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Thévenaz: G-algebras and modular representation theory

Baues: Homotopy type and homology

D’Eath: Black holes: gravitational interactions

Lowen: Approach spaces: the missing link in the topology–uniformity–metric triad

Cong: Topological dynamics of random dynamical systems

Donaldson and Kronheimer: The geometry of four-manifolds, paperback

Woodhouse: Geometric quantization, second edition, paperback

Hirschfeld: Projective geometries over finite fields, second edition

Evans and Kawahigashi: Quantum symmetries of operator algebras

Klingen: Arithmetical similarities: Prime decomposition and finite group theory

Matsuzaki and Taniguchi: Hyperbolic manifolds and Kleinian groups

Macdonald: Symmetric functions and Hall polynomials, second edition, paperback

Catto, Le Bris, and Lions: Mathematical theory of thermodynamic limits: Thomas-Fermi type

models

McDuff and Salamon: Introduction to symplectic topology, paperback

Holschneider: Wavelets: An analysis tool, paperback

Goldman: Complex hyperbolic geometry

Colbourn and Rosa: Triple systems

Kozlov, Maz’ya and Movchan: Asymptotic analysis of fields in multi-structures

Maugin: Nonlinear waves in elastic crystals

Dassios and Kleinman: Low frequency scattering

Ambrosio, Fusco and Pallara: Functions of bounded variation and free discontinuity problems

Slavyanov and Lay: Special functions: A unified theory based on singularities

Joyce: Compact manifolds with special holonomy

Carbone and Semmes: A graphic apology for symmetry and implicitness

Boos: Classical and modern methods in summability

Higson and Roe: Analytic K-homology

Semmes: Some novel types of fractal geometry

Iwaniec and Martin: Geometric function theory and nonlinear analysis

Johnson and Lapidus: The Feynman integral and Feynman’s operational calculus, paperback

Lyons and Qian: System control and rough paths

Ranicki: Algebraic and geometric surgery

Ehrenpreis: The Radon transform

Lennox and Robinson: The theory of infinite soluble groups

Ivanov: The Fourth Janko Group

Huybrechts: Fourier-Mukai transforms in algebraic geometry

Hida: Hilbert modular forms and Iwasawa theory

Boffi and Buchsbaum: Threading Homology through algebra

Vazquez: The Porous Medium Equation

Benzoni-Gavage and Serre: Multi-dimensional hyperbolic partial differential equations



Multidimensional Hyperbolic
Partial Differential Equations

First-order Systems and Applications

Sylvie Benzoni-Gavage
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PREFACE

Hyperbolic Partial Differential Equations (PDEs), and in particular first-order
systems of conservation laws, have been a fashionable topic for over half a
century. Many books have been written, but few of them deal with genuinely
multidimensional hyperbolic problems: in this respect the most classical, though
not so well-known, references are the books by Reiko Sakamoto, by Jacques
Chazarain and Alain Piriou, and by Andrew Majda. Quoting Majda from his
1984 book, “the rigorous theory of multi-D conservation laws is a field in its
infancy”. We dare say it is still the case today. However, some advances have been
made by various authors. To speak only of the stability of shock waves, we may
think in particular of: Métivier and coworkers, who continued Majda’s work in
several interesting directions – weak shocks, lessening the regularity of the data,
elucidation of the ‘block structure’ assumption in the case of characteristics with
constant multiplicities (we shall speak here of constantly hyperbolic operators);
Freistühler, who extended Majda’s approach to undercompressive shocks, of
which an important example is given by phase boundaries in van der Waals fluids,
as treated by Benzoni-Gavage; Coulombel and Secchi, who dealt very recently
with neutrally stable discontinuities (2D-vortex sheets), thanks to Nash–Moser
techniques.

Even though it does not pretend to cover the most recent results, this book
aims at presenting a comprehensive view of the state-of-the-art, with particular
emphasis on problems in which modern tools of analysis have proved useful.
A large part of the book is indeed devoted to initial boundary value problems
(IBVP), which can only be dealt with by using symbolic symmetrizers, and thus
necessitate pseudo-differential calculus (for smooth, non-constant coefficients)
or even para-differential calculus (for rough coefficients and therefore also non-
linear problems). In addition, the construction of symbolic symmetrizers conceals
intriguing questions related to algebraic geometry, which were somewhat hidden
in Kreiss’ original paper and in the book by Chazarain and Piriou. In this respect
we propose here new insight, in connection with constant coefficient IBVPs.
Furthermore, the analysis of (linear) IBVPs, which are important in themselves,
enables us to prepare the way for the (non-linear) stability analysis of shock
waves. In the matter of complexity, stability of shocks is the culminating topic
in this book, which we hope will contribute to make more accessible some of
the finest results currently known on multi-D conservation laws. Finally, quoting
Constantin Dafermos from his 2000 book, ‘hyperbolic conservation laws and gas
dynamics have been traveling hand-by-hand over the past one hundred and fifty
years’. Therefore it is not a surprise that we devote a significant part of this book
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to that specific and still important application. The idea of dealing with ‘real’
gases was inspired by the PhD thesis of Stéphane Jaouen after Sylvie Benzoni-
Gavage was asked by his advisor, Pierre-Arnaud Raviart to act as a referee in
the defense.

This volume contains enough material for several graduate courses – which
were actually taught by either one of the authors in the past few years – depend-
ing on the topic one is willing to emphasize: hyperbolic Cauchy problem and
IBVP, non-linear waves, or gas dynamics. It provides an extensive bibliography,
including classical papers and very recent ones, both in PDE analysis and in
applications (mainly to gas dynamics). From place to place, we have adopted an
original approach compared to the existing literature, proposed new results, and
filled gaps in proofs of important theorems. For some highly technical results,
we have preferred to point out the main tools and ideas, together with precise
references to original papers, rather than giving extended proofs.

We hope that this book will fulfill the expectations of researchers in both
hyperbolic PDEs and compressible fluid dynamics, while being accessible to
beginners in those fields. We have tried our best to make it self-contained and
to proceed as gradually as possible (at the price of some repetition), so that the
reader should not be discouraged by her/his first reading.

We warmly thank Jean-François Coulombel, whose PhD thesis (under the
supervision of Benzoni-Gavage and with the kind help of Guy Métivier) provided
the energy necessary to complete the writing of the most technical parts, for his
careful reading of the manuscript and numerous useful suggestions. We also thank
our respective families for their patience and support.

Lyon, April 2006 Sylvie Benzoni-Gavage
Denis Serre
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4 Initial boundary value problem in a half-space with constant
coefficients 99
4.1 Position of the problem 99

4.1.1 The number of scalar boundary conditions 100
4.1.2 Normal IBVP 102

4.2 The Kreiss–Lopatinskĭı condition 102
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xii Contents

15.2 Stability conditions 430
15.2.1 General result 430
15.2.2 Notable cases 437
15.2.3 Kreiss symmetrizers 438
15.2.4 Weak stability 440

PART V. APPENDIX

A Basic calculus results 443

B Fourier and Laplace analysis 446
B.1 Fourier transform 446
B.2 Laplace transform 447
B.3 Fourier–Laplace transform 448

C Pseudo-/para-differential calculus 449
C.1 Pseudo-differential calculus 450

C.1.1 Symbols and approximate symbols 450
C.1.2 Definition of pseudo-differential operators 452
C.1.3 Basic properties of pseudo-differential operators 453

C.2 Pseudo-differential calculus with a parameter 455
C.3 Littlewood–Paley decomposition 459

C.3.1 Introduction 459
C.3.2 Basic estimates concerning Sobolev spaces 461
C.3.3 Para-products 465
C.3.4 Para-linearization 473
C.3.5 Further estimates 478

C.4 Para-differential calculus 481
C.4.1 Construction of para-differential operators 481
C.4.2 Basic results 486

C.5 Para-differential calculus with a parameter 487

Bibliography 492

Index 505



INTRODUCTION

Within the field of Partial Differential Equations (PDEs), the hyperbolic class is
one of the most diversely applicable, mathematically interesting and technically
difficult: these (certainly biased) qualifying terms may serve as milestones along
an overview of the field, which we propose prior to entering the bulk of this book.

Applicability. Hyperbolic PDEs arise as basic models in many applications,
and especially in various branches of physics in which finite-speed propagation
and/or conservation laws are involved. To quote a few, and nonetheless funda-
mental examples, let us start with linear hyperbolic PDEs. The most ancient
one is undoubtedly the wave equation – also known in one space dimension as
the equation of vibrating strings – dating back to the work of d’Alembert in the
eighteenth century, which is closely related to the transport equation. We also
have in mind the Maxwell system of electromagnetism, as well as the equation
associated with the Dirac operator. Theoretical physics is a source of several
semilinear equations and systems – semilinearity being characterized by a linear
principal part and non-linear terms in the subprincipal part – for example, the
Klein/sine–Gordon equations, the Yang–Mills equations, the Maxwell system for
polarized media, etc. The non-linear models – often quasilinear – are even more
numerous. The most basic one is provided by the so-called Euler equations of gas
dynamics, which opened the way (controversially) in the late nineteenth century
to the shock waves theory (later revived, in the 1940s, by the atomic bomb
research, and still of interest nowadays for more peaceful applications, in medicine
for instance). Speaking of flows, a prototype of scalar, one-dimensional conser-
vation law was introduced in the 1950s in traffic flow modelling (under some
heuristic assumptions on the drivers’ behaviour), which is nowadays referred to
as the Lighthill–Whitham–Richards model. Other non-linear hyperbolic models
include: the equations of elastodynamics (of which a linear version is widely
used, in the modelling of earthquakes as well as in engineering problems with
small deformations); the equations of chemical separation (chromatography,
electrophoresis); the magnetohydrodynamics (MHD) equations – the coupling
between fluid dynamics and electromagnetism being quite relevant for planets
and other astrophysical systems – the Einstein equations of general relativity;
non-linear versions of the Maxwell system for strong fields, for example the
Born–Infeld model. Hyperbolic equations may also arise as a byproduct of an
elaborate piece of analysis, as in the modulation theory of integrable Hamiltonian
PDEs (like the Korteweg–de Vries equation and some non-linear Schrödinger
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equations), in which the envelopes of oscillating solutions are described by
solutions of the (hopefully hyperbolic) Whitham equations.

This list of hyperbolic PDEs is by no means exhaustive. Of course most of
them are to some extent approximate: more realistic models should also involve
dissipation processes (for instance in continuum mechanics) or higher-order
phenomena, and thus be (at least partially) parabolic or dispersive. However,
large-scale phenomena are usually governed by the hyperbolic part: the relevance
of hyperbolic PDEs in many applications is in no doubt.

Mathematical interest. For both mathematical reasons and physical rele-
vance, hyperbolicity is associated with a space–time reference frame, in the sense
that there exists a co-ordinate (most often the physical time) playing a special
role compared to the other co-ordinates (usually spatial ones). Of course, changes
of co-ordinates are always possible and we may speak of time-like co-ordinates
and of space-like hypersurfaces: this terminology is familiar to people used to
general relativity, and is also relevant in every situation where a hyperbolic
operator is given. Except in one-dimensional frameworks, it is by no means
possible to interchange the role of space and time variables: the distinction
between time and space is a crucial feature of multidimensional hyperbolic PDEs,
as we shall see in the analysis of Initial Boundary Value Problems.

Multidimensional hyperbolic PDEs constrast with one-dimensional ones from
several points of view, in particular in connection with the important notion of
dispersion. Indeed, recall that the most visible feature of hyperbolic PDEs is
finite-speed propagation. In several space dimensions, when the information is
propagated not merely by pure transport, it gets dispersed: this dispersion of
signals is itself responsible for a damping phenomenon in all Lp norms with
p > 2 (by contrast with what usually happens with the L2 norm, independent of
time by a conservation of energy principle), and is associated with special, space–
time estimates called Strichartz estimates, obtained by fractional integration –
Strichartz estimates have been proved much fruitful in particular in the analysis
of semilinear hyperbolic Cauchy problems.

Another point worth mentioning is the diversity of mathematical tools that
have been found useful to the theory of (linear) multidimensional hyperbolic
PDEs, ranging from microlocal analysis to algebraic topology (not to mention
those that still need to be invented, as we shall suggest below!). The former has
been widely used to study the propagation of singularities in wave-like equations.
In the same spirit, pseudo- (or even para-) differential calculus is of great help
to study linear hyperbolic problems with variable coefficients, as we shall see in
the third and fourth parts of this book. The link to algebraic topology might
seem less obvious to unaware readers and deserves a little explanation. When
studying constant-coefficients hyperbolic operators we are led to consider, in the
frequency space, algebraic manifolds called characteristic cones – which are by
definition zero sets of symbols, and are linked to finite-speed propagation. The
fundamental solution, say E, of a constant-coefficients hyperbolic PDE is indeed
known to be supported by the convex hull of Γ, the forward part of the dual
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of the characteristic cone. In some cases, it happens that E is supported by
Γ only; the open set co(Γ) \Γ, on which E vanishes, is then called a lacuna.
For example, the wave equation in dimension 1 + d with d odd and d ≥ 3, has a
lacuna: its fundamental solution is supported by the dual characteristic cone itself
(this explains, for instance, the fact that light rays have no tail). The systematic
study of lacunæ is related to the topology of real algebraic sets.

Compared to linear ones, non-linear problems display fascinating new fea-
tures. In particular, several kinds of non-linear waves arise (shocks, rarefaction
waves, as well as contact discontinuities). They are present already in one space
dimension. The occurrence of shock waves is connected with a loss of regularity
in the solutions in finite time, which can be roughly explained as follows:
non-linearity implies that wave speeds depend on the state; therefore, a non-
constant solution experiences a wave overtaking, which results in the creation of
discontinuities in the derivatives of order m− 1, if m is the order of the system;
such discontinuities are called shock waves, or simply shocks. After blow-up, that
is after creation of shock(s), solutions cannot be smooth any longer. This yields
many questions: what is the meaning of the PDEs for non-smooth solutions;
can we solve the system in terms of weak enough solutions, and if possible in a
unique, physically relevant way? The answer to the first question has been given
by the theory of distributions, which is somehow the mathematical counterpart of
conservation principles in physics: conservation of mass, momentum and energy,
for instance (or Ampère’s and Faraday’s laws in electromagnetism) make sense
indeed as long as fields remain locally bounded. The drawback is – as has long
been known – that weak solutions are by no means unique, and this seems to hurt
the common belief that PDE models in physics describe deterministic processes.
This apparent contradiction may be resolved by the use of a suitable entropy
condition, most often reminiscent of the second principle of thermodynamics.
In one space dimension, entropy conditions have been widely used in the last
decades to prove global well-posedness results in the space of Bounded Vari-
ations (BV) functions – a space known to be inappropriate in several space
dimensions, because of the obstruction on the Lp norms (see below for a few
more details). Entropy conditions are expected to ensure also multidimensional
well-posedness, even though we do not know yet what would be an appropriate
space: one of the goals of this book is to present a starting point in this direc-
tion, namely (local in time) well-posedness within classes of piecewise smooth
solutions.

Finally, the concept of time reversibility is quite intriguing in the framework
of hyperbolic PDEs. On the one hand, as far as smooth solutions are concerned,
many hyperbolic problems are time reversible, and this seems incompatible with
the decay (already mentioned above) of Lp norms for p > 2 in several space
dimensions. This paradox was actually resolved by Brenner [22,23], who proved
that multidimensional hyperbolic problems are ill-posed, in Hadamard’s sense,
in Lp for p �= 2. Incidentally, Brenner’s result shows that the space BV , which is
built upon the space of bounded measures, itself close to L1, cannot be appropri-
ate for multidimensional problems. On the other hand, time reversibility is lost
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(as a mathematical counterpart of the second principle of thermodynamics) once
shocks develop, whence a loss of information, the backward problem becoming ill-
posed. As a matter of fact, shocks may be viewed as free boundaries and as such
they can be sought as solutions of (non-standard) hyperbolic Initial Boundary
Value Problems (IBVP): it turns out that most of the well-posed hyperbolic
IBVPs are irreversible, as will be made clear in particular in this book – a large
part of this volume is indeed dedicated to a systematic study of IBVPs, either
for themselves, or in view of applications to well-posedness in the presence of
shock waves.

Difficulty. Even when a functional framework is available, a rigorous analysis
of hyperbolic problems often requires much more elaborate (or at least more
technical) tools than for elliptic or parabolic problems, notably to cope with the
lack of smoothing effects. The situation is even worse in the non-linear context,
where functional analysis has been useless in the study of weak entropy solutions
so far (except for first-order scalar equations). This is why our knowledge of
global-in-time solutions is so poor, despite tremendous efforts by talented math-
ematicians. Speaking only about the Cauchy problem for quasilinear systems of
first-order conservation laws, in space dimension d with n scalar unknowns, we
know about well-posedness only in the following cases.

� Scalar problems (n = 1), thanks to Kruzkhov’s theory [105].
� One space dimension (d = 1) and small data of bounded variation: existence

results date back to Glimm’s seminal work [70]; uniqueness and continuous
dependence have been obtained by Bressan and coworkers (see, for instance,
[25–27]).

� Small smooth data and large enough space dimension (for then dispersion
can compete with non-linearity and prevent shock formation): most results
from this point of view have been established by Klainerman and coworkers.
See, for instance, Hörmander’s book [88].

Amazingly enough, none of these results apply to such basic systems as the full
gas dynamics equations in one space dimension (n = 3, d = 1) or the isentropic
gas dynamics equations (n = 2) in dimension d ≥ 2.

Other results solve only one part of the problem:

� Global existence for general data when d = 1 and n = 2 (under a genuine
non-linearity assumption) by means of compensated compactness. This was
achieved by DiPerna [49], following an idea by Tartar [202]. Solutions are
then found in L∞. Unfortunately, no uniqueness proof in such a large space
has been given so far, except for weak–strong uniqueness (uniqueness in L∞

of a classical solution).
� Local existence of smooth solutions for smooth data. This is quite a

good result since it shows at least local well-posedness. It is attributed
to several people (Friedrichs, G̊arding, Kato, Leray, and possibly others),
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depending on specific assumptions that were made. Unfortunately, its
practical implications are limited by the smallness of the existence
time – recall that shock formation precludes, in general, global existence
results within smooth functions.

Having this (modest) state-of-the-art in mind, we can foresee a compromise
regarding multidimensional weak solutions and non-linear problems: it will con-
sist of the analysis of piecewise smooth solutions (involving a finite number
of singularities like shock waves, rarefaction waves or contact discontinuities),
tractable by ‘classical’ tools. This is the point of view we have adopted here, which
defines the scope of this book: we shall consider either (possibly weak) solutions
of linear problems with smooth coefficients or piecewise smooth solutions of
non-linear problems – Cauchy problems and also of Initial Boundary Value
Problems – to multidimensional hyperbolic PDEs. We now present a more
detailed description of the contents.

We have chosen a presentation involving gradually increasing degrees of
difficulty: this is the case for the ordering of the three main ‘theoretical’ parts
of the book – the first one being devoted to linear Cauchy problems, the second
one to linear Initial Boundary Value Problems, and the third one to non-linear
problems; this is also the case inside those parts – the first two parts starting
with constant coefficients before going to variable coefficients, and the third one
starting from Cauchy problems, then going to IBVPs, and culminating with the
shock waves stability analysis. As a consequence, readers should be able to find
the information they need without having to enter overcomplicated frameworks:
most chapters are indeed (almost) self-contained (and as a drawback, the book
is not free from repetitions).

Another deliberate choice of ours has been to concentrate on first-order
systems, even though we are very much aware that higher-order hyperbolic PDEs
are also of great interest. This is mainly a matter of taste, because we come from
the community of conservation laws. In addition, we think that the understanding
of either one of those classes (first-order systems or higher-order scalar equations)
basically provides the understanding of the other class (see, for instance, the book
by Chazarain and Piriou [31], Chapter VII). Consistently with that choice, the
main application we have considered is the first-order system of Euler equations
in gas dynamics, to which the fourth part of the book is entirely devoted. We
have tried to temperate this ‘monomaniac’ attitude by referring from place to
place to higher-order equations, and in particular to the wave equation, which is
the source of several examples throughout the theoretical chapters.

Finally, to keep the length of this book reasonable, we have decided not to
speak of (nevertheless important) questions that are too far away from the shock
waves theory. Thus the reader will not find anything about the propagation
of singularities as developed by Egorov, Hörmander and Taylor. Likewise, non-
local boundary operators as they appear, for instance, in absorbing or trans-
parent boundary conditions will not be considered, and all numerical aspects of
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hyperbolic IBVPs will be omitted, despite their great theoretical and practical
importance.

First part. The theory of linear Cauchy problems is most classical, even
though some results are not that well-known. The chapter on constant-coefficient
problems is the occasion of pointing out important definitions: Friedrichs sym-
metrizability; directions of hyperbolicity; strict hyperbolicity and more generally
what we call constant hyperbolicity – the eigenvalues of the symbol of a so-
called constantly hyperbolic operator are semisimple and of constant multiplicity,
instead of being simple in the case of strict hyperbolicity. Throughout the
book, all hyperbolic operators will be assumed either Friedrichs symmetrizable
or constantly hyperbolic (or both), as is the case for most operators coming
from physics. The chapter on variable-coefficients Cauchy problems presents,
in more generality, the symmetrizers technique, and in particular introduces
the notion of symbolic symmetrizers, thus illustrating the power of pseudo-
differential calculus (for infinitely smooth coefficients) and even para-differential
calculus (for coefficients of limited regularity).

Second part. The theory of Initial Boundary Value Problems (IBVP) is
inspired from, but tremendously more complicated than, the theory of Cauchy
problems. A kind of introductory chapter is devoted to the easier case of
symmetric dissipative IBVPs. The second chapter addresses constant-coefficients
IBVPs in a half-space, in which a central concept arises, namely the (uniform)
Lopatinskĭı condition. This stability condition dates back to the 1970s: simultane-
ously with a work by Lopatinskĭı ( [122], unnoticed in the West, Lopatinskĭı being
more famous for his older work on elliptic boundary value problems [121]), it was
worked out by Kreiss [103], and independently by Sakamoto [174] for higher-order
equations; in acknowledgement of Kreiss’ work on first-order hyperbolic systems
we shall rather call it the (uniform) Kreiss–Lopatinskĭı condition, and we shall
also speak of Kreiss’ symmetrizers, which are symbolic symmetrizers adapted to
IBVPs. The necessity of Kreiss’ symmetrizers shows up indeed when a Laplace–
Fourier transform is applied to the equations (Laplace in the time direction
and Fourier in the spatial boundary direction): to obtain an a priori estimate
without loss of derivatives we need to multiply the equations by a suitable
matrix-valued function, depending homogeneously on space–time frequencies –
thus being a symbol – in place of the energy tensor of the symmetric dissipative
case; that matrix-valued symbol is what we call a Kreiss symmetrizer. The
actual construction of Kreiss’ symmetrizers is quite involved, and requires a
good knowledge of linear algebra and real algebraic geometry. For this reason,
a separate chapter is devoted to the construction of Kreiss’ symmetrizers. The
interplay with algebraic geometry (formerly developed by Petrovskĭı, Oleinik
and their school) is a deep reason why we need a structural assumption such
as constant hyperbolicity: even with this, there remain tricky points to deal
with, namely the so-called glancing points, where eigenvalues lack regularity.
The chapter on variable-coefficient IBVPs focuses more on the calculus aspects
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of the theory: it shows how to extend well-posedness results to more general
situations – variable coefficients with either infinite or limited regularity, non-
planar boundaries – by means of pseudo- or para-differential calculus.

The remaining chapters of the second part are devoted to more peculiar
topics: characteristic boundaries (which yield involved additional difficulties);
homogeneous IBVPs (which turn out to require only a weakened version of the
uniform Lopatinskĭı condition); the so-called class WR, which consists of certain
C∞-well-posed problems and is generic in the sense that it is stable under small
disturbances of the operators, but displays estimates with a loss of regularity.
These topical chapters may be skipped by the reader insterested only in the
applications to multidimensional shock stability.

Third part. We must admit that the current knowledge of non-linear multi-
dimensional hyperbolic problems is very much limited: all well-posedness results
presented in this part are short-time results; nevertheless, their proofs are not
that easy. A first chapter reviews Cauchy problems: symmetric (or Friedrichs-
symmetrizable) ones, but also those with symbolic symmetrizers (at is the
case for constantly hyperbolic systems), for which well-posedness was not much
known up to now (the only reference we are aware of is a proceedings paper
by Métivier [132]). Well-posedness is to be understood in Sobolev spaces of
sufficiently high index, or to be more precise, in Hs(Rd) with s > d/2 + 1 (the
condition ensuring that Hs(Rd) is an algebra, whose elements are at least
continuously differentiable, by Sobolev’s theorem). In other words, we speak in
that chapter only of smooth, or classical solutions, except in the very last section,
where we recall the weak–strong uniqueness result of Dafermos and prepare the
way for piecewise smooth solutions considered in the chapter on shock waves.
Then ‘standard’ non-linear IBVPs are considered in a separate chapter, which
is the occasion to see a simplified version of what is going on for shocks. The
chapter on the persistence (or existence and stability) of single shock solutions
was one of the main motivations to write this book. The idea was to give a
comprehensive account of the work done by Majda in the 1980s [124–126], after
it was revisited by Métivier and coworkers [56, 131, 133, 134, 136, 140]. Initially,
we intended to cover also non-classical (multidimensional) shocks, as considered
by Freistühler [58, 59] and Coulombel [40]. But for clarity we have preferred to
concentrate on Lax shocks, while avoiding as much as possible to use their specific
properties so that interested readers could either guess what happens for non-
classical shocks or refer more easily to [40] for instance. We have also deliberately
omitted the most recent developments on characteristic and/or non-constantly
hyperbolic problems.

Fourth part. This concerns one of the most important applications of hyper-
bolic PDEs: gas dynamics. In fact, the theory of hyperbolic conservation laws
was developed, in particular by Peter Lax in the 1950s, by analogy with gas
dynamics: terms like ‘entropy’, ‘compressive’ (or ‘undercompressive’) shock are
reminiscent of this analogy, and the so-called Rankine–Hugoniot jump conditions
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were initially derived (in the late nineteenth century) by these two engineers
(Rankine and Hugoniot) in the framework of gas dynamics. There is a huge
literature on gas dynamics, by engineers, by physicists and by mathematicians.
In recent decades, the latter have had a marked preference for a familiar pressure
law, usually referred to as the γ-law, for it simplifies, to some extent (depending
on the explicit value of γ), the analysis of the Euler equations of gas dynamics.
We have chosen here to consider more general pressure laws, which apply to
so-called real – at least more realistic – fluids and not only perfect gases (as was
the case in earlier mathematical papers, by Weyl [218], Gilbarg [69], etc.).

In a first chapter we address several basic questions, regarding hyperbolicity
and symmetrizability. The second chapter is devoted to boundary conditions
for real fluids, a very important topic for engineers, which has (surprisingly) not
received much attention from mathematicians (see, however, the very nice review
paper by Higdon [84]).

This applied part culminates with the shock-waves analysis for real fluids, in
the last chapter. Even though it seems to belong to ‘folklore’ in the shock-waves
community, the complete investigation of the Kreiss–Lopatinskĭı condition for
the Euler equations is hard to find in the literature: in particular, Majda gave
the complete stability conditions in [126] but showed how to derive them only for
isentropic gas dynamics; a complete, analytic proof was published only recently
by Jenssen and Lyng [92]. By contrast, our approach is mostly algebraic, and
works fine for full gas dynamics (of which the isentropic gas dynamics appear
as a special, easier case). In addition, we give an explicit construction of Kreiss
symmetrizers, which (to our knowledge) cannot be found elsewhere, and is fully
elementary (compared to the sophisticated tools used for abstract systems).

Fifth part. This is only a (huge) appendix, collecting useful tools and tech-
niques. The main topics are the Laplace transform – including Paley–Wiener
theorems – pseudo-differential calculus, and its refinement called para-differential
calculus. Less space demanding (or more classical) tools are merely introduced
in the Notations section below.
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The set of matrices with n rows and p columns, with entries in a field K, is denoted
by Mn×p(K). If p = n, we simply write Mn(K). The latter is an algebra, whose
neutral elements under addition and multiplication are denoted by 0n and In,
respectively. The space Mn×p(K) may be identified to the set of linear maps
from Kp to Kn. The transpose matrix is written MT. The group of invertible
n× n matrices is GLn(K). If p = 1, Mn×1(K) is identified with Kn.

Given two matrices M,N ∈ Mn(C), their commutator MN −NM is denoted
by [M,N ].

If K = C, the adjoint matrix is written M∗. It is equal to M
T
, where M

denotes the conjugate of M . We equip Cm and Rm with the canonical Hermitian
norm

‖x‖ =
√∑

j

| xj |2 = (x∗x)1/2.

This norm is associated to the scalar product

(x, y) =
∑

j

xjyj = y∗x.

The norm will sometimes be denoted |x|, especially when x is a space variable
or a frequency vector (used in Fourier transform.)

A complex square matrix U is unitary if U∗U = In, or equivalently UU∗ = In.
The set Un of unitary matrices is a compact subgroup of GLn(C). Its intersection
On with Mn(R) is the set of real orthogonal matrices. The special orthogonal
group SOn is the subgroup defined by the constraint detM = 1.

As usual, Mn×p(C) is equipped with the induced norm

‖M‖ = sup
‖Mx‖
‖x‖ .

When the product makes sense, one knows that ‖MN‖ ≤ ‖M‖ ‖N‖. When p =
n, Mn(C) is thus a normed algebra, and we have ‖Mk‖ ≤ ‖M‖k. If Q is a unitary
(for instance real orthogonal) matrix, one has ‖Q‖ = 1. More generally, the norm
is unitary invariant, which means that ‖M‖ = ‖PMQ‖ whenever P and Q are
unitary.

If M ∈ Mn(C), the set of eigenvalues of M , denoted by SpM , is called the
spectrum of M . The largest modulus of eigenvalues of M is called the spectral
radius of M , and denoted by ρ(M). It is less than or equal to ‖M‖, and such
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that

ρ(M) = lim
k→+∞

‖Mk‖1/k.

The following formula holds,

‖M‖2 = ρ(M∗M) = ρ(MM∗).

Several other norms on Mn(C) are of great interest, among which is the Frobenius
norm, defined by

‖M‖F :=
√∑

j,k

| mjk|2.

Since ‖M‖2F = Tr(M∗M) = Tr(MM∗), we have ‖M‖ ≤ ‖M‖F.
A complex square matrix M is Hermitian if M∗ = M . It is skew-Hermitian if

M∗ = −M . The Hermitian n× n matrices form an R-vector space that we denote
by Hn. The cone of positive-definite matrices in Hn is denoted by HPDn. When
M is Hermitian, we have ‖M‖ = ρ(M). Every Hermitian matrix is diagonalizable
with real eigenvalues, its normalized eigenvectors forming an orthonormal basis.
The skew-Hermitian matrices with complex entries form an R-vector space that
we denote by Skewn. We remark that Mn(C) = Hn ⊕ Skewn and Skewn =
iHn. The intersections of Hn, HPDn and Skewn with the subspace Mn(R) of
matrices with real entries are denoted by Symn, SPDn and Altn, respectively.
We have Mn(R) = Symn ⊕Altn. Real symmetric matrices have real eigenvalues
and are diagonalizable in an orthogonal basis.

Given an n× n matrix M , one defines its exponential by

exp M = eM :=
∞∑

k=0

1
k!

Mk,

which is a convergent series. The map t �→ exp(tM) is the unique solution of the
differential equation

dA

dt
= MA,

such that A(0) = In. It solves equivalently the ODE

dA

dt
= AM.

The exponential behaves well with respect to conjugation, that is

exp(PMP−1) = P (exp M)P−1

for all invertible matrix P . The eigenvalues of exp A are the exponentials of those
of A. In particular, ρ(exp A) is the exponential of the maximal real part Re λ,
as λ runs over SpA. The matrix exp(A + B) does not equal (expA)(exp B) in
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general, but it does when AB = BA. In particular, expA is always invertible,
with inverse exp(−A). Other useful formulæ are

exp(MT) = (exp M)T, exp M = exp M, exp(M∗) = (exp M)∗.

The exponential of a Hermitian matrix is Hermitian, positive-definite. The map

exp : Hn → HPDn

is actually an homeomorphism. The exponential of a skew-Hermitian matrix is
unitary.

Let A ∈ Mn(C) be given. The space Cn splits, in a unique way, as the
direct sum of three invariant subspaces, namely the stable, unstable and central
subspaces of A, denoted, respectively, Es(A), Eu(A) and Ec(A). Their invariance
properties read

AEs(A) = Es(A), AEu(A) = Eu(A) and AEc(A) ⊂ Ec(A).

The stable invariant subspace is formed of vectors x such that (exp tA)x tends
to zero as t → +∞, and then the decay is exponentially fast. The unstable
subspace is formed of vectors x such that (exp tA)x tends to zero (exponentially
fast) as t → −∞. The central subspace consists of vectors such that (exp tA)x is
polynomially bounded on R. Since these spaces are invariant under A, this matrix
operates on each one as an endomorphism, say As, Au, Ac. The spectrum of As

(respectively, Au, Ac) has negative (respectively, positive, zero) real part. The
union of these spectra is the whole spectrum of A, with the correct multiplicities.
Hence the dimension of Es(A) is the number of eigenvalues of A of negative real
part (these are called ‘stable eigenvalues’), counted with multiplicities. When
Ec(A) is trivial, meaning that there is no pure imaginary eigenvalue, A is called
hyperbolic (in the sense of Dynamical Systems).

Dunford–Taylor formula. Let γ be a Jordan curve, oriented in the trigono-
metric way, disjoint from SpA. Let σ be the part of SpA that γ enclose. Then
the Cauchy integral

Pσ :=
1

2iπ

∫
γ

(zIn −A)−1dz

defines a projector (that is P 2
σ = Pσ) whose range and kernel are invariant under

A. (Moreover, A commutes with Pσ). The spectrum of the restriction of A to
the range of Pσ is exactly the part of the spectrum of A that belongs to σ. In
other words, R(Pσ) is the direct sum of the generalized eigenspaces associated
to those eigenvalues in σ.

More information about matrices and norms may be found in [187].

Functional spaces

Given an open subset Ω of Rn, the set of infinitely differentiable functions (with
values in C) that are bounded as well as all their derivatives on Ω is denoted
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by C∞
b (Ω). The set of compactly supported infinitely differentiable functions

(also called test functions) is denoted by D(Ω). Its dual D ′(Ω) is the space of
distributions. The derivation ∂j := ∂/∂xj is a bounded linear operator on D(Ω).
Its adjoint is therefore bounded on D ′(Ω). The distributional derivative, still
denoted by ∂j , is the adjoint of −∂j .

A multi-index α is a finite sequence (α1, . . . , αn) of natural integers. Its length
|α| is the sum

∑
j αj . The operator

∂α := ∂α1
1 · · · ∂αn

n

is a derivation of order |α|. We also use the notation

ξα = ξα1
1 · · · ξαn

n ,

when ξ ∈ Rn.
Given a C 1 function f : Ω → C, the differential of f at point X is the linear

form

df(X) : ξ �→ df(X)ξ :=
n∑

j=1

ξj ∂jf(X).

The map X �→ df(X) (that is the differential of f) is a differential form. The
second differential, or Hessian of f at X is the bilinear form

D2f(X) : (ξ, η) �→
n∑

i,j=1

ξi ηj ∂i∂jf(X) .

We may define differentials of higher orders D3f, . . .
Given a Banach space E, the Lebesgue space of measurable functions u : Ω →

E whose pth power is integrable, is denoted by Lp(Ω;E). When E = R or E = C,
we simply denote Lp(Ω) if there is no ambiguity. The norm in Lp(Ω;E) is

‖u‖Lp :=
(∫

Ω

‖u(x)‖p
Edx

)1/p

.

If m ∈ N, the Sobolev space Wm,p(Ω;E) is the set of functions in Lp(Ω;E) whose
distributional derivatives up to order m belong to Lp. Its norm is defined by

‖u‖W m,p :=

 ∑
|α|≤m

‖∂αu‖p
Lp

1/p

.

If p = 2 and if E is a Hilbert space, Wm,2(Ω;E) is a Hilbert space and is denoted
Hm(Ω;E), or simply Hm(Ω) if E = C or E = R or if there is no ambiguity.

Sobolev spaces of order s (instead of m) may be defined for every real
number s. The simplest definition occurs when p = 2, Ω = Rn and E = C, where
Hs(Rn) is isomorphic to a weighted space L2((1 + |ξ|2)sdξ) through the Fourier
transform. For a crash course on Hs(Ω) (sometimes also denoted Hs(Ω)), we
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refer the reader to Chapter II in [31]; for more details in more general situations,
see for instance the classical monograph by Adams [1]. The notation Hs

w will
stand for the Sobolev space Hs equipped with the weak topology instead of the
(strong) Hilbert topology.

The Schwartz space of rapidly decreasing functions S (Rn) will simply be
denoted by S when no confusion can occur as concerns the space dimension. And
similarly, its dual space, consisting of temperate distributions, will be denoted
by S ′.

Other tools

We have collected in the appendix various additional tools, ranging from standard
calculus and Fourier–Laplace analysis to pseudo-differential and para-differential
calculus: we hope it will be helpful to the reader.
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1

LINEAR CAUCHY PROBLEM WITH
CONSTANT COEFFICIENTS

The general Cauchy problem

Let d ≥ 1 be the space dimension and x = (x1, . . . , xd) denote the space variable,
t being the time variable. The Cauchy problem that we consider in this section
is posed in the whole space Rd, while t ranges on an interval, typically (0, T ),
where T ≤ +∞.

A constant-coefficient first-order system is determined by d + 1 matrices
A1, . . . , Ad, B given in Mn(R), where n ≥ 1 is the size of the system. Then the
Cauchy problem consists in finding solutions u(x, t) of

∂u

∂t
+

d∑
α=1

Aα ∂u

∂xα
= Bu + f, (1.0.1)

where f = f(x, t) and the initial datum u(·, t = 0) = a are given in suitable
functional spaces. To shorten the notation, we shall rewrite equivalently

∂tu +
∑
α

Aα∂αu = Bu + f.

When f ≡ 0, the Cauchy problem is said to be homogeneous. A well-posedness
property holds for the homogeneous problem when, given a in a functional
space X, there exists one and only one solution u in C (0, T ;Y ), for some other
functional space Y , the map

X → C (0, T ;Y )

a �→ u

being continuous. ‘Solution’ is understood here in the distributional sense. Exis-
tence and continuity imply X ⊂ Y , since the map a �→ u(0) must be continuous.
We use the general notation

X
St→ Y

a �→ u(t).

Since a homogeneous system is, at a formal level, an autonomous differen-
tial equation with respect to time, we should like to have the semigroup
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property

St+s = St ◦ Ss, s, t ≥ 0,

this of course requires that Y = X. We then say that the homogeneous Cauchy
problem defines a continuous semigroup if for every initial data a ∈ X, there
exists a unique distributional solution of class C (R+;X). Note that the word
‘continuous’ relies on the continuity with respect to time of the solution, but not
on the continuity of t �→ St in the operator norm. Semigroup theory actually tells
us that, if X is a Banach space, the continuity in the operator norm corresponds
to ordinary differential equations, a context that does not apply in PDEs.

When the homogeneous Cauchy problem defines a continuous semigroup on a
functional space X, we expect to solve the non-homogeneous one using Duhamel’s
formula:

u(t) = Sta +
∫ t

0

St−sf(s)ds, (1.0.2)

provided that at least f ∈ L1(0, T ;X). For this reason, we focus on the homoge-
neous Cauchy problem and content ourselves in constructing the semigroup.

Before entering into the theory, let us remark that, since (1.0.1) writes

∂u

∂t
= Pu + f,

where P is a differential operator of order less than or equal to one, the
order with respect to time of this evolution equation, the Cauchy–Kowalevska
theory applies. For instance, if f = 0, analytic initial data yield unique analytic
solutions. However, these solutions exist only on a short time interval (0, T ∗(a)).
Since analytic data are unlikely in real life, and since local solutions are of little
interest, we shall not concern ourselves with this result.

1.1 Very weak well-posedness

We first look at the necessary conditions for a very weak notion of well-posedness,
where X = S (Rd) (the Schwartz class) and Y = S ′(Rd), the set of tempered
distributions. Surprisingly, this analysis will provide us with a rather strong
necessary condition, sometimes called weak hyperbolicity1.

Let us assume that the homogeneous Cauchy problem is well-posed in this
context. Let a be a datum and u be the solution. From the equation

∂u

∂t
+

d∑
α=1

Aα ∂u

∂xα
= Bu, (1.1.3)

1Some authors call it simply hyperbolicity, and use the term strong hyperbolicity for the notion
that we shall call hyperbolicity. Thus, depending on the authors, there is either the weak and normal
hyperbolicities, or the normal and strong ones.
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we obtain u ∈ C∞(0, T ;Y ). This allows us to Fourier transform (1.1.3) in the
spatial directions. We obtain that (1.1.3) is equivalent to

∂û

∂t
+ i

d∑
α=1

ηαAαû = Bû.

Using the notation

A(η) :=
d∑

α=1

ηαAα,

we rewrite this equation as an ODE in t, parametrized by η

∂û

∂t
= (B − iA(η))û. (1.1.4)

Since û(·, 0) = â, the solution of (1.1.4) is explicitly given by

û(η, t) = et(B−iA(η))â(η). (1.1.5)

By well-posedness (1.1.5) defines a tempered distribution for every choice of â in
the Schwartz class, continuously in time. In other words, the bilinear map

(φ, ψ) �→
∫

Rd

ψ(η)∗et(B−iA(η))φ(η) dη, (1.1.6)

which is well-defined for compactly supported smooth vector fields φ and ψ, is
continuous in the Schwartz topology, uniformly for t in compact intervals.

Let λ be a simple eigenvalue of A(ξ) for some ξ ∈ Rd. Then, there is a C∞ map
(t, σ) �→ (µ, r), defined on a neighbourhood W of (0, ξ), such that µ(0, ξ) = −iλ
and

(t2B − iA(σ))r(t, σ) = µ(t, σ)r(t, σ), ‖r‖ ≡ 1.

Let us choose a non-zero compactly supported smooth function θ : Rd → C with
θ(0) �= 0. Then, for small enough t > 0, the condition η − t−2ξ ∈ Supp θ implies
(t, t2η) ∈ W. For such a t, we may define two compactly supported smooth vector
fields by

φt(η) := θ(η − t−2ξ)r(t, t2η), ψt(η) := θ(η − t−2ξ)�(t, t2η),

where � is an eigenfield of the adjoint matrix (t2B − iA(σ))∗, defined and
normalized as above. We then apply (1.1.6) to (φt, ψt). The sequence (φt)t→0

is bounded in the Schwartz topology, and similarly is (ψt)t→0. Therefore∫
Rd

(ψt)∗et(B−iA(η))φt dη =
∫

Rd

eµ(t,t2η)/t(� · r)(t, t2η)|θ(η − ξ/t2)|2dη

is bounded as t → 0. Since it behaves like c exp(−iλ/t) for a non-zero constant c,
we conclude that Im λ ≤ 0. Applying also this conclusion to the simple eigenvalue
λ̄, we find that λ is real.
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The case of an eigenvalue of constant multiplicity in some open set of
frequencies η can be treated along the same ideas; it must be real too. Finally, the
points η at which the multiplicities are not locally constant form an algebraic
submanifold, thus a set of void interior. By continuity, the reality must hold
everywhere. We have thus proved

Proposition 1.1 The (S ,S ′) well-posedness requires that the spectrum of
A(ξ) be real for all ξ in Rd.

When (S ,S ′) well-posedness does not hold, a Hadamard instability occurs:
for most (in the Baire sense) data a in S , and for all T > 0, the Cauchy problem
does not admit any solution of class C (0, T ;S ′). This is a consequence of the
Principle of Uniform Boundedness.

Example The Cauchy–Riemann equations provide the simplest system for
which this instability holds. One has d = 1, n = 2:

∂tu1 + ∂xu2 = 0, ∂tu2 − ∂xu1 = 0.

This example shows that a boundary value problem for a system of partial dif-
ferential equations may be well-posed though the corresponding Cauchy problem
is ill-posed.

The converse of Proposition 1.1 does not hold in general, mainly because
of the interaction between non-semisimple eigenvalues of A(ξ) with the mixing
induced by B. Let us take again a simple example with d = 1, n = 2, and

A = A1 =
(

0 1
0 0

)
, B =

(
0 0
1 0

)
.

Since the matrix

exp(−iξA) = I2 − iξA

has polynomial growth, the Cauchy problem for the operator ∂t +
∑

α Aα∂α is
well-posed in the (S ,S ′) sense, and even in the (S ,S ) sense. Actually, its
solution is explicitly given by

u1(t) = a1 − ta′
2, u2(t) ≡ a2.

(We see that there is an immediate loss of regularity.) However, with our non-zero
B, the matrix M := t(B − iξA) satisfies M2 = −it2ξI2, which implies that

exp(t(B − iξA)) = cos ω I2 +
sin ω

ω
M,

where ω = t(iξ)1/2. Since

Im ω = ±t

∣∣∣∣ξ2
∣∣∣∣1/2

,
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we see that offdiagonal coefficients of exp M grow like exp(c|ξ|1/2) as ξ tends
to infinity, provided t �= 0. Then a calculation similar to the one in the proof
of Proposition 1.1 shows that this Cauchy problem is ill-posed in the (S ,S ′)
sense.

1.2 Strong well-posedness

The previous example suggests that the notion of well-posedness in the (rather
weak) (S ,S ′) sense might not be stable under small disturbance (the instability
result would be the same with εB instead of B). For this reason, we shall merely
consider the well-posedness when Y = X and X is a Banach space. We then
speak about strong well-posedness in X (or X-well-posedness). When this holds,
the map St : a �→ u(t) defines a continuous semigroup on X. It can be shown
that if X is a Banach space, there exist two constants c, ω, such that

‖St‖L(X) ≤ ceωt, (1.2.7)

Proposition 1.2 Let X be a Banach space. Then well-posedness (with Y = X)
for some B ∈ Mn(R) implies the same property for all B.

This amounts to saying that well-posedness is a property of (A1, . . . , Ad) alone.

Proof Assume strong well-posedness for a given matrix B0. The problem

∂u

∂t
+

d∑
α=1

Aα ∂u

∂xα
= B0u (1.2.8)

defines a continuous semigroup (St)t≥0. One has (1.2.7) with suitable constants
c and ω. From Duhamel’s formula, (1.1.3) with a matrix B = B0 + C instead of
B0, is equivalent to

u(t) = Sta +
∫ t

0

St−sCu(s)ds. (1.2.9)

Then we can solve (1.2.9) by a Picard iteration. Let us denote by Ru the right-
hand side of (1.2.9), and I = (0, T ) (with T > 0) a time interval where we look
for a solution. Because of (1.2.7), there exists a large enough N so that RN is
contractant on C (I;X). Therefore, there exists a unique solution of (1.1.3) in
C (I;X). Since T is arbitrary, the solution is global in time. �

1.2.1 Hyperbolicity

We first consider spaces X where the Fourier transform defines an isomorphism
onto some other Banach space Z. Typically, X will be a Sobolev space Hs(Rd)n

and Z is a weighted L2-space:

Z = L2
s(R

d)n, L2
s(R

d) := {v ∈ L2
loc(R

d) ; (1 + |ξ|2)s/2v ∈ L2(Rd)}.
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Because of this example, we shall assume that multiplication by a measurable
function g defines a continuous operator from Z to itself if and only if g is
bounded.

Looking for a solution u ∈ C (I;X) of (1.1.3) is simply looking for a solution
v ∈ C (I;Z) of

∂v

∂t
= (B − iA(η))v, v(η, 0) = â(η). (1.2.10)

Thanks to Proposition 1.2, we may restrict ourselves to the case where B = 0n.
Then v must obey the formula

v(η, t) = e−itA(η)â(η),

where â is given in Z. In order that v(t) belong to Z for all â, it is necessary
and sufficient that η �→ exp(−itA(η)) be bounded. Since tA(η) = A(tη), this is
equivalent to writing

sup
ξ∈Rd

‖ exp(iA(ξ))‖ < +∞. (1.2.11)

Let us emphasize that this property does not depend on the time t, once
t �= 0.

Definition 1.1 A first-order operator

L = ∂t +
∑
α

Aα∂α

is called hyperbolic if the corresponding symbol ξ �→ A(ξ) satisfies (1.2.11).
More generally, a system (1.0.1) (whatever B is) that satisfies (1.2.11) is

called a hyperbolic2 system of first-order PDEs.

After having proven that hyperbolicity is a necessary condition, we show that
it is sufficient for the Hs-well-posedness. It remains to prove the continuity of
t �→ v(t) with values in Z, when â is given in Z. For that, we write

‖v(τ)− v(t)‖2Z =
∫

Rd

∣∣∣(e−iτA(η) − e−itA(η)
)

â(η)
∣∣∣2 (1 + |η|2)sdη.

Thanks to (1.2.11), the integrand is bounded by c|â(η)|2(1 + |η|2)s, an integrable
function, independent of τ . Likewise, it tends pointwisely to zero, as τ → t.
Lebesgue’s Theorem then implies that

lim
τ→t

‖v(τ)− v(t)‖Z = 0.

Let us summarize the results that we obtained:

2Some authors write strongly hyperbolic in this definition and keep the terminology hyperbolic
for those systems that are well-posed in C∞, that is whose a priori estimates may display a loss of
derivatives.
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Theorem 1.1

� Let s be a real number. The Cauchy problem for

∂tu +
∑
α

Aα∂αu = 0 (1.2.12)

is Hs-well-posed if and only if this system is hyperbolic.
� If the operator L (defined as above) is hyperbolic, then the Cauchy problem
for (1.1.3) is Hs-well-posed for every real number s.

� In particular, the Cauchy problem is well-posed in Hs if and only if it is
well-posed in L2.

Let us point out that hyperbolicity does not involve the matrix B.
Since the well-posedness in a Hilbertian Sobolev space holds or does not,

independently of the regularity level s, we feel free to rename this property
strong well-posedness.

Backward Cauchy problem We considered up to now the forward Cauchy
problem, namely the determination of u(t) for times t larger than the initial
time. Its well-posedness within L2 was shown to be equivalent to hyperbolicity.
Reversing the time arrow amounts to making the change ∂t �→ −∂t. This has the
same effect as changing the matrices Aα into −Aα. The L2-well-posedness of the
Cauchy problem is thus equivalent to the hyperbolicity of the new system

∂su−
∑
α

Aα∂αu = −Bu.

This writes as

sup
ξ∈Rd

‖ exp(−iA(ξ))‖ < +∞,

which is the same as (1.2.11), via the change of dummy variable ξ �→ −ξ.
Finally, the strong well-posedness of backward and forward Cauchy problems
are equivalent to each other. For a hyperbolic system and a data a ∈ Hs(Rd)n,
there exists a unique solution of (1.1.3) u ∈ C (R;Hs(Rd)n) such that u(0) = a.
Let us emphasize that here, t ranges on the whole line, not only on R+.

1.2.2 Distributional solutions

When (1.1.3) is hyperbolic, one can also solve the Cauchy problem for data in the
set S ′ of tempered distribution. For that, we again use the Fourier transform
since it is an automorphism of S ′. We again define û by the formula (1.1.5).
We only have to show that this definition makes sense in S ′ for every t, and
that u is continuous from Rt to S ′. For that, we have to show that X(t) :=
exp(t(B − iA(η))) is a C∞ function of η, with slow growth at infinity, locally
uniformly in time. We shall show that its derivatives are actually bounded with
respect to η. The regularity is trivial, and we already know that X(t) is bounded
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in η, locally in time. Denoting by Xα the derivative with respect to ηα, we
have

dXα

dt
= (B − iA(η))Xα − iAαX,

and therefore

d(X−1Xα)
dt

= −iX−1AαX.

Using Duhamel’s formula, as in the proof of Proposition 1.2, we see that

‖X(t)‖ ≤ c(1 + ‖B‖ |t|),

from which we deduce

‖X−1Xα‖ ≤
(1 + ‖B‖ |t|)3 − 1

3‖B‖ c2‖Aα‖.

Finally, we obtain

‖Xα‖ ≤
(1 + ‖B‖ |t|)4

3‖B‖ c3‖Aα‖.

We leave the reader to estimate the higher derivatives and complete the proof of
the following statement. The case of data in the Schwartz class is done in exactly
the same way, since the Fourier transform is an automorphism of S and that S
is stable under multplication by C∞ functions with slow growth.

Proposition 1.3 If L is hyperbolic, then the Cauchy problem for (1.1.3) is
well-posed in both S and S ′.

1.2.3 The Kreiss’ matrix Theorem

Of course, since L2-well-posedness implies (S ,S ′)-well-posedness, hyperbolicity
implies that the spectrum of A(ξ) is real for all ξ in Rd. It implies even more,
that all A(ξ) are diagonalizable. Though these two facts have a rather simple
proof here, they do not characterize completely hyperbolic systems. We shall
therefore describe the characterization obtained by Kreiss [102, 104]. This is an
application of a deeper result that deals with strong well-posedness of general
constant-coefficient evolution problems. However, since we focus only on first-
order systems, we content ourselves with a statement with a simpler proof, due
to Strang [199].

Theorem 1.2 Let ξ �→ A(ξ) be a linear map from Rd to Mn(C). Then the
following properties are equivalent to each other:

i) Every A(ξ) is diagonalizable with pure imaginary eigenvalues, uniformly
with respect to ξ:

A(ξ) = P (ξ)−1diag(iρ1, . . . , iρn)P (ξ), (ρ1(ξ), . . . , ρn(ξ) ∈ R),
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with

‖P (ξ)−1‖ · ‖P (ξ)‖ ≤ C ′, ∀ξ ∈ Rd. (1.2.13)

ii) There exists a constant C > 0, such that∥∥∥etA(ξ)
∥∥∥ ≤ C, ∀ξ ∈ Rd, ∀t ≥ 0. (1.2.14)

iii) There exists a constant C > 0, such that∥∥(zIn −A(ξ))−1
∥∥ ≤ C

Re z
, ∀ξ ∈ Rd, ∀Re z > 0. (1.2.15)

Note that, replacing (z, ξ) by (−z,−ξ), we also obtain (1.2.15) with Re z �= 0.
Applying Theorem 1.2, we readily obtain the following.

Theorem 1.3 The Cauchy problem for a first-order system

∂tu +
∑
α

Aα∂αu = 0, x ∈ Rd

is Hs-well-posed if and only if the following two properties hold.

� The matrices A(ξ) are diagonalizable with real eigenvalues,

A(ξ) = P (ξ)−1diag(ρ1(ξ), . . . , ρn(ξ))P (ξ), (ρ1, . . . , ρn ∈ R).

� Their diagonalization is well-conditioned (one may also say that the matri-
ces A(ξ) are uniformly diagonalizable) : supξ∈Sd−1 ‖P (ξ)−1‖ · ‖P (ξ)‖ <
+∞.

Proof The fact that i) implies ii) is proved easily. Actually,

‖etA(ξ)‖ = ‖P−1etDP‖ ≤ C ′‖etD‖.

When D is diagonal with pure imaginary entries, exp(tD) is unitary, and the
right-hand side equals C ′.

The fact that ii) implies iii) is easy too. The following equality holds provided
the integral involved in it converges in norm

(A− zIn)
∫ ∞

0

e−ztetAdt = −In. (1.2.16)

Because of (1.2.14), the integral converges for every z ∈ C with positive real part.
This gives a bound for the inverse of zIn −A, of the form

‖(zIn −A)−1‖ ≤ C

Re z
, Re z > 0.

It remains to prove that iii) implies i). Thus, let us assume (1.2.15). Replacing
(z, ξ) by (−z,−ξ), we see that the bound holds for Re z �= 0, with |Re z| in the
denominator. Thus the spectrum of A(ξ) is purely imaginary.
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Actually, A(ξ) is diagonalizable, for if there were a non-trivial Jordan part,
then (zIn −A(ξ))−1 would have a pole of order two or more, contradicting
(1.2.15). Therefore, A(ξ) admits a spectral decomposition

A(ξ) = i
∑

j

ρjEj ,

where ρj is real and Ej = Ej(ξ) is a projector (E2
j = Ej), with

EjEk = 0n, (k �= j),
∑

j

Ej = In.

Let us define

H = H(ξ) :=
∑

j

EjE
∗
j ,

which is a positive-definite Hermitian matrix. Since A(ξ)∗ = −∑j ρjE
∗
j , it holds

that

H(ξ)A(ξ) = −A(ξ)∗H(ξ),

from which it follows that H(ξ)1/2A(ξ)H(ξ)−1/2 is skew-Hermitian. As such,
it is diagonalizable through a unitary transformation. Therefore A(ξ) =
P (ξ)−1D(ξ)P (ξ), where D(ξ) is diagonal with pure imaginary eigenvalues, and
P (ξ) = U(ξ)H1/2, where U(ξ) is a unitary matrix.

We finish by proving that P (ξ) is uniformly conditioned. Since ‖P±1‖ =
‖H±1/2‖ = ‖H‖±1/2, this amounts to proving that ‖H‖ · ‖H−1‖ is uniformly
bounded. On the one hand, it holds that

|v|2 =

∣∣∣∣∣∣
∑

j

Ejv

∣∣∣∣∣∣
2

≤ n
∑

j

|Ejv|2 = n|H1/2v|2,

so that ‖H−1/2‖ ≤ √
n. On the other hand, applying (1.2.15) to ε + iρk, we have

‖
∑

j

(ε + iρk − iρj)−1Ej‖ ≤
C

|ε| .

Letting ε → 0, we deduce that ‖Ej‖ ≤ C, independently of ξ. It follows that
‖H‖ ≤ nC2. �
Remarks

i) A more explicit characterization of hyperbolic symbols has been estab-
lished by Mencherini and Spagnolo when n = 2 or n = 3; see [129].

ii) The following example (n = 3 and d = 2), known as Petrowski’s example,
shows that the well-conditioning can fail for systems in which all matrices
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A(ξ) are diagonalizable with real eigenvalues. Let us take

A1 =

 0 1 1
0 0 0
1 0 0

 , A2 =

 0 0 0
0 0 0
0 0 1

 .

One checks easily that the eigenvalues of A(ξ) are real and distinct for
ξ1 �= 0, while A2 is already diagonal. Hence, A(ξ) is always diagonalizable
over R. However, as ξ1 tends to zero, one eigenvalue is identically zero,
associated to the eigenvector (ξ2, ξ1,−ξ1)T , while another one is small,
λ ∼ −ξ2

1ξ−1
2 , associated to (ξ2, 0, λξ2ξ

−1
1 )T . Both eigenvectors have the

same limit (ξ2, 0, 0)T , which shows that P (ξ) is unbounded as ξ1 tends
to zero. See a similar example in [108]. Oshime [155] has shown that
Petrowsky’s example is somehow canonical when d = 3. On the other hand,
Strang [199] showed that when n = 2, the diagonalizability of every A(ξ) is
equivalent to hyperbolicity, and that such operators are actually Friedrichs
symmetrizable in the sense of the next section.

iii) Uniform diagonalizability of A(ξ) within real matrices has been shown by
Kasahara and Yamaguti [93, 221] to be necessary and sufficient in order
that the Cauchy problem for

∂tu +
∑
α

Aα∂αu = Bu

be C∞-well-posed for every matrix B ∈ Mn(R). Of course, the sufficiency
follows from Theorem 1.3 and Proposition 1.2. The necessity statement is
even stronger than the one suggested by the example given in Section 1.1,
since the diagonalizability within R is not sufficient. For instance, if A(ξ)
is given as in the Petrowski example, there are matrices B for which the
Cauchy problem is ill-posed in the Hadamard sense.

1.2.4 Two important classes of hyperbolic systems

We now distinguish two important classes of hyperbolic systems.

Definition 1.2 An operator

L = ∂t +
∑
α

Aα∂α

is said to be symmetric in Friedrichs’ sense [63], or simply Friedrichs symmetric,
if all matrices Aα are symmetric; one may also say symmetric hyperbolic. More
generally, it is Friedrichs symmetrizable if there exists a symmetric positive-
definite matrix S0 such that every S0A

α is symmetric.
An operator M as above is said to be constantly3 hyperbolic if the matrices

A(ξ) are diagonalizable with real eigenvalues and, moreover, as ξ ranges along
3We employ this shortcut in lieu of hyperbolic with characteristic fields of constant multiplic-

ities.
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Sd−1, the multiplicities of eigenvalues remain constant. In the special case where
all eigenvalues are real and simple for every ξ ∈ Sd−1, we say that the operator
is strictly hyperbolic.

Let us point out that in a constantly hyperbolic operator, the eigenvalues may
have non-equal multiplicities, but the set of multiplicities remains constant as
ξ varies. This implies in particular that the eigenspaces depend analytically on
ξ for ξ �= 0. This fact easily follows from the construction of eigenprojectors as
Cauchy integrals (see the section ‘Notations’.) To a large extent, the theory of
constantly hyperbolic systems does not differ from the one of strictly hyperbolic
systems. But the analysis is technically simpler in the latter case. This is why
the theory of strictly hyperbolic operators was developed much further in the
first few decades.

Theorem 1.4 If an operator is Friedrichs symmetrizable, or if it is constantly
hyperbolic, then it is hyperbolic.

Proof Let the operator be Friedrichs symmetrizable by S0. Then S−1
0 is

positive-definite and admits a (unique) square root R symmetric positive-definite
(see [187], page 78). Let us denote S0A

α by Sα, and S(ξ) =
∑

α ξαSα as usual.
Then

A(ξ) = S−1
0 S(ξ) = R(RS(ξ)R)R−1.

The matrix RS(ξ)R is real symmetric and thus may be written as
Q(ξ)T D(ξ)Q(ξ), where Q is orthogonal. Then A(ξ) is conjugated to D(ξ), A(ξ) =
P (ξ)−1D(ξ)P (ξ), with P (ξ) = Q(ξ)R−1 and P (ξ)−1 = RQ(ξ)T . Since our matrix
norm is invariant under left or right multiplication by unitary matrices, we have

‖P (ξ)‖ ‖P (ξ)−1‖ = ‖R‖ ‖R−1‖ =
√

ρ(S0)ρ(S−1
0 ),

a number independent of ξ. The diagonalization is thus well-conditioned.
Let us instead assume that the system is constantly hyperbolic. The

eigenspaces are continuous functions of ξ in Sd−1. Choosing continuously a
basis of each eigenspace, we find locally an eigenbasis of A(ξ), which depends
continuously on ξ. This amounts to saying that, along every contractible subset
of Sd−1, the matrices A(ξ) may be diagonalized by a matrix P (ξ), which depends
continuously on ξ. If the set is, moreover, compact (for instance, a half-sphere), we
obtain that A(ξ) is diagonalizable with a uniformly bounded condition number.
We now cover the sphere by two half-spheres and obtain a diagonalization of A(ξ)
that is well-conditioned on Sd−1 (though possibly not continuously diagonalizable
on the sphere). �

In the following example, though a symmetric as well as a strictly hyperbolic
one, the diagonalization of the matrices A(ξ) cannot be done continuously for all



Strong well-posedness 15

ξ ∈ S1 :

∂tu +
(

1 0
0 −1

)
∂1u +

(
0 1
1 0

)
∂2u = 0. (1.2.17)

Here, Sp(A(ξ)) = {−|ξ|, |ξ|}. Each eigenvector, when followed continuously as ξ
varies along S1, rotates with a speed half of the speed of ξ. For ξ = (cos θ, sin θ)T

and θ ∈ [0, 2π), the eigenvectors are(
cos θ

2

sin θ
2

)
,

(
− sin θ

2

cos θ
2

)
.

The eigenbasis is reversed after one loop around the origin. This shows that the
matrix P (ξ) cannot be chosen continuously. In other words, the eigenbundle is
non-trivial.

1.2.5 The adjoint operator

Let L be a hyperbolic operator as above. We define as usual the adjoint operator
L∗ by the identity ∫ +∞

−∞

∫
Rd

(v · (Lu)− u · (L∗v))dxdt = 0, (1.2.18)

for every u, v ∈ D(Rd+1)n. Notice that the scalar product under consideration is
the one in the L2-space in (x, t)-variables.

With L = ∂t +
∑

α Aα∂α, an integration by parts gives immediately the
formula

L∗ = −∂t −
α∑

(Aα)T ∂α.

The matrix A(ξ)T , being similar to A(ξ), is diagonalizable. Since A(ξ)T is diag-
onalized by P (ξ)−T (with the notations of Theorem 1.3), and since the matrix
norm is invariant under transposition, we see that −L∗ is hyperbolic too. If L is
strictly, or constantly, hyperbolic, so is L∗. If L is Friedrichs symmetrizable, with
S0 ∈ SDPn and Sα := S0Aα ∈ Symn, then (S0)−1 symmetrizes −L∗ since it is
positive-definite and (S0)−1 (Aα)T = (S0)−1Sα(S0)−1 is symmetric. Therefore,
L∗ is Friedrichs symmetrizable.

The adjoint operator will be used in the existence theory of the Cauchy prob-
lem (the duality method) or in the uniqueness theory (Holmgren’s argument),
the latter being useful even in the quasilinear case. Both aspects are displayed
in Chapter 2.

1.2.6 Classical solutions

Let the system (1.1.3) be hyperbolic. According to Theorem 1.1, the Cauchy
problem is well-posed in Hs. Using the system itself, we find that, whenever
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a ∈ Hs(Rd)n,

u ∈ C (R;Hs(Rd)n) ∩ C 1(R;Hs−1(Rd)n).

Let us assume that s > 1 + d/2. By Sobolev embedding, Hs ⊂ C 1 and Hs−1 ⊂
C hold. We conclude that all distributional first-order derivatives are actually
continuous functions of space and time. Therefore, u belongs to C 1(Rd × R)n

and is a classical solution of (1.1.3).
More generally, a ∈ Hs(Rd)n with s > k + d/2 implies that u is of class C k.
Let us consider the non-homogeneous Cauchy problem, with a ∈ Hs(Rd)n

and f ∈ L1(R;Hs(Rd)n) ∩ C (R;Hs−1(Rd)n) for s > 1 + d/2. Then Duhamel’s
formula immediately gives u ∈ C (R;Hs(Rd)n), and the equation gives ∂tu ∈
C (R;Hs−1(Rd)n). We again conclude that u is C 1 and is a classical solution
of (1.0.1).

Since Hs(Rd)n is dense in normal functional spaces, as L2 or S ′, we see that
classical solutions are dense in weaker solutions, like those in C (R;L2(Rd)n). We
shall make use of this observation each time when some identity trivially holds
for classical solutions.

The scalar case When n = 1, the unknown u(x, t) is scalar-valued and all
matrices are real numbers, denoted by a1, . . . , an, b. The supremum in (1.2.11)
is equal to one, so that the equation is hyperbolic. It turns out that the Cauchy
problem may be solved explicitly, thanks to the method of characteristics. Let
�v denote the vector with components aα. Then a classical solution of (1.1.3)
satisfies, for all y ∈ Rd,

d
dt

u(y + t�v, t) = bu(y + t�v, t),

which gives

u(y + t�v, t) = etba(y),

or

u(x, t) = etba(x− t�v). (1.2.19)

This formula gives the distributional solution for a ∈ S ′ as well. The solution of
the Cauchy problem for the non-homogeneous equation (1.0.1) is given by

u(x, t) = etba(x− t�v) +
∫ t

0

e(t−s)bf(x− (t− s)�v, s) ds.

1.2.7 Well-posedness in Lebesgue spaces

The theory of the Cauchy problem is intimately related to Fourier analysis, which
does not adapt correctly to Lebesgue spaces Lp other than L2. The procedure
followed above requires that F be an isomorphism from some space X to another
one Z. It is known that F extends continuously from Lp(Rd) to its dual Lp′(Rd)
when 1 ≤ p ≤ 2, and only in these cases. Since F−1 is conjugated to F through
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complex conjugation, it satisfies the same property. Therefore, F : Lp(Rd) →
Lp′(Rd) is not an isomorphism for p < 2, since p′ > 2. From this remark, we
cannot find a well-posedness result in Lp for p �= 2 by following the above strategy.

It has been proved actually by Brenner [22, 23] that, for hyperbolic systems,
the Cauchy problem is ill-posed in Lp for every p �= 2, except in the case where
the matrices Aα commute to each other. In this particular case, system (1.2.12)
actually decouples into a list of scalar equations, for which (1.2.19) shows the well-
posedness in every Lp. To see the decoupling, we recall that commuting matrices
that are diagonalizable may be diagonalized in a common basis B = {r1, . . . , rn}
: Aαrj = λα

j rj . Let us decompose the unknown on the eigenbasis:

u(x, t) =
n∑
1

wj(x, t)rj .

Then each wj solves a scalar equation:

∂twj +
∑
α

λα
j ∂αwj = 0.

From the well-posedness of (1.2.12) and Duhamel’s formula, we conclude that,
for commuting matrices Aα, the hyperbolic Cauchy problem for (1.1.3) is also
well-posed in every Lp. The matrices Aα do not need to commute with B.

See Section 1.5.2 for an interpretation of the ill-posedness in Lp (p �= 2), in
terms of dispersion and so-called Stricharz estimates.

1.3 Friedrichs-symmetrizable systems

A system in Friedrichs-symmetric form

S0∂tu +
∑
α

Sα∂αu = 0

may always be transformed into a symmetric system with S0 = In, using the
new unknown ũ := S

1/2
0 u. For the rest of this section, we shall only consider

symmetric systems of the form (1.1.3).
A symmetric system admits an additional conservation law4 in the form

∂t|u|2 +
∑
α

∂α(Aαu, u) = 0, (1.3.20)

where (·, ·) denotes the canonical scalar product and |u|2 := (u, u). Equation
(1.3.20) is satisfied at least for C 1 solutions of the system, when5 B = 0. It can be
viewed as an energy identity. Since classical solutions are dense in C (R;L2(Rd)n),

4By conservation law, we mean an equality of the form Divx,t
�F = 0 that derives formally from

the equation or system under consideration.
5Otherwise, the right-hand side of (1.3.20) should be 2(Bu,u). In the non-homogeneous case, we

add also 2(f, u).
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and since

u �→ ∂t|u|2 +
∑
α

∂α(Aαu, u)

is a continuous map from this class into D ′(Rd+1), we conclude that (1.3.20)
holds whenever a ∈ L2(Rd)n.

With suitable decay at infinity, (1.3.20) implies

d
dt

∫
Rd

|u(x, t)|2dx = 0,

which readily gives

‖u(t)‖L2 ≡ ‖a‖L2 . (1.3.21)

Again, this identity is true for all data a given in L2(Rd)n, since

� it is trivially true for a ∈ S , where we know that u(t) ∈ S , since such
functions decay fast at infinity,

� S is a dense subset of L2.

1.3.1 Dependence and influence cone

Actually, we can do a better job from (1.3.20). Let us first consider classical
solutions, for some matrix B. The set V of pairs (λ, ν) such that the symmetric
matrix λIn + A(ν) is non-negative is a closed convex cone. Given a point (X,T ) ∈
Rd × R, we define a set K by

K := {(x, t) ; λ(t− T ) + (x−X) · ν ≤ 0,∀(λ, ν) ∈ V}.

As an intersection of half-spaces passing through (X,T ), K is a convex cone
with basis (X,T ), and its boundary K has almost everywhere a tangent space,
which is one of the hyperplanes λ(t− T ) + (x−X) · ν = 0 for some (λ, ν) in the
boundary of V.

Given times t1 < t2 < T , we integrate the identity

∂t|u|2 +
∑
α

∂α(Aαu, u) = 2(Bu, u)

on the truncated cone K(t1, t2) := {(x, t) ∈ K ; t1 < t < t2}. Using Green’s for-
mula, we obtain∫

∂K(t1,t2)

(
n0|u|2 +

∑
α

nα(Aαu, u)

)
dS = 2

∫
K(t1,t2)

(Bu, u) dxdt, (1.3.22)

where dS stands for the area element, while �n = (n1, . . . , nd, n0) is the outward
unit normal. On the top (t = t2), �n = (0, . . . , 0, 1), holds while on the bottom, �n =
(0, . . . , 0,−1). Denoting ω(t) := {x ; (x, t) ∈ K}, the corresponding contributions
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are thus ∫
ω(t2)

|u(x, t2)|2dx−
∫

ω(t1)

|u(x, t1)|2dx.

On the lateral boundary, one has

�n =
1√

λ2 + |ν|2
(ν, λ)

for some (λ, ν) in V, which depends on (x, t). The parenthesis in (1.3.22) becomes

1√
λ2 + |ν|2

((λIn + A(ν))u, u).

Thus the corresponding integral is non-negative. Denoting by y(t) the integral
of |u(t)|2 over ω(t), it follows that

y(t2)− y(t1) ≤ 2
∫

K(t1,t2)

(Bu, u) dxdt ≤ 2‖B‖
∫ t2

t1

y(t) dt.

Then, from the Gronwall inequality, we obtain that

y(t2) ≤ e2(t2−t1)‖B‖y(t1).

In particular, for 0 < t < T , we obtain∫
ω(t)

|u(x, t)|2dx ≤ e2t‖B‖
∫

ω(0)

|a(x)|2dx. (1.3.23)

Because of the density of classical solutions in the set of L2-solutions, and
since its terms are L2-continuous, we find that (1.3.23) is valid for every L2-
solutions.

Inequality (1.3.23) contains the following fact: If a vanishes identically on
ω(0), then so does u(t) on ω(t). Equivalently, the value of u at the point (X,T )
(assuming that the solution is continuous) depends only on the restriction of the
initial data a to the set ω(0).

Definition 1.3 The set

ω(0) = {x ∈ Rd ; (x−X) · ν ≤ λT, ∀(λ, ν) ∈ V}

is the domain of dependence of the point (X,T ).

Let us illustrate this notion with the system (1.2.17), to which we add a
parameter c having the dimension of a velocity:

∂tu + c

(
1 0
0 −1

)
∂1u + c

(
0 1
1 0

)
∂2u = 0.
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Since

λI2 + A(ν) =
(

λ + cν1 cν2

cν2 λ− cν1

)
,

the cone V is given by the inequality c|ν| ≤ λ. Thus the domain of dependence
of (X,T ) is the ball centred at X of radius cT .

We now fix a point x at initial time and look at those points (X,T ) for
which x belongs to their domains of dependence. Let us define a convex cone C+

by

C+ := {y ∈ Rd ; λ + y · ν ≥ 0, ∀(λ, ν) ∈ V}.

Defining y = (X − x)/T , we have 1 + y · ν ≥ 0, that is y ∈ C+. There-
fore X = x + Ty ∈ x + TC+. We deduce that u vanishes identically outside
of Supp a + TC+, where a = u(·, 0). We have thus proved a propagation
property:

Proposition 1.4 Let the system (1.1.3) be symmetric. Given a ∈ L2(Rd)n, let
u be the solution of the Cauchy problem. Then, for t1 < t2,

Suppu(t2) ⊂ Suppu(t1) + (t2 − t1)C+. (1.3.24)

Reversing the time arrow, we likewise have

Suppu(t1) ⊂ Suppu(t2) + (t2 − t1)C−, (1.3.25)

where

C− := {y ∈ Rd ; λ + y · ν ≥ 0, ∀ν ∈ −V}.

This result naturally yields the notion:

Definition 1.4 Given a domain ω at initial time. The influence domain of ω
at time t > 0 is the set ω + tC+.

Remark From Duhamel’s formula, we extend the propagation property to the
non-homogeneous problem. For instance, the solution for data a ∈ L2 and f ∈
L1(0, T ;L2) satisfies

Suppu(t) ⊂ (Supp a + tC+) ∪
⋃

0<s<t

(Supp f(s) + (t− s)C+). (1.3.26)

1.3.2 Non-decaying data

Though the previous calculation applies only to solutions in C (R;L2), where we
already know the uniqueness of a solution, it can be used to construct solutions
for much more general data than square-integrable ones.

First, the inequality (1.3.23) implies a propagation with finite speed: if a ∈
L2(Rd)n and t > 0, the support of u(t) is contained in the sum Supp a + tC+.
We now use the following facts:
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� L2 is dense in S ′,
� for a in S ′, there exists a unique solution in C (R;S ′) (see Proposition

1.3),
� the distributions that vanish on a given open subset of Rd form a closed

subspace in S ′.

We conclude that (1.3.24) and (1.3.25) hold for a symmetric system when a is a
tempered distribution.

We use this property to define a solution when the initial data is a (not
necessarily tempered) distribution. Let a belong to D ′(Rd)n. Given a point y ∈
Rd and a positive number R, denote by C(y;R) the set y + RC−. Choose a cut-
off φ in D(Rd), such that φ ≡ 1 on C(y,R). The product φa, being a compactly
supported distribution, is a tempered one. Therefore, there exists a unique uφ,
solution of (1.1.3) in C (R;S ′), with initial data φa. For two choices φ, ψ of cut-
off functions, (φ− ψ)a vanishes on C(y;R), so that uφ(t) and uψ(t) coincide on
C(y;R− t) for 0 < t < R. This allows us to define a restriction of uφ on the cone

K(y;R) :=
⋃

0<t<R

{t} × C(y;R− t).

As shown above, this restriction, denoted by uy,R does not depend on the choice
of the cut-off. It actually depends only on the restriction of a on C(y;R). Now, if
a point (z, t) lies in the intersection of two such cones K(y1;R1) and K(y2;R2),
it belongs to a third one K(y3;R3), which is included in their intersection. The
restrictions of uy1,R1 and uy2,R2 to K(y3;R3) are equal, since they depend only
on the restriction of a on C(y3;R3). We obtain in this way a unique distribution
u ∈ C (R+;D ′), whose restriction on every cone K(y;R) coincides with uy,R. It
solves (1.1.3) in the distributional sense, and takes the value a as t = 0. Reversing
the time arrow, we solve the backward Cauchy problem as well.

This construction is relevant, for instance, when a is L2
loc rather than square-

integrable. It can be used also when a is in Lp
loc for p �= 2, even though the cor-

responding solutions are not C (R;Lp) in general, because of Brenner’s theorem.

1.3.3 Uniqueness for non-decaying data

The construction made above, though defining a unique distribution, does not
tell us about the uniqueness in C (0, T ;X) for a ∈ X, when X = D ′(Rd)n or
X = L2

loc(R
d)n for instance. This is because we got uniqueness results through

the use of Fourier transform, a tool that does not apply here. We describe below
two relevant techniques.

Let us begin with X = L2
loc. We assume that u ∈ C (0, T ;X) solves (1.1.3)

with a = 0. We use the localization method. Let K(y;R) be a cone as in the
previous section, and φ ∈ D(Rd) be such that

φ(x) = 1, ∀x ∈
⋃

0<t<R

C(y;R− t),
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the latter set being the x-projection of K(y;R). Multiplying (1.1.3) by φ, and
denoting v := φu, we obtain

∂tv +
∑
α

Aα∂αv = Bv + f,

where v ∈ C (0, T ;L2(Rd)n) and

f := (∂tφ + A(∇xφ))u ∈ C (0, T ;L2(Rd)n).

At this point, we are allowed to write the energy estimate

∂t|v|2 +
∑
α

∂α(Aαv, v) = 2Re (Bv + f, v),

which gives for every 0 ≤ t1 < t2 < R, after integration,∫
ω(t2)

|v(t2)|2dx ≤
∫

ω(t1)

|v(t1)|2dx +
∫ t2

t1

dt

∫
ω(t)

2Re ((Bv, v) + (f, v))dx,

(1.3.27)

where ω(t) := C(y;R− t). However, the equalities v = u, f = 0 hold in K(y;R).
Therefore (1.3.27) reduces to∫

ω(t2)

|u(t2)|2dx ≤
∫

ω(t1)

|u(t1)|2dx + 2
∫ t2

t1

dt

∫
ω(t)

Re (Bu, u) dx.

This, with the Gronwall inequality, gives∫
ω(t)

|u(x, t)|2dx ≤ e2t‖B‖
∫

ω(0)

|u(x, 0)|2dx = 0.

Since y and R are arbitrary, we obtain u ≡ 0 almost everywhere, which is the
uniqueness property.

We now turn to the case X = D ′(Rd)n, where the former argument does not
work. Our main ingredient is the Holmgren principle, a tool that we shall develop
more systematically in subsequent chapters. We assume that u ∈ C (0, T ;X)
solves (1.1.3) in the distributional sense. This means that, for every test function
φ ∈ D(Rd × (0, T ))n, it holds that

〈u,L∗φ〉 = 0, L∗ := −∂t −
∑
α

(Aα)T ∂α −BT .

This may be rewritten as ∫ T

0

〈u(t), L∗φ(t)〉dt = 0. (1.3.28)

Let ψ be a slightly more general test function: ψ ∈ D(Rd × (−∞, T ))n. Choosing
θ ∈ C∞(R) with θ(τ) = 0 for τ < 1 and θ(τ) = 1 for τ > 2, we define

φε(x, t) = θ(t/ε)ψ(x, t).
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We may apply (1.3.28) to φε, which gives∫ T

0

θ(t/ε)〈u(t), L∗ψ(t)〉dt =
1
ε

∫ T

0

θ′(t/ε)〈u(t), ψ(t)〉dt.

Using the continuity in time, we may pass to the limit as ε → 0+, and obtain∫ T

0

〈u(t), L∗ψ(t)〉dt = 〈u(0), ψ(0)〉.

Therefore, assuming u(0) = 0, we see that (1.3.28) is valid for ψ as well, that is
to test functions in D(Rd × (−∞, T ))n.

We now choose an arbitrary test function f ∈ D(Rd × (0, T ))n. Obviously,
L∗ is a hyperbolic operator and we can solve the backward Cauchy problem

L∗χ = f, χ(T ) = 0.

Extending f by zero for t ≤ 0, we obtain a unique solution χ ∈ C∞(−∞, T ;S ).
Applying (1.3.26) to this backward problem, we see that χ(t) has compact
support for each time, with Suppχ(t) included in a ball of the form Bρ(T−t), for a
suitable constant ρ. Also, χ vanishes identically for t close enough to T (because
f does). Truncating, we apply (1.3.28) to ψ(x, t) = θ(t + 1)χ(x, t). This gives
〈u, f〉 = 0 for all test functions, that is u = 0. Therefore the Cauchy problem
for a Friedrichs-symmetric operator has the uniqueness property in the class
C (0, T ;D ′).

1.4 Directions of hyperbolicity

The situation for general (weakly) hyperbolic operators is not as neat as that for
Friedrichs-symmetrizable ones. Non-symmetrizable operators do exist, as soon
as d = 2 and n = 3, as shown by Lax [110]. The class of constantly hyperbolic
operators provides a valuable and flexible alternative to Friedrichs-symmetrizable
ones. Their analysis will lead us to several new and useful notions.

In this section, we shall not address the problem of propagation of the support
(with finite velocity), which we solved in the symmetric case. This propagation
holds true for constantly hyperbolic systems, but a rigorous proof needs a theory
of the Cauchy problem for systems with variable coefficients. Such a theory will
be done in Chapter 2, where we shall prove an accurate result.

1.4.1 Properties of the eigenvalues

The results in this section are essentially those of Lax [110], and the arguments
follow Weinberger [217], though we give a more detailed proof of the claim below.

We begin by considering a subspace E in Mn(R), with the property that every
matrix in E has a real spectrum. Without loss of generality, we may assume that
In belongs to E. If M ∈ E, we denote by λ1(M) ≤ · · · ≤ λn(M) the spectrum
of M , counting with multiplicities. The functions λj are positively homogeneous
of order one. They are continuous, but could be non-differentiable at crossing
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points. In the constantly hyperbolic case, however, they are analytic away from
the origin.

Lemma 1.1 Let A and B be matrices in E, with λ1(B) > 0. Then the eigen-
values of B−1(λIn −A) are real.

Proof From the assumption, we know that B is non-singular. Define a poly-
nomial

P (X,Y ) := det(XIn −A− Y B),

which has degree n with respect to X as well as to Y . Define continuous functions
φj(µ) = λj(A + µB). From homogeneity and continuity, we have

φj(µ) ∼
{

µλj(B), as µ → +∞,
µλn+1−j(B) as µ → −∞.

Hence φj(µ) tends to ±∞ with µ. By the Intermediate Value Theorem, it must
take any prescribed real value λ at least once.

Thus, let λ∗ be given and µj ∈ R be a root of φj(µj) = λ∗ for each j. Given
one of these roots, µ∗, let J be the number of indices such that µj = µ∗. Then
λ∗ is a root of P (·, µ∗), of order J at least.

Claim 1.1 The multiplicity of µ∗ as a root of P (λ∗, ·) is larger than or equal
to J .

This claim readily implies the lemma. Its proof is fairly simple when the φjs are
differentiable, for instance in the constantly hyperbolic case. But in the general
case, one must use once more the assumption. To simplify the notations, we
assume without loss of generality that λ∗ = µ∗ = 0, by translating A to A +
µ∗B − λ∗In. Let N (N ≥ J) be the multiplicity of the null root of P (·, 0). The
Newton’s polygon of the polynomial P admits the vertices (N, 0) and (0,K).

Let δ be the edge of the Newton’s polygon with vertex (N, 0). We denote its
other vertex by (j, k). Retaining only those monomials of P whose degrees (a, b)
belong to δ, we obtain a polynomial XjQ with the following homogeneity:

Q(akX, aN−jY ) = ak(N−j)Q(X,Y ).

It is a basic fact in algebraic geometry (see [35], Section 2.8) that, in the vicinity
of the origin, the algebraic curve P (x, y) = 0 is described by simpler curves corre-
sponding to the edges of the Newton polygon, up to analytic diffeomorphisms. In
the present case, these diffeomorphisms have real coefficients (i.e. they preserve
real vectors) since P has real coefficients. The ‘simple’ curve γ associated to
δ is just that with equation Q(x, y) = 0. Hence, points (x, y) in γ with a real
co-ordinate y must be real (because this is so in the curve P = 0.)

Let ω be a root of unity, of order 2(N − j), that is ωN−j = −1. Because of
the homogeneity, the map (x, y) �→ (ωkx,−y) preserves γ. If y is real, the map
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thus moves a real point into another one. Hence, ωk is real, thus ω2k = 1. This
implies that k is a multiple of N − j. In particular, k ≥ N − j.

Since (j, k) is a vertex of the Newton polygon, lying between the vertices
(N, 0) and (0,K), we have

j

N
+

k

K
≤ 1.

Together with k ≥ N − j, this implies K ≥ N and the claim. �
Suppose that in the proof of Lemma 1.1, one of the functions, say φl, is not

strictly monotone. For a suitable real number λ, the equation φl(µ) = λ will
have at least three roots, and P (λ, ·) = 0 will have n + 2 roots at least, which
is absurd. Therefore, the assumption λ1(B) > 0 implies that µ �→ λj(A + µB) is
monotone increasing. For a general B in E we may apply that to B′ := B − cIn

with c < λ1(B). Letting c → λ1(B), we obtain that

µ → λj(A + µB)− µλ1(B)

is non-decreasing. In particular,

λj(A + B) ≥ λj(A) + λ1(B), ∀A,B ∈ E. (1.4.29)

Reversing (A,B) into (−A,−B), we also have

λj(A + B) ≤ λj(A) + λn(B), ∀A,B ∈ E. (1.4.30)

In particular, with j = 1 in (1.4.29) and j = n in (1.4.30), we obtain:

Proposition 1.5 Let E be a vector space of real n× n matrices, whose every
element has a real spectrum.

The smallest eigenvalue is a concave function, while the largest is a convex
one: For every A and B in E,

λ1(A + B) ≥ λ1(A) + λ1(B),

λn(A + B) ≤ λn(A) + λn(B).

This applies to the space E := {A(ξ) ; ξ ∈ Rd} when the operator L = ∂t +∑
α Aα∂α is hyperbolic.

Remark When E = Symn(R), a space that obviously satisfies the assumption,
(1.4.29) and (1.4.30) belong to the set of Weyl’s inequalities. Given the spectra
of A and B, but not A and B themselves, Horn’s conjecture, proved recently
by Klyachko [98] and Knutson and Tao [99], characterizes the set of possible
spectra of A + B as a convex polytope, defined through rather involved linear
inequalities. It would be interesting to know† which of these inequalities remain

†This question has been solved recently, thanks to the efforts of J. Helton, V. Vinnikov and
L. Gurvits. It turns out that every linear inequality that is valid for real symmetric matrices is
valid for matrices in E. These inequalities actually apply to the roots of an arbitrary hyperbolic
homogeneous polynomial.
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true for a general subspace E treated in this section. The simplest ones in Horn’s
conjecture are Weyl’s inequalities

λk(A + B) ≤ λi(A) + λj(B), (k + n ≤ i + j),

and

λk(A + B) ≥ λi(A) + λj(B), (k + 1 ≥ i + j).

Next comes the Theorem of Lidskii, which tells us that, as a vector in Rn, the
spectrum of A + B belongs to the convex hull of (P σ)σ∈Sn

where Pσ has co-
ordinates λi(A) + λσ(i)(B) and σ runs over all permutations. See Exercises 11 of
Chapter 3 and 19 of Chapter 5 in [187].

Lemma 1.1 can be improved in the following way. Given λ∗ ∈ R, let σ1, . . . , σs

be the distinct eigenvalues of M = B−1(λIn −A). Let S� be the set of indices
j such that µj(λ∗) = σ� and J� its cardinality. Since each function φj is strictly
monotone, we have λ∗ − φj(σ�) �= 0 for every j not in S�. Therefore, J� is precisely
the multiplicity of the root λ∗ of P (·, σ�). From the claim, we know that J� is
less than or equal to the multiplicity m� of σ� as a root of P (λ∗, ·). Hence

n = J1 + · · ·+ Js ≤ m1 + · · ·+ ms = n,

and we conclude that m� = J� for each �.

Lemma 1.2 With the assumptions of Lemma 1.1, let a real pair satisfy
P (λ, µ) = 0, where P (X,Y ) := det(XIn −A− Y B). Then the multiplicities of
λ as a root of P (·, µ), and of µ as a root of P (λ, ·), coincide.

Finally, we remark that A �→ max{−λ1(A), λn(A)} is a semi-norm over such
a space E as above.

1.4.2 The characteristic and forward cones

From now on, E is the set of matrices τIn + A(ξ) for (τ, ξ) ∈ R1+d, where L =
∂t +

∑
α Aα∂α is a hyperbolic operator.

Definition 1.5 The characteristic cone of the hyperbolic operator L = ∂t +∑
α Aα∂α is the set

charL := {(ξ, λ) ∈ Rd × R ; det(A(ξ) + λIn) = 0}.
Its elements are the characteristic frequencies. The connected component of (0, 1)
in (Rd × R) \ charL is denoted by Γ; it is called the forward cone.

Obviously, Γ is a kind of epigraph of λn:

Γ = {(ξ, λ) ; λ > λn(−ξ)}.
According to Proposition 1.5, it is a convex cone in Rd+1, a result originally due
to G̊arding [65, 66]. The terminology forward cone will be explained in the next
section.
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When L is constantly hyperbolic, the eigenvalues λj are analytic away from
the origin. The function λn has therefore a non-negative Hessian D2λn. Because
of homogeneity, this Hessian is indefinite,

D2λn(ξ)ξ = 0.

Therefore Γ is not strictly convex in the usual sense, and we shall say that λn is
transversally strictly convex if the equality

θλn(ξ) + (1− θ)λn(ξ′) = λn(θξ + (1− θ)ξ′), θ ∈ (0, 1)

implies ξ′ ∈ R+ξ. We now prove that such a strict convexity holds for most
systems.

Proposition 1.6 Let the operator

L = ∂t +
∑
α

Aα∂α

be hyperbolic. Then the forward cone Γ is convex.
If L is constantly hyperbolic, then either the function λn is transversally

strictly convex (and therefore λ1 is transversally strictly concave), or the system
is a vector-valued transport equation

∂tu + (�V ·)∇xu = 0.

.
Proof If λn is not transversally strictly convex, there exists a segment [ξ1, ξ2]
on which λn is affine, and ξ1, ξ2 are not parallel. By homogeneity, λn is affine on
the triangle with vertices 0, ξ1, ξ2. Since λn(0) = 0, ‘affine’ actually means ‘linear’.
Let P be the plane spanned by ξ1, ξ2. Since λn is analytical away from the origin,
and since P \ {0} is a connected set, the restriction of λn to P is linear. It follows
that λn(ξ1) = −λn(−ξ1). In other words, λn(ξ1) = λ1(ξ1). This means that A(ξ1)
has only one eigenvalue. Finally, the system being constantly hyperbolic, there
must be only one eigenvalue for every ξ. Since A(ξ) is diagonalizable, this gives
A(ξ) = λn(ξ)In. Therefore, λn(ξ) = Tr A(ξ)/n, which shows that λn is linear on
the whole Rd, thus there exists a vector �V such that λn(ξ) = �V · ξ. This ends the
proof. �

1.4.3 Change of variables

The role of the cone Γ becomes clear when we consider changes of the space–time
reference frame. Let us perform a linear change of independent variables

(x, t) �→ (y, s), y = Rx + tV, s = λ0t + ξ0 · x,

with R ∈ Md(R) and V, ξ0 ∈ Rd, chosen so that the whole matrix

R :=
(

R V
ξT
0 λ0

)
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is invertible. The system (1.1.3) is changed into

∂u

∂s
+
∑
α

Ãα ∂u

∂yα
= B̃u,

where

Ãα := (λ0In + A(ξ0))−1

∑
β

RαβAβ + VαIn

, (1.4.31)

provided that (ξ0, λ0) is not characteristic. We consider the variable s as a new
time variable and look at the Cauchy problem. Let us point out that it is not
equivalent to the former Cauchy problem, since the data is now given on the
hyperplane {s = 0}, instead of {t = 0}. Its strong well-posedness is equivalent to
the hyperbolicity of the operator

∂

∂s
+
∑
α

Ãα ∂

∂yα
.

A change of variables that preserves t (that is with ξ0 = 0, λ0 = 1) is harmless,
giving Ã(η) = A(ξ) + (ξ ·R−1V )In with ξ = RT η, so that hyperbolicity is pre-
served. Therefore, hyperbolicity is really a property of the pair (ξ0, λ0), which
determines the direction of the hyperplane {s = 0} where the Cauchy data is
given. This leads us to the following.

Definition 1.6 We say that the operator

L = ∂t +
∑
α

Aα∂α

is hyperbolic in the direction (ξ0, λ0), if (ξ0, λ0) is not characteristic, and if,
moreover, the operator

L̃ :=
∂

∂s
+
∑
α

Ãα ∂

∂yα
(1.4.32)

is hyperbolic, with Ãα being defined in (1.4.31).

Remarks

� In particular, ∂t +
∑

α Aα∂α is hyperbolic in the direction (0, 1) if and only
if it is hyperbolic in the sense that we considered so far.

� The hyperbolicity in directions (ξ0, λ0) and (−ξ0,−λ0) are equivalent.
Therefore, we may always restrict ourselves to λ0 ≥ 0.

� When ∂t +
∑

α Aα∂α is symmetric, and when λ0In + A(ξ0) is positive-
definite, the new operator ∂s +

∑
α Ãα∂α is Friedrichs symmetrizable, with

λ0In + A(ξ0) as a symmetrizer. This statement is to be compared with
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Theorem 1.5 below, with the remark that the positive-definiteness means
that λ0In + A(ξ0) belongs to Γ in this case.

� If (ξ0, λ0) ∈ charL, the matrices Ãα are not well-defined; the variable s
cannot be taken as a time variable. In this case, we say that the hyperplane
{s = 0} is characteristic. We shall come back to this important notion later.

Hyperbolicity in the direction (ξ0, λ0) means that the matrices

Ã(η) := (λ0In + A(ξ0))−1
(
A(RT η) + (V · η)In

)
have a real spectrum for every η ∈ Rd, and are uniformly diagonalizable. Lemma
1.1 tells us that this spectrum is real for every η ∈ Rd, as soon as λ1(λ0In +
A(ξ0)) > 0, which means λ0 + λ1(A(ξ0)) > 0. On the other hand, one has, with
the notations of Lemma 1.1,

ker(B−1(λIn −A)− µIn) = ker(λIn −A− µB).

Since now every element of E is diagonalizable, the dimension of the right-hand
side equals the multiplicity of λ as a root of P (·, µ). From Lemma 1.2, we deduce
that the dimension of the left-hand side equals the multiplicity of µ as a root of
P (λ, ·). Hence the algebraic and geometric multiplicities coincide: B−1(λ−A) is
diagonalizable. Applying this result to the above context, we conclude that Ã(η)
is diagonalizable with a real spectrum, for every η ∈ Rd. We leave the reader to
verify that the diagonalization can be performed uniformly, using the assumption
that it is true in E.

In two instances, the verification of this fact is rather easy. For, if L is
symmetric and (λ0, ξ0) ∈ Γ, then λ0In + A(ξ0) is positive-definite and plays
the role of a symmetrizer for L̃. On the other hand, assume that L is strictly
hyperbolic (or more generally constantly hyperbolic). Looking back at the proof
of Lemma 1.1, the functions φj and φk cannot coincide somewhere if j �= k.
Hence B−1(λIn −A) has distinct eigenvalues. It follows that L̃ is strictly (or
constantly) hyperbolic too.

Therefore, we have the following result.

Theorem 1.5 A hyperbolic operator L is hyperbolic in every direction of its
forward cone. If L is either Friedrichs symmetrizable, or strictly, or constantly
hyperbolic, then L has the same property in every direction of its forward cone.

Comments It is known that when E is a subspace of Mn(R), consisting
only on diagonalizable matrices with real eigenvalues, these eigenvalues may be
labelled, at least locally, with the property that one-sided directional derivatives

lim
h→0+

λ(T + hT1)− λ(T )
h

=: δλT (T1)
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exist. However, δλT (T1) may be neither linear with respect to T1, nor continuous
in T . Although it is positively homogeneous in T1, it may not satisfy

δλT (−T1) = −δλT (T1). (1.4.33)

We illustrate these facts with a two-dimensional space, spanned by the matrices

A1 :=
(

1 0
0 −1

)
, A2 :=

(
0 1
1 0

)
.

The matrix ξ1A
1 + ξ2A

2 has eigenvalues ±|ξ|. We choose λ1 = −|ξ|, λ2 = |ξ|.
These functions are not differentiable at the origin but have the one-sided direc-
tional derivatives mentioned above. There is no way to relabel the eigenvalues in
order to satisfy (1.4.33). A more involved example is the set of symmetric n× n
matrices.

A rather complete analysis of these facts may be found in Chapter 2 of Kato’s
book [95]. It also contains (Theorem 5.4 of [95]) the following amazing fact, which
shows that the two-dimensional example above is optimal. When restricting to
a curve s �→ T (s) in E, where the parametrization is differentiable (respectively,
analytic), one may label the eigenvalues in such a way that they are differentiable
(respectively, analytic) with respect to s. In other words, one may satisfy (1.4.33)
when there is only one scalar parameter, though it will be at the price of a loss
of ordering.

1.4.4 Homogeneous hyperbolic polynomials

The theory of scalar equations of higher order involves the notion of hyperbolic
polynomials. Let p be a homogeneous polynomial of degree n in d + 1 variables
ξ0, . . . , ξd. We consider the equation

p

(
∂

∂x0
, . . . ,

∂

∂xd

)
u = f.

According to G̊arding [65], we say that p is hyperbolic in the direction of some
real vector a ∈ Rd+1 if for every vector ξ ∈ Rd+1, the equation

p(τa + ξ) = 0

has n real roots, counting multiplicities. This implies p(a) �= 0 and we may
normalize p by p(a) = 1. Notice that the traditional case where x0 = t and p
is hyperbolic in the direction of time corresponds to a = (1, 0, . . . , 0). A typical
example is p(ξ) = ξ2

0 − ξ2
1 − · · · − ξ2

d, which is associated to the wave operator
∂2

t −∆2
x, and is hyperbolic in the ‘direction of time’ a = (1, 0 . . . , 0).

The definition of hyperbolicity given above is equivalent to the C∞ well-
posedness of the Cauchy problem for the equation

p(∂0, . . . , ∂d)u = f.
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However, it does not imply L2- or Hs-well-posedness (in a sense adapted to
the order of the operator); it is merely the analogue of the weak hyperbolicty
described in Section 1.1. We refer to [65] for the case where p is not homogeneous.
G̊arding’s definition of hyperbolicity is the more general one, and extends, for
instance, that of Petrowsky [158].

We shall not discuss here the Cauchy problem for general hyperbolic opera-
tors. This has given rise to an enormous literature. However, we do not resist to
mention the remarkable convexity results obtained by G̊arding in [66]. The first
property is that the polynomial q, homogeneous of degree n− 1, defined by

q(ξ) :=
d∑

α=0

aα
∂p

∂ξα

is hyperbolic in the direction of a too. This is the interlacing property of real
zeroes of a univariate polynomial and its derivative. Let us give an immediate
application. It is clear that a linear form is hyperbolic in every non-characteristic
direction, and also that the product of polynomials that are hyperbolic in some
direction a (the same for every one), is hyperbolic also in this direction. For
instance, σd+1(ξ) :=

∏
α ξα is hyperbolic in the direction of (1, . . . , 1). Applying

repeatedly the derivation in direction a, we deduce that every elementary sym-
metric polynomial σk(ξ) is hyperbolic in the direction (1, . . . , 1). This is trivial if
k = 1 (pure transport), and this is well known if k = 2, because σ2 is a quadratic
form of index (1, d), positive on (1, . . . , 1).

The forward cone Cp(a) is the connected component of a in the set defined by
p(ξ) > 0. As in the case of first-order systems, C(a) is convex, and p is hyperbolic
in the direction of b for every b in Cp(a). If q is the a-derivative as above, then
Cp(a) ⊂ Cq(a), with obvious notation.

The nicest result is perhaps the following. Let P be the polarized form of p,
meaning that

(ξ1, . . . , ξn) �→ P (ξ1, . . . , ξn)

is a symmetric multilinear form, such that P (ξ, . . . , ξ) = p(ξ) for every ξ ∈ R1+d

(this is the generalization of the well-known polarization of a quadratic form).
Then we have(

ξ1 ∈ Cp(a), . . . , ξn ∈ Cp(a)
)

=⇒
(
p(ξ1) · · · p(ξn) ≤ P (ξ1, . . . , ξn)n

)
. (1.4.34)

We point out that when n = 2, that is when p is a quadratic form of index
(1, d), this looks like the Cauchy–Schwarz inequality, except that (1.4.34) is in
the opposite sense. An equivalent statement is that

ξ �→ p(ξ)1/n

is a concave function over Cp(a).
G̊arding’s results have had many consequences in various fields, including

differential geometry, elliptic (!) PDEs (see, for instance, the article by Caffarelli
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et al. [29]) and interior point methods in optimization. A rather surprising
byproduct is the concavity of the function6

H �→ (det H)1/n, H ∈ HPDn.

This property is reminiscent of the Alexandrov–Fenchel inequality

vol(K1)vol(K2) ≤ V (K1,K2)2

for convex bodies, where V denotes the mixed volume. The van der Waerden
inequality for the permanent of a doubly stochastic matrix can be rewrit-
ten in terms of an inequality for hyperbolic polynomials, applied to σn in n
indeterminates.

1.5 Miscellaneous

1.5.1 Hyperbolicity of subsystems

Let L = ∂t +
∑

α Aα∂α be a hyperbolic n× n operator. Given a linear sub-
space G of Rn of dimension m, with a projector π onto G, one may form
a subsystem in m unknowns v(x, t) ∈ G and m equations, governed by the
operator L′ = ∂t +

∑
α πAα∂α. There is no reason, in general, why L′ would

be hyperbolic. The following result shows that a clever choice of π ensures this
hyperbolicity.

Theorem 1.6 Let L = ∂t +
∑

α Aα∂α be a hyperbolic n× n operator and ξ0

belong to Sd−1. Given an eigenvalue λ0 of the spectrum of A(ξ0), denote by π
the eigenprojection onto the eigenspace F (λ0) := ker(A(ξ0)− λ0In).

Then the operator

L′ := ∂t +
d∑

α=1

πAα∂α,

acting on functions valued in F (λ0) (thus it is an m×m operator, m being the
multiplicity of λ0), is hyperbolic.

This result is of low interest when L is symmetric hyperbolic (or more
generally smmetrizable), for then π is an orthogonal projection, so that πA(ξ) :
F (λ0) → F (λ0) is symmetric, thus L′ is symmetric hyperbolic too.

Proof Using a linear change of unknowns, which amounts to conjugating the
matrices Aα, we may assume that A(ξ0) is diagonal:

A(ξ0) =
(

λ0Im 0
0 D0

)
,

6This result is strictly better than the well-known concavity of H �→ log det H for positive-definite
Hermitian matrices. However, this latter statement has the advantage of having a form independent
of n.
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where D0 − λ0In−m, of size n−m, is invertible. We decompose vectors and
matrices accordingly:

X =
(

x
y

)
, Aα =

(
Cα Fα

Eα Dα

)
.

The theorem states that the m×m operator

L′ := ∂t +
d∑

α=1

Cα∂α

is hyperbolic.
Since Cn is the direct sum (Rm × {0n−m})⊕ ({0m} × Rn−m) of invariant

subspaces of A(ξ0), corresponding to disjoint parts of the spectrum, standard
perturbation theory (see Kato [95]) tells us that there exists a neighbourhood V
of ξ0 and an analytical map ξ �→ K(ξ) from V to M(n−m)×m(R), such that

i) K(ξ0) = 0,
ii) the subspace

N(ξ) :=
{(

x
K(ξ)x

)
; x ∈ Rm

}
is invariant under A(ξ).

Hence, N(ξ) is invariant under the flow of Ẋ = A(ξ)X. On this subspace, the
flow is defined by ẋ = Q(ξ)x, y = K(ξ)x, where

Q(ξ) := C(ξ) + F (ξ)K(ξ).

Let us define

M := sup
ξ
‖ exp iA(ξ)‖,

which is finite by assumption. For every ξ in V, t ∈ R and x0 ∈ Rm, it holds that

‖ exp(itQ(ξ))x0‖ ≤ c0M(‖x0‖+ ‖K(ξ)x0‖),

where c0 is accounted for the equivalence of the standard norm with (x,K(ξ)x) �→
‖x‖, on N(ξ). In other words,

‖ exp(itQ(ξ))‖ ≤ c0M(1 + ‖K(ξ)‖). (1.5.35)

Let η be given in Rd. One applies (1.5.35) to the vector ξ = ξ0 + sη, for s small
enough (in such a way that ξ ∈ V) and t = 1/s. Since

Q(ξ) = λ0Im + sC(η) + sF (η)K(ξ),

it holds that

exp itQ(ξ) = eitλ0 exp i(C(η) + F (η)K(ξ)).
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Using (1.5.35) and passing to the limit as s → 0, we obtain

‖ exp iC(η)‖ ≤ c1M,

which proves the claim. �
We improve now Theorem 1.6 for constantly hyperbolic systems. Theorem

1.7 below is attributed to Lax. It turns out to be useful in geometrical optics in
the presence of non-simple eigenvalues. It will also be valuable in the study of
characteristic initial boundary value problems, see Section 6.1.3.

To begin with, we consider a constantly hyperbolic operator L and select
an eigenvalue λ(ξ), whose multiplicity, for ξ �= 0, is denoted by m. Denote by
πξ the eigenprojector onto ker(A(ξ)− λ(ξ)In). Obviously, λ and π are analytic
functions on Rd \ {0}.

Theorem 1.7 Assume that L is constantly hyperbolic and adopt the above
notations. Then, for every ξ �= 0 and every η ∈ Rd, it holds that

πξA(η)πξ = (dλ(ξ) · η)πξ.

Proof Differentiating the identity (A(ξ)− λ(ξ))πξ = 0, we obtain

(A(ξ)− λ(ξ))(dπ(ξ) · η) + (A(η)− dλ(ξ) · η)πξ = 0.

We eliminate the factor dπ(ξ) · η by multiplying this equality by πξ on the
left. �

In matrix terms, we may choose co-ordinates in Rn such that, for some vector
ξ �= 0,

A(ξ) =
(

λ(ξ)Im 0
0 A′

)
, det(A′ − λ(ξ)In−m) �= 0.

The theorem above tells us that if λ has a constant multiplicity, one has

A(η) =
(

(η ·X)Im B(η)
C(η) D(η)

)
, ∀η ∈ Rd,

for some vector X ∈ Rd.

Corollary 1.1 Let L be constantly hyperbolic, with an eigenvalue λ of multi-
plicity m > n/2. Then ξ �→ λ(ξ) is linear.

Proof From the assumption, there exists a non-zero vector x in the intersection
of ker(A(ξ)− λ(ξ)) and ker(A(η)− λ(η)). On the one hand, πξx = x. On the
other hand, A(η)x = λ(η)x. Applying Theorem 1.7 gives λ(η) = dλ(ξ) · η. �
Remarks

� The example given in Section 1.2.3 shows that assuming only the diago-
nalizability on Rn of all matrices A(ξ) does not ensure the hyperbolicity of
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the suboperator L′, since one of the matrices C(η) is a Jordan block J(0; 2)
(take d = 2, n = 3, ξ0 = �e2 and λ0 = 0).

� The assumption of constant hyperbolicity in Theorem 1.7 may be relaxed
by assuming only hyperbolicity with an eigenvalue σ �→ λ(σ) of constant
multiplicity in the neighbourhood of ξ.

� The conclusion in Theorem 1.7 may not be true when we drop the assump-
tion of constant multiplicity. For instance, let us consider a symmetric
hyperbolic operator L. We may assume that ξ = �ed and that N(ξ) equals
Rm × {0}. In other words, Ad is block-diagonal with the last block equal
to λIn−m. Then πξA(η)πξ is the first diagonal block of A(η). It may be
any linear map into the space of real symmetric m×m matrices. A refined
analysis when λ0 does not correspond to a locally constant multiplicity has
been done by Lannes [107].

� The argument developed in the proof of Theorem 1.6 can be used in the
context of parabolic-hyperbolic operators. We leave the reader to prove
the following result (Hint: show that, for ξ large enough, the appropriate
matrix has an invariant subspace N(ξ), which tends to the subspace defined
by v = 0 as ξ → +∞).

Theorem 1.8 Assume that the Cauchy problem for the system

∂tu +
∑
α

Aα∂αu +
∑
α

Bα∂αv = 0,

∂tv +
∑
α

Cα∂αu +
∑
α

Dα∂αv =
∑
α,β

Eαβ∂α∂βv

is well-posed in L2(Rd × R+
t ). Assume also that the diffusion matrix

E(ξ) :=
∑
α,β

ξαξβEαβ

is non-singular for every ξ �= 0. Then the operator

∂t +
∑
α

Aα∂α

is hyperbolic.

� Likewise, one can consider first-order systems with damping (see [19, 147,
222, 223]). Again, we leave the reader to prove the following result (Hint:
for ξ = 0, the subpace defined by v = 0 is invariant for the appropriate
matrix. Extend it as an invariant subspace N(ξ).)
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Theorem 1.9 Let R ∈ Mp(R) be given, with 1 ≤ p < n. Assume that the
Cauchy problem for the system

∂tu +
∑
α

Aα∂αu +
∑
α

Bα∂αv = 0,

∂tv +
∑
α

Cα∂αu +
∑
α

Dα∂αv = Rv

is well-posed in L2(Rd × R+
t ), uniformly in time, in the sense that there exists a

constant M , independent of time, such that every solution satisfies

‖(u, v)(t)‖L2 ≤ M‖(u, v)(0)‖L2 .

Assume also that the damping matrix R is non-singular. Then the operator

∂t +
∑
α

Aα∂α

is hyperbolic.

This result is meaningful in the study of relaxation models.

1.5.2 Strichartz estimates

This section deals with norms of Lp
t (Lq

x) type for functions u(x, t), namely

‖u‖p,q :=
(∫

R

‖u(·, t)‖p
Lq(Rd)

dt

)1/p

.

Such norms define Banach spaces. Interpolation between the spaces associated
to pairs (p1, q1) and (p2, q2) (say p1 ≤ p2) yields the spaces associated to (p, q),
with

p1 ≤ p ≤ p2,

(
1
q1
− 1

q2

) (
1
p
− 1

p2

)
=
(

1
p1
− 1

p2

) (
1
q
− 1

q2

)
.

There are various types of Strichartz estimates. We shall neither list them all,
nor give proofs, except in a single particular case (see below). Given a hyperbolic
operator L = ∂t + A(∇x), a Strichartz estimate is an inequality that typically
bounds the Lp

t (Lq
x)-norm of the solution u of

Lu = f, u(t = 0) = u0,

in terms of norms of f and u0, taken in other functional spaces. By a duality
argument, one deduces the general case from the simpler one u0 ≡ 0. The latter
follows from a dispersion inequality in the homogeneous case f ≡ 0, through the
Fractional Integration Theorem (Hardy–Littlewood–Sobolev inequality).

As far as we know, the wave operator and its variant are the only ones that
retained the attention of authors within hyperbolic problems. Therefore, we shall
restrict ourselves to operators L that ‘divide’ the Dalembertian ∂2

t −∆x, in the
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sense that A(ξ)2 ≡ |ξ|2In. We then speak of Dirac operators, and Lu = 0 implies
∂2

t uj −∆xuj = 0 for j = 1, . . . , n. The simplest example is

∂tu +
(

1 0
0 −1

)
∂xu +

(
0 1
1 0

)
∂yu = 0. (1.5.36)

A more complicated one may be built from Pauli matrices:

A(ξ) =
(

ξ1I4 ξ2σ2 + ξ3σ3 + ξ4σ4

ξ2σ
T
2 + ξ3σ

T
3 + ξ4σ

T
4 −ξ1I4

)
,

with

σ2 =
(

I2 02

02 −I2

)
, σ3 =

(
02 J
−J 02

)
, σ4 =

(
02 I2

I2 02

)
, J =

(
0 1
−1 0

)
.

In the seminal work by Strichartz [200], the homogeneous case is treated by
noting that the Fourier transform of u is supported by the characteristic cone. It
is important that, away from its singularity, this cone have non-zero curvature. In
particular, we do not expect Strichartz estimates to hold when char(L) has a flat
component, a fact that happens in linearized gas dynamics for instance, or in one-
space dimension. In subsequent studies (see [96,203]), the estimate is obtained as
a consequence of the conservation of energy, a dispersion inequality (an algebraic
decay of ‖u(t)‖Lq when f ≡ 0), Hardy–Littlewood–Sobolev inequalities and a so-
called T ∗T argument.

A typical Strichartz inequality for the wave equation ∂2
t φ−∆xφ = 0 is

‖φ‖Lp
t (Lq

x) ≤ c(p, q, d)‖∇x,tφ|t=0‖L2 , (1.5.37)

which holds when
1
p

+
d

q
=

d

2
− 1,

2
p

+
d− 1

q
≤ d− 1

2
, 2 ≤ p, q ≤ ∞, d ≥ 2, (1.5.38)

with the exception of the triplet (p, q, d) = (2,∞, 3). Translating in terms of u,
we obtain an inequality

‖u‖Lp
t (Lq

x) ≤ c(p, q, d)‖u0‖Ḣ1 , (1.5.39)

where Ḣ1(Rd) denotes the homogeneous Sobolev space of tempered distributions
such that ξû(ξ) is square-integrable. If d ≥ 3, (1.5.39) contains the endpoint case

‖u‖L∞
t (L2∗

x ) ≤ c(d)‖u0‖Ḣ1 ,

where
1
2∗

=
1
2
− 1

d

is the Sobolev exponent:

Ḣ1(Rd) ⊂ L2∗(Rd).
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This particular inequality is an obvious consequence of the Sobolev embedding
and the constancy of ‖u(t)‖Ḣ1 .

For the same trivial reason, if s ∈ (0, d/2), a ‘Strichartz inequality’ holds of
the form

‖u‖
L∞

t (L
q(s)
x )

≤ c(s, d)‖u0‖Ḣs , (1.5.40)

where

1
q(s)

=
1
2
− s

d
.

Again, as in (1.5.39), this trivial result is simply the endpoint of a list of non-
trivial ones. We also have

‖u‖Lp
t (Lq

x) ≤ c(p, q, s, d)‖u0‖Ḣs (1.5.41)

for

1
p

+
d

q
=

d

2
− s,

2
p

+
d− 1

q
≤ d− 1

2
, 2 ≤ p, d ≥ 2, (1.5.42)

with the exception of the triplets

(p, q, s) =
(

4
d− 1

,∞,
d + 1

4

)
.

We emphasize that (1.5.41) is scale invariant, in the sense that both sides
have the same degree of homogeneity when u is replaced by uλ, where uλ(x, t) :=
u(λx, λt), another solution of Lv = 0.

Strichartz estimates vs Lp-well-posedness From Brenner’s theorem [22,
23], the Cauchy problem for a Dirac operator is ill-posed in every Lp-space but
L2. As a matter of fact, the matrices Aα of a Dirac operator satisfy

(Aα)2 = In, AαAβ + AβAα = 0n (α �= β),

which immediately imply [Aα, Aβ ] �= 0n. We shall see that the ill-posedness may
be viewed as a consequence of Strichartz estimates. This must be a rather general
fact, as the lack of commutation of the matrices Aα of a hyperbolic operator L,
is needed in order that char(L) have non-zero curvature.

Let P be the set of exponents p such that the Cauchy problem for L is
well-posed in Lp. Obviously, 2 belongs to P . By standard interpolation theory
(Riesz–Thorin theorem, see [15]), P is an interval. Next, the fact that L∗ is also a
Dirac operator, plus a duality argument, show that P is symmetric with respect
to the involution p �→ p′ (as usual, 1/p + 1/p′ = 1).

Assume that P contains some element q > 2. Hence the solution operator St

is uniformly bounded on Lq for t ∈ (−1, 1). Let s > 0 be such that q > q(s), and
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q satisfies the inequalities in (1.5.42), so that (1.5.41) applies for some p. Writing

u(0) =
∫ 1

0

u(0) dt =
∫ 1

0

S−tu(t) dt,

and using (1.5.41), we obtain an inequality

‖w‖Lq ≤ c‖w‖Ḣs , ∀w ∈ Ḣs(Rd).

Such an inequality is obviously false, for instance because it is not scale invariant.
We deduce that

P ⊂ [1, 2].

Since P is symmetric upon p �→ p′, we conclude that P = {2}, confirming
Brenner’s theorem for Dirac operators.

A proof for the 3-dimensional wave equation We give here the proof of
(1.5.37) for the wave equation

∂2
t φ = ∆xφ (1.5.43)

in the special case d = 3. The constraints on (p, q) are therefore

1
p

+
3
q

=
1
2
, 2 < p ≤ ∞ (that is 6 ≤ q < ∞).

To keep the presentation as short as possible, we limit ourselves to the proof of
the inequality when φ|t=0 = 0. We recall that, denoting φ1 the time derivative
of φ at initial time, the solution of (1.5.43) is given by

φ(x, t) =
1

4πt

∫
S(x;t)

φ1(y) ds(y),

where S(x; t) is the sphere of radius t, centred at x, and ds(y) is the area element.
Denote Pt the operator φ1 �→ φ(t). Fourier transforming the wave equation, we
have easily

P̂tχ(ξ) =
sin t|ξ|
|ξ| χ̂(ξ),

which justifies the notation

Pt =
sin t|D|
|D| .

Since the symbol of Pt is real, it is a self-adjoint operator. The operator P ∗
s Pt =

PsPt has symbol

(sin t|ξ|) (sin s|ξ|)
|ξ|2 =

cos(t− s)|ξ| − cos(t + s)|ξ|
2|ξ|2 .
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Therefore P ∗
s Pt is the convolution operator of kernel (K(·, t− s)−K(·, t + s))/2,

where

K(·, t) := F−1 cos t|ξ|
|ξ|2 .

It is not too difficult to compute, for t > 0,

K(x; t) =
H(|x| − t)

4π|x| ,

where H is the Heaviside function. It follows immediately that

‖K(·, t)‖Lr(R3) = crt
−1+3/r, r > 3.

From Young’s inequality, we deduce (take r = q/2)

‖P ∗
s Ptf‖Lq ≤ c(q)

(
|t− s|−1+6/q + |t + s|−1+6/q

)
‖f‖Lq′ , (1.5.44)

provided that q > 6.
Given a function f ∈ Lp′(0,+∞;Lq′

x ), let us form

v :=
∫ ∞

0

Ptf(t) dt.

The T ∗T argument consists in estimating v in L2(R3). First, we have

‖v‖2L2 =
〈∫ ∞

0

Ptf(t) dt,

∫ ∞

0

Psf(s) ds

〉
=
∫ ∞

0

∫ ∞

0

dt ds 〈P ∗
s Ptf(t), f(s)〉.

Using (1.5.44) and the fact that |t− s| ≤ |t + s|, we obtain

‖v‖2L2 ≤
∫ ∞

0

∫ ∞

0

dt ds ‖P ∗
s Ptf(t)‖Lq‖f(s)‖Lq′

≤ 2c(q)
∫ ∞

0

∫ ∞

0

|t− s|−1+6/q‖f(t)‖Lq′ ‖f(s)‖Lq′dt ds.

Defining

G(t) :=
∫ ∞

0

|t− s|−1+6/q‖f(s)‖Lq′ds,

we infer from the Hölder inequality

‖v‖2L2 ≤ 2c(q) ‖G‖Lp(0,+∞)‖f‖Lp′
t (Lq′

x )
.

From the Hardy–Littlewood–Sobolev inequality, we also know

‖G‖Lp(0,+∞) ≤ γ(q) ‖f‖
Lp′

t (Lq′
x )

,

provided that
1
p

+
3
q

=
1
2
.
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It follows that

‖v‖2L2 ≤ c′(q) ‖f‖2
Lp′

t (Lq′
x )

. (1.5.45)

We conclude via a duality argument. First:∫ +∞

0

dt

∫
R3

fφdx =
∫ +∞

0

〈Ptφ1, f(t)〉dt

= 〈φ1,

∫ +∞

0

Ptf(t) dt〉.

Using (1.5.45), we deduce∣∣∣∣∫ +∞

0

dt

∫
R3

fφdx

∣∣∣∣ ≤√c′(q) ‖φ1‖L2‖f‖
Lp′

t (Lq′
x )

.

Therefore,

‖φ‖Lp
t (Lq

x) = sup
f

∣∣∣∫ +∞
0

dt
∫

R3 fφdx
∣∣∣

‖f‖
Lp′

t (Lq′
x )

≤
√

c′(q) ‖φ1‖L2 ,

which is precisely the expected inequality in our case.

1.5.3 Systems with differential constraints

Several examples in natural sciences involve systems of a slightly more general
form than (1.0.1), because of differential constraints that are satisfied by u(t) at
every time interval. Let us consider the homogeneous case, with B = 0. Then a
typical system has the form

∂tu +
d∑

α=1

Aα∂αu = 0,
d∑

β=1

Cβ∂βu = 0, (1.5.46)

where Cβ ∈ Mp×n(R), p being the number of constraints.
Such systems occur whenever one rewrites a higher-order system as a first-

order one. Let us take, as an example, the wave equation

∂2
t φ = c2∆φ, (1.5.47)

where c > 0 is the wave velocity. Every solution of (1.5.47) yields a solution
u := (c∇xφ,−∂tφ) of (1.2.12), where

A(ξ) =
(

0d cξ
cξT 0

)
.

Since A(ξ) is symmetric, the corresponding system is hyperbolic. The spectrum
of A(ξ) is easily computed and consists of the simple eigenvalues ±c|ξ|, and the
multiple eigenvalue 0. The latter is actually spurious, only due to the fact that
the mapping φ �→ u is not onto. Therefore, some solutions u do not correspond
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to solutions of the wave equation, whence the need of the constraint curlv = 0
on the d first components of u = (v, w).

Another example is provided by Maxwell’s system, which writes, in the
absence of electric charges, as

∂tB + curlD = 0,

∂tD − curlB = 0,

divB = 0,

divD = 0.

Again, the evolutionary part (the two first equations above), constitute a sym-
metric system, therefore a hyperbolic one. We compute easily the eigenvalues,
±|ξ| and 0, where zero has no physical significance, and must be ruled out with
the help of the constraints.

Other examples come from field equations in relativity, where gauge invari-
ance implies that natural variables are redundant.

The general philosophy is that the initial data is given satisfying the con-
straints, and the evolution must preserve them. Using a Fourier transform,
it amounts to saying that C(ξ)A(ξ)v must vanish when C(ξ)v does. In other
words, the kernel N(ξ) of C(ξ) is an invariant subspace of A(ξ). As noticed by
Dafermos [45], this property is fulfilled as soon as CαAβ + CβAα = 0 holds for
every pair (α, β). As a matter of fact, these identities, which hold frequently,
imply C(ξ)A(ξ) = 0. In practice, all examples satisfy the following assumption
(CR):

for non-zero vectors ξ ∈ Rd, the rank of C(ξ) is constant.

This implies that the vector space N(ξ) has a constant dimension and that it
depends analytically on ξ.

We now characterize strong well-posedness of the Cauchy problem for
(1.5.46). Standard functional spaces must be redefined according to the con-
straint. For instance, L2-well-posedness is concerned with the following space

Z := {u ∈ L2(Rd)n ;
∑

β

Cβ∂βu = 0}.

Equipped with the usual L2-norm, Z is a Hilbert space. For an initial datum
a ∈ Z, the solution is formally given by the formula

û(ξ, t) = exp(−itA(ξ))â(ξ). (1.5.48)

Since a ∈ Z, we know that â(ξ) belongs to N(ξ) for almost every ξ. Then an
estimate of the form ‖u(t)‖Z ≤ C‖a‖Z holds if and only if

sup
ξ
‖ exp(−itAN (ξ))‖ < +∞, (1.5.49)
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where AN (ξ) is the restriction of A(ξ) to its invariant subspace N(ξ). As before,
(1.5.49) holds for some non-zero time t0 if and only if it holds for every time
t ∈ R. For instance, the choice t = −1 gives the criterion for L2-well-posedness:

sup
ξ
‖ exp(iAN (ξ))‖ < +∞. (1.5.50)

The L2-well-posedness is again called hyperbolicity. As before, it requires that
AN (ξ) (but not necessarily A(ξ)) be diagonalizable with real eigenvalues. It may
be read in the light of the Kreiss–Strang Theorem 1.2, but for practical purposes,
it is useful to consider two classes of well-posed system. The first one consists in
the constantly hyperbolic systems, namely those for which AN (ξ) is diagonalizable
with real eigenvalues of constant multiplicities, when ξ �= 0. Strict or constant
hyperbolicity still implies hyperbolicity.

The second important class consists in the Friedrichs-symmetrizable systems.
Symmetrizability is the property that there exist a real symmetric definite-
positive matrix S and a matrix M ∈ Mn×p(R), such that Sα := SAα + MCα

is symmetric, for every α = 1, . . . , d. Such systems obey the following energy
identity

∂t(Su, u) +
∑
α

∂α(Sαu, u) = 0, (1.5.51)

which yields the estimate∫
Rd

(Su(x, t), u(x, t)) dx =
∫

Rd

(Sa(x), a(x)) dx. (1.5.52)

The positiveness of matrix S may actually be relaxed in a non-trivial way. For
that, let us define a cone Λ in Rn, by

Λ := {λ ∈ Rn ; ∃ξ �= 0, C(ξ)λ = 0} =
⋃
ξ 	=0

N(ξ).

The following statement is called compensated compactness.

Theorem 1.10 (Murat [145], Tartar [202]) Let S be a symmetric n× n matrix.
The quadratic form

v �→
∫

Rd

(Sv, v) dx

is positive-definite on Z if and only if (Sλ, λ) > 0 for every non-zero λ ∈ Λ. In
such a case, its square root defines a norm equivalent to ‖ · ‖Z .

From this, we again obtain an L2 estimate from (1.5.52), in some cases where
there does not exist a positive-definite symmetrizer S.

Elastodynamics An important application of this calculus arises in elastody-
namics. Non-linear elastodynamics obeys a second-order system in the unknown
y called displacement. When written as a first-order system in terms of the
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first derivatives ujα := ∂αyj (1 ≤ j ≤ d, 0 ≤ α ≤ d with ∂0 := ∂t), it must be
supplemented with the compatibility relations

∂αujβ − ∂βujα = 0, α, β, j ≥ 1.

We immediately compute that v ∈ Λ if and only if the submatrix (vjα)1≤α,j≤d

has rank at most one. For hyperelastic materials, this non-linear system is
endowed with an energy density W (∇y). A natural restriction is that the map
x �→ y preserves the orientation, so that det∇y > 0 everywhere. In particular, the
energy density W (F ) must become infinite as det F tends to zero. Besides, the
frame indifference implies that W (QF ) = W (F ) for every F,Q with detF > 0
and Q ∈ SOd(R). It is shown in [36] (Theorem 4.8.1, page 170) that such a
function cannot be convex7. Now, let us choose a matrix F in the vicinity of
which W is not convex, locally. The constant state ū defined by ūjα := Fjα if
α �= 0 and zero otherwise is an equilibrium. Let us linearize the system about ū.
The resulting system has constant coefficients and obeys the same differential
constraints as the non-linear one. It is compatible with an energy identity
(1.5.51), where (Su, u) encodes the second-order terms of the Taylor expansion
of the full mechanical energy at ū. In particular, S is not positive. However, W
can be quasiconvex at F , in the sense of Morrey [143], which means∫

Rd

W (F +∇ψ) dx ≥ 0, ∀ψ ∈ D(Rd). (1.5.53)

Quasiconvexity implies the Legendre–Hadamard inequality

(Sλ, λ) ≥ 0, λ ∈ Λ, (1.5.54)

a weaker property than convexity. When (1.5.54) holds strictly for non-zero λ, the
compensated-compactness Theorem tells us that (1.5.52) is a genuine estimate
in Z. In such a case, the linearized problem is strongly L2-well-posed.

We shall not consider in this chapter the local well-posedness of the non-
linear system. The Cauchy problem for quasilinear systems of conservation laws
is treated in Chapter 10. Let us mention only that a system of conservation laws
endowed with a convex ‘entropy’ has a well-posedness property within smooth
data and solutions (see Theorem 10.1). In elastodynamics, the system governs
the evolution of u = (v, F ) = (∂ty,∇xy). Since the entropy of our system is the
energy 1

2 |v|2 + W (F ), which is not convex, the above-mentioned theorem does
not apply. However, Dafermos [46] has found a way to apply it, by rewriting
the system of elastodynamics in terms of u and all minors of the matrix F . See
also Demoulini et al. [48]. As a consequence, the local well-posedness is obtained
whenever W is polyconvex, that is a convex function of F and its minors.

Electromagnetism Let us consider Maxwell’s equations. The kernel N(ξ)
equals ξ⊥ × ξ⊥, where ξ⊥ is the orthogonal of ξ in the Euclidean space R3.

7We warn the reader that the phase space GL+
d (R), made of matrices F with detF > 0, is not a

convex set. Thus the convexity of a function is a meaningless notion.
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Therefore Λ equals R6, and the symmetrizability has to be understood in the
usual sense. In the vacuum, H = B and E = D, for appropriate units. The
system is already in symmetric form. In a ‘linear’ material medium, which may be
anisotropic, H,E still are linear functions of B,D. For linear as well as non-linear
media, there is a stored electromagnetic energy density W (B,D), and E,H are
given by the following formulæ (see [37])

Ej =
∂W

∂Dj
, Hj =

∂W

∂Bj
.

In the linear case, W is a quadratic form. The Maxwell system is compatible,
as long as we consider C 1 solutions, with the Poynting identity, which expresses
the conservation of energy

∂tW (B,D) + curl(E ×H) = 0. (1.5.55)

Let us consider the linearized system about some constant state (B̄, D̄). The
former considerations show that if the matrix S := D2W (B̄, D̄) is positive-
definite, then the linear Cauchy problem is L2-well-posed. We can actually relax
the convexity condition, with the following observation. The Maxwell system is
also compatible with the extra conservation law (herebelow, u := (B,D))

∂t(B ×D) + div
(

∂W

∂B
⊗B

)
+ div

(
∂W

∂D
⊗D

)
+∇(W − u · ∇uW ) = 0.

At the linearized level, we may consider a modified energy density tuSu +
det(X,B,D), where X is a given vector in R3. If there exists an X such
that tuSu + det(X,B,D) is positive-definite, then the linear system is Friedrichs
symmetrizable and the Cauchy problem is L2-well-posed. An obvious necessary
condition for such an X to exist is that tuSu > 0 whenever B ×D = 0 and
(B,D) �= 0. At the non-linear level, the same procedure as the one imagined
by Dafermos in elastodynamics may be employed. The result is that the non-
linear Maxwell’s system is locally well-posed for smooth initial data and smooth
solutions, whenever W can be written as a convex function of B, D and B ×D.
(See [21,188].)

1.5.4 Splitting of the characteristic polynomial

We give in this section a property of the characteristic polynomial (X; ξ) �→
det(XIn + A(ξ)), when the operator L = ∂t +

∑
α Aα∂α is constantly hyperbolic.

Let us begin with an abstract result.

Lemma 1.3 Let P (X; θ1, · · · , θd) be a homogeneous polynomial of degree n in
1 + d variables, with real coefficients. Assume that the coefficient of Xn is non-
zero. Assume also that for all θ in a non-void open subset O of Rd, the polynomial
Pθ := P (·, θ) has a root with multiplicity ≥ 2. Then P is reducible in R[X, θ].

Proof Let us denote by R := R[θ1, · · · , θd] the factorial ring of polynomials in
d variables θ and by k := R(θ1, · · · , θd) the field of rational fractions in θ. We



46 Linear Cauchy Problem with Constant Coefficients

first consider P as an element of k[X]. Let us recall that k[X] is a Euclidean
ring, which has therefore a greatest common divisor (g.c.d.)

Let Q be the g.c.d of P and P ′ in k[X], a monic polynomial of X. Its
coefficients, belonging to k, are rational fractions of θ. We denote by Z the
zero set of the product of denominators of these fractions; Z is a closed set with
empty interior.

When θ ∈ O \ Z (this is a non-void open set), Qθ := Q(·, θ) has a non-trivial
root, which means that either Qθ ≡ 0 or d◦Qθ ≥ 1. However, the condition Qθ ≡
0 defines a non-trivial algebraic manifold M (the intersection of the zero sets of
the coefficients of Q), again a closed set with empty interior. Therefore, there
exists a θ for which d◦Qθ ≥ 1, and consequently d◦XQ ≥ 1.

Since Q divides P in k[X], we write P = QT , with T ∈ k[X]. Multiplying by
the l.c.m. of the denominators of all coefficients of Q and T (a least common mul-
tiple (l.c.m.) and a g.c.d. do exist in the factorial ring R), we have g(θ)P = Q1T1,
where g ∈ A, Q1, T1 ∈ R[X] and 0 < d◦XQ1 < n. We recall that the contents of
a polynomial S ∈ R[X], denoted by c(S), is the g.c.d. of all its coefficients.
From Gauss’ Lemma, c(Q1T1) = c(Q1)c(T1) and therefore g = c(Q1)c(T1), since
c(P ) = 1 by assumption. We conclude that P = Q2T2, where Q2 := c(Q1)−1Q1 ∈
R[X] and similarly R2 ∈ R[X]. Moreover, 0 < d◦XQ2 < n, which shows that P is
reducible in R[X] = R[X, θ]. �
Corollary 1.2 Let P ∈ R(X, θ) be homogeneous with d◦XP = d◦(X,θ)P . Let

P =
L∏

l=1

P ql

l

its factorization into irreducible factors in R(X, θ), the Pls being pairwise dis-
tinct.

Then each Pl has the following property: for an open dense subset of values
of θ in Rd, the roots of Pl(·, θ) are simple.

We now apply the corollary to the characteristic polynomial.

Proposition 1.7 Let the operator L := ∂t +
∑

α Aα∂α be constantly hyperbolic.
Then the characteristic polynomial det(XIn + A(ξ)) splits as a product

L∏
l=1

P ql

l , (1.5.56)

where the Pls, normalized by Pl(1, 0) = 1, satisfy

� Each Pl is a homogeneous polynomial of (X; ξ),
� The Pls are irreducible, pairwise distinct,
� For ξ ∈ Rd \ {0}, the roots of Pl(·, ξ) are real and simple,
� For ξ ∈ Rd \ {0} and l �= k, Pl(·, ξ) and Pk(·, ξ) do not have a common root.
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An example Let us consider Maxwell’s equations, where d = 3, n = 6 and

A(ξ) =
(

03 J(ξ)
−J(ξ) 03

)
, J(ξ)V := ξ × V.

An elementary computation gives:

det(XI6 + A(ξ)) = X2(X2 − |ξ|2)2.
Hence the splitting described in Proposition 1.7 corresponds to P1(X, ξ) = X,
P2(X, ξ) = X2 − |ξ|2, q1 = q2 = 2.

1.5.5 Dimensional restrictions for strictly hyperbolic systems

We begin with a matrix theorem, due to Lax [111] in the case n ≡ 2 (mod 4),
and to Friedland et al., [62] in the case n ≡ 3, 4, 5 (mod 8):

Theorem 1.11 Assume that n ≡ 2, 3, 4, 5, 6 (mod 8). Let V be a subspace of
Mn(R) with the property that every non-zero element in V has its eigenvalues
real and pairwise distinct. Then dim V ≤ 2.

In terms of hyperbolic operators, this tells us that strictly hyperbolic operators
in space dimension d ≥ 3 can exist only if n ≡ 0,±1 (mod 8) (assuming that the
operator really involves all the space variables). This explains why constantly
hyperbolic operators occur so frequently, as they exist in space dimension three
at every size n ≥ 4. The simplest examples are:

n = 4. Linearized isentropic gas dynamics.
n = 5. Linearized non-isentropic gas dynamics.
n = 6. Maxwell’s equations. We know also of a non-equivalent example of this

size.

Proof We prove only the Lax case n ≡ 2 (mod 4). We argue by contradiction,
assuming that dimV ≥ 3. We label the eigenvalues in the increasing order:

λ1(M) < · · · < λn(M), M �= 0n.

Every non-zero element M in V , having real and distinct eigenvalues, is asso-
ciated with finitely many (precisely 2n) unitary bases of Rn, which depend
continuously on M . In other words, the set of (real) unitary eigenbases is a finite
covering (with 2n sheets) of V \ {0n}. Since the base space is simply connected
(because d ≥ 3), the covering is trivial and a continuous map M �→ B(M) can
actually be defined globally, where

B(M) = {r1(M), . . . , rn(M)}
is an eigenbasis. By continuity, all the bases B(M) have the same orientation.

On the one hand, it holds that

λj(−M) = −λn−j+1(M), j = 1, . . . , n.
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It follows that

rj(−M) = ±rn−j+1(M).

By continuity, the sign ± above is constant and depends only on j, but not on
M . Denote it ρj . Exchanging j with n− j + 1, we obtain

ρn−j+1ρj = 1. (1.5.57)

On the other hand, we know that {r1(M), . . . , rn(M)} and
{ρ1rn(M), . . . , ρnr1(M)} = {r1(−M), . . . , rn(−M)} have the same orientation.
Since n ≡ 2 (mod 4), the order reversal8

{r1(M), . . . , rn(M)} �→ {rn(M), . . . , r1(M)}
reverses the orientation. Therefore, it must hold that

n∏
j=1

ρj = −1.

This, however, is incompatible with (1.5.57) when n is even. �
Note that if dimV = 2 (that is for strictly hyperbolic operators in two space

dimensions), there does not need to exist a continuously defined eigenbasis on
V \ {0n}, as this set is not simply connected. For instance, the system (1.5.36)
does not have this property: When following a loop around the origin in V , the
eigenvectors are flipped.

1.5.6 Realization of hyperbolic polynomial

Let p(X0, . . . , Xd), a homogeneous polynomial of degree n, be hyperbolic with
respect to a vector T ∈ Rd+1 in the sense of G̊arding (see Section 1.4.4).

Given a hyperbolic polynomial p of degree n in d + 1 variables, one may
always assume that T is the first element �e0 of the canonical basis. A natural
question is whether p can be realized as pL for some hyperbolic operator L. The
case d = 1 is easy. Lax [110] conjectured that if d = 2, the answer is positive
and one can choose a Friedrichs-symmetrizable operator. This has been proved
recently by Lewis et al. [114], following a result by Helton and Vinnikov [82]. One
easily sees that the hyperbolic polynomial q(X) := X2

0 −X2
1 − · · · −X2

d cannot
be realized if d ≥ 3. However, it may happen that some power q� be realizable,
as in the case of Maxwell’s system, or Dirac systems. The fundamental question
whether every hyperbolicity cone can be realized as a forward cone for some
hyperbolic operator remains open so far.

Notice that two different hyperbolic operators L and L′ can yield the same
polynomial,

pL = pL′ .

8This part of the proof would also work when n ≡ 3 (mod 4).
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This happens at least when L′ is obtained from L by a linear change of variables.
Then (Aα)′ = P−1AαP for some non-singular matrix. We can also make only
a linear combination of the equations, which yields an operator L′′ = S0∂t +∑

α Sα∂α, where Sα := S0A
α, which modifies pL by a constant factor. Change

of co-ordinates should also be allowed.
It is an important problem to classify the hyperbolic operators up to such a

change. The characteristic cone is of course an invariant of this problem, but it
is not the only one. There actually exist non-equivalent operators that have the
same characteristic cone. A way to go forward, which has not been pushed so far,
is to consider the characteristic bundle, whose basis is the characteristic variety
(the projective set associated to the characteristic cone) and the fibres are the
corresponding eigenfields. This bundle is modified by the change of variables and
the combinations of equations, by its topology is not. Thus the Chern class of
the bundle is a more accurate invariant. When the characteristics have variable
multiplicities, the cone and the bundle are not smooth and the analysis becomes
more difficult.

A similar problem, perhaps even more important is to classify within the
set of symmetrizable operator, since the physics usually provides a Friedrichs
symmetrizer, through an energy estimate or an entropy principle. Of course,
the characteristic bundle remains a crucial tool. But some other invariants may
appear, in particular in the case where L admits a linear velocity

λ(ξ) = V · ξ,
which can be brought to the case λ(ξ) ≡ 0. See the discussion in Section 6.1.2.



2

LINEAR CAUCHY PROBLEM WITH
VARIABLE COEFFICIENTS

The purpose of this chapter is to deal with variable-coefficient generalizations of
the systems considered in Chapter 1. These are of the form

∂u

∂t
+

d∑
α=1

Aα(x, t)
∂u

∂xα
= B(x, t)u + f(x, t), (2.0.1)

where the n× n matrices Aα and B depend ‘smoothly’ on (x, t). Such systems
may arise from constant-coefficient ones by change of variable, which is useful
to show local uniqueness properties, see Section 2.2. Variable-coefficient systems
also occur as the linearization of non-linear systems (see Chapter 10), in which
case the matrices Aα and B may have a restricted regularity. In this chapter,
unless otherwise stated, it will be implicitly assumed that B and Aα are C∞

functions that are bounded as well as all their derivatives.
To be consistent with notations in Chapter 1 we may alternatively write

(2.0.1) as

∂tu = P (t)u + f,

where P (t) is the spatial differential operator

P (t) : u �→ P (t)u := −
∑
α

Aα(·, t) ∂αu + B(·, t)u. (2.0.2)

Or, in short, (2.0.1) equivalently reads

Lu = f,

where L denotes the evolution operator

L : u �→ Lu := ∂tu − P (t)u. (2.0.3)

These notations being fixed, we claim that Fourier analysis is not sufficient
to deal with the Cauchy problem for the variable-coefficient operator L. We need
pseudo-differential calculus (in the variable x ∈ Rd, the time t playing the role of
a parameter), and even para-differential calculus in the case of coefficients with
a restricted regularity. For convenience, the results from this field we shall use
are all collected in Appendix C.
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2.1 Well-posedness in Sobolev spaces

The main issue regarding well-posedness is the derivation of a priori energy
estimates of the form

‖u(t)‖2Hs ≤ C

(
‖u(0)‖2Hs +

∫ t

0

‖Lu(τ)‖2Hs dτ

)
.

The scalar case (n = 1) merely corresponds to a transport operator L, which is
much easier to deal with than the case of genuinely matrix-valued operators. For
clarity, we begin with this special case, which will serve as an introduction to the
powerful technique of symmetrizers for systems.

2.1.1 Energy estimates in the scalar case

Proposition 2.1 For a scalar operator

L = ∂t + a · ∇ − b,

where a(x, t) ∈ Rd and b(x, t) ∈ R are smooth functions of (x, t), bounded as well
as their derivatives, we have the following a priori estimates. For all s ∈ R and
T > 0, there exists C > 0 so that for u ∈ C 1([0, T ];Hs) ∩ C ([0, T ];Hs+1) we have

‖u(t)‖2Hs ≤ C

(
‖u(0)‖2Hs +

∫ t

0

‖Lu(τ)‖2Hs dτ

)
.

Proof We start with the case s = 0. We have
d
dt
‖u‖2L2 = 2 Re 〈Lu, u〉 − 2Re 〈a · ∇u, u〉 + 2Re 〈bu, u〉

= 2 Re 〈Lu, u〉 +
∫

Rd

( diva + 2 b) |u|2

after integration by parts. Therefore, by the Cauchy–Schwarz inequality, we get

d
dt
‖u‖2L2 ≤ ( 1 + ‖diva + 2 b‖L∞ ) ‖u‖2L2 + ‖Lu‖2L2 ,

or

‖u(t)‖2L2 ≤ ‖u(0)‖2L2 +
∫ t

0

(
‖Lu(τ)‖2L2 + (1 + ‖diva + 2 b‖L∞ ) ‖u(τ)‖2L2

)
dτ.

