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Foreword of the first edition 

This book will be welcome as an application of discrete mathematics rather than 
the more usual calculus-based methods of analysis. The subject of graph theory 
has become important in science and engineering through its strong links with ma-
trix analysis and computer science. At first glance it seems extraordinary that such 
abstract material should have quite practical applications. However, as the author 
makes clear, the early relationship between graph theory and skeletal structures is 
now obvious: the structure of the mathematics is well suited to the structure of the 
physical problem. In fact could there be any other way of dealing with this struc-
tural problem? The engineer studying these applications of structural analysis has 
either to apply the computer programs as a black box, or to become involved in 
graph theory, matrices and matroids. This book is addressed to those scientists and 
engineers, and their students, who wish to understand the theory. 

The book is written in an attractive dynamic style that immediately goes to the 
heart of each subtopic. The many worked examples and exercises will help the 
reader to appreciate the theory. The book is likely to be of interest to pure and ap-
plied mathematicians who use and teach graph theory, as well as to those students 
and researchers in structural engineering science who will find it to be necessary 
professional reading. 

 P.C. Kendall 
 University of Sheffield 
 United Kingdom 



 

 

Preface 

Recent advances in structural technology require greater accuracy, efficiency and 
speed in the analysis of structural systems, referred to as “Optimal Structural 
Analysis” in this book. It is therefore not surprising that new methods have been 
developed for the analysis of the structures with complex configurations. 

The requirement of accuracy in analysis has been brought about by need for dem-
onstrating structural safety. Consequently, accurate methods of analysis had to be 
developed since conventional methods, although perfectly satisfactory, when used 
on simple structures, have been found inadequate when applied to complex and 
large-scale structures. Another reason why greater accuracy is required results 
from the need to achieve efficient and optimal use of the material, i.e. optimal de-
sign. 

The methods of analysis that meet the requirements mentioned above, employ ma-
trix algebra and graph theory, which are ideally suited for modern computational 
mechanics. Although this text deals primarily with analysis of structural engineer-
ing systems, it should be recognized that these methods are also applicable to other 
types of structures. The concepts presented in this book are not only applicable to 
skeletal structures, but can equally be used for the analysis of other systems such 
as hydraulic and electrical networks. These concepts are also extended to finite 
element methods. 

The author has been involved in various developments and applications of graph 
theory and matroids in the last three decades. The present book contains part of 
this research suitable for various aspects of matrix structural analysis. Other well-
known methods in the fields relevant to the subject matter of this book are also 
presented.  

In Chapter 1 the most important concepts and theorems are presented. Chapter 2 
contains novel approaches for determining the degree of static indeterminacy of 
structures and provides systematic methods for studying the connectivity proper-
ties of structures. Rigidity of planar trusses is also briefly studied. In Chapter 3 a 
through study of the force method is presented. Methods are developed for the 
formation of highly sparse and well-conditioned flexibility matrices. Chapter 4 
provides simple and efficient methods for construction of stiffness matrices. The 
formation of well-conditioned stiffness matrices are also dealt with briefly. In 
Chapters 5 and 6 banded, variable banded and frontal methods are investigated. 
Efficient methods are presented for both node and element ordering. Many new 
graphs are introduced for transforming the connectivity properties of finite element 
models onto graph models. Chapters 7 and 8 include powerful graph theory and 
algebraic graph theory methods for decomposition of structures and finite element 
meshes ideal for parallel processing, and parallel dynamic analysis of structures is 
also briefly studied. Chapter 9 is devoted to the most recent results concerning 
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xviii 

efficient calculation of eigenvalues and eigenvectors of regular structures using 
different graph products. These methods have applications in decomposing and 
nodal ordering of space structures and finite element models. In all the chapters 
many examples are designed to make the text easier to be understood. 

Appendix A contains basic graph theory definitions and concepts, and Appendix B 
introduces matroids with special emphasis on the Greedy algorithm and its 
applications in structural mechanics. 

I would like to take this opportunity to acknowledge a deep sense of gratitude to a 
number colleagues and friends who in different ways helped in the preparation of 
this book. Mr. J.C. de C. Henderson formerly of Imperial College of Science and 
Technology first introduced me to the subject with most stimulating discussions on 
various aspects of topology and combinatorial mathematics. Dr. A.C. Cassell dis-
cussed many concepts on structures and helped writing the early papers on 
applications of graph theory in structural analysis. Professor F. Ziegler encouraged 
me to write this book and enabled me to complete it in the happy and stimulating 
atmosphere of his institute at the Technical University of Vienna. My gratitude is 
extended to Professor P.C. Kendall, formerly of Sheffield University and Mrs V.A. 
Wallace for constructive comments on the first edition of this book. My special 
thanks are due to Mrs C. Holmes, publishing director of Research Studies Press 
Limited, for editing the second edition and her unfailing kindness in the course of 
the preparation of this book. I would like to express my sincere thanks to  
Mrs Debbie Cox, the assistant editor of John Wiley & Sons Ltd for her continuous 
assistance in the final stage of preparing this book, and Laserwords Private Lim-
ited for their contribution to the typesetting and project management of this book. 

I would like to thank my former Ph.D. and M.Sc. students, Dr. H.A. Rahimi  
Bondarabady, Dr. H. Rahami, Dr. A. Mokhtarzadeh, Dr. A. Davaran, G.R. Roosta, 
I. Gaderi, for their help in various aspects of writing this book. 

My warmest gratitude is due to my wife Mrs Leopoldine Kaveh for proof reading 
the first edition and for her continued support in the course of preparing both edi-
tions. 

Every effort has been made to render the book error free. However, the author 
would appreciate any remaining errors being brought to his attention. 

 A. Kaveh, 
 Tehran 
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CHAPTER 1 

Basic Concepts and 
Theorems of Structural Analysis 

 

1.1 INTRODUCTION 

In this chapter, basic definitions, concepts and theorems of structural analysis are 
presented. These theorems are employed in the following chapters and are very 
important for their understanding. 

For an analytical determination of the distribution of internal forces and displace-
ments, under prescribed external loading, a solution to the basic equations of the 
theory of structures should be obtained, satisfying the boundary conditions. In the 
matrix methods of structural analysis, one must also use these basic equations. 

In order to provide a ready reference for the development of the general theory of 
matrix structural analysis, the most important basic theorems are introduced in this 
chapter, and illustrated through simple examples. 

1.1.1 DEFINITIONS 

A structure can be defined as a body that resists external effects (loads, tempera-
ture changes and support settlements) without undue deformation. Building 
frames, industrial building, halls, towers, bridges, dams, reservoirs, tanks, channels 
and pavements are typical structures that are of interest to civil engineers. 
 
 
_________________________________ 
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The underlying principles for the analysis of other structures are more or less the 
same. Airplane, missile and satellite structures are of interest to the aviation engi-
neer. The analysis and design of a ship is interesting for a naval architect. A 
machine engineer should be able to design machine parts. However, in this book 
only structures that are of interest to structural engineers will be studied. 

A structure can be considered to be an assemblage of members and nodes. Struc-
tures with clearly defined members are known as skeletal structures. Planar and 
space trusses, planar and space frames, single- and double-layer grids are examples 
of skeletal structures; see Figure 1.1. 

 
 (a) A planar truss. (b) A space truss. 

 
 (c) A planar frame. (d) A space frame. 
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(e) A single-layer grid.  (f) A double-layer grid. 

Fig. 1.1 Examples of skeletal structures.  

Structures that must be artificially divided into members (elements) are called con-
tinua. Concrete domes, dams, plates and pavements are examples of continua; see 
Figure 1.2.  

 
(a) A dome.   (b) A dam.  

 
(c) A plate.  

Fig. 1.2 Examples of continua.  
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1.1.2 STRUCTURAL ANALYSIS AND DESIGN  

Structural analysis is the determination of the response of a structure to external 
effects such as loading, temperature changes and support settlements. Structural 
design is the selection of a suitable arrangement of members, and a selection of 
materials and member sections, to withstand the stress resultants (internal forces) 
of a specified set of loads, and satisfy the specified displacement constraints.  
Figure 1.3 is a simple illustration of the cycle of structural analysis and design.  

Fig. 1.3 The cycle of analysis and design.  

Structural theories may be classified from different points of view as follows: 

Static versus dynamic  
Planar versus space 
Linear versus non-linear  
Statically determinate versus statically indeterminate.  

In this book, static analyses of linear structures are mainly discussed for the stati-
cally determinate and indeterminate cases; however, a brief section is also included 
on dynamic analysis of structures.  

1.2 GENERAL CONCEPTS OF STRUCTURAL ANALYSIS  

1.2.1 MAIN STEPS OF STRUCTURAL ANALYSIS 

A correct solution of a structure should satisfy the following requirements:  

1. Equilibrium: The external forces applied to a structure and the internal forces 
induced in its members are in equilibrium at each node.  

Structure 

Structural 
analysis Structural 

design 

Loading Redesign 

Stress  
analysis 
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2. Compatibility: The members should deform so that they fit together.  

3. Force–displacement relationship: The internal forces and deformations satisfy 
the stress–strain relationship of the member.  

For structural analysis, two basic methods are in use:  

Force method: In this method, some of the internal forces and/or reactions are 
taken as primary unknowns, called redundants. Then the stress–strain relationship 
is used to express the deformations of the members in terms of external and redun-
dant forces. Finally, by applying the compatibility condition that the deformed 
members must fit together, a set of linear equations yields the values of the redun-
dant forces. The stresses in the members are then calculated and the displacements 
at the nodes in the direction of external forces are found. This method is also 
known as the flexibility method and compatibility approach. 

Displacement method: In this method, the displacements of the nodes necessary 
to describe the deformed state of the structure are taken as unknowns. The defor-
mations of the members are then calculated in terms of these displacements, and by 
using the stress–strain relationship, the internal forces are related to them. Finally, 
by applying the equilibrium equations at each node, a set of linear equations is 
obtained, the solution of which results in the unknown nodal displacements. This 
method is also known as the stiffness method and equilibrium approach. 

For choosing the most suitable method for a particular structure, the number of 
unknowns is one of the main criteria. A comparison of the force and displacement 
methods can be made by calculating the degree of static and kinematic indetermi-
nacies, respectively. As an example, for the truss structure shown in Figure 1.4(a), 
the number of redundants is 2 in the force method, while the number of unknown 
displacements is 9 for the displacement approach. For the 3 × 3 planar frame 
shown in Figure 1.4(b), the static indeterminacy and the kinematic indeterminacy 
are 27 and 36, respectively. For the simple six-bar truss of Figure 1.4(c), the num-
ber of unknowns for the force and displacement methods is 4 and 2, respectively. 
Methods for calculating the indeterminacies are discussed in Chapter 2. The num-
ber of unknowns is not the only consideration: another criterion for choosing the 
most suitable method is the conditioning of the flexibility and stiffness matrices, 
which will be dealt with in Chapters 3 and 4.  
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(a) A planar truss. (b) A planar frame. (c) A simple truss. 

Fig. 1.4 Some simple structures. 

1.2.2 MEMBER FORCES AND DISPLACEMENTS 

A structure can be considered as an assembly of its members, subject to external 
effects. These effects will be considered as external loads applied at nodes, since 
any other effect can be reduced to such equivalent nodal loads. The state of stress 
in a member (internal forces) is defined by a vector,  

 t
1 2 3{    ...  }k k k k

m nr r r r=r , (1-1) 

and the associated member deformation (distortion) is designated by a vector,  

 t
1 2 3{    ...  } ,k k k k

m nu u u u=u  (1-2) 

where n is the number of force or displacement components of the kth member 
(element), and t shows the transposition. Some simple examples of typical ele-
ments, common in structural mechanics, are shown in Figure 1.5.  

 
 (a) Bar element. (b) Beam element.  
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(c) Triangular plane stress element. (d) Rectangular plane stress element. 

 
(e) Triangular plate bending element. (f) Rectangular plate bending element. 

Fig. 1.5 Some simple elements. 

The relation between member forces and displacements can be written as  

 rm = kmum or um = fmrm, (1-3) 

where km and fm are called member stiffness and member flexibility matrices, re-
spectively. Obviously, km and fm are related as follows:  

 kmfm = I. (1-4) 

Flexibility matrices can be written only for members supported in a stable manner, 
because rigid body motion of the undefined amplitude would otherwise result from 
application of applied loads. These matrices can be written in as many ways as 
there are stable and statically determinate support conditions.  

The stiffness and flexibility matrices can be derived using different approaches. 
For simple members like bar elements and beam elements, methods based on the 
principles of strength of materials or classical theory of structures will be suffi-
cient. However, for more complicated elements the principle of virtual work or 
alternatively variational methods can be employed. In this section, only simple 
members are studied, and further considerations will be presented in Chapters 3 
and 4. 
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1.2.3 MEMBER FLEXIBILITY AND STIFFNESS MATRICES 

Consider a bar element as shown in Figure 1.6 that carries only axial forces and 
has two components of member forces. From the equilibrium,  

 0,L R
m mN N+ =  (1-5) 

and only one end force needs to be specified in order to determine the state of 
stress throughout the member. The corresponding deformation of the member is 
simply the elongation. Hence,  

 1 1,   and  .R R
m m m mr N u δ= =  (1-6) 

 

 

 

 

Fig. 1.6 Internal forces and deformation of a bar element.  

From Hooke´s law, R R
m m

EAN
L

δ= , and therefore  

    and  .m m
L EA

EA L
= =f k  (1-7) 

Now consider a prismatic beam of a planar frame with length L and bending stiff-
ness EI. The internal forces are shown in Figure 1.7.  

M M 

V V 
A B 

A B L,  E I z 
A A 

B B δ δ 
θ 

θ 
 

  (a)    (b) 

Fig. 1.7 End forces and deflected position of a beam element.  

L N 

R 

L 

L 

N 
R 

m m 
m + δ 
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This element is assumed to be subjected to four end forces, as shown in Figure 
1.7(a), and the deflected shape and position is illustrated in Figure 1.7(b). Four end 
forces are related by the following two equilibrium equations: 

 VA + VB = 0, (1-8a) 

 MA + MB + VBL = 0 (1-8b) 

Therefore, only two end-force components should be specified as internal forces. 
Some possible choices for rm are {MA, MB}, {VB, MB} and {VA, MA}. 

Using classical formulae, such as those of the strength of materials or slope-
deflection equations of the theory of structures, the force–displacement relation-
ships can be established. As an example, the flexibility matrix for a prismatic beam 
supported as a cantilever is obtained using the differential equation of the elastic 
deformation curve as follows:  

2

2
d 1 [ ( ) ].
d

z
B B

z z

Mv V L x M
EI EIx

= = − +   

The integration of the above equation leads to  

21
12

d 1 [ ( ) ] ,
d B B

z

v V Lx x M x C
x EI

= − + +   

and integrating again we have  

2 3 21 1 1
1 22 6 2

1 [ ( ) ] .B B
z

v V Lx x M x C x C
EI

= − + + +   

Using the boundary conditions at A as  

0
0

d = 0 and [ ] 0,
d =

=

  =  
x

x

v v
x

 

we have C1 = 0 and C2 = 0.  
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Substituting these constants we have  

2 3 21 1 1
2 6 2

1 [ ( ) ],B B
z

v V Lx x M x
EI

= − +   

21
2

d 1 [ ( ) ].
d B B

z

v V Lx x M x
x EI

= − +   

For x = L, the displacement and rotation of end B are obtained as  

3 2 2
 and 

3 2 2
B B B B

B B
z z z z

V L M L V L M L
EI EI EI EI

δ θ= + = + .  

Using Iz = I, the above relationships in matrix form become  

3 2
1

B
2 2 B

3 2 ,

2

mB

B m

L L
u VEI EI

Mu L L
EI EI

δ
θ

 
       = =           
  

 

or 
2 2 3

.
3 6 /6m
LL

LEI
 

=  
 

f  (1-9) 

Using a similar method, for a simply supported beam with two moments acting at 
the two ends, we have  

 
2 13 6 .
1 26

6 3

m

L L
LEI EI

L L EI
EI EI

 −  − 
= =   −   −  

f  (1-10) 

If the axial forces are also included as member forces, then t
B B B[     ]m N V M=r  

and t
B A B[     ]m N M M=r , as shown in Figure 1.8. The above matrices become  
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3 2

2

0 0

0
3 2

0
2

m

L
EA

L L
EI EI
L L
EI EI

 
 
 
 

=  
 
 
 
  

f  and 

0 0

0
3 6

0
6 3

m

L
EA

L L
EI EI
L L
EI EI

 
 
 
 = − 
 
 −
  

f  (1-11) 

3 
m r m r m r 

m r 
m r 

m r 1 
2 3 

2 
1 

 
(a)     (b)  

Fig. 1.8 Two sets of end forces and displacements for a beam element.  

The corresponding stiffness matrices are  

 3 2

2

0 0

12 60

6 40

m

EA
L

EI EI
L L

EI EI
LL

 
 
 
 

= − 
 
 

−   

k  and 

0 0

4 20

2 40

m

EA
L

EI EI
L L
EI EI
L L

 
 
 
 =  
 
 
  

k  (1-12) 

It should be mentioned that both flexibility and stiffness matrices are symmetric, 
on account of the Maxwell–Betti reciprocal work theorem proven in the next sec-
tion. More general methods for the derivation of member flexibility and stiffness 
matrices will be studied in Chapters 3 and 4. 

1.3 IMPORTANT STRUCTURAL THEOREMS  

1.3.1 WORK AND ENERGY 

The work, δW, of a force r acting through a change in displacement du in the di-
rection of that force is the product rdu.  
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Consider a general load–displacement relationship as shown in Figure 1.9(a). The 
area under this curve represents the work done, denoted by W. The area above this 
curve is the complementary work designated by W *. 

For a total displacement of u1, the total work is given by  

 1

0
d ,

u
W = ∫ r u  (1-13) 

and the complementary work is 

 1 
 0

*  d .
r

W = ∫ u r  (1-14) 

For a linear case, as shown in Figure 1.9(b), we have 

 W = W*. (1-15) 

δ 

r r 

u u 
W 

W 

W 

W  * 
W  * W  * 

u u 

r 

1 

d r 

d u 1 

1 r 1 

O O 

δ 

 
(a) A general relationship.  (b) A linear relationship. 

Fig. 1.9 Force–displacement relationships. 

In this book, it is assumed that the loads are applied to a structure in a gradual 
manner, and attention is limited to linear behaviour. Therefore, the load–
displacement relationship is as shown in Figure 1.9(b), and the relation can be 
expressed as  

 r = ku, (1-16) 

where k is a constant. The work in Figure 1.9(b) can be written as  

 1 1
1 .
2

W r u=
 

(1-17) 
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Forces and displacements at a point are both represented by vectors, and their 
work is represented as a dot product. In matrix notations, however, the work can 
be written as  

 t1 .
2

W = r u  (1-18) 

Using Eq. (1-3),  

 
t t t1 1 .

2 2
W = =u k u u ku

 
(1-19) 

Similarly, W * can be calculated as  

 t1* .
2

W = r fr  (1-20) 

Consider the stress–strain relationship as illustrated in Figure 1.10(a). The area 
under this curve represents the density of the strain energy, and when integrated 
over the volume of the member (or structure) results in the strain energy U. The 
area to the left of the stress–strain curve is the density of the complementary strain 
energy, and by integrating over the member (or structure) the complementary en-
ergy U* is obtained. For the linear stress–strain relationship as shown in Figure 
1.10(b), U = U*. 

Since the work done by external actions on an elastic system is equal to the strain 
energy stored internally in the system (work-energy law),  

 W = U and W* = U*. (1-21) 

U 
U 

U  * 
U  * 

O O 

σ 
σ 

ε ε 
 

(a) A general stress–strain relationship. (b) Linear stress–strain relationship.  

Fig. 1.10 Stress–strain relationships. 
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1.3.2 CASTIGLIANO´S THEOREMS 

Consider the force–displacement curve in Figure 1.9(a), and suppose an imaginary 
displacement δui is imposed on the system. The work done, δ ,W  under the action 
of ri in moving through δ iu  is equal to  

 δ .i iW r uδ =  (1-22) 

Using Eq. (1-21), and taking limit, we get the first theorem of Castigliano as  

 ,i
i

U r
q

∂ =
∂

 (1-23) 

which can be stated as follows [24]: 

The partial derivative of the strain energy with respect to a dis-
placement is equal to the force applied at the point and along the 
considered displacement. 

Similarly, if the system is subjected to an imaginary force irδ  along the displace-
ment ui, then the complementary work done *δW  is equal to  

 * *,δ δ δ= =i iW u r U  (1-24) 

and in the limit, the second theorem of Castigliano is obtained as  

* .i
i

U u
r

∂ =
∂

 (1-25) 

The partial derivative of the complementary strain energy with re-
spect to a force is equal to the displacement at the point where the 
force is applied and directed along the action of the force. 

For the linear case, * =U U  and therefore Eq. (1-25) becomes 

 .i
i

U u
r

∂ =
∂

 (1-26) 
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1.3.3 PRINCIPLE OF VIRTUAL WORK 
 
The principle of virtual work is a very powerful means for deducing the conditions 
of compatibility and equilibrium [5], and it can be stated as follows: 
 
The work done by a set of external forces P acting on a structure in moving 
through the associated displacements v, is equal to the work done by some other 
set of forces R, that is statically equivalent to P, moving through associated dis-
placements u, that are compatible with v. Associated forces and displacements 
have the same lines of actions. 
 
Using a statically admissible set of forces and the work equation, the compatibility 
relations between the deformations and displacements can be derived. Alterna-
tively, employing a compatible set of displacements and the work equation, one 
obtains the equations of equilibrium between the forces. These approaches are 
elegant and practical. 
 
Dummy-Load Theorem: This theorem can be used to determine the conditions of 
compatibility. Suppose that the deformed shape of each member of a structure is 
known. Then it is possible to find the deflection of the structure at any point by 
using the principle of virtual work. For this purpose, a dummy load (usually unit 
load) is applied at the point and in the direction of required displacement, which is 
why it is also known as the unit load method. The dummy-load theorem can be 
stated as follows: 
 

applied actual displacement internal forces actual
dummy of structure where external statically equivalent to deformation
load dummy load is applied the applied dummy load of ele

     
     × = ×     
     
      ments

 
 
 
 
 

 
It should be noted that the dummy-load theorem is a condition on the geometry of 
the structure. In fact, once the deformations of elements are known, one can draw 
the deflected shape of the structure, and the results obtained for the deflections 
will agree with those of the dummy-load theorem. 
 
Example 1: Consider a truss as shown in Figure 1.11. It is desired to measure the 
vertical deflection at node C when the structure is subjected to a certain loading. 

4@ a 
a 

P P P 

C 
 

Fig. 1.11 A planar truss. 
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A unit load is applied at C, and a set of internal forces statically equivalent to the 
unit load is chosen. However, for such equivalent internal forces, there exists a 
wide choice of systems, since there are several numbers of structural possibilities 
that can sustain the load at C. Three examples of such a system are shown in  
Figure 1.12(a–c).  

Obviously, system (a) will need a lot of calculation because it is statically indeter-
minate.  

C 
l C 

l 
 

(a)     (b) 

l  
(c) 

Fig. 1.12 Three different systems capable of supporting the dummy load. 

System (c) is used here, since it has a smaller number of members than (b), and 
symmetry is also preserved. Internal forces of the members in this system shown 
in Figure 1.13 are  

t{ 1/ 2, 2 / 2, 1/ 2, 2 / 2, 2 / 2, 1/ 2, 2 / 2, 1/ 2,1/ 2,1/ 2, 1/ 2, 1, 1, 1/ 2} .= − − − − − − − −r
 

l 

1 2 3 4 5 6 
7 8 

9 10 
11 12 13 14 

 
Fig. 1.13 Internal forces equivalent to unit dummy load. 
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Measuring the elongation in members of this system containing 14 bars, and using 
the dummy-load theorem, we have 

1 2 3 4 5 6

7 8 9 10 11 12 13 14

1 1 1 2 1 2 2 1( )(0) (1)( ) ( )(0)
2 2 2 2 2 2 2 2

2 1 1 1 1 1                                      .
2 2 2 2 2 2

c cv v e e e e e e

e e e e e e e e

+ + = = − + + − + + −

+ − + + − − − −
 

Dummy-Displacement Theorem: This method is usually used to find the applied 
external forces when the internal forces are known. In order to obtain the external 
force at a particular point, one subjects the structure to a unit displacement at that 
point in the direction of the force and chooses any set of deformations compatible 
with the unit displacement. Then, from the principle of work, the dummy-
displacement theorem can be stated as follows:  

dummy displacement applied actual deformation of elements actual
in the direction of unknowns external compatible with internal
actual external forces forces dummy displacement f

     
     × = ×     
     
      orces

 
 
 
 
 

 

This method is also known as the unit displacement method.  

Example 2: For the truss studied in Example 1, it is required to find the magnitude 
of P by measuring the internal forces in the members of the truss. 

r 
C d d 

C 

r r 
r 

P 

2 1 1 
2 

 
(a)      (b)  

Fig. 1.14 Element deformations equivalent to unit dummy displacement.  

Again, many systems can be chosen; two of these are illustrated in Figure 1.14(a) 
and (b). In these systems, the internal forces to be measured are shown in bold 
lines. Owing to the symmetry, in both cases only two measurements are needed. 
Applying the dummy-displacement theorem to system (a), we get  

2 2
1 2 1 1 22 2 ( 2 ).Pd r d r d r d d r r= + + = +   
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1.3.4 CONTRAGRADIENT PRINCIPLE 

Consider two statically equivalent force systems R and P related by a linear trans-
formation as  

 R = BP, (1-27) 

R is considered to have more entries than P, that is, there are solutions to R for 
which P is zero. Associated with R and P let there be two sets of displacements v 
and u, respectively. These are compatible displacements and therefore the work 
done in each system is the same, that is,  

 Ptu = Rtv. (1-28) 

From Eq. (1-27), 

 Rt = PtBt. (1-29) 

Therefore, 

 Ptu = PtBtv. (1-30) 

Since P is arbitrary, we have 

 u = Btv. (1-31) 

Equations (1-27) and (1-31) will be used in the formulation of the force method. 

In a general structure, if member forces R are related to external nodal loads P, 
similar to Eq. (1-27), then according to the contragradient principle [5], the mem-
ber distortions v and nodal displacement u will be related by an equation similar to 
Eq. (1-31). 

If two displacement systems u and v are related by a linear transformation as  

 v = Cu, (1-32) 

and R and P are statically equivalent forces, then equating the work done for com-
patible displacements we have  

 Ptu = Rtv = RtCu. (1-33) 

Again u is arbitrary and  

 P = CtR. (1-34) 
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Equations (1-32) and (1-34) are employed in the formulation of the displacement 
method. 

For a statically determinate structure, 

 1 ,−=P B R  (1-35) 

and therefore 

 t 1.−=C B  (1-36) 

1.3.5 RECIPROCAL WORK THEOREM 

Consider a structure as shown in Figure 1.15(a) subjected to a set of loads, {P1, P2, 
… , Pm}. The same structure is considered under the action of a second set of loads 
{Q1, Q2, … , Qn}, as shown in Figure 1.15(b). The reciprocal work theorem can be 
stated as follows:  

The work done by {P1, P2, … , Pm} through displacements {δ1, 
δ2, … , δm} produced by {Q1, Q2, … , Qn} is the same as the work 
done by {Q1, Q2, … , Qn} through displacements {∆1, ∆2, … , ∆n} 
produced by {P1, P2, … , Pm}; that is, 

 
1 1

 
m n

i i j j
i j

P Qδ
= =

= ∆∑ ∑ . (1-37) 

When single loads P and Q are considered, Eq. (1-37) reduces to 

 ,i jP Qδ = ∆  (1-38) 

and for the case where P = Q, one obtains 

 .i jδ = ∆  (1-39) 

Equation (1-39) is known as Betti´s law, and can be stated as follows:  

The deflection at point i due to a load at point j is the same as  
deflection at j when the same load is applied at i. 
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∆ 
∆ 

∆ 
∆ 

δ 
δ 
δ P 

P 

P 

Q 
Q 

Q 

Q 

1 
2 

m 
1 

2 
2 1 1 

2 
3 

n n 
m 

 
 (a) (b) 

Fig. 1.15 A structure subjected to two sets of loads.  

The proof of the reciprocal work theorem is constructed by equating the strain 
energy of the structure in two different loading sequences [217]. In the first se-
quence, both sets of loads are applied simultaneously, while in the second 
sequence, loads {P1, P2, … , Pm} are applied first, followed by the application of 
the second set of loads {Q1, Q2, … , Qn}. 

EXERCISES 

1.1 Using slope-deflection equations, write the stiffness matrix for a prismatic 
beam.  

1.2 Develop the flexibility matrix for a beam element, using simple supports for 
the element. 

1.3 Show that the alternative forms of the beam flexibility matrices yield the 
same complementary energy. 

1.4 Use Castigliano´s theorem to find the vertical deflection at the tip of the 
following craned cantilever. The members are steel with elastic modulus 200.0 
GN/m2, and the section properties are A = 4.0 × 103 mm2 and I = 30.0 × 106 mm2.  

3 .0  m 

2 .0  m  

1 0  k N 
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1.5  Use the dummy-load method to calculate the horizontal and vertical 
displacements at node C of the following truss. The members are of steel with 
elastic modulus 200.0 GN/m2. Their cross-sections are of two types: members 2, 3, 
5 have cross-sectional areas of 200.0 mm2, and those for members 1, 4, 6 are 750.0 
mm2. 

3.0 m 
3.0 m 3.0 m 

10 kN 5 kN 

1 

2 3 
4 5 6 

C 

 



 

 

 



 

 

CHAPTER 2 

Static Indeterminacy and 
Rigidity of Skeletal Structures 

 

2.1 INTRODUCTION 

Skeletal structures are the most common type of structures encountered in civil 
engineering practice. These structures sustain the applied loads mainly by virtue of 
their topology, that is, the way the members are connected to each other (connec-
tivity). Therefore, topology plays a vital role in their design. The first step in the 
design of such structures is to provide sufficient rigidity and to make it reliable, 
but this partly depends on the degrees of static indeterminacy (DSI) of the struc-
tures. One method of calculating the DSI is to use classical formulae such as those 
given in Timoshenko and Young [217]; however, the application of these formulae 
usually provides only a small part of the necessary topological properties. The 
methods presented in this chapter provide us with a powerful means to understand 
the distribution of indeterminacy within a structure, and make the study of the load 
distribution feasible. The concepts presented are efficient both in terms of the op-
timal force method of structural analysis, as discussed in Chapter 3, and the 
methods of optimal structural design. 

In this chapter, simple and general methods are presented for calculating the DSI 
of different types of skeletal structures, such as rigid-jointed planar and space 
frames, pin-jointed planar trusses and ball-jointed space trusses. Euler´s polyhedra 
formula is then used to develop very efficient special methods for determining the 
DSI of different types of structures. These methods provide an insight into the 
topological properties of the structures.  
_________________________________ 
Optimal Structural Analysis A. Kaveh 
© 2006 Research Studies Press Limited 
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In the analysis of skeletal structures, three different properties are encountered, 
which are classified as topological, geometrical and material. A separate study of 
these properties results in considerable simplification of the analysis and leads to a 
clear understanding of the structural behaviour. This chapter is confined to the 
study of those topological properties of skeletal structures that are needed to study 
displacement and force methods. The number of equations to be solved in the two 
methods may differ widely for the same structure. This number depends on the 
size of the flexibility and the stiffness matrices. These matrix orders are the same 
as the DSI and the degree of kinematic indeterminacy (DKI) of a structure, respec-
tively. Obviously, the method that leads to the required results with the least 
amount of computational time and storage should be used for the analysis of a 
given structure. Thus, the comparison of the DSI and the DKI may be the main 
criterion for selecting the method of analysis.  

The DKI of a structure, also known as its total number of degrees of freedom, can 
easily be obtained by summing up the degrees of freedom of its nodes. A node of 
planar and space trusses has 2 and 3 degrees of freedom, respectively. For planar 
and space frames, these numbers are 3 and 6, respectively. Single-layer grids also 
have 3 degrees of freedom for each node. 

For determining the DSI of structures, numerous formulae depending on the kinds 
of members or types of joints have been given, for example [217]. The use of these 
classical formulae, in general, requires counting the number of members and 
joints, which becomes a tedious process for multi-member and/or complex-pattern 
structures; moreover, the count provides no additional information about connec-
tivity.  

Henderson and Bickley [77] related the DSI of a rigid-jointed frame to the first 
Betti number (cyclomatic number) of its graph model S. Generalising the Betti´s 
number to a linear function and using an expansion process, Kaveh [94] developed 
a general method for determining the DSI and the DKI of different types of skele-
tal structures. Special methods have also been developed for transforming the 
topological properties of space structures to those of their planar drawings, in or-
der to simplify the calculation of their degrees of static indeterminacy [106,107]. 

A DSI equal to or greater than zero is a necessary condition for rigidity; however, 
it is by no means sufficient. Therefore, rigidity requires a separate careful study. 
This property was studied by pioneering structural engineers such as Henneberg 
[80] and Müller–Breslau [167]. The methods that they developed for examining 
the rigidity of skeletal structures are useful for the study of structures either with a 
small number of joints and members, or possessing special connectivity properties. 
Rigid-jointed structures (frames), when supported in an appropriate form and con-
taining no release, are always rigid. Therefore, only truss structures need to be 
studied for rigidity. 
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Various types of methods have been employed for the study of rigidity; however, 
the main approaches are either algebraic or combinatorial. A comprehensive dis-
cussion of algebraic methods may be found in the work of Pellegrino and 
Calladine [175]. The first combinatorial approach to the study of rigidity is due to 
Laman [144], who found the necessary and sufficient conditions for a graph to be 
rigid, when its members and nodes correspond to rigid rods (bars) and rotatable 
pin-joints of a planar truss. Certain types of planar trusses have been studied for 
rigidity by Bolker and Crapo [14], Roth and Whiteley [190] and Crapo [32]. 

Although Laman theoretically solved the problem of rigidity for planar trusses, no 
algorithm was given to check whether a given graph was rigid. Two combinatorial 
algorithms developed by Lovász and Yemini [156], and Sugihara [214] and Tay 
[216] showed that they are interrelated. Some studies have recently been made 
with a view to extending the concepts developed for planar trusses to those of 
space trusses. However, the results obtained are incomplete and apply only to spe-
cial classes of space trusses. Therefore, only planar trusses are studied in this 
chapter. 

It should be noted that various methods for determining the DSI of structures are a 
by-product of the general methods developed here. The method of expansion and 
its control at each step, using the intersection theorem of this chapter, provides a 
powerful tool for further studies in the field of structural analysis.  

2.2 MATHEMATICAL MODEL OF A SKELETAL STRUCTURE 

The mathematical model of a structure is considered to be a finite, connected graph 
S. There is a one-to-one correspondence between the elements of the structure and 
the members (edges) of S. There is also a one-to-one correspondence between the 
joints of the structure and the nodes of S, except for the support joints of some 
models.  

For frame structures, shown in Figures 2.1 (a1) and (a2), two graph models are 
considered. For the first model, all the support joints are identified as a single node 
called a ground node, as shown in Figures 2.1 (b1) and (b2). For the second 
model, all the joints are connected by an artificial arbitrary spanning tree, termed 
ground tree, as shown in Figures 2.1 (c1) and (c2).  

 
 (a1) A plane frame.  (b1) First model  (c1) Second model 

 with a ground node.  with a ground tree.  
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 (a2) A space frame.  (b2) First model            (c2) Second model 

 with a ground node.  with a ground tree.  

Fig. 2.1 Frame structures and their mathematical models.  

Truss structures shown in Figures 2.2 (a1) and (a2) are assumed to be supported in 
a statically determinate fashion (Figures 2.2 (b1) and (b2)), and the effect of addi-
tional supports can easily be included in calculating the DSI of the corresponding 
structures. Alternatively, artificial members can be added as shown in Figures 2.2 
(c1) and (c2) to model the components of the corresponding supports. For a fixed 
support, two members and three members are considered for planar and space 
trusses, respectively, and one member is used for representing a roller. 
 

 
 (a1) A plane truss.  (b1) First model  (c1) Second model  
 without added members. with replaced members.  

 
 (a2) A space truss.  (b2) First model  (c2) Second model  
     without added members.  with replaced members.  

Fig. 2.2 Trusses and their graph models.  

The skeletal structures are considered to be in perfect condition; that is, planar and 
space trusses have pin and ball joints only. Obviously, the effect of extra con-
straints or releases can be taken into account in determining their DSI and also in 
their analysis, as shown in the work by Mauch and Fenves [161]. 
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2.3 EXPANSION PROCESS FOR DETERMINING 
      THE DEGREE OF STATIC INDETERMINACY 

The DKI of a structure is the number of independent displacement components 
(translations and rotations) required for describing a general state of deformation 
of the structure. The DKI is also referred to as the total degrees of freedom of the 
structure. On the other hand, the DSI (redundancy) of a structure is the number of 
independent force components (forces and moments) required for describing a 
general equilibrium state of the structure. The DSI of a structure can be obtained 
by subtracting the number of independent equilibrium equations from the number 
of its unknown forces. 

2.3.1 CLASSICAL FORMULAE 

Formulae for calculating the DSI of various skeletal structures can be found in 
textbooks on structural mechanics, for example, the DSI of a planar truss, denoted 
by γ(S), can be calculated from,  

 γ(S) = M(S) − 2N(S) + 3, (2-1) 

where S is supported in a statically determinate fashion (internal indeterminacy). 
For extra supports (external indeterminacy), γ(S) should be further increased by 
the number of additional unknown reactions. 

A similar formula holds for space trusses:  

 γ(S) = M(S) − 3N(S) + 6. (2-2) 

For planar and space frames, the classical formulae is given as,  

 γ(S) = α [M(S) − N(S) + 1], (2-3) 

where all supports are modelled as a datum (ground) node, and α = 3 or 6 for pla-
nar and space frames, respectively.  

All these formulae require counting a great number of members and nodes, which 
makes their application impractical for multi-member and complex-pattern struc-
tures. These numbers provide only a limited amount of information about the 
connectivity properties of structures. In order to obtain additional information, the 
methods developed in the following sections will be utilised. 
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2.3.2 A UNIFYING FUNCTION 

All the existing formulae for determining DSI have a common property, namely 
their linearity with respect to M(S) and N(S). Therefore, a general unifying func-
tion can be defined as,  

 γ(S) = aM(S) + bN(S) + cγ0(S), (2-4) 

where M(S), N(S) and γ0(S) are the numbers of members, nodes and components of 
S, respectively. The coefficients a, b and c are integer numbers depending on both 
the type of the corresponding structure and the property, which the function is ex-
pected to represent. For example, γ(S) with appropriate values for a, b and c may 
describe the DSI of certain types of skeletal structures, as shown in Table 2.1. For 
a = 1, b = −1 and c = 1, γ(S) becomes the first Betti number b1(S) of S, as described 
in Appendix A. 

Table 2.1 Coefficients of γ(S) for different types of structures. 

Type of structure a b c 

Plane truss +1 −2 +3 
Space truss +1 −3 +6 
Plane frame +3 −3 +3 
Space frame +6 −6 +6 

2.3.3 AN EXPANSION PROCESS 

An expansion process, in its simplest form, has been used by Müller–Breslau [167] 
for re-forming structural models, such as simple planar and space trusses. In this 
expansion process, the properties of typical subgraphs, selected in each step to be 
joined to the previously expanded subgraph, guarantee the determinacy of the sim-
ple truss. These subgraphs consist of two and three concurrent bars for planar and 
space trusses, respectively. 

The idea can be extended to other types of structures, and more general subgraphs 
can be considered for addition at each step of the expansion process. A cycle, a 
planar subgraph and a subgraph with prescribed connectivity properties are exam-
ples of these, which are employed in this book. For example, the planar truss of 
Figure 2.3(a) can be formed in four steps, joining a substructure Si with γ(Si) = 1 as 
shown in Figure 2.3(b), sequentially, as illustrated in Figure 2.3(c).  
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  (a) A planar truss. (b) Selected unit. 

 

 

S1 = S1  

S1∪S2 = S2  

S2∪S3 = S3 

S3∪S4 = S4 = S 

(c) The process of expansion as S1 = S1→ S2 → S3 → S4 = S. 

Fig. 2.3 Process for the formation of a planar truss. 

2.3.4 AN INTERSECTION THEOREM 

In a general expansion process, a subgraph Si may be joined to another subgraph Sj 
in an arbitrary manner. For example, γ(Si) or γ(Sj) may have any arbitrary value 
and the union Si∪Sj may be a connected or a disjoint subgraph. The intersection 
Si∩Sj may also be connected or disjoint. It is important to find the properties of 
S1∪S2 having the properties of S1, S2 and S1∩S2. The following theorem provides a 
correct calculation of the properties of Si∪Sj. In order to have the formula in its 
general form, q subgraphs are considered in place of two subgraphs. 

Theorem (Kaveh [94]): Let S be the union of q subgraphs S1, S2, S3, ..., Sq with the 
following functions being defined: 

γ(S) = aM(S) + bN(S) +cγ0(S), 

   γ(Si) = aM(Si) + bN(Si) + cγ0(Si)   i = 1,2,...,q, 

   γ(Ai) = aM(Ai) + bN(Ai) + cγ0(Ai)   i = 2,3,...,q,  

where Ai = Si-1 ∩ Si and Si = S1∪S2 ∪ ... ∪Si. Then  
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 [γ(S) − cγ0(S)] = 0
1

[ ( ) ( )]
q

i i
i

S c Sγ γ
=

−∑  − 0
2

[ ( ) ( )]
q

i i
i

A c Aγ γ
=

−∑  (2-5) 

For proof, the interested reader may refer to Kaveh [113].  

Special Case: If S and each of its subgraphs considered for expansion (Si for i = 1, 
..., q) are non-disjoint (connected), then Eq. (2-5) can be simplified as 

 γ(S) = 
1

( )
q

i
i

Sγ
=
∑ −

2
( )

q

i
i

Aγ
=
∑ , (2-6) 

where ( )iAγ = aM(Ai) + bN(Ai) + c. 

For calculating the DSI of a multi-member structure, one normally selects a re-
peated unit of the structure and joins these units sequentially in a connected form. 
Therefore, Eq. (2-6) can be applied in place of Eq. (2-5) to obtain the overall prop-
erty of the structure.  

2.3.5 A METHOD FOR DETERMINING THE DSI OF STRUCTURES  

Let S be the union of its repeated and/or simple pattern subgraphs Si (i = 1, ..., q). 
Calculate the DSI of each subgraph, using the appropriate coefficients from Table 
2.1. Now perform the union-intersection method with the following steps: 

Step 1: Join S1 to S2 to form S2 = S1 ∪ S2, and calculate the DSI of their intersec-
tion A2 = S1 ∩ S2. The value of γ(S2) can be found using Eq. (2-5) or Eq. (2-6), as 
appropriate. 

Step 2: Join S3 to S2 to obtain S3 = S2 ∪ S3, and determine the DKI or DSI of A3 = 
S2 ∩ S3. As in Step 1, calculate γ(S3). 

Step k: Subsequently join Sk+1 to Sk, calculating the DSI of Ak+1 = Sk
 ∩ Sk+1 and 

evaluating the magnitude of γ(Sk+1).  

Repeat Step k until the entire structural model 
1
 

q

ii
S S

=
= ∪  has been re-formed and 

its DSI determined. 

In the above expansion process, the value of q depends on the properties of the 
substructures (subgraphs) that are considered for re-forming S. These subgraphs 
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have either simple patterns for which γ(Si) can easily be calculated, or the DSIs of 
which are already known. 

In the process of expansion, if an intersection Ai itself has a complex pattern, fur-
ther refinement is also possible; that is, the intersection can be considered as the 
union of simpler subgraphs.  

Example: Let S be the graph model of a space frame. This graph can be consid-
ered as 27 subgraphs Si as shown in Figure 2.4(a), connected to each other to form 

a graph 
27

1
 ii

S S
=

= ∪ . The interfaces of Si (i = 1, ..., 27) are shown in Figure 2.4(b), in 

which some of the members are omitted for the sake of clarity.  

 

(a) A subgraph Si of S.  (b) 
27

1
 ii

S S
=

= ∪  without some of its members. 

Fig. 2.4 A space structure S. 

The expansion process consists of joining 27 subgraphs Si one at a time. In this 
process, the selected subgraphs can have three different types of intersection, 
which are shown in Figure 2.5(a). In order to simplify the counting and the recog-
nition of the types of interfaces, S is re-formed storey by storey. For the first 
storey, a 3 × 3 table is used to show the types of intersections occurring in the 
process of expansion. The numbers on each box designate the type of intersection, 
as shown in Figure 2.5(b). Similar tables are used for the second storey and the 
third storey of S, as shown in Figure 2.5(b). 

Thus, there exist 6 intersections of type 1
iA , 12 intersections of type 2

iA  and 8 in-
tersections of type 3

iA .  
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  Type 1 – 1
iA   Type 2 – 2

iA   Type 3 – 3
iA  

(a) Three different types of intersections.  
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1
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3
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3

 
 First floor   Second floor   Third floor  

(b) Types of intersections after the completion of each storey.  

Fig. 2.5 Intersections and their types.  

Since each Si is a connected subgraph, and is in the process of expansion, Si is kept 
connected, and a simplified Eq. (2-5) can be employed:  

γ(S) = 
27 27

1 2

( ) ( ).i i
i i

S Aγ γ
= =

−∑ ∑   

As previously shown  

27 7 19 27
1 2 3

2 2 8 20

( ) ( ) ( ) ( ).i i i i
i i i i

A A A Aγ γ γ γ
= = = =

= + +∑ ∑ ∑ ∑   

The intersections 2
iA  and 3

iA  can be decomposed as 

2
iA  = 1

iA ∪ 1
iA  and 3

iA  = 2
iA  ∪ 

1
iA . 
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The DSI of S can now be calculated as follows: 

γ(Si) = 6(12 − 8 + 1) = 6 × 5 = 30.  

Using Eq. (2-3),  

1( )iAγ  = 6(4 − 4 + 1) = 6,  

2( )iAγ  = 6 × 1 + 6 × 1 − 6 × 0 = 12,  

3( )iAγ = 6 × 2 + 6 × 1 − 6 × 0 = 18,  

hence: γ(S) = 27(30) − [6(6) + 12(12) + 8(18)] = 486.  

The expansion process becomes very efficient for structures with repeated pat-
terns. Counting is reduced considerably by this method. As an example, the use of 
the classical formula for finding the DSI of S in the above example requires count-
ing 124 members and 64 nodes, which is a task involving possible errors.  

2.4 THE DSI OF STRUCTURES: SPECIAL METHODS  

In this section, using Euler´s polyhedron formula (Appendix A), some useful theo-
rems are stated, which provide a simple means for calculating the DSI of various 
types of skeletal structures. For proofs for these theorems, interested readers may 
refer to Kaveh [113].  

Theorem 1: For a fully triangulated planar truss (except the exterior boundary), 
the internal DSI is the same as the number of its internal nodes:  

 γ(S) = Ni(S). (2-7) 

For trusses with non-triangulated internal regions (Figure 2.6(a)), let Mc(S) be the 
number of members required for the completion of the triangulation of the internal 
regions of S, then: 

 γ(S) = Ni(S) − Mc(S). (2-8) 

The number of members required for triangulation of a polygon is constant and 
independent of the way it is triangulated. This is why Eq. (2-8) can easily be estab-
lished. 
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For planar trusses, the crossing point of two bars can be identified as an additional 
dummy node. This is illustrated in Figure 2.6(a), where the truss is drawn as in 
Figure 2.6(b). The application of Eq. (2-7) leads to γ(S) = Ni(S) = 1. The addition 
of a dummy node at crossing point as in Figure 2.6(c) has the same effect and re-
sults in γ(S) = Ni(S) = 1.  

 
 (a) A simple truss.  (b) Permissible. (c) Permissible.  

Fig. 2.6 A planar truss and two admissible models.  

However, when three bars cross at a point, as illustrated in Figure 2.7(a), the addi-
tion of a dummy node is not permissible, since it leads to γ(S) = Ni(S) = 1, while a 
correct drawing of S results in three internal nodes with three non-triangulated 
regions. The addition of three bars completes the triangulation, and therefore γ(S) 
= Ni(S) − Mc(S) = 3 − 3 = 0, which is the correct DSI for the given truss.  

 
 (a) A simple truss. (b) Non-permissible. (c) Permissible.  

Fig. 2.7 A planar truss and its non-admissible and admissible models.  

Once the internal DSI of a structure has been found, the external DSI resulting 
from additional supports can be easily added, to obtain the total DSI.  

Example 2: Let S be a planar truss as shown in Figure 2.8. Triangulation of the 
internal region in an arbitrary manner requires nine members, shown as dashed 
lines.  
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Therefore: 

γ(S) = Ni(S) − Mc(S) = 72 − 9 = 63. 

 
 (a) A planar truss S.  (b) Triangulated S. 

Fig. 2.8 A general planar truss and its triangulation. 

Theorem 2: The DSI of a planar rigid-jointed frame S is equal to three times the 
number of its internal regions, that is,  

 γ(S) = 3Ri(S). (2-9) 

Theorem 3: A ball-jointed space truss drawn (embedded) on a sphere is internally 
statically determinate, if all the created regions are triangles. 

As an example, a ball-jointed truss with S of Figure 2.2 (b2) as its graph model, is 
statically determinate. 

2.5 SPACE STRUCTURES AND THEIR PLANAR DRAWINGS  

The topological properties of space structures can be transformed into those of 
their planar drawings, thus simplifying the counting process for the calculation of 
the DSI for space structures. 

2.5.1 ADMISSIBLE DRAWING OF A SPACE STRUCTURE 

A drawing S p of a graph S in the plane is a mapping of the nodes of S to distinct 
points of S p, and the members of S to open arcs of S p, such that 

(i) the image of no member contains that of any node;  

(ii) the image of a member (ni, nj) joins the points corresponding to ni and nj.  

A drawing is called admissible (good) if the members are such that 

(iii) no two arcs with a common end point meet;  
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(iv) no two arcs meet in more than one point; 

(v) no three arcs meet at a common point.  

The configurations prohibited by these three conditions are shown in Figure 2.9.  

  
Fig. 2.9 The prohibited configurations.  

A point of intersection of two members in a drawing is called a crossing, and the 
crossing number c(S p) of a graph S is the number of crossings in any admissible 
drawing of S in the plane. An optimal drawing in a given surface is one that exhib-
its the least possible crossings. In this book, we use only admissible drawings in 
the plane, but not necessarily optimal. 

As an example, different admissible drawings of a space model, shown in Figure 
2.10(a), are illustrated in Figures 2.10 (b–d). The crossing points are marked by ×. 
The number of crossing points for each case is also provided.  

 
 (a) S. (b) c(S p)=2.  

 
 (c) c(S p)=0.  (d) c(S p)=4. 

Fig. 2.10 Admissible drawings of S. 
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In this example, an optimal drawing corresponds to c(S p) = 0, which is shown in 
Figure 2.10(c). 

2.5.2 THE DSI OF FRAMES 

For a rigid-jointed space frame, the DSI can be determined by using 

 γ(S) = 6[M(S) − N(S) +1]. (2-10) 

Counting the nodes in a drawing of S on the plane produces no problem; however, 
recognising and counting the members can be very cumbersome. The following 
theorem transforms this procedure to counting the crossing nodes and regions of 
Sp, in place of members and nodes of S.  

Theorem: For a space rigid-jointed frame, the DSI is given by:  

 γ(S) = 6[Ri(S p) − c(S p)]. (2-11) 

Example 1: A simple space frame is considered, as shown in Figure 2.11(a). Both 
models introduced in Section 2.2 are employed in Figures 2.11(a) and (b). For the 
first model with ground node γ(S) = 6(5 − 1) = 24, and for the second model with 
ground tree the same result as γ(S) = 6(6 − 2) = 24 is obtained.  

1
2

3 4

5

6

1
2

3

4
5

 
 (a) (b) (c) 

Fig. 2.11 A simple frame and its drawing with different models.  

Example 2: Let S be the graph model of a space frame with a ground tree, as 
shown in Figure 2.12(a). A drawing of S is shown in Figure 2.12(b), for which 
c(S p) = 12 and Ri(S p) = 33, resulting in γ(S) = 6(33 − 12) = 126.  
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 (a) A space frame S. (b) A drawing of S.  

Fig. 2.12 A space frame and its drawing.  

2.5.3 THE DSI OF SPACE TRUSSES  

Ball-jointed space trusses are often multi-member structures in the form of double- 
and triple-layer grids. The following theorem simplifies the calculation of the DSI 
for these structures.  

Theorem: For a ball-jointed space truss supported in a statically determinate fash-
ion, the DSI is given by,  

 γ(S) = c(Sp) − Mc(Sp), (2-12) 

where Mc(S p) is the number of members required for the full triangulation of S p.  

Example 1: A space structure in the form of the skeleton of a cube is considered 
as shown in Figure 2.13(a). An optimal drawing of S is illustrated in Figure 
2.13(b). Since a fully triangulated truss can be drawn on the plane with no addi-
tional member, γ(S) = 0 and Theorem 3 of Section 2.4 therefore follows. 

 
 (a) A fully triangulated space truss. (b) Its optimal drawing. 

Fig. 2.13 A fully triangulated space truss and its optimal drawing.  
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Example 2: Consider a space ball-jointed double-layer grid S as shown in Figure 
2.14(a), an admissible drawing of which is depicted in Figure 2.14(b). 

This drawing contains 12 crossing points, and for a full triangulation, Mc(S p) = 9 
members are added, as shown by dashed lines. 

From Eq. (2-12) we have  

γ(S) = c(S p) − Mc(S p) = 12 − 9 = 3. 

 
(a) A double-layer grid S.   (b) An arbitrary drawing of S.  

Fig. 2.14 A space truss and its planar drawings.  

It should be noted that the addition of dashed lines to complete the triangulation of 
the exterior region (unbounded cycle) is not necessary, since an m-polygon can be 
triangulated by m−3 members. Therefore, one can use,  

 γ(S) = c(S p) − ( )p
cM S  − m +3, (2-13) 

where ( )p
cM S  is the number of members required for a full triangulation of 

bounded regions. 

2.5.4 A MIXED PLANAR DRAWING-EXPANSION METHOD 

A mixed method can now be designed for determining the DSI of complex-pattern 
and/or large-scale structures. Repeated units of the structure are considered, and 
the theorems of Sections 2.2 and 2.5 are applied to find their indeterminacies. An 
expansion process is then used to determine the DSI of the entire structure. This 
method may be illustrated by means of the simple space frame shown in Figure 
2.15(a).  
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(a) A space structure S. 
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(b) A subgraph Si of S and its graph model. 

  

 (c) Intersection Type 1 − 1
iA . (d) Intersection Type 2 − 2

iA . 

Fig. 2.15 A space frame S, its unit, and intersections. 

A simple unit is considered in Figure 2.15(b), for which models with both ground 
node and tree node are illustrated. Eq. (2-11) results in:  

( )iSγ = 6(11−3) = 6 × 8 = 48.  
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Two types of intersections are illustrated in Figure 2.15(c) and (d), and their DSIs 
are calculated as  

1( )iAγ = 6[2] = 12 and 2( )iAγ = 6[4] = 24.  

The DSI of the entire structure is now determined as  

γ(S) = 12 × 48 − [5 × 12 + 6 × 24] = 12 [48 − 17] = 12 × 31 = 6 × 62 = 372.  

For support conditions, one could consider the structure comprising complete 
cubes, and after calculating the DSI as γ(S) = 6 × 74, 12 cycles corresponding to 
the ground cycles are contracted to obtain γ(S) = 6 [74 − 12] = 6 × 62 = 372. 

The DSI provides useful information about the connectivity properties of struc-
tures; however, it does not guarantee the rigidity of the structures. Therefore, 
additional studies are required, which are partially considered in the remainder of 
this chapter. 

2.6 RIGIDITY OF STRUCTURES  

The rigidity of trusses can be studied at different levels. The first level is combina-
torial − is the graph of joints and members (bars) correct? The second level is 
geometrical – are the placements of joints appropriate? The third level is mechani-
cal − are the selected materials and methods of construction suitable? Attention 
will be devoted to a first-level rigidity analysis of planar trusses. For this purpose, 
simplifying assumptions and definitions are made as follows. 

Consider a planar truss composed of rigid members and pinned joints. Each joint 
connects the end nodes of two or more members in such a way that the mutual 
angles of the members change freely if the other ends are left free. Such an as-
sumption is adequate for the first-level analysis of the rigidity. Let M(S) and N(S) 
denote the set of members and nodes of the graph model S of a truss. Denote the 
Cartesian coordinates of a node ni ∈ N(S) by (xi, yi). The number of members and 
nodes of S, as before, is also denoted by M(S) and N(S), respectively. 

A member connecting ni to nj constrains the movement of S in such a way that the 
distance between these two nodes remains constant, that is,  

 2 2( ) ( ) .i j i jx x y y const− + − =  (2-14) 

Differentiating this equation with respect to time t, we get,  

 ( )( ) ( )( ) 0,i j i j i j i jx x x x y y y y− − + − − =  (2-15) 



 OPTIMAL STRUCTURAL ANALYSIS 

 

42 

where the dot above x and y denotes the differentiation with respect to t. Equation 
(2-15) implies that the relative velocity should be perpendicular to the member, 
that is, no member is stretched or compressed. Writing all such equations for the 
members of S, the following system of linear equations is obtained,  

 Hw = 0, (2-16) 

where H is a M(S)×2N(S) constant matrix and w is a column vector of unknown 
variables 1 1 ( ) ( ){   ... }= t

N S N Sx y x yw , t denoting the transpose. A vector w, which 
satisfies Eq. (2-16), is called an infinitesimal displacement of S. The infinitesimal 
displacements of S with respect to point-wise addition and multiplication by sca-
lars, form a linear vector space R2N(S). The rigid body motion in a plane is a three-
dimensional subspace of this linear space. The co-dimension of this subspace of 
rigid motions in the space of all infinitesimal motions is called the degrees of free-
dom of S, denoted by f(S). The structure S is rigid, if f(S) = 0. 

As an example, consider a truss as shown in Figure 2.16. For this truss, matrix H 
and vector w can be written as:  

 
0 0

0 0 .
0 0

i j j i i j j i

i k k i i k k i

j k k j j k k j

x x x x y y y y
x x x x y y y y

x x x x y y y y

 − − − −
 = − − − − 
 − − − − 

H  (2-17) 

and  

{ } .t
i j k i j kx x x y y y=w  

The entries of H are real and linear functions of the nodal coordinates of the corre-
sponding graph.  

n i x i 
y i 

x j 
y j n j 

x k 
y k n k 

 
Fig. 2.16 A triangular planar truss. 

It should not be thought that the rigidity of S requires Eq. (2-16) to have only the 
trivial solution w = 0. Any rigid body motion with non-trivial w also satisfies this 
equation. As an example, consider a translation of the entire S specified by a vec-
tor {a, b}t, that is, i j kx x x a= = =  and .i j ky y y b= = =  Obviously Hw = 0 still 



 STATIC INDETERMINACY  43 

holds, since the sum of the first (or second) three columns of H is zero. Therefore, 
rank (H) < 2N(S). The rigid body motion subspace in the plane has dimension 3, 
and for any truss we have rank (H) ≤ 2N(S) − 3. However, if rank (H) = 2N(S) − 3, 
then S is called rigid, and for rank (H) < 2N(S) − 3, it is non-rigid. In the above 
example, rank (H) = 2 × 3 − 3 = 3 holds, and therefore a triangular planar truss is 
rigid. 

Now consider other examples, as shown in Figure 2.17. The truss shown in Figure 
2.17(a) is rigid, while the one in Figure 2.17(b) is not rigid, although their underly-
ing graphs are the same. The assignment of velocities, indicated by arrows, forms 
an infinitesimal displacement because it does not violate Eq. (2-16). The nodes 
without arrows are assumed to have zero velocities. Similarly, though Figure 
2.17(c) and Figure 2.17(d) have the same graph models, (c) is rigid but (d) is not 
rigid. It should be noted that an infinitesimal displacement does not always corre-
spond to an actual movement of a mechanism. The truss (b) deforms mechanically, 
while truss (d) violates only Eq. (2-16).  

  
 (a) (b) (c) (d)  

Fig. 2.17 Rigid and non-rigid planar trusses.  

The nodes of a structure S are in general position if x1, y1, x2, y2 ..., xN(S), yN(S) are 
algebraically independent over the rational field. When the nodes are in general 
position, the definition of algebraic dependence shows that a sub-determinant of 
matrix H is 0, if and only if it is identically 0, when x1, y1, x2, y2 ..., xN(S), yN(S) are 
considered as variables. Therefore if the nodes of S are in general position, the 
linear independence of Eq. (2-16) depends only on the underlying graph, and con-
sequently, the rigidity also depends only on the graph model of the structure. From 
now on, it is assumed that the nodes of S are in general position.  

For a ball-jointed space truss, Eq. (2-16) can be written in a general form to in-
clude a third dimension z. For such a case, a rigid body motion in space is a six-
dimensional subspace of R3N(S). Therefore, a space truss will be rigid, if rank (H) = 
3N(S) − 6, and non-rigid, if rank (H) < 3N(S) − 6. 

Suppose S is the graph model of a planar truss whose joints are in general position. 
A graph S is called stiff, if the corresponding truss is rigid. For any X ⊆ M, let 
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ρS(X) be the rank of the submatrix of H consisting of the rows associated with the 
members of X. X is called generically independent, if ρS(X) = |X|, and generically 
dependent, if ρS(X) < |X|, where |X| denotes the cardinality of X. 

For any subset X of M(S), define,  

 µS(X) = − M(X) + 2N(X) − 3, (2-18) 

where |M(X)| = |X|. Then the following basic theorem on rigidity can be stated: 

Theorem 1 (Laman [144]): The graph S is generically independent if, and only if, 
µS(X) ≥ 0 for any non-empty subset X of M(S).  

Corollary 1: S is stiff if, and only if, there exists M´ ⊆ M(S) such that |M´| = 2N(S) 
− 3 and µS(X) ≥ 0 for every non-empty subset X of M´.  

Corollary 2: S is stiff and generically independent if and only if: 

(a) µS(X) = 0, and 

(b) µS(X) ≥ 0 for every non-empty subset X of M(S). 

Using γ(S) = M(S) − 2N(S) + 3 = − µS(S), Theorem 1 can be restated as follows: 

The graph S is generically independent if, and only if, γ(Si) ≤ 0 for every subgraph 
Si of S, as shown in Figure 2.18(a). The graph S is stiff if, and only if there is a 
covering subgraph S  of S such that γ( S ) = 0 and γ(Si) ≤ 0 for every non-empty 
subgraph Si of S , as shown in Figure 2.18(b), which is a statically indeterminate 
structure.  

Finally, the graph S is stiff and generically independent if and only if:  

(a) γ(S) = 0, and  

(b) γ(Si) ≤ 0 for every subgraph Si of S, as shown in Figure 2.18(c), which is a 
statically determinate truss. 

Unfortunately, the application of Theorem 1 requires 2M(S) steps to determine 
whether a graph is generically independent. In the following sections, two methods 
are described for an efficient recognition of generic independence, which were 
developed by Sugihara [214], and Lovász and Yemini [156]. 
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 (a) (b) (c) 

Fig. 2.18 (a) Generically independent, (b) stiff and (c) generically independent, 
and stiff graphs.  

2.7 RIGIDITY OF PLANAR TRUSSES 

2.7.1 COMPLETE MATCHING METHOD 

Planar trusses are frequently used in structural engineering, and therefore a method 
suitable for both determinate and indeterminate trusses is presented in the follow-
ing text, for checking the rigidity of these structures. The algorithm is polynomial 
bounded and uses complete matching of a specially constructed bipartite graph for 
the recognition of generic independence.  

Definitions: Let B(S) = (A, E, B) be a bipartite graph with node sets A, B and 
member set E. A subset E´ of E is called a complete matching with respect to A, if 
the end nodes of members in E´ are distinct and if every node in A is an end node 
of some members in E´.  

For X ⊆ A, let Γ(X) be the set of all those nodes in B that are connected to nodes in 
X by some members of E. As described in Appendix A, a graph has complete 
matching if, and only if, |X| ≤ |Γ(X)| for every X ⊆ A. Examples of matching and 
complete matching are depicted in Figures 2.19(a) and (b), respectively.  

Using these definitions, the method is described as follows:  

A B A B

 
 (a) A matching. (b) A complete matching. 

Fig. 2.19 Examples of matching.  

Construct a bipartite graph of S. For this purpose, let S be a graph with N(S) nodes 
and M(S) members. The corresponding node set and member set are shown with 
the same symbols. For each node ni of S, let pi and qi be two distinct symbols. 
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Then let B(S) = (A*, E*, B*) be the bipartite graph whose node sets A* and B* and 
member set E* are defined as 

  A* = M(S), 

  B* = {p1,q1, p2,q2, ...,pN(S), qN(S)}, 

  E* = {(m,pi),(m,qi),(m,pj),(m,qj) | m = {ni,nj} ∈ M(S)}.  

This bipartite graph is now augmented as follows: 

Let t1, t2 and t3 be three distinct symbols. Then, for any 1≤ i < j ≤ N(S), let Bij(S) = 
(A*, Eij, B*) be the new bipartite graph constructed from B(S) by the addition of 
three nodes and three members in the following manner: 

  *
cA  = A* ∪ {t1,t2,t3}, 

  Eij =E* ∪ {(t1,pi),(t2,qi),(t3,pj)}. 

For any Z ⊆ *
cA , denote by Γij(Z) the set of nodes of B*, which are connected to 

elements of Z by members in Eij. For any X ⊆ *
cA , note that 2N(X) = |Γij(X)|. Then 

the following theorem can be proved.  

Theorem 2 (Sugihara [214]): The graph model S is generically independent if, and 
only if, for any i and j (1≤ i < j ≤ N(S)), Bij(S) = ( *

cA , Eij, B*) has a complete 
matching with respect to *

cA . 

The proof can be found in the original paper of Sugihara [214] or Kaveh [113]. 

A complete matching of Bij(S) = ( *
cA , Eij, B*) can be found by Hopcroft and 

Karp´s algorithm [82]. The number of Bij(S) is proportional to M(S) × M(S). As an 
example, consider the graph S as shown in Figure 2.20(a).  

The bipartite graph of S is depicted in Figure 2.20(b), and a typical complete matching 
B23(S) is illustrated in bold lines. The examination of all Bij(S) for 1≤ i < j ≤ 4 shows 
that complete matching exists and S is a generically independent graph. 
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 (a) S.  (b) B23(S). 

Fig. 2.20 A complete matching B23(S) of a graph S.  

The above method is quite general, and it is applicable to statically determinate 
and indeterminate structures. Another approach for the recognition of determinate 
trusses is due to Lovász and Yemini [156], which is described in the following 
section.  

2.7.2 DECOMPOSITION METHOD  

A graph S is generically independent, if doubling any member of S results in a new 
graph, which is the union of two spanning forests. A spanning forest is the union 
of k trees, containing all the nodes of S. This is the result of a special case of the 
following theorem of Nash–Williams [168].  

Theorem 3: A graph S has a k member-disjoint spanning forest if, and only if, 
M(Si) ≤ k[N(Si) − 1] for every partition of N(S).  

Consider k=2, then M(Si) ≤ 2N(Si) − 2 for every Si ⊆ S. If a member is added to Si 
without increasing its nodes iS ′ = Si ∪ m, then M( iS ′ ) − 2N( iS ′ ) + 3 ≤ 0, that is, 
µ( iS ′ ) ≥ 0 for every Si ⊆ S. This verifies the above method for checking the ge-
neric independence of S. 

As an example, the above method is applied to check the graph shown in Figure 
2.21(a) for generic independence. It can be seen that doubling any member of S 
leads to a graph that can be decomposed into two forests. The members for one of 
these forests, which have become spanning trees, are shown in bold lines in Figure 
2.21(b)  
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(a) A graph S. 

 
(b) Decomposition of S ∪ mi. 

Fig. 2.21 The generic independence check of S.  

The above two seemingly different methods, are mathematically interrelated. A 
proof of this fact can be found in [216].  

2.7.3 GRID-FORM TRUSSES WITH BRACINGS 

There is a special kind of planar truss known as a grid-form truss whose rigidity is 
easier to control. Consider a planar truss consisting of square panels with or with-
out diagonal members, an example of which is shown in Figure 2.22(a). The 
bipartite graph B(S) of S is constructed as follows: 

Associate one vertex with each row of squares and use the notation r1, r2, ..., rm for 
them. With each column of squares, associate one vertex denoted by c1, c2, ..., cn as 
depicted in Figure 2.22(b). Connect ri to cj by an edge if the corresponding squares 
in S have a diagonal member; then the graph obtained in this manner is called the 
bipartite graph B(S) of S. 

5 

r 
r 
r 

c 
c 
c 
c 
c 1 1 

2 2 
3 3 

4 
r 
r 3 
2 

r 1 1 c 2 c 3 c 4 c 5 c 

 
 (a) (b) 

Fig. 2.22 A planar truss and its bipartite graph B(S). 
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It is easy to prove that S is rigid if, and only if, the corresponding bipartite graph 
B(S) is a connected graph. For this purpose, consider a square grid-form truss with 
two rows and two columns as depicted in Figure 2.23(a). A series of deformations 
can now be performed as shown in Figure 2.23(b).  

y 
y 1 

x 2 

x 1 
2 

 
(a)     (b) 

Fig. 2.23 A square grid-form truss and its deformation components. 

Obviously, an arbitrary deformation of the truss can be considered as a combina-
tion of these deformation components. Now if a diagonal member is added to one 
of the squares, say the square corresponding to r1 and c1, then the deformation still 
takes place; however, a constraint in the form of x1 = y1 is imposed. If sufficient 
diagonal members are added, then x1 = x2 = y1 = y2, and no square deforms relative 
to the squares, that is, the entire truss will be rigid (if it is properly supported). 
This argument holds for any square grid-form truss with m rows and n columns. 
Since the nodes of B(S) correspond to x1, x2, …, xm, y1, y2, …, yn and the adjacency 
of ri and cj in B(S) corresponds to the equality of xi = xj, the result follows.  

 
 (a) S.  (b) B(S). 

Fig. 2.24 A γ-tree and its tree bipartite graph.  

If B(S) is a spanning tree, then the corresponding S is generically independent and 
stiff. It can also be proved that the static indeterminacy of S is the same as the first 
Betti number of B(S), as in Kaveh [94]. Figure 2.24(a) shows a rigid γ-tree for a 
planar truss, the corresponding bipartite graph of which is illustrated in Figure 
2.24(b). 
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2.8 CONNECTIVITY AND RIGIDITY 

The member-connectivity e(S) of a connected graph S is the smallest number of 
members, the removal of which disconnects S. When e(S) ≥ k, then the graph S is 
called k-member-connected. A similar definition can be obtained for node-
connectivity ν(S) by replacing “members” with “nodes”. 

Attempts have been made to relate the connectivity of a graph to its rigidity. Some 
partial results have been obtained; however, no general approach is found for such 
an interrelation. Some of the results obtained by Lovász and Yemini [156] are out-
lined in the following:  

Thorem 5: Every 6-connected graph is stiff. 

The proof can be found in the original paper of Lovász and Yemini [156] or Kaveh 
[113]. 

Finally, it should be noted that many attempts have recently been made to extend 
these ideas presented for planar trusses to space trusses; however, no concrete re-
sult applicable to general space graphs has so far been obtained. Many open 
problems remain for further research, if pure graph-theoretical methods are to be 
developed for the recognition of the rigidity of space trusses. The theory of ma-
troids, which is briefly introduced in Appendix B and in [230], seems to be a 
promising tool for the future study of rigidity.  

EXERCISES 

2.1 Use an expansion process to find the DSI of a 3 × 4 planar truss S as shown. 
The unit to be considered for expansion is also given.  

 
 S Si 

2.2 If the truss in the previous example is an m × n planar truss, determine the 
corresponding DSI.  

2.3 Derive Eq. (2-6) from Eq. (2-5). 
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2.4 Prove that for determining the DSI of a planar truss, the crossing point of 
any two members can be regarded as an extra node. If the crossing members are 
more than two, why does such an operation become incorrect? 

2.5 Find the DSI of the following planar truss using three different methods: 
classical, modification and triangulation: 

 

2.6 Determine the DSI of Si in Figure 2.4 using its planar drawing. Consider Si 
first as a space truss and secondly as a space frame.  

2.7 Use Sugihara´s matching method to verify the generic independence of the 
following truss models:  

 
 (a) (b) 

2.8 Determine the DSI of the following double-layer grid. Suppose S is sup-
ported in a statically determinate fashion:  
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2.9 Employ Lovász and Yemini´s decomposition method to verify the generic 
independence of the following truss:  

 

2.10 Examine the rigidity of the following trusses:  

 
 (a) (b) (c) 



 

CHAPTER 3 

Optimal Force Method 
of Structural Analysis 

 

3.1 INTRODUCTION 

This chapter is devoted to the progress made in the force method of structural 
analysis in recent years and summarises the state of the art. Efficient methods are 
developed leading to highly sparse flexibility matrices. The methods are mainly 
developed for frame structures; however, extensions are made to general skeletal 
structures and finite element analysis of continuum. 

The force method of structural analysis, in which the member forces are used as 
unknowns, is appealing to engineers, since the properties of members of a struc-
ture most often depend on the member forces rather than joint displacements. This 
method was used extensively until 1960. After this, the advent of the digital com-
puter and the amenability of the displacement method for computation attracted 
most researchers. As a result, the force method and some of the advantages it of-
fers in optimisation and non-linear analysis, have been neglected. 

Five different approaches are adopted for the force method of structural analysis, 
which will be classified as follows:  

1. Topological force methods  

2. Combinatorial force methods  
_________________________________ 
Optimal Structural Analysis A. Kaveh 
© 2006 Research Studies Press Limited
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3. Algebraic force methods 

4. Mixed algebraic–combinatorial force methods  

5. Integrated force method.  

Topological methods have been developed by Henderson [76] and Maunder [162] 
for rigid-jointed skeletal structures using manual selection of the cycle bases of 
their graph models. Methods suitable for computer programming are due to Kaveh 
[94,100,103−105,111]. These topological methods are generalised to cover all 
types of skeletal structures, such as rigid-jointed frames, pin-jointed planar trusses 
and ball-jointed space trusses [98,113]. Algebraic topology is employed exten-
sively in the work of Langefors [145,146]. 

Algebraic methods have been developed by Denke [36], Robinson [186], Topçu 
[219], Kaneko et al. [92], Soyer and Topçu [211], and mixed algebraic–topological 
methods have been used by Gilbert and Heath [60], Coleman and Pothen [28,29] 
and Pothen [181]. 

The integrated force method has been developed by Patnaik [172,173], in which 
the equilibrium equations and the compatibility conditions are satisfied simultane-
ously in terms of the force variables.  

3.2 FORMULATION OF THE FORCE METHOD 

In this section, a matrix formulation using the basic tools of structural analysis − 
equilibrium, compatibility and load–displacement relationships − is described. The 
notations are chosen from those most commonly utilised in structural mechanics. 

3.2.1 EQUILIBRIUM EQUATIONS 

Consider a structure S with M members and N nodes that is γ(S) times statically 
indeterminate. Select γ(S) independent unknown forces as redundants. These un-
known forces can be selected from external reactions and/or internal forces of the 
structure. Denote these redundants by  

 t
1 2 ( )

{ , , ..., }γ=
S

q q qq . (3-1) 

Remove the constraints corresponding to redundants, in order to obtain the corre-
sponding statically determinate structure, known as the basic (released or primary) 
structure of S. Obviously, a basic structure should be rigid. Consider the joint 
loads as  
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 t
1 2{ , , ..., } ,np p p=p  (3-2) 

where n is the number of components for applied nodal loads.  

Now the stress resultant distribution r, due to the given load p, for a linear analysis 
by the force method can be written as  

 0 1 ,= +r B p B q  (3-3) 

where B0 and B1 are rectangular matrices each having m rows, and n and γ(S) col-
umns, respectively, m being the number of independent components for member 
forces. B0p is known as a particular solution, which satisfies equilibrium with the 
imposed load, and B1q is a complementary solution, formed from a maximal set of 
independent self-equilibrating stress systems (SESs), known as a statical basis.  

Example 1: Consider a planar truss, as shown in Figure 3.1(a), which is two times 
statically indeterminate. EA is taken to be the same for all the members.  

q q 1 2 
L 

1 2 3 

4 5 6 
8 9 

10 

p 

L L 

p 

1 2 

3 4 
5 6 

7 

2 1 

 
  (a) A planar truss.  (b) The selected unknown forces.  

Fig. 3.1 A statically indeterminate planar truss.  

One member force and one component of a reaction may be taken as redundants. 
Alternatively, two member forces can also be selected as unknowns, as shown in 
Figure 3.1(b). With the latter selection, the corresponding B0 and B1 matrices can 
now be obtained by applying unit values of pi (i = 1, 2) and qj (j = 1, 2), respec-
tively:  

0
1 0 0 0 2 0 0 0 0

,
2 1 0 0 2 0

1
1 2 1 1

t
 −

=  
− +  

−
− − −

B  
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and 

1 .
1/ 2 0 1/ 2 0 1 1 1/ 2 0 0 0
0 1/ 2 0 1/ 2 0 0 1/ 2 1 1 1/ 2

t
 
 =
  

− − + + −
− − − + + −

B

 

The columns of B1 form a statical basis of S. The underlying subgraph of a typical 
SES (for q2 = 1) is shown in bold lines in Figure 3.1(b). 

Example 2: Consider a portal frame shown in Figure 3.2(a), which is three times 
statically indeterminate. 

p = 10 kN 

1 
2 
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4 m 

4 m 1 
2 

3 
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q q 
q q q q 3 

1 
2 3 

1 
2 

 
 (a) A portal frame S.  (b) The basic structure of S. 

Fig. 3.2 A statically indeterminate frame.  

This structure is made statically determinate by an imaginary cut at the middle of 
its beam. The unit value of external load p1 and each of the bi-actions qi (i = 1, 2, 
3) lead to the formation of B0 and B1 matrices, in which the two end bending mo-
ments (Mi, Mj) of a member are taken as its member forces. Using the sign 
convention introduced in Chapter 1, B0 and B1 matrices are formed as  

[ ]t
0 4 0 0 0 0 0 ,= +B  

and 

t
1

4 0 0 0 0 4
2 2 2 2 2 2 .
1 1 1 1 1 1

+ − 
 = − + − − + − 
 − + − + − + 

B  

The columns of B1 form a statical basis of S, and the underlying subgraph of each 
SES is a cycle, as illustrated in bold lines in Figure 3.2(b). Notice that three SESs 
can be formed on each cycle of a planar frame. 
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In both of the above examples, particular and complementary solutions are ob-
tained from the same basic structure. However, this is not a necessary requirement, 
as imagined by some authors. In fact, a particular solution is any solution satisfy-
ing equilibrium with the applied loads, and a complementary solution comprises of 
any maximal set of independent self-equilibrating systems. The latter is a basis of a 
vector space over the field of real numbers, known as a complementary solution 
space; see Henderson and Maunder [78]. 

Using the same basic structure is equivalent to searching for a cycle basis of a 
graph, but restricting the search to fundamental cycles only, which is convenient 
but not efficient when the structure is complex or when cycle bases with specific 
properties are needed. 

As an example, consider a three-storey frame as shown in Figure 3.3(a). A cut 
system as shown in Figure 3.3(b) corresponds to a statical basis, containing three 
SESs formed on each element of the cycle basis shown in Figure 3.3(b). However, 
the same particular solution can be employed with a statical basis formed on the 
cycles of the basis shown in Figure 3.3(c). 

 
  (a)  (b) (c) 

Fig. 3.3 A three-storey frame with different cut systems.  

A basic structure need not be selected as a determinate one. For a redundant basic 
structure, one may obtain the necessary data either by analysing it first for the 
loads p and bi-actions qi = 1 (i = 1, 2, ..., γ(S)) or by using existing information.  

3.2.2 MEMBER FLEXIBILITY MATRICES  

In the force method of analysis, the determination of the member flexibility matrix 
is an important step. A number of alternative methods are available for the forma-
tion of displacement–force relationships describing the flexibility properties of the 
members. Four such approaches are as follows: 
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1. Inversion of the force–displacement relationship  

2. Unit load method 

3. Castigliano´s theorem  

4. Solution of differential equations for member displacements.  

In the following, the unit load method is briefly described for the formation of the 
flexibility matrices: 

Consider a general element with n member forces,  

 t
1 2{ , ,...., },m nr r r=r  (3-4) 

and member displacements,  

 t
1 2{ , ,...., }.m nu u u=u  (3-5) 

A typical component of the displacement ui can be found using the unit load 
method as follows: 

 t ,i iV
u dVσ= ∫∫∫ e  (3-6) 

where iσ  represents the matrix of statically equivalent stresses due to a unit load 
in the direction of ri, and ε is the exact strain matrix due to all applied forces rm. 
The unit loads can be used in turn for all the points where member force are ap-
plied, and therefore, 

 t ,m V
u dVσ= ∫∫∫ e  (3-7) 

where, 

 t
1 2{     ...  } .n=s s s s  (3-8) 

For a linear system,  

 ,m= crs  (3-9) 

where c is the stress distribution due to unit forces rm. 
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The stress–strain relationship can be written as follows:  

 .mφ φ= = cre s  (3-10) 

Substituting in Eq. (3-7), we have,  

 t dm mV
Vσ φ= ∫∫∫u c r  (3-11) 

or,  

 um = fmrm, (3-12) 

where 

 

t d ,m V
Vσ φ= ∫∫∫f c  (3-13) 

represents the element flexibility matrix. 

