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Foreword of the first edition

This book will be welcome as an application of discrete mathematics rather than
the more usual calculus-based methods of analysis. The subject of graph theory
has become important in science and engineering through its strong links with ma-
trix analysis and computer science. At first glance it seems extraordinary that such
abstract material should have quite practical applications. However, as the author
makes clear, the early relationship between graph theory and skeletal structures is
now obvious: the structure of the mathematics is well suited to the structure of the
physical problem. In fact could there be any other way of dealing with this struc-
tural problem? The engineer studying these applications of structural analysis has
either to apply the computer programs as a black box, or to become involved in
graph theory, matrices and matroids. This book is addressed to those scientists and
engineers, and their students, who wish to understand the theory.

The book is written in an attractive dynamic style that immediately goes to the
heart of each subtopic. The many worked examples and exercises will help the
reader to appreciate the theory. The book is likely to be of interest to pure and ap-
plied mathematicians who use and teach graph theory, as well as to those students
and researchers in structural engineering science who will find it to be necessary
professional reading.

P.C. Kendall
University of Sheffield
United Kingdom



Preface

Recent advances in structural technology require greater accuracy, efficiency and
speed in the analysis of structural systems, referred to as “Optimal Structural
Analysis” in this book. It is therefore not surprising that new methods have been
developed for the analysis of the structures with complex configurations.

The requirement of accuracy in analysis has been brought about by need for dem-
onstrating structural safety. Consequently, accurate methods of analysis had to be
developed since conventional methods, although perfectly satisfactory, when used
on simple structures, have been found inadequate when applied to complex and
large-scale structures. Another reason why greater accuracy is required results
from the need to achieve efficient and optimal use of the material, i.e. optimal de-
sign.

The methods of analysis that meet the requirements mentioned above, employ ma-
trix algebra and graph theory, which are ideally suited for modern computational
mechanics. Although this text deals primarily with analysis of structural engineer-
ing systems, it should be recognized that these methods are also applicable to other
types of structures. The concepts presented in this book are not only applicable to
skeletal structures, but can equally be used for the analysis of other systems such
as hydraulic and electrical networks. These concepts are also extended to finite
element methods.

The author has been involved in various developments and applications of graph
theory and matroids in the last three decades. The present book contains part of
this research suitable for various aspects of matrix structural analysis. Other well-
known methods in the fields relevant to the subject matter of this book are also
presented.

In Chapter 1 the most important concepts and theorems are presented. Chapter 2
contains novel approaches for determining the degree of static indeterminacy of
structures and provides systematic methods for studying the connectivity proper-
ties of structures. Rigidity of planar trusses is also briefly studied. In Chapter 3 a
through study of the force method is presented. Methods are developed for the
formation of highly sparse and well-conditioned flexibility matrices. Chapter 4
provides simple and efficient methods for construction of stiffness matrices. The
formation of well-conditioned stiffness matrices are also dealt with briefly. In
Chapters 5 and 6 banded, variable banded and frontal methods are investigated.
Efficient methods are presented for both node and element ordering. Many new
graphs are introduced for transforming the connectivity properties of finite element
models onto graph models. Chapters 7 and 8 include powerful graph theory and
algebraic graph theory methods for decomposition of structures and finite element
meshes ideal for parallel processing, and parallel dynamic analysis of structures is
also briefly studied. Chapter 9 is devoted to the most recent results concerning
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efficient calculation of eigenvalues and eigenvectors of regular structures using
different graph products. These methods have applications in decomposing and
nodal ordering of space structures and finite element models. In all the chapters
many examples are designed to make the text easier to be understood.

Appendix A contains basic graph theory definitions and concepts, and Appendix B
introduces matroids with special emphasis on the Greedy algorithm and its
applications in structural mechanics.

I would like to take this opportunity to acknowledge a deep sense of gratitude to a
number colleagues and friends who in different ways helped in the preparation of
this book. Mr. J.C. de C. Henderson formerly of Imperial College of Science and
Technology first introduced me to the subject with most stimulating discussions on
various aspects of topology and combinatorial mathematics. Dr. A.C. Cassell dis-
cussed many concepts on structures and helped writing the early papers on
applications of graph theory in structural analysis. Professor F. Ziegler encouraged
me to write this book and enabled me to complete it in the happy and stimulating
atmosphere of his institute at the Technical University of Vienna. My gratitude is
extended to Professor P.C. Kendall, formerly of Sheffield University and Mrs V.A.
Wallace for constructive comments on the first edition of this book. My special
thanks are due to Mrs C. Holmes, publishing director of Research Studies Press
Limited, for editing the second edition and her unfailing kindness in the course of
the preparation of this book. I would like to express my sincere thanks to
Mrs Debbie Cox, the assistant editor of John Wiley & Sons Ltd for her continuous
assistance in the final stage of preparing this book, and Laserwords Private Lim-
ited for their contribution to the typesetting and project management of this book.

I would like to thank my former Ph.D. and M.Sc. students, Dr. H.A. Rahimi
Bondarabady, Dr. H. Rahami, Dr. A. Mokhtarzadeh, Dr. A. Davaran, G.R. Roosta,
1. Gaderi, for their help in various aspects of writing this book.

My warmest gratitude is due to my wife Mrs Leopoldine Kaveh for proof reading
the first edition and for her continued support in the course of preparing both edi-
tions.

Every effort has been made to render the book error free. However, the author
would appreciate any remaining errors being brought to his attention.

A. Kaveh,
Tehran
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CHAPTER 1

Basic Concepts and
Theorems of Structural Analysis

1.1 INTRODUCTION

In this chapter, basic definitions, concepts and theorems of structural analysis are
presented. These theorems are employed in the following chapters and are very
important for their understanding.

For an analytical determination of the distribution of internal forces and displace-
ments, under prescribed external loading, a solution to the basic equations of the
theory of structures should be obtained, satisfying the boundary conditions. In the
matrix methods of structural analysis, one must also use these basic equations.

In order to provide a ready reference for the development of the general theory of
matrix structural analysis, the most important basic theorems are introduced in this
chapter, and illustrated through simple examples.

1.1.1 DEFINITIONS

A structure can be defined as a body that resists external effects (loads, tempera-
ture changes and support settlements) without undue deformation. Building
frames, industrial building, halls, towers, bridges, dams, reservoirs, tanks, channels
and pavements are typical structures that are of interest to civil engineers.

Optimal Structural Analysis ~ A. Kaveh
© 2006 Research Studies Press Limited



2 OPTIMAL STRUCTURAL ANALYSIS

The underlying principles for the analysis of other structures are more or less the
same. Airplane, missile and satellite structures are of interest to the aviation engi-
neer. The analysis and design of a ship is interesting for a naval architect. A
machine engineer should be able to design machine parts. However, in this book
only structures that are of interest to structural engineers will be studied.

A structure can be considered to be an assemblage of members and nodes. Struc-
tures with clearly defined members are known as skeletal structures. Planar and
space trusses, planar and space frames, single- and double-layer grids are examples
of skeletal structures; see Figure 1.1.

(a) A planar truss. (b) A space truss.

74
STTT ST ST TSI ST ST 7L 7L 7L

(¢) A planar frame. (d) A space frame.
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(e) A single-layer grid. (f) A double-layer grid.
Fig. 1.1 Examples of skeletal structures.
Structures that must be artificially divided into members (elements) are called con-

tinua. Concrete domes, dams, plates and pavements are examples of continua; see
Figure 1.2.

(c) A plate.

Fig. 1.2 Examples of continua.



4 OPTIMAL STRUCTURAL ANALYSIS

1.1.2 STRUCTURAL ANALYSIS AND DESIGN

Structural analysis is the determination of the response of a structure to external
effects such as loading, temperature changes and support settlements. Structural
design is the selection of a suitable arrangement of members, and a selection of
materials and member sections, to withstand the stress resultants (internal forces)
of a specified set of loads, and satisfy the specified displacement constraints.
Figure 1.3 is a simple illustration of the cycle of structural analysis and design.

Structure
Loading —— @ —— Redesign
Structural Stress Structural
analysis analysis design

Fig. 1.3 The cycle of analysis and design.
Structural theories may be classified from different points of view as follows:
Static versus dynamic
Planar versus space
Linear versus non-linear
Statically determinate versus statically indeterminate.
In this book, static analyses of linear structures are mainly discussed for the stati-
cally determinate and indeterminate cases; however, a brief section is also included
on dynamic analysis of structures.
1.2 GENERAL CONCEPTS OF STRUCTURAL ANALYSIS
1.2.1 MAIN STEPS OF STRUCTURAL ANALYSIS

A correct solution of a structure should satisfy the following requirements:

1. Equilibrium: The external forces applied to a structure and the internal forces
induced in its members are in equilibrium at each node.
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2. Compatibility: The members should deform so that they fit together.

3. Force—displacement relationship: The internal forces and deformations satisfy
the stress—strain relationship of the member.

For structural analysis, two basic methods are in use:

Force method: In this method, some of the internal forces and/or reactions are
taken as primary unknowns, called redundants. Then the stress—strain relationship
is used to express the deformations of the members in terms of external and redun-
dant forces. Finally, by applying the compatibility condition that the deformed
members must fit together, a set of linear equations yields the values of the redun-
dant forces. The stresses in the members are then calculated and the displacements
at the nodes in the direction of external forces are found. This method is also
known as the flexibility method and compatibility approach.

Displacement method: In this method, the displacements of the nodes necessary
to describe the deformed state of the structure are taken as unknowns. The defor-
mations of the members are then calculated in terms of these displacements, and by
using the stress—strain relationship, the internal forces are related to them. Finally,
by applying the equilibrium equations at each node, a set of linear equations is
obtained, the solution of which results in the unknown nodal displacements. This
method is also known as the stiffness method and equilibrium approach.

For choosing the most suitable method for a particular structure, the number of
unknowns is one of the main criteria. A comparison of the force and displacement
methods can be made by calculating the degree of static and kinematic indetermi-
nacies, respectively. As an example, for the truss structure shown in Figure 1.4(a),
the number of redundants is 2 in the force method, while the number of unknown
displacements is 9 for the displacement approach. For the 3 x 3 planar frame
shown in Figure 1.4(b), the static indeterminacy and the kinematic indeterminacy
are 27 and 36, respectively. For the simple six-bar truss of Figure 1.4(c), the num-
ber of unknowns for the force and displacement methods is 4 and 2, respectively.
Methods for calculating the indeterminacies are discussed in Chapter 2. The num-
ber of unknowns is not the only consideration: another criterion for choosing the
most suitable method is the conditioning of the flexibility and stiffness matrices,
which will be dealt with in Chapters 3 and 4.
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(a) A planar truss. (b) A planar frame. (¢) A simple truss.

Fig. 1.4 Some simple structures.
1.2.2 MEMBER FORCES AND DISPLACEMENTS
A structure can be considered as an assembly of its members, subject to external
effects. These effects will be considered as external loads applied at nodes, since

any other effect can be reduced to such equivalent nodal loads. The state of stress
in a member (internal forces) is defined by a vector,

k k k koAt
r,={n n o}, (1-1)
and the associated member deformation (distortion) is designated by a vector,
k  k k kAt
w, ={u uy uz ..u, }, (1-2)

where n is the number of force or displacement components of the Ath member
(element), and t shows the transposition. Some simple examples of typical ele-
ments, common in structural mechanics, are shown in Figure 1.5.

(a) Bar element. (b) Beam element.
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(c) Triangular plane stress element. (d) Rectangular plane stress element.

~
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(e) Triangular plate bending element. () Rectangular plate bending element.

Fig. 1.5 Some simple elements.
The relation between member forces and displacements can be written as
r, = kmum oru,,= fmrma (1'3)

where k,, and f,, are called member stiffness and member flexibility matrices, re-
spectively. Obviously, k,, and f,, are related as follows:

k,f,=1T (1-4)

Flexibility matrices can be written only for members supported in a stable manner,
because rigid body motion of the undefined amplitude would otherwise result from
application of applied loads. These matrices can be written in as many ways as
there are stable and statically determinate support conditions.

The stiffness and flexibility matrices can be derived using different approaches.
For simple members like bar elements and beam elements, methods based on the
principles of strength of materials or classical theory of structures will be suffi-
cient. However, for more complicated elements the principle of virtual work or
alternatively variational methods can be employed. In this section, only simple
members are studied, and further considerations will be presented in Chapters 3
and 4.
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1.2.3 MEMBER FLEXIBILITY AND STIFFNESS MATRICES

Consider a bar element as shown in Figure 1.6 that carries only axial forces and
has two components of member forces. From the equilibrium,

NE 4 NE =0, (1-5)

and only one end force needs to be specified in order to determine the state of
stress throughout the member. The corresponding deformation of the member is
simply the elongation. Hence,

rl=NR and ul =6K. (1-6)

[I— L+8r‘: -

Fig. 1.6 Internal forces and deformation of a bar element.

EA

From Hooke's law, N,I,s = é ,ff , and therefore

L EA
f =— and k,, =—. 1-7
A m=7 (1-7)

Now consider a prismatic beam of a planar frame with length L and bending stiff-
ness E1. The internal forces are shown in Figure 1.7.

Ma Mg
72 ¥
LA, 5@5\7 | 5
Va Vg O !
(a) (b)

Fig. 1.7 End forces and deflected position of a beam element.
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This element is assumed to be subjected to four end forces, as shown in Figure
1.7(a), and the deflected shape and position is illustrated in Figure 1.7(b). Four end
forces are related by the following two equilibrium equations:

Va+ V=0, (1-8a)
MA+MB+ VBLZO (1_8b)

Therefore, only two end-force components should be specified as internal forces.
Some possible choices for r,, are {Mx, Mg}, {Vs, Mg} and {Va, M4}.

Using classical formulae, such as those of the strength of materials or slope-
deflection equations of the theory of structures, the force—displacement relation-
ships can be established. As an example, the flexibility matrix for a prismatic beam
supported as a cantilever is obtained using the differential equation of the elastic
deformation curve as follows:

v M, 1
— = Vg(L—x)+M
>~ L —[Vp(L-x)+Mp].

The integration of the above equation leads to

dv

dx EI [VB(LX——X )+MBX]+C1,

and integrating again we have

1 3y, 1 2
v= V, Lx? x +=Mpx“1+Cix+C,.
£l — G )+ Mpx“]+Cix+ Gy

Using the boundary conditions at A as

dv:l
— =0and[v],g =0,
|:dx x=0 '

we have ¢, =0 and C,=0.
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Substituting these constants we have

_ 1 17,2 13,1 2
V—E—IZ[VB(ELX —gx )+5MBX ],
dv 1 2
—=—[Vp(Lx—1x*)+ M px].
o EIZ[ p(Lx=5x7)+Mpx]

For x = L, the displacement and rotation of end B are obtained as

3 2 2
L Mgl L~ MgL
_s +—8~_ and 6, = Vs +=B2
3EI, 2EI, 2EI,  El

B
z

Using I, =1, the above relationships in matrix form become

r
1l £
[53}: wn | _| 3EI 2EI |:VB:|
05| |u? 2 L |Ms]
2EI  EI
¢ 220 3 1-9)
or =— . -
™ 6EI| 3 6/L

Using a similar method, for a simply supported beam with two moments acting at
the two ends, we have

L L
31 eEr| L2 -1

¢ o| 3E 6EI|_ L . (1-10)
L L | 6EI[-1 2
6EI  3EI

If the axial forces are also included as member forces, then r,; =[Ng Vg Mpg]

and rl, =[Ny M, Mg], as shown in Figure 1.8. The above matrices become
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L 0 0 L 0 0
EA EA
3 2
e 2lo £ P laar |0 L L
3EI  2EI 3EI  6EI
2 L L L
“ o = 6EI  3EI |
F ) N
f|| T ey
\/1_> rm 7?7 \-ﬁ, rm
(@ (b)

Fig. 1.8 Two sets of end forces and displacements for a beam element.

The corresponding stiffness matrices are

£4 0 £4
L L
4EI 2EI
k, = 12E1_6ET and k,,=[ 0 — —
V& 2 L L
0 6EI  4EI o Z2EL 4EI
i 2L L L L]

11

(1-11)

(1-12)

It should be mentioned that both flexibility and stiffness matrices are symmetric,
on account of the Maxwell-Betti reciprocal work theorem proven in the next sec-
tion. More general methods for the derivation of member flexibility and stiffness

matrices will be studied in Chapters 3 and 4.
1.3 IMPORTANT STRUCTURAL THEOREMS

1.3.1 WORK AND ENERGY

The work, 8, of a force r acting through a change in displacement du in the di-

rection of that force is the product rdu.
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Consider a general load—displacement relationship as shown in Figure 1.9(a). The
area under this curve represents the work done, denoted by . The area above this
curve is the complementary work designated by W *.

For a total displacement of uy, the total work is given by

W=_[:1 rdu, (1-13)
and the complementary work is

W*=j(:‘ udr. (1-14)

For a linear case, as shown in Figure 1.9(b), we have

W =WH#, (1-15)

"

8 w* r
dr
1l

1
1Y/ W

0 uy du ! 0 u; !
(a) A general relationship. (b) A linear relationship.

Fig. 1.9 Force—displacement relationships.
In this book, it is assumed that the loads are applied to a structure in a gradual
manner, and attention is limited to linear behaviour. Therefore, the load-

displacement relationship is as shown in Figure 1.9(b), and the relation can be
expressed as

r=Kku, (1-16)

where k is a constant. The work in Figure 1.9(b) can be written as

Wzérlul_ (1-17)



BASIC CONCEPTS AND THEOREMS OF STRUCTURAL ANALYSIS 13

Forces and displacements at a point are both represented by vectors, and their
work is represented as a dot product. In matrix notations, however, the work can
be written as

w =Lyt (1-18)
2
Using Eq. (1-3),
w=Lu'ktu=Luku. (1-19)
2 2

Similarly, W * can be calculated as
Lt
W*:Er fr. (1-20)

Consider the stress—strain relationship as illustrated in Figure 1.10(a). The area
under this curve represents the density of the strain energy, and when integrated
over the volume of the member (or structure) results in the strain energy U. The
area to the left of the stress—strain curve is the density of the complementary strain
energy, and by integrating over the member (or structure) the complementary en-
ergy U* is obtained. For the linear stress—strain relationship as shown in Figure
1.10(b), U= U*.

Since the work done by external actions on an elastic system is equal to the strain
energy stored internally in the system (work-energy law),

W= U and W* = U*. (1-21)
(e}
[¢)
U
U
0 e 0 ¢
(a) A general stress—strain relationship. (b) Linear stress—strain relationship.

Fig. 1.10 Stress—strain relationships.
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1.3.2 CASTIGLIANO’S THEOREMS

Consider the force—displacement curve in Figure 1.9(a), and suppose an imaginary
displacement du; is imposed on the system. The work done, 3/, under the action

of 7, in moving through du; is equal to
OW =r;du;. (1-22)
Using Eq. (1-21), and taking limit, we get the first theorem of Castigliano as

8U:

o 1-23
2, (1-23)

UE

which can be stated as follows [24]:
The partial derivative of the strain energy with respect to a dis-

placement is equal to the force applied at the point and along the
considered displacement.

Similarly, if the system is subjected to an imaginary force 67; along the displace-

ment u;, then the complementary work done dW* is equal to
OSW*=u;0r;, =6U*, (1-24)
and in the limit, the second theorem of Castigliano is obtained as

oU *
=U;.

1
or;

(1-25)

The partial derivative of the complementary strain energy with re-
spect to a force is equal to the displacement at the point where the
force is applied and directed along the action of the force.

For the linear case, U* =U and therefore Eq. (1-25) becomes

(1-26)



BASIC CONCEPTS AND THEOREMS OF STRUCTURAL ANALYSIS 15

1.3.3 PRINCIPLE OF VIRTUAL WORK

The principle of virtual work is a very powerful means for deducing the conditions
of compatibility and equilibrium [5], and it can be stated as follows:

The work done by a set of external forces P acting on a structure in moving
through the associated displacements v, is equal to the work done by some other
set of forces R, that is statically equivalent to P, moving through associated dis-
placements u, that are compatible with v. Associated forces and displacements
have the same lines of actions.

Using a statically admissible set of forces and the work equation, the compatibility
relations between the deformations and displacements can be derived. Alterna-
tively, employing a compatible set of displacements and the work equation, one
obtains the equations of equilibrium between the forces. These approaches are
elegant and practical.

Dummy-Load Theorem: This theorem can be used to determine the conditions of
compatibility. Suppose that the deformed shape of each member of a structure is
known. Then it is possible to find the deflection of the structure at any point by
using the principle of virtual work. For this purpose, a dummy load (usually unit
load) is applied at the point and in the direction of required displacement, which is
why it is also known as the unit load method. The dummy-load theorem can be
stated as follows:

applied actual displacement internal forces actual
dummy ;X< of structure where external ; = { statically equivalent to x4 deformation
load dummy load is applied the applied dummy load of elements

It should be noted that the dummy-load theorem is a condition on the geometry of
the structure. In fact, once the deformations of elements are known, one can draw
the deflected shape of the structure, and the results obtained for the deflections
will agree with those of the dummy-load theorem.

Example 1: Consider a truss as shown in Figure 1.11. It is desired to measure the
vertical deflection at node C when the structure is subjected to a certain loading.

s

C
e

Fig. 1.11 A planar truss.
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A unit load is applied at C, and a set of internal forces statically equivalent to the
unit load is chosen. However, for such equivalent internal forces, there exists a
wide choice of systems, since there are several numbers of structural possibilities
that can sustain the load at C. Three examples of such a system are shown in
Figure 1.12(a—c).

Obviously, system (a) will need a lot of calculation because it is statically indeter-
minate.

(a) (b)

\
/
()

Fig. 1.12 Three different systems capable of supporting the dummy load.

System (c) is used here, since it has a smaller number of members than (b), and
symmetry is also preserved. Internal forces of the members in this system shown
in Figure 1.13 are

r={-1/2,42/2,-1/2,J2 /2,2 /2,-1/2,42/2,-1/2,1/2,1/2,-1/2,-1,-1,-1/2}".

Fig. 1.13 Internal forces equivalent to unit dummy load.
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Measuring the elongation in members of this system containing 14 bars, and using
the dummy-load theorem, we have

21 2 2

1 1 1
(E)(0)+(1)(vc)+(5)(0) =Ve=76 +7€2 +—E€3 +Te4 +Tes ~5¢%

2 1 1 1

1 1
+—e7——eg +—e +—e] ——<€1—€2—€3 —<€4-
2 72827 20 2

Dummy-Displacement Theorem: This method is usually used to find the applied
external forces when the internal forces are known. In order to obtain the external
force at a particular point, one subjects the structure to a unit displacement at that
point in the direction of the force and chooses any set of deformations compatible
with the unit displacement. Then, from the principle of work, the dummy-
displacement theorem can be stated as follows:

dummy displacement applied actual deformation of elements actual
in the direction of unknowns ;x4 external ; = { compatible with X4 internal
actual external forces forces dummy displacement forces

This method is also known as the unit displacement method.

Example 2: For the truss studied in Example 1, it is required to find the magnitude
of P by measuring the internal forces in the members of the truss.

e ——
n !
"R
1d ~= —Td
C C
P
(@) (b)

Fig. 1.14 Element deformations equivalent to unit dummy displacement.

Again, many systems can be chosen; two of these are illustrated in Figure 1.14(a)
and (b). In these systems, the internal forces to be measured are shown in bold
lines. Owing to the symmetry, in both cases only two measurements are needed.
Applying the dummy-displacement theorem to system (a), we get

Pd =rd 32 +ryd +1d 32 = d(2r +1y).
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1.3.4 CONTRAGRADIENT PRINCIPLE

Consider two statically equivalent force systems R and P related by a linear trans-
formation as

R =BP, (1-27)

R is considered to have more entries than P, that is, there are solutions to R for
which P is zero. Associated with R and P let there be two sets of displacements v
and u, respectively. These are compatible displacements and therefore the work
done in each system is the same, that is,

Pu=R'v. (1-28)
From Eq. (1-27),

R'=PB. (1-29)
Therefore,

P'u=P'Blv. (1-30)

Since P is arbitrary, we have

u=B'v. (1-31)
Equations (1-27) and (1-31) will be used in the formulation of the force method.
In a general structure, if member forces R are related to external nodal loads P,
similar to Eq. (1-27), then according to the contragradient principle [5], the mem-
ber distortions v and nodal displacement u will be related by an equation similar to
Eq. (1-31).
If two displacement systems u and v are related by a linear transformation as

v =_Cu, (1-32)

and R and P are statically equivalent forces, then equating the work done for com-
patible displacements we have

Pu=Rv=R'Cu. (1-33)
Again u is arbitrary and

P=CR. (1-34)
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Equations (1-32) and (1-34) are employed in the formulation of the displacement
method.

For a statically determinate structure,
P=B'R, (1-35)
and therefore
c'=". (1-36)
1.3.5 RECIPROCAL WORK THEOREM
Consider a structure as shown in Figure 1.15(a) subjected to a set of loads, {Py, P,
..., P,,}. The same structure is considered under the action of a second set of loads
{01, Oy, ..., O,}, as shown in Figure 1.15(b). The reciprocal work theorem can be
stated as follows:
The work done by {Py, Py, ... , P,} through displacements {J;,
02, ... , O} produced by {Qy, O», ..., O,} is the same as the work
done by {Q1, O», ... , O,} through displacements {A}, Ay, ..., A,}
produced by {Py, Py, ..., P,}; that is,
m n
Y BS =Y 0A;. (1-37)
i=l j=1

When single loads P and Q are considered, Eq. (1-37) reduces to

Po; =QA;, (1-38)
and for the case where P = Q, one obtains

0;=A;. (1-39)

Equation (1-39) is known as Betti’s law, and can be stated as follows:

The deflection at point i due to a load at point j is the same as
deflection at j when the same load is applied at i.
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Ay
Pl Az
’ /o
-
Pm - . .
(a) (b)

Fig. 1.15 A structure subjected to two sets of loads.

The proof of the reciprocal work theorem is constructed by equating the strain
energy of the structure in two different loading sequences [217]. In the first se-
quence, both sets of loads are applied simultaneously, while in the second
sequence, loads {P,, P,, ... , P,} are applied first, followed by the application of
the second set of loads {Q;, 0>, ..., O,}.

EXERCISES
1.1 Using slope-deflection equations, write the stiffness matrix for a prismatic

beam.

1.2 Develop the flexibility matrix for a beam element, using simple supports for
the element.

1.3 Show that the alternative forms of the beam flexibility matrices yield the
same complementary energy.

1.4  Use Castigliano’s theorem to find the vertical deflection at the tip of the
following craned cantilever. The members are steel with elastic modulus 200.0
GN/m’, and the section properties are 4 = 4.0 x 10’ mm* and 7 = 30.0 x 10° mm’.

T

3.0m

|

10 kN

2.0 m—
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1.5 Use the dummy-load method to calculate the horizontal and vertical
displacements at node C of the following truss. The members are of steel with
elastic modulus 200.0 GN/m’. Their cross-sections are of two types: members 2, 3,
5 have cross-sectional areas of 200.0 mm?, and those for members 1, 4, 6 are 750.0

mm2 .

5 kN 10 kN

2 3 *C
T

5 s 30m

| 1

F—3.0m—+—3.0m—]







CHAPTER 2

Static Indeterminacy and
Rigidity of Skeletal Structures

2.1 INTRODUCTION

Skeletal structures are the most common type of structures encountered in civil
engineering practice. These structures sustain the applied loads mainly by virtue of
their topology, that is, the way the members are connected to each other (connec-
tivity). Therefore, topology plays a vital role in their design. The first step in the
design of such structures is to provide sufficient rigidity and to make it reliable,
but this partly depends on the degrees of static indeterminacy (DSI) of the struc-
tures. One method of calculating the DSI is to use classical formulae such as those
given in Timoshenko and Young [217]; however, the application of these formulae
usually provides only a small part of the necessary topological properties. The
methods presented in this chapter provide us with a powerful means to understand
the distribution of indeterminacy within a structure, and make the study of the load
distribution feasible. The concepts presented are efficient both in terms of the op-
timal force method of structural analysis, as discussed in Chapter 3, and the
methods of optimal structural design.

In this chapter, simple and general methods are presented for calculating the DSI
of different types of skeletal structures, such as rigid-jointed planar and space
frames, pin-jointed planar trusses and ball-jointed space trusses. Euler’s polyhedra
formula is then used to develop very efficient special methods for determining the
DSI of different types of structures. These methods provide an insight into the
topological properties of the structures.

Optimal Structural Analysis ~ A. Kaveh
© 2006 Research Studies Press Limited
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In the analysis of skeletal structures, three different properties are encountered,
which are classified as topological, geometrical and material. A separate study of
these properties results in considerable simplification of the analysis and leads to a
clear understanding of the structural behaviour. This chapter is confined to the
study of those topological properties of skeletal structures that are needed to study
displacement and force methods. The number of equations to be solved in the two
methods may differ widely for the same structure. This number depends on the
size of the flexibility and the stiffness matrices. These matrix orders are the same
as the DSI and the degree of kinematic indeterminacy (DKI) of a structure, respec-
tively. Obviously, the method that leads to the required results with the least
amount of computational time and storage should be used for the analysis of a
given structure. Thus, the comparison of the DSI and the DKI may be the main
criterion for selecting the method of analysis.

The DKI of a structure, also known as its total number of degrees of freedom, can
easily be obtained by summing up the degrees of freedom of its nodes. A node of
planar and space trusses has 2 and 3 degrees of freedom, respectively. For planar
and space frames, these numbers are 3 and 6, respectively. Single-layer grids also
have 3 degrees of freedom for each node.

For determining the DSI of structures, numerous formulae depending on the kinds
of members or types of joints have been given, for example [217]. The use of these
classical formulae, in general, requires counting the number of members and
joints, which becomes a tedious process for multi-member and/or complex-pattern
structures; moreover, the count provides no additional information about connec-
tivity.

Henderson and Bickley [77] related the DSI of a rigid-jointed frame to the first
Betti number (cyclomatic number) of its graph model S. Generalising the Betti’s
number to a linear function and using an expansion process, Kaveh [94] developed
a general method for determining the DSI and the DKI of different types of skele-
tal structures. Special methods have also been developed for transforming the
topological properties of space structures to those of their planar drawings, in or-
der to simplify the calculation of their degrees of static indeterminacy [106,107].

A DSI equal to or greater than zero is a necessary condition for rigidity; however,
it is by no means sufficient. Therefore, rigidity requires a separate careful study.
This property was studied by pioneering structural engineers such as Henneberg
[80] and Miiller—Breslau [167]. The methods that they developed for examining
the rigidity of skeletal structures are useful for the study of structures either with a
small number of joints and members, or possessing special connectivity properties.
Rigid-jointed structures (frames), when supported in an appropriate form and con-
taining no release, are always rigid. Therefore, only truss structures need to be
studied for rigidity.
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Various types of methods have been employed for the study of rigidity; however,
the main approaches are either algebraic or combinatorial. A comprehensive dis-
cussion of algebraic methods may be found in the work of Pellegrino and
Calladine [175]. The first combinatorial approach to the study of rigidity is due to
Laman [144], who found the necessary and sufficient conditions for a graph to be
rigid, when its members and nodes correspond to rigid rods (bars) and rotatable
pin-joints of a planar truss. Certain types of planar trusses have been studied for
rigidity by Bolker and Crapo [14], Roth and Whiteley [190] and Crapo [32].

Although Laman theoretically solved the problem of rigidity for planar trusses, no
algorithm was given to check whether a given graph was rigid. Two combinatorial
algorithms developed by Lovasz and Yemini [156], and Sugihara [214] and Tay
[216] showed that they are interrelated. Some studies have recently been made
with a view to extending the concepts developed for planar trusses to those of
space trusses. However, the results obtained are incomplete and apply only to spe-
cial classes of space trusses. Therefore, only planar trusses are studied in this
chapter.

It should be noted that various methods for determining the DSI of structures are a
by-product of the general methods developed here. The method of expansion and
its control at each step, using the intersection theorem of this chapter, provides a
powerful tool for further studies in the field of structural analysis.

2.2 MATHEMATICAL MODEL OF A SKELETAL STRUCTURE

The mathematical model of a structure is considered to be a finite, connected graph
S. There is a one-to-one correspondence between the elements of the structure and
the members (edges) of S. There is also a one-to-one correspondence between the
joints of the structure and the nodes of S, except for the support joints of some
models.

For frame structures, shown in Figures 2.1 (al) and (a2), two graph models are
considered. For the first model, all the support joints are identified as a single node
called a ground node, as shown in Figures 2.1 (bl) and (b2). For the second
model, all the joints are connected by an artificial arbitrary spanning tree, termed
ground tree, as shown in Figures 2.1 (c1) and (c2).

(al) A plane frame. (b1) First model (c1) Second model
with a ground node. with a ground tree.
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(a2) A space frame. (b2) First model (c2) Second model
with a ground node. with a ground tree.

Fig. 2.1 Frame structures and their mathematical models.

Truss structures shown in Figures 2.2 (al) and (a2) are assumed to be supported in
a statically determinate fashion (Figures 2.2 (b1) and (b2)), and the effect of addi-
tional supports can easily be included in calculating the DSI of the corresponding
structures. Alternatively, artificial members can be added as shown in Figures 2.2
(c1) and (c2) to model the components of the corresponding supports. For a fixed
support, two members and three members are considered for planar and space
trusses, respectively, and one member is used for representing a roller.

I XXX

(al) A plane truss. (bl) First model (c1) Second model
without added members. with replaced members.

£ £ g

(a2) A space truss.  (b2) First model (c2) Second model
without added members. with replaced members.

*
T—«r -

Fig. 2.2 Trusses and their graph models.

The skeletal structures are considered to be in perfect condition; that is, planar and
space trusses have pin and ball joints only. Obviously, the effect of extra con-
straints or releases can be taken into account in determining their DSI and also in
their analysis, as shown in the work by Mauch and Fenves [161].
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2.3 EXPANSION PROCESS FOR DETERMINING
THE DEGREE OF STATIC INDETERMINACY

The DKI of a structure is the number of independent displacement components
(translations and rotations) required for describing a general state of deformation
of the structure. The DKI is also referred to as the total degrees of freedom of the
structure. On the other hand, the DSI (redundancy) of a structure is the number of
independent force components (forces and moments) required for describing a
general equilibrium state of the structure. The DSI of a structure can be obtained
by subtracting the number of independent equilibrium equations from the number
of its unknown forces.

2.3.1 CLASSICAL FORMULAE

Formulae for calculating the DSI of various skeletal structures can be found in
textbooks on structural mechanics, for example, the DSI of a planar truss, denoted
by Y(S), can be calculated from,

AS) = M(S) = 2N(S) + 3, -1

where S is supported in a statically determinate fashion (internal indeterminacy).

For extra supports (external indeterminacy), y(S) should be further increased by
the number of additional unknown reactions.

A similar formula holds for space trusses:

NS) = M(S) — 3N(S) + 6. (2-2)

For planar and space frames, the classical formulae is given as,

AS) = o [M(S) = N(S) + 1], (2-3)

where all supports are modelled as a datum (ground) node, and o = 3 or 6 for pla-
nar and space frames, respectively.

All these formulae require counting a great number of members and nodes, which
makes their application impractical for multi-member and complex-pattern struc-
tures. These numbers provide only a limited amount of information about the
connectivity properties of structures. In order to obtain additional information, the
methods developed in the following sections will be utilised.
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2.3.2 A UNIFYING FUNCTION

All the existing formulae for determining DSI have a common property, namely
their linearity with respect to M(S) and N(S). Therefore, a general unifying func-
tion can be defined as,

AS) = aM(S) + DV(S) + cy(S), (2-4)

where M(S), N(S) and 7,(S) are the numbers of members, nodes and components of
S, respectively. The coefficients a, b and ¢ are integer numbers depending on both
the type of the corresponding structure and the property, which the function is ex-
pected to represent. For example, YS) with appropriate values for a, b and ¢ may
describe the DSI of certain types of skeletal structures, as shown in Table 2.1. For

a=1,b=-1and c=1, S) becomes the first Betti number b;(S) of S, as described
in Appendix A.

Table 2.1 Coefficients of YS) for different types of structures.

Type of structure a b c
Plane truss +1 -2 +3
Space truss +1 -3 +6
Plane frame +3 -3 +3
Space frame +6 -6 +6

2.3.3 AN EXPANSION PROCESS

An expansion process, in its simplest form, has been used by Miiller—Breslau [167]
for re-forming structural models, such as simple planar and space trusses. In this
expansion process, the properties of typical subgraphs, selected in each step to be
joined to the previously expanded subgraph, guarantee the determinacy of the sim-
ple truss. These subgraphs consist of two and three concurrent bars for planar and
space trusses, respectively.

The idea can be extended to other types of structures, and more general subgraphs
can be considered for addition at each step of the expansion process. A cycle, a
planar subgraph and a subgraph with prescribed connectivity properties are exam-
ples of these, which are employed in this book. For example, the planar truss of
Figure 2.3(a) can be formed in four steps, joining a substructure S; with US;) = 1 as
shown in Figure 2.3(b), sequentially, as illustrated in Figure 2.3(c).



STATIC INDETERMINACY 29

(a) A planar truss. (b) Selected unit.
S =5
S'us, = 8
§7US; =8
SuS;=5'=S

(c) The process of expansion as §; = §'— 87— §* — §*=§.

Fig. 2.3 Process for the formation of a planar truss.

2.3.4 AN INTERSECTION THEOREM

In a general expansion process, a subgraph S; may be joined to another subgraph S;
in an arbitrary manner. For example, S;) or {S;) may have any arbitrary value
and the union S;US; may be a connected or a disjoint subgraph. The intersection
S;,MS; may also be connected or disjoint. It is important to find the properties of
S1US, having the properties of Sy, S, and §1NS,. The following theorem provides a
correct calculation of the properties of S;US;. In order to have the formula in its
general form, q subgraphs are considered in place of two subgraphs.

Theorem (Kaveh [94]): Let S be the union of g subgraphs Sy, S, S;, ..., S; with the
following functions being defined:

AS) = aM(S) + DN(S) +cy(S),
HSi) = aM(S;) + bN(S) + c(S)) i=12,.4,
A = aM(4;) + bN(4;) + cyo(4) i=23,...4,

where A;= SN S;and § = §,US, U ... US,. Then
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[KS) - e3(S)] = i[y(&)—cn(s,»)] —i[y(A»—cn(Ai)] (2-5)

i i

For proof, the interested reader may refer to Kaveh [113].

Special Case: If S and each of its subgraphs considered for expansion (S; fori=1,
..., q) are non-disjoint (connected), then Eq. (2-5) can be simplified as

"= 3 1(5)-2 7). (-6)

where 7(4,) = aM(4;) + bN(4,) + c.

For calculating the DSI of a multi-member structure, one normally selects a re-
peated unit of the structure and joins these units sequentially in a connected form.
Therefore, Eq. (2-6) can be applied in place of Eq. (2-5) to obtain the overall prop-
erty of the structure.

2.3.5 AMETHOD FOR DETERMINING THE DSI OF STRUCTURES

Let S be the union of its repeated and/or simple pattern subgraphs S; (i = 1, ..., g).
Calculate the DSI of each subgraph, using the appropriate coefficients from Table
2.1. Now perform the union-intersection method with the following steps:

Step 1: Join S to S, to form S =S, U S,, and calculate the DSI of their intersec-
tion A, =S, N S,. The value of Y(S%) can be found using Eq. (2-5) or Eq. (2-6), as
appropriate.

Step 2: Join S; to S to obtain S° = §% U S;, and determine the DKI or DSI of A; =
§* N Ss. As in Step 1, calculate y(S°).

Step k: Subsequently join Sj.; to s calculating the DSI of 4;,; = St S, and
evaluating the magnitude of S*").

q
Repeat Step & until the entire structural model S = v S, has been re-formed and
its DSI determined.

In the above expansion process, the value of ¢ depends on the properties of the
substructures (subgraphs) that are considered for re-forming S. These subgraphs
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have either simple patterns for which US;) can easily be calculated, or the DSIs of
which are already known.

In the process of expansion, if an intersection A; itself has a complex pattern, fur-
ther refinement is also possible; that is, the intersection can be considered as the
union of simpler subgraphs.

Example: Let S be the graph model of a space frame. This graph can be consid-

ered as 27 subgraphs S; as shown in Figure 2.4(a), connected to each other to form
27

a graph S = v S, . The interfaces of S; (i = 1, ..., 27) are shown in Figure 2.4(b), in

which some of the members are omitted for the sake of clarity.

27
(a) A subgraph S;of S. (b) S = Y S, without some of its members.
Fig. 2.4 A space structure S.

The expansion process consists of joining 27 subgraphs S; one at a time. In this
process, the selected subgraphs can have three different types of intersection,
which are shown in Figure 2.5(a). In order to simplify the counting and the recog-
nition of the types of interfaces, S is re-formed storey by storey. For the first
storey, a 3 X 3 table is used to show the types of intersections occurring in the
process of expansion. The numbers on each box designate the type of intersection,
as shown in Figure 2.5(b). Similar tables are used for the second storey and the
third storey of S, as shown in Figure 2.5(b).

Thus, there exist 6 intersections of type 4, 12 intersections of type 4 and 8 in-

1

tersections of type 4.
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e

Type 1 —4' Type 2 — A’ Type 3 — 4’

(a) Three different types of intersections.

000 000 000
> 5 5SS

First floor Second floor Third floor
(b) Types of intersections after the completion of each storey.

Fig. 2.5 Intersections and their types.

Since each S; is a connected subgraph, and is in the process of expansion, S; is kept
connected, and a simplified Eq. (2-5) can be employed:

27 27
K = D 7(S) =D 7(4).
i=1 i=2
As previously shown

ZV(Ai)= ZV(AD +Z7(A,~2) + 2 7(4).

=20
The intersections 4’ and 4’ can be decomposed as

A= A0 4 and 4 =47 U 4.
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The DSI of S can now be calculated as follows:
NS)=6(12-8+1)=6x5=30.
Using Eq. (2-3),
7(4) =6(4—-4+1)=6,
Y(A) =6x1+6x1-6%x0=12,
Y(A4)=6x2+6x1-6x0=18,

hence: AS) = 27(30) — [6(6) + 12(12) + 8(18)] = 486.

The expansion process becomes very efficient for structures with repeated pat-
terns. Counting is reduced considerably by this method. As an example, the use of
the classical formula for finding the DSI of S in the above example requires count-
ing 124 members and 64 nodes, which is a task involving possible errors.

2.4 THE DSI OF STRUCTURES: SPECIAL METHODS

In this section, using Euler’s polyhedron formula (Appendix A), some useful theo-
rems are stated, which provide a simple means for calculating the DSI of various
types of skeletal structures. For proofs for these theorems, interested readers may
refer to Kaveh [113].

Theorem 1: For a fully triangulated planar truss (except the exterior boundary),
the internal DSI is the same as the number of its internal nodes:

AS) = Ni(S). (2-7)

For trusses with non-triangulated internal regions (Figure 2.6(a)), let M.(S) be the
number of members required for the completion of the triangulation of the internal
regions of S, then:

AS) = N{(S) — M(S). (2-8)

The number of members required for triangulation of a polygon is constant and
independent of the way it is triangulated. This is why Eq. (2-8) can easily be estab-
lished.
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For planar trusses, the crossing point of two bars can be identified as an additional
dummy node. This is illustrated in Figure 2.6(a), where the truss is drawn as in
Figure 2.6(b). The application of Eq. (2-7) leads to AS) = N,(S) = 1. The addition
of a dummy node at crossing point as in Figure 2.6(c) has the same effect and re-

sults in ©S) = N(S) = 1.

(a) A simple truss.  (b) Permissible. (¢) Permissible.
Fig. 2.6 A planar truss and two admissible models.
However, when three bars cross at a point, as illustrated in Figure 2.7(a), the addi-
tion of a dummy node is not permissible, since it leads to US) = N«(S) = 1, while a
correct drawing of S results in three internal nodes with three non-triangulated

regions. The addition of three bars completes the triangulation, and therefore US)
= Ni(S) — M(S) =3 — 3 =0, which is the correct DSI for the given truss.

BN

(a) A simple truss. (b) Non-permissible. (¢) Permissible.
Fig. 2.7 A planar truss and its non-admissible and admissible models.

Once the internal DSI of a structure has been found, the external DSI resulting
from additional supports can be easily added, to obtain the total DSI.

Example 2: Let S be a planar truss as shown in Figure 2.8. Triangulation of the
internal region in an arbitrary manner requires nine members, shown as dashed
lines.
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Therefore:

AS) = N(S) — M(S) =72 -9 = 63.

7

\
A4

(a) A planar truss S. (b) Triangulated S.

Fig. 2.8 A general planar truss and its triangulation.

Theorem 2: The DSI of a planar rigid-jointed frame S is equal to three times the
number of its internal regions, that is,

NS) = 3R(S). (2-9)

Theorem 3: A ball-jointed space truss drawn (embedded) on a sphere is internally
statically determinate, if all the created regions are triangles.

As an example, a ball-jointed truss with S of Figure 2.2 (b2) as its graph model, is
statically determinate.

2.5 SPACE STRUCTURES AND THEIR PLANAR DRAWINGS

The topological properties of space structures can be transformed into those of
their planar drawings, thus simplifying the counting process for the calculation of
the DSI for space structures.

2.5.1 ADMISSIBLE DRAWING OF A SPACE STRUCTURE

A drawing SP® of a graph S in the plane is a mapping of the nodes of S to distinct
points of S P, and the members of S to open arcs of SP, such that

(1) the image of no member contains that of any node;

(ii) the image of a member (n;, ;) joins the points corresponding to #; and ;.
A drawing is called admissible (good) if the members are such that

(ii1) no two arcs with a common end point meet;
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(iv) no two arcs meet in more than one point;

(v) no three arcs meet at a common point.

The configurations prohibited by these three conditions are shown in Figure 2.9.

Fig. 2.9 The prohibited configurations.

A point of intersection of two members in a drawing is called a crossing, and the
crossing number ¢(S?) of a graph S is the number of crossings in any admissible
drawing of S in the plane. An optimal drawing in a given surface is one that exhib-
its the least possible crossings. In this book, we use only admissible drawings in
the plane, but not necessarily optimal.

As an example, different admissible drawings of a space model, shown in Figure
2.10(a), are illustrated in Figures 2.10 (b—d). The crossing points are marked by X.
The number of crossing points for each case is also provided.

|
|
A

(a) S. (b) c(SP)=2.
() c(S P)=0. (d) c(SP)=4.

Fig. 2.10 Admissible drawings of S.
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In this example, an optimal drawing corresponds to ¢(S?) = 0, which is shown in
Figure 2.10(c).