By Gronwall’s Lemma this implies

‖u(t)‖2L2 ≤ eγ t ‖u(0)‖2L2 +
∫ t

0

eγ (t−τ) ‖Lu(τ)‖2L2 dτ ∀t ≥ 0,

where γ ≥ 1 + ‖diva + 2 b‖L∞ . In particular, for all bounded interval [0, T ],
there exists CT (namely, CT = exp(T (1 + ‖diva + 2 b‖L∞)) so that

‖u(t)‖2L2 ≤ CT

(
‖u(0)‖2L2 +

∫ t

0

‖Lu(τ)‖2L2 dτ

)
∀t ∈ [0, T ].
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The general case s ∈ R actually follows from the special case s = 0 almost
for free with the help of pseudo-differential calculus. Indeed, recall that the basic
pseudo-differential operator Λs of symbol λs(ξ) := (1 + ‖ξ‖2)s/2 is of order s
(see Appendix C) and can be used to define the Hs norm

‖u‖Hs = ‖Λs u‖L2 .

Now, if u ∈ C 1([0, T ];Hs) ∩ C ([0, T ];Hs+1) then Λsu ∈ C 1([0, T ];L2) ∩
C ([0, T ];H1) and therefore the inequality previously derived for s = 0 applies
to Λsu. That is, we have

‖Λs u(t)‖2L2 ≤ CT

(
‖Λs u(0)‖2L2 +

∫ t

0

‖LΛs u(τ)‖2L2 dτ

)
.

Furthermore, the commutator

[L ,Λs ] = [ a · ∇ , Λs ]

is of order 1 + s− 1 = s (see Appendix C). This implies the existence of Cs(T )
such that

‖ [L ,Λs ]u(t) ‖L2 ≤ Cs(T ) ‖u(t)‖Hs ∀t ∈ [0, T ].

Hence

‖Λs u(t)‖2L2 ≤ CT

(
‖Λs u(0)‖2L2 + 2

∫ t

0

(‖Λs Lu(τ)‖2L2 + Cs(T )‖u(τ)‖2Hs) dτ

)
.

Finally, by Gronwall’s Lemma we obtain

‖u(t)‖2Hs ≤ CT e2Cs(T ) T

(
‖u(0)‖2Hs + 2

∫ t

0

‖Lu(τ)‖2Hs ) dτ

)
.

�
As should be clear from this proof, the crucial point is the L2 estimate, relying

on the fact that the differential operator Re (a · ∇) = 1
2 ( (a · ∇) + (a · ∇)∗ ) is

bounded on L2. The symmetrizer’s technique described below aims at recovering
a similar property for non-scalar operators.

2.1.2 Symmetrizers and energy estimates

There is a special class of systems for which energy estimates are almost as
natural as for scalar equations. This is the class of Friedrichs-symmetrizable
systems, which fulfill the following generalization of Definition 2.1.

Definition 2.1 The system (2.0.1) is Friedrichs symmetrizable if there exists a
C∞ mapping S0 : Rd × R+ → Mn(R), bounded as well as its derivatives, such
that S0(x, t) is symmetric and uniformly positive-definite, and the matrices
S0(x, t)Aα(x, t) are symmetric for all (x, t).
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Like scalar equations, Friedrichs-symmetrizable systems enjoy a priori esti-
mates that keep track of coefficients. We give the L2 estimate below, which is
proved elementarily and will be extensively used in the non-linear analysis of
Chapter 10. We postpone to the end of this section the more complete result in
Hs, valid for any system admitting a symbolic symmetrizer (see Definition 2.3),
whose proof takes advantage of Bony’s para-differential calculus.

Proposition 2.2 Assume that (2.0.1) is Friedrichs symmetrizable, with a sym-
metrizer S0 satisfying

β In ≤ S0 ≤ β−1 In

in the sense of quadratic forms. We also assume that S0, Aα, and their first
derivatives are bounded, as well as B. Then, for all T > 0 and u ∈ C ([0, T ];H1) ∩
C 1([0, T ];L2) we have

β2 ‖u(t)‖2L2 ≤ eγ t ‖u(0)‖2L2 +
∫ t

0

eγ (t−τ) ‖Lu(τ)‖2L2 dτ ∀t ∈ [0, T ],

(2.1.4)

where L is defined in (2.0.3) and γ is chosen to be large enough, so that

β (γ − 1) ≥
∥∥∥∥∥ ∂tS0 +

∑
α

∂α(S0A
α) + S0B + BT S0

∥∥∥∥∥
L∞

. (2.1.5)

Proof The proof is basically the same as the first part of the proof of
Proposition 2.1. After integration by parts we get

d
dt
〈S0u , u 〉 = 2Re 〈S0u , Lu〉 + 〈Ru , u〉,

where

R = ∂tS0 +
∑
α

∂α(S0A
α) + S0B + BT S0.

Of course, we have used here the symmetry of the matrices S0 Aα and S0.
Integrating in time and using the Cauchy–Schwarz inequality (for the inner
product 〈S0·, ·〉) we arrive at

〈S0u(t) , u(t) 〉 ≤ 〈S0u(0) , u(0) 〉 +
∫ t

0

〈S0Lu(τ) , Lu(τ)〉dτ

+
∫ t

0

( 1 + β−1 ‖R‖L∞ ) 〈S0u(τ) , u(τ)〉dτ.

By Gronwall’s Lemma this implies

〈S0u(t) , u(t) 〉 ≤ eγ t 〈S0u(0) , u(0) 〉 +
∫ t

0

eγ (t−τ) 〈S0Lu(τ) , Lu(τ)〉dτ,
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with γ ≥ ( 1 + β−1 ‖R‖L∞ ). This yields the final estimate after multiplication
by β. �

More generally, a priori estimates hold true for systems admitting a functional
symmetrizer, defined as follows.

Definition 2.2 Given a family of first-order (pseudo-)differential operators
{P (t)}t≥0 acting on Rd, a functional symmetrizer is a C 1 mapping

Σ : R+ → B(L2(Rd; Cn))

such that, for 0 ≤ t ≤ T ,

Σ(t) = Σ(t)∗ ≥ α I, (2.1.6)

for some positive α depending only on T , and

Re (Σ(t)P (t)) :=
1
2

(Σ(t)P (t) + P (t)∗Σ(t)∗ ) ∈ B(L2(Rd)n) (2.1.7)

with a uniform bound on [0, T ].

Example For a Friedrichs-symmetrizable system of symmetrizer S0, the simple
multiplication operator Σ(t) : u �→ Σ(t)u := S0(·, t)u is a functional symmetrizer.
As a matter of fact, (2.1.6) merely follows from the analogous property of
the matrices S0(x, t). And, because the matrices S0(x, t)Aα(x, t) are sym-
metric, 2Re (Σ(t)P (t)) reduces to the multiplication operator associated with
(
∑

∂α(S0A
α) + S0B + B∗S0)(·, t).

Theorem 2.1 If a family of operators P (t) admits a functional symmetrizer,
then, for all s ∈ R and T > 0, there exists C > 0 so that for u ∈ C 1([0, T ];Hs) ∩
C ([0, T ];Hs+1) we have

‖u(t)‖2Hs ≤ C

(
‖u(0)‖2Hs +

∫ t

0

‖Lu(τ)‖2Hs dτ

)
, (2.1.8)

where L is defined in (2.0.3).

Proof The proof is very much like the one of Proposition 2.1. The first step is
elementary. It consists in showing the estimate in (2.1.8) for s = 0. The second
one infers the estimate for any s from the case s = 0 with the help of pseudo-
differential calculus.

Case s = 0 From (2.1.6) we know that

〈Σ(t)u(t) , u(t) 〉L2 ≥ α ‖u(t)‖2L2 .

To bound the left-hand side we write

d
dt
〈Σu , u 〉 = 2Re 〈ΣLu , u 〉 + 2Re 〈ΣP u , u 〉 + 〈 dΣ

dt
u , u 〉.
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Each term here above can be estimated by using the Cauchy–Schwarz inequality.
For the first and last ones, we use uniform bounds in t of ‖Σ‖B(L2) and
‖dΣ/dt‖B(L2). For the middle term we use (2.1.7) and a uniform bound in t
of Re (ΣP ). This yields

d
dt
〈Σu , u 〉 ≤ C1 ( ‖u‖2L2 + ‖Lu‖2L2 ).

Hence, we have

α ‖u(t)‖2L2 ≤ C0 ‖u(0)‖2L2 + C1

∫ t

0

( ‖u(τ)‖2L2 + ‖Lu(τ)‖2L2 ) dτ,

where C0 := ‖Σ(0)‖B(L2). We conclude by Gronwall’s Lemma that (2.1.8) holds
for s = 0 with C = C ′ exp(C ′T ), C ′ := max(C1, C0)/α.

General case Let s be an arbitrary real number. For u ∈ C 1([0, T ];Hs) ∩
C ([0, T ];Hs+1) the inequality previously derived for s = 0 applies to Λsu and
yields

‖Λs u(t)‖2L2 ≤ C

(
‖Λs u(0)‖2L2 +

∫ t

0

‖LΛs u(τ)‖2L2 dτ

)
.

Writing

LΛs u = Λs Lu + [Λs, P ]u,

and observing that the commutator [Λs, P ] is of order s + 1− 1 = s (see
Appendix C), we complete the proof exactly as in the scalar case (Proposition
2.1). �
Remark 2.1 By reversing time, that is, changing t to T − t and P (t) to
−P (T − t) in Theorem 2.1, we also obtain the estimate

‖u(t)‖2Hs ≤ C

(
‖u(T )‖2Hs +

∫ T

0

‖Lu(τ)‖2Hs dτ

)
, (2.1.9)

for u ∈ C 1([0, T ];Hs) ∩ C ([0, T ];Hs+1).

The problem is now to construct symmetrizers. Except for Friedrichs-
symmetrizable systems, this is not an easy task. We shall conveniently use
symbolic calculus. Similarly as in Chapter 1, we denote

A(x, t, ξ) :=
∑
α

ξα Aα(x, t) , (x, t) ∈ Rd × R+ , ξ ∈ Rd,

which can be viewed up to a −i factor as the symbol of the principal part of the
operator P (t) defined in (2.0.2).
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Definition 2.3 A symbolic symmetrizer associated with A(x, t, ξ) is a C∞

mapping

S : Rd × R+ × (Rd\{0}) → Mn(C),

homogeneous degree 0 in its last variable ξ, bounded as well as all its derivatives
with respect to (x, t, ξ) on ‖ξ‖ = 1, such that, for all (x, t, ξ)

S(x, t, ξ) = S(x, t, ξ)∗ ≥ β I, (2.1.10)

for some positive β, uniformly on sets of the form Rd × [0, T ]× (Rd\{0}) (T >
0), and

S(x, t, ξ)A(x, t, ξ) = A(x, t, ξ)∗ S(x, t, ξ)∗. (2.1.11)

Of course, a Friedrichs-symmetrizable system admits an obvious ‘symbolic’
symmetrizer independent of ξ

S(x, t, ξ) = S0(x, t).

Note that, in general, a symbolic symmetrizer is not exactly a pseudo-
differential symbol, due to the singularity allowed at ξ = 0. However, truncating
about 0 does yield a pseudo-differential symbol in S0, which is unique modulo
S−∞ (see Appendix C). This enables us to associate S with a family of pseudo-
differential operators Σ̃(t) of order 0 modulo infinitely smoothing operators. This
in turn will enable us to construct a functional symmetrizer Σ(t).

Remark 2.2 In the constant-coefficient case, neither A(x, t, ξ) nor S(x, t, ξ)
depend on (x, t), and it is elementary to construct a functional symmetrizer
based on S. This symmetrizer is of course independent of t and is just given by

Σ := F−1 S F

(where F denotes the usual Fourier transform). Then (2.1.6) holds with α = β
since we have

〈Σu , v〉 = 〈S û , v̂〉
for all u, v ∈ L2. And (2.1.7) follows from (2.1.11), because of the relations

〈ΣP u , v〉 + 〈u , ΣP v〉 = 〈S F P u , v̂〉 + 〈û , S F P v〉
= 〈S (− i A + B) û , v̂〉 + 〈û , S (− i A + B) v̂〉 = 〈(S B + BT S) û , v̂〉.

Theorem 2.2 Assuming that A(x, t, ξ) admits a symbolic symmetrizer S(x, t, ξ)
(according to Definition 2.3), then the family P (t) defined in (2.0.2) admits a
functional symmetrizer Σ(t) (as in Definition 2.2).

Proof The proof consists of a pseudo-differential extension of Remark 2.2
above. As mentioned above, S(·, t, ·) can be associated with a pseudo-differential
operator of order 0, Σ̃(t). We recall that the operator Σ̃(t) is not necessarily self-
adjoint, even though the matrices S̃(x, t, ξ) are Hermitian. But Σ̃(t)∗ differs from
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Σ̃(t) by an operator of order −1 (since they are both of order 0), see Appendix C.
As a first step, let us define

Σ(t) :=
1
2

(Σ̃(t) + Σ̃(t)∗).

By G̊arding’s inequality, there exists CT > 0 such that

〈Σ(t)u , u〉 ≥ β

2
‖u‖2L2 − CT ‖u‖2H−1

for all t ∈ [0, T ] and u ∈ L2(Rd). Now, noting that

‖u‖2H−1 = 〈Λ−2 u , u〉,
we can change Σ(t) into Σ(t) + CT Λ−2 in order to have

〈Σ(t)u , u〉 ≥ β

2
‖u‖2L2 .

This modification does not alter the self-adjointness of Σ(t) and gives (2.1.6)
with α = β/2. Furthermore, Σ(t)P (t) + P (t)∗ Σ(t) coincides with the operator
of symbol

S̃ (− i A + B) + (− i A + B)T S̃ = S̃ B + BT S̃

up to a remainder of order 0 + 1− 1 = 0, see Appendix C. (To simplify notations,
we have omitted the dependence on the parameter t of the symbols.) Since
(S̃ B + BT S̃)(·, t, ·) belongs to S0, Σ(t)P (t) + P (t)∗ Σ(t) is of order 0 and
therefore is a bounded operator on L2. �

As a consequence of Theorems 2.1 and 2.2, we have the following.

Corollary 2.1 If A(x, t, ξ) =
∑

α ξα Aα(x, t) admits a symbolic symmetrizer
then for all s ∈ R and T > 0, there exists C > 0 so that for u ∈ C 1([0, T ];Hs) ∩
C ([0, T ];Hs+1) we have

‖u(t)‖2Hs ≤ C

(
‖u(0)‖2Hs +

∫ t

0

‖Lu(τ)‖2Hs dτ

)
,

where L = ∂t +
∑

α Aα ∂α − B.

As already noted this applies in particular to Friedrichs-symmetrizable sys-
tems, but not only. Another important class of hyperbolic systems that do admit
a symbolic symmetrizer is the one of constant multiplicity hyperbolic systems.

Theorem 2.3 We assume that the system (2.0.1) is constantly hyperbolic, that
is, the matrices A(x, t, ξ) are diagonalizable with real eigenvalues λ1, · · · , λp of
constant multiplicities on Rd × R+ × (Rd\{0}). We also assume that these matri-
ces are independent of x for ‖x‖ ≥ R. Then they admit a symbolic symmetrizer.

Together with Theorem 2.2 this shows that constantly hyperbolic systems
are symmetrizable and thus enjoy Hs estimates.
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Proof The proof is based on spectral projections associated with A(x, t, ξ),
which are well-defined due to spectral separation. As a matter of fact, the
assumptions imply that the spectral gap |λj(x, t, ξ)− λk(x, t, ξ)| is bounded by
below for 1 ≤ j �= k ≤ p, (x, t) ∈ Rd × [0, T ] and ‖ξ‖ = 1. Let us define

ρ :=
1
2

min{|λj(x, t, ξ)− λk(x, t, ξ)|, 1 ≤ j �= k ≤ p, (x, t) ∈ Rd × [0, T ], ‖ξ‖ = 1}

and the projectors

Qj(x, t, ξ) :=
1

2 i π

∫
|λ−λj(x,t,ξ)|=ρ‖ξ‖

(λ In − A(x, t, ξ))−1 dλ

for 1 ≤ j ≤ p. Since A and its eigenvalues λj are homogeneous degree 1 in ξ, we
easily see by change of variables that Qj is homogeneous degree 0. Furthermore,
Qj is independent of x for ‖x‖ ≥ R. Then we introduce

S(x, t, ξ) :=
p∑

j=1

Qj(x, t, ξ)∗ Qj(x, t, ξ).

By construction, the matrix S is Hermitian. Moreover, we have for any vector
v ∈ Cd

v∗Sv =
p∑

j=1

‖Qjv‖2 ≥ β ‖v‖2,

where

β := min


p∑

j=1

‖Qj(x, t, ξ)v‖2; ‖v‖ = 1, ‖x‖ ≤ R, 0 ≤ t ≤ T, ‖ξ‖ = 1

 > 0

since
∑

j Qj = In. This proves (2.1.10). And finally, since QjA = AQj = λjQj

because λj is semisimple, we have

w∗SAv =
p∑

j=1

λj w∗ Q∗
j Qj v

for all v, w ∈ Cn, and thus SA is Hermitian. �

2.1.3 Energy estimates for less-smooth coefficients

The main purpose of this section is to obtain energy estimates for less-regular
operators in which we keep track of coefficients (in the same spirit as in Proposi-
tion 2.2). This will be done in a framework preparing for later non-linear analysis.
Namely, following Métivier [132], we assume the dependence of the matrices with
respect to (x, t) occurs via a known but not necessarily very smooth function
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v(x, t). More precisely, we consider a family of operators

Lv = ∂t +
∑
α

Aα(v(x, t)) ∂α

associated with functions v ∈ L∞([0, T ];Hs(Rd)) ∩ C ([0, T ];Hs
w(Rd)) such that

∂tv ∈ L∞([0, T ];Hs−1(Rd)) ∩ C ([0, T ];Hs−1
w (Rd)). (We recall that Hs

w stands for
the regular Sobolev space Hs equipped with the weak topology.) Observe that
such functions belong to C 1(Rd × [0, T ]) as soon as s > d

2 + 1. As to the matrices
Aα, they are assumed to be C∞ functions of their argument v ∈ Rn. We denote
A(v, ξ) =

∑
α ξα Aα(v) and extend in a straightforward way the definition of a

symbolic symmetrizer.

Definition 2.4 A symbolic symmetrizer associated with A(v, ξ) is a C∞

mapping

S : Rn × (Rd\{0}) → Mn(C),

homogeneous degree 0 in ξ such that

S(v, ξ) = S(v, ξ)∗ > 0 and S(v, ξ)A(v, ξ) = A(v, ξ)∗ S(v, ξ).

Theorem 2.4 Assume that A(v, ξ) admits a symbolic symmetrizer and take
T > 0, s > d

2 + 1. If

‖v‖L∞([0,T ];W 1,∞(Rd)) ≤ ω

and
sup
(
‖v‖L∞([0,T ];Hs(Rd)) , ‖∂tv‖L∞([0,T ];Hs−1(Rd))

)
≤ µ,

there exists K = K(ω) > 0 and C = C(µ), γ = γ(µ) so that for all u ∈
C 1([0, T ];Hm) ∩ C ([0, T ];Hm+1), d

2 + 1 < m ≤ s, we have

‖u(t)‖2Hm ≤ K eγt ‖u(0)‖2Hm + C

∫ t

0

eγ(t−τ) ‖Lvu(τ)‖2Hm dτ.

Proof As mentioned before, the proof takes advantage of Bony’s para-
differential calculus.

The idea is first to replace Lv by the para-differential operator

Pv = ∂t +
∑
α

TAα(v) ∂α.

To estimate the error, assume first that Aα vanishes at 0. Then by Proposition
C.9 and Theorem C.12, we have

‖Aα(v)u − TAα(v) u ‖Hm ≤ C ‖u‖L∞ ‖Aα(v)‖Hm ≤ K(‖v‖L∞) ‖v‖Hm ‖u‖L∞

for all u ∈ Hm (↪→ L∞). Hence

‖Pvu − Lvu ‖Hm ≤ K(‖v‖L∞) ‖v‖Hm ‖∇u‖L∞
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pointwisely in time for all u ∈ C 1([0, T ];Hm) ∩ C ([0, T ];Hm+1). By Sobolev
embedding this estimate merely implies

‖Pvu − Lvu ‖Hm ≤ C(‖v‖Hm) ‖u‖Hm .

In fact, the assumption Aα(0) = 0 is superfluous. Indeed, denoting Ãα(v) =
Aα(v) − Aα(0), we have

Aα(v) ∂α − TAα(v) ∂α = (Aα(0) ∂α − TAα(0) ∂α) + (Ãα(v) ∂α − T
Ãα(v)

∂α),

where the first term is a smoothing operator according to Theorem C.131 and
the second operator can be estimated as before.

Once we have the estimate for Pv − Lv, it suffices to show the result for the
operator Pv instead of Lv. Indeed, if

‖u(t)‖2Hm ≤ K eγt ‖u(0)‖2Hm + C

∫ t

0

eγ(t−τ) ‖Pvu(τ)‖2Hm dτ.

Then

‖u(t)‖2Hm ≤ K eγt ‖u(0)‖2Hm

+ 2C

∫ t

0

eγ(t−τ)
(
‖Lvu(τ)‖2Hm + C(‖v‖Hm)2 ‖u(τ)‖2Hm

)
dτ,

which implies by Gronwall’s Lemma

‖u(t)‖2Hm ≤ K eγ̃t ‖u(0)‖2Hm + C

∫ t

0

eγ̃(t−τ) ‖Lvu(τ)‖2Hm dτ,

with γ̃ = γ + C C(‖v‖Hm)2.
The next step is to use the symbolic symmetrizer S(v(x, t), ξ), which is

Lipschitz in x, to construct a functional symmetrizer for Pv. The outline is
a para-differential version of the proof of Theorem 2.2. Define the symbol
r(x, t, ξ) = λ2m(ξ)S(v(x, t), ξ). Up to a small-frequency cut-off, r(t) = r(·, t, ·)
belongs to Γ2m

1 (see Definition C.5) and thus is associated with a para-differential
operator Tr(t), simply denoted by Tr in what follows. The constants in the esti-
mates (C.4.45) of r and its derivatives depend boundedly on ‖v‖L∞([0,T ];W 1,∞(Rd)),
that is on ω. Furthermore, since r is everywhere positive-definite Hermitian we
know by G̊arding’s inequality (see Theorem C.18) there exist β = β(ω) > 0 and
K1 = K1(ω) > 0 such that

Re 〈Tr u , u〉 ≥ β ‖u‖2Hm − K1 ‖u‖2Hm−1/2

for all u ∈ Hm(Rd). Noting that

‖u‖2Hm−1/2 = 〈Λ2m−1 u , u〉,

1In fact, we need here only a special, easy case of Theorem C.13 because Aα(0) is constant.
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we may modify the symbol r into

r̃ = r + K1 λ2m−1

and get the estimate

Re 〈T
r̃
u , u〉 ≥ β ‖u‖2Hm

for the modified operator T
r̃
. We also have an upper bound (see Proposition

C.17)

|Re 〈T
r̃
u , u〉| ≤ K2(ω) ‖u‖2Hm

and T
∂tr̃

enjoys a similar estimate

|Re 〈T
∂tr̃

u , u〉| ≤ C(ω, ‖∂tv‖L∞(Rd×[0,T ])) ‖u‖2Hm .

Observing that ‖∂tv‖L∞(Rd×[0,T ]) is controlled by ‖∂tv‖Hs−1 (by Sobolev
embedding) and thus by µ, we shall merely write this new constant
C(ω, ‖∂tv‖L∞(Rd×[0,T ])) = C(ω, µ). Finally, from the symmetry of the symbol
r(x, t, ξ) a(v(x, t), ξ) we also have an estimate

|Re 〈(T
r̃

+ T ∗
r̃
)
∑
α

TAα(v)∂αu , u〉| ≤ K3(ω) ‖u‖2Hm .

The end of the proof is similar to the proof of Proposition 2.2. We have

d
dt

Re 〈T
r̃
u, u〉 = Re 〈(T

r̃
+ T ∗

r̃
)Pvu , u〉 − Re 〈(T

r̃
+ T ∗

r̃
)
∑
α

TAα(v)∂αu , u〉

+ Re 〈T
∂tr̃

u , u〉.

Denoting Σ = T
r̃

+ T ∗
r̃

and using the Cauchy–Schwarz inequality for the inner
product 〈Σ·, ·〉 we get from that identity

d
dt
〈Σu, u〉 ≤ 〈ΣPvu, Pvu〉 + 〈Σu, u〉 + 2K3(ω) ‖u‖2Hm + 2C(ω, µ) ‖u‖2Hm .

Hence

〈Σu(t), u(t)〉 ≤ 〈Σu(0), u(0)〉 +
∫ t

0

〈ΣPvu(τ), Pvu(τ)〉dτ

+
∫ t

0

(1 + 2 (K3(ω) + C(ω, µ))/β(ω)) 〈Σu(τ), u(τ)〉dτ.

Therefore by Gronwall’s Lemma, we have

〈Σu(t), u(t)〉 ≤ eγ t 〈Σu(0), u(0)〉 +
∫ t

0

eγ (t−τ) 〈ΣPvu(τ), Pvu(τ)〉dτ
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for γ ≥ (1 + 2 (K3(ω) + C(ω, µ))/β(ω)). Coming back to the usual Hm norm,
we get

‖u(t)‖2Hm ≤ K2(ω)
β(ω)

(
eγ t ‖u(0)‖2Hm +

∫ t

0

eγ (t−τ) ‖Pvu(τ)‖2Hm dτ

)
.

The proof is complete once we note that any ‘constant’ depending on ω a fortiori
depends boundedly on µ (by Sobolev embedding). �
Remark 2.3 The only point where we have used the assumption m > d

2 + 1 is
in the comparison between Lv and Pv. We shall see in the proof of Theorem 2.7
that we can bypass this assumption and still obtain energy estimates in the
Sobolev space of negative index H−s. Another possibility is to derive L2 esti-
mates, under the only assumption that v be W 1,∞ in both time and space. This
is the purpose of the next theorem.

Theorem 2.5 Assume that A(v, ξ) admits a symbolic symmetrizer and that

‖v‖W 1,∞(Rd×[0,T ])) ≤ ω.

Then there exists K = K(ω) > 0 and γ = γ(ω) so that for all u ∈ C 1([0, T ];L2) ∩
C ([0, T ];H1)

‖u(t)‖2L2 ≤ K

(
eγt ‖u(0)‖2L2 +

∫ t

0

eγ(t−τ) ‖Lvu(τ)‖2L2 dτ

)
. (2.1.12)

Proof We proceed exactly as in the proof of Theorem 2.4, just changing the way
of estimating Pv − Lv. Indeed, examining the second step of that proof shows
that it works for m = 1 as soon as we have bounds for ‖v‖L∞([0,T ];W 1,∞(Rd)) and
‖∂tv‖L∞([0,T ];L∞(Rd)), which is the case by assumption. The estimate of Pv − Lv

is given by Corollary C.4, namely

‖Pvu − Lvu‖L2 ≤ C max
α

‖Aα(v)‖W 1,∞ ‖u‖L2 ≤ C̃ ‖v‖W 1,∞ ‖u‖L2 .

�
Remark 2.4 The estimate (2.1.12) here above applies in fact to any u ∈
H1(Rd × [0, T ]) by a density argument. For, u ∈ H1(Rd × [0, t]) can be achieved
as the limit of a sequence uk ∈ D(Rd × [0, t]), in such a way that uk goes to u
in H1([0, t];L2(Rd)) ↪→ C ([0, t];L2(Rd)) and Lvuk goes to Lvu in L2(Rd × [0, t]).
Therefore, we can pass to the limit in the estimate (2.1.12) applied to uk, written
as

max
τ∈[0,t]

(
e−γτ ‖uk(τ)‖2L2

)
≤ K

(
‖uk(0)‖2L2 +

∫ t

0

e−γτ ‖Lvuk(τ)‖2L2 dτ

)
.
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Remark 2.5 If the operator Lv is Friedrichs symmetrizable, we also have a H1

estimate

‖u(t)‖2H1 ≤ K

(
eγt ‖u(0)‖2H1 +

∫ t

0

eγ(t−τ) ‖Lvu(τ)‖2H1 dτ

)
, (2.1.13)

for u ∈ C 1([0, T ];H1(Rd)) ∩ C ([0, T ];H2(Rd)) and v ∈ W 1,∞(Rd × (0, T )), with
K depending boundedly on ‖v‖L∞([0,T ];W 1,∞(Rd) and γ ≥ γ0 depending boundedly
on ‖v‖W 1,∞(Rd×[0,T ]).

The proof is most elementary. Denoting by S0(v) a Friedrichs symmetrizer,
we see that for v ∈ W 1,∞, the estimate in (2.1.13) is equivalent to

‖ũ(t)‖2H1 ≤ K̃

(
eγt ‖ũ(0)‖2H1 +

∫ t

0

eγ(t−τ) ‖L̃vũ(τ)‖2H1 dτ

)
,

where ũ(x, t) =
√

S0(v(x, t))u(x, t) and

L̃v = ∂t +
∑
α

Ã(v(x, t))α ∂α, with Ã(v) :=
√

S0(v)
−1

S0(v)Aα(v)
√

S0(v)
−1

being symmetric. Therefore, we can assume with no loss of generality (just
dropping the tildas) that the matrices Aα(v) are symmetric. Thanks to this
property we easily find that, for u smooth enough such that Lvu = f ,

d
dt
‖u‖2L2(Rd) = 2Re 〈u , f 〉,

d
dt

∑
β

‖∂βu‖2L2(Rd) + 2Re
∑
α,β

〈∂βu , ∂β(Aα(v)) ∂αu 〉 = 2Re
∑

β

〈∂βu , ∂βf 〉,

hence by taking the sum and using the Cauchy–Schwarz inequality,

d
dt
‖u‖2H1(Rd) ≤ γ ‖u‖2H1(Rd) + ‖f‖2H1(Rd),

with γ := 1 + maxα,β ‖∂β(Aα(v))‖L∞(Rd×(0,T )). After integration we get
(2.1.13) with K = 1. �

2.1.4 How energy estimates imply well-posedness

The energy estimate in (2.1.8) easily implies uniqueness by linearity, for smooth
enough solutions. The existence of a solution u ∈ C ([0, T ];Hs−1) for initial data
u(0) ∈ Hs can be obtained by a duality argument, applying the energy estimate
in (2.1.8) to −s and the adjoint operator L∗. The proof that u actually lies in
C ([0, T ];Hs) uses mollifiers, smooth solutions and their uniqueness. The whole
result can be stated as follows, keeping the same compressed notations as in
(2.0.2) and (2.0.3).

Theorem 2.6 We assume the system (2.0.1) has C∞
b coefficients and is sym-

metrizable in the sense that the operator P (t) admits a functional symmetrizer
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Σ(t). We take T > 0, s ∈ R and f ∈ L2(0, T ;Hs(Rd)), g ∈ Hs(Rd). Then there
exists a unique u ∈ C ([0, T ];Hs(Rd)) solution of the Cauchy problem

∂tu − P (t)u = f , u(0) = g.

Furthermore, there exists C > 0 (independent of u!) such that for all t ∈ [0, T ]

‖u(t)‖2Hs ≤ C

(
‖g‖2Hs +

∫ t

0

‖f(τ)‖2Hs dτ

)
. (2.1.14)

Finally, if f ∈ C∞([0, T ];H+∞(Rd)) and g ∈ H+∞(Rd) then u ∈
C∞([0, T ];H+∞(Rd)).

Remark 2.6 Of course the equation ∂tu − P (t)u = f is to be understood in
the sense of distributions when s is low enough.

Remark 2.7 If the bounds associated with the symmetrizer Σ(t) for t ∈ [0, T ]
are independent of T , and if the source term f is given in L2(R+;Hs(Rd)) then
the solution u is global and belongs to L2(R+;Hs(Rd)) too. If additionally, s = k
is a positive integer and if f belongs to Hk−1(Rd × R+), then u belongs to
Hk(Rd × R+). This is due to the following simple observation – which will also
be used in the context of Boundary Value Problems (Chapter 9).

Proposition 2.3 As soon as the coefficients Aα and B of the operator

P (t) = −
∑
α

Aα(·, t) ∂α + B(·, t)

are C∞
b functions of (x, t) on Rd × R+, any u ∈ L2(R+;Hk(Rd)) such that ∂tu −

P (t)u belongs to Hk−1(Rd × R+), with k a positive integer, actually belongs to
Hk(Rd × R+).

Proof If u ∈ L2(R+;Hk(Rd)) we can show indeed that for all m ∈ N and all
d-uple α such that m + |α| ≤ k, ∂m

t ∂αu belongs to L2(Rd × R+). This is trivial
if m = 0, because of the identification L2(R+;L2(Rd)) = L2(Rd × R+). The rest
of the proof works by finite induction on m, using the decomposition

∂m+1
t ∂αu = ∂m

t ∂α(∂tu − P (t)u) + ∂m
t ∂α(P (t)u),

with (∂tu − P (t)u) ∈ Hk−1(Rd × R+) and P (t)u ∈ L2(R+;Hk−1(Rd)). �

Proof of Theorem 2.6

Uniqueness As mentioned above, the uniqueness is easy to show. By linearity,
it is sufficient to show that the only solution in C ([0, T ];Hs(Rd)) for f ≡ 0 and
g ≡ 0 is u ≡ 0. But if u ∈ C ([0, T ];Hs(Rd)) satisfies (2.0.1) then necessarily u
belongs to C 1([0, T ];Hs−1(Rd)). So we can apply Theorem 2.1 to the index
s− 1. For u(0) = g ≡ 0 and Lu = f ≡ 0 this gives u ≡ 0.
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Existence in C ([0, T ];Hs−1) We note that the adjoint operator

L∗ = − ∂t −
∑
α

Aα(x, t)T∂α −
∑
α

∂αAα(x, t)T − BT

(or its opposite, to fit with the standard time evolution) is also symmetrizable.
As a matter of fact, Σ(t)−1 is a functional symmetrizer for P (t)∗. In particular,
the estimate (2.1.9) in Remark 2.1 can be applied to L∗. Now we introduce the
space

E := {ϕ ∈ C∞([0, T ];H+∞(Rd)) ; ϕ(T ) = 0 }.

Applying (2.1.9) to −s (where s is the regularity index of the source term f) and
L∗ instead of L yields the estimate

‖ϕ(t)‖2H−s ≤ C

∫ T

0

‖L∗ϕ(τ)‖2H−s dτ (2.1.15)

for all ϕ ∈ E and t ∈ [0, T ]. Hence the operator L∗ restricted to E is one-to-one.
This enables us to define a unique linear form � on L∗E by

�(L∗ϕ) =
∫ T

0

〈 f(t) , ϕ(t) 〉Hs,H−s dt + 〈 g , ϕ(0) 〉Hs,H−s . (2.1.16)

By (2.1.15) and the Cauchy–Schwarz inequality, we see that

�(L∗ϕ)2 ≤ 2C (T ‖f‖2L2(0,T ;Hs) + ‖g‖2Hs ) ‖L∗ϕ‖2L2(0,T ;H−s).

By the Hahn–Banach theorem, � thus extends to a continuous form
on L2(0, T ;H−s). And by the Riesz theorem, we find u ∈ L2(0, T ;Hs) =
L2(0, T ;H−s)′ such that

�(L∗ϕ) =
∫ T

0

〈u(t) , L∗ϕ(t) 〉Hs,H−s dt (2.1.17)

for all ϕ ∈ E . In particular, for ϕ ∈ D(Rd × (0, T )) we get that∫ T

0

〈 f(t) , ϕ(t) 〉Hs,H−s dt =
∫ T

0

〈Lu(t) , ϕ(t) 〉Hs,H−s dt.

In other words, we have Lu = f in the sense of distributions. This implies that
∂tu = P (t)u + f belongs to L2(0, T ;Hs−1), hence u belongs to C ([0, T ];Hs−1).
Finally, integrating by parts in (2.1.17), substituting Lu = f and using (2.1.16),
we obtain

〈 g , ϕ(0) 〉Hs,H−s = 〈u(0) , ϕ(0) 〉Hs−1,H−s+1

for all ϕ ∈ D(Rd × [0, T )). A standard argument then shows that u(0) = g.
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Regularity If f belongs to C∞([0, T ];H+∞(Rd)) and g belongs to H+∞(Rd)
then u belongs to C ([0, T ];H+∞(Rd)) from the above construction applied to
arbitrary large s. The equation ∂tu = P (t)u + f then implies that u belongs
to C k([0, T ];H+∞(Rd)) for all k ∈ N. If f and g are less regular, we can use
mollifiers to construct sequences fk ∈ D(Rd × [0, T ]) and gk ∈ D(Rd) such that

fk
L2(0,T ;Hs)−−−−−−−→

k→∞
f , gk

Hs

−−−−→
k→∞

g.

For all k there is a solution uk ∈ C∞([0, T ];H+∞(Rd)) corresponding to the
source term fk and the initial data gk. Applying the estimate in (2.1.8) to uk −
um yields the inequality

‖uk(t)− um(t)‖2Hs ≤ C

(
‖gk − gm‖2Hs +

∫ t

0

‖fk − fm(τ)‖2Hs dτ

)
for all k, m ∈ N. This implies that (uk) is a Cauchy sequence in C ([0, T ];Hs)
and thus converges, say towards ũ ∈ C ([0, T ];Hs). In the limit we have Lũ = f
and ũ(0) = g. By uniqueness (in C ([0, T ];Hs−1)), we have ũ = u, the solution
constructed by a duality argument. Observe then that ũ = u satisfies the energy
estimate in (2.1.14) by passing to the limit in (2.1.8) applied to uk. This completes
the proof. �
Remark 2.8 The end of this proof is sometimes referred to as a weak=strong
argument. Indeed, if we say a strong solution is a solution that is the limit of
infinitely smooth solutions of regularized problems, and a weak solution the one
obtained by duality, it shows that any weak solution is necessarily a strong one.

Remark 2.9 This theorem is also valid backward, that is, prescribing u(T )
instead of u(0). This fact will be used in the application of the Holmgren Principle
below.

Remark 2.10 In the proof above, we have crucially used the infinite smooth-
ness of coefficients. In fact, Hs-well-posedness is also true for Hs coefficients
provided that s is large enough. We reproduce from [132] the corresponding
precise result below, which is the continuation of Theorem 2.4 and is useful in
non-linear analysis.

Theorem 2.7 Assume s > d
2 + 1 and take T > 0. For a function v belonging

to L∞([0, T ];Hs(Rd)) ∩ C ([0, T ];Hs
w(Rd)) and such that

∂tv ∈ L∞([0, T ];Hs−1(Rd)) ∩ C ([0, T ];Hs−1
w (Rd)),

we consider the differential operator

Lv = ∂t +
∑
α

Aα(v(x, t)) ∂α,

where the n× n matrices Aα are C∞ functions of their argument v ∈ Rn.
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If A(v, ξ) =
∑

α Aα(v)ξα admits a symbolic symmetrizer, then for all

f ∈ L∞([0, T ];Hs(Rd)) ∩ C ([0, T ];Hs
w(Rd)) and g ∈ Hs(Rd),

the Cauchy problem

Lvu = f , u(0) = g

has a unique solution u ∈ L2([0, T ];Hs(Rd)). Furthermore, u belongs to
C ([0, T ];Hs(Rd)) and enjoys an estimate

‖u(t)‖2Hs ≤ K eγt ‖u(0)‖2Hs + C

∫ t

0

eγ(t−τ) ‖Lvu(τ)‖2Hs dτ ,

where K > 0 depends boundedly on ‖v‖L∞([0,T ];W 1,∞(Rd)) and C, γ depend bound-
edly on

sup
(
‖v‖L∞([0,T ];Hs(Rd)) , ‖∂tv‖L∞([0,T ];Hs−1(Rd))

)
.

Sketch of proof As for Theorem 2.6, the existence part of the proof uses the
adjoint operator

L∗
v = −∂t −

∑
α

∂α (Aα(v))T

of Lv and energy estimates in the space of negative index H−s. The existence of a
symmetrizer for L∗

v, namely S−1, is of course crucial to derive those estimates. By
Theorem 2.4 it does imply an energy estimate, though a priori only in Hm with
m > d

2 + 1. However, as already observed in Remark 2.3, the only place where
the proof of Theorem 2.4 makes use of the restriction on m is in the comparison
between L∗

v and

P ∗
v = −∂t −

∑
α

∂α T(Aα(v))∗ .

If we invoke Proposition C.15, which shows that

‖ (L∗
v − P ∗

v )φ‖H−s ≤ C(‖v‖Hs) ‖φ ‖H−s

for all φ ∈ C∞
0 (Rd × [0, T ]), and perform the estimate of ‖φ‖H−s in terms of

‖P ∗
v φ‖H−s as in the proof of Theorem 2.4, we eventually obtain

‖φ(t)‖2H−s ≤ K eγt ‖φ(0)‖2H−s + C

∫ t

0

eγ(t−τ) ‖Lvφ(τ)‖2H−s dτ

for all φ ∈ D(Rd × [0, T ]). Once we have this estimate, the same arguments
as in the proof of Theorem 2.6 show the existence of a solution u ∈
L2([0, T ],Hs). Using the equation Lvu = f , we see that additionally u ∈
H1([0, T ];Hs−1(Rd)) ↪→ C ([0, T ];Hs−1(Rd)).

The rest of the proof consists in showing more regularity on u. This can
be done thanks to the estimate in Theorem 2.4 for m = s and a weak-strong
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argument, the latter being also used to prove u satisfies the Hs energy estimate
(hence its uniqueness). See [132] for more details. (Also see the proof of Theorem
2.8 hereafter for a similar method in L2.) �

Theorem 2.7 deals with smooth solutions. There is also a L2-well-posedness
result for Lipschitz coefficients, relying on the energy estimate (2.1.12) in Theo-
rem 2.5, which can be stated as follows.

Theorem 2.8 Let v belong to W 1,∞(Rd × (0, T )), and consider the operator

Lv = ∂t +
∑
α

Aα(v(x, t)) ∂α,

where Aα are C∞ functions of their argument v ∈ Rn and A(v, ξ) =∑
α ξαAα(v) admits a symbolic symmetrizer. Then for all f ∈ L2(Rd × (0, T ))

and g ∈ L2(Rd), the Cauchy problem

Lvu = f , u(0) = g

has a unique solution u ∈ C ([0, T ];L2(Rd)), which enjoys the estimate

‖u(t)‖2L2 ≤ K

(
eγt ‖u(0)‖2L2 +

∫ t

0

eγ(t−τ) ‖f(τ)‖2L2 dτ

)
,

where K > 0 and γ > 0 depend boundedly on ‖v‖W 1,∞(Rd).

Proof Using the energy estimate (2.1.12) in Theorem 2.5, we can find a weak
solution u ∈ L2([0, T ];L2(Rd)) by the same duality argument as in the proof of
Theorem 2.7, with H±s replaced by L2. It remains to show u in fact belongs to
C ([0, T ];L2(Rd)), and does satisfy the L2 energy estimate in (2.1.12).

We take a mollifying kernel ρ ∈ D∞(Rd; R+), define ρε(x) = ε−d ρ(x/ε), and
consider the operator Rε associated with the convolution by ρε. Then uε := Rεu
belongs to L2([0, T ];H+∞(Rd)) and goes to u in L2([0, T ];L2(Rd)), and similarly
for fε := Rεf , while gε := Rεg belongs to H+∞(Rd) and goes to g in L2(Rd) when
ε goes to zero. Furthermore, by Theorem C.14 we have

lim
ε→0

‖[Lv, Rε]u(t)‖L2(Rd) = 0.

Therefore,

∂tuε = fε + Lv uε − [Lv, Rε]u

belongs to L2([0, T ];L2(Rd)), and consequently uε belongs to H1(Rd × [0, T ]).
Thanks to Remark 2.4 this additional regularity of uε allows us to apply the
energy estimate in (2.1.12) (Theorem 2.5) to uε, and of course also to uε − uε′ .
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Hence

‖uε(t)− uε′(t)‖2L2 ≤ K

(
eγt ‖uε(0)− uε′(0)‖2L2

+
∫ t

0

eγ(t−τ)‖Lvuε(τ)− Lvuε′(τ)‖2L2dτ

)
for all ε, ε′ ∈ (0, 1). Since uε(0) = gε goes to u(0) = g in L2(Rd), and (using
the Lebesgue theorem in the time direction),

Lvuε = fε + [Lv, Rε]u

goes to Lvu = f in L2(Rd × (0, T )), the inequality here above implies that
(uε) is a Cauchy sequence in C ([0, T ];L2(Rd)). By uniqueness of limits in
L2([0, T ];L2(Rd)) (and the Lebesgue theorem again), u is necessarily the limit
of (uε) in C ([0, T ];L2(Rd)). Finally, by passing to the limit in

‖uε(t)‖2L2 ≤ K

(
eγt ‖uε(0)‖2L2 +

∫ t

0

eγ(t−τ) ‖Lvuε(τ)‖2L2 dτ

)
we obtain

‖u(t)‖2L2 ≤ K

(
eγt ‖u(0)‖2L2 +

∫ t

0

eγ(t−τ) ‖Lvu(τ)‖2L2 dτ

)
.

Uniqueness readily follows from this estimate. �
Finally, for Friedrichs-symmetrizable systems with Lipschitz coefficients, H1-

well-posedness also holds true, as stated in the following result, which will be
used in the Initial Boundary Value Problem theory.

Theorem 2.9 Assume v ∈ W 1,∞(Rd × (0, T )) and the operator

∂t +
∑
α

Aα(w) ∂α

is Friedrichs symmetrizable for w in a domain containing the range of v. (As
usual, Aα are supposed to be C∞ functions of w, and so the Friedrichs sym-
metrizer.) Then for all g ∈ H1(Rd), the Cauchy problem

Lvu = 0 , u(0) = g

has a unique solution u ∈ C ([0, T ];H1(Rd)) ∩ C 1([0, T ];L2(Rd)).

Proof Unsurprisingly, the proof relies on a regularization of the coefficients
and on the H1 estimate in (2.1.13). Consider a mollifier ρε and vε = ρε ∗ v.
Then vε is bounded independently of ε in W 1,∞(Rd × (0, T )) and goes to v in
C ([0, T ];L∞(Rd)). By Theorem 2.6, the Cauchy problem

Lvε
uε = 0 , uε(0) = ρε ∗ g
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admits a unique solution uε ∈ C∞([0, T ];H∞(Rd)). Applying (2.1.13) to uε we
see (uε) is uniformly bounded in C ([0, T ];H1(Rd)). Furthermore, (uε) is a Cauchy
sequence in C ([0, T ];L2(Rd)). Indeed, by the L2 energy estimate (2.1.12), we have

‖uε(t) − uε′(t)‖L2(Rd)) ≤ K

(
eγt ‖uε(0) − uε′(0)‖2L2

+
∫ t

0

eγ(t−τ) ‖Lv(uε − uε′)(τ)‖2L2 dτ

)
and

‖Lv(uε − uε′)(τ)‖L2 ≤ ( ‖uε‖C ([0,T ];H1(Rd)) + ‖uε′ ‖C ([0,T ];H1(Rd)) )

× max
α

‖Aα(vε) − Aα(vε′)‖C ([0,T ];L∞(Rd)).

Therefore, uε converges to some u ∈ C ([0, T ];L2(Rd)). Furthermore, for all t ∈
[0, T ], uε(t) belongs to H1(Rd) by weak compactness of bounded balls in H1(Rd),
and by L2–H1 interpolation, uε converges to u in C ([0, T ];Hs(Rd)) for all s ∈
[0, 1). It is not obvious that u belongs to C ([0, T ];H1(Rd)) though. If we can
prove that u is continuous at t = 0 in the space H1(Rd), then for the same
reason, by translating time it will also be right continuous at any t0 ∈ [0, T ], as
well as left continuous by reversing the time. Now by an ε/3 argument together
with the continuity of uε at t = 0, the convergence of ρε ∗ g to g in Hs and the
convergence of uε to u in C ([0, T ];Hs(Rd)), we already see that

lim
t↘0

‖u(t) − g‖Hs(Rd) = 0

for all s ∈ [0, 1), and we want to prove that

lim
t↘0

‖u(t) − g‖H1(Rd) = 0.

We can first show that u(t) converges to g as t goes to 0+ in H1
w(Rd), the Sobolev

space H1(Rd) equipped with the weak topology. Indeed, for all φ in H−1 and
ψ ∈ H−s (for s < 1), we have

| 〈φ , u(t)− g 〉H−1,H1 | ≤ ‖u(t)− g‖H1 ‖φ− ψ‖H−1 + ‖ψ‖H−s ‖u(t)− g‖Hs ,

in which ‖φ− ψ‖H−1 can be made arbitrarily small, ‖u(t)− g‖H1 is bounded
independently of t and ‖u(t)− g‖Hs is already known to go to zero with t. So by
a standard result on weak topology, the strong convergence of u(t) to g in H1

will be proved if we can show that

lim sup
t↘0

‖u(t)‖H1 ≤ ‖g‖H1 .

And this inequality is a (tricky) consequence of (2.1.13) applied to uε, or more
precisely of the refined version

‖uε(t)‖1,vε(t) ≤ eγt ‖uε(0)‖1,vε
, (2.1.18)
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where we have defined a modified, equivalent norm on H1 by

‖u‖21,v = ‖
√

S0(v) u‖L2 +
∑
α

‖
√

S0(v) ∂αu‖2L2 ,

with S0 a Friedrichs symmetrizer of the operator. We postpone the proof of
(2.1.18) for a moment, and complete the proof of Theorem 2.9. Observe that
(uε(t)) also converges to u(t) uniformly on [0, T ] in H1

w. Indeed, for all φ in H−1

and ψ ∈ H−s with s ∈ (0, 1), we have

sup
t∈[0,T ]

| 〈φ , (uε − u)(t) 〉H−1,H1 | ≤ ‖uε − u‖C ([0,T ];H1(Rd)) ‖φ− ψ‖H−1

+ ‖ψ‖H−s ‖uε − u‖C ([0,T ];Hs(Rd)),

where the first term in the right-hand side can be made arbitrarily small, and
the second term is already known to tend to 0. Therefore, using the convergence
of vε in C ([0, T ];L∞(Rd)), we get by passing to the limit in (2.1.18),

sup
τ∈[0,t]

‖u(t)‖1,v(t) ≤ lim sup
ε↘0

sup
τ∈[0,t]

‖uε(t)‖1,vε
≤ eγt ‖g‖1,v(0),

hence

lim sup
t↘0

‖u(t)‖1,v(t) ≤ ‖g‖1,v(0).

This shows that u(t) does go to g strongly in H1 when t goes to zero.
In conclusion, up to manipulating the time as explained above, this implies
u belongs to C ([0, T ];H1(Rd)), and by passing to the limit in Lvε

uε =
0 in the sense of distributions, Lvu = 0, which implies u is also in
C 1([0, T ];L2(Rd)). �
Proof of the inequality in (2.1.18) We omit the subscript ε. Revisiting the
proof of (2.1.13) (in the case Lvu = 0) and differentiating the equation

∂tu +
∑
α

Aα(v) ∂αu = 0

before multiplying by S0(v), we get

∂t∂βu +
∑
α

Aα(v) ∂α∂βu =
∑
α

[∂β , Aα(v)∂α]u,

where

‖[∂β , Aα(v)∂α]u(t)‖L2(Rd) ≤ ‖Aα(v(t))‖W 1,∞(Rd) ‖u(t)‖H1(Rd).
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Now we compute

d
dt
‖u(t)‖21,v(t) = 〈Rvu, u〉 +

∑
β

〈Rv∂βu, ∂βu〉

+ 2 Re
∑
α,β

〈S0(v)∂βu , [∂β , Aα(v)∂α]u 〉,

where

Rv := ∂tS0(v) +
∑
α

∂α(S0(v)Aα(v)),

and infer by the Cauchy–Schwarz inequality that

d
dt
‖u(t)‖1,v(t) ≤ γ ‖u(t)‖1,v(t),

with

γ :=
1
2
‖S0(v)−1‖L∞(Rd×[0,T ]) (‖Rv‖L∞(Rd×[0,T ]) +

∑
α

‖Aα(v(t))‖W 1,∞(Rd) ).

�

2.2 Local uniqueness and finite-speed propagation

Most of the definitions introduced in Chapter 1 extend to the variable-coefficient
systems by ‘freezing’ the coefficients. We already used the notions of Friedrichs-
symmetrizable systems (Definition 2.1) and constantly hyperbolic systems (in
Theorem 2.3) as a generalization of Definition 1.2. In view of Definition 1.5, we
can also associate to system (2.0.1) a characteristic cone

char(x, t) := { (ξ, λ) ∈ Rd × R ; det(A(x, t, ξ) + λIn) = 0 }

at each point (x, t) ∈ Rd × R+, and the corresponding forward cone Γ(x, t), which
is the connected component of (0, 1) in (Rd × R) \ char(x, t). Additionally, for a
symmetrizable system with symbolic symmetrizer S(x, t, ξ), we can also define

Υ(x, t) = { (ξ, τ) ∈ Rd × R ;S(x, t, ξ) ( τ In + A(x, t, ξ) ) > 0 }, (2.2.19)

where positivity is to be understood in the sense of Hermitian matrices. Observe
that the set Υ(x, t) is still an open cone due to the homogeneity degree 0 of S in
ξ. If the operator L is constantly hyperbolic, then Γ(x, t) is the set of (ξ, λ) such
that all the roots τ of the equation

det (A(x, t, ξ) + (λ + τ)In ) = 0

are strictly negative, that is,

Γ(x, t) = { (ξ, λ) ; Sp(λ In + A(x, t, ξ)) ⊂ (0,+∞) }.
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We thus have, for a system both Friedrichs symmetrizable and constantly hyper-
bolic,

Γ(x, t) = { (ξ, λ) ; S(x, t, ξ) (λ In + A(x, t, ξ) ) > 0 } = Υ(x, t)

for any symmetrizer S(x, t, ξ).

Definition 2.5 Let H be a smooth hypersurface in Rd × R+. Denoting by �n the
normal vector to H, we say that H is

i) characteristic at point (x, t) if �n(x, t) ∈ char(x, t),
ii) space-like at point (x, t) if �n(x, t) ∈ −Γ(x, t) ∪ Γ(x, t).

If i), or respectively ii), holds for all (x, t), H is simply said to be characteristic,
or space-like, respectively.

By definition of Γ, a space-like surface is, of course, not characteristic. And
the most natural example of a space-like surface is { t = 0 }! The interest of
space-like surfaces is that they are associated with local uniqueness results.

Theorem 2.10

i) Assuming that the system (2.0.1) is constantly hyperbolic and f ≡ 0, let H
be a space-like hypersurface at (x0, t0). Then there exists a neighbourhood
N of (x0, t0) such that, if u is a C 1 solution of (2.0.1) in N and u|H∩N ≡
0 then u|N ≡ 0. (The reader may refer to Figure 2.1.)

ii) Assuming that the system (2.0.1) is Friedrichs symmetrizable and f ≡ 0,
let L be a lens made of two space-like surfaces, H and K , sharing the

H

(x0,t0)
x

N

t

Figure 2.1: Illustration of local uniqueness for constantly hyperbolic systems
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t

x

H

K

L

Figure 2.2: Illustration of local uniqueness for Friedrichs-symmetrizable systems

same boundary. If u is a C 1 solution of (2.0.1) in L and if u ≡ 0 on H,
for instance, then u ≡ 0 also on K . (The reader may refer to Figure 2.2.)

Proof We begin with ii), the proof of which is more elementary. It is analogous
to the localized computations performed in Sections 1.3.1 and 1.3.3. We denote
by S0 a Friedrichs symmetrizer of (2.0.1). Multiplying (2.0.1) by u∗ S0 we get∫

L
∂t(S0u, u) +

∫
L

∑
α∂α(S0A

αu, u) =
∫
L
(Ru, u),

where R := ∂tS0 +
∑

α∂α(S0A
α) + S0B + BTS0 (like in Proposition 2.2). Inte-

grating the left-hand side yields the equality∫
K

n0 (S0u, u) +
∫

K

∑
αnα(S0A

αu, u)

=
∫
H

n0 (S0u, u) +
∫
H

∑
αnα(S0A

αu, u) +
∫
L
(Ru, u) ,

where n0 denotes the t-component and nα the xα-component of �n. Since �n
belongs to −Υ ∪Υ, the matrix S0 (n0 In +

∑
αnαAα ) is definite, with the same

sign at all points (x, t) of ∂L by continuity. Assume, for instance, that it is
positive. Then there exists γ > 0 such that

S0 (n0 In +
∑

αnαAα ) ≥ γ In
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in ∂L. Hence we have

γ

∫
K

‖u‖2 ≤ C

(∫
H
‖u‖2 +

∫
L
‖u‖2

)
,

where C = maxL(‖S0‖+
∑

α‖S0A
α‖, ‖R‖). By the multidimensional Gronwall’s

Lemma (see Lemma A.3 in Appendix A) we conclude that there exists C ′

(independent of u) so that ∫
K

‖u‖2 ≤ C ′
∫
H
‖u‖2.

If u|H ≡ 0 then clearly u|K ≡ 0. �
Proof of i) The proof relies on a change of variables, transforming H into the
hyperplane {t = 0} and preserving constant hyperbolicity, and on the Holmgrem
principle applied to the new (Cauchy) problem. We consider a local diffeomor-
phism χ such that χ(x0, t0) = (0, 0) and

H̃ := χ(H) = { (x̃, t̃) ; t̃ = 0 }.

In particular, ∇(x,t)t̃ is parallel to �n. We can even choose χ so that

∂tt̃ = n0 , ∂αt̃ = nα.

The transformed operator L̃ under χ is defined by

(L̃v)(x̃, t̃) = L(v ◦ χ)(x, t).

More specifically, it reads

L̃ = Ã0∂
t̃

+
∑
α

Ãα∂
x̃α

− B̃,

where

Ã0(x̃, t̃) = n0 In +
∑

β

nβAβ(x, t) , Ãα(x̃, t̃) = ∂tx̃α In +
∑

β

(∂xβ
x̃α)Aβ(x, t)

and B̃(x̃, t̃) = B(x, t). Note that Ã0(0, 0) is an invertible matrix since �n(x0, t0) �∈
char(x0, t0). Furthermore, we have

τ̃ Ã0(x̃, t̃) + Ã(x̃, t̃, ξ̃) = ( τ̃ n0 + λ ) In + A(x, t, ξ + τ̃ ν), (2.2.20)

where ν = (n1, · · · , nd) and

λ = ξ̃ · ∂tx̃ , ξ =
∑

β

ξ̃β ∇xx̃β .

Observing that

(ξ, λ) = (ξ̃, 0) dχ(x, t) and �n = (ν, n0) = (0, 1) dχ(x, t),
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we see that (ξ, λ) and (ν, n0) are not parallel, unless ξ̃ = 0. By assumption, either
�n(x0, t0) or −�n(x0, t0) belongs to Γ(x0, t0). Then we know from Theorem 1.5 of
Chapter 1 that the operator is constantly hyperbolic in the direction �n, which
means that for all (ξ, λ) not parallel to �n = (ν, n0), the roots σ of the polynomial

det(A(x0, t0, ξ + σν) + (λ + σn0)In)

are real with constant multiplicities. Because of (2.2.20) this shows that the roots
τ̃ of

det( τ̃ Ã0(0, 0) + Ã(0, 0, ξ̃, τ̃) )

are real with constant multiplicities for ξ̃ �= 0. This means that the transformed
operator L̃ is constantly hyperbolic at point (0, 0), and thus also in the neigh-
bourhood of (0, 0). Up to replacing Ãα(x, t) by Ãα( θ(‖(x, t)‖) (x, t) ) for all
α ∈ {0, · · · , d}, where θ is a smooth cut-off function, we can assume that L̃
is globally defined, constantly hyperbolic, and has constant coefficients outside
some bounded ball. So we are led to show the result for L̃ instead of L, and
H̃ := { (x̃, t̃) ; t̃ = 0 } instead of H.

From now on we drop the tildas. The (hyperbolic system associated with)
operator L∗ meets the assumptions of Theorem 2.3. Thus Theorem 2.6 applies
to L∗. This will enable us to apply the Holmgren principle to L.

We must show the existence of a neighbourhood N of (0, 0) such that
if u is a C 1 solution of Lu = 0 in N and u(x, 0) = 0 for (x, 0) ∈ N then
u(x, t) = 0 for all (x, t) ∈ N . Without loss of generality, we can consider a conical
neighbourhood N , foliated by the hypersurfaces with boundary

Hθ := { (x, t) ; θ3 ‖x‖2 − V 2 ( t − θ T )2 + θ2 V 2 T 2 (1− θ) = 0 ,
0 ≤ t ≤ θ T , ‖x‖ ≤ V T } , θ ∈ [0, 1) .

(The reader may refer to Fig. 2.3.) Choosing

V = max { |λj(x, t, ξ)| ; ‖ξ‖ = 1 },

where λj(x, t, ξ) denote, as usual, the eigenvalues of A(x, t, ξ) (recall that
A(x, t, ξ) has been modified to be independent of (x, t) outside a bounded ball), it
is not difficult to show that all the hypersurfaces Hθ are space-like, as H0 ⊂ H.
To be precise, one can compute that a unit normal vector to Hθ at point
(x, t) reads �n = (ν, n0) = �N/‖ �N‖ where �N := ( θ3 x , V 2(θT − t) ). And thus the
matrix (A(x, t, ν) + n0In) has eigenvalues

µj =
1

‖ �N‖
(
V 2(θT − t) + λj(x, t, θ3x)

)
.

By definition of V , we have

|λj(x, t, θ3x)| ≤ V θ3 ‖x‖,



Local uniqueness and finite-speed propagation 77

H θ

H
0

T

V T

t

x

Figure 2.3: Foliation of a conical neighbourhood N of (0, 0)

and thus ∣∣∣∣λj(x, t, θ3x)
V 2(θT − t)

∣∣∣∣ ≤ θ3 ‖x‖√
θ3 ‖x‖2 + θ2 V 2 T 2 (1− θ)

< 1 on Hθ.

This proves that µj > 0 and thus �n belongs to −Γ. Therefore, Hθ is space-like.
Now, similarly as in the first part of the proof, we can transform by change

of variable the problem {
L∗ϕ = 0 ,
ϕ|Hθ

= g
(2.2.21)

for g ∈ D(Hθ) into a standard Cauchy problem{
L̃∗ϕ̃ = 0 ,
ϕ̃|̃

t=0
= g̃ ,

with L̃∗ being constantly hyperbolic and having constant coefficients outside a
bounded ball. So by Theorems 2.3 and 2.6 the problem (2.2.21) admits a unique
smooth solution ϕ. Now, denoting by Lθ the lens lying in between Hθ and H0,
we have for all C 1 solution u of Lu = 0 in N

0 =
∫
Lθ

(ϕ,Lu) −
∫
Lθ

(L∗ϕ, u) =
∫
Hθ

(g, (n0 +
∑

αnα Aα )u) −
∫
H0

(ϕ, u),
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where �n = (n1, · · · , nd, n0) denotes the normal vector to Hθ. Thus if u(x, 0) = 0
for all (x, 0) ∈ N we see that∫

Hθ

( g, (n0 +
∑

αnα Aα )u ) = 0.

Since this holds for any g this implies that

(n0 +
∑

αnα Aα )u ≡ 0

on Hθ. But the matrix (n0 +
∑

αnα Aα ) is known to be invertible since �n does
not belong to the characteristic cone. Finally, this shows that u ≡ 0 on Hθ for
all θ. �

Theorem 2.10 has a counterpart/consequence in terms of finite-speed propa-
gation, which is as follows.

Theorem 2.11

i) We assume that the system (2.0.1) is constantly hyperbolic and has
constant coefficients outside a compact set. We also take f ≡ 0, and set

V = max { |λj(x, t, ξ)| ; ‖ξ‖ = 1 },

with λj(x, t, ξ) the eigenvalues of A(x, t, ξ). To any point (X,T ) ∈ Rd ×
(0,+∞) we associate the conical set

C :=
⋃

0<t<T

Ω(t)× {t} with Ω(t) := {x ; ‖x−X‖ < V (T − t) },

0 ≤ t < T.

If u ∈ C 1([0, T ];Hs) is a (weak) solution of (2.0.1) (with s ∈ R) such that
u|Ω(0) = 0, then u|C = 0.

ii) Assuming that the system (2.0.1) is Friedrichs symmetrizable (and still
f ≡ 0), the same result holds on changing the balls Ω(t) to the convex sets

Ω(t) :=
⋂

‖ξ‖=1

{x ; v(ξ)(t− T ) + ξ · (x−X) ≤ 0 },

where

v(ξ) := max
(x,t)

max { v ∈ R ; (ξ, v) ∈ char(x, t) }.

Proof i) We first show the result for u ∈ C 1(Rd × [0, T ]) a smooth solution.
The proof is based on a connectedness argument using Theorem 2.10 i). We take
ε ∈ (0, T ) and define Tε = T − ε,

Cε := {x ; 0 < t < Tε , ‖x−X‖ < V (Tε − t) }.
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Similarly as in the proof of Theorem 2.10 i), we can construct space-like surfaces
Hε

θ, depending smoothly on θ, such that

Cε =
⋃

θ∈(0,1)

Hε
θ and Hε

0 ⊂ Ω(0).

Then, if u ∈ C 1(Rd × [0, T ]) is the solution of (2.0.1) and u|Ω(0) = 0, the set

Θ := { θ ∈ [0, 1) ; u|Hθ
≡ 0 }

of course contains 0, and is a closed subset of [0, 1) by a continuity argument.
But, covering the compact sets Hθ by a finite number of neighbourhoods N ,
Theorem 2.10 i) also shows that Θ is open. Therefore, we have Θ = [0, 1), which
means that u ≡ 0 on Cε =

⋃
0<t<Tε

Ω(t)× {t}.
In general, we can proceed by regularization. Setting f := Lu and g := u|t=0,

we have by assumption that f = 0 in
⋃

0<t<T Ω(t) and g = 0 in Ω(0). Introducing
a mollifier ρk in Rd, the Cauchy problem

Lv = f ∗ ρk , v|t=0 = g ∗ ρk,

has a unique solution v = uk, which is in C 1(Rd × [0, T ]) by Theorem 2.6. For
k large enough, we have f ∗ ρk = 0 in Cε and g ∗ ρk = 0 in Hε

0 (with the same
notations as before). We thus infer that, for k large enough, uk = 0 in Cε by the
first part of the proof. But the energy estimate in (2.1.14) shows that

uk
C ([0,T ];Hs)−−−−−−−−→

n→∞
u,

since

Luk = f ∗ ρk
C ([0,T ];Hs)−−−−−−−−→

k→∞
f = Lu and uk|t=0 = g ∗ ρk

Hs

−−−−→
n→∞

g = u|t=0.

Passing to the limit, we conclude that u = 0 in Cε.
ii) The proof is a natural generalization of Section 1.3.1. It is roughly the

same as in Theorem 2.10 ii), except that we are going to consider lenses L that
are only weakly space-like. Let us consider

Lε :=
⋃

0≤s≤T−ε

Ω(s)× {s}.

The boundary of Lε is made of three parts, the bottom T = Ω(0)× {0}, the top
Tε = Ω(T − ε)× {T − ε}, and the side S. The top and bottom are obviously
space-like. As regards the side, for all (y, s) ∈ S, there exists ξ0 such that

{ (x, t) ; v(ξ0)(t− T ) + ξ0 · (x−X) = 0 }
is a hyperplane of support for Lε at point (y, s). A normal vector to Lε at point
(y, s) is necessarily of the form �n = (ξ0, v0; = v(ξ0)). By definition of v(ξ), we
know that v0 is not smaller than any v such that the matrix vIn + A(y, s, ξ0)
is singular. Therefore, all the eigenvalues of v0In + A(y, s, ξ0) are non-negative.
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This implies in particular that the symmetric matrix S0(y, s) (v0In + A(y, s, ξ0))
is non-negative. Therefore, integrating by parts the identity∫

Lε

∂t(S0u, u) +
∫
Lε

∑
α∂α(S0A

αu, u) =
∫
Lε

(Ru, u),

(with the same notations as in the proof of Theorem 2.10ii)), we get

0 ≥
∫
Tε

(S0u, u) +
∫
Lε

(Ru, u),

if u vanishes on the bottom. Then by the Cauchy–Schwarz inequality and the
definiteness of S0, there exists α > 0 such that∫

Tε

‖u‖2 ≤ α

∫
Lε

‖u‖2.

Since this holds for all ε ∈ (0, T ], we can conclude by the Gronwall Lemma. �

2.3 Non-decaying infinitely smooth data

As a consequence of Theorem 2.11, we have that, under either one of the
assumptions, the Cauchy problem can be uniquely solved for any smooth data,
without any assumption on their far-field behaviour.

Theorem 2.12 We assume that the system (2.0.1) is either constantly hyper-
bolic with constant coefficients outside a compact set, or Friedrichs symmetriz-
able. Then, for f ∈ C∞(Rd × [0, T ]) and g ∈ C∞(Rd), there exists a unique
u ∈ C∞(Rd × [0, T ]) such that

Lu = f and u|t=0 = g.

Proof Uniqueness directly follows from Theorem 2.11. Existence is based on
truncation of f and g. We take a smooth cut-off function θ and define

fk(x, t) = θ

(‖x‖
k

)
f(x, t) , gk(x, t) = θ

(‖x‖
k

)
g(x, t)

for all positive integers k. To fix the ideas, we assume that θ ≡ 1 on the unit
ball. By Theorem 2.6, there exists a unique solution uk ∈ C∞([0, T ];H+∞) of
the Cauchy problem

Luk = fk, uk|t=0 = gk.

Furthermore, Theorem 2.11 shows that uk is compactly supported, and that uk

coincides with um for all m ≥ k > V T on the cylinder { ‖x‖ ≤ k − V T } × [0, T ].
Therefore, the sequence (uk) is convergent in C∞(Rd × [0, T ]) and the limit solves
the Cauchy problem

Lu = f, u|t=0 = g.

�
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2.4 Weighted in time estimates

We conclude this chapter by an estimate that will be useful in Chapter 9. It does
not actually deal with the Cauchy problem. It gives global in time exponentially
weighted estimates. The important feature of these estimates is that the weight
depends on a parameter, denoted by γ, which has to be chosen large enough for
the estimate to hold. This gives the flavour of the machinery that will be used
in Chapter 9 for the resolution of Initial Boundary Value Problems.

Theorem 2.13 We assume that the system (2.0.1) is symmetrizable with
uniform bounds on Σ(t) (including the lower bound α > 0 in (2.1.6)) and on
dΣ/dt for t ∈ R. We also assume that the matrix B is uniformly bounded on
Rd+1. Then there exist C > 0 and γ0 > 0 so that for u ∈ D(Rd+1) and γ ≥ γ0

we have

γ

(∫
R

e−2γt ‖u(t)‖2L2(Rd) dt

)1/2

≤ C

(∫
R

e−2γt ‖Lu(t)‖2L2(Rd) dt

)1/2

.

(2.4.22)

Remark 2.11 According to Theorem 2.2, this result applies in particular to
systems admitting a symbolic symmetrizer (see Definition 2.3) with bounds valid
for all t ∈ R.

Proof Elementary calculus yields

d
dt

[
e−2γt 〈Σu , u 〉

]
= e−2γt ( 2Re 〈ΣLu , u 〉 + 2Re 〈ΣP u , u 〉

+ 〈 dΣ
dt

u , u 〉 − 2γ 〈Σu , u 〉 )

for all γ. Then, integrating on R and estimating all terms by the Cauchy–Schwarz
inequality, we obtain a constant C1 (depending on α and bounds for Σ, dΣ/dt
and Re (ΣP )) such that

γ

∫
R

e−2γt ‖u(t)‖2L2(Rd)) dt ≤ C1

∫
R

e−2γt ‖u(t)‖2L2(Rd) dt

+C1

(∫
R

e−2γt ‖u(t)‖2L2(Rd)) dt

)1/2 (∫
R

e−2γt ‖Lu(t)‖2L2(Rd) dt

)1/2

for all γ > 0. This implies that

γ

∫
R

e−2γt ‖u(t)‖2L2(Rd) dt ≤ C1

(
(1 + εγ)

∫
R

e−2γt ‖u(t)‖2L2(Rd) dt

+
1

4εγ

∫
R

e−2γt ‖Lu(t)‖2L2(Rd) dt

)
for any ε > 0. Choosing for instance ε = 1/(3C1) yields the desired estimate
with γ0 = 3C1 and C = 3C1/2. �
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3

FRIEDRICHS-SYMMETRIC DISSIPATIVE IBVPs

We begin the analysis of the Initial Boundary Value Problem (IBVP). Although
this book is devoted to general hyperbolic operators, the study of Friedrichs-
symmetric ones with dissipative boundary conditions allows us to uncover crucial
concepts and methods. In particular, we shall see in Chapter 4 that a suitable
tool for proving strong well-posedness is a symbolic symmetrizer for which the
boundary condition is strongly dissipative. This motivates us to devote a full
chapter to the IBVP for a Friedrichs-symmetrizable operator, when the boundary
condition is dissipative in a classical sense. Then the symmetrizer is classical,
instead of symbolic. Since it is given with the system, we do not have to build it.

Of course, we could develop a full theory of dissipative IBVPs in the Friedrichs
sense, with variable coefficients and general domains. But since a full account
of the theory of IBVPs will be given in the next chapters, we may restrict
ourselves to the simplest possible situation. Namely, our operators have constant
coefficients, and the physical domain is the half-space

Ω := {x ∈ Rd ; xd > 0}.

We shall frequently use the notation x = (y, xd), where y ∈ Rd−1 are the co-
ordinates along the boundary. Frequency vectors are also split into ξ = (η, ξd),
with η ∈ Rd−1.

3.1 The weakly dissipative case

Let L = ∂t +
∑

α Aα∂α be a Friedrichs-symmetric operator, meaning that the
matrices Aα are symmetric.

A general IBVP takes the form

Lu = f, x ∈ Ω, t > 0, (3.1.1)

Bu = g xd = 0, t > 0, (3.1.2)

u = u0, x ∈ Ω, t = 0, (3.1.3)

where B ∈ Mp×n(R) and Aα have constant entries. We shall see in a moment
that the number p of scalar boundary conditions must equal that of the positive
eigenvalues of Ad. It thus usually differs from n. If g = 0, then we speak of the
homogeneous IBVP. If instead g is an arbitrary vector field of given regularity,
the IBVP is non-homogeneous.
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To begin with, we consider the homogeneous IBVP. Thus let u be a clas-
sical solution of (3.1.1)–(3.1.3) with g ≡ 0. Let us integrate the energy con-
servation law (3.1.1) on Ω. Assuming that u(t),∇xu are square-integrable, we
obtain

d
dt

∫
Ω

|u(x, t)|2dx =
∫

∂Ω

(Adu, u) dy + 2
∫

Ω

(f, u) dx. (3.1.4)

To obtain an a priori estimate from (3.1.4), we need an upper bound of (Adv, v),
knowing the value of Bv. Of course, we cannot use the Gronwall Lemma in order
to control the boundary integral, since there is no trace in L2(Ω). The existence
of such a bound amounts to assuming the (strict) dissipativeness of the boundary
condition.

Definition 3.1 We say that the boundary condition (3.1.2) is dissipative for the
symmetric operator L in the domain Ω defined by xd > 0, if Ad is non-positive
on kerB:

(v ∈ Rn, Bv = 0) =⇒ (Adv, v) ≤ 0.

For a more general domain with smooth boundary, we say that the boundary
condition (3.1.2) is dissipative for the Friedrichs-symmetric operator L, if A(ν)
is non-negative on kerB at every boundary point x ∈ ∂Ω, ν being the outward
unit normal to ∂Ω at x (in that case, B often depends on x ∈ ∂Ω itself,
through ν):

Bv = 0 =⇒ (A(ν)v, v) ≥ 0.

We say that A(ν) is the normal matrix.

For a reason that will become clear in Chapter 4, we shall only consider
maximal dissipative boundary conditions:

Definition 3.2 We say that the boundary condition (3.1.2) is maximal dissi-
pative if it is dissipative, and if kerB is not a proper subspace of some linear
subspace on which Ad is non-positive.

This definition generalizes in an obvious way to general domains.

Lemma 3.1 Assume that B is maximal dissipative for L. Then kerAd ⊂ kerB.

Proof Given u ∈ kerAd, let us define N := Ru + kerB. For v ∈ kerB, we have

(Ad(u + v), u + v) = (Adv, u + v) = (v,Ad(u + v)) = (v,Adv),

which is non-positive by assumption. Since kerB ⊂ N , we must have N = kerB
by maximality. In other words, u ∈ kerB. �

Assuming that the boundary condition is maximal dissipative, we shall solve
the homogeneous IBVP. This kind of well-posedness, which is qualified as weak, or
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homogeneous, in the literature, is expected because of the following consequence
of (3.1.4) when g ≡ 0

‖u(t)‖L2(Ω) ≤ ‖u0‖L2(Ω) +
∫ t

0

‖f(s)‖L2(Ω)ds.

To prove the weak well-posedness, we remark that the homogeneous IBVP has
the abstract form of a differential equation (3.1.5) below, and thus can be treated
within the theory of continuous semigroups in a Hilbert space. The space that
we consider is X = L2(Ω). We shall use a restricted version of the Hille–Yosida
theorem (see, for instance, [28,51]):

Theorem 3.1 Let X be a Hilbert space, D(A) a linear subspace and A : D(A) →
X be a maximal monotone operator. Then, for every u0 ∈ D(A), there exists one
and only one u ∈ C ([0,+∞);D(A)) ∩ C 1([0,+∞);X), such that{

du
dt + Au = 0 on [0,+∞),
u(0) = u0.

(3.1.5)

Moreover, one has

‖u(t)‖X ≤ ‖u0‖X , ∀t ≥ 0.

We recall that the linear operator A is called monotone if (Au, u) ≥ 0 for all
u ∈ D(A), and maximal monotone if, moreover, IX + A is onto, that is

∀f ∈ X, ∃u ∈ D(A) such that u + Au = f. (3.1.6)

Since A is maximal monotone, D(A) is dense in X and A is closed. The
fact that the map u0 �→ u(t), defined on D(A), is non-expanding for the X-
norm, allows us to extend it continuously as a bounded operator St ∈ L (X).
The family (St)t≥0 is a continuous semigroup:

St+s = St ◦ Ss, lim
t→s

Stu0 = Ssu0.

Since A will be a differential operator, it will not be bounded in X. Thus we
do not expect that the semigroup is continuous in the operator norm (‘uniform
continuity’).

The use of the semigroup gives a sense to the well-posedness of the Cauchy
problem (3.1.5) in X. We call u(t) := Stu0 the unique solution in C (R+;X) with
initial data u0 ∈ X. Since it is the limit of strong solutions, it is a solution in the
distributional sense.

We first consider the case where not only g ≡ 0 but also f ≡ 0. Then, the
IBVP takes the form (3.1.5), where

A := −L =
∑
α

Aα∂α,
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and

D(A) := {u ∈ L2(Ω) ; Au ∈ L2(Ω) and Bu = 0 on ∂Ω}.

3.1.1 Traces

To make the definition of D(A) mathematically correct, we need to explain
the meaning of Bu on ∂Ω. We recall that if a vector field �q : Ω → Rd and its
divergence are square-integrable, then �q admits a uniquely defined normal trace
γν�q ∈ H−1/2(∂Ω), such that the following Green’s formula holds∫

Ω

(�q · ∇φ + φ div�q) dx = 〈γν�q, γ0φ〉H−1/2,H1/2 , ∀φ ∈ H1(Ω),

γ0 : H1(Ω) → H1/2(∂Ω) being the well-known trace operator. The trace γν

extends continuously (see [208], Theorem 1.2) the map (‘normal trace’)

�q �→ ν · �q|∂Ω ,

a priori defined for smooth vector fields on Ω, where ν is still the outward unit
normal.

Given u ∈ L2(Ω)n, such that Au ∈ L2(Ω)n, and applying γν to each vector
field �qi, defined by

qi
α := (Aαu)i ,

we obtain a trace Adu
∣∣
∂Ω

∈ H−1/2(∂Ω) (recall that ν ≡ −�ed here). Then, because
of Lemma 3.1, there exists a matrix M ∈ Mp×n such that B = MAd. Then the
trace of Bu is simply M times the trace of Adu. Therefore D(A) is well-defined.

Several calculations will be made using the Fourier transform in the
y-variables, Fy. A vector field �q as above has the following properties:
(η, xd) �→ Fyqα is square-integrable for every α, as well as (η, xd) �→ ∂dFyqd +
i
∑d−1

1 ηαFyqα. It follows that

Fyqd ∈ L2
loc(R

d−1;H1(0,+∞)).

Because of Sobolev embedding, we conclude that

Fyqd ∈ L2
loc(R

d−1;C ([0,+∞)).

Then, testing against smooth functions, we find easily that Fyγν�q, which belongs
to L2((1 + |η|2)−1/2dη), coincides almost everywhere with γ0[(Fyqd)(η, ·)], where
γ0 is the trace operator on H1(R+).

From this remark, we conclude that, in order to verify that u belongs to D(A)
when u and Au are already in X, it is sufficient to prove that γ0BFyu vanishes
almost everywhere. Also, proving that Adu has a square-integrable trace (instead
of being in H−1/2) amounts to proving that γ0A

dFyu is square-integrable.
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3.1.2 Monotonicity of A

Since A commutes with translations along the variable y, we consider the
conjugated operator AF , obtained after a Fourier transform in the y variable:

AF v = Ad ∂v

∂xd
+ iA(η)v,

D(AF ) = FyD(A) = {v ∈ L2(Ω) ; AF v ∈ L2(Ω) and Bv = 0 on ∂Ω}.

Let us point out that in this definition, the functions are complex-valued. The
trace of Bv has been defined in the previous section.

The monotonicity of A is the property that

〈Au, u〉 ≥ 0, ∀u ∈ D(A). (3.1.7)

By Plancherel’s formula, it is equivalent to

Re 〈AF v, v〉 ≥ 0, ∀v ∈ D(AF ). (3.1.8)

From the previous section, we know that, for almost every η ∈ Rd−1, the field
Adv(η, ·) is in H1(R+) and its trace is well-defined. In particular, we know that
γ0Bv(η, ·) = 0 for almost every η.

Let us define a matrix S as follows. Since Ad is symmetric, we have
Rd = R(Ad)⊕⊥ kerAd. If w ∈ kerAd, we set Sw = 0, while if w ∈ R(Ad), there
is a unique w′ ∈ R(Ad) such that Adw′ = w, and then we set Sw = w′. We
easily check that S is symmetric and that SAd is the orthogonal projector1

onto R(Ad). In particular, the bilinear form w �→ (Adw,w) can be rewritten as
w �→ (SAdw,Adw). Dissipativeness means Re (SAdw,Adw̄) ≤ 0 on kerB.

Let w ∈ L2(R+) be such that Addw/dxd ∈ L2(R+). Then z := Adw ∈
H1(R+). Given η ∈ Rd−1, let us compute:∫ +∞

0

Re
(

Ad dw

dxd
+ iA(η)w, w̄

)
dxd =

∫ +∞

0

Re
(

Ad dw

dxd
, w̄

)
dxd

=
∫ +∞

0

Re
(

dz

dxd
, Sz̄

)
dxd

= −1
2
Re (Sz(0), z̄(0)) ≥ 0.

Now, if v ∈ D(AF ), we have v(η, ·) ∈ L2(R+) and Addv(η, ·)/dxd ∈ L2(R+) for
almost every η. Hence we deduce, for every non-negative test function φ ∈
D+(Rd−1), ∫

Ω

φ(η)Re (AF v, v̄) dxddη ≥ 0.

1The matrix S is called the Moore–Penrose generalized inverse of Ad. It coincides with the inverse
when Ad is non-singular. See [187], Section 8.4.
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Finally, we let φ tend monotonically to one everywhere. The right-hand side
tends to Re 〈AF v, v〉 and we obtain the inequality (3.1.8). This proves that A is
a monotone operator.

3.1.3 Maximality of A

We now solve the equation

u + Au = f, (3.1.9)

where f is given in L2(Ω) and u is searched in D(A). Thanks to a Fourier
transform, it is enough to solve v + AF v = g, where g := Fyf and v := Fyu.
The latter equation decouples as a set of ODEs with boundary condition,
parametrized by η ∈ Rd−1:

v + iA(η)v + Adv′ = g(η, ·), Bv(η, 0) = 0. (3.1.10)

In order to simplify the presentation, we shall make the unnecessary assumption
that Ad is non-singular, the so-called non-characteristic case. The general case
is treated similarly, after a projection of the ODE onto kerAd and R(Ad).

To solve the differential equation in (3.1.10), we split v and g into their stable
and unstable components, with respect to the matrix

A(η) := −
(
Ad
)−1

(In + iA(η)).

We shall denote E±(η) the corresponding stable and unstable subspaces2 in Cn

(see the introductory section ‘Notations’). With obvious notations, we split

v = vs + vu, (Ad)−1g = gs + gu, vs, gs ∈ E−(η), vu, gu ∈ E+(η).

Let (S(z))z∈R be the group generated by A(η), that is S(z) = exp zA(η). We
look for a solution v of the form

vs(η, xd) = S(xd)v0 +
∫ xd

0

S(xd − z)gs(η, z) dz, (3.1.11)

vu(η, xd) = −
∫ +∞

xd

S(xd − z)gu(η, z) dz. (3.1.12)

Since g ∈ L2(Ω), the partial function g(η, ·) is square-integrable for almost every
η. For such ηs, the integrals in (3.1.11) and (3.1.12) are convolution products of
the components gs(η, ·), gu(η, ·), with integrable kernels. Actually, denoting by
Ss and Su the restrictions of S to the invariant subspaces E±(η), we know that
Ss(z) and Su(−z) decay exponentially fast as z → +∞. Then∫ xd

0

S(xd − z)gs(η, z)dz = S̃s ∗ g̃s(xd), xd > 0,

2It is shown in Lemma 4.1 that the real part of the eigenvalues of A(η) does not vanish. Hence
C

n = E−(η)⊕E+(η).
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where h �→ h̃ is the extension from R+ to R by zero. Another formula resembling
the one above holds for the integral in (3.1.12). By Young’s inequality, the
convolution products belong to L2.

Hence, Equations (3.1.11) and (3.1.12) define an L2-function v, provided one
chooses v0 in the stable subspace E−(η). Obviously, v(η, ·) solves the ODE in
(3.1.10). In order to satisfy the homogeneous boundary condition, it remains to
solve

Bv0 = B

∫ +∞

0

S(−z)gu(η, z) dz, v0 ∈ E−(η). (3.1.13)

Lemma 3.2 Under the above assumptions (L Friedrichs symmetric, B maximal
dissipative), it holds that

E−(η)⊕ kerB = Cn. (3.1.14)

Equation (3.1.13) admits a unique solution v0.

Proof We first show (3.1.14), admitting a result of Hersh (Lemma 4.1) proved
in the next chapter. Let U0 ∈ E−(η) be given, and define U(xd) := S(xd)U0. It
satisfies the differential equation

(In + iA(η))U + Ad dU

dxd
= 0

and decays exponentially fast at +∞. Multiplying on the left of this equation by
U∗, and taking the real part, we obtain

‖U‖2 +
1
2

d
dxd

U∗AdU = 0.

Integrating from 0 to +∞, we derive

2
∫ +∞

0

‖U(xd)‖2dxd = Re (AdU0, U0).

If, moreover, U0 ∈ kerB, the right-hand side is non-positive, by dissipative
assumption. It follows that ∫ +∞

0

‖U(xd)‖2dxd ≤ 0,

that is U ≡ 0 and U0 = 0. This proves that E−(η) ∩ kerB = {0}.
The conclusion is obtained by proving that dimE−(η) + dim kerB = n. Since

B is maximal dissipative, the dimension of its kernel is the number of non-
positive eigenvalues of Ad. The fact that dimE−(η) equals the number of positive
eigenvalues of Ad will be proved in a much more general context in Lemma 4.1.

Thanks to (3.1.14), B is an isomorphism from E−(η) onto R(B). This ensures
the unique solvability of (3.1.13). �
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At this stage, we have built, in a unique way, a solution of (3.1.10). It is defined
for almost every η ∈ Rd−1 and is square-integrable with respect to xd. Clearly, it
is also measurable in (η, xd). Given η, we may apply the energy estimate, which
reads

2
∫ +∞

0

‖v(η, xd)‖2dxd = Re (Adv(η, 0), v(η, 0)) + 2Re
∫ +∞

0

(v, g)(η, xd) dxd.

(3.1.15)

Because of Bv(η, 0) = 0 and the dissipativeness, we derive∫ +∞

0

‖v(η, xd)‖2dxd ≤ Re
∫ +∞

0

(v, g)(η, xd) dxd,

which gives, thanks to the Cauchy–Schwarz inequality,∫ +∞

0

‖v(η, xd)‖2dxd ≤
∫ +∞

0

‖g(η, xd)‖2dxd.

Integrating with respect to η, we obtain that v ∈ L2(Ω). Using Plancherel’s
formula, we conclude that u ∈ L2(Ω) as well. By Fourier inversion, u + Au = f
holds in the distributional sense. Therefore, Au = f − u is square-integrable too.
At last, the trace of Bu is zero because that of Bv is so. Therefore u belongs to
D(A) and A is maximal monotone.

Applying Theorem 3.1, we have

Theorem 3.2 Let L = ∂t +
∑

α Aα∂α be a symmetric hyperbolic operator, and
let the boundary matrix B ∈ Mp×n(R) be maximal dissipative. Finally, let D(A)
be the functional space

D(A) :=

{
u ∈ L2(Ω)n ;

∑
α

Aα∂αu ∈ L2(Ω)n and Bu = 0 on ∂Ω

}
.

Then the homogeneous IBVP in Ω× R+
t ,

Lu(x, t) = 0, Bu(y, 0, t) = 0, u(x, 0) = u0(x) (3.1.16)

is L2-well-posed in the following sense. For every u0 ∈ D(A), there exists a
unique u ∈ C ([0,+∞);D(A)) ∩ C 1([0,+∞);L2) that solves Lu = 0 as an ODE
in X = L2(Ω)n, such that u(0) = u0. Furthermore,

t �→ ‖u(t)‖L2

is non-increasing.

The map u0 �→ u(t) therefore extends uniquely as a continuous semigroup of
contractions in L2(Ω)n (see the book by Pazy [156] for the semigroup theory).
This allows us to define a solution in the weaker case of a square-integrable
datum. Such weak (or mild) solutions are distributional solutions of Lu = 0,
since they are limits of stronger solutions. The same density argument shows
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that they satisfy the boundary condition Bu = 0 in the trace sense, as explained
in Section 3.1.1.

Data with f �≡ 0 We may use the semigroup defined in the Theorem 3.2,
together with Duhamel’s Formula

u(t) = Stu0 +
∫ t

0

St−sf(s) ds,

provided f is integrable from (0, T ) to X = L2(Ω)n. This defines a mild solution
of Lu = f , Bu(y, 0, t) = 0 and u(t = 0) = u0. This mild solution is a distribu-
tional one. For instance, if f ∈ L2((0, T )× Ω), we easily obtain the following
estimate (see also Section 3.2.1):

e−2γT ‖u(T )‖2L2 + γ

∫ T

0

e−2γt‖u(t)‖2L2 dt ≤ ‖u0‖2L2 +
1
γ

∫ T

0

e−2γt‖f(t)‖2L2 dt.

(3.1.17)

Variational IBVPs. In some physically relevant cases, a second-order IBVP
is formed by the Euler–Lagrange equations of some Lagrangian∫ ∫ (

1
2
|ut|2 −W (∇xu)

)
dxdt,

where W is a quadratic form on Md×n(R). We also mean that the boundary
conditions are of Neumann type and figure the Euler–Lagrange equations along
the boundary. These special boundary conditions are conservative, in the sense
that 〈A(ν)u, u〉 ≡ 0, when rewriting the IBVP to the first order. If W is positive-
definite, we can apply the above procedure, Friedrichs symmetrizing the problem
thanks to the energy

E [u] =
∫ (

1
2
|ut|2 + W (∇xu)

)
dx =: Ec[u] + Ep[u].

More generally, the Hille–Yosida Theorem applies whenever Ep is convex and
coercive over H1(Ω)n, Ω := Rd−1 × (0,+∞). A natural question is whether the
strong well-posedness of a variational IBVP implies that Ep is convex and coercive
over H1(Ω)n (a property that is not equivalent to the positive-definiteness of W ).
The answer turns out to be positive, see [189]. In particular, there is no need
to construct a symbolic symmetrizer (as we do in Chapter 7 in a more general
context). See also [190] for the case where n = d and (H1)d is replaced by the
subspace with the incompressibility constraint div u = 0.

3.2 Strictly dissipative symmetric IBVPs

The symmetric dissipative IBVP occurs in several problems of physical impor-
tance, in elasticity and electromagnetism, when energy must be conserved along
an evolution process. However, the theory suffers from a major weakness when
one wishes to treat free-boundary value problems by Picard iterations, for one
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is unable to control norms of the trace γ0u on ∂Ω (or that of γ0A
du in the

characteristic case), in terms of the same norms of γ0Bu.
To improve the theory, we need a notion stronger than dissipativeness. We

present it first in the non-characteristic case (recall that this means detAd �= 0).

Definition 3.3 Let L be Friedrichs symmetric. If Ω := {xd > 0} is non-
characteristic (that is, Ad is non-singular), we say that the boundary condition
(4.1.2) is strictly dissipative if the three properties below hold:

i) Ad is negative-definite on kerB:

(v �= 0, Bv = 0) =⇒ (Adv, v) < 0,

ii) kerB is maximal for the above property,
iii) B is onto.

For a more general domain with smooth boundary, the dissipation property must
be with respect to −A(ν), at every boundary point x ∈ Ω, ν being the outward
unit normal to ∂Ω at x (in that case, B often depends on x itself):

(v �= 0, Bv = 0) =⇒ (A(ν)v, v) > 0.

The fact that B is onto is natural in the non-homogeneous boundary value
problem, since the boundary condition itself must be solvable at the algebraic
level; otherwise there would be a trivial obstacle to the well-posedness of the
IBVP. As above, the dimension of kerB equals the number of negative eigenvalues
of Ad. Since B is onto, this means that p equals the number of positive eigenvalues
of Ad.

We are going to show that under strict dissipativeness, an a priori estimate
holds for the full IBVP (3.1.1)–(3.1.3), which is much better than the one
encountered before in the sense that it controls the L2-norm of γ0A

du (therefore
that of γ0u in the non-characteristic case) in terms of that of γ0Bu.

An equivalent formulation of strict dissipativeness is given by the following

Lemma 3.3 Assume that the boundary condition is strictly dissipative. Then
there exist two positive constants ε, C such that the quadratic form w �→ ε|w|2 +
(Adw,w)− C|Bw|2 is negative-definite.

Proof We argue by contradiction. If the lemma was false, there would be a
sequence (wm)m∈N with the properties that |wm| ≡ 1 and

1
m
|wm|2 + (Adwm, wm)−m|Bwm|2 ≥ 0.

By compactness, we may assume that (wm)m converges towards some w.
Since |Bwm| = O(1/

√
m), we find w ∈ kerB. On an other hand, 1

m |wm|2 +
(Adwm, wm) ≥ 0 gives in the limit the inequality (Adw,w) ≥ 0. Finally, w �= 0
since |w| = 1. This contradicts the assumption. �
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3.2.1 The a priori estimate

We assume that u is a smooth solution of the full IBVP, with smooth decay as
|x| goes to infinity. Multiplying (3.1.1) by u∗ and taking the real part, we obtain

∂t|u|2 +
d∑

α=1

∂α(u∗Aαu) = 2Re (f, u).

Integrating on Ω, we obtain

d
dt

∫
Ω

|u(t)|2dx = 2Re
∫

Ω

(f(t), u(t)) dx +
∫

∂Ω

u∗Adu dy. (3.2.18)

Using Lemma 3.3, we obtain

d
dt

∫
Ω

|u(t)|2dx + ε

∫
∂Ω

|u(t)|2dy ≤ 2Re
∫

Ω

(f(t), u(t)) dx + C

∫
∂Ω

|g(t)|2 dy.

Let γ be a positive number. We apply the latter estimates to v := exp(−γt)u,
for which Lv = −γv + exp(−γt)f =: F , v(t = 0) = u0, and Bv = exp(−γt)g on
the boundary. By Young’s inequality, we have

2Re (F, v) ≤ exp(−2γt)
(

1
γ
|f |2 − γ|u|2

)
.

We thus obtain
d
dt

e−2γt‖u(t)‖2L2 + γe−2γt‖u(t)‖2L2 + εe−2γt‖γ0u(t)‖2L2

≤ e−2γt

(
1
γ
‖f(t)‖2L2 + C‖g(t)‖2L2

)
,

where ‖ · ‖L2 denotes the norm in either L2(Ω) or L2(∂Ω). We now integrate
from 0 to T > 0 and obtain

e−2γT ‖u(T )‖2L2 +
∫ T

0

e−2γt
(
γ‖u(t)‖2L2 + ε‖γ0u(t)‖2L2

)
dt

≤ ‖u0‖2L2 +
∫ T

0

e−2γt

(
1
γ
‖f(t)‖2L2 + C‖g(t)‖2L2

)
dt.

Notation For positive γ, T , we define a ‘norm’ ‖ · ‖γ,T by

‖u‖2γ,T :=
∫ T

0

∫
∂Ω

e−2γt|γ0u(y, t)|2dy dt + γ

∫ T

0

∫
Ω

e−2γt|u(x, t)|2dxdt.

We warn the reader that this expression does not define a functional space, and
therefore cannot be considered as a genuine norm, since the corresponding closure
of D(Ω̄) is isomorphic to L2(Ω)× L2(∂Ω), so that the function on the boundary
is no longer a trace of the interior function.

We summarize this weighted estimate in the following
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Proposition 3.1 For the symmetric, strictly dissipative IBVP in Ω = {xd >
0}, there holds the following a priori estimate for every positive numbers γ, T ,

e−2γT ‖u(T )‖2L2 + ‖u‖2γ,T (3.2.19)

≤ C

(
‖u(0)‖2L2 +

∫ T

0

e−2γt

(
1
γ
‖(Lu)(t)‖2L2 + ‖γ0Bu(t)‖2L2

)
dt

)
,

where the constant C > 0 depends neither upon f, g, u0, u, nor on γ, T .

The characteristic case The definition of strict dissipation given in Definition
3.3 was appropriate when the boundary is not characteristic. Of course, one says
that the boundary is characteristic if the normal matrix A(ν) is singular. In the
general case, we ask that the quadratic form v �→ (Adv, v), defined on kerB, be
non-positive, and vanishes only on kerAd (in particular, kerAd ⊂ kerB, as quoted
before). This assumption yields the fact that the quadratic form w �→ ε|Adw|2 +
(Adw,w)− C|Bw|2 is non-positive and vanishes only on kerAd (compare with
Lemma 3.3). The norm ‖ · ‖γ,T in the a priori estimate (3.2.19) is then weakened
into

‖u‖2γ,T :=
∫ T

0

∫
∂Ω

e−2γt|γ0A
du(y, t)|2dy dt + γ

∫ T

0

∫
Ω

e−2γt|u(x, t)|2dxdt.

3.2.2 Construction of û and u

The existence of the solution of the homogeneous boundary value problem (that
is, with g ≡ 0) was obtained in Section 3.1. Since strict dissipativeness implies
dissipativeness, we may use this construction to solve our problem when g ≡ 0.
Following the details of this construction, we verify that the estimate (3.2.19)
holds true (without the g term of course). Since our problem is linear, it remains
to treat the pure boundary value problem. Hence we shall assume that u0 ≡ 0
and f ≡ 0. Since u0 ≡ 0, we may extend the solution and the data g by zero to
negative times. We therefore have to solve a problem in the domain defined by

x ∈ Ω = Rd−1 × (0,∞), t ∈ R,

and we may assume that g is supported in a slab ∂Ω× [0, T ]. This problem is
the occasion to describe for the first time, but in a simple context, the use of
the Fourier–Laplace transform (see Appendix B.3). We warn the reader that we
apply the Fourier transformation to the variable y only, since xd does not vary
on the whole line but only3 on (0,+∞).

We now face the pure boundary value problem. Taking the Fourier–Laplace
transform (in variables (y, t)) of the PDEs and of the boundary condition, this

3One might apply the Laplace transform to the variable xd, but this would not help anyway.
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problem is formally equivalent to the following:

(τIn + iA(η))û + Ad ∂û

∂xd
= 0, xd > 0, (3.2.20)

Bû(η, 0, τ) = ĝ(η, τ). (3.2.21)

The problem (3.2.20) and (3.2.21) is clearly a set of uncoupled differential-
algebraic problems, parametrized by (η, τ). We may solve separately each of
them (or merely almost all of them). Doing so, the partial derivative will of
course be seen as an ordinary derivative.

The solutions of (3.2.20) are smooth functions (see their description in
Section 4.2.3, when the boundary is characteristic). Since û(·, ·, γ + i·) is expected
to be square-integrable with respect to dη dxd dσ, û(η, ·, τ) must be square-
integrable on R+. This means here that it decays exponentially fast as xd → +∞.
In other words, the integrability property translates into

û(η, 0, τ) ∈ E−(η, τ). (3.2.22)

This, together with the boundary condition (3.2.21), determines in a unique way
û(η, 0, τ) (adapt Lemma 3.2), and hence û(η, xd, τ).

Once we have determined the function û, it remains to show that it is the
Laplace–Fourier transform of some function u, which satisfies the IBVP. We begin
by noticing that, since the coefficients of (3.2.20) are holomorphic in τ , the map
τ �→ E−(η, τ) is holomorphic too. And since g itself is τ -holomorphic, the trace
û(η, 0, τ) is holomorphic, as the solution of a Cramer system with holomorphic
coefficients. Hence, û itself is τ -holomorphic.

We now turn to the estimate of û. Since it decays exponentially fast as xd →
+∞, we may multiply (3.2.20) by û∗, take the real part, and integrate with
respect to xd on R+. Because of the symmetry of A(η) and Ad, we obtain

(Re τ)
∫ +∞

0

|û|2dxd =
1
2
û(0)∗Adû(0).

Let now ε > 0 and C > 0 be such that the quadratic form w �→ ε|Adw|2 +
(Adw,w)− C|Bw|2 is non-positive. We deduce

(Re τ)
∫ +∞

0

|û|2dxd + ε|Adû(0)|2 ≤ C|ĝ|2.

This inequality implies that if ĝ is square-integrable in (η, σ) for some value of
γ, then the left-hand side enjoys the same property. An integration yields the
inequality

γ

∫
R

∫ +∞

0

∫
Rd−1

|û|2dη dxd dσ + ε

∫ ∫
xd=0

|Adû|2dη dσ ≤ C

∫ ∫
xd=0

|ĝ|2dη dσ.

(3.2.23)
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In particular, the trace at xd = 0 of Adû is square-integrable. Assuming, for
instance, that g belongs to L2(∂Ω× R+) (actually, some growth is allowed as t
increases), the right-hand side of (3.2.23) is bounded. Thus, ‖û(·, ·, γ + i·)‖L2 is
an O(1/γ). Since û is τ -holomorphic, the theorem of Paley–Wiener (see Rudin
[169], chapter 19) implies that there exists a function u : Ω× (0,+∞) with the
following properties:

� For every γ > 0, the function e−γtu is square-integrable,
� The function û is the Fourier–Laplace transform of u, with respect to the

variables (y, t).

The inverse Fourier–Laplace transform of (3.2.20) shows that u satisfies the
system Lu = 0. In particular, Lu is square-integrable and Adu must admit a
trace on xd = 0, of class H−1/2, which we denote abusively γ0A

du. Since kerB
contains kerAd, the trace of Bu makes sense as well.

The following estimate follows from (3.2.23) and the Parseval formula:

γ

∫ +∞

0

e−2γt‖u(t)‖2L2(Ω)dt ≤ C

∫ +∞

0

e−2γt‖g(t)‖2L2(∂Ω)dt. (3.2.24)

At last, arguing as in Section 3.1.1, we see that e−γtγ0A
du is square-integrable

(rather than of class H−1/2), and that the following estimate holds

γ

∫ +∞

0

e−2γt‖u(t)‖2L2(Ω)dt + ε

∫ +∞

0

e−2γt‖γ0A
du(t)‖2L2(∂Ω)dt

≤ C

∫ +∞

0

e−2γt‖g(t)‖2L2(∂Ω)dt. (3.2.25)

We summarize our result in the following statement.

Theorem 3.3 Let L be a Friedrichs-symmetric (hence hyperbolic) operator. Let
Ω = Rd−1 × (0,+∞) be the spatial domain. Finally, let B be a strictly dissipative
boundary matrix.

Then, for every data u0 ∈ L2(Ω), g ∈ L2((0, T )× ∂Ω) and f ∈ L2((0, T )×
Ω), there exists a unique solution of the Initial Boundary Value Problem (3.1.1)–
(3.1.3) in the class u ∈ L2((0, T )× Ω). In addition, Adu admits a trace on the
boundary, of class L2((0, T )× ∂Ω). Finally, we have u ∈ C([0, T ];L2(Ω)), and
the estimate (3.2.19).



4

INITIAL BOUNDARY VALUE PROBLEM IN A HALF-SPACE
WITH CONSTANT COEFFICIENTS

In this chapter, we drop the assumption of Friedrichs-symmetry and therefore
dissipativeness, while keeping the other features of Chapter 3: L is a hyperbolic
operator with constant coefficients, and the spatial domain is a half-space. We
impose linear boundary conditions. Of course, most physical problems yield a
Friedrichs-symmetric operator, but we wish to consider boundary conditions that
are not dissipative in the sense of Definitions 3.1, 3.2 and 3.3.

Our main purpose is the well-posedness of such an Initial Boundary Value
Problem (IBVP). We postpone the study of more natural linear problems (gen-
eral smooth domain, variable coefficients) to Chapter 9, which uses the results
displayed in the present one, together with those of Chapter 2.

4.1 Position of the problem

Let

L := ∂t +
d∑

α=1

Aα∂α

be a hyperbolic operator (with Aα ∈ Mn(R)), and let B be a constant real-valued
q × n matrix. Let Ω be the half-space in Rd, defined by the inequality xd > 0.
Denote the tangential variables (x1, . . . , xd−1) by y. We have

Ω = {(y, xd) ; y ∈ Rd−1, xd > 0}.

The general problem that we have in mind is still

(Lu)(x, t) = f(x, t), xd, t > 0, y ∈ Rd−1, (4.1.1)

Bu(y, 0, t) = g(y, t), t > 0, y ∈ Rd−1, (4.1.2)

u(x, 0) = u0(x), xd > 0, y ∈ Rd−1. (4.1.3)

Here above, the source term f(x, t), the boundary data g(y, t) and the initial
data u0(x) are given in suitable functional spaces.

Since practical applications involve systems with variable coefficients, the
present chapter investigates robust existence and stability results. As for the
Cauchy problem (see Chapter 1), or the symmetric strictly dissipative case
(Chapter 3), the terminology ‘robust results’ refers to strong well-posedness
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theorems, where the solution not only exists and is unique, but is estimated
in the same norms as the data.

4.1.1 The number of scalar boundary conditions

Before going further, we observe that we may always choose the matrix B with
full rank q, since otherwise g would have to satisfy compatibility conditions,
and we could reduce the set of boundary conditions by extracting r independent
lines, with r = rank B. Therefore, we shall always assume that q = rank B. In
particular, we have q ≤ n. The most significant object is kerB, rather than B
itself, since a multiplication on the left by a regular q × q matrix G transforms
our boundary condition into an equivalent one, whose matrix is B′ := GB.

As we shall see in Sections 4.2 and 4.3, the matrix B in the boundary condition
(4.1.2) must satisfy several requirements of algebraic type, for the IBVP to be
well-posed. In this section, we concentrate on its rank q, that is the number of
scalar boundary data that we need.

With this purpose in mind, let us consider data that do not depend on the
tangential variable y: we have f = f(xd, t), g = g(t) and u0 = u0(xd, t). Assuming
that the IBVP is well-posed (which means at least existence and uniqueness)
in some appropriate functional space, the corresponding solution must have the
same translational invariance : u = u(xd, t). This means that the reduced system

(∂t + Ad∂d)u = f, Bu(0, t) = g(t), u(xd, 0) = u0(xd) (4.1.4)

is well-posed in the quarter-plane {xd > 0, t > 0}. By assumption (hyperbolicity)
Ad is diagonalizable. Up to a linear tranformation of dependent variables, we may
assume that Ad is already diagonal, Ad = diag(a1, . . . , an), with a1 ≥ · · · ≥ an.
Each co-ordinate uj must obey the transport equation

(∂t + aj∂d)uj = fj . (4.1.5)

Denote by p the number of positive eigenvalues: ap > 0 ≥ ap+1. We say that
p is the number of incoming characteristics1. Split the unknown into an incoming
and an outgoing part,

u+ :=

u1

...
up

 , u− :=

up+1

...
un

 .

Integrating (4.1.5), we observe that u− is uniquely determined by its value at
initial time:

uj(xd, t) = u0j(xd − ajt) +
∫ t

0

fj(xd − aj(t− s), s)ds, j ≥ p + 1.

1In a half-space defined by the reverse inequality xd < 0, the incoming characteristics correspond
to aj < 0.
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Let � be a linear form vanishing on the vector space B(Rp × {0n−p}), and let
L denote �B, so that L1 = · · · = Lp = 0 (� and L are row vectors with q and n
components, respectively). From (4.1.2), we obtain

n∑
j=p+1

Lj

(
u0j(−ajt) +

∫ t

0

fj(aj(s− t), s)ds

)
= �g(t). (4.1.6)

When � �= 0, (4.1.6) is a non-trivial compatibility condition for the data (u0, g, f).
Such a constraint prevents a general existence result from being obtained.
Therefore, well-posedness requires

B(Rp × {0n−p}) = Rq,

which implies p ≥ q. In other words,

Existence for every reasonnable data requires that the number of boundary
conditions be less than or equal to the number of incoming characteristics.

We now turn to uniqueness, by considering the homogeneous IBVP (f ≡ 0, u0 ≡
0, g ≡ 0). From above, we already know that u− ≡ 0. Let R ∈ Rp be such that
(R, 0)T ∈ kerB. Let us choose a smooth function v of one variable, with v ≡ 0
on [0,+∞), and define u+ by its co-ordinates

uj(xd, t) := v

(
xd

aj
− t

)
Rj , j = 1, . . . , p.

We verify immediately that u is a solution of the IBVP. By uniqueness,
we must have u ≡ 0. This means R = 0. Therefore, well-posedness requires
(Rp × {0n−p}) ∩ kerB = {0}. Since the dimension of kerB is n− q, this means
in particular p ≤ q. In other words,

Uniqueness requires that the number of boundary conditions be larger than or
equal to the number of incoming characteristics.

Gathering these results, we obtain that for the IBVP (4.1.1)–(4.1.3) to be well-
posed, it is necessary that

Rn = (Rp × {0})⊕ kerB.

In particular, the number of independent scalar boundary conditions (the rank of
B) must be equal to the number of incoming characteristics, that is

q = p.

Going back to a general matrix Ad, not necessarily diagonal, this reads

Proposition 4.1 For the IBVP (4.1.1)–(4.1.3) to be well-posed, it is necessary
that

Rn = U(Ad)⊕ kerB, (4.1.7)

where we recall that U(Ad) is the unstable subspace of Ad.



102 Initial boundary value problem in a half-space with constant coefficients

4.1.2 Normal IBVP

The previous analysis concerned only the well-posedness of the one-dimensional
IBVP, where the differential operator is L0 := ∂t + Ad∂d. Going back to the
general case where Ad is diagonalizable (but not necessarily diagonal), we
conclude that in order that this reduced IBVP be well-posed in reasonable spaces
like L2, it is necessary and sufficient to have

Rn = (kerB)⊕Eu(Ad), (4.1.8)

where Eu(Ad) denotes the unstable invariant subspace of Ad.
As we already saw in Section 3.1.1, the need for a correct definition of the

trace of Bu when u and Lu belong to a weak class, like L2(Ω× (0, T )), requires
that kerAd ⊂ kerB. This leads us to the following.

Definition 4.1 We say that the IBVP (4.1.1)–(4.1.3) is normal if

� B ∈ Mp×n(R), where p is the number of positive eigenvalues of Ad,
� kerAd ⊂ kerB,
� property (4.1.8) holds true.

Of course, dimensionality ensures that p = rankB for a normal IBVP. Using
the characteristics, one easily shows that, in one space dimension, a normal
hyperbolic IBVP is well-posed in L2, in the sense that, for every data

u0 ∈ L2(R+), g ∈ L2(0, T ), f ∈ L2(R+ × (0, T )),

there exists a unique solution u ∈ L2(R+ × (0, T )), which satisfies, moreover,
u(0, ·) ∈ L2(0, T ), with obvious norm estimates.

4.2 The Kreiss–Lopatinskĭı condition

We derive in this section a condition that turns out to be necessary for any
kind of very weak well-posedness. The idea is very similar to the one followed in
Section 1.1. In particular, we examine only the semigroup aspects of the IBVP,
that is we shall only consider a homogeneous boundary condition (g ≡ 0). Of
course, as seen in Chapter 3, we do not expect a simultaneous characterization
of the well-posedness of non-homogeneous IBVP.

A Fourier transform with respect to the full space variable x being impossible,
we content ourselves with Fy, the Fourier transform with respect to the tangen-
tial variables. As we saw in Chapter 3, it is worth treating the time variable by
a Laplace transform. Hence, we begin by looking for particular solutions of the
form (normal mode analysis)

u(x, t) := eτt+iη·yU(xd),

where η ∈ Rd−1 and τ ∈ C. Since we aim to find a necessary condition, we are
only interested in those solutions that could contradict well-posedness, that is
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those that grow rapidly as time increases, while being temperate in space. Thus
we restrict ourselves to complex numbers τ of positive real part.

A field u defined as above solves Lu = 0 if and only if

(τIn + iA(η))U + Ad dU

dxd
= 0. (4.2.9)

Up to now, we did not assume anything about Ad but hyperbolicity. Since this
allows Ad to be singular, Equation (4.2.9) need not be an ODE. We recall and
generalize a notion introduced in Chapter 3:

Definition 4.2 We consider the hyperbolic IBVP (4.1.1)–(4.1.3). The boundary
{xd = 0} is said to be characteristic if the matrix Ad is singular (that is det Ad =
0). When the IBVP is posed in a more general spatial domain Ω with a smooth
boundary, ∂Ω is said to be characteristic if the matrix A(ν) is singular, ν being
the outward normal vector field. It is non-characteristic otherwise.

This notion is local in nature. The boundary can be characteristic on a part
of the boundary only, this part being either a set of full dimension d− 1 in ∂Ω,
or a submanifold. However, the theory of the IBVP is essentially open when the
rank of A(ν) varies along a connected component of ∂Ω.

4.2.1 The non-characteristic case

In order to make the exposition as clear as possible, we first suppose that the
boundary is non-characteristic. Then (4.2.9) may be recast as an ODE in Cn,

dU

dxd
= A(τ, η)U, A(τ, η) := −(Ad)−1(τIn + iA(η)). (4.2.10)

The following lemma is fundamental in the theory.

Lemma 4.1 (Hersh) Under the hyperbolicity assumption, and for η ∈ Rd−1

and Re τ > 0, the matrix A(τ, η) does not have any pure imaginary eigenvalue.
The number of stable eigenvalues (see the introductory paragraph ‘Notations’),
counted with multiplicities, equals p, the number of positive eigenvalues of Ad.

Proof Let ω be a pure imaginary root of the characteristic polynomial of
A(τ, η),

P (X; τ, η) := det(XIn −A(τ, η)).

Thus ω satisfies

det(τIn + iA(η) + ωAd) = 0.

Then, hyperbolicity implies τ ∈ iR, which contradicts the assumption. This
proves that A(τ, η) may not have a pure imaginary eigenvalue. Since P depends
continuously on (τ, η) and has a constant degree, we infer that the number of
roots with positive real part (counted with multiplicities) may not vary locally.
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Since {Re τ > 0} × Rd−1 is a connected set, this number must be constant. We
evaluate it by choosing η = 0, τ = 1: We have

A(1, 0) = −(Ad)−1,

whose eigenvalues are the −1/ajs. �
Using this lemma, we decompose the space Cn as the direct sum of the

stable and unstable spaces of A(τ, η). Recall that the stable (respectively,
unstable) subspace is the sum of generalized eigenspaces of A(τ, η) correspond-
ing to eigenvalues of negative (respectively, positive) real parts. We denote
E−(τ, η) = Es(A(τ, η)) (respectively, E+(τ, η) = Eu(A(τ, η)).) These are the
spaces of incoming (respectively, outgoing) modes. As mentioned in the section
‘Notations’, these spaces can be characterized by means of contour integrals.
Choosing a large enough loop γ in the half-space {Re ω > 0}, enclosing the
unstable eigenvalues (namely the ones with positive real parts) of A(τ, η), the
projector onto E+(τ, η), along E−(τ, η), is given by the formula

π+(τ, η) =
1

2iπ

∫
γ

(zIn −A(τ, η))−1dz. (4.2.11)

A similar formula holds for the projector π− = In − π+. Since we may vary
slightly the arguments (τ, η) without changing the contour (because of the
continuity of the roots of a polynomial), we infer from (4.2.11) that the maps
(τ, η) �→ π±(τ, η) are holomorphic in τ , analytic in η, which amounts to saying:

Lemma 4.2 The stable and unstable subspaces E±(τ, η) depend holomorphically
on τ , analytically on η. In particular, their dimensions do not depend on (τ, η)
as long as η ∈ Rd−1 and Re τ > 0.

Fix now η ∈ Rd−1 and Re τ > 0. Given an initial datum U(0), the Cauchy
problem for (4.2.10) admits a unique solution U . Decomposing U(0) into a stable
part U0− := π−U(0) and an unstable one U0+, the solution reads

U(xd) = U−(xd) + U+(xd), U±(xd) := exp(xdA(τ, η))U0±.

Because of Lemma 4.1, the matrix

exp
(

xdA(τ, η)|E−

)
decays exponentially fast as xd tends to +∞. Similarly, the inverse of

exp
(

xdA(τ, η)|E+

)
decays exponentially fast. This shows that U− decays exponentially fast, while
U+ is not polynomially bounded, except in the case U0+ = 0 (that is U(0) ∈
E−(τ, η)). Therefore, in order that U be a tempered distribution on R+, it is
necessary and sufficient that U(0) ∈ E−(τ, η). In that case, U actually decays
exponentially fast, and is therefore square-integrable.
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For this reason, we admit only those solutions of (4.2.10) for which U(0) ∈
E−(τ, η). They take their values in E−(τ, η) and form a vector space of dimension
p. Let U be such a solution and u be the corresponding solution of Lu = 0.
If, moreover, BU(0) = 0, then u satisfies the homogeneous boundary condition
Bu(y, 0, t) ≡ 0. At initial time,

u(y, xd, 0) = eiη·yU(xd)

belongs to every Hölder space C k,α(Ω), while the norm of u(·, t) grows exponen-
tially fast (like exp(tRe τ)) as t increases, provided U(0) �= 0. Now, rescaling both
space and time variables yields the parametrized solution to the homogeneous
IBVP:

uλ(x, t) := u(λx, λt), λ ∈ (0,+∞).

As λ → +∞, the sequence
(
uλ(·, 0)

)
λ

grows at most polynomially in Hölder
spaces, with respect to λ, while the sequence

(
uλ(t)

)
λ

grows always exponentially
fast for given positive time. This shows that the mapping

u(·, 0) �→ u(·, t), (t > 0),

if ever defined, may not be continuous between Hölder spaces, even at the price
of a loss of derivatives. From the Principle of Uniform Boundedness, we conclude
that this map cannot actually be defined.

This analysis shows that a necessary condition for well-posedness in Hölder
spaces is that E−(τ, η) ∩ kerB = {0} for every η ∈ Rd−1 and Re τ > 0.

Definition 4.3 We say that the hyperbolic IBVP (4.1.1)–(4.1.3) satisfies the
Kreiss–Lopatinskĭı condition (or briefly the Lopatinskĭı condition) if

E−(τ, η) ∩ kerB = {0}

for every η ∈ Rd−1 and Re τ > 0.

Making η = 0, we see that this condition implies that the IBVP is normal in
the sense of Definition 4.1. Because of Lemma 4.1, the Lopatinskĭı condition is
equivalent to saying that

Cn = E−(τ, η)⊕ kerB, ∀η ∈ Rd−1, ∀Re τ > 0.

Note that, contrary to the hyperbolicity assumption, this condition is not invari-
ant by time reversing. If one wishes to solve the backward IBVP, one needs to
consider the Laplace variable τ of negative real part, instead of positive ones.
Also, the number of boundary conditions must be equal to the number of negative
(instead of positive) eigenvalues of Ad.

The names of Lopatinskĭı and Kreiss have been associated with the stability
condition described above since their seminal works [121–123] and [103]. Hersh’s
article [83] is anterior, but the merit of Kreiss, as well as of Sakamoto [174]
in the context of higher-order scalar operators, was to understand the role of
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the uniform version of the Lopatinskĭı condition in the well-posedness theory.
Lopatinskĭı is much better known for his analysis of the elliptic boundary value
problems, but did contribute to the hyperbolic problem [122]. The algebraic
conditions that ensure the well-posedness in the elliptic theory resemble actually
very much those of the hyperbolic case. The fundamental paper by Agmon et al.
[2], for instance, manipulates the same kind of stable subspaces as we do here.

The Lopatinskĭı condition is by nature the fact that the following linear
differential problem is well-posed in L2(R+) when x0 ∈ Cm and F ∈ L2(R+)
are given

d
ds

(
X
Y

)
= M

(
X
Y

)
+ F (s), X(0) = x0.

An important instance of such a problem occurs in control theory, X being the
state and Y the adjoint state. See [72] for a discussion. In the context of initial
boundary value problems, the matrix of the ODE depends on parameters, say
the Laplace–Fourier frequencies, and we shall need some kind of uniformity of
this well-posedness. This important aspect will be discussed in Section 4.3.

4.2.2 Well-posedness in Sobolev spaces

The solutions considered in Section 4.2.1 are not square-integrable with respect
to y and therefore cannot be used directly in the study of the well-posedness in
Sobolev spaces. In order to prove that well-posedness in this context still requires
that the Kreiss–Lopatinskĭı condition be fulfilled, we improve our construction.

Let us assume that the Kreiss–Lopatinskĭı condition fails at some point
(τ0, η0) with η0 ∈ Rd−1 and Re τ0 > 0. We shall use an analytical tool described
in Section 4.6, called the Lopatinskĭı determinant. This is a function ∆(τ, η),
which is analytic in η and holomorphic in τ , with the property that the Kreiss–
Lopatinskĭı condition fails precisely at zeroes of ∆. Its construction will be
explained in Section 4.6.1.

As η moves around η0, the holomorphic function ∆(·, η) keeps as many zeroes
close to η0 as the multiplicity of the root τ0 of ∆(·, η0) (Rouché’s theorem2).
Since the multiplicities of zeroes are upper semicontinuous functions of η, we
may choose a zero (τ1, η1) such that, when η moves in the neighbourhood V of
η1, ∆(·, η) has a unique root close to τ1, obviously with a constant multiplicity
m. This root, denoted by T (η), is analytic, because it is a simple root of

∂m−1

∂τm−1
∆(·, η).

For each η ∈ V, the space F (η) := kerB ∩ E−(T (η), η) is non-trivial and, as
above, we may assume that it has a constant dimension and is analytic in η.

2A correct use of Rouché’s theorem requires that ∆(·, η0) do not vanish identically. This is proved
in Lemma 8.1.
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Then we may choose a non-zero analytic vector field X(η) in it. Taking X(η) as
an initial datum, (4.2.9) defines a function xd �→ U(xd; η).

Now, each of the functions

(x, t) �→ exp(T (η)t + iη · y)U(xd; η)

solves Lu = 0, as well as Bu(y, 0, t) = 0. To build an L2 function with the same
property, we choose a non-zero scalar function φ ∈ D(V) and define

u(x, t) :=
∫
V

φ(η) exp(T (η)t + iη · y)U(xd; η) dη.

Plancherel’s Formula yields∫
Ω

|u(t)|2dx = (2π)1−d

∫
Ω

|φ(η)|2 exp(2tRe T (η))|U(xd; η)|2dηdxd.

We see that the L2-norm of u(t) increases exponentially fast as t grows. Perform-
ing a rescaling as in Section 4.2.1, we find a sequence of solutions (uλ)λ, such
that the L2-norm of uλ(t) increases exponentially fast as λ → +∞ for any given
t > 0, while the L2-norm of uλ(0) is a constant times λ−d/2. Even the Hs-norm
of uλ(0) is polynomially bounded in λ for every s. We conclude that the IBVP
cannot be well-posed in Sobolev spaces, even at the price of a loss of derivatives.

Proposition 4.2 The Kreiss–Lopatinskĭı condition is necessary for the well-
posedness of the IBVP in either Hölder or Sobolev spaces. When it fails, no
estimate can hold in such norms, even at the price of a loss of derivatives.

In other words, the failure of the Kreiss–Lopatinskĭı condition implies a
Hadamard instability.

4.2.3 The characteristic case

When Ad is singular, (4.2.9) is not an ODE any longer. To mimic the analysis
of Section 4.2.1, we need to extract from (4.2.9) an ODE. To do that, we first
observe that, since Ad is diagonalizable, Cn is the direct sum of R(Ad) and kerAd,

Cn = R(Ad)⊕ kerAd.

Denoting by π the projector onto kerAd, along R(Ad), we decompose U = r + k,
with k := πU , r := (In − π)U . Then (4.2.9) is equivalent to

Ad dr

dxd
+ (In − π)(τIn + iA(η))(r + k) = 0, (4.2.12)

π(τIn + iA(η))(r + k) = 0. (4.2.13)

From Theorem 1.6, we know that the endomorphism πA(η) of kerAd has a
real spectrum. Hence π(τIn + iA(η)) is non-singular on kerAd. Therefore, we may
invert (4.2.13), as k = M(τ, η)r, with M(τ, η) ∈ L (R(Ad); kerAd). Then (4.2.12)
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becomes an ODE,

dr

dxd
= B(τ, η)r.

Given an initial datum r(0), it admits a unique solution r(xd), and k is deter-
mined by k(xd) = M(τ, η)r(xd). Our next result is

Lemma 4.3 For Re τ > 0 and η ∈ Rd−1, the matrix B(τ, η) does not have
pure imaginary eigenvalues. Consequently, the number of eigenvalues of positive
(respectively negative) real part does not depend on (τ, η). It equals the number
of negative (respectively positive) eigenvalues of Ad.

Proof For λ to be an eigenvalue of B(τ, η), it is necessary and sufficient that
there exists an r ∈ R(Ad), non-zero, and a k ∈ kerAd, such that

λAdr + (τIn + iA(η))(r + k) = 0.

This amounts to saying that

(τIn + iA(η) + λAd)(r + k) = 0.

Therefore one must have det(τIn + iA(η) + λAd) = 0. If λ is pure imaginary,
then τ is so, by hyperbolicity assumption. The rest of the proof is similar to that
of Lemma 4.1. �

We conclude from Lemma 4.3 that bounded solutions of (4.2.9) on R+

actually decay exponentially fast at +∞, and form a vector space of dimension
p. They take values in a p-dimensional vector space E−(τ, η), again called the
stable subspace of (4.2.9). The space E−(τ, η) is made of sums r + M(τ, η)r, with
r in the stable subspace Es(B(τ, η)).

Mimicking Sections 4.2.1 and 4.2.2, we see that a necessary condition for
well-posedness in either Hölder or Sobolev spaces is again the Kreiss–Lopatinskĭı
condition, which reads

Cn = kerB ⊕ E−(τ, η), ∀η ∈ Rd−1, ∀Re τ > 0.

To finish this section, we notice the following property, whose meaning
is that the failure of the Kreiss–Lopatinskĭı condition cannot come from the
characteristic nature of the boundary.

Proposition 4.3 For every η ∈ Rd−1 and Re τ > 0, it holds that

E−(τ, η) ∩ kerAd = {0}.

Proof Let u = r + k belong to E−(τ, η). From (4.2.13), π(τIn + iA(η))(r +
k) = 0 holds, that is u = r + M(τ, η)r. If, moreover, u ∈ kerAd, then r = 0 and
therefore u = 0. �
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4.3 The uniform Kreiss–Lopatinskĭı condition

The symmetric, strictly dissipative case is very suggestive because its estimate
(3.2.19) is the kind that we need for iterative purposes: It measures the solution
u, its value at a given time T and its trace on the boundary, in the same norms
as the corresponding data, respectively f , u0 and g.

Another nice feature of (3.2.19) is that it is invariant under the rescaling
(x, t, u) �→ (λx, λt, u). This transforms (f, g, u0) into (λf, g, u0) and (γ, T ) into
(γ/λ, λT ). All five terms in (3.2.19) are multiplied by the same power of λ. This
immediately gives the following

Lemma 4.4 Assume that the (not necessarily symmetric) hyperbolic IBVP
(4.1.1)–(4.1.3) satisfies the a priori estimate (3.2.19) for every compactly sup-
ported, smooth u, for a given value of the parameter γ > 0 and every time
T > 0. Then the estimate holds for every parameter γ with the same constant
C. Similarly, if the estimate holds for a given time T > 0 and every γ > 0, then
it holds for every T, γ > 0 with the same constant C.

This suggests to introduce a stronger notion of well-posedness, which turns out
to be suitable for a generalization to variable-coefficients IBVPs. It turns out to
be well-suited for non-homogeneous IBVPs too.

Definition 4.4 Let us consider a non-characteristic hyperbolic IBVP (4.1.1)–
(4.1.3) in the domain xd > 0, t > 0. We say that this IBVP is strongly well-posed
in L2 if the a priori estimate (3.2.19) holds for every smooth, rapidly decaying
(in x) u, and every value of γ, T > 0, with a fixed constant C.

The presence of the parameter γ in (3.2.19) (see (4.3.14) below) provides some
flexibility in a non-linear iteration. It can be adjusted to ensure contraction in
local-in-time problems.

4.3.1 A necessary condition for strong well-posedness

Let v be the partial Fourier transform of u, with respect to y, the estimate
(3.2.19) is equivalent to

e−2γT ‖v(T )‖2L2 + ‖v‖2γ,T (4.3.14)

≤ C

(
‖v(0)‖2L2 +

∫ T

0

e−2γt

(
1
γ
‖(L̂v)(t)‖2L2 + ‖γ0Bv(t)‖2L2

)
dt

)
,

where L̂ = ∂t + iA(η) + Ad∂d. Since (4.3.14) reads∫
Rd

Φ(η)dη ≤ 0,

where Φ(η) depends only on the restriction v(η, ·, ·) (but does not depend on η-
derivatives), it decouples as parametrized inequalities Out[w] ≤ C Inη[w] between



110 Initial boundary value problem in a half-space with constant coefficients

measurements of the output and the input, for every η ∈ Rd−1 and every smooth
w(xd, t) with fast decay as xd → +∞, where

Out[w] := e−2γT ‖w(T )‖2L2 +
∫ T

0

e−2γtdt

(
γ

∫ +∞

0

|w|2dxd + |w(0, t)|2
)

Inη[w] := ‖w(0)‖2L2 +
∫ T

0

e−2γtdt

(
1
γ

∫ +∞

0

|Lηw|2dxd + |Bw(0, t)|2
)

.

Hereabove, Lη is obtained from L̂ by freezing η. We emphasize that the constant
C is the same as that in (4.3.14). In particular, it does not depend on η. Since
Out[w] is a sum of positive terms, the estimate (3.2.19) implies the inequality∫ T

0

e−2γt|w(0, t)|2dt ≤ C Inη[w], (4.3.15)

for every η and smooth, fast decaying w. Let us now choose a complex number
τ with Re τ > 0 and a vector V ∈ E−(τ, η). We apply (4.3.15) to the space-
decaying function

w := etτ exp(xdA(τ, η))V,

for which we have Lηw ≡ 0. We then obtain

|V |2 ≤ C

|BV |2 +

(∫ T

0

exp(2(Re τ − γ)t)dt

)−1 ∫ +∞

0

|w|2dxd

 .

Let us choose γ in the interval (0,Re τ). As T → +∞, the integral∫ T

0

exp(2(Re τ − γ)t)dt

tends to infinity. Passing to the limit, we obtain

|V |2 ≤ C|BV |2.
In conclusion, we have found a necessary condition for strong well-posedness, in
the form

∀Re τ > 0, ∀η ∈ Rd−1, ∀V ∈ E−(τ, η), |V |2 ≤ C|BV |2, (4.3.16)

for some finite constant C, independent of (τ, η, v).
We point out that (4.3.16) implies the Kreiss–Lopatinskĭı condition (that is,

BV = 0 and V ∈ E−(τ, η) imply V = 0). However, it is a stronger property, since
the Kreiss–Lopatinskĭı condition is only equivalent to an estimate of the form

|V | ≤ C(τ, η)|BV |, ∀V ∈ E−(τ, η),

where the number C might not be uniformly bounded (though being an homo-
geneous function of (τ, η), of degree zero). Hence, (4.3.16) exactly means that
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the Kreiss–Lopatinskĭı condition holds, with a uniform constant. This justifies
the following

Definition 4.5 Let L be hyperbolic, Ad be invertible. Given B ∈ Mp×n(R),
we say that the IBVP (4.1.1)–(4.1.3) satisfies the uniform Kreiss–Lopatinskĭı
condition (UKL) in the domain xd > 0, t > 0, if

� p equals the number of positive eigenvalues of Ad,
� there exists a number C > 0, such that

|V | ≤ C|BV |, ∀η ∈ Rd−1, ∀Re τ > 0, ∀V ∈ E−(τ, η).

We point out that the inequality |V | ≤ C|BV | for a single pair (τ, η) already
implies that p is larger than or equal to the number of positive eigenvalues
of Ad.

Remark We have shown above that (UKL) is a necessary condition for the
L2-well-posedness of the pure (namely f ≡ 0, u0 ≡ 0) boundary value problem.
If in addition, the operator L is Friedrichs symmetric (or symmetrizable as well),
it is rather easy (see [185], page 199–200) to show that (UKL) is also a sufficient
condition for the pure L2-well-posedness. Thus, it seems at first glance that
the (UKL) condition concerns only the pure boundary value problem, though
the general IBVP decouples into this one, plus a pure Cauchy problem, via the
Duhamel formula. It is therefore fascinating that the (UKL) condition actually
enables us to prove the L2 estimates for the complete IBVP, at least when L is
constantly hyperbolic and the boundary is not characteristic, as we shall see in
Chapter 5.

4.3.2 The characteristic IBVP

Recall that we assume kerAd ⊂ kerB in the characteristic case (Ad is singular.)
The best control of boundary terms that we expect is that of Adu. Control of
the components of u in the kernel of Ad will at least involve higher-order norms
(norms of derivatives) of the data. Consequently, we must adapt our definition
as follows. We recall that γ0 denotes the trace operator on the boundary (while
γ is some positive real number).

Definition 4.6 Consider a (possibly characteristic) hyperbolic IBVP (4.1.1)–
(4.1.3) in the domain xd > 0, t > 0. We say that this IBVP is strongly L2-well-
posed if kerAd ⊂ kerB and if, moreover, the quantity

e−2γT ‖u(T )‖2L2 +
∫ T

0

e−2γtdt

(∫
∂Ω

|γ0A
du(y, t)|2dy + γ

∫
Ω

|u(x, t)|2dx

)
is bounded by above by

C

(
‖u(0)‖2L2 +

∫ T

0

e−2γt

(
1
γ
‖(Lu)(t)‖2L2dt + ‖γ0Bu(t)‖2L2

)
dt

)
,
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for every smooth, rapidly decaying (in x) u, and every value of γ, T > 0, with a
fixed constant C.

As before, we obtain a necessary condition for strong well-posedness, in the form
of a (UKL) condition

∃C > 0,
(
η ∈ Rd−1,Re τ > 0, V ∈E−(τ, η)

)
=⇒(|AdV | ≤ C|BV |). (4.3.17)

Let us note that (4.3.17) not only implies

E−(τ, η) ∩ kerB ⊂ kerAd.

In view of Proposition 4.3, this actually ensures the Kreiss–Lopatinskĭı condition

E−(τ, η) ∩ kerB = {0},
though uniformity holds only3 ‘modulo kerAd’, according to (4.3.17).

4.3.3 An equivalent formulation of (UKL)

We shall prove later that the (UKL) condition is actually a necessary and suffi-
cient condition for well-posedness, at least for the important class of constantly
hyperbolic operators, in the non-characteristic case4. However, this condition, as
defined above, does not give a practical tool when one faces a particular IBVP,
because the computation of the constant C(τ, η) is intricate, and it is not easy
to see whether it is upper bounded as (τ, η) varies. It turns out that there is a
much more explicit way to check (UKL) condition. To explain what is going on,
we begin with the following observation, which will be proved in Chapter 5.

We recall that the set G(n, p) of vector subspaces of dimension p in Cn is a
compact differentiable manifold, called the Grassmannian manifold. This object
is isomorphic to the homogeneous space (set of left cosets) GLp(R)\M0

n×p(R),
where M0

n×p(R) denotes the dense open set of Mn×p(R) consisting in matrices of
full rank p.

Lemma 4.5 Assume that the operator L is constantly hyperbolic and the
boundary is non-characteristic. Then the map (τ, η) �→ E−(τ, η) (already defined
for Re τ > 0, valued in G(n, p)) admits a unique limit at every boundary point
(iρ, η) (with ρ ∈ R, η ∈ Rd−1), with the exception of the origin.

It is then natural to call E−(iρ, η) this limit. We emphasize that, in general,
E−(iρ, η) only contains, but need not be equal to, the stable subspace of the

3In view of Proposition 4.3, we also have an estimate |V | ≤ C ′|BV | on E−(τ, η), at least when
Re τ > 0. However, we do not know whether E−(τ, η) ∩ kerAd is trivial at boundary points Re τ = 0.
This left the possibility that C ′ = C ′(τ, η) and that the estimate of V in terms of BV be non-uniform.

4We should temper this sentence. By well-posedness, we mean strong L2-well-posedness of the
non-homogeneous BVP. We shall see in Chapter 8 that strong well-posedness may hold true in some
complicated space, when the Kreiss–Lopatinskĭı condition is satisfied but not uniformly. In Chapter
7, we show that the IBVP with an homogeneous boundary condition needs a property weaker than
(UKL).
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differential equation AdU ′ + i(ρIn + A(η))U = 0, since the latter has dimension
less than or equal to p.

Let us assume that the IBVP defined by the pair (L,B) satisfies (UKL)
condition. Then, by continuity, (4.3.16) still holds when Re τ = 0, which means
that E−(τ, η) ∩ kerB = {0} for these parameters too. Conversely, assume that
this intersection is trivial for every non-zero pair (τ, η) with Re τ ≥ 0. Then, for
every such pair, the number

c(τ, η) := sup
{ |V |
|BV | ; V ∈ E−(τ, η), V �= 0

}
is finite. The function (τ, η) �→ c is continuous and homogeneous of degree
zero. Since the hemisphere defined by Re τ ≥ 0, η ∈ Rd−1 and |τ |2 + |η|2 = 1 is
compact, we infer that this function is upper bounded. Hence, the IBVP satisfies
(UKL) condition. Finally,

Corollary 4.1 Let L be constantly hyperbolic and the boundary be non-
characteristic. Then the IBVP (4.1.1)–(4.1.3) satisfies the uniform Kreiss–
Lopatinskĭı condition if, and only if, E−(τ, η) ∩ kerB = {0} for every non-zero
pair (τ, η) with Re τ ≥ 0 and η ∈ Rd−1.

This corollary gives a practical tool for checking the (UKL) condition. The
main difficulty during calculations being the computation of E−(τ, η) when Re τ
vanishes.

Remark We warn the reader that the continuous extension of E−(τ, η) to
boundary points (Re τ = 0) may not exist for non-constantly hyperbolic oper-
ators (operators for which eigenvalues do cross each other). This happens
even within the class of Friedrichs-symmetric systems. See, however, the deep
analysis [135] by Métivier and Zumbrun of Friedrichs-symmetric IBVPs with
characteristic fields of variables multiplicities, which works out in the case
of MHD.

4.3.4 Example: The dissipative symmetric case

To show the relevance of the notion of the uniform Kreiss–Lopatinskĭı condition,
we prove:

Proposition 4.4 Let L be Friedrichs symmetric. If B is dissipative, then the
IBVP satisfies the Kreiss–Lopatinskĭı condition. If B is strictly dissipative, the
IBVP satisfies (UKL).

Proof Let η ∈ Rd−1 and Re τ > 0 be given. Let u be an element of E−(τ, η)
and U be the solution of the differential-algebraic Cauchy problem

(τIn + iA(η))U + Ad dU

dxd
= 0, U(0) = u.
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Then U decays exponentially fast at +∞. Since L is Friedrichs symmetric, the
standard energy estimates gives

2(Re τ)
∫ +∞

0

|U |2dxd = (Adu, u).

If B is dissipative and if u ∈ kerB, we deduce that∫ +∞

0

|U |2dxd ≤ 0,

hence U ≡ 0 and u = 0. Therefore E−(τ, η) ∩ kerB = {0}. This is the Kreiss–
Lopatinskĭı condition.

If B is strictly dissipative, we know that there exist positive constants ε and
C such that the Hermitian form

w �→ ε|Adw|2 + (Adw,w)− C|Bw|2

is non-positive. With u as above, we immediately obtain

ε|Adu|2 ≤ C|Bu|2.

Since this inequality does not depend on (τ, η), the Kreiss–Lopatinskĭı condition
is satisfied uniformly. �

It is not true in general that every IBVP satisfying (UKL) can be put
in a symmetric, strictly dissipative form. A crude reason is that if n ≥ 3
and d ≥ 2, most hyperbolic operators are not symmetrizable. However, when
Lu = (∂2

t −∆x)u with u : Ω → Rn (hence L is diagonal) and the IBVP is coupled
through first-order boundary conditions, Godunov et al. proved the converse of
Proposition 4.4; see, for instance, [71].

4.4 The adjoint IBVP

The existence of a solution of a general IBVP will be proved by a duality
argument5. Hence, we need to construct an adjoint IBVP. To a pair (L,B),
where L is a hyperbolic operator and B a boundary matrix, we shall associate a
pair (L′, C), such that whenever

Lu = f, L′v = F in xd > 0

and

Bu = g, Cv = h on xd = 0,

5In the present context of constant coefficients and a half-space domain, the solution could
be constructed directly, as we did in the symmetric dissipative case. But we have in mind the
generalization to variable coefficients.
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a duality formula holds. Of course, L′ will be the adjoint operator L∗ found in
Chapter 1,

L∗ = −∂t −
∑
α

(Aα)T ∂α.

Assume that u, v ∈ D(Ω× R)n (for the sake of simplicity, the time variable runs
through the whole line) and let us compute∫

R

∫
Ω

((v, f)− (u, F ))dxdt =
∫

R

∫
Ω

((v, Lu)− (u,L∗v))dxdt

=
∫

R

∫
Ω

(∂t(u, v) +
∑
α

∂α(Aαu, v))dxdt (4.4.18)

= −
∫

R

∫
∂Ω

(Adu, v) dy dt,

from Green’s formula. The left-hand side is a bilinear form in the variables (u, f)
and (v, F ), respectively. Similarly, we search a decomposition of Ad in such a
way that the right-hand side be bilinear in (u, g) and (v, h). It will be sufficient
that Ad reads CT N + MT B, for suitable matrices M and N , for then

(Adu, v) = (Nu,Cv) + (Bu,Mv) = (Nu, h) + (g,Mv).

Moreover, in order that the (backward) adjoint IBVP be well-posed, we ask in
particular that it be normal, which at least requires that C is q × n, where q is the
number of negative eigenvalues of (Ad)T , that is of Ad. In the non-characteristic
case, this means q = n− p, while in general it only implies q ≤ n− p.

Let us begin with the non-characteristic case. We choose any (n− p)× n
matrix X that is onto, such that(

B
X

)
∈ GLn(R).

Such a matrix exists since B is onto. Let us write the inverse blockwise as (Y,D),
where D is n× (n− p). From the identity Y B + DX = In, we may choose C :=
(AdD)T , M = (AdY )T and N = X.

We notice that R(D) ⊂ kerB, since BD = 0p×(n−p). However, both spaces
have the same dimension n− p, since B is onto and D is one-to-one. Hence
R(D) = kerB and

kerC = (R(AdD))⊥ = (AdR(D))⊥ = (AdkerB)⊥. (4.4.19)

Identity (4.4.19) shows that kerC, which is the meaningful object in a boundary
condition, does not depend on the choice of the complement X. It actually does
not even depend on the procedure; we leave the reader to verify that the duality
identity (4.4.18) only needs kerC = (AdkerB)⊥.

The characteristic case can be treated in the same spirit. However, the matrix
(AdD)T built above is (n− p)× n instead of being q × n. Hence, we must first



116 Initial boundary value problem in a half-space with constant coefficients

reduce the matrix Ad to the block-diagonal form(
0m 0
0 ad

)
, ad ∈ GLn−m(R).

Because of kerAd ⊂ kerB, we then have B = (0, B1), where B1 is p× (n−m)
and is onto. Then we proceed as before, replacing B by B1 and n by n−m. We
thus find a matrix C1, such that ad = MT

1 B1 + CT
1 N1 and kerC1 = (adkerB1)⊥.

Then the following matrices work:

C =
(

0
C1

)
, M = (0,M1), N = (0, N1).

Finally, we obtain the result:

Proposition 4.5 Let a pair (L,B) be given, where L is hyperbolic, B ∈
Mp×n(R), where p is the number of incoming characteristics, and kerAd ⊂ kerB.
Let L∗ be the adjoint of L, with q the number of its incoming characteristics,
that is the number of negative eigenvalues of Ad. Then there exists a matrix
C ∈ Mq×n(R) and matrices M,N such that Ad = CT N + MT B. The matrix
C is characterized uniquely, up to left multiplication, by the identity kerC =
(Ad(kerB))⊥.