The evaluation of s  representing the exact stress distribution due to the forces rm, 
may not be possible, and hence an approximate relationship should be used. Usu-
ally the matrix c is selected such that it will satisfy at least the equations of 
equilibrium. Denoting this approximate matrix by c  and using = cs , we have  

  .t
m V

dVφ= ∫∫∫f c c   (3-14) 

This equation will be used for the derivation of the flexibility matrices of some 
finite elements in the following sections. 

For a bar element of a space truss, however, the flexibility matrix can be easily 
obtained using Hooke´s law as already discussed in Chapter 1. For a beam element 
ij of a space frame, y and z axes are taken as the principal axes of the beam’s cross 
section; see Figure 3.4. The forces of end j are selected as a set of independent 
member forces, and the element is considered to be supported at point i. The axial, 
torsional, and flexural behaviours in respective planes are uncoupled, and there-
fore, one needs to only consider the flexibility relationships for four separate 
members: 

1. An axial force member (along x-axis)  

2. A pure torsional member (about x-axis)  

3. A beam bent about y-axis  

4. A beam bent about z-axis. 
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Direct adaptation of the flexibility relationships derived in Chapter 1 gives the 
following 6 × 6 flexibility matrix:  

 

3 2

3 2

2

2

/ 0 0 0 0 0

0 /3 0 0 0 /2

0 0 L /3 0 /2 0
= ,

0 0 0 / 0 0

0 0 /2 0 / 0

0 /2 0 0 0 /

 
 
 
 

− 
 
 
 − 
   

z z

y y
m

y y

z z

L EA

L EI L EI

EI L EI

L GJ

L EI L EI

L EI L EI

f  (3-15) 

where G is the shear modulus, Iy and Iz are the moments of inertia with respect to y 
and z axes, respectively. J is the Saint-Venant torsion constant of the cross section.  

x 

y 

z 

r5, u5 
r2, u2 

r1, u1 r4, u4 
r3, u3 

r6, u6 
i j 

 
Fig. 3.4 A beam element and selected independent member forces. 

3.2.3 EXPLICIT METHOD FOR IMPOSING COMPATIBILITY 

The compatibility equations in the actual structure will now be derived. Using the 
displacement–load relationship for each member, and collecting them in the di-
agonal of the unassembled flexibility matrix Fm, one can write member distortions 
as follows: 

 0 1m m m= = +u F r F B p F B q . (3-16) 

In matrix form, 

 [ ] [ ][ ]0 1m
 

=  
 

p
u F  B   B  .

q
 (3-17) 



 OPTIMAL FORCE METHOD OF STRUCTURAL ANALYSIS  

 

61 

From the contragradient principle of Chapter 1, 

 [ ] [ ]
t
0

t
1

 .
 

=  
  

B
v u

B
 (3-18) 

Combining Eq. (3-17) and Eq. (3-18), we have 

 [ ][ ]
t

0 0
0 1t

c 1

  ,m

    
=     

      

v B p
F B B

v qB
 (3-19) 

in which v0 contains the displacements corresponding to the force components of 
p, and vc denotes the relative displacements of the cuts for the basic structure. Per-
forming the multiplication, 

 
t t

0 0 0 0 1
t t

c 1 0 1 1

.m m

m m

    
=     

    

v pB F B B F B
v qB F B B F B

 (3-20) 

Defining 

 
t t

00 0 0 10 0 1

t t
01 1 0 11 1 1

,    ,

,    ,
m m

m m

= =

= =

D B F B D B F B

D B F B D B F B
 (3-21) 

the expansion of Eq. (3-8) leads to  

 v0 = D00p + D01q, (3-22) 

and 

 vc = D10p + D11q. (3-23) 

Consider now the compatibility conditions as 

 vc = 0. (3-24) 

Equation (3-24) together with Eq. (3-23) leads to  

 1
11 10 .−= −q D D p  (3-25) 
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Substituting in Eq. (3-22), we have 

 1
0 00 01 11 10[ ] ,−= − =v D D D D p Fp  (3-26) 

and the stress resultant in a structure can be obtained as 

 1
0 1 11 10[ ] .−= −r B B D D p  (3-27) 

3.2.4 IMPLICIT APPROACH FOR IMPOSING COMPATIBILITY 

A direct application of the work principle of Chapter 1 can also be used to impose 
the compatibility conditions in an implicit form as follows:  

Since the structure is considered to be linearly elastic, a linear relation exists be-
tween the unknown forces q and the applied forces p, that is,  

 q = Qp, (3-28) 

where Q is a transformation matrix, which is still unknown. 

Equation (3-3) can now be written as  

 r = B0p + B1Qp = (B0 + B1Q)p = Bp.  (3-29) 

Using the work theorem,  

 Ptv = rtu = ptBtu. (3-30) 

Now a set of suitable internal forces, r*, is considered that is statically equivalent 
to the external loads. From the work principle,  

 ptv = r*tu,  (3-31) 

or 

 t t t
0 .=p v p B u  (3-32) 

A comparison of the above two equations leads to  

 
t t t t

0 .=p B u p B u  (3-33) 
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Substituting u = FmBP in the above equation, we have  

 t t t t
0 .m m=p B F Bp p B F Bp  (3-34) 

This holds for any p, and therefore  

 t t
0 .m m=B F B B F B  (3-35) 

From Eq. (3-29) by transposition,  

 t t t t
0 1 ,= +B B Q B  (3-36) 

and therefore,  

 
t t t t
0 0 0( ) ,m m+ =B Q B F B B F B  (3-37) 

or  

 
t t

0 0 1( ) ,m + =Q B F B B Q 0  (3-38) 

or  

 
t t t

1 0 1 1( ) .m m+ =Q B F B B F B Q 0  (3-39) 

Using the notation introduced in Eq. (3-9), we have 

 t
10 11( ) ,+ =Q D D Q 0  (3-40) 

or  

   D10 + D11Q = 0.  (3-41) 

Therefore,  

   
1

11 10 ,−= −Q D D  (3-42) 

and 

   
1

11 10 ,−= −q D D p  (3-43) 

and Eq. (3-14) is obtained as in the previous approach. 
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3.2.5. STRUCTURAL FLEXIBILITY MATRICES  

The overall flexibility matrix of a structure can be expressed as  

 v = Fp. (3-44) 

Pre-multiplying the above equation by pt, we have  

 
t t t

0 .m=p Fp p B F Bp  (3-45) 

Since p is arbitrary,  

 t
0 ,m=F B F B  (3-46) 

or t
0 0 1( ),m= +F B F B B Q  (3-47) 

or t t 1
0 0 0 1 11 10 .m m

−= −F B F B B F B D D  (3-48) 

Since Fm is symmetric, it follows that  

 t t t t
0 1 1 0 10 .= =m mB F B B F B D  (3-49) 

Therefore, the overall flexibility matrix (known also as the influence matrix) of the 
structure is obtained as  

 t 1
00 10 11 10 ,−= −F D D D D  (3-50) 

and t
11 1 1m= =D B F B G  is also referred to as the flexibility matrix of the structure. 

In this book, the properties of G will be studied, since its pattern is the most 
important factor in optimal analysis of the structure by the force method. 

Equation (3-34) can now be used to calculate the nodal displacements.  

3.2.6 COMPUTATIONAL PROCEDURE  

The sequence of computational steps for the force method can be summarised as 
follows: 

1. Construct B0 and obtain t
0B .  

2. Construct B1 and obtain t
1B . 

3. Form unassembled flexibility matrix Fm. 

4. Form FmB0 followed by FmB1. 
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5. Calculate D00, t
10 ,D  D10 and D11, sequentially. 

6. Compute 1
11
−−D . 

7. Calculate 1
11 10
−= −Q D D . 

8. Form B1Q and find B = B0 + B1Q.  

9. Form t
10D Q  and find t

00 10 .+D D Q  

10. Compute the internal forces as r = Bp. 

11. Compute nodal displacements as v0 = Fp.  

Example 3: In this example, the complete analysis of the truss of Example 1 will 
be given. 

B0 and B1 matrices are already formed in Example 1 of Section 3.2.1. The unas-
sembled flexibility matrix can be constructed as follows: 

1
1

1
1

2
.

2
1

2

2
1

m
L

EA

 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
   

0

F

0

 

Using the above matrix and the matrices from Example 1, we have 

11

2 2 3/ 2 1/ 2
,

1/ 2 2 2 2
L

EA

 +
=  

+  
D  

and 10

2 2 / 2 2 2 / 2
.

1/ 2 2 3/ 2
L

EA

 + +
=  

+  
D  
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Substituting in Eq. (3-25), we have 

1

1 1

2 2

2 2 3/ 2 1/ 2 2 2 / 2 2 2 / 2
.

1/ 2 2 2 2 1/ 2 2 3/ 2

q p
q p

−
   + + +   

= −       
+ +         

 

Taking p1 = p2 = P for simplicity and solving the above equations, we have  

q1 = −1.43P   and q2 = −1.17P.  

Equation(3.3) is then used to calculate the member forces as  

{ }t
1 2 3 4 5 6 7 8 9 10r r r r r r r r r r= =r   

{ }t1.95 0.17 2.05 0.83 1.36 1.44 0.12 0.24 1.17 0.17 .P P P P P P P P P P− − − − − −

 

Nodal displacements can be found using Eq. (3-25). 

Example 4: In this example, the complete analysis of the frame in Example 2 is 
given. 

B0 and B1 matrices are already formed in Example 2 of Section 3.2.1. The unas-
sembled flexibility matrix of the structure, using the sign convention introduced in 
Chapter 1, is formed as  

2 1
1 2

2 1
.

1 26
2 1
1 2

m
L
EI

− 
 − 
 −

=  − 
 −
 

−  

F  

Substituting in Eq. (3-21), we have 

11

64 0 24
0 56 0 ,

6
24 0 18

L
EI

− 
 =  
 − 

D  
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and 

10

32
24 .

6
12

L
EI

 
 = − 
 − 

D  

The inverse of D11 is computed as  

1
11

18 / 576 0 3/ 72
6 0 576 0 ,

3 / 72 0 1/ 9

EI
L

−

 
 =  
  

D  

and Q can be obtained as  

1
11 10

1/ 2
3 / 7 .
0

−

− 
 = − = + 
  

Q D D  

Matrix B is now computed as  

4 4 2 1
0 0 2 1

1/ 2
0 0 2 1

3/ 7 ,
0 0 2 1

0
0 0 2 1
0 4 2 1

+ − −   
   + +    −    − −  = + +     − +         + −
   

− − +      

B  

and finally by using Eq. (3-17) the member forces are obtained as  

t{ 11.43 8.57 8.57 8.57 8.57 11.43} .= + + − − + +r  

General Loading: When a member is loaded in a general form, it must be re-
placed by an equivalent loading. Such a loading can be found as the superposition 
of two cases; case 1 consists of the given loading, but the ends of the member are 
fixed. The fixed end forces (actions), denoted by FEA, can be found using tables 
from books on the strength of materials. Case 2 is the given structure subjected to 
the reverse of the fixed end actions only. Obviously, the sum of the loads and reac-
tions of case 1 and case 2 will have the same effect as that of the given loading. 
This superposition process is illustrated in the following example: 
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Example 5: A two-span beam is considered as shown in Figure 3.5(a). The fixed 
end actions are provided in (b), and the equivalent forces are illustrated in Figure 
3.5(c). The structure is twice indeterminate, and the primary structure is obtained 
by introducing two hinges as shown in (d). The applied nodal forces and redun-
dants are depicted in Figure 3.5(e) and (f), respectively.  

2m4m 2m

20kN 16 6 10
12kN/m

 
 (a) A two-span beam.  (b) Fixed end actions.   

6 10

 
(c) The equivalent loading.  (d) The selected primary structure.  

6 10 q q
1 2

  
(e) Applied force on primary structure. (f) Redundants on primary structure.  

Fig. 3.5 A two-span beam with general loading.  

B0 and B1 matrices are formed as  

0 1

1 0 0 1 0
0 1 0 0 1

  and   ,
0 0 0 0 1
0 0 1 0 0

− −   
   + +   = =
   −
   +      

B B  

and the unassembled flexibility matrix of the structure is constructed as  

2 1
1 2

.
2 16
1 2

m
L
EI

− 
 − =
 −
 −  

F  
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Substituting in Eq. (3-21), we have  

11

2 1
1 46

L
EI

 
=  

 
D  and 10

2 1 0
.

1 2 16
L
EI

 
=  

 
D  

The inverse of D11 is computed as  

1
11

4 11 6 ,
1 27

EI
L

− − 
= − ×  − 

D  

and Q can be obtained as  

1
11 10

4 1 2 1 0 7 2 11 1 .
1 2 1 2 1 0 3 27 7

− − −     
= − = − = −     −     

Q D D  

Now r is computed as  

1 0 0 1 2 / 7 1/ 7 0.285
0

0 1 0 0 3/ 7 2 / 7 0.572
( ) 6

0 0 0 0 3/ 7 2 / 7 5.428
10

0 0 1 0 0 0 10.00

− −     
      − −       ′ = + =      
                 

r , 

Adding the fixed end reaction, the final member forces are obtained as  

r = {16.285 –15.428 15.428 0.00}t.
 

3.2.7 OPTIMAL FORCE METHOD 

For an efficient force method, the matrix G should be  

(a) sparse; 

(b) well conditioned; and 

(c) properly structured, that is, narrowly banded.  

In order to provide the properties (a) and (b) for G, the structure of B1 should be 
carefully designed since the pattern of Fm for a given discretisation is unchanged, 
that is, a suitable statical basis should be selected. This problem is treated in differ-
ent forms by various methods. In the following, graph-theoretical methods are 
described for the formation of appropriate statical bases of different types of skele-
tal structures. The property (c) above has a totally combinatorial nature and is 
studied in Chapters 5 and 6. 
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Pattern Equivalence: Matrix B1, containing a statical basis, in partitioned form, is 
pattern equivalent to Ct, where C is the cycle-member incidence matrix. Simi-
larly, t

1 1mB F B  is pattern equivalent to CICt or CCt. This correspondence 
transforms some structural problems associated with the characterisation of G 
= t

1 1mB F B  into combinatorial problems of dealing with CCt.  

As an example, if a sparse matrix G is required, this can be achieved by increasing 
the sparsity of CCt. Similarly, for a banded G, instead of ordering the elements of 
a statical basis (SESs), one can order the corresponding cycles. This transforma-
tion has many advantages, such as the following: 

1. The dimension of CCt is often smaller than that of G. For example, for a space 
frame, the dimension of CCt is sixfold smaller and for a planar frame, it is three-
fold smaller than that of G. Therefore, the optimisation process becomes much 
simpler when combinatorial properties are used. 

2. The entries of C and CCt are elements of Z2 and therefore easier to operate 
when compared to B1 and G, which have real numbers as their entries. 

3. The advances made in combinatorial mathematics and graph theory become 
directly applicable to structural problems. 

4. A correspondence between algebraic and graph-theoretical methods becomes 
established. 

3.3 FORCE METHOD FOR THE ANALYSIS 
      OF FRAME STRUCTURES 

In this section, frame structures are considered in their perfect conditions; that is, 
the joints of a frame are assumed to be rigid and connected to each other by elastic 
members and supported by a rigid foundation.  

For this type of skeletal structure, a statical basis can be generated on a cycle basis 
of its graph model. The function representing the degree of static indeterminacy, 
γ(S), of a rigid-jointed structure is directly related to the first Betti number b1(S) of 
its graph model,  

 γ(S) = αb1(S) = α[M(S) − N(S) + b0(S)], (3-51) 

where α = 3 or 6 depending on whether the structure is either a planar or a space 
frame.  
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For a frame structure, matrix B0 can easily be generated using the shortest route 
tree of its model, and B1 can be formed by constructing three or six SESs on each 
element of a cycle basis of S. 

In order to obtain a flexibility matrix of maximal sparsity, special cycle bases 
should be selected as defined in the next section. Methods for the formation of a 
cycle basis can be divided into two groups, namely, (a) topological methods and 
(b) graph-theoretical approaches.  

Topological methods useful for the selection of cycle bases by hand were devel-
oped by Henderson and Maunder [78] and Kaveh [94,95]; a complete description 
of these methods is presented in Kaveh [111]. Graph-theoretical methods suitable 
for computer applications were developed by Kaveh [96, 100,104]. 

3.3.1 MINIMAL AND OPTIMAL CYCLE BASES  

A matrix is called sparse if many of its entries are zero. The interest in sparsity 
arises because its exploitation can lead to enormous computational saving and 
many large matrices that occur in the analysis of practical structures can be made 
sparse if they are not already so. A matrix can therefore be considered sparse if 
there is an advantage in exploiting its zero entries.  

The sparsity coefficient χ of a matrix is defined as its number of non-zero entries. 
A cycle basis C = {C1, C2, C3, … , 

1 ( )b SC } is called minimal if it corresponds to a 
minimum value of:  

 
1 ( )

1

( ) ( ).
b S

i
i

L C L C
=

= ∑  (3-52) 

Obviously, χ(C) = L(C) and a minimal cycle basis can be defined as a basis that 
corresponds to minimum χ(C). A cycle basis for which L(C) is near minimum is 
called a subminimal cycle basis of S.  

A cycle basis corresponding to maximal sparsity of the CCt is called an optimal 
cycle basis of S. If χ(CCt) does not differ considerably from its minimum value, 
then the corresponding basis is termed suboptimal. 
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The matrix intersection coefficient σi(C) of row i of cycle-member incidence ma-
trix C is the number of row j such that 

(a) j ∈{i + 1, i + 2, ..., b1(S)}, 

(b) Ci ∩ Cj ≠ ∅, that is, there is at least one k such that the column k of both cycles 
Ci and Cj (rows i and j) contains non-zero entries.  

Now it can be shown that 

 χ(CtC) = b1(S) + 2
1 ( ) 1

1

( )
b S

i
i

−

=
∑ Cs . (3-53) 

This relationship shows the correspondence of a cycle-member incidence matrix C 
and its cycle basis adjacency matrix. In order to minimise χ(CCt), the value of 

1 ( ) 1

1
( )

b S

i
i

−

=
∑ Cs  should be minimised since b1(S) is a constant for a given structure S, 

that is, γ-cycles with a minimum number of overlaps should be selected.  

In the force method, an optimal cycle basis is needed corresponding to the maxi-
mum sparsity of the CCt matrix. However, because of the complexity of this 
problem, most of the research has been concentrated on minimal cycle basis selec-
tion, except that of [105,108], which minimises the overlaps of the cycles rather 
than only their length.  

3.3.2 SELECTION OF MINIMAL AND SUBMINIMAL CYCLE BASES  

Cycle bases of graphs have many applications in various fields of engineering. The 
amount of work in these applications depends on the cycle basis chosen. A basis 
with shorter cycles reduces the time and storage required for some applications, 
that is, it is ideal to select a minimal cycle basis, and for some other applications 
minimal overlaps of cycles are needed, that is, optimal cycle bases are preferred. In 
this section, the formation of minimal and subminimal cycle bases is first dis-
cussed. Then the possibility of selecting optimal and suboptimal cycle bases is 
investigated. 

Minimal cycle bases were considered first by Stepanec [212] and improved by 
Zykov [237]. Many practical algorithms for selecting subminimal cycle bases have 
been developed by Kaveh [94] and Cassell et al. [23]. Similar methods have been 
presented by Hubicka and Syslø [84], claiming the formation of a minimal cycle 
basis of a graph. Kolasinska [139] found a counterexample to the algorithm of 
Hubicka and Syslø. A similar conjecture was made by Kaveh [94] for planar 
graphs; however, a counterexample has been given by Kaveh and Roosta [129]. 
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Recently, Horton [83] presented a polynomial time algorithm to find minimal cy-
cle bases of graphs, which was improved by Kaveh and Mokhtar-zadeh [119]. 

In this section, the merits of the algorithms developed by different authors are dis-
cussed; a method is given for selection of minimal cycle bases, and efficient 
approaches are presented for the generation of subminimal cycle bases.  

Formation of a Minimal Cycle on a Member: A minimal length cycle Ci on a 
member mj, called its generator, can be formed by using the shortest route tree 
algorithm as follows:  

Start the formation of two Shortest Route Trees (SRTs) rooted at the two end 
nodes ns and nt of mj, and terminate the process as soon as the SRTs intersect each 
other (not through mj itself ) at say nc. The shortest paths between ns and nc, and nt 
and nc, together with mj, form a minimal cycle Ci on mj. Using this algorithm, cy-
cles of prescribed lengths can also be generated. 

As an example, Ci is a minimal cycle on mj in Figure 3.6. The SRTs are shown in 
bold lines. The generation of SRTs is terminated as soon as nc has been found.  

C i 

n c n c 

n s n t m j 
 

Fig. 3.6 A minimal cycle on a member. 

A minimal cycle on a member mj passing through a specified node nk can similarly 
be generated. An SRT rooted at nk is formed, and as soon as it hits the end nodes 
of mj, the shortest paths are found by backtracking between nk and ns, and nk and 
nt. These paths together with mj form the required cycle. As an example, a minimal 
cycle on mj containing nk is illustrated by dashed lines in Figure 3.6.  

Different Cycle Sets for Selecting a Cycle Basis: It is obvious that a general cy-
cle can be decomposed into its simple cycles. Therefore, it is natural to confine the 
considered set to only simple cycles of S. Even such a cycle set, which forms a 
subspace of the cycle space of the graph, has many elements and is therefore un-
economical for practical purposes. 



 OPTIMAL STRUCTURAL ANALYSIS 74 

1 1

2

3

1

2

4

3

1

2

4 5

3

1

2

 
Fig. 3.7 A graph S and the selected cycles. 

In order to overcome the above difficulty, Kaveh [94] used an expansion process, 
selecting the smallest admissible (independent with additional restriction) cycles, 
one at a time, until b1(S) cycles forming a basis had been obtained. In this ap-
proach, a very limited number of cycles were checked for being an element of a 
basis. As an example, the expansion process for selecting a cycle basis of S is illus-
trated in Figure 3.7. 

Hubicka and Syslø [84] employed a similar approach, without the restriction of 
selecting one cycle at each step of expansion. In their method, when a cycle has 
been added to the previously selected cycles, increasing the first Betti number of 
the expanded part by “p”, then p created cycles have been formed. As an example, 
in this method, Steps 4 and 5 will be combined into a single step, and addition of 
cycle 5 will require immediate formation of cycle 4. The above method is modi-
fied, and an efficient algorithm is developed for the formation of cycle bases by 
Kaveh and Roosta [129], 

Finally, Horton [83] proved that the elements of a minimal cycle basis lie in be-
tween a cycle set consisting of the minimal cycles on each member of S that passes 
through each node of S, that is, each member is taken in turn and all cycles of 
minimal length on such a member passing through all the nodes of S are generated. 
Obviously, M(S) × M(S) such cycles will be generated.  

Independence Control: Each cycle of a graph can be considered as a column vec-
tor of its cycle-member incidence matrix. An algebraic method such as the 
Gaussian elimination may then be used for checking the independence of a cycle 
with respect to the previously selected sub-basis. However, although this method is 
general and reduces the order dependency of the cycle selection algorithms, like 
many other algebraic approaches its application requires a considerable amount of 
storage space.  

The most natural graph-theoretical approach is to employ a spanning tree of S and 
form its fundamental cycles. This method is very simple; however, in general, its 
use leads to long cycles. The method can be improved by allowing the inclusion of 
each used chord in the branch set of the selected tree. Further reduction in length 
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may be achieved by generating an SRT from a centre node of a graph, and the use 
of its chords in ascending order of distance from the centre node; see Kaveh [96]. 

A third method, which is also graph-theoretical, consists of using admissible cy-
cles. Consider the following expansion process, with S being a two-connected 
graph,  

1 ( )1 2 3
1 ... ,b SC C C C C S= → → → → =  

where 
1

 
k

k
ii

C C
=

= ∪ . A cycle Ck+1 is called an admissible cycle if for C k+1 =  

C k ∪ Ck+1,  

 b1(C k+1) = b1(C k ∪ Ck+1) = b1(C k ) + 1. (3-54) 

It can easily be proved that the above admissibility condition is satisfied if any of 
the following conditions hold:  

1. Ak+1 = C k ∩ Ck+1= ∅, where ∅ is an empty intersection;  

2. 1b (Ak+1) = r − s, where r and s are the numbers of components of C k+1 and C k, 
respectively;  

3. 1b (Ak+1) = 0 when C k and C k+1 are connected (r = s). 

In the above relations, 1b (Ai) = i iM N− + 1, where iM and iN  are the numbers of 
members and nodes of Ai, respectively.  

As an example, the sequence of cycle selection in Figure 3.8 will be as specified 
by their numbers. 

C 
C 

k 
k +1 

k +2 
k +3 

C 
C 

 
Fig. 3.8 A cycle and its bounded cycles. 
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A different approach suggested by Hubicka and Syslø, in which 

 b1(C k+1 ) = b1(C k ) + p, (3-55) 

is considered to be permissible. However, a completion is performed for p > 1. As 
an example, when C3 is added to C k, its first Betti number is increased by 3 and 
therefore, cycles C1 and C2 must also be selected at that stage, before further ex-
pansion.  

The mathematical concepts involved in the formation of a cycle basis having been 
discussed, three different algorithms are now described.  

Algorithm 1 (Kaveh 1974)  

Step 1: Select a pseudo-centre node of maximal degree O. Such a node can be se-
lected manually or automatically using the graph or algebraic graph-theoretical 
methods discussed in Chapter 5. 

Step 2: Generate an SRT rooted at O, form the set of its chords and order them 
according to their distance from O. 

Step 3: Form one minimal cycle on each chord in turn, starting with the chord 
nearest to the root node. A corresponding simple path that contains members of the 
tree and the previously used chords is chosen, hence providing the admissibility of 
the selected cycle.  

This method selects subminimal cycle bases, using the chords of an SRT. The 
nodes and members of the tree and consequently the cycles are partially ordered 
according to their distance from O. This is the combinatorial version of the Turn-
back method to be discussed in Section 3.7.2 on algebraic force methods. 

Algorithm 2 (Kaveh 1974)  

Step 1: Select a centre or pseduo-centre node of maximal degree O.  

Step 2: Use any member incident with O as the generator of the first minimal cy-
cle. Take any member not used in C1 and incident with O and generate the second 
minimal cycle on it. Continue this process until all the members incident with O 
are used as the members of the selected cycles. The cycles selected so far are ad-
missible, since the intersection of each cycle with the previously selected cycles is 
a simple path (or a single node) resulting in an increase of the first Betti number by 
unity for each cycle. 
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Step 3: Choose a starting node O′ , adjacent to O, that has the highest degree. Re-
peat a step similar to Step 2, testing each selected cycle for admissibility. If the 
cycle formed on a generator mk fails the test, then examine the other minimal cy-
cles on mk to find out if any such cycle exists. If no admissible minimal cycle can 
be found on mk, then,  

(i) form admissible minimal cycles on the other members incident with O′ . If mk 
does not belong to one of these subsequent cycles, then,  

(ii) search for an admissible minimal cycle on mk, since the formation of cycles on 
other previous members may now have altered the admissibility of this cycle. If no 
such cycle can be found, leave mk unused. In this step, more than one member may 
be left unused.  

Step 4: Repeat Step 3 using a node adjacent to O and/or O′  having the highest 
degree as the starting node. Continue the formation of cycles until all the nodes of 
S have been tested for cycle selection. If all the members have not been used, se-
lect the shortest admissible cycle available for an unused member as generator. 
Then test the minimal cycles on the other unused members, in case the formation 
of the longer cycle has altered the admissibility. Each time a minimal cycle is 
found to be admissible, add to Ci and test all the minimal cycles on the other un-
used members again. Repeat this process, forming other shortest admissible cycles 
on unused members as generators, until S is re-formed and a subminimal cycle 
basis has been obtained. 

Both of the above two algorithms are order-dependent, and various starting nodes 
may alter the result. The following algorithm is more flexible and less order-
dependent, and in general leads to the formation of shorter cycle bases.  

Algorithm 3 (Kaveh 1976)  

Step 1: Generate as many admissible cycles of length 3 as possible. Denote the 
union of the selected cycles by C n.  

Step 2: Select an admissible cycle of length 4 on an unused member. Once such a 
cycle Cn+1 is found, check the other unused members for possible admissible cy-
cles of length 3. Again select an admissible cycle of length 4 followed by the 
formation of possible three-sided cycles. This process is repeated until no admissi-
ble cycles of length 3 and 4 can be formed. Denote the generated cycles by C m.  

Step 3: Select an admissible cycle of length 5 on an unused member. Then check 
the unused members for the formation of three-sided admissible cycles. Repeat 
Step 2 until no cycle of length 3 or 4 can be generated. Repeat Step 3 until no cy-
cle of length 3, 4 or 5 can be found.  
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Step 4: Repeat Step 3 by considering higher-length cycles, until b1(S) admissible 
cycles forming a subminimal cycle basis are generated.  

Remark: The cycle basis C formed by Algorithms 1 to 3 can be further improved 
by exchanging the elements of the selected basis. In each step of this process, a 
shortest cycle '

iC  independent of the cycles of C \Ci is replaced by Ci if L( '
iC ) < 

L(Ci). This process is repeated for i = 1, 2, …, b1(S). 

This additional operation increases the computational time and storage, and its use 
is recommended only when the formation of a minimal cycle basis is required.  

Algorithm 4 (Horton 1987)  

Step 1: Find a minimum path P(ni, nj) between each pair of nodes ni and nj.  

Step 2: For each node nk and member ml = (ni, nj), generate the cycle having ml and 
nk as P(nk, ni) + P(nk, nj) + (ni, nj) and calculate its length. Degenerate cases in 
which P(nk, ni) and P(nk, nj) have nodes other than nk in common can be omitted.  

Step 3: Order the cycles by their weight (or length). 

Step 4: Use the Greedy Algorithm to find a minimal cycle basis from this set of 
cycles. This algorithm is given in Appendix B. 

A simplified version of the above Algorithm can be designed as follows:  

Step 1: Form a spanning tree of S rooted from an arbitrary node, and select its 
chords. 

Step 2: Take the first chord and form N(S) − 2 minimal cycles, each being formed 
on the specified chord containing a node of S (except the two end nodes of this 
chord). 

Step 3: Repeat Step 2 for the other chords, in turn, until [M(S) − N(S) + 1] × [N(S) 
− 2] cycles are generated. Repeated and degenerate cycles should be discarded. 

Step 4: Order the cycles in ascending magnitude of their lengths. 

Step 5: Using the above set of cycles, employ the Greedy Algorithm to form a 
minimal cycle basis of S.  

The main contribution of Horton’s Algorithm is the limit imposed on the elements 
of the cycle set used in the Greedy Algorithm. The use of matroids and the Greedy 
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Algorithm has been suggested by Kaveh [94,96], and they have been employed by 
Lawler [148] and Kolasinska [139].  

3.3.3 EXAMPLES 

Example 1: Consider a planar graph S, as shown in Figure 3.9, for which b1(S) = 
18 – 11 + 1 = 8. When Algorithm 3 is used, the selected basis consists of four cy-
cles of length 3, three cycles of length 4 and one cycle of length 5, as follows: 

 C1 = (1, 2, 3), C2 = (1, 8, 9), C3 = (2, 6, 3), C4 = (2, 5, 6), C5 = (1, 4, 5, 2) 

 C6 = (1, 7, 5, 2), C7 = (8, 6, 2, 1), C8 = (10, 8, 6, 3, 11).  

7
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3

4 5 6

8

9

10

11

  
Fig. 3.9 A planar graph S.  

The total length of the selected basis is L(C) = 29, which is a counter example for 
minimality of a mesh basis, since, for any such basis of S, L(C ) > 29.  

Example 2: In this example, S is the model of a space frame, considered as 
27

1 ii
S S

=
= ∪

 
, where a typical Si is depicted in Figure 3.10(a). For Si there are 12 

members joining eight corner nodes and a central node joined to these corner 
nodes. The model S is shown in Figure 3.10(b), in which some of the members are 
omitted for clarity of the diagram. For this graph, b1(S) = 270.  
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(a) A typical Si (i = 1, …, 27). (b) S with some omitted members. 

Fig. 3.10 A space frame S.  

The selected cycle basis using any of the algorithms consists of 270 cycles of 
length 3, forming a minimal cycle basis of S. For Algorithm 3, the use of different 
starting nodes leads to a minimal cycle basis, showing the capability of this 
method.  

Example 3: S is a planar graph with b1(S) = 9, as shown in Figure 3.11. The appli-
cation of Algorithm 3 results in the formation of a cycle of length 3 followed by 
the selection of five cycles of length 4. Then, member {1, 6} is used as the genera-
tor of a six-sided cycle C7 = (1, 2, 3, 4, 5, 6, 1). Member {2, 10} is then employed 
to form a seven-sided cycle C8 = (2, 11, 12, 13, 14, 15, 10, 2), followed by the 
selection of a five-sided cycle C9 = (10, 5, 4, 3, 2, 10). The selected cycle basis has 
a total length of L(C) = 41, and is not a minimal cycle basis. A shorter cycle basis 
can be found by Algorithm 4, consisting of one three-sided and five four-sided 
cycles, together with the following cycles:  

C7 = (1, 2, 10, 5, 6, 1), C8 = (2, 3, 4, 5, 10, 2) and C9 = (2, 11, 12, 13, 14, 15, 10, 2),  

forming a basis with the total length of 40. However, the computation time and 
storage for Algorithm 3 are far less than for Algorithm 4, as compared in [119].  
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Fig. 3.11 A planar graph S. 

3.3.4 OPTIMAL AND SUBOPTIMAL CYCLE BASES 

In what follows, a direct method and an indirect approach, which often lead to the 
formation of optimal cycle bases, are presented. Much work is needed before the 
selection of an optimal cycle basis of a graph becomes feasible.  

Suboptimal Cycle Bases: A Direct Approach 

Definition 1: An elementary contraction of a graph S is obtained by replacing a 
path containing all nodes of degree 2 with a new member. A graph S contracted to 
a graph S ′  is obtained by a sequence of elementary contractions. Since in each 
elementary contraction k nodes and k members are reduced, the first Betti number 
does not change in a contraction, that is, b1(S) = b1( S ′ ). The graph S is said to be 
homeo-morphic to S ′ ; see Figure 3.12.  

  
 (a) S. (b) S ′ .  

Fig. 3.12 S and its contracted graph S ′ .  

This operation is performed in order to reduce the size of the graph and also be-
cause the number of members in an intersection of two cycles is unimportant; a 
single member is enough to render Ci ∩ Cj non-empty, and hence to produce a 
non-zero entry in CCt.  
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Definition 2: Consider a member mi of a graph S. On this member, p minimal cy-
cles of length q can be generated. p is called the incidence number (IN) and q is 
defined as the cycle length number (CLN) of mi. In fact, p and q are measures as-
signed to a member to indicate its potential as a member in the elements of a cycle 
basis. In the process of expansion for cycle selection, an artificial increase in p 
results in the exclusion of this element from a minimal cycle, keeping the number 
of overlaps as small as possible. 

Space graphs need a special treatment. For these graphs, when a member has  
p = 1, then the next shortest length cycles with q′ = q + l (l being the next smallest 
possible integer) are also considered. Denoting the number of such cycles by p′ , 
the IN and CLN for this type of member are taken as  

 ( ) ( )1      and        / 1 ,c
jk jkI p I q p q p′ ′ ′ ′= + = + +  (3-56) 

respectively. The end nodes of the considered member are j and k.  

Definition 3: The weight of a cycle is defined as the sum of the incidence numbers 
of its members.  

Algorithm A 

Step 1: Contract S into S ′ , and calculate the IN and CLN of all its members.  

Step 2: Start with a member of the least CLN and generate a minimal weight cycle 
on this member. For members with equal CLNs, the one with the smallest IN 
should be selected. A member with these two properties will be referred to as  
“a member of the least CLN with the smallest IN”.  

Step 3: On the next unused member of the least CLN with the smallest IN, gener-
ate an admissible minimal weight cycle. In the case when a cycle of minimal 
weight is rejected due to inadmissibility, the next unused member should be con-
sidered. This process is continued as far as the generation of admissible minimal 
weight cycles is possible. After a member has been used as many times as its IN, 
before each extra usage, increase the IN of such a member by unity. 

Step 4: On an unused member of the least CLN, generate one admissible cycle of 
the smallest weight. This cycle is not a minimal weight cycle, as otherwise it 
would have been selected at Step 3. Such a cycle is called a subminimal weight 
cycle. Again, update the INs for each extra usage. Now repeat Step 3, since the 
formation of the new subminimal weight cycle may have altered the admissibility 
condition of the other cycles and selection of further minimal weight cycles may 
now have become possible. 
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Step 5: Repeat Step 4, selecting admissible minimal and subminimal weight cy-
cles, until b1( S ′ ) of these cycles are generated. 

Step 6: A reverse process to that of the contraction of Step 1 transforms the se-
lected cycles of S ′  into those of S.  

This algorithm leads to the formation of a suboptimal cycle basis, and for many 
models encountered in practice, the selected bases have been optimal.  

Suboptimal Cycle Bases: An Indirect Approach  

Definition 1: The weight of a member in the following algorithm is taken as the 
sum of the degrees of its end nodes.  

Algorithm B 

Step 1: Order the members of S in ascending order of weight. In all the subsequent 
steps use this ordered member set. 

Step 2: Generate as many admissible cycles of length α as possible, where α is the 
length of the shortest cycle of S. Denote the union of the selected cycles by C m. 
When α is not specified, use the value αҏ = 3. 

Step 3: Select an admissible cycle of length α + 1 on an unused member (use the 
ordered member set). Once such a cycle Cm+1 is found, control the other unused 
members for possible admissible cycles of length α. Again select an admissible 
cycle of length α + 1, followed by the formation of possible α-sided cycles. This 
process is repeated until no admissible cycles of length α and α + 1 can be found. 
Denote the generated cycles by C n. 

Step 4: Select an admissible cycle Cn+1 of length α + 2 on an unused member. Then 
check the unused members for the formation of α-sided cycles. Repeat Step 2 until 
no cycle of length α or α + 1 can be generated. Repeat Step 3 until no cycles of 
length α, α + 1 or α + 2 can be found. 

Step 5: Take an unused member and generate an admissible cycle of minimal 
length on this member. Repeat Steps 1, 2 and 3. 
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Step 6: Repeat Step 4 until b1(S) admissible cycles, forming a suboptimal cycle 
basis, are generated.  

The ordered member set affects the selection process in two ways: 

1. Generators are selected in ascending weight order, hence increasing the 
possibility of forming cycles from the dense part of the graph. This increases the 
chance of cycles with smaller overlaps being selected. 

2. From cycles of equal length formed on a generator, the one with smallest total 
weight (sum of the weights of the members of a cycle) is selected. 

The cycle bases generated by this algorithm are suboptimal; however, the results 
are inferior to those of the direct method A.  

Remark: Once a cycle basis C is formed by Algorithm A or Algorithm B, it can 
be further improved by exchanging the elements of C. In each step of this process, 
a cycle Ck is controlled for the possibility of being exchanged by the ring sum of 
Ck and a combination of the cycles of C \Ck, in order to reduce the overlap of the 
cycles. The process is repeated until no improvement can be achieved. This addi-
tional operation increases the computational time and storage, and should only be 
used when the corresponding effort is justifiable, for example, this may be the case 
when a non-linear analysis or a design optimisation is performed using a fixed 
cycle basis. 

3.3.5 EXAMPLES  

In this section, examples of planar and space frames are studied. The cycle bases 
selected by Algorithms A and B are compared with those developed for generating 
minimal cycle bases (Algorithms 1–4). Simple examples are chosen in order to 
illustrate the process of the methods presented clearly. The models, however, can 
be extended to those containing a greater number of members and nodes of high 
degree to show the considerable improvements to the sparsity of matrix CCt.  

Example 1: Consider a space frame as shown in Fig. 13(a) with the corresponding 
graph model S as illustrated in Fig. 13(b). For this graph b1(S) =12, and therefore 
12 independent cycles should be selected as a basis. Algorithm B selects a minimal 
cycle basis containing the following cycles: 

C1 = (1, 2, 3), C2 = (1, 2, 5), C3 = (1, 3, 4), C4 = (1, 5, 4), C5 = (2, 3, 6, 7), C6 = (3, 4, 
7, 8), C7 = (4, 5, 8, 9), C8 = (6, 7, 8, 9), C9 = (7, 8, 11, 12), C10 = (6, 7, 10, 11),  

C11 = (9, 8, 12, 13), C12 = (10, 11, 12, 13), 

which corresponds to 

χ(C) = 4 × 3 + 8 × 4 = 44  
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and χ(CCt) = 12 + 2 × 23 = 58.  

Use of Algorithm A leads to the formation of a similar basis, with the difference 
that 8C′  = (6, 9, 10, 13) is generated in place of C8 = (6, 7, 8, 9), corresponding to  

χ( C′ ) = 4 × 3 + 8 × 4 = 44,  

χ( t′ ′C C ) = 12 + 2 × 20 = 52.  

The CLNs and Ins of the members used in this algorithm are illustrated in Figure 
3.13(b). 
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 (a) A space structure.  (b) The graph model S of the structure. 

Fig. 3.13 A space frame, and CLNs and Ins of its members. 

Example 2: In this example, S is a space structure with b1(S ) = 33, as shown in 
Figure 3.14(a). Both Algorithms 3 and A select 33 cycles of length 4, that is, a 
minimal cycle basis with χ(C) = 4 × 33 = 132 is obtained.  

The basis selected by Algorithm 3 contains (in the worst case) all four-sided cycles 
of S except those that are shaded in Figure 3.14(a), with χ(CCt) = 233. 

Algorithm A selects all three-sided cycles of S except those shaded in Figure 3.14(b), 
with χ(CCt) = 190. It will be noticed that, for structures containing nodes of higher 
degrees, considerable improvement is obtained by the use of Algorithm A. 
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 (a) A minimal cycle basis. (b) A suboptimal cycle basis. 

Fig. 3.14 Minimal and suboptimal cycle bases of S.  

Example 3: Consider a space frame as shown in Figure 3.15, for which b1(S) = 10. 
The minimal cycle basis selected by Algorithm 3 consists of the following cycles:  

C1 = (1, 2, 3), C2 = (4, 5, 6), C3 = (7, 8, 9), C4 = (10, 11, 12), C5 = (1, 2, 5, 4),  
C6 = (2, 3, 6, 5), C7 = (4, 5, 8, 7), C8 = (5, 6, 9, 8), C9 = (7, 8, 11, 10),  

C10 = (8, 9, 12, 11),  

corresponding to χ(C) = 4 × 3 + 6 × 4 = 36 and χ(CCt) = 10 + 2 [0 + 0 + 0 + 2 + 3 
+ 3 + 4 + 3 + 4] = 10 + 2 × 19 = 48.  

However, the following non-minimal cycle basis has a higher χ(C), and leads to a 
more sparse CCt matrix. The selected cycles are as follows:  

C1 = (1, 2, 3), C2 = (1, 2, 5, 4), C3 = (2, 3, 6, 5), C4 = (1, 3, 6, 4), C5 = (4, 5, 8, 7),  
C6 = (5, 6, 9, 8), C7 = (4, 6, 9, 7), C8 = (7, 8, 11, 10), C9 = (8, 9, 12, 11),  

C10 = (10, 11, 12),  

for which χ( ′C )= 2 × 3 + 8 × 4 = 38, corresponding to χ( t′ ′C C ) = 10 + 2 [1 + 2 + 
3 + 1 + 2 + 3 + 1 + 2 + 2] = 10 + 2 × 16 = 42.  
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Fig. 3.15 A space frame S.  

Therefore, the idea of having an optimal cycle basis in between minimal cycle 
bases is incorrect. 



 OPTIMAL FORCE METHOD OF STRUCTURAL ANALYSIS  

 

87 

Example 4: Consider the skeleton of a structure S, comprising six flipped flags, as 
shown in Figure 3.16(a), for which b1(S) = 6. After contraction, S′ is obtained as 
illustrated in Figure 3.16(b). Obviously, this is a planar graph. The CLNs for the 
members are 3s, and the IN for member (1, 2) is 6, and for the remaining members 
it is equal to 1. Algorithm 3 selects a minimal cycle basis for S′, consisting of six 
three-sided cycles, corresponding to 

χ(C) = 6 × 3 = 18 and χ(CCt ) = 6 + 2 [0 + 1 + 2 + 3 + 4 + 5] = 6 + 2 × 15 = 36.  

1

2

345 6 7 8

  
   (a) S.  (b) S′.  

Fig. 3.16 A flipped flag before and after contraction.  

However, the following non-minimal cycle basis has a higher χ( ′C ), and leads to 
a lower sparsity, χ( t′ ′C C ): 

C1 = (1, 3, 2, 4), C2 = (1, 4, 2, 5), C3 = (1, 2, 3), C4 = (1, 2, 6),  

C5 = (1, 6, 2, 7), C6 = (1, 7, 2, 8).  

For this basis, χ( ′C ) = 4 × 4 + 2 × 3 = 22, corresponding to χ( t′ ′C C ) = 6 + 2 [0 + 
1 + 1 + 1 + 1 + 1] = 6 + 2 × 5 = 16. After the back transformation from S′ to S, we 
have χ(C) = 4 × 6 + 2 × 4 = 32, corresponding to χ(CCt) = 6 + 2 [0 + 1 + 1 + 1 + 1 
+ 1] = 16.  

3.3.6 AN IMPROVED TURN-BACK METHOD FOR THE  
         FORMATION OF CYCLE BASES  

In this section, the combinatorial Turn-back method of Kaveh [94] is improved to 
obtain shorter cycle bases. This method covers all the counter examples, known 
for the minimality of the selected cycle bases. 

Step 1: Generate an SRT rooted from an arbitrary node O. Identify its chords, and 
order them according to their distance numbers from O. 
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Step 2: Select the shortest length cycle of the graph on a chord and add this chord 
(generator) to the tree members. Repeat this process with all the chords, forming 
cycles of the least length containing the tree members and the previously used 
chords only. The selected cycles are all admissible, that is, the addition of each 
cycle increases the first Betti number of the expanded part of the graph by unity. 
Store these cycles in C. 

Step 3: Form all the new cycles of the same length on the remaining chords, allow-
ing the use of more than one unused chord in their formation. 

Step 4: Control the cycles formed in Step 3 to find only one cycle having a genera-
tor that is in none of the other connected cycles formed in Step 3. When such a 
chord is found, add the corresponding cycle to C and include its generator in the 
tree members. Repeat this control until no such cycle can be found. 

Step 5: Select a cycle of the next higher length in the graph containing only one 
chord. Add the selected cycle to C and its generator to the tree members.  

Step 6: Control the cycles formed in Step 3 to find a cycle containing only one 
unused chord. Add such a cycle to C and add its chord to the tree members. Repeat 
this control until no cycle of this property can be found.  

Step 7: Repeat Step 4. 

Step 8: Repeat Steps 5 and 6 and continue this repetition with the same length until 
no cycle in Step 5 can be found. 

Step 9: Repeat Steps 3 to 8, until b1(S) cycles forming a cycle basis are included in C.  

3.3.7 EXAMPLES  

Example 1: A graph in the form of the one-skeleton of a torus-type structure is 
considered; see Figure 3.17. An SRT is selected, as shown in bold lines. The cy-
cles selected in Step 2 are given below:  

C = {(1, 2, 6), (1, 4, 5), (1, 5, 6), (1, 2, 13), (1, 4, 16), (1, 13, 16), (2, 3, 7), (2, 6, 
7), (2, 3, 14), (2, 13, 14), (4, 5, 8), (4, 15, 16), (5, 6, 10), (5, 9, 10), (5, 8, 9), (12, 

13, 16), (11, 12, 16), (11, 15, 16)}.  

The execution of Step 3 results in the following cycles:  

(3, 7, 8), (3, 4, 8), (7, 11, 12), (7, 8, 12), (8, 9, 12), (9, 13, 14), (9, 10, 14), (10, 14, 
15), (10, 11, 15), (9, 12, 13), (3, 14, 15), (3, 4, 15).  
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Fig. 3.17 Graph S and the selected SRT. 

Twelve cycles are generated, increasing the first Betti number by 12. The control 
of Step 4 leads to generators {10, 11} and {7, 11}, corresponding to the cycles 
(10, 11, 15) and (7, 11, 12), respectively. Thus no cycle is selected. 

In Step 5, a cycle of length 4 containing an unused chord is formed. On {3, 4}, 
cycle (1, 2, 3, 4) is generated and added to C. Then, in Step 6, the following cycles 
are added to C: 

(3, 4, 8) for {3, 8}, (3, 7, 8) for {7, 8}, (3, 4, 15) for {3, 15}, (3, 14, 15) for  
{14, 15}. 

In Step 7 no cycle is found, but in Step 8, the execution of Step 5 leads to cycle  
(1, 5, 9, 13) on {9, 13}, and Step 6 leads to the following cycles completing C and 
forming a minimal cycle basis of S: 

(9, 12, 13) for {9, 12}, (9, 13, 14) for {9, 14}, (8, 9, 12) for {8, 12}, (7, 8, 12) for 
{7, 12}, (7, 11, 12) for {7, 11}, (9, 10, 14) for {10, 14}, (10, 14, 15) for {10, 15}, 
and (10, 11, 15) for {10, 11}.  

Example 2: A space graph is considered as illustrated in Figure 3.18. An SRT is 
selected as shown in bold lines. The application of Step 2 leads to the following 
cycle set:  

C = {(1, 2, 6, 7), (1, 5, 6, 10), (2, 3, 7, 8), (4, 5, 9, 10), (6, 7, 11, 12),  
(6, 10, 11, 15), (7, 8, 12, 13), (9, 10, 14, 15), (11, 12, 16, 17), (11, 15, 16, 20), 
(12, 13, 17, 18), (14, 15, 19, 20), (21, 22, 26, 27), (21, 25, 26, 30), (22, 23, 27, 
28), (24, 25, 29, 30)}. 
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In Step 3, the following cycles are generated: 

(3, 4, 8, 9), (8, 9, 13, 14), (13, 14, 18, 19), (16, 17, 21, 22), (17, 18, 22, 23), (18, 
19, 22, 23), (18, 19, 23, 24), (19, 20, 24, 25), (16, 20, 21, 25) ,(23, 24, 28, 29).  
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Fig. 3.18 A space graph and the selected SRT. 

These cycles contain 11 unused chords. The control of Step 4 shows that {3, 4} 
and {28, 29} are included in one cycle, and therefore all the chords remain unused. 
In the next step, a cycle of length 5 including an unused chord is generated and 
added to C. Only with chord {3, 4}, the five-sided cycle (1, 2, 3, 4, 5) is generated, 
and in Step 6 the following three-sided cycles are selected: 

(3, 4, 8, 9), (8, 9, 13, 14), and (13, 14, 18, 19). 

Step 7 is carried out, and cycle (23, 24, 28, 29) on {28, 29} is found; repetition of 
this control leads to cycle (18, 19, 23, 24) on {23, 24}. In the next step, no cycle is 
selected. The execution of Steps 3 and 4 in Step 9 does not result in any cycle.  

The execution of Step 5 in Step 9 forms cycle (1, 6, 11, 16, 21, 26) on chord {16, 
21}, and the execution of Step 6 leads to the following cycles: 

(16, 20, 21, 25) for {20, 25}, (19, 20, 24, 25) for {19, 24}, (16, 17, 21, 22) for {17, 
22}, and (17, 18, 22, 23) for {18, 23}.  

The selected cycles form a minimal cycle basis.  
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3.3.8. AN ALGEBRAIC GRAPH-THEORETICAL METHOD FOR CYCLE  
           BASIS SELECTION 

Consider a simple graph as shown in Figure 3.19, with b1(S) = 4. Horton’s algo-
rithm forms the following cycle set Q:  

Q = {C1(1, 6, 9), C2(2, 3, 7), C3(7,8,9), C4(4, 5, 8), C5(1, 6, 7, 8), C6(2, 3, 8, 9), 
 C7(4, 5, 7, 9), C8(1, 2, 3, 6, 8), C9(1, 4, 5, 6, 7), C10(2, 3, 4, 5, 9), C11(1, 2, 3, 
 4, 5, 6)}. 

2 3

4

56

7

89
1

  
Fig. 3.19 A simple graph with b1(S) = 4.  

The cycle adjacency graph of S contains the nodes in a one-to-one correspondence 
with these cycles, and two nodes are connected to each other if the corresponding 
cycles have at least one member in common. Naturally, such a graph will not be 
simple and will have multiple members. The weighted adjacency matrix A* of the 
new graph is constructed as  

A* = 

3 0 1 0 2 1 1 2 2 1 2
0 3 1 0 1 2 1 2 1 2 2
1 1 3 1 2 2 2 1 1 1 0
0 0 1 3 1 1 2 1 2 2 2
2 1 2 1 4 1 1 3 3 0 2
1 2 2 1 1 4 1 3 0 3 2
1 1 2 2 1 1 4 0 3 3 2
2 2 1 1 3 3 0 5 2 2 4
2 1 1 2 3 0 3 2 5 2 4
1 2 1 2 0 3 3 2 2 5 4
2 2 0 2 2 2 2 4 4 4 6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

     1 2 3 4 5 6 7 8 9 10 11
1
2
3
4
5
6
7
8
9

10
11

. 
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Once A* is formed, the largest eigenvalue λ1 with the corresponding eigenvector 
having all positive entries can be easily calculated. A* is real and symmetric, and it 
can be shown that all entries of A*k are positive. Thus, it is primitive and, accord-
ing to the Perron Frobenious theorem, λ1 is real and positive and a simple root of 
the characteristic equation corresponds to a unique eigenvector v1 with all entries 
positive. Such an eigenvector can be obtained by the following simple algorithm: 

Let v = {1,1, …, 1}t. Then the components of A*tv are the number of walks of 
length k beginning at an arbitrary node of S and ending at ni. If ni is a good starting 
node, this number will be larger. Thus, for k, one should obtain some average 
number defined as the accessibility index by Gould [65], which indicates how 
many walks go through a node on an average. With a suitable normalisation, A*kv 
converges to the largest eigenvector v1 of A*; see Straffing [213]. 

As an example, for the cycle adjacency matrix discussed in Section 3.3.8, the larg-
est eigenvalue is calculated as λ1 = 21.8815, and the corresponding eigenvector *

1v  
is obtained and its entries are reordered as follows:  

* t
1 {0.1782  0.2124  0.2124  0.2124  0.2718  0.2718  0.2718  0.3654  0.3654  0.3654  0.4590} .=v

The entries of this vector correspond to the cycle numbers as  

P = {3 1 2 4 5 6 7 9 8 10 11}t.  

Algorithm (Kaveh and Rahami [120])  

The algorithm is simple and consists of the following steps: 

Step 1: Contract S to S′. 

Step 2: Form the cycle subspace using Horton’s approach. 

Step 3: Form the cycle adjacency matrix A*. 

Step 4: Calculate the largest eigenvector v1 of A*. 

Step 5: Put the entries of v1 in ascending order to obtain *
1v  and construct a vector 

P containing the order of the cycles in *
1v . 

Step 6: Choose the first entry of P as the first cycle, save it in C* and remove it 
from P. 
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Step 7: Select the next admissible cycle from the new P, starting from its first en-
try, save it in C* and remove it from P. 

Step 8: Repeat Step 7 until b1(S) admissible cycles in C* forming a suboptimal 
cycle basis are constructed.  

For the graph shown in Figure 3.18, the selected cycles are chosen sequentially 
from P = {3 1 2 4 5 6 7 9 8 10 11} t  as C3, C1, C2, and C4. These cycles with the 
corresponding sequence are found to be admissible and selected through steps 6 to 
8 of the algorithm. The members of these cycles from the cycle set Q are (7, 8, 9), 
(1, 6, 9), (2, 3, 7) and (4, 5, 8), respectively, forming a cycle basis consisting of 
four three-sided cycles. 

3.3.9 EXAMPLES 

In this section, the selected cycle bases using the algorithm of Horton [83] and the 
present algorithm are compared. It should be noted that these two algorithms have 
different aims, namely, the first algorithm is designed for the formation of a mini-
mal cycle basis, while the present algorithm aims at the selection of cycles with 
smallest possible overlaps leading to a suboptimal cycle basis. 

Example 1: A planar graph is considered as shown in Figure 3.20. Use of Hor-
ton’s algorithm leads to the formation of the following cycle basis: 

C1 = {(1, 9, 18), (2, 3, 4), (8, 9, 10), (10, 11, 12), (11, 17, 16, 18),  

(11, 14, 15,18), (3, 13, 10, 18), (5, 6, 7, 8, 12)} 

corresponding to χ(C) = 29 and χ(D) = 8 + 2 × 16 = 40. 

The present algorithm leads to the following cycle basis:  

*
1C ={(2, 3, 4), (1, 9, 18), (10, 11, 12), (11, 16, 17, 18), (8, 9, 10),  

(14, 15, 16, 17), (1, 3, 5, 6, 7), (5, 6, 7, 8, 13)}. 

corresponding to χ(C) = 30 and χ(D) = 8 + 2 × 9 = 26. 
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Fig. 3.20 A planar graph S with b1(S) = 8.  

Example 2: A simple graph is considered as shown in Figure 3.21. Use of Hor-
ton’s algorithm leads to the formation of the following cycle basis:  

C2 = {(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (1, 14, 4, 13), (2, 15, 5, 14),  

(4, 17, 7, 16), (5, 18, 8, 17), (7, 20, 10, 19), (8, 21, 11, 2)},  

corresponding to χ(C) = 36 and χ(D) = 10 + 2 × 19 = 48. 

The present algorithm leads to the following cycle basis:  

*
2C  = {(1, 2, 3), (10, 11, 12), (1, 13, 4, 14), (2, 14, 5, 15), (3, 6, 13, 15), (8, 11, 20, 

21), (9, 12, 19, 21), (7, 10, 19, 20), (4, 7, 16, 17), (5, 8, 17, 18)},  

corresponding to χ(C) = 38 and χ(D) = 10 + 2 × 17 = 44.  
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Fig. 3.21 A simple graph S with b1(S) = 10.  
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Example 3: A graph model in the form of a 3 × 3 × 1 grid is considered, as shown 
in Figure 3.22. Use of Horton’s algorithm leads to the formation of a minimal cy-
cle basis, corresponding to χ(C) = 132 and χ(D) = 33 + 2 × 100 = 233.  

 
Fig. 3.22 A 3 × 3 × 1 cube-type graph with b1(S) = 33. 

The cycle basis selected by the present algorithm corresponds to χ(C) = 132 and 
χ(D) = 33 + 2 × 77 = 187. 

Example 4: In this example, S is the model of a space frame, considered as 
1 ( )

1

b S

ii
S S

=
= ∪ , where a typical Si is depicted in Figure 3.23(a). For Si there are 12 

members joining eight corner nodes. The model is shown in Figure 3.23(b), in 
which some of the members are omitted for clarity of the diagram. For this graph, 
b1(S) = 270.  

   
 (a) A typical Si(i = 1, …, 27).  (b) S with some omitted members.  

Fig. 3.23 A space frame S.  

Using Horton’s algorithm, 324 three-sided and 108 four-sided cycles are gener-
ated. Higher-length cycles could also be generated; however, since an optimal 



 OPTIMAL STRUCTURAL ANALYSIS 96 

cycle basis for a symmetric graph of Figure 3.23 does not seem to have any such 
cycle, higher-length cycles are not selected. The weighted adjacency matrix A* is 
formed and, using the present algorithm, a suboptimal cycle basis is generated. 
This basis consists of 270 cycles of length 3 corresponding to χ(C) = 270 × 3 = 
810 and χ(D) = 270 + 2 × 617 = 1504 non-zero entries. 

A lower bound can be obtained for σ(D) and hence χ(D). For calculating this 
bound every factor should be considered in its optimal condition. In a cycle list, if 
a member appears n times, n(n − 1)/2 units will be added to σ(D). As an example, 
if n = 2, then one unit will be added to σ(D), and for n = 3, three units will be 
added to σ(D). 

Consider the graph model of Figure 3.23(a). Using the above argument, σ(D) is 
obtained as follows: 

For this graph, M(Si) = 20, N(Si) = 9 and b1(Si) = 12. If only cycles of length 3 are 
included in the selected basis, 12 × 3 = 36 members should be used. From the ex-
isting members, 12 members corresponding to the edges of the cube, each can be 
present only in one three-sided cycle, and therefore the remaining overlaps 36 − 29 
= 16 should be distributed between 20 − 12 = 8 members. In the best case, for each 
member, two overlaps can be allocated, leading to an increase of σ(D) by 8 × 
3(3 1)

2
−  =24 units. The present algorithm leads to a cycle basis with σ(D) = 24, 

which is an optimal cycle basis. 

For this example, a lower bound is calculated as follows: 

The selected cycles containing 270 × 3 = 810 members should be formed on 360 
members. The repeated members should be from 810 − 360 = 450 remaining mem-
bers. Each of the 36 members on the edges of the graph S can be present only in 
one 3-sided cycle. Thus 360 − 36 = 324 members will be left on which repetition 
can be present. If these members are used twice, then 450 − 324 = 126 members 
will be left for which 3 repetitions can be present. Therefore, the minimum value 
of σ(D) will be:  

576126]1
2

)13(3[324)( Min =×−−+=χ D . 

Such a bound may or may not be achievable, since the independence of the cycles 
should also be satisfied. The present algorithm leads to σ(D) = 617 which is close 
to the ideal condition. 
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3.4 CONDITIONING OF THE FLEXIBILITY MATRICES 

The use of the digital computer for problems in structural analysis requires the 
solution of a large system of algebraic equations of the form  

 Ax = b, (3-57) 

as mentioned at the opening of Chapter 5. This is true for both the force method 
and the displacement approach. Sometimes the solution of Eq. (3-57) changes 
greatly on small perturbation in the matrix A. Then we say A is ill-conditioned 
with respect to this solution. The accuracy of the solution of Eq. (3-57) can be sen-
sitive to the characteristics of the matrix A. Therefore, it is important to study these 
characteristics and their interrelationships with the source, propagation and distri-
bution of possible errors. In doing so, better methods of problem formulation must 
be found, and techniques for predicting, detecting and minimising solution errors 
must be devised. The ill-conditioning of stiffness matrices for the displacement 
method of analysis was studied by Shah [197]. In his work, methods were sug-
gested for improving the conditioning of the stiffness matrices. A mathematical 
investigation of matrix error analysis is due to Rosanoff and Ginsburg [188]. In 
their work, it was shown that numerically unstable equations may arise in physi-
cally stable problems. Thus, the need for routine measurement of matrix 
conditioning numbers associated with various patterns of formulation is empha-
sised. The effect of substructuring on the conditioning of stiffness matrices was 
investigated by Grooms and Rowe [68], who concluded that substructuring does 
not significantly influence the accuracy of solution of ill-conditioned systems. 
Filho [52] suggested an orthogonalisation method for the best conditioning of 
flexibility and stiffness matrices; however, this is an impractical approach for 
multi-member complex structures. 

Optimisation of the conditioning of equilibrium equations when an algebraic force 
method is employed was studied by Robinson and Haggenmacher [187]. For the 
combinatorial force method, studies have been limited to increasing the sparsity of 
cycle basis incidence matrices; see Henderson [76] and Goodspeed and Martin 
[64] (see also Cassell [21] for a discussion on the latter reference). Recently, 
methods have been developed for selecting particular types of statical and kinema-
tical bases, leading to flexibility and stiffness matrices that are better conditioned 
than classical ones; see Kaveh [109]. 

In structural engineering, one of the important sources of ill-conditioning is the use 
of members that have widely different stiffnesses (or flexibilities) in a structure. 
The application of standard statical or kinematical bases (though optimal) leads to 
ill-conditioned structural matrices. In this chapter, methods are developed for gen-
erating special cycle and cutset bases corresponding to statical and kinematical 
bases, which provide the best possible conditioning for flexibility and stiffness 
matrices, respectively. 
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3.4.1 CONDITION NUMBER 

In order to measure the conditioning of a matrix, various numbers are defined and 
employed in practice; see Kaveh [94,113]. The most commonly used condition 
number is | λmax | / | λmin |, where λmax is the eigenvalue of the largest modulus and 
λmin is the eigenvalue of the least modulus as defined in the following text: 

Eigenvalues and eigenvectors are related to the conditioning of matrices. The ratio 
of the extreme eigenvalues of a matrix | λmax | / | λmin | can be taken as its condition 
number. It can easily be shown that the logarithm to the base 10 of this condition 
number is roughly proportional to the maximum number of significant figures lost 
in inversion or in the solution of simultaneous equations. Thus, the number of 
good digits, g, in the solution, is given by  

 g = p − log(| λ max | / | λ min |) = p − PL. (3-58) 

In this relationship, PL = log(|λmax | / | λ min |) and p is a number that varies from 
machine to machine. For example, the IBM/360 uses approximately 8 digits for 
single-precision and 16 digits for double-precision calculations. It should be men-
tioned that the above estimate is conservative, and experience shows that PL is one 
digit on the safe side. The importance of this condition number justifies more ex-
planation and a simple numerical example.  

Symmetric matrices can be written as a linear combination of rank-one matrices as  

 t

1
,

n

i i i
i

λ
=

= ∑A v u  (3-59) 

and 1 t

1

(1/ ) ,
n

i i i
i

λ−

=

= ∑A v u  (3-60) 

with t 1i i =v u  for i = 1, ..., n. In the above equations, λi is the ith eigenvalue and vi 
is the corresponding eigenvector of A, and ui is the ith eigenvector of A–1. Equa-
tion (3-59) shows that the rank-one matrices of the eigenvectors enter the matrix A 
in amount proportional to their respective eigenvalues. The lower mode of A be-
comes weakly represented as the ratio of the extremal eigenvalues becomes large. 
Specifically, as a first approximation for each power of 10 in the ratio | λmax | / | 
λmin |, the lower mode will lose about 1 decimal digit in a finite computer number 
set representation of the matrix. On the other hand, the lower mode of A is the 
upper mode of A–1, because the coefficients of the linear combination (the eigen-
values) are inverted. Therefore, inverting matrices without some feel for their 
conditioning can lead to wrong solutions. Consider a 2 × 2 matrix such as  
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1/ 9 1/10 0.11111111 0.10000000
.

1/10 1/11 0.10000000 0.09090909
   

= =   
   

A  

The eigenvalues and eigenvectors of A with eight digits are 

1 1 1

0.74178794
0.20151896      ,

0.67063452
λ  

= = =  
 

v u  

2 2 2

0.67063452
0.0005012437      ,

0.74178794
λ  

= = =  − 
v u  

leading to λ1/λ2 = 402.0379 = 102.604. From Eq. (3-59), matrix A can be written as  

 t t
1 1 1 2 2 2λ λ= +A v u v u   

 { }0.74178794
0.20151896 0.74178794 0.67063452

0.67063452
 

=  
 

 

 { }0.67063452
0.0005012437 0.67063452 0.74178794

0.74178794
 

+ − − 
 

 =
0.11088567 0.10024935 0.00022543467 0.00024935298
0.10024935 0.090633285 0.00024935298 0.00027580902

−   
+   −   

  

 =
0.11111111 0.099999997

0.099999997 0.090909094
 
 
 

. 

In forming this eight-digit approximation to the matrix, the component matrix 
t

2 2 2λ v u , which has three leading zeros in its elements, is truncated to about five 
digits. Therefore, an eight-digit representation of the matrix A contains about five 
digits of information about the rank-one matrix t

2 2v u . 

Similarly, consider A–1 formed as  

 1 t t
1 1 2 2

1 2

1 1( ) ( )
λ λ

− = +A v u v u   
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 = 
2.7305090 2.4685944 897.26951 992.46859
2.4685944 2.2318030 992.46859 1097.7681

−   
+   −   

 

 = 
900.00002 990.00000 900 990
990.000000 1099.9999 990 1100

− −   
≈   − −   

. 

Notice that the rank of matrix t
2 2v u , which was only available to about five digits 

in the approximation of A, is the largest component of A–1. One should expect that 
five digits would be about the most one could obtain by numerically inverting the 
approximate matrix. 

The true inverse can be obtained using rational number arithmetic, and is shown in 
the above equation to the right of the approximation sign. Using eight-digit arith-
metic, the approximate matrix is inverted, yielding  

1
1 0.11111111 0.10000000 900.00089 990.00099

.
0.10000000 0.09090909 990.00099 1100.0011

−
− −   

= =   −   
A  

The poorest terms in this approximate inverse are the off-diagonal terms, which 
have barely six significant digits. For this matrix,  

log 10 |λmax | / |λmin| = log10 402.0379 = 2.604.  

Therefore, one should expect the approximate inverse to be limited to 8 − 2.6 = 5.4 
good digits. It should be mentioned that for positive definite and symmetric matri-
ces, the calculation of |λmax | / |λmin| can be carried out by the power method using 
Rayleigh´s Quotient. Since a structural matrix A is symmetric and positive defi-
nite, the convergence of the procedure is ensured and the largest eigenvalue λmax of 
A can be easily calculated. The largest eigenvalue of A–1 provides the smallest 
eigenvalue of A. This method becomes especially simple if the inverse of the ma-
trix is obtained as part of the calculation. However, the inversion of A can be 
avoided by using the fact that, if the eigenvalues of A are λmin, ..., λmax, then the 
eigenvalues of cI − A are c − λmin, ..., c − λmax. Therefore, if constant c is greater 
than λmax, then the largest eigenvalue of cI − A will be c − λmin. This provides a 
simple approach for evaluating λmin. Simple computer programs for calculating 
λmin and λmax of a positive definite matrix are provided in [113]. 
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3.4.2 WEIGHTED GRAPH AND AN ADMISSIBLE MEMBER  

The relative stiffnesses (or flexibilities) of members of a structure can be consid-
ered as positive integers associated with the members of the graph model of a 
structure, resulting in a weighted graph. 

Let S be the model of a frame structure and km denote the stiffness matrix of an 
element mi in a global coordinate system selected for the structure. A weight can 
be defined for mi, using the diagonal entries kii of km, as  

 1 4 3( ) 2( ),z z
i iiW m k α α α= Σ = + +  (3-61) 

where  1 3 4 3

4 12,      and  z zEA EI EI
L L L

α α α= = = .
 
 

A different weight employing the square roots of the diagonal entries of 
imk  can 

also be used:  

 1/ 2 1/ 2 1/ 2
1 4 3( ) 2[( ) ( ) ( ) ].z z

i iiW m k α α α= Σ = + +  (3-62) 

Other weight functions may be defined for representing the relative stiffnesses of 
the members of S, as appropriate.  

Definition: Let the weight of members m1, m2, ..., mM(S) be defined by W(m1), 
W(m2), ..., W(mM(S)), respectively. A member mi is called F-admissible if  

 
( )

1

( )1( )
( )

M S
j

i
j

W m
W m

M Sα =

≥ ∑ , (3-63) 

where α is an integer number that can be taken as 2, 3, ... We have used α = 2; 
however, a complete study using other values of α is required. If a member is not 
F-admissible, it is called inadmissible or S-admissible.  

3.4.3 OPTIMALLY CONDITIONED CYCLE BASES  

In order to obtain optimally conditioned flexibility matrices, special statical bases, 
correspondingly cycle bases possessing particular properties, must be selected. 
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A cycle basis is defined as an optimally conditioned cycle basis if 

(a) it is an optimal cycle basis, that is, the number of non-zero entries of the corre-
sponding cycle adjacency matrix is minimum, leading to a maximal sparsity of the 
flexibility matrix;  

(b) the members of greatest weight of S are included in the overlaps of the cycles, 
that is, the off-diagonal terms of the corresponding flexibility matrix have the 
smallest possible magnitudes.  

A weighted graph may have more than one optimal cycle basis. The one satisfying 
condition (b) is optimally conditioned. However, if no such cycle basis exists, then 
a compromise should be found in satisfying conditions (a) and (b). In other words, 
a basis should be selected that partially satisfies both conditions. Since there is no 
algorithm for the formation of an optimal cycle basis, one should look only for a 
suboptimally conditioned cycle basis.  

Example: Consider a 3 × 3 grid as shown in Figure 3.24(a), with the relative 
weights of the members being encircled. An optimal cycle basis of S, as shown in 
Fig. 3.24(b), contains nine regional cycles (mesh basis) and corresponds to  

8

1
1

( ) 1 1 1 2 2 1 2 2 12i
T i

i

L L C C +
=

= ∩ = + + + + + + + =∑ . 

The weight of the members contained in the overlaps is determined as  
8

1
1

( ) 2 2 10 12 12 1 3 3 45,i
T i

i
W W C C +

=

= ∩ = + + + + + + + =∑   

where LT and WT are the length and weight of the overlaps of the selected cycles, 
respectively.  
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 (a) A weighted graph S. (b) An optimal cycle basis of S. 
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(c) A suboptimally conditioned cycle basis. 

Fig. 3.24 A single-layer rigid-jointed grid S. 

A suboptimal cycle basis of S is illustrated in Figure 3.24(c), for which  

8
'

1 1
1

( ) 1 1 1 2 2 3 4 4 18.i
i i
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= ∩ = + + + + + + + =∑   

The weights of the members contained in the overlaps are calculated as  

8
'

1 1
1

( ) 2 2 10 12 12 14 16 16 84.i
i i

i
W W C C= +

=

= ∩ = + + + + + + + =∑   

The weight of the overlaps of the selected cycles is considerably increased at the 
expense of some increase in their lengths, and hence some decrease in the sparsity 
of their cycle adjacency matrix. Obviously, WT can be further increased; however, 
the decrease in sparsity will significantly influence the optimality of the cycle  
basis. 

In this structure, the members of weight one are inadmissible according to the defi-

nition of the previous section, since 1 691 1.43
2 24

< × = .
 
 

3.4.4 FORMULATION OF THE CONDITIONING PROBLEM 

The problem of selecting an optimally conditioned cycle basis can be stated in the 
following mathematical form:  

 
1 ( ) 1

1
1

Min ( ),
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i
i
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=

∩∑  (3-64) 
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and 

 
1 ( ) 1

1
1

Max ( ),
b S

i
i

i

W C C
−

+
=

∩∑  (3-65) 

where S is a contracted S as defined in Section 3.3.4 and 
1

i
i

jj
C C

=
= ∪ . 

As can be seen, the problem is a multi-objective optimisation problem, and the 
following algorithms are designed such that both objective functions are partially 
satisfied simultaneously. 

3.4.5 SUBOPTIMALLY CONDITIONED CYCLE BASES 

In this section, three algorithms are developed for the selection of suboptimally 
conditioned cycle bases of a weighted graph. On each selected cycle, three or six 
SESs are formed, depending on S being a planar or a space frame, respectively. 
The condition number of the flexibility matrix corresponding to the selected stati-
cal basis is obtained using the methods of Section 3.2.  

Algorithm A 

This algorithm uses the chords of a special spanning tree to ensure the independ-
ence of the selected cycles. In order to avoid the inclusion of inadmissible chords 
in the intersections of the cycles, such chords are not added to the set of members 
to be used for generation of the cycles of S.  

Step 1: Select the centre “O” of S with a graph or algebraic graph-theoretical 
method. 

Step 2: Generate an SRT using the members of highest weights, that is,  

 2.1 take all members incident with O and assign “1” to the other ends;  

2.2 find all members incident with nodes denoted by “1” and order them in 
ascending magnitude of their weights; 

2.3 select the tree members from the above ordered members, and assign 
“2” to the other ends.  

Step 3: Repeat Step 2 as many times as needed until all the nodes of S are spanned 
and an SRT is formed.  
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Step 4: Order the members incident with “1” in ascending magnitude of weight 
and use the members of maximal weight as the chord of the first minimal length 
cycle. If this chord is an F-admissible one, add it to the list of the tree members, 
and denote this list by T c.  

Step 5: Generate the second shortest length cycle on the second maximal weight 
member incident with “1” using the members of T c. Again add the chord to T c if it 
is F-admissible. Continue this process until all chords incident with the nodes la-
belled as “1” are used. 

Step 6: Repeat Steps 4 and 5 for all the nodes labelled as “2”. Repeat this process 
sequentially for all the nodes labelled as 3, 4, ..., k, until a basis is selected.  

This algorithm generates suboptimally conditioned cycle bases, and has the 
following advantages compared with the algorithm for generating a fundamental 
cycle basis:  

(a) Starting node at the centre of S: limits the length of the generated cycles.  

(b) Employing the used chords in the formation of cycles: reduces the length of the 
selected cycles. 

(c) Forbidding the addition of F-inadmissible chords: prevents the inclusion of 
weak members in the overlaps of the cycles.  

(d) Using members of highest weight in each stage of generating an SRT: leaves 
the weaker members as chords, which can be excluded because of inadmissibility.  

One can select a spanning tree of maximal weight employing the Greedy Algo-
rithm (see Appendix B) in place of an SRT of maximal weight with respect to the 
centre node of S; however, in general, longer cycles will then be selected, corre-
sponding to a cycle adjacency matrix of less sparsity.  

An improvement may be achieved by comparison of the centre node (or nodes) 
and adjacent nodes to select a node of higher average weight as a starting node. 
The average weight of a node is taken as the sum of the weights of the members 
incident with ni/deg ni. This improvement is due to the inclusion of all the mem-
bers of the root node in Tc.  

Example: In the following, a simple grid is considered, and the drawback of using 
a spanning tree of maximal weight compared with an SRT of maximal weight 
rooted at the centre node O is illustrated; see Figure 3.25. The inadmissible mem-
bers are shown in dashed lines, and the selected trees are illustrated in bold lines. 
Use of a spanning tree results in much longer cycles, corresponding to a less 
sparse cycle adjacency matrix CCt. This in turn leads to a conditioning of G, 
which in general is worse than the result obtained by an SRT.  
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O

 
(a) A basis generated using an SRT.  (b) A basis using a spanning tree. 

Fig. 3.25 Comparison of two different cycle bases. 

Algorithm B 

This algorithm is a modified version of the Algorithm 3 presented in Section 3.3.2 
for selecting a suboptimal cycle basis of S, in which the relative stiffnesses of the 
members are also taken into account.  

Step 1: Contract S into S´ by replacing all paths with nodes of degree 2 by a single 
member. If a path contains an F-inadmissible member, then the replaced member 
will also be considered as F-inadmissible.  

Step 2: Calculate the IN and CLN of the members of S. 

Step 3: Start with a member of the least CLN and generate a minimal weight cycle 
C1 on this member. The weight of a cycle in this algorithm is taken to be the sum 
of the INs of its members. 

Step 4: Generate the second admissible cycle of minimal weight C2 on the next 
member of the least CLN. If C1 ∩ C2 contains an F-inadmissible member, and C1 ⊕ 
C2 does not contain such a member, then exchange C2 with C1 ⊕ C2; otherwise 
take C2 as the second cycle of the basis. 

Step 5: Subsequently, select the kth admissible smallest weight cycle Ck on an un-
used member having the least CLN. If Ck–1 ∩ Ck contains an F-inadmissible 
member, and Ci ⊕ Cj does not have such a member, then exchange Ck with Ck ⊕ 
Cj; otherwise take Ck as the kth cycle. In the above relationship Cj are the gener-
ated cycles adjacent to Ck. 

Step 6: The process of Step 5 should be continued as long as the generation of 
admissible minimal weight cycles is possible. After a member has been used as 
many times as its IN, before each additional usage, increase the IN of such a mem-
ber by unity.  
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Step 7: On an unused member of the least length number, generate one admissible 
cycle of the smallest weight. This cycle is not a minimal weight cycle, otherwise it 
would have been selected at Step 4. Such a cycle is known as a subminimal weight 
cycle. Again a process similar to Step 5 should be performed for possible inter-
change of the cycle, and the INs should be updated for each additional usage. Now 
Step 6 should be repeated, since the formation of the new subminimal weight cycle 
may have altered the admissibility condition of the other cycles, and the selection 
of further minimal weight cycles may now have become possible.  

Step 8: Repeat Step 7, selecting minimal and subminimal weight cycles with the 
process of combining for better conditioning, until b1(S´) = b1(S) cycles are gener-
ated.  

Step 9: A process reverse to that of the contraction performed in Step 1 transforms 
the selected cycle basis of S´ to that of S. 

Remark: The idea of exchanging a cycle Ck with Ck ⊕ Cj at Step 5 of the above 
algorithm can be generalised to exchanging Ck with the ring sum of Ck and a linear 
combination of other cycles of Ck–1\Ck. 

Alternatively, instead of performing cycle exchange in the process of expansion, 
one may use a similar exchange process after the formation of a cycle basis, in 
order to increase the weight of the overlaps for the element of the basis to be se-
lected. 

The above two types of operations can be collectively performed; however, this 
approach requires additional computer time and storage and its use should be justi-
fied.  

The algorithm B is implemented on a PC, and the improvements obtained on the 
conditioning of the flexibility matrices by using this method are studied through 
some examples.  