2.5.2 THE DSI OF FRAMES

For a rigid-jointed space frame, the DSI can be determined by using

AS) = 6[M(S) = N(S) +1]. (2-10)

Counting the nodes in a drawing of S on the plane produces no problem; however,
recognising and counting the members can be very cumbersome. The following
theorem transforms this procedure to counting the crossing nodes and regions of
SP, in place of members and nodes of S.

Theorem: For a space rigid-jointed frame, the DSI is given by:

Y(S) = 6[R(S ") — c(SP)]. (2-11)

Example 1: A simple space frame is considered, as shown in Figure 2.11(a). Both
models introduced in Section 2.2 are employed in Figures 2.11(a) and (b). For the
first model with ground node Y(S) = 6(5 — 1) = 24, and for the second model with
ground tree the same result as Y(S) = 6(6 — 2) = 24 is obtained.

- NV

(a) (b) (c)
Fig. 2.11 A simple frame and its drawing with different models.

Example 2: Let S be the graph model of a space frame with a ground tree, as
shown in Figure 2.12(a). A drawing of S is shown in Figure 2.12(b), for which
c(S?)= 12 and R{(S ") = 33, resulting in () = 6(33 — 12) = 126.
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(a) A space frame S. (b) A drawing of S.
Fig. 2.12 A space frame and its drawing.
2.5.3 THE DSI OF SPACE TRUSSES
Ball-jointed space trusses are often multi-member structures in the form of double-
and triple-layer grids. The following theorem simplifies the calculation of the DSI

for these structures.

Theorem: For a ball-jointed space truss supported in a statically determinate fash-
ion, the DSI is given by,

AS) = c(S°) = MLS"), (2-12)
where M (S ?) is the number of members required for the full triangulation of S .
Example 1: A space structure in the form of the skeleton of a cube is considered
as shown in Figure 2.13(a). An optimal drawing of S is illustrated in Figure

2.13(b). Since a fully triangulated truss can be drawn on the plane with no addi-
tional member, US) = 0 and Theorem 3 of Section 2.4 therefore follows.

4

v

(a) A fully triangulated space truss. (b) Its optimal drawing.
Fig. 2.13 A fully triangulated space truss and its optimal drawing.
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Example 2: Consider a space ball-jointed double-layer grid S as shown in Figure
2.14(a), an admissible drawing of which is depicted in Figure 2.14(b).

This drawing contains 12 crossing points, and for a full triangulation, M.(S") = 9
members are added, as shown by dashed lines.

From Eq. (2-12) we have

AS)=c(SP) —M(SP)=12-9=3.

(a) A double-layer grid S. (b) An arbitrary drawing of S.

Fig. 2.14 A space truss and its planar drawings.

It should be noted that the addition of dashed lines to complete the triangulation of
the exterior region (unbounded cycle) is not necessary, since an m-polygon can be
triangulated by m—3 members. Therefore, one can use,

AS) =c(SP) - M (S”) —m +3, (2-13)

where M _(S”) is the number of members required for a full triangulation of
bounded regions.

2.5.4 A MIXED PLANAR DRAWING-EXPANSION METHOD

A mixed method can now be designed for determining the DSI of complex-pattern
and/or large-scale structures. Repeated units of the structure are considered, and
the theorems of Sections 2.2 and 2.5 are applied to find their indeterminacies. An
expansion process is then used to determine the DSI of the entire structure. This
method may be illustrated by means of the simple space frame shown in Figure
2.15(a).
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(a) A space structure S.
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(b) A subgraph S; of S and its graph model.

7 7

74

(c) Intersection Type 1 — 4'.  (d) Intersection Type 2 — 47 .
Fig. 2.15 A space frame S, its unit, and intersections.

A simple unit is considered in Figure 2.15(b), for which models with both ground
node and tree node are illustrated. Eq. (2-11) results in:

7(S)=6(11-3) = 6 x 8 = 48.
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Two types of intersections are illustrated in Figure 2.15(c) and (d), and their DSIs
are calculated as

7(4)=6[2]= 12 and 7(47) = 6[4] = 24.
The DSI of the entire structure is now determined as
US)=12x48—[5x12+6x24]=12[48-17]=12x31 =6 x 62 =372.

For support conditions, one could consider the structure comprising complete
cubes, and after calculating the DSI as %) = 6 x 74, 12 cycles corresponding to
the ground cycles are contracted to obtain US) =6 [74 — 12] =6 x 62 =372.

The DSI provides useful information about the connectivity properties of struc-
tures; however, it does not guarantee the rigidity of the structures. Therefore,
additional studies are required, which are partially considered in the remainder of
this chapter.

2.6 RIGIDITY OF STRUCTURES

The rigidity of trusses can be studied at different levels. The first level is combina-
torial — is the graph of joints and members (bars) correct? The second level is
geometrical — are the placements of joints appropriate? The third level is mechani-
cal — are the selected materials and methods of construction suitable? Attention
will be devoted to a first-level rigidity analysis of planar trusses. For this purpose,
simplifying assumptions and definitions are made as follows.

Consider a planar truss composed of rigid members and pinned joints. Each joint
connects the end nodes of two or more members in such a way that the mutual
angles of the members change freely if the other ends are left free. Such an as-
sumption is adequate for the first-level analysis of the rigidity. Let M(S) and N(S)
denote the set of members and nodes of the graph model S of a truss. Denote the
Cartesian coordinates of a node n; € N(S) by (x;, ¥;). The number of members and
nodes of S, as before, is also denoted by M(S) and N(S), respectively.

A member connecting #; to n; constrains the movement of S in such a way that the
distance between these two nodes remains constant, that is,

(x, —xj)2 +( -y, )> = const. (2-14)
Differentiating this equation with respect to time ¢, we get,

('xi_xj)(xi_xj)+(yi_yj)(yi_yj)=09 (2-15)
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where the dot above x and y denotes the differentiation with respect to . Equation
(2-15) implies that the relative velocity should be perpendicular to the member,
that is, no member is stretched or compressed. Writing all such equations for the
members of S, the following system of linear equations is obtained,

Hw =0, (2-16)

where H is a M(S)x2N(S) constant matrix and w is a column vector of unknown
variables W = {X, y ... Xy Vyes ) » ¢ denoting the transpose. A vector w, which
satisfies Eq. (2-16), is called an infinitesimal displacement of S. The infinitesimal
displacements of S with respect to point-wise addition and multiplication by sca-
lars, form a linear vector space R**®. The rigid body motion in a plane is a three-
dimensional subspace of this linear space. The co-dimension of this subspace of

rigid motions in the space of all infinitesimal motions is called the degrees of free-
dom of §, denoted by f(\S). The structure S is rigid, if AS) = 0.

As an example, consider a truss as shown in Figure 2.16. For this truss, matrix H
and vector w can be written as:

X, =X, XX 0 Yi=Y, V=V 0
H=|x —-x, 0 Xe =X Vi=™ Vi 0 Ye=Di | (2-17)
0 X; =X, X=X, 0 Yi=We W™D
and

w={X, xj X, W .)./j yk}t-

The entries of H are real and linear functions of the nodal coordinates of the corre-
sponding graph.

Yk
Fig. 2.16 A triangular planar truss.

It should not be thought that the rigidity of S requires Eq. (2-16) to have only the
trivial solution w = 0. Any rigid body motion with non-trivial w also satisfies this
equation. As an example, consider a translation of the entire S specified by a vec-
tor {a, b}’, that is, x, = x;=x,=a and y, =y, =y, =b. Obviously Hw = 0 still
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holds, since the sum of the first (or second) three columns of H is zero. Therefore,
rank (H) < 2N(S). The rigid body motion subspace in the plane has dimension 3,
and for any truss we have rank (H) < 2N(S) — 3. However, if rank (H) = 2N(S) — 3,
then S is called rigid, and for rank (H) < 2N(S) — 3, it is non-rigid. In the above
example, rank (H) = 2 X 3 — 3 = 3 holds, and therefore a triangular planar truss is
rigid.

Now consider other examples, as shown in Figure 2.17. The truss shown in Figure
2.17(a) is rigid, while the one in Figure 2.17(b) is not rigid, although their underly-
ing graphs are the same. The assignment of velocities, indicated by arrows, forms
an infinitesimal displacement because it does not violate Eq. (2-16). The nodes
without arrows are assumed to have zero velocities. Similarly, though Figure
2.17(c) and Figure 2.17(d) have the same graph models, (c) is rigid but (d) is not
rigid. It should be noted that an infinitesimal displacement does not always corre-
spond to an actual movement of a mechanism. The truss (b) deforms mechanically,
while truss (d) violates only Eq. (2-16).

DOV Y

(a) (b) (c) (d)
Fig. 2.17 Rigid and non-rigid planar trusses.

The nodes of a structure S are in general position if x;, ¥;, X2, V> ..., Xn(s), Vivs) are
algebraically independent over the rational field. When the nodes are in general
position, the definition of algebraic dependence shows that a sub-determinant of
matrix H is 0, if and only if it is identically 0, when x;, y;, x5, ¥ ..., Xn(s), Yivs) are
considered as variables. Therefore if the nodes of S are in general position, the
linear independence of Eq. (2-16) depends only on the underlying graph, and con-
sequently, the rigidity also depends only on the graph model of the structure. From
now on, it is assumed that the nodes of S are in general position.

For a ball-jointed space truss, Eq. (2-16) can be written in a general form to in-
clude a third dimension z. For such a case, a rigid body motion in space is a six-
dimensional subspace of R*®_ Therefore, a space truss will be rigid, if rank (H) =
3N(S) — 6, and non-rigid, if rank (H) < 3N(S) — 6.

Suppose S is the graph model of a planar truss whose joints are in general position.
A graph S is called stiff; if the corresponding truss is rigid. For any X < M, let
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Pps(X) be the rank of the submatrix of H consisting of the rows associated with the
members of X. X is called generically independent, if ps(X) = |X|, and generically
dependent, if ps(X) <|X]|, where |X| denotes the cardinality of X.

For any subset X of M(S), define,
Us(X) = —M(X) + 2N(X) - 3, (2-18)
where |M(X)| = |X]. Then the following basic theorem on rigidity can be stated:

Theorem 1 (Laman [144]): The graph S is generically independent if, and only if,
Us(X) = 0 for any non-empty subset X of M(S).

Corollary 1: S is stiff if, and only if, there exists M" < M(S) such that |M| = 2N(S)
— 3 and ug(X) = 0 for every non-empty subset X of M".

Corollary 2: S is stiff and generically independent if and only if:

(@  psX)=0,and

(b)  us(X) =0 for every non-empty subset X of M(S).

Using US) = M(S) — 2N(S) + 3 = — ug(S), Theorem 1 can be restated as follows:

The graph S is generically independent if, and only if, %(S;) < 0 for every subgraph
S; of S, as shown in Figure 2.18(a). The graph S is stiff if, and only if there is a
covering subgraph S of S such that S ) = 0 and KS;) < 0 for every non-empty
subgraph S; of S, as shown in Figure 2.18(b), which is a statically indeterminate
structure.

Finally, the graph S is stiff and generically independent if and only if:

(a) HS)=0,and

(b)  AS) <0 for every subgraph S; of S, as shown in Figure 2.18(c), which is a
statically determinate truss.

Unfortunately, the application of Theorem 1 requires 2"® steps to determine
whether a graph is generically independent. In the following sections, two methods
are described for an efficient recognition of generic independence, which were
developed by Sugihara [214], and Lovasz and Yemini [156].
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(a) (b) (c)
Fig. 2.18 (a) Generically independent, (b) stiff and (c) generically independent,
and stiff graphs.

2.7 RIGIDITY OF PLANAR TRUSSES
2.7.1 COMPLETE MATCHING METHOD

Planar trusses are frequently used in structural engineering, and therefore a method
suitable for both determinate and indeterminate trusses is presented in the follow-
ing text, for checking the rigidity of these structures. The algorithm is polynomial
bounded and uses complete matching of a specially constructed bipartite graph for
the recognition of generic independence.

Definitions: Let B(S) = (4, E, B) be a bipartite graph with node sets 4, B and
member set E. A subset £ of E is called a complete matching with respect to 4, if
the end nodes of members in £ are distinct and if every node in 4 is an end node
of some members in £”.

For X c 4, let I'(X) be the set of all those nodes in B that are connected to nodes in
X by some members of E. As described in Appendix A, a graph has complete
matching if, and only if, |X] < [I'(X)| for every X < A. Examples of matching and
complete matching are depicted in Figures 2.19(a) and (b), respectively.

Using these definitions, the method is described as follows:

(a) A matching. (b) A complete matching.
Fig. 2.19 Examples of matching.
Construct a bipartite graph of S. For this purpose, let S be a graph with N(S) nodes

and M(S) members. The corresponding node set and member set are shown with
the same symbols. For each node n; of S, let p; and ¢; be two distinct symbols.



46  OPTIMAL STRUCTURAL ANALYSIS

Then let B(S) = (4*, E*, B*) be the bipartite graph whose node sets A* and B* and
member set £* are defined as

A* = M(S),
B* = {phCIh P25925 - PN(S)s QN(S)},
E* = {(m)Pi)>(m’qi)>(m’pj),(m’qj) | m= {nianj} € M(S)}

This bipartite graph is now augmented as follows:

Let #,, , and #; be three distinct symbols. Then, for any 1< i <j < N(S), let By(S) =
(4*, Ej, B*) be the new bipartite graph constructed from B(S) by the addition of
three nodes and three members in the following manner:

Aj =A4* U {f],tz,l3},

Ey=E* O {(t1,p1),(12,q1),(t3,P) } -

For any Z c A, denote by I';(Z) the set of nodes of B*, which are connected to

elements of Z by members in E; For any X ¢ A: , note that 2N(X) = |I';(X)|. Then
the following theorem can be proved.

Theorem 2 (Sugihara [214]): The graph model S is generically independent if, and
only if, for any i and j (1< i < j < N(S)), By(S) = (4, E;, B*) has a complete

matching with respect to 4.
The proof can be found in the original paper of Sugihara [214] or Kaveh [113].

A complete matching of By(S) = (4., Ej;, B¥) can be found by Hopcroft and

Karp's algorithm [82]. The number of B;(S) is proportional to M(S) x M(S). As an
example, consider the graph S as shown in Figure 2.20(a).

The bipartite graph of S is depicted in Figure 2.20(b), and a typical complete matching
B55(S) is illustrated in bold lines. The examination of all B;(S) for 1< i <j < 4 shows
that complete matching exists and S is a generically independent graph.
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4, " 1
my my
my
3 ® 2
(@) S. (b) B(S).

Fig. 2.20 A complete matching B,;(S) of a graph S.

The above method is quite general, and it is applicable to statically determinate
and indeterminate structures. Another approach for the recognition of determinate
trusses is due to Lovasz and Yemini [156], which is described in the following
section.

2.7.2 DECOMPOSITION METHOD

A graph S is generically independent, if doubling any member of S results in a new
graph, which is the union of two spanning forests. A spanning forest is the union
of k trees, containing all the nodes of S. This is the result of a special case of the
following theorem of Nash—Williams [168].

Theorem 3: A graph S has a k member-disjoint spanning forest if, and only if,
M(S;) < k[N(S;) — 1] for every partition of N(S).

Consider k=2, then M(S;) < 2N(S;) — 2 for every S; c S. If a member is added to S;
without increasing its nodes S;=S; U m, then M(S;) — 2N(S/) + 3 < 0, that is,

U(S’) =0 for every S;  S. This verifies the above method for checking the ge-
neric independence of S.

As an example, the above method is applied to check the graph shown in Figure
2.21(a) for generic independence. It can be seen that doubling any member of S
leads to a graph that can be decomposed into two forests. The members for one of
these forests, which have become spanning trees, are shown in bold lines in Figure
2.21(b)
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(a) A graph S.

-

(b) Decomposition of S U m;.

Fig. 2.21 The generic independence check of S.

The above two seemingly different methods, are mathematically interrelated. A
proof of this fact can be found in [216].

2.7.3 GRID-FORM TRUSSES WITH BRACINGS

There is a special kind of planar truss known as a grid-form truss whose rigidity is
easier to control. Consider a planar truss consisting of square panels with or with-
out diagonal members, an example of which is shown in Figure 2.22(a). The
bipartite graph B(S) of S is constructed as follows:

Associate one vertex with each row of squares and use the notation ry, 75, ..., 7;, for
them. With each column of squares, associate one vertex denoted by c,, c,, ..., ¢, as
depicted in Figure 2.22(b). Connect 7; to ¢; by an edge if the corresponding squares
in S have a diagonal member; then the graph obtained in this manner is called the
bipartite graph B(S) of S.

‘0 2 G5 4

C
rl "1 1
€2
-
2 ) cs3
3 r3 cy
i

(@ (b)
Fig. 2.22 A planar truss and its bipartite graph B(S).
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It is easy to prove that S is rigid if, and only if, the corresponding bipartite graph
B(S) is a connected graph. For this purpose, consider a square grid-form truss with
two rows and two columns as depicted in Figure 2.23(a). A series of deformations
can now be performed as shown in Figure 2.23(b).

X1

= i

I»,

(a) (b)

Fig. 2.23 A square grid-form truss and its deformation components.

Obviously, an arbitrary deformation of the truss can be considered as a combina-
tion of these deformation components. Now if a diagonal member is added to one
of the squares, say the square corresponding to »; and ¢;, then the deformation still
takes place; however, a constraint in the form of x; = y, is imposed. If sufficient
diagonal members are added, then x; = x, = y; = y,, and no square deforms relative
to the squares, that is, the entire truss will be rigid (if it is properly supported).
This argument holds for any square grid-form truss with m rows and n columns.
Since the nodes of B(S) correspond to xi, X3, ..., X, V1, V2, ..., ¥y and the adjacency
of r; and ¢; in B(S) corresponds to the equality of x; = x;, the result follows.

(a)s. (b) B(S).
Fig. 2.24 A 7-tree and its tree bipartite graph.

If B(S) is a spanning tree, then the corresponding S is generically independent and
stiff. It can also be proved that the static indeterminacy of S is the same as the first
Betti number of B(S), as in Kaveh [94]. Figure 2.24(a) shows a rigid 7-tree for a
planar truss, the corresponding bipartite graph of which is illustrated in Figure
2.24(b).
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2.8 CONNECTIVITY AND RIGIDITY

The member-connectivity e(S) of a connected graph S is the smallest number of
members, the removal of which disconnects S. When e(S) 2 £, then the graph S is
called k-member-connected. A similar definition can be obtained for nrode-
connectivity V(S) by replacing “members” with “nodes”.

Attempts have been made to relate the connectivity of a graph to its rigidity. Some
partial results have been obtained; however, no general approach is found for such
an interrelation. Some of the results obtained by Lovasz and Yemini [156] are out-
lined in the following:

Thorem 5: Every 6-connected graph is stiff.

The proof can be found in the original paper of Lovasz and Yemini [156] or Kaveh
[113].

Finally, it should be noted that many attempts have recently been made to extend
these ideas presented for planar trusses to space trusses; however, no concrete re-
sult applicable to general space graphs has so far been obtained. Many open
problems remain for further research, if pure graph-theoretical methods are to be
developed for the recognition of the rigidity of space trusses. The theory of ma-
troids, which is briefly introduced in Appendix B and in [230], seems to be a
promising tool for the future study of rigidity.

EXERCISES

2.1  Use an expansion process to find the DSI of a 3 x 4 planar truss S as shown.
The unit to be considered for expansion is also given.

S S;

2.2 If the truss in the previous example is an m X n planar truss, determine the
corresponding DSI.

2.3 Derive Eq. (2-6) from Eq. (2-5).
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2.4  Prove that for determining the DSI of a planar truss, the crossing point of
any two members can be regarded as an extra node. If the crossing members are
more than two, why does such an operation become incorrect?

2.5  Find the DSI of the following planar truss using three different methods:
classical, modification and triangulation:

2.6 Determine the DSI of §; in Figure 2.4 using its planar drawing. Consider S;
first as a space truss and secondly as a space frame.

2.7  Use Sugihara’s matching method to verify the generic independence of the
following truss models:

VANV AND

(a) (b)

2.8  Determine the DSI of the following double-layer grid. Suppose S is sup-
ported in a statically determinate fashion:
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2.9  Employ Lovasz and Yemini's decomposition method to verify the generic
independence of the following truss:

2.10 Examine the rigidity of the following trusses:

(a) (b) (©)



CHAPTER 33

Optimal Force Method
of Structural Analysis

3.1 INTRODUCTION

This chapter is devoted to the progress made in the force method of structural
analysis in recent years and summarises the state of the art. Efficient methods are
developed leading to highly sparse flexibility matrices. The methods are mainly
developed for frame structures; however, extensions are made to general skeletal
structures and finite element analysis of continuum.

The force method of structural analysis, in which the member forces are used as
unknowns, is appealing to engineers, since the properties of members of a struc-
ture most often depend on the member forces rather than joint displacements. This
method was used extensively until 1960. After this, the advent of the digital com-
puter and the amenability of the displacement method for computation attracted
most researchers. As a result, the force method and some of the advantages it of-
fers in optimisation and non-linear analysis, have been neglected.

Five different approaches are adopted for the force method of structural analysis,
which will be classified as follows:

1. Topological force methods

2. Combinatorial force methods

Optimal Structural Analysis ~ A. Kaveh
© 2006 Research Studies Press Limited
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3. Algebraic force methods
4. Mixed algebraic—combinatorial force methods
5. Integrated force method.

Topological methods have been developed by Henderson [76] and Maunder [162]
for rigid-jointed skeletal structures using manual selection of the cycle bases of
their graph models. Methods suitable for computer programming are due to Kaveh
[94,100,103—105,111]. These topological methods are generalised to cover all
types of skeletal structures, such as rigid-jointed frames, pin-jointed planar trusses
and ball-jointed space trusses [98,113]. Algebraic topology is employed exten-
sively in the work of Langefors [145,146].

Algebraic methods have been developed by Denke [36], Robinson [186], Topgu
[219], Kaneko et al. [92], Soyer and Topgu [211], and mixed algebraic—topological
methods have been used by Gilbert and Heath [60], Coleman and Pothen [28,29]
and Pothen [181].

The integrated force method has been developed by Patnaik [172,173], in which
the equilibrium equations and the compatibility conditions are satisfied simultane-
ously in terms of the force variables.

3.2 FORMULATION OF THE FORCE METHOD

In this section, a matrix formulation using the basic tools of structural analysis —
equilibrium, compatibility and load—displacement relationships — is described. The
notations are chosen from those most commonly utilised in structural mechanics.

3.2.1 EQUILIBRIUM EQUATIONS

Consider a structure S with M members and N nodes that is %) times statically
indeterminate. Select AS) independent unknown forces as redundants. These un-
known forces can be selected from external reactions and/or internal forces of the
structure. Denote these redundants by

Q=G Gas ooor Gy} (3-1)

Remove the constraints corresponding to redundants, in order to obtain the corre-
sponding statically determinate structure, known as the basic (released or primary)
structure of S. Obviously, a basic structure should be rigid. Consider the joint
loads as
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p:{pl’pz""!pn}t’ (3'2)
where 7 is the number of components for applied nodal loads.

Now the stress resultant distribution r, due to the given load p, for a linear analysis
by the force method can be written as

r=Bp+B,q, (3-3)

where By and B, are rectangular matrices each having m rows, and n and US) col-
umns, respectively, m being the number of independent components for member
forces. Bop is known as a particular solution, which satisfies equilibrium with the
imposed load, and B,q is a complementary solution, formed from a maximal set of
independent self-equilibrating stress systems (SESs), known as a statical basis.

Example 1: Consider a planar truss, as shown in Figure 3.1(a), which is two times
statically indeterminate. EA is taken to be the same for all the members.

Py )
ﬂl6 35 4 4 1
N Y T 7 EY)
7 10 L
1 2 2 3 A
H—L —— L —
(a) A planar truss. (b) The selected unknown forces.

Fig. 3.1 A statically indeterminate planar truss.

One member force and one component of a reaction may be taken as redundants.
Alternatively, two member forces can also be selected as unknowns, as shown in
Figure 3.1(b). With the latter selection, the corresponding By and B, matrices can
now be obtained by applying unit values of p; (i = 1, 2) and ¢; (f = 1, 2), respec-
tively:

-1 0 0 0 2 0 -1 0 0 0

B = i
12 -1 410 V2 0 -1 V2 0 -1
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and

po|TVN2Z 0 -2 0 4+l 4 -2 0 00
‘ 0 —1/42 0 -=1V2 0 0 —1/42 +1 +1 -1/42]

The columns of B, form a statical basis of S. The underlying subgraph of a typical
SES (for ¢,= 1) is shown in bold lines in Figure 3.1(b).

Example 2: Consider a portal frame shown in Figure 3.2(a), which is three times
statically indeterminate.

93 93
p=10kN @ D =y ™
2 3 T 4 @
@ @ 4m
1
7777 4 ‘l
F——4m——
(a) A portal frame S. (b) The basic structure of S.

Fig. 3.2 A statically indeterminate frame.

This structure is made statically determinate by an imaginary cut at the middle of
its beam. The unit value of external load p; and each of the bi-actions ¢; (i = 1, 2,
3) lead to the formation of By and B; matrices, in which the two end bending mo-
ments (M;, M;) of a member are taken as its member forces. Using the sign
convention introduced in Chapter 1, By and B matrices are formed as

B,=[+ 0 0 0 0 0],
and

+4 0 0 0 0 -4
B =|-2 42 -2 2 +2 -2|.
-1 +1 -1 +1 -1 +1

The columns of B, form a statical basis of S, and the underlying subgraph of each
SES is a cycle, as illustrated in bold lines in Figure 3.2(b). Notice that three SESs
can be formed on each cycle of a planar frame.
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In both of the above examples, particular and complementary solutions are ob-
tained from the same basic structure. However, this is not a necessary requirement,
as imagined by some authors. In fact, a particular solution is any solution satisfy-
ing equilibrium with the applied loads, and a complementary solution comprises of
any maximal set of independent self-equilibrating systems. The latter is a basis of a
vector space over the field of real numbers, known as a complementary solution
space; see Henderson and Maunder [78].

Using the same basic structure is equivalent to searching for a cycle basis of a
graph, but restricting the search to fundamental cycles only, which is convenient
but not efficient when the structure is complex or when cycle bases with specific
properties are needed.

As an example, consider a three-storey frame as shown in Figure 3.3(a). A cut
system as shown in Figure 3.3(b) corresponds to a statical basis, containing three
SESs formed on each element of the cycle basis shown in Figure 3.3(b). However,
the same particular solution can be employed with a statical basis formed on the
cycles of the basis shown in Figure 3.3(¢).

(a) (b) ()
Fig. 3.3 A three-storey frame with different cut systems.

A basic structure need not be selected as a determinate one. For a redundant basic
structure, one may obtain the necessary data either by analysing it first for the
loads p and bi-actions ¢; =1 (i = 1, 2, ..., ¥(S)) or by using existing information.

3.2.2 MEMBER FLEXIBILITY MATRICES

In the force method of analysis, the determination of the member flexibility matrix
is an important step. A number of alternative methods are available for the forma-
tion of displacement—force relationships describing the flexibility properties of the
members. Four such approaches are as follows:
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1. Inversion of the force—displacement relationship
2. Unit load method
3. Castigliano’s theorem

4. Solution of differential equations for member displacements.

In the following, the unit load method is briefly described for the formation of the
flexibility matrices:

Consider a general element with n member forces,

r =47,y ) (3-4)

-,

and member displacements,
ul = {u,,u,y,..u, ) (3-5)

A typical component of the displacement u; can be found using the unit load
method as follows:

u =[] sear. (3-6)

where &, represents the matrix of statically equivalent stresses due to a unit load

in the direction of r;, and € is the exact strain matrix due to all applied forces r,,.
The unit loads can be used in turn for all the points where member force are ap-
plied, and therefore,

u, =[] 5'eav, (3-7)
where,

6={G1 G: .. O.}". (3-8)
For a linear system,

c=cr,, (3-9)

where c¢ is the stress distribution due to unit forces r,,.
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The stress—strain relationship can be written as follows:
£=¢0 =¢cr,. (3-10)

Substituting in Eq. (3-7), we have,

u, = [[] &'9cdrr, (3-11)
or,

w, = f,r,, (3-12)
where

f = mVa‘q)ch, (3-13)

represents the element flexibility matrix.

The evaluation of & representing the exact stress distribution due to the forces r,,
may not be possible, and hence an approximate relationship should be used. Usu-
ally the matrix ¢ is selected such that it will satisfy at least the equations of

equilibrium. Denoting this approximate matrix by ¢ and using ¢ =¢, we have
f, = [[], cocar. (3-14)

This equation will be used for the derivation of the flexibility matrices of some
finite elements in the following sections.

For a bar element of a space truss, however, the flexibility matrix can be easily
obtained using Hooke's law as already discussed in Chapter 1. For a beam element
ij of a space frame, y and z axes are taken as the principal axes of the beam’s cross
section; see Figure 3.4. The forces of end j are selected as a set of independent
member forces, and the element is considered to be supported at point i. The axial,
torsional, and flexural behaviours in respective planes are uncoupled, and there-
fore, one needs to only consider the flexibility relationships for four separate
members:

1. An axial force member (along x-axis)
2. A pure torsional member (about x-axis)
3. A beam bent about y-axis

4. A beam bent about z-axis.
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Direct adaptation of the flexibility relationships derived in Chapter 1 gives the
following 6 x 6 flexibility matrix:

[L/EA4 0 0 0 0 0 ]
0 I’EIL 0 0 0 I*12EI,
0 0 L3EI, 0 -L*)2EI, 0

f, = , (3-15)
0 0 0 LIGJ 0 0
2

0 0 -L*2EI, 0 LIEI, 0

| 0 *REL 0 0 0 LIEL, |

where G is the shear modulus, /, and /. are the moments of inertia with respect to y
and z axes, respectively. J is the Saint-Venant torsion constant of the cross section.

y
A

A rour raus

Fig. 3.4 A beam element and selected independent member forces.
3.2.3 EXPLICIT METHOD FOR IMPOSING COMPATIBILITY
The compatibility equations in the actual structure will now be derived. Using the
displacement—load relationship for each member, and collecting them in the di-
agonal of the unassembled flexibility matrix F,,, one can write member distortions
as follows:

u=F,r=FBp+F,Bgq. (3-16)

In matrix form,

=L, w] | 617)
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From the contragradient principle of Chapter 1,

[v]=[BE’] [u]. (3-18)

Combining Eq. (3-17) and Eq. (3-18), we have

[Hﬁ] [k, /B, B,] m 10

in which v, contains the displacements corresponding to the force components of
p, and v, denotes the relative displacements of the cuts for the basic structure. Per-
forming the multiplication,

|:V0] _ {B}]FMBO B,F, B, :|[p:|. (3:20)
\A BF, B, BJFB, | q
Defining
D, =B,F,B,, D,=BF B, 3-21)
D, =BF,B,, D, 6 =B B,
the expansion of Eq. (3-8) leads to
Vo= Doop + Doq, (3-22)
and
v.=Dop +Dy1q. (3-23)
Consider now the compatibility conditions as
v.=0. (3-24)

Equation (3-24) together with Eq. (3-23) leads to

q= _Dl_llDlop- (3'25)
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Substituting in Eq. (3-22), we have

v, =[Dy —D,,D;/D,,Ip = Fp, (3-26)
and the stress resultant in a structure can be obtained as

r=[B,-B,D;/D,,Ip. (3-27)
3.2.4 IMPLICIT APPROACH FOR IMPOSING COMPATIBILITY

A direct application of the work principle of Chapter 1 can also be used to impose
the compatibility conditions in an implicit form as follows:

Since the structure is considered to be linearly elastic, a linear relation exists be-
tween the unknown forces q and the applied forces p, that is,

q=Qp. (3-28)
where Q is a transformation matrix, which is still unknown.
Equation (3-3) can now be written as

r=Bop + B,Qp = (B, + B,Q)p = Bp. (3-29)
Using the work theorem,

Pv=ru=pBu (3-30)

Now a set of suitable internal forces, r*, is considered that is statically equivalent
to the external loads. From the work principle,

p'v =r*'u, (3-31)
or

p'v=p'Bu. (3-32)
A comparison of the above two equations leads to

p'B'u=p'Byu. (3-33)
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Substituting u = F,,BP in the above equation, we have
p'B'F,Bp =p'BF, Bp.
This holds for any p, and therefore
B'F,B=BF,B.

From Eq. (3-29) by transposition,

B' =B, +Q'B,,
and therefore,

(B:) + Q‘BB)F’"B = B:)FmB’
or

QtB:)Fm (BO + BIQ) = 0’
or

Qt (B;FmBO + BIFmBlQ) = 0

Using the notation introduced in Eq. (3-9), we have

Q' (D,+D,Q)=0,
or
D+ D;;Q=0.
Therefore,
Q=-D;D,,
and
q=-D;;D,p,

and Eq. (3-14) is obtained as in the previous approach.

(3-34)

(3-35)

(3-36)

(3-37)

(3-38)

(3-39)

(3-40)

(3-41)

(3-42)

(3-43)
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3.2.5. STRUCTURAL FLEXIBILITY MATRICES

The overall flexibility matrix of a structure can be expressed as

v =Fp. (3-44)
Pre-multiplying the above equation by p', we have

p'Fp =p'B,F,Bp. (3-45)
Since p is arbitrary,

F=B,F, B, (3-46)
or F=B,F, (B, +B,Q), (3-47)
or F=B,F B,-B,F, BD,D,. (3-48)

Since F,, is symmetric, it follows that

B,F,B, =B,F,B, =D,,. (3-49)

Therefore, the overall flexibility matrix (known also as the influence matrix) of the
structure is obtained as

F=D, - Dfonlle, (3-50)

and D, =B/F, B, =G is also referred to as the flexibility matrix of the structure.

In this book, the properties of G will be studied, since its pattern is the most
important factor in optimal analysis of the structure by the force method.

Equation (3-34) can now be used to calculate the nodal displacements.
3.2.6 COMPUTATIONAL PROCEDURE

The sequence of computational steps for the force method can be summarised as
follows:

1. Construct By and obtain B .

2. Construct B; and obtain B; .

3. Form unassembled flexibility matrix F,,.

4. Form F,,B, followed by F,,B;.
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5. Calculate Dy, D;,, Dy and Dy, sequentially.
6. Compute —D;; .

7. Calculate Q =-D;/D,,.

8. Form B;Q and find B =B+ B;Q.

9. Form D;,Q and find D, +D;,Q.

10. Compute the internal forces as r = Bp.

11. Compute nodal displacements as vo= Fp.

65

Example 3: In this example, the complete analysis of the truss of Example 1 will

be given.

B, and B; matrices are already formed in Example 1 of Section 3.2.1. The unas-

sembled flexibility matrix can be constructed as follows:

1

Using the above matrix and the matrices from Example 1, we have

p oL |22+32 12
VOBl 12 22+2]

and D,

L [2+2/42 242142
EA| 142 24342
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Substituting in Eq. (3-25), we have

|:ql:|_ W2+32 12 | 242142 242142 [p]]
A 172 2J2+2 N2 2432 |lpa ]

Taking p, = p, = P for simplicity and solving the above equations, we have
q1=-1.43P and ¢g,=-1.17P.
Equation(3.3) is then used to calculate the member forces as
r={n non 5o onon KB R} =
{—1.95P -0.17P 2.05P 0.83P 136P -1.44P —0.12P 0.24P -1.17P —0.17P}l.
Nodal displacements can be found using Eq. (3-25).

Example 4: In this example, the complete analysis of the frame in Example 2 is
given.

B, and B; matrices are already formed in Example 2 of Section 3.2.1. The unas-
sembled flexibility matrix of the structure, using the sign convention introduced in
Chapter 1, is formed as

T :
-1 2
2 -1
po L
6EI -1 2
2 -1
L _1 24
Substituting in Eq. (3-21), we have
64 0 -24
L
D,=— 0 5 0 [,
6E]

-24 0 18
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and
32
N
6EI
-12

The inverse of Dy is computed as

oy |18/576 0372
D=2 0 576 0 |,
3/72 0 1/9

and Q can be obtained as

-1/2
Q=-D; D, =|+3/7]|.
0
Matrix B is now computed as
(4] [+4 -2 -1]
0 +2  +1
-1/2
0 0 2 -1
B=| [+ +3/71,
0 0 -2 +1 0
0 0 +2 -1
0] [4 -2 +1]

and finally by using Eq. (3-17) the member forces are obtained as
r={+1143 +8.57 -8.57 -8.57 +8.57 +11.43}".

General Loading: When a member is loaded in a general form, it must be re-
placed by an equivalent loading. Such a loading can be found as the superposition
of two cases; case 1 consists of the given loading, but the ends of the member are
fixed. The fixed end forces (actions), denoted by FEA, can be found using tables
from books on the strength of materials. Case 2 is the given structure subjected to
the reverse of the fixed end actions only. Obviously, the sum of the loads and reac-
tions of case 1 and case 2 will have the same effect as that of the given loading.
This superposition process is illustrated in the following example:
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Example 5: A two-span beam is considered as shown in Figure 3.5(a). The fixed
end actions are provided in (b), and the equivalent forces are illustrated in Figure
3.5(c). The structure is twice indeterminate, and the primary structure is obtained
by introducing two hinges as shown in (d). The applied nodal forces and redun-
dants are depicted in Figure 3.5(e) and (f), respectively.

20kN 6
12KN/m i) )
. ﬂ 7/,

b—— 4m ————2m—}—2m—]

[l(é
N

(a) A two-span beam. (b) Fixed end actions.
6 10
7 I 2D\ 2D
7 4 s EAS A
(c) The equivalent loading. (d) The selected primary structure.
6 10 qq q2
N FY ~ D¢
(e) Applied force on primary structure. (f) Redundants on primary structure.

Fig. 3.5 A two-span beam with general loading.

By and B, matrices are formed as

-1 0 O -1 0

0 +1 0 0 +1
B, = and B, = ,

0 0 0 0 -1

0 0 +1 0 0

and the unassembled flexibility matrix of the structure is constructed as
2 -1
-1 2
Fm = L *
6EI 2 -1
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Substituting in Eq. (3-21), we have

L2 1 L]2 10
D, =—— and D, =— .
6EI|1 4 6EI|1 2 1

The inverse of Dy is computed as

4 -1
Dl_l] :_lxg s
7 L [-1 2

and Q can be obtained as

Q—D“D—14_1210—172_1
T gty 20l 2 1) 7lo 3 2 f

Now r is computed as

=10 0] [1 27 —17) . o 0285
, 1ol o —3/7 277 0.572
r'=( + )| 6 |= :
0 0 0f"|0 3/7 2/7 [} ||5428
00 1]]0 o o 10.00

Adding the fixed end reaction, the final member forces are obtained as
r=1{16.285-15.428 15.428 0.00}".
3.2.7 OPTIMAL FORCE METHOD

For an efficient force method, the matrix G should be
(a) sparse;
(b) well conditioned; and

(c) properly structured, that is, narrowly banded.

In order to provide the properties (a) and (b) for G, the structure of B; should be
carefully designed since the pattern of F,, for a given discretisation is unchanged,
that is, a suitable statical basis should be selected. This problem is treated in differ-
ent forms by various methods. In the following, graph-theoretical methods are
described for the formation of appropriate statical bases of different types of skele-
tal structures. The property (c) above has a totally combinatorial nature and is
studied in Chapters 5 and 6.
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Pattern Equivalence: Matrix By, containing a statical basis, in partitioned form, is
pattern equivalent to C', where C is the cycle-member incidence matrix. Simi-

larly, BjF, B, is pattern equivalent to CIC' or CC'. This correspondence
transforms some structural problems associated with the characterisation of G
=B,F,B, into combinatorial problems of dealing with CC".

As an example, if a sparse matrix G is required, this can be achieved by increasing
the sparsity of CC'. Similarly, for a banded G, instead of ordering the elements of
a statical basis (SESs), one can order the corresponding cycles. This transforma-
tion has many advantages, such as the following:

1. The dimension of CC' is often smaller than that of G. For example, for a space
frame, the dimension of CC"' is sixfold smaller and for a planar frame, it is three-
fold smaller than that of G. Therefore, the optimisation process becomes much
simpler when combinatorial properties are used.

2. The entries of C and CC' are elements of Z, and therefore easier to operate
when compared to B; and G, which have real numbers as their entries.

3. The advances made in combinatorial mathematics and graph theory become
directly applicable to structural problems.

4. A correspondence between algebraic and graph-theoretical methods becomes
established.

3.3 FORCE METHOD FOR THE ANALYSIS
OF FRAME STRUCTURES

In this section, frame structures are considered in their perfect conditions; that is,
the joints of a frame are assumed to be rigid and connected to each other by elastic
members and supported by a rigid foundation.

For this type of skeletal structure, a statical basis can be generated on a cycle basis
of its graph model. The function representing the degree of static indeterminacy,
Y(S), of a rigid-jointed structure is directly related to the first Betti number 5,(S) of
its graph model,

Y(S) = 0bi(S) = a[M(S) = N(S) + bo(S)], (3-51)

where o0 = 3 or 6 depending on whether the structure is either a planar or a space
frame.
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For a frame structure, matrix B, can easily be generated using the shortest route
tree of its model, and B, can be formed by constructing three or six SESs on each
element of a cycle basis of S.

In order to obtain a flexibility matrix of maximal sparsity, special cycle bases
should be selected as defined in the next section. Methods for the formation of a
cycle basis can be divided into two groups, namely, (a) topological methods and
(b) graph-theoretical approaches.

Topological methods useful for the selection of cycle bases by hand were devel-
oped by Henderson and Maunder [78] and Kaveh [94,95]; a complete description
of these methods is presented in Kaveh [111]. Graph-theoretical methods suitable
for computer applications were developed by Kaveh [96, 100,104].

3.3.1 MINIMAL AND OPTIMAL CYCLE BASES

A matrix is called sparse if many of its entries are zero. The interest in sparsity
arises because its exploitation can lead to enormous computational saving and
many large matrices that occur in the analysis of practical structures can be made
sparse if they are not already so. A matrix can therefore be considered sparse if
there is an advantage in exploiting its zero entries.

The sparsity coefficient 7y, of a matrix is defined as its number of non-zero entries.
A cycle basis C = {C), C;, G5, ..., Clﬁ ) } is called minimal if it corresponds to a

minimum value of:

b (S)

L(C)=)Y L(C). (3-52)

Obviously, y(C) = L(C) and a minimal cycle basis can be defined as a basis that
corresponds to minimum % (C). A cycle basis for which L(C) is near minimum is
called a subminimal cycle basis of S.

A cycle basis corresponding to maximal sparsity of the CC' is called an optimal
cycle basis of S. If x(CC") does not differ considerably from its minimum value,
then the corresponding basis is termed suboptimal.
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The matrix intersection coefficient 6,(C) of row i of cycle-member incidence ma-
trix C is the number of row j such that

(@jel{itl,i+2,..,b(S)},

(b) Ci N C; # D, that is, there is at least one & such that the column & of both cycles
C; and C; (rows i and j) contains non-zero entries.

Now it can be shown that

HCO -b($)+2 S, 6,(0). (3-53)

This relationship shows the correspondence of a cycle-member incidence matrix C
and its cycle basis adjacency matrix. In order to minimise }(CC"), the value of
B (S)-1
2 6,(C) should be minimised since b,(S) is a constant for a given structure S,
i=1

that is, 9~cycles with a minimum number of overlaps should be selected.

In the force method, an optimal cycle basis is needed corresponding to the maxi-
mum sparsity of the CC' matrix. However, because of the complexity of this
problem, most of the research has been concentrated on minimal cycle basis selec-
tion, except that of [105,108], which minimises the overlaps of the cycles rather
than only their length.

3.3.2 SELECTION OF MINIMAL AND SUBMINIMAL CYCLE BASES

Cycle bases of graphs have many applications in various fields of engineering. The
amount of work in these applications depends on the cycle basis chosen. A basis
with shorter cycles reduces the time and storage required for some applications,
that is, it is ideal to select a minimal cycle basis, and for some other applications
minimal overlaps of cycles are needed, that is, optimal cycle bases are preferred. In
this section, the formation of minimal and subminimal cycle bases is first dis-
cussed. Then the possibility of selecting optimal and suboptimal cycle bases is
investigated.

Minimal cycle bases were considered first by Stepanec [212] and improved by
Zykov [237]. Many practical algorithms for selecting subminimal cycle bases have
been developed by Kaveh [94] and Cassell et al. [23]. Similar methods have been
presented by Hubicka and Sysle [84], claiming the formation of a minimal cycle
basis of a graph. Kolasinska [139] found a counterexample to the algorithm of
Hubicka and Sysle. A similar conjecture was made by Kaveh [94] for planar
graphs; however, a counterexample has been given by Kaveh and Roosta [129].
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Recently, Horton [83] presented a polynomial time algorithm to find minimal cy-
cle bases of graphs, which was improved by Kaveh and Mokhtar-zadeh [119].

In this section, the merits of the algorithms developed by different authors are dis-
cussed; a method is given for selection of minimal cycle bases, and efficient
approaches are presented for the generation of subminimal cycle bases.

Formation of a Minimal Cycle on a Member: A minimal length cycle C; on a
member my, called its generator, can be formed by using the shortest route tree
algorithm as follows:

Start the formation of two Shortest Route Trees (SRTs) rooted at the two end
nodes n, and n, of m;, and terminate the process as soon as the SRTs intersect each
other (not through m; itself') at say n.. The shortest paths between n, and ., and ,
and n,, together with m;, form a minimal cycle C; on m,. Using this algorithm, cy-
cles of prescribed lengths can also be generated.

As an example, C; is a minimal cycle on m; in Figure 3.6. The SRTs are shown in
bold lines. The generation of SRTs is terminated as soon as 7. has been found.

Fig. 3.6 A minimal cycle on a member.

A minimal cycle on a member m; passing through a specified node #, can similarly
be generated. An SRT rooted at #; is formed, and as soon as it hits the end nodes
of mj, the shortest paths are found by backtracking between n; and n,, and n; and
n,, These paths together with m; form the required cycle. As an example, a minimal

cycle on m; containing 7 is illustrated by dashed lines in Figure 3.6.

Different Cycle Sets for Selecting a Cycle Basis: It is obvious that a general cy-
cle can be decomposed into its simple cycles. Therefore, it is natural to confine the
considered set to only simple cycles of S. Even such a cycle set, which forms a
subspace of the cycle space of the graph, has many elements and is therefore un-
economical for practical purposes.
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@AA ’ ’
¢

Fig. 3.7 A graph S and the selected cycles.

In order to overcome the above difficulty, Kaveh [94] used an expansion process,
selecting the smallest admissible (independent with additional restriction) cycles,
one at a time, until b,(S) cycles forming a basis had been obtained. In this ap-
proach, a very limited number of cycles were checked for being an element of a
basis. As an example, the expansion process for selecting a cycle basis of S is illus-
trated in Figure 3.7.