When u, v are smooth fields on Ω× R, decaying fast enough at infinity, the
following identity holds∫

R

∫
Ω

((Lu, v)− (L∗v, u))dxdt +
∫

R

∫
∂Ω

((Nu,Cv) + (Bu,Mv))dy dt = 0.

(4.4.20)

As a corollary, we obtain

Theorem 4.1 Given a normal hyperbolic IBVP, defined by (L,B), there exists
an adjoint IBVP, defined by the pair (L∗, C), which is normal hyperbolic (back-
ward in time) and satisfies the identity (4.4.20). One has

L∗ = −∂t −
∑
α

(Aα)T ∂α,

Ad = CT N + MT B,

where C ∈ Mq×n(R) satisfies kerC = (Ad(kerB))⊥. Moreover,

kerAd = kerN ∩ kerB. (4.4.21)

Finally, the former IBVP is the adjoint of the latter.

Proof It remains to prove that the adjoint problem is backward normal and
to check the validity of (4.4.21).

By backward normal, we mean that the IBVP obtained from (L∗, C) by the
time reversion t → −t is normal. This amounts to saying that C ∈ Mq×n(R),
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where q is the number of negative eigenvalues of (Ad)T (or of Ad as well), and
that Rn = kerC ⊕ Eu(−(Ad)T ). In other words, it remains to check that

Rn = (kerC)⊥ + (Eu(Ad)⊕ kerAd). (4.4.22)

However, our construction satisfies (kerC)⊥ = R(CT ) = Ad(kerB). Therefore,
(4.4.22) follows from the sequence

Rn = R(Ad) + kerAd = Ad(kerB ⊕ Eu(Ad)) + kerAd ⊂ Ad(kerB)

+Ad(Eu(Ad)) + kerAd.

Last, kerN ∩ kerB ⊂ kerAd is trivial, and the converse follows from the facts
that kerAd ⊂ kerB and that C is onto. �

The method of duality will need the following important fact.

Theorem 4.2 Let (L,B) define a normal hyperbolic IBVP on Ω = {xd > 0},
and let (L∗, C) define its dual IBVP. Let (τ, η) ∈ C× Rd−1 be given, such that
Re τ > 0. It holds that

(Cn = E−(τ, η)⊕ kerB) ⇐⇒ (Cn = E∗
−(−τ̄ ,−η)⊕ kerC),

where E∗
−(z, σ) denotes the stable invariant subspace for the differential-algebraic

equation

(Ad)T V ′ + (zIn + iA(σ)T )V = 0.

Consequently, (L,B) satisfies the Kreiss–Lopatinskĭı property if and only if
(L∗, C) satisfies the Kreiss–Lopatinskĭı property, backward in time. And similarly,
(L,B) satisfies the uniform Kreiss–Lopatinskĭı property if and only if (L∗, C)
satisfies the uniform Kreiss–Lopatinskĭı property, backward in time.

Proof We first note that, whenever V solves (Ad)T V ′ − (τ̄ In + iA(η)T )V =
0 and U solves AdU ′ + (τIn + iA(η))U = 0, then (V ∗AdU)′ = 0 and therefore
V T AdU is constant. If, moreover, U and V decay as x → +∞, this constant is
zero. In other words, we have

Lemma 4.6 Assume that Re τ > 0 and η ∈ Rd−1. If u ∈ E−(τ, η) and v ∈
E∗

−(−τ̄ ,−η), then v∗Adu = 0.
By continuity, the equality also holds true if Re τ ≥ 0.

Let us assume that Cn = E∗
−(−τ̄ ,−η)⊕ kerC, that is C(E∗

−) = C(Cn) = Cq.
Then let u belong to kerB ∩E−(τ, η). From Lemma 4.6 and the decomposition
of Ad, we have, for all v in E∗

−(−τ̄ ,−η),

0 = v∗Adu = (Cv)∗Nu,

which amounts to saying that Nu = 0. From (4.4.21), we obtain u ∈ kerAd.
Proposition 4.3 then gives u = 0, proving that Cn = E−(τ, η)⊕ kerB.

The converse follows after the exchange of (L,B) and (L∗, C).
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We now prove the uniform part of the theorem. Let us assume that the dual
IBVP satisfies (UKL) condition, meaning that there exists a positive constant c
such that, for every complex number τ with Re τ > 0, for every η ∈ Rd−1 and
every vector v ∈ E∗

−(−τ̄ ,−η), it holds that

|(Ad)T v| ≤ c0 |Cv|.

From Theorem 4.1, there exists a positive number c1 such that the following
inequality holds

|Adu| ≤ c1(|Nu|+ |Bu|).

Using the Kreiss–Lopatinskĭı condition for the dual problem, and then its uni-
formity, we may write

|Nu| = sup
{

(Cv,Nu)
|Cv| ; v ∈ E∗

−(−τ̄ ,−η)
}

≤ c0 sup
{

(Cv,Nu)
|(Ad)T v| ; v ∈ E∗

−(−τ̄ ,−η)
}

.

Since the kernel of M contains that of (Ad)T , there exists another constant c2

such that |Mv| ≤ c2|(Ad)T v|. Using now the decomposition of Ad, we conclude
that

|Nu| ≤ c0c2|Bu|+ c0 sup
{

(v,Adu)
|(Ad)T v| ; v ∈ E∗

−(−τ̄ ,−η)
}

.

The use of Lemma 4.6 now gives the expected result: if u ∈ E−(τ, η), then

|Adu| ≤ c1(1 + c0c2)|Bu|,

where the constants do not depend on the pair (τ, η). �

4.5 Main results in the non-characteristic case

The main statement of this chapter is the following strong well-posedness result
in L2. It completes the study of the strongly dissipative symmetric case (see
Chapter 3).

Theorem 4.3 Let Ω be the half-plane {x ∈ Rd ; xd > 0}. Let

L = ∂t +
d∑

α=1

Aα∂α + R

be a constantly hyperbolic first-order operator, with constant coefficients. Assume
that the boundary is non-characteristic (detAd �= 0), and let p be the number of
positive eigenvalues of Ad (the number of incoming characteristics). Let B ∈
Mp×n(R) have rank p.
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Then the IBVP

Lu = f, in Ω× (0, T ),

Bu = g, on ∂Ω× (0, T ),

u = u0, in Ω× {0},

is strongly well-posed in L2 if, and only if, the uniform Kreiss–Lopatinskĭı
condition holds. In other words:

� On the one hand, if (3.2.19) holds for smooth solutions, then the IBVP
satisfies (UKL).

� On the other hand, assuming that (UKL) holds, we have the following
existence and uniqueness property: for all data f ∈ L2(Ω× (0, T )), g ∈
L2(∂Ω× (0, T )) and u0 ∈ L2(Ω), there exists a unique u ∈ L2(Ω× (0, T ))
with the following properties:

– It satisfies Lu = f in Ω× (0, T ),
– Its trace on ∂Ω× (0, T ) (which is known to belong to H−1/2 because of

Lu ∈ L2(Ω× (0, T ))) is square-integrable, and satisfies Bu = g,
– It belongs to C ([0, T ];L2(Ω)), and satisfies u(t = 0) = u0,
– Finally, (3.2.19) holds for every γ > γ1. Here, γ1 and the constant C

depend only on Aα, B,R, but not on T, f, g or u0; when R = 0, one may
take γ1 = 0.

A related result holds when the boundary is characteristic. However, we
shall establish it for a smaller class of admissible operators. We postpone the
corresponding analysis to Chapter 6.

4.5.1 Kreiss’ symmetrizers

The proof that (UKL) implies well-posedness follows the lines of Chapter 2, but
displays new ideas, coming partly from Chapter 3.

We begin by the analysis of the BVP, that is a boundary value problem, posed
for all time t ∈ R, thus without initial condition. We first prove the analogue of
(3.2.19), but without final and initial states:∫

R

e−2γt(γ‖u(t)‖2L2 + ‖γ0u(t)‖2L2)dt

≤ C

∫
R

e−2γt

(
1
γ
‖(Lu)(t)‖2L2 + ‖γ0Bu(t)‖2L2

)
dt. (4.5.23)

It readily implies that the solution is unique. Since the adjoint BVP satisfies
the same assumptions as the direct one, it enjoys the same estimate. Through
a duality argument, using Hahn–Banach and Riesz theorems, we obtain the
existence of the solution of the BVP. The resolution stands of course in the
space associated to the norms present in (4.5.23), say in L2

γ .
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The passage from the well-posedness of the BVP to that of the IBVP is made
in three steps, and is due to Rauch. The first one is causality; we prove that if
the source f and the boundary data vanish for negative times, then so does
the solution. This allows us to solve the IBVP when the initial data vanishes
identically. The next step consists in a new estimate, namely that of u(·, T ) in
L2

γ , when u(·, 0) ≡ 0. The last one is again a duality argument.
The proof of the estimate (4.5.23) mimics that of the Friedrichs-symmetric

case with strict dissipation, considered in Chapter 3. However, a dissipative
symmetrizer has not been given a priori and we have to build it. A main technical
difficulty is that this symmetrizer, called a Kreiss symmetrizer, is symbolic, thus
it depends on the frequencies (τ, η). Its construction is lengthy and is postponed
to Chapter 5. Theorem 5.1 tells us that there exists a map (τ, η) �→ K(τ, η)
(the Kreiss symmetrizer), defined for η ∈ Rd and Re τ > 0, with the following
properties:

i) (τ, η) �→ K is bounded and homogeneous of degree zero,
ii) Σ(τ, η) := K(τ, η)Ad is Hermitian,
iii) There exists a positive constant c0, independent of (τ, η), such that

w∗Σ(τ, η)w ≤ −c0‖w‖2, ∀w ∈ kerB (4.5.24)

iv) There exists a positive constant, say again c0, independent of (τ, η), such
that

Re (v∗M(τ, η)v) ≥ c0(Re τ)‖v‖2, ∀v ∈ Cn, (4.5.25)

where

M(τ, η) := K(τ, η)(τIn + iA(η)).

Note that in the Friedrichs-symmetric, strictly dissipative case, one can simply
choose K ≡ In, which is classical instead of symbolic. Point ii) is the symmetry
property, while point iii) is the strict dissipation.

Remark Estimate (4.5.23) can be used the same way as (3.2.19) to show
the necessity of (UKL). We leave the reader to adapt the calculations of
Section 4.3.1.

4.5.2 Fundamental estimates

Recall that the construction of the Kreiss symmetrizer is postponed to the next
chapter, under appropriate assumptions. We thus suppose that L is constantly
hyperbolic, that the boundary is non-characteristic and that the boundary
condition satisfies (UKL), and we admit in the remainder of the present chap-
ter that these properties ensure the existence of a dissipative symmetrizer K
(Theorem 5.1).

Let u be given in D(Ω× Rt), meaning that u is extendable to Rd × R as a
C∞ function with compact support. For the sake of clarity, we define f = Lu
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and g = γ0Bu. Let us define the Laplace transform in time, Fourier transform
in y

h �→ Lh(τ, η) :=
∫ ∫

Rd−1×R

e−τt−iη·yh(y, t) dy dt η ∈ Rd−1, Re τ > 0.

Since we shall deal with smooth and compactly supported functions, we shall
never discuss the convergence of the integral. We need the following auxiliary
functions:

U(·, ·, xd) := L[u(·, xd, ·)], F (·, ·, xd) := L[f(·, xd, ·)], G := Lg.

Integration by parts yields the identities

L[∂αh] = iηαLh, α = 1, . . . , d− 1, L[∂dh] = ∂dLh, L[∂th] = τLh.

Therefore, we have

(τIn + iA(η) + R)U + AdU ′ = F,

where the prime denotes the xd-derivative. Multiplying on the left by U∗K(τ, η),
we have

U∗(M(τ, η) + K(τ, η)R)U + U∗Σ(τ, η)U ′ = U∗K(τ, η)F.

Let us take the real part in this identity. Since Σ is Hermitian, we have

Re (U∗Σ(τ, η)U ′) =
1
2
(U∗Σ(τ, η)U)′.

Using points i) and iv) above, and integrating in xd over R+, we derive an
inequality

(c0Re τ − C1)
∫ ∞

0

‖U‖2dxd ≤
1
2
U(0)∗Σ(τ, η)U(0) + C

∫ ∞

0

‖U‖ ‖F‖dxd.

We now appeal to Lemma 3.3: There exist positive constants ε and C, such
that the Hermitian form w �→ ε‖w‖2 + w∗Σ(τ, η)w − C‖Bw‖2 is non-positive.
Checking the proof of the lemma, we easily see that the constants may be chosen
independently of (τ, η). We may write c0 instead of ε. We deduce therefore the
bound

(c0Re τ − C1)
∫ ∞

0

‖U‖2dxd +
c0

2
‖U(0)‖2 ≤ C

∫ ∞

0

‖U‖ ‖F‖dxd + C‖BU(0)‖2,

where the argument 0 stands for the xd-variable. If C1 > 0, we take a threshold
γ1 larger than C1/c0, to obtain

γ

∫ ∞

0

‖U‖2dxd +
1
2
‖U(0)‖2 ≤ C

∫ ∞

0

‖U‖ ‖F‖dxd + C‖BU(0)‖2,



122 Initial boundary value problem in a half-space with constant coefficients

for γ = Re τ > γ1. Using now the Cauchy–Schwarz inequality, we obtain

γ

∫ ∞

0

‖U‖2dxd + ‖U(0)‖2 ≤ C

(
1
γ

∫ ∞

0

‖F‖2dxd + ‖BU(0)‖2
)

.

Integrating in η, we obtain

γ‖U(τ)‖2L2 + ‖U(τ, 0)‖2L2 ≤ C

(
1
γ
‖F (τ)‖2L2 + ‖BU(τ, 0)‖2L2

)
,

where the L2-norm is taken in terms of η and, for U and F , in terms of xd too.
Integrating then with respect to the imaginary part of τ and using Plancherel
formula, we obtain the weighted estimate

γ

∫ ∫
Ω×R

e−2γt‖u‖2dxdt +
∫ ∫

∂Ω×R

e−2γt‖γ0u‖2dy dt (4.5.26)

≤ C

(
1
γ

∫ ∫
Ω×R

e−2γt‖Lu‖2dxdt +
∫ ∫

∂Ω×R

e−2γt‖γ0Bu‖2dy dt

)
.

We consider now less-regular functions. For this purpose, we define the
weighted spaces L2

γ of measurable functions u such that (x, t) �→ e−γtu(x, t) is
square-integrable. These are Hilbert spaces with the obvious norms

‖u‖γ := ‖e−γtu‖L2 .

Such spaces may concern functions defined either on Ω× Rt, or on ∂Ω× Rt. We
define in a similar way weighted Sobolev spaces Hk

γ . We note that, given u in L2
γ

such that Lu ∈ L2
γ , the trace γ0u is well-defined in a class H−1/2, weighted by

eγt, which we denote H
−1/2
γ .

Lemma 4.7 Assume that u, Lu and γ0Bu are in the class L2
γ . Then

i) The trace γ0u belongs to the class L2
γ .

ii) The function u satisfies (4.5.26).

Proof Using a cut-off function, we may restrict ourselves to the case of a
compactly supported functions.

We begin with the easy case where u belongs to H1
γ(Ω× R) and has a compact

support. Then point i) is obvious. On the other hand, u is the limit in H1
γ

of functions uε ∈ D(Ω̄× R). Hence Lu and γ0Bu are the limits in L2
γ of the

sequences Luε and γ0Buε. The latter satisfy (4.5.26), which remains valid in the
limit.

We turn to the general case of an L2-function with compact support. Let
ρε be a mollifier in the variables (y, t) (the tangential variables.) A convolution
by ρε yields a function uε, compactly supported and C∞ with respect to y and
t. Besides, Luε = ρε ∗ (Lu) and γ0Buε = ρε ∗ (γ0Bu) are smooth in (y, t). The
sequences (uε)ε, (Luε)ε and (γ0Buε)ε converge, respectively, to u, Lu and γ0Bu
in L2

γ . In particular, they are Cauchy in L2
γ .
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When 0 ≤ α < d, we have ∂αuε = (∂αρε) ∗ u, with ∂0 := ∂t. Hence ∂αuε is
square-integrable. Next, the identity

∂du
ε = (Ad)−1(Luε − ∂tu

ε −
d−1∑
α=0

Aα∂αuε)

shows that ∂du
ε is square-integrable6 too. Hence uε belongs to H1

γ(Ω× R), and
we are allowed to use (4.5.26).

This estimate shows that the sequences (uε)ε and (γ0u
ε)ε are Cauchy, hence

converge, in L2
γ . This proves that γ0u is actually an L2

γ-function. Similarly, uε is
Cauchy in C (I;L2(Ω)), for every bounded interval I. Hence, it converges in this
space and that proves the continuity of u with respect to time, with L2-values.
Finally, the estimate passes to the limit. �

Lemma 4.7 immediately gives the following results:

Corollary 4.2 Let f(x, t) and g(y, t) be given in the classes L2
γ . Then the solu-

tion of the boundary value problem Lu = f (x ∈ Ω, t ∈ R), γ0Bu = g (y ∈ ∂Ω,
t ∈ R), if it exists, must be unique in the class L2

γ .

Corollary 4.3 Assume that u, Lu and γ0Bu are of class L2
γ for every γ larger

than some finite threshold. Assume also that Lu and Bu vanish identically for
t < T . Then u vanishes for t < T .

Proof Because of translational invariance, we may take T = 0, meaning that
Lu ≡ 0 and γ0Bu ≡ 0 for t < 0. Then the right-hand side of (4.5.26) is an o(eεγ)
as γ → +∞, for every positive ε. Hence the left-hand side has the same property,
which implies that u ≡ 0 for t < 0. �

Corollary 4.3 is a principle of causality.

4.5.3 Existence and uniqueness for the boundary value problem in L2
γ

We proceed by duality, using the fact that the dual space to L2
γ is L2

−γ , when
using the standard product

(u, v) :=
∫ ∫

Ω×R

u(x, t) · v(x, t) dxdt.

In particular, we have

‖u‖γ = sup
v

|(u, v)|
‖v‖−γ

.

Assume that u and Lu belong to L2
γ . Then the well-defined boundary trace γ0u

belongs to H
−1/2
γ , and we have a Green’s formula: For every v ∈ H1

γ , it holds

6We point out the importance that the boundary be non-characteristic in this argument.
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that

(Lu, v)− (u,L∗v) + 〈γ0Bu, γ0Mv〉+ 〈γ0Nu, γ0Cv〉 = 0, (4.5.27)

where the adjoint operator L∗ is defined by

L∗ := −∂t −
∑
α

(Aα)T ∂α,

and we recall that Ad = MT B + CT N . The boundary terms in (4.5.27) are
duality products between H

−1/2
γ and H

1/2
−γ .

Since A(ξ) and A(ξ)T are similar, L∗ is constantly hyperbolic too. We have
seen (Theorem 4.2) that the backward adjoint IBVP satisfies (UKL). Therefore,
the latter admits a dissipative symmetrizer7 and we may use an estimate similar
to (4.5.26): If v, L∗v and γ0Cv are of class L2

−γ , then γ0v is of class L2
−γ , and v

satisfies

γ

∫ ∫
Ω×R

e2γt‖v‖2dxdt +
∫ ∫

∂Ω×R

e2γt‖γ0v‖2dy dt

≤ C

(
1
γ

∫ ∫
Ω×R

e2γt‖L∗v‖2dxdt +
∫ ∫

∂Ω×R

e2γt‖γ0Cv‖2dy dt

)
, (4.5.28)

at least for γ > γ1.
Define the subspace Xγ of L2

−γ , whose elements are the functions of the form
L∗v, where v and L∗v are in L2

−γ , such that γ0Cv ≡ 0. From (4.5.28), the map
L∗v �→ v is well-defined and continuous from Xγ into L2

−γ .
Given functions f(x, t) and g(y, t) of class L2

γ , we may define a linear form �
on Xγ by

L∗v �→ �(L∗v) :=
∫ ∫

Ω×R

(v, f) dxdt +
∫ ∫

∂Ω×R

(g,Mv) dy dt,

where we recall that Ad = MT B + CT N . Estimate (4.5.28) and the Cauchy–
Schwarz inequality show that � is continuous, with

|�(L∗v)| ≤ ‖v‖−γ‖f‖γ + C‖γ0v‖−γ‖g‖γ

≤ C
(
γ−1‖f‖γ + γ−1/2‖g‖γ

)
‖L∗v‖−γ .

Thanks to the Hahn–Banach and Riesz Theorems, there exists a function u(x, t),
of class L2

γ , satisfying

�(L∗v) = (u,L∗v), (4.5.29)

and

γ‖u‖2γ ≤ C
(
γ−1‖f‖2γ + ‖g‖2γ

)
. (4.5.30)

7A dissipative symmetrizer for a backward IBVP obeys the same requirements as for the direct
IBVP, except that an inequality has to be reversed. We leave the reader to write the details.
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Testing (4.5.27) against functions L∗v where v ∈ D(Ω× R), we obtain Lu = f in
the distributional sense and 〈γ0Bu− g,Mv〉 = 0. However, the equality kerC =
(AdkerB)⊥ and the fact that B is onto imply that M : kerC → Rp is onto, and
therefore we may replace Mz by any test function. It follows that γ0Bu = g.

With Lemma 4.7 and Corollary 4.2, we conclude with the well-posedness of
the Boundary Value Problem:

Lemma 4.8 Given f(x, t) and g(y, t) in the classes L2
γ , there exists a unique u

in L2
γ , solution of the Boundary Value Problem Lu = f and γ0Bu = g, relative

to the half-space Ω× R.
Moreover, this solution satisfies (4.5.26).

Applying this result to the adjoint problem, we obtain

Corollary 4.4 The space Xγ defined above coincides with L2
−γ .

4.5.4 Improved estimates

In order to pass from the well-posedness of the BVP to that of the IBVP, we
need to improve (4.5.26) in the following way.

Lemma 4.9 With the above assumptions, every smooth and compactly sup-
ported function u satisfies for every T ∈ R:

e−2γT

∫
Ω

‖u(T )‖2dx + γ

∫ T

−∞

∫
Ω×R

e−2γt‖u‖2dxdt

+
∫ T

−∞

∫
∂Ω×R

e−2γt‖γ0u‖2dy dt (4.5.31)

≤ C

(
1
γ

∫ T

−∞

∫
Ω×R

e−2γt‖Lu‖2dxdt +
∫ T

−∞

∫
∂Ω×R

e−2γt‖γ0Bu‖2dy dt

)
,

where the constant C does not depend on γ, T or u.

Proof The first step is to replace the integrals over R by integrals over (−∞, T ).
This immediately follows from Corollary 4.3 and from the existence part. Let f̃
be defined by f̃ = Lu if t > T and f̃ = 0 if t < T . Define in a similar way g̃.
Then let ũ ∈ L2

γ be the solution associated to f̃ and g̃. Then ũ vanishes for t < T
(Corollary 4.3). The estimate (4.5.26) for v := u− ũ precisely reads

γ

∫ T

−∞

∫
Ω×R

e−2γt‖u‖2dxdt +
∫ T

−∞

∫
∂Ω×R

e−2γt‖γ0u‖2dy dt

≤ C

(
1
γ

∫ T

−∞

∫
Ω×R

e−2γt‖Lu‖2dxdt +
∫ T

−∞

∫
∂Ω×R

e−2γt‖γ0Bu‖2dy dt

)
,
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We turn to the estimate of the L2-norm of u(T ). The proof below, which we
borrow from Rauch’s PhD thesis [161], covers the physically significant case of a
Friedrichs-symmetric operator. For a proof in full generality, we refer to [162].

Thus let us assume that L is Friedrichs symmetric. Integrating the identity

∂t

(
e−2γt|u|2

)
+
∑
α

∂α

(
e−2γtu∗Aαu

)
= 2e−2γt

(
〈Lu, u〉 − γ|u|2

)
on Ω× (−∞, T ), we obtain

e−2γT ‖u(T )‖2L2 + 2γ
∫ T

−∞
e−2γt‖u(t)‖2L2dt

= 2
∫ T

−∞
e−2γt(u(t), Lu(t))L2dt +

∫ T

−∞
e−2γt(Adγ0u(t), γ0u(t))L2dt.

The Cauchy–Schwarz inequality yields

e−2γT ‖u(T )‖2L2 ≤ 1
2γ

∫ T

−∞
e−2γt‖Lu(t)‖2L2dt + C

∫ T

−∞
e−2γt‖γ0u(t)‖2L2dt.

We conclude with the help of (4.5.26). �
Working now as in Lemma 4.7, we obtain

Proposition 4.6 Let u, Lu and γ0Bu be of class L2
γ . Then u is continuous in

time, with values in L2(Ω), and satisfies 4.5.31.

4.5.5 Existence for the initial boundary value problem

Existence Given three functions f ∈ L2
γ(Ω× R+), g ∈ L2

γ(∂Ω× R+) and u0 ∈
L2(Ω), we define a linear form on L2

−γ (see Corollary 4.4 above) by

�0(L∗v) :=
∫ +∞

0

∫
Ω

(v, f) dxdt +
∫

Ω

u0 · v(0) dx +
∫ +∞

0

∫
∂Ω

(g, γ0Mv) dy dt.

We may think that the time integrals run over Rt, and that we have extended f
and g by zero to negative times.

Once more, �0 is well-defined on some subspace of L2
−ρ and continuous, for

every ρ larger than γ. This gives the existence of a uρ in L2
ρ, with the property

that �0(F ) = (uρ, F ) every F in L2
−ρ. Since L2

−ρ ∩ L2
−γ is dense in L2

−γ , we see
that uρ = uγ almost everywhere. In other words, the common value u belongs to
L2

ρ for every ρ larger than γ.
Testing �0 against elements of Xγ given by the vs in D(Ω× R∗), we obtain

the differential equation

Lu = f, (t �= 0)
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in the distributional sense. This allows us to apply Green’s identity∫ ∫
Ω×(S,T )

((Lu, v)− (u,L∗v))dxdt + 〈γ0Bu, γ0Mv〉∂Ω×(S,T )

+ 〈γ0Nu, γ0Cv〉∂Ω×(S,T ) = 〈u(T−), v(T )〉 − 〈u(S+), v(S)〉, (4.5.32)

both in (−∞, 0) and (0,+∞). This gives∫ ∫
Ω×R∗

(v · Lu− u · L∗v)dxdt = 〈γ0Bu, γ0Mv〉∂Ω×R + 〈γ0Nu, γ0Cv〉∂Ω×R

−〈[u]t=0, v(0)〉Ω,

where [u]t=0 denotes the difference of the traces of u at t = 0+ and t = 0−. We
thus obtain

〈γ0Bu,Mv〉∂Ω×R =
∫ +∞

0

∫
∂Ω

(g,Mv) dy dt, (4.5.33)

〈[u]t=0, v(0)〉Ω =
∫

Ω

u0 · v(0) dx. (4.5.34)

The argument that we developed in the previous section applies to (4.5.33)
and shows that γ0Bu = gχt>0. In particular, Lu and γ0Bu vanish for t < 0.
Given ε > 0, let φ ∈ C∞ be a function of time, satisfying φ ≡ 1 for t < −ε, and
φ ≡ 0 for t > −ε/2. Then uε := φu is in L2

γ , as well as Luε and8 γ0Buε. Since
Luε and γ0Buε vanish for t < −ε (where they coincide with Lu and γ0Bu), and
since uε, Luε, γ0Buε belong to L2

ρ for every ρ > γ, Corollary 4.3 tells that uε

vanishes for t < −ε. Since ε is arbitrary, we deduce that u vanishes on t < 0.
In particular, the trace of u at t = 0− is zero, and (4.5.34) amounts to saying

that u(t = 0+) = u0. Hence there exists a solution of the full IBVP, which lies in
L2

γ(Ω× R+). We shall see in a moment that this is unique. Because of the bound

|�0(L∗v)| ≤ C
(
γ−1‖f‖γ + γ−1/2‖u0‖L2 + γ−1/2‖g‖γ

)
‖L∗v‖−γ

given by (4.5.28), this solution satisfies the estimate

γ‖u‖2γ ≤ C

(
1
γ
‖f‖2γ + ‖u0‖2L2 + ‖g‖2γ

)
, (4.5.35)

for every γ > γ1, where C does not depend on γ.

Uniqueness Let u ∈ L2
γ(Ω× R+

t ) be such that Lu = 0. Hence γ0u and u(0)
make sense. Assume that u(0) ≡ 0 and γ0Bu ≡ 0. Green’s Formula yields∫ ∫

Ω×R+
(u,L∗v) dxdt = 〈γ0Nu, γ0Cv〉∂Ω×R+ ,

8Note that Lu itself is not in L2
γ(Ω× R).
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for every v ∈ D(Ω̄× R). Extending u to negative times by zero, we obtain∫ ∫
Ω×R

(u,L∗v) dxdt = 〈γ0Nu, γ0Cv〉∂Ω×R+ .

In particular, Lu = 0 on Ω× R and γ0Bu = 0 on ∂Ω× R. Using Corollary 4.2,
we deduce u ≡ 0.

Improved estimates Apply (4.5.32) with (S, T ) = (0,+∞):∫ ∫
Ω×(0,+∞)

(u,L∗v)dxdt− 〈γ0Nu, γ0Cv〉 =
∫ ∫

Ω×(0,+∞)

(f, v)dxdt + 〈g, γ0Mv〉

+ 〈u0, v(0)〉.
According to (4.5.28), the left-hand side is bounded above by

C
(
γ−1‖f‖γ + γ−1/2‖u0‖L2 + γ−1/2‖g‖γ

)
(‖L∗v‖−γ + ‖γ0Cv‖−γ) .

We thus obtain the estimate

γ‖u‖2γ + ‖γ0Nu‖2γ ≤ C

(
1
γ
‖f‖2γ + ‖u0‖2L2 + ‖g‖2γ

)
.

However, since kerN ∩ kerB = kerAd = {0}, this really means

γ‖u‖2γ + ‖γ0u‖2γ ≤ C

(
1
γ
‖f‖2γ + ‖u0‖2L2 + ‖g‖2γ

)
. (4.5.36)

If u0 vanished, the argument employed for uniqueness would show that, after
extension by zero to negative times, Lu still belongs to L2

γ . Then (4.5.32) would
be valid. We are now going to prove that it remains valid for general data u0 in
L2. For that purpose, it is enough to assume f ≡ 0 and g ≡ 0. By density, we
may also assume that u0 belongs to D(Ω).

From the uniqueness result above, tangential derivatives ∂αu (α = 1, . . . ,
d− 1), being the solutions of the IBVP corresponding to fα = 0, gα = 0 and
u0α := ∂αu0, belong to L2

γ . Similarly, ∂tu is the solution corresponding to f t = 0,
gt = 0 and the initial data −

∑
α Aα∂αu0, and thus belongs to L2

γ . Hence
∂du = −∂tu−

∑
α Aα∂αu is L2

γ . Hence u is H1(γ) and we may integrate the
energy identity on the slab Ω× (0, T ), as in the proof of Lemma 4.7.

4.5.6 Proof of Theorem 4.3

It remains to treat the case of a time interval (0, T ). Let f ∈ L2(Ω× (0, T )),
g ∈ L2(∂Ω× (0, T )) and u0 ∈ L2(Ω) be given. The extensions of f and g by
zero, for times t > T , belong to L2

γ for every γ. We thus obtain a unique solution
u of the IBVP in Ω× R+. Its restriction to times t ∈ (0, T ) furnishes a solution
of the IBVP in the slab, with the required estimate.

We now prove uniqueness. Assume that f , g and u0 vanish identically. and
u ∈ L2(Ω× (0, T )) satisfies the IBVP. If ε ∈ (0, T ), choose φ in D(R) such that



Main results in the non-characteristic case 129

φ(t) = 1 if t < T − ε and φ(t) = 0 if t > T − ε/2. Extending u by zero to t �∈
(0, T ), we obtain that φu and L[φu] are in L2

γ for every γ. Since L[φu] and
γ0B(φu) vanish for t < T − ε, Corollary 4.3 tells that u vanish for T − ε. Since ε
is arbitrary, we conclude that u = 0.

4.5.7 Summary

We summarize below the strategy that we followed for proving the existence and
uniqueness, and establishing estimates for the IBVP.

� With the help of the Kreiss’ symmetrizer, we establish an a priori estimate
in L2

γ , when u ∈ D(Ω× Rt).
� By truncation and convolution, we extend this estimate to the case where

u, Lu and γ0Bu are of class L2
γ .

� This implies uniqueness for the BVP.
� This implies also a causality property: If Lu ≡ 0 and γ0Bu ≡ 0 in the past

(say for t < T ), then u ≡ 0 in the past.
� Since (UKL) and constant hyperbolicity pass to the adjoint BVP, we

also have an estimate for the latter when its data and solution are of
class L2

−γ .
� By a duality argument, which uses Hahn–Banach and Riesz Theorems, the

BVP is solvable in the class L2
γ , for data in L2

γ .
� Thanks to the existence result and to the causality, one may replace Rt by

(−∞, T ) in the estimates. Also, the IBVP with a zero initial data admits
a solution.

� Thanks to the energy estimate (when the operator is Friedrichs symmetric),
we also have an estimate of u(T ) in L2(Ω).

� We deduce that, for data in L2
γ , the solution is continuous with values in

L2(Ω).
� Thanks to the causality property and to the time-pointwise estimate, and

using a duality argument, the IBVP is solvable in the class L2
γ .

� As above, the IBVP has a causality property and estimates on Ω× (0, T )
instead of Ω× (0,+∞).

4.5.8 Comments

BVP vs IBVP We emphasize that the existence and the estimates for the
Boundary Value Problem do not automatically imply the corresponding results
for the Initial Boundary Value Problem. Let us consider an abstract differential
equation

dx

dt
= Ax + f, (4.5.37)
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which is a model for the homogeneous BVP (Bu(0, t) ≡ 0). Let us assume that
(4.5.37) has an existence property with an estimate∫

R

e−2γt‖u(t)‖2dt ≤ C2

γ2

∫
R

e−2γt‖f(t)‖2dt, ∀γ > 0, (4.5.38)

where the norm is taken in some Hilbert space. Letting γ → +∞, we find as
usual that if f vanished in the past, then u does too.

It is not hard, using the Parseval Identity, to prove that τI −A has a bounded
inverse for every τ of positive real part, with the estimate

‖(τI −A)−1‖ ≤ C ′

Re τ
. (4.5.39)

However, (4.5.38) is essentially equivalent to (4.5.39), and it is not possible from
there to derive a pointwise estimate for the semigroup generated by A (assuming
that it exists). This prevents us from proving anything about the Cauchy problem
for (4.5.37) without some additional information about A.

Historically, this difficulty was encountered by Kreiss [103], who solved only
the (non-homogeneous) BVP. The extension of his results to the full IBVP
was obtained later by Rauch [161, 162]. We shall face this difficulty in the
homogeneous IBVP (that is with a zero boundary condition, see Chapter 7)
and in the so-called WR case, see Chapter 8.

4.6 A practical tool

4.6.1 The Lopatinskĭı determinant

We are going to define in this section a (not very) practical tool called the
Lopatinskĭı determinant. This is a function (τ, η) �→ ∆(τ, η), with the following
properties

i) It is well-defined for η ∈ Rd−1 and Re τ > 0,
ii) It is jointly analytic in (τ, η), and therefore holomorphic in τ ,
iii) It vanishes precisely at points violating the Lopatinskĭı condition.

To fill these three properties, it is enough to construct a basis

β(τ, η) = {X1(τ, η), . . . , Xp(τ, η)}
of E−(τ, η), which satisfies the first two ones. Then we define the Lopatinskĭı
determinant as

∆(τ, η) := det(BX1(τ, η), . . . , BXp(τ, η)), (4.6.40)

since the vanishing of the determinant is equivalent to the existence of a non-
trivial linear combination

X :=
p∑
1

cjXj(τ, η)

such that BX = 0, which amounts to X ∈ kerB ∩ E−(τ, η).
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To construct β, we use the procedure described by Kato in [95], Section
4.2, which goes as follows. Let z �→ P (z) be an analytic function with values in
projectors, where z ranges on a simply connected domain. From identity P 2 = P ,
one easily finds P ′ = [Q,P ], with Q := [P ′, P ]. Then the linear Cauchy problem
M ′ = QM , M(z0) = In is globally solvable and yields the formula

M(z)−1P (z)M(z) ≡ P (z0).

Therefore, given a basis β0 of the range of P (z0), the set β(z) := M(z)β0 is a
basis of the range of P (z), and is analytic in z.

When P depends on several variables, this procedure cannot be done simul-
taneously in general. If Qj := [∂P/∂zj , P ], simultaneity requires the compati-
bility condition ∂Q/∂zk − ∂Q/∂zj = [Qj , Qk], though in practice we have oddly
∂Q/∂zk − ∂Q/∂zj = 2[Qj , Qk]! However, we may apply Kato’s procedure succes-
sively to each of the arguments, provided that at each step, a Cauchy problem
is posed in a simply connected region. Because ODEs with analytic coefficients
propagate analyticity, the resulting matrix M is jointly analytic in its arguments.
The inelegant fact is that the result depends on the order in which we solve ODEs,
because of the lack of compatibility.

Applying these ideas to the projectors π−(τ, η), which are jointly analytic,
we now have

Lemma 4.10 For η ∈ Rd−1 and Re τ > 0, the space E−(τ, η) admits a basis
β(τ, η), which is jointly analytic in (τ, η), and thus holomorphic in τ .

The symmetric case We restrict ourselves here to the non-characteristic case.
When the operator L is symmetric, that is A(ξ)T = A(ξ) for every ξ in Rd, an
alternative construction can be done, with the help of the following

Lemma 4.11 In the symmetric case with a non-characteristic boundary, one
has for every η ∈ Rd−1 and Re τ > 0

Eu(Ad) ∩ E+(τ, η) = {0}, (4.6.41)

where Eu(Ad) stands for the unstable invariant subspace of Ad.

To our knowledge, the validity of property (4.6.41) under the assumption of
hyperbolicity, instead of symmetry, remains an open question.

Proof Let u0 belong to E+(τ, η). Then the unique solution

Adu′ + (τ + iA(η))u = 0, u(0) = u0

decays exponentially fast at −∞. Multiplying the ODE by u∗ and integrating,
we obtain

u∗
0A

du0 = −2(Re τ)
∫ 0

−∞
|u|2dxd ≤ 0.
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If, moreover, u0 ∈ Eu(Ad), the unique solution of

v′ = Adv, v(0) = u0

decays exponentially fast at −∞. Multiplying the ODE by v∗Ad and integrating,
we obtain

u∗
0A

du0 = 2
∫ 0

−∞
|Adv|2dxd ≥ 0.

We conclude that u∗
0A

du0 = 0, which readily implies that u ≡ 0. Thus
u0 = 0. �

Thanks to the lemma, the map π−(τ, η) : Eu(Ad) → E−(τ, η) is injective, thus
bijective since both spaces have dimension p. Now, given a basis γ0 of Eu(Ad),
we obtain a basis γ(τ, η) := π−(τ, η)γ0 of E−(τ, η), which is jointly analytic.

An abstract definition of ∆ We use here the exterior algebra Λ(Cn). For a
construction of this object, we refer, for instance, to Harris’ book [81]. The (non-
commutative) algebra Λ(Cn) is spanned by Cn under the associative product
(exterior product) ∧. The exterior product basically satisfies X ∧ Y = −Y ∧X
for every X,Y in Cn. This rule defines a graded algebra,

Λ(Cn) = Λ0(Cn)⊕ · · · ⊕ Λn(Cn),

with

Λ0(Cn) = C, Λ1(Cn) = Cn

and

dim Λk(Cn) =
(

n
k

)
.

Elements of Λk(Cn) are called k-vectors. Given a basis {e1, . . . , en} of Cn, they
are linear combinations of ej1 ∧ · · · ∧ ejk , where j1 < · · · < jk. When F is a k-
dimensional subspace of Cn, we may define a k-vector XF by XF := X1 ∧ · · · ∧
Xk, where {X1, . . . , Xk} is a given basis of F . One verifies that different bases
of F give the same XF , up to a non-zero scalar factor. This procedure defines a
unique one-dimensional subspace in Λk(Cn). The map F �→ CXF is one-to-one,
but not onto, because not all k-vectors are simple exterior products.

Let M ∈ Mm×n(C) be a matrix. For k ∈ N, define a linear map M (k) :
Λk(Cn) → Λk(Cm) by

ej1 ∧ · · · ∧ ejk �→ Mej1 ∧ ej2 ∧ · · · ∧ ejk + · · ·+ ej1 ∧ · · · ∧ ejk−1 ∧Mejk

and linearity. It satisfies the identity

M (k)(X1 ∧ · · · ∧Xk) = MX1 ∧X2 ∧ · · · ∧Xk + · · ·+ X1 ∧ · · · ∧Xk−1 ∧MXk,

for all X1, . . . , Xk in Cn. Let us assume m = n and let (λ1, . . . , λn) be the eigen-
values of M , counted with multiplicity. One easily verifies that the eigenvalues
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of M (k), counted with multiplicities, are the sums

λj1 + · · ·+ λjk
, j1 < · · · < jk.

When applying this observation to the matrix A(τ, η), we find that its ‘pth
sum’ admits a unique eigenvalue µ(τ, η) of minimal real part, namely the sum
of eigenvalues of A(τ, η) with negative real part. Moreover, µ(τ, η) is a simple
eigenvalue, whose eigenvector is XF , for F := E−(τ, η). Using Kato’s argument,
we may construct a jointly analytic choice X(τ, η) of XF . For instance

X(τ, η) = X1(τ, η) ∧ · · · ∧Xp(τ, η)

works. Then we may define

�∆(τ, η) := B(p)X(τ, η).

This expression belongs to Λ(p)(Cp), a one-dimensional vector space. The link
between both definitions is

�∆ = ∆ e1 ∧ · · · ∧ ep,

where {e1, . . . , ep} is any basis of Cp with determinant one. We shall not
distinguish ∆ from �∆ in the following.

4.6.2 ‘Algebraicity’ of the Lopatinskĭı determinant

We show in this section that the Lopatinskĭı locus, that is the set of zeroes of the
Lopatinskĭı determinant ∆, is a subset of an algebraic manifold of codimension
one. In general, this subset is strict, although it has the same codimension. In
other words, there exists a single polynomial Lop(X, η) such that ∆(τ, η) = 0
implies Lop(iτ, η) = 0. Obviously, Lop is a homogeneous polynomial, so that
its zero set may be viewed as a projective variety. More importantly, it has real
coefficients, so that the zeroes (iρ, η) of ∆ on the boundary Re τ = 0 belong to
a real algebraic variety.

Recall first that, in the non-characteristic case, ∆ is defined as the deter-
minant in Cp of vectors Br1(τ, η), . . . , Brp(τ, η), where the rjs span the stable
subspace of A(τ, η). When A is diagonalizable, a generic property, rj may be
taken as an eigenvector associated to µj(τ, η), one of the stable eigenvalues. Using
the polynomial P (X, ξ) := det(XIn + A(ξ)), the eigenvalues are constrained by
P (τ, iη, µj) = 0, or equivalently P (−iτ, η,−iµj) = 0.

Since rj solves (τIn + A(iη, µj))rj = 0, a choice of rj can be made polyno-
mially in (τ, η, µj). For instance, we may choose the first column of M(τ, η, µj),
where M(τ, η, µ) is the transpose of the matrix of cofactors of τIn + A(iη, µ),
since

(τIn + A(iη, µ))M(τ, η, µ) = (det(τIn + A(iη, µ)))In,
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and the right-hand side vanishes whenever µ is an eigenvalue of A. Note that the
columns of M are non-trivial; for instance, they do depend on τ . From now on,
let us denote by R(τ, η, µ) this choice.

The zeroes of the Lopatinskĭı determinant therefore satisfy the following list
of polynomial equations:

det(BR(τ, η, µ1), . . . , BR(τ, η, µp)) = 0,

P (−iτ, η,−iµ1) = 0,

...

P (−iτ, η,−iµp) = 0.

Using the resultant, we may eliminate µ1, considered as a dummy variable,
between the first two equations. These are thus replaced by a polynomial equation
in τ, η, µ2, . . . , µp. Using again the resultant, we eliminate successively µ2, . . . , µp

and end with a single polynomial equation

Lop(iτ, η) = 0.

Practical aspects

� The procedure described above may be the simplest one, in the sense that it
gives the simplest result Lop. This seems to be true when P is irreducible.
However, in practical situations, symmetry properties are responsible for
the presence of multiple eigenvalues of A(ξ), which yield a splitting of P
(see Proposition 1.7, for instance). When P does split, our procedure must
be reconsidered and gives rise to a polynomial of lower degree. See Chapter
13 for convincing examples within gas dynamics.

� A flaw of Lop is that it has been built without any consideration about
the sign of the real part of the µjs. Therefore, its zero set also contains the
zeroes of fake Lopatinskĭı determinants, where the µjs are chosen arbitrarily
in the spectrum of A. The manifold defined by Lop(iτ, η) = 0 thus contains
irrelevant parts, which have to be removed on a case-by-case analysis. This
difficulty is always encountered when one wishes to check the Lopatinskĭı
condition, or (UKL).

� Another difficulty arises when A displays a Jordan block. In this case, the
columns of M do not span the corresponding generalized eigenspace of A,
since it only spans the classical eigenspace. Therefore, it may happen that
Lop admits spurious zeroes, which do not correspond to zeroes of ∆. This
has been the cause of a misunderstanding in [166], where some Lax shocks
in an ideal gas flow were unduly claimed to be unstable. See [42] for a
detailed explanation.

� Similarly, there are points (τ, η) where the first column of M vanishes,
therefore it does not span an eigenspace. At such points, Lop vanishes
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automatically. Since the set of such points is algebraic, its equation must
divide Lop or merely a power of it, according to Hilbert’s Nullstellensatz.
Since the corresponding factor of Lop does not involve the coefficients of
the boundary operator B at all, it is easily identified and can be removed
immediately. An alternative method consists in the replacement of the first
column of M by another one. The choice of the jth column of M yields a
polynomial Lopj . These polynomials differ only by these spurious factors.
Taking their g.c.d., one obtains a simpler polynomial Lop0 that vanishes
everywhere ∆ does.

� Points where A displays a Jordan block also form an algebraic variety,
whose equation enters automatically as a factor in Lop. This factor may
be identified since it does not involve B, and is then removed. However, it
is not removed by taking the g.c.d. Lop0, since it is present in every Lopj .

Example Consider the system ∂tu + A(∇x)u = 0, with d = n = 2 and

A(ξ) :=
(

ξ1 ξ2

ξ2 −ξ1

)
.

The spectrum of A(ξ) consists in ±|ξ|. Hence the boundary condition at x2 = 0
must be scalar (one incoming characteristics): Bu = b1u1 + b2u2. Given an
eigenvalue µ of A(τ, η), that is a root of τ2 + η2 = µ2, a typical eigenvector is
R(τ, η) := (iη − τ, µ)T . The only exception is the point given by τ = iη (a bound-
ary point) and µ = 0; near such a point, a convenient choice of an eigenvector
would be R′(τ, η) := (−µ, τ + iη)T .

The Lopatinskĭı determinant is ∆(τ, η) = b1(iη − τ) + b2µ. Eliminating µ
between ∆ = 0 and τ2 + η2 = µ2, we obtain the equation

b2
2(τ

2 + η2) = b2
1(iη − τ)2.

Therefore,

Lop(z, η) = b2
1(η + z)2 + b2

2(η
2 − z2) = (η + z)(b2

1(η + z) + b2
2(η − z)).

The fact that Lop vanishes at the point z = −η, regardless of the value of �b,
reflects the fact that R does not span an eigenspace at this point. A computation
with the choice R′(τ, η) would have given a similar result with the factor
z − η instead of z + η. This factor is thus irrelevant, and the vanishing of the
Lopatinskĭı determinant must imply that of the simpler polynomial

Lop0(z, η) = b2
1(η + z) + b2

2(η − z).

This formula shows that the IBVP satisfies the Lopatinskĭı condition for every
�b such that b1 �= ±b2. What the formula hides is that the IBVP still satisfies
the Lopatinskĭı condition when b1 = b2, while it does not if b1 = −b2. The
replacement of the half-space x2 > 0 by the domain x2 < 0, or the reversal of
the time arrow, exchanges the roles. Hence, it is important to keep in mind
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that the vanishing set of Lop0 encodes not only the vanishing of the Lopatinskĭı
determinant, but also a number of other properties.

4.6.3 A geometrical view of (UKL) condition

Denote by W (k, n) the Grassmannian manifold, consisting of the linear subspaces
of dimension k in Cn. For instance, W (1, n) is just the projective space Pn−1(C).
A correct definition is the following one. Recall that Λk(Cn) is the set of elements
of degree k in the exterior algebra Λ(Cn). Consider the subset ΛS

k (Cn) of non-
zero simple k-vectors, that is of the form XF , where F is some linear subspace of
dimension k, in the notations of Section 4.6.1. This set is a cone, and W (k, n) is its
quotient by the relation X ∼ Y iff X and Y are parallel. In other words, W (k, n)
is the projective space associated to ΛS

k (Cn). The Grassmannian manifolds are
compact and endowed with an analytic structure. For a theory of Grassmannian
manifolds, we refer to Harris’ book [81].

Let M be a linear subspace in Cn, of dimension n− p. One easily sees that
the subset M◦ in W (p, n) consisting of p-dimensional subspaces that meet M
non-trivially, is closed and therefore compact.

Assume now that the IBVP (4.1.1)–(4.1.3) satisfies the uniform Kreiss–
Lopatinskĭı condition. Let W be the subset of W (p, n), consisting of the spaces
E−(τ, η) for η ∈ Rd−1 and Re τ > 0. The (non-uniform) Lopatinskĭı condition
tells us that W does not meet (kerB)◦. Uniformity obviously tells us more. If
F belongs to the closure of W, then there exists a sequence (τm, ηm), such that
E−(τm, ηm) converges towards F . Then the inequality |V | ≤ C|BV | passes to
the limit and therefore holds on F . This proves that F �∈ (kerB)◦.

Conversely, assume that (kerB)◦ does not meet the closure of W. When
F ∈ W, let CF be the best constant in the inequality |V | ≤ C|BV | for V ∈ F .
Obviously, F �→ CF is continuous. Since W is compact, F �→ CF is bounded. In
other words, the IBVP satisfies (UKL) condition. We can summarize as follows

Lemma 4.12 If the IBVP (4.1.1)–(4.1.3) is hyperbolic and has the correct
number of boundary conditions, then the uniform Kreiss–Lopatinskĭı condition is
equivalent to

(kerB)◦
⋂
W = ∅

in the Grassmann manifold W (p, n).

Remark Because of homogeneity, we may also define the set W by

W = {E−(τ, η) ; |τ |2 + ‖η‖2 = 1}.

The closure of W differs from W itself only by limits of sequences E−(τm, ηm)
when Re τm → 0+ and ηm converges.
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4.6.4 The Lopatinskĭı determinant of the adjoint IBVP

Recall (Theorem 4.2) that the Kreiss–Lopatinskĭı condition is satisfied by the
adjoint IBVP if and only if it is satisfied by the original IBVP, and similarly
for the uniform KL condition. This suggests that a relation holds between the
respective Lopatinskĭı determinants. We state it now. For the sake of simplicity,
we restrict ourselves to the non-characteristic case.

Theorem 4.4 Assume that (L,B) is normal and the boundary is non-
characteristic. Let (τ0, η0) (with Re τ0 ≥ 0, η0 ∈ Rd−1) be a point in the neigh-
bourhood of which a Lopatinskĭı determinant ∆ is well-defined, meaning that
E−(τ, η) is locally continuous.

Then E∗
− is well-defined in a neighbourhood of (−τ̄0,−η0), and one may take

the function

(θ, σ) �→ ∆(−θ̄,−σ)

as a Lopatinskĭı determinant for the dual IBVP.

Remark Taking the complex conjugate in the formula above is useful only in
that it preserves holomorphy in θ as Re θ < 0.

Proof The first statement is a consequence of the fact that

E∗
−(−τ̄ ,−η) = (AdE−(τ, η))⊥.

We now turn to the construction of the adjoint Lopatinskĭı determinant ∆∗(θ, σ).
Recall the definition (4.6.40), where {X1(τ, η), . . . , Xp(τ, η)} is a regular basis of
E−(τ, η). Let us choose constant vectors Xp+1, . . . , Xn such that

{X1(τ0, η0), . . . , Xp(τ0, η0), Xp+1, . . . , Xn}

is a basis of Cn. Then, in a neighbourhood of (τ0, η0), the matrix

X(τ, η) := (X1(τ, η), . . . , Xp(τ, η), Xp+1, . . . , Xn)

is non-singular. Denote by Y1(τ, η), . . . , Yn(τ, η) the column vectors of Y :=
(AdX(τ, η))−∗. Then Yp+1, . . . , Yn forms a regular basis of E∗

−(−τ̄ ,−η).
Let us write these matrices blockwise:

X = (X−, X+), Y = (Y−, Y+),

where the minus blocks are n× p and the plus blocks are n× (n− p). Our
Lopatinskĭı determinants are defined by the formula

∆(τ, η) = det(BX−(τ, η)), ∆∗(−τ̄ ,−η) = det(CY+(τ, η))

(note that both sides of the last equality are anti-holomorphic in τ).
Finally, we recall the equality

Ad = CT N + MT B.
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Defining the n× n matrices

P :=
(

B
N

)
, Q :=

(
M
C

)
,

we have QT P = Ad. It follows that

(QY )∗(PX) = Y ∗QT PX = Y ∗AdX = In,

thus QY = (PX)−∗. However, we have by definition

PX =
(

BX− ·
· ·

)
, QY =

(
· ·
· CY+

)
.

Using Schur’s formula (see Proposition 8.1.2 and Corollary 8.1.1 in [187]), one
sees that

∆∗(−τ̄ ,−η) =
∆(τ, η)

det(PX)
.

Since P and X are locally non-singular, the function (τ, η) �→ det(PX) and its
inverse are smooth . Therefore, the formula above, together with a renormaliza-
tion of, say, the vector Yn, allow us to take simply

∆∗(−τ̄ ,−η) := ∆(τ, η).

�



5

CONSTRUCTION OF A SYMMETRIZER UNDER (UKL)

This chapter is devoted to the proof of the existence of a Kreiss’ symmetrizer in
the non-characteristic case. A technical, though important ingredient in the proof
is to establish the so-called ‘block structure’ property for the matrix A at points
(τ, η) where Re τ = 0 (boundary points), of glancing type. Although we focus on
problems with constant coefficients in a half-space, our construction is flexible
enough to handle the case where the data (normal direction to the boundary,
entries of the symbol, boundary matrix) are parametrized. This fact is crucial
in the applications to variable-coefficient problems, especially non-linear ones,
and/or in general domains.

5.1 The block structure at boundary points

5.1.1 Proof of Lemma 4.5

Let us recall the terms of Lemma 4.5:

Assume that the operator L is constantly hyperbolic and the boundary {xd =
0} is non-characteristic. Then the map (τ, η) �→ E−(τ, η) (already defined for
Re τ > 0) admits a unique limit in the Grassmannian G(n, p) at every boundary
point (iρ, η) (meaning that ρ ∈ R, η ∈ Rd−1), with the exception of the origin.

Proof We first prove that the stable spectrum of A(τ, η) admits a continuous
extension up to the boundary. Let (iρ0, η0) be a non-zero boundary point, and
let ω(τ, η) be an eigenvalue of A(τ, η) for Re τ > 0, depending continuously on
(τ, η). As (τ, η) tends to (iρ0, η0), the omega-limit set of ω(τ, η) is connected, by
continuity and boundedness of ω, and by connectedness of the domain. However,
this omega-limit set is contained in the spectrum of A(iρ0, η0), a discrete set.
It is therefore a singleton. This shows that ω(τ, η) has a limit as (τ, η) tends to
(iρ0, η0).

Denote by ω̂1, . . . , ω̂r those distinct eigenvalues of A(iρ0, η0) that are limits,
as τ → iρ0 and Re τ > 0, of stable eigenvalues of A(τ, η). Obviously, Re ω̂j ≤ 0,
although eigenvalues with non-positive real part need not belong to {ω̂1, . . . , ω̂r}
in general.

When (τ, η) is close to (iρ0, η0) and Re τ > 0, E−(τ, η) may be split as a
direct sum of invariant subspaces F1(τ, η), . . . , Fr(τ, η), so that the eigenvalues
of A(τ, η) on Fj have the single limit ω̂j as (τ, η) tends to (iρ0, η0). Each Fj

inherits the analyticity of E−.
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It will be sufficient to prove that each of these spaces Fj has a limit as (τ, η)
tends to (iρ0, η0). We select an index j and denote F (τ, η) = Fj(τ, η), ω̂ = ω̂j

for the sake of simplicity. Let F̂ be a cluster point of F (τ, η) as (τ, η) tends to
(iρ0, η0). It will be enough to prove the uniqueness of F̂ . By continuity, F̂ is
invariant under A(iρ0, η0), and is associated to the sole eigenvalue ω̂. Therefore,
we have F̂ ⊂ Ĝ, where Ĝ denotes the generalized eigenspace of A(iρ0, η0),
associated to the eigenvalue ω̂.

Let us begin with the easy case, when Re ω̂ < 0. Classically, Ĝ locally extends
analytically as an invariant subspace G(τ, η) of A(τ, η). But since the correspond-
ing eigenvalues will keep a negative real part, we find that G(τ, η) ⊂ E−(τ, η), so
that F (τ, η) must be equal to G(τ, η) for (τ, η) close to (iρ0, η0), and therefore
F̂ = Ĝ. Notice that this argument can be used to prove that every eigenvalue ω
of A(iρ0, η0) with negative real part must belong to the list ω̂1, . . . , ω̂r, with its
full multiplicity.

There remains the case ω̂ = iµ0, with µ0 ∈ R. By Proposition 1.7,
we decompose the characteristic polynomial Pτ,η of A(τ, η) as Pτ,η(X) =
P0(τ, iη,X)Q(τ, iη,X)q, where P0 and Q are homogeneous polynomials with real
entries and

� ρ0 is a simple root of Q(·, η0, µ0),
� P0(ρ0, η0, µ0) �= 0.

Let N ≥ 1 be the multiplicity of µ0 as a root of Q(ρ0, η0, ·). The eigenvalues of
A(τ, η) that are close to iµ0 are roots of Q(−iτ, η,−i·) and their multiplicities are
multiples of q. Since F (τ, η) is the sum of some of the corresponding generalized
eigenspaces, q divides its dimension. We shall denote l := (dimF (τ, η))/q. Then
dim F̂ = lq.

Let O denote the open set of pairs (τ, η) ∈ C× Rd−1 for which the factors
Pk(τ, iη, ·) in (1.5.56) have simple roots, distinct for distinct indices k. Likewise,
we denote by OC when allowing complex values for both τ and η. For instance,
(i, 0) ∈ O holds. The complement of OC, being the zero set of the discriminant ∆
of ΠL

1 Pk(τ, η, ·), is an algebraic variety of complex codimension one. Therefore,
OC is dense and arcwise connected. Likewise, O is dense in C× Rd−1, for
otherwise the polynomial ∆, vanishing on a non-void open set, would vanish
identically, contradicting the fact that (i, 0) ∈ O. We shall admit for a moment
the following

Lemma 5.1 For every pair (τ, η) in OC, the matrix A(τ, η) is diagonalizable.

In particular, there is a neighbourhood V of (iρ0, η0), such that if Re τ > 0
and (τ, η) ∈ V ∩ O, then F (τ, η) is the sum of l eigenspaces, all of them being
of dimension q. Therefore, the minimal polynomial of A over F has the form
Πl

1(X − ωj(τ, η)). Since O is dense, we obtain by continuity that a polynomial
of degree l annihilates the restriction of A on F , for every (τ, η) ∈ V with
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Re τ > 0. Letting (τ, η) tend towards (iρ0, η0), we see that the polynomial
(X − iµ0)l annihilates the restriction of A(iρ0, η0) on F̂ .

Let us now define the Jordan tower of A(iρ0, η0), associated to the eigenvalue
iµ0,

Gk := ker(A(iρ0, η0)− iµ0)k, gk := dimGk − dimGk−1.

Classical linear algebra tells us that g1 ≥ · · · ≥ gl. Also, G1 is simply the kernel
of ρ0In + A(η0, µ0), which has dimension q by assumption, just because ρ0 has
multiplicity q and A(η0, µ0) is diagonalizable. Thus g1 = q. Since F̂ ⊂ Gl, we
have ql = dim F̂ ≤ dim Gl = g1 + · · ·+ gl ≤ lg1 = lq. Therefore dimGl = dim F̂ ,
and we conclude that F̂ = Gl, which is the uniqueness property. �
Proof of Lemma 5.1 From Theorem 1.5, the matrix

A(iρ, η) = −i(Ad)−1(ρIn + A(η))

is diagonalizable for real ρ and η, provided ρ >> |η|.
In a small neighbourhood of (i, 0), let ωj(τ, η) be the distinct eigenvalues of

A(τ, η), each of them being of constant multiplicity mj , and therefore holomor-
phic. The generalized eigenspaces are holomorphic too and one can choose, using
Kato’s procedure, holomorphic bases {X1

j , . . . , X
mj

j }. Given two indices j and
k ≤ mj , the holomorphic map

V (τ, η) := (A(τ, η)− ωj(τ, η))Xk
j (τ, η)

satisfies

(Re τ = 0, Im η = 0) =⇒ (V (τ, η) = 0),

according to the beginning of the proof. Hence, V vanishes identically. This shows
that A(τ, η) is diagonalizable in a neighbourhood of (i, 0).

Given a point (τ, η) in OC, there exists a path Γ in OC, connecting (i, 0) to
(τ, η). From the definition of OC, the generalized eigenspaces of A can be followed
holomorphically along Γ. Using the same argument of holomorphic continuation
as above, we see that A(τ, η) is diagonalizable. �

5.1.2 The block structure

The proof of Lemma 4.5 tells us much more than actually stated. First,
E−(iρ0, η0) is the direct sum of subspaces that we denote by Ej (possibly
many) and Es (only one), each one being invariant for the matrix A(iρ0, η0) =
−iB(ρ0, η0), with

B(ρ0, η0) := (Ad)−1(ρ0In + A(η0)) ∈ Mn(R).

We notice that the spectrum of−iB remains unchanged under the symmetry with
respect to the imaginary axis. The component Es is exactly the stable subspace
of A(iρ0, η0). It may be trivial, or equal to E−, or something else in between.
Obviously, Lemma 4.1 does not apply up to τ = iρ0. The component Ej is an
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invariant subspace on which A(iρ0, η0) has a unique eigenvalue iµj , the µjs being
pairwise distinct real numbers. Thus the direct sum of the Ejs is the ‘central’
part of E−. We warn the reader that Ej does not coincide, in general, with the
generalized eigenspace ker(A− iµjIn)n (see Proposition 5.1 below), so that the
central part of E−(iρ0, η0) is only a subspace of the central invariant subspace
of A. What the proof above tells us is that, for each index j, the restriction of
A to Ej is similar to the very regular Jordan block

J(iµj ; q, l) :=



iµjIq Iq 0q . . .

0q
. . . . . . O

...
...

. . . . . . 0q

O
. . . Iq

. . . 0q iµjIq


,

where l stands for the number of diagonal blocks and q stands for the size of
each one (the multiplicity of −ρ0 as an eigenvalue of A(η, µj).)

What is even more interesting is that the proof can be adapted to the
study of the generalized eigenspace ker(A− iµjIn)n. As a matter of fact, this
subspace extends analytically to nearby values of (τ, η), as an invariant subspace
H(τ, η) of A(τ, η). The latter is the sum of generalized eigenspaces associated
to the eigenvalues of A that are close to iµj . These are precisely the roots of
Q(−iτ, η,−i·) that are close to iµj , and their multiplicities as eigenvalues are
q times their multiplicities as roots. Thus, the dimension of H equals qN , with
the notation of the previous section. Again, A being diagonalizable for (τ, η)
in O, we see that the minimal polynomial of the restriction of A to H is a
polynomial of degree at most N for (τ, η) close to (iρ0, η0). By continuity, this
still holds at point (iρ0, η0). Hence, Ej is included in ker(A(iρ0, η0)− iµ0)N . The
same convexity argument about the Jordan tower shows that the spaces Gk have
dimensions kq for every k up to N . Therefore, the Jordan block of A(iρ0, η0),
corresponding to its eigenvalue iµj , is exactly the very regular J(iµj ; q,N).

Let us now investigate the link between the numbers l and N . The roots
of Q(−iτ, η, ·) behave, as (ρ, η) varies near (ρ0, η0), like Nth roots of unity of
the discriminant D(−iτ, η) of the polynomial (Puiseux’s theory), modulo higher-
order terms. Therefore, they form an approximately regular N -agon, centred on
the real axis. Among the N vertices, exactly l have a negative imaginary part. In
order to evaluate l, we may fix η to the value η0 and let τ = iρ0 + γ vary along
iρ0 + R+. Using Newton’s polygon, plus the fact that ∂Q/∂ρ(ρ0, η0, µ0) �= 0, we
obtain that the N roots of Q(−iτ, η0, ·) near µ0 obey

(µ− µ0)N ∼ iγ

(
∂Q

∂ρ

/
N !

∂NQ

∂µN

)
(ρ0, η0, µ0) =: ciγ.

One immediately concludes that |2l −N | ≤ 1. In other words, l = N/2 in the
even case, while l = (N ± 1)/2 in the odd case.
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The above results, which we summarize in the following proposition, express
the fact that a constantly hyperbolic operator, associated to a non-characteristic
boundary, satisfies the so-called block structure condition, introduced by Kreiss
[103] as an assumption, and proved by Métivier [134] in our context.

Proposition 5.1 We assume that L is constantly hyperbolic and that Ad is
invertible. Let (iρ, η) be a boundary point ((ρ, η) is real and non-zero). Then

i) Given a purely imaginary eigenvalue iµ of A(iρ, η), the corresponding
Jordan factor is a ‘regular’ Jordan block J(iµ; q,N), where q is precisely
the multiplicity of −ρ as an eigenvalue of A(η, µ).

ii) The space E−(iρ, η) is the direct sum of

� the stable subspace of A(iρ, η),
� the subspaces Ej(ρ, η) := ker(A(iρ, η)− iµj)lj for some index lj ∈ [(Nj −

1)/2, (Nj + 1)/2], where Nj is as in point i)).

We complete this information with the following.

Lemma 5.2 Let the operator ∂t +
∑

α Aα∂α be constantly hyperbolic. Let
(η0, µ0) ∈ Rd be a non-zero point, and let −ρ0 be an eigenvalue of A(η0, µ0). Obvi-
ously, −ρ0 is real, and we denote its multiplicity by q. We denote by R an n× q
matrix, whose columns span the eigenspace ker(ρ0In + A(η0, µ0)), and similarly
by L a q × n matrix, whose rows span the left-eigenspace of ρ0In + A(η0, µ0):

L(ρ0In + A(η0, µ0)) = 0, (ρ0In + A(η0, µ0))R = 0, rkR = rkL = q.

Then it holds that

LAdR = −dρ

dµ
(µ0)LR (5.1.1)

in Mn(R) (LR is non-singular, since A(η0, µ0) is diagonalizable), where ρ(µ) is
the root of P (·, η0, µ) such that ρ(µ0) = ρ0.

Finally, dρ/dµ(ρ0) is non-zero if and only if the multiplicity of iµ0, as an
eigenvalue of A(iρ0, η0) (from Proposition 1.7, it is a multiple of q), equals q,
that is if N = 1. In that case, dρ/dµ(ρ0) is negative if l = 1, positive if l = 0.

Proof As above, we denote by P = P0Q
q a factorization in which ρ0 is a

simple root of Q(·, η0, µ0). Classically, there is a unique locally defined analytic
function µ �→ ρ that solves Q(·, η0, µ) = 0, with ρ(µ0) = ρ0. Also, the right- and
left-eigenspaces depend analytically upon µ. This means that the bases of these
eigenspaces can be chosen analytically. In other words, R and L can be extended
analytically with the properties

L(µ)(ρ(µ)In + A(η0, µ)) = 0, (ρ(µ)In + A(η0, µ))R(µ) = 0,

rkR(µ) = rkL(µ) = q.
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Differentiating with respect to µ, we obtain

(ρ0In + A(η0, µ0))
dR

dµ
+
(

dρ

dµ
In + Ad

)
R = 0.

Multiplying on the left by L, we obtain relation (5.1.1).
Obviously, the multiplicity of iµ0 as an eigenvalue of A(iρ0, η0) equals q times

the multiplicity of µ0 as a root of Q(ρ0, η0, ·). It equals q if and only if

∂Q

∂µ
(ρ0, η0, µ0) �= 0,

which amounts to saying that dρ/dµ(µ0) �= 0.
We finally consider the case N = 1. For (τ, η) close to (iρ0, µ0), A(τ, η) admits

a unique eigenvalue ω close to iµ0. It is an analytic function of (τ, η), and

∂ω

∂τ
=
(

dρ

dµ

)−1

,

the latter being a non-zero real number. Since Re ω �= 0 when Re τ > 0, we see
that ω is a stable eigenvalue for Re τ > 0, if and only if dρ/dµ(µ0) < 0. �
Important remark All the results in Sections 4.3.3 and 5.1 do not really
use the fact that (τ, η) �→ A(τ, η) is a polynomial function. The properties are
valid also when its coefficients are rational fractions, provided that the following
assumptions hold true:

i) When τ = iρ with ρ ∈ R, the matrix B(ρ, η) := iA(iρ, η) has real entries,
ii) The rational fraction P (τ, η, ω) := det(ωIn −A(η, τ)) is homogeneous,
iii) When ω = iξ with ξ ∈ R, the roots of P (·, η, iξ) are purely imaginary,

and their multiplicities do not vary with (η, ξ) �= 0 (note that, because of
Property i), the polynomial (ρ, η, ξ) �→ P (iρ, η, iξ) has real coefficients),

iv) Given such an eigenvalue iλj , with multiplicity mj , the kernel of ξIn +
B(λj , η) has dimension mj .

v) The boundary points (iρ, η) under consideration are not poles of A.

In practice, Properties i) and ii) will be ensured by the construction of A, while
Properties iii) and iv) will express a form of constant hyperbolicity.

5.2 Construction of a Kreiss symmetrizer under (UKL)

We prove in this section the following important result.

Theorem 5.1 Let a normal hyperbolic IBVP be defined by the domain

Ω = {x ∈ Rd ; xd > 0},

with a linear first-order operator L and a boundary matrix B, both with constant
coefficients. Assume that L is constantly hyperbolic and that the boundary is
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non-characteristic (det Ad �= 0). Assume finally that the IBVP satisfies the uni-
form Kreiss–Lopatinskǐı condition.

Then there exists a matrix-valued C∞-map (τ, η) �→ K(τ, η), on Re τ ≥ 0,
η ∈ Rd−1, |τ |+ |η| �= 0, such that

i) the matrix Σ(τ, η) := K(τ, η)Ad is Hermitian,
ii) there exists a number c > 0 such that, for every (τ, η) and every x ∈ kerB,

the inequality x∗Σ(τ, η)x ≤ −c‖x‖2 holds,
iii) there exists a number c0 > 0 such that, for every (τ, η), the inequality

Re M ≥ c0(Re τ)In holds in the sense of symmetric matrices, where

M = M(τ, η) := −(ΣA)(τ, η) = K(τ, η)(τIn + iA(η))

and Re M denotes the Hermitian matrix 1
2 (M + M∗).

If instead, the matrices Aα and B are parametrized (for instance, if L has
variable coefficients) with regularity C k with respect to the parameters z, then
such a symmetrizer Σ can be chosen with the same regularity: derivatives ∂m

τ,η∂l
zΣ

are continuous whenever l ≤ k.

Comments

� Since Ad is invertible, it is equivalent to search for a K or for a Σ. In
the following, we shall always work in terms of Σ. The situation with a
characteristic boundary (detAd = 0) raises significant new difficulties. It
will be treated in Chapter 6.

� The matrix K is called a Kreiss symmetrizer or a dissipative symmetrizer,
or simply a symmetrizer. It plays, in the present framework, the role that
the identity In played for symmetric operators with a strictly dissipative
boundary condition. As a matter of fact, if L is symmetric, then K ≡ In

satisfies trivially point i), while Re M = (Re τ)In. Finally, ii) is simply the
dissipation assumption.

� When L is symmetric, it may happen that the IBVP satisfies the (UKL)
condition though the boundary condition is not dissipative. In such a case,
the symmetrizer K provided by the theorem differs from In.

� All the arguments hold true when the data depend on parameters, exactly
as developed in the proof. Hence we shall present them for a single data,
depending only on (τ, η).

The proof of Theorem 5.1 is long and technical, though interesting in its own
way. We shall split it into several steps. From Step 1 to Step 18, we detail the
construction in the case of a strictly hyperbolic operator. We examine afterwards
which steps need a further study for a constantly hyperbolic operator and how
to adapt the proof to this more general framework.



146 Construction of a symmetrizer under (UKL)

Step 1 We shall actually build a K that is homogeneous with degree zero, with
respect to (τ, η). Therefore, it will be enough to build K or Σ for (τ, η) in the
unit hemisphere, Re τ ≥ 0, η ∈ Rd−1, |τ |2 + |η|2 = 1.

Step 2 Since the hemisphere is compact, and since the properties to fill define
convex cones, it will be enough to localize the construction, namely to build
a Σloc in the vicinity of every point, then to cover the hemisphere by a finite
set of such neighbourhoods, and at last to define a Σ from the corresponding
Σlocs, using a partition of unity with real non-negative coefficients. From now
on, we thus give ourselves a point (τ0, η0) and we look for a solution Σ near
this point.

Step 3 The case of interior points, namely Re τ0 > 0 is easier, since, choosing
Σ independently of (τ, η), it is enough to find a Σ in Hn satisfying Σ|kerB < 0
and Re M > 0 at the sole point (τ0, η0). Hence, the construction needs only to
be done pointwisely instead of locally, at interior points.

Step 4 Given an interior point (τ, η), we build a symmetizer. We shall use two
lemmas.

Lemma 5.3 Let A be a hyperbolic matrix, and let E−, E+ be its stable and
unstable invariant subspaces. Let us define

X− := {H ∈ Hn ; E− ⊂ kerH}.
Then the map T : H �→ Re (HA) is an automorphism of X−.

Moreover, if T (H) ≥ 0 with E− = kerT (H), then H ≥ 0 with E− = kerH.

Proof We first prove that T has a right-inverse. For that, let X ∈ X− be given.
If x = x− + x+ with x± ∈ E±, we define

x∗Hx :=
∫ 0

−∞
y(s)∗Xy(s) ds,

where y is the solution of dy/ds = Ay, y(0) = x+. The integral converges since y
decays exponentially fast at −∞. The above equality defines a unique Hermitian
matrix H ∈ X−.

Given h ∈ R and x(h) := x− + y(h), we have

x(h)∗Hx(h) :=
∫ h

−∞
y(s)∗Xy(s) ds.

Differentiating at the origin, we obtain

x∗(A∗H + HA)x = x∗Xx,

which means T (H) = X (note that only the component of x′(0) along E+ is
important in this calculation.)

The integral thus defines a right-inverse, which proves that T is an automor-
phism. If, moreover, X = T (H) is non-negative, the integral formula shows that
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H is non-negative. Assume additionally that E− = kerX. If x ∈ kerH, we have∫ 0

−∞
y(s)∗Xy(s) ds = 0,

which implies that y ∈ E−, that is y ≡ 0 and hence x ∈ E−. �
We apply Lemma 5.3 to A(τ, η). Let us choose a non-negative element K+ in

X−, whose kernel is E−(τ, η), and let us define H+ = T−1(K+). From Lemma 5.3,
it is non-negative and E−(τ, η) = kerH+. Similarly, choosing a non-positive
Hermitian matrix K− such that E+(τ, η) = kerK−, the equation Re (HA) = K−
admits a unique non-negative Hermitian solution H− whose kernel is E+(τ, η).

From the Kreiss–Lopatinskĭı condition Cn = E−(τ, η)⊕ kerB, there exists a
matrix P such that, for x± ∈ E±,

(x− + x+ ∈ kerB) ⇐⇒ (x− = Px+).

Since the restriction of H+ to E+(τ, η) is positive-definite, the restriction of
bH+ − P ∗H−P to E+(τ, η) is positive-definite for a large enough positive number
b. We now define Σ := −bH+ + H−. Because of the choice of b, it satisfies point
ii). Moreover, Re M = bK+ −K−. As a sum of two non-negative Hermitian
matrices, it is non-negative and its kernel is contained in the intersection of both
kernels, which is E−(τ, η) ∩ E+(τ, η) = {0}. This matrix is therefore positive-
definite.

Remark WhenA(τ, η) is not hyperbolic, a fact that happens at some boundary
points, at least when |τ | >> |η|, there cannot exist an Hermitian Σ such that
Re (ΣA) is negative-definite. Actually, if x is an eigenvector associated with a
pure imaginary eigenvalue µ of A, then Re x∗ΣAx = (Re µ)x∗Σx = 0.

Summary After Step 4, it remains to construct a Σ in a neighbourhood of any
given point (iρ0, η0) of the boundary.

Step 5 We recall our notation τ = γ + iρ. Let Q ∈ GLn(R) be given. Making
the change of unknowns v = Qu amounts to replacing the matrices Aα, B(ρ, η)
and B by

aα := QAαQ−1, β(ρ, η) := QB(ρ, η)Q−1, b := BQ−1.

Then, a local solution Σ(τ, η) of our problem yields a local solution σ(τ, η) of
the problem associated to the matrices aα, β and b, through the correspondence
Σ =: tQσQ. Similarly, M is replaced by m, defined by M =: tQmQ. One may
even allow Q to depend smoothly on (ρ, η).

Step 6 Let (iρ0, η0) be a non-zero boundary point. Using a change of basis as
above, we may assume that

Q0B(ρ0, η0)Q−1
0 =: β0 = diag(βc0, βh0),

where ‘c’ and ‘h’ stand for the central and hyperbolic parts of A(iρ0, η0). Namely,
βc0 has only real eigenvalues, while βh0 has only non-real eigenvalues. One may
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even assume that βc0 has a canonical Jordan form. From the strict hyperbolicity
of L, we know that eigenspaces of B(ρ0, η0), when associated to real eigenvalues,
are lines because

ker(B(ρ, η)− µIn) = ker(ρIn + A(η,−µ)).

Therefore, distinct Jordan blocks of βc0 have distinct eigenvalues. We shall denote
by m the size of βc0 and by βj (1 ≤ j ≤ J) its Jordan blocks. The size and the
eigenvalue of βj are denoted by mj and µj .

Next, it is well-known1 that an analytical function Q(ρ, η) may be found in
a neighbourhood of (ρ0, η0), so that Q(ρ0, η0) = Q0 and

Q(ρ, η)B(ρ, η)Q(ρ, η)−1 =: β(ρ, η) = diag(βc(ρ, η), βh(ρ, η)).

We point out that, by a continuity argument, βh still has non-real eigenvalues,
though the eigenvalues of βc need not remain real. From upper semicontinuity
of geometric multiplicities, the eigenspaces of βc are lines.

Step 7 From the last two steps, we are led to the construction of a local solution
σ(τ, η) in a neighbourhood V of (iρ0, η0), associated to the matrices ad, β and b.
Here, all three matrices depend smoothly on (ρ, η), but do not depend on γ.

We shall specialize σ as follows:

σ(γ + iρ, η) = diag(S + iγT, σh),

where S = S(ρ, η), T = T (ρ, η), σh are such that

S ∈ Symm, T ∈ Altm, σh ∈ Hn−m.

In particular, S and T have real entries2 and this ensures that σ is Hermitian.
From m := σ(γ(ad)−1 + iβ), we obtain

m =
(

iSβc + γ(S(ad)−1
cc − Tβc) + O(γ2) O(γ)
O(γ) iσhβh + O(γ)

)
.

From the Remark in Step 4, there is no hope that the term Sβc would help in
the positivity of Re m. Therefore, we shall ask that

Sβc ∈ Symm, (5.2.2)

for every (ρ, η) in a neighbourhood W of (ρ0, η0). Denoting

Y (ρ, η) : = S(ad)−1
cc − Tβc + t(S(ad)−1

cc − Tβc)

= S(ad)−1
cc + (ad)−t

cc S − Tβc + tβcT,

1See, for instance, the procedure used in the proof of Theorem 2.3.
2We recall that, unless another ground field is specified, elements of Symn and Altn have real

entries.
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we obtain

Re m =
(

γ
2 Y (ρ, η) + O(γ2) O(γ)

O(γ) Re (iσhβh) + O(γ)

)
. (5.2.3)

Step 8 We wish now to replace the local construction by a pointwise one. Let
us first assume that Y (ρ, η) and Re (iσhβh) be positive-definite at (ρ0, η0). By
continuity, they remain so, uniformly in some neighbourhood of (ρ0, η0) that we
still call W. Then, decomposing vectors of Cn into their ‘c’ and ‘h’ components,
we have for every (ρ, η) in W

Re (X∗mX) ≥ cγ|Xc|2 + c|Xh|2 + O(γ)|Xc| |Xh|,

where c is some positive constant. Using the Cauchy–Schwarz inequality, we see
that m satisfies point iii) near (iρ0, η0).

In other words, the point iii) will be fulfilled locally whenever the following
properties hold

Y (ρ0, η0) ∈ SPDm(R), (5.2.4)

Re (iσhβh0) ∈ HPDn−m. (5.2.5)

Step 9 We finish the work begun in Step 8. To do so, we study condition
(5.2.2).

Lemma 5.4 The equation Sβc(ρ, η) = tβc(ρ, η)S defines a subspace of dimen-
sion m in Symm, for every (ρ, η) in a small neighbourhood of (ρ0, η0). This
subspace varies smoothly with (ρ, η).

Proof We only have to prove that the map Λ

S �→ Sβc − tβcS

Symm → Altm

is onto. Then the analytic dependence of kerΛ follows from that of Λ and from
the constancy of the dimension.

Recall that the eigenspaces of βc are (not necessarily real) lines for every
value of (ρ, η) in W. Since the property to prove is equivalent to the injectivity
of the transpose of Λ:

s �→ βcs− s tβc

Altm → Symm,

the Lemma will be a direct consequence of the following one, together with the
fact that tβc is similar to its transpose. �
Lemma 5.5 Let two matrices s,D ∈ Mn(C) be given. We assume that the
eigenspaces of D are lines, that s is alternate, and that tDs− sD = 0. Then
s = 0.
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Proof The fact that the eigenspaces of D are lines means that the minimal
polynomial of D equals its characteristic one. This amounts to saying that there
exists a vector x such that Cn equals the Krylov subspace Span{x,Dx,D2x, . . .}
(see Exercise 16, Chapter 2 in [187]). In other words, as a C[D]-module, Cn has
dimension one.

Denoting by a the alternate form defined by s, we have assumed that
a(Dz, y) = a(z,Dy) for every z, y ∈ Cn. Applying recursively this equality, we
obtain for every k, l ∈ N

a(Dkx,Dlx) = a(Dlx,Dkx) = −a(Dkx,Dlx),

so that a(Dkx,Dlx) = 0. Since the vectors Dkx span Cn, we conclude that a = 0,
that is s = 0. �

Assume now that a matrix S0 in Symm satisfies S0βc0 ∈ Symm. Then, from
Lemma 5.4, it is possible to find an analytic function (ρ, η) �→ S from W to
Symm that satisfies (5.2.2) in W and S(ρ0, η0) = S0.

Hence, in order that σ satisfy all requirements near a point (ρ0, η0), it is
enough that (5.2.4) and (5.2.5) hold and

S0βc0 ∈ Symm. (5.2.6)

In other words, we have replaced the local construction of σ by a pointwise one.
Thanks to this simplification, we shall drop the index ‘0’ from now on.

Summary After Step 9, it remains to construct three matrices S ∈ Symm,
T ∈ Altm and σh ∈ Hn−m with the properties that at a given point (ρ, η) in the
sphere Sd−1, (5.2.2), (5.2.4) and (5.2.5) hold together with

σ|kerb
< 0, (5.2.7)

where σ := diag(S, σh).

Step 10 Since T occurs only in (5.2.4), we analyse first this property, assuming
that S is known. Then Y = YS − Tβc + tβcT , where YS ∈ Symm is given in
terms of S. Let us remember that β = diag(β1, . . .), where the βjs are Jordan
blocks with distinct real eigenvalues µj . We decompose T =: (Tjk)j,k block-wise
accordingly. We note that the block Tjk occurs only in the (j, k)-block of Y ,
through tβjTjk − Tjkβk. Therefore, using the well-known fact that X �→ NX −
XN ′ is an automorphism of Mrs(K) whenever N and N ′ have disjoint spectra,
we may choose uniquely the offdiagonal blocks Tjk in such a way that Y be block-
diagonal. We emphasize that, YS being symmetric, this choice is consistent with
the skew-symmetric form of T that we ask for: it holds that Tkj = − tTjk.

Step 11 We continue Step 10 by determining the (skew-symmetric) diagonal
blocks Tjj . For that purpose, we use the following lemma.

Lemma 5.6 Let y belong to Symm, and let β be an upper Jordan block of size
m. Then the following properties are equivalent,
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� there exists a skew-symmetric t, such that tβt− tβ + y is positive-definite.
� y11 > 0.

Proof The direct implication is trivial, because one always has (tβ)11 = 0.
To prove the converse, we proceed by induction. There is nothing to prove if
m = 1. If m ≥ 2, we assume that the lemma is true at order m− 1. We use hats
for (m− 1)× (m− 1) upper-left blocks. Since y11 > 0, the induction hypothesis
ensures the existence of an (m− 1)× (m− 1) skew-symmetric matrix t̂, such
that ssm−1 := tβ̂t̂− t̂β̂ + ŷ > 0. We now define

t :=
(

t̂ X
−tX 0

)
, X :=

(
0m−2

u

)
.

A straightforward computation gives

tβt− tβ + y =
(

ssm−1 ·
· 2u + ymm

)
,

where the offdiagonal terms do not depend on u. Choosing u > 0 large enough,
the resulting matrix is positive-definite. �
Summary Thanks to Steps 10 and 11, we have reduced our task to the
construction of S ∈ Symm and σh ∈ Hn−m with the properties that at a given
point (ρ, η) in the sphere Sd−1, (5.2.2), (5.2.5) and (5.2.7) hold together with

yj > 0, 1 ≤ j ≤ J, (5.2.8)

where yj stands for the upper-left coefficient of the jth diagonal block Yjj

of YS .

Step 12 We decompose as above S blockwise. Then (5.2.2), together with
S ∈ Symm, give tβjSjk = Sjkβk. Using the fact mentioned in Step 10, we find
that Sjk = 0 when j �= k. Hence, S has to be block-diagonal. We shall denote by
Sj its diagonal blocks.

Step 13 Hence, Sβc = diag(S1β1, . . .) and (5.2.2) reduces to Sjβj ∈ Symmj
.

Since Sj ∈ Symmj
as well, we find by inspection that the Sjs have the general

form 
s1

O . . . s2

. . . . . .

. . . . . . . . .

s1 s2 smj

 , (5.2.9)

with arbitrary numbers s1, . . . , smj
.

Step 14 Since the block Yjj equals Sjaj + tajSj , where aj is the jth diagonal
block of (ad)−1, we obtain yj = 2sj

1a
j
1, where sj

1 stands for the s1-coefficient of
Sj and aj

1 stands for the last coefficient of the first column of aj . In other words,
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aj
1 = (aj)mj1. At this point, it is essential to know the sign of aj

1. For this, we
note that aj

1 equals �′(ad)−1r′, where

r′ =



...
0
1
0
...

 , and �′ = (. . . , 0, 1, 0, . . .)

are the right and left eigenvectors of β, corresponding to the block βj . Defining
� := �′Q and r = Q−1r′, we obtain aj

1 = �(Ad)−1r, where r, � are right and
left eigenvectors of B. With the notations of Lemma 5.2, r = R and � = LAd

(this again shows (5.1.1) when mj ≥ 2), hence aj
1 = LR. In particular, aj

1

is non-zero.
We notice that, when mj = 1, �′ = tr′ holds and therefore �′r′ = 1 > 0, which

translates into LAdR > 0. This fixes the respective orientations of L and R. In the
opposite case, one has �′r′ = 0, that is LAdR = 0, which leaves the orientations
of L,R independent of each other. In other words, the sign of aj

1 is well-defined
if mj = 1, as the one of (LR)(LAdR), while it is free (depending on our choice
of the Jordan basis) when mj > 1.

Recalling Proposition 5.1, we know that E−(iρ, η) is a direct sum of invariant
subspaces Ej (1 ≤ j ≤ J) and Eh, corresponding either to the block βj or to βh.
The dimension of Eh is half the size n−m of βh, while that of Ej belongs to
[mj − 1/2,mj + 1/2].

If mj = 1, then Proposition 5.1 and Lemma 5.2 show that aj
1 is positive if

and only if Ej is non-trivial. Therefore aj
1 > 0 if and only if R ∈ E−(iρ, η).

If mj > 1, then Ej is non-trivial. The sign of aj
1 may be choosen at our

convenience.

Step 15 Let us denote e− := QE−(τ, η), so that, by the (UKL) condition, it
holds that e− ∩ kerb = {0}. From the description given in Proposition 5.1, we
have e− = ec ⊕ es, where ec ⊂ Cm × {0} and es ⊂ {0} × Cn−m. The component
es, which corresponds to the stable subspace of A(iρ, η), is the invariant subspace
of β associated to the eigenvalues (of βh) of negative imaginary parts. The
‘central’ component ec is spanned by some of the m vectors of the Jordan
basis for βc. Within the Jordan basis associated to the jth block βj , the lj first
vectors are in ec, while the other ones are not, where |lj −mj/2| ≤ 1/2. This
allows us to write ec = ⊕jej . Denoting also by fj the subspace spanned by the
mj − lj last vectors of this basis, by fc their direct sum and by fu the ‘unstable’
component, namely the invariant subspace associated to the eigenvalues (of βh)
of positive imaginary parts, we obtain Cn = ec ⊕ es ⊕ fc ⊕ fu =: e− ⊕ f+. Note
that, in spite of the notation, f+ is not the limit, as (τ, η) tends to (iρ, η), of
QE+(τ, η).
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Given a vector x in Cn, we write its block-decomposition

x =


...

xj

...
xh

,

with obvious notations. Then, in each block xj (1 ≤ j ≤ J), we split into ej and
fj components:

xj =
(

xj−
xj+

)
.

Finally, we denote by xh = xs + xu the decomposition in {0} × Cn−m. Hence,
the decomposition of x into e− and f+ components reads

x = x− + x+ =:



...(
xj−
0

)
...

xs

+



...(
0

xj+

)
...

xu

.

In the following, we shall identify x−, x+ with the vectors
...

xj−
...

xs

 ,


...

xj+

...
xu

 ,

respectively.

Step 16 The assumption that the Kreiss–Lopatinskĭı property holds at the
boundary point (iρ, η) means exactly that the subspace kerb has an equation of
the form x− = Px+, where P is an appropriate linear map. From the description
of x± above, we write P blockwise

P =
(

Pjk Pju

Psk Psu

)
1≤j,k≤J

.

Let us summarize what we are looking for. We wish to find matrices
Sj ∈ Symmj

of the form (5.2.9), and a Hermitian matrix σh, with the following
properties:

� for every j, sj
1 �= 0,

� when mj = 1, then sj
1 is negative if ej is trivial and positive otherwise,

� Re (iσhβh) is positive-definite,
� the restriction of σ = diag(. . . , Sj , . . . , σh) to kerb is negative-definite.
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An important point is that we do not require that βj be a standard Jordan block.
Therefore we are free to make a change of variables x �→ x′ = Rx, provided it
alters neither the block-diagonal form of σ, nor the form (5.2.9) of each diagonal
block. We choose a diagonal change of variable

R = R(ε) = diag(. . . , Rj , . . . , In−m),

where

Rj = diag(. . . , ε3, ε, ε−1, ε−3, . . .) =: diag(Uj , Vj).

In other words,

x′
j− = Ujxj−, x′

j+ = Vjxj+, x′
s = xs, x′

u = xu.

It is important to note that this change of variables does not modify the overall
structure (5.2.9). Therefore, we have to solve the same problem as described
above, with the only change that the equation of kerb is replaced by x′

− = P (ε)x′
+

for some real number ε �= 0, where

P (ε) =
(

UjPjkV −1
k UjPju

PskV −1
k Psu

)
1≤j,k≤J

.

Step 17 When ε → 0, P (ε) tends to

P0 =
(

0 0
0 Psu

)
1≤j,k≤J

.

Let us assume that a solution σ′
0 of the above problem has been found, when

kerb is replaced by the subspace defined by x′
− = P0x

′
+. Then, by continuity, σ′

0

is still a solution of the problem for some small non-zero value of ε. Hence, going
back to ε = 1 through the change of variable, we obtain our matrix σ. This shows
that we need only to solve the problem in Step 16, when kerb is the subspace
defined by

xj− = 0 (1 ≤ j ≤ J), xs = Psuxu.

Step 18 We study the latter problem. When xj− = 0 and xs = Psuxu, then

x∗σx =
J∑

j=1

x∗
j+Ŝjxj+ + x∗

hσhxh,

where Ŝj is one of the following three matrices
sj
1 sj

2

sj
2 . . . . . .

. . . . . .

sj
mj

 ,


sj
2 sj

3

sj
3 . . . . . .

. . . . . .

sj
mj

 ,


sj
3 sj

4

sj
4 . . . . . .

. . . . . .

sj
mj

 .
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The problem clearly decouples. On the one hand, we wish to find, for each j,
a negative-definite matrix Ŝj of the form above. This can be found easily when
mj > 1, since then there is no constraint on the entries sj

1, . . .. When mj = 1,
there are two cases. Either ej is trivial, and then Ŝj = (sj

1), where the constraint
is sj

1 < 0, obviously compatible with our task. Or ej is non-trivial, then Ŝj is
void and there is nothing to prove. Hence the problem concerning the Ŝjs can
always be solved.

On the other hand, we have to find a Hermitian matrix σh, such that
Re (iσhβh) is positive-definite, and the restriction of σh to the space defined
by xs = Psuxu is negative-definite. Noting that, from the Kreiss–Lopatinskĭı
condition, this subspace is transverse to the stable subspace of −iβh, this is
exactly the same problem as the one solved in Step 4.

Step 19 We now turn to the case of a constantly hyperbolic operator. Only
Steps 6, 9, 11, 13, 14, 16 and 18 need some adaptation.

In Step 6, the description of βc0 is given by Proposition 5.1. The blocks βj

have distinct eigenvalues. Each one is a regular Jordan block J(µ; q,N).

Step 20 The adaptation of Lemma 5.4 in Step 9 is subtle. Actually, the
dimension of the space of symmetric matrices S such that Sβc(ρ, η) = tβc(ρ, η)S,
though constant, will not be equal to m, but to another number, see below.
Let us first note that we can consider instead the complex dimension of the
set of complex symmetric matrices with this property3. Now, any conjugation
β �→ P−1βP induces the transformation S �→ tPSP on the solutions, thus pre-
serving the dimension. We use this argument in two ways. First, we may assume
that

βc(ρ, η) = diag(. . . , βj(ρ, η), . . .),

where βj are smooth functions of their arguments, and the βj(ρ0, η0)s are the
regular Jordan blocks J(µj ; qj , Nj), with distinct real eigenvalues, described in
Step 19. Then the fact recalled in Step 10 tells us that solutions S must be block-
diagonal too, say diag(. . . , Sj , . . .), since the βjs keep disjoint spectra. Next, we
may assume that each βj(ρ, η) has a Jordan form (here, P need not depend
smoothly on (ρ, η)). Let us note that the arguments in Section 5.1 adapt to every
eigenvalue of β(ρ, η) (not only the pure imaginary ones): to each eigenvalue, there
corresponds a unique Jordan block, a regular one. More precisely, βj(ρ, η) is a
collection of blocks J(ω; qj , Nω), with ω in some finite set Ωj . The geometric
multiplicity qj is the same for all elements ω, because geometric multiplicity is
upper semicontinuous, and because all ωs are roots of the same factor P

qj

k in the
characteristic polynomial (see Proposition 1.7).

3We prefer considering solutions in Symm(C) rather than in Hm, because the latter is not a
complex vector space.
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Again, the diagonal block Sj must be of the form diag(. . . , Sω
j , . . .), where

Sω
j J(ω; qj , Nω) = tJ(ω; qj , Nω)Sω

j .

As in step 13, we find that Sω
j must have the form (5.2.9), where now the terms

s1, . . . must be qj × qj symmetric matrices. Such matrices from a vector space of
dimension Nωqj(qj + 1)/2. Summing over Ωj , we see that the set of solutions Sj

has dimension Njqj(qj + 1)/2. Finally, the set of solutions S has dimension∑
j

1
2
Njqj(qj + 1),

obviously a constant number in a neighbourhood of (ρ0, η0).

Step 21 In Step 11, Lemma 5.6 adapts straightforwardly to the context of
regular Jordan block J = J(µ; q;N). The existence of a skew-symmetric real
matrix t such that tJt− tJ + y is positive-definite is equivalent to the positivity
of the upper-left diagonal q × q block y11. The proof goes by induction on N .
Therefore, condition (5.2.8) is unchanged up to the fact that y11 is now a q × q
block, instead of a scalar.

Then, yj = sj
1a

j
1 + taj

1s
j
1, where sj

1 ∈ Symq is to be chosen. The lower-left
block aj

1 may be written, as in Step 14, as LR, where L = �′Q(Ad)−1, R = Q−1r′

and

r′ =



...
0q

Iq

0q

...

 , and �′ = (. . . , 0q, Iq, 0q, . . .).

Rows of L and columns of R span the left and right kernels of ρIn + A(η, µ)
(notations of Lemma 5.2). In particular, aj

1 ∈ GLq(R). When N (which plays the
rôle of mj) is larger than 1, �′r′ = 0q holds, hence LAdR = 0q, which is consistent
with identity (5.1.1) and the fact that dρ/dµ vanishes at this point. Then, we are
free to compose L and R with two independent invertible q × q matrices (this is
reflected in a modification of the change of basis Q). This allows us to prescribe
any arbitrary invertible value to aj

1, for instance ±Iq. Consequently, yj = ±2sj
1

and we may choose any positive- or negative-definite sj
1.

On the other hand, when N = 1, LAdR = Iq holds, hence from (5.1.1)

aj
1 = −

(
dρ

dµ

)−1

Iq, yj = −2
(

dρ

dµ

)−1

sj
1.

In conclusion, sj
1 must be chosen positive-definite if Ej is non-trivial, but

negative-definite if Ej is trivial.
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Step 22 In the requirements of Step 16, the first item must be read ±sj
1 ∈

SPDqj
for every j (instead of sj

1 �= 0). Next, each diagonal block Rj must be
chosen in the block-diagonal form

Rj = diag(. . . , ε3Iqj
, εIqj

, ε−1Iqj
, ε−3Iqj

, . . .).

The rest of the step works in exactly the same way.
Finally, there is even more room for the choice of Ŝj in Step 18. It may again

be chosen so as to be negative-definite.
The proof is complete. �

Comment The construction of the dissipative symmetrizer with some uniform
estimates reduces quite easily (Steps 1 and 2) to a local problem. At interior
points, the construction can even be done pointwise (Step 3), with a Lyapunov
stability argument (Step 4). Thus, most of the proof is devoted to the con-
struction in the neighbourhood of boundary points (iρ, η). At such points, we
separate the hyperbolic and the central part of B(ρ, η) (Steps 5 and 6). The
symmetrizer is block-diagonal in terms of the invariants subspaces of B(ρ, η)
(Step 7). The treatment of the hyperbolic part is similar to the case of interior
points (Step 18). Thus there remains the central part. What is hidden in the proof
above is that the construction is rather simple when the central part of B(ρ, η) is
semisimple, that is diagonalizable. Suppose that its eigenvalues are simple, or that
their multiplicities are locally constant. Then the symmetrizer is block-diagonal
and certain parts of the analysis (Steps 13 to 18) are essentially trivial. Thus
the deeper part of the proof concerns the so-called glancing points, which are
boundary points (iρ, η) at which two (or more) real eigenvalues of B(ρ, η) cross
each other. This is the only place where we make use of the assumption of strict
or constant hyperbolicity. Finally, Steps 19 to 22 only adapt the construction
from the strictly to the constantly hyperbolic case.
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THE CHARACTERISTIC IBVP

6.1 Facts about the characteristic case

In this section, we place ourselves in the characteristic case: Ad is singular. We
denote by m the dimension of its kernel. Using a linear transformation, we may
assume that

Ad =
(

0m 0
0 ad

)
,

with ad ∈ GLn−m(R). Since we may not hope for a better result than in the non-
characteristic case, we also assume that the operator L is constantly hyperbolic.
From Theorem 1.7, the upper-left block in the block decomposition of A(η) is
of the form l(η)Im, where l is a linear form on the space of frequencies1. In
other words, l is a vector in the physical space, whose last component vanishes.
Without loss of generality, the change of variable (x, t) �→ (x− tl, t) preserves the
physical space {xd > 0} and leads to the situation where

A(η) =
(

0m a12(η)
a21(η) a2(η)

)
.

We recall that the boundary matrix B satisfies2 kerAd ⊂ kerB, which means here
that B has the form B = (0p×m, B2).

In the following, we often use block decomposition. For instance, a generic
vector u ∈ Cn will split as (v, w)T , with v ∈ Cm. Thus the kernel of Ad is given
by the equation w = 0. From Proposition 4.3, we have E−(τ, η) ∩ kerAd = {0},
hence E−(τ, η) is isomorphic to its projection e−(τ, η) on the w-component. The
subspace e−(τ, η) can be defined equivalently as the stable subspace of the Schur
complement

A2(τ, η) := −(ad)−1

(
τIn−m + ia2(η) +

1
τ

a21(η)a12(η)
)

.

The reciprocal map from e−(τ, η) to E−(τ, η) is obviously

w �→
(
− i

τ
a12(η)w,w

)
.

The matrix A2 has been shown to be hyperbolic (Lemma 4.3).

1Whenever m ≥ 2, this is in contradiction with Assumption 1.1 of [127], where the upper-left
block was required to have simple eigenvalues.

2This property is called reflexivity in [150,151].
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As mentioned in Section 5.1, (τ, η) �→ e−(τ, η), and (τ, η) �→ E−(τ, η) also,
admit continuous extensions at boundary points, except perhaps at τ = 0. It is
unclear whether the property E−(τ, η) ∩ kerAd = {0} extends to such points,
though it will be a necessary condition for the uniform Kreiss–Lopatinskĭı
condition, because of kerAd ⊂ kerB.

6.1.1 A necessary condition for strong well-posedness

We now present a new restriction that the strong well-posedness imposes to the
IBVP. Amazingly enough, this restriction concerns the operator L only, but not
the boundary matrix B. It is thus of a very different nature from the uniform
Lopatinskĭı condition. Of course, this condition is trivially satisfied when the
boundary is non-characteristic.

We start from the estimate in Definition 4.6. Considering a trivial initial data
u0 ≡ 0, we may extend u by zero to negative times and then take the Laplace–
Fourier transform in (t, y). The estimate implies

∫ ∫ ∫ +∞

0

γ|û(γ + iσ, η, xd)|2dσdηdxd +
∫ ∫

|Adû(γ + iσ, η, 0)|2dσdη

≤ C

(∫ ∫ ∫ +∞

0

1
γ
|L̂u(γ + iσ, η, xd)|2dσdηdxd +

∫ ∫
|Bû(γ + iσ, η, 0)|2dσdη

)
.

Since L̂u(τ, η, xd) = (τ + iA(η))û + Adû′ decouples with respect to (τ, η), this
estimate is equivalent to

(Re τ)
∫ +∞

0

|û(τ, η, xd)|2dxd + |Adû(τ, η, 0)|2

≤ C

(
1

Re τ

∫ +∞

0

|L̂u(τ, η, xd)|2dxd + |Bû(τ, η, 0)|2
)

,

for every pair (τ, η) with Re τ > 0. The constant C, being the same as above,
does not depend on (τ, η).

We now specialize to the solutions of the differential-algebraic system (τIn +
iA(η))û + iAdû′ = 0 that decay at +∞. These solutions take values in E−(τ, η).
Using Bû = B2w with û =: (v, w)T , the above estimate amounts to

(Re τ)
(
‖v‖2L2 + ‖w‖2L2

)
+ |w(0)|2 ≤ C|B2w|2. (6.1.1)

Since τv + ia12(η)w = 0, (6.1.1) reduces to the inequality

(Re τ)
(
|τ |−2‖a12(η)w‖2L2 + ‖w‖2L2

)
+ |w(0)|2 ≤ C|B2w(0)|2. (6.1.2)
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Estimate (6.1.2) splits into three inequalities, among which two are familiar to
us. For instance, one of them is the uniform Kreiss–Lopatinskĭı condition3(

Re τ > 0, η ∈ Rd−1, w(0) ∈ e−(τ, η)
)

=⇒ (|w(0)| ≤ C|B2w(0)|).

The new fact is the estimate

‖a12(η)w‖L2 ≤ C|τ |√
Re τ

|B2w(0)|.

However, since we shall require the (UKL) condition, the only new information
is the coarser estimate

‖a12(η)w‖L2 ≤ C|τ |√
Re τ

|w(0)|, ∀w(0) ∈ e−(τ, η), (6.1.3)

where w(xd) := exp(xdA2(τ, η))w(0).
We emphasize that (6.1.3) does not depend on the particular choice of a

boundary condition. It is a property of e−(τ, η) itself, which is necessary in order
that some boundary condition exists for which the IBVP is strongly well-posed.
For this reason, we use the following notion.

Definition 6.1 Let L be a hyperbolic operator and λ(ξ) be an eigenvalue of A(ξ),
of constant multiplicity m in a neighbourhood of ed, with λ(ed) = 0. Without loss
of generality, we may assume also that dλ(ed) = 0; hence Ad and A(η) have the
structure described above. We then say that L is stabilizable4 if (6.1.3) holds
true, with a constant C independent of (η, τ) in the unit hemisphere.

The previous analysis shows that:

Proposition 6.1 With the notations above, assume that there exists a boundary
matrix β with βu := β2w, such that the IBVP associated to (L, β) in the half-
plane {xd > 0} is strongly well-posed. Then L is stabilizable.

We shall discuss two examples, taken from [127]. In the first one, the property
does not hold, while in the second, we show that it does for every Friedrichs-
symmetrizable system. The latter might be seen as a consequence of Proposi-
tion 6.1, since it is rather easy to find a strictly dissipative boundary condition
for a symmetric operator, and such a boundary condition automatically satisfies
(UKL).

First example We consider the case where a21 ≡ 0. Then the operator L
decouples, since w obeys a differential system L2w = f2, which does not involve

3Remember that in a characteristic IBVP, we expect a boundary estimate of only Adu, that is of
the w component.

4One should say stabilizable in direction ed.
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the component v at all. Since the boundary condition involves w only, the IBVP
itself decouples between a sub-IBVP

L2w = f2, w|t=0 = w0, B2w|xd=0 = g2,

and an ODE for v, where w enters as a source term:

vt = f1 − a12(∇y)w.

Let us assume that L2 is constantly hyperbolic and that the sub-IBVP satisfies
the (UKL) condition. Then, for L2 data, the solution w is uniquely defined (see
Theorem 4.3) and is L2. The fact that the source term a12(∇y)w is only of class
H−1 is not necessarily a cause of trouble; after all, the pure Cauchy problem is
well-posed in L2 since L is constantly hyperbolic5, though it decouples as well.

In the present case, e−(τ, η) is precisely the stable subspace at frequency
(τ, η) for the operator L2. From Lemma 4.5, it extends continuously at boundary
points, and in particular at (0, η), provided η is non-zero. Since A2(τ, η) does not
display any singularity, we may pass to the limit in (6.1.3) if the full IBVP
is well-posed, obtaining a12(η)w = 0 almost everywhere when w(0) ∈ e−(0, η).
Since w is continuous (as the solution of the differential equation w′ = A2(0, η)w),
this implies a12(η)w(0) = 0. In other words, the well-posedness of the full IBVP
requires that

e−(0, η) ⊂ kera12(η), ∀η ∈ Rd−1. (6.1.4)

In most cases, (6.1.4) implies that a12 ≡ 0. For instance, if n−m = 2 and L2

has one positive velocity in each direction, then e−(0, η) is a line, spanned
by some eigenvector r of A2(0, η). Let λ be the corresponding eigenvalue:
(λad + ia2(η))r = 0. This vector cannot be real, since otherwise λ would be
purely imaginary, λ = iµ, and L2 would have a zero velocity in the direction
(η, µ), contradicting the assumption of constant hyperbolicity for L. Since a12 is
real valued, (6.1.4) implies that both Re r and Im r belong to its kernel. Hence
the kernel has dimension at least two, which means a12 ≡ 0.

In conclusion, if a21 ≡ 0 and if L2 is constantly hyperbolic with non-vanishing
velocities, so that L is itself constantly hyperbolic, then most of the choices of
the non-zero matrix a12(η) violate the stability condition (6.1.3).

We finish this section by giving an example of such an operator L2 (n−m =
2, strict hyperbolicity, with a negative and a positive velocity in each direction):

L2 = ∂t +
(

0 1
1 0

)
∂1 +

(
1 0
0 −1

)
∂2.

We point out that the above analysis works under the weaker assumption

a21(η)a12(η) ≡ 0.

5Here, the velocities of L2 may not vanish, in order that L be constantly hyperbolic.
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Friedrichs-symmetrizable operators We have the following result:

Theorem 6.1 Let L be Friedrichs symmetrizable. Then (6.1.3) holds true.

Proof Multiplying by the Friedrichs symmetrizer, we may assume that L has
the form

L = S0∂t +
∑
α

Sα∂α,

with symmetric matrices Sα and S0, the latter being positive-definite. Let u be
a decaying solution of

(τS0 + iS(η))u + Sdu′ = 0.

Multiplying on the left by u∗, taking the real part and integrating, we obtain

(Re τ)‖u‖2L2 ≤ 1
2
u∗(0)Sdu(0) =

1
2
w∗(0)sdw(0).

This contains in particular Inequality (6.1.3), since the v component of u is

−iτ−1a12(η)w. �

6.1.2 The case of a linear eigenvalue

The purpose of this section is to identify a natural class of operators L for
which a symbolic dissipative symmetrizer could be constructed. Our motivations
are twofold. First, we wish to admit some of the operators that we encounter
frequently in physics. Second, the L2-well-posedness necessitates a few additional
properties, one of them being stabilizability.

Let ξ �→ λ(ξ) be the eigenvalue of A(ξ), responsible for the characteristicity
of the boundary. Thus λ(ed) = 0. Because of the constant hyperbolicity, λ
is differentiable for ξ �= 0. Since it is homogeneous of degree one, we deduce
dλ(ed)ed = 0. On the other hand, we do not alter the nature of the IBVP by
chosing a moving frame that travels at a constant speed, parallel to the boundary.
This amounts to changing the variable as (x, t) �→ (x′, t), with x′ = x− tl and
ld = 0 (see above). Choosing l = dλ(ed), we are led to the case where dλ(ed) = 0.

There are realistic cases where this reduction yields the property λ ≡ 0. For
instance, λ could have been linear in the initial setting, a fact that happens,
for instance, when its multiplicity m is strictly larger than n/2 (Corollary 1.1).
This is the case in hydrodynamics when the fluid velocity is tangential along
the boundary (no mass transfer across the boundary). A second possibility
is that rotational invariance makes the spectrum depend only on |ξ|. Then
λ ≡ 0 follows directly from λ(ed) = 0. This happens for Maxwell’s equations in
electromagnetism.

We summarize in the following proposition the properties displayed by the
matrices A(ξ) when λ ≡ 0 is an eigenvalue of constant multiplicity m ≥ 1. In par-
ticular, the eigenvalues ofA2 remain bounded as τ goes to zero. This fundamental
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property is crucial when estimating the derivatives of the solution of the IBVP
with compatible data. It has been shown in [127], through counterexamples,
that the failure of this property is responsible for a loss of order in the estimates
of derivatives: L2-norms of derivatives of order r ≥ 1 require the L2-norms of
derivatives of the boundary data, at some order (typically 2r) strictly larger
than r. See also a discussion at the end of the section.

Proposition 6.2 Assume that d ≥ 2 and L is constantly hyperbolic, with λ = 0
being an eigenvalue of A(ξ), of multiplicity m ≥ 1 (for ξ �= 0). Without loss of
generality, assume that Ad has the form(

0m 0
0 ad

)
.

Then:
� Given p, the number of positive eigenvalues of Ad, the matrix A(ξ) has
precisely p positive eigenvalues and p negative eigenvalues for ξ �= 0. In
particular, n−m = 2p is even.

� One has

A(η, ρ) =
(

0m a12(η)
a21(η) a2(η) + ρad

)
, η ∈ Rd−1, ρ ∈ R.

� It holds that

a12(η)(a2(η) + ρad)−1a21(η) = 0m, (6.1.5)

whenever ξ = (η, ρ) ∈ Cd satisfies det(a2(η) + ρad) �= 0. In particular, it
holds that

a12(η)(ad)−1a21(η) = 0m, η ∈ Cd−1. (6.1.6)

More generally, we have

a12(η)(ad)−1
(
a2(η)(ad)−1

)k
a21(η) = 0m, η ∈ Cd−1, k ∈ N. (6.1.7)

� If ξ = (η, ξd) ∈ Cd satisfies det(a2(η) + ξda
d) �= 0, then dim(kerA(ξ)) = m.

� If ξ = (η, ρ) ∈ Rd satisfies det(a(η) + ρad) �= 0, then

(−∞, 0) ∩ Sp
(
a12(η)(a2(η) + ρad)−2a21(η)

)
= ∅. (6.1.8)

� The eigenvalues of A2(τ, η) admit finite limits as τ → 0 with η �= 0. The
real part of these limits does not vanish. These limits are the roots µ of

det(a2(η) + iµad) det(Im + a12(η)(a2(η) + iµad)−2a21(η)) = 0,

which is a polynomial equation.

Proof Since λ = 0 has a constant multiplicity and A(ξ) has only real eigen-
values, and since the unit sphere of Rd is connected, the number of positive
eigenvalues of A(ξ) is constant, thus equal to p by taking ξ = ed. Since the
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spectrum of A(ξ) is the opposite of that of A(−ξ), the number of negative
eigenvalues is p also. The total number of eigenvalues is n on the one hand,
m + 2p on the other hand.

The second point is a direct consequence of Theorem 1.7, since πξA(η)πξ is
the upper-left block of A(η) when ξ = ed.

Assume ξ = (η, ρ) ∈ Rd, with det(a2(η) + ρad) �= 0. By assumption,
kerA(η, ρ) has dimension m. One easily finds

kerA(η, ρ) = {(v,−(a2(η) + ρad)−1a21(η)v) | v ∈ kera12(η)(a2(η)

+ ρad)−1a21(η)}.

This implies dim kera12(η)(a2(η) + ρad)−1a21(η) ≥ m. Since this kernel is a sub-
space of Rm, it must therefore equal Rm. Hence the matrix vanishes. In particular,
we find

kerA(η, ρ) = {(v,−(a2(η) + ρad)−1a21(η)v) | v ∈ Rm}. (6.1.9)

Analyticity ensures that (6.1.5) holds true even for complex values of (η, ρ).
Hence, formula (6.1.9) remains valid (replacing Rm by Cm). This shows that
dim kerA(ξ) = m whenever det(a2(η) + ξda

d) �= 0. Expanding (6.1.5) in terms of
1/ρ as ρ tends to infinity, we obtain (6.1.6) and (6.1.7).

When ξ �= 0 is real, diagonalizability tells us that kerA(ξ)2 = kerA(ξ). This
amounts to

−1 �∈ Sp
(
a12(η)(a2(η) + ρad)−2a21(η)

)
.

By homogeneity, this is equivalent to (6.1.8) (notice that (6.1.8) is obvious if L
is symmetric).

By assumption, the characteristic polynomial P (X; ξ) := det(XIn −A(ξ))
factorizes as XmQ(X; ξ), where Q is itself a polynomial in X. Since Xm is
unitary, the quotient Q is itself polynomial in ξ. As a polynomial in (X, ξ), Q
is homogeneous of degree m. Since the multiplicity of the null root of P (·; ξ) is
exactly m when ξ �= 0 is real, we have

Q(0; ξ) �= 0, ξ ∈ Rd \ {0}. (6.1.10)

Since P contains the monomial Xmξn−m
d det ad and since det ad �= 0, the degree

of Q in ξd is exactly n−m. Using Schur’s Formula, we have

Q(X; ξ) = det(XIn−m − a2(η)− ξda
d −X−1a21(η)a12(η)).

Substituting X = iτ and ξd = iµ, we obtain

Q(iτ ; η, iµ) = (det(−iad)) det(A2(η, τ)− µIn−m).

Hence the eigenvalues of A2(η, τ) are the roots of Q(iτ ; η, i·). Since the degree
of Q with respect to its last argument equals its total degree, these roots are
continuous functions of (η, τ) everywhere, and especially at the origin.
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When τ → 0, these roots tend to those of Q(0; η, i·). Because of (6.1.10), these
limits have a non-zero real part (notice that η �= 0 here.) To obtain an expression
of Q(0, η, iµ), we use again Schur’s formula, obtaining

P (X; ξ) = det(XIn−m − a2(η)− ξda
d) det(XIm − a12(η)

× (XIn−m − a2(η)− ξda
d))−1a21(η)).

Expanding

(XIn−m − a2(η)− ξda
d)−1 = −

∑
k≥0

Xk(a2(η) + ξda
d)−k−1,

and using (6.1.5), we find

det(XIm− a12(XIn−m− a2− ξda
d))−1a21) = Xm det(Im + a12(a2 + ξda

d)−2a21)

+O(Xm+1).

Hence

Q(X; ξ) = det(XIn−m − a2(η)− ξda
d) det(Im + a12(η)(a2(η) + ξda

d)−2a21(η))

+O(X).

Setting X = 0 and ξd = iµ, we find the limit equation. �
Comments

i) It happens frequently that a21(η)a12(η) �= 0n−m (we have seen that this
is a necessary condition for stabilizability.) For instance, if L is Friedrichs
symmetric, it happens whenever a12(η) �= 0, a natural fact when the IBVP
does not decouple between a trivial ODE vt = f1 and an IBVP of smaller
size. If a21(η)a12(η) �= 0n−m, then the matrix A2(η, τ) is unbounded as
τ → 0, though its eigenvalues have finite limits. Hence it does not remain
uniformly diagonalizable: Eigenvectors associated to distinct eigenvalues
tend to become parallel. However, eigenvalues do not merge in general (a
counterintuitive fact, but A2 does not have a limit as τ → 0); for instance,
if m = n− 2, then p = 1 and Q(τ, iη, ·) has exactly one root of positive
real part and one of negative real part, this dichotomy persists as τ → 0,
since the roots of Q(0; iη, ·) may not belong to iR. Hence the roots remain
distinct.

ii) In the Friedrichs-symmetric case, (6.1.6) tells us exactly that the range
R(a21(η)) is an isotropic subspace for the quadratic form qd defined on
Rn−m = R2p by (ad)−1. Since qd is non-degenerate with p positive and
p negative eigenvalues, its maximal isotropic subspaces have dimension
p. Hence rk a21(η) ≤ p. Let us examine two examples. The first one is
Maxwell’s system of electromagnetism, for which (d, n,m, p) = (3, 6, 2, 2).
Easy calculations show that rk a21(η) = 2 = p for every η �= 0. Thus our
inequality is sharp. Its optimality is reinforced by the following observation.
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Since p = (n−m)/2 = 2, the set I2(qd) of qd-isotropic planes is a manifold
of dimension one6. This dimension fits with that of the projective space on
which the map η �→ R(a21(η)) is defined. One checks easily that the range
of this map is precisely a connected component of I2(qd).

The second example is the linearized isentropic gas dynamics (or
acoustics). With the normalization λ ≡ 0, the ground velocity is zero. In
suitable units, the operator reads

L

(
ρ
u

)
=
(

ρt + div u
ut + ∇ρ

)
.

Here, (n,m, p) = (d + 1, d− 1, 1). Again, the equality rk a21(η) = 1 = p
holds. However, the set of isotropic lines is discrete (it consists in two
elements). Thus the map η �→ R(a21(η)) is constant, although it is defined
on a projective space of dimension d− 2. This constancy could be checked
by direct calculation.

Why should λ ≡ 0 hold?

Our first motivation is an observation made by Majda and Osher in [127]. As
mentioned in Proposition 6.2, the eigenvalues of A2(τ, η) have finite limits as
τ tends to zero, the singularity of A2. It turns out that when the eigenvalue,
responsible for the characteristic nature of the boundary, is not a linear function
of the frequency, then A2(τ, η) admit eigenvalues that tend to infinity as τ →
0. Majda and Osher showed that such a behaviour, although compatible with
strong L2-estimates, is responsible for a loss in the estimates of the derivatives.
Typically, boundary data of class H2 are needed in order that the trace of the
solution be of class H1.

The following analysis, due to Ohkubo [150], is related to the former com-
ment and gives a partial explanation for the choice of a constant (or a linear)
eigenvalue. Let us assume that the IBVP is well-posed in L2, in the sense of
Definition 4.6. We wish to show that this well-posedness extends to the class
H1. Thus we give ourselves data f = Lu, g = γ0Bw and a ≡ 0 that belong to
H1 in their respective domains. By assumption, we know that there exists a
unique solution u = (v, w) that is at least square-integrable on (0, T )× Ω, and
such that w has a square-integrable trace along the boundary. Thus we seek for
the integrability of the first-order derivatives. First of all, we differentiate the
equation Lu = f in directions parallel to the boundary (tangential derivatives).
We see that ∂αu solves the IBVP

LXα = ∂αf, γ0BXα = ∂αg, Xα(0) = 0.

Since the data are square-integrable, we obtain that ∂αu ∈ L2 and that ∂αw has
a well-defined trace that is square-integrable too. The same procedure may be

6It may be identified to the set of straight lines contained in a one-sheeted hyperboloid. In
particular, it has two connected components.



Facts about the characteristic case 167

applied to the time derivative X0:

LX0 = ∂tf, γ0BX0 = ∂0g, X0(0) = f(0).

Hence ∂tu and ∂tw have the required properties.
We now turn towards the normal derivative ∂du. Using the second part of

the system, we have

∂dw = (ad)−1 (f2 − ∂tw − a2(∇y)w − a21(∇y)v) . (6.1.11)

Equation (6.1.11) immediately tells us that ∂dw is square-integrable and admits a
square-integrable trace7. However, it remains to study ∂dv. To handle this term,
we differentiate the first part of the system and we use (6.1.11). We obtain an
ODE

∂t

(
∂dv − a12(∇y)(ad)−1w

)
= ∂df1 − a12(∇y)(ad)−1f2 + a12(∇y)(ad)−1a2(∇y)w

+ a12(∇y)(ad)−1a21(∇y)v.

Assuming Property (6.1.6) and also

a12(η)(ad)−1a2(η) ≡ 0, (6.1.12)

which together imply (6.1.5), the right-hand side reduces to ∂df1 −
a12(∇y)(ad)−1f2, a square-integrable data. Thus ∂dv − a12(∇y)(ad)−1w, hence
∂dv, is square-integrable (notice that we do not need a boundary condition for
∂dv.)8

Ohkubo’s conclusion is that a sufficient condition for the IBVP be well-posed
in H1 is that both (6.1.6) and (6.1.12) hold true. Though it is not clear that these
conditions are necessary, it looks reasonable to restrict ourselves to the class of
such operators. This is the choice that we shall adopt in Section 6.2. Using a series
expansion, we see that these conditions imply (6.1.5), which means that kerA(ξ)
has dimension m whenever det(a2(η) + ρad) �= 0. By a continuity argument, we
see that zero is an eigenvalue of A(ξ) of multiplicity larger than or equal to m,
for every direction ξ, whence λ ≡ 0.

6.1.3 Facts in two space dimensions

From now on, we assume that our operator L is symmetric, with a zero eigenvalue
of constant multiplicity m ≥ 1. We denote by p = (n−m)/2 the number of
positive (negative) eigenspeeds in every direction ξ �= 0.

We shall need to consider the isotropic cone of A(ξ):

Γ(ξ) := {u ∈ Rn ; uT A(ξ)u = 0}.
7Notice that the analysis would be complete at this stage if the boundary was not characteristic.

This explains why only one condition (UKL) governs the well-posedness of non-characteristic IVBPs
in every Sobolev space, while we need an extra condition in the characteristic case, to pass from the
well-posedness in L2 to that in H1.

8The way we used (6.1.11) does not seem optimal. We expect that a cleverer analysis could yield
the weaker condition (6.1.5), instead of (6.1.6) and (6.1.12).
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The intersection of these cones as ξ runs through Rd is denoted Γ. Obviously,
kerA(ξ) is a subset of Γ(ξ). Actually, we proved in Theorem 1.7 that kerA(ξ′) ⊂
Γ(ξ) for every ξ, ξ′ with ξ′ �= 0. This implies not only

kerA(ξ′) ⊂ Γ, (6.1.13)

but also

kerA(ξ) + kerA(ξ′) ⊂ Γ(ξ) ∩ Γ(ξ′), ∀ξ �= 0, ξ′ �= 0. (6.1.14)

We now assume that d = 2 and denote by H the sum of the kernels kerA(ξ) as
ξ runs the unit circle. Then Γ = Γ(ξ) ∩ Γ(ξ′) whenever ξ ∧ ξ′ �= 0. Hence (6.1.13),
(6.1.14) and the fact that each Γ(ξ) is a quadratic cone give us:

Proposition 6.3 Assume that d = 2, the operator L is symmetric and the zero
eigenvalue has constant multiplicity m ≥ 1. Then it holds that∑

ξ 	=0

kerA(ξ) =: H ⊂ Γ :=
⋂
ξ

Γ(ξ). (6.1.15)

Comments

� It is worth pointing out that the sum (of vector spaces of dimension m)
H can be a rather big subspace. However, Propositions 6.2 and 6.3 tell us
that, as any isotropic subspace Γ(ξ), its dimension is less than or equal
to m + p. What is even more striking is that in the examples of physical
interest9, the dimension of this sum is actually equal to m + p. Hence all
the quadratic forms A(ξ) have a maximal isotropic subspace in common!
As we shall see in the following, this property plays a crucial role, so that
we shall take it as an assumption for the planar restrictions of L.

� Property (6.1.15) would be false in higher space dimension, for there is
no reason why uT A(ξ′′)u′ would vanish for u ∈ kerA(ξ) and u′ ∈ kerA(ξ′)
when ξ, ξ′, ξ′′ are linearly independent.

In the next result, we assume that H is of maximal dimension (namely m + p)
and we use the canonical form for the symbol A(ξ):

A(ξ) =
(

0m a12(ξ)
a21(ξ) a2(ξ)

)
∈ Symn, ad := a2(ed).

Since H contains kerAd = Rm × {0}, it splits as Rm ×H1 where dim H1 = p.

Lemma 6.1 Assume that d = 2 and dim H = m + p (maximal dimension).
Then H1 is its own ad-orthogonal space. If ξ �= 0, then H is its own A(ξ)-
orthogonal subspace.

Proof Since ad is non-degenerate, dim H⊥
1 = 2p− dimH1 = p. Since H⊥

1

contains H1, it thus equals H1. Similarly, H is self-orthogonal with respect

9For example, acoustics, linearized gas dynamics, Maxwell’s equations, linear elasticity.
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to A(ξ). Since it contains kerA(ξ), its A(ξ)-orthogonal must be of dimension
m + n− dimH = dimH, whence the result. �
Corollary 6.1 Assume that d = 2, the operator L is Friedrichs symmetric and
that the subspace H :=

∑
ξ 	=0 kerA(ξ) is of maximal dimension, namely m + p.

Then it is possible to choose the u-co-ordinates in such a way that A(ξ) reads

A(ξ) =
(

0m+p β(ξ)
β(ξ)T δ(ξ)

)
, (6.1.16)

where δ(ξ) ∈ Symp, while β(ξ) ∈ M(m+p)×p is injective for ξ �= 0.
Conversely, if A(ξ) reads as above and β(ξ) is injective for ξ �= 0, then the

operator L = ∂t + A(∇x) is Friedrichs symmetric, and zero is an eigenspeed of
multiplicity m in every direction of the plane.

Proof Assume that H is of maximal dimension m + p. One chooses orthogonal
co-ordinates in which H = Rm+p × {0}. Since the co-ordinates are orthogonal,
the symbol remains symmetric. Because H is isotropic for every A(ξ), the symbol
has the form described in (6.1.16), with δ(ξ) symmetric. Let q belong to kerβ(ξ)
and ξ �= 0. Then

A(ξ)
(

0
q

)
=
(

0
δ(ξ)q

)
∈ H⊥.

From Lemma 6.1, we deduce that (0, q)T ∈ H, which means q = 0. Hence β(ξ)
is injective.

Conversely, assuming that β(ξ) is injective, we see that kerA(ξ) = kerβ(ξ)T ×
{0}. Since the rank of βT equals that of β, namely p, we find that kerβ(ξ)T is of
dimension m + p− p = m. �

In the following, we shall consider symmetric operators in any space dimen-
sion d ≥ 2. Given a vector η ∈ Rd−1 = Rd−1 × {0}, we shall denote H(η) the sum
of the kernels kerA(ξ) as ξ �= 0 runs over the plane spanned by η and ed. From
Proposition 6.3, H(η) is isotropic for both Ad and A(η). Since H(η) contains
kerAd = Rm × {0}, it splits as Rm ×H1(η), where H1(η) is isotropic for both
ad and a2(η). As mentioned above, we shall assume that H(η) is of maximal
dimension, namely m + p, meaning that H1(η) has dimension p. In particular,
we have the following identity:

(ad)−1H1(η) = H1(η)⊥. (6.1.17)

6.1.4 The space E−(0, η)

We now characterize the limit E−(0, η) of the stable subpace E−(τ, η) when
τ → 0 with Re τ > 0. Recall that the latter is associated to the differential-
algebraic system

(τIn + iA(η))u + Adu′ = 0.
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Following the analysis of the previous section, we assume that L is Friedrichs
symmetric, that zero is an eigenvalue of multiplicity m ≥ 1, that d ≥ 2 and that
dim H1(η) = p for every η ∈ Rd−1 \ {0}. As above, we use the block decomposi-
tion u = (v, w)T with v ∈ Cm, w ∈ Cn−m = C2p and

A(η + ξded) =
(

0m a12(η)
a21(η) a2(η) + ξda

d

)
.

If w ∈ H1(η) and v ∈ Rm, then (v, w)T ∈ H(η), hence (v, w)T ∈ Γ(η), mean-
ing that 2vT a12(η)w + wT a2(η)w = 0. Since this is valid for every v, we conclude
that a12(η)w = 0, whence

H1(η) ⊂ kera12(η). (6.1.18)

Introducing H2(η) := H1(η)⊥ (with respect to the standard Euclidian product),
we derive that

R(a21(η)) ⊂ H2(η). (6.1.19)

The differential system rewrites

τv + ia12(η)w = 0, ia21(η)v + (τ + ia2(η))w + adw′ = 0,

from which we may eliminate v:

adw′ + (τ + ia2(η))w +
1
τ

a21(η)a12(η)w = 0. (6.1.20)

We shall denote e−(τ, η) the w-projection of E−(τ, η), that is the stable subspace
of the system (6.1.20).

In the decomposition C2p = H1(η)⊕⊥ H2(η), we denote by π = π(η) the
orthogonal projection onto H1(η). With q1 = πw and q2 = τ−1(1− π)w ∈ H2(η),
we have w = q1 + τq2 and the system reads

adq′1 + ia2(η)q1 + a21(η)a12(η)q2 + τ{adq′2 + q1 + ia2(η)q2 + τq2} = 0. (6.1.21)

We write an equivalent system by projecting onto H1(η) and H2(η) separately.
The important point is that the first three terms in (6.1.21) belong to H2(η)
(use the fact that H1(η) is isotropic simultaneously for ad and for a2(η), and use
(6.1.19)). Hence the system becomes

adq′1 + ia2(η)q1 + a21(η)a12(η)q2 = −τ(1− π){adq′2 + ia2(η)q2 + τq2},
πadq′2 + q1 + iπa2(η)q2 = 0.

This can be written in a compact form as

d
dx

(
q1

q2

)
= Z(τ, η)

(
q1

q2

)
.

Since we proceeded by changes of variables, Z(τ, η) is conjugated to A2(τ, η),
hence it is of hyperbolic type. Its stable subspace is of dimension p. What is even
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more important is that Z(τ, η) has a limit Z(0, η) that is hyperbolic too. As a
matter of fact, the formal limit of the above system, as τ → 0, writes as

adq′1 + ia2(η)q1 + a21(η)a12(η)q2 = 0, (6.1.22)

πadq′2 + q1 + iπa2(η)q2 = 0. (6.1.23)

Since ad is invertible, the first line determines q′1 in terms of q1, q2. On the other
hand, if πadq = 0, then adq ∈ H2(η). From (6.1.17), we conclude that q ∈ H1(η).
Hence the second line determines q′2, showing that the system can be written in
the form q′ = Z(0, η)q and that Z(0, η) is the limit of Z(τ, η).

Proposition 6.4 The matrix Z(0, η) is hyperbolic: It does not have pure imag-
inary eigenvalues.

Proof Let q satisfy Z(0, η)q = iαq with α ∈ R. Denoting by ir1 + r2 the
decomposition of q, we have

−(αad + a2(η))r1 + a21(η)a12(η)r2 = 0,

π(αad + a2(η))r2 + r1 = 0.

One may assume that r1 and r2 are real. Multiplying the first line by rT
2 , the

second one by rT
1 and summing, we obtain the identity

|r1|2 + |a12(η)r2|2 = 0.

It follows that q ∈ H2(η) ∩ kera12(η). Then the equations reduce to (αad +
a2(η))q ∈ H2(η). All this means

A(ξ)
(

0
q

)
∈ {0} ×H2(η) = H(η)⊥, ξ := η + αed.

Using Lemma 6.1, we conclude that (0, q)T ∈ H(η), namely q ∈ H1(η). Since
q ∈ H2(η), this gives q = 0. �
Lemma 6.2 There exists a linear map N(0, η) such that the equation of the
stable subspace of Z(0, η) is

q1 = N(0, η)q2.

Moreover, one has kerN(0, η) ⊂ kera12(η).

Proof Since the dimension of the stable subspace is p, we have to prove that
its intersection with H1(η) is trivial. Thus, let q(x) be a solution of the limit
differential system, vanishing at +∞. Multiply (6.1.22) by q∗2 and (6.1.23) by q∗1 ,
sum both equations, then take the real part. One obtains

|q1|2 + |a12(η)q2|2 +
d
dx

Re (q∗2adq1) = 0.
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Integrate now from 0 to +∞, we obtain∫ +∞

0

(
|q1|2 + |a12(η)q2|2

)
dx = Re (q2(0)∗adq1(0)).

If q2(0) vanishes, we deduce that q1 ≡ 0, hence q1(0) = 0. This proves that the
stable subspace is parametrized by q2.

Assume now that N(0, η)r = 0 with r ∈ H2(η). The solution of the differential
system with initial data q1(0) = 0 = N(0, η)r, q2(0) = r, vanishes at +∞. Hence
q1 ≡ 0 and a12(η)q2 ≡ 0. Whence a12(η)r = 0. �

A standard perturbation argument tells us that the stable subspace of Z(0, η)
is the limit of that of Z(τ, η). Thus there exists a linear map N(τ, η) that depends
smoothly on (τ, η) when τ is small, such that the latter has an equation q1 =
N(τ, η)q2. In other words, E−(τ, η) is given by

E−(τ, η) = {(−ia12(η)r,N(τ, η)r + τr) ; r ∈ H2(η)}.

Passing to the limit as τ → 0, we obtain

{(−ia12(η)r,N(0, η)r) ; r ∈ H2(η)} ⊂ E−(0, η). (6.1.24)

When the right-hand side in (6.1.24) has dimension p, the embedding is an
equality that gives a complete description of E−(0, η). However, one does not see
any good reason why this would hold true for every η ∈ Rd−1 \ {0}.

From Lemma 6.2, equality occurs in (6.1.24) unless N(0, η) is singular. We
examine the latter property. If r ∈ kerN(0, η), then there exists (see the proof of
the lemma) a non-trivial q(x) that takes values in H2(η) ∩ kera12(η), and such
that (see (6.1.23))

π(ξda
dq′ + ia12(η)q) = 0.

Let xk exp(σx)r0 be a leading term in q as x → +∞, then Re σ < 0 and π(σad +
ia12(η))r0 = 0. In other words, the vector U := (0, r0)T satisfies

U ∈ H(η)⊥, A(η + ξded)U ∈ H(η)⊥, (6.1.25)

for a ξd = −iσ that is non-real. Conversely, let U �= 0 satisfy (6.1.25) with a non-
real ξd. We have U = (0, r)T with r ∈ H2(η). Up to a complex conjugacy, we
may assume that the imaginary part of ξd is positive. Then q(x) := exp(iξd)r
is a decaying solution of our differential system that satisfies q1(0) = 0 and
q2(0) = r �= 0. Hence N(0, η) is singular. We summarize our results in the
following statement.

Proposition 6.5 The linear map N(0, η) is singular if and only if there exists
a non-zero vector U ∈ Cn that solves the generalized eigenvalue problem (6.1.25).

When N(0, η) is regular, then

E−(0, η) = {(−ia12(η)M(0, η)z, z) ; z ∈ H1(η)}, (6.1.26)
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where M(0, η) := N(0, η)−1. In particular, the w-projection of E−(0, η), as well
as the limit of e−(τ, η) as τ → 0, equal H1(η).

Note that the eigenvalue problem (6.1.25) could not have a non-trivial solution
when ξd is real, as shown in Proposition 6.4.

Examples of physical interest

In practice, we are interested in examples that come from physics, where conser-
vation laws are likely to hold. We have in mind fluid dynamics, electromagnetism
and elasticity. The systems are known as acoustics, linearized gas dynamics,
Maxwell’s equations and linear isotropic elasticity. All of them have a zero
eigenspeed of constant multiplicity; in the case of linearized gas dynamics, one
must assume a solid boundary, and choose a frame moving with the boundary
velocity.

Except for the elasticity, one has the remarkable feature

a2(η) ≡ 02p. (6.1.27)

We emphasize that (6.1.27) prevents the eigenvalue problem (6.1.25) from hav-
ing a non-trivial solution, since H(η) is its own Ad-orthogonal. Hence the w-
projection of E−(0, η) equals H1(η) in every direction.

Let us examine linear elastodynamics. There is no loss of generality in
assuming that d = 2, since all the above analysis deals within planes spanned
by ed and a tangent vector η. The system reads as

∂tF +∇z = 0, ∂tz + divT = 0,

with F (x, t) ∈ M2(R), z(x, t) ∈ R2 and

T = λ(F + FT ) + µ(TrF )I2.

The vector field z represents the opposite of the material velocity, while the stress
tensor T is an isotropic function of the infinitesimal deformation tensor. Actually,
the skew-symmetric part F12 − F21 decouples from the rest and we may restrict
ourselves to the system that governs the evolution of z and the symmetric part
of F . Since the system admits a quadratic energy

1
2
|z|2 +

λ

4
|F + FT |2 +

µ

2
(TrF )2,

it is Friedrichs symmetrizable. Given cP :=
√

2λ + µ (the velocity of ‘pressure
waves’), the choice of variables

u := (2
√

λ(λ + µ) F11, cP

√
λ (F12 + F21), c2

P F22 + µF11, cP z1, cP z2)T

puts the system in the symmetric form Lu = 0, where A(ξ) has the canonical
form

A(ξ) =
(

0m a12(η)
a21(η) a2(η) + ξda

d

)
, ξ = (η, ξd).
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We have

a2(η) + ξda
d =

(
02 b(ξ)

b(ξ)T 02

)
, b(ξ) =

(
ξd

√
λ η

√
λ

ηµ/cP ξdcP

)
(6.1.28)

and a12(η) = (0, 0, 2η
√

λ(λ + µ)/cP , 0)T .
In these variables, one checks that H(e1) = R3 × {0}. Since n = 5, m = 1

and p = 2, H(e1) is of dimension m + p and the previous analysis applies. Let us
consider now the eigenvalue problem (6.1.25). If (0, r)T is a solution, then r has
the form (0, q)T with q ∈ C2 and q ∈ kerb(ξ) ∩ kera12(η). Here, ξ = (η, ξd) with
a non-real ξd. Since

det b(ξ) = (ξ2
dcP − µ2/cP )

√
λ

cannot vanish (otherwise ξd would be real), we must have q = 0. Thus, there is
no non-trivial solution. We conclude that N(0, e1) is non-singular.

More generally, in any space dimension and for every tangent vector η �= 0,
the space H(η) is of dimension m + p and the limit E−(0, η) is parametrized as
in (6.1.26).

6.1.5 Conclusion

Let us summarize the results obtained in this section. It is difficult to characterize
hyperbolic operators L admitting an eigenvalue λ of constant multiplicity m ≥ 1,
such that λ(ed) = 0. Hence, we have simplified the class of admissible operators
by using as natural as possible arguments.

First, we explained why a linear λ is likely to occur. Without loss of generality,
this allows us to restrict ourselves to λ ≡ 0. A nice consequence of this assumption
is the boundedness of the spectrum of A2(τ, η) as τ → 0, a property needed for
an acceptable estimate of derivatives of the solution of the IBVP. Another one
is that n−m =: 2p is even whenever d ≥ 2.

Next, the concept of stabilization led us to a slightly more restricted class. We
showed that symmetric operators are stabilizable, but that far-from-symmetric
ones (say a21a12 ≡ 0n−m) are not. Since the examples encountered in the natural
sciences are endowed with a quadratic ‘entropy’ (being often an energy) and thus
are Friedrichs symmetrizable, we restrict ourselves to symmetric symbols A(ξ).
Without loss of generality, one may write

A(ξ) =
(

0m a12(η)
a12(η)T a2(η) + ξda

d

)
, ξ = η + ξded.

For every non-zero tangent vector, we introduce the sum H(η) of the kernels
kerA(ξ) as ξ runs over Rη ⊕ Red. We showed that it is an isotropic subspace
for all these A(ξ) simultaneously. In particular, its dimension is not larger than
m + p. Examples from physics suggest we can assume that

i) the dimension of H(η) is maximal, namely it equals m + p for every tangent
η �= 0,
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ii) the generalized eigenvalue problem (6.1.25) does not have a non-trivial
solution.

Under these assumptions, we know that the stable subspace E−(τ, η) admits
a unique limit E−(0, η) as τ tends to zero, keeping a positive real part, and
this limit is described in (6.1.26). And since the boundary matrix has the form
B = (0, B2), we have:

Proposition 6.6 Assume properties i) and ii) above. Then the uniform Kreiss–
Lopatinskii condition is satisfied in the neighbourhood of (0, η) if, and only if,

C2p = kerB2 ⊕H1(η). (6.1.29)

6.1.6 Ohkubo’s case

This is the case where we shall be able to construct the dissipative symmetrizer
in the next section. Recall that Ohkubo considers Friedrichs-symmetric operators
with a2 ≡ 0n−m. Thus we have

A(ξ) =
(

0m a12(η)
a21(η) ξda

d

)
, a21(η)T = a12(η), (ad)T = ad.

The important point is the following.

Proposition 6.7 In Ohkubo’s case, it holds for η ∈ Rd−1 \ {0} that

kera12(η) = R((ad)−1a21(η)),

or equivalently

ker(a12(η)(ad)−1) = R(a21(η)).

In particular, the subspaces kera12(η) and R(a21(η)) have dimension p.

Proof We already have the inclusion

R((ad)−1a21(η)) ⊂ kera12(η), (6.1.30)

from (6.1.6).
Let us make ξ = (η, 0) with η �= 0. Then kerA(ξ) = kera21(η)× kera12(η).

Since 0 is an eigenvalue of multiplicity m whenever ξ �= 0, we infer that

m = dimkera12(η) + dim kera21(η).

However, we also have

m = rk a21(η) + dim kera21(η).

We obtain therefore

rk((ad)−1a21(η)) = rk a21(η) = dim kera12(η),

implying the equality in (6.1.30). �
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Corollary 6.2 In Ohkubo’s case, the conclusion (6.1.29) of Proposition 6.6
applies.

Proof We have to check properties i) and ii).
When ξd �= 0, we have

kerA(ξ) = {(ξdX,−(ad)−1a21(η)X |X ∈ Rm}.

Also, when ξd = 0, it holds that

kerA(ξ) = kera21(η)× kera12(η).

It follows easily that H(η) = Rm × kera12(η). This space is of dimension m + p,
hence maximal.

On the other hand, let U be a solution of (6.1.25). Since H(η)⊥ = {0} ×
R(a21(η)), we have U = (0, a21(η)z). Then

A(η + ξded)U =
(

a12(η)a21(η)z
ξda

da21(η)z

)
.

We deduce that a12(η)a21(η)z = 0, whence U = 0. �
Remarks We warn the reader that our assumption on the symbol does depend
on the choice of space co-ordinates in which {xd = 0} is the boundary of the
domain. A consistent assumption is that there is a tangent vector W , such that
a2(η) = (η ·W )ad for every η in Rd−1. This allows us to choose co-ordinates in
which a2 ≡ 0n−m, while the boundary is still {xd = 0}. In other words, the lower-
right block in the symbol needs to move along a one-dimensional space (notice
that ad is a generator of this line since it is a non-zero matrix.) It is clear from
(6.1.28) that the system of isotropic elasticity does not satisfy this assumption.
We leave the reader to check that the Maxwell system of electromagnetism, as
well as the system of acoustics, do. Since isotropic elasticity does not belong to
the Ohkubo’s class, the construction of the forthcoming section does not apply
to this system. Since the choice of Ohkubo’s assumption is sufficient but not
necessary, this does not simply anything about the solvability of the general
IBVP under (UKL) in elasticity. A more elaborate construction, specific to the
system of isotropic elasticity, is given in [141, 142], which proves the solvability
of IBVPs in space dimension two and three.