3.4.6 EXAMPLES  

Example 1: A three-storey frame is considered, as shown in Figure 3.26. Three 
cases are studied using two types of member properties:  
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  Type 1 A1 = 0.00106 m2 I1 = 0.00000171 m4  

  Type 2 A2 = 0.00970 m2 I2 = 0.0001961 m4.  

3
4

5

2
8

6

7
9

1

  
 (a) (b)  (c)  

Fig. 3.26 Three-storey frames with different member properties.  

The elastic modulus of the material is taken as E = 2.1 × 108 kN/m2, and all the 
members have L = 3 m. Type 1 members are shown in normal lines and type 2 
members are illustrated in bold lines. 

Algorithm 3 of Section 3.3.2 is applied to these frames, and in all the cases re-
gional cycles are formed as an optimal (minimal) cycle basis. For each cycle, three 
SESs are generated, and B1 and the corresponding flexibility matrices G are 
formed. The condition numbers for these matrices are obtained as 1.971889, 
3.611656, and 3.692658 for frame type a, b and c, respectively.  

Algorithm B of Section 3.4.5 selected the following cycles as a suboptimally con-
ditioned cycle basis:  

For (a) C1 = (7, 9, 1), C2 = (4, 5, 8, 3) and C3 = (2, 8, 6, 9). 

For (b) C1 = (7, 9, 1), C2 = (4, 5, 8, 3) and C3 = (2, 8, 6, 7, 1). 

For (c) C1 = (7, 9, 1), C2 = (4, 5, 8, 3) and C3 = (2, 8, 6, 7, 1).  

The corresponding flexibility matrices have condition numbers as 1.971889, 
4.160444, and 3.883811 for frames type a, b and c, respectively.  

Example 2: A two-storey frame with three bays is considered, as shown in Figure 
3.27. The same member properties are used and three cases are studied. The calcu-
lated condition numbers are obtained as 2.95416, 4.504203 and 4.311532, for type 
a, b and c, respectively. Algorithm 3 of Section 3.3.2 is used, and the selected cy-
cle bases are optimal for all three cases.  
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 (a) (b) (c) 

Fig. 3.27 Two-storey frame with different member types.  

Algorithm B of Section 3.4.5 is applied, and the selected cycles for each case are 
illustrated in Figure 3.28. The corresponding flexibility matrices have the condi-
tion numbers as 2.942885, 3.770917 and 3.742143 for type a, b and c, 
respectively.  

  
Fig. 3.28 Selected cycle bases using Algorithm B.  

The considerable improvement is due to the formation of suboptimal cycle bases 
used in place of optimal cycle bases. It should be noted that these comparisons are 
made against the best existing algorithm, since the sparsity itself has a great influ-
ence on the conditioning of flexibility matrices.  

3.4.7 FORMATION OF B0 AND B1 MATRICES  

In order to generate the elements of a B0 matrix, a basic structure of S should be 
selected. For this purpose, a spanning forest consisting of NG(S) SRTs is used, 
where NG(S) is the number of ground (support) nodes of S. As an example, for S 
shown in Figure 3.29(a), two Shortest Route (SR) subtrees are generated; see  
Figure 3.29(b).  
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Fig. 3.29 S and two of its SR subtrees.  

The orientation assigned to each member of S is from the lower-numbered node to 
its higher numbered end. For each SR subtree, the orientation is given in the direc-
tion of its growth from its support node.  

MATRIX B0: This is a 6M(S) × 6NL(S) matrix, where M(S) and NL(S) are the 
numbers of members and loaded nodes of S, respectively. If all the free nodes are 
loaded, then  

NL(S) = N(S) − NG(S),  

where NG(S) is the number of support nodes.  

For a member, the internal forces are represented by the components at the lower-
numbered end. Obviously, the components at the other end can be obtained by 
considering the equilibrium of the member. 

The coefficients of B0 can be obtained by considering the transformation of each 
joint load to the ground node of the corresponding subtree. [B0]ij for member i and 
node j is given by a 6 × 6 submatrix as  

 [ ]0

1        0       0       0      0     0
0       1        0       0      0     0
0       0       1        0      0     0

  
0               1      0     0

      0         0      1     0
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 
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 

∆  

 (3-66) 

in which ∆x, ∆y and ∆z are the differences of the coordinates of node j with respect 
to the lower-numbered end of member i, in the selected global coordinate system, 
and αij is the orientation coefficient defined as  
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1 if member is positively oriented in the tree containing ,
1 if member is negatively oriented in the tree containing ,
0  if member is not in the tree containing node .               

ij

j
j

j
α

+
= −


  

The B0 matrix can be obtained by assembling the [B0]ij submatrices as shown 
schematically in the following:  

B 0   =    

        

          

  [ B 0 ] ij       

          

            

             

 

j 

i 

6M(S) × 6NL(S) (3-67)  

MATRIX B1: This is a 6M(S) × 6b1(S) matrix, which can be formed using the ele-
ments of a selected cycle basis. For a space structure, six SESs can be formed on 
each cycle. Consider Cj and take a member of this cycle as its generator. Cut the 
generator in the neighbourhood of its beginning node and apply six bi-actions as 
illustrated in Figure 3.30.  

x  

y  

z  

C  

j  

i  

O  

j  

  
Fig. 3.30 A cycle and the considered bi-action at a cut.  

The internal forces under the application of each bi-action are a SES. As for the 
matrix B0, a submatrix [B1]ij of B1 is a 6 × 6 submatrix, the columns of which show 
the internal forces at the lower-numbered end of member i under the application of 
six bi-actions at the cut of the generator j,  
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 [ ]1 ij ij
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 (3-68) 

in which ∆x, ∆y and ∆z are the differences of the coordinates x, y and z of the be-
ginning node of the generator j and the beginning node of the member i. The 
orientation coefficient βij is defined as  

1 if member  has the same orientation of the cycle generated on ,
1  if member  has the reverse orientation of the cycle generated on ,

  0   if member is not in the cycle whose generator is 
ij

i j
i j

j
β

+
= −

.                        




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The pattern of B1 containing [B1]ij submatrices is shown below:  

B 1   =    

            

            

      [ B 1 ] ij       

            

            

            

. 

i 

j 

6M(S)×6b1(S) (3-69) 

Subroutines for the formation of B0 and B1 matrices are included in the program 
presented in [113]. 
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Example 1: A four by four planar frame is considered as shown in Figure 3.31.  

 
Fig. 3.31 A four by four planar frame S. 

The patterns of B1 and t
1 1B B  formed on the elements of the cycle basis selected by 

any of the methods of Section 3.3.4 are depicted in Figure 3.32, corresponding to 
χ(B1) = 241 and χ( t

1 1B B ) = 388. 

 

 (a) Pattern of B1. (b) Pattern of t
1 1B B .  

Fig. 3.32 Patterns of B1 and t
1 1B B  matrices for S.  
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Example 2: A one-bay three-storey frame is considered as shown in Figure 3.33.  

The patterns of B1 and t
1 1B B  matrices formed on the elements of the cycle basis 

selected by any of the graph-theoretical algorithms of Section 3.3.4 are shown in 
Figure 3.34, corresponding to χ(B1) = 310 and χ( t

1 1B B ) = 562.  

  
Fig. 3.33 A simple space frame S.  

  

  (a) Pattern of B1.  (b) Pattern of t
1 1B B .  

Fig. 3.34 Patterns of B1 and t
1 1B B  matrices for S. 
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Once B0 and B1 are computed, the remaining steps of the analysis are the same as 
those presented in Section 3.2.4. The interested reader may also refer to standard 
textbooks such as those of McGuire and Gallagher [163], Przemieniecki [184], or 
Pestel and Leckie [176] for further information.  

3.5 GENERALISED CYCLE BASES OF A GRAPH 

In this section, S is considered to be a connected graph. For γ(S) = aM(S) + bN(S) 
+ cγ0(S), the coefficients b and c are assumed to be integer multiples of the coeffi-
cient a >; 0. Only those coefficients given in Table 2.1 are of interest.  

3.5.1 DEFINITIONS 

Definition 1: A subgraph Si is called an elementary subgraph if it does not contain 
a subgraph Si´ ⊆ Si with γ(Si´) > 0. A connected rigid subgraph T of S containing 
all the nodes of S is called a γ-tree if γ(T) = 0. For γ(Si) = b1(Si), a γ-tree becomes a 
tree in graph theory.  

Obviously, a structure whose model is a γ-tree is statically determinate when γ(S) 
describes the DSI of the structure. The ensuing stress resultants can uniquely be 
determined everywhere in the structure by equilibrium only. Examples of γ-trees 
are shown in Figure 3.35.  

  
 (a) γ(S) = 3M − 3N + 3.  (b) γ(S) = M − 2N + 3. (c) γ(S) = M − 3N + 6.  

Fig. 3.35 Examples of γ-trees. 

Notice that γ(T) = 0 does not guarantee the rigidity of a γ-tree. For example, the 
graph models depicted in Figure 3.36 both satisfy γ(T) = 0; however, neither is 
rigid.  
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 (a) γ(S) = M − 2N + 3.  (b) γ(S) = M − 3N + 6.  

Fig. 3.36 Structures satisfying γ(T) = 0 that are not rigid. 

Definition 2: A member of S − T is called a γ-chord of T. The collection of all  
γ-chords of a γ-tree is called the γ-cotree of S.  

Definition 3: A removable subgraph Sj of a graph Si is the elementary subgraph 
for which γ(Si − Sj) = γ(Si), that is, the removal of Sj from Si does not alter its DSI. 
A γ-tree of S containing two chosen nodes, which has no removable subgraph, is 
called a γ-path between these two nodes.  

As an example, the graphs shown in Figure 3.37 are γ-paths between the specified 
nodes ns and nt. 

n s n s n s 

n t 
n t 

n t 
 

(a) γ(S) = α(M − N + 1). (b) γ(S) = M − 2N + 3. (c) γ(S) = M − 3N + 6. 

Fig. 3.37 Examples of γ-paths.  

Definition 4: A connected rigid subgraph of S with γ(Ck) = a, which has no re-
movable subgraph, is termed a γ-cycle of S. The total number of members of Ck, 
denoted by L(Ck), is called the length of Ck. Examples of γ-cycles are shown in 
Figure 3.38.  



 OPTIMAL FORCE METHOD OF STRUCTURAL ANALYSIS  

 

117 

  
(a) γ(S) = α(M − N + 1). (b) γ(S) = M − 2N + 3. (c) γ(S) = M − 3N + 6. 

Fig. 3.38 Examples of γ-cycles.  

Definition 5: Let mi be a γ-chord of T. Then T ∪ mi contains a γ-cycle Ci, which is 
defined as a fundamental γ-cycle of S with respect to T. Using the Intersection 
Theorem of Chapter 2, it can easily be shown that  

γ(T ∪ mi) = 0 + (a + 2b + c) − (2b + c) = a,  

indicating the existence of a γ-cycle in T ∪ mi. For a rigid T, the corresponding 
fundamental γ-cycle is also rigid, since the addition of an extra member between 
the existing nodes of a graph cannot destroy the rigidity. A fundamental γ-cycle 
can be obtained by omitting all the removable subgraphs of T ∪ mi.  

Definition 6: A maximal set of independent γ-cycles of S is defined as a general-
ised cycle basis (GCB) of S. A maximal set of independent fundamental γ-cycles is 
termed a fundamental generalised cycle basis of S. The dimension of such a basis 
is given be η(S) = γ(S)/a.  

As an example, a GCB of a planar truss is illustrated in Figure 3.39.  

 
(a) A planar truss S. 
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(b) A generalised cycle basis of S. 

Fig. 3.39 A planar truss S, and the elements of a GCB of S. 

Definition 7: A generalised cycle basis-member incidence matrix C is an η(S)×M 
matrix with entries − 1, 0 and + 1, where cij = 1 (or − 1) if γ-cycle Ci contains posi-
tively (or negatively) oriented member mj, and cij = 0 otherwise. The generalised 
cycle adjacency matrix is defined as D, which is an η(S) × η(S) matrix when undi-
rected γ-cycles are considered; then the negative entries of C become positive.  

3.5.2 MINIMAL AND OPTIMAL GENERALISED CYCLE BASES 

A generalised cycle basis C = {C1, C2,...,Cη(S)} is called minimal if it corresponds 
to a minimum value of  

 L(C) =
( )

1

( ).
S

i
i

L C
η

=
∑  (3-70) 

Obviously, χ(C) = L(C) and a minimal GCB can be defined as a basis that corre-
sponds to minimum χ(C). A GCB for which L(C) is near minimum is called a 
subminimal GCB of S. 

A GCB corresponding to maximal sparsity of the GCB adjacency matrix is called 
an optimal GCB of S. If χ(CCt) does not differ considerably from its minimum 
value, then the corresponding basis is termed suboptimal. 
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The matrix intersection coefficient σi(C) of row i of GCB incidence matrix C is 
the number of row j such that  

(a) j ∈{i + 1, i + 2, ..., η(S)}, 

(b) Ci ∩ Cj ≠ ∅, that is, there is at least one k such that the column k of both γ-
cycles Ci and Cj (rows i and j) contains non-zero entries.  

Now it can be shown that  

 χ(CCt) = η(S) + 2
( ) 1

1

S

i

η −

=
∑ σj (C). (3-71) 

This relationship shows the correspondence of a GCB incidence matrix C and that 
of its GCB adjacency matrix. In order to minimise χ(CCt), the value of 

( ) 1

1

S

i

η −

=
∑ σj(C) should be minimised, since η(S) is a constant for a given structure S, 

that is, γ-cycles with a minimum number of overlaps should be selected. 

3.6 FORCE METHOD FOR THE ANALYSIS 
      OF PIN-JOINTED PLANAR TRUSSES 

The methods described in Section 3.5 are applicable to the selection of generalised 
cycle bases for different types of skeletal structures. However, the use of these 
algorithms for trusses engenders some problems, which are discussed in [1]. In this 
section, two methods are developed for selecting suitable GCBs for planar trusses. 
In both methods, special graphs are constructed for the original graph model S of a 
truss, containing all the connectivity properties required for selecting a suboptimal 
GCB of S. 

3.6.1 ASSOCIATE GRAPHS FOR SELECTION OF A SUBOPTIMAL GCB 

Let S be the model of a planar truss with triangulated panels, as shown in Figure 3.40. 
The associate graph of S, denoted by A(S), is a graph whose nodes are in a one-to-one 
correspondence with the triangular panels of S, and two nodes of A(S) are connected by 
a member if the corresponding panels have a common member in S. 

 
Fig. 3.40 A planar truss S and its associate graph A(S). 
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If S has some cut-outs, as shown in Figure 3.41, then its associate graph can still 
be formed, provided each cut-out is surrounded by triangulated panels.  

For trusses containing adjacent cut-outs, a cut-out with cut-nodes in its boundary, 
or any other form violating the above-mentioned condition, extra members can be 
added to S. The effect of such members should then be included in the process of 
generating its SESs.  

 
Fig. 3.41 S with two cut-outs and its A(S). 

Theorem A: For a fully triangulated truss (except for the exterior boundary), as in Fig-
ure 3.40, the dimension of a statical basis γ(S) is equal to the number of its internal 
nodes, which is the same as the first Betti number of its associate graph, that is, 

 γ(S) = Ni(S) = b1[A(S)]. (3-72) 

Proof: Let M´ and N´ be the number of members and nodes of A(S), respectively. 
By definition,  

  N´ = R(S) − 1, 

and M´= Mi(S) = M(S) − Me(S) = M(S) − Ne(S) = M(S) − [N(S) − Ni(S)]. 

Thus, b1[A(S)] = M´− N´ + 1 = 

 M(S) − [N(S) − Ni(S)] − R(S) + 1 + 1 = 2 − R(S) + M(S) − N(S) + Ni(S).  

By Euler´s polyhedron formula, we have 

2 − R(S) + M(S) − N(S) = 0. 

Therefore, 

b1[A(S)] = Ni(S) 
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For trusses that are not fully triangulated, as described in Chapter 2, we have  

γ(S) = Ni(S) − Mc(S). 

A Cycle of A(S) and the Corresponding γ-Cycle of S: In Figure 3.42(a) , a trian-
gulated truss and its associate graph, which is a cycle, are shown for which  

γ(Si) = Ni = 1 = b1[A(S)]. 

Since C1 of A(S) corresponds to one γ-cycle of S, it is called a type I cycle, denoted 
by CI. A γ-cycle of S is shown with continuous lines, and its γ-chords are depicted 
with dashed lines.  

Figure 3.42(b) shows a truss unit with one cut-out. In general, if a cut-out is an m-
polygon, then the completion of the triangulation requires m − 3 members. Instead, 
m internal nodes will be created, increasing the DSI by m. Hence, Eq. (3-72) yields  

 γ(S) = m − (m − 3) = 3,  

while  b1[A(S)] = 1. 

  
  (a) A type CI cycle. (b) A type CIII cycle.  

Fig. 3.42 Two different types of cycles.  

However, in this case, S contains three γ-cycles. A γ-path P and three γ-chords 
(dashed lines) are depicted in Figure 3.42(b). Obviously, P ∪ mi (i = 1, 2, 3) forms 
three γ-cycles, which correspond to a cycle of type CIII of A(S). Thus, two types of 
cycles, CI and CIII, should be recognised in A(S), and an appropriate number of  
γ-cycles will then be generated.  
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Algorithm AA 

Step 1: Construct the associate graph A(S) of S. 

Step 2: Select a mesh basis of A(S) using an appropriate cycle selection algorithm. 
For fully triangulated S, Algorithms 1 to 3 (Section 3.3.2) generate cycle bases 
with three-sided elements. 

Step 3: Select the γ-cycles of S corresponding to the cycles of A(S). One  
γ-cycle for each cycle of type CI and three γ-cycles for each cycle of type CIII 
should be chosen.  

Once a GCB is selected, on each γ-cycle one SES can easily be formed. Therefore, 
a statical basis with localised SESs will be obtained.  

Example: Let S be the graph model of a planar truss, as shown in Figure 3.41, for 
which γ(S) = 11. For A(S), five cycles of length 6 of type CI, and two cycles of 
lengths 14 and 18 of type CIII are selected. Therefore, a total of 5 + 3 × 2 = 11 γ-
cycles of S is obtained. On each cycle of type CI, one SES and on each cycle of 
type CIII three SESs are constructed, and a statical basis consisting of localised 
SESs is thus obtained. 

3.6.2 MINIMAL GCB OF A GRAPH 

Theoretically, a minimal GCB of a graph can be found using the Greedy Algo-
rithm developed for matroids. This will be discussed in Appendix B after matroids 
have been introduced, and only the algorithm is briefly outlined here.  

Consider the graph model of a structure, and select all of its γ-cycles. Order the 
selected γ-cycles in ascending order of length. Denote these cycles by a set C. 
Then perform the following steps: 

Step 1: Choose a γ-cycle C1 of the smallest length, that is, L(C1) ≤ L(Ci) for all Ci ∈ C.  

Step 2: Select the second γ-cycle C2 from C − {C1} that is independent of C1 and 
L(C2) ≤ L(Ci) for all γ-cycles of C − {C1}.  

Step 3: Subsequently, choose a γ-cycle Ck from C − {C1, C2, ..., Ck–1} that is inde-
pendent of C1, C2, ..., Ck–1 and L(Ck) ≤ (Ci) for all Ci ∈ C − {C1, C2, ..., Ck–1}.  

After η(S) steps, a minimal GCB will be selected by this process, a proof of which 
can be found in Kaveh [113].  
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3.6.3 SELECTION OF A SUBMINIMAL GCB: PRACTICAL METHODS 

In practice, three main difficulties are encountered in an efficient implementation 
of the Greedy Algorithm. These difficulties are briefly mentioned in the following:  

1. Selection of some of the γ-cycles for some γ(S) functions  

2. Formation of all of the γ-cycles of S  

3. Checking the independence of γ-cycles.  

In order to overcome the above difficulties, various methods are developed. The 
bases selected by these approaches correspond to very sparse GCB adjacency ma-
trices, although these bases are not always minimal.  

Method 1 

This is a natural generalisation of the method for finding a fundamental cycle basis 
of a graph and consists of the following steps:  

Step 1: Select an arbitrary γ-tree of S, and find its γ-chords. 

Step 2: Add one γ-chord at a time to the selected γ-tree to form fundamental  
γ-cycles of S with respect to the selected γ-tree.  

The main advantage of this method is the fact that the independence of γ-cycles is 
guaranteed by using a γ-tree. However, the selected γ-cycles are often quite long, 
corresponding to highly populated Generalised Cycle Basis (GCB) adjacency ma-
trices.  

Method 2 

This is an improved version of Method 1, in which a special γ-tree has been em-
ployed and each γ-chord is added to γ-tree members after being used for the 
formation of a fundamental γ-cycle.  

Step 1: Select the centre “O” of the given graph. Methods for selecting such a node 
will be discussed in Chapter 5.  

Step 2: Generate an SR γ-tree rooted at the selected node O and order its γ-chords 
according to their distance from O. The distance of a member is taken as the sum 
of the shortest paths between its end nodes and O. 

Step 3: Form a γ-cycle on the γ-chord of the smallest distance number and add the 
used γ-chord to the tree members, that is, form T ∪ m1.  
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Step 4: Form the second γ-cycle on the next nearest γ-chord to O, by finding a γ-
path in T ∪ m1 (not through m2). Then add the second used γ-chord m2 to T ∪ m1 
obtaining T ∪ m1 ∪ m2.  

Step 5: Subsequently form the kth γ-cycle on the next unused γ-chord nearest to O, 
by finding a γ-path in the T ∪ m1 ∪ m2 ∪ ... ∪ mk–1 (not through mk). Such a  
γ-path together with mk forms a γ-cycle. 

Step 6: Repeat Step 5 until η(S) of γ-cycles are selected. 

Addition of the used γ-chords to the γ-tree members leads to a considerable reduc-
tion in the length of the selected γ-cycles, while maintaining the simplicity of the 
independence check.  

In this method, the use of an SRT orders the nodes and members of the graph. 
Such an ordering leads to fairly banded member-node incidence matrices. Consid-
ering the columns corresponding to tree members as independent columns, a base 
is effectively selected for the cycle matroid of the graph; see Kaveh [94,112].  

Method 3 

This method uses an expansion process, at each step of which one independent γ-
cycle is selected and added to the previously selected ones. The independence is 
secured using an admissibility condition defined as follows: 

A γ-cycle Ck+1 added to the previous selected γ-cycles Ck = C1 ∪ C2 ∪ ... ∪ Ck is 
called admissible if  

 Ck ∪ Ck+1) = γ(Ck) + a,  (3-73) 

where “a” is the coefficient defined in Table 2.1. The method can now be de-
scribed as follows:  

Step 1: Select the first γ-cycle of minimal length C1. 

Step 2: Select the second γ-cycle of minimal length C2 that is independent of C1, 
that is, select the second admissible γ-cycle of minimal length. 

Step k: Subsequently, find the kth admissible γ-cycle of minimal length. Continue 
this process until η(S) independent γ-cycles forming a subminimal GCB are ob-
tained. 
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A γ-cycle of minimal length can be generated on an arbitrary member by adding a 
γ-path of minimal length between the two end nodes of the member (not through 
the member itself). The main advantage of this method is that of avoiding the for-
mation of all γ-cycles of S and also the independence control, which becomes 
feasible by graph-theoretical methods.  

The above methods are elaborated for specific γ(S) functions in subsequent sec-
tions, and examples are included to illustrate their simplicity and efficiency.  

3.7 FORCE METHOD OF ANALYSIS 
      FOR GENERAL STRUCTURES 

Combinatorial methods for the force method of structural analysis have been pre-
sented in previous sections. These methods are very efficient for skeletal structures 
and, in particular, for rigid-jointed frames. For a general structure, the underlying 
graph or hypergraph of a SES has not yet been properly defined, and much re-
search is still to be done. Algebraic methods, on the other hand, can be formulated 
in a more general form to cover different types of structures such as skeletal struc-
tures and finite element models. The main drawbacks of these methods are the 
larger storage requirements and the higher number of operations.  

These difficulties can be overcome partially by employing combinatorial ap-
proaches within the algebraic methods, whenever such tools are available and their 
use can lead to simplifications. 

3.7.1 FLEXIBILITY MATRICES OF FINITE ELEMENTS 

In this section, the force–displacement relationship is established for a family of 
finite elements, namely plane stress and plain strain problems. Triangular and rec-
tangular elements are considered with constant and linearly varying stress fields, 
respectively. 

Constant Stress Triangular Element: For this element, the nodal forces in a 
global coordinate system have six components, as shown in Figure 3.43(a). The 
element forces are taken as natural forces acting along the sides of the triangle, as 
shown in Figure 3.43(b); see Argyris et al. [6]. 
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(a) Element forces.  (b) Nodal forces. 

Fig. 3.43 A triangular element. 

The nodal forces and element forces are related by projection as  
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 (3-74) 

where lij and mij are the direction cosines of the side ij of the triangle. 

The element forces are now related to stress resultants; see Figure 3.44. First F1 is 
considered as the only natural force acting on the element and the internal stresses 
are calculated as follows:  

 12
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Solution of Eqs. (3-75) is obtained as follows:  
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In the above relations, h3 is the height of the triangle corresponding to corner 3. 
Permutation of the indices results in the stresses produced by F2 and F3, and in 
matrix form these equations can be collectively written as  
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(a) Stress fields.   (b) Equivalent nodal forces.  

Fig. 3.44 The stress fields and their equivalent nodal forces. 
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or = c Fs . (3-78) 

The matrix c  represents statically equivalent stress system due to unit force F. 
The flexibility matrix of the element can be written as  

 t d .m
V

V= ∫F c cφ  (3-79) 

The integration is taken over the volume of the element, where 

 
1 0

1 1 0 ,
0 0 2(1 )

ν
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ν
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E
φ  (3-80) 

is the matrix relating the stresses to strains, ε φσ= , in plane stress problems, and 
E and ν are the Young´s modulus and Poisson´s ratio, respectively. The force–
displacement relationship for a triangular element becomes  

 um = fm rm, (3-81) 

where um and rm are the element displacements and element forces, respectively. 
The flexibility matrix of the element can now be written as  
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where t is the thickness of the element, and A and B are functions defined as  
follows:
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(3-83a) 

 B(θi) = cos θi cot θi − νsin θi ,(i = 1, 2, 3), (3-83b) 

where θi, θj and θk are the angles of the triangle.  

Linear Stress Rectangular Element: For this element, the nodal forces in a 
global coordinate system have eight components, as shown in Figure 3.45(a). The 
element forces are taken as natural forces along the sides and one diagonal, as 
shown in Figure 3.45(b). The nodal forces and element forces are related, similar 
to the triangular element, as,  
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(a) Element forces. (b) Nodal forces.  

Fig. 3.45 A rectangular element.  
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Considering Figure 3.46, for this element the plane stresses are written as, 
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where c1, c2, …, c5 are constants and, 

  and  x y
a b

ξ η= = , 

a and b being the length and width of the element, respectively.  
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Fig. 3.46 The stress fields and their equivalent nodal forces. 
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The unassembled flexibility matrix of the structure can now be formed by using 
the above matrix for each element as block diagonal entries. This matrix is incor-
porated in the algebraic force method of the next section.  

The element flexibility matrices for other elements, such as constant stress tetrahedron 
elements, higher-order plane stress and plane strain elements and triangular and rectan-
gular plate bending elements, can be similarly formulated; see Przemieniecki [184]. 

3.7.2 ALGEBRAIC METHODS 

Consider a discrete or discretised structure S, which is assumed to be statically 
indeterminate. Let r denote the m-dimensional vector of generalised independent 
element (member) forces, and p the n-vector of nodal loads. The equilibrium con-
ditions of the structure can then be expressed as  

 Ar = p, (3-87) 

where A is an n × m equilibrium matrix. The structure is assumed to be rigid, and 
therefore A has a full rank, that is, t = m − n > 0, and rank A = n. 

The member forces can be written as, 

 r = B0p + B1q, (3-88) 

where B0 is an m × n matrix such that AB0 is an n × n identity matrix and B1 is an 
m × t matrix such that AB1 is an n × t zero matrix. B0 and B1 always exist for a 
structure, and in fact many of them can be found for a structure. B1 is called a self-
stress matrix as well as a null basis matrix. Each column of B1 is known as a null 
vector. Notice that the null space, null basis and null vectors correspond to com-
plementary solution space, statical basis and SESs, respectively, when S is taken as 
a general structure. 

Minimisation of the potential energy requires that r minimise the quadratic form,  

 t1
2 ,mr F r  (3-89) 

subject to the constraint as in Eq. (3-87). Fm is an m × m block diagonal element 
flexibility matrix. Using Eq. (3-88), it can be seen that q must satisfy the following 
equation:  

 ( t
1B FmB1)q = − t

1B FmB0p,  (3-90) 
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where t
1B FmB1 = G is the overall flexibility matrix of the structure. Computing the 

redundant forces q from Eq. (3-43), r can be found using Eq. (3-3). The structure 
of G is again important, and its sparsity, bandwidth and conditioning govern the 
efficiency of the force method. For the sparsity of G, one can search for a sparse 
B1 matrix, which is often referred to as the sparse null basis problem. 

Many algorithms exist for computing a null basis B1 of a matrix A. For the mo-
ment, let A be partitioned so that  

 AP = [A1 , A2], (3-91) 

where A1 is n × n and non-singular, and P is a permutation matrix that may be re-
quired in order to ensure that A1 is non-singular. One can write, 
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By simple multiplication it becomes obvious that  
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A permutation P that yields a non-singular A1 matrix can be chosen purely sym-
bolically, but this says nothing about the possible numerical conditioning of A1 
and the resulting B1.  

In order to control the numerical conditioning, pivoting must be employed. There 
are many such methods based on various matrix factorisations, including the 
Gauss–Jordan elimination, QR, LU, LQ and Turn-back methods. Some of these 
methods are briefly studied in the following text.  

Gauss–Jordan Elimination Method: In this approach, one creates an n × n iden-
tity matrix I in the first columns of A by column changes and a sequence of n 
pivots. This procedure can be expressed as  

 GnGn–1 ... G2G1AP = [I , M], (3-93) 

where Gi is the ith pivot matrix and P is an m × m column permutation matrix (so 
Pt = P) and I is an n × n identity matrix, and M is an n × t matrix. Denoting GnGn–1 
... G2G1 by G we have, 

 GAP = [I , M],  (3-94) 
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or 

 AP = G–1[I , M] = [G–1 , G–1M], (3-95) 

which can be regarded as the Gauss–Jordan factorisation of A, and  

 0 1       and     
−   

= =   
   

G M
B P B P

0    I
. (3-96) 

Example 1: The four by four planar frame of Figure 3.31 is reconsidered. The 
patterns of B1 and t

1 1B B  formed by the Gauss–Jordan elimination method are de-
picted in Figure 3.47, corresponding to χ(B1) = 491 and χ( t

1 1B B ) =1342.  

  

(a) Pattern of B1.  (b) Pattern of t
1 1B B . 

Fig. 3.47 Patterns of B1 and t
1 1B B  matrices for S.  

Example 2: The three-storey frame of Figure 3.26 is reconsidered, and the Gauss–
Jordan elimination method is used. The patterns of B1 and t

1 1B B  matrices formed 
are shown in Figure 3.48, corresponding to χ(B1) = 483 and χ( t

1 1B B ) = 1592.  
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(a) Pattern of B1.  (b) Pattern of. t
1 1B B  

Fig. 3.48 Patterns of B1 and t
1 1B B  matrices for S.  

LU Decomposition Method: Using the LU decomposition method, one obtains 
the LU factorisation of A as  

 PA = LU and 1 2[ , ],=UP U U  (3-97) 

P and P  are again permutation matrices of order n × n and m × m, respectively. 
Now B0 and B1 can be written as  

 
1 1 1

1 1 2
0 1  and  .

− − −   −
= =   

   

U L P U U
B P B P

0 I
 (3-98) 

Example 1: The four by four planar frame of Figure 3.31 is reconsidered. The 
patterns of B1 and t

1 1B B  formed by the LU factorisation method are depicted in 
Figure 3.49. The sparsity for the corresponding matrices are χ(B1) = 408 and 
χ( t

1 1B B ) = 1248. 
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(a) Pattern of B1.   (b) Pattern of t
1 1B B . 

Fig. 3.49 Patterns of B1 and t
1 1B B  matrices for S.  

Example 2: The three-storey frame of Figure 3.33 is reconsidered, and the LU 
factorisation method is used. The patterns of B1 and t

1 1B B  matrices formed are 
shown in Figure 3.50, corresponding to χ(B1) = 504 and χ( t

1 1B B ) = 1530.  

 

(a) Pattern of B1.  (b) Pattern of t
1 1B B . 

Fig. 3.50 Patterns of B1 and t
1 1B B  matrices for S.  
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QR Decomposition Method: Using a QR factorisation algorithm with column 
pivoting yields  

 AP = Q [R1 , R2], (3-99) 

where P is again a permutation matrix and R1 is an upper triangular matrix of or-
der n. B1 can be obtained as  

 
1

1 2
1 .

− −
=  

 

R R
B P

I
 (3-100) 

Turn-back LU Decomposition Method: Topçu developed a method, the so-
called Turn-back LU procedure, which is based on LU factorisation and often re-
sults in highly sparse and banded B1 matrices. Heath et al. [75] adopted this 
method for use with QR factorisation. Owing to the efficiency of this method, a 
brief description of their approach will be presented in the following text.  

Write the matrix A = (a1, a2, ..., an) by the columns. A start column is a column 
such that the ranks of (a1, a2, ..., as–1) and (a1, a2, ..., as) are equal. Equivalently, as 
is a start column if it is linearly dependent on lower-numbered columns. The coef-
ficients of this linear dependency give a null vector whose highest numbered non-
zero is in positions. It is easy to see that the number of start columns is m − n = t, 
the dimension of the null space of A. 

The start column can be found by performing a QR factorisation of A, using or-
thogonal transformations to annihilate the subdiagonal non-zeros. Suppose that in 
carrying out the QR factorisation we do not perform column interchanges but sim-
ply skip over any columns that are already zero on and below the diagonal. The 
result will then be a factorisation of the form 

  (3-101) 

The start columns are those columns where the upper triangular structure jogs to 
the right, that is, as is a start column if the highest non-zero position in column s of 
R is no larger than the highest non-zero position in earlier columns of R. 

The Turn-back method finds one null vector for each start column as, by “turning 
back” from column s to find the smallest k for which columns as, as–1, ..., as–k are 
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linearly dependent. The null vector has a non-zero only in position s – k through s. 
Thus, if k is small for most of the start columns, then the null basis will have a 
small profile. Notice that the turn-back operates on A, and not on R. The initial 
QR factorisation of A is used only to determine the start columns and then dis-
carded. 

The null vector that the Turn-back method finds from start column as may not be 
non-zero in position s. Therefore, this method needs to have some way to guaran-
tee that its null vectors are linearly independent. This can be accomplished by 
forbidding the left-most column of the dependency for each null vector from par-
ticipating in any later dependencies. Thus, if the null vector for start column as has 
its first non-zero in position s – k, every null vector for a start column to the right 
of as will be zero in position s – k. 

Although the term “Turn-back” is introduced in [219], the basic idea had also been 
used in [22,94]. Since this correspondence simplifies the understanding of the 
Turn-back method, it is briefly described in the following. 

For the Algorithm 1 of Section 3.3.2, the use of an SRT orders the nodes and 
members of the graph simultaneously, resulting in a fairly banded member-node 
incidence matrix B. Considering the columns of B corresponding to tree members 
as independent columns, effectively a cycle is formed on each ordered chord (start 
column) by turning back in B and establishing a minimal dependency, using the 
tree members and previously used chords. The cycle basis selected by this process 
forms a base for the cycle matroid of the graph, as described in Kaveh [94,112]. 
Therefore, the idea used in Algorithm 1 and its generalisation for the formation of 
a GCB in [94,98,113] seem to constitute an idea similar to that of the algebraic 
Turn-back method.  

Example 1: The four by four planar frame of Figure 3.31 is reconsidered. The 
patterns of B1 and t

1 1B B  formed by the Turn-back LU factorisation method are 
depicted in Figure 3.51, corresponding to χ(B1) = 240 and χ( t

1 1B B ) = 408.  

Example 2: The three-storey frame of Figure 3.33 is reconsidered, and the Turn-back 
LU factorisation method is used. The patterns of B1 and t

1 1B B  matrices formed are 

shown in Figure 3.52, corresponding to χ(B1) = 476 and χ( t
1 1B B ) = 984. 

A comparative study of various force methods has been made in [119]. 

Many algorithms have been developed for the selection of null bases, and the in-
terested reader may refer to [28,29,179,181]. 
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   (a) Pattern of B1. (b) Pattern of t
1 1B B . 

Fig. 3.51 Patterns of B1 and t
1 1B B  matrices for S. 

 

  (a) Pattern of B1. (b) Pattern of t
1 1B B . 

Fig. 3.52 Patterns of B1 and t
1 1B B  matrices for S.  
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EXERCISES 

3.1 For each set of integers a, b and c of Table 2.1, draw an arbitrary γ-tree and 
a γ-cycle. 

3.2 Construct a γ-tree for the following graph when it is viewed as the graph 
model of a planar truss:  

 

3.3 In Exercise 4.2, select a fundamental γ-cycle basis of S and form its γ-cycle 
adjacency matrix. 

3.4 Find a graph for which Algorithm 3 fails to select a minimal cycle basis. 
Repeat this exercise for Algorithm 2. 

3.5 Form B0 and B1 matrices by selecting a suitable SRT and cycle basis for the 
following planar frame:  

10 kN 

20 kN 
4 m 

4 m 4 m 

4 m 

 

3.6 Form B0 and B1 for the planar truss of Exercise 3.2, when it is supported in 
a statically determinate fashion. Choose the support nodes arbitrarily. 
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3.7 Perform a complete analysis for the following planar truss using the force 
method. EA = Constant: 

P 2P 

L 

3@L 
 

3.8 Perform a complete force method analysis for the following continuous 
beam: 

q 
L L 

 

3.9 Prove the minimality of the cycle basis selected by Horton´s algorithm. 

3.10 Why do the regional cycles of a planar graph form a cycle basis (mesh basis)? 

3.11 Use Algorithms A, B and C to find suboptimally conditioned cycle bases 
for the following weighted graphs. The numbers 1 and 2 show the member types 
as given in Section 3.4. 

222

2

2

2

2

2

2

2

2 2

2

2

2 2

2 2

2 1

11
1 1

1

1

1

1

1

 

  (a)   (b) 

3.12 Write a computer program to calculate the largest and the smallest eigen-
values for adjacency matrices of graphs. 



 

 

CHAPTER 4 

Optimal Displacement Method 
of Structural Analysis 

 

4.1 INTRODUCTION  

In this chapter, the principles introduced in Chapter 1 are used for the formulation 
of the general displacement method of structural analysis. Computational aspects 
are discussed, and many worked examples are included to illustrate the concepts 
and principles being used. In order to show the generality of the methods intro-
duced for the formation of the element stiffness matrices, the stiffness matrix of a 
simple finite element is also derived. 

Special attention is paid to the graph theory aspects of the displacement method for 
rigid-jointed structures, where the pattern equivalence of structural and graph theory 
matrices is used. The standard displacement method employs cocycle bases of struc-
tural graph models; however, for general solutions, a cutset basis of the model should 
be employed. This becomes vital when solutions leading to well-conditioned stiffness 
matrices are required. Methods for the selection of such cutset bases are described in 
this chapter. 

In the last half century, considerable progress has been made in the matrix analysis 
of structures; see for example, Argyris and Kelsey [6], Kardestuncer [93], Livesley 
[153], McGuire and Gallagher [163], Meek [164], Prezmieniecki [183], Vanderbilt 
[222], Ziegler [234] and Zienkiewicz [235]. The topic has been generalised to fi-
nite elements and extended to the stability and dynamic analysis of structures. This 
progress is due to the simplicity, modularity and flexibility of matrix methods. 
 
_________________________________ 
Optimal Structural Analysis A. Kaveh 
© 2006 Research Studies Press Limited 
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4.2 FORMULATION  

In this section, a matrix formulation using the basic tools of structural analysis − 
equilibrium of forces, compatibility of displacements and force–displacement  
relationships − is provided. The notations are chosen from those most often en-
countered in structural mechanics.  

4.2.1 COORDINATE SYSTEMS TRANSFORMATION 

Consider a structure S with M members and N nodes, each node having α degrees 
of freedom (DOF). The kinematic indeterminacy (DKI) of S may then be deter-
mined as  

 ( )S Nη α β= − , (4-1) 

where β is the number of constraints due to the support conditions. As an example, 
η(S) for the planar truss S depicted in Figure 4.1(a) is given by η(S) = 7 × 2 − 3 = 
11; for the plane frame illustrated in Figure 4.1(b), it is calculated as η(S) = 8 × 3 − 
4 × 3 = 12; and for the space frame shown in Figure 4.1(c), it is calculated as  
η(S) = 12 × 6 − 6 × 6 = 36. 

2 2 2

2 2

6 6 6

6 66

0 0 0 0
0

0

0

0

0

0
3 3 3

1

3

0

 
 (a) A planar truss.  (b) A planar frame. (c) A space frame. 

Fig. 4.1 The degrees of freedom of the joints for three structures. 

One can also calculate η(S) by simple addition of the DOF of the joints of the 
structure, that is, for the truss S, η(S) = 2 + 2 + 2 + 2 + 2 + 1 = 11; for the planar 
frame, η(S) = 4 × 3 = 12; and for the space frame, η(S) = 6 × 6 = 36. 

For a structure, the stiffness matrices of the elements should be prepared in a sin-
gle coordinate system known as the global coordinate system in order to be able to 
perform the assembling process. However, the stiffness matrices of individual 
members are usually written first in coordinate systems attached to the members, 
known as local coordinate systems. Therefore a transformation is needed before 
the assembling process. Typical local and global coordinate systems are illustrated 
in Figure 4.2. 
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x 

y 

O 

x _ 

_ 
x 

y _ 

y _ 

 
Fig. 4.2 Local ,x y  system and global coordinate x, y system. 

A global coordinate system can be selected arbitrarily; however, it may be advan-
tageous to select this system such that the structure falls in the first quadrant of the 
plane in order to have positive coordinates for the nodes of the structure. On the 
other hand, a local coordinate system of a member is so chosen that it has one of 
its axes along the member and the second axis lies in its plane of symmetry (if it 
has one) and the third axis is chosen such that it results in a right-handed coordi-
nate system. 

The transformation from a local coordinate system to a global coordinate system 
can be performed as illustrated in Figure 4.3, in which x, y, z is the global system 
and x2, y2, z2, often denoted by xyz , is the local system.  

For rotation about the y-axis, the relation between x1, y1, z1 and x, y, z can be ex-
pressed as follows:  

 
1

1

1

cos 0 sin
0 1 0

sin 0 cos

x x
y y
z z

α α

α α

     
     =     
     −     

. (4-2) 

x  

y  

z  

y  

x  z  

1  

1  1  
α  

α  

 

x  

y  

z  

y  

x  z  

1  

1  1  

x  y  

β  
β  

2  2  

z  2  

 

(a) (b) 
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x  

y  

z  

y  

x  z  

1  

1  1  

x  y  2  2  

z  2  

3  

γ  

γ  

x  
y  

z  3  

3  

 

x  

y  

z  

L  
y  

x  
z  i  

 j   ji 

 ji 
 ji 

∗  L  

 
(c) (d) 

Fig. 4.3 Transformation from local coordinate system to global coordinate system.  

Similarly, for rotation about the z1-axis, x2, y2, z2 and x1, y1, z1 are related by  

 
2 1

2 1

2 1

cos sin 0
sin cos 0
0 0 1

x x
y y
z z

β β
β β

     
     = −     
          

, (4-3) 

and, for rotation about the x2-axis, x3, y3, z3 and x2, y2, z2 are related as follows:  

 
3 2

3 2

3 2

1 0 0
0 cos sin
0 sin cos

x x
y y
z z

γ γ
γ γ

     
     =     
     −     

. (4-4) 

Combining the above transformations we have  

.

(cos cos ) (sin ) (cos sin )
(sin sin cos sin cos ) (cos cos ) (sin cos sin sin cos )
(sin cos cos sin sin ) ( cos sin ) (cos cos sin sin sin )

α β β β α
α γ α β γ β γ γ α α β γ
α γ α β γ β γ α γ α β γ

 
 =  
 
 

− + −
− − − +

T

 (4-5) 

where [ ]
3

3

3

 .
x x
y y
z z

   
   =   
      

T  (4-6) 
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The representations of a vector in the local coordinate system Γ and the global 
coordinate system Γ are related as follows: 

  .=Γ T Γ  (4-7) 

It can easily be proved that T is an orthogonal matrix, that is,  

 [ ] [ ]− =1 t
.T T  (4-8) 

In the above transformation, γ represents the tilt of the member, which is quite 
often zero. Thus, T can be simplified as  

 
cos cos sin sin cos
cos sin cos sin sin ,

sin 0 cos

α β β α β
α β β α β

α α

 
 = − − 
 − 

T  (4-9) 

and for the two-dimensional case and “α equal to zero”, T reduces to  

 
cos sin
sin cos

β β
β β

 
=  − 

T . (4-10) 

Equation (4-9) can easily be written in terms of the coordinates of the two ends of 
a vector. Considering Figure 4.3(b) and using simple trigonometry, Eq. (4-9)  
becomes  

 
/ / /
/ * * / / * ,
/ * 0 / *

ji ji ji

ji ji ji ji

ji ji

x L y L z L
x y L L L L y z L L

z L x L

 
 = − 
 − 

T  (4-11) 

where 

xji = xj − xi yji = yj − yi zji = zj − zi 

 
1 1
2 22 2 2 2 2* ( )   and  L ( ) .ji ji ji ji jiL z x z y x= + = + +  (4-12) 

Notice that T transforms a three-dimensional vector from a global to a local coor-
dinate system and Tt performs the reverse transformation. However, if the element 
forces or element displacements (distortions) consist of p vectors, the block diago-
nal matrix with p submatrices should be used. As an example, for a beam element 
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of a space frame with each node having 6 DOF, the transformation matrix is a  
12 × 12 matrix of the form  

 

 
 
 =
 
 
  

T
T

T
T

T

. (4-13) 

4.2.2 ELEMENT STIFFNESS MATRIX USING UNIT DISPLACEMENT METHOD  

Consider a general element, as shown in Figure 4.4, with n member forces,  

 rm = {r1 r2 … rn}t (4-14) 

and n member displacements,  

 um = {u1 u2 … un}t. (4-15) 

rn , un 

r1 , u1 

r2 , u2 r3 , u3 
r4 , u4 

ri , ui 
... 

... 

 
Fig. 4.4 A general element with its nodal loads and nodal displacements. 

A typical force component ri can be found by using the unit displacement method 
to be  

 t ,i iV
r dVε σ= ∫∫∫  (4-16) 

where iε  represents the matrix of compatible strains due to a unit displacement in 
the direction of ri, and σ is the exact stress matrix due to the applied forces rm. The 
unit displacements can be used in turn for all the points where member forces are 
applied, and therefore,  
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 t ,m V
dVε σ= ∫∫∫r  (4-17) 

where  

 t
1 2 n{  ... } .ε ε ε ε=  (4-18) 

For a linear system the total strain,  

 t
 {e  e e  e  e  e } ,xx yy zz xy yz xz=e   (4-19) 

can be expressed as  

 e = bu,  (4-20) 

where b is the exact strain due to the unit displacement u. 

The stress–strain relationship can be written as  

 ,=σ χbu   (4-21) 

where: 

 

1
1

1
1 2 0 02(1 )(1 2 )

1 20 02
1 20 0 2

E

ν ν ν
ν ν ν
ν ν ν

ν
ν ν

ν

ν

− 
 − 
 −
 −=  + −  

− 
 
 −
  

0

χ

0

 (4-22) 

Substituting in Eq. (4-17) we have  

 t ,m mV
dVε= ∫∫∫r χb u  (4-23) 

or  

 rm = kmum,  (4-24) 
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where  

 t ,m V
b dVε= ∫∫∫k χ  (4-25) 

represents the element stiffness matrix. 

The evaluation of matrix b, representing the exact strain distributions, can often be 
difficult, if not impossible. Hence, in case there is no exact distribution, an ap-
proximate relationship may be used. Usually, matrix b is selected such that it 
satisfies at least the equations of compatibility. Denoting this approximate matrix 
by ε  and using ,ε = b we have  

 t .m V
b dV= ∫∫∫k χb  (4-26) 

This equation will be used for the derivation of the stiffness matrices of a finite 
element in Section 4.5.1.  

As an example, consider the prismatic bar element shown in its local coordinate 
system in Figure 4.5. According to the definition of such an element, only axial 
forces are present. 

x  

y  

z  

_  

_  

r 1, u 1 
 j i 

r 4 , u 4 _  
_  _  

 
Fig. 4.5 A bar element in its local coordinate system. 

From the theory of elasticity, the axial strain is expressed as 

 .ε ∂
=

∂
x

xx
u
x

 (4-27) 

The displacement ux along the longitudinal axis of the bar can be expressed as 

 1 2 .xu A x A= +  (4-28) 
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From the boundary conditions, 

 1  at 0xu u x= = , and 4   .xu u at x L= =  (4-29) 

Hence,  

 4 1
1 2 1  and  .u uA A u

L
−= =  (4-30) 

By substituting in Eq. (4-28), we have  

 4 1
1.x

u uu x u
L
−

= +  (4-31) 

Now axial strain can be evaluated as follows:  

 [ ] 1
2 1

2

1 1( ) 1 1 .x
xx

uu u u
ux L L

ε  ∂
= = − = − +  ∂  

 (4-32) 

The above strain distribution is exact, and  

 [ ]1ˆ 1 1
L

= = − +b b . (4-33) 

Since a bar element is one dimensional, χ is a 1 × 1 matrix defined as 

 .E=χ  (4-34) 

Substituting in Eq. (4-26), we have  

 [ ]
0

11 1 1 ,
1

L

m
E Adx

L L
− 

= − 
 ∫k  (4-35) 

and  

 
1 1

.1 1m
EA
L

− 
=  −  

k  (4-36) 

This method will also be used for the derivation of the finite element stiffness ma-
trices in subsequent sections.  
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4.2.3 ELEMENT STIFFNESS MATRIX USING CASTIGLIANO´S THEOREM 

In this section, a different approach, using Castigliano´s theorem, is described for 
the formation of element stiffness matrices. Consider a general element as shown 
in Figure 4.4. Suppose that loads are applied at certain points (specified as nodes) 
1, 2, ..., n. Let vi be the displacement of node i along the applied load pi. The loads 
are applied in a pseudo-static manner, increasing gradually from zero. Assuming a 
linear behaviour, the work done by an external force p = {p1, p2, ..., pn} through 
the displacement v = {v1, v2, ..., vn} can be written as  

 1 1 2 2
1 ( ... )
2 n nW p v p v p v= + + + . (4-37) 

According to the principle of conservation of energy,  

 W = U, (4-38) 

and therefore  

 1 1 2 2 n n
1 ( ... )
2

U p v p v p v= + + + . (4-39) 

If a small variation is now given to vi while keeping the other displacement com-
ponents constant, then the variation of v with respect to vi can be written as  

 1 21
1 22 [ ... ].n

i n
i i i i

pp pU p v v v
v v v v

∂∂ ∂∂ = + + + +
∂ ∂ ∂ ∂

 (4-40) 

According to Castigliano´s theorem,  

 .i
i

U p
v

∂ =
∂

 (4-41) 

Thus,  

 1 2
1 2[ ... ],n

i n
i i i

pp pp v v v
v v v

∂∂ ∂
= + + +

∂ ∂ ∂
 (4-42) 

or in a matrix form for all i = 1, ..., n, we have  
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1 2

1 1 1
1 1

1 2
2 2

2 2 2

1 2

n

n

n n
n

n n n

pp p
v v v

p v
pp p

p v
v v v

p v
pp p

v v v

∂∂ ∂ ⋅ ⋅ ∂ ∂ ∂    
 ∂∂ ∂   ⋅ ⋅    ∂ ∂ ∂    =⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   ⋅ ⋅    ⋅ ⋅ ⋅ ⋅ ⋅        ∂∂ ∂ ⋅ ⋅ 
∂ ∂ ∂  

. (4-43) 

According to definition, the above coefficient matrix forms the stiffness matrix of 
the elastic body defined by its n nodes as illustrated in Figure 4.4. 

A typical element of the stiffness matrix kij is given by  

 .j
ij

i

p
k

v
∂

=
∂

 (4-44) 

Using Castigliano´s first theorem,  

 
2

( ) .ij
i j i j

U Uk
v v v v
∂ ∂ ∂= =

∂ ∂ ∂ ∂
 (4-45) 

Similarly,  

 
2

.
∂ ∂= =
∂ ∂ ∂

i
ji

j j i

p Uk
v v v

 (4-46) 

Since the order of differentiation should not affect the result of our problems, we 
have  

 kij = kji, (4-47) 

which is a proof of the symmetry of the stiffness matrices both for a structure and 
for an element. 

As an example, consider the prismatic bar element as shown in its local coordinate 
system in Figure 4.5. According to the definition of such an element, only axial 
forces are present.  
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The strain energy of this bar can be calculated as follows:  

 2 21 .
2 2 2xx xx xx xx

E EAU dx dy dz dx dy dz dxσ ε ε ε= = =∫∫∫ ∫∫∫ ∫  (4-48) 

On the other hand,  

 .ε ∂
=

∂
x

xx
u
x

 (4-49) 

Using Eq. (4-31) and by substituting in Eq. (4-46), the strain energy of the bar is 
calculated as  

 2 2
4 4 1 1[ 2 ].

2
EAU u u u u

L
= − +  (4-50) 

Hence  

 
2

11 2
1

,U EAk
Lu

∂= =
∂

  

 
2

14 41
1 4

,U EAk k
u u L
∂= = = −

∂ ∂
 (4-51) 

 
2

44 2
4

,U EAk
Lu

∂= =
∂

 and  

 0ijk =  for all other components.  

Therefore, the stiffness matrix of a bar element in the selected local coordinate 
system is obtained, and  

 

1 1

2 2

3 3

4 4

5 5

6 6

1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0

0 0 0 0 0 0
0 0 0 0 0 0

r u
r u
r uEA
r uL
r u
r u

−    
    
    
    

=    −    
    
    

        

. (4-52) 
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4.2.4 STIFFNESS MATRIX OF A STRUCTURE 

Let p and v represent the joint loads and joint displacements of a structure. Then 
the force–displacement relationship for the structure can be expressed as  

 p = Kv, (4-53) 

where K is an αN × αN symmetric matrix, known as the stiffness matrix of the 
structure. Expanding the ith equation of the above system, the force pi can be ex-
pressed in terms of the displacements {v1, v2, …, vαN} as  

 pi = Ki1v1 + Ki2v2 + … + KiαN vαN. (4-54) 

A typical coefficient Kij is the value of the force pi required to be applied at the ith 
component of the structure in order to produce a displacement vj = 1 at j and zero 
displacements at all the other components. 

The member forces r can be related to nodal forces p by  

 p = Br. (4-55) 

Using the contragradient relationship, the joint displacements v can be related to 
member distortions u by  

 u = Btv. (4-56) 

For each individual member of the structure, the member forces can be related to 
member distortions by an element stiffness matrix km. A block diagonal matrix 
containing these element stiffness matrices is known as the unassembled stiffness 
matrix of the structure, denoted by k. Obviously,  

 r = ku. (4-57) 

This equation together with Eqs (4-55) and (4-56) yields  

 p = BkBtv. (4-58) 

Therefore, 

 K = BkBt (4-59) 

is obtained. The matrix K is singular since the boundary conditions of the structure 
are not yet applied. For an appropriately supported structure, the deletion of the 
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rows and columns of K corresponding to the support constraints results in a posi-
tive definite matrix, known as the reduced stiffness matrix of the structure.  

A symmetric matrix S is called positive definite if xtSx > 0 for every non-zero vec-
tor x. As shown earlier, the stiffness matrix K of a structure is symmetric. This 
matrix is also positive definite since  

 ptv = (Kv)tv = vtKtv = vtKv = 2W (4-60) 

and W is always positive.  

Let us illustrate the stiffness method by means of a simple example. Consider a 
fixed end beam with a load P applied at its mid-span. This beam is discretised as 
two beam elements, as shown in Figure 4.6(a), with two DOF for each node (axial 
deformation is ignored for simplicity). The components of element forces and ele-
ment distortions are depicted in Figure 4.6(b) and those of the entire structure are 
illustrated in Figure 4.6(c). 

L L 
P 

2 1 3 1 2 
 

(a) A fixed ended beam S. 

r 2 , u 2 r 4 , u 4 r 6 , u 6 r 8 , u 8 
r 1 , u 1 r 3 , u 3 r 5 , u 5 r 7 , u 7 

1 2 
 

(b) Member forces and member distortions. 

p 1 , v 1 
p 2 , v 2 p 4 , v 4 p 6 , v 6 

p 3 , v 3 p 5 , v 5 
1 2 

 
(c) Nodal forces and nodal displacements of the entire structure. 

Fig. 4.6 Illustration of the analysis of a simple structure. 
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For each element such as element 1, the stiffness matrix can be written as 

 

11 12 13 141 1

21 22 23 242 2

31 32 33 343 3

41 42 43 444 4

k k k kr u
k k k kr u
k k k kr u
k k k kr u

    
    
    =
    
    

        

, (4-61) 

and for the entire structure we have  

 

1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

3 31 32 33 34 35 36 3

4 41 42 43 44 45 46 4

5 51 52 53 54 55 56 5

6 61 62 63 64 65 66 6

p K K K K K K v
p K K K K K K v
p K K K K K K v
p K K K K K K v
p K K K K K K v
p K K K K K K v

     
     
     
     

=     
     
     
     
          

. (4-62) 

Element stiffness matrices k1 and k2 can be easily constructed using the definition 
of kij. For a beam element, ignoring its axial deformation, these terms are shown in 
Figure 4.7. 

u  =1 

u  =1 

u  =1 

u  =1 

k 
k k k 

k 
k 

k 
k 

k k k k 

k k k k 11 12 

23 

33 

22 

44 

34 

31 

41 
21 

42 

32 

14 

24 
43 

13 

1 
2 

3 
4 

 
Fig. 4.7 Stiffness coefficients of a beam element ignoring its axial deformation. 

The structure has a uniform cross section, and both elements have the same length. 
Therefore, using the force–displacement relationship from Chapter 1, 
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2 2

1 2 2 2

6 / 3 / 6 / 3/
3 / 2 3/ 12
6 / 3/ 6 / 3 /
3 / 1 3/ 2

L L L L
L LEI

L L L L L
L L

 − − −
 − = =  −
 

−  

k k . (4-63) 

The unassembled stiffness matrix is an 8 × 8 matrix of the form 

 1

2

 
=  

 

k 0
k

0 k
. (4-64) 

Now, consider the equilibrium of the joints of the structure, resulting in 

 p1 = r1 , p2 = r2 , p3 = r3 + r5,  

 p4 = r4 + r6 , p5 = r7 , p6 = r8 (4-65) 

or in a matrix form we have, 

 

1

1 2

2 3

3 4

4 5

5 6

6 7

8

1
1

1 1
1 1

1
1

r
p r
p r
p r
p r
p r
p r

r

 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅          ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅        ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  =     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅        ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       
  

, (4-66) 

and more compactly, 

 p = Br,  (4-67) 

where  

1
1

1 1
1 1

1
1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

B , 

is known as the equilibrium matrix. 
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Consider now the compatibility of displacements: 

 u1 = v1, u2 = v2 , u3 = u5 = v3, 

 u4 = u6 = v4, u7 = v5, u8 = v6. (4-68) 

In a matrix form, we have  

 

1

2 1

3 2

4 3

5 4

6 5

7 6

8

1
1

1
1

,
1

1
1

1

u
u v
u v
u v
u v
u v
u v
u

⋅ ⋅ ⋅ ⋅ ⋅   
   ⋅ ⋅ ⋅ ⋅ ⋅          ⋅ ⋅ ⋅ ⋅ ⋅       ⋅ ⋅ ⋅ ⋅ ⋅   =     ⋅ ⋅ ⋅ ⋅ ⋅       ⋅ ⋅ ⋅ ⋅ ⋅        ⋅ ⋅ ⋅ ⋅ ⋅      

⋅ ⋅ ⋅ ⋅ ⋅     

  (4-69) 

and in compact form we have  

 u = Ev = Btv. (4-70) 

where 

 

1
1

1
1

1
1

1
1

⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ =  ⋅ ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ ⋅ ⋅  

E , 

is known as the compatibility matrix. 

The reason for the matrix E being the transpose of the matrix B has already been 
discussed in Chapter 3; however, by using the principle of virtual work, a simple 
proof can be obtained. Consider 

  W = work done by external loads = t1
2

v p , 
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 U = strain energy = t1
2

u r . 

Then, equating W and U, we have E = Bt, which completes the proof. It should be 
mentioned that this equality holds for a general structure, and it is the result of the 
contragradient relationship introduced in Chapter 1. 

The stiffness matrix of the entire structure is then obtained as  

 

2 2

2 2 2

2 2

6 / 3 / 6 / 3/ 0 0
3/ 2 3/ 1 0 0
6 / 3/ 12 / 0 6 / 3 /2 .
3 / 1 0 4 3/ 1
0 0 6 / 3/ 6 / 3 /
0 0 3/ 1 3/ 2

L L L L
L L
L L L L LEI

L L L
L L L L
L L

 − − −
 − 
 − − −

=  
− 

 − 
−  

K  (4-71) 

By applying the boundary conditions, 

 v1 = v2 = v5 = v6 = 0, 

and deleting the displacements, the following reduced stiffness matrix is formed.  

 
2

3 3

4 4

12 / 02
0 4

p vLEI
p vL

    
=     

    
. (4-72) 

Since p4 = 0 and 3p P= − , 
3 3

3
3 .

24 24
p L PLv

EI EI
−= =  

4.2.5 STIFFNESS MATRIX OF A STRUCTURE: AN ALGORITHMIC APPROACH 

From the above simple example, it can be seen that matrix B is a very sparse  
Boolean matrix, and the direct formation of BkBt using matrix multiplication re-
quires a considerable amount of storage. In the following, it is shown that one can 
form BkBt with an assembling process (known also as planting), as follows: 

Consider an element “a” of a structure, as shown in Figure 4.8, for which the ele-
ment stiffness matrix can be written as  

 ,ii ij
a

ji jj

 
=  

  

k k
k k k  (4-73) 
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where i and j are the two end nodes of member a. Pre- and post-multiplication in 
the form of BkBt has the following effect on ka:  

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0 00 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0 0 0
0 0 0 0

ii ij ii ij

ji jj ji jj

   
   
   
   
                                 
   
   
   
      

=
k k k kI I I
k k I k k

I I

 

(4-74) 
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



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 Fig. 4.8 A structural model S.  

The adjacency matrix of S is also an 8 × 8 matrix, and the effect of node 4 being 
adjacent to node 6 is the existence of unit entries in the same locations as the sub-
matrices of the element “a”. One can build up the adjacency matrix of a graph by 
the addition of the effect of one member at a time. In the same way, one can also 
form the overall stiffness matrix of the structure by the addition of the contribution 
of every member in succession. As an example, for the graph shown in Figure 4.8, 
the overall stiffness matrix has the following pattern:  
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1 2 3 4 5 6 7 8    
1 1 1
2 1 1
3 1 1
4 1 1 1 1

.
5 1 1 1 1 1
6 1 1 1 1
7 1 1 1 1
8 1 1 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ ⋅ ⋅  

 (4-75) 

Non-zero entries are shown as “1”. For a stiffness matrix, each of these non-zero 
entries is an η × η submatrix, where η is the DOF of each node of the structure. 
For example, for a planar truss, η = 2, and for a space frame, η = 6. The formation 
of the stiffness matrix by the above process is known as the assembling or planting 
of the stiffness matrix of a structure.  

4.3 TRANSFORMATION OF STIFFNESS MATRICES  

Methods for the formation of element stiffness matrices have been presented in 
Section 4.2. In the following, the stiffness matrices for bar and beam elements are 
transformed to global coordinate systems using the transformation described in 
Section 4.2.1.  

From Eq. (4-7), we have  

 ,=r Tr  (4-76) 

 .=u Tu  (4-77) 

From the definition of an element stiffness matrix in a local coordinate system, 

 .=r ku  (4-78) 

By the substitution of Eqs (4-76) and (4-77) into the above equation, we have  

 1 t .−= =r T kTu T kTu  (4-79) 

By definition of a stiffness matrix in a global coordinate system, we have  

 r = ku. (4-80) 
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A comparison of Eq. (4-79) and Eq. (4-80) results in  

 t .=k T kT  (4-81) 

4.3.1 STIFFNESS MATRIX OF A BAR ELEMENT  

Equation (4-52) provides the stiffness matrix of a bar element in its local coordi-
nate system. This matrix in the global system, as shown in Figure 4.9, can be 
written as  

 
t

[ ] .   
=    

   

T T
k k

T T
 (4-82) 

x  

y  

z  

 j  

i  r1, u1 

r4, u4 

r2, u2 

r3, u3 

r6, u6 

r5, u5 

O

 
Fig. 4.9 A bar element of a space truss. 

Denoting T in Eq. (4-32) by  

 
11 12 13

21 22 23

31 32 33

T T T
T T T
T T T

 
 =  
  

T , (4-83) 
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km can be written as  

 

2 2
11 11 12 11 13 11 11 12 11 13

2 2
11 12 12 12 13 11 12 12 12 13

2 2
11 13 12 13 13 11 13 12 13 13

2 2
11 11 12 11 13 11 11 12 11 13

2 2
11 12 12 12 13 11 12 12 12 13

2
11 13 12 13 13

− − −
− − −
− − −

=
− − −

− − −
− − −

T T T T T T T T T T
T T T T T T T T T T
T T T T T T T T T TEA

L T T T T T T T T T T
T T T T T T T T T T
T T T T T T

k

2
11 13 12 13 13

 
 
 
 
 
 
 
 
  T T T T

. (4-84) 

The entries of the above matrix can be found using the Tij from Eq. (4.11). As an 
example, the stiffness matrix of bar 1 in the planar truss shown in Figure 4.10 can 
be obtained as  

 1
2

21
11 2 2 2

12 12 12

1 2
22( )

xT
x y z

= = =
+ +

, 

 1
2

21
12 2 2 2

12 12 12

1 2 .
22( )

yT
x y z

= = − = −
+ +

 

x 

y 
1 

2 

3 
1 2 L 

L 
 

Fig. 4.10 A planar truss and the selected global coordinate system. 

Therefore,  

 1

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.52

0.5 0.5 0.5 0.5

EA
L

− − 
 − − =
 − −
 − −  

k . 
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4.3.2 STIFFNESS MATRIX OF A BEAM ELEMENT 

Consider a prismatic beam element as shown in Figure 4.11. The element forces 
and element distortions are defined by the following vectors:  

 t
1 2 3 12{ , , , ..., } ,r r r r=r  

and 

 t
1 2 3 12{ , , , ..., } ,u u u u=u  

where r1 to r3 are the force components at end i and r4 to r6 are moment compo-
nents at end i. Also r7 to r9 are the force and r10 to r12 are the moment components, 
respectively, at the end j, and ui (i = 1, ..., 12) are correspondingly the translations 
and rotations at the ends i and j of the element. 

Using one of the methods presented in Section 4.2.2, the stiffness matrix of the 
beam element, in the local coordinate system defined in Figure 4.11, can be ob-
tained from Eq. (4-83) as  

0 0 0 0 0 0 0 0 0 0
2 20 12 / 0 0 0 6 / 0 0 12 / 0 0 6 /

2 20 0 12 / 0 6 / 0 0 0 12 / 0 6 / 0

0 0 0 / 2(1 ) 0 0 0 0 0 / 2(1 ) 0 0
0 0 6 / 0 4 0 0 0 6 / 0 2 0

0 6 / 0 0 0 4 0 6 / 0 0 0 2
0 0 0 0 0 0 0 0 0 0

20 12 / 0 0 0 6 / 0 12 /

ν ν

−

−

− − −

+ − +
− −

−
−

− −

=

A A

I L I L I L I Lz z z z

I L I L I L I Ly y y y
J J

I L I I L Iy y y y
I L I I L IE z z z z

A AL
I L I L Iz z y

k

2 0 0 0 6 /

2 20 0 12 / 0 6 / 0 0 0 12 / 0 6 / 0

0 0 0 / 2(1 ) 0 0 0 0 0 / 2(1 ) 0 0
0 0 6 / 0 2 0 0 0 6 / 0 4 0

0 6 / 0 0 0 2 0 6 / 0 0 0 4

ν ν

−

−

− + +
−

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

L I Lz

I L I L I L I Ly y y y
J J

I L I I L Iy y y y
I L I I L Iz z z z

(4-85) 

In this matrix, Iy, Iz and J are the moments of inertia with respect to the y  and z  
axes, and J is the polar moment of inertia of the section. E specifies the elastic 
modulus and ν is the Poisson ratio. L denotes the length of the beam.  
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x 

y 

z 

_ 

_ 

_ 

 j i 

 
Fig. 4.11 A beam element in the local coordinate system. 

For the two-dimensional case, the columns and rows corresponding to the third 
dimension can easily be deleted to obtain the stiffness matrix of an element of a 
planar frame. 

The stiffness matrix in a global coordinate system can be written as  

 

t

  .

   
   
    =     
   
      

T T
T T

k k
T T

T T

 (4-86) 

For the two-dimensional case,  

 
t

  .    =        

T T
k k

T T
 (4-87) 

The entries of k are as follows:  

2 2
11 11 1 21 4

zk T Tα α= +   

21 11 12 1 21 22 4
zk T T T Tα α= +  2 2

22 12 1 22 4
zk T Tα α= +   

31 21 2
zk T α=  32 22 2

zk T α=  33 3
zk α=   
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2 2
41 11 1 21 4

zk T Tα α= − +  42 21 22 4 12 11 1
zk T T T Tα α= − −  43 21 2

zk T α= −  44 21 2
zk T α= −  

2 2
52 21 4 12 1

zk T Tα α= − −  

54 21 22 4 12 11 1
zk T T T Tα α= +  2 2

55 22 4 12 1
zk T Tα α= +  

61 21 2
zk T α=  62 22 2

zk T α=  63 6
zk α=  64 21 2

zk T α= −  65 22 2
zk T α= −  66 3

zk α=   (4-88) 

in which 

1
EA
L

α = , 2 2

6 ,z zEI
L

α =  3
4 ,z zEI

L
α =  4 3

12 ,z zEI
L

α = and 6
2 .z zEI

L
α =  

As an example, for element 1 of the planar frame shown in Figure 4.12, we have, 

 T11 = 0 T12 = 1 T21 = −1 T22 = 0, 

and the stiffness matrix of the element is obtained as 

 6
1

1.25 0 0.75 1.25 0 0.75
0 200 0 0 200 0

0.75 0 6 0.75 0 3
10

1.25 0 0.75 1.25 0 0.75
0 200 0 0 200 0

0.75 0 3 0.75 0 6

− − − 
 − 
 −

=  − 
 −
 
−  

k . 

1  
2  3  

1  
2  

x  
y  4 m  

4 m  

 

 

A = 4 × 10−3 m2  

I = 30 × 10−6 m4 

E = 2 × 1011 N/m2 

 

Fig. 4.12 A planar frame. 
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4.4 DISPLACEMENT METHOD OF ANALYSIS 

Once the stiffness matrix of an element is obtained in the selected global coordi-
nate system, it can be planted in the specified and initialised overall stiffness 
matrix of the structure K, using the process described in Section 4.2.5.  

Example: Let S be a planar truss with an arbitrary nodal and element numbering, 
as shown in Figure 4.13. The entries of the transformation matrices of the mem-
bers are calculated using Eq. (4-11) and Eq. (4-12) as follows:  

For bar 1,  

 2 1
11

1 0 1
2 2 2

x xT − −= = =  and 2 1
12

3 0 3 .
2 2 2

y yT − −= = =   

Similarly, for bar 2,  

 11
1
2

T =  12
3 ,

2
T = −  

and for bar 3,  

 T11 = 1, T12 = 0.  

2  

3  

4 

1 
1m 1m  1m 

x 

y 3m  1 
3 

2 

20 
30 kN  

kN  

 
Fig. 4.13 A planar truss and the selected global coordinate system. 

Using the relationship 

 

2 2
11 11 12 11 11 12

2 2
11 12 12 11 12 12

2 2
11 11 12 11 11 12

2 2
11 12 12 11 12 12

x x
i i
y y

i i
x x
j j
x y
j j

F T T T T T T
F T T T T T TEA
F L T T T T T T
F T T T T T T

δ
δ
δ
δ

    − −
    − −    =    − −
    

− −        

, (4-89) 
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the stiffness matrices of the members are computed directly in the selected global 
coordinate system.  

Now the stiffness matrices can be formed using Eq. (4-89): 

For bar 1: 1

0.25 0.433 0.25 0.433
0.433 0.75 0.433 0.75

0.25 0.433 0.25 0.4332
0.433 0.75 0.433 0.75

EA
− − 

 − − =
 − −
 − −  

k . 

For bar 2: 2

0.25 0.433 0.25 0.433
0.433 0.75 0.433 0.75
0.25 0.433 0.25 0.4332

0.433 0.75 0.433 0.75

EA
− − 

 − − =
 − −
 − −  

k . 

For bar 3: 3

1 0 1 0
0 0 0 0

.
1 0 1 02

0 0 0 0

EA
− 

 
 =
 −
 
  

k  

The overall stiffness matrix of the structure is an 8 × 8 matrix, which can easily be 
formed by planting the three member stiffness matrices as follows:  

0.250 0.433 0.250 0.433 0 0 0 0
0.433 0.750 0.433 0.750 0 0 0 0
0.250 0.433 1.500 0 0.250 0.433 1.00 0
0.433 0.750 0 1.500 0.433 0.750 0 0

0 0 0.250 0.433 0.250 0.433 0 02
0 0 0.433 0.750 0.433 0.750 0 0
0 0 1.00 0 0 0 1.00 0
0 0 0 0 0 0 0 1.

EA

− −
− −

− − − −
− − −

=
− −
− − −
−

K .

00

 
 
 
 
 
 
 
 
 
 
 
  

 

By partitioning K into 2 × 2 submatrices, it can easily be seen that it is pattern 
equivalent to the node adjacency matrix of the graph model of the structure as fol-
lows:
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t

0 0

* * .
0 0
0 0

∗ ∗ 
 ∗ ∗ ∗ ∗ =
 ∗ ∗
 ∗ ∗  

C C

 

 

This pattern equivalence simplifies certain problems in structural mechanics, such 
as ordering the variables for bandwidth or profile reduction. Methods for increas-
ing the sparsity, using special cutset bases, and improving the conditioning of 
structural matrices will be discussed in Section 4.7. 

4.4.1 BOUNDARY CONDITIONS 

The matrix K is singular, since the boundary conditions have to be applied. Con-
sider,  

 p = Kv, 

and partition it for free and constraint DOF as follows:  

 f ff fc f

c cf cc c

     
=     

          

p K K v
p K K v . (4-90) 

This equation has a mixed nature; pf and vc have known values and pc and vf are 
unknowns. Kff is known as the reduced stiffness matrix of the structure, which is 
non-singular for a rigid structure. 

For boundary conditions such as vc = 0, it is easy to delete the corresponding rows 
and columns to obtain  

 pf = Kffvf, (4-91) 

from which vf can be obtained by solving the above set of equations. In a com-
puter, this can be done by multiplying the diagonal entries of Kcc by a large 
number such as 1020. An alternative approach is possible by equating the diagonal 
entries of Kcc to unity and all the other entries of these rows and columns to zero. 
If vc contains some specified values, pc will have corresponding vc values. A third 
method, which is useful when a structure has more constraint DOF (such as many 
supports), consists of the formation of element stiffness matrices considering the 
corresponding constraints, that is, to form the reduced stiffness matrices of the 
elements in place of their complete matrices. This leads to some reduction in stor-
age, and is also at the expense of additional computational effort. 
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As an example, the reduced stiffness matrix of the structure shown in Figure 4.13 
can be obtained from K by deleting the rows and columns corresponding to the 
three supports 1, 3 and 4:  

 2

2

20 1.5 0
30 0 1.52

x

y

uEA
u

    
=     

     
. 

Solving for the joint displacements, we have  

 2 2
40 40  and  .

1.5x yu u
EA EA

= =  

The member distortions can easily be extracted from the displacement vector, and 
multiplication by the stiffness matrix of each member results in its member forces 
in the global coordinate system. As an example, for member 3 we have,  

2

2

4

4

1 0 1 0 40 /1.5 13.33
0 0 0 0 40 / 0
1 0 1 0 0 13.332

0 0 0 0 0 0

x

y

x

y

r EA
r EAEA
r
r

−       
       
       = =       − −
       

             

. 

A transformation yields the member forces in the local coordinate sys-
tems, t

1 { 23.99  23.99}= −r , t
2 { 10.659  10.65}= −r  and t

3 {13.33  13.33}= −r  

4.4.2 GENERAL LOADING 

The joint load vector of a structure can be computed in two parts. The first part 
comes from the external concentrated loads and/or moments, which are applied to 
the joints defined as the nodes of S. The components of such loads are most easily 
specified in a global coordinate system and can be assembled to the joint load vec-
tor p. 

The second part comes from the loads, which are applied to the spans of the mem-
bers. These loads are usually defined in the local coordinate system of a member. 
For each member, the fixed end actions (FEA) can be calculated using existing 
classical formulae or tables. A simple computer program can be prepared for this 
purpose. The FEA should then be expressed in the global coordinate system using 
the transformation matrix given by Eq. (4-11). The FEA should then be reversed 
and applied to the end nodes of the members. These components can be added to p 
to form the final joint load vector. After p has been assembled and the boundary 
conditions imposed, the corresponding equations should be solved to obtain the 
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joint displacements of the structure. Member distortions can then be extracted for 
each member in the reverse order to that used in assembling the p vector.  

Example 1: A two-span continuous beam is considered as shown in Figure 
4.14(a). EI is taken to be constant along the beam. 

q     =    1  .  2     k   N    /  m P     =     6      k   N 
1  .  4    k    N    ⋅  m 3    k   N    ⋅  m 

2  m 4    m 2  m 
 

(a)      (b) 

Fig. 4.14 A continuous beam and its equivalent loading.  

For continuous beams, the transformation matrix T from local coordinate to global 
coordinate is identity, and therefore m m=k k , that is, no transformation is re-
quired. Ignoring the axial deformation and using Eq. (4-63), the stiffness matrices 
of the elements are obtained as follows:  

1 2

0.75 1.5 0.75 1.5
1.5 4 1.5 264 .
0.75 1.5 0.75 1.54
1.5 2 1.5 4

k k

− 
 − = =
 − − −
 −  

 

Assembling the overall stiffness matrix and imposing the boundary conditions, the 
reduced stiffness matrix of the entire beam is obtained and the force–displacement 
relationship for the beam is written as  

 2

3

1.40 8 2
16

3 2 4

z

z

θ
θ

−     
=     

     
. 

Solving the equations, we have  

 2

3

4 2 1.4 0.02591 .
2 8 3 0.0598448

z

z

θ
θ

− − −       
= =       −      
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Member forces are calculated as follows: 

1

1

2

2

0.75 1.5 0.75 1.5 0 2.4 1.779
1.5 4 1.5 2 0 1.6 0.772

16 ,
0.75 1.5 0.75 1.5 0 2.4 3.021
1.5 2 1.5 4 0.0259 1.6 3.256

V
M
V
M

−         
         −         = + =
         − − −
         − − − −                 

 

and 

2

2

3

3

0.75 1.5 0.75 1.5 0 3 3.814
1.5 4 1.5 2 0.0259 3 3.258

16 .
0.75 1.5 0.75 1.5 0 3 2.186
1.5 2 1.5 4 0.0598 3 0

V
M
V
M

−         
         − −         = + =
         − − −
         − + −                 

 

Example 2: A portal frame is considered as shown in Figure 4.15. The members are 
made of sections with A = 150 cm2 and 42 10zI = × cm4 and 42 10E = ×  kN/cm2. 
Calculate the joint rotations and displacements. 

4  m  

5  m  
1 

2 3 

4 

5  k N 

1.2 kN/m 1 

2 

3 

 
Fig. 4.15 A portal frame and its loading. 

The equivalent joint loads are illustrated in Figure 4.16. 

