensions] We work in R". Suppose that a,
a, b, b/, ¢, ¢ are distinct. Suppose further that v lies on the line through a and a’, on the
line through b and b' and on the line through ¢ and c'.

If exactly one point &” lies on the line through b and ¢ and on the line through'b' and ¢/
and similar conditions hold for b and ¢, then a”, " and ¢” lie on the same line.

I introduced Desargues’ theorem in order that the reader should not view vectorial
geometry as an endless succession of trivialities dressed up in pompous phrases. My next
example is simpler, but is much more important for future work. We start from a beautiful
theorem of classical geometry.

Theorem 2.2.3 The lines joining the vertices of triangle to the mid-points of opposite
sides meet at a point.

Exercise 2.2.4 Draw an example and check that (to within the accuracy of the drawing)
the conclusion of Theorem 2.2.3 holds.

Exercise 2.2.5 Try to prove the result by trigonometry.

In order to translate Theorem 2.2.3 into vectorial form, we need to decide what a mid-
point is. We have not yet introduced the notion of distance, but we observe that, if we
set

1
¢ =—(a+h),
2( +b)
then ¢’ lies on the line joining a to b and

1
,— :—b— :b— /7
¢ —a 2( a) c
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so it is reasonable to call ¢/ the mid-point of a and b. (See also Exercise 2.3.12.) Theo-
rem 2.2.3 can now be restated as follows.

Theorem 2.2.6 Suppose thata, b, ¢ € R2 and
1 1 1
a = E(b—i—c), b = z(c—i—a), ¢ = E(a—}—b).

Then the lines joining ato a’, b to b" and ¢ to ¢ intersect.

Proof We seekad € R? and o, 8, ¥ € R such that

l—ab+ ]l -«
2 2

d=ﬂb+(1—ﬂ)b/=#a+ﬂb+ 1;'8

d=ca+ (1 —-a)ad =ca+

C

Cc

4 -y
a+—b C.
; At Pty

By inspection, we see” that &, 8, y = 1/3 and

1
d=yc+(1—y) =

1
d= g(a +b+c¢)
satisfy the required conditions, so the result holds. O

As before, we see that there is no need to restrict ourselves to R2. The method of proof
also suggests a more general theorem.

Definition 2.2.7 Ifthe q points X;, Xz, ..., X, € R", then their centroid is the point
1
5(){1 + X0+ -+ Xy).

Exercise 2.2.8 Suppose that X;, X, ..., X, € R". Let y; be the centroid of the g — 1
points x; with 1 <i < q and i # j. Show that the q lines joining X; toy; for1 < j <gq
all meet at the centroid of X1, X2, ..., X4.

If n =3 and g = 4, we recover a classical result on the geometry of the tetrahedron.
We can generalise still further.

Definition 2.2.9 If each x; € R" is associated with a strictly positive real number m ; for
1 < j < g, then the centre of mass® of the system is the point
1
my+my+---+my

(mXy +maxp +--- + quq).

Exercise 2.2.10 (i) Suppose thatx; € R" is associated with a strictly positive real number
mj for 1 < j < q. Lety; be the centre of mass of the g — 1 points x; with 1 <i < q and

2 That is we guess the correct answer and then check that our guess is correct.
3 Traditionally called the centre of gravity. The change has been insisted on by the kind of person who uses ‘Welsh rarebit’ for
‘Welsh rabbit’ on the grounds that the dish contains no meat.
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i # j. Then the q lines joining X; to y; for 1 < j < q all meet at the centre of mass of
X1, X2, ..., Xq4.

(i) What mathematical (as opposed to physical) problem do we avoid by insisting that
the m; are strictly positive?

2.3 Euclidean distance

So far, we have ignored the notion of distance. If we think of the distance between the
points x and y in R? or R?, it is natural to look at

172

Ix—yll = Y =y’

j=1
Let us make a formal definition.

Definition 2.3.1 Ifx € R", we define the norm (or, more specifically, the Euclidean norm)
x|l of x by
1/2

n
_ 2
xi =Y x2] .
Jj=1

where we take the positive square root.
Some properties of the norm are easy to derive.

Lemma 2.3.2 Suppose that x € R" and A € R. The following results hold.
@ [Ix[l = 0.
(@) |Ix|]l =0 ifand only if x = 0.
(i) |Ax|| = |A[lIx]|.

Exercise 2.3.3 Prove Lemma 2.3.2.

We would like to think of ||x — y|| as the distance between x and y, but we do not yet
know that it has all the properties we expect of distance.

Exercise 2.3.4 Use school algebra to show that
Ix =yl + 1y —zll < lly —zll. *
(You may take n = 3, or even n = 2 if you wish.)

The relation ¥ is called the triangle inequality. We shall prove it by an indirect approach
which introduces many useful ideas.
We start by introducing the inner product or dot product.*

* For historical reasons it is also called the scalar product, but this can be confusing.
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Definition 2.3.5 Suppose that x, y € R". We define the inner product X - y by

x-y= }l(nx + 17 = Ix =yl
A quick calculation shows that our definition is equivalent to the more usual one.
Lemma 2.3.6 Suppose that x, y € R". Then
X y=x1y1+x2y2+ -+ Xp Y.
Proof Left to the reader. ]

In later chapters we shall use an alternative notation (x,y) for inner product. Other
notations include x.y and (x,y). The reader must be prepared to fall in with whatever
notation is used.

Here are some key properties of the inner product.

Lemma 2.3.7 Suppose thatx, y, w € R" and 1, u € R. The following results hold.
MHx-x>0.
(@) x-x=0ifand only ifx = 0.
(fi)x-y=y-x
Mx-(y+w)=Xx-y+Xx-w
(V) (Ax) -y = AM(x - y).
i) x - x = [|x]|*.

Proof Simple verifications using Lemma 2.3.6. The details are left as an exercise for the
reader. O

We also have the following trivial, but extremely useful, result.
Lemma 2.3.8 Suppose thata, b € R". If
a-x=b-x
forallx € R", thena = b.
Proof 1f the hypotheses hold, then
(@a—b)-x=a-x—b-x=0
for all x € R”. In particular, taking x = a — b, we have
la=b|*=(@~b)-(a~b)=0
andsoa—b =0. [

We now come to one of the most important inequalities in mathematics.’

5 Since this is the view of both Gowers and Tao, I have no hesitation in making this assertion.
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Theorem 2.3.9 [The Cauchy-Schwarz inequality] If x, y € R”, then

Ix-yl =< lIx[lyll-

Moreover |x - y| = ||x|||lyll if and only if we can find A, u € R not both zero such that
AX = [Ly.

Proof (The clever proof given here is due to Schwarz.) If x = y = 0, then the theorem is
trivial. Thus we may assume, without loss of generality, that x 7 0 and so ||x|| # 0. If A is
a real number, then, using the results of Lemma 2.3.7, we have

0 < Ax+y]?
=Ax+y) - -(x+Yy)
=(AX)- ) +Ax) - y+y - Ax)+y-y
=AX-X+2AX-y+y-y
= AIx[* + 22x -y + [yl

2 2
X-y X-y

= (Anxn + —) + llyll* = (—) .
x|l x|

If we set
__xy
x|
we obtain
2
2 Xy
0<(Ax+y) -Ax+y) =|yl*— (m) .
Thus
X-y 2
Ilyll* — <—) >0 *
[Ix]|
with equality only if
0=|Ax+yl
so only if
Ax+y=0.

Rearranging the terms in % we obtain
2 211v2
x-y)” = IxIlyll

and so

A

-yl < IxIHyll
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with equality only if
AX+y=0.

We observe that, if ', u’ € R are not both zero and A'x = 'y, then |x - y| = |Ix]|||yll,
so the proof is complete. O

We can now prove the triangle inequality.
Theorem 2.3.10 Suppose that x, y € R". Then
Il + Iyl = lIx + yll
with equality if and only if there exist )., ;1 > 0 not both zero such that \x = y.
Proof Observe that

AN+ lyD* = x4+ yII> = Al + [yD* + & +y) - x+y)
= (IxI1 + 201yl + Iyl?) — (xI* + 2% - y + [lylI*)
= 2(IIxIlllyll = x - y)
> 2(|Ix[lllyll — |x- y)) = 0

with equality if and only if
X-y=0 and [x|lyl =[xyl
Rearranging and taking positive square roots, we see that
Ixll + 1yl = lIx+yl.

Since (Ax) - (ux) = Au||x||?, it is easy to check that we have equality if and only if there
exist A, u > 0 not both zero such that Ax = uy. O

Exercise 2.3.11 Suppose that a, b, ¢ € R". Show that
la—bl +[b—c| = |la—c].

When does equality occur?
Deduce an inequality involving the length of the sides of a triangle ABC.

Exercise 2.3.12 (This completes some unfinished business.) Suppose that a # b. Show
that there exists a unique point X on the line joining a and b such that |x — a|| = ||x — b||
and that this point is given by X = %(a + b).

If we confine ourselves to two dimensions, we can give another characterisation of the
inner product.

Exercise 2.3.13 (i) We work in the plane. If ABC is a triangle with the angle between AB
and BC equal to 8, show, by elementary trigonometry, that

IBC|> + |AB|*> = 2|AB| x |BC|cos6 = |AC|?
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where | XY | is the length of the side XY .
(ii) If a, ¢ € R" show that

2 2 2
lall” +llcll” —2a-c=lla—c|".

(iii) Returning to the plane R?, suppose that a, ¢ € R?, the point A is at a, the point C
is at ¢ and 0 is the angle between the line joining A to the origin and the line joining C to
the origin. Show that

a-c=|a|c| cosb.

Because of this result, the inner product is sometimes defined in some such way as ‘the
product of the length of the two vectors times the cosine of the angle between them’. This
is fine, so long as we confine ourselves to R2 and R3, but, once we consider vectors in R*
or more general spaces, this places a great strain on our geometrical intuition

We therefore turn the definition around as follows. Suppose thata, ¢ € R" and a, ¢ # 0.
By the Cauchy—Schwarz inequality,

a-c

— llalfflell —
By the properties of the cosine function, there is a unique # with 0 < 6 < & and
a-c
0= .
lallflell

We define 0 to be the angle between a and c.

Exercise 2.3.14 Suppose thatu, v € R" andu, v # 0. Show that, if we adopt the definition
Jjust given, and if the angle between u and v is 0, then the angle between v and u is 6 and
the angle between w and —v is m — 6.

Most of the time, we shall be interested in a special case.

Definition 2.3.15 Suppose that u, v € R". We say that u and v are orthogonal (or perpen-
dicular) ifu-v = 0.

Exercise 2.3.16 Consider the 2" vertices of a cube in R" and the 2"~" diagonals. (Part of
the exercise is to decide what this means.) Show that no two diagonals can be perpendicular
if n is odd.

For n = 4, what is the greatest number of mutually perpendicular diagonals and why?
List all possible angles between the diagonals.

Note that our definition of orthogonality means that the zero vector 0 is perpendicu-
lar to every vector. The symbolism u L v is sometimes used to mean that u and v are
perpendicular.

Exercise 2.3.17 We work in R3. Are the following statements always true or sometimes
false? In each case give a proof or a counterexample.
@) Ifulv, thenv L u.
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@) Ifulvandv L w, thenu L w.
(@) Ifu L u, thenu = 0.

Exercise 2.3.18 [Pythagoras extended] (i) Ifu, v € R2 and u L v, show that
lall® + V> = [lu+v|>.

Why does this correspond to Pythagoras’ theorem?
) Ifu, v, we R u Lv,v.Llwandw L u(that is to say, the vectors are mutually
perpendicular), show that

lall® + [IVII* + [w]* = [lu+ v+ w]>.

(iii) State and prove a corresponding result in R*.

2.4 Geometry, plane and solid

We now look at some familiar geometric objects in a vectorial context. Our object is not to
prove rigorous theorems, but to develop intuition.

For example, we shall say that a parallelogram in R? is a figure with vertices ¢, ¢ + a,
¢+ b, c+a+b and rely on the reader to convince herself that this corresponds to her
pre-existing idea of a parallelogram.

Exercise 2.4.1 [The parallelogram law] Ifa, b € R", show that
la+bl*>+ [la—b|I* = 2(|la]|* + [[b]*).

If n = 2, interpret the equality in terms of the lengths of the sides and diagonals of a
parallelogram.

Exercise 2.4.2 (i) Prove that the diagonals of a parallelogram bisect each other.
(ii) Prove that the line joining one vertex of a parallelogram to the mid-point of an
opposite side trisects the diagonal and is trisected by it.

Here is a well known theorem of classical geometry.

Example 2.4.3 Consider a triangle ABC. The altitude through a vertex is the line through
that vertex perpendicular to the opposite side. We assert that the three altitudes meet at a
point.

Exercise 2.4.4 Draw an example and check that (to within the accuracy of the drawing)
the conclusion of Example 2.4.3 holds.

Proof of Example 2.4.3 1f we translate the statement of Example 2.4.3 into vector notation,
it asserts that, if x satisfies the equations

x—a)-(b—¢c)=0
(x—=b)-(c—a)=0,
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then it satisfies the equation
x—c¢)-(a—b)=0.
But adding the first two equations gives the third, so we are done. O

We consider the rather less interesting three dimensional case in Exercise 2.5.6 (ii). It
turns out that the four altitudes of a tetrahedron only meet if the sides of the tetrahedron
satisfy certain conditions. Exercises 2.5.7 and 2.5.8 give two other classical results which
are readily proved by similar means to those used for Example 2.4.3.

We have already looked at the equation

ax+by=c

(where a and b are not both zero) for a straight line in R?. The inner product enables us to
look at the equation in a different way. If a = (a, b), then a is a non-zero vector and our
equation becomes

where x = (x, y).
This equation is usually written in a different way.

Definition 2.4.5 We say that u € R”" is a unit vector if |u|| = 1.

If we take
c

1
n=—a and p=_—,
llall

llall
we obtain the equation for a line in R? as
n-x=p,
where n is a unit vector.

Exercise 2.4.6 We work in R,

(@) If u = (u, v) is a unit vector, show that there are exactly two unit vectors n = (n, m)
and ' = (n', m’) perpendicular to u. Write them down explicitly.

(if) Given a straight line written in the form

X=a+rc

(where ¢ # 0 and t ranges freely over R), find a unit vector n and p so that the line is
described byn - x = p.
(iii) Given a straight line written in the form

n-x=p
(Where n is a unit vector), find a and ¢ # 0 so that the line is described by
X=a-+1c

where t ranges freely over R.
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If we work in R, it is easy to convince ourselves that the equation
n-x=p,

where n is a unit vector, defines the plane perpendicular to n passing through the point pn.
(If the reader is worried by the informality of our arguments, she should note that we look
at orthogonality in much greater depth and with due attention to rigour in Chapter 7.)

Example 2.4.7 Let | be a straight line and w a plane in R3. One of three things can occur:
(i) I and 7 do not intersect.
(ii) | and 7 intersect at a point.
(iti) [ lies inside 7 (so | and 7 intersect in a line).

Proof Let m have equation n - X = p (where n is a unit vector) and let / be described by
X = a + rc¢ (with ¢ # 0) where ¢ ranges freely over R.
Then the points of intersection (if any) are given by X = a + sc where

p=n-x=n-(@+s¢c)=n-a-+sn-¢
that is to say, by
sn-c=p—n-a. *

If n-c s 0, then % has a unique solution in s and we have case (ii). If n- ¢ = 0 (that
is to say, if n L ¢), then one of two things may happen. If p # n-a, then % has no
solution and we have case (i). If p = n - a, then every value of s satisfies % and we have
case (iii). O

In cases (i) and (iii), I would be inclined to say that / is parallel to .

Example 2.4.8 Let w and 7w’ be planes in R3. One of three things can occur:
(i) w and 7’ do not intersect.
(ii) w and 7’ intersect in a line.
(iii) w and 7’ coincide.

Proof Let i be givenby n-x = p and 7’ be givenby n’ - x = p’.
If there exist real numbers w and v not both zero such that un = vn/, then, in fact,
n’ = £n and we can write 7’ as

If p # g, then the pair of equations
n-x=p, Nn-Xx=gq

have no solutions and we have case (i). If p = ¢ the two equations are the same and we
have case (ii).

If there do not exist real numbers p and v not both zero such that un = vn’ (after
Section 5.4, we will be able to replace this cumbrous phrase with the statement ‘n and n’
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are linearly independent’), then the points x = (xy, x3, x3) of intersection of the two planes
are given by a pair of equations

nixy +naxp +n3x3 = p
nixy + nhxy +nixz = p’
and there do not exist exist real numbers u and v not both zero with
wu(ny, na, n3) = v(ny, ny, ny).
Applying Gaussian elimination, we have (possibly after relabelling the coordinates)

X1 +cx3=a

X +dx;=0b
S0
(x1, x2, x3) = (a, b, 0) + x3(—c, —d, 1)
that is to say
X=a+1c

where ¢ is a freely chosen real number, a = (a, b, 0) and ¢ = (—c, —d, 1) # 0. We thus
have case (ii). O
Exercise 2.4.9 We work in R3. If
n =(1,0,0, m=(0,1,0, n3=(@2"%27"20),
p1 = pr =0, p3 =22 and three planes 7 are given by the equations
n;-X=pj

show that each pair of planes meet in a line, but that no point belongs to all three planes.
Give similar example of planes 1 ; obeying the following conditions.
(i) No two planes meet.
(ii) The planes | and 7 meet in a line and the planes | and w3 meet in a line, but m,
and 15 do not meet.

Since a circle in R? consists of all points equidistant from a given point, it is easy to
write down the following equation for a circle

Ix—af =r.
We say that the circle has centre a and radius r. We demand r > 0.
Exercise 2.4.10 Describe the set
(xeR?: |x—a| =r)

in the case r = 0. What is the set if r < 0?
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In exactly the same way, we say that a sphere in R? of centre a and radius r > 0 is given
by

Ix —al =r.

Exercise 2.4.11 [Inversion] (i) We work in R? and consider the map y : R*\ {0} —
RZ\ {0} given by

(We leave y undefined at 0.) Show that y(y(x)) =X

(ii) Suppose that a € R?, r > 0 and ||a|| # r. Show that y takes the circle of radius r
and centre a to another circle. What are the radius and centre of the new circle?

(iii) Suppose that a € R?, r > 0 and | a|| = r. Show that y takes the circle of radius r
and centre a (omitting the point 0) to a line to be specified.

(iv) Generalise parts (i), (ii) and (iii) to R3.
[We refer to the transformation y as an inversion. We give a very pretty application in
Exercise 2.5.14.]

Exercise 2.4.12 [Ptolemy’s inequality] Ler x, y € R" \ {0}. By squaring both sides of the
equation, or otherwise, show that

X y _
IxIZ [yll? Iyl

Hence, or otherwise, show that, ifx, y, z € R",

lIx =yl

lzlllx =yl < lIylllz = x| + Ix]i{ly — z]|.

Ifx, y, z # 0, show that we have equality if and only if the points |x||72x, |yl =2y, |lz] >z
lie on a straight line.
Deduce that, if ABC D is a quadrilateral in the plane,

|AB[|CD| + [BC||DA| = |AC||BD|. *

Use Exercise 2.4.11 to show that % becomes an equality if and only if A, B, C and D
lie on a circle or straight line.
The statement that, if ABCD is a ‘cyclic quadrilateral’, then

|AB||CD| + |BC||DA| = |AC||BD]|,

is known as Ptolemy’s theorem after the great Greek astronomer. Ptolemy and his prede-
cessors used the theorem to produce what were, in effect, trigonometric tables.

2.5 Further exercises

Exercise 2.5.1 We work in R3. Let A, B, C be strictly positive constants and w a fixed
vector. Determine the vector x of smallest magnitude (i.e. with ||x|| as small as possible)
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which satisfies the simultaneous equations
Ax — By =2w
x-y=C.

Exercise 2.5.2 Describe geometrically the surfaces in R? given by the following equations.
Give brief reasons for your answers. (Formal proofs are not required.) We take u to be a
fixed vector with |lu]] = 1 and « and B to be fixed real numbers with 1 > |«| > 0 and
B > 0.

() x-u=a|x|.

(i) [Ix — (x - wu| = B.
Exercise 2.5.3 (i) By using the Cauchy—Schwarz inequality in R?, show that
X4+ y? 4+ 22> yz+zx 4 xy

for all real x, y, z.
(i) By using the Cauchy—Schwarz inequality in R* several times, show that only one
choice of real numbers satisfies

3P+ Y+ 7+ -2z +xy) —4x +y+2)=0
and find those numbers.

Exercise 2.5.4 Let a € R” be fixed. Suppose that vectors X, y € R” are related by the
equation

X+ (x-y)y =a.
Show that
llall> — [Ix|I?
x-y =
2+ yl?

and deduce that
IxII(L+ llylI?) = llall > [Ix]|.

Explain, with proof, the circumstances under which either of the two inequalities in the
formula just given can be replaced by equalities, and describe the relation between x, y and
a in these circumstances.

Exercise 2.5.5 We work in R”. Show that, if w, X, y, z € R”, then

1/4
n n n n n
4 4 4 4
PUTEATIES DID IO DRI D DL
j=1 j=t =1 =1 =1

(We take the positive root.)
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If we write ||x||4 = (Z;=1 x;.‘) ]/4, show that the following results hold for all x, y € R*,
A el

@ I1xll4 = 0.

(i) Ix[lsa =0 x=0.

(iid) [|Axls = [A[lIxX]4.

Av) Ix+ ylla < IIxlla + llylla-

Exercise 2.5.6 (i) We work in R*. Show that, if two pairs of opposite edges of a non-
degenerate® tetrahedron ABCD are perpendicular, then the third pair are also perpendicular
to each other. Show also that, in this case, the sum of the lengths squared of the two opposite
edges is the same for each pair.

(ii) The altitude through a vertex of a non-degenerate tetrahedron is the line through the
vertex perpendicular to the opposite face. Translating into vectors, explain why x lies on
the altitude through a if and only if

x—a)-b—¢c)=0 and (x—a)-(c—d)=0.

Show that the four altitudes of a non-degenerate tetrahedron meet only if each pair of
opposite edges are perpendicular.

If each pair of opposite edges are perpendicular, show by observing that the altitude
through A lies in each of the planes formed by A and the altitudes of the triangle BC D, or
otherwise, that the four altitudes of the tetrahedron do indeed meet.

Exercise 2.5.7 Consider a non-degenerate triangle in the plane with vertices A, B, C given
by the vectors a, b, c.
Show that the equation

x=a+1(la—c[@—b)+ a—Dbl@-c)

with ¢ € R defines a line which is the angle bisector at A (i.e. passes through A and makes
equal angles with AB and AC).

If the point X lies on the angle bisector at A, the point Y lies on AB in such a way
that XY is perpendicular to AB and the point Z lies on AC, in such a way that XZ is
perpendicular to AC, show, using vector methods, that XY and X Z have equal length.

Show that the three angle bisectors at A, B and C meet at a point Q given by

_ la—=bjlc+[Ib—clla+[c—alb
lla—bl +[Ib—cll + [lc —al

6 Non-degenerate and generic are overworked and often deliberately vague adjectives used by mathematicians to mean ‘avoiding
special cases’. Thus a non-degenerate triangle has all three vertices distinct and the vertices of a non-degenerate tetrahedron
do not lie in a plane. Even if you are only asked to consider non-degenerate cases, it is often instructive to think about what
happens in the degenerate cases.
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Show that, given three distinct lines AB, BC, C A, there is at least one circle which has
those three lines as tangents.’

Exercise 2.5.8 Consider a non-degenerate triangle in the plane with vertices A, B, C given
by the vectors a, b, c.

Show that the points equidistant from A and B form a line /45 whose equation you
should find in the form

N - X = PAB,

where the unit vector nsp and the real number p,p are to be given explicitly. Show that
l4p 1s perpendicular to AB. (The line /4 is called the perpendicular bisector of AB.)
Show that

Npp X = Pap, Npc X = ppc = Nca X = pca

and deduce that the three perpendicular bisectors meet in a point.
Deduce that, if three points A, B and C do not lie in a straight line, they lie on a circle.

Exercise 2.5.9 (Not very hard.) Consider a non-degenerate tetrahedron. For each edge we
can find a plane which which contains that edge and passes through the midpoint of the
opposite edge. Show that the six planes all pass through a common point.

Exercise 2.5.10 [The Monge point]® Consider a non-degenerate tetrahedron with vertices
A, B, C, D given by the vectors a, b, ¢, d. Use inner products to write down an equation
for the so-called, ‘midplane’ 45 cp Which is perpendicular to AB and passes through the
mid-point of C D. Hence show that (with an obvious notation)
X € Tap.cp NTpc.AD NTAD Bc = X € TAC.BD-
Deduce that the six midplanes of a tetrahedron meet at a point.

Exercise 2.5.11 Show that

Ix — all*cos’a = ((x —a) - n)z,

with ||[n|| = 1, is the equation of a right circular double cone in R* whose vertex has position
vector a, axis of symmetry n and opening angle «. Two such double cones, with vertices
a; and a,, have parallel axes and the same opening angle. Show that, if b=a; —a; # 0,
then the intersection of the cones lies in a plane with unit normal

N— bcos?o —n(n - b)
VIl cos* & + (m - b)2(1 — 2cos? &)

7 Actually there are four. Can you spot what they are? Can you use the methods of this question to find them? The circle found
in this question is called the ‘incircle’ and the other three are called the ‘excircles’.

8 Monge’s ideas on three dimensional geometry were so useful to the French army that they were considered a state secret. T have
been told that, when he was finally allowed to publish in 1795, the British War Office rushed out and bought two copies of his
book for its library where they remained unopened for 150 years.
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Exercise 2.5.12 We work in R®. We fix ¢ € R and a € R? with ¢ < a - a. Show that if
X+y=2a, x-y=c,
then x lies on a sphere. You should find the centre and radius of the sphere explicitly.

Exercise 2.5.13 We work in R3. Show that the equation of a sphere with centre ¢ and
radius a is F(r) = 0, where

Fr)=r-r—2r-c+k%

and k is a constant to be found explicitly.
Show that a line through d parallel to the unit vector b intersects the sphere in two
distinct points u and v if and only if

Fd) < (b-(d—c)’
and that, if this is the case,
(u—d)-(v—d)= F(d).

If the line intersects the sphere at a single point, we call it a tangent line. Show that a
tangent line passing through a point w on the sphere is perpendicular to the radius w — ¢
and, conversely, that every line passing through w and perpendicular to the radius w — ¢ is
a tangent line. The tangent lines through w thus form a tangent plane.

Show that the condition for the plane r - n = p (where n is a unit vector) to be a tangent
plane is that

(p—c-n?=c*—k.
If two spheres given by
rrr—2r-c+k=0 and r-r—2r-¢+k=0
cut each other at right angles, show that
2¢-¢ =k+Kk.

Exercise 2.5.14 [Steiner’s porism] Suppose that a circle I'y lies inside another circle I';.
We draw a circle A; touching both Iy and I';. We then draw a circle A, touching Iy, I';
and A (and lying outside A ), a circle A3 touching I'y, I'} and A, (and lying outside A»),
..., acircle Aj4 touching I'p, 'y and A ; (and lying outside A ;) and so on. Eventually
some A, will either cut A in two distinct points or will touch it. If the second possibility
occurs, we say that the circles Ay, Ay, ..., A, form a Steiner chain. There are excellent
pictures of Steiner chains in Wikipedia and elsewhere on the web

Steiner’s porism’ asserts that if one choice of A gives a Steiner chain, then all choices
will give a Steiner chain.

9 The Greeks used the word porism to denote a kind of corollary. However, later mathematicians decided that such a fine word
should not be wasted and it now means a theorem which asserts that something always happens or never happens.
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(i) Explain why Steiner’s porism is true for concentric circles.

(i1) Give an example of two concentric circles for which a Steiner chain exists and
another for which no Steiner chain exists.

(iii) Suppose that two circles lie in the (x, y) plane with centres on the real axis. Suppose

that the first circle cuts the x axis at a and b and the second at ¢ and d. Suppose further that
0 1 1 1 1 d 1 n 1 1 n 1
<-<-<-<- and —+4+-<-4+-.
a ¢ d b a b ¢ d

By considering the behaviour of

. 1 n 1 B 1 n 1
f(x)_(a—x b—x> (c—x d—x)

as x increases from O towards b, or otherwise, show that there is an x( such that
1 1 1 1
+

a—xg b—xy c—xo d—xo
(iv) Using (iii), or otherwise, show that any two circles can be mapped to concentric
circles by using translations, rotations and inversion (see Exercise 2.4.11).
(v) Deduce Steiner’s porism.
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The algebra of square matrices

3.1 The summation convention

In our first chapter we showed how a system of n linear equations in n unknowns could be
written compactly as

Za,-_,-xj = b; [1<i<n]
j=1

In 1916, Einstein wrote to a friend (see, for example, [26])

I have made a great discovery in mathematics; I have suppressed the summation sign every time that
the summation must be made over an index which occurs twice . . .

Although Einstein wrote with his tongue in his cheek, the Einstein summation convention
has proved very useful. When we use the summation convention with i, j, . .. running from
1 to n, then we must observe the following rules.

(1) Whenever the suffix i, say, occurs once in an expression forming part of an equation,
then we have n instances of the equation accordingasi = 1,i =2,...ori =n.

(2) Whenever the suffix i, say, occurs twice in an expression forming part of an equation,
then i is a dummy variable, and we sum the expression over the values 1 <i < n.

(3) The suffix i, say, will never occur more than twice in an expression forming part of an
equation.

The summation convention appears baffling when you meet it first, but is easy when you
get used to it. For the moment, whenever I use an expression involving the summation, I
shall give the same expression using the older notation. Thus the system

aijx; = b;,

with the summation convention, corresponds to

Zaijszb,- [1 <i<n]
=1

42
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without it. In the same way, the equation

n
X-y= in)’i»
i=1

without the summation convention, corresponds to
Xy =Xy

with it.
Here is a proof of the parallelogram law (Exercise 2.4.1), using the summation conven-
tion.

la+bl* + lla = b* = (a; + bi)a; + bi) + (@ — by)a: — by)
= (a;a; + 2a;b; + b;b;) + (a;a; — 2a;b; + b;b;)
= 2a;a; + 2b;b;
= 2||al|* + 2[|b||*.

Here is the same proof, not using the summation convention.
la+bI* +lla—bI* = Y (@ +bi)ai +b) + Y (@ — bi)ai — by)

i=1 i=1

= Z(aiai + 2a;b; + bib;) + Z(aiai — 2a;b; + bib;)

i=1 i=1
= 2261,‘61[ + ZZb,bl
i=1 i=1
=2|al* + 2|b|*.

The reader should note that, unless I explicitly state that we are using the summation con-
vention, we are not. If she is unhappy with any argument using the summation convention,
she should first follow it with summation signs inserted and then remove the summation
signs.

3.2 Multiplying matrices

Consider two n x n matrices A = (a;;) and B = (b;;). If

Bx=y and Ay =1z,
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then
n
E Qik Yk = E aix E bjx;
k=1 j=1
n n n n
= E E a,-kbijj: E E aikbijj
k=1 j=1 j=1 k=1
n n n
= E E a,-kbkj Xj = E CijXj
j=1 \k=1 j=1
where
n
cij = E aixby; *
or, using the summation convention,
Cij = Qikbyj.

Exercise 3.2.1 Write out the argument of the previous paragraph using the summation
convention.

It therefore makes sense to use the following definition.

Definition 3.2.2 [f A and B are n x n matrices, then AB = C where C is the n X n matrix
such that

A(Bx) =
forallx € R".

The formula ¥ is complicated, but it is essential that the reader should get used to
computations involving matrix multiplication.
It may be helpful to observe that, if we take

T T
alz(ailvai27"'sain) ’ bjz(b1]7b2jvabnj)

(so that a; is the column vector obtained from the ith row of A and b; is the column vector
corresponding to the jth column of B), then

cij:ai-bj
and
al-bl al~b2 31'b3 al-b,,
az~b1 az'bz az'b3 az-b,,

AB =

a,-b; a,-b, a,-b; ... a,-b,



3.3 More algebra for square matrices 45

Here is one way of explicitly multiplying two 3 x 3 matrices

a b c¢ A B C
X=|d e f and Y=|D & F
g h i g H I

First write out three copies of X next to each other as

a b c a b c a b c
d e f d e f d e f
g h i g h i g h i
Now fill in the ‘row column multiplications’ to get
aA+bD+cG aB+bf+cH aC+bF+cT

XY=|dA+eD+fG dB+ef+fH dC+eF+1T
gA+hD+iG gB+hE+iH  gC+hF+iT

3.3 More algebra for square matrices

We can also add n x n matrices, though the result is less novel. We imitate the definition
of multiplication.
Consider two n x n matrices A = (a;;) and B = (b;;). If

Ax=y and Bx=1z

then
n n n n n
yitzi= Zaijxj + Zbijxj = Z(aijxj + bijx;) = Z(aij + bij)x; = Zcijxj
j=1 j=1 j=1 j=1 j=1
where

Cij = Cl,'j + bij-
It therefore makes sense to use the following definition.

Definition 3.3.1 If A and B are n x n matrices, then A + B = C where C is the n X n
matrix such that

Ax + Bx = Cx
forallx € R".

In addition we can ‘multiply a matrix A by a scalar A’.
Consider an n x n matrix A = (a;;) anda A € R. If

AX =y,
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then
n n n n
)uy,‘ =A Zaijxj = Z )\.(aijx]') = Z(K(l,‘j)xj' = ZC,'J‘X]‘
=1 =1 =1 j=1
where
Cij = Aaij.
It therefore makes sense to use the following definition.

Definition 3.3.2 If A is an n x n matrix and A € R, then AA = C where C is the n X n
matrix such that

MAX) = Cx
forallx € R™.

Once we have addition and the two kinds of multiplication, we can do quite a lot of
algebra.

We have already met addition and scalar multiplication for column vectors with n
entries and for row vectors with n entries. From the point of view of addition and scalar
multiplication, an n x n matrix is simply another kind of vector with n? entries. We thus
have an analogue of Lemma 1.4.2, proved in exactly the same way. (We write 0 for the
n x n matrix all of whose entries are 0. We write —A = (—1)Aand A — B = A + (—B).)

Lemma 3.3.3 Suppose that A, B and C are n x n matrices and A, u € R. Then the
following relations hold.

@HA+B)+C=A+(B+C).

(ii)A+ B =B+ A.

@) A+0=A.

(iv) M(A + B) = AA + AB.

M A+ A =X1A+ uA.

(i) (Ap)A = A(1A).

(i) 1A = A, 0A = 0.

Wwiii) A— A =0.

Exercise 3.3.4 Prove as many of the results of Lemma 3.3.3 as you feel you need to.

We get new results when we consider matrix multiplication (that is to say, when we
multiply matrices together). We first introduce a simple but important object.

Definition 3.3.5 Fix aninteger n > 1. The Kronecker 6 symbol associated with n is defined
by the rule

1 ifi=j
0 ifi#j

ij =
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for1 <i, j <n.Then x nidentity matrix I is given by I = (§;}).

Exercise 3.3.6 Show that an n x n matrix C satisfies the equation Cx = X for all x € R"
ifand only if C = 1.

The following remark often comes in useful when we use the summation convention.
Example 3.3.7 If we use the summation convention,
(Sinj = Xj and Sijajk = djk.

Proof Observe that, if we do not use the summation convention,

n n
E (Si_,'x]‘ = X; and E Si‘ja_,‘k = A4k,
j=I1 j=1

so we get the required result when we do. O

Lemma 3.3.8 Suppose that A, B and C are n x n matrices and ). € R. Then the following
relations hold.

(@) (AB)C = A(BC).

i)y A(B+C)=AB + AC.

(iiiy (B+ C)A = BA + CA.

(iv) WA)B = A(AB) = L(AB).

() Al =1A = A.

Proof (i) We give three proofs.
Proof by definition Observe that, from Definition 3.2.2,

((AB)C)x = (AB)(Cx) = A(B(Cx)) = A((BC)x)) = (A(BC))x

for all x € R" and so (AB)C = A(BC).
Proof by calculation Observe that

Z Zaijbjk Crj = Z Z(aijbjk)ckj = Z Zaij(bjkckj)

k=1 \ j=I k=1 j=1 k=1 j=1
n n n n
= E E aij(bjkcy;) = E ajj ijkckj
j=1 k=1 =1 k=1

and so (AB)C = A(BC).
Proof by calculation using the summation convention Observe that

(aijbjr)ckj = aij(bjrckj)

and so (AB)C = A(BC).

Each of these proofs has its merits. The author thinks that the essence of what is going
on is conveyed by the first proof and that the second proof shows the hidden machinery
behind the short third proof.



48 The algebra of square matrices

(i1) Again we give three proofs.
Proof by definition Observe that, using our definitions and the fact that A(u + v)
Av,

((A(B+ C))x = A((B + O)x) = A(Bx + Cx)
= A(Bx) + A(Cx) = (AB)x+ (AC)x = (AB + AC)x

for all x € R" and so A(B+ C) = AB + AC.
Proof by calculation Observe that

n n n n
Zaij(bjk +cjr) = Z(aijbjk +aijci) = Zaijbjk + Zaijcjk
Jj=1 Jj=1 j=1 j=1
and so A(B+ C) = AB + AC.
Proof by calculation using the summation convention Observe that
aij(bjk + ¢ji) = aijbjk + aijcjk

andso A(B+C)=AB + AC.
We leave the remaining parts to the reader.

= Au+

O

Exercise 3.3.9 Prove the remaining parts of Lemma 3.3.8 using each of the three methods

of proof.
Exercise 3.3.10 By considering a particular n x n matrix A, show that

BA=Aforall A= B=1.

However, as the reader is probably already aware, the algebra of matrices differs in two
unexpected ways from the kind of arithmetic with which we are familiar from school. The
first is that we can no longer assume that AB = B A, even for 2 x 2 matrices. Observe that

0 1\(0 0y [O0x0+1x1 0x0+1x0\ (1 O
0 0/\1 0/ \0x0+0x1 0x0+0x0/ \0 0/’

0 0)(0 1) _ (0x0+0x1 O0xI14+0x0) (0 0
1 0)\o o) " \ixo+0x0 1x1+0x0) " \0 1)

but

The second is that, even when A is a non-zero 2 x 2 matrix, there may not be a matrix

B with BA = [ or a matrix C with AC = I. Observe that

L0 (a b)_(lxa+0xc Ixb+0xd)_(a b) (1
0 0/\¢ d) " \oxa+0xe 0xb+0xd) " \0o 0)7 \o

a b I 0y (ax1+bx0 ax0+bx0\ [(fa O 2 1
¢c dJ\0 0] \ex14dx0 ¢e¢x0+dx0) \c 0 0

for all values of a, b, ¢ and d.

and

)
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In the next section we discuss this phenomenon in more detail, but there is a further
remark to be made before finishing this section to the effect that it is sometimes possible to
do some algebra on non-square matrices. We will discuss the deeper reasons why this is so
in Section 11.1, but for the moment we just give some computational definitions.

Definition 3.3.11 If A = (a;;),=/=", B = (bij)|=/=", C = (cj)) 242" and & € R, we set

1<i<m’ 1<i<m’ I<j<n

LA = (}»a,‘j)ISjsn

l<i<m>
I<j=n
A+ B = (aij + bij)<i5ps
1<k=<p
n
BC = E b,'jCJk
j=1 I<i<m

Exercise 3.3.12 Obtain definitions of LA, A+ B and BC along the lines of Defini-
tions 3.3.2, 3.3.1 and 3.2.2.

The conscientious reader will do the next two exercises in detail. The less conscientious
reader will just glance at them, happy in my assurance that, once the ideas of this book are
understood, the results are ‘obvious’. As usual, we write —A = (—1)A.

Exercise 3.3.13 Suppose that A, B and C are m x n matrices, 0 is the m X n matrix with
all entries 0, and A, i € R. Then the following relations hold.

OHA+B)+C=A+(B+0C).

(iiyA+ B =B + A.

(@) A+0=A.

(iv) M(A+ B) = AA + AB.

M A+ A =XrA+ uA.

(i) An)A = A(pA).

(vii() 0A = 0.

iii) A — A = 0.

Exercise 3.3.14 Suppose that A is an m X n matrix, B is an m X n matrix, C isann X p
matrix, F is a p x q matrix and G is a k x m matrix and ). € R. Show that the following
relations hold.

(@) (AC)F = A(CF).

i)y G(A+ B)=GA+ GB.

(iii) (A + B)C = AC + AC.

(iv) (LA)C = A(AC) = L(AC).

3.4 Decomposition into elementary matrices

We start with a general algebraic observation.

Lemma 3.4.1 Suppose that A, B and C are n x n matrices. If BA = I and AC = I, then
B=_"C.
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Proof We have B = Bl = B(AC) =(BA)C =1IC =C. ]

Note that, if BA =1 and AC; = AC, = I, then the lemma tells us that C; = B = C,
and that, if AC = I and B{A = B, A = I, then the lemma tells us that By = C = B;.
We can thus make the following definition.

Definition 3.4.2 If A and B are n x n matrices such that AB = BA = I, then we say that
A is invertible with inverse A~' = B.

The following simple lemma is very useful.

Lemma 3.43 [f U and V are n x n invertible matrices, then UV is invertible and
vy '=v-lu-l.

Proof Note that
wvywlvh=uvwvhul=viv'=vut =1
and, by a similar calculation, (V-'U~)(UV) = 1. O
The following lemma links the existence of an inverse with our earlier work on equations.

Lemma 3.4.4 If A is ann X n square matrix with an inverse, then the system of equations

has a unique solution for each choice of the y;.
Proof 1f we set x = A~ 'y, then
Ax=AAy)=(AA )y =1Iy=y

SO Z;f:l a;jjxj = y; forall 1 <i < n and a solution exists.
Conversely, if  7_; a;jx; = y; forall 1 <i < n, then Ax =y and

x=Ix=A"'Ax=A4""1Ax)= A"y
so the x; are uniquely determined. 0

Later, in Lemma 3.4.14, we shall show that, if the system of equations is always soluble,
whatever the choice of y, then an inverse exists. If a matrix A has an inverse we shall say
that it is invertible or non-singular.

The reader should note that, at this stage, we have not excluded the possibility that
there might be an n x n matrix A with a left inverse but no right inverse (in other words,
there exists a B such that BA = I, but there does not exist a C with AC = I) or with a
right inverse but no left inverse. Later we shall prove Lemma 3.4.13 which shows that this
possibility does not arise.

There are many ways to investigate the existence or non-existence of matrix inverses
and we shall meet several in the course of this book. Our first investigation will use the
notion of an elementary matrix.
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We define two sorts of n x n elementary matrices. The first sort are matrices of the form
E(r,s, &) = (8ij + A8i6s))

where 1 < r, s < nandr # 5. (The summation convention will not apply to r and s.) Such
matrices are sometimes called shear matrices.

Exercise 3.4.5 If A and B are shear matrices, does it follow that AB = BA? Give reasons.
[Hint: Try 2 x 2 matrices.]

The second sort form a subset of the collection of matrices
P(o) = (653);)

where o : {1,2,...,n} — {1,2,...,n}is abijection. These are sometimes called permu-
tation matrices. (Recall that o can be thought of as a shuffle or permutation of the integers
1,2,...,nin which i goes to o(i).) We shall call any P(o) in which o interchanges only
two integers an elementary matrix. More specifically, we demand that there be an r and s
with 1 < r < s < n such that

o(r)y=s

o(s)=r

o (i) = i otherwise.

The shear matrix E(r, s, A) has 1s down the diagonal and all other entries 0 apart from
the sth entry of the rth row which is A. The permutation matrix P (o) has the o (i)th entry
of the ith row 1 and all other entries in the ith row 0.

Lemma 3.4.6 (i) If we pre-multiply (i.e. multiply on the left) an n x n matrix A by
E(r, s, LX) with r # s, we add M times the sth row to the rth row but leave it otherwise
unchanged.

(ii) If we post-multiply (i.e. multiply on the right) an n x n matrix A by E(r, s, \)
with r # s, we add )\ times the rth column to the sth column but leave it otherwise
unchanged.

(iii) If we pre-multiply an n x n matrix A by P(0), the ith row is moved to the o (i)th
row.

(iv) If we post-multiply an n x n matrix A by P(0), the o (j)th column is moved to the
jth column.

(v) E(r, s, A) is invertible with inverse E(r, s, —)).

(vi) P(0) is invertible with inverse P(c~").

Proof (i) Using the summation convention for i and j, but keeping r and s fixed,
(8ij + Adirbsj)aji = 8ijajx + A;05jajr = aix + Ad;ragp.

(i1) Exercise for the reader.
(iii) Using the summation convention,

8o (i)jAjk = Ao (isk-
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(iv) Exercise for the reader.
(v) Direct calculation or apply (i) and (ii).
(vi) Direct calculation or apply (iii) and (iv). O

Exercise 3.4.7 Letr # s. Show that E(r,s, M)E(r, s, u) = E(r, s, A + ).
We now need a slight variation on Theorem 1.3.2.

Theorem 3.4.8 Given anyn x n matrix A, we can reduce it to a diagonal matrix D = (d;;)
with d;; =0 if i # j by successive operations involving adding multiples of one row to
another or interchanging rows.

Proof This is easy to obtain directly, but we shall deduce it from Theorem 1.3.2. This tells
us that we can reduce the n x n matrix A, to a diagonal matrix D = (ci,-j) with c][j =0if
i # j by interchanging columns, interchanging rows and subtracting multiples of one row
from another.

If we go through this process, but omit all the steps involving interchanging columns, we
will arrive at a matrix B such that each row and each column contain at most one non-zero
element. By interchanging rows, we can now transform B to a diagonal matrix and we are
done. (]

Using Lemma 3.4.6, we can interpret this result in terms of elementary matrices.

Lemma3.4.9 Givenanyn x nmatrix A, we can find elementary matrices Fy, F,, ..., F,
together with a diagonal matrix D such that

FyFp_i...F1A=D.
A simple modification now gives the central theorem of this section.

Theorem 3.4.10 Given any n X n matrix A, we can find elementary matrices
Ly, Ly, ..., L, together with a diagonal matrix D such that

A=LL,...L,D.

Proof By Lemma 3.4.9, we can find elementary matrices F, and a diagonal matrix D such
that

FyF,_...FiA=D.

Since elementary matrices are invertible and their inverses are elementary (see
Lemma 3.4.6), we can take L, = F,‘1 and obtain

LiL,...L,D=F'F;' ... F'F,... HLFFiA=A
as required. O

There is an obvious connection with the problem of deciding when there is an inverse
matrix.
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Lemma 3.4.11 Let D = (d;;) be a diagonal matrix.

() If all the diagonal entries d;; of D are non-zero, D is invertible and the inverse
D™!' = E where E = (eij) is given by e;; = dl;l and e;j =0 fori # j.

(ii) If some of the diagonal entries of D are zero, then BD # I and DB # I for all B.

Proof (i) If all the diagonal entries of D are non-zero, then, taking E as proposed, we have
DE=ED=1

by direct calculation.
(ii) If d,, = O for some r, then, if B = (b;;) is any n X n matrix, we have

Xn:brjdjk = Xn:brj x 0= 0,
j=1 j=1

so BD has all entries in the rth row equal to zero. Thus BD # I. Similarly, DB has all
entries in the rth column equal to zero and DB # I. O

Lemma 3.4.12 Let L, L,, ..., L, be elementary n x n matrices and let D be ann x n
diagonal matrix. Suppose that

A=LL,...L,D.

(i) If all the diagonal entries d;; of D are non-zero, then A is invertible.
(ii) If some of the diagonal entries of D are zero, then A is not invertible.

Proof Since elementary matrices are invertible (Lemma 3.4.6 (v) and (vi)) and the product
of invertible matrices is invertible (Lemma 3.4.3), we have A = L D where L is invertible.
If all the diagonal entries d;; of D are non-zero, then D is invertible and so, by
Lemma 3.4.3, A = LD is invertible.
If A is invertible, then we can find a B with BA = [. It follows that (BL)D = B(LD) =
I and, by Lemma 3.4.11 (ii), none of the diagonal entries of D can be zero. |

As a corollary we obtain a result promised at the beginning of this section.

Lemma 3.4.13 [f A and B are n x n matrices such that AB = I, then A and B are
invertible with A~' = B and B! = A.

Proof Combine the results of Theorem 3.4.10 with those of Lemma 3.4.12. U

Later we shall see how a more abstract treatment gives a simpler and more transparent
proof of this fact.
We are now in a position to provide the complementary result to Lemma 3.4.4.

Lemma 3.4.14 [f A is an n X n square matrix such that the system of equations

has a unique solution for each choice of y;, then A has an inverse.
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Proof If we fix k, then our hypothesis tells us that the system of equations
Zaijxj = ik [1<i=<n]
j=1

has a solution. Thus, for each k£ with 1 <k < n, we can find x;; with 1 < j < n such
that

If we write X = (x;;) we obtain AX = I so A is invertible. O

3.5 Calculating the inverse

Mathematics is full of objects which are very useful for studying the theory of a particular
topic, but very hard to calculate in practice. Before seeking the inverse of an n x n matrix,
you should always ask the question ‘Do I really need to calculate the inverse or is there
some easier way of attaining my object?’ If n is large, you will need to use a computer and
you will either need to know the kind of problems that arise in the numerical inversion of
large matrices or need to consult someone who does.!

Since students are unhappy with objects they cannot compute, I will show in this section
how to invert matrices ‘by hand’. The contents of this section should not be taken too
seriously.

Suppose that we want to find the inverse of the matrix

In other words, we want to find a matrix

X1 X2 X3

21 22 3
such that
1 0 0 x1+2y—z1 x+2ym-—z22 x3+2y3-23
0 1 0)l=1=AX= 5x1 + 3z 5x, + 320 5x3 + 3z3
0 0 1 X1+ X2+ y2 X3+ y3

! A wise mathematician will, in any case, consult an expert.
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We need to solve the three sets of simultaneous equations

X1 +2y—z1=1 X2 +2y;, —20=0 x3+2y3—23=0
5x14+3z21=0 S5xp+ 3z, =1 S5x3+3z35=0
x1+y1=0 X2+ =0 x3+y;=1

Subtracting the third row from the first row, subtracting 5 times the third row from the
second row and then interchanging the third and first rows, we get

xi+y=0 Xo+y=0 x+y3=1
=5y14+3z21=0 =Sy 43z =1 —5y3 +3z3 =-5
n—u=1 »—2=0 yi—z=—L.

Subtracting the third row from the first row, adding 5 times the third row to the second row
and then interchanging the second and third rows, we get

x1+z1=-1 X24+2,=0 x34+z3=2
yi—z1=1 »2—22=0 y3—z3=—1
—211 =5 —2Z2 =1 —2Z3 = —10.

Multiplying the third row by —1/2 and then adding the new third row to the second row
and subtracting the new third row from the first row, we get

X]=3/2 )C2=1/2 X3=—3
yi=-3/2 y=-1/2 y3=4
71 =-5/2 7y =—1/2 73 =5.

We can save time and ink by using the method of detached coefficients and setting the
right-hand sides of our three sets of equations next to each other as follows

1 2 —-1|1 0 O
50 3]0 1 O
1 1 -110 0 1

Subtracting the third row from the first row, subtracting 5 times the third row from the
second row and then interchanging the third and first rows we get

1 1 0]0 0 1
0O -5 3|0 1 =5
o 1 -—-1j1 0 -1

Subtracting the third row from the first row, adding 5 times the third row to the second row
and then interchanging the second and third rows, we get

0o 1|]-1 0 2
1 -1 1 0 -1
0 -215 1 -10
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Multiplying the third row by —1/2 and then adding the new third row to the second row
and subtracting the new third row from the first row, we get

1 0 0 3/2 12 =3
0 1 0|-3/2 -1/2 4
0 0 1|-52 -1/2 5
and looking at the right-hand side of our expression, we see that
3/2 /2 =3

Al =32 —-1/2 4

-5/2 -—-1/2 5

We thus have a recipe for finding the inverse of an n x n matrix A.

Recipe Write down the n x n matrix I and call this matrix the second matrix. By a sequence
of row operations of the following three types

(a) interchange two rows,
(b) add a multiple of one row to a different row,
(c) multiply a row by a non-zero number,

reduce the matrix A to the matrix /, whilst simultaneously applying exactly the same
operations to the second matrix. At the end of the process the second matrix will take the
form A~!. If the systematic use of Gaussian elimination reduces A to a diagonal matrix
with some diagonal entries zero, then A is not invertible.

Exercise 3.5.1 Let Ly, Lo, ..., Ly be n X n elementary matrices. If A is an n X n matrix
with

LiLi_y...L1A=1,
show that A is invertible with
LiLi—y...LiI=A""
Explain why this justifies the use of the recipe described in the previous paragraph.
Exercise 3.5.2 Explain why we do not need to use column interchange in reducing A to I.

Earlier we observed that the number of operations required to solve an n x n system
of equations increases like n°. The same argument shows that the number of operations
required by our recipe also increases like . If you are tempted to think that this is all you
need to know about the matter, you should work through Exercise 3.6.1.

3.6 Further exercises

Exercise 3.6.1 Compute the inverse of the following 3 x 3 matrix A using the method of
Section 3.5 (a) exactly, (b) rounding off each number in the calculation to three significant
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figures:

A=

YW= = =
EN RIS ST
N—= = W=

[Moral: ‘Inverting a matrix on a computer’ is not as straightforward as one might hope.]

Exercise 3.6.2 The, almost trivial, result of this question is quite useful. Suppose that A,
B,C,D,E, F,G and H are n x n matrices. Check that the following equation involving
2n X 2n matrices holds:

A B\(E F\ _((AE+BG) (AF+ BH)

¢ DJ)\G H) \(CE+DG) (CF+DH))
Exercise 3.6.3 [Strassen—Winograd multiplication] Check that the method of multiply-
ing two n x n real matrices given in this book (and in general use) requires about n>

multiplications of real numbers.
Continuing with the notation of the previous question, show that >

(A B)<E F)_<(51+S4—55+S7) (85 + Ss) >
c pJ]\¢ H)™ (S, + S4) (S1 — 82+ S5+ Sp)

Si=(A+D)E+H), S=(C+D)E, S3=AF —H), S,=DG—E),
Ss=(A+B)H, S¢=(C—AYE+F), S =(B—D)G+ H).

where

Conclude that we can find the result of multiplying two 2n x 2n matrices by a method
that only involves multiplying 7 pairs of n x n matrices. By repeating the argument, show
that we can find the result of multiplying two 4n x 4n matrices by a method that involves
multiplying 49 = 72 pairs of n x n matrices.

Show, by induction, that we can find the result of multiplying two 2" x 2™ matrices
by a method that only involves multiplying 7" pairs of 1 x 1 matrices, that is to say, 7"
multiplications of real numbers. If n = 2, show that we can find the result of multiplying
two 1 x n matrices by using n'°27 &~ n?# multiplications of real numbers.’

On the whole, the complications involved in using the scheme sketched here are such
that it is of little practical use, but it raises a fascinating and still open question. How small
can B be if, when 7 is large, two n x n matrices can be multiplied using n# multiplications
of real numbers? (For further details see [20], Volume 2.)

Exercise 3.6.4 We work with n x n matrices.

(i) Show that a matrix A commutes with every diagonal matrix D (that is to say
AD = DA)if and only if A is diagonal. Characterise those matrices A such that AB = BA
for every matrix B and prove your statement.

2 These formulae have been carefully copied down from elsewhere, but, given the initial idea that the result of this paragraph
might be both true and useful, hard work and experiment could produce them (or one of their several variants).

3 Because the ordinary method of adding two n x n matrices only involves n” additions, it turns out that the count of the total
number of operations involved is dominated by the number of multiplications.



58 The algebra of square matrices

(i1) Characterise those matrices A such that AB = B A for every invertible matrix B and
prove your statement.

(iii) Suppose that the matrix C has the property that FE = C = EF = C. By using
your answer to part (ii), or otherwise, show that C = A[ for some A € R.

Exercise 3.6.5 [Construction of C from R] Consider the space M>(R) of 2 x 2 matrices.

If we take
1 0 0o -1
1_<0 1) and J—<1 0>,

show that (if a, b, ¢, d € R)

al +bJ =cl+dJ =a=c, b=d
@l +bl)+(cl+d])y=(@+)+b+d)J
(al +bJ)(cI +dJ)=(ac —bd)I + (ad + bc)J.

Why does this give a model for C? (Answer this at the level you feel appropriate. We give
a sequel to this question in Exercises 10.5.22 and 10.5.23.)

Exercise 3.6.6 Let

1 0 O
A= -1 0
0 1 1

Compute A? and A3 and verify that
A=A+ A1

Deduce that A is invertible and calculate A~! explicitly.
Show that

A =nA?>—(n— DI, A2 =nA>+ A —nl.

Exercise 3.6.7 Consider the matrix

Compute A? and A3
If M is an n X n matrix, we write

00 .
M

expM =1+ E T
j=1 7

where we look at convergence for each entry of the matrix. (The reader can proceed more
or less formally, since we shall consider the matter in more depth in Exercise 15.5.19 and
elsewhere.)
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Show that expfA = Asint — A%cost and identify the map x > (exptA)x. (If you
cannot do so, make a note and return to this point after Section 7.3.)

Exercise 3.6.8 Show that any m x n matrix A can be reduced to a matrix C = (¢;;) with
¢ij =1forall 1 <i <k (for some k with 0 < k < min{n, m}) and ¢;; = 0, otherwise, by
a sequence of elementary row and column operations. Why can we write

C = PAQ,

where P is an invertible m x m matrix and Q is an invertible n X n matrix?

For which values of n and m (if any) can we find an example of an m X n matrix A
which cannot be reduced, by elementary row operations, to a matrix C = (¢;;) with¢;; =1
forall 1 <i <k and ¢;; = 0 otherwise? For which values of n and m (if any) can we find
an example of an m x n matrix A which cannot be reduced, by elementary row operations,
to a matrix C = (¢;;) with ¢;; = 0ifi # j and ¢;; € {0, 1}? Give reasons for your answers.

Exercise 3.6.9 (This exercise is intended to review concepts already familiar to the reader.)
Recall that a function f : A — B is called injective if f(a) = f(a') = a = a’, and sur-
jective if, given b € B, we can find an a € A such that f(a) = b. If f is both injective and
surjective, we say that it is bijective.

(i) Give examples of f; : Z — 7Z such that f; is neither injective nor surjective, f> is
injective but not surjective, f3 is surjective but not injective, fy is bijective.

(ii) Let X be finite, but not empty. Either give an example or explain briefly why no such
example exists of a function g; : X — X such that g, is neither injective nor surjective, g»
is injective but not surjective, g3 is surjective but not injective, g4 is bijective.

(iii) Consider f : A — B. Show that, if there existsa g : B — A such that (fg)(b) = b
for all b € B, then f is surjective. Show that, if there exists an & : B — A such that
(hf)(a) = aforalla € A, then f is injective.

(iv) Consider f : N — N (where N denotes the positive integers). Show that, if f is
surjective, then there exists a g : N — N such that (fg)(n) = n for every n € N. Give an
example to show that g need not be unique. Show that, if f is injective, then there exists
ah : N — Nsuch that (hf)(n) = n for every n € N. Give an example to show that # need
not be unique.

(v) Consider f : A — A. Show that, if there existsa g : A — A such that (fg)(a) =a
for all a € A and there exists an & : A — A such that (hf)(a) = a for all a € A, then
h=g.

(vi) Consider f : A — B.Show that f is bijective if and only if there existsag : B — A
such that (fg)(b) = b for all b € B and such that (gf)(a) = a for all a € A. Show that, if
g exists, it is unique. We write f~! = g.
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The secret life of determinants

4.1 The area of a parallelogram

Let us investigate the behaviour of the area D(a, b) of the parallelogram with vertices 0, a,
a+bandb.
Our first observation is that it appears that

D(a,b + ra) = D(a, b).

To see this, examine Figure 4.1 showing the parallelogram O AX B having vertices O at
0, A ata, X ata+ b and B at b together with the parallelogram O AX’B’ having vertices
O at 0, A ata, X" at (1 + A)a+ b and B’ at Aa + b. Looking at the diagram, we see that
(using congruent triangles)

area OBB = area AX X’
and so

D(a,b+ 1a) = area OAX'B’ = area OAXB +area AXX' —area AXX'
=area OAXB = D(a,b).

A similar argument shows that
D(a+ Ab,b) = D(a, b).
Encouraged by this, we now seek to prove that
D(a+c¢,b) = D(a,b) + D(c, b) *

by referring to Figure 4.2. This shows the parallelogram O AX B having vertices O at 0, A
ata, X ata+ b and B at b together with the parallelogram AP QX having vertices A at
a, Pata+c, Qata+b+cand X ata+b. Looking at the diagram we see that (using
congruent triangles)

area OAP = areaBXQ

60
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X’

o

Figure 4.1 Shearing a parallelogram.

Q

(@)

Figure 4.2 Adding two parallelograms.

and so
D@+c,b)=areaOPQB
=areaOAXB +areaAPQX +areaOAP —areaBXQ
=arcaOAXB +arcaAPQX = D(a,b) + D(c, b).
This seems fine until we ask what happens if we set ¢ = —a in % to obtain

D(0,b) =D(a—a,b) ="D(a,b) + D(—a,b).

Since we must surely take the area of the degenerate parallelogram' with vertices 0, a, a, 0
to be zero, we obtain

D(—a,b) = —D(a, b)

and we are forced to consider negative areas.

Once we have seen one tiger in a forest, who knows what other tigers may lurk. If,
instead of using the configuration in Figure 4.2, we use the configuration in Figure 4.3, the
computation by which we ‘proved’ % looks more than a little suspect.

! There is a long mathematical tradition of insulting special cases.
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A
o

Figure 4.3 Adding two other parallelograms.

This difficulty can be resolved if we decide that simple polygons like triangles ABC
and parallelograms ABC D will have ‘ordinary area’ if their boundary is described anti-
clockwise (that is the points A, B, C of the triangle and the points A, B, C, D of the
parallelogram are in anti-clockwise order) but ‘minus ordinary area’ if their boundary is
described clockwise.

Exercise 4.1.1 (i) Explain informally why, with this convention,

area ABC = area BCA = areaCAB
= —area ACB = —area BAC = —areaCBA.

(if) Convince yourself that, with this convention, the argument for % continues to hold
for Figure 4.3.

We note that the rules we have given so far imply
D(a,b) +D(,a)=D(a+b,b)+D(@+b,a)=D(@+b,a+b)
=D@+b—-(a+b),a+b)=D0,a+b)=0,
so that
D(a, b) = —D(b, a).

Exercise4.1.2 State the rules used in each step of the calculation just given. Why is the rule
D(a, b) = —D(b, a) consistent with the rule deciding whether the area of a parallelogram
is positive or negative?

If the reader feels that the convention ‘areas of figures described with anti-clockwise
boundaries are positive, but areas of figures described with clockwise boundaries are
negative’ is absurd, she should reflect on the convention used for integrals that

b a
/ f(x)dx:—/ f(x)dx.
a b
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Even if the reader is not convinced that negative areas are a good thing, let us agree for
the moment to consider a notion of area for which

D(a+ ¢, b) = D(a, b) + D(c, b) *
holds. We observe that if p is a strictly positive integer
D(pa,b)=D(a+a+---+a,b)
——— —
P
= D(av b) + D(av b) + e + D(as b)

p

= pD(a, b).
Thus, if p and g are strictly positive integers,
qD(Za, b) = D(pa,b) = pD(a, b)

and so

D(ga, b) = gD(a, b).
Using the rules D(—a, b) = —D(a, b) and D(0, b) = 0, we thus have

D(ra,b) = AD(a, b)
for all rational A. Continuity considerations now lead us to the formula

D(ra,b) = AD(a, b)
for all real A. We also have

D(a, Ab) = —D(Ab, a) = —AD(b, a) = AD(a, b).

We now put all our rules together to calculate D(a, b). (We use column vectors.) Suppose
that ay, as, by, by # 0. Then

2((2)- G)=2((5)-G) +((2)- ()

2((5)-G)-a (5) () () -2 ()
((5)-(2)=2(()- (5)

2((5)-()-2(()- ()

— (b — asb))D ((:)) , <?>> = aby — ashy.

(Observe that we know that the area of a unit square is 1.)

|
>
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Exercise 4.1.3 (i) Justify each step of the calculation just performed.
(it) Check that it remains true that

(1) () -om
as b2

for all choices of a; and b; including zero values.
ap b
A=
(“2 bz) ’
DA =D <<a1> , <b1>> = Cllbz — clzb].
ay b2

The mountain has laboured and brought forth a mouse. The reader may feel that five
pages of discussion is a ridiculous amount to devote to the calculation of the area of a
simple parallelogram, but we shall find still more to say in the next section.

If

we shall write

4.2 Rescaling

We know that the area of a region is unaffected by translation. It follows that the area of a
parallelogram with vertices ¢, X +¢,X+y+ ¢,y + cis

p((2)- () =2 )

VVe now COIlSideI’ a 2 X 2 matriX
( 1 1)
ay bz

and the map x > Ax. We write e; = (1, 0)”, e, = (0, 1)7 and observe that Ae; = a, Ae; =
b. The square ¢, §e; + ¢, §e; + de; + ¢, e, + ¢ is therefore mapped to the parallelogram
with vertices

Ac, A(Se; +c¢) =da+ Ac,
A(Se; + 6e; +¢) =8a+5b+ Ac, A(Se; +c¢) =346b+ Ac

which has area

Sa] (Sb[ 2
D = 6"DA.
<5612 (sz)

Thus the map takes squares of side § with sides parallel to the coordinates (which have area
82) to parallelograms of area §>DA.
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If we want to find the area of a simply shaped subset I' of the plane like a disc, one
common technique is to use squared paper and count the number of squares lying within I".
If we we use squares of side §, then the map x — Ax takes those squares to parallelograms
of area 8D A. If we have N(§) squares within I" and x — Ax takes I" to I/, it is reasonable
to suppose

areal’ ~ N(8)8> and areal” ~ N(8)8’DA
and so
areal” ~ areal’ x DA.
Since we expect the approximation to get better and better as § — 0, we conclude that
areal’ =T x DA.

Thus DA is the area scaling factor for the map x — Ax under the transformation x > AX.
When DA is negative, this tells us that the mapping x — Ax interchanges clockwise and
anti-clockwise.

Let A and B be two 2 x 2 matrices. The discussion of the last paragraph tells us that
DA is the scaling factor for area under the transformation x — Ax and DB is the scaling
factor for area under the transformation x — Bx. Thus the scaling factor D(AB) for the
transformation x — A Bx which is obtained by first applying the transformation x — Bx
and then the transformation x — Ax must be the product of the scaling factors DB and
DA. In other words, we must have

D(AB) =DB x DA =DA x DB.

Exercise 4.2.1 The argument above is instructive, but not rigorous. Recall that

D apn  ax\ _
= dajiaz — apazg.
a; ax

Check algebraically that, indeed,
D(AB) = DA x DB.

By Theorem 3.4.10, we know that, given any 2 x 2 matrix A, we can find elementary
matrices Ly, Ly, ..., L, together with a diagonal matrix D such that

A=LL,...L,D.
We now know that
DA=DLy xDLy x---xDL, xDD.

In the last but one exercise of this section, you are asked to calculate DE for each of the
matrices E which appear in this formula.

Exercise 4.2.2 In this exercise you are asked to prove results algebraically in the manner
of Exercise 4.1.3 and then think about them geometrically.
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(i) Show that DI = 1. Why is this a natural result?
(ii) Show that, if
0 1
E =
(i o)

then DE = —1. Show that E(x, y)T = (v, x)T (informally, E interchanges the x and y
axes). By considering the effect of E on points (cost,sint)” as t runs from 0 to 2w, or
otherwise, convince yourself that the map X — EX does indeed ‘convert anti-clockwise to

clockwise’.
1 A 1 0
E = (O 1> or E = ()\ 1),

(iii) Show that, if
then DE = 1 (informally, shears leave area unaffected).
(iii) Show that if
a 0
D
G 2

then DE = ab. Why should we expect this?
Our final exercise prepares the way for the next section.

Exercise 4.2.3 (No writing required.) Go through the chapter so far, working in R and
looking at the volume D(a, b, ¢) of the parallelepiped with vertex 0 and neighbouring
vertices a, b and c.

4.3 3 x 3 determinants

By now the reader may be feeling annoyed and confused. What precisely are the rules
obeyed by D and can some be deduced from others? Even worse, can we be sure that they
are not contradictory? What precisely have we proved and how rigorously have we proved
it? Do we know enough about area and volume to be sure of our ‘rescaling’ arguments?
What is this business about clockwise and anti-clockwise?

Faced with problems like these, mathematicians employ a strategy which delights them
and annoys pedagogical experts. We start again from the beginning and develop the theory
from a new definition which we pretend has unexpectedly dropped from the skies.

Definition 4.3.1 (i) We set €1 = —€31 = 1, €,, =0 forr =1,2.
(ii) We set
€3 =€ =3 =1
€1 =613 =¢€3=—1

€5t = 0 otherwise [1 <r,s,t <3]
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(#ii) If A is the 2 x 2 matrix (a;;), we define

2
detA = Zeija”ajz.

i=1

(iv) If A is the 3 x 3 matrix (a;;), we define

3
detA:Z

€ijkdi1a;20x3.

i=1 j=1 j=I
We call det A the determinant of A.
Exercise 4.3.2 Secretly check that
DA =detA
(at least in the 2 x 2 case).
Exercise 4.3.3 Check that
€rst = —€spp = —€ppy = —€pgy

for1 <vr,s,t <3.(Thus interchanging two indices multiplies €,5; by —1.)

The symbol €;j; and its generalisations are sometimes called Levi-Civita symbols.”

In this section we develop the theory of determinants in the 3 x 3 case, leaving the easier
2 x 2 case to the reader. Note that, if we use the summation convention for i, j and &, then
the definition of the determinant takes the pleasing form

detA = €ijkai1a20%3.

Lemma 4.3.4 We consider the 3 x 3 matrix A = (a;;).
(i) If A is formed from A by interchanging two columns, then det A = — det A.
(i) If A has two columns the same, then det A = 0.
(iii) If A is formed from A by adding a multiple of one column to another, then det A =
det A.
(iv) If A is formed from A by multiplying one column by X, then det A = X det A.
(v)det] = 1.

Proof (i) Suppose that we interchange the second and third columns. Then, using the
summation convention,

det A = €;jxaia3a (by the definition of det and A)
= €jkdi1qk204;3
= —€ikjai1012a3 (by Exercise 4.3.3)
= —€;jk0;10j20k3 (since j and k are dummy variables)
= —detA.

2 When asked what he liked best about Italy, Einstein replied ‘Spaghetti and Levi-Civita’.
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The other cases follow in the same way.
(ii) Let A be the matrix formed by interchanging the identical columns. Then A = A, so

detA =detA =—detA

and det A = 0.
(iii) By (i), we need only consider the case when we add A times the second column of
A to the first. Then

det A = €;jx(ai1 + Main)ajpars = €jxaiapas + reijranajpas = det A +0 = det A,

using (ii) to tell us that the determinant of a matrix with two identical columns is zero.
(iv) By (i), we need only consider the case when we multiply the first column of A by
A. Then

detA = Eijk()uail)ajzam = A(eijka,-lajgam) = AdetA.
(v) det] = €;j18i18j20k3 = €123 = 1. O

We can combine the results of Lemma 4.3.4 with the results on post-multiplication by
elementary matrices obtained in Lemma 3.4.6.

Lemma 4.3.5 Let A be a3 x 3 matrix.

(i) det AE,, =detA detE,;;, = 1anddet AE,; =detAdetE, ;.

(i) Suppose that o is a permutation which interchanges two integers r and s and
leaves the rest unchanged. Then det AP(0) = —det A, det P(o) = —1 and det AP(0) =
det A det P(0o).

(iii) Suppose that D = (d;;) is a 3 x 3 diagonal matrix (that is to say, a 3 x 3 matrix with
all non-diagonal entries zero). If d,, = d,, then det AD = ddydsz det A, det D = dd»d;
and det AD = det Adet D.

Proof (i) By Lemma 3.4.6 (ii), AE,,, is the matrix obtained from A by adding A times
the rth column to the sth column. Thus, by Lemma 4.3.4 (iii),

detAE,, = detA.

By considering the special case A = I, we have det E, ; ; = 1. Putting the two results
together, we have det AE, ;, = detAdetE, ;.

(i) By Lemma 3.4.6 (iv), A P(o) is the matrix obtained from A by interchanging the rth
column with the sth column. Thus, by Lemma 4.3.4 (i),

det AP(0) = —det A.

By considering the special case A = I, we have det P(o) = —1. Putting the two results
together, we have det AP (o) = det A det P(o).
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(iii)) The summation convention is not suitable here, so we do not use it. By direct
calculation, AD = A where

3

a,'j = E a,-kdkj =dja,-j.
k=1

Thus AD is the result of multiplying the jth column of A by d; for 1 < j < 3. Applying
Lemma 4.3.4 (iv) three times, we obtain

det AD = d drd3 det A.

By considering the special case A = I, we have det D = d,d»d;3. Putting the two results
together, we have det AD = det A det D. |

We can now exploit Theorem 3.4.10 which tells us that, given any 3 x 3 matrix A, we
can find elementary matrices L, L,, ..., L, together with a diagonal matrix D such that

A=LL,...L,D.
Theorem 4.3.6 If A and B are 3 x 3 matrices then det BA = det B det A.
Proof We know that we can write A in the form given in the paragraph above so

det BA = det(BL,L,...L,D)
=det (BL{L>...L,)detD
= det (BL1L2 .. .Lpfl)detLp det D

=detBdetL detL,...detL,detD.
Looking at the special case B = I, we see that
det A =detLydetL,...detL,detD,
and so det BA = det B det A. ([l
We can also obtain an important test for the existence of a matrix inverse.
Theorem 4.3.7 If A is a 3 x 3 matrix, then A is invertible if and only if det A # 0.
Proof Write A in the form
A=LL,...L,D

with Ly, Ly, ..., L, elementary and D diagonal. By Lemma 4.3.5, we know that, if E is
an elementary matrix, then |det E| = 1. Thus

|det A| = |det L[| detL,|...|detL,||det D| = |det D|.
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Lemma 3.4.12 tells us that A is invertible if and only if all the diagonal entries of D
are non-zero. Since det D is the product of the diagonal entries of D, it follows that A is
invertible if and only if det D # 0 and so if and only if det A # 0. O

The reader may already have met treatments of the determinant which use row manipu-
lation rather than column manipulation. We now show that this comes to the same thing.
Definition 4.3.8 If A = (q; j)lg'i =" isann x m matrix we define the transposed matrix (or,

1<i<n
1<s<n

\=r=m Where

more usually, the matrix transpose) AT = C to be the m x n matrix C = (cyy)
C,'j = aji.

Lemma 4.3.9 If A and B are two n x n matrices, then (AB)T = BT AT,
Proof Let A = (a;j), B = (b;;), AT = (@) and BT = (b;;). If we use the summation
convention with i, j and k ranging over 1, 2, ..., n, then
ajkby = b = biay;.
U

Exercise 4.3.10 Suppose that A isann x m and B an m x p matrix. Show that (AB)T =
BT AT, (Note that you cannot use the summation convention here.)

Lemma 4.3.11 We use our standard notation for 3 x 3 elementary matrices.

(i) EL,, = Esra

(ii) If o is a permutation which interchanges two integers r and s and leaves the rest
unchanged, then P(c)T = P(o).

(iii) If D is a diagonal matrix, then DT = D.

(iv) If E is an elementary matrix or a diagonal matrix, then det ET = det E.

() If A is any 3 x 3 matrix, then det AT = det A.

Proof Parts (i) to (iv) are immediate. Since we can find elementary matrices
Ly, Ly, ..., L, together with a diagonal matrix D such that

A=L/L,...L,D,
part (i) tells us that
det A" =det D" LTLT LT =det D" detL] detL] ,...detL]
=detDdetL,detL,_;...detL; =detA

as required. O

Since transposition interchanges rows and columns, Lemma 4.3.4 on columns gives us
a corresponding lemma for operations on rows.

Lemma 4.3.12 We consider the 3 x 3 matrix A = (a;;).
(i) If A is formed from A by interchanging two rows, then det A = — det A.
(ii) If A has two rows the same, then det A = 0.
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(iii) If A is formed from A by adding a multiple of one row to another; then det A = det A.
(iv) If A is formed from A by multiplying one row by A, then det A = X det A.

Exercise 4.3.13 Describe geometrically, as well as you can, the effect of the mappings from
R3 10 R? given by X — E,,;X, X = DX (where D is a diagonal matrix) and X — P(0)X
(where o interchanges two integers and leaves the third unchanged).

For each of the above maps X — MX, convince yourself that det M is the appropriate
scaling factor for volume. (In the case of P(c) you will mutter something about right-
handed sets of coordinates being taken to left-handed coordinates and your muttering does
not have to carry conviction.”)

Let A be any 3 x 3 matrix. By considering A as the product of diagonal and elemen-
tary matrices, conclude that det A is the appropriate scaling factor for volume under the
transformation X — AX.

[The reader may feel that we should try to prove this rigorously, but a rigorous proof would
require us to produce an exact statement of what we mean by area and volume. All this can
be done, but requires more time and effort than one might think.]

Exercise 4.3.14 We shall not need the idea, but, for completeness, we mention that, if
A > 0and M = Al, the map X — MX is called a dilation (or dilatation) by a factor of
M. Describe the map X — MX geometrically and state the associated scaling factor for
volume.

Exercise 4.3.15 (i) Use Lemma 4.3.12 to obtain the pretty and useful formula
€ErstAirdjsQxr = €jjk det A.

(Here, A = (a;;) is a 3 x 3 matrix and we use the summation convention.)
Use the fact that det A = det AT to show that

€ijkQirQjsQx; = €rg det A.

(ii) Use the formula of (i) to obtain an alternative proof of Theorem 4.3.6 which states
that det AB = det A det B.

Exercise 4.3.16 Let €, [1 <1, j, k,I < 4] be an expression such that €234 =1 and
interchanging any two of the suffices of €;j; multiplies the expression by —1. If A = (a;;)
is a4 x 4 matrix we set

det A = €;juai1aparas.

Develop the theory of the determinant of 4 x 4 matrices along the lines of the preceding
section.

3 We discuss this a bit more in Chapter 7, when we talk about O(R") and SO(R") and in Section 10.3, when we talk about the
physical implications of handedness.
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4.4 Determinants of n x n matrices
A very wide-awake reader might ask how we know that the expression €;j; of Exer-
cise 4.3.16 actually exists with the properties we have assigned to it.
Exercise 4.4.1 Does there exist a non-trivial expression
Xijkim [1<ijkl,m<S5]

such that cycling three suffices multiplies the expression by —12? (More formally, if r, s, t
are distinct integers between 1 and 5, then moving the suffix in the rth place to the sth
place, the suffix in the sth place to the tth place and the suffix in the tth place to the rth
place multiplies the expression by —1.)

[We take a slightly deeper look in Exercise 4.6.2 which uses a little group theory.]

In the case of €;j;, we could just write down the 4* values of ¢; jki corresponding to
the possible choices of i, j, k and [ (or, more sensibly, the 24 non-zero values of €;;y
corresponding to the possible choices of i, j, k and / with the four integers unequal).
However, we cannot produce the general result in this way.

Instead we proceed as follows. We start with a couple of definitions.

Definition 4.4.2 We write S, for the collection of bijections
o:{1,2,....,n} > {1,2,...,n}.
Ift,0 € S,, then we write (to)(r) = r(a(r)).

Many of my readers will know S, by the name of ‘the permutation group on
{1,2,...,n}.

Definition 4.4.3 We define the signature function ¢ : S, — {—1, 1} by

Hl§r<s§n (G(S) - 0‘(}’))
Hl§r<s§n(s - }") .

{(o) =

Thus, if n = 3,
(0(2) - 0(1)) (0(3) - 0(1)) (0(3) - 0(2))
2Q-1D3-1D3-2)
and, if (1) =2,7(2) =3,1t(3) =1,
_@=21-2(1-3)
2-DGB-DEB-2)
Exercise 4.4.4 Ifn = 4, write out { (o) in full.
Compute (7)) if t(1) =2, 1(2) =3, t(3) =1, t(4) = 4. Compute {(p) if p(1) =2,
p(2) =3, p3) =4 p4) =L

Lemma 4.4.5 Let ¢ be the signature function for S,,.
(@) ¢t(o)==xlforallo € §,.

t(o) =

¢(r)
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@) Ift,0 €8, then {(t0) = ¢(1)¢(0).
@i If p(1) =2, p(2) = 1 and p(j) = j otherwise, then {(p) = —
(iv) If T interchanges 1 and i with i # 1 and leaves the remaining integers fixed, then

{k)=—L
(v) If k interchanges two distinct integersi and j and leaves the rest fixed then ¢ (k) = —

Proof (i) Observe that each unordered pair {r, s} withr # sand 1 < r, s < n occurs exactly
once in the set

and exactly once in the set

={{o(r), o)} : 1 <r <s<n}.

Thus
[ (c&)—otm)|= [] lo)—ow)
I<r<s<n I<r<s<n
= ]‘[ Is —r| = ]_[ (s—7r)>0
1<r<s<n I<r<s<n
and so

i< <y<n (0(8) =0 ()|
n1§r<s§n(5 —-7r) -
(i1) Again, using the fact that each unordered pair {r,s} withr #sand 1 <r,s <n
occurs exactly once in the set I';, we have
[Ti<r<yzn (to(s) — 70 (1))
Hl§r<5§n(s —r)
_ nl§r<s§n (TO(S) - To(r)) Hl§r<s§n (G(S) - 0("))
" lsam @© =00)  Tigrapenls =)
(iii) For the given p,

[T (&) —pm)= T] =9, J] (ets)=p)= ] -2,

1g(0)] =

{(to) =

= £(0)5(0).

3<r<s<n 3<r<s<n 3<s<n 3<s<n
[T (e)=p@)= [T G-0.
3<s<n 3<s<n
Thus
p2)—p1) 1-2
¢(p) = = -1

2—-1 2-1
(iv) If i = 2, then the result follows from part (iii). If not, let p be as in part (iii) and
let @ € S, be the permutation which interchanges 2 and i leaving the remaining integers
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unchanged. Then, by inspection,
apa(r) = t(r)
forall 1 <r < n and so apa = t. Parts (ii) and (i) now tell us that
t(t) = L(@) () (@) = L (@) (p) = —1.
(v) Use an argument like that of (iv). O

Exercise 4.4.6 (i) We use the notation of the proof just concluded. Check that apa(r) =
t(r) by considering the casesr = 1, r =2, r =i andr ¢ {1, 2, i} in turn.
(if) Write out the proof of Lemma 4.4.5 ().

Exercise 4.6.1 shows that ¢ is the unique function with the properties described in
Lemma 4.4.5.

Exercise 4.4.7 Check that, if we write
€ (1)o@ = {(0)
forall o € S4 and
€rstu = 0

whenever 1 <r,s,t,u < 4andnotall of ther, s, t, u are distinct, then €;;; satisfies all the
conditions required in Exercise 4.3.16.

If we wish to define the determinant of an n x n matrix A = (a;;) we can define €;jx. .y
(with n suffices) in the obvious way and set

det A = €k v @i1aj2043 - - - Ay p—10Gyn

(where we use the summation convention with range 1, 2, . . ., n). Alternatively, but entirely
equivalently, we can set

detA = Z $(0)as1y1G02)2 - - - Ao (uyn-
oeSs,

All the results we established in the 3 x 3 case together with their proofs go though
essentially unaltered to the n x n case.

Exercise 4.4.8 We use the notation just established. Show that if o € S, then {(0) =
¢(o™Y). Use the definition

detA = Z $(0)ac1)18o@y2 - - - Ao
o€ES,
to show that det AT = det A.
The next exercise shows how to evaluate the determinant of a matrix that appears from

time to time in various parts of algebra and, in particular, in this book. It also suggests how
mathematicians might have arrived at the approach to the signature used in this section.
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Exercise 4.4.9 [The Vandermonde determinant]* (i) Compute

det(1 1).
x oy

(ii) Consider the function F : R3 — R given by

1 1 1
F(x,y,z) =det| x y
x2 2 2

Explain why F is a multinomial of degree 3. By considering F(x, x, z), show that F has
y — x as a factor. Explain why F(x,y, z) = A(y — x)(z — y)(z — x) for some constant A.
By looking at the coefficient of yz2, or otherwise, show that

Fx,y,2) =y —x)(z—y)(z—x).
(iii) Consider the n x n matrix V with v,; = x;’l. Show that, if we set
F(xy,x2,...,x,)=detV,
then

F(-XI,XQ, ey xn) = n(xi — -xj)

i>j

(iv) Suppose that o € S, all the x, are distinct, and we set

F(xo1), Xo@)s - - > Xo(n))
F(X],)CQ,...,)C”)

(o) =

Show that Zy is the signature function.

The reader should be aware of an alternative notation for determinants illustrated in the
equation

api daip 43 ap aprn as
a1 axp ay|=det| ay axn a3
ay  axn asx asi asxn as3

4.5 Calculating determinants

Much of this section deals with how not to evaluate a determinant. We shall use the
determinant of a 4 x 4 matrix A = (a;;) as a typical example, but our main interest is in
what happens if we compute the determinant of an n x n matrix when n is large.

IS

Vandermonde was an important figure in the development of the idea of the determinant, but appears never to have considered
the determinant which bears his name.

In 1963, at the age of eighteen, I had never heard of matrices, but could evaluate 3 x 3 Vandermonde determinants on sight.
Just as a palacontologist is said to be able to reconstruct a dinosaur from a single bone, so it might be possible to reconstruct
the 1960s Cambridge mathematics entrance papers from this one fact.
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It is obviously foolish to work directly from the definition

4 4 4
detAzg E E E €jk10i10j2A0k3014

since only 24 = 4! of the 4* = 256 terms are non-zero. The alternative definition

detA = Z £(0)a5(1)100(2)200 (3)300 (4)4

0'€S4

requires us to compute 24 = 4! terms using 3 = 4 — 1 multiplications for each term and
then add them together. This is feasible, but the analogous method for an n x n matrix
involves the computation of n! terms and is thus impractical even for quite small 7.

Exercise 4.5.1 Estimate the number of multiplications required for n = 10 and forn = 20.

However, matters are rather different if we have an upper triangular or lower triangular
matrix.

Definition 4.5.2 Ann x n matrix A = (a;;) is called upper triangular (or right triangular)
ifa;j = 0for j <i.Ann x nmatrix A = (a;;) is called lower triangular (or left triangular)
ifa;; =0for j >i.

Exercise 4.5.3 Show that a matrix which is both upper triangular and lower triangular

must be diagonal.

Lemma 4.5.4 (i) If A = (a;;) is an upper or lower triangular n x n matrix, and o € S,
then az(1)1052)2 - - - gy = O unless o is the identity map (that is to say, o (i) =i for all
i).

(i) If A = (a;;) is an upper or lower triangular n x n matrix, then
detA =aynaxn...a,,.
Proof Immediate. Il

We thus have a reasonable method for computing the determinant of an n x n matrix.
Use elementary row and column operations to reduce the matrix to upper or lower triangular
form (keeping track of any scale change introduced) and then compute the product of the
diagonal entries.

Exercise 4.5.5 (i) Suppose that A is anr X r matrix and B an s X s matrix. Let
A 0
C =
(5 %)

(in other words, ¢jj = a;; if1 <i,j <r,c;j=bi_rj ifr +1=<i,j<r+sandc;;=0
otherwise). By using the ideas of the previous paragraph, or otherwise (there are lots of
ways of doing this exercise), show that

det C = det A det B.



4.5 Calculating determinants 77

(i) Find 2 x 2 matrices A, B, C and D such that det A = det B =detC = detD =0,

but
A B
det (C D) =1.

[There is thus no general method for computing determinants ‘by blocks’ although special
cases like that in part (i) can be very useful.]

When working by hand, we may introduce various modifications as in the following
typical calculation:

2 4 6 1 2 3 1 2 3
det|3 1 2)=2det|{3 1 2| =2det{0O -5 -7
5 2 3 5 2 3 0 -8 —12
=7

-5 5 7
_2det<_8 _12>_8det<2 )
5 2 1 0
Ssaa(] 2)=san(] )=

Exercise 4.5.6 Justify each step.

w

As the reader probably knows, there is another method for calculating 3 x 3 matrices
called row expansion described in the next exercise.

Exercise 4.5.7 (i) Show by direct algebraic calculation (there are only 3! = 6 expressions
involved) that

apr  dr  dps
det | a1 axn axn
asi asp ass

az ans as) ans as) an
= ay; det — ajp det + a3 det .
asp ass asg ass asg asp

(ii) Use the result of (i) to compute

Most people (including the author) use the method of row expansion (or mix row
operations and row expansion) to evaluate 3 x 3 matrices but, as we remarked on page 11,
row expansion of an n x n matrix also involves about n! operations, so (in the absence of
special features) it should not be used for numerical calculation when n > 4.

In the remainder of this section we discuss row and column expansion for n x n matrices
and Cramer’s rule. The material is not very important, but provides useful exercises for
keen students.’

3 Less keen students can skim the material and omit the final set of exercises.
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Exercise 4.5.8 [Column expansion] If A = (a;;) is a 4 x 4 matrix, let us write

axp a3 anu ap a3 au
F(A)=aydet|az a3 ay | —axydet|asyn azx  axu
ag  Ag3 443 g a43 A4

dajpp dpiz  dig ajpp a3z a4

+azidet | ax ax  ay | —andet|axn ax ax

dqp 443 Q44 asz a3z dsz4

(i) Show that, if A is the matrix formed from A by interchanging the first row and the
jth row (with 1 # j), then

F(A) = —F(A).

(ii) By applying (i) three times, or otherwise, show that, if A is the matrix formed from
A by interchanging the ith row and the jth row (withi # j), then

F(A) = —F(A).

Deduce that, if A has two rows identical, F(A) = 0.
(iii) Show that, if A is the matrix formed from A by multiplying the first row by A,

F(A) = LF(A).
Deduce that, if A is the matrix formed from A by multiplying the ith row by A,
F(A) = A F(A).

(iv) Show that, if A is the matrix formed from A by adding X times the ith row to the first
row [i # 1],

F(A) = F(A).

Deduce that, if A is the matrix formed from A by adding A times the ith row to the jth
row [i # j],

F(A) = F(A).
(v) Use Theorem 3.4.8 to show that
F(A) =detA.

Since det AT = det A, the proof of the validity of column expansion given as Exer-
cise 4.5.8 immediately implies the validity of row expansion for a 4 x 4 matrix A = (a;;):

axp a3 44 d;  dx3  dAz4
D(A) =andet|axx a3z as | —apdet|as a  axn
gy Q43 Agq ag1 43 Ay

ayy  ax  axy ay  axp  axp

+apzdet|as; axm  ay | —audet|az  axn  as

as; a4 a4 as1  ag 443
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It is easy to generalise our results to n X n matrices.

Definition 4.5.9 Suppose n > 2. Let A be an n x n matrix. If M;; is the (n — 1) x (n — 1)
matrix formed by removing the ith row and jth column from A, we write

Aij = (=1)" det M;;.
The A;j are called the cofactors of A.

Exercise 4.5.10 Suppose n > 2. Let A be an n x n matrix a;; with cofactors Aj;;.
(i) Check that the argument of Exercise 4.5.7 and the paragraph that follows applies in
the general case and deduce that

ZQIJ‘AU =det A.

j=1
(if) By considering the effect of interchanging rows, show that

n

Za,‘inj =detA
=1

forall 1 <i <n. (We talk of ‘expanding by the ith row’.)
(iii) By considering what happens when a matrix has two rows the same, show that

n
Za,-jAkj =0
j=1

wheneveri #k, 1 <i,k <n.
(iv) Summarise your results in the formula

n
Za,-jAkj :8kj det A. *
j=1
If we define the adjugate matrix Adj A = B by taking b;; = Aj; (thus Adj A is the
transpose of the matrix of cofactors of A), then equation % may be rewritten in a way that
deserves to be stated as a theorem.

Theorem 4.5.11 Ifn > 2 and A is an n X n matrix, then
AAdjA = (det A)I.

Theorem 4.5.12 Let A be an n x n matrix. If det A # O, then A is invertible with inverse

Ifdet A = 0, then A is not invertible.
Proof 1f det A # 0, then we can apply %. If A~! exists, then

detAdetA™ =detAA™ =detl =1
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sodet A # 0. ]

Theorem 4.5.12 gives another proof of Theorem 4.3.7.
The next exercise merely emphasises part of the proof just given.

Exercise 4.5.13 If A is an n x n invertible matrix, show that det A~! = (det A)~'.

Since the direct computation of Adj A involves finding n? determinants of (n — 1) x
(n — 1) matrices, this result is more important in theory than in practical computation.

We conclude with Cramer’s rule. This topic was historically very important in popular-
ising the idea of a determinants. (It was said that success in the entry to the major French
engineering schools depended on mastering the rule.®) However, for the reasons already
explained, it not often useful in a modern context.