6.2 Construction of the symmetrizer; characteristic case

The solvability of the IBVP under (UKL) will be shown, as in the non-charac-
teristic case, with the help of a symmetrizer K(τ, η). We recall that we restrict
to Friedrichs symmetric operators L = ∂t + A(∇x) that have a null eigenvalue of
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constant multiplicity m, and such that A(ξ) has the form10

A(η, ξd) =
(

0m a12(η)
a21(η) ξda

d

)
, η ∈ Rd−1, ξd ∈ R.

The symmetrizer will satisfy again the two requirements that Σ := KAd is
Hermitian and Re M(τ, η) ≥ c0(Re τ)In, with the notations of Section 5.2. Also,
it will be homogeneous of degree zero and bounded.

As mentioned before, it is not possible to obtain an estimate of the full
trace of u on the boundary, in the same norm as the boundary data. What
we may reasonably expect is an estimate of the trace of Adu. For this reason, the
restriction of Σ to the kernel of B cannot be negative-definite since it vanishes on
kerAd. Hence, we ask only that this restriction be non-positive, while vanishing
only on kerAd. In other words, this restriction will be bounded from above by
−c0(Ad)T Ad, with c0 > 0. Since kerAd ⊂ kerB, this condition will involve only
the vectors w ∈ Cn−m such that (0, w)T ∈ kerB. The space of these vectors is
simply kerB2.

The special form of Ad and the fact that Σ is Hermitian immediately imply
that K has the form

K(τ, η) =
(

K1(τ, η) 0
K21(τ, η) K2(τ, η)

)
,

where K2a
d =: Σ2 is Hermitian. We now list the objects we are looking for:

i) Find parametrized matrices K1(τ, η), K21(τ, η) and K2(τ, η), homogeneous
of degree zero and uniformly bounded on Re τ > 0, τ ∈ Rd−1,

ii) Such that Σ2(τ, η) := K2(τ, η)ad is Hermitian,
iii) The restriction of Σ2 to kerB2 must be less than −c0In−m, with c0 > 0

independent of (τ, η). In other words, we need a positive c1, independent
of (τ, η), such that

Σ2 ≤ −c0In−m + c1B
T
2 B2.

That inequality may also be written

Σ ≤ −c2(Ad)T Ad + c1B
T B,

iv) And finally,

Re M(τ, η) ≥ c0(Re τ)In, ∀(τ, η), (6.2.31)

where

M(τ, η) := K(τ, η)(τIn + iA(η, 0)) =
(

τK1 iK1a12

τK21 + iK2a21 iK21a12 + τK2

)
.

10Notice that we work only in the simpler and natural case a2 ≡ 0n−m. To our knowledge, the
systematic construction of the symmetrizer in a more general context is an open question.
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We note that, since L is symmetric, the choice K ≡ In fills three of the four
requirements. The remaining one, that Σ2 restricted to kerB2 is negative-definite,
would then be a dissipation assumption.

Our assumption, besides constant hyperbolicity, is the uniform Kreiss–
Lopatinskĭı condition that E−(τ, η) ∩ kerB is trivial for every pair with Re τ ≥ 0,
η ∈ Rd−1, (τ, η) �= 0. The definition of E−(τ, η) for Re τ = 0, τ �= 0, is as usual
by continuous extension. Such an extension to points with Re τ = 0, τ �= 0 exists
and follows from the same arguments as in the non-characteristic case. The
continuous extension to points (0, η) was described in Proposition 6.6.

In the following, we shall use the following property, equivalent to (UKL), that
e−(τ, η) ∩ kerB2 is trivial for every pair with Re τ ≥ 0, η ∈ Rd−1, (τ, η) �= 0.

Steps 1, 2 and 3 of the proof of Theorem 5.1 work as well. Therefore, we
are led to construct the symmetrizer pointwise at interior points (Re τ > 0) and
locally at boundary points (Re τ = 0). We shall split the latter case into two
subcases, according to whether τ �= 0 or τ = 0.

Interior points When (τ, η) is a fixed interior point (Re τ > 0), we only have
to build K(τ, η) satisfying ii), Σ2 < 0 on kerB2 and Re M > 0 at the sole point
(τ, η).

Following Step 4 of the non-characteristic case (see Chapter 4), we first choose
a Hermitian matrix Σ2 that satisfies Σ2 < 0 on kerB2 and Re Σ2A2(τ, η) < 0.
Such a Σ2 does exist, because of (UKL): (kerB2) ∩ e−(τ, η) = {0}.

Next, we choose

K2 = Σ2(ad)−1, K21 = − i

τ
K2a21,

so that

M(τ, η) =
(

τK1 iK1a12

0 −Σ2A2

)
.

It remains to choose K1 = εk1, with k1 ∈ HDPm and ε > 0 small enough. This
ensures Re M > 0 and ends the construction in the case of an interior point.

Ordinary boundary points (Re τ = 0, but τ �= 0) The above computation
suggests to rewrite M in the general form

M(τ, η) =
(

τK1 iK1a12

K ′ −Σ2A2 + i
τ K ′a12

)
, K ′ := τK21 + iK2a21.

With this notation, we are searching a triplet (K1,K
′,Σ2) instead of

(K1,K21,K2). The matrix Σ2 is Hermitian. Matrices K1 and Σ2 are homogeneous
of degree zero, while K ′ has degree one.

As long as τ does not approach zero, we may choose K1 = εIm and K ′ = iεaT
12,

with ε > 0 small enough. This would have worked well in the case of interior
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points yet. Such a choice yields

Re M(τ, η) =
(

ε(Re τ)Im 0
0 Re (−Σ2A2)− ε(Re τ)|τ |−2aT

12a12

)
.

Let (τ0, η0) be given, with Re τ0 ≥ 0 and τ0 �= 0. Following the non-characteristic
case, the uniform Kreiss–Lopatinskĭı property ensures that there exists a Her-
mitian matrix Σ2(τ, η) defined in a neighbourhood V of (τ0, η0), homogeneous of
degree zero and bounded, whose restriction to F d is negative-definite, and such
that Re (−Σ2A2) ≥ 2c0(Re τ)In−m. Property iv) will then be satisfied provided
εaT

12a12 ≤ c0|τ |2In−m in V, which is true when ε is small enough.
We emphasize that the above construction of Σ2 needs the block-structure

property for the matrix A2(τ, η) near glancing points (see [134]). This property
is ensured by the important remark in Section 5.1 and the following identity,
coming from Schur’s complement formula (see [187]):

det(ωIn−m −A2(τ, η)) =
det(τIn + A(iη, ω))

τm det ad
, (6.2.32)

where the right-hand side is analytic near (τ0, η0, ω) for every ω.

Central points (τ = 0) From now on, we shall focus our attention on the
vicinity of points of the form (0, η0) with η0 �= 0, where the previous analysis
does not apply.

In such a neighbourhood, the symmetrizer (actually an incomplete one, see
below) will be chosen as a linear combination of three simpler matrices:

K(τ, η) = KII(η)− λKI(η) + µKIII(η), λ > 0, µ > 0.

The real parameters λ, µ will be chosen later. The role of λ is to ensure the
dissipativeness of the boundary condition, while the role of µ is to ensure that
Re M ≥ c0γIn with a positive c0. It turns out that it is possible to choose λ first,
and then to adapt µ.

The three pieces are given by the formulæ

KI := diag(0m, a21a12(ad)−1),

KII := diag(a12(ad)−2a21, a21a12(ad)−2 + (ad)−1a21a12(ad)−1),

where we drop the argument η for simplicity, and (recalling our notation τ =
γ + iρ)

KIII :=
(

0m 0
−k2a21 ρk2

)
, k2 := σ(ad)−1,

σ = i(a21a12(ad)−1− (ad)−1a21a12).

Note that Σ := KAd has the form diag(0m,Σ2). We denote by ΣI
2, . . . the blocks

that correspond to KI , . . . . Then

ΣI
2 = a21a12, ΣII

2 = a21a12(ad)−1 + (ad)−1a21a12, ΣIII
2 = ρσ.
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These matrices are clearly Hermitian, thus Σ2 = ΣII
2 − λΣI

2 + µΣIII
2 is too.

We shall often work with variables (p, q) in Cn−m, where w = p + q and
p ∈ kera12, q ∈ R(a21). Because of the Kreiss–Lopatinskĭı condition, written at
τ = 0, we have Cn−m = kerB2 ⊕ kera12. In other words, kerB2 has an equation
of the form p = Dq, where D(η) is some linear operator. Obviously, D depends
smoothly, thus boundedly, on η/|η|. On kerB2, the norms |w| and |q| are
equivalent, uniformly in η.

As the Hermitian form w �→ |a12q|2 is positive-definite on kerB2, there exists
a (large enough) λ such that the form

w �→ w∗ΣII
2 w − λw∗ΣI

2w

is negative-definite on kerB2, uniformly in η. Regardless of the value of µ, the
restriction of Σ2 to kerB2 will be uniformly negative-definite for ρ, hence τ , small
enough.

We now turn to the study of the Hermitian form Q(u) := Re (u∗Mu), in
which we use repeatedly (6.1.6). It decomposes naturally into QII − λQI +
µQIII , where λ has been fixed yet and µ is still at our disposal. The formulæ for
each piece are:

QI(u) = Re (τq∗a21a12(ad)−1p),

QII(u) = γ
(
|(ad)−1a21v|2 + |a12(ad)−1p|2

)
+ Re (τq∗a21a12(ad)−2w),

QIII(u) = Re (w∗k2(−γa21v − ia21a12q + ρτw)) ,

where we notice that

w∗k2 = i(q∗a21a12(ad)−1 − p∗(ad)−1a21a12)(ad)−1. (6.2.33)

Let us establish some bounds, where the numbers c0, c1 > 0 may be taken
independently of η. On the one hand, we have

|λQI(u)| ≤ c1|τ | |p| |q|, QII(u) ≥ c0γ
(
|a21v|2 + |p|2

)
− c1|τ | |w| |q|. (6.2.34)

On the other hand, (6.2.33) yields

w∗k2(−γa21v − ia21a12q + ρτw) = iq∗a21a12(ad)−2(−γa21v − ia21a12q + ρτw)

− iρτp∗(ad)−1a21a12(ad)−1p

= |(ad)−1a21a12q|2 + ρ(ρ− iγ)|a12(ad)−1p|2

+O(γ|q| |a21v|) +O(|ρτ | |q| |w|),

whence

QIII(u) ≥ c0

(
|q|2 + ρ2|p|2

)
− c1|q|(γ|a21v|+ |ρτ | |w|). (6.2.35)

Let us choose µ > 0 large enough so that the quadratic form µc0(X2 + Y 2)−
2c1XY is positive-definite. This allows us to absorb the bad terms −c1|ρ| |p| |q|



Construction of the symmetrizer; characteristic case 181

of QII and −λQI into the positive terms of µQIII . This results, with a slight
change of the positive numbers c0, c1, in the following lower bound

Q(u) ≥ c0γ
(
|a21v|2 + |p|2

)
+ c0

(
|q|2 + ρ2|p|2

)
− c1|q|

(
|ρ| |q|+ γ|w|+ γ|a21v|+ ρ2|w|

)
.

Using Young’s inequality in the last three terms, we obtain

Q(u) ≥ c0

(
γ(|a21v|2 + |p|2) + ρ2|p|2

)
+
(c0

2
− c1ρ

)
|q|2

− 3c2
1

2c0

(
γ2|w|2 + γ2|a21v|2 + ρ4|w|2

)
.

It is now clear that there is a neighbourhood V of the origin, such that τ ∈ V
implies

Q(u) := Re (u∗Mu) ≥ c0γ
(
|a21v|2 + |p|2

)
+ c0

(
1
3
|q|2 + ρ2|p|2

)
. (6.2.36)

Looking back at our results, we find only one flaw, which lies in (6.2.36):
The form Q dominates only a21v but not v itself. If a21 is one-to-one, that is
n = 3m, then our construction gives us the symmetrizer that we were looking for,
otherwise it does not. In the general case, let us denote by K0 the symmetrizer
that we have defined above, and Σ0

2, Q0 the corresponding Hermitian forms. Our
final symmetrizer will be of the form K = K0 + εIn. We shall have

Σ2 = Σ0
2 + εad, Q(u) = Q0(u) + εγ|u|2.

For every choice of ε > 0, the form Q satisfies our requirement

Q(u) ≥ c0γ|u|2

for an appropriate c0 > 0. At last, a small enough ε does not hurt the negativeness
of the restriction of Σ0

2 on kerB2. This completes the construction of a dissipative
symmetrizer. We leave the readers to convince themselves that the inequalities
satisfied by Σ2 and Q are uniform in η.
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THE HOMOGENEOUS IBVP

We continue the analysis of strong L2-well-posedness that we treated in the
previous chapters. However, we weaken our requirements by considering only
the homogeneous IBVP:

(Lu)(x, t) = f(x, t), xd, t > 0, y ∈ Rd−1, (7.0.1)

Bu(y, 0, t) = 0, t > 0, y ∈ Rd−1, (7.0.2)

u(x, 0) = u0(x), xd > 0, y ∈ Rd−1. (7.0.3)

The boundary condition is therefore Bu(t, y, 0) = 0, instead of Bu = g with a
general data g. An important consequence is that (7.0.1)–(7.0.3) is a semigroup
problem: At a formal level, the solution should read

u(t) = Stu0 +
∫ t

0

St−sf(s)ds,

where (St)t≥0 is a semigroup on some Banach space. What we expect is that
this is a continuous semigroup on each Sobolev space Hσ(Ω). However, it is
not so simple to follow the standard strategy of semigroup theory, and we shall
merely use the same tools as in the non-homogeneous IBVP: Fourier–Laplace
transformation, dissipative symmetrizer, Lopatinskĭı condition, Paley–Wiener
Theorem and duality. The main difference with the non-homogeneous theory lies
in the estimate we ask for: since the input consists only in two terms, say u(·, 0)
and Lu, we do not require an estimate for the boundary value of the solution.
This has two important consequences. On the one hand, the Kreiss–Lopatinskĭı
condition is weakened. On the other hand, strongly well-posed IBVPs in the
above sense may admit surface waves of finite energy.

When dealing with second-order IBVPs, an important case, which we do not
treat here, is when the pair (L,B) expresses the Euler–Lagrange equations of
some Lagrangian

L [u] :=
∫ ∫ (

1
2
|ut|2 −W (∇xu)

)
dxdt

over H1(Ω× Rt). This special situation encompasses the examples of the wave
equation with the Neumann condition, and of linearized elastodynamics with zero
normal stress at the boundary. The theory of such problems is done in [189,190],
where it is shown that the Hille–Yosida Theorem can always be applied.
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The present chapter is thus devoted to the more general situation of first-
order problems.

As usual, strong well-posedness means that we have control of the solution
exactly in the same terms as for the data. Since the boundary condition does
not really involve a data (it is trivial), we do not require any control of the trace
of the solution along the boundary. Therefore, we say that the homogeneous
IBVP (7.0.1)–(7.0.3) is strongly well-posed in L2 if for every u0 ∈ L2(Ω) and
f ∈ L2(0, T ;L2(Ω)), there exists a unique solution u ∈ C ([0, T ];L2(Ω)) with the
estimate

e−2γT ‖u(T )‖2L2 + γ

∫ T

0

e−2γt‖u(t)‖2L2dt ≤ C

(
‖u0‖2L2 +

1
γ

∫ T

0

e−2γt‖f(t)‖2L2dt

)
.

(7.0.4)

Hereabove, all norms are taken in L2(Ω).

BVP vs IBVP When the initial data u0 vanishes identically, we may extend u
and f to negative times by zero, so that the extension ũ is a solution of the BVP
for Lũ = f̃ on R× Ω, instead of (0,+∞)× Ω. We say that the homogeneous BVP
is strongly well-posed in L2 if for every γ > 0 and every f ∈ L2

γ(0,+∞;L2(Ω)),
the IBVP with u0 ≡ 0 has a unique solution in L2

γ(0,+∞;L2(Ω)), with the
estimate ∫ T

0

e−2γt‖u(t)‖2L2dt ≤ C

γ2

∫ T

0

e−2γt‖f(t)‖2L2dt, (7.0.5)

where C does not depend either on f or on γ.
We therefore say that our BVP is strongly well-posed if, for every u smooth

with compact support in space and time, the property Bu(y, 0, t) ≡ 0 implies an
estimate ∫ T

0

e−2γt‖u(t)‖2L2dt ≤ C

γ2

∫ T

0

e−2γt‖Lu(t)‖2L2dt. (7.0.6)

We have seen in Section 4.5.5 that the well-posedness of the BVP is a step
towards that of the IBVP, the passage from the former to the latter needing
an extra argument, due to Rauch. Because we do not estimate the trace of the
solution, Rauch’s argument does not work out in the homogeneous case. For this
reason, the well-posedness of the homogeneous IBVP remains an open question.
So far, the only cases where the IBVP is fully understood is the symmetric
dissipative one (see Section 3.1), and more generally the ‘variational’ case treated
in [189,190].

Need for a modified Lopatinskĭı condition When considering Friedrichs-
symmetric operators with classical dissipative symmetrizers (see Chapter 3),
we observed that the amount of dissipation needed to treat the homogeneous
IBVP was weaker than that required for the non-homogeneous problem. Since
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Chapter 3 stated sufficient but not necessary criteria for well-posedness, we
cannot draw a definitive conclusion from it. However, we anticipate that some
condition weaker than (UKL) would ensure the homogeneous well-posedness, at
least for constantly hyperbolic operators.

Before entering into the details, we make the following observations. On the
one hand, since our preliminary study of Section 4.2 dealt with the homogeneous
problem, we already know that the Kreiss–Lopatinskĭı condition is necessary for
well-posedness. On the other hand, the well-posedness of the non-homogeneous
IBVP clearly implies that of the homogeneous one. Therefore, at least for
constantly hyperbolic operators, the truth for the homogeneous case must lie
somewhere between the Kreiss–Lopatinskĭı condition and its uniform version.

7.1 Necessary conditions for strong well-posedness

In this section, we derive a necessary condition that we expect also to be
sufficient when the differential operator is constantly hyperbolic. The sufficiency
would be ensured, as in the non-homogeneous case, by the existence of a Kreiss
symmetrizer, though a weakly dissipative one, instead of strongly dissipative. We
postpone its construction to Section 7.2.

For the sake of simplicity, we assume that the boundary is non-characteristic.
Also, it will be comfortable to consider only constantly hyperbolic operators.
This allows us to extend by continuity the stable subspace E−(τ, η) and the
Lopatinskĭı determinant to boundary points (Re τ = 0, (τ, η) �= (0, 0)).

Our necessary condition will be derived from the stability of the homogeneous
BVP (instead of the corresponding IBVP). As a matter of fact, it is not hard to
see that the well-posedness with u0 ≡ 0 implies the well-posedness of the BVP.

At the level of the Laplace–Fourier transform, the estimate (7.0.6) amounts
to saying that

‖v‖L2 ≤ C

Re τ
‖F‖L2 , (7.1.7)

for every v ∈ L2(R+) such that

F := v′ −A(τ, η)v ∈ L2(R+), Re τ > 0, η ∈ Rd−1

and

Bv(0) = 0.

Let us introduce the decomposition v = vs + vu into a stable part vs ∈
E−(τ, η) and an unstable one vu ∈ E+(τ, η). Decomposing F := (Ad)−1Lf , we
have

dvu

dxd
= Au(τ, η)vu + Fu, (7.1.8)

dvs

dxd
= As(τ, η)vu + Fs, (7.1.9)
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where Au,s represent the restrictions of A to E±. Let us fix a pair (τ, η), with
Re τ > 0. The spectra of Au,s have, respectively, positive/negative real parts.
Since vu,s are square-integrable on R+, and Fu,s are square-integrable, we have

vu(xd) = −
∫ +∞

xd

e(xd−z)AuFu(z)dz, (7.1.10)

vs(xd) = exdAsvs(0) +
∫ xd

0

e(xd−z)AsFs(z)dz, (7.1.11)

where vs(0) is to be determined in E−(τ, η).
Denoting

ku,r(τ, η) := ‖z �→ exp(−zAu)‖Lr(R+), ks,r(τ, η) := ‖z �→ exp(zAs)‖Lr(R+),

Young’s inequality gives

‖vu‖L2 ≤ ku,1(τ, η)‖Fu‖L2 (7.1.12)

and similarly

‖vs‖L2 ≤ ks,1(τ, η)‖Fs‖L2 + ks,2(τ, η)|vs(0)|. (7.1.13)

The boundary condition writes as

Bvs(0) = B

∫ +∞

0

e−zAu(τ,η)Fu(z) dz.

Let us assume the Lopatinskĭı condition, since it is necessary for the stability.
Then B : E−(τ, η) → Cp is an isomorphism for every pair (τ, η) with Re τ > 0
and η ∈ Rd−1. We denote by β(τ, η) the norm of its inverse:

β(τ, η) = sup
{ |w|
|Bw| ; w ∈ E−(τ, η)

}
.

Then we have

|vs(0)| ≤ ‖B‖β(τ, η)ku,2(τ, η)‖Fu‖L2 ,

which yields the estimate

‖v‖L2 ≤ (‖B‖β(τ, η)ku,2(τ, η)ks,2(τ, η) + ku,1(τ, η)) ‖Fu‖L2 + ks,1(τ, η)‖Fs‖L2 .

(7.1.14)

Finally, introducing the norm N(τ, η) of the splitting z �→ (zs, zu), we end with

‖v‖L2 ≤ N(τ, η) (‖B‖β(τ, η)ku,2(τ, η)ks,2(τ, η) + ku,1(τ, η) + ks,1(τ, η)) ‖F‖L2 .

(7.1.15)

We now discuss whether (7.1.14) may result in (7.1.7) or not (this is essentially
generalizing the study of 2-D wave-like equations by Miyatake [139]). Up to
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unlikely cancellations, (7.1.14) implies (7.1.7) if, and only if,

N(τ, η) (β(τ, η)ku,2(τ, η)ks,2(τ, η) + ku,1(τ, η) + ks,1(τ, η))

is bounded by a constant times (Re τ)−1. Thus we evaluate the magnitude of
each term N , β, k(u,s),r as (τ, η) approaches P0. Since we know that the stability
holds at interior points (Re τ > 0), we may focus on the neighbourhood V of
boundary points P0 = (iρ0, η0). Likewise, the stability holds true in V as soon as
the Kreiss–Lopatinskĭı condition is satisfied at P0, since we were able to build
a dissipative Kreiss symmetrizer in this case. Therefore, we may consider only
those boundary points where the Lopatinskĭı determinant ∆ vanishes. We thus
assume ∆(P0) = 0.

Let us begin with non-glancing points. Since then E−(iρ0, η0) and E+(iρ0, η0)
are supplementary, N(τ, η) remains bounded in V. Generically, β(τ, η) is of the
order of ∆(τ, η)−1. Since ∆ is analytic in V, the only bound in terms of Re τ is
β = O((Re τ)−m) where m is the order at which ∆ vanishes at P0. Since m ≥ 1,
we see that the required stability holds only if on the one hand m = 1 and on
the other hand k(u,s),2 are bounded. However, since the eigenvalues of A(τ, η)
behave smoothly in V, we see that ks,2 is of the order of

(min |Re µj(τ, η)|)−1/2, (µ1, . . . , µp) = SpAs(τ, η).

A similar formula holds for the unstable part. Therefore ku,2 and ks,2 remain
bounded if and only if A(P0) does not have any pure imaginary eigenvalue. The
boundary points where this situation holds true form the elliptic part of the
frequency boundary. In conclusion, the vanishing of ∆ at non-glancing non-
elliptic (in particular in the hyperbolic part H) boundary frequencies yields
instability in the homogeneous BVP, while its vanishing at non-glancing elliptic
points is harmless, provided ∆ vanishes at first order only.

Remark Since A(P0) = iB(P0), where the matrix B(P0) has real entries, the
ellipticity of P0 implies that the eigenvalues of B(P0) come by complex conjugated
pairs. Exactly half of them have a positive imaginary part. We deduce that an
elliptic zone may occur in the frequency boundary, only if n = 2p.

We now turn to glancing points. Then at least one pair of eigenvalues coalesce
into a pure imaginary one, with (generically) the formation of a Jordan block
in A(P0). In particular, the splitting Cn = E−(τ, η)⊕ E+(τ, η) does not hold
at P0. This implies that N(τ, η) is unbounded in V. Typically, the coalescing
eigenvalues experience an algebraic square root singularity at P0, and therefore
every relevant quantity displays such a singularity. Thus, generically, bounds of
the form

N(τ, η) = O(
√

Re τ), k(u,s),r(τ, η) = O
(
(Re τ)−1/2r

)
holds. If these bounds are optimal, as we expect, then the stability needs that
β(τ, η) be bounded in V, meaning that the Kreiss–Lopatinskĭı condition holds
true at P0.
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Conclusion Let L be a given constantly hyperbolic operator. An homogeneous
BVP for which the Kreiss–Lopatinskĭı condition holds true at every frequency
point but elliptic boundary ones, at which ∆ vanishes at most to first order, is
likely to be L2-well-posed.

On the contrary, if ∆ vanishes at some point outside the elliptic part of the
frequency boundary, the BVP is likely to be ill-posed in L2(Ω) (an exception
to this rule occurs if (n, p) = (2, 1); see below). Similarly, if ∆ vanishes at some
elliptic point, but to the order two or more, the BVP is likely to be ill-posed in
L2(Ω).

Of course, the proof of the well-posedness of an homogeneous BVP, for which
∆ vanishes to first order at some elliptic point and nowhere else, needs the
construction of some kind of dissipative symmetrizer. The symmetrizer K(τ, η)
that we need here should display the following properties (we keep the notations
of Chapter 5):

i) The map (τ, η) �→ K(τ, η) is C∞ on Re τ ≥ 0, η ∈ Rd−1, |τ |+ |η| �= 0, and
is homogeneous of degree zero,

ii) the matrix Σ(τ, η) := K(τ, η)Ad is Hermitian,
iii) the Hermitian form x∗Σ(τ, η)x is non-positive on kerB,
iv) there exists a number c0 > 0 such that, for every (τ, η), the inequality

Re M ≥ c0(Re τ)In holds in the sense of Hermitian matrices, where

M = M(τ, η) := −(ΣA)(τ, η) = K(τ, η)(τIn + iA(η)).

The only change with respect to the non-homogeneous BVP, is point iii), where
the restriction of Σ to kerB needs only to be non-positive, instead of negative-
definite. We therefore speak of a weakly dissipative symmetrizer. Of course, the
Kreiss symmetrizer that we constructed in Chapter 5 is convenient at every
point where the Kreiss–Lopatinskĭı is satisfied. Thus it remains only to build
a symmetrizer in the neighbourhood of those (elliptic boundary) points where
∆ vanishes. We postpone this task to Section 7.2. For the moment, we content
ourselves with the following calculus, which shows that the existence of such a
weakly dissipative symmetrizer implies the L2-stability of the homogeneous BVP.
If u is smooth and compactly supported, and satisfies Bu = 0 on the boundary,
then its Fourier–Laplace transform û satisfies

(τIn + iA(η))û + Ad dû

dxd
= L̂u

together with Bû = 0 for xd = 0. Multiplying on the left by K(τ, η) yields

M(τ, η)û + Σ(τ, η)
dû

dxd
= K(τ, η)L̂u.

Multiplying again by û∗, taking the real part and using the fact that Σ is
Hermitian, we obtain

2û∗Re (M(τ, η))û +
d

dxd
(û∗Σ(τ, η)û) = 2Re (û∗K(τ, η)L̂u).
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Integrating in xd, using the Cauchy–Schwarz inequality, the dissipativeness and
the positivity of Re M , we end with

c2
0(Re τ)2

∫ +∞

0

|û|2dxd ≤
∫ +∞

0

|KL̂u|2dxd.

We observe that K is uniformly bounded. Therefore, after an integration in (η, ρ)
where as usual τ = γ + iρ, we have∫ ∫ ∫

R×Ω

|û(γ + i·, ·, ·)|2dρdη dxd ≤
C

γ2

∫ ∫ ∫
R×Ω

|L̂u(γ + i·, ·, ·)|2dρdη dxd.

The Plancherel formula gives the stability estimate (7.0.5).

Remark We emphasize that we did not use the regularity of K in this com-
putation. The regularity becomes useful when dealing with variable coefficients.

The case (n, p) = (2, 1) A more careful analysis would employ the norm

β̃(τ, η) := β(τ, η)‖B : E+(τ, η) → Cp‖

instead of β(τ, η) itself. In other words, one may define equivalently

β̂(τ, η) := sup
{ |w|
|z| ; w ∈ E−(τ, η), z ∈ E+(τ, η), Bw = Bz

}
.

We have

|vs(0)| ≤ β̂(τ, η)ku,2‖Fu‖2,

yielding (7.1.15) with β̂ instead of β. In general, the size of β̂ is not different from
that of β, because the norm of B : E+(τ, η) → Cp is not small. However, there
is one situation where β̂ remains bounded when β blows up. Such a cancellation
happens when the point P0 where ∆ vanishes1 satisfies E+(P0) ⊂ E−(P0); in
particular, P0 is a glancing point. If, moreover, n = 2 and p = 1, then E+(P0) =
E−(P0), and the vanishing of ∆ actually means

E+(P0) = E−(P0) = kerB.

Generically, if R+(τ, η) is an analytic generator of E+(τ, η), then (τ, η) �→ BR+

vanishes at the same order2 as ∆ := BR−, and therefore β̂ remains bounded.

Conclusion When n = 2, p = 1 and L is constantly hyperbolic, the homoge-
neous BVP is likely to be well-posed if and only if the Lopatinskĭı determinant
vanishes at most either at boundary frequencies of elliptic type, or at glancing
points.

1Necessarily a boundary point since we require the Lopatinskĭı condition at interior points.
2Near glancing points, R+ and R− are conjugate quantities, in the algebraic sense.



Necessary conditions for strong well-posedness 189

7.1.1 An illustration: the wave equation

We illustrate the previous, rather formal, analysis at the level of the wave
equation

∂2
t u = c2∆u, (xd > 0)

with a boundary condition of the form

∂u

∂t
+ a

∂u

∂xd
+�b · ∇yu = 0. (7.1.16)

The status of the Kreiss–Lopatinskĭı condition for this BVP is well-known. See,
for instance, [13], Section 4, or just make your own computations. The (UKL) is
satisfied if and only if

a < 0, |�b| < c. (7.1.17)

The wave equation displays an elliptic zone in the boundary of the frequencies,
which is made of pairs (τ = iρ, η) such that |ρ| < c|η|. The glancing points are
the pairs (±ic|η|, η). The Lopatinskĭı determinant vanishes in the elliptic zone
and nowhere else if, and only if,

a = 0, |�b| < c. (7.1.18)

Finally, ∆ vanishes at a glancing point if, and only if,

a ≤ 0, |�b| = c. (7.1.19)

We show below that every uniformly stable non-homogeneous BVP (mean-
ing that (7.1.17) holds) belongs to the class of strictly dissipative Friedrichs-
symmetrizable systems. By this, we mean that there exists a vector �p such that
the modified quadratic energy

Ep[u] :=
u2

t + c2|∇u|2
2

+ ut(�p · ∇u),

is strictly convex, and the boundary flux Qp · ν = −(Qp)d is negative-definite on
the subspace defined by the boundary condition (7.1.16). We next show that
under (7.1.18), the BVP is weakly dissipative: Qp is non-positive subjected to
the constraint (7.1.16). This proves that under (7.1.18), the homogeneous BVP
is well-posed in L2(Ω) (see Section 3.1), although this is not true for the non-
homogeneous BVP. The same situation occurs under (7.1.19) (except for the
borderline case a = 0, |�b| = c), confirming our analysis of the situation (n, p) =
(2, 1).

The energy Ep is convex (respectively, strictly convex) if and only if |�p| ≤ c
(respectively, |�p| < c). It satifies the identity

∂tEp = divQp, Qp = c2(∂tu + �p · ∇u)∇u +
1
2
((∂tu)2 − c2|∇u|2)�p .
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From this identity, we extract

Qp · ν = −c2(∂tu + �p · ∇u)
∂u

∂xd
+

1
2
pd

(
c2|∇u|2 − (∂tu)2

)
.

Let us introduce the notations:

z =
∂u

∂xd
, w = ∇yu, �p = (�q, pd)T .

After elimination of ∂tu (thanks to (7.1.16)), there remains a quadratic form

Qp(w, z) = c2(az + (�b− �q) · w)z +
1
2
pd(c2|w|2 − c2z2 − (az +�b · w)2).

The general problem of dissipativeness in the classical Friedrichs sense is to find a
�p with |�p| < c, such that the quadratic form Qp is non-positive (negative-definite
yields strict dissipation).

Let us begin with the transitional case (7.1.18). We have

Qp(w, z) = c2z(�b− �q) · w +
1
2
pd(c2|w|2 − c2z2 − (�b · w)2).

Since

Qp(w, 0) =
1
2
pd(c2|w|2 − (�b · w)2), Qp(0, z) = −1

2
pdc

2z2,

where the two quadratic forms are of opposite signs, the only way that Qp may
be non-positive is that pd = 0. Then Qp reduces to c2z(�b− �q) · w and therefore
�q must equal �b. Hence �p = (�b, 0)T , which satisfies |�p| < c indeed. Thus the IBVP
is weakly (because Qp ≡ 0) Friedrichs dissipative3.

Let us consider now the transitional case (7.1.19). The choice

�q =
c2

c2 + a2
�b, pd =

ac2

c2 + a2

satisfies |�p| ≤ c, with the strict inequality when a < 0. Then the boundary flux
is

Qp(w, z) =
ac2

2(c2 + a2)

(
(c2 + a2)z2 + c2|w|2 − (�b · w)2

)
, (7.1.20)

which is non-positive (though not negative-definite, of course). Thus the cor-
responding IBVP is weakly dissipative. In particular, the homogeneous IBVP
is well-posed in L2(Ω). The only exception is when a = 0, where the condition
(7.1.19) meets (7.1.18). Then, specialization to w parallel to �b shows that for Qp

to be non-positive, we need

pd = 0, �b · �q = c2.

3Notice that this IBVP is conservative, rather than dissipative, as Qp ≡ 0 implies that the integral
of Ep is preserved. In this situation, both the forward and the backward IBVPs are well-posed.



Weakly dissipative symmetrizer 191

Because of |�p| ≤ c, we deduce that necessarily �q = �b. Since then |�p| = c, the energy
Ep is convex but not strictly. Presumably, the corresponding homogeneous
IBVP is not strongly well-posed in L2(Ω).

Finally, we consider the (UKL) case (7.1.17). The same choice as above
yields the same formula (7.1.20), where the quadratic form is now negative-
definite. Hence the IBVP is strictly dissipative in the Friedrichs sense. Notice
that in the simple case a < 0, �b = 0, the naive choice �p = 0 yields weak but not
strong dissipativeness; the corrector pd∂tu∂du in the energy thus plays a rather
important role.

7.2 Weakly dissipative symmetrizer

We turn to the construction of a weakly dissipative symbolic symmetrizer. We
recall the properties to fulfil:

i) The map (τ, η) �→ K(τ, η) is C∞ on Re τ ≥ 0, η ∈ Rd−1, |τ |+ |η| �= 0, and
is homogeneous of degree zero,

ii) the matrix Σ(τ, η) := K(τ, η)Ad is Hermitian,
iii) the Hermitian form x∗Σ(τ, η)x is non-positive on kerB,
iv) there exists a number c0 > 0 such that, for every (τ, η), the inequality

Re M ≥ c0(Re τ)In holds in the sense of Hermitian matrices, where

M = M(τ, η) := −(ΣA)(τ, η) = K(τ, η)(τIn + iA(η)).

We assume throughout this section that the operator L is constantly hyper-
bolic, and that the Lopatinskĭı condition holds true everywhere in the closed
hemisphere Re τ ≥ 0, |τ |2 + |η|2 = 1, but at some elliptic points of the boundary
Re τ = 0. In particular, n = 2p. As explained in the previous section, we ask that
the Lopatinskĭı determinant ∆ vanish in a non-degenerate way: its differential
does not vanish simultaneously. Note that we do not allow4 ∆ to vanish at some
glancing point.

We may anticipate that a dissipative symmetrizer will degenerate somehow
at boundary points P0 where the Lopatinskĭı condition fails. For we already now
that Σ(τ, η), restricted to E−(τ, η), is positive when Re τ > 0. By continuity, the
restriction of Σ(P0) to E−(P0) must be non-negative. Since its restriction to kerB
is non-positive, we see that Σ(P0) vanishes on E−(P0) ∩ kerB. This immediately
implies that E−(P0) ∩ kerB is contained in the kernel of the restrictions of Σ(P0)
to both E−(P0) and kerB. In other words, it holds that

w∗Σ(P0)v = 0, ∀v ∈ E−(P0) ∩ kerB, ∀w ∈ E−(P0) + kerB. (7.2.21)

Actually, noticing that xd �→ v∗Σv is non-increasing along the flow of A (because
of Re (ΣA) ≤ 0n), we deduce the more remarkable constraint that v∗Σ(P0)v
vanishes identically over the Krylov space of E−(P0) ∩ kerB for A(P0). Recall

4The case (n, p) = (2, 1) with a constantly hyperbolic operator is isomorphic to the system (1.2.17),
for which the analysis is explicit and similar to that of Section 7.1.1.
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that the Krylov space is the smallest invariant subspace for A(P0), containing
E−(P0) ∩ kerB. We denote it by Kry[E−(P0) ∩ kerB ; A(P0)]. As above, we infer
the necessary condition that

w∗Σ(P0)v = 0, ∀v ∈ Kry[E−(P0) ∩ kerB ; A(P0)], ∀w ∈ E−(P0). (7.2.22)

Notice that this orthogonality property does not hold for w ∈ kerB in general,
because Kry[E−(P0) ∩ kerB ; A(P0)] is not included in kerB.

For some reason that we do not fully understand, we shall be able to construct
a weakly dissipative symmetrizer when

Kry[E−(P0) ∩ kerB ; A(P0)] = E−(P0), (7.2.23)

and only in this case. Notice that this is a generic situation. It is an open question
whether the homogeneous BVP remains well-posed when (7.2.23) happens to
fail.

Since the construction of dissipative symmetrizers is a local task (Steps 1 and
2 of the proof of Theorem 5.1), and since in that proof we performed this local
construction near every point where the Lopatinskĭı condition holds true, we
need only construct K in a neighbourhood of an elliptic point P0 = (iρ0, η0) of
the boundary, assuming that ∆(P0) = 0. Hence we are looking for a smooth
function (τ, η) �→ Σ(τ, η), defined in a neighbourhood of P0 with values in
Hermitian matrices, such that the restriction of Σ to kerB is non-positive and
Re (ΣA) ≤ −(Re τ)In. Notice that since P0 is a non-glancing point, we may
extend E±(τ, η) analytically in a neighbourhood of P0. Since P0 is elliptic,
E−(τ, η) equals the stable subspace of A(τ, η) for every (τ, η) in a neighbourhood
of P0. This is in sharp contrast with the case of hyperbolic boundary points,
discussed in Chapter 8. Note that ∆ extends analytically too, and that it vanishes
if and only if E−(τ, η) intersects kerB non-trivially.

Choice of co-ordinates Since P0 is an elliptic point, A is smoothly diagonal-
izable in some neighbourhood P of P0:

A(P ) = Q(P )−1a(P )Q(P ), a = diag(µ1(P ), . . . , µn(P )),

with Q and µj analytic in P . The ordering of the µj is such that µ1, . . . , µp

have negative real parts while µp+1, . . . , µn (recall that n = 2p) have positive
real parts. We denote

a−(P ) = diag(µ1, . . . , µp), a+(P ) = diag(µp+1, . . . , µn).

Finally, noticing that A = iB, where B ∈ Mn(R) whenever Re τ = 0, we have
a∗
+ = −a− along the boundary, and therefore

a+(P )∗ + a−(P ) = O(Re τ). (7.2.24)

Thanks to this change of co-ordinates, we look for a Hermitian matrix σ(P ),
which serves to define Σ(P ) through Σ := QT σQ. Denoting b(P ) := BQ−1, it
will have to satisfy
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i) σ|kerb ≤ 0,
ii) Re (σa) ≤ −(Re τ)In for Re τ ≥ 0.

The stable subspace e−(P ) of a(P ) is constant, equal to Cp × {0}. Thus the
Lopatinskĭı condition holds whenever(

b(P )
(

v−
0

)
= 0
)

=⇒ (v− = 0).

Therefore we may define the Lopatinskĭı determinant by ∆(P ) = det b−, where
b− is the p× p block at left: b = (b−, b+). We recall that b(P ) ∈ Mp×2p(C).

We assume that

dimE−(P0) ∩ kerB = 1 (7.2.25)

and that

∂∆/∂τ(P0) �= 0. (7.2.26)

Then the set {∆ = 0} is locally a submanifold with an equation of the form
τ = iρ0 + f(η − η0), where f is analytic. Assuming that the IBVP satisfies the
Lopatinskĭı condition at interior points (obviously a necessary restriction), we
have Re f ≤ 0. Up to a renormalization of eigenvectors of A, we may assume
that actually

∆ = τ − iρ0 − f(η − η0).

In particular, we have

Re ∆ ≥ Re τ. (7.2.27)

Because of the Lopatinskĭı condition, we know that for ∆(P ) �= 0, kerb(P ) has
an equation of the form

v− = k(P )v+,

where P �→ k(P ) ∈ Mp(C) is analytic, with a singularity along ∆ = 0 that we
describe below.

Because of (7.2.25), dim kerb−(P0) = 1 holds and therefore rk b−(P0) =
p− 1. This implies that the cofactor matrix b̂−(P0) does not vanish. Since

b̂−(P0)
T
b−(P0) = 0p, b̂−(P0) has a kernel of dimension p− 1 at least. Being non-

zero, b̂−(P0) must be of rank one. Let us write b̂−(P0) = δ0β
T
0 , where β0, δ0 ∈ Cp.

Since b(P0) has rank p, and since δT
0 b−(P0) = 0, we see that δT

0 b+(P0) �= 0, from

which it follows that b̂−(P0)
T
b+(P0) is of rank one exactly. The above analysis

is true at every vanishing point of ∆. Therefore, using (7.2.26), we may find
analytical maps P �→ β(P ), δ(P ), h(P ) such that

b̂−(P )
T
b+(P ) = β(P )δ(P )T −∆(P )h(P ).
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Noting now that k is given by −b−1
− b+, we deduce the formula

k(P ) = − 1
∆

βδT + h, (7.2.28)

where β, δ are non-vanishing analytic vectors and h is an analytic matrix. Observe

that
(

β0

0

)
spans e− ∩ kerb(P0). Hence (7.2.23) amounts to saying that none of

the co-ordinates of β0 vanish.
We look for a symmetrizer in block form

σ(P ) =
(

(Re τ)Ip m∗

m −κIp

)
, (7.2.29)

where the constant κ > 0 and m(P ) ∈ Mp(C) are to be chosen below, the latter
in a smooth way. We begin to fulfilling point i). When Re τ ≥ 0, every vector in
kerb(P ) has the form (k(P )w,w) where w ∈ Cp is an arbitrary vector. Hence the
non-positivity of σ over kerb is equivalent to k̃ ≤ 0p where

k̃ :=
(
k∗ Ip

)
σ

(
k
Ip

)
= (Re τ)k∗k + 2Re (mk)− κIp.

We extract from k̃ a singular part ks, so that k̃ = ks + kr, where kr is locally
bounded upon Re τ > 0. Denoting d := δ̄, we have

ks(P ) =
Re τ

|∆|2 |β|
2dd∗ − 2Re

(
1
∆

mβd∗
)

,

kr(P ) = (Re τ)Re
(

1
∆

h∗βd∗
)

+ (Re τ)h∗h− 2Re (mh)− κIp.

We stress the fact that |Re τ/∆| is bounded by 1 for Re τ > 0 because of (7.2.27),
which justifies the presence of the first term in kr.

Since we shall need to do so in order to fulfill point ii), we limit ourselves
to diagonal matrices m. To begin with, because of assumption (7.2.23), namely
βj(P0) �= 0 for j = 1, . . . , p, we may choose locally a diagonal m(P ) in such a
way that mβ = d; just take

m = diag(d1/β1, . . . , dp/βp). (7.2.30)

Then

|∆|2ks = (Re τ − 2Re ∆)dd∗

is non-positive because of (7.2.27). Therefore k̃ ≤ kr. Then the three first terms
in kr are completely determined and bounded in a neighbourhood V of P0 under
the constraint Re τ > 0. Therefore, taking κ > 0 large enough, we see that kr,
and consequently k̃, is non-negative within V+ := V ∩ {Re τ > 0}. In conclusion,
under the choice (7.2.30) (essentially mandatory), the restriction of σ to kerb is
non-positive for every P ∈ V+ provided κ is a large enough positive constant.
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Let us turn now to point ii). We have

Re (σa) =
(

(Re τ)Re a−
1
2 (a∗

−m∗ + m∗a+)
1
2 (ma− + a∗

+m) −κRe a+

)
.

Since a± are diagonal, the subscript indicating the sign of the real parts of the
diagonal entries, we have ±Re a± > 0p. Therefore, Re (σa) ≤ −c0(Re τ)In will
hold true locally with c0 > 0, provided κ > 0 and the following property holds
true5:

ma− + a∗
+m = O(Re τ). (7.2.31)

Since m and a± are smooth, this amounts to saying that ma− + a∗
+m vanishes

along the boundary {Re τ = 0}. Recalling that in this instance, a∗
+ equals −a−,

we deduce the following equivalent form to (7.2.31):

[m, a−] = 0, whenever Re τ = 0. (7.2.32)

In the (generic) case where a− has simple eigenvalues, this just tells us that m
is diagonal for Re τ = 0.

Summarizing the above analysis, we conclude that if (7.2.23) holds true, then
there exists a weakly dissipative symmetrizer σ in a domain V ∩ {Re τ > 0}
where V is a neighbourhood of P0, σ being given by (7.2.29) and (7.2.30) with
κ > 0 large enough. This allows us to state

Theorem 7.1 Let L = ∂t +
∑

α Aα∂α be a constantly hyperbolic operator, such
that Ad ∈ GLn(R). Assume that n = 2p where p is the number of characteristics
incoming in Ω = {xd > 0} (so that there may exist elliptic frequency boundary
points).

Let B ∈ Mp×n(R) have rank p, such that the Kreiss–Lopatinskĭı condition
is fulfilled at every point (τ, η) �= (0, 0) with Re τ ≥ 0, except possibly at some
elliptic frequency boundary points.

Assume finally that, at boundary points P where it vanishes, the Lopatinskĭı
determinant ∆ satisfies (7.2.27), and that E−(P ) ∩ kerb is of dimension 1, its
Krylov space under A(P ) being equal to E−(P ).

Then there exists a smooth dissipative symmetrizer Σ(τ, η) for the homoge-
neous IBVP

Lu = f in Ω× (0, T ), Bu = 0 on ∂Ω× (0, T ).

Note that the smoothness of the construction and the robustness of the assump-
tions allow us to treat operators L and B with variable coefficients, as well as
homogeneous IBVPs in general domains with smooth boundaries.

Corollary 7.1 Let Ω be either a half-space, or a bounded open domain of Rd

with a smooth boundary. Let L be a constantly hyperbolic operator with smooth

5Rigorously speaking, we only need a bound by |Re τ |1/2. But since everything is smooth, this
amounts to having a bound by Re τ .
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coefficients, ∂Ω being non-characteristic. Let B(x) ∈ Mp×n(R) be a boundary
matrix of rank p everywhere on ∂Ω. If Ω is unbounded, we assume that L and B
have constant coefficients outside of some ball.

Assume that the Kreiss–Lopatinskĭı condition is fulfilled at every point (τ, η;x)
(x ∈ ∂Ω, η ∈ Tx∂Ω, Re τ ≥ 0 and (τ, η) �= (0, 0)), except possibly at some elliptic
frequency boundary points.

Assume at last that at these vanishing points, the Lopatinskĭı determinant
vanishes at first order only (say (7.2.27)), that the (non-trivial) intersection
of kerB with E−(τ, η;x) is a line, whose Krylov subspace under A(τ, η;x) is
E−(τ, η;x) itself.

Then the homogeneous BVP

Lu = f in Ω× (0, T ), Bu = 0 on ∂Ω× (0, T ), u(·, 0) = 0 in Ω

is well-posed in L2, in the sense that for every f ∈ L2(Ω× (0, T )), there exists a
unique solution u ∈ L2(Ω× (0, T ), which satisfies, furthermore∫ T

0

e−2ηt‖u(t)‖2L2dt ≤ CT

η2

∫ T

0

e−2ηt‖f(t)‖2L2dt

for every η > 0.

7.3 Surface waves of finite energy

When the Lopatinskĭı condition fails at an elliptic point (iρ, η) of the boundary,
we know that there exists a non-trivial solution of the homogeneous BVP, of the
form

U(x, t) = ei(ρt+η·y)V (xd),

where V ∈ L2(0,+∞). This solution displays important properties. On the one
hand, it is a travelling wave in the direction η parallel to the boundary, with
velocity σ = −ρ/|η|. Contrary to waves associated with a zero (τ, η) of the
Lopatinskĭı determinant ∆ with Re τ > 0, this wave is not responsible for a
Hadamard instability. On the other hand, its energy density per unit surface
area, namely ∫ ∞

0

|V (xd)|2 dxd,

is finite, and thus such waves can be used directly to construct exact solutions of
the homogeneous BVP. This makes a contrast with the case studied in the next
chapter, when ∆ vanishes on the boundary at non-elliptic points.

Because of these two properties, such special solutions are called (elementary)
surface waves. By extension, we also call any linear combination of elementary
ones a surface wave. At first glance, one may think that since the vanishing of
∆ at some boundary point but not at interior points (Re τ > 0) is highly non-
generic, the elementary surface waves are likely to form a single line, and there is
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no non-trivial linear combination. We may object to this observation with three
facts.

� To begin with, the scale invariance of the BVP implies that Uλ(x, t) :=
U(λx, λt) is again a solution. We can therefore construct (composite)
surface waves by the formula

u(x, t) :=
∫ ∞

0

Uλ(x, t) dµ(λ),

where µ is a finite measure. If dµ = φ(λ)dλ with φ ∈ D(0,+∞), such a
solution belongs to the Schwartz class in the η direction. Thus we can
localize the wave in the direction of propagation. However, it remains a
travelling wave in that direction.

� Next, many physically relevant systems are rotationally invariant, in the
sense that d = 3 and the orthogonal group O3 (or perhaps only the
subgroup SO3 of rotation) acts on both the independent variable x (in
a natural way), and on the dependent one u, leaving the PDEs unchanged.
Of course, the half-plane Ω is left invariant only by the subgroup SO2,
and invariance means that the action of SO2 preserves the homogeneous
boundary condition. In such a case, SO2 also acts on the set of elementary
surface waves, which is thus rather large. Let us denote by UR,λ the image
of Uλ by the action of the rotation R. This wave propagates in the direction
Rη. If (R, λ) �→ φ(R, λ) is a test function, we can define a surface wave by
the formula

uφ(x, t) :=
∫ ∞

0

∫
SO2

UR,λ(x, t)φ(R, λ) dR dλ. (7.3.33)

Such a solution is now localized in every spatial direction, in the sense
that for each time t, it is square-integrable over the physical space Ω. We
warn the reader that this construction does not furnish all the finite energy
solutions of the homogeneous BVP, however. Thus it cannot be used to
solve the IBVP in a closed form.

� Finally, it has been shown in [189] that for second-order BVPs that come
from a Lagrangian through the Euler–Lagrange equations, there exists
at least one elementary surface wave in every direction. This situation
contrasts with the general case, where the vanishing of ∆ at some elliptic
point but at no interior point does not persist under small variations of L
and/or B. Together with the scale invariance, this yields a set of elementary
waves Uη parametrized by non-zero vectors η ∈ R2 (more generally by
η ∈ Rd−1). Thus a construction similar to (7.3.33) works, where the integral
is taken over R2.

A remarkable fact is that the decay of surface waves is slower than the decay
we observe in the Cauchy problem: The dispersion of the energy is affected by the
boundary condition and by the possibility for waves to travel along the boundary.
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Assume, for instance, that L is symmetrizable, and that the boundary condition
is conservative for the associated quadratic energy. Thus the total energy is
conserved. If we just have a Cauchy problem in Rd × (0,+∞), the energy is
expected to propagate in the direction of the characteristic cone of L (a kind
of Huyghens principle, see, for instance, [184]). After a large time t, and if the
initial data is compactly supported, the solution concentrates in a corona Ct :=
B + tΛ, where Λ denotes the group velocities in every direction of Rd, a (d− 1)-
dimensional manifold. Since the area of Ct is of order td−1, the energy density
typically decays like t1−d, meaning that the amplitude of the solution decays as
t(1−d)/2. If we have a conservative BVP instead, with surface waves, then the total
energy asymptotically splits into two parts. One part is associated with the bulk
waves, which are waves propagating away from the boundary. These waves obey
more or less the same description as in the Cauchy problem. The other part of the
energy is carried by surface waves and thus remains localized in a strip along the
boundary. Since we anticipate the same kind of dispersion as above, though along
the boundary instead of in Ω, we expect that the surface energy concentrates in
a domain B + tΛS , where ΛS denotes the group velocities of surface waves in
every direction of the boundary, a (d− 2)-dimensional manifold. Therefore the
amplitude of surface waves typically decays as t1−d/2, instead of t(1−d)/2. Thus
the decay of surface waves is weaker than that of bulk waves: the former are
roughly

√
t times larger than the latter for large time. We point out that this

effect can be reinforced by inhomogeneities of the boundary. For instance, if d = 3
and ∂Ω = G× R, where G is a non-flat curve, one frequently observes guided
waves in the direction of x2. A wave guided along an m-dimensional subspace
of the boundary typically decays as t(1−m)/2. For instance, a guided wave in our
three-dimensional space (thus m = (d− 1)− 1 = 1) does not decay at all!

Example: Rayleigh waves in elastodynamics The best known example of
surface waves arises in elastodynamics, where they are called Rayleigh waves.
They are responsible for the damage in earthquakes: the Earth is a half-space at
a local scale, and can be considered as an elastic medium. The vibrations of the
Earth obey exactly the Euler–Lagrange equation of the Lagrangian equal to the
difference of the kinetic and bulk energy. In particular, the boundary condition is
zero normal stress. As explained above, a significant part of the elastic energy is
concentrated along the surface. This energy is formed of kinetic and deformation
energies, the latter being observable once the earthquake has gone away. When an
earthquake happens in a mountain range, a guided wave can form, which almost
does not decay, reinforcing the damages in a narrow strip. This phenomenon was
evoked à propos of Kobé’s earthquake in 1995.

It is worth noting that the Rayleigh waves travel much slower than bulk
waves. The latter split into two families: compression waves, also called P-waves,
for which the medium vibrates in the direction of propagation, and shear waves,
called S-waves with perpendicular vibration. When the bulk energy is convex and
coercive over H1(Ω) (a more demanding property than coercivity over H1(R3)),
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their velocities cP and cS satisfy 0 < cS < cP ; see [189]. The normal stress
of these waves does not vanish at the boundary and thus they can propagate
only away from the surface. It is a linear combination of P- and S-waves that
satisfy the boundary condition, and thus forms the Rayleigh waves. Amazingly,
this combination has the effect of lowering the wave velocity. The square of
the Rayleigh velocity cR is the unique positive solution of the quartic equation
(see [185], Section 14.2 for details)(

X

2c2
S

− 1
)4

=
(

X

c2
S

− 1
)(

X

c2
P

− 1
)

. (7.3.34)

Strangely enough, Equation (7.3.34) has two positive solutions if cP < cS. How-
ever, this fact is meaningless because then we can establish that the IBVP
is Hadamard ill-posed: the Lopatinskĭı condition fails at some interior point
(see [189]).

Other examples The simplest Lagrangian to which the results of [189] apply
is

u �→
∫ ∫

(u2
t − c2|∇xu|2) dxdt

with a scalar field u(x, t). The corresponding IBVP is the wave equation with the
Neumann boundary condition. This is a borderline case, where the surface wave
has infinite energy. It corresponds to the vanishing of the Lopatinskĭı determinant
at the boundary of the elliptic region of boundary points. This is the exceptional
situation with n = 2 and p = 1 that we discussed above.

A more appealing example arises in the modelling of liquid–vapour phase
transitions, which can be roughly described as follows. We consider a fluid
governed by the isothermal Euler equations, which express the conservation of
mass and momentum. (See Chapter 13 for the complete system.) We assume an
equation of state p = P (ρ) (ρ the density, p the pressure), where P is van der
Waals-like, in particular it is not monotone. Each interval where P is increasing
corresponds to a phase, typically either vapour or liquid. A phase transition may
be viewed as a sharp discontinuity between a liquid state and a vapour state.
Physically interesting phase transitions are subsonic, and therefore correspond
to undercompressive discontinuities (see Chapter 12 for this notion). In this
case, Rankine–Hugoniot conditions are not sufficient to select physically relevant
patterns: an additional algebraic relation is needed, which is called a kinetic
relation in the mathematical theory of undercompressive shocks (see [113]). One
way to derive this relation for phase boundaries was introduced by Slemrod [196]
and Truskinovsky [213], who pointed out that the apparent jump should in fact
correspond to a microscopical internal structure called a viscous-capillary profile.
(See also the survey paper [54].) In [9], Benzoni-Gavage considered the zero-
viscosity limit of the viscosity-capillarity criterion of Slemrod and Truskinovsky,
and found surface waves of finite energy at the linearized level (see Chapter 12 for
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the stability analysis of free boundary problems). In the light of the more recent
work [189], that is not surprising. Indeed, the capillarity criterion gives as a
kinetic relation the dynamical analogue of the equality of chemical potentials
between phases at equilibrium; alternatively, it means that the total energy
(= kinetic energy T plus free energy F ) is conserved across the discontinuity.
In particular, the corresponding free boundary problem is time reversible and
can be viewed as the Euler–Lagrange system of the Lagrangian∫

(T − F ) dxdt.



8

A CLASSIFICATION OF LINEAR IBVPs

We continue the analysis of the linear IBVP with constant coefficients, in the
half-space

Ω = {x ∈ Rd ; xd > 0}.

Assume for the sake of simplicity that the boundary {xd = 0} is non-
characteristic:

det Ad �= 0.

We are interested in this chapter in classifying IBVPs. Because practical applica-
tions involve pairs (L,B) with variable coefficients, we are interested in notions
that are stable upon a small variation of either L, B or both. Thus our parameter
space IB will be that of pairs (L,B) where L is hyperbolic and the IBVP is
normal, namely

E−(1, 0) ∩ kerB = {0}.

The structure of IB may be rough at some points, where the operator is not
strictly or constantly hyperbolic. We note, however, that a small perturbation
preserves strict hyperbolicity, because the unit sphere is compact. Since normal-
ity is an open condition, we deduce that normal pairs (L,B) with L strictly
hyperbolic are interior points of IB. We denote the corresponding class IBS .
Likewise, the set of pairs (L,B), where L is a symmetric operator, is a linear
space in which the set IBF (F for ‘Friedrichs symmetric’) of normal pairs is a
dense open subset.

We say that a property (P) is ‘robust’ if it defines an open subset in either IBS

or IBF , and then we specify the context. Our goal is to identify robust classes,
in terms of the estimates available for the corresponding IBVPs. We essentially
follow [13, 186]. The reader interested in the transitions between robust classes
should go to [13].

Because the description of E−(τ, η) is not completely understood along the
boundary {Re τ = 0 , η ∈ Rd−1} for general hyperbolic operators, we may wish
sometimes to restrict our study within either the class IBC (L is constantly
hyperbolic) or IBF (L is Friedrichs symmetrizable).
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8.1 Some obvious robust classes
� The first robust class that we encountered in this book is, within IBF , that

of systems with a strictly dissipative boundary condition. See Section 3.2.
� Within the class IBC , we may think of systems that satisfy the (UKL) con-

dition. As a matter of fact, the Lopatinskĭı determinant ∆ is a continuous
function over the hemisphere

|τ |2 + |η|2 = 1, Re τ ≥ 0, η ∈ Rd−1.

It is not hard to extend Lemma 4.5 so that if L and B depend on parameters
ε, then ∆ can be defined continuously in terms of (τ, η, ε). Assume now
that (UKL) holds true for ε = 0. This means that the continuous function
|∆(·, ·, 0)| is bounded below by a positive number. Since the half-sphere is
compact, this remains true for small values of ε. Hence, nearby IBVPs of
which the operator is constantly hyperbolic satisfy (UKL).

� Finally, the set of strongly unstable IBVPs is also a robust class. Let
(Lε, Bε) be a continuous family in IB, with (L0, B0) strongly ill-posed.
This means that the Lopatinskĭı determinant ∆0 of (L0, B0) vanishes at
some point (τ0, η0) with Re τ0 > 0. In a neighbourhood V of (τ0, η0), E−
depends continuously on L. Therefore, we may define in V × (−α, α) a
Lopatinskĭı determinant ∆(·, ·, ε) that is continuous in ε, analytic in η
and holomorphic in τ . We now fix η = η0 and let vary ε. For ε = 0, the
holomorphic function f0(τ) = ∆(τ, η0, 0) vanishes at τ0. Note that η0 �= 0
since the IBVP is normal.

Lemma 8.1 f0 is a non-trivial holomorphic function.

Proof. The analytic function F := ∆(·, ·, 0) is positively homogeneous. If
f0 vanished identically, then F (τ, η) would vanish provided Re τ > 0 and
η ∈ R+∗η0. By continuity, it would also vanish for η = 0. But this contra-
dicts the normality of the IBVP. �

It follows that τ0 is an isolated zero of f0. Now, Rouché’s Theorem tells
us that holomorphic functions nearby f0 do have roots near τ0. In particular,
for small enough values of ε, there exist a root τ(ε) of ∆(τ, η0, ε) = 0, with
τ(0) = τ0 and hence Re τ(ε) > 0. Therefore, IBVPs with (L,B) nearby
(L0, B0) are strongly unstable.

8.2 Frequency boundary points

In this section, we study in more detail the structure of the ‘stable’ subspace
E−(τ, η) when τ = iρ is pure imaginary. As we shall see below, this structure
depends highly on the region of the boundary set {Re τ = 0 , η ∈ Rd−1}. We
recall that in general, although E−(iρ0, η0) is invariant under A(iρ0, η0), it does
not equal the stable subspace of this matrix. By definition it is only the limit of
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the stable subspace E−(τ, η) when (τ, η) → (iρ0, η0) with Re τ > 0. In particular,
it contains the stable subspace:

Es (A(iρ0, η0)) ⊂ E−(iρ0, η0). (8.2.1)

Likewise, we have

Eu (A(iρ0, η0)) ∩ E−(iρ0, η0) = {0}. (8.2.2)

8.2.1 Hyperbolic boundary points

We say that a subspace of Cn is of real type if it admits a basis formed of vectors
in Rn, or equivalently if it is the complexification of some subspace of Rn.

We recall that for a hyperbolic operator L = ∂t + A(∇x), the characteristic
cone char(L) is the set defined by the equation

(ρ, ξ) ∈ R× Rn, det(ρIn + A(ξ)) = 0.

In the complement of char(L), the connected component of (1, 0) has been
denoted Γ. It is a convex open cone, whose elements are the time-like vectors.
See Section 1.4 for details.

Theorem 8.1 Let (ρ, ξ) ∈ Γ be given, with ξ =: (η, ξd). Then the limit E−(iρ, η)
of E−(τ, η′) as (τ, η′) → (iρ, η) with Re τ > 0, exists and is given by the formula

E−(iρ, η) = Eu

(
(Ad)−1(ρIn + A(ξ))

)
. (8.2.3)

In particular, E−(iρ, η) is of real type.

This result is by no means obvious because of:

Lemma 8.2 Under the assumption of Theorem 8.1, the matrix A(iρ, η) is
diagonalizable with pure imaginary eigenvalues.

In particular, E−(iρ, η) is not the stable space of A(iρ, η), the latter reducing
to {0}. We begin with the proof of the lemma.

Proof It suffices to prove that B(ρ, η) := (ρIn + A(η))(Ad)−1 is R-
diagonalizable. This is obvious if ρ = 0 and ξ ‖ �ed.

Otherwise, we apply Theorem 1.5 to the pair (ρ, ξ): the matrix

(ρIn + A(ξ))−1

∑
α,β

mβrαβAα + (V ·m)In


is diagonalizable over the reals whenever

M(R, V ) :=
(

R ξ
tV ρ

)
, R ∈ Md(R), V ∈ Rd
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is non-singular and m ∈ Rd. We observe that, since (ρ, ξ) is not parallel to (0, �ed),
we can choose a pair (R, V ) ∈ GLd(R)× Rd, such that

V T R−1�ed = 0 and V T R−1ξ �= ρ.

The inequality tells us that M(R, V ) is non-singular, because of Schur’s comple-
ment formula

det M(R, V ) = (detR)(ρ− V T R−1ξ).

Defining m := R−1�ed, we have V ·m = 0, and therefore

M(R, V )
(

m
0

)
=
(

�ed

0

)
.

With this choice, the matrix
∑

α,β mβrαβAα + (V ·m)In equals Ad, and Theo-
rem 1.5 tells us that (ρIn + A(ξ))−1Ad is diagonalizable over the reals. Shifting
by ξdIn and conjugating by Ad, the same is true for B(ρ, η). �

We prove now Theorem 8.1.

Proof Let δ be the segment joining the point (1, 0) to (ρ, ξ) in R× Rn. From
Proposition 1.6, every point of δ is in Γ. Therefore, Lemma 8.2 applies along δ.
Parametrizing δ by s ∈ [0, 1], we may decompose

Cn = Es

(
(Ad)−1(ρsIn + A(ξs))

)
⊕ Eu

(
(Ad)−1(ρsIn + A(ξs))

)
,

since the matrix under consideration has non-zero real eigenvalues. Hence the
stable and unstable subspaces extend analytically as invariant subspaces to a
small neighbourhood V of δ. The above splitting still holds in V. In particular,
we have

Cn = Es

(
(Ad)−1(−iτIn + A(ξ))

)
⊕ Eu

(
(Ad)−1(−iτIn + A(ξ))

)
,

whenever γ = Re τ is small and (ρ = Im τ, ξ) ∈ δ.
Since the space Eu

(
(Ad)−1((−iγ + ρs)In + A(ξs))

)
is invariant under A(γ +

iρs, ηs), we may consider the restriction of the latter matrix to that subspace.
When γ > 0, its spectrum σ(γ, ρ′, ξ′) consists of complex numbers whose real part
is non-zero. By continuity in the connected set {γ > 0} ∩ V, we deduce that the
number of eigenvalues with positive (resp., negative) real part remains constant.
Therefore, it can be computed at points close to (0, 1, 0), with γ > 0; for instance
at the point (γ, 1, 0) with γ > 0. We then have A(γ + i, 0) = −(γ + i)(Ad)−1 and

Eu

(
(Ad)−1(−iτIn + A(ξ))

)
= Eu

(
(1− iγ)(Ad)−1

)
= Eu((Ad)−1).

Therefore σ(γ, 1, 0) consists only in numbers of negative real part. Thus, γ > 0
implies that the elements of σ(γ, ρ, ξ) have negative real parts, whence

Eu

(
(Ad)−1(−iτIn + A(ξ))

)
⊂ E−(τ, η).
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Finally, the equality of dimensions implies the equality of these subspaces. Letting
then γ → 0+, we complete the proof of the theorem. �

By symmetry, E−(iρ, η) is of real type when (ρ, ξ) ∈ −Γ. In this case, we have
the formula

E−(iρ, η) = Es

(
(Ad)−1(ρIn + A(ξ))

)
.

In particular, we have

E−(−iρ,−η) = E−(iρ, η), (ρ, ξ) ∈ Γ.

This can be seen also as the consequence of the more general formula

E−(τ̄ ,−η) = E−(τ, η) η ∈ Rd, Re τ > 0. (8.2.4)

This shows that the formula above stands without any restriction on the fre-
quencies:

E−(−iρ,−η) = E−(iρ, η), (ρ, ξ) ∈ R× Rd, (ρ, ξ) �= (0, 0). (8.2.5)

Definition 8.1 The set of pairs (ρ, ξ) ∈ (R× Rd) \ {(0, 0)} such that A(iρ, η)
is diagonalizable with a pure imaginary spectrum, is called the hyperbolic set of
the boundary of the frequency domain. We denote the hyperbolic set by H. It is
a cone:

(y ∈ R∗, X ∈ H) =⇒ yX ∈ H.

There is a slight abuse of words in this definition, as boundary points are of the
form (iρ, η), rather than (ρ, η), but this terminology is much easier to handle.
Hyperbolic boundary points are those for which the real matrix

B(ρ, η) := (Ad)−1(ρIn + A(η))

is R-diagonalizable. Theorem 8.1 tells us that

πΓ ⊂ H, (8.2.6)

where Γ is the forward cone and π : R× Rd → R× Rd−1 is the projection where
the last entry is deleted:

π(ρ, η, ω) = (ρ, η).

We shall justify below the use of the word ‘hyperbolic’ for these boundary
frequencies; they are a candidate for the propagation phenomena for weakly
well-posed IBVPs.

8.2.2 On the continuation of E−(τ, η)

We digress here with a strange result, saying that the uniform continuity of
(τ, η) �→ E−(τ, η), proved in the constantly hyperbolic case (Lemma 4.5), fails in
general. More importantly, it even fails in the nice class of Friedrichs-symmetric
operators!
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Theorem 8.2 Let n ≥ 3 and 1 ≤ p ≤ n− 1 be given. Then there exist d ≥ 2
and a symmetric operator

L = ∂t +
d∑

α=1

Aα∂α, Aα ∈ Symn(R),

with Ad of signature (p, n− p) (p positive and n− p negative eigenvalues), such
that the map (τ, η) �→ E−(τ, η) does not admit a continuous extension to Re τ ≥
0, |τ |2 + |η|2 = 1.

Proof We choose

d =
n(n + 1)

2
− 1,

and {A1, . . . , Ad} a basis of

{S ∈ Symn(R) ; TrS = 0}.
Since max(p, n− p) ≥ 2, we may specify ε = ±1 and

(Ad)−1 =
(

ε t0
0 J

)
,

so that J is indefinite.
From Theorem 8.1, we know that E−(τ, η) has a limit E−(iρ, η) at points

(ρ, η) ∈ πΓ. Our purpose will be to show that the map (ρ, η) �→ E−(iρ, η) does
not extend continuously to the boundary of πΓ. From Theorem 8.1, this amounts
to proving that the map

(ρ, ξ) �→ Eu

(
(Ad)−1(ρIn + A(ξ))

)
does not extend continuously to the boundary of Γ.

We proceed ad absurdum. So let us assume that Eu

(
(Ad)−1(ρIn + A(ξ))

)
is

continuous up to the boundary of Γ, but the origin of course. Identifying R× Rd

to Symn(R) through

(ρ, ξ) �→ ρIn + A(ξ),

it holds that

Γ = SPDn.

Thus we have supposed that S �→ Eu((Ad)−1S) is continuous up to ∂Γ but the
origin. Taking

S =
(

1 t0
0 Σ

)
,

this implies that the map Σ �→ Eu(JΣ), which is well-defined on SPDn−1,
extends continuously up to the boundary, including the origin. Since the closure
of SPDn−1 is a closed cone, and since Σ �→ Eu(JΣ) is positively homogeneous
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of degree zero, this map would have to be constant. Since J is indefinite, this is
obviously false. �

8.2.3 Glancing points

Roughly speaking, glancing points are boundary points (ρ, η) in a neighbourhood
of which E−(τ, η) does not behave analytically, or at least at which the Implicit
Function Theorem does not apply. Since E−(τ, η) is the sum of generalized
eigenspaces of A(τ, η) associated to stable eigenvalues (Re µ < 0), this means
that B(ρ, η) admits a real eigenvalue −ω, whose multiplicity does not persist
locally (crossing eigenvalues). In other words, an acceptable definition of glancing
points (ρ, η) ∈ (R× Rd−1) \ {(0, 0)} is that there exists an ω ∈ R such that

P (ρ, η, ω) = 0,
∂P

∂ξd
(ρ, η, ω) = 0, (8.2.7)

where P is the characteristic polynomial

P (X, ξ) := det(XIn + A(ξ)).

When some irreducible factor occurs twice or more in P (see Proposition 1.7),
one should replace P by the product of its distinct irreducible factors, in this
definition.

We denote by G the set of glancing points. Elimination of ω in (8.2.7) yields
the result that G is contained in a real algebraic variety.

From the definition, G contains the apparent boundary of char(L) for an
observer sitting at infinity in the ξd-direction. It also contains the projection
of self-intersections of Γ. Self-intersections occur when L is not constantly
hyperbolic. It might happen that such a self-intersection projects within H,
showing that the construction of dissipative symmetrizers can be a difficult task
even at hyperbolic points, in spite of the nice description given in Theorem 8.1.

Let (ρ, η) be a typical point of the apparent boundary of Γ from the ξd-
direction. By typical, we mean that P (ρ, ξ) = 0, and the multiplicity m of ρ as a
root of P (·, ξ) is strictly less than the multiplicity M of ω as a root of P (ρ, η, ·).
Since A(ξ) is diagonalizable, the kernel of A(iρ, η)− iωIn, which equals that of
ρIn + A(ξ), has dimension m. Since m < M , the eigenvalue iω of A(iρ, η) is not
semisimple; this matrix is not diagonalizable.

Recall that the maximal eigenvalue λ+(ξ) of A(ξ) is a convex function that
is analytic in the constantly hyperbolic case. We have shown a kind of strict
convexity in Proposition 1.6. When this convexity is slightly stronger, say when
kerD2λ+(ξ) = Rξ for every ξ ∈ Sd−1, then the above analysis applies to the
points (ρ = λ+(−ξ), ξ), and we deduce that on the boundary of H, the matrix
A(iρ, η) is not diagonalizable. Therefore, H is a connected component of the set
of pairs (ρ, η) ∈ (R× Rd−1) \ {(0, 0)} such that A(iρ, η) is diagonalizable.

The same argument as above shows that if (ρ, η) is not a glancing point, then
every pure imaginary eigenvalue of A(iρ, η) is semisimple and locally analytic.
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In particular, E−(·, ·) admits an analytical extension in a small neighbourhood
of non-glancing points.

8.2.4 The Lopatinskĭı determinant along the boundary

The Lopatinskĭı determinant ∆(τ, η) may be defined everywhere we have an
E−(τ, η) defined by continuity, and it is analytic whenever (τ, η) �→ E−(τ, η) has
this property. In particular, ∆ has an analytic extension to non-glancing points.

The noticable property of the restriction of ∆ to non-glancing points is that,
chosing an analytical basis of E−(iρ, η) that is made of real vectors when (ρ, η) ∈
H \ G, ∆ becomes a real analytic function on this open subset, which we denote
D(ρ, η). In particular, its zero set in H \ G is an analytic submanifold. Section
4.6.2 shows that

D−1(0) ∩ (H \ G)

is actually contained in a real algebraic variety. This will be of great importance
below.

Since D is homogeneous on the boundary, it will be appropriate to work on
the projective space P(R× Rd−1). We shall denote by H and G the projectivized
objects obtained from H and G.

8.3 Weakly well-posed IBVPs of real type

Let (L0, B0) ∈ IBC be given. In particular, E− and ∆ are continuable up to the
boundary {Re τ = 0 ; η ∈ Rd−1} but at the origin (0, 0). Assume that the cor-
responding IBVP satisfies the Kreiss–Lopatinskĭı condition, but not uniformly.
Specifically, we require that D−1(0) is contained in H \G. In particular, since
D−1(0) is compact and H \G is open, D−1(0) does not meet the boundary of
H \G.

Examples If d = 2, the boundary points form a plane without its origin. The
projective object is a line, in which H \G is a finite collection of open segments.
Our requirement is that the zeros of D belong to H \G. Since D is analytic,
these zeros are isolated.

If d ≥ 3, the zero set β := D−1(0) ∩ (H \G) is generically a smooth real
analytic hypersurface in a real (d− 1)-projective space. For instance, if d = 3, it
is a finite collection of loops. Note that the presence of such hypersurfaces is com-
patible with the (non-uniform) Lopatinskĭı condition: Given a point (ρ0, η0) in β,
where dD �= 0, the complex zeros form a complex analytic, locally smooth, man-
ifold. More precisely, assume (∂D/∂ρ)(ρ0, η0) �= 0. Since ∆(τ, η) = D(−iτ, η),
zeros of ∆ locally satisfy

iτ + ρ0 ∼
(η − η0) · ∇ηD

∂D/∂ρ
.

Together with the Implicit Function Theorem, this shows that the set of zeros
(τ, η) of ∆, with a real component η, is locally a manifold of real (projective)
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dimension d− 2. Thus it coincides with the set of pairs (iρ, η) such that (ρ, η) ∈ β.
In other words, ∆ does not vanish for Re τ > 0 when (τ, η) is close to (iρ0, η0)
and η is real. We point out that the situation is very different when D vanishes
at some boundary point outside of H.

In [13], we have denoted WR the class described above. We summarize its
definition below.

Definition 8.2 We say that the IBVP associated to the pair (L,B) is of class
WR if the following properties are satisfied:

� The operator L is constantly hyperbolic,
� The boundary is non-characteristic (det Ad �= 0),
� The non-uniform Kreiss–Lopatinskĭı condition is satisfied (∆ does not
vanish for Re τ > 0 and η ∈ Rd−1),

� The Kreiss–Lopatinskĭı condition is locally uniform at boundary points out
of H \G,

� The real analytic set D−1(0) ∩ (H \G) is non-void, and it holds that

(D = 0) =⇒
(

∂D

∂ρ
�= 0
)

. (8.3.8)

In particular, this analytic set is smooth.

Because E−(τ, η) is always continuable at points of πΓ, provided L is hyper-
bolic, we might weaken the first assumption above, at the price of replacing
H \G by H0, the projectivization of πΓ. In order to keep our discussion clear,
we call WRC the class defined by the list of conditions above, and by WR0 the
weakened class. Likewise, WR0F , WR0C denote the subclasses of WR0 in which
L is either Friedrichs symmetric or constantly hyperbolic.

The main point is that classes of the type WR are open, thus robust, in their
natural environment. For instance, IBF is naturally an open set in an R-vector
space. The fact that WR0F is open is due to the following facts:

� The uniform Kreiss–Lopatinskĭı condition is robust, as seen in Section 8.1.
From compactness, if (L0, B0) belongs to WR0F , a small perturbation
(L,B) still satisfies the Lopatinskĭı condition out of H \G.

� In H \G, the Kreiss–Lopatinskĭı condition fails only at zeros of D. When
D−1(0) is a smooth manifold, a small analytic perturbation of D yields a
small smooth perturbation of the zero set. There do not appear any new
connected components, neither along H \G, nor in the interior Re τ > 0.
Likewise, components of D−1(0) may not move towards the interior.

� Therefore, pairs (L,B) in IBF , which are close to (L0, B0), still belong to
WR0F .
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8.3.1 The adjoint problem of a BVP of class WR
Since existence theorems for linear BVPs rely upon the duality method, through
the Hahn–Banach and Riesz Theorems, we have to consider the adjoint BVP. We
recall that it is a backward BVP, meaning that we work in weighted spaces L2

θ

with θ < 0, in contrast to spaces L2
γ with γ > 0 for the forward BVP. At the level

of the Laplace–Fourier analysis, this means that the relevant time frequencies θ
are those with Re θ < 0. We recall (see Sections 4.4 and 4.6.4) that the adjoint
operator L∗ and the dual boundary matrix C ∈ Mn−p,n(R) are given by

L∗ = −∂t −
∑
α

(Aα)T ∂α, Ad = CT N + MT B,

for some matrices M,N of full rank.
Since Ad is non-singular, because of Lemma 4.6 and the equality

dimE−(τ, η) + dimE∗
−(−τ̄ ,−η) = n,

we have

E∗
−(−τ̄ ,−η) =

(
AdE−(τ, η)

)⊥
.

In particular, E−(iρ, η) is of real type if and only if E∗
−(iρ,−η) is of real type.

More precisely, it holds that

H∗ = {(ρ,−η) ; (ρ, η) ∈ H},

where H∗ denotes the hyperbolic set associated to the adjoint BVP. We check
easily that the same relation holds true for the glancing sets

G∗ = {(ρ,−η) ; (ρ, η) ∈ G}.

Recall (Theorem 4.2) that the adjoint BVP satisfies the Kreiss–Lopatinskĭı
condition at point (−τ̄ ,−η) if and only if the original one does at point (τ, η).
As a matter of fact, we have seen (Theorem 4.4) that, if ∆(τ, η) is a Lopatinskĭı
determinant for the direct BVP, then

(θ, σ) �→ ∆(−θ̄,−σ), Re θ < 0, σ ∈ Rd−1

is a Lopatinskĭı determinant for the dual BVP. This implies the following relation
between D and D∗, the latter being associated to the adjoint BVP:

D∗(ρ,−η) = D(ρ, η).

It immediately follows that the various classes WR, . . . are preserved when we
pass to the dual problem. In particular, we have

(D∗)−1(0) = {(ρ, σ ; (ρ,−σ) ∈ D−1(0)}.
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8.4 Well-posedness of unsual type for BVPs of class WR
We give ourself a BVP of class WR0C . The operator L is therefore constantly
hyperbolic, with Ad invertible. We denote

Λ := {(iρ, η) ; (ρ, η) ∈ D−1(0)}.
This is the set of boundary points at which the Kreiss–Lopatinskĭı condition fails.
We first establish optimal a priori estimates for the boundary value problem.
Then we prove an existence result by duality.

8.4.1 A priori estimates (I)

As usual, we work at the level of the Laplace–Fourier transform v. We begin
with the case of a homogeneous initial data u(0, ·) ≡ 0 and extend u by zero to
negative times.

We must estimate v and its trace along the boundary, using the equations

τv + iA(η)v + Ad ∂v

∂xd
= L f, xd > 0, (8.4.9)

Bv(τ, η, 0) = G(τ, η) := L g. (8.4.10)

As long as (τ, η) does not approach a point of Λ, the construction done in Chapter
5 applies, and we have a dissipative symbolic symmetrizer K(τ, η), which depends
smoothly on (τ, η), as well as of possibly additional parameters. This implies an
estimate of the form

Re τ

∫ ∞

0

|v|2dxd + |v(0)|2 ≤ C(τ, η)
(

1
Re τ

∫ ∞

0

|L f |2dxd + |G|2
)

. (8.4.11)

The number C(τ, η) above is bounded away from Λ. However, it does blow up
as (τ, η) tends to a point of Λ, since its boundedness is equivalent to the non-
vanishing of ∆.

In order to obtain an estimate up to Λ, we use the splitting v = vs + vu

introduced in Chapter 7. We recall below formulæ (7.1.10) and (7.1.11) for a
given pair (τ, η) with Re τ > 0:

vu(xd) = −
∫ +∞

xd

e(xd−z)AuFu(z)dz,

vs(xd) = exdAsvs(0) +
∫ xd

0

e(xd−z)AsFs(z)dz,

where F := (Ad)−1L f .
Since we know that strong estimates hold away from Λ, we concentrate on

points (τ, η) in a neighbourhood V of some (τ0 = iρ0, η0) ∈ Λ. We make use of
the following statement.

Lemma 8.3 Assume that L is a constantly hyperbolic operator. Then, given a
point (ρ0, η0) in πΓ, there exists a neighbourhood V of (τ0 = iρ0, η0), in which
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the following bounds hold uniformly for z > 0:

‖ exp(−zAu(τ, η))‖ ≤ Ce−ωzRe τ , (8.4.12)

‖ exp(zAs(τ, η))‖ ≤ Ce−ωzRe τ . (8.4.13)

Here c and ω are positive constants.

These bounds follow from three important facts:

� The eigenvalues of A(τ, η) remain of constant multiplicities in V, and
therefore are smooth functions.

� They are real along Re τ = 0,
� The imaginary parts of their derivatives ∂µ/∂τ(τ0, η0) do not vanish,

because this point is non-glancing.

Actually, the same statement holds true near every non-glancing point, since
non-real eigenvalues at (τ0, η0) are harmless.

Corollary 8.1 Under the assumptions of Lemma 8.3, it holds that

‖z �→ exp(−zAu)‖Lr(R+) ≤ C(Re τ)−1/r, (8.4.14)

‖z �→ exp(zAs)‖Lr(R+) ≤ C(Re τ)−1/r, (8.4.15)

uniformly in V.

Applying (8.4.12) to (7.1.10), with the help of a Young inequality for the
convolution L1 ∗ L2 ⊂ L2, we obtain the first estimate, which is a strong one:

‖vu‖L2(R+) ≤
c

Re τ
‖Fu‖L2(R+). (8.4.16)

In the following, we abreviate ‖ · ‖L2(R+) =: ‖ · ‖2 when no confusion is possible.
The constant of integration vs(0) must be determined from the boundary

condition:

Bvs(0) = B

∫ +∞

0

e−zAuFu(z) dz + G. (8.4.17)

Since we assume the Kreiss–Lopatinskĭı condition at the interior points, (8.4.17)
together with vs(0) ∈ E−(τ, η) determine uniquely vs(0). We note, however, that
vs(0) does not remain bounded as (τ, η) tends to (τ0, η0), for general data F and
G. Introducing the eigenprojectors π±(τ, η) onto E±(τ, η), we have vs = π−v,
vu = π+v, and so on. The linear map v �→ (π−v, π+v) is bounded, uniformly in
V since E− and E+ are transverse at (τ0, η0). Because of the Kreiss–Lopatinskĭı
condition, the linear map

v �→
(

Bv
π+v

)
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is non-singular. We emphasize that its inverse is not uniformly bounded as
(τ, η) → (τ0, η0), since

v �→
(

Bv
π+(τ0, η0)v

)
is singular. As a matter of fact, the Lopatinskĭı determinant ∆(τ, η) equals, up to
a smooth and non-vanishing factor, the determinant of (B, π+(τ, η)). Therefore,
the matrix

q(τ, η) := ∆(τ, η)
(

B
π+(τ, η)

)−1

remains bounded as (τ, η) → (τ0, η0).
Since

∆(τ, η)vs(0) = q(τ, η)
(

B
∫ +∞
0

e−zAuFu(z) dz + G
0

)
,

we obtain the estimate

|∆(τ, η)vs(0)| ≤ C

(
1√

Re τ
‖Fu‖2 + |G|

)
, (8.4.18)

where C is uniform in V.
Define now

p̃(τ, η)v := vu + ∆(τ, η)vs,

that is

p̃(τ, η) = π+(τ, η) + ∆(τ, η)π−(τ, η). (8.4.19)

This n× n matrix-valued symbol depends smoothly on (τ, η) in V and is homoge-
neous of degree zero. Definition 8.4.19 works also outside of V. The linear operator
p̃(τ, η) is non-singular, and its inverse is bounded except in a neighbourhood of
Λ. The symbol p̃ is continuous up to the boundary Re τ = 0, except for glancing
points, where it is even not bounded. Hence we smooth it out in a neighbourhood
of the glancing points, in such a way that the new symbol p(τ, η) fulfils the
following properties:

� p coincides with p̃, except in a small neighbourhood of glancing points; in
particular, they coincide in a neighbourhood of Λ,

� (τ, η) �→ p(τ, η) is smooth and homogeneous of degree zero,
� p(τ, η) is non-singular everywhere on Re τ ≥ 0 but along Λ.

We warn the reader that, when smoothing p̃, we lose the holomorphy in τ .
Therefore, p is not the symbol of a unique pseudo-differential operator. Instead,
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we have a collection of ψDOs

Pγ

(
1
i
∂t,

1
i
∇y

)
of respective symbols

(ρ, η) �→ pγ(ρ, η) := p(γ + iρ, η).

From homogeneity, the principal symbol of Pγ is p0, for every γ ≥ 0. In particular,
Pγ is of order zero and is microlocally elliptic at every pair ((ρ, η); v) but those
for which (τ, η) ∈ Λ and v ∈ E−(τ, η) ∩ kerB. Its characteristic cone is precisely
Λ.

8.4.2 A priori estimates (II)

Improvement of (8.4.18)

Let us focus on the neighbourhood of (τ0, η0) ∈ Λ, since elsewhere the estimates
are those of the uniformly stable case (UKL). We therefore have p = π+ + ∆π−.
Going back to (8.4.17), we use the fact that (Ad)−1MT is a right inverse of B
(see Section 4.4), and rewrite

Bvs(0) = B

(∫ +∞

0

e−zAuFu(z) dz + (Ad)−1MT G

)
.

Next, we decompose (Ad)−1MT G, using 1 = p + (1− p) = p + (1−∆)π−:

Bvs(0) = B

(∫ +∞

0

e−zAuFu(z) dz + p(Ad)−1MT G+ (1−∆)π−(Ad)−1MT G

)
.

Since vs(0) is in E−, this gives

vs(0) = vs0 + (1−∆)π−(Ad)−1MT G,

where vs0 ∈ E− is the solution of

Bvs0 = B

(∫ +∞

0

e−zAuFu(z) dz + p(Ad)−1MT G

)
.

Following the same argument as above, vs0 satisfies an estimate of the form
(8.4.18), with G replaced by p(Ad)−1MT G.

Since ∆p−1 = ∆π+ + π− is uniformly bounded and (Ad)−1MT is one-to-one,
we have a bound

|∆(τ, η)G| ≤ |p(Ad)−1MT G|.
Gathering all these inequalities, we obtain the more accurate estimate

|∆(τ, η)vs(0)| ≤ C

(
1√

Re τ
‖Fu‖2 + |p(Ad)−1MT G|

)
, (8.4.20)

where C is uniform in V.
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Main estimates

We now estimate ∆(τ, η)vs when (τ, η) ∈ V. From (7.1.11), (8.4.15) and the
Young inequality, we have

‖∆(τ, η)vs‖2 ≤ C|∆(τ, η)|
(

1√
Re τ

|vs(0)|+ 1
Re τ

‖Fs‖2
)

.

Thanks to (8.4.18), this yields

‖∆(τ, η)vs‖2 ≤ C

(
1

Re τ
‖p(τ, η)F‖2 +

1√
Re τ

|p(Ad)−1MT G|
)

. (8.4.21)

Merging (8.4.16) and (8.4.21), and using the uniformly dissipative Kreiss sym-
metrizer outside a neighbourhood of Λ, we conclude that the following estimate
holds uniformly in (τ, η):

‖p(τ, η)v‖2 ≤ C

(
1

Re τ
‖p(τ, η)F‖2 +

1√
Re τ

|p(Ad)−1MT G|
)

. (8.4.22)

Likewise, (8.4.18) yields the uniform estimate

‖p(τ, η)v(0)‖2 ≤ C

(
1√

Re τ
‖p(τ, η)F‖2 + |p(Ad)−1MT G|

)
. (8.4.23)

Using, finally, Plancherel’s Formula, we derive our fundamental estimate

γ

∫ ∫
Ω×R

e−2γt‖Pγu‖2dxdt +
∫ ∫

∂Ω×R

e−2γt‖Pγγ0u‖2dxdt

≤ C

(
1
γ

∫ ∫
Ω×R

e−2γt‖Pγ(Ad)−1Lu‖2dxdt

+
∫ ∫

∂Ω×R

e−2γt‖Pγγ0(Ad)−1MT Bu‖2dxdt

)
,

(8.4.24)

whenever γ is positive and u is smooth, compactly supported. This is clearly
weaker than (4.5.26), as expected. However, it has the nice feature that only
Pγ(Ad)−1Lu and Pγγ0(Ad)−1MT Bu, instead of Lu and γ0BU , are required to
be square-integrable. Therefore, there is some hope that such an estimate could
be useful in nonlinear problems when using a fixed-point argument.

Remarks
� Note that (Ad)−1MT B is a projector, whose kernel is kerB. Therefore,

(8.4.24) is the same as (4.5.26), up to the presence of the operator Pγ

everywhere. In other words, one passes from one estimate to the other by
changing the norm both in data and in output. We arrive at the strange
conclusion that a BVP of class WR0C displays strong well-posedness in
some Hilbert space, though not in L2. This space is inhomogeneous in
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frequency, and in space-time variables as well, since xd and (y, t) play
different roles.

� When ∆ vanishes at the first order only along Λ, the norms ‖Pγw‖ are inter-
mediate between the L2-norm and the H−1-norm. Thus (8.4.24) implies,
in the case of constant coefficients in a non-characteristic half-space, the
estimates ‘with loss of one derivative’ obtained by Coulombel [38,39,41,43].
Coulombel’s estimates also hold true with variable coefficients, as well as
in some characteristic cases. We leave for a future study an extension of
our estimates in such contexts.

� In the case of a BVP of class WR for the wave operator, a nicer analysis
can be made, see [191]. In a suitable range of parameters, the BVP can
be decomposed in a sequence of two hyperbolic BVP, each one satisfying
(UKL). The sequence of a priori estimates yields an estimate similar to
(8.4.24). This decomposition is robust to variation of coefficients, and thus
can be employed in BVP with variable coefficients.

8.4.3 The estimate for the adjoint BVP

We have seen that the adjoint BVP is of class WR too, with the Lopatinskĭı
determinant

∆∗(θ, σ) = ∆(−θ̄,−σ).

The standard objects, when associated with the adjoint BVP, are indexed with
a subscript ∗, for instance E−∗, E+∗,. . . The superscript ∗ is kept for denoting
adjoint operators. For instance, the adjoint π∗

− of the projection onto E−, of
kernel E+, is the projection onto E⊥

+ , with kernel E⊥
− . Since we have

E±∗ =
(
AdE±

)⊥
,

we find the useful identities

π∗
−(Ad)T = (Ad)T π+∗, π∗

+(Ad)T = (Ad)T π−∗. (8.4.25)

Hereabove, and everywhere in the following, we always assume the relations
θ = −τ̄ and σ = −η. Using (8.4.25), we deduce

p̃∗(Ad)T = (Ad)T (π−∗ + ∆̄π+∗),

from which we infer

p̃∗(Ad)T p̃∗ = ∆̄(Ad)T .

In the smoothing process, it is possible to keep track of this identity, in the
following way

p∗(Ad)T p∗ = δ̄(Ad)T , (8.4.26)
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where δ(τ, η) is smooth, homogeneous of degree zero, and coincides with ∆
outside of a small neighbourhood of glancing points. Also, δ vanishes only
along Λ.

The analogue of (8.4.24) for the adjoint problem is obviously

γ

∫ ∫
Ω×R

e2γt‖P−γ∗w‖2dxdt +
∫ ∫

∂Ω×R

e2γt‖P−γ∗γ0w‖2dxdt

≤ C

(
1
γ

∫ ∫
Ω×R

e2γt‖P−γ∗(Ad)−T L∗w‖2dxdt

+
∫ ∫

∂Ω×R

e2γt‖P−γ∗γ0(Ad)−T NT Cw‖2dxdt

)
,

(8.4.27)

At the level of the Laplace–Fourier transform, this amounts to saying that

|Re θ| ‖p∗(θ, σ)ŵ‖22 + |p∗(θ, σ)ŵ(0)|2

≤ C

{
1

|Re θ| ‖p∗(θ, σ)(Ad)−T L̂∗w‖22 (8.4.28)

+ |p∗(θ, σ)(Ad)−T NT Cŵ(0)|2
}

.

8.4.4 Existence result for the BVP

As in Section 4.5.5, we employ a duality argument. We do not give full details,
which essentially mimic those of Section 4.5. We content ourselves with explaining
what role our modified estimates play.

Let us fix a γ > 0. We give ourself a pair (f, g) with

Pγ(Ad)−1f ∈ L2
γ , Pγ(Ad)−1MT g ∈ L2

γ . (8.4.29)

We denote by Yγ the set of distributions of the form L∗w with the properties
that

P−γ∗(Ad)−T L∗w ∈ L2
−γ , P−γw ∈ L2

−γ , γ0Cw = 0.

Admitting that (8.4.27) holds true on Yγ , we deduce that the linear map L∗w �→
w is well-defined (a uniqueness property), with some continuity properties. We
then define a linear functional

�(L∗w) :=
∫ ∫

Ω×R

(w, f) dxdt +
∫ ∫

∂Ω×R

(Mw, g) dydt.

To begin with, we majorize the first integral. Using the Plancherel formula, it
amounts to the same to deal with the integral of (ŵ, f̂). This has the effect of
decoupling frequencies, so that we need an estimate of the integral with respect
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to xd only. To this end, we write∫ ∞

0

(ŵ, f̂) dxd =
(
(Ad)T ŵ, (Ad)−1f̂

)
2

=
(

(Ad)T p∗
ŵ

δ̄
, p(Ad)−1f̂

)
2

,

where the last equality makes use of (8.4.26). Using Cauchy–Schwarz, we infer

|(ŵ, f̂)2| ≤ C

∥∥∥∥p∗ ŵ

δ̄

∥∥∥∥
2

‖p(Ad)−1f̂‖2.

Applying now (8.4.28), we obtain

|(ŵ, f̂)2| ≤
C

γ|δ|
∥∥∥p∗(Ad)−T L̂∗w

∥∥∥
2
‖p(Ad)−1f̂‖2.

Playing the same game with the second integral, and using the fact that p is
uniformly bounded, we obtain

|(ŵ, f̂)2 + (Mŵ(0), ĝ)|

≤ C

|δ|

(
1
γ
‖p(Ad)−1f̂‖2 +

1√
γ
|p(Ad)−1MT ĝ|

)∥∥∥p∗(Ad)−T L̂∗w
∥∥∥

2
.

This shows that � extends continuously to the space of functions W such that

1
δ̄
p∗(Ad)−T Ŵ ∈ L2(Re θ = −γ).

The dual of this space is, from (8.4.26), the space of functions U such that

AdpÛ ∈ L2(Re τ = γ).

In other words, it is the set of Us such that

PγU ∈ L2
γ . (8.4.30)

Therefore, there exists a u with property (8.4.30), such that

�(L∗w) =
∫ ∫

Ω×R

(L∗w, u) dxdt.

Additionally, we have

‖Pγu‖γ ≤ C

(
1
γ

∥∥Pγ(Ad)−1f
∥∥

γ
+

1√
γ
‖Pγ(Ad)−1MT g‖γ

)
.

This u is the solution of the boundary value problem for t ∈ R. Note that the
duality method gives directly the dependency upon Pγ(Ad)−1MT g, instead of g,
confirming the analysis done in Section 8.4.2.

8.4.5 Propagation property

There is an important difference between the classes WR and (UKL), as far as
the propagation (of support or of singularities) is concerned. For a uniformly
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stable IBVP, it can be proved that the signals propagate not faster than in the
pure Cauchy problem. A simple calculus, using energy inequality, shows that
in the strictly dissipative Friedrichs-symmetric case, the support of the solution
does not propagate faster than expected.

This is no longer true for an IBVP of class WR0C , because of the fact that
the ‘boundary symbol’ p(iρ, η) vanishes along the set Λ, which is strictly included
in the forward characteristic cone in general.

Let us consider as an example the wave equation

∂2
t u = c2∆xu,

with the boundary condition

∂u

∂ν
= γ

∂u

∂t
+ g,

with γ ∈ (0, 1/c) a constant, and ∂u/∂ν the normal derivative. This problem can
be recast at a first-order system. We leave the reader to check that this BVP is
of class WR0C , and to compute that Λ consists in the pairs (iρ, η) such that

|η|2 = ρ2

(
1
c2
− γ2

)
.

This reveals that signals propagate along the boundary at the velocity

c′ :=
c

1− c2γ2
,

which is larger than c. In particular, c′ tends to +∞ as γ tends to 1/c; recall
that the IBVP is not normal (and therefore ill-posed) for γ = 1/c, and that it
does not satisfy at all the Kreiss–Lopatinskĭı condition for γ > 1/c.



9

VARIABLE-COEFFICIENTS INITIAL BOUNDARY
VALUE PROBLEMS

This chapter is the logical continuation of Chapter 4 on Initial Boundary Value
problems. We are concerned here with variable-coefficient operators

L := ∂t +
d∑

j=1

Aj(x, t) ∂j ,

where x lies in a domain Ω strictly smaller than Rd having a smooth boundary
∂Ω: we will not consider domains with corners or edges despite their physical
interest (e.g. in fluid dynamics with the entrance of pipes), because the analysis
of the corresponding Initial Boundary Value Problems is not well understood up
to now (see [100,153,154,175]).

Unless otherwise specified, the matrices Aj(x, t) will be C∞ functions of
(x, t), independent of (x, t) outside a compact subset of Rd × R+. We assume
throughout this chapter that the operator L is hyperbolic in the direction of t,
which means in particular that the characteristic matrix

A(x, t, ξ) =
d∑

j=1

ξj Aj(x, t)

is diagonalizable in R for all ξ ∈ Rd\{0}. In fact, we will mostly concentrate
on the more restricted class of constantly hyperbolic operators, for which by
definition the eigenvalues of A(x, t, ξ) are of constant multiplicities.

Boundary conditions are supposed to be encoded by a smooth matrix-
valued function B : (x, t) ∈ ∂Ω× (0,+∞) �→ B(x, t), the rank of B(x, t) being
prescribed by a frozen-coefficients analysis: accordingly with Proposition 4.1,
the rank of B(x, t) must be equal to the number of incoming characteristics,
that is, the number of negative eigenvalues (counted with multiplicity) of the
characteristic matrix computed at (x, t, ξ = ν(x)), where ν(x) is the exterior
unit normal vector to ∂Ω at point x.

Independently of the specific boundary conditions, we will thus require that
the number of negative eigenvalues of A(x, t, ν(x)) be constant, which is definitely
not innocent; unless A is independent of (x, t) and ν is independent of x,
i.e. L has constant coefficients and Ω is a half-space, as in Chapter 4. This
requirement on the number of negative eigenvalues of A(x, t, ν(x)) is (more
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generally) fulfilled by non-characteristic problems in domains with connected
boundaries. (We warn the reader though, that it might be difficult to ensure
the whole boundary is non-characteristic: see Section 11.1.1 for a more detailed
discussion in a quasilinear framework.) As a matter of fact, if the boundary ∂Ω is
everywhere non-characteristic, that is, if the matrix A(x, t, ν(x)) is non-singular
along ∂Ω× (0,+∞), and if additionally ∂Ω is connected, the hyperbolicity of
the operator L implies that the eigenvalues of A(x, t, ν(x)) are split into a
constant number of negative ones and a constant number of positive ones:
indeed, if A(x, t, ν(x)) is non-singular and only has real eigenvalues then of
course it has no eigenvalue on the imaginary axis; in the language of ODEs,
this means A(x, t, ν(x)) is a hyperbolic matrix for all (x, t) ∈ ∂Ω× (0,+∞) and
a connectedness argument then shows the dimension of its stable subspace must
be constant along ∂Ω× (0,+∞).

Denoting by p the number (assumed constant, no matter the restriction) of
incoming characteristics, we may suppose without loss of generality that B is
everywhere of maximal rank p, that is, B(x, t) ∈ Mp×n(R) for all (x, t) ∈ ∂Ω×
(0,+∞), the p rows of B(x, t) being independent.

Additional requirements are to be imported from Chapter 4. Not only must
the rank of B coincide with the dimension of the stable subspace Es(A) of A but
we should have the normality condition:

Rn = kerB(x, t)⊕ Es(A(x, t, ν(x))) for all (x, t) ∈ ∂Ω× (0,+∞) . (9.0.1)

If we were to consider possibly characteristic boundaries, we should also require
that

kerA(x, t, ν(x)) ⊂ kerB(x, t) for all (x, t) ∈ ∂Ω× (0,+∞) .

But we will concentrate on non-characteristic problems.
Finally, we will need an assumption specific to variable coefficients: we ask

that the kernel of B admit a smooth basis, that is, a family of C∞ vector-valued
functions (ep+1, . . . , en) such that

Span (ep+1(x, t), . . . , en(x, t)) = kerB(x, t)

for all (x, t) ∈ ∂Ω× (0,+∞). A standard result in differential topology [85]
(p. 97), saying that any vector bundle over a contractible manifold is trivial,
implies the existence of such a smooth basis for some particular boundaries ∂Ω:
for instance, a hyperplane is contractible. For non-contractible boundaries ∂Ω,
the existence of a smooth basis is a non-trivial assumption.

Our aim is to solve Initial Boundary Value Problems (IBVP) of the form

(Lu)(x, t) = f(x, t), x ∈ Ω , t > 0 , (9.0.2)

(Bu)(x, t) = g(x, t), x ∈ ∂Ω , t > 0 , (9.0.3)

u(x, 0) = u0(x), x ∈ Ω , (9.0.4)
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where the source term f , the boundary data g and the initial condition u0 are
given in a Sobolev space Hs, s ≥ 0. We may also add a zeroth-order operator to
L.

As for the Cauchy problem, well-posedness crucially relies on energy esti-
mates. As for the Cauchy problem, the basic tools for deriving energy estimates
are symmetrizers. However, symmetrizers for IBVPs are much more compli-
cated than for the Cauchy problem: they were first introduced by Kreiss in
his celebrated paper [103] (see also [160]); up to now, the main reference is
the (unfortunately depleted) book by Chazarain and Piriou [31], where Kreiss’
symmetrizers are constructed in detail and used to show the well-posedness of
IBVPs. For constant-coefficient problems, Chapter 5 of this book gives a new
construction of Kreiss’ symmetrizers, and Chapter 4 shows how to use them for
the well-posedness theory.

The purpose of this chapter is to answer the two main questions: 1) how
do Kreiss’ symmetrizers associated with frozen coefficients systems yield energy
estimates for variable coefficients? and 2) how do energy estimates imply the
well-posedness of Initial Boundary Value Problems?

As for the Cauchy problem, we shall at first deal with infinitely smooth
coefficients. In this case, the answers to questions 1) and 2) make use of pseudo-
differential calculus with parameter. They are contained in Chapter VII of [31].
Our presentation is different but makes use of the same arguments.

Coefficients with poorer regularity (arising, for instance, in the resolution
of quasilinear problems) are trickier to deal with, and will be considered sep-
arately. The main reference on this topic is the (unpublished) PhD thesis of
Mokrane [140], which takes advantage of para-differential calculus. We shall give
a presentation here that parallels the smooth coefficients theory, and point out
the special features related to poor regularity.

In any case, we will only consider non-characteristic problems, for the analysis
of variable-coefficient characteristic problems is still in its infancy: apart from the
seminal paper by Majda and Osher [127], most results known concern dissipa-
tive boundary conditions for Friedrichs-symmetrizable systems; as far as linear
problems are concerned, the main references are the papers by Rauch [163, 164]
(see Chapter 11 for further references concerning quasilinear problems).

Another deliberate choice by us is to consider first the simplest case of a
planar boundary and explain afterwards how to deal with arbitrary domains
through co-ordinate charts.

9.1 Energy estimates

As announced above, we proceed gradually and first consider a half-space
Ω, which we assume to be Ω = {x ∈ Rd ; xd > 0 } without loss of generality.
Furthermore, we assume ∂Ω is non-characteristic, which means that Ad(y, 0, t)
is invertible for all (y, t) = (x1, . . . , xd−1, t) ∈ Rd−1 × (0,+∞) (with an obvious
convention if d = 1).
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The main purpose here is to derive energy estimates for the Boundary Value
Problem

(Lu)(y, xd, t) = f(y, xd, t), y ∈ Rd−1 , t ∈ R , xd > 0 , (9.1.5)

(Bu)(y, 0, t) = g(y, t), y ∈ Rd−1 , t ∈ R , (9.1.6)

in which the coefficients of L and B are supposed to be well-defined and
smooth for all t ∈ R. We have in mind energy estimates that are weighted
in time, as in Theorem 2.13. This is why we introduce the new unknown
ũγ(x, t) := e−γt u(x, t) and new data f̃γ , g̃γ in the same way. We observe that
(9.1.5)(9.1.6) is equivalent to

Lγ ũγ = f̃γ , Ω× R , (9.1.7)

Bũγ = g̃γ , ∂Ω× R (9.1.8)

with

Lγ := ∂t + γ +
d∑

j=1

Aj∂j .

The whole difficulty lies in the fact that the principal part L0 = L of the operator
Lγ is in general not hyperbolic in the direction of xd. This is not specific to variable
coefficients. For, the hyperbolicity of L in the direction of xd requires that, for
any ‘frequency’1 ξ = (η, δ) = (η1, . . . , ηd−1, δ) ∈ Rd\{0} the polynomial

det( δ In +
d−1∑
j=1

ηj Aja + ζ Ad )

only has real roots ζ. This holds true in the frequency region called hyperbolic
for obvious reasons, which is in general not the whole frequency space.

Example In gas dynamics (see Chapter 13), the polynomial above can be
explicitly factorized as

( δ + (η, ζ) · u )d−1
(

( δ + (η, ζ) · u )2 − c2 (‖η‖2 + ζ2)
)

,

where u denotes the gas velocity and c the sound speed. If the first factor only
has real roots, in fact the multiple one

ζ = − (δ + η · ǔ)/ud ,

where ǔ := (u1, . . . , ud−1) denotes the tangential part of the velocity u = (ǔ, ud),
the second factor has real roots if and only if

(δ + η · ǔ)2 ≥ (c2 − u2
d) ‖η‖2 .

1The term frequency here is used in a wide mathematical sense, and does not refer specifically to
time oscillations.
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This inequality holds true everywhere for supersonic flows (u2
d ≥ c2). But for a

subsonic flow (u2
d < c2), the hyperbolic region of L in the direction xd is restricted

to the cone

{ ξ = (δ, η) ; (δ + η · ǔ)2 ≥ (c2 − u2
d) ‖η‖2 } .

It is notable that, for points ξ = (δ, η) on the boundary of the cone, i.e. such
that

(δ + η · ǔ)2 = (c2 − u2
d) ‖η‖2 ,

called glancing modes, the matrix

(Ad)−1 ( δ In +
d−1∑
j=1

ηj Aj ) ,

which will turn out to play a crucial role in the analysis, is not diagonalizable.
Coming back to the abstract problem (9.1.5)(9.1.6) and considering the

special role played by the variable xd, we rewrite (9.1.7) in the equivalent form

∂dũγ − P γ(xd) ũγ = (Ad)−1 f̃γ , (9.1.9)

P γ(xd) := − (Ad)−1 ( ∂t + γ +
d−1∑
j=1

Aj∂j ) .

This notation emphasizes the dependence of P γ on the parameter xd, but it
should be clear to the reader that P γ(xd) is a variable-coefficient differential
operator in (y, t). More precisely, in the terminology recalled in the appendix
(section C.2), for all xd ≥ 0, {P γ(xd)}γ≥1 is a family of differential operators of
order 1 on {(y, t) ∈ Rd−1 × R}, their symbols being

a(y, t, η, δ, γ;xd) := − (Ad(y, xd, t))−1 ( (iδ + γ) In + i A(y, xd, t, η) ) ,

where

A(y, xd, t, η) =
d−1∑
j=1

ηj Aj(y, xd, t) .

Consistently with Chapter 4, we will also use the shorter notation

A(x, t, η, τ) := a(y, t, η, δ, γ;xd),

where x = (y, xd) and τ = γ + iδ.
Dropping for a while the tildas and the γ subscript in (9.1.7)(9.1.8), we are

facing a problem of the form

∂xd
u − P γ(xd)u = f , xd > 0 ,

Bu = g , xd = 0 .
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If one compares with the Cauchy problem studied in Chapter 2

∂tu − P (t)u = f , t > 0 ,
u = g , t = 0 ,

there are two intertwined differences: 1) the whole vector u is prescribed on the
‘boundary’ (t = 0) in the latter case, whereas in the former, only part of u is
prescribed on the ‘boundary’ (xd = 0) and 2) unlike ∂t − P (t), the operator
∂xd

u − P γ(xd) is not hyperbolic in general, because L is not hyperbolic in the
direction xd. The gap between hyperbolic Initial Value Problems and Initial
Boundary Value Problems should now be clear to the reader.

9.1.1 Functional boundary symmetrizers

In what follows, the space Rd is to be understood as the product of the boundary
of Ω by the real line in the time direction, i.e. Rd = { (y, t) ; y ∈ Rd−1 , t ∈ R }.
The delimiters 〈 , 〉 stand for the inner product on L2(Rd,dy dt).

Definition 9.1 A (functional) boundary symmetrizer for (9.1.5)(9.1.6) is a
family of C 1 mappings

Rγ : R+ → B(L2(Rd; Rn))
xd �→ Rγ(xd)

for γ ≥ γ0 ≥ 1, with bounds for Rγ(xd) and dRγ/dxd that are uniform in both
γ ≥ γ0 and xd ≥ 0, such that

� the operator Rγ(xd) is self-adjoint,
� the operator

Re ( Rγ(xd)P γ(xd) ) :=
1
2

(Rγ(xd)P γ(xd) + ( Rγ(xd)P γ(xd) )∗)

belongs to B(L2(Rd; Rn)) and as such satisfies the lower bound

Re ( Rγ(xd)P γ(xd) ) ≥ C γ I , (9.1.10)

with C > 0 independent of both xd ≥ 0 and γ ≥ γ0,
� there exist positive constants α and β so that

〈Rγ(0)u , u〉 ≥ α ‖u‖2L2 − β ‖Bu‖2L2 (9.1.11)

for all u ∈ L2(Rd; Rn) and all γ ≥ γ0.

To some extent, this definition resembles the one given in Chapter 2 (Defini-
tion 2.2) for functional symmetrizers concerning the Cauchy problem. If one com-
pares the two definitions, the main novelties here are, besides the parameter γ,
the inequality (9.1.11), which is meant to deal with boundary terms in the energy
estimates, and also that a non-negative lower bound for Re (Rγ(xd)P γ(xd) ) is
requested: this is because the symmetrizer is designed to find a lower bound for
the derivative of 〈Rγ(xd)u , u〉 with respect to xd, eventually leading to a control
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of the trace of u at xd = 0. (Observe the counterpart of this trace for the Cauchy
problem is merely the initial data, so that a rough bound Re (Σ(t)P (t) ) ≥ −C I
suffices to show well-posedness in that case.)

In the case of Friedrichs symmetrizability, which is a property of the sole
operator L, we easily get boundary symmetrizers, provided that the boundary
matrix B is strictly dissipative: the definition of strict dissipativity given in
Chapter 3 for Initial Boundary Value Problems with constant coefficients extends
in a straightforward way to variable coefficients; we give it below for a general
domain Ω with outward unit normal vector ν.

Definition 9.2 Assume L = ∂t +
∑d

j=1 Aj∂j is a Friedrichs-symmetrizable
operator, with Friedrichs symmetrizer S0 (see Definition 2.1). The boundary
matrix B is called strictly dissipative if there exist α > 0 and β > 0 so that for
all (x, t) ∈ ∂Ω× R and all v ∈ Rn;

vT S0(x, t)A(x, t, ν(x)) v ≥ α ‖v‖2 − β ‖B(x, t)v‖2 , (9.1.12)

where ν denotes the outward normal to ∂Ω.

In the case Ω = {xd > 0}, the strict dissipativity of B means

v∗ S0(y, 0, t)Ad(y, 0, t)v ≤ −α ‖v‖2 + β ‖B(y, t)v‖2 (9.1.13)

for all (y, t) ∈ Rd and all v ∈ Cn. If the inequality (9.1.13) is satisfied then the
operator

Rγ(xd) : u �→ Rγ(xd)u := −S0(·, xd, ·)Ad(·, xd, ·)u

defines a boundary symmetrizer according to Definition 9.1. As a matter of fact,
the inequality in (9.1.11) directly follows from (9.1.13) applied to v = u(y, t),
after integration in (y, t). And we easily compute

〈Re ( Rγ(xd)P γ(xd) )u , u 〉 = γ 〈S0(·, xd, ·)u , u 〉

− 1
2
〈 ( ∂tS0 +

d−1∑
j=1

∂j(S0A
j) )u , u 〉 .

Taking a lower bound for S0, say σ > 0, and an upper bound for ∂tS0 +∑
∂j(S0A

j), say K, we clearly have for γ ≥ 2K/σ,

〈Re ( Rγ(xd)P γ(xd) )u , u 〉 ≥ γ σ

2
‖u‖2L2 ,

which is (9.1.10) with C = σ/2. This shows that Friedrichs-symmetrizable oper-
ators together with strictly dissipative boundary matrices are endowed with
boundary symmetrizers. In what follows, we will consider boundary matrices
that are not necessarily dissipative, as in Chapter 4.
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Proposition 9.1 If there is a boundary symmetrizer for (9.1.5)(9.1.6), then
there exists γ0 ≥ 1 and c > 0 so that for γ ≥ γ0 and u ∈ D(Ω× R) we have

γ

∫
R

∫
xd>0

e−2γt ‖u(x, t)‖2 dxdt +
∫

R

∫
Rd−1

e−2γt ‖u(y, 0, t)‖2 dy dt

≤ c

(
1
γ

∫
R

∫
xd>0

e−2γt ‖(Lu)(x, t)‖2 dxdt+
∫

R

∫
Rd−1

e−2γt ‖(Bu)(y, 0, t)‖2 dy dt

)
,

(9.1.14)
and more generally,

γ ‖ũγ‖2L2(R+;Hs
γ(Rd)) + ‖ũγ(0)‖2Hs

γ(Rd)

≤ c

(
1
γ
‖Lγ ũγ‖2L2(R+;Hs

γ(Rd)) + ‖Bũγ(0)‖2Hs
γ(Rd)

)
, (9.1.15)

where ũγ(x, t) = e−γt u(x, t), Lγ = L + γ, and Hs
γ(Rd) denotes the usual

Sobolev space of index s equipped with the γ-depending norm:

‖v‖Hs
γ(Rd) =

(∫
Rd−1

∫
R

( γ2 + ‖η‖2 + δ2 )s |(F(y,t)v)(η, δ)|2 dδ dη

)1/2

= ‖Λs,γ v‖L2(Rd) .

(Note that by the definition of Lγ and ũγ , Lγ ũγ = e−γt Lu.)

Proof The proof is very similar to that of Theorem 2.1 in Chapter 2 (also see
the proof of Theorem 2.13).

We begin with the L2 estimate (9.1.14). We readily have

d

dxd
〈Rγ ũγ , ũγ 〉 = 2 Re 〈Rγ (Ad)−1Lγ ũγ , ũγ 〉 + 2Re 〈RγP γ ũγ , ũγ 〉

+ 〈 dRγ

dxd
ũγ , ũγ 〉 .

The first and last terms can be bounded by below using uniform bounds for
‖(Ad)−1‖, ‖Rγ‖B(L2) and ‖dRγ/dxd‖B(L2). The middle term is bounded by
below in view of (9.1.10). Hence there exist C1 > 0 and C2 so that for all ε > 0
and γ ≥ γ0

d

dxd
〈Rγ ũγ , ũγ 〉 ≥ ( (2C − C1ε)γ − C2 ) ‖ũγ(xd)‖2L2(Rd)

− C1

4εγ
‖Lγ ũγ(xd)‖2L2(Rd) .
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Integrating in xd and using (9.1.11) we get

α ‖ũγ(0)‖2L2(Rd) − β ‖Bũγ(0)‖2L2(Rd) ≤ ( (C1ε− 2C)γ + C2 ) ‖ũγ‖2L2(Rd×R+)

+
C1

4εγ
‖Lγ ũγ‖2L2(Rd×R+) .

Choosing, for instance, ε = C/C1, we find that for γ ≥ 2C2/C

γ
C

2
‖ũγ‖2L2(Rd×R+) + α ‖ũγ(0)‖2L2(Rd) ≤

C2
1

4Cγ
‖Lγ ũγ‖2L2(Rd×R+)

+β ‖Bũγ(0)‖2L2(Rd) .

This implies the L2 estimate in (9.1.14) with c = max(C2
1/2C, β)/min(C/4, α)

for γ ≥ max(2C2/C, 2C1/C) .

The proof of (9.1.15) makes use of pseudo-differential calculus with parameter
(see Section C.2). Indeed, applying the L2 estimate obtained above

γ ‖v‖2L2(R+;L2(Rd)) + ‖v(0)‖2L2(Rd)

≤ c

(
1
γ
‖Lγv‖2L2(R+;L2(Rd)) + ‖Bv(0)‖2L2(Rd)

)
to v = Λs,γ ũγ , where the operator Λs,γ acts on the variables (y, t), we readily
get

γ ‖ũγ‖2L2(R+;Hs
γ(Rd)) + ‖ũγ(0)‖2Hs

γ(Rd)

≤ c

(
1
γ
‖Lγ Λs,γ ũγ‖2L2(R+;L2(Rd)) + ‖B Λs,γ ũγ(0)‖2L2(Rd)

)
.

Now, using that { [Lγ , Λs,γ ]}γ≥1 is a family of pseudo-differential operators
of order 1 + s− 1 = s, that { [B , Λs,γ ]}γ≥1 is a family of pseudo-differential
operators of order s− 1 and ‖v‖Hs−1

γ
� γ−1 ‖v‖Hs

γ
for all v we obtain a constant

cs ≥ 2c so that

γ ‖ũγ‖2L2(R+;Hs
γ(Rd)) + ‖ũγ(0)‖2Hs

γ(Rd)

≤ cs

(
1
γ ‖Lγ ũγ‖2L2(R+;Hs

γ(Rd)) + 1
γ ‖ũγ‖2L2(R+;Hs

γ(Rd))

+‖B ũγ(0)‖2Hs
γ(Rd) + 1

γ2 ‖ũγ(0)‖2Hs
γ(Rd)

)
.

For γ ≥
√

2cs, the left-hand side absorbs the extra terms in the right-hand side,
and we obtain (9.1.15) with c = 2cs. �
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Remark 9.1 By density of D in H1, the energy estimate (9.1.14) extends to
any u ∈ e−γtH1(Ω̄× R) (which is sufficient to pass to the limit in the right-hand
side of (9.1.14) applied to D-approximations of u).

9.1.2 Local/global Kreiss’ symmetrizers

Kreiss’ work [103] has shown that strictly dissipative problems are not the only
ones to enjoy estimates of the kind (9.1.14). In other words, there are boundary
value problems that do admit boundary symmetrizers, even though they are
not strictly dissipative (in the sense of Definition 9.2). Such problems are those
that satisfy a stability condition based on a normal modes analysis: in fact, the
stability condition derived by Kreiss involves a refined normal modes analysis,
in that it pays attention to the so-called neutral modes. (These terms will be
explained below.) This is in contrast with prior work – dating back to the 1940s
in gas dynamics – in which the role of neutral modes was not well understood.
For examples of problems that satisfy Kreiss’ stability condition without being
strictly dissipative, see for instance Chapter 13 on gas dynamics.

Kreiss introduced a tool known nowadays as a Kreiss symmetrizer, which
turned out to imply energy estimates without loss of derivatives. He performed
the proof of these estimates for constant coefficients and claimed, advisedly,
that they were satisfied also in the case of variable coefficients [103]. The
proof was later completed by several authors. The actual construction of Kreiss
symmetrizers, assuming Kreiss’ stability condition, is the bulk part of the original
paper [103]. This tour de force is explained in Chapter 5 – and also in Chapter 13
for the (linearized) Euler equations in the constant-coefficients case. Its extension
to variable coefficients does not contain major difficulties but deserves some
explanation.

Before that, let us pause and come back to the analysis of the Boundary Value
Problem (9.1.5)(9.1.6). We have decomposed the derivation of energy estimates
into the following steps:

i) the derivation of energy estimates from functional symmetrizers,
ii) the construction of functional symmetrizers from symbolic ones.
iii) the construction of symbolic symmetrizers.

The splitting between i) and ii) parallels Chapter 2 (on the Cauchy problem).
Step i) has been done in the previous section. Step ii) is the main purpose
of this section. If step iii) is rather easy for the Cauchy problem (assuming
only constant multiplicities of eigenvalues, see Theorem 2.3), it is a tough piece
for the Boundary Value Problem. However, once the work is done for constant
coefficients (see [103] or Chapter 5 in this book), its extension to variable
coefficients is not difficult. Details will be given in Section 9.1.3.

Historical note Kreiss’ stability condition is often referred to as the (uniform)
Lopatinskĭı–Kreiss–Sakamato condition, as both the Russian Lopatinskĭı and
the Japanese Sakamato have contributed to the theory, independently of Kreiss:



230 Variable-coefficients initial boundary value problems

even though Lopatinskĭı is more famous for his work on elliptic boundary value
problems [123], he did contribute to the early developments of the hyperbolic
theory [122] and his name here is not misplaced (as seen in Chapter 4, it is more
specifically attached to the search for unstable modes by means of the so-called
Lopatinskĭı determinant); and Sakamoto performed simultaneaously with Kreiss
a similar work on higher-order hyperbolic equations (see [171–174]).

We adopt here a presentation of Kreiss’ symmetrizers slightly different from
Chapter 5, which is adapted to variable coefficients and insists on local Kreiss’
symmetrizers.

Notations In the whole chapter, we denote by C+ = { τ ∈ C ; Re τ ≥ 0 } the
closed right-half complex plane. Furthermore, in this section and in the next one,
we use the following shortcuts:

� the physical space–time set is

Y := Ω× R = { (y, xd, t) ; y ∈ Rd−1 , xd ∈ R+ , t ∈ R } ,

and its boundary is ∂Y = ∂Ω× R = { (y, 0, t) ; y ∈ Rd−1 , t ∈ R };
� the ‘frequency’ set is

P := (C+ × Rd−1)\(0, 0) = { (τ, η) �= (0, 0) ; τ ∈ C+ , η ∈ Rd−1 } ,

and its intersection with the unit sphere is P1 ={(τ, η)∈P; |τ |2 + ‖η‖2 = 1};
� the whole space–time–frequency set is

X := {X = (y, xd, t, η, τ) ; (y, xd, t) ∈ Y , (τ, η) ∈ P }
and X0

1 = X0 ∩ X1 with

X0 := {X = (y, 0, t, η, τ) ; (y, 0, t) ∈ ∂Y , (τ, η) ∈ P } ,

X1 := {X = (y, xd, t, η, τ) ; (y, xd, t) ∈ Y , (τ, η) ∈ P1 } .

Finally, for all X ∈ X, we denote

A(X) = − (Ad(x, t))−1 ( τ In + i A(x, t, η) ) .

Definition 9.3 A Kreiss’ symmetrizer for (9.1.5)(9.1.6) at some point X ∈ X

is a C∞ matrix-valued function r in some neighbourhood V of X in X, which is
associated with another C∞ matrix-valued function T , and such that

i) the matrix r(X) is Hermitian and T (X) is invertible for all X ∈ V ,
ii) there exists C > 0 independent of X ∈ V so that

Re ( r(X)T (X)−1A(X)T (X) ) ≥ C γ In , (9.1.16)

iii) and additionally, if X ∈ X0, there exist α > 0 and β > 0 independent of
X ∈ V so that

r(X) ≥ α In − β (B(y, t)T (X))∗B(y, t)T (X) . (9.1.17)
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Remark 9.2 The existence of a Kreiss symmetrizer at points in X\X0 is
obviously independent of the boundary conditions!

We focus here on how Kreiss’ symmetrizers generate boundary functional
symmetrizers (and thus the estimates in (9.1.14)). This part of the analysis was
not performed by Kreiss in [103]. It appeared later, in particular in [31], even
though not really stated in this way.

Theorem 9.1 Assume the matrices Aj and B are C∞ functions of (y, xd, t) ∈
Y and (y, t) ∈ ∂Y, respectively, and that they are constant outside a compact set.
If (9.1.5)(9.1.6) admits a Kreiss’ symmetrizer at any point of X1 then it admits
a (functional) boundary symmetrizer.

Proof Our first aim is to construct a global symmetrizer R(X) defined for all
X ∈ X and such that for some positive constant C̃

Re (R(X)A(X) ) ≥ C̃ γ In , X ∈ X , (9.1.18)

and for other positive constants α̃ and β̃

R(X) ≥ α̃ In − β̃ B(y, t)TB(y, t) , X ∈ X0 . (9.1.19)

Note that these inequalities look very much like microlocal versions of (9.1.10)
and (9.1.11), respectively, with Rγ(xd) of symbol R(·, xd, ·, ·, ·, γ). So a little
pseudo-differential calculus with parameter γ will enable us to conclude.

Suppose the matrices Aj and B are constant outside the open ball B(0;M).
By homogeneity in (τ, η) ∈ P and in (x, t) ∈ Y\B(0;M) of the inequalities in
(9.1.18) and (9.1.19), it is sufficient to construct R in K := X ∩ (B(0;M)× P1)
and then extend it by

R(x, t, η, τ) = R
(

M
(x, t)
‖(x, t)‖ ,

(η, τ)
‖(η, τ)‖

)
for all (x, t, η, τ) ∈ (Y\B(0;M))× P.

Now, the compact set K can be covered by a finite number of neighbourhoods
Vi, of points in X\X0

1 together with a finite number of neighbourhoods V 0
j ,

of points in X0
1, on which we have well-defined Hermitian matrices ri, r0

j , and
invertible matrices Ti, T 0

j satisfying the requirements of Definition 9.3. Let us
introduce a partition of unity associated with the covering {Vi,V 0

j }, that is
functions ϕi ∈ D(Vi; [0, 1]) and ϕ0

j ∈ D(V 0
j ; [0, 1]) satisfying the identity

∑
i

ϕi +
∑

j

ϕ0
j ≡ 1 .
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Then we define a global Kreiss’ symmetrizer on K by

R(X) :=
∑

i

ϕi(X) (Ti(X)−1)∗ ri(X)Ti(X)−1

+
∑

j

ϕ0
j (X) (T 0

j (X)−1)∗ r0
j (X)T 0

j (X)−1 .

Note that R(X) reduces to∑
j

ϕ0
j (X) (T 0

j (X)−1)∗ r0
j (X)T 0

j (X)−1

for X ∈ K ∩ X0. By construction, R(X) is always Hermitian.
Defining C as the minimum of the constants Ci and C0

j occurring in (9.1.16)
for ri and r0

j , we easily see that

Re (R(X)A(X) ) ≥ C γ S(X) ,

where the Hermitian matrix

S(X) :=
∑

i

ϕi(X) (Ti(X)−1)∗ Ti(X)−1 +
∑

j

ϕ0
j (X) (T 0

j (X)−1)∗ T 0
j (X)−1

is uniformly bounded by below, say by σ > 0 on the compact set K. Hence
(9.1.18) holds true with C̃ := σ C.

Similarly, taking α, respectively β, the minimum of the α0
j , respectively, the

maximum of the β0
j in the estimates (9.1.17) for r0

j , we obtain that for all v ∈ Cn

and all X ∈ K ∩ X0

v∗R(X) v ≥ α vT S(X) v − β ‖B(y, t) v‖2 .

This shows (9.1.19) with α̃ := σ α.
Once we have on hand the Hermitian matrices R(X) satisfying (9.1.18) and

(9.1.19), it is not difficult to construct a boundary symmetrizer in the sense of
Definition 9.1. By a slight abuse of notation, let us simply write R(xd) for the
function

(y, t, η, δ, γ) �→ R(y, xd, t, η, τ = γ + iδ) .

This is a symbol in the variables (y, t) with parameter γ and of degree 0.
Therefore, by Theorem C.6i), {Opγ(R(xd))}γ≥1 is a family of operators of order
0. We claim that

Rγ(xd) :=
1
2

(
Opγ(R(xd)) + Opγ(R(xd))∗

)
defines a functional boundary symmetrizer. Indeed, by Theorem C.6ii), {Rγ(xd)}
differs from {Opγ(R(xd))} by a family of order−1. By Remark C.2, this error can
be absorbed by the zero-order terms for γ large enough. Now, by the parameter
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version of G̊arding’s inequality (Theorem C.7), we deduce from (9.1.19) the
inequality

〈Rγ(0)u , u〉 + β ‖Bu‖2L2 ≥ α̃

4
‖u‖2L2

for γ large enough. The case of (9.1.18) is a little trickier, and requires the sharp
G̊arding’s inequality (Theorem C.8, in which the smoothness of coefficients is
crucial). Applying Theorem C.8 to the degree 1 symbol R(X)A(X) − C̃ γ In,
we infer from (9.1.18) that

Re 〈Rγ(xd)P γ(xd)u , u〉 ≥ C̃

4
γ ‖u‖2L2

for γ ≥ γ0 large enough. �
Remark 9.3 It is somewhat surprising that, on the one hand, a functional
boundary symmetrizer Rγ need only be defined for γ large enough and, on
the other hand, (local) Kreiss symmetrizers are considered up to points where
γ = Re τ is zero. The reason is twofold, in relation to both the homogeneity
and compactness arguments invoked in the proof of Theorem 9.1. Indeed, the
construction of Rγ for γ ≥ γ0 requires Kreiss symmetrizers at points (x, t, η, τ =
γ + iδ) with γ ≥ γ0 but not only: in fact, Kreiss symmetrizers are needed on
a compact subset P of the frequency set P containing all points of the form
(τ1, η1) = (τ, η)/‖(τ, η)‖ with (τ, η) ∈ P and Re τ ≥ γ0; letting ‖η‖ go to infinity,
we see that P must contain P1 and in particular points (τ1, η1) such that
Re τ1 = 0.

9.1.3 Construction of local Kreiss’ symmetrizers

We keep the notations of the previous section, and discuss the construction of
(local) Kreiss’ symmetrizers at points of X1. As already noted, Kreiss’ sym-
metrizers at points X = (y, xd, η, τ) with xd > 0 do not depend on the boundary
conditions: their construction will not necessitate any tricky assumption other
than the constant hyperbolicity of the operator L. Otherwise, for points in X0

1, we

may distinguish between the case Re τ > 0 (i.e. (τ, η) ∈
◦
P) and the case Re τ = 0,

the latter being much trickier than the former: at points of

X̆0 := {X = (y, 0, t, η, τ) ∈ X0
1 ; Re τ > 0 } ,

the existence of Kreiss’ symmetrizers relies on the Lopatinskĭı condition; at points
of X0

1\X̆0 it requires the (uniform) Kreiss–Lopatinskĭı condition.
Before going into detail, let us introduce some additional material. In what

follows, we denote

X̆ := {X = (y, xd, t, η, τ) ∈ X1 ; Re τ > 0 } .

The hyperbolicity of the operator L ensures that the matrix A(X) is hyperbolic –
in the sense of ODEs – for all X ∈ X̆: this observation dates back to Hersh [83] and
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has already been used in Chapter 4 for constant-coefficient problems. Therefore,
for all X ∈ X̆, we may consider the stable subspace of A(X), which we denote by
E−(X). By Dunford–Taylor’s formula, E− is locally smooth. More precisely, if
V is a small enough open subset of X̆, there exists a closed contour Γ enclosing
all eigenvalues of A(X) of negative real part for X ∈ V , and the formula

P−(X) :=
1

2 i π

∫
Γ

( z In − A(X) )−1 dz

defines a projector onto the stable subspace E−(X) such that Ker P−(X) is the
unstable subspace of A(X). Clearly, P− inherits the regularity of A: namely, it
is analytic in (η, τ) and C∞ in (x, t). The projector P− will be our basic tool to
construct Kreiss’ symmetrizers at points of X̆.

Remark 9.4 The above representation of E−(X) shows its dimension is locally
constant and thus independent of X in the connected set X̆. Observing that, at
X = (y, 0, t, 0, 1), the matrix A(X) reduces to

A(y, 0, t, 0, 1) = − (Ad(y, 0, t))−1 = (A(y, 0, t, ν(y, 0)))−1 ,

we see the stable subspace E−(y, 0, t, 0, 1) of A(y, 0, t, 0, 1) coincides with the
stable subspace Es(A(y, 0, t, ν(y, 0))). Consequently, if the rank p of B(y, t) is
known to be the dimension of Es(A(y, 0, t, ν(y, 0)), the dimension of E−(X) also
equals p for all X ∈ X̆.

The Lopatinskĭı condition

We call the Lopatinskĭı condition at some point X ∈ X̆0 the requirement that
the mapping B(y, t)|E−(X) : E−(X) → Rp be an isomorphism. This algebraic
condition is equivalent to an analytical condition on the homogeneous constant-
coefficients problem, say (Π(y,t)), obtained by freezing the coefficients at (y, 0, t)
in (9.1.5)(9.1.6) and by taking f = g = 0 as source terms. The mapping
B(y, t)|E−(X) turns out to be an isomorphism if and only if the problem (Π(y,t))
does not have any non-trivial solution with the following features: square integra-
bility in the direction orthogonal to the boundary; oscillations with wave vector η
in the direction of the boundary; exponential-type behaviour eτ · in time. Would
they exist, such solutions would be called normal modes. The equivalence between
the algebraic condition and the analytical one is a straightforward consequence
of the definition of E−(X), the stable subspace of the hyperbolic matrix A(X).

For B(y, t)|E−(X) : E−(X) → Rp to be an isomorphism, an obvious
necessary condition is dim E−(X) = p, which is true as soon as p =
dim Es(A(y, 0, t, ν(y, 0)) (see Remark 9.4 above). Once dim E−(X) = p is
known, it suffices to check that B(y, t)|E−(X) is one-to-one, a quantitative version
of this condition being

(LX) There exists C > 0 so that for all V ∈ E−(X), ‖V ‖ ≤ C ‖B(y, t)V ‖ .
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Clearly, (LX) is an open condition. In other words, the constant C is locally
uniform in X̆0. Furthermore, by homogeneity degree 0 of E−, the condition (LX)
is equivalent (with the same constant C) to (LX1), where X1 ∈ X̆0

1 is defined by
X1 = (y, 0, t, η1, τ1), (η1, τ1) = (τ, η)/‖(τ, η)‖ if X = (y, 0, t, η, τ).

Remark 9.5 As already observed in Remark 9.4 above, the stable sub-
space E−(y, 0, t, 0, 1) of A(y, 0, t, 0, 1) coincides with the stable subspace
Es(A(y, 0, t, ν(y, 0))). Therefore, the condition (LX) at X = (y, 0, t, 0, 1) requires
in particular that the intersection of kerB(y, t) and Es(A(y, 0, t, ν(y, 0)) be
zero. If we also know that the rank of B(y, t) equals the dimension of
Es(A(y, 0, t, ν(y, 0)), the normality condition in (9.0.1) is just a reformulation of
(L(y,0,t,0,1)): this is why there will be no need to mention (9.0.1) in the assump-
tions of the main theorems ((9.0.1) will be a consequence of those assumptions).
One may observe additionally that (L(y,0,t,0,1)) amounts to a one-dimensional
stability condition, in which no transversal modes (in eiηy) are considered.

The uniform Kreiss–Lopatinskĭı condition

The extension of (LX) to points X with Re τ = 0 looks the same but with
a careful definition of E−(X), no longer the stable subspace of A(X). For,
the matrix A(y, 0, t, η, τ) with Re τ = 0 is no longer hyperbolic in general.
This is where the so-called neutral modes come into play: by definition, the
time behaviour of neutral modes is eτ t with Re τ = 0; but in fact only those
modes with amplitude in E−(X) are to be considered, with E−(X) defined by
continuous extension of the projector P−(X) as E−(X) = Im(P−(X)).

Lemma 9.1 Assume the operator L is constantly hyperbolic, for all X ∈ X0\X̆0.
Then there exists a projector P−(X) of rank p such that

P−(X) = lim
X

X→X

P−(X) .

This innocent-looking result is highly non-trivial: observe indeed that in gen-
eral some eigenvalues of A(y, xd, t, η, τ) cross the contour Γ as Re τ approaches
zero. The proof for a constant-coefficients operator L is given in Chapter 5.
A careful look at the arguments shows that they remain valid for variable
coefficients. The details are left to the reader.

Remark 9.6 In general, for X = (y, 0, t, η, τ) ∈ X0 with Re τ = 0, the actual
stable subspace of A(X) is strictly embedded in E−(X), which also contains a
part of the center subspace of A(X).

Once the subspace E−(X) is properly defined at all points X ∈ X0, the
Lopatinskĭı condition at those points still reads as (LX).

Now, what we call the uniform Kreiss–Lopatinskĭı condition is merely the
following.

(UKL) The condition (LX) is satisfied for all X ∈ X0.



236 Variable-coefficients initial boundary value problems

Remark 9.7 The term uniform attached to Kreiss–Lopatinskĭı refers to the
fact that the constant C in (LX) may be chosen to be uniform in X0

1. Indeed,
for X = (y, 0, t, η, τ) ∈ X0

1, the constant C in (LX) depends continuously on
(y, t, η, τ), is independent of (y, t) outside a compact subset of Rd (provided that
L and B have constant coefficients outside a compact set) and (τ, η) lies in the
compact set P1.

Practical verification of (UKL)

The usual way to check whether (UKL) is satisfied consists in finding a basis
of E−(X), say (e1(X), . . . , ep(X)) (a classical argument of Kato [95], p. 99–101
implies that this basis can be chosen to depend smoothly on X) and in looking
for the zeroes of the so-called Lopatinskĭı determinant

∆(X) := det(B(y, t) e1(X), . . . , B(y, t) ep(X)) .

As a matter of fact, the mapping B(y, t)|E−(X) is an isomorphism if and only if
∆(X) �= 0 and therefore (UKL) is clearly equivalent to

∆(X) �= 0 ∀X ∈ X0 .

In practice, the Lopatinskĭı determinant ∆(X) is usually derived for X ∈
X̆0 first, and then extended by continuity to points X = (y, 0, t, η, τ) such that
Re τ = 0. However, we warn the reader that this limiting procedure requires
some care to avoid introducing fake zeroes. In any case, we claim the search for
zeroes of ∆ is mostly algebraic. See Section 4.6 for more details (and also Chapter
13.2.18 for an actual example).

Failure of (UKL)

If a zero of ∆ is found in X̆0, the well-posedness of the BVP (9.1.5)(9.1.6) is
hopeless: as was shown in Chapter 4 the existence of non-trivial normal modes
with Re τ > 0 is responsible for a Hadamard instability.

If ∆ does not vanish on X̆0 but has a zero (y, 0, t, η, τ) with Re τ = 0, we say
the BVP is weakly stable. The non-trivial kernel of B(y, t)|E−(y,0,t,η,τ) implies the
existence of non-trivial neutral modes, which oscillate as eτ t and are bounded
but not necessarily square-integrable transversally to the boundary: in this case
(UKL) fails but it is still possible to construct (weaker) Kreiss’ symmetrizers and
obtain energy estimates with (a limited) loss of derivatives; this goes beyond the
scope of this book and we refer to [41,170] for more details.

Construction of Kreiss’ symmetrizers

The hard part of the job is the construction of Kreiss’ symmetrizers for constant-
coefficients problems: In general, it involves an intricate piece of matrix analysis
and algebraic geometry, see Chapter 5; It is easier in the specific case of gas
dynamics, see Chapter 13. Using the constant-coefficients construction we can
indeed construct, for fixed (y, xd, t) ∈ Y, Hermitian matrices r(y, xd, t, η, τ)
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and invertible matrices T (y, xd, t, η, τ) satisfying the inequalities in (9.1.16) and
(9.1.17) for all (τ, η) ∈ P1.

The main thing to do here is to allow variations of (y, xd, t) and check the
smoothness of r and T with respect to (x, t). In fact, the careful construction
made in Chapter 5 is robust under perturbation of coefficients. We will not go
into details in all cases. For clarity, we just give the explicit construction in the
easiest cases, namely the first and second one in the following list.

i) At points of X̆1, Kreiss’ symmetrizers are easily found by a block reduction
of the matrix A(X) and the Lyapunov matrix theorem.

ii) At points X ∈ X1\X̆1 where the matrix A is smoothly diagonalizable –
which means there exist invertible matrices T (X) depending smoothly on
X in some neighbourhood of X such that T (X)−1A(X)T (X) is diagonal –
Kreiss’ symmetrizers exist in diagonal form.

iii) At ‘generic’ points of X1\X̆1, the construction of Kreiss’ symmetrizers is
undoubtedly cumbersome.

On the one hand, the smooth diagonalizability condition in ii) implies in
particular that the distinct eigenvalues of A(X) are smooth functions of X,
analytic in (η, τ), in some neighbourhood of X. On the other hand, iii) comprises
the so-called case of glancing points, where two (or more) eigenvalues of A(X)
collide, and is much more involved. It requires a specific assumption, named
by Majda the block-structure condition, which is now known to hold true for
any constantly hyperbolic system [134]. For the case of systems with variable
multiplicities, we refer to the recent work of Métivier and Zumbrun [135].

Remark 9.8 In gas dynamics, A(X) is smoothly diagonalizable at all points
except the glancing points, in such a way that case iii) reduces to those special,
glancing points, where the construction of a Kreiss’ symmetrizer is still rather
easy (see Chapter 13).

Construction of Kreiss symmetrizers in case i) Let us fix X ∈ X̆1 and a
neighbourhood V of X in X̆1 where the projector P−(X) onto E−(X) is well-
defined, while P+(X) := In − P−(X) is a projector onto the unstable subspace
E+(X) of A(X). Using Kato’s argument [95], we can find smooth bases of the
ranges of P−(X) and P+(X). (Here and in what follows, smooth always means
C∞ in (y, xd, t) and analytic in (τ, η).) Then the matrix T (X) composed of the
corresponding column vectors is invertible, depends smoothly on X ∈ V , and
reduces A(X) to a block-diagonal form:

a(X) := T (X)−1A(X)T (X) =
(
A−(X) 0

0 A+(X)

)
,

where A− only has a spectrum of negative real part and A+ only has a spectrum
of positive real part. We now invoke the following result, which is a variant of
the Lyapunov matrix theorem.
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Lemma 9.2 If A is a matrix whose spectrum entirely lies in the open half-plane

{ z ; Re z > 0 }
there exists a unique positive-definite Hermitian matrix H such that

Re (H A) = I .