Hubicka and Sysle [84] employed a similar approach, without the restriction of
selecting one cycle at each step of expansion. In their method, when a cycle has
been added to the previously selected cycles, increasing the first Betti number of
the expanded part by “p”, then p created cycles have been formed. As an example,
in this method, Steps 4 and 5 will be combined into a single step, and addition of
cycle 5 will require immediate formation of cycle 4. The above method is modi-
fied, and an efficient algorithm is developed for the formation of cycle bases by
Kaveh and Roosta [129],

Finally, Horton [83] proved that the elements of a minimal cycle basis lie in be-
tween a cycle set consisting of the minimal cycles on each member of S that passes
through each node of S, that is, each member is taken in turn and all cycles of
minimal length on such a member passing through all the nodes of S are generated.
Obviously, M(S) x M(S) such cycles will be generated.

Independence Control: Each cycle of a graph can be considered as a column vec-
tor of its cycle-member incidence matrix. An algebraic method such as the
Gaussian elimination may then be used for checking the independence of a cycle
with respect to the previously selected sub-basis. However, although this method is
general and reduces the order dependency of the cycle selection algorithms, like
many other algebraic approaches its application requires a considerable amount of
storage space.

The most natural graph-theoretical approach is to employ a spanning tree of S and
form its fundamental cycles. This method is very simple; however, in general, its
use leads to long cycles. The method can be improved by allowing the inclusion of
each used chord in the branch set of the selected tree. Further reduction in length
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may be achieved by generating an SRT from a centre node of a graph, and the use
of its chords in ascending order of distance from the centre node; see Kaveh [96].

A third method, which is also graph-theoretical, consists of using admissible cy-
cles. Consider the following expansion process, with S being a two-connected

graph,
C=C'">C>C—>.->C"%=g,

k k+1
where C* =8Cf' A cycle Cyy; is called an admissible cycle if for C* =
Ck U Ck+ls

b(CFNY=by(C*U Cry)=by(CF)+1. (3-54)

It can easily be proved that the above admissibility condition is satisfied if any of
the following conditions hold:

1. Apy = C* Croy= @, where @ is an empty intersection;
p

2. 1;1 (Ags1) = r — s, where r and s are the numbers of components of C*"! and C¥,
respectively;

3. l;l (A1) = 0 when C * and C**! are connected (= s).

In the above relations, b, (4;)) = M, — N, + 1, where M,and N, are the numbers of
members and nodes of 4;, respectively.

As an example, the sequence of cycle selection in Figure 3.8 will be as specified
by their numbers.

Cr+3
Cr+1

k+2

Fig. 3.8 A cycle and its bounded cycles.
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A different approach suggested by Hubicka and Syslg, in which
by(C*) =by(C*) +p, (3-55)

is considered to be permissible. However, a completion is performed for p > 1. As
an example, when Cj; is added to C k, its first Betti number is increased by 3 and
therefore, cycles C; and C, must also be selected at that stage, before further ex-
pansion.

The mathematical concepts involved in the formation of a cycle basis having been
discussed, three different algorithms are now described.

Algorithm 1 (Kaveh 1974)

Step 1: Select a pseudo-centre node of maximal degree O. Such a node can be se-
lected manually or automatically using the graph or algebraic graph-theoretical
methods discussed in Chapter 5.

Step 2: Generate an SRT rooted at O, form the set of its chords and order them
according to their distance from O.

Step 3: Form one minimal cycle on each chord in turn, starting with the chord
nearest to the root node. A corresponding simple path that contains members of the
tree and the previously used chords is chosen, hence providing the admissibility of
the selected cycle.

This method selects subminimal cycle bases, using the chords of an SRT. The
nodes and members of the tree and consequently the cycles are partially ordered
according to their distance from O. This is the combinatorial version of the Turn-
back method to be discussed in Section 3.7.2 on algebraic force methods.

Algorithm 2 (Kaveh 1974)
Step 1: Select a centre or pseduo-centre node of maximal degree O.

Step 2: Use any member incident with O as the generator of the first minimal cy-
cle. Take any member not used in C; and incident with O and generate the second
minimal cycle on it. Continue this process until all the members incident with O
are used as the members of the selected cycles. The cycles selected so far are ad-
missible, since the intersection of each cycle with the previously selected cycles is
a simple path (or a single node) resulting in an increase of the first Betti number by
unity for each cycle.
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Step 3: Choose a starting node O, adjacent to O, that has the highest degree. Re-
peat a step similar to Step 2, testing each selected cycle for admissibility. If the
cycle formed on a generator my fails the test, then examine the other minimal cy-
cles on my to find out if any such cycle exists. If no admissible minimal cycle can
be found on my, then,

(i) form admissible minimal cycles on the other members incident with O”. If my;
does not belong to one of these subsequent cycles, then,

(i1) search for an admissible minimal cycle on m;, since the formation of cycles on
other previous members may now have altered the admissibility of this cycle. If no
such cycle can be found, leave m; unused. In this step, more than one member may
be left unused.

Step 4: Repeat Step 3 using a node adjacent to O and/or O’ having the highest
degree as the starting node. Continue the formation of cycles until all the nodes of
S have been tested for cycle selection. If all the members have not been used, se-
lect the shortest admissible cycle available for an unused member as generator.
Then test the minimal cycles on the other unused members, in case the formation
of the longer cycle has altered the admissibility. Each time a minimal cycle is
found to be admissible, add to C’ and test all the minimal cycles on the other un-
used members again. Repeat this process, forming other shortest admissible cycles
on unused members as generators, until S is re-formed and a subminimal cycle
basis has been obtained.

Both of the above two algorithms are order-dependent, and various starting nodes
may alter the result. The following algorithm is more flexible and less order-
dependent, and in general leads to the formation of shorter cycle bases.

Algorithm 3 (Kaveh 1976)

Step 1: Generate as many admissible cycles of length 3 as possible. Denote the
union of the selected cycles by C”.

Step 2: Select an admissible cycle of length 4 on an unused member. Once such a
cycle C,; is found, check the other unused members for possible admissible cy-
cles of length 3. Again select an admissible cycle of length 4 followed by the
formation of possible three-sided cycles. This process is repeated until no admissi-
ble cycles of length 3 and 4 can be formed. Denote the generated cycles by C ™.

Step 3: Select an admissible cycle of length 5 on an unused member. Then check
the unused members for the formation of three-sided admissible cycles. Repeat
Step 2 until no cycle of length 3 or 4 can be generated. Repeat Step 3 until no cy-
cle of length 3, 4 or 5 can be found.
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Step 4: Repeat Step 3 by considering higher-length cycles, until 5,(S) admissible
cycles forming a subminimal cycle basis are generated.

Remark: The cycle basis C formed by Algorithms 1 to 3 can be further improved
by exchanging the elements of the selected basis. In each step of this process, a

shortest cycle C, independent of the cycles of C\C; is replaced by C; if L(C,) <
L(C;). This process is repeated fori =1, 2, ..., by(S).

This additional operation increases the computational time and storage, and its use
is recommended only when the formation of a minimal cycle basis is required.

Algorithm 4 (Horton 1987)

Step 1: Find a minimum path P(n;, n;) between each pair of nodes »; and »;.

Step 2: For each node n, and member m, = (n;, n;), generate the cycle having m; and
ne as P(ny, n;) + P(ny, nj) + (n;, ny) and calculate its length. Degenerate cases in
which P(ny, n;) and P(n, n;) have nodes other than n, in common can be omitted.

Step 3: Order the cycles by their weight (or length).

Step 4: Use the Greedy Algorithm to find a minimal cycle basis from this set of
cycles. This algorithm is given in Appendix B.

A simplified version of the above Algorithm can be designed as follows:

Step 1: Form a spanning tree of S rooted from an arbitrary node, and select its
chords.

Step 2: Take the first chord and form N(S) — 2 minimal cycles, each being formed
on the specified chord containing a node of S (except the two end nodes of this
chord).

Step 3: Repeat Step 2 for the other chords, in turn, until [M(S) — N(S) + 1] X [N(S)
— 2] cycles are generated. Repeated and degenerate cycles should be discarded.

Step 4: Order the cycles in ascending magnitude of their lengths.

Step 5: Using the above set of cycles, employ the Greedy Algorithm to form a
minimal cycle basis of S.

The main contribution of Horton’s Algorithm is the limit imposed on the elements
of the cycle set used in the Greedy Algorithm. The use of matroids and the Greedy
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Algorithm has been suggested by Kaveh [94,96], and they have been employed by
Lawler [148] and Kolasinska [139].

3.3.3 EXAMPLES

Example 1: Consider a planar graph S, as shown in Figure 3.9, for which 5,(S) =
18 — 11 + 1 = 8. When Algorithm 3 is used, the selected basis consists of four cy-
cles of length 3, three cycles of length 4 and one cycle of length 5, as follows:

Cl = (15 29 3)7 C2 = (19 8& 9)a C3 = (23 63 3)3 C4 = (23 53 6)3 CS = (19 47 57 2)

Ce=(1,7,5,2),C;=(8,6,2, 1), Cy=(10, 8, 6, 3, 11).

Fig. 3.9 A planar graph S.

The total length of the selected basis is L(C) = 29, which is a counter example for
minimality of a mesh basis, since, for any such basis of S, L(C ) > 29.

Example 2: In this example, S is the model of a space frame, considered as

27
S = E)]Sz‘ , where a typical S; is depicted in Figure 3.10(a). For S; there are 12

members joining eight corner nodes and a central node joined to these corner
nodes. The model § is shown in Figure 3.10(b), in which some of the members are
omitted for clarity of the diagram. For this graph, 5,(S) = 270.
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ri i
i £
(a) A typical S; (i =1, ..., 27). (b) S with some omitted members.

Fig. 3.10 A space frame S.

The selected cycle basis using any of the algorithms consists of 270 cycles of
length 3, forming a minimal cycle basis of S. For Algorithm 3, the use of different
starting nodes leads to a minimal cycle basis, showing the capability of this
method.

Example 3: S is a planar graph with b,(S) =9, as shown in Figure 3.11. The appli-
cation of Algorithm 3 results in the formation of a cycle of length 3 followed by
the selection of five cycles of length 4. Then, member {1, 6} is used as the genera-
tor of a six-sided cycle C;= (1, 2, 3, 4, 5, 6, 1). Member {2, 10} is then employed
to form a seven-sided cycle Cs = (2, 11, 12, 13, 14, 15, 10, 2), followed by the
selection of a five-sided cycle Cy = (10, 5, 4, 3, 2, 10). The selected cycle basis has
a total length of L(C) = 41, and is not a minimal cycle basis. A shorter cycle basis
can be found by Algorithm 4, consisting of one three-sided and five four-sided
cycles, together with the following cycles:

C;=(1,2,10,5,6,1), Cs=(2,3,4,5,10,2) and Co= (2, 11, 12, 13, 14, 15, 10, 2),

forming a basis with the total length of 40. However, the computation time and
storage for Algorithm 3 are far less than for Algorithm 4, as compared in [119].
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Fig. 3.11 A planar graph S.

3.3.4 OPTIMAL AND SUBOPTIMAL CYCLE BASES

In what follows, a direct method and an indirect approach, which often lead to the
formation of optimal cycle bases, are presented. Much work is needed before the
selection of an optimal cycle basis of a graph becomes feasible.

Suboptimal Cycle Bases: A Direct Approach

Definition 1: An elementary contraction of a graph S is obtained by replacing a
path containing all nodes of degree 2 with a new member. A graph S contracted to
a graph S’ is obtained by a sequence of elementary contractions. Since in each
elementary contraction k nodes and k members are reduced, the first Betti number
does not change in a contraction, that is, 5;(S) = b,(S"). The graph S is said to be
homeo-morphic to S”; see Figure 3.12.

(a) S (b) §”.
Fig. 3.12 S and its contracted graph S’.

This operation is performed in order to reduce the size of the graph and also be-
cause the number of members in an intersection of two cycles is unimportant; a
single member is enough to render C; N C; non-empty, and hence to produce a
non-zero entry in CC'.
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Definition 2: Consider a member m; of a graph S. On this member, p minimal cy-
cles of length g can be generated. p is called the incidence number (IN) and g is
defined as the cycle length number (CLN) of m;. In fact, p and g are measures as-
signed to a member to indicate its potential as a member in the elements of a cycle
basis. In the process of expansion for cycle selection, an artificial increase in p
results in the exclusion of this element from a minimal cycle, keeping the number
of overlaps as small as possible.

Space graphs need a special treatment. For these graphs, when a member has
p = 1, then the next shortest length cycles with ¢” = ¢ + 1 (1 being the next smallest

possible integer) are also considered. Denoting the number of such cycles by p’,
the IN and CLN for this type of member are taken as

I,=p'+1 and Iy =(q+p'q)/ (1+p), (3-56)
respectively. The end nodes of the considered member are j and .

Definition 3: The weight of a cycle is defined as the sum of the incidence numbers
of its members.

Algorithm A
Step 1: Contract S into S”, and calculate the IN and CLN of all its members.

Step 2: Start with a member of the least CLN and generate a minimal weight cycle
on this member. For members with equal CLNs, the one with the smallest IN
should be selected. A member with these two properties will be referred to as
“a member of the least CLN with the smallest IN”".

Step 3: On the next unused member of the least CLN with the smallest IN, gener-
ate an admissible minimal weight cycle. In the case when a cycle of minimal
weight is rejected due to inadmissibility, the next unused member should be con-
sidered. This process is continued as far as the generation of admissible minimal
weight cycles is possible. After a member has been used as many times as its IN,
before each extra usage, increase the IN of such a member by unity.

Step 4: On an unused member of the least CLN, generate one admissible cycle of
the smallest weight. This cycle is not a minimal weight cycle, as otherwise it
would have been selected at Step 3. Such a cycle is called a subminimal weight
cycle. Again, update the INs for each extra usage. Now repeat Step 3, since the
formation of the new subminimal weight cycle may have altered the admissibility
condition of the other cycles and selection of further minimal weight cycles may
now have become possible.
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Step 5: Repeat Step 4, selecting admissible minimal and subminimal weight cy-
cles, until b;(S”) of these cycles are generated.

Step 6: A reverse process to that of the contraction of Step 1 transforms the se-
lected cycles of S’ into those of S.

This algorithm leads to the formation of a suboptimal cycle basis, and for many
models encountered in practice, the selected bases have been optimal.

Suboptimal Cycle Bases: An Indirect Approach

Definition 1: The weight of a member in the following algorithm is taken as the
sum of the degrees of its end nodes.

Algorithm B

Step 1: Order the members of S in ascending order of weight. In all the subsequent
steps use this ordered member set.

Step 2: Generate as many admissible cycles of length o as possible, where . is the
length of the shortest cycle of S. Denote the union of the selected cycles by C ™.
When «a is not specified, use the value ¢ = 3.

Step 3: Select an admissible cycle of length & + 1 on an unused member (use the
ordered member set). Once such a cycle C,.; is found, control the other unused
members for possible admissible cycles of length o.. Again select an admissible
cycle of length o + 1, followed by the formation of possible a-sided cycles. This
process is repeated until no admissible cycles of length o and « + 1 can be found.
Denote the generated cycles by C”.

Step 4: Select an admissible cycle C,+; of length &+ 2 on an unused member. Then
check the unused members for the formation of o-sided cycles. Repeat Step 2 until
no cycle of length o or o + 1 can be generated. Repeat Step 3 until no cycles of
length a, ¢+ 1 or &t + 2 can be found.

Step 5: Take an unused member and generate an admissible cycle of minimal
length on this member. Repeat Steps 1, 2 and 3.
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Step 6: Repeat Step 4 until b(S) admissible cycles, forming a suboptimal cycle
basis, are generated.

The ordered member set affects the selection process in two ways:

1. Generators are selected in ascending weight order, hence increasing the
possibility of forming cycles from the dense part of the graph. This increases the
chance of cycles with smaller overlaps being selected.

2. From cycles of equal length formed on a generator, the one with smallest total
weight (sum of the weights of the members of a cycle) is selected.

The cycle bases generated by this algorithm are suboptimal; however, the results
are inferior to those of the direct method A.

Remark: Once a cycle basis C is formed by Algorithm A or Algorithm B, it can
be further improved by exchanging the elements of C. In each step of this process,
a cycle Cy is controlled for the possibility of being exchanged by the ring sum of
C; and a combination of the cycles of C\C;, in order to reduce the overlap of the
cycles. The process is repeated until no improvement can be achieved. This addi-
tional operation increases the computational time and storage, and should only be
used when the corresponding effort is justifiable, for example, this may be the case
when a non-linear analysis or a design optimisation is performed using a fixed
cycle basis.

3.3.5 EXAMPLES

In this section, examples of planar and space frames are studied. The cycle bases
selected by Algorithms A and B are compared with those developed for generating
minimal cycle bases (Algorithms 1-4). Simple examples are chosen in order to
illustrate the process of the methods presented clearly. The models, however, can
be extended to those containing a greater number of members and nodes of high
degree to show the considerable improvements to the sparsity of matrix CC".

Example 1: Consider a space frame as shown in Fig. 13(a) with the corresponding
graph model S as illustrated in Fig. 13(b). For this graph 5,(S) =12, and therefore
12 independent cycles should be selected as a basis. Algorithm B selects a minimal
cycle basis containing the following cycles:

C1: (19 29 3)a C2: (19 27 5)9 C3: (19 39 4)a C4: (], Sa 4)a C5: (29 37 67 7)9 C6: (39 49
77 8)9 C7: (49 59 89 9)9 C8: (69 79 89 9)9 C9: (75 87 117 12)9 Cl(): (69 79 10, 11):
C=(9,8,12,13), C;,=(10, 11, 12, 13),

which corresponds to

2(C)=4x3+8x4=44
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and 2(CCH=12+2 x23 =58,

Use of Algorithm A leads to the formation of a similar basis, with the difference
that C; = (6, 9, 10, 13) is generated in place of Cy= (6, 7, 8, 9), corresponding to

H(C)=4x3+8x4=44,
2(C'C")=12+2%20=>52.

The CLNs and Ins of the members used in this algorithm are illustrated in Figure
3.13(b).

13 12
I I
: 10 :®’ A
i I
9 8
I 3,4 !
E T
i @4 A 4
I
: 2 ®’\3\'67 3
7|L 7L 2.
- / 1
7 7
(a) A space structure. (b) The graph model S of the structure.

Fig. 3.13 A space frame, and CLNs and Ins of its members.

Example 2: In this example, S is a space structure with 5;(S) = 33, as shown in
Figure 3.14(a). Both Algorithms 3 and A select 33 cycles of length 4, that is, a
minimal cycle basis with }(C) =4 x 33 = 132 is obtained.

The basis selected by Algorithm 3 contains (in the worst case) all four-sided cycles
of S except those that are shaded in Figure 3.14(a), with }(CC") = 233.

Algorithm A selects all three-sided cycles of S except those shaded in Figure 3.14(b),
with x(CC") = 190. It will be noticed that, for structures containing nodes of higher
degrees, considerable improvement is obtained by the use of Algorithm A.
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(a) A minimal cycle basis. (b) A suboptimal cycle basis.

Fig. 3.14 Minimal and suboptimal cycle bases of S.

Example 3: Consider a space frame as shown in Figure 3.15, for which 5,(S) = 10.
The minimal cycle basis selected by Algorithm 3 consists of the following cycles:

=(1,2,3), =4, 5,6), C3= (7, 8,9), Cs= (10, 11, 12), Cs=(1, 2, 5, 4),
cﬁ—(z 3,6,5), Cr=(4,5,8,7), Cs= (5, 6,9, 8), Co=(7, 8, 11, 10),
Cio=(8,9, 12, 11),

corresponding to x(C) =4 x 3+ 6 x4=36and x(CC)=10+2[0+0+0+2+3
+3+4+3+4]=10+2x19=48.

However, the following non-minimal cycle basis has a higher y(C), and leads to a
more sparse CC' matrix. The selected cycles are as follows:

(123)(:2 (1,2,5,4), C3=(2,3,6,5), C,=(1,3,6,4), Cs=(4,5,8,7),
=(5,6,9,8), C;=(4,6,9,7), Cs= (7, 8, 11, 10), Co= (8, 9, 12, 11),
Cio= (10, 11, 12),

for which y(C")=2 x 3 + 8 x 4 = 38, corresponding to y(C'C")=10+2[1+2+
34+1+2+3+1+2+2]=10+2x16=42.

Fig. 3.15 A space frame S.

Therefore, the idea of having an optimal cycle basis in between minimal cycle
bases is incorrect.
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Example 4: Consider the skeleton of a structure S, comprising six flipped flags, as
shown in Figure 3.16(a), for which b,(S) = 6. After contraction, S” is obtained as
illustrated in Figure 3.16(b). Obviously, this is a planar graph. The CLNs for the
members are 3s, and the IN for member (1, 2) is 6, and for the remaining members
it is equal to 1. Algorithm 3 selects a minimal cycle basis for ', consisting of six
three-sided cycles, corresponding to

2(C)=6x3=18and y(CC')=6+2[0+1+2+3+4+5]=6+2x15=36.

58

(@) S (b) S
Fig. 3.16 A flipped flag before and after contraction.

However, the following non-minimal cycle basis has a higher x(C”), and leads to
a lower sparsity, x(C'C"):

Ci=(1,3,2,4),C,=(1,4,2,5), C5=(1, 2, 3), C4=(1, 2, 6),
Cs=(1,6,2,7),Cs=(1,7,2,8).

For this basis, y(C") =4 x 4 + 2 x 3 = 22, corresponding to x(C'C")=6+2 [0 +
I1+1+1+1+1]=6+2x5=16. After the back transformation from S’ to S, we
have x(C) =4 x 6 +2 x 4 =32, corresponding to x(CC)=6+2[0+1+1+1+1
+1]=16.

3.3.6 AN IMPROVED TURN-BACK METHOD FOR THE
FORMATION OF CYCLE BASES

In this section, the combinatorial Turn-back method of Kaveh [94] is improved to
obtain shorter cycle bases. This method covers all the counter examples, known
for the minimality of the selected cycle bases.

Step 1: Generate an SRT rooted from an arbitrary node O. Identify its chords, and
order them according to their distance numbers from O.
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Step 2: Select the shortest length cycle of the graph on a chord and add this chord
(generator) to the tree members. Repeat this process with all the chords, forming
cycles of the least length containing the tree members and the previously used
chords only. The selected cycles are all admissible, that is, the addition of each
cycle increases the first Betti number of the expanded part of the graph by unity.
Store these cycles in C.

Step 3: Form all the new cycles of the same length on the remaining chords, allow-
ing the use of more than one unused chord in their formation.

Step 4: Control the cycles formed in Step 3 to find only one cycle having a genera-
tor that is in none of the other connected cycles formed in Step 3. When such a
chord is found, add the corresponding cycle to C and include its generator in the
tree members. Repeat this control until no such cycle can be found.

Step 5: Select a cycle of the next higher length in the graph containing only one
chord. Add the selected cycle to C and its generator to the tree members.

Step 6: Control the cycles formed in Step 3 to find a cycle containing only one
unused chord. Add such a cycle to C and add its chord to the tree members. Repeat
this control until no cycle of this property can be found.

Step 7: Repeat Step 4.

Step 8: Repeat Steps 5 and 6 and continue this repetition with the same length until
no cycle in Step 5 can be found.

Step 9: Repeat Steps 3 to 8, until b,(S) cycles forming a cycle basis are included in C.
3.3.7 EXAMPLES

Example 1: A graph in the form of the one-skeleton of a torus-type structure is
considered; see Figure 3.17. An SRT is selected, as shown in bold lines. The cy-
cles selected in Step 2 are given below:

C=1{(1,2,6),(1,4,5),(1,5,6),(1,2,13), (1,4, 16), (1, 13, 16), (2, 3, 7), (2, 6,
7),(2,3,14),(2,13,14), (4,5, 8), (4, 15, 16), (5, 6, 10), (5, 9, 10), (5, 8, 9), (12,
13, 16), (11, 12, 16), (11, 15, 16)}.

The execution of Step 3 results in the following cycles:

(3.7,8),(3,4,8),(7, 11, 12), (7, 8, 12), (8, 9, 12), (9, 13, 14), (9, 10, 14), (10, 14,
15), (10, 11, 15), (9, 12, 13), (3, 14, 15), (3, 4, 15).
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Fig. 3.17 Graph S and the selected SRT.

Twelve cycles are generated, increasing the first Betti number by 12. The control
of Step 4 leads to generators {10, 11} and {7, 11}, corresponding to the cycles
(10, 11, 15) and (7, 11, 12), respectively. Thus no cycle is selected.

In Step 5, a cycle of length 4 containing an unused chord is formed. On {3, 4},
cycle (1, 2, 3, 4) is generated and added to C. Then, in Step 6, the following cycles
are added to C:

(3, 4, 8) for {3, 8}, (3, 7, 8) for {7, 8}, (3, 4, 15) for {3, 15}, (3, 14, 15) for
(14, 15}.

In Step 7 no cycle is found, but in Step 8, the execution of Step 5 leads to cycle
(1, 5,9, 13) on {9, 13}, and Step 6 leads to the following cycles completing C and
forming a minimal cycle basis of S:

(9, 12, 13) for {9, 12}, (9, 13, 14) for {9, 14}, (8, 9, 12) for {8, 12}, (7, 8, 12) for
{7, 12}, (7, 11, 12) for {7, 11}, (9, 10, 14) for {10, 14}, (10, 14, 15) for {10, 15},
and (10, 11, 15) for {10, 11}.

Example 2: A space graph is considered as illustrated in Figure 3.18. An SRT is
selected as shown in bold lines. The application of Step 2 leads to the following
cycle set:

C=11,26 7,5, 6 10), (2,3, 7, 8), 4, 5, 9, 10), (6, 7, 11, 12),
(6,10, 11, 15), (7, 8, 12, 13), (9, 10, 14, 15), (11, 12, 16, 17), (11, 15, 16, 20),
(12,13, 17, 18), (14, 15, 19, 20), (21, 22, 26, 27), (21, 25, 26, 30), (22, 23, 27,
28), (24, 25, 29, 30)}.
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In Step 3, the following cycles are generated:

(3,4,8,9), (8,9, 13, 14), (13, 14, 18, 19), (16, 17, 21, 22), (17, 18, 22, 23), (18,
19, 22, 23), (18, 19, 23, 24), (19, 20, 24, 25), (16, 20, 21, 25) ,(23, 24, 28, 29).

16

1 6 o 21 i
10 15 200 25

5 30
9 14 19| 24

4 29
8 13 18 23

3 28
5 7 12 17 2

27

1 6 1 16 21 26

Fig. 3.18 A space graph and the selected SRT.

These cycles contain 11 unused chords. The control of Step 4 shows that {3, 4}
and {28, 29} are included in one cycle, and therefore all the chords remain unused.
In the next step, a cycle of length 5 including an unused chord is generated and
added to C. Only with chord {3, 4}, the five-sided cycle (1, 2, 3, 4, 5) is generated,
and in Step 6 the following three-sided cycles are selected:

(3,4,8,9), (8,9, 13, 14), and (13, 14, 18, 19).

Step 7 is carried out, and cycle (23, 24, 28, 29) on {28, 29} is found; repetition of
this control leads to cycle (18, 19, 23, 24) on {23, 24}. In the next step, no cycle is
selected. The execution of Steps 3 and 4 in Step 9 does not result in any cycle.

The execution of Step 5 in Step 9 forms cycle (1, 6, 11, 16, 21, 26) on chord {16,
21}, and the execution of Step 6 leads to the following cycles:

(16, 20, 21, 25) for {20, 25, (19, 20, 24, 25) for {19, 24}, (16, 17, 21, 22) for {17,
22}, and (17, 18, 22, 23) for {18, 23}.

The selected cycles form a minimal cycle basis.
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3.3.8. AN ALGEBRAIC GRAPH-THEORETICAL METHOD FOR CYCLE
BASIS SELECTION

Consider a simple graph as shown in Figure 3.19, with b,(S) = 4. Horton’s algo-
rithm forms the following cycle set O:

0 =1{C(l,6,9), Cx(2, 3, 7), C5(7,8,9), C«(4, 5, 8), C5(1, 6, 7, 8), Ce(2, 3, 8, 9),
C7(4: 5& 79 9)9 C8(17 29 33 6a 8)’ C9(1s 4: 5& 69 7)3 C10(2, 3a 47 59 9)3 Cll(la 29 39
4,5,6)}.

Fig. 3.19 A simple graph with b;(S) = 4.

The cycle adjacency graph of S contains the nodes in a one-to-one correspondence
with these cycles, and two nodes are connected to each other if the corresponding
cycles have at least one member in common. Naturally, such a graph will not be
simple and will have multiple members. The weighted adjacency matrix A* of the
new graph is constructed as

1234567 89 10 11

1301 02 11221 2]
2003101 212122
3(1 1312221110
4(0 01 31 1 21 222
A*:521214113302'
6/1 2 211 413032
7(1 1 2211 403 32
8(2 2113305224
912 1 1 23 0 3 2 5 2 4
1001 2 1 203 3225 4
12 20222 2 4 4 4 6]
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Once A* is formed, the largest eigenvalue A; with the corresponding eigenvector
having all positive entries can be easily calculated. A* is real and symmetric, and it
can be shown that all entries of A** are positive. Thus, it is primitive and, accord-
ing to the Perron Frobenious theorem, A, is real and positive and a simple root of
the characteristic equation corresponds to a unique eigenvector v; with all entries
positive. Such an eigenvector can be obtained by the following simple algorithm:

Let v = {1,1, ..., 1}'. Then the components of A*'v are the number of walks of
length & beginning at an arbitrary node of S and ending at n,. If n; is a good starting
node, this number will be larger. Thus, for k4, one should obtain some average
number defined as the accessibility index by Gould [65], which indicates how
many walks go through a node on an average. With a suitable normalisation, A**v
converges to the largest eigenvector v; of A*; see Straffing [213].

As an example, for the cycle adjacency matrix discussed in Section 3.3.8, the larg-
est eigenvalue is calculated as A, = 21.8815, and the corresponding eigenvector v,
is obtained and its entries are reordered as follows:

v, ={0.1782 0.2124 0.2124 0.2124 0.2718 0.2718 0.2718 0.3654 0.3654 0.3654 0.4590}".
The entries of this vector correspond to the cycle numbers as

P={3124567981011}".
Algorithm (Kaveh and Rahami [120])
The algorithm is simple and consists of the following steps:
Step 1: Contract Sto S’.
Step 2: Form the cycle subspace using Horton’s approach.
Step 3: Form the cycle adjacency matrix A*.

Step 4: Calculate the largest eigenvector v, of A*.

Step 5: Put the entries of v; in ascending order to obtain v, and construct a vector

P containing the order of the cycles in v, .

Step 6: Choose the first entry of P as the first cycle, save it in C* and remove it
from P.
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Step 7: Select the next admissible cycle from the new P, starting from its first en-
try, save it in C* and remove it from P.

Step 8: Repeat Step 7 until 5,(S) admissible cycles in C* forming a suboptimal
cycle basis are constructed.

For the graph shown in Figure 3.18, the selected cycles are chosen sequentially

fromP=1{3124567981011}" as Cs, C,, C,, and C,. These cycles with the
corresponding sequence are found to be admissible and selected through steps 6 to
8 of the algorithm. The members of these cycles from the cycle set O are (7, 8, 9),
(1,6,9), (2, 3, 7) and (4, 5, 8), respectively, forming a cycle basis consisting of
four three-sided cycles.

3.3.9 EXAMPLES

In this section, the selected cycle bases using the algorithm of Horton [83] and the
present algorithm are compared. It should be noted that these two algorithms have
different aims, namely, the first algorithm is designed for the formation of a mini-
mal cycle basis, while the present algorithm aims at the selection of cycles with

smallest possible overlaps leading to a suboptimal cycle basis.

Example 1: A planar graph is considered as shown in Figure 3.20. Use of Hor-
ton’s algorithm leads to the formation of the following cycle basis:

Ci=1{(1,9,18),(2,3,4), (8,9, 10), (10, 11, 12), (11, 17, 16, 18),
(11, 14, 15,18), (3, 13, 10, 18), (5, 6, 7, 8, 12)}

corresponding to y(C) =29 and y(D) =8 +2 X 16 = 40.
The present algorithm leads to the following cycle basis:

C ={(2,3,4),(1,9,18), (10, 11, 12), (11, 16, 17, 18), (8, 9, 10),
(14, 15,16, 17),(1,3,5,6,7), (5,6, 7, 8, 13)}.

corresponding to y(C) =30 and y(D) =8 +2 x 9 =26.
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18

Fig. 3.20 A planar graph S with b,(S) = 8.

Example 2: A simple graph is considered as shown in Figure 3.21. Use of Hor-
ton’s algorithm leads to the formation of the following cycle basis:

G=1{(1,2,3),(4,5,6),(7,8,9), (10, 11, 12), (1, 14, 4, 13), (2, 15, 5, 14),
4,17,7,16), (5, 18, 8, 17), (7, 20, 10, 19), (8, 21, 11, 2)},

corresponding to y(C) =36 and y(D) =10+ 2 x 19 =48.
The present algorithm leads to the following cycle basis:

C, =1{(1,2,3),(10, 11, 12), (1, 13, 4, 14), (2, 14, 5, 15), (3, 6, 13, 15), (8, 11, 20,
21), (9, 12, 19, 21), (7, 10, 19, 20), (4, 7, 16, 17), (5, 8, 17, 18)},

corresponding to y(C) =38 and y(D) =10+ 2 x 17 =44.

Fig. 3.21 A simple graph S with b,(S) = 10.
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Example 3: A graph model in the form of a 3 X 3 x 1 grid is considered, as shown
in Figure 3.22. Use of Horton’s algorithm leads to the formation of a minimal cy-
cle basis, corresponding to y(C) =132 and y(D) =33 +2 x 100 =233.

Fig. 3.22 A 3 x 3 x 1 cube-type graph with b,(S) = 33.

The cycle basis selected by the present algorithm corresponds to y(C) = 132 and
x(D)=33+2x77=187.

Example 4: In this example, S is the model of a space frame, considered as
b (S)

S = v S;, where a typical S; is depicted in Figure 3.23(a). For S; there are 12

members joining eight corner nodes. The model is shown in Figure 3.23(b), in
which some of the members are omitted for clarity of the diagram. For this graph,
b,(S) = 270.

i i
i £
(a) A typical S((i =1, ..., 27). (b) S with some omitted members.

Fig. 3.23 A space frame S.

Using Horton’s algorithm, 324 three-sided and 108 four-sided cycles are gener-
ated. Higher-length cycles could also be generated; however, since an optimal
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cycle basis for a symmetric graph of Figure 3.23 does not seem to have any such
cycle, higher-length cycles are not selected. The weighted adjacency matrix A* is
formed and, using the present algorithm, a suboptimal cycle basis is generated.
This basis consists of 270 cycles of length 3 corresponding to y(C) = 270 x 3 =
810 and (D) =270 + 2 x 617 = 1504 non-zero entries.

A lower bound can be obtained for o(D) and hence (D). For calculating this
bound every factor should be considered in its optimal condition. In a cycle list, if
a member appears n times, n(n — 1)/2 units will be added to o(D). As an example,
if n = 2, then one unit will be added to o(D), and for n = 3, three units will be
added to o(D).

Consider the graph model of Figure 3.23(a). Using the above argument, o(D) is
obtained as follows:

For this graph, M(S;) = 20, N(S;) = 9 and b,(S;) = 12. If only cycles of length 3 are
included in the selected basis, 12 X 3 = 36 members should be used. From the ex-
isting members, 12 members corresponding to the edges of the cube, each can be
present only in one three-sided cycle, and therefore the remaining overlaps 36 — 29
= 16 should be distributed between 20 — 12 = 8 members. In the best case, for each
member, two overlaps can be allocated, leading to an increase of o(D) by 8 x

33-1) . . . . _
=5— =24 units. The present algorithm leads to a cycle basis with o(D) = 24,

which is an optimal cycle basis.
For this example, a lower bound is calculated as follows:

The selected cycles containing 270 X 3 = 810 members should be formed on 360
members. The repeated members should be from 8§10 — 360 = 450 remaining mem-
bers. Each of the 36 members on the edges of the graph S can be present only in
one 3-sided cycle. Thus 360 — 36 = 324 members will be left on which repetition
can be present. If these members are used twice, then 450 — 324 = 126 members
will be left for which 3 repetitions can be present. Therefore, the minimum value
of o(D) will be:

Min (D) = 324 +[@ —1]x126 =576

Such a bound may or may not be achievable, since the independence of the cycles
should also be satisfied. The present algorithm leads to (D) = 617 which is close
to the ideal condition.
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3.4 CONDITIONING OF THE FLEXIBILITY MATRICES

The use of the digital computer for problems in structural analysis requires the
solution of a large system of algebraic equations of the form

Ax =D, (3-57)

as mentioned at the opening of Chapter 5. This is true for both the force method
and the displacement approach. Sometimes the solution of Eq. (3-57) changes
greatly on small perturbation in the matrix A. Then we say A is ill-conditioned
with respect to this solution. The accuracy of the solution of Eq. (3-57) can be sen-
sitive to the characteristics of the matrix A. Therefore, it is important to study these
characteristics and their interrelationships with the source, propagation and distri-
bution of possible errors. In doing so, better methods of problem formulation must
be found, and techniques for predicting, detecting and minimising solution errors
must be devised. The ill-conditioning of stiffness matrices for the displacement
method of analysis was studied by Shah [197]. In his work, methods were sug-
gested for improving the conditioning of the stiffness matrices. A mathematical
investigation of matrix error analysis is due to Rosanoff and Ginsburg [188]. In
their work, it was shown that numerically unstable equations may arise in physi-
cally stable problems. Thus, the need for routine measurement of matrix
conditioning numbers associated with various patterns of formulation is empha-
sised. The effect of substructuring on the conditioning of stiffness matrices was
investigated by Grooms and Rowe [68], who concluded that substructuring does
not significantly influence the accuracy of solution of ill-conditioned systems.
Filho [52] suggested an orthogonalisation method for the best conditioning of
flexibility and stiffness matrices; however, this is an impractical approach for
multi-member complex structures.

Optimisation of the conditioning of equilibrium equations when an algebraic force
method is employed was studied by Robinson and Haggenmacher [187]. For the
combinatorial force method, studies have been limited to increasing the sparsity of
cycle basis incidence matrices; see Henderson [76] and Goodspeed and Martin
[64] (see also Cassell [21] for a discussion on the latter reference). Recently,
methods have been developed for selecting particular types of statical and kinema-
tical bases, leading to flexibility and stiffness matrices that are better conditioned
than classical ones; see Kaveh [109].

In structural engineering, one of the important sources of ill-conditioning is the use
of members that have widely different stiffnesses (or flexibilities) in a structure.
The application of standard statical or kinematical bases (though optimal) leads to
ill-conditioned structural matrices. In this chapter, methods are developed for gen-
erating special cycle and cutset bases corresponding to statical and kinematical
bases, which provide the best possible conditioning for flexibility and stiffness
matrices, respectively.
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3.4.1 CONDITION NUMBER

In order to measure the conditioning of a matrix, various numbers are defined and
employed in practice; see Kaveh [94,113]. The most commonly used condition
number iS | Apax | / | Admin |, Where A, is the eigenvalue of the largest modulus and
Amin 18 the eigenvalue of the least modulus as defined in the following text:

Eigenvalues and eigenvectors are related to the conditioning of matrices. The ratio
of the extreme eigenvalues of a matrix | Adpay | /| Amin | can be taken as its condition
number. It can easily be shown that the logarithm to the base 10 of this condition
number is roughly proportional to the maximum number of significant figures lost
in inversion or in the solution of simultaneous equations. Thus, the number of
good digits, g, in the solution, is given by

g:p_log(|7\'max|/|}\'mm |):p_PL (3'58)

In this relationship, PL = 10g(|Amax | / | A min |) and p is a number that varies from
machine to machine. For example, the IBM/360 uses approximately 8 digits for
single-precision and 16 digits for double-precision calculations. It should be men-
tioned that the above estimate is conservative, and experience shows that PL is one
digit on the safe side. The importance of this condition number justifies more ex-
planation and a simple numerical example.

Symmetric matrices can be written as a linear combination of rank-one matrices as

A= Avauy, (3-59)
i=1

and AT =D 1/ A4)vu, (3-60)
i=1

with viu, =1 fori=1, ..., n. In the above equations, A, is the ith eigenvalue and v;

is the corresponding eigenvector of A, and u; is the ith eigenvector of A™'. Equa-
tion (3-59) shows that the rank-one matrices of the eigenvectors enter the matrix A
in amount proportional to their respective eigenvalues. The lower mode of A be-
comes weakly represented as the ratio of the extremal eigenvalues becomes large.
Specifically, as a first approximation for each power of 10 in the ratio | Apax | / |
Amin |, the lower mode will lose about 1 decimal digit in a finite computer number
set representation of the matrix. On the other hand, the lower mode of A is the
upper mode of A™', because the coefficients of the linear combination (the eigen-
values) are inverted. Therefore, inverting matrices without some feel for their
conditioning can lead to wrong solutions. Consider a 2 X 2 matrix such as
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_|:1/9 1/10] [0.11111111 0.10000000:|

1/10 1/11 - 0.10000000 0.09090909

The eigenvalues and eigenvectors of A with eight digits are

0.74178794
A, =0.20151896 v, =u, = )

0.67063452

0.67063452
A, =0.0005012437 v, =u, = ,
~0.74178794

leading to Ai/A; = 402.0379 = 10***. From Eq. (3-59), matrix A can be written as

A=vu +Av,u;

0.74178794
=0.20151896 {0.74178794 0.67063452}
0.67063452
0.67063452
+0.0005012437 {0.67063452 —0.74178794}
—0.74178794

~10.11088567  0.10024935 N 0.00022543467 —0.00024935298
0.10024935 0.090633285] |-0.00024935298 0.00027580902

_| 0.11111111  0.099999997
0.099999997  0.090909094 |

In forming this eight-digit approximation to the matrix, the component matrix
A,v,u}, which has three leading zeros in its elements, is truncated to about five
digits. Therefore, an eight-digit representation of the matrix A contains about five
digits of information about the rank-one matrix v,u; .

Similarly, consider A" formed as

Al = (L)vlu} + (%)Vzu‘2

A
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2.7305090 2.4685944 N 897.26951 -992.46859
2.4685944 2.2318030| |-992.46859 1097.7681

900.00002  —990.00000 [ | 900  —990
~990.000000 1099.9999 | |-990 1100 |

Notice that the rank of matrix v,u},, which was only available to about five digits
in the approximation of A, is the largest component of A™'. One should expect that

five digits would be about the most one could obtain by numerically inverting the
approximate matrix.

The true inverse can be obtained using rational number arithmetic, and is shown in
the above equation to the right of the approximation sign. Using eight-digit arith-
metic, the approximate matrix is inverted, yielding

o | 0.11111111  0.10000000 71_ 900.00089  —990.00099
0.10000000 0.09090909 -990.00099  1100.0011 |

The poorest terms in this approximate inverse are the off-diagonal terms, which
have barely six significant digits. For this matrix,

10g 10 [ana | / anin] = log10 402.0379 = 2.604.

Therefore, one should expect the approximate inverse to be limited to 8 — 2.6 = 5.4
good digits. It should be mentioned that for positive definite and symmetric matri-
ces, the calculation of |Ayax | / [Amin| can be carried out by the power method using
Rayleigh’s Quotient. Since a structural matrix A is symmetric and positive defi-
nite, the convergence of the procedure is ensured and the largest eigenvalue A,y of
A can be easily calculated. The largest eigenvalue of A~ provides the smallest
eigenvalue of A. This method becomes especially simple if the inverse of the ma-
trix is obtained as part of the calculation. However, the inversion of A can be
avoided by using the fact that, if the eigenvalues of A are Amin, ..., kmax, then the
eigenvalues of cI — A are ¢ — Amin, ..., ¢ — Amax. Therefore, if constant ¢ is greater
than A, then the largest eigenvalue of cI — A will be ¢ — Ay, This provides a
simple approach for evaluating A;,. Simple computer programs for calculating
Amin and A, of a positive definite matrix are provided in [113].
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3.4.2 WEIGHTED GRAPH AND AN ADMISSIBLE MEMBER

The relative stiffnesses (or flexibilities) of members of a structure can be consid-
ered as positive integers associated with the members of the graph model of a
structure, resulting in a weighted graph.

Let S be the model of a frame structure and k,, denote the stiffness matrix of an
element m; in a global coordinate system selected for the structure. A weight can
be defined for m;,, using the diagonal entries k;; of k,, as

W(m;) =Xk, =2(c, + o +055), (3-61)
EA . 4EI . 12EI
where o, =—, 0y =—- and o; =——.
L L L

A different weight employing the square roots of the diagonal entries of k,, can
also be used:

W(m) =Sk, =20(04)" + ()" + ()] (3-62)

Other weight functions may be defined for representing the relative stiffnesses of
the members of S, as appropriate.

Definition: Let the weight of members m, m,, ..., my) be defined by W(m,),
W(m;), ..., W(myys)), respectively. A member m; is called F-admissible if

L (3-63)

where « is an integer number that can be taken as 2, 3, ... We have used o = 2;
however, a complete study using other values of « is required. If a member is not
F-admissible, it is called inadmissible or S-admissible.

3.4.3 OPTIMALLY CONDITIONED CYCLE BASES

In order to obtain optimally conditioned flexibility matrices, special statical bases,
correspondingly cycle bases possessing particular properties, must be selected.
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A cycle basis is defined as an optimally conditioned cycle basis if

(a) it is an optimal cycle basis, that is, the number of non-zero entries of the corre-
sponding cycle adjacency matrix is minimum, leading to a maximal sparsity of the
flexibility matrix;

(b) the members of greatest weight of S are included in the overlaps of the cycles,
that is, the off-diagonal terms of the corresponding flexibility matrix have the
smallest possible magnitudes.

A weighted graph may have more than one optimal cycle basis. The one satisfying
condition (b) is optimally conditioned. However, if no such cycle basis exists, then
a compromise should be found in satisfying conditions (a) and (b). In other words,
a basis should be selected that partially satisfies both conditions. Since there is no
algorithm for the formation of an optimal cycle basis, one should look only for a
suboptimally conditioned cycle basis.