7.4 kN 
160 kN⋅m 

x y 
 

Fig. 4.16 Equivalent joint loads. 
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Employing Eq. (4-88), the stiffness matrices for the members are obtained as fol-
lows:  

For member 1,  

4
1

0.008 0 1.5 0.008 0 1.5
0 0.75 0 0 0.75 0
1.5 0 400 1.5 0 200

10
0.008 0 1.5 0.008 0 1.5

0 0.75 0 0 0.75 0
1.5 0 200 1.5 0 400

− − 
 − 
 −

=  
 
 −
 

−  

k , 

and for member 2,  

4
2

0.6 0 0 0.6 0 0
0 0.004 0.96 0 0.004 0.96
0 0.96 320 0 0.96 160

10
0.6 0 0 0.6 0 0
0 0.004 0.96 0 0.004 0.96
0 0.96 160 0 0.96 320

− 
 − 
 −

=  − 
 − − −
 

−  

k  

For member 3,  

4
3

0.008 0 1.5 0.008 0 1.5
0 0.75 0 0 0.75 0

1.5 0 400 1.5 0 200
10

0.008 0 1.5 0.008 0 1.5
0 0.75 0 0 0.75 0

1.5 0 200 1.5 0 400

− 
 − 
 −

=  − − − 
 −
 

−  

k  

By assembling the stiffness matrices and imposing the boundary conditions, the 
following equations are obtained:  
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2

2

4 2

3

3

3

7.4 0.608 0 1.5 0.6 0 0
0 0 0.754 0.96 0 0.004 0.96

160 1.5 0.96 720 0 0.96 160
10

0 0.6 0 0 0.608 0 1.5
0 0 0.004 0.96 0 0.754 0.96
0 0 0.96 160 1.5 0.96 720

x

y

z

x

y

z

δ
δ
θ
δ
δ
θ

−     
    −     
    −

=     −    
   − − −
   

−         






 

Solving these equations, we obtain  

 2
xδ = 0.0659167, 2

yδ  = 2.617764E−04, 2
zθ = −8.983453E−05, 

3
xδ = 0.0653377, 3

yδ  = −2.617704E−04 and 3
zθ  = −1.16855E−04. 

The final member forces can be found using the stiffness of the members, super-
imposed by the FEA. 

4.5 STIFFNESS MATRIX OF A FINITE ELEMENT 

In this section, a simple element is introduced from finite element methods, in or-
der to show the capability of the method presented in Section 4.2.2, for the 
formation of element stiffness matrices. 

4.5.1 STIFFNESS MATRIX OF A TRIANGULAR ELEMENT  

For plane stress and plane strain problems, the displacements of a node can be 
specified by two components, and therefore, for each node of the triangular ele-
ment, two DOF are considered, as shown in Figure 4.17. 

x 

y 

O 
1 

2 

3 

v 
u 

u 

u 

v 
v 

1 

1 
2 

2 
3 

3 

 
Fig. 4.17 A triangular element. 
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Element forces and displacements are defined by the following vectors: 

 t
1 2 6{ ... }m r r r=r  and t

1 2 6{ ... }m u u u=u . (4-92) 

A triangular element has its boundary attached continuously to the surrounding 
medium, and therefore no exact stiffness matrix can be derived. Therefore, an ap-
proximate solution should be sought. 

The following displacement functions can be considered for the variation of the 
displacements:  

 u = α1x + α2y + α3 and v = α4x + α5y + α6,  (4-93) 

where  α1, α2, … , α6 are arbitrary constants that can be found from the displace-
ments of the three nodes of the element. From the boundary conditions,  

 at node i(xi,yi), u = ui and v = vi,  

 at node j(xj,yj), u = uj and v = vj, (4-94) 

 at node k(xk,yk), u = uk and v = vk,  

the constants can be evaluated. Substituting in Eq. (4-93), we get 

u = 1/2A{[ykj(x–xj)–xkj(y–yj)]u1+[–yki(x–xk)–xki(y–yk)]u3+[yji(x–xi)–xji(y–yi)]u5},  

v = 1/2A{[ykj(x–xj)–xkj(y–yj)]u2+[–yki(x–xk)–xki(y–yk)]u4+[yji(x–xi)–xji(y–yi)]u6}, 

 (4-95) 

where 

 2A = 2(area of the triangle) = xkjyji – xjiykj, (4-96) 

and 

 xmn = xm – xn and ymn = ym – yn.  (4-97) 

From Eq. (4-95), it is obvious that both u and v vary linearly along each edge of 
the element and they depend only on the displacements of the two nodes on a par-
ticular edge. Therefore, the compatibility of displacements on two adjacent 
elements with a common boundary is satisfied. 

By the theory of elasticity, the nodal displacements { }t
1 2 6, , ...,m u u u=u  are related 

to total strains et = {exx, eyy, exy} by the following:  
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1

2

3

4

5

6

0 0 0
1 0 0 0 .

2

xx kj ki ji

yy kj ki ji

xy kj kj ki ki ji ji

uu
uxe y y y
uve x x x
uy A

e x y x y x y
uu v

y x u

  ∂   
∂      −

  ∂   = = = − −      ∂      − − −      ∂ ∂+   ∂ ∂      

e

 

(4-98) 

This relationship can be written in matrix notation as 

 ,=e bu  (4-99) 

where

 

 

 

0 0 0
1 0 0 0 .

2

kj ki ji

kj ki ji

kj kj ki ki ji ji

y y y
x x x

A
x y x y x y

 −
 = − − 
 − − − 

b

 

(4-100) 

The above equation indicates that, for a linearly varying displacement field, the 
strains are constant, and by Hooke´s law it also leads to constant stresses. Substi-
tuting the total strain e in Eq. (4-96), we obtain the stress–displacement 
relationship,  

1

2

3
2

4

5

6

,
2 (1 )

xx kj kj ki ki ji ji

yy kj kj ki ki ji ji

xy kj kj ki ki ji ji

u
u

y y y x y y
uE y x y x y x
uA

x y x y x y
u
u

σ ν ν ν
σ ν ν ν

ν
σ

 
 
    − − −
    = − − −     −     −Ψ Ψ Ψ −Ψ −Ψ Ψ     
 
  

 (4-101) 

where ν is the Poisson ratio and  

1 .
2
ν−Ψ =  

The stiffness matrix is then calculated using Eq. (4-26), and for convenience it is 
presented in two separate parts as  

 k = kn + ks, (4-102) 

where kn represents the stiffness due to normal stresses and ks represents the stiff-
ness due to shearing stresses. Thus  
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2
32

2
32 32 32

2
32 31 32 31 31

2 2
32 31 32 31 31 31 31

2
32 21 32 21 31 21 31 21 21

2
32 21 32 21 31 21 31 21 21 21 21

.

,
4 (1 )

n

y

y x x sym

y y x y yEt
A y x x x y x x

y y x y y y x y y

y x x x y x x x y x x

ν

ν

ν ν ν

ν ν

ν ν ν

 
 
 −
 
 −

=  
− − − 

 
− − 

 
− − −  

k  

and  

2
32

2
32 32 32

2
32 31 32 31 31

2
32 31 32 21 31 31 31

2
32 21 32 21 31 21 31 21 21

2
32 21 32 21 31 21 31 21 21 21 21

.

.
4 (1 )s

x

x y y sym

x x y x xEt
A x y y x x y y

x x y x x x y x x

x y y y x y y y x y y

ν

 
 
 −
 
 −

=  + − − 
 

− − 
 
− − −  

k  (4-103) 

Using the same method, the stiffness matrices for other elements can be derived. 
Since there are many excellent books on finite element methods, no further details 
are provided here, and the interested reader may refer to Zienkiewicz [235], 
McGuire and Gallagher [163], and Bathe and Wilson [9] among many others.  

4.6 COMPUTATIONAL ASPECTS OF THE MATRIX DISPLACEMENT
 METHOD  

The main advantage of the displacement method is its simplicity for use in com-
puter programming. This is due to the existence of a simple kinematical basis 
formed on a special cutset basis known as the cocycle basis of the graph model S 
of the structure. Such a basis does not correspond to the most sparse stiffness ma-
trix; however, the sparsity is generally so good that there is usually no need to look 
further. However, if an optimal cutset basis of S is to be used in the displacement 
method, then all the problems involved in the force method, described in Chapter 
3, still exist. The algorithm for the displacement method is summarised below. The 
coding for such an algorithm may be found in textbooks such as those of Vander-
bilt [222] and Meek [164].  

4.6.1 ALGORITHM 

Step 1: Select a global coordinate system and number the nodes and members of the 
structure. An appropriate nodal ordering algorithm will be discussed in Chapter 5. 
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Step 2: After initialisation of all the vectors and matrices, read or generate the data 
for the structure and its members. 

Step 3: For each member of the structure,  

 (a) compute L, L*, sin α, sin β, sin γ, cos α, cos β, and cos γ ; 

 (b) compute the rotation matrix T; 

 (c) form the member stiffness matrix k  in its local coordinate system;  

 (d) form the member stiffness matrix k in the selected global coordinate system;  

 (e) plant k in the overall stiffness matrix K of the structure. 

Step 4: For each loaded member, 

 (a) read the FEA; 

 (b) transform the FEA to the global coordinate system and reverse it to  
  apply at joints; 

 (c) store these joint loads in the specified overall joint load vector. 

Step 5: For each loaded joint, 

 (a) read the joint number and the applied joint loads; 

 (b) store it in the overall joint load vector. 

Step 6: Apply boundary conditions to the structural stiffness matrix K to obtain the 
reduced stiffness matrix Kff. Repeat the same for the overall joint load vector. 

Step 7: Solve the corresponding equations to obtain the joint displacements. 

Step 8: For each member, 

 (a) extract the member distortions from the joint displacements; 

 (b) rotate the member distortions to the local coordinate system; 

 (c) compute the member stiffness matrix; 

 (d) compute the member forces and FEA. 
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Step 9: Compute the joint displacements and the member forces. 

The application of the above procedure is now illustrated by a simple example so 
that the reader can use it to fully understand the computational steps.  

4.6.2 EXAMPLE 

Consider a planar truss, as shown in Figure 4.18. Member 1 has a uniform load of 
intensity 0.6 kN/m, and at joint 2 a concentrated load of magnitude 1.05 kN is ap-
plied. The cross-sectional areas for members are 2A and 1.8A, respectively. 

4 m 
1 

2 

3 
1 2 3 m 

1.05 kN 
0.6 kN/m 

  
Fig. 4.18 A planar truss with general loading.  

The selected global coordinate system and the equivalent nodal forces are illus-
trated in Figure 4.19. The stiffness matrices are formed as follows:  

For member 1:  

1

0.64 0.48 0.64 0.48
0.48 0.36 0.48 0.362
0.64 0.48 0.64 0.485
0.48 0.36 0.48 0.36

EA
− − 

 − − =
 − −
 − −  

k .  

For member 2:  

2

0 0 0 0
0 1 0 11.8 .
0 0 0 03
0 1 0 1

EA
 
 + − =
 
 − +  

k  
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x 

y 

  
 (a) (b) 

Fig. 4.19 The selected coordinate system and the equivalent nodal loads.  

The overall stiffness matrix is then obtained as follows:  

0.256 0.192 0.256 0.192 0 0
0.192 0.144 0.192 0.144 0 0
0.256 0.192 0.256 0.192 0 0

.
0.192 0.144 0.192 0.744 0 0.6

0 0 0 0 0 0
0 0 0 0.6 0 0.6

EA

− − 
 − − 
 − −

=  − − − 
 
 

−  

K   

The FEA are shown in Figure 4.19(b), and calculated for member 1 as follows:  

1

0
1.5

.
0

1.5

 
 
 =
 
 
  

FEA   

These forces are reversed and transformed into the global coordinate system as 
follows:  

t
1 1

0.8 0.6 0 0 0 0.9
0.6 0.8 0 0 1.5 1.2

( ) .
0 0 0.8 0.6 0 0.9
0 0 0.6 0.8 1.5 1.2

−     
     − −     − = =
     −
     − −          

T FEA   



 OPTIMAL STRUCTURAL ANALYSIS 

 

180 

By superimposing the concentrated force at node 2, the final vector of external 
forces is obtained as follows:  

{ }t0.9 1.2 0.15 1.2 0 0 .= − − −p   

By substituting a large number such as 1.E + 30 for the diagonal entries corre-
sponding to the zero displacement boundary conditions, we have 

[ ]

0 1. 30 0.192 0.256 0.192 0 0
0 0.192 1. 30 0.192 0.256 0 0

0.15 0.256 0.192 0.256 0.192 0 0
.

1.2 0.192 0.256 0.192 0.714 0 0.6
0 0 0 0 0 1. 30 0
0 0 0 0 0.6 0 1. 30

E
E

EA

E
E

+ − −   
   + − −   
   − − −

=   − − − −   
   +
   

− +      

v  

By solving these equations, we have  

{ }t1 0 0 0.845 1.907 0 0 .
EA

= −v  

The member forces are now computed as follows: 

1

1 0 1 0 0.8 0.6 0 0 0 0 0.179
0 0 0 0 0.6 0.8 0 0 0 1.5 1.52
1 0 1 0 0 0 0.8 0.6 0.845 0 0.1795

0 0 0 0 0 0 0.6 0.8 1.907 1.5 1.5

−         
         −         = + =
         − −
         − −                  

r , 

and  

2

1 0 1 0 0 1 0 0 0.845 0 1.091
0 0 0 0 1 0 0 0 1.907 0 03 .
1 0 1 0 0 0 0 1 0 0 1.0915

0 0 0 0 0 0 1 0 0 0 0

− −         
         −         = + =
         − − −
         
                  

r  

4.7 OPTIMALLY CONDITIONED CUTSET BASES 

For an efficient displacement analysis of a structure, special considerations such as 
structuring its stiffness matrix and improving its conditioning should to be taken 
into account. The former will be discussed in Chapter 5 and the latter is studied in 
this section.  
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In order to optimise the conditioning of the stiffness matrices, special cutset bases 
must be used in the formation of kinematical bases. 

A cutset basis with the following properties is defined as an optimally conditioned 
cutset basis: 

(a) It is an optimal cutset basis, that is, the number of non-zero entries of its cutset 
adjacency matrix and the corresponding number of non-zero entries of its stiffness 
matrix are a minimum.  

(b) The members of the lowest weight of S are included in the overlaps of the cut-
sets, that is, the off-diagonal terms of the corresponding stiffness matrix have the 
smallest possible magnitudes.  

A weighted graph may or may not have an optimally conditioned cutset basis. 
However, if such a basis does not exist or cannot be found, then a compromise 
should be found to satisfy the above two conditions, that is, a basis that partially 
satisfies both conditions should be selected.  

4.7.1 MATHEMATICAL FORMULATION OF THE PROBLEM 

The cardinality of a cutset basis for a connected graph is given by  

 ρ(S) = N(S) − 1. (4-104) 

The problem of finding an optimally conditioned cutset basis can be stated as fol-
lows: 

Select a cutset basis 1 2 ( ){ , , ..., }SC C Cρ
∗ ∗ ∗  such that  

( ) 1

11
Min ( ),

S i
s ii

L W C C
ρ −

∗ ∗
+=

= ∪ ∩   

and 
( ) 1

11
Min ( ),

S i
s ii

W W C C
ρ −

∗ ∗
+=

= ∪ ∩  (4-105)  

with 
1

( )
ii

jj
C C∗ ∗

=
= ∪ , L denoting the length and W indicating the weight of the mem-

bers of 1( )i
iC C∗ ∗
+∩ , respectively. 

Again we have a multi-objective optimisation problem, whose solution is not ob-
vious. Therefore, we design an algorithm that is practical and satisfies the required 
conditions partially.  
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4.7.2 SUBOPTIMALLY CONDITIONED CUTSET BASES  

A fundamental cutset basis of a graph can easily be generated using each branch of 
a spanning tree as the generator of a cutset. A more common cutset basis, em-
ployed in the displacement method of structural analysis, is a cocycle basis of S. In 
this basis, each element simply isolates a node of S, excepting the ground node.  

C  * 
C  * 
C  * 

C  * 
C  * 
C  * 

C  * 
C  * 
C  * 
C  * 
C  * 

C  * 

2 
1 1 2 
3 3 4 

4 
5 6 

5 
6  

    (a)  (b)    (c)  

Fig. 4.20 A planar frame S, a cocycle basis and a cutset basis of S.  

Although a cocycle basis corresponds to a rather sparse cutset adjacency matrix, 
other cutset bases corresponding to more sparse cutset adjacency matrices, leading 
to more sparse stiffness matrices, can be generated. As an example, consider a 
frame model S as depicted in Figure 4.20(a) for which a cocycle basis and a cutset 
basis are selected, as illustrated in Figures 4.20(b and c), respectively. The patterns 
of the corresponding cutset adjacency matrices are shown below using * for non-
zero entries:  

t
1 1

                   1 2 3 4 5 6
1
2
3
4
5
6

∗ ∗

∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ ∗

=  ∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗
 

∗ ∗ ∗ ∗  

C C t
2 2

                   1 2 3 4 5 6
1
2
3
4
5
6

∗ ∗

∗ ∗ 
 ∗ ∗ ∗ 
 ∗ ∗ ∗

=  ∗ ∗ ∗ 
 ∗ ∗ ∗
 

∗ ∗  

C C
  

  t
1 1( ) 24χ ∗ ∗ =C C   t

2 2( ) 16χ ∗ ∗ =C C   
It will be realised that sparser stiffness matrices can be generated using suitable 
cutset bases rather than by employing the traditional cocycle basis [118]. 

In order to keep the off-diagonal terms small, the members of the overlaps of the 
cutsets should be as flexible as possible, that is, the lower weight members should 
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be included in the overlaps. In the following, three algorithms are designed for the 
formation of suboptimal cutset bases of the graph model of the structures. 

4.7.3 ALGORITHMS 

The formation of a cocycle basis of a graph model S is simple and straightforward. 
For this purpose, the members incident with each free node (except the selected 
datum node) are taken as an element of the basis. By repeating this operation for 
all the free nodes, the process of the generation is completed.  

Algorithm A 

Step 1: Generate a spanning tree of maximal weight. Order its members (branches) 
in ascending magnitudes of weight. 

Step 2: Use a branch of the least weight, form the selected tree and form the first 
fundamental cutset on this branch. 

Step 3: Form the next fundamental cutset on the unused branch of least weight. 

Step k: Repeat Step 3 for the other unused branches until ρ(S) = N(S) − 1 inde-
pendent cutsets forming a basis are generated. 

Algorithm B 

Step 1: Form a cocycle basis; denote the selected cocycles by C*1. 

Step 2: Take the first cocycle 1C∗  of C*1 and combine with the remaining cocycles 
of C*1. For each cocycle jC∗  (j = 2, ..., ρ(S )) satisfying the following condition, 

replace jC∗  with iC∗ ⊕ jC∗ .  

Condition: (Ls2 < Ls1) or (Ls2 = Ls1 and Ws2 < Ws1),  

where Ls1(Ws1) and Ls2(Ws2) indicate the lengths (weights) before and after the ap-
plication of the combining process, and ⊕  denotes the modulus 2 addition. The 
new set of cocycles and/or cutsets is denoted by C *2. 

Step 3: Take 2C∗  of C *2 and repeat a process similar to that of Step 2. 

Step k: Take kC∗  of C *k–1 and combine with the elements of C *k–1. The process 
terminates when k becomes equal to ρ(S ). 
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Algorithm C 

This algorithm is the same as Algorithm B except that the corresponding condition 
is replaced by the following one:  

Condition: (Ws2 < Ws1) or (Ws2 = Ws1 and Ls2 < Ls1).  

The selected bases are suboptimal and contain elements with lower weight mem-
bers leading to kinematical bases corresponding to small off-diagonal terms for 
stiffness matrices.  

4.7.4 EXAMPLE 

A one-bay four-storey planar truss is considered as shown in Figure 4.21, with 
cross sections being designated by Ai. Typical member cross sections are  

A1 = 20 cm2, A2 = 10 cm2, A3 = 5 cm2, A4 = 4 cm2 and E = 2.1 × 104 kN/cm2.  

The patterns of the cutset bases adjacency matrices are illustrated in the following:  

    1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ ∗
 

∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ 

∗ ∗ ∗  

 

    1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

∗ ∗ ∗ 
 ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗
 
∗ ∗ ∗ ∗ ∗ 

 ∗ ∗ ∗ ∗ 
∗ ∗ ∗ ∗  

  

 Pattern of C*C*t by a cocycle basis.  Pattern of C*C*t by Algorithm A.  
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    1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

∗ ∗ 
 ∗ ∗ ∗ 
 ∗ ∗ ∗
 ∗ ∗ ∗ 
 ∗ ∗ ∗
 

∗ ∗ ∗ 
 ∗ ∗ ∗ 

∗ ∗  

 

    1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

∗ ∗ 
 ∗ ∗ ∗ 
 ∗ ∗ ∗
 ∗ ∗ ∗ 
 ∗ ∗ ∗
 

∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ 

∗ ∗ ∗  

  

 Pattern of C*C*t by Algorithm B.  Pattern of C*C*t by Algorithm C. 

The condition numbers of stiffness matrices, the sparsity and the magnitudes of Ls 
and Ws for the selected cutset bases are illustrated in Table 4.1. 

Table 4.1 Comparison of the condition numbers and sparsities.  

Algorithm PL χ(C*C*t) Ls
 Ws

 

Cocycles 2.720131 34 13 75, 936.5 
A 2.145762 32 12 48, 048.7 
B 2.502612 22 7 46, 200.0 
C 2.245613 24 8 36, 400.0 

100 kN 

80 kN 

60 kN 

40 kN 

4 m 

4 m 

4 m 

4 m 

6 m 
1 2 

3 4 

5 6 

7 8 

9 10 

A A A 
A 

A 

A A 

A 

A A 

A 
A 

A 
A 

A 

A 1 1 

1 
1 

2 

2 

4 

4 

4 

4 

4 

4 

3 

3 

3 

3 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
11 

12 
13 

14 
15 

16 

  
  (a) A planar truss.  (b) The graph model S.  

Fig. 4.21 A planar truss and its graph model S. 
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The execution time for the formation of the selected cutset bases (TC) and the cor-
responding stiffness matrices (TK) are presented in Table 4.2. 

Table 4.2 Comparison of the computational time.  

Time Cocycle basis A B C 

TC
 0.00 0.88 0.76 0.88 

TK
 0.43 0.65 0.48 0.60 

 
Although the sparsity of stiffness matrices K for frame structures can be improved 
by the formation of special cutset bases in place of cocycle bases, the improve-
ments, in general, are not significant. On the other hand, the conditioning of K can 
be improved by employing appropriate cutset bases. Algorithm B improves the 
conditioning of the stiffness matrices, maintaining the sparsity of the stiffness ma-
trices. This improvement is more significant for Algorithms A and C, although the 
sparsity of K is not maintained.  

EXERCISES 

4.1 Compute the transformation matrix T of the element “a” for the following 
truss:  

y 

a 
2 m 

x 
3 m 3 m 2 m 2 m 

2 m 

  

4.2 For the following planar frame, compute the joint displacements, ignoring 
the effect of axial deformations of the members. EI is considered constant for all 
the members.  

5 m 
5 m 

5 kN 1 kN/m 
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4.3 Compute the stiffness matrix of member “a” for the following pitched-roof 
portal frame, in the selected coordinate system:  

x 

y 

a  

1 

2 

3  

4  

5  

L/4  

3L/4 
L 

  

4.4 Consider a single-layer grid in the xz-plane loaded in the y-direction. Derive 
the stiffness matrices of a member of this grid in local and global coordinate sys-
tems. 

4.5 Find the joint displacements of the space truss in the following diagram, 
where EA is considered to be the same for all the members:  

 

a  

a  

1 .5 a  

2 P  
P  

P  

  

4.6 Derive the stiffness matrix of a beam element of a planar frame that has one 
end hinged.  

4.7 Determine the patterns of the stiffness matrix and reduced stiffness matrix 
of the following pitched-roof frame using two different node numberings chosen 
arbitrarily:  
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4.8 Compute the joint load vector of the following frame:  

3ton

5ton

0.8ton/m4m

2m

2m

3m 3m 3m 3m

  

4.9 Perform the matrix stiffness analysis for the following truss, where P = 100 
kN, EA = 40 × 106 N and L = 4 m:  

P  

2P 

L  

L  
 

4.10 Derive the overall stiffness matrix of the following grid and calculate its 
joint displacements:  

EI = 60 × 105 N⋅m2, GJ = 100 × 105 N⋅m2, L = 4.0 m and P = 1.0 × 105 N.  

P 
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4.11 Perform the matrix stiffness analysis for the following grid: 

P = 30 kN, E = 2.1 × 104 kN/cm2, G = 1.05 × 104 kN/cm2, Ix = Iy = 25,170 cm4,  

Iz = 8560 cm4, J = 33,730 cm4 and A = 149 cm2.  

x 

y 

z 

4@2m 

3@2m 
P 

P P P 

P P 

 

4.12 Find the condition numbers of the stiffness matrix of the following planar 
frame. For member 1, the section properties are A1 = 10.6 × 10–4 m2 and I1 = 17.1 × 
107 m4. For member 2, A2 = 9.7 × 10–3 m2 and I2 = 19.61 × 10–5 m4. Modulus of 
elasticity is equal to E = 2.1 × 104 kN/cm2.  

4 m 1 
2 

6 m 
  

4.13 Study the effect of bandwidth reduction on the conditioning of the stiff-
ness matrices of structures, and find out whether this effect is significant. Illustrate 
this fact numerically using a simple matrix. 





 

 

CHAPTER 5 

Ordering for Optimal Patterns 
of Structural Matrices: 
Graph Theory Methods 

 

5.1 INTRODUCTION 

In this chapter, ordering methods are presented for forming the elements of sparse 
structural matrices into special patterns. Such a transformation reduces the storage 
and the number of operations required for the solution, and leads to more accurate 
results. Graph-theory methods are presented for different approaches to reorder 
equations to preserve their sparsity, leading to predefined patterns. Alternative, 
objective functions are considered, and heuristic algorithms are presented to 
achieve these objectives. The three main methods for the solution of structural 
equations require the optimisation of bandwidth, profile and frontwidth, especially 
for those encountered in finite element (FE) analysis. Methods are presented for 
reducing the bandwidth of flexibility matrices. Bandwidth optimisation of rectan-
gular matrices is presented for its use in the formation of sparse flexibility 
matrices. 

Entries of the stiffness and flexibility matrices are provided with the most appro-
priate specified patterns for the solution of the corresponding equations. 
Realisation of these patterns (or not) affects the formulation of the mathematical 
models and the efficiency of the solution. Many patterns can be designed, depend-
ing on the solution scheme being used. Figure 5.1 shows some of the popular ones 
that are encountered in practice. 
 
_________________________________ 
Optimal Structural Analysis A. Kaveh 
© 2006 Research Studies Press Limited 
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Banded 

form 
Profile 
form 

Partitioned 
form 

Nested parti-
tioned form 

Block matrix 
form 

Fig. 5.1 Different matrix forms. 

The pattern equivalence of the stiffness matrix of a structure and the cutset basis 
matrix C*C*t of its graph model and the pattern equivalence of the flexibility ma-
trix of a structure with that of a generalised cycle basis matrix CCt of its graph 
model reduce the size of the problem β-fold, β being the degrees of freedom of the 
nodes of the model for the displacement method, and β = 1–6 depending on the 
type of structure being studied using the force method. 

5.2 BANDWIDTH OPTIMISATION  

The analysis of many problems in structural engineering involves the solution of a 
set of linear equations of the form  

 Ax = b, (5-1) 

where A is a symmetric, positive-definite and usually very sparse matrix. For large 
structures encountered in practice, 30–50% of the computer execution time may be 
devoted for solving these equations. This figure may rise to about 80% in non-
linear, dynamic or structural optimisation problems. 

Different methods can be used for the solution of the system of equations, of 
which the Gaussian elimination is the most popular among structural analysts, 
since it is simple, accurate and practical, and produces some very satisfactory error 
bounds. 

In the forward course of elimination, new non-zero entries may be created, but the 
back substitution does not lead to any new non-zero elements. It is beneficial to 
minimise the total number of such non-zero elements created during the forward 
course of the Gaussian elimination to reduce the round-off errors and the computer 
storage. Matrix A of Eq. (5-1) can be transformed by means of row and column 
operations to a form that leads to the creation of a minimum number of non-zero 
entries during the forward course of the elimination. This is equivalent to the “a 
priori” determination of the permutation matrices P and Q, such that 

 PAQ = G. (5-2) 
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When A is symmetric and positive-definite, it is advantageous to have G also 
symmetric so that only the non-zero elements on and above the diagonal of G need 
to be stored, and only about half as many arithmetic operations are needed in the 
elimination. The diagonal elements of A and G are the same, though their posi-
tions are different. In order to preserve symmetry, P is taken as Q so that Eq. (5-2) 
becomes  

 QtAQ = G. (5-3) 

For transforming a symmetric matrix A into the forms depicted in Figure 5.1, vari-
ous methods are available, some of which are described in this chapter. However, 
owing to the simplicity of the banded form, most of the material presented is con-
fined to optimising the bandwidth of the structural matrices and other forms are 
only introduced briefly. 

In the Gaussian elimination method, the time required to solve the resulting equa-
tions by the banded matrix technique is directly proportional to the square of the 
bandwidth of A. As mentioned earlier, the solution of these equations forms a 
large percentage of the total computational effort needed for the structural analy-
sis. Therefore, it is not surprising that a lot of attention is being paid to the 
optimisation of the bandwidth of these sparse matrices. A suitable ordering of the 
elements of a kinematical basis for a structure reduces the bandwidth of A, hence 
decreasing the solution time, storage and round-off errors. Similarly, ordering the 
elements of a statical basis results in the reduction of the bandwidth of the corre-
sponding flexibility matrix of the structure. 

Iterative methods using different criteria for the control of the process of inter-
changing rows and columns of A are described by many authors, for example, see 
Rosen [189] and Grooms [67]. For these methods, in general, the required storage 
and CPU time can be high, making them uneconomical. 

The first direct method for bandwidth reduction was recognised by Harary [73] in 
1967, who posed the following question: 

For a graph S with N(S) nodes, how can labels 1, 2, ..., N(S) be as-
signed to nodes in order to minimise the maximum absolute value of 
the difference between the labels of all pairs of adjacent nodes? 

For a graph labelled in such an optimum manner, the corresponding adjacency matrix 
will have unit entries concentrated as closely as possible to its main diagonal. 

In structural engineering, Cuthill and McKee [33] developed the first graph-
theoretical approach for reducing the bandwidth of stiffness matrices. In their 
work, a level structure is used, which is called a spanning tree of a structure. The 
author´s interest in bandwidth reduction was initially motivated by an interest in 
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generating and ordering the elements of cycle bases and generalised cycle bases of 
a graph, as defined in Chapter 3, in order to reduce the bandwidth of the flexibility 
matrices [94,96]. For this purpose, a shortest route tree (SRT) has been used. The 
application of this approach has been extended to the elements of a kinematical 
basis (cutset basis) to reduce the bandwidth of stiffness matrices. Subsequently, it 
has been noticed that there is a close relation between Cuthill–McKee´s level 
structure and the author´s SRT. However, the SRT contains additional information 
about the connectivity properties of the corresponding structure. 

Further improvements have been made by employing special types of SRTs such 
as the longest and narrowest ones [97]. The generation of a suitable SRT depends 
on an appropriate choice of starting node. Kaveh [94] used an end node of an arbi-
trary SRT having the least valency, which was chosen from its last counter (level). 
Gibbs et al. [59] employed a similar node and called it a pseudo-peripheral node. 
Cheng [26] used an algebraic approach to select a single node or a set of nodes as 
the root of an SRT. Kaveh employed two simultaneous SRTs for selecting a 
pseudo-peripheral node. A comparison of six different algorithms was made in 
[101]. Algebraic graph theory has also been used for finding a starting node; see 
Kaveh [113] and Grimes et al. [66]. Paulino et al. [174] used another type of alge-
braic graph-theoretical approach employing the Laplacian matrix of a graph for 
nodal ordering. 

5.3 PRELIMINARIES 

A matrix A is called banded when all its non-zero entries are confined within a 
band, formed by diagonals parallel to the main diagonal. Therefore, Aij = 0, when  
|i − j| > b, and Ak,k–b ≠ 0 or Ak,k+b ≠ 0 for at least one value of k. b is the half-
bandwidth and 2b + 1 is known as the bandwidth of A. For example, for  
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A , (5-4) 

the bandwidth of A is 2b + 1 = 2 × 2 + 1 = 5. 

A banded matrix can be stored in different ways. The diagonal storage of a sym-
metric banded n × n matrix A is an n × (b + 1) matrix AN. The main diagonals are 
stored in the last column, and lower co-diagonals are stored down-justified in the 
remaining columns. For example, AN for the above matrix is  
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=AN  (5-5) 

When A is a sparse matrix, this storage scheme is very convenient, since it pro-
vides direct access, in the sense that there is a simple one-to-one correspondence 
between the position of an entry in the matrix A(i, j) and its position in AN(i, j − i  
+ b + 1).  

Obviously, the bandwidth depends on the order in which the rows and columns of 
A are arranged. This is why iterative techniques seek permutations of the rows and 
columns to make the size of the resulting bandwidth small. For symmetric matri-
ces, identical permutations are needed for both the rows and the columns. When a 
system of linear equations has a banded matrix of coefficients and the system is 
solved by Gaussian elimination, with pivots being taken from the diagonals, all the 
operations are confined to the band and no new non-zero entries are generated 
outside the band. Therefore, the Gaussian elimination can be carried out in place, 
since a memory location is already reserved for any new non-zeros that might be 
introduced within the band. 

For each row i of a symmetric matrix A define,  

 bi = i − jmin(i), (5-6) 

where jmin(i) is the minimum column index in row i for which Aij ≠ 0. Therefore, 
the first non-zero of row i lies bi positions to the left of the diagonal, and b is de-
fined as: 

 b = max (bi). (5-7) 

In Chapter 4, it is shown that the stiffness matrix K of a structure is pattern equiva-
lent to the cutset basis matrix C*C*t, where C* is the cutset basis–member 
incidence matrix of the structural model S. Similarly, the flexibility matrix G is 
pattern equivalent to the cycle basis matrix CCt, where C is the cycle basis–
member incidence matrix of S. 

Reducing the bandwidths of C*C*t and CCt directly influences those of K and G, 
respectively. Notice that the dimensions of C*C*t and CCt, for general space 
structures, are sixfold smaller than those of K and G, and therefore simpler to op-
timise. 
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For the displacement method of analysis, there exists a special cutset basis whose 
elements correspond to the stars of its nodes except for the ground node (cocycle 
basis). The adjacency matrix of such a basis naturally is the same as that of the 
node adjacency matrix of S, with the row and column corresponding to the datum 
node being omitted. In this chapter, such a special cutset basis is considered, and 
the nodes of S are ordered such that the bandwidth of its node adjacency matrix is 
reduced to the smallest possible amount. 

Let A be the adjacency matrix of a graph S. Let i and j be the nodal numbers of 
member k, and let αk = |i − j|. Then the bandwidth of A can be defined as 

 b(A) = 2Max{αk: k = 1,2, ..., M(S )} + 1, (5-8) 

where M(S ) is the number of members of S. To minimise the bandwidth of A, the 
value of b(A) should be minimised. The bandwidth of the stiffness matrix K of a 
structure is related to that of A by  

 b(K) = βb(A), (5-9) 

where β is the number of degrees of freedom of a typical node of the structure. 

Papademetrious [170] has shown that the bandwidth minimisation problem is an 
NP-complete problem. Therefore, any approach to it is primarily of interest be-
cause of its heuristic value. 

5.4 A SHORTEST ROUTE TREE AND ITS PROPERTIES 

The main tool for most of the ordering algorithms using graph-theoretical ap-
proaches is the SRT of its model or its associate model. An SRT rooted at a node 
O, called the starting node (root) of the tree, is denoted by SRTO and has the 
following properties. 

The path from any node to the root through the tree is a shortest path. An algo-
rithm for generating an SRT is given in Appendix A and therefore, only its 
properties relevant to the nodal number are discussed here. 

An SRT decomposes (partitions) the node set of S into subsets according to their 
distance from the root. Each subset is called a contour (level) of the SRT, denoted 
by Ci. The contours of an SRT have the following properties: 

 Adj (Ci) ⊆ Ci–1 ∪ Ci+1,        1 < i < m 

 Adj (C1) ⊆ C2,  (5-10) 

 Adj (Cm) ⊆ Cm–1. 
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The number of nodes in each contour is called the width of that contour, and the 
largest width of the contours of an SRT is called the width of the SRT rooted at the 
starting node O, denoted by w(SRTO). This number is known as the width number 
of O. The number of contours of an SRT (except the starting node contour) is the 
height of the tree denoted by h(SRTO). The longest SRT is the one with maximal 
height and the narrowest SRT is the one with minimal width. 

For example, an SRT of S shown in Figure 5.2(a), rooted at O, denoted by SRTO, 
has the following identities: 

w(C1) = 1, w(C2) = 2, w(C3) = 3, w(C4) = 4, w(C5) = 5, w(C6) = 5, w(C7) = 4,  
w(C8) = 3, w(C9) = 2 and w(C10) = 4. Hence w(SRTO) = 5 and h(SRTO) = 9. 

For the same graph model, an SRT rooted at O´, which is shown in Figure 5.2(b), 
leads to w(SRTO´) = 9 and h(SRTO´) = 5. 

O 

O ' 

 
(a) An SRT rooted at O.  (b) An SRT rooted at O´.  

Fig. 5.2 A graph S and two of its SRTs.  

This simple example shows the importance of selecting an appropriate starting 
node. This is discussed in some detail in subsequent sections. 

5.5 NODAL ORDERING FOR BANDWIDTH REDUCTION 

The following four-step algorithm is employed for nodal ordering of graphs lead-
ing to banded node adjacency matrices. This method can be directly used for nodal 
ordering of skeletal structures resulting in banded stiffness matrices.  

1. Find a suitable starting node. 

2. Decompose the node set of S into ordered subsets (contours). 



 OPTIMAL STRUCTURAL ANALYSIS 

 

198 

3. Select a connected path (transversal) containing one representative node from 
each contour. 

4. Order the nodes within each contour, to obtain the final nodal numbering of S.  

All the above steps require the use of an SRT algorithm of Appendix A, known as 
the breadth-first-search algorithm. Therefore, a nodal ordering process may be 
considered as a multiple application of the SRT algorithm. 

The node set of S can be decomposed into ordered subsets by means of a breadth-
first-search algorithm. The quality of the results depends upon the choice of an 
appropriate starting node as the root of this tree. The results corresponding to the 
ordering within each contour, however, also depend upon the use of a suitable 
transversal containing one representative node from each contour.  

Methods for finding suitable starting nodes have been developed by Cheng [26], 
Kaveh [111,121,124], Gibbs et al. [59] and Grimes et al. [66]. In the following 
text, various graph-theoretical methods are presented for finding good starting 
nodes and selecting suitable transversals.  

5.5.1 A GOOD STARTING NODE 

The distance d(ni,nj) between two nodes ni and nj is defined to be the length of the 
shortest path between these nodes. The eccentricity of a node ni is defined as  

 e(ni) = Max d(ni,nj)  for  j = 1, ..., N(S). (5-11) 

The diameter of S is defined as 

 δ (S) = Max e(ni)  for  i = 1, ..., N(S). (5-12) 

For example, the eccentricity of n2 in Figure 5.3 is e(n2) = 3, and the diameter of S 
is δ (S) = 4.  

n 2  
Fig. 5.3 A graph S 
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A node ni of S is called peripheral if its eccentricity is the same as the diameter of 
S, that is, δ (S) = e(ni). If the eccentricity is close to the diameter, then ni is called a 
pseudo-peripheral node or a good starting node. 

In this section, three algorithms are described for the selection of a good starting 
node or nodes for nodal numbering. Other algorithms have been developed, details 
of which can be found in Kaveh [113]. 

Algorithm A 

Step 1: Start from an arbitrary node of S. Construct an SRT on this node and take a 
node of least valency from its last contour.  

Step 2: Form a new SRT from the selected node, and record all the nodes of the 
last contour of the selected SRT. 

Step 3: Form SRTs rooted at each of the recorded nodes and choose the one that 
corresponds to the narrowest SRT. The process of constructing an SRT is termi-
nated as soon as the width of one of its contours exceeds the width of the 
previously selected SRT. 

This algorithm is similar to the Gibbs et al. [59] algorithm, where the starting node 
O and another node of minimum valency from its last contour are selected as 
pseudo-peripheral or diameteral nodes.  

Algorithm B 

Step 1: Start with an arbitrary node, form an SRT on this node and take a node ni 
of least valency from its last contour. 

Step 2: Generate an SRT on ni and find all nodes contained in its even, first and 
last contours. 

Step 3: Generate an SRT on each node of these contours, and find the narrowest 
one. The process of formation of an SRT is terminated as soon as the width of one 
of its contours exceeds the width of the previously selected SRT. Denote the se-
lected node by nj.  

Step 4: Check adjacent nodes to nj for possible reduction in width, to decide the 
final starting node. 

Algorithm C 

Algorithms A and B may search for a good starting node in a single direction of a 
graph and do not meet nodes lying in other directions. Algorithm C overcomes this 
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problem. In this method, the control of overall connectivity properties of the graph 
becomes feasible. The following example clearly illustrates this point. 

Step 1: From an arbitrary node generate an SRT, and from its last contour select a 
node X1 of minimal valency. Observe the width of the selected SRT.  

Step 2: Generate an SRT from X1, and select X2 of the least valency from its last 
contour, and observe the width.  

Step 3: Generate two SRTs simultaneously rooted at X1 and X2, and find the node 
X3, which is the last node of S included in one of the SR subtrees. Once X3 is 
found, terminate the process of forming SRTs. Generate an SRT from X3 and ob-
serve its width. X1 and X2 are called the generators of X3. 

Step 4: Repeat the process of Step 3, using the pairs (X1, X3) and (X2, X3) as the 
generators to find X4 and X5, respectively. Construct the corresponding SRTs and 
observe their widths.  

Step 5: Repeat the process of Step 3 for Xi (i = 3, 4, ...), along with the correspond-
ing generator, until no further improvement in width is observed. The narrowest 
SRT should be selected for nodal decomposition of S.  

An example of the application of this algorithm is depicted in Figure 5.4, where a 
cross-shaped grid S is considered. 

O

X  

X  

X  X  

X  

1  

2  

3  

4  

5  

 
Fig. 5.4 A cross-shaped grid and the selected Xi (i = 1, ..., 5) by Algorithm C. 
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Starting from an arbitrary node “O ”, an SRT is generated and X1 is obtained from 
its last contour. Generating a new SRT from X1, node X2 is chosen from its last 
contour. X3 is the result of generating two simultaneous SRTs from X1 and X2. Us-
ing (X1, X3) and (X2, X3), nodes X4 and X5 are obtained, respectively. The widths of 
the selected SRTs rooted at X1, X2, X3, X4 and X5 are 8, 8, 8, 11 and 10, respec-
tively. Therefore, the process is terminated, and X3 is taken as a good starting node 
of S.  

5.5.2 PRIMARY NODAL DECOMPOSITION 

Once a good starting node is selected, an SRT is constructed and its contours  
{C1, C2, ..., Cm} are obtained. These subsets are now ordered according to their 
distances from the selected starting node. Obviously, many SRTs can be con-
structed on a node. Although all lead to the same nodal decompositions, different 
transversals are obtained for different SRTs. Thus, in the generation process, the 
nodes of each contour Ci are considered in ascending order of their valencies for 
selecting the nodes in Ci+1, to provide the conditions for the possibility of generat-
ing a minimal (or optimal) transversal as defined in the next section. Finding an 
optimal transversal before an SRT is fixed, seems to be a time-consuming prob-
lem. However, for most of the models encountered in practice, an optimal 
transversal lies between the minimal ones. In the following text, an algorithm is 
given for selecting a suboptimal transversal of an SRT.  

5.5.3 TRANSVERSAL P OF AN SRT  

A transversal of an SRT is defined as a connected path P containing one distinct 
node Ni from each contour Ci of an SRT. A minimal transversal is the one for 

which 
1

deg( )
m

i
i

N
=
∑  is minimum. An optimal transversal is the one leading to the 

best nodal numbering, that is, a numbering corresponding to the smallest band-
width for the selected decomposition. The weight of a node is defined as its 
degree.  

Algorithm 

Step 1: Take a node Nm of minimal weight from the last contour Cm of the selected 
SRT. 

Step 2: Find Nm–1 from Cm–1, which is connected to Nm by a branch of the SRT. 

Step 3: Repeat Step 2, selecting nodes Nm–2, Nm–3, ..., N1, as the representative 
nodes of the contours Cm–2, Cm–3, ..., C1, respectively.  
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The above algorithm is a backtracking process from a node of minimal weight in 
the last contour Cm, and selects a transversal P = {N1, N2, ..., Nm}, which can now 
be used for ordering the nodes of the contours of the corresponding SRT. 

5.5.4 NODAL ORDERING 

Step 1: Number N1 as “1”. 

Step 2: N2 is a given number “2”, and a SR subtree is generated from N2, number-
ing the nodes of C2 in the order of their occurrence in this SR subtree. 

Step 3: Step 2 is repeated for numbering the nodes of C3, C4, ... , Cm, sequentially, 
using N3, N4, ... , Nm as the starting nodes of SR subtrees, until all the nodes of S 
are numbered.  

Now the numbering can be reversed, in a way similar to that of the Reverse 
Cuthill–McKee algorithm, for possible reduction of fill-ins in the process of Gaus-
sian elimination, which is discussed in Section. 

5.5.5 EXAMPLE 

The following simple example is chosen to illustrate the steps of the approaches 
presented, but the applications are not limited to such simple cases.  

Let S be the graph model of a truss structure, as shown in Figure 5.5(a). Using one 
of the algorithms of Section 5.5.1, a good starting node A is found, and the corre-
sponding SRTs are depicted in Figure 5.5(b). A transversal is selected as shown by 
bold lines in Figure 5.5(c). Then nodes are numbered contour by contour, employ-
ing the representative nodes as the starting nodes of SR subtrees as shown in 
Figure 5.5(d). 

In order to cast the concepts developed for nodal ordering in a mathematical form, 
a connectivity coordinate system is defined for nodal numbering of S. A separate 
study of planar and space graphs results in clarifications about nodal numbering of 
space structures, as described in Kaveh [110].  

1 2 3 4 5 6 
7 8 9 10 11 12 
13 14 15 16 17 18 
19 20 21 22 23 24 C 

C 

C 

C C C C C C 
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3 
4 5 6 7 8 9 

 
(a) Initial numbering of S.  (b) The selected SRT. 
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(c) The selected transversal P. (d) Final nodal numbering of S.  

Fig. 5.5 Graph model S and its nodal numbering.  

5.6 FINITE ELEMENT NODAL ORDERING 
      FOR BANDWIDTH OPTIMISATION  

Extensions and applications of the nodal numbering algorithms to element order-
ing are due to Kaveh [101,102], Akhras and Dhatt [2], Everstine [43], Razzaque 
[185], Pina [177], Sloan and Randolph [206], Sloan [203], and Burgess and Lai 
[18]. 

For FE nodal ordering, different methods are developed. The application of a natu-
ral associate graph (NAG) in a two-step approach, was suggested by Kaveh [99], 
and later by Fenves and Law [50]. A corner-node method is developed by Kaveh 
[94], Cassell et al. [23] and Kaveh and Ramachandran [128]. The application of an 
element clique graph is due to Sloan [204] and Livesley and Sabin [153]. A com-
parative study of the application of these graphs was made by Kaveh and Behfar 
[115]. Additional graphs for transforming the information concerning the connec-
tivity of the FE mesh to those of different simple graphs, are introduced and 
employed in efficient finite element nodal numbering by Kaveh and Roosta [133]. 
Excellent books on these topics are written by Duff et al. [39] and Pissanetsky 
[178]. 

In this section, the connectivity properties of FE models are embedded in the topo-
logical properties of nine different graphs. A nodal ordering is then performed on 
these graphs, leading to the element ordering of the corresponding FEMs, followed 
by their final nodal ordering. This process is summarised in the flow chart given in 
the following text.  

For the sake of clarity, the nodes of the constructed graphs are referred to as vertices. 

The complexities of the methods presented are given for a logical comparison of 
their efficiency. The interested reader may refer to Baase [8] for an analysis of the 
algorithms. The efficiency of the methods is also tested by some two-dimensional 
and three-dimensional FE models. The computational time and the bandwidth ob-
tained for these models are presented for comparison. 
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Finite element model 

↓ 
Graph model 

↓ 
ECG SG  ESG  EWG PTG TG NAG IG  RG CRG 

↓ 
Graph nodal ordering 

↓ 
Finite element nodal ordering 

Notations: Element Clique Graph (ECG); Skeleton Graph (SG); Element Star 
Graph (ESG); Element Wheel Graph (EWG); Partially Triangulated Graph (PTG); 
Triangulated Graph (TG); Natural Associate Graph (NAG); Incidence Graph (IG); 
Representative Graph (RG); Complete Representative Graph (CRG).  

5.6.1 ELEMENT CLIQUE GRAPH METHOD (ECGM)  

Definition: The element clique graph S of an FEM is a graph whose vertices are 
the same as those of the FEM, and two vertices ni and nj of S are connected with a 
member if ni and nj belong to the same element in the FEM. The element clique 
graph (ECG) of the FEM shown in Figure 5.6(a) is illustrated in Figure 5.6(b). 

  
 (a) An FEM. (b) The element clique graph of the FEM.  

Fig. 5.6 An FEM and its element clique graph.  

In order to generate the ECG of an FEM, all pairs of nodes of each element of the 
FEM should be connected by members if such pairs are not connected in the pre-
vious steps. Let λ, δ and θ denote the number of elements of the FEM, the 
maximum degree of a vertex of the ECG and the maximum number of nodes of an 
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element of the FEM, respectively. The formation of the ECG takes O(λδθ 2) opera-
tions in the worst case. For this formation, the element-node list of the FEM is 
sufficient; however, since M(ECG) is a high integer, especially for FEMs with 
higher-order elements, the compact adjacency list will be very large. This is a dis-
advantage of the ECG. 

Let us consider an m × n grid of 4-node quadrilaterals; the compact adjacency list 
is a vector of length α, where α = (m + 1 )(n + 1) denotes the number of nodes of 
the FEM. The diameter of the ECG of an FEM is small. For example, the diameter 
of the considered m × n grid is equal to d, where d is the same as m if m ≥ n, oth-
erwise d is equal to n. This property is very useful when multiple roots are used for 
a process. This is because more than one pair of vertices are the end vertices of the 
diameter of the ECG for most of the FEMs. For example, for an m × n grid, if  
m > n, then there will be (n + 1)2 pairs of peripheral vertices. This graph model has 
another advantage, namely, when two nodes of the FEM are contained in an ele-
ment, their corresponding vertices in the ECG are adjacent. This is useful since, 
for the computational aspects of the FEM, we explicitly or implicitly consider an 
FEM as a hypergraph. This graph is particularly suitable for bandwidth optimisa-
tion, since in this graph each vertex corresponds to a node of the FEM, and a 
single step is needed for direct nodal numbering of the considered FEM. 

Algorithm 

Step 1: Construct the element clique graph S of the considered FEM. 

Step 2: Use a nodal numbering algorithm that is available (e.g. the algorithm pre-
sented in Section 5.5.4). 

In this method, all the nodes of an element will be contained in at most two adja-
cent contours of an SRT; hence the bandwidth becomes dependent on the width of 
the SRT. 

ANALYSIS OF ELEMENT CLIQUE GRAPH METHOD 

Step 1: This step has time complexity O(λδθ 2 ). 

Step 2: This step has time complexity O(α2δ ). This complexity corresponds to the 
complexity of the critical step of the nodal ordering algorithm. 

5.6.2 SKELETON GRAPH METHOD (SGM) 

Definition: The 1-skeleton graph S of an FEM is a graph whose vertices are the 
same as the nodes of the FEM, and its members are the edges of the FEM. Figure 
5.7 illustrates the skeleton graph of the FEM shown in Figure 5.6(a). 
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Fig. 5.7 The skeleton graph of the FEM of Figure 5.6(a). 

In order to generate the skeleton graph (SG) of an FEM, one should connect all 
pairs of nodes of each element i of the FEM by a member that is not previously 
connected. The time complexity of the process of formation of the SG of an FEM 
is O(λδτ ), where τ is the same as the maximum number of members of the SG of 
an element. Since the bound of τ is θ(θ − 1)/2, the complexity of this process is 
O(λδθ 2 ). As shown, the time complexities for the formation of the SG and the 
ECG are the same for the worst case. However, the number of members of the SG 
is less than that of the ECG in FEMs containing elements with 4 or more nodes. 
For example, in the grid of Section 5.6.1, the compact adjacency list is a vector of 
length (4mn + 2m + 2n). It is clear that the lengths of the index vectors of the com-
pact adjacency lists of the SG and the ECG are always the same. The diameter of 
the SG of the FEM is large. For example, the diameter of the considered grid is the 
same as (m + n). This property is very efficient when a single good starting vertex 
is needed. This is because of the existing low number of pairs of vertices being the 
peripheral nodes. For example, in the grid there are always only two pairs of pe-
ripheral vertices. 

Simultaneous application of the ECG and the SG provides very efficient tools. For 
example, consider the small FE shown in Figure 5.8. Suppose an SRT is rooted 
from vertex 1 in the ECG of the FEM to find a good starting node with minimum 
degree from its last contour. Vertices 17 and 19 are found. They are the farthest 
from vertex 1 and have the same degree as 3 (in the ECG). However, vertex 19 is 
better than vertex 17, since W(SRT19) < W(SRT17). Instead of generating two SRTs 
from vertices 17 and 19, one can choose 19 by generating SRT1 in the SG, because 
dSG(1,19) > dSG(1,17), where dSG(i, j) denotes the distance between vertices i and j 
in the SG. 
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Fig. 5.8 A small finite element model. 

Algorithm 

Step 1: Construct the skeleton graph S of the considered FEM. For each element i 
of the FEM, connect two end nodes of each edge of element by a member. Such 
nodes should be connected only once. 

Step 2: Order the vertices of S using any nodal numbering algorithm that is avail-
able (e.g. one of the algorithms presented in Section 5.5.1), thus obtaining a nodal 
ordering of S. 

In order to generate the SG of an FEM, it is necessary to list the nodes of each 
element in a suitable order. In this method, the number of members of S is less 
than those of the Element Clique Graph Method (ECGM); however, in FEMs with 
triangular elements, the number of the members are the same. Therefore, this 
method takes less computer storage for keeping the connectivity of S. Generating 
an SRT in a SG may lead to the allocation of the nodes of an element in three or 
more adjacent contours. Therefore, the width of the SRT being used, along with 
the number of contours containing the nodes of an element of the FEM, specify the 
bandwidth.  

ANALYSIS OF SKELETON GRAPH METHOD 

Step 1: The running time for this step is O(λδτ ), where τ is the same as the maxi-
mum number of edges of an element. Since the bound of τ is θ(θ − 1)/2, the time 
complexity of this step is O(λδθ 2 ). 

Step 2: This step requires O(α2δ ) time. 
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5.6.3 ELEMENT STAR GRAPH METHOD (ESGM) 

Definition: The element star graph S of an FEM has two sets of vertices, namely, 
the main set containing the same nodes as those of the FEM and a virtual set con-
sisting of the virtual vertices associated in a one-to-one correspondence with the 
elements of the FEM. The member set of S is constructed by connecting the virtual 
vertex of each element i to all the nodes of the element i. The element star graph 
(ESG) of the FEM shown in Figure 5.6(a) is illustrated in Figure 5.9. The virtual 
vertices are shown by larger-sized dots. 

In order to generate the ESG of an FEM, one should assign a vertex to each ele-
ment and to each node, and then connect the vertex corresponding to an element to 
all vertices corresponding to the nodes of the element by a member. This process 
takes only O(λθ ) time for the worst case. For this process, the element-node list of 
the considered FEM is sufficient; however, since N(ESG) and M(ESG) are large 
integers, the compact adjacency list will be large. This is a disadvantage of the 
ESG. For the previously considered grid of 4-node quadrilateral elements, the 
compact adjacency list and its index vector take (8mn) and (2mn + m + n + 1) inte-
ger words of computer storage, respectively. 

 
Fig. 5.9 The element star graph of the FEM of Figure 5.6(a). 

Note that in this case, there are (mn) virtual vertices. The diameter of the ESG of 
an FEM is large. It can be easily shown that the diameter of the ESG of an FEM is 
twice the diameter of the ECG of the FEM; that is, dESG = 2dECG. 

In the ESG of an FEM, the distance between each pair of vertices corresponding to 
two nodes of the FEM that share an element is equal to 2, while in the ECG it is 
equal to 1. This difference does not cause the ESG to lose the previously discussed 
property, which is the existence of more than one pair of peripheral nodes in most 
of the FEMs. Hence, this graph model is efficient for algorithms in which multiple 
roots need to be found. In this graph, the degree of each vertex corresponding to a 
node i of the FEM is the same as that of the number of elements of the FEM inci-
dent to node i. 
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Algorithm 

Step 1: Construct the element star graph S of the considered FEM. For each ele-
ment i, generate a virtual vertex labelling with i + α, and connect the nodes of i to 
the vertex i + α, where α is the total number of nodes of the FEM. 

Step 2: Order the main vertices of S using a nodal numbering algorithm that is 
available, for example, one of the methods presented in Section 5.5.1. This step is 
similar to the previous methods, but virtual vertices need not be labelled in the 
process of the numbering of the nodes. The virtual vertices can easily be identified 
because their labels are above α. 

In order to generate the ESG of an FEM, it is not necessary to list the nodes of 
each element in a specific order. In this method, M(S) is higher than the skeleton 
graph method (SGM) and can also be higher than the ECGM (e.g. for an FEM 
with triangular elements). N(S) of the star graph is equal to λ + α, where λ denotes 
the number of elements of the FEM. Therefore this method requires more com-
puter time than ECGM, for most of the cases, and is always longer than the SGM. 
Generation of an SRT in an ESG forces the nodes of an element to be contained at 
the most in three adjacent contours.  

ANALYSIS OF ELEMENT STAR GRAPH METHOD 

Step 1: The running time for this step is O(λθ ). 

Step 2: This step requires O(β2δ ) time, where β = λ + α. 

5.6.4 ELEMENT WHEEL GRAPH METHOD (EWGM)  

Definition: The element wheel graph S of an FEM is the union of the element star 
graph and the skeleton graph of the FEM. The element wheel graph (EWG) of the 
FEM shown in Figure 5.6(a) is illustrated in Figure 5.10. The virtual vertices are 
shown by larger-sized dots.  

 
Fig. 5.10 The element wheel graph of the FEM of Figure 5.6(a). 
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In order to generate the EWG of an FEM, one should generate the SG of the FEM 
and then apply the process for the formation of the ESG. This procedure takes 
O(λδθ 2 + λθ ) = (λδθ 2 ) operations. It should be noted that δ denotes the maxi-
mum degree of a vertex of the SG. For the formation of the EWG like that of the 
SG, the element-node list along with the member list or other lists for a typical 
element should be given and the list of nodes for the elements should be provided 
in a suitable order. Since N(EWG) and M(EWG) are large integers, the compact 
adjacency list requires (12mn + 2m + 2n) integer words. This is the same as the 
total computer storage needed for the SG and the ESG. The index vector of the 
compact adjacency list is like that of the ESG, which is a vector of length (2mn + 
m + n + 1). The diameter of the SG, the ESG and the element wheel graph of an 
FEM have the following relation 

 dEWG ≤ ddSG and dEWG ≤ dESG. (5-13) 

This is due to the existence of the members of the SG and the ESG in the member 
set of the EWG. Clearly, the diameter of the ECG is less than or equal to that of 
the EWG. When an FEM contains higher-order elements, its EWG may contain 
several pairs of peripheral vertices, since the distance between the vertices of the 
EWG corresponding to the corner nodes of each element is the same as that of the 
ESG.  

Algorithm 

Step 1: Construct the element wheel graph S of the considered FEM. This can be 
done by generating the union of the ESG and SG. 

Step 2: Order the main vertices of S using a nodal numbering algorithm that is 
available, for example, one of the methods presented in Section 5.5.1. This step 
should be carried out like Step 2 in the ESGM. 

In order to generate the EWG of an FEM, it is necessary to list the nodes of each 
element in a suitable order. In this method, M(S) is higher than that of the ESGM, 
and therefore it needs more computer storage than the ESGM. The nodes of an 
element of FEM are at most contained in three contours of the generalised SRT of 
the EWG. 

ANALYSIS OF ELEMENT WHEEL GRAPH METHOD 

Step 1: The running time for this step is O(λδθ 2 ). 

Step 2: This step requires O(β2θ ) time. 
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5.6.5 PARTIALLY TRIANGULATED GRAPH METHOD (PTGM) 

Definition: The partially triangulated graph S of an FEM is a graph whose verti-
ces are the same as the nodes of the FEM and an artificial vertex assigned to each 
element i is connected to all the original nodes of i. The selected nodes of the ele-
ments are found by generating all SR subtrees from a good starting vertex in the 
SG of the FEM and taking the first node of an element included in the SRT during 
the process of the generation. For example, for the FEM shown in Figure 5.6(a), 
an SR subtree is rooted from n0 and shown in Figure 5.11(a), and the selected 
nodes of the elements are shown by larger-sized dots. The partially triangulated 
graph (PTG) of the FEM is shown in Figure 5.11(b). 

 
(a) The skeleton graph and an 

SR subtree of the FEM.  
(b) The partially triangulated 

graph of the FEM. 

Fig. 5.11 The skeleton, an SR subtree and the partially triangulated graph of the 
FEM of Figure 5.6(a).  

In order to generate the PTG of an FEM, the following steps can be executed.  

1. Generate the SG of the FEM.  

2. Form an SRT rooted from an arbitrary node n0, and select a node n1 from the 
last contour of SRTn0 with the minimum degree. 

3. Form an SRT rooted from n1, and select a node n2 from the last contour of 
SRTn1, with minimum degree. 

4. Form an SRT routed from n2 and take ns from n0, n1 and n2 whose corresponding 
SRT has the least width. 

5. Calculate the distance between each vertex of the SG and ns. 

6. For each element i, select a vertex that is the nearest node to ns; 
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7. Form the PTG by connecting the vertex corresponding to the selected node of 
each element i to the vertices corresponding to other nodes of i; previously con-
nected nodes should not be connected again. 

The above process has time complexity O(λδθ 2 + 4αδ + λθ + λδθ ) = O(λδθ 2). 
Steps 2, 3 and 4 of this process are to find a good starting vertex ns; however, other 
good starting node selection algorithms can be employed for these steps. For the 
formation of the PTG like that of the EWG, the element-node list or other lists for 
a typical element should be given, and the nodes of elements should be listed in a 
suitable order. The number of members of a PTG is low and is always less than or 
equal to λ(θ − 1). For example, for the considered m × n grid, the compact adja-
cency list is a vector of length (6 mn). Since the PTG of an FEM has the same 
number of nodes as the FEM, the index vector of the compact adjacency list is a 
vector of length α, and for the considered grid α = (m + 1)(n + 1). The diameter of 
the PTG of an FEM is a high integer; for example, the diameter of the grid is  
(m + n). Clearly, the diameter of the PTG of an FEM is greater than or equal to 
that of the ECG of the FEM. This is because, in this graph, the distance between 
two vertices corresponding to the two nodes of the FEM that are contained in an 
element is equal to 1 or 2. 

Algorithm  

Step 1: Construct the partially triangulated graph S of the considered FEM. 

Step 2: Order the vertices of S using an available nodal numbering algorithm, for 
example, an algorithm of Section 5.5.1. 

For generating the PTG of an FEM, it is necessary to list the nodes of each element 
in a suitable order. In this method, M(S) may or may not be higher than that of the 
SGM. In the process of forming an SRT in a PTG, the nodes of an element may lie 
in one, two or three adjacent contours. 

ANALYSIS OF PARTIALLY TRIANGULATED GRAPH METHOD 

Step 1: The running time for this step is O(λδθ 2 + 4αδ + λθ + λδθ ) = O(λδθ 2). 

Step 2: This step requires O(α2θ ) time. 

5.6.6 TRIANGULATED GRAPH METHOD (TGM)  

Definition: The triangulated graph S of an FEM is the union of the partially trian-
gulated graph and the skeleton graph of the FEM. The triangulated graph (TG) of 
the FEM shown in Figure 5.6(a) is illustrated in Figure 5.12. The selected vertices 
of the elements are the same as those of Figure 5.6(a).  
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Fig. 5.12 The triangulated graph of the FEM of Figure 5.6(a). 

In order to generate the TG of an FEM, one should generate the PTG of the FEM 
and then connect each pair of disconnected vertices that are adjacent in the SG by 
a member. This process of formation also has time complexity O(λδθ 2) for the 
worst case. It is obvious that the formation of the TG of an FEM is similar to that 
of SG, EWG and PTG. The element list along with a data connectivity list, such as 
the member list of a typical element, should be given and the list of nodes of the 
elements should be provided in a suitable order. The number of members of a TG 
is always higher than or equal to that of the SG. It is interesting to note that the 
TG, SG and ECG become the same graph when the considered FEM contains bar 
and/or 3-node triangular elements. If the FEM contains only the bar elements, then 
the PTG is also included in this set. 

The compact adjacency list is a comparatively long vector. For example, for the  
m × n grid, it is a vector of length (6mn + 2m + 2n). Since the TG of an FEM has 
the same number of nodes as the FEM, the index vector of the compact adjacency 
list takes α = (m + 1)(n + 1) words of memory. The diameter of the TG of an FEM 
is an integer between the diameters of ECG and the SG of the FEM. Clearly, its 
diameter is less than or equal to that of the PTG. 

Algorithm 

Step 1: Construct the TG S of the considered FEM. This step can be carried out by 
generating the PTG and the SG. 

Step 2: Order the vertices of S using a nodal numbering algorithm. 

In this method, the number of members is higher than that of the Partially triangu-
lated graph method (PTGM). For an SRT in a TG, the nodes of an element of an 
FEM are contained in at most three adjacent contours.  
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ANALYSIS OF TRIANGULATED GRAPH METHOD 

The time complexity of this method is the same as that of the PTGM.  

5.6.7 NATURAL ASSOCIATE GRAPH METHOD (NAGM)  

Definition: The natural associate graph S of an FEM has its vertices in a one-to-
one correspondence with the elements of the FEM, and two vertices of S are con-
nected by a member if the corresponding elements have a common boundary. The 
NAG of the FEM shown in Figure 5.6(a) is illustrated in Figure 5.13.  

 
Fig. 5.13 The natural associate graph of the FEM of Figure 5.6(a). 

In order to generate the NAG of an FEM, one of the following two methods can be 
employed. The first is a direct scheme that requires more computer time but less 
computer storage. In this case, only the element-node list should be provided. The 
second requires less computational time but uses larger memory. In this case, the 
node-element list along with the element-node list are provided as input data.  

Method 1 

Check each pair of elements i and j of the FEM for a common boundary. If i and j 
have such a boundary, then the vertices corresponding to i and j should be con-
nected by a member in the NAG. 

The time complexity of this method is O(λ2θ 2); however, if the maximum differ-
ence ∆ between the labels of the two elements with a common boundary is given, 
then the time complexity reduces to O(λ∆θ 2). Hence, ordering of the elements 
should be performed in the process of mesh generation. However, this method is 
not efficient because of the high time complexity or dependency on the data. In the 
following text, a different method is presented that does not depend on the data 
order and requires far fewer operations, at the expense of greater computer storage, 
than Method 1. 
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Method 2 

Step 1: Generate the node-element list of the considered FEM. 

Step 2: Take each pair of elements incident at a node, and note whether they have 
more than one corner node in common. 

Step 3: When two elements of equal or different dimensions have common corner 
nodes equal to or more than the smallest dimension of the elements, then the corre-
sponding vertices in the NAG are connected by a member. 

This method takes O(αθ 2ε2) operations, where ε is the same as the maximum num-
ber of elements containing a specified node. The element-node list and the node-
element list have the same length; however, the index vector of the node-element 
list takes α words in place of λ words in the element-node list. 

The number of members of the NAG of an FEM is a relatively small integer; 
hence its compact adjacency list uses a small amount of memory, which is to the 
advantage of the NAG. For example, in the m × n grid, the compact adjacency list 
is a vector of length (4mn − 2m − 2n), and its index vector takes (mn) words. How-
ever, although the list for keeping the data connectivity of the NAG of an FEM 
uses low computer storage, some difficulties arise in the process of the formation 
of the graph for FEMs containing elements with mid-side nodes. 

The NAG of the m × n grid is the same as that of the SG of an (m − 1) × (n − 1) 
grid. Hence, like the SG of the grid, the NAG has a relatively high diameter length 
of m + n − 2. 

ALGORITHM 

Step 1: Construct the natural associate graph S of the considered FEM. 

Step 2: Order the vertices of S using a nodal numbering algorithm, to obtain an 
ordering for the elements of the FEM. 

Step 3: Order the nodes of the FEM, element by element, in the same sequence as 
decided in Step 2. Within each element, priority is given to mid-nodes, passive and 
active nodes, respectively. A node is called passive if it has no incident new ele-
ment; otherwise it is active. 
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Step 3 of this method can be carried out using the following process: 

(I) Generate a matrix NE with a rows and ε columns, in which its ith row contains 
the labels of the elements containing node i, where ε is the same as the maximum 
number of elements incident to a specified node.  

(II) For each element j ( j=1, ..., l ) execute the following steps, in turn. 

(a) If j has a mid-node, label it first. 

(b) Detect the active and passive nodes j using the matrix NE. It should be noted 
that using NE makes the process fast; however, instead one can check a node of j 
for incidence with a new element. 

(c) Form a multiple root SR subtree from the active node of j. 

(d) Label the passive nodes of j when they are selected in the multiple root SR 
subtree. 

(e) Label the active nodes of j that are adjacent to the previously labelled nodes. 

(f) Repeat Step (e) until all the active nodes of j are labelled. 

In order to generate the NAG of an FEM, it is necessary to list the nodes of each 
element in a suitable order. In this algorithm, M(S) has the least value among the 
methods presented so far; therefore, it takes less computer storage for keeping the 
connectivity data of S. 

However, this method has a disadvantage in terms of programming. In order to 
check two elements having a common boundary, the nodes of each boundary of 
the elements or the dimension of the elements should be provided as input data. If 
the dimensions of the elements are given, it should be noted that, in three-
dimensional models, the elements may have mid-side nodes. Hence, having three 
or more common nodes does not guarantee the existence of a common boundary. 
So the mid-side nodes in an irregular configuration, or the number of mid-side 
nodes of an element in a regular configuration of elements, should be provided as 
input data. 

ANALYSIS OF NATURAL ASSOCIATE GRAPH METHOD 

Step 1: The running time for this step is O(αδε2). 

Step 2: This step requires O(λ2δ ) time. 
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Step 3: This step has time complexity O(λσθ ), where σ is the maximum value of 
θ 2 and ε.  

5.6.8 INCIDENCE GRAPH METHOD (IGM) 

Definition: The incidence graph S of an FEM has its vertices in a one-to-one cor-
respondence with the elements of the FEM, and two vertices of S are connected by 
a member, if the corresponding elements have a common node. Figure 5.14 shows 
the incidence graph of the FEM shown in Figure 5.6(a).  

 
Fig. 5.14 The incidence graph of the FEM of Figure 5.6(a). 

To generate the incidence graph (IG) of an FEM, one of the following two meth-
ods can be employed. The first is a direct approach, which requires more 
computational time but less words of memory, for which only the element-node 
list should be provided. The second scheme requires less computational time but 
more computer storage; the node-element list along with the element-node list 
should be provided.  

Method 1 

Check each pair of elements i and j of the FEM for a common node, and if they 
have such a node, connect it with a member to the corresponding vertices i and j in 
the IG. 

The time complexity of this method is O(λ2θ 2); however, as stated for the NAG 
generation, if the maximum difference ∆ between the labels of two elements with a 
common node is given, the complexity reduces to O(λ∆θ ).  

Method 2 

Step 1: Generate the node-element list of the considered FEM.  

Step 2: Connect the representative vertices of each pair of elements that contain a 
common node.  
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This method takes O(αδε 2) operations, which is more efficient than Method 1, 
especially for FEMs with more number of elements. 

The number of members M(IG) of the IG of an FEM is relatively high, and its 
compact adjacency list takes a large amount of memory. For an arbitrary FEM, 
M(IG) ≥ M(NAG). The equality holds when every two elements have a common 
boundary or a common node. FEMs with only bar elements belong to this cate-
gory. For example, for the grid of Section 5.6.7, M(NAG) = 2mn − m − n and 
M(IG) = 4mn − 3m − 3n + 2 and the compact adjacency list of the IG takes (8mn − 
6m − 6n + 4) integer words of memory. Its index vector has the same length as that 
of the NAG.  

Algorithm  

Step 1: Construct the incidence graph S of the considered FEM. 

Step 2: Order the vertices of S using a nodal numbering algorithm, to obtain an 
ordering for the elements of the FEM. 

Step 3: Order the nodes of the FEM, element by element, in the same sequence as 
decided in Step 2. Within each element, priority is given to mid-nodes, passive and 
active nodes, respectively. 

ANALYSIS OF INCIDENCE GRAPH METHOD 

Step 1: The running time for this step is O(αδε2). 

Step 2 and Step 3 of this method have the same complexities as Steps 2 and 3 of 
the NAGM. 

5.6.9 REPRESENTATIVE GRAPH METHOD (RGM)  

Definition: Consider the skeleton graph of an FEM, and select an appropriate 
starting vertex, using any available algorithm. The nearest corner node of each 
element of the FEM is taken as the representative node of that element. The SR 
subtree of the SG of the FEM containing all the representative nodes of the ele-
ments is called a representative graph S of the FEM. The representative graph 
(RG) of the FEM shown in Figure 5.6(a) is illustrated in Figure 5.15.  
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Fig. 5.15 The representative graph of the FEM in Figure 5.6(a). 

In order to generate the RG of an FEM, the following steps should be executed: 

Step 1: Execute Steps 1–4 of the algorithm for the formation of the PTG. 

Step 2: Form an SR subtree step by step from ns until each element of the FEM has 
a node whose corresponding vertex in SG is contained in the SR subtree. The first 
selected vertex (in the SR subtree) corresponding to the nodes of each element i 
should be taken as the representative node of i. 

The generated SR subtree is the RG of an FEM. The first step takes O(λδθ2 + 
3αδ ) = O(λδθ 2) operations. For the execution of this step, the element-node list, 
along with the member list or other connectivity lists for a typical element, should 
be given and lists of nodes of elements should be provided in a suitable order. This 
is because of the need for the formation of the SG of the FEM. 

The RG of an FEM is a tree; hence all theorems and properties of trees hold for 
this graph. The number of members of this graph is a very small integer and its 
upper bound is (α − 1). Thus, its compact adjacency list occupies a small amount 
of memory. For example, for the considered m × n grid, the compact adjacency list 
of the RG is a vector of length (2mn − 2). This property of the RG of an FEM 
makes it an efficient model. 

Algorithm 

Step 1: Construct the RG of the FEM and number its vertices, which results in the 
ordering of the elements of the considered FEM. 

Step 2: Use Step 3 of the NAGM to number the nodes of the FEM. 

This method is the most efficient approach from the computational time and stor-
age points of view for most of the practical models. 

ns 
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ANALYSIS OF THE REPRESENTATIVE GRAPH METHOD 

Step 1: The running time for this step is O(λδθ 2 + αδ + λθ + αδε) = O(γ ), where ε 
is the maximum value of the elements of the {λ σ θ 2 , αδε}. 

Step 2: This step requires O(λσθ ) time. 

5.6.10 DISCUSSION OF THE ANALYSIS OF ALGORITHMS 

It can be concluded from the above complexity analyses that the RGM occupies 
the least number of operations for the worst case. In most of the practical models, 
it has been the fastest algorithm. ECGM, SGM, PTGM and TGM have the same 
complexity. The critical steps of these have time complexity O(α2δ ), where α is a 
constant for an FEM but δ differs from one graph to another. However, for the 
practical models studied here, the following results are observed: 

(a) The difference between the times required for ECGM and SGM is small. 

(b) In general, TGM uses slightly more time than PTGM. 

(c) For an FEM with low-order elements, ECGM and SGM, in general, take less 
time than, or nearly the same time as, PTGM and TGM. However, for FEMs with 
high-order elements, PTGM and TGM take far less time than ECGM and SGM. 

The time complexity of the Element Wheel Graph Method (EWGM) for the worst 
case is the highest. For the practical models studied, the following results are ob-
tained: 

(a) In two-dimensional models with elements having less than 10 nodes, EWGM 
generally occupies the highest computational time, but in models with higher-order 
elements, SGM uses the highest computer time. 

(b) In three-dimensional models, NAGM requires the highest computational time. 

Excluding the RGM, the following results can be derived considering the speed for 
the practical models being studied: 

(i) In two-dimensional models with low-order elements, ECGM and SGM may be 
the fastest methods; however, in FEMs with high-order elements, the incidence 
graph method (INGM) is generally the fastest approach. 

(ii) In three-dimensional models, ESGM is generally the most economical algo-
rithm. 
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5.6.11 COMPUTATIONAL RESULTS 

The presented algorithms are implemented on a PC and many examples are exam-
ined, some of which are included in this section. The bandwidth of D and the 
relative computational time for the algorithms are provided.  

Example 1: A planar FEM with three types of elements consisting of 4-node, 8-
node and 12-node elements is considered as shown in Figure 5.16. This model 
contains 1959 nodes and 2250 elements. The combination of elements may not be 
practical; however, it is purposely chosen to illustrate the generality of the methods 
in dealing with the presence of different elements of a model. The results are pre-
sented in Table 5.1.  

 
Fig. 5.16 A planar FEM. 

Table 5.1 Results of Example 1. 
Method ECGM SGM ESGM EWGM PTGM TGM NAGM INGM RGM 

b(D) 
Time 

313 
29.77 

497 
27.02 

313 
21.92 

457 
36.09 

513 
20.65 

515 
22.03 

447 
18.29 

451 
15.71 

491 
9.72 

Example 2: A three-dimensional FE model consisting of 480 (5812) 20-node cu-
bic elements (each edge of the elements has a mid-side node) is considered, having 
a total of 2559 nodes. The results are depicted in Table 5.2.  

Table 5.2 Results of Example 2. 
Method ECGM SGM ESGM EWGM PTGM TGM NAGM INGM RGM 

b(D) 
Time 

843 
18.62 

1173 
7.08 

843 
5.93 

787 
8.12 

1103 
7.47 

1103 
7.85 

1185 
38.67 

845 
7.75 

1195 
5.93 
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Example 3: A planar FEM with two holes is considered as shown in Figure 5.17. 
Six FEMs with 1000 elements are studied with elements having 4 nodes, 4 nodes 
and a mid-node, 8 nodes, 8 nodes and a mid-node, 12 nodes, and 12 nodes and a 
mid-node. These models contain 1134, 2134, 3269, 4204 and 6404 nodes, respec-
tively. The results are depicted in Table 5.3. 

 
Fig. 5.17 A planar FEM with two holes. 

Table 5.3 Results of Example 3.  
 

Element 
 

 
4 nodes 

 
4 nodes + 
mid-node 

 
8 nodes 

 
8 nodes + 
mid-node 

 
12 nodes 

12 nodes 
+ 

mid-node 
ECGM b(D) 

Time 
111 
4.12 

217 
7.25 

333 
15.32 

437 
19.55 

553 
30.49 

657 
37.90 

SGM b(D) 
Time 

95 
4.29 

179 
7.14 

269 
15.93 

347 
20.32 

439 
33.23 

519 
39.71 

EWGM b(D) 
Time 

97 
7.31 

185 
10.60 

313 
17.13 

417 
20.82 

541 
26.04 

639 
29.94 

PTGM b(D) 
Time 

159 
4.29 

309 
6.59 

477 
10.60 

633 
12.97 

807 
16.70 

963 
19.45 

TGM b(D) 
Time 

167 
4.17 

327 
6.98 

479 
11.15 

619 
13.90 

791 
17.74 

945 
21.09 

NAGM b(D) 
Time 

95 
5.22 

177 
6.87 

271 
10.28 

353 
12.31 

447 
16.03 

529 
18.84 

INGM b(D) 
Time 

113 
4.39 

225 
5.77 

341 
7.91 

455 
9.23 

569 
11.10 

687 
12.96 

RGM b(D) 
Time 

95 
2.70 

177 
4.18 

271 
6.48 

353 
8.07 

447 
10.05 

529 
12.24 

Example 4: The FE model of a buttress dam is considered, the section of which is 
illustrated in Figure 5.18, consisting of 480 nodes and 603 elements. This model 
contains three layers of prismatic members, and each element contains six nodes. 
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The results are depicted in Table 5.4. The patterns of the node adjacency matrices 
are presented in the figure. 

Table 5.4 Results of Example 4. 
Method ECGM SGM ESGM EWGM PTGM TGM NAGM INGM RGM 

b(D) 
Time 

125 
1.70 

221 
1.32 

125 
1.70 

221 
2.42 

229 
1.76 

213 
1.76 

175 
6.43 

125 
4.45 

187 
1.54 

 
Fig. 5.18 A planar FEM. 

5.6.12 DISCUSSIONS 

The algorithms presented in this section transform the connectivity of the FEMs 
into the topological properties of different graphs. Then a nodal ordering algorithm 
undertakes numbering the nodes of the graphs, resulting in nodal numbering of the 
FEMs. All the methods presented are low-order polynomial time algorithms. 
Analyses are considered for the worst cases and compared. Such an analysis is the 
most logical way of comparing the algorithms, since most of the combinatorial 
optimisation algorithms are configuration dependent. Each algorithm presented has 
advantages and disadvantages, which become manifest when the algorithm is em-
ployed for models with different types of elements and connectivity properties. It 
should be noted that the relative performance of the algorithms also depends on the 
starting node selection algorithm and the nodal ordering algorithm being em-
ployed. 
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Finally, it should be mentioned that the simultaneous use of two graphs out of the 
nine graphs presented in this section for nodal ordering may lead to a combined 
model more informative than individual models; see Kaveh and Roosta [131].  