Furthermore, H admits the explicit representation

H =
∫ 0

−∞
et A∗

et A dt .

As a consequence, if A depends smoothly on a parameter, so does H.

Applying Lemma 9.2 to A+(X) and −A−(X) we obtain two positive-definite
Hermitian matrices H+(X) and H−(X), depending smoothly on X ∈ V such
that

Re (H±(X)A±(X)) = ± I .

Let us now consider a matrix r(X) of the form

r(X) =
(
−H−(X) 0

0 µ H+(X)

)
,

with µ > 0 to be determined. By construction of H±,

Re (r(X) a(X)) =
(

I 0
0 µ I

)
.

So (9.1.16) is satisfied as soon as µ ≥ 1 (recall that for X ∈ X1, the last com-
ponent has a real part γ ≤ 1). This is all that we have to do if X is not in
X̆0. If X ∈ X̆0

1, the actual choice of µ will come from the fulfillment of (9.1.17).
By (UKL), up to diminishing V to a compact neighbourhood of X, we find a
constant C such that

‖P−(X)V ‖2 ≤ C
(
‖P+(X)V ‖2 + ‖B(y, t)V ‖2

)
for all V ∈ Cn ,

for all X ∈ V .

Because of the block structure of r(X), we have for all v =
(

v−
v+

)
∈ Cn

v∗ r(X) v = − v∗
− H−(X) v− + µ v∗+ H+(X) v+ ≥ ‖v−‖2 + b µ ‖v+‖2

− (1 + c) ‖v−‖2

with b > 0 such that H+ ≥ b I and c > 0 such that H− ≤ c I. Now, denoting
V = T (X) v we observe that

P−(X)V = T (X)
(

v−
0

)
, P+(X)V = T (X)

(
0
v+

)
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and thus

‖T (X)‖−1 ‖P±(X)V ‖ ≤ ‖v±‖ ≤ ‖T (X)−1‖ ‖P±(X)V ‖ .

Therefore

v∗ r(X) v ≥ ‖T (X)‖−2 ( ‖P−(X)V ‖2 + b µ ‖P+(X)V ‖2 )

−(1 + c) ‖T (X)−1‖2 ‖P−(X)V ‖2

≥ ‖T (X)‖−2
(
‖P−(X)V ‖2 + (bµ− C(1 + c)‖T (X)−1‖2)‖P+(X)V ‖2

)
−C (1 + c) ‖T (X)−1‖2 ‖B(y, t)V ‖2 .

So if µ is chosen greater than

µ0 := 2C (1 + c) max
X∈V

‖T (X)−1‖2/b ,

we have

v∗ r(X) v ≥ α ‖v‖2 − β ‖B(y, t)T (X) v ‖2

for

α =
1
2

min
X∈V

‖T (X)‖−2 min
(
1,

1
2

b µ0

)
and β =

1
2

b µ0 .

This proves the estimate in (9.1.17).

Construction of Kreiss symmetrizers in case ii) It basically works as in
the previous case, by passing to the limit in the projection operators. Thus we
still have an estimate of the form

‖P−(X)V ‖2≤C
(
‖P+(X)V ‖2 + ‖B(y, t)V ‖2

)
for all V ∈ Cn and X ∈ V ,

where V is a neighbourhood of X in X. Reducing A(X) to diagonal form

a(X) =
(
A−(X) 0

0 A+(X)

)
,

with A±(X) diagonal and

±Re A±(X) ≥ C γ I ,

we get (9.1.16), and also (9.1.17) for µ large enough, merely by setting

r(X) =
(
− I 0
0 µ I

)
.
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Construction of Kreiss symmetrizers in case iii) We refer to Chapter 5.
See also [31].

In conclusion, we have the following.

Theorem 9.2 Under the following assumptions:

� The operator L is constantly hyperbolic, that is, the matrices A(x, t, ξ) are
diagonalizable with real eigenvalues of constant multiplicities on Ω× R×
(Rd\{0});

� The boundary ∂Ω of Ω = {x ∈ Rd ; xd > 0} is non-characteristic, in that
the matrix Ad(x, t) is non-singular along ∂Ω× R,

� The boundary matrix B is of constant, maximal rank equal to the number
of incoming characteristics along ∂Ω× R, which are defined as the positive
eigenvalues of Ad (counted with multiplicity),

� The uniform Kreiss–Lopatinskĭı condition (UKL) is satisfied;

there exists a Kreiss’ symmetrizer (according to Definition 9.3) at any point of
X0

1.

As a consequence of this theorem together with Proposition 9.1 and Theorem
9.1 we have the following.

Theorem 9.3 Under the assumptions of Theorems 9.1 and 9.2, for all s ∈ R,
there exists γs ≥ 1 and Cs > 0 such that for all γ ≥ γs and u ∈D(Rd−1×R+×R),

γ ‖ũγ‖2L2(R+;Hs
γ(Rd)) + ‖ũγ | xd=0‖2Hs

γ(Rd)

≤ Cs

(
1
γ
‖Lγ ũγ‖2L2(R+;Hs

γ(Rd)) + ‖Bũγ | xd=0‖2Hs
γ(Rd)

)
,

where ũγ(x, t) = e−γt u(x, t) and ‖v‖Hs
γ(Rd) = ‖Λs,γv‖L2(Rd) .

Remark 9.9 It is also possible to derive estimates in weighted Sobolev spaces

H m
γ (Rd−1 × R+ × R) := {u = eγ t ũγ ; ũγ ∈ Hm

γ (Rd−1 × R+ × R) }

for m ∈ N. (Sometimes, we will use the (abuse of) notation eγt Hm
γ instead of

H m
γ .) Recalling that for functions of (y, t) ∈ Rd,

‖v‖2Hm
γ (Rd) �

∑
|α|≤m

γ2(m−|α|) ‖∂αv‖2L2(Rd) ,

(the sign � standing for two-sided inequalities with constants independent of γ
and v, see Remark C.1), hence also

‖e−γ t u ‖2Hm
γ (Rd) �

∑
|α|≤m

γ2(m−|α|) ‖e−γ t ∂αu‖2L2(Rd) ,
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it is natural to equip H m
γ (Ō), for any open domain O of Rn, with the norm

defined by

‖u‖2H m
γ (Ō) :=

∑
|α|≤m

γ2(m−|α|) ‖e−γ t ∂αu‖2L2(O) .

The result of Theorem 9.3 may be viewed as a L2(R+;H m
γ (Rd)) estimate:

γ ‖u‖2L2(R+;H m
γ (Rd)) + ‖u|xd=0‖2H m

γ (Rd) ≤ C

(
1
γ
‖Lu‖2L2(R+;H m

γ (Rd))

+ ‖Bu|xd=0‖2H m
γ (Rd)

)
.

In fact, this also implies a H m
γ (Rd−1 × R+ × R) estimate, as shown in the

following.

Corollary 9.1 Under the assumptions of Theorems 9.1 and 9.2, for all m ∈ N,
there exists γm ≥ 1 and Cm > 0 such that for all γ ≥ γm and u ∈ D(Rd−1 ×
R+ × R),

γ ‖u‖2H m
γ (Rd−1×R+×R) + ‖u|xd=0‖2H m

γ (Rd)

≤ Cm

(
1
γ
‖Lu‖2H m

γ (Rd−1×R+×R) + ‖Bu|xd=0‖2H m
γ (Rd)

)
.

Proof Since

‖u‖H 0
γ (Rd−1×R+×R) = ‖e−γtu‖L2(Rd−1×R+×R) ,

the case m = 0 is just a reformulation of the estimate in Theorem 9.3 (with
s = 0).

For m ≥ 1, recall that

‖u‖H m
γ (Rd−1×R+×R) =

∑
|α|≤m

γ2(m−|α|) ‖e−γ t ∂αu‖2L2(Rd−1×R+×R) .

We already have an estimate for the terms of this sum that do not involve
derivatives with respect to xd, for which αd = 0. It remains to bound the terms
for which αd ≥ 1. This is done by using the equality

e−γt ∂d u = (Ad)−1 (Lγ ũγ − γ ũγ − ∂tũγ −
d−1∑
j=1

Aj ∂j ũγ ) , (9.1.20)

which already implies the H 1
γ estimate. Indeed, we have

‖e−γt ∂d u‖L2(Rd−1×R+×R) ≤ C ′ ‖Lγ ũγ‖L2(Rd−1×R+×R) + C ′ ‖ũγ‖L2(R+;H1
γ(Rd)) ,

where C ′ > 0 depends only on ‖(Ad)−1‖L∞ and ‖Aj‖L∞ . Since

‖u‖2H 1
γ (Rd−1×R+×R) = ‖u‖2L2(R+;H 1

γ (Rd)) + ‖e−γt ∂d u‖2L2(Rd−1×R+×R) ,
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we get by using the L2(R+;H 1
γ (Rd)) estimate,

γ ‖u‖2H 1
γ (Rd−1×R+×R) + ‖u|xd=0‖2H 1

γ (Rd)

≤ C

γ
‖Lu‖2L2(R+;H 1

γ (Rd)) + C ‖Bu|xd=0‖2H 1
γ (Rd)

+
2C ′

γ
γ2 ‖e−γt Lu‖2L2(Rd−1×R+×R) + 2C ′γ ‖u‖2L2(R+;H 1

γ (Rd)),

hence, using again the L2(R+;H 1
γ (Rd)) estimate,

γ ‖u‖2H 1
γ (Rd−1×R+×R) + ‖u|xd=0‖2H 1

γ (Rd)

≤ max (C(1 + 2C ′), 2C ′)
1
γ
‖Lu‖2H 1

γ (Rd−1×R+×R)

+C(1 + 2C ′) ‖Bu|xd=0‖2H 1
γ (Rd) .

More generally, the H k
γ estimates for k ≤ m can be proved by induction, dif-

ferentiating the equality (9.1.20). Details are omitted (see the proof of Theorem
9.7, which even shows H m

γ estimates for less-smooth coefficients). �

9.1.4 Non-planar boundaries

Theorem 9.3/Corollary 9.1 have natural extensions to more general domains Ω.
At first, we may consider a domain Ω diffeomorphic to a half-space. Since a
change of variables preserves the constant hyperbolicity of the operator (see, for
instance, the proof of Theorem 2.10 in Chapter 2) and the non-characteristicness
of the boundary, we get an extended version of Theorem 9.3 (for s = 0) by
changing the other assumptions accordingly. In particular, the uniform Kreiss–
Lopatinskĭı condition has to do with points in the set

X0
1 := {X = (x, t, ξ, τ) ; (x, ξ) ∈ T ∗∂Ω , τ ∈ C+ , |τ |2 + ‖ξ‖2 = 1 } ,

where T ∗∂Ω is the cotangent bundle of ∂Ω. (We recall that τ ∈ C+ means Re τ ≥
0.) As done before, we denote by ν the exterior unit normal vector field on ∂Ω.
Then, for all X ∈ X0

1 we denote by E−(X) the stable subspace of

A(X) := A(x, t, ν(x))−1 ( τ In + i A(x, t, ξ) ) .

In this generalized framework, the condition (LX) reads as before:

(LX) There exists C > 0 so that for all V ∈ E−(X), ‖V ‖ ≤ C ‖B(y, t)V ‖ .

Theorem 9.4 We assume that Ω is diffeomorphic to a half-space. Other
assumptions are, the coefficients (in the operator L and in the boundary matrix
B) are constant outside a compact subset of Ω× R and furthermore:

(CH) The operator L is constantly hyperbolic;
(NC) The boundary ∂Ω is non-characteristic;



Energy estimates 243

(N) The boundary matrix B(x, t) is of constant, maximal rank p =
dim Es(A(x, t, ν(x))) for (x, t) ∈ ∂Ω× R;

(UKL) (LX) holds for all X ∈ X0
1.

Then there exists C > 0 such that for all u ∈ D(Ω× R) and all γ ≥ 1,

γ ‖ũγ‖2L2(Ω×R)
+ ‖ũγ‖2L2(∂Ω×R) ≤ C

(
1
γ
‖Lγ ũγ‖2L2(Ω×R)

+ ‖Bũγ‖2L2(∂Ω×R)

)
,

(9.1.21)

where ũγ(x, t) = e−γt u(x, t).

Proof If

Φ : Ω̄ → D = { x̃ ; x̃d ≥ 0 }
x �→ x̃ = Φ(x)

is a diffeomorphism then under the space–time change of variables Ψ : (x, t) �→
(Φ(x), t), the operator L becomes L̃ such that

(L̃ṽ)(x̃, t) = (Lv)(x, t)

for all (smooth enough) v = ṽ ◦Ψ. By the chain rule we easily see that

L̃ = ∂t +
d∑

j=1

Ãj∂
x̃j

,

where

Ãj(x̃, t) :=
d∑

k=1

∂xk
x̃j(x) Ak(x, t) for all j ∈ {1, . . . , d} .

Observing that

Ã( x̃, t, ξ̃ ) :=
∑

j

ξ̃j Ãj(x̃, t) = A(x, t, ξ)

with ξ = ξ̃ · dΦ(x) , i.e. ξk =
∑d

j=1 ξ̃j ∂xk
x̃j(x) for all k ∈ {1, . . . , d}

(so that ξ̃ ∈ T ∗
x̃
∂D), we claim that the stable subspace of

Ã(y, 0, t, η, τ) := − ( Ãd(y, 0, t) )−1

(
τ In + i

d−1∑
j=1

ηj Ãj(y, 0, t)

)

is the same as the stable subspace of

A(x, t, ξ, τ) = A(x, t, ν(x))−1 ( τ In + i A(x, t, ξ) )
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for x = Φ−1(y, 0) ∈ ∂Ω and ξ = (η, 0) · dΦ(x). Indeed, we have

Ã(y, 0, t, η, τ) = −
(

d∑
k=1

∂xk
x̃d(x) Ak(x, t)

)−1 (
τ In + i A(x, t, ξ)

)
,

and ∂x1 x̃d(x), . . . , ∂xd
x̃d(x) are, up to a positive factor, the components of −ν(x).

Therefore, the uniform Kreiss–Lopatinskĭı condition for the problem

L̃ũ = f̃ , B̃ũ = g̃

in the half-space { (y, z) ; z > 0 } is equivalent to the uniform Kreiss–Lopatinskĭı
condition stated above for the original problem

Lu = f , Bu = g

in Ω.
So a Boundary Value Problem in the domain Ω is fully equivalent to a Bound-

ary Value Problem in the half-space D, the latter satisfying the assumptions of
Theorem 9.3 if the former satisfies the assumptions of Theorem 9.4. And the L2

estimates for either one of the BVP are clearly equivalent. �
If Ω is a smooth relatively compact domain instead of being globally diffeo-

morphic to a half-space, the same result is true.

Theorem 9.5 Assume Ω is a relatively compact domain with C∞ boundary.
Then the energy estimate (9.1.21) in Theorem 9.4 is valid under the other
assumptions (CH), (NC), (N) and (UKL).

Proof The ideas are the same as in the proof of Theorem 9.4, except that we
use co-ordinate charts instead of a global diffeomorphism. Let (Uj)j∈{0,...,J} be
a covering of Ω by chart open subsets, with U0 ⊂ Ω, and consider (ϕj)j∈{0,...,J}
an associated partition of unity, that is, ϕj ∈ D(Uj) for all j and

∑J
j=0 ϕj ≡ 1 .

In what follows, we use the convenient notation �, which means ‘less than or
equal to a (harmless) constant times . . .’

On the one hand, by Theorem 2.13, which applies to the present case because
of our constant hyperbolicity assumption (see Theorems 2.3 and 2.2), there is a
γ0 > 0 so that for u ∈ D(Ω) and γ ≥ γ0

γ ‖e−γtϕ0 u ‖2
L2(Ω×R)

� 1
γ
‖e−γtL(ϕ0 u)‖2

L2(Ω×R)
.

Then, since the commutator [L , ϕ0 ] is of order 0, this implies

γ ‖e−γtϕ0 u ‖2
L2(Ω×R)

� 1
γ
‖e−γtLu‖2

L2(Ω×R)
+

1
γ
‖e−γtu‖2

L2(Ω×R)
.
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On the other hand, since each Uj , j ≥ 1 is diffeomorphic to a half-space,
Theorem 9.4 shows that

γ ‖e−γtϕj u ‖2
L2(Ω×R)

+ ‖e−γtϕj u ‖2L2(∂Ω×R)

� 1
γ
‖e−γtL(ϕj u)‖2

L2(Ω×R)
+ ‖e−γtBϕj u‖2L2(∂Ω×R)

� 1
γ
‖e−γtLu‖2

L2(Ω×R)
+

1
γ
‖e−γt u‖2

L2(Ω×R)
+ ‖e−γtB u‖2L2(∂Ω×R).

Summing all the inequalities obtained for j ∈ {0, . . . , J}, we get

γ ‖e−γt u ‖2
L2(Ω×R)

+ ‖e−γtu ‖2L2(∂Ω×R)

� 1
γ
‖e−γtLu‖2

L2(Ω×R)
+

1
γ
‖e−γt u‖2

L2(Ω×R)
+ ‖e−γt B u‖2L2(∂Ω×R) ,

hence the announced estimate for γ large enough. �

9.1.5 Less-smooth coefficients

Preparing the way for Chapter 11 on non-linear problems, we consider here initial
boundary value problems in which, similarly as in Theorem 2.4 for the Cauchy
problem, the matrices Aj and B depend not directly on (x, t) but on v(x, t),
with v Lipschitz continuous, and Aj and B are C∞ of w ∈ Rn (or w in an open
subset of Rn). For this purpose we are going to modify the rest of our notations
accordingly.

To simplify the presentation, we go back to the basic domain Ω = {x;xd > 0}.
Notations Introducing contractible open subsets of Rn, say W and W0 ⊂ W,
intended to contain, respectively, v(Ω̄) and v(∂Ω), we redefine in this section

X1 := {X = (w, η, τ) ∈ W× Rd−1 × C+ , |τ |2 + ‖η‖2 = 1 } ,

X0
1 := {X = (w, η, τ) ∈ W0 × Rd−1 × C+ , |τ |2 + ‖η‖2 = 1 } .

For all X = (w, η, τ) ∈ X1 such that Re τ > 0, E−(X) denotes the stable sub-
space of

A(X) := − (Ad(w))−1 ( τ In + i A(w, η, 0) ) ,

where A(w, ξ) :=
∑d

j=1 ξj Aj(w) for all (w, ξ) ∈ W× Rd, and E− is extended
by continuity to all points of X1. For a given Lipschitz continuous v, Lv stands
for the variable-coefficients differential operator

Lv := ∂t +
∑

j

Aj
v ∂j , where Aj

v(x, t) := Aj(v(x, t)) ,

and Bv stands for the variable-coefficients boundary matrix defined by

Bv(y, t) = B(v(y, 0, t))
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for all (y, t) ∈ Rd−1 × R . Finally, for any ω > 0 we denote by Vω the set of
Lipschitz continuous

v : Rd−1 × R+ × R → W

such that v is constant outside a compact subset, v|xd=0 takes its values in W0

and

‖v‖W 1,∞(Rd−1×R+×R)) ≤ ω .

Theorem 9.6 Given C∞ matrix-valued mappings Aj (j = 1, . . . , d) and B on
W and W0, respectively, our main assumptions are that

� the operator

∂t +
∑

j

Aj(w) ∂j

is constantly hyperbolic, that is, the matrices A(w, ξ) are diagonalizable
with real eigenvalues of constant multiplicities on W× (Rd\{0});

� the matrix Ad(w) is non-singular for all w ∈ W0;
� the matrix B(w) is for all w ∈ W0 of maximal rank equal to the number of
positive eigenvalues of Ad(w) (counted with multiplicity),

� the uniform Kreiss–Lopatinskĭı condition holds:

(UKL) for all X = (w, η, τ) ∈ X0
1, there exists C > 0 so that

‖V ‖ ≤ C ‖B(w)V ‖ for all V ∈ E−(X) .

Then there exists c = c(ω) > 0 and γ0 = γ0(ω) > 0 such that for all γ ≥ γ0, for
all v ∈ Vω, for all u ∈ D(Rd−1 × R+ × R), ũγ(x, t) := e−γt u(x, t) satisfies

γ ‖ũγ‖2L2(Rd−1×R+×R) + ‖(ũγ)|xd=0‖2L2(Rd−1×R)

≤ c
( 1

γ
‖(γ + Lv)ũγ‖2L2(Rd−1×R+×R) + ‖(Bvũγ)|xd=0‖2L2(Rd−1×R)

)
.

Proof We first rewrite the equation Lv u = f as

∂dũγ − P γ
v ũγ = (Ad

v)−1 f̃γ , P γ
v := − (Ad

v)−1 ( ∂t + γ +
d−1∑
j=1

Aj
v∂j ) .

Here the notation (Ad
v)−1 stands for

(x, t) �→ (Ad
v(x, t))−1 = (Ad(v(x, t))−1 .

Since the matrix (Ad
v(x, t))−1 is uniformly bounded by a constant depending

only on ω for v ∈ Vω, the problem amounts to proving that for all v ∈ Vω and
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all u ∈ D(Rd−1 × R+ × R)

γ ‖u‖2L2(Rd−1×R+×R) + ‖u|xd=0‖2L2(Rd−1×R) � 1
γ
‖f‖2L2(Rd−1×R+×R)

+ ‖g‖2L2(Rd−1×R) (9.1.22)

with f = ∂du − P γ
v u and g = Bv u|xd=0. In fact, it suffices to prove (9.1.22)

for the paralinearized expressions f = ∂du − T γ
Av

u, where Av(x, t, η, τ) :=
A(v(x, t), η, τ), and g = T γ

Bv
u|xd=0. Indeed, the error estimates in Theorem C.20

show that

‖P γ
v u − T γ

Av
u ‖L2 ≤ C(ω) ‖u‖L2 , γ ‖Bv u − T γ

Bv
u ‖L2 ≤ C(ω) ‖u‖L2 .

Consequently, if we have the estimate

γ ‖u‖2L2(Rd−1×R+×R) + ‖u|xd=0‖2L2(Rd−1×R)

�
(

1
γ
‖∂du − T γ

Av
u‖2L2(Rd−1×R+×R) + ‖T γ

Bv
u|xd=0‖2L2(Rd−1×R)

)
we also have, for γ large enough

γ ‖u‖2L2(Rd−1×R+×R) + ‖u|xd=0‖2L2(Rd−1×R)

�
(

1
γ
‖∂du − P γ

v u‖2L2(Rd−1×R+×R) + ‖Bv u|xd=0‖2L2(Rd−1×R)

)
.

The proof of the estimate for the para-linearized problem

∂du − T γ
Av

u = f , T γ
Bv

u|xd=0 = g

of course relies on Kreiss symmetrizers. But we must overcome the fact that
the sharp G̊arding inequality is not true for Lipschitz coefficients. This is
why we introduce after Chazarain and Piriou [31] a refined version of Kreiss
symmetrizers, which will allow us to use the standard G̊arding inequality.

Definition 9.4 Given C∞ functions

A : X → Mn(C)
X = (w, τ, η) �→ A(X)

and B : W0 → Mp×n(R)
w �→ B(w) ,

a refined Kreiss symmetrizer for A and B at some point X ∈ X1 is a matrix-
valued function r in some neighbourhood V of X in X1, which is associated with
another matrix-valued function T , both being C∞, and such that

i) the matrix r(X) is Hermitian and T (X) is invertible for all X ∈ V ,
ii) the matrix Re ( r(X)T (X)−1A(X)T (X) ) is block-diagonal, with blocks

h0(X) and h1(X) such that h0(X)/γ is C∞ and

Re ( h0(X) ) ≥ C γ Ip , Re ( h1(X) ) ≥ C In−p , (9.1.23)

for some C > 0 independent of X ∈ V
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iii) and additionally, if X ∈ X0, there exist α > 0 and β > 0 independent of
X ∈ V so that

r(X) ≥ α In − β (B(w)T (X))∗B(w)T (X) . (9.1.24)

End of the proof of Theorem 9.6. Our assumptions allow us to construct
local Kreiss symmetrizers r, which, moreover, satisfy the refined property in ii)
(see Section 9.1.3 for some hints and [31], pp. 381–390 for details): we shall point
out where this property is so important; besides this ‘technical’ point, the proof
of Theorem 9.6 follows a standard strategy, which we describe now.

For any v ∈ Vω, we may consider the mapping rv defined by rv(y, xd, t, η, τ) =
r(v(y, xd, t), η, τ) and extend it to a global symmetrizer Rv, homogeneous degree
0 in (η, τ) as in the proof of Theorem 9.1. The resulting matrix-valued function

Rv(xd) : (y, t, η, δ, γ) �→ Rv(y, xd, t, η, τ = γ + iδ)

may be viewed, for all xd, as a symbol in the variables (y, t) (with associated
frequencies (η, δ)) and parameter γ, which belongs to Γ0

1, the order 0 coming from
the homogeneity degree 0 in (η, τ) and the regularity index is 1 coming from the
fact that v, hence also Av and Bv, are Lipschitz in (y, t). By construction, Rv

satisfies inequalities

Rv(y, 0, t, η, τ) ≥ α In − β Bv(y, t)TBv(y, t), (9.1.25)

Re (Rv(y, xd, t, η, τ)Av(y, xd, t, η, τ) ) ≥ C γ In , (9.1.26)

for some constants α > 0, β > 0 and C > 0 depending only on the Lipschitz
bound ω for v. (We have not used the refined property in ii) yet.) Note also that
Rv is Lipschitz continuous in xd. We attempt a para-differential version of the
proof of Theorem 9.1/Proposition 9.1 by considering the family of operators

Rγ
v(xd) :=

1
2

(T γ
Rv(xd) + (T γ

Rv(xd))
∗) .

By construction, Rγ
v(xd) is a self-adjoint, bounded operator on L2(Rd,dy dt),

whose norm is bounded uniformly in xd and γ. This is true also for dRγ
v/dxd.

Additionally, by Theorem C.21 and Remark C.2,

‖Rγ
v(xd) − T γ

Rv(xd)‖B(L2) � 1
γ

.

Hence, the inequality in (9.1.25) together with the error estimates in Theorems
C.20 and C.22 and the G̊arding inequality in Theorem C.23 imply

〈Rγ
v(0)u(0) , u(0) 〉 + β Re 〈T γ

Bv
TBv

u(0) , u(0) 〉 ≥ α

2
‖u‖2L2(Rd,dy dt)

for γ large enough. (Here 〈·, ·〉 denotes the inner product on L2(Rd,dy dt).)
Assume for now that we also have

Re
∫
〈Rγ

v T γ
Av

u , u 〉 dxd ≥ γ
C

2
‖u‖2L2(Rd×R+,dy dt dxd) (9.1.27)



Energy estimates 249

(which can not be deduced from (9.1.26), as for the G̊arding inequality in
Theorem C.23 to apply to the degree 1 symbol Rγ

v Av it would require λγ,1

instead of γ in the right-hand side of (9.1.26)): then it is easy to complete the
proof of Theorem 9.6. Indeed, integrating in xd the equality

d
dxd

〈Rγ
v u , u 〉 = 〈 dRγ

v

dxd
u , u 〉 + 2Re 〈Rγ

v(∂du − T γ
Av

u) , u 〉

+ 2 Re 〈Rγ
v T γ

Av
u , u 〉 ,

we get

α

2
‖u(0)‖2L2(Rd) − β Re 〈T γ

Bv
TBv

u(0) , u(0) 〉

≤ (C2 + γ (εC1 − C) ) ‖u‖2L2(Rd×R+) +
C1

4εγ
‖f‖2L2(Rd×R+) .

In this inequality, the constants C1 and C2 come from bounds for Rγ
v(xd) and

dRγ
v/dxd, ε > 0 is arbitrary, and we have set f = ∂du − T γ

Av
u. Now, choosing

ε = C/(2C1), we obtain

α

2
‖u(0)‖2L2(Rd) + γ

C

4
‖u‖2L2(Rd×R+) ≤ β Re 〈T γ

Bv
TBv

u(0) , u(0) 〉

+
C2

1

2Cγ
‖f‖2L2(Rd×R+)

for all γ ≥ 4C2/C. Finally, using again Theorems C.21, C.22 and Remark C.2,
we arrive at

α

4
‖u(0)‖2L2(Rd) + γ

C

4
‖u‖2L2(Rd×R+) ≤ β ‖T γ

Bv
u(0)‖2L2(Rd)

+
C2

1

2Cγ
‖f‖2L2(Rd×R+)

for γ large enough. �

Proof of (9.1.27) This is where we are to make use of ii). Indeed, going back
to the construction of the global symmetrizer Rv (see the proof of Theorem 9.1),
we see it is of the form

Rv(x, t, η, τ) =
∑

j

Pj(X)∗ rj(X)Pj(X) ,

where the sum is finite, X = (v(x, t), η, τ = γ + iδ), and Pj(X) (=
ϕ(X)1/2 Tj(X)−1 with the notations of Theorem 9.1), rj(X) are homogeneous
degree 0 in (η, τ), with

∑
j P ∗

j Pj uniformly bounded by below. Additionally, the
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refined property in ii) for the rj shows that

Rv(x, t, η, τ)A(X) =
∑

j

Pj(X)∗
(

γ h0,j(X) 0
0 h1,j(X)

)
Pj(X) ,

with h0,j homogeneous degree 0, h1,j homogeneous degree 1 in (η, τ), satisfying
lower bounds (see (9.1.23))

Re (h0,j(X)) ≥ Cj Ipj
, Re (h1,j(X)) ≥ Cj λγ,1(η, δ) In−pj

.

Both these bounds are elligible for the G̊arding inequality (Theorem C.23), hence

Re 〈T γ
h0,j

u0,j , u0,j 〉 ≥
Cj

4
‖u0,j‖2L2 ,

i.e. Re 〈γ T γ
h0,j

u0,j , u0,j 〉 ≥ γ
Cj

4
‖u0,j‖2L2

for all u0,j with values in Cpj (upper block) and

Re 〈T γ
h1,j

u1,j , u1,j 〉 ≥
Cj

4
‖u1,j‖2H1/2 ≥ γ

Cj

4
‖u1,j‖2L2

for all u1,j with values in Cn−pj (lower block). Now the conclusion will follow
from standard error estimates. Indeed,

Re 〈Rγ
v T γ

Av
u , u 〉 ≥

∑
j

〈(
γ T γ

h0,j
0

0 T γ
h1,j

)
T γ

Pj
u , T γ

Pj
u

〉
− C ′ ‖u‖2L2

≥
∑

j

γ
Cj

4
‖T γ

Pj
u‖2L2 − C ′ ‖u‖2L2

by Theorems C.21, C.22 first and the inequalities obtained above, hence

Re 〈Rγ
v T γ

Av
u , u 〉 ≥ (C γ − C ′′ ) ‖u‖2L2

once more by Theorems C.21, C.22, Remark C.2 and the G̊arding inequality
(Theorem C.23, applied to the degree 0 symbol

∑
j P ∗

j Pj), which proves (9.1.27)
for large enough γ ≥ 2C ′′/C. �

It is possible to go further than the L2 estimates of Theorem 9.6 and
derive Sobolev estimates, provided that v enjoys some additional, though limited
regularity.

Theorem 9.7 In the framework of Theorem 9.6, assume, moreover, that W and
W0 contain zero and v is compactly supported, with v ∈ Hm(Rd−1 × R+ × R) and
v|xd=0 ∈ Hm(Rd−1 × R) for some integer m > (d + 1)/2 + 1 and

‖v‖Hm(Rd−1×R+×R)) ≤ µ , ‖v|xd=0‖Hm(Rd−1×R)) ≤ µ .
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Then there exists γm = γm(ω, µ) ≥ 1 and Cm = Cm(ω, µ) > 0 such that, for all
γ ≥ γm, for all u ∈ D(Rd−1 × R+ × R)

γ ‖u‖2H m
γ (Rd−1×R+×R) + ‖u|xd=0‖2H m

γ (Rd)

≤ Cm

(
1
γ
‖Lvu‖2H m

γ (Rd−1×R+×R) + ‖Bvu|xd=0‖2H m
γ (Rd)

)
.

Proof The idea is to prove first an estimate in L2(R+;H m
γ (Rd)) and then infer

the estimate in H m
γ (Rd−1 × R+ × R) by differentiation with respect to xd.

1) Tangential derivatives The L2(R+;H m
γ (Rd)) estimate will be deduced

from the result of Theorem 9.6 (regarded as a L2(R+;H 0
γ (Rd)) estimate) applied

to derivatives of u in the (y, t) directions. In order to estimate the ‘error terms’
we will also need the non-linear estimate in Theorem C.12, as well as the product
and commutator estimates in Theorem C.10 and Corollary C.2, or more precisely
their ‘parameter version’ (the proof of which is left as an exercise) stated in the
following.

Lemma 9.3

� For all q, r, s with r + s > 0 and q ≤ min(r, s), q < r + s− d/2, there exists
C > 0 so that for all a ∈ Hr and all u ∈ H s

γ ,

‖a u‖H q
γ
≤ C ‖a‖Hr ‖u‖H s

γ
.

� If m is an integer greater than d/2 + 1 and α is a d-uple of length |α| ∈
[1,m], there exists C > 0 such for all γ ≥ 1, that for all a in Hm and all
u ∈ H

|α|−1
γ ,

‖ e−γ t [ ∂α , a]u ‖L2 ≤ C ‖a‖Hm ‖u‖
H

|α|−1
γ

.

So, let us take a d-uple α = (α0, α
′) of length |α| ≤ m (with m > (d + 1)/2 + 1),

and denote

uα := ∂αu = ∂α0
t ∂α′

y u

for u ∈ D(Rd−1 × R+ × R). The L2(R+;H 0
γ (Rd)) estimate (Theorem 9.6)

applied to uα reads

γ ‖e−γt uα‖2L2(Rd−1×R+×R) + ‖e−γt (uα)|xd=0‖2L2(Rd−1×R)

≤ c
( 1

γ
‖e−γt Lvuα‖2L2(Rd−1×R+×R) + ‖e−γt (Bvuα)|xd=0‖2L2(Rd−1×R)

)
.

(9.1.28)

Our main task is to estimate the right-hand side in terms of f := Lvu, g :=
Bvu|xd=0, and ‘error terms’ depending on u, and check the error terms can be
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absorbed in the left-hand side. Let us denote fα := Lvuα and gα := (Bvuα)|xd=0

and begin with the easier case of gα. By definition we have

gα = ∂αg + [Bv, ∂α]u|xd=0 .

The estimate of the first part is trivial, and the estimate of the commutator will
obviously rely on Lemma 9.3. A slight difficulty arises here because, unlike v, Bv

is not Hm in general (recall that B(w) is of constant, generally non-zero rank
for w ∈ W0!). However, since v is Hm and compactly supported,

Bv = B0 + Cv , with Cv := Bv − B0 ∈ Hm

by Theorem C.12, and

‖Cv‖Hm(Rd) ≤ cm(‖v‖L∞) ‖v|xd=0‖Hm(Rd) .

Therefore

‖e−γt [Bv, ∂α]u|xd=0‖L2(Rd) = ‖e−γt [Cv, ∂α]u|xd=0‖L2(Rd)

≤ cm,0(ω, µ) ‖u|xd=0‖H
|α|−1

γ (Rd)

by Lemma 9.3, which implies

‖e−γt [Bv, ∂α]u|xd=0‖L2(Rd) ≤
1
γ

cm,0(ω, µ) ‖u|xd=0‖H
|α|

γ (Rd)
.

(It is the factor 1/γ that will enable us to absorb this contribution in the left-hand
side). This yields a constant c̃m,0 = c̃m,0(ω, µ) such that∑

|α|≤m

γ2(m−|α|) ‖e−γt gα‖2L2(Rd)

≤ c̃m,0(ω, µ)
(
‖g‖2H m

γ (Rd) +
1
γ2

‖u|xd=0‖2H m
γ (Rd)

)
.

The estimate of fα is a little trickier, because the coefficient of ∂d in Lv is the
nonconstant matrix-valued function A−1

d . For this reason we write fα in the
following twisted way:

fα = Ad
v ∂α( (Ad

v)−1 f ) + Ad
v [(Ad

v)−1 Lv, ∂α]u .

On the one hand, we have by definition of the H m
γ norm,

γm−|α| ‖e−γt Ad
v ∂α( (Ad

v)−1 f )‖L2(Rd−1×R+×R)

≤ ‖Ad
v‖L∞ ‖(Ad

v)−1 f‖L2(R+;H m
γ (Rd)) ,

and by Lemma 9.3 and Theorem C.12,

‖(Ad
v)−1 f‖L2(R+;H m

γ (Rd))

≤
(
‖(Ad

0)
−1‖ + am ‖v‖L2(R+;Hm(Rd))

)
‖f‖L2(R+;H m

γ (Rd))
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with am depending continuously on ‖v‖L∞ . On the other hand, the commutator
reads

[(Ad
v)−1 Lv, ∂α]u = [ (Ad

v)−1 , ∂α] ∂tu +
d−1∑
j=1

[ (Ad
v)−1 Aj

v , ∂α] ∂ju .

Therefore, applying again Lemma 9.3 and Theorem C.12 (using the same trick
as for B to deal with the fact that the matrices (Ad(0))−1 Aj(0) are non-zero),
we find a constant cm,1 depending only on ‖v‖L∞ and ‖v‖L2(R+;Hm(Rd)) such that

‖e−γt [(Ad
v)−1 Lv, ∂α]u‖L2(Rd−1×R+×R)

≤ cm,1 ‖(∂tu, ∂1u, . . . , ∂d−1u)‖
L2(R+;H

|α|−1
γ (Rd))

,

hence

‖e−γt [(Ad
v)−1 Lv, ∂α]u‖L2(Rd−1×R+×R) ≤ cm,1 ‖u‖L2(R+;H

|α|
γ (Rd))

.

So, finally, we find a constant c̃1,m = c̃1,m(ω, µ) such that∑
|α|≤m

γ2(m−|α|) ‖e−γt fα‖2L2(Rd−1×R+×R)

≤ c̃1,m

(
‖f‖2L2(R+;H m

γ (Rd)) + ‖u‖2L2(R+;H m
γ (Rd))

)
.

Consequently, summing on α the inequality (9.1.28) and using the estimates
of the right-hand side obtained here above we find that

γ ‖u‖2L2(R+;H m
γ (Rd)) + ‖u|xd=0‖2H m

γ (Rd)

≤ c̃
(

1
γ ‖f‖

2
L2(R+;H m

γ (Rd)) + ‖g‖2H m
γ (Rd) +

1
γ
‖u‖2L2(R+;H m

γ (Rd))

+
1
γ2
‖u|xd=0‖2H m

γ (Rd)

)
,

with c̃ = cmax(c̃0,m, c̃1,m), hence

γ ‖u‖2L2(R+;H m
γ (Rd)) + ‖u|xd=0‖2H m

γ (Rd)

≤ 2c̃
(

1
γ ‖Lvu‖2L2(R+;H m

γ (Rd)) + ‖Bvu|xd=0‖2H m
γ (Rd)

) (9.1.29)

for γ ≥
√

2c̃.

2) Normal derivatives Once we have (9.1.29), we readily infer a bound for
the L2 norm of e−γt∂du by writing

∂du = (Ad
v)−1

(
f − ∂tu +

d−1∑
j=1

Aj
v ∂ju

)
. (9.1.30)
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More generally, for any differentiation operator ∂α in the (y, t) direction only,
the d-uple α being of length |α| ≤ m− 1, writing

∂d∂
αu = (Ad

v)−1
(

fα − ∂t∂
αu +

d−1∑
j=1

Aj
v ∂j∂

αu
)

,

and using the estimate of fα := Lv ∂αu obtained in the first part, namely

γ2(m−|α|) ‖e−γt fα‖2L2(Rd−1×R+×R) � ‖f‖2L2(R+;H m
γ (Rd)) + ‖u‖2

L2(R+;H
|α|

γ (Rd))
,

(9.1.31)

together with the L2(R+;H m
γ (Rd)) estimate (9.1.29) we find that

γ ‖e−γt∂duα‖2L2(Rd−1×R+×R) � 1
γ ‖Lvu‖2L2(R+;H m

γ (Rd)) + ‖Bvu|xd=0‖2H m
γ (Rd) .

Finally, we can show by induction on k, differentiation of (9.1.30) and repeated
use of Lemma 9.3 (in dimension d + 1 instead of d), the estimate

γ ‖e−γt∂k
duα‖2L2(Rd−1×R+R) � 1

γ ‖Lvu‖2H m
γ (Rd−1×R+×R)) + ‖Bvu|xd=0‖2H m

γ (Rd) .

for all integer k and all d-uple such that k + |α| ≤ m. (The details are left
to the reader.) Summing all these inequalities with (9.1.29) we obtain the
H m

γ (Rd−1 × R+ × R) estimate announced. �

Remark 9.10 In the proof of Theorem 9.7 here above, we have used, in a
crucial way, the inequality

‖u‖H k−1
γ (Rd) � 1

γ
‖u‖H k

γ (Rd) ,

which either can be viewed as a straightforward consequence of the equivalence
‖u‖H k

γ (Rd) � ‖e−γt u‖Hk
γ (Rd) (independently of γ) and the inequality

‖v‖Hm−1
γ (Rd) ≤

1
γ
‖v‖Hm

γ (Rd) ,

or can be proved directly by using the definition

‖u‖H m−1
γ (Rd) =

∑
|α|≤m−1

γ2(m−1−|α|) ‖e−γt∂αu‖L2(Rd)

and the inequality

‖e−γtw‖L2(Rd) ≤
1
γ
‖e−γt∂tw‖L2(Rd) (9.1.32)

for w ∈ H 1
γ (Rd) = eγtL2(Rd). The latter can be proved in a completely

elementary way. Indeed, by integration by parts we have γ ‖e−γtw‖2L2 =
Re 〈e−γtw , e−γt∂tw〉, which implies (9.1.32) merely by the Cauchy–Schwarz
inequality. We point out this here because, when Rd is replaced by Rd × [0, T ]
(as we shall do later), the inequality (9.1.32) is no longer valid.
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9.2 How energy estimates imply well-posedness

As for the Cauchy problem, energy estimates can be used in a duality argument
to show the well-posedness of Initial Boundary Value Problems (IBVP). However,
this is far from being straightforward, as already seen in Chapter 4 in the
constant-coefficients case. The first step is to show the well-posedness of the
Boundary Value Problem, posed for t ∈ R in weighted spaces, with boundary
data for x ∈ ∂Ω. This is basically where the energy estimates/duality argument
are used. The second step deals with the well-posedness of the special, IBVP with
zero initial data, which we also call homogeneous IBVP (the term homogeneous
referring by convention to the initial data and not to the boundary data, contrary
to the terminology of Chapter 7). The final step concerns the general IBVP, with
compatibility conditions needed for the regularity of solutions.

Sections 9.2.1, 9.2.2 and 9.2.3 describe these steps successively, for smooth
coefficients. Section 9.2.4 will be devoted to coefficients with poorer regularity.

9.2.1 The Boundary Value Problem

The resolution of the Boundary Value Problem (BVP) relies on a duality
argument, which requires the definition of an adjoint BVP. We proceed as in
Section 4.4. We first observe that for smooth enough functions u and v,∫

Ω×R

( vT Lu − uT L∗ v) =
∫

Ω×R

∂t(vT u) +
∑

j

∂j(vT Aj u)

=
∫

∂Ω

∫
R

vT(x, t)A(x, t, ν(x))u(x, t) dµ(x) dt,

(where µ denotes the measure on ∂Ω) after integration by parts. We thus need
to decompose the matrix A(x, t, ν(x)) according to the boundary matrix B(x, t)
in order to formulate an adjoint BVP. This is the purpose of the following
abstract result, which can be applied to W := ∂Ω× R and, with a slight abuse
of notation, A(x, t) = A(x, t, ν(x)) (invertible if and only if our BVP is non-
characteristic).

Lemma 9.4 Given a smooth manifold W , assume that A ∈ C∞(W ;GLn(R))
and B ∈ C∞(W ;Mp×n(R)). If B is everywhere of maximal rank p and if kerB
admits a smooth basis, there exists N ∈ C∞(W ;M(n−p)×n(R)) such that

Rn = kerB ⊕ kerN

everywhere on W . Furthermore, there exist

C ∈ C∞(W ;M(n−p)×n(R)) and M ∈ C∞(W ;Mp×n(R))

such that

Rn = kerC ⊕ kerM , A = MT B + CT N , kerC = (A kerB)⊥

everywhere on W .
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Proof of (9.1.27) The row vectors (of length n) of B, b1, . . . , bp say are,
by assumption, C∞ functions on W . By assumption, there exists also a family
of independent vector-valued smooth functions (ep+1, . . . , en) spanning kerB
everywhere on W . Hence we have

kerB = Span(ep+1, . . . , en) = ( Span(b∗1, . . . , b
∗
p) )⊥ ,

and (b∗1, . . . , b
∗
p, ep+1, . . . , en) is a basis of Rn. The linear mapping

Rn → Rn−p,

which associates to any vector u ∈ Rn its (n− p) last components in that basis
is obviously one-to-one on kerB, and its matrix (in the ‘canonical’ bases of Rn

and Rn−p) is

N =
(

0 In−p

)
P−1 with P :=

(
b∗1 . . . b∗p ep+1 . . . en

)
.

By construction, the mapping w ∈ W �→ N(w) ∈ M(n−p)×n(R) is of class C∞.
Therefore, the square matrix

B :=
(

B
N

)
is invertible everywhere on W , and its inverse B−1 is a C∞ function on W .
Defining D and Y as the (n× p) and (n× (n− p)) blocks in B−1, in such a way
that (

Y D
) (B

N

)
=
(

B
N

) (
Y D

)
= In ,

we obtain M and C as

M = (AY )T and C = (AD)T .

By construction, M and C are C∞ on W . The remaining algebraic details are
left to the reader. �

Thanks to this lemma we have the identity∫
Ω×R

( vT Lu − uT L∗ v) +
∫

∂Ω×R

( (Mv)T (Bu) + (Nu)T (Cv) )

= 0 for all u , v . (9.2.33)

Furthermore, the (uniform) Lopatinski condition for the BVP (9.1.5) is equiva-
lent to the backward (uniform) Lopatinski condition for the adjoint BVP

(L∗u)(x, t) = f(x, t), x ∈ Ω , t ∈ R , (9.2.34)

(Cu)(x, t) = g(x, t), x ∈ ∂Ω , t ∈ R . (9.2.35)

Indeed, Theorem 4.2 in Chapter 4, is valid pointwisely in (x, t).
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We use below the following slight abuse of notation. For any (Hilbert) space H
of functions u of (x, t), eγt H stands for the space of functions u such that (x, t) �→
ũγ(x, t) = e−γt u(x, t) belongs to H. This will be used for H = Hs

γ(Rd), H =
L2(R+;Hs

γ(Rd)) and H = Hk(Rd × R+).
Our aim is to solve (9.1.5)(9.1.6) in eγt L2(R+;Hs

γ(Rd)) for s ≥ 0. For ‘small’
values of s (i. e. s ≤ d/2 + 1) the boundary condition (9.1.6) is to be understood
in the sense of traces, thanks to the following result attributed to Friedrichs.

Theorem 9.8 Assuming ∂Ω is non-characteristic for the operator L (whose
coefficients are supposed to be C∞, or even Lipschitz, functions of (x, t) that are
constant outside a compact subset of Ω× R), we consider the subspace

E = {u ∈ L2(Ω× R) ; Lu ∈ L2(Ω× R) }

equipped with the graph norm. Then D(Ω× R) is dense in E and the map

D(Ω× R) → D(∂Ω× R)
ϕ �→ ϕ|∂Ω×R

admits a unique continuous extension from E to H−1/2(∂Ω× R).

Proof For general domains Ω, the question reduces, through co-ordinate charts,
to the case of a hyperplane, see [31] for more details. For simplicity, we directly
assume that

Ω = {x ; xd > 0} .

Furthermore, multiplying L by (Ad)−1, we may assume without loss of generality
that the coefficient of ∂d in L is the identity matrix – by assumption (Ad)−1 is
smooth and uniformly bounded.

We first show the existence of a constant C so that for any ϕ ∈ D(Ω× R),

‖ϕ|∂Ω×R‖H−1/2(∂Ω×R) ≤ C ( ‖ϕ‖L2(Ω×R) + ‖Lϕ‖L2(Ω×R) ) .

Indeed, if 1 denotes the characteristic function of R+, we may associate to any
function u the function ud defined by ud(x, t) = u(x, t)1(xd). Then, by the
so-called jump formula

L(ϕd) = (Lϕ)d + ϕ|{xd=0} ⊗ δ{xd=0} .

Now, an easy calculation (using Fourier transform) shows that the H−1/2 norm
of ϕ|{xd=0} is proportional to the H−1 norm of ϕ|{xd=0} ⊗ δ{xd=0}. Therefore,
there exists C > 0 so that

‖ϕ|{xd=0}‖H−1/2 ≤ C ( ‖L(ϕd)‖H−1 + ‖(Lϕ)d‖H−1 )

≤ C (C ′ ‖ϕd‖L2 + ‖(Lϕ)d‖L2 ) = C (C ′ ‖ϕ‖L2 + ‖Lϕ‖L2 )

where C ′ is the norm of L as an operator L2 → H−1.
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To show the density of D(Ω× R) in E, we can restrict ourselves – by
standard cut-off – to the approximations of functions u ∈ E that are compactly
supported. Take a smooth kernel ρ ∈ C∞(Rd+1; R+) compactly supported in
{xd ≤ 0} such that

∫
Rd+1 ρ = 1 and consider the associated mollifier ρε(x) =

ε−d−1 ρ(x/ε, t/ε). We know that the convolution operator by ρε, say Rε, tends to
the identity in L2 when ε goes to 0. In particular, for any u ∈ E, Rε(ud) tends to
ud in L2(Rd+1) and thus ϕε := Rε(ud)|{xd>0} tends to u in L2(Ω× R). Since ρε

is supported in {xd ≤ 0}, the smooth function ϕε is also compactly supported
if u is so. It remains to show that Lϕε tends to Lu. But

Lϕε = (Rε ◦ L)(ud)|{xd>0} + [L , Rε ](ud)|{xd>0} .

By Theorem C.14 (which extends a classical lemma of Friedrichs [63] to Lipschitz
coefficients), the last term is known to tend to 0 in L2. Furthermore, since
L(ud) − (Lu)d is supported in {xd = 0} and ρε is supported in {xd ≤ 0}, the
first term equivalently reads

(Rε ◦ L)(ud)|{xd>0} = Rε((Lu)d)|{xd>0} ,

which does tend to Lu in L2(Ω× R). �
We are now in a position to prove the following, which covers both the

frameworks of Theorem 9.4 and Theorem 9.5.

Theorem 9.9 Assume that Ω is either (globally) diffeomorphic to a half-
space or a relatively compact domain with C∞ boundary. We also make the
usual assumptions (CH) (constant hyperbolicity of the operator L), (NC) (non-
characteristicity of the boundary ∂Ω with respect to L), (N) (normality of the
boundary data B) with the additional fact that kerB admits a smooth basis on
∂Ω× R and (UKL) (uniform Kreiss–Lopatinskĭı condition for (L,B) in Ω).

Then there exists γ0 ≥ 1 such that for all γ ≥ γ0, for all f ∈ eγt L2(Ω× R)
and all g ∈ eγt L2(∂Ω× R), there is one and only one solution u ∈ eγt L2(Ω× R)
of the Boundary Value Problem (9.1.5)(9.1.6). Furthermore, the trace of u on
∂Ω× R belongs to eγt L2(∂Ω× R), and ũγ = e−γtu enjoys an estimate

γ ‖ũγ‖2L2(Ω×R) + ‖(ũγ)|∂Ω×R‖2L2(∂Ω×R) ≤ c

(
1
γ
‖f̃γ‖2L2(Ω×R) + ‖g̃γ‖2L2(∂Ω×R)

)
(9.2.36)

for some constant c > 0 depending only on γ0. Furthermore, for all k ∈ N, there
exists γk ≥ γ0 such that, for all γ ≥ γk, for all f ∈ eγt Hk(Ω× R) and all g ∈
eγt Hk(∂Ω× R), the solution u of (9.1.5)(9.1.6) belongs to eγt Hk(Ω× R) and
its trace belongs to eγt Hk(∂Ω× R).

Note: The first part of the theorem is the extension to variable coefficients of
Lemma 4.8 in Chapter 4. The last part specifies the degree of regularity of the
solution for more regular data.



How energy estimates imply well-posedness 259

Proof As for the Cauchy problem, a technical difficulty lies in the fact that
the energy estimate is known a priori for solutions smoother than L2. More pre-
cisely, either Theorem 9.4 or Theorem 9.5 gives (9.1.21) for u ∈ D(Ω× R). This
implies (9.1.21) a priori only for u ∈ eγt H1(Ω× R): indeed, we can approach
u ∈ eγt H1(Ω× R) by some uε ∈ D(Ω× R) in such a way that uε goes to u in
eγt L2(Ω× R), (uε)|∂Ω×R tends to the trace of u in eγt L2(∂Ω× R), but also Luε

tends to Lu in eγt L2(Ω× R). In fact, it will turn out that (9.1.21) is met as
soon as u belongs to L2(Ω× R): this fact may be viewed as a consequence of the
regularity part of the theorem, which we admit for the moment. �
Uniqueness It is straightforward if we use the regularity part. For, by linearity
it suffices to prove that the only eγt L2 solution of the homogeneous problem

Lu = 0 on Ω× R , Bu = 0 on ∂Ω× R (9.2.37)

is 0. But if u ∈ eγt L2(∂Ω× R) solves (9.2.37), then u belongs to eγ1t H1(∂Ω× R)
(because 0 belongs to H1!) and therefore satisfies the energy estimate (9.2.36)
with γ ≥ γ1 and f ≡ 0, g ≡ 0, which of course implies u = 0 almost everywhere.

Existence It is shown by duality as in the constant-coefficients case (also see
Theorem 2.6 in Chapter 2 for the Cauchy problem). The details are slightly
different here because we have not proved yet the a priori estimate for L2 data.
Introduce the space

E := { v ∈ e−γ tH1(Ω× R) ; C v|∂Ω×R = 0 }

equipped with the norm

‖v‖γ := ‖eγt v‖L2(Ω×R) .

Similarly, to simplify the writing we denote here

|v|γ := |eγt v|L2(∂Ω×R) .

The energy estimate for the backward and homogeneous boundary value problem
associated with L∗ reads

γ ‖v‖2γ + |v|2γ ≤ c

γ
‖L∗ v‖2γ ,

for some c > 0 independent of both v and γ. In particular, it shows that L∗

restricted to E is one-to-one and thus enables us to define a linear form � on L∗E
by

�(L∗v) =
∫

Ω×R

vTf +
∫

∂Ω×R

(M v)T g ,
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satisfying the estimate

|�(L∗v)| ≤ ‖f‖−γ ‖v‖γ + ‖M‖L∞ |g|−γ |v|γ

�
( 1

γ
‖f‖−γ +

1
γ1/2

|g|−γ

)
‖L∗ v‖γ .

Therefore, by the Hahn–Banach theorem � extends to a continuous form on the
weighted space e−γ tL2(Ω× R), and by the Riesz theorem, there exists u in the
dual space eγ tL2(Ω× R) such that

�(L∗v) =
∫

Ω×R

uTL∗v .

Thanks to (9.2.33), this yields∫
Ω×R

vTLu +
∫

∂Ω×R

(M v)T Bu −
∫

Ω×R

vTf −
∫

∂Ω×R

(M v)T g = 0

for all v ∈ E . In particular, for v ∈ D(Ω× R), the boundary terms vanish and
we infer that Lu = f in the sense of distribution. Consequently, we have∫

∂Ω×R

(M ϕ)T Bu −
∫

∂Ω×R

(M ϕ)T g = 0

for all compactly supported C∞ function ϕ on the boundary ∂Ω× R such that
C ϕ = 0. Since at each point, M|KerC : Ker C → Cp is onto, and M has C∞

coefficients, this implies∫
∂Ω×R

ψT Bu −
∫

∂Ω×R

ψT g = 0

for all ψ ∈ D(∂Ω× R), hence the boundary condition Bu = g in the sense of
distributions.

Regularity A key ingredient is the following tricky result.

Theorem 9.10 (Chazarain–Piriou) Assume that the operator L and the bound-
ary operator B have C∞ coefficients, constant outside a compact subset of Ω× R,
that the boundary ∂Ω is non-characteristic for the operator L, and that the pair
(L,B) is endowed with the a priori estimate

γ ‖ϕ‖2
L2(Ω×R)

+ ‖ϕ|∂Ω‖2L2(∂Ω×R) ≤ c

(
1
γ
‖Lγϕ‖2

L2(Ω×R)
+ ‖Bϕ‖2L2(∂Ω×R)

)
(9.2.38)

for some c > 0 independent of γ ≥ γ0 and ϕ ∈ H1(Ω× R). Then for all integer
m ≥ −1, the four conditions

v ∈ Hm(Ω× R) ∩ L2(Ω× R) , Lγ v ∈ Hm+1(Ω× R) for all γ ≥ γm,
v|∂Ω×R ∈ Hm(∂Ω× R) , B v|∂Ω×R ∈ Hm+1(∂Ω× R) ,
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imply

v ∈ Hm+1(Ω× R) and v|∂Ω×R ∈ Hm+1(∂Ω× R) .

Note: in this statement, v|∂Ω×R is to be understood as the trace of v on ∂Ω× R,
as defined in Theorem 9.8, and belongs at least to H−1/2(∂Ω× R).

Admitting temporarily Theorem 9.10, we can easily complete the proof
of the regularity part in Theorem 9.9. For, if u ∈ eγt L2(Ω× R) is such that
Lu = f belongs to eγt L2(Ω× R) and Bu|∂Ω×R = g belongs to eγt L2(∂Ω× R),
Theorem 9.10 applied to m = −1 and v = ũγ readily implies u|∂Ω×R belongs
to eγt L2(∂Ω× R), as claimed. Now, if additionally f ∈ eγt H1(Ω× R) and g ∈
eγt H1(∂Ω× R), we can apply Theorem 9.10 to m = 0 and v = ũγ , and thus
obtain that u belongs to eγt H1(Ω× R) and its trace to eγt H1(∂Ω× R). By
induction, we thus show that u and its trace inherit exactly the Sobolev index
of f and g.

Energy estimate To complete the proof of Theorem 9.9 it remains to show
that the energy estimate in (9.2.36) is valid as soon as u belongs to eγtL2. To
prove this fact we can regularize the data f and g and use the regularity part of
Theorem 9.9 together with the uniqueness of solutions. For any f ∈ eγtL2(Ω×
R) and g ∈ eγtL2(∂Ω× R), there exist fε ∈ D(Ω× R) and gε ∈ D(∂Ω× R) such
that

e−γt fε
L2(Ω×R)−−−−−−→

ε→0
e−γt f , e−γt gε

L2(∂Ω×R)−−−−−−−→
ε→0

e−γt g .

For all ε, there exists uε ∈ eγtH1(Ω× R) with γ ≥ γ1 solving the regularized
problem

Luε = fε on Ω× R , Buε = gε on ∂Ω× R .

The energy estimate (9.2.36) is valid for the (smooth) difference (uε − uε′)
and thus shows that both (uε)ε>0 and ((uε)|∂Ω×R)ε>0 are Cauchy sequences,
in eγtL2(Ω× R) and eγtL2(∂Ω× R) respectively. Therefore, there exist u ∈
eγtL2(Ω× R) and u0 ∈ eγtL2(∂Ω× R) such that

‖e−γt (uε − u)‖L2(Ω×R) → 0 and ‖e−γt ((uε)|∂Ω×R − u0)‖L2(Ω×R) → 0

as ε goes to 0. By construction, Luε = fε converges to f = Lu in eγt L2(Ω×
R). Consequently, by Theorem 9.8 the trace uε|∂Ω×R converges to u|∂Ω×R in
eγt H−1/2(∂Ω× R), hence by uniqueness of limits in the sense of distributions,
u|∂Ω×R = u0. In the limit, we thus get Bu|∂Ω×R = g, and u solves the same
BVP as u. Therefore u = u and by passing to the limit in the energy estimate
(9.2.36) for uε, we obtain (9.2.36) for u. �

Remark 9.11 The previous regularization method and Corollary 9.1 applied
to uε, show (at least when Ω is a half-space) that there exists Ck > 0 so that
for f ∈ H k

γ (Ω× R) and g ∈ H k
γ (∂Ω× R) with γ ≥ γk, the solution u of the
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Boundary Value Problem (9.1.5)(9.1.6) satisfies

γ ‖u‖2H k
γ (Ω×R) + ‖u|xd=0‖2H k

γ (∂Ω×R)≤Ck

(
1
γ
‖f‖2H k

γ (Ω×R) + ‖g‖2H k
γ (∂Ω×R)

)
.

(9.2.39)

Proof of Theorem 9.10 (Note: In the case m = −1, the only thing to show
is that the trace of v belongs to L2(∂Ω× R).)

For general domains Ω, the proof should naturally involve co-ordinate charts,
and to some extent this would hide the heart of the matter. We prefer to give the
proof in the simpler case Ω = {x ; xd > 0 }, Ω× R being identified with Rd ×
R+ = { (y, t, xd) ; xd ≥ 0 }, and ∂Ω× R with Rd = { (y, t) }. The outline follows
the proof given by Chazarain and Piriou [31] in the case of smooth compact Ω,
save for co-ordinate charts.

A first useful remark is that it suffices to show v actually belongs to
L2(R+;Hm+1(Rd)). Indeed, Proposition 2.3 applied with xd instead of t shows
that v ∈ L2(R+;Hm+1(Rd)) and Lγv ∈ Hm(Rd × R+)) imply v ∈ Hm+1(Rd ×
R+).

Next, we are to use the following observation on Sobolev spaces.

Proposition 9.2 Take s ∈ R. If v ∈ Hs(Rd) and if there exists C > 0 so that

‖v‖s,θ :=
∫

Rd

(1 + ‖ξ‖2)s+1

1 + ‖θ ξ‖2 |v̂(ξ)|2 dξ ≤ C

for all θ ∈ (0, 1], then v belongs to Hs+1(Rd).

(This is a consequence of Fatou’s Lemma: take the lim inf of the inequality when
θ goes to 0.) So, showing additional regularity for v ∈ Hs amounts to finding a
uniform bound of ‖v‖s,θ. In this respect, one may try to use the left part of the
two-sided estimate given by the following technical result.

Proposition 9.3 Take s ∈ R, r > s + 1 and ρ ∈ D(Rd) such that

ρ̂(ξ) = O(‖ξ‖r)

in the neighbourhood of 0 and that ρ̂ does not vanish identically on any ray
{ t ξ ; t ∈ R+}, ξ �= 0. For ε > 0, we define

ρε : x �→ ε−d ρ(x/ε) ,

and consider Rε the convolution operator by ρε. Then there exist C and C ′ > 0
such that

C ‖v‖2s,θ ≤ ‖v‖2Hs(Rd) + ns,θ(v) ≤ C ′ ‖v‖2s,θ,

ns,θ(v) :=
∫ 1

0

‖Rε v‖2L2(Rd)ε
−2(s+1)

(
1 +

θ2

ε2

)−1 dε

ε
,

for all θ ∈ (0, 1] and all v ∈ Hs(Rd).
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(The proof is technical but elementary: it can be found in [31], Chapter 2. There
do exist kernels ρ satisfying all the requirements: take say σ ∈ D(Rd) such that∫

σ �= 0 and define, for instance, ρ = ∆r/2σ.) Another important preliminary
result is the following.

Theorem 9.11 If Rε is a smoothing operator as in Proposition 9.3, if P
(resp., B) is a differential operator of order 1 (resp., 0), with C∞ coefficients
that are constant outside a compact subset of Rd, there exists C ′′ > 0 such that∫ 1

0

‖[P , Rε] v‖2L2(Rd) ε−2(s+1)

(
1 +

θ2

ε2

)−1 dε

ε
≤ C ′′ ‖v‖2s,θ ,

∫ 1

0

‖[B , Rε] v‖2L2(Rd) ε−2(s+2)

(
1 +

θ2

ε2

)−1 dε

ε
≤ C ′′ ‖v‖2s,θ ,

for all θ ∈ (0, 1], all v ∈ Hs(Rd).

(These are specials cases of a general result on pseudo-differential operators,
the proof of which involves commutator decompositions and repeated use of
Proposition 9.3; see [31], Chapter 4.)

In particular, if (Ad)−1 is smooth and uniformly bounded, we may apply
Theorem 9.11 to

P (xd) = − (Ad)−1

(
∂t +

d−1∑
j=1

Aj∂j

)
,

which depends continuously on xd (viewed here as a parameter): this will give
an estimate for the operator Ld := (Ad)−1 L since [ Ld , Rε] = [−P , Rε]. And
applying Theorem 9.11 to B = (Ad)−1 will eventually give an estimate for the
operator

Ld
γ := (Ad)−1 Lγ = ∂z − P (xd) − γ (Ad)−1 ,

uniformly in γ.
Now, the characterization of Hs functions that are actually in Hs+1,

given by Proposition 9.2, the two-sided inequality provided by Proposition 9.3,
the commutator’s estimates given by Theorem 9.11, and the energy estimate
(9.2.38), altogether enable us to complete the proof of Theorem 9.10. Consider
v ∈ Hm(Rd × R+) ∩ L2(Rd × R+) such that Lγ v ∈ Hm+1(Rd × R+), v|xd=0 ∈
Hm(Rd) and B v|xd=0 ∈ Hm+1(Rd) for m ≥ −1, and define ϕε := Rε(v), where
Rε is a smoothing operator as in Proposition 9.3, in the variables (y, t) ∈ Rd. By
construction, the function ϕε belongs to L2(R+;H+∞(Rd)), and

Ld
γ ϕε = Rε Ld

γ ϕ + [Ld
γ , Rε]ϕ

belongs to L2(Rd × R+): for the first term we use the smoothness of (Ad)−1,
that Lγ ϕ is at least L2 and that Rε is a bounded operator on L2; for the
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commutator, we use that there are no derivatives with respect to xd and apply
Friedrichs Lemma ( [63], or Theorem C.14) in the (y, t) variables. Therefore,
applying again Proposition 2.3, with xd playing the role of t, we infer that ϕε

belongs to H1(Rd × R+), and we can apply the L2 estimate (9.2.38) to ϕε, which
reads

γ ‖ϕε‖2L2(Rd×R+) + ‖(ϕε)|xd=0‖2L2(Rd)

≤ c

(
1
γ
‖Lγϕε‖2L2(Rd×R+) + ‖B(ϕε)|xd=0‖2L2(Rd)

)
.

Multiplying by ε−2m−3

(
1 + θ2

ε2

)−1

, integrating in ε ∈ (0, 1], and using Theo-

rem 9.11 (with s = m and s = m− 1) we get a constant C > 0 such that

γ

∫ +∞

0

‖v‖2m,θ dxd + ‖v|xd=0‖2m,θ

≤ C

(
1
γ

∫ +∞

0

‖v‖2m,θ dxd + γ

∫ +∞

0

‖v‖2m−1,θ dxd

+ 1
γ

∫ +∞

0

nm,θ(Lγv(xd)) dxd + nm,θ(Bv|xd=0) + ‖v|xd=0‖2m−1,θ

)
,

For γ large enough the first term in the right-hand side can be absorbed in the
left-hand side. Therefore, applying Propositions 9.2 and 9.3, we get

γ

∫ +∞

0

‖v‖2m,θ dxd + ‖v|xd=0‖2m,θ

≤ C

(
1
γ
‖Lγv‖2L2(R+;Hm+1(Rd)) + ‖Bv|xd=0‖2Hm+1(Rd) + γ ‖v‖2L2(R+;Hm(Rd))

+ ‖v|xd=0‖2Hm(Rd)

)
.

The right-hand side being independent of θ, Proposition 9.2 thus shows that v
belongs to L2(R+;Hm+1(Rd)) and v|xd=0 belongs to Hm+1(Rd). This completes
the proof of Theorem 9.10. �

9.2.2 The homogeneous IBVP

Theorem 9.12 In the framework of Theorem 9.9, if f ∈ L2(Ω̄× [0, T ]) and
g ∈ L2(∂Ω× [0, T ]) the problem

Lu = f on Ω× (0, T ) , (9.2.40)

Bu = g on ∂Ω× (0, T ) , (9.2.41)

u|t=0 = 0 on Ω , (9.2.42)
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admits a unique solution u ∈ L2(Ω̄× [0, T ]). Furthermore, the trace u∂Ω×[0,T ]

belongs to L2(∂Ω× [0, T ]), and there exist γ0 and c > 0 depending only on ω so
that for all γ ≥ γ0,

γ ‖e−γt u‖2L2(Ω×(0,T )) + ‖e−γt u|∂Ω×[0,T ]‖2L2(∂Ω×(0,T ))

≤ c
(

1
γ ‖e−γt f‖2L2(Ω×(0,T )) + ‖e−γt g‖2L2(∂Ω×(0,T ))

)
.

(9.2.43)

Furthermore, if f ∈ Hk(Ω̄× [0, T ]) and g ∈ Hk(∂Ω× [0, T ]) with k ≥ 1 and
∂j

t f = 0, ∂j
t g = 0 at t = 0 for all j ∈ {0, . . . , k − 1}, then u belongs to Hk(Ω̄×

[0, T ]) and satisfies ∂j
t u = 0 at t = 0 for all j ∈ {0, . . . , k − 1}.

Remark 9.12

i) According to Theorem 9.8, the equality in (9.2.42) is meaningful at least
in H−1/2(Ω) for any square-integrable u satisfying (9.2.40) with f also
square-integrable.

ii) It will appear in the proof of Theorem 9.12 that solving the homogeneous
IBVP (9.2.40)–(9.2.42) for f ∈ L2(Ω̄× [0, T ]) and g ∈ L2(∂Ω× [0, T ]) is
equivalent to solving Lũ = f̃ on Ω× (−∞, T ) ,

Bũ = g̃ on ∂Ω× (−∞, T ) ,
ũ = 0 on Ω× (−∞, 0) ,

for f̃ ∈ L2(Ω̄× (−∞, T ]) and g̃ ∈ L2(∂Ω× (−∞, T ]) vanishing on (−∞, 0).

Proof To prove the existence of a solution u, we first extend f and g by zero
for t < 0 and t > T . The resulting functions, say f̆ and ğ, obviously belong to
eγt L2(Ω̄× R) and eγt L2(∂Ω× R), respectively, for any real number γ. Therefore,
we may apply Theorem 9.9 to f̆ and ğ as source term and boundary term,
respectively. This yields a solution ŭ ∈ eγ0t L2(Ω̄× R) of the boundary value
problem

Lŭ = f̆ on Ω× R , Bŭ = ğ on ∂Ω × R . (9.2.44)

By construction u := ŭ|t∈[0,T ] clearly satisfies (9.2.40) and (9.2.41). However, the
fact that u vanishes at t = 0 needs some verification.

Similarly as in the proof of Theorem 9.8, we denote by 1 the character-
istic function of R+, and for any function v, v0(x, t) = v(x, t)1(t). By that
theorem, where Ω× R is replaced by { (x, t) ; t > 0 } (whose boundary is non-
characteristic because of the hyperbolicity of L in the direction of t), we know
that ŭ admits a trace ŭ|t=0 ∈ H−1/2(Rd) and we have the jump formula

L(ŭ0) = (Lŭ)0 + ŭ|t=0 ⊗ δ{t=0} .
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So we will be able to conclude that ŭ|t=0 = 0 if we can show that L(ŭ0) = (Lŭ)0,
which will be the case if ŭ0 = ŭ. The latter equality equivalently means that
ŭt<0 = 0, which follows from the following support theorem.

Theorem 9.13 In the framework of Theorem 9.9, if f ∈ L2(Ω̄× R) and g ∈
L2(∂Ω× R) both vanish for t < t0, then the solution u of the boundary value
problem

Lu = f on Ω× R , Bu = g on ∂Ω× R

also vanishes for t < t0.

We postpone the proof of this result, and complete the proof of Theorem
9.12.

For the uniqueness of the solution u, we must show that the only solution in
L2 of the homogeneous problem

Lu = 0 on Ω× (0, T ) ,
Bu = 0 on ∂Ω× (0, T ) ,
u|t=0 = 0 on Ω ,

is the trivial solution 0. So assume u is a solution. Using the same notation as
before and again the jump formula we see u0 solves the problem

Lu = 0 on Ω× (−∞, T ) ,
Bu = 0 on ∂Ω× (−∞, T ) .

Now, we introduce a smooth cut-off function θ such that θ ≡ 1 on (−∞, τ ],
τ < T , and θ ≡ 0 on [T, +∞). Then both θ u0 and L(θ u0) belong to L2(Ω̄× R),
and the trace of B θu0 belongs to L2(∂Ω× R). Furthermore, L(θ u0) ≡ 0 and
B θ u0 ≡ 0 for t < τ . Hence by Theorem 9.13 again, θ u0 = 0 for t < τ . Since
this is true for all τ < T and θ u0 = u for t ∈ [0, τ ], we infer that u ≡ 0 (a.e) in
[0, T ), as expected.

So the unique solution of (9.2.40)–(9.2.42) is necessarily the one constructed
in the first step, i.e. u = ŭ|t∈[0,T ]. Therefore, the (weighted) localized L2 estimate
(9.2.43) for the homogeneous IBVP is a consequence of the weighted L2 estimate
(9.2.36) for the BVP, applied to ŭ.

Finally, the assumptions on the partial derivatives of f and g if f ∈ Hk(Ω̄×
[0, T ]) and g ∈ Hk(∂Ω× [0, T ]) show that they admit extensions as functions in
Hk(Ω̄× R) and Hk(∂Ω× R), respectively, which vanish for t < 0. By Theorem
9.9, the solution of the corresponding BVP belongs to Hk(Ω̄× R), and by
Theorem 9.13, its restriction to (−∞, T ]) depends only on f and g (and not
on their extensions for t > T ), so it coincides with the restriction of ŭ (solution
of (9.2.44) above) to (−∞, T ]): this implies ŭ|t<T ∈ Hk(Ω̄× (−∞, T ]), hence
u = ŭ|t∈[0,T ] ∈ Hk(Ω̄× [0, T ]), and the fact that ŭ|t<0 = 0 does imply that
∂j

t u = 0 at t = 0 for all j ∈ {0, . . . , k − 1}. �



How energy estimates imply well-posedness 267

Proof of Theorem 9.13 Without loss of generality, we may assume t0 = 0.
By assumption, f belongs to eγt L2(Ω̄× R) and g belongs to eγt L2(∂Ω× R)
for all γ > 0. So, by Theorem 9.9, for all n ∈ N, there exists a unique un ∈
eγnt L2(Ω× R) with γn = γ0 + n such that

Lun = f on Ω× R , Bun = g on ∂Ω× R ,

and by the energy estimate (9.2.36),

‖e−γnt un‖2L2 � 1
γ0
‖e−γ0t f‖2L2 + ‖e−γ0t g‖2L2 = : C2 .

Furthermore, we claim un is independent of n for large enough n. Indeed, consider
a C∞ function

θ : R → [0, 1]
t ≤ 0 �→ 1 ,
t > 1 �→ e−t .

Then, for all n, vn(x, t) := θ(t) (un+1 − un)(x, t) defines a function in
eγnt L2(∂Ω× R) such that

(L− θ′(t)/θ(t)) vn = 0 on Ω× R , Bvn = 0 on ∂Ω× R .

Therefore, by the uniqueness part of Theorem 9.9 applied to the operator
(L− θ′(t)/θ(t)) (the additional smooth, zero-order term being harmless), we find
that vn = 0 (for n large enough so that γn is larger than the γ0 corresponding
to the modified operator).

Then the fact that un = u vanishes for t < 0, is an easy consequence of the
uniform bound

‖e−γnt u‖L2 ≤ C .

Indeed, take ε > 0 and ϕ ∈ D(Ω× (−∞,−ε)). Then

|〈u , ϕ〉| ≤ ‖e−γnt u‖L2 ‖eγnt ϕ‖L2 ≤ C e− γn ε ‖ϕ‖L2 ,

which goes to zero when n → +∞. Therefore, u|t∈(−∞,−ε) ≡ 0 (a.e.) for
all ε > 0. �

9.2.3 The general IBVP (smooth coefficients)

As already pointed out in Chapter 4 for constant-coefficients problems, the
resolution of the Initial Boundary Value Problem (9.0.2)–(9.0.4) with non-zero
initial data u0 is not a direct consequence of previous results.

� A natural (or naive) approach to the general IBVP is to consider and solve
the Cauchy problem

Lv = 0 , v|t=0 = u0
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(with u0 extended by zero outside Ω) and then look for u = w + v with

Lw = f in Ω , Bw = g − Bv on ∂Ω , w|t=0 = 0 . (9.2.45)

Unfortunately, for L2 data f and u0, v is square-integrable in Ω but its trace
on ∂Ω has no reason to be also square-integrable (recall that by Theorem
9.8 it is a priori H−1/2), which obviously hinders the resolution of (9.2.45).

� An alternative is to consider as a preliminary problem not a Cauchy
problem but an Initial Boundary Value Problem of the form

Lv = 0 in Ω , B0v = 0 on ∂Ω , v|t=0 = u0 , (9.2.46)

no matter what B0 is, provided it yields a solution v with L2 trace on ∂Ω:
if we are able to solve (9.2.46) in such a way that v|∂Ω is in L2, then we
will be able to solve (9.2.45) in L2 (thanks to Theorem 9.12), hence also
the general IBVP (by taking u = w + v). In other words, the resolution
of the general IBVP relies on the resolution of a particular IBVP, with a
possibly different boundary matrix, with non-zero initial data u0 but with
zero source term f and zero boundary data g.

For the resolution of (9.2.46), a natural idea is to proceed as for the Cauchy
problem, by duality. In this respect, we need a pointwise estimate of the form

‖v(T )‖L2(Ω) ≤ eγ T ‖v(0)‖L2(Ω) , (9.2.47)

for γ large enough, independent of v ∈ C 1([0, T ];L2(Ω)) ∩ C ([0, T ];H1(Ω)) such
that

Lv = 0 in Ω , B0v = 0 on ∂Ω .

Deriving such an estimate was the main purpose of the paper by Rauch [162],
following his PhD thesis [161]. We shall not go into (thankless) details regarding
the derivation of (9.2.47) in general, for which we refer to [162]. But in the case
of a Friedrichs-symmetrizable operator L (as in [161]), the task is much easier:
proving (9.2.47) is a matter of integrations by parts and of suitable choice of the
boundary matrix B0, as we explain now.

Let us assume that L admits a Friedrichs symmetrizer S0, with

σ In ≤ S0 ≤ σ−1 In

for some positive σ. We take v ∈ C 1([0, T ];L2(Ω)) ∩ C ([0, T ];H1(Ω)) to ensure
that our computations are valid. If Lv = 0 then

d
dt

∫
Ω

v∗S0v = − 2
∫

Ω

∑
j

v∗S0A
j ∂jv +

∫
Ω

v∗(∂tS0) v

= −
∫

∂Ω

∑
j

νj v∗S0A
j v +

∫
Ω

v∗(∂tS0 +
∑

j

∂j(S0A
j)) v.
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If ∂Ω is non-characteristic, the matrix

S0(x, t)A(x, t, ν(x))

is hyperbolic along ∂Ω, which allows us to define B0(x, t) as the spectral
projection onto its stable subspace. If B0v = 0 on ∂Ω then

v(x, t)∗ S0(x, t)A(x, t, ν(x)) v(x, t) ≥ 0

hence
d
dt

∫
Ω

v∗S0v ≤
∫

Ω

v∗(∂tS0 +
∑

j

∂j(S0A
j)) v .

This implies, after integration,

‖v(t)‖L2 ≤ eγ t ‖v(0)‖L2

with

γ =
1
2σ

‖∂tS0 +
∑

j

∂j(S0A
j)‖L∞(Ω×(0,t)) .

Theorem 9.14 (Rauch) Under the assumptions of Theorem 9.2, there exists
γ0 ≥ 1 and C0 > 0 such that for all γ ≥ γ0, for all T > 0 and all u ∈ D(Rd−1 ×
R+ × [0, T ]),

e−2γT ‖u|t=T ‖2L2(Ω) + γ ‖e−γt u‖2L2(Ω×(0,T )) + ‖e−γt u|∂Ω‖2L2(∂Ω×(0,T ))

≤ C0

(
‖u|t=0‖2L2(Ω) +

1
γ
‖e−γt Lu‖2L2(Ω×(0,T ))+‖e−γt Bu|xd=0‖2L2(∂Ω×(0,T ))

)
.

Proof hints If (additionally) L is Friedrichs symmetrizable, a duality argument
and the counterpart of the energy estimate (9.2.43) for the adjoint homogeneous
IBVP easily yield the refined energy estimate as stated in Theorem 9.14 (for
details, see the proof of Theorem 9.19 below, which holds true for Lipschitz
coefficients). Without Friedrichs symmetrizability, the proof of Theorem 9.14 is
much more technical (and valid only for smooth coefficients). Rauch [162] first
derives a H d−1

γ estimate, by using a method due to G̊arding and Leray, then
an estimate of negative index for the adjoint problem, and finally shows how to
‘raise’ this estimate up to an L2 one.

Using Theorem 9.14 we can prove the L2-well-posedness of the general IBVP,
as stated below.

Theorem 9.15 In the framework of Theorem 9.9, for all f ∈ L2(Ω̄× [0, T ]),
g ∈ L2(∂Ω× [0, T ]), u0 ∈ L2(Ω̄), the problemLu = f on Ω× (0, T ) ,

Bu = g on ∂Ω× (0, T ) ,
u|t=0 = u0 on Ω ,
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admits a unique solution u ∈ L2(Ω̄× [0, T ]), which is such that u∂Ω×[0,T ] ∈
L2(∂Ω× [0, T ]). Furthermore, u belongs to C ([0, T ];L2(Ω̄)) and satisfies an
estimate of the form

‖u(T )‖2L2(Ω) + 1
T ‖u‖2L2(Ω×(0,T )) + ‖u|∂Ω×[0,T ]‖2L2(∂Ω×(0,T ))

≤ c
(
‖u0‖2L2(Ω) + T ‖f‖2L2(Ω×(0,T )) + ‖g‖2L2(∂Ω×(0,T ))

)
,

with c independent of u0, f , g, u and T .

Proof Once we have the energy estimate of Theorem 9.14, the proof of L2-well-
posedness follows a standard procedure, and works even for rough (Lipschitz)
coefficients. To avoid too much repetition, we refer to the proof of Theorem 9.19
below. �

Additional regularity and compatibility conditions

We recall that for the IBVP with zero initial data, Theorem 9.12 says solutions
are Hk for Hk source term f and Hk boundary data g, provided that

∂�
tf = 0 and ∂�

tg = 0 at t = 0 , for all � ∈ {0, . . . , k − 1} .

In fact, these conditions are not optimal: weaker conditions are sufficient to
ensure the Hk regularity of solutions, even for the general IBVP. These are
compabilitity conditions between the source term f , the boundary data g and the
initial data u0, looking rather complicated but easy to understand. For, if Lu = f
with u of class C p with respect to time and f of class C p−1, a straightforward
proof by induction shows that

∂q
t u =

q−1∑
�=0

(
q − 1

�

)
P� ∂q−1−�

t u + ∂q−1
t f ,

where P0 := ∂t + L = − ∑j Aj(x, t) ∂j and Pp := − ∑j(∂
p
t Aj)(x, t) ∂j for all

integer p ≥ 1; now if Bu = g on ∂Ω, Leibniz’ rule shows that

∂�
tg =

�∑
q=0

(
�

q

)
(∂�−q

t B) ∂q
t u .

Consequently, the compatibility conditions (necessary for such a u to exist) are

(CCp) the functions uq : x ∈ Ω̄ �→ uq(x) defined inductively by

uq(x) =
q−1∑
�=0

(
q − 1

�

)
P 0

� uq−1−�(x) + ∂q−1
t f(x, 0) for all q ∈ {1, . . . , p}
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are such that

∂�
tg(x, 0)

=
�∑

q=0

(
�

q

)
(∂�−q

t B)(x, 0) uq(x) for all x ∈ ∂Ω, and all � ∈ {1, . . . , p}.

Here above we have used the notation

P 0
� := −

∑
j

(∂�
tA

j)(x, 0) ∂j .

Theorem 9.16 (Rauch–Massey) In the framework of Theorem 9.15, if, more-
over, the initial data belongs to Hk(Ω̄), the source term f belongs to Hk(Ω̄×
[0, T ]), and the boundary data belongs to Hk+1/2(∂Ω× [0, T ]) for some integer
k ≥ 1, and if u0, f , g satisfy the compatibility conditions in (CCp) for all
p ∈ {0, . . . , k − 1}, then the solution u belongs to C r([0, T ];Hk−r(Ω̄)) for all
r ∈ {0, . . . , k}.

We omit the proof here; see [165].

Remark 9.13 If u0 ≡ 0 and if ∂�
tf(x, 0) = 0 for all � ∈ {1, . . . , k − 1}, the set

of compatibility conditions (CCp) for p ∈ {0, . . . , k − 1} reduce to

∂�
tg(x, 0) = 0 for all � ∈ {1, . . . , k − 1} ,

as expected.

9.2.4 Rough coefficients

The L2-well-posedness of the BVP is true as soon as the coefficients of both (the
principal part of) the operator and the boundary conditions are Lipschitz. More
precisely, we have the following result.

Theorem 9.17 In the framework and with the assumptions of Theorem 9.6,
with the additional fact that W0 is contractible, there exists γ0 = γ0(ω) ≥ 1 such
that for all γ ≥ γ0, for all v ∈ Vω, for all f ∈ eγt L2(Rd−1 × R+ × R) and all
g ∈ eγt L2(Rd−1 × R), there is one and only one solution u ∈ eγt L2(Rd−1 × R)
of the Boundary Value Problem

Lv u = f on {xd > 0} , Bv u = g on {xd = 0} . (9.2.48)

Furthermore, the trace of u at xd = 0 belongs to eγt L2(Rd−1 × R), and ũγ =
e−γtu enjoys an estimate

γ ‖ũγ‖2L2(Rd−1×R+×R) + ‖ũγ‖2L2(Rd−1×R) (9.2.49)

≤ c

(
1
γ
‖f̃γ‖2L2(Rd−1×R+×R) + ‖g̃γ‖2L2(Rd−1×R)

)
for some constant c > 0 depending only on ω.
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Proof As in Theorem 9.9 the existence part relies on a duality argument
using the adjoint BVP, which can still be defined thanks to Lemma 9.4: indeed,
substituting W0 to Ω we get C∞ mappings C, N , and M on W0 with values in
M(n−p)×n(R) and Mp×n(R), respectively, such that Rn = kerC(w) ⊕ kerM(w),

Ad(w) = M(w)T B(w) + C(w)T N(w) and kerC(w) = (Ad(w) kerB(w))⊥

for all w ∈ W0; hence the following identity∫
xd>0

( zT Lv u − uT (Lv)∗ z) +
∫

xd=0

( (Mvz)T Bvu + (Nvu)T Cvz) = 0

(9.2.50)

for all Lipschitz-continuous v such that v|xd=0 maps Rd−1 × R into W0 (and
consistently with the notation Bv, Cv := C ◦ v, Mv := M ◦ v and Nv := N ◦ v)
and for all u ∈ eγtH1(Rd−1 × R+ × R) and z ∈ e−γtH1(Rd−1 × R+ × R).

Note: Thanks to Theorem 9.8, the identity (9.2.50) still holds true when the
regularity of u is relaxed to

u ∈ eγtL2(Rd−1 × R+ × R) and Lvu ∈ eγtL2(Rd−1 × R+ × R)

(or symmetrically, if z ∈ e−γtL2(Rd−1 × R+ × R) and (Lv)∗ z ∈ eγtL2(Rd−1 ×
R+ × R), but u ∈ eγtH1(Rd−1 × R+ × R)). For completeness, we now explain
the duality argument (which merely parallels what has been done in the proof
of Theorem 9.9). Introduce the subspace of e−γt L2(Rd−1 × R+ × R)

E := { z ∈ D(Rd−1 × R+ × R) ; Cv z|xd=0 = 0 }
and denote for simplicity

‖z‖γ := ‖eγt z‖L2(Rd−1×R+×R) ,

|z|γ := |eγt z|L2(Rd−1×R) .

The energy estimate

γ ‖z‖2γ + |z|2γ ≤ c

γ
‖(Lv)∗ z‖2γ

(a consequence of Theorem 9.6 for the backward and homogeneous BVP associ-
ated with (Lv)∗) enables us to define a linear form � on (Lv)∗E by

�((Lv)∗z) =
∫

xd>0

zTf +
∫

xd=0

(Mv z)T g,

such that

|�((Lv)∗z)| ≤ ‖f‖−γ ‖z‖γ + ‖Mv‖L∞ |g|−γ |z|γ

�
( 1

γ
‖f‖−γ +

1
γ1/2

|g|−γ

)
‖(Lv)∗ z‖γ .
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By the Hahn–Banach Theorem � thus extends to a continuous form on the
weighted space e−γ tL2(Rd−1 × R+ × R), which shows by the Riesz Theorem the
existence of u in the dual space eγ tL2(Rd−1 × R+ × R) such that

�((Lv)∗z) =
∫

xd>0

uT(Lv)∗z

for all z ∈ E . In particular, this implies by definition of � on (Lv)∗E that for all
z ∈ D(Rd−1 × (0,+∞)× R),∫

xd>0

( fT z − uT (Lv)∗z ) = 0 ,

hence Lv u = f in the sense of distributions. Therefore, Lvu ∈ eγtL2(Rd−1 ×
R+ × R) and we may apply the identity (9.2.50). This yields∫

xd=0

(Mvz)T (Bvu − g ) = 0

for all z ∈ E , hence also∫
xd=0

(Mv ϕ)T (Bvu − g ) = 0

for all compactly supported C∞ function ϕ on the boundary Rd−1 × R such
that Cv ϕ ≡ 0. Since at each point w ∈ W0, the linear mapping M(w)|KerC(w) :
Ker C(w) → Cp is onto, and v|xd=0 : Rd−1 × R → W0 is Lipschitz-continuous,
this implies

〈ψ , Bvu − g 〉 = 0

for all ψ ∈ e−γt H1/2(Rd−1 × R), hence the boundary condition Bvu = g holds
true in eγtH−1/2(Rd−1 × R).

In this way we have obtained a weak solution u ∈ eγ tL2(Rd−1 × R+ × R) of
our BVP. The next step is a so-called weak=strong argument, showing that all
eγ tL2 solutions are in fact limits of smooth solutions of regularized problems.
This will imply in particular the validity of the estimate of Theorem 9.6 for any
eγ tL2 solution, hence the uniqueness.

We take a standard mollifier in the (y, t) variables ρε, and Rε the associated
convolution operator, and define

uγ
ε = Rεe−γ tu , F γ

ε = Rε(Ad
v)−1e−γ tf , gγ

ε = Rεe−γ tg .

For all ε > 0, gγ
ε belongs to H+∞(Rd × R) and goes to g̃γ = e−γ tg in L2(Rd × R)

as ε goes to zero, and F γ
ε belongs to L2(R+;H+∞(Rd × R)) and goes to F̃γ =

(Ad
v)−1e−γ tf in L2(R+;L2(Rd × R)). Similarly, uγ

ε belongs to L2(R+;H+∞(Rd ×
R)) and goes to ũγ = e−γ tu in L2(R+;L2(Rd × R)), while (uγ

ε )|xd=0 belongs to
H+∞(Rd × R) and goes to (ũγ)|xd=0 = e−γ tu|xd=0 in H−1/2(Rd × R).
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If we can show additional regularity of uγ
ε in the xd variable, we will be

allowed to apply the energy estimate of Theorem 9.6 to uγ
ε and pass to the limit

to obtain the estimate for ũγ . This will be possible thanks to the following result
on commutators, which is a straightforward consequence of Theorem C.14 and
Remark C.6, stated here as a lemma only for convenience.

Lemma 9.5 With the notations defined above and, as in the proof of
Theorem 9.6,

P γ
v := − (Ad

v)−1
(
∂t + γ +

d−1∑
j=1

Aj(v(x, t)) ∂j

)
we have

lim
ε→0

‖ [P γ
v , Rε] e−γ tu ‖L2 = 0 and lim

ε→0
‖ [Bv, Rε] e−γ tu|xd=0 ‖L2 = 0 .

Going on with the proof of Theorem 9.17, we claim that uγ
ε belongs to H1(Rd ×

R+ × R). Indeed, we have

∂du
γ
ε = F γ

ε + P γ
v uγ

ε − [P γ
v , Rε] e−γ tu ,

where the first two terms belong to L2(R+;H+∞(Rd × R)) and the third one
is bounded in L2(R+;L2(Rd × R)) (as a byproduct of the first limit in Lemma
9.5), so that ∂du

γ
ε is in L2, as well as the other derivatives ∂ju

γ
ε . Consequently,

by density of D(Rd × R+ × R) in H1(Rd × R+ × R), this allows us to apply the
inequality in (9.1.22) to uγ

ε − uγ
ε′ , hence

γ ‖uγ
ε − uγ

ε′ ‖2L2(Rd−1×R+×R) + ‖(uγ
ε − uγ

ε′)|xd=0‖2L2(Rd−1×R)

� 1
γ
‖(∂d − P γ

v )(uγ
ε − uγ

ε′)‖2L2(Rd−1×R+×R) + ‖Bv (uγ
ε − uγ

ε′)|xd=0‖2L2(Rd−1×R),

� 1
γ
‖F γ

ε − F γ
ε′ ‖2L2(Rd−1×R+×R) +

1
γ
‖[P γ

v , Rε −Rε′ ] e−γ tu‖2L2(Rd−1×R+×R)

+ ‖gγ
ε − gγ

ε′ ‖2L2(Rd−1×R) + ‖[Bv, Rε −Rε′ ] e−γ tu|xd=0‖2L2(Rd−1×R) .

By Lemma 9.5 here above, the commutator terms tend to zero as ε and ε′ go to
zero, and the other terms tend to zero as well, as noticed at the beginning. This
shows that (uγ

ε )ε>0 and ((uγ
ε )|xd=0)ε>0 are Cauchy sequences in L2(Rd × R+ × R)

and L2(Rd × R), respectively, which we already knew for the former but not for
the latter: the convergence of traces was a priori known in H−1/2(Rd × R); by
uniqueness of limits in the sense of distributions, this shows that (ũγ)|xd=0 is
the limit of ((uγ

ε )|xd=0)ε>0 also in L2(Rd × R). So by passing to the limit in the
inequality in (9.1.22) for uγ

ε , which reads

γ ‖uγ
ε‖2L2(Rd−1×R+×R) + ‖(uγ

ε )|xd=0‖2L2(Rd−1×R)

� 1
γ
‖(∂d − P γ

v )uγ
ε‖2L2(Rd−1×R+×R) + ‖Bv (uγ

ε )|xd=0‖2L2(Rd−1×R) ,
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we obtain the same inequality for ũγ , hence (9.2.49) thanks to the boundedness
of (Ad

v)−1. �

Once we have Theorem 9.17 we can prove the L2-well-posedness of the IBVP
with zero initial data exactly as in the case of smooth coefficients (Theorem 9.12):
as a matter of fact, the smoothness of coefficients does not play any role in the
proof of the support theorem (Theorem 9.13), and thus the proof of Theorem 9.12
still works for Lipschitz coefficients, hence the following well-posedness result for
the homogeneous IBVP.

Theorem 9.18 With the assumptions of Theorem 9.6, for all f ∈ L2(Rd−1 ×
R+ × [0, T ]) and g ∈ L2(Rd−1 × [0, T ]), for all Lipschitz-continuous

v : Rd−1 × R+ × [0, T ] → W ,

constant outside a compact subset and such that v|xd=0 takes its values in W0,
there exists a unique u ∈ L2(Rd−1 × R+ × [0, T ]) solution of the IBVP

Lvu = f for xd > 0 , t ∈ (0, T ) and Bvu|xd=0 = g , u|t=0 = 0 .

Furthermore, u|xd=0 belongs to L2(Rd−1 × [0, T ]) and there exist γ0 > 0 and c >
0, depending only on ‖v‖W 1,∞(Rd−1×R+×[0,T ])) such that for all γ ≥ γ0,

γ ‖e−γt u‖2L2(Rd−1×R+×[0,T ]) + ‖e−γt u|xd=0‖2L2(Rd−1×[0,T ])

≤ c
(

1
γ ‖e−γt f‖2L2(Rd−1×R+×[0,T ]) + ‖e−γt g‖2L2(Rd−1×[0,T ])

)
.

(9.2.51)

For the general IBVP we need timewise bounds, which are not easy to
obtain (see Section 9.2.3 regarding smooth coefficients). When coefficients are
just Lipschitz-continuous, the only known result is due to Métivier [136] and
assumes Friedrichs symmetrizability.

Theorem 9.19 (Métivier) With the assumptions of Theorem 9.6 and the addi-
tional one that the operator L is Friedrichs symmetrizable, for all f ∈ L2(Rd−1 ×
R+ × [0, T ]), g ∈ L2(Rd−1 × [0, T ]), u0 ∈ L2(Rd−1 × R+), for all Lipschitz-
continuous

v : Rd−1 × R+ × [0, T ] → W ,

constant outside a compact subset and such that v|xd=0 takes its values in W0,
the problem Lvu = f for xd > 0 , t ∈ (0, T ) ,

Bvu|xd=0 = g for t ∈ (0, T ) ,
u|t=0 = u0 for xd > 0 ,

(9.2.52)

admits a unique solution u ∈ L2(Rd−1 × [0, T ]), which is such that u∂Ω×[0,T ] ∈
L2(Rd−1 × [0, T ]). Furthermore, u belongs to C ([0, T ];L2(Rd−1 × R+)) and
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satisfies an estimate of the form

‖u(T )‖2L2(Rd−1×R+) + 1
T ‖u‖2L2(Rd−1×R+×[0,T ]) + ‖u|xd=0‖2L2(Rd−1×[0,T ])

≤ c
(
‖u0‖2L2(Rd−1×R+) + T ‖f‖2L2(Rd−1×R+×[0,T ]) + ‖g‖2L2(Rd−1×[0,T ])

)
,

(9.2.53)

with c depending only on ‖v‖W 1,∞(Rd−1×R+×[0,T ]).

Proof There are basically three (unequal) steps: 1) improve Theorem 9.18 by
showing the solution of the homogeneous IBVP is continuous in time and satisfies
a refined version of (9.2.51), namely

e−2γT ‖u|t=T ‖2L2(Rd−1×R+) + γ ‖e−γt u‖2L2(Rd−1×R+×[0,T ])

+ ‖e−γt u|xd=0‖2L2(Rd−1×[0,T ])

≤ c
( 1

γ
‖e−γt f‖2L2(Rd−1×R+×[0,T ]) + ‖e−γt g‖2L2(Rd−1×[0,T ])

)
;

2) handle the IBVP with ‘regularized’ initial data u0 ∈ H1(Rd) ;
3) conclude by a density argument for initial data u0 ∈ L2(Rd).

Step 1) Recall that the solution given by Theorem 9.18 is u = ŭ|[0,T ], where
ŭ is the solution of the BVP

Lvŭ = f̆ , Bvŭ|xd=0 = ğ ,

with f̆ and ğ being extensions by zero for t < 0 or t > T , of f and g, respectively.
Furthermore, the ‘weak=strong argument’ in the proof of Theorem 9.17 shows
if Rε is a regularization operator in the (y, t) directions,

uγ
ε := Rεe−γtŭ −→ e−γtŭ in L2(Rd−1 × R+ × R),

(uγ
ε )|xd=0 → e−γtŭ|xd=0 in L2(Rd−1 × R),

F γ
ε := Rεe−γt(Ad

v)−1 f̆ → e−γt(Ad
v)−1 f̆ in L2(Rd−1 × R+ × R),

gγ
ε := Rεe−γtğ → e−γtğ in L2(Rd),

with uγ
ε ∈ L2(R+;H+∞(Rd)), F γ

ε ∈ L2(R+;H+∞(Rd)), gγ
ε ∈ H+∞(Rd), and

additionally uγ
ε ∈ H1(Rd−1 × R+ × R). Assume for a moment the refined energy

estimate for the homogeneous IBVP, i.e. for all γ large enough, for all τ ∈ R and
all w ∈ H1(Rd−1 × R+ × R) such that w|t<0 ≡ 0,

e−2γτ‖w(τ)‖2L2(Rd−1×R+)

+ γ ‖e−γtw‖2L2(Rd−1×R+×[0,τ ]) + ‖e−γtw|xd=0‖2L2(Rd−1×[0,τ ])

≤ c′
(

1
γ ‖e−γtLvw‖2L2(Rd−1×R+×[0,τ ]) + ‖e−γtBvw‖2L2(Rd−1×[0,τ ])

)
.

(9.2.54)



How energy estimates imply well-posedness 277

Then, applying it to w = eγt (uγ
ε − uγ

ε′) and using Lemma 9.5 to deal with com-
mutators, we easily show (uγ

ε )|t∈[0,T ] is a Cauchy sequence in C ([0, T ];L2(Rd−1 ×
R+)) when ε goes to zero, hence has a limit in that Banach space, and that this
limit must be u by uniqueness of solutions. Additionally, by passing to the limit
in the refined estimate (9.2.54) applied to eγt uγ

ε , we see it is also satisfied by u.
Therefore, step 1) will be complete when (9.2.54) is proved. By den-

sity of D(Rd−1 × R+ × R) in H1(Rd−1 × R+ × R) ↪→ H1(R+;L2(Rd−1 × R)) ↪→
C (R+;L2(Rd−1 × R)) , it suffices to prove (9.2.54) for w ∈ D(Rd−1 × R+ × R)
such that w|t<0 ≡ 0. (Any element of H1(Rd−1 × R+ × R) vanishing for t < 0
can be approached by such a w: it suffices to choose a mollifier supported in
{t > 0}.) Now, introducing a Friedrichs symmetrizer Sv for Lv, with

σ In ≤ Sv ≤ σ−1 In

for σ > 0 (independent of v, which is bounded by assumption), denoting Lγ
v =

(γ + Lv) and (as usual) w̃γ = e−γt w (in such a way that e−γtLvw = Lγ
v w̃γ),

we have

d
dt

∫∫
xd>0

w̃∗
γSvw̃γ = 2 Re

∫∫
xd>0

w̃∗
γSv Lγ

v w̃γ +
∫∫

xd>0

w̃∗
γ(∂tSv) w̃γ

− 2
∫∫

xd>0

∑
j

w̃∗
γSvA

j
v ∂jw̃γ

=
∫∫

xd>0

w̃∗
γ(∂tSv +

∑
j

∂j(SvAj
v)) w̃γ

+ 2 Re
∫∫

xd>0

w̃∗
γSv Lγ

v w̃γ + 2
∫

xd=0

w̃∗
γSv Ad

vw̃γ .

This implies after integration (using Cauchy–Schwarz and Young’s inequalities),

‖w̃γ(t)‖2L2(Rd−1×R+) ≤ (γ0 + γ) ‖w̃γ‖2L2(Rd−1×R+×[0,t])

+ 1
γ σ4 ‖Lγ

v w̃γ‖2L2(Rd−1×R+×[0,t])

+ δ ‖(w̃γ)|xd=0‖2L2(Rd−1×[0,t]),

with γ0 = 1
σ‖∂tSv +

∑
j ∂j(SvAj

v)‖L∞(Rd−1×R+×(0,t)) and δ :=
2
σ ‖SvAd

v‖L∞(Rd−1×R+×(0,t)). And the L2 norms of w̃γ and its trace at xd = 0
are controlled by the inequality in (9.2.51). To be precise, we thus get that for
γ ≥ γ0,

‖w̃γ(t)‖2L2(Rd−1×R+)

≤ (a + σ−4)
1
γ
‖Lγ

v w̃γ‖2L2(Rd−1×R+×[0,t]) + a ‖Bv(w̃γ)|xd=0‖2L2(Rd−1×[0,t])
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with a = c max(2, δ). Going back to w itself, we see this inequality together with
(9.2.51) gives the refined inequality in (9.2.54) with c′ = c + a + σ−4.

Step 2) Assuming the initial data is better than square-integrable, say u0 ∈
H1(Rd−1 × R+), we may solve the corresponding IBVP by the ‘naive’ approach.
Namely, we can extend v and u0 to the whole space Rd (in such a way that the
extended functions are still Lipschitz-continuous and in H1, respectively, and
that the extended operator Lv is still Friedrichs symmetrizable) and we consider
the Cauchy problem

Lv uc = 0 , uc
|t=0 = u0 .

By Theorem 2.8 we know this problem admits a (unique) solution uc ∈
C ([0, T ];L2(Rd−1 × R+)), and thanks to Friedrichs symmetrizability, by Theo-
rem 2.9), uc even belongs to C ([0, T ];H1(Rd)). This additional regularity shows
u does have a L2 trace on the hyperplane {xd = 0}. Therefore, by Theorem 9.18,
the homogeneous IBVP

Lv uh = f , Buh
|xd=0 = g − Buc

|xd=0 , uh
|t=0 = 0 ,

admits a (unique) square-integrable solution uh, having a square-integrable trace
on {xd = 0}. And of course, the sum u = uc + uh solves the IBVP

Lv u = f , Bu|xd=0 = g , u|t=0 = u0 .

But obviously this construction of a solution to the general IBVP does not show
its uniqueness. Uniqueness will follow from the energy estimate, which requires
a little more work.

We first observe the solution obtained here above is a ‘strong’ one (as the
sum of the smooth uc and the ‘strong’ solution uh of a homogeneous IBVP).
Therefore (thanks to Lemma 9.5 about commutators), it is sufficient to prove
the energy estimate

‖u|t=T ‖2L2 +
1
T
‖u‖2L2 + ‖u|xd=0‖2L2 ≤ c

(
‖u|t=0‖2L2 + T ‖Lvu‖2L2

+‖Bvu|xd=0‖2L2

)
,

(where these L2 norms are, from left to right, on Rd−1 × R+, Rd−1 × R+ × [0, T ],
or Rd−1 × [0, T ]) for u smooth enough, in H1 say. This can be done by a duality
argument and step 1) applied backward to the adjoint problem

(Lv)∗z = f ′ , Cvz|xd=0 = g′ , z|t=T = 0 , (9.2.55)
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where Cv is defined as in the proof of Theorem 9.17. Indeed, revisiting the duality
identity (9.2.50) when t lies in the bounded interval [0, T ] we get∫

xd>0

uT f ′ −
∫

xd=0

(Nvu)T g′ =
∫

xd>0

zT Lv u +
∫

xd=0

(Mvz)T Bvu

+
∫

t=0

zT u

for all z satisfying (9.2.55) with f ′ ∈ L2(Rd−1 × R+ × [0, T ]) and g′ ∈ L2(Rd−1 ×
[0, T ]) and all u ∈ H1(Rd−1 × R+ × [0, T ]). Denoting for convenience (similarly
as in the proof of Theorem 9.17)

‖z‖γ,T := ‖eγt z‖L2(Rd−1×R+×[0,T ]),

|z|γ,T := ‖eγt z|xd=0‖L2(Rd−1×[0,T ]),

we have by the Cauchy–Schwarz inequality,∣∣∣∣∫
xd>0

uT f ′ −
∫

xd=0

uT Nv
T g′
∣∣∣∣

≤ ‖z‖γ,T ‖Lv u‖−γ,T + ‖Mv‖L∞ |z|γ,T |Bvu|−γ,T + ‖z|t=0‖L2 ‖u|t=0‖L2 .

On the other hand, the counterpart of step 1) for the backward problem in
(9.2.55) implies that

‖z|t=0‖2L2 + γ ‖z‖2γ,T + |z|2γ,T � 1
γ
‖f ′‖2γ,T + |g′|2γ,T ,

hence for γ ≥ 1,

max(‖z|t=0‖L2 , ‖z‖γ,T , |z|γ,T ) � 1
γ
‖f ′‖γ,T +

1
γ1/2

|g′|γ,T .

Together with the previous inequality, this yields, for γ ≥ 1,∣∣∣∣∫
xd>0

uT f ′−
∫

xd=0

(Nvu)T g′
∣∣∣∣ �

(
1
γ ‖f ′‖γ,T + 1

γ1/2 |g′|γ,T

)
×
(
‖Lv u‖−γ,T + |Bvu|−γ,T +‖u|t=0‖L2

)
.

Since this holds true for any f ′ ∈ e−γt L2(Rd−1 × R+ × [0, T ]) and g′ ∈
L2(Rd−1 × [0, T ]), this implies

‖u‖−γ,T � 1
γ

(
‖Lv u‖−γ,T + |Bvu|−γ,T + ‖u|t=0‖L2

)
and

|Nvu|−γ,T � 1
γ1/2

(
‖Lv u‖−γ,T + |Bvu|−γ,T + ‖u|t=0‖L2

)
,
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and a fortiori

γ ‖u‖2−γ,T � 1
γ
‖Lv u‖2−γ,T + |Bvu|2−γ,T + ‖u|t=0‖2L2 ,

|Nvu|2−γ,T � 1
γ
‖Lv u‖2−γ,T + |Bvu|2−γ,T + ‖u|t=0‖2L2

for γ ≥ 1. Now, recall that by construction of N , at each point w ∈ W0, the square
matrix whose rows are those of N(w) and B(w) is non-singular. Therefore, there
exists a constant β > 0 (depending only on ‖v|xd=0‖L∞ for v|xd=0 with values in
W0) such that

|u|2−γ,T ≤β ( |Nvu|2−γ,T + |Bvu|2−γ,T ) � 1
γ
‖Lv u‖2−γ,T + |Bvu|2−γ,T +‖u|t=0‖2L2

because of the bound for |Nvu|2−γ,T . Combining this with the bound for ‖u‖2−γ,T

here above and going back to more explicit notations, we thus get

γ ‖e−γt u‖2L2(Rd−1×R+×[0,T ]) + ‖e−γt u|xd=0‖2L2(Rd−1×[0,T ])

≤ c
(

1
γ ‖e−γt Lvu‖2L2(Rd−1×R+×[0,T ]) + ‖e−γt Bvu‖2L2(Rd−1×[0,T ]) + ‖u|t=0‖2L2

)
(9.2.56)

for all γ ≥ γ0, with γ0 and c depending only on ‖v‖W 1,∞ . Finally, revisiting the
computation of Step 1) using the Friedrichs symmetrizer we easily find that for
u smooth enough and γ large enough,

e−2γt ‖u(t)‖2L2(Rd−1×R+) � ‖u(0)‖2L2(Rd−1×R+) +
1
γ
‖Lvu‖2L2(Rd−1×R+×[0,t])

+ γ ‖u‖2L2(Rd−1×R+×[0,t]) + ‖u|xd=0‖2L2(Rd−1×[0,t]) .

Here above the last two terms are controlled by the previous estimate (9.2.56).
Therefore, the timewise estimate is a consequence of (9.2.56). Adding them
together and taking γ proportional to 1/T we eventually obtain (9.2.53).

Step 3): For square-integrable initial data, the existence of a solution to the
IBVP (9.2.52) readily follows from the density of H1 in L2. Indeed, take a
sequence uε

0 going to u0 in L2(Rd−1 × R+) and consider uε ∈ C ([0, T ];L2(Rd−1 ×
R+))), the solution given by step 2) of

Lv uε = f , Buε
|xd=0 = g , uε

|t=0 = uε
0 .

The energy estimate (9.2.53) shows that

‖uε(t)− uε′(t)‖2L2(Rd−1×R+) ≤ c ‖uε
0 − uε′

0 ‖2L2(Rd−1×R+) .

Hence (by the Cauchy criterion once more) uε is convergent in
C ([0, T ];L2(Rd−1 × R+)), and the limit is a solution of (9.2.52), which
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satisfies the energy estimate (9.2.53) (by passing to the limit in (9.2.53) applied
to uε). The uniqueness of this solution is a straightforward consequence of the
uniqueness part in Theorem 9.18. �

9.2.5 Coefficients of limited regularity

This section aims at clarifying the intuitive idea that the more regular the
coefficients and data, the more regular the solution. We begin with the Boundary
Value Problem, by completing Theorem 9.17.

Theorem 9.20 In the framework of Theorem 9.17, assume, moreover, that v
belongs to Hm(Rd−1 × R+ × R) for some integer m > (d + 1)/2 + 1, and that
v|xd=0 belongs to Hm(Rd−1 × R). We also make the technical assumption that
v can be approached in Hm(Rd−1 × R+ × R) by elements of D(Rd−1 × R+ × R)
that take values in W and have traces at xd = 0 taking values in W0.

If the forcing term f belongs to to H m
γ (Rd−1 × R+ × R) and the initial data

g belongs to H m
γ (Rd−1 × R) for all γ ≥ γ0, then the solution u of the BVP

in (9.2.48) is also in H m
γ , as well as its trace on the boundary {xd = 0}, and

satisfies the energy estimate

γ ‖u‖2H m
γ (Rd−1×R+×R) + ‖u|xd=0‖2H m

γ (Rd)

≤ Cm

(
1
γ
‖f‖2H m

γ (Rd−1×R+×R) + ‖g‖2H m
γ (Rd)

)
for all γ ≥ γm, where γm ≥ γ0 and Cm > 0 depend continuously on the Hm

norms of v and v|xd=0.

(We recall that the norm ‖u‖H m
γ

is equivalent, independently of γ, to ‖e−γtu‖Hm
γ

;
see Remark 9.9 for more details.)

Proof We begin with the special case when v is itself C∞: the coefficients of
Lv and Bv being infinitely smooth, the regularity of u and of its trace at xd = 0
thus follows from Theorem 9.9, while the energy estimate follows from Theorem
9.7 and Remark 9.11. In other words, the present theorem with the reinforced
assumption that v is C∞ is an easy consequence of previous results.

For more general v, a natural idea is to regularize v and pass (once more) to
the limit. Assume vε ∈ D(Rd−1 × R+ × R) is going to v in Hm(Rd−1 × R+ × R)
as ε goes to zero. Our technical assumption ensures that we can choose vε staying
in the set of validity of the main assumptions (CH, NC, N, UKL). So we can
apply the first step to the smooth vε for all ε > 0. Therefore, there exists a unique
solution uε to the BVP

Lvε
uε = f on {xd > 0} , Bvε

uε = g on {xd = 0} , (9.2.57)
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and uε belongs to H m
γ (Rd−1 × R+ × R) while (uε)|xd=0 belongs to H m

γ (Rd−1×
R) for all γ greater than a number γm independent of ε, with the inequality

γ ‖uε‖2H m
γ (Rd−1×R+×R) + ‖(uε)|xd=0‖2H m

γ (Rd)

≤ Cm

(
1
γ
‖f‖2H m

γ (Rd−1×R+×R) + ‖g‖2H m
γ (Rd)

)
for Cm independent of ε. Consequently, there exist u ∈ H m

γ (Rd−1 × R+ × R)
and u0 ∈ H m

γ (Rd) such that uε converges weakly in H m
γ (Rd−1 × R+ × R) and

strongly (up to extracting a subsequence) in eγtL2(Rd−1 × R+ × R) to u, while
(uε)|xd=0 converges weakly in H m

γ (Rd) and strongly in eγtL2(Rd) to u0.
To conclude we now need to prove that u = u and u|xd=0 = u0. Since

Lvε
(uε − u) converges weakly to zero in H m−1

γ (Rd−1 × R+ × R) and thus
strongly (up to extracting a subsequence) in eγtL2(Rd−1 × R+ × R), Theorem
9.8 implies that (uε)|xd=0 converges strongly to u|xd=0 in eγtL2(Rd−1 × R+ × R),
hence u0 = u|xd=0. By passing to the limit in the approximate BVP (9.2.57) we
thus see that u solves the same problem as u: by uniqueness this proves that
u = u and u|xd=0 = u0.

Finally, we obtain the Hγ estimate for u by taking the lim inf of the estimate
we have for uε. �

We have a similar result for the Initial Boundary Value Problem with zero
initial data.

Theorem 9.21 In the framework of Theorem 9.18, we assume, moreover, that
v belongs to Hm(Rd−1 × R+ × [0, T ]) for some integer m > (d + 1)/2 + 1, and
more precisely that

v = v̆|t∈[0,T ] with v̆ ∈ Hm(Rd−1 × R+ × R) , v̆|t<τ ≡ 0

for some τ < T , and additionally we suppose v̆ is the limit in Hm of v̆ε ∈
D(Rd−1 × R+ × R) taking values in W, such that (v̆ε)|xd=0 takes values in W0.

If f ∈ Hm(Rd−1 × R+ × [0, T ]) and g ∈ Hm(Rd−1 × [0, T ]) are such that
∂j

t f = 0, ∂j
t g = 0 at t = 0 for all j ∈ {0, . . . , m− 1}, then the solution u of

the IBVP

Lu = f for xd > 0 , t ∈ (0, T ) and Bu|xd=0 = g , u|t=0 = 0 ,

is also in Hm, as well as its trace on the boundary {xd = 0}, and satisfies ∂j
t u =

0 at t = 0 for all j ∈ {0, . . . , m− 1}, together with the energy estimate

1
T
‖u‖2Hm(Rd−1×R+×[0,T ]) + ‖u|xd=0‖2Hm(Rd−1×[0,T ])

≤ Cm

(
T ‖f‖2Hm(Rd−1×R+×[0,T ]) + ‖g‖2Hm(Rd−1×[0,T ])

)
,

where Cm > 0 depends only on the Hm norm of v̆.
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Proof The assumptions on f and g allow us to extend them, respectively, into
f̆ ∈ H m

γ (Rd−1 × R+ × R) and ğ ∈ H m
γ (Rd−1 × R), both vanishing for t < 0. By

Theorem 9.20 (applied to the extended operator Lv̆), the corresponding BVP
admits a unique solution ŭ ∈ H m

γ (Rd−1 × R+ × R), whose trace at xd = 0 is in
H m

γ (Rd−1 × R). Furthermore, by Theorem 9.13 ŭ vanishes for t < 0, (and ŭ|t≤T

does not depend on f̆|t>T and ğ|t>T ). Therefore, u := ŭ|t∈[0,T ] is a solution of the
homogeneous IVBP with forcing term f and boundary data g, and it belongs to
Hm(Rd−1 × R+ × [0, T ]), while its trace at xd = 0 belongs to Hm(Rd−1 × [0, T ]).
The uniqueness of this solution follows from the uniqueness part in Theorem 9.18
(on the L2 well-posedness). It remains to show the ‘localized’ Hm estimate. In
fact, it will be a straightforward consequence of the estimate

γ ‖ŭ‖2H m
γ (Rd−1×R+×(−∞,T ]) + ‖ŭ|xd=0‖2H m

γ (Rd−1×(−∞,T ])

� 1
γ ‖Lv̆ŭ‖2H m

γ (Rd−1×R+×(−∞,T ]) + ‖Bv̆ŭ‖2H m
γ (Rd−1×(−∞,T ]) ,

(9.2.58)

and the fact that ŭ vanishes for t < 0 and coincides with u on [0, T ]. As regards
the proof of the estimate (9.2.58), it can be deduced from the localized L2

estimate (9.2.51) by the same method as in the proof of Theorem 9.7, with
(−∞, T ] as the time interval instead of R. Indeed, the problem noted in Remark
9.10 about the bounded interval [0, T ] does not arise for the half-line (−∞, T ].
In other words, we do have the inequality analogous to (9.1.32), namely

‖e−γtw‖L2(Rd−1×(−∞,T ]) ≤
1
γ
‖e−γt∂tw‖L2(Rd−1×(−∞,T ]) (9.2.59)

for all w ∈ H 1
γ (Rd−1 × (−∞, T ]). Indeed, the inequality (9.2.59) can be viewed

as a L1–L2 convolution estimate, since we have

e−γtw(t)H(T − t) =
∫ +∞

−∞
H(t− s) e−γ(t−s)e−γs∂tw(s)H(T − s) ds ,

where H denotes the Heaviside function, and the L1 norm of t �→ H(t) e−γt is
precisely 1/γ.

Note: The multiplicative constant hidden in the sign � in (9.2.58) depends a
priori on ‖v̆‖Hm . �

Finally, there is also a result for the general IBVP with coefficients of limited
regularity, provided the operator is Friedrichs symmetrizable. The compatibility
conditions needed are still (CCp) (Section 9.2.3), with Aj = Aj

v and B = Bv.
We say initial data u0, boundary data g and forcing term f are compatible up
to order k if (CCp) holds true for all p ∈ {0, . . . , k}.
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Theorem 9.22 In the framework of Theorem 9.19, assume, moreover, that v
belongs to

CHm
T := { v ∈ D ′(Rd−1 × R+ × [0, T ]);

∂p
t v ∈ C ([0, T ];Hm−p(Rd−1 × R+))p ≤ m }

for some integer m > (d + 1)/2 + 1.
If f ∈ Hm(Rd−1 × R+ × [0, T ]), g ∈ Hm(Rd−1 × [0, T ]), and u0 ∈

Hm(Rd−1 × R+) are compatible up to order m− 1, then the solution of
the IBVP (9.2.52) belongs to CHm

T .

This result is implicitly contained in the lecture notes of Métivier [136]. The
conclusion is as in Rauch and Massey’s theorem, with slightly less regular data
(Hm instead of Hm+1/2), and with much less regular coefficients. The drawback
is the additional, Friedrichs-symmetrizability assumption (which is satisfied by
‘most’ physical systems anyway).

Proof The sketch of proof is roughly the same as for Theorem 9.19 (which gives
solutions in C ([0, T ];L2(Rd−1 × R+)) for L2 data): 1) revisit the IBVP with zero
initial data (Theorem 9.21) and show additional time-regularity of solutions; 2)
consider initial data (smoother than in the statement) u0 ∈ Hm+1/2(Rd−1 × R+),
and reduce the problem to zero initial data by substracting an ‘approximate
solution’ (whose counterpart in the proof of Theorem 9.19 is just the solution
of a Cauchy problem in the whole space); 3) conclude by a density argu-
ment for initial data u0 ∈ Hm(Rd−1 × R+), thanks to appropriate (new) energy
estimates.

Step 1) The key ingredient will be the refined estimate∑
|α|≤m

γ2(m−|α|) e−2γτ‖∂αw(τ)‖2L2(Rd−1×R+)

+ γ ‖w‖2H m
γ (Rd−1×R+×(−∞,τ ]) + ‖w|xd=0‖2H m

γ (Rd−1×(−∞,τ ])

� 1
γ ‖Lvw‖2H m

γ (Rd−1×R+×(−∞,τ ]) + ‖Bvw‖2H m
γ (Rd−1×(−∞,τ ]) ,

(9.2.60)

to be shown to be uniform for all γ large enough, for all τ > 0 and all w ∈
D(Rd−1 × R+ × R) vanishing for t < 0. In the inequality (9.2.60) here above, the
simplifying notation � means less than or equal to a constant depending only on
the W 1,∞ norm and the H m

γ norm of v̆, an extension of v as in Theorem 9.21.
For simplicity we shall omit the ˘ sign. In addition, we introduce shortcuts for
the sets of integration

Dτ := Ω̄× (−∞, τ ] = Rd−1 × R+ × (−∞, τ ]

Γτ := ∂Ω× (−∞, τ ] = Rd−1 × (−∞, τ ] .



How energy estimates imply well-posedness 285

The proof of (9.2.60) proceeds from the refined L2 estimate in (9.2.54) applied
to derivatives of w, as in the proof of (9.2.58) from the ‘regular’ L2 estimate
(9.2.51), which is itself similar to the proof of Theorem 9.7. There are two main
steps: 1) estimate tangential derivatives and 2) estimate ‘normal’ derivatives.
There is basically no novelty in the estimate of tangential derivatives: we apply
(9.2.54) to uα = ∂αu, where ∂α is a differential operator in the (y, t) directions
only, and the d-uple is of length |α| ≤ m, and show that the right-hand side is
bounded by

c̃
(

1
γ ‖f‖2L2(R+;H m

γ (Γτ )) + ‖g‖2H m
γ (Γτ )

+ 1
γ ‖u‖2L2(R+;H m

γ (Γτ )) + 1
γ2 ‖u|xd=0‖2H m

γ (Γτ )

)
,

for some positive c̃ depending only on ‖v̆‖L∞ and ‖v̆‖L2(R+;H m
γ (Γτ )), hence∑

|α|≤m

e−2γt γ2(m−|α|) ‖∂αu(t)‖2L2(Rd−1×R+) + γ ‖u‖2L2(R+;H m
γ (Γτ ))

+ ‖u|xd=0‖2H m
γ (Γτ )

≤ 2c̃
(

1
γ ‖Lvu‖2L2(R+;H m

γ (Γτ )) + ‖Bvu|xd=0‖2H m
γ (Γτ )

)
,

,

for γ large enough (by absorption of the error terms in the left-hand side). More
care is needed in the estimate of ‖∂βu(t)‖L2(Rd−1×R+) when the operator ∂β

contains a derivative in the normal variable xd (in this case β is a (d + 1)-
uple). Let us look at the case of a single derivative ∂d. We take again a
p-uple α, of length |α| ≤ m− 1 this time. As in the proof of Theorem 9.7 we can
write

∂d∂
αu = (Ad

v)−1
(

fα − ∂t∂
αu +

d−1∑
j=1

Aj
v ∂j∂

αu
)

,

with fα := Lv ∂αu. The novelty here is that we need a timewise estimate of fα.
The trick is to use the L2 estimates of both fα and ∂tfα. Indeed, by the same
computation as in the proof of Theorem 9.7 we have

γm−|α| ‖e−γt fα‖L2(Dτ ) � ‖f‖L2(R+;H m
γ (Γτ )) + ‖u‖L2(R+;H m

γ (Γτ )) .

Furthermore,

∂tfα = fβ +
d∑

j=1

∂t(Ad
v) ∂juα ,
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with β = (α0 + 1, α′) if α = (α0, α
′), and fβ can be estimated as above, so we

have

γm−|α|−1 ‖e−γt ∂tfα‖L2(Dτ ) � ‖f‖L2(R+;H m
γ (Γτ ))

+
d∑

j=1

‖∂t(Ad
v)‖L∞ ‖e−γt ∂juα‖ ,

where each term in the sum can be estimated thanks to part 1) on tangential
derivatives. Therefore

γm−|α|−1 ‖e−γt ∂tfα‖L2(Dτ ) � ‖f‖L2(R+;H m
γ (Γτ )) + ‖g‖H m

γ (Γτ ) .

Consequently, the L2 bounds for fα and ∂tfα imply the timewise bound

γm−|α|−1/2 e−γτ ‖ fα(τ)‖L2(Ω̄) � ‖f‖L2(R+;H m
γ (Γτ )) + ‖g‖H m

γ (Γτ ) ,

and finally, estimating the other terms in ∂d∂
αu thanks to part 1), we get

γm−|α|−1/2 e−γτ ‖ ∂d∂
αu(τ)‖L2(Ω̄) � ‖f‖L2(R+;H m

γ (Γτ )) + ‖g‖H m
γ (Γτ ) ,

hence

γ2(m−|α|−1) e−2γτ ‖ ∂d∂
αu(τ)‖2L2(Ω̄) � 1

γ
‖f‖2L2(R+;H m

γ (Γτ )) + ‖g‖2H m
γ (Γτ ) ,

for γ large enough (≥ 1, which has been used for the g-term). The case of higher-
order derivatives in xd can be dealt with in a similar way, by induction (the details
are left to the reader). This in turns provides estimates of ‖∂βu(t)‖L2(Rd−1×R+)

for all (d + 1)-uple β of length |β| ≤ m. Altogether these estimates prove (9.2.60).
Once we have (9.2.60), the usual weak=strong argument shows there

is a sequence (uε) such that for all p ∈ {0, . . . , m}, ∂p
t uε goes to ∂p

t u in
C ([0, T ];Hm−p(Rd−1 × R+)), where u is the solution of IBVP with zero initial
data given by Theorem 9.21.

Step 2) The crucial tool here will be the following lifting result.

Lemma 9.6 Assume W and W0 are both convex and contain zero, and
consider v ∈ D ′(Rd−1 × R+ × R) is such that v|t∈[0,T ] ∈ CHm

T , f ∈ Hm(Rd−1 ×
R+ × [0, T ]), and g ∈ Hm(Rd−1 × [0, T ]) with m > (d + 1)/2 + 1.

Then for any u0 ∈ Hm+1/2(Rd−1 × R+) taking values in W with a trace on
xd = 0 taking values in W0, compatible with f and g up to order m− 1, there
exists ua ∈ Hm+1(Rd−1 × R+ × R), also taking values in W with a trace on xd =
0 taking values in W0, vanishing for |t| ≥ ε > 0, and such that

(ua)|t=0 = u0 , ∂p
t

(
f − Lvua

)
|t=0

≡ 0 , ∂p
t

(
g − (Bvua)|xd=0

)
|t=0

≡ 0

for all p ∈ {0, . . . , m− 1}. Furthermore, fa := f − Lvua belongs to Hm(Rd−1 ×
R+ × [0, T ]) and ga := g − (Bvua)|xd=0 belongs to Hm(Rd−1 × [0, T ]).
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Proof We first need to check that the induction formula in the compatibility
conditions (CCm−1),

uq(x) =
q−1∑
�=0

(
q − 1

�

)
P 0

� uq−1−�(x) + ∂q−1
t f(x, 0)

enables us to construct a sequence (u1, . . . , um−1) such that for all q ∈
{0, . . . , m− 1}, uq belongs to Hm+1/2−q(Rd−1 × R+). Here the operators

P 0
� := −

d∑
j=1

(∂�
tA

j ◦ v)(x, 0) ∂j

have, by assumption on v, coefficients in Hm−�(Rd−1 × R+) for � ≥ 1, and this
is also true for P 0

0 up to a constant-coefficients operator. Therefore, thanks to
Theorem C.10, the induction formula above does define uq in Hm+1/2−q(Rd−1×
R+) if u0 ∈ Hm+1/2−q(Rd−1 × R+).

Then by trace lifting (see, for instance, [1], pp. 216–217), we find ua ∈
Hm+1(Rd−1 × R+ × R) such that ‖ua‖Hm+1(Rd−1×R+×R) � ‖u0‖Hm+1/2(Rd−1×R)

and

∂q
t (ua)|t=0 = uq for all q ∈ {0, . . . , m− 1} .

Thanks to the convexity of W and W 0, up to multiplying ua by a C∞ cut-
off function near t = 0, we may assume, by continuity of ua and (ua)|xd=0 at
t = 0, that the range of ua lies in W and the range of (ua)|xd=0 lies in W0, as
requested. The fact that ∂p

t (fa)|t=0 ≡ 0 for all p ≤ m− 1 directly follows from
the construction of the uq, and ∂p

t (ga)|t=0 ≡ 0 is a consequence of the equations

∂�
tg(x, 0) =

�∑
q=0

(
�

q

)
(∂�−q

t Bv)(x, 0) uq(x)

for q ≤ m− 1 contained in the compatibility conditions (CCm−1). Finally, the
fact that fa and ga are Hm follow in a classical way from Proposition C.11 and
Theorem C.12. �

Once we have the ‘approximate solution’ ua, the ‘approximate’ forcing term
fa and the ‘approximate’ boundary date ga, we can apply Step 1) to the IBVP
with zero initial data

Lvuh = fa , Bv(uh)|xd=0 = ga , (uh)|t=0 = 0 .

By uniqueness of the solution u of the original IBVP, we have u = ua + uh,
which therefore belongs to CHm

T since both uh and ua do: for the latter, observe
that ua ∈ Hm+1(Rd−1 × R+ × R) implies indeed

ua ∈ Hk+1([0, T ];Hm−k(Rd−1 × R+)) ↪→ C k([0, T ];Hm(Rd−1 × R+))

for all k ≤ m.
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Step 3) It relies on two ingredients: the observation that u0 can be approx-
imated by smoother initial data uk

0 , still compatible with f and g up to order
m− 1; energy estimates of a new kind for the IBVP with zero forcing term f
and zero boundary data g. We omit the details; see [136] for their proof in the
more complicated framework of shock-waves stability. �
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10

THE CAUCHY PROBLEM FOR QUASILINEAR SYSTEMS

We turn to ‘realistic’ systems, which are non-linear and most often read

∂f0(u)
∂t

+
d∑

j=1

∂f j(u)
∂xj

= c(u) , (10.0.1)

where f j and c are vector fields in Rn. The time flux f0 will be assumed
throughout this chapter to be a diffeomorphism. Observing that each row in
the left-hand side of (10.0.1) is the divergence with respect to (t, x) of a vector
field (f0

i (u), f1
i (u), · · · , fd

i (u)) in Rd+1, we say that (10.0.1) is in divergence form.
In general, (10.0.1) is called a system of balance laws. When the source term c is
not present (that is, is replaced by 0), (10.0.1) is called a system of conservation
laws. As in the previous chapters, we shorten the notations and write (10.0.1) as

∂tf
0(u) +

d∑
j=1

∂jf
j(u) = c(u).

Among the well-known examples of systems of conservation laws, one inevitably
encounters the Euler equations, governing the motion of a compressible inviscid
and non-heat-conducting fluid (see [80,195], and also Chapter 13). These read


∂tρ + ∇ · (ρu) = 0 ,

∂t (ρu) + ∇ · (ρu⊗ u) + ∇p = 0 ,

∂t

(
ρ
(

1
2 |u|2 + e

))
+ ∇ ·

((
ρ
(

1
2 |u|2 + e

)
+ p

)
u
)

= 0 ,

(10.0.2)

where ρ > 0 denotes the density of the fluid, u its velocity, e > 0 its internal
energy per unit mass and (ρ, e) �→ p(ρ, e) > 0 is a given pressure law. The
operator ∇ is acting in space only. The importance of Euler equations in both
the physical applications and the development of the mathematical theory of
conservation laws has prompted us to devote a whole part of the book (part IV)
to these equations.
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10.1 Smooth solutions

As a first approach to (10.0.1), we may look for smooth solutions. Smooth
solutions of (10.0.1) are equivalently solutions of the quasilinear system

∂tu +
d∑

j=1

Aj(u) ∂ju = b(u) , (10.1.3)

where the n× n matrices Aj and the source term b smoothly depend on u ∈ Rn.
They are related to the fluxes f j and the original source term c by

Aj(u) = df0(u)−1 df j(u) , b(u) = df0(u)−1 c(u).

Remark 10.1 It can be that a change of variables u �→ ũ = ϕ(u) leads to a
more convenient quasilinear system than (10.1.3), that is, a system

∂tũ +
d∑

j=1

Ãj(ũ) ∂j ũ = b̃(ũ),

where the matrices Ãj are sparser than the Aj . As an example, one may compare
the quasilinear form of the Euler equations (10.0.2) in variables (ρ,u, e) to its
counterpart in variables (p,u, s), where s is the physical entropy. Indeed, recalling
that s is defined by the differential relation

T ds = de − p

ρ2
dρ,

(where the integrating factor T is the temperature), we easily see that (10.0.2)
is equivalent for smooth solutions to the rather simple-looking system

∂tp + ρc2∇ · u + u · ∇p = 0 ,

∂t u + (u · ∇)u + ρ−1∇p = 0 ,

∂ts + u · ∇s = 0 ,

(10.1.4)

where c2 := ∂p/∂ρ when p is regarded as a function of ρ and s. The function c
is called the sound speed.

10.1.1 Local well-posedness

For general quasilinear systems of the form (10.1.3), the Cauchy problem can
hardly be dealt with. However, there is a very important class of systems for
which (local) Hs-well-posedness is known to hold true – for s large enough. This
class is a natural generalization of Friedrichs-symmetrizable linear systems.

Definition 10.1 Let U be an open subset of Rn. The quasilinear system
(10.1.3) is called Friedrichs-symmetrizable in U if there exists a C∞ mapping
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S : U → Symn such that S(u) is positive-definite, and the matrices S(u)Aj(u)
are symmetric for all u ∈ U .

Example The system (10.1.4) admits the diagonal symmetrizer

diag (1/(ρc2), ρ, · · · , ρ, 1)

in the domain { ρ > 0 , c2 > 0}, that is, away from vacuum and where the sound
speed is well-defined (which corresponds to hyperbolicity).

In more generality, systems admitting a strictly convex entropy are known
to be Friedrichs-symmetrizable – see [46, 184] for an introduction to the notion
of mathematical entropy and an extensive analysis of systems endowed with an
entropy. For this reason, since mathematical entropies are often related to phys-
ical entropy (or energy), most ‘physical’ systems are Friedrichs-symmetrizable.
In the case of Euler equations, various symmetrizations are discussed in Section
13.2.3. Also, see [71, 167], concerning the symmetrization of more complicated
systems, or systems endowed with non-convex entropies [21,46,188].

The main result regarding the Cauchy problem for Friedrichs-symmetrizable
systems is the following. It was proved by several authors independently [67,94].

Theorem 10.1 Let U be an open subset of Rn containing 0. We assume that
Aj and b are C∞ functions of u ∈ U , all vanishing at 0, and that (10.1.3) is
Friedrichs-symmetrizable in U . We consider the Cauchy problem associated with
(10.1.3) and initial data g ∈ Hs(Rd) with s > d

2 + 1 taking values in U . There
exists T > 0 such that (10.1.3) has a unique classical solution u ∈ C 1(Rd × [0, T ])
achieving the initial data u(0) = g. Furthermore, u belongs to C ([0, T ];Hs) ∩
C 1([0, T ];Hs−1).

Observe that this result does not apply straight to the Euler equations, which
in general are not symmetrizable up to ρ = 0. But a slightly modified version of
Theorem 10.1, allowing solutions that do not vanish at infinity, does apply: it
suffices to replace 0 by some u0, take g ∈ u0 + Hs and obtain u(t) ∈ u0 + Hs.
See Section 13.3 for more details on the Euler equations.

Proof The proof is based on the iteration scheme

S(uk) ∂tu
k+1 +

d∑
j=1

S(uk)Aj(uk) ∂ju
k+1 = S(uk) b(uk). (10.1.5)

Since we are looking for smooth solutions of (10.1.3), we are only concerned
with smooth solutions of (10.1.5). By Theorem 2.12 in Chapter 2 we know that
(10.1.5) admits a C∞ solution uk+1 provided that uk and the initial data are
C∞. This is why we are going to smooth back the initial data.

We introduce a mollifier ρk, being defined as usual by

ρk(x) = ε−d
k ρ

(
x

εk

)
,
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with εk > 0 tending to 0 (in a way to be specified later) and ρ ∈ D(Rd; R+)
being supported in the unit ball,

∫
ρ = 1. We shall use the approximate initial

data gk := g ∗ ρk, which is a C∞ function that tends to g in Hs when εk goes to
0. Furthermore, we have a uniform estimate

‖gk − g‖L2 ≤ C εk ‖g‖H1 (10.1.6)

for εk small enough, say εk ≤ ε. From now on, this upper bound will be assumed
to hold true.

We initialize the iteration scheme by taking u0 independent of t as u0(t) := g0.
Then we consider the induction process in which uk+1 is defined by (10.1.5)
and uk+1(0) = gk+1. An additional difficulty is due to the restricted domain of
definition of S, Aj and b. The process must be able to control the L∞ norm of
the iterates uk so that they do not approach ∂U too closely. This will be done
by using the following observation. Since g0 tends to g in Hs when ε0 goes to 0,
by the classical Sobolev embedding

Hs(Rd) ↪→ L∞(Rd) (10.1.7)

for s > d/2, we can find ε0, δ > 0 and a relatively compact open subset V of U
such that any smooth u satisfying the estimate

‖u − g0 ‖Hs ≤ δ (10.1.8)

only achieves values belonging to V . Furthermore, another useful fact will be
that for u satisfying (10.1.8), ∇xu is bounded (this follows from the Sobolev
embedding (10.1.7) applied to s− 1, which is still greater than d/2 by assump-
tion).

The relatively compact subset V will serve as a reference for energy estimates.
We take β > 0 so that

β In ≤ S(u) ≤ β−1 In (10.1.9)

for all u ∈ V .
Finally, other essential ingredients in the proof are the following Moser

estimates [144].

Proposition 10.1

i) If u and v both belong to L∞ ∩Hs with s > 0 then their product also
belongs to Hs and there exists C > 0 depending only on s such that

‖u v ‖Hs ≤ C ( ‖u‖L∞ ‖v‖Hs + ‖v‖L∞ ‖u‖Hs ) . (10.1.10)

ii) If u belongs to Hs ∩ L∞ with s > 0 and b is a C∞ function vanishing at
0 then the composed function b(u) also belongs to Hs, and there exists
a continuous function C : [0,+∞) → [0,+∞) (depending on s and b as
parameters) such that

‖ b(u) ‖Hs ≤ C (‖u‖L∞) ‖u‖Hs . (10.1.11)
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iii) If s > 1 and α is a d-uple of length |α| ≤ s, there exists C > 0 such that
for all u and a in Hs with ∇u and ∇a in L∞

‖ [ ∂α , a∇]u ‖L2 ≤ C ( ‖∇a‖L∞ ‖u‖Hs + ‖∇u‖L∞ ‖a‖Hs ) . (10.1.12)

The estimates in (10.1.10) and (10.1.11) are classical (see [207], pp. 10–11,
or [7], pp. 98–103). For completeness, their proof is given in Appendix C (see
Proposition C.11 for i) and Theorem C.12 for ii)). The last one, (10.1.12), is
actually a consequence of i) (see Proposition C.13 in Appendix C).

Note that the L∞ assumption in i) (respectively, in iii)) automatically follows
from the Sobolev embedding (10.1.7) if s > d/2 (respectively, if s > d/2 + 1).

We can now give a detailed proof of Theorem 10.1. There are two main steps,
in terms of the so-called ‘high norm’ and ‘low norm’: 1) controlling the high norm
‖uk+1 − g0 ‖C ([0,T ];Hs) and, 2) showing a contraction property for the sequence
(uk)k∈N in C ([0, T ];L2). Both steps appear to work for T small enough. In the
first one, we shall assume s is an integer in order to stay at a more elementary
level. The result is true for any real number s greater than the critical regularity
index d/2 + 1 though. (Also see Theorem 10.2 below.)

High-norm boundedness For simplicity, we assume that s is an integer. We
proceed by induction. Initially, we have u0(t) = g0 and thus

‖u0 − g0 ‖C ([0,T ];Hs) = 0 ≤ δ

for any T and δ. We assume that for all � ≤ k, u� is defined inductively by
(10.1.5) and u�(0) = g� and satisfies the estimate

‖u� − g0 ‖C ([0,T ];Hs) ≤ δ . (10.1.13)

We are going to show the same estimate (10.1.13) for � = k + 1, provided that
T is suitably chosen.

We introduce the notations vk+1 := uk+1 − g0, wk+1
α := ∂α

x vk+1 where α is
any d-uple of length |α| ≤ s. By definition, vk+1 must solve the Cauchy problem

∂tv
k+1 +

d∑
j=1

Aj(uk) ∂jv
k+1 = b(uk) −

d∑
j=1

Aj(uk) ∂j g0 ,

vk+1(0) = gk+1 − g0 ,

(10.1.14)

and, differentiating, wk+1
α must solve
∂tw

k+1
α +

d∑
j=1

Aj(uk) ∂jw
k+1
α = fk+1

α ,

wk+1
α (0) = ∂α

x ( gk+1 − g0 ) ,

(10.1.15)
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where the right-hand side fk+1
α is defined by

fk+1
α := ∂α

x b(uk) −
d∑

j=1

∂α
x (Aj(uk) ∂j g0 ) −

d∑
j=1

[ ∂α
x , Aj(uk) ∂j ] vk+1.

From (10.1.13) and the remark above, we know there is a constant C, depending
only on ε and δ so that

‖u�‖C ([0,T ];Hs) ≤ C , ‖u�‖L∞ ≤ C , ‖∇xu�‖L∞ ≤ C (10.1.16)

for all � ≤ k. By Proposition 10.1 (i) and ii)), this shows that the first terms in

fk+1
α , namely ∂α

x b(uk) and
d∑

j=1

∂α
x (Aj(uk) ∂j g0 ) are bounded in C ([0, T ];L2) (by

a constant depending only on ε and δ). Furthermore, (10.1.16), Proposition 10.1
(iii)) and the Sobolev inequality

‖∇xvk+1(t)‖L∞ ≤ C ′ ‖vk+1(t)‖Hs

show that∥∥∥∥∥∥
d∑

j=1

[ ∂α
x , Aj(uk) ∂j ] vk+1

∥∥∥∥∥∥
C ([0,T ];L2)

≤ C ′′ ‖vk+1‖C ([0,T ];Hs),

where C ′′ is another constant depending only on ε and δ. For simplicity, we omit
the primes. Thus we have an estimate

‖fk+1
α ‖C ([0,T ];L2) ≤ C ( 1 + ‖vk+1‖C ([0,T ];Hs) ) . (10.1.17)

A similar estimate also holds for S(uk) fk+1
α since uk is bounded in L∞. Now,

using the estimates in (10.1.16) for � = k and � = k − 1 and recalling from (10.1.5)
for k − 1 that

∂tu
k = −

d∑
j=1

Aj(uk−1) ∂ju
k + b(uk−1),

we see that ∂tu
k is also bounded in L∞. Together with the L∞ bound for ∇xuk,

this implies

‖ ∂tS(uk) +
∑

j

∂j(S(uk)Aj(uk) ) ‖L∞ ≤ C0 (10.1.18)

for some constant C0 depending only on ε and δ. Therefore, we can apply
the estimate (2.1.4) from Chapter 2 (Proposition 2.2) to the Cauchy problem
(10.1.15) and λ such that β(λ− 1) ≥ C0. We find that

β2 ‖wk+1
α (t)‖2L2 ≤ eλ t ‖gk+1 − g0‖2Hs +

∫ t

0

eλ (t−τ) ‖fk+1
α (τ)‖2L2 dτ.
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Using (10.1.17) and summing on m all the inequalities for wk+1
α , we get another

constant Cs (depending only on s) so that

β2 sup
t∈[0,T ]

‖vk+1(t)‖2Hs ≤ Cs eλ T ( ‖gk+1 − g0‖2Hs + 2T (1 + sup
t∈[0,T ]

‖vk+1(t)‖2Hs)).