Exercise 4.5.14 [Cramer’s rule] Suppose thatn > 2, A isann x n matrix and b a column
vector of length n. Write B; for the n x n matrix obtained by replacing the ith column of A
by b. Show that

det Bj = Z bkAkj.
k=1

If A is invertible and X is the solution of show that

detBj
X = .
77 detA

(This is Cramer’s rule.)

Exercise 4.5.15 According to one Internet site, ‘Cramer’s Rule is a handy way to solve for
just one of the variables without having to solve the whole system of equations.” Comment.

Exercise 4.5.16 We can define the permanent of an n X n square matrix by

perm(A) = Z Hag(,'),‘.

oesS, i=1

(Compare our standard formula det A = desn ) [T av@i-)

(i) Show that perm AT = perm A.

(ii) Is it true that perm A # O implies A invertible? Is is it true that A invertible implies
perm A # 02 Give reasons.
[Hint: Look at the 2 x 2 case.]

(iii) Explain how to calculate perm A by row expansion.

@@v) If |a;j| < K, show that | perm A| < n!K". Give an example to show that this result
is best possible whatever the value of n.

6 ‘Cette méthode était tellement en faveur, que les examens aux écoles des services publics ne roulait pour ainsi dire que sur elle;
on était admis ou réjeté suivant qu’on la possedait bien ou mal.” (Quoted in Chapter 1 of [25].)
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) If |aij| < K, show that |det A| < n!K". Can you do better? (Please spend a few
minutes on this, since, otherwise, when you see Hadamard’s inequality in Exercise 7.6.13,
you will say ‘I could have thought of that!’")

Exercise 4.5.17 We say that an n x n matrix A with real entries is antisymmetric if A =
—AT. Which of the following result are true and which are false for n x n antisymmetric
matrices A? Give reasons.

@) Ifn=2and A # 0, then det A # 0.

(@) If n is even and A # 0, then det A # 0.

(iii) If n is odd, then det A = 0.

4.6 Further exercises

Exercise 4.6.1 Show that any permutation o € S,, can be written as
0O=T7...T)

where 7; is a transposition (that is to say, t; is a permutation which interchanges two
integers and leaves the rest fixed).

Suppose that ¢ : S, — C has the following two properties.

(A)Ifo, T € S, then Z(o7) = £(0)Z (7).

B)If (1) = 2, 7(2) = 1 and 7(j) = j otherwise, then Z(7) = —1.

Show that  is the signature function.

Explain why we have shown that, if a permutation is obtained from an even number
of transpositions, it cannot be obtained from an odd number of transpositions and, if a
permutation is obtained from an odd number of transpositions, it cannot be obtained from
an even number number of transpositions. In particular, the identity permutation cannot be
expressed as the composition of an odd number of permutations.

[If we had proved this result without using the signature, we could have used it to define
the signature ¢ (o) as (—1)" when we can obtain o as the product of r transpositions.]

Exercise 4.6.2 (This continues Exercise 4.6.1, but requires a tiny bit of knowledge of
group theory.)

(1) Show that C \ {0} is a group under multiplication.

(ii) By using the result of the first paragraph of Exercise 4.6.1, or otherwise, show that, if
n > 2, the only homomorphisms 6 : S, — C are the trivial homomorphism 6 with 6o = 1
for all o € §,, and the signature function ¢.

Exercise 4.6.3 If A and B are n x n matrices and AB = 0, show that either A = 0 or
B =0ordetA =detB =0.

[This is easy with the tools of this chapter, but, when we have talked about the rank of
mappings in the next chapter, the result will appear obvious.]

7 The idea is in plain sight, but, if you do discover Hadamard’s inequality independently, the author raises his hat to you.
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Exercise 4.6.4 Consider the equation
Ax=h

where A is an n x n matrix with integral entries (that is to say, a;; € Z) and h is a column
vector with integral entries. Show that the solution vector x will have integral entries if det A
divides each entry h; of h. Give an example to show that this condition is not necessary.

Now suppose that A and h have rational entries and det A = 0. Is it true that the equation
Ax = halways has a solution vector with rational entries? Is it true that every solution vector
must have rational entries? Is it true that, if there exists a solution vector, then there exists
a solution vector with rational entries? Give proofs or counterexamples as appropriate.

a b
A= .
(2
Show that det(r] — A) = % + ut + v, where u and v are to be found in terms of a, b, ¢ and
d.

Show by direct calculation that A2 +uA 4+ vl = 0.
[In Example 6.4.4 we shall see an easier proof which also indicates why the result is true.]

Exercise 4.6.5 Let

Exercise 4.6.6 If f,, g, are once times differentiable functions from R to R and

fi(x) gl(x)>

H) = det (fz(x) 2(x)

show that

H'(x) = det <f1(x) gl(x)) + det (f{(x) 8i(x)> ‘

H(x) gy(x) fax)  galx)
If f,, g, h, are once times differentiable functions from R to R and
fix) g1x)  hix)

F(x)=det| fo(x) g(x) hax)],
) gix)  hs(x)

express F’(x) as the sum of three similar determinants. If f, g, & are five times differentiable
and

fx)  glx)  hx)
Glx)=det| f'(x) g'x) H ],
') gy h"(x)

compute G’(x) and G”(x) as determinants.

Exercise 4.6.7 [Cauchy’s proof of L’Hépital’s rule] (This question requires Rolle’s the-
orem from analysis.)
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Suppose that u, v, w : [a, b] — R are continuous on [a, b] and differentiable on (a, b).
Let

u(a) ub) u()
f@)=det| v@) vbd) v@)
w(a) wb) w)

Verify that f satisfies the conditions of Rolle’s theorem and deduce that there exists a
¢ € (a, b) such that

u(@) u) u'(c)
det | v(a) v®) V()] =0.
w(a) wb) w'(c)

By choosing w appropriately, prove that, if v'(f) # 0 for all 7 € (a, b), there exists a
¢ € (a, b) such that

u(b) —ua)  u'(c)
v(b) —v(@) V()

Suppose now that, in addition, u(a), v(a) =0, but v(t) # 0 for all 7 € (a,b). If ¢ €
(a, b), show that there exists a ¢, € (a, t) such that u(¢)/v(t) = u'(¢;)/v'(c,). If, in addition,
u'(x)/v'(x) - I as x — a through values x > a, deduce that u(t)/v(t) > 1 as t - a
through values ¢ > a.

Exercise 4.6.8 State a condition in terms of determinants for the two sets of three equations
for x Vi

aj1x1 + ajpxs + aizx; = ¢;, bi1y1 + bizys + bizys = x; [i=1,2,3]

to have a unique solution for the x; and for the y;. State a condition in terms of determinants
for the two sets of three equations to have a unique solution for the y;. Give reasons in both
cases.

Show that the equations

X1 +2x,=2 3y1 + y2 +4ys = x;
Xxi+x+x3=1 V1 +2y—3y3=x2
3o —x3=k yi+35y2 —2y3 = x3

are inconsistent if X # 7 and find the most general solution for the x; and y; if k = 7.

Exercise 4.6.9 Let ay, ay, az be real numbers and write s, = aj + a; + aj. If

So  S1 82
S=1s1 52 s3],
S2 83 S4

show that S = V VT where V is a suitable 3 x 3 Vandermonde matrix (see Exercise 4.4.9)
and hence find det S.
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Generalise the result to n X n matrices.

Exercise 4.6.10 This short question uses Exercise 3.6.2. Suppose that C and S are n x n

matrices such that CS = SC and C? + §2 = I. If

c s
7 =
(4 c

Exercise 4.6.11 Let A and B be n x n matrices. If

I B
C =
(S
show that the 2n x 2n matrix C can be transformed into the 2n x 2n matrix D by row
operations which you should specify. By considering the determinants of C and D, obtain

another proof that det AB = det A det B.

) e w—(

show that det Z = det W and calculate (det Z)>.

) aa D=

<)

B

0 an):

Exercise 4.6.12 If A is an invertible n x n matrix, show that det(Adj A) = (det AY*~! and
that Adj(Adj A) = (det AY"~2A. What can you say if A is not invertible?
[If you have problems with the last sentence, you should note that we take the matter up

again in Exercise 5.7.10.]

Exercise 4.6.13 Let P(n) be the n x n matrix with p;;(n) = a, p;j(n) = b fori # j.Find
det P(n). In particular, find the determinant of the n x n matrix A with diagonal entries O
and all other entries 1. (In other words, a;; = 1ifi # j,a;; =0ifi = j.)

Exercise 4.6.14 Let A(n) be the n X n matrix given by

a

S o

An) =

0

b
a
c

0

0
b
a

0

0
0
b

0

0 0
0 0
0 0

0

c

S O O

a

By considering row expansions, find a linear relation between det A(n), det A(n — 1) and

det A(n — 2).

(i) Find det A(n) if a = 1 + bc. (Look carefully at any special cases that arise.)

(i) If a = 2cos0 and b = ¢ = 1, show that

i 1)6
det A(n) = w

if sin@ £ 0. Find the values of det A(n) when sin6 = 0.

Exercise 4.6.15 Let A(n) = (a;;(n)) be the n x n matrix given by

llij(") = { .

iti < j,

otherwise.
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Find det A(n).

Exercise 4.6.16 Prove that

14+ x; X2 X3 ... Xn
X1 14+x x3 ... Xn
det . . . . . =1l4+x+x4+- -+ x,.
X1 X2 x3 ... 14x,

Use this result to find det P(n) with P(n) as in Exercise 4.6.13.

Exercise 4.6.17 Show that if A is an n X n matrix with all entries 1 or —1, then det A is a
multiple of 2"~

If B = (b;j)isthe n x n matrix with b;; = 1if 1 <i < j < n and b;; = —1 otherwise,
show that det B = 2"~

Exercise 4.6.18 Let M,(R) be the set of all real 2 x 2 matrices. We write

=( ) o= 0) x=(00) =0 o)

Suppose that D : M>(R) — R is a function such that D(AB) = D(A)D(B) forall A, B €
M,>(R) and D(I) # D(J). Prove that D has the following properties.

1) DO)=0,DI)=1,D(J)=—1,D(K)= D(L) = 0.

(i1) If B is obtained from A by interchanging its rows or its columns, then D(A) =
—D(B).

(iii) If one row or one column of A vanishes, then D(A) = 0.

(iv) D(A) = 0 if and only if A is singular.

Give an example of such a D which is not the determinant function.

Exercise 4.6.19 Consider four distinct points (x;, y;) in the plane. Let us write

I =2x =2y xP+y}
I =20 =2» x+y
I —2x3 —2y; x4+
I —2x4 —2y4 xf + yf

4y oaon 1
2 2

X5 4y, X2 W 1

x34+y: x oy |1

xf + yf x4 yq 1

and B =

(1) Show that the equation
A1, =2x0, =2y0, x5 + y5 — )" =(0,0,0,0"

has a solution if and only if det A = 0.

(ii) Hence show that the four equations (x; — x0)> + (y i — yo)) =t [1<j<4]are
consistent if and only if det A = 0.

(iii) Use the fact that there is exactly one circle or straight line through three distinct
points in the plane to show that the four distinct points (x;, y;) lie on the same circle or
straight line if and only if det A = 0.



86 The secret life of determinants
(iv) By considering the equations
B(xj + ¥5, X0, yo, DT = (0,0,0,0),

show that the four distinct points (x;, y;) lie on the same circle or straight line if and only
ifdet B = 0.

(v) By computing AB”, show that the four distinct points (x;, y;) lie on the same circle
or straight line if and only if

0 din ds du
dy 0 dyy dy

where d;; = (x; — x;)* + (yi — y))*

(vi) Write down the corresponding result in three dimensions and check in as much
detail as you consider appropriate that the proof goes through in exactly the same manner.
[The kind of determinant which appears in part (v) is known as a Cayley—Menger
determinant. ]

Exercise 4.6.20 If A = (g; ;) is an n x n matrix and B = (by ;) is an m X m matrix, we
set A® B = C where C = (c, ) is the nm x nm matrix given by the rule

Conli—1)+k,m(—1)+H = @i, jbr

forl <i<n, 1 <j<nl1l<k<m,1<l<m.
Show that A ® B = (A ® 1,,)(I, ® B) where I, is the p x p identity matrix. Deduce
that det(A ® B) = (det A)"(det B)".
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Abstract vector spaces

5.1 The space C"

So far, in this book, we have only considered vectors and matrices with real entries.
However, as the reader may have already remarked, there is nothing in Chapter 1 on
Gaussian elimination which will not work equally well when applied to m linear equations
with complex coefficients in n complex unknowns. In particular, there is nothing to prevent
us considering complex row and column vectors (z1, 22, . . ., 2») and (21, 22, . . ., 2,)T with
z; € C and complex m x n matrices A = (a;;) with a;; € C. (If we are going to make use
of the complex number i, it may be better to use other suffices and talk about A = (a,).)

Exercise 5.1.1 Explain why we cannot replace C by 7 in the discussion of the previous
paragraph.

However, this smooth process does not work for the geometry of Chapter 2. It is
possible to develop complex geometry to mirror real geometry, but, whilst an ancient
Greek mathematician would have no difficulty understanding the meaning of the theorems
of Chapter 2 as they apply to the plane or three dimensional space, he or she' would find the
complex analogues (when they exist) incomprehensible. Leaving aside the question of the
meaning of theorems of complex geometry, the reader should note that the naive translation
of the definition of inner product from real to complex vectors does not work very well.
(We shall give an appropriate translation in Section 8.4.)

Continuing our survey, we see that Chapter 3 on the algebra of n x n matrices carries over
word for word to the complex case. Something more interesting happens in Chapter 4. Here
the geometrical arguments of the first two sections (and one or two similar observations
elsewhere) are either meaningless or, at the least, carry no intuitive conviction when applied
to the complex case but, once we define the determinant algebraically, the development
proceeds identically in the real and complex cases.

Exercise 5.1.2 Check that, in the parts of the book where I claim this, there is, indeed, no
difference between the real and complex cases.

! Remember Hypatia.

87
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5.2 Abstract vector spaces

We have already met several kinds of objects that ‘behave like vectors’. What are the
properties that we demand of a mathematical system in which the objects ‘behave like
vectors’? To deal with both real and complex vectors simultaneously we adopt the following
convention.

Convention 5.2.1 We shall write F to mean either C or R.
Our definition of a vector space is obtained by recasting Lemma 1.4.2 as a definition.

Definition 5.2.2 A vector space U over F is a set containing an element 0 equipped with
addition and scalar multiplication with the properties given below.”

Suppose that X, y,z € U and A, i € F. Then the following relations hold.

OEx+y)+z=x+(y+2).

@Mx+y=y+x

@i x+0=x

(V) AMx+y) = Ax 4 Ay.

W) A+ w)x = Ax + ux.

(vi) (Ap)x = A(X).

(vii) 1x = x and 0x = 0.

It seems reasonable to call the elements of U abstract vectors or just vectors.

As usual in these cases, there is a certain amount of fussing around establishing that the
rules do everything we want. (Exercise 5.7.7 provides some more fussing for those who
like that sort of thing.) We do this in the next lemma which the reader can more or less
ignore.

Lemma 5.2.3 Let U be the vector space of Definition 5.2.2.
@) Ifx+0 =xforallx € U, then 0 = 0. (In other words, the zero vector is unique.)
@) x+(—)x=0forallx e U.
(i) If x + 0' = x for some x € U, then 0/ = 0.

Proof (i) By the stated properties of 0 and 0/
0=0+0=0.
(ii) We have
X+ (=Dx=1Ix+(-Dx=(1+(-1))x=0x=0.
2 1f the reader feels this is insufficiently formal, she should replace the paragraph with the following mathematical boiler plate.

A vector space (U, F, +, ) is a set U containing an element 0 together with maps A : U> — U and M : F x U — U such
that, writing X +y = A(X,y) and Ax = M (A, X) [X,y € U, A € [F], the system has the properties given below.
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(iii) We have

0=x+(—Dx=(x+0)+(—Dx
=0 +x)+(—Dx =0+ x+(—Dx)
—0+0=0.

We shall write
—Xx=(=Dx, y-x=y+(-x)
and so on. Since there is no ambiguity, we shall drop brackets and write
X+y+z=x+(y+2).

In abstract algebra, most systems give rise to subsystems, and abstract vector spaces are
no exception.

Definition 5.2.4 I V is a vector space over F, we say that U C V is a subspace of V if
the following three conditions hold.

(i) Whenever x,y € U, we havex +y € U.

(ii) Wheneverx € U and ) € F, we have Ax € U.

@ 0eU.

Condition (iii) is a convenient way of ensuring that U is not empty.

Lemma 5.2.5 If U is a subspace of a vector space V over T, then U is itself a vector
space over I (if we use the same operations).

Proof Proof by inspection. ([l

Lemma 5.2.6 Let X be a non-empty set and FX the collection of all functions f : X — F.
If we define the pointwise sum f + g of any f, g € FX by

(f + ) = fx) + gx)
and pointwise scalar multiple Af of any f € FX and A € F by
(Af)x) = Af (x),
then FX is a vector space.

Proof The checking is lengthy, but trivial. For example, if A, 1 € F and f € F¥, then

(A4 ) f)x) =+ f(x) (by definition)
=Af(x)+ puf(x) (by properties of [F)
= (A)x) + (uf)x) (by definition)

=S + puf)x) (by definition)
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for all x € X and so, by the definition of equality of functions,

A+ f =rf +nf,
as required by condition (v) of Definition 5.2.2. O

Exercise 5.2.7 Choose a couple of conditions from Definition 5.2.2 and verify that they
hold for FX. (You should choose the conditions which you think are hardest to verify.)

Exercise 5.2.8 If we take X = {1, 2, ..., n} which, already known, vector space, do we
obtain? (You should give an informal but reasonably convincing argument.)

Lemmas 5.2.5 and 5.2.6 immediately reveal a large number of vector spaces.

Example 5.2.9 (i) The set C([a, b]) of all continuous functions f : [a, b] — R is a vector
space under pointwise addition and scalar multiplication.

(ii) The set C*°(R) of all infinitely differentiable functions f : R — R is a vector space
under pointwise addition and scalar multiplication.

(iii) The set P of all polynomials P : R — R is a vector space under pointwise addition
and scalar multiplication.

(iv) The collection c of all two sided sequences

a=(..,a,a_1,a0,a1,0ay,...)

of complex numbers with a + b the sequence with jth term a; + b; and \a the sequence
with jth term aj + b is a vector space.

Proof (i) Observe that C([a, b)) is a subspace of RI%:1,
(i1) and (iii) Left to the reader.
(iv) Observe that ¢ = CZ. [l

In the next section we make use of the following improvement on Lemma 5.2.6.

Lemma 5.2.10 Let X be a non-empty set and V a vector space over F. Write L for
the collection of all functions f : X — V. If we define the pointwise sum f + g of any

f, g€ Lby
(f +8)(x) = f(x) + g(x)
and pointwise scalar multiple Af of any f € L and ). € F by
A)x) = Af(x),
then L is a vector space.
Proof Left as an exercise to the reader to do as much or as little of as she wishes. O

In general, it is easiest to show that something is a vector space by showing that it is a
subspace of some FX or some L of the type described in Lemma 5.2.10 and to show that
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something is not a vector space by showing that one of the conditions of Definition 5.2.2
fails.’

Exercise 5.2.11 Which of the following are vector spaces with pointwise addition and
scalar multiplication? Give reasons.

(i) The set of all three times differentiable functions f : R — R.

(if) The set of continuous functions f : R — Rwith f(t) > 0forallt € R.

(iii) The set of all polynomials P : R — R with P(1) = 1.

(iv) The set of all polynomials P : R — R with P'(1) = 0.

(v) The set of all polynomials P : R — R with fol P(t)dt =0.

(vi) The set of all continuous functions f : R — R with f_ll f@®)3dt =0.

(vii) The set of all polynomials of degree exactly 3.

(viii) The set of all polynomials of even degree.

5.3 Linear maps

If the reader has followed any course in abstract algebra she will have met the notion of a
morphism,* that is to say a mapping which preserves algebraic structure. A vector space
morphism corresponds to the much older notion of a linear map.

Definition 5.3.1 Let U and V be vector spaces over F. We say that a function T : U — V
is a linear map if

TAx+ py) =ATx+ uTy
forallx, ye Uand A, u € F.
Exercise 5.3.2 IfT : U — V is a linear map, show that T (0) = 0.

Since the time of Newton, mathematicians have realised that the fact that a mapping is
linear gives a very strong handle on that mapping. They have also discovered an ever wider
collection of linear maps” in subjects ranging from celestial mechanics to quantum theory
and from statistics to communication theory.

Exercise 5.3.3 Consider the vector space D of infinitely differentiable functions f : R —
R. Show that the following maps are linear.

(@) 6 :D — Rgiven by §(f) = f(0).

ity D : D — D given by (Df)(x) = f'(x).

(iii) K : D — D where (Kf)(x) = (x> + 1) f(x).

(iv) J : D — D where (Jf)(x) = [y f(t)dt.

3 Like all such statements, this is just an expression of opinion and carries no guarantee.

+ If not, she should just ignore this sentence.

> Of course not everything is linear. To quote Swinnerton-Dyer, ‘The great discovery of the 18th and 19th centuries was that
nature is linear. The great discovery of the 20th century was that nature is not.” But linear problems remain a good place to start.
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From this point of view, we do not study vector spaces for their own sake but for the
sake of the linear maps that they support.

Lemma 5.3.4 IfU and V are vector spaces over I, then the set L(U, V) of linear maps
T : U — V is a vector space under pointwise addition and scalar multiplication.

Proof We know, by Lemma 5.2.10, that the collection L of all functions f : U — V is a
vector space under pointwise addition and scalar multiplication, so all we need do is show
that L(U, V) is a subspace of L.

Observe first that the zero mapping 0 : U — V given by Ou = 0 is linear, since

O(Au; + 2owp) = 0=210+ X0 = A10u; + 2,0u,.
Next observe that, if S, T € L(U, V) and A € F, then

(T + S)(Xu; + Aump)

=Tu + Aw) + S(huy + Aruy) (by definition)
= MTu; + A Tw) + (A Su; + A5m) (since S and T are linear)
=1 (Tu; + Suy) + 2 (Tua, + Suy) (collecting terms)

= )\.I(S + T)lll + )\.Z(S + T)UZ
and, by the same kind of argument (which the reader should write out),
AT)(Rup + Aowp) = A (AT)u; + 2(AT)u,

for alluy, up € U and Ay, A, € F. Thus S + T and AT are linear and L(U, V) is, indeed,
a subspace of L as required. O

From now on L(U, V) will denote the vector space of Lemma 5.3.4. In more advanced
work the elements of L(U, V') are often called linear operators or just operators. We usually
write the zero map as 0 rather than 0.

Similar arguments establish the following simple, but basic, result.

Lemma 5.3.5 IfU, V, and W are vector spaces over F and T € L(U, V), S € L(V, W),
then the composition ST € L(U, W).

Proof Left as an exercise for the reader. O

Lemma 5.3.6 Suppose that U, V, and W are vector spaces over F, that T, T\, T, €
LWU,V), S, Si1, S € LV, W) and that ). € F. Then the following results hold.

@A) S+ ST =S, T + S,T.

(i) S(Ty + T,) = ST, + ST>.

(iil) AS)T = S(AT) = A(ST).

Proof To prove part (i), observe that, by repeated use of our definitions,

((S1+ S)T)u = (Si + SH)(Tw) = Si(Tu) + SH(Tw)
=S Ta+ (ST)a= 5T+ S>T)u
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for all u € U and so, by the definition of what it means for two functions to be equal,
ST+ 8S)T = ST + S,T.
The remaining parts are left as an exercise. ([l

The proof of the next result requires a little more thought.

Lemma 5.3.7 If U and V are vector spaces over F and T € L(U, V) is a bijection, then
T-' e LV, U).

Proof The statement that T is a bijection is equivalent to the statement that an inverse
function T~! : V — U exists. We have to show that 7! is linear. To see this, observe that

T(T7'0x+ uy)) = Ox + ny) (definition)
=ATT 'x+uTT 'y (definition)
= T()»T’lx + MT’Iy) (T linear)

so, applying 7! to both sides (or just noting that 7 is bijective),
T'x+py) = AT x4+ uTly
forall x, y € U and A, u € IF as required. |
Whenever we study abstract structures, we need the notion of isomorphism.

Definition 5.3.8 We say that two vector spaces U and V over F are isomorphic if there
exists a linear map T : U — V which is bijective. We write U = V to mean that U and V
are isomorphic.

Since anything that happens in U is exactly mirrored (via the map u — 7T'u) by what
happens in V and anything that happens in V is exactly mirrored (via the map v > T~ 'v)
by what happens in U, isomorphic vector spaces may be considered as identical from the
point of view of abstract vector space theory.

Definition 5.3.9 If U is a vector space over IF then the identity map ¢ : U — U is defined
by x =xforallx e U.

(The Greek letter ¢ is written as i without the dot and pronounced iota.)

Exercise 5.3.10 Let U be a vector space over F.

(i) Show that the identity map « € L(U, U).

(i) If « € L(U, U) is a bijection, show that o 'a =a 'a = 1. Ifa, B € LU, U) and
af = Ba =, show that « is a bijection and a™' = B.

(iii) Let D, D and J be as in Exercise 5.3.3 and take U = D. Explain why DJ =, but
show that J D # 1. Show that J is injective, but not surjective and D is surjective, but not
injective.

[This is possible because D is infinite dimensional. See Exercise 5.5.5.]
) If a, B € LU, U) are invertible, show that af is invertible and (af)™' = p~'a™ .
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The following remark is often helpful.

Exercise 5.3.11 If U and V are vector spaces over F, then a linear map T : U — V is
injective if and only if Tu = 0 implies u = 0.

Definition 5.3.12 [f U is a vector space over F, we write GL(U) or GL(U, F) for the
collection of bijective linear maps a : U — U.

The reader may well be familiar with the definition of group. If not the brief discussion
that follows provides all that is necessary for the purposes of this book. (A few exercises
such as Exercise 6.8.19 go a little further.)

Definition 5.3.13 A group is a set G equipped with a multiplication x having the following
properties.

() Ifa, b e G, thena x b € G.

(i) Ifa, b, c € G, thena x (b x c)=(a xb) x c.

(iii) There exists an element ¢ € G suchthate X a = a X e = a.

(iv) Ifa € G, then we can findana™" € G suchthata x a™' =a™' xa =e.
Exercise 5.3.14 [fU is avector space over F show that G L(U) with multiplication defined
by composition satisfies the axioms for a group.®

Show that G L(R?) is not Abelian (that is to say, show that there exist «, B € G L(R?)

with af # Ba).

We shall make very little use of the group concept, but we shall come across several
subgroups of G L(U) which turn out to be useful in physics.

Definition 5.3.15 A subset H of GL(U) is called a matrix group if it is a subgroup of
GL(U), that is to say, the following conditions hold.

(Hte H.

(i) Ifa € H, thena™! € H.

(@) Ifa, B € H, thenaf € H.

If H and K are subgroups of GL(U) and K € H, we say that K is a subgroup of H.

Exercise 5.3.16 Let U be a vector space over IF. State, with reasons, which of the following
statements are always true.

(i) Ifa € U, then the set of « € GL(U) with ca = a is a subgroup of GL(U).

(i) If a,b € U, then the set of « € GL(U) with ea = b is a subgroup of GL(U).

(iii) The set of @ € GL(U) with o« = v is a subgroup of GL(U).
[Exercises 6.8.40 and 6.8.41 give more practice in these ideas.]

6 GL(U) is called the general linear group.
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5.4 Dimension

Just as our work on determinants may have struck the reader as excessively computational,
so this section on dimension may strike the reader as excessively abstract. It is possible to
derive a useful theory of vector spaces without determinants and it is just about possible to
deal with vectors in R” without a clear definition of dimension, but in both cases we have
to imitate the participants of an elegantly dressed party determined to ignore the presence
of very large elephants.

It is certainly impossible to do advanced work without knowing the contents of this
section, so I suggest that the reader bites the bullet and gets on with it.

Definition 5.4.1 Let U be a vector space over F.
(i) We say that the vectors £\, £, ..., £, € U span U if, given any u € U, we can find
A, Ao, ..., Ay € F such that

(i) We say that the vectors ey, e, ..., e, € U are linearly independent if, whenever
MM, Ao, .., A, €Fand

ikjej = 0,
j=1

it follows that A\ = Ay = ... = A, = 0.
(iii) If the vectors ey, €, ..., e, € U span U and are linearly independent, we say that
they form a basis for U.

The reason for our definition of a basis is given by the next lemma.

Lemma 5.4.2 Let U be a vector space over F. The vectors e, e, ..., e, € U form a
basis for U if and only if each x € U can be written uniquely in the form

n
X = E xjej
j=1

with x; € F.

Proof We first prove the if part. Since e, e, ..., e, span U, we can certainly write

n
X= 2 Xj€j
j=1

with x; € F. We need to show that the expression is unique.
To this end, suppose that

n n
—_— . . — ! .
X = E xje; and x= E x;e;
j=1 j=1
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with x;, x; € F. Then

n n n
/ /
0=x—x= E xje; — E xX;ej = E (xj — x))ej,
j=1 j=1 j=1

so, since €;, €, ..., €, are linearly independent, x; — x;- =0and x; = x} for all j.
The only if part is even simpler. The vectors e, e;, ..., e, automatically span U. To
prove independence, observe that, if

n
D aje; =0,
j=1

then

so, by uniqueness, A; = 0 for all j. O

The reader may think of the x; as the coordinates of x with respect to the basis
€1, €, ..., €.

Exercise 5.4.3 Suppose that e|, e, ..., e, form a basis for a vector space U over F. If
y € U, it follows by the previous result that there are unique a; € I such that

y=ae +ae,+---+ae,.

Suppose that y # 0. Show that e, +y, e, +Y, ..., €, +y are linearly independent if and
only if

agt+a+---+a,+1#0.

Lemma 5.4.4 Let U be a vector space over F which is non-trivial in the sense that it is
not the space consisting of 0 alone.

(i) If the vectors ey, e;, ..., e, span U, then either they form a basis or there exists one
of these vectors such that, when it is removed, the remaining vectors will still span U.

(ii) If €| spans U, then e, forms a basis for U.

(iii) Any finite collection of vectors which span U contains a basis for U.

(iv) U has a basis if and only if it has a finite spanning set.

Proof (i) If ey, e, ..., e, do not form a basis, then they are not linearly independent, so
we can find Ay, Ao, ..., A, € F not all zero such that

n
ijej =0.
j=1
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By renumbering, if necessary, we may suppose that A, # 0, so

n—1

€, = E Mnj€;
j=1

with Mnj = _)\j/)\n-
We claim that e, e, ..., e,_; span U. For, if u € U, we know, by hypothesis, that
there exist v; € IF with

n
u= E V;€;
j=1

and so
n—1 n—1
u=y,e, + E ve; = E (Vj+,l,le)n)e]'.
j=1 Jj=1

(ii) If re; = 0 with A # O, then
e =1"0e)=2"'0=0
which is impossible.

(iii) Use (i) repeatedly.
(iv) We have proved the ‘if” part. The only if part follows by the definition of a basis. [

Consistency requires that we take the empty set ¥} to be the basis of the vector space
U = {0}.
Lemma 5.4.4 (i) is complemented by another simple result.

Lemma 5.4.5 Let U be a vector space over F. If the vectors ey, e, ..., €, are linearly
independent, then either they form a basis or we may find a further e,.; € U so that
e, e, ..., e,. are linearly independent.

Proof 1If the vectors e;, e, ..., e, donot form a basis, then there exists an e, € U such
that there do not exist u; € F withe,1 = >}, 1u;e;.
If Z;’:i Aje; =0, then, if 1,1 # 0, we have

n
€1 = ) (=hj/hni1)e;

j=l1

which is impossible by the previous paragraph. Thus ,,+; = 0 and

i)\jej = 0,
j=1

so, by hypothesis, .} = A, = ... = A, = 0. We have shown that e, e,, ..., e, are
linearly independent. O
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We now come to a crucial result in vector space theory which states that, if a vector
space has a finite basis, then all its bases contain the same number of elements. We use a
kind of ‘etherialised Gaussian elimination’ called the Steinitz replacement lemma.

Lemma 5.4.6 [The Steinitz replacement lemma] Let U be a vector space over F and let

m>n—1>r=>0.1Ifeq, e, ..., e, are linearly independent and the vectors
€, €, ..., erafr+1» fr+2’ D) fm
span U (if r =0, this means that f;, £, ..., £, span U), then m > r + 1 and, after

renumbering the f; if necessary,

€, €, ..., 6,6, fr+Za ceey fm

span the space.”

Proof Since ey, e, ..., e, {1, f,12, ..., £, span U, it follows, in particular, that there
exist ; € I such that

r n
e,+1:ZAjej+ Z )\.jfj.
j=1

Jj=r+1

If A; =0forr +1 < j < m (and so, in particular if m = r), then

P
> ajej 4+ (=Deppr =0,
j=1
contradicting the hypothesis that the e; are independent.
Thusm > r + 1 and, after renumbering the f; if necessary, we may suppose that A, | #
0 so, after algebraic rearrangement,

r+1 n
fio=) nieg+ ) wif;
j=1 j=r+2

where ;= —A; /Ay for j#r+1and 1 =1/441.
We proceed to show that

€, €, ..., €,€ 41, fr+Za e fm
span U. If u € U, then, by hypothesis, we can find v; € F such that

u=>y vie;+ > v,

j=1 j=r+1

7 In science fiction films, the inhabitants of some innocent village are replaced, one by one, by things from outer space. In the
Steinitz replacement lemma, the original elements of the spanning collection are replaced, one by one, by elements from the
linearly independent collection.
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SO
n

.
u= Z(Vj + Vrriij)e; + Ve i p1€g1 + Z W + vrprppf;
=1 j=r+2

and we are done. U
The Steinitz replacement lemma has several important corollaries.

Theorem 5.4.7 Let U be a vector space over FF.

(i) If the vectors e, €,, ..., €, are linearly independent and the vectors £y, £, ..., £,
span U, then m > n.

(i) If U has a finite basis, then all bases have the same number of elements.

(iii) If U has a finite basis, then any subspace of U has a finite basis.

(iv) If U has a basis with n elements, then any collection of n vectors which span U will
be a basis for U and any collection of n linearly independent vectors will be a basis for U.

() If U has a finite basis, then any collection of linearly independent vectors can be
extended to form a basis.

Proof (i) Suppose, if possible, that m < n. By applying the Steinitz replacement lemma m
times, we see that e, e, ..., e, span U. Thus we can find A, X5, ..., X, such that

m

€, = E kjej
j=1

and so

> ajej+(—e, =0
Jj=l1
contradicting linear independence.

(ii) If the vectors ey, e, ..., e, andfy, f,, ..., f, are both bases, then, since the e; are
linearly independent and the f; span, part (i) tells us that m > n. Reversing the roles, we
getn > m,son = m.

(iii) Let U have a basis with n elements and let V be a subspace. If we use Lemma 5.4.5
to find a sequence ej, e, ... of linearly independent vectors in V, then, by part (i), the
process must terminate after at most n steps and Lemma 5.4.5 tells us that we will then
have a basis for V.

(iv) By Lemma 5.4.4 (i), any collection of n vectors which spanned U and was not a
basis would contain a spanning collection with n — 1 members, which is impossible by
part (i). By Lemma 5.4.5 any collection of n linearly independent vectors which was not
a basis could be extended to a collection of n 4 1 linearly independent vectors which is
impossible by part (i).

(v) Suppose thate;, e;, ..., e are linearly independent and f, f5, ..., f, is a basis for
U. Applying the Steinitz replacement lemma k times we obtain possibly after renumbering
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the f;, a spanning set
e, e, ..., e, fiy, B, oo, £y
which must be a basis by (iv). O
Theorem 5.4.7 enables us to introduce the notion of dimension.

Definition 5.4.8 If a vector space U over I has no finite spanning set, then we say that U
is infinite dimensional. If U is non-trivial and has a finite spanning set, we say that U is
finite dimensional with dimension the size of any basis of U. If U = {0}, we say that U has
zero dimension.

Theorem 5.4.7 immediately gives us the following result.®

Theorem 5.4.9 Any subspace of a finite dimensional vector space is itself finite dimen-
sional. The dimension of a subspace cannot exceed the dimension of the original space.

Here is a typical result on dimension. We write dim X for the dimension of X.

Lemma 5.4.10 Let V and W be subspaces of a vector space U over F.
(i) The sets V. N W and

V+W={v+w:veV, we W}

are subspaces of U.
@) If V and W are finite dimensional, then so are VN W and V + W. We have

dim(V N W)+ dim(V + W) =dimV + dim W.

Proof (1) Left as an easy, but recommended, exercise for the reader.

(i1) Since we are talking about dimension, we must introduce a basis. It is a good idea
in such cases to ‘find the basis of the smallest space available’. With this advice in mind,
we observe that V N W is a subspace of the finite dimensional space V and so is finite

dimensional with basis ey, e,, ..., e, say. By Theorem 5.4.7 (iv), we can extend this to a
basis e;, €5, ..., €, €11, €42, ..., €+ Of V and to a basis ej, €y, ..., €, € y/+1, €xti42,
, €rri+m Of W. We claim that e, e, ..., €, €11, €12, - - - » €ktls €ktitls Chtlt2s - - - 5

€i+/+m form a basis of V + W.
First we show that the purported basis spans V + W.If u € V 4+ W, then we can find
v € V and w € W such that u = v 4+ w. By the definition of a basis we can find Aj, A, ...,

Mo M1 Aeg2s oo s Aepr € Fand oy, (o, ooy (i Mkadg s Mki42s -+ > Mitiem € IF such
that
k+1 k+1+m
V_ZA e; + Zkej and W_Zujej—}— Z je;.
j=k+1 j=1 Jj=k+l+1

8 The result may appear obvious, but I recall a lecture by a distinguished engineer in which he correctly predicted the failure of a
US Navy project on the grounds that it required finding five linearly independent vectors in a space of dimension three.
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It follows that
ke k++m
u=v+w= Z(k +u,)e,+zxej+ Z nje;
j=1 j=k+1 J=kH+1

and we have a spanning set.
Next we show that the purported basis is linearly independent. To this end, suppose that
A; € Fand

k+l+m

Z Xjej =0.
j=1

We then have

k+I+m k+1
Z Ajej = ZA e eV
j=kH+1
and, automatically
k+1+m
Z )Ljej e W.
J=k++1
Thus
k+1+m
> reevnw
j=k++1
and so we can find w1, iy, ..., i such that
k+l4+m
RS
J=k+i+1
We thus have
k+1+m
Zu,e + ) (=xj)e; =0.
J=k++1
Since ey, €, ..., € €xy/+1, €425 - - - » € i+, fOrm a basis for W, they are independent
and so
M1 = M2 =...= g = —Api41 = —Akpi42 = - . = —Akgigym = 0.

In particular, we have shown that

Aetll = Mepi42 = oo = Agigm = 0.

Exactly the same kind of argument shows that

Al = A2 = ... = My = 0.
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‘We now know that

k
ijej =0
j=1

s0, since we are dealing with a basis for V. N W, we have
M=A=...= 1 =0.

We have proved that A; =0 for 1 < j <k + [+ m so we have linear independence and
our purported basis is, indeed, a basis.
The dimensions of the various spaces involved can now be read off as follows.

dm(VNW)=k, dmV=k+I, dmW=k+m, dmV+W)=k+1+m.
Thus

dim(VAW)+dm(V+W)=k+k+I14+m)=2k+1+m
=Gk+D+k+m)=dimV +dimW

and we are done. O
Exercise 5.4.11 We work in R*. Let

U={x,y,z,w) : x+y—2z4+w=0, —x+y+z—3w =0},
Vz{(-xsyssz) : -x_2y+Z+2w:0, y+Z—3w=O}

Explain why U and V are subspaces of R*. Find a basis of U NV, extend it to a basis of
U and extend the resulting basis to a basis of U + V.

Exercise 5.4.12 (i) Let V and W be subspaces of a finite dimensional vector space U over
. By using Lemma 5.4.10, or otherwise, show that

min{dim U, dim V 4+ dim W} > dim(V 4+ W) > max{dim V, dim W}.
(ii) Suppose that n, r, s and t are positive integers with
min{n, r + s} >t > max{r, s}.

Show that any vector space U over T of dimension n contains subspaces V and W such
that

dmV =r, dmW=s, dim(V+4+W)=rt.
The next exercise should always be kept in mind when talking about ‘standard bases’.
Exercise 5.4.13 Show that

E:{xeR3 D X1+ x2 + x3 =0}
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is a subspace of R3. Write down a basis for E and show that it is a basis. Do you think that
everybody who does this exercise will choose the same basis? What does this tell us about
the notion of a ‘standard basis’?

[Exercise 5.5.19 gives other examples where there are no ‘natural’ bases.]

The final exercise of this section introduces an idea which reappears throughout mathe-
matics.

Exercise 5.4.14 (i) Suppose that U is a vector space over . Suppose that V is a non-empty
collection of subspaces of U. Show that, if we write

(1V=te:ecVforall VeV,
Vey

then (\yy V is a subspace of U.

(ii) Suppose that U is a vector space over F and E is a non-empty subset of U. If we
write V for the collection of all subspaces V of U with V 2 E, show that W = (), o, V is
a subspace of U such that (a) E C W and (b) whenever W' is a subspace of U containing
E we have W C W'. (In other words, W is the smallest subspace of U containing E.)

(iii) Continuing with the notation of (i), show that if E = {e; : 1 < j < n}, then

W=1> e :r;eFforl<j<n

j=1

We call the set W described in Exercise 5.4.14 the subspace of U spanned by E and
write W = span E.

5.5 Image and kernel

In this section we revisit the system of simultaneous linear equations
Ax=Db
using the idea of dimension.
Definition 5.5.1 IfU and V are vector spaces over F and o : U — 'V is linear, then the set
a(U)={ou : ue U}
is called the image (or image space) of o and the set
a ' 0)={ueU : au=0}
is the kernel (or null-space) of a. We write ker o = o~'(0) and im o = a(U).

Lemma 5.5.2 Let U and V be vector spaces over F and let o : U — V be a linear map.
(@) a(U) is a subspace of V.
(i) @~ '(0) is a subspace of U.
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Proof 1Tt is left as a very strongly recommended exercise for the reader to check that the
conditions of Definition 5.2.4 apply. Il

Exercise 5.5.3 Let U and V be vector spaces over F and let « : U — V be a linear map.
If veV, but v#0, is it (a) always true, (b) sometimes true and sometimes false or (c)
always false that

a'M={uel :au=yv}
is a subspace of U ? Give reasons.
The proof of the next theorem requires care, but the result is very useful.

Theorem 5.5.4 [The rank-nullity theorem] Let U and V be vector spaces over F and
leta : U — V be alinear map. If U is finite dimensional, then a(U) and a~'(0) are finite
dimensional and

dima(U) + dime~'(0) = dim U.

Here dim X means the dimension of X. We call dim «(U) the rank of « and dim o~ '(0)
the nullity of . We do not need V to be finite dimensional, but the reader will miss nothing
if she only considers the case when V is finite dimensional.

Proof 1 repeat the opening sentences of the proof of Lemma 5.4.10. Since we are talking
about dimension, we must introduce a basis. It is a good idea in such cases to ‘find the basis
of the smallest space available’. With this advice in mind, we choose a basis ej, e;, ..., €
for a~'(0). (Since a~!(0) is a subspace of a finite dimensional space, Theorem 5.4.9 tells
us that it must itself be finite dimensional.) By Theorem 5.4.7 (iv), we can extend this to
basisej, e, ..., e, of U.

We claim that oe; |, @eryo, ..., ae, form a basis for «(U). The proof splits into two
parts. First observe that, if u € U, then, by the definition of a basis, we can find A1, Ao, .. .,
A, € F such that

n
u= E kjej,
Jj=1

and so, using linearity and the fact that e; =0 for 1 < j <k,

n n n
o E Ajej = E Ajaej: E Ajaej.
j=1 Jj=1

j=k+1

Thus oeg, o€gio, ..., e, span a(U).
To prove linear independence, we suppose that A1, Agt2, ..., A, € [F are such that

Xn: Ajaej =0.

j=k+1
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By linearity,
n
o Z riej | =0,
j=k+1
and so
n
> rjejea(0).
j=k+1
Since ey, es, . . ., e, form a basis for &' (0), we can find Ui, L2, ..., Uk € I such that
n k
Z rjej = Zﬂje.z’-
j=k+1 j=1

Setting A; = —u; for 1 < j < k, we obtain

n
ijej =0.
Jj=1

Since the e; are independent, A; = O forall 1 < j < n and so, in particular, forall k + 1 <
Jj < n. We have shown that oe;,, ¢er12, ..., ae, are linearly independent and so, since
we have already shown that they span a(U), it follows that they form a basis.

By the definition of dimension, we have

dimU =n, dima '(0)=k, dima(U)=n—k,
SO
dima(U) +dima™'0)=(n —k)+k =n =dimU
and we are done. O

Exercise 5.5.5 Let U be a finite dimensional space and let « € L(U, U). Show that the
following statements are equivalent.

(i) « is injective.

(i) « is surjective.

(iii) « is bijective.

(iv) a is invertible.
[Compare Exercise 5.3.10 (iii). You may also wish to consider how obvious our abstract
treatment makes the result of Lemma 3.4.13.]

Exercise 5.5.6 LetU =V =R andleta : U — V be the linear map with

1 a 0 b 0 b
al|l0]l=1|b],all]=|a]anda |0 =]|Pb
0 b 0 b 1 a
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Find the values of a and b, if any, for which o has rank 3, 2, 1 and 0. In each case find a
basis for a='(0), extend it to a basis for U and identify a basis for a(U).

We can extract a little extra information from the proof of Theorem 5.5.4 which will
come in handy later.

Lemma 5.5.7 Let U be a vector space of dimension n and V a vector space of dimension
m over F andlet o : U — V be a linear map. We can find a g with 0 < g < min{n, m}, a
basisui, uy, ..., w, for U and a basis vy, vy, ..., Vy, for V such that

v, forl <j<gq,
ou; =
! 0 otherwise.

Proof We use the notation of the proof of Theorem 5.5.4. Setq =n —kandu; = e,_;.
If we take

vi=au; forl<j<gq,

we know that v, v, ..., v, are linearly independent and so can be extended to a basis vy,
V2, ..., Vy for V. We have achieved the required result. O

We use Theorem 5.5.4 in conjunction with a couple of very simple results.

Lemma 5.5.8 Let U and V be vector spaces over F and let « : U — V be a linear map.
Consider the equation

au=yv, *

where Vv is a fixed element of V and u € U is to be found.
(i) % has a solution if and only if v € a(U).
(@) If u = uy is a solution of %, then the solutions of % are precisely those u with

uecu +oa l0)={uy+w:wea l(0).

Proof (i) This is a tautology.
(i) Left as an exercise. ]

Combining Theorem 5.5.4 and Lemma 5.5.8, gives the following result.

Lemma 5.5.9 Let U and V be vector spaces over F and let « : U — V be a linear map.
Suppose further that U is finite dimensional with dimension n. Then the set of solutions of

ou=20

forms a vector subspace of U of dimension k, say.
The set of v € V such that

au=yv *

has a solution, is a finite dimensional subspace of V with dimension n — k.
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Ifu = uy is a solution of %, then the set
{u—uy : uisasolution of %}
is a subspace of U with dimension k.
Proof Immediate. O

It is easy to apply these results to a system of m linear equations in n unknowns. We
introduce the notion of the column rank of a matrix.

Definition 5.5.10 Let A be an m x n matrix over F with columns the column vectors aj,
ay, ..., a,. The column rank® of A is the dimension of the subspace of F"" spanned by a,,
a, ..., a;.

Theorem 5.5.11 Let A be an m x n matrix over IF with columns the column vectors ay, a,,
..., &, and letb be a column vector with m entries. Consider the system of linear equations

Ax =Db. *
(i) % has a solution if and only if
b € span{a;, a,, ..., a,}

(that is to say, b lies in the subspace spanned by ay, a,, ..., a,).
(if) Y has a solution if and only if

rank A = rank(A|b),

where (Alb) is the m x (n + 1) matrix formed from A by adjoining b as the n + lst
10

column.
(iii) If we write
N={xelF": Ax =0},

then N is a subspace of F" of dimension n — rank A. If Xq is a solution of %, then the
solutions of Y% are precisely the X = Xy + u whereu € N.

Proof (i) We give the proof at greater length than is really necessary. Let « : F" — F” be
the linear map defined by

a(x) = AX.
Then
o) ={ax) : xe F'} = {Ax : x e "}

n
ijaj ZXjG]FfOI'lSjSﬂ
Jj=1

= Span{als az: M) an}9

° Often called simply the rank. Exercise 5.5.13 explains why we can drop the reference to columns.
10 (A|b) is sometimes called the augmented matrix.
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and so
% has a solution <> there is an x such that a(x) = b
< b e a(f)
< b e span{ay, a,, ..., a,},
as stated.
(i1) Observe that, using part (i),
% has a solution < b € span{a;, a,, ..., a,}
& spanfa, a, ..., a,, b} = span{a;, a,, ..., a,}
& dimspan{a;, ap, ..., a,, b} = dimspan{a;, a, ..., a,}

< rank(A|b) =rank A.

(iii) Observe that N = a~!(0), so, by the rank-nullity theorem (Theorem 5.5.4), N is a
subspace of ™" with

dim N = dima~'(0) = dimF" — dim«(F") = n — rank A.

The rest of part (iii) can be checked directly or obtained from several of our earlier
results. ]

Exercise 5.5.12 Compare Theorem 5.5.11 with the results obtained in Chapter 1.

Mathematicians of an earlier generation might complain that Theorem 5.5.11 just restates
‘what every gentleman knows’ in fine language. There is an element of truth in this, but it
is instructive to look at how the same topic was treated in a textbook, at much the same
level as this one, a century ago.

Chrystal’s Algebra [11] is an excellent text by an excellent mathematician. Here is how
he states a result corresponding to part of Theorem 5.5.11.

If the reader now reconsider the course of reasoning through which we have led him in the cases of
equations of the first degree in one, two and three variables respectively, he will see that the spirit of
that reasoning is general; and that by pursuing the same course step by step we should arrive at the
following general conclusion:—
A system of n — r equations of the first degree in n variables has in general a solution involving
r arbitrary constants; in other words has an r-fold infinity of of different solutions.
(Chrystal Algebra, Volume 1, Chapter X VI, section 14, slightly modified [11])

From our point of view, the problem with Chrystal’s formulation lies with the words in
general. Chrystal was perfectly aware that examples like

x+y+tz+w=1
x+2y+3z4+4w =1
2x + 3y +4z+4+ 5w =1
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or

x+y=1
x+y+z+tw=1
2x+2y+z+w=2

are exceptions to his ‘general rule’, but would have considered them easily spotted
pathologies.

For Chrystal and his fellow mathematicians, systems of linear equations were peripheral
to mathematics. They formed a good introduction to algebra for undergraduates, but a
professional mathematician was unlikely to meet them except in very simple cases. Since
then, the invention of electronic computers has moved the solution of very large systems of
linear equations (where ‘pathologies’ are not easy to spot) to the centre stage. At the same
time, mathematicians have discovered that many problems in analysis may be treated by
methods analogous to those used for systems of linear equations. The ‘nit picking precision’
and ‘unnecessary abstraction’ of results like Theorem 5.5.11 are the result of real needs
and not mere fashion.

Exercise 5.5.13 (i) Write down the appropriate definition of the row rank of a matrix.
(i) Show that the row rank and column rank of a matrix are unaltered by elementary
row and column operations.

[There are many ways of doing this. You may find it helpful to observe that if a|, a,, . . ., a;
are row vectors in " and B is a non-singular m x m matrix then a| B, a;B, ..., a; B are
linearly independent if and only if a;, a,, . .., a; are.]

(iii) Use Theorem 1.3.6 (or a similar result) to deduce that the row rank of a matrix
equals its column rank. For this reason we can refer to the rank of a matrix rather than its
column rank.

[We give a less computational proof in Exercise 11.4.18.]

Exercise 5.5.14 Suppose that a and b are real. Find the rank r of the matrix

S * O R
SO QO
S oo
QO

and, when r # 0, exhibit a non-singular r X r submatrix.
Here is another application of the rank-nullity theorem.

Lemma 5.5.15 Let U, V and W be finite dimensional vector spaces over F and let
a:V > Wandp:U — V be linear maps. Then

min{rank o, rank 8} > rank 8 > rank @ + rank 8§ — dim U.
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Proof Let
Z=pU ={Bu : uecU}

and define «|z : Z — W, the restriction of « to Z, in the usual way, by setting «|,zZ = oz
forallz € Z.
Since Z C V,

rank ¢ = ranka|; = dima(Z) < dima(V) = rank .
By the rank-nullity theorem
rank 8 = dim Z = rank |z + nullity «|; > rank ¢|; = rank o5.
Applying the rank-nullity theorem twice,

rank ¢ = rank |z = dim Z — nullity |,

=rank 8 — nullity «|z = dim U — nullity 8 — nullity ¢| . *
Since ZCV,
{zeZ :az=0}C{veV :av=0}
we have nullity @ > nullity o|z and, using %,
rank ¢ > dim U — nullity 8 — nullity ¢ = rank o + rank 8 — dim U,
as required. O

Exercise 5.5.16 By considering the product of appropriate n x n diagonal matrices A
and B, or otherwise, show that, given any integers n, r, s and t with

n > max{r, s} > min{r, s} >t > max{r + s — n, 0},
we can find linear maps o, B : F" — F" such that rank @ = r, rank 8 = s andrank a8 = t.

If the reader is interested, she can glance forward to Theorem 11.2.2 which develops
similar ideas.

Exercise 5.5.17 [Fisher’s inequality] At the start of each year, the jovial and popular Dean
of Muddling (pronounced ‘Chumly’) College organises n parties for the m students in the
College. Each student is invited to exactly k parties, and every two students are invited to
exactly one party in common. Naturally, k > 2. Let P = (p;;) be the m x n matrix defined
by

~_J 1 ifstudent i is invited to party j
Pii=10 otherwise.

Calculate the matrix P PT and find its rank. Deduce that n > m.
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After the Master’s cat has been found dyed green, maroon and purple on successive
nights, the other Fellows insist that next year k = 1. What will happen? (The answer
required is mathematical rather than sociological in nature.) Why does the proof that
n > m now fail?

Itis natural to ask about the rank of « 4+ S when«a, 8 € L(U, V). Alittle experimentation
with diagonal matrices suggests the answer.

Exercise 5.5.18 (i) Suppose that U and V are finite dimensional spaces over F and
o, B: U — V are linear maps. By using Lemma 5.4.10, or otherwise, show that

min{dim U, dim V, rank & + rank 8} > rank(« + 8).
(if) By considering a + B and — B, or otherwise, show that, under the conditions of (i),
rank(o + B) > |rank @ — rank 8.
(iii) Suppose that n, r, s and t are positive integers with
min{n,r +s} >t > |r —s|.

Show that, given any finite dimensional vector space U of dimension n, we can find
a, B € L(U, U) such that rank @ = r, rank 8 = s and rank(a + ) = t.

Exercise 5.5.19 [Simple magic squares] Consider the set I' of 3 x 3 real matrices
A = (a;;) such that all rows and columns add up to the same number. (Thus A € I if and
only if there is a K such that Zle arj = K forall j and Zle a;; = K foralli.)

(i) Show that U is a finite dimensional real vector space with the usual matrix addition
and multiplication by scalars.

(ii) Find the dimension of I'. Find a basis for I and show that it is indeed a basis. Do
you think there is a ‘natural basis’?

(iii) Extend your results to n x n ‘simple magic squares’.
[We continue with these ideas in Exercise 5.7.11.]

5.6 Secret sharing

The contents of this section are not meant to be taken very seriously. I suggest that the
reader ‘just goes with the flow’ without worrying about the details. If she returns to this
section when she has more experience with algebra, she will see that it is entirely rigorous.

So far we have only dealt with vector spaces and systems of equations over [, where F
is R or C. But R and C are not the only systems in which we can add, subtract, multiply
and divide in a natural manner. In particular, we can do all these things when we consider
the integers modulo p, where p is prime.

If we imitate our work on Gaussian elimination, working with the integers modulo p,
we arrive at the following theorem.
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Theorem 5.6.1 Let A = (a;;) be an n x n matrix of integers and let b; € Z. Then the
system of equations

Zaii,‘xj = b; [1<i=<n]
j=1

modulo p has a unique'' solution modulo p if and only if det A = 0 modulo p.

This observation has been made the basis of an ingenious method of secret sharing. We
have all seen films in which two keys owned by separate people are required to open a safe.
In the same way, we can imagine a safe with k combination locks with the number required
by each separate lock each known to a separate person. But what happens if one of the k
secret holders is unavoidably absent? In order to avoid this problem we require n secret
holders, any k£ of whom acting together can open the safe, but any k — 1 of whom cannot
do so.

Here is the neat solution found by Shamir.'> The locksmith chooses a very large prime
(as the reader probably knows, it is very easy to find large primes) and then chooses a
random integer S with 0 < § < p — 1. She then makes a combination lock which can
only be opened using S. Next she chooses integers by, bs, ..., by_; at random subject to
0 <b; < p — 1, and distinct integers cy, ¢, .. ., ¢, at random subjectto 1 <¢; < p — 1.

She now sets by = S and computes

P(r)= by + bic, +b2€3+~'~+bk_1ck_l mod p

r

choosing 0 < P(r) < p — 1. She calls on each ‘key holder’ in turn, telling the rth ‘key
holder’ their secret number pair (c,, P(r)). She then tells all the key holders the value of p
and burns her calculations.

Suppose that k secret holders r(1), 7(2), . . ., r (k) meet together. By the properties of the
Vandermonde determinant (see Exercise 4.4.9)

k—1

1 Cr(1) C%(l) . Cz(l)l 1 1 1 . 1
1 Cr(2) C;%(Z) e Cr(_Z) Cr(1) Cr2) Cr(3) e Cr(k)

1 ¢ c? k=l c? c? c? c?
det r(3) 3 e r3) | =det ] S (2) r@ (k)
2 k—1 k—1 k—1 k—1 k—1
I cw Sy o S Gy G Ce) o Crp

= [ @o—cy)#0 modp.

1<j<i<k

' That s to say, if x and x’ are solutions, then x; = x/; modulo p.

12" A similar scheme was invented independently by Blakely.
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Thus the system of equations

-1

X0 + cryX1 + Cf(l)xz +- C]:(l)xk—l = P(cy)
2 k-1

X0 + X1 + X + o+ Gy -1 = Pler)

P(cr@3)

2 k—1
Xo + ¢r@3)X1 + Cr3)X2 +---+ Cr3) Xk—1

2 k-1
X0 + CrapX1 + CrgyX2 + 0+ gy Xi—1 = Plerg)

has a unique solution x. But we know that b = (b, by, ..., br_;)7 is a solution, sox = b
and the number of the combination lock S = by = xy.
On the other hand
2 k—1
Cr(l) cr(l) Ci(l)l
G Go - G
C c kil
det r3) r(3) e r@3) = Cr()Cr@) - - - Crk—1) l_[ (Cr(,') — Cr(_/')) $ 0
. . . . 1<j<i<k—1
2 k—1
Crie=)  Crk—1) -+ Crae-1)

modulo p, so the system of equations

-1

X0 + ¢ryX1 + Crz(l)XQ +--- 4 C];(l)xk_l = P(Cr(1))
2 k—1

Xo + Cr@X1 + G + 0 F Gy Xu—1 = Pler2)

1
X0 + Cr3)X1 + 6,2(3)362 + 4 C];@) Xk—1 = Plcra)

2 k-1
X0 + Crg—nX1 + X2 + 0 F G yXk—1 = Pcrge-1)

has a solution, whatever value of xo we take, and there is no way that k — 1 secret holders
can work out the number of the combination lock!

Exercise 5.6.2 Suppose that, with the notation above, we take p =7,k =2, by = 2, by =
2,¢c1 =2,¢cy =4andcz = 5. Compute P(1), P(2) and P(3) and perform the recovery of by
from the pair (P(1), c(1)) and (P(2), c(2)) and from the pair (P(2), c¢(2)) and (P(3), c(3)).

Exercise 5.6.3 We required that the c; be distinct. Why is it obvious that this is a good
idea? At what point in the argument did we make use of the fact that the c; are distinct?

We required that the c; be non-zero. Why is it obvious that this is a good idea? At what
point in the argument did we make use of the fact that the c; are non-zero?

Exercise 5.6.4 Suppose that, with the notation above, we take p = 6 (so p is not a prime),
k=2 by=1,by =1, c =1, c; =4. Show that you cannot recover by from (P(1), c¢(1))
and (P(2), c(2)) What part of our discussion of the case when p is prime fails?
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Exercise 5.6.5 (i) Suppose that, instead of choosing the c; at random, we simply take
¢;j = j (but choose the by at random). Is it still true that k secret holders can work out the
combination but k — 1 cannot?

(it) Suppose that, instead of choosing the by at random, we simply take by = s for
s # 0 (but choose the c; at random). Is it still true that k secret holders can work out the
combination but k — 1 cannot?
[Note, however, that a guiding principle of cryptography is that, if something can be kept
secret, it should be kept secret.]

Exercise 5.6.6 The Dark Lord Y’ Trinti has acquired the services of the dwarf Trigon who
can engrave pairs of very large integers on very small rings. The Dark Lord instructs Trigon
to use the method of secret sharing described above to engrave n rings in such a way that
anyone who acquires k of the rings and knows the Prime Perilous p can deduce the Integer
N of Power but owning k — 1 rings will give no information whatever.

For reasons to be explained in the prequel, Trigon engraves an (n + 1)st ring with
random integers. A band of heroes (who know the Prime Perilous and all the information
given in this exercise) sets out to recover the rings. What, if anything, can they say, with
very high probability, about the Integer of Power if they have k rings (possibly including
the fake)? What can they say if they have k + 1 rings? What if they have k + 2 rings?

5.7 Further exercises

Exercise 5.7.1 Let A and B be n x n matrices. State and prove necessary and sufficient
conditions involving the row ranks of A and the n x 2n matrix (A B) for the existence of
an n X n matrix X with AX = B. When is X unique and why?

Find X when

4 1 1 1
A=|1 2 1] and B=|0 1 0
0 3 3 2

Exercise 5.7.2 Let V be a vector space over [F with basis e, e, ..., e, where n > 2. For
which values of n, if any, are the following bases of V' ?

(i)e; —ey,e —e3 ..., —€,, €, —e.

(ii)e; +ey,e;+e;3,...,e,_1+e,e, +e.
Prove your answers.

Exercise 5.7.3 Consider the vector space P of real polynomials P : R — R with the usual
operations. Which of the following define linear maps from P to P? Give reasons for your
answers.

(i) (Dp)(1) = p' (D).

(i) (Sp)(1) = p(z* + 1).

(i) (Tp)(®) = p(t)* + 1.

(iv) (Ep)(1) = p(e").
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V) (Ip)(1) = [y p(s)ds.

Vi) (Kp)(t) = 1+ [y p(s)ds.

(vii) (Lp)(®) = p(0) + [5 p(s)ds.

(viii) (Mp)(1) = p(t?) — tp(1).

(ix) R and Q, where Rp and Qp are polynomials satisfying the conditions that p(t) =
% + D(Qp)(t) + (Rp)(t) with Rp having degree at most 1.

Exercise 5.7.4 Let A, B and C be subspaces of a finite dimensional vector space V over F
andleta : U — U be linear. Which of the following statements are always true and which
may be false? Give proofs or counterexamples as appropriate.

(1) If dim(A N B) = dim(A + B), then A = B.

(i) (AN B)=aANuaB.

() (B+CO)NCH+ANMA+B)=MBNC)+(CNA+(ANB).

Exercise 5.7.5 Suppose that W is a vector space over F with subspaces U and V. If U U V
is a subspace, show that U 2 V and/or V 2 U.

Exercise 5.7.6 Show that C is a vector space over R if we use the usual definitions of
addition and multiplication. Prove that it has dimension 2.
State and prove a similar result about C".

Exercise 5.7.7 (i) By expanding (1 + 1)(x + y) in two different ways, show that condition
(ii) in the definition of a vector space (Definition 5.2.2) is redundant (that is to say, can be
deduced from the other axioms).

(ii) Let U = R? and define A @ X = AX - e where we use the standard inner product from
Section 2.3 and e is a fixed unit vector. Show that, if we replace scalar multiplication
(A, X) — Ax by the ‘new scalar multiplication’ (1, X) — A e x, the new system obeys all
the axioms for a vector space except that thereisno A € R with L ex =xforallx € U.

Exercise 5.7.8 Let P, Q and R be n x n matrices. Use elementary row operations to show

the 2n x 2n matrices
PO O 0 POR
( 0 QR) and (Q 0 )

have the same row rank. Hence show that
rank(P Q) + rank(QR) < rank Q + rank P QR.
Exercise 5.7.9 If A and B are 2 x 2 matrices over R, is it necessarily true that
rank AB = rank BA?

Give reasons.
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Exercise 5.7.10 If A is an n x n matrix and n > 2, show that

n ifrank A = n,
rank AdjA = {1 ifrank A =n—1,
0 ifrank A <n — 1.

Show that, if n > 3, and A is not invertible, then Adj Adj A = 0. Is this true if n = 2?
Give a proof or counterexample.

Exercise 5.7.11 We continue the discussion of Exercise 5.5.19 by looking at ‘diagonal
magic squares’.

(i) Let T be the set of 3 x 3 real matrices A = (g;;) such that all rows, columns and
diagonals add up to the same value. (Thus A € T if and only if there is a K such that

3

3 3 3
E ajj = E aji = E aji = E ai3-i = K
i=1 i=1 i=1

i=1

for all j.) Show that I'” is a finite dimensional real vector space with the usual matrix
addition and multiplication by scalars and find its dimension.

(i1) Think about the problem of extending these results to n x n diagonal magic squares
and, if you feel it would be a useful exercise, carry out such an extension.
[Outside textbooks on linear algebra, ‘magic square’ means a ‘diagonal magic square’ with
integer entries. I think part (ii) requires courage rather than insight, but there is a solution
in an article ‘Vector spaces of magic squares’ by J. E-Ward [32].]

Exercise 5.7.12 Consider P the set of polynomials in one real variable with real coeffi-
cients. Show that P is a subspace of the vector space of maps f : R — R and so a vector
space over R.

Show that the maps T and D defined by

n

T Xn:ajtj :Z%t”l and D Xn:ajtj :ijajtj’1
=0 j=1

=0 j=0

are linear.

(1) Show that T is injective, but not surjective.

(i1) Show that D is surjective, but not injective. What is the kernel of D?

(iii) Show that DT is the identity, but 7' D is not.

(iv) Which polynomials p, if any, have the property that p(D) = 0? (In other words,
find all p(r) = 3=_, b;¢/ such that the linear map >, b; D/ = 0.)

(v) Suppose that V is a subspace of P such that f € V = T f € V. Show that V cannot
be finite dimensional.

(vi) Let W be a subspace of P. Show that W is finite dimensional if and only if there
exists an m such that D" f = O forall f € W.
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Exercise 5.7.13 Let U be a finite dimensional vector space over Fand letw, 8 : U — U
be linear. State and prove necessary and sufficient conditions involving «(U) and B(U) for
the existence of a linear map y : U — U with ay = 8. When is y unique and why?
Explain how this links with the necessary and sufficient condition of Exercise 5.7.1.
Generalise the result of this question and its parallel in Exercise 5.7.1 to the case when
U, V, W are finite dimensional vector spacesand o : U — W, : V — W are linear.

Exercise 5.7.14 [The circulant determinant] We work over C. Consider the circulant
matrix

X0 X1 X2 N Xn

Xn X0 X1 . Xn—1
C = | Xn-1 Xn X0 cee Xp=2

X1 X2 X3 e X0

By considering factors of polynomials in n variables, or otherwise, show that
detC =[] s,
j=0
where f(1) =Y, x;t/ and ¢ = exp (27i/(n + 1)).

Exercise 5.7.15 If A and B are n x n matrices of complex numbers, show that

A —B
= A+iB A —iB).
det ( B A) det(A + i B) det( iB)

Exercise 5.7.16 If J is a real m x m matrix satisfying J?> = —1I, show that m = 2n for
some integer n and there exists an invertible matrix P with

0o I
1 _
P JP_(_I O)’

where the matrix entries are themselves n x n matrices.
Find the dimension of the space of 2n x 2n real matrices such that

ATJ+JA=0.
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Linear maps from [F” to itself

6.1 Linear maps, bases and matrices

We already know that matrices can be associated with linear maps. In this section we show
how to associate every linear map « : " — " with an n X n matrix.

Definition 6.1.1 Let « : " — F" be linear and let e, e,, ..., e, be a basis. Then the
matrix A = (a;;) of a with respect to this basis is given by the rule

n
a(ej) = Za,‘je,‘.
i=1
At first sight, this definition looks a little odd. The reader may ask why ‘a;;e;” and not
‘aj;e;’? Observe that, if x = Z;zl xje;and a(x) =y = > |, yi¢;, then

n
Vi = E aijXj.

Jj=1

Thus coordinates and bases must go opposite ways. The definition chosen is conventional,’
but represents a universal convention and must be learnt.

The reader may also ask why our definition introduces a general basis e, e;, ..., €,
rather than sticking to a fixed basis. The answer is that different problems may be most
easily tackled by using different bases. For example, in many problems in mechanics it is
easier to take one basis vector along the vertical (since that is the direction of gravity) but
in others it may be better to take one basis vector parallel to the Earth’s axis of rotation.
(For another example see Exercise 6.8.1.)

If we do use the so-called standard basis, then the following observation is quite
useful.

Exercise 6.1.2 Let us work in the column vector space F". If ey, e,, ..., e, is the standard
basis (that is to say, €; is the column vector with 1 in the jth place and zero elsewhere),

' An Englishman is asked why he has never visited France. ‘I know that they drive on the right there, so I tried it one day in
London. Never again!”

118
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then the matrix A of a linear map o : F" — F" with respect to this basis has a(e;) as its
Jjth column.

Our definition of ‘the matrix associated with a linear map « : F” — "’ meshes well
with our definition of matrix multiplication.

Exercise 6.1.3 Let o, B : " — " be linear and let e, e,, ..., e, be a basis. If @ has
matrix A and B has matrix B with respect to the stated basis, then a8 has matrix AB with
respect to the stated basis.

Exercise 6.1.3 allows us to translate results on linear maps from F” to itself into results
on square matrices and vice versa. Thus we can deduce the result

(A+ B)C = AB + AC
from the result
(@+ By =ay tay

or vice versa. On the whole, I prefer to deduce results on matrices from results on linear
maps in accordance with the following motto:

linear maps for understanding, matrices for computation.

Since we allow different bases and since different bases assign different matrices to the
same linear map, we need a way of translating from one basis to another.

Theorem 6.1.4 [Change of basis] Let o : " — " be a linear map. If o has matrix

A = (a;j) with respect to a basis ey, e, . . ., €, and matrix B = (b;;) with respect to a basis
fi, 5, ..., £, then there is an invertible n x n matrix P such that
B =P 'AP.

The matrix P = (p;;) is given by the rule

n
fj = Zp,»je,».

i=1

Proof Since the e; form a basis, we can find unique p;; € IF such that

n
fj = Zpije,-.

i=1

Similarly, since the f; form a basis, we can find unique g;; € F such that

n
ej = Z‘Iijfi~

i=1
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Thus, using the definitions of A and B and the linearity of «,

i:b,,f,- =af) =« (; p,,e,.)

i=1 \s=1 r=1

Since the f; form a basis,

n n n n
bij = Z Zqixa”p”f = Z (Z Qisasr> DPrj

s=1 r=1 r=1 \s=1

and so
B = Q(AP) = QAP.

Since the result is true for any linear map, it is true, in particular, for the identity map ¢.
Here A = B = 1,501 = QP and we see that P is invertible with inverse P~! = Q. [

Exercise 6.1.5 Write out the proof of Theorem 6.1.4 using the summation convention.
Theorem 6.1.4 is associated with a definition.

Definition 6.1.6 Let A and B be n x n matrices. We say that A and B are similar (or
conjugate”) if there exists an invertible n x n matrix P such that B = P~'AP.

Exercise 6.1.7 (i) Show that, iftwo n X n matrices A and B are similar, then, given a basis
e, e,...,€,

we can find a basis
fi,6,.... 1

such that A and B represent the same linear map with respect to the two bases.

(if) Show that two n X n matrices are similar if and only if they represent the same linear
map with respect to two bases.

(iii) Show that similarity is an equivalence relation by using the definition directly. (See
Exercise 6.8.34 if you need to recall the definition of an equivalence relation.)

(iv) Show that similarity is an equivalence relation by using part (ii).

2 The word ‘similar’ is overused and the word ‘conjugate’ fits in well with the rest of algebra, but the majority of authors use
‘similar’.
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Exercise 6.8.25 proves the useful, and not entirely obvious, fact that, if two n x n
matrices with real entries are similar when considered as matrices over C, they are similar
when considered as matrices over R.

In practice it may be tedious to compute P and still more tedious® to compute P~

Exercise 6.1.8 Let us work in the column vector space F". If ey, e,, ..., €, is the standard
basis (that is to say, €; is the column vector with 1 in the jth place and zero elsewhere) and
fi, £y, ..., £, is another basis, explain why the matrix P in Theorem 6.1.4 has f; as its jth
column.

Exercise 6.1.9 Although we wish to avoid explicit computation as much as possible, the
reader ought, perhaps, to do at least one example. Suppose that o : R®* — R3 has matrix

I 1 2
-1 2 1
0 1 3

with respect to the standard basis e; = (1,0, 0)7, e; = (0, 1,0)T, e3 = (0,0, ). Find the
matrix associated with o for the basis f; = (1,0,0)7, £, = (1,1,0)7, f5 = (1, 1, DT.

Although Theorem 6.1.4 is rarely used computationally, it is extremely important from
a theoretical view.

Theorem 6.1.10 Let o : F* — F" be a linear map. If o has matrix A = (a;;) with respect
to a basis ey, e,, ..., e, and matrix B = (b;;) with respect to a basis f,1,, ..., f,, then
det A = det B.

Proof By Theorem 6.1.4, there is an invertible n x n matrix such that B = P~ 'AP. Thus

det B =det P~ 'detAdet P = (det P)"'det Adet P = det A.

Theorem 6.1.10 allows us to make the following definition.

Definition 6.1.11 Let o : F* — F" be a linear map. If o has matrix A = (a;;) with respect
to a basis e, e,, ..., e,, then we define deta = det A.

Exercise 6.1.12 Explain why we needed Theorem 6.1.10 in order to make this definition.

From the point of view of Chapter 4, we would expect Theorem 6.1.10 to hold. The
determinant det « is the scale factor for the change in volume occurring when we apply the
linear map « and this cannot depend on the choice of basis. However, as we pointed out
earlier, this kind of argument, which appears plausible for linear maps involving R? and
IR3, is less convincing when applied to R” and does not make a great deal of sense when
applied to C". Pure mathematicians have had to look rather deeper in order to find a fully

3 1If you are faced with an exam question which seems to require the computation of inverses, it is worth taking a little time to
check that this is actually the case.
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satisfactory ‘basis free’ treatment of determinants and we shall not consider the matter in
this book.

6.2 Eigenvectors and eigenvalues

As we emphasised in the previous section, the same linear map « : F* — F" will be
represented by different matrices with respect to different bases. Sometimes we can find a
basis with respect to which the representing matrix takes a very simple form. A particularly
useful technique for doing this is given by the notion of an eigenvector.

Definition 6.2.1 [fa : F* — F" is linear and () = Au for some vector u # 0 and some
A € F, we say that u is an eigenvector of o with eigenvalue A.

Note that, though an eigenvalue may be zero, the zero vector cannot be an eigenvector.
When we deal with finite dimensional vector spaces, there is a strong link between
eigenvalues and determinants.’

Theorem 6.2.2 [f o : " — F" is linear, then A is an eigenvalue of o if and only if
det(ht —a) = 0.

Proof Observe that

A is an eigenvalue of «
4 (¢ — A)u = 0 has a non-trivial solution
& (¢ — At) is not invertible
& det(a —At) =0
& dettvt —a) =0
as stated. Il

We call the polynomial x,(t) = det(t: — «) the characteristic polynomial ® of «.

Exercise 6.2.3 (i) Verify that

10\ [(a b)) _ .
sl (L 0) (1Y) =t

where TrA = a + d.
@) If A = (a;;) is a 3 x 3 matrix, show that

det(t] — A) = 2 — (Tr A)t> + ¢t — det A,
where Tr A = a1 + ax + asz3 and ¢ depends on A, but need not be calculated explicitly.

* The development of quantum theory involved eigenvalues, eigenfunctions, eigenstates and similar eigenobjects. Eigenwords
followed the physics from German into English, but kept their link with German grammar in which the adjective is strongly
bound to the noun.

5 However, the notion of eigenvalue generalises to infinite dimensional vector spaces and the definition of determinant does not,
so it is important to use Definition 6.2.1 as our definition rather than some other definition involving determinants.

6 Older texts sometimes talk about characteristic values and characteristic vectors rather than eigenvalues and eigenvectors.
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Exercise 6.2.4 Let A = (a;j) be ann x n matrix. Write b;;(t) =t — a;; and b;;(t) = —a;;
ifi # ). 1f
o:{1,2,....,n} > {1,2,...,n}

is a bijection (that is to say, o is a permutation) show that P,(t) = ]_[:»’:1 bisiy(t) is a
polynomial of degree at most n — 2 unless o is the identity map. Deduce that

det(t] — A) = [ [t — ai) + Q).
i=1

where Q is a polynomial of degree at most n — 2.
Conclude that

det(t] — A) =t"+ cp1t" "+ epat" P+ + e

with ¢, = —TrA = — Z?:l a;;. By taking t =0, or otherwise, show that cy =
(—=1)*det A. (Tr A is called the trace of A.)

In order to exploit Theorem 6.2.2 fully, we need two deep theorems from analysis.

Theorem 6.2.5 If P is polynomial of odd degree with real coefficients, then P has at least
one real root.

(Theorem 6.2.5 is a very special case of the intermediate value theorem.)

Theorem 6.2.6 [Fundamental Theorem of Algebra] If P is polynomial of degree at least
1 with coefficients in C, then P has at least one root in C.

Exercise 6.8.38 gives the proof, which the reader may well have met before, of the
associated factorisation theorem.

Theorem 6.2.7 [Factorisation of polynomials over C] If P is polynomial of degree n
with coefficients in C, then we can find c € C and \; € C such that

Pty=c[Je—=np.

j=1
The following lemma shows that our machinery gives results which are not immediately
obvious.

Lemma 6.2.8 Any linear map o : R — R has an eigenvector. It follows that there exists
some line [ through 0 with a(l) C [.

Proof Since det(ft — «) is a real cubic, the equation det(zt — o) = 0 has a real root, say A.
We know that A is an eigenvalue and so has an associated eigenvector u, say. Let

[ ={su:seR}
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Exercise 6.2.9 Generalise Lemma 6.2.8 to linear maps o« : R¥"+1 — R+,

If we consider real vector spaces of even dimension, it is easy to find linear maps with
no eigenvectors.

Example 6.2.10 Consider the linear map pg : R> — R? whose matrix with respect to the
standard basis (1, 0)T, (0, D7 is

R — (€08 6 —sin6
= \sin6  coso )
The map py has no eigenvectors unless 6 =0 mod w. If0 =0 mod 2m, every non-zero

vector is an eigenvector with eigenvalue 1. I[f 6 = m mod 27, every non-zero vector is an
eigenvector with eigenvalue —1.

Exercise 6.2.11 Prove the results of Example 6.2.10 by first showing that the equation
det(tt — pp) = 0 has no real roots unless = 0 mod 7 and then looking at the cases when
6 =0 mod .

The reader will probably recognise py as a rotation through an angle 6. (If not, she can
wait for the discussion in Section 7.3.) She should convince herself that the result is obvious
if we interpret it in terms of rotations. So far, we have emphasised the similarities between
R" and C". The next result gives a striking example of an essential difference.

Lemma 6.2.12 Any linear map « : C" — C" has an eigenvector. It follows that there
exists a one dimensional complex subspace

| ={we:w e C}
(where e # 0) with a(l) C I.

Proof The proof, which resembles the proof of Lemma 6.2.8, is left as an exercise for the
reader. O

The following observation is sometimes useful when dealing with singular n x n matri-
ces.

Lemma 6.2.13 If A is an n x n matrix over F, then there exists a § > 0 such that A + t1
is non-singular for all 0 # |t| < §.

Proof Since Pa(t) = det(t] + A) is a non-trivial polynomial, it has only finitely many
roots and so there exists a § > 0 such that P4(¢) # 0 and so A + ¢I is non-singular for all
0|t <6. O

Exercise 6.2.14 We use the hypotheses and notation of Lemma 6.2.13 and its proof.

(@) Show that Pao(t) = (—1)" xa(—t) where x4(t) = det(t] — A).

(it) Prove the following very simple consequence of Lemma 6.2.13. We can find t, — 0
such that t, I + A is non-singular.
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Exercise 6.2.15 Suppose that A and B are n x n matrices and A is non-singular. Use
the observation that det A det(tA~' — B) = det(t] — AB) to show that xap = X (Where
Xc denotes the characteristic polynomial of C). Use Exercise 6.2.14 (ii) to show that the
condition that A is non-singular can be removed.

Explain why, if xo = xp, then Tr A = Tr B. Deduce that Tr AB = Tr BA. Which of the
following two statements (if any) are true for all n x n matrices A, B and C?

(i) XxaBc = Xacs-

(it) XaBc = XBCa-
Justify your answers.

Exercise 6.2.16 Let us say thatann x n matrix A is simple magic if the sum of the elements
of each row and the sum of the elements of each column all take the same value. (In other
words, Y '_, ai, = Z;': | Gvj = k for all u and v and some «.) Identify an eigenvector of
A.

If A is simple magic and BA = AB = I, show that B is simple magic. Deduce that, if
A is simple magic and invertible, then Adj A is simple magic. Show, more generally, that,
if A is simple magic, so is AdjA.

We give other applications of Exercise 6.2.14 (ii) in Exercises 6.8.8 and 6.8.11.

6.3 Diagonalisation and eigenvectors

As we said in the previous section, a linear map o : ¥ — " may have many different
matrices associated with it according to our choice of basis. We asked whether there are
any bases with respect to which the associated matrix takes a particularly simple form. We
now specialise our question and ask whether there are any bases with respect to which the
associated matrix is diagonal. The next result is essentially a tautology, but shows that the
answer is closely bound up with the notion of an eigenvector.

Theorem 6.3.1 Suppose that o : F" — F" is linear. Then o has diagonal matrix D with
respect to a basis €y, €, . .., €, if and only if the €; are eigenvectors. The diagonal entries
d;; of D are the eigenvalues of the e;.

Proof 1If a has matrix A = (a;;) with respect to a basis ey, e, .. ., e, then, by definition,

n
ae; = E aij€;.
i=l

Thus A is diagonal with a;; = d;; if and only if
oeej = djjej,
that is to say, each e; is an eigenvector of o with associated eigenvalue d;. 0

The next exercise prepares the way for a slightly more difficult result.
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Exercise6.3.2 (i) Leta : F? — F2 be alinear map. Suppose that e, and e, are eigenvectors
of o with distinct eigenvalues Ay and \,. Suppose that

xie; + xpe, = 0. (61)
By applying o to both sides, deduce that
Aixie; + Axxzer = 0. (6.2)

By subtracting (2) from \, times (1) and using the fact that Ay # Xy, deduce that x| = 0.
Show that x, = 0 and conclude that e; and e, are linearly independent.

(ii) Obtain the result of (i) by applying o — Ayt to both sides of (1).

(iii) Let o : F> — 3 be a linear map. Suppose that e, e, and e; are eigenvectors of o
with distinct eigenvalues Ay, A and A3. Suppose that

x1e; + xoer + xze3 = 0.

By first applying o — Azt to both sides of the equation and then applying o — lyt to both
sides of the result, show that x3 = 0.
Show that ey, e, and e3 are linearly independent.

Theorem 6.3.3 Ifalinear map « : F" — F" has n distinct eigenvalues, then the associated
eigenvectors form a basis and a has a diagonal matrix with respect to this basis.

Proof Let the eigenvectors be e; with eigenvalues A ;. We observe that
((X — )ut)ej = ()"j - k)ej.

Suppose that

n
E Xr€r = 0.
k=1

Applying
Bn = (o — i) —Aa). .. (0 — Ap_1t)

to both sides of the equation, we get
n—1
X [ [ = 2p)en = 0.
j=1

Since an eigenvector must be non-zero, it follows that

n—1

Xn l_[()‘n - )‘-j) =0
j=1

and, since A, —A; #0 for 1 < j <n —1, we have x, = 0. A similar argument shows
thatx; =0foreach 1 < j <nandsoep,e,,...,e, are linearly independent. Since every
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linearly independent collection of n vectors in " forms a basis, the eigenvectors form a
basis and the result follows. O

6.4 Linear maps from C? to itself

Theorem 6.3.3 gives a sufficient but not a necessary condition for a linear map to be
diagonalisable. The identity map ¢ : F* — [F" has only one eigenvalue but has the diagonal
matrix / with respect to any basis. On the other hand, even when we work in C” rather than
R”, not every linear map is diagonalisable.

Example 6.4.1 Letuy, u, be a basis for F2. The linear map p : F> — F? given by
Blxiu + xouwp) = xou,
is non-diagonalisable.

Proof Suppose that § is diagonalisable with respect to some basis. Then 8 would have
matrix representation
d 0
D= ,
(5 )

say, with respect to that basis and 2 would have matrix representation

d; 0
D*=("!
(5 )

with respect to that basis.
However,

B(x1u; + xowp) = B(xauy) =0

for all x;, so B% = 0 and % has matrix representation

0 0

0 O
with respect to every basis. We deduce that df = d3 = 0,s0d; = d, = 0 and B = 0 which
is absurd. Thus g is not diagonalisable. O

Exercise 6.4.2 Here is a slightly different proof that the mapping B of Example 6.4.1 is
not diagonalisable.
(i) Find the characteristic polynomial of B and show that O is the only eigenvalue of B.
(ii) Find all the eigenvectors of B and show that they do not span F".

Fortunately, the map just given is the ‘typical’ non-diagonalisable linear map for C.

Theorem 6.4.3 Ifo : C> — C? is linear, then exactly one of the following three statements
must be true.
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(i) @ has two distinct eigenvalues A and . and we can take a basis of eigenvectors e;, €,
for C?. With respect to this basis, o has matrix

(6 )

(ii) o has only one distinct eigenvalue A, but is diagonalisable. Then o = At and has

A0
0 x
with respect to any basis.
(iii) « has only one distinct eigenvalue A and is not diagonalisable. Then there exists a
basis ey, e, for C? with respect to which o has matrix

(1)

Note that e, is an eigenvector with eigenvalue A but €, is not.

matrix

Proof As the reader will remember from Lemma 6.2.12, the fundamental theorem of
algebra tells us that @ must have at least one eigenvalue.

Case (i) is covered by Theorem 6.3.3, so we need only consider the case when « has
only one distinct eigenvalue A.

If o« has matrix representation A with respect to some basis, then o — At has matrix
representation A — Al and, conversely, if &« — At has matrix representation A — Al with
respect to some basis, then o has matrix representation A. Further ¢ — At has only one
distinct eigenvalue 0. Thus we need only consider the case when A = 0.

Now suppose that « has only one distinct eigenvalue 0. If @« = 0, then we have case (ii).
If « # 0, there must be a vector e, such that «e, # 0. Write e; = «we,. We show that e; and
e; are linearly independent. Suppose that

xie; + xe, = 0. *
Applying « to both sides of %, we get
xja(ey) + xe; = 0.

If x; # 0, then e; is an eigenvector with eigenvalue —x;/x;. Thus x, = 0 and % tells us
that x; = 0, contrary to our initial assumption. The only consistent possibility is that x; = 0
and so, from ¥, x; = 0. We have shown that e, and e, are linearly independent and so
form a basis for F2.
Let u be an eigenvector. Since e; and e, form a basis, we can find y;, y, € C such that
u=ye; + ye.

Applying « to both sides, we get

0 = yjoe; + yre.
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If y; # 0 and y, # O, then e, is an eigenvector with eigenvalue —y,/y; which is absurd. If
y1 = 0 and y, = 0, we get u = 0, which is impossible since eigenvectors are non-zero. If
y1 = 0and y, # 0, we get e; = 0 which is also impossible.

The only remaining possibility’ is that y; # 0, y, = 0 and «ae; = 0, that is to say,
case (iii) holds. O

The general case of a linear map o : C" — C" is substantially more complicated.
The possible outcomes are classified using the ‘Jordan normal form’ which is studied in
Section 12.4.

It is unfortunate that we cannot diagonalise all linear maps « : C* — C", but the reader
should remember that the only cases in which diagonalisation may fail occur when the
characteristic polynomial does not have n distinct roots.

We have the following corollary to Theorem 6.4.3.

Example 6.4.4 [Cayley—Hamilton in two dimensions] If & : C*> — C2 is a linear map,
let us write Q(t) = det(tt — ) for the characteristic polynomial of a. Then we have

o)y =t>+at+b
where a, b € C. The Cayley—Hamilton theorem states that

o’ +aa+b=0
or, more briefly,® that Q(a) = 0.

We give the proof as an exercise.
Exercise 6.4.5 (i) Suppose that a : C* — C? has matrix
A0
A= <0 u)

(where A and . need not be distinct) with respect to some basis. Find the characteristic
polynomial Q(t) = t*> + at + b of a and show that A®> + aA + bl = 0. Deduce that

o +ao + b =0.

(if) Repeat the calculations of part (i) in the case when o : C? — C? has matrix

A1
A =
G )
with respect to some basis.
(iii) Use Theorem 6.4.3 to obtain the result of Example 6.4.4.

We shall extend this result to higher dimensions in Section 12.2.

7 How often have I said to you that, when you have eliminated the impossible, whatever remains, however improbable, must be
the truth.
(Conan Doyle The Sign of Four [12])
8 But more confusingly for the novice.
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The change of basis formula enables us to translate Theorem 6.4.3 into a theorem on
2 x 2 complex matrices.

Theorem 6.4.6 We work in C. If A is a 2 x 2 matrix, then exactly one of the following
three things must happen.
(i) There exists a 2 x 2 invertible matrix P such that

A0
P'AP = < >
0 u

with A # L.
(i) A = Al
(iii) There exists a 2 x 2 invertible matrix P such that

A1
—1 _
rar=(3 1)

Here is a slightly stronger version of this result.

Exercise 6.4.7 By considering matrices of the form vP with v € C, show that we can
choose the matrix P in Theorem 6.4.6 so that det P = 1.

Theorem 6.4.6 gives us a new way of looking at simultaneous linear differential equations
of the form

x1(1) = anxi(t) + apxs(t)
x5(1) = anxi(t) + anxs(t),

where x| and x, are differentiable functions and the g;; are constants. If we write

A= (011 a12> 7
a  an
then, by Theorem 6.4.6, we can find an invertible 2 x 2 matrix P such that P~ 'AP = B,
where B takes one of the following forms:

M0 . A0 A1
(0 A,z) with )\.1 ;é )\2, (O k) s or (0 )\,) .
(Xl(t)) _p (xl(t)>
Xo(1) x(t))’
then

Xi0O\ _ oo (5O o, (O X0\ _ , (X1
<X2(f)>_P (xzm)_P A<x2(f)>_P AP <X2(r>>_B<X2(r>>'

If we set
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Thus, if

M0 .
B = h
(0 )\.2) with A} # Ay,

then

X1(t) = M X(0)
Xo(t) = A Xa(1),

and so, by elementary analysis (see Exercise 6.4.8),
Xi(1)=Cie',  Xo(1) = Cre™

for some arbitrary constants C| and C,. It follows that

x(\ _ (X)) _ , (Cie*
(xz(l)> =F (Xz(t)) =F <C2€M’>

for arbitrary constants C; and Cj.
A0
(6 3)=»

If
then A = A1, x;(t) = Ax;(t) and x;(?) = Cje“ [/ = 1, 2] for arbitrary constants C; and

Co.
aol
7= )

If
Xi(t) = 2 X1(1) + Xa(r)
Xo(t) = A Xa(1),

then

and so, by elementary analysis,
Xs(1) = Cre™,
for some arbitrary constant C, and
Xi(t) = AX (1) + Ce™.
It follows (see Exercise 6.4.8) that
Xi(t) = (Cy + Cat)e™

for some arbitrary constant C| and

x(\ _ (X1 _  ((Ci+ Cat)eM
<xz(t)> =7 <X2<r)) =7 ( Cac™ )
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Exercise 6.4.8 (Most readers will already know the contents of this exercise.)
@) If x(t) = Ax(t), show that

d . _
E(e x()) =0.

Deduce that e ™ x(t) = C for some constant C and so x(t) = Ce™'.
(i) If x(t) = Ax(t) + KM, show that

d

E(e*“x(;) —Kt)=0

and deduce that x(t) = (C 4+ Kt)e* for some constant C.

Exercise 6.4.9 Consider the differential equation
X(@)+ax@)+ bx(t) =0.

Show that, if we write x1(t) = x(t) and x,(t) = x(t), we obtain the equivalent system

x1(t) = x2(2)
X2(t) = —bx1(t) — axa(2).