Example: Consider a 3 X 3 grid as shown in Figure 3.24(a), with the relative
weights of the members being encircled. An optimal cycle basis of S, as shown in
Fig. 3.24(b), contains nine regional cycles (mesh basis) and corresponds to

8
L, = ZL(Ci NCL)=1+1+1+2+2+1+2+2=12-
i=1
The weight of the members contained in the overlaps is determined as

8

/8 =ZW(C"mCM):2+2+1O+12+12+1+3+3=45,
i=l1

where L7 and W7 are the length and weight of the overlaps of the selected cycles,
respectively.

o © o
)

DD D
)

2l o @ OIEOIED;

ol o o o /D@@
o o o

(a) A weighted graph S. (b) An optimal cycle basis of S.
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(c) A suboptimally conditioned cycle basis.

Fig. 3.24 A single-layer rigid-jointed grid S.

A suboptimal cycle basis of § is illustrated in Figure 3.24(c), for which
8
L = ZL(C" NC,,)=1+1+1+2+2+3+4+4=18.
i=1

The weights of the members contained in the overlaps are calculated as
8
W._, = ZW(C’ NC,)=2+2+10+12+12+14+16+16=84.

i=1

i

The weight of the overlaps of the selected cycles is considerably increased at the
expense of some increase in their lengths, and hence some decrease in the sparsity
of their cycle adjacency matrix. Obviously, W7 can be further increased; however,
the decrease in sparsity will significantly influence the optimality of the cycle
basis.

In this structure, the members of weight one are inadmissible according to the defi-

nition of the previous section, since 1< %x% =1.43.

3.4.4 FORMULATION OF THE CONDITIONING PROBLEM

The problem of selecting an optimally conditioned cycle basis can be stated in the
following mathematical form:

b (S)-1 )
Min Y L(C'NC,), (3-64)
i=1
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and

Max ¥ W(C' nC,,), (3-65)

b (S)-1
=1

i

where S is a contracted S as defined in Section 3.3.4 and C' = _L[JIC -
=

As can be seen, the problem is a multi-objective optimisation problem, and the
following algorithms are designed such that both objective functions are partially
satisfied simultaneously.

3.4.5 SUBOPTIMALLY CONDITIONED CYCLE BASES

In this section, three algorithms are developed for the selection of suboptimally
conditioned cycle bases of a weighted graph. On each selected cycle, three or six
SESs are formed, depending on S being a planar or a space frame, respectively.
The condition number of the flexibility matrix corresponding to the selected stati-
cal basis is obtained using the methods of Section 3.2.

Algorithm A

This algorithm uses the chords of a special spanning tree to ensure the independ-
ence of the selected cycles. In order to avoid the inclusion of inadmissible chords
in the intersections of the cycles, such chords are not added to the set of members

to be used for generation of the cycles of S.

Step 1: Select the centre “O” of S with a graph or algebraic graph-theoretical
method.

Step 2: Generate an SRT using the members of highest weights, that is,
2.1 take all members incident with O and assign “1” to the other ends;

2.2 find all members incident with nodes denoted by “1” and order them in
ascending magnitude of their weights;

2.3 select the tree members from the above ordered members, and assign
“2” to the other ends.

Step 3: Repeat Step 2 as many times as needed until all the nodes of S are spanned
and an SRT is formed.
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Step 4: Order the members incident with “1” in ascending magnitude of weight
and use the members of maximal weight as the chord of the first minimal length
cycle. If this chord is an F-admissible one, add it to the list of the tree members,
and denote this list by 7“.

Step 5: Generate the second shortest length cycle on the second maximal weight
member incident with “1” using the members of 7“. Again add the chord to T “ if it
is F-admissible. Continue this process until all chords incident with the nodes la-
belled as “1” are used.

Step 6: Repeat Steps 4 and 5 for all the nodes labelled as “2”. Repeat this process
sequentially for all the nodes labelled as 3, 4, ..., &, until a basis is selected.

This algorithm generates suboptimally conditioned cycle bases, and has the
following advantages compared with the algorithm for generating a fundamental
cycle basis:

(a) Starting node at the centre of S: limits the length of the generated cycles.

(b) Employing the used chords in the formation of cycles: reduces the length of the
selected cycles.

(c) Forbidding the addition of F-inadmissible chords: prevents the inclusion of
weak members in the overlaps of the cycles.

(d) Using members of highest weight in each stage of generating an SRT: leaves
the weaker members as chords, which can be excluded because of inadmissibility.

One can select a spanning tree of maximal weight employing the Greedy Algo-
rithm (see Appendix B) in place of an SRT of maximal weight with respect to the
centre node of S; however, in general, longer cycles will then be selected, corre-
sponding to a cycle adjacency matrix of less sparsity.

An improvement may be achieved by comparison of the centre node (or nodes)
and adjacent nodes to select a node of higher average weight as a starting node.
The average weight of a node is taken as the sum of the weights of the members
incident with n/deg n;. This improvement is due to the inclusion of all the mem-
bers of the root node in 7°.

Example: In the following, a simple grid is considered, and the drawback of using
a spanning tree of maximal weight compared with an SRT of maximal weight
rooted at the centre node O is illustrated; see Figure 3.25. The inadmissible mem-
bers are shown in dashed lines, and the selected trees are illustrated in bold lines.
Use of a spanning tree results in much longer cycles, corresponding to a less
sparse cycle adjacency matrix CC". This in turn leads to a conditioning of G,
which in general is worse than the result obtained by an SRT.
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(a) A basis generated using an SRT. (b) A basis using a spanning tree.

D010

Fig. 3.25 Comparison of two different cycle bases.
Algorithm B

This algorithm is a modified version of the Algorithm 3 presented in Section 3.3.2
for selecting a suboptimal cycle basis of S, in which the relative stiffnesses of the
members are also taken into account.

Step 1: Contract S into S” by replacing all paths with nodes of degree 2 by a single
member. If a path contains an F-inadmissible member, then the replaced member
will also be considered as F-inadmissible.

Step 2: Calculate the IN and CLN of the members of S.

Step 3: Start with a member of the least CLN and generate a minimal weight cycle
C; on this member. The weight of a cycle in this algorithm is taken to be the sum
of the INs of its members.

Step 4: Generate the second admissible cycle of minimal weight C, on the next
member of the least CLN. If C; N C, contains an F-inadmissible member, and C; @
C, does not contain such a member, then exchange C, with C; @ C,; otherwise
take C, as the second cycle of the basis.

Step 5: Subsequently, select the kth admissible smallest weight cycle C; on an un-
used member having the least CLN. If C*' N C, contains an F-inadmissible
member, and C; @ C; does not have such a member, then exchange C; with C; @
C;; otherwise take C; as the kth cycle. In the above relationship C; are the gener-
ated cycles adjacent to C;.

Step 6: The process of Step 5 should be continued as long as the generation of
admissible minimal weight cycles is possible. After a member has been used as
many times as its IN, before each additional usage, increase the IN of such a mem-
ber by unity.
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Step 7: On an unused member of the least length number, generate one admissible
cycle of the smallest weight. This cycle is not a minimal weight cycle, otherwise it
would have been selected at Step 4. Such a cycle is known as a subminimal weight
cycle. Again a process similar to Step 5 should be performed for possible inter-
change of the cycle, and the INs should be updated for each additional usage. Now
Step 6 should be repeated, since the formation of the new subminimal weight cycle
may have altered the admissibility condition of the other cycles, and the selection
of further minimal weight cycles may now have become possible.

Step 8: Repeat Step 7, selecting minimal and subminimal weight cycles with the
process of combining for better conditioning, until 5,(S") = b;(S) cycles are gener-
ated.

Step 9: A process reverse to that of the contraction performed in Step 1 transforms
the selected cycle basis of S” to that of S.

Remark: The idea of exchanging a cycle C; with C, @ C; at Step 5 of the above
algorithm can be generalised to exchanging C; with the ring sum of C; and a linear
combination of other cycles of C*\C.

Alternatively, instead of performing cycle exchange in the process of expansion,
one may use a similar exchange process after the formation of a cycle basis, in
order to increase the weight of the overlaps for the element of the basis to be se-
lected.

The above two types of operations can be collectively performed; however, this
approach requires additional computer time and storage and its use should be justi-
fied.

The algorithm B is implemented on a PC, and the improvements obtained on the
conditioning of the flexibility matrices by using this method are studied through
some examples.

3.4.6 EXAMPLES

Example 1: A three-storey frame is considered, as shown in Figure 3.26. Three
cases are studied using two types of member properties:
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Type 1 4, =0.00106 m* 7, = 0.00000171 m*
Type 2 4, =0.00970 m* 1, = 0.0001961 m*.

4
3 5
8
2 6
9
1 7
X NN X N X X
(a) (b) ()

Fig. 3.26 Three-storey frames with different member properties.

The elastic modulus of the material is taken as £ = 2.1 x 10® kN/m? and all the
members have L = 3 m. Type 1 members are shown in normal lines and type 2
members are illustrated in bold lines.

Algorithm 3 of Section 3.3.2 is applied to these frames, and in all the cases re-
gional cycles are formed as an optimal (minimal) cycle basis. For each cycle, three
SESs are generated, and B; and the corresponding flexibility matrices G are
formed. The condition numbers for these matrices are obtained as 1.971889,
3.611656, and 3.692658 for frame type a, b and c, respectively.

Algorithm B of Section 3.4.5 selected the following cycles as a suboptimally con-
ditioned cycle basis:

For (a) C;=(7,9,1), C;=(4, 5,8,3) and C; = (2, 8, 6, 9).
For (b) C,=(7,9, 1), C, = (4,5, 8,3)and C;= (2, 8, 6,7, 1).
For (¢) C,=(7,9,1), C;=(4,5,8,3) and C; = (2, 8, 6, 7, 1).

The corresponding flexibility matrices have condition numbers as 1.971889,
4.160444, and 3.883811 for frames type a, b and c, respectively.

Example 2: A two-storey frame with three bays is considered, as shown in Figure
3.27. The same member properties are used and three cases are studied. The calcu-
lated condition numbers are obtained as 2.95416, 4.504203 and 4.311532, for type
a, b and c, respectively. Algorithm 3 of Section 3.3.2 is used, and the selected cy-
cle bases are optimal for all three cases.
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(a) (b) (c)
Fig. 3.27 Two-storey frame with different member types.

Algorithm B of Section 3.4.5 is applied, and the selected cycles for each case are
illustrated in Figure 3.28. The corresponding flexibility matrices have the condi-
tion numbers as 2.942885, 3.770917 and 3.742143 for type a, b and c,
respectively.

B P el R (A A
BEE ol |

AN\ AN\ ANNN AN\V AN\ ANNN AN\ AN\ A\\V AN\ AN\ AN\

Fig. 3.28 Selected cycle bases using Algorithm B.

The considerable improvement is due to the formation of suboptimal cycle bases
used in place of optimal cycle bases. It should be noted that these comparisons are
made against the best existing algorithm, since the sparsity itself has a great influ-
ence on the conditioning of flexibility matrices.

3.4.7 FORMATION OF B, AND B; MATRICES

In order to generate the elements of a By matrix, a basic structure of S should be
selected. For this purpose, a spanning forest consisting of NG(S) SRTs is used,
where NG(S) is the number of ground (support) nodes of S. As an example, for S
shown in Figure 3.29(a), two Shortest Route (SR) subtrees are generated; see
Figure 3.29(b).
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(a) (b)
Fig. 3.29 S and two of its SR subtrees.

The orientation assigned to each member of S is from the lower-numbered node to
its higher numbered end. For each SR subtree, the orientation is given in the direc-
tion of its growth from its support node.

MATRIX By: This is a 6M(S) x 6NL(S) matrix, where M(S) and NL(S) are the
numbers of members and loaded nodes of S, respectively. If all the free nodes are
loaded, then

NL(S) = N(S) = NG(S),

where NG(S) is the number of support nodes.

For a member, the internal forces are represented by the components at the lower-
numbered end. Obviously, the components at the other end can be obtained by
considering the equilibrium of the member.

The coefficients of By can be obtained by considering the transformation of each
joint load to the ground node of the corresponding subtree. [B]; for member i and
node j is given by a 6 X 6 submatrix as

1
0
0 0 1 0
0 -Az Ay 1 0 0
Az 0 -Ax 0 1 0
-Ay Ax 0 0 0 1

[B,], =2,

g

) (3-66)

in which Ax, Ay and Az are the differences of the coordinates of node j with respect
to the lower-numbered end of member 7, in the selected global coordinate system,
and o; is the orientation coefficient defined as
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+1 if member is positively oriented in the tree containing /,

o, =1—1 if member is negatively oriented in the tree containing /,

0 if member is not in the tree containing node ;.

The B, matrix can be obtained by assembling the [By]; submatrices as shown
schematically in the following:

_ j _

[B,],

i
i

6M(S) x 6NL(S) (3-67)

MATRIX By: This is a 6M(S) X 6b,(S) matrix, which can be formed using the ele-
ments of a selected cycle basis. For a space structure, six SESs can be formed on
each cycle. Consider C; and take a member of this cycle as its generator. Cut the
generator in the neighbourhood of its beginning node and apply six bi-actions as
illustrated in Figure 3.30.

~<

z

Fig. 3.30 A cycle and the considered bi-action at a cut.

The internal forces under the application of each bi-action are a SES. As for the
matrix By, a submatrix [B,]; of By is a 6 X 6 submatrix, the columns of which show
the internal forces at the lower-numbered end of member i under the application of
six bi-actions at the cut of the generator j,
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1 0o 0 0 o0 O
0 1 0 0 0 0
0 0 1 0 0 0

[B.] ;=8 , (3-68)

0 —-Az Ay 1 0 0
Az 0 —-Ax 0 1 0
Ay Ax 0 0 0 1

in which Ax, Ay and Az are the differences of the coordinates x, y and z of the be-
ginning node of the generator j and the beginning node of the member i. The
orientation coefficient B is defined as

+1 if member i has the same orientation of the cycle generated on j,
B; =1—1 if member i has the reverse orientation of the cycle generated on j,

0 if member is not in the cycle whose generator is ;.

The pattern of B, containing [B,]; submatrices is shown below:

J

6M(S)x6b,(S) (3-69)

Subroutines for the formation of By and B, matrices are included in the program
presented in [113].
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Example 1: A four by four planar frame is considered as shown in Figure 3.31.

7

777

7

u

7

u

77

u

77

u

Fig. 3.31 A four by four planar frame S.

The patterns of B; and BB, formed on the elements of the cycle basis selected by

any of the methods of Section 3.3.4 are depicted in Figure 3.32, corresponding to
x(B1) =241 and x(B;B,) = 388.

(a) Pattern of B;.

(b) Pattern of B;B,.

Fig. 3.32 Patterns of B; and BB, matrices for S.
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Example 2: A one-bay three-storey frame is considered as shown in Figure 3.33.

The patterns of B, and BB, matrices formed on the elements of the cycle basis
selected by any of the graph-theoretical algorithms of Section 3.3.4 are shown in
Figure 3.34, corresponding to x(B;) = 310 and x(B,B,) = 562.

N\
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N\
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i’ 4

7 7

Fig. 3.33 A simple space frame S.
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(2) Pattern of B,. (b) Pattern of BB, .

Fig. 3.34 Patterns of B; and B,B, matrices for S.
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Once By and B, are computed, the remaining steps of the analysis are the same as
those presented in Section 3.2.4. The interested reader may also refer to standard
textbooks such as those of McGuire and Gallagher [163], Przemieniecki [184], or
Pestel and Leckie [176] for further information.

3.5 GENERALISED CYCLE BASES OF A GRAPH

In this section, S is considered to be a connected graph. For Y(S) = aM(S) + bN(S)
+ cy(S), the coefficients b and ¢ are assumed to be integer multiples of the coeffi-
cient a >; 0. Only those coefficients given in Table 2.1 are of interest.

3.5.1 DEFINITIONS

Definition 1: A subgraph S; is called an elementary subgraph if it does not contain
a subgraph S;" € S; with Y(S;") > 0. A connected rigid subgraph T of S containing
all the nodes of S is called a y-tree if Y(T) = 0. For ¥(S;) = b,(S;), a y-tree becomes a
tree in graph theory.

Obviously, a structure whose model is a y-tree is statically determinate when ()
describes the DSI of the structure. The ensuing stress resultants can uniquely be
determined everywhere in the structure by equilibrium only. Examples of y-trees
are shown in Figure 3.35.

[ 1]

(@) AS)=3M-3N+3. (b)YS)=M-2N+3. (c)Y(S)=M-3N+6.

Fig. 3.35 Examples of )-trees.

Notice that AT) = 0 does not guarantee the rigidity of a j~tree. For example, the
graph models depicted in Figure 3.36 both satisfy UT) = 0; however, neither is
rigid.
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(@ YS)=M-2N+3. (b) Y(S)=M - 3N +6.
Fig. 3.36 Structures satisfying AT) = 0 that are not rigid.

Definition 2: A member of S — T is called a y-chord of T. The collection of all
¥-chords of a y-tree is called the y-cotree of S.

Definition 3: A removable subgraph S; of a graph S; is the elementary subgraph
for which 1(S; — S)) = Y(S)), that is, the removal of S; from §; does not alter its DSI.
A y-tree of S containing two chosen nodes, which has no removable subgraph, is
called a y-path between these two nodes.

As an example, the graphs shown in Figure 3.37 are y~paths between the specified
nodes n, and n,.

s t n
" s

@A) =M -N+1). ®O)AUS)=M-2N+3. (c)NS)=M-3N+6.
Fig. 3.37 Examples of y-paths.

Definition 4: A connected rigid subgraph of S with UC;) = @, which has no re-
movable subgraph, is termed a j-cycle of S. The total number of members of Cj,
denoted by L(Cy), is called the length of C;. Examples of y-cycles are shown in
Figure 3.38.
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@US)=a(M-N+1).(b)YS)=M—-2N+3.(c) S)=M-3N+6.
Fig. 3.38 Examples of y-cycles.

Definition 5: Let m; be a j~chord of T. Then T U m; contains a J~cycle C;, which is
defined as a fundamental y-cycle of S with respect to T. Using the Intersection
Theorem of Chapter 2, it can easily be shown that

NTum)=0+(@+2b+c)—(2b+c)=a,

indicating the existence of a j~cycle in T U m;. For a rigid T, the corresponding
fundamental 7~cycle is also rigid, since the addition of an extra member between
the existing nodes of a graph cannot destroy the rigidity. A fundamental j~cycle
can be obtained by omitting all the removable subgraphs of T U m;.

Definition 6: A maximal set of independent y~cycles of S is defined as a general-
ised cycle basis (GCB) of S. A maximal set of independent fundamental y-cycles is
termed a fundamental generalised cycle basis of S. The dimension of such a basis

is given be 1n(S) = US)/a.

As an example, a GCB of a planar truss is illustrated in Figure 3.39.

(a) A planar truss S.
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(b) A generalised cycle basis of S.
Fig. 3.39 A planar truss S, and the elements of a GCB of S.

Definition 7: A generalised cycle basis-member incidence matrix C is an n(S)xM
matrix with entries — 1, 0 and + 1, where ¢; = 1 (or — 1) if y-cycle C; contains posi-
tively (or negatively) oriented member m;, and c¢; = 0 otherwise. The generalised
cycle adjacency matrix is defined as D, which is an 1(S) x n(S) matrix when undi-
rected y~cycles are considered; then the negative entries of C become positive.

3.5.2 MINIMAL AND OPTIMAL GENERALISED CYCLE BASES

A generalised cycle basis C = {C}, C,,...,Cys)} 1s called minimal if it corresponds
to a minimum value of

n(s)

L(C) = Z L(C). (3-70)

Obviously, %(C) = L(C) and a minimal GCB can be defined as a basis that corre-
sponds to minimum % (C). A GCB for which L(C) is near minimum is called a
subminimal GCB of S.

A GCB corresponding to maximal sparsity of the GCB adjacency matrix is called
an optimal GCB of S. If y(CC") does not differ considerably from its minimum
value, then the corresponding basis is termed suboptimal.
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The matrix intersection coefficient 6,(C) of row i of GCB incidence matrix C is
the number of row j such that

(@jel{i+1,i+2,..,n0)},

(b) C; N C; # O, that is, there is at least one & such that the column & of both §-
cycles C; and C; (rows i and j) contains non-zero entries.

Now it can be shown that

ns)-1

2(€CCH=n(®+2 3 g (C). (3-71)

i=l1

This relationship shows the correspondence of a GCB incidence matrix C and that
of its GCB adjacency matrix. In order to minimise x(CC'), the value of
n(s)-1
2 6/(C) should be minimised, since 7(S) is a constant for a given structure S,
i=1

that is, y~cycles with a minimum number of overlaps should be selected.

3.6 FORCE METHOD FOR THE ANALYSIS
OF PIN-JOINTED PLANAR TRUSSES

The methods described in Section 3.5 are applicable to the selection of generalised
cycle bases for different types of skeletal structures. However, the use of these
algorithms for trusses engenders some problems, which are discussed in [1]. In this
section, two methods are developed for selecting suitable GCBs for planar trusses.
In both methods, special graphs are constructed for the original graph model S of a
truss, containing all the connectivity properties required for selecting a suboptimal
GCB of S.

3.6.1 ASSOCIATE GRAPHS FOR SELECTION OF A SUBOPTIMAL GCB

Let S be the model of a planar truss with triangulated panels, as shown in Figure 3.40.
The associate graph of S, denoted by A(S), is a graph whose nodes are in a one-to-one
correspondence with the triangular panels of S, and two nodes of A(S) are connected by
a member if the corresponding panels have a common member in S.

Fig. 3.40 A planar truss S and its associate graph A(S).
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If S has some cut-outs, as shown in Figure 3.41, then its associate graph can still
be formed, provided each cut-out is surrounded by triangulated panels.

For trusses containing adjacent cut-outs, a cut-out with cut-nodes in its boundary,
or any other form violating the above-mentioned condition, extra members can be
added to S. The effect of such members should then be included in the process of
generating its SESs.

Fig. 3.41 S with two cut-outs and its 4(S).
Theorem A: For a fully triangulated truss (except for the exterior boundary), as in Fig-

ure 3.40, the dimension of a statical basis US) is equal to the number of its internal
nodes, which is the same as the first Betti number of its associate graph, that is,

AS) = Ni(S) = by[4(S)]- (3-72)

Proof: Let M" and N’ be the number of members and nodes of A(S), respectively.
By definition,

N =R(S) -1,
and M= M{(S) = M(S) — M(S) = M(S) = N(S) = M(S) — [M(S) — N(S)].
Thus, bi[A(S)]=M~N +1=
M(S) — [N(S) = N(S)] = R(S) + 1 +1=2—R(S) + M(S) — N(S) + N(S).
By Euler’s polyhedron formula, we have
2 — R(S) + M(S) — N(S) = 0.
Therefore,

bi[A(S)] = N(S)
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For trusses that are not fully triangulated, as described in Chapter 2, we have

Y(S) = Ni(S) = M(S).

A Cycle of A(S) and the Corresponding 1~Cycle of S: In Figure 3.42(a) , a trian-
gulated truss and its associate graph, which is a cycle, are shown for which

Y(S) = Ni=1=bi[A(S)].
Since C; of A(S) corresponds to one y-cycle of S, it is called a #ype I cycle, denoted

by C. A cycle of S is shown with continuous lines, and its j~chords are depicted
with dashed lines.

Figure 3.42(b) shows a truss unit with one cut-out. In general, if a cut-out is an m-

polygon, then the completion of the triangulation requires m — 3 members. Instead,
m internal nodes will be created, increasing the DSI by m. Hence, Eq. (3-72) yields

YS) =m—(m—3)=3,

while bi[A(S)] = 1.

7
7
.4

L

L

(a) A type C; cycle. (b) A type Cyy cycle.
Fig. 3.42 Two different types of cycles.

However, in this case, S contains three y-cycles. A y-path P and three }~chords
(dashed lines) are depicted in Figure 3.42(b). Obviously, P U m; (i =1, 2, 3) forms
three y-cycles, which correspond to a cycle of type Cyy of A(S). Thus, two types of
cycles, C; and Cyy, should be recognised in A(S), and an appropriate number of
y-cycles will then be generated.
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Algorithm AA
Step 1: Construct the associate graph A(S) of S.

Step 2: Select a mesh basis of A(S) using an appropriate cycle selection algorithm.
For fully triangulated S, Algorithms 1 to 3 (Section 3.3.2) generate cycle bases
with three-sided elements.

Step 3: Select the j-cycles of S corresponding to the cycles of A(S). One
y-cycle for each cycle of type C; and three j-cycles for each cycle of type Ciy
should be chosen.

Once a GCB is selected, on each y-cycle one SES can easily be formed. Therefore,
a statical basis with localised SESs will be obtained.

Example: Let S be the graph model of a planar truss, as shown in Figure 3.41, for
which y(S) = 11. For A(S), five cycles of length 6 of type C;, and two cycles of
lengths 14 and 18 of type Cyy are selected. Therefore, a total of 5 +3 x2 =11 -
cycles of S is obtained. On each cycle of type Cj, one SES and on each cycle of
type Cyy three SESs are constructed, and a statical basis consisting of localised
SESs is thus obtained.

3.6.2 MINIMAL GCB OF A GRAPH
Theoretically, a minimal GCB of a graph can be found using the Greedy Algo-

rithm developed for matroids. This will be discussed in Appendix B after matroids
have been introduced, and only the algorithm is briefly outlined here.

Consider the graph model of a structure, and select all of its y-cycles. Order the
selected 7y-cycles in ascending order of length. Denote these cycles by a set C.
Then perform the following steps:

Step 1: Choose a y-cycle C; of the smallest length, that is, L(C)) < L(C;) for all C; e C.

Step 2: Select the second j-cycle C, from C — {C,} that is independent of C; and
L(Cy) £ L(C)) for all y-cycles of C— {C}.

Step 3: Subsequently, choose a J~cycle C; from C — {C|, C,, ..., C;} that is inde-
pendent of Cy, C,, ..., Cy; and L(Cy) < (C)) forall C; e C— {Cy, Cs, ..., Ci1}.

After n(S) steps, a minimal GCB will be selected by this process, a proof of which
can be found in Kaveh [113].
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3.6.3 SELECTION OF A SUBMINIMAL GCB: PRACTICAL METHODS

In practice, three main difficulties are encountered in an efficient implementation
of the Greedy Algorithm. These difficulties are briefly mentioned in the following:
1. Selection of some of the J~cycles for some AS) functions

2. Formation of all of the y~cycles of S

3. Checking the independence of y-cycles.

In order to overcome the above difficulties, various methods are developed. The
bases selected by these approaches correspond to very sparse GCB adjacency ma-
trices, although these bases are not always minimal.

Method 1

This is a natural generalisation of the method for finding a fundamental cycle basis
of a graph and consists of the following steps:

Step 1: Select an arbitrary 7-tree of S, and find its y-chords.

Step 2: Add one jchord at a time to the selected y-tree to form fundamental
y-cycles of S with respect to the selected j-tree.

The main advantage of this method is the fact that the independence of y-cycles is
guaranteed by using a y-tree. However, the selected j~cycles are often quite long,
corresponding to highly populated Generalised Cycle Basis (GCB) adjacency ma-
trices.

Method 2

This is an improved version of Method 1, in which a special j~tree has been em-
ployed and each 7~chord is added to 7-tree members after being used for the
formation of a fundamental j-cycle.

Step 1: Select the centre “O” of the given graph. Methods for selecting such a node
will be discussed in Chapter 5.

Step 2: Generate an SR +tree rooted at the selected node O and order its y-chords
according to their distance from O. The distance of a member is taken as the sum
of the shortest paths between its end nodes and O.

Step 3: Form a 7~cycle on the j~chord of the smallest distance number and add the
used y-chord to the tree members, that is, form T U m;.
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Step 4: Form the second y-cycle on the next nearest y-chord to O, by finding a -
path in T U m; (not through m,). Then add the second used J~chord m, to T U m;
obtaining T U m; U m;,

Step 5: Subsequently form the kth j~cycle on the next unused j-chord nearest to O,
by finding a ypath in the T U m; U my U ... U my_; (not through m;). Such a
¥-path together with m;, forms a j~cycle.

Step 6: Repeat Step 5 until 17(S) of y-cycles are selected.

Addition of the used y-chords to the y-tree members leads to a considerable reduc-
tion in the length of the selected y-cycles, while maintaining the simplicity of the
independence check.

In this method, the use of an SRT orders the nodes and members of the graph.
Such an ordering leads to fairly banded member-node incidence matrices. Consid-
ering the columns corresponding to tree members as independent columns, a base
is effectively selected for the cycle matroid of the graph; see Kaveh [94,112].

Method 3

This method uses an expansion process, at each step of which one independent -
cycle is selected and added to the previously selected ones. The independence is
secured using an admissibility condition defined as follows:

A ycycle Cyyy added to the previous selected y-cycles C=CLuCuU..uUCGCis
called admissible if

C*U Cy) =Y(CH +a, (3-73)

where “a” is the coefficient defined in Table 2.1. The method can now be de-
scribed as follows:

Step 1: Select the first y-cycle of minimal length C;.

Step 2: Select the second y-cycle of minimal length C, that is independent of Cj,
that is, select the second admissible j~cycle of minimal length.

Step k: Subsequently, find the kth admissible y~cycle of minimal length. Continue
this process until 7(S) independent j-cycles forming a subminimal GCB are ob-
tained.
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A 7y-cycle of minimal length can be generated on an arbitrary member by adding a
¥-path of minimal length between the two end nodes of the member (not through
the member itself). The main advantage of this method is that of avoiding the for-
mation of all y-cycles of S and also the independence control, which becomes
feasible by graph-theoretical methods.

The above methods are elaborated for specific Y(S) functions in subsequent sec-
tions, and examples are included to illustrate their simplicity and efficiency.

3.7 FORCE METHOD OF ANALYSIS
FOR GENERAL STRUCTURES

Combinatorial methods for the force method of structural analysis have been pre-
sented in previous sections. These methods are very efficient for skeletal structures
and, in particular, for rigid-jointed frames. For a general structure, the underlying
graph or hypergraph of a SES has not yet been properly defined, and much re-
search is still to be done. Algebraic methods, on the other hand, can be formulated
in a more general form to cover different types of structures such as skeletal struc-
tures and finite element models. The main drawbacks of these methods are the
larger storage requirements and the higher number of operations.

These difficulties can be overcome partially by employing combinatorial ap-
proaches within the algebraic methods, whenever such tools are available and their
use can lead to simplifications.

3.7.1 FLEXIBILITY MATRICES OF FINITE ELEMENTS

In this section, the force—displacement relationship is established for a family of
finite elements, namely plane stress and plain strain problems. Triangular and rec-
tangular elements are considered with constant and linearly varying stress fields,
respectively.

Constant Stress Triangular Element: For this element, the nodal forces in a
global coordinate system have six components, as shown in Figure 3.43(a). The
element forces are taken as natural forces acting along the sides of the triangle, as
shown in Figure 3.43(b); see Argyris et al. [6].
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(a) Element forces. (b) Nodal forces.

Fig. 3.43 A triangular element.

The nodal forces and element forces are related by projection as

Ny _112 0 131
hy -, 0 my, F
hyx _ 112 _123 0 Fl (3-74)
Ty my, My 0 F2 ’
By 0 L =1 ’
5] L O My =My, |

where /; and m;; are the direction cosines of the side ij of the triangle.

The element forces are now related to stress resultants; see Figure 3.44. First F is
considered as the only natural force acting on the element and the internal stresses

are calculated as follows:

21
V0, +X3,0, :_t]z K (3-75a)
21,
—V30, +X%,0,, = TE (3-75b)

2
ySIO-y +x310-xy = m12 E (3-75(:)
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Solution of Egs. (3-75) is obtained as follows:

: 2m’ 21
6. =2p o =M ando, =2 (3-76)

Y ih th, ' th,

where

Xy =X —X; ..
i ° for 4,j=1,23.
yij =y[_yj

In the above relations, /5 is the height of the triangle corresponding to corner 3.
Permutation of the indices results in the stresses produced by F, and Fs, and in
matrix form these equations can be collectively written as

OxV3t
[ 3
OxV 3y
(o) y 2
\ \
0,,X
\ \ %11 v 2Bt
I | —— Y 3
\ \
| ~ Oy X311
1
Oy
OxyY
Cuyy, XY 23 ¢
OxyX23¢
Oxy¥o1r
——— 3
| OxyX31,
Oxy)3| ¢
(a) Stress fields. (b) Equivalent nodal forces.

Fig. 3.44 The stress fields and their equivalent nodal forces.
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hy hy h,
o 2| m} n; m; f
i s 77
O_xv 1 2 F;
’ m12ll2 m23[23 m31131
| B hy h,
or c=cF. (3-78)

The matrix ¢ represents statically equivalent stress system due to unit force F.
The flexibility matrix of the element can be written as

F, =[c'oedr. (3-79)

The integration is taken over the volume of the element, where

. 1 —v 0
¢:E -v 1 0 , (3-80)
0 0 2(1+v)

is the matrix relating the stresses to strains, € =@0o , in plane stress problems, and

E and v are the Young's modulus and Poisson’s ratio, respectively. The force—
displacement relationship for a triangular element becomes

u, =1, ry, (3-81)

where u,, and r,, are the element displacements and element forces, respectively.
The flexibility matrix of the element can now be written as

46,.6,.6)  B(®,) B®,)
==l BO)  AG.0.0)  BO) |, ()
‘| B@®) BO,)  A6,.6,.6,)

where t is the thickness of the element, and 4 and B are functions defined as
follows:
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4(6,,6,,6,) = — SN0, i j.k = permutation of 1.2,3),  (3-83a)
‘ sin@, sin6,
B(6;) = cos 6; cot B;— vsin 6; ,(i =1, 2, 3), (3-83b)

where 0, 6; and 6 are the angles of the triangle.

Linear Stress Rectangular Element: For this element, the nodal forces in a
global coordinate system have eight components, as shown in Figure 3.45(a). The
element forces are taken as natural forces along the sides and one diagonal, as
shown in Figure 3.45(b). The nodal forces and element forces are related, similar
to the triangular element, as,

K. -1 -Q 0 0 O
. 0 -pQ -1 0 0 |- -
1y B F;
T, 1 0 0 0 0
£
r, 0 0 0o 0 -1
= F |, (3-84)
Ty, 0 0 0 -1 0 ;
F,
r, 0 0 1 0 O 7
r, 0 Q o0 1 ol "’
7| L0 -BQ 0 0 1]
where: [3:2 and Q= ! .
1+ B2
y
!
F3 £ 3y T4y
| 'Y ba
Fy =5 V> =
Tax T
w, 4» |
Fig ilOie T
A \ \ e g
I3 F
= X
(a) Element forces. (b) Nodal forces.

Fig. 3.45 A rectangular element.
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Considering Figure 3.46, for this element the plane stresses are written as,

O, =¢c tcn
0, =c;+c,g (3-85)

ny = CS

where ¢y, ¢y, ..., cs are constants and,

e

X Y
== and n==—,
a n b

a and b being the length and width of the element, respectively.

4B -v B v -2 -V
\/1+ﬂ2
v 4/B 1-vp* v 2/
\/1+/32
(1 Br-v 1-vg®  1+B*  BEP-v  1-vp? (3-56)
"E| 142 142 B Jlep? p1+p?
2B -V B 4 -v
J1+ B2
-V =2/ 1—v/32 v 4/B

L g
‘Jy i £y
PCs
J P
5

Fig. 3.46 The stress fields and their equivalent nodal forces.
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The unassembled flexibility matrix of the structure can now be formed by using
the above matrix for each element as block diagonal entries. This matrix is incor-
porated in the algebraic force method of the next section.

The element flexibility matrices for other elements, such as constant stress tetrahedron
elements, higher-order plane stress and plane strain elements and triangular and rectan-
gular plate bending elements, can be similarly formulated; see Przemieniecki [184].

3.7.2 ALGEBRAIC METHODS

Consider a discrete or discretised structure .S, which is assumed to be statically
indeterminate. Let r denote the m-dimensional vector of generalised independent
element (member) forces, and p the n-vector of nodal loads. The equilibrium con-
ditions of the structure can then be expressed as

Ar =p, (3-87)

where A is an n X m equilibrium matrix. The structure is assumed to be rigid, and
therefore A has a full rank, that is, t =m — n > 0, and rank A = n.

The member forces can be written as,
r= Bop + B]q, (3'88)

where By is an m X n matrix such that ABy is an n X n identity matrix and B, is an
m X t matrix such that AB; is an n X t zero matrix. B, and B; always exist for a
structure, and in fact many of them can be found for a structure. B is called a self-
stress matrix as well as a null basis matrix. Each column of B, is known as a null
vector. Notice that the null space, null basis and null vectors correspond to com-
plementary solution space, statical basis and SESs, respectively, when S is taken as
a general structure.

Minimisation of the potential energy requires that r minimise the quadratic form,
t
ir'F r, (3-89)

subject to the constraint as in Eq. (3-87). F,, is an m X m block diagonal element
flexibility matrix. Using Eq. (3-88), it can be seen that q must satisfy the following
equation:

(B, F,B))q=-B, F,Bp, (3-90)
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where B| F,B; = G is the overall flexibility matrix of the structure. Computing the

redundant forces q from Eq. (3-43), r can be found using Eq. (3-3). The structure
of G is again important, and its sparsity, bandwidth and conditioning govern the
efficiency of the force method. For the sparsity of G, one can search for a sparse
B, matrix, which is often referred to as the sparse null basis problem.

Many algorithms exist for computing a null basis B; of a matrix A. For the mo-
ment, let A be partitioned so that

AP=[A,, A)], (3-91)

where A; is n X n and non-singular, and P is a permutation matrix that may be re-
quired in order to ensure that A, is non-singular. One can write,

~AT'A
B1=P{ II 2}. (3-92)

By simple multiplication it becomes obvious that
-A'A
AB, =[A, A,] |: II 2:|=0.

A permutation P that yields a non-singular A; matrix can be chosen purely sym-
bolically, but this says nothing about the possible numerical conditioning of A,
and the resulting B;.

In order to control the numerical conditioning, pivoting must be employed. There
are many such methods based on various matrix factorisations, including the
Gauss—Jordan elimination, QR, LU, LQ and Turn-back methods. Some of these
methods are briefly studied in the following text.

Gauss—Jordan Elimination Method: In this approach, one creates an n X n iden-
tity matrix I in the first columns of A by column changes and a sequence of n
pivots. This procedure can be expressed as

GG, ... GGAP=[I,M], (3-93)
where G; is the ith pivot matrix and P is an m X m column permutation matrix (so
P'=P)andIisannxn identity matrix, and M is an n X ¢ matrix. Denoting G,G,_;

... GG by G we have,

GAP=[I, M], (3-94)
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or
AP=G'[I,M]=[G",G'M], (3-95)

which can be regarded as the Gauss—Jordan factorisation of A, and
- [G _ |-M
B,=P |:0:| and B, =P [ ; ] (3-96)

Example 1: The four by four planar frame of Figure 3.31 is reconsidered. The
patterns of B; and BB, formed by the Gauss—Jordan elimination method are de-

picted in Figure 3.47, corresponding to %(B;) = 491 and y(B|B,) =1342.

(a) Pattern of B,. (b) Pattern of B,B, .

Fig. 3.47 Patterns of B, and B,B, matrices for S.

Example 2: The three-storey frame of Figure 3.26 is reconsidered, and the Gauss—
Jordan elimination method is used. The patterns of B; and BB, matrices formed

are shown in Figure 3.48, corresponding to % (B,) = 483 and %(B,;B,) = 1592.
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(a) Pattern of B. (b) Pattern of. BB,

Fig. 3.48 Patterns of B; and BB, matrices for S.

LU Decomposition Method: Using the LU decomposition method, one obtains
the LU factorisation of A as

PA=LUand UP=[U,,U,], (3-97)

P and P are again permutation matrices of order n X n and m x m, respectively.
Now By and B, can be written as

_(u'L'p —[-U;'U
BozP[Ul 0 } and BlzP[ II 2]. (3-98)

Example 1: The four by four planar frame of Figure 3.31 is reconsidered. The
patterns of B; and BB, formed by the LU factorisation method are depicted in
Figure 3.49. The sparsity for the corresponding matrices are y(B;) = 408 and
x(BB,)=1248.
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(a) Pattern of B,. (b) Pattern of B;B,.

Fig. 3.49 Patterns of B; and BB, matrices for S.

Example 2: The three-storey frame of Figure 3.33 is reconsidered, and the LU
factorisation method is used. The patterns of B; and BB, matrices formed are

shown in Figure 3.50, corresponding to ¥(B;) = 504 and y(B,B,) = 1530.

(a) Pattern of B,. (b) Pattern of B/B, .

Fig. 3.50 Patterns of B; and BB, matrices for S.
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QR Decomposition Method: Using a QR factorisation algorithm with column
pivoting yields

AP=Q[R;, Ry, (3-99)

where P is again a permutation matrix and R; is an upper triangular matrix of or-
der n. B, can be obtained as

-R'R
BI:P{ 11 2}. (3-100)

Turn-back LU Decomposition Method: Topgu developed a method, the so-
called Turn-back LU procedure, which is based on LU factorisation and often re-
sults in highly sparse and banded B; matrices. Heath et al. [75] adopted this
method for use with QR factorisation. Owing to the efficiency of this method, a
brief description of their approach will be presented in the following text.

Write the matrix A = (@i, ay, ..., a,) by the columns. A start column is a column
such that the ranks of (ay, ay, ..., ;) and (ay, as, ..., a,) are equal. Equivalently, a;
is a start column if it is linearly dependent on lower-numbered columns. The coef-
ficients of this linear dependency give a null vector whose highest numbered non-
zero is in positions. It is easy to see that the number of start columns is m — n =t,
the dimension of the null space of A.

The start column can be found by performing a QR factorisation of A, using or-
thogonal transformations to annihilate the subdiagonal non-zeros. Suppose that in
carrying out the QR factorisation we do not perform column interchanges but sim-
ply skip over any columns that are already zero on and below the diagonal. The
result will then be a factorisation of the form

A=Q

’ 1]

(3-101)

The start columns are those columns where the upper triangular structure jogs to
the right, that is, a, is a start column if the highest non-zero position in column s of
R is no larger than the highest non-zero position in earlier columns of R.

The Turn-back method finds one null vector for each start column a,, by “turning
back” from column s to find the smallest k for which columns a;, as i, ..., a, are
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linearly dependent. The null vector has a non-zero only in position s — k through s.
Thus, if &k is small for most of the start columns, then the null basis will have a
small profile. Notice that the turn-back operates on A, and not on R. The initial
QR factorisation of A is used only to determine the start columns and then dis-
carded.

The null vector that the Turn-back method finds from start column ag may not be
non-zero in position s. Therefore, this method needs to have some way to guaran-
tee that its null vectors are linearly independent. This can be accomplished by
forbidding the left-most column of the dependency for each null vector from par-
ticipating in any later dependencies. Thus, if the null vector for start column g, has
its first non-zero in position s — &, every null vector for a start column to the right
of a, will be zero in position s — k.

Although the term “Turn-back™ is introduced in [219], the basic idea had also been
used in [22,94]. Since this correspondence simplifies the understanding of the
Turn-back method, it is briefly described in the following.

For the Algorithm 1 of Section 3.3.2, the use of an SRT orders the nodes and
members of the graph simultaneously, resulting in a fairly banded member-node
incidence matrix B. Considering the columns of B corresponding to tree members
as independent columns, effectively a cycle is formed on each ordered chord (start
column) by turning back in B and establishing a minimal dependency, using the
tree members and previously used chords. The cycle basis selected by this process
forms a base for the cycle matroid of the graph, as described in Kaveh [94,112].
Therefore, the idea used in Algorithm 1 and its generalisation for the formation of
a GCB in [94,98,113] seem to constitute an idea similar to that of the algebraic
Turn-back method.

Example 1: The four by four planar frame of Figure 3.31 is reconsidered. The
patterns of B; and BB, formed by the Turn-back LU factorisation method are

depicted in Figure 3.51, corresponding to x(B,) = 240 and x( B,B,) = 408.

Example 2: The three-storey frame of Figure 3.33 is reconsidered, and the Turn-back
LU factorisation method is used. The patterns of B; and BB, matrices formed are

shown in Figure 3.52, corresponding to y(B) =476 and y( B{B,) = 984.

A comparative study of various force methods has been made in [119].

Many algorithms have been developed for the selection of null bases, and the in-
terested reader may refer to [28,29,179,181].
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(a) Pattern of B;. (b) Pattern of B;B,.

Fig. 3.51 Patterns of B; and BB, matrices for S.
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(a) Pattern of B;. (b) Pattern of B,B,.

Fig. 3.52 Patterns of B; and BB, matrices for S.



OPTIMAL FORCE METHOD OF STRUCTURAL ANALYSIS 139

EXERCISES

3.1  For each set of integers a, b and ¢ of Table 2.1, draw an arbitrary j~tree and
a y-cycle.

3.2 Construct a y-tree for the following graph when it is viewed as the graph
model of a planar truss:

3.3 In Exercise 4.2, select a fundamental 7~cycle basis of S and form its y~cycle
adjacency matrix.

3.4  Find a graph for which Algorithm 3 fails to select a minimal cycle basis.
Repeat this exercise for Algorithm 2.

3.5 Form By and B; matrices by selecting a suitable SRT and cycle basis for the
following planar frame:

10kN —»

S
=]

20 kN —p

3

7777 7777

F—4m—t— 4m g

3.6  Form By and B, for the planar truss of Exercise 3.2, when it is supported in
a statically determinate fashion. Choose the support nodes arbitrarily.
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3.7  Perform a complete analysis for the following planar truss using the force
method. E4 = Constant:

P 2P

= =~

3.8  Perform a complete force method analysis for the following continuous
beam:

| L 7 L 7

3.9  Prove the minimality of the cycle basis selected by Horton's algorithm.
3.10 Why do the regional cycles of a planar graph form a cycle basis (mesh basis)?
3.11 Use Algorithms A, B and C to find suboptimally conditioned cycle bases

for the following weighted graphs. The numbers 1 and 2 show the member types
as given in Section 3.4.

2 2 2
1 1
2 1 2| 1 L2
2 1 o, |2 2|, | 5 2
2 1 2 2 ) 5 5
7777 7777 7777 7777 7777 7777 7777
(a) (b)

3.12  Write a computer program to calculate the largest and the smallest eigen-
values for adjacency matrices of graphs.



CHAPTER 4

Optimal Displacement Method
of Structural Analysis

4.1 INTRODUCTION

In this chapter, the principles introduced in Chapter 1 are used for the formulation
of the general displacement method of structural analysis. Computational aspects
are discussed, and many worked examples are included to illustrate the concepts
and principles being used. In order to show the generality of the methods intro-
duced for the formation of the element stiffness matrices, the stiffness matrix of a
simple finite element is also derived.