For 4Cs eλ T T ≤ β2, we can absorb the Hs norm of vk+1 into the left-hand side.
This yields the estimate

β2 sup
t∈[0,T ]

‖vk+1(t)‖2Hs ≤ 2Cs eλ T
(
‖gk+1 − g0‖2Hs + 2T

)
.

Since g0 tends to g in Hs when ε0 goes to 0, we can ensure that

sup
t∈[0,T ]

‖vk+1(t)‖Hs ≤ δ

by choosing ε0 small enough, up to diminishing T again.

Low-norm contraction Subtracting (10.1.5) for k − 1 to the one for k, we
see that W k+1 := uk+1 − uk, solves the Cauchy problem

S(uk) ∂tW
k+1 +

d∑
j=1

S(uk)Aj(uk) ∂jW
k+1 = F k+1 ,

vk+1(0) = gk+1 − gk ,

(10.1.19)

where

F k+1 = S(uk) b(uk) − S(uk−1) b(uk−1) − (S(uk) − S(uk−1) )∂tu
k

−
d∑

j=1

(S(uk)Aj(uk) − S(uk−1)Aj(uk−1) ) ∂j uk .

In view of (10.1.16) for � = k and � = k − 1 and the fact that ∂tu
k is also bounded

in L∞, the mean-value theorem implies that

‖F k+1‖C ([0,T ];L2) ≤ C ‖W k‖C ([0,T ];L2) . (10.1.20)

Applying the estimate (2.1.4) from Chapter 2 to the Cauchy problem (10.1.19),
we have for β(λ− 1) ≥ C0 (the bound C0 being as in (10.1.18))

β2 sup
t∈[0,T ]

‖W k+1(t)‖2L2 ≤ eλ T ‖gk+1 − gk‖2L2 + C2 T eλ T sup
t∈[0,T ]

‖W k(t)‖2L2 .

Provided that T is small enough, more precisely if

2C2T eλT ≤ β2,

we thus have the uniform estimate

sup
t∈[0,T ]

‖uk+1(t)− uk(t)‖2L2 ≤ 1
2

sup
t∈[0,T ]

‖uk(t)− uk−1(t)‖2L2 +
eλT

β2
‖gk+1 − gk‖2L2 .
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Hence (uk)k∈N will be a Cauchy sequence in C ([0, T ];L2) provided that the series∑
k

‖gk+1 − gk‖2L2

is convergent. The estimate in (10.1.6) shows that this holds true for εk = 2−kε,
for instance. With this choice, the sequence (uk)k∈N has a limit u in C ([0, T ];L2).
It remains to prove additional regularity on u. (The method will generalize the
proof of the continuity with values in H1 of the solution in Theorem 2.9.)

Regularity and uniqueness Since (uk(t))k∈N is bounded in Hs (see
(10.1.16)) and convergent in L2 (for t ≤ T ), the limit u(t) must be in Hs by
weak compactness of bounded balls in Hs and uniqueness of the limit in the
sense of distributions. Furthermore, by L2–Hs interpolation, uk is found to
converge in C ([0, T ];Hs′) for all s′ ∈ (0, s). In particular, we can choose s′ greater
than 1 + d/2 (like s). Standard Sobolev embeddings then imply the convergence
holds in C ([0, T ];C 1

b (Rd)). Thus we can pass to the limit in the iteration scheme
(10.1.5), which shows that ∂tu

k tends to ∂tu in C ([0, T ];Cb(R
d)) and the limit u

is a C 1 solution of (10.1.3). The initial condition is trivially satisfied, by passing
to the limit in the initial condition for uk. It is not difficult to show that the C 1

solution constructed by the iteration scheme (10.1.5) is the only one satisfying
(10.1.8) in the time interval [0, T ]. As a matter of fact, the L2 norm of the
difference between two solutions u and v can be estimated similarly as in the low-
norm calculation on uk+1 − uk. (We can even show the uniqueness of classical
solutions in the wider class of entropy solutions, see [46] and Section 10.2 below.)

We already know that u belongs to C ([0, T ];Hs′) for all s′ < s. In fact, we can
show that u belongs to C ([0, T ];Hs) (which automatically implies that u belongs
to C 1([0, T ];Hs−1) by the equation in (10.1.3)). The proof is not obvious though.

As a first step, we can check that uk(t) converges uniformly on [0, T ] in Hs
w,

the space Hs equipped with the weak topology. We just take any φ in H−s,
choose ψ in the dense subspace H−s′ (for s′ < s) close enough to φ, and make a
standard splitting. Using the estimates in (10.1.16), we get

sup
t∈[0,T ]

|〈φ, (uk −u)(t)〉H−s,Hs | ≤ C‖φ− ψ‖H−s + sup
t∈[0,T ]

|〈ψ, (uk −u)(t)〉H−s′ ,Hs′ |.

The first term in the right-hand side can be made arbitrarily small, and the
second term is known to tend to 0 since uk converges to u in C ([0, T ];Hs′).
Hence the left-hand side also tends to 0.

Secondly, up to translating or/and reversing time, it is sufficient to prove the
right continuity in Hs of the limit u at t = 0. Furthermore, by a straightforward
ε/3 argument, we have that u(t)− g tends to 0, as t tends to 0+, in Hs′ for all
s′ < s, and so by the same splitting as before, u(t) tends to g in Hs

w. In particular,
we have

lim inf
t↘0

‖u(t)‖Hs ≥ ‖g‖Hs .
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Hence, to prove the strong convergence, it just remains to show that

‖g‖Hs ≥ lim sup
t↘0

‖u(t)‖Hs .

It appears that this inequality is easier to show using the equivalent norm on
Hs, defined by

‖v‖2s,g :=
∑
|α|≤s

〈S(g) ∂α
x v , ∂α

x v 〉.

More generally, because of (10.1.9), the norm ‖ · ‖s,u associated with any func-
tion u satisfying the estimate in (10.1.8) may serve as an equivalent norm. In
particular, we see that u(t) satisfies (10.1.8) by taking the liminf as � tends to
+∞ in (10.1.13). And in fact, an additional useful observation is that

lim sup
t↘0

‖u(t)‖s,u(t) = lim sup
t↘0

‖u(t)‖s,g.

This follows from the pointwise continuity of u at t = 0 and its boundedness in
Hs. Therefore, we are led to showing

‖g‖s,g ≥ lim sup
t↘0

‖u(t)‖s,u(t) . (10.1.21)

The third and last step is based on an energy estimate very similar to that
previously computed in the high norm. For all d-uple m of length |m| ≤ s, uk+1

α :=
∂α

x uk+1 solves the Cauchy problem
∂tu

k+1
α +

d∑
j=1

Aj(uk) ∂ju
k+1
α = hk+1

α ,

uk+1
α (0) = ∂α

x gk+1 ,

where the right-hand side hk+1
α is defined by

hk+1
α := ∂α

x b(uk) −
d∑

j=1

[ ∂α
x , Aj(uk) ∂j ]uk+1.

Similarly as in (10.1.17), we have

‖hk+1
α ‖C ([0,T ];L2) ≤ C ( 1 + ‖uk+1‖C ([0,T ];Hs) ).

Now we compute that

d
dt
〈S(uk)uk+1

α , uk+1
α 〉 = 〈 ( ∂tS(uk) +

∑
j

∂j(S(uk)Aj(uk)) )uk+1
α , uk+1

α 〉

+ 2 Re 〈S(uk)uk+1
α , hk+1

α 〉 .
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By (10.1.18) and the uniform boundedness of uk+1 in Hs, we find after integration
that

〈S(uk(t))uk+1
α (t) , uk+1

α (t) 〉 ≤ 〈S(gk) gk+1
α , gk+1

α 〉 + C ′ t.

Summing on m we get

‖uk+1(t)‖s,uk(t) ≤ ‖gk+1‖s,gk + C ′ t,

where the right-hand side tends to ‖g‖s,g + C ′ t as k → +∞ (because of the
construction of gk through mollification of g). As to the left-hand side, it is such
that

‖u(t)‖s,u(t) ≤ lim sup
k→+∞

‖uk+1(t)‖s,uk(t)

because of the weak convergence of uk+1(t) in Hs and the uniform pointwise
convergence of uk(t). Therefore, we have

‖u(t)‖s,u(t) ≤ ‖g‖s,g + C ′ t,

which yields (10.1.21). �
In fact, the local well-posedness result shown in Theorem 10.1 is also valid,

under the same restriction of the regularity index, for systems admitting a sym-
bolic symmetrizer in the following natural sense (see Definition 2.4 in Chapter 2).

Definition 10.2 A symbolic symmetrizer associated with the quasilinear system
(10.1.3) is a C∞ mapping

S : Rn × (Rd\{0}) → Mn(C),

homogeneous degree 0 in ξ such that

S(u, ξ) = S(u, ξ)∗ > 0 and S(u, ξ)A(u, ξ) = A(u, ξ)∗ S(u, ξ)

for all (u, ξ) ∈ Rn × (Rd\{0}), where A(u, ξ) :=
d∑

j=1

ξj Aj(u).

Theorem 10.2 We assume that Aj and b are C∞ functions of u ∈ Rn, with
b(0) = 0, and that (10.1.3) admits a symbolic symmetrizer. For all initial data
g ∈ Hs(Rd) with s > d

2 + 1, there exists T > 0 such that (10.1.3) has a unique
solution u ∈ C ([0, T ];Hs) such that u(0) = g.

This theorem is shown for higher s by Taylor in [205]. Métivier [132] proves
it under the optimal condition s > d

2 + 1. In fact, he also allows the matrices
Aj and the reaction term b to depend on (x, t) inside a compact set, and b to
not necessarily vanish at 0. Moreover, the same precautions as in Theorem 10.1
would allow those matrices Aj and the reaction term b to be defined only on an
open subset U of Rn. We omit these refinements for simplicity.
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Proof Unsurprisingly, the proof relies on the linear result in Theorem 2.7 and
an iterative scheme. After initialization by u0 = g, the scheme merely reads

Lukuk+1 = b(uk) , uk+1(0) = g,

where

Lu = ∂t +
∑

j

Aj(u(x, t)) ∂j .

This defines inductively uk ∈ C ([0, T ];Hs) ∩ C 1([0, T ];Hs−1). Furthermore, at
least for small T , we can control inductively the norms of uk governing the
constants Kk, Ck and γk in the energy estimate

‖uk+1(t)‖2Hs ≤ eγkt
(
Kk ‖u(0)‖2Hs + Ck t ‖Lukuk+1‖2L∞(0,T ;Hs)

)
.

In other words, we can make Kk, Ck and γk independent of k, provided that
t ≤ T is small enough. Recall that Kk a priori depends on ‖uk‖L∞([0,T ];W 1,∞) and
Ck, γk a priori depend on

sup
(
‖uk‖L∞([0,T ];Hs) , ‖∂tu

k‖L∞([0,T ];Hs−1)

)
.

We take M0 > ‖g‖W 1,∞ , M1 > ‖g‖Hs and M2 > 0 (to be enlarged later)
and look for conditions under which

‖uk‖L∞([0,T ];W 1,∞) ≤ M0 , ‖uk‖L∞([0,T ];Hs) ≤ M1 ‖∂tu
k‖L∞([0,T ];Hs−1) ≤ M2

independently of k.
Assume that this is the case for uk. By Theorem C.12, we know there exists

c1 = c1(M1) so that ‖b(uk)‖Hs ≤ c1(M1). Therefore, we have the estimate

‖uk+1(t)‖2Hs ≤ eγ(max(M1,M2))T
(
K(M0) ‖g‖2Hs + T C(max(M1,M2)) c1(M1)2

)
.

Hence, the first condition to keep ‖uk+1(t)‖Hs less than M1 is

eγ(max(M1,M2))T
(
K(M0) ‖g‖2Hs + T C(max(M1,M2)) c1(M1)2

)
≤ M2

1 .

Assume that this is the case. Then, also by Theorem C.12 plus Proposition C.11
and the Sobolev embedding Hs−1 ↪→ L∞, there exists c2 = c2(M1) so that∥∥∥∥∥∥

∑
j

Aj(uk) ∂ju
k+1

∥∥∥∥∥∥
Hs−1

≤ c2(M1).

Consequently, ∂tu
k+1 = b(uk) − ∑j Aj(uk) ∂ju

k+1 satisfies the estimate

‖∂tu
k+1‖L∞([0,T ];Hs−1) ≤ c1(M1) + c2(M1).

Finally, we need an estimate of

‖uk+1‖L∞([0,T ];W 1,∞) ≤ ‖uk+1 − uk+1(0)‖L∞([0,T ];W 1,∞) + ‖g‖L∞([0,T ];W 1,∞).



302 The Cauchy problem for quasilinear systems

Since

‖uk+1 − uk+1(0)‖L∞([0,T ];W 1,∞) ≤ Cs′ ‖uk+1 − uk+1(0)‖L∞([0,T ];Hs′ )

for s′ > d/2 + 1, we can bound this term by L2–Hs interpolation. For d/2 + 1 <
s′ < s, we get

‖uk+1 − uk+1(0)‖L∞([0,T ];W 1,∞)

≤ Cs′,s T 1−s′/s ‖∂tu
k+1‖1−s′/s

L∞([0,T ];L2)‖u
k+1 − uk+1(0)‖s′/s

L∞([0,T ];Hs)

≤ 2s′/s Cs′,s T 1−s′/s M
1−s′/s
2 M

s′/s
1 ≤ C̃s,s′ max(M1,M2)T 1−s′/s .

In conclusion, the following successive choices appear to work. We take M0 >
‖g‖W 1,∞ , M1 > max(1,K(M0)1/2) ‖g‖Hs and M2 ≥ c1(M1) + c2(M1) and then
choose T small enough so that

‖g‖W 1,∞ + C̃s,s′ max(M1,M2)T 1−s′/s ≤ M0,

eγ(max(M1,M2))T
(
K(M0) ‖g‖2Hs + T C(max(M1,M2)) c1(M1)2

)
≤ M2

1 .

Once we have these strong bounds on the sequence (uk) we can show its con-
vergence in C ([0, T ],Hs−1). Indeed, we have by construction (uk+1 − uk)(0) =
0 and

Luk(uk+1 − uk) = b(uk) − b(uk−1) − (Luk − Luk−1)uk.

The right-hand side above can be estimated using Corollary C.3 (Appendix C).
Hence, applying the a priori estimate of Theorem 2.4 with m = s− 1, we obtain

‖uk+1 − uk‖2C ([0,T ];Hs−1) ≤ C T eγT ‖uk − uk−1‖2C ([0,T ];Hs−1) ,

where C and γ are independent of k – they can be evaluated in terms of M1,
M2. So the sequence (uk) is convergent in C ([0, T ],Hs−1) if T is so small that
C T eγT < 1.

The rest of the proof is the same as for Theorem 10.1. �

10.1.2 Continuation of solutions

Once we have local existence results like Theorems 10.1 and 10.2, we may wonder
whether it is possible to continue, and for how long, local-in-time solutions.
The continuation principle stated hereafter gives a simple answer to the first
part of the question. Suppose T is the maximal time of existence of a solution
u ∈ C ([0, T );Hs(Rd)). There are roughly two alternatives. Either T is infinite or
‖u(t)‖W 1,∞(Rd) is unbounded as t approaches T . In the latter case, a possibility
is that u(x, t) escapes any compact set of Rn. In fact, if the matrices Aj and the
reaction term b are well-defined only on an open subset U of Rn, the correct
statement is that, if T is finite, either u(x, t) escapes any compact subset of
U or ‖∇xu(t)‖L∞(Rd) is unbounded. The first case is analogous to the finite
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time blow-up in ordinary differential equations. The second one corresponds
to the formation of shocks, a phenomenon that is classically explained on the
one-dimensional example of Burgers’ equation, corresponding to A1(u) = u.
For more details on blow-up (in one space dimension), we recommend, for
instance, the book by Whitham [219], p. 42–46. Also see the more recent book by
Alinhac [6].

We give below a continuation result in the most general framework of systems
admitting a symbolic symmetrizer. We shall use again para-differential calculus
in the proof. Of course, a more elementary proof can be given for Friedrichs-
symmetrizable systems (see, for instance, Majda [126], p. 46–48).

Theorem 10.3 Let U be an open subset of Rn containing the closed ball
B(0;ω). We assume that Aj and b are C∞ functions of u ∈ U , with b(0) = 0,
and that (10.1.3) has a symbolic symmetrizer in U . If u ∈ C ([0, T );Hs) with
0 < T < +∞ and s > d

2 + 1 is a solution of (10.1.3) such that

‖u‖L∞([0,T ];W 1,∞(Rd)) ≤ ω

then u is continuable to a solution in C ([0, T ′];Hs) with T ′ > T .

Proof The main ingredient will be a uniform estimate of ‖u(t)‖Hs for all
t < T . In fact, this estimate is almost contained in the proof of Theorem 2.4 in
Chapter 2 applied to v = u. For clarity, we give below the crucial points. We
shall use the same notations as in the proof of that theorem. We first introduce
the para-differential operator

Pu = ∂t +
∑

j

TAj(u) ∂j .

For all t < T , Puu(t) − Luu(t) belongs to Hs because of Proposition C.9 and
Theorem C.12, and we have a uniform estimate

‖Puu − Luu ‖Hs ≤ K ‖u‖Hs ,

where K = K(ω). This is the first point. Then we proceed as in the proof
of Theorem 2.4. The new fact here is that ‖∂tu‖L∞(Rd×[0,T ]) is bounded by a
constant C = C(ω). This is simply due to the equation

∂tu = −
∑

j

Aj(u)∂ju + b(u).

So, the estimate obtained at the end is

‖u(t)‖2Hs ≤ K2(ω)
β(ω)

(
eγ t ‖u(0)‖2Hs +

∫ t

0

eγ (t−τ) ‖Puu(τ)‖2Hs dτ

)
,
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valid for all γ ≥ 1 + 2β(ω)−1 (K3(ω) + C(ω)). Now, using that Puu = Puu −
Luu + Luu, we get the estimate

‖u(t)‖2Hs ≤ K2

β

(
eγ t ‖u(0)‖2Hs + 2

∫ t

0

eγ (t−τ) (K + K0 ) ‖u(τ)‖2Hs dτ

)
,

where K0 = K0(ω) comes from Theorem C.12 applied to F = b. So in short,
there is a constant C0 depending only on ω and T such that

‖u(t)‖2Hs ≤ C0

(
‖u(0)‖2Hs +

∫ t

0

‖u(τ)‖2Hs dτ

)
.

By Gronwall’s Lemma, this implies

‖u(t)‖2Hs ≤ C0 eC0 T ‖u(0)‖2Hs .

Thus u belongs to L∞([0, T ];Hs). Furthermore, u belongs to C 1([0, T );Hs−1) –
because of the equation ∂tu = −

∑
j Aj(u) ∂ju + b(u) and u ∈ C ([0, T );Hs) –

and thus to C 1([0, T );L∞) – by Sobolev embedding – and we have a uniform
bound

‖∂tu‖L∞(Rd×[0,T ]) ≤ C.

Therefore, u is continuable to a C ([0, T ];L∞) function. Hence, by weak compact-
ness of bounded sets in Hilbert spaces and uniqueness of the limit in the sense
of distributions, we have

u(t) ⇀ u(T ) in Hs
w when t ↗ T.

Consequently, we have u ∈ L∞([0, T ];Hs) ∩ C ([0, T ];Hs
w).

To show that u actually belongs to C ([0, T ];Hs), we can now make use of
the uniqueness part of Theorem 2.7 in Chapter 2 – applied to v = u and f =
b(u). Indeed, f belongs to L∞([0, T ];Hs) ∩ C ([0, T ];L∞) – like u – and thus to
L∞([0, T ];Hs) ∩ C ([0, T ];Hs

w). So the theorem does apply, and the weak solution
u ∈ L2([0, T ];Hs) of ∂tu +

∑
j Aj(u) ∂ju = f is a strong solution and belongs

in fact to C ([0, T ];Hs).
Once we know this, we can apply the local existence result in Theorem 10.2

to u(T ) as initial data, and this completes the proof. �

10.2 Weak solutions

As suggested by our previous remarks and everyday experience of shocks in
gas dynamics, for instance, blow-up in finite time does occur for generic initial
data. This urges us to consider weak solutions, i.e. solutions in the sense of
distributions that are not even continuous. For general quasilinear systems, the
meaning of discontinuous solutions is unclear. However, for systems in divergence
form (10.0.1), there is no ambiguity, and the associated Cauchy problems admit
natural weak formulations (see, for instance, [46], p. 50–51 or [184], p. 86–87).
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10.2.1 Entropy solutions

A well-known drawback of weak solutions is their non-uniqueness, and an appro-
priate notion that is likely to restore uniqueness is the one of entropy solutions.
To define entropy solutions we need mathematical entropies, which are defined
as follows.

Definition 10.3 A function η ∈ C 1(U ; R), U ⊂ Rn, is called a (mathematical)
entropy of the system of balance laws (10.0.1) if and only if there exists q ∈
C 1(U ; Rd) such that

dqj(u) = dη(u) ·Aj(u) , ∀ u ∈ U , j = 1, . . . , d,

where

Aj(u) = df0(u)−1 df j(u).

In this case, (η, q) is called an entropy–entropy flux pair.

Equivalently, (η, q) is an entropy–entropy flux pair if any smooth solution u
of (10.0.1) satisfies the additional balance law

∂tη(u) +
d∑

j=1

∂jq
j(u) = dη(u) · b(u) , b(u) = df0(u)−1 c(u) .

Definition 10.4 A weak solution u of (10.0.1) is called an entropy solution if
it satisfies the inequality

∂tη(u) +
d∑

j=1

∂jq
j(u) ≤ dη(u) · b(u)

in the sense of distributions for any entropy–entropy flux pair (η, q) with η
convex.

Of course, the convexity restriction plays an essential role here. If it were
omitted, the requested inequality could only be an equality, which would be too
restrictive – smooth solutions do satisfy the equality but discontinuous solutions
in general do not.

Also note that Definition 10.4 might be helpless if no convex entropy exists,
which is ‘generically’ the case for n ≥ 2 and nd ≥ 3 – there are too many
equations for two unknowns. However, it appears that physics is not generic.
For physical systems like the Euler equations considered in Chapter 13, there
does exist at least one entropy, in connection with the thermodynamical entropy,
and in standard cases it is convex1. But there is generally hardly more than one
(nontrivial) convex entropy. So one may wonder whether a single one is sufficient
to select a unique – supposedly good – solution. The answer is unfortunately no,
in general. However, it appears that a single strictly convex entropy η is able to

1For examples of physical systems with only partially convex entropies, see [46], Section 5.3.
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select the smooth solution if and as long as it exists. This important result is due
to Dafermos. We reproduce it here for completeness. We shall use the shortcut
η-entropy solution for a function u satisfying

∂tf
0(u) +

d∑
j=1

∂jf
j(u) = c(u) ,

∂tη(u) +
d∑

j=1

∂jq
j(u) ≤ dη(u) · df0(u)−1 · c(u)

in the sense of distributions.

Theorem 10.4 (Dafermos) Let us assume that (10.0.1) has an entropy–entropy
flux pair (η, q) with η ∈ C 2(U ; R) and d2η positive-definite everywhere. Assume
that ū ∈ C 1(Rd × [0, T ]) is a smooth solution of (10.0.1) and u ∈ L∞(Rd × [0, T ])
is a η-entropy solution, both taking values in the same compact convex subset
K of U , such that u(0)− ū(0) belongs to L2(Rd). Then there exists C =
C(T,K , ‖∇xū‖L∞) such that

‖u − ū‖L∞(0,T ;L2) ≤ C ‖u(0) − ū(0)‖L2 .

Proof Interestingly, the proof of this ‘energy estimate’ involves new ingredients
compared to the ones performed previously in this book, and in particular it
incorporates, to some extent, Krushkov’s idea of doubled unknowns. It also
requires some information on the regularity in time of weak solutions, which
we merely recall without proof from [46], p. 50.

Lemma 10.1 For any weak solution u ∈ L∞(Rd × [0, T ]) of (10.0.1), for all
t ∈ [0, T ), the mean value

1
ε

∫ t+ε

t

u(τ) dτ

has a limit in the weak-∗ topology of L∞(Rd) when ε goes to 0, and this limit is
u(t) for almost all t in [0, T ].

Admitting this lemma, we can thus choose a representative of the weak solution
u in the statement of the theorem such that u(t) is the limit everywhere. This
will be implicitly assumed in the computations below. In view of Lemma 10.1,
we have in particular

lim
ε↘0

1
ε

∫ t+ε

t

∫
P

u(x, τ) dxdτ =
∫

P

u(x, t) dx ∀t ∈ [0, T ),

for any compact set P ⊂ Rd, and using that

η(u(x, τ)) ≥ η(u(x, t)) + dη(u(x, t)) · (u(x, τ)− u(x, t))
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by the convexity of η, we easily get

lim inf
ε↘0

1
ε

∫ t+ε

t

∫
Pε(τ)

η(u(x, τ)) dxdτ ≥
∫

P0(t)

η(u(x, t)) dx ∀t ∈ [0, T ),

if the set Pε(τ) depends continuously on (ε, τ).
Having these preliminary results at hand, we can now give a complete proof

of Theorem 10.4, which is a slightly more detailed version of what can be found
in [46], p. 66–68. Despite its technicality, it is interesting and easy to understand.

We assume for simplicity that f0(u) = u – in this case it is sometimes said
that (10.0.1) is in canonical form – and define

h(v, w) = η(v)− η(w) − dη(w) · (v − w),

gj(v, w) = qj(v)− qj(w) − dη(w) · (f j(v)− f j(w)),

zj(v, w) = f j(v)− f j(w) − df j(w) · (v − w),

ζ(v, w) = dη(v)− dη(w) − d2η(w) · (v − w)

for all v, w ∈ K . By the strict convexity of η and Taylor expansions, we have
the following uniform estimates on K

β ‖v − w‖2 ≤ h(v, w) ≤ β−1 ‖v − w‖2,

‖g(v, w)‖ :=
∑

j |gj(v, w)| ≤ K ‖v − w‖2,

‖z(v, w)‖ :=
∑

j ‖zj(v, w)‖ ≤ K ‖v − w‖2,

‖ζ(v, w)‖ ≤ K ‖v − w‖2,

with β > 0 and K > 0.
Considering a Lipschitz continuous test function ϕ, we substract the equality∫

Rd×[0,T )

(
η(ū) ∂tϕ +

∑
j

qj(ū) ∂jϕ + ϕd(ū)
)

+
∫

Rd

η(ū(0))ϕ(0) = 0,

to the inequality∫
Rd×[0,T )

(
η(u) ∂tϕ +

∑
j

qj(u) ∂jϕ + ϕd(u)
)

+
∫

Rd

η(u(0))ϕ(0) ≥ 0

where we have denoted d(u) = dη(u) · b(u). Using the equalities∫
Rd×[0,T )

(
ū ∂tψ +

∑
j

f j(ū) ∂jψj + ψj b(ū)
)

+
∫

Rd

ū(0)ψj(0) = 0,

∫
Rd×[0,T )

(
u ∂tψj +

∑
j

f j(u) ∂jψj + ψj b(u)
)

+
∫

Rd

u(0)ψj(0) = 0
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for the family of test functions

ψj = ϕ
∂η

∂uj
(ū) , j = 1, . . . , n,

we obtain the inequality∫
Rd×[0,T )

(
h(u, ū) ∂tϕ +

∑
j

gj(u, ū) ∂jϕ + ϕ ( dη(u)− dη(ū) ) · b(u)
)

+
∫

Rd

h(u(0), ū(0))ϕ(0)

≥
∫

Rd×[0,T )

ϕ
(
∂t(dη(ū)) · (u− ū) +

∑
j

∂j(dη(ū)) · (f j(u) − f j(ū))
)
.

Using the fact that ū is smooth and satisfies

∂tū +
d∑

j=1

df j(ū) · ∂j ū = b(ū)

in the classical sense and that the Jacobian matrices df j(ū) are d2η(ū)-
symmetric, we may rewrite the factor of ϕ in the integrand of the right-hand
side above as

d2η(ū) · (zj(u, ū), ∂j ū) + d2η(ū) · (b(ū), u− ū).

Therefore, we are left with the inequality∫
Rd×[0,T )

(
h(u, ū) ∂tϕ +

∑
j

gj(u, ū) ∂jϕ
)

+
∫

Rd

h(u(0), ū(0))ϕ(0)

≥
∫

Rd×[0,T )

ϕ
(

d2η(ū) · (zj(u, ū), ∂j ū) − ζ(u, ū) · b(u)

− d2η(ū) · (b(u)− b(ū), u− ū)
)
, (10.2.22)

where the right-hand side is quadratic, i.e. bounded in absolute value by

C ‖ϕ‖L∞

∫
Supp ϕ

h(u, ū),

where C = C(K,β, ‖u‖L∞ , ‖∇ū‖L∞ , ‖db‖L∞(K )).
The rest of the proof is based on a suitable choice of ϕ that will cancel out

the left-hand side terms ∫
Rd×[0,T )

gj(u, ū) ∂jϕ .
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In fact, we shall use a family of test functions ϕε, whose definition depends on
the rate λ = 2K/β in the inequality

‖g(v, w)‖ ≤ λ

2
h(v, w).

(Observe that λ should be homogeneous to a velocity.)
We fix R > 0, t0 ∈ (0, T ), 0 < ε < T − t0, 0 ≤ s ≤ t0, and define ϕε,s by

ϕε,s(x, t) =



0 if t ≥ s + ε
or ‖x‖ ≥ R + λ(s + ε− t) ,

1 if t ≤ s
and ‖x‖ ≤ R + λ(s− t),

θε,s(t) if s ≤ t < s + ε
and ‖x‖ ≤ R + λ(s− t),

θε,s(t)χε,s(x, t) if s ≤ t < s + ε
and R + λ(s− t) ≤ ‖x‖ < R + λ(s + ε− t),

χε,s(x, t) if t ≤ s
and R + λ(s− t) ≤ ‖x‖ < R + λ(s + ε− t),

where

θε,s(t) =
s + ε− t

ε
, χε,s(x, t) =

R + λ(s + ε− t)− ‖x‖
λ ε

.

We first observe that∫
R + λs≤‖x‖< R + λ(s+ε)

h(u(0), ū(0))χε,s(x, 0) = O(ε)

(uniformly for s ∈ [0, t0]) hence∫
Rd

h(u(0), ū(0))ϕε,t(0) =
∫
‖x‖≤R + λs

h(u(0), ū(0)) + O(ε).

Next, we also have

∫ s+ε

s

∫
R + λ(s−t)≤‖x‖< R + λ(s+ε−t)

h(u, ū) ∂t(θε,s χε,s) = O(ε),
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and therefore∫
Rd×[0,T ]

h(u, ū) ∂tϕε,s = O(ε) +
∫ s+ε

s

∫
‖x‖≤R + λ(s−t)

h(u, ū) ∂tθε,s

+
∫ s

0

∫
R + λ(s−t)≤‖x‖< R + λ(s+ε−t)

h(u, ū) ∂tχε,s

= O(ε) − 1
ε

∫ s+ε

s

∫
‖x‖≤R + λ(s−t)

h(u, ū)

− 1
ε

∫ s

0

∫
R + λ(s−t)≤‖x‖< R + λ(s+ε−t)

h(u, ū) .

Similarly, we find that∫
Rd×[0,T ]

gj(u, ū) ∂jϕε,s

=O(ε) − 1
λ ε

∫ s

0

∫
R + λ(s−t)≤‖x‖< R + λ(s+ε−t)

gj(u, ū)
xj

‖x‖ .

Now, using the fact that

λh(u, ū) +
∑

j

xj

‖x‖ gj(u, ū) ≥ λh(u, ū) −
∑

j

|gj(u, ū)| ≥ λ

2
h(u, ū)

by definition of λ, and substituting the expansions obtained hereabove into the
inequality (10.2.22) we arrive at

1
ε

∫ s+ε

s

∫
‖x‖≤R + λ(s−t)

h(u, ū) +
1
2 ε

∫ s

0

∫
R + λ(s−t)≤‖x‖< R + λ(s+ε−t)

h(u, ū)

≤ C0 ε +
∫
‖x‖≤R + λs

h(u(0), ū(0)) + C

∫ s+ε

0

∫
‖x‖≤R+λ(s+ε−t)

h(u, ū)

(10.2.23)

for all ε ∈ (0, T − t0) and s ∈ [0, t0]. We claim this implies an estimate of the
form ∫

‖x‖≤R

h(u(t), ū(t)) ≤ C̃

∫
‖x‖≤R + λ t0

h(u(0), ū(0))

for all t ∈ [0, t0].
Indeed, setting

a(s) =
∫ s

0

∫
‖x‖≤R+λ(s−t)

h(u(x, t), ū(x, t)) dxdt,
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we have

a(s + ε)− a(s) =
∫ s+ε

s

∫
‖x‖≤R + λ(s+ε−t)

h(u, ū)

+
∫ s

0

∫
R + λ(s−t)≤‖x‖< R + λ(s+ε−t)

h(u, ū)

= O(ε2) +
∫ s+ε

s

∫
‖x‖≤R + λ(s−t)

h(u, ū)

+
∫ s

0

∫
R + λ(s−t)≤‖x‖< R + λ(s+ε−t)

h(u, ū),

so that (10.2.23) implies

1
2

a(s + ε)− a(s)
ε

≤ C̃0 ε +
∫
‖x‖≤R + λ s

h(u(0), ū(0)) + C a(s + ε),

where C̃0 is the constant C0 plus an upper bound of O(ε2)/ε2. Applying our
discrete Gronwall Lemma A.4, this yields

a(s) ≤ e2Cs

∫
‖x‖≤R + λ s

h(u(0), ū(0))

for all s. Returning to the original inequality (10.2.23), this shows in particular
that

1
ε

∫ s+ε

s

∫
‖x‖≤R + λ(s−t)

h(u, ū) ≤ C0 ε +
∫
‖x‖≤R + λ s

h(u(0), ū(0))

+C e2C(s+ε)

∫
‖x‖≤R + λ (s+ε)

h(u(0), ū(0)) .

Finally, using our preliminary remark to deal with the left-hand side when ε goes
to 0 we obtain∫

‖x‖≤R

h(u(s), ū(s)) ≤ (1 + Ce2Cs)
∫
‖x‖≤R + λ s

h(u(0), ū(0)).

Together with the known two-sided inequalities for h, this completes the proof.
�

This is all we shall say about weak/entropy solutions in general, mainly
because we do not know much more in several space dimensions! For recent,
important results in one space dimension, see [24].

10.2.2 Piecewise smooth solutions

An amenable, and nonetheless interesting class of weak/entropy solutions is given
by piecewise smooth solutions. They consist of smooth solutions separated by
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fronts of discontinuity, across which the so-called Rankine–Hugoniot condition
is satisfied. We recall this condition below without justification, which can be
found in many textbooks (see, for instance, [46], p. 10–11 or [184], p. 88–89).
We also summarize hereafter the material needed for our subsequent analysis in
Chapter 12.

Definition 10.5 Suppose that Σ is a codimension one surface in Rd × R+ and
that (Rd × R+)\Σ has two connected components Ω− and Ω+. Assume that u± ∈
C 1(Ω±) solve the system of balance laws (10.0.1) on either side of Σ. Then the
function

u : (Rd × R+)\Σ → Rn

(x, t) �→ u(x, t) = u±(x, t) for (x, t) ∈ Ω±

is said to satisfy the Rankine–Hugoniot condition across Σ if and only if

N0 [f0(u)] +
d∑

j=1

Nj [f j(u)] = 0, (10.2.24)

where N0, N1, . . . , Nd denote the components in the directions t, x1,. . . , xd,
respectively, of a vector N orthogonal to Σ. Here above, if N is pointing to Ω+,
the brackets [·] stand for

[f j(u)](x, t) = lim
ε↘0

( f j(u+((x, t) + εN(x, t))) − f j(u−((x, t)− εN(x, t))) )

at each point (x, t) ∈ Σ.

The Rankine–Hugoniot condition is known to be necessary and sufficient for u
to be a weak solution of (10.0.1). Needless to say, the conservative, or divergence
form of the right-hand side in (10.0.1) is crucial for this statement to make sense.

For completeness, let us recall the following basic characterization of piecewise
smooth entropy solutions.

Proposition 10.2 Suppose that Σ is a codimension one surface in Rd × R+

and that (Rd × R+)\Σ has two connected components Ω− and Ω+. A function

u : (Rd × R+)\Σ → Rn

(x, t) �→ u(x, t) = u±(x, t) for (x, t) ∈ Ω± ,

with u± ∈ C 1(Ω±) is a η-entropy solution of the system of conservation laws

∂f0(u)
∂t

+
d∑

j=1

∂f j(u)
∂xj

= 0 (10.2.25)
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if and only if u± satisfy (10.2.25) in Ω±, the Rankine–Hugoniot (10.2.24) holds
true across Σ and, moreover,

N0 [η(u)] +
d∑

j=1

Nj [qj(u)] ≤ 0, (10.2.26)

where N0, N1, . . . , Nd denote the components in the directions t, x1,. . . , xd,
respectively, of a vector N orthogonal to Σ pointing to Ω+.

Remark 10.2 This characterization of course does not depend on the choice
of Ω− and Ω+: if these parts of the space Rd × R+ are exchanged, N is changed
to −N and the jumps are also changed into their opposite.

Many solutions of the type described in Proposition 10.2 have been observed
experimentally (in gas dynamics, for instance) and numerically. But there is no
global-in-time existence result for arbitrary jump front Σ.

The special case of a planar Σ reduces the problem to one space dimen-
sion. Solutions consisting of a planar front propagating with constant speed in
constant, homogeneous states are easily found by examining the one-dimensional
Rankine–Hugoniot condition. These solutions are called planar shock waves when
(10.2.26) is a strict inequality. There are also planar contact discontinuities, for
which (10.2.26) is in fact an equality. Planar fronts in gas dynamics are discussed
in detail in Chapter 13.

Spherical shocks are already much more complicated, as they involve a non-
constant speed and non-homogeneous states in general. As regards gas dynamics,
for instance, spherical shocks have received attention for decades: this goes
back to World War II and the atomic bomb research [73, 75, 106, 180, 204], in
which basic solutions were obtained by means of similarity/dimensional analysis
[181]; more recently the interest in the field has been renewed by (hopefully)
more peaceful and nonetheless fascinating phenomena (e.g. sonoluminescence,
cavitation) and various (potential) applications of shock focusing (extracorporeal
therapies, nuclear fusion, etc.); current research concerns complex fluids (van
der Waals or dusty gases, superfluids, etc.) and has incorporated group-analysis
techniques. The interested reader may refer, for instance, to the collected papers
in [198].

Regarding ‘arbitrarily’ curved fronts, as far as gas dynamics is concerned
there is a wide literature on transonic (stationary) shocks (see, for instance,
[30, 34, 220]) or other patterns, in particular those related to the reflexion of
shocks (see, for instance, [182,225,226]). In more general, abstract settings, there
are far fewer results on curved shocks. The main existence results are due to
Majda [124–126], Métivier [133,136], Blokhin [17,18] and are based on a stability
analysis of reference fronts (known to exist, such as planar ones, or assumed) and
thus are local in time. The description of those results will be the main purpose
of Chapter 12.
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Even though they are beyond the scope this book, other interesting results on
(abstract) multidimensional weak solutions are worth mentioning. In fact, they
date back to the late 1980s! One of them is due to Métiver and deals with the
interaction of two shocks [131]. Another study is due to Alinhac [3,4], and answers
a question raised by Majda in [126] (p. 153–154) on the existence and structure
of multidimensional rarefaction waves (initially discontinuous, but smoother for
positive times). One of the main difficulties in constructing those waves is, ‘the
dominant signals in rarefaction fronts move at characteristic speeds’, Majda
said. Alinhac overcome it by using a Nash–Moser iterative scheme and ad hoc
functional spaces (based on the Littlewood–Paley decomposition). It is notable
that a similar difficulty arises for weak shocks. This case is paradoxical because,
when the initial shock strength goes to zero we expect to recover a smooth
solution, but if we apply Majda’s result with brute force the existence time of the
shock-front solution shrinks to 0, as the shock tends to be characteristic. It was
resolved rather recently by Métivier and his coworker Francheteau (see [56,133],
and also the lecture notes [136]).



11

THE MIXED PROBLEM FOR QUASILINEAR SYSTEMS

Physical problems are not usually posed in the whole space: in fluid mechanics,
for instance, a spatial domain typically has an entrance, an exit and walls;
however, this kind of mixed-type and non-smooth boundary yields unsolved
yet mathematical problems. The purpose of this chapter is to show how to
deal with more regular non-linear initial boundary value problems (IBVP). The
name IBVP refers explicitly to the initial data (at time zero) and the boundary
data (on the boundary of the spatial domain). IBVPs are equivalently called
mixed problems (regardless of the nature of boundary data) just because of the
‘mixing’ between initial data and boundary data: we will use either one of those
names.

The general mixed problem for a system of balance laws reads
∂tf

0(u) +
d∑

j=1

∂jf
j(u) = c(u) , Ω× (0, T ),

b(u) = b , ∂Ω× (0, T )
u|t=0 = u0 , Ω,

where Ω is a connected open subset of Rd, the fluxes f j(u), the source term
c(u) and the boundary term b(u) are expressed through supposedly smooth non-
linear vector-valued mappings f j , c and b, respectively, and b and u0 are smooth
functions encoding, respectively, the boundary data and the initial data. We
shall also assume that the level sets of the nonlinear mapping b are smooth
submanifolds of the phase space Rn.

We will consider only smooth solutions – recall that even the Cauchy problem
is still most open for weak solutions in several space dimensions – so we may use
the chain rule in the derivatives of fluxes and rewrite the PDEs in quasilinear
form. More generally, we consider a quasilinear system of PDEs, not necessarily
coming from equations in divergence form, and its associated initial boundary
value problem 

∂tu +
d∑

j=1

Aj(u) ∂ju = h(u) , Ω× (0, T ),

b(u) = b , ∂Ω× (0, T ),
u|t=0 = u0 , Ω.

(11.0.1)
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Here above, the Aj are C∞ mappings on an open subset U of Rn, with values
in Mn(R), and the mappings h : U → Rn and b : U → Rp (with p a fixed
integer), are also C∞. In fact Aj , h and b may all depend on (x, t) as well but
we avoid this refinement for the sake of simplicity. The boundary data b : ∂Ω×
[0, T ] → Rp and the initial data u0 : Ω → Rn will be assumed to lie in Sobolev
spaces: the main purpose of this chapter is indeed to solve the quasilinear IBVP
(11.0.1) in Sobolev spaces of sufficiently high index (and for T small enough).

The resolution of (11.0.1) is a most open problem for general domains Ω,
but under suitable assumptions on the geometry of Ω and on the boundary
conditions, it is possible to prove well-posedness results: in the simpler one
dimensional case – i.e. with Ω a segment of the real line – the (hardly obtainable)
book by Li Ta Tsien and Yu Wen Ci [116] deals with IBVPs and other related
problems; in higher dimensions our main references are the (unpublished) PhD
thesis of Mokrane [140] and the lecture notes of Métivier [136] (see also the
early work of Rauch and Massey [165], and more recent papers dealing with
characteristic problems by Guès [76], the Japanese school [149–151,192,193] and
Secchi and coworkers [43,44,176–179]).

11.1 Main results

11.1.1 Structural and stability assumptions

We enter now into detailed assumptions under which (11.0.1) is known to have a
unique smooth solution (for T small enough, the non-linearities precluding global
solutions in general).

A basic requirement is that the ‘linearized’ versions of the problem, including
those with variable coefficients, fall into the framework of the results known for
linear initial boundary value problems (LIBVP). Here come the restrictions on
the domain Ω: Chapter 9 has shown we may hope to deal with either a half-space
(up to a change of variables) or a smooth bounded Ω. We shall implicitly assume
either one of these situations.

The LIBVP considered will be of the form

∂tu +
d∑

j=1

Aj(v) ∂ju = f , Ω× (0, T ),

db(v) · u = g , ∂Ω× (0, T )

u|t=0 = 0 , Ω,

(11.1.2)

with v a given function of possibly limited regularity, and f , g arbitrary data (in
spaces to be specified afterwards).

Our starting point is the classical, even though not universal, constant
hyperbolicity assumption:
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(CH) the matrices

A(w, ξ) :=
d∑

j=1

ξj Aj(w)

are diagonalizable with real eigenvalues of constant multiplicities on U ×
Sd−1.

This condition is known to be violated, for instance, by the (challenging)
system of ideal magnetohydrodynamics [17]. Nevertheless, (CH) is satisfied by
many physically relevant systems, and in particular by the Euler equations of gas
dynamics, the basic application considered in this book. For systems with variable
multiplicities, we refer to the recent work by Métivier and Zumbrun [135], which
goes far beyond the scope of this book.

We now import from Chapter 9 some assumptions on Ω and the matrix-valued
function B := db.

(NC) for all w ∈ U and all normal vector ν to ∂Ω, the matrix A(w, ν) is
non-singular,

(N) the boundary matrix B is of constant, maximal rank and

Rn = kerB(w)⊕Es(A(w, ν)) for all (w, ν) ∈ U × Sd−1,

with ν an outward normal vector to ∂Ω and Es(A(w, ν)) the stable
subspace of the (hyperbolic) matrix A(w, ν),

(T) the vector bundle kerB is trivializable, that is, kerB(w) admits a basis
depending smoothly on w ∈ U .

The latter is not very demanding: thanks to a classical differential topology
result (see [85], p. 97), it is satisfied as soon as B is smooth (and of constant
rank) and U is contractible (which is the case if it is a ball, for instance).
On the other hand, assuming that the whole boundary is non-characteristic
in such a strong sense as in (NC) is quite restrictive, especially when ∂Ω is a
connected bounded manifold. Indeed, observe that for all ξ ∈ Sd−1, detA(w, ξ) =
(−1)n det A(w,−ξ) by homogeneity: assume then that ∂Ω is a smooth connected
manifold and that there are two points x1 and x2 in ∂Ω where the normal vectors
are opposite to each other; if, moreover, the dimension n of the phase space is
odd, the mean-value theorem trivially implies that detA(w, .) vanishes on the
connected set of normal vectors to ∂Ω along the path from x1 to x2. In some
cases, the vanishing of detA(w, ν) can even occur whatever the parity of n: in full
gas dynamics, for instance, if ∂Ω is a sphere, the set of its normal vectors is Sd−1,
which intersects any hyperplane u⊥; this means the eigenvalue λ2 = u · ξ (with
u the velocity of the fluid) does vanish at some points ξ ∈ Sd−1, irrespective of
the parity of d (or equivalently the parity of n = d + 2); and even in isentropic
gas dynamics, both eigenvalues u · ξ ± c |ξ| vanish at some ±ξ ∈ Sd−1 when the
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flow is supersonic (|u| ≥ c). These facts urge us to weaken (NC) by taking into
account the boundary data. This is done in the following.

(NCb) For all (x, t) ∈ ∂Ω× [0, T ], for all w ∈ U such that b(w) = b(x, t),
the matrix A(w, ν(x)) is non-singular (where ν(x) denotes the outward
unit normal to ∂Ω at point x).

This is obviously more likely to be satisfied than (NC) (as we see in the example
of full gas dynamics, for which (NCb) is true provided that boundary data impose
a non-singular and non-sonic velocity field normal to the boundary) and sufficient
for our purpose. Even (NCb) is not necessary though, but mixed problems with a
(partly) characteristic boundary (for which (NCb) is false) are much trickier; see
[43,44,76,127,149–151,176–179,192,193]. The assumption (N) is to be weakened
accordingly:

(Nb) the boundary matrix B(w) is of constant, maximal rank for all (x, t) ∈
∂Ω× [0, T ] and all w ∈ U such that b(w) = b(x, t), and

Rn = kerB(w)⊕ Es(A(w, ν(x))).

In geometrical terms, (Nb) means the level sets

Mb(x, t) := {w ∈ U ; b(w) = b(x, t)}

are submanifolds of Rn of the same dimension for all (x, t) ∈ ∂Ω× [0, T ], and
that for all w ∈ Mb(x, t) the tangent space TwMb(x, t) is transverse to the stable
subspace of the characteristic matrix A(w, ν(x)).

Finally, we will of course need the uniform Kreiss–Lopatinskĭı condition, a
draft of which is the following.

(UKL) for all (w, x, ξ, τ) ∈ U × T∗∂Ω× C with Re τ > 0 , there exists
C > 0 so that

‖V ‖ ≤ C ‖B(w)V ‖ for all V ∈ E−(w, x, ξ, τ),

where E−(w, x, ξ, τ) is the stable subspace of

A(w, x, ξ, τ) := A(w, ν(x))−1 ( τ In + i A(w, ξ) ),

and ν(x) denotes the outward unit normal to ∂Ω at point x; and the
same is true for Re τ = 0 once the subspace E− has been extended by
continuity.

Again, (UKL) is to be replaced by a weaker version (UKLb), obtained by asking
the estimate only for those w that are in Mb(x, t) for some t ∈ [0, T ].

11.1.2 Conditions on the data

The resolution of (11.0.1) is possible in Sobolev spaces under two ‘technical’
conditions: 1) that 0 is a solution of the special IBVP with zero initial data and
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boundary data b(·, t = 0), which amounts to asking

h(0) = 0 and b(0) = b(x, 0) for all x ∈ ∂Ω

(recall that the vanishing of the source term at 0 was also asked for the Cauchy
problem in Theorem 10.1); 2) that the boundary data and the initial data satisfy
some compatibility conditions.

Of course, 1) assumes that zero belongs to the domain U . It could be modified
into

h(w) = 0 and b(w) = b(x, 0) for all x ∈ ∂Ω

for some fixed state w ∈ U . This would yield in fine solutions in affine spaces w +
Hk instead of Hk. We set w = 0 just to simplify the presentation. The point 2)
is undoubtedly crucial: we are bound to look for smooth solutions (because of
non-linearities), and we know that the existence of smooth solutions even in the
linear case does require compatibility conditions (see Section 9.2.3).

Definitely unpleasant to write down explicitly, compatibility conditions are
nevertheless very natural. Indeed, assume that u is a smooth – in particular
continuous up to the boundary – solution of (11.0.1), then necessarily

b(u0(x)) = b(x, 0) for all x ∈ ∂Ω.

Now, if u is C 1 up to the boundary,

∂tb(x, 0)= db(u0(x)) · ∂tu(x, 0) = db(u0(x)) ·
(

h(u0(x))−
d∑

j=1

Aj(u0(x))∂ju0(x)
)

for all x ∈ ∂Ω. More generally, u being C p up to the boundary implies

∂p
t b(x, 0) = Cp(u0(x),Du0(x), ...,Dpu0(x)) for all x ∈ ∂Ω (11.1.3)

for some complicated nonlinear function Cp, which can be computed by induction
from C0(u) = b(u) through the formula

Cp+1(u,Du, ...,Dp+1u) =
p∑

k=0

dkCp(u,Du, ...,Dpu) ·Dk

(
h(u)−

d∑
j=1

Aj(u) ∂ju

)
,

where dkCp denotes the differential of Cp with respect to its (k + 1)th argument
(belonging to Rnk

!), and Dk denotes the k-th order differentiation with respect
to x ∈ Rd.

11.1.3 Local solutions of the mixed problem

A rough statement of the main result in the theory of quasilinear mixed problems
is,

existence and uniqueness of smooth solutions for smooth enough and compatible
initial data and boundary data.
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In the accurate statement below, the regularity of the solution is a little weaker
than the regularity of the data.

Theorem 11.1 We assume U is convex, 0 ∈ U , h(0) = 0, (CH), (T), and
we take m an integer greater than (d + 1)/2 + 1.

For all b ∈ Hm+1/2(∂Ω× [0, T ]) such that b(·, 0) ≡ b(0) and all u0 ∈
Hm+1/2(Ω̄) with values in U satisfying the compatibility conditions (11.1.3) for
all p ∈ {0, . . . , m− 1}, as well as (NCb), (Nb), and (UKLb), there exists T > 0
so that the problem (11.0.1) admits a unique solution u ∈ Hm(Ω̄× [0, T ]) having
a trace on ∂Ω that belongs to Hm(∂Ω× [0, T ]).

This result was announced by Rauch and Massey [165], and actually proved
by Mokrane [140]; see Section 11.2.2 for a rather detailed proof.

11.1.4 Well-posedness of the mixed problem

In the case of Friedrichs symmetrizability (and under other simplifying but less
crucial assumptions) it is possible to improve Theorem 11.1 and obtain solutions
with the same regularity as the data. This has been done by Métivier [136], in
fact in the more complicated context of shock-waves stability, but we can state
a simplified version for ‘ordinary’ mixed problems.

Theorem 11.2 We assume Ω is the half-space {x = (y, xd) ∈ Rd−1 × R+}, the
domain U is convex and contains 0, we also assume (CH) and the existence
of a Friedrichs symmetrizer S0 on U (i.e. S0 : U → SPDn being C∞ and such
that S0(w)Aj(w) is symmetric for all j ∈ {1, . . . , d}).

Additionally, we assume h ≡ 0 and b ≡ 0.
If m is an integer greater than d/2 + 1, for all u0 : (y, z) �→ u0(y, z) in

Hm(Rd−1 × R+) with values in U , satisfying the compatibility conditions
(11.1.3) for all p ∈ {0, . . . , m− 1}, as well as (NCb), (Nb), and (UKLb),
then there exists T > 0 so that the problem (11.0.1) admits a unique solution
u ∈ C ([0, T ];Hm(Rd−1 × R+)) such that ∂p

t u ∈ C ([0, T ];Hm−p(Rd−1 × R+)) for
all p ∈ {1, . . . , m}. Furthermore, if the maximal time of existence of the solution
u is a finite T∗ then either u(x, t) leaves every compact subset of U or

lim
t↗T∗

‖∇xu(t)‖L∞(Rd−1×R+;Rd) = +∞.

In particular, this theorem contains a blow-up criterion analogous to what is
known for the Cauchy problem (see Theorem 10.3). Of course it does not tell us
in advance if (and when) blow-up will take place. In one space dimension a few
quantitative results are known, which provide either global solutions (for small
enough data and boundary damping [115, 116]), or an estimate of the blow-up
time (see, for instance, [14,97]).
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11.2 Proofs

For both Theorem 11.1 and Theorem 11.2 the sketch of the proof is most classical,
and proceeds in two steps: 1) linearize and 2) use an iterative scheme. Details
are more cumbersome. We will give only the proof of Theorem 11.1. Regarding
Theorem 11.2, the reader is referred to Section 4 in Métivier’s lectures notes [136].

11.2.1 Technical material

Topology

Let s be a real number greater than d/2 and consider a fixed u ∈ Hs(Rd) taking
values in U  0. Then the closure of u(Rd) is a compact subset K of U , and
there exist ρ > 0 and V ⊂⊂ U (which means V is a compact subset of U ) such
that K ⊂ V and for all v ∈ C (Rd),

‖v − u‖L∞(Rd) ≤ ρ implies v(x) ∈ V for all x ∈ Rd.

Hence, denoting by νs,d the norm of the Sobolev embedding

Hs(Rd) ↪→ L∞(Rd),

‖v − u‖Hs(Rd) ≤ ρ/νs,d implies v(x) ∈ V for all x ∈ Rd.

The same property is true when Rd is replaced by Ω̄. (Recall that Hs(Ω̄) is
made of functions having an extension in Hs(Rd).) From now on, we fix ρ0 > 0
such that

‖v − u0‖L∞(Ω) ≤ ρ0 implies v(x) ∈ V0 ⊂⊂ U for all x ∈ Ω,

where u0 is the initial data in the IBVP (11.0.1), supposed to belong at least to
∈ Hs(Ω̄) for s > d/2. (This assumption will be reinforced later.)

Calculus

The short way of writing compatibility conditions in (11.1.3) is convenient but
it conceals some technical details needed for the proof of Theorem 11.1.

Here is a more explicit (though ugly) way, using repeatedly Faá di Bruno’s
formula for the nth derivative of a composition

(f ◦ u)(n) =
n∑

m=1

∑
i1+···+im=n

ci1,...,im
(dmf ◦ u) · (u(i1), . . . , u(im)).

(The actual value of coefficients ci1,...,im
is all but important here.) The time

derivatives of a C p function u such that

∂tu = −
∑

j

Ãj ∂ju + h̃
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should satisfy the induction formula

∂i
tu = −

i−1∑
�=0

(
i− 1

�

) d∑
j=1

(∂�
t Ã

j) ∂j ∂i−1−�
t u + ∂i−1

t h̃

for all i ∈ {1, . . . , p}. When Ãj = Aj ◦ u and h̃ = h ◦ u, we may use Faá di
Bruno’s formula to expand the derivatives ∂�

t Ã
j and ∂i−1

t h̃. Using also Faá di
Bruno’s formula to expand ∂p

t (b ◦ u) for p ≥ 1, we eventually find the non-linear
mapping Cp introduced in Section 11.1.2 above alternatively reads

Cp(u,Du, . . . ,Dpu) =
p∑

m=1

∑
i1+···+im=p

ci1,...,im
dmb(u) · (ui1 , . . . , uim

), (11.2.4)

where the functions ui : x �→ ui(x) are such that

u0 = u , u1 = h ◦ u −
d∑

j=1

(Aj ◦ u) ∂ju ,

ui =
i−1∑
k=1

∑
�1+···+�k=i−1

c�1,...,�k
(dkh ◦ u) · (u�1 , . . . , u�k

)

−
d∑

j=1

(Aj ◦ u) ∂jui−1

−
i−1∑
�=1

(
i− 1

�

) d∑
j=1

�∑
k=1

∑
�1+···+�k=�

c�1,...,�k
(dkAj ◦ u) · (u�1 , . . . , u�k

) ∂j ui−1−�

for all i ∈ {2, . . . , p} .
(11.2.5)

Lemma 11.1 If s > d/2 and u ∈ Hs(Ω̄), then for p the largest integer less than
s, there exists a finite sequence (u0, u1, . . . , up) satisfying (11.2.5) and such that
for all i ∈ {0, . . . , p}, ui ∈ Hs−i(Ω̄). Moreover, using this sequence in (11.2.4)
we get a well-defined function x �→ Cp(u(x),Du(x), . . . ,Dpu(x)) that belongs to
Hs−p(Ω̄).

Proof By assumption, u0 = u belongs to Hs(Ω̄) = Hs−0(Ω̄). Let us see what
happens with u1. By assumption (our ‘technical’ condition 1)), h vanishes at 0, so
that Theorem C.12 implies h ◦ u belongs to Hs. Furthermore, we may decompose
the other terms into

(Aj ◦ u) ∂ju = (Aj ◦ u − Aj(0)) ∂ju + Aj(0) ∂ju,

where the latter obviously belongs to Hs−1 and the former is a product of
one term in Hs, thanks to Theorem C.12 again, and one term in Hs−1: since



Proofs 323

s + (s− 1)− (s− 1) > d/2 by assumption, Theorem C.10 ensures the product is
in Hs−1.

Let us now proceed by induction. We take i ≥ 2 and assume that uk ∈
Hs−k(Ω̄) for all k ∈ {0, . . . , i− 1}. Then the first sum in ui is found to be in
Hs−i exactly as in the case i = 1. In the second term we find only products in
Hs ·Hs−�1 · · ·Hs−�k (using the same trick as for Aj(0) to cope with the non-zero
dkh(0)), with

s + (s− �1) + · · ·+ (s− �k) = s + ks− (i− 1) > s− (i− 1) + d/2

and min(s, s− �1, . . . , s− �k) = s− (i− 1) , so that those products belong to
Hs−(i−1) by Theorem C.10. Finally, the quadruple sum in ui involves products
in Hs ·Hs−�1 · · ·Hs−�k ·Hs−i+�, with

s + (s− �1) + · · ·+ (s− �k) + (s− i + �) = s + ks− � + s− i + � > 2s− i + d/2

and min(s, s− �1, . . . , s− �k, s− i + �) = s− i + 1 , so that those products
belong to Hs−i (since s− i < min(2s− i, s− i + 1)).

To find that Cp(u(x),Du(x), . . . ,Dpu(x)) belongs to Hs−p we use exactly the
same argument as for the double sum in ui. �

‘Approximate solution’

The next technical step towards the proof of Theorem 11.1 consists in reducing
the problem to an IBVP with zero initial data. This is done thanks to an
appropriate lifting of the initial data u0.

Lemma 11.2 Under the assumptions of Theorem 11.1, there exists T0 > 0 and
ua ∈ Hm+1(Ω̄× R) vanishing for |t| ≥ 2T0 so that

(ua)|t=0 = u0 , ‖ua(x, t) − u0(x)‖ ≤ ρ0

2
for all (x, t) ∈ Ω̄× [−T0, T0],

and f0 := −Lua
ua + h ◦ ua and g0 := − (b ◦ ua)|∂Ω×R + b are such that

∂p
t f0 ≡ 0, ∂p

t g0 ≡ 0 at t = 0 for all p ∈ {0, . . . , m− 1}.
Furthermore, f0 belongs to Hm(Ω̄× R), g0 belongs to Hm(∂Ω× R), and both
vanish for |t| ≥ 2T0).

Proof By Lemma 11.1 we can construct ui ∈ Hm+1/2−i(Ω̄) satisfying (11.2.5)
for all i ∈ {1, . . . , m− 1} with u = u0. Then, by trace lifting (see, for instance,
[1], pp. 216–217), we find ua ∈ Hm+1(Ω̄× R) such that ‖ua‖Hm+1(Ω̄×R) �
‖u0‖Hm+1/2(Ω̄) and

∂i
t(ua)|t=0 = ui for all i ∈ {0, . . . , m− 1}.

By construction, ua belongs to C (I;Hm(Ω̄)) for all compact intervals I of R.
This implies, in particular, the existence of T0 so that

‖ua(t) − ua(0)‖Hm(Ω̄) ≤
ρ0

2νm,d
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for all t ∈ [−T0, T0], hence

‖ua(t) − ua(0)‖L∞(Ω) ≤
ρ0

2
,

which means

‖ua(x, t) − u0(x)‖ ≤ ρ0

2
for all (x, t) ∈ Ω̄× [−T0, T0].

This ensures, in particular, that ua(x, t) stays in U for all (x, t) ∈ Ω̄× [−T0, T0].
Furthermore, multiplying ua by a suitable C∞ cut-off function in time, we may
assume without loss of generality that ua vanishes for |t| ≥ 2T0 (or any number
greater than T0) and, thanks to the convexity of U and the fact that 0 belongs
to U , that ua stays in U for all t ∈ R. This precaution allows us to speak about
Aj ◦ ua, h ◦ ua and b ◦ ua and therefore to define f0 := −Lua

ua + h ◦ ua and
g0 := − (b ◦ ua)|∂Ω×R + b. That f0 and g0 are in Hm follows in a classical way
from Proposition C.11 and Theorem C.12. The vanishing of ∂p

t f0 at t = 0 for
p ≤ m− 1 follows from the construction – (11.2.5) – of the ui = ∂i

t(ua)|t=0. The
vanishing of ∂p

t g0 at t = 0 for p ≤ m− 1 is a consequence of the compatibility
conditions in (11.1.3) and the definition of the non-linear functions Cp in (11.2.4).
Finally, that f0 and g0 vanish for |t| ≥ 2T0 follows from our ‘technical’ condition
1) and the fact that ua does so. �

Once the ‘approximate solution’ ua is available, the resolution of the IBVP
(11.0.1) is equivalent to the resolution of the IBVP with zero initial data

Lua+v(ua + v) = h(ua + v) , Ω× (0, T ) ,

b(ua + v) = b , ∂Ω× (0, T ) ,

v|t=0 = 0 , Ω .

(11.2.6)

Iterative scheme

The resolution of (11.2.6) will be done using the natural iterative scheme
Lua+vk vk+1 = −Lua+vk ua + h(ua + vk) , Ω× (−∞, T ] ,

B(ua + vk) vk+1 = B(ua + vk) vk − b(ua + vk) + b , ∂Ω× (−∞, T ] ,

vk+1
|t<0 = 0 , Ω .

(11.2.7)

In what follows we shall denote by IT the time interval (−∞, T ].
Let us introduce the following notations, extending those of Lemma 11.1 to

a non-zero perturbation v of ua:

fv = −Lua+v ua + h ◦ (ua + v) , gv = B ◦ (ua + v) · v − b ◦ (ua + v) + b.
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These are well-defined provided that ua + v only achieves values in U : by the
estimate of ua in Lemma 11.1, this will be the case as long as ‖v‖L∞ ≤ ρ0/2.
If v belongs to Hm(Ω̄× IT ) and its trace on ∂Ω belongs to Hm(∂Ω× IT ) then
Proposition C.11 and Theorem C.12 imply that fv also belongs to Hm(Ω̄× IT )
and gv belongs to Hm(∂Ω× IT ). In fact, we have the following, more precise
result, which will be useful to make the scheme in (11.2.7) work.

Lemma 11.3 For all T ∈ (0, T0], for all v ∈ Hm(Ω̄× IT ), of norm less than
ρ0/(2νm,d+1), having a trace in Hm(∂Ω× IT ) and such that v|t<0 ≡ 0, we have

∂p
t (fv)|t=0 = 0 and ∂p

t (gv)|t=0 = 0 for all p ∈ {0, ...,m− 1}.

Furthermore, for all M ∈ (0, ρ0/(2νm,d+1)) there exist C1 = C1(M) and C2 =
C2(M) so that for all T ∈ (0, T0],

‖v‖Hm(Ω̄×IT ) ≤ M

implies

‖fv‖Hm(Ω̄×IT ) ≤ C1(M) and ‖gv‖Hm(∂Ω×IT ) ≤ T C2(M) + ε(T ),

where ε(T ) is independent of M and goes to zero as T goes to zero.

Proof By definition of fv, the derivative ∂p
t (fv) at t = 0 reduces to the sum of

∂p
t (f0)|t=0, which is known to be zero by Lemma 11.2, and terms with derivatives

of v up to order p in factor, which are zero at t = 0 by assumption. Therefore,
∂p

t (fv)|t=0 = 0. Similarly, ∂p
t (gv)|t=0 = 0 follows from the fact that ∂p

t (g0)|t=0 =
0.

Since m > (d + 1)/2, the estimate of fv in Hm is a straightforward conse-
quence of Theorem C.12. The estimate of gv is trickier. By a second-order Taylor
expansion of b (recalling that B = db) we have

gv(x, t) =
∫ 1

0

(θ − 1) d2b(ua(x, t) + θv(x, t)) · (v(x, t), v(x, t)) dθ

+ b(x, t) − b(ua(x, t))

for all (x, t) ∈ ∂Ω× [0, T0] . Let us define

ε(T ) := ‖b − b ◦ ua‖Hm(∂Ω×IT ) � ‖b − b ◦ ua‖C (IT ;Hm−1(∂Ω).

This does go to zero with T since (by construction of ua) b(x, 0) = b(ua(x, 0))
for all x ∈ ∂Ω. Regarding the other term in gv we have, thanks to Proposition
C.11 and Theorem C.12,∥∥∥∥∫ 1

0

(θ − 1) d2b(ua + θv) · (v, v) dθ

∥∥∥∥
Hm(∂Ω×IT )

≤ C ′ ‖v‖2L∞(∂Ω×IT )
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for some new constant C ′ depending only on M (the Hm norm of v). Further-
more, since m− 1 > (d + 1)/2 by assumption, we have

‖v‖L∞(∂Ω×IT ) ≤ C ′ νm−1,d ‖v‖Hm−1(∂Ω×IT ).

Now, since all time derivatives of v up to order m− 1 vanish at time t = 0, we
have by the Cauchy–Schwarz inequality

‖∂p
t ∂α

x v‖L2(∂Ω×IT ) ≤ T ‖∂p+1
t ∂α

x v‖L2(∂Ω×IT )

for all p ∈ {0, . . . , m− 1} and all d-uple α of length less than or equal to m−
1− p. This shows that

‖v‖Hm−1(∂Ω×IT ) ≤ T ‖v‖Hm(∂Ω×IT ),

hence the result aimed at, with C2 = C ′νm−1,dM . �

11.2.2 Proof of Theorem 11.1

Construction of the sequence (vk)

We fix M ∈ (0, ρ0/(2νm,d+1)). We set v0 = 0, and construct vk by induction.
Assume that vk has been constructed in such a way that for some T ∈ (0, T0],

vk ∈ Hm(Ω̄× IT ) , vk
|∂Ω ∈ Hm(∂Ω× IT ) ,

with ‖vk‖Hm(Ω̄×IT ) ≤ M ,

and vk
|t<0 ≡ 0 .

(11.2.8)

Then by Theorem 9.21, the IBVP in (11.2.7) admits a unique solution vk+1 ∈
Hm(Ω̄× IT ) having a trace in Hm(∂Ω× IT ) and satisfying the estimate

1
T
‖vk+1‖2Hm(Ω̄×IT ) + ‖vk+1

|xd=0‖
2
Hm(∂Ω×IT )≤C

(
T‖fvk‖2Hm(Ω̄×IT ) + ‖gvk‖2Hm(∂Ω)

)
,

where C depends only on the Hm norm of ua + v, i.e. depends only on M
(+‖ua‖Hm(Ω̄×R), which is fixed anyway). This implies in, particular,

‖vk+1‖Hm(Ω̄×IT ) ≤
√

C
(

T ‖fvk‖Hm(Ω̄×IT ) +
√

T ‖gvk‖Hm(∂Ω)

)
,

or using Lemma 11.3,

‖vk+1‖Hm(Ω̄×IT ) ≤
√

C
(

T C1(M) + T 3/2 C2(M) + T 1/2 ε(T )
)

,

which we can assume to be less than or equal to M , up to diminishing T . This
enables us to construct a whole sequence (vk)k∈N satisfying (11.2.8).

Convergence of the sequence (vk)

From the uniform Hm bound in (11.2.8) we already know there is a subsequence
of (vk) converging weakly in Hm. The next point consists in proving the (whole)
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sequence converges in L2. More precisely, we are going to prove that both (vk)
and the sequence of traces on ∂Ω converge in L2.

In this respect, we look at the difference wk := vk+1 − vk, which satisfies
Luk wk = (Luk−1 − Luk)uk + h(uk) − h(uk−1) , Ω× (0, T ) ,

B(uk)wk = B(uk−1)wk−1 + b(uk−1) − b(uk) , ∂Ω× (0, T ) ,

wk+1
|t=0 = 0 , Ω ,

where we have denoted for simplicity uk := ua + vk. Hence, by the L2 estimate
(9.2.51) in Theorem 9.18, there exists ck > 0 depending only on ‖uk‖W 1,∞(Ω̄×IT )

so that
1
T
‖wk‖2L2(Ω̄×IT ) + ‖wk

|∂Ω‖2L2(∂Ω×IT )

≤ ck T ‖(Luk−1 − Luk)uk + h(uk) − h(uk−1)‖2L2(Ω̄×IT )

+ ck ‖B(uk−1)wk−1 + b(uk−1) − b(uk)‖2L2(∂Ω×IT ).

Observing that

‖uk‖W 1,∞(Ω̄×IT ) � ‖uk‖Hm(Ω̄×IT )

since m > (d + 1)/2 + 1, we see the constant ck depends in fact only on M .
Merely by the mean value theorem we obtain c′ > 0, depending only on the
maximum of ‖uk‖L∞(Ω̄×IT ) and ‖uk−1‖L∞(Ω̄×IT ) such that

‖(Luk−1 − Luk)uk + h(uk) − h(uk−1)‖L2(Ω̄×IT )

≤ c′ (1 + ‖uk‖W 1,∞(Ω̄×IT ) ) ‖wk−1‖L2(Ω̄×IT ).

And by a second-order Taylor expansion of b we find that

‖B(uk−1)wk−1 + b(uk−1) − b(uk)‖2L2(∂Ω×IT )

≤ c′′ ‖wk−1‖L∞(∂Ω×IT ) ‖wk−1‖L2(∂Ω×IT ),

where c′′ depends only on the maximum of ‖uk‖L∞(∂Ω×IT ) and ‖uk−1‖L∞(∂Ω×IT ).
Now since m > d/2,

‖wk−1‖L∞(∂Ω×IT ) � ‖wk−1‖Hm(∂Ω×IT ) ≤ 2
√

C(
√

TC1(M) + TC2(M) + ε(T ))

thanks to Lemma 11.3 and the Hm estimate on vk
|∂Ω and vk−1

|∂Ω . So, finally, we
have

1
T
‖wk‖2L2(Ω̄×IT ) + ‖wk

|∂Ω‖2L2(∂Ω×IT )

≤ c̃M T ‖wk−1‖2L2(Ω̄×IT ) + ε̃M (T ) ‖wk−1
|∂Ω ‖

2
L2(∂Ω×IT )
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for c̃M depending only on M and ε̃M (T ) going to zero as T goes to zero.
Consequently, up to diminishing T so that all four numbers

ε̃M (T ) , c̃M T , ε̃M (T )T , c̃M T 2

are less than or equal to 1/4, we have

‖wk‖L2(Ω̄×IT )≤ 2−k ‖w0‖L2(Ω̄×IT ) and ‖wk
|∂Ω‖L2(∂Ω×IT )≤ 2−k ‖w0‖L2(∂Ω×IT ).

This implies both (vk) and (vk
|∂Ω) are Cauchy sequences in L2. Let us call v and

v their respective limits.

Conclusion

As already said, the limit v of (vk) is necessarily in Hm(Ω̄× IT ). Similarly,
because of the uniform Hm bound (

√
C (

√
T0 C1(M) + T0 C2(M) + ε(T0) )) for

the traces, the limit v of (vk
|∂Ω) is necessarily in Hm(∂Ω× IT ). Moreover, by

L2–Hm interpolation, (vk) converges strongly to v in Hs(Ω̄× IT ) and (vk
|∂Ω)

converges strongly to v in Hs(∂Ω× IT ) for all s ∈ [0,m). Therefore v = v|∂Ω

and v solves the IBVP (11.2.6), so that u = ua + v solves the original IBVP
(11.0.1). �
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PERSISTENCE OF MULTIDIMENSIONAL SHOCKS

Shock waves are of special importance in such diverse applications as aero- and
gas dynamics, materials sciences, space sciences, geosciences, life sciences and
medicine. Research in this field is a century old but still very active, as the
existence of a research journal precisely entitled Shock Waves attests.

We know very well from everyday experience what shock wave means (espe-
cially in gas dynamics). However, it is a mathematical issue to prove the existence
and/or the stability of (arbitrarily curved) shocks for general hyperbolic systems,
and in particular for the Euler equations.

The formal, linearized stability of shock waves was addressed in the 1940s
by several physicists and engineers. Then, the mathematical analysis of the fully
non-linear problem waited for the independent works of Majda [124–126] and
Blokhin [18] in the 1980s, and was more recently revisited by Métivier and co-
workers [56,133,136,140].

Following Freistühler [58,59] in his work on non-classical shocks, we use here
the term persistence (in particular in the title of this chapter) as a shortcut for
existence-and-stability. Both notions are indeed closely related, and we can view
the stability problem as a preliminary step to the existence problem: assume
a special shock-wave solution is known (e.g. a planar shock propagating with
constant speed, which is not difficult to find); one may ask whether a small
initial pertubation (of the shock front and of the states on either side) will
destroy its structure, or lead to a solution (local in time) still made of smooth
regions separated by a (modified) shock front; when the reference shock falls
into the latter case for a sufficiently large set of initial perturbations, it may
be called ‘structurally stable’, and thus serve as a model to construct, in other
words to show the existence of, a non-planar shock. Alternatively, one may put
the problem slightly differently: consider a Cauchy problem where the initial
data consist of two smooth regions separated by a given hypersurface; under
what conditions (on the initial data) does this Cauchy problem admit a solution
made of smooth regions separated by a (moving) shock front? The answer is
twofold, as the initial data must satisfy compatibility and stability conditions.
The necessity of compatibility conditions is easy to understand: even in one space
dimension, two arbitrary, uniform states are not connected by a single shock wave
in general. (The corresponding Cauchy problem is called a Riemann problem, and
its solution involves, in general, as many waves as there are characteristic fields.
See, for instance, [24, 46, 88, 184].) Those compatibility conditions come from
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the Rankine–Hugoniot jump conditions across fronts of discontinuities. Stability
conditions are of a different nature: as shown by Majda, the stability of a planar
shock wave (propagating with constant speed) is roughly speaking equivalent
to the well-posedness of a (non-standard) constant-coefficients Initial Boundary
Value Problem, which is itself encoded by the so-called (generalized) Lopatinskĭı
condition. It also turns out that a (arbitrarily curved) shock front is ‘structurally
stable’ provided that all local jump discontinuities along the interface correspond
to stable planar shock waves.

The purpose of this chapter is to explain how all this works. Before going into
technical details, we can describe roughly the methodology. The general problem
is a hyperbolic Cauchy problem with initial data discontinuous across a given
hypersurface, and solutions are sought in a class of functions that are smooth
on either side of a moving, unknown hypersurface. Thus various difficulties are
involved:

� several space dimensions,
� non-linearity,
� free boundary.

The latter can be overcome in a standard way by fixing the free boundary
through a change of variables (even though there is some arbitrariness in the
choice of this change of variables). If, for instance, the unknown boundary
stays close to a hyperplane, the free boundary problem (FBP) is easily changed
into a mixed problem, or Initial Boundary Value Problem (IBVP) in a half-
space. For clarity, we shall present most of the analysis in that framework, and
come only at the end to shock fronts that are (smooth) compact manifolds (as
in Majda’s memoir [124]). The main novelty compared to Chapter 11 is that
we have to deal with non-standard IBVP, in which the boundary conditions
(coming from the Rankine–Hugoniot jump conditions across the front) are of
differential type in the (unknown) front location. In fact, the front location can
be eliminated and we get pseudo-differential boundary conditions in the main
dependent variables, which can be treated almost as standard ones thanks to
symbolic calculus. So the main point is the understanding of the elimination
step.

The non-linearity of equations of course also plays an important role. In
particular, it is in turn responsible for the smallness of the time of existence – as
already seen for the Cauchy problem (Chapter 10) and for the regular IBVP
(Chapter 11). However, the most important part of the job is in fact linear, the
main problem being to deal with linear equations with coefficients of limited
regularity: once the well-posedness of linearized problems about approximate
solutions is proved, the solution of the non-linear problem is obtained (unsur-
prisingly) through a suitable iterative scheme – ‘a straightforward adaptation of
the standard proof of short-time existence for smooth solutions of the Cauchy
problem’, Majda stated [124].
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As regards the several space dimensions, they can be tackled as in standard
IBVP, by using a Fourier transform in the direction of the boundary, as far as the
linearized, frozen coefficients problem is concerned: the resulting normal modes
analysis is rather similar to what is done for standard IBVP; see Section 12.2
below.

12.1 From FBP to IBVP

12.1.1 The non-linear problem

Consider a system of conservation laws

∂tf
0(u) +

d∑
j=1

∂jf
j(u) = 0 , (12.1.1)

and the associated Rankine–Hugoniot condition

N0 [f0(u)] +
d∑

j=1

Nj [f j(u)] = 0 . (12.1.2)

A very general problem is the following.

(FBP) Find a codimension one surface Σ in Rd × [0, T ], splitting (Rd ×
[0, T ])\Σ in two connected component Ω− and Ω+, and find u such
that u|Ω± ∈ C 1(Ω±) satisfy (12.1.1) in Ω± and (12.1.2) – plus some
admissibility condition, to be specified later – across Σ, with N0, N1,
. . . , Nd being the components in the directions t, x1,. . . , xd of a vector
N orthogonal to Σ, and the brackets [·] stand for jumps:

[f j(u)](x, t)= lim
ε↘0

( f j(u((x, t) + εN(x, t)))− f j(u((x, t)− εN(x, t)))),

(x, t) ∈ Σ .

We readily see that a necessary condition for having a solution to (FBP) is that
the vector

d∑
j=1

nj [f j(u|t=0)],

where n1, . . . , nd are the components of a normal vector to the initial shock front
Σ|t=0, is parallel to [f0(u|t=0)]. This is the first, natural compatibility condition.

There are many (almost) trivial solutions to (FBP), which correspond to
planar shock waves, with Σ a fixed hyperplane – corresponding to the propagation
at constant speed of a hyperplane in the physical space – and u|Ω± ≡ u±
independent of t and x. The derivation of planar shock waves is mostly algebraic.
Indeed, choose a direction of propagation, for instance xd, and consider the so-
called Hugoniot set passing through a reference state w ∈ U (the domain in Rn
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where the flux functions f j are well-defined and smooth):

H (w) := {u ∈ U ; fd(u) − fd(w) ‖ f0(u) − f0(w) } .

(This set is studied in detail in Chapter 13 for the Euler equations of ‘real’
gas dynamics.) Assuming, for instance, the strict hyperbolicity of (12.1.1),
we can easily show that H (w) is locally the union of n curves. Take u+

on any of these curves and u− = w. By definition of H (w) there exists
σ ∈ R such that fd(u+) − fd(u−) = σ ( f0(u+) − f0(u−) ). Then take Σ :=
{ (x1, . . . , xd, t) ; xd = σ t} and you get a planar ‘shock’ wave propagating at
speed σ in the direction xd. At this stage, the ‘shock’ might be a contact
discontinuity or any other kind of discontinuous wave. (We postpone, on purpose,
the discussion of the admissibility of discontinuities.)

It is much more difficult in general to find solutions to (FBP) with non-
planar Σ. The aim of this chapter is to show that such solutions do exist,
for T small enough, provided we choose initial data satisfying: 1) compatibility
conditions and 2) stability conditions. The compatibility conditions imply, in
particular, that initially, at each point of the front, the states on either side of
the front are connected by a planar shock wave in the direction normal to the
front. The stability conditions require additionally that this shock be uniformly
stable (in the sense of the uniform Kreiss–Lopatinskĭı condition) with respect to
multidimensional perturbations. We shall make this more precise below.

12.1.2 Fixing the boundary

For clarity, in what follows we seek solutions close to a planar reference shock.
The case of arbitrary (compact) fronts of discontinuities (actually dealt with by
Majda in [124]) is postponed to the end of this chapter.

Provided that the system (12.1.1) is invariant under rotation – again this is
the case for the Euler equations of gas dynamics, for instance – we may choose
co-ordinates, without loss of generality such that the direction of propagation of
the reference shock is the last co-ordinate xd. Then this reference shock can be
represented by a mapping

u : (Rd × R+)\Σ → Rn

(x, t) �→ u± if xd ≷ σ t ,

with Σ := { (x1, . . . , xd, t) ; xd = σ t}, and fd(u+) − fd(u−) = σ ( f0(u+) −
f0(u−) ). We look for a perturbed shock

u : (Rd × R+)\Σ → Rn

(x, t) �→ u(x, t) = u±(x, t) if xd ≷ χ(x1, . . . , xd−1, t) ,

with Σ := { (x1, . . . , xd, t) ; xd = χ(x1, . . . , xd−1, t)} the perturbed shock front
(supposedly close to Σ), the unknowns u± and χ being such that both the interior
equations (12.1.1) and the jump conditions (12.1.2) are satisfied.
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It will turn out that u exists at least on a small finite time interval1 [0, T ],
if the reference shock is uniformly stable (in a sense to be specified later). For
the proof, and even for the precise statement of this result, we need some more
material.

The set of equations for u± and χ is
∂tf

0(u±) +
d∑

j=1

∂jf
j(u±) = 0 for xd ≷ χ(x1, . . . , xd−1, t) ,

[f0(u)] ∂tχ +
d−1∑
j=1

[f j(u)] ∂jχ − [fd(u)] = 0 at xd = χ(x1, . . . , xd−1, t) .

We introduce our usual shortcut y := (x1, . . . , xd−1) for the independent vari-
ables along the boundary. As long as the function χ stays close – in the class of
C 1

b functions say – to the reference function (y, t) �→ σ t, both mappings

Φ± : (y, xd, t) �→ ( y , ± (xd − χ(y, t)) , t )

are diffeomorphisms from Ω± = { (y, xd, t) ; xd ≷ χ(y, t)} to the half-space

Ω := { (y, z, t) ; z > 0},

and both Φ− and Φ+ map Σ to the hyperplane { z = 0 }. From now on,
we replace both unknowns u± by u± ◦ Φ−1

± , which we still denote by u± for
simplicity, and consider the IBVP on Ω obtained by this (unknown) change of
variables for the double-size unknown u = (u−, u+).

Notations Denoting (slightly differently from Chapter 10)

Aj(w) = df j(w) for all j ∈ {0, . . . , d} and w ∈ U ,

we introduce, for χ : (y, t) �→ χ(y, t) ∈ R at least differentiable once,

Ad(w,dχ) := Ad(w) −
d−1∑
j=1

(∂jχ) Aj(w) − (∂tχ) A0(w).

This is only a shortcut for

A(w,−∂tχ,−∂1χ, . . . ,−∂d−1χ, 1) where A(w, ξ) :=
d∑

j=0

ξj Aj(w)

denotes the (generalized) characteristic matrix. For convenience, in what follows
we denote indifferently ∂0 or ∂t the derivative with respect to t in the (y, z, t)-
variables and for all j ∈ {1, . . . , d− 1}, ∂j now stands for the derivation with
respect to yj in the (y, z, t)-variables, as long as no confusion can occur.

1As said before, the short-time existence is due to the (high) non-linearity of the problem.
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In these new variables, the interior equations read

d−1∑
j=0

Aj(u±) ∂ju± ± Ad(u±,dχ) ∂zu± = 0 , for z > 0 , (12.1.3)

and the boundary conditions are

d−1∑
j=0

( f j(u+) − f j(u−) ) ∂jχ = ( fd(u+) − fd(u−) ) at z = 0 . (12.1.4)

Observe that the BVP in (12.1.3) and (12.1.4) for the unknown (u±, χ)
involves the unknown funtion dχ both in the interior equations (12.1.3) and
in the boundary conditions (12.1.4).

Remark 12.1 There has been some arbitrariness in the way we have changed
the domains { (y, xd, t) ; xd ≷ χ(y, t) } into a half-space; for a discussion of
alternatives, see [56]. One specific problem is that the resulting interior equations
in (12.1.3) depend on (y, t) – through the derivatives of χ – for all values of xd. In
other words, the flattening of the boundary influences the far-field behaviour of
equations. As pointed out by Métivier [136], an alternative consists in localizing
the change of variables around the boundary. (A similar trick was used by Majda
for compact boundaries, see Section 12.4.2.) More precisely, if ϕ ∈ D(R) is a
positive cut-off function equal to 1 in say [0, 1], one may choose a positive κ,
depending only on ‖ϕ′‖L∞ and ‖χ‖L∞(Rd−1×[0,T ]) so that

Ψ± : (y, z, t) �→ ( y , xd = ±κ z + ϕ(z)χ(y, t) , t )

are diffeomorphisms from

{ (y, z, t) ; z > 0 , t ∈ (−T, T ) }

to

{ (y, xd, t) ; xd ≷ χ(y, t) , t ∈ (−T, T ) },

and Ψ± both map the hyperplane { z = 0 } to the front { (y, xd, t) ; xd =
χ(y, t) }. This choice does not alter the boundary conditions in (12.1.4), and
the corresponding interior equations (which involve only the derivatives of Ψ±)
are (almost) the same (up to trivial rescaling and symmetry z �→ xd = ±κx) as
the original ones for z large enough. So this overcomes the problem of the far-
field behaviour. The drawback is that interior equations look more complicated:
for this reason we shall perform most of the analysis with the diffeomorphisms
Φ−1

± instead of Ψ±.

12.1.3 Linearized problems

Once the non-linear problem is set on a fixed domain Ω, it can reasonably be
linearized – the other way round would not have been possible. As we have
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in mind an iterative scheme, we are going to linearize about a special solution
that is not necessarily the (planar) reference one. Substituting u + ε u̇ for u
and χ + ε χ̇ for χ in (12.1.3) and (12.1.4), differentiating these equations with
respect to ε and evaluating at ε = 0, we get the linearized problem

d−1∑
j=0

Aj(u±) ∂j u̇± ± Ad(u±,dχ) ∂zu̇±

+
d−1∑
j=0

(dAj(u±) · u̇±) ∂ju± ± (duAd(u±,dχ) · u̇±) ∂zu±

∓
d−1∑
j=0

(∂jχ̇)Aj(u±) ∂zu± = 0 for z > 0 ,

(12.1.5)

with the boundary conditions

d−1∑
j=0

( f j(u+) − f j(u−) ) ∂jχ̇ = Ad(u+,dχ) · u̇+ − Ad(u−,dχ) · u̇− (12.1.6)

at z = 0.
Of course, if u± = u± are constant and χ = χ, with χ(y, t) := σ t, (12.1.5)

and (12.1.6) simplify and become

d−1∑
j=0

Aj(u±) ∂j u̇± ± Ad(u±, σ, 0) ∂zu̇± = 0 , (12.1.7)

d−1∑
j=0

( f j(u+) − f j(u−) ) ∂jχ̇ = Ad(u+, σ, 0) · u̇+ − Ad(u−, σ, 0) · u̇− . (12.1.8)

Observe that the derivatives of χ̇ appear here only in the boundary conditions
(12.1.8), whereas for the general problem (12.1.5) and (12.1.6) the derivatives of
χ̇ do appear in the interior equations (unless we use Alinhac’s trick, as described
below).

The messy appearance of (12.1.5) and (12.1.6) can be lessened by using
additional shorter notations. Let us first define the differential operators L−
and L+ by

L±(v,dχ) =
d−1∑
j=0

Aj(v) ∂j ± Ad(v,dχ) ∂z.

Note: with these notations, the non-linear equations in (12.1.3) equivalently read

L±(u±,dχ)u± = 0.
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We also introduce a shortcut for the zeroth-order terms in (12.1.5):

D±(v,dχ) · u̇ =
d−1∑
j=0

(dAj(v) · u̇) ∂jv ± (duAd(v,dχ) · u̇) ∂zv.

Then the interior equations in (12.1.5) read

L±(u±,dχ)u̇± + D±(u±,dχ) · u̇± ∓ A(u±, ∂tχ̇, ∂1χ̇, . . . , ∂d−1χ̇, 0) ∂zu± = 0.

(12.1.9)

As pointed out by Alinhac [5], there is a way to replace the derivatives of χ̇
by zeroth-order contributions of χ̇ in these interior equations. This is done by
changing the unknown u̇± to the so-called good unknown

v̇± := u̇± ∓ χ̇ ∂zu±.

Proposition 12.1 With all the notations introduced above,

L±(u±,dχ)u̇± + D±(u±,dχ) · u̇± ∓ A(u±, ∂tχ̇, ∂1χ̇, . . . , ∂d−1χ̇, 0) ∂zu±

= L±(u±,dχ)v̇± + D±(u±,dχ) · v̇± + χ̇ ∂z

(
L±(u±,dχ)u±

)
for all u±, χ, u̇±, χ̇ for which both sides make sense.

Proof The computations for either one of the signs + or − are similar. We
do it for the + sign, and to facilitate the reading we omit the subscript +. By
definition of v̇ = u̇ − χ̇ ∂zu,

L(u, dχ)v̇ = L(u, dχ)u̇− χ̇ ∂z

(
L(u, dχ)u,

)
+ χ̇ [∂z, L(u, dχ)]u− (L(u, dχ)χ̇)∂zu

and

D(u, dχ) · v̇ = D(u, dχ) · u̇ − χ̇ D(u, dχ) · (∂zu).

Summing these two equalities, and reordering terms we get

L(u, dχ)v̇ + D(u, dχ) · v̇ + χ̇ ∂z

(
L(u, dχ)u

)
= L(u, dχ)u̇ + D(u, dχ) · u̇ − (L(u, dχ) χ̇ ) ∂zu

+ χ̇ [ ∂z , L(u, dχ) ]u − χ̇ D(u, dχ) · (∂zu).

By definition of L(u, dχ) and D(u, dχ), the last two terms cancel out, and

L(u, dχ) χ̇ = A(u, ∂tχ̇, ∂1χ̇, . . . , ∂d−1χ̇, 0),

hence the claimed equality. �

Therefore, (12.1.9) equivalently reads

L±(u±,dχ)v̇± + D±(u±,dχ) · v̇± + χ̇ ∂z

(
L±(u±,dχ)u±

)
= 0 . (12.1.10)
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This is a first-order linear PDE in (v̇±, χ̇), of principal part L±(u±,dχ)v̇±. The
actual PDE on χ̇ comes from the boundary conditions in (12.1.6). We introduce
the notation

B(u−, u+) · (ξ0, . . . , ξd) =
d∑

j=0

ξj ( f j(u+) − f j(u−) ) ,

in such a way that the non-linear boundary conditions (12.1.4) merely read

B(u−, u+) · (dχ,−1) = 0,

where dχ has been identified with the row vector (∂tχ, ∂1χ, . . . , ∂d−1χ). The
linearized boundary conditions (12.1.6) thus read

B(u−, u+) · (dχ̇, 0) = Ad(u+,dχ) · u̇+ − Ad(u−,dχ) · u̇− ,

which we shorten even more into

b(u, dχ̇) + M(u,dχ) · (u̇−, u̇+) = 0 , (12.1.11)

with the obvious definitions

b(u, dχ̇) := B(u−, u+) · (dχ̇, 0),

M(u,dχ) · (u̇−, u̇+) := Ad(u−,dχ) · u̇− − Ad(u+,dχ) · u̇+.

12.2 Normal modes analysis

In the 1980s, Majda showed how to extend Kreiss’ method to non-standard BVPs
associated with the shock-persistence problem (here (12.1.3) and (12.1.4)), or
more precisely their linearized versions (here (12.1.10) and (12.1.11)). As for
standard BVP, a crucial, preliminary step is the so-called normal analysis of the
constant coefficients problems (here (12.1.7) and (12.1.8)).

The main purpose of this whole section is to describe the normal modes
analysis for (12.1.7) and (12.1.8). To simplify the writing, in this section we
omit underlining the states of the reference planar shock: u− and u+ are to be
understood as u− and u+ in what follows.

12.2.1 Comparison with standard IBVP

In order to derive a generalized version of the Kreiss–Lopatinskĭı condition
we look for special solutions, or ‘normal modes’ of (12.1.7) and (12.1.8). This
amounts to applying to (12.1.7) and (12.1.8) a Laplace transform in t and Fourier
transform in y. The resulting equations are, if U̇± and Ẋ denote the Fourier–
Laplace transforms of u̇± and χ̇, respectively,

A(u±, τ, iη, 0) U̇± ± Ad(u±, σ, 0) ∂zU̇± = 0 for z > 0 , (12.2.12)

Ẋ b(u, τ, iη) − M(u, σ, 0) · (U̇−, U̇+) = 0 at z = 0 , (12.2.13)
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where we have used the shortcuts defined in the previous section, τ is the complex
variable dual to t and η ∈ Rd−1 is the wave vector associated to y. Furthermore,
we have assumed that u̇± and χ̇ equal zero at t = 0: otherwise, there would
have been a right-hand side in both (12.2.12) and (12.2.13); we shall introduce
right-hand sides later.

We now start to make some assumptions. First, we suppose that the planar
shock of speed σ between u− and u+ is not characteristic. This precisely means
that both matrices

Ad(u±, σ, 0) = Ad(u±) − σ A0(u±)

are non-singular, so that the equations in (12.2.12) form a system of 2n indepen-
dent differential equations, which can be rewritten as

dU̇

dz
= A(u, η, τ) U̇ ,

with

U̇ :=
(

U̇−
U̇+

)
,

and

A(u, η, τ) :=
(

Ad(u−, σ, 0)−1 A(u−, τ, iη, 0) 0
0 −Ad(u+, σ, 0)−1 A(u+, τ, iη, 0)

)
.

The second assumption, which will turn out to be a consequence of a stronger
one, is that Ẋ can be eliminated from the boundary condition (12.2.13). This
amounts to requiring the ellipticity of the symbol (τ, η) �→ b(u, τ, iη), that is,

b(u, τ, iη) �= 0 for all (τ, η) �= (0, 0),

or equivalently that the jump vectors [f0(u)], [f1(u)], . . ., [fd−1(u)] be indepen-
dent in Rn.

Remark 12.2 A byproduct of the ellipticity assumption on the symbol b is
the necessary condition d ≤ n (i.e. the space dimension smaller than the size of
the system). This precludes in particular multidimensional scalar conservation
laws! Another observation is that ellipticity is obviously not uniform when the
shock strength goes to zero: this problem was pointed out by Métivier [133], and
overcome in [56,133].

Introducing

Π(u, τ, η) = In − b(u, τ, iη) b(u, τ, iη)∗

‖b(u, τ, iη)‖2
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the orthogonal projection onto b(u, τ, iη)⊥, we see that the boundary condition
in (12.2.13) is equivalent to

Π(u, τ, η)M(u, σ, 0) U̇ = 0 and Ẋ =
b(u, τ, iη)∗ M(u, σ, 0) U̇

|b(u, τ, iη)|2

(where M(u, σ, 0) U̇ stands for M(u, σ, 0) · (U̇−, U̇+), with a slight abuse of
notation).

Therefore, solving the problem (12.2.12) and (12.2.13) is equivalent to solving
the pure boundary value problem:

dU̇

dz
= A(u, η, τ) U̇ for z > 0 ,

Π(u, τ, η) M(u, σ, 0) U̇ = 0 at z = 0 .

(12.2.14)

It is worth pausing for a while, and compare (12.2.14) to
dV̇

dz
= −Ad(v)−1 A(v, τ, iη, 0)V̇ for z > 0 ,

C(v) · V̇ = 0 at z = 0 ,

derived by Fourier–Laplace transform from a standard IBVP
d−1∑
j=0

Aj(v) ∂j v̇ + Ad(v) ∂z v̇ = 0 for z > 0 ,

C(v) · v̇ = 0 at z = 0 and v̇ = 0 at t = 0 .

Except for the size of the interior system (which is doubled in (12.2.14)), the main
difference is that the boundary condition in (12.2.14) contains the ‘frequencies’ τ
and η. This reflects the fact that the corresponding IBVP (obtained by an inverse
Fourier–Laplace transform) has pseudo-differential boundary conditions. Despite
this non-standard feature, one may derive a (generalized) Kreiss–Lopatinskĭı
condition by looking for solutions U̇ ∈ L2(R+) of (12.2.14). This is part of the
normal modes analysis. In fact, the derivation of the uniform Kreiss–Lopatinskĭı
condition also requires the neutral modes analysis: neutral modes correspond to
solutions of (12.2.14) for Re τ = 0 that are not necessarily square-integrable and
may oscillate in the z-direction, but not all of them are to be considered (this
should be clear from Chapter 4, see also the discussion below).

As far as the normal modes analysis is concerned, we may avoid the cumber-
some projection Π(u, τ, η) and work with the full system (12.2.12) and (12.2.13)
on (U̇ , Ẋ).

A first question is, which values of (η, τ) ensure the hyperbolicity of the matrix
A(u, η, τ)? A preliminary answer is, if the operators L±(u±, σ, 0) are hyperbolic
in the t-direction (or equivalently, the operator A0(u) ∂t +

∑d
j=1 Aj(u)∂j is
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hyperbolic in the t-direction, which also means the system of conservation laws
(12.1.1) is hyperbolic) and if the n× n matrices Ad(u±, σ, 0) are non-singular
(which we have already assumed), A(u, η, τ) is hyperbolic at least for Re τ > 0.
Indeed, the set of eigenvalues of the 2n× 2n matrix A(u, η, τ) is obviously the
union of the eigenvalues of the n× n matrices

A±(u±, η, τ) := ∓Ad(u±, σ, 0)−1 A(u±, τ, iη) ,

and the hyperbolicity of L±(u±, σ, 0) prevents A±(u±, η, τ) from having purely
imaginary eigenvalues when τ is not purely imaginary itself; as already mentioned
in Chapter 9, this observation dates back to Hersh [83].

From now on, we assume that the system of conservation laws (12.1.1) is
hyperbolic and that the matrices Ad(u±, σ, 0) are non-singular.

The next question concerns the dimension of the stable subspace of A(u, η, τ).
The answer lies in the decomposition

Es(A(u, η, τ)) � Es(A−(u−, η, τ))× Es(A+(u−, η, τ))

= Es
(
Ad(u−, σ, 0)−1A(u−, τ, iη)

)
× Eu

(
Ad(u+, σ, 0)−1A(u+, τ, iη)

)
.

The dimension of these spaces is constant over the connected set { (τ, η) ; Re τ >
0 , η ∈ Rd−1 }. So it can be computed at (τ, 0). We easily see that a complex
number ω is an eigenvalue of

Ad(v, σ, 0)−1 A(v, τ, 0) = τ (Ad(v) − σ A0(v) )−1 A0(v)

if and only if ω = τ/(λ− σ), where λ is a root of

det(Ad(v) − λA0(v) ) = 0,

that is, λ is a characteristic speed of the operator

A0(v) ∂t + Ad(v)∂d.

More precisely, we have the following.

Proposition 12.2 Assume that the operator

L = A0 ∂t + Ad∂d

is hyperbolic in the t-direction, and that both A0 and Ad − σ A0 are non-singular.
Then the dimension of the stable subspace Es

(
(Ad − σ A0 )−1 A0

)
is equal to

the number, counted with multiplicity, of characteristic speeds of L less than σ.

Proof The hyperbolicity of L means that there exist a real diagonal matrix Λ
and a real non-singular matrix P such that Ad P = A0 P Λ. Since Ad − σ A0 is
non-singular, we may assume without loss of generality that Λ splits into a first
block, say of size k, with coefficients less than σ, and another one with coefficients
greater than σ. By definition,

Es
(
(Ad − σ A0 )−1 A0

)
= {h ∈ Cn ; lim

x→+∞
ex( Ad −σ A0 )−1A0

h = 0 }.
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Denoting by φ(x, h) := ex( Ad −σ A0 )−1A0
h the flow of the differential equation

u′ = (Ad − σ A0 )−1A0 u,

we see that ϕ := P−1 φ is the flow of

u′ = (Λ − σ In)−1 u.

Indeed, since A0 is non-singular,

(Ad − σ A0 ) ∂xφ = A0 φ ⇔ (Λ − σ In) ∂xϕ = ϕ.

Therefore, h belongs to Es
(
(Ad − σ A0 )−1 A0

)
if and only if P−1h belongs to

Es(Λ − σ In)−1, which is clearly of dimension k. �
Corollary 12.1 Assume that (12.1.1) is constantly hyperbolic. Then for all
(τ, η) ∈ C× Rd−1 with Re τ > 0, the dimension of Es(A(u, η, τ)) is equal to the
number of characteristics exiting the shock, that is, the number of characteristic
speeds of A0(u−) ∂t + Ad(u−)∂d less than σ plus the number of characteristic
speeds of A0(u+) ∂t + Ad(u+)∂d greater than σ, all counted with multiplicity.

12.2.2 Nature of shocks

The result of Corollary 12.1 is illustrated in Fig. 12.1 for a Lax shock, in which
the dimension of Es(A(u, η, τ)) is (p− 1) + n− p = n− 1. Indeed, we recall
that Lax shocks [109] are defined as follows.

Definition 12.1 Assume that (12.1.1) is constantly hyperbolic, and denote by

λ1(u, ν) ≤ · · · ≤ λn(u, ν)

its characteristic speeds, that is, the roots (repeated according to their multi-
plicities) of det(A(u, ν) − λA0(u) ). A planar shock wave between u− and u+,
propagating with speed σ in some direction ν ∈ Rd, is called a Lax shock if there
is some integer p ∈ {1, . . . , n} such that the Lax shock inequalities

λp(u+, ν) < σ < λp(u−, ν) and λp−1(u−, ν) < σ < λp+1(u+, ν) (12.2.15)

are satisfied. (By convention, λ0 = −∞ and λn+1 = +∞ when p = 1 or p = n.)

Remark 12.3 In space dimension d = 1, a shock wave of the form

u(x, t) = u± for x ≷ σt

satisfying (12.2.15) with ν = 1 is called a p-shock. In space dimension d ≥ 2,
there is no ‘natural’ choice for left and right. Indeed, a shock between u− and
u+ propagating with speed σ in the direction ν may be equivalently regarded as
a shock between u+ and u− propagating with speed −σ in the direction −ν. In
gas dynamics, for instance, in which the characteristic speeds are

λ1(u, ν) = u · ν − c ‖ν‖ , λ2(u, ν) = u · ν and λ3(u, ν) = u · ν + c ‖ν‖
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Figure 12.1: Characteristic speeds (λj) / shock speed (σ) for a p-Lax shock

(where u is the fluid velocity and c is the sound speed), the inequalities in
(12.2.15) with p = 1 are equivalent, through the change of notations

(u−, u+, σ, ν) ↔ (u+, u−,−σ,−ν),

to the inequalities in (12.2.15) with p = 3. This shows that speaking of a p-
shock in several space dimensions is meaningless. What is most important is to
distinguish between the states on either side of the discontinuity by means of an
intrinsic criterion (in gas dynamics, one may speak about the state behind the
shock with respect to the flow of the gas, see Section 13.4).

Proposition 12.3 Assume that (12.1.1) is constantly hyperbolic, and that the
matrices A0(u±), (Ad(u±) − σ A0(u±) ) are non-singular. Then the dimension
of Es(A(u, η, τ)) for (τ, η) ∈ C× Rd−1 with Re τ > 0 is equal to n− 1 if and
only if u is a Lax shock.

Proof The ‘if’ part has already been pointed out. The ‘only if’ part is also easy.
If the dimension of Es(A(u, η, τ)) is n− 1, there must be an integer p ∈ {1, . . . , d}
such that σ < λp(u−, ν) (otherwise, there would be at least n characteristics
exiting the shock, contradicting Corollary 12.1). Assume that p is the smallest
one. Similarly, there must be an integer q ∈ {1, . . . , d} such that λq(u−, ν) < σ .
Assume that q is the greatest one. Then we have

λq(u+, ν) < σ < λp(u−, ν) and λp−1(u−, ν) < σ < λq+1(u+, ν)
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(with the convention λ0 = −∞ or λd+1 = +∞ if either p = 1 or q = d). These
inequalities imply that the number of characteristics exiting the shock is (p−
1) + n− q, which is of course equal to (n− 1) only if p = q. In this case, the
previous inequalities are precisely the Lax-shock inequalities (12.2.15). �

People aware of Majda’s work and in particular of Proposition 12.3, used
to consider non-Laxian shocks – now called non-classical shocks – as unstable
and thus of no interest. At first glance, this is indeed a tempting conclusion. For,
having Es(A(u, η, τ)) of dimension (n− 1) is necessary for the non-homogeonous
boundary value problem

dU̇

dz
= A(u, η, τ) U̇ + F for z > 0 ,

Ẋ b(u, τ, iη) − M(u, σ, 0) U̇ = G at z = 0

(12.2.16)

to be well-posed in L2(R+) – a condition needed for the well-posedness of
the original, free boundary value problem: if dimEs(A(u, η, τ)) �= n− 1, either
Es(A(u, η, τ)) is too big, and the problem (12.2.16) suffers from non-uniqueness,
or Es(A(u, η, τ)) is too small and (12.2.16) has no solution in L2(R+). However,
non-classical shocks are often physically relevant. So what is the trick?

When the dimension of Es(A(u, η, τ)) is greater than (n− 1), the shock is
called undercompressive – a term inspired from gas dynamics, meaning that there
are more characteristics exiting the shock than for the usual, compressive shocks
of Lax type. Then the homogeneous problem (12.2.16) with F = 0 and G = 0
admits non-trivial solutions (U̇ , Ẋ) ∈ L2(R+)× C. Those solutions are given by

U̇(z) = ez A(u,η,τ) U̇0 ; Ẋ b(u, τ, iη) = M(u, σ, 0) U̇0,

with U̇0 ∈ Es(A(u, η, τ)). There are non-trivial ones just because the linear
algebraic system of n equations

M(u, σ, 0) U̇ − Ẋ b(u, τ, iη) = 0 (12.2.17)

is underdetermined in Es(A(u, η, τ))× C. In fact, this just means that the
Rankine–Hugoniot conditions are not sufficient as jump conditions for under-
compressive shocks: they should be supplemented with extra jump conditions
(also called kinetic relations, see [113]), based on further modelling arguments;
this is the role played by the so-called viscosity-capillarity criterion introduced in
the 1980s by Slemrod [196], and independently by Truskinosky [214], for phase
boundaries). It was pointed out by Freistühler [58–60] that well-chosen extra
jump conditions could indeed restore stability of undercompressive shocks (for an
application to subsonic liquid-vapour interfaces, see [9,10,12]). The detailed proof
of the persistence of undercompressive shocks has been done by Coulombel [40],
by adapting Métivier’s method [136].

When Es(A(u, η, τ)) has dimension less than (n− 1), the algebraic system
(12.2.17) is overdetermined on Es(A(u, η, τ))× C and the shock is termed
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overcompressive: it turns out – see [61, 120] – that the stability analysis of
overcompressive shocks must include viscous effects, but this is far beyond the
scope of this book.

In what follows, we concentrate on Lax shocks for simplicity. As regards
undercompressive shocks, techniques are similar, but there are more jump con-
ditions to deal with: the reader is referred in particular to [40, 58–60] for more
details.

12.2.3 The generalized Kreiss–Lopatinskĭı condition

A natural extension to (12.2.14) of the uniform Kreiss–Lopatinskĭı condition is

(UKL0) there exists C > 0 so that for all

(η, τ) ∈ P1 := { (η, τ) ∈ Rd × C with Re τ ≥ 0 and ‖η‖2 + |τ |2 = 1 },

‖U̇‖ ≤ C ‖Π(u, τ, iη)M(u, σ, 0) U̇ ‖ (12.2.18)

for all U̇ ∈ Es(A(u, η, τ)), the stable subspace of A(u, η, τ) if Re τ > 0,
extended by continuity to imaginary values of τ .

As for standard IBVP, it is not easy to prove directly the estimate in (12.2.18).
A preliminary step is of course to construct the stable subspace Es(A(u, η, τ)),
at first for Re τ > 0. A second step would be to formulate the existence of non-
trivial solutions U̇ ∈ Es(A(u, η, τ)) of the algebraic system

Π(u, τ, iη)M(u, σ, 0) U̇ = 0

as being equivalent to the vanishing of a (Lopatinskĭı) determinant ∆0(τ, η),
depending analytically on (τ, η) (and being C∞ with respect to the parame-
ters (u, σ)). Then, one would check (UKL0) by showing that the function ∆0,
extended carefully by continuity up to the boundary of P1, does not have any
zero in P1. Indeed, this would mean that for all (η, τ) ∈ P1 the linear mapping
Π(u, τ, iη)M(u, σ, 0) is invertible when restricted to Es(A(u, η, τ)), hence the
inequality (12.2.18) with a uniform C on the compact set P1. (Observe this also
implies (12.2.18) with the same constant C for all (τ, η) �= (0, 0) with Re τ ≥ 0,
since both Es(A(u, η, τ)) and Π(u, τ, iη) are by definition homogeneous degree 0
in (τ, η).)

As we said before, handling the projection operator Π(u, τ, iη) is not very
convenient. Furthermore, the condition (UKL0) above is in fact not sufficient for
the well-posedness of the complete problem (12.2.16). A more complete condition,
which contains both (UKL0) and the ellipticity of the symbol b is the following.

(UKL) there exists C > 0 so that for all (η, τ) ∈ P1

max( ‖U̇‖, |Ẋ| ) ≤ C ‖M(u, σ, 0) U̇ − Ẋ b(u, τ, iη) ‖ (12.2.19)

for all (U̇ , Ẋ) ∈ Es(A(u, η, τ))× C .
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(Observe that unlike (12.2.18), the inequality (12.2.19) is not homogeneous, but
this will be harmless.)

The condition (UKL) is what we call the uniform Kreiss–Lopatinskĭı condition
for the planar shock wave u of normal speed σ. As claimed above, (UKL) implies
(by just taking U̇ = 0)

‖ b(u, τ, iη) ‖ ≥ 1/C > 0,

hence also (12.2.18) by inserting

Ẋ = − b(u, τ, iη)∗M(u, σ, 0) U̇

‖b(u, τ, iη)‖2

into (12.2.19).
In practice, the verification of (UKL) is far from being straightforward.

Nevertheless, we claim it is mostly algebraic. The condition (UKL) is indeed
equivalent to the non-existence, for all (η, τ) in the compact set P1, of non-
trivial solutions in Es(A(u, η, τ))× C to the algebraic system (12.2.17). This
property can be formulated as the absence of zeroes in P1 of an analytic function
∆ of (τ, η), depending smoothly on the shock wave u. And it can be shown
that the zero set of ∆ is contained in an algebraic manifold, say M . (See
Chapter 4 for theoretical explanations, and Chapter 15 for the example of gas
dynamics.) The analytical parts in the verification of (UKL) are thus reduced to
the determination of the continuous extension of ∆ to purely imaginary values
of τ , and the elimination of fake zeroes of ∆ from P1 ∩M . This is done in detail
in Chapter 15 for the gas dynamics (for a more analytical approach on the same
topic, see [92]). For more general systems, it is only known that small shocks are
stable, as was pointed out by Métivier in [131] in the case n = 2 and proved in
more generality in [133].

12.3 Well-posedness of linearized problems

12.3.1 Energy estimates for the BVP

In this section, we consider the linear BVPL±(u±,dχ) v̇± = f± , z > 0 ,

B(u) · (dχ̇, 0) + M(u, dχ) · (v̇−, v̇+) = g , z = 0 .

It comes from (12.1.10) and (12.1.11) where we have sent the zeroth-order terms
in v̇± and χ̇ to the (arbitrary) right-hand sides f± and g. (Recall that the good
unknowns v̇± are merely related to u̇± and χ̇ through the relation v̇± = u̇± ∓
χ̇ ∂zu±.) For simplicity, we just write this BVP asL(u, dχ) v̇ = f , z > 0 ,

B(u) · dχ̇ + M(u, dχ) · v̇ = g , z = 0 ,
(12.3.20)
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where v̇ = (v̇−, v̇+), the operator L(u, dχ) is to be understood as

L(u, dχ) =
(

L−(u−,dχ) 0
0 L+(u+,dχ)

)
,

and B(u) · dχ̇ stands for B(u) · (dχ̇, 0) by a slight abuse of notation.

Theorem 12.1 We make the following main assumptions.

(CH) There exist open subsets of Rn, say U− and U+ containing, respec-
tively u− and u+, such that for all w ∈ U± the matrix A0(w) is
non-singular, and the operator A0(w) ∂t +

∑d
j=1 Aj(w) ∂j is constantly

hyperbolic in the t-direction;
(NC) There exists σ > 0 so that

fd(u+) − fd(u−) = σ ( f0(u+) − f0(u−) )

and both matrices

Ad(u±, σ, 0) = Ad(u±) − σ A0(u±)

are non-singular;
(N) The associated discontinuous solution of (12.1.1),

u : (x, t) �→ u± for xd ≷ σ t ,

is a Lax shock (according to Definition 12.1);
(UKL) There exists C > 0 so that for all (η, τ) ∈ Rd−1 × C with Re τ ≥ 0

and |τ |2 + ‖η‖2 = 1,

max( ‖U̇‖, |Ẋ| ) ≤ C ‖M(u, σ, 0) U̇ − Ẋ b(u, τ, iη) ‖ (12.3.21)

for all (U̇ , Ẋ) ∈ Es(A(u, η, τ))× C (with M , b and Es(A) defined as in
previous sections in terms of the fluxes f j and their Jacobian matrices
Aj).

The conclusion is that there exists ρ > 0 so that for all ω > 0 there exist
C = C(ω) and γ0 = γ0(ω) and for all compactly supported and Lipschitz-
continuous u± : (y, z, t) ∈ Rd−1 × R+ × R �→ u±(y, z, t) ∈ Rn and dχ : (y, t) ∈
Rd−1 × R �→ (∂tχ(y, t),∇yχ(y, t)) ∈ R× Rd−1, with

‖u± − u±‖L∞(Rd−1×R+×R) ≤ ρ and ‖∂tχ − σ‖L∞(Rd) + ‖∇yχ‖L∞(Rd)≤ ρ,

‖u±‖W 1,∞(Rd−1×R+×R) ≤ ω and ‖dχ‖W 1,∞(Rd) ≤ ω,
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for all γ ≥ γ0, for all v̇ ∈ D(Rd−1 × R+ × R; R2n) and all χ̇ ∈ D(Rd; R),

γ ‖e−γt v̇‖2L2(Rd−1×R+×R) + ‖e−γt v̇|z=0‖2L2(Rd) + ‖e−γt χ̇‖2H1
γ(Rd) (12.3.22)

≤ C

(
1
γ
‖e−γt L(u, dχ) v̇‖2L2(Rd−1×R+×R)

+ ‖e−γt (B(u) · dχ̇ + M(u, dχ) · v̇|z=0 )‖2L2(Rd)

)
.

Proof The method of proof is very similar to what has been done for standard
BVP (in Theorem 9.6). The main novelty is the additional unknown χ̇, the deriv-
atives of which appear in the boundary terms: in the constant-coefficients case
(i.e. actually for u± ≡ u± and χ(y, t) = σt), after elimination of the unknown
χ̇, we are left with a BVP with pseudo-differential boundary conditions (see
(12.2.14)); for more general u± and χ the idea is still to eliminate χ̇ and treat
the reduced problem (almost) as a standard one, by means of a (generalized)
Kreiss’ symmetrizer of course, which will be possible after ‘para-linearizing’ the
equations. Before going into detail, let us introduce additional (!) convenient
notations.

We rewrite the differential operator L(u, dχ) as

L(u, dχ) = A0(u) ∂t +
d−1∑
j=1

Aj(u) ∂j + Ad(u,dχ) ∂z,

with

Aj(u) =
(

Aj(u−) 0
0 Aj(u+)

)
for all j ∈ {0, . . . , d− 1} and

Ad(u,dχ) =
(
−Ad(u−,dχ) 0

0 Ad(u+,dχ)

)
with (recall)

Ad(u,dχ) = Ad(u) −
d−1∑
j=1

(∂jχ) Aj(u) − (∂tχ) A0(u).

To simplify the writing we shall use the shortcut u for (u, dχ), or more precisely,
u will stand for the Lipschitz continuous mapping

u : Rd−1 × R+ × R → Rn × Rn × R× Rd−1

(y, z, t) �→ (u−(y, z, t), u+(y, z, t), ∂tχ(y, t),∇yχ(y, t) ) .

We introduce the further notation

Lγ
u := L(u(y, z, t)) + γ A0(u(y, z, t)),
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and, recalling that the operators in the boundary conditions in (12.3.20) are
defined by

B(u) · dχ̇ = (∂tχ̇) (f0(u+) − f0(u−)) +
d−1∑
j=1

(∂jχ̇) (f j(u+) − f j(u−)),

M(u, dχ) · v̇ = Ad(u−,dχ) · v̇− − Ad(u+,dχ) · v̇+,

we introduce the boundary operator

Bγ
u (v̇, χ̇)= (γ χ̇ + ∂tχ̇) (f0(u+)− f0(u−))|z=0 +

d−1∑
j=1

(∂jχ̇) (f j(u+)− f j(u−))|z=0

+ (Ad(u−,dχ) · v̇−−Ad(u+,dχ) · v̇+ )|z=0 .

With these notations, the energy estimate we want to prove equivalently reads

γ ‖ṽγ‖2L2(Rd−1×R+×R) + ‖(ṽγ)|z=0‖2L2(Rd) + ‖χ̃γ‖2H1
γ(Rd)

≤ C

(
1
γ
‖Lγ

uṽγ‖2L2(Rd−1×R+×R) + ‖Bγ
u (ṽγ , χ̃γ)‖2L2(Rd)

)
,

with

ṽγ := e−γt v̇ and χ̃γ := e−γt χ̇.

Para-linearization of the equations We first observe that for u close
enough to u and dχ close enough to (σ, 0) in the L∞ norm, Ad(u(y, z, t))
is non-singular for all (y, z, t). Hence the equality f̃γ = Lγ

uṽγ equivalently
reads

∂z ṽγ − P γ
u ṽγ = Ad(u(y, z, t))−1 f̃γ ,

P γ
u := −Ad(u(y, z, t))−1 ( A0(u(y, z, t)) ( γ + ∂t ) +

d−1∑
j=1

Aj(u(y, z, t))∂j ).

This induces us to introduce

Au(y, z, t, η, τ) = −Ad(u(y, z, t))−1
(
τ A0(u(y, z, t)) + i

d−1∑
j=1

ηj Aj(u(y, z, t))
)
.

One may observe, in particular, that for u = u := (u, σ, 0), Au is related to the
symbol defined in Section 12.2 by

Au(y, z, t, η, τ) = A(u, η, τ) for all (y, z, t).
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In more generality, for all fixed z, Au(y, z, t, η, τ = γ + iδ) can be regarded as
a symbol with parameter γ in the variables (y, t), which can be associated with
a para-differential operator with parameter T γ

Au
. By Theorem C.20 we have the

error estimate

‖P γ
u v − T γ

Au
v‖L2 ≤ C(ω) ‖v‖L2 .

On the other hand, the form of Bγ
u suggests the introduction of the symbol

(belonging to Γ1
1),

bu(y, t, η, τ) := τ (f0(u+(y, 0, t)) − f0(u−(y, 0, t)))

+ i
d−1∑
j=1

ηj (f j(u+(y, 0, t)) − f j(u−(y, 0, t))) .

Compared to the notation b introduced in Section 12.2 we have in the special
case u = u,

bu(y, t, η, τ) = b(u, τ, iη) for all (y, t).

Finally, we shall use the notation

Mu(y, t) :=
(

Ad(u−(y, 0, t),dχ) 0
0 −Ad(u+(y, 0, t),dχ)

)
(= −Ad(u(y, 0, t)) ).

By Theorem C.20 we have the error estimate

‖Bγ
u(v, ψ) − T γ

Mu
v − T γ

bu
ψ‖L2

≤ C(ω) ( ‖ψ‖L2 + ‖v‖H−1
γ

) ≤ C(ω)
γ

( ‖ψ‖H1
γ

+ ‖v‖L2 ) .

Therefore, the searched energy estimate will be proved by absorption of the errors
in the left-hand side if we show its para-linearized version

γ ‖v‖2L2(Rd−1×R+×R) + ‖v|z=0‖2L2(Rd) + ‖ψ‖2H1
γ(Rd) (12.3.23)

≤ C

(
1
γ
‖∂zv − T γ

Au
v‖2L2(Rd−1×R+×R) + ‖T γ

Mu
v|z=0 + T γ

bu
ψ‖2L2(Rd)

)
.

�
Proof of the para-linearized energy estimate: elimination of the front
The assumption (UKL) implies, in particular, the existence of a constant c > 0
such that (by homogeneity),

‖b(u, τ, iη)‖2 ≥ c ( |τ |2 + ‖η‖2) for all (η, τ) ∈ Rd−1 × C\{(0, 0)}
with Re τ ≥ 0 ,
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and for all (Lipschitz) continuous u such that ‖u− u‖L∞ ≤ ρ small enough,

‖bu(y, t, η, τ)‖2 ≥ c

2
( |τ |2 + ‖η‖2) for all (η, τ) ∈ Rd−1 × C\{(0, 0)}

with Re τ ≥ 0

and all (y, t) ∈ Rd−1 × R. Therefore,

Πu(y, t, η, τ) := In − bu(y, t, η, τ) bu(y, t, η, τ)∗

‖bu(y, t, η, τ)‖2

(consistently with the notation introduced in Section 12.2) is well-defined and
homogeneous degree 0 in (η, τ) and thus belongs to Γ0

1 if u is Lipschitz continuous
with ‖u− u‖L∞ ≤ ρ, and by Theorem C.22, T γ

Πu bu
− T γ

Πu
T γ

bu
is of order 0 + 1−

1 = 0: this means there exists C depending only on ω = ‖u− u‖W 1,∞ such that

‖T γ
Πu bu

ψ − T γ
Πu

T γ
bu

ψ‖L2 ≤ C ‖ψ‖L2 .

Since by definition Πu bu is identically zero, this implies

‖T γ
Πu

T γ
bu

ψ‖L2 ≤ C

γ
‖ψ‖H1

γ

for all smooth enough ψ. Also by Theorem C.22 we have another constant, still
denoted by C, depending only on ω such that

‖T γ
Πu Mu

v − T γ
Πu

T γ
Mu

v‖L2 ≤ C ‖v‖H−1
γ

≤ C

γ
‖v‖L2

for all smooth enough v.

Proof of the para-linearized energy estimate: estimate of the front
The estimate ‖bu(y, t, η, γ + iδ)‖ ≥ c

2 λ1,γ(δ, η) and G̊arding’s inequality (in
Theorem C.23) show that

Re 〈T γ
bu

∗bu
ψ , ψ〉 ≥ c

4
‖ψ‖2H1

γ
.

Theorems C.21 and C.22 show that Rγ := T γ
bu

∗bu
− (T γ

bu
)∗ T γ

bu
is an operator of

order at most one; hence

〈Rγψ , ψ〉 ≤ C ‖ψ‖H1
γ
‖ψ‖L2 ≤ C

γ
‖ψ‖2H1

γ
.

Therefore, combining the two inequalities we get

‖ψ‖2H1
γ
≤ 4

c

(
‖T γ

bu
ψ‖2L2 +

C

γ
‖ψ‖2H1

γ

)
;

hence for γ ≥ 8C/c,

‖ψ‖2H1
γ
≤ 4

c
‖T γ

bu
ψ‖2L2
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in which the right-hand side can be bounded in a trivial way:

‖T γ
bu

ψ‖2L2 ≤ 2 ‖T γ
bu

ψ + T γ
Mu

v|z=0‖2L2 + 2 ‖T γ
Mu

v|z=0‖2L2

≤ 2 ‖T γ
bu

ψ + T γ
Mu

v|z=0‖2L2 + 2C ‖v|z=0‖2L2

for a new C depending on ω.

Proof of the para-linearized energy estimate: the main estimate From
the two steps above (elimination and estimate of the front), it should now be
clear to the reader that (12.3.23) will follow (by absorption of the errors in the
left-hand side) from the estimate on the reduced para-linearized problem

γ ‖v‖2L2(Rd−1×R+×R) + ‖v|z=0‖2L2(Rd) (12.3.24)

≤ C

(
1
γ
‖∂zv − T γ

Au
v‖2L2(Rd−1×R+×R) + ‖T γ

ΠuMu
v|z=0‖2L2(Rd)

)
.

Unsurprisingly, the proof of this estimate will be very similar to the proof of
Theorem 9.6: it will rely on the construction of a generalized Kreiss symmetrizer
for the reduced BVP {

∂zv − T γ
Au

v = F ,
T γ

ΠuMu
v|z=0 = G .

Lemma 12.1 Under the assumptions of Theorem 12.1, let u = (u, dχ) be
Lipschitz continuous and close enough to u = (u, σ, 0) in the L∞ norm (which
means more precisely that the bound ρ in the statement of Theorem 12.1 is small
enough). Then there exists a symbol

Ru : X := {(y, z, t, η, τ) ∈ R2d+1 × C ; z ≥ 0 , Re τ ≥ 0 } → HPD2n

X = (y, z, t, η, τ) �→ Ru(X) ,

which belongs to Γ0
1 and is homogeneous degree 0 in (η, τ), with an estimate

Ru(y, 0, t, η, τ) ≥ α I2n − β ((ΠuMu)(y, t, η, τ))∗ (ΠuMu)(y, t, η, τ) (12.3.25)

for α > 0 and β > 0 depending only on the Lipschitz norm of u, and additionally
Ru(X)Au(X) decomposes for all X ∈ X into a finite sum of the form

Ru(X)Au(X) =
∑

j

Pj(X)∗
(

γ h0,j(X) 0
0 h1,j(X)

)
Pj(X),

� with Pj ∈ Γ0
1, homogeneous degree 0 in (η, τ) and

∑
j Pj(X)∗ Pj(X) ≥

C I2n ,
� and h0,j ∈ Γ0

1, homogeneous degree 0 in (η, τ) and Re (h0,j(X)) ≥ Cj Ikj
,

� and h1,j ∈ Γ1
1, homogeneous degree 1 in (η, τ) and

Re (h1,j(X)) ≥ Cj λγ,1(η, δ) I2n−kj
.
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We postpone the proof of this result and complete the proof of the estimate in
(12.3.24). The outline is the same as in the proof of Theorem 9.6. We consider
the family of operators

Rγ
u :=

1
2

(T γ
Ru

+ (T γ
Ru

)∗).

By construction, Rγ
u is a self-adjoint operator on L2 and by Theorem C.21 and

Remark C.2, there exists C depending only on (the Lipschitz norm of u) ω so
that

‖(Rγ
uv)|z=0 − (T γ

Ru
v)|z=0‖L2 ≤ C

γ
‖v|z=0‖L2(Rd,dy dt)

for all smooth enough v. Hence, denoting by 〈·, ·〉 the scalar product on
L2(Rd,dy dt), the inequality in (12.3.25) together with the error estimates in
Theorems C.20 and C.22 and the G̊arding inequality in Theorem C.23 imply

〈Rγ
uv|z=0 , v|z=0 〉+ β Re 〈T γ

(ΠuMu)∗ΠuMu
v|z=0 , v|z=0 〉 ≥

α

2
‖v|z=0‖2L2(Rd,dy dt)

for γ large enough, hence by Theorems C.21 and C.22 again,

〈Rγ
uv|z=0 , v|z=0 〉 + β ‖T γ

ΠuMu
v|z=0‖2L2(Rd,dy dt) ≥

α

4
‖v|z=0‖2L2(Rd,dy dt)

up to increasing γ.
On the other hand, by Theorems C.21 and C.22, there exists C ′ depending

only on ω so that

Re 〈Rγ
u T γ

Au
v, v 〉≥

∑
j

Re 〈γ T γ
h0,j

v0,j , v0,j 〉+ Re 〈T γ
h1,j

u1,j , v1,j 〉−C ′‖v‖2L2 ,

with v0,j and v1,j the two blocks (taking values in Ckj and C2n−kj , respectively)
of T γ

Pj
v, and by Theorem C.23 we have the inequalities

Re 〈γ T γ
h0,j

v0,j , v0,j 〉 ≥ γ
Cj

4
‖v0,j‖2L2 ,

Re 〈T γ
h1,j

v1,j , v1,j 〉 ≥
Cj

4
‖v1,j‖2H1/2 ≥ γ

Cj

4
‖v1,j‖2L2 .

Therefore, using once more the Theorems C.21, C.22, and C.23 (the latter being
applied to the degree 0 symbol

∑
j P ∗

j Pj), we get new constants C0 and C ′′ such
that

Re 〈Rγ
u T γ

Au
v , v 〉 ≥ (C0 γ − C ′′ ) ‖v‖2L2 ,

hence for large enough γ ≥ 2C ′′/C0,

Re
∫
〈Rγ

u T γ
Au

v , v 〉 dz ≥ γ
C0

2
‖v‖2L2(Rd×R+,dy dt dz) . (12.3.26)
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Now we prove the inequality in (12.3.24) by writing

d
dz
〈Rγ

u v , v 〉= 〈 dRγ
u

dz
v , v 〉+ 2 Re 〈Rγ

u(∂zv−T γ
Au

v) , v 〉+ 2 Re 〈Rγ
u T γ

Au
v , v 〉,

which implies after integration in z,

α

2
‖v|z=0‖2L2(Rd) − β Re 〈T γ

(ΠuMu)∗ΠuMu
v|z=0 , v|z=0 〉

≤ (C2 + γ (θ C1 − C0) ) ‖v‖2L2(Rd×R+) +
C1

4θγ
‖∂zv − T γ

Au
v‖2L2(Rd×R+)

for some new constants C1 and C2, and θ > 0 arbitrary. Choosing θ = C0/(2C1),
we get

α

2
‖v|z=0‖2L2(Rd) + γ

C0

4
‖v‖2L2(Rd×R+) ≤ β Re 〈T γ

(ΠuMu)∗ΠuMu
v|z=0 , v|z=0 〉

+
C2

1

2C0γ
‖∂zv − T γ

Au
v‖2L2(Rd×R+)

for all γ ≥ 4C2/C0. Finally, using again Theorems C.21 and C.22 we obtain for
γ large enough,

α

4
‖v|z=0‖2L2(Rd) + γ

C0

4
‖v‖2L2(Rd×R+) ≤ β ‖T γ

ΠuMu
v|z=0‖2L2(Rd)

+
C2

1

2C0γ
‖∂zv − T γ

Au
v‖2L2(Rd×R+),

which can be rewritten as (12.3.24) with C = 4max(β,C2
1/(2C0))/

min(α,C0). �

Sketch of proof of Lemma 12.1 To construct Ru the idea is (as usual)
to construct a local symmetrizer in the neighbourhood of each point X =
(y, z, t, η, τ) ∈ X with |τ |2 + ‖η‖2 = 1, to piece together these local symmetrizers
by a partition of unity technique and then extend the resulting mapping to the
whole set X by homogeneity in (η, τ).

By local symmetrizer at X ∈ X1 we mean a matrix-valued function ru defined
on a neighbourhood X ⊂ X1, associated with another matrix-valued function T ,
both being at least Lispchitz in (y, z, t) and C∞ in (η, τ), such that

i) the matrix r(X) is Hermitian and T (X) is invertible for all X ∈ X ,
ii) the matrix Re ( r(X)T (X)−1Au(X)T (X) ) is block-diagonal, with blocks

h0(X) and h1(X) such that h0(X)/γ is C∞ and

Re ( h0(X) ) ≥ C γ Ip , Re ( h1(X) ) ≥ C In−p , (12.3.27)

for some C > 0 independent of X ∈ X ,
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iii) and additionally, if X ∈ X0 (i.e. if z = 0) there exist α > 0 and β > 0
independent of X ∈ X ∩ X0 so that for all V ∈ C2n,

V ∗ r(y, 0, t, η, τ)V ≥ α ‖V ‖2 (12.3.28)

−β ‖Πu(y, t, η, τ)Mu(y, t)T (y, 0, t, η, τ)V ‖2.
The construction of a local symmetrizer at a point X ∈ X1 such that

u(y, z, t) = u relies on the assumption (UKL) and more specifically on its
consequence

(UKL0) for all (τ, η) with Re τ ≥ 0 and |τ |2 + ‖η‖2 = 1, for all V ∈
Es(A(u, η, τ)),

‖V ‖ ≤ C ‖Π(u, τ, iη)M(u, σ, 0)V ‖.
Details are basically the same as for the standard BVP. More precisely, we may
consider the pair (η, τ) in the projection operator Π as parameters, and use
the block-diagonal structure of A and ΠM together with the ‘standard’ con-
struction of symmetrizers. This is made clear in the example of gas dynamics in
Chapter 15.

By continuity, (UKL0) also implies that for u close enough to u in the L∞

norm,

‖V ‖ ≤ C

2
‖Πu(y, t, η, τ)Mu(y, t, η, τ)V ‖

for all (y, t) ∈ Rd, for all (τ, η) with Re τ ≥ 0 and |τ |2 + ‖η‖2 = 1, and for all
V ∈ Es(Au(y, t, η, τ)). Consequently, the construction of local symmetrizers is
in fact valid at all points X ∈ X1.

Then it suffices to piece together local symmetrizers as in the proof of
Theorem 9.1: Ru is defined on X1 as a finite sum of terms of the form
P (X)∗r(X)P (X) with P (X) = ϕ(X)1/2 T (X)−1, ϕ coming from a partition of
unity of X1 (of which the lack of compactness in the (y, z, t)-directions is why we
require constant coefficients outside a compact set), and finally Ru is extended
by homogeneity of degree 0 in (η, τ). �

Remark 12.4 By density of D in H1, the energy estimate (12.3.22) extends
to all pairs (v̇, χ̇) ∈ eγtH1(Rd−1 × R+ × R)× eγtH1(Rd). (This is obviously
enough to pass to the limit in the right-hand side of (12.3.22) applied to
D-approximations of (v̇, χ̇).)

The energy estimate (12.3.22) (in Theorem 12.1) can be used to derive higher-
order energy estimates, which will be useful to eventually deal with the full non-
linear problem. These higher-order estimates are as for standard BVP in terms
of H m

γ norms, defined by

‖w‖2H m
γ

:=
∑

|α|≤m

γ2(m−|α|) ‖e−γ t ∂αw‖2L2 .
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Here above α stands for a d- or (d + 1)-uple, (i.e. α = (α0, α1, . . . , αd−1) or
(α0, α1, . . . , αd), with αj ∈ N), and |α| =

∑
j αj (called the length of α).

Theorem 12.2 Under the hypotheses of Theorem 12.1, assume, moreover, that
u− u belongs to Hm(Rd−1 × R+ × R; R2n), (u− u)|z=0 belongs to Hm(Rd; R2n)
and (∂tχ− σ,∇yχ) belongs to Hm(Rd; Rd) for some integer m > (d + 1)/2 + 1,
with

‖u− u‖Hm ≤ µ , ‖u|z=0 − u|z=0‖Hm ≤ µ and ‖(∂tχ− σ,∇yχ)‖Hm ≤ µ.

Then there exist γm = γm(ω, µ) ≥ 1 and Cm = Cm(ω, µ) > 0 such that, for all
γ ≥ γm, for all v̇ ∈ D(Rd−1 × R+ × R; R2n) and all χ̇ ∈ D(Rd; R),

γ ‖v̇‖2L2(R+;H m
γ (Rd)) + ‖v̇|z=0‖2H m

γ (Rd) + ‖χ̇‖2
H m+1

γ (Rd)

≤ Cm

(
1
γ ‖L(u, dχ) v̇‖2L2(R+;H m

γ (Rd)) + ‖B(u) · dχ̇ + M(u, dχ) · v̇‖2H m
γ (Rd)

)
(12.3.29)

γ ‖v̇‖2H m
γ (Rd−1×R+×R) + ‖v̇|z=0‖2H m

γ (Rd) + ‖χ̇‖2
H m+1

γ (Rd)

≤ Cm

(
1
γ ‖L(u, dχ) v̇‖2H m

γ (Rd−1×R+×R) + ‖B(u) · dχ̇ + M(u, dχ) · v̇‖2H m
γ (Rd)

)
.

(12.3.30)

The proof is analogous to the proof of Theorem 9.7 for standard BVP. It
starts with estimates of derivatives in the (y, t)-direction by using the L2 estimate
(12.3.22) (in Theorem 12.1) together with commutator estimates in H s

γ norms:
this yields (12.3.29). As a second step, estimates of derivatives in the z-direction
are obtained by differentiating the equality

∂z v̇ = Ad(u(y, z, t),dχ(y, t))−1

(
L(u, dχ) v̇ −

d−1∑
j=1

Aj(u(y, z, t)) ∂j v̇

)
,

and by repeated use of Lemma 9.3: this eventually leads to (12.3.30). We omit
the (most technical) details and refer to [140], pp. 71–72, or [136], Section 4.6.

12.3.2 Adjoint BVP

In the previous section, we have performed a microlocal elimination of the
unknown front to derive energy estimates. Here we are going to use a more
algebraic approach, in order to define suitable adjoint problems.

Lemma 12.2 If b1, . . . , bd are C∞ mappings W → Rn, with W a contractible
subset of RN , such that for all u ∈ W the family (b1(u), . . . , bd(u)) is independent,
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there exists Q ∈ C∞(W ;GLn(R)) so that for all u ∈ W and all ξ ∈ Rd,

Q(u)
d∑

j=1

ξj bj(u) = (ξ1, · · · , ξd, , 0, · · · , 0)T.

Proof If B(u) denotes the matrix with columns b1(u), . . . , bd(u), the con-
tractibility of W enables us to define C∞ mappings �j : W → M1×n(R) for
j ∈ {d + 1, . . . , n} such that for all u ∈ W , (�d+1(u), . . . , �n(u)) is a basis of
kerBT (in other words, the vector bundle kerBT is trivializable, see [85] p. 97).
Then for all u ∈ W , the square matrix

(
b1(u), . . . , bd(u), �d+1(u)T, . . . , �n(u)T

)
is invertible and its inverse Q(u) answers the question by construction. �

Applying Lemma 12.2 to bj(u) = f j−1(u+) − f j−1(u−), N = 2n and W a
ball centred at u (of radius less than or equal to ρ say), we may rewrite the
boundary conditions in (12.3.20) as(

∇χ̇
0

)
+ Q(u)M(u) · v̇ = Q(u) g.

Then, applying Lemma 9.4 in a ball W centred at u = (u, σ, 0, . . . , 0) (in R2n+d)
to A = Ad and B : u �→ Q(u)M(u) ( = −Q(u) Ad(u), of rank n independently
of u), we find N , P and R in C∞(W ;Mn×2n(R)) such that

R2n = ker(Q(u)M(u))⊕ kerN(u) , R2n = kerP (u) ⊕ kerR(u),

Ad(u) = P (u)TQ(u)M(u) + R(u)TN(u), kerR(u) = (Ad(u)ker(Q(u)M(u)))⊥

for all u ∈ W . This material will serve for the definition of an adjoint version of
(12.3.20). Recalling that

L(u(y, z, t)) = A0(u(y, z, t)) ∂t +
d−1∑
j=1

Aj(u(y, z, t)) ∂j + Ad(u(y, z, t)) ∂z,

and denoting

L(u(y, z, t))∗ =

− (A0(u(y, z, t)))
T

∂t −
d−1∑
j=1

(Aj(u(y, z, t)))
T

∂j − (Ad(u(y, z, t)))T ∂z

− ∂t(A0(u(y, z, t)))
T −

d−1∑
j=1

∂j(Aj(u(y, z, t)))
T − ∂z(Ad(u(y, z, t)))T ,

we have for all smooth enough v and w,∫
z>0

∫
Rd

(wTL(u)v − vTL(u)∗w) +
∫

Rd

(wT Ad(u) v)|z=0 = 0,
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hence by definition of N , P and R,∫
z>0

∫
Rd

(wTL(u)v − vTL(u)∗w) +
∫

Rd

((P (u)w)T Q(u)M(u) v)|z=0

+
∫

Rd

((R(u)w)T N(u) v)|z=0 = 0. (12.3.31)

For v = v̇ satisfying (12.3.20) together with some function χ̇, the latter equality
equivalently reads∫

z>0

∫
Rd

(wTf − vTL(u)∗w) +
∫

Rd

((P (u)w)T Q(u) g )|z=0

+
∫

Rd

(− (∇χ̇)T P1(u)w + (N(u) v)T R(u)w)|z=0 = 0,

where P1(u) := πP (u), the first d rows among the n rows in P (u). Finally, we
may integrate by parts and rewrite∫

Rd

(− (∇χ̇)T P1(u)w )|z=0 =
∫

Rd

( χ̇ div(t,y)(P1(u)w) )|z=0

provided that χ̇ is decaying sufficiently fast.
The computation here above urges us to consider the ‘adjoint’ problemL(u)∗ w = 0 , z > 0 ,

R(u)w = 0 , div(t,y)(P1(u)w) = 0 , z = 0,
(12.3.32)

which is to some extent ‘non-standard’, though less than (12.3.20): the boundary
operator in (12.3.32) is only (algebro)differential (instead of pseudo-differential
in (12.3.20)). A crucial step towards the well-posedness of (12.3.20) is the proof
of energy estimates for the adjoint BVP (12.3.32).

Theorem 12.3 Under the assumptions of Theorem 12.1, the adjoint BVP in
(12.3.32) meets the standard assumptions allowing L2 energy estimates backward
in time, namely for all u in a neighbourhood of u = (u, σ, 0),

(CH∗) The coefficient of ∂t in L(u)∗ (i.e. the matrix A0(u)T) is non-singular
and the two blocks in L(u)∗ are constantly hyperbolic in the t-direction;

(NC∗) The coefficient of ∂z in L(u)∗ is non-singular (i.e. the matrix Ad(u)T is
non-singular);

(UKL∗) Denoting

A∗(u, η, τ) = (Ad(u)T)−1 ( τ̄ A0(u)
T − i

d−1∑
j=1

ηj Aj(u)
T

),
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there exists C > 0 so that for all (η, τ) ∈ Rd−1 × C with Re τ ≥ 0 and |τ |2 +
‖η‖2 = 1,

‖W‖ ≤ C ‖R(u)W‖ + ‖ (τ̄ ,−iηT) · P1(u)W ‖ (12.3.33)

for all W ∈ Es(A∗(u, η, τ)).

As a consequence, there exist ρ > 0, C = C(ω) and γ0 = γ0(ω) so that for

‖u− u‖L∞ ≤ ρ and ‖u− u‖W 1,∞ ≤ ω,

for all γ ≥ γ0 and for all ẇ ∈ D(Rd−1 × R+ × R; R2n),

γ ‖eγt ẇ‖2L2(Rd−1×R+×R) + ‖eγt ẇ|z=0‖2L2(Rd)

≤ C
(

1
γ ‖eγt L(u)∗ ẇ‖2L2(Rd−1×R+×R) + ‖eγt R(u)ẇ|z=0 ‖2L2(Rd)

+ ‖eγt div(t,y)(P1(u)ẇ|z=0 )‖2
H−1

γ (Rd)

)
.

Proof The first two properties, (CH∗) and (NC∗) are trivial consequences of
(CH) and (NC). For the proof of (UKL∗), we first need to check that

Es(A∗(u, η, τ)) = (Ad(u)Es(A(u, η, τ)))⊥ , (12.3.34)

where

A(u, η, τ) = − (Ad(u))−1 ( τ A0(u) + i

d−1∑
j=1

ηj Aj(u) ).

(As already done before, we make a ‘subtle’ distinction between the notations
A and Au: the mappings A : Rn × Rn × Rd−1 × C+ → M2n×2n(C) and Au :
Rd−1 × R+ × R× Rd−1 × C+ → M2n×2n(C) are related by A(u(y, z, t), η, τ) =
Au(y, z, t, η, τ) for all (y, z, t, η, τ) ∈ Rd−1 × R+ × R× Rd−1 × C+.)