Show, by direct calculation, that the eigenvalues of the matrix

a= (5 L)

are the roots of the, so-called, auxiliary polynomial

22+ br+a.

At the end of this discussion, the reader may ask whether we can solve any system of
differential equations that we could not solve before. The answer is, of course, no, but we
have learnt a new way of looking at linear differential equations and two ways of looking

at something may be better than just one.

6.5 Diagonalising square matrices

If we use the change of basis formula to translate our results on linear maps « : " — F”

into theorems about n x n matrices, Theorem 6.3.3 takes the following form.

Theorem 6.5.1 We work in F. If A is an n x n matrix and the polynomial Q(t) =
det(t1 — A) has n distinct roots in F, then there exists an n x n invertible matrix P such

that P~'AP is diagonal.
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Exercise 6.5.2 Let A = (a;;) be an n x n matrix with entries in C. Consider the system of
simultaneous linear differential equations

).Cj([) = Za,»jx,-(t).

Jj=1

If A has n distinct eigenvalues i, L2, ..., Ay, show that

n
x) =) e
j=1

for some constants ;.
By considering the special case when A is diagonal show that, in some cases, it may not
be possible to choose the i ; freely.

Bearing in mind our motto ‘linear maps for understanding, matrices for computation’ we
may ask how to convert Theorem 6.5.1 from a statement of theory to a concrete computation.

It will be helpful to make the following definitions, transferring notions already familiar
for linear maps to the context of matrices.

Definition 6.5.3 We work over F. If A is an n X n matrix, we say that the characteristic
polynomial x4 of A is given by

xa(t) = det(t] — A).

If u is a non-zero column vector, we say that u is an eigenvector of A with associated
eigenvalue A if

Au = \u.

We say that A is diagonalisable if we can find an invertible n x n matrix P andann X n
diagonal matrix D with P"'AP = D.

Suppose that we wish to ‘diagonalise’ an n x n matrix A. The first step is to look at the
roots of the characteristic polynomial

xa(t) =det(zrl — A).

If we work over R and some of the roots of x4 are not real, we know at once that A is
not diagonalisable (over R). If we work over C or if we work over R and all the roots are
real, we can move on to the next stage. Either the characteristic polynomial has n distinct
roots or it does not. We shall discuss the case when it does not in Section 12.4. If it does,
we know that A is diagonalisable. If we find the n distinct roots (easier said than done
outside the artificial conditions of the examination room) Ay, Ay, ..., A,, we know, without
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further computation, that there exists a non-singular P such that P~'AP = D where D
is a diagonal matrix with diagonal entries A ;. Often knowledge of D is sufficient for our
purposes,” but, if not, we proceed to find P as follows. For each A j» we know that the
system of n linear equations in #» unknowns given by

(A-A;Dx=0
(where x is a column vector) has non-zero solutions. Let e; be one of them so that
Aej = Ajej.

If P is the n x n matrix with jth column e; and u; is the column vector with 1 in the jth
place and O elsewhere, then Pu; = e; and so P~'e; = u;. It follows that

P 'APu; = P 'Ae; = AP 'e; = A;u; = Du;
forall1 < j <nandso
P 'AP =D.
If we need to know P~!, we calculate it by inverting P in some standard way.
Example 6.5.4 Diagonalise the matrix
cosf —sinf
Ry = (sin& cos 6 >
(with 6 real) over C.
Calculation We have

det(t] — Ry) = det <t —cos6 sin@ )

—siné t —cosé
= (t — cos0)* +sin’ 0
= ((t —cosf)+i sinG)((t —cosfh)—i sin@)
=@ -1 —e).
If 6 =0 mod m, then the characteristic polynomial has a repeated root. In the case
60 =0 mod 2w, Ry = 1I. In the case § = mod 27, Ry = —I. In both cases, Ry is
already in diagonal form.
From now on we take 6 #£ 0 mod m, so that the characteristic polynomial has two

distinct roots ¢'? and e~*?. Without further calculation, we know that Ry can be diagonalised
to obtain the diagonal matrix
e'? 0
o=(% 0
0 e

9 It is always worthwhile to pause before indulging in extensive calculation and ask why we need the result.
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We now look for an eigenvector corresponding to the eigenvalue ¢’?. We need to find a
non-zero solution to the equation Ryz = ¢'?z, that is to say, to the system of equations

(cosB)z; — (sinf)z, = (cos O + i sinf)z;
(sinB)z; + (cos B)zp = (cos 6 + i sinH)z;.

Since # % 0 mod 7, we have sinf # 0 and our system of equations collapses to the single
equation

7y = —iZ].

We can choose any non-zero multiple of (1, —i)” as an appropriate eigenvector, but we
shall simply take our eigenvector as
< | )
u= ).
—i

To find an eigenvector corresponding to the eigenvalue e~
Ryz = =%z, that is to say,

i we look at the equation

(cos0)z; — (sinB)zp, = (cosH — i sinf)z;

(sin€)z; + (cos B)za = (cosB — i sin6)zy,

which reduces to

We take our eigenvector to be

With these choices

szm=(i ;ﬁ.

Using one of the methods for inverting matrices (all are easy in the 2 x 2 case), we get

and
P 'RyP = D.

A feeling for symmetry suggests that, instead of using P, we should use

1
:—P,
°=7
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so that
1 1 —i 1 /1 i
- — d 0'=—
o= (5 ) o500
This just corresponds to a different choice of eigenvectors. O

Exercise 6.5.5 Check, by doing the matrix multiplication, that
Q"'RyQ = D.

The reader will probably find herself computing eigenvalues and eigenvectors in several
different courses. This is a useful exercise for familiarising oneself with matrices, determi-
nants and eigenvalues, but, like most exercises, slightly artificial.'? Obviously, the matrix
will have been chosen to make calculation easier. If you have to find the roots of a cubic,
it will often turn out that the numbers have been chosen so that one root is a small integer.
More seriously and less obviously, polynomials of high order need not behave well and the
kind of computation which works for 3 x 3 matrices may be unsuitable for n x n matrices
when n is large. To see one of the problems that may arise, look at Exercise 6.8.31.

6.6 Iteration’s artful aid

During the last 150 years, mathematicians have become increasingly interested in iteration.
If we have a map o : X — X, what can we say about «?, the map obtained by applying
o g times, when ¢ is large? If X is a vector space and « a linear map, then eigenvectors
provide a powerful tool for investigation.

Lemma 6.6.1 We consider n x n matrices over F. If D is diagonal, P invertible and
PAP~! = D, then

A1 =PDIP
Proof This is immediate. Observe that A = PDP~! so

AY =(PDP "YPAP™")...(PAP")
=PD(PP HDPPY...(PP HYDP = PDIP".

O

Exercise 6.6.2 (i) Why is it easy to compute D9?
(it) Explain the result of Lemma 6.6.1 by considering the matrix of the linear maps o
and a? with respect to two different bases.

Usually, it is more instructive to look at the eigenvectors themselves.

10 Though not as artificial as pressing an ‘eigenvalue button” on a calculator and thinking that one gains understanding thereby.
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Lemma 6.6.3 Suppose that « : F" — F" is a linear map with a basis of eigenvectors ey,

e, ..., e, with eigenvalues Ay, A, ..., A,. Then
n n
q e, — 9y .0
o ijej = Zk_jxjej.
j=1 j=1
Proof Immediate. O

It is natural to introduce the following definition.

Definition 6.6.4 Ifu(1),u(2), ... is a sequence of vectors in " and u € F", we say that
u(r) — u coordinatewise if u;(r) — u; asr — oo foreach 1 <i < n.

Lemma 6.6.5 Suppose that « : " — F" is a linear map with a basis of eigenvectors e,
€, ..., e, with eigenvalues L1, Ay, ..., Ay If [A(| > || for 2 < j < n, then
n
Aot ijej — xi€;
j=1
coordinatewise as ¢ — 00.

Speaking very informally, repeated iteration brings out the eigenvector corresponding
to the largest eigenvalue in absolute value.

The hypotheses of Lemma 6.6.5 demand that o be diagonalisable and that the largest
eigenvalue in absolute value should be unique. In the special case o : C?> — C? we can use
Theorem 6.4.3 to say rather more.

Example 6.6.6 Suppose that o : C*> — C? is linear. Exactly one of the following things
must happen.
(i) There is a basis e, ey with respect to which A has matrix

G 2

Aol (x1e1 + x2€2) — x1€

with |A| > ||. Then

coordinatewise.
(i) There is a basis ey, e, with respect to which o has matrix

A0
0 u
with |M| = || but & £ . Then A~ a9 (x e, + x,e;) fails to converge coordinatewise except

in the special cases when x, = Q.
(i) o = Mwith A # 0, so

A la¢fu=u—u

coordinatewise for all u.
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(ii) a« =0and
alu=0—0

coordinatewise for all u.
(iii) There is a basis ey, e, with respect to which a has matrix

G )

a?(x1e; + x2€2) = (Ax; + gA97 " xo)e; + A%xze;

with A # 0. Then

forall g = 0 and so
q’lk’qaq(xlel + x06) = A7 e

coordinatewise.
(iii) There is a basis ey, e, with respect to which a has matrix

(o)

alu=0

Then

forall g > 2 and so
afu— 0
coordinatewise for all .
Exercise 6.6.7 Check the statements in Example 6.6.6. Pay particular attention to part (iii).

As an application, we consider sequences generated by linear difference equations. A
typical example is given by the Fibonacci sequence'’

1, 1,2, 3,5, 8, 13, 21, 34, 55, ...
where the nth term F), is defined by the equation
F,=F,1+ F,—
and we impose the condition F} = F, = 1.

Exercise 6.6.8 Find Fy. Show that Fy = 0 and compute F_, and F_,. Show that F, =
(_1)n+1F_n_

More generally, we look at sequences u,, of complex numbers satisfying
u, +au,_1+bu, »=0
with b # 0.

' “Have you ever formed any theory, why in spire of leaves . ..the angles go 1/2, 1/3, 2/5, 3/8, etc. ... It seems to me most

marvellous.” (Darwin [13]).
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Exercise 6.6.9 What can we say if b = 0 but a % 0? What can we say ifa = b = 0?

Analogy with linear differential equations suggests that we look at vectors

u(n) = (u”+l> .

u(n + 1) = Au(n), where A = ( 0 ! )

()= ()
Un+1 uj

The eigenvalues of A are the roots of

‘We then have

and so

O(t) = det(t1 —A)_det<a t+b) =t"+ bt +a.

Since a # 0, the eigenvalues are non-zero.
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If O has two distinct roots A and p with corresponding eigenvectors z and w, then we

can find real numbers p and ¢ such that

<u0>
= pz+gw,
ui

( N ) = A"(pz+qw) = V" pz+ 1" qw
Un+1

SO

and, looking at the first entry of the column vector,
u, = 71 pA" + wigu”.
Thus u, = cA" + ¢’ for some constants ¢ and ¢’ depending on ug and u.
Exercise 6.6.10 [f Q has only one distinct root A show by a similar argument that
u, = (c+c'n\"

for some constants ¢ and ¢’ depending on ug and u.

Exercise 6.6.11 Suppose that the polynomial P(t) = t™ + Z?;ol a;t! has m distinct non-
Zero 1oots Ay, Az, ..., hy. Show, by an argument modelled on that just given in the case

m = 2, that any sequence u, satisfying the difference equation

m—1
u, + E ajj_mir =0
—
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must have the form

m

U, =y ik ok
k=1

for some constants ci. Show, conversely, by direct substitution in Y%, that any expression of
the form k¥ satisfies %.
If M| > |kl for2 <k <mand c; # 0, show that u, # 0 for r large and

Ur

— A
Ur—1

as r — o0o. Formulate a similar theorem for the case r — —o0.
[If you prefer not to use too much notation, just do the case m = 3.]

Exercise 6.6.12 Our results take a particularly pretty form when applied to the Fibonacci
sequence.

(i) If we write T = (1 4+ +/5)/2, show that T=' = (=1 + /5)/2. (The number T is
sometimes called the golden ratio.)

(i) Find the eigenvalues and associated eigenvectors for

()

Write (0, 1)T as the sum of eigenvectors.

(iii) Use the method outlined in our discussion of difference equations to obtain F, =
17" 4 ¢t 7", where ¢y and ¢, are to be found explicitly.

(iv) Show that F (n) is the closest integer to t"/ V5. Use more explicit calculations when
n is small to show that F(n) is the closest integer to I”/ﬁfor alln > 0.

(v) Show that
Fh—l Fh
A" =
< f% Fh+1)

for all n > 1. Deduce, by taking determinants, that
Fuo1Fyy — F; = (=1)"

foralln > 1. (This is Casini’s identity.)
(vi) Are the results of (v) true for alln? Why?
(vii) Use the observation that A" A" = A" to show that

Fi+F, = Fyi.

Exercise 6.6.13 Here is another example of iteration. Suppose that we have m airports
called, rather unimaginatively, 1,2, ..., m. Some are linked by direct flights and some are
not. We are initially interested in whether it is possible to get from i to j inr flights.

(i) Let D = (d;;) be the m x m matrix such that d;; =1 if i # j and there is a direct

flight from i to j and d;; = 0 otherwise. If we write (di(l]’-l)) = D", show that ds;l) is the
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number of journeys from i to j which involve exactly n flights. In particular, there is a
Journey from i to j which involves exactly n flights if and only if di(J'-l) > 0.

(ii) Let D = (d;;) be the m x m matrix such that d;; = 1 if there is a direct flight from
itojorifi = jand c?ij = 0 otherwise. If we write ((7;7)) = D", interpret the meaning of
c?l(jn) Produce useful information along the lines of the last sentence of (i).

(iii) A peasant must row a wolf, a goat and a cabbage across a river in a boat that will
only carry one passenger at a time. If he leaves the wolf with the goat, then the wolf will
eat the goat. If he leaves the goat with the cabbage, then the goat will eat the cabbage. The
cabbage represents no threat to the wolf, nor the wolf to the cabbage. Explain (there is no
need to carry out the calculation) how to use the ideas above to find the smallest number
of trips the peasant must make. If the problem is insoluble will your method reveal the fact
and, if so, how?

6.7 LU factorisation

Although diagonal matrices are very easy to handle, there are other convenient forms of
matrices. People who actually have to do computations are particularly fond of triangular
matrices (see Definition 4.5.2).

We have met such matrices several times before, but we start by recalling some elemen-
tary properties.

Exercise 6.7.1 (i) If L is lower triangular, show that det L = I—[j:1 ljj.

(ii) Show that a lower triangular matrix is invertible if and only if all its diagonal entries
are non-zero.

@iii) If L is lower triangular, show that the roots of the characteristic polynomial are
the diagonal entries 1;; (multiple roots occurring with the correct multiplicity). Can you
identify one eigenvector of L explicitly?

If L is an invertible lower triangular n x n matrix, then, as we have noted before, it is
very easy to solve the system of linear equations

Lx =y,
since they take the form

liixy =y
bixy +Inxy =y

[31x1 + l30x2 + 133x3 = y3

Loixy + Loxo + Lzxs + -+ -+ Linxy = ya.
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We first compute x; = 11_1] y1. Knowing x|, we can now compute
X2 = 15 (92 — lixy).
We now know x; and x, and can compute
x3 =13 (03 — l1x1 — loxs),
and so on.

Exercise 6.7.2 Suppose that U is an invertible upper triangular n x n matrix. Show how
to solve UX =y in an efficient manner.

Exercise 6.7.3 (i) If L is an invertible lower triangular matrix, show that L™ is a lower
triangular matrix.
(it) Show that the product of two lower triangular matrices is lower triangular.

Our main result is given in the next theorem. The method of proof is as important as the
proof itself.

Theorem 6.7.4 If A is an n X n invertible matrix, then, possibly after interchange of
columns, we can find a lower triangular n x n matrix L with all diagonal entries 1 and a
non-singular upper triangular invertible n x n matrix U such that

A=1LU.

Proof We use induction on n. If we deal with 1 x 1 matrices, then we have the trivial
equality (a)(1) = (a), so the result holds for n = 1.

We now suppose that the result is true for (n — 1) x (n — 1) matrices and that A is an
invertible n X n matrix.

Since A is invertible, at least one element of its first row must be non-zero. By inter-
changing columns,'” we may assume that a;; # 0. If we now take

I 1 Uil ai
-1
[y ap, a ) ap
I=| . |= ) and u=| =] . [,
] -1
nl agy anl Uln Aain

then lu” is an n x n matrix whose first row and column coincide with the first row and
column of A.

12 Remembering the method of Gaussian elimination, the reader may suspect, correctly, that in numerical computation it may be
wise to ensure that |ay;| > |ay;| for 1 < j < n. Note that, if we do interchange columns, we must keep a record of what we
have done.
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‘We thus have

0 O o ... O
0 b22 b23 . bzn
A—l =10 ba bz ... by
0 bn2 bnS R bnn

We take B to be the (n — 1) x (n — 1) matrix (b;;)2<;, j<n With
apapj
bi = a; i -
ar
Using various results about calculating determinants, in particular the rule that adding
multiples of the first row to other rows of a square matrix leaves the determinant unchanged,
we see that

an 0 0 e 0

O b22 b23 .« bzn

apdetB=det| 0 bn Dby ... b3y

0 by bys ... by

ar apn a3 . aiy

O b22 b23 [P b2n

=det| O b bz ... Dby | =detA.

0 by bys ... by
Since det A # 0, it follows that det B # 0 and, by the inductive hypothesis, we can find
an n — 1 x n — 1 lower triangular matrix L= (lij)2<i j<n With [;; =1 [2 <i <n] and a

non-singular n — 1 x n — 1 upper triangular matrix U = (ij)2<i, j<n such that B = LU.

If we now define/;; =0for2 < j <nandu;; =0for2 <i <n,then L = (;j)i<i j<n
is an n x n lower triangular matrix with [;; =1 [1 <i <n], and U = (u;j)1<i,j<n 1S an

n X n non-singular upper triangular matrix (recall that a triangular matrix is non-singular
if and only if its diagonal entries are non-zero) with

LU = A.
The induction is complete. O

This theorem is sometimes attributed to Turing. Certainly Turing was one of the first
people to realise the importance of LU factorisation for the new era of numerical analysis
made possible by the electronic computer.

Observe that the method of proof of our theorem gives a method for actually finding L
and U. I suggest that the reader studies Example 6.7.5 and then does some calculations of
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her own (for example, she could do Exercise 6.8.26) before returning to the proof. She may
well then find that matters are a lot simpler than at first appears.

Example 6.7.5 Find the LU factorisation of

2 1 1
A= 4 1 0
-2 2 1
Solution Observe that
1 2 1 1
212 1 DH=| 4 2 2
-1 -2 -1 -1
and
2 1 1 2 1 1 0 O 0
4 1 0]—-| 4 2 2 ]1=[0 -1 =2
-2 2 1 -2 -1 -1 0 3 2

Next observe that

and

5 2)-G =6 %)

Since (1)(—4) = (—4), we see that A = LU with

1 0 O 2 1 1
L=]|2 1 0 and U=(0 -1 =2
-1 -3 1 o 0 -4

0

Exercise 6.7.6 Check that, if we take L and U as in Example 6.7.5, it is, indeed, true that
LU = A. (It is usually wise to perform this check.)

Exercise 6.7.7 We have assumed that det A # 0. If we try our method of LU factorisation
(with column interchange) in the case det A = 0, what will happen?

Once we have an LU factorisation, it is very easy to solve systems of simultaneous equa-
tions. Suppose that A = LU, where L and U are non-singular lower and upper triangular
n x n matrices. Then

Ax=y & LUx=y < Ux=u where Lu=y.

Thus we need only solve the triangular system Lu = y and then solve the triangular system
Ux=u.
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Example 6.7.8 Solve the system of equations

2x+y+z=1
4x +y =-3
—2x+2y+z=06

using LU factorisation.

Solution Using the result of Example 6.7.5, we see that we need to solve the systems of
equations

u =1 2x+y+z=u
2u+v =-3 and —-y—z=v
—u—3v+w==06 —4z = w.

Solving the first system step by step, we getu = 1, v = —5 and w = —8. Thus we need to
solve

2x+y+z=1
—y—z=-5
—4z = -8
and a step by step solution gives z =2,y = l and x = —1. U

The work required to obtain an LU factorisation is essentially the same as that required
to solve the system of equations by Gaussian elimination. However, if we have to solve the
same system of equations

AX =y

repeatedly with the same A but different y, we need only perform the factorisation once
and this represents a major economy of effort.

Exercise 6.7.9 Show that the equation
0 1
LU =
(i o)
has no solution with L a lower triangular matrix and U an upper triangular matrix. Why
does this not contradict Theorem 6.7.47?

Exercise 6.7.10 Suppose that L\ and L, are lower triangular n X n matrices with all
diagonal entries 1 and U, and U, are non-singular upper triangular n x n matrices. Show,
by induction on n, or otherwise, that if

LU, = LU,
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then Ly = Ly and Uy = U,. (This does not show that the LU factorisation given above is
unique, since we allow the interchange of columns."?)

Exercise 6.7.11 Suppose that L is a lower triangular n x n matrix with all diagonal
entries 1 and U is an n x n upper triangular matrix. If A = LU, give an efficient method
of finding det A. Give a reasonably efficient method for finding A~".

Exercise 6.7.12 (i) If A is a non-singular n X n matrix, show that (rearranging columns
if necessary) we can find a lower triangular matrix L with all diagonal entries 1 and an
upper triangular matrix U with all diagonal entries 1 together with a non-singular diagonal
matrix D such that

A=LDU.

State and prove an appropriate result along the lines of Exercise 6.7.10.

(ii) In this section we proved results on LU factorisation. Do there exist corresponding
results on U L factorisation? Give reasons.

(iii) Is it true that (after reordering columns if necessary) every invertible n x n matrix
A can be written in the form A = BC where B = (b;;) and C = (¢;;) are n x n matrices
withb;; =01ifi > jandc;j = 0if j > i? Give reasons.

6.8 Further exercises

Exercise 6.8.1 [The Lorentz transformation] Let r, v € R with ||v|]| < c and set y =
c(c® —|v|»HV2If

—Dv-r v-r
(o (S o (25,
prove the reciprocal relations
— D(=V)-r —v)-r
O (2 V(G O R S D PR G LAY
T B 4 I4 —Q
= vl? 2
that is to say, the relations

—Dv-r v-r
r=r’+<u+yt/)v, t=)/(t’+ 2)'
C

vl

[Courageous students will tackle the calculations head on. Less gung ho students may
choose an appropriate coordinate system. Both sets of students should then try the alternative
method. ]

13 Some writers do not allow the interchange of columns. LU factorisation is then unique, but may not exist, even if the matrix
to be factorised is invertible.
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Exercise 6.8.2 In this exercise we work in R. Find the eigenvalues and eigenvectors of

3 -1 2
A=10 4—5 25 —2
0 —2s+2 4s—1

for all values of s.
For which values of s is A diagonalisable? Give reasons for your answer.

Exercise 6.8.3 The 3 x 3 matrix A satisfies A> = A. What are the possible values of det A?
Write down examples to show that each possibility occurs.

Write down an example of a 3 x 3 matrix B with B® = 0 but B # 0.

If A satisfies the conditions of the first paragraph and B those of the second, what are
the possible values of det A B? Give reasons.

Exercise 6.8.4 We work in R? (using column vectors) with the standard basis
e =(1,0,00", e =(0,1,0", e=(0,01"

Consider a non-singular linear map o : R® — R? with matrix A with respect to the
standard basis. If " is a plane through the origin with equation a - x = 0 for some a # 0,
show that oI" is the plane through the origin with equation ((AT)’la) -x = 0. Deduce the
existence of a plane through the origin such that «(I") = T".

Show, by means of an example, that there may not be any line / through the origin with
[CTandal =1.

Exercise 6.8.5 We work with n x n matrices over F.

(i) Let P be a permutation matrix and E a non-singular diagonal matrix. If D is diagonal,
show that (PE)"'D(PE) is.

(ii) If D is a diagonal matrix with all diagonal entries distinct and B is a non-singular
matrix such that B~! D B is diagonal, show, by considering eigenvectors, or otherwise, that
B = PE where P is a permutation matrix and E a non-singular diagonal matrix.

(iii) Let A have n distinct eigenvalues. If Q is non-singular and Q' A Q is diagonal, show
that the non-singular matrix R is such that R~'AR is diagonal if and only if R = PEQ
where P is a permutation matrix and E a non-singular diagonal matrix.

(iv) Does (ii) remain true if we drop the condition that all the diagonal entries of D are
distinct? Give a proof or a counterexample.

Exercise 6.8.6 (i) Show that a 2 x 2 complex matrix A satisfies the condition A? = 0 if
and only if it takes one of the forms

a ar or 0 a or 0 0
—ar! —a 0 0 a 0

witha, A € Cand A # 0.
(i) We work with 2 x 2 complex matrices. Is it always true that, if A and B satisfy
A? + B? = 0, then (A + B)*> = 0? Is it always true that, if A and B are not diagonalisable,
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then A + B is not diagonalisable? Is it always true that, if A and B are diagonalisable, then
A + B is diagonalisable? Give proofs or counterexamples.

(iii) Let
a b a b
= o) o= )

with a, ¢ € R, b € C. Is it always true that A is diagonalisable over C? Is it always true
that B is diagonalisable over C? Give proofs or counterexamples.

Exercise 6.8.7 We work with 2 x 2 complex matrices. Are the following statements true
or false? Give a proof or counterexample.

i) AB=0=BA=0.

(i) If AB = 0 and B # 0, then there exists a C # 0 such that AC = CA = 0.

Exercise 6.8.8 (i) Suppose that A, B, C and D are n x n matrices over F such that
AB = BA and A is invertible. By considering

I O\/A B
X I)J)\C D)’
for suitable X, or otherwise, show that
A B
= AD — BC).
det ( c D) det( C)

(iii) Use Exercise 6.2.14 (ii) to show that the condition A invertible can be removed in
part (i).
(iv) Can the condition AB = BA be removed? Give a proof or counterexample.

Exercise 6.8.9 Explain briefly why the set M, of all n x n matrices over F is a vector
space under the usual operations. What is the dimension of M, ? Give reasons.

If Ae M, wedefine Ly, R4 : M,, > M, by L4X = AX and Ry X = XA forall X €
M,,. Show that L 4 and R, are linear,

detL, = (detA)" =detRy and det(Ly — Ry) = 0.
[Hint: Find an appropriate basis.]

Exercise 6.8.10 By first considering the case when A and B are non-singular, or otherwise,
show that, if A and B are n x n matrices over [F, then

Adj AB = Adj B Adj A.

Exercise 6.8.11 [Sylvester’s determinant identity]
(i) Suppose that A and B are n x n matrices over IF and A is invertible. Show that

det(I + AB) = det(I + BA).
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(i1) Use Exercise 6.2.14 to show that, if A and B are n x n matrices over [, then
det(/ + AB) = det(I + BA).

(iii) Suppose that n > m, A is an n x m matrix and B an m X n matrix. By considering

the n x n matrices
B
(A 0) and <0>

obtained by adding columns of zeros to A and rows of zeros to B, show that
det(l, + AB) = det(I,, + BA)

where, as usual, I, denotes the r x r identity matrix.
[This result is called Sylvester’s determinant identity.]
(iv) If u and v are column vectors with n entries show that

det +uv’)=1+u-v.
If, in addition, A is an n x n invertible matrix show that
det(A+uv’) =1 +v A 'u)det A.

Exercise 6.8.12 [Alternative proof of Sylvester’s identity] Suppose that n > m, A is an
n X m matrix and B an m x n matrix. Show that

L, 0\ (I, 0 L A\ (I, A

B 1,)\o 1,-BA)\O0 1,) \B 1,
(L, A\(L.—AB 0\(I, 0
~—\o 1, 0 I,)\B I,

and deduce Sylvester’s identity (Exercise 6.8.11).

Exercise 6.8.13 Let A be the n x n matrix all of whose entries are 1. Show that A is
diagonalisable and find an associated diagonal matrix.

Exercise 6.8.14 Let C be ann x n matrix such that C" = I for some integer m > 1. Show
that

I+C+C*+ .- 4+C" ' =0 det(I — C) #0.

Exercise 6.8.15 We work over F. Let A be an n x n matrix over F. Show directly from
the definition of an eigenvalue (in particular, without using determinants) that the following
results hold.

(1) If A is an eigenvalue of A, then A" is an eigenvalue of A" for all integers r > 1.

(ii) If A is invertible and A is an eigenvalue of A, then A % 0 and A" is an eigenvalue of
A’ for all integers r. (We use the convention that A~ = (A~!)" forr > 1 and that A° = I.)

We now consider the characteristic polynomial x4(¢) = det(t/ — A). Use standard prop-
erties of determinants to prove the following results.
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(iii) x42(1?) = xa(D)xa(—1).
(iv) If A is invertible, then

xa-1(t) = (det Ay (=1)"t" xa(t™")

forall t # 0.

Suppose that F = C. If A2 has an eigenvalue 1, does it follow that A has an eigenvalue
A with u = A2?

Suppose that F = C and 7 is a strictly positive integer. If A" has an eigenvalue i, does
it follow that A has an eigenvalue A with u = A"?

Suppose that F = R. If A has an eigenvalue 1, does it follow that A has an eigenvalue
A with u = A2?

Give proofs or counterexamples as appropriate.

Exercise 6.8.16 Let A be an n x m matrix of row rank r. Show that (possibly after
reordering the columns of A) we can find B an n x r matrix and C an r X m matrix such
that A = BC. Give an example to show why it may be necessary to reorder the columns
of A.

Explain why r is the least integer s such that A = B’C’ where B’ is an m x s matrix
and C'is an s x n matrix. Use the relation (BC)" = CT BT to give another proof that the
row rank of A equals its column rank.

Exercise 6.8.17 (Requires elementary knowledge of linear differential equations.)
(i) Consider the differential equation

X -1 2 -1 X
yl=11 0 -1 y
Z 1 -2 1 Z
Obtain the general solution in the form x(7) = y1(*)u; + y2(¢)uy + y3()uz where the u;

(to be found explicitly) form a basis of eigenvectors of the matrix.
(ii) For each real A, find the general solution of

X -1 2 =1\ [/x —A
yl=11 o —=1||y|]+2] 1 |
Z 1 -2 1 Z A

What particular phenomenon occurs when A = 1?
(iii) Let A = —1. Find a solution of the equation in (ii) which has x = (0, 1, 0)” when
t=0.

Exercise 6.8.18 Explain why (if we are allowed to renumber columns) we can perform an
LU factorisation of an n X n matrix A so as to obtain A = LU where L is lower triangular
with diagonal elements 1 and all entries of modulus at most 1 and U is upper triangular.

If all the elements of A have modulus at most 1 show that all the entries of U have
modulus at most 2!,
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Perform the LU factorisation (without row pivoting) on the 3 x 3 matrix

1 0 0 1
-1 1 0 1
A= -1 -1 1 1
-1 -1 -1 1

so as to obtain A = LU where L is lower triangular with diagonal elements 1 and all entries
of modulus at most 1 and U is upper triangular. By generalising this idea, show that the
result of the previous paragraph is best possible for every n.

Exercise 6.8.19 (This requires a little group theory and, in particular, knowledge of the
Mobius group M.)
Let SL(C?) be the set of 2 x 2 complex matrices A with det A = 1.
(i) Show that SL(C?) is a group under matrix multiplication.
(ii) Let M be the group of maps 7 : C U {oo} — C U {oo} given by
az+b
cz+d
where ad — bc # 0. Show that the map 6 : SL(C?) — M given by

a b az+b
(¢ 2)o=50
is a group homomorphism. Show further that 0 is surjective and has kernel {I, —1}.
(iii) Use (ii) and Exercise 6.4.7 to show that, given T € M, one of the following
statements must be true.
(1) Tz =z forall z € CU {o0}.
(2) There exists an S € M such that S~'T Sz = Az for all z € C and some A # 0.
(3) There exists an S € M such that either S™!TSz = z + 1 forallz € Cor ST Sz =
z—1forall z € C.

=

Exercise 6.8.20 [The trace] If A = (g;;)isann x n matrix over I, then we define the trace
Tr A by Tr A = a;; (using the summation convention). There are many ways of showing
that

TrB'AB=TrA *

whenever B is an invertible # x n matrix. You are asked to consider four of them in this
question.

(i) Prove % directly using the summation convention. (To avoid confusion, I suggest
you write C = B™!))

(ii) If E is an n x m matrix and F is an m x n matrix explain why Tr EF and Tr FE
are defined. Show that

TTEF =Tr FE,

and use this result to obtain .
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(iii) Show that — Tr A is the coefficient of #*~! in the characteristic polynomial det(/ —
A). Write det (B~!(t] — A)B) in two different ways to obtain ¥%.

(iv) Show that if A is the matrix of the linear map o with respect to some basis,
then —Tr A is the coefficient of "~ in the characteristic polynomial det(zt — &) and
explain why this observation gives %.

Explain why s means that, if U is a finite dimensional space and « : U — U a linear
map, we may define

Tra =TrA
where A is the matrix of o with respect to some given basis.

Exercise 6.8.21 If A and B are n x n matrices over [F, we write [A, B] = AB — BA.
(We call [A, B] the commutator of A and B.) Show, using the summation convention, that
Tr[A, B] = 0.

If E(r,s) is the n x n matrix with 1 in the (7, s)th place and zeros everywhere else,
compute [E(r, s), E(u, v)]. Show that, given an n x n diagonal matrix D, with Tr D =0
we can find A and B such that [A, B] = D.

Deduce that if C is a diagonalisable n x n matrix with Tr C = 0, then we can find F
and G such that [F, G] = C.

Suppose that we work over C. By using Theorem 6.4.3, or otherwise, show that if C is
any 2 x 2 matrix with Tr C = 0, then we can find F and G such that [F, G] = C.

[In Exercise 12.6.24 we will use sharper tools to show that the result of the last paragraph
holds for n x n matrices.]

Exercise 6.8.22 We work with n x n matrices over F. Show that, if Tr AX = 0 for every
X, then A = 0.
Is it true that, if det AX = O for every X, then A = 0? Give a proof or counterexample.

Exercise 6.8.23 If C is a2 x 2 matrix over F with Tr C = 0, show that C? is a multiple of
I (that is to say, C> = AI for some A € IF). Conclude that, if A and B are 2 x 2 matrices,
then [A, B]? is a multiple of 7.
[Hint: Suppose first that F = C and use Theorem 6.4.3.]

If A and B are 2 x 2 matrices, does it follow that [A, B] is a multiple of 7?7 If A
and B are 4 x 4 matrices does it follow that [A, B]? is a multiple of I? Give proofs or
counterexamples.

Exercise 6.8.24 (i) Suppose that V is a vector space over F. If o, 8, y : V. — V are linear
maps such that

af =By =1

(where ¢ is the identity map), show by looking at a(8y), or otherwise, that o« = y.
(i1) Show that P, the space of polynomials with real coefficients, is a vector space over
R.If B(P)(t) = t P(t) show that 8 : P — P is a linear map. Show that there exists a linear



6.8 Further exercises 153

map « : P — P such that ¢ = ¢, but that there does not exist a linear map y : P — P
such that By = .

(iii) If P is as in (ii), find a linear map B : P — P such that there exists a linear map
y P — P with 8y =, but that there does not exist a linear map « : P — P such that
aff =t

(iv) Let ¢ = FY be the vector space introduced in Exercise 5.2.9 (iv). Find a linear map
B : ¢ — ¢ such that there exists a linear map y : ¢ — ¢ with y = ¢, but that there does
not exist a linear map « : ¢ — ¢ such that B = ¢. Find a linear map 6 : ¢ — ¢ such that
there exists a linear map ¢ : ¢ — ¢ with 8¢ = ¢, but that there does not exist a linear map
o : ¢ — csuch that ¢ = .

(v) Do there exist a finite dimensional vector space V and linear maps «, 8 : V — V
such that @8 = ¢, but not a linear map y : V — V such that 8y = (? Give reasons for your
answer.

Exercise 6.8.25 Let C be an n x n matrix over C. We write C = A + i B with A and B
real n x n matrices. By considering the polynomial P(z) = det(A + zB), show that, if C
is invertible, there must exist a real ¢ such that A + ¢ B is invertible. Hence, show that, if R
and S are n x n matrices with real entries which are similar when considered over C (i.e.
there exists an invertible matrix C with entries in C such that R = C~'SC), then they are
similar when considered over R (i.e. there exists an invertible matrix P with entries in R
such that R = P~'SP).

Exercise 6.8.26 Find an LU factorisation of the matrix

2 -1 3 2
-4 3 -4 =2
4 -2 3 6
-6 5 -8 1

A=

and use it to solve Ax = b where

-2
2
b=
4
11
Exercise 6.8.27 Let

1 a a*> a
A a’ 1 a a*
e & 1 a
a a* a 1

Find the LU factorisation of A and compute det A. Generalise your results to n X n
matrices.
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Exercise 6.8.28 Suppose that A is an n x n matrix and there exists a polynomial f such
that B = f(A). Show that BA = AB.

Suppose that A is an n x n matrix with n distinct eigenvalues. Show that if B commutes
with A then, if A is diagonal with respect to some basis, so is B. By considering an appro-
priate Vandermonde determinant (see Exercise 4.4.9) show that there exists a polynomial
f of degree at most n — 1 such that B = f(A).

Suppose that we only know that A is an n x n diagonalisable matrix. Is it always true
that if B commutes with A then B is diagonalisable? Is it always true that, if B commutes
with A, then there exists a polynomial f such that B = f(A)? Give reasons.

Exercise 6.8.29 Matrices of the form

aop aj ar e ay

a ap aj /|
A =] 9-1 Ay ao cee Ap2

aq a; as . ap

are called circulant matrices. Show that, for certain values of 5, to be found, e(n) =
(1,12, ..., "7 is an eigenvector of A.

Explain why the eigenvectors you have found form a basis for C"*!. Use this result to
evaluate det A. (This gives another way of obtaining the result of Exercise 5.7.14.) Check
the result of Exercise 6.8.27 using the formula just obtained.

By using the basis discussed above, or otherwise, show that if A and B are circulants of
the same size, then AB = BA.

Exercise 6.8.30 We work in R. Let A be a diagonalisable and invertible n x n matrix and
B an n x n matrix such that AB = t BA for some real number ¢ > 1.

(i) Show that B is nilpotent, that is to say, B = 0 for some positive integer k.

(ii) Suppose that we can find a vector v € R” such that Av = v and B"~'v # 0. Find the
eigenvalues of A.

What is the largest subset of X of R such that, if A is a diagonalisable and invertible
n x n matrix and B an n X n matrix such that AB = s BA for some s € X, then B must be
nilpotent? Prove your answer.

Exercise 6.8.31 The object of this exercise is to show why finding eigenvalues of a large
matrix is not just a matter of finding a large fast computer.
Consider the n x n complex matrix A = (a;;) given by

Cljjur]:l fOI‘lS]S}’l—l
anlan

ajj =0 otherwise,
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where k € C is non-zero. Thus, when n = 2 and n = 3, we get the matrices

0 1 0
<K02 (1)) and 0 0 1
k> 0 0

(i) Find the eigenvalues and associated eigenvectors of A for n = 2 and n = 3. (Note
that we are working over C, so we must consider complex roots.)

(ii) By guessing and then verifying your answers, or otherwise, find the eigenvalues and
associated eigenvectors of A for for all n > 2.

(iii) Suppose that your computer works to 15 decimal places and that n = 100. You
decide to find the eigenvalues of A in the cases k = 27! and ¥ = 3~'. Explain why at least
one (and more probably both) attempts will deliver answers which bear no relation to the
true answers.

Exercise 6.8.32 [Bézout’s theorem] In this question we work in Z. Let r and s be non-zero
integers. Show that the set

I'={ur+vs : u, veZandur + vs > 0}

is a non-empty subset of the strictly positive integers. Conclude that I" has a least element
c.
Show that we can find an integer a such that

0<r+ac<c.

Explain why either r + ac € T" or r + ac = 0 and deduce that r = —ac. Thus c¢ divides r
and similarly ¢ divides s. Deduce that ¢ divides the highest common divisor of  and 5. Use
the definition of I" to show that the highest common divisor of r and s divides ¢ and so ¢
must be the highest common divisor of  and s.

Conclude that, if d is the highest common divisor of r and s, then there exist # and v
such that

d = ur + vs.

If p is a prime and r is an integer not divisible by p, show, by setting p = s, that there
exists an integer u such that

1=ur (mod p).

Exercise 6.8.33 [Fermat’s little theorem] If p is a prime and & is an integer with 1 < k <
p — 1, show that (f{’) is divisible by p. Deduce that

r+1DP=rP+1 (mod p)
for all integers u. Hence, or otherwise, deduce Fermat’s little theorem
r’ =r (mod p)

for all integers r.
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By multiplying both sides of the equation by the integer u defined in the last sentence
of the previous question, show that

r#£0 (mod p)< r’'=1 (mod p)
and deduce that that (if 7  0) we have u = =2 (mod p)

Exercise 6.8.34 This question is intended as a revision of the notion of equivalence
relations and classes.

Recall that, if A is a non-empty set, a relation is a set R € A x A. We write aRb if
(a,b) € R.

(I) We say that R is reflexive if aRa for all a € A.

(II) We say that R is symmetric if aRb = bRa.

(IIT) We say that R is transitive if aRb = bRa.

By considering possible R when A = {1, 2, 3}, show that each of the eight possible
combinations of the type ‘not reflexive, symmetric, not transitive’ can occur.

A relation is called an equivalence relation if it is reflexive, symmetric and transitive. A
collection F of subsets of A is called a partition of A if the following conditions hold.

(i) UFEJ: F=A.

IfF, GeF,then FNG #V=F=0G.

Show that, if F is a partition of A, the relation Rr defined by

aRrb < a, be F forsome F € F

is an equivalence relation.
Show that, if R is an equivalence relation on A, the collection A/ R of sets of the form

[al={x € A : aRx}

is a partition of A. We say that A/R is the quotient of A by R. We call the elements
[a] € A/R equivalence classes.

Exercise 6.8.35 In this question we show how to construct Z, using equivalence classes.
(i) Let n be an integer with n > 2. Show that the relation R, on Z defined by

uR,v < u — v divisible by n

is an equivalence relation.
(i) If we consider equivalence classes in Z/R,,, show that

=[], W=NT1=u+v]l=[ +V] J[uv]=I[ur]
Explain briefly why this allows us to make the definitions
wl + vl =[u+v], [u]x[v]=[uv].

We write Z,, = Z/R,, and equip Z, with the addition and multiplication just defined.
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(iii) If n = 6, show that [2], [3] # [0] but [2] x [3] = [O].

(iv) If p is a prime, verify that Z, satisfies the axioms for a field set out in Defi-
nition 13.2.1. (You you should find the verifications trivial apart from (viii) which uses
Exercise 6.8.32.) In practice, we often write r = [r].

(v) Show that Z, is a field if and only if n is a prime.

Exercise 6.8.36 (This question requires the notion of an equivalence class. See Exer-
cise 6.8.34.)

Let u be a non-zero vector in R”. Write x ~ y if X = y + Au for some A € R. Show that
~ is an equivalence relation on R” and identify the equivalence classes

Iy ={x:x~y}

geometrically. Identify 1y specifically.
If £ is the collection of equivalence classes show that the definitions

la + lb = la+b, )\la = lka

give well defined operations. Verify that £ is a vector space. (If you only wish to do some
of the verifications, prove the associative law for addition

L+ +1) =0+ +L

and the existence of a zero vector to be identified explicitly.)

Ifu, by, by, ..., b,_; form a basis for R"”, show thatly, Iy,, ..., Iy, , form a basis for
L.

Suppose thatn = 3,u = (1,3, = 1), and & : £ — L is the linear map with

alq, 1,07 =41y, alq 1,0r =4, 217
Find the matrix of o with respect to the basis 11,0y, ko,1,0)7 -

Exercise 6.8.37 (It looks quite hard to set a difficult question on equivalence relations, but,
in my opinion, the Cambridge examiners have managed it at least once. This exercise is
included for interest and will not be used elsewhere.)

If R and S are two equivalence relations on the same set A, we define

RoS={(x,2)€e Ax A :
there exists a y € A such that (x, y) € R and (y, z) € S}.

Show that the following conditions are equivalent.

(1) R o S is a symmetric relation on A.

(ii) R o S is a transitive relation on A.

(iii) R o S is the smallest equivalence relation on A containing both R and S.

Show also that these conditions holdif A = Z and R and S are the relations of congruence
modulo m and modulo n for some integers m, n > 2.
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Exercise 6.8.38 [Roots of equations] We work over C.

(i) By induction on the degree of P, or otherwise, show that, if P is a polynomial of
degree at least 1 and @ € C, we can find a polynomial Q of degree 1 less than the degree
of P and an r € C such that

Pt)y=0t—-—a)Q@)+r.

(ii) By considering the effect of setting ¢ = a in (i), show that, if P is a polynomial with
root a, we can find a polynomial Q of degree 1 less than the degree of P such that

Pt) = (1 —a)Q).

(iii) Use induction and the Fundamental Theorem of Algebra (Theorem 6.2.6) to show
that, if P is polynomial of degree at least 1, then we can find K € C and A; € C such that

P(ty=K[]@—x).
j=1
(iv) Show that a polynomial of degree n can have at most n distinct roots. For each
n > 1, give a polynomial of degree n with only one distinct root.

Exercise 6.8.39 Linear differential equations are very important, but there are many other
kinds of differential equations and analogy with the linear case may then lead us astray.
Consider the first order differential equation

[l =3fx)". *
Show that, if u < v, the function

(x—u) ifx<u
f(x)=10 ifu<x<v

x—v)Y ifv<ux

is a once differentiable function satisfying v . (Notice that there are two constants involved
in specifying f.) Can you spot any other solutions?

Exercise 6.8.40 Let us fix a basis for R”. Which of the following are subgroups of G L(R")
for n > 27 Give proofs or counterexamples.

(i) The set H; of o € GL(R") with matrix A = (a;;) where a;; = 1.

(ii) The set H, of « € GL(R") with deta > 0.

(iii) The set H; of « € GL(R") with deta a non-zero integer.

(iv) The set H,; of o € GL(R") with matrix A = (a;;), where a;; € Z and det A = 1.

(v) The set Hs of o € GL(R") with matrix A = (a;;) such that exactly one element in
each row and column is non-zero.

(vi) The set Hg of « € GL(R") with lower triangular matrix.

Exercise 6.8.41 Let us fix a basis for C". Which of the following are subgroups of G L(C")
for n > 17 Give proofs or counterexamples.



6.8 Further exercises 159

(i) The set of & € GL(C") with matrix A = (a;;), where the real and imaginary parts of
the g;; are integers.

(ii) The set of « € GL(C") with matrix A = (a;;), where the real and imaginary parts
of the g;; are integers and (det AP =1.

(iii) The set of o« € GL(C") with matrix A = (a;;), where the real and imaginary parts
of the a;; are integers and | det A| = 1.

The set T consists of all 2 x 2 complex matrices of the form

= 9
—w Z

with z and w having integer real and imaginary parts. If Q consists of all elements of 7" with
inverses in 7', show that the o with matrices in Q form a subgroup of G L(C?) with eight
elements. Show that Q contains elements « and 8 with @8 # Ba. Show that Q contains
six elements y with y* = ¢ but y? # 1. (Q is called the quaternion group.)
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Distance preserving linear maps

7.1 Orthonormal bases

We start with a trivial example.

Example 7.1.1 A restaurant serves n different dishes. The ‘meal vector’ of a customer is
the column vectorx = (x1, X2, ..., xn)!, where Xj is the quantity of the jth dish ordered. At
the end of the meal, the waiter uses the linear map P : R" — R to obtain P(X) the amount
(in pounds) the customer must pay.

Although the ‘meal vectors’ live in R”, it is not very useful to talk about the distance
between two meals. There are many other examples where it is counter-productive to saddle
R”" with things like distance and angle.

Equally, there are other occasions (particularly in the study of the real world) when it
makes sense to consider R” equipped with the inner product

n
Yy =x-y=) %,
r=1

which we studied in Section 2.3 and the associated Euclidean norm

1/2
Xl = (x, x)"/2.

We change from the ‘dot product notation’ X - y to the ‘bracket notation’ (x, y) partly to
expose the reader to both notations and partly because the new notation seems clearer in
certain expressions. The reader may wish to reread Section 2.3 before continuing.

Recall that we said that two vectors X and y are orthogonal (or perpendicular) if
(x,y) =0.

Definition 7.1.2 We say that x, y € R" are orthonormal if X and y are orthogonal and both
have norm 1. We say that a set of vectors is orthonormal if any two distinct elements are
orthonormal.

Informally, x and y are orthonormal if they ‘have length 1 and are at right angles’.
The following observations are simple but important.

160



7.1 Orthonormal bases 161

Lemma 7.1.3 We work in R".
(i) If ey, ey, ..., e are orthonormal and

k
X = E )Ljej,
j=1

forsome L € R, then A; = (x,e;) for1 < j <k.

(ii) If ey, ey, . . ., e, are orthonormal, then they are linearly independent.
(iii) Any collection of n orthonormal vectors forms a basis.
(iv) If ey, ey, ..., e, are orthonormal and x € R", then
n
X = Z(X, e;)e;.
j=1

Proof (i) Observe that

k k
<X, e,) = <Z)Ll,-ej,e,> = Z)\.j(éj,&») = )\.j.
j=1 j=1

>ii) If Zl;zl Aje; =0, then part (i) tellsus that A; = (0, e;) =0for1 < j <k.
(iii) Recall that any » linearly independent vectors form a basis for R”.
(iv) Use parts (iii) and (i). O

Exercise 7.1.4 (i) If U is a subspace of R" of dimension k, show that any collection of k
orthonormal vectors in U forms a basis for U.

(i) If ey, ey, ..., e form an orthonormal basis for the subspace U in (i) and x € U,
show that

k
X = Z(X, e;)e;.
Jj=1

If a basis for some subspace U of R” consists of orthonormal vectors we say that it is
an orthonormal basis for U.
The next set of results are used in many areas of mathematics.

Theorem 7.1.5 [The Gram-Schmidt method] We work in R”.

(i) If ey, ey, ..., e are orthonormal and x € R", then
k
V=X— Z(x, e;)e;
j=1
is orthogonal to each of e, e, . . ., €.
(ii) If ey, ey, . . ., e, are orthonormal and x € R", then either

X € span{e|, e, ..., €}



162 Distance preserving linear maps

or the vector v defined in (i) is non-zero and, writing ey, = ||V||~'v, we know that e,
e, ..., € are orthonormal and
X € span{ej, €, ..., €xi1}.

(iii) Suppose that 1 <k < g <n. If U is a subspace of R" of dimension q and e, e,

, € are orthonormal vectors in U, we can find an orthonormal basis ey, e, . .., e, for
U.

(iv) Every subspace of R" has an orthonormal basis.

Proof (i) Observe that
k
<V7 el‘> = (X1 er) - Z(Xv el’><ejs er) = <X7 el‘) - (Xv er) =0
j=1

foralll <r <k.
(ii) If v =0, then

k
Z X, e;)e; € spanfe, €, ..., €}.

J=1

If v # 0, then ||v|| # 0 and

k
= Exej

k
= ||v]lexrs: + Z X, e;)e; € spanfe;, €, ..., €1}
(iii) If e1, ey, . . ., €; do not form a basis for U, then we can find
x € U \ span{ey, ey, ..., e}.

Defining v as in part (i), we see that v € U and so the vector e, defined in (ii) lies in
U. Thus we have found orthonormal vectors ey, €;, ..., e in U. If they form a basis
for U we stop. If not, we repeat the process. Since no set of g 4+ 1 vectors in U can be
orthonormal (because no set of ¢ + 1 vectors in U can be linearly independent), the process
must terminate with an orthonormal basis for U of the required form.

(iv) This follows from (iii). ]

Note that the method of proof for Theorem 7.1.5 not only proves the existence of the
appropriate orthonormal bases, but gives a method for finding them.

Exercise 7.1.6 Work with row vectors. Find an orthonormal basis ey, e,, e3 for R with
1 =37Y2(1, 1, 1). Show that it is not unique by writing down another such basis.

Here is an important consequence of the results just proved.
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Theorem 7.1.7 (i) If U is a subspace of R" and a € R", then there exists a unique point
b € U such that

Ib—al < |lu—al

forallu e U.
Moreover, b is the unique point in U such that (b —a,u) =0 forallu e U.

In two dimensions, this corresponds to the classical theorem that, if a point B does not
lie on a line /, then there exists a unique line !’ perpendicular to [ passing through B. The
point of intersection of / with [’ is the closest point in / to B. More briefly, the foot of the
perpendicular dropped from B to [ is the closest point in [ to B.

Exercise 7.1.8 State the corresponding results for three dimensions when U has dimension
2 and when U has dimension 1.

Proof of Theorem 7.1.7 By Theorem 7.1.5, we know that we can find an orthonormal basis
e, e,...,e forU.Ifue U, thenu=>1_ A e; and

<

Aje; —a, ZA €; —a>
q
Z (a,e;) + |la|®

q
(A — (. e)? +llal> = (ae)).

1 j=1

WMQ

2
lu—a]

Il Il
MQ i

~.
Il

Thus ||u — al| attains its minimum if and only if A ; = (a, e;). The first paragraph follows
on setting

q
b = Z (a,ej)e
j=1
To check the second paragraph, observe that, if (¢ —a,u) = 0 for all u € U, then, in
particular, (¢ —a,e;) =0forall 1 < j <gq. Thus
(c.ej) = (a,e;)

forall 1 < j < ¢q and so ¢ = b. Conversely,

g q q
<b—a,2kjej>=ZAj((b,ej (a,e;)) Z
j=1 j=1 j=1

forallA; e R,so (b —a,u) =0forallueU. |

The next exercise is a simple rerun of the proof above, but reappears as the important
Bessel’s inequality in the study of differential equations and elsewhere.
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Exercise 7.1.9 We work in R" and take ey, €,, . . ., €, to be orthonormal vectors.
(i) We have
k 2 k
x— > aeill =[x =) (x.e;)
j=1 j=1

with equality if and only if 1. ; = (X, €;) for each j.
(ii) (A simple form of Bessel’s inequality.) We have

k
2 2
x> "(x.e;)
j=1

with equality if and only if X € span{ey, e, ..., e}.
[We shall discuss the full form of Bessel’s inequality in Theorem 14.1.15.]

Exercise 7.6.7 gives another elegant geometric fact which can be obtained from Theo-
rem 7.1.5.
The results of the following exercise will be used later.

Exercise 7.1.10 If U is a subspace of R", show that
Ut={veR": (vyvu)=0 forallue U}

is a subspace of R". Show, by using Theorem 7.1.7, that every a € R" can be written in one
and only one way as X = u +vwithu € U, v e U, Deduce that

dimU +dimU* = n.

7.2 Orthogonal maps and matrices

Recall from Definition 4.3.8 that, if A is the n x n matrix (a;;), then AT (the transpose of
A) is the n x n matrix (b,‘j) with b,‘j =aj; [1<i,j<n]

Lemma 7.2.1 Ifthe linear map o : R" — R" has matrix A with respect to some orthonor-
mal basis and o* : R" — R" is the linear map with matrix AT with respect to the same
basis, then

(ax,y) = (x,a"y)

forallx,y € R".
Further, if the linear map f : R" — R” satisfies

{ax,y) = (x, By)
forallx,y € R", then 8 = a*.

Proof Suppose that o has matrix A = (g;;) with respect to some orthonormal basis ey, e,
...,e,and o* : R" — R" is the linear map with matrix A7 with respect to the same basis.
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Ifx=)"_,xe andy=7Y " yie; for some x;, y; € R, then, writing ¢;; = a;; and
using the summation convention,
(ax,y) = a;jjxjy; = xjcjiy; = (X, a’y).
To obtain the conclusion of the second paragraph, observe that
(x, By) = (ax,y) = (x,a"y)
for all x and all y so (by Lemma 2.3.8)
By =o'y
for all y so, by the definition of the equality of functions, 8 = «*. ([

Exercise 7.2.2 Prove the first paragraph of Lemma 7.2.1 without using the summation
convention.

Lemma 7.2.1 enables us to make the following definition.

Definition 7.2.3 [fa : R* — R" is a linear map, we define the adjoint a* to be the unique
linear map such that

(ax,y) = (x,a"y)
forallx, y € R".
Lemma 7.2.1 now yields the following result.

Lemma 7.2.4 [f o :R" — R" is a linear map with adjoint «*, then, if « has matrix A
with respect to some orthonormal basis, it follows that o* has matrix AT with respect to
the same basis.

T

Lemma 7.2.4 suggests the notation «' = o™ which is, indeed, sometimes used, but does

not mesh well with the ideas developed in the second part of this text.

Lemma 7.2.5 Letwa, B :R" — R” be linear and let A, u € R. Then the following results
hold.

() (@f)" = B*a”.

(i) ™ = «, where we write a** = (a*)*.

(@ii) (Aot + puP)* = ra™ 4+ up*.

()=

Proof (i) Observe that
((@B)x,y) = (x, (@B)y) = (x, a(By)) = (a(BY), X)
= (By., a"x) = (y, B*(@"x)) = {y, (B"a")x) = ((B"a")x,y)
for all x and all y, so (by Lemma 2.3.8)
(aB)'x = (B a")x



166 Distance preserving linear maps

for all x and, by the definition of the equality of functions, (¢8)* = *a*.
(i1) Observe that

(@™x,y) = (x, a"y) = (@"y, x) = (y, ax) = (ax,y)

for all x and all y, so

for all x and o** = «.
(ii1) and (iv) Left as an exercise for the reader. ]

Exercise 7.2.6 Let A and B be n x n real matrices and let A, u € R. Prove the following
results, first by using Lemmas 7.2.5 and 7.2.4 and then by direct computations.

(i) (AB)T = BT AT.

(i) ATT = A.

(iii)y WA + uB)T = 2AT + uBT.

@ IT =1

The reader may, quite reasonably, ask why we did not prove the matrix results first and
then use them to obtain the results on linear maps. The answer that this procedure would
tell us that the results were true, but not why they were true, may strike the reader as mere
verbiage. She may be happier to be told that the coordinate free proofs we have given turn
out to generalise in a way that the coordinate dependent proofs do not.

We can now characterise those linear maps which preserve length.

Theorem 7.2.7 Let« : R" — R”" be linear. The following statements are equivalent.
@) lax|| = ||Ix|| for all x € R".
(i) (ax, ay) = (X, y) forall x,y € R".
(i) *a = 1.
(iv) a is invertible with inverse a*.
() If a has matrix A with respect to some orthonormal basis, then ATA = 1.

Proof (1)=(ii). If (i) holds, then the useful polarisation identity
4(u,v) = [u+ | — u—v|?
gives

4ax, ay) = lax +ay|® — llax — ay|* = [lax + yY)|I* — [ex -y
= Ix+yl* = Ix —ylI* = 4(x,y)

and we are done.
(ii)=>(iii). If (ii) holds, then

(@ a)x,y) = (@"(@x),y) = (ax, ay) = (x,y)
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for all x and all y, so

(¢*a)x = x
for all x and o™« = ¢.
(iii)=-(i). If (iii) holds, then
x| = (ox, ax) = (a*(ax), x) = (x,x) = [|x]|*
as required.
Conditions (iv) and (v) are automatically equivalent to (iii). |

If, as I shall tend to do, we think of the linear maps as central, we refer to the collection
of distance preserving (or isometric) linear' maps by the name O(R"). If we think of the
matrices as central, we refer to the collection of real n x n matrices A with AAT =1 by
the name O(R"). In practice, most people use whichever convention is most convenient
at the time and no confusion results. A real n x n matrix A with AAT =T is called an
orthogonal matrix.

Lemma 7.2.8 O(R") is a subgroup of GL(R").

Proof We check the conditions of Definition 5.3.15.

=150t =1>>=randt € OR").

(i) If ¢« € O(R"), then ™! = a*, so

(Olil)*()li1 = (Ol*)*a* = OlOl* = ao[71 =1

anda~! € ORM).

(iii) If &, B € O(R"), then

(@B) (@f) = (B*a")af) = (@ a)B = "B =1

and so a8 € O(R"). O

We call O(R") the orthogonal group.
The following remark is often useful as a check in computation.

Lemma 7.2.9 The following three conditions on a real n x n matrix A are equivalent.
@) A e OR").
(ii) The columns of A are orthonormal.
(iii) The rows of A are orthonormal.

Proof We leave the proof as a simple exercise for the reader. ([

Exercise 7.2.10 Prove Lemma 7.2.9.
Are the following statements about a real n x n matrix A true? Give proofs or coun-
terexamples as appropriate.

! 'We look at general distance preserving maps in Exercise 7.6.8.
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(i) If all the rows of A are orthogonal, then the columns of A are orthogonal.

(ii) If all the rows of A are row vectors of norm (i.e. Euclidean length) 1, then the
columns of A are column vectors of norm 1.

(i) If A € OR"), then any n — 1 rows determine the remaining row uniquely.

() If A € OR") and det A = 1, then any n — 1 rows determine the remaining row
uniquely.

We recall that the determinant of a square matrix can be evaluated by row or by column
expansion and so

det A" = detA.
The next lemma is an immediate consequence.
Lemma 7.2.11 [fa : R" — R” is linear, then deta™ = deta.
Proof We leave the proof as a simple exercise for the reader. O
Lemma 7.2.12 [fa € O(R"), then deta = 1 or detax = —1.
Proof Observe that

1 = det: = det(e*«) = deta” deto = (det ).

Il
Exercise 7.2.13 Write down a2 x 2 real matrix A with det A = 1 which is not orthogonal.
Write down a 2 x 2 real matrix B with det B = —1 which is not orthogonal. Prove your
assertions.

If we think in terms of linear maps, we define
SOR") ={a € OR") : deta = 1}.
If we think in terms of matrices, we define
SOR") ={A € O(R") : detA = 1}.
Lemma 7.2.14 SO(R") is a subgroup of O(R").

The proof is left to the reader. We call SO (R") the special orthogonal group.
We restate these ideas for the three dimensional case, using the summation convention.

Lemma 7.2.15 The matrix L € O(R?) if and only if, using the summation convention,
Lieljrx = 8ij.
IfL € O(R?)
€ijilirljsly = €
with the positive sign if L € SO(R?) and the negative sign otherwise.

The proof is left to the reader.
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7.3 Rotations and reflections in R? and R3

In this section we shall look at matrix representations of O(R") and SO(R") when n = 2
and n = 3. We start by looking at the two dimensional case.

Theorem 7.3.1 (i) If the linear map o : R> — R? has matrix
A c9s€ —siné
sinf  cos@
relative to some orthonormal basis, then @ € SO(R?).
@) IfaeS O(R?), then its matrix A relative to a given orthonormal basis takes the

A (€08 6 —sinf
~ \sin®  cosf
for some unique 6 (depending on the basis) with —m <6 < .

(i) Ifx € SO(R?), then there exists a unique 0 with 0 < 6 < m such that, with respect
to any orthonormal basis, the matrix of o takes one of the two following forms:

cosf) —sin6 cos(—0) —sin(—0)
sinf  cos@ or sin(—0)  cos(—0) )

Observe that in part (ii) we have a given orthonormal basis, but that the more precise

form

part (iii) refers to any orthonormal basis. When the reader does Exercise 7.3.2, she will see
why we had to allow two possible forms.

Proof (i) Direct computation which is left to the reader.

(ii) Let
a b
=t )

1 0 AT — (@ b\ fa c\ _ a’>+b* ac+bd
o 1) “\e d/\b d)  \ac+bd F+d*)
Thus a? + b2 = 1 and, since a and b are real, we can take ¢ = cos @, b = —sin 6 for some

real . Similarly, we can can take @ = sin ¢, b = cos ¢ for some real ¢. Since ac + bd = 0,
we know that

We have

sin(@ — ¢) = cos B singp — sinf cos¢p =0

and so 6 — ¢ = 0 modulo 7.
We also know that

1 =detA =ad — bc = cosf cos¢ + sinf sin¢ = cos(@ — ¢),
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A cosf —sinf
" \sinf® cosf /)’
We know that, if a? + b% = 1, the equation cos @ = a, sinf = b has exactly one solution
with —m < 6 < m, so the uniqueness follows.

s0 68 — ¢ = 0 modulo 27 and

(iii) Suppose that o has matrix representations

A=<cos9 —sm@) and B=<cos¢ —smqb)

sinf  cosf singg  cos¢

with respect to two orthonormal bases. Since the characteristic polynomial does not depend
on the choice of basis,

det(t] — A) = det(t] — B).

‘We observe that

t —cosf sin 6

det(t] — A) = det
et )=de (—sin@ t —cosf

) = (t — cos0)? + sin >
=12 —2tcosf + cos? 6 +sinh? = 1> — 2rcosd + 1
and so
2 —2tcosh +1=1¢? —2tcos¢ + 1,

for all z. Thus cos & = cos ¢ and so sin = =+ sin ¢. The result follows. U

Exercise 7.3.2 Suppose that e; and e, form an orthonormal basis for R> and the linear
map o : R? — R? has matrix
A c9s9 —sin 6
sinf  cosf
with respect to this basis.

Show that e, and —e, form an orthonormal basis for R? and find the matrix of « with
respect to this new basis.

Theorem 7.3.3 (i) If « € O(R?)\ SO(R?), then its matrix A relative to an orthonormal
basis takes the form
A= cos ¢ sin ¢
" \sing —cos¢

for some unique ¢ with —mt < ¢ < m.
() Ifa € OR?) \S O(R?), then there exists an orthonormal basis with respect to which

o has matrix
-1 0
B = < 0 1) ’
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(iii) If the linear map o : R* — R? has matrix
A= c9s 0 sin 6
sinf —cos#6
relative to some orthonormal basis, then « € O(R?) \ SO(R?).

Proof (i) Exactly as in the proof of Theorem 7.3.1 (ii), the condition AAT = I tells us that
A <0959 —sin 9) .
sin¢g  cos¢

—1 =cosf cos¢ + sinf sin ¢ = cos(f — ¢),

Since det A = —1, we have

s0 0 — ¢ = —m modulo 27 and
A cos ¢ sin ¢
" \sing —cos¢)’

t —cosf sin 6
sin @ t +cosf

(ii) By part (i),

det(rt — o) = ( ) =12 —cos’h —sin’0 =1>—1=(+ D@ —1).

Thus « has eigenvalues —1 and 1. Let e; and e, be associated eigenvectors of norm 1 with
oxe; = —e; and we; = —e,.
Since « preserves the inner product,
(e1, €2) = ey, aey) = (—ej, &) = —(ey, €2)
so e; and e, form an orthonormal basis with respect to which « has matrix
B— <—1 0) .
0 1
(>iii) Direct calculation which is left to the reader. |

Exercise 7.3.4 (i) Let e; and e, form an orthonormal basis for R?. Convince yourself that
the linear map with matrix representation

cosf —siné
sinf  cos®
represents a rotation though 6 about 0 and the linear map with matrix representation
-1 0
0 1

represents what the mathematician in the street would call a reflection in the line
{te; : t €e}.
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[Of course, unless you have a formal definition of reflection and rotation, you cannot prove
this result.]
(ii) Let uy and u, form another orthonormal basis for R?. Suppose that the reflection o

-1 0
0 1
with respect to the basis ey, e, and matrix
cos 6 sin 0
sinf —cosf
with respect to the basis uy, Wy. Prove a formula relating 0 to ¢ where ¢ is the (appropriately
chosen) angle between e and u;.

has matrix

The reader may feel that we have gone about things the wrong way and have merely
found matrix representations for rotation and reflection. However, we have done more,
since we have shown that there are no other distance preserving linear maps.

We can push matters a little further and deal with O(R?) and S O(R?) in a similar manner.

Theorem 7.3.5 If a € SO(R?), then we can find an orthonormal basis such that « has
matrix representation

1 0 0
A=1]0 cosf —sinf
0 siné cos

If € O(R?)\ SOR?), then we can find an orthonormal basis such that o has matrix
representation

-1 0 0
A= 0 cosf® —sinf
0 sin 6 cos

Proof Suppose that o € O(R?). Since every real cubic has a real root, the characteristic
polynomial det(#t — «) has a real root and so « has an eigenvalue A with a corresponding
eigenvector e; of norm 1. Since o preserves length,

Al = l[rei]l = [laer]| = [loce || =1

and so A = £1.
Now consider the subspace

el ={x: (e, x) =0}
This has dimension 2 (see Lemma 7.1.10) and, since « preserves the inner product,

X € elL = (e, ax) = A‘l(ael,ax) = A‘l(el,x) =0=oaxe elL

s0 o maps elements of e} to elements of ;.
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Thus the restriction of « to 7 is a norm preserving linear map on the two dimensional
inner product space e;". It follows that we can find orthonormal vectors e, and e such that
either

oe, = cosfe, +sinfe; and «we; = —sinfe, + cosbe;
for some 6 or
e, = —e, and we; = e3.

We observe that e, e,, e; form an orthonormal basis for R? with respect to which o has
matrix taking one of the following forms

1 0 0 —1 0 0
Ai=]0 cos@ —sinf], A,=| 0O cosf® —sinb |,
0 sin6 cos b 0 sinf  cosf
1 0 O -1 0 0
A3;=10 -1 0], A4=]10 -1 0
0o 0 1 0 0 1

In the case when we obtain As, if we take our basis vectors in a different order, we can
produce an orthonormal basis with respect to which « has matrix

-1 0 O 1 0 0
0 1 0]=10 cosO —sin0
0O 0 1 0 sin0 cosO

In the case when we obtain A4, if we take our basis vectors in a different order, we can
produce an orthonormal basis with respect to which « has matrix

1 0 0 1 0 0
-1 0 ]=10 cosm —sinm
0O O -1 0 sinmw COS T

Thus we know that there is always an orthogonal basis with respect to which « has one
of the matrices A; or A,. By direct calculation, det A} = 1 and det A, = —1, so we are
done. ([

We have shown that, if @ € SO(R?), then there is an orthonormal basis e;, e;, e3 with
respect to which « has matrix

1 0 0
0 cosf® —sinf
0 sin6 cos 6

This is naturally interpreted as saying that « is a rotation through angle 6 about an axis
along e;. This result is sometimes stated as saying that ‘every rotation has an axis’.
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However, if @ € O(R?) \S O(R?), so that there is an orthonormal basis e, e,, e; with
respect to which « has matrix

-1 0 0
0 cosf® —sinb |, *
0 sin 6 cos

then « is clearly not a rotation.
It is natural to call SO(3) the set of rotations of R>.

Exercise 7.3.6 By considering eigenvectors, or otherwise, show that the a just considered,
with matrix given in ¥, is a reflection in a plane only if 6 = 0 modulo 2 and a reflection
in the origin® only if = w modulo 2.

A still more interesting example occurs if we consider a linear map o : R* — R* whose
matrix with respect to some orthonormal basis is given by

cosf —sin6 0 0
sinf  cos@ 0 0
0 0 cos¢ —sing
0 0 singg  cos¢

Direct calculation gives o € SO(R*) but, unless 6 and ¢ take special values, there is no
‘axis of rotation’ and no ‘angle of rotation’. (Exercise 7.6.18 goes deeper into the matter.)

Exercise 7.3.7 Show that the « just considered has no eigenvalues (over R) unless 6 or ¢
take special values to be determined.

In classical physics we only work in three dimensions, so the results of this section are
sufficient. However, if we wish to look at higher dimensions, we need a different approach.

7.4 Reflections in R”

The following approach goes back to Euler. We start with a natural generalisation of the
notion of reflection to all dimensions.

Definition 7.4.1 [fn is a vector of norm 1, the map p : R" — R”" given by
pX =X — 2(x,n)n
is said to be a reflection in
7 ={x:(x,n) = 0}.

Lemma 7.4.2 The following two statements about a map p : R" — R" are equivalent.

2 Ignore this if you do not know the terminology.
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(i) p is a reflection in
T ={x:(x,n) =0}

where n has norm 1.
(i) p is a linear map and there is an orthonormal basis ey, e,, ..., €, with respect to
which p has a diagonal matrix D withd,, = —1, d;; = 1 forall2 <i <n.

Proof (1)=(ii). Suppose that (i) is true. Set ¢; = n and choose an orthonormal basis ey, e;,
..., e,. Simple calculations show that

61—2612—01 ifj:l,

pe; = .

e; —0Oe; =e;  otherwise.

Thus p has matrix D with respect to the given basis.
(i1)=-(1). Suppose that (ii) is true. Set n = e;. If x € R", we can write x = Z'}:l xje;

for some x; € R". We then have

n n n
pPX = p E xje; | = E xjpe; = —xje; + E Xje€;,
Jj=1 Jj=1 j=2

and

n n

X —2(x,n)n = ijej -2 <Z xjej, el>el
j=1 j=1
n n
= Z)Cjej —2xiep = —x1e; + ijej’

j=1 j=2
so that

p(x) = x — 2(x, m)n
as stated. |

Exercise 7.4.3 We work in R". Suppose that n is a vector of norm 1. If x € R”", show that
X=u+yvVv
where u = (X, n)n and v L n. Show that, if p is the reflection given in Definition 7.4.1,
pPX = —u-+V.

Lemma 7.4.4 If p is a reflection, then p has the following properties.
(i) p* =1
@) p € OR™).
(iii) detp = —1.

Proof The results follow immediately from condition (ii) of Lemma 7.4.2 on observing
that D> =1, D" = D anddetD = —1. O
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The main result of this section depends on the following observation.

Lemma 7.4.5 If |a] = ||b]| and a # b, then we can find a unit vector n such that the
associated reflection p has the property that pa = b. Moreover, we can choose n in such a
way that, whenever u is perpendicular to both a and b, we have pu = u.

Exercise 7.4.6 Prove the first part of Lemma 7.4.5 geometrically in the case whenn = 2.

Once we have done Exercise 7.4.6, it is more or less clear how to attack the general case.
Proof of Lemma 7.4.5 Letn = ||]a — b||~'(a — b) and set

p(X) = x — 2(x, n)n.
Then, since ||a]| = ||b]|,
(a,a—b) = |al* - (a,b) = %(Ilallz —2(a,b) + [b]*) = éua — b’
and so
p(a)=a—2la—b|2(a,a—b)(a—b)=a+((b—a)=h.
If u is perpendicular to both a and b, then u is perpendicular to n and
pw)=u—2x0u=u

as required. O

We can use this result to ‘fix vectors’ as follows.

Lemma 7.4.7 Suppose that B € O(R") and B fixes the orthonormal vectors ey, e, ...,
e, (that is to say, B(e;) = e, for | <r < k). Then either B =  or we can find a e, and a
reflection p such that ey, e, . . ., €11 are orthonormal and pB(e,) = e, for 1 <r <k + 1.

Proof If B # , then there must exist an x € R” such that 8x # x and so, setting

k
-1
v=x—) (xede; and e =[v|'v.

j=1
we see that there exists a vector e, of norm 1 perpendicular to ey, ey, ..., €; such that

IBer+1 ?é €rt1-

Since B preserves norm and inner product (recall Theorem 7.2.7, if necessary), we know
that Be, | has norm 1 and is perpendicular to ey, e,, ..., e;. By Lemma 7.4.5 we can find
a reflection p such that

p(Be 1) =¢e41 and pe; =e; foralll < j <k.

Automatically (o8)e; = e; forforall 1 < j <k + 1. O
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Theorem 7.4.8 If « € O(R"), then we can find reflections py, pa, ..., pr withQ <k <n
such that

o= P12 .. Pr-

In other words, every norm preserving linear map « : R” — RR” is the product of at most
n reflections. (We adopt the convention that the product of no reflections is the identity

map.)

Proof We know that R"” can contain no more than n orthonormal vectors. Thus by applying
Lemma 7.4.7 at most n times, we can find reflections p;, 2, ..., pxr with 0 < k < n such
that

PkPk—1--- P10 =1

and so

a=(p102... P PkPL=1 ... LA = P102... P k.
|

Exercise 7.4.9 If « is a rotation through angle 0 in R?, find, with proof. all the pairs of
reflections py, pa with o = p1 2. (It may be helpful to think geometrically.)

We have a simple corollary.

Lemma 7.4.10 Consider a linear map o : R" — R". We have o € SO(R") if and only if o
is the product of an even number of reflections. We have « € O(R") \ SO(R") if and only
if a is the product of an odd number of reflections.

Proof Take determinants. ([

Exercise 7.6.18 shows how to use the ideas of this section to obtain a nice matrix
representation (with respect to some orthonormal basis) of any orthogonal linear map.

7.5 QR factorisation

(Note that, in this section, we deal with n x m matrices to conform with standard statistical
notation in which we have n observations and m explanatory variables.)

If we measure the height of a mountain once, we get a single number which we call
the height of the mountain. If we measure the height of a mountain several times, we get
several different numbers. None the less, although we have replaced a consistent system of
one apparent height for an inconsistent system of several apparent heights, we believe that
taking more measurements has given us better information.’

3 These are deep philosophical and psychological waters, but it is unlikely that those who believe that we are worse off with more
information will read this book.
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In the same way, if we are told that two distinct points (u;, v1) and (u», vy) are close to
the line

{(u,v) eR? : u+hv =k}
but not told the values of & and k, we can solve the equations

up + h/Ul =k
ur + h/vz =k

to obtain A" and k’ which we hope are close to & and k. However, if we are given two new
points (13, v3) and (14, v4) which are close to the line, we get a system of equations

u,+hv =k
Uy +h'v, =k’
uz +h'vy =k
us +h'vy =k

which will, in general, be inconsistent. In spite of this we believe that we must be better off
with more information.

The situation may be generalised as follows. (Note that we change our notation quite
substantially.) Suppose that A is an n x m matrix* of rank m and b is a column vector of
length n. Suppose that we have good reason to believe that A differs from a matrix A" and
b from a vector b’ only because of errors in measurement and that there exists a column
vector x” such that

AX =D

How should we estimate X’ from A and b? In the absence of further information, it seems
reasonable to choose a value of x which minimises

|Ax — b].

Exercise 7.5.1 (i) Ifm =1 < n, and a;; = 1, show that we will choose x = (x) where

n
x=n"" E b;.

i=1
How does this relate to our example of the height of a mountain? Is our choice reasonable?
(ii) Suppose that m =2 <n, a;) = 1, ajp = v; and the v; are distinct. Suppose, in
addition, that y_:_, v; = 0 (this is simply a change of origin to simplify the algebra). By

4 In practice, it is usually desirable, not only that n should be large, but also that m should be very small. If the reader remembers
nothing else from this book except the paragraph that follows, her time will not have been wasted. In it, Freeman Dyson recalls
a meeting with the great physicist Fermi who told him that certain of his calculations lacked physical meaning.

‘In desperation I asked Fermi whether he was not impressed by the agreement between our calculated numbers and his
measured numbers. He replied, “How many arbitrary parameters did you use for your calculations?” I thought for a moment
about our cut-off procedures and said, “Four.” He said, “I remember my friend Johnny von Neumann used to say, with four
parameters I can fit an elephant, and with five I can make him wiggle his trunk”. With that, the conversation was over.” [15]
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using calculus, or otherwise, show that we will choose x = (u, k) where

n n
~1 Diz Vibi
nw=n Z bl‘ s K = ~7 2
izl Dic1 Vi
Taking x1 = k, x, = h, explain how this relates to our example of a straight line? Is our
choice reasonable? (Do not puzzle too long over this if you cannot come to a conclusion.)

There are of course many other more or less reasonable choices we could make. For
example, we could decide to minimise

n m

m
E E a;ix; — b; or max E a;ixi —b;
vy 1 15[5}1 — vy 1

j=

i=1 |j=1
Exercise 7.5.2 Examine the problem of minimising the various penalty functions

2
n n m

m m
E E Cl,'j)(fj—b,' , E E a,‘j.Xj—bl' and 1111[&2; E a,-jxj—bi
==t

i=1 \ j=I i=1|j=I

You should look at the case when m and n are small but bear in mind that the procedures
you suggest should work when n is large.

If the reader puts some work in to the previous exercise, she will see that computational
ease should play a major role in our choice of penalty function and that, judged by this
criterion,

2
n m

Z Zaijxj—bi

i=1 \ j=1

is particularly adapted for calculation.’
It is one thing to state the objective of minimising || Ax — b||, it is another to achieve it.
The key lies in the Gram—Schmidt method discussed earlier. If we write the columns of A

as column vectors ay, ay, ..., a,, then the Gram—Schmidt method gives us orthonormal
column vectors ey, e,, ..., €, such that

a; =T111€;

ay =rpe; +rype

a3 = ry3e; + ryzey + rizes

Ay = rim€ + rome +r3es + -+ rymen

> The reader may feel that the matter is rather trivial. She must then explain why the great mathematicians Gauss and Legendre
engaged in a priority dispute over the invention of the ‘method of least squares’.
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forsomer;; [1 < j <i <m]withr;; #0forl <i < m.If wenowsetr;; = 0wheni < j
we have

m
a; = Z rij€;. *

i=1
Using the Gram—Schmidt method again, we can now find e,,1, €42, . . . , €, so that the
vectors e; with 1 < j < n form an orthonormal basis for the space R" of column vectors.
If we take Q to be the n x n matrix with jth column e;, then Q is orthogonal. If we take
rij=0form <i <n,1 < j <mandlet R be the n x m matrix R as (r;;) then R is ‘thin

upper triangular’® and condition ¥ gives

A= OR.

Exercise 7.5.3 (i) In order to simplify matters, we assume throughout this section, with the
exception outlined in the next sentence, that rank A = m. In this exercise and Exercise 7.5.4,
we look at what happens if we drop this assumption. Show that, in general, if Aisann X m
matrix (wWhere m < n) then, possibly after rearranging the order of columns in A, we
can still find an n x n orthogonal matrix Q and an n X m thin upper triangular matrix
R = (r;;) such that

n
aij = Z‘L’krkj
k=1
or, more briefly
A= QR.

(it) Suppose that A = QR with Q an n x n orthogonal matrix and R an n x m right
triangular matrix [m < n]. State and prove a necessary and sufficient condition for R to
satisfy ri; # 0 for 1 <i <m.

How does the factorisation A = QR help us with our problem? Observe that, since
orthogonal transformations preserve length,

Ax = b = |QRx — b| = [|Q" (QRx — b)|| = || Rx — cl,

where ¢ = Q7b. Our problem thus reduces to minimising | Rx — ¢]|.

Since
2
n m
2 _
IRx —c|“ = rijXj — ¢
i=1 \ j=I
2
m m n
_ 2
= r[jxj — Cj + ¢y
i=1 \ j=I i=m+1

6 The descriptions ‘right triangular’ and ‘upper triangular’ are firmly embedded in the literature as describing square n x n
matrices and there seems to be no agreement on what to call n x m matrices R of the type described here.
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we see that the unique vector x which minimises || Rx — ¢/ is the solution of
m
E rijXj = Ci
i=1

for 1 < j < m. We have completely solved the problem we set ourselves.

Exercise 7.5.4 (i) Suppose that A is an n x m matrix with m < n, but the rank of A is
strictly less than m. Let b be a column vector with n entries. Explain, on general grounds,
why there will always be an X which minimises || AX — b||. Explain why it will not be unique.
(i) In this section we looked at QR factorisation. Do there exist corresponding results
on QL, RQ and L Q factorisation? If they exist, do they lend themselves as easily to the
discussion (beginning ‘How does the factorisation’) which preceded this exercise?

Exercise 7.5.5 [The Householder transformation] Suppose that a and b are non-zero
column vectors in R". Explain why, if ||a|| # ||b||, there cannot exist a reflection p with
p(a) =b. If ||a]| = ||b]| and b # *+a set ¢ = (a — b)/2. Find A and | such that

PX = AX + u(c, X)c

describes a reflection with pa =b and px = X whenever (X, a) = (x,b) = 0. (Having
found, or guessed, . and i you should check that p does indeed have the stated properties.)
Write down the matrix T = (t;;) associated with p (for the standard basis). (You may use
the summation convention if you wish.)

If A is a matrix (not necessarily a square matrix) with first column a show that T A is
a matrix with first column b. By taking b = (||a|, 0,0, ...,0)" show that we can find a
matrix Ty representing a reflection (or the identity) such that T A has all the entries in the
first column O except possibly the first. Now show that we can find a matrix T, with first
row and column consisting of zeros apart from the (1, 1)th place which has value 1 such
that T, represents a reflection (or the identity) and T, T\ A has all entries zero in the first
two columns except possibly the (1, 1), (1,2) and (2, 2)th.

Continuing in this way, show that we can find an m and reflection (or identity) matrices
T; such that

TpiTwo...TVA =R

is thin upper triangular. Explain why Q = T'T, ... T,,—; is orthonormal and A = QR.
This is a perfectly practical method of performing QR factorisation. The T; are called
Householder transformations or Householder reflections.’

Exercise 7.5.6 Reduce the matrix

W NN
—_— O

7 Some people are so lost to any sense of decency that they refer to Householder transformations as ‘rotations’. The reader should
never do this. The Householder transformations are reflections.
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to upper triangular form using a Householder reflection (and, possibly, interchange of
rows). (The numbers have been chosen so that one Householder reflection suffices.)

Exercise 7.5.7 Use an appropriate QR factorisation via the Householder transformation
to find the ‘best fit solution’ (in the sum of squares sense) to

1 3 4
o 2. |1
o 2| 7|4
0 —1 1

Verify your answer by using calculus (or completing the square) to find the X which
minimises

(x1 +3x — 42 + Qxs — 1> 4+ 2xa — 4> + (x2 + 12

Exercise 16.5.35 gives another treatment of QR factorisation based on the Cholesky
decomposition which we meet in Theorem 16.3.10, but I think the treatment given in this
section is more transparent.

7.6 Further exercises

Exercise 7.6.1 We work in R with the standard coordinate system. Write down the
matrices R, and Ry representing rotation through angles o and B about the x3 axis. By
considering R, Rg, show that

cos(a + B) = cosa cos B —sin « sin S,

sin(o 4+ B) = sina cos 8 + cos « sin S.

Write down the matrix R, representing rotation through an angle y about the x; axis.
Compute R, R, and R, R, checking explicitly that your answers lie in O(R?). Find neces-
sary and sufficient conditions for R, R, and R, R, to be equal.

Exercise 7.6.2 Consider the matrices

01 0 1 -2 =2 | 1 -2 =2
M=10 0 1}, N=|0 1 =2|, P= 3 -2 1 =2
1 0 0 0 O 1 -2 =2 1

For each matrix, find as many linearly independent eigenvectors as possible with eigenvalues
1.

Show that one of the matrices represents a rotation and find the axis and angle of rotation.
Show that another represents a reflection and find the plane of reflection. Show that the
third is neither a rotation nor a reflection.

State, with reasons, which of the matrices are diagonalisable over R and which are
diagonalisable over C.
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Exercise 7.6.3 Let

/i

1

2
1
51

= =
S5}
= =

A=

(ST ST
Nl= =

1 —
5 3 and B=] 3
1 1 1 1

R J - o
Show that A represents a rotation and find the axis and angle of rotation. Show that B is
orthonormal but neither a rotation nor a reflection.

Exercise 7.6.4 In this exercise we consider n x n real matrices. We say that S is skew-
symmetric if ST = —S.
If S is skew-symmetric and / + S is non-singular, show that the matrix

A=U+9'U=-29)

is orthogonal and det A = 1, that is to say, A € SO(R").

Show that, if A is orthogonal and I + A is non-singular, then we can find a skew-
symmetric matrix S such that I 4+ S is non-singular and A = (1 + §)~'(I — ).

The first paragraph tells us that, if A is expressible in a certain way, then A € SO(R").
The second paragraph tells us thatany A € O(R") with I + A non-singular can be expressed
in this way. Why are the two paragraphs compatible with the observation that O(R") #
SOR™")?

Write out the matrix A when A = (I + §)~'(I — S) and

’
s=(° 1)
Exercise 7.6.5 Let o : R” — R” be a linear map. Prove that

E={xeR": |a"x| >0 asn— oo}
and

F={xeR" : sup|la"x| < oo}}

n>1

are subspaces of R”.
Give an example of an « with E # {0}, F # E and R™ # F.

Exercise 7.6.6 (i) We can look at O(RR?) in a slightly different way by defining it to be the

set of
a b
A=
(¢ 3)

which have the property that, if y = Ax, then y7 + y? = x{ + x3.
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By considering x = (1, 0)7, show that, if A € O(R?), then there is a real 6 such that
a = cosf, b = sin 6. By using other test vectors, show that

A cosf —sinf or A= cos sin 6
“ \sinf  cos6 " \sin6 —cosf/’

Show, conversely, that any A of these forms is in the set O(R?) as just defined.

(i) Now let L£(IR?) be the set of A € GL(R?) with the property that, if y = Ax, then

yf — y% = x% — x%. Characterise £(R?) in the manner of (i).

[In Special Relativity ‘ordinary distance’ x> + y> + z? is replaced by ‘space-time distance’
x2 + y* + 72 — ct?. Groups like £ are called Lorentz groups after the great Dutch physicist
who first formulated the transformation rules (see Exercise 6.8.1) which underlie the Special
Theory of Relativity.]

(iii) The rest of this question requires elementary group theory. Let SO(R?) be the

collection of A € O(R?) with
A C(.)S 6 —sinf
sinf  cosf

for some 6. Show that SO(R?) is a normal subgroup of O(R?) and SO(R?) is the union
the two disjoint cosets SO(R?) and R(SO(R?)) with

1 0
R = .
65
(iv) Let L, be the collection of matrices A with
A cosht sinhz
~ \sinht cosht)’
for some real 7. Show that £ is a normal subgroup of £ and £ is the union the four disjoint
cosets E; L, where

1 0 -1 0
Ei=1 Ey=-I, E;= Ey= :
1 ; 2 ; 3 (O _1>, 4 (O 1)

Exercise 7.6.7 (i) If U is a subspace of R” of dimensionn — 1,a, b € R” and a and b do
not lie in U, show that there exists a unique point ¢ € U such that

lle—all +llc = bl < Jlu—al + u—b]

forallu e U.
Show that ¢ is the unique point in U such that

e —bll{c—a,u) + [lc—al{c—b,u) =0

forallu e U.
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(i) When a ray of light is reflected in a mirror the ‘angle of incidence equals the angle
of reflection and so light chooses the shortest path’. What is the relevance of part (i) to this
statement?

(iii)) How much of part (i) remains true if a € U and b ¢ U? How much of part
(i) remains true if a, b € U?

Exercise 7.6.8 In this question we find the most general distance preserving map (or
isometry) a : R? — R,

(1) Show that, if « is distance preserving, we can write « = pf8, where px = a + x for
some fixed a € R? and g is a distance preserving map with 8(0) = 0.

(ii) Suppose that § is a distance preserving map with S(0) = 0. By thinking about the
equality case in the triangle inequality, show that S(Ax) = AB(x) for all A with0 < A <1
and all x. Deduce, first, that S(Ax) = AB(x) for all A with 0 < A and all x and, then, that
B(Ax) = AB(x) for all A € R and all x.

(iii) Let B be as in (ii). Show that B(3(x +y)) = 2(Bx + By) and thus

px+y) = px+ By.
Now use the equality 4(c, d) = ||¢ + d||> + |lc — d||* to show that

(B(x), B(Y)) = (x,y)

for all x, y € R%. Deduce that we can write 8 = Ty, where T € O(R?) and y is a distance
preserving map which fixes the points (0, 0), (1, 0) and (1, 0).

(iv) Show that, if y has the properties stated in (iii), then y is the identity map. Conclude
that the most general distance preserving map has the form

ax =a-—+ 1x

with T € O(R?).
(v) State the corresponding result for R? and provide a brief sketch of a proof.

Exercise 7.6.9 (i) Consider the maps 7 : R> — R? given by
Tx = Ax+Db,

where A is orthogonal. (We saw, in the previous question, that these are the isometries of
R2.) We say that a is a fixed point of T if Ta = a.

If A ¢ SO(R?) (so T is an orientation reversing isometry), identify the fixed points of
A.If A € SO(R?) (so T is an orientation preserving isometry), show that 7' has a fixed
point unless A is a particular matrix. If A is that matrix, show that 7' has no fixed point
unless b takes a particular value.

(ii) Consider the maps 7 : R? — R3 given by

Tx=Ax+b

where A is orthogonal. (We saw in the previous question that these are the isometries of
R3.)
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Make precise and prove the following statement. ‘An orientation preserving isometry of
R? usually has no fixed point, but an orientation reversing isometry usually does.” Identify
the exceptional cases.

Exercise 7.6.10 (i) We work in R? with row vectors. We have defined reflection in a plane
passing through 0, but not reflection in a general plane. Explain why we should expect
reflection in a plane 7 passing through a to be a map § given by

SXx =a+ R(x — a),

where R is a reflection in a plane passing through 0. Show algebraically that S does not
depend on the choice of a € w. We call S a general reflection. Write down a similar
definition for a general rotation.

(i) If S is a general reflection, show that

Se — Sh e—h
det| Sf—Sh | =—det|f—h
Sg — Sh g—h

(iii) Suppose that S} and S, are general reflections. Show that S, .5 is either a translation
X — ¢+ X or a general rotation. (It may help to think geometrically, but the final proof
should be algebraic.) Show that every translation and every general rotation is the compo-
sition of two general reflections. Show, by considering when the product of two general
reflections has a fixed point, or otherwise, that only the identity is both a translation and a
general rotation.