Special attention is paid to the graph theory aspects of the displacement method for
rigid-jointed structures, where the pattern equivalence of structural and graph theory
matrices is used. The standard displacement method employs cocycle bases of struc-
tural graph models; however, for general solutions, a cutset basis of the model should
be employed. This becomes vital when solutions leading to well-conditioned stiffness
matrices are required. Methods for the selection of such cutset bases are described in
this chapter.

In the last half century, considerable progress has been made in the matrix analysis
of structures; see for example, Argyris and Kelsey [6], Kardestuncer [93], Livesley
[153], McGuire and Gallagher [163], Meek [164], Prezmieniecki [183], Vanderbilt
[222], Ziegler [234] and Zienkiewicz [235]. The topic has been generalised to fi-
nite elements and extended to the stability and dynamic analysis of structures. This
progress is due to the simplicity, modularity and flexibility of matrix methods.

Optimal Structural Analysis A. Kaveh
© 2006 Research Studies Press Limited
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4.2 FORMULATION

In this section, a matrix formulation using the basic tools of structural analysis —
equilibrium of forces, compatibility of displacements and force—displacement
relationships — is provided. The notations are chosen from those most often en-
countered in structural mechanics.

4.2.1 COORDINATE SYSTEMS TRANSFORMATION

Consider a structure S with M members and N nodes, each node having o degrees
of freedom (DOF). The kinematic indeterminacy (DKI) of S may then be deter-
mined as

nS)=aN-p, (4-1)

where B is the number of constraints due to the support conditions. As an example,
n(S) for the planar truss S depicted in Figure 4.1(a) is given by n(S) =7 x2 -3 =
11; for the plane frame illustrated in Figure 4.1(b), it is calculated as n(S) =8 x 3 —
4 x 3 = 12; and for the space frame shown in Figure 4.1(c), it is calculated as
niS)=12x6-6x6=36.

6 6 6
2 2 2 3 3 3 3 6 6 6
ok [ok o
ol o] o] o L
07 0 0
7777
(a) A planar truss. (b) A planar frame. (c) A space frame.

Fig. 4.1 The degrees of freedom of the joints for three structures.

One can also calculate n(S) by simple addition of the DOF of the joints of the
structure, that is, for the truss S, N(S)=2+2+2+2+ 2+ 1 = 11; for the planar
frame, 7(S) =4 % 3 = 12; and for the space frame, 1n(S) = 6 x 6 = 36.

For a structure, the stiffness matrices of the elements should be prepared in a sin-
gle coordinate system known as the global coordinate system in order to be able to
perform the assembling process. However, the stiffness matrices of individual
members are usually written first in coordinate systems attached to the members,
known as local coordinate systems. Therefore a transformation is needed before
the assembling process. Typical local and global coordinate systems are illustrated
in Figure 4.2.
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i

=1

VAN

Fig. 4.2 Local X,y system and global coordinate x, y system.

A global coordinate system can be selected arbitrarily; however, it may be advan-
tageous to select this system such that the structure falls in the first quadrant of the
plane in order to have positive coordinates for the nodes of the structure. On the
other hand, a local coordinate system of a member is so chosen that it has one of
its axes along the member and the second axis lies in its plane of symmetry (if it
has one) and the third axis is chosen such that it results in a right-handed coordi-
nate system.

The transformation from a local coordinate system to a global coordinate system
can be performed as illustrated in Figure 4.3, in which x, y, z is the global system
and x,, 1, 25, often denoted by xyz , is the local system.

For rotation about the y-axis, the relation between xi, y;, z; and x, y, z can be ex-
pressed as follows:

X, cosae 0 sino || x
»|=| O 1 0 y|. 4-2)
z, —-sinae 0 cosa ||z
y y
N Y1
BN P
N
N\ B yd
N e
el -
_ Ja =X ~ - \\\\
//a S~ ZZZA/ ‘3 Sl
-~ -~ 1 X1
21 X1

(a) (b)
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(c) (d)

Fig. 4.3 Transformation from local coordinate system to global coordinate system.

Similarly, for rotation about the z;-axis, x,, y», z, and x;, 1, z; are related by

X, cosff sinfi 0] x
Y, |=[-sinfB cosB O y |, (4-3)
z, 0 0 1|z

and, for rotation about the x,-axis, x3, y3, z3 and x,, ,, z, are related as follows:

X, 1 0 0 || x
»; =0 cosy siny||y,]|- (4-4)
z, 0 —siny cosyl||z,

Combining the above transformations we have

(cosacos B) (sin B) (cos Bsina)
T =|—(sinasiny +cosasin fcosy) (cosfBcosy) (sinycosa—sinasin fcosy) |.
—(sinocosy —cosasin Bsiny) (—cosBsiny) (cosacosy+sinosin siny)
(4-5)

where v [=[T] | ¥ | (4-6)
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The representations of a vector in the local coordinate system I'and the global
coordinate system I" are related as follows:

r=Tr. 4-7)
It can easily be proved that T is an orthogonal matrix, that is,
—1
[T]" =[] (4-8)

In the above transformation, ¥ represents the tilt of the member, which is quite
often zero. Thus, T can be simplified as

cosarcos B sinfB sinocos B
T=|-cosasinf3 cosf —sinosinf |, (4-9)
—sina 0 coso

and for the two-dimensional case and “o equal to zero”, T reduces to

| cosB  sinf
T_|:—sin[3 cosﬂ]' (4-10)

Equation (4-9) can easily be written in terms of the coordinates of the two ends of
a vector. Considering Figure 4.3(b) and using simple trigonometry, Eq. (4-9)
becomes

x; /L ylL z, /L

T=|-x,y,/L*L L*/L y,z,/L*L]|, 4-11)
—z,/L* 0 x,/L*
where
Xji= Xj— Xi Vi=Yj= Vi Zi=2zj= 2z
L*=(22 +x3) and L=(23+y% +x2)". (4-12)

Notice that T transforms a three-dimensional vector from a global to a local coor-
dinate system and T' performs the reverse transformation. However, if the element
forces or element displacements (distortions) consist of p vectors, the block diago-
nal matrix with p submatrices should be used. As an example, for a beam element
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of a space frame with each node having 6 DOF, the transformation matrix is a
12 x 12 matrix of the form

T= . (4-13)

T

4.2.2 ELEMENT STIFFNESS MATRIX USING UNIT DISPLACEMENT METHOD

Consider a general element, as shown in Figure 4.4, with n member forces,

= {rnr..r (4-14)
and n member displacements,
w, = {u u ... u,}. (4-15)

o, U
I3, U3

Tny Un

Fig. 4.4 A general element with its nodal loads and nodal displacements.

A typical force component 7; can be found by using the unit displacement method
to be

r =[] &oar, (4-16)

where & represents the matrix of compatible strains due to a unit displacement in

the direction of r;, and ¢ is the exact stress matrix due to the applied forces r,,. The
unit displacements can be used in turn for all the points where member forces are
applied, and therefore,
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where

For a linear system the total strain,

can be expressed as

e =bu,

v, = [[[ e'oar,

E=1£ E,..8}.

— t
€= {exx eyy ezz exy eyz exz} >

where b is the exact strain due to the unit displacement u.

The stress—strain relationship can be written as

where:

E
X

Substituting in Eq. (4-17) we have

or

T drvyi-2v)

rm = kmum ]

r, = J.HV? rbdV u,,

o =ybu,
[1-v v
1-v 0
v 1-v
1-2v
= 0 0
1-2v
0 0 =5 0
0 o L

(4-17)

(4-18)

(4-19)

(4-20)

(4-21)

(4-22)

(4-23)

(4-24)
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where
Kk, = jJJVé‘xde, (4-25)

represents the element stiffness matrix.

The evaluation of matrix b, representing the exact strain distributions, can often be
difficult, if not impossible. Hence, in case there is no exact distribution, an ap-
proximate relationship may be used. Usually, matrix b is selected such that it
satisfies at least the equations of compatibility. Denoting this approximate matrix

by € and using £ =b, we have
k, = [[],6'xbav. (4-26)

This equation will be used for the derivation of the stiffness matrices of a finite
element in Section 4.5.1.

As an example, consider the prismatic bar element shown in its local coordinate
system in Figure 4.5. According to the definition of such an element, only axial
forces are present.

y
A
- rg, Ug
L T
i J

z
Fig. 4.5 A bar element in its local coordinate system.

From the theory of elasticity, the axial strain is expressed as

Ju
==, 4-27
€ . (4-27)

The displacement u, along the longitudinal axis of the bar can be expressed as

u =Ax+4,. (4-28)
X 1 2



OPTIMAL DISPLACEMENT METHOD OF STRUCTURAL ANALYSIS 149

From the boundary conditions,

u, =u, atx=0,and u =u, at x=L. (4-29)

Hence,

4= ”4;”' and A, =i . (4-30)

u, = 7 X+, (4-31)
Now axial strain can be evaluated as follows:
du, 1 1 u,
e . =—=—W,—u)=—|-1 +1 . 4-32
w == )= ]H (4-32)
The above strain distribution is exact, and
- 1
b=b=—[-1 +1]. (4-33)
L
Since a bar element is one dimensional, ¥ is a 1 X 1 matrix defined as
x=FE. (4-34)
Substituting in Eq. (4-26), we have
t1|-1E
k =| — —|-1 1|Adx, 4-35
w=l, L[ | ] AR (4-33)
and
E4al 1 | -1
—_ — . 4_
K, =~ [_1 - ] (4-36)

This method will also be used for the derivation of the finite element stiffness ma-
trices in subsequent sections.
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4.2.3 ELEMENT STIFFNESS MATRIX USING CASTIGLIANO’S THEOREM

In this section, a different approach, using Castigliano’s theorem, is described for
the formation of element stiffness matrices. Consider a general element as shown
in Figure 4.4. Suppose that loads are applied at certain points (specified as nodes)
1, 2, ..., n. Let v; be the displacement of node i along the applied load p;. The loads
are applied in a pseudo-static manner, increasing gradually from zero. Assuming a

linear behaviour, the work done by an external force p = {pi, p2, ..., p,} through
the displacement v = {v|, v, ..., v,} can be written as

1
W :E(PIVI +pv,+..tpv,). (4-37)

According to the principle of conservation of energy,
w=U, (4-38)

and therefore
1
U =5(plvI +p,v,+..+pv). (4-39)

If a small variation is now given to v; while keeping the other displacement com-
ponents constant, then the variation of v with respect to v; can be written as

[p, +=— +a—v2 +...+a—v ]. (4-40)
av, v,

According to Castigliano’s theorem,

U

oY _ 4-41
o, 2 (4-41)

Thus,

J J b
2, :[a%vl +a%v2 +...+%vn], (4-42)

i

or in a matrix form for all i =1, ..., n, we have
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P 9 P
I I |- A
p v
S R
.2 _ dv, dv, av, .2 . (4-43)
v
il ERE Al
9V, OV, v, |

According to definition, the above coefficient matrix forms the stiffness matrix of
the elastic body defined by its n nodes as illustrated in Figure 4.4.

A typical element of the stiffness matrix k; is given by

dp;
;= 4-44
T (4-44)
Using Castigliano’s first theorem,
2
k=2 Yy= U (4-45)
v, dv;” Iy,
Similarly,
2
0= % = a_U (4-46)
Toodv, vy,

Since the order of differentiation should not affect the result of our problems, we
have

ki = kji, (4-47)

which is a proof of the symmetry of the stiffness matrices both for a structure and
for an element.

As an example, consider the prismatic bar element as shown in its local coordinate
system in Figure 4.5. According to the definition of such an element, only axial
forces are present.
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The strain energy of this bar can be calculated as follows:

XX xx

U= %MG e, dxdydz = gmez dxdy dz = %Jeix dx. (4-48)

On the other hand,
e, =2 (4-49)

Using Eq. (4-31) and by substituting in Eq. (4-46), the strain energy of the bar is
calculated as

U =E—f[1742 —2u,u, +z712]. (4-50)
Hence
— 09U EA
kn 92 ="
u, L
— ’U EA
k14:k4| S T (4-51)
du,du,, L
2
ky =aTL2[=E, and
ou, L

l?,.j =0 for all other components.

Therefore, the stiffness matrix of a bar element in the selected local coordinate
system is obtained, and

J
1
J
1
|

A 1 0 o0[-1 0 0]z
7 0 00[0 0 0|
R|_EA|0 0 0|0 0 0|z (452
Al L|-1 001 0 ofz
7 0 00[0 0 0,
7 | 0 0 0[0 0 0]
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4.2.4 STIFFNESS MATRIX OF A STRUCTURE

Let p and v represent the joint loads and joint displacements of a structure. Then
the force—displacement relationship for the structure can be expressed as

p=Kv, (4-53)

where K is an aN X alN symmetric matrix, known as the stiffness matrix of the
structure. Expanding the ith equation of the above system, the force p; can be ex-
pressed in terms of the displacements {vi, vy, ..., Voy} as

pi= K“Vl + K,-2V2 +... .+ KiaN Van- (4-54)
A typical coefficient K; is the value of the force p; required to be applied at the ith
component of the structure in order to produce a displacement v; = 1 at j and zero
displacements at all the other components.
The member forces r can be related to nodal forces p by

p =Br. (4-55)

Using the contragradient relationship, the joint displacements v can be related to
member distortions u by

u=B'v. (4-56)
For each individual member of the structure, the member forces can be related to
member distortions by an element stiffness matrix k,. A block diagonal matrix
containing these element stiffness matrices is known as the unassembled stiffness

matrix of the structure, denoted by k. Obviously,

r = ku. (4-57)
This equation together with Eqs (4-55) and (4-56) yields

p = BKkB'v. (4-58)
Therefore,
K = BkB' (4-59)

is obtained. The matrix K is singular since the boundary conditions of the structure
are not yet applied. For an appropriately supported structure, the deletion of the
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rows and columns of K corresponding to the support constraints results in a posi-
tive definite matrix, known as the reduced stiffness matrix of the structure.

A symmetric matrix S is called positive definite if x'Sx > 0 for every non-zero vec-
tor x. As shown earlier, the stiffness matrix K of a structure is symmetric. This
matrix is also positive definite since

p'v=(Kv)v=vK'v=vKv=2W (4-60)
and W is always positive.

Let us illustrate the stiffness method by means of a simple example. Consider a
fixed end beam with a load P applied at its mid-span. This beam is discretised as
two beam elements, as shown in Figure 4.6(a), with two DOF for each node (axial
deformation is ignored for simplicity). The components of element forces and ele-
ment distortions are depicted in Figure 4.6(b) and those of the entire structure are
illustrated in Figure 4.6(c).

P
1 4 @ i @ R 3
1 2 R
1 L 1 L %
(a) A fixed ended beam S.
1,U Ta,Us  Fe,Us g, Ug

5 O T N6 B

! Pl !

r,u r3,u3  Fs,Us r7,U7

(b) Member forces and member distortions.

P22 DP4sVa Pe>Ve

Dy @y

! ! !

P11 P3V3 Ps>Vs

(¢) Nodal forces and nodal displacements of the entire structure.

Fig. 4.6 Illustration of the analysis of a simple structure.
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For each element such as element 1, the stiffness matrix can be written as

h k,,
nh_ ky,
i ks,
i ky

and for the entire structure we have

P K, K,
P Ky Ky
ps|_ Ky Ky
Dy K, K,
Ps K K
| Ps | _K61 K,

e I
PP A

lelialalis!

~ A

&PT‘ t:??‘ §~“ GPT‘

> N X %

e
=

> >

o
£ 8T 82

N xR RN

o
a

16

N N Ox

'
=N

~ N

=N
=N

(4-61)

(4-62)

Element stiffness matrices k; and k, can be easily constructed using the definition
of k;. For a beam element, ignoring its axial deformation, these terms are shown in

Figure 4.7.

ka1

ki ks
k43
k3 N

Fig. 4.7 Stiffness coefficients of a beam element ignoring its axial deformation.

The structure has a uniform cross section, and both elements have the same length.
Therefore, using the force—displacement relationship from Chapter 1,
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6/ -3/L|-6/I" -3/L
-3/L 2 3/L 1
k, =k, = 28 . . (4-63)
L |-6/L" 3/L | 6/L 3/L
-3/L 1 3/L 2
The unassembled stiffness matrix is an 8 X 8 matrix of the form
k, 0
k= . (4-64)
0 Kk,
Now, consider the equilibrium of the joints of the structure, resulting in
P1=r,p2=r,p3=r3trs,
DPa=T14t s, Ps =17, D= 13 (4-65)
or in a matrix form we have,
]
—pl 1N 1| = 2
P 1 n
A D R |
b _ 4 , (4-66)
p4 . . . 1 . 1 . . ”‘5
Ps ) 1 Ts
LPs] L ]| 7
L's |
and more compactly,
p = Br, (4-67)
where
1 .
1
1 -1
B= R
1 -1
1
1

is known as the equilibrium matrix.
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Consider now the compatibility of displacements:
U=V, U= Vy, U3= Us= V3,
Ug = U = V4, U7 = Vs, Ug = V.

In a matrix form, we have

w1 [ q
u, 1 (v, ]
u, 1 Vv,
u, | 1 vy
us B 1 v, |
U 1 Vs
u, 1 Ve

41 L 1]

and in compact form we have

u=Ev=Bv.
where
g -
1
1
E= ! R
1
1
1
L 1_

is known as the compatibility matrix.

(4-68)

(4-69)

(4-70)

The reason for the matrix E being the transpose of the matrix B has already been
discussed in Chapter 3; however, by using the principle of virtual work, a simple

proof can be obtained. Consider

W = work done by external loads =%vtp ,
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. 1
U = strain energy = Eu‘r .

Then, equating ¥ and U, we have E = B', which completes the proof. It should be
mentioned that this equality holds for a general structure, and it is the result of the
contragradient relationship introduced in Chapter 1.

The stiffness matrix of the entire structure is then obtained as

[ 6/1> —3/L -6/I) =3/L 0 0
-3/L 2 3/L 1 0 0
K@:Zﬁz -6/1* 3/L 12/ 0 -6/ -3/L . @71
L|-3/L 1 0 4 3/L 1
0 0 -6/ 3/L 6/ 3/L
| 0 0 -3/L 1 3/L 2|

By applying the boundary conditions,

ViI= 1 =vs=Vs=0,

and deleting the displacements, the following reduced stiffness matrix is formed.

3 /I V3
M R ! )

_pl  -PC
24FE1 24EI

Since p,=0and p, =—P, v,

4.2.5 STIFFNESS MATRIX OF A STRUCTURE: AN ALGORITHMIC APPROACH

From the above simple example, it can be seen that matrix B is a very sparse
Boolean matrix, and the direct formation of BKB' using matrix multiplication re-
quires a considerable amount of storage. In the following, it is shown that one can
form BKB' with an assembling process (known also as planting), as follows:

Consider an element “a” of a structure, as shown in Figure 4.8, for which the ele-
ment stiffness matrix can be written as

kii ki/'
k=i e | (4-73)
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where i and j are the two end nodes of member a. Pre- and post-multiplication in
the form of BKB' has the following effect on k,:

—

J

0 0] 0 0
00 00
00| 00|
1 of ki ky’|:00010000:|_10000kii0ky'00
0 0flk; k|0 00001 00/7000000k; 0k 00
01 01
00 00
0 0] 0 0]

(4-74)
fo oo 0o 0 0 00
20000 0 0 0 00 8 6
30 00 0 0 0 00 (a)
_4[00 0 k; 0 k; 00 ; 5 A
5000 0 0 0 00
6/0 0 0 k; 0 Kk, 00 3 5 |
70 00 0 0 0 00 7777 7777
80 00 0 0 0 0 0

Fig. 4.8 A structural model S.

The adjacency matrix of S is also an 8 X 8 matrix, and the effect of node 4 being
adjacent to node 6 is the existence of unit entries in the same locations as the sub-
matrices of the element “a”. One can build up the adjacency matrix of a graph by
the addition of the effect of one member at a time. In the same way, one can also
form the overall stiffness matrix of the structure by the addition of the contribution
of every member in succession. As an example, for the graph shown in Figure 4.8,
the overall stiffness matrix has the following pattern:
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- (4-75)

0 3 N W bW N~
—
J—

L B

Non-zero entries are shown as “1”. For a stiffness matrix, each of these non-zero
entries is an 1 X 1 submatrix, where 77 is the DOF of each node of the structure.
For example, for a planar truss, 7 = 2, and for a space frame, 17 = 6. The formation
of the stiffness matrix by the above process is known as the assembling or planting
of the stiffness matrix of a structure.

4.3 TRANSFORMATION OF STIFFNESS MATRICES

Methods for the formation of element stiffness matrices have been presented in
Section 4.2. In the following, the stiffness matrices for bar and beam elements are
transformed to global coordinate systems using the transformation described in
Section 4.2.1.

From Eq. (4-7), we have

¥="Tr, (4-76)

=|

=Tu. (4-77)
From the definition of an element stiffness matrix in a local coordinate system,

r =ku (4-78)
By the substitution of Eqs (4-76) and (4-77) into the above equation, we have

r =T 'kTu =T'kTu. (4-79)
By definition of a stiffness matrix in a global coordinate system, we have

r = ku. (4-80)
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A comparison of Eq. (4-79) and Eq. (4-80) results in
k = T'KT. (4-81)
4.3.1 STIFFNESS MATRIX OF A BAR ELEMENT

Equation (4-52) provides the stiffness matrix of a bar element in its local coordi-
nate system. This matrix in the global system, as shown in Figure 4.9, can be
written as

(4-82)
Fig. 4.9 A bar element of a space truss.
Denoting T in Eq. (4-32) by
L, T, T,
T=\1,, T, T;|, (4-83)
L T, Ty
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Kk, can be written as

Tﬁ Tnle T11T13 _Tﬁ _Tnle

1T,
Tule Té leTB _Tule _Té leTn
K :E_A T, Ti; 1,1} T{i -T,, T4 1,1} _T{i (4-84)
L _Iﬁ _TuTIz _T11Tl3 TIT Tllle TllTl3

_T11T12 _T;; _leﬂs T11T12 T;g T127;3
__7111713 _T12Tl3 _TE I.1

The entries of the above matrix can be found using the T}; from Eq. (4.11). As an

example, the stiffness matrix of bar 1 in the planar truss shown in Figure 4.10 can
be obtained as

T a1 1 _\2
1

1 (x122+y122+2122)% \/E 2’

_ Yo __ 1 ﬁ
>

L ——2

Fig. 4.10 A planar truss and the selected global coordinate system.

Therefore,

0.5 -05]-05 05
EA|-05 05|05 -05
2105 05 ] 05 -05]
05 —0.5 ‘ -0.5 05
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4.3.2 STIFFNESS MATRIX OF A BEAM ELEMENT

Consider a prismatic beam element as shown in Figure 4.11. The element forces
and element distortions are defined by the following vectors:

— t
r :{FH 1y Bys ey ’iz} P
and

U= {uy, Uy, Uy, oy Uy}

where r| to ry are the force components at end i and 74 to r¢ are moment compo-
nents at end i. Also r to ry are the force and 7 to ry, are the moment components,
respectively, at the end j, and u; (i = 1, ..., 12) are correspondingly the translations
and rotations at the ends i and j of the element.

Using one of the methods presented in Section 4.2.2, the stiffness matrix of the
beam element, in the local coordinate system defined in Figure 4.11, can be ob-
tained from Eq. (4-83) as

4 0 0 0 0 0 -4 0 0 0 0 0
2 2
0 121,/L 0 0 0 61,/L 0 0 —121, /L 0 0 1,/L
2 2
—( / — —(
0 0 121, /L 0 61, /L 0 0 0 121, /L 0 61, /L 0
0 0 0 J12(14v) 0 0 0 0 0 —J/2(0+v) 0 0
0 0 61, /1 0 41, 0 0 0 61, /1 0 21, 0
_ Elo0 e/t 0 0 0 41, 0 -6I,/L 0 0 0 21
k:Z -4 0 0 0 0 0 4 0 0 0 0 0
0 71212/L2 0 0 0 —6I./L 0 IZIV/LZ 0 0 0 -6 /L
2 2
0 121, /L 0 61, /L 0 0 0 121,/ L 0 61, /L 0
0 0 0 —J/2(1+v) 0 0 0 0 J/2(14v) 0 0
0 0 61, /1L 0 21, 0 0 0 61, /L 0 41, 0
\_ 0 61 /L 0 0 0 a0 -6 /L 0 0 0 41, j

In this matrix, /,, , and J are the moments of inertia with respect to the y and z

axes, and J is the polar moment of inertia of the section. £ specifies the elastic
modulus and v is the Poisson ratio. L denotes the length of the beam.

(4-85)
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<|

Y
=

z
Fig. 4.11 A beam element in the local coordinate system.

For the two-dimensional case, the columns and rows corresponding to the third
dimension can easily be deleted to obtain the stiffness matrix of an element of a
planar frame.

The stiffness matrix in a global coordinate system can be written as

t

T T

k= [k] . (4-86)

k=[T J[E] [T T]. (4-87)

The entries of k are as follows:
_ 72 2 .,z
k 1= 7;1&1 + 7-'21a4
z _ 72 2 .,z
k 21: T;lywllal +71217‘22a4 k 27 Z]Zal +TZZa4

ky =T,0, k,=T,0, k=0,
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k = _Tﬁal +T221(Xj k42 = _TlezzaZ 1,1, k 5= _Tzlazz k = _Tzlazz
k 52~ _Tzzlaj - Téal

_ z 72 2
k54 - 7'217-‘22(14 + ﬂzTnal k 557 Tzza: + ]-1'2a1

kog=T,0; ko=T,0, kg=0; ku=-T,0, k=-T,0, k=05 (4-88)
in which
EA . 6EI . 4AEl . 12EI . 2EIL
o =—, 0 =—=, 0 =—=, aj =——=,and off =—=.
L L L L

As an example, for element 1 of the planar frame shown in Figure 4.12, we have,

TWw=0T,=1T,=-1T5,=0,

and the stiffness matrix of the element is obtained as

[1.25 0 -075|-125 0 —0.75]
0 200 0 =200 O
-075 0 6 0.75 0 3
k, =10
-125 0 075 | 125 0 0.75
0 200 O 0 200 0
[-0.75 0 3 0.75 0 6 |
F—4m —
2 3 E A=4x10"m?
T @ _ —6_ 4
4m y;@ I1=30x10"°m
_ 11 2
17_ . E=2x10"N/m

Fig. 4.12 A planar frame.



166 OPTIMAL STRUCTURAL ANALYSIS

4.4 DISPLACEMENT METHOD OF ANALYSIS

Once the stiffness matrix of an element is obtained in the selected global coordi-
nate system, it can be planted in the specified and initialised overall stiffness
matrix of the structure K, using the process described in Section 4.2.5.

Example: Let S be a planar truss with an arbitrary nodal and element numbering,
as shown in Figure 4.13. The entries of the transformation matrices of the mem-
bers are calculated using Eq. (4-11) and Eq. (4-12) as follows:

Forbar 1,

T

xn-x 1-0_1 Yo =N V3-0
2

3
>

Similarly, for bar 2,

1 3
T, => T, ==
and for bar 3,
T11: 1, T12:0.
30kN
20kN |

Fig. 4.13 A planar truss and the selected global coordinate system.

Using the relationship

F’ T T
F'|_BA| LT, T,

(4-89)

T2 T.T, ||6°|

F/‘X _Tllﬂz _Tlg
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the stiffness matrices of the members are computed directly in the selected global

coordinate system.

Now the stiffness matrices can be formed using Eq. (4-89):

For bar 1: k,
For bar 2: k,
For bar 3: k

[ 025 0433 | 025 —0.433]
E4| 0433 075 ‘—0.433 -0.75
2| =025 -0433| 025 0433

0433 075 ‘ 0433 075 |

[ 025 —0433] —025 0433 ]
EA4|-0433 075 | 0433 —-0.75
2| =025 0433 | 025 —0433]

0433 —0.75 ‘—0.433 0.75 |

0
0
0
0

The overall stiffness matrix of the structure is an 8 X 8 matrix, which can easily be
formed by planting the three member stiffness matrices as follows:

[0.250
0.433
-0.250
-0.433
2 0

0
0
0

0.433
0.750
—-0.433
—-0.750
0

0
0
0

-0.250 -0.433
-0.433 -0.750
1.500 0
0 1.500
-0.250 0.433
-0.433 -0.750
-1.00 0
0 0

0 0 0 0

0 0 0 0
~0250 0433 -1.00 0
0433 0750 0 0
0250 —-0433 0 0
0433 0750 0 0

0 0 100 0

0 0 0 1.00]

By partitioning K into 2 X 2 submatrices, it can easily be seen that it is pattern
equivalent to the node adjacency matrix of the graph model of the structure as fol-

lows:
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crex=|- T T T
£ % 0
0 % 0 =

This pattern equivalence simplifies certain problems in structural mechanics, such
as ordering the variables for bandwidth or profile reduction. Methods for increas-
ing the sparsity, using special cutset bases, and improving the conditioning of
structural matrices will be discussed in Section 4.7.

4.4.1 BOUNDARY CONDITIONS

The matrix K is singular, since the boundary conditions have to be applied. Con-
sider,

p=Kv,

and partition it for free and constraint DOF as follows:

Pr| Ky |[KellV,
|:pc :| ) |:ch Ko [ ve] (450
This equation has a mixed nature; p;and v. have known values and p. and v, are

unknowns. Ky is known as the reduced stiffness matrix of the structure, which is
non-singular for a rigid structure.

For boundary conditions such as v, = 0, it is easy to delete the corresponding rows
and columns to obtain

pr=Kyvy, (4-91)

from which v, can be obtained by solving the above set of equations. In a com-
puter, this can be done by multiplying the diagonal entries of K. by a large
number such as 10%. An alternative approach is possible by equating the diagonal
entries of K., to unity and all the other entries of these rows and columns to zero.
If v, contains some specified values, p, will have corresponding v, values. A third
method, which is useful when a structure has more constraint DOF (such as many
supports), consists of the formation of element stiffness matrices considering the
corresponding constraints, that is, to form the reduced stiffness matrices of the
elements in place of their complete matrices. This leads to some reduction in stor-
age, and is also at the expense of additional computational effort.
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As an example, the reduced stiffness matrix of the structure shown in Figure 4.13
can be obtained from K by deleting the rows and columns corresponding to the

three supports 1, 3 and 4:
200 EA|LS O [luy
30) 210 15w, |

Solving for the joint displacements, we have

40 40

The member distortions can easily be extracted from the displacement vector, and
multiplication by the stiffness matrix of each member results in its member forces
in the global coordinate system. As an example, for member 3 we have,

. 1 0 -1 0][40/1.5E4] [13.33
r| EAl0O 0 0 ol 40/E4 | | 0
el 21-1 0 0 0 | |-1333
i, 00 0 0 0 0

A transformation yields the member forces in the local coordinate sys-
tems, r, ={-23.99 23.99}', r, = {~10.659 10.65}' and r, ={13.33 -13.33}'

4.4.2 GENERAL LOADING

The joint load vector of a structure can be computed in two parts. The first part
comes from the external concentrated loads and/or moments, which are applied to
the joints defined as the nodes of S. The components of such loads are most easily
specified in a global coordinate system and can be assembled to the joint load vec-
tor p.

The second part comes from the loads, which are applied to the spans of the mem-
bers. These loads are usually defined in the local coordinate system of a member.
For each member, the fixed end actions (FEA) can be calculated using existing
classical formulae or tables. A simple computer program can be prepared for this
purpose. The FEA should then be expressed in the global coordinate system using
the transformation matrix given by Eq. (4-11). The FEA should then be reversed
and applied to the end nodes of the members. These components can be added to p
to form the final joint load vector. After p has been assembled and the boundary
conditions imposed, the corresponding equations should be solved to obtain the
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joint displacements of the structure. Member distortions can then be extracted for
each member in the reverse order to that used in assembling the p vector.

Example 1: A two-span continuous beam is considered as shown in Figure
4.14(a). EI is taken to be constant along the beam.

P=6 kN

q=12kN/m 1.4kN-m 3kN-m

b 4m ———2m—F—2m—]

(a) (b)

Fig. 4.14 A continuous beam and its equivalent loading.

For continuous beams, the transformation matrix T from local coordinate to global
coordinate is identity, and therefore k, =k, , that is, no transformation is re-

quired. Ignoring the axial deformation and using Eq. (4-63), the stiffness matrices
of the elements are obtained as follows:

075 15 |-075 1.5

PP 15 4 | -15 2

P 40-075 -15] 075 -15]
15 2 ‘—1.5 4

Assembling the overall stiffness matrix and imposing the boundary conditions, the
reduced stiffness matrix of the entire beam is obtained and the force—displacement
relationship for the beam is written as

)

Solving the equations, we have

0:]1 1[4 -2][-14] [-0.0259
0: | 448]—2 8| 3 | | 00598 |
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Member forces are calculated as follows:

4 075 15 -075 1.5 0 2.4 1.779
M| _ 15 4 -5 2 0 | |16 |_| 077
v, | |-075 -15 075 -15 0 24| | 3.021 [
M, 15 2 -15 4 ||-0.0259] [-1.6] [-3.256

and
Vs 075 15 —075 15 0 3] [3.814
My|_ | 15 4 -15 2 |1-00259| | 3] |3258
i, | =075 1.5 075 -5 0 3| |2186]
M, 15 2 -15 4 |[+0.0598] |-3 0

Example 2: A portal frame is considered as shown in Figure 4.15. The members are
made of sections with 4 = 150 cm” and 7. =2 x 10" cm* and E =2 x10* kN/cn’.
Calculate the joint rotations and displacements.

5 kN @
=P 3
12N () ()| 4m
1 4
1 5m %

Fig. 4.15 A portal frame and its loading.

The equivalent joint loads are illustrated in Figure 4.16.

160 kN-m

I

74k

y

X
—————

Fig. 4.16 Equivalent joint loads.
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Employing Eq. (4-88), the stiffness matrices for the members are obtained as fol-
lows:

For member 1,

[0.008 0 -1.510.008 0 -1.5]
0 0.75 0 0 -0.75 0
W —1.5 0 400 | 1.5 0 200
kl = 10 b
0.008 0 1.5 | 0.008 0 1.5
0 -0.75 0 0 0.75 0
| 1.5 0 200 | 1.5 0 400 |
and for member 2,
[ 0.6 0 0 |-0.6 0 0
0 0.004 0.96 0 -0.004 096
. 0 0.96 320 0 -096 160
k, =10
-0.6 0 0 0.6 0 0
0 -0.004 -0.96 0.004 —0.96
0 0.96 160 -0.96 320 |
For member 3,
[ 0.008 0 1.5 | —0.008 0 1.5 ]
0 0.75 0 0 -0.75 0
W 15 0 400 | -1.5 0 200
k, =10
—0.008 0 -1.5| 0.008 0 -1.5
0 -0.75 0 0 0.75 0
| 1.5 0 200 | -1.5 0 400 |

By assembling the stiffness matrices and imposing the boundary conditions, the

following equations are obtained:
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[7.4] [0.608 0 15 06 0 0 [6;]
0 0 0754 096 0 —0.004 096 |5
160|_ | 15 096 720 0 09 160 ||6;
0 0.6 0 0 0608 0 1.5 || 67
0 0 —0.004 —096 0 0754 -096]5;
[ 0 | 0 096 160 15 -096 720 |6 |

Solving these equations, we obtain

8,=10.0659167, 8; =2.617764E-04, 6, = —8.983453E-05,

87=0.0653377, 8/ =—2.617704E—04 and 6 =—1.16855E-04.

The final member forces can be found using the stiffness of the members, super-
imposed by the FEA.

4.5 STIFFNESS MATRIX OF A FINITE ELEMENT

In this section, a simple element is introduced from finite element methods, in or-
der to show the capability of the method presented in Section 4.2.2, for the
formation of element stiffness matrices.

4.5.1 STIFFNESS MATRIX OF A TRIANGULAR ELEMENT

For plane stress and plane strain problems, the displacements of a node can be
specified by two components, and therefore, for each node of the triangular ele-
ment, two DOF are considered, as shown in Figure 4.17.

@

V1

Y

uy
V3

®
@

Uy

Fig. 4.17 A triangular element.
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Element forces and displacements are defined by the following vectors:
r,={ r .. it andw,={ wu, . ul (4-92)

A triangular element has its boundary attached continuously to the surrounding
medium, and therefore no exact stiffness matrix can be derived. Therefore, an ap-
proximate solution should be sought.

The following displacement functions can be considered for the variation of the
displacements:

u=oqx+ oy + oz and v= oux + asy + o, (4-93)

where o4, o, ... , O are arbitrary constants that can be found from the displace-
ments of the three nodes of the element. From the boundary conditions,

at node i(x;,y;), u = w; and v =,
at node j(x;,),), u = u;and v =, (4-94)
at node k(xi,yp), u = uiand v = vy,

the constants can be evaluated. Substituting in Eq. (4-93), we get
u = 1241 [y (x5, Jur H=viO—xi0)—2x(—yi0) Jus +{yju(x—x)—x:(—y) Jus

v = 124 {[yi(x—=x)—x5v—) [t [y rCe—x) =00 Jut [yi(e—x)—:(v—v:) us§ »

(4-95)
where
2A = 2(area of the triangle) = xy;i — X;¥» (4-96)
and
Xon = X — Xy A0 Yy = Vi — Y- (4-97)

From Eq. (4-95), it is obvious that both u and v vary linearly along each edge of
the element and they depend only on the displacements of the two nodes on a par-
ticular edge. Therefore, the compatibility of displacements on two adjacent
elements with a common boundary is satisfied.

By the theory of elasticity, the nodal displacements w}, ={u,,u,, ..., u;} are related

to total strains e' = {ey, €, €y} by the following:
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_ . - ,ul .
. u
€ gz 1 Yij 0 Vi 0 Yii 0 uz
e= evy = a— = ﬂ 0 —xkj 0 xk,. 0 —xﬁ 3 . (4-98)
) )y u,
€y Ju .\ v Xy Yy Xpi Vi X Vi g
[ dy  ox | | U |

This relationship can be written in matrix notation as

e=bu, (4-99)

where

- 1
oo 0, 0w 0 x| (4-100)
Xy Vi Xw TVu TXp Vi

The above equation indicates that, for a linearly varying displacement field, the
strains are constant, and by Hooke’s law it also leads to constant stresses. Substi-
tuting the total strain e in Eq. (4-96), we obtain the stress—displacement
relationship,

Fu] .
U,
O, £ Vi VYV  Vu VX Yii VY ”
Oy :m VY Xy VD X VY X u, , (4-101)
Xy _ll"x/;,' lIJykj lljxki _lljyki _\iji \Py‘ji g
| Us

where Vv is the Poisson ratio and

1-v
2

"IJ =

The stiffness matrix is then calculated using Eq. (4-26), and for convenience it is
presented in two separate parts as

k=K, t+k,, (4-102)

where k, represents the stiffness due to normal stresses and K, represents the stiff-
ness due to shearing stresses. Thus
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_ s -
Y32
2
—vy32x32 X3) sym.
2
K = Et —V32)31  VX32)31 V31
n- 2 2 ’
4A=v7)| vysxs  —xpx3 —Vyyxy o X3
2
Y32)21 —VX32¥21 V3121 VX31)21 21
2
| V32421 X32X21 Vy31X21  —X31X%21 —V)21X21  X21 ]
and
F, -
X32
2
—X32)32 Y32 sym.
2
. Et —X32X31  V32X31 X3 4-103
$ T 44(1+v) 2 - (109
X32¥31  TV32X21 TX31)31 31
2
X3pX21  TV3pXp1 TX31X21 V31X21 X1
2
L =X*32)21 V32021 X31V21 V3121 —X21)21 V21

Using the same method, the stiffness matrices for other elements can be derived.
Since there are many excellent books on finite element methods, no further details
are provided here, and the interested reader may refer to Zienkiewicz [235],
McGuire and Gallagher [163], and Bathe and Wilson [9] among many others.

4.6 COMPUTATIONAL ASPECTS OF THE MATRIX DISPLACEMENT
METHOD

The main advantage of the displacement method is its simplicity for use in com-
puter programming. This is due to the existence of a simple kinematical basis
formed on a special cutset basis known as the cocycle basis of the graph model S
of the structure. Such a basis does not correspond to the most sparse stiffness ma-
trix; however, the sparsity is generally so good that there is usually no need to look
further. However, if an optimal cutset basis of S is to be used in the displacement
method, then all the problems involved in the force method, described in Chapter
3, still exist. The algorithm for the displacement method is summarised below. The
coding for such an algorithm may be found in textbooks such as those of Vander-
bilt [222] and Meek [164].

4.6.1 ALGORITHM

Step 1: Select a global coordinate system and number the nodes and members of the
structure. An appropriate nodal ordering algorithm will be discussed in Chapter 5.
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Step 2: After initialisation of all the vectors and matrices, read or generate the data
for the structure and its members.

Step 3: For each member of the structure,
(a) compute L, L*, sin ¢, sin S, sin 7, cos @, cos 3, and cos 7;
(b) compute the rotation matrix T;
(c) form the member stiffness matrix K in its local coordinate system;
(d) form the member stiffness matrix k in the selected global coordinate system;
(e) plant k in the overall stiffness matrix K of the structure.
Step 4: For each loaded member,
(a) read the FEA;

(b) transform the FEA to the global coordinate system and reverse it to
apply at joints;

(c) store these joint loads in the specified overall joint load vector.
Step 5: For each loaded joint,

(a) read the joint number and the applied joint loads;

(b) store it in the overall joint load vector.

Step 6: Apply boundary conditions to the structural stiffness matrix K to obtain the
reduced stiffness matrix Kg. Repeat the same for the overall joint load vector.

Step 7: Solve the corresponding equations to obtain the joint displacements.
Step 8: For each member,

(a) extract the member distortions from the joint displacements;

(b) rotate the member distortions to the local coordinate system;

(c) compute the member stiffness matrix;

(d) compute the member forces and FEA.
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Step 9: Compute the joint displacements and the member forces.

The application of the above procedure is now illustrated by a simple example so
that the reader can use it to fully understand the computational steps.

4.6.2 EXAMPLE
Consider a planar truss, as shown in Figure 4.18. Member 1 has a uniform load of

intensity 0.6 kN/m, and at joint 2 a concentrated load of magnitude 1.05 kN is ap-
plied. The cross-sectional areas for members are 24 and 1.84, respectively.

Fig. 4.18 A planar truss with general loading.
The selected global coordinate system and the equivalent nodal forces are illus-
trated in Figure 4.19. The stiffness matrices are formed as follows:
For member 1:
0.64 0.48 ‘ -0.64 —0.48

_2EA| 048 036 |-048 -0.36
5 [ -0.64 —0.48‘ 0.64 048

-048 -036| 048 0.36
For member 2:
0 0|0 O
_1.8E4 0 +1(0 -1

: 3 1o oo of
0 —1]0 +1
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-—

(a) (b)

Fig. 4.19 The selected coordinate system and the equivalent nodal loads.

The overall stiffness matrix is then obtained as follows:

(0256 0192 0256 —0.192 0
0.192  0.144 -0.192 -0.144 0
~0256 —0.192 0256 0.192 0 0
K = EA
~0.192 —-0.144 0192 0.744 0 -0.6
0 0 0 0 0 0
|0 0 0 06 0 06|

The FEA are shown in Figure 4.19(b), and calculated for member 1 as follows:

These forces are reversed and transformed into the global coordinate system as
follows:

08 0.6 0 0 0 0.9

. 0.6 0.8 0 0 -1.5 -1.2
T, (-FEA,) = =

0 0 0.8 —-0.6 0 0.9

0 0 06 08]-15 -1.2
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By superimposing the concentrated force at node 2, the final vector of external

forces is obtained as follows:

p={09 -12 -0.15 -12 0 0O}.

By substituting a large number such as 1.E + 30 for the diagonal entries corre-
sponding to the zero displacement boundary conditions, we have

0 [1.LE+30 0.192 -0256 -0.192 0 0
0 0.192 1.E+30 -0.192 -0.256 0 0
-0.15 -0.256 -0.192 0.256 0.192 0 0
= FEA [v].
-1.2 -0.192 -0.256 0.192 0.714 0 -0.6
0 0 0 0 1.E+30 0
| 0 | | 0 0 0 -0.6 0 1.E+30 |
By solving these equations, we have
v= i{o 0 0.845 -1.907 0 0}.
EA
The member forces are now computed as follows:
1 0 -1 0]f08 06 O 0 0 [0 0.179
210 0 0 0f-06 08 O 0 0 1.5 1.5
r =— = ,
51 0 1 Of 0 0 08 0.6] 0845 0 -0.179
0 0 0 O] O 0 -0.6 08][-1.907] |15 1.5
and
1 0 -1 0J]/JO -1 0 O] 0.845 0 1.091
0 0 0 O]1 0 0 (-1.907 N 0 0
r,== = .
: -1 0 1 0ffo 0 -1 0 0 —-1.091
0 0 0 0jfo 1 0 0 0 0

4.7 OPTIMALLY CONDITIONED CUTSET BASES

For an efficient displacement analysis of a structure, special considerations such as
structuring its stiffness matrix and improving its conditioning should to be taken
into account. The former will be discussed in Chapter 5 and the latter is studied in

this section.
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In order to optimise the conditioning of the stiffness matrices, special cutset bases
must be used in the formation of kinematical bases.

A cutset basis with the following properties is defined as an optimally conditioned
cutset basis:

(a) It is an optimal cutset basis, that is, the number of non-zero entries of its cutset
adjacency matrix and the corresponding number of non-zero entries of its stiffness
matrix are a minimum.

(b) The members of the lowest weight of S are included in the overlaps of the cut-
sets, that is, the off-diagonal terms of the corresponding stiffness matrix have the
smallest possible magnitudes.

A weighted graph may or may not have an optimally conditioned cutset basis.
However, if such a basis does not exist or cannot be found, then a compromise
should be found to satisfy the above two conditions, that is, a basis that partially
satisfies both conditions should be selected.

4.7.1 MATHEMATICAL FORMULATION OF THE PROBLEM

The cardinality of a cutset basis for a connected graph is given by

p(S) =N(S) - 1. (4-104)

The problem of finding an optimally conditioned cutset basis can be stated as fol-
lows:

Select a cutset basis {C;,C,, ..., C, s} such that

p(S)-1

L =Min U W(C" NC.y),

p(S)-1

and W, =Min U W(C" NC), (4-105)

with (C ! = LIJICJ) , L denoting the length and # indicating the weight of the mem-
=

bers of (C"' NC.,,), respectively.

Again we have a multi-objective optimisation problem, whose solution is not ob-
vious. Therefore, we design an algorithm that is practical and satisfies the required
conditions partially.
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4.7.2 SUBOPTIMALLY CONDITIONED CUTSET BASES

A fundamental cutset basis of a graph can easily be generated using each branch of
a spanning tree as the generator of a cutset. A more common cutset basis, em-
ployed in the displacement method of structural analysis, is a cocycle basis of S. In
this basis, each element simply isolates a node of S, excepting the ground node.