The proof of (12.3.34) is classical and was already done in Chapter 4 but
we recall it for completeness. We first observe the matrices A(u, η, τ) and
A∗(u, η, τ) are simultaneously hyperbolic, the latter A∗(u, η, τ) being conjugate
to −A(u, η, τ)∗: more precisely,

A∗(u, η, τ) = − (Ad(u)T)−1A∗(u, η, τ) Ad(u)T.

Hence the spaces Es(A∗(u, η, τ)) and (Ad(u)Es(A(u, η, τ)))⊥ are both of the
same dimension, equal to n + 1 since Es(A(u, η, τ)) is of dimension n− 1 (by
the assumption (N)). Furthermore, when A(u, η, τ) is hyperbolic, a standard
ODE argument shows Es(A∗(u, η, τ)) is a subspace of (Ad(u)Es(A(u, η, τ)))⊥.
Indeed, take W = ψ(0) with ψ a solution of ψ′ = A∗ψ tending to zero at +∞.
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For all U = φ(0) with φ a solution of φ′ = Aφ,

d
dx

ψ(x)∗Ad φ(x) = (A∗ψ(x))∗Adφ(x) + ψ(x)∗AdAφ(x) = 0,

since (A∗)
∗

Ad + AdA = 0, hence if, moreover, φ tends to zero at +∞,

W ∗ Ad U = lim
x→+∞

ψ(x)∗Ad φ(x) = 0.

This proves (12.3.34) when A(u, η, τ) is hyperbolic, in particular when Re τ > 0.
By continuity, (12.3.34) is also true for Re τ = 0.

Now, suppose W ∈ Es(A∗) is such that

R(u)W = 0 and (τ̄ ,−iηT) · P1(u)W = 0.

We are going to show that P (u)W = 0, which will imply W = 0 (recall that by
construction kerR(u) and kerP (u) are supplementary). To prove P (u)W = 0,
we compute Y ∗P (u)W for an arbitrary Y ∈ C2n. A straightforward reformula-
tion of the assumption (UKL) with our current notations shows there exists a
unique pair (Ẋ, U̇) ∈ C× Es(A(u, η, τ)) such that

Y = Ẋ (τ, iη, 0, . . . , 0)T + Q(u)M(u) U̇ .

Therefore,

Y ∗P (u)W = ¯̇X (τ̄ ,−iηT) · P1(u)W + (Q(u)M(u) U̇)
∗
P (u)W,

where the first term is zero by assumption on W ; hence

Y ∗P (u)W = W ∗P (u)T Q(u)M(u) U̇ = W ∗Ad(u) U̇ −W ∗R(u)T N(u)U̇ = 0,

since W belongs to (AdE
s(A))⊥ and R(u)W = 0. Therefore, the mapping

W ∈ Es(A∗) �→ (R(u)W, (τ̄ ,−iηT) · P1(u)W ) ∈ Cn × C

is one-to-one, thus also onto since dim Es(A∗) = n + 1; the norm of the inverse
mapping is uniformly bounded on the compact set { (η, τ) ∈ Rd−1 × C ; Re τ ≥
0 , |τ |2 + ‖η‖2 = 1 }.

The attentive reader will have noticed that (UKL∗) is simply the uniform
Kreiss–Lopatinskĭı condition backward in time for the BVP (12.3.32). Indeed,
freezing the coefficients in the principal part of L(u)∗ and performing a Fourier–
Laplace transform in the direction (y,−t) the BVP (12.3.32) we get the ODE
problem 

dẆ

dz
= A∗(u, η, τ) Ẇ for z > 0 ,

R(u)Ẇ = 0 and (τ̄ ,−iηT) · P1(u) Ẇ = 0 at z = 0 .

Thanks to the properties (CH∗), (NC∗) and (UKL∗), the same method of
proof as for the original BVP (12.3.20) (in Theorem 12.1), replacing there the
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interior symbol Au by A∗(u(y, z, t), η, τ), and the boundary symbol ΠuMu

by (
R(u(y, z, t))

(τ̄ ,−iηT) · P1(u(y, z, t))

)
,

shows the announced backward weighted estimate for the adjoint BVP (12.3.32):
the H−1

γ norm in the right-hand side shows up because when the inequality
(12.3.33) in (UKL∗) is extended to all pairs (τ, η), it yields, for homogeneity
reasons,

‖W‖ ≤ C ‖R(u)W‖ + λ−1,γ(δ, η) ‖ (τ̄ ,−iηT) · P1(u)W ‖.

�

12.3.3 Well-posedness of the BVP

Theorem 12.4 Under the assumptions of Theorem 12.1, there exist ρ > 0 and
γ0 = γ0(ω) so that for

‖u− u‖L∞ ≤ ρ and ‖u‖W 1,∞ ≤ ω,

for all γ ≥ γ0, for all f ∈ eγt L2(Rd−1 × R+ × R) and all g ∈ eγt L2(Rd−1 ×
R), there is one and only one solution (v̇, χ̇) ∈ eγt L2(Rd−1 × R+ × R)×
eγt H1/2(Rd−1 × R) of the BVP in (12.3.20). Furthermore, χ̇ belongs in fact
to eγt H1(Rd−1 × R), the trace of v̇ at z = 0 belongs to eγt L2(Rd−1 × R), and
(ṽγ , χ̃γ) := e−γt(v̇, χ̇) enjoys the estimate

γ ‖ṽγ‖2L2(Rd−1×R+×R) + ‖(ṽγ)|z=0‖2L2(Rd) + ‖χ̃γ‖2H1
γ(Rd) (12.3.35)

≤ C

(
1
γ
‖f̃γ‖2L2(Rd−1×R+×R) + ‖g̃γ‖2L2(Rd)

)
for some constant C = C(ω).

Note: the estimate (12.3.35) here above is simply another way of writing (12.3.22)
(in Theorem 12.1).

Proof Noting that (12.3.20) is equivalent to Lγ
u ṽγ = f̃γ in the interior and (γ + ∂t)χ̃γ

∇yχ̃γ

0

 + Q(u)M(u) · ṽγ = Q(u) g̃γ

at the boundary z = 0, we may reformulate the conclusion of Theorem 12.4 as
follows: for γ large enough, for all f ∈ L2(Rd−1 × R+ × R) and all g ∈ L2(Rd−1 ×
R), there is one and only one (v, ψ) ∈ L2(Rd−1 × R+ × R)×H1/2(Rd−1 × R)
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such that

Lγ
u v = f and

 (γ + ∂t)ψ
∇yψ

0

 + Q(u)M(u) · v|z=0 = Q(u) g , (12.3.36)

and this solution satisfies an estimate of the form

γ ‖v‖2L2(Rd−1×R+×R) + ‖v|z=0‖2L2(Rd)

+ ‖ψ‖2H1
γ(Rd) � 1

γ
‖f‖2L2(Rd−1×R+×R) + ‖g‖2L2(Rd) .

Existence of a weak solution Unsurprisingly, we are going to use the
adjoint BVP (12.3.32) introduced in the previous section, or more precisely the
equivalent problem{

(Lγ
u)∗ eγt w = 0 , z > 0 ,

R(u)eγt w = 0 , div−γ(P1(u)eγt w) = 0 , z = 0 ,

where the differential operator div−γ is defined by

div−γ(p0 , p1, . . . , pd−1) = (−γ + ∂t) p0 +
d−1∑
j=1

∂jpj .

From this point of view the ‘dual’ energy estimate of Theorem 12.3 equivalently
reads

γ ‖w‖2L2(Rd−1×R+×R) + ‖w|z=0‖2L2(Rd)

≤ C

(
1
γ
‖(Lγ

u)∗ w‖2L2(Rd−1×R+×R) + ‖R(u)w|z=0 ‖2L2(Rd)

+ ‖div−γ(P1(u)w|z=0 )‖2
H−1

γ (Rd)

)
.

The resolution of the BVP in (12.3.36) follows the same lines as the proof of
Theorem 9.17. We consider the set

E := {w ∈ D(Rd−1 × R+ × R) ; R(u)w|z=0 = 0 , div−γ(P1(u)w|z=0) = 0 }.

Theorem 12.3 shows that for all w ∈ E ,

γ ‖w‖2L2 + ‖w|z=0‖2L2 ≤ C

γ
‖(Lγ

u)∗ w‖2L2 .

This allows the definition of a bounded linear form � on (Lγ
u)∗E by

�((Lγ
u)∗w) =

∫
z>0

∫
Rd

wTf +
∫

Rd

((P (u)w)T Q(u) g )|z=0.
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Indeed, we have ∣∣∣∣∫
z>0

∫
Rd

wTf +
∫

Rd

((P (u)w)T Q(u) g )|z=0

∣∣∣∣
≤ ‖f‖L2 ‖w‖L2 + ‖P ◦ u‖L∞ ‖Q ◦ u‖L∞ ‖g‖L2 ‖w|z=0‖L2

�
( 1

γ
‖f‖L2 +

1
γ1/2

‖g‖L2

)
‖L∗ v‖L2 .

Therefore, by the Hahn–Banach theorem, � extends to a continuous form on L2,
and by the Riesz theorem, there exists v ∈ L2 such that

�((Lγ
u)∗w) =

∫
z>0

∫
Rd

vT(Lγ
u)∗ w.

We thus get in particular, by definition of �,∫
z>0

∫
Rd

( vT(Lγ
u)∗ w − fT w ) = 0

for all w ∈ D(Rd−1 × (0,+∞)× R), hence Lγ
uv = f (in the sense of distribu-

tions). Consequently, using the identity (12.3.31), or more precisely its modified
version obtained with Lγ

u instead of L(u), we find that∫
Rd

((P (u)w)T Q(u) g )|z=0 =
∫

Rd

((P (u)w)T Q(u)M(u) v )|z=0 (12.3.37)

for all w ∈ E , and by extension this is true for all w ∈ H1(Rd−1 × R+ × R) such
that R(u)w = 0 and div−γ(P1(u)w) = 0.

In order to recover the boundary condition in (12.3.36), we first use
a (standard) trace-lifting argument. For all ϕ ∈ H1/2(Rd−1 × R; R2n) there
exists Φ ∈ H1(Rd−1 × R+ × R; R2n) so that Φ|z=0 = ϕ. Therefore, for all θ ∈
H1/2(Rd; Rn) there exists w ∈ H1(Rd−1 × R+ × R; R2n) so that R(u)w|z=0 = 0
and P (u)wz=0 = θ: indeed, by construction

q : (y, z, t) �→
(

P (u(y, z, t))
R(u(y, z, t))

)−1

belongs to W 1,∞(Rd × R+ × R;GL2n(R)), so it suffices to define w = q Φ, where
Φ is obtained by trace lifting from ϕ : (y, t) �→ (θ(y, t), 0, . . . , 0). In particu-
lar, for all θ2 ∈ H1/2(Rd; Rn−d) there exists w2 ∈ H1(Rd−1 × R+ × R; R2n) so
that R(u) (w2)|z=0 = 0, P1(u) (w2)|z=0 = 0, and P2(u) (w2)|z=0 = θ2, where
P2(u) = (In − π)P (u) denotes the last (n− d) rows in P (u). Applying
(12.3.37) to w = w2 we get∫

Rd

θ2
T Q2(u) ( g − M(u) v )|z=0 = 0,
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where naturally Q2(u) = (In − π)Q(u). This implies

Q2(u) ( g − M(u) v )|z=0 = 0.

Similarly, for all θ1 ∈ H1/2(Rd; Rd) there exists w1 ∈ H1(Rd−1 × R+ × R; R2n)
so that R(u) (w1)|z=0 = 0, P1(u) (w1)|z=0 = θ1, and P2(u) (w1)|z=0 = 0, and
if additionally div−γθ1 = 0 we can apply (12.3.37) to w = w1, which gives∫

Rd

θ1
T Q1(u) ( g − M(u) v )|z=0 = 0.

This implies the existence of ψ ∈ H1/2(Rd−1 × R+ × R) such that

Q1(u) ( g − M(u) v )|z=0 =
(

(γ + ∂t)ψ
∇yψ

)
thanks to the following simple result.

Lemma 12.3 For all γ ≥ 1, the mapping

∇γ : H1/2(Rd; R) → H−1/2(Rd; Rd)

ψ �→ ∇γψ :=
(

(γ + ∂t)ψ
∇yψ

)
has range

(ker div−γ)⊥ = { v ∈ H1/2(Rd; Rd) ; 〈v , θ 〉(H−1/2,H1/2) = 0

for all θ ∈ H1/2(Rd; Rd) ; div−γθ = 0 } .

Proof This is a Fourier-transform exercise. Indeed, the range of∇γ is obviously
a subset of (kerdiv−γ)⊥, which can also be written as{

v ∈ H1/2(Rd; Rd) ; v̂(δ, η) ‖
(

γ + iδ
iη

)}
,

and for all v in this set we have

v̂(δ, η) =
(γ − iδ,−iηT) · v̂(δ, η)

γ2 + δ2 + ‖η‖2
(

γ + iδ
iη

)
,

which equivalently means that

v = ∇γ
(
(−γ2 + ∆)−1 div−γv

)
,

where (−γ2 + ∆)−1 div−γv does belong to H1/2(Rd; R). �
Weak=strong argument As ‘usual’, we consider a mollifying operator Rε

in the (y, t)-edirections and consider vε := Rεv and ψε := Rεψ (where (v, ψ)
is the weak solution found here above), fε := RεAd(u)−1 f (where f is a given
source term in L2) and gε := Rεg (where g is a L2 data on the boundary). These
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regularized functions satisfy the following properties

fε ∈ L2(R+;H+∞(Rd × R; R2n)) and fε
L2(R+;L2(Rd×R;R2n))−−−−−−−−−−−−−−→ Ad(u)−1 f ,

vε ∈ L2(R+;H+∞(Rd × R; R2n)) and vε
L2(R+;L2(Rd×R;R2n))−−−−−−−−−−−−−−→ v ,

(vε)|z=0 ∈ H+∞(Rd × R; R2n) and (vε)|z=0
H−1/2(Rd×R;R2n)−−−−−−−−−−−→ v|z=0 ,

ψε ∈ H+∞(Rd × R; R) and ψε

H1/2
γ (Rd×R;R)

−−−−−−−−−→ ψ ,

gε ∈ H+∞(Rd × R; Rn) and gε
L2(Rd×R;Rn)−−−−−−−−−→ g .

Furthermore, we have (see Lemma 9.5)

[P γ
u , Rε](v)

L2(R+;L2(Rd×R;R2n))−−−−−−−−−−−−−−→ 0 and [Bγ
u, Rε](v|z=0, ψ)

L2(Rd×R;Rn)−−−−−−−−−→ 0

(where the operator P γ
u is such that f = Lγ

uv equivalently reads ∂zv − P γ
u v =

Ad(u)−1 f). Now we easily see that ∂zvε = fε + P γ
u vε − [P γ

u , Rε](v) belongs
to L2(R+;L2(Rd × R; R2n)), hence vε is in H1(Rd × R+ × R). By Remark 12.4,
the energy estimate (12.3.22) (in Theorem 12.1) thus applies to the pair (vε, ψε):
more precisely we have

γ ‖vε‖2L2 + ‖(vε)|z=0‖2L2 + ‖ψε‖2H1
γ

� 1
γ
‖∂zvε − P γ

u vε‖2L2 + ‖Bγ
u (vε, ψε)‖2L2 .

By linearity of the operators P γ
u and Bγ

u, this inequality also applies to pairs
(vε − vε′ , ψε − ψε′), and together with the above limiting properties this shows
that (vε)|z=0 is a Cauchy sequence in L2 and ψε is a Cauchy sequence in H1

γ . By
uniqueness of limits in the sense of distributions, this implies that v|z=0 is the
limit of (vε)|z=0 in L2, and ψ is the limit of ψε in H1

γ . Then, by passing to the
limit in the estimate for (vε, ψε), we get

γ ‖v‖2L2 + ‖v|z=0‖2L2 + ‖ψ‖2H1
γ

� 1
γ
‖∂zv − P γ

u v‖2L2 + ‖Bγ
u (v, ψ)‖2L2 ,

or equivalently,

γ ‖v‖2L2 + ‖v|z=0‖2L2 + ‖ψ‖2H1
γ

� 1
γ
‖Lγ

uv‖2L2 + ‖Bγ
u (v, ψ)‖2L2 , (12.3.38)

which is another way of writing (12.3.35). This completes the proof of
Theorem 12.4. �

Now, when the coefficients (u) and the data f , g enjoy more regularity, we
can prove more regularity on the solution. This is the purpose of the following
result (analogous to Theorem 9.20 for standard BVP).

Theorem 12.5 We still make the assumptions of Theorem 12.1, and assume,
moreover, (as in Theorem 12.2) that u− u, (u− u)|z=0 and (∂tχ− σ,∇yχ) are
in Hm for some integer m > (d + 1)/2 + 1. Then the solution (v̇, χ̇) of the BVP
(12.3.20) given by Theorem 12.4 is such that v̇ belongs to Hm(Rd−1 × R+ ×
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R; R2n), v̇|z=0 belongs to Hm(Rd; R2n), and (∂tχ̇,∇yχ̇) belongs to Hm(Rd; Rd),
and altogether they satisfy the estimate

γ ‖v̇‖2H m
γ (Rd−1×R+×R) + ‖v̇|z=0‖2H m

γ (Rd) + ‖χ̇‖2
H m+1

γ (Rd)

≤ Cm(µ)
(

1
γ
‖f‖2H m

γ (Rd−1×R+×R) + ‖g‖2H m
γ (Rd)

)
for γ ≥ γm(µ) ≥ 1, where µ is an upper bound for the Hm norm of the coeffi-
cients; more precisely,

‖u− u‖Hm ≤ µ , ‖u|z=0 − u|z=0‖Hm ≤ µ and ‖(∂tχ− σ,∇yχ)‖Hm ≤ µ .

Proof As for Theorem 9.20 on standard BVP, it is in two steps: 1) the proof for
infinitely smooth coefficients and 2) the extension to Hm coefficients by passing
to the limit in regularized problems (to which the first step applies).

Step 1) Assume here that u belongs to D(Rd−1 × R+ × R; R2n) and (∂tχ−
σ,∇yχ) belongs to D(Rd; Rd).

We already know from Theorem 12.4 that v := e−γtv̇ belongs to L2(Rd−1 ×
R+ × R), v|z=0 belongs to L2(Rd), and ψ := e−γtχ̇ belongs to H1(Rd). Our aim
is to prove enough regularity on (v, ψ) to be allowed to use Theorem 12.2 and
thus obtain Hm

γ estimates on (v̇, χ̇) in terms of µ. A first idea is to proceed
by induction and use the same method as in the proof of Theorem 9.10. So,
assume that v belongs to Hk(Rd−1 × R+ × R), v|z=0 belongs to Hk(Rd), and
ψ belongs to Hk+1(Rd) for 0 ≤ k ≤ m− 1. We want to show that v belongs to
Hk+1(Rd−1 × R+ × R), v|z=0 belongs to Hk+1(Rd), and ψ belongs to Hk+2(Rd).
In fact, thanks to Proposition 2.3 applied with z instead of t, it is sufficient
to show that v belongs to L2(R+;Hk+1(Rd)). We are going to use several
ingredients: the characterization of Hk+1 functions given by Proposition 9.2;
the two-sided inequality provided by Proposition 9.3; the commutators estimates
given by Theorem 9.11; the energy estimate (12.3.38). We introduce a smoothing
operator Rε in the (y, t) directions satisfying the requirements of Proposition
9.3 and define ϕε := Rε(v) ∈ L2(R+;H+∞(Rd)), ψε := Rε(ψ) ∈ H+∞(Rd). By
Proposition 2.3 again, ϕε belongs at least to H1(Rd−1 × R+ × R), and therefore
(by Remark 12.4) we can apply the energy estimate (12.3.38) to the pair (ϕε, ψε).
This gives for γ large enough (and in particular γ ≥ 1),

γ ‖ϕε‖2L2(Rd×R+) + ‖(ϕε)|xd=0‖2L2(Rd) + ‖ψε‖2H1(Rd)

� 1
γ
‖Lγ

uϕε‖2L2(Rd×R+) + ‖Bγ
u((ϕε)|xd=0, ψε)‖2L2(Rd) .

Now, Theorem 9.11 provides some bounds for the commutators [Bγ
u, Rε] and

[P γ
u , Rε], with (as usual) P γ

u = ∂z − (Ad)−1Lγ
u. Since (Ad)−1 is uniformly
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bounded, this eventually gives

γ

∫ +∞

0

‖v‖2k,θ dxd + ‖v|xd=0‖2k,θ + ‖ψ‖2k+1,θ � 1
γ

∫ +∞

0

‖v‖2k,θ dxd

+ γ

∫ +∞

0

‖v‖2m−1,θ dxd + 1
γ

∫ +∞

0

nk,θ(Lγ
uv(xd)) dxd

+nk,θ(Bγ
u(v|xd=0, ψ)) + ‖v|xd=0‖2k−1,θ + ‖ψ‖2k,θ .

For γ large enough the first term in the right-hand side can be absorbed in the
left-hand side. Therefore, applying Propostions 9.2 and 9.3, we get

γ

∫ +∞

0

‖v‖2k,θ dxd + ‖v|xd=0‖2k,θ + ‖ψ‖2k+1,θ � 1
γ
‖Lγ

uv‖2L2(R+;Hk+1(Rd))

+ ‖Bγ
u(v|xd=0, ψ)‖2Hk+1(Rd) + γ ‖v‖2L2(R+;Hk+1(Rd)) + ‖v|xd=0‖2Hk(Rd) + ‖ψ‖2k+1.

By assumption (since k ≤ m− 1), the right-hand side is finite, and of course is
independent of θ, Proposition 9.2 thus shows that v belongs to L2(R+;Hk+1(Rd))
(hence v belongs to Hk+1(Rd−1 × R+ × R) by Proposition 2.3), v|xd=0 belongs to
Hk+1(Rd), and ψ belongs to Hk+2(Rd). Therefore, the induction process shows
that v belongs to Hm(Rd−1 × R+ × R), v|xd=0 belongs to Hm(Rd), and ψ belongs
to Hm+1(Rd). The regularity obtained in this way for (v, ψ) is not sufficient yet
to apply Theorem 12.2 and get H m

γ estimates. However, we can construct fε
γ ∈

D(Rd−1 × R+ × R) and gε
γ ∈ D(Rd−1 × R) such that fε

γ goes to f in H m
γ (Rd−1 ×

R+ × R) and gε
γ goes to g in H m

γ (Rd−1 × R), and by the first step the solution
(vε

γ , χε
γ) of the BVP

Lu vε
γ = fε

γ for z > 0 , Bu (vε
γ , χε

γ) = gε
γ at z = 0

is smooth enough to satisfy the H m
γ estimate (12.3.30): by linearity, this is also

true for the differences (vε
γ − vε′

γ , χε
γ − χε′

γ ); hence the convergence of (vε
γ)ε>0 in

H m
γ (Rd−1 × R+ × R), and of ((vε

γ)|xd
)ε>0 and (χε

γ)ε>0 in H m
γ (Rd−1 × R); the

limit must be (v̇, χ̇) since it is a solution of the same BVP, and by passing to the
limit in the estimate (12.3.30) applied to (vε

γ , χε
γ) we get the estimate for (v̇, χ̇).

Step 2): It is a matter of smoothing coefficients and passing once more to the
limit. We omit the details, which are identical to those in the proof of Theorem
9.20 for the standard BVP. �

12.3.4 The IBVP with zero initial data

In this section we fix T ∈ R and we denote by IT the half-line (−∞, T ].

Theorem 12.6 Under the hypotheses (CH), (NC), (N) and (UKL)
of Theorem 12.1, for all Lipschitz-continuous u± : (y, z, t) ∈ Rd−1 × R+ ×
IT �→ u±(y, z, t) ∈ Rn and dχ : (y, t) ∈ Rd−1 × IT �→ (∂tχ(y, t),∇yχ(y, t)) ∈
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R× Rd−1, with

‖u± − u±‖L∞(Rd−1×R+×IT ) ≤ ρ and ‖dχ − (σ, 0)‖L∞(Rd−1×IT ) ≤ ρ,

‖u±‖W 1,∞(Rd−1×R+×R) ≤ ω and ‖dχ‖W 1,∞(Rd−1×IT ) ≤ ω,

for all f ∈ L2(Rd−1 × R+ × IT ; R2n) and all g ∈ L2(Rd−1 × IT ; Rn) such that

f|t<0 = 0 , g|t<0 = 0,

there exists a unique pair (v̇, χ̇) ∈ L2(Rd−1 × R+ × IT ; R2n)×H1(Rd−1 ×
IT ; Rn) such that

L(u, dχ)v̇ = f , B(u) · dχ̇ +M(u, dχ) · v̇|z=0 = g , and v̇|t<0 = 0 , χ̇|t<0 = 0.

Furthermore, v̇|z=0 = 0 belongs to L2(Rd−1 × IT ; R2n), and there exist γ0 ≥ 1
and c > 0 depending continuously on ω such that for all γ ≥ γ0,

γ ‖e−γt v̇‖2L2(Rd−1×R+×IT ) + ‖e−γt v̇|z=0‖2L2(Rd) + ‖e−γt χ̇‖2H1
γ(Rd−1×IT )

≤ c

(
1
γ ‖e−γt f‖2L2(Rd−1×R+×IT ) + ‖e−γt g‖2L2(Rd−1×IT )

)
.

(12.3.39)

The proof is analogous to the proof of Theorem 9.18 for the ‘standard’ IBVP
with zero initial data: it relies on Theorem 12.4 and on the following support
theorem.

Theorem 12.7 In the framework of Theorem 12.4, if both f and g vanish for
t < t0 then so do v̇ and χ̇.

(To prove this result, proceed as for Theorem 9.13, using the energy estimate
(12.3.35) shown by Theorem 12.4; also see [140], p. 63–64.)

A refined version of Theorem 12.6, with non-zero initial data but for
Friedrichs-symmetrizable systems, is proved by Métivier in [136], Section 3.

For smoother coefficients, we have the following.

Theorem 12.8 In the framework of Theorem 12.6, assume, moreover, that
u− u belongs to Hm(Rd−1 × R+ × IT ; R2n), (u− u)|z=0 belongs to Hm(Rd−1 ×
IT ; R2n) and (∂tχ− σ,∇yχ) belongs to Hm(Rd−1 × IT ; Rd) for some integer m >
(d + 1)/2 + 1, with (u− u)|t<τ ≡ 0, (∂tχ− σ,∇yχ)|t<τ ≡ 0 for some τ < T ,
and

‖u− u‖Hm(Rd−1×R+×IT ) ≤ µ , ‖u|z=0 − u‖Hm(Rd−1×IT ) ≤ µ

‖(∂tχ− σ,∇yχ)‖Hm(Rd−1×IT ) ≤ µ.



368 Persistence of multidimensional shocks

Also assume that f belongs to Hm(Rd−1 × IT ; R2n) and g belongs Hm(Rd−1 ×
IT ; Rd), with still

f|t<0 = 0 , g|t<0 = 0.

Then v̇ belongs to Hm(Rd−1 × R+ × IT ; R2n), v̇|z=0 belongs to Hm(Rd−1 ×
IT ; R2n), χ̇ belongs Hm+1(Rd−1 × IT ; Rd), and they satisfy an estimate

1
T
‖v̇‖2Hm(Rd−1×R+×[0,T ]) + ‖v̇|z=0‖2Hm(Rd−1×[0,T ]) + ‖χ̇|z=0‖2Hm+1(Rd−1×[0,T ])

≤ T ‖f‖2Hm(Rd−1×R+×[0,T ]) + ‖g‖2Hm(Rd−1×[0,T ])

for C > 0 depending only on and continously on µ.
The proof relies on Theorem 12.5 for the BVP: it is completely analogous to

the proof of Theorem 9.21 (in which the counterpart of Theorem 12.5 is Theorem
9.20) and is therefore omitted.

12.4 Resolution of non-linear IBVP

12.4.1 Planar reference shocks

The local-in-time existence (and uniqueness) of perturbed shocks front solutions
near uniformly stable planar Lax shocks was first shown by Majda [124]. We will
give below a revisited, improved version of Majda’s theorem, which is due to
Métivier and coworkers, as can be found (partially) in [140] (Section 4) and in
Métivier’s lecture notes [136].

Before giving a precise statement, we simplify a little the problem by assuming
the normal speed of the reference, planar shock is σ = 0 (this just amounts
to making the change of frame xd �→ xd − σt); in other words, we assume the
reference shock location is given by xd = χ(y, t) = 0. Then we use Remark 12.1
on the way of fixing the unknown boundary (which is supposedly close to the
hyperplane {xd = 0}). Hence, instead of (12.1.3) and (12.1.4), we are led to
consider the (slightly more complicated) BVP

d−1∑
j=0

Aj(u±) ∂ju± + Ad(u±,dΨ±) ∂zu± = 0 , for z > 0, (12.4.40)

d−1∑
j=0

( f j(u+) − f j(u−) ) ∂jχ = ( fd(u+) − fd(u−) ) at z = 0 , (12.4.41)

Ψ±(y, z, t) = ±κ z + ϕ(z)χ(y, t) , for z ≥ 0 , (12.4.42)

where ϕ ∈ D(R) is a cut-off function (equal to one on some interval [0, z0]), and

Ad(v, ξ0, ξ1, . . . , ξd−1, ξd) :=
1
ξd

Ad(v, ξ0, ξ1, . . . , ξd−1).
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Clearly, a solution of (12.4.40)–(12.4.42) with

‖χ‖L∞ ≤ η :=
κ

2‖ϕ′‖L∞

gives a solution of the original FBP, as formulated in Section 12.1.
To actually solve (12.4.40)–(12.4.42) with given initial data u0 = (u0

−, u0
+)

and χ0, we shall (unsurprisingly) need compatibility conditions, which (unsur-
prisingly) are uglier than for standard IBVP. The principle of their derivation is,
nevertheless, very simple, as we now explain.

On the one hand, thanks to Lemma 12.2, the jump conditions in (12.4.40)
can be rewritten equivalently as∂tχ = q(u)
∇yχ = r(u)
0 = s(u)

with

 q(u)
r(u)
s(u)

 = F (u) := Q(u−, u+) ( fd(u+) − fd(u−) ),

where Q ∈ C∞(W ;GLn(R)), W being a neighbourhood of (u−, u+). If both χ
and u are smooth enough, the first equality (∂tχ = q(u|z=0)) implies by Faá di
Bruno’s formula,

∂p+1
t χ =

p∑
m=1

∑
i1+···+im=p

ci1,...,im
(dmq ◦ u|z=0) · (∂i1

t u, . . . , ∂im
t u)|z=0.

On the other hand, the interior equations in (12.4.40) can be rewritten in a
more compact way

A0(u) ∂tu +
d−1∑
j=0

Aj(u) ∂ju + Ad(u, dΨ) ∂zu = 0,

with our usual blockwise definitions of Aj for j ≤ d− 1, and a revisited definition
for Ad (which would coincide with the former definition in the special case κ = 1
and ϕ ≡ 1), namely

Ad(u,dΨ) =
(

Ad(u−,dΨ−) 0
0 Ad(u+,dΨ+)

)
.

Since A0(u) is invertible, the interior equations are thus equivalent to

∂tu = −
d−1∑
j=0

(A0(u))−1 Aj(u) ∂ju − (A0(u))−1 Ad(u, dΨ) ∂zu,

which we may differentiate p times if u and Ψ (or equivalently χ) are smooth
enough. This yields

∂p+1
t u = −

p∑
�=0

(
p

�

) d∑
j=0

∂�
t (Bj(u,dΨ)) ∂j ∂p−�

t u,
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where (to save room and hopefully the reader’s nerves) we have used unified
notations, namely ∂0 = ∂t, ∂d = ∂z, Bj(u,dΨ) := (A0(u))−1 Aj(u) for j ≤ d− 1
and Bd(u,dΨ) := (A0(u))−1 Ad(u,dΨ).

Applying again Faá di Bruno’s formula to the derivatives ∂�
t (Bj(u,dΨ)), we

are led to the following formulation of compatibility conditions up to order s.

(CCs) A pair of initial data (u0, χ0) is said to be compatible up to order s if
the functions (up, χp) defined inductively by

χ1 = q ◦ (u0)|z=0 , u1 = −
d∑

j=0

Bj(u0,dΨ0) ∂j u0 ,

χp+1 =
p∑

m=1

∑
�1+···+�m=p

c�1,...,�m
(dmq ◦ (u0)|z=0) · (u�1 , . . . , u�m

)|z=0 ,

up+1 = −
d∑

j=1

Bj(u0,dΨ0) ∂jup

−
p∑

�=1

(
p

�

) d∑
j=1

�∑
k=1

∑
�1+···+�k=�

c�1,...,�k
dkBj(u0) · (u�1 , . . . ,u�k

) ∂j up−�,

(12.4.43)

with the (obvious) notations

u� = (u�,dΨ�) , Ψ� = (Ψ−
� ,Ψ+

� ) , Ψ±
� (y, z, t) = ±κ z + ϕ(z)χ�(y, t),

are such that, for all p ∈ {0, . . . , s},

∇yχp =
p∑

m=1

∑
�1+···+�m=p

c�1,...,�m
(dmr ◦ (u0)|z=0) · (u�1 , . . . , u�m

)|z=0 ,

0 =
p∑

m=1

∑
�1+···+�m=p

c�1,...,�m
(dms ◦ (u0)|z=0) · (u�1 , . . . , u�m

)|z=0 .

(12.4.44)

Theorem 12.9 Under the assumptions of Theorem 12.1 with σ = 0, there exists
ρ > 0 so that for all u0 = (u0

−, u0
+) ∈ u + Hm+1/2(Rd−1 × R+; R2n) and all χ0 ∈

Hm+1/2(Rd−1) with m an integer greater than (d + 1)/2 + 1, compatible up to
order m− 1, and such that

‖u0
± − u±‖L∞(Rd−1×R+) ≤ ρ and ‖∇yχ0‖L∞(Rd−1) ≤ ρ,
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there exists T > 0 and a solution (u, χ) = (u−, u+, χ) of (12.4.40)–(12.4.42)
such that

u± = u0
± and χ = χ0 at t = 0,

with u ∈ u + Hm(Rd−1 × R+ × [0, T ]; R2n) taking values in U := U− ×U+, with
κ = 4‖ϕ′‖L∞ ‖χ0‖L∞ , and χ ∈ Hm(Rd−1 × [0, T ]) taking values in the ball of
radius η = 2‖χ0‖L∞ .

Proof It is very similar to the proof of Theorem 11.1 on the ‘standard’ IBVP. It
starts with the construction of an ‘approximate solution’, and uses an iterative
scheme to solve the IBVP with zero initial data (obtained by subtracting the
approximate solution): thanks to our knowledge of linear IBVP with zero initial
data (here Theorem 12.8), the iterative scheme can be shown to converge on
small enough time intervals.

On the one hand, the interior equations in (12.4.40) merely read

L(u, dΨ)u = 0 , with L(u,dΨ) := A0(u) ∂t +
d−1∑
j=1

Aj(u) ∂j + Ad(u, dΨ) ∂z,

the matrices Aj and Ad being defined as above. This induces us to consider the
iterative scheme

L(ua + vk,dΨa + dΦk)vk+1 = −L(ua + vk,dΨa + dΦk)ua , (12.4.45)

where (ua,Ψa) is an ‘approximate solution’ (to be specified in Lemma 12.4 below)
of the IBVP associated with (12.4.40)–(12.4.42) and the initial data (u0, χ0),

On the other hand, the boundary conditions (12.4.40) can be written as

J∇χ + F (u|z=0) = 0 , (12.4.46)

with J the constant n× d matrix consisting of the identity Id ∈ Mn×n(R) and
a zero block underneath, and F defined as above (thanks to Lemma 12.2) by
F (u) = Q(u−, u+) ( fd(u+) − fd(u−) ) for u ∈ W , a contractible open subset
of U . (In the following we shall assume, up to reducing it, that W is convex,
for example, a ball centered at u.) By linearity of (12.4.46) in χ, we are led to
consider the induction formula

J∇χk+1 + dF ((ua + vk)|z=0)vk+1
|z=0 (12.4.47)

= −J ∇χa + dF ((ua + vk)|z=0)vk
|z=0 − F ((ua + vk)|z=0),

with χk = Φk
|z=0, χa = Φa

|z=0.

Remark 12.5 As pointed out by Métivier [136], it is possible to make a change
of unknowns u �→ ũ so that the boundary conditions (12.4.46) become linear
also in ũ. Indeed, on the manifold

M := {(u−, u+, ξ) ∈ W × Rd ; ‖ξ‖ ≤ ρ and Jξ + F (u−, u+) = 0 }
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the mapping (u−, u+, ξ) �→ (ũ− := F (u−, u+), ũ+ := u+, ξ̃ := ξ) is (for ρ small
enough) a local diffeomorphism (whose differential at (u−, u+, ξ) is the mapping
(u̇−, u̇+, ξ̇) �→ (−Q(u−, u+)Ad(u−, ξ) · u̇−, u̇+, ξ̇)). So, up to reducing W and ρ,
we may assume it is a diffeomorphism on M . Then (12.4.46) is equivalent for
(u−, u+) ∈ W and ‖∇χ‖ ≤ ρ to

J∇χ + Π ũ = 0,

with ũ := (ũ−, ũ+) and Π merely the projection operator Π : (ũ−, ũ+) ∈ R2n �→
ũ− ∈ Rn. This way of rewriting the boundary conditions (12.4.46) would simplify
the iterative scheme (12.4.47) into

J∇χk+1 + Πṽk+1
|z=0 = −J ∇χa −Πũa

|z=0.

However, we refrain from using this simplification because it is too specific to
Lax shocks.

Before studying the iterative scheme (12.4.45) and (12.4.47) we must specify
the approximate solution (ua,Ψa).

Lemma 12.4 Under the assumptions of Theorem 12.9, choose ρ0 > 0 so that

‖w − u‖R2n ≤ ρ0 implies w ∈ W ⊂ U .

There exists T0 > 0 and ua ∈ u + Hm+1(Rd−1 × R+ × R), taking values in U ,
χa ∈ Hm+1(Rd) with both ua − u and χa vanishing for |t| ≥ 2T0, such that

(ua)|t=0 = u0 , (χa)|t=0 = χ0,

‖ua(y, z, t) − u0(y, z)‖ ≤ ρ0

2
, ‖χa(y, t) − χ0(y)‖ ≤ η

2

for all (y, z, t) ∈ Rd−1 × R+ × [−T0, T0] and additionally, f0 := −L(ua,dΨa)ua,
with

Ψa = (Ψa
−,Ψa

+) , Ψa
±(y, z, t) = ±κ z + ϕ(z)χa(y, t) , (12.4.48)

and g0 := −J ∇χa − F (ua
|z=0) are such that

∂p
t f0 ≡ 0, ∂p

t g0 ≡ 0 at t = 0 for all p ∈ {0, . . . , m− 1}.
Furthermore, f0 belongs to Hm(Rd−1 × R+ × R), g0 belongs to Hm(Rd), and
both vanish for |t| ≥ 2T0).

Proof Similarly as in Lemma 11.1 we can construct ui ∈ Hm+1/2−i(Rd−1 ×
R+ × R) and χi ∈ Hm+1/2−i(Rd) satisfying (12.4.43) for all i ∈ {1, . . . , m− 1}.
Then, by trace lifting (see, for instance, [1], pp. 216–217), we find ua ∈ u +
Hm+1(Rd−1 × R+ × R) and χa ∈ Hm+1(Rd) such that

‖ua − u‖Hm+1(Rd−1×R+×R) � ‖u0 − u‖Hm+1/2(Rd−1×R+) ,

‖χa‖Hm+1(Rd) � ‖χ0‖Hm+1/2(Rd−1),
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and

∂i
t(u

a)|t=0 = ui , ∂i
t(χ

a)|t=0 = χi for all i ∈ {0, . . . , m− 1}.

By Sobolev embeddings we find T0 > 0 so that

‖ua(x, t) − u0(x)‖ ≤ ρ0

2
and ‖χa(y, t) − χ0(y)‖ ≤ η

2

for |t| ≤ T0. Furthermore, if ϕ0 ∈ D(R) is a cut-off function such that ϕ0(t) = 1
for |t| ≤ T0 and ϕ0(t) = 0 for |t| ≤ 2T0, we may replace ua by (1− ϕ0)u + ϕ0u

a,
which takes values in the convex set W . Similarly, we may replace χa by ϕ0χ

a,
and define Ψa by (12.4.48). That f0 := −L(ua,dΨa)ua belongs to Hm(Rd−1 ×
R+ × R) follows from Proposition C.11 and Theorem C.12: observe that f0 =
−L(ua,dΨa)(ua − u) and use that ua − u and dΨa both belong to Hm(Rd−1 ×
R+ × R). Similarly, we find that g0 := −J ∇χa − F (ua

|z=0) belongs to Hm(Rd)
because ∇χa and ua

|z=0 − u do so and F (u) = 0. Finally, the time derivatives
of fa and ga vanish at t = 0 up to order m− 1 thanks to the compatibility
conditions in (12.4.43) and (12.4.44) with s ≤ m− 1. �

We can now analyse the iterative scheme (12.4.45) and (12.4.47) with the
pair (ua,Ψa) given by Lemma 12.4. We introduce the following shorcuts:

v := (v,Φ) , fv := −
(
1t>0

)
L(ua + v,dΨa + dΦ)ua,

and gv := (1t>0) (−J ∇χa + dF ((ua + v)|z=0) · v|z=0 − F ((ua + v)|z=0) ).

Lemma 12.5 Under the assumptions of Lemma 12.4, there exists M > 0
(depending on ρ0 and η) so that for all T ∈ (0, T0], denoting by IT the half-line
(−∞, T ], for all v ∈ Hm(Rd−1 × R+ × IT ) having a trace v|z=0 ∈ Hm(Rd−1 ×
IT ) and for all Φ ∈ Hm+1(Rd−1 × IT ) with

v|t<0 ≡ 0 , Φ|t<0 ≡ 0,

and ‖v‖Hm(Rd−1×R+×IT )≤M , ‖v|z=0‖Hm(Rd−1×IT )≤M , ‖Φ‖Hm+1(Rd−1×IT )

≤ M, we have fv ∈ Hm(Rd−1 × R+ × IT ) and gv ∈ Hm(Rd−1 × IT ) and there
exist continuous functions M �→ C1(M), M �→ C2(M) and T �→ ε(T ), the latter
going to zero as T goes to zero, so that

‖fv‖Hm(Rd−1×R+×IT ) ≤ C1(M) and ‖gv‖Hm(Rd−1×IT ) ≤ T C2(M) + ε(T ).

We omit the proof, which is mostly similar to that of Lemma 11.3 (also,
see [140] pp. 94–96). �

From now on, we fix M as in Lemma 12.5 and we show how to complete
the proof of Theorem 12.9. Setting v0 ≡ 0 and Φ0 ≡ 0, thanks to (12.4.45)
and (12.4.47), Lemma 12.5 and Theorem 12.8, we can construct by induction a
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sequence (vk,Φk) such that, up to diminishing T ,
vk ∈Hm(Rd−1×R+× IT ), vk

|z=0 ∈ Hm(Rd−1× IT ), Φk ∈Hm+1(Rd−1× IT )

with ‖vk‖Hm(Rd−1×R+×IT ) ≤ M , ‖vk
|z=0‖Hm(Rd−1×IT ) ≤ M ,

‖Φk‖Hm+1(Rd−1×IT ) ≤ M , and vk
|t<0 ≡ 0 , Φk

|t<0 ≡ 0 .

(12.4.49)

Then, thanks to Theorem 12.6, we can show (vk), (vk
|z=0) and (Φk) are, for

T small enough, Cauchy sequences in L2(Rd−1 × R+ × IT ), L2(Rd−1 × IT ) and
H1(Rd−1 × IT ), respectively. By standard weak compactness and interpolation
arguments, we conclude that their limits are in the appropriate Sobolev spaces
and solve the original problem. For more details, the reader may refer to Section
11.2.2, which is mostly similar. �

For Friedrichs-symmetrizable systems, Métivier has improved Theorem 12.9
as follows.

Theorem 12.10 In the framework of Theorem 12.9, assume, moreover, that the
operator A0(w) ∂t +

∑d
j=1 Aj(w) ∂j is Friedrichs symmetrizable for w in neigh-

bourhoods of u±. Then there is a unique solution in CHm
T ×Hm+1(Rd × [0, T ]),

with

CHm
T := { v ∈ D ′(Rd−1 × R+ × [0, T ]) ; ∂p

t v ∈ C ([0, T ];Hm−p(Rd−1 × R+))

p ≤ m },

even for data u0 ∈ Hm(Rd−1 × R+; R2n), χ0 ∈ Hm(Rd−1).

The proof is based on refined energy estimates, see [136] (Section 4).

12.4.2 Compact shock fronts

To stay as close as possible to earlier notations, we consider now a compact
codimension one surface Σ0 in Rd, and denote by n the outward unit normal
vector to Σ0. We also consider initial data u0 being smooth (in a sense to be
specified) outside Σ0 and experiencing a jump discontinuity across Σ0 compatible
(at least at zeroth order) with the Rankine-Hugoniot condition. This means that
for all y ∈ Σ0 there exists σ(y) ∈ R such that

d∑
j=1

nj(y) [f j(u0)](y) = σ(y) [f0(u0)](y).

Here above,

[f j(u)](y) = lim
ε↘0

( f j(u0(y + εn(y))) − f j(u(y − εn(y))) ).
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Our main purpose is to study the persistence of the front of discontinuity
under (short) time evolution, as in Majda’s second memoir [124]. In other words,
we want to find a solution to (FBP) with u|t=0 = u0 and Σ|t=0 = Σ0. This will
indeed be possible under some further (higher-order) compatibility conditions
and the uniform stability of initial discontinuities. The meaning of the latter
should be clear to the reader from the previous sections. However, the statement
of higher-order compatibility conditions requires some more work, and is (as
usual) quite technical.

Fixing the boundary

A preliminary step is (as in Section 12.1.2 ) to make a change of variables to
fix the unknown front. More precisely, as in Remark 12.1, we can make (locally
in time) a change of variables that does not influence the far-field equations
and sends all front locations Σ(t) to the fixed (initial) surface Σ0. This can be
done explicitly by considering tubular neighbourhoods of Σ0, X0 ⊂ X1 ⊂ X2

say, such that for all x ∈ X2 there exists a unique (y, θ) ∈ Σ0 × R such that
x = y + θ n(y), and a cut-off function ϕ that is equal to one on X0 and zero
outside X1. Since Σ(t) is expected to remain in X2 for t small enough, it may
be described as

Σ(t) = {x = y + χ(y, t)n(y) ; y ∈ Σ0 },
for some unknown function (‘the front location’) χ. Now for T small enough, we
can define the mapping

Φ : Rd × (−T, T ) → Rd × (−T, T )
(x, t) �→ ( x̃ := x − ρ(x)χ(Y (x), t)n(Y (x)) , t̃ := t) ,

where for x ∈ X2, Y (x) ∈ Σ0 is uniquely determined by the requirement that
x − Y (x) be parallel to n(Y (x)), and Y (x) is extended arbitrarily for x outside
X2: since ρ is identically zero near the boundary of X2, Φ inherits in the whole
space the regularity of Y in X2. By construction Φ maps every subset of the
form Σ(t)× {t} onto Σ0 × {t}, up to diminishing T so that Σ(t) lies in fact in
X0 for all t ∈ (−T, T ). Furthermore, Φ is a global diffeomorphism provided that

sup{ |χ(y, t)| + ‖dyχ(y, t)‖ ; y ∈ Σ0 , t ∈ (−T, T )}
is small enough, which is indeed what we expect for T small enough.

Modified bulk equations

The inverse mapping Φ−1 is of the form (x̃, t̃ ) �→ (x = ψ(x̃, t̃ ), t = t̃ ). (We shall
give more details on ψ later.)

Therefore, it is a calculus exercise to check that the quasilinear system

A0(u) ∂tu +
d∑

j=1

Aj(u) ∂xj
u = 0
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is satisfied by u(x, t) = ũ(x̃, t̃ ) outside Σ(t) if and only if, outside Σ0,

A0(ũ) ∂
t̃
ũ +

d∑
j=1

Ãj(x̃, t̃, ũ) ∂
x̃j

ũ = 0,

with

Ãj(x̃, t̃, ũ) = Aj(ũ) −
d∑

k=1

cj,k(x̃, t̃ ) Ak(ũ) − cj,0(x̃, t̃ ) A0(ũ),

where, for j, k ∈ {1, . . . , d},

cj,k(x̃, t̃ ) = ∂xk
(ρ(x)χ(Y (x), t̃ )nj(Y (x)))|x=ψ(x̃,̃t )

,

cj,0(x̃, t̃ ) = (ρ(x) ∂tχ(Y (x), t̃ )nj(Y (x)))|x=ψ(x̃,̃t )
.

What is hidden in these formulae is that ψ, as Φ and thus also Φ−1 depends on
the unknown front χ. In fact, we can make this dependence more explicit.

Assume indeed that the tubular neighbourhoods Xi, i = 0, 1, 2 are given by

Xi = {x = y + θ n(y) ; y ∈ Σ0 , θ ∈ (−εi, εi)},

for 0 < ε0 < ε1 < ε2 = ε0 + ε1, and that

sup{ |χ(y, t)| ; y ∈ Σ0 , t ∈ (−T, T )} ≤ ε0.

With the mapping Y introduced above, and Θ defined on X2 by

Θ(x) = (x − Y (x)) · n(Y (x)),

(in such a way that x = Y (x) + Θ(x)n(Y (x))), we may define the cut-off ρ by
ρ(x) = ϕ(Θ(x)), where ϕ is a C∞ cut-off function R → [0, 1] being equal to one
on (−ε0, ε0) and equal to zero outside (−ε1, ε1). For x outside X1, x̃ = x, and
for x ∈ X1, x̃ belongs to X2 and by construction Y (x) = Y (x̃). Therefore, to
find a representation for the mapping ψ, it just remains to look at Θ(x) in terms
of x̃. By definition, for x ∈ X1,

x̃ = Y (x) + (Θ(x) − ϕ(Θ(x))χ(Y (x), t) )n(Y (x)),

hence (using the fact that t = t̃ and Y (x) = Y (x̃))

Θ(x̃) = Θ(x) − ϕ(Θ(x))χ(Y (x̃), t̃ ) ).

Now, if ε0 < 1 and |z| < ε0, the function θ �→ θ − ϕ(θ) z is an increasing dif-
feomorphism from R to R. Therefore, by the implicit function theorem and
a connectedness argument, there exists a C∞ mapping g : R× (−ε0, ε0) → R

such that, for all (θ̃, θ, z) ∈ R× R× (−ε0, ε0),

θ − ϕ(θ) z = θ̃ ⇔ θ = g(θ̃, z).



Resolution of non-linear IBVP 377

Consequently, for x ∈ X1,

Θ(x) = g(Θ(x̃), χ(Y (x̃), t̃ ))

and therefore

ψ(x̃, t̃ ) = Y (x̃) + g(Θ(x̃), χ(Y (x̃), t̃ ))n(Y (x̃)).

Denoting

χ̃ : Rd × (−T, T ) → R

(x̃, t̃ ) �→ χ̃(x̃, t̃ ) := χ(Y (x̃), t̃ ) ,

the discussion above shows that the coefficients cj,k are in fact of the form

cj,k = c̃j,k(x̃, t̃, χ̃(x̃, t̃ ),dχ̃(x̃, t̃ ))

for some (complicated) non-linear mappings

c̃j,k : Rd × (−T, T )× R× (Rd+1)′ → R

independent of the unknown front χ. So finally, if we assume additionally (as
usual) that A0(ũ) is everywhere non-singular, the bulk equations in the new
variables read,

∂
t̃
ũ +

d∑
j=1

Aj(x̃, t̃, ũ, χ̃,dχ̃) ∂
x̃j

ũ = 0 , (x̃, t̃ ) ∈ (Rd\Σ0)× (−T, T ) ,

(12.4.50)
with

Aj(x̃, t̃, ũ, χ̃,dχ̃) := A0(ũ)−1

(
Aj(ũ)−

d∑
k=0

c̃j,k(x̃, t̃, χ̃(x̃, t̃),dχ̃(x̃, t̃))Ak(ũ)

)
.

Before dropping the tildas definitively, we have to write also the jump
conditions in the new variables.

Jump equations

For simplicity, let us rewrite the Rankine–Hugoniot condition (12.1.2) as

N0 [f0(u)] + NT[f(u)] = 0,

where NT stands for the row vector of components (N1, . . . , Nd) and f(u) stands
for the d× n matrix whose column vectors are f1(u), . . . , fd(u). By assumption,
this condition is satisfied by u = u0 at any point y ∈ Σ0, with N0 = −σ(y) and
N = n(y). The Nj are of course to be modified when the discontinuity surface
moves along

Σ(t) = {x = y + χ(y, t)n(y) ; y ∈ Σ0 }.
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To be more precise, let us denote by W the Weingarten map on Σ0, characterized
by

W (y0) · h =
d
ds

(n(y(s)))|s=0

for s �→ y(s) any curve on Σ0 such that y(0) = y0 and y′(0) = h, and by
∇yχ(y, t) the tangential gradient (along Σ0) of the mapping y �→ χ(y, t): by
definition, for all y ∈ Σ0, ∇yχ(y, t) is in the tangent space Tyχ0, viewed as a
subspace of Rd, such that the linear form dyχ(y, t) on Tyχ0 is given by

dyχ(y, t) · h = 〈∇yχ(y, t), h〉

for all h ∈ Tyχ0, where 〈 , 〉 stands for the standard inner product in Rd (which
gives the first fundamental form on Tyχ0). Then it is a standard differential
geometry exercise to show (using the symmetry of the Weingarten map with
respect to the first fundamental form) that the normal vector to Σ = ∪tΣ(t)× t
at point (y + χ(y, t)n(y), t) is parallel to(

n(y) − (1 + χ(y, t)W (y))−1∇yχ(y, t)
−∂tχ(y, t)

)
.

Therefore, the Rankine-Hugoniot condition (12.1.2) equivalently reads

−∂tχ(y, t) [f0(u)](y, t)+
(
n(y)− (1+ χ(y, t)W (y))−1∇yχ(y, t)

)T
[f(u)](y, t) = 0

for all (y, t) ∈ Σ0 × (−T, T ). Noting that by construction, χ̃(x̃, t̃ ) = χ(x̃, t̃ ) for
x̃ ∈ Σ0, we can rewrite this jump condition in the new co-ordinates as(

n(x̃) − (1 + χ̃(x̃, t̃ )W (x̃))−1∇yχ̃(x̃, t̃ )
)T

[f(ũ)](x̃, t̃ )

= ∂
t̃
χ̃(x̃, t̃ ) [f0(ũ)](x̃, t̃ ) , (x̃, t̃ ) ∈ Σ0 × (−T, T ) .

(12.4.51)

Our original problem is clearly equivalent to finding (ũ, χ̃) solving (12.4.50)–
(12.4.51) with the initial data ũ(x̃, 0) = u0(x̃), χ̃(x̃, 0) = 0.

From now on, we drop all tildas.

Higher-order compatibility conditions

Our next task is to find higher-order compatibility conditions between the initial
maps u0 and σ. We recall that ‘zeroth-order’ compatibility conditions are

−σ ( f0(u+
0 ) − f0(u−

0 ) ) + n(x)T ( f(u+
0 ) − f0(u−

0 ) ) = 0 on Σ0 .

(12.4.52)

As usual, higher-order compatibility conditions will be obtained by differentiating
successively the bulk equations (12.4.50) and the jump conditions (12.4.51),
and by equating the results on Σ0 × {0}. For convenience we rewrite all these
equations without the tilda, omitting a number of obvious independent variables



Resolution of non-linear IBVP 379

but introducing the distinction between u− the restriction of u to the inside D−

of Σ0 and u+ the restriction of u to the outside D+ of Σ0:


∂tu

± +
d∑

j=1

Aj(x, t, u±, χ,dχ) ∂xj
u± = 0 , x ∈ D± ,

(
n − (1 + χ W )−1∇yχ

)T[f(u)] = (∂tχ) [f0(u)] on Σ0 .

(12.4.53)

We shall not write down explicitly all compatibility conditions, which are
quite terrible (see [124], pp. 24–25 for some details). We concentrate on the first-
order ones. Assume that (u±, χ) is a solution of (12.4.53) with u± of class C 1 on
D± × [0, T ) and χ of class C2 on Rd × [0, T ), with u±

|t=0 = u±
0 and ∂tχ|Σ0×{0} = σ

satisfying the zeroth-order compatibility condition in (12.4.52). In addition, we
assume that for all y ∈ Σ0, the discontinuity between u−

0 (y) and u+
0 (y) is a 1D-

stable Lax shock (of speed σ(y)) in the direction n(y). We are going to exhibit
(n− 1) independent equations on u±

1 := ∂tu
±
|t=0 and χ1 := ∂tχ|t=0 valid on

Σ0 × {0}.
On the one hand, in view of the definition of Aj , the first equation in (12.4.53)

imposes that

u±
1 (x) = −

d∑
j=1

(
A0(u±

0 (x))−1 Aj(u±
0 (x)) − σ(x)nj(x)

)
∂xj

u±
0 (x) (12.4.54)

for x ∈ Σ0. On the other hand, differentiating once with respect to t the second
equation in (12.4.53) and evaluating at t = 0, we get

− (∂2
ttχ(x, 0))

(
f0(u+

0 (x)) − f0(u+
0 (x))

)
(
A(u+

0 (x), n(x)) − σ(x)A0(u+
0 (x))

)
∂tu

+(x, 0)

−
(
A(u−

0 (x), n(x)) − σ(x)A0(u−
0 (x))

)
∂tu

−(x, 0)

= (∇yχ1(x, 0))T
(
f(u+

0 (x)) − f(u+
0 (x))

(12.4.55)

for x ∈ Σ0, where we have used our usual notation A(u, n) =
∑d

j=1 nj Aj(u).
Now, the 1D-stability of the Lax shock (u−

0 (x), u+
0 (x), σ(x)) can be used in the

following way: introducing P+(x) the eigenprojector onto the unstable subspace
E+(x) of A(u+

0 (x), n(x)) − σ(x)A0(u+
0 (x)) and P−(x) the eigenprojector onto
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the stable subspace E−(x) of A(u−
0 (x), n(x)) − σ(x)A0(u−

0 (x)), the mapping

L(x) : R× E+(x)× E−(x) → Rn

(β, v+, v−) �→ −β
(
f0(u+

0 (x)) − f0(u+
0 (x))

)
+
(
A(u+

0 (x), n(x)) − σ(x)A0(u+
0 (x))

)
v+

−
(
A(u−

0 (x), n(x)) − σ(x)A0(u−
0 (x))

)
v−

is an isomorphism. Therefore, if we denote by B(x), V +(x), V −(x) the compo-
nents of the inverse mapping L(x)−1, (12.4.55) equivalently reads

∂2
ttχ(x, 0) = B(x)(q(x)) ,

P+(x)(u+
1 (x)) = V +(x)(q(x)) ,

P−(x)(u−
1 (x)) = V −(x)(q(x)) ,

(12.4.56)

where

q(x) := (∇yχ1(x, 0))T
(
f(u+

0 (x)) − f(u+
0 (x))

−
(
A(u+

0 (x), n(x)) − σ(x)A0(u+
0 (x))

)
(I − P+(x))(u+

1 (x))

+
(
A(u−

0 (x), n(x)) − σ(x)A0(u−
0 (x))

)
(I − P−(x))(u−

1 (x)) .

The first equation in (12.4.56) is a ‘bonus’ here (it would serve to define χ2 if
we were to derive second-order compatibility conditions). The others make the
announced n− p + p− 1 = n− 1 first-order compatibility conditions.

More generally, the compatibility conditions to order s (as in (CCs)) consist
of

� the definition (by induction) of a sequence (u±
p , χp), p ∈ {1, · · · , s}, depend-

ing only on u±
0 , σ and their derivatives,

� for each p ∈ {1, · · · , s}, (n− 1) equations on u±
p and ∇yχp in terms of u±

�

and χ�, � ∈ {1, · · · , p}, on Σ0.

Main persistence result

The following is a slight adaptation of Majda’s theorem ([124], p. 8), where the
‘block-structure condition’ has been replaced by the more explicit constant hyper-
bolicity assumption: indeed, as shown by Métivier [134], constant hyperbolicity
and Friedrichs symmetrizability together imply the block structure condition of
Majda. The Sobolev index m is supposed to be a large enough integer: Majda
assumed it to be at least equal to 2[d/2] + 7; the work of Métivier suggests that
m > (d + 1)/2 + 1 is sufficient. Finally, the initial data is assumed for simplicity
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to vanish at infinity, but any data asymptotically constant at infinity would also
work (as stated by Majda in [124]).

Theorem 12.11 (Majda) Structural assumptions are the following.

(CH) There exist open subsets of Rn, say U− and U+  0 such that for all
w ∈ U± the matrix A0(w) is non-singular, and the operator A0(w) ∂t +∑d

j=1 Aj(w) ∂j is constantly hyperbolic in the t-direction;

(S) The operator A0(w) ∂t +
∑d

j=1 Aj(w) ∂j is Friedrichs symmetrizable in U±.

We assume that Σ0 is C∞ compact manifold in Rn and denote by D− its inside
and D+ its outside. We consider u±

0 ∈ Hm+1(D±), taking values in U±, and
σ ∈ Hm+1(Σ0) satisfying

� all compatibility conditions up to order m− 1, including (12.4.52),
� for all x ∈ Σ0, the planar discontinuity between u−

0 (x) and u0
+(x), of speed

σ(x) in the direction n(x), is a uniformly stable Lax shock in the sense of
the Kreiss–Lopatinskĭı condition.

Then there exists T > 0, C > 0, and a solution (u−, u+, χ) of (12.4.53) such that

u± = u0
± and χ = 0 , ∂tχ|Σ0 = σ at t = 0,

and u± ∈ Hm(D± × [0, T ]), χ ∈ Hm+1(Rd × [0, T ]).

The proof is most technical, but the ideas are basically the same as for
Theorem 12.9:

� derivation of an ‘approximate’ solution;
� convergence of an iterative scheme, thanks to the analysis of linear IBVP

with zero initial data.

Here, the linear IBVP (as we can guess from the form of (12.4.50)) involve
coefficients depending on (x, t) in a C∞ manner as well as on (uk(x, t), χk(x, t)),
(an element of the iterative scheme) of limited regularity. For simplicity in this
book, we have not dealt with IBVP (nor even Cauchy problems) with coefficients
of the form A(x, t, v(x, t)) say, but only either of the form A(x, t) or of the
form A(v(x, t)). However, coefficients of the form A(x, t, v(x, t)) do not conceal
any additional, fundamental difficulty. Another difference between Theorem 12.9
and Theorem 12.11 is that in the latter we have to deal with IBVP in a (fixed)
compact domain instead of a half-space: as seen in Chapter 9 for standard IBVP,
this is mainly a matter of co-ordinate charts.

Anyway, we shall not produce the complete proof of Theorem 12.11 here.
The reader may refer to [124] (which relies on [125] for the analysis of linearized
problems). In [124] (p. 26–28), Majda also shows, interestingly, how to construct
a large class of compatible initial data. This relies on an important observation
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on the structure of compatibility conditions: as we can see in (12.4.54),

(u±
1 )|Σ0 = −

d∑
j=1

(
A0(u±

0 )−1 Aj(u±
0 , n) − σ

) ∂u±
0

∂n
+ tangential derivatives,

and a similar (though more intricate) fact is true for all the u±
p , p ≥ 2 (which we

did not define here, see [124], p. 24).

Remark 12.6 A similar observation on the structure of (CCs) is used by
Métivier in [136] (Proposition 4.2.4) to prove that the existence result in Theorem
12.9 is valid with slightly less regular initial data, namely with u0 − u ∈ Hm

instead of Hm+1/2.
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13

THE EULER EQUATIONS FOR REAL FLUIDS

The mathematical theory of gas dynamics is often ‘limited’ to polytropic ideal
gases (see, for instance, [50,55,117], etc). Here, we are interested in more general
compressible fluids, which can be gases (e.g. non-polytropic ideal gases) but also
liquids or even liquid–vapour mixtures (e.g. van der Waals fluids). We call them
real because of their possible complex thermodynamical behaviour. (This was
initially motivated by the PhD thesis of Jaouen [90].) Still, we are aware that they
are not that real, as long as dissipation due to viscosity and/or heat conduction is
neglected: except for the discussion on the admissibility of shock waves (in Section
13.4), our subsequent analysis does not take into account dissipation phenomena,
to stay within the theory of hyperbolic PDEs. Our aim is to investigate, for
inviscid and non-heat-conducting fluids, the Initial Boundary Value Problem and
the stability of shock waves, by means of the methods described in the previous
parts of the book.

The present chapter is devoted to generalities on the thermodynamics and
the equations of motion for real compressible fluids (in the zero viscosity/heat
conduction limit), and to basic results regarding smooth solutions and (planar)
shock waves. Some material is most classical and some is inspired from an
important but not so well-known paper by Menikoff and Plohr [130]. Boundary
conditions and stability of shocks will be addressed in separate chapters (Chapter
14 and Chapter 15, respectively).

13.1 Thermodynamics

We consider a fluid whose specific internal energy e is everywhere uniquely (and
smoothly) determined by its specific volume v and its specific entropy s. This
amounts to assuming the fluid is endowed with what we call (after Menikoff and
Plohr [130]) a complete equation of state e = e(v, s).

The fundamental thermodynamics relation is

de = − p dv + T ds , (13.1.1)

where p is the pressure and T the temperature. To avoid confusion when per-
forming changes of thermodynamic variables we adopt a physicists’ convention:
throughout the chapter, we shall specify after a vertical bar the variable main-
tained constant in partial derivatives with respect to thermodynamic variables.
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Using this convention, we may rewrite (13.1.1) as

p = − ∂e

∂v

∣∣∣∣
s

, T =
∂e

∂s

∣∣∣∣
v

. (13.1.2)

We shall use four thermodynamic non-dimensional quantities.

� The first one is the adiabatic exponent, defined by

γ := − v

p

∂p

∂v

∣∣∣∣
s

. (13.1.3)

We have adopted here the same convention as in [130]. Except in the case
of polytropic gases, this coefficient γ differs from the widely used ratio of
heat capacities.

� Another important one is called the Grüneisen coefficient, defined by

Γ := − v

T

∂T

∂v

∣∣∣∣
s

. (13.1.4)

� By (13.1.2), γ and Γ are related to the Hessian of e through the equalities

γ
p

v
=

∂2e

∂v2
, Γ

T

v
= − ∂2e

∂s∂v
. (13.1.5)

The last relevant quantity regarding D2e is

δ :=
p v

T 2

∂T

∂s

∣∣∣∣
v

=
p v

T 2

∂2e

∂s2
. (13.1.6)

It is related to the heat capacity at constant volume

cv :=
T

∂2e

∂s2

∣∣∣∣
v

=
∂e

∂T

∣∣∣∣
v

(13.1.7)

through the simple formula

cv δ =
p v

T
. (13.1.8)

� Finally, a ‘higher-order’ coefficient will be of interest. Following [130], we
denote

G := − 1
2

v

∂3e

∂v3

∣∣∣∣
s

∂2e

∂v2

∣∣∣∣
s

. (13.1.9)

Standard thermodynamics requires that γ be positive and e be a convex
function of (v, s), which amounts to asking γ δ − Γ2 ≥ 0. The positivity of γ
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means that p is increasing with the density ρ := 1/v, thus allowing the definition
of sound speed c by

c :=

√
∂p

∂ρ

∣∣∣∣
s

=
√

γ
p

ρ
. (13.1.10)

Using c and ρ, we may rewrite G as

G =
1
c

∂(ρ c)
∂ρ

∣∣∣∣
s

. (13.1.11)

We shall see that the sign of G plays a crucial role in both the non-linearity of
the acoustic fields and in the admissibility of shock waves.

The following definition refers to independent works of Bethe [16] and Weyl
[218] in the 1940s (also see [69]).

Definition 13.1 We call a Bethe–Weyl fluid any fluid endowed with a complete
equation of state, with e bounded by below, such that the pressure and temperature
defined in (13.1.2) are positive, and the associated coefficients γ, Γ, δ and G
(defined in (13.1.3), (13.1.4), (13.1.6) and (13.1.9), respectively) satisfy

γ > 0 , γ δ ≥ Γ2 , Γ > 0 , G > 0 (13.1.12)

and

lim
ρ→ρmax

p(ρ, s) = ∞ . (13.1.13)

As mentioned above, the first two requirements in (13.1.12) come from standard
thermodynamics. The condition Γ > 0 is not imposed by thermodynamics, but
it often holds true (even though there are simple counterexamples, like water
near 0◦C, as pointed out by Bethe). It ensures in particular that the isentropes
do not cross each other in the (v, p)-plane. And the condition G > 0 means that
these isentropes are strictly convex. If this is not the case, the fluid may exhibit
weird features, as was pointed out by Thompson and Lambrakis [209] (we warn
the reader that G is denoted Γ in that paper). Note that when Γ > 0, i.e. when
p is increasing with entropy at constant volume, the fact that δ is positive is
equivalent to

∂T

∂p

∣∣∣∣
v

> 0 . (13.1.14)

This condition is at least consistent with everyday experience (with air, water,
etc.).
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Refined conditions were later introduced by Smith [197], in connection with
the resolution of the Riemann problem1. We retain here the weakest of Smith’
conditions.

Definition 13.2 We call a Smith fluid a Bethe–Weyl fluid satisfying the addi-
tional condition

Γ < 2 γ . (13.1.15)

Example

Ideal gas The ideal gas law is known to be

p v = R T , (13.1.16)

where R is a constant. (If v stands for the molar volume instead of the specific
volume, R is universal and equals approximately 8.3144 J ·K−1 ·mol−1.) We
readily see that (13.1.14) is satisfied for v > 0. Then it is easy to check that
(13.1.16) is compatible with the fundamental relation (13.1.1), or equivalently
(13.1.2), provided that

e = ε
(
v−R exp(s)

)
,

where ε is any (smooth) function that is bounded by below on (0,+∞). With a
complete equation of state of this form, an easy calculation shows that

γ = Γ + 1 and δ = Γ.

Therefore, the first three inequalities in (13.1.12) are altogether equivalent to
γ > 1. Note that in view of (13.1.8) we have

Γ = δ =
R

cv
.

Thus (13.1.15) is trivially satisfied. Regarding G, there is no simple expression
for general functions ε. The next example concerns power functions ε, for which
quite a nice expression of G is available.

Polytropic gas Polytropic gases are merely ideal gases for which cv is constant
and ε is the power function

ε(u) = u1/cv .

In this case, Γ, γ and δ are all constant and we have

e = cv T and p = (γ − 1) ρ e.

The latter equality is the most famous example of an incomplete equation of state,
giving p in terms of ρ and e. Incomplete equations of state, or simply pressure

1The Riemann problem for a one-dimensional hyperbolic system of conservation laws is a special
Cauchy problem, in which the initial data are step functions. Its resolution is crucial both for
theoretical and numerical purposes.
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laws, are sufficient for the closure of the Euler equations (which by definition
encode the conservation of mass, momentum and total energy, see Section 13.2
below). The present pressure law, widely used in the mathematical theory of
gas dynamics, is often termed the γ-law for an obvious reason. Note that it is
only for polytropic gases that our γ coincides with the ratio of heat capacities
(see [130], p. 79b for further discussion on this topic). In addition, we find that
for polytropic gases

G =
γ + 1

2
,

which is obviously positive: isentropes are indeed convex for polytropic gases. As
to the asymptotic condition (13.1.13), it holds true with ρmax = +∞, thanks to
the positivity of R/cv.

Van der Waals fluid The van der Waals law is a modification of (13.1.16) that
takes into account the finite size of molecules by imposing a positive minimum
value – the so-called covolume b > 0 – for the specific (or the molar) volume,
and also some intermolecular forces through an additional term depending on a
parameter a ≥ 0. (See, for instance, [168] for more details.) The van der Waals
law reads

p =
R T

v − b
− a

v2
, (13.1.17)

which obviously satisfies (13.1.14) for v > b. Furthermore, (13.1.17) is compatible
with (13.1.1) and (13.1.7) with

e = ( (v − b)−R exp(s) )1/cv − a

v
,

provided that cv is constant. Even though the constancy of the heat capacity cv is
notoriously false (see [168], p. 263) near critical temperature (below which liquid
and vapour phases can coexist, and whose theoretical value is Tc = 8a/(27bR),
cv may reasonably be considered as constant far away from the critical point.
In this case, we easily see that (13.1.13) holds true with ρmax = 1/b, and an
equivalent way of writing e is,

e = cv T − a

v
.

Some algebra then shows that

Γ =
R

cv

v

v − b
, δ = Γ − a/v

e + a/v
,

γ = (
R

cv
+ 1 )

v

v − b
+
(

(
R

cv
+ 1 )

v

v − b
− 2
)

a/v2

p
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and

G =
1
2γ

{
(

R

cv
+ 1 ) (

R

cv
+ 2 )

v2

(v − b)2

+
(

(
R

cv
+ 1 ) (

R

cv
+ 2 )

v2

(v − b)2
− 6
)

a/v2

p

}
.

The sets {γ = 0} (critical points of the isentropes) and {G = 0} (inflexion points
of the isentropes) in the (v, p)-plane are depicted in Fig. 13.1, together with
three kinds of isentropes (a convex one, a non-convex monotone one and a non-
monotone one), for parameters a, b and cv corresponding (roughly) to water (for
which the van der Waals law is widely used, in particular in nuclear engineering,
even though it is known to be a poor approximation of reality: the adequation
coefficient, defined as the ratio of the theoretical compression factor pcvc/(RTc) =
3/8 and the real one, is only about 60%!).

Note The van der Waals law (13.1.17) in the special case a = 0 does not
support phase boundaries. For this reason, fluids endowed with such a law are
usually referred to as van der Waals gases. We point out that dusty gases (as
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Figure 13.1: Water isentropes (thick solid lines) with the van der Waals law (a,
b taken from [216], and cv/R = 3.1).
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in [91], for instance) follow a similar law: the Mie–Grüneisen-type pressure law
used in [91] is indeed of the form (13.1.17) with a = 0.

13.2 The Euler equations

13.2.1 Derivation and comments

The motion of a compressible, inviscid and non-heat-conducting, fluid is gov-
erned by the Euler equations, consisting of the mass, momentum and energy
conservation laws (see, for instance, [47]),

∂tρ + ∇ · (ρu) = 0 ,

∂t (ρu) + ∇ · (ρu⊗ u) + ∇p = 0 ,

∂t

(
ρ
(

1
2‖u‖2 + e

))
+ ∇ ·

((
ρ
(

1
2‖u‖2 + e

)
+ p

)
u
)

= 0 .

(13.2.18)

This system of (d + 2) equations contains (d + 3) unknowns, the density ρ ∈ R+,
the velocity u ∈ Rd, the internal energy e ∈ R and the pressure p ∈ R. This
obviously makes too few equations for too many unknowns. The system (13.2.18)
has to be closed by adding a suitable equation of state, for example an incomplete
equation of state, or pressure law, (ρ, e) �→ p(ρ, e) .

Simplified models are obtained by retaining only the mass and momentum
conservation laws, assuming that the motion is either isentropic or isothermal.
In this case, the pressure law reduces to ρ �→ p(ρ) . If a complete equation of
state is available, the isentropic pressure law is given by

p = − ∂e

∂v

∣∣∣∣
s

,

and the isothermal pressure law is given by

p = − ∂f

∂v

∣∣∣∣
T

,

where f := = e − T s is the specific free energy.
We observe that an incomplete equation of state is sufficient to give sense to

the quantities γ, Γ and G originally defined in (13.1.3), (13.1.4) and (13.1.9). As
a matter of fact, if (13.1.1) holds then (v, s) �→ (v, e) is a local diffeomorphism
provided that T > 0, and the partial derivatives in the old variables are given in
terms of the new variables by

∂

∂v

∣∣∣∣
s

=
∂

∂v

∣∣∣∣
e

− p
∂

∂e

∣∣∣∣
v

,
∂

∂s

∣∣∣∣
v

= T
∂

∂e

∣∣∣∣
v

. (13.2.19)



392 The Euler equations for real fluids

Therefore, alternative formulae are

γ = − v

p

(
∂p

∂v

∣∣∣∣
e

− p
∂p

∂e

∣∣∣∣
v

)
, Γ = v

∂p

∂e

∣∣∣∣
v

, (13.2.20)

G =
1
2

{
γ + 1 − v

γ

(
∂γ

∂v

∣∣∣∣
e

− p
∂γ

∂e

∣∣∣∣
v

)}
, (13.2.21)

which also make sense if it is just an incomplete equation of state that is given.
Equation (13.2.21) may seem less obvious to the reader than (13.2.20). It is
merely obtained by rewriting

G = − v2

2 γ p

∂

∂v

(γ p

v

)∣∣∣∣
s

.

13.2.2 Hyperbolicity

A classical and elementary manipulation shows that, for smooth solutions,
(13.2.18) is equivalent to

∂tρ + u · ∇ρ + ρ∇ · u = 0 ,

∂t u + (u · ∇)u + ρ−1∇p = 0 ,

∂t e + u · ∇e + ρ−1 p ∇ · u = 0 .

(13.2.22)

Therefore, the hyperbolicity of (13.2.18) is equivalent to the uniform real diago-
nalizability of the matrix

A(U;n) :=

 u · n ρ nT 0
ρ−1 p′ρ n (u · n) Id ρ−1 p′e n

0 ρ−1 p nT u · n


for all U = (ρ,u, e) and n ∈ Rd\{0}. We have denoted for simplicity

p′ρ =
∂p

∂ρ

∣∣∣∣
e

, p′e =
∂p

∂e

∣∣∣∣
ρ

.

If (ρ̇, u̇, ė)T is an eigenvector of A(U;n) associated with an eigenvalue
λ(U;n), then

(u · n − λ(U;n)) ρ̇ + ρn · u̇ = 0,

ρ−1 p′ρ ρ̇n + (u · n − λ(U;n)) u̇ + ρ−1 p′e ėn = 0,

ρ−1 pn · u̇ + (u · n − λ(U;n)) ė = 0.
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We thus see that λ(U;n) = u · n is an eigenvalue of A(U;n), with a d-
dimensional eigenspace given by

{ (ρ̇, u̇, ė)T ; n · u̇ = 0 , p′ρ ρ̇ + p′e ė = 0 }.

For eigenvectors associated with other eigenvalues, we must have

p ρ̇ = ρ2 ė,

as we see from the first and last equations above. Taking the inner product by n
of the intermediate equation, and eliminating n · u̇ by means of the first equation,
we get

( p′ρ |n|2 − (u · n − λ)2 ) ρ̇ + p′e |n|2 ė = 0.

This yields the dispersion relation

(u · n − λ(U;n))2 = |n|2 ( p′ρ + p p′e/ρ2 ) , (13.2.23)

of which the solutions λ(U;n) are real if and only if

p′ρ + p p′e/ρ2 ≥ 0.

Recalling the definition of γ in (13.2.20), this amounts to requiring γ ≥ 0. If
γ > 0 then the solutions of (13.2.23) are distinct,

λ(U;n) = u · n ± c |n|,

where c is the sound speed defined as in (13.1.10) by

c =
√

p′ρ + p p′e/ρ2 =
√

γ
p

ρ
.

Each of the eigenvalues u · n ± c |n| of A(U,n) has a one-dimensional eigenspace,
which is spanned by

( ρ , ± cn/|n| , p/ρ )T.

These very standard results are stated for later use in the following.

Proposition 13.1 The system (13.2.18), endowed with a positive pressure law
such that

γ :=
ρ

p

(
p′ρ + p p′e/ρ2

)
> 0,

is constantly hyperbolic, and strictly hyperbolic in dimension d = 1. Its eigenval-
ues in the direction n are

λ1(U;n) := u · n − c |n| , λ2(U;n) := u · n , λ3(U;n) := u · n + c |n| ,
(13.2.24)
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where c =
√

γp/ρ, with associated eigenvectors

r1(U;n) :=


ρ

− c
n
|n|

p/ρ

 , r2(U;n) :=


− α̇ p′e

u̇

α̇ p′ρ

 with u̇ · n = 0 ,

(13.2.25)

r3(U;n) :=


ρ

c
n
|n|

p/ρ

 .

In addition, the characteristic field (λ2, r2) is linearly degenerate, that is, dλ2 ·
r2 ≡ 0 (where d stands for differentiation with respect to U), and the fields
(λ1, r1) and (λ3, r3) (also called acoustic fields) are genuinely non-linear, that is,
dλ1,3 · r1,3 �= 0, if and only if

G :=
1
c

(
∂

∂ρ
+

p

ρ2

∂

∂e

)
(ρ c) �= 0.

Proof It just remains to check the nature of characteristic fields. On the one
hand, it is clear that dλ2 · r2 ≡ 0. On the other hand, we easily compute that

dλ1,3 · r1,3 = ρ c′ρ + c +
p

ρ
c′e = c G.

(We have set here |n| = 1 to simplify the writing.) Of course the present
definition of G is consistent with (13.1.11) and (13.2.19). �

13.2.3 Symmetrizability

There are several ways to symmetrize the Euler equations (13.2.18).

Handmade symmetrization in non-conservative variables The most
elementary way is the following, which makes sense if a complete equation of
state is given that satisfies (13.1.1), and if

∂p

∂ρ

∣∣∣∣
s

> 0.
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In this case, (p,u, s) are independent variables and we may rewrite the quasilinear
system (13.2.22) in those new variables. We find

∂tp + u · ∇p + ρ c2∇ · u = 0 ,

∂t u + (u · ∇)u + ρ−1∇p = 0 ,

∂ts + u · ∇s = 0 ,

(13.2.26)

where c denotes as usual the sound speed (see (13.1.10)). The characteristic
matrix of this system reads u · n ρ c2 nT 0

ρ−1 n (u · n) Id 0
0 0 u · n

 ,

which is ‘almost’ symmetric, up to the diagonal symmetrizer diag((ρc2)−1,
ρ, · · · , ρ, 1).

Special symmetrization for polytropic gases A special symmetrization
procedure was found by Makino et al. [128] for polytropic gases. Their motivation
was to deal with compactly supported solutions, and their symmetrizer supported
vacuum regions (unlike the one hereabove). To explain this in more detail, we
consider again the Euler equations in the variables (p,u, s), as in (13.2.26). For
polytropic gases, we may rewrite the pressure law as

p = (γ − 1) ργ exp(s/cv),

which implies p = 0 for ρ = 0 as soon as γ > 0. For γ > 1, the sound speed c =√
γp/ρ is also well-defined up to ρ = 0. Furthermore, the apparently singular

term in the velocity equation can be rewritten as

ρ−1∇p = γ exp(s/(γ cv))∇
((

p

γ − 1

)(γ−1)/γ
)

,

and the quantity

π :=
(

p

γ − 1

)(γ−1)/γ

is well-defined up to p = 0. In view of the equation on p in (13.2.26), we have

∂tπ + u · ∇π + (γ − 1)π∇ · u = 0.
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The characteristic matrix of the system made of the equations on π, u and s
is 

u · n (γ − 1)π nT 0

γ es/(γ cv) n (u · n) Id 0

0 0 u · n

 ,

which is again ‘almost’ symmetric. But as in the previous general situation, the
obvious diagonal symmetrizer blows up at vacuum, since it involves 1/π. The
trick of Makino et al. consists in replacing π by a suitable power of π. For any
α ∈ (0, 1), π̃ := πα is well-defined up to 0, and

∇π =
1
α

π1−α∇(πα) =
1
α

π̃(1−α)/α∇π̃

also makes sense. Furthermore, π̃ satisfies the equation

∂tπ̃ + u · ∇π̃ + α (γ − 1) π̃∇ · u = 0.

We see that the power of π̃ in front of ∇ · u is 1, which is the same as in front of
∇π̃ in the velocity equation only if α = 1/2. With this choice, the characteristic
matrix for the equations on π̃, u and s is

u · n 1
2 (γ − 1) π̃ nT 0

2 γ es/(γ cv) π̃ n (u · n) Id 0

0 0 u · n

 ,

which admits the diagonal symmetrizer

diag
(

2
γ − 1

,
1
2γ

e−s/(γ cv) ,
1
2γ

e−s/(γ cv) , 1
)

,

independently of π̃.

Entropy symmetrization in conservative variables A more sophisticated
way makes use of a mathematical entropy, as suggested by the general theory of
hyperbolic systems of conservation laws (see [184], p. 83–84). The mathematical
entropy to be used is S := ρ s, the physical entropy per unit volume. As regards
its convexity properties, we have the following characterization.

Proposition 13.2 If e is a convex function of (v, s) satisfying (13.1.1) with p
and T positive, then S := ρ s is a concave mathematical entropy of (13.2.18).

Proof The fact that S is a mathematical entropy follows from the last equation
in (13.2.26) and the mass continuity equation: indeed, S is easily found to be a
conserved quantity for smooth solutions of (13.2.18) (endowed with a complete
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equation of state), that is, (13.1.1) implies for smooth solutions of (13.2.18),

∂tS + ∇ · (S u ) = 0 . (13.2.27)

The concavity of S is more delicate to obtain, since it has to hold true in the
(complicated) conservative variables

W = ( ρ , ρu ,
1
2

ρ ‖u‖2 + ρ e ).

A very simplifying remark is based on the following fact. Any concave function
can be viewed as the infimum of a family of affine functions. This shows that S
is a concave function of W for ρ ∈ (0,+∞) if and only if s = v S is a concave
function of

( v , u ,
1
2
‖u‖2 + e ).

The last component of these variables,

ε =
1
2
‖u‖2 + e,

is obviously a convex function of (v,u, s). We claim that, together with the
monotonicity of e with respect to s (since T > 0), this implies that s is a concave
function of (v,u, ε). (This generalizes the result that the reciprocal of an increas-
ing convex function is concave.) As a matter of fact, (v,u, s) �→ ( v , u , ε(v,u, s) )
is a local diffeomorphism and we have

ds = T−1 ( p dv − udu + dε ).

(In this equality and similar ones below, u should be viewed as a row vector.) A
short computation then shows that

D2s(v,u, ε) · (v̇, u̇, ε̇)[2] = − 1
T

(
|u̇|2 + D2e(v, s) · (v̇, ṡ)[2]

)
with

ṡ = T−1 ( p v̇ − u · u̇ + ε̇ ).

Hence the Hessian of s as a function of (v,u, ε) is clearly negative. �
Once we know that S is a concave function of (ρ , m := ρu , E := ρε ), we

may consider its Legendre transform S�. By (13.1.1), we have

T dS = dE − g dρ,

where E = ρ e denotes the internal energy per unit volume and g := e− sT + pv
denotes the chemical potential. Rewriting

E = E − 1
2 ρ

‖m‖2,
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we arrive at

T dS = (
1
2
‖u‖2 − g ) dρ − udm + dE .

Therefore, by definition of the Legendre transform,

S� =
1
T

{
(

1
2
‖u‖2 − g ) ρ − u ·m + E

}
− S.

After some simplifications, it appears that

S� = − p

T
.

In addition, we have

dS� = ρdq + mdn + r dE ,

where

( q , n , r ) :=
1
T

(
1
2
‖u‖2 − g , −u , 1

)
denote the dual variables of (ρ , m , E ). Then it is easy to check that (13.2.18)
also reads

∂t

(
∂S�

∂q

)
+ ∇ ·

(
∂(S�u)

∂q

)
= 0 ,

∂t

(
∂S�

∂n

)
+ ∇ ·

(
∂(S�u)

∂n

)
= 0 ,

∂t

(
∂S�

∂r

)
+ ∇ ·

(
∂(S�u)

∂r

)
= 0 .

(13.2.28)

Viewed in the variables ( q , n , r ), the equations in (13.2.28) form a typical
Friedrichs-symmetric system: it admits a straightforward energy estimate and it
fits with Definition 2.1 when rewritten, in conservative variables, as

∂t

 ρ
m
E

 +
d∑

α=1

D2(S�u) D2S ∂α

 ρ
m
E

 = 0 , (13.2.29)

where D2(S�u) denotes the Hessian of (S�u) as a function of ( q , n , r ), and
D2S the Hessian of S as a function of (ρ , m , E ). These matrices are symmetric
by the Schwarz Lemma. Hence −D2S is a symmetrizer of (13.2.29) in the sense
of Definition 2.1. And the system (13.2.29) is simply the quasilinear form of the
Euler equations (13.2.18) in conservative variables.
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13.3 The Cauchy problem

The Friedrichs symmetrizers described in Section 13.2 allow us, in principle, to
apply the general theory of Chapter 10 for the local existence of Hk solutions,
k > d/2 + 1. One has to be careful with vacuum though, because it is not allowed
in the general symmetrization procedure, and supposedly Hk solutions should of
course vanish at infinity.

For polytropic gases, Chemin proved the existence of smooth solutions involv-
ing vacuum outside a compact set by using the procedure of Makino et al. [128];
see [32] for a detailed analysis.

For more general materials, it is possible to prove the existence of smooth
solutions away from vacuum by modifying slightly Theorem 10.1. We may impose
non-zero conditions at infinity, as already mentioned in Chapter 10, and look for
solutions in the affine space W0 + Hk. (By a change of frame, the velocity at
infinity, u0, may be taken equal to 0.)

Theorem 13.1 Considering the Euler equations (13.2.18) endowed with a
complete equation of state e = e(v, s) such that, in some open domain

U ⊂ { (v,u, s) ∈ (0,+∞)× Rd × R },

∂2e

∂v2
= − ∂p

∂v

∣∣∣∣
s

> 0,

we assume that

g ∈ V0 + Hk(Rd) , V0 = (v0,u0, s0) ∈ U ,

with k > 1 + d/2 and g is valued in K ⊂⊂ U . Then there exists T > 0 and a
unique classical solution V ∈ C 1(Rd × [0, T ]) of the Cauchy problem associated
with (13.2.18) and the initial data u(0) = g. Furthermore, V − V0 belongs to
C ([0, T ];Hk) ∩ C 1([0, T ];Hk−1).

There is a wide literature on the continuation of smooth solutions, mostly for
polytropic gases though. In some cases, global smooth solutions arise [74, 183].
On the other hand, there are numerous blow-up results [5, 32,194].

Still, the understanding of the Cauchy problem for (multidimensional) Euler
equations (with general pressure laws) is a wide open question. This makes the
study of special, piecewise smooth, solutions, like curved shocks as in Chapter
15 interesting. In the next section, we review some basic facts on (planar) shock
waves in gas dynamics.

13.4 Shock waves

13.4.1 The Rankine–Hugoniot condition

A function U = (ρ,u, e) of class C 1 outside a moving interface Σ is a weak
solution of (13.2.18) if and only if it satisfies (13.2.18) outside Σ and if the
Rankine–Hugoniot jump conditions hold across Σ. If n ∈ Rd denotes a (unit)
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normal vector to Σ and σ the normal speed of propagation of Σ, the Rankine–
Hugoniot condition associated with (13.2.18) reads

[ ρ (u · n − σ )] = 0 ,

[ ρ (u · n − σ )u + p n ] = 0 ,[
ρ (u · n − σ ) ( 1

2 ‖u‖2 + e ) + p u · n
]

= 0 ,

(13.4.30)

where the brackets [·] stand as usual for jumps across Σ. The first equation in
(13.4.30) implies

j := ρl (ul · n − σ ) = ρr (ur · n − σ ) , (13.4.31)

where by convention, the subscripts l and r are such that the vector n points to
the state indexed by r, and j thus corresponds to the mass-transfer flux from
the state indexed by l to the state indexed by r.

We may distinguish between two kinds of discontinuities, depending on the
value of j. The first kind corresponds to discontinuities moving accordingly with
the fluid, also called contact discontinuities, for which the mass-transfer flux
j is in fact equal to zero. Their normal speed of propagation is σ = ur,l · n.
When their tangential velocity does experience a jump across Σ, which causes a
singularity of the vorticity ∇× u, they are called vortex sheets.

The second kind of discontinuity corresponds to j �= 0. We call them dynam-
ical discontinuities. The fact that j is non-zero implies the tangential velocity
must be continuous and only the normal velocity u · n =: u experiences a jump
across Σ. Furthermore, some manipulations of the Rankine–Hugoniot equations
(13.4.30) yield the relation

[e] + 〈p〉 [v] = 0 , (13.4.32)

where 〈p〉 denotes the arithmetic mean value of pressures on both sides. We recall
the derivation of (13.4.32) for completeness. First, we observe that (13.4.31)
implies

[u] = j [v] . (13.4.33)

Then, substituting in the momentum jump condition j [u] + [p] = 0, we get

[p] = − j2 [v] . (13.4.34)

So that a necessary condition for such a discontinuity to exist is [p] [v] < 0.
Additionally, the energy jump condition can be rewritten as

j 〈u〉 [u] + j [e] + [p u] = 0.

Using (13.4.33) and (13.4.34), we see that

j 〈u〉 [u] + [p u] = j 〈p〉 [v].



Shock waves 401

Therefore, we have

j ( [e] + 〈p〉 [v] ) = 0,

which proves (13.4.32) since j �= 0.
Two different states are thus connected by a dynamical discontinuity if and

only if there exists j ∈ R\{0} so that (13.4.32), (13.4.33) and (13.4.34) hold.
Observe that (13.4.32) and (13.4.34) are purely thermodynamic. We call the set
of all possible states connected to a reference state by a dynamical discontinuity
a Hugoniot locus.

13.4.2 The Hugoniot adiabats

The structure of Hugoniot loci is of great importance in the theory of shock waves,
and relies heavily on the so-called Hugoniot adiabats, characterized by (13.4.32).
Given a reference specific volume v0, the corresponding density ρ0 = 1/v0, and
a reference energy e0, we define p0 := p(ρ0, e0) and consider the set of states
(v = 1/ρ, e) such that

e − e0 +
p(ρ, e) + p0

2

(
1
ρ
− 1

ρ0

)
= 0 . (13.4.35)

This set is called a Hugoniot adiabat. By the implicit function theorem, it is
locally a smooth curve, parametrized by ρ, in the (ρ, e)-plane. Its global behaviour
is crucial in the resolution of Riemann problems.

Examples

� For a Bethe–Weyl fluid, using the fact that v �→ p(v, s) is a global diffeo-
morphism, Hugoniot adiabats are equivalently defined in the (p, s)-plane
by the zero set of the function

h0(p, s) := e(v(p, s), s) − e0 +
p + p0

2
(v(p, s) − v0) . (13.4.36)

This will be used below in the discussion of admissibility criteria.
� In the case of polytropic gases with γ ≥ 1, the Hugoniot adiabats are merely

hyperboles in the (ρ, p)-plane, given by

ρ = ρ0
(γ + 1) p0 + (γ − 1) p

(γ + 1) p + (γ − 1) p0
.

13.4.3 Admissibility criteria

For real compressible fluids, the admissibility of shocks is still a controversial
topic. The purpose of this section is to compare several admissibility criteria
under various assumptions on the equation of state.

We start with a most elementary observation on the variations of thermo-
dynamic quantities across dynamical discontinuities: because of (13.4.32) and
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(13.4.34) we have indeed

sign [ρ] = sign [p] = sign [e].

This allows us to speak about compressive discontinuities without ambiguity, in
that both the density and the pressure should increase along particle paths. On
the contrary, density and pressure decrease along particle paths for expansive (or
rarefaction) discontinuities.

Entropy criterion

A first admissibility criterion comes from the second principle of thermody-
namics, or equivalently from the Lax entropy criterion associated with the
mathematical entropy S = ρ s, which is concave (see Proposition 13.2) if e is
a convex function of (v, s), a ‘minimal’ thermodynamical stability assumption
that we make from now on. The entropy criterion requires that

j [s] ≥ 0 . (13.4.37)

(Observe that the inequality (13.4.37) is trivially satisfied (and is an equality)
for static discontinuites.) It is shown below that for dynamical discontinuities in
Smith fluids, the entropy criterion (13.4.37) is equivalent to compressivity.

Proposition 13.3 (Henderson–Menikoff) For a Smith fluid, we have

sign [p] = sign [s]

on Hugoniot loci, which means that the function h0 defined in (13.4.36) does not
vanish for (p, s) such that (p− p0) (s − s0) < 0.

Proof By (13.1.2) and (13.1.5), we have

v dp = − γ pdv + ΓT ds . (13.4.38)

So, substituting dv into

dh0 = de +
v − v0

2
dp +

p + p0

2
dv = T ds +

v − v0

2
dp +

p0 − p

2
dv

(13.4.39)

we obtain

dh0 =
(

1 + Γ
p0 − p

2γp

)
T ds +

1
2

(
v − v0 +

v

γ p
(p− p0)

)
dp . (13.4.40)

Therefore, because of Smith’s condition in (13.1.15), h0 is increasing with s at
constant p. We thus have

(h0(p, s) − h0(p, s0) ) (s − s0) > 0.
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Now, if we look at h00 := h0(·, s0), preferably in the v variable, we see that it
has an inflexion point at v = v0, and its second derivative reduces to

∂2
vvh00 =

1
2

(v − v0)
∂2p

∂v2
.

By the convexity of p, this shows that

(h00(v) − h00(v0) ) (v − v0) > 0,

or equivalently

(h0(p, s0) − h0(p0, s0) ) (p − p0) < 0.

To conclude, assume that (p− p0) (s − s0) < 0. Then

h0(p, s) = (h0(p, s) − h0(p, s0) ) + (h0(p, s0) − h0(p0, s0) )

is the sum of two terms of the same sign as (s − s0), which cannot vanish unless
s = s0. �

Internal structure of shocks

Another, physically relevant, admissibility criterion is based on dissipative effects
due to viscosity and/or heat conductivity. Indeed, dynamical ‘discontinuities’ in
fluids are not exactly sharp: because of dissipative phenomena they have an
internal structure, also called a shock layer. Mathematically, a shock layer is a
smooth solution of the full equations of motion – the (compressible) Navier–
Stokes–Fourier equations, consisting of the Euler equations supplemented with
viscous terms in the stress tensor and with a heat-flux term in the energy
equation – which is ‘almost’ a solution of the Euler equations outside a thin
region of high gradients. A more precise definition is delicate to formulate, and
it is a tough task to actually show the existence of arbitrarily curved shock
layers (see the recent series of papers by Guès et al. [77–79]). But for planar
discontinuities, the search for a layer is a much simpler, ODE problem, which
was addressed a long time ago by Gilbarg [69]. Planar shock layers are indeed to
be sought as heteroclinic travelling wave solutions of the Navier–Stokes–Fourier
equations

∂tρ + ∇ · (ρu) = 0 ,

∂t (ρu) + ∇ · (ρu⊗ u) + ∇p = ∇ (λ∇ · u) + ∇ · (µ (∇u + t(∇u))) ,

∂t

(
ρ
(

1
2‖u‖2 + e

))
+ ∇ ·

((
ρ
(

1
2‖u‖2 + e

)
+ p

)
u
)

= ∇ · (κ∇T )

+∇ · ( (λ∇ · u + µ (∇u + (∇u)T) )u ) .
(13.4.41)

Here, λ and µ are viscosity coefficients and κ is heat conductivity, and these
three coefficients may depend (in a smooth way) on ρ.
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Theorem 13.2 (Gilbarg) For Bethe–Weyl fluids, all planar compressive dis-
continuities admit shock layers for any λ, µ, κ such that λ + 2µ > 0 and κ > 0.

We do not reproduce the proof here, which is rather long but very clear in [69].
The interested reader will easily check that our definition of Bethe–Weyl fluids
fits with the assumptions I,Ia., II, III, IV ( [69] p. 271) of Gilbarg. To recast our
problem in Gilbarg’s framework, which is purely one-dimensional, we first write
the ODE system governing travelling waves of speed σ in a given direction n.
Decomposing the velocity field u into its normal component u := u · n and its
tangential component ǔ, we get the equations

( ρ (u − σ) )′ = 0 ,

( ρ (u − σ) ǔ)′ = (µ ǔ′)′ ,

( ρ (u − σ) u)′ + p′ = ((λ + 2µ)u′)′ ,(
ρ (u − σ) ( e + 1

2 ‖u‖2 )
)′ + ( p u )′ = (κT ′ + (λ + 2µ)uu′ )′ ,

(13.4.42)

where ′ denotes the derivative with respect to ξ := x · n− σt. For solutions of
(13.4.42), we have

ρ (u− σ) ≡ const. =: j , (13.4.43)

consistently with the notation previously introduced (see (13.4.31)). Regarding
the tangential velocity, we have

µ (ǔ)′ − j ǔ ≡ const.

Thus for non-zero mass-tranfer flux j, we must have

ǔ(−∞) = ǔ(+∞) =: ǔ∞,

which is again consistent with the Rankine–Hugoniot condition (13.4.30). Fur-
thermore, the only homoclinic orbit of the ODE

µ (ǔ)′ = j (ǔ− ǔ∞)

is its fixed point istself, that is, we must have ǔ ≡ ǔ∞. Taking this into account,
as well as (13.4.43), the last equation in (13.4.42) equivalently reads

(ρ u − σ) ( e + 1
2 u2 ) + ( p u ) − κT ′ − (λ + 2µ)uu′ ≡ const.

Additionally, by change of frame, we can assume without loss of generality that
σ = 0. In this way, we have exactly recovered the equations solved by Gilbarg
(namely, (1), (2) and (3) p. 257 in [69]).

In view of Proposition 13.3 and Theorem 13.2, for Smith fluids the entropy
criterion (13.4.37) is equivalent to compressivity and ensures the existence of a
planar shock layer.
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More generally, what can we say for Bethe–Weyl fluids (of which Smith fluids
are special cases) about the relationship between compressivity, the entropy
criterion (13.4.37) and the existence of a planar shock layer? An easy result
is the following.

Proposition 13.4 For Bethe–Weyl fluids, dissipative shock layers converging
fast enough to their endstates, that is, heteroclinic orbits between hyperbolic fixed
points of (13.4.42) with κ ≥ 0 and λ + 2µ ≥ 0, satisfy the entropy criterion in
(13.4.37).

Proof For simplicity we denote by D the diffusion tensor

D := (λ∇ · u) Id + µ (∇u + t(∇u) ).

Along smooth solutions of (13.4.41), because of (13.1.1) the entropy per unit
volume S satisfies

∂tS + ∇ · (S u) =
1
T

(∇ · (κ∇T ) + D : ∇u ) , (13.4.44)

which is reminiscent from (13.2.27), with additional terms due to dissipation.
Looking at travelling-wave solutions of (13.4.44) for which ρ (u− σ) ≡ j and
ǔ ≡ ǔ∞, we find that

j T s′ = (κT ′)′ + (λ + 2µ) (u′)2 (13.4.45)

along heteroclinic orbits of (13.4.42). (This equation can of course be obtained
directly from (13.4.42), using (13.1.1) in the form T s′ = e′ + p v′.) Integrating
(13.4.45) then yields, if the orbit converges sufficiently fast towards its endstates,

j [s] =
∫ +∞

−∞

(
κ

(
T ′

T

)2

+
1
T

(λ + 2µ) (u′)2
)

dξ , (13.4.46)

which is obviously non-negative. �
So, for Bethe–Weyl fluids a reasonable admissibility criterion is the existence

of a shock layer, and under the additional condition (13.1.15), it is equivalent to
compressivity.

For other kinds of fluids, like van der Waals fluids below a critical temper-
ature, for instance, alternate admissibility criteria are needed. As a matter of
fact, on the one hand, it is well-known that dynamical phase transitions can
be compressive (condensation) but also expansive (vapourization). On the other
hand, layers for dynamical phase transitions, also called diffuse interfaces, cannot
be obtained from the purely dissipative system (13.4.41). Some dispersion has
to be added in connection with capillarity effects. This approach was proposed
independently by Slemrod [196] and Truskinovsky [214] in the 1980s and led to
the so-called viscosity–capillarity criterion. We shall not enter into more detail
here (see [10]).
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The Liu criterion

Even with monotone isentropes, the admissibility of shocks is a tough problem
in lack of convexity (that is, without the assumption G > 0). It was investi-
gated in the 1970s by Tai Ping Liu [119] and independently by Ling Hsiao
and coworkers [224]. This led them to introduce what is now called the Liu
criterion and is a generalization of the Olĕınik criterion – originally introduced
for scalar conservation laws – formulated in terms of shock speeds along Hugoniot
loci.

Definition 13.3 (Liu) A discontinuity between Wl and Wr, of speed σ, satisfies
the Liu criterion if

� for all W ∈ H (Wl;Wr), the part of the Hugoniot locus issued from Wl

and arriving at Wr, the corresponding speed σ(Wl;W) satisfies

σ = σ(Wl;Wr) ≤ σ(Wl;W),

� for all W ∈ H (Wr;Wl), the part of the Hugoniot locus issued from Wr

and arriving at Wl, the corresponding speed σ(Wr;W) satisfies

σ(Wr;W) ≤ σ(Wr;Wl) = σ.

Using this criterion, we have the following result, analogous to Theorem 13.2
without the restriction G > 0.

Theorem 13.3 (Liu–Pego) For fluids with positive pressure and temperature
satisfying

γ > 0 , δ > 0 , Γ > 0,

all discontinuities satisfying Liu’s criterion admit purely viscous shock layers,
that is, with identically zero heat conductivity κ. If, additionally,

Γ ≥ δ,

this is true for arbitrary heat conductivity: discontinuities satisfying Liu’s crite-
rion admit general shock layers.

We refer to the original papers [119, 157] for the proof. The first part was
proved by Liu [119], and the second one by Pego [157]. To help the reader with
the way those authors stated their assumptions, we just point out the following
equivalences, where the right-hand inequalities are precisely the ones required by
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Liu and Pego. For positive pressure and temperature

γ > 0 ⇐⇒ ∂p

∂v

∣∣∣∣
s

< 0 ,

δ > 0 ⇐⇒ ∂e

∂T

∣∣∣∣
v

> 0 ,

δ Γ > 0 ⇐⇒ ∂p

∂T

∣∣∣∣
v

> 0 ,

Γ ≥ δ ⇐⇒ ∂e

∂v

∣∣∣∣
T

≥ 0 .

The latter inequality is in fact an equality for ideal gases, and a strict inequality
for van der Waals fluids.

Interestingly, the Liu criterion allows expansive discontinuities. Taking
vl < vr on the same adiabat and such that the graph of p is above its
chord on the interval [vl , vr], and ul, ur compatible with (13.4.33) and j :=√
−(pr − pl)/(vr − vl) > 0, we obtain an expansive discontinuity of speed

σ = ul,r − vl,r

√
− pr − pl

vr − vl
.

And so for intermediate states W,

σ(Wl;W) = ul − vl

√
− p− pl

v − vl
≥ σ,

while

σ(Wr;W) = = ur − vr

√
− p− pr

v − vr
≤ σ.

This means that the discontinuity meets the Liu criterion, though being expan-
sive.

However, expansive discontinuities may lack internal structure: for instance,
as was pointed out by Pego [157], when heat conductivity dominates viscosity
and the condition Γ ≥ δ fails, there are expansive discontinuities having no layer,
though meeting Liu’s criterion.

The Lax shock criterion

As a byproduct of the Liu criterion, we obtain the celebrated (weak) Lax shock
inequalities

λi(Wr;n) ≤ σ(Wl;Wr) ≤ λi(Wl;n),
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either for i = 1 or for i = 3. This is a standard result in the theory of hyperbolic
conservation laws, relying on the fact that shock speeds tend to characteristic
speeds as the amplitudes of shocks go to 0. It can be checked in a most direct way
for fluids. As a matter of fact, two states W0 and W1 connected by a dynamical
discontinuity of speed σ are such that

σ = u0 ± v0

√
− p1 − p0

v1 − v0
= u1 ± v1

√
− p1 − p0

v1 − v0
.

Assume for instance that ± here above is a +. Then by a connectedness argument
we have

σ(W0;W) = u0 + v0

√
− p− p0

v − v0

along H (W0;W1), and

σ(W1;W) = u1 + v1

√
− p− p1

v − v1

along H (W1;W0). And from (13.4.38) and (13.4.39) we have

( v +
1
2

Γ (v − v0) ) dp = (
1
2

Γ (p− p0) − γ p ) dv (13.4.47)

along {h0 = 0}, which contains H (W0;W1). Therefore,

− p− p0

v − v0
−→ γ0

p0

v0
when W

H (W0;W1)−−−−−−−−→ W0,

and so

σ(W0;W) −→ u0 +
√

γ0p0v0 = u0 + c0 = λ3(W0;n).

For the same reason,

σ(W1;W) −→ u1 +
√

γ1p1v1 = u1 + c1 = λ3(W1;n)

when

W
H (W1;W0)−−−−−−−−→ W1.

More precisely, i-Lax shock inequalities read

λi(Wr;n) < σ < λi(Wl;n) , λi−1(Wl;n) < σ < λi+1(Wr;n).

or equivalently, for i = 1,

ur − cr < σ < ul − cl , σ < ur , (13.4.48)

and for i = 3,

ur + cr < σ < ul + cl , σ > ul . (13.4.49)
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A discontinuity satisfying either one of these sets of inequalities is called a Lax
shock. More precisely, in one space dimension, a discontinuity satisfying the i-
Lax shock inequalities is usually called an i-shock. However, in several space
dimensions this distinction is irrelevant, because the choice of left and right is
arbitrary, and exchanging Wl and Wr amounts to changing n into −n, hence the
1-Lax shock inequalities into the 3-ones. (Recall that the notation u stands for
u · n, and that σ is a normal speed and therefore depends also on the direction of
n.) Still, it is possible to distinguish between the two states of a Lax shock from
an intrinsic point of view, and more precisely, we may speak of the state behind
the shock and the state ahead of the shock. Indeed, the motion of the shock with
respect of the fluid flow on either side of the shock goes from the state indexed
by r to the state indexed by l if we have (13.4.48) whereas it goes from l to r if
we have (13.4.49). In other words, the state behind the shock is indexed by r in
the first case and by l in the second one. In both cases, the Lax shock inequalities
imply that the state behind the shock is subsonic, and the other one, supersonic,
according to whether the Mach number

Ml,r :=
|ul,r − σ|

cl,r
(13.4.50)

is less than or greater than one. Indeed, (13.4.48) implies Mr < 1 < Ml and
(13.4.49) implies Ml < 1 < Mr. To summarize, Lax shocks are characterized
by

� a non-zero mass-transfer flux across the discontinuity,
� a subsonic state behind the discontinuity, and a supersonic state ahead of

the discontinuity.

Now, what is the relationship between the Lax shock criterion and the other
criteria? For concave S, a standard Taylor expansion shows that weak shocks
satisfying the entropy criterion (13.4.37) are necessarily Lax shocks. (See [109].)
What can we say for shocks of arbitrary strength? The answer is not easy. One
difficulty is that Mach numbers involve slopes of isentropes, since by (13.4.31)
and the definition of sound speed,

M2 =
j2

− ∂p

∂v

∣∣∣∣
s

, (13.4.51)

and isentropes are different from shock curves. However, it is possible to reformu-
late the Lax shock criterion in terms of the slopes of Hugoniot adiabats, thanks
to the following result, which is in fact the continuation of Proposition 13.3.

Proposition 13.5 For a Smith fluid, the Hugoniot adiabat, {h0(p, s) = 0},
issued from (p0, s0) (where h0 is defined as in (13.4.36)), is a curve parametrized
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by p in the (v, p)-plane. The non-dimensional quantity

R : =
p− p0

v − v0

∂v

∂p

∣∣∣∣
h0

. (13.4.52)

achieves the value 1 on that curve if and only if

M2 =
(p− p0)/(v − v0)

∂p

∂v

∣∣∣∣
s

(13.4.53)

does so at the same point.

(Observe that, thanks to (13.4.34), the equality in (13.4.53) is equivalent to
(13.4.51).)

Proof It relies on (13.4.47), valid along {h0 = 0}. Under the assumption
(13.1.15), the coefficient of dv in (13.4.47) is always non-zero, which proves the
first claim and yields the formula

R =
p− p0

v − v0

v + 1
2 Γ (v − v0)

1
2 Γ (p− p0) − γ p

.

Hence, R = 1 if and only if
p− p0

v − v0
= − γ p

v
.

Since

− γ p

v
=

∂p

∂v

∣∣∣∣
s

by (13.1.10), we get the conclusion. �
Of course the equalities R = 1 and M2 = 1 occur simultaneously at p0. But

we also know (by Taylor expansion) that M2 is less than 1 on the compression
branch { p > p0 } of the Hugoniot locus close to the reference state. So by
Proposition 13.5 this property persists as long as R does not achieve 1 along the
corresponding branch of the Hugoniot adiabat. Similarly, M2 is greater than 1 on
the expansion branch. More precisely, using the fact that (p − p0) (v − v0) < 0
along the Hugoniot locus, we can see that (M2 − 1) (R− 1) ≥ 0, with equality
only at (p0, v0).

Corollary 13.1 For a Smith fluid, Lax shocks are characterized by R < 1
behind the discontinuity and R > 1 ahead.
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BOUNDARY CONDITIONS FOR EULER EQUATIONS

We now turn to the Initial Boundary Value Problem (IBVP) for Euler equations.
We provide below a classification of IBVPs according to various physical situ-
ations, and discuss possible boundary conditions ensuring well-posedness. (For
similar discussions in the case of viscous compressible fluids, the reader may
refer in particular to [152, 159, 201]; also see the review paper by Higdon [84].)
We shall also give an explicit and elementary construction of Kreiss symmetrizers
for uniformly stable Boundary Value Problems.

14.1 Classification of fluids IBVPs

As far as smooth domains are concerned, a crucial issue is the well-posedness
of IBVPs in half-spaces (obtained using co-ordinate charts). To fix ideas, we
consider IBVPs in the half-space {xd ≥ 0 } (without loss of generality, the Euler
equations being invariant by rotations).

We recall from Section 13.2 (Proposition 13.1) that the characteristic speeds
of the Euler equations (13.2.18) in the direction n = (0, . . . , 0, 1)T are

λ1 = u − c , λ2 = u , λ3 = u + c ,

where u := u · n is the last component of u and c is the sound speed. When
the boundary is a wall, u is clearly zero. Otherwise, if u �= 0, we can distinguish
between incoming flows, for which u > 0, and outgoing flows, for which u < 0.
Another distinction to be made concerns the Mach number

M :=
|u|
c

.

The flow is said to be subsonic if M < 1 and supersonic if M > 1.
This yields the following classification, when c is non-zero.

Non-characteristic problems

Out-Supersonic (u < 0 and M > 1, hence λ1, λ2, λ3 < 0). There is no
incoming characteristic. No boundary condition should be prescribed.

Out-Subsonic (u < 0 and M < 1, hence λ1, λ2 < 0, λ3 > 0). There is one
incoming characteristic. One and only one boundary condition should be
prescribed.



412 Boundary conditions for Euler equations

In-Subsonic (u > 0 and M < 1, hence λ1 < 0, λ2, λ3 > 0). There are
(d + 1) incoming characteristics, counting with multiplicity. This means that
(d + 1) independent boundary conditions are needed.

In-Supersonic (u > 0 and M > 1, hence λ1, λ2, λ3 > 0). All characteristics
are incoming. This means that all components of the unknown W should be
prescribed on the boundary.

Characteristic problems

Slip walls (u = 0, hence λ1 < 0, λ2 = 0, λ3 > 0). One and only one boundary
condition b(W) should be prescribed. For the IBVP to be normal, the 2-
eigenfield should be tangent to the level set of b.

Out-Sonic (u = − c, hence λ1, λ2 < 0, λ3 = 0). No boundary condition should
be prescribed.

In-Sonic (u = c, hence λ1 = 0, λ2, λ3 > 0). A set of (d + 1) boundary condi-
tions b1(W), . . . bd+1(W) should be prescribed, and the 1-eigenfield should be
tangent to the level sets of b1, . . . bd+1.

14.2 Dissipative initial boundary value problems

In this section, we look for dissipative boundary conditions. This notion depends
on the symmetrization used. For concreteness, we use the simplest symmetriza-
tion, in (p,u, s) variables, given in Section 13.2.3. We recall indeed that, away
from vacuum, the Euler equations can be rewritten as

S(p,u, s) ( ∂t + A(p,u, s;∇) )

 p
u
s

 = 0,

where S(p,u, s) is symmetric positive-definite and

S(p,u, s)A(p,u, s;n) =


u · n
ρc2

nT 0

n ρ (u · n) Id 0

0 0 u · n

 .

In what follows we take n = (0, . . . , 0, 1)T. According to Definition 9.2, dissi-
pativeness of a set of boundary conditions encoded by a non-linear mapping
b : (p,u, s) �→ b(p,u, s) requires that −SAd be non-negative on the tangent bun-
dle of the manifold B = { b(p,u, s) = b }, while strict dissipativeness requires
that −SAd be coercive on the same bundle.

A straightforward computation shows that for U̇ = (ṗ, ˙̌u, u̇, ṡ)
T
,

(SAdU̇ , U̇) = ρ u

(
1
u2

(u u̇ + v ṗ )2 − v2

u2
(1 − M2) ṗ2 + ‖ ˙̌u‖2 + v ṡ2

)
(14.2.1)

if u �= 0.
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We can now review the different cases.

Supersonic outflow (u < 0 and M > 1). We see that −SAd is coercive on
the whole space. So this case is harmless.

Subsonic outflow (u < 0 and M < 1). The restriction of −SAd to the hyper-
plane { ṗ = 0} is obviously coercive. Thus a strictly dissipative condition is
obtained by prescribing the pressure p at the boundary. Another possible,
simple, choice is to prescribe the normal velocity u, since −SAd is also coercive
when restricted to the hyperplane { u̇ = 0}.

Subsonic inflow (u > 0 and M < 1). This is the most complicated case.
Prescribing the pressure among the boundary conditions would obviously be
a bad idea, for the same reason as it is a good one for subsonic outflows.
On the other hand, the easiest way to cancel some bad terms is to prescribe
the tangential velocity ǔ and the entropy s, which leaves only one boundary
condition to be determined in such a way that u du + v dp = 0 on the tangent
bundle of B. Recalling that, by (13.1.1), the specific enthalpy h = e + p v is
such that

dh = T ds + v dp ,

we see that the above requirement is achieved by 1
2 u2 + h along isentropes.

Hence a strictly dissipative set of boundary conditions is

(
1
2

u2 + h , ǔ , s ) .

Other boundary conditions may be exhibited that are more relevant from a
physical point of view – for instance using concepts of total pressure and total
temperature, see [11].

Supersonic inflow (u > 0 and M > 1). We see that SAd (instead of −SAd)
is coercive. But the tangent spaces are reduced to {0}. So this case is also
harmless.

Slip walls (u = 0). The kernel of Ad is the d-dimensional subspace { (0, ǔ, 0, ṡ)},
which is part of the tangent subspace { u̇ = 0} associated with the natural
boundary condition on u – as required by the normality criterion. The matrix
SAd is null on { u̇ = 0}, which means that the boundary condition is dissipa-
tive but of course not strictly dissipative.

Out-Sonic (u = − c). The matrix −SAd is non-negative but has isotropic
vectors (defined by u u̇ + v ṗ = 0, ˙̌u = 0, ṡ = 0).

In-Sonic (u = c). The only possible choice of dissipative boundary conditions
is the one described for subsonic inflows, which cancels all remaining terms in
(SAdU̇ , U̇) (since − (1 − M2) ṗ2 is zero). The normality criterion is met by
those boundary conditions because

Ker SAd = {(ṗ, u̇, ṡ) ; u u̇ + v ṗ = 0 , ˙̌u = 0 , ṡ = 0 } .
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We now turn to a more systematic testing of boundary conditions, which is
known (and will be shown) to be less restrictive.

14.3 Normal modes analysis

Our purpose is to discuss boundary conditions from the Kreiss–Lopatinskĭı point
of view, for general fluids equipped with a complete equation of state. To get
simpler computations, we choose the specific volume v and the specific entropy
s as thermodynamic variables, and rewrite the Euler equations as

∂tv + u · ∇v − v∇ · u = 0 ,

∂t u + (u · ∇)u + v p′v ∇v + v p′s∇s = 0 ,

∂ts + u · ∇s = 0 ,

(14.3.2)

with the short notations

p′v =
∂p

∂v

∣∣∣∣
s

, p′s =
∂p

∂s

∣∣∣∣
v

.

Later, we shall make the connection with the non-dimensional coefficients γ and
Γ, in that

p′v = − γ
p

v
, p′s = Γ

T

v
.

Alternatively, we recall that

p′v = − c2

v2
,

where c is the sound speed defined in (13.1.10). Our minimal assumption is that
c is real (positive). Furthermore, we have seen in Section 14.1 that boundary
conditions for supersonic flows are either trivial or absent. A normal modes
analysis is irrelevant in those cases. And sonic IBVP are so degenerate that a
normal modes analysis is also useless. So from now on we concentrate on the
subsonic case, assuming that

0 < |u| < c . (14.3.3)

14.3.1 The stable subspace of interior equations

Linearizing (14.3.2) about a reference state (v,u = (ǔ, u), s), we get
( ∂t + ǔ · ∇̌ + u ∂z ) v̇ − v∇ · u̇ = 0 ,

( ∂t + ǔ · ∇̌ + u ∂z ) u̇ + v p′v ∇v̇ + v p′s∇ṡ = 0 ,

( ∂t + ǔ · ∇̌ + u ∂z ) ṡ = 0 ,

(14.3.4)
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where z stands for the co-ordinate xd, normal to the boundary, and ∇̌ is
the gradient operator along the boundary. The tangential co-ordinates will be
denoted by y ∈ Rd−1. By definition, for Re τ > 0 and η ∈ Rd−1, the sought stable
subspace, E−(τ,η) is the space spanned by vectors (v̇, u̇, s) such that there exists
a mode ω of positive real part for which

exp( τ t ) exp( iη · y) exp(−ω z ) (v̇, u̇, s)

solves (14.3.4). We are thus led to the system

( τ + iη · ǔ − uω ) v̇ − v (iη · ˙̌u) + v ω u̇ = 0 ,

( τ + iη · ǔ − uω ) ˙̌u + v p′v i v̇ η + v p′s i ṡ η = 0 ,

( τ + iη · ǔ − uω ) u̇ − v p′v ω v̇ − v p′s ω ṡ = 0 ,

( τ + iη · ǔ − uω ) ṡ = 0 ,

(14.3.5)

where we have used the obvious (although ugly) notation u̇ = ( ˙̌u, u̇). To simplify
the writing we introduce

τ̃ := τ + iη · ǔ .

(Observe that Re τ̃ = Re τ .) The only non-trivial modes are thus obtained
� for ω = τ̃ /u and

u (iη · ˙̌u) − τ̃ u̇ = 0 and p′v v̇ + p′s ṡ = 0 , (14.3.6)
� for ω solution of the dispersion relation

( τ̃ − uω )2 + v2 p′v (ω2 − ‖η‖2 ) = 0 ,

and 
( τ̃ − uω ) ˙̌u + v p′v i v̇ η = 0 ,

( τ̃ − uω ) u̇ − v p′v ω v̇ = 0

ṡ = 0 .

(14.3.7)

We see that the dispersion equation, which also reads

( τ̃ − uω )2 = c2 (ω2 − ‖η‖2 ) (14.3.8)

has no purely imaginary root when Re τ > 0. Looking at the easier case η = 0
and using our usual continuity argument, we find that because of the subsonicity
condition (14.3.3), (14.3.8) has exactly one root of positive real part, which we
denote by ω+, and one root of negative real part, ω−. By definition, the stable
subspace E−(τ,η) involved in the Kreiss–Lopatinskĭı condition is made of normal
modes with Re ω > 0 for Re τ > 0. (Recall that – with our notation – decaying
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modes at z = +∞ are obtained for Re ω > 0.) So the root ω− does not con-
tribute to E−(τ,η), and we only need to consider ω+ and, if u > 0, ω0 := τ̃ /u.
To simplify again the writing, we simply denote ω+ by ω when no confusion is
possible. (We shall come back to the notations ω± in Section 14.4.)

If u < 0 (outflow case), E−(τ,η) is a line, spanned by the solution e(τ,η) =
(v̇, ˙̌u, u̇, ṡ)

T
of (14.3.7) defined by

e(τ,η) =


v ( τ̃ − uω )

i c2 η
− c2 ω

0

 . (14.3.9)

If u > 0 (inflow case), E−(τ,η) is a hyperplane. For convenience, we intro-
duce the additional notation

a := u τ̃ + ω ( c2 − u2 ) . (14.3.10)

An elementary manipulation of (14.3.8) then shows that

a ( τ̃ − uω ) = c2 ( τ̃ ω − u ‖η‖2) .

Using this relation and combining (14.3.6) and (14.3.7) together, we get the very
simple description

E−(τ,η) = �(τ,η)⊥,

�(τ,η) :=
(
a , − i v uηT , v τ̃ , a p′s/p′v

)
.

(Observe that � is homogeneous degree 1 in (τ,η), like a.) This description has
the advantage of unifying the treatment of regular points and Jordan points
τ̃ = u ‖η‖ – where ω coincides with ω0. In the particular ‘one-dimensional’ case,
i.e. with η = 0, one easily checks that

ω =
τ

u + c
, a = τ c and �(τ, 0) := τ ( c , 0 , v , c p′s/p′v ) .

Omitting the null coefficient, we recover in the latter a left eigenvector associated
with the incoming eigenvalue λ1 = u− c of the one-dimensional Euler equations

∂tv + u ∂xv − v ∂xu = 0 ,

∂t u + u ∂xu + v p′v ∂xv + v p′s ∂xs = 0 ,

∂ts + u ∂xs = 0 .

14.3.2 Derivation of the Lopatinskĭı determinant

Once we have the description of E−(τ,η) we easily arrive at the Lopatinskĭı
condition. We consider the two cases separately.
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Outflow case If u < 0, one boundary condition b(v,u, s) is required. The
existence of non-trivial normal modes in the line E−(τ,η) is thus equivalent to

∆(τ,η) := db · e(τ,η) �= 0 .

We see in particular that this condition does not depend on ∂b/∂s. By definition
of e,

∆(τ,η) = v ( τ̃ − uω )
∂b

∂v
+ i c2 dǔb · η − c2 ω

∂b

∂u
.

We thus recover (as pointed out in Section 14.2) that prescribing the pressure
ensures the uniform Lopatinskĭı condition, since for b(v,u, s) = p(v, s) we have

∆(τ,η) = v ( τ̃ − uω ) p′v �= 0 for Re τ ≥ 0 , (τ,η) �= (0, 0) .

This is less obvious with the alternative boundary condition b(v,u, s) = u,
because in this case

∆(τ,η) = c2 ω ,

and it demands a little effort to check that ω does not vanish. For clarity, we
state this point in the following.

Proposition 14.1 For 0 > u > − c, the root ω+ of (14.3.8) that is of positive
real part for Re τ̃ > 0 has a continuous extension to Re τ̃ = 0 that does not
vanish for (τ,η) �= (0, 0).

Proof The only points where it could happen that ω+ vanishes are such that
τ̃2 = − c2 ‖η‖2. In particular, ω+ = 0 implies τ̃ ∈ i R, and also − τ̃2 ≥ (c2 −
u2) ‖η‖2 – otherwise, ω+ is of positive real part – in which case both roots of
(14.3.8) are purely imaginary. To determine which one is ω+, we use the Cauchy–
Riemann equations, which imply that

∂(Im ω+)
∂(Im τ̃)

> 0 .

Using this selection criterion, it is not difficult to see that

ω± =
−u τ̃ ± i c sign(Im τ̃)

√
− τ̃2 − (c2 − u2) ‖η‖2

c2 − u2
. (14.3.11)

(The same formulae hold for u > 0.) For τ̃2 = − c2 ‖η‖2, this gives (using the
fact that u is negative)

ω− = 0 and ω+ =
− 2 u τ̃

c2 − u2
,

the latter being non-zero unless (τ,η) = (0, 0). �
More generally, we can find alternative boundary conditions that satisfy

the uniform Lopatinskĭı condition without being dissipative. For instance,
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take α ∈ (0, 1) and

b(v,u, s) =
α

2
u2 + h(p(v, s), s) ,

where h = e + p v is the specific enthalpy. We find that

∆(τ,η) = − c2 ( τ̃ − (1 − α)uω ) �= 0 for Re τ ≥ 0 , (τ,η) �= (0, 0) .

This means that the uniform Lopatinskĭı condition is satisfied. Nevertheless, the
quadratic form defined in (14.2.1) may be non-definite on the tangent hyperplane
{α u u̇ + v ṗ + T ṡ = 0}. More specifically, this happens for

α ∈
(

1
1 +

√
1−M2

, 1
)

.

Inflow case If u < 0, (d + 1) boundary conditions b1(v,u, s), . . . , bd+1(v,u, s)
are needed. The existence of non-trivial normal modes in the hyperplane E−(τ,η)
is thus equivalent to

∆(τ,η) := det


db1

...
dbd+1

�(τ,η)

 �= 0 .

We may consider, for example, as the first d conditions

b1 = ǔ1 , . . . , bd−1 = ǔd−1 , bd = s .

Then, up to a minus sign,

∆(τ,η) = − v τ̃
∂bd+1

∂v
+ a

∂bd+1

∂u
.

In particular, for

bd+1(v, u, s) =
α

2
u2 + h(p(v, s), s) ,

we have

∆(τ,η) = (c2 + α u2) τ̃ + α uω(c2 − u2) �= 0 for Re τ ≥ 0, (τ,η) �= (0, 0),

provided that α > 0. For α large enough, this gives again an example of
boundary conditions satisfying the uniform Lopatinskĭı condition without being
dissipative.
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14.4 Construction of a Kreiss symmetrizer

The system (14.3.5) can be put into the abstract form

(A(τ,η) + ω Id+2 ) U̇ = 0 , U̇ =


v̇
˙̌u
u̇
ṡ

 .

We do not really need the explicit form of the (d + 2)× (d + 2) matrix A(τ,η).
We already know the eigenmodes of A(τ,η) from the calculation in Section
14.3.1. Its eigenvalues are −ω0, of geometric multiplicity d, −ω− and −ω+, with
associated eigenvectors defined by (14.3.9), i.e.

e±(τ,η) =


v ( τ̃ − uω± )

i c2 η
− c2 ω±

0

 .

The construction of a Kreiss’ symmetrizer in the neighbourhood of points (τ,η)
such that Re τ > 0 follows the general line described in Chapter 5, basically
using the Lyapunov matrix theorem. It is more interesting to look at the con-
struction about points with Re τ = 0, or equivalently Re τ̃ = 0. It will appear
to be much more elementary than for general abstract systems.

We recall that a local construction amounts to finding local coordinates, i.e.
locally invertible matrices T (τ,η), and Hermitian matrices R̃(τ,η), such that in
those co-ordinates the new matrix Ã = T−1AT enjoys a local estimate

Re ( R̃ Ã ) � γ I , γ = Re τ , (14.4.12)

and the boundary matrix B̃ = B T satisfies

R̃ + C B̃∗ B̃ ≥ β I (14.4.13)

for β and C > 0. For this construction, we of course assume that the Lopatinskĭı
condition holds at the point (τ0,η0) considered, which means that we have an
algebraic estimate

‖P0 U‖2 � ‖(I − P0)U‖2 + ‖ B̃ U ‖2 , ∀U ∈ Cd+2 ,

where P0 denotes a projector onto E−(τ0,η0). If P is a smoothly defined projector
in the neighbourhood of (τ0,η0) such that P0 = P (τ0,η0), this also implies the
locally uniform estimate

‖P U‖2 � ‖(I − P )U‖2 + ‖ B̃ U ‖2 , ∀U ∈ Cd+2 . (14.4.14)

This will be our working assumption, with a projector P to be specified.
We also assume (14.3.3). For Re τ = 0, we always have Re ω0 = 0, and we

have locally uniform bounds on Re ω± depending on the location of (τ,η) with
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respect to glancing points, where

− τ̃2 = (c2 − u2) ‖η‖2 , ω− = ω+ .

� If − τ̃2 < (c2 − u2) ‖η‖2,

Re ω− � − 1 and Re ω+ � 1 ,

� whereas, if − τ̃2 > (c2 − u2) ‖η‖2, we only have

Re ω− � − γ and Re ω+ � γ . (14.4.15)

Both ω− and ω+ remain bounded away from ω0 though.

Of course the weaker estimates (14.4.15) are satisfied in the first case. So we
can address the two open cases simultaneously. The glancing points will be dealt
with separately. Away from glancing points, ω0, ω+ and ω− are separated, so we
can choose a smooth basis of and consider the diagonal matrix similar to A,

Ã =

−ω+

−ω0 Id

−ω−

 .

The construction of a matrix R̃ satisfying (14.4.12) and (14.4.13) thus depends
on the sign of Re ω0. We shall use the spectral projectors Π± according to ω±.

Outflow (u < 0 hence Re ω0 � − γ) E− is one-dimensional and spanned by
the first vector in the new basis, and the basic estimate deriving from the
Lopatinskĭı condition is (14.4.14) with P = Π+, i.e.

‖U1‖2 �
d+2∑
j=2

‖Uj‖2 + ‖ B̃ U ‖2.

Then, taking

R̃ =

− 1
µ Id

µ


with µ large enough ensures (14.4.12) and (14.4.13).

Inflow (u > 0 hence Re ω0 � γ) E− is the hyperplane spanned by the first
(d + 1) vectors of the new basis, and the estimate deriving from the Lopatinskĭı
condition is (14.4.14) with P = I − Π−, i.e.

d+1∑
j=1

‖Uj‖2 � ‖Ud+2‖2 + ‖ B̃ U ‖2 .
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Then, taking

R̃ =

− 1
− Id

µ


with µ large enough ensures (14.4.12) and (14.4.13).

The construction of a symmetrizer about glancing points is, in general, a
hard piece of algebra/algebraic geometry. Here, it will be greatly simplified by
the special structure of our system, and more specifically the nice form of the
eigenvectors e±, which depend linearly on ω±. There is a very simple way to get a
Jordan basis at glancing points and extend it smoothly in their neighbourhoods.
It merely consists in considering

e1 := i
e+ + e−

2
and e2 :=

e+ − e−
ω+ − ω−

instead of e+ and e−. Both e1 and e2 are well-defined and independent of each
other in the neighbourhood of glancing points, e2 is even constant

e2 =


− v u

0
− c2

0

 ,

and e1 does belong to E− at glancing points. (The interest of the factor i in e1

will appear afterwards.) It is not difficult to find the reduced 2× 2 matrix a of
A on the invariant plane spanned by e1 and e2. To do the calculation even more
easily, we may use the standard notations

〈ω〉 =
ω+ + ω−

2
, 〈e〉 =

e+ + e−
2

, etc.,

[ω] = ω+ − ω− , [e] = e+ − e− , etc.

On the one hand, we have

A [e] = − [ω e]

and thus, by standard manipulation,

A [e] = − [ω] 〈e〉 − [ω] 〈ω〉 [e]
[ω]

.

On the other hand, we have

A〈e〉 = −〈ω e〉 = −〈ω 〉 〈e〉 + (〈ω 〉2 − 〈ω2 〉) [e]
[ω]

.
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Therefore,

a =
(

−〈ω 〉 i
i (〈ω 〉2 − 〈ω2 〉) −〈ω 〉

)
.

Recalling from (13.2.23) that

ω+ + ω− = − 2u τ̃

c2 − u2
and ω+ ω− = − τ̃2 + c2 ‖η‖2

c2 − u2
, (14.4.16)

the matrix a is explicitly given by

a =


u τ̃

c2 − u2
i

− i c2 τ̃2 + (c2 − u2) ‖η‖2
(c2 − u2)2

u τ̃

c2 − u2

 .

(Note that, at glancing points, a/i is exactly a 2× 2 Jordan block: we have
performed here an explicit calculation of the reduction pointed out by Ralston
[160] in an abstract framework.) Completing { e1 , e2} into a whole basis of Cd+2

by means of independent eigenvectors of A associated with −ω0, we get the
reduced – block-diagonal – matrix in that basis

Ã =
(
−ω0 Id

a

)
.

Then we look for a local symmetrizer R̃ that has the same structure as Ã. We
shall use here the projectors Π1,2 onto the co-ordinate axes spanned by e1,2.

Outflow (u < 0 hence Re ω0 � − γ) From the Lopatinskĭı condition we have
(14.4.14) with P = Π1, i.e.

‖Ud+1‖2 �
d∑

j=1

‖Uj‖2 + ‖Ud+2‖2 + ‖ B̃ U ‖2 .

So we look for

R̃ =
(

µ Id

r

)
,

with

Re (r a) � γ I2 and r �
(
−1 0
0 µ

)
. (14.4.17)

Inflow (u > 0 hence Re ω0 � γ.) From the Lopatinskĭı condition we have
(14.4.14) with P = I − Π2, i.e.

d+1∑
j=1

‖Uj‖2 � ‖Ud+2‖2 + ‖ B̃ U ‖2 ,
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and we look for

R̃ =
(
− Id

r

)
,

with again (14.4.17).

We now perform the construction of r in the two cases simultaneously. We first
expand a, writing as before τ = γ + i δ. Denoting for simplicity

a :=
u

c2 − u2
�= 0, b :=

2 c2

(c2 − u2)2
> 0, and ε := c2 δ2 − (c2 − u2)‖η‖2

(c2 − u2)2
,

we have

a = a0 + a1 + a2 ,

a0 = i

(
a δ 1
ε a δ

)
, a1 = γ

(
a 0
b δ a

)
, a2 = − i

2
γ2

(
0 0
b 0

)
.

The matrix a2 only contributes to higher-order terms in γ. Noting that the
lower-left corner of a1/γ,

b δ ∼ b
√

c2 − u2 ‖η‖
is non-zero, we consider a matrix r of the form

r =

 ε g
1
bδ

+ i γ a g

1
bδ

− i γ a g h

 ,

with g, h some real numbers to be specified. Then

Re (r a) = γ

 1 b δ h +
a

bδ
b δ h +

a

bδ
a (g + h)

 + O(γ2) .

So by the Cauchy–Schwarz inequality, the first requirement in (14.4.17) will
hold for small enough γ, provided that g is chosen of the same sign as a, with
|g| $ h2 > h. Observing that, at the glancing point,

r =
(

0 1/(bδ)
1/(bδ) h

)
,

the second requirement in (14.4.17) will hold with µ of the same order as h
(large), in a small enough neighbourhood of the glancing point.
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SHOCK STABILITY IN GAS DYNAMICS

The general theory (Chapter 12) has shown that the stability of shocks requires
that the number of outgoing characteristics (counting with multiplicity) be equal
to the number of jump conditions minus one: recall indeed that there is one degree
of freedom for the unknown front. With Rankine–Hugoniot jump conditions, a
necessary condition to have this equality is the Lax shock criterion.

In this chapter, we deal with the stability of Lax shocks for the full Euler
equations, as was done by Majda [126] (and independently by Blokhin [18]). For
the stability analysis of undercompressive shocks (submitted to generalized jump
conditions), and in particular of subsonic liquid–vapour phase boundaries, the
reader may refer to the series of papers [10,12,39–41] (also see [215]). Otherwise,
we recommend the very nice review paper by Barmin and Egorushkin [8] (in
which the reader will find, if not afraid of the cyrillic alphabet, numerous
interesting references to the Soviet literature), addressing also the stability of
viscous (Lax) shocks.

15.1 Normal modes analysis

Regarding the stability of shocks in gas dynamics, normal modes analysis
dates back to the 1940s (and the atomic bomb research): stability conditions
were derived in particular by Bethe [16], Erpenbeck [53], and independently
by D′yakov [52], Iordanskĭı [89], Kontorovich [101], etc. It was completed by
Majda and coworkers, who paid attention to neutral modes. However, they did
not publish the complete analysis for the full Euler equations (Majda referring
in [126] to unpublished computations by Oliger and Sundström), but only for
the isentropic Euler equations. We provide below this analysis, from a mostly
algebraic point of view, in which the isentropic case shows up as a special, easier
case – corresponding to a section of the algebraic manifold considered. (For a
more analytical point of view, see [92].)

With the full Euler equations in space dimension d, the number of outgoing
characteristics for Lax shocks is d + 1. Furthermore, it is easy to check that
outgoing characteristics correspond to the state behind (according to the termi-
nology introduced in Chapter 13) the shock only: depending on the choice of the
normal vector, pointing to the region where states are indexed by r, outgoing
characteristics would be denoted λr

2 and λr
3, or λl

1 and λl
2. Or equivalently, the

stable subspace to be considered in the normal modes analysis only involves
modes associated with the state behind the shock. We shall (arbitrarily) use the
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subscript l for the state past the shock, and the subscript r for the state behind,
the latter being most often omitted for simplicity.

From now on, we consider a reference subsonic state W = Wr, and a super-
sonic state Wl on the corresponding Hugoniot locus such that the mass-transfer
flux j is positive (consistently with the Lax shock inequalities in (13.4.48)). By
a change of frame, we can assume without loss of generality that the normal
propagation speed of the shock σ is zero, and that the tangential velocity of the
fluid ǔ is zero (recall that the tangential velocity is continuous across the shock
front.) In this way, we merely have

j = ρ u = ρl ul > 0 and 0 < M =
u

c
< 1 . (15.1.1)

15.1.1 The stable subspace for interior equations

The story is the same as for Initial Boundary Value Problems, since we only need
to consider the equations behind the shock. This simplification always occurs for
extreme shocks. (It does not occur for the phase transitions studied in [9, 10, 12]
for instance, but the method is analogous.)

We briefly recall the derivation of the stable subspace associated with interior
equations, for readers who would have skipped Section 14.3. There is one addi-
tional simplification here, due to the null tangential velocity ǔ, which amounts
to replacing τ̃ by τ . Linearizing the Euler equations written in the variables
(v,u, s), (14.3.2), about our constant reference state (v,u = (0, u), s), we get

( ∂t + u ∂z ) v̇ − v∇ · u̇ = 0 ,

( ∂t + u ∂z ) u̇ + v p′v ∇v̇ + v p′s∇ṡ = 0 ,

( ∂t + u ∂z ) ṡ = 0 ,

(15.1.2)

where z denotes the co-ordinate normal to the shock front. By definition,
for Re τ > 0 and η ∈ Rd−1, the sought stable subspace, E−(τ,η) is the space
spanned by vectors (v̇, u̇, s) such that there exists a mode ω of positive real part
for which

exp( τ t ) exp( iη · y) exp(−ω z ) (v̇, u̇, s)

solves (15.1.2). Here, we have denoted y := (x1, . . . , xd−1). We are thus led to
the system 

( τ − uω ) v̇ − v (iη · ˙̌u) + v ω u̇ = 0 ,

( τ − uω ) ˙̌u + v p′v i v̇ η + v p′s i ṡ η = 0 ,

( τ − uω ) u̇ − v p′v ω v̇ − v p′s ω ṡ = 0 ,

( τ − uω ) ṡ = 0 ,



426 Shock stability in gas dynamics

where u̇ = ( ˙̌u, u̇). Because of (15.1.1), the only non-trivial solutions with Re ω >
0 correspond to either ω = τ/u or the only root of positive real part of the
dispersion equation

( τ − uω )2 = c2 (ω2 − ‖η‖2 ) . (15.1.3)

And the corresponding invariant subspace admits the simple characterization

E−(τ,η) = �(τ,η)⊥ ,

�(τ,η) :=
(
a , − i v uηT , v τ , a p′s/p′v

)
,

(15.1.4)

where

a := u τ + ω ( c2 − u2 ) . (15.1.5)

15.1.2 The linearized jump conditions

With

σ =
∂tX√

1 + ‖∇̌X‖2
and n =

1√
1 + ‖∇̌X‖2

(
−∇̌X

1

)

the first (d + 1) equations in the Rankine–Hugoniot conditions (13.4.30) may be
rewritten as 

[
u − ǔ · ∇̌X

v

]
=
[

1
v

]
∂tX ,

[
u − ǔ · ∇̌X

v
ǔ
]
− [ p ] ∇̌X = ∂tX

[
ǔ
v

]
,

[
u − ǔ · ∇̌X

v
u

]
+ [ p ] = ∂tX

[ u

v

]
.

As to the last equation in (13.4.30), it may equivalently be replaced by the
purely thermodynamical equation (13.4.32).

Again, we emphasize that we need not perturb the state past the shock, which
simplifies the linearized jump conditions below. This is because we ultimately
look for solutions of the linearized jump conditions that belong to the stable
subspace E−(τ,η), which does not depend on the state past the shock, (vl,ul, sl).
This simplification is specific to extreme Lax shocks. However, the method is
similar for other kinds of shocks.

Linearizing all jump conditions about vr = v, ǔr = 0, ur = u, sr = s (with
vl, ǔl = 0, ul, sl kept fixed) and X = 0, and looking for front modes of the form
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exp( τ t ) exp( iη · y), we obtain the equations

− u

v2
v̇ +

1
v

u̇ = [ρ] τ Ẋ ,

u

v
˙̌u = i [p] Ẋ η ,

(p′v − u2/v2) v̇ + 2
u

v
u̇ + p′s ṡ = 0 ,

1
2 ( p′v [v] − [p] ) v̇ + (T + 1

2 p′s [v] ) ṡ = 0 ,

(15.1.6)

where the jumps now stand for jumps between the reference states. The last
equation has been obtained by linearizing (13.4.32), using the fundamental
relation (13.1.1). Note that the Rankine–Hugoniot condition applied to the
reference states implies

[p] = − u2

v2
[v]. (15.1.7)

(This is (13.4.34) with j = u/v.) So we shall substitute − u2

v2
[v] for [p] in the

system (15.1.6).