(iv) Show that every isometry is the product of at most four general reflections.

(v) Consider the map M : R® — R? given by (x, y,z) = (—x, —y, z + 1). Show that
M is an isometry. Show that M is not the composition of two or fewer general reflections.
By using (ii), or otherwise, show that M is not the composition of three or fewer general
reflections.

Exercise 7.6.11 [Cauchy-Riemann equations] (This exercise requires some knowledge
of partial derivatives.) Suppose that #, v : R — R are well behaved functions. Explain in
general terms (this is not a book on analysis) why

u  ou
(u(x +ox, y+ 5y)> — (u(x, y)> =% & <8x> + error term
v(x +8x,y 4+ 8y) v(x, y) oy Sy
with the error term decreasing faster than max(|§x|, [8y|).
A well behaved function f : C — C is called analytic if
f(z+82) — f(z) = f(z)8z + error term

with the error term decreasing faster than |§z|. Let us write

ux,y) =Nf(x +1iy), vlx,y)=3f(x+1iy).
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Show that, if f/(z) = re'®, with r > 0 and 0 real, we must have

du ou .
ar oy | _ . (©O8 6 —sinf *
o2 sinf  cosf

x ay

Deduce the famous Cauchy—Riemann equations
du v ou_ v
ax 9y’ 9y  ax’
Interpret % geometrically.
Exercise 7.6.12 Use a sequence of Householder transformations to find the matrix R in a
QR factorisation of the matrix

1 1 1
A=1|2 12 1
2 13 3
and so solve the equation
1
Ax=| -9
-8

[You are not asked to find Q explicitly.]

Exercise 7.6.13 [Hadamard’s inequality] We know (or suspect) that the area of a paral-
lelogram with given non-zero side lengths is greatest when the parallelogram is a rectangle
and the volume of a parallelepiped with given non-zero side lengths is greatest when the
edges meet at right angles. Check that the second statement is equivalent to the statement
that if A is a 3 x 3 real matrix with columns a;, a,, a3, then

|det A| < [lai|l[jaz]l]la3]|

and formulate a similar inequality for 2 x 2 matrices.

In higher dimensions our hold on the idea of volume is less strong, but, if the reader
keeps the three dimensional case in mind, she will see that the following argument is very
natural. Let A be an n x n real matrix with columns ay, a,, ..., a,. It is reasonable to use
Gram—Schmidt orthogonalisation to find an orthonormal basis q; with

a, € span{q;, q, ..., q,}
In terms of matrices, we consider the factorisation
A= QR

where Q is an orthogonal matrix and R is an upper triangular matrix given by r;; = (a;, q;).
Use the fact that (det A)? = det AT det A to show that

(det A)* = (det R)?



188 Distance preserving linear maps

and deduce that

(et Ay <[] lla;I?
j=1
with equality if and only if r;; = O for all i # j.
Deduce the following version of Hadamard’s inequality.

det A| < [T llali

j=1

with equality if and only if one of the columns is the zero vector or all the columns of A
are orthonormal.

Exercise 7.6.14 Use the result of the previous question to prove the following version of
Hadamard’s inequality. If A is an n x n real matrix with all entries |a;;| < K, then

|det A| < K"n"/?.
For the rest of the question we take K = 1. Show that
|det A| = n"/?

if and only if every entry a;; = &1 and A is a scalar multiple of an orthogonal matrix. An
n x n matrix with these properties is called a Hadamard matrix.

Show that there are no k x k Hadamard matrices with k odd and k > 3.

By looking at matrices Hy = (1) and

anl anl
H, =
(_Hnl Hnl)
show that there are 2f x 2¥ Hadamard matrices for all k.
[It is known that, if H is a k x k Hadamard matrix, then k = 1, k = 2 or k is a multiple of

4. It is, I believe, still unknown whether there exist Hadamard matrices for all £ a multiple
of 4.]

Exercise 7.6.15 This question links Exercise 4.5.16 with the previous two exercises.
Let M, be the collection of n x n real matrices A = (a;;) with |a;;| < 1. If you know
enough analysis, explain why

p(n) Aneljaglilpenn | and t(n) AIQ%I et Al

n

exist. (Otherwise, take this as obvious.)
By using Stirling’s formula, or otherwise, show that, given any € > 0, we have

t(n) < p(m)'/>*
for all sufficiently large n. Show also that
T(@@") = p@")'*

for all sufficiently large m.
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Find an A € M, such that perm A = 1 and det A = 0. Find a B € M; such that
perm B =0and det B = 1.

Exercise 7.6.16 Write down the matrix S corresponding to a rotation through 7 /2 about the
x axis (with the standard coordinate system) and the matrix 7" corresponding to a rotation
through 7 /2 about the y axis. Show, by calculating 7S and ST explicitly, that TS # ST.
Confirm this by experimenting with an orange or something similar.

In the rest of the question, 6 and ¢ will be real numbers with |0], |¢| < €. We write

A= 0(")
if the 3 x 3 matrix A = A(0, ¥) = (a;;(0, ¥)) satisfies the condition

e’ |9P|11/E/1\X la;;j(8, ¥)| remains bounded as € — 0 through positive values
yl=<e

for all (i, j). Show that, if Sy is a rotation through an angle 6 about the x-axis, then
I — Sy = O(e). Deduce that, if Ry is a rotation through an angle 6 about any fixed axis,
I — Ry = O(e).

If A, B = O(¢) show that

(I + A)I + B)— (I + BYI + A) = O(€?).

Hence, show that if Ry is a rotation through an angle 6 about some fixed axis and Sy is a
rotation through ¢ about some fixed axis, then

RsSy — SyRy = O(e?).
In the jargon of the trade, ‘infinitesimal rotations commute’.
Exercise 7.6.17 We use the standard coordinate system for R*. A rotation through /4

about the x axis is followed by a rotation through 77 /4 about the z axis. Show that this is
equivalent to a single rotation about an axis inclined at equal angles

1
-1
JG =2V2)

Cos

to the x and z axes.

Exercise 7.6.18 (i) Letn > 2. If o : R” — RR" is an orthogonal map, show that one of the
following statements must be true.

(@)o =1

(b) « is a reflection.

(c) We can find two orthonormal vectors e; and e, together with a real 6 such that

ae; =cosbe; +sinfe, and «oe, = —sinfe; + cosbe,.

(i) Letn > 3. If & : R" — R” is an orthogonal map, show that there is an orthonormal
basis of R” with respect to which « has matrix

C 03,2
0,22 B
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where O, is an r x s matrix of zeros, B is an (n — 2) x (n — 2) orthogonal matrix and
c— 0950 —sin6
sinf  cos6
for some real 6.

(iii) Show that, if n = 4, then, if « is special orthogonal, we can find an orthonormal
basis of R* with respect to which « has matrix

cosf; —sinb, 0 0
sin 0, cos 6, 0 0
0 0 cosf, —sinb,
0 0 sinf, cos6,

for some real 6; and 6,, whilst, if 8 is orthogonal but not special orthogonal, we can find
an orthonormal basis of R* with respect to which 8 has matrix

-1 0 0 0
0o 1 0 0
0 0 cosf® —sinf|’
0 O sinf cosd

for some real 6.
(iv) What happens if we take n = 5? What happens for general n?

Exercise 7.6.19 (i) If A € O(R?) is such that AB = BA for all B € O(R?), show that
A==l

(i) If A € O(R")is suchthat AB = BA forall B € O(R"), show that A = +1.

(iii) Show that, if A, B € SO(R?), then AB = BA.

(V) If A € SO(R?) is such that AB = BA for all B € SO(R"), show that A = I.

(v)If n >3 and A € SO(R") is such that AB = BA for all B € SO(R"), show that
A =1ifnisodd and A = %1 if n is even.

Exercise 7.6.20 We work over R.

Let SL, be the collection of n x n matrices A with det A = 1. Show that SL,, is a group
under matrix multiplication.

Let Sp,, be the collection of 2n x 2n matrices which satisfy M7 JM = J where

0, I,
J =
<_In 0n>
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with I, the n x n identity matrix and 0, the n x n zero matrix. Prove the following results.
(i) M € Sp,,, = det M = £1.
(i1) Sp,,, is a group under matrix multiplication.
(iii) M € Sp,, = M € Sp,,.
(iv) Show that Sp, = SL,, but Sp, # SL4.
(v)Isthemap 6 : Sp,, — Sp,, givenby OM = MT a group isomorphism? Give reasons.
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Diagonalisation for orthonormal bases

8.1 Symmetric maps

In an earlier chapter we dealt with diagonalisation with respect to some basis. Once we
introduce the notion of inner product, we are more interested in diagonalisation with respect
to some orthonormal basis.

Definition 8.1.1 A linear map o : R" — R" is said to be diagonalisable with respect to an
orthonormal basis ey, €, . . ., e, ifwe canfind A ; € Rsuchthatae; = A;e;for1l < j <n.

The following observation is trivial but useful.

Lemma8.1.2 A linear map o : R" — R" is diagonalisable with respect to an orthonormal
basis if and only if we can find an orthonormal basis of eigenvectors.

Proof Left to the reader. (Compare Theorem 6.3.1.) ]
We need the following definitions.

Definition 8.1.3 (i) A linear map o : R" — R" is said to be symmetric if (aX, y) = (X, ay)
forallx, y e R".
(if) An n x n real matrix A is said to be symmetric if AT = A.

Lemma 8.1.4 (i) If the linear map o : R" — R”" is symmetric, then it has a symmetric
matrix with respect to any orthonormal basis.

(i) If a linear map o : R" — R" has a symmetric matrix with respect to some orthonor-
mal basis, then it is symmetric.

Proof (i) Simple verification. Suppose that the vectors e; form an orthonormal basis. We
observe that

n n
ajj = <Zarjer7 ei> = (xe;, €;) = (e;, ae;) = <ej» Zarier, > =aj;.
r=1 r=1

(ii) Simple verification which is left to the reader. ]

We note the following simple consequence.

192
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Lemma 8.1.5 If the linear map o : R" — R" is diagonalisable with respect to some
orthonormal basis, then « is symmetric.

Proof If « is diagonalisable with respect to some orthonormal basis, then, since a diagonal
matrix is symmetric, Lemma 8.1.4 (ii) tells us that ¢ is symmetric. ([l

We shall see that the converse is true (that is to say, every symmetric map is diagonalisable
with respect to some orthonormal basis), but the proof will require some work.

The reader may wonder whether symmetric linear maps and matrices are not too special
to be worth studying. However, mathematics is full of symmetric matrices like the Hessian

82
H = f ,
(3)(,’3)(j>

which occurs in the study of maxima and minima of functions f :R" — R, and the
covariance matrix

E = [EX:X;)

in statistics.! In addition, the infinite dimensional analogues of symmetric linear maps play
an important role in quantum mechanics.
If we only allow orthonormal bases, Theorem 6.1.4 takes a very elegant form.

Theorem 8.1.6 [Change of orthonormal basis] Let « : R" — R" be a linear map. If
o has matrix A = (a;;) with respect to an orthonormal basis ey, €, ..., €, and matrix
B = (b;j) with respect to an orthonormal basis £\, £, .. ., £,, then there is an orthogonal
n X n matrix P such that

B=P"AP.
The matrix P = (p;;) is given by the rule
pij = (e, 1;).

Proof Observe that, if we write

n n
f; = Zpkjek and e; = ZCijfk,

k=1 k=1
then Theorem 6.1.4 tells us that P is invertible with P! = Q and B = P~"'AP. We now
note that

(e;,f;) = p;; and (fi,e;) =qj,
whence
qij = (e, L) = pji

and P~' = Q = PT as required. O

! These are just introduced as examples. The reader is not required to know anything about them.
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At some stage, the reader will see that it is obvious that a change of orthonormal basis
will leave inner products (and so lengths) unaltered and P must therefore obviously be
orthogonal. However, it is useful to wear both braces and a belt.

Part (ii) of the next exercise provides an improvement of Theorem 8.1.6 which is
sometimes useful.

Exercise 8.1.7 (i) Show, by using results on matrices, that, if P is an orthogonal matrix,
then PT AP is a symmetric matrix if and only if A is.

(ii) Let D be the n x n diagonal matrix (d;;) with dyy = —1, djy =1 for 2<i <n
and d;; = 0 otherwise. By considering Q = P D, or otherwise, show that, if there exists a
P € OR") such that PT AT is a diagonal matrix, then there exists a Q € SOR") such
that QT AQ is a diagonal matrix.

When we talk about Cartesian tensors we shall need the following remarks.

Lemma 8.1.8 (i) Ife;, ey, ..., e, andfy, £5, ..., £, are orthonormal bases, then there is
an orthogonal n x n matrix L such that, if

n n
X = E X,€, = E x'f,,
r=1 r=1

then x| = Z;:I ijXj. The matrix L = (l;;) is given by the rule

Lij = (e, £;).
(ii) Suppose that ey, e, . . ., €, is an orthonormal basis and there is an orthogonaln x n
matrix L and vectors £1, £5, . .., £, such that, if x| = 23;1 lijxj, then
n n
Zx,e, = Zx;f,.
r=1 r=1
Thenfy, £, ..., £, form an orthonormal basis.

Proof (i) The proof is very close to that in Theorem 8.1.6. Observe, that if

n n
X = E X e = E x.f.,
r=I1 r=1

then
n
x = (x6) =) x(e.f)
r=1
and so
n
)Ci, = Zli,x,
r=1

with ;, = (e;, f,). Theorem 8.1.6 tells us that LLT = I.
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(ii) If we set x; = [}, then

n n
/
x; = § ijx; = § ijlyj = iy
j=1 j=1

and so
i lsrer = i 8irfr = fi-
r=1 r=1
Thus
(fiv fj> = <i lirera Xn: lsjes>
r=1 s=1
= Z Zlirljx<ers €5)
r=1 s=1
= ilirljr =4
r=1
as required. U

Once again, I suspect that, with experience, the reader will come to see Lemma 8.1.8 as
‘geometrically obvious’.

In situations like Lemma 8.1.8 we speak of an ‘orthonormal change of coordinates’.

We shall be particularly interested in the case when n = 3. If the reader recalls the
discussion of Section 7.3, she will consider it reasonable to refer to the case when L €
SO(R?) as a ‘rotation of the coordinate system’.

8.2 Eigenvectors for symmetric linear maps

We start with an important observation.

Lemma 8.2.1 Let o : R" — R” be a symmetric linear map. If u and v are eigenvectors
with distinct eigenvalues, then they are perpendicular.

Proof We give the same proof using three different notations.
() If ou = Au and v = v with A # u, then

A{a,v) = (A, v) = (au, v) = (U, av) = (u, uv) = u(u, v).

Since X # u, we have (u, v) = 0.
(2) Suppose that A is a symmetric n x n matrix and u and v are column vectors such
that Au = Au and Av = pv with A 5% u. Then

ralv=Awv=ulATv=ulAv=ul(uv) = pu’v

so(u,v) =u’v=0.
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(3) Let us use the summation convention withrange 1,2, . .. ,n. If ay; = aji, aju; = luy
and ajv; = pyy, but A # p, then

)Lukvk = ApjUjV = AU jVp = UjAjpV = LU;V; = LUV,
SO UV = 0. O
Exercise 8.2.2 Write out proof (3) in full without using the summation convention.

It is not immediately obvious that a symmetric linear map must have any real
eigenvalues.’

Lemma 8.2.3 Ifa : R" — R" is a symmetric linear map, then all the roots of the charac-
teristic polynomial det(t. — o) are real.

This result is usually stated as ‘all the eigenvalues of a symmetric linear map are real’.

Proof Consider the matrix A = (g;;) of a with respect to an orthonormal basis. The entries
of A are real, but we choose to work in C rather than R. Suppose that A is a root of the
characteristic polynomial det(s/ — A). We know there is a non-zero column vector z € C"
such that Az = Az. If we write z = (21, 22, ..., 2,)" and then set z* = @, 25, ... zZ)T
(where 27 is the complex conjugate of z;), we have (Az)* = A*z" so, taking our cue from
the third method of proof of Lemma 8.2.1, we note that (using the summation convention)

Azxzy = a2z = apzizg = zj(apz)” = Az,
so A = A*. Thus A is real and the result follows. O

This proof may look a little more natural after the reader has studied Section 8.4. A
proof which does not use complex numbers (but requires substantial command of analysis)
is given in Exercise 8.5.8.

We have the following immediate consequence. (The later Theorem 8.2.5 is stronger,
but harder to prove.)

Lemma 8.2.4 (i) If o : R" — R" is a symmetric linear map and all the roots of the
characteristic polynomial det(tt — «) are distinct, then o is diagonalisable with respect to
some orthonormal basis.

(@) If A is an n x n real symmetric matrix and all the roots of the characteristic
polynomial det(t] — A) are distinct, then we can find an orthogonal matrix P and a
diagonal matrix D such that

PTAP =D.

Proof (i) By Lemma 8.2.3, o has n distinct eigenvalues A; € R. If we choose e; to be an
eigenvector of norm 1 corresponding to A ;, then, by Lemma 8.2.1, we obtain n orthonormal

2 When these ideas first arose in connection with differential equations, the analogue of Lemma 8.2.3 was not proved until twenty
years after the analogue of Lemma 8.2.1.
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vectors which must form an orthonormal basis of R". With respect to this basis, « is
represented by a diagonal matrix with jth diagonal entry A ;.
(i1) This is just the translation of (i) into matrix language. O

Because problems in applied mathematics often involve symmetries, we cannot dismiss
the possibility that the characteristic polynomial has repeated roots as irrelevant. Fortu-
nately, as we said after looking at Lemma 8.1.5, symmetric maps are always diagonalisable.
The first proof of this fact was due to Hermite.

Theorem 8.2.5 (i) If « : R" — R” is a symmetric linear map, then « is diagonalisable
with respect to some orthonormal basis.

(i) If A is an n X n real symmetric matrix, then we can find an orthogonal matrix P
and a diagonal matrix D such that

PTAP =D.

Proof (1) We prove the result by induction on n.

If n = 1, then, since every 1 x 1 matrix is diagonal, the result is trivial.

Suppose now that the result is true for n = m and that o : R"+! — R+ is a symmetric
linear map. We know that the characteristic polynomial must have a root and that all its
roots are real. Thus we can can find an eigenvalue A; € R and a corresponding eigenvector
e; of norm 1. Consider the subspace

el ={u: (e, u) =0}
We observe (and this is the key to the proof) that
ucel = (e, qu) = (we;,u) = Ai{e;,u) =0 = qu € e

Thus we can define /.. : e — e} to be the restriction of « to ej". We observe that
el is symmetric and ef- has dimension m so, by the inductive hypothesis, we can find

m orthonormal eigenvectors of oz|elL in ef-. Let us call them e, es, ..., e,+;. We observe
that e, ey, ..., e,4 are orthonormal eigenvectors of o and so « is diagonalisable. The
induction is complete.

(ii) This is just the translation of (i) into matrix language. O

Exercise 8.2.6 Let

2 0 1 0
A—<0 1) and P_(l 1>.

Compute PAP~" and observe that it is not a symmetric matrix, although A is. Why does
this not contradict the results of this chapter?

Exercise 8.2.7 We have shown that every real symmetric matrix is diagonalisable. Give
an example of a non-zero symmetric 2 X 2 matrix A with complex entries whose only
eigenvalues are zero. Explain why such a matrix cannot be diagonalised over C.
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We shall see that, if we look at complex matrices, the correct analogue of a real symmetric
matrix is a Hermitian matrix. (See Exercises 8.4.15 and 8.4.18.)

Moving from theory to practice, we see that the diagonalisation (using an orthogonal
matrix) follows the same pattern as ordinary diagonalisation (using an invertible matrix).
The first step is to look at the roots of the characteristic polynomial

xa(t) = det(t] — A).

By Lemma 8.2.3, we know that all the roots are real. If we can find the n roots (in
examinations, n will usually be 2 or 3 and the resulting quadratics and cubics will have
nice roots) Ay, Ay, . .., A, (repeating repeated roots the required number of times), then we
know, without further calculation, that there exists an orthogonal matrix P with

PTAP =D,

where D is the diagonal matrix with diagonal entries d;; = ;.
If we need to go further, we proceed as follows. If A ; is not a repeated root, we know
that the system of n linear equations in #» unknowns given by

(A=A Dx =0

(with x a column vector) defines a one dimensional subspace of R*. We choose a non-zero
vector u; from that subspace and normalise by setting

—1
€; = ||llj|| u;.

If A; is a repeated root,” we may suppose that it is a k times repeated root and A; =
Ajy1 = ... = Ajk—1. We know that the system of n linear equations in » unknowns given
by

(A=A Dx =0

(with x € R" a column vector) defines a k-dimensional subspace of R”. Pick k orthonormal
vectors €;, €41, ..., € x—1 in the subspace.4

Unless we are unusually confident of our arithmetic, we conclude our calculations by
checking that, as Lemma 8.2.1 predicts,

(e;,e;) = 3.

If P is the n x n matrix with jth column e;, then, from the formula just given, P is
orthogonal (i.e., PPT =] andso P! = PT). We note that, if we write v ; for the unit
vector with 1 in the jth place, O elsewhere, then

-1 -1
PTAPVjIP Aejzij ejzkjvszvj

3 Sometimes, people refer to ‘repeated eigenvalues’. However, it is not the eigenvalues which are repeated, but the roots of the
characteristic polynomial. (We return to the matter much later in Exercise 12.4.14.)

4 This looks rather daunting, but turns out to be quite easy. You should remember the Franco—British conference where a French
delegate objected that ‘The British proposal might work in practice, but would not work in theory’.
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forall 1 < j <n andso
PTAP =D.

Our construction gives P € O(R"), but does not guarantee that P € SO(R").Ifdet P = 1,
then P € SO(R"). If det P = —1, then replacing e; by —e; gives anew P in SO(R").
Here are a couple of simple worked examples.

Example 8.2.8 (i) Diagonalise

I 1 0
A=11 0 1
0 1 1
using an appropriate orthogonal matrix.
(if) Diagonalise
1 0 O
B=]10 0 1
0 1 0

using an appropriate orthogonal matrix.

Solution. (i) We have

t—1 -1 0
det(tI — A) =det| —1 t —1
0 -1 -1

t —1 -1 -1
=(t—1)det<_1 t—1)+det(0 t—l)
=t-DE*—t—-1D)—-@—-D=@¢—-DE*—-1t-2)
=(t— D+ Dt —2).

Thus the eigenvalues are 1,—1 and 2.

‘We have
X+ =X
A & y+ y=0
X=X X =
y x+z=0.
y+z=1z

Thus e; = 2-1/2(1,0, —1)7 is an eigenvector of norm 1 with eigenvalue 1.
We have

x+y = —Xx
y=—-2x
AX=—-x& {x tz=—y <
y = -—2z.
y+z=-2

Thus e, = 6-1/2(—1,2, — )7 is an eigenvector of norm 1 with eigenvalue 1.
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We have
x+y =2
y=x
AX=2X& {x +z=2y <%
y=2z
y+z=22

Thus e; = 37!/2(1, 1, 1)7 is an eigenvector of norm 1 with eigenvalue 2.
If we set
12 g2 312

P=(elezles = 0 2x612 3712
2-1/2 —6-1/2 3-1/2

then P is orthogonal and

1 0 0
PTAP=|0 -1 0
0o 0 2
(i1) We have
tr—1 0 0 L
det(tI — B)=det| 0 r =1 =(t—1)det< >
S -

=¢—-D-1)=¢—-1D*+1).

Thus the eigenvalues are 1 and —1.
We have

X=X
Bx=x& 1z=y S z7=y.
y=z
By inspection, we find two orthonormal eigenvectors e; = (1,0,0)” and e, =

2712(0, 1, )T corresponding to the eigenvalue 1 which span the space of solutions of
Bx =x.

We have
X =—x
x=0
Bx=—-—x& (7=—y
y=-z
y=-—z

Thus e; = 271/2(0, —1, 1) is an eigenvector of norm 1 with eigenvalue —1.
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If we set
0 =(ellezles)=[0 2712 212 ),
0 _2—]/2 2—]/2

then Q is orthogonal and

1 0 0
o"Bo=|0 1 0
0 0 -1

Exercise 8.2.9 Why is part (ii) more or less obvious geometrically?

Exercise 8.2.10 If A is an n X n real symmetric matrix show that either (i) there exist
exactly 2"n! distinct orthogonal matrices P with PT A P diagonal or (ii) there exist infinitely
many distinct orthogonal matrices P with PT AP diagonal. When does case (ii) occur?

8.3 Stationary points

If f:R?> — R is a well behaved function, then Taylor’s theorem tells us that f behaves
locally like a quadratic function. Thus, near 0 = (0, 0),

1
fx,y)=c+ (ax +by)+ E(ux2 + 2uxy + wyz).
The formal theorem, which we shall not prove, runs as follows.

Theorem 8.3.1 If f : R? — R is three times continuously differentiable in the neighbour-
hood of (0, 0), then

f(h, k)= f(0,0)+ (g—i(o, 0)h + %(O, O)k)

2
+2< f(OO)h2+2 f(OO)thr f

— (0, 0)k2> + €(h, k)(h* + k?),
where €(h, k) — 0 as (h* + k*)'/?2 — 0.

If a = b = 0 we say that we have a stationary point.
Let us investigate the behaviour near (0, 0) of the polynomial in two variables given by

1
p(x,y) =c+ (ax + by) + E(ux2 + 2vxy + wyz).

If a #0 or b #£ 0, the term ax + by dominates the term %(u)c2 +2vxy + wy?) and p
cannot have a maximum or minimum at (0, 0).
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Ifa =b =0, then
2(px. y) = p(0,0)) = ux® +2vxy + wy” = (x, ) (j‘) ”) (x)

or, more briefly using column vectors,’

2(p(x) — p(0)) = x" Ax,

where A is the symmetric matrix given by

A=<Z ;).

We know that there exists a matrix R € SO(R?) such that

RART = (* "Y=p=(" O
voow 0 X\

and A = RT DR.If we put

then
x'Ax =x"R"DRx = X" DX = 1, X*> + 1, Y2

(We could say that ‘by rotating axes we reduce our system to diagonal form’.)

If A1, A > 0, we see that p has a minimum at 0 and, if A;, A, < 0, we see that p has
a maximum at 0. If A; > 0 > A,, then A; X% has a minimum at X = 0 and A,Y? has a
maximum at ¥ = 0. The surface

(X : X2+ 0YY

looks like a saddle or pass near 0. Inhabitants of the lowland town at X = (—1, 0)” ascend
the path X = ¢, Y = O as ¢ runs from —1 to 0 and then descend the path X =¢,Y =0 as ¢
runs from O to 1 to reach another lowland town at X = (1, 0)7. Inhabitants of the mountain
village at X = (0, —1)7 descend the path X =0, Y =t as ¢ runs from —1 to 0 and then
ascend the path X =0, Y = ¢ as ¢ runs from O to 1 to reach another mountain village at
X = (0, 1)7. We refer to the origin as a minimum, maximum or saddle point. The cases
when one or more of the eigenvalues vanish must be dealt with by further investigation

when they arise.
<u v) .
vow

> This change reflects a culture clash between analysts and algebraists. Analysts tend to prefer row vectors and algebraists column
vectors.

Exercise 8.3.2 Let
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(i) Show that the eigenvalues of A are non-zero and of opposite sign if and only if
detA < O.

(it) Show that A has a zero eigenvalue if and only if det A = 0.

(iii) If det A > O, show that the eigenvalues of A are strictly positive if and only if
Tr A > 0. (By definition, Tr A = u + w, see Exercise 6.2.3.)

(iv) If det A > 0, show that u # 0. Show further that, if u > 0, the eigenvalues of A are
strictly positive and that, if u < 0, the eigenvalues of A are both strictly negative.
[Note that the results of this exercise do not carry over as they stand to n x n matrices. We
discuss the more general problem in Section 16.3.]

Exercise 8.3.3 Extend the ideas of this section to functions of n variables.

[This will be done in various ways in the second part of the book, but it is a useful way
of fixing ideas for the reader to run through this exercise now, even if she only does it
informally without writing things down.]

Exercise 8.3.4 Suppose that a, b, ¢ € R. Show that the set
{(x,y) e R?:ax? + 2bxy + cy2 =d}

is an ellipse, a point, the empty set, a hyperbola, a pair of lines meeting at (0, 0), a pair of
parallel lines, a single line or the whole plane.
[This is an exercise in careful enumeration of possibilities.)

Exercise 8.3.5 Show that the equation
8x2 — 2x/6xy +7y* =10

represents an ellipse and find its axes of symmetry.

8.4 Complex inner product

If we try to find an appropriate ‘inner product’ for C”, we cannot use our ‘geometric
intuition’, but we can use our ‘algebraic intuition’ to try to discover a ‘complex inner
product’ that will mimic the real inner product ‘as closely as possible’. It is quite possible
that our first few guesses will not work very well, but experience will show that the following
definition has many desirable properties.

Definition 8.4.1 Ifz, w € C", we set

n
(z.w) =) zw!.
r=1

We develop the properties of this inner product in a series of exercises which
should provide a useful test of the reader’s understanding of the proofs in the last two
chapters.
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Exercise 8.4.2 [fz, w,u € C" and ) € C, show that the following results hold.
(i) (z, z) is always real and positive.
(ii) (z,z) = 0 if and only ifz = 0.
(iii) (Az, w) = A(z, W).
(V) (z+u, w) = (z,w) + (u, w).
() (w, z) = (z, W)™

Rule (v) is a warning that we must tread carefully with our new complex inner product
and not expect it to behave quite as simply as the old real inner product. However, it turns
out that

|z|| = (z,2)"/?

behaves just as we wish it to behave. (This is not really surprising, if we write z, = x, + iy,
with x, and y, real, we get

Izl =Dt + D7
r=1 r=1
which is clearly well behaved.)
Exercise 8.4.3 [Cauchy-Schwarz] Ifz, w € C", show that
Iz, w)| < llz[l[Iw].

Show that |(z, w)| = ||z||||W|| if and only if we can find A, u € C not both zero such that
AZ = UW.
[One way of proceeding is first to prove the result when (z, w) is real and positive and then
to consider (¢'%z, w).]

Exercise 8.4.4 Ifz, w € C" and A, u € C, show that the following results hold.
@ llzll = 0.
(@) ||z]| = O if and only ifz = 0.
@) | Azl = [Alllz]l.
@) llz+w| < llzll + [|wll.

Definition 8.4.5 (i) We say that z, w € C" are orthogonal if (z, w) = 0.
(it) We say thatz, w € C" are orthonormal if z and w are orthogonal and ||z| = |w| =

(iii) We say that a set E of vectors is orthonormal if any two distinct members of E are
orthonormal.

Exercise 8.4.6 (i) Show that any collection of n orthonormal vectors in C" form a basis.
(ii) If ey, €, ..., €, are orthonormal vectors in C" and z € C", show that

n

z= Z(z, e;)e;.

Jj=1
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(iii) Suppose that ey, e, ..., e, are orthonormal vectors in C" and z € C". Does the
relation z = Z?:l (ej, z)e; always hold? Give a proof or a counterexample.

Exercise 8.4.7 Suppose that 1 < k < g < n. If U is a subspace of C" of dimension q and

e, €, ..., € are orthonormal vectors in U, show that we can find an orthonormal basis
e, e,..., e forU.
Exercise 8.4.8 We work in C" and take ey, e, ..., €, to be orthonormal vectors. Show
that the following results hold.

(i) We have

2

k k

2 2

2> el = lzl> =D [z e
j=1 j=1

with equality if and only if 1. ; = (z, ;).
(ii) (A simple form of Bessel’s inequality.) We have

k
lzI* = (z.e;),
j=1
with equality if and only if z € span{e;, e, ..., €}.
Exercise 8.4.9 [fz, w € C", prove the polarisation identity
Iz +wI? — Iz — Wi +illz+ iwl|> —illz — iwl|* = 4(z. w).

Exercise 8.4.10 If o : C" — C" is a linear map, show that there is a unique linear map
a* : C*" — C" such that

(az, w) = (z, a* W)

forallz, we C".

Show, if you have not already done so, that, if a has matrix A = (a;;) with respect to some
orthonormal basis, then o™ has matrix A* = (b;;) with b;; = a’; (the complex conjugate of
a;;j) with respect to the same basis.

Show that det o™ = (det x)*.

We call «* the adjoint of o and A* the adjoint of A.

Exercise 8.4.11 Let a : C" — C" be linear. Show that the following statements are
equivalent.

(@) llaz| = |\z| for all z € C".

(i) (az, aw) = (z, W) forallz,w € C".

(i) ¥ = 1.

(iv) a is invertible with inverse a*.

) If o has matrix A with respect to some orthonormal basis, then A*A = 1.
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(i) If o has matrix A with respect to some orthonormal basis, then the columns of A
are orthonormal.

If o™ = 1, we say that « is unitary. We write U(C") for the set of unitary linear maps
a : C" — C". We use the same nomenclature for the corresponding matrix ideas.

Exercise 8.4.12 (i) Show that U(C") is a subgroup of GL(C").
@) If « € U(C"), show that |deta| = 1. Is the converse true? Give a proof or
counterexample.

Exercise 8.4.13 Find all diagonal orthogonal n x n real matrices. Find all diagonal
unitary n X n matrices.
Show that, given 6 € R, we can find « € U(C") such that deta = e'°.

Exercise 8.4.13 marks the beginning rather than the end of the study of U(C"), but we
shall not proceed further in this direction. We write SU(C") for the set of « € U(C") with
deta = 1.

Exercise 8.4.14 Show that SU(C") is a subgroup of GL(C").

The generalisation of the symmetric matrix has the expected form. (If you have any
problems with the exercises look at the corresponding proofs for symmetric matrices.)

Exercise 8.4.15 Let a : C" — C" be linear. Show that the following statements are
equivalent.

(@) (az, w) = (z, aw) forall w,z € C".

(i) If « has matrix A with respect to some orthonormal basis, then A = A*.

We call ¢ and A, having the properties just described, Hermitian or self-adjoint.

Exercise 8.4.16 Show that, if A is Hermitian, then det A is real. Is the converse true? Give
a proof or a counterexample.

Exercise 8.4.17 Ifa : C" — C" is Hermitian, prove the following results:
(i) All the eigenvalues of o are real.
(ii) The eigenvectors corresponding to distinct eigenvalues of a are orthogonal.

Exercise 8.4.18 (i) Show that the map o : C" — C" is Hermitian if and only if there exists
an orthonormal basis of eigenvectors of C" with respect to which o has a diagonal matrix
with real entries.

(i) Show that the n x n complex matrix A is Hermitian if and only if there exists a
matrix P € SU(C") such that P*AP is diagonal with real entries.

5 2
A= (—21' 2)

find a unitary matrix U such that U* AU is a diagonal matrix.

Exercise 8.4.19 If
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Exercise 8.4.20 Suppose that y : C" — C" is unitary. Show that there exist unique Her-
mitian linear maps «, B : C" — C”" such that

y =a+if.

Show that aff = Bo and o> + B> = 1.
What familiar ideas reappear if you take n = 12 (If you cannot do the first part, this will
act as a hint.)

8.5 Further exercises

Exercise 8.5.1 The following idea goes back to the time of Fourier and has very important
generalisations.

Let A be an n x n matrix over R such that there exists a basis of (column) eigenvectors
e; for R” with associated eigenvalues A;.

Ify= Z'}zl Y;e; and p is not an eigenvalue, show that

AX — ux =y

has a unique solution and find it in the form x = Z;’-:] Xje;. What happens if p is an
eigenvalue?
Now suppose that A is symmetric and the e; are orthonormal. Find X ; in terms of (y, e;).
Ifn=3

1 0 0 1
A=1lo 1 1], y=[2] andp=3
0 1 1 1

find appropriate €; and X ;. Hence find x as a column vector (xy, x2, )T,

Exercise 8.5.2 Consider the symmetric 2 x 2 real matrix

= (5 0)

Are the following statements always true? Give proofs or counterexamples.
(i) If A has all its eigenvalues strictly positive, then a, b > 0.
(ii) If A has all its eigenvalues strictly positive, then ¢ > 0.
(iii) If a, b, ¢ > 0, then A has at least one strictly positive eigenvalue.
(iv) If a, b, ¢ > 0, then all the eigenvalues of A are strictly positive.
[Hint: You may find it useful to look at x” Ax.]

Exercise 8.5.3 Which of the following are subgroups of the group GL(R") of n x n real
invertible matrices for n > 2?7 Give proofs or counterexamples.

(1) The lower triangular matrices with non-zero entries on the diagonal.

(i1) The symmetric matrices with all eigenvalues non-zero.

(iii) The diagonalisable matrices with all eigenvalues non-zero.
[Hint: It may be helpful to ask which 2 x 2 lower triangular matrices are diagonalisable.]
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Exercise 8.5.4 Suppose that a particle of mass m is constrained to move on the curve
7= %/cxz, where z is the vertical axis and x is a horizontal axis (we take ¥ > 0). We wish
to find the equation of motion for small oscillations about equilibrium. The kinetic energy
E is given exactly by E = %m()'c2 + z2), but, since we deal only with small oscillations, we
may take E = %m}’cz. The potential energy U = mgz = %mglcxz. Conservation of energy
tells us that U + E is constant. By differentiating U + E, obtain an equation relating x and
x and solve it.
A particle is placed in a bowl of the form

7= %k(x2 +2xxy + %)

with k > 0 and |A| < 1. Here x, y, z are rectangular coordinates and z is vertical. By
using an appropriate coordinate system, find the general equation for (x ®), y(t)) for small
oscillations. (If you can produce a solution with four arbitrary constants, you may assume
that you have the most general solution.)

Find (x(#), y(¢)) if the particle starts from rest at x = a, y = 0, t = 0 and both k and a
are very small compared with 1. If |A| is very small compared with 1 but non-zero, show
that the motion first approximates to motion along the x axis and then, after a long time t,
to be found, to circular motion and then, after a further time t has elapsed, to motion along
the y axis and so on.

Exercise 8.5.5 We work over R. Consider the n x n matrix A = I + uu’ where u is
a column vector in R". By identifying an appropriate basis, or otherwise, find simple
expressions for det A and A~

Verify your answers by direct calculation when n = 2 and u = (u, v)”.

Exercise 8.5.6 Are the following statements true for a symmetric 3 x 3 real matrix A =
(a;j) with a;; = aj; Give proofs or counterexamples.

(i) If A has all its eigenvalues strictly positive, then a,, > 0 for all .

(ii) If a,, is strictly positive for all r, then at least one eigenvalue is strictly positive.

(iii) If a,, is strictly positive for all r, then all the eigenvalues of A are strictly positive.

(iv) If det A > 0, then at least one of the eigenvalues of A is strictly positive.

(v) If Tr A > 0, then at least one of the eigenvalues of A is strictly positive.

(vii) If det A, Tr A > 0, then all the eigenvalues of A are strictly positive.

If a 4 x 4 symmetric matrix B has det B > 0, does it follow that B has a positive
eigenvalue? Give a proof or a counterexample.

Exercise 8.5.7 Find analogues for the results of Exercise 7.6.4 for n x n complex matrices
S with the property that S* = —S (such matrices are called skew-Hermitian).

Exercise 8.5.8 Leta : R" — R” be a symmetric linear map. If you know enough analysis,
prove that there exists au € R” with ||u|| < 1 such that

[{av, V)| =< [(au, u)|
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whenever ||v|| < 1. Otherwise, accept the result as obvious. By replacing o by —«, if
necessary, we may suppose that

(v, V) < {(au, u)

whenever |v| < 1.
() Ifh L u, ||h|| =1 and é € R, show that

|lu+é8h|| =1+8>
and deduce that
(a(u+ 8h), u+ 8h) < (1 + 8%)(au, u).
(i1) Use (i) to show that there is a constant A, depending only on u and h, such that
2(cu, h)s < AS>.
By considering what happens when & is small and positive or small and negative, show that
(ou, h) = 0.
(iii) We have shown that
hlu=hlou

Deduce that cu = Au for some A € R.
[Exercise 15.5.7 runs through a similar argument.]

Exercise 8.5.9 Let V be a finite dimensional vector space over C and « : V — V a linear
map such that o = ¢ for some integer r > 1. We write ¢ = exp(2wi/r).
If x is any element of V, show that

({ka“l + CZkar72 44 é,(rfl)ka + L)X

is either the zero vector or an eigenvector of «. Hence show that x is the sum of eigenvectors.
Deduce that V has a basis of eigenvectors of « and that any n x n complex matrix A with
A" = I is diagonalisable.

For each r > 1, give an example of a 2 x 2 complex matrix such that A® # I for
l<s<r—1butA” =1.

Exercise 8.5.10 Let A be a3 x 3 antisymmetric matrix (that is to say, AT = —A) with real
entries. Show that i A is Hermitian and deduce that, if we work over C, there is a non-zero
vector w such that Az = —ifz with 6 real.

We now work over R. Show that there exist non-zero real vectors x and y and a real
number 6 such that

Ax =060y and Ay = —0x.

Show further that A has a real eigenvector u with eigenvalue 0 perpendicular to x and y.
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Exercise 8.5.11 Let A be an n x n antisymmetric matrix (that is to say, A7 = —A) with
real entries. Show that v/’ Av = 0 for all real column vectors v € R”.

Now suppose that A = u + iv is a complex eigenvalue with associated complex eigen-
vector Z = X + iy where u and v are real and x and y are real column vectors.

(i) Find expressions for Ax and Ay in terms of X, y, 4 and v.

(i) By considering x” Ax + y” Ay, or otherwise, show that ;. = 0.

Now suppose that v # 0 (i.e. A # 0).

(iii) Show that x”y = 0 (i.e. x and y are orthogonal) and ||x|| = |y||.
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Cartesian tensors

9.1 Physical vectors

When we discussed the use of vectors in geometry, I did not set up the axioms of geometry,
but appealed to the reader’s knowledge and intuition concerning planes and lines. It is
useful and instructive to see how Euclidean geometry can be developed from axioms, but
it would have taken us far away from our main topic.

In the next two chapters we shall develop the idea of a Cartesian tensor. Cartesian tensors
are mainly used in physics, so we shall encounter ‘point masses’, ‘smoothly varying
functions of position’ and similar slightly louche characters. In addition, matters which
would be made explicit by a pure mathematician will be allowed to remain implicit.
Repeated trials have shown that it is rarely useful or instructive to try to develop physics
from axioms and it seems foolish to expound a theory in a different language to that spoken
by its users.

If the reader is unwilling to adopt a less rigorous approach than that used elsewhere in
this book, she may simply omit these chapters which will not be used later. She should,
however, recall that

... awell-schooled man is one who searches for that degree of precision in each kind of study which
the nature of the subject at hand admits.
(Aristotle Nicomachean Ethics [2])

Unless otherwise explicitly stated, we will work in the three dimensional space R? with
the standard inner product and use the summation convention. When we talk of a coordinate
system we will mean a Cartesian coordinate system with perpendicular axes.

One way of making progress in mathematics is to show that objects which have been
considered to be of the same type are, in fact, of different types. Another is to show that
objects which have been considered to be of different types can be considered to be of the
same type. I hope that by the time she has finished this book the reader will see that there
is no universal idea of a vector but there is instead a family of related ideas.

In Chapter 2 we considered position vectors

X = (x1, X2, X3)

211
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which gave the position of points in space. In the next two chapters we shall consider
physical vectors

u= (M], uz, M3)

which give the measurements of physical objects like velocity or the strength of a magnetic
field.!

In the Principia, Newton writes that the laws governing the descent of a stone must be
the same in Europe and America. We might interpret this as saying that the laws of physics
are translation invariant. Of course, in science, experiment must have the last word and we
can never totally exclude the possibility that we are wrong. However, we can say that we
would be most reluctant to accept a physical theory which was not translation invariant.

In the same way, we would be most reluctant to accept a physical theory which was not
rotation invariant. We expect the laws of physics to look the same whether we stand on our
head or our heels.

There are no landmarks in space; one portion of space is exactly like every other portion, so that we
cannot tell where we are. We are, as it were, on an unruffled sea, without stars, compass, soundings,
wind or tide, and we cannot tell in which direction we are going. We have no log which we can cast
out to take dead reckoning by; we may compute our rate of motion with respect to the neighbouring
bodies, but we do not know how these bodies may be moving in space.

(Maxwell Matter and Motion [22])

If we believe that our theories must be rotation invariant then it is natural to seek a
notation which reflects this invariance. The system of Cartesian tensors enables us to write
down our laws in a way that is automatically rotation invariant.

The first thing to decide is what we mean by a rotation. The Oxford English Dictionary
tells us that it is “The action of moving round a centre, or of turning round (and round) on
an axis; also, the action of producing a motion of this kind’. In Chapter 7 we discussed
distance preserving linear maps in R* and showed that it was natural to call SO(R?) the
set of rotations of R®. Since our view of the matter is a great deal clearer than that of the
Oxford English Dictionary, we shall use the word ‘rotation’ as a synonym for ‘member of
SO(R?). It makes very little difference whether we rotate our laboratory (imagined far out
in space) or our coordinate system. It is more usual to rotate our coordinate system in the
manner of Lemma 8.1.8.

We know that, if position vector x is transformed to x’ by a rotation of the coordinate
system2 with associated matrix L € SO(R?), then (using the summation convention)

/ —_— .. .
x; = lijx;.

We shall say that an observed ordered triple U = (u, u», u3) (think of three dials showing
certain values) is a physical vector or Cartesian tensor of order 1 if, when we rotate the

! In order to emphasise that these are a new sort of object we initially use a different font, but, within a few pages, we shall drop
this convention.

2 This notation means that ’ is no longer available to denote differentiation. We shall use & for the derivative of a with respect
toz.
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coordinate system S in the manner just indicated, to get a new coordinate system S’, we get
a new ordered triple U’ with

/
u; :l,‘jbtj. *

In other words, a Cartesian tensor of order 1 behaves like a position vector under rotation
of the coordinate system.

Lemma 9.1.1 With the notation just introduced

/

Uu; :lj,-uj

Proof Observe that, by definition, LLT =1 so, using the summation convention,
ljiu;» = ljiljkuk = (Skiuk = U;.
O

In the next exercise the reader is asked to show that the triple (x}, x5, x{) (where x is a
position vector) fails the test % and is therefore not a tensor.

Exercise 9.1.2 Show that
0 0
172 _2—1/2 c SO(R3),

1
L=1]0
0 1/2 2—1/2

-
-
but there exists a point whose position vector satisfies xl./4 #1; jxj.‘.

In the same way, the ordered triple U = (u, u;, u3), where u, is the temperature, u,
the pressure and u3 the electric potential at a point, does not obey % and so cannot be a
physical vector.

Example 9.1.3 (i) The position vector X = X of a particle is a Cartesian tensor of order 1.
(i) If a particle is moving in a smooth manner along a path X(t), then the velocity

u(r) = X(1) = (1 (1), %2(1), X3(1))

is a Cartesian tensor of order 1.
(i) If ¢ : R — R is smooth, then

L (3¢ 29 09
- 3)(?1 ’ aXQ’ 8)63

Proof (i) Direct from the definition.
(i1) Observe that (using the summation convention)

is a Cartesian tensor of order 1.

x[(t) = lijx (1)
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so, differentiating both sides and observing that /;; is constant,
M:(I) = x,’(z) = l,’j).Cj(l) = lijuj(t).

(iii) (This is a deeper result.) By Lemma 9.1.1

X = ljix}.
It follows, since /;; is constant, that

BX,‘

ax; =i

J
Now we are looking at the same point in our physical system, so
v (2% 3¢ 9
ax; " axy  axy )’
and the chain rule yields
, 09  0¢ dx;  0¢ dx; ¢

i = r ;T T P
0x; 0x; dx; 0x; dx; 0x;

as required.

0

Exercise 9.1.4 (i) If U is a Cartesian tensor of order 1, show that (provided it changes

smoothly in time) so is U.

(it) Show that the object F occurring in the following version of Newton’s third law

F = mX

is a Cartesian tensor of order 1.

9.2 General Cartesian tensors

So far, we have done nothing very interesting, but, as Maxwell observed,

There are physical quantities of another kind which are related to directions in space, but which
are not vectors. Stresses and strains in solid bodies are examples of these, and so are some of the

properties of bodies considered in the theory of elasticity and of double refraction. Quantities of this

class require for their definition nine numerical specifications.

(Maxwell Treatise on Electricity and Magnetism [21])

To deal with Maxwell’s observation, we introduce a new type of object. We shall say

that an observed ordered 3 x 3 array

ayp dip a4
a=|ay axn ax3
az; dyp 4z
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(think of nine dials showing certain values) is a Cartesian tensor of order 2 (or a Cartesian
tensor of rank 2) if, when we rotate the coordinate system S in our standard manner to get
the coordinate system S’, we get a new ordered 3 x 3 array with

I
a;; = lirljsars

(where, as throughout this chapter, we use the summation convention).
It is not difficult to find interesting examples of Cartesian tensors of order 2.

Exercise 9.2.1 (i) If U and v are Cartesian tensors of order 1 and we define a = U ® V to
be the 3 x 3 array given by

Cl,'j =I/t,'l)j

in each rotated coordinate system, then U V is a Cartesian tensor of order 2. (In older
texts U ® V is called a dyad.)

(ii) If u is a smoothly varying Cartesian tensor of order 1 and a is the 3 x 3 array given
by

31,{]'
E)x,-

ajj =

in each rotated coordinate system, then a is a Cartesian tensor of order 2.
(i) If ¢ : R> — R is smooth and a is the 3 x 3 array given by

0%¢

ajj = W
in each rotated coordinate system, then a is a Cartesian tensor of order 2.
Lemma 9.2.2 [faisthe 3 x 3 array given by

ajj = 8;j

(with §;; the standard Kronecker delta) in each rotated coordinate system, then a is a
Cartesian tensor of order 2.

Proof Observe that
lirljx8rs = lirljr = 8ij
as required. O

Whereas an ordinary tensor of order 2 may be thought of as a 3 x 3 array of dials
which move in a complicated interdependent way when we rotate our coordinate system,
the ‘Kronecker tensor’ of Lemma 9.2.2 consists of nine dials painted on a block of wood
which remain unchanged under rotation.
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9.3 More examples

Physicists are busy people and like to condense definitions by making implicit what pure
mathematicians like to make explicit. In accordance with this policy, they would say that
‘a;; is a second order Cartesian tensor if it transforms according to the rule a; = lifljsays’.
Since Cartesian tensors are used more by physicists than by pure mathematicians, we shall
adopt the shorter usage from now on.

We can clearly generalise further and say that a;;._,, (with N suffices) is a Cartesian
tensor of order or rank® N if it transforms according to the rule

!
aij o =lipljg - niGpg..c-

Observe that a Cartesian tensor a of order 0 consists of a single real number which remains
unchanged under rotation of our coordinate system. As an example, the mass m of a particle
is a Cartesian tensor of order 0.

Exercise 9.3.1 Produce Cartesian tensors of order 3 along the lines of each of the three
parts of Exercise 9.2.1.

The following remarks are more or less obvious.

(1) The coordinatewise sum of two Cartesian tensors of order N is a Cartesian tensor of
order N.

(2) If a;;.., is a Cartesian tensor of order N and b, , is a Cartesian tensor of order M,
then the product a;;._ by, ; is a Cartesian tensor of order N + M.

(3) Ifay;.., is a Cartesian tensor of order N and we set two suffices equal (so the summation
convention operates) the result is a Cartesian tensor of order N — 2. (This operation is
called contraction.)

(4) If a;;.. , is a Cartesian tensor of order N whose value varies smoothly as a function of
time, then a;; ., is a Cartesian tensor of order N.

(5) Ifaji.p is a Cartesian tensor of order N whose value varies smoothly as a function of
position, then

daj. p
oy
is a Cartesian tensor of order N + 1. (A pure mathematician would replace this by a
much longer and more exact statement.)
The general proofs involve lots of notation, so I shall simply prove some typical

CEISCS.4

Example 9.3.2 (i) If a;jx, and b, j, are Cartesian tensors of order 4, then 5o is a;jip + bjjip-
(i) If a;ji is a Cartesian tensor of order 3 and by, is a Cartesian tensor of order 2, then
ajjikbmn is a Cartesian tensor of order 5.

3 Many physicists use the word ‘rank’, but this clashes unpleasantly with the definition of rank used in this book.
4 If the reader objects, then she can do the general proofs as exercises.
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(@ii) If a;jxp is a Cartesian tensor of order 4, then a;j;p, is a Cartesian tensor of order 2.
iv) If a; ;. is a Cartesian tensor of order 3 whose value varies smoothly as a function o
J y
time, then a;j; is a Cartesian tensor of order 3.
V) If a;jmn is a Cartesian tensor of order 4 whose value varies smoothly as a function
J ) Yy
of position, then

aajkmn
3)6,'

is a Cartesian tensor of order 5.
Proof (i) Observe that
(@ijkp + bijip) = @i, + iy = lirljslal pu@rsiu + lirljslal pubrsiu
= lirljslktlpu(arstu + brstu)~

(i1) Observe that

(aijkbmn)/ = al{jkb'/nn = lirljslktarstlmplnqbpq = lirljslktlmplnq(arstbpq)'

(ii1) Observe that

a,‘,jip = lirljslitlpuarstu = 8rtlj.vlpuarxtu = ljslpuarsru~
(iv) Left to the reader.

(v) We use the same argument as in Example 9.1.3 (iii).

By Lemma 9.1.1,

Xi = lj,-x}.
It follows, since /;; is constant, that

3)6,'

Fra

J

Now we are looking at the same point in our physical system, so the chain rule yields

daitmn N 0 d
( ajk ) = Jkmn = _l_jrlkslmzlnuarstu

ox; ax; N ax]
9ays1u a5 0%y
= lrl slm lnu— = lll slm lnu—_
jrikstmt ox; Jrikstmt dx, x|
0 gty

= ljrlkslmtlnuliv Y~
v

as required. U

There is another way of obtaining Cartesian tensors called the quotient rule which is
very useful. We need a trivial, but important, preliminary observation.
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Lemma 9.3.3 Let ojj. ., be a3 x 3 x --- x 3 array. Then, given any specified coordinate
—_—

n
system, we can find a tensor & with a;j. ,, = @;j., In that system.

Proof Define
I
@ = lirljs - InuQ@rs..u

so the required condition for a tensor is obeyed automatically. O

Theorem 9.3.4 [The quotient rule] If a;;b; is a Cartesian tensor of order 1 whenever b;
is a tensor of order 1, then a;; is a Cartesian tensor of order 2.

Proof Observe that, in our standard notation
lixa; by = a;;b; = (a;jb;) = liy(a,jbj) = liraby
and so
(ljka{j — liran )by = 0.

Since we can assign by any values we please in a particular coordinate system, we must

have
/
ljka,'j —lirar =0,
$O
/ / ’ /
Lirlmare = Lk Uirar) = lmk(ljkaij) = lmkljkaij = ‘Smja,'j =a;,
and we have shown that g;; is a Cartesian tensor. g

It is clear that the quotient rule can be extended but, once again, we refrain from the
notational complexity of a general proof.

Exercise 9.3.5 (i) If a;b; is a Cartesian tensor of order 0 whenever b; is a Cartesian tensor
of order 1, show that a; is a Cartesian tensor of order 1.

(ii) If a;jb;c; is a Cartesian tensor of order O whenever b; and c; are Cartesian tensors
of order 1, show that a;; is a Cartesian tensor of order 2.

(iii) Show that, if a;ju;; is a Cartesian tensor of order 0 whenever u;; is a Cartesian
tensor of order 2, then a;; is a Cartesian tensor of order 2.

@@v) If aijimbim is a Cartesian tensor of order 2 whenever by, is a Cartesian tensor of
order 2, show that a;j is a Cartesian tensor of order 4.

The theory of elasticity deals with two types of Cartesian tensors of order 2, the stress
tensor e;; and the strain tensor p;;. On general grounds we expect them to be connected by
a linear relation

Pij = Cijkm€km-

If the stress tensor ey, could be chosen freely, the quotient rule given in Exercise 9.3.5 (iv)
would tell us that c;jg,, is a Cartesian tensor of order 4.
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Exercise 9.3.6 In fact, matters are a little more complicated since the definition of the
Stress tensor ey, yields ey, = eni. (There are no other constraints.)

We expect a linear relation

Dij = Cijkm€km

but we cannot now show that &;jy, is a tensor.

(i) Show that, if we set ¢;jjm = %(Eijkm + Cijmk), then we have

Dij = Cijkm€km and  Cijkm = Cijmk-

(i) If by, is a general Cartesian tensor of order 2, show that there are tensors e,,; and

fmk with
bk = epx + f;nkv €km = €mk, fkm = _fmk~
(iii) Show that, with the notation of (if),
Cijkm€lm = Cijkmbim

and deduce that c;ji, is a tensor of order 4.

The next result is trivial but notationally complicated and will not be used in our main
discussion.

Lemma 9.3.7 In this lemma we will not apply the summation convention to A, B, C and
D. If t, u, vand w are Cartesian tensors of order 1, we defineC =t Q@ U Q V® W to be the
3 x 3 x 3 x 3 array given by

Cijkm = LilUljUpWy

in each rotated coordinate system.
Let the order 1 Cartesian tensors €(A) [A = 1, 2, 3] correspond to the arrays

(ex(1), ex(1), e3(1)) = (1,0, 0)
(e1(2), e2(2), e3(2)) = (0, 1,0)
(e1(3), e2(3), €3(3)) = (0,0, 1),

in a given coordinate system S. Then any Cartesian tensor a of order 4 can be written
uniquely as

3 3 3 3
a=3) > Y > lascre(A) ®e(B)®e(C)®e(D) *

A=1 B=1C=1 D=1

with AaBcD € R.

Proof If we work in S, then % yields A4apcp = aapcp, where a;juy is the array corre-
sponding to @ in S.

Conversely, if Lapcp = aapcp, then the 3 x 3 x 3 x 3 arrays corresponding to the
tensors on either side of the equation % are equal. Since two tensors whose arrays agree in
any one coordinate system must be equal, the tensorial equation s must hold. ([
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Exercise 9.3.8 Show, in as much detail as you consider desirable, that the Cartesian
tensors of order 4 form a vector space of dimension 3*.
State the general result for Cartesian tensors of order n.

It is clear that a Cartesian tensor of order 3 is a new kind of object, but a Cartesian tensor
of order 0 behaves like a scalar and a Cartesian tensor of order 1 behaves like a vector. On
the principle that if it looks like a duck, swims like a duck and quacks like a duck, then it is
a duck, physicists call a Cartesian tensor of order 0 a scalar and a Cartesian tensor of order
1 a vector. From now on we shall do the same, but, as we discuss in Section 10.3, not all
ducks behave in the same way.

Henceforward we shall use u rather than u to denote Cartesian tensors of order 1.

9.4 The vector product

Recall that we defined the Levi-Civita symbol ¢;;; by taking €;53 = 1 and using the rule
that interchanging two indices changed the sign. This gave

1 if(e, B,y)€e{(1,2,3), (2,3, D), (3,1,2)},
€py =3 —1 if(a,B,v)€{(3.2,1), (1,3,2), (2,1, 3)},
0 otherwise.

Lemma 9.4.1 ¢;j; is a tensor.

Proof Observe that

Ly I I il s
liljsha€rse = det | i1 Ljp iz | = €pdet | by by b | = €jx = €/
i Lo I Ly Il I
as required. U

There are very few formulae which are worth memorising, but part (iv) of the next
theorem may be one of them.

Theorem 9.4.2 (i) We have

di1 8iz 43
€ijk = det (Sjl 5j2 5j3
Skt Sk k3
(ii) We have
Sir 85 Ois
€ijk€rs =det | 85, S5 B
8kr ‘Sks Skt
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(iii) We have
€ijk€rst = 0ir8 5O + 8i10jOks + 85010k — 8irOsjr — 8it0kr8js — 8isOksdjr-
(iv) [The Levi-Civita identity] We have
€ijk€ist = 05Ok — Spsbjy.
(v) We have €;ji€ij; = 28, and €;jr€;jx = 6.

Note that the Levi-Civita identity of Theorem 9.4.2 (iv) asserts the equality of two
Cartesian tensors of order 4, that is to say, it asserts the equality of 3 x 3 x 3 x 3 = 81
entries in two 3 x 3 x 3 x 3 arrays. Although we have chosen a slightly indirect proof of
the identity, it will also yield easily to direct (but systematic) attack.

Proof of Theorem 9.4.2. (i) Recall that interchanging two rows of a determinant multiplies
its value by —1 and that the determinant of the identity matrix is 1.

(i1) Recall that interchanging two columns of a determinant multiplies its value by —1.

(iii) Compute the determinant of (ii) in the standard manner.

(iv) By (iii),

€ijk€ist = 0ii0 58k + 8i10ibks + 8i50 ki — 8iidksSjr — 8i16kidjs — 8isSpidji
= 38j58kt + Bjt(gks + 8jt8kx - 38k58jt - Bktsjs - Sktij = ajsfskt - Sks‘sjt-
(v) Left as an exercise for the reader using the summation convention. O

Exercise 9.4.3 Show that €;ji€xim€Emni = €nij.

Exercise 9.4.4 Lete€;ji 4 be the Levi-Civita symbol of order n (with the obvious definition).
Show that

€ijk..q€ijk..q = n!

We now define the vector product (or cross product) ¢ = a x b of two vectors a and b
by

Cc; = Gijkdjbk
or, more briefly, by saying
(a X b), = eijkajbk.

Notice that many people write the vector product as a A b and sometimes talk about the
‘wedge product’.
If we need to calculate a specific vector product, we can unpack our definition to obtain

(a1, a2, a3) x (b1, by, b3) = (a2b3 — asby, azby — aibz, a\by — axby). *

The algebraic definition using the summation convention is simple and computationally
convenient, but conveys no geometric picture. To assign a geometric meaning, observe that,
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since tensors retain their relations under rotation, we may suppose, by rotating axes, that
a=(a,0,0) and b= (bcosh, bsinb,0)
witha, b > 0and 0 < 6 < . We then have
axb=1(0,0,absin0)

so a x b is a vector of length | a]|||b||| sin 8| (where, as usual, ||x|| denotes the length of x)
perpendicular to a and b. (There are two such vectors, but we leave the discussion as to
which one is chosen by our formula until Section 10.3.)

Our algebraic definition makes it easy to derive the following properties of the cross
product.

Exercise 9.4.5 Suppose that a, b and ¢ are vectors and )\ is a scalar. Show that the
following relations hold.

(i) M(a x b) = (Aa) x b = a x (Ab).

(iax(+c)=axb+axc

(iii)axb=—b xa.

(ivvaxa=0.
Exercise 9.4.6 Is R? a group (see Definition 5.3.13) under the vector product? Give
reasons.

We also have the dot product® a - b of two vectors a and b given by
a-b= a; bi .
The reader will recognise this as our usual inner product under a different name.

Exercise 9.4.7 Suppose that a, b and ¢ are vectors and X is a scalar. Use the definition
just given and the summation convention to show that the following relations hold.

@ A(@-b)=(ra)-b=a-(Ab).

(ia-(b+c)=a-b+a-c

(iiiya-b=>b-a.

Theorem 9.4.8 [The triple vector product] If a, b and ¢ are vectors, then
ax(bxc)y=(a-cb—(a-b)c.
Proof Observe that
(ax (b xc), =ejrajbx e = €jra;(€rshrcs)
= €xij€rsajbres = (8,85 — 8;58;,)a;b,c,

= a,bic; —a;b.c; = ((a- )b — (a- b)e)

i’

as required. Il

5 Some British mathematicians, including the present author, use a lowered dot a.b, but this is definitely old fashioned.
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Exercise 9.4.9 (i) Prove Theorem 9.4.8 from the formula
(a1, az, az) x (b1, by, b3) = (az2b3 — azba, azby — aibs, aiby — axby)

without using the summation convention. (This is neither difficult nor time consuming,
provided that you start with a sufficiently large piece of paper.)

(i) Think about how you would go about proving Theorem 9.4.8 from our geometric
description of the vector product. (Only write down a proof if you can find a nice one.)

Exercise 9.4.10 Show that
(axb)yxc=(a-c)b—(b-oc)a.
Write down explicit vectors X, y and z such that
XXy xzZ#Xx(y X2Z).
[An algebraist would say that the vector product does not obey the associative rule.]
Exercise 9.4.11 Show that
ax(bxce)+bx(cxa)+cecx(axb)=0.

Exercise 9.4.12 Use the summation convention (recall, as usual, that suffices must not
appear more than twice) to show that

(@ x b)-(axb)+(a-b)’ = fal*[b]*.
To what well known trigonometric formula does this correspond?
There is another natural way to ‘multiply three vectors’. We write
[a,b,c]=a-(bxc¢)
and call the result the scalar triple product (or just triple product). Observe that

a ax as
[a, b, C] = eijkaibjck = det b] b2 b3
T €2 €3
In particular, interchanging two entries in the scalar triple product multiplies the result

by —1. We may think of the scalar triple product [a, b, ¢] as the (signed) volume of a
parallelepiped with one vertex at 0 and adjacent vertices at a, b and c.

Exercise 9.4.13 Give one line proofs of the relation
(axb)-a=0

using the following ideas.
(i) Summation convention.
(if) Orthogonality of vectors.
(iii) Volume of a parallelepiped.
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Exercise 9.4.14 By applying the triple vector product formula to
(axb)x(cxd),
or otherwise, show that
[a,b, c]ld = [b, c,d]a+ [c,a,d]b+ [a, b, d]c.

Show also that

(axb)x (axc)=]a,b,c]a.

Exercise 9.4.15 [fa, b and c are linearly independent, we know that any x can be written
uniquely as

x =Xia+ ub 4+ ve

with A, i, v € R. Find A by considering the dot product (that is to say, inner product) of
X with a vector perpendicular to b and ¢. Write down u and v similarly.

Exercise 9.4.16 (i) By considering a matrix of the form AAT, or otherwise, show that

a-a a-b a-c
[a,b,c]zzdet b-a b b-c
c-a c¢c-b c-c
(ii) (Rather less interesting.) If ||a]| = ||b|| = |lc|| = ||]a+ b + ¢|| = r, show that

[a,b,c]*> =20 +a-b)#>+b ) +c-a).
Exercise 9.4.17 Show that
(@axb)-ecxd+(axc)-dxb)+(@xd)-(bxec)=0.

The results in the next lemma and the following exercise are unsurprising and easy to
prove.

Lemma 9.4.18 Ifa, b are smoothly varying vector functions of time, then

d .
—axb=axb+axb.
dt

Proof Using the summation convention,

d . . . :
Efijkajbk = Eijkadjbk = €;jx(ajby + a;by) = €;jra;by + €;jra by,
as required. [l
Exercise 9.4.19 Suppose that a, b are smoothly varying vector functions of time and ¢ is
a smoothly varying scalar function of time. Prove the following results.

L d s .
@) Eq&a = ¢a+ ¢a.
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(i) d b—a.-b+a-b
i) —a-np=a- a-p.
dt
Lod . ,
ul) —axa=axa.
( )dt

Hamilton, Tait, Maxwell and others introduced a collection of Cartesian tensors based on
the ‘differential operator’® V. (Maxwell and his contemporaries called this symbol ‘nabla’
after an oriental harp ‘said by Hieronymus and other authorities to have had the shape V’.
The more prosaic modern world prefers ‘del’.) If ¢ is a smoothly varying scalar function
of position, then the vector V¢ is given by

d¢

(Vo) = FY

If u is a smoothly varying vector function of position, then the scalar V - u and the vector

V x u are given by

ou; ouj
= i and (V X ll),' = Eijkﬁ

V-.u .
Xi 8xk

The following alternative names are in common use
grad¢ = V¢, divua=V-u, curlu=V xu.

We speak of the ‘gradient of ¢’, the ‘divergence of u’ and the ‘curl of u’.
We write
9%

20 . _
Vip=V.(Vg) oo

and call V¢ the Laplacian of ¢. We also write
0%u,
(V) = ——L
! 3)6_,' 8)6.,'

The following, less important, objects occur from time to time. Let a be a vector function
of position, ¢ a smooth function of position and u a smooth vector function of position. We
define

_ .9 . _ o
(@a-Vyp =a; o and ((a V)u)j =aq; o

Lemma 9.4.20 (i) If ¢ is a smooth scalar valued function of position and u is a smooth
vector valued function of position, then

V-(¢pu) =(Vp)-u+ ¢V -u.
(ii) If ¢ is a smooth scalar valued function of position, then

V x (V-¢)=0.

6 So far as we are concerned, the phrase ‘differential operator’ is merely decorative. We shall not define the term or use the idea.
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(ii) If w is a smooth vector valued function of position, then
V x (Vu) = V(V -u) — Vu

Proof (i) Observe that

a 8 a¢ +o ou;
—du; = —u; —.
8)6,‘ 3)6,‘ ax,»
(i1) We know that partial derivatives of a smooth function commute, so
9 ( Ao ) 9%¢ 9%

€ijk o = €ijk = €ijk
0x; \ 0xg 0x;0x 0x,0x;

3 (3¢ .0 (99
= ei- —_— —_— = —€jjk— —_— .
ik Bxk 3Xj i ij axk

0 ( 0¢p )
€jkm—|z—)=0,
dx; \ 0xx
which is the stated result.

(iii) Observe that, using Levi-Civita’s formula,

Thus

(V x (Vu)), = eijka— <ekm%> = EkijEkrsﬂ
! 0x; 0x, 0x;0x,
9%u, 82uj 9%u;
= (8i+8j5 — 8is8jr) = -
0x;0x, 0x;0x; 0x;0x;
_ 0 Ouj 9%u;
0x; 0x; 0x;0x;
= (V(V-u) - V’u),,
as required. O

Exercise 9.4.21 (i) If ¢ is a smooth scalar valued function of position and u is a smooth
vector valued function of position, show that

V x (¢pu) = (Vo) x u+ ¢V x u.
(ii) If w is a smooth vector valued function of position, show that
V-(Vxu=0.
(iii) If u and v are smooth vector valued functions of position, show that
Vx@xv)=(KNV-vvu+v-Vu—(V-u)v—u- Vv.

Although the V notation is very suggestive, the formulae so suggested need to be verified,
since analogies with simple vectorial formulae can fail.

The power of multidimensional calculus using V is only really unleashed once we
have the associated integral theorems (the integral divergence theorem, Stokes’ theorem
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and so on). However, we shall give an application of the vector product to mechanics in
Section 10.2.

Exercise 9.4.22 The vector product is so useful that we would like to generalise it from
R3 to R™. If we look at the case n = 4, we see one possible generalisation. Using the
summation convention with range 1, 2, 3, 4, we define

XAyYyAZ=a
by
a; = €;jkIXjYkZi-

(i) Show that, if we make the natural extension of the definition of a Cartesian tensor
to four dimensions,” then, if X, y, z are vectors (i.e. Cartesian tensors of order 1 in R4), it
follows that X Ay A zZ is a vector.

(i) Show that, if X, y, Z, u are vectors and X\, | scalars, then

AX+ U AYAZ=AXAYAZ+UUAYAZ
and
XAYAZ=—-YAXAZ=—ZAYAX.

(iii) Write down the appropriate definition for n = 5.

In some ways this is satisfactory, but the reader will observe that, if we work in R",
the ‘generalised vector product’ must involve n — 1 vectors. In more advanced work,
mathematicians introduce ‘generalised vector products’ involving r vectors from R", but
these ‘wedge products’ no longer live in R".

9.5 Further exercises

Exercise 9.5.1 Show directly from the definition of a Cartesian tensor that, if T;; is a second
order Cartesian tensor, then 97;;/0x; is a vector.

Exercise 9.5.2 Show that, if v is a smooth function of position,
v-V)v= V(%”VHZ) —vx(Vxv).
Exercise 9.5.3 If we write
D;i = €jjpxj—
%k
show that

(D1Dy — DyD)¢p = —D3¢p

7 1If the reader wants everything spelled out in detail, she should ignore this exercise.



228 Cartesian tensors

for any smooth function ¢ of position. (If we were thinking about commutators, we would
write [D], Dz] = —D3)

Exercise 9.5.4 We work in R3. Give a geometrical interpretation of the equation

n-r=>a *

and of the equation
uxr=ec, *
where b is a constant, n, u, ¢ are constant vectors, |[n|| = |lul =1, u-c=0andris a

position vector. Your answer should contain geometric interpretations of n and u.

Determine which values of r satisfy equations % and s % simultaneously, (a) assuming
that u - n # 0 and (b) assuming that u - n = 0. Interpret the difference between the results
for (a) and (b) geometrically.

Exercise 9.5.5 Leta and b be linearly independent vectors in R3. By considering the vector
product with an appropriate vector, show that, if the equation

x+(a-x)a+axx=D>b 9.1)
has a solution, it must be
b—axb 9.2)
X=—-. .
14 |la|?

Verify that this is indeed a solution.
Rewrite equations (1) and (2) in tensor form as

Mijx; =b; and x; = Njby.
Compute M;; N and explain why you should expect the answer that you obtain.
Exercise 9.5.6 Let a, b and ¢ be linearly independent. Show that the equation
(axb+bxe+exa)-x=[ab,c] *

defines the plane through a, b and c.

What object is defined by % if a and b are linearly independent, but ¢ € span{a, b}?
What object is defined by % if a # 0, but b, ¢ € span{a}? What object is defined by ¥ if
a =b = ¢ = 0? Give reasons for your answers.

Exercise 9.5.7 Unit circles with centres at r; and r, are drawn in two non-parallel planes
with equations r - k; = p; and r - ky = p, respectively (where the k; are unit vectors and
the p; > 0). Show that there is a sphere passing through both circles if and only if

(r—12)- (ki x ko) =0 and (p1 —ki-r2)* = (p2 — kg - 11)".
Exercise 9.5.8 (i) Show that
@xb)-(exdy=(@G@-c)b-d)—(a-d)b-c).
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(i1) Deduce that
(axb)-(axc)=|al*(b-c)—(a-b)a-c).
(>iii) Show, from (ii), that
(axb)-(axb)=lal?[b]* - (a-b).
Deduce the Cauchy—Schwarz inequality in three dimensions.
Exercise 9.5.9 [Some formulae from spherical trigonometry]

Let him that is melancholy calculate spherical triangles.
(Robert Burton The Anatomy of Melancholy [7])

Consider three points .4, 13 and C on the unit sphere with centre O at 0 in R,

We write a for the position vector of A. We write a for the angle between the lines OB
and OC satisfying 0 < a < w and A for the angle between the plane 7 4 ;3 containing O,
A, B and the plane 7 4 ¢ containing O, A, C. (There are two possible choices for A even if
we impose the condition 0 < A < . We resolve the ambiguity later.)

(i) Show, by thinking about the angle between a x b and a x ¢, or otherwise, that

(axb)-(axc)=sincsinbcosA,

provided that we choose A appropriately. By applying the formula in Exercise 9.5.8, show
that

cosa =cosbcosc £ sinbsinccos A.

(ii) Explain why (if 0 < a, b, ¢ < )

GinA — [(a xb) x (ax o)

|a x bjla x c|
and deduce that
sinA _sinB _ sinC _ 6Vol(OABC)

sina sinb sinc  sinasinbsinc’

(iii) Given the latitude and longitude of London and Los Angeles and the radius of the

Earth, explain how you would calculate the distance covered in a direct flight. How would
you calculate the compass direction relative to true North that the aircraft captain should
choose for such a flight?
[The formulae given in parts (i) and (ii) appear in De Triangulis, written in 1462-1463 by
Regiomontanus, but spherical trigonometry was invented by the ancient Greeks for use in
astronomy. For reasons which will be clear if you did part (iii), they were interested in the
case when the angle A was a right angle.]
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Exercise 9.5.10 [Frenet—-Serret formulae] In this exercise we are interested in under-
standing what is going on, rather than worrying about rigour and special cases. You should
assume that everything is sufficiently well behaved to avoid problems.

() Letr : R — R3 be a smooth curve in space. If ¢ : R — R is smooth, show that

d / J
Er(qﬁ(l)) =¢' (O (¢(1)).

Explain why (under reasonable conditions) we can restrict ourselves to studying r such
that ||r'(s)|| = 1 for all 5. Such a function r is said to be parameterised by arc length. For
the rest of the exercise we shall use this parameterisation.

(ii) Let t(s) = r'(s). (We call t the tangent vector.) Show that t(s) - t'(s) = 0 and deduce
that, unless ||t'(s)|| = 0, we can find a unit vector n(s) such that ||t'(s)||n(s) = t'(s). For the
rest of the question we shall assume that we can find a smooth function x : R — R with
k(s) > 0 forall s and a smoothly varying unit vectorn : R — R3 such that t'(s) = k(s)n(s).
(We call n the unit normal.)

(iii) If r(s) = (R~! cos Rs, R~! sin Rs, 0), verify that we have an arc length parameter-
isation. Show that x(s) = R~'. For this reason «(s)~! is called the ‘radius of the circle of
curvature’ or just ‘the radius of curvature’.

(iv) Let b(s) = t(s) x n(s). Show that there is a unique 7 : R — R such that

n'(s) = —k(s)t(s) + t(s)b(s).
Show further that
b'(s) = —t(s)n(s).

(v) A particle travels along the curve at variable speed. If its position at time ¢ is given
by x(t) = r(w(t)), express the acceleration x”(¢) in terms of (some of) t, n, b and «, t, ¥
and their derivatives.® Why does the vector b rarely occur in elementary mechanics?

Exercise 9.5.11 We work in R? and do not use the summation convention. Explain geo-
metrically why e, e,, e3 are linearly independent (and so form a basis for R?) if and only
if

(e; xe)-e3 #0. *

For the rest of this question we assume that v holds.
(i) Let E be the matrix with jth row e;. By considering the matrix EET, or otherwise,
show that there is a unique matrix £ with ith row &; such that

€; 'éj = (S,‘j.

8 The reader is warned that not all mathematicians use exactly the same definition of quantities like « (s). In particular, signs may
change from + to — and vice versa.
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(i) If x € R3, show that

3
X = Z(X . éj)ej.
j=1

(iil) Show that &,, &,, &; form a basis and that, if x € R3,

3
X = Z(X . e_,-)é_,-.
j=1

(iv) Show that &; = e;.
(v) Show that

€ X €3

ég=———
(e1 x €)-e3

and write down similar expressions for &, and &;. Find an expression for
((e3 x €1) x (€] X €)) - (€2 x €3)

in terms of (e; X €;) - e3.

(vi) Find &, €;, &; in the special case when ey, e,, e3 are orthonormal and det E > 0.
[The basis €, &>, €3 is sometimes called the dual basis of €1, e;, €3, but we shall introduce a
much more general notion of dual basis elsewhere in this book. The ‘dual basis’ considered
here is very useful in crystallography.]

Exercise 9.5.12 Letr = (x|, x», x3) be the usual position vector and write r = ||r||. If a is
a constant vector, find the divergence of the following functions.

(i) r"a (forr # 0).

(ii) r"(a x r) (for r # 0).

(i) (a xr) x a.

Find the curl of ra and 7’r x a when r # 0. Find the grad of a - r.

If ¢ is a smooth function of position, show that

V.-(xVy)=0.
Suppose that f : (0, c0) — R is smooth and ¢(r) = f(r). Show that

f/(r) 2 1 d
TI‘ and V¢:r_25

Deduce that, if V2¢ = 0 on R? \ {0}, then

V¢ = (F f'(r)).

B
pr)=A+ —
,

for some constants A and B.
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Exercise 9.5.13 Let r = (x1, x2, x3) be the usual position vector and write r = ||r||. Sup-
pose that f, g : (0, c0) — R are smooth and

R;j(x) = f(r)xix; + g(r)é;;
on R3\ {0}. Explain why R; ;18 a Cartesian tensor of order 2. Find
oR;; oR
- and El‘jk—kl
Bx[ 8.Xj
in terms of f and g and their derivatives. Show that, if both expressions vanish identically,
f(r) = Ar~ for some constant A.
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More on tensors

10.1 Some tensorial theorems

This section deals mainly with tensors having special properties. We first look at isotropic
tensors. These are tensors like §;; and €;;; which remain unchanged under rotation of our
coordinate system. They are important because many physical systems (for example, empty
space) look the same when we rotate them. We would expect such systems to be described
by isotropic tensors.

Theorem 10.1.1 (i) Every Cartesian tensor of order 0 is isotropic.
(ii) The zero tensor is the only Cartesian tensor of order 1 which is isotropic.
(iii) The isotropic Cartesian tensors of order 2 have the form A8;; with A a real number.
(iv) The isotropic Cartesian tensors of order 3 have the form Ae;j; with A a real number.

Proof (i) Automatic.
(ii) Suppose that g; is an isotropic Cartesian tensor of order 1.
If we take

1 0 O
L=|0 0 1],
0 -1 0

then LL” =1 and detL = 1, so L € SO(R?). (The reader should describe L geometri-
cally.) Thus

az =ay =lya; = —a; and  ay = a5 = ha; = a;s.

It follows that a; = a3 = 0 and, by symmetry among the indices, we must also have a; = 0.
(iii) Suppose that a;; is an isotropic Cartesian tensor of order 2.
If we take L as in part (ii), we obtain

— 4 — 1:l —
axy = dyy = bilpjd;j = d33
so, by symmetry among the indices, we must have a;; = ay> = ass;. We also have

/ ’
ap =dap = llilzjcl,'j = —dai3 and apy =da;3 = llil3jaij =da.

233
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It follows that a1, = a;3 = 0 and, by symmetry among the indices,
app =apz =ay =ay; =az =ap =0.

Thus aij = )\8”‘.
(iv) Suppose that g, is an isotropic Cartesian tensor of order 3.
If we take L as in part (ii) we obtain

I
a3 = a3 = liihjlsiaie = —aiz
/
a1 = ajyy = il jlnaije = aizz
I
a1 = Gy = bilijlikaijr = —asn
I
axn = alyy = liihjlakaijn = —ass;
’
a333 = ayyy = I3l3j130a; 5 = axo.
Using symmetry among the indices, we can also see that
ai = a3 = —ai,
0 a1 = 0. Symmetry among the indices now gives a;x = A€;jx as required. O
Matters become more complicated when the order is greater than 3.
Exercise 10.1.2 Show that, if o, B and y are real, then
ad;jdu + Bdikdji + yirdjk *

is an isotropic Cartesian tensor.
Show that, if

ad;jdu + Béixdj + y8udjk =0,

theno ==y =0.

Exercise 10.5.9 sketches a proof that the expression in ¥ is the most general isotropic
tensor of order 4, but requires the reader to work quite hard.

Use the statement that % is, indeed, the most general isotropic tensor of order 4 to
produce a proof of the the Levi-Civita identity

€ijk€ist = 05Ok — Opsbjs.
Recall the tensorial equation
Dij = Cijkm€km

governing the relation between the stress tensor ey, and the strain tensor p;; in elasticity.
If we deal with a material like steel, which looks the same in all directions, we must have
Cijkm 1SOtropic.

By the results stated in Exercise 10.1.2, we have

Cijkm = 08;j0km + BSikSjm + ¥ 3imdjk
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and so
pij = 3ad;jen + Beij +veji
for some constants ¢, B and y. In fact, ¢;; = e;;, so the equation reduces to
pij = Adijerr + 2ue;j

showing that the elastic behaviour of an isotropic material depends on two constants A
and u.

Sometimes we get the ‘opposite of isotropy’ and a problem is best considered with a
very particular set of coordinate axes. The wide-awake reader will not be surprised to see
the appearance of a symmetric Cartesian tensor of order 2, that is to say, a tensor a;;,
like the stress tensor in the paragraph above, with a;; = a;;. Our first task is to show that
symmetry is a tensorial property.

Exercise 10.1.3 Suppose that a;; is a Cartesian tensor. If a;j = aj; in one coordinate
system S, show that a;; = a; in any rotated coordinate system S'.

Exercise 10.1.4 According to the theory of magnetostriction, the mechanical stress is a
second order symmetric Cartesian tensor o;; induced by the magnetic field B; according
to the rule

0ij = a;ji By,

where a;ji. is a third order Cartesian tensor which depends only on the material. Show that
oij = 0 if the material is isotropic.

A 3 x 3 matrix and a Cartesian tensor of order 2 are very different beasts, so we must
exercise caution in moving between these two sorts of objects. However, our results on
symmetric matrices give us useful information about symmetric tensors.

Theorem 10.1.5 If a;; is a symmetric Cartesian tensor, there exists a rotated coordinate
system S’ in which

/ ’ /

ay  a, aj A 0 O
/ / / —

ay ayp ay|=(0 pu O
! / /

ay  ay  as 0O 0 v

Proof Let us write down the matrix

ain  app  an
A=lay axp ax
as  axp a;

By Theorem 8.1.6, we can find a 3 x 3 matrix M € O(R?) such that

MAMT = D,
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where D is the matrix given by

o

|
o O >
or O
- O O

for some A, u, v e R.
If M e SOR?), we set L =M. If M ¢ SOR?), we set L = —M. In either case,
L e SOR?) and

LALT = D.
Let

If we consider the coordinate rotation associated with /;;, we obtain the tensor relation

/
a;; = lirljsars
with
a,, a., a A 0 O
11 12 43
’ / / _
ay  ay ay|=10 p 0
/ ’ /
ay ay Ay 0O 0 v
as required. [

Remark 1 If you want to use the summation convention, it is a very bad idea to replace A,
wand v by Ap, Ap and As.
Remark 2 Although we are working with tensors, it is usual to say that if a;;u; = Au; with
u; # 0, then u is an eigenvector and A an eigenvalue of the tensor a;;. If we work with
symmetric tensors, we often refer to principal axes instead of eigenvectors.

We can also consider antisymmetric Cartesian tensors, that is to say, tensors a;; with

a,-j = —Cljl'.
Exercise 10.1.6 (i) Suppose that a;; is a Cartesian tensor. If a;j = —a; in one coordinate
system, show that a; ;= —a}l- in any rotated coordinate system.

(ii) By looking at %(b,-j +bj;) and %(b,-j — bj;), or otherwise, show that any Cartesian
tensor of order 2 is the sum of a symmetric and an antisymmetric tensor.

(iii) Show that, if we consider the vector space of Cartesian tensors of order 2 (see
Exercise 9.3.8), then the symmetric tensors form a subspace of dimension 6 and the anti-
symmetric tensors form a subspace of dimension 3.

If we look at the antisymmetric matrix

0 03 —02
—03 0 o]
(o)) —0] 0

long enough, the following result may present itself.
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Lemma 10.1.7 If a;y is an antisymmetric tensor and w; = %ei.jkaik, then
air = 6ijka)j.
Proof By the Levi-Civita identity,
€jkwj = %Eijkfrjsars = %ijiejsrars = %(3ks5ir — 8kr8is)ars
= Sai — aw) = ai
as required. ([

Exercise 10.1.8 Using the minimum of computation, identify the eigenvectors of the tensor
€ijxw; where @ is a non-zero vector. (Note that we are working in R.)

10.2 A (very) little mechanics

We illustrate the use of the vector product by looking at the behaviour of a collection of
particles in Newtonian mechanics. We suppose that the oth particle has position x,, and
mass m, for 1 < o < N. We do not apply the summation convention to the integers o and
B. The ath particle is subject to a force F,, g due to the Bth particle [8 # «] and an external
force F,. Newton’s laws tell us that forces are vectors and

MeXe = F, + ZFM.
pa
In addition since ‘action and reaction are equal and opposite’

Fop=-Fpgq.

These laws hold whether we consider a galaxy of stars with the stars as particles or a falling
raindrop with the constituent molecules as particles.
In order to get some idea of the nature of the motion, we introduce a new vector called

the centre of mass
X = M™! E My Xy,
o

where M = Za my, 1s the total mass of the system, and observe that

MiG=Zmaia
—Z Fot D Fos ZF +2.D Fap

P « pra

—ZF + Y (Fup+Fpo)

1<B<a<N

—ZF—I—ZOF

1<B<a<N
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where F = ) F,. Thus the centre of mass behaves like a particle of mass M (the total
mass of the system) under a force F (the total vector sum of the external forces on the
system). This represents one of the most important results in mechanics, since it allows us,
for example, when considering the orbit of the Earth (a body with unknown and complicated
internal forces) round the Sun (whose internal forces are likewise unknown) to take the two
bodies as point masses. We call

MXGZ E mo,f(a
a

the momentum of the system.
If we make the additional assumption that the force exerted by one particle on the other
acts along the line of centres (that is to say,

Fa,ﬂ = )\a.ﬂ(xa - Xﬂ)’

for some scalar A, g), then we can find another ‘global equation’ which does not involve
internal forces by using the vector product. We define the angular momentum H of the
system about the origin by the formula

H= E MaXy X Xg.

Our assumptions that the forces are opposite and act along the line of centres tell us that
Xy X Fop+xg X Fpgo =Xy —Xp) X Fop = Ao g(Xg — Xp) X (X4 —Xp) =0
and so

. d
H= Zmad—txa X Xg = Zma(xa X Xg + X X Xy)

—Zmaxaxxa_Zxax F, +ZF"‘5

B
ZZX"‘ x Fo + Z Xy X Fop +x5 x Fggo)
1<B<a<N
—ZxaxF + Z 0 =G,
1<B<a<N

where G = ) X, x F,, is called the total couple of the external forces.
Thus, in the absence of external forces, the angular momentum, like the momentum,
remains unchanged.

Exercise 10.2.1 [t is interesting to consider what happens if we look at matters relative to
the centre of mass. If, using the notation of this section, we write r, = X, — Xg, show that

H:MXGXXG+E Mg¥y X Tg.

o

Describe this result in words.
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Exercise 10.2.2 Suppose that particle o experiences an external force
F, = —km,Xx.
Show that the angular momentum H = Hoe ™, where Hy is constant.

For the rest of the section, we look at what happens when we rotate a rigid body (fixed
so that the point at the origin does not move) round a fixed axis through the origin.
It is important to understand that /;; itself is not a tensor. If we look at the relation

x; = lijxj,
we can think of /;; standing with one foot i in the rotated coordinate system and with the
other foot j in the original coordinate system. On the other hand, we can think of rotation

about the origin within a single coordinate system as the map which takes the vector y to
the vector x according to the rule

X = kijyj.

By the quotient rule, k;; is a second order tensor.
If the rotation is about a fixed axis, we may choose a coordinate system in which the
array associated with the tensor takes the form

1 0 0
(kij)=10 cos@® sinf
0 —sinf cos6

If we consider k;; as changing with time (but with fixed axis of rotation) then, in our chosen
coordinate system,

0 0 0
kij=|10 —sinf cosf 6.
0 —cosf —sinf

If we make a further simplification by choosing our coordinate system in such a way that
6 = 0 at the time that we are considering, then

0O 0 O
k=10 0 1]86,
0 -1 0
SO
kij = €irj®r

where  is the vector which (in our chosen system) corresponds to the array (w;, w», w3) =
®,0,0).

Since a tensor equation which is true in one system is true in all systems, we have shown
the existence of a vector @ such that 1€,~ j = €;rjw,. In particular, if

xi = kijyj.
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then
i = kijyj 4 kijyj = €irjyjor + kijy;.
We now specialise this rather general result. Since we are dealing with a rigid body fixed

at the origin, y; = 0 and so X; = €;,jw,x;, that is to say,

X=wXY.
Finally, we remark that we can choose to observe our system at the instant when y = x and
o)

X =® X X.

Thus, if our collection of particles form a rigid system revolving round the origin, the «th
particle in position X, has velocity @ x x,,. If the reader feels that we have spent too much
time proving the obvious or, alternatively, that we have failed to provide a proper proof of
anything, she may simply take the previous sentence as our definition of the equation of
motion of a point in a rigid body fixed at the origin revolving round an axis. The vector
is called the angular velocity of the body.

By definition, the angular momentum of our body is given by

H= Zmaxa X Xg = Zmaxa X (@ X Xy) = Zma((xa cXo)® — (Xg -w)xa).

We can rewrite this equation in tensor form to get

H; = E Mo (Xak Xak Wi — Xoj@jXei) = lijw;,

a

where

I = Zma(xakxak3ij — XeiXaj)-
o

(Note that, as throughout this section, the i, j and k are subject to the summation convention,
but « is not.)

We call 1;; the inertia tensor of the rigid body. Passing from the discrete case of a finite
set of point masses to the continuum case of a lump of matter with density p, we obtain the
expression

lij = /(kak5ij —x;x;)p(x)dV(x)

for the inertia tensor for such a body. The notion of angular momentum H and the total
couple G can be extended in a similar way to give us

H; = ljjw;, H; =G;
and so

I,‘jd)j = G,’.
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Exercise 10.2.3 [The parallel axis theorem] Suppose that one lump of matter with centre
of mass at the origin has density p(X), total mass M, and moment of inertia I;; whilst a
second lump of matter has density p(x — a) and moment of inertia J;;. Prove that

Jij = Lij + M(araid;; — a;a;).

If the reader takes some heavy object (a chair, say) and attempts to spin it, she will find
that it is much easier to spin it in certain ways than in others. The inertia tensor tells us why.