5.7 FINITE ELEMENT NODAL ORDERING 
      FOR PROFILE OPTIMISATION 

5.7.1 INTRODUCTION 

When a banded matrix of high order has a wide band and a large number of zeros 
inside it, the diagonal storage scheme may become wasteful. Then a profile (vari-
able band) scheme of Jennings [88], the so-called skyline scheme (Felippa [49]), 
may be used.  

Nodal numbering algorithms can also be applied to profile reduction. As men-
tioned earlier, after nodal numbering for bandwidth reduction, by reversing the 
ordering, a numbering corresponding to a much smaller profile can be found. This 
has been found by George [56] and proved by Liu and Sherman [151]. The method 
is known as the Reverse Cuthill–McKee algorithm. For the Cuthill–McKee type of 
ordering, the bandwidth remains unchanged when the order is reversed; however, 
the profile can never increase.  

For example, consider a nodal numbering for a graph as shown in Figure 5.19(a) 
with corresponding adjacency matrix A in Figure 5.19(b). Reversing the nodal 
numbers as in Figure 5.19(c) leads to a matrix A′ as depicted in Figure 5.19(d), 
with a reduction of the profile from 15 to 13. 
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 (a) A nodal numbering. (b) Matrix A. 
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(c) Reverse of the nodal numbering of (a). (d) Matrix A´. 

Fig. 5.19 A Reverse Cuthill–McKee for nodal numbering. 

There are many algorithms for profile and frontwidth reduction, which can be cate-
gorised in different ways. In this section the general algorithm of Souza and 
Murray [210] is adopted for nodal ordering of all the graph models presented in 
the previous section, to reduce the profile of sparse matrices with symmetric struc-
tures. This algorithm incorporates the algorithm for the selection of peripheral 
nodes, the re-sequencing scheme of Sloan [204] and the algorithm of Gibbs–King 
[58]. 

To proceed with the main algorithms for profile reduction, some definitions are 
stated in the following text. 

The profile of an n × n matrix A is defined as, 

 
1

,
N

i
i

P b
=

= ∑  (5-14) 

where the row bandwidth, bi, for row i is defined as the number of inclusive entries 
from the first non-zero element in the row to the (i + 1)th entry. The efficiency of 
any given ordering for the profile solution scheme is related to the number of ac-
tive equations during each step of the factorisation process. Formally, row j is 
defined to be active during the elimination of column i if j ≥ i and there exists aik = 
0 with k ≤ i. Hence, at the ith stage of the factorisation, the number of active equa-
tions is the number of rows of the profile that intersect column i, ignoring those 
rows already eliminated. Let fi denote the number of equations that are active dur-
ing the elimination of the variable xi. It follows from the symmetric structures of A 
that 

 
1 1

,
N N

i i
i i

P f b
= =

= =∑ ∑  (5-15) 
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where fi is commonly known as the wavefront or frontwidth. Assuming that N and 
the average value of fi are reasonably large, it can be shown that a complete profile 
or front factorisation requires approximately O(Nf 2) operations, where F is the 
root-mean-square wavefront, which is defined as 

 2 0.5

1

1( ) .
N

i
i

F f
N =

= ∑  (5-16) 

Everstine [43] has shown that P/N ≤ F ≤ Wmax ≤ B, where Wmax is the maximum 
wavefront. Hence, to minimise the storage requirement and solution time, it is im-
perative to reduce the profile and root-mean-square wavefront, respectively. As 
both P and F are related, any algorithm that seeks to minimise either inevitably 
tends to reduce the other as well. We call an algorithm efficient if it results in sig-
nificant profile reduction in a reasonable computer time. 

In the storage scheme due to Jennings, all elements that belong to the envelope are 
stored row by row including zeros, in a one-dimensional array, say AN. Diagonal 
elements are stored at the end of each row. The length of AN is equal to Profile 
(A) + n. An array of pointers IN, the entries of which are pointers to the locations 
of the diagonal elements in AN, is also necessary. Thus, the elements of row i, 
when i > 1, are in positions IN(i − 1) + 1 to IN(i). The only element of row 1 is 
A11, stored in AN(1). The elements have consecutive, easily calculable column 
indices. 

For example, the matrix of Eq. (5-4) has a profile equal to 4, and its envelope stor-
age is 

 Position = 987654321  

 AN        = [ ]548937261  

 IN          = [ ]98531  

A variant of Jennings´s scheme is obtained when the transpose of the lower enve-
lope is stored. In this case, elements are stored column-wise, and since the columns 
of the matrix retain their length, the scheme is often termed skyline storage. The 
profile of a matrix also changes if the rows and columns are permuted. 

5.7.2 GRAPH NODAL NUMBERING FOR PROFILE REDUCTION 

Graph models defined in the previous section are incorporated in a general algo-
rithm of Souza and Murray [209] to obtain ten approaches for profile reduction. 
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This algorithm is based on Sloan´s algorithm, using priorities to control the selec-
tion of nodes from a priority queue. Some of its features are adapted in the 
following algorithms. 

The numbering and control of nodes in the priority queue are carried out through 
the assignment of status, based on the numbering strategy of King [137], which 
operates as follows: 

Take a node of minimum valency and number it “1”. The set of nodes is now di-
vided into three subsets, A, B and C. The subset A consists of nodes already 
numbered. The subset B is defined as B = Adj (A); that is, it consists of all nodes 
adjacent to any node of A. The subset C contains the remaining nodes. Then, at 
each step, number the node of subset B that causes the smallest number of nodes of 
subset C to be transferred to subset B, and redefine A, B and C, accordingly. 

For example, consider a graph S with original nodal numbering as shown in Figure 
5.20(a). 

Take node “5” as a starting node and number it as “1”. Then: 

A = {5}, B = {1,8} and C = {the remaining nodes}. 

1

2

3

4

5 6

7

8

1 3

7

8

6
5

4

2

  
 (a) (b) 

Fig. 5.20 An example of numbering by King´s algorithm.  

At this stage, 1, 8 are the next candidates. If 1 is taken to A, then 2 will come to B; 
and for 8, node 7 will join B. Therefore, arbitrarily, 1 is taken to A and numbered 
as “2”. Now we have: 

A = {5,1}, B = {8,2} and C = {the remaining nodes}. 

From new candidates 8 and 2, naturally 8 will be selected because it brings only 7 
to B, while 2 brings 3 and 6. Therefore, 8 is numbered as 3. This process is contin-
ued until the nodal numbering of Figure 5.20(b) is obtained, which corresponds to 
a profile equal to 14. 
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The nodes in the above strategy can be categorised more formally as follows: 

Prior to the numbering, all the nodes of a graph model G of the considered FEM 
are assigned inactive status. When a node of G is inserted in the priority queue, it 
is assigned pre-active status. After a node is numbered, it is assigned post-active 
status. Nodes that are adjacent to a post-active node and do not have post-active 
status are defined as having active status, as shown in Figure 5.21. King’s algo-
rithm is generalised by Sloan [203] by introducing a priority queue to control the 
order to be followed in the numbering of the nodes. This algorithm consists of the 
following two phases: 

Inactive 

A ctive 

P re-active 

P ost-active 

1 

2 

x 

y z 

 
Fig. 5.21 Nodes in different status. 

Phase 1: Selection of pseudo-peripheral nodes  

The pair of starting nodes is determined according to the following steps: 

Step 1: Choose an arbitrary node v of minimum degree. 

Step 2: Generate an 1 2SRT { , ,..., }v v v
v dC C C=  rooted from v. Let S be the list of the 

nodes of v
dC , which is stored in the order of increasing degree. 

Step 3: Decompose S into subsets Sj of cardinality   jS , j = 1,2, ..., ∆, where ∆ is 
the maximum degree of any node of S, such that all nodes in Sj have degree j. Gen-
erate an SRT from each node y in S, for the first 1 jm≤ ≤ ∆ . If d(SRTy) > d(SRTv), 
then set v = y and go to Step 2. 
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Step 4: Let u be the root of the longest SRT that has the smallest width. When the 
algorithm terminates, v and u are end points of a pseudo-diameter. 

Step 1 of the above algorithm uses O(ψ) operations, where ψ is the number of 
nodes of the graph employed for the connectivity of the considered FEM. The time 
complexity of Step 2 is O(ψδ ). The execution of Step 3 uses O(ψ2δ ) for the worst 
case. The time complexity of Step 4 is O(λ ). The critical step of the method is 
Step 3; its time complexity shows that the elapsed time for execution of this algo-
rithm grows proportionally to the square of the number of nodes of the graph 
model.  

Phase 2: Numbering 

The general algorithm for nodal numbering of an arbitrary graph associated with 
an FEM consists of the following steps: 

Step 1: The priority queue denoted by Q is initialised with a starting node s, that is, 
Q1 = s. Set n = 1, where n is the length of the queue. The node s is assigned a pre-
active status. Let k be the node count, which is initially set equal to zero or equal to 
the last number being used, in the case of disconnected graph models. 

Step 2: Assign initial status and priorities to all the nodes. 

Step 3: Select the node u ∈ Q that has the maximum priority. Let i be the index of 
node u in the queue such that Qi = u. 

Step 4: Update queue, priority and status. Delete u from Q by setting Qi = Qn and  
n ← n − 1. Insert nodes in queue: for each node x adjacent to u, whose status is 
inactive, set n ← n + 1 and Qn = x. Assign node x a pre-active status and update 
priorities. 

Step 5: Increment the node count by setting k ← k + 1, and label node u by la-
bel(u) ← k, where label(.) contains the new labels of the nodes of the graph model. 
The node u is assigned a post-active status. 

Step 6: If n > 0, that is, there are still nodes in the queue, then update priorities and 
status and go back to Step 3. 

Step 7: Exit; that is, the new ordering is now completed, and the number of each 
node u is obtained as label(u). 
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5.7.3 NODAL ORDERING WITH ELEMENT CLIQUE GRAPH (NOECG) 

In this method, Sloan´s criteria and definition for profile reduction are adapted and 
the general algorithm of the previous section along with the element clique graph 
of the considered FEM are employed for ordering. In Sloan´s algorithm, a quantity 
is defined and used as the current degree. The initial priority for each node is set to  

 Pv = W1 × d(e, v) – W2 × cd(v), (5-17) 

where W1 and W2 are integers (set to W1= 1 and W2 = 2 in the original algorithm of 
Sloan [203] ), d(e, v) is the distance of node v from the end node e, and cd(v) is the 
current degree of v. 

In Step 4 of the general algorithm, if u has pre-active status, then each node x that 
is adjacent to it has its priority incremented according to px ← px + W2. This is 
equivalent to decreasing the current degree of node x by unity. 

In Step 6, each node x that is adjacent to the node u has its priority and status up-
dated if it is pre-active. Then it is assigned an active status and its priority is 
increased by setting px ← px + W2. Each node y that is adjacent to x is examined 
next, according to the following conditions: 

(i) if y is not post-active, its priority is incremented by setting py ← px + W2; 

(ii) else, if y is inactive, then it is assigned pre-active status and increased in the 
priority queue by setting n ← n + 1 and Qn = y. The time complexity of this 
method is O(α2) for the worst case.  

5.7.4 NODAL ORDERING WITH SKELETON GRAPH (NOSG) 

The method for ordering the nodes of the SG of an FEM, to reduce the profile dif-
fers in the following two ways from the method of Nodal Ordering with Element 
Clique Graph (NOECG) (i.e. Sloan´s method): 

1. The distance between each node of SG and s (not e) is considered. 

2. The initial priorities of nodes are calculated in a different manner. 

The steps of the algorithm are outlined as follows: 

Step 1: Form an SRT from S and compute the distance d(s, v) between each node v 
of the SG and the starting node s. 
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Step 2: Assign each node in the graph an inactive status and compute its initial 
priority, pv, according to 

 Pv = − d(s, v) − 3 × deg(v), (5-18) 

where deg(v) is the degree of node v. 

Step 3: Initialise the priority queue Q with the starting node s, that is, Q1 = s. Set  
n = 1, where n is the length of the queue. The node s is assigned pre-active status. 
Let k be the node count. 

Step 4: While the priority queue is not empty, which is signified by n > 0, execute 
Steps 5–8. 

Step 5: Select node u ∈ Q that has the maximum priority. Let i be the index of the 
node u in the queue such that Qi = u.  

Step 6: Delete node u from the priority queue by setting Qi = Qn and decreasing n 
according to n ← n − 1. If node u is not pre-active, go to Step 7. Otherwise, exam-
ine each node w that is adjacent to node u and increment its priority according to 
p(w) = p(w) + 2. If node w is inactive, then insert it in the priority queue with a 
pre-active status by setting n ← n + 1 and Qi = w. 

Step 7: Label node u with its new number by incrementing the node count accord-
ing to k←k +1 and setting label(u) ←k. Assign node u a post-active status. 

Step 8: Examine each node w that is adjacent to node u. If node w is pre-active, 
assign node w an active status, set p(w) = p(w) + 2 and examine each node x that is 
adjacent to node w. If node x is not post-active, increment its priority to p(x) = p(x) 
+ 2. If node x is inactive, insert it in the priority queue with a pre-active status by 
setting n ← n + 1 and Qn = x. 

Once the above steps are carried out, the new label of each node v will be label(v). 
The time complexity of this method is the same as that of the NOECG method, for 
the worst case. However, it is interesting to note that the Nodal Ordering with 
Skeleton Graph (NOSG) must be executed faster than the NOECG in average 
cases, since the value of n NOSG is mostly less than that in the NOECG. This is 
because, for FEMs containing elements with four or more nodes, the degree of 
nodes of the SG is less than those of the ECG. These two methods need the same 
lists for nodal ordering of the considered graph; however, note that the compact 
adjacency list of the SG occupies usually less memory than that of the ECG.  
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5.7.5 NODAL ORDERING WITH ELEMENT STAR GRAPH (NOESG)  

The profile reduction algorithm that employs the ESG of an FEM is the same as 
that of NOECG with the following modifications being imposed:  

If a virtual node u (a node whose old label is more than λ) is selected for being 
labelled, it should be labelled with its new number by λ plus another node count 
without incrementing according to k ′ ← k ′ +1 and setting label(u) = λ + k ′ . 

This modification enables the numbering of the elements of the main set to be var-
ied continuously from 1 to α. 

This method uses O(γ 2) operations in worst case, where γ = λ + α, and needs the 
same lists as the NOECG and the NOSG. Clearly, the lists needed for the Nodal 
Ordering with Element Star Graph (NOESG) take large amounts of memory, since 
ESG has λ nodes more than those of the ECG and SG. 

5.7.6 NODAL ORDERING WITH ELEMENT WHEEL GRAPH (NOEWG) 

The same method as that of Section 5.7.5 is employed for ordering the nodes of the 
EWG of an FEM. The time complexity of the Nodal Ordering with Element Wheel 
Graph (NOEWG) is the same as that of the NOESG for the worst case. However, 
the NOESG is executed faster than the NOEWG in average cases, since the value 
of n in the process of the NOESG is, in general, less than that of the NOEWG, 
since for all FEMs, the degrees of the nodes of the ESG are, in general, less than 
those of the EWG. These two methods require the same lists to be provided for 
nodal ordering of the considered graph model. However, the compact adjacency 
list of the ESG uses fewer words of memory than that of the EWG.  

5.7.7 NODAL ORDERING WITH PARTIALLY TRIANGULATED GRAPH 
         (NOPTG) 

Ordering the nodes of the PTG of an FEM for profile reduction does not require 
the selection of a pair of pseudo-peripheral nodes. The same good starting node 
used for the formation of the PTG (the node found in the SG for the formation of 
the PTG) can be used again in the Nodal Ordering with Partially Triangulated 
Graph (NOPTG) as the starting nodes s. The following two steps together with 
Steps 3–8 of the NOSG presented in Section 5.7.4 complete the process of the 
NOPTG. 

Step 1: Form an SRT from the good starting node s used for the formation of the 
PTG and compute the distance d(s, v) between each node v of the PTG and the 
starting node s. 
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Step 2: Assign each node in the graph an inactive status and compute its initial 
priority, pv according to 

 Pv = − d(s, v) − 2 × (deg(v) + 1). (5-19) 

The time complexity of this method is clearly the same as that of the NOECG and 
NOSG methods for worst case. In the NOPTG method, the same lists needed for 
the previous four methods should be provided. However, some of these lists such 
as the compact adjacency list do not take the same number of words of memory in 
different graph models. 

5.7.8 NODAL ORDERING WITH TRIANGULATED GRAPH (NOTG) 

In order to number the nodes of the TG of an FEM for profile reduction, it is not 
necessary to find a pair of pseudo-peripheral nodes. The same good starting node 
used for the formation of the TG is employed again in the Nodal Ordering with 
Triangulated Graph (NOTG) as the starting node s. The following steps along with 
Steps 2–8 of the NOSG method complete the process of NOTG. 

Step 1: Form an SRT from the good starting node s used in the formation of the 
TG and compute the distance d(s, v) between each node v of the TG and the start-
ing node s. 

The time complexity of this method is the same as that for methods NOECG, 
NOSG and NOPTG for the worst case. 

The value of n in the NOTG process is mostly greater than that in NOSG and 
NOPTG, since the degrees of the nodes of the TG are mostly more than those of 
the PTG and the SG. Thus, NOTG is executed more slowly than NOSG and 
NOPTG in average cases. An advantage of NOTG, like NOPTG, is that no 
pseudo-peripheral nodes are needed.  

5.7.9 NODAL ORDERING WITH NATURAL ASSOCIATE GRAPH (NONAG)  

The profile reduction algorithm that employs the NAG of the FEM consists of two 
phases. In the first phase, which is the same as NOECG, the nodes of the NAG are 
ordered. In the second phase, the nodes of the considered FEM are ordered on the 
basis of the new labels of the nodes of the NAG. This process consists of the fol-
lowing steps: 

Step 1: For each node i of the graph model set n(label(i)) = i. 

Step 2: For each element e corresponding to the node u, u = n( j), j = 1,2, ..., a, 
label the unlabelled nodes of e, in turn. 
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The time complexity of the first phase of this algorithm is O(λ2) and the second 
phase uses O(α + λθ ) = O(λθ ) operations. 

This algorithm requires the same lists as the previous methods; however, the num-
ber of nodes of the graph model is equal to λ. Therefore, it is very efficient for 
FEMs containing higher-order elements. In the second phase of this method, an 
additional list with λ integer words of memory is needed, which is denoted by n(.) 
in the steps of the process. However, this list can be created when most of the lists 
needed for the first phase are not required, and can be erased from the working 
memory. 

5.7.10 NODAL ORDERING WITH INCIDENCE GRAPH (NOIG) 

The profile heuristic that employs the IG of an FEM consists of two parts, as in the 
Nodal Ordering with Natural Associate Graph (NONAG) method. These phases 
are the same as those of NONAG, with IG being employed in place of NAG. 

Time and memory complexities of the Nodal Ordering with Incidence Graph 
(NOIG) are the same as those of NONAG. However, the value of n is higher than 
that of the NONAG, since degrees of the IG are more than those of the NAG. 
Therefore, the NOIG should have slower execution than NONAG in average 
cases.  

5.7.11 NODAL ORDERING WITH REPRESENTATIVE GRAPH (NORG) 

This method consists of two parts. The first part orders the nodes of the RG, that 
is, the representative nodes of the elements of the considered FEM. The second 
phase orders the nodes of the considered FEM based on the new labels of the rep-
resentative nodes of the elements of the FEM. 

The first part consists of the following steps: 

Step 1: Form an SRT from a good starting node s used for the formation of the RG 
and compute the distance d(s, v) between each node v of the RG and the starting 
node s. 

Step 2: Assign an inactive status to each node in the graph and compute its initial 
priority pv, according to 

 Pv = − 3 × d(s, v) − ε(v), (5-20) 

where ε(v) denotes the number of elements incident to node v. 
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Step 3: Initialise the priority queue Q with the starting node s used for the forma-
tion of the RG, that is, Q1 = s. Set n = 1, where n is the length of the queue. The 
node s is assigned a pre-active status. Let k be the node count.  

Step 4: While the priority queue is not empty, signified by n > 0, execute Steps 5–8. 

Step 5: Select node u ∈ Q that has the maximum priority. Let i be the index of the 
node u in the queue such that Qi = u. 

Step 6: Delete node u from the priority queue by setting Qi = Qn and decrementing 
n according to n ← n − 1. If node i is not pre-active, go to Step 7, otherwise exam-
ine each node w that is adjacent to node u and increment its priority according to 
p(w) = p(w) + 1. If node w is inactive, then insert it in the priority queue with a 
pre-active status by setting n ← n + 1 and Qn = w. 

Step 7: Label node u with its new number by incrementing the node count accord-
ing to k ← k + 1, and setting label(u) ← k. Assign node u a post-active status. 

Step 8: Examine each node w that is adjacent to node u. If node w is pre-active, 
assign node w an active status, set p(w) = p(w) + 1 and examine each node x that is 
adjacent to node w. If node x is not post-active, increment its priority to p(x) = p(x) 
+ 1. If node x is inactive, insert it in the priority queue with a pre-active status by 
setting n ← n + 1 and Qn = x.  

When the above steps are completely performed, the new label of each node v is 
label(v). In this method, there is no need to find any pseudo-peripheral, and the 
same good starting node used for generating the RG is employed again in the proc-
ess of numbering.  

The second phase of the algorithm consists of the following steps:  

Step 1: For each node i of the graph model set n(label(i)) = i. 

Step 2: Set k = 0. Check each element e containing node u, u = n(j), j = 1,2, ..., α, 
in turn; if e does not contain a node v corresponding to n(l) and i < j, then set k ← 
k + 1 and m(k) = e. 

Step 3: Set label(i) = 0, where i = 1,2,..., α. 

Step 4: Set l = 0. Check each node w of element e, e = m( j), j = 1,2, ..., α, in turn; 
if label(w) = 0, then set i = 0 +1 and label(w) = 1. 

The time complexity of the first part of this algorithm is O(α2), and the second part 
uses O(λθ 2) operations. The time complexity of the second phase can be reduced 
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by using an additional list in Step 2 to show whether element e has been previously 
detected. This procedure uses O(λθ ) operations. The first phase of the algorithm 
Nodal Ordering with Representative Graph (NORG) requires the same lists as the 
previous methods of profile reduction. 

Complete Representative Graph (CREG) 

This graph is the same as the REG with additional members connecting each pair 
of nodes in the Complete Representative Graph (CREG), if their corresponding 
nodes in the FEM are contained in the same element.  

5.7.12 NODAL ORDERING WITH ELEMENT CLIQUE REPRESENTATIVE 
           GRAPH (NOECRG)  

The profile reduction of this method consists of two steps, as in the NONAG, 
NOIG and NORG methods. The first process is the same as that of Sloan´s algo-
rithm (NOECG), and the second step is similar to the second step of the NORG 
approach. 

The time complexity and memory complexity of the Nodal Ordering with Element 
Clique Representative Graph (NOECRG) method are the same as those of the 
NORG, but the magnitude of n in the process of NOECRG is, in general, far 
higher than that of the NORG, since the degrees of the nodes of ECRG are gener-
ally much greater than those of RG. Therefore, NOECRG should be slower in 
execution than RG. 

5.7.13 COMPUTATIONAL RESULTS 

A program is developed for implementing the algorithms as shown in Tables 5.5–
5.8, and many FEMs are studied. Four examples are presented here. For each 
problem a table is provided for illustrating the new profile obtained from the new 
labels of the nodes, and the elapsed time for executing the program is also given 
for each case. The numbers of nodes α and elements λ of each FEM are provided 
in the captions of the Figures 5.22–5.25. 
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Fig. 5.22 α = 240 and λ = 499. 

Table 5.5 

Algorithm Profile Elapsed time 
NOECG 3207 0.22 
NOSG 3236 0.22 

NOESG 3367 0.44 
NOEWG 3465 0.66 
NOPTG 3194 0.28 
NOTG 3237 0.27 

NONAG 3365 0.71 
NOIG 3365 0.60 
NORG 3460 0.33 

NOECRG 3185 0.44 
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Fig. 5.23 α = 748 and λ = 1236. 

Table 5.6 

Algorithm Profile Elapsed time 
NOECG 7444 0.39 
NOSG 8436 0.39 

NOESG 8336 0.87 
NOEWG 8256 1.27 
NOPTG 8527 0.65 
NOTG 8514 0.66 

NONAG 7320 0.93 
NOIG 7204 1.32 
NORG 9388 0.66 

NOECRG 7818 0.88 
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Fig. 5.24 α = 936 and λ = 1640. 

Table 5.7 

Algorithm Profile Elapsed time 
NOECG 12,248 0.72 
NOSG 13,142 0.71 

NOESG 13,016 1.37 
NOEWG 13,049 2.03 
NOPTG 13,282 1.16 
NOTG 13,113 1.21 

NONAG 12,631 1.54 
NOIG 12,665 1.98 
NORG 16,055 1.16 

NOECRG 12,894 1.65 
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Fig. 5.25 α = 936 and λ = 1640. 

Table 5.8 

Algorithm Profile Elapsed time 
NOECG 15,223 0.88 
NOSG 16,217 0.93 

NOESG 16,008 1.87 
NOEWG 15,852 2.63 
NOPTG 15,391 1.48 
NOTG 16,204 1.60 

NONAG 15,482 2.15 
NOIG 15,345 2.69 
NORG 17,474 1.42 

NOECRG 15,343 2.09 

5.7.14 DISCUSSIONS 

The algorithms presented for the profile reduction of sparse matrices with symmet-
ric structures are analysed for the worst case to show their time and memory 
complexities. 

The programs developed for these algorithms have been tested on many examples, 
and Table 5.9 is obtained, which illustrates the average computational time (in 
seconds) of the methods.  
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Table 5.9 

Algorithm Average of the computa-
tional time 

NOECG 0.99 
NOSG 0.77 

NOESG 1.39 
NOEWG 1.96 
NOPTG 1.25 
NOTG 1.32 

NONAG 1.33 
NOIG 1.45 
NORG 1.17 

NOECRG 1.90 

5.8 ELEMENT ORDERING FOR FRONTWIDTH REDUCTION 

For the solution of sparse systems of simultaneous equations arising from the 
FEM, the frontal methodology due to Irons [87] and the profile method described 
by George [56], as well as band-matrix techniques, are commonly used. These 
methods exploit the sparsity of the coefficient matrices generated by the FE ap-
proximation. They differ, however, in one significant respect: the band and profile 
methods first construct the coefficient matrix explicitly, while the frontal method 
arranges for the elimination of variables as it assembles the matrix. 

The most suitable ordering of the equation is dependent on the type of equation-
solving scheme adopted (i.e. whether a band, profile or frontal solver is used). In 
FE analysis, in the case of one degree of freedom per node, performing nodal or-
dering is equivalent to reordering the equations. In a more general problem with β 
degrees of freedom per node, there are β-coupled equations produced by each 
node. In this case re-sequencing is usually performed on the nodal numbering to 
reduce the bandwidth, profile or frontwidth, because the size of this problem is β 
times less than that for degree of freedom numbering. 

In this section, a graph-theoretical approach is designed for element renumbering 
of the FE meshes for frontwidth reduction of sparse matrices with symmetric struc-
tures. In this heuristic, the problem is transformed into that of a graph nodal 
ordering. The IG of a mesh is used for representing its connectivity. The efficiency 
of the method is illustrated by worst-case analysis and examples of unstructured 
FE models. 



 OPTIMAL STRUCTURAL ANALYSIS 

 

242 

5.8.1 DEFINITIONS 

Neighbouring nodes of a subgraph Si of S are the nodes contained in N(S) − N(Si) 
that are adjacent to the nodes of Si. 

A tree is rooted from a given node n; it may be denoted by Tn. A spanning tree is a 
tree containing all the nodes of S. A shortest root tree (

0
SRTn ) rooted from a 

specified node (starting node) n0, is a spanning tree for which the distance between 
every node nj of T and n0 is minimum, where the distance between the two nodes 
is taken as the number of members in the shortest path between these nodes. A 
multiple root SRT (MRSRTR) is an SRT, but rooted from a set of nodes R. 

A contour 
0

k
nC  of an 

0
SRTn  contains all nodes with equi-distance k from n0. The 

number of contours “d ” of an SRT is known as its depth or length, and the highest 
number of nodes in a contour “w” specifies the width of an SRT. The last contour 
of an SRTn0 is denoted by 

0

i
nC . A contour 

0

d
nC  of an 

0
SRTn  can be disconnected, 

that is, there may be no path included in 
0

i
nC  between all pairs of its nodes. Each 

component of a disconnected contour is called a subcontour. A heeled SRT 
( 0HSRTn

c ) is a MRSRT rooted from a subcontour C of a contour 
0

i
nC  but ex-

panded on the part that contains a component of 
0

1i
nC − . The following algorithm is 

employed for generating an 0HSRTn
c  in which C is a component of 

0

i
nC  with a 

desired property, for example, the component with the smallest number of nodes.  

1. Form 
0

SRTn  and check 
0

i
nC  in order to find a subcontour c with the desired 

property. 

2. Designate the nodes of c as 0
cC . 

3. Select the nodes of 
0

1i
nC −  that are adjacent to the nodes of 0

cC  as 1
cC . 

4. Select unselected nodes adjacent to 1
cC  as 2

cC . Repeat this process to 
form 3

cC , 4
cC , …, j

cC , where j
cC  is a contour for which there is no unselected 

node.  

5. If all nodes are selected, the formation of 0HSRTn
c  is completed; otherwise, 

select unselected nodes adjacent to 0
cC  as 1j

cC + . Then take the unselected nodes 
adjacent to 1j

cC +  as 2j
cC +  and repeat this process until all the nodes are selected.  
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The IG of an FEM has its nodes in a one-to-one correspondence with the elements 
of the FEM, and two nodes are connected with an edge if the corresponding ele-
ments have at least one common node. 

A level structure L(r) of an FEM rooted from an element r (as the root) is defined 
as a partitioning of the set of elements into levels l1(r), l2(r), ..., ld(r) such that: 

1. l1(r) = {r}; 

2. all elements adjacent to the elements in level li(r) (1 < i < d) are in levels li–1(r), 
li(r) and li+1(r); 

3. all elements adjacent to the elements in level ld(r) are in levels ld–1(r) and ld(r). 

The overall level structure may be shown as L(r) = {l1(r), l2(r), ..., ld(r)}, where d 
is the depth of the level structure rooted at element r and is simply the total number 
of levels, and two elements are adjacent if they share a common node. 

The element adjacency list of an FEM contains the list of elements adjacent to 
each element. The element-node list of an FEM contains the list of nodes of each 
element and is generally employed as input for data connectivity of FEMs. The 
node-element list contains the list of elements containing each node of the FEM. 

Consider the solution of sparse linear systems of equations,  

 Ax = b, (5-21) 

where the n × n matrix A is a sum of elemental matrices:  

 [1]

1

,
m

i=

= ∑A A  (5-22) 

and the right-hand side vector b is of the form:  

 [1]

1
.

m

i=

= ∑b b  (5-23) 

In Eq. (5-22), each matrix A[l] has entries only in the principal submatrix corre-
sponding to the variables in element l and represents contributions from this 
element. This principal submatrix is assumed to be dense (any zeros are stored 
explicitly). The matrix A may be unsymmetric but the form of Eq. (5-22) implies 
that it has a symmetric pattern. 
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With reference to Eq. (5-21), column j is said to be active at stage i if j ≥ i and 
there is a non-zero entry in column j with a row index, k, such that k ≤ i. Letting fi 
denote the number of columns that are active at stage i, the maximum frontwidth of 
A is given by 

 Fmax = max {fi}. (5-24) 

 1 ≤ i ≤ n 

The root-mean-squared frontwidth is defined as 

 
1
221

1

( )
n

in
i

F f
=

= ∑   (5-25) 

5.8.2 DIFFERENT STRATEGIES FOR FRONTWIDTH REDUCTION 

There are many algorithms for profile and frontwidth reduction, such as those of 
Kaveh and Ramachandran [128], Duff et al. [39], Razzaque [185], Pina [177], and 
many others, which can be categorised in different ways. Akin and Purdue [3] 
have divided these methods into two groups: direct and indirect approaches. In 
direct methods, elements are renumbered directly to minimise the profile and 
frontwidth. Indirect methods first renumber the nodes and then reorder the ele-
ments on the basis of the new labels of their nodes. When attempting to develop 
schemes for minimising the profile and frontwidth of sparse matrix equations, it is 
fruitful to consider schemes that are aimed at minimising the bandwidth. This is 
because the maximum frontwidth must always be less than or equal to the corre-
sponding bandwidth (if the variables are eliminated in the same order). Thus one 
method of reducing the frontwidth is to resequence the nodes first to minimise the 
bandwidth and then to relabel the elements so that the new order of elimination is 
presented as closely as possible [3,185]. The effectiveness of this strategy is obvi-
ously dependent on the performance of the bandwidth minimisation procedure and 
thus suffers from the disadvantage of being indirect. 

Another way to categorise the renumbering schemes is to consider how the algo-
rithms use the connectivity of an FEM. In the general case, these algorithms can be 
grouped into two categories: engineering-based and graph theory–based heuristics. 
The first applies the element-node list, exclusive of other lists generated using this 
list such as the node-element list, to improve the efficiency of the considered 
method; for example, see Webb and Froncioni [225]. However, there are engineer-
ing-based methods that use the concepts of graph theory to form the auxiliary lists; 
for instance, Pina [177] has cryptically employed the NAG and the IG. Graph-
theoretical heuristics can be found in [128,203–206] among many others. In these 
methods, the connectivity properties of FEMs are transformed into different graph  
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models [133]. These transformations lessen the time complexities of the renumber-
ing procedures at the expense of computer storage and time for keeping and 
generating the data connectivity of the graph models employed. 

In this section, the renumbering procedures are divided into five main categories as 
follows: 

1. Level (contour) expansion methods;  

2. Sublevel (subcontour) expansion methods; 

3. Nodal (elemental) expansion methods; 

4. Divide-and-conquer methods; and 

5. Node (element) shuffling methods.  

It should be noted that in the rest of this section the term “node” is used as the unit 
of a model that should be renumbered. This unit can be a node, an element or a 
super element.  

Level expansion procedures start the process of renumbering from one or more 
nodes as the first level of a level structure or the first contour of an SRT and re-
number unlabelled nodes connected to the previous level contour containing 
renumbered nodes. This process is continued until all nodes are relabelled. Level 
expansion schemes are efficient for bandwidth reduction and are very easily im-
plemented. However, it is simple to show that these methods can easily lead to 
inefficient profiles and frontwidths [43,205]. 

Sublevel expansion methods are similar to level expansion methods, but the proc-
ess of renumbering expands from a sublevel. The process of renumbering is 
continued by renumbering the unrenumbered nodes of a sublevel connected to a 
sublevel with relabelled nodes; see, for example Plesek [180]. 

Nodal expansion methods for profile and frontwidth reduction are the most popu-
lar schemes. In these algorithms, each unrelabelled node is assigned a single 
number as its weight or priority number, and in each step one node with the high-
est priority is selected. Some of these methods such as the one discussed in [204] 
benefit from the global properties (such as pseudo-diameter) as well as local prop-
erties (such as degrees of nodes) of FEMs. 

The divide-and-conquer strategy divides the set of nodes into two or more subsets 
and then treats each subset as a new set, and the process of division is continued 
until a specified condition (e.g. that a final subset should contain a single node) is 
fulfilled. The process of renumbering is carried out synchronously or when the 
process of division is completed [199].  
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The most important character of the node shuffling methods is the multiple modi-
fication of the new labels of two or more or even all nodes to improve the results. 
Such modifications may be made where the frontwidth or bandwidth has the high-
est magnitude, or may be carried out randomly. These methods suffer from high 
computer time requirement and benefit from very efficient results. It should be 
noted that the methods that apply the non-deterministic heuristics used in combina-
torial optimisation such as Simulated Annealing belong to this category. In the 
classification by Lim et al. [150], where the profile and frontwidth reduction algo-
rithms are categorised into five classes, these methods are considered as exhaustive 
search algorithms.  

5.8.3 EFFICIENT ROOT SELECTION 

A large number of algorithms for reducing the bandwidth, profile or frontwidth 
can be found in the literature. The most efficient algorithms are based on graph 
theory and require one or more starting nodes. The success of these algorithms is 
dependent on the selection of the starting nodes. Gibbs et al. [59] have presented 
an algorithm for finding a pair of starting nodes that are located at nearly maximal 
distance apart. These nodes are known as pseudo-periphal nodes. It is demon-
strated through extensive tests available in the literature that this strategy provides 
good starting nodes. However, in some problems of FE analysis, namely, in mod-
els with square or annular meshes, there may be several candidates for pseudo-
peripheral nodes. The selection of the pair of nodes, however, is not always indif-
ferent. This is because of the heuristic nature of the algorithms and the parameters 
adopted for the selection of the end nodes. Consequently, if additional criteria 
were taken into account, either to limit the eligible nodes or to establish a new rank 
for the nodes, then fewer pairs would be equally rated. Modifications to the origi-
nal pseudo-peripheral node finder strategy given by Gibbs et al. [59] have been 
proposed by Kaveh [101], George and Liu [57], Sloan and Randolph [206] and 
Sloan [204,203]. Souza and Murray [209] have added an additional parameter that 
is checked for the selection of the second end nodes of pseudo-peripheral nodes. 
Their modification generally improves the results of the renumbering algorithms of 
Gibbs et al. [59] and Gibbs–King [58], but at the expense of more computational 
time. This modified algorithm uses more computer time than that of Sloan [204] 
and seldom improves on its results (see, [209]). In terms of the computer storage 
needed for keeping connectivity data of the considered FEM, these two algorithms 
are similar; they apply the ECG. 

There are also very simple methods in which the starting nodes are found using 
only the local properties of an FEM [177]. In these methods, the renumbering 
process generally suffers from the inefficiency of the selected starting nodes.  

An efficient method for finding a root is presented in the following text. We do not 
say that an efficient root should contain a single node or two nodes. A selected  
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root may contain one or several nodes. Removing this restriction from root selec-
tion schemes can lead to very efficient results [131], provided that the global 
properties of the considered FEM are contemplated.  

For FE models composed of high-order elements, Sloan and Randolf [206] have 
noted that it is necessary to consider the corner nodes only when renumbering is 
carried out. This follows from the observation that an element ordering that is effi-
cient for a model of low-order elements is also efficient for an equivalent model of 
high-order elements. Since an FEM of high-order elements may have a small num-
ber of corner nodes, but a large number of nodes in total, this approach leads to 
considerable economy in the ordering phase. 

In this method, only the corner nodes of the element are essential; however, this 
does not mean that interior nodes and mid-side nodes make the method inefficient. 
In the efficient root selection procedure presented in this section, an FEM can con-
tain meshes of different types and dimensions.  

Algorithm  

Step 1: Use the IG of the considered FEM and form a 
0

SRTn  rooted from a node 
n0 with the minimum degree. 

Step 2: Form an 
1

SRTn  rooted from a node n1 of minimum degree from 
1

d
nC . 

Step 3: Check 
1

1
nC

1

2
nC , ...,

1

d
nC  to find a contour with at least two components for 

which a subcontour R′ has a minimum number of neighbouring nodes. 

Step 4: If R′ is found, then generate a heeled SRT from R′. 

Step 5: Select R as the desired root from n0, n1 and R′ according to the minimum 
width of 

0
SRTn , 

1
SRTn  and 1

'HSRTn
R . 

Example: Consider the small multiconnected FEM shown in Figure 5.26(a). The 
IG of the FEM is depicted in Figure 5.26(b). The execution of the steps of the 
above algorithm leads to the following results. 

Step 1: An SRT is formed from node 1, since its degree is minimum. The width of 
SRT1 is equal to 15, and 1

dC  contains nodes 46 and 58. 

Step 2: The degree of node 58 is less than that of node 50; thus SRT58 is formed, 
since its width is equal to 13.  



 OPTIMAL STRUCTURAL ANALYSIS 

 

248 

1 2 3 4 5 6 7 8

9 10 11 12 13

17

22

27

35

43

51

16

21

26

34

42

50

5852 53 54 55 56 57

14 15

19 2018

23 24 25

28 29 30 31 32 33

36 37 38 39 40 41

44 45 46 47 48 49

 
(a) A small multiconnected FEM. 

1

5851

8

 
(b) The incidence graph of the FEM. 

Fig. 5.26 AN FEM and its graph model. 

Step 3: The contours of SRT58 are checked; the subcontour containing nodes 4, 5, 
6, 7, 8 and 12 is selected as R′ because the number of its neighbouring nodes is 
minimum and equal to 6. 

Step 4: 58
'HSRTR  is formed; its contours are as follows: 

0
'RC  = {4, 5, 6, 7, 8, 12}, 1

'RC  = {13, 14, 15, 16}, 2
'RC  = {19, 20, 21}, 3

'RC  = {24, 
25, 26}, 4

'RC  = {31, 32, 33, 34}, 5
'RC  = {30, 38, 39, 40, 41, 42}, 6

'RC  = {29, 37, 45, 
46, 47, 48, 49, 50}, 7

'RC = {23, 28, 36, 44, 52, 53, 54, 55, 56, 57, 58} 8
'RC = {17, 

18, 22, 27, 35, 43, 51}, 9
'RC  = {9, 10, 11}, 10

'RC  = {1, 2, 3}. 
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The width of 58
'HSRTR  is equal to 11. 

Step 5: The width of 58
'HSRTR  is the least one; thus R′ = {4, 5, 6, 7, 8, 12} is se-

lected as R. 

5.8.4 ALGORITHM FOR FRONTWIDTH REDUCTION 

The frontal method can be simply viewed as a variation of the variable band solver 
that is tuned for matrices generated by the FEM. At the heart of most FE problems, 
one has to solve one or more linear systems of the form:  

 Kv = p, (5-26) 

where 
1

,
M

i
i=

= ∑K k   (5-27) 

and M spans the entire set of elements. ki is the stiffness matrix of each individual 
element expressed in a global coordinate system, and v and p are the generalised 
displacement and force vectors, respectively. The matrix K is symmetric and posi-
tive-definite and usually very sparse. The sparseness property must be exploited if 
results are to be obtained in a reasonable time. One approach for solving such sys-
tems is to reorder the equations and to build a skyline or profile of the matrix to 
prevent the fill-in resulting from the factorisation. Next, the summation of the ele-
ment contributions to the global stiffness matrix is performed, which defines the 
assembly phase. It is only then that the factorisation process can proceed, followed 
by forward and backward substitutions. Unfortunately, for large-scale three-
dimensional problems, the memory space required for storing the values within the 
band or skyline representation of K often exceeds the available random access 
memory (RAM), so that the triangular factors of K have to be moved to auxiliary 
storage. This entails the design and implementation of rather critical algorithms for 
the out-of-core assembly and elimination processes; see, for example, Wilson and 
Dovey [232]. 

The frontal method is an alternative to band or skyline solvers that does not require 
the global stiffness matrix to be explicitly assembled and therefore significantly 
reduces the I/O time for out-of-core systems. Instead, assembly and elimination 
processes are merged into a single one. The elemental stiffness matrices are 
formed and assembled until a row of K is completed, and then eliminated. This 
process is carried out in a matrix F(k) similar to the global matrix K, which can be 
referred to as the front matrix or simply the front. This matrix needs to provide 
entries only for the degrees of freedom that are connected to those that have al-
ready been introduced in the front (i.e. assembled) and not yet eliminated (for most 
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problems F(k) will fit in the central memory of a supercomputer). The introduction 
of the ith element in the front can be written as 

 F(k+1) = F(k) + ki. (5-28) 

Once a row (equation) is assembled, the system is partitioned as 

 

( 1)
t ( 1) ,k kk

k
rr r r

+
+

     
= =     
     

d l v p
F v

l F v p
 (5-29) 

where [d   1] is the pivotal row k and ( 1)k
rr
+F  corresponds to the remaining degrees 

of freedom of F(k). The elimination step can now be written as 

 ( 1) ( 1) t 1 ,k k
rr rr
+ + −= −F F l d l  

 (5-30) 
 t .r r k= − −p p l d 1p  

The pivotal row [d   1] and pk are stored in a buffer area or an auxiliary storage for 
later use in the back-substitution step, 

 1( ),k k r
−= −v d p lv  (5-31) 

which is performed in the reverse order of the elimination. Further details can be 
found in Irons [87], Razzaque [185], and Duff et al. [39]. In order to employ this 
method in a vector computer, one may refer to Lesoinne et al. [149], Duff [40], 
Brusa and Riccio [17], Löhner [154] and references cited therein. 

The average number of arithmetic operations in a single elimination step in a fron-
tal algorithm is proportional to the mean-squared frontwidth, and the maximum 
amount of storage required for the frontal matrix during the Gaussian elimination 
is dependent upon the maximum frontwidth. Moreover, the total storage required 
and the amount of work involved in the back-substitution stage depend on the pro-
file of the matrix. Thus the elements are numbered in such a way as to reduce F, 
F  and P. On the other hand, it may be shown that the total number of operations 
required for a profile or frontal elimination is O(NF2), where N denotes the dimen-
sion of the considered sparse symmetric matrix. Thus, to minimise the total 
storage, we minimise the profile, whereas to minimise the total computing time the 
root-mean-square frontwidth has to be reduced. For reducing the maximum 
amount of working memory during the elimination process, the minimisation of 
the maximum frontwidth is needed; see, for example, Carey and Oden [20]. 
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The renumbering procedure of this section is targeted at minimising the maximum 
amount of working memory during the elimination process; on the other hand, 
attention is paid to reducing the maximum frontwidth F. However, optimising the 
computational time and total storage are also contemplated cryptically. 

In the present algorithm when a node i is renumbered as x, a priority number is 
calculated for each unlabelled node adjacent to i. If there is no unlabelled node 
connected to i, then unlabelled nodes connected to the nodes with new labels x − 1, 
x − 2, ..., 1 are checked, in turn, until a node j is renumbered as x + 1. Then the 
priority numbers of the unlabelled nodes adjacent to x + 1 are calculated, and the 
one with the maximum priority number is renumbered as x + 2. This process is 
continued until all the nodes have been renumbered. 

The priority number of a node i is calculated as,  

 1 2 3 3
dis( ) deg( ) dis( )( )i

i c i iPN c c c c
d md md

= × − + × + × , (5-32) 

where, c1, c2 and c3 are defined as follows: 

if R is a subcontour, then c1 = 0.05, c2 = 0.05 and c3 = 0.9, 

else, c1 = 0.9, c2 = 0.04 and c3 = 0.06. 

d denotes the depth of the HSRTCd
R , and dis(i) denotes the distance between d

RC  
and i. deg(i), cdeg(i) and md denote the degree of i, the current degree of i and the 
highest degree of the nodes of the graph model respectively, where, going by 
Sloan and Randolph [206], the current degree of a node is the same as the number 
of unlabelled nodes connected to the node. 

Algorithm  

Step 1: Generate the incidence graph S of the considered FEM.  

Step 2: Find an efficient root R using the method of Section 5.8.3. 

Step 3: Form a (multiple root) SRT from R. Then form an MRSRT from d
RC  and 

calculate the distance between d
RC  and each node of S. 

Step 4: Label the node (nodes) of R (in the same order as they are selected). 
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Step 5: Label an unlabelled node adjacent to the last labelled node j with the maxi-
mum priority number. If there is no unlabelled node connected to j, check the 
previously labelled nodes, in turn. Repeat this process until all nodes are labelled. 

The above method consists of a nodal expansion process and is efficient from two 
significant viewpoints: (1) the priority numbers of a few number of nodes will be 
calculated in each process of renumbering of a node with the highest priority 
(compare with the existing nodal expansion methods), (2) the corner nodes only 
can be given. 

5.8.5 COMPLEXITY OF THE ALGORITHM 

Algorithms may be efficient in several ways. They may be economical in terms of 
computer memory, or computer time, or they may be easy for humans to read, 
write, or understand. Of these virtues, only the first two can easily be quantified. 

The main problem in measuring the time and storage required by a computer pro-
gram or subprogram lies in isolating the properties of the algorithm from the 
properties of the particular machine and language. In the following text, the front-
width reduction heuristic is analysed for the worst case. 

Step 1: The element-node list of an FEM is usually employed as input for data 
connecting of elements, and here such a list is used. This data structure requires λ 

+ 1 + 
1

i
i

λ

θ
=
∑ words of memory, where λ and θi denote the number of elements of 

the FEM and the number of nodes of element i. Clearly, when only the corner 
nodes are given, this data structure occupies far less storage. However, for an effi-
cient programming of algorithms like the present one, this list should not be used 
exclusively. Another data structure should be employed along with the element-
node list because finding elements connected to a specified element takes O(λθ 2) 
operations, where  

 θ = max θi 1 ≤ i ≤ λ (5-33) 

The direct formation of the IG of an FEM has time complexity O(λ2θ 2), which is 
inefficient. In order to improve this, the node-element list should be formed. This 

list requires α + 1 + 
1

i
i

α

ε
=
∑  words of memory, where α and εi denote the number of 

nodes of the FEM and the number of elements connected to node i. The formation 
of the node-element list takes O(θλ) operations. When the node-element list is 
formed, the element-node list can be erased from working memory. Using the 
node-element list, the formation of the IG takes O(αδε2) operations, where δ de-
notes the maximum number of elements connected to an element and 
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 ε = max εi 1 ≤ i ≤ λ (5-34) 

The list that keeps the data of connecting of the IG needs λ + 1 +
1

i
i

λ

δ
=
∑  words of 

memory. When the IG is generated, the node-element list can be erased. 

Step 2: Scanning the nodes of the IG to find a node with the minimum degree 
takes O(λ) operations; note that λ denotes the number of nodes in the IG or the 
number of elements in the FEM. Formation of an SRT, MRSRT or heeled SRT 
(HSRT) takes O(λδ) operations and requires nearly 3 × λ words of memory (for 
worst case). Controlling the contours to find the desired subcontour requires O(λδ) 
operations. 

Step 3: Execution of this step requires O(λδ) operations and 3 × λ words of mem-
ory. 

Step 4: This step has the time complexity O(1). 

Step 5: The time complexity of this step is O(λδ 2) and, excluding the data struc-
ture needed for keeping the data of connectivity of the IG, 3 × λ words of memory 
are required for the efficient execution of this step. λ words are needed for keeping 
the distance, λ words are needed for keeping the new labels of the nodes and λ 
words are also needed to define which node has a new label. 

5.8.6 COMPUTATIONAL RESULTS 

A computer program is developed for the heuristic of this section and many mod-
els are studied; some of them are included in this section, and the maximum 
frontwidth F, root-mean-square F  and profile P, along with the computational 
time T using a PC (80486DXII), are provided for each model. In these examples, 
all corner and mid-side nodes are considered. 

Example 1: An FEM with 240 nodes and 499 bar elements is considered as shown 
in Figure 5.27. For this model, the application of the present algorithm results in an 
ordering corresponding to F = 19, F  = 14.14, P = 6796 and T = 0.72 (sec.).  
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Fig. 5.27 An FEM with bar elements. 

Example 2: An H-shaped FEM with 2096 nodes and 3900 triangular elements is 
considered as depicted in Figure 5.28. For this model, the results are F = 71,  
F  = 32.42, P = 11,676 and T = 12.36.  

 
Fig. 5.28 An H-shaped FEM with triangular elements. 

Example 3: A multiconnected FEM is considered as illustrated in Figure 5.29. 
This model contains 1248 nodes and 1152 quadrilateral elements. The results are  
F = 38, F  = 33.02, P = 37,582 and T = 2.25. 
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Fig. 5.29 A multiconnected FEM with quadrilateral elements.  

Example 4: A multiconnected FEM with 1762 nodes and 910 4-node, 8-node and 
12-node quadrilateral elements is considered as shown in Figure 5.30. The results 
are F = 62, F  = 40.46, P = 34,879 and T = 1.93.  

  

Fig. 5.30 A multiconnected FEM with different types of elements.  

Example 5: An FEM with 2392 nodes and 1800 brick elements is considered, as 
illustrated in Figure 5.31. The execution of this method leads to F = 199,  
F  = 143.85, P = 251,929 and T = 16.98.  
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Fig. 5.31 An FEM with brick elements. 

5.8.7 DISCUSSIONS 

In this section, an algorithm is developed to renumber the elements of FEMs for 
frontwidth reduction of sparse matrices with symmetric structures. The present 
method requires less computer storage, has less time complexity and leads to small 
maximum frontwidth. In this method, the number of candidates for the next label-
ling stage is very less in comparison with the existing methods, and only the corner 
nodes should be given as input. An additional feature of the present procedure is 
the use of multiple node roots, leading to more efficient results than those when a 
single node root is employed. This heuristic is a graph theory–based method that 
contains a nodal expansion process. In the process of expansion, both local and 
global properties of the graph model of the considered FEM are used. The algo-
rithm is applicable to one- to three-dimensional models containing meshes of 
different types and dimensions. 

5.9 ELEMENT ORDERING FOR BANDWIDTH 
      OPTIMISATION OF FLEXIBILITY MATRICES 

The elements of a generalised cycle basis (GCB), as defined in Chapter 3, must be 
ordered to obtain a banded flexibility matrix G. This is similar to ordering the ele-
ments of a cutset basis (nodal numbering) for reducing the bandwidth of the 
stiffness matrix K. This problem can be transferred to a nodal ordering algorithm 
by defining appropriate mathematical structures for the transformation of the con-
nectivity properties; see Kaveh [113]. Two approaches for this problem are 
developed in the following text. 
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5.9.1 AN ASSOCIATE GRAPH 

An associate graph A(B(S)) of a GCB B(S) of S is a graph whose nodes are in a 
one-to-one correspondence with the elements of B(S), and two nodes are con-
nected if two elements of B(S) have at least one common member. For example, 
the associate graph of the mesh basis in Figure 5.32(a) is depicted in Figure 
5.32(b). 

C 

O 

k 

 
 (a) A mesh basis B(S) of S. (b) The associate graph of B(S). 

Fig. 5.32 A mesh basis and its associate graph. 

A weighted associate graph can be similarly defined. For this graph, the nodes and 
members are assigned integer numbers. The weight of a node in A(B(S)) is taken as 
the number of members of the corresponding cycle in S, and the weight of a mem-
ber mk = (ni,nj) in A(B(S)) is taken as the number of members of Ci∩Cj, where Ci 
and Cj are the cycles of S corresponding to the nodes ni and nj of A(B(S)), respec-
tively. 

5.9.2 DISTANCE NUMBER OF AN ELEMENT 

The distance di of a node ni of S from a selected node O is the length of the short-
est path connecting ni to O. The distance number of a cycle or a γ-cycle or an 
element Ck from O is defined as one of the following: 

(a) The distance of the nearest node of Ck from O, denoted by n
kd .  

(b) The distance of the furthest node of Ck from O, denoted by f
kd .  

(c) The mean value of n
kd  and f

kd ; that is, | ( 2
1 )( n

kd + f
kd ) |, where |.| means the 

integer part of the number. 

(d) The sum of n
kd  + | ( 2

1 )L(Ck) |, where L(Ck) is the length of Ck. 

(e) The mean value of the distance of the nodes of Ck; that is,
( )

1

/ ( ) .
kL C

i k
i

d L C
=
∑   
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For example, the values defined above for a cycle Ck are shown in bold lines in 
Figure 5.32(b), and with respect to a reference node O are 5,6,5,7 and 5, respec-
tively. For simplicity, only the integer parts of the divisions are considered.  

Any of the definitions (a)–(e) can be used as the distance number of a cycle, a  
γ-cycle or an element of a FE model. 

5.9.3 ELEMENT ORDERING ALGORITHMS 

In the following text, two algorithms are presented for ordering the elements of a 
cycle basis, a GCB, n FEM or the substructures of a structure. However, for sim-
plicity, we will refer to a GCB only.  

Algorithm A 

Step 1: Order the nodes of S with a nodal numbering algorithm.  

Step 2: Use the same starting node as in Step 1 to form an SRT and find the dis-
tance numbers of the elements of the GCB. 

Step 3: Assign these distance numbers to the nearest (furthest or any other appro-
priate intermediate) nodes of the elements of the GCB. In this process, a node may 
become the representative node of p elements. Then p independent distance num-
bers are assigned to the representative nodes.  

Step 4: Order these nodes in ascending order of distance number. A node repre-
senting p elements receives p different (independent) numbers. For equidistant 
nodes, the same sequence as the nodal numbering of Step 1 should be used, to ef-
fect the connectivity properties of S. 

Step 5: Order the elements of the GCB with the same numbers received by their 
representative nodes. This provides an efficient ordering for the elements of the 
GCB. 

Algorithm B 

Step 1: Construct the associate graph A(B(S)) of the GCB.  

Step 2: Generate an SRT of S, starting from an appropriate node O, and find the 
distance numbers of the elements of the GCB.  

Step 3: Assign these numbers to the nodes of A(B(S)), and order its nodes by a 
nodal numbering algorithm, with a starting node that corresponds to an element 
containing O. 
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Step 4: Reorder the nodes of A(B(S)) in ascending order of their distance numbers 
obtained in Step 2. For equidistant nodes, the same sequence as that obtained by 
the nodal numbering algorithm of Step 3 should be used.  

Step 5: Number the elements in the same order as that obtained for their represen-
tative nodes in A(B(S)). This leads to an efficient numbering of the elements of the 
considered GCB.  

Example: Let S be the model of a rigid-jointed planar frame. Suppose that the 
selected cycle basis consists of the boundaries of the bounded regions of S (a mesh 
basis) as shown in Figure 5.33(a). 

For Algorithm A, an SRT starting from O is generated as in Figure 5.33(a), and the 
distance numbers of the cycles corresponding to definitions (a) and (e) of Section 
5.9.2 are calculated and assigned to the representative nodes of the cycles. The 
nearest node of a cycle to O is taken as its representative node, as shown in Fig-
ures 5.33(b) and (c). These nodes are then ordered, leading to an ordered cycle 
basis. The bandwidths of the cycle adjacency matrices for these orderings are 15 
and 13. The latter result can further be reduced to 11 by imposing additional re-
strictions in the process of ordering. Since the frame is planar, the bandwidths of 
the corresponding flexibility matrices will be 45 and 39, respectively.  

1 2 
3 

4 

5 

6 

7 
8 

9 
10 11 

0 1 
1 
2 

3 4 
4 
5 
5 

O 
 

 (a) An SRT of S. (b) Cycle ordering by definition (a). 
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 (c) Cycle ordering by definition (e). (d) A(B(S)) and its nodal ordering. 

Fig. 5.33 S and ordering the elements of its cycle basis. 
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Algorithm B is also applied to this example. The associate graph A(B(S)) of the 
mesh basis is formed, as shown in Figure 5.33(d). Using definition (e) for the dis-
tance number of the elements, the order of the nodes of A(B(S)) is obtained. The 
numbering of the cycles is shown in Figure 5.33(d), which corresponds to a band-
width of 13 for its cycle adjacency matrix, and 39 for its flexibility matrix.  

5.10 BANDWIDTH REDUCTION FOR RECTANGULAR MATRICES 

In previous sections, the bandwidth optimisation of square matrices has been dis-
cussed. In structural analysis, it may also be desirable to reduce the bandwidth of 
some sparse rectangular matrices. For example, it may be beneficial to reduce the 
bandwidth of the equilibrium equations of a structure; see Kaneko et al. [92]. This 
can be done by optimising the bandwidth of the corresponding cutset basis inci-
dence matrix L. Similarly, for compatibility equations, one can optimise the 
bandwidth of C. 

In this section, a K-total graph is defined and two algorithms are presented for the 
bandwidth reduction of rectangular matrices. 

5.10.1 DEFINITIONS 

Let B be a rectangular matrix with m rows and n columns, whose entries are de-
noted by bij. For each row like i (except the first and the last row, where id = 1 and 
id = n, respectively), the integer part of the real number i(n/m) is defined as id. 
Therefore, the entry of B at position (i,id) is considered as the ith diagonal entry. 
For square matrices, m = n, and i = id. The bandwidth of B is then defined as 

 b(B) = mr + ml + 1, (5-35) 

where 

max{ 0,   },
       1

r d ik dm k i b k i
i n

= − ≠ >
≤ ≤

 

and max{ 0,   }.
       1

l d ik dm i k b k i
i n

= − ≠ <
≤ ≤

 (5-36) 

If B is a symmetric square matrix, then mr = ml and b(B) reduces to the conven-
tional definition of square matrices. A rectangular matrix is called banded if b(B) 
is small compared to m. 

Matrix B in block submatrix form has the same pattern as L, that is, each non-zero 
entry of L corresponds to a η × η submatrix in B, where η is the degree of free-
dom of a node of the structure. Obviously, reduction of the bandwidth of L leads 
to a banded matrix B. 
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The terms “nodes” and “members” have been used for a graph S, and now we use 
“vertices” and “edges” for the elements of a K-total graph, which is defined as 
follows: 

Associate one vertex with each member and each element of the selected cutset 
basis or a cycle (γ-cycle) basis of S. Connect two vertices with an edge if  

(a) the corresponding members are incident;  

(b) the corresponding cutsets (cycles or γ-cycles) are adjacent; 

(c) the corresponding member and cutset (cycle or γ-cycle) are incident.  

When a cutset or cycle is changed to a node of S, then the K-total graph becomes a 
total graph as defined in the graph theory (see, Behzad [10]).  

Examples of K-T(S) are shown in Figures 5.34 and 5.35, when the cocycle basis 
and the cycle basis are considered, respectively. In these figures small squares are 
used to represent members, and circles are employed to show the elements of the 
considered basis.  
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9 

C  * C  * 
C  * C  * 
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3 4 

 
(a) S and the considered cocycle basis. (b) K-T(S) and its nodal ordering. 

Fig. 5.34 Reduction of bandwidth for a cutset basis incidence matrix. 
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 (a) S and the considered cycle basis. (b) K-T(S) and its nodal ordering. 

Fig. 5.35 Reduction of bandwidth for a cycle basis incidence matrix.  
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5.10.2 ALGORITHMS 

Algorithm A  

Construct the K-total graph of S and order its vertices. The corresponding se-
quence leads to a favourable order of cutsets (nodes) and members of S, to reduce 
the bandwidth of L, which is pattern equivalent to the coefficient matrix of the 
equilibrium equations. A similar approach reduces the bandwidth of C, when cy-
cles (γ-cycles) are considered in place of cutsets.  

This algorithm will now be applied to the examples of Figures 5.34 and 5.35, from 
which the corresponding orders for the elements of the bases and members of S are 
obtained.  

Algorithm B 

Order the nodes of S. Then order the unnumbered members of the stars of the 
nodes in the selected sequence, to obtain a reasonably banded L matrix. 

In general, Algorithm A leads to a better result than Algorithm B, at the expense of 
additional computer time.  

5.10.3 EXAMPLES 

Consider a graph S as shown in Figure 5.36 with the corresponding member and 
cutset orders.  

C * C * 
C * C * 

1 
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4 

1 
2 3 

4 
5 

 
Fig. 5.36 S with arbitrarily ordered members and cutsets. 

The cutset basis incidence matrix of S can be written as, 

1

2

3

4

             51 2 3 4
* 1 1
1 1*

*
1 1* 1

1 1 *

m m m m m

C
C
C
C

∗

∗

∗

∗

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ =
 ⋅ ⋅
 ⋅ ⋅ ⋅  

C

 

 

 

b(L) = 4+4+1 =9, 
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where artificially defined diagonal entries are shown with “*” sign. Using the or-
dering obtained by K-T(S), the cutset basis incidence matrix becomes  

 
1

2

3

4

             51 2 3 4
1* 1

1* 1 1
*

.* 1 1
1 1*

m m m m m

C
C
C
C

∗

∗

∗

∗

⋅ ⋅ ⋅ 
 ⋅ ⋅ =
 ⋅ ⋅
 ⋅ ⋅ ⋅  

C

 

 

 

b(L) = 2+2+1 = 5, 

in which the non-zero entries are clustered to the diagonal of the matrix. 

As a second example, consider S as shown in Figure 5.37, in which the regional 
cycles and members are arbitrarily numbered. 

1 2 3 
4 5 6 7 

8 9 10 
C C C 1 2 3 

 
Fig. 5.37 S with arbitrarily numbered members and cycles. 

The cycle basis incidence matrix for S is given as  

 

1 2 3 4 5 6 7 8 9 10

1

2

3

           
1 0 0 1 1 0 0 1 0 0
0 0 1 0 0 1 1 0 0 1 .
0 1 0 0 1 1 0 0 1 0

m m m m m m m m m m
C
C
C

 
 =  
  

C
 

For this matrix, b(C) = 7 + 8 + 1 = 16. By ordering the cycles and members simul-
taneously, using Algorithm A, the following cycle basis incidence matrix is 
obtained: 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

           
1 1 1 0 1 0 0 0 0 0
0 0 0 1 1 1 0 1 0 0 .
0 0 0 0 0 0 1 1 1 1

m m m m m m m m m m
C
C
C

 
 =  
  

C
 

The bandwidth for this matrix is obtained as b(C) = 4 + 3 +1 = 8. 
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For the force method of frames, the coefficient matrix of the equilibrium equations 
can be made banded by reducing the bandwidth of its member-cycle incidence 
matrix. After an algebraic force method is employed, a repeated application of the 
developed method makes the null basis matrix a banded one for subsequent appli-
cations. Similarly, if a combinatorial approach is used, the bandwidth reduction 
algorithm makes the cycle basis incidence matrix banded, leading to a banded 
statical basis (null basis) matrix. 

5.10.4 BANDWIDTH REDUCTION OF FINITE ELEMENT MODELS 

The algorithms presented in the previous section can also be applied to FE models, 
for their analysis by the algebraic force method; see Kaveh and Mokhtar-zadeh 
[119]. For such models, the K-total graph of an FEM is defined as follows: 

Associate one vertex with each side and each element of the FEM, and connect 
two vertices with an edge if any of the following conditions hold: 

1. sides are adjacent; 

2. elements are adjacent; 

3. a side and an element are incident. 

The Algorithm A can now be adapted to FEMs as follows: 

Step 1: Generate the K-total graph of the FE mesh S. 

Step 2: Order the vertices of K-T(S) by any nodal ordering algorithm that is avail-
able.  

Step 3: Assign numbers to the members of K-T(S) and to the elements of the con-
sidered FEM, in the order of their occurrence in the sequence selected in Step 2.  

Example: Four groups of examples are considered as shown in Figure 5.38(a–d). 
In these figures, Ω is the aspect ratio of the element numbers in two perpendicular 
directions (x- and y-directions), which is taken as unity. The ratio of the length of 
the elements side in the x-direction to that of the y-direction is taken as 1.2. S is the 
refinement index of a group. In the group UT, Ω1, Ω2 are the aspect ratios of the 
element numbers in the two sides of the general configuration with respect to  
the central part of the model. 
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(a) Group RQ-Ω-S (Ω = 1, S = 6).  (b) Group LQ-Ω-S (Ω = 1, S = 3).  
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(c) Group UQ-Ω1-Ω2-S (Ω1 = Ω2 = 1, S = 3). (d) Group HQ-Ω-S (Ω = 1, S = 2).  

Fig. 5.38 Test group examples.  

The sparsity of the self-stress and flexibility matrices of the LQ and HQ groups is 
illustrated in Figure 5.39(a–d).  
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(a) Self-stress matrix of LQ-1-4.  (b) Flexibility matrix of LQ-1-4. 

   
(c) Self-stress matrix of HQ-1-4.  (d) Flexibility matrix of HQ-1-4. 

Fig. 5.39 Self-stress and flexibility matrices. 

5.11 GRAPH-THEORETICAL INTERPRETATION OF GAUSSIAN 
         ELIMINATION  

In this section, a simple graph-theoretical interpretation of the Gaussian elimina-
tion is presented, in order to establish a closer link between matrix algebra on the 
one hand and graph-theoretical concepts on the other hand.  
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Let A be a symmetric sparse matrix of order N, and let S be the corresponding 
graph. Suppose that Gaussian elimination by columns is performed on A until the 
factorisation A = UtDU is obtained. At the beginning of the kth step, all non-zeros 
in columns 1,2, ..., k − 1 below the diagonal have been eliminated. Multiples of the 
kth row are then subtracted from all rows that have a non-zero in column k below 
the diagonal. On performing this operation, new non-zero entries may be intro-
duced in row k + 1, ..., N to the right of column k. Cancellations may also occur, 
producing new zeros, but this is rare in practice and will be neglected. Consider 
the active submatrix at the kth step (an active submatrix contains all elements ( )k

ijA  
with i,j ≥ k). Let Sk be the graph associated with the active submatrix. Sk is called 
an elimination graph; see Parter [171]. The nodes of this graph are N − k + 1 last-
numbered nodes of S. Sk contains all members connecting those nodes that were 
present in S, and additional members corresponding to fill-ins produced during the 
k − 1 initial elimination steps. The sequence S = S1, S2, S3, ... can be obtained using 
the following rule: 

To obtain Sk+1 from Sk, delete node k and add all possible members between nodes 
that are adjacent to node k in Sk.  

For example, consider a graph S and the corresponding adjacency matrix, as 
shown in Figure 5.40. Two steps of the Gaussian elimination and the correspond-
ing elimination graphs are also illustrated.  
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 (e) S3 (f) Matrix A3  

Fig. 5.40 Illustration of two steps of the Gaussian elimination.  

Eliminating the rest of the nodes, and considering a clique (a complete graph) be-
tween the nodes adjacent to each eliminated node (when such members are not 
present), matrix U is obtained. The structure of U + Ut and the corresponding filled 
graph are shown in Figure 5.41.  
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  (a) SF (b) Matrix U + Ut  

Fig. 5.41 The structure of U + Ut and the corresponding graph.  

There are algorithms that try to reduce the number of fill-ins caused by elimina-
tion. The minimum degree algorithm of Tinney [218] is perhaps the best method 
for such a reduction. For brevity, this is not discussed here; the interested reader 
may refer to Tinney´s original paper. 
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EXERCISES 

5.1 Find a good starting node for nodal numbering of the following structural 
models, using graph-theory approaches:  

  
 (a) (b)  

  
 (c) (d)   

5.2 Find a good starting node for the following models, using an algebraic 
graph-theoretical method, that is, calculate the dominant eigenvector of the corre-
sponding adjacency matrices:  

 
 (a) (b) 

5.3 For the models of Exercise 5.1, find a suboptimal transversal and perform 
the ordering. Calculate the bandwidth of the corresponding stiffness matrices when 
the models are viewed as planar trusses. 

5.4 Find the nodal ordering of the system for models (a) and (b) in Exercise 5.1 
using the Fiedler vector of the Laplacian matrix of the model. 
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5.5 For the following graph S, consider a mesh basis and order the cycles, using 
different distance numbers, to optimise the bandwidth of the corresponding cycle 
adjacency matrix: 

 

5.6 Order the nodes of the following FEM using the natural associate graph, 
incidence graph and skeleton graph of the model for bandwidth reduction:  

 

5.7 For the following FEM, construct the element clique graph, the skeleton 
graph, the representative graph and the element clique representative graph, with 
respect to the starting node n0:  
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5.8 Order the nodes of the following FEM using the algorithm presented for 
frontwidth reduction:  

 

5.9 For nine graphs of an m × n mesh consisting of rectangular elements intro-
duced in this chapter, compare the number of nodes, number of members and 
diameters of the graphs. 

5.10 Order the members and elements of a fundamental cycle basis of the 
following graph to reduce the bandwidth of its cycle basis incidence matrix. 
Repeat the process to optimise the bandwidth of its cocycle basis incidence matrix.  

 





 

 

CHAPTER 6 

Ordering for Optimal Patterns 
of Structural Matrices: 
Algebraic Graph Theory Methods 

 

6.1 INTRODUCTION 

There are different matrices associated with a graph, such as the incidence matrix, 
the adjacency matrix and the Laplacian matrix. One of the aims of algebraic graph 
theory is to determine how properties of graphs are reflected in algebraic proper-
ties of these matrices. The eigenvalues and eigenvectors of these matrices provide 
valuable tools for combinatorial optimisation and, in particular, for the ordering of 
sparse symmetric matrices, such as the stiffness and flexibility matrices of the 
structures. 

In this chapter, algebraic graph–theoretical methods are discussed for nodal order-
ing for bandwidth, profile and frontwidth optimisation. Hybrid methods are also 
applied to nodal ordering, using graph theory and algebraic graph theory.  

6.2 ADJACENCY MATRIX OF A GRAPH FOR NODAL ORDERING  

6.2.1 BASIC CONCEPTS AND DEFINITIONS 

There are several geographical papers dealing with the question of whether impor-
tant places or well-connected sets of towns in a traffic network can be identified by 
an inspection of certain eigenvalues and the corresponding eigenvectors of the 
adjacency matrix A of the underlying graph model. Gould [65] appears to be the  
 
_________________________________ 
Optimal Structural Analysis A. Kaveh 
© 2006 Research Studies Press Limited 
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first important publication on this subject. Other ideas can be found in Straffing 
[213] and Maas [157]. 

In structural analysis, Kaveh [113] used the first eigenvalue and eigenvector of [A 
+ I] for nodal ordering for bandwidth reduction. Grimes et al. [66] employed this 
concept for finding pseudo-peripheral nodes of a graph. This algebraic graph–
theoretical method is studied in the following text. 

A node ni of S is called peripheral if its eccentricity is the same as the diameter of 
S, that is, δ(S) = e(ni). If the eccentricity is close to the diameter, then ni is called a 
pseudo-peripheral node or a good starting node.  

Reordering the nodes of the graph model of a structure does not change the 
properties of the stiffness matrix. This fact stays true for the properties of the 
graph itself. Therefore, a natural question is, what can the theory of matrices and, 
in particular, the eigenvalues of the matrices associated with graphs tell us about 
the structure of the graph itself? In the following text, we shall endeavour to find 
out to what extent the eigenvalues of the adjacency matrix of a given graph reflect 
the properties of that graph. 

Let A be the adjacency matrix of the graph S, which is a real symmetric (0, 1) ma-
trix, and the sum of entries of any row or column is equal to the valency of the 
corresponding node. Denote the characteristic polynomial of A by ( ; )S xφ . Since 

( ; )S xφ  is uniquely determined by the graph S, it is referred to as the characteristic 
polynomial of S and expressed as  

 
0

( ; ) det( ) .
N

N i
i

i
S x x a xφ −

=

= − = ∑I A  (6-1) 

Since A is a real symmetric matrix, its eigenvalues (the roots of this polynomial) 
must be real, and can be ordered as λ1 ≥ λ2 ≥ λ3 ≥ … ≥ λN. These eigenvalues are 
called the eigenvalues of S, and the sequence of N eigenvalues is called the spec-
trum of G. 

The important results are stated below; however, the reader may refer to Schwenk 
and Wilson [194] for further details and proofs.  

1. The sum of the eigenvalues of a graph is equal to the trace of A, and is therefore 
zero. 

2. If S is connected with N nodes, then 12cos( ) 1
1

N
N

π λ≤ ≤ −
+

. The lower bound 

occurs only when S is a path graph, and the upper bound occurs when S is a com-
plete graph. 
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3. If S is a connected graph with m distinct eigenvalues and with diameter d, then  
m > d. 

By no means the spectrum specifies its graph uniquely; however, it does provide a 
wealth of information about the graph and hence about the structure. Some appli-
cations of such information will be given in this chapter and in Chapter 8. 
However, the writer strongly believes that in future many other applications in 
structural mechanics will be found. 

Table 6.1 shows some simple examples to verify the results stated. 

Table 6.1 Simple examples. 

Graph Adjacency matrix Characteristic 
polynomial Eigenvalues  

K2 0 1
1 0

 
 
 

 2 1x −  1, −1 

P3 
0 0 1
0 0 1
1 1 0

 
 
 
  

 3 2x x−  2, 2,0−  

C4 

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 
 
 
 
 
  

 4 24x x−  2, −2, 0, 0 

Perron–Frobenius Theorem: If S is a connected graph with at least two nodes, 
then: 

(i) its largest eigenvalue 1λ  is a simple root of φ (S; x); 

(ii) corresponding to the eigenvalue 1λ , there is an eigenvector w1, all of 
whose entries are positive; 

(iii) if λ is any other eigenvalue of S, then 1 1λ λ λ− ≤ ≤ ; 

(iv) the deletion of any member of S decreases the largest eigenvalue. 

The largest eigenvalue λ1 is often known as the spectral radius of S. Since the ei-
genvectors corresponding to any eigenvalue other than λ1 must be orthogonal to 
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w1, we observe that the multiples of w1 are the only eigenvectors all of whose en-
tries are positive. 

Consider the node adjacency matrix A of S. Let, 

 Q = A + I, (6-2) 

where I is an N(S) × N(S) identity matrix. The eigenvalues of Q are one unit bigger 
than those of A, and the eigenvectors of Q are exactly the same as those of A. Ma-
trix Q is real and symmetric, and it can easily be shown that all the entries of Qk 
are positive; thus it is primitive and, according to the Perron–Frobenius theorem, 
λ1 is real and positive and a simple root of the characteristic equation, λ1 > |λ| for 
any eigenvalue λ ≠ λ1, and λ1 has a unique corresponding eigenvector w1 with all 
entries positive. 

As wi is the eigenvector corresponding to λi, Qwi = λiwi for i = 1, ..., N(S). Multi-
plying the two sides by Q, one obtains i i iλ=QQw Qw  2 .i iλ= w  Repeating this 

process results in .k k
i i iλ=Q w w  Now consider any vector x not orthogonal to w1 

as follows:  

 x = α1w1 + α2w2 + ... +αN(S)wN(S)        α1 ≠ 0. (6-3) 

Multiplying the two sides by Qk and using k k
i i iλ=Q w w  for i = 1, ..., N(S), we 

have,  

 Qkx = 1
kλ α1w1 + 2

kλ α2w2 + ... + ( )
k
N Sλ αN(S) wN(S), (6-4) 

and, as k → ∞ ,  

 Qkx/ 1
kλ = α1w1 + (λ2/λ1) kα2w2 + ... +(λN(S)/λ1) kαN(S) wN(S) →α1w1, (6-5) 

since λ1 is the eigenvalue of the strictly largest modulus and (λi/λ1) is less than 
unity and approaches zero when k → ∞ . In other words, the ratios of the compo-
nents of Qkx approach the ratios of the components of w1 as k increases. 

Let v = {1, 1, ..., 1}t. Then the ith component of Qkv is the number of walks of 
length k beginning at an arbitrary node of S and ending at ni. If ni is a good starting 
node (peripheral node), this number will be smaller. Thus, for k → ∞ , one should 
obtain some average number, defined as the accessibility index by Gould [65]. 
This number indicates how many walks go through a node on average. With a 
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suitable normalisation, Qkv converges to the largest eigenvector w1 of Q; see 
Straffing [213]. 

6.2.2 A GOOD STARTING NODE 

Algorithm A 

Step 1: Calculate the dominant eigenvector w1 = {w1, w2, ..., wN(S)}t of matrix Q. 

Step 2: Find Min wi in w1. The node corresponding to this entry is taken as a good 
starting node of S. 

For calculating the dominant eigenvector w1 of Q, an iterative method is used, 
which assumes v = {1, 1, ..., 1}t and calculates Qv. This vector is then normalised 
and multiplied by Q. This process is repeated until the difference between two 
consecutive eigenvalues, obtained from Qv = λv, is reduced to a small value, 
which, for example, can be taken as 10–3. 

6.2.3 PRIMARY NODAL DECOMPOSITION 

Once a good starting node is selected, an SRT is constructed and its contours {C1, 
C2, ..., Cm} are obtained. These subsets are then ordered according to their dis-
tances from the selected starting node. Obviously, many SRTs can be constructed 
on a node. Although all of them lead to the same nodal decompositions, different 
transversals will be obtained for different SRTs. Thus, in the generation process, 
the nodes of each contour Ci are considered in ascending order of their entries in 
eigenvector W1 for selecting the nodes in Ci+1, in order to provide the conditions 
for the possibility of generating a minimal (or optimal) transversal as defined in 
the next section.  

6.2.4 TRANSVERSAL P OF AN SRT 

For selection of an optimal transversal, the weight of a node is defined as its value 
wi in w1, when an algebraic graph–theoretical method is employed.  

Algorithm B 

Let C1, C2, ..., Cm be the selected contours of the SRT, and correspondingly put 
these subsets in w1 into a similar order, that is,  

 w1 = {W(C1),W(C2), ...,W(Cm)}, (6-6) 

where W(Ci) contains the entries of w1 corresponding to the nodes of Ci. Now the 
algorithm can be described as follows: 
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Step 1: Label the root as N1 and assign wi of this node as its new weight, denoted 
by 1w . 

Step 2: Calculate the new weight iw  of each node of C2 by adding the wi´s from 

W(C2) to 1w . 

Step 3: Repeat the process of Step 2, calculating iw s  for each node of C3, C4, ..., Cm. 

Step 4: Take a node Nm of minimal weight from the last contour Cm of the selected 
SRT. 

Step 5: Find Nm-1 from Cm-1, which is connected to Nm by a branch of the SRT. 

Step 6: Repeat the process of Step 5, selecting Nm–2, Nm–3, ..., N1 as the representa-
tive nodes of the contours Cm–2, Cm–3, ..., C1. 