15.1.3 The Lopatinskĭı determinant

The existence of non-trivial vectors belonging to the space E−(τ,η) defined in
(15.1.4) and satisfying the system (15.1.6) is clearly equivalent to the existence
of non-trivial solutions of a linear, purely algebraic, system. To simplify the
computation, we can first eliminate ˙̌u by means of the second equation in (15.1.6),
which allows us to substitute u2 [v] ‖η‖2 Ẋ for i u v η · ˙̌u in the equation �(τ,η) ·
( v̇, ˙̌u, u̇, ṡ ) = 0 (defining E−(τ,η)). Using again the relation c2 = − v2 p′v, we
readily obtain the linear system

u
1
v

0 − [ρ] τ

(c2 + u2) 2
u

v
p′s 0

1
2 ( c2 − u2 ) [v] 0 T + 1

2 p′s [v] 0

− a v2 v τ − a p′s
v2

c2
−u2 [v] ‖η‖2





−v̇/v2

u̇

ṡ

Ẋ


=



0

0

0

0


.

(15.1.8)
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The existence of non-trivial solutions of (15.1.8) is then equivalent to the
vanishing of its determinant, which we denote by ∆(τ,η).

‘One-dimensional’ case The expansion of ∆(τ, 0) is straightforward. Using
the fact that a = τ c for η = 0, we have

∆(τ, 0) = 1
2 v [v] [ρ] τ2

∣∣∣∣∣∣∣∣
c2 + u2 2

u

v
p′s

c2 − u2 0 p′s + 2 T
[v]

− c v 1 − p′s v/c

∣∣∣∣∣∣∣∣
= τ2 T [v]

vl
c (c + u) ( 1 + M + M2 p′s

T [v] ).

(Recall that M = u/c denotes the Mach number.) Rewriting p′s/T = Γ/v, the
one-dimensional stability condition thus reads

1 + M + ΓM2 [v]
v

�= 0 . (15.1.9)

This condition holds true at least for weak shocks, as expected from the
general theory, or can be checked directly. For, the Mach number M admits the
finite limit 1 and thus

1 + M + ΓM2 [v]
v

> 0 (15.1.10)

for |[v]| small enough. The condition (15.1.9) might break down for large shocks
though. It depends of course on the equation of state.

An easy consequence of the previous argument is the following.

Proposition 15.1 Lax shocks of arbitrary strength are stable in one space
dimension, provided that γ ≥ Γ ≥ 0 (at least at the endstates).

Proof Surprisingly enough, the inequality (15.1.10) trivially holds true for an
expansive shock, that is, if [v] > 0. But more ‘standard’ shocks are compressive.
And if [v] < 0, we need an upper bound for ΓM2/v to prove that (15.1.10) holds
true. This bound can be found by noting that

c2 = γ p v ≥ Γ p v

by assumption. Therefore,

Γ M2 [v]
v

=
Γ v

c2

u2

v2
[v] ≥ 1

p
j2 [v] = − [p]

p

because of the Rankine–Hugoniot condition in (13.4.34). And consequently,

1 + M + ΓM2 [v]
v

≥ M +
pl

p
> 0 .

�
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Observe that ideal gases trivially satisfy γ ≥ Γ > 0 (provided that cv > 0).
For van der Waals gases, a short computation shows that γ ≥ Γ if and only if

R

cv
≥ 2

v − b

b
− v2

a(v − b)
R T .

This is obviously true for large enough temperatures, a rough bound being the
critical temperature Tc := 8a

27bR , but false for ‘small’ temperatures.
In view of (13.2.20), an equivalent statement of the strict inequalities

γ > Γ > 0 is

∂p

∂v

∣∣∣∣
e

< 0 and
∂p

∂e

∣∣∣∣
v

> 0 .

It is notable that this is precisely the assumptions that enabled Liu [118] to show
the unique solvability of the Riemann problem (using his admissibility criterion
for shocks).

Multidimensional case Assuming that η �= 0, we may introduce

V :=
τ

i ‖η‖ and A :=
a

i ‖η‖
to simplify the writing. In fact, it will be clearer to handle only quantities
homogeneous to velocities. This is why we set

A = cW .

Recalling the definition of a, (14.3.10), where ω is the root of positive real part
of (13.2.23), we find that W has the simple representation

W 2 = V 2 − (c2 − u2) , Im W < 0 when Im V < 0 , (15.1.11)

which extends analytically to {V ∈ R ; V 2 < c2 − u2}. By a standard argu-
ment, using Cauchy–Riemann equations, we also find that W has a continuous
extension to {V ∈ R ; V 2 ≥ c2 − u2}, given by

W = sign (V )
√

V 2 − (c2 − u2) .

Using these notations, the genuinely multidimensional Lopatinskĭı determi-
nant reads

∆(τ,η) := −‖η‖2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u
1
v

0 − [ρ]V

(c2 + u2) 2
u

v
p′s 0

1
2 ( c2 − u2 ) [v] 0 T + 1

2 p′s [v] 0

− cW v2 v V −W p′s
v2

c
u2 [v]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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that is,

∆(τ,η) := −‖η‖2 [v]2

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u
1
v

0
V

vl

c2 + u2 2
u

v
p′s 0

c2 − u2 0 p′s + 2T
[v] 0

− c v W V −W
v

c
p′s u2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The expansion of ∆(τ,η) results in

∆(τ,η) = −‖η‖2 T
[v]
vl

c2 u2
{

( 2 + ΓM2 [v]
v ) (V/u + W/c )V/u

− ( 1 − M2 ) ( (V/u)2 + vl/v )
}

,

(15.1.12)

where we have substituted T Γ/v for p′s, as in the 1D-case.
From the expression of the Lopatinskĭı determinant in (15.1.12), we see

that multidimensional stability conditions must involve the two non-dimensional
quantities

r :=
vl

v
and k := 2 + ΓM2 [v]

v
.

It is to be noted that k is related in a simple way to the ratio R defined in
Proposition 13.5,

R =
[p]
[v]

v + 1
2 Γ [v]

1
2 Γ [p] − γ p

.

Indeed, using (15.1.7), we find that

R = 1 − 2
k

(1 − M2) .

15.2 Stability conditions

15.2.1 General result

Thanks to the preliminary work of the previous section, we can derive a complete
hierarchy of stability conditions. As expected from the theory in [186], the one-
dimensional stability threshold in (15.1.9) turns out to be a transition point
from strong multidimensional instability to weak stability ofWR type. Attentive
readers will also note that the transition from neutral to uniform stability occurs
at a glancing point – in that the neutral mode found for k = 1 + M2(r − 1)
corresponds to ω = τ/u (see Chapter 13 for a more detailed discussion of
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glancing points). (This kind of transition was pointed out in an abstract setting
in [13].) To summarize, we have the following.

Theorem 15.1 (Majda) The stability of a Lax shock depends on the Mach
number behind the shock

M =
|u · n − σ|

c
∈ (0, 1)

and on the volumes behind and past the shock, respectively denoted by v and v0,
through the quantities

r :=
v0

v
and k := 2 + ΓM2 v − v0

v
. (15.2.13)

� One-dimensional stability is equivalent to

k �= 1 − M . (15.2.14)
� Weak (non-uniform) multidimensional stability is equivalent to

1 − M < k ≤ 1 + M2 ( r − 1 ) . (15.2.15)
� Uniform multidimensional stability is equivalent to

1 + M2 ( r − 1 ) < k . (15.2.16)

Remark 15.1 If the lower inequality in (15.2.15) is violated, and more precisely
if

k < 1 − M ,

the shock is violently unstable with respect to multidimensional perturbations,
even though it is stable to one-dimensional perturbations. As mentioned by
Majda in [125], this striking result was known since the work of Erpenbeck [53]
(also see the earlier work of D′yakov [52]).

Proof The one-dimensional stability condition has already been obtained
above, in the equivalent form (15.1.9).

It will turn out that multidimensional stability conditions can be infered
from the properties of a second-order algebraic curve. We strongly advocate this
mostly algebraic, and elementary point of view, which is a convenient alternative
to the analytical approach of Jenssen and Lyng [92], for instance. Of course, all
methods require some care and are a little lengthy.

The expression in (15.1.12) of the Lopatinskĭı determinant in terms of W ,
defined in (15.1.11), shows that multidimensional stability is encoded by the
zeroes of the function

f(z) := k ( z + g(z) ) z − ( 1 − M2 ) ( z2 + r ) , (15.2.17)

where

g(z)2 = M2 z2 − (1 − M2) , Im g(z) < 0 (15.2.18)
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on the lower half-plane {Im z < 0}. On the real axis, g (and thus also f) is
extended by continuity, which implies that

z g(z) > 0 for all z ∈ R ; z2 > (1 − M2)/M2 . (15.2.19)

Of course, g is analytic up to z ∈ R if z2 < (1 − M2)/M2. And on that part of
the real axis, g is purely imaginary. So it is clear that f cannot vanish for z ∈ R

and z2 < (1 − M2)/M2. Besides (15.2.19), it will also be useful to have in mind
that

z g(z) < 0 for all z ∈ i R− . (15.2.20)

We shall obtain stability conditions mainly by algebraic arguments, using
the following observation. If z is a zero of f , then x = z2 must be a zero of the
polynomial p(·, k) defined by

p(x, k) =
(
( k − ( 1 − M2 ) )x − ( 1 − M2 ) r

)2 − k2 x (M2 x − (1 − M2) ) .
(15.2.21)

For simplicity, we have stressed here only the dependence of p upon the parameter
k, even though it is also obviously a polynomial in r and M2. This simplifies the
writing and is confusionless since r and M2 are kept fixed in the discussion below.
Readers gifted in algebra will have checked that p is the resultant with respect
to y of two polynomials F (x, y) and G(x, y),

F (x, y) = k (x + y ) − ( 1 − M2 ) (x + r ) , (15.2.22)

which is obtained by replacing z2 by x and z g(z) by y in f(z), and

G(x, y) = y2 − x (M2 x − (1 − M2)) , (15.2.23)

which vanishes simultaneously with y2 − z2 g(z)2.
Conversely, if x is a zero of p(·, k) and z2 = x then, either

( k − ( 1 − M2 ) ) z2 − ( 1 − M2 ) r = − k z g(z) ,

which means that f(z) = 0, or

( k − ( 1 − M2 ) ) z2 − ( 1 − M2 ) r = + k z g(z)

and z is not a zero of f (unless z g(z) = 0). If x is real, the inequalities (15.2.19)
and (15.2.20) will enable us to decide which is the case. This discussion can be
summarized as follows, where for convenience we denote

x0 :=
( 1 − M2 ) r

k − ( 1 − M2 )
.

� If x is a negative real root of p(·, k) and z2 = x, z ∈ i R− is a zero of f if
and only if

( k − ( 1 − M2 ) ) (x − x0 ) > 0 .
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� If x is a positive real root of p(·, k) and z2 = x > x∗ := (1 − M2)/M2,
z ∈ R is a zero of f if and only if

( k − ( 1 − M2 ) ) (x − x0 ) < 0 .

Therefore, the conclusion will depend on

� the sign of k − ( 1 − M2 )

and on the position of x0(k) with respect to the real roots of p(·, k). From
the definition (15.2.21) of p(·, k), we see that

p(x0(k), k) = − k2 x0(k) (M2 x0(k) − (1 − M2) )

= − k2 ( 1 − M2 )2 r

( k − ( 1 − M2 ) )2
(M2 r − k + 1 − M2 ),

and we easily compute that the dominant coefficient of p(·, k) is

a2 = (1 − M2) ( k − 1 − M ) ( k − 1 + M ) .

Consequently, the position of x0(k) with respect to the real roots of p(·, k) is
determined by

� the sign of ( k − 1 − M ) ( k − 1 + M ) (M2 r − k + 1 − M2 ).

Since M ∈ (0, 1) we obviously have

1 − M < 1 − M2 < 1 + M .

So there will be a priori only two cases to consider, depending on the position of
1 + M with respect to M2 r + 1 − M2.

Case 1 r M < 1 + M , hence

1 − M < 1 − M2 < M2 r + 1 − M2 < 1 + M ,

Case 2 r M > 1 + M , hence

1 − M < 1 − M2 < 1 + M < M2 r + 1 − M2 .

Regarding the other coefficients of p(·, k), at the zeroth order we have

a0 = (1 − M2)2 r2 > 0 ,

and

a1(k) = (1 − M2) ( k2 − 2 r ( k − ( 1 − M2 ) ) .

Thus it is only

sign a2(k) = sign { ( k − 1 − M ) ( k − 1 + M ) }
that determines the sign of the product of the roots of p(·, k). The sign of a1 is
important at singular points of a2, in order to localize the infinite branches of
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the algebraic curve P := { (x, k) ; p(x, k) = 0 }. In fact, we have

a1(1 − M) = (1 − M2) (1 − M) (1 − M + 2 r M) > 0 ,

but the sign of

a1(1 + M) = (1 − M2) (1 + M) (1 + M − 2 r M)

depends on r. This leads us to split Case 1 into

Case 1a r M < (1 + M)/2, hence a1(1 + M) > 0 ,

Case 1b (1 + M)/2 < r M < 1 + M , hence a1(1 + M) < 0 .

We now have all the ingredients to infer the needed qualitative features of P.
There is always a parabolic branch with vertical asymptotes x = −1 and x = 0.
Another remark is that x0(k) is a root of p(·, k) only at k = 0, where x0 = − r,
and at k = M2 r + 1 − M2, where x0 = x∗ = (1 − M2)/M2. (The latter will
appear to be a transition point from neutral stability to uniform stability.)

We shall consider successively Cases 1a, 1b, and 2, and arrive at the conclusion
that

• a necessary and sufficient condition for f to have only real roots is (15.2.15);
• a necessary and sufficient condition for f to have no root at all is (15.2.16).

The reader may refer to the corresponding figures (Figs. 15.1–15.3) in order to
visualize the tedious but elementary arguments involved in the discussion below.

Case 1a

� for k < 1 − M , we have a2(k) > 0 and a2(k) p(x0(k), k) < 0. Therefore,
p(·, k) has two real roots of the same sign and x0(k) < 0 is in between.
Consequently, the smallest root, x of p satisfies

( k − ( 1 − M2 ) ) (x − x0 ) > 0

and thus yields a root z ∈ i R− of f . This root corresponds to a strongly
unstable mode. When k goes to 1 − M , x goes to −sign (a1a2)∞ = −∞.

� for 1 − M < k < 1 − M2, we have a2(k) < 0 and a2(k) p(x0(k), k) > 0.
Therefore, p(·, k) has two real roots of opposite signs (one going to +∞
when k goes to 1 − M) and x0(k) is smaller than both of them. The
negative root of p, still denoted x for simplicity, now satisfies

( k − ( 1 − M2 ) ) (x − x0 ) < 0 ,

which shows it does not give rise to a root of f . The positive one satisfies
the same inequality, and thus its square root (and the opposite) is a real
zero of f . This zero corresponds to a neutral mode.

� for 1 − M2 < k < M2 r + 1 − M2, we still have a2(k) < 0 and
a2(k) p(x0(k), k) > 0 and thus two real roots of opposite signs for p(·, k).
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The algebraic curve p=0 and the graph of x0

Figure 15.1: The curve P (thick solid line) in an example of Case 1a (M = 0.5,
r = 1.15).
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The algebraic curve p=0 and the graph of x0

Figure 15.2: The curve P (thick solid line) in an example of Case 1b (M = 0.5,
r = 4); the upper branch is out of range.



436 Shock stability in gas dynamics
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The algebraic curve p=0 and the graph of x0

Figure 15.3: The curve P (thick solid line) in an example of Case 2 (M = 0.5,
r = 2.15); the upper branch is out of range.

But x0(k) is now greater than both of them. Therefore, we are in the same
situation as before. The positive root of p yields a real root of f .

� for M2r+1−M2 <k<1+M , we have a2(k) < 0 and a2(k) p(x0(k), k) < 0.
Therefore, p(·, k) has two real roots of opposite signs and x0(k) is in
between. The negative one is such that

( k − ( 1 − M2 ) ) (x − x0 ) < 0 ,

and it is the contrary for the positive one. Thus, none of them yields a
root of f . The positive root goes to −sign (a1a2)∞ = +∞ when k goes to
1 + M .

� for 1 + M < k, we have a2(k) > 0 and a2(k) p(x0(k), k) > 0. Therefore,
p(·, k) has either two reals roots of the same sign or two conjugated complex
roots. And p(·, k) has one real root going to −sign (a1a2)∞ = −∞ when
k goes to 1 + M . Therefore, there exists ε > 0 such that for 1 + M <
k < 1 + M + ε, p(·, k) has two negative real roots, and x0(k) is greater
than both of them. (This is also the case for large enough k due to the
parabolic branch mentioned above.) As before, none of them yields a root
of f . In general, p has conjugated complex roots on some interval [K,L]
with K ≥ 1 + M + ε. But these cannot give rise to any complex zero of
f , by Rouché’s theorem and a connectedness argument.
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Case 1b

� for k < M2 r + 1 − M2, the situation is exactly as in Case 1a.
� for M2 r + 1 − M2 < k < 1 + M , as in Case 1a, p(·, k) has two real

roots of opposite signs, x0(k) is in between, and none of them yields a root
of f . The only difference is that it is the negative root that goes to infinity
when k goes to 1 + M .

� for 1 + M < k, as in Case 1a, p(·, k) has either two reals roots of the
same sign or two conjugated complex roots. This time p(·, k) has one real
root going to −sign (a1a2)∞ = +∞ when k goes to 1 + M . Therefore,
there exists ε > 0 such that for 1 + M < k < 1 + M + ε, p(·, k) has two
positive real roots, and x0(k) is less than both of them. As before, none of
them yields a root of f . For larger k, the conclusion that f keeps having
no roots follows in the same way as in Case 1a.

Case 2

� for k<1+M , the situation is similar as in Case 1 when k<M2r+1−M2.
� for 1 + M < k < M2 r + 1 − M2 , a2(k) > 0 and a2(k) p(x0(k), k) < 0.

Therefore, p(·, k) has positive real roots and x0(k) is in between. Only the
smallest one yields a (real) root of f , because

( k − ( 1 − M2 ) ) (x − x0 ) < 0 .

The greatest one goes to −sign (a1a2)∞ = +∞ when k goes to 1 + M .
� for M2 r + 1 − M2 < k, as in Case 1b, p(·, k) has two positive real roots,

and x0(k) is less than both of them, as long as k is not too large. None of
them yields a root of f . The conclusion is the same as in other cases.

�

15.2.2 Notable cases

The uniform stability condition (15.2.16) may equivalently be rewritten as

(Γ + 1) M2 v0 − v

v
< 1 .

It is obviously satisfied if v0 < v, which characterizes expansive shocks, as soon
as Γ ≥ −1. Using that M2 = v2 j2/c2 and the jump relation (13.4.34), another
statement of the uniform stability condition is

(Γ + 1) v
p − p0

c2
< 1 .

Ideal gases Since for ideal gases,

Γ + 1 = γ =
v c2

p
,
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the uniform stability condition here above is obviously always satisfied. There-
fore, we have the following.

Theorem 15.2 All Lax shocks are uniformly stable in ideal gases.

This result has been well-known since Majda’s work [125]. It was, nevertheless,
questioned, wrongly, very recently (see [42] for more details).

Weak shocks As noted by Métivier in [133], the uniform stability condition
(15.2.16) is satisfied for shocks of small enough amplitude. As a matter of fact,
k tends to 2 and r tends to 1 when the amplitude of the shock goes to 0.

Isentropic case We claim that stability conditions for isentropic gas dynamics
are a byproduct of stability conditions for complete gas dynamics, because isen-
tropic stability conditions are merely obtained by suppressing the penultimate
row and column of ∆. This just amounts to setting Γ = 0, or equivalently
k = 2, in the complete stability conditions. Therefore, we see from (15.2.14) that
the one-dimensional condition reduces to 1 + M �= 0, which is always satisfied.
Accordingly, the first inequality in the weak multidimensional stability condi-
tion (15.2.15) is trivially satisfied. And the uniform multidimensional stability
condition reduces to

M2 ( r − 1 ) < 1 , (15.2.24)

or equivalently

p − p0

− v p′v
< 1 .

This condition holds true in particular for the γ-law p = cst v−γ with γ ≥ 1.

15.2.3 Kreiss symmetrizers

The explicit construction of Kreiss’ symmetrizers given in Chapter 14 for regular
Initial Boundary Value problems is easily generalized to the shock stability
problem.

To stay close to the notations of Chapter 12, we denote here U = (v,u, s)
the set of thermodynamic and kinematic dependent variables, and

U : Rd−1 × R+ × R → Rd+2 × Rd+2 × R× Rd−1

(y, z, t) �→ (U−(y, z, t), U+(y, z, t), ∂tχ(y, t),∇yχ(y, t) )

the sought shock solution, where χ is the unknown front and U± = (v±,u±, s±)
correspond to the unknown states on either side (both defined on Rd−1 × R+ × R

after a suitable change of variables, see Chapter 12). For X = (y, z, t,η, τ) ∈
Rd−1 × R+ × Rd−1 × C, we denote by AU(X) the 2(d + 2)× 2(d + 2) matrix
obtained, as in the abstract framework of Chapter 12, through the following
successive transformations of the Euler equations on both sides of the unknown
front:
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i) fixing of the free boundary,
ii) linearization about U,
iii) freezing of coefficients at point (y, z, t),
iv) Fourier–Laplace transform, which amounts to replacing ∂t by its symbol

τ and ∂yj
by its symbol iηj for j ∈ {1, . . . , d− 1}.

There is no need to write the matrix AU(X) explicitly, for we know it is block-
diagonal,

AU(X) =
(
Al(X)

Ar(X)

)
,

and we know from Section 14.4 reduced forms of the blocks Al,r(X). Indeed,
if we denote by Ul = U−(y, z, t) the supersonic state and by Ur = U+(y, z, t)
the subsonic state of the fluid with respect to the shock front, for Re τ > 0 the
dispersion equation

(τ − ul ω)2 = c2
l (ω − ‖η‖2)

has two roots of positive real parts, which we denote by ωl
1 and ωl

2, while the
analogous dispersion equation for the subsonic state

(τ − ur ω)2 = c2
r (ω − ‖η‖2)

has one root of positive real part, which we denote by ωr
+, and one of negative

real part, which we denote by ωr
−. Denoting also ωl,r

0 := τ/ul,r, we have that
Al(X) is similar to

Ãl(X) =

ωl
0 Id

ωl
1

ωl
2

 ≥ 0 ,

while Ar(X) is similar to

Ãr(X) =
(
−ωr

0 Id

a

)
,

where the 2× 2 block a is either diag(−ωr
+,−ωl

−) if ωr
+ and ωr

− are distinct (i.e.
if τ2 + (c2

r − u2
r) ‖η‖2) �= 0) or a Jordan block. Therefore, we can find a Kreiss

symmetrizer of the form

RU(X) =
(

µ Id+2

Rr(X)

)
,

where the blockRr(X) is of the same form as the Kreiss symmetrizer constructed
in Section 14.4 for the standard, subsonic inflow IBVP. More precisely, Rr(X) is
locally similar (in the same basis as Ar(X)) to

R̃r(X) =
(
−Id

r

)
,
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where r is merely diag(−1, µ) if ωr
+ and ωr

− are distinct. Here above, of course,
the parameter µ has to be chosen large enough to absorb ‘bad’ terms.

This construction completes the proof of Lemma 12.1 in the case of gas
dynamics.

15.2.4 Weak stability

In the case of weak multidimensional stability (i.e. with (15.2.15)), it is still
possible to derive energy estimates, but of course with a loss of derivatives. This
question was investigated in detail by Coulombel [38, 39]. Here we just want to
address the order of vanishing of the Lopatinskĭı determinant, which is crucially
related to those weak energy estimates.

The order of vanishing of the Lopatinskĭı determinant is indeed tightly related
to the order of the corresponding root x of the polynomial p defined in (15.2.21).

Proposition 15.2 If z is a double root of the function f defined by (15.2.17)
and (15.2.18), with r �= 0 and M2 < 1, then z2 is a double root of the polynomial
p(·, k) defined in (15.2.21).

Proof We first note that z = 0 is not possible since r �= 0. A little algebra then
shows that f(z) = f ′(z) = 0 implies

a2(k) z2 +
a1(k)

2
= 0 ,

where am(k) denotes as before the coefficient of order m of p(·, k). Hence z2

can only be a double root of the second-order polynomial p(·, k). Beyond this
elementary proof, a cleverer one makes use of the fact that p is a resultant.
We recall indeed that p is the resultant with respect to the y variable of the
polynomials F and G defined in (15.2.22) and (15.2.23). A basic property of
resultants says there exist polynomials R(x, y) and Q(x, y) (in fact, Q(x) since
F is of degree 1 in y) such that

p(x) = F (x, y)R(x, y) + G(x, y)Q(x) .

In particular, this implies the identity

p(z2) = f(z) R( z2 , z g(z) ) .

Differentiating once, we obtain that

2 z p′(z2) = f ′(z) R( z2 , z g(z) )

if f(z) = 0, and thus p′(z2) = 0 if f ′(z) is also zero (recall that z �= 0 whenever
f(z) = 0). �
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A

BASIC CALCULUS RESULTS

The celebrated Gronwall Lemma is used repeatedly in this book. We state our
most useful versions of it for convenience.

Lemma A.1 (Basic Gronwall Lemma) If u and f are smooth functions of
t ∈ [0, T ] such that

u(t) ≤ C0 + C1

∫ t

0

(u(τ) + f(τ) ) dτ ∀t ∈ [0, T ] ,

with C0 ∈ R and C1 > 0 then

u(t) ≤ eC1 t

(
C0 + C1

∫ t

0

f(τ) dτ

)
∀t ∈ [0, T ] .

Proof The only trick in the proof is to show the final estimate for the right-
hand side

v(t) := C0 + C1

∫ t

0

(u(τ) + f(τ) ) dτ

of the original one. Since

v′(t) = C1 (u(t) + f(t) ) ≤ C1 ( v(t) + f(t) )

we easily get the inequality

e−C1 t v(t) ≤ v(0) + C1

∫ t

0

e−C1 τ f(τ) dτ ,

of which the claimed estimate is only a rougher version. �
A slightly more elaborate version that we often use is the following.

Lemma A.2 (Gronwall Lemma) If u and f are smooth functions of t ∈ [0, T ]
such that

u(t) ≤ C0 eγ t + C1

∫ t

0

eγ (t−τ) (u(τ) + f(τ) ) dτ ∀t ∈ [0, T ]

with C0 ∈ R and C1 > 0 then

u(t) ≤ C0 e(C1+γ) t + C1

∫ t

0

e(C1+γ) (t−τ) f(τ) dτ ∀t ∈ [0, T ] .
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Lemma A.3 (‘Multidimensional’ Gronwall Lemma) Assume L ⊂ Rd+1 is a
lens foliated by hypersurfaces Hθ and denote

Lθ =
⋃

ε∈[0,θ]

Hε ⊂ L

for θ ∈ [0, 1]. If u is a smooth function in the neighbourhood of L such that∫
Hθ

|u| ≤ C

(∫
H0

|u| +
∫
Lθ

|u|
)

∀θ ∈ [0, 1]

then there exists C ′ depending only on C and L such that∫
H1

|u| ≤ C ′
∫
H0

|u| .

Proof The proof relies on the same trick as before but requires a little multi-
dimensional calculus. Introducing parametric equations x = X(y, θ), t = T (y, θ)
(y ∈ Ω ⊂ Rd) for Hθ we have∫

Hθ

|u| =
∫

Ω

|u(X(y, θ), T (y, θ))|
√
|dyX|2 + |dyT |2 dy ,

∫
Lθ

u =
∫ θ

0

∫
Ω

|u(X(y, ε), T (y, ε))| |J(y, ε)|dy dε , J =
∣∣∣∣dyX ∂θX
dyT ∂θT

∣∣∣∣ .

Hence

d
dθ

∫
Lθ

|u| =
∫

Ω

|u(X(y, θ), T (y, ε))| |J(y, θ)|dy

≤ max
Ω̄×[0,1]

|J |√
|dyX|2 + |dyT |2

∫
Hθ

|u| .

Then we easily get the wanted estimate with

C ′ = max
Ω̄×[0,1]

exp

(
C

|J |√
|dyX|2 + |dyT |2

)
.

�
Lemma A.4 (Discrete Gronwall Lemma) If a is a non-negative continuous
function of s ∈ [0, t] and b is a non-decreasing function of s ∈ [0, t] such that

a(s + ε)− a(s)
ε

≤ C ( ε + b(s) + a(s + ε) )

for all (ε, s) with 0 < ε ≤ ε0 ∈ (0, t), s ∈ [0, t− ε], then

a(t) ≤ eC t ( a(0) + b(t) ) .
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Proof The proof is fully elementary. Take D > C and consider n ∈ N such
that εn := t

n+1 satisfies

e−D εn ≤ 1 − C εn .

For all s ∈ [0, t− εn], we have

a(s + εn) ≤ 1
1− Cεn

a(s) +
Cεn

1− Cεn
(εn + b(s)) .

Therefore,

e−D t a(t) − a(0) =
n∑

k=0

e−D (k+1) εn a((k + 1) εn)− e−D k εn a(k εn)

≤
n∑

k=0

e−D k εn

(
e−D εn

1− Cεn
− 1
)

a(k εn)

+
n∑

k=0

e−D (k+1) εn
Cεn

1− Cεn
(εn + b(k εn))

≤ C

1− Cεn
(εn + b(t))

∫ x

0

e−D sds ≤ C

D(1− Cεn)
(εn + b(t)).

We get the final estimate by letting n go to ∞ and then D go to C. �



B

FOURIER AND LAPLACE ANALYSIS

B.1 Fourier transform

There are several possible conventions for the definition of a Fourier transform,
depending on where the number 2π shows up.

We adopt the following one. For all v ∈ L1(Rd) its Fourier transform Fv = v̂
is the continuous and bounded function defined by

Fv(η) = v̂(η) :=
∫

Rd

e−iη·xv(x) dx

for all η ∈ Rd.
For any d-uple α = (α1, · · · , αd) ∈ Nd, we adopt the shortcut

∂α = ∂1
α1 · · · ∂d

αd

for differential operators of order |α| :=∑d
k=1 αk, either in the original variables

(x) or in the frequency variables (η).
For convenience, we state the following standard results.

Theorem B.1

� The Fourier transform F restricted to the Schwartz class S (Rd) is an
automorphism.

� By duality, it can be also defined on S ′(Rd), where it is still an automor-
phism.

� For all v ∈ S (Rd) and all d-uple α, we have

F [∂αv](η) = (i η)α v̂(η)

for all η ∈ Rd. And this formula extends to S ′(Rd) in the sense that for
v ∈ S ′(Rd), the distribution F [∂αv] is v̂ times the polynomial function
η �→ i ηα.

� (Plancherel’s identity) For all v ∈ S (Rd),

‖v̂‖L2(Rd) = (2π)d/2‖v‖L2(Rd) .

� By density, F extends to an automorphism of L2(Rd), which still satisfies
Plancherel’s identity.
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� (Inversion formula) If both v and v̂ are integrable, one recovers v from
v̂ through the inversion formula

v(x) = (2π)−d

∫
Rd

eiη·xv̂(ξ)dξ .

Another useful result is the following, of which the easy part is the direct one.

Theorem B.2 (Paley–Wiener) If v ∈ D(Rd) then v̂ extends to an analytic
function V on Cd. Furthermore, if K = Supp v, for all p ∈ N, there exists Cp >
0 so that

|V (ζ)| ≤ Cp

(1 + |ζ|)p
exp
(
max
x∈K

(x · Im ζ)
)

for all ζ ∈ Cd. Conversely, if V is an analytic function on Cd satisfying the above
estimate for some convex compact set K, there exists v ∈ D(Rd) with support
included in K such that v̂ = V |Rd .

The ‘dual’ result also holds true.

Theorem B.3 (Paley–Wiener–Schwartz) If v is a compactly supported distrib-
ution then v̂ extends to an analytic function V on Cd through the formula

V (ζ) = 〈 v , e− i ζ· 〉 .

Furthermore, if K = Supp v, there exist p ∈ N and Cp > 0 so that

|V (ζ)| ≤ Cp (1 + |ζ|)p exp
(
max
x∈K

(x · Im ζ)
)

for all ζ ∈ Cd. Conversely, if V is an analytic function on Cd satisfying the above
estimate for some convex compact set K, there exists v ∈ E ′(Rd) with support
included in K such that v̂ = V |Rd .

B.2 Laplace transform

The Laplace transform applies to functions of one variable t ∈ (0,+∞).

Definition B.1 If f is a measurable function of t ∈ (0,+∞) and if there exists
a ∈ R so that t �→ e− a t f(t) is square-integrable, the Laplace transform of f is
the function L[f ], holomorphic in the half-plane { τ ; Re τ > a}, defined by

L[f ](τ) =
∫ +∞

0

f(t) e− τ t dt .

The Laplace transform may be interpreted in terms of a Fourier transform.
Indeed, for all γ > a and δ ∈ R,

L[f ](γ + i δ) = (̂g f) (δ) ,
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where g(t) = 1R+(t) e− γ t. Therefore, the theorem of Paley–Wiener has a coun-
terpart in Laplace transforms theory. This is the main result we need regarding
Laplace transforms in this book.

Theorem B.4 (Paley–Wiener) If F is an holomorphic function in the right
half-plane { τ ; Re τ > a }, which is square-integrable on each vertical line
{ τ ; Re τ = γ }, γ > a, and if there exists C > 0 so that

sup
γ>a

∫ +∞

−∞
|F (γ + i δ) |2 dδ ≤ C ,

then there exists f ∈ L2(R+{e− a t dt}) (meaning that t �→ e− a t f(t) is square-
integrable) such that F = L[f ]. If, additionally, F is integrable on the vertical
line { τ ; Re τ = γ }, γ > a, we recover f through the inversion formula

f(t) =
1

2 i π

∫
Re τ=γ

F (τ) eτ t ds .

B.3 Fourier–Laplace transform

Fourier and Laplace transformations can be extended to vector-valued functions
– in fact functions with values in Banach spaces. From a practical point of view,
this amounts to saying that for functions of several variables one may perform
Fourier or Laplace transformations in some variables only and keep the same
regularity/decay properties in the other variables.

More precisely, let u be a function of (x, t) ∈ Rd × R+ that belongs to

L2(Rd × R+{e− a t dt dx}) .

For almost all t ∈ R+, the function u(t) : x ∈ Rd �→ u(x, t) is square-integrable
and thus admits a Fourier transform û(t) ∈ L2(Rd) such that the function
(ξ, t) �→ û(t)(ξ) belongs to

L2(Rd × R+{e− a t dt dξ}) .

Therefore, for almost all ξ ∈ Rd, the function t ∈ R+ �→ e− a t û(t)(ξ) is square-
integrable and thus the Laplace transform

L[t �→ û(t)(ξ)]

is well-defined and holomorphic on the half-plane { τ ; Re τ > a }. The function

(ξ, τ) �→ L[t �→ û(t)(ξ)](τ)

is what we call the Fourier–Laplace transform of u.
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PSEUDO-/PARA-DIFFERENTIAL CALCULUS

The aim of this appendix is to facilitate the reading of the book for those who
are not familiar with para-differential or even pseudo-differential calculus. Just
a basic background on distributions theory and Fourier analysis is assumed.
As many textbooks deal with pseudo-differential calculus (see for instance
[7, 31, 87, 205]), we recall here only basic definitions and useful results for our
concern, mostly without proof. Para-differential calculus is much less widespread.
Originally developed by Bony [20] and Meyer [138], it has been used since then in
various contexts, in particular by Gérard and Rauch [68] for non-linear hyperbolic
equations and more recently by Métivier and coworkers for hyperbolic initial
boundary value problems – see in particular the lectures notes [136]. Other
helpful references on para-differential calculus are [33, 88, 206]. We detail in this
appendix the most accessible part of the theory of para-differential operators,
among which we find para-products. Some useful results are gathered together
with their complete (and most often elementary) proof, using the Littlewood–
Paley decomposition. The rest of the theory is presented heuristically, together
with a collection of results used elsewhere in the book. Additionally, we borrow
from [31] and [136] versions of pseudo-differential and para-differential calculus
with a parameter, which are needed for initial boundary value problems.

We use standard notations from differential calculus. To any d-uple α =
(α1, · · · , αd) ∈ Nd, we associate the differential operator of order |α| :=∑d

k=1 αk

∂α
x =

∂|α|

∂xα1
1 · · · ∂xαd

d

.

When no confusion can occur this operator is simply denoted by ∂α. This
notation should not be mixed up with the one used throughout the book

∂α =
∂

∂xα

for α ∈ {1, · · · , d}. To avoid confusion, the indices lying in {1, · · · , d} are here
preferably denoted by roman letters (typically j).
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C.1 Pseudo-differential calculus

C.1.1 Symbols and approximate symbols

Pseudo-differential operators are defined through their symbol, which is a function
depending on x ∈ Rd and on the ‘dual’ variable, or frequency, ξ ∈ Rd. This
function is not polynomial in ξ, except for (standard) differential operators –
for instance the symbol of ∂α is

(i)|α| ξα = (iξ1)α1 · · · (iξd)αd .

In the classical theory, symbols are scalar-valued (in C). As far as we are con-
cerned, matrix-valued symbols are also of interest. This extension costs nothing,
but some little care in Lemma C.1 below and in the handling of commutators.

From now on, we fix some integers d and N that will be omitted in the
notations if no confusion can occur.

Definition C.1 For any real number m, we define the set Sm of functions
a ∈ C∞(Rd × Rd; CN×N ) such that for all d-uples α and β there exists Cα,β > 0
so that

‖ ∂α
x ∂β

ξ a(x, ξ) ‖ ≤ Cα,β ( 1 + ‖ξ‖ )m−|β| . (C.1.1)

Symbols belonging to Sm are said to be of order m. The set of symbols of all
orders is

S−∞ :=
⋂
m

Sm .

Basic examples

Differential symbols. Functions of the form

a(x, ξ) =
∑

|α| ≤m

aα(x) (iξ)α ,

where all the coefficients aα are C∞ and bounded, as well as all their derivatives,
belong to Sm.

‘Homogeneous’ functions. A function a ∈ C∞(Rd × Rd\{0}) that is
bounded as well as all its derivatives in x and homogeneous degree m in ξ is
‘almost’ a symbol of order m. This means that it becomes a symbol provided
that we remove the singularity at ξ = 0. As a matter of fact, considering a C∞

function χ vanishing in a neighbourhood of 0 and such that χ(ξ) = 1 for ‖ξ‖ ≥ 1,
we have the result that

ã(x, ξ) = χ(ξ) a(x, ξ)

belongs to Sm. Any other symbol constructed in this way differs from ã by a
symbol in S−∞. For convenience we shall denote Ṡm the set of such functions a.
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Sobolev symbols Some special symbols are extensively used in the theory,
which we refer to as Sobolev symbols since they are naturally involved in Sobolev
norms. Denoting

λs(ξ) := ( 1 + ‖ξ‖2 )s/2

it is easily seen that λs is a symbol of order s. The important point is that the
Sobolev space Hs can be equipped with the norm

‖u ‖Hs = ‖λs û ‖L2 .

Additionally, the following result will be of interest in the proof of Theorem
C.4.

Lemma C.1 For all a ∈ S0, respectively a ∈ Ṡ0, such that a(x, ξ) is Hermitian
and uniformly positive-definite for (x, ξ) ∈ Rd × Rd, respectively, for (x, ξ) ∈
Rd × Rd\{0}, there exists b ∈ S0, respectively b ∈ Ṡ0, such that b(x, ξ)∗ b(x, ξ) =
a(x, ξ).

Proof The proof proceeds in the same way in both cases (a ∈ S0 or a ∈ Ṡ0).
By assumption, a(x, ξ) lies in a bounded subset of the cone of Hermitian positive-
definite matrices and thus the set of eigenvalues of a(x, ξ) is included in some real
interval [α, β] ⊂ (0,+∞). In particular, there exists a positively oriented contour
Γ lying in C\(−∞, 0] that is symmetric with respect to the real axis and contains
[α, β] in its interior. Therefore, considering the holomorphic complex square root√ in C\(−∞, 0], the Dunford–Taylor integral

b(x, ξ) :=
1

2iπ

∫
Γ

√
z ( z − a(x, ξ) )−1 dz

answers the question. As a matter of fact, by the symmetry of Γ, b(x, ξ) is
obviously Hermitian, and

b∗ b =
− 1
4π2

∫
Γ

∫
Γ′

√
z
√

z′ ( z − a )−1 ( z′ − a )−1 dz dz′

for another contour Γ′ enjoying the same properties as Γ and containing it in its
interior. By the well-known resolvent equation, we thus have

b∗ b =
1

(2iπ)2

∫
Γ

∫
Γ′

√
z
√

z′
( z − a )−1 − ( z′ − a )−1

z′ − z
dz dz′ .

On the one hand, for z′ ∈ Γ′, the function z �→ √
z/(z′ − z) is holomorphic in the

interior of Γ and thus ∫
Γ

√
z

z′ − z
dz = 0 .



452 Pseudo-/para-differential calculus

On the other hand, by Cauchy’s formula we have

√
z =

1
2iπ

∫
Γ′

√
z′

z′ − z
dz′

for z ∈ Γ. This eventually proves that

b∗ b =
1

2iπ

∫
Γ

z ( z − a )−1 dz = a .

In view of the smoothness of the mapping (z, a) �→ ( z − a )−1, it is clear by the
chain rule and Lebesgue’s theorem that b is as smooth as a. It is also easily shown
by induction that b satisfies the estimate (C.1.1) with m = 0, if a belongs to S0.
If a belongs to Ṡ0 instead, it is obvious that b is also homogeneous degree 0 in
ξ. �

C.1.2 Definition of pseudo-differential operators

The introduction of pseudo-differential operators is based on the following obser-
vation. If a ∈ Sm is polynomial in ξ, like in the first basic example given above,
it is naturally associated with the differential operator

Op(a) =
∑

|α| ≤m

aα(x) ∂α

in the sense that

(Op(a)u)(x) = F−1(a(x, ·) û)

for all u ∈ S and x ∈ Rd. But this formula can be used to define operators
associated with more general symbols. This is the purpose of the following.

Proposition C.1 Let a be a symbol of order m. Then there exists a continuous
linear operator on S , denoted by Op(a), such that

(Op(a)u)(x) =
1

(2π)d

∫
Rd

eix·ξ a(x, ξ) û(ξ) dξ (C.1.2)

for all u ∈ S . Furthermore, the mapping a �→ Op(a) is one-to-one.

Observe that for ‘constant-coefficient symbols’, that is, symbols independent
of x, (C.1.2) reduces to the same formula as for differential operators

Op(a)u = F−1(a û) .

In short, for symbols a depending only on ξ, we have by definition

Op(a) = F−1aF .

Definition C.2 The set of pseudo-differential operators of order m is

OPSm := {Op(a) ; a ∈ Sm } ⊂ B(S ) .
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For a ∈ Sm, the operator Op(a) is called a pseudo-differential operator of order
m and symbol a.

It is more subtle to show that pseudo-differential operators extend to oper-
ators on S ′. By a standard duality argument, this amounts to showing the
following.

Theorem C.1 The adjoint of a pseudo-differential operator of order m is a
pseudo-differential operator of order m. Furthermore, the symbol of the adjoint
operator Op(a)∗ differs from a∗ (where a∗(x, ξ) := a(x, ξ)∗ merely in the sense
of matrices) by a symbol of order m− 1, which means that

(Op(a))∗ − Op(a∗) ∈ OPSm−1 (C.1.3)

for all a ∈ Sm.

The proof of this theorem is a very fine piece of analysis. The interested reader
may refer to [7, 87,205].

C.1.3 Basic properties of pseudo-differential operators

The first important property of pseudo-differential operators is the following.

Theorem C.2 Let P be a pseudo-differential operator of order m, extended to
S ′ by the formula

〈Pu , φ 〉 = 〈u , P ∗φ 〉
for all u ∈ S ′ and φ ∈ S . Then, for all s ∈ R, P belongs to B(Hs;Hs−m).

A straightforward example. For all s ∈ R, let Λs denote the pseudo-
differential operator of symbol λs as defined in Section C.1.1. Then for all real
numbers s we have

‖u‖Hs = ‖Λsu‖L2 .

Therefore, we have for all m ∈ R

‖Λm u‖Hs−m = ‖Λs−mΛm u‖L2 = ‖Λs u‖L2 = ‖u‖Hs .

In fact, using the operators Λs and Λ−m, all cases of Theorem C.2 can be
deduced from the case m = s = 0 and the other following basic result.

Theorem C.3 If P and Q are pseudo-differential operators of order m and n,
respectively, then

i) the composed operator PQ is a pseudo-differential operator of order m + n,
and its symbol differs from the product of symbols by a lower-order term,
which means that

Op(a)Op(b) − Op(ab) ∈ OPSm+n−1 (C.1.4)

for all a ∈ Sm and b ∈ Sn.
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ii) if one of the operators is scalar-valued, the commutator

[P,Q] := P Q − QP

is of order m + n − 1 (and its symbol differs from the Poisson bracket of
symbols

{a , b} :=
∑

j

∂a

∂ξj

∂b

∂xj
− ∂a

∂xj

∂b

∂ξj

by a lower-order term).

The proofs of Theorems C.2 and C.3, as well as more complete results, can
be found in the textbooks quoted above [7,31,87,205]. Note that apart from the
bracketed statement, ii) is a trivial consequence i).

Finally, other important results are the G̊arding inequality, which relates
the positivity of an operator (up to a lower-order error) to the positivity of
its symbol, and the sharp form of G̊arding’s inequality, which applies to non-
negative symbols. We begin with the standard form of G̊arding’s inequality (for
matrix-valued symbols) and its elementary proof.

Theorem C.4 (G̊arding inequality) If A is a pseudo-differential operator of
symbol a ∈ Sm, or A is associated with a ∈ Ṡm by a low-frequency cut-off, such
that for some positive α

a(x, ξ) + a(x, ξ)∗ ≥ α λm(ξ) IN

(in the sense of Hermitian matrices) for all x ∈ Rd and ‖ξ‖ large, then there
exists C so that

Re 〈Au , u 〉 ≥ α

4
‖u‖2Hm/2 − C ‖u‖2Hm/2−1 (C.1.5)

for all u ∈ Hm/2.

Proof Replacing A by Λ−m/2 AΛ−m/2, we can suppose without loss of gener-
ality that m = 0.

• We have Re 〈Au , u 〉 = Re 〈 1
2 (A + A∗)u , u 〉 , and by (C.1.3) we know

that

(A + A∗) − Op(a + a∗) ∈ OPS−1 .

Therefore, there exists c > 0 so that

〈 (A + A∗)u , u 〉 ≥ 〈Op(a + a∗)u , u 〉 − c ‖u‖H−1 ‖u‖L2

≥ 〈Op(a + a∗)u , u 〉 − α

16
‖u‖2L2 − 4c2

α
‖u‖2H−1 .
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Thus the result will be proved if we show that

〈Op(a + a∗)u , u 〉 ≥ 9α

16
‖u‖2L2 − C ‖u‖2H−1 .

In some sense this reduces the problem to Hermitian symbols.
• By assumption, the Hermitian symbol ã := a + a∗ − α′ IN , with α′ =

3α/4, is positive-definite. By Lemma C.1, there exists b ∈ S0 such that b∗b = ã.
Denoting B = Op(b) and Ã = Op(a + a∗ − α′IN ), we know from Theorems C.1
and C.3 i) that

B∗B − Ã ∈ OPS−1 .

Consequently, there exists c̃ > 0 so that

〈Ãu, u〉 ≥ 〈B∗Bu, u〉 − c̃‖u‖H−1‖u‖L2 ≥ ‖Bu‖2L2 − α′

4
‖u‖2L2 − c̃2

α′ ‖u‖
2
H−1 ,

which implies that

〈Op(a + a∗)u , u 〉 ≥ 3α′

4
‖u‖2L2 − c̃2

α′ ‖u‖
2
H−1 .

• Finally, we have the inequality in (C.1.5) with C = (4c2 + 3c̃2)/(2α). �
We complete this section by stating without proof the sharp G̊arding inequal-

ity, which amounts to allowing α = 0 in the standard one. In other words, it
shows that non-negative symbols imply a gain of derivatives: an operator of order
s with non-negative symbol satisfies a lower bound as though it were of order
s− 1. The sharp G̊arding inequality was originally proved by Hörmander [86] for
scalar operators and by Lax and Nirenberg [112] for matrix-valued symbols. The
proof was later simplified by several authors; it can be found in [88,205,210].

Theorem C.5 (Sharp G̊arding inequality) If A is a pseudo-differential opera-
tor of symbol a ∈ Sm, or A is associated with a ∈ Ṡm by a low frequency cut-off,
such that for some positive α

a(x, ξ) + a(x, ξ)∗ ≥ 0

(in the sense of Hermitian matrices) for all x ∈ Rd and ‖ξ‖ large, then there
exists C so that

Re 〈Au , u 〉 ≥ −C ‖u‖2H(m−1)/2 (C.1.6)

for all u ∈ Hm/2.

C.2 Pseudo-differential calculus with a parameter

The introduction of a parameter γ is intended to deal with weighted-in-time
estimates, typically in L2(R, e−γt dt).

We shall consider symbols that depend uniformly on a parameter γ ∈ [1,+∞).
To avoid overcomplicated notations, we shall use, as far as possible, the same
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notations as in standard pseudo-differential calculus. The main difference is that
λ now stands for the rescaled weight

λs(ξ, γ) := ( γ2 + ‖ξ‖2 )s/2 .

Alternatively, we shall sometimes denote λs,γ = λs(·, γ). Associated with λs,γ

is an equivalent norm on Hs, namely ‖λs,γ û ‖L2 . To avoid confusion with the
standard norm, we shall denote

‖u ‖Hs
γ

= ‖λs,γ û ‖L2 .

One may also observe that

‖u ‖Hs ≤ ‖u ‖Hs
γ
≤ γs ‖u ‖Hs

for s > 0 (and the converse for s < 0). Another useful remark about these
weighted norms is that

‖u ‖Hs
γ
≤ γs−m ‖u ‖Hm

γ

for s ≤ m.

Remark C.1 For m ∈ N, there exist cm > 0 and Cm > 0 so that

cm

∑
|α|≤m

γ2(m−|α|) ‖∂αu‖2L2 ≤ ‖u‖2Hm
γ
≤ Cm

∑
|α|≤m

γ2(m−|α|) ‖∂αu‖2L2

for all γ ≥ 1 and u ∈ Hm.

Definition C.3 For any real number m, we define the set Sm of functions
a ∈ C∞(Rd × Rd × [1,+∞[; CN×N ) such that for all d-uples α and β there exists
Cα,β > 0 so that

‖ ∂α
x ∂β

ξ a(x, ξ, γ) ‖ ≤ Cα,β λm−|β|(ξ, γ) . (C.2.7)

(One may relax the smoothness with respect to γ assumption, which is of no use
actually.)

Basic examples. Of course the first example is given by functions λs them-
selves. Clearly, λm belongs to Sm. More generally, if (ξ, γ) �→ a(ξ, γ) is C∞

on (Rd × R+)\{(0, 0)} and homogeneous degree m, then its restriction to
Rd × [1,+∞) belongs to Sm. (Compared to the usual symbols, the singularity
at the origin is eliminated by taking γ ≥ 1.)

Needless to say, Lemma C.1 extends to this setting in a straightforward way.
Also, Proposition C.1 and Theorem C.1 enable us to define Opγ(a) in such a way
that

(Opγ(a)u)(x) =
1

(2π)d

∫
Rd

eix·ξ a(x, ξ, γ) û(ξ) dξ (C.2.8)
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for all u ∈ S . And Theorem C.2 applies to the operator Opγ for all γ ≥ 1.
However, one may wish to keep track of the dependence on γ in the estimates.
This leads to the following.

Definition C.4 A family of pseudo-differential operators {P γ}γ≥1 is said to
be of order m if P γ belongs to OPSm for all γ ≥ 1 and for all s there exists a
constant C, independent of γ, so that

‖P γu‖Hs−m
γ

≤ C ‖u‖Hs
γ

.

The basic example of a family of order m is precisely

{Λm,γ}γ≥1 ,

where Λm,γ is by definition the pseudo-differential operator of symbol λm,γ . As
a matter of fact, the little calculation made in Section C.1.3 just becomes

‖Λm,γ u‖Hs−m
γ

= ‖Λs−m,γΛm,γ u‖L2 = ‖Λs,γ u‖L2 = ‖u‖Hs
γ

.

More generally, it can be shown that {Opγ(a)}γ≥1 is a family of order m for
any a ∈ Sm. We actually have a collection of results of this kind – extending
Theorems C.1 and C.3 – that we summarize in the following.

Theorem C.6 If a and b belong to Sm and Sn, respectively, then

i) {Opγ(a)}γ≥1 is a family of order m,
ii) { (Opγ(a))∗ − (Opγ(a∗)) }γ≥1 is a family of order m− 1,
iii) {Opγ(a) ◦Opγ(b) − Opγ(ab)}γ≥1 is a family of order m + n− 1,
iv) { [ Opγ(a) , Opγ(b) ] − Opγ([a, b]) }γ≥1 is a family of order m + n− 1.

The proof of course relies on the fact that the estimates in (C.2.7) are
independent of γ. Let us sketch the proof of i). We need a bound for Opγ(a)
in B(Hs

γ ;Hs−m
γ ) that is uniform in γ. So we go back to the usual estimation

of Opγ(a), and pay attention to the dependence on γ. The case m = s = 0 is
rather easy, because the norm of Opγ(a) as an operator on L2 only depends on
bounds on derivatives of a (even though this fact is not so easy to prove, it is
well-known), which are independent of γ by assumption. For arbitrary m and s,
the proof amounts to playing with commutators involving Λs,γ and Λ−m,γ , thus
reducing the problem to the case m = s = 0. So it is closely related to the proof
of iii). The details are left to the reader.

Remark C.2 Since

‖u ‖Hs
γ
≤ γs−p ‖u ‖Hp

γ

for s ≤ p, a family {P γ}γ≥1 of order m satisfies

‖P γu‖Hs−m
γ

≤ C γs−p ‖u‖Hp
γ
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for s ≤ p. In particular, for a family of negative order, we can take p = s−m
and obtain

‖P γu‖Hp
γ
≤ C γm ‖u‖Hp

γ
.

We complete this section by parameter versions of G̊arding’s inequality.

Theorem C.7 (G̊arding inequality with parameter) If a ∈ Sm is such that for
some positive α,

a(x, ξ, γ) + a(x, ξ, γ)∗ ≥ α λm(ξ, γ) IN

(in the sense of Hermitian matrices) for all (x, ξ, γ) ∈ Rd × Rd × [1,+∞), then
there exists γ0 ≥ 1 so that for all γ ≥ γ0 and u ∈ Hm/2,

Re 〈Opγ(a)u , u 〉 ≥ α

4
‖u‖2

H
m/2
γ

. (C.2.9)

Compated to the standard G̊arding’s inequality in (C.1.5), the inequality (C.2.9)
does not contain any remainder term. This is made possible by absorbing the
errors in the main term for γ large enough.

Proof The proof parallels that of Theorem C.4.
• By Theorem C.6 ii) and the Cauchy–Schwarz inequality, there exists c > 0

so that

〈 (Opγ(a) + Opγ(a)∗)u , u 〉 ≥ 〈Opγ(a + a∗)u , u 〉 − c ‖u‖H2m−1−m
γ

‖u‖Hm
γ

.

• The symbol ã := a + a∗ − α′ λ2m IN , with α′ < α, is positive-definite.
By Lemma C.1, there exists b ∈ Sm such that b∗b = ã. Then, denoting Ãγ =
Opγ(a + a∗ − α′ λ2m IN ), by Theorem C.6 iii) ii) and the Cauchy–Schwarz
inequality there exists c̃ > 0 so that

〈 Ãγu , u 〉 ≥ 〈Opγ(b)∗ Opγ(b)u , u 〉 − c̃ ‖u‖Hm−1
γ

‖u‖Hm
γ

,

which implies that

〈Opγ(a + a∗)u , u 〉 ≥ α′ ‖u‖2Hm
γ
− c̃ ‖u‖Hm−1

γ
‖u‖Hm

γ
.

• Therefore, by Young’s inequality,

〈 (Opγ(a) + Opγ(a)∗)u , u 〉 ≥ α′

2
‖u‖2Hm

γ
− 2

α′ (c + c̃)2 ‖u‖2
Hm−1

γ
.

The conclusion just follows from the fact that

α′

2
λ2m,γ − 2

α′ (c + c̃)2 λ2(m−1),γ ≥ α′

3
λ2m,γ

for γ large enough. �
A sharpened version of Theorem C.7 is the following.
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Theorem C.8 (Sharp G̊arding inequality with parameter) If a ∈ Sm satisfies

a(x, ξ, γ) + a(x, ξ, γ)∗ ≥ 0

(in the sense of Hermitian matrices) for all (x, ξ, γ) ∈ Rd × Rd × [1,+∞), then
there exist γ0 ≥ 1 and C > 0 so that for all γ ≥ γ0 and all u ∈ Hm/2,

Re 〈Opγ(a)u , u 〉 ≥ −C ‖u‖2
H

(m−1)/2
γ

. (C.2.10)

The proof is sketched in [125] (pp. 82–84, in the case m = 1), by adapting
the approach of Nagase [146].

C.3 Littlewood–Paley decomposition

C.3.1 Introduction

Littlewood–Paley decomposition is a well-known tool in modern analysis, of
which various versions are available [57,211,212]. Here we adopt the presentation
of Meyer [137], and also Gérard and Rauch [68]. For a recent, PDE oriented
presentation, see also [33].

We consider a reference cut-off function ψ ∈ D(Rd), monotonically decaying
along rays and so that

ψ(ξ) = 1 if ‖ξ‖ ≤ 1/2 ,
0 ≤ ψ(ξ) ≤ 1 if 1/2 ≤ ‖ξ‖ ≤ 1 ,
ψ(ξ) = 0 if ‖ξ‖ ≥ 1 .

(C.3.11)

This function is associated with the other cut-off function φ ∈ D(Rd) defined by

φ(ξ) := ψ(ξ/2) − ψ(ξ) .

The monotonicity property of ψ implies that φ(ξ) is everywhere non-negative.
The other main feature of φ is that it is supported by the set { 1/2 ≤ ‖ξ‖ ≤ 2 }.

Now we consider the functions φq defined by

φq(ξ) := φ( 2−q ξ )

for all q ∈ N. By construction we have

Suppφq ⊂ { 2q−1 ≤ ‖ξ‖ ≤ 2q+1 } .

Then it is elementary to show the following.

Proposition C.2 For the functions ψ and φq defined as above, we have

φp φq ≡ 0 if |p− q| ≥ 2 , (C.3.12)

ψ +
∑
q≥0

φq ≡ 1 , (C.3.13)
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1
2
≤ ψ2 +

∑
q≥0

φ2
q ≤ 1 . (C.3.14)

Observe that because of (C.3.12) the sums in (C.3.13) and (C.3.14) are locally
finite. Indeed for all ξ ∈ Rd there are at most two indices q such that φq(ξ) �= 0.

For convenience we also denote φ−1 := ψ.
All functions φq for q ≥ −1 can be viewed as constant-coefficient symbols

in S−∞ and thus associated with pseudo-differential operators, denoted by ∆q.
Equivalently, ∆q is defined on S ′ by

∆q := F−1 φq F , (C.3.15)

where F denotes the Fourier transform on S ′.
The interest of these operators is that, for all u ∈ S ′, we have because of

(C.3.13)

u =
∑

q≥−1

∆qu ,

where the convergence of the series holds true in S ′, and the terms ∆qu are C∞

functions (since the φq are compactly supported).
We introduce the notation for partial sums

Sq :=
q−1∑

p=−1

∆p .

By convention, we put ∆p = 0 for p ≤ −2 and Sq = 0 for q ≤ −1.
By definition we have for all u ∈ S ′

F (∆qu) = φq û and F (Squ) = ψq û (C.3.16)

with the rescaled functions ψq being defined similarly as the φq by

ψq(ξ) := ψ( 2−q ξ )

for q ≥ 0.
A first interesting property of the operators ∆q is that the L∞ norms of ∆qu,

Squ and their derivatives are all controlled by the L∞ norm of u. The cost of
one derivative is found to be 2q.

Proposition C.3 (Bernstein) For all m ∈ N, there exists Cm > 0 so that for
all u ∈ L∞, for all d-uple α, |α| ≤ m, for all q ≥ −1,

‖ ∂α (∆qu) ‖L∞ ≤ Cm 2q|α| ‖u ‖L∞ and ‖ ∂α (Squ) ‖L∞ ≤ Cm 2q|α| ‖u ‖L∞ .
(C.3.17)

Proof By (C.3.16) we have

∆qu = F−1φq ∗ u and Squ = F−1ψq ∗ u .
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All functions F−1φq are integrable because of the regularity of φq, with the
additional invariance property

‖F−1φq ‖L1 = ‖F−1φ ‖L1

for all q ≥ 0. We also easily compute that

‖ ∂α (F−1φq) ‖L1 = 2q|α|‖ ∂α (F−1φ) ‖L1 .

The same is of course true for ψq. Then a basic convolution inequality yields the
conclusion with

C = max
|α|≤m

(‖ ∂α (F−1ψ) ‖L1 , ‖ ∂α (F−1φ) ‖L1) .

�

C.3.2 Basic estimates concerning Sobolev spaces

All results displayed in this section but the very last are concerned with the most
classical Sobolev spaces Hs on the whole space Rd.

First, we note that if u belongs to Hs the equality u =
∑

∆qu holds true
not only in S ′ but also in Hs. As a matter of fact, we have

F (Squ− u)
q→∞−−−→ 0 and |λs(ξ)F (Squ− u)(ξ)|2 ≤ (1 + ‖ψ‖2L∞) |λs(ξ)û(ξ)|2.

Thus by Lebesgue’s theorem we have

lim
q→∞

‖Squ− u‖Hs = 0 .

Furthermore, the operators ∆q appear to give rise to equivalent norms on the
Sobolev spaces.

Proposition C.4 For all s ∈ R, there exist Cs > 1 such that for all u ∈ Hs

1
Cs

∑
q≥−1

22qs ‖∆qu‖2L2 ≤ ‖u‖2Hs ≤ Cs

∑
q≥−1

22qs ‖∆qu‖2L2 . (C.3.18)

Proof We begin with the case s = 0. We claim that the estimate in (C.3.18)
works with C0 = 2. One may remark that the equality, that is (C.3.18) with
C0 = 1, could be true if the ∆q were pairwise orthogonal. But we only have, in
view of (C.3.12),

〈∆pu , ∆qu 〉 = 0 provided that |p− q| ≥ 2 . (C.3.19)

The inequalities in (C.3.18) can be viewed as measuring the default of orthogo-
nality. Their proof is almost straightforward. As a matter of fact, the inequalities
in (C.3.14) imply that∑

q≥−1

|φq(ξ) û(ξ) |2 ≤ | û(ξ) |2 ≤ 2
∑

q≥−1

|φq(ξ) û(ξ) |2
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for all u ∈ L2 and almost all ξ ∈ Rd. Integrating in ξ we get, in view of the
definition (C.3.15) of ∆q,∑

q≥−1

‖ ∆̂qu ‖2L2 ≤ ‖ û ‖2L2 ≤ 2
∑

q≥−1

‖ ∆̂qu ‖2L2

and we just conclude by Plancherel’s theorem.
The general case is not much more difficult. The inequalities in (C.3.14) imply

that ∑
q≥−1

|λs(ξ)φq(ξ) û(ξ) |2 ≤ |λs(ξ) û(ξ) |2 ≤ 2
∑

q≥−1

|λs(ξ)φq(ξ) û(ξ) |2 .

Assume, for instance, that s is positive. Then for q ≥ 0 and for

ξ ∈ Suppφq ⊂ { 2q−1 ≤ ‖ξ‖ ≤ 2q+1 }

we have

2−2s 22qs ≤ λ2s(ξ) = ( 1 + ‖ξ‖2 )s ≤ 23s 22qs ,

while for

ξ ∈ Suppφ−1 ⊂ {‖ξ‖ ≤ 1 }

we have

22s 2−2s = 1 ≤ λ2s(ξ) ≤ 2s = 23s 2−2s .

Therefore, the inequalities in (C.3.14) holds true with Cs = 23s+1. When s is
negative the estimates on λ2s are reversed and thus (C.3.14) holds true with
Cs = 2−3s+1.

�
In particular, this proposition shows that for all u ∈ Hs and all q ≥ −1

‖∆qu ‖L2 ≤
√

Cs 2−qs ‖u ‖Hs . (C.3.20)

Of course the constant
√

Cs becomes 1 if we replace the usual Hs norm by
the equivalent norm

‖u‖Hs =

 ∑
q≥−1

22qs ‖∆qu‖2L2

1/2

. (C.3.21)

As regards the operation of ∆q on L2, we actually have much more infor-
mation than that obtained by setting s = 0 in the inequality (C.3.20). We have
similar estimates as in Proposition C.3.
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Proposition C.5 For all m ∈ N, there exists Cm > 0 so that for all u ∈ L2,
for all d-uple α, |α| ≤ m, for all q ≥ −1,

‖ ∂α (∆qu) ‖L2 ≤ Cm 2q|α| ‖u ‖L2 and ‖ ∂α (Squ) ‖L2 ≤ Cm 2q|α| ‖u ‖L2 .
(C.3.22)

In other words, we have a kind of ‘symmetric’ counterpart of (C.3.20). For
all positive integers s, there exists C > 0 so that for all q ≥ −1 and u ∈ L2

‖∆qu‖Hs ≤ C 2qs ‖u‖L2 and ‖Squ‖Hs ≤ C 2qs ‖u‖L2 . (C.3.23)

(Note that the constant C here depends on s. It is strictly increasing with s.)
The proof of Proposition C.5 is exactly the same as that of Proposition C.3,

replacing the L1 − L∞ convolution estimates by L1 − L2 convolution estimates.
Another noteworthy remark is that the L∞ norms of ∆qu and Squ can be

controlled even for unbounded u (to which Proposition C.3 does not apply),
provided that u belongs to some Hs (which is not embedded in L∞ for s ≤ d/2!),
as shown in the following.

Proposition C.6 For all s ∈ R, there exists C > 0 so that for all u ∈ Hs(Rd)
and all q ≥ −1,

‖∆qu ‖L∞ ≤ C 2−q(s−d/2) ‖u ‖Hs and ‖Squ‖Hs ≤ C 2−q(s−d/2) ‖u ‖Hs .
(C.3.24)

Proof The proof is somewhat analogous to that of Proposition C.3. Since both
∆̂qu and Ŝqu are supported by the ball { ‖ξ‖ ≤ 2q+1 } we have, for instance,

∆̂qu = ψq+2 ∆̂qu ,

and similarly for Ŝqu. Therefore,

∆qu = F−1 ψq+2 ∗ ∆qu .

Now, to get the correct estimate we just have to pay attention to the fact that
the L2 norm is not invariant by the rescaling. We have indeed

‖ψq‖L2 = 2qd/2 ‖ψ‖L2

and thus Plancherel’s theorem and a basic convolution inequality yield

‖∆qu ‖L∞ ≤ 2(q+2)d/2 ‖ψ‖L2 ‖∆qu ‖L2 .

Together with (C.3.20) this gives (C.3.24) for ∆qu with C = 2d ‖ψ‖L2
√

Cs. The
same computation shows the inequality for Squ. �

A straightforward consequence of this proposition is, of course, the well-known
Sobolev embedding Hs(Rd) ↪→ L∞ for s > d/2. For, the inequality in (C.3.24)
shows the series

∑
∆qu is normally convergent in L∞ if u belongs to Hs(Rd)

and s > d/2, and its sum must be u (by uniqueness of limits in the space of
distributions).
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Remark C.3 By a similar calculation as in the proof of Proposition C.6, we
have L2 estimates of ∆qu for u ∈ L1. Namely, there exists C > 0 so that

‖∆qu ‖L2 ≤ C 2q d/2 ‖u ‖L1

for all u ∈ L1(Rd) and q ≥ −1. Indeed, by definition of ∆qu, Plancherel’s theorem
shows that

‖∆qu ‖L2 = ‖φq û ‖L2 ≤ ‖φq ‖L2 ‖ û ‖L∞ ,

for q ≥ 0 (for q = −1 just replace φq by ψ) and

‖φq‖L2 = 2qd/2 ‖φ‖L2 ,

while, of course, ‖ û ‖L∞ ≤ ‖u ‖L1 . As a consequence of these estimates and
Proposition C.4 we find the embedding L1(Rd) ↪→ H−s(Rd) for s > d

2 .

To complete this section, we prove an additional result in the same spirit as
Proposition C.6, which gives an estimate of ‖∆qu ‖L∞ in terms of ‖∆qu ‖W m,∞

(instead of ‖∆qu ‖L2 in the proof of Proposition C.6).

Proposition C.7 For all m ∈ N, there exists Cm > 0 so that for all u ∈ L∞,
and all q ≥ 0,

‖∆qu ‖L∞ ≤ Cm 2−qm
∑

|α|=m

‖ ∂α(∆qu) ‖L∞ . (C.3.25)

Proof There is nothing to prove for m = 0. Let us assume m ≥ 1. We consider
some function χ ∈ D(Rd) vanishing near 0 and being equal to 1 on the support
of φ (for instance take χ(ξ) = ψ(ξ/4) − ψ(2ξ)), so that φ = χ φ . With obvious
notations we also have

φq = χq φq

for all q ≥ 0. Since χ vanishes near 0 we can define for all d-uples α of length m
a function χα ∈ D(Rd) by

χα(ξ) =
(iξ)α∑

|α|=m

(iξα)2
χ(ξ) .

By construction we have

χ(ξ) =
∑

|α|=m

(iξ)α χα(ξ) ,

and

χq(ξ) = 2−qm
∑

|α|=m

(iξ)α χα
q (ξ) ,
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with still the obvious notation χα
q (ξ) = χα(2−qξ). This easily implies that

∆qu = 2−qm
∑

|α|=m

F−1χα
q ∗ ∂α(∆qu) .

The result follows again from a convolution inequality and the identities

‖F−1χα
q ‖L1 = ‖F−1χα ‖L1 .

We find that

‖∆qu ‖L∞ ≤ 2−qm max
|α|=m

‖F−1χα ‖L1

∑
|α|=m

‖ ∂α(∆qu) ‖L∞ .

�
The proof here above would obviously fail for q = −1, because ∆−1u does

involve small frequencies. However, by Proposition C.3,

‖∆−1u‖L∞ ≤ C0 ‖u‖L∞ ≤ C0 2k‖u‖L∞

for all k ∈ N. Therefore, using the commutation property ∂α ∆q = ∆q ∂α, a
consequence of Proposition C.7 is the following.

Corollary C.1 For all k ∈ N, there exists Ck > 0 so that for all u ∈ W k,∞,

W k,∞ = {u ; ‖ ∂α
x u ‖L∞ < ∞ ∀α ∈ Nd ; |α| ≤ k } ,

∀q ≥ −1 , ‖∆qu ‖L∞ ≤ Ck 2−qk ‖u ‖W k,∞ . (C.3.26)

C.3.3 Para-products

The operators ∆q are also convenient tools to define para-products. The para-
product by (a not necessarily smooth) function u is intended to operate on
Sobolev spaces (and on Hölder spaces) when the standard product does not. Para-
products were originally introduced by Bony [20]. He actually defined two kinds
of para-products, one based on the dyadic Littlewood–Paley decomposition, as
presented below, and one based on a continuous spectral decomposition, and
showed that they essentially enjoy the same properties.

To motivate the definition, let us consider two tempered distributions u and
v, and formally write

u v =
∑

p,q≥−1

∆pu ∆qv

=
∑
p≥ 2

∆pu

p−3∑
q=−1

∆qv +
∑
q ≥ 2

q−3∑
p=−1

∆pu ∆qv +
∑

|p−q| ≤ 2

∆pu ∆qv.
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There is some arbitrariness in this decomposition. The idea is to separate
terms involving frequencies of the same order (last sum) from terms where the
frequencies of u dominate those of v (first sum) or vice versa (middle sum).

Denoting as before by Sq the truncated sums

Sq =
q−1∑

p=−1

∆p

for q ≥ 0 and setting by convention Sq = 0 for q ≤ −1, we introduce the para-
product of v by u as

Tuv :=
∑

q ≥−1

Sq−2u ∆qv =
∑
q ≥ 2

Sq−2u ∆qv . (C.3.27)

This definition is still formal for arbitrary distributions. However, observing that

SuppF (Sq−2u ∆qv) ⊂ Supp
q−3∑

p=−1

φp ∗ φq ⊂ {‖ξ‖≤2q−2}+ {2q−1 ≤ ‖ξ‖ ≤ 2q+1}

and hence

SuppF (Sq−2u ∆qv ) ⊂
{

1
4

2q ≤ ‖ξ‖ ≤ 9
4

2q

}
, (C.3.28)

it will be easy to give sense to (C.3.27) for a wide range of u and v.

Remark C.4 In the special, apparently trivial case when u is constant, the
para-product Tuv is not exactly the usual product u v, but differs from it by a
C∞ function. Indeed, û = u δ and thus ∆−1u = u while ∆qu = 0 for q ≥ 0.
Therefore, Tuv = u

∑
q ≥ 2 ∆qv and

u v − Tuv = u
∑

|q| ≤ 1

∆qv .

This means that the operator (u − Tu) is infinitely smoothing when u is constant.
We shall see in Theorem C.13 that for any Lipschitz function u the operator
(u − Tu) is still smoothing, to a limited extent though.

In general, we formally have the symmetric decomposition

u v = Tvu + Tuv + R(u, v), (C.3.29)

where the remainder term is

R(u, v) :=
∑

|p−q| ≤ 2

∆pu ∆qv , (C.3.30)

and will appear to be the smoothest term when it is well-defined.
As regards the para-product Tu, it does operate on Hs for all s provided that

u belongs to L∞, as shown in Proposition C.8 below. The para-product by u is
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a typical example of a para-differential operator (of order 0). See [20] for more
details, or Section C.4 for a sketch.

Proposition C.8 For all s there exists C > 0 so that for all u ∈ L∞ and all
v ∈ Hs

‖Tuv‖Hs ≤ C ‖u‖L∞ ‖v‖Hs . (C.3.31)

Proof We begin with a remark on the meaning of the definition in (C.3.27)
for u ∈ L∞ and v ∈ Hs. By (C.3.17) and (C.3.20) we have

‖Sq−2u ∆qv‖L2 ≤ C ‖u‖L∞ 2−qs ‖v‖Hs .

Thus if s > 0 the series in (C.3.27) is normally convergent in L2. However, the
following computations justify a posteriori the definition of Tuv for all s, since
they show that the series in (C.3.27) is convergent (though not normally, in
general) in Hs.

Using the equivalent norm (C.3.21) from Proposition C.4, the estimate
(C.3.31) equivalently reads∑

p≥−1

22ps ‖∆pTuv‖2L2 ≤ C2 ‖u‖2L∞

∑
p≥−1

22ps ‖∆pv‖2L2 .

To prove this, it is to be noted that

∆p (Sq−2u ∆qv ) ≡ 0 for |p− q| ≥ 4 . (C.3.32)

Equation (C.3.32) is easy to check, since by (C.3.28) the support of
F (Sq−2u ∆qv ) is clearly disjoint from { 2p−1 ≤ ‖ξ‖ ≤ 2p+1 } for |p− q| ≥ 4.

Therefore, and this is the crucial point in the proof, only a finite number of
terms from the sum in (C.3.27) are to persist under the operation of ∆p. We
have

∆pTuv =
p+3∑

q = p−3

∆p (Sq−2u ∆qv ) ,

which implies by the Cauchy–Schwarz inequality that

22ps ‖∆pTuv‖2L2 ≤ 7× 26|s|
p+3∑

q = p−3

22qs ‖∆p (Sq−2u ∆qv )‖2L2 .

Now all terms in this sum are easily estimated. By (C.3.22) we have

‖∆p (Sq−2u ∆qv )‖L2 ≤ C ‖Sq−2u ∆qv‖L2

and by (C.3.17)

‖Sq−2u ∆qv‖L2 ≤ C ‖u‖L∞ ‖∆qv‖L2 .
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Collecting and summing these successive inequalities, we arrive at the aimed
result ∑

p≥−1

22ps ‖∆pTuv‖2L2 ≤ 72 × 26|s| C4 ‖u‖2L∞

∑
q≥−1

22qs ‖∆qv‖2L2 .

�
Actually, this proof can be refined and extended to a more general framework.

Let r be a rational integer. If r ≥ 2 then we can find k ∈ N so that we have
similarly as in (C.3.32)

∆p (Sq−ru ∆qv ) ≡ 0 for |p− q| ≥ k + 1 .

This is elementary by looking at

SuppF (Sq−ru ∆qv ) ⊂ {‖ξ‖ ≤ 2q−r } + { 2q−1 ≤ ‖ξ‖ ≤ 2q+1 } .

But we point out that for r ≤ 1, the support of F (Sq−ru ∆qv ) is not bounded
away from 0 and thus we only have ∆p (Sq−ru ∆qv ) ≡ 0 for large p. More
precisely, there exists k ∈ N so that

∆p (Sq−ru ∆qv ) ≡ 0 for p− q ≥ k + 1 . (C.3.33)

However, these properties are sufficient to prove the analogous Proposition C.8,
under some restriction on s though.

Proposition C.9 For all r ∈ Z and s > 0 there exists C > 0 so that for u ∈ L∞

and v ∈ Hs ∥∥∥∥∥∥
∑

q ≥−1

Sq−ru ∆qv

∥∥∥∥∥∥
Hs

≤ C ‖u‖L∞ ‖v‖Hs . (C.3.34)

Proof The proof is very similar to that of Proposition C.8, except that we
must make use of a finer Cauchy–Schwarz inequality (in �2 instead of R7!) and
thus require s > 0. To facilitate the reading, we denote

S(u, v) =
∑

q ≥−1

Sq−ru ∆qv .

Because of (C.3.33) we have

∆p S(u, v) =
+∞∑

q = p−k

∆p (Sq−ru ∆qv ) ,

which implies by the Cauchy–Schwarz inequality that

‖∆p S(u, v)‖2L2 ≤

 +∞∑
q = p−k

2−qs

  +∞∑
q = p−k

2qs ‖∆p (Sq−ru ∆qv )‖2L2

 .
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The first factor is clearly bounded by cs,k 2−ps with cs,k =
∑

l≥−k 2−ls for
positive s. And we know from (C.3.22) and (C.3.17) that

‖∆p (Sq−ru ∆qv )‖L2 ≤ C2 ‖u‖L∞ ‖∆qv‖L2 .

Therefore, we find that∑
p≥−1

22ps ‖∆p S(u, v)‖2L2 ≤ cs,k C4 ‖u‖2L∞

∑
p≥−1

∑
q≥p−k

2(p+q)s ‖∆qv‖2L2 .

The conclusion then follows from the observation that

∑
p≥−1

∑
q≥p−k

2(p+q)s ‖∆qv‖2L2 =

 ∑
l≥−k

2−ls

 ∑
q≥−1

22qs ‖∆qv‖2L2 .

(The constant C in (C.3.34) is thus cs,k C2 with our present notations.) �
As a consequence of this proposition, we get in particular an error estimate

for Tvu, provided that both u and v belong to L∞ ∩Hs, s > 0.

Proposition C.10 For all s > 0, there exists C > 0 such that for all u and v
in L∞ ∩Hs, we have

‖u v − Tvu ‖Hs ≤ C ‖u‖L∞ ‖v‖Hs .

Proof The assumption s > 0 ensures that for u, v ∈ Hs the series
∑

∆pu and∑
∆qv are normally convergent in L2 (because of (C.3.20)). This justifies the

formula

u v =
∑

p,q≥−1

∆pu ∆qv ,

and thus by definition of Tvu:

u v − Tvu =
∑

q≥−1

Sq+3u ∆qv .

Consequently, Proposition C.9 applied to r = −3 yields the result. �
This in turn leads to a very simple proof of the following.

Proposition C.11 For all s > 0 there exists C > 0 such that for all u and v
in L∞ ∩Hs, the product uv also belongs to Hs and

‖u v ‖Hs ≤ C ( ‖u‖L∞ ‖v‖Hs + ‖v‖L∞ ‖u‖Hs ) .

Proof Just sum the estimate of Tvu obtained in Proposition C.8 with the error
estimate in Proposition C.10. �

An alternative form of Proposition C.11 is the following.
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Proposition C.12 For each integer s > 0 there exists C > 0 such that for all
u and v in L∞ ∩Hs and all d-uples α, β with |α|+ |β| = s we have

‖ (∂αu) (∂βv) ‖L2 ≤ C ( ‖u‖L∞ ‖v‖Hs + ‖v‖L∞ ‖u‖Hs ) . (C.3.35)

This proposition can actually be proved in a more classical way, by using the
Hölder inequality together with the Gagliardo–Nirenberg inequality [64,148]. The
latter holds indeed for each positive integer s, and gives a constant C > 0 so that
for u ∈ L∞ ∩Hs and |α| ≤ s

‖ ∂αu ‖L2s/|α| ≤ C ‖u‖1−|α|/s
L∞ ‖u‖|α|/s

Hs . (C.3.36)

An easy consequence of Proposition C.12 is the following commutator esti-
mate.

Proposition C.13 If s > 1 and α is a d-uple of length |α| ≤ s, there exists
C > 0 such that for all u and a in Hs with ∇u and ∇a in L∞

‖ [ ∂α , a∇]u ‖L2 ≤ C ( ‖∇a‖L∞ ‖u‖Hs + ‖∇u‖L∞ ‖a‖Hs ) .

Proof We first note that the assumptions on a and u imply by Proposition
C.11 that a∇u belongs to Hs−1 and so

[ ∂α , a∇]u = ∂α(a∇u) − a∇(∂αu) ∈ H−1

for |α| ≤ s. Our purpose is to show that in fact [ ∂α , a∇]u belongs to L2 (which
is in general the best one can expect since for a ∈ C∞ the commutator [ ∂α , a∇]
is a differential operator of order |α|).

We consider an index j ∈ {1, · · · , d} and want to estimate the L2 norm of
[ ∂α , a ∂j ]u. By the Leibniz rule there exist coefficients cβ

α with c0
α = 1 so that

∂α ( a ∂j u) =
∑

|β|≤|α|
cβ
α (∂βa) (∂α−β∂j u) .

Consequently, we have

[ ∂α , a ∂j ]u =
∑

1≤|β|≤|α|
cβ
α (∂βa) (∂α−β∂j u) .

In the latter sum, all terms are of the form

(∂βk∂ka) (∂α−β∂j u)

for some index k ∈ {1, · · · , d} and d-uple βk of length |βk| = |β| − 1. Both ∂ka
and ∂ju belong to L∞ ∩H |α|−1 and thus meet the assumptions of Proposition
C.12 with s = |α| − 1. This yields the estimate

‖(∂βk∂ka) (∂α−β∂ju)‖L2 ≤ C (‖∂ka‖L∞‖∂ju‖H |α|−1 + ‖∂ju‖L∞‖∂ka‖H |α|−1) ,

where the right-hand side is clearly bounded by ‖∇a‖L∞‖u‖Hs + ‖∇u‖L∞‖a‖Hs

for |α| ≤ s. Hence, by summing on β and k we get the desired estimate. �
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To illustrate the power of para-products, let us just show the following result
on the remainder R, where we see that the regularity of R(u, v) is ‘almost’ the
one of u plus the one of v.

Theorem C.9 For all s and t with s + t > 0, there exists C > 0 so that for all
u ∈ Hs and all v ∈ Ht, R(u, v) is well-defined by (C.3.30) and meets the estimate

‖R(u, v)‖Hs+t−d/2 ≤ C ‖u‖Hs ‖v‖Ht . (C.3.37)

Proof • At first, we check that the assumption s + t > 0 ensures that R is
well-defined and

R(u, v) =
∑

q≥−1

Rq(u, v) with Rq(u, v) :=
q+2∑

r=q−2

∆ru ∆qv .

As a matter of fact, we have

‖Rq(u, v)‖L1 ≤
q+2∑

r=q−2

‖∆ru‖L2 ‖∆qv‖L2 ≤ C

q+2∑
r=q−2

2−rs ‖u‖Hs 2−qt ‖v‖Ht

by (C.3.20), hence

‖Rq(u, v)‖L1 ≤ 5× 22|s| C ‖u‖Hs ‖v‖Ht 2−q(s+t) ,

which shows that the series
∑

Rq(u, v) is normally convergent in L1.
• To prove the estimate in (C.3.37) we must evaluate the L2 norm of

∆p R(u, v). Similarly as in the proof of Proposition C.9, we note that ∆p R(u, v)
only involves some terms ∆p Rq(u, v). This is due to the fact (already used in
(C.3.33)) that there is an integer k such that

∆p (∆ru ∆qv ) ≡ 0 for p− q ≥ k + 1 and |r − q| ≤ 2 . (C.3.38)

Therefore, we have

∆p R(u, v) =
∑

q≥p−k

∆p Rq(u, v) .

For all p ≥ −1 we have

∆p Rq(u, v) =
q+2∑

r=q−2

F−1φp ∗ (∆ru ∆qv )

and thus a standard convolution inequality and Plancherel’s theorem show that

‖∆p Rq(u, v) ‖L2 ≤ ‖φp‖L2

q+2∑
r=q−2

‖∆ru ∆qv ‖L1 .

Since for p ≥ 0 we have

‖φp‖L2 = 2pd/2 ‖φ‖L2
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the latter inequality implies that for all p ≥ −1

‖∆p Rq(u, v) ‖L2 ≤ c 2pd/2

q+2∑
r=q−2

‖∆ru‖L2 ‖∆qv ‖L2 ,

with c := max(‖φ‖L2 , 2d/2‖ψ‖L2).
Like in Proposition C.9 we can apply the Cauchy–Schwarz inequality to

obtain

‖∆p R(u, v)‖2L2 ≤ ct+s,k 2−p(t+s)
∑

q≥p−k

2q(t+s) ‖∆p Rq(u, v)‖2L2 ,

with ct+s,k :=
∑+∞

l=−k 2−l(t+s). Consequently, we have

‖∆p R(u, v)‖2L2 ≤ C ′ 2−p(t+s−d)
∑

q≥p−k

2q(t+s) ‖∆qv ‖2L2

q+2∑
r=q−2

‖∆ru‖2L2 ,

with C ′ := 5× c2 ct+s,k and thus

22p(s+t−d/2) ‖∆p R(u, v)‖2L2 ≤ 5× 22|s| C ′
∑

q≥p−k

2(p−q)(t+s) 22qt ‖∆qv‖2L2

×
q+2∑

r=q−2

22rs ‖∆ru‖2L2 .

So we have by (C.3.18)∑
p≥−1

22p(s+t−d/2) ‖∆p R(u, v)‖2L2 ≤ C ′′ ‖v‖2Ht ‖u‖2Hs ,

with C ′′ := 5× 22|s| C ′ ct+s,k Ct Cs . This finally proves the estimate in (C.3.37)
with C =

√
C ′′Ct+s−d/2. �

Remark C.5 This result on the remainder R(u, v) gives a slightly bigger index
than in the classical result recalled below for the full product uv.

Theorem C.10 For all s and t with s + t > 0, if u ∈ Hs and v ∈ Ht then the
product belongs to Hr for all r ≤ min(s, t) such that r < s + t− d/2. Further-
more, there exists C (depending only on r, s, t and d) such that

‖u v‖Hr ≤ C ‖u‖Hs ‖v‖Ht .

In the case r = s = t, this result may be viewed as a consequence of Proposi-
tion C.11; an alternative, elementary proof, which also gives the result in Sobolev
spaces on any smooth domain Ω, may be found in [1], p. 115–117. For more
general values of r, s and t (but Ω = Rd), Theorem C.10 can be deduced from
Theorem C.9 and the following additional result on para-products.
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Proposition C.14 For all s and t, if u ∈ Hs and v ∈ Ht then the para-product
Tuv is well-defined and belongs to Hr for all r < s + t− d/2. Furthermore, there
exists C > 0 independent of u and v so that

‖Tuv‖Hr ≤ C ‖u‖Hs ‖v‖Ht . (C.3.39)

Proof It is very similar to the proof of Proposition C.8, replacing the use of the
estimate of ‖Squ‖L∞ in (C.3.17) by the estimate in (C.3.24): the condition r <
s + t− d/2 is here to ensure the convergence of the series

∑
p 2−2p(s+t−d/2−r),

hence of
∑

p 22ps ‖∆p Tuv‖2L2 . Details are left to the reader. �
An easy consequence of Theorem C.10 is the following commutator estimate.

Corollary C.2 If m is an integer greater than d/2 + 1 and α is a d-uple of
length |α| ∈ [1,m], there exists C > 0 such that for all a in Hm and all u ∈
H |α|−1,

‖ [ ∂α , a]u ‖L2 ≤ C ‖a‖Hm ‖u‖H |α|−1 .

C.3.4 Para-linearization

Proposition C.8 and Theorem C.9 show in particular that for all s > 0, if
u ∈ Hs ∩ L∞ then

u2 = 2Tuu + R(u, u) = T2uu + R(u, u),

with the uniform estimates

‖T2uu‖Hs ≤ C ‖u‖L∞ ‖u‖Hs , ‖R(u, u)‖H2s−d/2 ≤ C ‖u‖2Hs .

A very strong result from para-differential calculus says that this decompo-
sition of F (u) = u2 can be generalized to any C∞ function F vanishing at 0,
under the only constraint that s > d/2.

Theorem C.11 (Bony–Meyer) If F ∈ C∞(R), F (0) = 0, if s > d/2 then for
all u ∈ Hs(Rd) we have

F (u) = TF ′(u) u + R(u), (C.3.40)

with R(u) ∈ H2s−d/2.

(Note that the assumption s > d/2 automatically implies u ∈ L∞ if u ∈
Hs(Rd).)

Equation (C.3.40) is often referred to as the para-linearization formula
of Bony. Historically, Bony proved that the remainder term R(u) belongs to
H2s−d/2−ε for ε > 0 [20], and Meyer proved the actual result with ε = 0 [138].

In particular, (C.3.40) shows that F (u) belongs to Hs. We do not intend to
give the extensive proof of Theorem C.11. We ‘directly’ show that F (u) enjoys
the same estimate as its para-linearized counterpart TF ′(u) u.
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Theorem C.12 If F ∈ C∞(R), F (0) = 0, if s > d/2 then there exists a con-
tinuous function C : [0,+∞) → [0,+∞) such that for all u ∈ Hs(Rd)

‖F (u) ‖Hs ≤ C (‖u‖L∞) ‖u‖Hs .

Proof The assumption s > d/2 obviously implies that each u ∈ Hs(Rd) nec-
essarily belongs to L∞ ∩ L2.

• We begin by showing the estimate for F (S0u) instead of F (u). To do so,
it is sufficient to bound ‖∂αF (S0u)‖L2 for all d-uples α of length |α| ≤ m with
m− 1 ≤ s < m. For |α| = 0 this is almost trivial. By Propositions C.3 and C.5
we have

‖S0u‖L∞ ≤ C ‖u‖L∞ and ‖S0u‖L2 ≤ C ‖u‖L2

and thus the mean value theorem applied to F in the ball of radius R = ‖u‖L∞

implies that

‖F (S0u)‖L2 ≤ CR ‖u‖L2

for some CR > 0 depending continuously on R. For |α| ≥ 1, the chain rule shows
there exist coefficients cb

α, with b = {β1, · · · , βn} being a family of d-uples of
positive length and of sum β1 + · · ·+ βn = α, so that

∂α (F (S0u) ) =
∑

1 ≤ n ≤ |α|
β1 + · · ·+ βn = α

|βi| ≥ 1

cb
α F (n)(S0u) ∂β1

(S0u) · · · ∂βn

(S0u) .

By Propositions C.3 and C.5 we have

‖∂βi

(S0u)‖L∞ ≤ C ‖u‖L∞ and ‖∂βi

(S0u)‖L2 ≤ C ‖u‖L2 .

Therefore, using L∞ bounds for the successive derivatives F (n), n ≤ m, on the
ball of radius R we obtain a uniform estimate

‖∂α (F (S0u) ) ‖L2 ≤ Cm
R ‖u‖L2

for all α with |α| ≤ m. In particular, up to modifying Cm
R , we have

‖F (S0u) ‖Hs ≤ Cm
R ‖u‖L2

for all s ≤ m.
• The other main part of the proof consists in bounding the ‘error’ F (u)−

F (S0u). Since Spu is known to tend to u in Hs, we formally have

F (u)− F (S0u) =
∞∑

p=0

(F (Sp+1u) − F (Spu) ) .
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To justify this decomposition we must show that the series involved is convergent
in Hs. At first, we note that

F (Sp+1u) − F (Spu) = G(Spu, ∆pu)∆pu,

where

G(v, w) =
∫ 1

0

F ′(v + tw) dt

is a C∞ function of both its arguments. By Proposition C.3 and a piece of
calculus we can bound G(Spu, ∆pu) in L∞ in exactly the same way we bounded
F (S0u) in L2. Thus we find another constant depending continuously on R, still
denoted by Cm

R , so that

‖∂α (G(Spu, ∆pu) ) ‖L∞ ≤ Cm
R 2p|α|

for all α with |α| ≤ m. Then a fine result, postponed to Lemma C.2 below, enables
us to conclude. As a matter of fact, Lemma C.2 applies to Mp = G(Spu, ∆pu)
and shows that∥∥∥∥∥

∞∑
p=0

(F (Sp+1u) − F (Spu) )

∥∥∥∥∥
Hs

=

∥∥∥∥∥∥
∑
p≥0

G(Spu, ∆pu)∆pu

∥∥∥∥∥∥
Hs

≤ cCm
R ‖u‖Hs .

• We have

F (u) = F (S0u) +
∞∑

p=0

(F (Sp+1u) − F (Spu) ) .

Collecting and summing the estimates of F (S0u) and the series
∑

(F (Sp+1u) −
F (Spu) ) we find that

‖F (u) ‖Hs ≤ C (‖u‖L∞) ‖u‖Hs ,

with C (‖u‖L∞) = (1 + c)Cm
R . (We recall that R ≥ ‖u‖L∞ .)

�
Lemma C.2 (Meyer) Let {Mp}p≥0 be a sequence of C∞ functions enjoying the
uniform estimates

‖∂α Mp ‖L∞ ≤ cm 2p|α| (C.3.41)

for all α with |α| ≤ m. Then for all 0 < s < m, there exists c so that for all
u ∈ Hs the series

∑
Mp ∆pu is convergent in Hs and∥∥∥∥∥∥
∑
p≥0

Mp ∆pu

∥∥∥∥∥∥
Hs

≤ c cm ‖u‖Hs . (C.3.42)

Proof The proof resembles the one of Proposition C.9, in that the sequence
{Mq} satisfies by assumption the same estimates as Squ (derived in Proposition
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C.3). However, there is an additional difficulty due to the fact that, unlike Squ,
M̂p is not supposed to be compactly supported. This is why we first perform a
frequency decomposition of Mp. For this we use the dilated functions φq(2−p−3·)
and define

Mp,q := F−1(φq(2−p−3·) M̂p)

for all q ≥ −1. Observe that, for q ≥ 0, we merely have

Mp,q := ∆q+p+3 Mp ,

of which the spectrum is included in

{ ξ ; 2p+q+2 ≤ ‖ξ‖ ≤ 2p+q+4} ,

and that the first term of the expansion,

Mp,−1 = F−1(ψ(2−p−3·) M̂p) ,

has a spectrum included in

{ ξ ; ‖ξ‖ ≤ 2p+3} .

Because of (C.3.13) (evaluated at 2−p−3ξ), we have

Mp =
∑

q≥−1

Mp,q

in the sense of S ′. In fact, this series is normally convergent in L∞, since by
Proposition C.7,

‖Mp,q ‖L∞ ≤ Cm

∑
|α|=m

‖∂α Mp,q ‖L∞ 2−(p+q+3)m

for q ≥ 0, and by Proposition C.3 applied to ∂αMp

‖∂α Mp,q ‖L∞ ≤ Cm ‖∂α Mp ‖L∞ ,

(we have used here the fact that [∂α,∆r] = 0 for all r) and so the assumption
(C.3.41) implies that

‖Mp,q ‖L∞ ≤ C̃m 2−qm .

• Let us now look at the two parameters family {Mp,q∆pu}p≥0,q≥−1. By
(C.3.20) and the previous inequality we have∑

p≥0

∑
q≥−1

‖Mp,q ∆pu‖L2 ≤ C̃m

∑
p≥0

∑
q≥−1

2−qm2−ps ‖u‖Hs < ∞ ,

which justifies the interchanging formula∑
p≥0

∑
q≥−1

Mp,q ∆pu =
∑

q≥−1

∑
p≥0

Mp,q ∆pu .
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This equivalently reads ∑
p≥0

Mp ∆pu =
∑

q≥−1

Σq ,

with

Σq :=
∑
p≥0

Mp,q ∆pu .

• We can now estimate Σq in Hs.
We begin with the special case q = −1. We have

SuppF (Mp,−1 ∆pu ) ⊂ {‖ξ‖ ≤ 2p+4 }

and thus

∆r (Mp,−1 ∆pu ) ≡ 0 for r ≥ p + 5 .

Therefore,

∆rΣ−1 =
+∞∑

p=r−4

∆r (Mp,−1 ∆pu )

for all r ≥ −1. By exactly the same procedure as in the proof of Proposition C.9
and the uniform estimate

‖Mp,−1 ‖L∞ ≤ C ‖Mp ‖L∞ ≤ C C0,

we show that∑
r≥−1

22rs ‖∆rΣ−1‖2L2 ≤ c2
s,4 C2 C2

0

∑
p≥−1

22ps ‖∆pu‖2L2 ,

with cs,4 =
∑

l≥−4 2−ls. Using the equivalent norm in (C.3.21) this precisely
means that

‖Σ−1‖Hs ≤ cs,4 C C0 ‖u‖Hs .

The general case q ≥ 0 is no more difficult. We have

SuppF (Mp,q ∆pu ) ⊂ { 2p+q+1 ≤ ‖ξ‖ ≤ 2p+q+5 }

and thus

∆r (Mp,q ∆pu ) ≡ 0 for r ≥ p + q + 6 or r ≤ p + q − 1 .

Consequently,

∆rΣq =
r−q∑

p=r−q−5

∆r (Mp,q ∆pu )
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and

‖∆r (Mp,q ∆pu ) ‖L2 ≤ C̃m 2−qm ‖∆pu ‖L2 .

By the Cauchy–Schwarz inequality, we obtain∑
r≥−1

22rs ‖∆r (Mp,q ∆pu ) ‖2L2 ≤ 62 × 28s C̃2
m 2−2q(m−s)

∑
p≥−1

22ps ‖∆pu ‖2L2 ,

which means that

‖Σq‖Hs ≤ 6× 24s C̃m‖u‖Hs 2−2q(m−s) .

• The conclusion then follows from the summation on q of the estimates for
‖Σq‖Hs . �

Let us mention an easy consequence of Theorem C.12 and Proposition C.11.

Corollary C.3 If F ∈ C∞(R) and s > d/2, then there exists a continuous
function C : (0,+∞) → (0,+∞) such that for all u and v in Hs,

‖F (u) − F (v) ‖Hs ≤ C(max(‖u‖Hs , ‖v‖Hs)) ‖u − v‖Hs .

Proof Without loss of generality, we may assume F ′(0) equals 0. By Taylor’s
formula and Proposition C.11, we have

‖F (u)− F (v)‖Hs ≤
∫ 1

0

‖F ′(v + θ(u− v)) (u− v)‖Hs dθ

≤ C1

(
max

|w|≤max(‖u‖L∞ ,‖v‖L∞ )
|F ′(w)|‖u−v‖Hs

+ max
θ∈[0,1]

‖F ′(v+θ(u−v))‖Hs‖u−v‖L∞

)
.

The first term inside parentheses is already of the wanted form, by the Sobolev
embedding Hs ↪→ L∞. And in the second one we have

‖F ′(v + θ(u−v))‖Hs‖u−v‖L∞ ≤ C0(‖v+θ(u−v)‖L∞)‖v+θ(u−v)‖Hs‖u−v‖L∞

by Theorem C.12, which yields the wanted inequality using again the Sobolev
embedding Hs ↪→ L∞.

�

C.3.5 Further estimates

A useful result that was not pointed out yet is the smoothing effect of the operator
(a − Ta) when a is at least Lipschitz.

Theorem C.13 For all k ∈ N, there exists C > 0 such that for all a ∈ W k,∞

and all u in L2,

‖ a u − Tau ‖Hk ≤ C ‖a‖W k,∞ ‖u‖L2 .
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The case k = 0 (with no smoothing effect!) is a trivial consequence of Propo-
sition C.8 and the triangular inequality. The difficult case is of course for k ≥ 1.
A detailed proof can be found in [136] or [38] – theses references deal in fact
with the operator with parameter T γ

a but the method works for Ta.
A straightforward consequence of Theorem C.13 is the following.

Corollary C.4 There exists C > 0 such that for all a ∈ W 1,∞ and u in L2,
for j ∈ {1, . . . , d},

‖ a ∂ju − Ta∂ju ‖L2 ≤ C ‖a‖W 1,∞ ‖u‖L2 .

Proof Observe that

a ∂ju − Ta∂ju = ∂j( a u − Tau ) − ( (∂ja)u − T∂ja∂ju ) .

The second term is obviously bounded by ‖∂ja‖L∞ ‖u‖L2 (according to Propo-
sition C.8 and the triangular inequality, or Theorem C.13 with k = 0!)
And the first one is bounded by ‖a‖W k,∞ ‖u‖L2 according to Theorem C.13
with k = 1. �

A further useful result in this direction is the following.

Theorem C.14 If Rε is a smoothing operator defined as the convolution
operator by a kernel ρε satisfying the standard properties of mollifiers, namely
ρε(x) = ε−d ρ(x/ε) with ρ ∈ D(Rd; R+) and

∫
Rd ρ = 1, then for all a ∈ W 1,∞

and u in L2, for j ∈ {1, . . . , d},

‖Rε (a ∂ju) − a ∂j(Rεu) ‖L2 ≤ C ‖a‖W 1,∞ ‖u‖L2 (C.3.43)

and

lim
ε→0

‖Rε (a ∂ju) − a ∂j(Rεu) ‖L2 = 0 . (C.3.44)

Proof We can prove separately the results for the commutators [Rε , Ta∂j ]
and [Rε , (a− Ta)∂j ]. The estimate for the latter comes directly from Corollary
C.4 and the boundedness of Rε on L2. The estimate of [Rε , Ta∂j ] is, in fact, a
consequence of para-differential calculus (see Section C.4 below, Theorem C.17),
once we observe that (Rε)ε∈(0,1) is a family of pseudo-differential operators of
order 0. Indeed, each operator Rε is infinitely smoothing and Rε goes to identity
when ε → 0. To be more precise, the symbol of Rε, ρ̂ε = ρ̂(ε·), belongs to S
and thus to S−∞. However, in the estimate

‖ ∂β
ξ ρ̂ε(ξ) ‖ ≤ Cm,β(ε) ( 1 + ‖ξ‖ )m−|β| ∀ξ ∈ Rd ,

the constant Cm,β(ε) is uniformly bounded for ε ∈ (0, 1) only if m ≥ 0. So
Theorem C.17 shows that [ Rε , Ta∂j ] is a family of para-differential operators
of order 0 + 1− 1 = 0. Regarded as operators on L2, their norms are uniformy
controlled by ‖a‖W 1,∞ . This shows the estimate for [ Rε , Ta∂j ]. Summing with
the estimate for [ Rε , (a− Ta)∂j ] we get (C.3.43).
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The proof of the limit in (C.3.44) then proceeds in a classical way, approximat-
ing any function u of L2 by a sequence of smoother functions un (H1 is sufficient)
for which we know the limit holds true and applying (C.3.43) to u− un. �
Remark C.6 A slightly more general statement of (C.3.44) is that for all a ∈
W 1,∞ and all u ∈ H−1,

lim
ε→0

‖[ a , Rε ]u ‖L2 = 0 .

Another smoothing result, which admits a proof much more elementary than
Theorems C.13 and C.14, holds true in Sobolev spaces of large negative index.

Proposition C.15 If s > d
2 + 1, there exists C > 0 so that for all a ∈ Hs(Rd)

and all ϕ ∈ D(Rd),

‖ aϕ − Taϕ ‖H−s+1 ≤ C ‖a‖Hs ‖ϕ‖H−s .

Proof In fact, we shall prove that aϕ − Taϕ belongs to L1 – and use Remark
C.3 to conclude. The assumptions show that both series

∑
q ∆qa and

∑
p ∆pϕ

are normally convergent in L2, which allows us to write

aϕ =
∑

p,q≥−1

∆pϕ ∆qa ,

and thus by definition of Taϕ:

a u − Taϕ =
∑

q≥−1

q+2∑
p=−1

∆pϕ ∆qa .

By Proposition C.4, ‖∆qa ‖L2 = 2− q s αq and ‖∆pϕ ‖L2 = 2p s βp with∑
p β2

p ≤ Cs ‖ϕ‖2H−s . Therefore, by the Cauchy–Schwarz inequality in L2,

∑
q≥−1

q+2∑
p=−1

‖∆pϕ ∆qa‖L1 ≤
∑

q≥−1

q+2∑
p=−1

‖∆pϕ‖L2 ‖∆qa‖L2

=
∑

q≥−1

q+2∑
p=−1

2(p−q) s βp αq

=
∑

k≥−2

2− k s
∑

p≥−1

βp αp+k

≤
∑

k≥−2

2− k s ‖β‖�2 ‖α‖�2 ≤ C̃s ‖a‖Hs ‖ϕ‖H−s ,

since s > 0. This proves that a u − Taϕ belongs to L1 and

‖ aϕ − Taϕ ‖L1 ≤ C̃s ‖a‖Hs ‖ϕ‖H−s .
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Finally, since s > d
2 + 1 we have the embedding L1(Rd) ↪→ H−s+1(Rd) (see

Remark C.3). This completes the proof. �

C.4 Para-differential calculus

The tools introduced in the previous section provide a basis for what is called
para-differential calculus, involving operators whose ‘symbol’ has a limited reg-
ularity in x. In particular, the operators Ta encountered in para-products are
special cases of para-differential operators.

The purpose of this section is not to develop the whole theory but only
some major aspects that are used elsewhere in the book. We shall use again the
notation

λs(ξ) := ( 1 + ‖ξ‖2 )s/2

for all s ∈ R.

C.4.1 Construction of para-differential operators

Definition C.5 For any real number m and any natural integer k, we define
the set Γm

k of functions, also called symbols, a : Rd × Rd → CN×N such that
� for almost all x ∈ Rd, the mapping ξ ∈ Rd �→ a(x, ξ) is C∞,
� for all d-uple β and all ξ ∈ Rd, the mapping x ∈ Rd �→ ∂β

ξ a(x, ξ) belongs
to W k,∞ and there exists Cβ > 0 so that for all ξ ∈ Rd,

‖ ∂β
ξ a(·, ξ) ‖W k,∞ ≤ Cβ λm−|β|(ξ) . (C.4.45)

Of course, by Definition C.1 we have Sm ⊂ Γm
k for all k. The novelty is

that functions with rather poor regularity in x are allowed. In particular, W k,∞

functions of x only may be viewed as symbols in Γ0
k.

Symbols belonging to Γm
k are said to be of order m and regularity k. Unlike

infinitely smooth symbols in Sm, functions in Γm
k are not naturally associated

with bounded operators Hs → Hs−m. But this will be the case for the subclass
Σm

k of symbols in Γm
k satisfying the additional, spectral property:

Supp (F (a(·, ξ)) ) ⊂ B(0; ελ1(ξ)) (C.4.46)

for some ε ∈ (0, 1) independent of ξ, see Theorem C.15 below. One may argue that
since their Fourier transform is compactly supported such symbols are necessarily
C∞ in x. And we want to handle non-smooth symbols. So where is the trick? In
fact, it relies on a special smoothing procedure, associating any symbol a ∈ Γm

k

with a symbol σ ∈ Σm
k . We shall give more details below. Let us start with the

study of operators associated with symbols in Σm
k , k ≥ 0.

Theorem C.15 For all a ∈ Γm
0 satisfying (C.4.46), consider

Op(a) : F−1(E ′) −→ C∞
b

u �→ Op(a)u ; (Op(a)u)(x) = 1
(2π)d 〈 ei x · a(x, ·) , û 〉(C∞,E ′) ,
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where E ′ denotes the space of temperate distributions having compact support1,
and the unusual ordering (C∞,E ′) is just meant to account for matrix-valued a.
This definition of Op(a) coincides with (C.1.2) if a belongs to Sm. Furthermore,
for all s ∈ R, Op(a) extends in a unique way into a bounded operator from Hs

to Hs−m.

This is a fundamental result, which we admit here. Its proof shows in
particular that F (Op(a)u) is compactly supported.

Remark C.7 The set Σm
0 is strictly bigger than Sm, as those functions a ∈ Σm

0

only satisfy a weakened version of (C.1.1), namely

| ∂α
x ∂β

ξ a(x, ξ) | ≤ Cα,β λm−|β|+|α|(ξ) . (C.4.47)

This estimate is a consequence of what is known as Berstein’s Lemma, in fact
the special, easy case stated below.

Lemma C.3 If u ∈ L∞ and Supp û ⊂ B(0; ελ) with ε > 0 and λ > 0, then for
all d-uple α, there exists Cε,α > 0 (independent of λ) so that

‖∂αu‖L∞ ≤ Cε,α λ|α| ‖u‖L∞ .

Proof Just write

û(ξ) = ϕε(ξ/λ) û(ξ),

with ϕε a smooth compactly supported function such that ϕε ≡ 1 on B(0; ε),
and proceed with a basic convolution estimate like in the proof of Proposition
C.3. �

Let us now describe the smoothing procedure for symbols in Γm
k , which

amounts to a frequency cut-off depending on the ξ-variable.

Definition C.6 A C∞ function χ : (η, ξ) �→ χ(η, ξ) ∈ R+ is called an admis-
sible frequency cut-off if there exist ε1,2 with 0 < ε1 < ε2 < 1 so that{

χ(η, ξ) = 1 , if ‖η‖ ≤ ε1 ‖ξ‖ and ‖ξ‖ ≥ 1 ,
χ(η, ξ) = 0 , if ‖η‖ ≥ ε2 λ1(ξ) or ‖ξ‖ ≤ ε2 ,

and if for all d-uples α and β there exists Cα,β > 0 so that

| ∂α
η ∂β

ξ χ(η, ξ) | ≤ Cα,β λ−|α|−|β|(ξ) . (C.4.48)

Example. If ψ and φ are as in the Littlewood–Paley decomposition of Section
C.3, the function χ defined by

χ(η, ξ) =
∑
p≥ 0

ψ(22−p η) φ(2−p ξ) =
∑
p≥ 0

ψp−2(η) φp(ξ)

1The dual space of C∞.
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is an admissible frequency cut-off. Indeed, recall first that there are at most two
indices p for which φp(ξ) is non-zero. So the sum is locally finite. Furthermore,
recalling that

Suppψp−2 ⊂ { η ; ‖η‖ ≤ 2p−2 } and Suppφp ⊂ { ξ ; 2p−1 ≤ ‖ξ‖ ≤ 2p+1 } ,

it is easy to check that χ vanishes as requested with ε2 = 1/2. Indeed, for
‖ξ‖ ≤ 1/2, φp(ξ) = 0 for all p ≥ 0, which implies χ(η, ξ) = 0 wherever η is.
Additionally, for all (η, ξ) we have

χ(η, ξ) =
∑

p ; ‖η‖≤2p−2

ψp−2(η) φp(ξ) ,

and therefore χ(η, ξ) = 0 as soon as ‖ξ‖ ≤ 2 ‖η‖. A fortiori, this means that
χ(η, ξ) = 0 for ‖η‖ ≥ 1

2 λ1(ξ). On the ‘contrary’, since ψ ≡ 1 on the sphere of
radius 1/2, if ‖ξ‖ ≥ 16 ‖η‖ then ψp−2(η) = 1 for all p ≥ 0 such that φp(ξ) �= 0.
And if ‖ξ‖ ≥ 1, ψ(ξ) = 0 and thus

∑
p≥0 φp(ξ) = 1. This shows that χ(η, ξ) =

1 if ‖ξ‖ ≥ 16 ‖η‖ and ‖ξ‖ ≥ 1. So the first requirement on χ holds true with
ε1 = 1/16. The inequalities in (C.4.48)2 are trivially satisfied for ‖ξ‖ < 1/2.
Otherwise, for ‖ξ‖ ≥ 1/2, let us rewrite

χ(η, ξ) =
∑

p ; ‖ξ‖≤2p+2

ψp−2(η) φp(ξ) ,

hence

∂α
η ∂β

ξ χ(η, ξ) =
∑

p ;‖ξ‖≤2p+2

2(2−p)|α|−p|β| ∂α
η ψ(22−p η) ∂β

ξ φ(2−pξ) .

For 1 ≤ 2‖ξ‖ ≤ 2p+2 we have

2−p ≤ 2
‖ξ‖ ≤ 8

λ1(ξ)
,

so, recalling that the sum is locally finite we find that

| ∂α
η ∂β

ξ χ(η, ξ) | ≤ C 22|α| ( 8
λ1(ξ)

)−|α|−|β|
‖∂α

η ψ ∂β
ξ φ‖L∞ .

Proposition C.16 Let χ be an admissible frequency cut-off according to Defi-
nition C.6 and consider the operator

Rχ : a ∈ Γm
k �→ σ ∈ C∞ ; σ(·, ξ) = Kχ(·, ξ) ∗x a(·, ξ) ,

where the kernel Kχ is defined by

Kχ(·, ξ) = F−1(χ(·, ξ)) .

2Observe that they mean χ belongs to S0 as a function of 2d variables.
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Then Rχ maps into

Σm
k = { a ∈ Γm

k ; Supp (F (a(·, ξ)) ) ⊂ B(0; ε2λ
1(ξ)) } .

Furthermore, if k ≥ 1, for all a ∈ Γm
k , a − Rχ(a) belongs to Γm−1

k−1 .

In other words, the symbol σ = Rχ(a) is related to a in Fourier space by

F (σ(·, ξ)) = χ(·, ξ) F (a(·, ξ))
for all ξ ∈ Rd. In particular, if a is independent of x, F (a(·, ξ)) = a(ξ) δ hence
F (σ(·, ξ)) = χ(0, ξ) a(ξ) δ. So we see that if χ(0, ξ) were equal to 1 for all ξ
we would have σ = a. This is not exactly the case3, but σ and a differ by a
compactly supported function of ξ. In terms of operators, this means that Op(σ)
differs from the Fourier multiplier associated with a by an infinitely smoothing
operator, which is harmless in terms of para-differential calculus.

Proof Take a ∈ Γm
k and consider σ = Rχ(a). Since Suppχ(·, ξ) ⊂

B(0; ε2λ
1(ξ)), by construction

Supp (F (σ(·, ξ)) ) ⊂ B(0; ε2λ
1(ξ)) .

The fact that σ belongs to Γm
k requires an L1 estimate of the kernel Kχ, namely

‖∂β
ξ Kχ(·, ξ) ‖L1(Rd) ≤ Cβ λ−|β|(ξ) ,

which is left to the reader. Once we know this, we immediately obtain

‖σ(·, ξ)‖L∞ ≤ C0 ‖a(·, ξ)‖L∞ ≤ C̃0 λm(ξ),

since a belongs to Γm
k . The estimates of partial derivatives ∂α

x σ then follow from
the observation that

∂α
x Rχ(a) = Rχ(∂α

x a) .

Finally, the estimates of crossed partial derivatives ∂α
x ∂β

ξ σ use the bilinearity of
∗ and the Leibniz formula.

One may observe that for σ ∈ Σm
k with the number ε in (C.4.46) less than

ε1/2, Rχ(σ) is ‘almost’ equal to σ. Indeed, since χ(η, ξ) = 1 for ‖η‖ ≤ ε1 ‖ξ‖
and ‖ξ‖ ≥ 1, (C.4.46) with ε ≤ ε1/2 implies

F (Rχ(σ)(·, ξ)) = F (σ(·, ξ))
for ‖ξ‖ ≥ 1. So in terms of operators it means that Op(Rχ(σ) − σ) is infinitely
smoothing.

For a ∈ Γm
1 , let us show now that a − Rχ(a) belongs to Γm−1

0 . By triangular
inequality, we already know that

‖∂β
ξ (a − Rχ(a))‖W 1,∞ ≤ Cβ λm−|β|(ξ)

3This problem is, in fact, overcome when using para-differential calculus with a parameter, see
Section C.5.
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and we want to show that

‖∂β
ξ (a − Rχ(a))‖L∞ ≤ C̃β λm−1−|β|(ξ) .

For convenience, we shall denote b = ∂β
ξ (a − Rχ(a)). There is nothing to do

for ‖ξ‖ ≤ 1 since λ1 is bounded on the unit ball! It is more delicate to obtain a
bound of ‖b(·, ξ)‖L∞ for ‖ξ‖ > 1. Littewood–Paley decomposition will be of help
again. Indeed, by definition of Rχ we have

F (b(·, ξ)) = ∂β
ξ

(
( 1 − χ(·, ξ) )F (a(·, ξ))

)
,

which vanishes identically on B(0; ε1 ‖ξ‖) for ‖ξ‖ ≥ 1. Therefore, recalling that
∆q = F−1 φq F with Suppφq ⊂ B(0; 2q+1), ∆q(b(·, ξ)) ≡ 0 for q and ξ such
that

ε1 ‖ξ‖ > 2q+1 and ‖ξ‖ ≥ 1 .

Consequently, when ‖ξ‖ ≥ 1 the Littlewood–Paley decomposition of b(·, ξ) reads

b(·, ξ) =
∑

q ; ε1 ‖ξ‖≤ 2q+1

∆q(b(·, ξ))

and this sum is locally finite. Furthermore, by Corollary C.1,

‖∆q(b(·, ξ))‖L∞ ≤ 2−q ‖ b(·, ξ) ‖W 1,∞ ,

and for 1 ≤ ‖ξ‖ ≤ 2q+1 we have

2−q ≤ 2
‖ξ‖ ≤ 4

λ1(ξ)
.

This implies

‖ b(·, ξ) ‖L∞ ≤ C
4

λ1(ξ)
‖ b(·, ξ) ‖W 1,∞ ≤ 4C Cβ λm−|β|−1(ξ) .

�
A straightforward consequence of Proposition C.16 is the following.

Corollary C.5 If χ1 and χ2 are two admissible cut-off functions, for all a ∈
Γm

1 , Rχ1(a) − Rχ2(a) belongs to Γm−1
0 .

Definition C.7 Let χ be an admissible frequency cut-off according to Definition
C.6. To any symbol a ∈ Γm

k we associate the so-called para-differential operator,
said to be of order m,

Tχ
a := Op(Rχ(a)) .

In particular, Corollary C.5 shows that for a ∈ Γm
1 , Tχ

a are unique modulo
operators of order m− 1.

Another interesting point is the following.
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Remark C.8 If χ is constructed through Littlewood–Paley decomposition as
explained above, and k ≥ 1, for any function of x only, a ∈ W k,∞ viewed as a
symbol in Γ0

k, the operators Tχ
a coincide with the para-product operator Ta up

to an infinitely smoothing operator. Indeed, if

χ(η, ξ) =
∑
p≥ 0

ψ(22−p η) φ(2−p ξ) =
∑
p≥ 0

ψp−2(η) φp(ξ) ,

then

F (Rχ(a)(·, ξ)) = (
∑
|p|≤1

ψp−2(·) φp(ξ)) F (a) +
∑
p≥2

F (Sp−2(a)) φp(ξ) ,

or equivalently

Rχ(a)(x, ξ) =
∑
|p|≤1

F−1(ψp−2 F (a) )(x) φp(ξ) +
∑
p≥2

Sp−2(a)(x) φp(ξ) .

In terms of operators, this means that for all u ∈ F−1(E ′),

Tχ
a u = Op(b)u + Ta u,

where the last term is the usual para-product, while

b(x, ξ) =
∑
|p|≤1

F−1(ψp−2 F (a) )(x) φp(ξ)

satisfies (C.4.46) with ε = 1/2 and is compactly supported in ξ.

C.4.2 Basic results

We omit below the superscript χ, all results being valid for any admissible
frequency cut-off χ.

Theorem C.16 For all a ∈ Γm
1 , the adjoint operator (Ta)∗ is of order m and

(Ta)∗ − Ta∗ is of order m− 1.

Theorem C.17 For all a ∈ Γm
1 and b ∈ Γn

1 , the product ab belongs to Γm+n
1 and

Ta ◦ Tb − Ta b is a para-differential operator of order m + n− 1, associated with
a symbol in Γm+n−1

0 . In particular, if the symbols a and b commute – for example,
if at least one of the operators is scalar-valued – the commutator [Ta , Tb ] is of
order m + n− 1.

Proposition C.17 If a ∈ Γ2m
1 , there exists C > 0 such that for all u ∈ Hm,

|Re 〈Ta u , u〉| ≤ C ‖u‖2Hm .

Proof We have

|Re 〈Ta u , u〉| = |Re 〈λ−m T̂a u , λmû〉| ≤ ‖ (Λ−m ◦ Ta)(u) ‖L2 ‖Λmu ‖L2 .
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Since ‖Λmu ‖L2 = ‖u‖Hm , the final estimate follows from the fact that Λ−m ◦ Ta

is an operator of order −m + 2m = m, which is a consequence of Theorem C.17
and the fact that Tλm − Λm is infinitely smoothing. �
Theorem C.18 (G̊arding inequality) If a ∈ Γ2m

1 is such that for some positive
α,

a(x, ξ) + a(x, ξ)∗ ≥ α λ2m(ξ) IN

(in the sense of Hermitian matrices) for all (x, ξ) ∈ Rd × Rd, then there exists
C > 0 so that for all u ∈ Hm,

Re 〈Tau , u 〉 ≥ α

4
‖u‖2Hm − C ‖u‖2Hm−1/2 . (C.4.49)

One may also state a sharpened version of G̊arding’s inequality in this context,
but for smoother symbols (at least C 2 in x).

C.5 Para-differential calculus with a parameter

The final refinement in this overview of modern analysis tools concerns families of
para-differential operators depending on one parameter, as extensions of pseudo-
differential operators with parameter.

As in Section C.2, we denote

λs,γ(ξ) = (γ2 + ‖ξ‖2)s/2 ,

and define parameter-dependent symbols of limited regularity as follows.

Definition C.8 For any real number m and any natural integer k, the set
Γm

k consists of functions, a : Rd × Rd × [1,+∞) → CN×N that are C∞ in ξ
and such that for all d-uple β, there exists Cβ > 0 so that for all (ξ, γ) ∈ Rd ×
[1,+∞),

‖ ∂β
ξ a(·, ξ, γ) ‖W k,∞ ≤ Cβ λm−|β|,γ(ξ) . (C.5.50)

The subset Σm
k is made of symbols a ∈ Γm

k satisfying the spectral requirement

Supp (F (a(·, ξ, γ)) ) ⊂ B(0; ελ1,γ(ξ)) (C.5.51)

for some ε ∈ (0, 1) independent of (ξ, γ).

The analogue of Theorem C.15 is the following fundamental result.

Theorem C.19 Any symbol a ∈ Σm
0 can be associated with a family of operators

denoted by {Opγ(a)}γ ≥ 1, defined on temperate distributions with a compact
spectrum by

Opγ(a) : F−1(E ′) −→ C∞
b

u �→ Opγ(a)u; (Opγ(a)u)(x) = 1
(2π)d 〈 eix·a(x, ·, γ), û〉(C∞,E ′).

This definition of Opγ(a) coincides with (C.2.8) if a belongs to Sm. Furthermore,
for all s ∈ R and γ ≥ 1, Opγ(a) extends in a unique way into a bounded operator
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from Hs to Hs−m, and there exists Cs > 0 independent of γ and u so that

‖Opγ(a)u ‖Hs−m
γ

≤ Cs ‖u ‖Hs
γ

.

The proof, which we omit here, makes use of a parameter version of
Littlewood–Paley decomposition, based on cut-off functions in the (ξ, γ)-space.
Namely, taking ψ ∈ D(Rd × R) with ψ(ξ, γ) = Ψ((γ2 + ‖ξ‖2)1/2) and Ψ monot-
ically decaying such that

Ψ(r) = 1 if r ≤ 1/2 , Ψ(r) = 0 if r ≥ 1 ,

and denoting

ψγ
q (ξ) = ψ(2−q ξ, 2−q γ) , φ(ξ, γ) := ψ(ξ/2, γ/2) − ψ(ξ, γ),

φγ
q (ξ) = φ(2−q ξ, 2−q γ) ,

we may define operators Sγ
q and ∆γ

q of symbols, respectively, ψγ
q and φγ

q .
Observing that ∆γ

q = 0 for γ ≥ 2q+1, and in particular ∆γ
−1 = 0 for γ ≥ 1, we

easily check that ∑
p≥0

∆γ
q = id

in S ′. Furthermore, the analogue of Proposition C.4 for the standard Hs norm
is the following for the Hs

γ norm.

Proposition C.18 For all s ∈ R, u ∈ Hs(R) if and only if∑
p≥0

22ps‖∆γ
pu‖2L2 < ∞

for all γ ≥ 1. In addition, there exists Cs > 1 so that

1
Cs

∑
p≥0

22ps‖∆γ
pu‖2L2 ≤ ‖u‖Hs

γ
≤ Cs

∑
p≥0

22ps‖∆γ
pu‖2L2

for all γ ≥ 1.

Knowing Theorem C.19, it is then possible to define a family of operators
associated with all symbols a in Γm

k . The procedure is the same as in standard
(that is, without parameter) para-differential calculus. The basic tool is a so-
called admissible cut-off function.

Definition C.9 A C∞ function χ : (η, ξ, γ) ∈ Rd × Rd × [1,+∞) �→
χ(η, ξ, γ) ∈ R+ is termed an admissible frequency cut-off if there exist ε1,2

with 0 < ε1 < ε2 < 1 so that{
χ(η, ξ, γ) = 1 , if ‖η‖ ≤ ε1 λ1(ξ, γ) ,
χ(η, ξ, γ) = 0 , if ‖η‖ ≥ ε2 λ1(ξ, γ) ,
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and if for all d-uples α and β there exists Cα,β > 0 so that

| ∂α
η ∂β

ξ χ(η, ξ, γ) | ≤ Cα,β λ−|α|−|β|(ξ, γ) . (C.5.52)

Example. If ψ and φ are as in the Littlewood–Paley decomposition with
parameter described above, the function χ defined by

χ(η, ξ, γ) =
∑
p≥ 0

ψ(22−p η, 0) φ(2−p ξ, 2−p γ)

is an admissible frequency cut-off with ε1 = 1/16 and ε2 = 1/2. The verification
is left to the reader.

We now continue the machinery of Section C.4.

Proposition C.19 Let χ be an admissible frequency cut-off according to Defi-
nition C.9 and consider the operator

Rχ : a ∈ Γm
k �→ σ ∈ C∞ ; σ(·, ξ, γ) = Kχ(·, ξ, γ) ∗x a(·, ξ, γ) ,

where the kernel Kχ is defined by

Kχ(·, ξ, γ) = F−1(χ(·, ξ, γ)) .

Then Rχ maps into

Σm
k = { a ∈ Γm

k ; Supp (F (a(·, ξ, γ)) ) ⊂ B(0; ε2λ
1,γ(ξ)) } .

Furthermore, if k ≥ 1, for all a ∈ Γm
k , a − Rχ(a) belongs to Γm−1

k−1 .

Note: Since χ(0, ξ, γ) ≡ 1, Rχ(a) = a for all symbols a depending only on ξ.

Definition C.10 If χ is an admissible frequency cut-off, to any symbol a ∈ Γm
k

we associate the family of para-differential operators {Tχ,γ
a }γ≥1 defined by

Tχ,γ
a := Opγ(Rχ(a)) .

Remark C.9 If the symbol a is a function of x only, a ∈ W k,∞, it can be
viewed as a symbol in Γ0

k and Tχ,γ
a u is a parameter version of the para-product

of a and u. More precisely, if the cut-off function χ is based on the Littlewood–
Paley decomposition with parameter in the way explained above, we have

Tχ,γ
a u =

∑
p≥0

S0
p−2a ∆γ

pu ,

where S0
p := F−1 ψ0

p F with ψ0
p(ξ) := ψ(2−p ξ, 0) = Ψ(2−p ‖ξ‖) (as in the

standard Littlewood–Paley decomposition 4).

For simplicity, we shall now omit the dependence on χ and just denote T γ
a .

Remark C.10 For a symbol of the form

a(x, ξ) = p(ξ) b(x, γ) ,

4Except for the definitions of S−2, S−1, which were taken to be zero in Section C.3.3
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the regularized symbol is given by Rχ(a)(x, ξ, γ) = p(ξ)Rχ(b)(x, ξ, γ). Applying
this in particular to polynomials p, we see that for any d-uple α,

T γ
b ∂αu = T γ

(i|α|ξα b)
u .

It is important for the applications to be able to estimate the error done when
replacing products by para-products. Such estimates are given in Theorem C.13
(and its corollary) for standard para-products. We have similar results for T γ

a ,
which show that a − T γ

a is of order −1 as soon as a is Lipschitz.

Theorem C.20 There exists C > 0 so that, for all a ∈ W 1,∞ and u ∈ L2(Rd),
for all γ ≥ 1,

γ ‖ a u − T γ
a u ‖L2 ≤ C ‖a‖W 1,∞ ‖u‖L2 ,

‖ a ∂j u − T γ
a ∂j u ‖L2 = ‖ a ∂j u − T γ

i ξj a u ‖L2 ≤ C ‖a‖W 1,∞ ‖u‖L2 ,

‖ a u − T γ
a u ‖H1

γ
≤ C ‖a‖W 1,∞ ‖u‖L2 .

Proof The first inequality is easy to show. The factor γ comes from the
fact that ∆γ

q u = 0 for γ ≥ 2q+1. Indeed, the fact that a is Lipschitz implies,
by Corollary C.1 for the standard Littlewood–Paley decomposition, that

‖∆0
qa‖L∞ � 2−q ‖a‖W 1,∞ ,

and therefore that the series
∑

∆qa is normally convergent in L∞. Take u ∈ S .
Then the series

∑
∆γ

pu is normally convergent in L2 and u =
∑

∆γ
pu. Therefore,

a u − T γ
a u =

∑
q≥−1

∑
p≥0

∆0
qa ∆γ

pu −
∑
p≥0

S0
p−2a ∆γ

pu =
∑

2q+3≥γ

∆0
qaSγ

q+3u .

(Recall that Sγ
q = 0 for γ ≥ 2q.) Hence

‖a u − T γ
a u‖L2 �

∑
2q+3≥γ

2−q ‖a‖W 1,∞ ‖u‖L2 � 1
γ
‖a‖W 1,∞ ‖u‖L2 .

Here, we have used the fact that

‖Sγ
q u ‖ � ‖u‖L2 ,

which comes from the definition of Sγ
q , a L1 − L2 convolution estimate and a

uniform bound for ‖F−1(ψγ
q )‖L1 . The derivation of the latter bound comes from

the observation that

sup
1≤ γ≤2q

‖F−1
ξ (ψγ

q )‖L1(Rd) ≤ ‖F−1
(γ,ξ)(ψq)‖L1(R×Rd) = ‖F−1

(γ,ξ)(ψ)‖L1(R×Rd) .

We omit the proof of the second inequality, which is much trickier (see [38,
136]).



Para-differential calculus with a parameter 491

The third inequality is an easy consequence of the first two. Indeed, by
definition,

‖f‖2H1
γ
≤ γ2 ‖f‖2L2 + ‖∇f‖2L2 ,

for all f ∈ H1
γ , and

‖∂j( a u − T γ
a u )‖2L2 ≤ 3 ‖a ∂ju − T γ

a ∂ju‖2L2 + 3 ‖(∂ja)u‖2L2 + 3 ‖T γ
∂ja u‖2L2

≤ 3C2 ‖a‖2W 1,∞ ‖u‖2L2 + 3(1 + C2
0 ) ‖∂ja‖2L∞ ‖u‖2L2 ,

where C0 comes from the basic estimate

‖T γ
b u‖L2 ≤ C0 ‖b‖L∞ ‖u‖L2 .

Therefore,

‖ a u − T γ
a u ‖2H1

γ
≤ γ2 ‖ a u − T γ

a u ‖2L2 +
∑

j

‖∂j( a u − T γ
a u )‖2L2

≤ ( (1 + 3d)C2 + 3d(1 + C2
0 )) ‖a‖2W 1,∞ ‖u‖2L2 .

�
Other basic results, similar to those in pseudo-differential calculus with

parameter, are the following.

Theorem C.21 For all a ∈ Γm
1 , the family of adjoint operators {(T γ

a )∗}γ≥1 is
of order m and the family {(Ta)∗ − Ta∗}γ≥1 is of order (less than or equal to)
m− 1.

Theorem C.22 For all a ∈ Γm
1 and b ∈ Γn

1 , the product a b belongs to Γm+n
1

and the family {T γ
a ◦ T γ

b − T γ
a b}γ≥1 is of order (less than or equal to) m + n− 1.

Theorem C.23 (G̊arding inequality) If a ∈ Γ2m
1 is such that for some positive

α,

a(x, ξ, γ) + a(x, ξ, γ)∗ ≥ α λ2m,γ(ξ) IN

(in the sense of Hermitian matrices) for all (x, ξ, γ) ∈ Rd × Rd × [1,+∞), then
there exists γ0 ≥ 1 so that for all γ ≥ γ0 and all u ∈ Hm,

Re 〈T γ
a u , u 〉 ≥ α

4
‖u‖2Hm

γ
. (C.5.53)

Again, we omit the sharp form of G̊arding’s inequality, which is valid only
for smoother symbols.
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1995.
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aux dérivées partielles non linéaires. Ann. Sci. Ec. Norm. Super., IV. Ser., 14:209–
246, 1981.

[21] Y. Brenier. Hydrodynamic structure of the augmented Born–Infeld equations. Arch.
Rational Mech. Anal., 172:65–91, 2004.

[22] P. Brenner. The Cauchy problem for symmetric hyperbolic systems in Lp. Math.
Scand., 19:27–37, 1966.

[23] P. Brenner. The Cauchy problem for systems in Lp and Lp,α. Ark. Mat., 11:75–101,
1973.

[24] A. Bressan. Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000.
The one-dimensional Cauchy problem.
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[102] H.-O. Kreiss. Über Matrizen die beschränkte Halbgruppen erzeugen. Math. Scand.,
7:71–80, 1959.

[103] H.-O. Kreiss. Initial boundary value problems for hyperbolic systems. Comm. Pure
Appl. Math., 23:277–298, 1970.

[104] H.-O. Kreiss and J. Lorenz. Initial-boundary value problems and the Navier–Stokes
equations. Academic Press Inc., Boston, MA, 1989.

[105] S. Kruz̆kov. Generalized solutions of the Cauchy problem in the large
for nonlinear equations of first order. Dokl. Akad. Nauk SSSR, 187:29–32,
1969.

[106] L. D. Landau and E. M. Lifshitz. Fluid mechanics. Translated from the Russian by
J. B. Sykes and W. H. Reid. Course of Theoretical Physics, Vol. 6. Pergamon Press,
London, 1959.

[107] D. Lannes. Dispersive effects for nonlinear geometrical optics with rectification.
Asymptotic Analysis, 18:111–146, 1998.
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Mat. Ž., 5:123–151, 1953.
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1970.
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Polytech., Palaiseau, 1986.

[133] G. Métivier. Stability of multi-dimensional weak shocks. Comm. Partial Differential
Equations, 15(7):983–1028, 1990.

[134] G. Métivier. The block structure condition for symmetric hyperbolic systems. Bull.
London Math. Soc., 32(6):689–702, 2000.

[135] G. Métivier and K. Zumbrun. Hyperbolic boundary value problems for symmet-
ric systems with variable multiplicities. J. Differential Equations, 211(1):61–134,
2005.



References 499

[136] Guy Métivier. Stability of multidimensional shocks. In Advances in the theory of
shock waves, volume 47 of Progr. Nonlinear Differential Equations Appl., pages
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non linéaire en dimension 2. Arch. Rational Mech. Anal., 101(3):261–292, 1988.
[171] R. Sakamoto. Mixed problems for hyperbolic equations. I. Energy inequalities. J.

Math. Kyoto Univ., 10:349–373, 1970.
[172] R. Sakamoto. Mixed problems for hyperbolic equations. II. Existence theorems with

zero initial datas and energy inequalities with initial datas. J. Math. Kyoto Univ.,
10:403–417, 1970.

[173] R. Sakamoto. L2-well-posedness for hyperbolic mixed problems. Publ. Res. Inst.
Math. Sci., 8:265–293, 1972.

[174] R. Sakamoto. Hyperbolic boundary value problems. Cambridge University Press,
Cambridge, 1982. Translated from the Japanese by Katsumi Miyahara.

[175] L. Sarason. Hyperbolic and other symmetrizable systems in regions with corners
and edges. Indiana Univ. Math. J., 26(1):1–39, 1977.

[176] P. Secchi. The initial-boundary value problem for linear symmetric hyperbolic
systems with characteristic boundary of constant multiplicity. Differential Integral
Equations, 9(4):671–700, 1996.

[177] P. Secchi. Well-posedness of characteristic symmetric hyperbolic systems. Arch.
Rational Mech. Anal., 134(2):155–197, 1996.

[178] P. Secchi. A symmetric positive system with nonuniformly characteristic boundary.
Differential Integral Equations, 11(4):605–621, 1998.



References 501

[179] P. Secchi. Full regularity of solutions to a nonuniformly characteristic boundary
value problem for symmetric positive systems. Adv. Math. Sci. Appl., 10(1):39–55,
2000.

[180] L. I. Sedov. Metody podobiya i razmernosti v mehanike. Gosudarstv. Izdat. Tehn.-
Teor. Lit., Moscow, Leningrad, 1951.

[181] L. I. Sedov. Similarity and dimensional methods in mechanics. Mir, Moscow, 1982.
Translated from the Russian by V. I. Kisin.
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acoustics, 166
adiabatic exponent, 386
adjoint

BVP, 216
IBVP, 114
operator, 15

argument
T ∗T , 37
Holmgren, 22
weak=strong, 68, 273

balance law, 291
Bethe–Weyl fluid, 387
block structure, 141

condition, 237
boundary

characteristic, 96, 103
contractible, 221
non-characteristic, 94, 103

boundary condition
conservative, 93
dissipative, 86
maximal dissipative, 86
number of, 100
strictly dissipative, 94,

226
boundary point

elliptic, 186
hyperbolic, 205, 223

boundary value problem
(see BVP), 123

BVP, 125
adjoint, 216, 255

Cauchy problem, 3
backward, 9, 23
homogeneous, 3

causality, 123
central subspace, xxiii
characteristic

boundary, 96, 103
bundle, 49
cone, xiv, 26
hyperplane, 29
hypersurface, 73
speed, 340

characteristic field
genuinely nonlinear, 394
linearly degenerate, 394

characteristics
incoming, 100
method of, 16

chemical potential, 397
commutator, 454
compatibility conditions, 270, 319
compensated compactness, 43
compression wave, 198
cone

characteristic, 26
forward, 26
of dependence, 18
of influence, 18

conservation law, 17, 291
conservative

boundary condition, 93
contact discontinuity, 400
continuous semigroup, 87

Dalembertian, 36
∆q , 460
density, 291
differential constraints, 41
Dirac operator, 37
discontinuity

compressive, 402
contact, 400
dynamical, 400
expansive, 402

dispersion, 197
dispersion relation, 415
displacement, 43
dissipative

boundary condition, 86
strictly-() boundary condition, 94, 226
symmetrizer, 145, 177, 187

distributions, xxiv
domain

influence, 20
of dependence, 19

Duhamel formula, 4, 93
Dunford–Taylor formula, xxiii, 234
dynamical discontinuity, 400

elastodynamics, 43, 173, 198
electromagnetism, 44
energy estimate

para-linearized, 349
weighted, 227
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energy identity, 17
entropy

-flux pair, 305
condition, xv
convex, 305
mathematical, 305
physical, 292
solution, 305

equation
in divergence form, 291
transport, 27
wave, 39

equation of state
complete, 385
incomplete, 388

equations
Cauchy–Riemann, 6
Euler, 291, 391
Maxwell, 42, 44

estimate
a priori, 51
energy, 51, 183
Moser, 294
weighted, 81, 95, 96

Euler equations, 291, 391
exterior

algebra, 132
product, 132

Faá di Bruno’s formula, 321
FBP, 331
fluid, 291

Bethe–Weyl, 387
isentropic, 391
isothermal, 391
Smith, 388
van der Waals, 199, 389

forward cone, 26, 205
free boundary problem (see FBP), 330
Friedrichs

symmetric, 13, 85
symmetrizable, 13, 17, 52, 292

Frobenius norm, xxii

G̊arding inequality, 454, 487
sharp, 455, 459
with parameter, 458

γ (adiabatic exponent), 386
γ-law, 389
Γ (Grüneisen coefficient), 386
gas

dusty, 390
ideal, 388
polytropic, 388

gas dynamics, 223
genuinely nonlinear, 394
glancing point, 157, 207, 237, 420
good unknown, 336

Grüneisen coefficient, 386
Grassmannian, 136
Green formula, 88
Gronwall lemma, 443

basic, 443
discrete, 444
multidimensional, 444

guided wave, 198

Hadamard instability, 6, 107
Hardy–Littlewood–Sobolev inequality, 40
heat capacity, 386
Hille–Yosida theorem, 87
Holmgren principle, 22
homogeneous

IBVP, 85
Horn’s conjecture, 25
Hugoniot

adiabat, 401
locus, 401

Hugoniot set, 331
Huyghens principle, 198
hyperbolic

boundary point, 205, 223
constantly, 13, 139
first-order system, 8
in a direction (ξ0, λ0), 28
matrix, xxiii
operator, 8
parabolic-() operator, 35
polynomial, 30
strictly, 14
symmetric, 13

hyperbolicity, 7
constrained, 43
weak, 4

IBVP, 85
adjoint, 114, 137
characteristic, 158
homogeneous, 85, 182, 255
non-homogeneous, 85
normal, 102, 221
robust class of, 201
strongly well-posed, 109, 111
symmetric dissipative, 85
variable coefficients, 220
variational, 93

ideal gas, 388
incoming

characteristic, 100
flow, 411
mode, 104

influence domain, 20
initial boundary value problem

(see IBVP), 85
internal energy, 291
invariant subspace, xxiii
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isentropic fluid, 391
isothermal fluid, 391

Kreiss
matrix theorem, 10
symmetrizer, 120

Kreiss–Lopatinskĭı condition, 105
uniform, 111, 235

lacunæ, xv
Lax

entropy criterion, 402
shock, 409
shock inequalities, 407

Lax shock, 341
Legendre transform, 398
Legendre–Hadamard inequality, 44
Lidskii theorem, 26
lifting of initial data, 286, 323
linearly degenerate, 394
Littlewood–Paley decomposition,

459
Liu criterion, 406
localization method, 21
Lopatinskĭı

condition, 105, 234
determinant, 106, 130, 208, 236

Mach number, 409
mass transfer flux, 400
Maxwell’s equations, 42

nonlinear, 45
mixed problem, 315
mode

incoming, 104
outgoing, 104

monotone operator, 87
maximal, 87

neutral mode, 235
Newton’s polygon, 24
non-characteristic, 90

boundary, 103
non-glancing points, 186
non-homogeneous

IBVP, 85
normal

derivative, 167, 253
IBVP, 102
matrix, 86
mode, 102, 234, 337

Okhubo’s case, 175
Op(a), 452
operator

para-differential, 485
pseudo-differential, 452
stabilizable, 160

outgoing
flow, 411

outgoing mode, 104
overcompressive shock, 344

P-wave, 198
Paley–Wiener Theorem, 447
para-differential operator, 485
para-linearization, 348, 473
para-product, 466
Pauli matrices, 37
persistence, 329
Petrowsky’s

example, 12
point

interior, 146
polyconvex function, 44
polytropic gas, 388
Poynting identity, 45
pressure, 291
pressure law, 389

Mie–Grüneisen-type, 391
propagation

speed of, 218

quasiconvex function, 44
quasilinear system, 292

R(u, v), 466
Rankine–Hugoniot condition, 312
Rayleigh wave, 198
real type subspace, 203
reflexivity, 158
relaxation model, 36
remainder, 466
Riesz–Thorin theorem, 38
robust class, 201

Sq , 460
S-wave, 198
semi-group, 4

contraction, 92
shear wave, 198
shock

expansive, 437
Lax, 341
layer, 403
overcompressive, 344
state behind the, 409
undercompressive, 343

shock wave
planar, 313

Smith fluid, 388
solution

continuation of, 302
entropy, 305
weak, 304

sound speed, 292, 387
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space-like hypersurface, 73
spectrum, xxi
speed

of sound, 292, 387
stable subspace, xxiii
Strichartz estimates, xiv, 36
subsonic

flow, 411
state, 409

subspace
central, xxiii
invariant , xxiii
of real type, 203
stable, xxiii
unstable, xxiii

supersonic
flow, 411
state, 409

surface wave, 196
symbol, 450

homogeneous, 450
Sobolev, 451

symbolic symmetrizer, 59
symmetrizer

dissipative, 145, 177
functional, 54
functional boundary, 225
Kreiss, 120, 230
refined Kreiss, 247
symbolic, 56, 300
weakly dissipative, 187

system
in canonical form, 307

T ∗T argument, 40
Tu, 466
T χ

a , 485
tangential derivative, 166, 251
temperature, 292

critical, 389
test functions, xxiv
trace, 88

normal, 88
transport equation, 27

undercompressive shock, 343
uniformly diagonalizable, 11
unstable subspace, xxiii

vacuum, 399
van der Waals fluid, 389
van der Waerden inequality, 32
velocity, 291
vortex sheet, 400

wave
compression, 198
guided, 198
P-, 198
Rayleigh, 198
S-, 198
shear, 198

wave equation, 39
well-posedness

strong, 183
Weyl inequalities, 25
WR class, 209