Of course, we need to decide what we mean by ‘easy to spin’, but a little thought suggests
that we should mean that applying a couple G produces rotation about the axis defined by
G, that is to say, we want ® to be a multiple of G and so

Iijwj = Awi

with w = @ and G = A~ !'w for some non-zero scalar A and some non-zero vector w. (In
other words, w is an eigenvector with eigenvalue A.)
Observe that

I = / (eexed i — X, x)p(0) dV (x) = / (exediy — xix)p(X) AV () = Iy,

so I;; is a symmetric Cartesian tensor of order 2. It follows, by Theorem 10.1.5, that we
can find a coordinate system in which the array associated with the inertia tensor takes the
simple form

S O
oW o
O oo

Exercise 10.2.4 Show that, if we work in the coordinate system of the previous sentence,

A= // V+22)px, v, 2)dxdydz > 0

and write down similar formulae for B and C.

If A, B and C are all unequal, we see that we can ‘easily spin’ the body about each of
the three coordinate axes of our specially chosen system and about no other axis. If B = C
but A # B, we can ‘easily spin’ the body about the axis corresponding to A and about any
axis perpendicular to this (passing through the origin).

The reader who thinks that Cartesian tensors are a long winded way of stating the
obvious should ask herself why it is obvious (as the discussion above shows) that, if we
can ‘easily spin’ a rigid body about two axes through a fixed point, we can ‘easily spin’ the
body about the axis perpendicular to both.

Rugby is a thugs’ game played by gentlemen, soccer is a gentlemen’s game played by
thugs and Australian rules football is an Australian game played by Australians. The soccer
ball is essentially spherical (so, by symmetry, A = B = C), but the balls used in rugby,
Australian rules football and American football have A > B = C. When watching games
with A > B = C, we are watching an inertia tensor in flight.
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10.3 Left-hand, right-hand

We say that a 3 x 3 x --- x 3 array a;;._,, is a Cartesian tensor if it transforms according
to the rule

’
aij...m = lirljs s lmuars“.u

for a rotation of the coordinate system corresponding to L € SO(R?). I claimed that this
was a useful idea because we expect the laws of physics to be unchanged under rotation.

Why not use some other test? In particular, why not allow L € O(R?*)? Let us call g om
an ‘extended Cartesian tensor’ (this is non-standard terminology) if it transforms according
to the rule

/

al-jmm = lirljs e lmuarsmu

for a transformation of the coordinate system corresponding to L € O(R?) (so that the
coordinate axes remain orthogonal). If we do so, we get a rather nasty surprise.

Lemma 10.3.1 The array €;j; is not an extended Cartesian tensor.
Proof The argument of Lemma 9.4.1 shows that
Lipljslyi€rss = €jjx det L = —¢
if L e ORY)\ SORY). O

Exercise 10.3.2 (i) Show that §;; is an extended Cartesian tensor.

(ii) Show that there are no non-zero isotropic extended Cartesian tensors of order 3.

(iii) If a, b and ¢ are extended Cartesian tensors of order 1 (so Cartesian tensors of
order 1) and (a x b) - ¢ # 0, show that (a x b) - ¢ is not an extended Cartesian tensor.

(iv) If a, b are extended Cartesian tensors of order 1 show that a;b; is an extended
Cartesian tensor of order Q.

(v) If a and b are extended Cartesian tensors of order 1 (so Cartesian tensors of order
1) and a x b # 0, show that a x b is not an extended Cartesian tensor.

Exercise 10.3.2 (iii) can be expressed more vividly. If we form the apparent scalar
(a x b) - ¢ # 0 and then look in the mirror, the result will have changed sign! (Of course,
if we remember the ideas discussed in Section 4.1, we may be less flabbergasted at seeing
a signed volume.)

Do the laws of nature remain the same when we look in a mirror? Tartaric acid derived
from wine lees rotates the plane of polarisation when polarised light passes through it.
Tartaric acid obtained by chemical synthesis does not. In 1849 Pasteur observed that
when chemically derived tartaric acid crystallised it produced two types of crystals which
(like your left-hand and right-hand) were mirror images but not rotational images. He
sorted the crystals according to their handedness and discovered that a solution of ‘left-
handed’ crystals rotated the plane of polarisation one way and a solution of ‘right-handed’
crystals rotated it the other way. A mixture of the two solutions produced no rotation. This
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extraordinary result excited much scepticism and Pasteur was invited to demonstrate his
result in the presence of Biot, one of the grand old men of French science. After Pasteur had
done the separation of the crystals in his presence, Biot performed the rest of the experiment
himself. Pasteur recalled that “When the result became clear he seized me by the hand and
said “My dear boy, I have loved science so much during my life that this touches my very
999 ]

heart.
Pasteur’s discovery showed that, in some sense life is ‘handed’. In 1952, Weyl wrote

... the deeper chemical constitution of our human body shows that we have a screw, a screw that is
turning the same way in every one of us. Thus our body contains the dextro-rotatory form of glucose
and the laevo-rotatory form of fructose. A horrid manifestation of this genotypical asymmetry is
a metabolic disease called phenylketonuria, leading to insanity, that man contracts when a small
quantity of laevo-phenylalanine is added to his food, while the dextro-form has no such deleterious
effects.

(Weyl Symmetry [33], Chapter 1)

In 1953, Crick and Watson showed that DNA had the structure of a double helix. We now
know that the instructions for making an Earthly living thing are encoded on this ‘handed’
double helix. If life is discovered elsewhere in the solar system, one of our first questions
will be whether it is ‘handed’ and, if so, whether it has the same handedness as us.

A first look at Maxwell’s equations for electromagnetism

V-D=p,
V-B=0,
9B
VXE=——,
at
V xH '+8D
xH= —_—,
17 %

D=¢E, B=uH, j=0E,

seem to show handedness (or, to use the technical term, exhibit chirality), since they involve
the vector product. However, suppose that we were in indirect communication with beings
in a different part of the universe and we tried to use Maxwell’s equations to establish
the difference between left- and right-handedness. We would talk about the magnetic field
B and explain that it is the force experienced by a unit ‘north pole’, but we would be
unable to tell our correspondents which of the two possible poles we mean. Maxwell’s
electromagnetic theory is mirror symmetric if we change the pole naming convention when
we reflect.

Of course, experiment trumps philosophy, so it may turn out that the universe is
handed, though, even then, most people would prefer to ascribe the observed left- or
right-handedness to chance.

' “Mon cher enfant, j’ai tant aimé les sciences dans ma vie que cela fait battre le coeur.” See, for example, [14].
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Be that as it may, many physical theories including Newtonian mechanics and Maxwell’s
electromagnetic theory are mirror symmetric. How should we deal with the failure of some
Cartesian tensors to ‘transform correctly’ under reflection? A common sense solution is
simply to check that our equations remain correct under reflection. In order to ensure
that terrestrial mathematicians can talk to each other about things like vector products we
introduce the ‘right-hand convention’ or ‘right-hand rule’. ‘If the forefinger of the right-
hand points in the direction of the vector a and the middle finger in the direction of b,
then the thumb points in the direction of a x b.” If the reader is a pure mathematician or
lacks digital dexterity, she may prefer to note that this is equivalent to using a ‘right-handed
coordinate system’ so that when the right hand is held easily with the forefinger in the
direction of the vector (1, 0, 0) and the middle finger in the direction of (0, 1, 0) then the
thumb points in the direction of (0, 0, 1).

10.4 General tensors

Some physicists refer to Cartesian tensors which change sign under reflection as ‘pseudo-
tensors’, so, if a, b and ¢ are linearly independent extended Cartesian tensors of order 1,
then a x b, is a ‘pseudo-vector’ and a - (b x ¢) is a pseudo-scalar. Since Maxwell, Gibbs
and Heaviside considered a x b to be a vector, the author thinks this is an unfortunate
choice of phrase. It seems more reasonable to say that a physical vector is an object which
transforms in a certain way for certain choices of coordinate transformations. As we change
our choice of transformations, so we change our notion of a physical vector.

What happens if we choose the most general collection of invertible linear transforma-
tions? The answer is very interesting, but requires the introduction of a new notation. In
this section we write our position vectors as

that is to say, we use upper indices and consider x as a column vector. We write the matrix
of an invertible linear map as lj. so that lj. is the entry in the ith (upper index) row and jth
(lower index) column.

If we make a change of coordinate system from our initial system S to a new system S
(note the use of an upper bar rather than a dash), we have a relation

X =1lxt,
where we sum over the j which occurs once as an upper index and once as a lower index and
3)T

l l] is a 3 x 3 invertible matrix. We call any column a = (a', a%, a®)" with three elements a

contravariant vector if it transforms according to the rule

i i
a —lja.

Notice that the position vector is automatically a contravariant vector.
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The reader should have no difficulty with the next exercise.

Exercise 10.4.1 (i) If U and v are contravariant vectors, A, i € R and we set w' =
aul 4+ pvl, then W is a contravariant vector:
(i) If a contravariant vector U(t) varies in a smooth manner with time, then

U(e) = @' (1), (@), i’ (1)

is a contravariant vector.

However, matters become more complicated when we seek an analogue of Lemma 9.1.1.
Lemma 10.4.2 [f U is a contravariant vector, then, with the notation just introduced,

ut = m_’}le

where, in matrix notation, M = (LT)~.

Note that, in our upper and lower index notation, the definition of M is equivalent to

mils = Lim' = 8%,

where our new Kronecker delta 8; corresponds to a 3 x 3 array with 1s on the diagonal and
Os off the diagonal.

Proof of Lemma 10.4.2 Observe that

m’jﬁ’ = m;l,{uk =8u =u',
as required. O
Exercise 10.4.3 Show that m’j = l; ifand only if L € O(R?).

The new aspect of matters just revealed comes to the fore when we look for an analogue
of Example 9.1.3.

Lemma 10.4.4 If¢ : R® — R is smooth, then
d¢p d¢p 0¢
dxl’ 9x2’ 9x3

9 _ 0%

— =m; -,
ox! 0x/

transforms according to the rule

Proof By the chain rule
9 _ B9 ox) _ B9 it _ 09
dxi — dxd ¥ axd ax  axi K

as stated. O

_ ;99

=m; —
0x/
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We get round this difficulty by introducing a new kind of vector.” We call any row
a = (ay, az, a3) with three elements a covariant vector if it transforms according to
the rule

C_Ii = m{aj.
With this definition, Lemma 10.4.4 may be restated as follows.

Lemma 10.4.5 If ¢ : R® — R is smooth, then, if we write
d¢

U = axi’
U is a covariant vector.

To go much further than this would lead us too far afield, but the reader will proba-
bly observe that we now get three sorts of tensors of order 2, R;;, S’] and T with the
transformation rules

p.. _ Jujv i __ i qvQu ALY R R ¥, 2173
Rij =1ll; Ry, S;=m,I;S;, TV =mmiT"".

Exercise 10.4.6 (i) Show that 8{ is second order tensor (in the sense of this section) but
dj is not.

(ii) Write down the appropriate transformation rules for the fourth order tensor a;‘j”.
(iii) Let a:‘j" = 8;‘3;?. Check that af‘j” is a fourth order tensor. Show that a;j'f is a second

order tensor but al{‘i" and al.”j” are not.

n

(iv) Write down the appropriate transformation rules for the fourth order tensor a;';,

Show that a{'jn is a second order tensor.

Exercise 10.4.6 indicates that our indexing convention for general tensors should run
as follows. ‘No index should appear more than twice. If an index appears twice it should
appear once as an upper and once as a lower suffix and we should then sum over that index.’

At this point the reader is entitled to say that ‘“This is all very pretty, but does it lead
anywhere?” So far as this book goes, all it does is to give a fleeting notion of covariance
and contravariance which pervade much of modern mathematics. (We get another glimpse
in Exercise 11.4.6.)

In a wider context, tensors have their roots in the study by Gauss and Riemann of surfaces
as ‘objects in themselves’ rather than ‘objects embedded in a larger space’. Ricci-Curbastro
and his pupil Levi-Civita developed what they called ‘absolute differential calculus’ and
would now be called ‘tensor calculus’, but it was not until Einstein discovered that tensor
calculus provided the correct language for the development of General Relativity that the
importance of these ideas was generally understood.

2 ‘When I use a word,” Humpty Dumpty said in a rather scornful tone, ‘it means just what I choose it to mean — neither more
nor less.’
“The question is,” said Alice, ‘whether you can make words mean so many different things.’
“The question is,’” said Humpty Dumpty, ‘who is to be Master — that’s all.”
(Lewis Carroll Through the Looking Glass, and What Alice Found There [9])



10.5 Further exercises 247

Later, when people looked to see whether the same ideas could be useful in classical
physics, they discovered that this was indeed the case, but it was often more appropriate to
use what we now call Cartesian tensors.

10.5 Further exercises
Exercise 10.5.1 Suppose that E(x, #) and B(x, ) satisfy Maxwell’s equations in vacuum

V-D=0, V-B=0,

oB oD
VXE=——, VxH=—,
ot Jt
D= EOE, B= /,L()H.
Show that
32E; 32E; 32B; 3% B;
—c? =0 and —c2—— =0,

ij an ot? 8)6‘]‘ Bx_,- o2

where ¢ = (eouto)~". Show, by substitution, that the equations of the first paragraph are
satisfied by

E =ecos(wt —k-x+¢) and B =bcos(wt —k-x+ ¢)
where ¢, k and e are freely chosen constants and w and b are to be determined.’
Exercise 10.5.2 Consider Maxwell’s equations for a uniform conducting medium

V.-D=p, V-B=0,
V xE VxH=j+ oD
X = -, X = -,
a1 7%
D =¢E, B=uH, j=o0oE.
(Here €, u, o > 0.) Show that the charge p decays exponentially to zero at all points
(more precisely p(x, 1) = e *' p(x, 0) for some x > 0 to be found).

[In order to go further, we would need to introduce the ideas of boundaries and boundary
conditions.]

Exercise 10.5.3 Lorentz showed that a charged particle of mass m and charge ¢ moving
in an electromagnetic field experiences a force

F=gE+¥xB),

where r is the position vector of the particle, E is the electric field and B is the magnetic
field. In this exercise we shall assume that E and B are constant in space and time and that
they are non-zero.

3 “The precise formulation of the time-space laws was the work of Maxwell. Imagine his feelings when the differential equations
he had formulated proved to him that electromagnetic fields spread in the form of polarised waves and with the speed of light!
To few men in the world has such an experience been vouchsafed.” (Einstein writing in the journal Science [16]. The article is
on the web.)
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Suppose that E - B = (. By taking an appropriate set of orthogonal coordinates, writing
the equations of motion for these coordinates and solving the resulting differential equations
(you will get one simple equation and a pair of simultaneous equations), show that the
motion of the particle consists, in general, of circular movement in a plane perpendicular to
B about a centre which moves with constant velocity u + v, where u is a multiple of E x B
depending on the initial conditions and v is a multiple of B with ||v|| = ||E||/||B]|. What is
the period of the circular motion?

Someone tells you that the result above cannot be right because, as the magnetic field
gets smaller, the speed of the centre of the circular motion gets larger. (If we keep E fixed,
IE||/IB]] = oo as ||B|| — 0.) Answer your interlocutor’s doubts.

If we remove the condition E - B = 0, show that the motion is similar, but now the
particle experiences a constant acceleration in the direction of B.

Exercise 10.5.4 (i) If 7;; is an antisymmetric Cartesian tensor of order 2, show that we can
find vectors v; and u; such that T;; = u;v; — u;v;. Are the vectors u; and v; unique? Give
reasons.

(ii) Show that it is not always possible, given U;;, a symmetric Cartesian tensor of order
2, to find vectors 7; and s; such that U;; = r;s; + r;s;.

Exercise 10.5.5 Let v; be a non-zero vector. By finding a, b, ¢; and d;; explicitly, show
that any symmetric Cartesian tensor #;; of order 2 can be written uniquely as

ljj = a8,-j +bl}il}j + (Cil)j + CjU,‘) +d,'j,

where a and b are scalars, ¢; is a vector and d;; is a symmetric Cartesian tensor of order 2
such that

Civ; = 0, d,‘,‘ = 0, d,‘jl}j =0.

Exercise 10.5.6 The relation between the stress o;; and strain e;; for an isotropic medium
is

0ij = hewdij + 2ue;;.

Use the fact that ¢;; is symmetric to show that o;; is symmetric. Show that the two tensors
o;;j and e;; have the same principal axes.

Show that the stored elastic energy density E = %O’i je;j is non-negative for all ¢;; if and
onlyif 4 > Oand A > —%p,.

Ifx # —%M, show that

eij = pdij +dij,

where p is a scalar and d;; is a traceless tensor (that is to say d;; = 0) both to be determined
explicitly in terms of ¢;;. Find o;; in terms of p and d;;.

Exercise 10.5.7 A homogeneous, but anisotropic, crystal has the conductivity tensor

oij = abij +yninj,
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where « and y are real constants and n is a fixed unit vector. The electric current J is given
by the equation

Ji =0 Ej,
where E is the electric field.
(1) Show that there is a plane passing through the origin such that, if E lies in the plane,

then J = LE for some A to be specified.
(1) If ¢ # 0 and @ # —y, show that

E#0=J]#0.
(iii) If D;; = €;jkny, find the value of y which gives 6;; D jx Dy = —0jp.

Exercise 10.5.8 (In parts (i) to (iii) of this question you may use the results of Theo-
rem 10.1.1, but should make no reference to formulae like % in Exercise 10.1.2.) Suppose
that 7}y, is an isotropic Cartesian tensor of order 4.

(i) Show that €% T;jkm = 0.

(ii) Show that 6;; T jxm = S, for some scalar o.

(iii) Show that €;;,, T jkm = Bé€xmu for some scalar S.

Verify these results in the case T;jx, = Ad;;j0km + 1U8ikS jm + v8imd i, finding o and B
in terms of A, i and v.

Exercise 10.5.9 [The most general isotropic Cartesian tensor of order 4] In this
question A, B, C, D € {1,2,3,4} and we do not apply the summation convention to
them.

Suppose that a;y,, is an isotropic Cartesian tensor.

(i) By considering the rotation associated with

1 0 O
L=10 0 1],
0 -1 0

or otherwise, show that aspcp = 0 unless A = B = C = D or two pairs of indices are
equal (for example, A = C, B = D). Show also that a2, = ax»;.
(i1) Suppose that

L=

=)
[

0
1
0

Show algebraically that L € SO(R?). Identif
using the relation

the associated rotation geometrically. By

<

Aijkm = lirljsliemursiu
and symmetry among the indices, show that
AAAAA =K, AaABB = A, dABAB =M, QABBA =V
forall A, B € {1, 2, 3,4} with A # B and some real k, A, u, v.
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(iii) Deduce that
ijkm = A8ijSkm + Woikdjm + VOimSjk + (kK — A — b — V)Vjjkm,

where vapcp = 1if A= B = C = D and v4pcp = 0 otherwise.
(iv) Explain why (¢ — A — pt — v)v;jx, must be a tensor of order 4 and

(K — A — [ — V)V jkmXi X j X Xy
must be a scalar. Show that
VijkmXiX j Xk Xm = xf + xg‘ + Jé + )cg1
is not invariant under rotation of axes and so cannot be a scalar. Conclude that
Kk—A—u—v=20
and
Qijim = A8ijOpm + WOikSjm + Vim0 jk.

Exercise 10.5.10 Use the fact that the most general isotropic tensor of order 4 takes the
form

@ijkm = ASijOkm + Wik jm + V8imdjk

b / i ! av
ijkm = xXixj——— | = ,
ik r<a ! ]Bxkaxm r

where X is the position vector and r = ||x||.

to evaluate

Exercise 10.5.11 (This exercise presents an alternative proof of the ‘master identity’ of
Theorem 9.4.2 (iii).)

Show that, if a Cartesian tensor T;ji.s, of order 6 is isotropic and has the symmetry
properties

Tijkrst = Tkijrst = L jikrsts

then T, is a scalar multiple of €; €.
Deduce that

€ijk€rst = 8ir8jsOks + 818 jrOks + 8is810kr — 8irOks8jr — 8irOkr8js — 8isOpsr.

Exercise 10.5.12 Show that €;;;4;,, is an isotropic tensor. Show that €;;;8;,, € x10;,n and
€x1i8 jm are linearly independent.
Now admire the equation

€ijkOim — €jkibim + €xibjm — €1ijOkm =0

and prove it by using ideas from the previous question, or otherwise.
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[Clearly this is about as far as we can get without some new ideas. Such ideas do exist (the
magic word is syzygy) but they are beyond the scope of this book and the competence of
its author.]

Exercise 10.5.13 Consider two particles of mass m, at x, [@ = 1, 2] subject to forces
F, = —F, = f(x; — x,). Show directly that their centre of mass X has constant velocity. If
we write § = X; — Xp, show that

X; =X+ XS and Xp; =X+ AsS,
where A; and A, are to be determined. Show that

us = f(s),

where wu is to be determined.

(1) Suppose that f(s) = —ks. If the particles are initially at rest at distance d apart,
calculate how long it takes before they collide.

(ii) Suppose that f(s) = —k||s|~s. If the particles are initially at rest at distance d apart,
calculate how long it takes before they collide.
[Hint: Recall that dv/dt = (dx/dt)(dv/dx).]

Exercise 10.5.14 We consider the system of particles and forces described in the first para-
graph of Section 10.2. Recall that we define the total momentum and angular momentum
for a given origin O by

P:E meX, and L=E MaXy X Xg.
o o

If we choose a new origin O’ so that particle « is at X, = X, — b, show that the new
total momentum and angular momentum satisfy

P=P, L'=L-bxP

Compute L’ - P and L’ x P’ in terms of P and L.
Show that, if P # 0, we can choose b in a manner to be specified so that L' = AP’ for
some A > 0.

Exercise 10.5.15 [Conservation of energy] We consider the system of particles and forces
described in the first paragraph of Section 10.2. Suppose that there are no external forces,
that is to say, F, = 0 for all «, and that the internal forces are derived from a potential
@u,p = $p.«, that is to say,

A¢bs,
Fui = —ﬂ% axaf (1% — x41)).-

Show that, if we write

U=>" ¢up(lxa — x4l

a>f
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(so we might consider U as the total potential energy of the system) and
1
T=Y —myl%]>
; > MallXe|

(so T corresponds to kinetic energy), then 7' + U = 0. Deduce that T + U does not change
with time.

Exercise 10.5.16 Consider the system of the previous question, but now specify
Pap(X) = —Gmamp]|x|| ™!

(so we are describing motion under gravity). If we take

1
J=3 Xajmanxau%

show that

@ =2T+U
dr2 '
Hence show that, if the total energy 7 + U > 0, then the system must be unbounded both

in the future and in the past.

Exercise 10.5.17 Consider a uniform solid sphere of mass M and radius a with centre
the origin. Explain why its inertia tensor /;; satisfies the equation I;; = K §;; for some K
depending on @ and M and, by computing [;;, show that, in fact,
3.2
I,'j = gMa (Sij'

(If you are interested, you can compute I directly. This is not hard, but I hope you will
agree that the method of the question is easier.)

If the centre of the sphere is moved to (b, 0, 0), find the new inertia tensor (relative to
the origin).

What are eigenvectors and eigenvalues of the new inertia tensor?

Exercise 10.5.18 It is clear that an important question to ask about a symmetric tensor a;;
of order 2 is whether all its eigenvalues are strictly positive.
(i) Consider the cubic

Ft)=1> —byt> + byt — by

with the b; real and strictly positive. Show that the real roots of f must be strictly positive.

(ii) By looking at g(¢) = (t — A;)(t — X2)(t — A3), or otherwise, show that the real num-
bers Ay, Ay, Az are strictly positive if and only if A; + Ay + A3 > 0, A 142 + Axh3 + A3A; >0
and A AxA3 > 0.
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(iii) Show that the eigenvalues of g;; are strictly positive if and only if

arr >0,
Aprlss — ArsQrs > O’

arrassatl - 3ar.\'arsazt + Zal‘Sanalr > O‘

Exercise 10.5.19 A Cartesian tensor is said to have cubic symmetry if its components are
unchanged by rotations through /2 about each of the three coordinate axes. What is the
most general tensor of order 2 having cubic symmetry? Give reasons.

Consider a cube of uniform density and side 2a with centre at the origin with sides
aligned parallel to the coordinate axes. Find its inertia tensor.

If we now move a vertex to the origin, keeping the sides aligned parallel to the coordinate
axes, find the new inertia tensor. You should use a coordinate system (to be specified) in
which the associated array is a diagonal matrix.

Exercise 10.5.20 A rigid thin plate D has density p(x) per unit area so that its inertia tensor
is

M[j :/(xkxké,-j —Xixj)pdS.
D

Show that one eigenvector is perpendicular to the plate and write down an integral expression
for the corresponding eigenvalue A.

If the other two eigenvalues are ¢ and v, show that A = u + v.

Find A, v and v for a circular disc of uniform density, of radius a and mass m having its
centre at the origin.

Exercise 10.5.21 Show that the total kinetic energy of a rigid body with inertia tensor /;;
spinning about an axis through the origin with angular velocity w; is %a)i Lijw;. If |®| is
fixed, how would you minimise the kinetic energy?

Exercise 10.5.22 It may be helpful to look at Exercise 3.6.5 to put the next two exercises
in context.
(i) Let I" be the set of all 2 x 2 matrices of the form A = a9l + a1 K with a, € R and

0 ()

Show that I' is a vector space over R and find its dimension.

Show that K? = —I. Deduce that T is closed under multiplication (that is to say,
A, Bel'=> ABel).

(i1) Let 2 be the set of all 2 x 2 matrices of the form A = agl + a;J + a, K + a3 L with
a, € R and

10 i 0 0 1 0 i
I A () B ) A )

where, as usual, i is a square root of —1.
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Show that €2 is a vector space over R and find its dimension.
Show that JK L = —I and prove that 2 is closed under multiplication (that is to say,
A, Be Q2= AB € Q).

Exercise 10.5.23 For many years, Hamilton tried to find a generalisation of the complex
numbers ay + ai. Whilst walking along the Royal Canal near Maynooth he had a flash of
inspiration and carved

ijk=—1

in the stone of the nearest bridge.*
His idea was to consider the system Q of ‘numbers’ of the form

a=ay+ai+aj+ak

manipulated following the ‘standard rules of algebra’> and the rule i> = j? = k? = ijk =
—1. Explain why Exercise 10.5.22 (ii) shows that such a system exists. (Hamilton used a
geometric argument.)

(i) Use the rules just given to show that

ij=—ji=k, jk=-kj=i, ki=—ik=].
(ii) Let us write
(ap + ayi + azj + azk)" = a9 — ayi —ayj — azk
and
llap + aii + axj + ask|| = (aé + al2 + a% + a32)'/2.
Show that
aa* = ||a|l’
and deduce that, if a # 0, there exists a b such that
ab=Dba=1.

(iii) Show, in as much detail as you consider appropriate, that (Q, 4, x) satisfies the
same laws of arithmetic as R except that multiplication does not commute.’

(iv) Hamilton called the elements of Q quaternions. Show that, if @ and b are quaternions,
then

llabll = llalllibll.

4 The equation has disappeared, but the Maynooth Mathematics Department celebrates the discovery with an annual picnic at the
site. The farmer on whose land they picnic views the occasion with bemused benevolence.

5 If the reader objects to this formulation, she is free to translate back into the language of Exercise 10.5.22 (ii).

6 That s to say, Q satisfies all the conditions of Definition 13.2.1 (supplemented by 1 x a = a in (vii) and a~! x a = 1 in (viii))
except for (v) which fails in certain cases.
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Deduce the following result of Euler concerning integers. If A = a3 + a} + a3 + a3 and
B = b(z) + bf + b% + b% with a;, b; € Z, then there exist c; € Z such that

AB=cl+c +ci+cs

In other words, the product of two sums of four squares is itself the sum of four squares.
(v)Leta = (a1, az, a3) € R*and b = (by, by, b3) € R?.If ¢ = a x b, the vector product
of a and b, and we write ¢ = (cy, ¢2, ¢3), show that

(a1i +arj + azk)(b1i +byj +bsk) = —a-b+cii +caj + c3k.

The use of vectors in physics began when (to cries of anguish from holders of the pure
quaternionic faith) Maxwell, Gibbs and Heaviside extracted the vector part ayi + aj +
azk from the quaternion ag + aji + a>j + azk and observed that the vector part had an
associated inner product and vector product.’

7 Quaternions still have their particular uses. A friend of mine made a (small) fortune by applying them to lighting effects in
computer games.
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Spaces of linear maps

11.1 Alook at L(U, V)

In the first part of this book we looked at n-dimensional vector spaces as generalisations of
two and three dimensional spaces. In this part we look at n-dimensional vector spaces with
an eye to generalisation to infinite dimensional spaces.

We looked mainly at linear maps of a vector space into itself (the so-called endomor-
phisms). For various reasons, some of which we consider in the next section, these are often
the most interesting, but it is worth looking at the more general case.

Let us start with the case when U and V are finite dimensional. We begin by generalising
Definition 6.1.1.

Definition 11.1.1 Let U and V be vector spaces over I with bases ey, e,, ..., e, and f},
f,, ..., 8. Ifa : U — V is linear, we say that « has matrix A = (aij)}fff,: with respect to
the given bases if

m

ale)) =Y aifi.
i=1
The next few exercises are essentially revision.

Exercise 11.1.2 Let U and V be vector spaces over F with bases ey, ,, . . ., e, and fy, 5,

oo, By Show that, if a, B : U — V are linear and have matrices A and B with respect to
the given bases, then o + B has matrix A + B and, if . € F, Aa has matrix LA.

Exercise 11.1.3 Let U, V and W be vector spaces over F with bases ey, €,, . . ., e,, {1, 5,
oo byandg, g, ..., 8, Ifa:V — Wand B : U — V are linear and have matrices A
and B with respect to the appropriate bases, show that af has matrix A B with respect to
the appropriate bases.

Exercise 11.1.4 (i) Let U, V and W be (not necessarily finite dimensional) vector spaces
overFandleta, B € L(U,V), y € LW, V). Show that

(@ + By =ay + By.

259



260 Spaces of linear maps

(ii) Use (i) to show that, if A and B are m x n matrices over F and C is ann X p matrix
over IF, we have

(A+ B)C = AC + BC.

(iii) Show that (i) follows from (ii) if U, V and W are finite dimensional.
(iv) State the results corresponding to (i) and (ii) when we replace the equation in (i) by

v+ p)=ya+yp.
(Be careful to make y a linear map between correct vector spaces.)
We need a more general change of basis formula.

Exercise 11.1.5 Let U and V be finite dimensional vector spaces over F and suppose that

o € L(U, V) has matrix A with respect to bases ey, €, ..., e, for U andf, £, ..., £, for
V. If a has matrix B with respect to bases €}, €, . .., €, for U andft|, £, ... £ forV, then
B =P 'AQ,

where P is an m X m invertible matrix and Q is an n x n invertible matrix.
Ifwe write P = (p;j) and Q = (qys), then

=Y pyfi [1<j<ml
i=1
and
e:— = ZQrser [l <s <n].
r=1

Lemma 11.1.6 Let U and V be finite dimensional vector spaces over F and suppose
that o € L(U, V). Then we can find bases ey, €, ..., e, for U and f\, £5, ..., £, for V
with respect to which a has matrix C = (c;;) such that ¢;; =1 for 1 <i <r andc;; =0
otherwise (for some 0 < r < min{n, m}).

Proof By Lemma 5.5.7, we can find bases e, e, ..., e, for U and f}, f,, ..., f, for V
such that

fi forl<j=<r
a(e;) = .
0 otherwise.
If we use these bases, then the matrix has the required form. O

The change of basis formula has the following corollary.

Lemma 11.1.7 If A is an m x n matrix we can find an m x m invertible matrix P and an
n X n invertible matrix Q such that

P'AQ =C,
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where C = (c;j), such that c;; =1 for 1 <i <r and c;j = 0 otherwise for some 0 < r <
min(m, n).
Proof Left to the reader. U

A particularly interesting case occurs when we consider a linear map « : U — U, but
give U two different bases.

Lemma 11.1.8 (i) Let U be a finite dimensional vector space over F and suppose that
a € LU, U). Then we can find bases ey, e, ..., e, and £}, £, ..., £, for U with respect
to which a has matrix C = (c;j) with ¢;; = 1 for 1 <i < r and c;; = 0 otherwise for some
0<r<n.

(@) If A is an n X n matrix we can find n X n invertible matrices P and Q such that

PlAQ=C
where C = (c;;) is such that ¢;; = 1 for 1 <i <r and c;; = 0 otherwise for some 0 < r <
n.
Proof Immediate. ([l

The reader should compare this result with Theorem 1.3.2 and may like to look at
Exercise 3.6.8.

Exercise 11.1.9 The object of this exercise is to look at one of the main themes of this book
in a unified manner. The reader will need to recall the notions of equivalence relation and
equivalence class (see Exercise 6.8.34) and the notion of a subgroup (see Definition 5.3.15).
We work with matrices over F.

(i) Let G be a subgroup of G L(IF"), the group of n x n invertible matrices, and let X be
a non-empty collection of n X m matrices such that

PeG, AeX= PAecX.

Ifwe write A ~| B whenever A, B € X and there existsa P € G with B = P A, show that
~ is an equivalence relation on X.

(it) Let G be a subgroup of GL(F"), H a subgroup of GL(F™) and let X be a non-empty
collection of n x m matrices such that

PeG, QcH AcX=P'AQ e X.

Ifwewrite A ~, B whenever A, B € X and there exist P € G, Q € Hwith B = P’IAQ,
show that ~, is an equivalence relation on X.

(iii) Suppose that n = m, X is the set of n X n matrices and H = G = G L(F"). Show
that there are precisely n + 1 equivalence classes for ~.

(iv) Let G be a subgroup of GL(IF") and let X be a non-empty collection of n X n
matrices such that

PeG, AcX= P 'AP c X.
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If we write A ~3 B whenever A, B € X and there exists P € G with B = PAP™!, show
that ~3 is an equivalence relation on X.

(v) Suppose F = R, X isthe collection of real symmetricn X n matrices and G = O(F"),
the group of orthogonal n x n matrices. Show that there are infinitely many equivalence
classes for ~3 and give a criterion in terms of characteristic equations for two members of
X to be equivalent.

(vi) Let G be a subgroup of GL(R") and let X be a non-empty collection of n X n
matrices such that

PeG, AeX= PTAP e X.

If we write A ~4 B whenever A, B € X and there exists P € G with B = PTAP, show
that ~4 is an equivalence relation on X.

(vii) Suppose that X is the collection of real symmetric n x n matrices and G = G L(R").
Show that there are only finitely many equivalence classes for ~4. (We shall identify them
precisely in Section 16.2.)

If we think along the lines of this exercise, the various ‘diagonalisation theorems’ and
‘Jordan normal form theorems’ (see, for example, our earlier Theorem 6.4.3 and the later
Section 12.4) in this book may be thought of as identifying typical elements of equivalence
classes for different equivalence relations.

Algebraists are very fond of quotienting. If the reader has met the notion of the quotient
of a group (or of a topological space or any similar object), she will find the rest of the
section rather easy. If she has not, then she may find the discussion rather strange.' She
should take comfort from the fact that, although a few of the exercises will involve quotients
of vector spaces, I will not make use of the concept outside them.

Definition 11.1.10 Let V be a vector space over F with a subspace W. We write
[x]={veV  :x—ve W}
We denote the set of such [X] withx e V by V/W.
Lemma 11.1.11 With the notation of Definition 11.1.10,
XI=[yl &x—-yeW.

Proof The reader who is happy with the notion of equivalence class will be able to construct
her own proof. If not, we give the proof that

xXl=[yl=>x—yeW.
If [x] = [y], then, since 0 € W, we have x € [x] = [y] and so

y—xeW.

! T would not choose quotients of vector spaces as a first exposure to quotients.
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Thus, using the fact that W is a subspace,
zelyl=y—-zeW=x—-z=FF—-2)—(y—x) e W=1zeclx]
Thus [y] € [x]. Similarly [x] C [y] and so [x] = [y].
The proof that
x—yeW=[x]=]Iyl
is left as a recommended exercise for the reader. ([

Theorem 11.1.12 Let V be a vector space over F with a subspace W. Then V /W can be
made into a vector space by adopting the definitions

xX]+[yl=[x+yl and X[x]=[rx].

Proof The key point to check is that the putative definitions do indeed make sense. Observe
that
X1=[xI, yl=xl=x —-x, y —ye W
S X+yY)-E+)=K -0+ -yew
= X +y1=[x+yl
so that our definition of addition is unambiguous. The proof that our definition of scalar
multiplication is unambiguous is left as a recommended exercise for the reader.
It is easy to check that the axioms for a vector space hold. The following verifications
are typical:
[x] +[0] =[x+ 0] = [x]
A+ wIx] = [(A + wx] = [Ax + ux] = A[X] + p[x].

We leave it to the reader to check as many further axioms as she pleases. U

If the reader has met quotients elsewhere in algebra, she will expect an ‘isomorphism
theorem’ and, indeed, there is such a theorem following the standard pattern. To bring out
the analogy we recall the following synonyms.” If & € L(U, V), we write

imoe =a(U)={ou : ue U},

kera =a '(0)={ueU : au=0)}.

Generalising an earlier definition, we say that im « is the image or image space of o and
that ker « is the kernel or null-space of «.
We also adopt the standard practice of writing

[X]=x+W and [0]=0+W=W.

2 If the reader objects to my practice, here and elsewhere, of using more than one name for the same thing, she should reflect that
all the names I use are standard and she will need to recognise them when they are used by other authors.
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This is a very suggestive notation, but the reader is warned that
0x+ W) =0[x] =[0x] =[0] = W.
Should she become confused by the new notation, she should revert to the old.

Theorem 11.1.13 [Vector space isomorphism theorem] Suppose that U and V are vector
spaces over F and o : U — V is linear. Then U/ Ker « is isomorphic to im .

Proof We know that ker « is a subspace of U. Further,
u; +kera =uw, +kera = u; —w e kera = a(u; —up) = 0 = a(uy) = a(uy).
Thus we may define & : U/ ker ¢ — im o unambiguously by
a(u + kero) = a(u).
We observe that

@(ri(uy + kera) + A (uy + kerar)) = @((A1uy + Aru) + kerar)
= a(Au; + Aowp) = Aja(uy) + Ara(uy)
= AMa@(a; + ker o) + A& (up + ker o)

and so @ is linear.
Since our spaces may be infinite dimensional, we must verify both that & is surjective
and that it is injective. Both verifications are easy. Since

a(u) = a@(u + kera),
it follows that @ is surjective. Since & is linear and
du+kere) =0=au=0=ueckerea = u+kera =0+ kerc,
it follows that & is injective. Thus & is an isomorphism and we are done. O
The dimension of a quotient space behaves as we would wish.
Lemma 11.1.14 [f'V is a finite dimensional space with a subspace W, then
dmV =dimW +dimV/W.

Proof Observe first that, if uj, up, ..., u,, span V, thenu; + W, up + W, ..., u, + W
span V/W. Thus V /W is finite dimensional.

Let e|, e, ..., e, form a basis for W and e;; + W, e,.0 + W, ..., e, + W form a
basis for V/W. We claim that e;, e,, ..., €, form a basis for V.

We start by showing that we have a spanning set. If v € V, then, since ey + W,
e+ W,...,e,+ Wspan V/W, we can find Agyq, Ag42, ..., Ay € F such that

n n
VEW =D ae W= Y ae |+ W
j=k+1 j=k+1
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We now have

vV — i AjejeW,

j=k+1
sowe can find Ay, A2, ..., Ax € F such that
n k
vV — Z Ajej=ZAjej
j=k+1 j=1

and so
n
V= E )»jej.
j=1

Thus we have a spanning set.
Next we want to show linear independence. To this end, suppose that Ay, Ay, ..., A, € F
and

i)\,je]‘ =0.
j=1

Since Zl;:l rieje W,

Yo +Wy =D re | +W=0+W,
j=k+1 j=1

so, since €41 + W, er0 + W, ..., e, + W, are linearly independent, A; = 0 fork 4+ 1 <
J < n. We now have

k
Z )Ljej =0
j=1

andsoA; =0forl < j <k.Thusi; =0forall 1 < j <n and we are done.
We now know that

dmW +dimV/W =k+(n—k)=n=dimV
as required. ([

Exercise 11.1.15 Use Theorem 11.1.13 and Lemma 11.1.14 to obtain another proof of the
rank-nullity theorem (Theorem 5.5.4).

The reader should not be surprised by the many different contexts in which we meet
the rank-nullity theorem. If you walk round the countryside, you will see many views of
the highest hills. Our original proof and Exercise 11.1.15 show two different aspects of the
same theorem.



266 Spaces of linear maps

Exercise 11.1.16 Suppose that we have a sequence of finite dimensional vector spaces C;
with Cy11 = Cy = {0} and linear maps oj : C; — Cj_ as shown in the next line

Co1 B C, B C B ™ .. 802 ¢
such that aj_1o; =0 [n > j > 2]. Let Z; =ot]71(0), Bi_i = «a;(C;), and take H; =
Bj/Z;[n > j > 1]. Show that

Z(—l)f dimC; = — Z(—l)j dim H;.

j=1 j=1

11.2 Alook at L(U, U)

In the next few chapters we study the special spaces L(U, U) and L(U, F). (Recall that
elements of L(U, U) are often called endomorphisms. Invertible endomorphisms are called
automorphisms. Although we use the notation £(U, U), many authors use the notation
E(U) for the vector space of endomorphisms.) The reader may ask why we do not simply
study the more general space L(U, V) where U and V are any vector spaces and then
specialise by setting V = U or V =F.

The special treatment of L£(U, U) is easy to justify. If o, 8 € L(U, U), then af €
L(U, U). We get an algebraic structure which is much more intricate than that of L(U, V)
in general. The next exercise is included for the reader’s amusement.

Exercise 11.2.1 Explain why P, the collection of real polynomials, can be made into a
vector space over R by using the standard pointwise addition and scalar multiplication.
(i) Let h € R. Check that the following maps belong to L(P, P):

D given by (DP)(t) = P'(1),
M given by (M P)(t) =t P(t),
Ej, given by E, P = P(t + h).
(ii) Identify the map DM — M D.
(iii) Suppose that oy, oy, ay, . . . are elements of L(P, P) with the property that, for each
P € P, we can find an N(P) such that aj(P) = 0 for all j > N(P). Show that, if we set

N(P)

o0
D=3 aP,
j=0 j=0

then Z?io o; is a well defined element of L(P, P).

(iv) Show that the sequence aj = D’ has the property stated in the first sentence
of (iii). Does the sequence o; = M’ ? Does the sequence a; = E’? Does the sequence
aj = E, —1? Give reasons.
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(v) Suppose that a € L(P, P) has the property that, for each P € P, we can find an
N(P) such that o/ (P) = 0 for all j > N(P). Show that we can define

=1
expa = Z —a’
— j!
j_
and
=1
log(t — ) = Z —a’.

=

Explain why we can define log(exp ). By considering coefficients in standard power series,
or otherwise, show that log(exp o) = «.
(vi) Show that

exphD = Ej.
Deduce from (v) that, writing A, = Ej — t, we have
. .
(D
hD = Z —— A
Jj=1 J
(vii) Let A € R. Show that
o0
(- AD)ZA’D"P =P
j=0
for each P € P and deduce that
[o¢] [o¢]
(- AD)ZA’D’ == ZA’D’(L —AD).
j=0 j=0
Solve the equation
t—AD)P =Q

with P and Q polynomials.
Find a solution to the ordinary differential equation

) — fx) = x>

We are taught that the solution of such an equation must have an arbitrary constant. The
method given here does not produce one. What has happened to it?*

[The ideas set out in this exercise go back to Boole in his books A Treatise on Differential
Equations [5] and A Treatise on the Calculus of Finite Differences [6].]

3 Of course, a really clear thinking mathematician would not be a puzzled for an instant. If you are not puzzled for an instant, try
to imagine why someone else might be puzzled and how you would explain things to them.
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As we remarked earlier, mathematicians are very interested in iteration and, if o €
L(U, U), we can iterate the action of « on U (in other words, apply powers of «). The
following result is interesting in itself and provides the opportunity to revisit the rank-nullity
theorem (Theorem 5.5.4). The reader should make sure that she can state and prove the
rank-nullity theorem before proceeding.

Theorem 11.2.2 Suppose that U is a finite vector space of dimension n over F. Then there
exists an m < n such that

rank o = rank o™
for k > m and rank o* > rank o for 0 < k < m. If m > 0 we have
n > ranka > ranko? > ... > rank o™
Further

m—1

n —rank @ > rank @ — rank o® > ... >ranko —rank ™.

Proof Automatically U D aU, so applying a/ to both sides of the inclusion we get /U 2
a/t1U for all j > 0. (This result will be used repeatedly in our proof.) By the observation
in our first sentence,

ranke’/ = dime/U > dima/*'U = rank /!
and
n > ranka > ranko? > ...

A strictly decreasing sequence of positive integers whose first element is n cannot contain
more than 7 + 1 terms, so there must exist a 0 < k < n with rank o = rank @**!. Let m
be the least such k.

Since " U 2 «"*!U and
dima™U = rank " = rank "' = dimo” "' U,

we have o"U = a™t'U. Applying o/ to both sides of the equality, we get "+ U =
o TIF1Y for all j > 0. Thus rank o = rank o™ for all k > m.

Applying the rank-nullity theorem to the restriction a|qiy : @/U — a/U of o to &/ U,
we get

rank o/ = dima’/U = rank «|y;y + nullity o]/
=dima/U +dim N, = ranka/™ +dim N4,
where
Niji={uedU:au=0}=a/Una(0).
Thus

rank o/ — rank o/ ™' = dim N ;.
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Since &/ U 2 a/*'U, it follows that N; 2 N, and dim N; > dim N;; for all j. Thus

rank o’ — rank /™' = dim N;;; > dim N; 5 = rank /™' — rank &/ 2.

We give a further development of these ideas in Exercise 12.1.7.

Exercise 11.2.3 Suppose that U is a vector space over F of dimension n. Use Theo-
rem 11.2.2 to show that, if a is a nilpotent endomorphism (that is to say, o™ = 0 for some
m), then a™ = Q.

Prove that, if « has rank r and o™ = 0, then r < n(1 — m~).

Exercise 11.2.4 Show that, given any sequence of integers
n=sy>85>8>...>5,>0
satisfying the condition
SO0— 81 =81 — 8 >85—853>...>8S-1—5, >0
and a vector space U over F of dimension n, we can find a linear map o : U — U such that

rank o/ = ;o #0=j=m
Sm  otherwise.

[We look at the matter in a slightly different way in Exercise 12.5.2.]

Exercise 11.2.5 Suppose that V is a vector space over F of even dimension 2n. If o €
LU, U) has rank 2n — 2 and o = 0, what can you say about the rank of o* for2 <k <
n — 12 Give reasons for your answer.

11.3 Duals (almost) without using bases

For the rest of this chapter we look at the dual space of U, that is to say, at U’ = L(U, ).
The elements of U’ are called functionals or linear functionals. So long as we only look
at finite dimensional spaces, it is not easy to justify paying particular attention to linear
functionals, but many important mathematical objects are linear functionals for infinite
dimensional spaces.

Exercise 11.3.1 Let C*(R) be the space of infinitely differentiable functions f : R — R.
Show that C®°(R) is a vector space over R under pointwise addition and scalar
multiplication.

Show that the following definitions give linear functionals for C*°(R). Here a € R.

(D) éaf = fla)

(ii) 8, f = — f'(a). (The minus sign is introduced for consistency with more advanced
work on the topic of ‘distributions’.)

(i) Jf = [ f(x)dx.
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Because of the connection with infinite dimensional spaces, we try to develop as much
of the theory of dual spaces as possible without using bases, but we hit a snag right at the
beginning of the topic.

Definition 11.3.2 (This is a non-standard definition and is not used by other authors.) We
shall say that a vector space U over I is separated by its dual if, given u € U withu # 0,
we can find a T € U’ such that Tu # 0.

Given any particular vector space, it is always easy to show that it is separated by its
dual.* However, when we try to prove that every vector space is separated by its dual, we
discover (and the reader is welcome to try for herself) that the axioms for a general vector
space do not provide enough information to enable us to construct an appropriate T using
the rules of reasoning appropriate to an elementary course.’

If we have a basis, everything becomes easy.

Lemma 11.3.3 Every finite dimensional space is separated by its dual.

Proof Suppose that u € U and u # 0. Since U is finite dimensional and u is non-zero, we
can find abasise; = u, e,, ..., e, for U. If we set

n
T ijej =X [x; € F],
j=1

then T is a well defined function from U to IF. Further, if x;, y;, A, u € I, then

n n n
T A ijej +u ijej =T Z(ij+uyj)ej
j=1 j=1 j=1
= AX| + uy;
n n
= AT ijej +/LT Zyjej s
j=1 j=1
so T islinear and T € U’. Since Tu = Te; = 1 # 0, we are done. O

From now on until the end of the section, we will see what can be done without bases,
assuming that our spaces are separated by their duals. We shall write a generic element of
U as u and a generic element of U’ as u'.

We begin by proving a result linking a vector space with the dual of its dual.

Lemma 11.3.4 Let U be a vector space over F separated by its dual. Then the map
® : U — U’ given by

(Ouwu’ =u'(u)

4 This statement does leave open exactly what I mean by “particular’.
3> More specifically, we require some form of the so-called axiom of choice.
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forallu € U and W € U’ is an injective linear map.

Remark. Suppose that we wish to find amap ® : U — U". Since a function is defined by
its effect, we need to know the value of ®u for all u € U. Now ®u € U”, so Ou is itself
a function on U’. Since a function is defined by its effect, we need to know the value of
(Ou)u’ for all u’ € U’. We observe that (Bu)u’ depends on u and u’. The simplest way of
combining u and u’ is w’(u), so we try the definition (Bu)u’ = u'(u). Either it will produce
something interesting, or it will not, and the simplest way forward is just to see what
happens.

Proof of Lemma 11.3.4 We first need to show that ®u : U’ — T is linear. To this end,
observe that, if uj, w, € U’' and A, A, € F, then

Ou(dju| + 2uy) = (Au] + Au))u (by definition)
= Au)(u) + Au)y(w) (by definition)
= A1 Ou(u)) + 1, Ou(u)) (by definition)

soOu e U”.

Now we need to show that ® : U — U” is linear. In other words, we need to show that,
wheneveru;, u, € U and A, A, € T,

O(Au; + Aup) = A Ou; + A, 0u;.
The two sides of the equation lie in U” and so are functions. In order to show that two
functions are equal, we need to show that they have the same effect. Thus we need to show
that

(@()»1111 + )»2112))11/ = ()\1@111 + )»2@112)11,

for allu’ € U’. Since

(O + Am))u’ = u'(huy + Aouy) (by definition)
=M u'(w) + Aou'(uy) (by linearity)
= A O@)u’ + 1,0 (u)u’ (by definition)
= (11Ou; 4 1, 0u)u’ (by definition)

the required result is indeed true and © is linear.
Finally, we need to show that ® is injective. Since ® is linear, it suffices (as we observed
in Exercise 5.3.11) to show that

Ouw)=0=u=0.
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In order to prove the implication, we observe that the two sides of the initial equation lie in
U" and two functions are equal if they have the same effect. Thus

O) =0= Ou' =0u’ forallu’ € U’
=uw =0 forallu eU’
=su=0

as required. In order to prove the last implication we needed the fact that U’ separates U.
This is the only point at which that hypothesis was used. U

In Euclid’s development of geometry there occurs a theorem® that generations of school-
masters called the ‘Pons Asinorum’ (Bridge of Asses) partly because it is illustrated by a
diagram that looks like a bridge, but mainly because the weaker students tended to get stuck
there. Lemma 11.3.4 is a Pons Asinorum for budding mathematicians. It deals, not simply
with functions, but with functions of functions, and represents a step up in abstraction. The
author can only suggest that the reader writes out the argument repeatedly until she sees
that it is merely a collection of trivial verifications and that the nature of the verifications is
dictated by the nature of the result to be proved.

Note that we have no reason to suppose, in general, that the map © is surjective.

Our next lemma is another result of the same ‘function of a function’ nature as
Lemma 11.3.4. We shall refer to such proofs as ‘paper tigers’, since they are fearsome
in appearance, but easily folded away by any student prepared to face them with calm
resolve.

Lemma 11.3.5 Let U and V be vector spaces over IF.
@) Ifa € LU, V), we can define amap o' € L(V', U’) by the condition

o' (V)(m) = v (au).

(i) If we now define ® : L(U, V) — L(V',U’) by ®(«) = o/, then ® is linear.
(iii) If, in addition, V is separated by V', then ® is injective.

We call o’ the dual map of «.

Remark. Suppose that we wish to find amap o’ : V' — U’ corresponding to ¢ € L(U, V).
Since a function is defined by its effect, we need to know the value of &'V’ for all v € V',
Now o'V € U’, so o'V’ is itself a function on U. Since a function is defined by its effect,
we need to know the value of «'v/'(u) for all u € U. We observe that «'v'(u) depends on
a, v and u. The simplest way of combining these elements is as v'a(u), so we try the
definition «’(v')(w) = v/(au). Either it will produce something interesting, or it will not,
and the simplest way forward is just to see what happens.

The reader may ask why we do not #ry to produce an & : U’ — V' in the same way.
The answer is that she is welcome (indeed, strongly encouraged) to fry but, although
many people must have tried, no one has yet (to my knowledge) come up with anything
satisfactory.

6 The base angles of an isosceles triangle are equal.
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Proof of Lemma 11.3.5 By inspection, «’(v')(u) is well defined. We must show that o’ (V') :
U — T is linear. To do this, observe that, if u;, u, € U’ and A1, A, € F, then

o' (VY(Aug + ow) =V (a(klul + )\2112)) (by definition)
=V (A ou; + Aouy) (by linearity)
= AV (oup) + Aov (cuw) (by linearity)
= A’ (VIuy + A’ (Vuy (by definition).

We now know that o’ maps V' to U’. We want to show that o’ is linear. To this end,
observe that if v{, v, € V' and A, A, € F, then

o' (M V] + Aavo)u = (A V] + A5 (1) (by definition)
= L1V)(au) + Aov5(au) (by definition)
= Mo/ (V)u + A (Vy)u (by definition)
= (L' (V) + A0/ (v))u (by definition)

for all u € U. By the definition of equality for functions,
o' (M V) 4 Avh) = A (V) + A/ (Vh)

and «’ is linear as required.
(i1) We are now dealing with a function of a function of a function. In order to establish
that

O(Ajay + Araz) = A1 P(ay) + A P(a2)
when a1, o, € L(U, V) and A, A, € F, we must establish that
D(hiar + Aa)(V) = (A P(a1) + A P(a2)) (V)
for all v € V and, in order to establish this, we must show that

(Phar + Aaa)(V))u = ((A1P(ery) 4+ 2P (e2)) V)

forallu e U.
As usual, this just a question of following things through. Observe that

(@(har + A200)(V)) () = (Ao + Aa) (V) (w) (by definition)
=V ((hay + Aaaz)u) (by definition)
=V (Aoju 4 Aaou) (by linearity)
= MV (ou) + AoV (au) (by linearity)
= Ai(a)vV)u + Aa(ehv)Hu (by definition)
= (k HCASE: Az(aév’))u (by definition)
= (M1} + Aa03)(V))u (by definition)

= (M1 P(y) + 22P(2)) (V))u (by definition)

as required.
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(iii) Finally, if V' separates V, then

Pa)=0=ad'=0=a(¥V)=0 forallv eV’
=ad'WV)u=0 forallv e V'andallue U
= V(eu) =0 forallv e V'andallue U
=au=0 foralueU = o =0.

Thus & is injective O
We call o’ the dual map of «.

Exercise 11.3.6 Write down the reasons for each implication in the proof of part (iii) of
Lemma 11.3.5.

Here are a further couple of paper tigers.

Exercise 11.3.7 Suppose that U, V and W are vector spaces over F.

O Ifae LWU,V)yand B € L(V, W), show that (Ba) = o'B’.

(ii) Consider the identity map 1y : U — U. Show that 1}, : U' — U is the identity map
tyr : U — U'. (We shall follow standard practice by simply writing ' = 1.)

(i) If a € L(U, V) is invertible, show that o' is invertible and (a')™"' = (a~'Y.

Exercise 11.3.8 Suppose that V" is separated by V'. Show that, with the notation of the
two previous lemmas,

o’ (Gu) = au
forallu e U andax € L(U, V).

The remainder of this section is not meant to be taken very seriously. We show that, if
we deal with infinite dimensional spaces, the dual U’ of a space may be ‘very much bigger’
than the space U.

Exercise 11.3.9 Consider the space s of all sequences
a=(ay,a,...)

with a; € R. (In more sophisticated language, s = NR.) We know that, if we use pointwise
addition and scalar multiplication, so that

at+b=(a +bi,a+by,...) and ra= (Aay, ray,...),

then s is a vector space.
(i) Show that, if coo is the set of a with only finitely many a; non-zero, then cy is a
subspace of s.
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(ii) Let € be the sequence whose jth term is 1 and whose other terms are all 0. If T € cog
and Te; = aj, show that

o0
Tx = E a;x;
j=1

forall x € cy. (Note that, contrary to appearances, we are only looking at a sum of a finite
set of terms.)
(iii) If a € s, show that the rule

oo
Tax = E a;x;
j=l1

gives a well defined map T, : coo — R. Show that T, € cy,. Deduce that c(y, separates co.
(iv) Show that, using the notation of (iii), ifa, b € s and ) € R, then

Lav=Ta+Ty, ha=ATa and T,=0&a=0.
Conclude that ¢y, is isomorphic to s.

The space s = ¢, certainly looks much bigger than coo. To show that this is actually
the case we need ideas from the study of countability and, in particular, Cantor’s diagonal
argument. (The reader who has not met these topics should skip the next exercise.)

Exercise 11.3.10 (i) Show, if you have not already done so, that the vectors e; defined
in Exercise 11.3.9 (ii) span coo. In other words, show that any X € coy can be written as a
finite sum

N

x=) Aje; withN>0and);€R.

j=1
[Thus coo has a countable spanning set. In the rest of the question we show that s and so
¢y does not have a countable spanning set.]

(ii) Suppose that £, £5, . .., £, € s. [f m > 1, show that we can find b, byy11, bipsa, - - -,

bn+1 such that if a € s satisfies the condition a, = b, form <r <m + n + 1, then the
equation

i)\jfj =a
j=1

has no solution with ,; e R[1 < j < n].
(iii) Suppose that f; € s [j > 1]. Show that there exists an a € s such that the equation

n
Z )\jfj =a
j=1
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has no solution with .; € R[1 < j < n] for any n > 1. Deduce that cy, is not isomorphic
to cop-.

Exercises 11.3.9 and 11.3.10 suggest that the duals of infinite dimensional vector spaces
may be very large indeed. Most studies of infinite dimensional vector spaces assume the
existence of a distance given by a norm and deal with functionals which are continuous
with respect to that norm.

11.4 Duals using bases

If we restrict U to be finite dimensional, life becomes a lot simpler.

Lemma 11.4.1 (i) If U is a vector space over I with basis ey, e,, . . ., e,, then we can find
unique €, &, ..., &, € U’ satisfying the equations

é,-(ej) = 8,']' forl < l,] <n.

(ii) The vectors &y, €,, . .., &,, defined in (i) form a basis for U’.
(iii) The dual of a finite dimensional vector space is finite dimensional with the same
dimension as the initial space.

We call &, &;, ..., &, the dual basis corresponding to e;, €;, ..., €,.

Proof (i) Left to the reader. (Look at Lemma 11.3.3 if necessary.)
(ii) To show that the €; are linearly independent, observe that, if

Xn:)»jéj =0,
j=1

then

n n n
0= | 208 | =D Aeje) =D 2id =M
j=1 j=1 j=1

foreachl <k <n.
To show that the &; span, suppose that u’ € U’. Then

u — Zu’(ej)éj e =u'(ey) — ZU'(ej)(Sjk

j=1 j=1
=u'(e) —u'(e) =0
s0, using linearity,

n

u — Z (u'(e))e, Zxkek =0
k=1

j=1



11.4 Duals using bases 277

for all x; € IF. Thus

n

u—) (ue))é; | x=0

=1

~

for all x € U and so
n
u =) (u'(e)))e;.
Jj=1

We have shown that the &; span and thus we have a basis.
(iii) Follows at once from (ii). O

Exercise 11.4.2 Consider the vector space P, of real polynomials P

P(t)=Y ajt’
j=0

(where t € [a, b]) of degree at most n. If xq, x1, ..., X, are distinct points of [a, b] show
that, if we set

then ey, ey, ..., e, form a basis for P,. Evaluate &; P where P € P,.
We can now strengthen Lemma 11.3.4 in the finite dimensional case.

Theorem 11.4.3 Let U be a finite dimensional vector space over F. Then the map © :
U — U" given by

(Ou)u’ = u'(u)
forallu € U and ' € U’ is an isomorphism.

Proof Lemmas 11.3.4 and 11.3.3 tell us that ® is an injective linear map. Lemma 11.4.1
tells us that

dimU =dimU’ = dimU”

and we know (for example, by the rank-nullity theorem) that an injective linear map between
spaces of the same dimension is surjective, so bijective and so an isomorphism. O

The reader may mutter under her breath that we have not proved anything special, since
all vector spaces of the same dimension are isomorphic. However, the isomorphism given
by @ in Theorem 11.4.3 is a natural isomorphism in the sense that we do not have to
make any arbitrary choices to specify it. The isomorphism of two general vector spaces of
dimension n depends on choosing a basis and different choices of bases produce different
isomorphisms.
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Because of the natural isomorphism we usually identify U” with U by writing u = ©(u).
With this convention,

u(u’) = u'(u)
forallu € U, u’ € U’. We then have
U=U"=U"=... and U =U"=....

Exercise 11.4.4 Let U be a vector space over F with basis ey, e, ..., e,. If we identify
U" with U in the standard manner, find the dual basis of the dual basis, that is to say, find
the vectors identified with €, €,, . . ., €,.

Exercise 11.4.5 Consider a vector space U over F with basis e; and e,. Let €,, &, be the
dual basis of U'.

In each of the following cases, you are given a basis f; and £, for U and asked to find
the corresponding dual basis fl, fg in terms of &, &,. You are then asked to find the matrix
Q with respect to the bases ey, €, of U and &y, & of U’ for the linear map o : U — U’ with
ve; = f' j. (f you skip at once to (iv), look back briefly at what your general formula gives
in the particular cases.)

(l) f] = €y, f2 = €.

(ll) f] = 2e1, f2 = €3.

(i) f; = e + e, ) =e,.

(iv) f| = ae; + be,, £, = cey + de, with ad — bc # 0.

Exercise 11.4.6 [Change of basis and contravariance] Consider a vector space U over
F with two bases ey, €, ..., e, andfy, >, ..., £,. If L = (I;;) and K = (k,;) are then x n
matrices defined by

n

f; = E lijei,
i=1
n

fs = E krsérv
r=1

show that K = (L)™', (The reappearance of the formula from Lemma 10.4.2 is no coin-
cidence.)

Lemma 11.3.5 strengthens in the expected way when U and V are finite dimensional.

Theorem 11.4.7 Let U and V be finite dimensional vector spaces over F.
@) Ifa € L(U, V), then we can define a map o' € L(V', U’) by the condition

o' (VH(u) = v (au).

(ii) If we now define ® : LU, V) — LV, U") by ®(a) = o', then ® is an isomorphism.
(iii) If we identify U” and U and V" and V in the standard manner, then o’ = « for all
a e L(U,V).
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Proof (i) This is Lemma 11.3.5 (i).
(i1) Lemma 11.3.5 (ii) tells us that @ is linear and injective. But

dim £(U, V) =dimU x dimV =dimU’ x dim V' = dim £(V’, U"),

so @ is an isomorphism.
(iii) We have

(«@"u)V =u@V) = («'VIu = vou = (@u)v
forallv' € V andu € U. Thus
a"u=ou
for allu € U and so «” = «. (Compare Exercise 11.3.8.) U
If we use bases, we can link the map « > «’ with a familiar matrix operation.

Lemma 11.4.8 If U and V are finite dimensional vector spaces over F and o € L(U, V)
has matrix A with respect to given bases of U and V, then o has matrix AT with respect
to the dual bases.

Proof Let e, e, ..., e, be a basis for U and fy, f5, ..., f,, a basis for V. Let the

~

corresponding dual bases be €, &, ..., &, and f'l, f'z, .., by If o has matrix (a;;) with
respect to the given bases for U and V and o’ has matrix (c,s) with respect to the dual
bases, then, by definition,

n n
Crs = E CksOrk = E Ckséker
k=1 k=1
n
A .
= E Crs€r | € = @ (fs)er

k=1

= As(aer) = f‘s (Z alrfl)

=1

m
= E alravl = dgr
=1

foralll <r<n,1<s <m. |

Exercise 11.4.9 Use results on the map o +— o' and Exercise 11.3.7 (ii) to recover the
familiar results

A+ BT =AT + BT, AT =24T, ATT =4, IT=1

for appropriate matrices.
Use Exercise 11.3.7 to prove that (AB)T = BT AT for appropriate matrices. Show,
similarly, that, if A is ann x n invertible matrix then AT is invertible and (AT)™' = (A~ HT.
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The reader may ask why we do not prove the result of Exercise 11.3.7 (at least for
finite dimensional spaces) by using direct calculation to obtain Exercise 11.4.9 and then
obtaining the result on maps from the result on matrices. An algebraist would reply that
this would tell us that (i) was true but not why it was true.

However, we shall not be overzealous in our pursuit of algebraic purity.

Exercise 11.4.10 Suppose that U is a finite dimensional vector space over F. If a €
L(U, U), use the matrix representation to show that deto = deta’'.

Hence show that det(tt — ) = det(tt — o) and deduce that o and o' have the same
eigenvalues. (See also Exercise 11.4.19.)

Use the result det(tt — o) = det(tt — ') to show that Tra = Tra’'. Deduce the same
result directly from the matrix representation of «.

‘We now introduce the notion of an annihilator.

Definition 11.4.11 If W is a subspace of a vector space U over F, we define the annihilator
of WO of W by taking

Wo={u eU :uw=0foralweW}.

Exercise 11.4.12 Show that, with the notation of Definition 11.4.11, W° is a subspace of
U’

Lemma 11.4.13 [f W is a subspace of a finite dimensional vector space U over FF, then

dimU = dim W + dim W°.

Proof Since W is a subspace of a finite dimensional space, it has a basis e, e;, ..., €,,
say. Extend this to a basis e;, €y, . . ., €, of U and consider the dual basis &;, €, ..., €,.
We have

n n
ZyjéjeWO: Zyjéj w=0 forallwe W
j=1 j=1

=D yié;|e=0 foralll <k<m
j=1

=S yw=0 foralll <k <m.

On the other hand, if w € W, then we have w = Z;’zl xje; for some x; € Fso (if y, € )

(Z y,e,) Sae]= 3 Yas— 3 Yo—o.
=1

r=m+1 r=m+1 j=1 r=m+1 j=1
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Thus
WOZ: 2”: v,€ : y,e]F}
r=m+1
and
dimW +dimW° =m + (n —m) =n = dimU
as stated. ([

We have a nice corollary.

Lemma 11.4.14 Let W be a subspace of a finite dimensional vector space U over F. If
we identify U” and U in the standard manner, then W% = W.

Proof Observe that, if w € W, then
wu) =u'(w)=0
forallu’ € W% and sow € W%. Thus
we o w.
However,
dim W = dim U’ — dim W° = dim U — dim W° = dim W
so WO = w. O

Exercise 11.4.15 (An alternative proof of Lemma 11.4.14.) By using the bases e; and €
of the proof of Lemma 11.4.13, identify W directly.

The next lemma gives a connection between null-spaces and annihilators.
Lemma 11.4.16 Suppose that U and V are vector spaces over F and o € L(U, V). Then
@)1 (0) = (@U)".
Proof Observe that
Ve@)0eav=0
s @vu=0 forallueU

& V(au)=0 forallueU
&V e @U),

s0 (@)~1(0) = (aU)". a

Lemma 11.4.17 Suppose that U and V are finite dimensional spaces over F and o €
L(U, V). Then, making the standard identification of U” with U and V" with V, we have

a'V' = (' (0)".
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Proof Applying Lemma 11.4.16 to o’ € L(V’, U’), we obtain
a”'(0) ="' =@V
so, taking the annihilator of both sides, we obtain
(@)’ =@V =o'V’
as stated. U

We can summarise the results of the last two lemmas (when U and V are finite dimen-
sional) in the formulae

kera’ = (ima)’ and imo’ = (kera)’.

We can now obtain a computation free proof of the fact that the row rank of a matrix equals
its column rank.

Lemma 11.4.18 (i) If U and V are finite dimensional spaces over F and a € L(U, V),
then

dimima = dimima’.

(i) If A is an m x n matrix, then the dimension of the space spanned by the rows of A
is equal to the dimension of the space spanned by the columns of A.

Proof (i) Using the rank-nullity theorem we have
dimima =dimU — kera = dim(kelroz)0 =dimimo/.

(ii) Let o be the linear map having matrix A with respect to the standard basis e; (so €;
is the column vector with 1 in the jth place and 0 in all other places). Since Ae; is the jth
column of A

span columns of A = ima.

Similarly
span columns of A7 = ima/,
SO
dim(span rows of A) = dim(span columns of AT) = dimimo’
= dimim o« = dim(span columns of A)
as stated. O

Exercise 11.4.19 Suppose that U is a finite dimensional space over F and a € L(U, U).
By applying one of the results just obtained to A — «, show that

dim{ue U : qou=iu} =dim{u' e U’ : o'u= v}

Interpret your result.
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Exercise 11.4.20 Let V be a finite dimensional space over F. If « is an endomorphism of
V and U is a subspace of V, show that o' (aU)° is a subspace of U°. Give examples (with
U # {0}, Vandoa # 0, 1) when o' (aU)° = U° and when o' (@U)° # U°.

11.5 Further exercises

Exercise 11.5.1 We work over F. We take A to be an m x n matrix, B to be the set of
all n x m matrices and [, to be the p x p identity matrix. Prove the following results by
working with the corresponding linear maps.

(i) The equation AB = I, has a solution B € B if and only if m < n and rank A = m.

(i) The equation AB = I,, has a unique solution B € B if and only if m =n and
rank A = m.

(iii) State and prove similar results for the equation BA = I,,.

Prove these results by using our earlier work on simultaneous linear equations.

Exercise 11.5.2 If « is a singular endomorphism (that is to say, a non-invertible endomor-
phism) of the finite dimensional vector space V # {0}, show that we can find a non-zero
endomorphism B such that 82 = Ba = 0.

Exercise 11.5.3 Let V be a finite dimensional vector space over C and let U be a
non-trivial subspace of V' (i.e. a subspace which is neither {0} nor V). Without assum-
ing any other results about linear mappings, prove that there is a linear mapping of V
onto U.

Are the following statements (a) always true, (b) sometimes true but not always true,
(c) never true? Justify your answers in each case.

(i) There is a linear mapping of U onto V (that is to say, a surjective linear map).

(ii) There is a linear mapping « : V — V suchthataU = U andav=0ifve V\ U.

(iii) Let Uy, U, be non-trivial subspaces of V such that Uy N U, = {0} and let oy, o) be
linear mappings of V into V. Then there is a linear mapping « : V — V such that

oV ifVGU],
av = )
v ifve Us.

(iv) Let Uy, U,, ay, @y be as in part (iii), and let Us, o3 be similarly defined with
U, N Uz = U, N U3 = {0}. Then there is a linear mapping « : V — V such that

av ifveU,
av=1av ifveU,,

o3V ifve U3.
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Exercise 11.5.4 Let « : U — V and 8:V — W be maps between finite dimensional
spaces, and suppose that ker § = im «. Show that bases may be chosen for U, V and W
with respect to which « and  have matrices

I, 0 and 0 0
0 O 0 I,.,/)

Exercise 11.5.5 (i) If V is an infinite dimensional space with a finite dimensional subspace
W, show that V /W is infinite dimensional.

(i1) Let n > 0. Give an example of an infinite dimensional space V with a subspace W
such that

dimV/W = n.

(iii) Give an example of an infinite dimensional space V with an infinite dimensional
subspace W such that V/ W is infinite dimensional.

Exercise 11.5.6 Suppose that W is a finite dimensional vector space over [F with subspaces
U and V. Show that U NV and

U+V={u+v:uelU, veV}
are subspaces of W. Show that (U + V)/U is isomorphic to V/(U N V).

Exercise 11.5.7 Let U, V, W, X be finite dimensional spaces, let « € L(U, V) have rank
r and let 8 € L(W, X) have rank s. Show that I'(f) = B0« defines a linear map from
L(V,W)to L(U, X) and find its rank.

Exercise 11.5.8 Let U and V be finite dimensional vector spaces over F. If o : U — V is
linear, show that there is a linear map 8 : V — U such that ¢Ba = «. Show that the linear
maps S such that ¢f« is a scalar multiple of « (that is to say, «fa = Aa for some A € [F)
form a subspace of L(U, V) and find its dimension in terms of the dimensions of U and V
and the rank of «.

Exercise 11.5.9 Let U and V be finite dimensional spaces over F and let6 : U — V be a
linear map.

(i) Show that 9 is injective if and only if, given any finite dimensional vector space W
over F and given any linear map « : U — W, there is a linear map & : V — W such that
o =04.

(i1) Show that 6 is surjective if and only if, given any finite dimensional vector space W
over I and given any linear map g : W — V, there is a linear map 8 : W — U such that
B = Bo.

Exercise 11.5.10 Let «j, o, . . ., o be endomorphisms of an n-dimensional vector space
V. Show that

k
dim(erez ..., V) = Y dim(e; V) — nk — 1).

i=1
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Hence show that, if « is an endomorphism of V,
dimV +dima?V > 2dimaV.
Show, more generally, that
Hdima/V + dima/*?V) > dima/ 'V

Exercise 11.5.11 (Variation on a theme.) If U is a finite dimensional vector space over F
and «, B8, y € L(U, U) show that

rank @ + rank @8y > rank o8 4 rank Sy.

[Exercise 5.7.8 gives a proof involving matrices, but you should provide a proof in the style
of this chapter.]

Exercise 11.5.12 Suppose that V is a vector space over I with subspaces Uj, Us, ..., Uy,.
Show that

Ui+ Us+---4+U,) =U0)NnUIN...NUY.
If V is finite dimensional, show that
U NUN...00)° =00+ U +--- +U°.

Exercise 11.5.13 Let V be a vector space over F. We make V x V into a vector space in
the usual manner by setting

AX,y) = (x,4y) and (X,y)+ (W, V)=(X+uy+V).

Prove the following results.
(i) The equation

forallx, y e V,¢ € L(V x V, ) defines an endomorphism « of L(V x V,F).

(i) « is a projection (that is to say, &> = ).
(iii) o has rank %n(n — 1) and nullity %n(n + 1).
(iv) If 6 is an endomorphism of V, the equation

@¢)(x,y) = p(6x, 0y)

forallx, y e V, ¢ € L(V x V,T) defines an endomorphism g of LV x V,F).
(v) With the notation above 6o = of.
(vi) State and sketch proofs for the corresponding results for g given by

(BO)X, y) = 1 (o(x, y) + ¢(y. X)).
What is o + 8?
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Exercise 11.5.14 Are the following statements true or false. Give proofs or counterexam-
ples. In each case U and V are vector spaces over Fand o : U — V is linear.

(1) If U and V are finite dimensional, then « : U — V is injective if and only if the
image o(e;), x(ey), ..., a(e,) of every finite linearly independent set e;, e, ..., €, is
linearly independent.

(ii) If U and V are possibly infinite dimensional, then « : U — V is injective if and
only if the image a(e), a(ey), . . ., a(e,) of every finite linearly independent set e, €5, . . .,
e, is linearly independent.

(iii) If U and V are finite dimensional, then the dual map o’ : V' — U’ is surjective if
and only if &« : U — V is injective.

(iv) If U and V are finite dimensional, then the dual map o’ : V' — U’ is injective if
and only if « : U — V is surjective.

Exercise 11.5.15 In the following diagram of finite dimensional spaces over F and linear

maps
U, [} v, 2 W,
A
U, ) v, ¥ W,

¢1 and ¢, are injective, | and ¥, are surjective, 1//[1(0) = ¢;(U;) (i = 1,2) and the two
squares commute (that is to say ¢, = B¢y and Y8 = y ). If @ and y are both injective,
prove that 8 is injective. (Start by asking what follows if fv; = 0. You will find yourself
at the first link in a long chain of reasoning where, at each stage, there is exactly one
deduction you can make. The reasoning involved is called ‘diagram chasing’ and most
mathematicians find it strangely addictive.)

By considering the duals of all the maps involved, prove that if « and y are surjective,
then so is B.

The proof suggested in the previous paragraph depends on the spaces being finite
dimensional. Produce an alternative diagram chasing proof.

Exercise 11.5.16 (It may be helpful to have done the previous question.) Suppose that we
are given vector spaces U, Vy, V,, W over F and linear maps ¢, : U — Vi, ¢y : U — V,,
YV — W,y : Vo > W,and 8 : V| — V,. Suppose that the following four conditions
hold.

(i) ¢, '({0}) = {0} fori = 1, 2.

) i (Vi)y=Wfori =1, 2.

(i) ;' ({0) = ¢ (Uy) fori = 1, 2.

(iv) pre = ¢ and apy = Y.
Prove that 8 : V| — V, is an isomorphism. You may assume that the spaces are finite
dimensional if you wish.
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Exercise 11.5.17 In the diagram below A, B, A, By, Ci, B;, C; are vector spaces over
and «, ay, B1, B2, @, ¥, ¥, 1 are linear maps between the spaces indicated such that

(@) va = a19, (b) n181 = B2, () ¢ is surjective, (d) n; is injective.

A —25 B

L

A] By Cl

BzL)Cz

Prove the following results.

(i) If the null-space of B; is contained in the image of o, then the null-space of i is
contained in the image of ¥.

(i1) If Y1 ¢ is a zero map, then so is Bj«;.

Exercise 11.5.18 We work in the space M,,(R) of n x n real matrices. Recall the definition
of a trace given, for example, in Exercise 6.8.20.

If we write 1(A) = Tr(A), show the following.

()t : M,(R) — R is linear.

(ii) t(P~'AP) = t(A) whenever A, P € M,(R) and P is invertible.

(i) t(I) = n.

Show, conversely, that, if 7 satisfies these conditions, then 1(A) = Tr A.

Exercise 11.5.19 Consider M,, the vector space of n x n matrices over F with the usual
matrix addition and scalar multiplication. If f is an element of the dual M), show that

fXY) = f(¥YX)
forall X, Y € M, if and only if
fX)=ATrX

for all X € M,, and some fixed A € F.

Deduce that, if A € M, is the sum of matrices of the form [X, Y] = XY — Y X, then
Tr A = 0. Show, conversely, that, if Tr A = 0, then A is the sum of matrices of the form
[X, Y]. (In Exercise 12.6.24 we shall see that a stronger result holds.)

Exercise 11.5.20 Let M, , be the usual vector space of p x g matrices over . Let A €
M, , be fixed. If B € M,, , we write

taB =TrAB.

Show that 7 is a linear map from M,, , to F. If we set ®(A) = 74 show that ® : M, ,, —
M,, , is an isomorphism.
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Exercise 11.5.21 [The Binet—-Cauchy formula] (This is included as a mathematical
curiosity. It may be helpful to experiment with small matrices.) Let B be an m x n matrix
and C an n x m matrix over [F. If m < n the m x m matrix formed from B by using the
i-th column of B as the rth column of the new matrix is called Bi'22i» The m x m matrix
formed from C by using the i,.th row of C as the rth row of the new matrix is called C,;,. ;-
The Binet—Cauchy formula states that

det BC = Zdet BiliZ'"im det C,'],'Z___,'m
where the sum is over all iy, i5, ..., i, with
1<ii<ih<...<lipy.

(i) By considering row operations on B and column operations on C, show that the
full Binet—Cauchy formula will follow from the special case when B has first row b; =
(1,0,0,...,0) and C has first column ¢; = (1, 0,0, ..., 0)T.

(ii) By using (i), or otherwise, show that if the Binet—Cauchy formula holds when
m=p,n=qg—1landwhenm = p—1,n=¢g — 1, thenitholds form = p,n =q [2 <
p < g — 1]. Deduce that the Binet—Cauchy formula holds forall 1 <m < n.

(iii) What can you say about det AB if m > n?

(iv) Prove the Binet—Cauchy identity

n n n n
(Z Cl,'bi) chdj = <Za,-d,») ij()j + Z (Cl,'bj — ajb,')(C,'dj — de,')
i=1 j=1 i=1 j=1

I<i<j<n

for all a;, b;, c;, d; € IF and deduce Lagrange’s identity

n n n 2
(Zalz) 253 = (Z%’Q) + Z (Cl,'Cj — ajc,»)2.
i=1 Jj=1 i=1

I<i<j<n

(v) Use Lagrange’s identity to prove the Cauchy—Schwarz inequality in R”, identifying
the cases of equality.
[Cauchy and Binet were the first to prove the result which we would now write
det AB = det A det B. As with many other topics in mathematics, Cauchy’s work marked
the beginning of the modern era.]

Exercise 11.5.22 (Requires elementary group theory.) Show that the set of matrices

()

with x real and non-zero forms a group under matrix multiplication.
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Let V be a vector space over IF and let G be a set of linear maps « : V — V which
forms a group under composition. Show that either every o € G is invertible ornoa € G
is invertible.

Show that all @ € G have the same image space E = (V) and the same null-space
a~1(0).

For each o € G define T'(«) : E — E by

T(x)(x) = a(x).

Show that T is group isomorphism between G and G a group of invertible linear mappings
onE.

Give an example to show that G need not contain all the invertible linear mappings on
E.

Exercise 11.5.23 Consider the set FX of functions f: X — F. We have seen in
Lemma 5.2.6 how to make FX into a vector space (FX, x, +, F) over F.

Suppose that we make F¥ into a vector space Vg = (F¥, X, H, F) over F. Show that
the point evaluation functions ¢, : Vg — F, defined by ¢.(f) = f(x), are linear maps for
eachx € Xifandonlyif A\ f =A x fand fHg= f +gforallA € Fand f, g € FX.
(More succinctly, the standard vector space structure on F¥ is the only one for which point
evaluations are linear maps.)

[Your answer may be shorter than the statement of the exercise.]

Exercise 11.5.24 Suppose that X is a subset of a vector space U over . Show that
X'={ueU :ux=0 forallx e X}

is a subspace of U’.
If U is finite dimensional and we identify U” and U in the usual manner, show that
X% = span X.

Exercise 11.5.25 The object of this question is to show that the mapping ® : U — U”
defined in Lemma 11.3.4 is not bijective for all vector spaces U. I owe this example to
Imre Leader and the reader is warned that the argument is at a slightly higher level of
sophistication than the rest of the book. We take cqg and s as in Exercise 11.3.9. We write
Oy = O to make the space U explicit.

(i) Show that, if a € cpp and (©.,a)b = 0 for all b € ¢(p, thena = 0.

(i1) Consider the vector space V = s/cqo. By looking at (1, 1, 1, .. .), or otherwise, show
that V is not zero dimensional. (That is to say, V # {0}.)
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(iii) If V' is zero dimensional, explain why V" is zero dimensional and so ®y is not
injective.
(iv) If V' is not zero dimensional, pick a non-zero T € V'. Define T : s — R by

Ta = T(a + C()()).

Show that T € s" and T # 0, but Th = 0 for all b € ¢(. Deduce that ®,, is not injective.

€00



12
Polynomials in L(U, U)

12.1 Direct sums

In this section we develop some of the ideas from Section 5.4 which the reader may wish
to reread. We start with some useful definitions.

Definition 12.1.1 Let U be a vector space over IF with subspaces U; [1 < j < m].
(i) We say that U is the sum of the subspaces U and write

U=U +U+-+U,

U={u+uw+---+u, :u; € U;}.
(i) We say that U is the direct sum of the subspaces U; and write
U=UeU,®...0U,
ifU=U,+ U+ -+ U, and, in addition, the equation
O0=vi+vat+--+Vy
with v; € U; implies
Vi=v=...=v,=0.
[We discuss a related idea in Exercise 12.6.4.]

Before starting the discussion that follows, the reader should recall the useful result
about dim(V + W) which we proved in Lemma 5.4.10.

Exercise 12.1.2 Let U be a vector space over F with subspaces U; [1 < j < m]. Show
thatU = U, @& U, & ...® U, if and only if the equation

u=u1+u2+"'+um

has exactly one solution witha; € U; for eachu € U.

291
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The following exercise is easy, but the result is useful.

Exercise 12.1.3 Let U be a vector space over F which is the direct sum of subspaces U
[1<j<ml

() If U; has a basis ej, with 1 <k < n(j) for 1 < j < m, show that the vectors €y
[1 <k <n(j), 1 <j<m]forma basis for U.

(ii) Show that U is finite dimensional if and only if all the U; are.

(iii) If U is finite dimensional, show that

dimU = dimU; +dim U, + - - - + dim U,,..

Exercise 12.1.4 Let U and W be subspaces of a finite dimensional vector space V. Show
that there exist subspaces A, B and C of V such that

U=A®B, W=B@gC, U+W=UC=WoA.

Show that B is specified uniquely by the conditions just given. Is the same true for A and
C? Give a proof or counterexample.

Lemma 12.1.5 Let U be a vector space over I which is the direct sum of subspaces U
[1 < j <m] IfU is finite dimensional, we can find linear maps 7; : U — U; such that
u=mu+mu+---+ m,u
Automatically 7j|y, = t|y; (i.e. Tju = u wheneveru € Uj).

Proof Let U; have a basis ej; with 1 <k < n(j). Then, as remarked in Exercise 12.1.3,
the vectors ej; [1 < k <n(j), 1 < j < m] form a basis for U. It follows that, if u € U,
there are unique A j; € IF such that

and we may define ;u € U; by

‘We note that

m n(r) m  n(r) m  n(r)
T ()L Z Z Ark€rk 1 Z Z Mrkerk> =7; (Z Z(“»rk + ,U«Mrk)erk>

r=1 k=1 r=1 k=1 r=1 k=1
n(j)
= Z(Mjk + wiji)e
k=1
n(j) n(j)

=A Z)»jkejk +u Zﬂjkejk
k=1 k=1

m  n(r) m n(r)
= AT; (Z Z )»rkerk> + um; (Z Z Mrkerk> .

r=1 k=1 r=1 k=1
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Thus 7r; : U — Uj is linear. The equality
u=rmu+mu+---+1T,u

follows directly from our definition of 7;.
The final remark follows from the fact that we have a direct sum. O

Exercise 12.1.6 Suppose that V is a finite dimensional vector space over I with subspaces
Vi and V,. Which of the following possibilities can occur? Prove your answers.

OVi+ Vo=V, butdimV; +dimV, > dim V.

@ Vi+V,=V,butdimV; +dimV, < dimV.

@) dim V) +dimV, =dimV, but Vi + V, #£ V.

The next exercise develops the ideas of Theorem 11.2.2.

Exercise 12.1.7 A subspace V of a vector space U over F is said to be an invariant
subspace of an a € L(V, V) if V C aV. We say that V is a maximal invariant subspace
of a if V is an invariant space of o and, whenever W is an invariant subspace of o with
W 2V, it follows that W = V.

Show that, if U is finite dimensional, and « is an endomorphism of U, the following
Statements are true.

(i) There is a non-negative integer m such that «™ U is the unique maximal invariant
subspace of o.

(i) If we write M = o U and N = (&™)~'(0), then U = M & N.

@iy a(M) S M, a(N) € N.

(iv) If we define B : M — M by Bu=oauforue M andy : N - N by yu = «u for
u € N, then B is an automorphism and y is nilpotent (that is to say, y" = 0 for some
r>1).

(v) Suppose that M and N are subspaces of U such that V.= M @& N, B is an automor-
phism on M and 7 : M — M is a nilpotent linear map. If

a(a+b)=Ba+ b

foralla e M,b e N, show that M = M, N = N, B =Bandy =vy.
i) If A is an n x n matrix over F, show that we can find an invertible n x n matrix P,
an invertible r X r matrix B and a nilpotent n — r x n — r matrix C such that

B 0
P'AP = :
As the previous exercise indicates, we are often interested in decomposing a space into

the direct sum of two subspaces.

Definition 12.1.8 Let U be a vector space over F with subspaces Uy and U,. If U is the
direct sum of Uy and U,, then we say that U, is a complementary subspace of Uj.

Itis very important to remember that complementary subspaces are not unique in general.
The following simple example should be kept constantly in mind.
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Example 12.1.9 Consider F? as a row vector space over F. If

U={(x,0), xeF}, U:={0,y), yeF}, Us={t1), 1t €F}
then the U are subspaces and both U, and Us are complementary subspaces of U,.

We give some variations on this theme in Exercise 12.6.29. When we consider inner prod-
uct spaces, we shall look at the notion of an ‘orthogonal complement’ (see Lemma 14.3.6).
We shall need the following result.

Lemma 12.1.10 Every subspace V of a finite dimensional vector space U has a comple-
mentary subspace.

Proof Since V is the subspace of a finite dimensional space, it is itself finite dimensional

and has a basis e}, e, . . ., €, say, which can be extended to basis e, e;, ..., e, of U. If we
take

W = span{ex;1, €12, ..., €.},
then W is a complementary subspace of V. Il

Exercise 12.1.11 Let V be a subspace of a finite dimensional vector space U. Show that
V has a unique complementary subspace if and only if V.= {0} or V. = U.

We use the ideas of this section to solve a favourite problem of the Tripos examiners in
the 1970s.

Example 12.1.12 Consider the vector space M, (R) of real n x n matrices with the usual
definitions of addition and multiplication by scalars. If 6 : M,,(R) — M,(R) is given by
0(A) = AT, show that 6 is linear and that

M,(R)={AeM,R) : 0(A)=Atd{A e M,(R) : 6(A) = —A}.
Hence, or otherwise, find det6.

Solution. Suppose that A = (a;;) € M,(R), B = (b;j) e M,(R) and A, p € R. If C =
(AA + uB)T and we write C = (c;;), then

Cij = haji + pubji,

so O(AA 4+ uB) = A0(A) + uB(B). Thus 6 is linear.
If we write

U={AeM®) : 04 =A}, V={AcM®) :0(A)=—A},

then U is the null-space of ¢t — 6 and V is the null-space of ¢ 4+ 6, so U and V are subspaces
of M,(R).
To see that U + V = M, (R), observe that, if A € M,,(R), then

A=2"Y"A+A")+27'A - AT)
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and 27'(A+ A7) e U,27"(A — AT) € V. To see that U N V = {0} observe that
AcUNV=AT=A, AT=—A=A=-A=A=0.

Next observe that, if 1 <s < r < n and F(r, s) is the matrix (8;.6;; — ;50 ;,) (thatis to
say, with entry 1 in the r, sth place, entry —1 in the s, rth place and 0 in all other places),
then F,.; € V. Further, if A = (a;;) € V,

A= Z MsFrs & Ms=a,, foralll <s <r <n.
I<s<r=<n
Thus the set of matrices F(r, s) with 1 <s < r < n form a basis for V. This shows that
dmV =nn — 1)/2.

A similar argument shows that the matrices E(r, s) given by (8,8 ;5 + 8;5;,) whenr # s
and (8;/8;,) when r =s [1 <s <r < n] form a basis for U which thus has dimension
n(n+1)/2.

If we give M,,(R) the basis consisting of the E(r,s) [1 <s <r <n]and F(r,s) [1 <
s < r < n], then, with respect to this basis, 8 has an n?
diagonal entries taking the value 1 and dim V' diagonal entries taking the value —1. Thus

detd = (—=)4mV = (—1y'=D/2,

x n? diagonal matrix with dim U

O

Exercise 12.1.13 We continue with the notation of Example 12.1.12.

(i) Suppose that we form a basis for M,,(R) by taking the union of bases of U and V (but
not necessarily those in the solution). What can you say about the corresponding matrix
of0?

(ii) Show that the value of det 0 depends on the value of n modulo 4. State and prove the
appropriate rule for obtaining det 0 from the value of n modulo 4.

Exercise 12.1.14 Consider the real vector space C(R) of continuous functions f : R — R
with the usual pointwise definitions of addition and multiplication by a scalar. If

U={feCR): f(x)= f(—x)forall x € R},
V={feCR) : f(x)=—f(—x)forallx € R, },

show that U and V are complementary subspaces.
The following exercise introduces some very useful ideas.

Exercise 12.1.15 [Projection] Prove that the following three conditions on an endomor-
phism « of a finite dimensional vector space V are equivalent.

() o? = .

(ii) V can be expressed as a direct sum U @ W of subspaces in such a way that |y is
the identity mapping of U and oy is the zero mapping of W.

(iii) A basis of V can be chosen so that all the non-zero elements of the matrix representing
o lie on the main diagonal and take the value 1.
[You may find it helpful to use the identity 1 = o + (1 — «).]
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An endomorphism of 'V satisfying any (and hence all) of the above conditions is called
a projection. !

Consider the following linear maps o : R? — R? (we use row vectors). Which of them
are projections and why?

ai(x,y) =(x,0), axx,y)=00,x), o3(x,y)=(,x), ax,y)=x+y,0),
as(x,y) = +y, x+y), aslx,y) = (5 +y), 3(x + ).