The set P = {N1, N2, ..., Nm} forms a suboptimal transversal of the selected SRT. 

6.2.5 NODAL ORDERING  

Step 1: Number N1 as “1”. 

Step 2: N2 is given number “2” and an SR subtree is generated from N2, numbering 
the nodes of C2 in the order of their occurrence in this SR subtree. 

Step 3: The process of Step 2 is repeated for numbering the nodes of C3, C4, ..., 
Cm, sequentially using N3, N4, ..., Nm as the starting nodes of SR subtrees, until all 
the nodes of S are numbered. 

Now the numbering can be reversed, in a way similar to that of the Reverse 
Cuthill–McKee algorithm, for possible reduction of fill-ins in the process of Gaus-
sian elimination.  

6.2.6 EXAMPLE  

S is the model of a grid with uniform valency distribution, as shown in Figure 
6.1(a). Using algorithm A, the following dominant eigenvector is obtained for the 
matrix Q of S, in which for simplicity only four digits are provided:  

w1 = {0.3344, 0.5298, 0.6161, 0.5951, 0.4791, 0.3011, 0.1180, 0.3972, 0.7432, 
0.9540, 1.0000, 0.8786, 0.6183, 0.2875, 0.2875, 0.6183, 0.8786, 1.000, 0.9540, 
0.7432, 0.3972, 0.1180, 0.3011, 0.4791, 0.5951, 0.6160, 0.5298, 0.3344}t. 
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Thus, node “7” is selected as a good starting node. An SRT is generated from this 
node and, using algorithm B, a transversal P = {7,14,21,28,27,26, 25,24, 23,22} is 
selected, which is shown in bold lines in Figure 6.1(a). Final nodal numbering is 
illustrated in Figure 6.1(b). 
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(a) Initial numbering and the selected transversal. (b) Final numbering. 

Fig. 6.1 The graph model S and its nodal numbering. 

6.3 LAPLACIAN MATRIX OF A GRAPH FOR NODAL ORDERING 

6.3.1 BASIC CONCEPTS AND DEFINITIONS 

Another interesting matrix associated with a graph is the Laplacian matrix of S, 
denoted by L(S). 

Consider a directed graph S with arbitrary nodal numbering and member orienta-
tions. The adjacency matrix A(S), degree matrix D(S), node-member incidence 
matrix C(S), and Laplacian matrix L(S) are defined as follows: 

The adjacency matrix ( ) [ ]ij N NS a ×=A  of the labelled graph S is defined as  

 
1   if node  is adjacent to ,
0   otherwise.                          

i j
ij

n n
a 

= 


 

The degree matrix ( ) [ ]ij N NS d ×=D  is the diagonal matrix of node degrees  

 
deg( ) if ,   

0    otherwise.
i

ij

n i j
d

=
= 


 

The Laplacian matrix ( ) [ ]ij N NS l ×=L  is defined as 

 L(S) = D(S) − A(S); (6-7) 
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therefore, the components of L(S) are given as follows: 

 

i1      if  is adjacent to ,
deg( ) if ,                 

0 otherwise.            

j

ij j

n n
l n i j

−
= =


 

The node-member incidence matrix ( ) [ ]ij N MG c ×=C  for the arbitrarily oriented 
graph is defined as  

 

1      if  points towards ,                      
1      if  points away from ,                 

0 otherwise.                                    

j i

ij j i

m n
c m n

+
= −


 

Two distinct rows of C(S) have non-zero entries in the same column if and only if 
a member joins the corresponding nodes. These entries are 1 and −1. It can be 
shown that  

 L = CCt. (6-8) 

It can also be shown that L is independent of the orientation of the members of the 
graph. 

Hall [72] considered the problem of finding the minimum of the weighted sum,  

 2
,

1 ( ) ,
2 i j iji j

Z x x a= −∑  (6-9) 

where aij are the elements of the adjacency matrix A. The sum is the over all pairs 
of squared distances between nodes that are connected, and so the solution should 
result in nodes with large numbers of inter-connection being clustered together. 

The above equation can be rewritten as 

2 2 2 2
, , , ,

2 t
, ,

1 1 1 1( 2 ) 2
2 2 2 2
                                           ,

i i j j ij i ij i j ij j iji j i j i j i j

i ij i j iji j i j

x x x x a x a x x a x a

x a x x a

− + = − +

= + =

∑ ∑ ∑ ∑
∑ ∑ x Lx

 (6-10) 

where L is the Laplacian. Hall also supplied the condition that t 1=x x , that is, the 
distances are normalised. Using the Lagrange multiplier, we have 

 t t ,Z λ= −x Lx x x  (6-11) 
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and, to minimise this expression, the derivative with respect to x is taken as  

 0λ− =Lx x  (6-12) 

or ,λ=Lx x  (6-13) 

which is the eigenvalue equation. The smallest eigenvalue of L is λ1 = 0, and the 
corresponding eigenvector y1 has all its normalised components equal to 1. The 
second eigenvalue λ2 and the associated eigenvector y2 have many interesting 
properties, which will be used for nodal numbering in this chapter and for domain 
decomposition in Chapter 8. 

In order to get a feel of the magnitude of λ2 = α(S), also known as the algebraic 
connectivity of a graph, some simple theorems are restated from the results of 
Fiedler [51] in the following text: 

1. For a complete graph KN with N nodes, α(KN) = N.  

2. If S1 ⊆ S2 (S1 and S2, have the same nodes), then α(S1) ≤ α(S2). 

3. Let S be a graph. Let S1 be formed from S by removing k nodes and all adjacent 
members. Then 

 α(S1) ≥ α(S) − k. (6-14) 

4. For a non-complete graph S,  

 ( ) ( ) ( ),S v S e Sα ≤ ≤  (6-15) 

where v(S) and e(S) are the node connectivity and edge connectivity of S, respec-
tively. The node connectivity of a graph S is the smallest number of nodes whose 
removal from S, along with members incident with at least one of the removed 
nodes, leaves either a disconnected graph or a graph with a single node. The edge 
connectivity of S is the smallest number of edges whose removal from S leaves a 
disconnected graph or a graph with one node. As an example, the node and edge 
connectivity of a complete graph KN is equal to N − 1. 

5. For a graph with N(S) nodes, 

 2( ) min{deg( ); ( )}
1

NG n n N G
N

α λ= ≤ ∈
−

 (6-16) 

and the largest eigenvalue has the following bound:  
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 max{deg( ); ( )}.
1N

N n n N S
N

λ ≥ ∈
−

 (6-17) 

6. Let U be the set of all real N-tuple x such that XtX = 1 and t 0N =x e . From the 
theory of symmetric matrices, the following characterisation for α(S) is obtained:  

 t( ) min{ },S Uα = ∈x Lx x  (6-18) 

where eN = {1,1,…,1}t. (6-19) 

7. The following theorem is interesting since it relates the properties of the adja-
cency matrix A of a graph to those of its Laplacian matrix L. Such theorems may 
establish firm relationships between the application of the largest eigenvalue and 
eigenvector of A for ordering to the second-smallest eigenvector and eigenvalue of 
the Laplacian matrix L of the graph for ordering and partitioning.  

Theorem: Let S be a graph with adjacency matrix A and Laplacian matrix L. Let 
D and d be the maximum and minimum node degrees of S, respectively. The sec-
ond-largest eigenvalue µ2 of A and the second-smallest eigenvalue λ2 of L are then 
related as follows:  

 δ − λ2 ≤ µ2 ≤ ∆ − λ2. (6-20) 

Proof: µ2 is the second-largest eigenvalue of A, and δ − λ2 is the second-largest 
eigenvalue of δI − L ≤ A − (diag(deg(v)) − δI), which differs from A only on the 
diagonal, where the non-negative values deg(v) − δ are subtracted. Consequently, 
δ − λ2 ≤ µ2. In a similar way, the other inequality is also obtained.  

Lemma: If S is not a complete graph, then µ2 ≥ 0 and λ2 ≤ ∆. 

6.3.2 NODAL NUMBERING ALGORITHM 

On the basis of the concepts presented in the previous section, the method can be 
described as follows: 

Step 1: Construct the Laplacian matrix L(S) of the given graph S. 

Step 2: Compute the second eigenvalue λ2 of L and its corresponding eigenvector 
y2. Different methods are available for such a calculation. Paulino et al. [174] used 
a special version of the subspace iteration method. However, the algorithm of 
Lanczos described in the next chapter can also be efficiently applied; y2 is also 
known as the Fiedler vector. 
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Step 3: Reorder the nodes of S in ascending order of the vector components in y2. 

Similar to the previous algebraic method, this algorithm has the advantage of using 
global information of the graph model. However, although it does not use the 
pseudo-peripheral nodes and SRT and its transversal, its efficiency is very sensi-
tive to the initial ordering of the nodes of the model. Preconditioning by pre-
ordering can be used for improving the running time of the method, resulting in 
some kind of dependency on graph-theoretical properties. 

6.3.3 EXAMPLE 

Consider a FE mesh with 12 nodes, as shown in Figure 6.2(a), with an arbitrary 
nodal numbering. The element clique graph of the model is illustrated in Figure 
6.2(b). 
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(a) A simple finite element model. 
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 (b) Numbering before ordering. (c) Numbering after ordering. 

Fig. 6.2 A graph G. 

The Laplacian matrix L(S) is constructed and its eigenvalue λ2 and eigenvector y2 
are calculated as follows: 

λ2 = 1.1071, 

y2 = {−0.0608, −0.2023, 1.0000, −0.5303, 0.0658, −0.4721, 0.3099, 0.3106, 
−0.2399, 0.5829, −0.3125, −0.4514}t. 

Using y2, the new labelling is obtained, as illustrated in Figure 6.2(c). 
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This method can also be applied to finite element nodal numbering, using any of 
the 10 graphs defined in Chapter 5. 

6.4 A HYBRID METHOD FOR ORDERING 

In this method, the advantages of both graph and algebraic graph methods are in-
corporated into an algorithm for ordering. In the algebraic graph method, general 
approaches are used to calculate the eigenvalues and eigenvectors, and the infor-
mation available from the connectivity of their graph models is ignored. This is 
why the computational time and complexity of these algorithms are not low 
enough to compete with pure graph theory methods. In this section, graph parame-
ters are used to increase the efficiency of the algebraic graph theory approaches. 
Typical graph parameters can be taken as the degrees of the nodes, the 1-weighted 
degrees of the nodes, the distances of the nodes from two pseudo-peripheral nodes, 
and the 2-weighted degrees of the nodes of the graph. 

The algebraic graph theory method employed here is not the same as that em-
ployed in a general eigenproblem but rather a specific method is used in which the 
valuable features of graph parameters are incorporated.  

6.4.1 DEVELOPMENT OF THE METHOD 

Here, the graph parameters are considered as Ritz vectors, and the first eigenvector 
of the complementary Laplacian matrix Lc (Fiedler vector) is considered as a linear 
combination of Ritz vectors. The coefficients for these vectors are in fact the 
weights of the graph parameters, which are usually determined either by heuristic 
approaches or by experience. 

Consider the following vector:  

 
1

,
p

i i
i

wφ
=

= ∑ v  (6-21) 

where φ  is an approximation to the Fiedler vector, vi (i = 1, …, p) are the normal-
ised Ritz vectors representing the graph parameters, and wi (i = 1, …, p) are the 
coefficients of the Ritz vectors (Ritz coordinates), which are unknowns, and p is 
the number of parameters being employed. Equation (6-21) can be written as  

 ,φ = vw  (6-22) 

where w is a p × 1 vector and v is an N × p matrix containing the Ritz vectors.  
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Consider the eigenproblem of the complementary Laplacian:  

 .cφ ρφ=L  (6-23) 

Approximating φ by φ  and multiplying by vt, we have  

 t t
c ρ=v L vw v vw  (6-24) 

or ρ=Aw Bw , (6-25) 

where A = vtLcv and B = vtv. Both A and B are p × p matrices and therefore Eq. 
(6-21) has a much smaller dimension compared to Eq. (6-23); ρ is the approximate 
eigenvalue of the original problem. 

The solution of the reduced problem, with dimensions far less than the original 
one, results in the first eigenvector w1 and hence φ . Nodal ordering is then per-
formed considering the relative entries of φ  in an ascending order. 

The present methods not only lead to a set of suitable coefficients for graph pa-
rameters but also provide efficient means for measuring the relative significance of 
each considered graph parameter. These coefficients may also be incorporated in 
the design of other specific graph-theoretical algorithms for ordering.  

6.4.2 NUMERICAL RESULTS  

Many examples are studied and the results of three models are presented in this 
section. In the tables presented, column 2 contains the results of the Pure Algebraic 
Graph Method (PAGM) of [174]. 

For the first case, four vectors, representing Ritz vectors, are considered. For these 
vectors, v1 contains the degrees of the nodes, v2 comprises the 1-weighted degrees 
of the nodes, and v3 and v4 are distances of the nodes from two pseudo-peripheral 
nodes. These nodes can be obtained using different algorithms; see Kaveh [113]. 
The results are provided in column 3 of the tables, denoted by v4. 

For the second case, five Ritz vectors are employed. The first four vectors are the 
same as those of the previous case, and the fifth vector v5 contains the 2-weighted 
degrees of the nodes of the graph. The results are provided in column 4 of the ta-
bles, labelled as v5. 
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It should be noted that other vectors containing graph properties that influence the 
ordering may be considered in addition to the above five vectors. However, the 
formation of such additional vectors may require some extra computational time, 
reducing the efficiency of the algorithm.  

Example 1: An FE mesh with one opening comprising 1248 nodes and 1152 rec-
tangular elements is considered, as shown in Figure 6.3. The results for different 
methods and their computational time are illustrated in Table 6.2 for a comparison 
of their efficiency. 

 
Fig. 6.3 An FE mesh with one opening. 

Table 6.2  Results of Example 1. 

 PAGM v4 v5 

B 46 43 45 
P 34,848 36,243 36,189 
F  28.07 29.44 29.25 

Fmax 35 39 39 
Time (s) 1400.3 2.8 2.9 

Example 2: An H-shaped FE mesh comprising 2096 nodes and 3900 triangular 
elements is considered, as shown in Figure 6.4. The results for different methods 
and their computational time are illustrated in Table 6.3 for a comparison of their 
efficiency. 
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Fig. 6.4 An H-shaped FE mesh. 

Table 6.3  Results of Example 2. 

 PAGM v4 v5 

B 74 77 77 
P 47,741 49,400 48,936 
F  23.97 25.63 25.32 

Fmax 37 42 42 
Time (s) Large 2.63 2.89 

Example 3: A two-dimensional finite element model (FEM) of a tunnel compris-
ing 6888 nodes and 6720 rectangular elements is considered, as shown in Figure 
6.5. The results of using different methods and their computational time are pre-
sented in Table 6.4. 
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Fig. 6.5 A two-dimensional FEM of a tunnel. 

Table 6.4 Results of Example 3. 

 PAGM v4 v5 

B 455 331 332 
P 731,694 733,738 733,738 
F  112.99 112.93 112.93 

Fmax 164 175 175 
Time (s) 10.6 27.6 28.9 

Example 4: An FE mesh with four openings comprising 748 nodes and 1236 tri-
angular elements is considered, as shown in Figure 6.6. The results for different 
methods and their computational time are illustrated in Table 6.5 for a comparison 
of their efficiency. 
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Fig. 6.6 An FE mesh with four openings. 

Table 6.5 Results of Example 4. 

 PAGM v4 v5 

B 39 49 47 
P 13,118 13,162 13,126 
F  18.42 18.61 18.56 

Fmax 29 29 29 
Time (s) 1677 1.2 1.3 

Example 5: A three-dimensional FEM of a nozzle is considered, as shown in Fig-
ure 6.7. This model contains 4000 rectangular shell elements. The results for 
different methods and their computational time are illustrated in Table 6.6 in order 
to compare their efficiency. 



 OPTIMAL STRUCTURAL ANALYSIS 

 

290 

 
Fig. 6.7 A three-dimensional FEM of a nozzle. 

Table 6.6 Results of Example 5. 

 PAGM v4 v5 

B 39 49 47 
P 13,118 13,162 13,126 
F  18.42 18.61 18.56 

Fmax 29 29 29 
Time (s) 1677 1.2 1.3 

6.4.3 DISCUSSIONS 

The performance of the hybrid method compares well with that of a PAGM, with a 
substantial reduction in the computational time. Naturally, addition of extra graph 
parameters will increase the computational time required. Relative values of the 
coefficients of the Ritz vectors show the importance of the corresponding parame-
ters in the ordering algorithm. For the examples presented in the previous section, 
the coefficients corresponding to v3 and v4 (the distances from the pseudo-
peripheral nodes) seem to be more important, since most of the examples have a 
more or less uniform distribution of nodal degrees. Naturally, for models with non-
uniform degree distributions, the significance of the other graph parameters will 
also become apparent. 

Though only nodal ordering is addressed here, the application of the present 
method can easily be extended to element ordering. For this purpose, the natural 
associate graph or the incidence graph of an FE mesh should be used in place of 
the element clique graph.  
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EXERCISES 

6.1 Find a good starting node for the following models using an algebraic 
graph–theoretical method, that is, calculate the dominant eigenvector of the corre-
sponding adjacency matrices:  

  
 (a) (b) 

6.2 Find the nodal ordering of the system for models (a) and (b) in Exercise 6.1 
using the Fiedler vector of the Laplacian matrix of the model. 

6.3 Find a formula for calculating the eigenvalues of a path graph Pn. 

6.4 Find a formula for calculating the eigenvalues of a cycle graph Cn. 





 

 

CHAPTER 7 

Decomposition for Parallel 
Computing: Graph Theory 
Methods 

 

7.1 INTRODUCTION 

In the last decade, parallel processing has come to be widely used in the analysis 
of large-scale structures [1,158,169,220]. This chapter is devoted to the optimal 
decomposition of structural models using graph theory approaches. First, efficient 
graph theory methods for the optimal decomposition of space structures are pre-
sented. Next, the subdomaining approaches for partitioning of finite element 
models (FEMs) are analysed. A substructuring technique for the force method of 
structural analysis is then discussed. Lastly, an efficient substructuring method for 
dynamic analysis of large-scale structures is explained. 

Several partitioning algorithms are developed for solving multi-member systems, 
which can be categorised as graph theory methods and algebraic graph theory ap-
proaches. 

For the graph theory method, Farhat [44] proposed an automatic finite element 
domain decomposer, which is based on a Greedy type algorithm and seeks to de-
compose an FEM into balanced domains, sharing a minimum number of common 
nodal points. To avoid domain splitting, Al-Nasra and Nguyen [4] incorporated 
geometrical information of the FEM into an automatic decomposition algorithm 
similar to the one proposed by Farhat [44]. The Sparspak uses nested dissection  
 
_________________________________ 
Optimal Structural Analysis A. Kaveh 
© 2006 Research Studies Press Limited 
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method of George and Liu [57], which uses a level tree for dissecting a model. 
Kaveh and Roosta [130,132] employed different expansion processes for 
decomposing space structures and finite element meshes. 

Applications of the methods of this chapter are by no means confined to structural 
systems but can be equally applied to other large-scale problems like the analysis 
of hydraulic systems and electrical networks. 

7.2 EARLIER WORKS ON PARTITIONING 

7.2.1 NESTED DISSECTION 

The term “nested dissection” was introduced by George [55], following a sugges-
tion of Birkhoff. Its roots lie in finite element substructuring, and it is closely 
related to the tearing and interconnecting method of Kron [141]. 

The central concept for nested dissection is the removal of a set of nodes from the 
graph (separator) of a symmetric matrix (or the model of a structure) that leaves 
the remaining graph in two or more disconnected parts. In nested dissection, these 
parts are themselves further divided by the removal of sets of nodes, with the dis-
section nested to any depth. 

If the variables of each subgraph are grouped together, by ordering the nodes of 
their nodes contiguously followed by numbering the nodes, in the separator, then 
the following block form will be obtained: 

 
11 13

22 23

31 32 33

.
 
 
 
  

A 0 A
0 A A

A A A
 (7-1)  

The blocks A11 and A22 may themselves be ordered to such a form by using dissec-
tion sets. This way every level defines a nested dissection order. 

The significance of the above partitioning of the matrix is twofold: first, the zero 
blocks are preserved in the factorisation, thereby limiting fill; second, factorisation 
of the matrices A11 and A22 can proceed independently, thereby enabling parallel 
execution on separate processors. 

When a complicated design is assembled from simpler substructures, it makes 
sense to exploit these natural substructures. The resulting ordering is likely to be 
good, simply because, when each variable is eliminated, only the other variables of 
its substructures are involved. 

7.2.2 A MODIFIED LEVEL-TREE SEPARATOR ALGORITHM 

The separator routine in Sparspak, FNDSEP, finds a pseudo-peripheral node in the 
graph and generates a level structure from it. It then chooses the median level in 
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the level structure as the node separator. However, this choice may separate the 
graph into widely disparate parts. In a modification made by Pothen et al. [182], 
the node separator is selected to the smallest level k, such that the first k levels 
together contain more than half of the nodes. A node separator is obtained by re-
moving from the nodes in level k those nodes that are not adjacent to any node in 
level k − 1, and therefore these are added to the part containing the nodes in the 
first k − 1 levels. The other part has nodes in levels k + 1 and higher. Although 
such a method is simple, the spectral bisection method computes a smaller node 
separator compared to that by the Sparspak algorithm. 

7.3 SUBSTRUCTURING FOR PARALLEL ANALYSIS OF SKELETAL 
      STRUCTURES 

7.3.1 INTRODUCTION 

In many engineering applications, particularly in the analysis and design of large 
systems, it is convenient to allocate the design of certain components (substruc-
tures) to individual design groups. The study of each substructure is carried out 
more or less independently, and the dependencies between the substructures are 
resolved after the study of individual substructures is completed. The dependencies 
among the components may of course require the redesign of some of the substruc-
tures, so the above procedure may be iterated several times. 

As an example, suppose for a structural model we choose a set of nodes I and their 
incident members, which, if removed, disconnect it into two substructures. If the 
variables associated with each substructure are numbered consecutively, followed 
by the variables associated with I, then the partitioning of the stiffness matrix A 
will be as in Eq. (7-1). 

The Cholesky factor L of A, correspondingly, will be partitioned as 

 
11

22
t t

13 23 33

 
 =  
  

L 0 0
L 0 L 0

W W L
, (7-2) 

where 

t
11 11 11=A L L , 

t
22 22 22=A L L , t t

13 11 13 23 22 23,   = =W L A W L L   

and t t 1 t 1
33 33 33 13 11 23 23 22 23.− −= − −L L A A A A A A A  (7-3) 
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Therefore, A11 and A22 correspond to each substructure, and the matrices A13 and 
A23 represent the “glue” that relates the substructures through the nodes of I. 

Since the factors of A11 and A22 are independent, they can be computed in either 
order, or in parallel if two processors are available. Finally, in some design appli-
cations, several substructures may be identical, for example, have the same 
configuration and properties, and each substructure may be regarded as a super 
element, which is constructed once and used repeatedly in the design of several 
structures. In the above example, A11 and A22 could be identical. 

7.3.2 SUBSTRUCTURING DISPLACEMENT METHOD 

For the analysis of skeletal structures and for the finite element method, using the 
displacement approach, an appropriate formulation such as the Galerkian method 
reduces to solving the following matrix equation: 

 Kv = p, (7-4) 

where K is the global stiffness matrix and v and p are the nodal displacement and 
nodal force vectors, respectively. To distribute the computation after decomposing 
the model into q subdomains, each subdomain can be treated as a super element 
and mapped onto the processors. Various methods for decomposition will be pre-
sented in this chapter. The global stiffness matrix and nodal force vector are 
equivalent to the assembly of its components for q subdomains: 

 
1

  and  
q

j
j =

= ∑K k
1

.
q

j
j=

= ∑p p  (7-5) 

Equation (7-4) can be written in the following partitioned form: 

 i .ii b i i

bi bb b b

     
=     

     

K K v p
K K v p

 (7-6) 

In the above equation, a boundary node is defined as a node that is part of more 
than one subdomain. The degrees of freedom (DOF) at the boundary nodes are 
treated as boundary DOF. The vectors vi and vb are displacements, and pi and pb 
are forces, corresponding to internal and boundary nodes, respectively. 

Each subdomain requires solution of an equation, similar to Eq. (7-4): 

 [ ] [ ] [ ] .j j j=k d p  (7-7) 
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For the full domain, Eq. (7-7) can be written in partitioned form as 

 .ii ib i i

bi bb b b

     
=     

     

k k v p
k k v p

 (7-8) 

Using static condensation for eliminating the interior DOF of each subdomain, the 
effective stiffnesses and load vectors on the interface boundaries are obtained. 

For internal nodes, we have 

 [ ][ ] [ ][ ] [ ],ii i ib b i+ =k v k v p  (7-9) 

or 

 1[ ] [ ] {[ ] [ ][ ]}.i ii i ib b
−= −v k p k v  (7-10) 

Substituting in Eq. (7-8), we have 

 1[ ][ ] {[ ] [ ][ ]} [ ][ ] [ ],bi ii i ib b bb b b
− − + =k k p k v k v p  (7-11) 

or 

 1[ *][ ] [ ] [ ] [ ][ ],b b ib ii i
−= −k v p k k p   (7-12) 

where 

 1[ *] [ ] {[ ][ ] [ ]}bb bi ii ib
−= −k k k k k    (7-13) 

is the condensed super-element stiffness matrix and  

 1[ *] [ ] [ ][ ] [ ],b bi ii i
−= −p p k k p  (7-14) 

is the modified load vector. A summation of the interface conditions for the sub-
domains leads to the formation of the global interface stiffness matrix K* and the 
global interface load vector p* as follows: 

 *

j 1

*   and  
q

j
=

= ∑K k *

1

* .
q

j
j=

= ∑p p  (7-15) 
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K is symmetric and positive definite, and K* has the same properties. The follow-
ing interface system can now be solved: 

 [ *][ ] [ *].  b =K v p  (7-16) 

Once vb is found, the internal DOF for a subdomain can be evaluated using Eq.  
(7-10). 

A natural route to parallelism now is to provide it through domain decomposition 
by distributing the substructures onto the processors available. Several approaches 
can be used to solve Eq. (7-4). In the following section, three broad classifications 
are briefly discussed. 

7.3.3 METHODS OF SUBSTRUCTURING 

Direct Methods 

A substructuring method can be used to obtain the condensed stiffness matrix on 
each subdomain in parallel on the different processors. To create matrix K*, it is 
necessary to condense the stiffness matrix of each substructure (subdomain), that 
is, from Eq. (7-13) the product 1[ ][ ] [ ]bi ii ib

−k k k  should be calculated. The explicit 
formation of 1[ ] [ ]ii ib

−k k  requires NBDOF triangular system resolutions, where 
MbDOF is the number of subdomain boundary DOF. This step can be considered to 
be as follows: 

Each internal DOF makes its contribution to the stiffness of each boundary DOF 
such that the behaviour of the condensed boundary is equivalent to the behaviour 
of the entire domain. This step can be executed step by step so that only the inter-
nal DOF connected to the boundary DOF updates the boundary stiffness matrix. 
This requires the internal DOF to appear at the bottom of the internal stiffness ma-
trix kii, so that they are modified by the elimination of all other internal DOF. 

A frontal method can be used, which has the advantage of allowing very flexible 
strategies concerning the sequence of elimination of equations. When this method 
is applied to subdomain condensation, it is necessary to assemble the boundary 
DOF in the frontal matrix and to retain them until all the internal DOF have been 
eliminated. At the end of the frontal elimination process, the frontal matrix is ex-
actly the condensed matrix 1[ ][ ] [ ]bi ii ib

−k k k .  

The interface system of equations is then solved employing a direct approach (e.g. 
skyline method) on a single machine. Although the direct methods are simple and 
terminate in a fixed number of steps, the interface solution dominates the overall 
computational cost when the interface system is large, thus limiting the overall 
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efficiency. In such a case, however, a distributed algorithm can be used for 
factorisation of the direct method to overcome this difficulty. 

Iterative Methods 

A different method of avoiding the explicit inverse of kii in Eq. (7-13) is the use of 
an iterative approach. Among the iterative solutions, the conjugate gradient 
method is a promising candidate because of its inherent parallelism and its rate of 
convergence. The theory of the conjugate gradient method is well known [90]. 
One iteration of this method for solving a system of equations Kv = p is given as 
follows: 

 { } [ ]{ },=u K f  (7-17a) 

 t t{ } { }/{ } { },α = r r f u  (7-17b) 

 new{ } { } { },α= +v v f  (7-17c) 

 new{ } { } { },α= +r r u  (7-17d) 

 t t
new new{ } { }/{ } { },λ = r r r r  (7-17e) 

 new new{ } { } { }.λ= +f r f  (7-17f) 

Before each iteration, the vectors {v}, {f} and {r} are set to {vnew}, {fnew} and 
{rnew}, respectively. 

The vectors are initialised as 

 {r} = {p} – [K]{v0} (7-18a) 

and 

 {f} = {r}, (7-18b) 

where {v0} is usually taken as null, unless some approximation to the solution is 
known. Iteration is terminated when the residual is small. One criterion for han-
dling the iteration is  

 / ,ε<r p  (7-19) 

where ε is the tolerance specified for the problem. 
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In structural analysis, the vector r is the potential gradient and is identical to the 
residual force vector (p − Kv) in the linear case. The vector f is the gradient direc-
tion to generate the displacement vector v. For discussion and further details, the 
reader may refer to Law [147]. 

Preconditioned Conjugate Gradient (PCG) methods form a large class of the many 
iterative methods that have been suggested to reduce the cost of forming con-
densed stiffness matrices. A saving in total time may be achieved since the 
predominant matrix-vector product at each iteration is computed in parallel. For 
further detailed discussion, the interested reader may refer to Keyes and Gropp 
[134]. 

Hybrid Methods 

These methods use a combination of the direct and iterative methods. For instance, 
the components of the condensed matrix k* may be obtained for the substructures 
using the direct method, and the resulting interface can be solved using an iterative 
approach. 

A comparative study of direct, iterative and hybrid methods is made by Chadha 
and Baugh [25]. 

In the following sections, algorithms are presented for partitioning of the nodes of 
structural graph models, which can be incorporated in any program available for 
the analysis of skeletal structures. Domain decomposition algorithms are presented 
in Chapter 8. 

7.3.4 MAIN ALGORITHM FOR SUBSTRUCTURING 

Let S be the graph model of a structure. The following algorithm decomposes S 
into q subgraphs with equal or near-equal number of nodes (support nodes are not 
counted) having the least number of interface nodes: 

Step 1: Delete all the support nodes with their incident members, and denote the 
remaining subgraphs by Sr. 

Step 2: Determine the distance between each pair of nodes of Sr, and evaluate the 
eccentricities of its nodes. 

Step 3: Sort the remaining nodes (RN) in ascending order of their eccentricities. 

Step 4: Select the first node of RN as the representative node of the subgraph S1 to 
be determined and find a second node as the representative node of subgraph S2 
with the maximum distance from S1. 
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Step 5: Find the third representative node with the maximum least distance from S1 
and S2, and denote it with S3. 

Step 6: Subsequently, select a representative node of subgraph Sk for which the 
least distance from S1, S2, ..., Sk–1 is maximum. Repeat this process until q 
representative nodes of the subgraphs to be selected are found. 

Step 7: For each subgraph Sj ( j = 1, ..., q), add an unselected node ni of RN if it is 
adjacent only to Sj and its least distance from all nodes of other subgraphs is maxi-
mum. 

Step 8: Continue the process of Step 7, without the restriction of transforming one 
node to each subgraph Sj, until no further node can be transferred. The remaining 
nodes in RN are interface nodes. 

Step 9: Transfer the support nodes to the nearest subgraph. 

Once the nodes for each subgraph Sj are found, the incidence members can easily 
be specified. 

The algorithm is recursively applied to the selected substructures, decomposing 
each substructure into smaller ones, resulting in further refinement. 

7.3.5 EXAMPLES 

Example 1: A double-layer grid supported at four corner nodes is considered and 
partitioned into q = 2, 4 substructures; see Figure 7.1. The corresponding node 
adjacency matrices (pattern of their stiffness matrices) are illustrated in Figure 
7.2(a and b). For the case q = 2, the selected substructures are further refined with 

'  2q =  and 3, and the corresponding matrices are shown in Figure 7.3(a and b). 
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Fig. 7.1 A double-layer grid S. 

 
 (a) q = 2 (b) q = 4 

Fig. 7.2 Patterns of the adjacency matrices for different values of q. 

 
 (a) q = 2 and q' = 2 (b) q = 2 and q' = 3 

Fig. 7.3 Patterns of the adjacency matrices for q = 2 and q' = 2 and 3. 
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Example 2: A dome-type space structure supported at six nodes is considered and 
partitioned into q = 2, 3, 4 and 5 substructures; see Figure 7.4. 

 
Fig. 7.4 A dome-type space structure. 

The corresponding node adjacency matrices are illustrated in Figure 7.5(a–d). For 
the case q = 2, the selected substructures are further refined with q' = 2 and 3, and 
the corresponding matrices are shown in Figure 7.6(a and b). 

 
 (a) q = 2. (b) q = 3. 
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 (c) q = 4. (d) q = 5. 

Fig. 7.5 Patterns of the adjacency matrices for different values of q. 

 
 (a) q = 2 and q' = 2 (b) q = 2 and q' = 3 

Fig. 7.6 Patterns of the adjacency matrices for q = 2 and different values of q'. 

Once the subgraphs and the interface nodes are specified, ordering the nodes of 
each subgraph reduces the bandwidth of each block, and appropriate numbering of 
the interface nodes results in banded border for the entire matrix. 

7.3.6 SIMPLIFIED ALGORITHM FOR SUBSTRUCTURING 

In the following text, a simplified algorithm is presented that requires less storage 
and computer time than the main algorithm, at the expense of selecting subgraphs 
with a slightly higher number of interface nodes for some structural models. In this 
approach, the number of distances to be considered and compared for finding the 
nodes of substructures is far less than when the main algorithm is used, where the 
distances between each pair of nodes of S are required. This simplified algorithm 
consists of the following steps: 

Step 1: Form a shortest route tree (SRT) rooted from an arbitrary node to find a 
representative node of S1 with the maximum distance from the root. The selected 
node is also denoted by S1. 
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Step 2: Form an SRT rooted from S1 to calculate the distance between each node of S 
and S1 and find the representative node S2 with the maximum distance from S1. 

Step 3: Form an SRT rooted from S2 to calculate the distance between each node 
of S and S2 and find the representative node S3 with the maximum least distance 
from the selected nodes. Repeat this process until q representative nodes S1, S2, …, 
Sq, forming a transversal, are selected. 

Step 4: For each subgraph Si, find a node adjacent to the previously formed Si 
only, with the maximum least distance from other representative nodes, in turn. 

Step 5: Continue the process of Step 4, without the restriction of transforming one 
node to each subgraph Si, until no further node can be transferred. 

7.3.7 GREEDY TYPE ALGORITHM 

In this algorithm, the weight of a node is taken as the number of elements incident 
with that node. The interior boundary of a subdomain Di is defined as the subset 
of its boundary that will interface with another subdomain Di. The total number of 
elements in a given mesh is denoted by M(FEM). 

Step 1: Start with a node and add incident elements having the least current weight 
one by one. The current weight is taken as the number of unselected elements at 
that stage incident with that node. Continue this process until M(FEM)/q elements 
are selected as D1. 

Step 2: Select an interior node of D1, and repeat Step 1 to form D2. 

Step k: Repeat Step 2 for k = 3, 4, …, q with an interior node of Dk–1 and form the 
subdomain Dk. 

This process is a Greedy type algorithm, which selects one element of minimal 
current weight at a time and completes a domain when N(FEM)/q (+1 if remainder 
≠ 0) elements are selected for the formation of that subdomain. The current weight 
of an element is updated when an incident element is joined to the expanding sub-
domain. 

7.4 DOMAIN DECOMPOSITION FOR FINITE ELEMENT ANALYSIS 

In this section, efficient algorithms are developed for automatic partitioning of 
unstructured meshes for the parallel solution of problems in the finite element 
method. These algorithms partition a domain into subdomains with approximately 
equal loads and good aspect ratios, while the interface nodes are confined to the 
smallest possible. Examples are included to illustrate the performance and effi-
ciency of the presented algorithms. 
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7.4.1 INTRODUCTION 

Domain decomposition is attractive in finite element computations on parallel ar-
chitectures, because it allows individual subdomain operations to be performed 
concurrently on separate processors and serial solutions to be obtained on a se-
quential computer to overcome the limitation of core storage capacity. Given a 
number of available processors q, an arbitrary FEM is decomposed into q subdo-
mains, where formation of element matrices, assembly of global matrices, partial 
factorisation of the stiffness matrix and state determination or evaluation of gener-
alised stresses can be carried out independent of similar computations for the other 
subdomains, and hence can be performed in parallel. 

In parallel processing of subdomains, the time to complete a task will be the time 
to compute the longest subtask. An algorithm for domain decomposition will be 
efficient if it yields subdomains that require an equal amount of execution time. In 
other words, the algorithm has to achieve a load balance among the processors. In 
general, this will be particularly ensured if each subdomain contains an equal 
number of elements or an equal total number of DOF. However, for some numeri-
cal techniques based on domain decomposition, a balanced number of elements or 
total DOF among the subdomains does not imply balancing of the subdomain 
calculations themselves. The use of a frontal subdomain solver provides a relevant 
example. In this case, the computing load within a domain is not only a function of 
the number of elements within the subdomain but also of the element numbering. 
Thus, the optimal number of elements is a priori unknown and can vary signifi-
cantly from one subdomain to another. 

To reduce the cost of synchronisation and message passing between the processors 
in a parallel architecture, the amount of interface nodes should be minimised be-
cause the parallel solution for the generalised displacements usually requires 
explicit synchronisation on a shared-memory multi-processor and message passing 
on local-memory ones. In a domain decomposition method, another significant 
mesh partitioning factor that should be considered is the subdomain aspect ratio. 
This ratio has a vital impact on the convergence rate of the iterative approaches for 
the finite element tearing and interconnecting method. 

The above features suggest that an automatic finite element domain decomposer 
should meet the following four basic requirements to be efficient: 

1. It should be able to handle irregular geometry and arbitrary discretisation to be a 
general purpose one. 

2. It must yield a set of balanced subdomains to ensure that the overall computa-
tional load be as evenly distributed as possible among the processors. 
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3. It should minimise the amount of interface nodes to reduce the cost of synchro-
nisation and/or message passing between the processors. 

4. It must result in subdomains with proper aspect ratios to improve the conver-
gence rate of the domain decomposition–based iterative method. 

Methods of subdomaining are well documented in the literature; see, for example, 
Farhat and Wilson [48], Farhat [44], Dorr [37] and Malone [160], Farhat and Roux 
[47], Al-Nasra and Nguyen [4] Farhat and Lesoinne [45], Khan and Topping 
[135,136] Topping and Khan [220], Topping and Sziveri [221], Vanderstraeten 
and Keunings [224], and Kaveh and Roosta [130,132]. Several automatic domain 
decomposition methods that address the load balance and minimum interprocessor 
computation problems have already been reported in the literature. In general, 
these algorithms can be grouped into two categories: engineering-based methods 
and graph theory–based methods. For engineering-based approaches, one can refer 
to the algorithms in [44,49], and for graph theory–based methods the algorithms in 
[113,130] can be referred to. 

In this section, two efficient algorithms are presented for the decomposition of 
one- to three-dimensional FEMs of arbitrary shapes. The first method is a graph-
based method and uses a general expansion process. The second is an engineering-
based approach. In these algorithms, the resulted subdomains generally have good 
aspect ratios, especially when originally the elements have this property.  

7.4.2 A GRAPH-BASED METHOD FOR SUBDOMAINING 

In this algorithm, first the associate graph model or incidence graph model G of 
the FEM is generated. Then, a good starting node R1 of G is selected. R1 is taken as 
the first node of the first subgraph G1. Next, G1 is expanded from R1. The process 
of expansion is continued such that the equality of the total DOFs of subdomains is 
provided. G2 is formed similar to G1 but it is expanded from R2, which is an unse-
lected node with the maximum distance from R1. R2 should contain no node of G1. 
The process of expansion is executed in a manner that provides the connectedness 
of the subgraph being formed (if it is possible). A similar approach is employed 
and G3, ..., Gq are generated, and the subdomains of the FEM corresponding to the 
selected subgraphs of G are identified. The steps of the algorithm are as follows: 

Step 1: Use the associate or incidence graph G of the considered FEM and form an 
SRT rooted from an arbitrary node of G, to find a node R1 with the maximum dis-
tance from the root. 

Step 2: Generate subgraph Gi (i = 1 to q) as follows: 
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(a) Form an SRT rooted from Ri to calculate the distance between each node of G 
and Ri (Ri is taken as the first selected node of Gi), and find an unselected node Ri+1 
with the maximum distance from Ri. 

(b) Find all the unselected boundary nodes of Gi, and denote them by UBN. 

(c) Associate an integer with each node ni of UBN that is the same as its distance 
from Ri plus the number of unselected nodes adjacent to ni minus the number of 
selected nodes adjacent to ni. Then, detect the node with the minimum integer and 
add it to Gi. 

(d) If the total DOF of the corresponding subdomain is less than [TDOF + W0 

(q − 1)]/q, then repeat the above steps from Step (b); otherwise, execute Step 2 to 
generate subgraph Gi+1. TDOF is the total DOF of the FEM and W0 is the total 
DOF for the nodes of the corresponding subdomain, which are also contained in 
unselected elements. 

In the above algorithm, only the connectivity of the nodes of G is considered, and 
no labels for edges of G, list or matrices of edges are needed. Therefore, the 
formation of SRTs of G and data keeping will be more simple and efficient. Since 
valencies of the nodes of an associate or incidence graph of an FEM are not gener-
ally very different, the adjacency list is an efficient means of keeping the 
connectivity data of G. The adjacency list of a graph G is a matrix containing N(G) 
rows and ∆ columns, where ∆ is the maximum degree of the nodes of G. The ith 
row contains the labels of the nodes adjacent to the node i. 

Step 1 is carried out to select a good starting node in the generated associate or 
incidence graph G. Using the adjacency list of G, Step (a) can be performed as 
explained below; however, any other type of list may also be used. 

1. Select all the nodes of the Rith row of the adjacency list of G. The distance be-
tween these nodes and the root is equal to unity. 

2. Select all the unselected nodes of the row j ( j is an element of the set of the se-
lected nodes of the previous step). The distance of these nodes from the root is one 
unit more. 

3. Repeat Step 2 until all the nodes are selected. 

The last instruction of Step (a) is carried out to select the first node of the next 
subgraph. This node should not be included in the previously generated subgraphs 
(i.e. it should be an unselected node). In Step (b), UBN contains unselected nodes 
that are adjacent to selected nodes of Gi. To extend Gi, a node of UBN will be 
added to Gi in every execution of Step (c). In this step, an integer will be associ-
ated with each node of UBN that defines the best possible node, having the 
following properties: 
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1. It is near the root. 

2. It does not make the next UBN very large. 

3. It is connected to Gi with more nodes, which leads to a desirable configuration 
for Gi. 

This integer is equal to the distance from Ri plus the valency of the node minus the 
number of selected adjacent nodes multiplied by two. The value of [TDOF + W0(q 
− 1)]/q is not needed to be calculated in every execution of Step (d). Since every 
subdomain should have at least TDOF/q degrees of freedom, W0 can be calculated 
when the DOF of a subdomain becomes more than TDOF/q. Additional value, 
W0(q − 1)/q, is considered, since the DOF of the interface nodes of subdomains are 
calculated in two or more subdomains and the DOF of the subdomains should be 
equal or nearly equal. 

In this algorithm, a disconnected subdomain may be generated. This happens when 
no node can be found in Step (b). In such a case, an unselected node with mini-
mum distance should be added to the considered subgraph. To avoid such 
situations, one should avoid decomposing a small FEM into many subdomains. 
However, the following modifications can always be used: 

1. Formation of a single SRT from an arbitrary node to find a good starting node 
may not lead to the best node; however, the existing good starting node algorithms 
can be used to select a better node. 

2. If a subgraph Gi contains two components '
iG  and ''

iG , one can exchange nodes 
of '

iG  or ''
iG  with the adjacent subgraphs to provide connectedness for Gi. 

3. Use a non-deterministic heuristic of combinatorial optimisation such as Simu-
lated Annealing to improve the initial partitioning to avoid the formation of multi-
connected subdomains. 

7.4.3 RENUMBERING OF DECOMPOSED FINITE ELEMENT MODELS 

Once the subdomains and interface nodes are specified, the nodes and/or elements 
of each subdomain and the interface nodes can be renumbered for bandwidth, pro-
file or frontwidth reduction, depending on whether a band, profile or frontal solver 
is exploited, respectively. The process of renumbering includes the following 
steps: 

1. Renumber the internal nodes/elements of the subdomains M1, ..., Mq using an 
available algorithm.  

2. Select an interface node connected to M1 that is contained in a minimum number 
of elements as the starting node, and number the interface nodes using a nodal 
ordering algorithm. In the process of renumbering, when possible, priority is given 
to the nodes connected to lower-numbered subdomains. 
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It should be noted that, for a specified solver such as a frontal solver, the resulting 
subdomains and interface nodes should also satisfy additional conditions. For ex-
ample in a frontal solver, a necessary condition for the applied domain 
decomposition approach to be feasible is that the number of DOF lying on the in-
terface of any subdomain be smaller than the frontwidth associated with the direct 
(one domain) approach. However, such conditions cannot always be satisfied us-
ing the existing decomposition heuristics, because they generally depend on the 
shape and the connectivity of FEMs; see Lesoinne et al. [149]. 

7.4.4 COMPLEXITY ANALYSIS OF THE GRAPH-BASED METHOD 

The direct formation of an associate graph or an incidence graph of a FEM with l 
elements has time complexity O( 2 2θ λ ), where θ is the maximum number of nodes 
of an element. For checking l elements to have a common node or boundary, the 
following loops should be executed: 

 for i from 2 to n 
   for j from 1 to i −1 
    for k from 1 to θ 
     for l from 1 to θ 
     - 
     end for 
    end for 
    - 
   end for  
 end for 

The first two loops are designed to control elements i and j that have common 
nodes. However, if the maximum difference δ between the labels of two elements 
with a common boundary for the associate graph or with a common node for the 
incidence graph is given, then the second loop will be replaced by the following: 

  for j from i − δ to i −1. 

This modification becomes very efficient in large-scale problems and reduces the 
time complexity of the process to O( 2θ δλ ). Hence, ordering of the elements 
should be performed in the process of mesh generation. However, this method for 
generating an associate graph or an incidence graph is dependent on the order of 
the data. In the following text, a different method that does not depend on the data 
order and requires a fewer number of operations is presented. This method consists 
of the following steps: 

1. Generate an adjacency list with α rows and ε columns. In this list, the ith row 
contains labels of the elements that contain node i, and α and ε are the numbers of 
the nodes of the FEM and the maximum number of elements containing a  
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specified node, respectively. Each pair of elements has at least one common node 
in any row of this list. 

2. If the associate graph is needed, then control each pair of elements of every row 
to have more common nodes. 

3. When two elements of equal or different dimensions have interface nodes equal 
to or more than the smallest dimension of the elements, then, in the associate 
graph, the corresponding nodes are connected to each other by a member. In the 
case of the incidence graph, the nodes corresponding to each pair of elements of 
every row are connected to each other by a member. 

This method has the time complexity O( 2 2θ ε α ) for the formation of the associate 
graph, and O( 2ε δα ) for the construction of the incidence graph of an FEM. 

Formation of an SRT, using a proper list for keeping connectivity of nodes of the 
graph, has time complexity O( λ∆ ), where ∆  is the maximum valency of the 
nodes of the graph. 

Every execution of Step 2 includes the following steps with the time complexities:  

Step (a) has the time complexity O( λ∆ ). 

In every execution of Step 2, Step (b) is carried out m times, where m is the maxi-
mum number of elements of each subdomain, and its bound is less than λ and its 
average value is equal to n/q. Since each execution of Step (b) has time complexity 
O( m∆ ), the time complexity of this step is O( 2λ∆ ). 

Step (c) is carried out m times in every execution of Step 2. Each execution of this 
step has time complexity O( κ∆ ), where κ is the maximum cardinality of the 
UBN, and its bound is less than λ. Hence this step also has the time complexity 
O( 2λ∆ ). 

Step (d) includes the following two processes: 

1. Calculate the DOF for the corresponding subdomain. This process is also car-
ried out m times in every execution of the Step 2 and has the time complexity 
O(θλ ). 

2. Calculate [TDOF + W0(q − 1)]/q. This process may be carried out at most k 
times in every execution of Step 2 and has the time complexity O( 2θλ ). Step 2 
should be carried out q times; hence the time complexity of this step is O( 2qδλ ). 
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7.4.5 COMPUTATIONAL RESULTS OF THE GRAPH-BASED METHOD 

Example 1: An FEM with λ = 606, α = 1961 is considered; each element has four 
corner nodes and four mid-side nodes and each node has 2 DOF and is decom-
posed into 2, ..., 6 subdomains, as shown in Figures 7.7(a–d) for q = 4 and 6, 
where λ and α denote the numbers of elements and nodes, respectively. The DOF 
of the selected subdomains and interface nodes for q = 2, ..., 6 are illustrated in 
Table 7.1, when the associate graph and the incidence graph are used. 

  
 (a) q = 4 using the associate graph. (b) q = 6 using the associate graph. 

 
 (c) q = 4 using the incidence graph. (d) q = 6 using the incidence graph. 

Fig. 7.7 A finite element model and its decompositions. 
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Table 7.1 Results of Example 1. 

 
q 
 

 
Type of graph 

 

 
DOFs of subdomains; interface nodes 

 

2 Associate 
Incidence 

2002, 1994; 74 
2016, 2008; 102 

3 Associate 
Incidence 

1370, 1360, 1352; 160 
1352, 1370, 1352; 150 

4 Associate 
Incidence 

1048, 1052, 1060, 1044; 280 
1022, 1030, 1030, 1022; 182 

5 Associate 
Incidence 

856, 860, 868, 852, 842; 352 
828, 844, 848, 826, 816; 240 

6 Associate 
Incidence 

724, 730, 744, 748, 672, 706; 394 
700, 728, 714, 692, 692, 694; 296 

Example 2: An L-shaped FEM with λ = 2400, α = 1281 and each node having 
DOF equal to 2 is considered. The model is decomposed into 6 and 12 subdo-
mains, as shown in Figure 7.8(a–d). The DOF of the subdomains and interface 
nodes using the associate graph and the incidence graph are illustrated in Table 
7.2. 

 
 (a) q = 6 using the associate graph. (b) q = 12 using the associate graph. 
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 (c) q = 6 using the incidence graph. (d) q = 12 using the incidence graph. 

Fig. 7.8 An L-shaped finite element model and its decompositions. 

Table 7.2 Results of Example 2. 

q Type of 
graph DOFs of subdomains; interface nodes 

8 Associate 
Incidence 

462, 462, 462, 462, 462, 462; 210 
462, 462, 462, 462, 462, 462; 216 

12 Associate 
Incidence 

244, 244, 248, 248, 246, 246, 242, 252, 246, 232, 236, 232; 342, 
252, 252, 250, 250, 268, 268, 246, 268, 260, 232, 234, 242; 440 

Example 3: An FEM with λ = 528, α = 307 with each node having two DOF is 
considered. The model is decomposed into 2, 3 and 4 subdomains, and the decom-
posed models for q = 4 are shown in Figure 7.9(a and b). The DOF of the 
subdomains and interface nodes using an associate graph and an incidence graph 
are illustrated in Table 7.3. The patterns of the node adjacency matrices employing 
the associate graph for the model, after ordering, are shown in Figure 7.10(a–c). 

 
 (a) q = 4 using the associate graph. (b) q = 4 using the incidence graph.  

Fig. 7.9 A finite element model and its decompositions. 
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 (a) (b) 

 
(c) 

Fig. 7.10 The patterns of the ordered node adjacency matrices. 

Table 7.3 Results of Example 3. 

q 
Type of 
graph DOFs of subdomains; interface nodes 

2 Associate 
Incidence 

324, 324; 34 
322, 322; 30 

3 Associate 
Incidence 

224, 216, 218; 42 
222, 222, 220; 50 

4 Associate 
Incidence 

170, 164, 170, 168; 58 
176, 164, 170, 170; 66 

7.4.6 DISCUSSIONS ON THE GRAPH-BASED METHOD 

This algorithm has low time complexity, is simple to program and leads to effi-
cient partitioning of an FEM into subdomains with the required properties; 
therefore, it can also be considered as a good educational approach. The FEM that 
should be partitioned can contain meshes with different dimensions, types and 
sizes. Although the problem of aspect ratios of the subdomains is not dealt with 
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explicitly in this section, the algorithm has the feature of expansion in all direc-
tions, leading to good aspect ratios. 

7.4.7 ENGINEERING-BASED METHOD FOR SUBDOMAINING 

Definitions 

A level structure L(r) of an FEM rooted from an element r (as the root) is defined 
as a partitioning of the set of elements into levels l1(r), l2(r), …, ld(r) such that the 
following are true: 

1. l1(r) = {r}. 

2. All elements adjacent to elements in level li(r) (1 < i < d) are in levels li–1(r), li(r) 
and li+1(r). 

3. All elements adjacent to elements in level ldi(r) are in levels ld–1(r) and ld(r). 

The overall level structure may be expressed as the set L(r) = {l1(r), l2(r), …, 
ld(r)}, where d is the depth of the level structure and is simply the total number of 
levels, and two elements are adjacent if they share a common node. 

The element adjacency list of a finite element mesh contains the lists of elements 
adjacent to each element. The element-node list of an FEM contains the lists of 
nodes of each element and is generally employed as an input for data connectivity 
of FEMs. Following Webb and Froncioni [225], the node-element list contains the 
lists of elements containing each node of the finite element mesh. 

A genre structure is a level structure in which each level is divided into one or 
more genres, and the index of each genre, as defined below, simply shows the 
pseudo-distance between the root and its elements. The overall genre structure 
rooted from an element r may be expressed as the set G(r) = {g0(r), g1(r), g2(r), …, 
gs(r)}, in which the pseudo-distance between r and the elements of genre gi(r) is 
equal to i. The index vector IVr(i) of a genre structure rooted from an element r is a 
vector of (n + 1) dimensions whose ith array (i = 0, ..., n) defines the total number 
of elements of gi ( j = 0, ..., i), that is, 

 
0

( )  ( ) .
i

r i
j

IV i g r
=

= ∑  (7-20) 

Thus, the cardinality of genre i (0 < i ≤ n) is simply equal to IVr(i) − IVr(i – 1), and 
the cardinality of g0(r) is equal to 1. The following scheme (in pseudo code) 
should be used to form a genre structure from an arbitrary starting element r to 
generate its index vector and to find the pseudo-distances pd(r, ei) between the 
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root r and all elements ei(i = 1, ..., λ, where λ denotes the number of elements) of 
the considered FEM. In this scheme, D∈{1, 2, 3} denotes the highest dimension of 
the elements in the model, and CCN(gi(r), e) denotes the set of common corner 
nodes between the elements of genre gi(r), and the element e. 

1. Set g0(r) = {r}, IVr(0) = 1, pd(r, r) = 0 and mask r. 
2. Set i = 1, a = 0 and b = 0. 
3. for j = D to 1 Step 1 
  for k = a to b 

   (I) put each unmasked element e with CCN(gk(r), e)≥ j into gi(r). 
  (II) if ( ) 0ig r ≠  then set IVr(i) = IVr(i − 1) + ( )ig r , pd(r, e) = i  
  (e ∈ gi(r)), i = i + 1 and mask the elements of gi(r). 
  end for 
 end for 
4. If IVr(i − 1) < λ then set a = b + 1, b = i and repeat Step 3. 

7.4.8 GENRE STRUCTURE ALGORITHM 

Step 1: Form a genre structure rooted from an arbitrary element and select an ele-
ment 1

se  from its last genre. 

Step 2: Calculate the pseudo-distance between 1
se  and each element and select an 

element 2
se  with the maximum pseudo-distance from 1

se . 

Step 3: Calculate the pseudo-distance between 2
se  and each element. If q = 2, then 

go to Step 5. 

Step 4: Find an unselected element i
se (i = 3, 4, ..., q) contained in genres gj1( 1

se ), 
gj2( 2

se ), gj3( 3
se ), ..., gji–1( 1i

se − ) such that the least value of IVr( jk − 1) is the maxi-
mum, where jk > 0, k = 1, ..., i − 1, and then calculate the pseudo-distances 
between i

se  and the elements. 

Step 5: For each selected element j
se  ( j = 1, ..., q) and each element ek (k = 1, ..., 

λ), assign an integer in( j
se , ek) as follows: 

 in( j
se , ek) = λ + mpd( j

se , ek) ҟ – pd( j
se , ek), (7-21) 

where 

mpd( j
se , ek) = min{pd( i

se , ek)1 ≤ l ≤ q, l ≠ j} 
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Step 6: Let j
se  be the first element of the subdomain Mi. Calculate the weight of Mi 

and mask i
se , where i = 1, ..., q. 

Step 7: Find an expandable subdomain Mi with minimum weight, add an un-
masked element ek with maximum non-zero priority number Pi = CN × in( i

se , ek) 
to Mi, update the weight Mi and mask ek, where if |CCN(Mj, ek)| ≤ 3 then CN = 
|CCN(Mi, ek) |, else CN = 3. If there is no element to be added to Mi, this subdo-
main is not expandable and should be masked. If there are several elements with 
the maximum priority number Pi, then select the one with the minimum sum of 
integers corresponding to i

se  (i = 1, ..., q). Repeat this step until all the elements 
are masked. 

In this algorithm, the weight of a subdomain Mi can be taken as an arbitrary single 
number such as the number of the elements of Mi, the total DOF of the nodes of 
Mj, a function of the number and labels of the elements of Mi, and so on. However, 
here the total DOF of the nodes of a subdomain is considered as the weight of the 
subdomain. 

Obviously, in this method only the corner nodes of a finite element mesh should be 
provided, that is, mid-side nodes and interior nodes are not needed. This increases 
the efficiency of the algorithm and results in saving computer storage space for 
FEMs with high-order elements. 

An important problem that should be contemplated in a domain decomposition 
method is the connectedness of the elements of a single subdomain. In this algo-
rithm, multi-component subdomains are avoided. Since the integers that are 
calculated in Step 5 are more than zero, the priority number Pi of an element ei 
corresponding to the subdomain Mi will be zero if CCN(Mi, ei) = 0, that is, the 
element is not connected to Mi with a corner node. As stated in Step 7, an element 
with priority number Pi = 0 cannot be added to Mi. This provides the connected-
ness of Mi (i = 1, ..., q); however, it leads to differences between the weights of the 
subdomains because when a subdomain cannot be expanded and is masked, the 
other unmasked subdomains are still expanded. This problem has been nearly 
remedied in the present algorithm by Steps 2 and 4. In these steps, the first ele-
ments of the subdomains are selected in such a manner that there are enough 
elements to be added to them for further expansion of the subdomains. For com-
plete balanced loads for subdomains, one can let elements with zero priority 
numbers to be also added to a subdomain, in which case multi-component subdo-
mains will be generated. However, there are several non-deterministic heuristics 
used in combinatorial optimisation such as Simulated Annealing, Stochastic 
Evolution and Tabu Search, which can be used for better load balancing of 
subdomains and reduction in the number of interface nodes; see, for example [13]. 
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These combinatorial optimisation methods are normally included in an FEM de-
composition algorithm as follows: 

Step I: Invoke a direct partitioning scheme to produce an initial decomposition of 
reasonable quality. 

Step II: Use an optimisation procedure to improve the initial partitioning. 

The second step generally needs high computer time. Hence this algorithm is de-
signed for careful partitioning of the finite element meshes to avoid (as far as 
possible) the use of optimisation procedures for general cases. However, this 
method can be applied as a direct method in Step I. This will be efficient, since the 
more the load balancing of subdomains and the less the number of interface nodes 
produced by a direct partitioning scheme, the less the cost for the applied optimisa-
tion method. 

Step 1 of the algorithm presented in this section is carried out to find a good start-
ing element 1

se  for the first subdomains M1. Step 2 is executed to calculate the 
pseudo-distance between 1

se  and each element and to find an element 2
se  as the 

good starting element of the second subdomain M2. It should be noted that, when  
q > 2, the index of genres containing a specified element should be known because 
it is needed for the selection of the starting elements of subdomains Mi (i = 3, ..., 
q). Step 3 should be carried out to calculate the pseudo-distance between 2

se  and 
each element of the considered finite element mesh. Also in this step, the index of 
genres containing a specified element should be defined for q > 2. Step 4 is exe-
cuted to find good starting elements for subdomains Mi (i = 3, ..., q). The condition 
imposed in step 4 is included in order to provide the starting elements of subdo-
mains to be unobtrusive when the process of expansion is performed in Step 7. 
This condition increases the probability that a subdomain will remain expandable 
while the other subdomains are being expanded. Step 5 is carried out to calculate 
an integer for each selected (starting) element and each element of the finite ele-
ment mesh. This integer is always more than zero since λ is always more than or 
equal to a pseudo-distance between two elements, and a pseudo-distance is always 
equal to or more than zero. The integers calculated in this step affect the priority 
number of elements in two ways when the process of expansion is performed: (1) 
the elements that are added to a subdomain have lower priority numbers for other 
subdomains and (2) the elements of a subdomain do not have flange positions in 
relation to the region of the subdomain (loosely speaking). These effects make the 
number of boundary interior nodes of a subdomain low and its aspect ratio a de-
sired value. The less the differences between the geometrical dimensions of a 
subdomain with a given area/volume, the smaller the boundary and the better the 
aspect ratio of the subdomain. However, this remark is true when the elements 
have good aspect ratios originally. For more details about the aspect ratio of a  
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subdomain, see the recent paper of Farhat et al. [46], in which their final choice 
has been to compute the aspect ratio AR of a subdomain Mi as follows: 

2
Surface ( )( ) (two-dimensional problems)

Surface of circumscribed circle
i

i
MAR M c= ×  

3
Volume ( )( ) (three-dimensional problems)

Volume of circumscribed sphere
i

i
MAR M c= ×  

 (7-22) 

where c2 and c3 are scaling constants designed such that 0 < AR ≤ 1.  

Step 6 is executed to initialise the subdomains Mi (i = 1, ..., q) and their weights 
and to mask their first (starting) elements. The elements of a subdomain are 
masked only to forbid their repeated selection. Step 7 contains the expansion proc-
ess of the algorithm. In every execution of this step, an element with maximum 
priority number corresponding to a subdomain Mi is added to Mi, where Mi is the 
subdomain with the current minimum weight. This method of expansion leads to 
equal loads for subdomains such that the subdomains remain expandable, and this 
condition is provided in the process of selecting i

se  (i = 1, ..., q) and giving a prior-
ity number to an element corresponding to the subdomain being formed. The 
priority number defined in this step is simply designed to give more priority to an 
element connected to a subdomain Mk with more corner nodes in comparison with 
an element connected to Mk with less corner nodes having the same integers. 

7.4.9 EXAMPLE 

Consider the simple finite element mesh, as shown in Figure 7.11(a), with each 
node having two DOF and assume that it is decomposed into three subdomains. 
The steps of the present algorithm are performed as follows: 

Step 1: A genre structure is rooted from an arbitrary element such as the element 
15. The elements of each genre are recognised with the index of the genre as illus-
trated in Figure 7.11(b). The last genre, g8(15), contains the element 6; hence 

1 6se = . 

Step 2: G(6) is formed to calculate the pseudo-distance between the element 6 and 
other elements. The elements of each genre are assigned with the index of the 
genre; this index is same as the pseudo-distances between the root and the ele-
ments of the genre. In Figure 7.11(c) the pseudo-distance between the root 
(element 6) and other elements are depicted; the element 19 belongs to the last 
genre of G(6), having the highest pseudo-distance from the root, and thus 2 19.se =  
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Step 3: G(19) is generated, and the pseudo-distances between the root and the ele-
ments are shown in Figure 7.11(d). Since q > 2, Step 4 should be executed. 

Step 4: Two elements 2 and 23 satisfy the condition of this step, since 

2∈ g10(6) and g7(19) 

IV6(9) = 16 , IV19(6) = 11 

23 ∈ g7 (6) and g10(19) 

IV6(6) = 11 , IV19(9) = 16, 

and  

min{IV6(i) , IV19 ( j)} < 11, 

where 

0 ≤ i, j ≤ 16 and (i, j) ≠ (9, 6) and (6, 9). 

Element 2 or 23 can be selected for 3
se  arbitrarily; suppose 3

se  = 23. Figure 7.11(e) 
shows the pseudo-distances between 3

se  and the other elements. 

Step 5: For each element, three integers are assigned corresponding to 3
se , 2

se  and 
3
se . These integers are illustrated in Figure 7.11(f) for each element. 

Step 6: Execution of this step leads to M1 = {6}, M2 = {19} and M3 = {23}. The 
weights of M1, M2 and M3 are the same and equal to 8, and their elements are 
masked. 

Step 7: This step is carried out λ − q = 21 times, and in each execution one element 
with maximum priority number is added to a subdomain with the current minimum 
weight as follows: 

All subdomains have the same weight; hence the subdomain M1 is selected arbi-
trarily for expansion. The elements with non-zero priority numbers that are 
connected to M1 are 5, 11 and 12, and their priority numbers are 2 × 29, 1 × 25 and 
2 × 27, respectively. Thus, element 5 is added to M1 and is masked. The weight of 
M1 is now equal to 12. The subdomains M2 and M3 have the minimum current 
weight. The subdomain M2 is selected arbitrarily for expansion. The elements 13, 
14 and 20 are connected to M2, and their priority numbers are 2 × 34, 1 × 29 and  
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2 × 29, respectively. Hence the element 13 is added to M2 and is masked. The cur-
rent weight of M2 is now equal to 12. The subdomain M3 has the least current 
weight. The elements 16, 17, 18, 22 and 24 are connected to M3, and their priority 
numbers are 1 × 27, 2 × 27, 1 × 25, 2 × 29 and 2 × 29, respectively. The priority 
numbers of the elements 22 and 24 are maximum; however, element 24 is added to 
M3 because the sum of its integers is less than that of the element 22. The element 
24 is masked. The weight of the subdomain M3 is now equal to 12. The repetitions 
of this step lead to the decomposition as illustrated in Figure 7.11(g). 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

1
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1 3

3

0

 
 (a) A simple two-dimensional FEM. (b) Genres of G(15). 
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(c) Genres of G(6).  (d) Genres of G(19). 
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 (e) Genres of G(23). (f) Integers of the elements. 
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(g) Decomposition of the FEM for q = 3. 

Fig. 7.11 Illustration of the steps for the example. 

7.4.10 COMPLEXITY ANALYSIS OF THE ENGINEERING-BASED METHOD 

In the following text, an efficient data structure is searched and the domain de-
composition heuristic of this section is analysed for the worst case. 

The element-node list of an FEM is usually used as input for data connectivity of 
elements, and here such a list is used. However, for efficient programming of algo-
rithms such as the present one, this list should not be used exclusively, because 
finding elements connected to a specified element takes O(λθ 2) operations, where 
θ denotes the maximum number of nodes of an element. Hence, another data  
structure (list) together with the element-node list should be used. This list should 
(1) be addressed simply, (2) make high reduction in the time complexity of the 
algorithm, (3) require low computer space and (4) be generated with a low number 
of operations. 

Two lists commonly employed are the node-element list and the element adjacency 
list. These are compared with respect to the above four conditions (for the present 
algorithm) as follows: 

1. They can both be simply addressed. 

2. The element adjacency list leads to further reduction in the time complexity. For 
example, it needs O(∆) operations for finding elements connected to a specified 
element, and the node-element list takes O(θε) operations, where ∆ and ε denote 
the maximum number of elements connected to an element and to a node, respec-
tively. 

3. In most FEMs for which the number of nodes α is higher than λ, the element 
adjacency list takes less computer memory than the node-element list. 

4. Using the element-node list, generation of the node-element and element adja-
cency lists takes O(λθ ) and O(λ2θ 2) operations, respectively. The element 
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adjacency list is inefficient only from this point of view. Hence a method with low 
time complexity is needed for generating the element adjacency list. In the follow-
ing text, a method is proposed for the formation of the element adjacency list, 
which has time complexity O(λωθ 2), where ω denotes the maximum number of 
elements contained in a level of an arbitrary level structure. 

Step I: Generate the node-element list of the FEM. 

Step II: Using the element-node and node-element lists, form a level structure 
rooted from an arbitrary element r. 

Step III: Erase the node-element list. 

Step IV. For each element (i = 1, ..., λ) contained in level lj, control levels la, ..., lb 
to find elements connected to i, where, if j = 0, then a = 0 and b = 1; else, if  
0 < j < d, then a = j − 1 and b = j + 1; else a = j − 1 and b = j. 

In Step III, the node-element list is erased from the working memory to provide 
enough memory for the formation of the element adjacency list. However, one can 
generate the node-element list and then form the element adjacency list directly. 
This scheme takes O(α∆ε2) operations. This method is efficient from the point of 
time requirement; however, it needs the element-node, node-element and element 
adjacency lists to be in the working memory simultaneously. Hence, it is proposed 
that the element adjacency list be generated by this method when the considered 
FEM is not a very large-scale model; otherwise Steps I–IV should be performed. 

Formation of the element adjacency list, using the element-node list only (which 
has time complexity O(λ2θ 2)), can also be improved such that the maximum dif-
ference δ between the labels of the elements with a common node is given. In this 
case, the time complexity reduces to O(λδθ 2); hence ordering of elements should 
be performed in the process of mesh generation. 

Generation of a genre structure takes O(Dλ∆θ 2) operations; however, one can 
reduce it to O(Dλ∆) by saving the number of common corner nodes of each pair of 
elements when the element adjacency list is formed. Therefore, an additional vec-
tor that has the same size as the element adjacency list is needed. Thus, Steps 1, 2 
and 3 have time complexity O(Dλ∆), where D denotes the dimension of the con-
sidered FEM and varies from 1 to 3. 

In each execution of Step 4, one should find an element i
se  in which the least num-

ber of selected elements of each generated genre structure contained in the 
previous genres (before i

se  is selected as a member of the next genre of each genre 
structure) is maximum; hence the time complexity of this step is O(λq2). Step 5 
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also has the time complexity O(λq2). The time complexity of Step 6 is O(qθ ). Step 
7 has time complexity O(λ2θ ), and is the critical step of the algorithm. 

The time complexity of the critical step of the algorithm shows that this algorithm 
is efficient for FEMs with high-order elements as well as for FEMs with low-order 
elements. It depends only on the number of elements of the FEM (λ) and the 
maximum number of nodes of an element (θ ). 

7.4.11 COMPUTATIONAL RESULTS OF THE ENGINEERING-BASED METHOD 

Two examples are studied in this section, using the direct method for the formation 
of their element adjacency list. 

Example 1: A multi-connected finite element mesh is shown in Figure 7.12(a), 
and decomposed into 2, 3, 4, 8 and 16 subdomains as illustrated in Figures 7.12 
(b–f). In this example, each node has two DOF. The computational time is pro-
vided in Table 7.4. 
 

 
(a) A multi-connected FEM with 1152 elements and 1248 nodes. 

 

   
 (b) q = 2 (c) q = 3 
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 (d) q = 4 (e) q = 8 

 
(f) q = 16 

Fig. 7.12 Decompositions of the multi-connected finite element mesh. 

Table 7.4 Computational time. 

q 2 3 4 8 16 

Time (s) 29.00 29.28 29.44 30.59 33.39 

Example 2: A multi-connected H-shaped finite element mesh with each node hav-
ing two DOF is shown in Figure 7.13(a), and decomposed into 2, 4, 5, 8, 16 and 
32 subdomains as illustrated in Figures 7.13(b–g). The computational time is pro-
vided in Table 7.5. 
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(a) A multi-connected H-shaped FEM with 1340 elements and 1042 nodes. 

 

 
 

 (b) q = 2 (c) q = 4 
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 (d) q = 5 (e) q = 8 

 
 (f) q = 16 (g) q = 32 

Fig. 7.13 Decompositions of a multi-connected H-shaped finite element mesh. 

Table 7.5 Computational time. 

7.4.12 DISCUSSIONS 

The algorithm developed in this section is designed as a pre-processor for concur-
rent finite element computations. It may also serve as an automatic decomposer for 
serial solutions on a sequential computer to overcome limited core storage capac-
ity. This algorithm has low time complexity and leads to efficient partitioning of a 
finite element mesh into subdomains with required properties. A finite element 

q 2 4 5 8 16 32 

Time (s) 33.95 31.75 32.90 37.14 40.70 52.79 
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mesh to be partitioned may contain various meshes with different dimensions, 
types and sizes. The algorithm uses a simultaneous expansion process, which is an 
improved version of the algorithm presented in the previous section for substruc-
turing. In this algorithm, the method for selecting the first (representative) element 
for each subdomain is improved, and the better priority numbers for elements to be 
added to the expanding subdomains are defined to form subdomains with more 
appropriate properties. 

This algorithm is designed to have properties required for an efficient decomposi-
tion and leads to subdomains with the following properties: 

1. Low computer space and time requirements. In the present algorithm, only the 
corner nodes need to be given, and this leads to a large space saving in FEMs with 
high-order elements. The time complexity of the algorithm is independent of the 
number of nodes for the considered FEM, and the critical step of the algorithm 
takes O( 2λ θ ) operations in the worst case.  

2. General in use. The algorithm can be employed to decompose unstructured 
FEMs without any restriction, and an arbitrary parameter can be considered as the 
loads of the subdomains. 

3. Balance loads for subdomains. Selection of the starting elements of subdomains 
and the expansion process are performed in a manner that leads to an efficient bal-
ancing of loads. However, to decrease the differences between the loads of 
subdomains, the following steps are included, which should be executed in place 
of Steps 1–4 of the original algorithm: 

(a) Find the pseudo-distance between each element and all the elements of the fi-
nite element mesh. 

(b) Find q elements 1 2, ,..., q
s s se e e , provided i

se (i = 1, ..., q), which is contained in 
genres gj1( 1

se ), gj1( 2
se ), …, gj1( q

se ), is selected in such a way that the least value of 
IV( jk − 1) is maximum, where jk ≠ 0 (k = 1, ..., q). 

However, this takes more operations than those of Steps 1-4. 

4. Close to minimum number of interface nodes. In this algorithm, the number of 
interface nodes is kept to the least possible by selecting the elements to be added to 
a subdomain which have not high priority numbers for the other subdomains, and 
have a proper position in relation to the previously selected elements of the sub-
domains.  

5. Good aspect ratios for subdomains. When the elements of the considered finite 
element mesh have aspect ratios with proper values, the algorithm leads to a  
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decomposition with subdomains having reasonable aspect ratios. This is because 
the subdomains are expanded in all directions, which makes the denominators of 
the equations introduced by Farhat et al. [46] to be increased. 

7.5 SUBSTRUCTURING: FORCE METHOD 

The force method can be employed in parallel analysis of structures. In this sec-
tion, the formulation of substructuring is provided, and an algorithm is presented 
for such analysis. The computational process is illustrated using simple examples. 

In this section, the notations and formulations presented in Chapter 3 will be used. 

7.5.1 ALGORITHM FOR THE FORCE METHOD SUBSTRUCTURING 

Once a structural model has been decomposed using any of the methods presented 
in the previous sections, the following approach can be used for the analysis em-
ploying the force method: 

To support a substructure in a statically determinate fashion, cuts are introduced at 
members incident with the interface nodes contained in the corresponding sub-
structure, except at one arbitrary node where the substructure is connected to the 
previous one. 

For a given substructure Si, let the external forces be denoted by pi and redundant 
forces by qi. Then the substructure Si can be analysed for the internal forces in the 
substructure (not coupling redundants) qi in the aforementioned manner, that is, 

 0 00 01

1 10 11

 .i i

i ii

     
=     

     

v D D p
v D D q

 (7-23) 

For continuity within the substructure, 

 1
11 10 .( )i i i
−= −q D D p  (7-24) 

Deflections corresponding to the nodal force are  

 t 1
0 00 10 11 10( ) ,i i i

−= −v D D D D p  (7-25) 

that is,  

 0 ,i i i=v F p  (7-26) 
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where Fi is the flexibility transformation matrix for the ith substructure. Internal 
forces are obtained as 

 1
0 1 11 10( ) ,i i i

−= −r B B D D p  (7-27) 

or 

 ri = Bipi
 (7-28) 

and 

 1
0 1 11 10( ) ,i i

−= −B B B D D  (7-29) 

where Bi is the force transformation matrix in the redundant substructure. The ma-
trices Fi and Bi are formed for each substructure, in turn. 

For the complete structure S composed of q substructures (S1, S2, …, Sq), the force 
vector pi acting on a substructure “s” is given by 

 [ ] ,e
si e e

c

 
=  

 

p
p a b

q
 (7-30) 

where qc are the coupling redundants. On a particular substructure, there will be 
three different types of forces: pee is the external force vector, pec is the coupling 
redundant forces vector and peb contain the statically determinate connection 
forces. 

For the entire structure, the following matrices Aee and Bec are defined: 

 t
(1) (2) ( ){ , ,..., },e e e qa a a=A  (7-31) 

and  

 t
(1) (2) ( ){ , ,..., }.e e e qb b b=B  (7-32) 
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Then, 

 [ ]

(1)

(2)

( )

... .

...

s

s
c

s ee ec
c

s q

 
 
    = =     
 
  

p
p

p
p A B

q

p

 (7-33) 

The forces ps can be partitioned according to three types of forces pei, peb, and pec 
as mentioned earlier. Then, 

 .
ei ei

e
eb eb eb

c
ec ec ec

   
    =             

p a 0
p

p a b
q

p a b
 (7-34) 

It is obvious that, whereas qc may produce peb and pec forces, it does not produce 
pei forces. 

The flexibility matrix of the entire structure corresponding to pe and qc can be 
formed using Eq. (7-25) and Eq. (7-33) as follows:  

 [ ]
(1)t

t

( )

... ,
e

ee ec ee
ee ec

ce cc ec
e q

 
    =     

      

F
f f A

A B
f f A

F
 (7-35) 

and 

 .e ee ec e

c ce cc c

     
=     

     

v f f p
v f f p

 (7-36) 

For continuity across the cut sections of the structure, 

 vc=0. (7-37) 

Hence, 

 1
c cc ce e

−= −q f f p  (7-38) 
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Deflections of the structure are then given as, 

 1( ) ,e ee ec cc ce e
−= −v f f f f p  (7-39) 

making the complete analysis of the structure feasible. 

7.5.2 EXAMPLES 

Example 1: A single-bay four-storey frame is considered, as shown in Figure 
7.14. The forces are depicted in Figure 7.14(a) and the nodal and element order-
ings are given in Figure 7.14(b). For this frame, I = 41,623.14 cm4 (for all 
members) and 5 22.1 10 N/mE = × . 

The model is decomposed into two substructures as illustrated in Figure 7.15. The 
analysis is performed and the bending moments are obtained as provided in Table 
7.6. 

 
 (a) (b) 

Fig. 7.14 A single-bay four-storey frame with geometric and connectivity  
properties. 

Table 7.6 Bending moments of Example 1. 

Nodes End nodes of 
members 

Bending  
moments(kN.m) 

1 1-3 −219.17 
 3-1 78.93 
3 3-4 185.07 
 3-5 −106.14 
 5-3 0.34 
5 5-6 2.94 
 5-7 7.34 
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 7-5 96.2 
7 7-8 112.7 
 7-9 −16.48 
9 9-7 58.04 
 9-10 58.04 

10 10-9 58.04 
 10-8 −58.04 
 8-10 −16.48 
8 8-7 112.7 
 8.6 −96.2 
 6-8 −52.84 
6 6-5 170.28 
 6-4 −117.43 
 4-6 −78.93 
4 4-3 185.07 
 4-2 −106.14 
2 2-4 −219.17 

44.4 kN 
44.4 kN 

44.4 kN 
44.4 kN 

F b F c c 
F c b F 

 
 (a) (b) 

Fig. 7.15 Decomposition of the structural model. 

Example 2: A three-bay pitched-roof frame together with material properties and 
dimensions is shown in Figure 7.16. 
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4  m 
8  m 

3 @  12  m 

10  k N 
10  k N 

10  k N 10  k N 

 
Fig. 7.16 A three-bay pitched-roof frame. 

This model is partitioned into two substructures, as illustrated in Figure 7.17, 
where different groups of loads on each substructure are shown. For all the mem-
bers, I = 0.2 m4 and 5 22.1 10 N/mE = × . The bending moments for members of this 
frame are presented in Table 7.7. 

F t t F 

1 0   k  N 
1 0   k  N 

1 0   k  N 

 
 Substructure I Substructure II 

Fig. 7.17 Decomposition of the structural model. 

Table 7.7 Bending moments of Example 2. 