SN (, ct
N \_/ ~ L
N C — — Cf
C¥ Ck
3] N ] - C¥
= t~ _ — C4*
Ck C*
5 6 CS*
7777 777 C¢
(@) (b) (©)

Fig. 4.20 A planar frame S, a cocycle basis and a cutset basis of S.

Although a cocycle basis corresponds to a rather sparse cutset adjacency matrix,
other cutset bases corresponding to more sparse cutset adjacency matrices, leading
to more sparse stiffness matrices, can be generated. As an example, consider a
frame model S as depicted in Figure 4.20(a) for which a cocycle basis and a cutset
basis are selected, as illustrated in Figures 4.20(b and c), respectively. The patterns
of the corresponding cutset adjacency matrices are shown below using * for non-
zero entries:

1 23 456 1 23 456

1% = * =% 1% =
2% * IEEE
o _3 * * ok ok % cct _3 I
i _4 ok ok % % 2 _4 %ok ok
5 % k% 5 EIE
6 ok kx| 6 * k|
2(CC)=24 x(CCY) =16

It will be realised that sparser stiffness matrices can be generated using suitable
cutset bases rather than by employing the traditional cocycle basis [118].

In order to keep the off-diagonal terms small, the members of the overlaps of the
cutsets should be as flexible as possible, that is, the lower weight members should
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be included in the overlaps. In the following, three algorithms are designed for the
formation of suboptimal cutset bases of the graph model of the structures.

4.7.3 ALGORITHMS

The formation of a cocycle basis of a graph model S is simple and straightforward.
For this purpose, the members incident with each free node (except the selected
datum node) are taken as an element of the basis. By repeating this operation for
all the free nodes, the process of the generation is completed.

Algorithm A

Step 1: Generate a spanning tree of maximal weight. Order its members (branches)
in ascending magnitudes of weight.

Step 2: Use a branch of the least weight, form the selected tree and form the first
fundamental cutset on this branch.

Step 3: Form the next fundamental cutset on the unused branch of least weight.

Step k: Repeat Step 3 for the other unused branches until p(S) = N(S) — 1 inde-
pendent cutsets forming a basis are generated.

Algorithm B

Step 1: Form a cocycle basis; denote the selected cocycles by C™.

Step 2: Take the first cocycle C; of C"! and combine with the remaining cocycles
of C"'. For each cocycle C; (=2, ..., p(S)) satisfying the following condition,
replace C; with C; @ C; .

Condition: (Ly < Lgy) or (Lyp = Ly and Wy, < Wyy),
where L (Wy) and Ly(W,,) indicate the lengths (weights) before and after the ap-

plication of the combining process, and @ denotes the modulus 2 addition. The
new set of cocycles and/or cutsets is denoted by C ™.

Step 3: Take C, of C *2 and repeat a process similar to that of Step 2.

Step k: Take C; of C™"' and combine with the elements of C . The process

terminates when & becomes equal to p(S').
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Algorithm C

This algorithm is the same as Algorithm B except that the corresponding condition
is replaced by the following one:

Condition: (W, < W) or (W, = Wy and Ly < Ly).
The selected bases are suboptimal and contain elements with lower weight mem-
bers leading to kinematical bases corresponding to small off-diagonal terms for

stiffness matrices.

4.7.4 EXAMPLE

A one-bay four-storey planar truss is considered as shown in Figure 4.21, with
cross sections being designated by A;. Typical member cross sections are

A,=20 cm’, 4, =10 cm?, 43 =5 cm’, 4, =4 cm’ and E = 2.1 x 10*kN/cm’.
The patterns of the cutset bases adjacency matrices are illustrated in the following:

12345678 123456 738

I]* * = IE % ok
A T 2 * * *
K1 T T S 3 %k k%
4 ok ok ok ok 4 k k% k ok %
5 I T 51 % %k
6 * ok ok % k| G|k % ko ok
7 ¥ % % x| 7 ¥ % %%
8 * ok k| 8 k% k%

Pattern of C*C*'by a cocycle basis.  Pattern of C*C*'by Algorithm A.
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1 23456 738 1 23 456 78

*k

L k0 ok ok ok

~N N L b~ W N~
*
*
*

* ok % * ok Xk

*
*
*
0 N AN bW N
*
*

8 * ok * k%

Pattern of C*C*' by Algorithm B.  Pattern of C*C*' by Algorithm C.

The condition numbers of stiffness matrices, the sparsity and the magnitudes of L;
and W, for the selected cutset bases are illustrated in Table 4.1.

Table 4.1 Comparison of the condition numbers and sparsities.

Algorithm PL x(C *C*Y L, W,

Cocycles 2.720131 34 13 75, 936.5
A 2.145762 32 12 48, 048.7
B 2.502612 22 7 46, 200.0
C 2.245613 24 8 36, 400.0

100 kN

80 kN

60 kN

40 kN

(a) A planar truss. (b) The graph model S.

Fig. 4.21 A planar truss and its graph model S.
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The execution time for the formation of the selected cutset bases (7¢) and the cor-
responding stiffness matrices (7k) are presented in Table 4.2.

Table 4.2 Comparison of the computational time.

Time Cocycle basis A B C
Tc 0.00 0.88 0.76 0.88
Tk 0.43 0.65 0.48 0.60

Although the sparsity of stiffness matrices K for frame structures can be improved
by the formation of special cutset bases in place of cocycle bases, the improve-
ments, in general, are not significant. On the other hand, the conditioning of K can
be improved by employing appropriate cutset bases. Algorithm B improves the
conditioning of the stiffness matrices, maintaining the sparsity of the stiffness ma-
trices. This improvement is more significant for Algorithms A and C, although the
sparsity of K is not maintained.

EXERCISES

4.1  Compute the transformation matrix T of the element “a” for the following
truss:

@

!
1

— 3m — 1} 2m —} 2m | 3m |

4.2 For the following planar frame, compute the joint displacements, ignoring
the effect of axial deformations of the members. EI is considered constant for all
the members.

1 kN/m
TTTTTTTTTTTITT]
5 kI\‘T P ALAAAAAAAAAAALLA) T
Sm
7777 7777 l
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4.3  Compute the stiffness matrix of member “a” for the following pitched-roof
portal frame, in the selected coordinate system:

e

4.4  Consider a single-layer grid in the xz-plane loaded in the y-direction. Derive
the stiffness matrices of a member of this grid in local and global coordinate sys-
tems.

4.5  Find the joint displacements of the space truss in the following diagram,
where EA is considered to be the same for all the members:

S a—

4.6  Derive the stiffness matrix of a beam element of a planar frame that has one
end hinged.

4.7  Determine the patterns of the stiffness matrix and reduced stiffness matrix
of the following pitched-roof frame using two different node numberings chosen
arbitrarily:
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4.8  Compute the joint load vector of the following frame:

T 5ton

0.8ton/m
Jr 3ton

F 3m+3m -+ 3m- 3m

4.9  Perform the matrix stiffness analysis for the following truss, where P = 100
kN, EA=40x 10°N and L = 4 m:

2P

]

— L —

4.10 Derive the overall stiffness matrix of the following grid and calculate its
joint displacements:

EI=60%x10°N-m% GJ=100x 10°N-m%, L=4.0mand P=1.0 x 10°N.

e

— —
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4.11 Perform the matrix stiffness analysis for the following grid:
P=30kN, E=2.1x 10*kN/cm’, G = 1.05 x 10*kN/em’, I, = I, = 25,170 cm",

I.=8560 cm*, J= 33,730 cm* and 4 = 149 cm’.

Y Fam
oy

4@2m ——

X

4.12  Find the condition numbers of the stiffness matrix of the following planar
frame. For member 1, the section properties are 4; = 10.6 x 10 *m* and 7, = 17.1 x
10’ m*. For member 2, 4,=9.7 x 10° m? and I, = 19.61 x 10> m*. Modulus of
elasticity is equal to £ = 2.1 x 10" kN/cm®.

@
T E
4m @
1
| 6 m |

4.13 Study the effect of bandwidth reduction on the conditioning of the stiff-
ness matrices of structures, and find out whether this effect is significant. Illustrate
this fact numerically using a simple matrix.






CHAPTER 5

Ordering for Optimal Patterns
of Structural Matrices:
Graph Theory Methods

5.1 INTRODUCTION

In this chapter, ordering methods are presented for forming the elements of sparse
structural matrices into special patterns. Such a transformation reduces the storage
and the number of operations required for the solution, and leads to more accurate
results. Graph-theory methods are presented for different approaches to reorder
equations to preserve their sparsity, leading to predefined patterns. Alternative,
objective functions are considered, and heuristic algorithms are presented to
achieve these objectives. The three main methods for the solution of structural
equations require the optimisation of bandwidth, profile and frontwidth, especially
for those encountered in finite element (FE) analysis. Methods are presented for
reducing the bandwidth of flexibility matrices. Bandwidth optimisation of rectan-
gular matrices is presented for its use in the formation of sparse flexibility
matrices.

Entries of the stiffness and flexibility matrices are provided with the most appro-
priate specified patterns for the solution of the corresponding equations.
Realisation of these patterns (or not) affects the formulation of the mathematical
models and the efficiency of the solution. Many patterns can be designed, depend-
ing on the solution scheme being used. Figure 5.1 shows some of the popular ones
that are encountered in practice.

Optimal Structural Analysis A. Kaveh
© 2006 Research Studies Press Limited
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i =y

Banded Profile Partitioned Nested parti- Block matrix
form form form tioned form form

Fig. 5.1 Different matrix forms.

The pattern equivalence of the stiffness matrix of a structure and the cutset basis
matrix C*C*' of its graph model and the pattern equivalence of the flexibility ma-
trix of a structure with that of a generalised cycle basis matrix CC' of its graph
model reduce the size of the problem S-fold,  being the degrees of freedom of the
nodes of the model for the displacement method, and 8 = 1-6 depending on the
type of structure being studied using the force method.

5.2 BANDWIDTH OPTIMISATION

The analysis of many problems in structural engineering involves the solution of a
set of linear equations of the form

Ax=b, (5-1)

where A is a symmetric, positive-definite and usually very sparse matrix. For large
structures encountered in practice, 30-50% of the computer execution time may be
devoted for solving these equations. This figure may rise to about 80% in non-
linear, dynamic or structural optimisation problems.

Different methods can be used for the solution of the system of equations, of
which the Gaussian elimination is the most popular among structural analysts,
since it is simple, accurate and practical, and produces some very satisfactory error
bounds.

In the forward course of elimination, new non-zero entries may be created, but the
back substitution does not lead to any new non-zero elements. It is beneficial to
minimise the total number of such non-zero elements created during the forward
course of the Gaussian elimination to reduce the round-off errors and the computer
storage. Matrix A of Eq. (5-1) can be transformed by means of row and column
operations to a form that leads to the creation of a minimum number of non-zero
entries during the forward course of the elimination. This is equivalent to the “a
priori” determination of the permutation matrices P and Q, such that

PAQ=G. (5-2)
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When A is symmetric and positive-definite, it is advantageous to have G also
symmetric so that only the non-zero elements on and above the diagonal of G need
to be stored, and only about half as many arithmetic operations are needed in the
elimination. The diagonal elements of A and G are the same, though their posi-
tions are different. In order to preserve symmetry, P is taken as Q so that Eq. (5-2)
becomes

Q'AQ =G. (5-3)

For transforming a symmetric matrix A into the forms depicted in Figure 5.1, vari-
ous methods are available, some of which are described in this chapter. However,
owing to the simplicity of the banded form, most of the material presented is con-
fined to optimising the bandwidth of the structural matrices and other forms are
only introduced briefly.

In the Gaussian elimination method, the time required to solve the resulting equa-
tions by the banded matrix technique is directly proportional to the square of the
bandwidth of A. As mentioned earlier, the solution of these equations forms a
large percentage of the total computational effort needed for the structural analy-
sis. Therefore, it is not surprising that a lot of attention is being paid to the
optimisation of the bandwidth of these sparse matrices. A suitable ordering of the
elements of a kinematical basis for a structure reduces the bandwidth of A, hence
decreasing the solution time, storage and round-off errors. Similarly, ordering the
elements of a statical basis results in the reduction of the bandwidth of the corre-
sponding flexibility matrix of the structure.

Iterative methods using different criteria for the control of the process of inter-
changing rows and columns of A are described by many authors, for example, see
Rosen [189] and Grooms [67]. For these methods, in general, the required storage
and CPU time can be high, making them uneconomical.

The first direct method for bandwidth reduction was recognised by Harary [73] in
1967, who posed the following question:

For a graph S with N(S) nodes, how can labels 1, 2, ..., N(S) be as-
signed to nodes in order to minimise the maximum absolute value of
the difference between the labels of all pairs of adjacent nodes?

For a graph labelled in such an optimum manner, the corresponding adjacency matrix
will have unit entries concentrated as closely as possible to its main diagonal.

In structural engineering, Cuthill and McKee [33] developed the first graph-
theoretical approach for reducing the bandwidth of stiffness matrices. In their
work, a level structure is used, which is called a spanning tree of a structure. The
author’s interest in bandwidth reduction was initially motivated by an interest in
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generating and ordering the elements of cycle bases and generalised cycle bases of
a graph, as defined in Chapter 3, in order to reduce the bandwidth of the flexibility
matrices [94,96]. For this purpose, a shortest route tree (SRT) has been used. The
application of this approach has been extended to the elements of a kinematical
basis (cutset basis) to reduce the bandwidth of stiffness matrices. Subsequently, it
has been noticed that there is a close relation between Cuthill-McKee's level
structure and the author’s SRT. However, the SRT contains additional information
about the connectivity properties of the corresponding structure.

Further improvements have been made by employing special types of SRTs such
as the longest and narrowest ones [97]. The generation of a suitable SRT depends
on an appropriate choice of starting node. Kaveh [94] used an end node of an arbi-
trary SRT having the least valency, which was chosen from its last counter (level).
Gibbs et al. [59] employed a similar node and called it a pseudo-peripheral node.
Cheng [26] used an algebraic approach to select a single node or a set of nodes as
the root of an SRT. Kaveh employed two simultaneous SRTs for selecting a
pseudo-peripheral node. A comparison of six different algorithms was made in
[101]. Algebraic graph theory has also been used for finding a starting node; see
Kaveh [113] and Grimes et al. [66]. Paulino et al. [174] used another type of alge-
braic graph-theoretical approach employing the Laplacian matrix of a graph for
nodal ordering.

5.3 PRELIMINARIES

A matrix A is called banded when all its non-zero entries are confined within a
band, formed by diagonals parallel to the main diagonal. Therefore, 4; = 0, when
li —j| > b, and Agsp # 0 or Agyp # 0 for at least one value of k. b is the half-
bandwidth and 2b + 1 is known as the bandwidth of A. For example, for

(5-4)

(@)}
[c-BEEN I S BN
O W 3 -
H~ o0 O -

the bandwidth of Ais2b+1=2x2+1=5.

A banded matrix can be stored in different ways. The diagonal storage of a sym-
metric banded » X n matrix A is an n X (b + 1) matrix AN. The main diagonals are
stored in the last column, and lower co-diagonals are stored down-justified in the
remaining columns. For example, AN for the above matrix is
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1
6 2

AN=[0 7 3| (5-5)
9 8 4
005

When A is a sparse matrix, this storage scheme is very convenient, since it pro-
vides direct access, in the sense that there is a simple one-to-one correspondence
between the position of an entry in the matrix A(i, j) and its position in AN(i, j — i
+h+1).

Obviously, the bandwidth depends on the order in which the rows and columns of
A are arranged. This is why iterative techniques seek permutations of the rows and
columns to make the size of the resulting bandwidth small. For symmetric matri-
ces, identical permutations are needed for both the rows and the columns. When a
system of linear equations has a banded matrix of coefficients and the system is
solved by Gaussian elimination, with pivots being taken from the diagonals, all the
operations are confined to the band and no new non-zero entries are generated
outside the band. Therefore, the Gaussian elimination can be carried out in place,
since a memory location is already reserved for any new non-zeros that might be
introduced within the band.

For each row i of a symmetric matrix A define,

bi =i _jlnin(i)9 (5'6)

where jmin(7) is the minimum column index in row i for which 4;; # 0. Therefore,
the first non-zero of row i lies b; positions to the left of the diagonal, and b is de-
fined as:

b =max (b)). (5-7)

In Chapter 4, it is shown that the stiffness matrix K of a structure is pattern equiva-
lent to the cutset basis matrix C*C*', where C* is the cutset basis—member
incidence matrix of the structural model S. Similarly, the flexibility matrix G is
pattern equivalent to the cycle basis matrix CC', where C is the cycle basis—
member incidence matrix of S.

Reducing the bandwidths of C*C*"' and CC"' directly influences those of K and G,
respectively. Notice that the dimensions of C*C*' and CC', for general space
structures, are sixfold smaller than those of K and G, and therefore simpler to op-
timise.
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For the displacement method of analysis, there exists a special cutset basis whose
elements correspond to the stars of its nodes except for the ground node (cocycle
basis). The adjacency matrix of such a basis naturally is the same as that of the
node adjacency matrix of S, with the row and column corresponding to the datum
node being omitted. In this chapter, such a special cutset basis is considered, and
the nodes of S are ordered such that the bandwidth of its node adjacency matrix is
reduced to the smallest possible amount.

Let A be the adjacency matrix of a graph S. Let i and j be the nodal numbers of
member £, and let oy = |i —j|. Then the bandwidth of A can be defined as

b(A) = 2Max{og k=12, ., M(S)} + 1, (5-8)

where M(S) is the number of members of S. To minimise the bandwidth of A, the
value of b(A) should be minimised. The bandwidth of the stiffness matrix K of a
structure is related to that of A by

b(K) = Bb(A), (5-9)
where f is the number of degrees of freedom of a typical node of the structure.

Papademetrious [170] has shown that the bandwidth minimisation problem is an
NP-complete problem. Therefore, any approach to it is primarily of interest be-
cause of its heuristic value.

5.4 A SHORTEST ROUTE TREE AND ITS PROPERTIES

The main tool for most of the ordering algorithms using graph-theoretical ap-
proaches is the SRT of its model or its associate model. An SRT rooted at a node
O, called the starting node (root) of the tree, is denoted by SRTy and has the
following properties.

The path from any node to the root through the tree is a shortest path. An algo-
rithm for generating an SRT is given in Appendix A and therefore, only its
properties relevant to the nodal number are discussed here.

An SRT decomposes (partitions) the node set of .S into subsets according to their

distance from the root. Each subset is called a contour (level) of the SRT, denoted
by C.. The contours of an SRT have the following properties:
Adj(C)SCiy G Crr,  1<i<m

Adj (C) c G, (5-10)

Adj (Cy) € G,
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The number of nodes in each contour is called the width of that contour, and the
largest width of the contours of an SRT is called the width of the SRT rooted at the
starting node O, denoted by w(SRTy). This number is known as the width number
of O. The number of contours of an SRT (except the starting node contour) is the
height of the tree denoted by A(SRTy). The longest SRT is the one with maximal
height and the narrowest SRT is the one with minimal width.

For example, an SRT of S shown in Figure 5.2(a), rooted at O, denoted by SRTy,
has the following identities:

w(Cy) = 1, w(Cy) = 2, w(CG3) = 3, w(Cy) = 4, w(Cs) = 5, w(Ce) = 5, w(C7) = 4,
w(Cg) = 3, w(Cy) = 2 and w(Cyo) = 4. Hence w(SRTo) = 5 and A(SRT,) = 9.

For the same graph model, an SRT rooted at O’, which is shown in Figure 5.2(b),
leads to w(SRTy) =9 and A(SRTy) = 5.
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(a) An SRT rooted at O. (b) An SRT rooted at O’.

Fig. 5.2 A graph S and two of its SRTs.

This simple example shows the importance of selecting an appropriate starting
node. This is discussed in some detail in subsequent sections.

5.5 NODAL ORDERING FOR BANDWIDTH REDUCTION

The following four-step algorithm is employed for nodal ordering of graphs lead-
ing to banded node adjacency matrices. This method can be directly used for nodal
ordering of skeletal structures resulting in banded stiffness matrices.

1. Find a suitable starting node.

2. Decompose the node set of S into ordered subsets (contours).
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3. Select a connected path (transversal) containing one representative node from
each contour.

4. Order the nodes within each contour, to obtain the final nodal numbering of S.

All the above steps require the use of an SRT algorithm of Appendix A, known as
the breadth-first-search algorithm. Therefore, a nodal ordering process may be
considered as a multiple application of the SRT algorithm.

The node set of S can be decomposed into ordered subsets by means of a breadth-
first-search algorithm. The quality of the results depends upon the choice of an
appropriate starting node as the root of this tree. The results corresponding to the
ordering within each contour, however, also depend upon the use of a suitable
transversal containing one representative node from each contour.

Methods for finding suitable starting nodes have been developed by Cheng [26],
Kaveh [111,121,124], Gibbs et al. [59] and Grimes et al. [66]. In the following
text, various graph-theoretical methods are presented for finding good starting
nodes and selecting suitable transversals.

5.5.1 A GOOD STARTING NODE

The distance d(n;,n;) between two nodes #; and #; is defined to be the length of the
shortest path between these nodes. The eccentricity of a node n; is defined as

e(n;) = Max d(n;,n)) for j=1, ..., N(S). (5-11)
The diameter of S is defined as
6 (S)=Max e(n;) for i=1, ..., N(S). (5-12)

For example, the eccentricity of n, in Figure 5.3 is e(n,) = 3, and the diameter of S

is 5(5)=4.

n

Fig. 5.3 A graph S
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A node n; of S is called peripheral if its eccentricity is the same as the diameter of
S, that is, 6 (S) = e(n,). If the eccentricity is close to the diameter, then #; is called a
pseudo-peripheral node or a good starting node.

In this section, three algorithms are described for the selection of a good starting
node or nodes for nodal numbering. Other algorithms have been developed, details
of which can be found in Kaveh [113].

Algorithm A

Step 1: Start from an arbitrary node of S. Construct an SRT on this node and take a
node of least valency from its last contour.

Step 2: Form a new SRT from the selected node, and record all the nodes of the
last contour of the selected SRT.

Step 3: Form SRTs rooted at each of the recorded nodes and choose the one that
corresponds to the narrowest SRT. The process of constructing an SRT is termi-
nated as soon as the width of one of its contours exceeds the width of the
previously selected SRT.

This algorithm is similar to the Gibbs et al. [59] algorithm, where the starting node
O and another node of minimum valency from its last contour are selected as
pseudo-peripheral or diameteral nodes.

Algorithm B

Step 1: Start with an arbitrary node, form an SRT on this node and take a node #;
of least valency from its last contour.

Step 2: Generate an SRT on #n; and find all nodes contained in its even, first and
last contours.

Step 3: Generate an SRT on each node of these contours, and find the narrowest
one. The process of formation of an SRT is terminated as soon as the width of one
of its contours exceeds the width of the previously selected SRT. Denote the se-
lected node by #;.

Step 4: Check adjacent nodes to n; for possible reduction in width, to decide the
final starting node.

Algorithm C

Algorithms A and B may search for a good starting node in a single direction of a
graph and do not meet nodes lying in other directions. Algorithm C overcomes this
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problem. In this method, the control of overall connectivity properties of the graph
becomes feasible. The following example clearly illustrates this point.

Step 1: From an arbitrary node generate an SRT, and from its last contour select a
node X; of minimal valency. Observe the width of the selected SRT.

Step 2: Generate an SRT from X, and select X, of the least valency from its last
contour, and observe the width.

Step 3: Generate two SRTs simultaneously rooted at X; and X;, and find the node
Xz, which is the last node of S included in one of the SR subtrees. Once X; is
found, terminate the process of forming SRTs. Generate an SRT from X; and ob-
serve its width. X and X; are called the generators of X;.

Step 4: Repeat the process of Step 3, using the pairs (X;, X;3) and (X;, X3) as the
generators to find X; and X5, respectively. Construct the corresponding SRTs and
observe their widths.

Step 5: Repeat the process of Step 3 for X; (i = 3, 4, ...), along with the correspond-
ing generator, until no further improvement in width is observed. The narrowest

SRT should be selected for nodal decomposition of S.

An example of the application of this algorithm is depicted in Figure 5.4, where a
cross-shaped grid S is considered.

X3

Xs

Xy X4

Fig. 5.4 A cross-shaped grid and the selected X; (i = 1, ..., 5) by Algorithm C.
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Starting from an arbitrary node “O ”, an SRT is generated and X; is obtained from
its last contour. Generating a new SRT from Xj, node X; is chosen from its last
contour. Xj is the result of generating two simultaneous SRTs from X; and X,. Us-
ing (Xj, X3) and (X,, X3), nodes X, and X5 are obtained, respectively. The widths of
the selected SRTs rooted at X;, X, X3, Xy and X5 are 8, 8, 8, 11 and 10, respec-
tively. Therefore, the process is terminated, and Xj; is taken as a good starting node
of S.

5.5.2 PRIMARY NODAL DECOMPOSITION

Once a good starting node is selected, an SRT is constructed and its contours
{Ci, Cy, ..., C,} are obtained. These subsets are now ordered according to their
distances from the selected starting node. Obviously, many SRTs can be con-
structed on a node. Although all lead to the same nodal decompositions, different
transversals are obtained for different SRTs. Thus, in the generation process, the
nodes of each contour C; are considered in ascending order of their valencies for
selecting the nodes in C;.;, to provide the conditions for the possibility of generat-
ing a minimal (or optimal) transversal as defined in the next section. Finding an
optimal transversal before an SRT is fixed, seems to be a time-consuming prob-
lem. However, for most of the models encountered in practice, an optimal
transversal lies between the minimal ones. In the following text, an algorithm is
given for selecting a suboptimal transversal of an SRT.

5.5.3 TRANSVERSAL P OF AN SRT

A transversal of an SRT is defined as a connected path P containing one distinct
node N; from each contour C; of an SRT. A minimal transversal is the one for

which Zdeg(N,.) is minimum. An optimal transversal is the one leading to the
i=1

best nodal numbering, that is, a numbering corresponding to the smallest band-

width for the selected decomposition. The weight of a node is defined as its

degree.

Algorithm

Step 1: Take a node N,, of minimal weight from the last contour C,, of the selected
SRT.

Step 2: Find N,, | from C,, ;, which is connected to N,, by a branch of the SRT.

Step 3: Repeat Step 2, selecting nodes N, 5, N, 3, ..., V|, as the representative
nodes of the contours C,, ,, C,, 3, ..., C}, respectively.
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The above algorithm is a backtracking process from a node of minimal weight in
the last contour C,,, and selects a transversal P = {N;, N,, ..., N,,}, which can now
be used for ordering the nodes of the contours of the corresponding SRT.

5.5.4 NODAL ORDERING

Step 1: Number N, as “1”.

Step 2: N, is a given number “2”, and a SR subtree is generated from N,, number-
ing the nodes of C, in the order of their occurrence in this SR subtree.

Step 3: Step 2 is repeated for numbering the nodes of C;, Cy, ... , C,, sequentially,
using N;, Ny, ... , N, as the starting nodes of SR subtrees, until all the nodes of S
are numbered.

Now the numbering can be reversed, in a way similar to that of the Reverse
Cuthill-McKee algorithm, for possible reduction of fill-ins in the process of Gaus-
sian elimination, which is discussed in Section.

5.5.5 EXAMPLE

The following simple example is chosen to illustrate the steps of the approaches
presented, but the applications are not limited to such simple cases.

Let S be the graph model of a truss structure, as shown in Figure 5.5(a). Using one
of the algorithms of Section 5.5.1, a good starting node 4 is found, and the corre-
sponding SRTs are depicted in Figure 5.5(b). A transversal is selected as shown by
bold lines in Figure 5.5(c). Then nodes are numbered contour by contour, employ-
ing the representative nodes as the starting nodes of SR subtrees as shown in
Figure 5.5(d).

In order to cast the concepts developed for nodal ordering in a mathematical form,
a connectivity coordinate system is defined for nodal numbering of S. A separate
study of planar and space graphs results in clarifications about nodal numbering of
space structures, as described in Kaveh [110].

1 2 3 4 5 6 Cy Cs Ce Cy Cg Co
N N N N N AN
~ ~ ~ N N N
c N\ N N\ N N
7 8 9 10 11 12 EN AN ANERN N N
N AN AN AN \ N\
B 14 15 6 17 18 CZ\ AN AN NEERN AN
C \\\ AN \\\ \\\ \\\ b
19 20 21 2 23 s IBN < N N N N
AN N N N N N

(a) Initial numbering of S. (b) The selected SRT.
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N, 2
Ny 1

3 6 10 ¥ B
(c) The selected transversal P. (d) Final nodal numbering of S.

Fig. 5.5 Graph model S and its nodal numbering.

5.6 FINITE ELEMENT NODAL ORDERING
FOR BANDWIDTH OPTIMISATION

Extensions and applications of the nodal numbering algorithms to element order-
ing are due to Kaveh [101,102], Akhras and Dhatt [2], Everstine [43], Razzaque
[185], Pina [177], Sloan and Randolph [206], Sloan [203], and Burgess and Lai
[18].

For FE nodal ordering, different methods are developed. The application of a natu-
ral associate graph (NAG) in a two-step approach, was suggested by Kaveh [99],
and later by Fenves and Law [50]. A corner-node method is developed by Kaveh
[94], Cassell et al. [23] and Kaveh and Ramachandran [128]. The application of an
element clique graph is due to Sloan [204] and Livesley and Sabin [153]. A com-
parative study of the application of these graphs was made by Kaveh and Behfar
[115]. Additional graphs for transforming the information concerning the connec-
tivity of the FE mesh to those of different simple graphs, are introduced and
employed in efficient finite element nodal numbering by Kaveh and Roosta [133].
Excellent books on these topics are written by Duff et al. [39] and Pissanetsky
[178].

In this section, the connectivity properties of FE models are embedded in the topo-
logical properties of nine different graphs. A nodal ordering is then performed on
these graphs, leading to the element ordering of the corresponding FEMs, followed
by their final nodal ordering. This process is summarised in the flow chart given in
the following text.

For the sake of clarity, the nodes of the constructed graphs are referred to as vertices.

The complexities of the methods presented are given for a logical comparison of
their efficiency. The interested reader may refer to Baase [8] for an analysis of the
algorithms. The efficiency of the methods is also tested by some two-dimensional
and three-dimensional FE models. The computational time and the bandwidth ob-
tained for these models are presented for comparison.
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| Finite element model |

\

| Graph model |

\

| ECG| SG | ESG |[EWG| PTG | TG [NAG| IG | RG [ CRG |

\

| Graph nodal ordering I

\

| Finite element nodal ordering |

Notations: Element Clique Graph (ECG); Skeleton Graph (SG); Element Star
Graph (ESG); Element Wheel Graph (EWGQ); Partially Triangulated Graph (PTG);
Triangulated Graph (TG); Natural Associate Graph (NAG); Incidence Graph (IG);
Representative Graph (RG); Complete Representative Graph (CRG).

5.6.1 ELEMENT CLIQUE GRAPH METHOD (ECGM)
Definition: The element clique graph S of an FEM is a graph whose vertices are
the same as those of the FEM, and two vertices #; and #; of S are connected with a

member if #; and n; belong to the same element in the FEM. The element clique
graph (ECG) of the FEM shown in Figure 5.6(a) is illustrated in Figure 5.6(b).

q

(a) An FEM. (b) The element clique graph of the FEM.
Fig. 5.6 An FEM and its element clique graph.

In order to generate the ECG of an FEM, all pairs of nodes of each element of the
FEM should be connected by members if such pairs are not connected in the pre-
vious steps. Let A, 6 and 6 denote the number of elements of the FEM, the
maximum degree of a vertex of the ECG and the maximum number of nodes of an
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element of the FEM, respectively. The formation of the ECG takes O(A1807) opera-
tions in the worst case. For this formation, the element-node list of the FEM is
sufficient; however, since M(ECQ) is a high integer, especially for FEMs with
higher-order elements, the compact adjacency list will be very large. This is a dis-
advantage of the ECG.

Let us consider an m x n grid of 4-node quadrilaterals; the compact adjacency list
is a vector of length &, where oc= (m + 1 )(n + 1) denotes the number of nodes of
the FEM. The diameter of the ECG of an FEM is small. For example, the diameter
of the considered m x n grid is equal to d, where d is the same as m if m > n, oth-
erwise d is equal to n. This property is very useful when multiple roots are used for
a process. This is because more than one pair of vertices are the end vertices of the
diameter of the ECG for most of the FEMs. For example, for an m x n grid, if
m > n, then there will be (n + 1)* pairs of peripheral vertices. This graph model has
another advantage, namely, when two nodes of the FEM are contained in an ele-
ment, their corresponding vertices in the ECG are adjacent. This is useful since,
for the computational aspects of the FEM, we explicitly or implicitly consider an
FEM as a hypergraph. This graph is particularly suitable for bandwidth optimisa-
tion, since in this graph each vertex corresponds to a node of the FEM, and a
single step is needed for direct nodal numbering of the considered FEM.

Algorithm
Step 1: Construct the element clique graph S of the considered FEM.

Step 2: Use a nodal numbering algorithm that is available (e.g. the algorithm pre-
sented in Section 5.5.4).

In this method, all the nodes of an element will be contained in at most two adja-
cent contours of an SRT; hence the bandwidth becomes dependent on the width of
the SRT.

ANALYSIS OF ELEMENT CLIQUE GRAPH METHOD

Step 1: This step has time complexity O(156 *).

Step 2: This step has time complexity O(cZ8 ). This complexity corresponds to the
complexity of the critical step of the nodal ordering algorithm.

5.6.2 SKELETON GRAPH METHOD (SGM)

Definition: The /-skeleton graph S of an FEM is a graph whose vertices are the
same as the nodes of the FEM, and its members are the edges of the FEM. Figure
5.7 illustrates the skeleton graph of the FEM shown in Figure 5.6(a).
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Fig. 5.7 The skeleton graph of the FEM of Figure 5.6(a).

In order to generate the skeleton graph (SG) of an FEM, one should connect all
pairs of nodes of each element i of the FEM by a member that is not previously
connected. The time complexity of the process of formation of the SG of an FEM
is O(Adr ), where 7 is the same as the maximum number of members of the SG of
an element. Since the bound of 7 is 6(6 — 1)/2, the complexity of this process is
O(A86%). As shown, the time complexities for the formation of the SG and the
ECG are the same for the worst case. However, the number of members of the SG
is less than that of the ECG in FEMs containing elements with 4 or more nodes.
For example, in the grid of Section 5.6.1, the compact adjacency list is a vector of
length (4mn + 2m + 2n). It is clear that the lengths of the index vectors of the com-
pact adjacency lists of the SG and the ECG are always the same. The diameter of
the SG of the FEM is large. For example, the diameter of the considered grid is the
same as (m + n). This property is very efficient when a single good starting vertex
is needed. This is because of the existing low number of pairs of vertices being the
peripheral nodes. For example, in the grid there are always only two pairs of pe-
ripheral vertices.

Simultaneous application of the ECG and the SG provides very efficient tools. For
example, consider the small FE shown in Figure 5.8. Suppose an SRT is rooted
from vertex 1 in the ECG of the FEM to find a good starting node with minimum
degree from its last contour. Vertices 17 and 19 are found. They are the farthest
from vertex 1 and have the same degree as 3 (in the ECG). However, vertex 19 is
better than vertex 17, since W(SRT)o) < W(SRT);). Instead of generating two SRTs
from vertices 17 and 19, one can choose 19 by generating SRT; in the SG, because
dsg(1,19) > dsg(1,17), where dsg(i, j) denotes the distance between vertices i and j
in the SG.
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5 / IR

4 8 12 16 19

Fig. 5.8 A small finite element model.
Algorithm

Step 1: Construct the skeleton graph S of the considered FEM. For each element i
of the FEM, connect two end nodes of each edge of element by a member. Such
nodes should be connected only once.

Step 2: Order the vertices of S using any nodal numbering algorithm that is avail-
able (e.g. one of the algorithms presented in Section 5.5.1), thus obtaining a nodal
ordering of S.

In order to generate the SG of an FEM, it is necessary to list the nodes of each
element in a suitable order. In this method, the number of members of S is less
than those of the Element Clique Graph Method (ECGM); however, in FEMs with
triangular elements, the number of the members are the same. Therefore, this
method takes less computer storage for keeping the connectivity of S. Generating
an SRT in a SG may lead to the allocation of the nodes of an element in three or
more adjacent contours. Therefore, the width of the SRT being used, along with
the number of contours containing the nodes of an element of the FEM, specify the
bandwidth.

ANALYSIS OF SKELETON GRAPH METHOD
Step 1: The running time for this step is O(Adt ), where 7 is the same as the maxi-
mum number of edges of an element. Since the bound of 7 is 6(0 — 1)/2, the time

complexity of this step is O(186%).

Step 2: This step requires O(a’8 ) time.
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5.6.3 ELEMENT STAR GRAPH METHOD (ESGM)

Definition: The element star graph S of an FEM has two sets of vertices, namely,
the main set containing the same nodes as those of the FEM and a virtual set con-
sisting of the virtual vertices associated in a one-to-one correspondence with the
elements of the FEM. The member set of S is constructed by connecting the virtual
vertex of each element i to all the nodes of the element i. The element star graph
(ESG) of the FEM shown in Figure 5.6(a) is illustrated in Figure 5.9. The virtual
vertices are shown by larger-sized dots.

In order to generate the ESG of an FEM, one should assign a vertex to each ele-
ment and to each node, and then connect the vertex corresponding to an element to
all vertices corresponding to the nodes of the element by a member. This process
takes only O(A@) time for the worst case. For this process, the element-node list of
the considered FEM is sufficient; however, since N(ESG) and M(ESG) are large
integers, the compact adjacency list will be large. This is a disadvantage of the
ESG. For the previously considered grid of 4-node quadrilateral elements, the
compact adjacency list and its index vector take (8mn) and (2mn + m + n + 1) inte-
ger words of computer storage, respectively.

Fig. 5.9 The element star graph of the FEM of Figure 5.6(a).

Note that in this case, there are (mn) virtual vertices. The diameter of the ESG of
an FEM is large. It can be easily shown that the diameter of the ESG of an FEM is
twice the diameter of the ECG of the FEM; that is, drsg = 2dkcq.

In the ESG of an FEM, the distance between each pair of vertices corresponding to
two nodes of the FEM that share an element is equal to 2, while in the ECG it is
equal to 1. This difference does not cause the ESG to lose the previously discussed
property, which is the existence of more than one pair of peripheral nodes in most
of the FEMs. Hence, this graph model is efficient for algorithms in which multiple
roots need to be found. In this graph, the degree of each vertex corresponding to a
node i of the FEM is the same as that of the number of elements of the FEM inci-
dent to node i.



ORDERING: GRAPH THEORY METHODS 209

Algorithm

Step 1: Construct the element star graph S of the considered FEM. For each ele-
ment 7, generate a virtual vertex labelling with i + ¢, and connect the nodes of i to
the vertex i + o, where « is the total number of nodes of the FEM.

Step 2: Order the main vertices of S using a nodal numbering algorithm that is
available, for example, one of the methods presented in Section 5.5.1. This step is
similar to the previous methods, but virtual vertices need not be labelled in the
process of the numbering of the nodes. The virtual vertices can easily be identified
because their labels are above .

In order to generate the ESG of an FEM, it is not necessary to list the nodes of
each element in a specific order. In this method, M(S) is higher than the skeleton
graph method (SGM) and can also be higher than the ECGM (e.g. for an FEM
with triangular elements). N(S) of the star graph is equal to A + ¢, where A denotes
the number of elements of the FEM. Therefore this method requires more com-
puter time than ECGM, for most of the cases, and is always longer than the SGM.
Generation of an SRT in an ESG forces the nodes of an element to be contained at
the most in three adjacent contours.

ANALYSIS OF ELEMENT STAR GRAPH METHOD

Step 1: The running time for this step is O(A60).

Step 2: This step requires O(f°5 ) time, where f= A+ c.

5.6.4 ELEMENT WHEEL GRAPH METHOD (EWGM)

Definition: The element wheel graph S of an FEM is the union of the element star
graph and the skeleton graph of the FEM. The element wheel graph (EWG) of the

FEM shown in Figure 5.6(a) is illustrated in Figure 5.10. The virtual vertices are
shown by larger-sized dots.

Fig. 5.10 The element wheel graph of the FEM of Figure 5.6(a).



210 OPTIMAL STRUCTURAL ANALYSIS

In order to generate the EWG of an FEM, one should generate the SG of the FEM
and then apply the process for the formation of the ESG. This procedure takes
O(A60% + 18) = (A86*%) operations. It should be noted that § denotes the maxi-
mum degree of a vertex of the SG. For the formation of the EWG like that of the
SG, the element-node list along with the member list or other lists for a typical
element should be given and the list of nodes for the elements should be provided
in a suitable order. Since N(EWG) and M(EWG) are large integers, the compact
adjacency list requires (12mn + 2m + 2n) integer words. This is the same as the
total computer storage needed for the SG and the ESG. The index vector of the
compact adjacency list is like that of the ESG, which is a vector of length (2mn +
m + n + 1). The diameter of the SG, the ESG and the element wheel graph of an
FEM have the following relation

drwa < dgsg and dewe < dis. (5-13)

This is due to the existence of the members of the SG and the ESG in the member
set of the EWG. Clearly, the diameter of the ECG is less than or equal to that of
the EWG. When an FEM contains higher-order elements, its EWG may contain
several pairs of peripheral vertices, since the distance between the vertices of the
EWG corresponding to the corner nodes of each element is the same as that of the
ESG.

Algorithm

Step 1: Construct the element wheel graph S of the considered FEM. This can be
done by generating the union of the ESG and SG.

Step 2: Order the main vertices of S using a nodal numbering algorithm that is
available, for example, one of the methods presented in Section 5.5.1. This step
should be carried out like Step 2 in the ESGM.

In order to generate the EWG of an FEM, it is necessary to list the nodes of each
element in a suitable order. In this method, M(S) is higher than that of the ESGM,
and therefore it needs more computer storage than the ESGM. The nodes of an
element of FEM are at most contained in three contours of the generalised SRT of
the EWG.

ANALYSIS OF ELEMENT WHEEL GRAPH METHOD

Step 1: The running time for this step is O(186%).
Step 2: This step requires O(f°6) time.
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5.6.5 PARTIALLY TRIANGULATED GRAPH METHOD (PTGM)

Definition: The partially triangulated graph S of an FEM is a graph whose verti-
ces are the same as the nodes of the FEM and an artificial vertex assigned to each
element 7 is connected to all the original nodes of i. The selected nodes of the ele-
ments are found by generating all SR subtrees from a good starting vertex in the
SG of the FEM and taking the first node of an element included in the SRT during
the process of the generation. For example, for the FEM shown in Figure 5.6(a),
an SR subtree is rooted from ny and shown in Figure 5.11(a), and the selected
nodes of the elements are shown by larger-sized dots. The partially triangulated
graph (PTG) of the FEM is shown in Figure 5.11(b).

=

(a) The skeleton graph and an (b) The partially triangulated
SR subtree of the FEM. graph of the FEM.

Fig. 5.11 The skeleton, an SR subtree and the partially triangulated graph of the
FEM of Figure 5.6(a).

In order to generate the PTG of an FEM, the following steps can be executed.
1. Generate the SG of the FEM.

2. Form an SRT rooted from an arbitrary node n,, and select a node n; from the
last contour of SRT,, with the minimum degree.

3. Form an SRT rooted from n;, and select a node n, from the last contour of
SRT,;, with minimum degree.

4. Form an SRT routed from 7, and take n, from n,, n, and n, whose corresponding
SRT has the least width.

5. Calculate the distance between each vertex of the SG and #;.

6. For each clement 7, select a vertex that is the nearest node to #,;
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7. Form the PTG by connecting the vertex corresponding to the selected node of
each element i to the vertices corresponding to other nodes of i; previously con-
nected nodes should not be connected again.

The above process has time complexity O(A80° + 4ad + 10 + A180) = O(A567).
Steps 2, 3 and 4 of this process are to find a good starting vertex ng; however, other
good starting node selection algorithms can be employed for these steps. For the
formation of the PTG like that of the EWG, the element-node list or other lists for
a typical element should be given, and the nodes of elements should be listed in a
suitable order. The number of members of a PTG is low and is always less than or
equal to A(6 — 1). For example, for the considered m X n grid, the compact adja-
cency list is a vector of length (6 mn). Since the PTG of an FEM has the same
number of nodes as the FEM, the index vector of the compact adjacency list is a
vector of length ¢, and for the considered grid oc= (m + 1)(n + 1). The diameter of
the PTG of an FEM is a high integer; for example, the diameter of the grid is
(m + n). Clearly, the diameter of the PTG of an FEM is greater than or equal to
that of the ECG of the FEM. This is because, in this graph, the distance between
two vertices corresponding to the two nodes of the FEM that are contained in an
element is equal to 1 or 2.

Algorithm
Step 1: Construct the partially triangulated graph S of the considered FEM.

Step 2: Order the vertices of S using an available nodal numbering algorithm, for
example, an algorithm of Section 5.5.1.

For generating the PTG of an FEM, it is necessary to list the nodes of each element
in a suitable order. In this method, M(S) may or may not be higher than that of the

SGM. In the process of forming an SRT in a PTG, the nodes of an element may lie
in one, two or three adjacent contours.

ANALYSIS OF PARTIALLY TRIANGULATED GRAPH METHOD

Step 1: The running time for this step is O(A86° + 408 + A0+ A50) = O(A50°)

Step 2: This step requires O(c'0) time.
5.6.6 TRIANGULATED GRAPH METHOD (TGM)

Definition: The triangulated graph S of an FEM is the union of the partially trian-
gulated graph and the skeleton graph of the FEM. The triangulated graph (TG) of
the FEM shown in Figure 5.6(a) is illustrated in Figure 5.12. The selected vertices
of the elements are the same as those of Figure 5.6(a).
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Fig. 5.12 The triangulated graph of the FEM of Figure 5.6(a).

In order to generate the TG of an FEM, one should generate the PTG of the FEM
and then connect each pair of disconnected vertices that are adjacent in the SG by
a member. This process of formation also has time complexity O(A86%) for the
worst case. It is obvious that the formation of the TG of an FEM is similar to that
of SG, EWG and PTG. The element list along with a data connectivity list, such as
the member list of a typical element, should be given and the list of nodes of the
elements should be provided in a suitable order. The number of members of a TG
is always higher than or equal to that of the SG. It is interesting to note that the
TG, SG and ECG become the same graph when the considered FEM contains bar
and/or 3-node triangular elements. If the FEM contains only the bar elements, then
the PTG is also included in this set.