Exercise 12.1.16 If « is an endomorphism of a finite dimensional space V, show that « is
a projection if and only if 1 — o is.

Exercise 12.1.17 Suppose that o, B € L(V, V) are both projections of V. Prove that, if
off = Ba, then af is also a projection of V. Show that the converse is false by giving
examples of projections «, B such that (a) aB is a projection, but Ba is not, and (b) «f and
Ba are both projections, but aff # Ba.

Exercise 12.1.18 Suppose that o, 8 € L(V, V) are both projections of V.
(i) By considering what happens if we multiply by o on the left and what happens if we
multiply by o on the right, show that

oaff = —Ba = af = fa =0.

(ii) Show that o + B is a projection if and only if o = Ba = 0.
(iii) Show that a« — B is a projection if and only if o = Ba = B.
Exercise 12.1.19 Let V be a finite dimensional vector space over F and o an endomor-

phism. Show that a is diagonalisable if and only if there exist distinct X.; € I and projections
7 such that mym; = 0 when k # j,

t=m +m+---+m, and o =M 7+ w2+ + ATy,

12.2 The Cayley—Hamilton theorem

We start with a couple of observations.

Exercise 12.2.1 Show, by exhibiting a basis, that the space M,(IF) of n X n matrices
(with the standard structure of vector space over F) has dimension n*. Deduce that we can
find a; € C, not all zero, such that Z};Z:O ajAj = 0. Conclude that there is a non-trivial
polynomial P of degree at most n* such that P(A) = 0.

In Exercise 12.6.13 we show that Exercise 12.2.1 can be used to give a quick proof,
without using determinants, that, if U is a finite dimensional vector space over C, every
a € L(U, U) has an eigenvalue.

' We discuss orthogonal projection in Exercise 14.3.14.
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Exercise 12.2.2 (i) If D is an n x n diagonal matrix over IF with jth diagonal entry X,
write down the characteristic polynomial

xp(t) =det(tI — D)

as the product of linear factors.
If we write xp(t) = Y ;_o bxt* with by € F [t € F], show that

Xn: by DF = 0.
k=0

More briefly, we say that xp(D) = 0.
(i) If A is an n X n diagonalisable matrix over F with characteristic polynomial

n
Xa(t) = det(t] — A) =Y " cpt*,
k=0

show that xo(A) = 0, that is to say,

Xn: CkAk =0.
k=0

Exercise 12.2.3 Recall that the trace of an n x n matrix A = (a;;) is given by Tr A =
> i—1ajj. In this exercise A and B will be n x n matrices over F.

(i) If B is invertible, show that Tr B~'AB = Tr A.

(ii) If 1 is the identity matrix, show that Q o(t) = Tr(¢1 — A) is a (rather simple) poly-
nomial in t. If B is invertible, show that Qg-1ap = Qa.

(iii) Show that, if n > 2, there exists an A with Q s(A) # 0. What happens ifn = 1?

Exercise 12.2.2 suggests that the following result might be true.

Theorem 12.2.4 [Cayley—Hamilton over C] If U is a vector space of dimension n over
Cand o : U — U is linear, then, writing

Xa(t) = Zaktk = det(tt — @),

k=0
we have Y " _, ago® = 0 or, more briefly, xq(a) = 0.

We sometimes say that ‘o satisfies its own characteristic equation’.

Exercise 12.2.3 tells us that any attempt to prove Theorem 12.2.4 by ignoring the
difference between a scalar and a linear map (or matrix) and ‘just setting t = A’ is bound
to fail.

Exercise 12.2.2 tells us that Theorem 12.2.4 is true when « is diagonalisable, but we
know that not every linear map is diagonalisable, even over C.
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However, we can apply the following useful substitute for diagonalisation.

Theorem 12.2.5 [fV is a finite dimensional vector space over Cand o : V — V is linear,
we can find a basis for V with respect to which a has a upper triangular matrix A (that is
to say, a matrix A = (a;;) with a;; = 0 for i > j).

Proof We use induction on the dimension m of V. Since every 1 x 1 matrix is upper
triangular, the result is true when m = 1. Suppose that the result is true when m =n — 1
and that V has dimension n.

Since we work over C, the linear map o must have at least one eigenvalue A; with
a corresponding eigenvector e;. Let W be a complementary subspace for spanf{e;}. By
Lemma 12.1.5, we can find linear maps t : V — span{e;} and 7 : V — W such that

u=7tu+mu.

Now ()| is alinear map from W to W and W has dimensionn — 1 so, by the inductive
hypothesis, we can find a basis ey, es, ..., e, with respect to which (wa)|w has an upper
triangular matrix. The statement that (7 «)|w has an upper triangular matrix means that

(ra)e; € span{ey, e3,...,€;} *

for2 <j<n.
Since W is a complementary space of span{e;}, it follows that e;, e, ..., e, form a
basis of V. But % tells us that

oe; € span{el, €, ..., ej}
for 2 < j < n and the statement
ae; € spanfe;}

is automatic. Thus « has upper triangular matrix with respect to the given matrix and the
induction is complete Il

A slightly different proof using quotient spaces is outlined in Exercise 12.6.21 (If we
deal with inner product spaces, then, as we shall see later, Theorem 12.2.5 can be improved
to give Theorem 15.2.1.)

Exercise 12.2.6 By considering roots of the characteristic polynomial, or otherwise, show,
by example, that the result corresponding to Theorem 12.2.5 is false if V is a finite dimen-
sional vector space of dimension greater than 1 over R. What can we say if dimV = 1?2

Exercise 12.2.7 (i) Let r be a strictly positive integer. Use Theorem 12.2.5 to show that,
if we work over C and o : U — U is an endomorphism of a finite dimensional space U,
then a” has an eigenvalue 1 if and only if o has an eigenvalue A with " = .

(i) State and prove an appropriate corresponding result if we allow r to take any integer
value.

(iii) Does the result of (i) remain true if we work over R? Give a proof or counterexample.
[Compare the treatment via characteristic polynomials in Exercise 6.5.15.]



12.2 The Cayley—Hamilton theorem 299

Now that we have Theorem 12.2.5 in place, we can quickly prove the Cayley—Hamilton
theorem for C.

Proof of Theorem 12.2.4 By Theorem 12.2.5, we can find a basis e}, e, . . . , e, for U with
respect to which o has matrix A = (a;;) where a;; = 0if i > j. Setting A; = a;; we see,
at once that,

Xo(t) = det(tt — o) = det(t] — A) = [ [t — 1))
j=1

Next observe that

ae; € spanfe, e, ..., €;}
and
(@ —Aje; =0,

o)

(¢ — Aju)e; € spanfe, €, ..., €;_1}
and, if k #£ j,

(a — Axv)e; € spanfeq, e, ..., €;}.

Thus
(o — 2j0)(spanfey, e, ..., e;}) C spanfey, €,..., €;_1}

and, using induction on n — j,
(o —2j0)(o —Ajpit)... (@ — A,0)U C spanfey, €, ..., €;_}.
Taking j = n, we obtain
(¢ — Ap)(a — Aat) ... (@ — 1, 0)U = {0}
and y,(«) = 0 as required. O

Exercise 12.2.8 (i) Prove directly by matrix multiplication that

0 ap as b1 by biz\ [fen ci2 i3 0 0 O
0 ano ans 0 0 b23 0 C2 23 =10 0 0
0 0 as 0 0 b33 0 0 0 0O 0 O

State and prove a general theorem along these lines.
(i) Is the product

cii e ci3\ (b b biz\ (0 ap a3
cn 3 0 0 b an axn
0 0 0 0 0 b33 0 0 ass

)

necessarily zero?
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Exercise 12.2.9 Let U be a vector space. Suppose that o, 8 € L(U,U) and aff = Ba.
Show that, if P and Q are polynomials, then P(a)Q(B) = Q(B)P ().

The Cayley—Hamilton theorem for C implies a Cayley—Hamilton theorem for R.

Theorem 12.2.10 [Cayley—Hamilton over R] If U is a vector space of dimension n over
Rand o : U — U is linear, then, writing

Xolt) = Zaktk = det(tt — @),

k=0
we have ) ;_, ago® = 0 or, more briefly, xo(at) = 0.

Proof By the correspondence between matrices and linear maps, it suffices to prove the
corresponding result for matrices. In other words, we need to show that, if A isann x n
real matrix, then, writing x4(¢) = det(¢/ — A), we have x4(A) = 0.

But, if A is an n x n real matrix, then A may also be considered as an n x n complex
matrix and the Cayley—Hamilton theorem for C tells us that x4(A) = 0. ]

Exercise 12.6.14 sets out a proof of Theorem 12.2.10 which does not depend on the
Cayley—Hamilton theorem for C. We discuss this matter further on page 332.

Exercise 12.2.11 Let A be an n x n matrix over I with det A # 0. Explain why
det(t] — Ay =Y a;t!
j=0
with ay # 0. Show that

n
-1 _ -1 a1
A7 = —aq, EajA .
j=1

Is this likely to be a good way of computing A~' and why?

In case the reader feels that the Cayley—Hamilton theorem is trivial, she should note that
Cayley merely verified it for 3 x 3 matrices and stated his conviction that the result would
be true for the general case. It took twenty years before Frobenius came up with the first
proof.

Exercise 12.2.12 Suppose that U is a vector space over F of dimension n. Use the Cayley—
Hamilton theorem to show that, if a is a nilpotent endomorphism (that is to say, ™ =0
for some m), then & = 0. (Of course there are many other ways to prove this of which the
most natural is, perhaps, that of Exercise 11.2.3.)
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12.3 Minimal polynomials

As we saw in our study of the Cayley—Hamilton theorem and elsewhere in this book, the
study of endomorphisms (that is to say, members of L(U, U)) for a finite dimensional
vector space over C is much easier when all the roots of the characteristic polynomial are
unequal. For the rest of this chapter we shall be concerned with what happens when some
of the roots are equal.

The reader may object that the ‘typical’ endomorphism has all the roots of its character-
istic polynomial distinct (we shall discuss this further in Theorem 15.2.3) and it is not worth
considering non-typical cases. This is a little too close to the argument ‘the typical number
is non-zero so we need not bother to worry about dividing by zero’ for comfort. The reader
will recall that, when we discussed differential and difference equations in Section 6.4, we
discovered that the case when several of the roots were equal was particularly interesting
and this phenomenon may be expected to recur.

Here are some examples where the roots of the characteristic polynomial are not distinct.
We shall see that, in some sense, they are typical.

Exercise 12.3.1 (i) (Revision) Find the characteristic polynomials of the following

matrices.
0 0 0 1
=5 o) =0 o)

Show that there does not exist a non-singular matrix B with A| = BA,B L.
(ii) Find the characteristic polynomials of the following matrices.

0 0 O 0 1 O 0 1 O
A3=10 0 0], A4=10 0 O], As=1(0 0 1
0 0 O 0 0 O 0 0 O

Show that there does not exist a non-singular matrix Bwith A; = BAjB’1 B<i<j<5]
(iii) Find the characteristic polynomials of the following matrices.

01 0 0 01 0 0
0 0 0 0 0 0 0 0
4=1o 0 0 o> o 0o o 1
0 0 0 0 0 0 0 0

Show that there does not exist a non-singular matrix B with A¢ = BA7B~'. Write down
three further matrices A ; with the same characteristic polynomial such that there does not
exist a non-singular matrix B with A; = BAJ-B_] [6 <i < j < 10] explaining why this is
the case.

We now get down to business.
Theorem 12.3.2 If U is a vector space of dimension n over F and « : U — U a linear

map, then there is a unique monic> polynomial Qy of smallest degree such that Qq(e) = 0.

2 That is to say, having leading coefficient 1.
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Further, if P is any polynomial with P(«a) = 0, then P(t) = S(t)Q4(t) for some poly-
nomial S.

More briefly we say that there is a unique monic polynomial Q, of smallest degree
which annihilates o. We call Q, the minimal polynomial of o and observe that Q divides
any polynomial P which annihilates «.

The proof takes a form which may be familiar to the reader from elsewhere (for example,
from the study of Euclid’s algorithm?).

Proof of Theorem 12.3.2 Consider the collection P of polynomials P with P(x) = 0. We
know, from the Cayley—Hamilton theorem (or by the simpler argument of Exercise 12.2.1),
that P \ {0} is non-empty. Thus P \ {0} contains a polynomial of smallest degree and, by
multiplying by a constant, a monic polynomial of smallest degree. If QO and Q, are two
monic polynomials in P \ {0} of smallest degree, then Q; — O, € P and Q| — O, has
strictly smaller degree than Q. It follows that Q1 — Q, = O and Q| = Q) as required. We
write Q, for the unique monic polynomial of smallest degree in P.
Suppose that P(«) = 0. We know, by long division, that

P(t) = S(1)Qa(t) + R(1)

where R and § are polynomial and the degree of the ‘remainder’ R is strictly smaller than
the degree of Q,. We have

R(a) = P(a) — S(0)Qu(a) =0—-0=10
s0 R € P and, by minimality, R = 0. Thus P(¢t) = S(¢)Q,(?) as required. ]

Exercise 12.3.3 (i) Making the usual switch between linear maps and matrices, find the
minimal polynomials for each of the A; in Exercise 12.3.1.
(ii) Find the characteristic and minimal polynomials for

1 1.0 0 1 0 0 0
0 1 0 1 1 0 0
A=1o 0 2 1| ™ B=1y o 2 o
00 0 2 00 0 2

The minimal polynomial becomes a powerful tool when combined with the following
observation.

Lemma 12.3.4 Suppose that Ly, Ay, ..., A, are distinct elements of F. Then there exist
q; € Fwith

1= "q;[Je—».

=L i

3 Look at Exercise 6.8.32 if this is unfamiliar.
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Proof Let us write
g =[]0 ="
i#j

and

RO=\D a[Je-2| -1

j=l i#j

303

Then R is a polynomial of degree at most 7 — 1 which vanishes at the  points ;. Thus R
is identically zero (since a polynomial of degree k > 1 can have at most k roots) and the

result follows

O

Theorem 12.3.5 [Diagonalisability theorem] Suppose that U is a finite dimensional
vector over IF. Then a linear map « : U — U is diagonalisable if and only if its minimal

polynomial factorises completely into linear factors and no factor is repeated.

Proof If D is an n x n diagonal matrix whose diagonal entries take the distinct values A,
Ao, ..., Ar, then n;zl(D — A;jI) =0, so the minimal polynomial of D can contain no

repeated factors. The necessity part of the proof is immediate.

We now prove sufficiency. Suppose that the minimal polynomial of & is []i_,(r — 1;).

By Lemma 12.3.4, we can find g; € I such that

and so, writing

we have
t=601+6+---+6, and (x—2;1)0; =0 forl <j<m.
It follows at once that, if u € U and we write u; = 6;u, we have
u=u +uw+---+u, and ou;=2xiu; forl <j<m.
Observe that, if we write

Uj=1{v:av=24;v},

then U; is a subspace of U (we call U; the eigenspace corresponding to A;) and we have

shown that

U=U+Up+ -+ Up,.
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Ifllj (S Uj and

m

lej = 0,
p=I

then, using the same idea as in the proof of Theorem 6.3.3, we have

0= H(a — X0 = n(a — AjL)Zup
p=1

i#j i#]
m

= Zl—[(kp - )Vi)up = l_[()‘p - )“j)uj
p=1i#j P#J

and sou; = 0 foreach 1 < j < m. Thus
U=UU,®...®U,.

If we take a basis for each subspace U; and combine them to form a basis for U, then
we will have a basis of eigenvectors for U. Thus « is diagonalisable. O

Exercise 12.6.33 indicates an alternative, less constructive, proof.

Exercise 12.3.6 (i) If D is an n X n diagonal matrix whose diagonal entries take the
distinct values Ay, Ay, . .., A, show that the minimal polynomial of D is ]_[;zl(t — Ai).

(ii) Let U be a finite dimensional vector space and o : U — U a diagonalisable linear
map. If A is an eigenvalue of a, explain, with proof, how we can find the dimension of the
eigenspace

Uy={ueU : au=A\u}
from the characteristic polynomial of o.

Exercise 12.3.7 (i) If a polynomial P has a repeated root, show that P and its derivative
P’ have a non-trivial common factor. Is the converse true? Give a proof or counterexample.

(@) If A is an n x n matrix over C with A™ = I for some integer m > 1 show that A is
diagonalisable. If A is a real symmetric matrix, show that A> = 1.

We can push these ideas a little further by extending Lemma 12.3.4.

Lemma 12.3.8 Ifm(1), m(2), ..., m(r) are strictly positive integers and Ly, Ay, ..., A,
are distinct elements of I, show that there exist polynomials Q ; with

1= 0,0[]¢—r)"®.
j=1

i#]
Since the proof uses the same ideas by which we established the existence and prop-

erties of the minimal polynomial (see Theorem 12.3.2), we set it out as an exercise for
the reader.
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Exercise 12.3.9 Consider the collection A of polynomials with coefficients in F. Let P be
a non-empty subset of A such that

P,QeP, MucF=AP+uQeP and PP, QcA=>PxQecP.

(In this exercise, P x Q(t) = P(t)Q(t).)

(i) Show that either P = {0} or ‘P contains a monic polynomial Py of smallest degree.
In the second case, show that Py divides every P € P.

(if) Suppose that Py, P,, ..., P, are non-zero polynomials. By considering

P = ZTjXPjZTJ‘GA ,
j=1
show that we can find Q; € A such that, writing

r
PO:ZQj X Pj,
j=1

we know that Py is a monic polynomial dividing each Q;. By considering the given
expression for Py, show that any polynomial dividing each P; also divides Py. (Thus Py is
the ‘greatest common divisor of the P;’.)

(iii) Prove Lemma 12.3.4.

We also need a natural definition.
Definition 12.3.10 Suppose that U is a vector space over F with subspaces U such that
U=UU,®...9U,.
Ifa;: Uj — Ujis linear, we define oy ® oz @ ... ® a, as a function from U to U by
(@ ®ar® - Do) +u+---4+u,) =0ju; +opup + - - - + a,u,.

Exercise 12.3.11 Explain why, with the notation and assumptions of Definition 12.3.10,
a1 Doy D ... D, is well defined. Show that vy ® ar @ - - - @ «, is linear.

We can now state our extension of Theorem 12.3.5.
Theorem 12.3.12 Suppose that U is a finite dimensional vector space over F. If the linear
map « : U — U has minimal polynomial

o =[]a -1,
j=1

where m(1), m(2), ..., m(r) are strictly positive integers and Ay, Ay, ..., A, are distinct
elements of F, then we can find subspaces U; and linear maps oj : U; — U; such that o
has minimal polynomial (t — A j)”‘(j ),

U=U U, ®.. 09U, and a=01 Do ®...P«,.



306 Polynomials in L(U, U)

The proof is so close to that of Theorem 12.3.2 that we set it out as another exercise for
the reader.

Exercise 12.3.13 Suppose that U and a satisfy the hypotheses of Theorem 12.3.12. By
Lemma 12.3.4, we can find polynomials Q ; with

1= 0,0« —r)"®. *
j=1 i#]
Set
Us={ueU : (a—r)"Pu=0}.
(i) Show, using %, that
U=U+U,+---+U,.
(ii) Show, using %, that, ifu € U;, then
Qi@ ][] -21"u=0=u=0
i#]
and deduce that

H(a — 2" Yu=0=u=0.
i#]
Hence, or otherwise, show that
U=U,eU,;®...0U,.
(iii) Show that aU; C U, so that we can define a linear map o : U; — U; by taking
a;j(u) = au forallu € U;. Show that
a=a,DParyPD...Da,.
(iv) Show that aj has minimal polynomial (t — Xj)”(j)for some p(j) < m(j). Show that

o has minimal polynomial dividing ]—[;zl(t — X Y™ and deduce that p(j) = m(j).

Exercise 12.3.14 Suppose that U and V are subspaces of a finite dimensional vector space
WwithU &V =W. Ifa € LU,U)and B € L(V, V), show, by choosing an appropriate
basis for W, that det(o @ ) = det o det B. Find, with proof, the characteristic and minimal
polynomials of o @ B in terms of the characteristic and minimal polynomials of a and B.

Exercise 12.3.15 We work over C.
(i) Explain why the following statement is false. Given monic polynomials P, Q and S
with

P(t) = S1)Q),

we can find a matrix with characteristic polynomial P and minimal polynomial Q.
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(if) Write down an n x n matrix A with characteristic polynomial t" and minimal
polynomial t™ [n > m > 1]. What are the characteristic and minimal polynomials of
A—AI?

(iii) Show that, given monic polynomials P, Q, S and R with

P(t) = S(1)Q(1)

such that Q(z) =0 = S(z) =0, we can find a matrix with characteristic polynomial P
and minimal polynomial Q.

12.4 The Jordan normal form

Ifa : U — U is alinear map such that o™ = 0 for some m > 0, we say that « is nilpotent.
If we work over C, Theorem 12.3.12 implies the following result.

Theorem 12.4.1 Suppose that U is a finite dimensional vector space over C. Then, given
any linearmap o : U — U, we can findr > 1, A; € C, subspaces U; and nilpotent linear
maps B; : U; — U; such that, writing v; for the identity map on U; we have

U=UoU,®...0U,
=B +ra) B+ i) d... & B + Arty).
Proof Since we work over C, the minimal polynomial Q of « will certainly factorise in

the manner required by Theorem 12.3.12. Setting 8; = o; — A;t; we have the required
result. O

Thus, in some sense, the study of L(U, U) for finite dimensional vector spaces U over
C reduces to the study of nilpotent linear maps. We shall see that the study of nilpotent
linear maps can be reduced to the study of a particular type of nilpotent linear map.

Lemma 12.4.2 (i) If U is a vector space over F, « is a nilpotent linear map on U and e

satisfies a™e # 0, then e, ae, ..., a™e are linearly independent.
(i) If U is a vector space of dimension n over F, « is a nilpotent linear map on U and e
satisfies " "'e £ 0, then e, ae, ..., " 'e form a basis for U.

Proof (i) If e, ae, ...a™e are not independent, then we must be able to find a j with
I<j=<m,akj#0andA;4i,Xj42,..., A, such that

kja-ie+ kj+1a-i+'e+ ... —i—)»mot'"e = 0

Since « is nilpotent there must be an N > m with «¥+'e = 0 but oVe # 0. We observe
that

0=a""70
= C(Nij()\.j()lje + Aj+]aj+1e + -+ knlame)

N
=)\,J’O[ e,
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and so A; = 0 contradicting our initial assumption. The required result follows by reductio
ad absurdum.
(i1) Any linearly independent set with n elements is a basis. O

Exercise 12.4.3 If the conditions of Lemma 12.4.2 (ii) hold, write down the matrix of o
with respect to the given basis.

Exercise 12.4.4 Use Lemma 12.4.2 (i) to provide yet another proof of the statement that,
if a is a nilpotent linear map on a vector space of dimension n, then o = 0.

We now come to the central theorem of the section. The general view, with which this
author concurs, is that it is more important to understand what it says than how it is proved.

Theorem 12.4.5 Suppose that U is a finite dimensional vector space over Fand o : U —
U is a nilpotent linear map. Then we can find subspaces U; and nilpotent linear maps

. dimU; -1
oj:Uj — Uj such that «; # 0,

U=UU,®..®U, and a=a1Par,®...Da,.
The proof given here is in a form due to Tao. Although it would be a very long time
before the average mathematician could come up with the idea behind this proof,* once the

idea is grasped, the proof is not too hard.
We make a temporary and non-standard definition which will not be used elsewhere.’

Definition 12.4.6 Suppose that U is a finite dimensional vector space over Fand o : U —
U is a nilpotent linear map. If

E={e, e,...,e,}
is a finite subset of U not containing 0, we say that E generates the set
genE = {dfe; : k>0, 1<i<m).
If gen E spans U, we say that E is sufficiently large.
Exercise 12.4.7 Why is gen E finite?

We set out the proof of Theorem 12.4.5 in the following lemma of which part (ii) is the
key step.

Lemma 12.4.8 Suppose that U is a vector space over F of dimension n and o : U — U
is a nilpotent linear map.

(i) There exists a sufficiently large set.

(@) If E is a sufficiently large set and gen E contains more than n elements, we can find
a sufficiently large set F such that gen F contains strictly fewer elements.

(iii) There exists a sufficiently large set E such that gen E has exactly n elements.

(iv) The conclusion of Theorem 12.4.5 holds.

4 Fitzgerald says to Hemingway ‘The rich are different from us’ and Hemingway replies “Yes they have more money’.
3 So the reader should not use it outside this context and should always give the definition within this context.
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Proof (i) Any basis for E will be a sufficiently large set.
(ii) Suppose that

Ez{eheza-"yem}

is a sufficiently large set, but gen E > n. We define N; by the condition oVie; # 0 but
OlN’+le,‘ =0.

Since gen E > n, gen E cannot be linearly independent and so we can find A;, not all
zero, such that

Nl

m
Z )\.,kOl €; =0.

i=1 k=0
Rearranging, we obtain
E Pi()e;
1<i<m

where the P; are polynomials of degree at most N; and not all the P; are zero. By
Lemma 12.4.2 (ii), this means that at least two of the P; are non-zero.
Factorising out the highest power of « possible, we have

o Y Qe =0
1<i<m

where the Q; are polynomials of degree at most N; — [, N(i) > [ whenever Q; is non-zero,
at least two of the Q; are non-zero and at least one of the Q; has non-zero constant term.
Multiplying by a scalar and renumbering if necessary we may suppose that Q; has constant
term 1 and Q5 is non-zero. Then

o (el +aR(a)e; + Z Qi(Ol)ei) =0

2<i<m

where R is a polynomial.
There are now three possibilities.
(A)If] =0 and ¢ R(xx)e; = 0, then

e; € spangen{e;, €3, ..., €,},

so we can take F = {e,, e3, ..., €,}.
B)Ifl = 0and e R(x)e; # 0, then

e; € spangen{aey, €, ..., €5},

so we can take F = {aeq, €5, ..., €,}.
O Ifl>1,wesetf =e +aR(x)e; + ZlSiSm Q;(a)e; and observe that

e; € spangen{f, e, ..., e,},
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sothe set F = {f, ey, ..., e,} is sufficiently large. Since o/f = 0, «™e; # 0and ! < Ny,
gen F contains strictly fewer elements than gen E.

It may be useful to note note the general resemblance of the argument in (ii) to Gaussian
elimination and the Steinitz replacement lemma.

(iii) Use (i) and then apply (ii) repeatedly.

(iv) By (iii) we can find a set of non-zero vectors

E = {el’ e27"'1 er}
such that gen E has n elements and spans U .. It follows that gen E is a basis for U. If we set
U; = span gen{e;}

and define «; : U; — U; by o;u = ou whenever u € U, the conclusions of Theorem 12.4.5
follow at once. O

Combining Theorem 12.4.5 with Theorem 12.4.1, we obtain a version of the Jordan
normal form theorem.

Theorem 12.4.9 Suppose that U is a finite dimensional vector space over C. Then, given
any linear map o : U — U, we can find r > 1, A; € C, subspaces U; and linear maps
B; : U; — U; such that, writing t; for the identity map on U, we have

U=UeU,®...0U,,
a=B1+r2) @B+ 2r02) ... BB+ Arty),

BT 20 and B =0 forl<j<r.

Proof Left to the reader. O

Using Lemma 12.4.2 and remembering the change of basis formula, we obtain the
standard version of our theorem.

Theorem 12.4.10 [The Jordan normal form] We work over C. We shall write Ji.(X) for
the k x k matrix

A1 0 O 0 0

0O » 1 0 0 0

0 0 A 1 0 0
Jr(1) =

0 0 0 o0 ... a1

0 0 0 0 ... 0 A

If A is any n X n matrix, we can find an invertible n x n matrix M, an integer r > 1,
integers k; > 1 and complex numbers )\ ; such that MAM ~Uis a matrix with the matrices



12.4 The Jordan normal form 311

Ji; (A ;) laid out along the diagonal and all other entries 0. Thus

Ji, (A1)
Ji, (A2)

. Ji;(A3)
MAM™" =

Ji_ (A1)
Jk,. ()"r)

Proof Left to the reader. ([
The Ji(A) are called Jordan blocks.
Exercise 12.4.11 Why is a diagonal matrix already in Jordan form?

Exercise 12.4.12 (i) We adopt the notation of Theorem 12.4.10 and use column vectors.
If & € C, find the dimension of

(xeC": (Al — Afx =0}

in terms of the X ; and k;.
(if) Consider the matrix A of Theorem 12.4.10. If M is an invertible n x n matrix, 7 > 1,
]Ej >1 Xj e Cand

Ji, (A1) )
Ji,(A2) )
Ji,(A3)

Ji_ (Rio1) )
Jr, (A7)

show that, ¥ = r and, possibly after renumbering, )NL]- =\ and I;j =kjforl <j<r.

Theorem 12.4.10 and the result of Exercise 12.4.12 are usually stated as follows. ‘Every
n X n complex matrix can be reduced by a similarity transformation to Jordan form. This
form is unique up to rearrangements of the Jordan blocks.” The author is not sufficiently
enamoured with the topic to spend time giving formal definitions of the various terms in
this statement. Notice that we have shown that ‘two complex matrices are similar if and
only if they have the same Jordan form’. Exercise 6.8.25 shows that this last result remains
useful when we look at real matrices.

Exercise 12.4.13 We work over C. Let P, be the usual vector space of polynomials of
degree at most n in the variable z. Find the Jordan normal form for the endomorphisms T
and S given by (Tp)(z) = p'(z) and (Sp)(z) = zp'(2).
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Exercise 12.4.14 Suppose that U is a vector space of dimension n over F. Ifa € L(U, U),
we say that A has algebraic multiplicity m,(A) if A is a root of multiplicity m of the
characteristic polynomial xo of a. (That is to say, (t — A" ® is a factor of x.(t), but
(t — LY"P* s not.) We say that A has geometric multiplicity

mg(A) = dim{u : (@ — A)(w) = 0}.
(i) Show that, if ) is a root of x4, then
L <mg(A) < mu(2).

(i) Show that if \y € F, 1 < ng(Ae) < ng(A)[1 <k <r]and Z;;:l ng,(Ay) = n we can
findana € LU, U) withmg(Ay) = ng(hy) and my(he) = ng(Ag) for 1 <k <r.

(iii) Suppose now that F = C. Show how to compute m,(A) and m4()) from the Jordan
normal form associated with .

12.5 Applications

The Jordan normal form provides another method of studying the behaviour of o €
LWU,U).

Exercise 12.5.1 Use the Jordan normal form to prove the Cayley—Hamilton theorem over
C. Explain why the use of Exercise 12.2.1 enables us to avoid circularity.

Exercise 12.5.2 (i) Let A be a matrix written in Jordan normal form. Find the rank of A’
in terms of the terms of the numbers of Jordan blocks of certain types.

(ii) Use (i) to show that, if U is a finite vector space of dimension n over C, and
a € LU, U), then the rank r; of o satisfies the conditions

N=rg>Fr >r>...>Fy =Fptl =Fpy2 = ...,
for some m < n together with the condition
ro—rizri—rnzrn—rz...2rmnm-1—In
Show also that, if a sequence s; satisfies the condition
n=15)> S >85> ...> S, =Sptl = Spm42 = ...
for some m < n together with the condition
S0— 81 =851 =8>8 —853>...=8,_1— 58, >0,

then there exists an o € L(U, U) such that the rank of o/ is s -

[We thus have an alternative proof of Theorem 11.2.2 in the case when F = C. If the reader
cares to go into the matter more closely, she will observe that we only need the Jordan
form theorem for nilpotent matrices and that this result holds in R. Thus the proof of
Theorem 11.2.2 outlined here also works for R.]
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It also enables us to extend the ideas of Section 6.4 which the reader should reread. She
should do the following exercise in as much detail as she thinks appropriate.

Exercise 12.5.3 Write down the five essentially different Jordan forms of 4 x 4 nilpotent
complex matrices. Call them Ay, Ay, Az, Ay, As.
(i) For each 1 < j <5, write down the the general solution of

X' (1) = A;x(1)

where  X(t) = (x1(1), Xa(t), x3(0), xa(1) ", X(0) = (x](0), x5(0), x5(0), x4(1)" and we
assume that the functions x; : R — C are well behaved.
(@) If A € C, obtain the the general solution of

Y(®) = (A + Ajx()

from general solutions to the problems in (i).
(iii) Suppose that B is an n X n matrix in normal form. Write down the general solution

of
X' (t) = Bx(t)

in terms of the Jordan blocks.
(iv) Suppose that A is an n x n matrix. Explain how to find the general solution of

X' (1) = Ax(¢).
If we wish to solve the differential equation
x() + a1 x" V(@) + -+ agx () = 0 *

using the ideas of Exercise 12.5.3, then it is natural to set x;(t) = x9(t) and rewrite the
equation as

X(1) = Ax(1),
where
0 1 0 0 0
0 0 1 0 0
A= * %
0 0 0 1 0
0 0 0 0 1

—aop —dai —az cee —ap—2 —dp—1
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Exercise 12.5.4 Check that the rewriting is correct.

If we now try to apply the results of Exercise 12.5.3, we run into an immediate difficulty.
At first sight, it appears there could be many Jordan forms associated with A. Fortunately,
we can show that there is only one possibility.

Exercise 12.5.5 Let U be a vector space over C and o : U — U be a linear map. Show
that o can be associated with a Jordan form

Ji (A1)
Ji,(A2)
Ji;(A3)

i (A1)
Ji, (X))

with all the X ; distinct, if and only if the characteristic polynomial of « is also its minimal
polynomial.

Exercise 12.5.6 Ler A be the matrix given by %% . Suppose that ag # 0 By looking at

n—1

where e = (1,0,0, ...,0), or otherwise, show that the minimal polynomial of A must
have degree at least n. Explain why this implies that the characteristic polynomial of A
is also its minimal polynomial. Using Exercise 12.5.5, deduce that there is a Jordan form
associated with A in which all the blocks Ji(Ay) have distinct Ay.

Exercise 12.5.7 (i) Find the general solution of % when the Jordan normal form associated
with A is a single Jordan block.

(i) Find the general solution of % in terms of the structure of the Jordan form associated
with A.

We can generalise our previous work on difference equations (see for example Exer-
cise 6.6.11 and the surrounding discussion) in the same way.

Exercise 12.5.8 (i) Prove the well known formula for binomial coefficients
r r r+1
= Il <k<r]
(2 () =0 w=rsn
(i) If k = 0, we consider the k + 1 two sided sequences

u; = (o, ui(=3), ui(=2), ui(—=1), u;0), u;(1), u;2), u;Q3), ...)
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with —1 < j < k. (More exactly, consider the functions w; : Z — F with —1 < j < k.)
Consider the system of k + 1 equations

U (—1) =0
1, (0) — ty—1(0) = u, (= 1)
(1) = 1 (1) = u, 0)
() = 1,1 (2) = uy (1)

up(k) — up—1(k) = ur(k — 1)

where r ranges freely over Z.

Show that u,(0) = by with by constant. Show that u,(1) = bor + by (with by and b,
constants). Find, with proof, the solution for all k > 0.

(ii) Let A € F and A # 0. Find, with proof, the general solution of

v(=1)=0
v (0) — Av,1(0) = v, (—1)
v (1) — Av,—1(1) = v,.(0)
Ur(2) = Av—1(2) = v (1)

vr(k) — Avp—1 (k) = vp(k — 1).

(iii) Use the ideas of this section to find the general solution of

n—1

u, + E ajj_ptr =0
=0

(where ay # 0 and r ranges freely over 7)) in terms of the roots of

n—1
P(t) =t" + Za,ﬂ.

j=0

(iv) When we worked on differential equations we did not impose the condition ay # 0.
Why do we impose it for linear difference equations but not for linear differential equations?

Students are understandably worried by the prospect of having to find Jordan normal
forms. However, in real life, there will usually be a good reason for the failure of the roots
of the characteristic polynomial to be distinct and the nature of the original problem may
well give information about the Jordan form. (For example, one reason for suspecting that
Exercise 12.5.6 holds is that, otherwise, we would get rather implausible solutions to our
original differential equation.)
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In an examination problem, the worst that might happen is that we are asked to find a
Jordan normal form of an n x n matrix A with n < 4 and, because » is so small,® there are
very few possibilities.

Exercise 12.5.9 Write down the six possible types of Jordan forms for a 3 x 3 matrix.
[Hint: Consider the cases all characteristic roots the same, two characteristic roots the
same, all characteristic roots distinct.]

A natural procedure runs as follows.

(a) Think. (This is an examination question so there cannot be too much calculation
involved.)

(b) Factorise the characteristic polynomial y ().

(¢) Think.

(d) We can deal with non-repeated factors. We now look at each repeated factor (r — A)™.

(e) Think.

(f) Find the general solution of (A — Al)x = 0. Now find the general solution of (A —
Al)x =y with y a general solution of (A — Al)y = 0 and so on. (But because the
dimensions involved are small there will be not much ‘so on’.)

(g) Think.

Exercise 12.5.10 Let A be a 5 x 5 complex matrix with A* = A? % A. What are the
possible minimal and characteristic polynomials of A? How many possible Jordan forms
are there? Give reasons. (You are not asked to write down the Jordan forms explicitly. Two
Jordan forms which can be transformed into each other by renumbering rows and columns
should be considered identical.)

Exercise 12.5.11 Find a Jordan normal form J for the matrix

1 0 1 0
0 1 0 O
M= 0 -1 2 0
0O 0 0 2

Determine both the characteristic and the minimal polynomial of M.
Find a basis of C* with respect to which the linear map corresponding to M for the
standard basis has matrix J. Write down a matrix P such that P"'MP = J.

12.6 Further exercises

Exercise 12.6.1 Let U, V, W and X be finite dimensional vector spaces over F. Suppose
thate € L(U, V) and 8 € L(V, W) are such that the image of « is the null-space of .

If o € L(V, X)is such that o = 0, show that there existsat € L(W, X) witht8 = 0.
Is 7 necessarily unique? Give a proof or or a counterexample.

% If n > 5, then there is some sort of trick involved and direct calculation is foolish.
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Exercise 12.6.2 Suppose that U;, U,, ..., U, are subspaces of a vector space V over F.
Showthat V. =U, @ U, & ... ® U, if and only if

OV=Y",U

(i) U; ﬂz#i Uj ={0}foreachi =1, 2,..., n.

Let F =R and V = R3. Show that there are distinct one dimensional subspaces U;
suchthat Uy + U, + U3z + Uy = V and U; N (U; + Uy) = {0} whenever i, j, k are distinct
integers taken from {1, 2, 3, 4}, but V is not the direct sum of the U;.

Exercise 12.6.3 Let V and W be finite dimensional vector spaces over I, let U be a
subspace of V and let « : V — W be a surjective linear map. Which of the following
statements are true and which may be false? Give proofs or counterexamples.

(1) There exists a linear map 8 : V — W such that 8(v) = a(v)if ve U, and (v) =0
otherwise.

(ii) There exists a linear map y : W — V such that oy is the identity map on W.

(iii) If X is a subspace of V suchthat V = U & X, then W = oU @ o X.

(iv) If Y is a subspace of V suchthat W = aU @ aY,then V =U @Y.

Exercise 12.6.4 Suppose that U and V are vector spaces over F. Show that U x V is a
vector space over IF if we define

(u, v)) + (up, v2) = (u +up, vi +v2) and A(uw, v) = (Au, Av)

in the natural manner.
Let

U={w,0):uelU} and V={0,v):veV}
Show that there are natural isomorphisms’ 6 : U — U and ¢ : V — V. Show that
UeV=UxV.

[Because of the results of this exercise, mathematicians denote the space U x V, equipped
with the addition and scalar multiplication given here, by U @ V. They call U @ V the
exterior direct sum (or the external direct sum).]

Exercise 12.6.5 If C(R) is the space of continuous functions f : R — R and

X={feCR): f(x)= f(=x)},

show that X is subspace of C(R) and find two subspaces Y; and Y, of C(R) such that
CRY=XY,=XdY,butY, NY, ={0}.

Show, by exhibiting an isomorphism, thatif V', W; and W, are subspaces of a vector space
UwithU =V & W, =V & W,, then W) is isomorphic to W,. If V is finite dimensional,
is it necessarily true that W; = W,? Give a proof or a counterexample.

7 Take natural as a synonym for defined without the use of bases.
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Exercise 12.6.6 (A second bite at the cherry.)

(i) Let U be a vector space over F.

If V and W are subspaces of U with U = V @ W show that there is an isomorphism
0 : W — U/V.Deduce that if A, B, C are subspaces of a vector space X over [, then

ADB=A®C=B=C

(where, as usual, B = C means that B is isomorphic to C).
(ii) Let P be the standard real vector space of polynomials on R with real coefficients.
Let

Q,={0€P : Q(x)=x"P(x) forsome P € P}.

Show that Q,, is a subspace of P with P = Q,, for all n.
If A, B, C are subspaces of a vector space X over Fand A @ B = A @ C, does it follow
that B = C? Give reasons for your answer.

Exercise 12.6.7 Let W,, W, and W; be subspaces of a finite dimensional vector space V.
Which of the following statements are true and which are false? Give proofs or counterex-
amples as appropriate.

Q) If V = W, & W,, then dim W3 = dim(W; N W3) + dim(W, N W3).

(i) If dim Wy + dim W, 4+ dim W3 = dim V and

dim(W; N W) = dim(W, N W3) = dim(W3 N W) =0,

thenV =W, & W, & Ws.
(iii) If W, N W, € W3, then W3 /(W) N W) is isomorphic with

(Wi + W + W3)/ (W) + W2).

Exercise 12.6.8 Let P and Q be real polynomials with no non-trivial common factor. If
M is an n x n real matrix and we write A = f(M), B = g(M), show that x is a solution of
ABx = 0 if and only if we can find y and z with Ay = Bz = O such thatx =y + z.

Is the same result true for general n x n real matrices A and B? Give a proof or
counterexample.

Exercise 12.6.9 Let V be a vector space of dimension n over F and consider L(V, V) as a
vector space in the usual way. If « € £(V, V) has rank r, show that

X={BeLlV,V): Ba=0} and Y ={B¢€ L(V,V): af =0}

are subspaces of £(V, V) and find their dimensions.
Suppose that n > r > 1. Is it always true that X = Y ? Is it never true that X = Y? Give
proofs or counterexamples.

Exercise 12.6.10 Let U and V be finite dimensional vector spaces over F and let¢ : U —
V be linear. We take U; to be subspace of U. Which of the following statements are true
and which are false? Give proofs or counterexamples as appropriate.
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) If Uy + U, = Us, then ¢(Uy) + ¢(Uz) = ¢(Us).

(i) If Uy & U, = Us, then ¢(U1) @ ¢(Uz) = ¢(U3).

(iii) If U, € Ui and V) is a subspace of V such that V| @ ¢(U,) = ¢(U3), then there
exists a subspace U; of U such that U; & U, = U; and ¢(U;) = V.

Exercise 12.6.11 Are the following statements about a linear map « : F* — F” true or
false? Give proofs of counterexamples as appropriate.

(1) « is invertible if and only if its characteristic polynomial has non-zero constant
coefficient.

(ii) « is invertible if and only if its minimal polynomial has non-zero constant coefficient.

(iii) « is invertible if and only if & is invertible.

Exercise 12.6.12 Let W be a subspace of a finite dimensional vector space V over F.
Suppose that « is an endomorphism of V such that (W) € W. Let B = a|w be the
restriction of o to V. Show that the minimal polynomial mg of 8 divides the minimal
polynomial m,, of «.

Let F=R and V = R*. Find an « and two subspaces Wy, W, of dimension 2 with
a(W;) € W; such that, writing 8; = a|w,, we have mg, = m, and mg, has degree at least
1, but mg, # mg.

Exercise 12.6.13 [Eigenvalues without determinants] Suppose that U is a vector space
of dimension n over C and let « € L(U, U). Explain, without using any results which
depend on determinants, why there is a monic polynomial P such that P(«) = 0.

Since we work over C, we can write

N
Pty=]]t—up

j=1

forsome u; € C[1 < j < N].Explain carefully why there mustbe some k with1 <k < N
such that uxt — « is not invertible. Let us write & = . Show that there is a non-zero vector
uy, such that

ou = pu.

[If the reader needs a hint, she should look at Exercise 12.2.1 and the rank-nullity theorem
(Theorem 5.5.4). She should note that both theorems are proved without using determinants.
Sheldon Axler wrote an article entitled ‘Down with determinants’ ([3], available on the
web) in which he proposed a determinant free treatment of linear algebra. Later he wrote a
textbook Linear Algebra Done Right [4] to carry out the program.]

Exercise 12.6.14 [A direct proof of Cayley—Hamilton over R] In this question we deal
with the space M, (R) of real n x n matrices. (Any reader interested in the matter should
note that the proof will work over any field.)
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(i) Suppose that B, € M,,(R) and

forallt € R. By looking at matrix entries, or otherwise, show that B, = Oforall0 <r < R.
(ii) Suppose that C,, B, C € M, (R) and

R
tI-C)> Ct =B
r=0
for all # € R. By using (i), or otherwise, show that Cx = 0. Hence show that C, = 0 for all
0 < r < R and conclude that B = 0.
(iii) Let x4(¢) = det(rI — A). Verify that

(1 =AY = 1 — AT+ PA+ A4 A,

and deduce that
n—1

xa(WI — xa(A) = (@l — A)Z B;t/
j=0

for some B; € M,(R).
(iv) Use the formula

(I — A)Adj(tI — A) =det(t] — A)I,

from Section 4.5, to show that
n—1

xa(I = (I —A)Y_ C;t)
j=0
for some C; € M,(R).
Conclude that

n—1

Xa(A)= (I —A)> At/

Jj=0

for some A; € M,(R) and deduce the Cayley—Hamilton theorem in the form y4(A) = 0.

Exercise 12.6.15 Let A be an n x n matrix over I with characteristic polynomial
det(t] — A) = ijtj.
i=0
If A is non-singular and n > 0, show that
AdjA = (=1y"' Y b AT

j=1

Use a limiting argument to show that the result is true for all A.
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Exercise 12.6.16 Let V be vector space over F of dimension n and 7' an endomorphism
of V.If x € V, show that

U ={P(T)x : P apolynomial}

is a subspace of V. If U = V, we say that x is cyclic for T.

(1) If T has a cyclic vector, show that the minimal and characteristic polynomials of T’
coincide.

(ii) If T has a cyclic vector and the eigenvectors of T span V, show that 7" has n distinct
eigenvalues.

(iii) If T has n distinct eigenvalues, show that 7" has a cyclic vector. (If you need a hint,
think for five more minutes and then look at Exercise 4.4.9.)

@iv) If T" = 0 but T"~! # 0, explain why we can find a vector v such that 7"~ 'v = 0
and show that v is cyclic. What are the eigenvalues of 7'?

(v) If T has a cyclic vector, show that an endomorphism S commutes with 7 if and only
if S = Q(T) for some polynomial Q.

(vi) Give an example of two commuting endomorphisms S and 7' such that there does
not exist a polynomial Q with S = Q(T).

Exercise 12.6.17 Let V be a finite dimensional vector space over [F and let ® be a collection
of endomorphisms of V. A subspace U of V is said to be stable under ® if U C U for all
0 € © and O is said to be irreducible if the only stable subspaces under ® are {0} and V.

(i) Show that, if an endomorphism o commutes with every 6 € ©, then ker «, im o and
the eigenspaces

E,={veV :av=Av}

are all stable under ©.

(i) If F = C, show that, if ® is irreducible, the only endomorphisms which commute
with every 6 € © are the scalar multiples of the identity isomorphism ¢.

(iii) Suppose that F = R and V = R?. By thinking geometrically, or otherwise, find an
irreducible ® such that it is not true that the only endomorphisms which commute with
every 6 € © are the scalar multiples of the identity isomorphism ¢.

Exercise 12.6.18 Suppose that V is a vector space over I and «, 8, y € L(V, V) are
projections. Show that o 4+ 8 + y = ¢ implies that

af = pa=yp =Py =ya=ay =0.

Deduce that if « and $ are projections, o + S is a projection if and only if ¢ = Ba = 0.
Exercise 12.6.19 [Simultaneous diagonalisation] Suppose that U is an n-dimensional
vector space over IF and o and B are endomorphisms of U. The object of this question is to
show that there exists a basis ey, e, ..., e, of U such that each e; is an eigenvector of both

« and B if and only if o and B are separately diagonalisable (that is to say, have minimal
polynomials all of whose roots lie in [ and have no repeated roots) and o = Ba.
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(i) (Easy.) Check that the condition is necessary.
(i1) From now on, we suppose that the stated condition holds. If A is an eigenvalue of B,
write

EA)={ec U : Be=re}.

Show that E()) is a subspace of U such that, if e € E()), then e € E()).

(iii) Consider the restriction map «|g(,) : E(A) — E(A). By looking at the minimal
polynomial of |, show that E(A) has a basis of eigenvectors of .

(iv) Use (iii) to show that there is a basis for U consisting of vectors which are eigen-
vectors of both « and 8.

(v) Is the following statement true? If & and § are simultaneously diagonalisable (i.e.
satisfy the conditions of (i)) and we write

EA)={ecU :Be=2xe}, F(u)={feU :ae=ue}

then at least one of the following occurs: F(u) 2 E(A)or E(A) 2 F(uw)or E(A) N F(u) =
{0}. Give a proof or counterexample.

Exercise 12.6.20 Suppose that U is an n-dimensional vector space over [F and o, oy, .. .,
o, are endomorphisms of U. Show that there exists a basis e, e, ..., e, of U such that
each e is an eigenvector of all the «; if and only if the «; are separately diagonalisable
and ojoy = o forall 1 <k, j < m.

Exercise 12.6.21 Suppose that V is a finite dimensional space with a subspace U and that
a € L(V, V) has the property that «U < U.

(i) Show that, if v + U = v, 4+ U, then a(v;) = a(v;). Conclude that the map & :
V/U — U/V given by

au+U)=a)+U

is well defined. Show that & is linear.

(i1) Suppose thate;, e;, ..., e;isabasisforU and ey + U, e 0 + U, ..., e, +Uisa
basis for V/U. Explain why ey, e, ..., e, is abasis for V. If ¢|y : U — U (the restriction
of « to U) has matrix B with respect to the basis e;, e;,...,e,of Uand& : V/U — V/U
has matrix C with respect to the basis e + U, €42+ U, ..., e, + U for V/U, show
that the matrix A of o with respect to the basis ey, e,, . .., €, can be written as

(0

where 0 is a matrix of the appropriate size consisting of zeros and G is a matrix of the
appropriate size.
(iii) Show that the characteristic polynomials satisfy the relation

Xa () = Xaju () xa(t).

Does a similar result hold for minimal polynomials? Give reasons for your answer.
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(iv) Explain why, if V is a finite dimensional vector space over C and o € L(V, V),
we can always find a one-dimensional subspace U with o(U) € U. Use this result and
induction to prove Theorem 12.2.5.

[Of course, this proof is not very different from the proof in the text, but some people will
prefer it.]

Exercise 12.6.22 Suppose that o and  are endomorphisms of a (not necessarily finite
dimensional) vector space U over [F. Show that, if

aff — Ba =1, *
then
ﬁ()[m _ O[m,B — mam—l

for all integers m > 0.

By considering the minimal polynomial of «, show that % cannot hold if U is finite
dimensional.

Let P be the vector space of all polynomials p with coefficients in F. If « is the
differentiation map given by (ap)(¢) = p’(¢), find a 8 such that % holds.
[Recall that [, B] = aB — Ba is called the commutator of « and B.]

Exercise 12.6.23 Suppose that « and 8 are endomorphisms of a vector space U over F
such that

off — Ba =t.

Suppose thaty € U is a non-zero vector such that oy = 0. Let W be the subspace spanned
by y, By, By, . ... Show that By € W and find a simple expression for it. More generally
show that ¢8"y € W and find a simple formula for it.

By using your formula, or otherwise, show that y, By, g%y, ..., B"y are linearly
independent for all n.

Find U, B and y satisfying the conditions of the question.

Exercise 12.6.24 Recall, or prove that, if we deal with finite dimensional spaces, the
commutator of two endomorphisms has trace zero.

Suppose that T is an endomorphism of a finite dimensional space over I with a basis
e[, e, ..., e, such that

Te; c span{eq, e, ..., €;}.

Let S be the endomorphism with Se; = 0 and Se; = e;_; for 2 < j < n. Show that, if
Tr T = 0, we can find an endomorphism such that SR — RS =T.

Deduce that, if y is an endomorphism of a finite dimensional vector space over C, with
Try = 0 we can find endomorphisms « and g such that

y =ap — .
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[Shoda proved that this result also holds for R. Albert and Muckenhoupt showed that it
holds for all fields. Their proof, which is perfectly readable by anyone who can do the
exercise above, appears in the Michigan Mathematical Journal [1].]

Exercise 12.6.25 Let us write M,, for the set of n x n matrices over F.

Suppose that A € M,, and A has 0 as an eigenvalue. Show that we can find a non-singular
matrix P € M, such that P"' AP = B and B has all entries in its first column zero. If B is
the (n — 1) x (n — 1) matrix obtained by deleting the first row and column from B, show
that Tr B¥ = Tr B for all k > 1.

Let C € M,,.By using the Cayley—Hamilton theorem, or otherwise, show that, if Tr C¥ =
Oforall 1 <k < n, then C has 0 as an eigenvalue. Deduce that C = 0.

Suppose that F € M,, and Tr FK=0forall 1 <k <n — 1. Does it follow that F has 0
as an eigenvalue? Give a proof or counterexample.

Exercise 12.6.26 We saw in Exercise 6.2.15 that, if A and B are n x n matrices over [F,
then the characteristic polynomials of AB and B A are the same. By considering appropri-
ate nilpotent matrices, or otherwise, show that AB and BA may have different minimal
polynomials.

Exercise 12.6.27 (i) Are the following statements about an n X n matrix A true or false if
we work in R? Are they true or false if we work in C? Give reasons for your answers.

(a) If P is a polynomial and A is an eigenvalue of P, then P(A) is an eigenvalue of
P(A).

(b) If P(A) = 0 whenever P is a polynomial with P(A) = O for all eigenvalues A
of A, then A is diagonalisable.

(c) If P(A) = 0 whenever P is a polynomial and P(A) = 0O, then A is an eigenvalue

of A.
(ii) We work in C. Let
a d ¢ b 0O 0 0 1
b a d c 1 0 0 O
B={c p o afl ™ 4={0o 1 0 o
d ¢ b a 0O 0 1 O

By computing powers of A, or otherwise, find a polynomial P with B = P(A) and find the
eigenvalues of B. Compute det B.

(iii) Generalise (ii) to n X n matrices and then compare the results with those of Exer-
cise 6.8.29.

Exercise 12.6.28 Let V be a vector space over [F with a basis e;, e, ..., e,. [f o is a
permutation of 1, 2, ..., n we define «, to be the unique endomorphism with
0s€; = €5

for 1 < j <n.If F =R, show that «, is diagonalisable if and only if o2 is the identity
permutation. If F = C, show that «, is always diagonalisable.
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Exercise 12.6.29 Consider V = F" with the usual inner product.
By using an appropriate orthonormal basis, or otherwise (there are lots of ways of doing
this), show that, if E is a subspace of V and a ¢ E, then we can find a § > 0 such that

Ix—all<d=>x¢E.

Show also that, if E is a proper subspace of V (so E # V), then, given any v € V and
any § > 0, we can find a ¢ E with

v —al| <.

Deduce that, given any 1 < p < n, we can find a sequence a, a,, . . . of distinct vectors
in V such that any collection of p members of the sequence is linearly independent, but no
collection of p 4+ 1 members is.

Since all vector spaces over [ of the same dimension are isomorphic, the result holds
for all finite dimensional vector spaces.®

Exercise 12.6.30 (This continuation of Exercise 12.6.29 requires the notion of a Cauchy
sequence in R™ and the knowledge of analysis which goes with it.) Consider V = R” with
the usual inner product.

If E|, E,, ...are proper subspaces of V, show that we can find inductively a, and
6n > 0, with ag = 0 and §y = 1, satisfying the following conditions.

(1) ||an — - || < Sn—l/4'

() [|x—a,|| <8, =>x ¢ E,.

(iii) 8, < 8,—1/4.

Show that the a,, form a Cauchy sequence and deduce that there exists an a € V with
lla, — a|| — 0. Show that ||a; — a|| < &;/3 for each k > 1 and deduce thata ¢ V.

Thus a finite dimensional vector space over R cannot be the countable union of proper
subspaces. (The same argument works for C.)

Exercise 12.6.31 We work in a finite dimensional vector space V over F. Show that any
two subspaces U, U, of the same dimension have a common complementary subspace. In
other words, show that there is a subspace W such that

UieW=UoW=V.

Exercise 12.6.32 Let U and V be vector spaces over [F of dimensions m and n respectively.
Suppose that X and Y are subspaces of U with X C Y, that Z is a subspace of V and that

dmX =r, dmY =5, dimZ=t¢.

Show that the set £, of all « € L(U, V) such that X C kera and «(Y) C Z is a subspace
of L(U, V) with dimension

mn + st —rt —sn.

8 This is an ugly way of doing things, but, as we shall see in the next chapter (for example, in Exercise 13.4.1), we must use some
‘non-algebraic’ property of R and C.
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Exercise 12.6.33 Here is another proof of the diagonalisation theorem (Theorem 12.3.5).
Let V be a finite dimensional vector space over F. If a; € L(V, V) show that the nullities
satisfy

n(arar) < n(op) + n(az)
and deduce that
n(aas - - o) < n(ay) +nlon) + - - - + nloy).

Hence show that, if @ € L(V, V) satisfies p(«) = 0 for some polynomial p which factorises
into distinct linear terms, then « is diagonalisable.

Exercise 12.6.34 In our treatment of the Jordan normal form we worked over C. In this
question you may not use any result concerning C, but you may use the theorem that every
real polynomial factorises into linear and quadratic terms.

Let o be an endomorphism on a finite dimensional real vector space V. Explain briefly
why there exists a real monic polynomial m with m(a) = 0 such that, if f is a real
polynomial with f(«) = 0, then m divides f.

Show that, if k is a non-constant polynomial dividing m, there is a non-zero subspace
W of V such that k(W) = {0}. Deduce that V has a subspace U of dimension 1 or 2 such
that «(U) C U (that is to say, U is an a-invariant subspace).

Let a be the endomorphism of R* whose matrix with respect to the standard basis is

0O 1 0 O
0O 0 1 o0
0O 0 o0 1
-1 0 -2 0

Show that R* has an a-invariant subspace of dimension 2 but no a-invariant subspaces of
dimension 1 or 3.

Exercise 12.6.35 Suppose that V is a finite dimensional space over Fanda : V — Visa
linear map such that " = ¢. Show that, if V) is a subspace with « V| C V, then there is a
subspace V, such that V =V, @ V, and a(V;) C V5.

[Hint: Let 7 be a projection with (V) C V; and 7u = u for all u € V;. Consider the map
p defined by p(v) =n~! Z;'.;(l) a/mai(v).]

Exercise 12.6.36 (i) Let U be a vector space over F and let @ : U — U be a linear map
such that ¢ = 0 for some m (that is to say, a nilpotent map). Show that

t—a)t+ata®+ - +a" =1

and deduce that ¢ — « is invertible.
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(i1) Let J,,(A) be an m x m Jordan block matrix over [, that is to say, let

A1 0 0 ... 0 O

O x 1 0 ... 0 O

0 0 A 1 0 0
Im(R) =

0 0 0 0 ... x 1

0 0 0 0 ... 0 A

Show that J,,()) is invertible if and only if A # 0. Write down J(W)™! explicitly in the
case when A # 0.

(iii) Use the Jordan normal form theorem to show that, if U is a vector space over C and
o : U — U is a linear map, then « is invertible if and only if the equation ax = 0 has a
unique solution.
[Part (iii) is for amusement only. It would require a lot of hard work to remove any suggestion
of circularity.]

Exercise 12.6.37 Let Q, be the space of all real polynomials in two variables

Qx, y) = ch],kx y

j=0 k=0

of degree at most n in each variable. Let

a a
(@Q)(x,y) = <£ + 5) 0(x.,y), BAMx,y)=0x+1y+1).

Show that « and 8 are endomorphisms of Q,, and find the associated Jordan normal forms.
[It may be helpful to look at simple cases, but just looking for patterns without asking the
appropriate questions is probably not the best way of going about things.]

Exercise 12.6.38 We work over C. Let A be an invertible n x n matrix. Show that X is an
eigenvalue of A if and only if A~ is an eigenvalue of A~'. What is the relationship between
the algebraic and geometric multiplicities of A as an eigenvalue of A and the algebraic
and geometric multiplicities of A~! as an eigenvalue of A~!? Obtain the characteristic
polynomial of A~! in terms of the characteristic polynomial of A. Obtain the minimal
polynomial of A~! in terms of the minimal polynomial of A. Give reasons.

Exercise 12.6.39 Given a matrix in Jordan normal form, explain how to write down the
associated minimal polynomial without further calculation. Why does your method work?

Is it true that two n X n matrices over C with the same minimal polynomial must have
the same rank? Give a proof or counterexample.

Exercise 12.6.40 By first considering Jordan block matrices, or otherwise, show that every
n x n complex matrix is conjugate to its transpose A7 (in other words, there exists an
invertible n x n matrix P such that A” = PAP™").
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Exercise 12.6.41 We work with n x n matrices over C. We say that an n x n matrix U is
unipotent if U — I is nilpotent.

(i) Show that U is unipotent if and only if its only eigenvalue is 1.

(ii) If A is an invertible n x n matrix, show, by considering the Jordan normal form, that
there exists an invertible matrix P such that

PAP'=Dy+ N

where Dy is an invertible diagonal matrix, N is an upper triangular matrix with zeros on
the diagonal and DoN = N Dy.

(iii) If we now set D = P~'Dy P, show that U = D~'A is unipotent.

(iv) Conclude that any invertible matrix A can be written in the form A = DU where D
is diagonalisable, U is unipotent and DU = U D.

(v) Is it true that every n X n matrix A can be written in the form A = DU where D is
diagonalisable, U is unipotent and DU = U D? Is it true that, if an n X n matrix A can be
written in the form A = DU where D is diagonalisable, U is unipotent and DU = U D,
then A is invertible? Give reasons for your answers.

Exercise 12.6.42 Let«, § € L(U, U), where U is a finite dimensional vector space over
C. Show that, if «f = Ba, then we can triangularise the two endomorphisms simultane-
ously. In other words, we can find a basis ey, ey, .. ., €, such that

ae,, fe, € span{e, e, ..., e}

If we can triangularise «, 8 € L(U, U) simultaneously, does it follow that ¢ = Ba?
Give reasons for your answer.
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Vector spaces without distances

13.1 A little philosophy

There are at least two ways that the notion of a finite dimensional vector space over R or
C can be generalised. The first is that of the analyst who considers infinite dimensional
spaces. The second is that of the algebraist who considers finite dimensional vector spaces
over more general objects than R or C.

It appears that infinite dimensional vector spaces are not very interesting unless we
add additional structure. This additional structure is provided by the notion of distance or
metric. It is natural for analysts to invoke metric considerations when talking about finite
dimensional spaces, since they expect to invoke metric considerations when talking about
infinite dimensional spaces.

Itis also natural for numerical analysts to talk about distances, since they need to measure
the errors in their computations, and for physicists to talk about distances, since they need
to measure the results of their experiments.

Algebraists dislike mixing up concepts in this way. They point out that many results in
vector space theory from Desargues’ theorem (see Exercise 13.4.9) to determinants do not
depend on the existence of a distance and that it is likely that the most perspicacious way
of viewing these results will not involve this extraneous notion. They will also point out
that many generalisations of the idea of vector spaces (including the ones considered in this
chapter) produce structures which do not support a linked metric.'

In Chapters 14 and 15 we shall plunge eagerly into the world of distances, but in this
chapter we look at the world through the eyes of the algebraist. Although I hope the reader
will think about the contents of this chapter, she should realise that it only scratches the
surface of its subject.

13.2 Vector spaces over fields

The simplest generalisation of the real and complex number systems is the notion of a field,
that is to say an object which behaves algebraically like those two systems. We formalise
this idea by writing down an axiom system.

! They may support metrics, but these metrics will not reflect the algebraic structure.

329
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Definition 13.2.1 A field (G, +, x) is a set G containing elements 0 and 1, with 0 # 1, for
which the operations of addition and multiplication obey the following rules (we suppose
that a, b, ¢ € G).

(Ha+b=>b+a.

(i a+b)+c=a+b+c).

(iiya+ 0 =a.

(iv) Given a, we can find —a € G with a + (—a) = 0.

(vVaxb=>bxa.

i)(axb)xc=ax (b xc)

ii)a x 1 = a.

(viii) Givena # 0, we can finda™" € Gwitha x a™! = 1.

(ixYax(b+c)=axb+a xc.

We write ab = a x b and refer to the field G rather than to the field (G, +, x). The
axiom system is merely intended as background and we shall not spend time checking that
every step is justified from the axioms.”

It is easy to see that the rational numbers @ form a field and that, if p is a prime, the
integers modulo p give rise to a field which we call Z,,.

Exercise 13.2.2 (i) Write down addition and multiplication tables for Z,. Check that
x+x=0 s0x =—x forall x € 7.
(@) If G is a field which satisfies the condition 1 + 1 # 0, show that x = —x = x = 0.

Exercise 13.2.3 We work in a field G.

(i) Show that, if cd = 0, then at least one of ¢ and d must be zero.

(i) Show that ifa2 = b2, then a = b or a = —b (or both).

(@) If G is a field with k elements which satisfies the condition 1 + 1 # 0, show that k
is odd and exactly (k + 1)/2 elements of G are squares.

(iv) How many elements of Z, are squares?

If G is a field, we define a vector space U over G by repeating Definition 5.2.2 with F
replaced by G. All the material on solution of linear equations, determinants and dimension
goes through essentially unchanged. However, in general, there is no analogue of our work
on Euclidean distance and inner product.

One interesting new vector space that turns up is described in the next exercise.

Exercise 13.2.4 Check that R is a vector space over the field Q of rationals if we
define vector addition + and scalar multiplication x in terms of ordinary addition + and
multiplication x on R by

x+y=x+4+y, Axx=Axx
forx, yeR 1 eQ.
2 But I shall not lie to the reader and, if she wants, she can check that everything is indeed deducible from the axioms. If you are
going to think about the axioms, you may find it useful to observe that conditions (i) to (iv) say that (G, +) is an Abelian group

with 0 as identity, that conditions (v) to (viii) say that (G \ {0}, x) is an Abelian group with 1 as identity and that condition (ix)
links addition and multiplication through the ‘distributive law’.
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The world is divided into those who, once they see what is going on in Exercise 13.2.4,
smile a little and those who become very angry.’ Once we are clear what the definition
means, we replace 4+ and x by + and x.

The proof of the next lemma requires you to know about countability.

Lemma 13.2.5 The vector space R over Q is infinite dimensional.

Proof If e, ey, ..., e, € R, then, since Q, and so Q" is countable, it follows that

n
E=1> "1jej:2;€Q
j=1

is countable. Since R is uncountable, it follows that R ## E. Thus no finite set can
span R. O

Linearly independent sets for the vector space just described turn up in number theory
and related disciplines.

The smooth process of generalisation comes to a halt when we reach eigenvalues. It
remains true that every root of the characteristic equation of an n x n matrix corresponds
to an eigenvalue, but, in many fields, it is not true that every polynomial has a root.

Exercise 13.2.6 (i) Suppose that we work over a field G in which 1 + 1 # 0. Let

= (0 o)

with a # 0. Show that there exists an invertible 2 x 2 matrix M with MAM ™" diagonal if
and only if t* = a has a solution.

(i) What happens ifa = 0?

(iii) Does a suitable M exist if G = Q anda = 2?

(iv) Suppose that G is a finite field with 1 + 1 # 0 (for example, G = Z, with p > 3).
Use Exercise 13.2.3 to show that we cannot diagonalise A for all non-zero a.

(v) Suppose that we drop the condition in (i) and consider G = Z,. Can we diagonalise

0 1
= ?
a=(1 o)

Find an explicit invertible M such that MAM ™" is lower triangular.

Give reasons.

There are many other fields besides the ones just discussed.

Exercise 13.2.7 Consider the set 73. Suppose that we define addition and multiplication
for Z%, in terms of standard addition and multiplication for Z,, by

(a,b)+(c,d)=(a+c,b+d),
(a,b) x (c,d) = (ac + bd, ad + bc + bd).

3 Not a good sign if you want to become a pure mathematician.
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Write out the addition and multiplication tables and show that Z% is a field for these
operations. How many of the elements are squares?

[Secretly, (a, b) = a + bw with w? =1+ wandthereisa theory which explains this choice,
but fiddling about with possible multiplication tables would also reveal the existence of this

field.]

The existence of fields in which 2 = 0 (where we define 2 = 1 + 1) such as Z, and the
field described in Exercise 13.2.7 produces an interesting difficulty.

Exercise 13.2.8 (i) If G is a field in which 2 # 0, show that every n x n matrix over G
can be written in a unique way as the sum of a symmetric and an antisymmetric matrix.
(That is to say, A = B 4+ C with BT = Band CT = —C.)

(if) Show that an n x n matrix over Z, is antisymmetric if and only if it is symmetric.
Give an example of a 2 x 2 matrix over Z, which cannot be written as the sum of a
symmetric and an antisymmetric matrix. Give an example of a 2 x 2 matrix over Z, which
can be written as the sum of a symmetric and an antisymmetric matrix in two distinct
ways.

Thus, if you wish to extend a result from the theory of vector spaces over C to a vector
space U over a field G, you must ask yourself the following questions.

(1) Does every polynomial in G have a root? (If it does we say that G is algebraically
closed.)

(2) Is there a useful analogue of Euclidean distance? If you are an analyst, you will then
need to ask whether your metric is complete (that is to say, every Cauchy sequence
converges).

(3) Is the space finite or infinite dimensional?

(4) Does G have any algebraic quirks? (The most important possibility is that 2 = 0.)

Sometimes the result fails to transfer. It is not true that every endomorphism of finite
dimensional vector spaces V over G has an eigenvector (and so it is not true that the
triangularisation result Theorem 12.2.5 holds) unless every polynomial with coefficients G
has a root in G. (We discuss this further in Exercise 13.4.3.)

Sometimes it is only the proof which fails to transfer. We used Theorem 12.2.5 to
prove the Cayley—Hamilton theorem for C, but we saw that the Cayley—Hamilton theorem
remains true for R although the triangularisation result of Theorem 12.2.5 now fails. In fact,
the alternative proof of the Cayley—Hamilton theorem given in Exercise 12.6.14 works for
every field and so the Cayley—Hamilton theorem holds for every finite dimensional vector
space U over any field. (Since we do not know how to define determinants in the infinite
dimensional case, we cannot even state such a theorem if U is not finite dimensional.)

Exercise 13.2.9 Here is another surprise that lies in wait for us when we look at general
fields.
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(i) Show that, if we work in Z,,
2 +x=0

for all x. Thus a polynomial with non-zero coefficients may be zero everywhere.
(ii) Show that, if we work in any finite field, we can find a polynomial with non-zero
coefficients which is zero everywhere.

The reader may ask why I do not prove all results for the most general fields to which
they apply. This is to view the mathematician as a worker on a conveyor belt who can always
find exactly the parts that she requires. It is more realistic to think of the mathematician as
a tinkerer in a garden shed who rarely has the exact part she requires, but has to modify
some other part to make it fit her machine. A theorem is not a monument, but a signpost
and the proof of a theorem is often more important than its statement.

We conclude this section by showing how vector space theory gives us information
about the structure of finite fields. Since this is a digression within a digression, I shall use
phrases like ‘subfield’ and ‘isomorphic as a field” without defining them. If you find that
this makes the discussion incomprehensible, just skip the rest of the section.

Lemma 13.2.10 Let G be a finite field. We write
k=1+14---+1
—
k
for k a positive integer. (Thus 0 = 0and 1 = 1.)
(i) There is a prime p such that
H={ :0<r<p-1}

is a subfield of G and H is isomorphic as a field to Z,,.
(iii) G may be considered as a vector space over H.
(iv) There is an n > 1 such that G has exactly p" elements.

Thus we know, without further calculation, that there is no field with 22 elements. It can
be shown that, if p is a prime and 7 a strictly positive integer, then there does, indeed, exist
a field with exactly p" elements, but a proof of this would take us too far afield.

Proof of Lemma 13.2.10 (i) Since G is finite, there must exist integers u and v with
0 < v < u such that # = v and so, setting w = u — v, there exists an integer w > 0 such
that w = 0. Let p be the least strictly positive integer such that p = 0. We must have p
prime, since, if | <r <s < p,

p=rs=0=rs=r=0 andlor §=0= s = p.

(i1) Suppose that r and s are integers with r > s > 0 and ¥ = 5. We know thatr — s =
kp + g for some integer k > 0 and some integer ¢ with p — 1 > g > 0, so

O=F—5=r—s=kp+q=4,
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sog = 0and r = s modulo p. Conversely, if r = s modulo p, then an argument of a similar
type shows that ¥ = 5. We have established a bijection [r] <> ¥ which matches the element
[r] of Z,, corresponding to the integer r to the element 7. Since 7s = F§ andr +s = 7 + 3,
this bijection preserves addition and multiplication.

(iii) Just as in Exercise 13.2.4, any field H with subfield K may be considered as a
vector space over K by defining vector addition to correspond to ordinary field addition
for H and multiplication of a vector in H by a scalar in K to correspond to ordinary field
multiplication for H.

(iv) Consider G as a vector space over H. Since G is finite, it has a finite spanning set
(for example, G itself) and so is finite dimensional. Let ey, e,, . . ., e, be a basis. Then each
element of G corresponds to exactly one expression

D aje; witha; € H[1 < j <n]
j=1

and so G has p" elements. O

The theory of finite fields has applications in the theory of data transmission and storage.
(We discussed ‘secret sharing’ in Section 5.6 and the next section discusses an error
correcting code, but many applications require deeper results.)

13.3 Error correcting codes

In this section we use vector spaces over Z; to discuss some simple error correcting codes.
We start with some easy exercises to get the reader used to working with Z,.

Exercise 13.3.1 Do Exercise 13.2.2 if you have not already done it.

If U is a vector space over the field 7, show that a subset W of U is a subspace if and
only if

@H0e Wand

(fu,veW =>u+veW.

Exercise 13.3.2 Show that the following statements about a vector space U over the field
Z, are equivalent.

(i) U has dimension n.

(ii) U is isomorphic to 7 (that is to say, there is a linear map o : U — 75 which is a
bijection).

(iii) U has 2" elements.

Exercise 13.3.3 Ifp € Z, show that the mapping o : 7, — 7 defined by

ale) = Z pjej
j=1
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is linear. (In the language of Sections 11.3 and 11.4, we have a € (Z) the dual space
of Z5.)
Show, conversely, that, if « € (Z3)', then we can find a p € Z5 such that

a(e) = ijej.
Jj=1

Early computers received their instructions through paper tape. Each line of paper tape
had a pattern of holes which may be thought of as a ‘word” x = (x1, x2, ..., x3) with x;
either taking the value O (no hole) or 1 (a hole). Although this was the fastest method of
reading in instructions, mistakes could arise if, for example, a hole was mispunched or a
speck of dust interfered with the optical reader. Because of this, xg was used as a check
digit defined by the relation

Xi+x+---+x3=0 (mod 2).

The input device would check that this relation held for each line. If the relation failed for
a single line the computer would reject the entire program.

Hamming had access to an early electronic computer, but was low down in the priority
list of users. He would submit his programs encoded on paper tape to run over the weekend,
but often he would have his tape returned on Monday because the machine had detected
an error in the tape. ‘If the machine can detect an error’ he asked himself ‘why can the
machine not correct it?” and he came up with the following idea.

Hamming’s scheme used seven of the available places so his words had the form
c=(ci, ¢, ..., c7) € {0, 1}7. The codewords* ¢ are chosen to satisfy the following three
conditions, modulo 2,

ci+c+ces+c7=0
ct+czt+cg+cr=0
cs+c5+ce+c7=0.
By inspection, we may choose c3, cs, ¢ and ¢ freely and then ¢, ¢; and ¢4 are completely
determined.
Suppose that we receive the string x € F]. We form the syndrome (z1, 22, z4) € F3
given by
1 =X+ X3+ X5+ X7
=X+ X3+ X6+ x7
24 = X4+ X5 + X6 + X7
where our arithmetic is modulo 2. If x is a codeword, then (z1, z2, z4) = (0, 0, 0). If one

error has occurred then the place in which x differs from c is given by z; + 2z, + 474 (using
ordinary addition, not addition modulo 2).

4 There is no suggestion of secrecy here or elsewhere in this section. A code is simply a collection of codewords and a codeword
is simply a permitted pattern of zeros and ones. Notice that our codewords are row vectors.
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Exercise 13.3.4 Construct a couple of examples of Hamming codewords ¢ and change
them in one place. Check that the statement just made holds for your examples.

Exercise 13.3.5 Suppose that we use eight hole tape with the standard paper tape code
and the probability that an error occurs at a particular place on the tape (i.e. a hole
occurs where it should not or fails to occur where it should) is 107, errors occurring
independently of each other. A program requires about 10000 lines of tape (each line
containing eight places) using the paper tape code. Using the Poisson approximation,
direct calculation (possible with a hand calculator, but really no advance on the Poisson
method), or otherwise, show that the probability that the tape will be accepted as error free
by the decoder is less than 0.04%.

Suppose now that we use the Hamming scheme (making no use of the last place in
each line). Explain why the program requires about 17500 lines of tape but that any
particular line will be accepted as error free and correctly decoded with probability about
1 — (21 x 1078) and the probability that the entire program will be accepted as error free
and be correctly decoded is better than 99.6%.

Hamming’s scheme is easy to implement. It took a little time for his company to realise
what he had done,’ but they were soon trying to patent it. In retrospect, the idea of an error
correcting code seems obvious (Hamming’s scheme had actually been used as the basis of
a Victorian party trick) but Hamming’s idea opened up an entirely new field.

Why does the Hamming scheme work? It is natural to look at strings of Os and 1s as row
vectors in the vector space Z7 over the field Z,. Let us write

1 01 0 1 0 1
A=|10 1 1 0 0 1 1 *
0 0 0 1 1 1 1

and lete; € Zg be the row vector with 1 in the ith place and 0 everywhere else.

Exercise 13.3.6 We use the notation just introduced.

(i) Show that ¢ is a Hamming codeword if and only if AcT = 0 (working in Z»).

(@) If j = a1 + 2ay + 4as in ordinary arithmetic with a,, a;, as € {0, 1} show that,
working in 7,

5 Experienced engineers came away from working demonstrations muttering ‘I still don’t believe it’.

6 When Fillipo Brunelleschi was in competition to build the dome for the Cathedral of Florence he refused to show his plans
‘... proposing instead . .. that whosoever could make an egg stand upright on a flat piece of marble should build the cupola,
since thus each man’s intellect would be discerned. Taking an egg, therefore, all those craftsmen sought to make it stand
upright, but not one could find the way. Whereupon Filippo, being told to make it stand, took it graciously, and, giving one end
of it a blow on the flat piece of marble, made it stand upright. The craftsmen protested that they could have done the same;
but Filippo answered, laughing, that they could also have raised the cupola, if they had seen his design.” Vasari Lives of the
Artists [31].
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Deduce that, if ¢ is a Hamming codeword,
ap
Alc+e J-)T =|a
as

Explain why the statement made in the paragraph preceding Exercise 13.3.4 holds.

Exercise 13.3.7 We can make a few more observations. We take €; as in the previous
exercise.
O If1 <i,j<Tandi # j, explain why AeiT #+ AeJT and deduce that

Ae] +ef)#0". *

Conclude that, if we make two errors in transcribing a Hamming codeword, the result will
not be a Hamming codeword. (Thus the Hamming system will detect two errors. However,
you should look at the second part of the question before celebrating.)

@) If1 <i,j <Tandi # j, show, by using %, or otherwise, that

Ae] +ef) = Ae]

Jor some k # i, j. Show that, if we make three errors in transcribing a Hamming codeword,
the result will be a Hamming codeword. Deduce, or prove otherwise, that, if we make two
errors, the Hamming system will indeed detect that an error has been made, but will always
choose the wrong codeword.

The Hamming code is a parity check code.

Definition 13.3.8 If A is an r x n matrix with values in Z, and C consists of those row
vectors ¢ € 72 with Ac” € 07, we say that C is a parity check code with parity check
matrix A.

If W is a subspace of Z; we say that W is a linear code with codewords of length n.

Exercise 13.3.9 We work in Zi. By using Exercise 13.3.3, or otherwise, show that C C 7
is a parity code if and only if we can find o; € (Z)' [1 < j < r] such that

ceC&oajc=0 foralll <j<r.
Exercise 13.3.10 Show that any parity check code is a linear code.

Our proof of the converse for Exercise 13.3.9 makes use of the idea of an annihilator.
(See Definition 11.4.11. The cautious reader may check that everything runs smoothly
when F is replaced by Z,, but the more impatient reader can accept my word.)

Theorem 13.3.11 Every linear code is a parity check code.

Proof Let us write V = 77 and let U be a linear code, that is to say, a subspace of V. We
look at the annihilator (called the dual code in coding theory)

Wo={aeU : a(w)=0forallwe C}.
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Automatically W is a subspace of V' and Lemma 11.4.14 gives us W = W%, Taking
a basis o, op, . . ., o, for WO we have

velU o oqu=0 foralla € W°

Sau=0 forl <j<r.
Thus, using Exercise 13.3.9, we see that U is a parity check code. ]

Exercise 13.3.12 Consider a parity check code C of length n given by an n X r parity
check matrix A of rank r. Show, by using some version of the rank-nullity theorem, or
otherwise, that C has dimension n — r and so contains 2"~ members.

Exercise 13.3.13 Suppose that C is a linear code of dimension r with codewords of
length n.

(i) Show, by thinking about elementary row and column operations, that (possibly after
interchanging the order in which we write the elements of vectors) we can find a basis e(j)
for C inwhich ex(j) = 8kj for1 < j, k <r.

(ii) Find such a basis for the Hamming code.

(iii) Explain why the map o : Z), — 7, given by

r
a(xy, X2, ) = Y xe())
j=1

is an injective linear map. Show that if we write
ax = (X, fx)

then B : 7, — 75" is a linear map.
(iv) Consider the map B defined in (iv). Is B necessarily injective if 2r > n? Is B
necessarily surjective if n > 2r ? Give proofs or counterexamples.

Looking at Exercise 13.3.5 again, we see that the Hamming code worked well because
the probability of an error involving a particular hole (or to use the more modern terminology
bit) was already fairly small.

Exercise 13.3.14 We consider the same setup as in Exercise 13.3.5. Suppose that the
probability that an error occurs at a particular place is 107" and we use the Hamming
scheme (making no use of the last place in each line). Show that the probability that the
tape will be correctly read by the decoder is negligible.

Hamming’s scheme ceases to be useful when the probability of error is high and an enor-
mous amount of work has been done to find codes that will work under these circumstances.
(We give a simple example in Exercise 13.4.6.)

Exercise 13.3.15 Why is it impossible to recover the original message when the probability
of an error in one bit is 1/2 (independent of what happens to the other bits)? Why are we
only interested in error probabilities p with p < 1/2?
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A different problem arises if the probability of error is very low. Observe that an n bit
message is swollen to about 7n/4 bits by Hamming encoding. Such a message takes 7/4
times as long to transmit and its transmission costs 7/4 times as much money. Can we use
the low error rate to cut down the length of of the encoded message?

A simple generalisation of Hamming’s scheme does just that.

Exercise 13.3.16 Suppose that j is an integer with 1 < j < 2" — 1. Then, in ordinary
arithmetic, j has a binary expansion

Jj= Z a;j(n)2!
i—1

where a;j(n) € {0, 1}. We define A, to be the n x (2" — 1) matrix with entries a;;(n).
(i) Check that that A; = (1),
1 0 1
A2 = <0 1 1>

and A3 = A where A is the Hamming matrix defined in % on page 336. Write down Ay.
(i) By looking at columns which contain a single 1, or otherwise, show that A, has
rank n.
(iii) (This is not needed later.) Show that

A, al A
A — n n n
ntl <cn 1 bn>

with a,, the row vector of length n with 0 in each place, b, the row vector of length 2"~ — 1
with 1 in each place and ¢, the row vector of length 2"~' — 1 with 0 in each place.

Exercise 13.3.17 Let A, be defined as in the previous exercise. Consider the parity check
code C,, of length 2" — 1 with parity check matrix A,,.

Show how, if a codeword is received with a single error, we can recover the original
codeword in much the same way as we did with the original Hamming code. (See the
paragraph preceding Exercise 13.3.4.)

How many elements does C,, have?

Exercise 13.3.18 [ need to transmit a message with 5 x 107 bits (that is to say, Os and 15).
If the probability of a transmission error is 1077 for each bit (independent of each other),
show that the probability that every bit is transmitted correctly is negligible.

If, on the other hand, I split the message up in to groups of 57 bits, translate them into
Hamming codewords of length 63 (using Exercise 13.3.13 (iv) or some other technique)
and then send the resulting message, show that the probability of the decoder failing to
produce the correct result is negligible and we only needed to transmit a message about
63/57 times as long to achieve the result.
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13.4 Further exercises

Exercise 13.4.1 If G is a finite field, show that the vector space G? over G is the union of
a finite collection of one dimensional subspaces. If G is an infinite field, show that G? is
not the union of a finite collection of one dimensional subspaces. If G = R, show that G?
is not the union of a countable collection of one dimensional subspaces.

Exercise 13.4.2 (i) Let G be a field such that the equation x> = —1 has no solution in G.
Prove that, if x and y are elements of G such that x> + y> = 0, then x = y = 0.
Prove that G? is made into a field by the operations

X, N+ w=&+y z+w),
(x,y) x (z,w) = (xz — yw, xw + yz).

(ii) Let p be a prime of the form 4m + 3. By using Fermat’s little theorem (see Exer-
cise 6.8.33), or otherwise, show that —1 is not a square modulo p. Deduce that there is a
field with exactly p? elements.

Exercise 13.4.3 [Eigenvalues and algebraic closure] In this question, K and G are fields.
(1) Suppose that K is algebraically closed. If V is a finite dimensional vector space over
K, show that every endomorphism « : V — V has an eigenvalue (and so an eigenvector).
(ii) Suppose that every endomorphism « : G" — G" has an eigenvalue (and so an
eigenvector) for all n > 1. By considering matrices of the form

0 1 0 o ... 0 0

0 0 1 o ... 0 0

0 0 0 1 .. 0 0

0 0 0 0o ... 0 1
—Aay —aq —day —das . —dap—2 —Aan—1

or otherwise, show that every non-constant polynomial with coefficients in G has a root
in G.
(iii) Suppose that G is a field such that every endomorphism « : V — V of a finite
dimensional vector space over G has an eigenvalue. Explain why G is algebraically closed.
(iv) Show that the analogue of Theorem 12.2.5 is true for all V with F replaced by G if
and only if G is algebraically closed.

Exercise 13.4.4 (Only for those who share the author’s taste for this sort of thing. You will
need to know the meaning of ‘countable’, ‘complete’ and ‘dense’.)

We know that field R is complete for the usual Euclidean distance, but is not algebraically
closed. In this question we give an example of a subfield of C which is algebraically closed,
but not complete for the usual Euclidean distance.

(i) Let X C C. If G is the collection of subfields of C containing X, show that gen X =
Ngeg G is a subfield of R containing X.
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(1) If X is countable, show that gen X is countable.

(iii) If Y € C, is countable, show that the set Py of polynomials with coefficients in ¥
is countable and deduce that the set of roots of polynomials in Py is countable.

(iv) Deduce that, given a countable subfield H of C, we can find a countable subfield H'
of C containing all the roots of polynomials with coefficients in H.

(v) Let Hy = Q. By (iv), we can find countable subfields H,, of C such that H,, contains
all the roots of polynomials with coefficients in H,,_; [n > 1]. Show that H = U2 JH, is
countable and algebraically closed.

(vi) Show that H; is dense in C and so H is. On the other hand, H is countable so H £ C.
Deduce that H is not complete in the usual metric.

Exercise 13.4.5 [The Hill cipher] In a simple substitution code, letters are replaced by
other letters, so, for example, A is replaced by C and B by Q and so on. Such secret codes
are easy to break because of the statistical properties of English. (For example, we know
that the most frequent letter in a long message will probably correspond to E.) One way
round this is to substitute pairs of letters so that, for example, AN becomes RQ and AM
becomes T'C. (Such a code is called a digraph cipher.) We could take this idea further
and operate on n letters at a time (obtaining a polygraphic cipher), but this requires an
enormous codebook. It has been suggested that we could use matrices instead.

(i) Suppose that our alphabet has five elements which we write as 0, 1, 2, 3, 4. If we
have amessage b1b; . . . by,, we form the vectors b; = (by;_1, sz)T and consider ¢; = Ab;
where we do our arithmetic modulo 5 and A is an invertible 2 x 2 matrix. The encoded
message is ¢1¢; . . . ¢2, Where ¢; = (c2j_1, ¢2;)7.

If
2 4
A=
(3)

n =3 and b1b2b3b4b5b6 = 340221, show that C1Cy = 20 and find C1C2C3C4C5Cq.

Find A~! and use it to recover by brbzbsbsbe from cjcaczcacsc.

In general, we want to work with an alphabet of p elements (and so do arithmetic modulo
p) where p is a prime and to break up our message into vectors of length n. The next part
of the question investigates how easy it is to find an invertible n x n matrix ‘at random’.

(i) We work in the vector space Z’;,. If e;, ey, ..., e, are linearly independent and we
choose a vector u at random,’ show that the probability that

u¢span{e|7 e25 M) er}

is 1 — p"~". Hence show that, if we choose n vectors from Z’; atrandom, the probability that
they form a basis is []'_,(1 — p~"). Deduce that, if we work in Z, and choose the entries
of an n x n matrix A at random, the probability that A is invertible is []_,(1 — p™).

7 We say that we choose ‘at random’ from a finite set X if each element of X has the same probability of being chosen. If we
make several choices ‘at random’, we suppose the choices to be independent.
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(iii) Show, by using calculus, that log(1 — x) > —x for 0 < x < 1. Hence, or otherwise,
show that

[Ta-»") =exp (—#) -
r=1 p -1

Conclude that, if we choose a matrix A at random, it is quite likely to be invertible. (If it is
not, we just try again until we get one which is.)

(iv) We could take p = 29 (giving us 26 letters and 3 other signs). If n is reasonably
large and A is chosen at random, it will not be possible to break the code by the simple
statistical means described in the first paragraph of this question. However, the code is not
secure by modern standards. Suppose that you know both a message b b,bs . . . by, and its
encoding cjcyc3 . . . ¢y. Describe a method which has a good chance of deducing A and
explain why it is likely to work (at least, if m is substantially larger than n).

Although the Hill cipher by itself does not meet modern standards, it can be combined
with modern codes to give an extra layer of security.

Exercise 13.4.6 Recall, from Exercise 7.6.14, that a Hadamard matrix is a scalar multiple
of an n x n orthogonal matrix with all entries 1.

(i) Explain why, if A is an m x m Hadamard matrix, then m must be even and any two
columns will differ in exactly m /2 places.

(i1) Explain why, if you are given a column of 4k entries with values &1 and told that
it comes from altering at most kK — 1 entries in a column of a specified 4k x 4k Hadamard
matrix, you can identify the appropriate column.

(iii) Given a 4k x 4k Hadamard matrix show how to produce a set of 4k codewords
(strings of Os and 1s) of length 4k such that you can identify the correct codeword provided
that there are less than k — 1 errors.

Exercise 13.4.7 In order to see how effective the Hadamard codes of the previous question
actually are we need to make some simple calculus estimates.

(i) If we transmit n bits and each bit has a probability p of being mistransmitted, explain
why the probability that we make exactly r errors is

n -
pPr = ( )pr(l - P)nﬂ .
r

(i1) Show that, if » > 2np, then

Pr
Pr—1

IA

N =

Deduce that, if n > m > 2np,

n
Pr(m errors or more) = Z Pr <2pm.
m
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(iii) Consider a Hadamard code based on a 128 x 128 = 27 x 27 Hadamard matrix.
(Recall that Exercise 7.6.14 gave a simple procedure for constructing 2" x 2" Hadamard
matrices.) Suppose that p = 1/20. Show, using (ii) and Stirling’s formula (or direct calcu-
lation if you do not know Stirling’s formula, but do have a good scientific calculator), that
the probability of having 31 errors or more when you send a codeword is negligible. (On
the other hand, your message will be 128/7 & 18.3 times longer in the coded form than in
an unencoded form.)

Exercise 13.4.8 (A simple remark.) Although ZJ does not carry distances linked to its
structure as a vector space over Z;, it does have distances associated with it. Let
do(x. y) = 0 1fx_).7
1 otherwise

and d; (X, y) equal the number of places in which x and y disagree. (We call d, the discrete
metric and d, the Hamming metric.)

Prove the following results for j = 0 and j = 1. (Throughout, x, y and z are general
elements of Z.)

(i) d;(x,y) = 0 with equality if and only if x = y.

(ii) d;(x, ) = d; (. %).

(i) d;(x,y) + dj(y, z) > d;(x, z).