Nodes End nodes of 
members 

Bending  
moments(kN m) 

1 1-5 −72 
5 5-1 −30 
 5-6 30 
6 6-5 3 
 6-7 3 
 7-6 26 
7 7-8 65 
 7-2 −91 
2 2-7 −116 
8 8-7 45 
 8-8 45 
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 9-8 28 
9 9-10 3.03 
 9-3 60 
3 3-9 40.02 
10 10-9 52 
 10-11 52 

11 11-10 79 

The substructuring analysis, using the force method for frame structures, can be 
generalised to the analysis of other types of structures when the algebraic force 
method is employed; see Plemmons and White [179]. In this method, appropriate 
partitioning of the incidence matrices of the structural graph models is performed, 
leading to well-structured equilibrium equations. It is proved that sparse null bases 
can then be constructed in parallel, using the proposed decomposition. The per-
formance of the method is illustrated by some examples from skeletal structures. 

7.6 SUBSTRUCTURING FOR DYNAMIC ANALYSIS 

Many substructuring methods have been developed, such as those of Hurty [85], 
Hale and Meirovitch [70], and Craig and Chang [30]. In these methods, the sub-
structure modes, geometric compatibility and force equilibrium equations are used 
to assemble the system matrix. For analysis with many substructures, the system 
matrix of the entire structure may be large, and therefore the number of 
calculations for the solution increases. Benfield and Hruda [11] and Rubin [191] 
and Hintz [81] studied component modal synthesis by transformations or approxi-
mations. In the latter, the order of system matrix is also reduced, but accuracy is 
decreased. The projection matrix can be used for reducing the order of the system 
matrix to the relevant DOF. This method requires many matrix inversions. A sub-
structure modal analysis for determining the exact modal parameters of the 
synthesised structure, based on the method developed by Yee and Tsuei [233], will 
now be presented, and applied to the analysis of some simple examples. 

7.6.1 MODAL ANALYSIS OF A SUBSTRUCTURE 

Once a system has been divided into q substructures, each substructure will have 
its own equation of motion and can be connected to other substructures through 
nodes. 

The equation of motion for a substructure can be written as 

 ( ) ( ) ( ),t t t+ =Mx Kx f  (7-40) 

where M is the mass matrix, x(t) is the response vector in the time domain and f(t) 
is the force vector in the time domain. 
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The natural frequencies and mode shapes of the substructure are then obtained by 
the solution of the following differential equation: 

 ( ) ( ) 0.t t+ =Mx Kx  (7-41) 

Let λr and φr be the rth mode eigenvalue and eigenvector, with the following or-
thogonality properties: 

 ΦtMΦ = I, and ΦtKΦ = Λ, (7-42) 

where Λ is a diagonal matrix of eigenvalues and 

 Φ = [φ1 φ2 … φn] (7-43) 

is the modal matrix obtained by solving Eq. (7-40); the displacement vector x(t) 
can be written as 

 x(t) = Φp(t), (7-44) 

where p(t) is the modal coordinate vector of the substructure. By this transforma-
tion, Eq. (7-40) becomes 

 (t)  (t) (t).+ =MΦp KΦ p f  (7-45) 

For harmonic excitation at a frequency ω, which is different from the natural fre-
quency λ, the response function can be expressed as  

 2 1 t(t) [ ] (t),ω −= −x Φ I Φ fΛ  (7-46) 

or 

 x(t) = H(ω)f(t),  (7-47) 

where f(t) = feiωt and x(t) = xeiωt is used. It should be noted that vector x is a func-
tion of frequency. Since 2[ ]ω−Λ I is a diagonal matrix, the transfer matrix 

2 1 t( ) [ ]ω ω −= −H Φ Λ I Φ  can be obtained by simple multiplication when the eigen-
solution Φ of the substructure is provided. 
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7.6.2 PARTITIONING OF THE TRANSFER MATRIX H(w) 

Owing to the nature of Eq. (7-47), the complete substructure model set is not 
needed to analyse the system dynamics at a given frequency range. As an example, 
if the H(w) of a substructure at a frequency range wb < w < wc is desired, the sub-
structure mode below wa and above wd can be excluded, where wa << wb and  
wd > > wc. The contribution of the modes above wd and below wa have no consid-
erable effect on the transfer matrix H(w) at the given frequency range. Hence, only 
the substructure modes within the frequency range wa < w < wd need to be consid-
ered. For a complicated substructure, these modes are usually obtained using a 
finite element analysis or one can also use the test results on the models.  

There is no universal rule for selecting the lower and upper frequency bounds of 
the modes to be included in the analysis. The frequency bounds selected depend on 
the degree of accuracy required for the results of the analysis.  

Equation (7-47) for substructure i can be partitioned as 

 

( ) ( ) ... ... ... ( )
( ) ( ) ... ... ... ( )

... ... ... ...

... ... ... ...

... ... ... ...
( ) ( ) ... ... ... ( )

i i i
ii iiii ij ii

i i i
ij ijji jj jk

i i i
ik ikki kj kk

kω ω ω
ω ω ω

ω ω ω

    
    
    
   
 =  
   
   
   
       

x fH H H
x fH H H

x fH H H








, (7-48) 

where xij is the response (displacement) vector and fij is the force vector, common 
to substructures i and j, and superscript i refers to substructure i. 

7.6.3 DYNAMIC EQUATION OF THE ENTIRE STRUCTURE 

Substructure modes, geometric compatibility and force equilibrium provide suffi-
cient tools to set up the dynamic equation of the entire structure. 

For the structure, the dynamic equation can be written as 

 0+ =Mq Kq . (7-49) 

If the structure is composed of q substructures and substructure i has Ni substruc-
ture modes, the total number of substructures modes Nt will be as follows: 
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1

.
q

t i
i

N N
=

= ∑  (7-50) 

For a structure with Nt substructure modes and r constraint equations, the final 
dynamic equation of the entire structure is of the order Nt − r. For a complex struc-
ture with many substructure modes, the eigen solution for Eq. (7-49) may require a 
considerable amount of numerical computation. Therefore, a different approach 
can be used as follows: 

Consider a structure with four substructures as shown in Figure 7.18. Substruc-
tures 1 and 3 are connected to substructure 2, but not to each other, and 
substructure 3 is connected to substructure 2 and 4, which are connected, but not 
to each other. For natural vibration, the external forces acting on the system are 
zero. 

1
2

3
4

 
(a) 

1
2

3
4

 
(b) 

Fig. 7.18 Synthesised system and its four substructures. 

The response equations for substructures 1-4 can be written, using Eq. (7-48), as 
follows: 

 

1 1
111 11 12

1 1
12 1221 22

( ) ( )
( ) ( )
ω ω
ω ω

    
= =     

    

x 0H H
x

x fH H
 

(7-51) 

 

2 2 2
22 11 12 13

2 2 2 2
21 21 22 23 21

2 2 2
23 31 32 33 23

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ω ω ω
ω ω ω
ω ω ω

    
    = =     
        

x H H H 0
x x H H H f

x H H H f
 (7-52) 
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3 3 3
33 11 12 13

3 3 3
32 21 22 23 32

3 2 3
34 31 32 33 34

( ) ( ) 3( )
( ) ( ) ( )
( ) ( ) ( )

ω ω ω
ω ω ω
ω ω ω

    
    = =     
        

x H H H 0
x x H H H f

x H H H f
 

(7-53) 

 
4 4

444 11 12
4 4

43 4321 22

( ) ( )
.

( ) ( )
ω ω
ω ω

    
= =     

    

x 0H H
x

x fH H
 (7-54) 

The conditions of geometric compatibility and force equilibrium can be expressed 
as follows: 

 xij = xji and fij = −fji
. (7-55) 

System synthesis and the modal force matrix can be obtained by retaining only the 
nodal coordinates: 

 1
12 22 12( )ω=x H f  (7-56a) 

 2 2
21 22 21 23 23( ) ( )ω ω= +x H f H f  (7-56b) 

 2 2
23 32 21 33 23( ) ( )ω ω= +x H f H f  (7-56c) 

 3 3
32 22 32 23 34( ) ( )ω ω= +x H f H f  (7-56d) 

 3 3
34 32 32 33 34( ) ( )ω ω= +x H f H f  (7-56e) 

 4
43 22 43( )ω=x H f  (7-56f) 

Applying the conditions of compatibility and equilibrium at the interface nodes of 
the substructures, we have 

 

1 2 2
22 22 23 12

2 2 3 3
32 33 22 23 23

3 3 2
32 33 22 34

( ) ( ) ( ) 0
( ) ( ) ( ) ( ) 0,

0 ( ) ( ) 4 ( )

ω ω ω
ω ω ω ω

ω ω ω

 + −  
   − + − =   
   − +   

H H H f
H H H H f

H H H f
 (7-57) 

or 

 0,=Hf  (7-58) 
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where H  is defined as the modal force matrix and f  is the modal force vector. 

The next set of Equations (7-59) is called the set of modal force equations. These 
are the most important equations in this method. They satisfy the compatibility, 
equilibrium and substructure response equations of the entire structure. The order 
of the modal force equation depends on the number of interface nodes of the struc-
ture. The transfer matrix H(w) is a function of the frequency of the entire system 
and is obtained by simple multiplication. 

Once the modal force matrix has been formed, the natural frequencies of the entire 
structure are evaluated by equating its determinant to zero as follows: 

 

1 2 2
22 22 23

2 2 3 3
32 33 22 23

3 3 2
32 33 22

( ) ( ) ( ) 0
det ( ) ( ) ( ) ( ) 0.

0 ( ) ( ) 4 ( )

ω ω ω
ω ω ω ω

ω ω ω

 + −
 − + − = 
 − + 

H H H
H H H H

H H H
 (7-59) 

Multiplying Eq. (7-59) by 

 2

1 1
( ),

inq
i
ji j

λ ω
= =
Π Π −  (7-60) 

the following polynomial equation is obtained: 

 2

0

0,
n

j
j

j

a ω
=

=∑  (7-61) 

where q is the number of substructures and the jth eigenvalue of the ith substruc-
ture is the total number of normal modes (total number of DOF) for the entire 
structure and aj are the coefficients of the polynomial. 

Once the value of ωr is calculated from the polynomial equation (7-61), the eigen-
vector f for the rth mode can be obtained from the modal force equations (7-56) as 

 
12

23

34

.
 
 =  
  

f
f f

f
 (7-62) 

The rth mode eigenvector x is recovered by back substitution of the corresponding 
modal force vector f back in Eq. (7-51). If a natural frequency of the system is 
identical to that of the substructure, Eq. (7-48) cannot be employed, and a modi-
fied approach should be considered; see Yee and Tsuei [233]. 
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7.6.4 EXAMPLES 

Example 1: An industrial pitched-roof frame is considered, as shown in Figure 
7.19. The structure is decomposed into two substructures. The information ob-
tained from decomposition is provided in Table 7.8. The analysis is performed, 
and the frequencies are calculated for the first three modes and compared with the 
analysis without substructuring in Table 7.9. All the elements are selected as 
2IPB40, having A = 396 cm2, I = 115,360 cm4, and the weight per unit length G = 
310 kg/m. 

7 @  4  m 
 

(a) A simple frame. 

 
(b) Substructures of the frame. 

Fig. 7.19 A simple industrial frame and its decomposition. 

Table 7.8 Data for Example 1. 

 DOF Number of 
nodes 

Number of 
elements 

Number of 
supports 

Structure 45 23 22 8 
Substructure 1 24 12 11 4 
Substructure 2 24 12 11 4 

Table 7.9 Results of Example 1. 

Frequency With  
substructuring 

Without substruc-
turing 

First mode 50.92 50.92 
Second mode 68.42 68.42 
Third mode 98.66 98.66 
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Example 2:A simple frame consisting of three types of elements is considered as 
shown in Figure 7.20(a). 

 For type 1 A = 396 cm2 , I = 115,360 cm4, and G = 310 kg/m; 

 for type 2 A = 198 cm2 , I = 5,768,015,360 cm4, and G = 155 kg/m; 

 and for type 3 A = 33.4 cm2 , I = 2770 cm4, and G = 26.6 kg/m. 

All the columns up to the level of 18 m are Type 1, the rest of the columns are 
Type 2, and beams are Type 3 elements. The structure is decomposed into two and 
four substructures, as illustrated in Figure 7.20(b–c). The results are depicted in 
Tables 7.10 to 7.12. 

11
  @

 3    
 m 

 
 (a) A simple frame. (b) Frame decomposed into two substructures. 
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1

2

34

 
(c) Frame decomposed into four substructures. 

Fig. 7.20 A simple frame and its decompositions. 

Table 7.10 Data for Example 2. 

 DOF Number of 
nodes 

Number of 
elements 

Number of 
supports 

Structure 84 32 45 8 
Substructure 1 48 16 22 0 
Substructure 2 42 18 23 4 

Table 7.11 Data for substructuring of Example 2. 

 DOF Number of 
nodes 

Number of 
elements 

Number of 
supports 

Structure 84 32 45 4 
Substructure 1 27 9 11 0 
Substructure 2 27 9 11 0 
Substructure 3 24 10 11 2 
Substructure 4 27 11 12 2 

Table 7.12 Results of Example 2. 

Frequency Entire structure Two substruc-
tures 

Four substruc-
tures 

First mode 9.32 9.35 9.35 
Second mode 27.97 27.95 27.95 
Third mode 56,60 56.55 56.55 
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Example 3: The model of a tall building is considered as shown in Figure 7.21(a) 
and decomposed into two and four substructures as illustrated in Figures 7.21 
(b–c). The results are provided in Tables 7.13 to 7.15. 

The properties of the elements of different types are the same as in Example 2. All 
columns up to the level of 18 m are of Type 1, and the rest of the columns are of 
Type 2. Beams are of Type 3.  

11
@

3 
m 

 
(a) A tall building 

frame. 
(b) Frame decomposed 
into two substructures. 

(c) Frame decomposed 
into four substructures. 

Fig. 7.21 A tall building frame and its decompositions. 

Table 7.13 Data for Example 3. 

 DOF Number of 
nodes 

Number of 
elements 

Number of 
supports 

Structure 99 36 55 3 
Substructure 1 54 18 27 0 
Substructure 2 54 21 28 3 

Table 7.14 Data for substructuring of Example 3. 

 DOF Number of 
nodes 

Number of 
elements 

Number of 
supports 

Structure 99 36 55 3 
Substructure 1 33 11 14 0 
Substructure 2 30 10 13 0 
Substructure 3 36 12 14 0 
Substructure 4 27 12 14 3 
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Table 7.15 Results of Example 3. 

Frequency Entire structure Two substruc-
tures 

Four substruc-
tures 

First mode 8.53 8.55 8.55 
Second mode 27.34 27.35 27.35 
Third mode 59.15 59.15 59.155 

Remark: The dimension of the modal force matrix in the method presented is 
smaller than the dimension of the system matrix, resulting in considerable reduc-
tion in the numerical computations. The method is general and applicable to 
skeletal structures as well as FEMs. 

EXERCISES 

7.1 Construct the associate graph G of the following finite element model and 
bisect G. Then form the corresponding subdomains. 

 

7.2 Decompose the following structure into q = 2 substructures and make a 
complete displacement analysis of the model. 

4 m 4 m 4 m 

4 m 

2 kN/m 
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7.3 Perform a complete force method analysis for the following skeletal struc-
ture after decomposing its model into q = 2 substructures. 

1 0  k N 

4  m 4  m 4  m 

4  m 

 

7.4 Decompose the following skeletal structure into q = 3 substructures and 
perform a complete dynamic analysis. 

4   m 4   m 4   m 

4   m 

4   m 4   m 4   m 

 





 

 

CHAPTER 8 

Decomposition for Parallel 
Computing: Algebraic Graph 
Theory Methods 

 

8.1 INTRODUCTION 

Mathematicians have done a great deal of research on algebraic graph-theory 
methods; see Mohar [165,166] and Cevtković et al. [34]. In the field of structural 
engineering, Simon [202] suggested the spectral bisection (SB) method. Pothen et 
al. [182] proposed the recursive spectral bisection (RSB) algorithm for hypercube 
architectures. Hendrickson and Leland [79] extended SB through the use of multi-
ple eigenvectors to allow the partitioning of a domain into four or eight 
subdomains at each stage of recursive decomposition. Shang–Hsieh et al. [199] 
generalised the RSB to an arbitrary number of processors developing the recursive 
spectral sequential-cut (RSS) and the recursive spectral two-way (RST) algo-
rithms.  

A mixed graph theory and algebraic graph-theory approach, which uses the se-
lected features of both types of methods, is due to Kaveh and Davaran [116]. The 
RSB method is generalised to a weighted graph for use in adaptive meshes by 
Kaveh and Davaran [117].  

An efficient method is developed for finite element domain decomposition; see 
Kaveh and Rahimi Bondarabady [124]. A weighted incidence graph is first con-
structed for the finite element model (FEM). A spectral partitioning heuristic is 
then applied to the graph using the second and the third eigenvalues of the Lapla-
cian matrix of the graph, to partition it to three subgraphs and correspondingly 
trisect the FEM.  
_________________________________ 
Optimal Structural Analysis A. Kaveh 
© 2006 Research Studies Press Limited 
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A fast algorithm is developed for the decomposition of large-scale FEMs; see 
Kaveh and Rahimi Bondarabady [127]. A weighted incidence graph G0 is con-
structed and then reduced to a graph Gn of the desired size by a sequence of 
contractions G0 → G1 →G2 → … →Gn. Two Ritz vectors are constructed for G0. 
A similar process is repeated for Gi (i = 1,2, …, n), and the sizes of the vectors 
obtained are then extended to N, a Ritz matrix consisting of 2(n + 1) normalised 
Ritz vectors. The first eigenvector of this matrix is used as an approximate Fiedler 
vector to bisect G0. 

8.2 ALGEBRAIC GRAPH THEORY FOR SUBDOMAINING 

8.2.1 BASIC DEFINITIONS AND CONCEPTS 

The adjacency and Laplacian matrices of a graph are essential in the study of this 
chapter, which are already defined in Section 6.3.1. 

Consider a directed graph G with N nodes, an arbitrary nodal numbering, and arbi-
trary member orientations. Then,  

 ( ) ( ) ( ),G G G= −L D A  (8-1) 

It can also be shown that L is independent of the orientation of the members of the 
graph. The quadratic form associated with the Laplacian matrix L can be con-
structed as follows: 

 2

{ , }
   ,

( ) ( ) ( ) ,
i j

t t t t t t
i j

n n M
i j N

x x
∈

≤

= = = −∑x Lx x CC x C x C x  (8-2) 

where xi is the ith component of x. From this equation it follows that L is a posi-
tive semi-definite matrix. 

The smallest eigenvalue of L is 1 0λ = , and the corresponding eigenvector y1 has 
all its normalised components equal to 1. The second eigenvalue 2λ  and the asso-
ciated eigenvector y2 have many interesting properties, which are used in this 
chapter, for domain decomposition. 

A finite element domain D is to be divided into two subdomains D1 and D2; with 
their interfaces shown by S-S, Figure 8.1(a). Consider the natural associate graph 
of D, and denote it by G, as illustrated in Figure 8.1(b). The second eigenvector of 
the Laplacian matrix or weighted Laplacian (to be defined in the next section) of G 
can be used for partitioning of the nodes of G. Let xm be the median value of the 
components of the eigenvector. Let A be the set of nodes whose node components 
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are less than or equal to xm, and B be the remaining set of nodes. If there is a single 
node with the components corresponding to xm, then A and B differ in size by at 
most one. If there are several such nodes, the nodes can arbitrarily be assigned to A 
or B to make these sets differ in size by at most unity. 

The initial partition of G results in an edge separator of the graph. Let A1 denote 
the nodes of A, which are adjacent to some nodes in B, and similarly B1 be the set 
of nodes in B that are adjacent to some nodes in A. Consider the set of edges E of 
G with one end at A and the other end at B. Then E is an edge separator of G, and 
we have a bipartite graph H = (A1, B1, E). 

The node separator of G can be obtained from the edge separator E using different 
methods. One can simply choose the smaller of the two end point sets A1 and B1. In 
order to choose the smallest node separator, one should select a set S consisting of 
some nodes from both sets of end points A1 and B1, such that every edge in E is 
incident on the least one of the nodes of S. The set S is then a node separator, since 
the removal of these nodes causes the deletion of the edges incident to them. S is 
called a node cover of the bipartite graph H. A minimum cover can then easily be 
found by a maximal matching in H.  

1 2 S 

S 

A B 

E 
 

 (a) A finite element domain. (b) The natural associate graph of D. 

Fig. 8.1 A domain decomposed into two subdomains. 

The dividing vector and Laplacian matrix of the mesh are denoted by x and L, 
respectively. The first and the second eigenvectors y1 and y2 of the Laplacian ma-
trix have the following properties: 

xty1 = 0, 

 21 1
4 4

( , )

( ) ( ) .t
i j

i j I

C x x
∈

= − =∑x x Lx  (8-3) 
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Matrix L is positive semi-definite and 

0 = λ1 ≤ λ2 ≤ λ3 ≤ … ≤ λn, 

 1
2 24 ,t t≥x Lx y Ly  (8-4) 

and 

 1
2 2 24Min ( ) ( ) tC C= =x y y Ly  (8-5) 

The second-smallest eigenvector y2 is the Fiedler vector. Equation (8-5) shows that 
of all the partitioning vectors x, which bisect a mesh and are orthogonal to y1, the 
Fiedler vector minimises the number of cut interfaces; see Seale and Topping 
[195]. 

Unfortunately, the components of y2 are not discrete and the elements of the mesh 
cannot be partitioned on a (+ 1, − 1) basis. Then the N/2 elements corresponding to 
N/2 lowest components of y2 are assigned to one subdomain and the remainder to 
the other subdomain. If N is odd, then one subdomain is given the additional ele-
ment. This is where the heuristic nature of the algorithm appears, and theoretical 
optimality changes to suboptimality. 

When using such a heuristic, it is worthwhile to have a lower bound on what can 
be achieved. Such bounds have been established by many researchers; a few re-
sults are included in the following theorems. 

Theorem 1: Let A and B be disjoint subsets of nodes of graph G that are at a dis-
tance r = 2 from each other. Let S denote the set of nodes not belonging to A that 
are at a distance less than 2 from A. Then, 

 
2

2

4 (1 ) 0,

with  ( / ) 4 1.

S S A A

A

β

β λ

+ − − ≥

= ∆ + −
 (8-6) 

Theorem 2: Let S be a node separator that divides a graph G into two parts A and 
B, with A B S≥ ≥ . Then, 

 2

3 2

(1 )
  

2 ( )
A

S
λ

λ λ
−

≥
∆ − −

. (8-7) 
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For calculating the second eigenvalue λ2 of L, first it is tri-diagonalised using the 
Lanczos method, and then the spectral properties of Sturm polynomials are  
applied; see Jennings and McKeown [90]. Because of the importance of the Lanc-
zos algorithm, a brief description of it is given in the next section. 

Before the end of this section, it is convenient to describe another important rele-
vant number, known as the isoperimetric number. This is defined as  

 ( ) min ,
X

X
i G

X
∂

=  (8-8) 

where the minimum is taken over all non-empty subsets X ⊆ N(G) satisfying 

 1
2 ( ) .X N G≤  (8-9) 

X∂ denotes the set of edges of G having one end in X and the other end at  
N(G) \ X. 

For example, for a path P7, shown in Figure 8.2, i(G) = 1/3, and for the complete 
graph K5, shown in Figure 8.3, the value of i(G) is equal to 3.  

  
Fig. 8.2 A path graph with i(G) = 1/3. 

  
Fig. 8.3 A complete graph K5 with i(G) = 3. 

This problem is closely related to the minimum-cut problem, known as the bisec-
tion width problem; see Goldberg and Gardner [62]. Some basic properties of i(G) 
are explored by Mohar [165] as follows: 

(a) i(G) = 0 if and only if G is disconnected. 

(b) If δ is the minimal degsree of nodes of G, then i(G) ≤ δ. 
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(c) If ∆ is the maximal degree of nodes of G, then i(G) ≤ 2 /( 2)∆ − + 

2 / ( ) / 2N G .  

(d) For a complete graph KN, [ ]( ) / 2Ni K N= . 

(e) For the path graph PN on N nodes, i ( ) 1/ / 2NP N= . 

(f) For a cycle graph CN on N nodes, . ( ) 2 / / 2Ni C N= . 

Here x  denotes the integer part of the real number, that is, the largest integer, 
which is smaller than x, and [x] shows the smallest integer that is greater than or 
equal to x. 

In general, the calculation of i(G) is NP-hard. However, the following theorems 
provide bound on i(G) of a general graph:  

Theorem 1: Let G be a graph of order N with M edges, then  

 
/( 1) if  is even,             

( )
( 1) / ( 1) if  is odd.

M N N
i G

M N N N N
−

≤  + −
 (8-10) 

Theorem 2: Let G be a graph with maximal node degree ∆, and let λ2 be the sec-
ond-smallest eigenvalue of its Laplacian matrix. If G is not identical to K1, K2, or 
K3, then: 

 2 2( ) (2 ).i G λ λ≤ ∆ −  (8-11) 

For proofs of these theorems and further information, the reader may refer to  
Mohar [165,166]. 

8.2.2 LANCZOS METHOD 

One of the well-known algorithms for computing a few eigenvalues and eigenvec-
tors of large, sparse symmetric matrices is the Lanczos algorithm. This algorithm 
can be used to approximate the largest and smallest eigenvalues of a large symmet-
ric matrix, whose order is so large that similarity transformations are not feasible. 
The algorithm builds up a tri-diagonal matrix row by row. 
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Consider the eigensolution of a symmetric matrix A. Start with a single trial vec-
tor. The algorithm generates a sequence of mutually orthogonal vectors by means 
of a process, which includes pre-multiplications by the N × N matrix A. Theoreti-
cally, the sequence of vectors should terminate after N vectors have been 
generated. The orthogonal vectors combine to produce a transformation matrix, 
which has the effect of transforming A to a tri-diagonal form. The elements of the 
tri-diagonal matrix are generated as the orthogonal vectors are formed, and when 
the formation of the tri-diagonal matrix is complete, its eigenvalues can be com-
puted by any suitable technique, such as the Sturm sequence or LR or QR 
methods. 

The pre-multiplication process in this method amplifies the components of the 
eigenvectors corresponding to the largest modulus. Therefore, for a large A, the 
process of vector generation is terminated after p steps, where p is far less than N. 
Eigensolution of the resulting tri-diagonal matrix of order p will yield an 
approximation to the set of p dominant eigenvalues of A. The largest eigenvalues 
of this tri-diagonal matrix give good approximations to the dominant eigenvalues 
of A. Therefore, the Lanczos algorithm may be used for either full or partial 
eigensolution of a matrix. 

The standard Lanczos algorithm transforms a symmetric matrix into a non-
symmetric tri-diagonal form. The method described below modifies the procedure 
so that a symmetric tri-diagonal matrix is formed. If Y = {y1 y2 y3, …, yN} is the 
compounded set of mutually orthogonal vectors, the transformation to tri-diagonal 
form may be described by  

 [ ][ ] [ ]

1 1

1 2 2

1 1

2 1

1

... ...  .. . . . .N N

N N N

N N

α β
β α β

β α β
β α

− +

−

 
 
 
 =
 
 
  

A y y y y  (8-12) 

The expanded form of this matrix leads to N vector equations of the form  

1 1 1 1 2α β= +Ay y y  

2 1 1 2 2 2 3β α β= + +Ay y y y  

 .................... (8-13) 

1 1 1j j j j j j jβ α β− − += + +Ay y y y  

........................ 

11 1 .N N N N Nβ α− −= +Ay y y  
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The first vector y1, is chosen to be an arbitrary non-null vector, normalised such 
that 1

ty y1 = 1. If the first equation of the above equations is pre-multiplied by 1
ty , 

it can be established that, when α1= 1
ty Ay1, then 2

ty y2 = 0. Thus, choosing α1 in 
this way, ensures that y2 is orthogonal to y1. Substitution of this value of α1 into 
the first equation yields β1y2. Then, since y2 can be obtained from β1y2 by Euclid-
ean normalisation, 1/ β1 being the normalising factor, the remaining vectors of the 
set may be generated in a similar way, using the second, third, ... of the equations. 
The process is described by the following relationships:  

1 0  ( 0)j j j jβ β−= − =v Ay y  

t
j j jα = y v  

 j j j jα= −z v y  (8-14) 

1/ 2( ) .t
j j jβ = z z  

It can be shown that the vectors are all mutually orthogonal and also that the last 
equation is implicitly satisfied.  

Example: For the following matrix, calculate Y and T matrices, and find their 
eigenvalues and eigenvectors.  

1 3 2 1
3 10 3 6
2 3 3 2

1 6 2 1

− − 
 − − =
 − − −
 −  

A . 

Symmetric Lanczos tri-diagonalisation of this matrix is formed as follows: 

Using an initial vector as [ ]1 1 0 0 0 t=y , the magnitude of α1 is obtained as 

[ ]1 1 1

1 3 2 1 1
3 10 3 6 0

1 0 0 0   1.0.
2 3 3 2 0

1 6 2 1 0

tα

− −   
   − −   = = =
   − − −
   −      

y Ay  
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Substituting in the first equation of (8-13) result in: 

1 2 1 1 1

1 3 2 1 1 1 0
3 10 3 6 0 0 3

  1 .
2 3 3 2 0 0 2

1 6 2 1 0 0 1

β α

− −       
       − − −       = − = − × =
       − − − −
       −              

y Ay y  

Since  

2 2 2 2 2
1 (0) ( 3) ( 2) (1) 14,β = + − + − + =  

hence 1 3.7417β = , and 

2

0.0000
0.8018
0.5345

0.8041

 
 − =
 −
 
  

y . 

Now α2 can be obtained as  

2 1 1 2.7857,tα = =y Ay  

and, from the second relation of Eq. (8-13), β2 = 5.2465 and  

3

0.0000
3.3348

.
0.8041

0.8041

 
 − =
 −
 
  

y  

Repeating a similar process results in α3 = 10.1993 and β3 = 4.4796, leading to 

4

0.000
3.404

,
0.776

0.5310

 
 − =
 
 
  

y  

and α4 = 1.0150. Therefore,  
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[ ] ,

5310.080412.02673.00
7760.03348.05345.00
3404.04912.08018.00
0000000.1

4321



















−

−−−
== yyyyY  

and  

1.0000 3.7417 0 0
3.7417 2.7857 5.2465 0

.
0 5.2465 10.1993 4.4796
0 0 4.4796 1.0150

 
 
 =
 
 
  

T  

Now the eigenvalues and eigenvectors for T and A can be calculated by any 
method preferred. ui are the eigenvectors of T, and vi are the normalised eigenvec-
tors of A.  

1 1 1

3.4719 0.7460
2.6554 0.3990

4.5694,    and  ,
1.2466 0.2279

1.0000 0.4820

λ

− −   
   −   = − = =
   − −
   
      

u v   

2 2 2

0.4187 0.3394
0.2809 0.2524

1.3035,    and  ,
0.5176 0.3669

1.0000 0.4286

λ

   
   −   = − = =
   −
   
      

u v   

3 3 3

1.8343 0.6556
1.6948 0.2291

4.4568,    and  ,
0.7683 0.6931
1.0000 0.1930

λ

− −   
   −   = = =
   
   −      

u v   

4 4 4

0.4181 0.1196
1.4863 0.8560

14.3299,    and  .
2.9723 0.2794
1.0000 0.4182

λ

   
   −   = = =
   
   −      

u v   
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For this small matrix, the eigenvalues of the tri-diagonalised matrix are similar to 
the eigenvalues of the original matrix. However, for large matrices, the 
orthogonality condition t 0  for  1i i j i= > +y y  will not be satisfied. This is because 
each step of the process magnifies the rounding errors present. Therefore, the 
eigenvalue estimates obtained by using the basic algorithm cannot always be 
guaranteed. This difficulty may be overcome by improving the algorithm, so that 
yi+1 is orthogonalised with respect to vectors y1, y2, y3, … , yj- 1.  

The additional re-orthogonalisation naturally increases the computational cost. 
However, this is necessary for large matrices. For large N, the number of iterations 
k should be restricted to a small number k << N. Therefore, after the kth iteration, 
Eq. (8-12) is replaced by  

 AYk = YkTk + Ek, (8-15) 

where 

 Ek = [0   0   … βkyk+1 N × k]. (8-16) 

Let the eigen-pair of Tk be (µi ,Pi), then, 

 TkPi = µiPi, (8-17) 

and post-multiplication of Eq. (8-15) by Pi yields  

 A(YkPi) = µi(YkPi) + EkPi. (8-18) 

Since the second term of the above equation is reduced, by increasing k, the eigen-
values of A can be approximated by those of Tk. 

8.2.3 RECURSIVE SPECTRAL BISECTION PARTITIONING ALGORITHM  

Step 1: Construct the natural associate graph, incidence graph or skeleton graph of 
the given finite element mesh. 

Step 2: Compute the second eigenvector (Fiedler vector) y2 of the Laplacian of the 
graph using the Lanczos algorithm. 

Step 3: Order the nodes of the graph according to their associate components in the 
vector y2. 

Step 4: Assign half of the nodes for each subdomain. 
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Step 5: Repeat recursively for each subdomain. 

Natural associate graph and integer graph are used to transform the topological 
properties of the FEMs into those of the graphs; however, any of the 10 graphs 
introduced in Chapter 5, or their combinations, can also be used for this purpose. 
Naturally, the efficiency will be different for each graph.  

Example: Consider a simple finite element mesh as shown in Figure 8.4(a). The 
model is decomposed into two subdomains using the associate graph of the model, 
as shown in Figure 8.4(b).  

23

45

9

10 11 12 13

6
5

1

6
4

3

1

2

1 2

3 4
5

6 7 8

 
 (a) A finite element mesh. (b) Associate graph of the mesh. 

Fig. 8.4 A finite element mesh and its associate graph.  

The Laplacian matrix of the associate graph is formed as a 6 × 6 matrix:  

1 1 0 0 0 0
1 3 1 1 0 0

0 1 2 0 1 0
( )

0 1 0 2 1 0
0 0 1 1 3 1
0 0 0 0 1 1

G

− 
 − − − 
 − −

=  − − 
 − − −
 

−  

L  

Using the Lanczos method, Y is obtained as  

32 32

32 32

47

1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.7071 5.09 10 4.8 10

.
0.00 0.00 0.7071 5.09 10 4.8 10
0.00 0.00 0.00 1.00 1.80 10
0.00 0.00 0.00 0.00 1.00

− −

− −

−

 
 − 
 × ×

=  × × 
 − ×
 
  

Y  
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Five orthogonal vectors are obtained, since the rank of L(G) = 5 < 6. Therefore, T 
is a 5 × 5 matrix whose entries are as follows:  

α1 = 1.000 and β1 = 1.000,  

α2 = 0.000 and β2 = 1.414,  

α3 = 2.000 and β3 = 1.414,  

α4 = 3.000 and β4 = 1.000,  

α5 = 3.000.  

Using the Sturm polynomial method, the second eigenvalue and the corresponding 
normalised eigenvector of L(G) are obtained as  

1

1

5

2 2 5

1

1

6.5328 10
2.7061 10
1.0359 10

0.585798 and .
1.0359 10
2.7061 10
6.5328 10

λ

−

−

−

−

−

−

 − ×
 − × 
 − ×

= =  
− × 

 × 
×  

v   

Using this vector, the model can be decomposed into two different forms as 
{(1,2,4),(3,5,6)} and {(1,2,3),(4,5,6)}. The decomposed submodels are illustrated 
in Figure 8.5(a) and (b), respectively. 

 
 (a) (b) 

Fig. 8.5 Two different decompositions for the given mesh.  
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8.2.4 RECURSIVE SPECTRAL SEQUENTIAL-CUT PARTITIONING 
         ALGORITHM  

The RSS algorithm partitions the graph in such a way that subgraphs are cut out of 
the original graph one by one (or sequentially) in a recursive fashion as follows: 

Step 1: Construct the natural associate graph, incidence graph or skeleton graph of 
the given finite element mesh. 

Step 2: Compute the second eigenvector (Fiedler vector) of the Laplacian of the 
graph using the Lanczos algorithm. 

Step 3: Order the nodes of the graph according to their associate components in the 
Fiedler vector. 

Step 4: Assign N/q of the nodes (discard the remainder) to one subdomain and the 
remaining to the other, in which np is initially equal to the number of partitions (or 
processors) desired. 

Step 5: Repeat recursively for the larger subdomain in the previous step with  
q = q − 1 until all subdomains are defined (i.e. q = 1).  

8.2.5 RECURSIVE SPECTRAL TWO-WAY PARTITIONING ALGORITHM  

In this algorithm, instead of using a bisection approach, the RST algorithm uses a 
two-way partitioning approach, which partitions the graph into two parts not nec-
essarily of equal size. Mi denotes the number of nodes in each subdomain Di, when 
the partitioning task is completed. This is computed in advance by sequentially 
employing the following equation for i = 1, ..., q  

 

1

1 ( 1 if remainder 0),
( 1)

i

j
j

i

N M
M

q i

−

=

−
= + ≠

− −

∑
 (8-19) 

where q is the number of processors, and N is the total number of nodes of the 
whole domain. The number of partitions desired in the intermediate subdomain in 
each two-way partitioning step is denoted by np (initially np = q for the whole do-
main). Each intermediate subdomain maintains a list l of subdomain members 
associated with Di, which has been assigned to it (initially the list is (1,2, ..., q) for 
the whole domain). The kth component of this list is denoted by l(k). 

Obviously, RSB is a particular case of the RST algorithm when the number of 
processors q is equal to an integer power of 2. The algorithm consists of the fol-
lowing steps: 
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Step 1: Construct the natural associate graph, incidence graph or the skeleton 
graph of the given finite element mesh. 

Step 2: Compute the second eigenvector (Fiedler vector) of the Laplacian of the 
graph, using the Lanczos algorithm. 

Step 3: Order the nodes of the graph, according to their associate components in 
the Fiedler vector. 

Step 4: Compute the following integers: 

 p1 = np/2 (discard the remainder), p2 = np – p1 and 
1

( )
=1

= M
p

l k
k

N ∑ . 

Assign N nodes and the list of the first p1 components in l(k) to one subdomain, 
and set np = p1 for this subroutine. 

Assign the remaining nodes and the remaining components in l(k) to the other sub-
domain, and set np = p2 for this subdomain. 

Step 5: Repeat recursively for each subdomain with np > 1. 

8.3 MIXED METHOD FOR SUBDOMAINING 

In this section, a mixed method is presented for domain decomposition employing 
combinatorial and algebraic graph–theoretical algorithms. The method uses com-
binatorial graph theory for partial decomposition, followed by a SB approach 
based on concepts from the algebraic graph theory. Examples are presented to il-
lustrate the efficiency of the mixed method. The effects of nodal ordering on the 
performance of the SB and the mixed methods are also investigated.  

8.3.1 INTRODUCTION 

Parallel processing is often used for the analysis of large-scale structures and 
FEMs. As discussed earlier, pure algebraic graph–theoretical methods require the 
calculation of the Fiedler vector for very large matrices, which can experience 
some difficulties when the Lanczos method is employed. Therefore, a mixed 
method that uses the advantages of both graph–theoretical and algebraic graph–
theoretical approaches is beneficial. This section is devoted to developing such an 
algorithm. 
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8.3.2 MIXED METHOD FOR GRAPH BISECTION 

A finite element domain D is divided into two subdomains D1 and D2; with their 
interfaces shown by S-S, Figure 8.6(a). The dividing vector and Laplacian matrix 
of the mesh are denoted by x and L, respectively. As studied earlier, the first and 
the second eigenvectors y1 and y2 of the Laplacian matrix have the following 
properties:  

xty1 = 0  

and 1
2 2 24Min  ( ) ( )  .tC C= =x y y Ly  (8-20) 

Therefore, y2 will be used as a heuristic to partition the nodes of the FEMs. 

Now let us consider the problem of partitioning a finite element mesh by a mixed 
method. Consider a given domain D. Two subdomains R2 and R3 with an equal 
number of elements ( 2 3R R= ) are separated from subdomains D1 and D2 respec-
tively, as illustrated in Figure 8.6(b). Let n be the total number of elements of the 
model, and i be the total number of elements in each subdomain R2 and R3, respec-
tively. Then the number of elements in subdomain R1 will be m = n − 2i. By 
reordering the elements, the partitioning vector x can be written as follows:  

 1 2 3 ,t t t t =  x X X X  (8-21) 

 xt = [x1 x2, …, xm |xm+1 xm+2 , …, xm+i |xm+i+1 xm+i+2, …, xm+2i], (8-22) 

where X1, X2 and X3 are partitions of vector x, corresponding to subdomains R1, 
R2 and R3 , respectively. 

D D 1 2 

S 

S 

 
(a) A domain divided into two subdomains 
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D D 1 2 
S 

S 

1 2 3 R R R R 1 

 
(b) A domain divided into three subdomains 

Fig. 8.6 A domain and its subdivisions. 

Since it is assumed that R2 and R3 are completely contained in different subdo-
mains after final bisection, 

 xm+1=…=xm+i =xm+i+1=…xm+2i = t, (8-23) 

 
1 1

2 1

1 if  is in subdomain   
1 if  is in subdomain 

R D
t

R D
+

=  −
 (8-24) 

 
11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

  .t t t t

   
    =      
      

L L L X
x Lx X X X L L L X

L L L X
 (8-25) 

Since R2 and R3 are disjoint, it can easily be deduced that  

 23 32 0.t= =L L  (8-26) 

Then: 

 1 11 1 1 12 2 1 13 3 2 22 2 3 33 32( ) ( ).t t t t t t= + + + +x Lx X L X X L X X L X X L X X L X  (8-27) 

Considering Eq. (8-25), it is known that, the vectors X2 and X3 can be replaced by 
two scalar unknowns 2 3 2 3 and , and   x x x x= − . Therefore, Eq. (8-27) can be 
rewritten as  

 1 11 1 1 12 2 1 13 3 2 22 2 3 33 32( ) ( )t t t t t tx x x x= + + + +x Lx X L X X L X L X L X L , (8-28) 



 OPTIMAL STRUCTURAL ANALYSIS 

 

366 

where  

 1 1
2 3

2 1

1 if  is in subdomain 
1 if  is in subdomain 

R D
x x

R D
+

= − = −
 (8-29) 

In the above relations, 22L  is the number of interfaces between R1 and R2, and 33L  
is the number of interfaces between R1 and R3. 12L  and 13L  are two vectors with 
the same dimensions as X1, and their components are equal to the number of inter-
faces between the elements of R1 and subdomains R1 and R3, respectively, such 
that 

 2 12 12 2 ,x = −L L X  (8-30) 

 3 13 13 3 ,x = −L L X  (8-31) 

By these assumptions, Eq. (8-25) can be reduced as follows:

 

 

 

11 12 13 1

1 2 3 12 22 2

13 33 3

 0  .
0

   
    =     
     

L L L X
x Lx X L L

L L

t t t

t

x x x
x

 

(8-32) 

Hence 

 (xtLx) = (ytL*y), (8-33) 

 Min (xtLx) = Min (ytL*y). (8-34) 

Relations (8-32), (8-33) and (8-34) mean that the problem of finding the second 
eigenvector of the Laplacian matrix L can be converted into that of finding the 
second eigenvector of the reduced Laplacian matrix L*. The dimension of L* is  
r = n − 2i + 2. The matrix L* is tri-diagonalised using the Lanczos method. The 
second-smallest eigenvector L* can be found using the special properties of Sturm 
sequence polynomials, and the second eigenvector of L* can be obtained from 
back substitution into L*y2 = 2λ∗ y2. 

The graph-theory interpretation of the above method is illustrated in Figure 8.7. 
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1 

2 3 

R 

R R 

S 

S 
 

Fig. 8.7 Graph-theory interpretation of the mixed method. 

In the first phase, two subdomains R2 and R3 with equal number of elements are 
separated from the main domain, using a suitable graph-theory method, as shown 
in Figure 8.5. These subdomains are replaced by two super elements, and their 
interfaces with the remaining subdomain, R1, are obtained. The reduced associate 
graph and its Laplacian matrix L* are constructed. The degree of the super ele-
ments is the same as the number of their interfaces with the subdomain R1. In the 
second phase, the SB method is applied to this graph and the domain is bisected 
with R2 and R3 contained in each half. 

For initial partitioning in the first phase, an expansion process of Sections 7.3.4 or 
7.3.5 can be used. In this algorithm, the first two pseudo-peripheral nodes r2 and r3 
of the associate graph are constructed. The shortest-route (SR) subtrees rooted 
from these nodes are named R2 and R3, and the nodes are added to these subdo-
mains contour by contour. The expansion process is halted as soon as a suitable 
number of elements is assigned to R2 and R3. 

It should be noted that, if the above expansion process is continued for initial parti-
tioning of the domain, then the unrestricted growth of the SR subtrees yields a 
suboptimal solution, unless some kind of priority is employed in the process of 
expansion; see Figure 8.8. 
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S 

S 

r 

r 2 

3 

 
Fig. 8.8 Initial decomposition of a rectangular domain.  

In order to obtain a subdomain R1 with suitable aspect ratio for decomposition in 
the second phase, the following condition is imposed in the process of expansion,  

 d(Srsubtreer2) + d(Srsubtreer3) ≤ (d(SRT) − w(SRT)), (8-35) 

where d(Srsubtreer2) and d(Srsubtreer3) are the numbers of contours of the short-
est-route trees (SRTs) generated from r2 and r3, and d(SRT) and w(SRT) are the 
depth and width of the SRT for the main domain. 

The algorithm for the mixed method can be summarised as follows: 

Step 1: Construct the associate graph of the FEM. 

Step 2: Select two pseudo-peripheral nodes of the associate graph. 

Step 3: Generate two SR subtrees rooted from the selected nodes and form subdo-
mains R2 and R3 by an expansion process using these SRsubtrees. Terminate the 
expansion process as soon as the above condition is fulfilled. 

Step 4: Replace each subdomain R2 and R3 with a single node, and form the new 
reduced associate graph and construct its Laplacian. 

Step 5: Calculate the second eigenvalue and eigenvector of the reduced Laplacian. 

Step 6: Bisect the graph and the corresponding FEM. 

The above algorithm can be applied recursively, for further bisection of the con-
structed subdomains. 
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8.3.3 EXAMPLES 

Three examples are proposed for illustrating the performance of the mixed method 
compared to the SB method. The effect of element ordering (or the choice of the 
initial trial Lanczos vector) in the convergence of the Lanczos and SB methods is 
illustrated in the third example.  

Example 1: A rectangular finite element domain with 4-node quadrilateral ele-
ments is considered, as shown in Figure 8.9. This is a mesh with 341 nodes and 
300 elements. 

The number of elements assigned to each subdomain R2 and R3 by the graph–
theoretical method is denoted by i, and the number of the remaining elements is  
m = n − 2i. The results are presented in Tables 8.1 and 8.2. 

S 

S 
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r 2 

3 

 
Fig. 8.9 A rectangular FEM. 

Table 8.1 Computational time for the mixed and SB methods for Example 1. 

Method i m t/t0 λ2 
SB 0 300 1.0 0.011 

 1 298 1.07 0.011 
 15 270 0.99 0.0133 

Mixed 110 190 0.76 0.0269 
 150 150 0.64 0.043 
 170 130 0.58 0.057 
 190 110 0.56 0.079 

Table 8.2 The number of interface edges for different numbers of iterations.  

Number of iterations 59 50 45 40 35 30 25 
SB method 10 12 >12 >12 >12 >12 >12 

Mixed method (i = 55) 10 10 10 10 10 10 >10 
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Example 2: An I-shaped finite element domain with 4-node quadrilateral elements 
is considered as illustrated in Figure 8.10. Here, r2 and r3 are selected as pseudo-
peripheral nodes of the associate graph of the model. The length and width of the 
SRT for the main domain are 34 and 19, respectively. The results are shown in 
Tables 8.3 and 8.4, where i is the number of elements in subdomains R2 and R3 
obtained from the expansion of the SRTs from the selected peripheral nodes.  

Table 8.3 Computational time for the mixed and SB methods for Example 2.  

Method i m t/t0 λ2 
SB 0 250 1.0 0.0202 

 1 248 1.10 0.0202 
Mixed 15 220 0.98 0.0219 

 35 180 0.85 0.028 

S 
S 

r 

r 2 

3 

 
Fig. 8.10 An I-shaped FEM with n = 250 quadrilateral elements. 

Table 8.4 The number of interface edges for different methods. 

Number of iteration 59 55 50 45 40 
SB method 11 11 >13 >13 >13 

Mixed method (i = 35) 11 11 13 13 >13 

Example 3: An unsymmetric domain with n = 300 elements is considered, as 
shown in Figure 8.11. 
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Fig. 8.11 An unsymmetric FEM. 

In this example, ordering of the elements is first started from the elements incident 
to r2, and then ordering is performed from the elements connected to r3. For 59 
iterations, the result obtained from the first ordering leads to λ2 = 0.01406, while 
the second ordering results in λ2 = 0.01310. The first is optimal, and the second is 
suboptimal. In both ordering, the initial vector was taken as y0 = [ 1 0 0 … 0]t. If in 
the second ordering the initial vector is changed to y0 = [0 0 0 … 1]t, then the sec-
ond ordering will also lead to optimal decomposition. The results of the other 
examples being studied reveal that, for certain numbers of Lanczos iterations, dif-
ferent decompositions will be obtained for different orderings. Further studies are 
necessary to explore the significance of initial element ordering in the process of 
decomposition by the SB or the mixed method. 

8.3.4 DISCUSSIONS 

The mixed method is simple, and incorporates features from both the graph–
theoretical and the SB methods. Reduction of the size of the problem in the first 
phase of the method makes the algebraic process of the second phase more effi-
cient. Evaluation of the eigenvalues and eigenvectors becomes simpler than in the 
pure algebraic method. In this method, much larger problems can be dealt with 
because the first phase requires far less computational effort, while using the effi-
ciency of the second phase for better bisection. The mixed method is less sensitive 
to initial element ordering than the pure algebraic approach. 

8.4 SPECTRAL BISECTION FOR ADAPTIVE FEM; WEIGHTED GRAPHS  

In this section, the SB method is improved to solve weighted graph-partitioning 
problems. Then the partitioning of the adaptive FEM, which is mapped into the 
partitioning of the associate weighted graph, is performed using the improved 
spectral bisection (ISB) method. The ISB method, similar to the subdomain gen-
eration method (SGM), operates on a coarse background mesh. First, the modified 



 OPTIMAL STRUCTURAL ANALYSIS 

 

372 

(weighted) Laplacian matrix of the coarse mesh is combined with the nodal weight 
matrix. Then, the eigenvectors corresponding to some of the smallest eigenvalues 
(3 or 4) of the combined matrix are derived. Employing some heuristic, the mesh is 
bisected according to the derived eigenvectors and gives a mode, which results in 
better partitioning. It is shown that the first smallest mode of the combined matrix 
often yields the best partitioning. 

8.4.1 BASIC CONCEPTS 

Consider a graph with weights assigned to its nodes and edges. The nodal weight 
vector is 

 NW = [nwi]; i = 1,2, …, N, (8-36) 

and the edge weight matrix is defined as 

 EW = [Ewij]; i, j = 1, …, N, (8-37) 

 
 if  and  are adjacent,

0  otherwise.                  
ij

ij

ew i j
EW 

= 


 (8-38) 

The entries of the weighted Laplacian matrix WL of a weighted graph are defined 
similarly to those of L as follows:  

 
1

,      if                                          

            if nodes  and  are adjacent,          
0                 otherwise.                                  

iD

ij
j

ij ij

ew i j

wl ew i j
=


=

= −




∑
 (8-39) 

The vector y1 = {1 1 …1}t is the eigenvector corresponding to the first smallest 
eigenvalue λ1 = 0 of WL. The matrix WL is positive semi-definite. 

The aim is to partition a given graph into two subgraphs, such that the subgraphs 
have equal or near equal weights, and the weight of the cutset is minimum. The 
cutset (edge separator) is a set of edges whose removal results in two disjoint sub-
graphs. The weight of a cutset is the sum of the weights of its edges. The weight of 
a subgraph is the sum of the weights of its nodes. 
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The partitioning vector x is defined by Eq. (8-5), but the number of + 1´s and − 1´s 
is not equal in this case. Hence it is not orthogonal to y1. Instead it is required that 

tNW x  be minimised. 

The weight of a cutset produced by the partitioning vector x is 

 21
4

( , )

( ) ( ) ,i j ij
i j I

C x x ew
∈

= −∑x  (8-40) 

which should be minimised. It can be shown that 

 1
4( ) .tC =x x Lx  (8-41) 

For a partitioning to be optimal, ( )C x  should be minimised. It is seen that the 

optimal x should minimise ( )C x  and tNW x , simultaneously. The minimisation 
of these two functions can be cast in the form of the minimisation of the following 
objective function:  

 1
4 .t tZ r= +x WLx NW x  (8-42) 

In the above equation, r is a penalty parameter that balances the weight of the sec-
ond term against the first one. The lower value of r, forces the minimisation of the 
first term. 

The second term in Eq. (8-42) is now replaced by 2(x )t tr NW x . Therefore 

 1
4 ( )( ),t t tZ r x= +x WLx NW NW x  (8-43) 

or 1
4( ) ,t tZ r= +x WL NWNW x  (8-44) 

or Z = xtWL*x. (8-45) 

Since Z > 0 for all x, the matrix 1
4* t= +L WL rNWNW  is positive definite, and 

its eigenvalues have the following properties: 

 λ1 ≤ λ2 ≤ … ≤ λn. (8-46) 



 OPTIMAL STRUCTURAL ANALYSIS 

 

374 

The eigenvalue y1 corresponding to the smallest eigenvalue of WL*, minimises 
the quadratic form in Eq. (8-43). Hence the smallest eigenvalue is found, and the 
optimal partitioning is created from the first eigenvector of WL*. 

It is at this point that the heuristic should be applied. For this purpose, the compo-
nents of y1 are stored in ascending order. The first N1 elements corresponding to 

the N1 lowest components of y1, with the sum of weights equal to 1
2

1

,
N

i
i

m
=
∑  are as-

signed to one subdomain. The remaining elements are assigned to the second 
subdomain. It should be noted that N1 is not necessarily equal to N/2 in this case. 

In some cases, it is observed that the second or third eigenvector corresponds to an 
optimal solution. Therefore, in this method the first four eigenvectors are obtained 
and tested applying the heuristic. 

8.4.2 PARTITIONING OF ADAPTIVE FE MESHES 

For parallel implementation of adaptive FE meshes, a suitable domain decomposi-
tion algorithm should be selected. In this method, the initial FE analysis is 
performed on a coarse mesh, and element re-meshing parameters are obtained. The 
nodal mesh parameters are then calculated by nodal averaging. 

Employing nodal mesh parameters, the re-meshing is performed and a refined 
mesh is obtained. If, before re-meshing, the number of elements and the number of 
edges in each element of the coarse mesh is specified, then the decomposition 
process can be performed on the coarse mesh. Using a predictor such as that of a 
neural network, to estimate the number of elements generated after adaptive re-
meshing, the initial mesh can be divided into two subdomains by employing the 
ISB method of the following section. 

The initial coarse mesh is partitioned into the desired number of subdomains, such 
that each subdomain of the refined mesh contains approximately equal numbers of 
elements, and the number of interfacing boundary edges is minimum or near mini-
mum. 

For example, consider an initial coarse mesh and its re-meshing in Figure 8.12. 
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 (a) Initial coarse mesh. (b) Fine mesh after re-meshing. 

Fig. 8.12 A simple finite element model. 

The information about the fine mesh in Figure 8.12(b) is transformed into that of 
an associate graph as follows: 

1. Construct the natural associate graph of the coarse mesh. For this purpose, as-
sign a node to each element and join two nodes by an edge if their corresponding 
elements have a common edge. 

2. Assign an integer to each node of the associate graph, equal to the number of 
fine elements to be included in the coarse element corresponding to that node. 

3. Assign an integer to each edge of the associate graph, equal to the number of 
interface edges that will be generated on the corresponding common edge, after re-
meshing. The weighted associate graph of Figure 8.12 will be obtained as illus-
trated in Figure 8.13. 

2

4

5

7

8

63
1

8

12
5

2

2

1

4

3

2

1

2

 
Fig. 8.13 The weighted associate graph. 

Now the ISB method can be applied and the partitions of the coarse mesh can be 
obtained, leading to the optimality criteria being satisfied on the refined mesh. 



 OPTIMAL STRUCTURAL ANALYSIS 

 

376 

8.4.3 COMPUTATIONAL RESULTS 

Three examples are presented in this section. In the first two examples, the models 
are taken from [91] and compared to the SGM. In the latter example, the model is 
bisected by the ISB method. For all the models, the penalty parameter, r, is taken 
as unity. 

Example 1: A square finite element domain is bisected, as shown in Figure 8.14. 
The results of the ISB and SGMs are illustrated by bold and dashed lines, respec-
tively. The results are presented in Table 8.5, with ‘*’ indicating the best result 
obtained. Comparison of the two methods is illustrated in Table 8.6. 

 
Fig. 8.14 A square finite element domain. 

Table 8.5 Bisection obtained from the first four modes, Example 1.  

Eig. no. λ Interface (1) Weight imbalance 
(2) 

(1) + (2) 

1 0.0404 15 24 39 
2* 0.0472 10 6 16 
3 0.1214 16 14 30 
4 0.1414 20 20 40 

* indicating the best result obtained. 

Table 8.6 Comparison of ISB and SGM. 

Method Weight imbalance 
(1) 

Cut interface (2) (1) + (2) 

SGM 18 11 29 

ISB 6 10 16 
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Example 2: An L-shaped finite element domain is bisected, as shown in Figure 8.15. 
The results of the ISB and the SGMs, are illustrated by bold and dashed lines, respec-
tively. In this example, the first mode is selected, since its resulting subdomains are 
connected. The results are presented in Table 8.7, with ‘*’ indicating the best result 
obtained. Comparison of the two methods is illustrated in Table 8.8. 

  
Fig. 8.15 An L-shaped finite element domain. 

Table 8.7 Bisection obtained from the first four modes, Example 2. 

Eig. no. λ Interface (1) Weight imbalance 
(2) 

(1) + (2) 

1 0.0088 17 8 25 
2* 0.0181 17 6 23 
3 0.0373 22 4 26 
4 0.0485 23 2 25 

* indicating the best result obtained. 

Table 8.8 Comparison of ISB and SGM. 

Method Weight imbalance 
(1) 

Cut interface (2) (1) + (2) 

SGM 16 15 31 

ISB 8 17 25 

Example 3: An I-shaped finite element domain is considered, as shown in Figure 
8.16, and the cut interface is distinguished by bold lines. The results are presented 
in Table 8.9. 
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Table 8.9 Bisection obtained from the first four modes, Example 3. 

Eig. no. λ Interface (1) Weight imbalance (2) (1) + (2) 
1* 0.0094 24 8 32 
2 0.0219 36 8 44 
3 0.0323 46 8 54 
4 0.0698 55 0 55 

* indicating the best result obtained. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8.16 An I-shaped domain bisected by ISB. 

8.5 SPECTRAL TRISECTION OF FINITE ELEMENT MODELS  

In this section, a new efficient method is presented for finite element domain de-
composition. A weighted incidence graph is first constructed for the FEM. A 
spectral partitioning heuristic is then applied to the graph using the second and the 
third eigenvalues of the Laplacian matrix of the graph, to partition it to three sub-
graphs and correspondingly trisect the FEM. 

8.5.1 CRITERIA FOR PARTITIONING  

In the process of analysis, it is necessary to have information exchange between 
adjacent subdomains. For example, for the finite element mesh shown in Figure 
8.17, the two elements A and B are contained in two different adjacent subdo-
mains. The interrelation between these elements in the overall stiffness matrix is 
illustrated in Figure 8.18. It can be easily observed that the number of informations 
exchanged between these two elements is equal to 3, considering the symmetry of 
the stiffness matrix. This number is given, considering only one unknown per 
node, and it should be multiplied by the degrees of freedom of each node. This 
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number is called the communication number of the two elements. It can easily be 
proved that, if the number of common nodes of two elements is denoted by nc, 
then the communication number will be given as  

( 1)
2

c cn n +
. 

Obviously, for an optimal partitioning it is necessary to minimise the sum of the 
communication numbers. Such a minimisation reduces the interaction of the ele-
ments, decreasing the time for computation. 

Sub 2 Sub 1 
i 

 j k 
l 

A B 
m 

 

Fig. 8.17 A finite element mesh, and the two elements A and B contained in two 
different adjacent subdomains.  

 

Fig. 8.18 The inter-relation between the elements in the overall stiffness matrix. 

On the other hand, in the parallel processing, if the computational time is propor-
tional to the maximum time required for processing each subdomain, the 
partitioning should be performed in such a way that all subdomains require nearly 
the same computational time. If the processing time for each subdomain is propor-
tional to the total number of elements in each subdomain, the model should be 
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partitioned into subdomains with equal number of elements. Thus, for an optimal 
subdomaining, the following considerations are vital:  

1. equal number of elements in each subdomain; 

2. minimum communication between the elements of each pair of adjacent sub-
domains.  

8.5.2 WEIGHTED INCIDENCE GRAPHS FOR FINITE ELEMENT MODELS 

An incidence graph G of an FEM has its vertices in a one-to-one correspondence 
with the elements of the considered FEM, and two vertices of G are connected by 
an edge if the corresponding elements have at least one common node. Weights 
are assigned to the edges of G as the communication numbers for each pair of ele-
ments in the FEM. Such a graph is called the weighted incidence graph of the 
considered FEM. 

For example, an FEM and its corresponding weighted incidence graph are illus-
trated in Figure 8.19. 

 
 (a) (b) 

Fig. 8.19 A finite element model and the corresponding weighted incidence graph.  

Using this graph, the problem of efficient decomposition of an FEM is transferred 
into an optimal partitioning of the corresponding graph, with the following proper-
ties: 

1. The number of nodes for the subgraphs is nearly equal. 

2. The sum of the weights of the edges for which the two ends are in two different 
subgraphs, is minimum.  
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A graph partitioning into three parts and the corresponding trisection of the FEM, 
are illustrated in Figure 8.19.  

8.5.3 GRAPH TRISECTION ALGORITHM  

The vector x will partition the graph into three subgraphs containing equal num-
bers of vertices (N/3), if the number of zi s is N/3, and it follows that 

 
1

x 0
N

k
k =

=∑ , (8-47) 

where N is assumed to be a multiple of three. 

If, on the other hand, t t
1. . 0e φ= =x x , this means that the partitioning vector x is 

orthogonal to 1φ . It is necessary to assign a measure of how well this vector mini-
mises the communication between the vertices of each pair of subgraphs. 

Consider two arbitrary adjacent vertices i and j of the graph. If these two vertices 
belong to the same subgraph, then, 

 
2

0i jx x− = , (8-48) 

where for each complex number 2 2  , CiC A B A B= + = + , and if they belong to 
different subgraphs, then: 

 
2

3i jx x− = . (8-49) 

Thus, the resulting communication between them is equal to 
21

3 i j ijx x w− . 

So the total communication between adjacent subgraphs is 

 
2

( , )

1( )
3c i j ij

i j E

t x x x w
∈

= − ×∑  (8-50) 
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On the other hand, from the fact that wij = 0 for non-adjacent vertices i and j, it can 
be written as,  

 
2

1 1

1 1( ) ,
2 3

N N

c i j ij
i j

t x x x w
= =

= × − ×∑∑  (8-51) 

where the coefficient 1/2 is due to twice consideration of edge ( , )i j . 

According to the definition of the Laplacian matrix of the weighted graph, it can 
be shown that, 

 ( ) 1 *  
6

t
ct x = x L x , (8-52) 

and the problem of efficient partitioning is converted to the following optimisation 
problem:  

 

t
c

1Minimise    (x) *
6

s.t.     . 0

1 3 1 3and    1,   ,  
2 2 2 2

t

k

t

x

x i i

=

=

  ∈ + − + − − 
  

x L x

e  (8-53) 

Separating real and imaginary parts of vector x, this vector can be written as 

 iu v= +x , (8-54) 

where , Nu v R∈ . Hence 0i iu v= =∑ ∑  and ( ) ( )2 2 2

i j i j i jx x u u v v− = − + − . 
This implies that, the problem defined by Eq. (8-53) is equivalent to the following 
problem:  

 

( )

( ) ( )

1 Minimise    ( ) = * *
6

 s.t.             . . 0                        

1 3 1 3 and            , 1,0 , , , ,
2 2 2 2

t t
c

t t

i i

t

u v

+

= =

    − − − ∈ +             

x u L u v L v

u e v e  (8-55) 
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On the other hand, since 
1 1

0,
N N

i i
i i

u v
= =

= =∑ ∑  one can write 

 ( )

( )

2 2
2

2 2
2

1 3 1 3. 1 0 0
3 2 2 2 2

1 1. 0
3 2 2 2

3 3. 0
3 2 2 2

t

t

t

N

N N

N N

 − − −= × + × + × =   
 − −   = + + =         
    − = + + =           

u v

u u

v v

 (8-56) 

A property of real, symmetric matrices such as L* is that their eigenvectors are 
orthogonal and form a basis in NR . A set of vectors is said to form a basis in NR , 
if all vectors of NR can be written as a linear combination of these vectors.  

Consequently, for an appropriately chosen set of coefficients ai and bi, i = 1,2, …, 
N, the vectors u and v can be written as 

 
1

N

i i
i

a φ
=

= ∑u , 

and 
1

.
N

i i
i

bφ
=

= ∑v  (8-57) 

On the other hand, 1φ = e  and . . 0t t= =u e v e ; consequently, 1 1 0a b= = , and 

 
2

,
N

i i
i

a φ
=

= ∑u   

and 
2

N

i i
i

bφ
=

= ∑v . (8-58) 

Normalising the vectors iφ  so that t . / 2,   2,  ... , ,i i N i Nφ φ = =  we have,  

 t t 2

2 2 2

.
2 2

N N N

i i i i i
i i i

N Na a aφ φ
= = =

    
= =    

    
∑ ∑ ∑u u  (8-59) 
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from which, 

 2

2

1,
N

i
i

a
=

=∑  (8-60) 

and similarly,  

 2

2

1.
N

i
i

b
=

=∑  (8-61) 

On the other hand  
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from which,  
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N
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=∑  (8-63) 

If * ,i i iφ λ φ=L  then 

 2
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2
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t t t

i i i i i i i i i i i
i i i i i

Na a L a a aφ φ φ λ φ λ
= = = = =

     = = =     
     
∑ ∑ ∑ ∑ ∑u L u  (8-64) 

and similarly,  

 2

2

*
2

N
t
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i

N b λ
=

= ∑v L v . (8-65) 

In this manner, the optimisation problem defined by Eq. (8-55) can be written as 
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It is at this point that the heuristic must be applied. If N = 3 is considered, then the 
conditions (8-60), (8-61) and (8-63) are as follows:  

 2 2 2 2
2 3 2 3 2 2 3 31,  b 1,  a 0a a b b a b+ = + = + = . (8-67) 

and the other conditions are not applied. 

The solution of these equations can be considered as follows:  

 2 3

2 3

 cos ,  sin

 sin ,  cos

a a

b b

θ θ

θ θ

= =

= − =
 (8-68) 

This implies that 

 2

3

cos       sin
sin     cos

u
v

φθ θ
φθ θ

    
=     −     

. (8-69) 

With this approximation, the components of ( ),i iu v are not generally the pre-
scribed discrete values and the vertices of the graph cannot be clustered on the 

, 1,2,3kz k =  basis. Instead, the N/3 vertices corresponding to the N/3 closest num-
bers to kz s are assigned to each subgraph. 

After computation of 2φ  and 3φ  by changing θ , values of ( ),i iu v  for each vertex 
can be computed. According to the above criteria, the optimum value of θ  is the 
value that results in minimum communication between the subgraphs. 

For applying the above criteria, for finding closest ( ),i iu v  vectors to kz s , it is 
sufficient to compute and compare angles between this vector and the kz vectors.  

Figure 8.20(a) shows a typical vector ( ),i iu v  that is close to 1z , implying that the 
vertex i belongs to the subgraph 1. 
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 (a) (b) 

Fig. 8.20 A typical vector. 

For example, for the graph shown in Figure 8.19(b), and with  

12 6 6
6 12 0 6
6 0 9 0 3

*
6 0 9 0 3

3 0 6 3
3 3 6

− − 
 − − 
 − −

=  − − 
 − −
 

− −  

L , 

the solution of the eigenproblem *   ,i i iφ λ φ=L  results in  

2λ = 3.80 and 2φ  = [−0.41, −0.41, −0.15, −0.15, 0.56, 0.56]t  

3λ  = 4.40 and 3φ  = [−0.25, 0.25, −0.56, 0.56, −0.36, 0.36]t  

For θ  = 0, we have u = 2φ  and v = 3φ . ( ),i iu v  for i = 1,…,6 in a u-v coordinate 
system are depicted in Figure 8.20(b). From this Figure, it can be seen that vertices 
5 and 6 belong to subgraph 1, vertices 2 and 4 belong to subgraph 2, and vertices 1 
and 3 belong to subgraph 3. The corresponding partitioned graph and FEM are 
illustrated in Figure 8.19. 
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8.5.4 NUMERICAL RESULTS 

Many examples are trisected, and the results for a few of the considered models 
are presented in the following text.  

Example 1: The model of a shell structure is considered, as shown in Figure 
8.21(a). This model has 2016 triangular elements. The model is trisected as illus-
trated in Figure 8.21(b).  

 
(a) 

 
(b) 

Fig. 8.21 A shell-type FEM. 

Example 2: The FEM of a nozzle is considered, as shown in Figure 8.22(a). This 
model contains 1485 rectangular elements. The trisected model is illustrated in 
Figure 8.22(b). 
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(a) 

 
(b) 

Fig. 8.22 The FEM of a nozzle. 

Example 3: The FEM of a fan with 1 opening is considered, as shown in Figure 
8.23(a). This model contains 1350 rectangular elements. The trisected model is 
illustrated in Figure 8.23(b) with absolutely balanced nodes. 

 

(a) 
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(b) 

Fig. 8.23 The FEM of a fan. 

8.5.5 DISCUSSIONS 

The proposed algorithm for finite element domain decomposition is simple and 
efficient. A weighted incidence graph is first constructed, and a spectral partition-
ing heuristic is then applied to the graph, using the second and the third 
eigenvalues of the Laplacian matrix of the graph, to partition it into three sub-
graphs, and trisect the corresponding FEM. This method can recursively be 
applied for further decomposition of the models.  

8.6 BISECTION OF FINITE ELEMENT MESHES USING RITZ AND 
      FIEDLER VECTORS 

In this section, an efficient algorithm is developed for the decomposition of large-
scale FEMs. A weighted incidence graph is used to transform the connectivity 
properties of finite element meshes into those of graphs. A graph G0 constructed in 
this manner is then reduced to a graph Gn of desired size by a sequence of contrac-
tions G0 → G1 → G2 → … → Gn. For G0, two pseudo-peripheral nodes s0 and t0 
are selected, and two SRTs are expanded from these nodes. For each starting node, 
a vector is constructed with N entries, each entry being the shortest distance of a 
node ni of G0 from the corresponding starting node. Hence, two vectors v1 and v2 
are formed as Ritz vectors for G0. A similar process is repeated for Gi (i = 1,2, …, 
n), and the size of the vectors obtained is then extended to N. A Ritz matrix  
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consisting of 2(n + 1) normalised Ritz vectors each having N entries is constructed. 
This matrix is then used in the formation of an eigenvalue problem. The first ei-
genvector is calculated, and an approximate Fiedler vector is constructed for the 
bisection of G0. The performance of the method is illustrated by some practical 
examples. 

8.6.1 DEFINITIONS AND ALGORITHMS 

The weighted Laplacian matrix L* =[l*ij]N × N of a weighted incidence graph is 
defined as follows: 

 *

                             if ,

  if nodes  and  are adjacent,  
0                                 otherwise.

ik
k

ij ij

w i j

l w i j

 =

= −



∑
 (8-70) 

where N is the number of nodes of the graph corresponding to the number of the 
elements of the FEM. 

An incidence graph G of an FEM has its nodes in a one-to-one correspondence 
with the elements of the considered FEM, and two nodes of G are connected by an 
edge if the corresponding elements have at least one common node. Weights are 
assigned to the edges of G as the communication number for each pair of elements 
in the FEM. Such a graph is called the weighted incidence graph of the considered 
FEM.  

Using this graph, the problem of efficient decomposition of an FEM is transferred 
into an optimal partitioning of the corresponding graph, with the following proper-
ties. 

The number of nodes for subgraphs is nearly equal, and the sum of the weights of 
the edges for which the two ends are in two different subgraphs is minimum. 

8.6.2 GRAPH PARTITIONING 

The optimal graph-partitioning problem can be formulated as follows: 

 Find x = [xi}N × 1 

 to minimise communication = xtL x (8-71) 

 s.t. xte = 0, et = [1,1,…,1]  

 xi = +1 or –1. 
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The condition xte = 0 means that the number of +1s is the same as the number of 
−1s (i.e. the equilibrium of the nodes is satisfied). This condition can be fulfilled 
for graphs with an even number of nodes; however, for those with an odd number 
of nodes this cannot be fulfilled. Therefore, this condition should be replaced by 

 Minimise xte. (8-72) 

8.6.3 DETERMINATION OF PSEUDO-PERIPHERAL NODES 

A pair of pseudo-peripheral nodes (starting nodes) is determined by the following 
process. 

Algorithm 

Step 1: Select an arbitrary node v of minimum degree.  

Step 2: Generate an SRTv = {C1
v, C2

v, ..., Cd
v} rooted at v. Decompose the sub-

graph containing the nodes of Cd
v into its components (subcontours).  

Step 3: Select one node of minimum degree from each component. Generate an 
SRT from each of such nodes, and choose the one corresponding to the smallest 
width. 

Step 4: Repeat Steps 2 and 3 as far as reduction in width of the SRT can be ob-
served. 

The root “s” and the selected end node “e” are the pseudo-peripheral nodes re-
quired. 

8.6.4 FORMATION OF AN APPROXIMATE FIEDLER VECTOR 

Here, the graph parameters are considered as Ritz vectors, and the second eigen-
vector of the Laplacian matrix L (Fiedler vector) is considered as a linear 
combination of Ritz vectors [11]. The coefficients for these vectors are in fact the 
weights of the graph parameters.  

Consider the following vector,  

   ,
1

p
wi ii

φ = ∑
=

v  (8-73) 

where φ  is an approximation to the Fiedler vector, vi (i = 1, …, p) are the normal-
ised Ritz vectors representing the graph parameters, and wi (i = 1, …, p) are the 
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coefficients of the Ritz vectors (Ritz coordinates) which are unknowns, and p is 
the number of parameters being employed. Equation (8-73) can be written as  

   φ = vw , (8-74) 

where w is a p × 1 vector, and v is an N × p matrix containing the Ritz vectors. 

Consider the eigenproblem of the Laplacian as  

 φ λφ=L , (8-75) 

Approximating φ by φ  and multiplying by vt results in, 

 t tλ=v Lvw v vw , (8-76) 

or  

 λ=Aw Bw , (8-77) 

where A = vtLv and B = vtv. Both A and B are p × p matrices, and therefore Eq. 
(8-77) has a much smaller dimension compared to Eq. (8-75); λ is the approximate 
eigenvalue of the original problem. 

Solution of the reduced problem, with dimensions far less than the original one, 
results in λ2, and the corresponding eigenvector w can easily be calculated. Substi-
tuting w in Eq. (8-74) leads to the approximate Fiedler vector. 

8.6.5 GRAPH COARSENING 

During the coarsening phase, a sequence of G0 → G1 →G2 → … →Gn smaller 
graphs Gi = (Vi, Ei) is constructed from the original graph G0 = (V0, E0), such that 
Vi > Vi + 1. The graph is constructed from Gi by finding a maximal matching Mi ⊆ 
Ei of Gi and identifying the nodes that are incident on each edge of the matching. 
In this process, no more than two nodes are collapsed together, since a matching of 
a graph is a set of edges, no two of which are incident on the same node. Nodes are 
not incident on any edge of the matching, but are simply copied over to Gi+1. 
When u,v ∈Vi are contracted to form node w ∈Vi + 1, the weight of node w is set to 
be equal to the sum of the weights of nodes u and v, while the edges incident on w 
are set to be equal to the weight of the edges incident on u and v minus the weight 
of the edge (u,v). If there is an edge that is incident on both u and v, then the 
weight of this edge is set to be equal to the sum of the weights of these edges. 
There are different matchings [79]; here, heavy-edge matching is used. In this 
method, a matching Mi is computed such that the weight of the edges of Mi is high.  
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8.6.6 DOMAIN DECOMPOSITION USING RITZ AND FIEDLER VECTORS  

Algorithm  

Step 1: Construct the weighted incidence graph G0 of the FE mesh, and find two 
pseudo-peripheral nodes s0 and t0 using the algorithm of Section 5.5.1. 

Step 2: Construct two Ritz vectors v0s and v0t for G0, by forming two SRTs from 
the selected nodes s0 and t0.  

Step 3: Condense the graph G0 by heavy weight matching to obtain a graph of de-
sired size Gn by a sequence of contractions, that is, G0 → G1 →G2 → … →Gn.  

Step 4: Repeat Steps 1and 2 for G1, forming two vectors ,
1sv  and ,

1tv . 

Step 5: Expand ,
1sv  and ,

1tv  to v1s and v1t, as described in Section 8.6.7. 

Step 6: Construct two Ritz vectors "
2sv  and "

2tv  for G2 in a similar manner, and 
expand 

k 1

x 0
N

k
=

=∑  and "
2tv  to '

2sv  and '
2tv , followed by expansion to v2s and v2t. 

Step 7: Repeat steps similar to Step 5 to G3, G4, …, Gn, and form a pair of Ritz 
vectors for each Gi(i = 3,4, …, n). 

Step 8: Normalise each vector vis and vit (i = 0,1, …, n) and form a Ritz matrix as v 
= [v0s v0t v1s v1t v2s v2t …vns vnt]. 

Step 9: Construct A = vtLv and B = vtv, obtaining an eigenvalue problem of the 
form Aw = λBw. 

Step 10: Calculate the first eigenvector w1 and form the approximate Fiedler vector 
as vw1. 

Step 11: Order the entries and construct the status vector Sv for bisection. 

The algorithm is further described by the following example. 

8.6.7 ILLUSTRATIVE EXAMPLE 

Consider the model G0 shown in Figure 8.24(a). For the corresponding graph illus-
trated in Figure 8.24(b), the pseudo-peripheral nodes and the Ritz vectors are as 
follows: 
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Graph G0 : start node = s0 = 18 , end node = e0 = 7 

v0s =[d(s0,i)] = [5,4,3,2,2,2,7,6,5,4,3,2,1,1,7,6,5,0],  

v0t=[d(e0,i)] = [2,3,4,5,6,7,0,1,2,3,4,5,6,7,1,1,2,7].  

The entries of v0s and v0t are the distances of each node of G0 from the starting 
nodes s0 and e0, respectively. 

1 2 3 4
5 6

14

18

131211109

17
16

87

15

 
(a) The finite element model. 
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(b) Incidence graph of the model. 
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(c) The model of G1. 
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(d) The model of G2. 
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(e) The bisected model. 

Fig. 8.24 The process of contraction of the example. 

For the contracted graph, the model G1 shown in Figure 8.24(c), the starting nodes 
and the corresponding Ritz vectors are as follows: 

Graph G1 : start node = s1 = 2 , end node = e1 = 3 

"
2tv  =[d(s1,i)] = [1,0,5,2,2,3,4,4,3,2],  

,
1tv  =[d(e1,i)] = [4,5,0,3,3,2,1,1,2,4].  

These vectors are now expanded to the following vectors: 

Vector expansion: the nodes 1,2 of G0 are the same as node 5 of G1 and therefore  

v1s = [2,2,3,4,4,4,0,1,2,2,3,3,4,5,0,1,2,5].  
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Similarly  

v1t = [3,3,2,1,1,1,5,4,3,3,2,2,1,0,5,4,4,0].  

For the contracted graph, the model G2 shown in Figure 8.24(d), the starting nodes 
and the corresponding Ritz vectors are as follows: 

Graph G2 : start node = s2 = 5 , end node = e2 = 1: 

"
2sv = [d(s2,i)] = [4,3,1,2,0,4]  
"
2tv = [d(e2,i)] = [0,1,3,2,4,1]  

These vectors are now expanded to the following vectors: 

Vector expansion: the nodes 1,2 of G1 are the same as node 1 of G2. 

Vector expansion: the nodes 8, 16 of G0 are the same as node 1 of G1, and the 
nodes 7, 15 of G0 are the same as node 2 of G1, Therefore,  

'
2sv  = [4,4,0,3,3,2,1,1,2,4],  
'
2tv  = [0,0,4,1,1,2,3,3,2,1].  

Further expansions of these vectors result in  

v2s = [3,3,2,1,1,1,4,4,3,3,2,2,1,0,4,4,4,0],  

v2t = [1,1,2,3,3,3,0,0,1,1,2,2,3,4,0,0,1,4]  

Now orthogonalising the vectors vi (i = 1,2,3) leads to the Ritz matrix as:    

v = [v1s,v1t,v2s,v2t,v3s,v3t].  

For the reduced eigenvalue problem Aw = λBw, the first eigenvector is 

w1= [0.757, −0.889, 1.000, 0.216, 0.701, −0.129 ].  