The compact adjacency list is a comparatively long vector. For example, for the
m X n grid, it is a vector of length (6mn + 2m + 2n). Since the TG of an FEM has
the same number of nodes as the FEM, the index vector of the compact adjacency
list takes = (m + 1)(n + 1) words of memory. The diameter of the TG of an FEM
is an integer between the diameters of ECG and the SG of the FEM. Clearly, its
diameter is less than or equal to that of the PTG.

Algorithm

Step 1: Construct the TG S of the considered FEM. This step can be carried out by
generating the PTG and the SG.

Step 2: Order the vertices of S using a nodal numbering algorithm.
In this method, the number of members is higher than that of the Partially triangu-

lated graph method (PTGM). For an SRT in a TG, the nodes of an element of an
FEM are contained in at most three adjacent contours.
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ANALYSIS OF TRIANGULATED GRAPH METHOD

The time complexity of this method is the same as that of the PTGM.

5.6.7 NATURAL ASSOCIATE GRAPH METHOD (NAGM)

Definition: The natural associate graph S of an FEM has its vertices in a one-to-
one correspondence with the elements of the FEM, and two vertices of S are con-

nected by a member if the corresponding elements have a common boundary. The
NAG of the FEM shown in Figure 5.6(a) is illustrated in Figure 5.13.

Fig. 5.13 The natural associate graph of the FEM of Figure 5.6(a).

In order to generate the NAG of an FEM, one of the following two methods can be
employed. The first is a direct scheme that requires more computer time but less
computer storage. In this case, only the element-node list should be provided. The
second requires less computational time but uses larger memory. In this case, the
node-clement list along with the element-node list are provided as input data.

Method 1

Check each pair of elements i and j of the FEM for a common boundary. If i and j
have such a boundary, then the vertices corresponding to i and j should be con-
nected by a member in the NAG.

The time complexity of this method is O(A1?67); however, if the maximum differ-
ence A between the labels of the two elements with a common boundary is given,
then the time complexity reduces to O(AA@?). Hence, ordering of the elements
should be performed in the process of mesh generation. However, this method is
not efficient because of the high time complexity or dependency on the data. In the
following text, a different method is presented that does not depend on the data
order and requires far fewer operations, at the expense of greater computer storage,
than Method 1.
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Method 2
Step 1: Generate the node-element list of the considered FEM.

Step 2: Take each pair of elements incident at a node, and note whether they have
more than one corner node in common.

Step 3: When two elements of equal or different dimensions have common corner
nodes equal to or more than the smallest dimension of the elements, then the corre-
sponding vertices in the NAG are connected by a member.

This method takes O(at@’¢?) operations, where ¢ is the same as the maximum num-
ber of elements containing a specified node. The element-node list and the node-
element list have the same length; however, the index vector of the node-element
list takes o words in place of A words in the element-node list.

The number of members of the NAG of an FEM is a relatively small integer;
hence its compact adjacency list uses a small amount of memory, which is to the
advantage of the NAG. For example, in the m X n grid, the compact adjacency list
is a vector of length (4mn — 2m — 2n), and its index vector takes (mn) words. How-
ever, although the list for keeping the data connectivity of the NAG of an FEM
uses low computer storage, some difficulties arise in the process of the formation
of the graph for FEMs containing elements with mid-side nodes.

The NAG of the m x n grid is the same as that of the SG of an (m — 1) x (n — 1)
grid. Hence, like the SG of the grid, the NAG has a relatively high diameter length
ofm+n-—2.

ALGORITHM
Step 1: Construct the natural associate graph S of the considered FEM.

Step 2: Order the vertices of S using a nodal numbering algorithm, to obtain an
ordering for the elements of the FEM.

Step 3: Order the nodes of the FEM, element by element, in the same sequence as
decided in Step 2. Within each element, priority is given to mid-nodes, passive and
active nodes, respectively. A node is called passive if it has no incident new ele-
ment; otherwise it is active.
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Step 3 of this method can be carried out using the following process:

(I) Generate a matrix NE with a rows and ¢ columns, in which its ith row contains
the labels of the elements containing node i, where ¢ is the same as the maximum
number of elements incident to a specified node.

(IT) For each element j ( j=1, ..., /) execute the following steps, in turn.
(a) If j has a mid-node, label it first.

(b) Detect the active and passive nodes ;j using the matrix NE. It should be noted
that using NE makes the process fast; however, instead one can check a node of j
for incidence with a new element.

(c) Form a multiple root SR subtree from the active node of /.

(d) Label the passive nodes of j when they are selected in the multiple root SR
subtree.

(e) Label the active nodes of j that are adjacent to the previously labelled nodes.
(f) Repeat Step (e) until all the active nodes of j are labelled.

In order to generate the NAG of an FEM, it is necessary to list the nodes of each
element in a suitable order. In this algorithm, M(S) has the least value among the
methods presented so far; therefore, it takes less computer storage for keeping the
connectivity data of S.

However, this method has a disadvantage in terms of programming. In order to
check two elements having a common boundary, the nodes of each boundary of
the elements or the dimension of the elements should be provided as input data. If
the dimensions of the elements are given, it should be noted that, in three-
dimensional models, the elements may have mid-side nodes. Hence, having three
or more common nodes does not guarantee the existence of a common boundary.
So the mid-side nodes in an irregular configuration, or the number of mid-side
nodes of an element in a regular configuration of elements, should be provided as
input data.

ANALYSIS OF NATURAL ASSOCIATE GRAPH METHOD
Step 1: The running time for this step is O(ade?).

Step 2: This step requires O(A*8 ) time.
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Step 3: This step has time complexity O(Ac6 ), where ¢ is the maximum value of
6% and ¢.

5.6.8 INCIDENCE GRAPH METHOD (IGM)
Definition: The incidence graph S of an FEM has its vertices in a one-to-one cor-
respondence with the elements of the FEM, and two vertices of S are connected by

a member, if the corresponding elements have a common node. Figure 5.14 shows
the incidence graph of the FEM shown in Figure 5.6(a).

PO

N— ‘

AN >)41
Fig. 5.14 The incidence graph of the FEM of Figure 5.6(a).

To generate the incidence graph (IG) of an FEM, one of the following two meth-
ods can be employed. The first is a direct approach, which requires more
computational time but less words of memory, for which only the element-node
list should be provided. The second scheme requires less computational time but
more computer storage; the node-element list along with the element-node list
should be provided.

Method 1

Check each pair of elements 7 and j of the FEM for a common node, and if they
have such a node, connect it with a member to the corresponding vertices i and j in
the IG.

The time complexity of this method is O(1%67); however, as stated for the NAG
generation, if the maximum difference A between the labels of two elements with a
common node is given, the complexity reduces to O(AA0).

Method 2

Step 1: Generate the node-element list of the considered FEM.

Step 2: Connect the representative vertices of each pair of elements that contain a
common node.
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This method takes O(ade?) operations, which is more efficient than Method 1,
especially for FEMs with more number of elements.

The number of members M(IG) of the IG of an FEM is relatively high, and its
compact adjacency list takes a large amount of memory. For an arbitrary FEM,
M(IG) = M(NAG). The equality holds when every two elements have a common
boundary or a common node. FEMs with only bar elements belong to this cate-
gory. For example, for the grid of Section 5.6.7, M(NAG) = 2mn — m — n and
M(1G) = 4mn — 3m — 3n + 2 and the compact adjacency list of the IG takes (8mn —
6m — 6n + 4) integer words of memory. Its index vector has the same length as that
of the NAG.

Algorithm
Step 1: Construct the incidence graph S of the considered FEM.

Step 2: Order the vertices of S using a nodal numbering algorithm, to obtain an
ordering for the elements of the FEM.

Step 3: Order the nodes of the FEM, element by element, in the same sequence as
decided in Step 2. Within each element, priority is given to mid-nodes, passive and
active nodes, respectively.

ANALYSIS OF INCIDENCE GRAPH METHOD

Step 1: The running time for this step is O(ade?).

Step 2 and Step 3 of this method have the same complexities as Steps 2 and 3 of
the NAGM.

5.6.9 REPRESENTATIVE GRAPH METHOD (RGM)

Definition: Consider the skeleton graph of an FEM, and select an appropriate
starting vertex, using any available algorithm. The nearest corner node of each
element of the FEM is taken as the representative node of that element. The SR
subtree of the SG of the FEM containing all the representative nodes of the ele-
ments is called a representative graph S of the FEM. The representative graph
(RG) of the FEM shown in Figure 5.6(a) is illustrated in Figure 5.15.
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Ny

Fig. 5.15 The representative graph of the FEM in Figure 5.6(a).
In order to generate the RG of an FEM, the following steps should be executed:
Step 1: Execute Steps 1—4 of the algorithm for the formation of the PTG.

Step 2: Form an SR subtree step by step from 7, until each element of the FEM has
a node whose corresponding vertex in SG is contained in the SR subtree. The first
selected vertex (in the SR subtree) corresponding to the nodes of each element i
should be taken as the representative node of i.

The generated SR subtree is the RG of an FEM. The first step takes O(A86" +
3a8) = O(A86%) operations. For the execution of this step, the element-node list,
along with the member list or other connectivity lists for a typical element, should
be given and lists of nodes of elements should be provided in a suitable order. This
is because of the need for the formation of the SG of the FEM.

The RG of an FEM is a tree; hence all theorems and properties of trees hold for
this graph. The number of members of this graph is a very small integer and its
upper bound is (o — 1). Thus, its compact adjacency list occupies a small amount
of memory. For example, for the considered m X n grid, the compact adjacency list
of the RG is a vector of length (2mn — 2). This property of the RG of an FEM
makes it an efficient model.

Algorithm

Step 1: Construct the RG of the FEM and number its vertices, which results in the
ordering of the elements of the considered FEM.

Step 2: Use Step 3 of the NAGM to number the nodes of the FEM.

This method is the most efficient approach from the computational time and stor-
age points of view for most of the practical models.
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ANALYSIS OF THE REPRESENTATIVE GRAPH METHOD

Step 1: The running time for this step is O(A860%+ ad + A0+ ade) = O(y), where ¢
is the maximum value of the elements of the {1 o 87, ade}.

Step 2: This step requires O(Ac6 ) time.
5.6.10 DISCUSSION OF THE ANALYSIS OF ALGORITHMS

It can be concluded from the above complexity analyses that the RGM occupies
the least number of operations for the worst case. In most of the practical models,
it has been the fastest algorithm. ECGM, SGM, PTGM and TGM have the same
complexity. The critical steps of these have time complexity O(028), where ¢ is a
constant for an FEM but ¢ differs from one graph to another. However, for the
practical models studied here, the following results are observed:

(a) The difference between the times required for ECGM and SGM is small.
(b) In general, TGM uses slightly more time than PTGM.

(c) For an FEM with low-order elements, ECGM and SGM, in general, take less
time than, or nearly the same time as, PTGM and TGM. However, for FEMs with
high-order elements, PTGM and TGM take far less time than ECGM and SGM.

The time complexity of the Element Wheel Graph Method (EWGM) for the worst
case is the highest. For the practical models studied, the following results are ob-
tained:

(a) In two-dimensional models with elements having less than 10 nodes, EWGM
generally occupies the highest computational time, but in models with higher-order
elements, SGM uses the highest computer time.

(b) In three-dimensional models, NAGM requires the highest computational time.

Excluding the RGM, the following results can be derived considering the speed for
the practical models being studied:

(1) In two-dimensional models with low-order elements, ECGM and SGM may be
the fastest methods; however, in FEMs with high-order elements, the incidence
graph method (INGM) is generally the fastest approach.

(i1) In three-dimensional models, ESGM is generally the most economical algo-
rithm.
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5.6.11 COMPUTATIONAL RESULTS

The presented algorithms are implemented on a PC and many examples are exam-
ined, some of which are included in this section. The bandwidth of D and the
relative computational time for the algorithms are provided.

Example 1: A planar FEM with three types of elements consisting of 4-node, 8-
node and 12-node elements is considered as shown in Figure 5.16. This model
contains 1959 nodes and 2250 elements. The combination of elements may not be
practical; however, it is purposely chosen to illustrate the generality of the methods
in dealing with the presence of different elements of a model. The results are pre-
sented in Table 5.1.

Fig. 5.16 A planar FEM.

Table 5.1 Results of Example 1.

Method | ECGM SGM ESGM | EWGM | PTGM TGM | NAGM | INGM RGM

b(D) 313 497 313 457 513 515 447 451 491
Time 29.77 27.02 21.92 36.09 20.65 22.03 18.29 15.71 9.72

Example 2: A three-dimensional FE model consisting of 480 (5812) 20-node cu-
bic elements (each edge of the elements has a mid-side node) is considered, having
a total of 2559 nodes. The results are depicted in Table 5.2.

Table 5.2 Results of Example 2.

Method | ECGM SGM ESGM | EWGM [ PTGM | TGM | NAGM [ INGM RGM

b(D) 843 1173 843 787 1103 1103 1185 845 1195
Time 18.62 7.08 5.93 8.12 7.47 7.85 38.67 7.75 5.93
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Example 3: A planar FEM with two holes is considered as shown in Figure 5.17.
Six FEMs with 1000 elements are studied with elements having 4 nodes, 4 nodes
and a mid-node, 8 nodes, 8 nodes and a mid-node, 12 nodes, and 12 nodes and a
mid-node. These models contain 1134, 2134, 3269, 4204 and 6404 nodes, respec-

tively. The results are depicted in Table 5.3.

Fig. 5.17 A planar FEM with two holes.

Table 5.3 Results of Example 3.

12 nodes
Element 4nodes |4 nodes+ | 8nodes | 8nodes—+ | 12 nodes +
mid-node mid-node mid-node
ECGM b(D) 111 217 333 437 553 657
Time 4.12 7.25 15.32 19.55 30.49 37.90
SGM b(D) 95 179 269 347 439 519
Time 4.29 7.14 15.93 20.32 33.23 39.71
EWGM b(D) 97 185 313 417 541 639
Time 7.31 10.60 17.13 20.82 26.04 29.94
PTGM b(D) 159 309 477 633 807 963
Time 4.29 6.59 10.60 12.97 16.70 19.45
TGM b(D) 167 327 479 619 791 945
Time 4.17 6.98 11.15 13.90 17.74 21.09
NAGM b(D) 95 177 271 353 447 529
Time 5.22 6.87 10.28 12.31 16.03 18.84
INGM b(D) 113 225 341 455 569 687
Time 4.39 5.77 7.91 9.23 11.10 12.96
RGM b(D) 95 177 271 353 447 529
Time 2.70 4.18 6.43 8.07 10.05 12.24

Example 4: The FE model of a buttress dam is considered, the section of which is
illustrated in Figure 5.18, consisting of 480 nodes and 603 elements. This model
contains three layers of prismatic members, and each element contains six nodes.
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The results are depicted in Table 5.4. The patterns of the node adjacency matrices
are presented in the figure.

Table 5.4 Results of Example 4.

Method | ECGM [ SGM ESGM | EWGM | PTGM | TGM | NAGM [ INGM RGM

b(D) 125 221 125 221 229 213 175 125 187
Time 1.70 1.32 1.70 2.42 1.76 1.76 6.43 4.45 1.54

Fig. 5.18 A planar FEM.

5.6.12 DISCUSSIONS

The algorithms presented in this section transform the connectivity of the FEMs
into the topological properties of different graphs. Then a nodal ordering algorithm
undertakes numbering the nodes of the graphs, resulting in nodal numbering of the
FEMs. All the methods presented are low-order polynomial time algorithms.
Analyses are considered for the worst cases and compared. Such an analysis is the
most logical way of comparing the algorithms, since most of the combinatorial
optimisation algorithms are configuration dependent. Each algorithm presented has
advantages and disadvantages, which become manifest when the algorithm is em-
ployed for models with different types of elements and connectivity properties. It
should be noted that the relative performance of the algorithms also depends on the
starting node selection algorithm and the nodal ordering algorithm being em-
ployed.
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Finally, it should be mentioned that the simultaneous use of two graphs out of the
nine graphs presented in this section for nodal ordering may lead to a combined
model more informative than individual models; see Kaveh and Roosta [131].

5.7 FINITE ELEMENT NODAL ORDERING
FOR PROFILE OPTIMISATION

5.7.1 INTRODUCTION

When a banded matrix of high order has a wide band and a large number of zeros
inside it, the diagonal storage scheme may become wasteful. Then a profile (vari-
able band) scheme of Jennings [88], the so-called skyline scheme (Felippa [49]),
may be used.

Nodal numbering algorithms can also be applied to profile reduction. As men-
tioned earlier, after nodal numbering for bandwidth reduction, by reversing the
ordering, a numbering corresponding to a much smaller profile can be found. This
has been found by George [56] and proved by Liu and Sherman [151]. The method
is known as the Reverse Cuthill-McKee algorithm. For the Cuthill-McKee type of
ordering, the bandwidth remains unchanged when the order is reversed; however,
the profile can never increase.

For example, consider a nodal numbering for a graph as shown in Figure 5.19(a)
with corresponding adjacency matrix A in Figure 5.19(b). Reversing the nodal
numbers as in Figure 5.19(c) leads to a matrix A’ as depicted in Figure 5.19(d),
with a reduction of the profile from 15 to 13.

1 23 456 78

6 1f* % =
21% = %= % .
R I
8 4] . = k% *
5 3 S5 - % % % .
1 6] - * . . % *
71 - * k%
7 4 2 8| . . ko %

(a) A nodal numbering. (b) Matrix A.
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3 [ # = 1
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4 6 4] - N
5] = * % * .
8 6| - EIE * ok %
7 . . k% k0 %k
2 3 7 8l . k ok ok
(c) Reverse of the nodal numbering of (a). (d) Matrix A".

Fig. 5.19 A Reverse Cuthill-McKee for nodal numbering.

There are many algorithms for profile and frontwidth reduction, which can be cate-
gorised in different ways. In this section the general algorithm of Souza and
Murray [210] is adopted for nodal ordering of all the graph models presented in
the previous section, to reduce the profile of sparse matrices with symmetric struc-
tures. This algorithm incorporates the algorithm for the selection of peripheral
nodes, the re-sequencing scheme of Sloan [204] and the algorithm of Gibbs—King
[58].

To proceed with the main algorithms for profile reduction, some definitions are
stated in the following text.

The profile of an n X n matrix A is defined as,

P=Yb, (5-14)

where the row bandwidth, b,, for row i is defined as the number of inclusive entries
from the first non-zero element in the row to the (i + 1)th entry. The efficiency of
any given ordering for the profile solution scheme is related to the number of ac-
tive equations during each step of the factorisation process. Formally, row j is
defined to be active during the elimination of column i if j > i and there exists a; =
0 with £ < i. Hence, at the ith stage of the factorisation, the number of active equa-
tions is the number of rows of the profile that intersect column i, ignoring those
rows already eliminated. Let f; denote the number of equations that are active dur-
ing the elimination of the variable x;. It follows from the symmetric structures of A
that

P=Y 1=, (5-15)
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where f; is commonly known as the wavefiront or frontwidth. Assuming that N and
the average value of f; are reasonably large, it can be shown that a complete profile
or front factorisation requires approximately O(Nf?) operations, where F is the
root-mean-square wavefront, which is defined as

WA (5-16)

Everstine [43] has shown that P/N < F < W, < B, where W, is the maximum
wavefront. Hence, to minimise the storage requirement and solution time, it is im-
perative to reduce the profile and root-mean-square wavefront, respectively. As
both P and F are related, any algorithm that seeks to minimise either inevitably
tends to reduce the other as well. We call an algorithm efficient if it results in sig-
nificant profile reduction in a reasonable computer time.

In the storage scheme due to Jennings, all elements that belong to the envelope are
stored row by row including zeros, in a one-dimensional array, say AN. Diagonal
elements are stored at the end of each row. The length of AN is equal to Profile
(A) + n. An array of pointers IN, the entries of which are pointers to the locations
of the diagonal elements in AN, is also necessary. Thus, the elements of row i,
when i > 1, are in positions IN(i — 1) + 1 to IN(i). The only element of row 1 is
Ay, stored in AN(1). The elements have consecutive, easily calculable column
indices.

For example, the matrix of Eq. (5-4) has a profile equal to 4, and its envelope stor-
age is

Position=1 2 3 4 5 6 7 8 9
AN =[1 6 2 7 3 9 8 4 5]

IN =1 3 5 8 9]

A variant of Jennings’s scheme is obtained when the transpose of the lower enve-
lope is stored. In this case, elements are stored column-wise, and since the columns
of the matrix retain their length, the scheme is often termed skyline storage. The
profile of a matrix also changes if the rows and columns are permuted.

5.7.2 GRAPH NODAL NUMBERING FOR PROFILE REDUCTION

Graph models defined in the previous section are incorporated in a general algo-
rithm of Souza and Murray [209] to obtain ten approaches for profile reduction.
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This algorithm is based on Sloan’s algorithm, using priorities to control the selec-
tion of nodes from a priority queue. Some of its features are adapted in the
following algorithms.

The numbering and control of nodes in the priority queue are carried out through
the assignment of status, based on the numbering strategy of King [137], which
operates as follows:

Take a node of minimum valency and number it “1”. The set of nodes is now di-
vided into three subsets, 4, B and C. The subset A4 consists of nodes already
numbered. The subset B is defined as B = Adj (4); that is, it consists of all nodes
adjacent to any node of 4. The subset C contains the remaining nodes. Then, at
each step, number the node of subset B that causes the smallest number of nodes of
subset C to be transferred to subset B, and redefine 4, B and C, accordingly.

For example, consider a graph S with original nodal numbering as shown in Figure
5.20(a).

Take node “5” as a starting node and number it as “1”. Then:

A= {5}, B={1,8} and C = {the remaining nodes}.

8 3
5 1
6 7 4 7
4 8
1 2 3 2 5 6
(a) (b)

Fig. 5.20 An example of numbering by King’s algorithm.

At this stage, 1, 8 are the next candidates. If 1 is taken to 4, then 2 will come to B;
and for 8, node 7 will join B. Therefore, arbitrarily, 1 is taken to 4 and numbered
as “2”. Now we have:

A=1{51}, B={8,2} and C = {the remaining nodes}.

From new candidates 8 and 2, naturally 8 will be selected because it brings only 7
to B, while 2 brings 3 and 6. Therefore, 8 is numbered as 3. This process is contin-
ued until the nodal numbering of Figure 5.20(b) is obtained, which corresponds to
a profile equal to 14.
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The nodes in the above strategy can be categorised more formally as follows:

Prior to the numbering, all the nodes of a graph model G of the considered FEM
are assigned inactive status. When a node of G is inserted in the priority queue, it
is assigned pre-active status. After a node is numbered, it is assigned post-active
status. Nodes that are adjacent to a post-active node and do not have post-active
status are defined as having active status, as shown in Figure 5.21. King’s algo-
rithm is generalised by Sloan [203] by introducing a priority queue to control the
order to be followed in the numbering of the nodes. This algorithm consists of the
following two phases:

Post-active

Fig. 5.21 Nodes in different status.
Phase 1: Selection of pseudo-peripheral nodes
The pair of starting nodes is determined according to the following steps:

Step 1: Choose an arbitrary node v of minimum degree.

Step 2: Generate an SRT, ={C/,C,,...,C}} rooted from v. Let S be the list of the

nodes of C), which is stored in the order of increasing degree.

Step 3: Decompose S into subsets S; of cardinality | S; | ,j =12, .., A, where A is

the maximum degree of any node of S, such that all nodes in S; have degree j. Gen-
erate an SRT from each node y in S, for the first 1<m; <A.If d(SRT)) > d(SRT,),

then set v =y and go to Step 2.
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Step 4: Let u be the root of the longest SRT that has the smallest width. When the
algorithm terminates, v and u are end points of a pseudo-diameter.

Step 1 of the above algorithm uses O(y) operations, where v is the number of
nodes of the graph employed for the connectivity of the considered FEM. The time
complexity of Step 2 is O(wd ). The execution of Step 3 uses O(y*8) for the worst
case. The time complexity of Step 4 is O(A). The critical step of the method is
Step 3; its time complexity shows that the elapsed time for execution of this algo-
rithm grows proportionally to the square of the number of nodes of the graph
model.

Phase 2: Numbering

The general algorithm for nodal numbering of an arbitrary graph associated with
an FEM consists of the following steps:

Step 1: The priority queue denoted by Q is initialised with a starting node s, that is,
0, =s. Set n =1, where n is the length of the queue. The node s is assigned a pre-
active status. Let & be the node count, which is initially set equal to zero or equal to
the last number being used, in the case of disconnected graph models.

Step 2: Assign initial status and priorities to all the nodes.

Step 3: Select the node u € Q that has the maximum priority. Let  be the index of
node u in the queue such that Q;= u.

Step 4: Update queue, priority and status. Delete u from Q by setting Q;= Q, and
n < n — 1. Insert nodes in queue: for each node x adjacent to u, whose status is
inactive, set n < n + 1 and Q, = x. Assign node x a pre-active status and update
priorities.

Step 5: Increment the node count by setting k < k£ + 1, and label node u by la-
bel(u) < k, where label(.) contains the new labels of the nodes of the graph model.
The node u is assigned a post-active status.

Step 6: If n > 0, that is, there are still nodes in the queue, then update priorities and
status and go back to Step 3.

Step 7: Exit; that is, the new ordering is now completed, and the number of each
node u is obtained as label(u).
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5.7.3 NODAL ORDERING WITH ELEMENT CLIQUE GRAPH (NOECG)

In this method, Sloan’s criteria and definition for profile reduction are adapted and
the general algorithm of the previous section along with the element clique graph
of the considered FEM are employed for ordering. In Sloan’s algorithm, a quantity
is defined and used as the current degree. The initial priority for each node is set to

P,=Wxd(e, v) - W)X cd(v), (5-17)

where W, and W, are integers (set to W= 1 and W, = 2 in the original algorithm of
Sloan [203] ), d(e, v) is the distance of node v from the end node e, and cd(v) is the
current degree of v.

In Step 4 of the general algorithm, if u has pre-active status, then each node x that
is adjacent to it has its priority incremented according to p, <— p, + W,. This is
equivalent to decreasing the current degree of node x by unity.

In Step 6, each node x that is adjacent to the node u has its priority and status up-
dated if it is pre-active. Then it is assigned an active status and its priority is

increased by setting p, < p, + W,. Each node y that is adjacent to x is examined
next, according to the following conditions:

(1) if y is not post-active, its priority is incremented by setting p, <— p,+ W>;

(i) else, if y is inactive, then it is assigned pre-active status and increased in the
priority queue by setting n <— n + 1 and Q, = y. The time complexity of this
method is O(c?) for the worst case.

5.7.4 NODAL ORDERING WITH SKELETON GRAPH (NOSG)

The method for ordering the nodes of the SG of an FEM, to reduce the profile dif-
fers in the following two ways from the method of Nodal Ordering with Element
Clique Graph (NOECG) (i.e. Sloan’s method):

1. The distance between each node of SG and s (not e) is considered.

2. The initial priorities of nodes are calculated in a different manner.

The steps of the algorithm are outlined as follows:

Step 1: Form an SRT from § and compute the distance d(s, v) between each node v
of the SG and the starting node s.
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Step 2: Assign each node in the graph an inactive status and compute its initial
priority, p,, according to

P,=—d(s, v) — 3 x deg(v), (5-18)
where deg(v) is the degree of node v.

Step 3: Initialise the priority queue Q with the starting node s, that is, Q; = 5. Set
n =1, where n is the length of the queue. The node s is assigned pre-active status.
Let k be the node count.

Step 4: While the priority queue is not empty, which is signified by n > 0, execute
Steps 5-8.

Step 5: Select node u € Q that has the maximum priority. Let i be the index of the
node u in the queue such that Q; = u.

Step 6: Delete node u from the priority queue by setting O; = O, and decreasing n
according to n < n — 1. If node u is not pre-active, go to Step 7. Otherwise, exam-
ine each node w that is adjacent to node u and increment its priority according to
p(w) = p(w) + 2. If node w is inactive, then insert it in the priority queue with a
pre-active status by setting n <~ n + 1 and O;= w.

Step 7: Label node u with its new number by incrementing the node count accord-
ing to k<k +1 and setting label(u) <k. Assign node u a post-active status.

Step 8: Examine each node w that is adjacent to node u. If node w is pre-active,
assign node w an active status, set p(w) = p(w) + 2 and examine each node x that is
adjacent to node w. If node x is not post-active, increment its priority to p(x) = p(x)
+ 2. If node x is inactive, insert it in the priority queue with a pre-active status by
settingn < n+ 1and Q, =x.

Once the above steps are carried out, the new label of each node v will be label(v).
The time complexity of this method is the same as that of the NOECG method, for
the worst case. However, it is interesting to note that the Nodal Ordering with
Skeleton Graph (NOSG) must be executed faster than the NOECG in average
cases, since the value of n» NOSG is mostly less than that in the NOECG. This is
because, for FEMs containing elements with four or more nodes, the degree of
nodes of the SG is less than those of the ECG. These two methods need the same
lists for nodal ordering of the considered graph; however, note that the compact
adjacency list of the SG occupies usually less memory than that of the ECG.
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5.7.5 NODAL ORDERING WITH ELEMENT STAR GRAPH (NOESG)

The profile reduction algorithm that employs the ESG of an FEM is the same as
that of NOECG with the following modifications being imposed:

If a virtual node u (a node whose old label is more than A) is selected for being
labelled, it should be labelled with its new number by A plus another node count
without incrementing according to k" < k" +1 and setting label(u) = A+ k.

This modification enables the numbering of the elements of the main set to be var-
ied continuously from 1 to a.

This method uses O(y?) operations in worst case, where Y= A + o, and needs the
same lists as the NOECG and the NOSG. Clearly, the lists needed for the Nodal
Ordering with Element Star Graph (NOESG) take large amounts of memory, since
ESG has A nodes more than those of the ECG and SG.

5.7.6 NODAL ORDERING WITH ELEMENT WHEEL GRAPH (NOEWG)

The same method as that of Section 5.7.5 is employed for ordering the nodes of the
EWG of an FEM. The time complexity of the Nodal Ordering with Element Wheel
Graph (NOEWG) is the same as that of the NOESG for the worst case. However,
the NOESG is executed faster than the NOEWG in average cases, since the value
of n in the process of the NOESG is, in general, less than that of the NOEWG,
since for all FEMs, the degrees of the nodes of the ESG are, in general, less than
those of the EWG. These two methods require the same lists to be provided for
nodal ordering of the considered graph model. However, the compact adjacency
list of the ESG uses fewer words of memory than that of the EWG.

5.7.7 NODAL ORDERING WITH PARTIALLY TRIANGULATED GRAPH
(NOPTG)

Ordering the nodes of the PTG of an FEM for profile reduction does not require
the selection of a pair of pseudo-peripheral nodes. The same good starting node
used for the formation of the PTG (the node found in the SG for the formation of
the PTG) can be used again in the Nodal Ordering with Partially Triangulated
Graph (NOPTG) as the starting nodes s. The following two steps together with
Steps 3-8 of the NOSG presented in Section 5.7.4 complete the process of the
NOPTG.

Step 1: Form an SRT from the good starting node s used for the formation of the
PTG and compute the distance d(s, v) between each node v of the PTG and the
starting node s.
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Step 2: Assign each node in the graph an inactive status and compute its initial
priority, p, according to

P,=—d(s, v) — 2 x (deg(v) + ). (5-19)

The time complexity of this method is clearly the same as that of the NOECG and
NOSG methods for worst case. In the NOPTG method, the same lists needed for
the previous four methods should be provided. However, some of these lists such
as the compact adjacency list do not take the same number of words of memory in
different graph models.

5.7.8 NODAL ORDERING WITH TRIANGULATED GRAPH (NOTG)

In order to number the nodes of the TG of an FEM for profile reduction, it is not
necessary to find a pair of pseudo-peripheral nodes. The same good starting node
used for the formation of the TG is employed again in the Nodal Ordering with
Triangulated Graph (NOTG) as the starting node s. The following steps along with
Steps 2—8 of the NOSG method complete the process of NOTG.

Step 1: Form an SRT from the good starting node s used in the formation of the
TG and compute the distance d(s, v) between each node v of the TG and the start-
ing node s.

The time complexity of this method is the same as that for methods NOECG,
NOSG and NOPTG for the worst case.

The value of n in the NOTG process is mostly greater than that in NOSG and
NOPTG, since the degrees of the nodes of the TG are mostly more than those of
the PTG and the SG. Thus, NOTG is executed more slowly than NOSG and
NOPTG in average cases. An advantage of NOTG, like NOPTG, is that no
pseudo-peripheral nodes are needed.

5.7.9 NODAL ORDERING WITH NATURAL ASSOCIATE GRAPH (NONAG)

The profile reduction algorithm that employs the NAG of the FEM consists of two
phases. In the first phase, which is the same as NOECG, the nodes of the NAG are
ordered. In the second phase, the nodes of the considered FEM are ordered on the
basis of the new labels of the nodes of the NAG. This process consists of the fol-
lowing steps:

Step 1: For each node i of the graph model set n(label(i)) = i.

Step 2: For each element e corresponding to the node u, u = n(j), j = 1,2, ..., a,
label the unlabelled nodes of e, in turn.
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The time complexity of the first phase of this algorithm is O(A%) and the second
phase uses O(a + 10 ) = O(A0 ) operations.

This algorithm requires the same lists as the previous methods; however, the num-
ber of nodes of the graph model is equal to A. Therefore, it is very efficient for
FEMs containing higher-order elements. In the second phase of this method, an
additional list with A integer words of memory is needed, which is denoted by n(.)
in the steps of the process. However, this list can be created when most of the lists
needed for the first phase are not required, and can be erased from the working
memory.

5.7.10 NODAL ORDERING WITH INCIDENCE GRAPH (NOIG)

The profile heuristic that employs the IG of an FEM consists of two parts, as in the
Nodal Ordering with Natural Associate Graph (NONAG) method. These phases
are the same as those of NONAG, with IG being employed in place of NAG.

Time and memory complexities of the Nodal Ordering with Incidence Graph
(NOIGQG) are the same as those of NONAG. However, the value of # is higher than
that of the NONAG, since degrees of the IG are more than those of the NAG.
Therefore, the NOIG should have slower execution than NONAG in average
cases.

5.7.11 NODAL ORDERING WITH REPRESENTATIVE GRAPH (NORG)

This method consists of two parts. The first part orders the nodes of the RG, that
is, the representative nodes of the elements of the considered FEM. The second
phase orders the nodes of the considered FEM based on the new labels of the rep-
resentative nodes of the elements of the FEM.

The first part consists of the following steps:

Step 1: Form an SRT from a good starting node s used for the formation of the RG
and compute the distance d(s, v) between each node v of the RG and the starting

node s.

Step 2: Assign an inactive status to each node in the graph and compute its initial
priority p,, according to

P, =—3xd(s, v) — &), (5-20)

where &(v) denotes the number of elements incident to node v.



ORDERING: GRAPH THEORY METHODS 235

Step 3: Initialise the priority queue Q with the starting node s used for the forma-
tion of the RG, that is, Q; = s. Set n = 1, where n is the length of the queue. The
node s is assigned a pre-active status. Let k be the node count.

Step 4: While the priority queue is not empty, signified by n > 0, execute Steps 5-8.

Step 5: Select node u € Q that has the maximum priority. Let i be the index of the
node u in the queue such that Q; = u.

Step 6: Delete node u from the priority queue by setting Q;= O, and decrementing
n according to n <— n — 1. If node i is not pre-active, go to Step 7, otherwise exam-
ine each node w that is adjacent to node u and increment its priority according to
p(w) = p(w) + 1. If node w is inactive, then insert it in the priority queue with a
pre-active status by setting n < n+ 1 and Q,=w.

Step 7: Label node u with its new number by incrementing the node count accord-
ing to k < k+ 1, and setting label(u) < k. Assign node u a post-active status.

Step 8: Examine each node w that is adjacent to node u. If node w is pre-active,
assign node w an active status, set p(w) = p(w) + 1 and examine each node x that is
adjacent to node w. If node x is not post-active, increment its priority to p(x) = p(x)
+ 1. If node x is inactive, insert it in the priority queue with a pre-active status by
settingn < n+ 1and Q, =x.

When the above steps are completely performed, the new label of each node v is
label(v). In this method, there is no need to find any pseudo-peripheral, and the
same good starting node used for generating the RG is employed again in the proc-
ess of numbering.

The second phase of the algorithm consists of the following steps:

Step 1: For each node i of the graph model set n(label(i)) = i.

Step 2: Set k= 0. Check each element e containing node u, u = n(j),j = 1,2, ..., o,
in turn; if e does not contain a node v corresponding to n(l) and i <, then set k <
k+1and m(k)=e.

Step 3: Set label(i) = 0, where i = 1,2,..., a.

Step 4: Set 1 = 0. Check each node w of element e, e = m(j), j = 1,2, ..., ¢, in turn;
if label(w) = 0, then set i = 0 +1 and label(w) = 1.

The time complexity of the first part of this algorithm is O(c?), and the second part
uses O(A0?) operations. The time complexity of the second phase can be reduced
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by using an additional list in Step 2 to show whether element e has been previously
detected. This procedure uses O(A0) operations. The first phase of the algorithm
Nodal Ordering with Representative Graph (NORG) requires the same lists as the
previous methods of profile reduction.

Complete Representative Graph (CREG)

This graph is the same as the REG with additional members connecting each pair
of nodes in the Complete Representative Graph (CREQG), if their corresponding
nodes in the FEM are contained in the same element.

5.7.12 NODAL ORDERING WITH ELEMENT CLIQUE REPRESENTATIVE
GRAPH (NOECRG)

The profile reduction of this method consists of two steps, as in the NONAG,
NOIG and NORG methods. The first process is the same as that of Sloan’s algo-
rithm (NOECG), and the second step is similar to the second step of the NORG
approach.

The time complexity and memory complexity of the Nodal Ordering with Element
Clique Representative Graph (NOECRG) method are the same as those of the
NORG, but the magnitude of n in the process of NOECRG is, in general, far
higher than that of the NORG, since the degrees of the nodes of ECRG are gener-
ally much greater than those of RG. Therefore, NOECRG should be slower in
execution than RG.

5.7.13 COMPUTATIONAL RESULTS

A program is developed for implementing the algorithms as shown in Tables 5.5—
5.8, and many FEMs are studied. Four examples are presented here. For each
problem a table is provided for illustrating the new profile obtained from the new
labels of the nodes, and the elapsed time for executing the program is also given
for each case. The numbers of nodes o and elements A of each FEM are provided
in the captions of the Figures 5.22-5.25.
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Fig. 5.22 oo=240 and A = 499.

Table 5.5

Algorithm Profile Elapsed time
NOECG 3207 0.22
NOSG 3236 0.22
NOESG 3367 0.44
NOEWG 3465 0.66
NOPTG 3194 0.28
NOTG 3237 0.27
NONAG 3365 0.71
NOIG 3365 0.60
NORG 3460 0.33
NOECRG 3185 0.44

237



238 OPTIMAL STRUCTURAL ANALYSIS

AN

7%
0%
40
(&
N
R
W
W
S

Fig. 5.23 a= 748 and A = 1236.

Table 5.6

Algorithm Profile Elapsed time
NOECG 7444 0.39
NOSG 8436 0.39
NOESG 8336 0.87
NOEWG 8256 1.27
NOPTG 8527 0.65
NOTG 8514 0.66
NONAG 7320 0.93
NOIG 7204 1.32
NORG 9388 0.66
NOECRG 7818 0.88




ORDERING: GRAPH THEORY METHODS

Fig. 5.24 o= 936 and A = 1640.

Table 5.7

Algorithm Profile Elapsed time
NOECG 12,248 0.72
NOSG 13,142 0.71
NOESG 13,016 1.37
NOEWG 13,049 2.03
NOPTG 13,282 1.16
NOTG 13,113 1.21
NONAG 12,631 1.54
NOIG 12,665 1.98
NORG 16,055 1.16
NOECRG 12,894 1.65

239
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Fig. 5.25 o0 =936 and A = 1640.

Table 5.8

Algorithm Profile Elapsed time
NOECG 15,223 0.88
NOSG 16,217 0.93
NOESG 16,008 1.87
NOEWG 15,852 2.63
NOPTG 15,391 1.48
NOTG 16,204 1.60
NONAG 15,482 2.15
NOIG 15,345 2.69
NORG 17,474 1.42
NOECRG 15,343 2.09

5.7.14 DISCUSSIONS

The algorithms presented for the profile reduction of sparse matrices with symmet-
ric structures are analysed for the worst case to show their time and memory
complexities.

The programs developed for these algorithms have been tested on many examples,
and Table 5.9 is obtained, which illustrates the average computational time (in
seconds) of the methods.
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Table 5.9
Algorithm Average of the computa-
tional time

NOECG 0.99
NOSG 0.77
NOESG 1.39
NOEWG 1.96
NOPTG 1.25
NOTG 1.32
NONAG 1.33
NOIG 1.45
NORG 1.17
NOECRG 1.90

5.8 ELEMENT ORDERING FOR FRONTWIDTH REDUCTION

For the solution of sparse systems of simultaneous equations arising from the
FEM, the frontal methodology due to Irons [87] and the profile method described
by George [56], as well as band-matrix techniques, are commonly used. These
methods exploit the sparsity of the coefficient matrices generated by the FE ap-
proximation. They differ, however, in one significant respect: the band and profile
methods first construct the coefficient matrix explicitly, while the frontal method
arranges for the elimination of variables as it assembles the matrix.

The most suitable ordering of the equation is dependent on the type of equation-
solving scheme adopted (i.e. whether a band, profile or frontal solver is used). In
FE analysis, in the case of one degree of freedom per node, performing nodal or-
dering is equivalent to reordering the equations. In a more general problem with
degrees of freedom per node, there are S-coupled equations produced by each
node. In this case re-sequencing is usually performed on the nodal numbering to
reduce the bandwidth, profile or frontwidth, because the size of this problem is
times less than that for degree of freedom numbering.

In this section, a graph-theoretical approach is designed for element renumbering
of the FE meshes for frontwidth reduction of sparse matrices with symmetric struc-
tures. In this heuristic, the problem is transformed into that of a graph nodal
ordering. The IG of a mesh is used for representing its connectivity. The efficiency
of the method is illustrated by worst-case analysis and examples of unstructured
FE models.
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5.8.1 DEFINITIONS

Neighbouring nodes of a subgraph S; of S are the nodes contained in N(S) — N(S;)
that are adjacent to the nodes of S..

A tree is rooted from a given node #; it may be denoted by T,. A spanning tree is a
tree containing all the nodes of S. A shortest root tree (SRT, ) rooted from a

specified node (starting node) ny, is a spanning tree for which the distance between
every node n; of T and ny is minimum, where the distance between the two nodes
is taken as the number of members in the shortest path between these nodes. A
multiple root SRT (MRSRTp) is an SRT, but rooted from a set of nodes R.

A contour C,’,‘U of an SRT, contains all nodes with equi-distance k from n,. The

number of contours “d ” of an SRT is known as its depth or length, and the highest
number of nodes in a contour “w” specifies the width of an SRT. The last contour

of an SRT, is denoted by C}iﬂ . A contour Cjo of an SRT, ~can be disconnected,

that is, there may be no path included in Cf;o between all pairs of its nodes. Each
component of a disconnected contour is called a subcontour. A heeled SRT
(HSRT" ) is a MRSRT rooted from a subcontour C of a contour Cf;o but ex-

panded on the part that contains a component of C:,O_] . The following algorithm is
employed for generating an HSRT in which C is a component of Cflo with a
desired property, for example, the component with the smallest number of nodes.

1. Form SRT, and check C, in order to find a subcontour ¢ with the desired
property.

2. Designate the nodes of c as C. .
3. Select the nodes of C," that are adjacent to the nodes of C; as C,.

4. Select unselected nodes adjacent to C' as C’. Repeat this process to

formC’>,C?*, ..., C/, where C/ is a contour for which there is no unselected
node.

5. If all nodes are selected, the formation of HSRT™ is completed; otherwise,
select unselected nodes adjacent to C! as C’*'. Then take the unselected nodes

adjacent to C/*' as C’/** and repeat this process until all the nodes are selected.
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The /G of an FEM has its nodes in a one-to-one correspondence with the elements
of the FEM, and two nodes are connected with an edge if the corresponding ele-
ments have at least one common node.

A level structure L(r) of an FEM rooted from an element  (as the root) is defined
as a partitioning of the set of elements into levels /;(r), L(r), ..., [,(r) such that:

L ()= {r};

2. all elements adjacent to the elements in level /(r) (1 <i<d) are in levels /_(r),
I(r) and [;+(r);

3. all elements adjacent to the elements in level /,(r) are in levels /, |(#) and /().

The overall level structure may be shown as L(r) = {/(7), lr(7), ..., l(r)}, where d
is the depth of the level structure rooted at element » and is simply the total number
of levels, and two elements are adjacent if they share a common node.

The element adjacency list of an FEM contains the list of elements adjacent to
each element. The element-node list of an FEM contains the list of nodes of each
element and is generally employed as input for data connectivity of FEMs. The
node-element list contains the list of elements containing each node of the FEM.

Consider the solution of sparse linear systems of equations,
Ax=b, (3-21)

where the n X n matrix A is a sum of elemental matrices:
A= ZAU], (5-22)
i=1
and the right-hand side vector b is of the form:

b=>b" (5-23)

i=1

In Eq. (5-22), each matrix A" has entries only in the principal submatrix corre-
sponding to the variables in element 1 and represents contributions from this
element. This principal submatrix is assumed to be dense (any zeros are stored
explicitly). The matrix A may be unsymmetric but the form of Eq. (5-22) implies
that it has a symmetric pattern.
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With reference to Eq. (5-21), column j is said to be active at stage i if j > i and
there is a non-zero entry in column j with a row index, &, such that k£ <i. Letting f;
denote the number of columns that are active at stage i, the maximum frontwidth of
A is given by

Fiax = max {f;}. (5-24)

1<i<n

The root-mean-squared frontwidth is defined as
F=(EY ) (5-25)
i=1

5.8.2 DIFFERENT STRATEGIES FOR FRONTWIDTH REDUCTION

There are many algorithms for profile and frontwidth reduction, such as those of
Kaveh and Ramachandran [128], Duff et al. [39], Razzaque [185], Pina [177], and
many others, which can be categorised in different ways. Akin and Purdue [3]
have divided these methods into two groups: direct and indirect approaches. In
direct methods, elements are renumbered directly to minimise the profile and
frontwidth. Indirect methods first renumber the nodes and then reorder the ele-
ments on the basis of the new labels of their nodes. When attempting to develop
schemes for minimising the profile and frontwidth of sparse matrix equations, it is
fruitful to consider schemes that are aimed at minimising the bandwidth. This is
because the maximum frontwidth must always be less than or equal to the corre-
sponding bandwidth (if the variables are eliminated in the same order). Thus one
method of reducing the frontwidth is to resequence the nodes first to minimise the
bandwidth and then to relabel the elements so that the new order of elimination is
presented as closely as possible [3,185]. The effectiveness of this strategy is obvi-
ously dependent on the performance of the bandwidth minimisation procedure and
thus suffers from the disadvantage of being indirect.