Show also that ndy(x, y) > di(x,y) > do(X,y).

Exercise 13.4.9 Show that, if we use the appropriate notion of a line, Desargues’ theorem
(see Theorem 2.1.5) holds in any vector space over any field.

Exercise 13.4.10 (i) Let p be a prime. If ay, az, ..., ap41 € Z, show that we can find
l=r<s<p+1 suchthath:,aj =0.
(ii) Let V be a finite dimensional vector space over a field G such that there exists a
w:V xV — G with
@uwx,x)=0=>x=0,
(b) w(x, y) = w(x, y),
(©) wAx + ny, z) = Aw(x, z) + pw(y, z),
forallx,y,ze Vand A, u € G.
By following the ideas of the Gram—Schmidt method, show that V has a basis of vectors
e; with w(e;, e;) = 0ifi # j. (Note that you cannot assume that every element of G has a
square root.)
(i) IfG=Z,and V = ZZH, show that no function w with the properties stated in (ii)
can exist.
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Vector spaces with distances

14.1 Orthogonal polynomials

After looking at one direction that the algebraist might take, let us look at a direction that
the analyst might take.
Earlier we introduced an inner product on R” defined by

X, y)=x-y= ij)’j

j=1
and obtained the properties given in Lemma 2.3.7. We now turn the procedure on its head
and define an inner product by demanding that it obey the conclusions of Lemma 2.3.7.

Definition 14.1.1 If U is a vector space over R, we say that a function M : U> — R is an
inner product if, writing

(x,y) = M(x,y),

the following results hold for all x, y, w € U and all A, u € R.
() (x,x) = 0.
@ii) (x,x) = 0 if and only ifx = 0.
(iti) (y, x) = (X, y).
) (x, (y + W) = (X, y) + (X, W).
() (Ax,y) = A(X, y).
We write ||X|| for the positive square root of (X, X).

When we wish to recall that we are talking about real vector spaces, we talk about
real inner products. We shall consider complex inner product spaces in Section 14.3.
Exercise 14.1.3, which the reader should do, requires the following result from analysis.

Lemma 14.1.2 Leta < b. If F : [a, b] — R is continuous, F(x) > 0 for all x € [a, b]

and
b
/ Ft)dt =0,
a

then F = 0.

344
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Proof If F # 0, then we can find an x( € [a, b] such that F(xy) > 0. (Note that we might
have xy = a or xo = b.) By continuity, we can find a § with 1/2 > § > O such that | F(x) —
F(xo)| = F(x¢)/2 for all x € I = [xg — §, x9 + 8] N [a, b]. Thus F(x) > F(xq)/2 for all

x € I and
b F SF
/ F(t)dt > /F(t)dt z/ (x0) dt > (xo0) > 0,
a 1 1

2 2

giving the required contradiction. U

Exercise 14.1.3 Let a < b. Show that the set C([a, b]) of continuous functions f :
[a, b] — R with the operations of pointwise addition and multiplication by a scalar (thus
(f+9)x)= f(x)+ g(x) and (Af)(x) = Lf(x)) forms a vector space over R. Verify that

b
(o) = [ fegeas
defines an inner product for this space.

We obtained most of our results on our original inner product by using Lemma 2.3.7
rather than the definition and these results must remain true for all real inner products.

Exercise 14.1.4 (i) Show that, if U is a real inner product space, then the Cauchy—Schwarz
inequality

x,y) < lIxlllyl

holds for all X, y € U. When do we have equality? Prove your answer.
(ii) Show that, if U is a real inner product space, then the following results hold for all
x,yeUand A € R.
(a) |Ix|| = O with equality if and only if x = 0.
(®) IAx]l = [AflIx]l.
© Ix+yll < Il + llyll
[These results justify us in calling || || the norm derived from the inner product.]
@) If f, g € C([a, b]), show that

b 2 b b
( f f(t)g(t)dt> < / f@)*dt f g(t)*dt.

Whenever we use a result about inner products, the reader can check that our earlier
proofs, in Chapter 2 and elsewhere, extend to the more general situation.

Let us consider C([—1, 1]) in more detail. If we set g;(x) = x/, then, since a polynomial
of degree n can have at most n roots,

D xjgi=0=) xx) =0 forallxe[-1,1]=r=x=...=% =0
j=0 j=0
and so qo, g1, - - - , g» are linearly independent. Applying the Gram—Schmidt orthogonali-

sation method, we obtain a sequence of non-zero polynomials pg, pi, ..., pa, ... given
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by

- —Z q"’ﬁg P

”pj
Exercise 14.1.5 (i) Prove, by induction, or otherwise, that p, is a monic polynomial of
degree exactly n. Compute py, py and p;.

(i) Show that the collection P, of polynomials of degree n or less is a subspace of
C([—1, 1]). Show that P, has dimension n + 1 and that, using the inner product introduced
above, the functions ||p;|| = p; with 0 < j < n form an orthonormal basis for P,.

(iii) Show that p,y, is the unique monic polynomial P of degree n + 1 such that
(P, p) = 0 whenever p is a polynomial of degree n or less.

The polynomials p; are called the Legendre polynomials and turn up in several places in
mathematics.! We give an alternative approach to Legendre polynomials in Exercise 14.4.3.
The next few lemmas lead up to a beautiful idea of Gauss.

Lemma 14.1.6 The Legendre polynomial p, has n distinct roots 0y, 0,, . .., 6,. All these
roots are real and satisfy the condition —1 < 0; < 1.

Proof Suppose that p, has 61, 6,, . .., 6; as roots of odd order® with
—1<6, <6, <...0<1

and no other roots 6 of odd order with —1 < 6 < 1.

If we set Q(1) = ]_[I;Zl(t — 6;), then Q is a polynomial of order k and Q(#)p,(t) cannot
change signon [—1, 1] (thatis to say, either p, (¢)Q(¢) > Oforall? € [—1, 1]or p,(t)Q(¢) <
Oforallt € [—1, 1]). By Lemma 14.1.2, it follows that

1
(pm Q) = /lpn(t)Q(t)dt 7é 0

and so, by Exercise 14.1.5 (iii), k > n. Since a polynomial of degree n has at most n roots,
counting multiplicities, we have k = n. It follows that all the roots 6 of p,, are distinct, real

and satisfy —1 < 6 < 1. O
Suppose that we wish to estimate f jl f(t)dt for some well behaved function f from its

values at points f, f, . . ., t,,. The following result is clearly relevant.

Lemma 14.1.7 Suppose that we are given distinct points ty, t5, ..., t, € [—1, 1]. Then

there are unique My, Ay, ..., Ay € R such that

1 n
/ P(t)dt =) " 1;P(t})
-1 =

! Depending on context, the Legendre polynomial of degree j refers to ajpj, where the particular writer may take a; = 1,
a; = |pj =", aj = p/-(l)’l or make some other choice.
2 Recall that « is a root of order r of the polynomial P if (t — )" is a factor of P(z), but (t — a) ! is not.
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for every polynomial P of degree n — 1 or less.

Proof Let us set

r—1tj

t) = .

er(t) 1_[ P,
J#k

Then e; is a polynomial of degree n — 1 with e (z;) = &;. It follows that, if P is a

polynomial of degree at most n — 1 and we set

Q:P—ZP(tj)ej,

j=1

then Q is a polynomial of degree at most n — 1 which vanishes at the n points ;. Thus
Q =0and

P(t) =Y P(t)e;(t).

j=1

Integrating, we obtain

1 n
/ P(t)dt =) 1 P(t;)
-1 =1

with ;= [, e;(t)dr.
To prove uniqueness, suppose that

fP(t)dt Zujp(tj

for every polynomial of degree n — 1 or less. Taking P = ¢, we obtain

Zu,ek(m— / er(t)dt = Ay

as required. ([

At first sight, it seems natural to take the ¢; equidistant, but Gauss suggested a different
choice.

Theorem 14.1.8 [Gaussian quadrature] If we choose the t; in Lemma 14.1.7 to be the
roots of the Legendre polynomial p,, then

1 n
/ P(t)dt =) A P(t))
—1 =

for every polynomial P of degree 2n — 1 or less.
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Proof If P has degree 2n — 1 or less, then
P =0p,+R,

where Q and R are polynomials of degree n — 1 or less. Thus

1 1 1 1
/P(t)dt=/ Q(t)pn(t)dt+[ R(t)dt:<van>+/ R(t)dt
_ —1 —1 —1
1 n
=0+/ R(t)dt =Y " A;R(t))

=Y (a1 Q) + R(1)) = Y 2, P(1))
j=1

j=1
as required. O
This is very impressive, but Gauss’ method has a further advantage. If we use equidistant
points, then it turns out that, when 7 is large, Zj‘:l |A ;| becomes very large indeed and small
changes in the values of the f(¢;) may cause large changes in the value of Z?=1 Ajf(t))

making the sum useless as an estimate for the integral. This is not the case for Gaussian
quadrature.

Lemma 14.1.9 If we choose the t, in Lemma 14.1.7 to be the roots of the Legendre
polynomial p,, then A, > 0 for each k and so

Z|)\j|=z,\j=2.
j=1 j=1
Proof If 1 <k <n, set

0wty =] Ja —1)™
J#k

We observe that Qy is an everywhere non-negative polynomial of degree 2n — 2 and so

Akaak)—Zx,Qk(t,)_/ 0.(1)dt > 0.

j=1

Thus A; > 0.
Taking P = 1 in the quadrature formula gives

2=/ ldr = Z,\

This gives us the following reassuring result.
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Theorem 14.1.10 Suppose that f : [—1, 1] — R is a continuous function such that there
exists a polynomial P of degree at most 2n — 1 with

lf@)— P <e  forallt e[~1,1]

for some € > 0. Then, if we choose the t; in Lemma 14.1.7 to be the roots of the Legendre
polynomial p,, we have

1 n
/1 f(t)dt —Z,\jf(t,) < de.
_ p

Proof Observe that

1
V f(t)dt
-1

D onifay)

j=1
1 n

= /]f(t)dt—Z/\jf(tj)—/ P(t)dt+ZA P(t))
_ e

— =1

1 n
= / (f0 = Pw)di - > xi(fa) — P@y)
. <

IA

f|f<r)—P<r>|dr+Z|x 1) — Py

j=1
< 2e + 2¢ = 4e,

as stated. U
The following simple exercise may help illustrate the point at issue.
Exercise 14.1.11 Let € > 0, n > 1 and distinct points t1, to, ..., b, € [—1, 1] be given.

By Lemma 14.1.7, there are unique Ay, Ay, . .., Lo, € R such that

2n

/ P(t)dt = Zx Ptj)= Y XP(t)

j=n+1

for every polynomial P of degree n — 1 or less.

(i) Explain why 3 7_, |A;| > 2 and Z?" ot A1 =2,

(ii) If we set puj = (e '+ DAjforl1<j<nand p; = —6")Ljf0rn+ 1 <j<2n
show that

/ P(t)dt = ZM]P(I )
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for all polynomials P of degree n or less. Find a piecewise linear function f such that
2n
()| <€ forallt €[—1,1], but Zujf(rj) > 2.

j=1

The following strongly recommended exercise acts as revision for our work on Legendre
polynomials and shows that the ideas can be pushed much further.

Exercise 14.1.12 Let r : [a, b] — R be an everywhere strictly positive continuous func-
tion. Set

b
(f.g) = / F)gCor(e) da.

(i) Show that we have defined an inner product on C([a, b]).
(it) Deduce that

b 2 b b
( f f(x)g(x)r(x)dx) 5( / f(x)zr(x)dx) ( / g(x)zr(x)dx)

for all continuous functions f, g : [—1,1] - R.
(iii) Show that we can find a monic polynomial P, of degree n such that

b
/ Pn(x)Q()C)I‘(x)dx =0

for all polynomials Q of degree n — 1 or less.
(iv) Develop a method along the lines of Gaussian quadrature for the numerical estima-
tion of

b
/ Jfr(x)dx
when f is reasonably well behaved.

The various kinds of polynomials P, that arise for different r are called orthogonal
polynomials. We give an interesting example in Exercise 14.4.4.
The subject of orthogonal polynomials is rich in elegant formulae.

Example 14.1.13 [Recurrence relations for orthogonal polynomials] Ler Py, P,
P>, ... be a sequence of orthogonal polynomials of the type given in Exercise 14.1.12.
Show that there exists a ‘three term recurrence relation’ of the form

Pn+1()C) + (An - -x)Pn(-x) + BnPn—l(-x) =0
forn > 0. Determine A, and B,,.

Solution Since

b b
/(f(X)h(X))g(X)r(X)dX=/ F(h)g))r(x) dx,
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the inner product defined in Exercise 14.1.12 has a further property (which is not shared
by inner products in general®) that (fh, g) = (f, gh). We make use of this fact in what
follows.

Let g(x) =x and Q, = P,y; — qP,. Since P, and P, are monic polynomials of
degree n + 1 and n, Q, is polynomial of degree at most n and

n
Qn = Zaij.
j=0

By orthogonality

n n
(Qn, P = aj(Pi, P) =Y a8l Pell> = axl| Pe”.
=0

j=0
Now P, is orthogonal to all polynomials of lower degree and so, if k <n — 2,
(On, Pr) = (Pn+1 _ans Py) = (PnJrl _qu Py)
- (Pn+la Pk) - (ana Pk) - _<Pnaqu> =0.
Thus Q,, = A, P, + B, P,_; and our argument shows that

<Pnaan> (ananfl)

n = > Dp =
[l P12 [l Pt ll?

O

For many important systems of orthogonal polynomials, A, and B, take a simple
form and we obtain an efficient method for calculating the P, inductively (or, in more
sophisticated language, recursively). We give examples in Exercises 14.4.4 and 14.4.5.

Exercise 14.1.14 By considering q P,_1 — P,, or otherwise, show that, using the notation
of the discussion above, B, > 0.

Once we start dealing with infinite dimensional inner product spaces, Bessel’s inequality,
which we met in Exercise 7.1.9, takes on a new importance.

Theorem 14.1.15 [Bessel’s inequality] Suppose that ey, e,, . . . is a sequence of orthonor-

mal vectors (that is to say, {(e;, e) = 8x for j, k > 1) in a real inner product space U.
@ If f € U, then

n
f— Z a;e;
j=1
attains a unique minimum when
aj =1(j) = (f.e)).

3 Indeed, it does not make sense in general, since our definition of a general vector space does not allow us to multiply two
vectors.
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We have
n 2 n
£—Y fGe;| =817 = RGP
j=1 j=1
@) If £ € U, then Zjozl |f'(j)|2 converges and
o0
> RGP < E1
j=1
(iit) We have

n (o9}
£-> f0ej| >0 asn—ocoe Y G =
j=1 Jj=1

Proof (i) Following a familiar path, we have

2

f—iajej =<f—2n:ajej,f—2n:ajej>
j=1 j=1 j=1

= 81> —2) af()+) ai.
j=1 j=1

Thus
2

f=Y "fGe; | =IIEI> = IfGHI
j=1 Jj=1

and
2 2

£ aje;| — 6= fGe;| = (a; -G
j=1 j=1 j=1

The required results can now be read off.

(ii) We use the theorem® from analysis which tells us that an increasing sequence
bounded above tends to a limit. Elementary analysis tell us that the limit is no greater than

the upper bound.
(iii) This follows at once from (i).

The reader may, or may not, need to be reminded that the type of convergence discussed
in Theorem 14.1.15 is not the same as she is used to from elementary calculus.

4 Or, in many treatments, axiom.
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Exercise 14.1.16 Consider the continuous function f, : [—1, 1] — R defined by

r=1—1
f =Y 2" max(0, 1 2%|x — 27",
r=—2141
Show that
1
/ fn(x)z dx — 0
1

so || full = O in the norm given by the inner product of Exercise 14.1.3 as n — 00, but
fo(u2™™) — oo as n — oo, for all integers u with |u| < 2™ — 1 and all integers m > 1.

14.2 Inner products and dual spaces

As I have already said, we can obtain any result we want on general finite dimensional real
inner product spaces by imitating the proof for R" with the standard inner product.

Exercise 14.2.1 If U is a finite dimensional real vector space with inner product  , )
show, by using the Gram—Schmidt orthogonalisation process, that U has an orthonormal
basis ey, ey, ..., e, say. Show that the map 6 : U — R" given by

n

T

0 Exjej = (X1, X2, ..., Xp)
Jj=1

for all x; € R is a well defined vector space isomorphism which preserves inner products
in the sense that

fu-60v = (u,v)
for all u, v where - is the dot product of Section 2.3.

The reader need hardly be told that it is better mathematical style to prove results for
general inner product spaces directly rather than to prove them for R" with the dot product
and then quote Exercise 14.2.1.

Bearing in mind that we shall do nothing basically new, it is, none the less, worth taking
another look at the notion of an adjoint map. We start from the simple observation in three
dimensional geometry that a plane through the origin can be described by the equation

x-b=0

where b is a non-zero vector. A natural generalisation to inner product spaces runs as
follows.

Lemma 14.2.2 [f V is an n — 1 dimensional subspace of an n dimensional real vector
space U with inner product ( , ), then we can find ab # 0 such that

V={xeU: (x,b)=0}.
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Proof Let V have an orthonormal basis ej, e, ..., €,_;. By using the Gram—Schmidt
process, we can find e, such that e;, e;, ..., e, are orthonormal and so a basis for U.
Setting b = e,, we have the result. O

Exercise 14.2.3 Suppose that V is a subspace of a finite dimensional real vector space U
with inner product ( , ) and derived norm || ||. If a € U, show that there is a uniqueb € V
such that

lla—bl <lla—v]|

forallveV.
Show, also, that X = b is the unique vector with X € V such that

(a—x,v) =0

forallveV.
[Hint: Choose an orthonormal basis for V and use Bessel’s inequality (Theorem 14.1.15).]

Lemma 14.2.2 leads on to a finite dimensional version of a famous theorem of Riesz.

Theorem 14.2.4 [Riesz representation theoreml]’ Let U be a finite dimensional real
vector space with inner product { , ). If « € U’, the dual space of U, then there exists a
unique a € U such that

ou = (u, a)
forallu e U.
Proof Uniqueness. If xu = (u, a;) = (u, a,) forallu € U, then
(w,a; —ap) =0

for all u € U and, choosing u = a; — a;, we conclude, in the usual way, that a; — a; = 0.
Existence. If « = 0, then we set a = 0. If not, then o has rank 1 (since (U) = R) and, by
the rank-nullity theorem, o has nullity n — 1. In other words,

a'0)={u: qu=0}
has dimension n — 1. By Lemma 14.2.2, we can find a b # 0 such that
a '(0)={xeU: (x,b) =0},
that is to say,
a(x) =0« (x,b) =0.
If we now set

a = ||bl| a(b)b,

> There are several Riesz representation theorems, but this is the only one we shall refer to. We should really use the longer form
‘the Reisz Hilbert space representation theorem’.
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we have
ax=0<% (x,a) =0
and
aa = ||b]|2a(b)’ = (a, a).
Now suppose thatu € U. If we set
X=u— —a,
o

then ax = 0, so (x, a) = 0, that is to say,

0=<u—a—ua,a>= (u,a) — xa ou = (u,a) —au
oa (a, a)

and we are done. |

Exercise 14.2.5 Draw diagrams to illustrate the existence proof in two and three dimen-
sions.

Exercise 14.2.6 We can obtain a quicker (but less easily generalised) proof of the existence
part of Theorem 14.2.4 as follows. Let ey, €,, ..., €, be an orthonormal basis for a real
inner product space U. If a € U’ set

n
a= Za(ej)ej.
j=1

Verify that
ou = (u, a)
forallu e U.
We note that Theorem 14.2.4 has a trivial converse.

Exercise 14.2.7 Let U be a finite dimensional real vector space with inner product ( , ).
Ifa € U, show that the equation

oau = (u, a)
definesano € U'.

Lemma 14.2.8 Let U be a finite dimensional real vector space with inner product ( , ).
The equation

f(a)u = (u, a)

with a, u € U defines an isomorphism 0 : U — U'.
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Proof Exercise 14.2.7 tells us that 6 maps U to U’. Next we observe that
O(ra+ ub)u = (u, La + ub) = A(u, a) + u(u, b)
= A0(a)u + pub(b)u = (16(a) + uo(b))u,
for allu € U. It follows that
f(ra+ ub) = A0(a) + ub(b)

foralla, b € U and A, u € R. Thus 0 is linear. Theorem 14.2.4 tells us that 6 is bijective
so we are done. U

The sharp eyed reader will note that the function 6 of Lemma 14.2.8 is, in fact, a natural
(that is to say, basis independent) isomorphism and ask whether, just as we usually identify
U” with U for ordinary finite dimensional vector spaces, so we should identify U with
U’ for finite dimensional real inner product spaces. The answer is that mathematicians
whose work only involves finite dimensional real inner product spaces often make the
identification, but those with more general interests do not. There are, I think, two reasons
for this. The first is that the convention of identifying U with U’ for finite dimensional real
inner product spaces makes it hard to compare results on such spaces with more general
vector spaces. The second is that the natural extension of our ideas to complex vector spaces
does not produce an isomorphism.®

We now give a more abstract (but, in my view, more informative) proof than the one we
gave in Lemma 7.2.1 of the existence of the adjoint.

Lemma 14.2.9 Let U be a finite dimensional real vector space with inner product { , ). If
a € LU, U), there exists a unique a* € L(U, U) such that

{au, v) = (u, a™v)

forallu, veU.
The map ® : L(U,U) — L(U, U) given by o = o* is an isomorphism.

Proof Observe that the map By : U — R given by
pvu = (o, v)

is linear, so, by the Riesz representation theorem (Theorem 14.2.4), there exists a unique
ay € U such that

Bvu = (u, ay)
forallu € U. Setting «*v = ay, we obtain a map o™ : U — U such that

(o, v) = (u, a™v).

6 However, it does produce something very close to it. See Exercise 14.3.9.
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The rest of the proof is routine. Observe that

(u, *(AV + uw)) = (@u, Av + uw)
= Ao, v) + pu{ou, w)
= Au, &™V) + p{au, a*w)
= (u, AoV + paw)
forallu € U, so
a*(Av + uw) = Aa*v + pow

forallv, w e U and all A, i € R. Thus «* is linear.
A similar ‘paper tiger proof’, which is left as a strongly recommended exercise for the
reader, shows that @ is linear. We now remark that
(au, v) = (u, a™v) = (a"v, u)
= (v,a™u) = («™"u, V)

forallve U, so

ou = o™ u
for all u € U whence

*k

d=u

for all & € L(U, U). Thus & is bijective with ®~! = @& and we have shown that ® is,
indeed, an isomorphism. O

Exercise 14.2.10 Supply the missing part of the proof of Lemma 14.2.9 by showing that,
ifa, B € LU, U)and A, u €T, then

(u, PQa + up)v) = (0, AP(x) + nP(B))v)
forallu, v € U and deducing that ® is linear.

We call the o™ obtained in Lemma 14.2.9 the adjoint of «. The next lemma shows that
this definition is consistent with our usage earlier in the book.

Lemma 14.2.11 Let U be a finite dimensional real vector space with inner product { , ).
Letey, e, ..., e, be an orthonormal basis of U. If « € L(U, U) has matrix A with respect
to this basis, then o* has matrix AT with respect to the same basis.

Proof Let A = (a;;) let o have matrix B = (b;;). We then have

1] = <etv E bkjek> eua e]) aels e] <§ Qi €. ej> = daji

as required. O



358 Vector spaces with distances

The reader will observe that it has taken us four or five pages to do what took us one
or two pages at the beginning of Section 7.2. However, the notion of an adjoint map is
sufficiently important for it to be worth looking at in various different ways and the longer
journey has introduced a simple version of the Riesz representation theorem and given us
practice in abstract algebra.

The reader may also observe that, although we have tried to make our proofs as basis
free as possible, our proof of Lemma 14.2.2 made essential use of bases and our proof of
Theorem 14.2.4 used the rank-nullity theorem. Exercise 15.5.7 shows that it is possible to
reduce the use of bases substantially by using a little bit of analysis, but, ultimately, our
version of Theorem 14.2.4 depends on the fact that we are working in finite dimensional
spaces and therefore on the existence of a finite basis.

However, the notion of an adjoint appears in many infinite dimensional contexts. As a
simple example, we note a result which plays an important role in the study of second order
differential equations.

Exercise 14.2.12 Consider the space D of infinitely differentiable functions f : [0, 1] — R
with f(0) = f(1) = 0. Check that, if we set

1
(fog) = /0 Fg@)d

and use standard pointwise operations, D is an infinite dimensional real inner product
space.
If p € D is fixed and we write

d /
(af)) = E(p(t)f 1),

show that a : D — R is linear and a* = «a. (In the language of this book « is a self-adjoint
linear functional.)

Restate the result given in the first sentence of Example 14.1.13 in terms of self-adjoint
linear functionals.

It turns out that, provided our infinite dimensional inner product spaces are Hilbert
spaces, the Riesz representation theorem has a basis independent proof and we can define
adjoints in this more general context.

At the beginning of the twentieth century, it became clear that many ideas in the theory
of differential equations and elsewhere could be better understood in the context of Hilbert
spaces. In 1925, Heisenberg wrote a paper proposing a new quantum mechanics founded
on the notion of observables. In his entertaining and instructive history, Inward Bound [27],
Pais writes: ‘If the early readers of Heisenberg’s first paper on quantum mechanics had
one thing in common with its author, it was an inadequate grasp of what was happen-
ing. The mathematics was unfamiliar, the physics opaque.” However, Born and Jordan
realised that Heisenberg’s key rule corresponded to matrix multiplication and introduced
‘matrix mechanics’. Schrodinger produced another approach, ‘wave mechanics’ via partial
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differential equations. Dirac and then Von Neumann showed that these ideas could be
unified using Hilbert spaces.’

The amount of time we shall spend studying self-adjoint (Hermitian) and normal linear
maps reflects their importance in quantum mechanics, and our preference for basis free
methods reflects the fact that the inner product spaces of quantum mechanics are infinite
dimensional. The fact that we shall use complex inner product spaces (see the next section)
reflects the needs of the physicist.

14.3 Complex inner product spaces

So far in this chapter we have looked at real inner product spaces because we wished to
look at situations involving real numbers, but there is no obstacle to extending our ideas to
complex vector spaces.

Definition 14.3.1 IfU is a vector space over C, we say that a function M : U> — R is an
inner product if, writing

(z, w) = M(z,w),

the following results hold for all z, w, w € U and all A, u € C.
(i) (z, z) is always real and positive.
(ii) (z,z) = 0 ifand only ifz = 0.
(i) (Az, w) = A(z, w).
(V) {(z+u, w) = (z, w) + (u, w).
(V) (w, z) = (z, W)™
We write ||z|| for the positive square root of (z, W).

The reader should compare Exercise 8.4.2. Once again, we note the particular form of
rule (v). When we wish to recall that we are talking about complex vector spaces, we talk
about complex inner products.

Exercise 14.3.2 Most physicists use a slightly different definition of an inner product. The
physicist’s inner product { , )p obeys all the conditions of our inner product except that
(iii) is replaced by

(iiD)p (Az, W)p = L*(z, W) p.

Show that (z, \W)p = A(Z, W) p.

Show that, if (, )p is a physicist’s inner product, then

(W, Z)M = (W’ Z)?—"

defines {, )y as a mathematician’s inner product.

7 Of course the physics was vastly more important and deeper than the mathematics, but the pre-existence of various mathematical
theories related to Hilbert space theory made the task of the physicists substantially easier.
Hilbert studied specific spaces. Von Neumann introduced and named the general idea of a Hilbert space. There is an
apocryphal story of Hilbert leaving a seminar and asking a colleague ‘What is this Hilbert space that the youngsters are talking
about?’.
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Derive a physicist’s inner product from a mathematician’s inner product.

Exercise 14.3.3 Let a < b. Show that the set C([a, b]) of continuous functions f :
[a, b] — C with the operations of pointwise addition and multiplication by a scalar (thus
(f + o)) = f(x)+ gx) and (Lf)(x) = Lf (x)) forms a vector space over C. Verify that

b
o) = [ fegr da
defines an inner product for this space.

Some of our results on orthogonal polynomials will not translate easily to the complex
case. (For example, the proof of Lemma 14.1.6 depends on the order properties of R.) With
exceptions such as these, the reader will have no difficulty in stating and proving the results
on complex inner products which correspond to our previous results on real inner products.

Exercise 14.3.4 Let us work in a complex inner product vector space U. Naturally we say
that ey, e,, ... are orthonormal if (e,, ;) = §,.
(i) There is one point were we have to be careful. If e, €,, . . ., e, are orthonormal and

n
f= E ajej
j=l1

show that a; = (£, e;). What is the value of (e;, f)?
(ii) Consider the system in Exercise 14.3.3 with [a,b] =[0,1]. If ¢, : [0,1] = C is
given by e, (t) = exp(2mint) [n € Z] show that the e, are orthonormal.

Here is the translation of Theorem 7.1.5 to the complex case.

Exercise 14.3.5 We work in a finite dimensional complex inner product space U.

(i) If ey, ey, ..., e, are orthonormal and x € U, show that
k
V=X— (x, ej)ej
j=1

is orthogonal to each of e, ey, . . ., €.

(ii) If ey, ey, . . ., e, are orthonormal and x € U, show that either

X € span{e|, €, ..., €}

or the vector v defined in (i) is non-zero and, writing e;, = ||v||~'v, we know that e;, e,

..., €y are orthonormal and

X € span{e;, €, ..., €1}
(iii) If U has dimension n, k < n and ey, e,, .. ., e, are orthonormal vectors in U, show
that we can find an orthonormal basis ey, e, . .., e, for U.

Here is a typical result that works equally well in the real and complex cases.
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Lemma 14.3.6 If U is a real or complex inner product finite dimensional space with a

subspace V, then
=fuelU : (uv)=0 forallveV}

is a complementary subspace of U.

Proof We observe that (0, v) = 0 for all v, so that 0 € VL. Further, if u;, u, € V+ and

M, A € C, then
(Mg + A, V) = A{ug, v) + A (up, v) =0+0=0

forall ve V and so Aju; + Aup € VL.

Since U is finite dimensional, so is V and V must have an orthonormal basis e, e», . . .

e,.If u € U and we write

m
E (w,ejle;, mw=1—r1,

then Tu € V and
Tu+7Tu=u.
Further

(Tu, e) = <u — Z(u, e;)e;, ek>

j=1

= (u, e;) —Z (u,e;)(e;, e)
j=I

m
(u, ) E (u,e;)8;, =0
Jj=1

for 1 < k < m. It follows that

<71u, Z)‘J'ef> = Z)\j(nu, ej)=0
j=1 j=1

so (mu,v) = 0forall ve V and mu € V1. We have shown that
U=V+V™-
Ifue VNVL, then, by the definition of v+,
lufl* = (u,w) =0,
sou = 0. Thus
U=VeV.

b}
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We call the set V* of Lemma 14.3.6 the orthogonal complement (or perpendicular
complement) of V. Note that, although V has many complementary subspaces, it has only
one orthogonal complement.

The next exercises parallel our earlier discussion of adjoint mappings for the real case.
Even if the reader does not do all these exercises, she should make sure she understands
what is going on in Exercise 14.3.9.

Exercise 14.3.7 If V is an n — 1 dimensional subspace of an n dimensional complex
vector space U with inner product { , ), show that we can find a b # 0 such that

V={xeU: {xb)=0}.

Exercise 14.3.8 [Riesz representation theorem] Ler U be a finite dimensional complex
vector space with inner product { , ). Ifa € U’, the dual space of U, show that there exists
a unique a € U such that

ou = (u, a)
forallu e U.

The complex version of Lemma 14.2.8 differs in a very interesting way from the real
case.

Exercise 14.3.9 Let U be a finite dimensional complex vector space with inner product
(, ). Show that the equation

f(a)u = (u, a),

with a, u € U, defines an anti-isomorphism 6 : U — U’. In other words, show that 0 is a
bijective map with

O(ra + ub) = A*0(a) + u*0(b)
foralla, be Uandall ), u € C.

The fact that the mapping 6 is not an isomorphism but an anti-isomorphism means that
we cannot use it to identify U and U’, even if we wish to.

Exercise 14.3.10 The natural first reaction to the result of Exercise 14.3.9 is that we
have somehow made a mistake in defining 6 and that a different definition would give an
isomorphism. I very strongly recommend that you spend at least ten minutes trying to find
such a definition.

Exercise 14.3.11 Let U be a finite dimensional complex vector space with inner product
(, ). Ifa € L(U, U), show that there exists a unique «* € L(U, U) such that

{au, v) = (u, a™v)

forallu, veU.
Show that the map ® : L(U,U) — L(U, U) given by ®a = a* is an anti-isomorphism.
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Exercise 14.3.12 Let U be a finite dimensional real vector space with inner product { , ).
Letey, ey, ..., e, be an orthonormal basis of U. If « € L(U, U) has matrix A with respect
to this basis, show that o* has matrix A* with respect to the same basis.

The reader will see that the fact that ® in Exercise 14.3.11 is anti-isomorphic should
have come as no surprise to us, since we know from our earlier study of n x n matrices
that (LA)* = L*A*.

Exercise 14.3.13 Let U be a real or complex inner product finite dimensional space with
a subspace V.

(i) Show that (VH)+ = V.

(i) Show that there is a unique w : U — U such that, if u € U, then mu € V and
(—mueV:t

(iii) If 0 is defined as in (ii), show that w € L(U,U), 7* = w and n*> = 7.

The next exercise forms a companion to Exercise 12.1.15.

Exercise 14.3.14 Prove that the following conditions on an endomorphism o of a finite
dimensional real or complex inner product space V are equivalent.

() o* = o and o* = a.

(i) 2V and (1 — a)V are orthogonal complements and o |,y is the identity map on oV,
a|—a)v is the zero map on (1 — a)V.

(ii) There is a subspace U of V such that o|y is the identity mapping of U and «|y+ is
the zero mapping of U+

(iif) An orthonormal basis of V can be chosen so that all the non-zero elements of the
matrix representing o lie on the main diagonal and take the value 1.

[You may find it helpful to use the identity 1 = o + (1 — «).]

An endomorphism of 'V satisfying any (and hence all) of the above conditions is called
an orthogonal projection® of V. Explain why an orthogonal projection is automatically a
projection in the sense of Exercise 12.1.15 and give an example to show that the converse
is false.

Suppose that a, B are both orthogonal projections of V. Prove that, if a8 = Bo, then
of is also an orthogonal projection of V.

We can thus call the = considered in Exercise 14.3.13 the orthogonal projection of U
onto V.

Exercise 14.3.15 Let U be a real or complex inner product finite dimensional space. If W
is a subspace of V, we write my for the orthogonal projection onto W.
Let py = 2w — . Show that pw pw = t and pw is an isometry. Identify pw pw..

8 Or, when the context is plain, just a projection.
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14.4 Further exercises

Exercise 14.4.1 Let V be a finite dimensional real vector space and let (, }; and {, ), be
two inner products on V. Prove the following results.

(i) There exists a unique endomorphism « : V. — V such that (u, v), = (u, av); for all
u, veV.

(ii) « is self-adjoint with respect to (, );.

(iii) If B : V — V is an endomorphism which is self-adjoint with respect to ( , );, then
B is self-adjoint with respect to (, ), if and only if @ and § commute.

Exercise 14.4.2 Let V be vector space over R of dimension n.

(i) Show that, given n — 1 different inner products { , );, and x € V we can find a
non-zeroy € V with (x,y); =0forall1 < j <n— 1.

(i1) Give an example with n = 2 to show that we cannot replace n — 1 by z in (i).

(iii) Show that, if n > 2, then, given n different inner products {( , );, we can find
non-zerox, y € V with (x,y); =0 forall 1 < j <n.

Exercise 14.4.3 If we write
n

d 2 n
qn(x) = (x” =1,

dx"
prove, by repeated integration by parts, that
! 8
()G () dx = —2—
[1q<)q(> S

for all non-negative integers n and m with n % m. Compute g, g; and ¢,.
Show that g, is a polynomial of degree n and find the coefficient a,, of x". Explain why,
if we define p, as in Exercise 14.1.5, we have p, = a,'q,.

Exercise 14.4.4 [Tchebychev polynomials] Recall de Moivre’s theorem which tells us
that

cosnb +isinnd = (cos +isinh)".
Deduce that
n
cosnf = —1) cos" 7 9(1 — cos* 0)
n 22( ) <2r> ( )

and so
cosnf = T,(cosb)

where T, is a polynomial of degree n. We call 7,, the nth Tchebychev polynomial. Compute
Ty, T1, T, and T; explicitly.

By considering (1 + 1)" — (1 — 1)", or otherwise, show that the coefficient of " in T,,(¢)
is 2"~! for all n > 1. Explain why |T,,(t)| < 1 for |¢t| < 1. Does this inequality hold for all
t € R? Give reasons.
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Show that

1
1
[1 Tn(x)Tm(x)m dx = 8yman,
where @y = w and a, = /2 otherwise. (Thus, provided we relax our conditions on r a
little, the Tchebychev polynomials can be considered as orthogonal polynomials of the type
discussed in Exercise 14.1.12.)
Verify the three term recurrence relation

Lo (t) = 2tT, (1) + T, (1) = 0

for |¢| < 1. Does this equality hold for all # € R? Give reasons.
Compute Ty, Ts5 and T using the recurrence relation.

Exercise 14.4.5 [Hermite polynomials] (Do this question formally if you must and rig-
orously if you can.)
(i) Show that

n!

o)
e2tx7t2 — Z H”(x)tn *
n=0

where H, is a polynomial. (The H, are called Hermite polynomials. As usual there are
several versions differing only in the scaling chosen.)

(ii) By using Taylor’s theorem (or, more easily justified, differentiating both sides of %
n times with respect to # and then setting t = 0), show that

n

Y L
Hy(x) = (—1)"e" —e¢™*
dx"

and deduce, or prove otherwise, that H, is a polynomial of degree exactly n.
[Hint; ¢27" = ¢ ¢~ =9"

(iii) By differentiating both sides of % with respect to x and then equating coefficients,
obtain the relation

H,;(x) =2nH, 1(x).

(iv) By integration by parts, or otherwise, show that
o 2
/ Hm(-x)Hn(-x)e_x dx = 8n,m2"n!n1/2.
o0

Observe (without looking too closely at the details) the parallels with Exercise 14.1.12.
(v) By differentiating both sides of % with respect to # and then equating coefficients,
obtain the three term recurrence relation

Hyy1(x) = 2xHy 1 (x) 4+ 2nHpq1(x) = 0.

(iv) Show that Hy(x) = 1 and H;(x) = 2x. Compute H,, H3 and H, using (iv).
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Exercise 14.4.6 Suppose that U is a finite dimensional inner product space over C. If
o, B : U — U are Hermitian (that is to say, self-adjoint) linear maps, show that «f 4+ Bo
is always Hermitian, but that o8 is Hermitian if and only if «f = Ba. Give, with proof, a
necessary and sufficient condition for ¢ — B to be Hermitian.

Exercise 14.4.7 Suppose that U is a finite dimensional inner product space over C. If
a, beU,set

Tapu = (u, b)a

for allu € U. Prove the following results.
(i) Tap 1s an endomorphism of U.
(i) T, = Tb.a-
(iii) Tr Top = (a, b).
(iv) TapTea = Ta, p,e)a-
Establish a necessary and sufficient condition for 7, j, to be self-adjoint.

Exercise 14.4.8 (i) Let V be a vector space over C. If ¢ : V> — C is an inner product on
Vand y : V — V is an isomorphism, show that

Y(x,y) = ¢(¥X, yy)

defines an inner product ¥ : V2 — C.

(ii) For the rest of this exercise V will be a finite dimensional vector space over C and
¢ : V? — C an inner product on V. If ¥ : V2> — C is an inner product on V, show that
there is an isomorphism y : V — V such that

Y(X,y) = ¢(¥X, yy)

for all (x,y) € V2.
(iii) If A is a basis a, a,, . . ., a, for V and & is a ¢-orthonormal basis e;, e,, . . ., e, for
V., we set

ne(A, &) = deta

where « is the linear map with «a; = e;. Show that (A, £) is independent of the choice
of £, so we may write j1s(A) = uu(A, E).
(iv) If y and o are as in (i), find p4(A)/ 1y (A) in terms of y.

Exercise 14.4.9 In this question we work in a finite dimensional real or complex vector
space V with an inner product.

(i) Let o be an endomorphism of V. Show that « is an orthogonal projection if and only
if @> = o and aa* = a*a. (In the language of Section 15.4, « is a normal linear map.)
[Hint: It may be helpful to prove first that, if «a™ = o*«, then o and «* have the same
kernel.]
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(i1) Show that, given a subspace U, there is a unique orthogonal projection 7y with
ty(V) = U.If U and W are two subspaces,show that

TyTw = 0

if and only if U and W are orthogonal. (In other words, (u, w) = 0forallue U,ve V.)

(iii) Let B be a projection, that is to say an endomorphism such that 8> = 8. Show that
we can define an inner product on V in such a way that B is an orthogonal projection with
respect to the new inner product.

Exercise 14.4.10 Let V be the usual vector space of n x n matrices. If we give V the basis
of matrices E(i, j) with 1 in the (i, j)th place and zero elsewhere, identify the dual basis
for V.

If B € V, we define 15 : V — R by 753(A) = Tr(AB). Show that t3 € V' and that the
map t : V — V' defined by t(B) = tp is a vector space isomorphism.

If S is the subspace of V consisting of the symmetric matrices and S° is the annihilator
of S, identify 7='(S5).

Exercise 14.4.11 (If you get confused by this exercise just ignore it.) We remarked that
the function 6 of Lemma 14.2.8 could be used to set up an identification between U and
U’ when U was a real finite dimensional inner product space. In this exercise we look at
the consequences of making such an identification by settingu = fuand U = U’.
(i) Show that, if e}, €2, . . ., €, is an orthonormal basis for U, then the dual basis &; = e;.
(ii))If o : U — U is linear, then we know that it induces a dual map o’ : U’ — U’. Since
we identify U and U’, we have ' : U — U. Show that o’ = a*.

Exercise 14.4.12 The object of this question is to show that infinite dimensional inner
product spaces may have unexpected properties. It involves a small amount of analysis.
Consider the space V of all real sequences

u:(ul,uz,...)

where n%u,, — 0 as n — oo. Show that V is real vector space under the standard coordi-
natewise operations

u+v= (g +v,u+uvy,...), Au=Aui,Aus,...)

and an inner product space under the inner product

o]

(u,v) = Zujvj.

j=1
Show that the set M of all sequences u with only finitely many u; non-zero is a subspace
of V. Find M~ and show that M + M=+ # V.

Exercise 14.4.13 Here is another way in which infinite inner product spaces may exhibit
unpleasant properties.
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Consider the space M of all real sequences
u= (l/ll,uz, )

with only finitely many of the u; non-zero. Show that M is a real vector space under the
standard coordinatewise operations and an inner product space under the inner product

3]
(ll, V) = Zujvj.
Jj=1

Show that ou = Zjil u; is a well defined linear map from M to R, but that there does

not exist an a € M with
oau = (u, a).

Thus the Riesz representation theorem does not hold for M.
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More distances

15.1 Distance on L(U, U)

When dealing with matrices, it is natural to say that that the matrix

1 1073
A‘(103 1 )

is close to the 2 x 2 identity matrix /. On the other hand, if we deal with 10* x 10* matrices,
we may suspect that the matrix B given by b;; = 1 and b;; = 1073 for i # j behaves very
differently from the identity matrix. It is natural to seek a notion of distance betweenn x n
matrices which would measure closeness in some useful way.

What do we wish to mean by saying that we want to ‘measure closeness in some useful
way’? Surely, we do not wish to say that two matrices are close when they look similar,
but, rather, to say that two matrices are close when they act similarly, in other words, that
they represent two linear maps which act similarly.

Reflecting our motto

linear maps for understanding, matrices for computation,

we look for an appropriate notion of distance between linear maps in L(U, U). We decide
that, in order to have a distance on L(U, U), we first need a distance on U. For the rest
of this section, U will be a finite dimensional real or complex inner product space, but
the reader will loose nothing if she takes U to be R" with the standard inner product
X,y =2 Xy

Leta, B € L(U, U) and suppose that we fix an orthonormal basis ey, €5, . .., €, for U.
If o has matrix A = (a;;) and B matrix B = (b;;) with respect to this basis, we could define
the distance between A and B by

doo(A, B) = max|a;; — byj|, di(A, B)= Y laij — byl
J i
1/2

d(A, By = | Y laij — byI?
i,j

369
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Exercise 15.1.1 Check that, for the d; just defined, we have d;(A, B) = ||A — B||; with
@) II1All; = 0,
(i) 1Al; =0 = A =0,
(i) |AAll; = |AIIALl,
() 1A+ Bll; < IIAll; + 1Bl
[In other words, each d; is derived from a norm || || ;.]

However, all these distances depend on the choice of basis. We take a longer and more
indirect route which produces a basis independent distance.

Lemma 15.1.2 Suppose that U is a finite dimensional inner product space over F and
o € LU, U). Then

{lleex]| = [Ix]l < 1}
is a non-empty bounded subset of R.

Proof Fix an orthonormal basis ey, e, . .., e, for U. If & has matrix A = (a;;) with respect
to this basis, then, writing x = Z';:, xje;, we have

n n n n
loexll = | 3 D el = 3| D
i=1 | j=1

i=1 \ j=1

n n n n
DO lalixl <300 layjl

i=1 j=1 i=1 j=1

IA

for all ||x|| < 1. ]
Exercise 15.1.3 We use the notation of the proof of Lemma 15.1.2. Use the Cauchy—
Schwarz inequality to obtain

172
n

n
2
loxl < | DD layjl

i=1 j=1
forall ||x]| < 1.

Since every non-empty bounded subset of R has a least upper bound (that is to say,
supremum), Lemma 15.1.2 allows us to make the following definition.

Definition 15.1.4 Suppose that U is a finite dimensional inner product space over F and
a € LU, U). We define

lleell = sup{fleex|| = [Ix[| < 1}.

We call ||| the operator norm of «. The following lemma gives a more concrete way
of looking at the operator norm.
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Lemma 15.1.5 Suppose that U is a finite dimensional inner product space over F and
o e LU, U).

(@) llox|| < [lec[llIx]| for all x € U.

@) If |lax|| < K||x|| for allx € U, then ||| < K.

Proof (i) The result is trivial if x = 0. If not, then ||x|| # 0 and we may set y = ||x|~'x.
Since |ly|| = 1, the definition of the supremum shows that

lex| = lle(IxINI = [Ixlley| = Ixlleyl < lallx]

as stated.
(i1) The hypothesis implies

lax|| < K for x| <1
and so, by the definition of the supremum, ||«| < K. U

Theorem 15.1.6 Suppose that U is a finite dimensional inner product space over F,
o, B € LIU,U)and ) € F. Then the following results hold.

(@) lleell = 0.

@) la|l = 0 if and only if « = 0.

(@i0) || Aol = [Af[lec]].

) lle+ Bl = llall + 18Il

W) llapll < Nl Bl

Proof The proof of Theorem 15.1.6 is easy. However, this shows, not that our definition is
trivial, but that it is appropriate.

(i) Observe that ||ax| > 0.

(i) If ¢ # 0 we can find an x such that ax # 0 and so [|ax]| > 0, whence

lloell > [Ix]|~" [leex]| > O.
If « = 0, then
lax|| = [0 =0 < 0x]|

so ||| = 0.
(iii) Observe that

[(ro)x]| = [[Alax)[| = [Alllax]|.
(iv) Observe that

[ + B)x| = llax + Bx]|| < llex]|| + || Bx]|
< lleelllixll + I = (lleell + 181 1]

forallx e U.
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(v) Observe that

[@p)x| = [laBx)| < llllIBxI < NIl BIlIIx]I
forallx € U. U

Important note In Exercise 15.5.6 we give a simple argument to show that the operator
norm cannot be obtained in an obvious way from an inner product. In fact, the operator
norm behaves very differently from any norm derived from an inner product and, when
thinking about the operator norm, the reader must be careful not to use results or intu-
itions developed when studying inner product norms without checking that they do indeed
extend.

Exercise 15.1.7 Suppose that 7w is a non-zero orthogonal projection (see Exercise 14.3.14)
on a finite dimensional real or complex inner product space V. Show that ||| = 1.

Let V = R? with the standard inner product. Show that, given any K > 0, we can find
a projection a (see Exercise 12.1.15) with |a| > K.

Having defined the operator norm for linear maps, it is easy to transfer it to matrices.
Definition 15.1.8 If A is an n x n matrix with entries in IF then
Al = sup{llAx]| : [x]| <1}
where ||X|| is the usual Euclidean norm of the column vector Xx.

Exercise 15.1.9 Let o € L(U, U) where U is a finite dimensional inner product space
over F. If o has matrix A with respect to some orthonormal basis, show that || = || A]l.

Exercise 15.1.10 Give examples of 2 x 2 real matrices Aj and B; with ||A;|| = || Bl =1
having the following properties.

() I1A1 + Bil| = 0.

(i) |A2 + By || = 2.

(i) [|A3 B3| = 0.

() [[A4Bs]| = 1.

To see one reason why the operator norm is an appropriate measure of the ‘size of a
linear map’, look at the the system of n x n linear equations

Ax =Y.
If we make a small change in X, replacing it by x + &x, then, taking
A(x +6x) =y + dy,
we see that
18yl = lly — AGx + 8x)[| = [|Adx]| < [|A[lléx]|

so || A]| gives us an idea of ‘how sensitive y is to small changes in x’.
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If A is invertible, then x = A~'y. A~!(y + 8y) = x + éx and
Isxl < A~ [[lIsyll

so ||JA™!| gives us an idea of ‘how sensitive x is to small changes in y’. Just as dividing
by a very small number is both a cause and a symptom of problems, so, if ||A~!|| is large,
this is both a cause and a symptom of problems in the numerical solution of simultaneous
linear equations.

Exercise 15.1.11 (i) Let 1 be a small but non-zero real number, take . = (1 — n7)'/? (use
the positive square root) and
A= <1 ”) .
w1

Find the eigenvalues and eigenvectors of A. Show that, if we look at the equation,
AX =y

‘small changes in X produce small changes in'y’, but write down explicitly a small y for
which X is large.
(ii) Consider the 4 x 4 matrix made up from the 2 x 2 matrices A, A~ and 0 (where A

is the matrix in part (i)) as follows
A 0
B = .
(5 4)

Show that det B = 1, but, if n is very small, both | B|| and | B~"|| are very large.

Exercise 15.1.12 Suppose that A is a non-singular square matrix. Numerical analysts often
use the condition number c(A) = || A||||A™"|| as a miner’s canary to warn of troublesome
n X n non-singular matrices.

(i) Show that c(A) > 1.

(ii) Show that, if . # 0, c(AA) = c(A). (This is a good thing, since floating point arith-
metic is unaffected by a simple change of scale.)
[We shall not make any use of this concept.]

If it does not seem possible ! to write down a neat algebraic expression for the norm ||A||
of an n x n matrix A, Exercise 15.5.15 shows how, in principle, it is possible to calculate
it. However, the main use of the operator norm is in theoretical work, where we do not need
to calculate it, or in practical work, where very crude estimates are often all that is required.
(These remarks also apply to the condition number.)

Exercise 15.1.13 Suppose that U is an n-dimensional inner product space over
F and o € LU, U). If a has matrix (a;j) with respect to some orthonormal basis,

! Though, as usual, I would encourage you to try.
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show that
) 2
w2 lail < maxag| < flof) < ) lay| < n® max|ay|.
ij ij :

Use Exercise 15.1.3 to show that

2
el < | > a?;
ij

As the reader knows, the differential and partial differential equations of physics are
often solved numerically by introducing grid points and replacing the original equation by
a system of linear equations. The result is then a system of n equations in n unknowns of
the form

1/2

Ax = b, *

where n may be very large indeed. If we try to solve the system using the best method we
have met so far, that is to say, Gaussian elimination, then we need about cn’? operations.
(The constant C depends on how we count operations, but is typically taken as 2/3.)

However, the A which arise in this manner are certainly not random. Often we expect x
to be close to b (the weather in a minute’s time will look very much like the weather now)
and this is reflected by having A very close to 7.

Suppose that this is the case and A = I + B with ||B|| < € and 0 < € < 1. Let x* be the
solution of % and suppose that we make the initial guess that x, is close to x* (a natural
choice would be xy = b). Since (I + B)x* = b, we have

x* =b — Bx* ~ b — Bxg
s0, using an idea that dates back many centuries, we make the new guess x;, where
x; = b — Bxy.
We can repeat the process as many times as we wish by defining
Xj+1 = b — Bx;.
Now
Ixj41 = x*|l = [|(b = Bx;) — (b — Bx")|| = | Bx" — Bx;]|
= | Bx; — x| < IBlllIx; — x"|I.
Thus, by induction,
e = x| < 1B]1*lIxo — x*|I < €"[lx0 — x*].

The reader may object that we are ‘merely approximating the true answer’ but, because
computers only work to a certain accuracy, this is true whatever method we use. After only
a few iterations, a term bounded by €*[x, — x*|| will be ‘lost in the noise’ and we will have
satisfied % to the level of accuracy allowed by the computer.
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It requires roughly 2n? additions and multiplications to compute X;; from X; and so
about 2kn? operations to compute X, from xo. When 7 is large, this is much more efficient
than Gaussian elimination.

Sometimes things are even more favourable and most of the entries in the matrix A are
zero. (The weather at a given point depends only on the weather at points close to it a
minute before.) Such matrices are called sparse matrices. If B only has In non-zero entries,
then it will only take about 2/kn operations® to compute X;.

The King of Brobdingnag (in Swift’s Gulliver’s Travels [29]) was of the opinion ‘that
whoever could make two ears of corn, or two blades of grass, to grow upon a spot of
ground where only one grew before, would deserve better of mankind, and do more
essential service to his country, than the whole race of politicians put together.” Those
who devise efficient methods for solving systems of linear equations deserve well of
mankind.

In practice, we usually know that the system of equations Ax = b that we wish to solve
must have a unique solution x*. If we undertake theoretical work and do not know this
in advance, a sufficient condition for existence and uniqueness is given by ||I — A|| < 1.
The interested reader should do Exercise 15.5.16 or 15.5.17 and then Exercise 15.5.18.
(Alternatively, she could invoke the contraction mapping theorem, if she has met it.)

A very simple modification of the preceding discussion gives the Gauss—Jacobi method.

Lemma 15.1.14 [Gauss—Jacobi] Let A be an n x n matrix with non-zero diagonal entries
and b € F"* a column vector. Suppose that the equation

Ax=Db

has the solution X*. Let us write D for the n x n diagonal matrix with diagonal entries the
same as those of A and set B = A — D. Ifxy € R" and

X;+1 = D7'(b — Bx;)
then
Ix; —x*| < ID™'BIl/ %0 — x"]|
and ||x; — x*|| — O whenever ID-'B| < 1.
Proof Proof left to the reader. U

Note that D~ is easy to compute.
Another, slightly more sophisticated, modification gives the Gauss—Siedel method.

Lemma 15.1.15 [Gauss—Siedel] Let A be an n X n matrix with non-zero diagonal entries
and b € F"* a column vector. Suppose that the equation

Ax=Db

2 This may be over optimistic. In order to exploit sparsity, the non-zero entries must form a simple pattern and we must be able
to exploit that pattern.
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has the solution xX*. Let us write A = L + U where L is a lower triangular matrix and U a
strictly upper triangular matrix (that is to say, an upper triangular matrix with all diagonal
terms zero). If Xg € F"* and

Lx;y; = (b —Ux;), *
then
Ix; —x*| < IL7'UIV %o — x*|
and ||x; — x*|| — O whenever |[L7'U|| < 1.
Proof Proof left to the reader. O

Note that, because L is lower triangular, the equation % is easy to solve. We have stated
our theorems for real and complex matrices but, of course, in practice, they are used for
real matrices.

We shall look again at conditions for the convergence of these methods when we discuss
the spectral radius in Section 15.3. (See Lemma 15.3.9 and Exercise 15.3.11.)

15.2 Inner products and triangularisation

If we deal with complex inner product spaces, we have a more precise version of
Theorem 12.2.5.

Theorem 15.2.1 If V is a finite dimensional complex inner product vector space and
o : V. — V is linear, we can find an orthonormal basis for V with respect to which o has
an upper triangular matrix A (that is to say, a matrix A = (a;;) with a;; = 0 fori > j).

Proof We use induction on the dimension m of V. Since every 1 x 1 matrix is upper
triangular, the result is true when m = 1. Suppose that the result is true when m =n — 1
and that V has dimension n.

Let a;; be a root of the characteristic polynomial of o and let e; be a correspond-
ing eigenvector of norm 1. Let W = span{e;}, let U = W+ and let  be the orthogonal
projection of V onto U.

Now (ra)|y is alinear map from U to U and U has dimension n — 1, so, by the inductive
hypothesis, we can find an orthonormal basis e, es, ..., e, for U with respect to which
(ma)|y has an upper triangular matrix. The statement that (w«)|y has an upper triangular
matrix means that

wae; € spanfe, €3, ..., €;} *

for2 <j <n.
Now ey, e, ..., e, form a basis of V. But % tells us that

ae; € spanfe, €, ..., €;}
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for 2 < j < n and the statement
ae; € span{e;}
is automatic. Thus « has upper triangular matrix (a;;) with respect to the given basis. [

Exercise 15.2.2 By considering roots of the characteristic polynomial or otherwise,
show, by example, that the result corresponding to Theorem 15.2.1 is false if V is a
finite dimensional vector space of dimension greater than 1 over R. What can we say if
dmV =1?

Why is there no contradiction between the example asked for in the previous paragraph
and the fact that every square matrix has a Q R factorisation?

We know that it is more difficult to deal with o € L(U,U) when the charac-
teristic polynomial has repeated roots. The next result suggests one way round this
difficulty.

Theorem 15.2.3 If U is a finite dimensional complex inner product vector space and
o € LU, U), then we can find o, € L(U, U) with ||a, — || = 0asn — oo such that the
characteristic polynomials of the o, have no repeated roots.

Proof of Theorem 15.2.3 By Theorem 15.2.1 we can find an orthonormal basis with respect
to which « is represented by upper triangular matrix A. We can certainly find d(”) -0
such that the a;; + d( ") are distinct for each n. Let D, be the diagonal matrix with d1agona1
entries d “ 1f we take o, to be the linear map represented by A 4+ D,,, then the characteristic
polynomlal of o, will have the distinct roots a;; + d( ") Exercise 15.1.13 tells us that
lee, — || = 0asn — oo, so we are done. O

If we use Exercise 15.1.13, we can translate Theorem 15.2.3 into a result on matrices.

Exercise 15.2.4 If A = (a;;) is an m x m complex matrix, show, using Theorem 15.2.3,
that we can find a sequence A(n) = (ai j (n)) of m x m complex matrices such that

max |a;;j(n) — a;j| - 0asn — o0
ij
and the characteristic polynomials of the A(n) have no repeated roots.

As an example of the use of Theorem 15.2.3, let us produce yet another proof of the
Cayley—Hamilton theorem. We need a preliminary lemma.

Lemma 15.2.5 Consider the space of m x m matrices M,,(C). The multiplication
map M,,(C) x M,,(C) - M,,(C) given by (A, B) — AB, the addition map M,,(C) x
M, (C) - M,,(C) given by (A, B)—> A+ B and the scalar multiplication map C x
M, (C) - M,,(C) given by (A, A) — AA are all continuous.

Proof We prove that the multiplication map is continuous and leave the other verifications
to the reader.
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To prove that multiplication is continuous, we observe that, whenever ||A, — A,
| B, — B|| — 0, we have

1AnBy = ABI = (A = A)B + (B = By)A,|
< (A = A)BI + (B = B)A, |
< 4= AdlIBI + 1B = B[l Al
< 4= AdlIBI + 1B = Bull (1Al + 14 = Al
— 040(|A +0)=0

as n — oo. This is the desired result. O

Theorem 15.2.6 [Cayley—Hamilton for complex matrices] If A is an m x m matrix and

Pa(t) = Zaktk = det(t1 — A),
k=0

we have P4(A) = 0.

Proof By Theorem 15.2.3, we can find a sequence A, of matrices whose characteristic
polynomials have no repeated roots such that || A — A, || - 0asn — oo. Since the Cayley—
Hamilton theorem is immediate for diagonal and so for diagonalisable matrices, we know
that, setting

Zak(n)tk = det(t] — A,),

k=0
we have

m

> a(m) Ay =0.
k=0

Now ay(n) is some multinomial® in the the entries a; j(n) of A(n). Since Exercise 15.1.13
tells us that a;;(n) — a;;, it follows that a;(n) — a;. Lemma 15.2.5 now yields

ZakAk = ZakAk — Zak(n)A’n‘ — 0
k=0 k=0 k=0
asn — 00, SO
San] =
k=0
and
> aAk =o. g
k=0

Before deciding that Theorem 15.2.3 entitles us to neglect the ‘special case’ of multiple
roots, the reader should consider the following informal argument. We are often interested

3 That is to say, some polynomial in several variables.
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in m x m matrices A, all of whose entries are real, and how the behaviour of some system
(for example, a set of simultaneous linear differential equations) varies as the entries in
A vary. Observe that, as A varies continuously, so do the coefficients in the associated
characteristic polynomial

k—1

4> @t = dett] — A).

j=0
As the coefficients in the polynomial vary continuously so do the roots of the polynomial.*

Since the coefficients of the characteristic polynomial are real, the roots are either real
or occur in conjugate pairs. As the matrix changes to make the number of non-real roots
increase by 2, two real roots must come together to form a repeated real root and then
separate as conjugate complex roots. When the number of non-real roots reduces by 2 the
situation is reversed. Thus, in the interesting case when the system passes from one regime
to another, the characteristic polynomial must have a double root.

Of course, this argument only shows that we need to consider Jordan normal forms
of a rather simple type. However, we are often interested not in ‘general systems’ but in
‘particular systems’ and their ‘particularity’ may be reflected in a more complicated Jordan
normal form.

15.3 The spectral radius

When we looked at iterative procedures like Gauss—Siedel for solving systems of lin-
ear equations, we were particularly interested in the question of when ||A”x|| — 0. The
following result gives an almost complete answer.

Lemma 15.3.1 IfA isacomplexm x m matrix with m distinct eigenvalues, then || A"X|| —
0 as n — oo if and only if all the eigenvalues of A have modulus less than 1.

Proof Take a basis u; of eigenvectors with associated eigenvalues A ;. If [A¢| > 1 then
A"l = [A|" lwg || 7> 0.
On the other hand, if [A;] < 1forall 1 < j < m, then

m

m
n§ — § A"a

A )lelj = )CIA llj
j=1

Jj=1

m
P— . n .
= E XA,
j=1

m
> xila gl — 0

j=1

IA

asn — 00. Thus ||A"x|| — 0 asn — oo for all x € C". U

4 This looks obvious and is, indeed, true, but the proof requires complex variable theory. See Exercise 15.5.14 for a proof.
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Note that, as the next exercise shows, although the statement that all the eigenvalues
of A are small tells us that ||A”x|| tends to zero, it does not tell us about the behaviour of
[|A"x]| when n is small.

Exercise 15.3.2 Let

1 K)
A=<2 .
0

What are the eigenvalues of A? Show that, given any integer N > 1 and any L > 0, we
can find a K such that, taking x = (0, 1)7, we have || AVx| > L.

In numerical work, we are frequently only interested in matrices and vectors with real
entries. The next exercise shows that this makes no difference.

Exercise 15.3.3 Suppose that A is a real m x m matrix. Show, by considering real and
imaginary parts, or otherwise, that |A"z|| — 0 as n — oo for all column vectors z with
entries in C if and only if | A"X|| — 0 as n — o0 for all column vectors X with entries in

R.

Life is too short to stuff an olive and I will not blame readers who mutter something
about ‘special cases’ and ignore the rest of this section which deals with the situation when
some of the roots of the characteristic polynomial coincide.

We shall prove the following neat result.

Theorem 15.3.4 If U is a finite dimensional complex inner product space and o €
LU, U), then

l" [ — pl@) asn — oo,
where p(a) is the largest absolute value of the eigenvalues of o.
Translation gives the equivalent matrix result.
Lemma 15.3.5 If A is an m x m complex matrix, then
IA"I'" — p(A) asn — oo,
where p(A) is the largest absolute value of the eigenvalues of A.

We call p(«) the spectral radius of «. At this level, we hardly need a special name,
but a generalisation of the concept plays an important role in more advanced work. Here
is the result of Lemma 15.3.1 without the restriction on the roots of the characteristic
equation.

Theorem 15.3.6 If A is a complex m x m matrix, then || A"X|| — 0 asn — oo if and only
if all its eigenvalues have modulus less than 1.

Proof of Theorem 15.3.6 using Theorem 15.3.4 Suppose that p(A) < 1. Then we can find
apuwith1 > u > p(A). Since [|A"[|'/" — p(A), we can find an N such that [|A"||'/" < p



15.3 The spectral radius 381
for all n > N. Thus, providedn > N,

TA™x| < TA" x|l < w"[Ix]| — O

asn — 00.
If p(A) > 1, then, choosing an eigenvector u with eigenvalue having absolute value
0o(A), we observe that ||A"ul|| -» 0 as n — oo. U

In Exercise 15.5.1, we outline an alternative proof of Theorem 15.3.6, using the Jordan
canonical form rather than the spectral radius.

Our proof of Theorem 15.3.4 makes use of the following simple results which the reader
is invited to check explicitly.

Exercise 15.3.7 (i) Suppose that r and s are non-negative integers. Let A = (a;;) and
B = (bij) be two m x m matrices such that a;; = 0 whenever 1 <i < j+r, and b;; =0
whenever 1 <i < j+s. If C = (c;j) is given by C = AB, show that ¢;; = 0 whenever
Il<i<j+r+s+1

(ii) If D is a diagonal matrix show that | D|| = p(D).

Exercise 15.3.8 By means of a proof or counterexample, establish whether the result of
Exercise 15.3.7 remains true if we drop the restriction that r and s should be non-negative.

Proof of Theorem 15.3.4 Let U have dimension m. By Theorem 15.2.1, we can find an
orthonormal basis for U with respect to which « has an upper triangular m x m matrix A
(that is to say, a matrix A = (a;;) with a;; = O fori > j). We need to show that | A" ||'/" —
p(A).

To this end, write A = B + D where D is a diagonal matrix and B = (b;;) is strictly
upper triangular (thatis to say, b;; = O wheneveri > j). Since the eigenvalues of a triangular
matrix are its diagonal entries,

p(A) = p(D) = || D]

If D=0, then p(A) =0 and A" =0 for n > m — 1, so we are done. From now on, we
suppose that D # 0 and so || D|| > 0.

Letn > m. If m < k < n, it follows from Exercise 15.3.7 that the product of k copies
of B and n — k copies of D taken in any order is 0. If 0 < k < m — 1 we can multiply k
copies of B and n — k copies of D in (Z) different orders, but, in each case, the product C,
say, will satisfy ||C|| < || B||*||D||"~*. Thus

m—1

jA" I = 1B+ Dyl <Y <”>||B||"||D||"".

k=0 k
It follows that
|A"| < Kn™ || D|"

for some K depending on m, B and D, but not on n.
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If A is an eigenvalue of A with largest absolute value and u is an associated eigenvalue,
then

[A™ [lufl = [[A™a]l = A"l = A" [[u]],
so |[A™]| = |A|" = p(A)". We thus have
p(AY" < A" < Kn" "' D|" = Kn" ' p(AY",
whence
p(A) < A" < KD p(A) — p(A)
Un _y

and || A"||'/" — p(A) as required. (We use the result from analysis which states that n
lasn — 00.) O

Theorem 15.3.6 gives further information on the Gauss—Jacobi, Gauss—Siedel and similar
iterative methods.

Lemma 15.3.9 [Gauss—Siedel revisited] Let A be an n x n matrix over IF with non-zero
diagonal entries and b € F* a column vector. Suppose that the equation

Ax=Db

has the solution X*. Let us write A = L + U where L is a lower triangular matrix and U a
strictly upper triangular matrix (that is to say, an upper triangular matrix with all diagonal
terms zero). If Xo € F"* and

LXj+1 =b-— UXj,
then ||x; — x*|| — 0 whenever p(L™'U) < 1. If p(L7'U) > 1 we can choose X, so that

lIx; —x*I| 7> 0.

Proof Left to reader. Note that Exercise 15.3.3 tells that, whether we work over C
or R, it is the size of the spectral radius which tells us whether we always have
convergence. Il

Lemma 15.3.10 Let A be an n x n matrix with
lay,| > Z lays| forall1 <r <n.
SFEr
Then the Gauss—Siedel method described in the previous lemma will converge. (More

specifically |x; — x*|| = O as j — 00.)

Proof Suppose, if possible, that we can find an eigenvector y of L~'U with eigenvalue A
such that [A| > 1. Then L='Uy = Ay and so Uy = ALy. Thus

a;; yi =" Zaljy] Z aijyj

j=1 Jj=i+1
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and so

laiillyil <) laij1y;1
J#
for each i.
Summing over all i and interchanging the order of summation, we get (bearing in mind
thaty # 0 and so |y;| > O for at least one value of j)

Dauum < ZDal,nm = ZDa,,Hy,

i=1 j#i J=1i#]

= Z|y,|2|a,,| < Zm llaj;| = Z|ai,~||yi|

j=1 i#j i=1

which is absurd.
Thus all the eigenvalues of A have absolute value less than 1 and Lemma 15.3.9
applies. U

Exercise 15.3.11 State and prove a result corresponding to Lemma 15.3.9 for the Gauss—
Jacobi method (see Lemma 15.1.14) and use it to show that, if A is an n X n matrix
with
la,s| > Z la,s| foralll <r <n,
SHET

then the Gauss—Jacobi method applied to the system AX = b will converge.

15.4 Normal maps

In Exercise 8.4.18 the reader was invited to show, in effect, that a Hermitian map is char-
acterised by the fact that it has orthonormal eigenvectors with associated real eigenvalues.
Here is an alternative (though, in my view, less instructive) proof using Theorem 15.2.1.

Theorem 15.4.1 If V is a finite dimensional complex inner product vector space and
o : V. — Vs linear, then a* = « if and only if we can find a an orthonormal basis for V
with respect to which o has a diagonal matrix with real diagonal entries.

Proof Sufficiency is obvious. If « is represented with respect to some orthonormal basis by
the diagonal matrix D with real entries, then o* is represented by D* = D and so o = o*.

To prove necessity, observe that, by Theorem 15.2.1, we can find an orthonormal basis
for V with respect to which o has an upper triangular matrix A (that is to say, a matrix
A = (a;j) witha;; =0fori > j). Now a* = a, so A* = A and

a,J—a =0 forj<i

whilst a;fj = aj; forall j. Thus A is, in fact, diagonal with real diagonal entries. O
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It is natural to ask which endomorphisms of a complex inner product space have an
associated orthogonal basis of eigenvalues. Although it might take some time and many
trial calculations, it is possible to imagine how the answer could have been obtained.

Definition 15.4.2 [If V is a complex inner product space, we say that o € L(V, V) is
normal’ if a*a = aa*.

Exercise 15.4.3 Let V be a finite dimensional complex inner product space with an
orthonormal basis. Show that o € L(V, V) is normal if and only if its matrix A relative
to the given basis satisfies A*A = AA*. (Such a matrix A is naturally called a normal
matrix.)

Theorem 15.4.4 [f V is a finite dimensional complex inner product vector space and
o : 'V — Vislinear, then o is normal if and only if we can find a an orthonormal basis for
V with respect to which o has a diagonal matrix.

Proof Sufficiency is obvious. If « is represented with respect to some orthonormal basis
by the diagonal matrix D, then o* is represented by D* = D. Since diagonal matrices
commute, DD* = D*D and so va™ = a*«.

To prove necessity, observe that, by Theorem 15.2.1, we can find an orthonormal basis
for V with respect to which « has an upper triangular matrix A (that is to say, a matrix
A = (a;j) witha;; =0fori > j). Now ao* = o*a so AA* = A*A and

n n n
* * *
Sy = Y = Y ana
j=l1 j=l1 Jj=1
foralln > r,s > 1. It follows that

arja.vj - ajSajr

Jj=max{r,s} Jj<min{r,s}

foralln > r, s > 1. In particular, if we take r = s = 1, we get

n
§ : * _ *
aljalj =dajdaq,
j=1
SO

n

2
> lay P =o.
j=2

Thus a;; =0 for j > 2.
If we now set r = s = 2 and note that a;, = 0, we get

n

2
Z|azj| =0,
j=3

> The use of the word normal here and elsewhere is a testament to the deeply held human belief that, by declaring something to
be normal, we make it normal.
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so azj = 0 for j > 3. Continuing inductively, we obtain a;; = 0 for all j > i and so A is
diagonal. O

If our object were only to prove results and not to understand them, we could leave
things as they stand. However, I think that it is more natural to seek a proof along the lines
of our earlier proofs of the diagonalisation of symmetric and Hermitian maps. (Notice that,
if we try to prove part (iii) of Theorem 15.4.5, we are almost automatically led back to
part (ii) and, if we try to prove part (ii), we are, after a certain amount of head scratching,
led back to part (i).)

Theorem 15.4.5 Suppose that V is a finite dimensional complex inner product vector
space and o : V — V is normal.

(1) If e is an eigenvector of o with eigenvalue O, then e is an eigenvalue of o™ with
eigenvalue 0.

(i) If e is an eigenvector of a with eigenvalue X, then e is an eigenvalue of «* with
eigenvalue \*.

(iii) a has an orthonormal basis of eigenvalues.

Proof (i) Observe that

ae=0= (xe,axe) =0= (e,a*ae) =0
= (e, xa’e) = 0= (aa*e,e) =0
= (a'e,ae) =0 = a"e = 0.
(ii) If e is an eigenvalue of o with eigenvalue A, then e is an eigenvalue of 8 = At — «

with associated eigenvalue 0.
Since B* = A*1 — *, we have

BB* = (M — )Wt — ) = APt — Ma — Aot +
=M\ —a") (v —a)= B*B.

Thus B is normal, so, by (i), e is an eigenvalue of 8* with eigenvalue 0. It follows that e is
an eigenvalue of o* with eigenvalue A*.

(iii)) We follow the pattern set out in the proof of Theorem 8.2.5 by performing an
induction on the dimension n of V.

If n = 1, then, since every 1 x 1 matrix is diagonal, the result is trivial.

Suppose now that the result is true for n = m, that V is an m 4 1 dimensional complex
inner product space and that « € £(V, V) is normal. We know that the characteristic
polynomial must have a root, so we can find an eigenvalue 1, € C and a corresponding
eigenvector e; of norm 1. Consider the subspace

elL ={u : (e;,u) =0}.
We observe (and this is the key to the proof) that

ue elL = (e, u) = (e, u) = (Afe;,u) = Aj{e;,u) =0 = qu € ell.
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Thus we can define o/ : ei — ef to be the restriction of « to ei". We observe that
e is normal and el has dimension m so, by the inductive hypothesis, we can find m

orthonormal eigenvectors of ale]L in ell. Let us call them ey, e3, ...,e, ;. We observe
that ey, e, ..., e, are orthonormal eigenvectors of o and so « is diagonalisable. The
induction is complete. O

(We give yet another proof of Theorem 15.4.4 in Exercise 15.5.9.)

Exercise 15.4.6 [A spectral theorem]® Let U be a finite dimensional inner product space
over C and a an endomorphism. Show that o is normal if and only if there exist distinct
non-zero A € C and orthogonal projections 7 ; such that mym; = 0 when k # |,

t=m +m+---+m, and o =M+ w2+ + Ay .
State the appropriate theorem for self-adjoint linear maps.
The unitary maps (that is to say, the linear maps o with a*« = () are normal.

Exercise 15.4.7 Explain why the unitary maps are normal. Let o be an automorphism of

a finite dimensional complex inner product space. Show that B = o~ 'a* is unitary if and

only if a is normal.

Theorem 15.4.8 If V is a finite dimensional complex inner product vector space, then
a € L(V, V) is unitary if and only if we can find an orthonormal basis for V with respect
to which o has a diagonal matrix

0 0 ... 0

0 ¢ 0 ... 0
u=|lo o &% ... o0
0 0 0 ¢l

where 01, 0, ..., 0, € R.

Proof Observe that, if U is the matrix written out in the statement of our theorem, we have

e 0 0 ... 0

0 e 0 ... 0

ur=| 0 0 e ... 0
0 0 0 ... et

so UU* = I. Thus, if « is represented by U with respect to some orthonormal basis, it
follows that ¢a™ = ¢ and « is unitary.

6 Calling this a spectral theorem is rather like referring to Mr and Mrs Smith as royalty on the grounds that Mr Smith is 12th
cousin to the Queen.
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We now prove the converse. If « is unitary, then « is invertible with & ~! = o*. Thus
ao* =1 =a*a

and « is normal. It follows that o has an orthonormal basis of eigenvectors e;. If A ; is the
eigenvalue associated with e;, then, since unitary maps preserve norms,

A1 =125lllejll = lAje;ll = llae;ll = lle;ll =1
SOA; = ¢'% for some real 0; and we are done. O
The next exercise, which is for amusement only, points out an interesting difference

between the group of norm preserving linear maps for R” and the group of norm preserving
linear maps for C".

Exercise 15.4.9 (i) Let V be afinite dimensional complex inner product space and consider
L(V, V) with the operator norm. By considering diagonal matrices whose entries are of
the form e'%i
map

, or otherwise, show that, if a« € L(V, V) is unitary, we can find a continuous

f:00,1] = L(V,V)

such that f(t) is unitary forall0 <t <1, f(0) =tand f(1) = a.
Show that, if B, y € L(V, V) are unitary, we can find a continuous map

g:[0,11 = LV, V)

such that g(t) is unitary for all 0 <t < 1, g(0) = B and g(1) = y.
(ii) Let U be a finite dimensional real inner product space and consider L(U, U) with
the operator norm. We take p to be a reflection

p(x) =x — 2(x, n)n

with m a unit vector.

If f:10,11 = LU, U) is continuous and f(0) =1, f(1)= p, show, by consider-
ing the map t +— det f(t), or otherwise, that there exists an s € [0, 1] with f(s) not
invertible.

15.5 Further exercises

Exercise 15.5.1 The object of this question is to give a more algebraic proof of Theo-
rem 15.3.6. This states that, if U is a finite dimensional complex inner product vector space
over C and o € L(U, U) is such that all the roots of its characteristic polynomial have
modulus strictly less than 1, then ||¢"x|| — Oasn — oo forallx € U.

(1) Suppose that « satisfies the hypothesis and uy, uy, ..., u, is a basis for U (but not
necessarily an orthonormal basis). Show that the required conclusion will follow if we can
show that [[a"(u;)|| - Oasn — oo forall 1 < j < m.
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(ii) Suppose that 8 € L(U, U) and

IB )\lljﬁ‘llj+1 lflfjfk—l,

u;, =

S P if j = k.

Show that there exists some constant K (depending on the u; but not on n) such that
I8 wll < Kn*~'[A]"

and deduce that, if |A| < 1,

18" wi || = 0

asn — o0o.
(iii) Use the Jordan normal form to prove the result stated at the beginning of the question.

Exercise 15.5.2 Show that (A, B) = Tr(A B*) defines an inner product on the vector space
of n x n matrices with complex matrices. Deduce that

Tr(AB*)? < Tr(AA*) Tr(BB*),

giving necessary and sufficient conditions for equality.

If n =2 and
1 1 1 1
=3 o) 2=(o 5

find an orthonormal basis for (span{C, D})*.
Suppose that A is normal (that is to say, AA* = A*A). By considering
(A*B — B*A, A*B — B*A), show that if B commutes with A, then B commutes with A*.

Exercise 15.5.3 Let U be an n-dimensional complex vector space and let « € L(U, U).
Let Ay, Az, ..., A, be the roots of the characteristic polynomial of o (multiple roots counted
multiply) and let wi, uo, ..., 1, be the roots of the characteristic polynomial of aa*
(multiple roots counted multiply). Explain why all the . ; are real and positive.

By using triangularisation, or otherwise, show that

P 4 2l e l® < o o
with equality if and only if « is normal.

Exercise 15.5.4 Let U be an n-dimensional complex vector space and let @ € L(U, U).
Show that « is normal if and only if we can find a polynomial such that «* = P(«).

Exercise 15.5.5 Consider the matrix

1 1 0 0
"
. -1 ﬁ 1 0
1o -1 1 1
"
0o o -1 1
"
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with u real and non-zero. Construct the appropriate matrices for the solution of Ax = b by
the Gauss—Jacobi and by the Gauss—Seidel methods.
Determine the range of u for which each of the two procedures converges.

Exercise 15.5.6 [The parallelogram law revisited] If ( , ) is an inner product on a vector
space V over F and we define |lu||; = (u, u) 172 (taking the positive square root), show that

la+ b3 + la — b3 = 2(lal3 + [[b]3)

foralla, be V.
Show that if V is a finite dimensional space over F of dimension at least 2 and we use
the operator norm || ||, there exist 7, S € L(V, V) such that

IT + SI> + 1T — SI* # 2(ITI1* + ISII*).
Thus the operator norm does not come from an inner product.

Exercise 15.5.7 The object of this question is to give a proof of the Riesz representation
theorem (Theorem 14.2.4) which has some chance of carrying over to an appropriate infinite
dimensional context. Naturally, it requires some analysis. We work in R" with the usual
inner product.

Suppose that  : R” — R is linear. Show, by using the operator norm, or otherwise, that

Ix, —x|| = 0= ax, = ax
as n — 00. Deduce that, if we write
IM={x: ax =0},
then
x, €I, |x, — x|| > 0 = x e II.
Now suppose that o # 0. Explain why we can find ¢ ¢ IT and why
{Ix—cl : xeII}

is a non-empty subset of R bounded below by 0.

Set M = inf{||x — ¢|| : x € IT}. Explain why we can find y, € I1 with ||y, —c¢| - M.
The Bolzano—Weierstrass theorem for R" tells us that every bounded sequence has
a convergent subsequence. Deduce that we can find x, € I1 and a d € IT such that
x, —¢|| > M and ||x, —d| — O.

Show thatd € IT and ||d — ¢|| = M. Setb = ¢ — d. If u € II, explain why

b+ null = |[b]|

for all real n. By squaring both sides and considering what happens when 1 take very small
positive and negative values, show that (a, u) = 0 for all u € II.

Deduce the Riesz representation theorem.
[Exercise 8.5.8 runs through a similar argument.]
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Exercise 15.5.8 In this question we work with an inner product on a finite dimensional
complex vector space U. However, the results can be extended to more general situations
so you should prove the results without using bases.

(i) Ifa € L(U, U), show that a*a = 0 = a = 0.

(i1) If o and B are Hermitian, show that ¢ = 0 = Ba = 0.

(iii) Using (i) and (ii), or otherwise, show that, if ¢ and i are normal,

$Y =0= Y =0.

Exercise 15.5.9 [Simultaneous diagonalisation for Hermitian maps] Suppose that U is
a complex inner product n-dimensional vector space and « and 8 are Hermitian endomor-
phisms. Show that there exists an orthonormal basis ey, e,, ..., e, of U such that each e;
is an eigenvector of both « and g if and only if ¢ = Bo.

If y is a normal endomorphism, show, by considering a =27!(y + y*) and B =
27'i(y — y*) that there exists an orthonormal basis e;, e, ..., e, of U consisting of
eigenvectors of y. (We thus have another proof that normal maps are diagonalisable.)

Exercise 15.5.10 [Square roots] In this question and the next we look at ‘square roots’ of
linear maps. We take U to be a vector space of dimension n over F.

(i) Let U be a finite dimensional vector space over . Suppose that o, 8 : U — U are
linear maps with 82 = «. By observing that af = B3, or otherwise, show that o = .

(i1) Suppose that «, B : U — U are linear maps with o = . If o has n dis-
tinct eigenvalues, show that every eigenvector of « is an eigenvector of 8. Deduce that
there is a basis for [ with respect to which the matrices associated with « and B are
diagonal.

(iii) Let F=C. If « : U — U is a linear map with n distinct eigenvalues, show, by
considering an appropriate basis, or otherwise, that there exists a linear map 8 : U — U
with A2 = . Show that, if zero is not an eigenvalue of «, the equation 8> = « has exactly
2" distinct solutions. (Part (ii) may be useful in showing that there are no more than 2"
solutions.) What happens if « has zero as an eigenvalue?

(iv) Let F = R. Write down a 2 x 2 symmetric matrix A with two distinct eigenvalues
such that there is no real 2 x 2 matrix B with B> = A. Explain why this is so.

(v) Consider the 2 x 2 real matrix

Ry — <cos€ sinf ) ‘
sinf —cos@

Show that R = I for all §. What geometric fact does this reflect? Why does this result not
contradict (iii)?

(vi) Let F = C. Give, with proof, a2 x 2 matrix A such that there does not exist a matrix
B with B> = A. (Hint: What is our usual choice of a problem 2 x 2 matrix?) Why does
your result not contradict (iii)?

(vii) Run through this exercise with square roots replaced by cube roots. (Part (iv) will

need to be rethought. For an example where there exist infinitely many cube roots, it may
be helpful to consider maps in SO(R?).)
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Exercise 15.5.11 [Square roots of positive semi-definite linear maps] Throughout this
question, U is a finite dimensional inner product vector space over F. A self-adjoint map
a : U — U is called positive semi-definite if (au, cu) > 0 for all u € U. (This concept is
discussed further in Section 16.3.)

(i) Suppose that o, B : U — U are self-adjoint linear maps with «f = fo. If @ has an
eigenvalue A and we write

E,={ueU : au= \u}

for the associated eigenspace, show that B E; C Ej. Deduce that we can find an orthonormal
basis for E; consisting of eigenvectors of 8. Conclude that we can find an orthonormal
basis for U consisting of vectors which are eigenvectors for both « and S.

(ii) Suppose that @ : U — U is a positive semi-definite linear map. Show that there is a
unique positive semi-definite 8 such that 82 = a.

(iii) Briefly discuss the differences between the results of this question and Exer-
cise 15.5.10.

Exercise 15.5.12 (We use the notation and results of Exercise 15.5.11.)

(i) Let us say that a self-adjoint map « is strictly positive definite if (cu, ccu) > O for all
non-zerou € U. Show that a positive semi-definite symmetric linear map is strictly positive
definite if and only if it is invertible. Show that the positive square root of a strictly positive
definite linear map is strictly positive definite.

(i) If @ : U — U is an invertible linear map, show that a*« is a strictly positive self-
adjoint map. Hence, or otherwise, show that there is a unique unitary map y such that
a = yB where B is strictly positive definite.

(iii) State the results of part (ii) in terms of n x n matrices. If n = 1 and we work over
C, to what elementary result on the representation of complex numbers does the result
correspond?

Exercise 15.5.13 (i) By using the Bolzano—Weierstrass theorem, or otherwise, show that,
if A(m) = (aij(m)) is a sequence of n x n complex matrices with |a;;(m)| < K for all
1 <i, j <n and all m, we can find a sequence m(k) — oo and a matrix A = (a;;) such
that a;; (m(k)) — ajj as k — oo.

(i1) Deduce that if «,, is a sequence of endomorphisms of a complex finite dimensional
inner product space with |e,,| bounded, we can find a sequence m(k) — co and an
endomorphism « such that |lo,,x) — | — 0as k — oo.

(iii) If y,, is a sequence of unitary endomorphisms of a complex finite dimensional inner
product space and y is an endomorphism such that ||y,, — y || — 0 as m — oo, show that
y is unitary.

(iv) Show that, even if we drop the condition « invertible in Exercise 15.5.12, there
exists a factorisation &« = By with y unitary and 8 positive definite.

(v) Can we take B strictly positive definite in (iv)? Is the factorisation in (iv) always
unique? Give reasons.
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Exercise 15.5.14 (Requires the theory of complex variables.) We work in C. State Rouché’s
theorem. Show that, if @, # 0 and the equation

n

-
>zl =0
j=0

has roots A, Az, ..., A, (multiple roots represented multiply), then, given € > 0, we can
find a 6 > O such that, whenever |b; —a;| < 6 for 0 < j < n, we can find roots (1, o,
.., U, (multiple roots represented multiply) of the equation

> bjzl =0
j=0
with |j — M| < € [1 <k <nl.

Exercise 15.5.15 [Finding the operator norm for £(U, U)] We work on a finite dimen-
sional real inner product vector space U and consider an « € L(U, U).
(i) Show that (x, e*ax) = |la(x)||*> and deduce that

2
loell = llee]l”

Conclude that ||ja*| > |||
(ii) Use the results of (i) to show that ||«|| = ||e*|| and that

2
leall = llecll”.

(iii) By considering an appropriate basis, show that, if 8 € L(U, U) is symmetric, then
|81l is the largest absolute value of its eigenvalues, i.e.

I8l = max{|x| : A an eigenvalue of S}.

(iv) Deduce that |||l is the positive square root of the largest absolute value of the
eigenvalues of a*«.

(v) Show that all the eigenvalues of o*« are positive. Thus ||« || is the positive square
root of the largest eigenvalues of o*«.

(vi) State and prove the corresponding result for a complex inner product vector space
U.
[Note that a demonstration that a particular quantity can be computed shows neither that it
is desirable to compute that quantity nor that the best way of computing the quantity is the
one given.]

Exercise 15.5.16 [Completeness of the operator norm] Let U be an n-dimensional inner
product space over F. The object of this exercise is to show that the operator norm is
complete, that is to say, every Cauchy sequence converges. (If the last sentence means
nothing to you, go no further.)

(i) Suppose that a(r) € L(U,U) and |la(r) — a(s)|| = 0 as r, s — oo. If we fix an
orthonormal basis for U and o(r) has matrix A(r) = (a;;(r)) with respect to that basis,
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show that
la;j(r) —aij(s)| = 0 asr, s = oo
forall 1 <1i, j < n.Explain why this implies the existence of g;; € IF with
la;j(r) —aijjl = 0 asr — oo

asn — o0.
(ii) Let @ € L(U, U) be the linear map with matrix A = (a;;). Show that

la(r) —al] > 0 asr — oo.

Exercise 15.5.17 The proof outlined in Exercise 15.5.16 is a very natural one, but goes
via bases. Here is a basis free proof of completeness.
(1) Suppose that a, € L(U, U) and ||o, — a5]] = O asr, s — co. Show that, if x € U,

|, x —asx|] = 0 asr, s — oo.
Explain why this implies the existence of an ax € [ with
|, x —ax|| - 0 asr — o0

asn — oo.
(i1) We have obtained a map « : U — U. Show that « is linear.
(iii) Explain why

lloyx — ax|| < [logx — ax|| + [la, — alll|x]].
Deduce that, given any € > 0, there exists an N(¢), depending on €, but not on X, such that
lloyx — ax|| < [lasx — ax|| + €||x||

forall r,s > N(e).
Deduce that

llorx — x| < €||x]|
for all » > N(¢) and all x € U. Conclude that
|, —a|| > 0 asr — oo.

Exercise 15.5.18 Once we know that the operator norm is complete (see Exercise 15.5.16
or Exercise 15.5.17), we can apply analysis to the study of the existence of the inverse. As
before, U is an n-dimensional inner product space over F and «, 8, y € L(U, U).

(i) Let us write

S,()=t+a+---+a”.

If ||| < 1, show that || S,() — S,,(x)|| — Oasn, m — oo. Deduce that there is an S(«) €
L(U, U) such that || S, (@) — S(a)|| > 0 asn — oo.
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(i1) Compute (¢ — «)S, () and deduce carefully that (: — «)S(«) = ¢. Conclude that 8
is invertible whenever ||t — 8| < 1.

(iii) Show that, if U is non-trivial and ¢ > 1, there exists a 8 which is not invertible with
It — Bl = c and an invertible y with |t — y|| = c.

(iv) Suppose that « is invertible. By writing

B=a(t—a(a—p),

or otherwise, show that there is a § > 0, depending only on the value of ||| ~!, such that
B is invertible whenever |lo — 8] < 4.

(v) (If you know the meaning of the word open.) Check that we have shown that the
collection of invertible elements in L(U, U) is open. Why does this result also follow from
the continuity of the map « +— det«?

[However, the proof via determinants does not generalise, whereas the proof of this exercise
has echos throughout mathematics.]

vi) fa, € LU, U), |l || < 1 and ||, || — 0, show, by the methods of this question,
that

I — o)™ = =0

as n — oo. (That is to say, the map « — «~! is continuous at ¢.)

Gv) If B, € L(U, U), B, is invertible, B is invertible and || 8, — B|| — 0, show that
1B, =B~ — 0

1'is continuous on the set of invertible elements

asn — oo. (That s to say, the map o — o~
of L(U,U).)

[We continue with some of these ideas in Questions 15.5.19 and 15.5.22.]

Exercise 15.5.19 We continue with the hypotheses and notation of Exercise 15.5.18.
(i) Show that there is a y € L(U, U) such that

n
1 .
E .—'a/—y — 0 asn — oo.
j=0""

We write expo = y.
(ii) Suppose that & and 8 commute. Show that

n 1 . n 1 ) n 1
;Ea ;Eﬁ —X(;E(OH-ﬂ)k

k=l

n

| | 1
<2 el DAY =D el + 1B
u=0 v=0

(note the minus sign) and deduce that

expa exp B = exp(o + B).
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(iii) Show that exp « is invertible with inverse exp(—«).
(iv) Let ¢ € F. Show that

2
exp(te) —t —ta — 30{2

|t|_2 — 0 ast— 0.