Another way to categorise the renumbering schemes is to consider how the algo-
rithms use the connectivity of an FEM. In the general case, these algorithms can be
grouped into two categories: engineering-based and graph theory—based heuristics.
The first applies the element-node list, exclusive of other lists generated using this
list such as the node-element list, to improve the efficiency of the considered
method; for example, see Webb and Froncioni [225]. However, there are engineer-
ing-based methods that use the concepts of graph theory to form the auxiliary lists;
for instance, Pina [177] has cryptically employed the NAG and the IG. Graph-
theoretical heuristics can be found in [128,203-206] among many others. In these
methods, the connectivity properties of FEMs are transformed into different graph
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models [133]. These transformations lessen the time complexities of the renumber-
ing procedures at the expense of computer storage and time for keeping and
generating the data connectivity of the graph models employed.

In this section, the renumbering procedures are divided into five main categories as
follows:

1. Level (contour) expansion methods;

2. Sublevel (subcontour) expansion methods;
3. Nodal (elemental) expansion methods;

4. Divide-and-conquer methods; and

5. Node (element) shuffling methods.

It should be noted that in the rest of this section the term “node” is used as the unit
of a model that should be renumbered. This unit can be a node, an element or a
super element.

Level expansion procedures start the process of renumbering from one or more
nodes as the first level of a level structure or the first contour of an SRT and re-
number unlabelled nodes connected to the previous level contour containing
renumbered nodes. This process is continued until all nodes are relabelled. Level
expansion schemes are efficient for bandwidth reduction and are very easily im-
plemented. However, it is simple to show that these methods can easily lead to
inefficient profiles and frontwidths [43,205].

Sublevel expansion methods are similar to level expansion methods, but the proc-
ess of renumbering expands from a sublevel. The process of renumbering is
continued by renumbering the unrenumbered nodes of a sublevel connected to a
sublevel with relabelled nodes; see, for example Plesek [180].

Nodal expansion methods for profile and frontwidth reduction are the most popu-
lar schemes. In these algorithms, each unrelabelled node is assigned a single
number as its weight or priority number, and in each step one node with the high-
est priority is selected. Some of these methods such as the one discussed in [204]
benefit from the global properties (such as pseudo-diameter) as well as local prop-
erties (such as degrees of nodes) of FEMs.

The divide-and-conquer strategy divides the set of nodes into two or more subsets
and then treats each subset as a new set, and the process of division is continued
until a specified condition (e.g. that a final subset should contain a single node) is
fulfilled. The process of renumbering is carried out synchronously or when the
process of division is completed [199].
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The most important character of the node shuffling methods is the multiple modi-
fication of the new labels of two or more or even all nodes to improve the results.
Such modifications may be made where the frontwidth or bandwidth has the high-
est magnitude, or may be carried out randomly. These methods suffer from high
computer time requirement and benefit from very efficient results. It should be
noted that the methods that apply the non-deterministic heuristics used in combina-
torial optimisation such as Simulated Annealing belong to this category. In the
classification by Lim et al. [150], where the profile and frontwidth reduction algo-
rithms are categorised into five classes, these methods are considered as exhaustive
search algorithms.

5.8.3 EFFICIENT ROOT SELECTION

A large number of algorithms for reducing the bandwidth, profile or frontwidth
can be found in the literature. The most efficient algorithms are based on graph
theory and require one or more starting nodes. The success of these algorithms is
dependent on the selection of the starting nodes. Gibbs et al. [59] have presented
an algorithm for finding a pair of starting nodes that are located at nearly maximal
distance apart. These nodes are known as pseudo-periphal nodes. 1t is demon-
strated through extensive tests available in the literature that this strategy provides
good starting nodes. However, in some problems of FE analysis, namely, in mod-
els with square or annular meshes, there may be several candidates for pseudo-
peripheral nodes. The selection of the pair of nodes, however, is not always indif-
ferent. This is because of the heuristic nature of the algorithms and the parameters
adopted for the selection of the end nodes. Consequently, if additional criteria
were taken into account, either to limit the eligible nodes or to establish a new rank
for the nodes, then fewer pairs would be equally rated. Modifications to the origi-
nal pseudo-peripheral node finder strategy given by Gibbs et al. [S9] have been
proposed by Kaveh [101], George and Liu [57], Sloan and Randolph [206] and
Sloan [204,203]. Souza and Murray [209] have added an additional parameter that
is checked for the selection of the second end nodes of pseudo-peripheral nodes.
Their modification generally improves the results of the renumbering algorithms of
Gibbs et al. [59] and Gibbs—King [58], but at the expense of more computational
time. This modified algorithm uses more computer time than that of Sloan [204]
and seldom improves on its results (see, [209]). In terms of the computer storage
needed for keeping connectivity data of the considered FEM, these two algorithms
are similar; they apply the ECG.

There are also very simple methods in which the starting nodes are found using
only the local properties of an FEM [177]. In these methods, the renumbering
process generally suffers from the inefficiency of the selected starting nodes.

An efficient method for finding a root is presented in the following text. We do not
say that an efficient root should contain a single node or two nodes. A selected
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root may contain one or several nodes. Removing this restriction from root selec-
tion schemes can lead to very efficient results [131], provided that the global
properties of the considered FEM are contemplated.

For FE models composed of high-order elements, Sloan and Randolf [206] have
noted that it is necessary to consider the corner nodes only when renumbering is
carried out. This follows from the observation that an element ordering that is effi-
cient for a model of low-order elements is also efficient for an equivalent model of
high-order elements. Since an FEM of high-order elements may have a small num-
ber of corner nodes, but a large number of nodes in total, this approach leads to
considerable economy in the ordering phase.

In this method, only the corner nodes of the element are essential; however, this
does not mean that interior nodes and mid-side nodes make the method inefficient.
In the efficient root selection procedure presented in this section, an FEM can con-
tain meshes of different types and dimensions.

Algorithm

Step 1: Use the IG of the considered FEM and form a SRT, rooted from a node

no with the minimum degree.

Step 2: Form an SRT, rooted from a node n; of minimum degree from C,fl .

Step 3: Check Cil Cfl 5 ey C: to find a contour with at least two components for

which a subcontour R” has a minimum number of neighbouring nodes.
Step 4: If R’ is found, then generate a heeled SRT from R’.

Step 5: Select R as the desired root from g, n; and R’ according to the minimum
width of SRT, , SRT, and HSRT..

Example: Consider the small multiconnected FEM shown in Figure 5.26(a). The
IG of the FEM is depicted in Figure 5.26(b). The execution of the steps of the
above algorithm leads to the following results.

Step 1: An SRT is formed from node 1, since its degree is minimum. The width of
SRT, is equal to 15, and Cld contains nodes 46 and 58.

Step 2: The degree of node 58 is less than that of node 50; thus SRTsg is formed,
since its width is equal to 13.
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(a) A small multiconnected FEM.

51 58

(b) The incidence graph of the FEM.
Fig. 5.26 AN FEM and its graph model.

Step 3: The contours of SRTsg are checked; the subcontour containing nodes 4, 5,
6, 7, 8 and 12 is selected as R’ because the number of its neighbouring nodes is
minimum and equal to 6.

Step 4: HSRT,' is formed; its contours are as follows:

Cp =14,5,6,7,8,12}, C,. = {13, 14, 15, 16}, C;. = {19, 20, 21}, C,. = {24,
25,26}, Cyp. = {31, 32, 33,34}, C,. = {30, 38, 39, 40, 41, 42}, C5. = {29, 37, 45,
46, 47, 48, 49, 50}, CJ.= {23, 28, 36, 44, 52, 53, 54, 55, 56, 57, 58} Ch.= {17,
18,22,27,35,43,51}, Cp. = {9,10, 11}, Cy = {1,2,3}.



ORDERING: GRAPH THEORY METHODS 249

The width of HSRT;" is equal to 11.

Step 5: The width of HSRT,??g is the least one; thus R" = {4, 5, 6, 7, 8, 12} is se-
lected as R.

5.8.4 ALGORITHM FOR FRONTWIDTH REDUCTION

The frontal method can be simply viewed as a variation of the variable band solver
that is tuned for matrices generated by the FEM. At the heart of most FE problems,
one has to solve one or more linear systems of the form:

Kv=p, (5-26)

M
where K= Zki, (5-27)

i=1

and M spans the entire set of elements. k; is the stiffness matrix of each individual
element expressed in a global coordinate system, and v and p are the generalised
displacement and force vectors, respectively. The matrix K is symmetric and posi-
tive-definite and usually very sparse. The sparseness property must be exploited if
results are to be obtained in a reasonable time. One approach for solving such sys-
tems is to reorder the equations and to build a skyline or profile of the matrix to
prevent the fill-in resulting from the factorisation. Next, the summation of the ele-
ment contributions to the global stiffness matrix is performed, which defines the
assembly phase. It is only then that the factorisation process can proceed, followed
by forward and backward substitutions. Unfortunately, for large-scale three-
dimensional problems, the memory space required for storing the values within the
band or skyline representation of K often exceeds the available random access
memory (RAM), so that the triangular factors of K have to be moved to auxiliary
storage. This entails the design and implementation of rather critical algorithms for
the out-of-core assembly and elimination processes; see, for example, Wilson and
Dovey [232].

The frontal method is an alternative to band or skyline solvers that does not require
the global stiffness matrix to be explicitly assembled and therefore significantly
reduces the I/O time for out-of-core systems. Instead, assembly and elimination
processes are merged into a single one. The eclemental stiffness matrices are
formed and assembled until a row of K is completed, and then eliminated. This
process is carried out in a matrix F® similar to the global matrix K, which can be
referred to as the front matrix or simply the front. This matrix needs to provide
entries only for the degrees of freedom that are connected to those that have al-
ready been introduced in the front (i.e. assembled) and not yet eliminated (for most
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problems F® will fit in the central memory of a supercomputer). The introduction
of the ith element in the front can be written as

FED= RO+ k.. (5-28)

Once a row (equation) is assembled, the system is partitioned as

d 1 v
F(k+l)v =| . kA P , (5_29)
l Fl‘)‘ VV pV

where [d 1] is the pivotal row k and F**" corresponds to the remaining degrees
of freedom of F*. The elimination step can now be written as

L
(5-30)
p,=p,-l'd-1p,.

The pivotal row [d 1] and py are stored in a buffer area or an auxiliary storage for
later use in the back-substitution step,

v, =d(p,—1Iv,), (5-31)

which is performed in the reverse order of the elimination. Further details can be
found in Irons [87], Razzaque [185], and Duff et al. [39]. In order to employ this
method in a vector computer, one may refer to Lesoinne et al. [149], Duff [40],
Brusa and Riccio [17], Lohner [154] and references cited therein.

The average number of arithmetic operations in a single elimination step in a fron-
tal algorithm is proportional to the mean-squared frontwidth, and the maximum
amount of storage required for the frontal matrix during the Gaussian elimination
is dependent upon the maximum frontwidth. Moreover, the total storage required
and the amount of work involved in the back-substitution stage depend on the pro-
file of the matrix. Thus the elements are numbered in such a way as to reduce F,

F and P. On the other hand, it may be shown that the total number of operations
required for a profile or frontal elimination is O(NF”), where N denotes the dimen-
sion of the considered sparse symmetric matrix. Thus, to minimise the total
storage, we minimise the profile, whereas to minimise the total computing time the
root-mean-square frontwidth has to be reduced. For reducing the maximum
amount of working memory during the elimination process, the minimisation of
the maximum frontwidth is needed; see, for example, Carey and Oden [20].
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The renumbering procedure of this section is targeted at minimising the maximum
amount of working memory during the elimination process; on the other hand,
attention is paid to reducing the maximum frontwidth F. However, optimising the
computational time and total storage are also contemplated cryptically.

In the present algorithm when a node i is renumbered as x, a priority number is
calculated for each unlabelled node adjacent to i. If there is no unlabelled node
connected to i, then unlabelled nodes connected to the nodes with new labels x — 1,
x — 2, ..., 1 are checked, in turn, until a node j is renumbered as x + 1. Then the
priority numbers of the unlabelled nodes adjacent to x + 1 are calculated, and the
one with the maximum priority number is renumbered as x + 2. This process is
continued until all the nodes have been renumbered.

The priority number of a node i is calculated as,

PN, =¢ %

i

dis(i) cdeg(i) dis(¥)
" —(c, +¢;)X — +cy % et (5-32)

where, ¢, ¢, and c; are defined as follows:
if R is a subcontour, then ¢; = 0.05, ¢, = 0.05 and ¢; = 0.9,

else, ¢; = 0.9, ¢; =0.04 and ¢; = 0.06.

d denotes the depth of the HSRTCY , and dis(i) denotes the distance between Cj
and i. deg(i), cdeg(i) and md denote the degree of i, the current degree of i and the

highest degree of the nodes of the graph model respectively, where, going by
Sloan and Randolph [206], the current degree of a node is the same as the number
of unlabelled nodes connected to the node.

Algorithm

Step 1: Generate the incidence graph S of the considered FEM.

Step 2: Find an efficient root R using the method of Section 5.8.3.

Step 3: Form a (multiple root) SRT from R. Then form an MRSRT from C{ and

calculate the distance between C; and each node of S.

Step 4: Label the node (nodes) of R (in the same order as they are selected).
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Step 5: Label an unlabelled node adjacent to the last labelled node j with the maxi-
mum priority number. If there is no unlabelled node connected to j, check the
previously labelled nodes, in turn. Repeat this process until all nodes are labelled.

The above method consists of a nodal expansion process and is efficient from two
significant viewpoints: (1) the priority numbers of a few number of nodes will be
calculated in each process of renumbering of a node with the highest priority
(compare with the existing nodal expansion methods), (2) the corner nodes only
can be given.

5.8.5 COMPLEXITY OF THE ALGORITHM

Algorithms may be efficient in several ways. They may be economical in terms of
computer memory, or computer time, or they may be easy for humans to read,
write, or understand. Of these virtues, only the first two can easily be quantified.

The main problem in measuring the time and storage required by a computer pro-
gram or subprogram lies in isolating the properties of the algorithm from the
properties of the particular machine and language. In the following text, the front-
width reduction heuristic is analysed for the worst case.

Step 1: The element-node list of an FEM is usually employed as input for data
connecting of elements, and here such a list is used. This data structure requires 4

A
+1+ 29,. words of memory, where A and 6; denote the number of elements of
i=1
the FEM and the number of nodes of element i. Clearly, when only the corner
nodes are given, this data structure occupies far less storage. However, for an effi-
cient programming of algorithms like the present one, this list should not be used
exclusively. Another data structure should be employed along with the element-
node list because finding elements connected to a specified element takes O(167)
operations, where

0 =max 6, 1<i<h (5-33)

The direct formation of the IG of an FEM has time complexity O(A*6 %), which is
inefficient. In order to improve this, the node-element list should be formed. This

o
list requires o + 1 + 26,. words of memory, where « and &; denote the number of
i=1
nodes of the FEM and the number of elements connected to node i. The formation
of the node-element list takes O(6A) operations. When the node-element list is
formed, the element-node list can be erased from working memory. Using the
node-element list, the formation of the IG takes O(a:d€”) operations, where & de-
notes the maximum number of elements connected to an element and
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£=mMmax & 1<i<A (5-34)

A
The list that keeps the data of connecting of the IG needs A + 1 + 25,. words of
i=1

memory. When the IG is generated, the node-element list can be erased.

Step 2: Scanning the nodes of the IG to find a node with the minimum degree
takes O(A) operations; note that A denotes the number of nodes in the IG or the
number of elements in the FEM. Formation of an SRT, MRSRT or heeled SRT
(HSRT) takes O(Ad) operations and requires nearly 3 x A words of memory (for
worst case). Controlling the contours to find the desired subcontour requires O(A6)
operations.

Step 3: Execution of this step requires O(Ad) operations and 3 x A words of mem-
ory.

Step 4: This step has the time complexity O(1).

Step 5: The time complexity of this step is O(A8?%) and, excluding the data struc-
ture needed for keeping the data of connectivity of the IG, 3 x A words of memory
are required for the efficient execution of this step. A words are needed for keeping
the distance, A words are needed for keeping the new labels of the nodes and A
words are also needed to define which node has a new label.

5.8.6 COMPUTATIONAL RESULTS

A computer program is developed for the heuristic of this section and many mod-
els are studied; some of them are included in this section, and the maximum
frontwidth F, root-mean-square F and profile P, along with the computational
time 7 using a PC (80486DXII), are provided for each model. In these examples,
all corner and mid-side nodes are considered.

Example 1: An FEM with 240 nodes and 499 bar elements is considered as shown
in Figure 5.27. For this model, the application of the present algorithm results in an

ordering corresponding to F'= 19, F =14.14, P=6796 and T=0.72 (sec.).
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Fig. 5.27 An FEM with bar elements.

Example 2: An H-shaped FEM with 2096 nodes and 3900 triangular elements is
considered as depicted in Figure 5.28. For this model, the results are F = 71,

F =32.42,P=11,676 and T = 12.36.

Fig. 5.28 An H-shaped FEM with triangular elements.

Example 3: A multiconnected FEM is considered as illustrated in Figure 5.29.
This model contains 1248 nodes and 1152 quadrilateral elements. The results are

F=38, F =33.02, P=37,582 and T=2.25.
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Fig. 5.29 A multiconnected FEM with quadrilateral elements.
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Example 4: A multiconnected FEM with 1762 nodes and 910 4-node, 8-node and
12-node quadrilateral elements is considered as shown in Figure 5.30. The results

are F=62, F =40.46, P=34,879 and T= 1.93.

Fig. 5.30 A multiconnected FEM with different types of elements.

Example 5: An FEM with 2392 nodes and 1800 brick elements is considered, as
illustrated in Figure 5.31. The execution of this method leads to F = 199,

F =143.85, P=251,929 and T= 16.98.
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NNV ARNNY,

Fig. 5.31 An FEM with brick elements.
5.8.7 DISCUSSIONS

In this section, an algorithm is developed to renumber the elements of FEMs for
frontwidth reduction of sparse matrices with symmetric structures. The present
method requires less computer storage, has less time complexity and leads to small
maximum frontwidth. In this method, the number of candidates for the next label-
ling stage is very less in comparison with the existing methods, and only the corner
nodes should be given as input. An additional feature of the present procedure is
the use of multiple node roots, leading to more efficient results than those when a
single node root is employed. This heuristic is a graph theory—based method that
contains a nodal expansion process. In the process of expansion, both local and
global properties of the graph model of the considered FEM are used. The algo-
rithm is applicable to one- to three-dimensional models containing meshes of
different types and dimensions.

5.9 ELEMENT ORDERING FOR BANDWIDTH
OPTIMISATION OF FLEXIBILITY MATRICES

The elements of a generalised cycle basis (GCB), as defined in Chapter 3, must be
ordered to obtain a banded flexibility matrix G. This is similar to ordering the ele-
ments of a cutset basis (nodal numbering) for reducing the bandwidth of the
stiffness matrix K. This problem can be transferred to a nodal ordering algorithm
by defining appropriate mathematical structures for the transformation of the con-
nectivity properties; see Kaveh [113]. Two approaches for this problem are
developed in the following text.
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5.9.1 AN ASSOCIATE GRAPH

An associate graph A(B(S)) of a GCB B(S) of S is a graph whose nodes are in a
one-to-one correspondence with the elements of B(S), and two nodes are con-
nected if two elements of B(S) have at least one common member. For example,
the associate graph of the mesh basis in Figure 5.32(a) is depicted in Figure
5.32(b).

(a) A mesh basis B(S) of S. (b) The associate graph of B(S).
Fig. 5.32 A mesh basis and its associate graph.
A weighted associate graph can be similarly defined. For this graph, the nodes and
members are assigned integer numbers. The weight of a node in A(B(S)) is taken as
the number of members of the corresponding cycle in S, and the weight of a mem-
ber my = (n;,n)) in A(B(S)) is taken as the number of members of C:NC;, where C;

and C; are the cycles of S corresponding to the nodes #n; and n; of A(B(S)), respec-
tively.

5.9.2 DISTANCE NUMBER OF AN ELEMENT

The distance d; of a node n; of S from a selected node O is the length of the short-
est path connecting n; to O. The distance number of a cycle or a y-cycle or an
element C, from O is defined as one of the following:

(a) The distance of the nearest node of Cy from O, denoted by d; .
(b) The distance of the furthest node of C; from O, denoted by d; .

(c) The mean value of d; and d/ ; that is, | (%)( d;+d]) |, where |.| means the
integer part of the number.

(d) The sum of d; + | (% )L(Cy) |, where L(C)) is the length of C;.

L(Cy)

(e) The mean value of the distance of the nodes of Cj; that is, 2 |d,. /L(C, )|.
i=1
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For example, the values defined above for a cycle C; are shown in bold lines in
Figure 5.32(b), and with respect to a reference node O are 5,6,5,7 and 5, respec-
tively. For simplicity, only the integer parts of the divisions are considered.

Any of the definitions (a)—(e) can be used as the distance number of a cycle, a
7-cycle or an element of a FE model.

5.9.3 ELEMENT ORDERING ALGORITHMS

In the following text, two algorithms are presented for ordering the elements of a
cycle basis, a GCB, n FEM or the substructures of a structure. However, for sim-
plicity, we will refer to a GCB only.

Algorithm A
Step 1: Order the nodes of S with a nodal numbering algorithm.

Step 2: Use the same starting node as in Step 1 to form an SRT and find the dis-
tance numbers of the elements of the GCB.

Step 3: Assign these distance numbers to the nearest (furthest or any other appro-
priate intermediate) nodes of the elements of the GCB. In this process, a node may
become the representative node of p elements. Then p independent distance num-
bers are assigned to the representative nodes.

Step 4: Order these nodes in ascending order of distance number. A node repre-
senting p elements receives p different (independent) numbers. For equidistant
nodes, the same sequence as the nodal numbering of Step 1 should be used, to ef-
fect the connectivity properties of S.

Step 5: Order the elements of the GCB with the same numbers received by their
representative nodes. This provides an efficient ordering for the elements of the
GCB.

Algorithm B

Step 1: Construct the associate graph A(B(S)) of the GCB.

Step 2: Generate an SRT of S, starting from an appropriate node O, and find the
distance numbers of the elements of the GCB.

Step 3: Assign these numbers to the nodes of A(B(S)), and order its nodes by a
nodal numbering algorithm, with a starting node that corresponds to an element
containing O.
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Step 4: Reorder the nodes of A(B(S)) in ascending order of their distance numbers
obtained in Step 2. For equidistant nodes, the same sequence as that obtained by
the nodal numbering algorithm of Step 3 should be used.

Step 5: Number the elements in the same order as that obtained for their represen-
tative nodes in A(B(S)). This leads to an efficient numbering of the elements of the
considered GCB.

Example: Let S be the model of a rigid-jointed planar frame. Suppose that the
selected cycle basis consists of the boundaries of the bounded regions of S (a mesh
basis) as shown in Figure 5.33(a).

For Algorithm A, an SRT starting from O is generated as in Figure 5.33(a), and the
distance numbers of the cycles corresponding to definitions (a) and (e) of Section
5.9.2 are calculated and assigned to the representative nodes of the cycles. The
nearest node of a cycle to O is taken as its representative node, as shown in Fig-
ures 5.33(b) and (c). These nodes are then ordered, leading to an ordered cycle
basis. The bandwidths of the cycle adjacency matrices for these orderings are 15
and 13. The latter result can further be reduced to 11 by imposing additional re-
strictions in the process of ordering. Since the frame is planar, the bandwidths of
the corresponding flexibility matrices will be 45 and 39, respectively.

® |2 |® | O
2 3 4 5 @
©) 5
1 4
ORECEECHEC
o 0 1
(a) An SRT of S. (b) Cycle ordering by definition (a).
®[@ D — "
3 4 5 6 @ L o
@ 5
. 5| ® )
v]elole 6
1 2 3 4 ! 2 3

(c) Cycle ordering by definition (e). (d) A(B(S)) and its nodal ordering.
Fig. 5.33 S and ordering the elements of its cycle basis.
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Algorithm B is also applied to this example. The associate graph A(B(S)) of the
mesh basis is formed, as shown in Figure 5.33(d). Using definition (e) for the dis-
tance number of the elements, the order of the nodes of A(B(S)) is obtained. The
numbering of the cycles is shown in Figure 5.33(d), which corresponds to a band-
width of 13 for its cycle adjacency matrix, and 39 for its flexibility matrix.

5.10 BANDWIDTH REDUCTION FOR RECTANGULAR MATRICES

In previous sections, the bandwidth optimisation of square matrices has been dis-
cussed. In structural analysis, it may also be desirable to reduce the bandwidth of
some sparse rectangular matrices. For example, it may be beneficial to reduce the
bandwidth of the equilibrium equations of a structure; see Kaneko et al. [92]. This
can be done by optimising the bandwidth of the corresponding cutset basis inci-
dence matrix L. Similarly, for compatibility equations, one can optimise the
bandwidth of C.

In this section, a K-total graph is defined and two algorithms are presented for the
bandwidth reduction of rectangular matrices.

5.10.1 DEFINITIONS

Let B be a rectangular matrix with m rows and n columns, whose entries are de-
noted by b;;. For each row like 7 (except the first and the last row, where i; = 1 and
iy = n, respectively), the integer part of the real number i(n/m) is defined as i,.
Therefore, the entry of B at position (i,i,) is considered as the ith diagonal entry.
For square matrices, m = n, and i = i;. The bandwidth of B is then defined as

b(B) =m,+ m+ 1, (5-35)
where
m, =maxi{k—i,|b, #0, k>i,},
1<i<n
and m, =max{i, —k|b, #0, k<i,}. (5-36)

1<i<n

If B is a symmetric square matrix, then m, = m; and b(B) reduces to the conven-
tional definition of square matrices. A rectangular matrix is called banded if b(B)
is small compared to m.

Matrix B in block submatrix form has the same pattern as L, that is, each non-zero
entry of L corresponds to a 17 X 7] submatrix in B, where 7 is the degree of free-
dom of a node of the structure. Obviously, reduction of the bandwidth of L leads
to a banded matrix B.
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The terms “nodes” and “members” have been used for a graph S, and now we use
“vertices” and “edges” for the elements of a K-total graph, which is defined as
follows:

Associate one vertex with each member and each element of the selected cutset
basis or a cycle (~cycle) basis of S. Connect two vertices with an edge if

(a) the corresponding members are incident;
(b) the corresponding cutsets (cycles or y-cycles) are adjacent;

(c) the corresponding member and cutset (cycle or j~cycle) are incident.

When a cutset or cycle is changed to a node of S, then the K-total graph becomes a
total graph as defined in the graph theory (see, Behzad [10]).

Examples of K-7(S) are shown in Figures 5.34 and 5.35, when the cocycle basis
and the cycle basis are considered, respectively. In these figures small squares are
used to represent members, and circles are employed to show the elements of the
considered basis.

(a) S and the considered cocycle basis. (b) K-T(S) and its nodal ordering.

Fig. 5.34 Reduction of bandwidth for a cutset basis incidence matrix.

9 5 2
7 4 2
12 10 /¢ 6/ 4
10 98 @5 @1 13 1
9 6 3
11 7 3

(a) S and the considered cycle basis.  (b) K-7(S) and its nodal ordering.

Fig. 5.35 Reduction of bandwidth for a cycle basis incidence matrix.
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5.10.2 ALGORITHMS
Algorithm A

Construct the K-total graph of S and order its vertices. The corresponding se-
quence leads to a favourable order of cutsets (nodes) and members of S, to reduce
the bandwidth of L, which is pattern equivalent to the coefficient matrix of the
equilibrium equations. A similar approach reduces the bandwidth of C, when cy-
cles (y~cycles) are considered in place of cutsets.

This algorithm will now be applied to the examples of Figures 5.34 and 5.35, from
which the corresponding orders for the elements of the bases and members of .S are
obtained.

Algorithm B

Order the nodes of S. Then order the unnumbered members of the stars of the
nodes in the selected sequence, to obtain a reasonably banded L matrix.

In general, Algorithm A leads to a better result than Algorithm B, at the expense of
additional computer time.

5.10.3 EXAMPLES

Consider a graph S as shown in Figure 5.36 with the corresponding member and
cutset orders.

Fig. 5.36 S with arbitrarily ordered members and cutsets.
The cutset basis incidence matrix of .S can be written as,

ml m2 m3 m4 mS

. b(L) = 4+4+1 =9,
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where artificially defined diagonal entries are shown with “*” sign. Using the or-
dering obtained by K-71(S), the cutset basis incidence matrix becomes

ml m2 Wl3 m4 ms

o 1

C; * 1 1
=02

cl- - o1

4

in which the non-zero entries are clustered to the diagonal of the matrix.

As a second example, consider S as shown in Figure 5.37, in which the regional
cycles and members are arbitrarily numbered.

8 9 10
4@5@6@7
1 2 3

Fig. 5.37 S with arbitrarily numbered members and cycles.

The cycle basis incidence matrix for S is given as

m.m, my m, ms mg m; mg My My,

¢Gftr 6001100100
C=C,J0 01 001 1 0 0 1]
Gjo1r 00110010

For this matrix, b(C) =7 + 8 + 1 = 16. By ordering the cycles and members simul-
taneously, using Algorithm A, the following cycle basis incidence matrix is
obtained:

¢gftr 1101 00 00O
C=C,J0 0 01 T 1.0 1 0 0]
Gl{o 000001111

The bandwidth for this matrix is obtained as 5(C) =4 + 3 +1 = 8.
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For the force method of frames, the coefficient matrix of the equilibrium equations
can be made banded by reducing the bandwidth of its member-cycle incidence
matrix. After an algebraic force method is employed, a repeated application of the
developed method makes the null basis matrix a banded one for subsequent appli-
cations. Similarly, if a combinatorial approach is used, the bandwidth reduction
algorithm makes the cycle basis incidence matrix banded, leading to a banded
statical basis (null basis) matrix.

5.10.4 BANDWIDTH REDUCTION OF FINITE ELEMENT MODELS

The algorithms presented in the previous section can also be applied to FE models,
for their analysis by the algebraic force method; see Kaveh and Mokhtar-zadeh
[119]. For such models, the K-total graph of an FEM is defined as follows:

Associate one vertex with each side and each element of the FEM, and connect
two vertices with an edge if any of the following conditions hold:

1. sides are adjacent;

2. elements are adjacent;

3. a side and an element are incident.

The Algorithm A can now be adapted to FEMs as follows:
Step 1: Generate the K-total graph of the FE mesh S.

Step 2: Order the vertices of K-7(S) by any nodal ordering algorithm that is avail-
able.

Step 3: Assign numbers to the members of K-7(S) and to the elements of the con-
sidered FEM, in the order of their occurrence in the sequence selected in Step 2.

Example: Four groups of examples are considered as shown in Figure 5.38(a—d).
In these figures, (2 is the aspect ratio of the element numbers in two perpendicular
directions (x- and y-directions), which is taken as unity. The ratio of the length of
the elements side in the x-direction to that of the y-direction is taken as 1.2. S is the
refinement index of a group. In the group UT, €;, £, are the aspect ratios of the
element numbers in the two sides of the general configuration with respect to
the central part of the model.



ORDERING: GRAPH THEORY METHODS 265
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(a) Group RQ-Q-S (2= 1, S =6). (b) Group LQ-Q-S (2= 1, S = 3).
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(c) Group UQ-Q2/-£2, s(2,= =1, 5= 3). (d) Group HQ-Q-S (2=1,S5=2).
Fig. 5.38 Test group examples.

The sparsity of the self-stress and flexibility matrices of the LQ and HQ groups is
illustrated in Figure 5.39(a—d).
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(b) Flexibility matrix of LQ-1-4.

!

(c) Self-stress matrix of HQ-1-4. (d) Flexibility matrix of HQ-1-4.

Fig. 5.39 Self-stress and flexibility matrices.

5.11 GRAPH-THEORETICAL INTERPRETATION OF GAUSSIAN
ELIMINATION

In this section, a simple graph-theoretical interpretation of the Gaussian elimina-
tion is presented, in order to establish a closer link between matrix algebra on the
one hand and graph-theoretical concepts on the other hand.
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Let A be a symmetric sparse matrix of order &, and let S be the corresponding
graph. Suppose that Gaussian elimination by columns is performed on A until the
factorisation A = U'DU is obtained. At the beginning of the kth step, all non-zeros
in columns 1,2, ..., k — 1 below the diagonal have been eliminated. Multiples of the
kth row are then subtracted from all rows that have a non-zero in column % below
the diagonal. On performing this operation, new non-zero entries may be intro-
duced in row k£ + 1, ..., N to the right of column k. Cancellations may also occur,
producing new zeros, but this is rare in practice and will be neglected. Consider

the active submatrix at the kth step (an active submatrix contains all elements A;/.k)

with i,j > k). Let S* be the graph associated with the active submatrix. S is called
an elimination graph; see Parter [171]. The nodes of this graph are N — k + 1 last-
numbered nodes of S. S contains all members connecting those nodes that were
present in S, and additional members corresponding to fill-ins produced during the
k — 1 initial elimination steps. The sequence S = S' 8%, 83, ... can be obtained using
the following rule:

To obtain §'' from §*, delete node k and add all possible members between nodes
that are adjacent to node k in S*.

For example, consider a graph S and the corresponding adjacency matrix, as
shown in Figure 5.40. Two steps of the Gaussian elimination and the correspond-
ing elimination graphs are also illustrated.

; 1 23456 7 8
1 1F>x< . . . %k . % ]
3 8 21 % . % . *
5 3. E * *
1_4f- = - * * *
5 < " A 5% ¥k
6| - * ok k%
8 * 0k k. . ox ok
(a)s=¢' (b) Matrix A'

1 23 456 738

e 20 %= . % . . %k
3 3] - * % %
2 4] % . % * *
’ A :5. ok Q-

5 6 4 6 ko ok % *
7] - . . C® % %k
8. *x x k. Lok %

(c) 8 (d) Matrix A*
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7 1 23 456 738
Lo 1[ .o * ]
3 8 L T %

o 3] - £ * #

p 3_4|- * * *
3 6 4 A= 5] - . * ® -
71 - ® - % =%

8. % k. ok %k

e) S’ (f) Matrix A’

Fig. 5.40 Illustration of two steps of the Gaussian elimination.

Eliminating the rest of the nodes, and considering a clique (a complete graph) be-
tween the nodes adjacent to each eliminated node (when such members are not
present), matrix U is obtained. The structure of U + U" and the corresponding filled
graph are shown in Figure 5.41.

1 2345 6 7 8

7 1% - . . * . *
1 /// ‘. 3 2 . kS . ES . 3
/ |‘ 8 3| - * . * *
// ‘\ // 4 . E3 . E3 % . %k
e ? 5| ¥ o ®
5 . 6. - * * * * Q@ &
6 T - - - & & =*x %
(a) 8° (b) Matrix U + U'

Fig. 5.41 The structure of U + U' and the corresponding graph.

There are algorithms that try to reduce the number of fill-ins caused by elimina-
tion. The minimum degree algorithm of Tinney [218] is perhaps the best method
for such a reduction. For brevity, this is not discussed here; the interested reader
may refer to Tinney’s original paper.
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EXERCISES

5.1 Find a good starting node for nodal numbering of the following structural
models, using graph-theory approaches:

(a) (b)

(©) (d)

5.2  Find a good starting node for the following models, using an algebraic
graph-theoretical method, that is, calculate the dominant eigenvector of the corre-
sponding adjacency matrices:

(a) (b)

5.3  For the models of Exercise 5.1, find a suboptimal transversal and perform
the ordering. Calculate the bandwidth of the corresponding stiffness matrices when
the models are viewed as planar trusses.

5.4  Find the nodal ordering of the system for models (a) and (b) in Exercise 5.1
using the Fiedler vector of the Laplacian matrix of the model.
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5.5  For the following graph S, consider a mesh basis and order the cycles, using
different distance numbers, to optimise the bandwidth of the corresponding cycle
adjacency matrix:

5.6  Order the nodes of the following FEM using the natural associate graph,
incidence graph and skeleton graph of the model for bandwidth reduction:

7
<

o
.
\

5.7  For the following FEM, construct the element clique graph, the skeleton
graph, the representative graph and the element clique representative graph, with
respect to the starting node ny:
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5.8  Order the nodes of the following FEM using the algorithm presented for
frontwidth reduction:

5.9  For nine graphs of an m x n mesh consisting of rectangular elements intro-
duced in this chapter, compare the number of nodes, number of members and
diameters of the graphs.

5.10 Order the members and elements of a fundamental cycle basis of the
following graph to reduce the bandwidth of its cycle basis incidence matrix.
Repeat the process to optimise the bandwidth of its cocycle basis incidence matrix.







CHAPTER 6

Ordering for Optimal Patterns
of Structural Matrices:
Algebraic Graph Theory Methods

6.1 INTRODUCTION

There are different matrices associated with a graph, such as the incidence matrix,
the adjacency matrix and the Laplacian matrix. One of the aims of algebraic graph
theory is to determine how properties of graphs are reflected in algebraic proper-
ties of these matrices. The eigenvalues and eigenvectors of these matrices provide
valuable tools for combinatorial optimisation and, in particular, for the ordering of
sparse symmetric matrices, such as the stiffness and flexibility matrices of the
structures.

In this chapter, algebraic graph—theoretical methods are discussed for nodal order-
ing for bandwidth, profile and frontwidth optimisation. Hybrid methods are also
applied to nodal ordering, using graph theory and algebraic graph theory.

6.2 ADJACENCY MATRIX OF A GRAPH FOR NODAL ORDERING

6.2.1 BASIC CONCEPTS AND DEFINITIONS

There are several geographical papers dealing with the question of whether impor-
tant places or well-connected sets of towns in a traffic network can be identified by

an inspection of certain eigenvalues and the corresponding eigenvectors of the
adjacency matrix A of the underlying graph model. Gould [65] appears to be the

Optimal Structural Analysis  A. Kaveh
© 2006 Research Studies Press Limited
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first important publication on this subject. Other ideas can be found in Straffing
[213] and Maas [157].

In structural analysis, Kaveh [113] used the first eigenvalue and eigenvector of [A
+ I] for nodal ordering for bandwidth reduction. Grimes et al. [66] employed this
concept for finding pseudo-peripheral nodes of a graph. This algebraic graph—
theoretical method is studied in the following text.

A node n; of S is called peripheral if its eccentricity is the same as the diameter of
S, that is, &(S) = e(n;). If the eccentricity is close to the diameter, then r; is called a
pseudo-peripheral node or a good starting node.

Reordering the nodes of the graph model of a structure does not change the
properties of the stiffness matrix. This fact stays true for the properties of the
graph itself. Therefore, a natural question is, what can the theory of matrices and,
in particular, the eigenvalues of the matrices associated with graphs tell us about
the structure of the graph itself? In the following text, we shall endeavour to find
out to what extent the eigenvalues of the adjacency matrix of a given graph reflect
the properties of that graph.

Let A be the adjacency matrix of the graph S, which is a real symmetric (0, 1) ma-
trix, and the sum of entries of any row or column is equal to the valency of the
corresponding node. Denote the characteristic polynomial of A by ¢(S;x). Since

¢(S;x) is uniquely determined by the graph S, it is referred to as the characteristic
polynomial of S and expressed as

O(S;x)=det(xI-A) = ia[xN’[. (6-1)

Since A is a real symmetric matrix, its eigenvalues (the roots of this polynomial)
must be real, and can be ordered as A; > A, > A3 > ... > Ay. These eigenvalues are
called the eigenvalues of S, and the sequence of N eigenvalues is called the spec-
trum of G.

The important results are stated below; however, the reader may refer to Schwenk
and Wilson [194] for further details and proofs.

1. The sum of the eigenvalues of a graph is equal to the trace of A, and is therefore
Zero.

T
N+1

occurs only when S is a path graph, and the upper bound occurs when S is a com-
plete graph.

2. If S is connected with N nodes, then 2 cos(

)< A, < N-1. The lower bound
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3. If S is a connected graph with m distinct eigenvalues and with diameter d, then
m>d.

By no means the spectrum specifies its graph uniquely; however, it does provide a
wealth of information about the graph and hence about the structure. Some appli-
cations of such information will be given in this chapter and in Chapter 8.
However, the writer strongly believes that in future many other applications in
structural mechanics will be found.

Table 6.1 shows some simple examples to verify the results stated.

Table 6.1 Simple examples.

Graph Adjacency matrix Character1§ te Eigenvalues
polynomial
KZ 0 1 x2 _1 1, -1
0 0 1
Ps 001 x =2x V2,-42,0
1 10
01 01
C Lo 1o 4 2 2,-2,0,0
4 01 0 1 X" —4x » =2, U,
1 010

Perron—Frobenius Theorem: If S is a connected graph with at least two nodes,
then:

(i) its largest eigenvalue A; is a simple root of ¢ (S; x);

(ii) corresponding to the eigenvalue A, there is an eigenvector w;, all of
whose entries are positive;

(iii) if A is any other eigenvalue of S, then —4; S A < A
(iv) the deletion of any member of S decreases the largest eigenvalue.

The largest eigenvalue A, is often known as the spectral radius of S. Since the ei-
genvectors corresponding to any eigenvalue other than A; must be orthogonal to
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w;, we observe that the multiples of w; are the only eigenvectors all of whose en-
tries are positive.

Consider the node adjacency matrix A of S. Let,
Q=A+L (6-2)

where I is an N(S) x N(S) identity matrix. The eigenvalues of Q are one unit bigger
than those of A, and the eigenvectors of Q are exactly the same as those of A. Ma-
trix Q is real and symmetric, and it can easily be shown that all the entries of Q*
are positive; thus it is primitive and, according to the Perron—Frobenius theorem,
A, is real and positive and a simple root of the characteristic equation, A; > |A| for
any eigenvalue A # A;, and A, has a unique corresponding eigenvector w; with all
entries positive.

As w; is the eigenvector corresponding to A;, Qw,; = A,w, for i = 1, ..., N(S). Multi-
plying the two sides by Q, one obtains QQw, =A1Qw, = )ul.zwl.. Repeating this

process results in Q“w, = A'w,. Now consider any vector x not orthogonal to w;
as follows:

X = 04w T 0pwW, + ... +aN(S)WN(S) (04} * 0. (6-3)

Multiplying the two sides by Q" and using Q*w, = 1w, fori=1, ..., N(S), we
have,

QkX = A,lk oW, + /12]{ OOW; + ... +A’/<€/(S) aN(S) WN(S), (6—4)
and, ask — oo,
QkX/ A/lk =oqw; + (7\42/7\41) k(Xsz + ... +(;\1N(S)/7\‘l) k(XN(s) Wis) 200wy, (6-5)

since A, is the eigenvalue of the strictly largest modulus and (A7) is less than
unity and approaches zero when k — oo . In other words, the ratios of the compo-
nents of Q*x approach the ratios of the components of w; as k increases.

Let v= {1, 1, ..., 1}". Then the ith component of Q*v is the number of walks of
length & beginning at an arbitrary node of S and ending at ;. If n; is a good starting
node (peripheral node), this number will be smaller. Thus, for £ — o, one should
obtain some average number, defined as the accessibility index by Gould [65].
This number indicates how many walks go through a node on average. With a
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suitable normalisation, Q'v converges to the largest eigenvector w; of Q; see
Straffing [213].

6.2.2 A GOOD STARTING NODE
Algorithm A
Step 1: Calculate the dominant eigenvector w; = {wy, wy, ..., WN(S)}t of matrix Q.

Step 2: Find Min w; in wy. The node corresponding to this entry is taken as a good
starting node of S.

For calculating the dominant eigenvector w; of Q, an iterative method is used,
which assumes v = {1, 1, ..., 1}' and calculates Qv. This vector is then normalised
and multiplied by Q. This process is repeated until the difference between two
consecutive eigenvalues, obtained from Qv = Av, is reduced to a small value,
which, for example, can be taken as 1073

6.2.3 PRIMARY NODAL DECOMPOSITION

Once a good starting node is selected, an SRT is constructed and its contours {Cj,
C,, ..., C,} are obtained. These subsets are then ordered according to their dis-
tances from the selected starting node. Obviously, many SRTs can be constructed
on a node. Although all of them lead to the same nodal decompositions, different
transversals will be obtained for different SRTs. Thus, in the generation process,
the nodes of each contour C; are considered in ascending order of their entries in
eigenvector W, for selecting the nodes in C;4, in order to provide the conditions
for the possibility of generating a minimal (or optimal) transversal as defined in
the next section.

6.2.4 TRANSVERSAL P OF AN SRT

For selection of an optimal transversal, the weight of a node is defined as its value
w; in w;, when an algebraic graph—theoretical method is employed.

Algorithm B

Let Cy, G,, ..., C,, be the selected contours of the SRT, and correspondingly put
these subsets in w; into a similar order, that is,

W, = {W(Cl)’W(CZ)’ "'3W(Cm)}n (6'6)

where W(C;) contains the entries of w; corresponding to the nodes of C;. Now the
algorithm can be described as follows:
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Step 1: Label the root as N; and assign w; of this node as its new weight, denoted
by w,.

Step 2: Calculate the new weight w, of each node of C, by adding the w;’s from
W(Cy) to W,.

Step 3: Repeat the process of Step 2, calculating w,s for each node of C;, C, ..., C,,.

Step 4: Take a node N,, of minimal weight from the last contour C,, of the selected
SRT.

Step 5: Find N,,.; from C,,;, which is connected to N,, by a branch of the SRT.

Step 6: Repeat the process of Step 5, selecting N, 2, Ny 3, ..., N, as the representa-
tive nodes of the contours C,,», C,.3, ..., C,.
The set P= {N,, N,, ..., N _} forms a suboptimal transversal of the selected SRT.

6.2.5 NODAL ORDERING
Step 1: Number N, as “1”.

Step 2: N, is given number “2” and an SR subtree is generated from N,, numbering
the nodes of C, in the order of their occurrence in this SR subtree.

Step 3: The process of Step 2 is repeated for numbering the nodes of Cj, Cy, ...,
C,,, sequentially using Ns, N, ..., N,, as the starting nodes of SR subtrees, until all
the nodes of S are numbered.

Now the numbering can be reversed, in a way similar to that of the Reverse
Cuthill-McKee algorithm, for possible reduction of fill-ins in the process of Gaus-
sian elimination.

6.2.6 EXAMPLE

S is the model of a grid with uniform valency distribution, as shown in Figure
6.1(a). Usin