(v) We now drop the assumption that « and 8 commute. Show that

1
172 | exp(ta) exp(tB) — exp (t(ex + B)) | — E”aﬂ — Ba||

ast — 0.
Deduce that, if @ and 8 do not commute and ¢ is sufficiently small, but non-zero, then

exp(ta) exp(tB) # exp (t(ot + ,3)).
Show also that, if @ and 8 do not commute and ¢ is sufficiently small, but non-zero, then

exp(rar) exp(1f) # exp(1f) exp(ra).

(vi) Show that
"1 oLl ol PR B
Yot =Y st =3 Sl 18I =D el
k=0 k=0 k=0 k=0
and deduce that

|l exp(a + B) — expal| < elll+IBI _ plel

Hence show that the map o — exp « is continuous.
(vii) If @ has matrix A and exp « has matrix C with respect to some basis of U, show
that, writing
n
AI‘
S(n) = Z W,
r=0

we have s;;(n) — ¢;j asn — ooforeach 1 <1i, j <n.

Exercise 15.5.20 By considering Jordan normal forms, or otherwise, show that, if A is an
n X n complex matrix,

n Ar
det (Z —‘) — exp(Tr A).
r!

r=0

If you have done the previous question, conclude that
detexpa = expTro.

Exercise 15.5.21 Let A and B be m x m complex matrices and let u € C. Which, if any,
of the following statements about the spectral radius p are true and which are false? Give
proofs or counterexamples as appropriate.

@ p(rA)) = |l p(A).

(i) p(A)=0= A =0.

(iii) If p(A) = 0, then A is nilpotent.
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(iv) If A is nilpotent, then p(A) = 0.

(v) p(A+ B) < p(A) + p(B).

(vi) p(AB) < p(A)p(B).

(vii) p(AB) = p(A)p(B).

(viii) If A and B commute, then p(A + B) = p(A) + p(B).

(ix) If A and B commute, then p(AB) = p(A)p(B).

(x) If A and B commute, then p(AB) < p(A)p(B).

(xi) det A < p(A)™.

(xii)detA =0 = p(A) =0.

(xiii) Given K > 1 we can find an m x m matrix C with p(C) =0, ||C|| > K and
[C™*) > K||C"|| forall | <r <m —2.

Exercise 15.5.22 In this question we look at the spectral radius using as much analysis and
as little algebra as possible. As usual, U is a finite dimensional complex inner product vector
space over Cand a, B € L(U, U). Naturally you must not use the result of Theorem 15.3.4.

(i) Write pg(ar) = liminf,_ o [|a"||'/". If € > 0, then, by definition, we can find an N
such that [|a™||'/N < pg(a) + €. Show that, if r is fixed,

oV < Copp(a) + €)VF,

where C, is independent of N. Deduce that

lim sup [l [|1/"

n— 00

< ppla) +€

and conclude that || [|'/" — pg(c).

(ii) Let € > 0. Show that we can we choose K so that

le"ll < K(pp(a) +€)" and [|B"]| < K(pB(B) + €)'
for all » > 0. If we choose such a K, show that
e+ B)' Il < K(ps(a) + ps(B) + 2€)"
for all n > 0. Deduce that
pB(a + B) < pg(a) + pB(B).
(iii) If B = O for some m, show that
pp(a + B) < ppla).

(iv) Show, in the manner of Exercise 15.5.18, that, if pg(a) < 1, then ¢ — « is invertible
and

Zotj — @ —ot)’1 — 0.
j=1

(v) Using (iv), show that #t — « is invertible whenever t > pg(«). Deduce that pp(a) > A
whenever X is an eigenvalue of «.
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(vi) If B is invertible, show that pg(8~'aB) = pp(a).
(vii) Explain why Theorem 12.2.5 tells us that we can find 8, y, § € L(U, U) such that
B™ = 0 for some m, y is invertible, § has the same eigenvalues as «,

pp(8) = max{|A| : X an eigenvalue of §} = p(§)
and
a=y"'E+By.
Hence show that
pp(a) = max{|A| : A an eigenvalue of §} = p(«).
(ix) Show that, if B is an m x m matrix satisfying the condition

by =1> Y |by| forall 1 <r <m,
SFET
then B is invertible.
By considering DB, where D is a diagonal matrix, or otherwise, show that, if A is an
m X m matrix with

lar | > D lay| forall 1 <r <m
S#r
then A is invertible. (This is relevant to Lemma 15.3.9 since it shows that the system Ax = b
considered there is always soluble. A short proof, together with a long list of independent
discoverers in given in ‘A recurring theorem on determinants’ by Olga Taussky [30].)

Exercise 15.5.23 [Over-relaxation] The following is a modification of the Gauss—Siedel
method for finding the solution x* of the system

Ax = b,

where A is a non-singular m X m matrix with non-zero diagonal entries. Write A as the
sum of m x m matrices A = L + D + U where L is strictly lower triangular (so has zero
diagonal entries), D is diagonal and U is strictly upper triangular. Choose an initial xy and
take

(D +wl)X;y = ( —owU+ (1 - a))D)xj + wb.

with @ # 0.

Check that, if = 1, this is the Gauss—Siedel method. Check also that, if || x; — x|| — 0,
as j — oo, then x = x*.

Show that the method will certainly fail to converge for some choices of x( unless 0 <
o < 2. (However, in appropriate circumstances, taking w close to 2 can be very effective.)
[Hint: If | det B| > 1 what can you say about p(B)?]

Exercise 15.5.24 (This requires elementary group theory.) Let G be a finite Abelian group
and write C(G) for the set of functions f : G — C.
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(i) Show that
(f,8) =) gk

xeG

is an inner product on C(G). We use this inner product for the rest of this question.

(i) If y € G, we define a, f(x) = f(x + y). Show that ay : C(G) — C(G) is a unitary
linear map and so there exists an orthonormal basis of eigenvectors of .

(iii) Show that ayot,, = o, forall y, w € G. Use this result to show that there exists
an orthonormal basis By each of whose elements is an eigenvector for «, forall y € G.

(iv) If € By, explain why ¢(x + y) = A,¢(x) forall x € G and some A, with [A,| = 1.
Deduce that |¢(x)] is a non-zero constant independent of x. We now write

B={$0)""¢ : ¢ € By}

so that B is an orthogonal basis of eigenvectors of each o, with x € B = x(0) = 1.
(v) Use the relation x(x + y) = A, x(x) to deduce that x(x + y) = x(x)x(y) for all
x, y€aq.
(vi) Explain why
£=1GI"" Y (0
X€E€B

where |G| is the number of elements in G.
[Observe that we have produced a kind of Fourier analysis on G.]
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Quadratic forms and their relatives

16.1 Bilinear forms

In Section 8.3 we discussed functions of the form
(x,y) > ux? + 2vxy + wy?.
These are special cases of the idea of a bilinear function.

Definition 16.1.1 If U, V and W are vector spaces over F, then @ : U x V — W is a
bilinear function if the map

ay:U— W givenbyay(u) =a(u,v)
is linear for each fixed v € V and the map

ay, : V= W given by ay (v) = a(u, v)
is linear for each fixedu € U.

Exercise 16.5.1 discusses a result on general bilinear functions which is important
in multivariable analysis, but, apart from this one exercise, we shall only discuss the
special case when we take U = V and W = F. Although much of the algebra involved
applies to both R and C (and indeed to more general fields), it is often more natural to
look at sesquilinear functions (see Exercise 16.1.26) rather than bilinear functions (see
Exercise 16.2.10) when considering C. For this reason, we will make a further restriction
and, initially, only consider the case when F = R.

Definition 16.1.2 If U is a vector space over R, then a bilinear functiona : U x U — R
is called a bilinear form.

Before discussing what a bilinear form looks like, we note a link with dual spaces. The
following exercise is a small paper tiger.

Lemma 16.1.3 Suppose that U is vector space over R and o : U x U — R is a bilinear
form. If we set

O.(X)y = a(X,y) and Or(y)x = a(x,y)

399
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for x, y € U, we have 0;(x), Or(y) € U'. Further 6, and 0 are linear maps from U
to U’

Proof Left to the reader as an exercise in disentangling notation. O

Lemma 16.1.4 We use the notation of Lemma 16.1.3. If U is finite dimensional and
ax,y) =0 forallye U =x=0,

then 0 : U — U’ is an isomorphism.

Proof We observe that the stated condition tells us that 6, is injective since

0,x)=0=0,(x)(y) =0 forally e U
= ua(x,y)=0 forallyeU
=x=0.

Since dim U = dim U’ it follows that 6; is an isomorphism. |

Exercise 16.1.5 State and prove the corresponding result for Og.
[In lemma 16.1.7 we shall see that things are simpler than they look at the moment.)

Lemma 16.1.4 is a generalisation of Lemma 14.2.8. Our proof of Lemma 14.2.8 started
with the geometric observation that (for an n dimensional inner product space) the null-
space of a non-zero linear functional is an n — 1 dimensional subspace, so we could use
an appropriate vector perpendicular to that subspace to obtain the required map. Our proof
of Lemma 16.1.4 is much less constructive. We observe that a certain linear map between
two vector spaces of the same dimension is injective and conclude that is must be bijective.
(However, the next lemma shows that, if we use a coordinate system, it is easy to write
down 0y, and 6y explicitly.)

We now introduce a specific basis.

Lemma 16.1.6 Let U be a finite dimensional vector space over R with basis ey, e, ...,
e,.
(@) If A = (a;;) is an n x n matrix with entries in R, then

n n n n
o inei,z}’jej =ZE Xi@ijyj
i=1 j=1

i=1 j=1

(for x;, y; € R) defines a bilinear form.
@) If a : U x U is a bilinear form, then there is a unique n x n real matrix A = (a;;)
with

n n n n
i=1 j=1

i=1 j=1

forall x;, yj e R.
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(iii) We use the notation of Lemma 16.1.3 and part (ii) of this lemma. If we give U’ the
dual basis (see Lemma 11.4.1) &, &, ..., &,, then 0, has matrix AT with respect to the
bases we have chosen for U and U’ and O has matrix A.

Proof Left to the reader. Note that a;; = a(e;, €;). O

We know that A and A7 have the same rank and that an n x n matrix is invertible if and
only if it has full rank. Thus part (iii) of Lemma 16.1.6 yields the following improvement
on Lemma 16.1.4.

Lemma 16.1.7 We use the notation of Lemma 16.1.3. If U is finite dimensional, the
following conditions are equivalent.

) ax,y)=0forally e U =x=0.

(i) ax,y) =0forallx e U =y =0.

(iii) If e, €y, ..., e, is a basis for U, then the n x n matrix with entries c(e;, €;) is
invertible.

(iv) 0y, : U — U’ is an isomorphism.

() Og : U — U’ is an isomorphism.

Definition 16.1.8 If U is finite dimensional and o : U x U — R is bilinear, we say that
« is degenerate (or singular) if there exists a non-zero X € U such that a(X,y) = 0 for all
yeU.

Exercise 16.1.9 (i) If B : R?> x R> — R is given by

B((x1, x2)", (1, y2)") = x132 — x2y1,

show that B is a non-degenerate bilinear form, but (X, x) = 0 forallx € U.
Is it possible to find a degenerate bilinear form a associated with a vector space U of
non-zero dimension with a(x, X) # 0 for all x # 02 Give reasons.

Exercise 16.1.17 shows that, from one point of view, the description ‘degenerate’ is not
inappropriate. However, there are several parts of mathematics where degenerate bilinear
forms are neither rare nor useless, so we shall consider general bilinear forms whenever we
can.

Bilinear forms can be decomposed in a rather natural way.

Definition 16.1.10 Ler U be a vector space over R and let « : U x U — R be a bilinear
form.

If a(u, v) = a(v,u) forallu, v € U, we say that o is symmetric.

If a(u,v) = —a(v,u) for all u, v e U, we say that o is antisymmetric (or skew-
symmetric).

Lemma 16.1.11 Let U be a vector space over R. Every bilinear form o : U x U — R
can be written in a unique way as the sum of a symmetric and an antisymmetric bilinear
form.
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Proof This should come as no surprise to the reader. If oy : U x U — R is a symmetric
and oy : U x U — R an antisymmetric form with @ = o] + 5, then

a(u,v) = ai(u, v) + ax(ua, v)

a(v,u) = ai(ua, v) — ax(u, v)

and so
1
ai(u, v) = E(a(u, V) + a(v,u)
1
or(u, v) = E(a(u, v) — a(v,u)).

Thus the decomposition, if it exists, is unique.

We leave it to the reader to check that, conversely, if «;, o, are defined using the
second set of formulae in the previous paragraph, then ¢/ is a symmetric linear form, o, an
antisymmetric linear form and o = o1 + 5. O

Symmetric forms are closely connected with quadratic forms.

Definition 16.1.12 Let U be a vector space over R. If o : U x U — R is a symmetric
form, then q : U — R, defined by

g(u) = a(u, w),
is called a quadratic form.
The next lemma recalls the link between inner product and norm.

Lemma 16.1.13 With the notation of Definition 16.1.12,

1
a(u,v) = Z(q(u +v) —g(u—v))
forallu, veU.
Proof The computation is left to the reader. (I

Exercise 16.1.14 [A ‘parallelogram’ law] We use the notation of Definition 16.1.12. If
u, v e U, show that

gu+v) + g —v) =2(g) + g(v)).

Remark 1 Although all we have said applies when we replace R by C, it is more natural
to use Hermitian and skew-Hermitian forms when working over C. We leave this natural
development to Exercise 16.1.26 at the end of this section.

Remark 2 As usual, our results can be extended to vector spaces over more general fields
(see Section 13.2), but we will run into difficulties when we work with a field in which
2 = 0 (see Exercise 13.2.8) since both Lemmas 16.1.11 and 16.1.13 depend on division
by 2.
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The reason behind the usage ‘symmetric form’ and ‘quadratic form’ is given in the next
lemma.

Lemma 16.1.15 Let U be a finite dimensional vector space over R with basis ey, e,, . . .,
e,.
(i) If A = (a;j) is an n x n real symmetric matrix, then

n

n n n
o E xiei,E Yiej | = E E XiQijyj
i=1 j=1

i=1 j=1

(for x;, y; € R) defines a symmetric form.
(@) Ifa : U x U is a symmetric form, then there is a unique n X n real symmetric matrix
A= (Clij) with

n n n n
o E Xi€, E Yi€j | = E E Xidijyj
i=1 j=1

i=1 j=1

forall x;, y;j e R.
(iii) If @ and A are as in (ii) and g(u) = a(u, u), then

n n n
i=1 i=1 j=1
forall x; € R.
Proof Left to the reader. Note that a;; = a(e;, €;). O

Exercise 16.1.16 If B = (b;;) is an n x n real matrix, show that
i=1 i=1 j=1

(for x; € R) defines a quadratic form. Find the associated symmetric matrix A in terms of
B.

Exercise 16.1.17 This exercise may strike the reader as fairly tedious, but I think that it
is quite helpful in understanding some of the ideas of the chapter. Describe, or sketch, the
sets in R3 given by

2, .2, .2 2, .2 _ .2
xi+xy+x3 =k xi+x;—x3=k,

xidxi=k, xi—-xi=k xi=kO0=k
fork=1k=—1andk =0.

We have a nice change of basis formula.
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Lemma 16.1.18 Ler U be a finite dimensional vector space over R. Suppose that e,
e,...,e,andf, £, ..., £, are bases with

n
fj: E m,»je,»
i=1

for 1 <i <n. Then, if
n

n n n
o E X;€;, E Y€ = E E XiQijyj,
i=1 j=1

i=1 j=1
a | D ok, Y vt | =20 xibiyy;,
i=1 j=1 i=1 j=1
and we write A = (a;;), B = (bjj), M = (m;;), we have B = MTAM.

Proof Observe that

n n
af. . f) =« E m;,€;, E m;s€;
i=1 j=1
n

n n n
=§ E mirmjsa(eisej)ZE E miyaijm jg

i=1 j=1 i=1 j=1
as required. O

Although we have adopted a slightly different point of view, the reader should be aware
of the following definition. (See, for example, Exercise 16.5.3.)

Definition 16.1.19 If A and B are symmetric n X n matrices, we say that the quadratic
formsx — xT Axandx +— x” Bx are equivalent (or congruent) ifthere exists a non-singular
n x n matrix M with B = MTAM.

It is often more natural to consider ‘change of coordinates’ than ‘change of basis’.

Lemma 16.1.20 Ler A be an n x n real symmetric matrix, let M be an invertible n x n
real matrix and take

q(x) = x| Ax
for all column vectors x. If we set X = MX, then
gX) =x"MT AMx.
Proof Tmmediate. U

Remark Note that, although we still deal with matrices, they now represent quadratic forms
and not linear maps. If q; and g, are quadratic forms with corresponding matrices A; and
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A,, then A + A, corresponds to g; + ¢», but it is hard to see what meaning to give to
A} A;. The difference in nature is confirmed by the very different change of basis formulae.
Taking one step back and looking at bilinear forms, the reader should note that, though
these have a very useful matrix representation, the moment we look at trilinear forms (the
definition of which is left to the reader) the natural associated array does not form a matrix.
Notwithstanding this note of warning, we can make use of our knowledge of symmetric
matrices.

Theorem 16.1.21 Let U be a real n-dimensional inner product space. If : U x U — R
is a symmetric form, then we can find an orthonormal basis ey, e,, . . ., €, and real numbers
dy, do, ..., d, such that

n n n
o | Dowie Do vie; | =D dexi
i=1 j=1 k=1

forall x;, y; € R. The di are the roots of the characteristic polynomial of a with multiple
roots appearing multiply.

Proof Choose any orthonormal basis fi, f, ..., f, for U. We know, by Lemma 16.1.15,
that there exists a symmetric matrix A = (a;;) such that

n

n n n
o E xif;, E yifi | = E Xiaijy;
i1 =1

i=1 j=1

for all x;, y; € R. By Theorem 8.2.5, we can find an orthogonal matrix M such that
MTAM = D, where D is a diagonal matrix whose entries are the eigenvalues of A appear-
ing with the appropriate multiplicities. The change of basis formula now gives the required
result. (]

Recalling Exercise 8.1.7, we get the following a result on quadratic forms.
Lemma 16.1.22 Suppose that q : R" — R is given by
q(x) = Z inaijxj
i=1 j=1

where X = (x1, X2, ..., x,)! with respect to some orthogonal coordinate system S. Then
there exists another coordinate system S’ obtained from the first by rotation of axes such
that

qy) =Y d;y}
i=1

wherey = (Y1, Y2, . .., Yu)! with respect to S'.

Exercise 16.1.23 Explain, using informal arguments (you are not asked to prove anything,
or, indeed, to make the statements here precise), why the volume of an ellipsoid given by
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Z’}zl xja;jxj < L (where L > 0 and the matrix (a;;) is symmetric with all its eigenvalues
strictly positive) in ordinary n-dimensional space is (det A V2L2Y, where V, is the
volume of the unit sphere.

Here is an important application used the study of multivariate (that is to say, multidi-
mensional) normal random variables in probability.

Example 16.1.24 Suppose that the random variable X = (X1, X, ..., X,)T has density
function

n n

1
fX(X) =K €xXp —5 Z Zx,‘ainj =K exp(—%XTAX)

i=1 j=1

for some real symmetric matrix A. Then all the eigenvalues of A are strictly positive and
we can find an orthogonal matrix M such that

X=MY

where Y = (Y1, Ya, ..., Y,)T, the Y; are independent, each Y is normal with mean 0 and
variance a’j_1 and the d; are the roots of the characteristic polynomial for A with multiple
roots counted multiply.

Sketch proof (We freely use results on probability and integration which are not part of
this book.) We know, by Exercise 8.1.7 (ii), that there exists a special orthogonal matrix P
such that

PTAP =D,

where D is a diagonal matrix with entries the roots of the characteristic polynomial of A.
By the change of variable theorem for integrals (we leave it to the reader to fill in or ignore
the details), Y = P~'X has density function

1 n
fr(y)=Kexp | =3 > djy;
j=1

(we know that rotation preserves volume). We note that, in order that the integrals converge,
we must must have d; > 0. Interpreting our result in the standard manner, we see that the
Y; are independent and each Y; is normal with mean 0 and variance dj_l.

Setting M = PT gives the result. O

Exercise 16.1.25 (Requires some knowledge of multidimensional calculus.) We use the
notation of Example 16.1.24. What is the value of K in terms of det A?

We conclude this section with two exercises in which we consider appropriate analogues
for the complex case.

Exercise 16.1.26 If U is a vector space over C, we say thata : U x U — C is a sesquilin-
ear form if

ay:U — Cgiven by «y(u) = a(u, v)
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is linear for each fixed v € U and the map
ay, 1 U — C given by ay (V) = a(u, v)*

is linear for each fixed uw € U. We say that a sesquilinear form o : U x U — C is
Hermitian if a(u, v) = a(v,w)* for all u, ve U. We say that o is skew-Hermitian if
a(v,u) = —a(u, v)* forallu, ve U.

(i) Show that every sesquilinear form can be expressed uniquely as the sum of a Hermitian
and a skew-Hermitian form.

(ii) If « is a Hermitian form, show that a(u, u) is real for allu € U.

(iii) If a is skew-Hermitian, show that we can write o = i3 where 3 is Hermitian.

(iv) If « is a Hermitian form show that

da(u,v) =a(u+v,u+v)—a(u—v,u—v)+ic@@+iv,u+iv) —ia@—iv,u—iv)

forallu, veU.

(v) Suppose now that U is an inner product space of dimension n and « is Hermitian.
Show that we can find an orthonormal basis ey, €,, . . ., e, and real numbers dy, d, . . ., d,
such that

n n n
o § Zr€r, E Ws€s | = E dtztw;k
r=1 s=1 =1

forall z,, wy € C.

Exercise 16.1.27 Consider Hermitian forms for a vector space U over C. Find and prove
analogues for those parts of Lemmas 16.1.3 and 16.1.4 which deal with Og. You will need
the following definition of an anti-linear map. If U and V are vector spaces over C, then a
Sfunction ¢ : U — V is an anti-linear map if p(AX + ny) = A*¢x + u*¢y forallx, y e U
and all »., n € C. A bijective anti-linear map is called an anti-isomorphism.

[The treatment of 0, would follow similar lines if we were prepared to develop the theme
of anti-linearity a little further.)

16.2 Rank and signature

Often we we need to deal with vector spaces which have no natural inner product or with
circumstances when the inner product is irrelevant. Theorem 16.1.21 is then replaced by
the Theorem 16.2.1.

Theorem 16.2.1 Let U be a real n-dimensional vector space. If « : U x U — R is a
symmetric form, then we can find a basis ey, €, . . ., €, and positive integers p and m with
p +m < n such that

n n V4 p+m
o E Xi€;, E yi€i | = E Xk Yk — E Xk Yk
i=1 j=1 k=1 k=p+1

forallx;, y; e R.
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By the change of basis formula of Lemma 16.1.18, Theorem 16.2.1 is equivalent to the
following result on matrices.

Lemma 16.2.2 [f A is an n X n symmetric real matrix, we can find positive integers p
and m with p + m < n and an invertible real matrix B such that BTAB = E where E isa
diagonal matrix whose first p diagonal terms are 1, whose next m diagonal terms are —1
and whose remaining diagonal terms are 0.

Proof By Theorem 8.2.5, we can find an orthogonal matrix M such that MTAM = D
where D is a diagonal matrix whose first p diagonal entries are strictly positive, whose next
m diagonal terms are strictly negative and whose remaining diagonal terms are 0. (To obtain
the appropriate order, just interchange the numbering of the associated eigenvectors.) We
write d; for the jth diagonal term.

Now let A be the diagonal matrix whose jth entry is §; = |d; "2 forl<j<p+m
and §; = 1 otherwise. If we set B = M A, then B is invertible (since M and A are) and

B"AB=A"M"AMA = ADA=E
where E is as stated in the lemma. O
We automatically get a result on quadratic forms.
Lemma 16.2.3 Suppose that g : R" — R is given by
n n
q(x) = Z inaijxj
i=1 j=1

where X = (x1, X2, ..., x,)T with respect to some (not necessarily orthogonal) coordinate
system S. Then there exists another (not necessarily orthogonal) coordinate system S’ such
that

p p+m
aW =y y—- > ¥
i=1 i=p+1

wherey = (y1, y2, ..., Ya)| with respect to S'.
Exercise 16.2.4 Obtain Lemma 16.2.3 directly from Lemma 16.1.22.

If we are only interested in obtaining the largest number of results in the shortest time,
it makes sense to obtain results which do not involve inner products from previous results
involving inner products. However, there is a much older way of obtaining Lemma 16.2.3
which involves nothing more complicated than completing the square.

Lemma 16.2.5 (i) Suppose that A = (a;j)1<i, j<n iS a real symmetric n X n matrix with
ayr # 0, and we set b;; = |a11|’1(|a11|aij —ay;aij). Then B = (b;j)a<i j<n Is a real sym-
metric matrix. Further, if x € R" and we set

n
12 ~12
yi = lan|" x1+Zalj|all| x;
=
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and y; = x; otherwise, we have

n n n n
sziaijxj = ey + Z Zyibijyj

i=1 j=1 i=2 j=2
where e = 1l ifa;; > 0ande = —1ifa;; < 0.
(ii) Suppose that A = (a;j)1<i, j<n IS a real symmetric n X n matrix. Suppose further that
o:{1,2,...,n} —:{1,2,...,n}is a permutation (that is to say, o is a bijection) and we

set Cij = Qgisj. Then C = (cij)i<i,j<n is a real symmetric matrix. Further, if x € R" and
we set y; = Xq(j), we have

n n n n
Z Z XidijXj = Z Z Yi€ijyj-

i=1 j=1 i=1 j=1

(iii) Suppose that n > 2, A = (a;j)1<i,j<n IS a real symmetric n X n matrix and a;; =

ay =0, but ayy # 0. Then there exists a real symmetric n X n matrix C with c¢11 # 0 such
that, if x € R" and we set y; = (x1 + x2)/2, y» = (x1 — x2)/2, y; = x; for j = 3, we have

noon noon
Z Z)Ciaijxj = Z ZYicijyj'
i=1 j=1 i=1 j=1
(iv) Suppose that A = (a;j)1<i, j<n 1S a non-zero real symmetric n x n matrix. Then
we can find an n x n invertible matrix M = (m;;)1<; j<, and a real symmetric (n — 1) x
(n — 1) matrix B = (b;j)2<i, j<n sSuch that, if x € R" and we set y; = erzl m;;xj, then

n n n n '
sziaijxj =€y + Z Zyibijyj

i=1 j=I i=2 j=2

where € = £1.

Proof The first three parts are direct computation which is left to the reader, who should not
be satisfied until she feels that all three parts are ‘obvious’.! Part (iv) follows by using (ii),
if necessary, and then either part (i) or part (iii) followed by part (i). O

Repeated use of Lemma 16.2.5 (iv) (and possibly Lemma 16.2.5 (ii) to reorder the
diagonal) gives a constructive proof of Lemma 16.2.3. We shall run through the process in
a particular case in Example 16.2.11 (second method).

It is clear that there are many different ways of reducing a quadratic form to our standard
form Y°F_, x7 — 5:;1 .1 X7, but it is not clear that each way will give the same value of p
and m. The matter is settled by the next theorem.

Theorem 16.2.6 [Sylvester’slaw of inertia] Suppose that U is a vector space of dimension

nover Rand q : U — R" is a quadratic form. If e, e, . .., €, is a basis for U such that
n p+m
_ 2 2
a| dowe | =200 X N
j=1 j=1 Jj=p+1

! This may take some time.
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and £y, £, ..., £, is a basis for U such that

n P p'+m’

_ 2 2

a| vt |=2v- ) ¥
j=1 j=1 Jj=p'+1

then p = p' andm = m’.

Proof The proof is short and neat, but requires thought to absorb fully.
Let E be the subspace spanned by ey, e, ..., e, and F the subspace spanned by f,,,,
f,i0,... .. Ifxe Eandx # 0, then x = Zle xje; with not all the x; zero and so

P
q(x) = ijz > 0.
j=1

If x € F, then a similar argument shows that g(x) < 0. Thus
ENF ={0}
and, by Lemma 5.4.10,
dim(E + F) =dim E + dim F — dim(E N F) = dim E 4 dim F.
But E + F is a subspace of U, son > dim(E + F) and
n>dm(E+ F)=dmE +dimF =p+n — p).

Thus p’ > p. Symmetry (or a similar argument) shows that p > p’, so p = p’. A similar
argument (or replacing g by —q) shows that m = m'. O

Remark 1. In the next section we look at positive definite forms. Once you have looked at
that section, the argument above can be thought of as follows. Suppose that p > p’. Let us
ask ‘What is the maximum dimension p of a subspace W for which the restriction of g is
positive definite?” Looking at E we see that p > p, but this only gives a lower bound and
we cannot be sure that W O U. If we want an upper bound we need to find ‘the largest
obstruction’ to making W large and it is natural to look for a large subspace on which g is
negative semi-definite. The subspace F is a natural candidate.

Remark 2. Sylvester considered his law of inertia to be obvious. By looking at Exer-
cise 16.1.17, convince yourself that it is, indeed, obvious if the dimension of U is 3 or less
(and you think sufficiently long and sufficiently geometrically). However, as the dimension
of U increases, it becomes harder to convince yourself (and very much harder to con-
vince other people) that the result is obvious. The result was rediscovered and proved by
Jacobi.
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Definition 16.2.7 Suppose that U is vector space of dimension n over Rand q : U — R

is a quadratic form. If e, e,, ..., e, is a basis for U such that
n P p+m

— 2 2

a|2xier | =2 5= 2+
j=1 j=1 j=p+1

we say that q has rank p + m and signature’ p — m.

Naturally, the rank and signature of a symmetric bilinear form or a symmetric matrix is
defined to be the rank and signature of the associated quadratic form.

Exercise 16.2.8 Let g : R*> — R be given by q(x, y) = x> — y>. Sketch
A={(x.y) R q(x,y) =0 and B = {(x.y) € R? 1 q(x,y) = 0}.
Is either of A or B a subspace of R*? Give reasons.

Exercise 16.2.9 (i) If A = (a;;) is ann x n real symmetric matrix and we define g : R" —
R by g(x) = Y _/_, >y Xiaijx;, show that the ‘signature rank’ of q is the ‘matrix rank’
(that is to say, the ‘row rank’) of A.

(ii) Given the roots of the characteristic polynomial of A with multiple roots counted
multiply, explain how to compute the rank and signature of q.

Exercise 16.2.10 Although we have dealt with real quadratic forms, the same tech-
niques work in the complex case. Note, however, that we must distinguish between complex
quadratic forms (as discussed in this exercise) which do not mesh well with complex inner
products and Hermitian forms (see the remark at the end of this exercise) which do.

(i) Consider the complex quadratic form y : C" — C given by

n n
y@ =) awuz =2 Az

u=1 v=1

where A is a symmetric complex matrix (that is to say, AT = A). Show that, if P is an
invertible n x n matrix,

y(Pz) =2 (PTAP)z.

(if) We continue with the notation of (i). Show that we can choose P so that

y(Pz)=Y 2z
u=1

for some r.

2 This is the definition of signature used in the Fenlands. Unfortunately there are several definitions of signature in use. The
reader should always make clear which one she is using and always check which one anyone else is using. In my view, the
convention that the triple (p, m, n) forms the signature of ¢ is the best, but it is not worth making a fuss.
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(iii) Show, by considering the rank of appropriate matrices, or otherwise, that, if Q is
an invertible n x n matrix such that

y(Q2) =z,
u=1

for some r', we must have r = r’.
(iv) Show that there does not exist a non-zero subspace U of C" such that

zeU,z+# 0= y(z) realand strictly positive.

(v) Show that, if n > 2m, there exists a subspace E of C" of dimension m such that
y(@z)=0forallz € E.

(vi) Show that if y1, ¥a, ..., Vi are quadratic forms on C"* and n > 2, there exists a
non-zero z € C" such that

@ =y =...=n@=0.

[Of course, it is often more interesting to look at Hermitian forms Y, _| > " _| QuyZuZ} with
ayy = a,,,. We do this in Exercise 16.2.13.]

We now turn to actual calculation of the rank and signature.

Example 16.2.11 Find the rank and signature of the quadratic form g : R3> — R
given by

q(x1, X2, X3) = X1X2 + X2X3 + X3X.

Solution We give three methods. Most readers are only likely to meet this sort of problem
in an artificial setting where any of the methods might be appropriate, but, in the absence
of special features, the third method is not appropriate and I would expect the arithmetic
for the first method to be rather horrifying. Fortunately the second method is easy to apply
and will always work. (See also Theorem 16.3.10 for the case when you are only interested
in whether the rank and signature are both n.)

First method Since g and 2q have the same signature, we need only look at 2g. The
quadratic form 2q is associated with the symmetric matrix



16.2 Rank and signature 413

We now seek the eigenvalues of A. Observe that
t -1 -1
det(t] — A)=det| -1 r —1
-1 -1 t

t —1 -1 -1 —1 t
_z‘det(_1 t)+det<_1 t>_det(—1 _1>
=t —D—@+D)—@+D=@+D(tt—1)—2)
=@+ DE?—1t—-2)=(+ D*1t —2).
Thus the characteristic polynomial of A has one strictly positive root and two strictly
negative roots (multiple roots being counted multiply). We conclude that g hasrank 1 + 2 =

3 and signature 1 —2 = —1.
Second method We use the ideas of Lemma 16.2.5. The substitutions x; = y; + y», xp =

Vi — Y2, X3 = y3 give
q(x1, X2, X3) = X1X2 + X2X3 + X3x]
=1+ 21— y2) + 1 — y2)y3 + y3(n + y2)
=y =¥ + 203
=(y1 +y3)> =¥ — i,
so g has rank 1 4+ 2 = 3 and signature 1 —2 = —1.
The substitutions w; = y; + y3, wy = y2, w3 = y3 give

2 2 2
q(x1, X2, X3) = Wy — Wy — Wj,

but we do not need this step to determine the rank and signature.
Third method This method will only work if we have some additional insight into where
our quadratic form comes from or if we are doing an examination and the examiner gives
us a hint. Observe that, if we take

Ey = {(x1,x2, x3) @ x1 +x2+ 2x3 = 0},

Ey = {(x1, %2, x3) © x1 = x2, x3 = 0},
then g(e) <0 for e € E; \ {0} and g(e) > 0 for e € E, \ {0}. Since dim E; =2 and
dim E; = 1 it follows, using the notation of Definition 16.2.7, that p > 1 and m > 2.

Since R? has dimension 3, p+m<3sop=1,m=2 and g must have rank 3 and
signature —1. ([

Exercise 16.2.12 Find the rank and signature of the real quadratic form
q(x1, X2, X3) = X1X2 + X2X3 4+ x3X] + ax12

for all values of a.
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Exercise 16.2.13 Suppose that we work over C and consider Hermitian rather than
symmetric forms and matrices.

(i) Show that, given any Hermitian matrix A, we can find an invertible matrix P such
that P*AP is diagonal with diagonal entries taking the values 1, —1 or 0.

@ii) If A = (a,5) is an n x n Hermitian matrix, show that Zle Z?zl Zray52y is real for
all z, € C.

(iii) Suppose that A is a Hermitian matrix and Py, P, are invertible matrices such that
P} AP\ and Py AP, are diagonal with diagonal entries taking the values 1, —1 or 0. Prove
that the number of entries of each type is the same for both diagonal matrices.

16.3 Positive definiteness

For many mathematicians the most important quadratic forms are the positive definite
quadratic forms.

Definition 16.3.1 Let U be a vector space over R. A quadratic form q : U — R is said to
be positive semi-definite if

qu) >0 forallueU
and strictly positive definite if
q) >0 forallue U withu # 0.

As might be expected, mathematicians sometimes use the words ‘positive definite’ to
mean ‘strictly positive definite’ and sometimes to mean ‘strictly positive definite or positive
semi-definite’.’

Naturally, a symmetric bilinear form or a symmetric matrix is said to be positive semi-
definite or strictly positive definite if the associated quadratic form is.

Exercise 16.3.2 (i) Write down definitions of negative semi-definite and strictly negative
definite quadratic forms in the style of Definition 16.3.1 so that the following result holds. A
quadratic form q : U — R is strictly negative definite (respectively negative semi-definite)
if and only if —q is strictly positive definite (respectively positive semi-definite).

(ii) Show that every quadratic form over a real finite dimensional vector space is the sum
of a positive semi-definite and a negative semi-definite quadratic form. Is the decomposition
unique? Give a proof or a counterexample.

Exercise 16.3.3 (Requires a smidgen of probability theory.) Let X, X»,..., X, be
bounded real valued random variables. Show that the matrix E = (EX; X ;) is symmet-
ric and positive semi-definite. Show that E is not strictly positive definite if and only if we
can find c¢; € R not all zero such that

Pr(ci X1+ Xo+ -+, X, =0)=1.

3 Compare the use of ‘positive’ sometimes to mean ‘strictly positive’ and sometimes to mean ‘non-negative’.
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Exercise 16.3.4 Show that a quadratic form q over an n-dimensional real vector space
is strictly positive definite if and only if it has rank n and signature n. State and prove
conditions for q to be positive semi-definite. State and prove conditions for q to be negative
semi-definite.

The next exercise indicates one reason for the importance of positive definiteness.

Exercise 16.3.5 Let U be a real vector space. Show that o : U?> — R is an inner product
if and only if o is a symmetric form which gives rise to a strictly positive definite quadratic
form.

An important example of a quadratic form which is neither positive nor negative semi-
definite appears in Special Relativity* as

2 2 2 2
CI(Xls X2, X3, x4) = xl +-x2 +)C3 _)C4

or, in a form more familiar in elementary texts,

qC(x’ v, Z, t) = x2 + y2 + ZZ _ 621‘2.
The reader who has done multidimensional calculus will be aware of another important
application.

Exercise 16.3.6 (To be answered according to the reader’s background.) Suppose that
f :R* — Ris a smooth function.
() If f has a minimum at a, show that (3f /0x;) (a) = O for all i and the Hessian matrix

% f
(5w ®)
axiax}' 1<i,j<n
is positive semi-definite.

(@) If (0f /9x;) (@) = O for all i and the Hessian matrix

82
T (@
9xi0xj /) 1< jn

is strictly positive definite, show that f has a strict minimum at a.

(iii) Give an example in which f has a strict minimum but the Hessian is not strictly
positive definite. (Note that there are examples withn = 1.)
[We gave an unsophisticated account of these matters in Section 8.3, but the reader may
well be able to give a deeper treatment.]

Exercise 16.3.7 Locate the maxima, minima and saddle points of the function f : R> — R
given by f(x,y) =sinxsiny.

4 Because of this, non-degenerate symmetric forms are sometimes called inner products. Although non-degenerate symmetric
forms play the role of inner products in Relativity theory, this nomenclature is not consistent with normal usage. The analyst
will note that, since conditional convergence is hard to handle, the theory of non-degenerate symmetric forms will not generalise
to infinite dimensional spaces in the same way as the theory of strictly positive definite symmetric forms.
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If the reader has ever wondered how to check whether a Hessian matrix is, indeed,
strictly positive definite when # is large, she should observe that the matter can be settled
by finding the rank and signature of the associated quadratic form by the methods of
the previous section. The following discussion gives a particularly clean version of the
‘completion of squares’ method when we are interested in positive definiteness.

Lemma 16.3.8 If A = (a;;)i<i, j<n IS a strictly positive definite matrix, then a;; > 0.

Proof If x; =1 and x; =0 for 2 < j <n, then x # 0 and, since A is strictly positive
definite,

non
ay] = E E XidjjXxj > 0. O

i=1 j=1

Lemma 16.3.9 (i) If A = (a;j)1<i,j<n is a real symmetric matrix with a;y > 0, then there
exists a unique column vector 1 = (l;1)1<j<p with ly; > 0 such that A — W7 has all entries
in its first column and first row zero.

(i) Let A and 1 be as in (i) and let

b,‘j = ajj —lilj for2 <i,j <n.
Then B = (b;j)a<, j<n is strictly positive definite if and only if A is.

(The matrix B is called the Schur complement of a;; in A, but we shall not make use of
this name.)

Proof (i) If A — 17 has all entries in its first column and first row zero, then

[} =a,
Ll =a; for2<i<n.
Thus, if /;; > 0, we have [;; = allfz, the positive square root of a;;, and /; = a,-lal_ll/2 for
2<i<n.
Conversely, if [ = allfz, the positive square root of a1, and [; = ailallfz for2 <i<n
then, by inspection, A — 17 has all entries in its first column and first row zero.
(i) If B is strictly positive definite,

n

n n 2 n n
)
E E xiaix; =ay | x1+ Y apna;, " x; +E E xibijx; >0
i

i=1 j=1 i=2 j=2
with equality if and only if x; = 0 for2 <i <n and
n
—1/2
X1+ Za,-lall / X = O,
i=2

that is to say, if and only if x; = 0 for 1 <i < n. Thus A is strictly positive definite.
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If A is strictly positive definite, then setting x; = — Z?:z a,-lal_l]/ 2y,- and x; = y; for
2 <i < n,we have

non n 2 no o n
Zzyibijyj =dji (.Xl +Za,-1al_ll/2x,-> +szibijxj
i=2 j=2 i=2 i=2 j=2

n n
= Zina,-jxj >0

i=1 j=I

with equality if and only if x; = 0 for 1 <i < n, that is to say, if and only if y; = 0 for
2 <i < n.Thus B is strictly positive definite. O

The following theorem is a simple consequence.

Theorem 16.3.10 [The Cholesky factorisation] An n x n real symmetric matrix A is
strictly positive definite if and only if there exists a lower triangular matrix L with all
diagonal entries strictly positive such that LLT = A. If the matrix L exits, it is unique.

Proof If A is strictly positive definite, the existence and uniqueness of L follow by induc-
tion, using Lemmas 16.3.8 and 16.3.9. If A = LLT, then

x'Ax=x"LL"x = |LTx|* >0

with equality if and only if L”x = 0 and so (since L is triangular with non-zero diagonal
entries) if and only if x = 0. ([

Exercise 16.3.11 If L is a lower triangular matrix with all diagonal entries non-zero,
show that A = LLT is a symmetric strictly positive definite matrix.

If L is a lower triangular matrix, what can you say about A = LL” ? (See also Exer-
cise 16.5.33.)

The proof of Theorem 16.3.10 gives an easy computational method of obtaining the
factorisation A = LLT when A is strictly positive definite. If A is not positive definite, then
the method will reveal the fact.

Exercise 16.3.12 How will the method reveal that A is not strictly positive definite and
why?

Example 16.3.13 Find a lower triangular matrix L such that LLT = A where

4 -6 2
A=|-6 10 -5/,
2 -5 14

or show that no such matrix L exists.
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Solution Ifl; = (2, =3, )T, we have

4 -6 2 4 -6 2 0 0 0
A-lll=|-6 10 -5]-|-6 9 -3]=|0 1 -2
2 -5 14 2 -3 1 0 -2 13

Ifl, = (1, —=2)7, we have

(2w =G W) 36 s)

Thus A = LLT with

2 0 0
L=]|-3 1 0
1 -2 3

O

4 -6 2
A=1]-6 8 -5,
2 -5 14

is not positive semi-definite.

Exercise 16.3.15 (i) Check that you understand why the method of factorisation given by

the proof of Theorem 16.3.10 is essentially just a sequence of ‘completing the squares’.
(ii) Show that the method will either give a factorisation A = LLT for an n x n sym-

metric matrix or reveal that A is not strictly positive definite in less than Kn® operations.

You may choose the value of K.

[We give a related criterion for strictly positive definiteness in Exercise 16.5.27.]

Exercise 16.3.16 Apply the method just given to

1 L1
1Ll 2 3 4
23 1oro1
_ |1 1 1 _l2 3 3 5
H=15 3 1 and Hy\) = 111
11 1 3.4 5 6
3 4 5 1 1 1
i 5 65 X

Find the smallest Ly such that . > Lo implies H4(A\) strictly positive definite. Compute
1

= — o

7

Exercise 16.3.17 (This is just a slightly more general version of Exercise 10.5.18.)
(i) By using induction on the degree of P and considering the zeros of P’', or otherwise,
show that, if a; > 0 for each j, the real roots of

P(t)y=1"+Y (=) Ja;t/

j=1

(if any) are all strictly positive.
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(ii) Let A be ann x n real matrix with n real eigenvalues ) ; (repeated eigenvalues being
counted multiply). Show that the eigenvalues of A are strictly positive if and only if

i:/\j>o, D hiky=0, Y k>0, ...
j=1

JF#i i,j.k distinct
(iii) Find a real 2 x 2 matrix A = (a;;) such that
det(r] — A) = 1> — bt + by

with by, by > 0, but A has no real eigenvalues.
(iv) Let A = (a;;) be a diagonalisable 3 x 3 real matrix with 3 real eigenvalues. Show
that the eigenvalues of A are strictly positive if and only if

TrA=a) +an+as >0
ajiay + axpaz; + azax — apdy) — a;az — aza;z > 0
detA > 0.

If the reader reflects, she will see that using a ‘nice explicit formula’ along the lines
of (iii) for an n x n matrix A amounts to using row expansion to evaluate det(t] — A)
which is computationally a very bad idea when n is large.

The ideas of this section come in very useful in mechanics. It will take us some time to
come to the point of the discussion, so the reader may wish to skim through what follows
and then reread it more slowly. The next paragraph is not supposed to be rigorous, but it
may be helpful.

Suppose that we have two strictly positive definite forms p; and p, in R? with the usual
coordinate axes. The equations p;(x, y, z) = 1 and p,(x, y, z)=1 define two ellipsoids I';
and I'y. Our algebraic theorems tell us that, by rotating the coordinate axes, we can ensure
that the axes of symmetry of I'| lie along the new axes. By rescaling along each of the new
axes, we can convert I'y to a sphere I'j. The rescaling converts I'; to a new ellipsoid I'}.
A further rotation allows us to ensure that axes of symmetry of I' lie along the resulting
coordinate axes. Such a rotation leaves the sphere I'} unaltered.

Replacing our geometry by algebra and strengthening our results slightly, we obtain the
following theorem.

Theorem 16.3.18° If A is an n x n strictly positive definite real symmetric matrix and B is
ann x n real symmetric matrix, we can find an invertible matrix M such that MT AM = I
and MT BM is a diagonal matrix D. The diagonal entries of D are the roots of

det(tA — B)=0
multiple roots being counted multiply.
> This is a famous result of Weierstrass. If the reader reflects, she will see that it is not surprising that mathematicians were

interested in the diagonalisation of quadratic forms long before the ideas involved were used to study the diagonalisation of
matrices.
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Proof Since A is positive definite, we can find an invertible matrix P such that PTAP = 1.
Since PT B P is symmetric, we can find an orthogonal matrix Q suchthat Q" PTBPQ = D
a diagonal matrix. If we set M = P Q, it follows that M is invertible and
MTAM = Q" PTAPO=0"10=0"0=1, M"BM = Q"P"BPQ = D.
Since
det(r] — D) =detMT(tA — B)\M
= det M det MT det(rA — B) = (det M)* det(tA — B),

we know that det(r/ — D) = 0 if and only if det(tA — B) = 0, so the final sentence of the
theorem follows. [l

Exercise 16.3.19 We work with the real numbers.

(i) Suppose that
1 0 0 1
A_<O —l) and B—<1 O)’

Show that, if there exists an invertible matrix P such that PT AP and PT B P are diagonal,
then there exists an invertible matrix M such that MT AM = A and MT BM is diagonal.
By writing out the corresponding matrices when

a b
M =
( 2)
show that no such M exists and so A and B cannot be simultaneously diagonalisable. (See

also Exercise 16.5.21.)
(if) Show that the matrices A and B in (i) have rank 2 and signature 0. Sketch

() s ¥ =y? = 0L {(r,y) s 2xy 20} and {(x, ) : ux® — vy’ >0}

foru > 0> vand v > 0 > u. Explain geometrically, as best you can, why no M of the
type required in (i) can exist.
—1 0
C= .

(iii) Suppose that
Without doing any calculation, decide whether C and B are simultaneously diagonalisable
and give your reason.

We now introduce some mechanics. Suppose that we have a mechanical system whose
behaviour is described in terms of coordinates g1, q», ..., g,. Suppose further that the
system rests in equilibrium when q = 0. Often the system will have a kinetic energy
E(@) = E(q1, g2, - - -, gn) and a potential energy V (q). We expect E to be a strictly positive
definite quadratic form with associated symmetric matrix A. There is no loss in generality
in taking V(0) = 0. Since the system is in equilibrium, V is stationary at 0 and (at least to
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the second order of approximation) V will be a quadratic form. We assume that (at least
initially) higher order terms may be neglected and we may take V to be a quadratic form
with associated matrix B.

We observe that

Mq= d M
q= i q
and so, by Theorem 16.3.18, we can find new coordinates Q;, Qo, ..., Q, such that the

kinetic energy of the system with respect to the new coordinates is
EQ =0+ 0}+ -+ 0}
and the potential energy is
VQ =10 +2205+ -+ 1 0;

where the A; are the roots of det(tA — B) = 0.

If we take Q; = 0 fori # j, then our system reduces to one in which the kinetic energy
is Q? and the potential energy is A; Q%. If A; < 0, this system is unstable. If A; > 0, we
have a harmonic oscillator frequency )\;/ 2, Clearly the system is unstable if any of the roots
of det(tA — B) = 0 are strictly negative. If all the roots A; are strictly positive it seems
plausible that the general solution for our system is

Qj(t) = Kjcos(\*t +¢,)[1 < j <n]

for some constants K ; and ¢;. More sophisticated analysis, using Lagrangian mechanics,
enables us to make precise the notion of a ‘mechanical system given by coordinates ¢’ and
confirms our conclusions.

The reader may wish to look at Exercise 8.5.4 if she has not already done so.

16.4 Antisymmetric bilinear forms

In view of Lemma 16.1.11 it is natural to seek a reasonable way of looking at antisymmetric
bilinear forms.

As we might expect, there is a strong link with antisymmetric matrices (that is to say,
square matrices A with A7 = —A).

Lemma 16.4.1 Let U be a finite dimensional vector space over R with basis ey, e,, ...,
e,.
() If A = (a;;) is an n x n real antisymmetric matrix, then

n

n n n
o E Xi€;, E Yi€j | = E E Xi@ijyj
i=l1 j=1

i=1 j=1

(for x;, y; € R) defines an antisymmetric form.
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(@) If « : U x U — R is an antisymmetric form, then there is a unique n X n real
antisymmetric matrix A = (a;;) with

n

n n n
o E Xi€, E Yi€j| = E E Xidijyj
i=1 j=1

i=1 j=1
forallx;, yj € R.

The proof is left as an exercise for the reader.
Exercise 16.4.2 [f o and A are as in Lemma 16.4.1 (ii), find g(u) = a(u, u).

Exercise 16.4.3 Suppose that A is an n x n matrix with real entries such that AT = —A.
Show that, if we work in C, i A is a Hermitian matrix. Deduce that the eigenvalues of A
have the form Ai with ) € R.

If B is an antisymmetric matrix with real entries and M is an invertible matrix with real
entries such that MT BM is diagonal, what can we say about B and why?

Clearly, if we want to work over R, we cannot hope to ‘diagonalise’ a general antisym-
metric form. However, we can find another ‘canonical reduction’ along the lines of our first
proof that a symmetric matrix can be diagonalised (see Theorem 8.2.5). We first prove a
lemma which contains the essence of the matter.

Lemma 16.4.4 Let U be a vector space over R and let o be a non-zero antisymmetric
form.

(i) We can find ey, e, € U such that a(eq, e;) = 1.

(ii) Let ey, e, € U obey the conclusions of (i). Then the two vectors are linearly inde-
pendent. Further, if we write

E={uecU: a(ej,u)=ua(e;,u) =0},
then E is a subspace of U and
U = span{e|, e;} @ E.

Proof (i) If « is non-zero, there must exist u;, uy € U such that a(u;, uy) # 0. Set

1
e =

=——u; and e =u,.
a(ug, up)

(i1) We leave it to the reader to check that E is a subspace. If
u=»Xie +xre +e
with A1, A, € Rand e € E, then
a(u, e)) = ra(er, e)) + ha(e, e) +ae,e)) =0—Xr, +0 = —2Ay,
$0 Ay = —a(u, e1). Similarly A; = «(u, e;) and so

e=u—a(u, ee + o(u,ee;.
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Conversely, if
v=oa(u,e)e —a(u,e)e, and e=u—v,
then

a(e,e) = a(u, e) — a(u, ex)a(er, e;) + au, ea(er, e)

=a(,e)—0—a(,e)=0

and, similarly, x(e, e;) = 0,s0e € E.
Thus any u € U can be written in one and only one way as

u=Are +xre +e
with e € E. In other words,
U = spanfe;, e;} & E. O

Theorem 16.4.5 Let U be a vector space of dimension n over R and let o : U?> — R be
an antisymmetric form. Then we can find an integer m with 0 < 2m < n and a basis ey,
€, ..., e, such that

1 ifi=2r—1,j=2randl <r <m,
ae,e;))=1—1 ifi=2r,j=2r—1land1 <r <m,

0 otherwise.
Proof We use induction. If n = 0 the result is trivial. If n = 1, then ¢ = 0 since
a(xe, ye) = xyu(e,e) =0,

and the result is again trivial. Now suppose that the result is true for all 0 < n < N where
N > 1. We wish to prove the result whenn = N + 1.

If @ = 0, any choice of basis will do. If not, the previous lemma tells us that we can find
e, e, linearly independent vectors and a subspace E such that

U = spanf{eje;} @ E,

a(e;,e) =1 and a(er, e) = a(ey, e) = 0 for all e € E. Automatically, E has dimension
N — 1 and the restriction | > of « to E? is an antisymmetric form. Thus we can find an m
with 2m < N + 1 and a basis e3, ey, . .., ey such that

1 ifi=2r—1,j=2rand2 <r <m,
ale,e))=1—1 ifi=2r,j=2r—1land2 <r < m,

0 otherwise.



424 Quadratic forms and their relatives

The vectors eq, e, ..., ey form a basis such that
1 ifi=2r—1,j=2rand2 <r <m,
alej,e;))=1—1 ifi=2r,j=2r—1land2 <r <m,

0 otherwise,
so the induction is complete. (I
Part (ii) of the next exercise completes our discussion.

Exercise 16.4.6 (i) If A is an n x n real antisymmetric matrix, show that there isann X n
real invertible matrix M, such that MT AM is a matrix with matrices taking the form

0 1
©) or (_1 0>

laid out along the diagonal and all other entries 0.
(ii) Show that if « is fixed in the statement of Theorem 16.4.5, then m is unique.

Exercise 16.4.7 If U is a finite dimensional vector space over R and there exists a
non-singular antisymmetric form o : U> — R, show that the dimension of U is even.

Exercise 16.4.8 Which of the following statements about an n x n real matrix A are true
for all appropriate A and all n and which are false? Give reasons.

(i) If A is antisymmetric, then the rank of A is even.

(@) If A is antisymmetric, then its characteristic polynomial has the form Pa(t) =
1M 4 1y

(iii) If A is antisymmetric, then its characteristic polynomial has the form Pa(t) =
o ]—[;”:l(t2 + d]z) with d; real.

(iv) If the characteristic polynomial of A takes the form

m
_ n—2m 2 2
Py = " T]a? + df)
j=1
with d; real, then A is antisymmetric.
(v) Given m with 0 < 2m < n and d; real, there exists a real antisymmetric matrix A
with characteristic polynomial Py(t) = t"~>" ]_[;flzl(tz + djz.).

Exercise 16.4.9 [f we work over C, we have results corresponding to Exercise 16.1.26 (iii)
which make it very easy to discuss skew-Hermitian forms and matrices.

(i) Show that, if A is a skew-Hermitian matrix, then there is a unitary matrix P such that
P* AP is diagonal and its diagonal entries are purely imaginary.

(ii) Show that, if A is a skew-Hermitian matrix, then there is an invertible matrix P such
that P*AP is diagonal and its diagonal entries take the values i, —i or Q.

(iii) State and prove an appropriate form of Sylvester’s law of inertia for skew-Hermitian
matrices.
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16.5 Further exercises

Exercise 16.5.1 The result of this exercise is important for the study of Taylor’s theorem
in many dimensions. However, the reader should treat it as just another exercise involving
functions of functions of the type we have referred to as paper tigers.

Let E, F and G be finite dimensional vector spaces over R. We write B(E, F'; G) for
the space of bilinear maps @ : E x F — G. Define

(O(a))(V) = a(u, v)

forallae € B(E, F;G),uec Eandv e F.
(i) Show that ®(a)(u) € L(F, G).
(ii) Show that, if v is fixed,

(O(@)(Au; + 221)) (V) = (A O(@)(u)) + A 0(a) (1)) (V)
and deduce that
O(a)(A1u; + Aoup) = A1O(a)(uy) + A20(a)(u2)

for all A;, A, € Rand u;, u, € E. Conclude that ©(«) € L(E, L(F, G)).

(iii) By arguments similar in spirit to those of (ii), show that ® : B(E, F;G) —
L(E, L(F, G)) is linear.

(iv) Show that if (®(«)(uw))(v) =0 forallu € E, v € F, then @« = 0. Deduce that ® is
injective.

(v) By computing the dimensions of B(E, F; G) and L(E, L(F, G)), show that ® is an
isomorphism.

Exercise 16.5.2 Let 8 be a bilinear form on a finite dimensional vector space V over R
such that

Bx,x)=0=x=0.

Show that we can find abasis e, €;, . . . , €, for V such that 8(e;, e;) = Oforn > k > j > 1.
What can you say in addition if 8 is symmetric? What result do we recover if § is an inner
product?

Exercise 16.5.3 What does it mean to say that two quadratic forms x” Ax and x” Bx are
equivalent? (See Definition 16.1.19 if you have forgotten.) Show, using matrix algebra,
that equivalence is, indeed, an equivalence relation on the space of quadratic forms in n
variables.

Show that, if A and B are symmetric matrices with x! Ax and x” Bx equivalent, then the
determinants of A and B are both strictly positive, both strictly negative or both zero.

Are the following statements true? Give a proof or counterexample.

(i) If A and B are symmetric matrices with strictly positive determinant, then x” Ax and
x” Bx are equivalent quadratic forms.
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(ii) If A and B are symmetric matrices with det A = det B > 0, then x” Ax and x” Bx
are equivalent quadratic forms.

Exercise 16.5.4 Consider the real quadratic form
C1X1X2 + C2X2X3 + + -+ + Ch—1Xn—1Xn,

where n > 2 and all the ¢; are non-zero. Explain, without using long calculations, why both
the rank and signature are independent of the values of the c;.
Now find the rank and signature.

Exercise 16.5.5 (i) Let f1, f>, ..., ft» fi+1, fie2, ..., fr+u De linear functionals on the
finite dimensional real vector space U. Let
g = fix)? + -+ fi%0)° = fir1 (0 — - = fra (0.

Show that g is a quadratic form of rank p + ¢ and signature p — g where p <tandg < u.
Give an example with all the f; non-zero for which p=¢t=2, g =u =2 and an
example with all the f; non-zero for whichp =1,t =2,g=u=2.
(ii) Consider a quadratic form Q on a finite dimensional real vector space U. Show
that Q has rank 2 and signature O if and only if we can find linearly independent linear
functionals f and g such that Q(x) = f(x)g(x).

Exercise 16.5.6 Let g be a quadratic form over a real vector space U of dimension n. If
V is a subspace of U having dimension n — m, show that the restriction g |y of g to V has
signature / differing from k by at most m.

Show that, given /, k, m and n with 0 <m <mn, |k| <n, |[| <m and |l — k| <m we
can find a quadratic form g on R” and a subspace V of dimension n — m such that g has
signature k and ¢|y has signature /.

Exercise 16.5.7 Suppose that V is a subspace of a real finite dimensional space U. Let
V have dimension m and U have dimension 2n. Find a necessary and sufficient condition
relating m and n such that any antisymmetric bilinear form 8 : V2 — R can be written as
B = «a|y2 where « is a non-singular antisymmetric form on U'.

Exercise 16.5.8 Let V be a real finite dimensional vector space and let o : V? —
R be a symmetric bilinear form. Call a subspace U of V strictly positive defi-
nite if o|y2 is a strictly positive definite form on U. If W is a subspace of V,
write

Wt={(veV :a,w)=0forallwe W}.

(i) Show that W+ is a subspace of V.

(i) If U is strictly positive definite, show that V = U @ U*.

(iii) Give an example of V, o and a subspace W such that V is not the direct sum of W
and W+,
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(iv) Give an example of V, « and a subspace W such that V = W @ W+, but W is not
strictly positive definite.

(v) If p is the largest number such that V has a strictly positive definite subspace of
dimension p, establish that every strictly positive definite subspace U is a subspace of a
strictly positive definite subspace X of dimension p. Is X necessarily uniquely determined
by U? Give a proof or counterexample.

(vi) Let V = M,,, the vector space of n x n real matrices. If we set «(A, B) = Tr AB,
show that « is a symmetric bilinear form. Find a strictly positive definite subspace of V of
maximum dimension, justifying your answer.

Exercise 16.5.9 [Hadamard’s inequality revisited] We work over C. Let M be ann X n
matrix with columns m; satisfying ||m;|| < 1 for the Euclidean norm. If we set P = M M*,
show that P is a positive semi-definite symmetric matrix all of whose entries p;; satisfy
Ipijl < 1.

By applying the arithmetic-geometric inequality to the eigenvalues Ay, Az, ..., A, of P,
show that

(detP)" <n'TrP <1.

Deduce that | det M| < 1. Show that we have equality (that is to say, |det M| = 1) if and
only if M is unitary.
Deduce that if A is a complex n x n matrix with columns a;

n
|det Al < ] llayl

j=1

with equality if and only if either one of the columns is the zero vector or the column
vectors are orthogonal.

Exercise 16.5.10 Let P, be the set of strictly positive definite n x n symmetric matrices.
Show that

AeP,, t>0=>tAeP,
and
A, BeP,, 1>t>0=tA+(1—-1)BeP,.

(We say that P, is a convex cone.)
Show that, if A € P,, then

logdetA —TrA+n <0

with equality if and only if A = [.
If A € P, let us write ¢p(A) = — logdet A. Show that

A, BeP,, 1 =21>0= ¢(tA+ (1 —1)B) < 1¢(A) + (1 — 1)p(B).
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(We say that ¢ is a convex function.)
[Hint: Recall that, under appropriate circumstances, we can find a non-singular P such that
PTAP and PT BP are both diagonal.]

Exercise 16.5.11 [Drawing a straight line] Suppose that we have a quantity y that we
believe satisfies the equation

y=a-+ bt *
with a and b unknown. We make observations of y at n distinct times #y, 5, ..., t, (with
n > 2), obtaining yi, y», ..., Y, but, because there will be errors in our observations, we

do not expect to have y; = a + bt;.
The discussion of the method of least squares in Section 7.5 suggests that we should
estimate a and b as a and 13, where a, b are the values of @ and b which minimise

Y (yi—a+ bt)))’.
=1

Find a and b.
Show that we can find o and g such that, writing s; = B¢; + «, we have

n n

Y sj=0 and Y si=1.

j=1 j=1
Find u and v so that, writing s = 8¢ + «, % takes the form
y =1u -+ vs.

Find # and © so that Z?:I(yj —(u+ vsj))2 is minimised when u = i, v = ¥ and write a
and b in terms of & and 0.

Exercise 16.5.12 (Requires a small amount of probability theory.) Suppose that we make
observations Y; at time ¢; which we believe are governed by the equation

Yj=a+btj+on

where Z1, Z,, . .., Z, are independent normal random variables each with mean 0 and vari-
ance 1. As usual, 0 > 0. (So, whereas in the previous question we just talked about errors,
we now make strong assumptions about the way the errors arise.) The discussion in the
previous question shows that there is no loss in generality and some gain in computational
simplicity if we suppose that

We shall suppose that n > 3 since we can always fit a line through two points.
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We are interested in estimating a, b and o2. Check, from the results of the last question,
that the least squares method gives the estimates

n n

&:Y:n”ZYj and ézztjyj-
j=1 j=1
We can get some feeling® for the size of o by looking at
n
62 = -2 (v — @+ bry)’.
j=1
Show that, if we write @ = a — a and b = b — b, we have
n n n
a=0Z=on'Y 72, b=0Y 1;2;, =0 n—-2"Y (Z; —@+btp).
j= j=1 j=1

In this question we shall derive the joint distribution of @, b and 6 (and so of &, b and 62)
by elementary matrix algebra.

(i) Show that e, = (n= "2, n=12, ... n=V>)" and e, = (t,, 12, ..., t,)" are orthogonal
column vectors of norm 1 with respect to the standard inner product on R". Deduce that
there exists an orthonormal basis e, e,, ..., e, for R". If we let M be the n x n matrix

whose rth row is el explain why M € O(RR") and so preserves inner products.
(ii) Let Wy, Wa, ..., W, be the set of random variables defined by

W =MZ
that is to say, by W; = Z;f:l ejjZ;. Show that Zy, Z,, ..., Z, have joint density function
f@i 22, z0) = Q@) exp(—|jzl|/2)
and use the fact that M € O(R") to show that W, W5, ..., W, have joint density function
gwi, wa, ..., wy) = 20) " exp(—[|w[*/2).

Conclude that Wy, W,, ..., W, are independent normal random variables each with mean
0 and variance 1.
(iii) Explain why

W2t W+ +W=Z2 425+ + 72
Show that @ = n~ 26 W;, b = o W, and

S (Zi—@+btp) = Wi+ Wi+ + W2
j=1

© This sentence is deliberately vague. The reader should simply observe that 62, or something like it, is likely to be interesting.
In particular, it does not really matter whether we divide by n —2,n — 1 or n.
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(iv) Deduce the following results. The random variables @, b and 6?2 are independent.’
The random variable 4 is normally distributed with mean a and variance o-2/n. The random
variable b is normally distributed with mean b and variance 2. The random variable
(n —2)0 267 is distributed like the sum of the squares of n — 2 independent normally
distributed random variables with mean O and variance 1.

Exercise 16.5.13 Suppose that we make observations X, X» ..., X,, which we believe to

be independent normal random variables each with mean 4 and variance o 2.

(i) Suppose that 4 = 0 and 0 = 1. By imitating the arguments of the previous question,
show that

X=n"YX; and 6°=(n—-1"> (X; - X)
j=1 j=1
are independent and find their distributions.

(ii) Now let 1« and o? take general values. Show that X and 6> remain independent and
find their distributions.

Exercise 16.5.14 Let V be the vector space of n x n matrices over R. Show that
q(A) = Tr(A%) — (Tr A}

is a quadratic form on V. By considering the subspaces V| consisting of matrices A1, V,
consisting of matrices of trace 0, and V3 consisting of antisymmetric matrices, or otherwise,
find the signature of g.

Exercise 16.5.15 Two quadratic forms 4 and k on R? are defined by
h(x,y,z) =2x* +5y° + 42> + 6xy + 14yz + 8zx
and
k(x,y,z)= 2x% + 14y2 +322 + 10xy — 4yz.

Show that one of these forms is strictly positive definite and one of them is not. Determine
A, ;o and v so that, in an appropriate coordinate system, the form of the strictly positive
definite one becomes X2 + Y2 + Z2 and the form of the other becomes A X2 + uY? + vZ2.

Exercise 16.5.16 Find a linear transformation that simultaneously reduces the quadratic
forms

2x% + y? 4222 +2yz — 2zx
X242y +222 + 4yz

to the forms X2 + Y2 4+ Z2 and AX? 4+ Y2 + vZ? where A, u and v are to be found.

7 Observe that, if random variables are independent, their joint distribution is known once their individual distributions are known.
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Exercise 16.5.17 Let n > 2. Find the eigenvalues and corresponding eigenvectors of the
n X n matrix

If the quadratic form F is given by

Cixr2 + i i X X,
r=1

r=1 s=r+1

explain why there exists an orthonormal change of coordinates such that F takes the form
oy y‘2 with respect to the new coordinate system. Find the u, explicitly.

Exercise 16.5.18 (A result required for Exercise 16.5.19.) Suppose that n is a strictly
positive integer and x is a positive rational number with x> = n. Let x = p/g with p and
q positive integers with no common factor. By considering the equation

p*=ng* (mod q),

show that x is, in fact, an integer.
Suppose that a; € Z. Show that any rational root of the monic polynomial " +
ap_1t""' 4+ ... + ay is, in fact, an integer.

Exercise 16.5.19 Let A be the Hermitian matrix

1 i 2
—i 3 —i
—2i i 5

Show, using Exercise 16.5.18, or otherwise, that there does not exist a unitary matrix U
and a diagonal matrix E with rational entries such that U*AU = E.

Setting out your method carefully, find an invertible matrix B (with entries in C) and a
diagonal matrix D with rational entries such that B*AB = D.

Exercise 16.5.20 Let f(x{, x2, ..., x,) = Zlgi,_,‘gn a;jx;x; where A = (a;;) is areal sym-
metric matrix and g(xq, X2, ..., X,) = lei < xiz. Show that the stationary points and
associated values of f, subject to the restriction g(x) = 1, are given by the eigenvectors of
norm 1 and associated eigenvalues of A. (Recall that x is such a stationary point if g(x) = 1
and

I~ f(x+h) = f(0)] = 0

as |[h]] > Owith g(x+h) =1.)
Deduce that the eigenvectors of A give the stationary points of f(x)/g(x) for x # 0.
What can you say about the eigenvalues?
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Exercise 16.5.21 (This continues Exercise 16.3.19 (i) and harks back to Theorem 7.3.1
which the reader should reread.) We work in R? considered as a space of column vectors.
(i) Take « to be the quadratic form given by a(x) = xl2 — x% and set

)

Let M be a 2 x 2 real matrix. Show that the following statements are equivalent.
(@) a(Mx) = ax for all x € R2.
(b) MTAM = A.
(c) There exists a real s such that

coshs sinhs cosh s sinh s
M=+ (sinhs cosh s) or M=%+ (—sinhs —coshs) )

(i1) Deduce the result of Exercise 16.3.19 (i).
(iii) Let B(x) = x]2 + x% and set B = I. Write down results parallelling those of part (i).

Exercise 16.5.22 (i) Let ¢; and ¢, be non-degenerate bilinear forms on a finite dimensional
real vector space V. Show that there exists an isomorphism ¢« : V — V such that

$2(u, v) = ¢1(u, av)

forallu, ve V.
(i1) Show, conversely, that, if i, is a non-degenerate bilinear form on a finite dimensional
real vector space V and B : V — V is an isomorphism, then the equation

Va(u, v) = ¥ (u, Bv)

for all u, v € V defines a non-degenerate bilinear form ;.
(iii) If, in part (i), both ¢; and ¢, are symmetric, show that « is self-adjoint with respect
to ¢; in the sense that

¢1(au, v) = ¢1(u, av)

for allu, v € V. Is o necessarily self-adjoint with respect to ¢,? Give reasons.

(iv) If, in part (i), both ¢; and ¢, are inner products (that is to say, symmetric and
strictly positive definite), show that, in the language of Exercise 15.5.11, « is strictly
positive definite. Deduce that we can find an isomorphism y : V — V such that y is
strictly positive definite and

¢2(u, v) = ¢1(yu, yv)

forallu, ve V.
(v) If ¢ is an inner producton V and y : V — V is strictly positive definite, show that
the equation

¥a(u, v) = Y (yu, yv)

for all u, v € V defines an inner product.
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Exercise 16.5.23 Let U be a real vector space of dimension n and ¢ a non-degenerate
symmetric bilinear form on U. If M is a subspace of U show that

Mt={yeU: ¢x,y)=0 forallx e M}

is a subspace of M.
By recalling Lemma 11.4.13 and Lemma 16.1.7, or otherwise, show that

dim M + dim M+ = n.
If U = R? and

P (Crr, )", 1, v2)7) = 2131 — X232,

find one dimensional subspaces M; and M, such that M| N M f = {0} and M, = le.
If M is a subspace of U with M+ = M show that dim M < n/2.

Exercise 16.5.24 (A short supplement to Exercise 16.5.23.) Let U be a real vector space
of dimension n and ¢ a symmetric bilinear form on U. If M is a subspace of U show that

Mt ={yeU: ¢(x,y)=0 forallx e M}
is a subspace of M. By using Exercise 16.5.23, or otherwise, show that
dim M + dim M* > n.

Exercise 16.5.25 We continue with the notation and hypotheses of Exercise 16.5.23. An
automorphism y of U is said to be an ¢-automorphism if it preserves ¢ (that is to say

d(yx, yy) = ¢(x,y)

for all x, y € U). A vector x € U is said to be isotropic (with respect to ¢) if ¢(x, x) = 0.
We shall call a subspace M of U non-isotropic if M N M+ = {0}. Prove the following
results.

(1) There exist vectors which are not isotropic.

(ii) If y is a ¢-automorphism, then yM = M < y M+ = M+,

(iii) If M is a non-isotropic subspace, there exists a unique ¢-automorphism 6y, (the
symmetry with respect to M) such that

0 X ifxe M,
X =
M —x ifxe Mt

Let o be a ¢-automorphism and e; a non-isotropic vector. Show that the two vectors
ae; £ e; cannot both be isotropic and deduce that there exists a non-isotropic subspace
M, of dimension 1 or n — 1 such that 6, «e; = e;. By using induction on n, or otherwise,
show that every ¢-automorphism is the product of at most n symmetries with respect to
non-isotropic subspaces.

To what earlier result on distance preserving maps does this result correspond?
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Exercise 16.5.26 Let A be an n x n matrix with real entries such that AA” = I. Explain
why, if we work over the complex numbers, A is a unitary matrix. If A is a real eigenvalue,
show that we can find a basis of orthonormal vectors with real entries for the space

{ze C" : Az = Az}.

Now suppose that A is an eigenvalue which is not real. Explain why we can find a
0 < @ < 27 such that A = €% If z = x + iy is a corresponding eigenvector such that the
entries of x and y are real, compute Ax and Ay. Show that the subspace

{zeC": Az = Az}

has even dimension 2m, say, and has a basis of orthonormal vectors with real entries e,
€, ..., ey, such that

Aey,_1 = cosfey_1 +isinbe,,

Aey, = —sinfey,_| +icosfep,.

Hence show that, if we now work over the real numbers, there is an n x n orthogonal
matrix M such that M AM7 is a matrix with matrices K ; taking the form

(1. (—1)or (cos@l,» —sin@_i)

sinf;  cos6;

laid out along the diagonal and all other entries O.
[The more elementary approach of Exercise 7.6.18 is probably better, but this method
brings out the connection between the results for unitary and orthogonal matrices.]

Exercise 16.5.27 [Routh’s rule]® Suppose that A = (aij)1<i, j<n 1s aTeal symmetric matrix.
If a;y > 0 and B = (b;})2<;, j<n 18 the Schur complement given (as in Lemma 16.3.9) by

bijj=a;;—1il; for2<i,j<n,
show that
det A = ay; det B.
Show, more generally, that
det(a;j)i<i, j<r = ar1 det(bij)a<i, j<r-
Deduce, by induction, or otherwise, that A is strictly positive definite if and only if
det(a;j)i<i j<r > 0

forall 1 <r < n (in traditional language ‘all the leading minors of A are strictly positive’).

8 Routh beat Maxwell in the Cambridge undergraduate mathematics exams, but is chiefly famous as a great teacher. Rayleigh,
who had been one of his pupils, recalled an ‘undergraduate [whose] primary difficulty lay in conceiving how anything could
float. This was so completely removed by Dr Routh’s lucid explanation that he went away sorely perplexed as to how anything
could sink!” Routh was an excellent mathematician and this is only one of several results named after him.
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Exercise 16.5.28 Use the method of the previous question to show that, if A is a real
symmetric matrix with non-zero leading minors

A, =det(a;j)<i, j<r

the real quadratic form Z';Si’ j<nXi@ijx; can reduced by a real non-singular change of
coordinates to Y ;_,(A;/A;_1)y? (where we set Ay = 1).

Exercise 16.5.29 (A slightly, but not very, different proof of Sylvester’s law of inertia).
Let ¢1, ¢2, ..., ¢ be linear forms (that is to say, linear functionals) on R” and let W be a
subspace of R”. If k < dim W, show that there exists a non-zero y € W such that

oY) =da(y) =...=d(y) =0.

Now let f be the quadratic form on R" given by

2

2 2 _ .2
SO xo, oo X)) = X7+, — Xy X,

with p, ¢ > 0and p + g < n. Suppose that ¥, ¥, ..., ¥4, are linear forms on R” such
that

O =@+ + %O = Y () — Y ()

Show that p <r.
Deduce Sylvester’s law of inertia.

Exercise 16.5.30 [An analytic proof of Sylvester’s law of inertia] In this question we
work in the space M,,(R) of n x n matrices with distances given by the operator norm.

(1) Use the result of Exercise 7.6.18 (or Exercise 16.5.26) to show that, given any special
orthogonal n x n matrix P, we can find a continuous map

P:[0,1] - M,(R)

such that P(0) = I, P(1) = P; and P(s) is special orthogonal for all s € [0, 1].
(i1) Deduce that, given any special orthogonal n x n matrices Py and P;, we can find a
continuous map

P:[0,1] - M,(R)

such that P(0) = Py, P(1) = P, and P(s) is special orthogonal for all s € [0, 1].

(iii) Suppose that A is a non-singular n x n matrix. If P is as in (ii), show that
P(s)T AP(s) is non-singular and so the eigenvalues of P(s)” AP(s) are non-zero for all
s € [0, 1]. Assuming that, as the coefficients in a polynomial vary continuously, so do the
roots of the polynomial (see Exercise 15.5.14), deduce that the number of strictly positive
roots of the characteristic polynomial of P(s)” A P(s) remains constant as s varies.

(iv) Continuing with the notation and hypotheses of (ii), show that, if P(0)” AP(0) = D,
and P(1)" AP(1) = D; with Dy and D, diagonal, then Dy and D; have the same number
of strictly positive and strictly negative terms on their diagonals.
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(v) Deduce that, if A is anon-singular symmetric matrix and Py, P; are special orthogonal
with P/ APy = Dy and P/ AP, = D, diagonal, then Dy and D; have the same number
of strictly positive and strictly negative terms on their diagonals. Thus we have proved
Sylvester’s law of inertia for non-singular symmetric matrices.

(vi) To obtain the full result, explain why, if A is a symmetric matrix, we can find ¢, — 0
such that A +¢,1 and A — ¢,1 are non-singular. By applying part (v) to these matrices,
show that, if Py and P, are special orthogonal with P APy = Dy and P/ AP, = D,
diagonal, then Dy and D, have the same number of strictly positive, strictly negative terms
and zero terms on their diagonals.

Exercise 16.5.31 Consider the quadratic forms a,, b,, ¢, : R" — R given by

n n
an(-xla-XZa"-v-xl‘l)Z § g xi-xj7

i=1 j=1

n n

bu(x1, X2, ..., %) = Y Y x;min{i, j}x;,
i=1 j=I

n n

Cn(xlax25 "-7'xl‘l) = ZZXI max{i’j}xj'

i=1 j=1
By completing the square, find a simple expression for a,. Deduce the rank and signature
of a,.

By considering

bn(xl y X2y evey xn) - bn—l(xz, sy -xn)a
diagonalise b,,. Deduce the rank and signature of b,,.
Find a simple expression for
Cn(xlv X2y enn,y xn) + bn(xnv Xn—1s -+, xl)

in terms of a, (x|, x2, ..., x,) and use it to diagonalise c,. Deduce the rank and signature
of ¢,.

Exercise 16.5.32 The real non-degenerate quadratic form g (xy, x3, ..., x,,) vanishes if
Xp+1 = Xg42 = ... = x, = 0. Show, by induction on t = n — k, or otherwise, that the form
q is equivalent to

ViYial + V2Yia2 + 0+ YiYak + PVokt1s Yoka2s -5 Yo

where p is a non-degenerate quadratic form. Deduce that, if g is reduced to diagonal form

2

2 2 2
Wi wd —wly == w

n

wehave k <s <n —k.

Exercise 16.5.33 (i) If A = (a;;) is an n x n positive semi-definite symmetric matrix,
show that either a;; > O or a;; = O forall i.



16.5 Further exercises 437

(ii) Let A be an n x n real matrix. Show that A is a positive semi-definite symmetric
matrix if and only if A = LT L, where L is a real lower triangular matrix.

Exercise 16.5.34 Use the ‘Cholesky method’ to determine the values of A € R for which

2 —4 2
-4 1041 2431
2 243x 2349A

is strictly positive definite and find the Cholesky factorisation for those values.

Exercise 16.5.35 (i) Suppose that n > 1. Let A be an n x n real matrix of rank n. By
considering the Cholesky factorisation of B = AT A, prove the existence and uniqueness
of the QR factorisation

A=OR

where Q is an n x n orthogonal matrix and R is an n X n upper triangular matrix with
strictly positive diagonal entries.

(ii) Suppose that we drop the condition that A has rank n. Does the QR factorisation
always exist? If the factorisation exists it is unique? Give proofs or counterexamples.

(iii) In parts (i) and (ii) we considered an n x n matrix. Use the method of (i) to prove
that if n > m > 1 and A is an n X m real matrix of rank m then we can find an n x n
orthogonal matrix Q and an n x m thin upper triangular matrix R such that A = QR.
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adjoint maps and matrices
complex cases, 205
computational approach, 164
geometric approach, 356
adjugate matrix, 79
algebraically closed field, 332
angular momentum, 238
annihilator, 280
anti-isomorphism, 362
antisymmetric
bilinear form, 401, 421
Cartesian tensor, 236
matrix, 81, 210

Atristotle, on a well-schooled man, 211

automorphism, 266
axioms
for a field, 330
for a group, 94
for a vector space, 88
axis, every rotation has an, 173

basis, 95
Bessel’s inequality, 351
Bézout’s theorem, 155
bijective function, i.e. bijection, 59
bilinear form
antisymmetric, 421
definition, 399
degenerate, 401
singular, i.e. degenerate, 401
symmetric, 401
bilinear function, 399
block multiplication of matrices, 57
Boole and finite differences, 267

Cartesian tensor
antisymmetric, 236
contraction, 216
definition, 216
isotropic, 233
order, 216
quotient rule, 218
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Index

rank, i.e. order, 216

symmetric, so diagonalisable, 235
Casini’s identity, 140
Cauchy—Riemann equations, 186
Cauchy-Schwarz inequality, 29, 204
Cayley—Hamilton theorem

for general fields, 319

in two dimensions, 129

non-trivial, 300

over C, 297

over R, 300

via Jordan forms, 312

via perturbation, 378

via triangularisation, 299

centre of gravity, i.e. centre of mass, 26

centre of mass, 26, 237
change of basis
for different spaces, 260
for orthonormal bases, 193
for quadratic form, 404
for same space, 119
chap, bright, 289
characteristic polynomial, 122
Cholesky factorisation, 417

Chrystal, on simultaneous equations, 108

circulant
determinant, 117
matrix, 154

code
dual, 337
Hadamard, 342
Hamming, 335
Hamming, general, 339
linear, 337
parity check, 337
secret, 341

cofactors of a matrix, 79

commutator, 152, 323

complementary solutions, i.e. kernel, 18

complementary subspace, 293
condition number, 373
contravariant object, 244



coordinatewise convergence, 137
couple, in mechanics, 238

covariant object, 246

Cramer’s rule, 11, 80

cross product, i.e. vector product, 221
crystallography, 231

curl, 225

cyclic vector, 321

dij, Kronecker delta, 46
V, del or nabla, 225
V2, Laplacian, 225
degenerate, see non-degenerate
Desargues’ theorem, 22
detached coefficients, 13
determinant
alternative notation, 75
as volume, 71
Cayley—Menger, 85
circulant, 117
definition for 3 x 3 matrix, 66
definition for n x n matrix, 74
how not to calculate, 76
reasonable way to calculate, 76
Vandermonde, 75
diagonalisation
computation for symmetric matrices, 198
computation in simple cases, 133
necessary and sufficient condition, 303
quadratic form, 405
simultaneous, 321
diagram chasing, 286
difference equations (linear), 138, 314
dilation, i.e. dilatation, 71
direct sum
definition, 291
exterior (i.e. external), 317
distance preserving linear maps
are the orthogonal maps, 167
as products of reflections, 176
distance preserving maps in R? and R3, 185
div, divergence, 225
dot product, i.e. inner product, 27
dual
basis, 276
code, 337
crystallographic, 231
map, 272
space, 269
dyad, 215

€ijk» Levi-Civita symbol, 66
E(U), space of endomorphisms, 266
eigenspace, 303
eigenvalue
and determinants, 122
definition, 122

Index

multiplicity, 312

without determinants, 319
eigenvector, definition, 122
Einstein, obiter dicta, 42, 67, 247
elephant, fitting with four parameters, 178
endomorphism, 266
equation

of aline, 20

of a plane, 34

of a sphere, 36
equivalence relations

as unifying theme, 261

discussion, 156
Euclidean norm, i.e. Euclidean distance, 27
Euler, isometries via reflections, 174
examiner’s art, example of, 157
exterior (i.e. external) direct sum, 317

IF, either R or C, 88
factorisation
LU lower and upper triangular, 142
OR orthogonal and upper triangular, 177
Cholesky, 417
into unitary and positive definite, 391
fashion note, 194
Fermat’s little theorem, 155
field
algebraically closed, 332
definition, 330
finite, structure of, 333
Frenet—Serret formulae, 230
functional, 269

Gauss—Jacobi method, 375
Gauss—Siedel method, 375
Gaussian

elimination, 6-9

quadrature, 347
general tensors, 244-246
generic, 38
GL(U), the general linear group, 94
grad, gradient, 225
Gram-Schmidt orthogonalisation, 161
groups

Lorentz, 184

matrix, 94

orthogonal, 167

permutation, 72

special orthogonal, 168

special unitary, 206

unitary, 206

Hadamard
inequality, 187
matrix, 188
matrix code, 342
Hamilton, flash of inspiration, 254
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Hamming
code, 335-337
code, general, 339
motivation, 335
handedness, 242
Hermitian (i.e. self-adjoint) map
definition, 206
diagonalisation via geometry, 206

diagonalisation via triangularisation, 383

Hill cipher, 341
Householder transformation, 181

image space of a linear map, 103, 263
index, purpose of, xi
inequality
Bessel, 351
Cauchy-Schwarz, 29
Hadamard, 187
triangle, 27
inertia tensor, 240
injective function, i.e. injection, 59
inner product
abstract, complex, 359
abstract, real, 344
complex, 203
concrete, 27
invariant subspace for a linear
map, 285
inversion, 36
isometries in R? and R3, 185
isomorphism of a vector space, 93
isotropic Cartesian tensors, 233
iteration
and eigenvalues, 136—141
and spectral radius, 380
Gauss—Jacobi, 375
Gauss—Siedel, 375

Jordan blocks, 311

Jordan normal form
finding in examination, 316
finding in real life, 315
geometric version, 308
statement, 310

kernel, i.e. null-space, 103, 263
Kronecker delta

as tensor, 215

definition, 46

LU factorisation, 142

L(U, V), linear maps from U to
V,92

Laplacian, 225

least squares, 178, 428

Legendre polynomials, 346

Let there be light, 247

Levi-Civita

and spaghetti, 67
identity, 221
symbol, 66

linear

codes, 337

difference equations, 138, 314

functionals, 269

independence, 95

map, definition, 91

map, particular types, see matrix

operator, i.e. map, 92

simultaneous differential equations, 130,
313-314

simultaneous equations, 8

Lorentz

force, 247
groups, 184
transformation, 146

magic

squares, 111,116, 125
word, 251

matrix

adjugate, 79

antisymmetric, 81, 210
augmented, 107

circulant, 154

conjugate, i.e. similar, 120
covariance, 193

diagonal, 52

elementary, 51

for bilinear form, 400

for quadratic form, 403
Hadamard, 188, 342
Hermitian, i.e. self-adjoint, 206
Hessian, 193

inverse, hand calculation, 54
invertible, 50

multiplication, 44

nilpotent, 154

non-singular, i.e. invertible, 50
normal, 384

orthogonal, 167
permutation, 51

rotation in R2, 169

rotation in R3, 173
self-adjoint, i.e. Hermitian, 206
shear, 51

similar, 120
skew-Hermitian, 208
skew-symmetric, 183
sparse, 375

square roots, 390-391
symmetric, 192

thin right triangular, 180
triangular, 76



Maxwell explains
relativity, 212
why we use tensors, 214
why we use vectors, v
Maxwell’s equations, 243
minimal polynomial
and diagonalisability, 303
existence and uniqueness, 301
momentum, 238
Monge point, 39
monic polynomial, 301
multiplicity, algebraic and geometric, 312
multivariate normal distributions, 406, 428

natural isomorphism, 277
Newton, on the laws of nature, 212
nilpotent linear map, 307
non-degenerate
bilinear form, 401
general meaning, 38
non-singular, i.e. invertible, 50
norm
Euclidean, 27
from inner product, 345
operator, 370
normal map
definition, 384
diagonalisation via geometry, 385
diagonalisation via Hermitian, 390
diagonalisation via triangularisation, 384
null-space, i.e. kernel, 103, 263
nullity, 104

olives, advice on stuffing, 380
operator norm, 370
operator, i.e. linear map, 92
order of a Cartesian tensor, 216
O(R"), orthogonal group, 167
orthogonal

complement, 362

group, 167

projection, 363

vectors, 31
orthonormal

basis, 161

set, 160
over-relaxation, 397

paper tigers, 272

parallel axis theorem, 241

parallelogram law, 32, 389, 402

particular solution, i.e. member of image
space, 18

permanent of a square matrix, 80

permutation, 409

perpendicular, i.e. orthogonal, 31

pivoting, 12
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polarisation identity
complex case, 205
real case, 166
polynomials
Hermite, 365
Legendre, 345-350, 364
Tchebychev, 364
Pons Asinorum, 272
positive definite quadratic form, 414
principal axes, 236
projection
general, 295
orthogonal, 363
pseudo-tensor (usage deprecated), 244

QR factorisation
into orthogonal and upper triangular, 180
via Gram—Schmidt, 180
via Householder transformation, 181
quadratic form
and symmetric bilinear form, 402
congruent, i.e. equivalent, 404
definition, 402
diagonalisation, 405
equivalent, 404
positive definite, 414
rank and signature, 411
quaternions, 253—255
quotient rule for tensors, 218

radius of curvature, 230
rank
column, 107
i.e. order of a Cartesian tensor, 216
of linear map, 104
of matrix, 107, 109
of quadratic form, 411
row, 109
rank-nullity theorem, 104
reflection, 174
Riesz representation theorem, 354
right-hand rule, 244

rotation
in R2, 169
inR3, 173

Routh’s rule, 434
row rank equals column rank, 109,
282

Sn, permutation group, 72
scalar product, 27
scalar triple product, 223
Schur complement, 416
secret

code, 341

sharing, 112
separated by dual, 270
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Shamir and secret sharing, 112
signature
of permutation, 72
of quadratic form, 411
similar matrices, 120
simultaneous
linear differential equations, 130, 313-314
linear equations, 8
triangularisation, 328
simultaneous diagonalisation
for general linear maps, 321
for Hermitian linear maps, 390
singular, see non-singular
span E, 103
spanning set, 95
SO(R"), special orthogonal group, 168
SU(C"), special unitary group, 206
spectral radius, 380
spectral theorem in finite dimensions, 386
spherical trigonometry, cure for melancholy, 229
square roots linear maps, 390-391
standard basis
a chimera, 103
for R”, 118
Steiner’s porism, 40
Strassen—Winograd multiplication, 57
subspace
abstract, 89
complementary, 293
complementary orthogonal, 362
concrete, 17
spanned by set, 103
suffix notation, 42
summation convention, 42
surjective function, i.e. surjection, 59
Sylvester’s determinant identity, 148
Sylvester’s law of inertia
statement and proof, 409
via homotopy, 435
symmetric
bilinear form, 401
linear map, 192

Tao, 28, 308
tensor, see under Cartesian or general
theorem, not a monument but a signpost, 333

Index

three term recurrence relation, 350
trace, 123, 151
transpose of matrix, 70
transposition (type of element of S,,), 81
triangle inequality, 27
triangular matrix, 76
triangularisation
for complex inner product spaces, 376
over C, 298
simultaneous, 328
triple product, 223
Turing and LU factorisation, 143

U’, dual of U, 269

unit vector, 33

U(C™), unitary group, 206
unitary map and matrix, 206

Vandermonde determinant, 75

vector
abstract, 88
arithmetic, 16
cyclic, 321
geometric or position, 25
physical, 212

vector product, 221

vector space
anti-isomorphism, 362
automorphism, 266
axioms for, 88
endomorphism, 266
finite dimensional, 100
infinite dimensional, 100
isomorphism, 93
isomorphism theorem, 264

wedge (i.e. vector) product, 221

Weierstrass and simultaneous diagonalisation,

419
wolf, goat and cabbage, 141

xylophones, 4
yaks, 4

7,y is a field, 156
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