Now the approximate Fiedler vector is calculated as  

vw1 = [−0.45, −0.17, 0.13, 0.42, 0.58, 0.73, −0.89, −0.74, −0.45, −0.17, 0.13, 0.41, 
0.71, 0.87, −0.74, −0.75, −0.61, 1.00],  

and the status vector results as  

Sv = [- - + + + + - - - - + + + + - - - +]  
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The model is now bisected, as illustrated in Figure 8.24(e), into two subdomains as 

subdomain 1 containing the set of elements 1,2,7,8,9,10,15,16,17, 

and subdomain 2 having the set of elements 3,4,5,6,11,12,13,14,18.  

8.6.8 NUMERICAL RESULTS  

Example 1: An H-shaped FE mesh with one opening comprising of 13,380 nodes 
and 13,000 rectangular elements is considered, as shown in Figure 8.25(a). 

 
(a) 

 
(b) 

Fig. 8.25 An FE mesh with one opening and its bisection. 

After nine phases of contraction, G9 with 200 nodes is obtained. The number of 
Ritz vectors is 20. The bisected model is shown in Figure 8.25(b). Note that, for 
this problem, the spectral method solves a 13,380 × 13,380 matrix, while the pre-
sent method uses a 200 × 200 matrix.  
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Example 2: The FE mesh of a tunnel comprising of 6888 nodes and 6720 rectan-
gular elements is considered, as shown in Figure 8.26(a). After nine phases of 
contraction, G9 with 100 nodes is obtained. The number of Ritz vectors is 20. The 
bisected model is shown in Figure 8.26(b). Here, we have an eigensolution of a 
100 × 100 matrix in place of a 6,888 × 6,888 matrix.  

   
 (a) (b) 

Fig. 8.26 An FE mesh for a tunnel and its bisection. 

Example 3: The FE mesh of a twin tunnel comprising of 13,699 nodes and 13,440 
rectangular elements is considered, as shown in Figure 8.27(a). After eight phases 
of contraction, G8 with 200 nodes is obtained. The number of Ritz vectors is 18. 
The bisected model is shown in Figure 8.27(b). 

 
(a) 
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(b) 

Fig. 8.27 The FE mesh of a twin tunnel and its bisection. 

Example 4: The FE mesh of a castellated beam comprising of 13,464 nodes and 
13,056 rectangular elements is considered, as shown in Figure 8.28(a). 

 
(a) 

After five phases of contraction, G5 with 1000 nodes is obtained. The number of 
Ritz vectors is 12. The bisected model is shown in Figure 8.28(b).  

 
(b) 

Fig. 8.28 The FE mesh of a castellated beam and its bisection. 

Example 5: The FE mesh of a torus-shaped model comprising of 12,000 nodes 
and 12,000 rectangular elements is considered, as shown in Figure 8.29(a). After 
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five phases of contraction, G5 with 1000 nodes is obtained. The number of Ritz 
vectors is 12. The bisected model is shown in Figure 8.29(b).  

 
(a) 

 
(b) 

Fig. 8.29 A torus-shaped FE mesh and its bisection. 

Details of the examples are collectively presented in Table 8.10  

Table 8.10 The results of bisection. 

No. of 
Ritz vec-

tors 

No. of 
phases 

Final no. 
of nodes 

No. of 
elements 

No. of 
nodes Example 

20 9 200 13,000 13,380 1 
20 9 100 6720 6888 2 
18 8 200 13,440 13,699 3 
12 5 1000 13,056 13,464 4 
12 5 1000 12,000 12,000 5 
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8.6.9 DISCUSSIONS 

The performance of the present method, illustrated in Section 8.6.8, compares well 
with that of pure algebraic graph methods, with a substantial reduction in the size 
of the eigensolution involved. In order to notice the difference, columns 2 and 4 of 
Table 8.10 can be compared for the dimensions of the matrices involved in the 
original spectral method and the present approach. This, in turn, increases the ac-
curacy and reduces the computational time. Large-scale problems can be handled 
much more easily in the condensed form. 

EXERCISES 

8.1 Form the Laplacian matrix of the following graph, and calculate its second 
eigenvalue. 

 

8.2 Construct the Fiedler vector for the following graph. 

 

8.3 Decompose the nodes of the following graph using its Fiedler vector. 

 

8.4 Construct the associate graph G of the following finite element model and 
bisect G. Then form the corresponding subdomains. 
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8.5 Decompose the following FEM into q = 3 subdomains using the incidence 
graph to represent its connectivity property: 

 

8.6 Use the spectral bisection method to decompose the following graph, and 
control its lower bound. 

 



 

 

CHAPTER 9 

Decomposition and Nodal 
Ordering of Regular Structures 
Using Graph Products 

 

9.1 INTRODUCTION 

Algebraic graph theory can be considered as a branch of graph theory in which 
eigenvalues and eigenvectors of certain matrices are employed to deduce the prin-
cipal properties of a graph. In fact, eigenvalues are closely related to most of the 
invariants of a graph, linking one extremal property to another. Eigenvalues play a 
central role in the fundamental understanding of graphs. There are a number of 
interesting books on algebraic graph theory: Biggs [13], Cvetković et al. [34,35], 
Seidel [196], Chung [27], and Godsil and Royle [61]. 

One of the major contributions to algebraic graph theory is due to Fiedler [51], 
who introduced the properties of the second eigenvalue and eigenvector of the 
Laplacian of a graph. The latter, known as the Fiedler vector, is used in graph 
nodal ordering and bipartition; see Kaveh and Rahimi Bondarabady [123–127]. 

General methods are available in the literature for calculating the eigenvalues of 
matrices; however, for matrices corresponding to regular models, it is beneficial to 
make use of their regularity. 

In this chapter, efficient methods are presented for calculating the eigenvalues of 
regular structural models. The eigenvalues of the adjacency and Laplacian matri-
ces for a regular graph model are easily obtained by evaluation of the eigenvalues  
 
_________________________________ 
Optimal Structural Analysis A. Kaveh 
© 2006 Research Studies Press Limited 
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of its generators. The second eigenvalue of the Laplacian of a graph is also ob-
tained using a much faster and simpler approach than existing methods. Once the 
second eigenvector v2 of the Laplacian matrix is calculated, the bisection of the 
model can be performed. This is achieved by arranging the entries of v2 in an as-
cending order and partitioning the nodes into two subsets according to their 
occurrence in v2. 

It should be noted that in the present chapter the term “generator” is used in its 
literal sense and the term “regular” is employed in both literal and mathematical 
senses. 

9.2 DEFINITIONS OF DIFFERENT GRAPH PRODUCTS 

Many structures have regular patterns and can be viewed as the Cartesian product, 
strong Cartesian product, or direct product of a number of simple graphs. These 
subgraphs, used in the formation of the entire model, are called the generators of 
that model. Graph products were developed in the past 50 years (see e.g. Berge 
[12], Sabidussi [193], Harary and Wilcox [74], and Imrich and Klavzar [86]), and 
are employed in nodal ordering and domain decomposition by Kaveh and Rahami 
[121–122]. In this chapter, very efficient methods are presented for graph parti-
tioning, domain decomposition and nodal ordering of regular structures.  

9.2.1 BOOLEAN OPERATION ON GRAPHS 

To explain the products of graphs, let us consider a graph S as a subset of all unor-
dered pairs of its nodes. The node set and member set of S are denoted by N(S) and 
M(S), respectively. The nodes of S are labelled as v1, v2, …, vM, and the resulting 
graph is a labelled graph. Two distinct adjacent nodes, vi and vj, form a member, 
denoted by vivj ∈ M(S). 

A Boolean operation on an ordered pair of disjoint labelled graphs K and H results 
in a labelled graph S, which has N(K) × N(H) as its nodes. The set M(S) of mem-
bers of S is expressed in terms of the members in M(K) and M(H), differently for 
each Boolean operations. Three different operations are discussed in this chapter, 
corresponding to Cartesian product, strong Cartesian product and direct product of 
two graphs.  

9.2.2 CARTESIAN PRODUCT OF TWO GRAPHS 

Many structures have regular patterns and can be viewed as the Cartesian product 
of a number of simple graphs. These subgraphs, which are used in the formation of 
a model, are called the generators of that model. 
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The simplest Boolean operation on a graph is the Cartesian product K × H intro-
duced by Sabidussi [193]. The Cartesian product is a Boolean operation S = K × H, 
in which, for any two nodes u = (u1, u2) and v = (v1, v2) in N(K) × N(H), the mem-
ber uv is in M(S) whenever 

 u1 = v1 and u2v2 ∈ M(H) (9-1a) 

or u2 = v2 and u1v1 ∈ M(K). (9-1b) 

As an example, the Cartesian product of K = P2 and H = P3 is shown in Figure 9.1. 

K  =  P H  =  P 

(v 1, u 2 ) (v 1  , v 2 ) 

(u 1  , w 2 ) (u 1 , v 2 ) (u 1 , u 2 ) 

u 
v 

u v w 
1 
1 2 2 

2 3 
= 

2 
(v 1  , w 2 ) 

S 
 

 (a) (b) 

Fig. 9.1 The Cartesian product of two simple graphs. 

In this product, the two nodes (u1, v2) and (v1, v2) are joined by a member, since 
the condition (9-1b) is satisfied. 

The Cartesian product of two graphs K and H can be constructed by taking one 
copy of H for each node of K and joining copies of H corresponding to adjacent 
nodes of K by matching the size N(H). 

The graphs K and H will be referred to as the generators of S. The Cartesian prod-
uct operation is symmetric, that is, K × H ≅ H × K. For other useful graph 
operations, the reader may refer to the work by Gross and Yellen [69]. 

Examples: In this example, the Cartesian product C7 × P5 of the path graph with 5 
nodes denoted by P5 and a cycle graph shown by C7 is illustrated in Figure 9.2. 
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Fig. 9.2 Representation of C7 × P5. 

Two representations of the Cartesian product C3 × P4 are illustrated in Figure 9.3. 

 
 (a) (b) 

Fig. 9.3 Two different representations of C3 × P4. 

The Cartesian product Pm1 × Pm2 × Pm3 of three paths forms a three-dimensional 
mesh. As an example, the Cartesian product of P6 × P4 × P5, resulting in a 5 × 3 × 4 
mesh, is shown in Figure 9.4. 

A graph can be the product of more than two specific graphs, such as paths and cycles. 
As an example, the product of three graphs, P2 × K3 × P4, is shown in Figure 9.5. The 
product of a general graph and a path, S × P4, is illustrated in Figure 9.6. 
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Fig. 9.4 Representation of a 5 × 3 × 4 mesh. 

P K 

P 

2 3 

4 

 

 (a) Generators. (b) Product. 

Fig. 9.5 The Cartesian product of three graphs P2 × K3 × P4. 

4 S  P 
 

 (a) Generators. (b) Product. 

Fig. 9.6 The Cartesian product of S by P4. 

9.2.3 STRONG CARTESIAN PRODUCT OF TWO GRAPHS 

This is another Boolean operation, known as the strong Cartesian product. The 
strong Cartesian product is a Boolean operation S = K  H in which, for any two 
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distinct nodes u = (u1, u2) and v = (v1, v2) in N(K) × N(H), the member uv is in 
M(S) if 

 u1 = v1 and u2v2∈M(H) or (9-2a) 

 u2 = v2 and u1v1∈M(K) or (9-2b) 

 u1v1 ∈ M(K) and u2v2∈M(H). (9-2c) 

As an example, the strong Cartesian product of K = P2 and H = P3 is shown in  
Figure 9.7. 

K  =  P H  =  P 

(v 1, u 2 ) (v 1, v 2 ) 

(u 1, w 2 ) (u 1, v 2 ) (u 1, u 2 ) 
u 

v 

u v w 

1 

1 2 2 

2 3 

= 
2 

(v 1, w 2 ) 

S  
 (a) Generators. (b) S = K  H. 

Fig. 9.7 The strong Cartesiasn product of two simple graphs. 

In this example, the nodes (u1, u2) and (v1, v2) are joined, since the condition (9-2c) 
is satisfied. 

Examples: In this example, the strong Cartesian product P7  P5 of a path graph 
with 7 nodes, denoted by P7, and the path graph P5 is illustrated in Figure 9.8. 

 
Fig. 9.8 Strong product representation of P7  P5. 

As a second example, the strong Cartesian product C7  P4 is shown in Figure 9.9. 
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Fig. 9.9 Strong product representation of C7  P4. 

9.2.4 DIRECT PRODUCT OF TWO GRAPHS 

This is another Boolean operation, known as the direct product, introduced by 
Weichsel [226], who called it the Kronecker Product. The direct product is a Boo-
lean operation S = K * H, in which, for any two nodes u = (u1, u2) and v = (v1, v2) 
in N(K) × N(H), the member uv is in M(S) if  

 u1v1 ∈ M(K) and u2v2 ∈M(H). (9-3) 

As an example, the direct product of K = P2 and H = P3 is shown in Figure 9.10. 

K  =  P H  =  P 

(v 1, u 2 ) (v 1, v 2 ) 

(u 1, w 2 ) (u 1, v 2 ) (u 1, u 2 ) 
u 

v 

u v w 

1 

1 2 2 

2 3 

= 
2 

(v 1, w 2 ) 

S 

* 

 
 (a) (b) 

Fig. 9.10 The direct product of two simple graphs. 

Here, the two nodes (u1, u2) and (v1, v2) are joined, since the condition (9-3) is sat-
isfied. 

Examples: The direct product P7 ∗ P5 of the path graph P7 and path graph P5 is 
illustrated in Figure 9.11. 
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Fig. 9.11 Direct product representation of P7 ∗ P5. 

As a second example, the direct product C7 ∗ P4 is shown in Figure 9.12. 

 
Fig. 9.12 Direct product representation of C7 ∗ P4. 

9.3 EIGENVALUES OF GRAPH MATRICES FOR DIFFERENT PRODUCTS 

In this section, the basic definitions and theorems necessary for the study of eigen-
values and eigenvectors of regular graphs are presented. These products consist of 
Cartesian product, strong Cartesian product and direct product. The primary tool 
for this study is the Kronecker product as defined in the following section.  

9.3.1 KRONECKER PRODUCT 

The Kronecker product of two matrices A and B is the matrix we get by replacing 
the ijth entry of A by aijB, for all i and j. 
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As an example,  

 
1 1
1 0 0 0

0 0

a b a b
a b c d c d
c d a b

c d

 
      ⊗ =          
  

, (9-4) 

where entry 1 in the first matrix has been replaced by a complete copy of the sec-
ond matrix. 

The Kronecker product has the property that, if B, C, D and E are four matrices 
such that BD and CE exist, then 

 (B ⊗ C)(D ⊗ E) = BD ⊗ CE. (9-5) 

Thus, if u and v are vectors of the correct dimensions, then 

 (B ⊗ C)(u ⊗ v) = Bu ⊗ Cv. (9-6) 

If u and v are eigenvectors of B and C, with eigenvalues λ and µ, respectively, 
then, 

 Bu ⊗ Cv = λµ u ⊗ v, (9-7) 

where u ⊗ v is an eigenvector of B ⊗ C with eigenvalue λµ.  

The associativity property of the Kronecker product will be used in the proof of 
the theorem in the following section. 

9.3.2 CARTESIAN PRODUCT 

For a Cartesian product K × H, the adjacency matrix A can be written as 

 A(K × H) = A(K) ⊗ IN(H) + IN(K) ⊗ A(H). (9-8) 

In this relation, A(K) ⊗ IN(H) is the adjacency matrix of N(H) node-disjoint copies 
of K, and IN(K) ⊗ A(H) is the adjacency matrix of N(K) node-disjoint copies of H. 
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As an example, the adjacency matrix of the graph S in Figure 9.1 can be obtained 
as 

0 1
( )

1 0
K

 
=  

 
A  and 

0 1 0
( ) 1 0 1

0 1 0
H

 
 =  
  

A , 

0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1

( )
1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0

S

     
     
     
     

= + =     
     
     
     
          

A . 

In the case of the Cartesian product, a similar relationship holds for the Laplacian 
matrices, that is, 

 L(K × H) = L(K) ⊗ IN(H) + IN(K) ⊗ L(H). (9-9) 

As an example, consider K and H as P4 and P3, respectively, for the nodal number-
ing shown in Figure 9.13. 

1 2 3 4

9 10 11 12

5 6 7 8

 
Fig. 9.13 The Cartesian product of P4 and P3. 

The Laplacian of P4 × P3 can be written as 

1 4

4 3 4 2 4

4 1

( ) ,  P P
− 

 × = − − 
 − 

A I 0
L I A I

0 I A
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where the adjacency matrix of P4 is written as 

1

0 1 0 1
1 0 1 0

. 
0 1 0 1
1 0 1 0

 
 
 =
 
 
 

A  

The above equation can be written as 

1 4 4 4

4 2 4 1 4 3 4 2 1 4 4

4 1 4 4

1 4 3 4

4 3 3

( )  ( )

1 1 0
                                 ( ) 1 2 1 ,

0 1 1
                                 ( ) (P P

− −   
   − − = − ⊗ + − − − −   
   − −   

− 
 = − ⊗ + − − ⊗ 
 − 

= ⊗ +

A I 0 I I 0
I A I A I I I A A I I
0 I A 0 I I

A I I I

L I L 4) .⊗I

 

A similar argument can be repeated for arbitrary subgraphs K and H, and a proof 
for Eq. (9-9) can then be obtained. 

Theorem 1: Let λ1, λ2, …, λm and µ1, µ2, …, µn be the eigenvalues of the adja-
cency matrices of K and H, respectively. Then, the m × n eigenvalues of S = K × H 
are {λi + µj} for i = 1, …, m and j = 1, …, n. 

Proof: Using Eq. (9-9), we have 

 L(K × H)(ui ⊗ vj) = (L(K) ⊗ IN(H))(ui ⊗ vj) + (IN(K) ⊗ L(H))(ui ⊗ vj). (9-10) 

The associativity property of the Kronecker product results in 

(L(K) ⊗ IN(H))(ui ⊗ vj) + (IN(K) ⊗ L(H))(ui ⊗ vj) = 

 (L(K))(ui) ⊗ (IN(H))(vj) + (IN(H))(uj) ⊗ (L(K))(ui) = λiui ⊗ vj + ui ⊗ µjvj 

leading to 

 L(K × H)(ui ⊗ vj) = (λi + µj)ui ⊗ vj, (9-11) 

and the proof is complete. 



 OPTIMAL STRUCTURAL ANALYSIS 

 

414 

Corollary 1: Let λ1, λ2, …, λm and µ1, µ2, …, µn be the eigenvalues of the Lapla-
cian matrices of K and H, respectively. Then, the m × n eigenvalues of S = K × H 
are {λi + µj} for i = 1, …, m and j = 1, …, n. 

If S is a k-regular graph, then λ is an eigenvalue of the adjacency graph A(S), that 
is,  

 λi (L(S)) = k − λN+1−i (A(S)) for i = 1, 2, …, N, (9-12) 

where N is the number of nodes of S. 

This result enables us to use the known results of the eigenvalues of the adjacency 
matrix of a regular graph in the study of its Laplacian matrix. 

9.3.3 STRONG CARTESIAN PRODUCT 

Theorem 2: Let λ1, λ2, …,λm and µ1, µ2, …, µn be the eigenvalues of the adjacency 
matrices of K and H, respectively. Then m × n eigenvalues of S = K  H are {λi + 
µj + λiµj} for i = 1,…, m and j = 1, …, n. 

For the direct product K  H, the adjacency matrix can be written as 

 A(K  H) = A(K) ⊗ IN(H) + IN(K) ⊗ A(H) + A(K) ⊗ A(H). (9-13) 

Consider the product S = P4  P3 as illustrated in Figure 9.14. 

1 2 3 4

9 10 11 12

5
6 7

8

 
Fig. 9.14 The strong Cartesian product of P4 and P3. 

The adjacency matrix of S can be written as 

 
1 2

2 1 2

2 1

( ) ,  S
 
 =  
  

A A 0
A A A A

0 A A
 (9-14) 
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where 

 1 2

0 1 0 0 1 1 0 0
1 0 1 0 1 1 1 0

  and  .  
0 1 0 1 0 1 1 1
0 0 1 0 0 0 1 1

   
   
   = =
   
   
   

A A  (9-15) 

Since A1 + I4 = A2, the matrix A(S) can be written as 

 

1 4 1

1 4 4 1 1

1 4 1

1 3 4 1

1 3 1 4 1 1

 

0 1 0 0 1 0
                          ( 1 0 1 1 0 1

0 1 0 0 1 0
                          
      

     
     + +     
          

   
   = ⊗ + ⊗ + ⊗   
      

= ⊗ + ⊗ + ⊗

A 0 0 0 I 0 0 A 0
0 A 0 I 0 I A 0 A
0 0 A 0 I 0 0 A 0

A I I A

A I B I A B

1 1 1 1                    ,= × + ⊗A B A B

 (9-16) 

where B1 is obtained from A(S) by substituting A1 = 0 and A2 = 1. Therefore, the 
eigenvalues of A(S) can be obtained using {λi+ µj + λiµj} for i = 1,…, m and j = 1, 
…, n. 

Corollary 2: Let λ1, λ2, …, λm and µ1, µ2, …, µn be the eigenvalues of the Lapla-
cian matrices of K and H, respectively. Augment S by adding a sufficient number 
of edges, Ea, to the boundary nodes of S, to transform it into a regular graph Sr. A 
regular graph is a graph whose nodes all have equal degree, and it is k-regular with 
common degree k. Then, m × n eigenvalues of Sr = K  H ∪ Ea are [3(λi + µj) − 
λiµj] for i = 1, …, m and j = 1, …, n. 

Proof: Consider the graph S = P4  P3 in Figure 9.14. The Laplacian matrix of S 
has the following form: 

 
1 2

2 3 2

2 1

( ) ,  S
 
 =  
  

A A 0
L A A A

0 A A
 (9-17) 
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where 

2

2 1 0 0
1 1 1 0

. 
0 1 1 1
0 0 1 2

− − 
 − − − =
 − − −
 − − 

A  

1 2 3Adding boundary members such that , we have = +A A A  

 1 2 3 2

1 2 3 2 2

1 1 0
( ) ( ) 1 2 1  

0 1 1
         ( ) ,

S
− 

 = + ⊗ + − − ⊗ 
 − 

= + ⊗ + ⊗

L A A I A

A A I B A

 (9-18) 

where 1 2 1

1 1 0 0
1 2 1 0

3 3 . 
0 1 2 1
0 0 1 1

− 
 − − + = =
 − −
 − 

A A B  (9-19) 

On the other hand, 

 2 4 1

2 1 0 0 3 0 0 0 1 1 0 0
1 1 1 0 0 3 0 0 1 2 1 0

3 .
0 1 1 1 0 0 3 0 0 1 2 1
0 0 1 2 0 0 0 3 0 0 1 1

−     
     − −     − = = − = −
     − −
     −     

A I B  (9-20) 

Therefore, 
1 3 2 4 1

1 3 2 4 2 1

1 2 2 1

( ) 3 (3 )
3( )
3( ) ,

S = ⊗ + ⊗ −
= ⊗ + ⊗ − ⊗
= × − ⊗

L B I B I B
B I B I B B
B B B B

 (9-21) 

and the eigenvalues of L(S) can be obtained using [3(λi + µj) − λiµj]; and the proof 
is complete. 
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9.3.4 DIRECT PRODUCT 

Theorem 3: Let λ1, λ2, …, λm and µ1, µ2, …, µn be the eigenvalues of the adja-
cency matrices of K and H, respectively. Then m × n eigenvalues of S = K ∗ H are 
{λiµj} for i = 1, …, m and j = 1, …, n. 

For the direct product K ∗ H, the adjacency matrix can be written as 

 A(K ∗ H) = A(K) ⊗ A(H). (9-22) 

Consider the product S = P4 ∗ P3 as illustrated in Figure 9.15. 

1 2 3 4

9 10 11 12

5
6 7

8

 
Fig. 9.15 The direct product of P4 and P3. 

The adjacency matrix of S can be written as 

 
1 2

2 1 2

2 1

( ) ,  S
 
 =  
  

A A 0
A A A A

0 A A
 (9-23) 

where 

 1 2

0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0

  and  .  
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0

   
   
   = =
   
   
   

A A  (9-24) 
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The matrix A(S) can be written as 

 
1 2

1 2 2 2

1 2

0 1 0
( ) 1 0 1 ,

0 1 0
S

     
     = + = ⊗     
          

A 0 0 0 A 0
A 0 A 0 A 0 A A

0 0 A 0 A 0
 (9-25) 

or 2 2( ) ,S = ⊗A B A  (9-26) 

where B2 is obtained from A(S) by substituting A1 = 0 and A2 = 1. The matrix A2 
is the adjacency matrix of P4, and B2 is the adjacency matrix of P3. Therefore, the 
eigenvalues of A(S) can be obtained using {λiµj} for i = 1, …, m and j = 1, …, n. 

Corollary 3: Let λ1, λ2, …, λm and µ1, µ2, …, µn be the eigenvalues of the Lapla-
cian matrices of K and H, respectively. Augment S by adding a sufficient number 
of edges, Ea, to the boundary nodes of S, to transform it into a regular graph Sr. 
Then, the m × n eigenvalues of Sr = K ∗ H ∪ Ea are [2(λi + µj) − λiµj] for i = 1, …, 
m and j = 1, …, n. 

Proof: Consider the graph S = P4 ∗ P3 in Figure 9.15. The Laplacian matrix of S 
has the following form: 

 
1 2

2 3 2

2 1

( ) .S
 
 =  
  

A A 0
L A A A

0 A A
 (9-27) 

1 2 3Adding boundary edges such that , we have = +A A A  

 2

1 1 0 0
1 2 1 0

,  
0 1 2 1
0 0 1 1

− 
 − − =
 − −
 − 

A  (9-28) 

or 1 2 3 2 2( ) ( ) ,S = + ⊗ + ⊗L A A I B A  (9-29) 

where 1 2 1

1 1 0 0
1 2 1 0

2 2 . 
0 1 2 1
0 0 1 1

− 
 − − + = =
 − −
 − 

A A B  (9-30) 
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On the other hand, 

 2 4 12 .− = −A I B  (9-31) 

Therefore, 

 
1 3 2 4 1

1 3 2 4 2 1

1 2 2 1

( ) 2 (3 )
2( )
2( )

S = ⊗ + ⊗ −
= ⊗ + ⊗ − ⊗
= × − ⊗

L B I B I B
B I B I B B
B B B B

 (9-32) 

and the eigenvalues of L(S) can be obtained using [2(λi + µj) − λiµj]; and the proof 
is complete. 

9.3.5 SECOND EIGENVALUES FOR DIFFERENT GRAPH PRODUCTS 

In the above two cases, addition of boundary edges does not change the order of 
the nodes considerably, and therefore, Sr can be used for partitioning in place of S.  

To find the smallest eigenvalue of Sr in the above corollaries, the smallest of λi and 

µj are both equal to zero, and therefore, λ1(Sr) = 0. For the second eigenvalue, [2(λi 

+ µj) − λiµj] should be minimised. For this purpose, the second eigenvalues of the 
two subgraphs should be compared and the smallest one for the corresponding 
subgraph, together with zero for the other subgraph, should be used as a pair for 
calculating λ2 for Sr. The term λiµj vanishes, and therefore,  

λ2(S) = Min{λ2(K) , µ2(H) } for the Cartesian product; 

λ2(Sr) = 3Min{λ2(K) , µ2(H) } for the strong Cartesian product; and  

λ2(Sr) = 2Min{λ2(K) , µ2(H)} for the direct product. 

As mentioned earlier, λ2(Sr) is a good approximation to λ2(S). This is especially 
true for large-scale graphs, that is, when the ratio of the number of boundary nodes 
to the total number of nodes for S is low. In the following, a simple method is pre-
sented for modifying λ2(Sr). 

Consider λ and x as an approximate eigenvalue and eigenvector of a matrix K, 
respectively. According to the Rayleigh quotient method, given an approximate 
eigenvector x for the real matrix K, determination of the best estimate for the cor-
responding eigenvalue λ can be considered as a linear least squares approximation 
problem: 

 .λ ≅x Kx  (9-33) 
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From the normal equation xtxλ= xtKx, the least squares solution is given by 

 
t

t .λ = x Kx
x x

 (9-34) 

This quantity, known as the Rayleigh quotient, can accelerate convergence of itera-
tive methods such as power iteration, since it gives the better approximation to 
eigenvalue at iteration k than does the basic method alone. For normalised x with 
xtx = 1, we have 

 t .λ = x Kx  (9-35) 

As an example, the above method is used for three graphs, and the approximate, 
improved and exact values of λ2 are provided in Table 9.1 and Table 9.2 for the 
strong Cartesian product and the direct product, respectively. 

Table 9.1 Approximate, modified and exact values of λ2 for strong Cartesian product. 

Graph Approximate λ2 Improved λ2 Exact λ2 

P7  P10 
P13  P23 
P29  P29 
P33  P33 
P36  P19 

0.1958 
0.0373 
0.0272 
0.0181 
0.0228 

0.1678 
0.0344 
0.0266 
0.0176 
0.0220 

0.1664 
0.0341 
0.0266 
0.0175 
0.0220 

Table 9.2 Approximate, modified and exact values of λ2 for direct product. 

Graph Approximate λ2 Improved λ2 Exact λ2 

P7 ∗ P10 
P13 ∗ P23 
P29 ∗ P29 
P33 ∗ P33 
P36 ∗ P19 

0.2937 
0.0559 
0.0234 
0.0272 
0.0152 

0.2657 
0.0530 
0.0226 
0.0266 
0.0144 

0.2649 
0.0530 
0.0226 
0.0266 
0.0144 

Further improvement can be obtained by repeating the above process, though at 
the expense of additional computer time. 
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9.4 EIGENVALUES OF A AND L MATRICES FOR CYCLES AND PATHS 

Theorem 1: Consider the adjacency matrix A of a cycle graph Cn. When A is ex-
panded with respect to the first row, the characteristic polynomial of Cn is obtained 
as 0− =A λI . The eigenvalues corresponding to this relation can simply be ex-
pressed as 

 λr = 2cos(2π r/n) (r = 0, 1,…, n − 1). (9-36) 

Proof: Consider the jth eigenvector of a cycle as 

 
1

2cos( ) ,   for   0 [ ]
2

n

j i
i

ir ne r
p

π
=

= ≤ ≤∑x , (9-37) 

where ei denotes the ith unit vector. Using a trigonometric identity, 

 

1

1

2 ( 1) 2 ( 1){cos( ) cos }
n

2 2        2cos( ) cos( )

2        2cos( )

n

j i
i

n

i
i

j

r i r i e
n
r rir e

n n
r

n

π π

π π

π

=

=

− +=

=

= ⋅

∑

∑

Ax

x

 (9-38) 

For j ≠ 0 and j ≠ n/2, this eigenvector is non-symmetrical under a rotation of coor-
dinates, so a one-step rotation through 2π/n radians provides a new linearly 
independent eigenvector. Whether p is even or odd, a complete list of n eigenvec-
tors is found. Furthermore, since cos(2π r/n) = cos(2π(n − r)/n), one can list the 
spectrum as 

 2{2cos( ):  0,1,..., 1}.r r n
n
π = −  (9-39) 

This relationship shows that all the eigenvalues lie in the interval [2, −2], where 
the bound –2 corresponds to an even n. Since λr is a cosine function, except for +2 
and –2, the other values are repeated twice [34]. 

Now λr is obtained for the Laplacian matrix L of a graph. For a cycle graph Cn, we 
have D = 2I. In fact, for a regular graph D = kI, and for a cycle, k = 2. Therefore, 

 det (L – λI) = 0 ⇒ det [(D–A) – λI] = 0 (9-40) 

 ⇒ det [– A– (λ– 2)I]=0 



 OPTIMAL STRUCTURAL ANALYSIS 

 

422 

The eigenvalues of –A are the same as those of A but with a reverse sign. There-
fore, once the eigenvalues of A are obtained, the signs are reversed and two units 
are added. 

For the Laplacian matrix L, the equation 0− =L λI should be solved as follows:  

 λr = 2 – 2cos(2π r/n) = (2sinπ r/n) 2  (r = 0, …, n−1) (9-41)  

 and for r = 0 ⇒λ1 = 0. 

Obviously, the maximum value of λr for matrix A is equal to 2, and the minimum 
value of λr for the Laplacian, ignoring 0, is equal to (2sinπ/n) 2 . As an example, 
for n = 10, the second eigenvalue of A is obtained as λ2 = 0.3820. Equation (9-41) 
reveals that λr ∈ {0,4}. 

Theorem 2: For the adjacency matrix of a path graph Pn, we have  

 λr = 2cos[π r/(n + 1)] (r = 1, …, n). (9-42) 

Proof: Given any eigenvector xj of the path graph Pn, one can immediately con-
struct eigenvectors of the cycle graph C2n+2, namely, (xj, 0, −xj, 0) and (0, xj, 0, −xj). 
Therefore, any eigenvector of Pn is a “double eigenvalue” of C2n+2, so  

 λr = 2cos[π r/(n + 1)] (r = 1, …, n) (9-43) 

Repeating an argument similar to that of a cycle, for the Laplacian matrix of Pn, 

 λr = 2 − 2cos(π r/n) = (2sinπ r/2n) 2  (r = 0, …, n − 1)  (9-44) 

 and r = 0 ⇒λ1 = 0. 

Again, here we have λr ∈ {0, 4}. 

Obviously, the maximum value of λr for the adjacency matrix is 2cos[π/(n + 1)], 
and λ2 for the Laplacian matrix is (2sinπ/2n) 2 . As an example, for n = 10, we have 
λ2 = 0.0979. 

Example: Consider the Cartesian product of two paths P6 and P4, as shown in Fig-
ure 9.16. To calculate the eigenvalues of the Laplacian matrix L of the graph 
obtained by the Cartesian product of P6 and P4, first the eigenvalues for these paths 
should be obtained. Then, the first eigenvalue of P6 is added to all the eigenvalues 
of P4. Next, the second eigenvalue of P6 is added to those of P4. This process is 
continued until all eigenvalues of S = P6 × P4 are obtained. 
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Fig. 9.16 Cartesian product P6 × P4 of two path graphs. 

As a numerical example, consider two path graphs P6 and P4. The eigenvalues for 
the Laplacian matrix L of S are calculated as follows: 

λ(P6): {0; 0.2679; 1; 2; 3; 3.7321}, 

λ(P4): {0; 0.5858; 2; 3.4142}, 

λS = λ(P6) + λ(P4) = {0; 0.5858; 2; 3.4142; 0.2679; … ; 7.1463}. 

For the Laplacian matrix L of each path graph, the eigenvalues lie in the range [4]. 
Thus, the final results are contained in the range [8]. For this case, the first eigen-
value is zero, and therefore, for calculating the second eigenvalues, λ2, one should 
choose the smallest eigenvalue from P6 and P4 so that, when added to zero, λ2 for S 
is obtained. Obviously, as the number of nodes of a graph increases, the corre-
sponding λ2 will decrease. Hence, for evaluating λ2 of S, it is sufficient to select 
the generator with the higher number of nodes (i.e. λ2(P6) in this example), that is,  

λ2(S) = λ2(P6) since n(P6) > n(P4). 

As a second example, consider a product graph in polar coordinates, as shown in 
Figure 9.17.  

 
Fig. 9.17 Product of a path graph P3 and a cycle graph C7. 
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For this case, the eigenvalues of the path P3 and the cycle C7 are calculated: 

λ(P3): {0; 1; 3}, 

λ(C7): {0; 0.7530; 0.7530; 2.4450; 2.4450; 3.8019; 3.8019}, 

λ2(S) = λ2(C7) = 0.7530. 

and all the eigenvalues of L for S can be obtained, similar to the previous example. 
Further simplification can be achieved if the cycle has an even number of nodes 
more than 2. For such a case, two eigenvalues are 0 and 4. For evaluating the re-
maining eigenvalues, one can divide the number of nodes by 2 and consider an 
equivalent path graph with this number of nodes, and each eigenvalue obtained 
should be repeated once.  

9.4.1 COMPUTING λ2 FOR LAPLACIAN OF REGULAR MODELS 

In the method of the previous section, if only the magnitude of λ2 is required, then 
the method can further be simplified. As an example, in the above problem half of 
the nodes of the cycle should be compared to the number of nodes of the path gen-
erator, and the one with the largest number of nodes should be selected. For this 
graph, the second eigenvalue λ2 has the same value as that of the main graph S.  

The above idea can easily be generalised to three-dimensional models. Consider a 
grid as the product of three paths, S = P8 × P5 × P4. This graph has 160 nodes, and 
P8, P5 and P4 have 8, 5 and 4 nodes, respectively. Thus, λ2(S) = λ2(P8) = 0.1522, 
since P8 has more nodes than the other generators. 

Consider a simple model as shown in Figure 9.18(a). After performing the geomet-
ric transformations, 

 6 2 (1/ 4)[( ) 1/( ) ]z x iy x iy= + + +  and 8 (1/ 4)[( ) 1]z x iy= + + , (9-45) 

the models shown in Figures 9.18 (b–c) are obtained. These models are equivalent 
to a circle with 25 and 72 sectors. Since 72/2 = 36 > 26, λ2 = (2sinπ/72) 2 = 0.0076.  
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(a) 

 
 (b) (c) 

Fig. 9.18 A model as the Cartesian product of a circle and a path. 

Once the eigenvalues are found, the corresponding eigenvectors can be calculated. 
However, this can be done much more simply considering that the eigenvectors of 
S are the Kronecker product of the eigenvectors of K and H, that is, wk = ui ⊗ vj , 
where wk, ui and vj are the eigenvectors of S, K and H, respectively. 

9.4.2 ALGORITHM 

This method is simple and consists of the following steps: 

Step 1: Calculate the second eigenvalue λ2 of the Laplacian matrix L of the model. 

Step 2: Construct the second eigenvector v2 corresponding to λ2. 
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Step 3: Order the entries of v2 in an ascending order. 

Step 4: Bisect the graph and, correspondingly, the model.  

The above algorithm can easily be used for graph nodal ordering and correspond-
ingly for the nodal numbering of the FE meshes. 

9.5 NUMERICAL EXAMPLES 

Many examples are studied, and the results for three FE meshes are presented. The 
models are chosen from those encountered in practice, having different topologies. 
Here, no computational time is provided for the examples, since, unlike the known 
methods, for each example it takes a fraction of a second to calculate the eigenval-
ues and eigenvectors. 

9.5.1 EXAMPLES FOR CARTESIAN PRODUCT 

Example 1: A simply connected rectangular FE mesh with rectangular elements is 
considered, as shown in Figure 9.19(a). This model consists of 2168 nodes and 
3045 elements. The skeleton graph is considered as P88 × P36 and is partitioned 
with λ2 = 0.00127, corresponding to P88, and the corresponding FEM is bisected. 
The process is repeated for further decomposition of the FEM into four, and eight 
subdomains, as illustrated in Figure 9.19(b). 

 
(a) A simple FE mesh. 
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(b) decomposition of the model. 

Fig. 9.19 A rectangular FE mesh and its decomposition. 

Example 2: A circular FE mesh is considered, as shown in Figure 9.20. This 
model consists of 1872 nodes and 1800 rectangular elements. The skeleton graph 
is considered as C72 × P26 and is partitioned with λ2 = 0.007611, corresponding to 
C72, and the corresponding FEM is bisected. The process is repeated for further 
decomposition of the FEM into four, and eight subdomains. Typically such sub-
domains are shown in Figure 9.19(b). 

 
(a) A circular model S. 
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 (b) Bisection of S. (c) Double bisection of S. 

Fig. 9.20 A circular FE mesh and its decompositions. 

Example 3: The finite element of a nozzle is considered as shown in Figure 
9.21(a). This model consists of 4000 nodes and 3960 rectangular shell elements. 
The skeleton graph is considered as P100 × C40 and is partitioned with  
λ2 = 0.000987, corresponding to P100, and the corresponding FEM is bisected; see 
Figure 9.21(b). The process is repeated for further decomposition of the FEM into 
four subdomains as illustrated in Figure 9.21(c). 

In the above examples, the generators were chosen as paths and/or cycles. In the 
following examples, one of the generators is selected as an arbitrary graph. Again, 
λ2 for the entire model can easily be obtained by a comparison of the λ2 for the 
generators. In this case, however, the second eigenvalue of the generators should 
be calculated using classical methods. 

 
(a) 
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 (b) (c) 

Fig. 9.21 A cylindrical shaped FE mesh and its decompositions. 

Example 4: Consider a model with an arbitrary subgraph S1 as its generator; see 
Figure 9.22. The Cartesian products of S1 × P4 and S1 × C4 are considered. The 
corresponding eigenvalues are as follows: 

λ2(S1) = 1.2679 and λ2(P4) = 0.5858, and therefore λ2(S1 × P4) = 0.5858; 
λ2(S1) = 1.2679 and λ2 (C4) = 2.0000, and therefore λ2(S1 × C4) = 1.2679. 

6 7

8

1

2 3

4 5

 
Fig. 9.22 The arbitrary generator S1 of the considered model. 

Example 5: Consider a model with an arbitrary subgraph S2 as its generator; see 
Figure 9.23. The Cartesian products of S2 × P10 and S2 × C10 are considered. The 
corresponding eigenvalues are as follows: 

λ2(S2) = 0.2765 and λ2(P10) = 0.0979, and therefore λ2(S2 × P10) = 0.0979; 
λ2(S2) = 0.2765 and λ2 (C10) = 0.3820, and therefore λ2(S2 × C10) = 0.2765. 
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Fig. 9.23 The arbitrary generator S2 of the considered model. 

9.5.2 EXAMPLES FOR STRONG CARTESIAN PRODUCT 

A dome S with beam elements is shown in Figure 9.24(a). This structure has two 
generators P19 and C35 and contains 665 nodes and 2520 members. Since λ2(P19) = 
0.0273 and λ2(C35) = 0.0321, λ2(S) = 3 × 0.0273=0.0818 (see Figure 9.24(b)). Fur-
ther partitioning results in four subgraphs, as illustrated in Figure 9.24(c). 

 
(a) The graph model S of a dome. 
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(b) Bisection of S. 

 
(c) Further partitioning of S. 

Fig. 9.24 A circular dome S and its partitions. 

The evaluation of λ2 for the entire graph using any standard program (e.g. Matlab) 
takes 33.4 s, while the above calculation needs only a fraction of second to be per-
formed. 

9.5.3 EXAMPLES FOR DIRECT PRODUCT 

A barrel vault S with beam elements is shown in Figure 9.25(a). This structure has 
two generators P36 and P19, with 684 nodes and 1260 members. Since λ2(P19) = 
0.0273 and λ2(P36) = 0.0076, λ2(S) = 2 × 0.0076 = 0.0152 (see Figure 9.25(b)). 
The modified value and the exact value of λ2(S) are both equal to 0.0144. Further 
partitioning results in four subgraphs as shown in Figure 9.25(c). 
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(a) A barrel vault S. 

 
(b) Bisection of S. 

 
(c) Further partitioning of S.  

Fig. 9.25 A barrel vault S and its partitions. 
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Evaluating λ2 for the entire graph using Matlab takes 29.5 s, while the above cal-
culation needs only a fraction of second to be performed. 

9.6 SPECTRAL METHOD FOR PROFILE REDUCTION 

9.6.1 ALGORITHM 

This algorithm is simple and consists of the following steps: 

Step 1: Calculate the second eigenvalue λ2 of the Laplacian matrix L of the model. 

Step 2: Construct the second eigenvector v2 corresponding to λ2. 

Step 3: Order the entries of v2 in an ascending order. 

Step 4: Renumber the nodes of the model according to their occurrence in v2.  

The above algorithm leads to well-structured stiffness matrices with low profile.  

9.6.2 EXAMPLES 

Example 1: Figure 9.26 is a cylindrical grid S with two generators P16 and C15. 
This model has 240 nodes and 465 members. Since 16 > 15/2, for P16 we have λ2 = 
(2sinπ/2 × 16) 2  = 0.038429, corresponding to the second eigenvalue of the entire 
model. The results are depicted in Table 9.3. 

 
Fig. 9.26 A cylindrical grid S. 
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Table 9.3 Results of Example 1. 

 Profile Bandwidth 

Initial 16,258 239 
New 3642 16 

Example 2: A circular grid S with beam elements is shown in Figure 9.27. This 
grid has two generators P13 and C96. The entire model contains 1248 nodes and 
1152 members. Since 96/2 >; 13, for C96 we have λ2 = (2sinπ/96) 2 = 0.00428, cor-
responding to the second eigenvalue of the entire model. The results are depicted 
in Table 9.4. 

 
Fig. 9.27 A circular grid S. 

Table 9.4 Results of Example 2. 

 Profile Bandwidth 

Initial 49,972 239 
New 34,848 46 

Remarks: The present methods are highly efficient and make the calculation of 
eigenvalues for adjacency and Laplacian matrices of regular structural models 
very simple and fast, compared to the use of standard methods. The only restric-
tion corresponds to irregular models, for which additional effort is needed to 
achieve regularisation. However, for models with small irregularity, the results of 
the present approach can always be used as a primary approximation. 
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9.7 NON-COMPACT EXTENDED P-SUM 

In this chapter, three products are used for generating graph models. These prod-
ucts are special cases of a more general operation known as the NEPS (non-
compact extended p-sum) of graphs. The notion of the NEPS was introduced inde-
pendently by Cvetković and Lučić [35] and Shee [200]. The corresponding 
definitions and theorems are briefly introduced below: 

Definition: Let B be a set of non-zero binary n-tuples, that is, B ⊆ {0, 1}n 
{0, …., 0}. The NEPS of graph S1, S2, …, Sn with basis B is the graph with node 
set N(S1) × … × N(Sn) in which two nodes, say (x1, …, xn) and (y1, …, yn), are ad-
jacent if and only if there exists an n-tuple {β1, β2, …, βn} ∈B such that xi = yi 
whenever βi = 0 and xi is adjacent to yi (in Si) whenever βi = 1. 

Consider the special cases in which a graph is the NEPS of only two graphs  
(n = 2): 

1. the Cartesian product S1 × S2 when B = {(0, 1), (1, 0)}, 

2. the strong Cartesian product S1  S2 when B = {(0, 1), (1, 0), (1, 1)}, and 

3. the sum S1 ∗ S2 when B = {(1, 1)}. 

The following two theorems are proved by Cvetković and Lučić [35] and also pre-
sented in Cvetković et al.[34]. 

Theorem 1: Let A1, …, An be the adjacency matrices of graphs S1, …, Sn, respec-
tively. The NEPS S with basis B of graphs S1, …, Sn has the adjacency matrix as  

 1
1 ... .n

n
ββ

β∈

= ⊗ ⊗∑A A A
B

 (9-46) 

where 0
i =A I  (the identity matrix of the same order as Ai), 1

i i=A A  and ⊗ denotes 
the Kronecker product of the matrices. 

Theorem 2: If, for i = 1, …, n, { 1,...,
ii inλ λ } is the spectrum of Si (with ni being the 

number of nodes of Si), then the spectrum of S, which is the NEPS of S1, S2, …, Sn 
with basis B, consists of all possible values 

1 , ..., ni iΛ  where 

 1

1 1, ..., 1 ...   ( 1,..., ; 1,..., ).n

n ni i i ni k ki n k nββ

β
λ λ

∈

Λ = = =∑
B

 (9-47) 
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In particular, if λ1, λ2, …, λn and µ1, µ2, …, µm are eigenvalues of K and H, respec-
tively, then  

λi + µj (i = 1, …, n; j = 1, …, m) are the eigenvalues of the Cartesian product  
K × H, 

λi + µj + λiµj (i = 1, …, n; j = 1, …, m) are the eigenvalues of the strong Cartesian 
product K  H, and 

λiµj (i = 1,…, n; j = 1, …, m) are the eigenvalues of the direct product K ∗ H. 

EXERCISES 

9.1 Calculate the eigenvalues and eigenvectors of S = P3 × C4. 

9.2 Find the second eigenvalue of S = P26 × C50. 

9.3 Find the second eigenvalue of S = P26 × P50 × P20. 

9.4 Calculate the eigenvalues and eigenvectors of S = P4 ⊗ C3. 

9.5 Find the second eigenvalue of S = C12 ⊗ C8. 

9.6 Calculate the eigenvalues and eigenvectors of S = P5 ∗ C2. 

9.7 Find the second eigenvalue of S = P20 ∗ C30. 



 

 

APPENDIX A 

Basic Concepts and Definitions 
of Graph Theory 

 

A.1 INTRODUCTION 

In this appendix, basic concepts and definitions of graph theory are presented. 
Since some of the readers may be unfamiliar with the theory of graphs, simple 
examples are included to make it easier to understand the main concepts.  

Some of the uses of the theory of graphs in the context of civil engineering are as 
follows: A graph can be a model of a structure, a hydraulic network, a traffic net-
work, a transportation system, a construction system, or a resource allocation 
system, for example. In this book, the theory of graphs is used as the model of a 
skeletal structure, and it is also employed as a method of transforming the connec-
tivity properties of finite element meshes to those of graphs. Many such graphs are 
defined in this book and employed throughout the combinatorial optimisations 
performed for optimal analysis of skeletal structures and finite element models. 
This appendix will also enable the readers to develop their own ideas and methods 
in the light of the principles of graph theory. For further definitions and proofs, the 
reader may refer to Harary [73], Berge [12], Bondy and Murty [15], Wilson and 
Beineke [231], Brualdi and Ryser [16], Gondran and Minoux [63] and West [228]. 

A.2 BASIC DEFINITIONS 

The performance of a structure depends not only on the characteristics of its com-
ponents but also on their relative location. In a structure, if the properties of one 
member are altered, the overall behaviour may be changed. This indicates that the  
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performance of a structure depends on the detailed characteristics of its members. 
If the location of a member is altered, the properties of the structure may again be 
different. Therefore, the connectivity (topology) of the structure influences the 
performance of the whole structure and is as important as the mechanical proper-
ties of its members. Hence, it is important to represent a structure so that its 
topology can be understood clearly. The graph model of a structure provides a 
powerful means for this purpose. 

A.2.1 DEFINITION OF A GRAPH 

A graph S consists of a non-empty set N(S) of elements called nodes (vertices or 
points) and a set M(S) of elements called members (edges or arcs) together with a 
relation of incidence, which associates each member with a pair of nodes, called its 
ends. 

Two or more members joining the same pair of nodes are collectively known as a 
multiple member, and a member joining a node to itself is called a loop. A graph 
with no loops or multiple members is called a simple graph. If N(S) and M(S) are 
countable sets, then the corresponding graph S is finite. In this book, only simple 
finite graphs are needed, which are referred to as graphs. 

The above definitions correspond to abstract graphs; however, a graph may be 
visualized as a set of points connected by line segments in Euclidean space; the 
nodes of a graph are identified with points, and its members are identified as line 
segments without their end points. Such a configuration is known as a topological 
graph. These definitions are illustrated in Figure A.1.  

 
 (a) A simple graph. (b) A graph with loop and multiple members. 

Fig. A.1 Simple and non-simple graphs. 

A.2.2 ADJACENCY AND INCIDENCE 

Two nodes of a graph are called adjacent if these nodes are the end nodes of a 
member. A member is called incident with a node if this node is an end node of the 
member. Two members are called incident if they have a common end node. The 
degree (valency) of a node ni of a graph, denoted by deg(ni), is the number of 
members incident with that node. Since each member has two end nodes, the sum 
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of node-degrees of a graph is twice the number of its members (the handshaking 
lemma). 

A.2.3 GRAPH OPERATIONS 

A subgraph Si of S is a graph for which N(Si) ⊆ N(S) and M(Si) ⊆ M(S) and each 
member of Si has the same ends as in S. 

The union of subgraphs S1, S2, ... , Sk of S, denoted by S k =
1

k

i=
∪ Si

 
= S1 ∪ S2 ∪ ... ∪ 

Sk, is a subgraph of S with N(Sk) =
1

k

i=
∪ N(Si) and M(Sk) =

1

k

i=
∪ M(Si). The intersection 

of two subgraphs Si and Sj is similarly defined using intersections of node-sets and 
member-sets of the two subgraphs. The intersection of two subgraphs does not 
need to consist only of nodes, but it is usually considered to do so in the substruc-
turing technique of structural analysis. The ring sum of two subgraphs Si ⊕ Sj is a 
subgraph that contains the nodes and members of Si and Sj except those elements 
common to Si and Sj. These definitions are illustrated in Figure A.2.  

 
 (a) S (b) Si (c) Sj  

 
 (d) Si ∪ Sj (e) Si ∩ Sj (f) Si ⊕ Sj 

Fig. A.2 A graph, two of its subgraphs, their union, intersection and ring sum. 

Two graphs S and K are called homeo-morphic if one can obtain K from S by sup-
pressing or inserting nodes of degree 2 in the members.  

A.2.4 WALKS, TRAILS AND PATHS 

A walk w of S is a finite sequence w = {n0, m1, n1, ..., mp, np} whose terms are al-
ternately nodes ni and members mi of S for 1 ≤ i ≤ p, and ni–1 and ni are the two 
ends of mi. A trail t in S is a walk in which no member of S appears more than 
once. A path P is a trail in which no node appears more than once. The length of a 
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path Pi , denoted by L(Pi), is taken as the number of its members. Pi is called the 
shortest path between the two nodes n0 and np if, for any other path Pj between 
these nodes, L(Pi) ≤ L(Pj). The distance between two nodes of a graph is defined 
as the number of the members of a shortest path between these nodes. 

As an example in Figure A.3, 

w = ( n1, m3, n4, m4, n5, m9, n2, m2, n3, m7, n4, m4, n5)  

is a walk between n1 and n5 in which member m4 and nodes n4 and n5 are repeated 
twice.  

1 
2 
4 

5 6 7 
8 9 

n 
n n 

n 
n 3 

4 5 
1 2 

3 
  

(a) A walk w in S. 

n 4 n 5 
3 n 

2 n n 1 
n 4 n 5 

3 n 
2 n n 1 

 
 (b) A trail t in S. (c) A path P in S. 

Fig. A.3 A walk, a trail and a path in S. 

t = (n1, m3, n4, m4, n5, m9, n2, m2, n3, m7, n4) 

is a trail between n1 and n4 in which node n5 is repeated twice. 

P = (n1, m3, n4, m4, n5, m5, n3)  

is a path of length 3 in which no node and no member is repeated. 

The path (n1, m6, n5, m5, n3) is a shortest path of length 2 between the two nodes n1 
and n3, where the length of each member is taken as unity. 

Two nodes ni and nj are said to be connected in S if there exists a path between 
these nodes. A graph S is called connected if all pairs of its nodes are connected. A 
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component of a graph S is a maximal connected subgraph, that is, it is not a sub-
graph of any other connected subgraph of S. 

A.2.5 CYCLES AND CUTSETS 

A cycle is a path (n0, m1, n1, ... , mp, np) for which n0 = np and p ≥ 1, that is, a cycle 
is a closed path. Similarly, a closed trail (hinged cycle) and a closed walk can be 
defined; see Figure A.4.  

 
 (a) A cycle of S. (b) A hinged cycle of S. 

Fig. A.4 Cycles of S. 

A cutset is a collection of members whose removal from the graph increases the 
number of its components. If a cutset results in two disjoint subgraphs S1 and S2, 
then it is called a prime cutset. Notice that no proper subsets of a cutset have this 
property. A link is a member that has its ends in S1 and S2. Each S1 and S2 may or 
may not be connected. If both are connected, the cutset is called prime. If S1 or S2 
consists of a single node, the cutset is called a cocycle. These definitions are illus-
trated in Figure A.5. 

2 3

4 5

6

1 1 2

3 4

5
6 7

 
 (a) A cutset of S. (b) A prime cutest. (c) A cocycle of S. 

Fig. A.5 Cutsets of S. 

A.2.6 TREES, SPANNING TREES AND SHORTEST ROUTE TREES 

A tree T of S is a connected subgraph of S that contains no cycle. A set of trees of 
S forms a forest. Obviously, a forest with k trees contains N(S) − k members. If a 
tree contains all the nodes of S, it is called a spanning tree of S. Henceforth, for 
simplicity it will be referred to as a tree.  
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A shortest route tree (SRT) rooted at a specified node n0 of S is a tree for which 
the distance between every node nj of T and n0 is a minimum. An SRT of a graph 
can be generated by the following simple algorithm: 

Label the selected root n0 as “0” and the adjacent nodes as “1”. Record the mem-
bers incident to “0” as tree members. Repeat the process of labelling with “2” the 
unnumbered ends of all the members incident with nodes labelled as “1”, again 
recording the tree members. This process terminates when each node of S is la-
belled and all the tree members are recorded. This algorithm has many applications 
in engineering and it is called a breadth-first-search algorithm. 

A graph is called acyclic if it has no cycle. A tree is a connected acyclic graph. 
Any graph without cycles is a forest; thus the components of a forest are trees. 

The above definitions are illustrated in Figure A.6. 

It is easy to prove that, for a tree T, 

 M(T) = N(T) − 1, (A-1) 

where M(T) and N(T) are the numbers of members and nodes of T, respectively. 

The complement of T in S is called a cotree, denoted by T*. The members of T are 
known as branches and those of T* are called chords. For a connected graph S, the 
number of chords is given by  

 M(T*) = M(S) − M(T). (A-2) 

Since N(T) = N(S), 

 M(T* ) = M(S) − N(S) + 1, (A-3) 

where M(S) and N(S) are the numbers of members and nodes of S, respectively. 
Notice that the same notation is used for a set and its cardinality and the difference 
should be obvious from the context.  

 
 (a) A graph S. (b) A tree of S. (c) A spanning tree of S.  
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0 n 
 

 (d) An SRT rooted from n0. (e) The cotree of (c). (f) A forest with 2 trees. 

Fig. A.6 Different trees, cotree and a forest of S. 

A.2.7 DIFFERENT TYPES OF GRAPHS 

To simplify the study of properties of graphs, different types of graphs have been 
defined. Some important ones are as follows: 

A null graph is a graph that contains no members. Thus, Nk is a graph containing k 
isolated nodes. 

A cycle graph is a graph consisting of a single cycle. Therefore, Ck is a polygon 
with k members. 

A path graph is a graph consisting of a single path. Hence, Pk is a path with k 
nodes and (k − 1) members. 

A wheel graph Wk is defined as the union of a star graph with (k − 1) members and 
a cycle graph Ck–1, connected as shown in Figure A.7, for k = 6. Alternatively, a 
wheel graph Wk can be obtained from the cycle graph Ck–1 by adding a node O and 
members (spokes) joining O to each node of Ck–1. 

 
 (a) Star graph S6. (b) Cycle graph C5. (c) Wheel graph W6. 

Fig. A.7 Wheel graph W6. 

A complete graph is a graph in which every pair of distinct nodes is connected by 
exactly one member; see Figure A.8. A complete graph with N nodes is denoted by 
KN. It is easy to prove that a complete graph with N nodes has N(N − 1)/2 mem-
bers. 
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 K1 K2 K3 K4 K5 

Fig. A.8 Five complete graphs. 

A graph is called bipartite if the corresponding node set can be split into two sets 
N1 and N2 in such a way that each member of S joins a node of N1 to a node of N2. 
This graph is denoted by B(S) = (N1, M, N2). A complete bipartite graph is a bipar-
tite graph in which each node N1 is joined to each node of N2 by exactly one 
member. If the numbers of nodes in N1 and N2 are denoted by r and s, respectively, 
then a complete bipartite graph is denoted by Kr,s. Examples of bipartite and com-
plete bipartite graphs are shown in Figure A.9. 

N 2 1 N N N 2 1 
 

 (a) A bipartite graph (b). A complete bipartite graph K3,4. 

Fig. A.9 Two bipartite graphs. 

A graph S is called regular if all of its nodes have the same degree. If this degree 
is k, then S is k-regular graph. For example, a triangle graph is 2-regular and a 
cubic graph is 3-regular. 

Consider the set M of members of a graph S as a family of 2-node subsets of N(S). 
The line graph L(S) of S has its vertices in a one-to-one correspondence with 
members of S, and two vertices are connected by an edge if the corresponding 
members in S are incident. Thus, the vertices of L(S) are the members of S, with 
two vertices of L(S) being adjacent when the corresponding members of S are in-
cident. As an example, the line graph of Figure A.10(a) is illustrated in Figure 
A.10(b) . 
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 (a) A graph S. (b) The line graph L(S) of S. 

Fig. A.10 A simple graph and its line graph. 

For the original graph S, the terms nodes and members are used, and for the line 
graph L(S), the terms vertices and edges are used. In this book, many new graphs 
are defined and used for transforming the connectivity properties of the original 
models to those of the induced new graphs. 

A.3 VECTOR SPACES ASSOCIATED WITH A GRAPH 

A vector space can be associated with a graph by defining a vector, the field and 
the binary operations as follows: 

Any subset of the M(S) members of a graph S can be represented by a vector x 
whose M(S) components are elements of the field of integer modulo 2, where 
component xi =1 when the ith member is an element of the subset, and xi = 0 oth-
erwise. The sum of two subset vectors x and y is a vector z with entries defined by 
zi = xi + yi, representing the symmetric difference of the original subsets. The scalar 
product of x and y defined by Σxiyi is 0 or 1 according to whether the original sub-
sets have an even or an odd number of members in common. Although this vector 
space can be constructed over an arbitrary field, for simplicity the field of integer 
modulo 2 is considered, in which 1 + 1 = 0. 

As an example, consider x = {0, 0, 0, 1, 1, 1, 0}t and y = {0, 0, 1, 1, 1, 0, 0}t repre-
senting two subgraphs of S. Then, their symmetric difference is obtained as  
z = {0, 0, 1, 0, 0, 1, 0}t, and the scalar product Σ xiyi = 0 (mod2), since these sub-
graphs have two members in common. 

Two important subspaces of the above vector space of a graph S are the cycle sub-
space and cutset subspace, known as the cycle space and the cutset space of S.  

A.3.1 CYCLE SPACE 

Let a cycle set of members of a graph be defined as a set of members that form a 
cycle or form several cycles having no common member, but perhaps common 
nodes. The null set is also defined as a cycle set. A vector representing a cycle set 
is called a cycle set vector. It can be shown that the sum of two cycle set vectors of 
a graph is also a cycle set vector. Thus, the cycle set vectors of a graph form a  
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vector space over the field of integer modulo 2. The dimension of a cycle space is 
given by 

 nullity (S) = ν(S) = b1(S) = M(S) − N(S) + b0(S), (A-4) 

where b1(S) and b0(S) are the first and zero Betti numbers of S, respectively. As an 
example, the nullity of the graph S in Figure A.1(a) is ν(S) = 9 − 6 + 1 = 4. 

A.3.2 CUTSET SPACE 

Consider a cutset vector similar to that of a cycle vector. Let the null set also be 
defined as a cutset. It can be shown that the sum of two cutset vectors of a graph is 
also a cutset vector. Therefore, the cutset vectors of a graph form a vector space, 
the dimension of which is given by 

 rank (S) = ρ(S) = N(S) − b0(S). (A-5) 

For example, the rank of S in Figure A.1(a) is ρ(S) = 6 − 1 = 5. 

A.3.3 ORTHOGONALITY PROPERTY 

Two vectors are called orthogonal if their scalar product is zero. It can be shown 
that a vector is a cycle set (cutset) vector if and only if it is orthogonal to every 
vector of a cutset (cycle set) basis. Since the cycle set and cutset spaces of a graph 
S containing M(S) members are both subspaces of the M(S)-dimensional space of 
all vectors that represent subsets of the members, the cycle set and cutset spaces 
are orthogonal components of each other. 

A.3.4 FUNDAMENTAL CYCLE BASES 

A maximal set of independent cycles of a graph is known as its cycle basis. The 
cardinality of a cycle basis is the same as the first Betti number b1(S). A special 
basis known as a fundamental cycle basis can easily be constructed corresponding 
to a tree T of S, Kirchhoff [138]. In a connected S, a chord of T together with T 
contains a cycle known as a fundamental cycle of S. Moreover, the fundamental 
cycles obtained by adding the chords to T, one at a time, are independent, because 
each cycle has a member that is not in the others. Also, every cycle Ci depends on 
the set of fundamental cycles obtained by the above process, for Ci is the symmet-
ric difference of the cycles determined by the chords of T that lie in Ci. Thus, the 
cycle rank (cyclomatic number, first Betti number, nullity) of graph S, which is the 
number of cycles in a basis of the cycle space of S, is given by  

 b1(S) = M(S) − N(S) + 1, (A-6) 
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and if S contains b0(S) components, then, 

 b1(S) = M(S) − N(S) + b0(S). (A-7) 

As an example, the selected tree and three fundamental cycles of S are illustrated 
in Figure A.11. 

 
Fig. A.11 A graph S, a spanning tree, and the corresponding fundamental cycle 

basis. 

A.3.5 FUNDAMENTAL CUTSET BASES 

A basis can be constructed for the cutset space of a graph S. Consider the tree T 
and its cotree T*. The subgraph of S consisting of T* and any member of T 
(branch) contains exactly one cutset known as a fundamental cutset. The set of 
cutsets obtained by adding branches of T to T*, one at a time, forms a basis for the 
cutset space of S, known as a fundamental cutset basis of S. The cutset rank (rank 
of S) is the number of cutsets in a basis for the cutset space of S, and it can be ob-
tained by a reasoning similar to that of the cycle basis as 

 ρ(S) = N(S) − 1, (A-8) 

and for a graph with b0(S) components, 

 ρ(S) = N(S) − b0(S) (A-9) 

A graph S and a fundamental cutset basis of S are shown in Figure A.12. 

 

 (a) A graph S. (b) A tree T of S. (c) Cotree T* of T. 
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Fig. A.12 A graph S and a fundamental cutset basis of S. 

A.4 MATRICES ASSOCIATED WITH A GRAPH 

Matrices play a dominant role in the theory of graphs and especially in applica-
tions of structural analysis. Some of these matrices conveniently describe the 
connectivity properties of a graph, some provide useful information about the pat-
terns of the structural matrices, and some others reveal additional information 
about transformations such as those of equilibrium and compatibility equations. 

In this section, various matrices that reflect the properties of the corresponding 
graphs are studied. For simplicity, all graphs are assumed to be connected since the 
generalization to non-connected graphs is trivial and consists of considering the 
direct sum of the matrices for their components. 

A.4.1 MATRIX REPRESENTATION OF A GRAPH 

A graph can be represented in various forms. Some of these representations are of 
theoretical importance, and others are useful from the programming point of view 
when applied to realistic problems. In this section, five different representations of 
a graph are described.  

Node Adjacency Matrix: Let S be a graph with N nodes. The adjacency matrix A 
is an N × N matrix in which the entry in row i and the entry in column j are 1 if 
node ni is adjacent to nj , and are 0 otherwise. This matrix is symmetric and the row 
sums of A are the degrees of the nodes of S. 
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The adjacency matrix of the graph S, shown in Figure A.13, is a 5 × 5 matrix as 
below: 

 

0 1 1 1 0
1 0 1 1 0
1 1 0 0 1
1 1 0 0 1
0 0 1 1 0

 
 
 
 =
 
 
  

A .     (A-10) 
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 Fig. A.13 A graph S. 

It can be noted that A is a symmetric matrix of trace zero. The (i, j)th entry of A2 
shows the number of walks of length 2 with ni and nj as end nodes. Similarly, the 
entry in the (i, j) position of Ak is equal to the number of walks of length k with ni 
and nj as end nodes. The polynomial 

 f(λ) = det (Iλ−A), (A-11) 

is called the characteristic polynomial of S. The collection of N(S) eigenvalues of 
A is known as the spectrum of S. Since A is symmetric, the spectrum of S consists 
of N(S) real numbers. The sum of eigenvalues of A is equal to zero.  

Node-Member Incidence Matrix: Let S be a graph with M members and N 
nodes. The node-member incidence matrix B  is an N × M matrix in which the 
entry in row i and the entry in column j are 1 if node ni is incident with member mj 
and are 0 otherwise. As an example, the node-member incidence matrix of the 
graph in Figure A.13 is a 5 × 7 matrix of the form  

 

1 1 0 1 0 0 0
1 0 1 0 1 0 0

.0 1 1 0 0 1 0
0 0 0 1 1 0 1
0 0 0 0 0 1 1

 
 
 
 =
 
 
  

B  (A-12) 

Obviously, the pattern of an incidence matrix depends on the particular way that 
its nodes and members are labelled. One incidence matrix can be obtained from 
another by simply interchanging rows (corresponding to re-labelling the nodes) 
and columns (corresponding to re-labelling the members). 
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The incidence matrix B  and the adjacency matrix A of a graph S are related by  

 t ,= +BB A V  (A-13) 

where V is a diagonal matrix of order N(S) whose typical entry vi is the valency of 
the node ni of S for i = 1, ..., N(S). For the example of Figure A.13, Eq. (A-13) 
becomes  

 t

0 1 1 1 0 3
1 0 1 1 0 3

.1 1 0 0 1 3
1 1 0 0 1 3
0 0 1 1 0 3

   
   
   
   = +
   
   
      

BB  (A-14) 

The rows of B are dependent and one row can arbitrarily be deleted to ensure the 
independence of the rest of the rows. The node corresponding to the deleted row is 
called a datum (reference) node. The matrix obtained after deleting a dependent 
row is called an incidence matrix of S and is denoted by B. 

Although A and B are of great theoretical value, the storage requirements for these 
matrices are high and proportional to N × N and M × N, respectively. In fact, a 
large number of unnecessary zeros are stored in these matrices. In practice, one 
can use different approaches to reduce the storage required, some of which are 
described in the following text. 

Member List: This type of representation is a common approach in structural me-
chanics. A member list consists of two rows (or columns) and M columns (or 
rows). Each column (or row) contains the labels of the two end nodes of each 
member, in which members are arranged sequentially. For example, the member 
list of S in Figure A.13 is as follows:  

 
                 5 71 2 3 4 6

.
1 1 2 1 2 3 4
2 3 3 4 4 5 5

m m m m m m m

 
=  

  
ML

 (A-15) 

It should be noted that a member list can also represent orientations on members. 
The storage required for this representation is 2 × M. Some engineers prefer to add 
a third row containing the member’s labels for easy addressing. In this case, the 
storage is increased to 3 × M. 
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A different way of preparing a member list is to use a vector containing the end 
nodes of members sequentially, for example, for the previous example this vector 
becomes  

 (1, 2 ; 1, 3 ; 2, 3 ; 1, 4 ; 2, 4 ; 3, 5 ; 4, 5 ). (A-16) 

This is a compact description of a graph; however, it is impractical because of the 
extra search required for its use in various algorithms. 

Adjacency List: This list consists of N rows and D columns, where D is the maxi-
mum degree of the nodes of S. The ith row contains the labels of the nodes 
adjacent to node i of S. For the graph S shown in Figure A.13, the adjacency list is 
as follows:  

 

1

2

3

4

5

2 3 4
1 3 4
1 2 5
1 2 5
3 4 N D

n
n
n
n
n ×

 
 
 
 =
 
 
  

AL  (A-17) 

The storage needed for an adjacency list is N × D. 

Compact Adjacency List: In this list, the rows of AL are continually arranged in 
a row vector R, and an additional vector of pointers P is considered. For example, 
the compact adjacency list of Figure A.13 can be written as  

 R = (2, 3, 4, 1, 3, 4, 1, 2, 5, 1, 2, 5, 3, 4),  

 P = (1, 4, 7, 10, 13, 15) (A-18) 

P is a vector (p1, p2, p3, …) that helps to list the nodes adjacent to each node. For 
node ni, one should start reading R at entry pi and finish at pi+1 − 1. 

An additional restriction can be put on R by ordering the nodes adjacent to each 
node ni in ascending order of their degrees. This ordering can be of some advan-
tage; an example is nodal ordering for bandwidth optimisation. The storage 
required for this list is 2M + N + 1. 

A.4.2 CYCLE BASES MATRICES 

The cycle-member incidence matrix C  of a graph S has a row for each cycle or 
hinged cycle and a column for each member. An entry cij of C  is 1 if cycle Ci  
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contains member mj and it is 0 otherwise. In contrast to the node adjacency and 
node-member incidence matrix, the cycle-member incidence matrix does not de-
termine a graph up to isomorphism, that is, two totally different graphs may have 
the same cycle-member incidence matrix. 

For a graph S, there exist 1 ( )2 1b S −  cycles or hinged cycles. Thus, C  is a 
( 1 ( )2 1b S − ) × M matrix. However, one does not need all the cycles of S, and the 
elements of a cycle basis are sufficient. For a cycle basis, a cycle-member inci-
dence matrix becomes a b1(S) × M matrix, denoted by C, known as the cycle basis 
incidence matrix of S. As an example, matrix C for the graph shown in Figure 
A.13, for the cycle basis, 

  C1 = (m1 , m2 , m3)  

  C2 = (m1 , m4 , m5) 

  C3 = (m2 , m4 , m6 , m7)  

is given by  

 
1

2

3

1 1 1 0 0 0 0
1 0 0 1 1 0 0 .
0 1 0 1 0 1 1

C
C
C

 
 =  
  

C  (A-19) 

The cycle adjacency matrix D is a b1(S) × b1(S) matrix, each entry dij of which is 1 
if Ci and Cj have at least one member in common and it is 0 otherwise. This matrix 
is related to the cycle-member incidence matrix by the relationship,  

 CCt = D + W, (A-20) 

where W is diagonal matrix with wii being the length of the ith cycle and its trace 
being equal to the total length of the cycles of the basis. 

For the above example, 

 t

0 1 1 3
1 0 1 3 .
1 1 0 3

   
   = +   
      

CC  (A-21) 

An important theorem that is based on the orthogonality property studied in Sec-
tion A.3.3 can now be stated. 
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Theorem: Let S have incidence matrix B and a cycle basis incidence matrix C. 
Then,  

 CBt = 0 (mod 2). (A-22) 

A simple proof of this theorem can be found in Kaveh [113]. Notice that Eq. (A-
22) holds, because of the orthogonality property discussed in Section A.3.3. In 
fact, the above relation holds even if the cutsets or cycles do not form bases or the 
matrices contains additional cutset and/or cycle vectors.  

A.4.3 SPECIAL PATTERNS FOR FUNDAMENTAL CYCLE BASES 

For a fundamental cycle basis, with special labelling for its tree members and 
chords, a matrix C with a particular 1 pattern.can be obtained. Let S have a tree T 
whose members are M(T) = (m1, m2, ... , mp) and a cotree for which is M(T*) = 
(mp+1, mp+2, ... , mM(S)). Then there is a unique fundamental cycle Ci in S − M(T*) + 
mi , p + 1 ≤ i ≤ M(S), and this set of cycles forms a basis for the cycle space of S. 
For example, for the graph S of Figure A.12(a) whose members are labelled as 
shown in Figure A.14, the fundamental cycle basis consists of 

 C1 = (m1 , m4 , m5 , m8 ),  

 C2 = (m2 , m1 , m4 , m5 , m6 , m9 ), and 

 C3 = (m3 , m2, m1 , m4 , m5 , m6 , m7 , m10 ),  

and is given by  

 [ ]
1

2

3

1 0 0 1 1 0 0 1 0 0
1 1 0 1 1 1 0 0 1 0 .
1 1 1 1 1 1 0 0 0 1

 
 = = 
  

C C IT

C
C
C

 (A-23) 

 M(T) M(T*) 
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Fig. A.14 A graph with oriented members and cycles. 

A.4.4 CUTSET BASES MATRICES 

The cutset-member incidence matrix *C  for a graph S has a row for each cutset of 
S and a column for each member. An entry ijc ∗  of ∗C  is 1 if cutset iC∗  contains 

member mj and it is 0 otherwise. This matrix, like C , does not determine a graph 
completely. 

Independent rows of ∗C  for a cutset basis, denoted by C*, form a matrix known as 
a cutset basis incidence matrix, which is a ρ(S) × M matrix, ρ(S) being the rank of 
graph S. As an example, C* for the cutset of Figure A.12 with members labelled as 
in Figure A.15(a), is given below: 

 

0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0 1 1

* .0 0 0 0 0 1 0 0 1 1
0 0 0 1 0 0 0 1 1 1
1 0 0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1 1 1

 
 
 
 
 =  
 
 
 
  

C  (A-24) 
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    (a)   (b) 

Fig. A.15 A graph with oriented members and cutsets bases. 

The cutset adjacency matrix D* is a ρ(S) × ρ(S) matrix defined analogously to the 
cycle adjacency matrix D. 

A.4.5 SPECIAL PATTERNS FOR FUNDAMENTAL CUTSET BASES  

For a fundamental cutset basis with appropriate labelling of the members in T and 
T*, as illustrated in Figure A.15(b), if the cutsets are taken in the order of their 
generators (tree members), the matrix C* will have a particular pattern as follows:  

 0

1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0 1

.0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 0 0 1

∗ ∗

 
 
 
 
   = =   
 
 
 
   

C I Cc  (A-25) 

From the orthogonality condition, t
0 0

∗ =C C 0 , that is,  

 [ ] t .T
c
∗

 
= 

 

I
C I 0

C
 (A-26) 

t  (mod 2),   and:T cHence ∗+ =C C 0  

 t
T c

∗=C C  (A-27) 



456 OPTIMAL STRUCTURAL ANALYSIS 

 

Therefore, for a graph having C0, one can construct 0
∗C  and vice versa.  

There exists a very simple basis for the cutset space of a graph, which consists of 
N − 1 cocycles of S. As an example, for the graph of Figure A.13, considering n5 
as a datum node, we have  

 

1 1 0 1 0 0 0
1 0 1 0 1 0 0

,
0 1 1 0 0 1 0
0 0 0 1 1 0 1

∗

 
 
 =
 
 
 

C  (A-28) 

which is the same as the incidence matrix B of S. The simplicity of the displace-
ment method of structural analysis is due to the existence of such a simple basis. 

A.5 DIRECTED GRAPHS AND THEIR MATRICES 

An oriented or directed graph is a graph in which each member is assigned an ori-
entation. A member is oriented from its initial node (tail) to its final node (head). 
The initial node is said to be positively incident on the member, and the final node 
negatively incident, as shown in Figure A.16(a).  
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 (a) (b) (c) 

Fig. A.16 An oriented member, a directed graph and a directed tree (with chords 
shown in dashed lines). 

The choice of orientation of members of a graph is arbitrary; however, once it is 
chosen, it must be retained. Cycles and cutsets can also be oriented as shown in 
Figure A.16(b). 

For example, m4 is positively oriented in cycle Ci and m7 is negatively oriented in 
cutset ∗

iC . 
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All the matrices B , B, C and C* can be defined as before, with the difference of 
having +1, −1 and 0 as entries, according to whether the member is positively, 
negatively and zero incident with a cutset or a cycle.  

As an example, for graph S in Figure A.16(b), the matrix B with n1 as datum node 
is formed:  

 

2

3

4

5

1 0 1 0 1 0 0
0 1 0 1 1 0 0

.
0 0 1 0 0 1 1
0 0 0 1 0 0 1

− 
 − − =
 − −
 − −  

B

n
n
n
n

 (A-29) 

Consider a tree as shown with continuous lines in Figure A.16(c). When the direc-
tions of the cycles are taken as those of their corresponding chords (dashed lines), 
the fundamental cycle basis incidence matrix can be written as  

 
1

2

3

1 1 0 0 1 0 0
1 0 1 0 0 1 0 .
1 1 1 1 0 0 1

C
C
C

− 
 =  
 − − 

C  (A-30) 

                                                                 CT              Cc 

It should be noted that the tree members are numbered first, followed by the 
chords of the cycles in the same sequence as their generation.  

Obviously, 

 BCt = CBt = 0(mod2), (A-31) 

with a proof similar to that of the non-oriented case. 

A cutset basis incidence matrix is similarly obtained: 

 

1 0 0 0 1 1 1
0 1 0 0 1 0 1

,
0 0 1 0 0 1 1
0 0 0 1 0 0 1

∗

− − 
 
 =
 −
 
 

C  (A-32) 

                  T
∗C                c

∗C  
where the direction of a cutset is taken as the orientation of its generator (the cor-
responding tree member).  
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It can easily be proved that 

 t .T c
∗= −C C  (A-33) 

For a directed graph, Eq. (A-13) becomes 

 BBt = A − V, (A-34) 

Similarly, Eq. (A-20) for the directed case becomes  

 CCt = D − W. (A-35) 

A.6 GRAPHS ASSOCIATED WITH MATRICES 

Matrices associated with graphs are discussed in the previous sections. Sometimes 
it is useful to consider the reverse of this process and think of the graph associated 
with an arbitrary matrix A. Such a graph has a node associated with each row of 
the matrix and, if aij is non-zero, then there is a connecting member from node i to 
node j. In the case of a symmetric matrix, there is always a connection from i to j 
whenever there is one from j to i; therefore, one can simply use undirected mem-
bers. Two simple examples are illustrated in Figure A.17 and Figure A.18. The 
directed graph associated with a non-symmetric matrix is usually called a digraph 
and the word graph is used for the undirected graph associated with a symmetric 
matrix: 

0 0
0 0
0

0

∗ ∗ 
 ∗ ∗ =
 ∗ ∗ ∗
 ∗ ∗ ∗ 

A  

1

2 3

4
 

Fig. A.17 A non-symmetric matrix and its associated digraph. 

0

0

∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ =
 ∗ ∗ ∗
 ∗ ∗ ∗ ∗ 

A  

1

2 3

4
 

Fig. A.18 A symmetric matrix and its associated graph. 

It should be noted that if A is required to be taken as an adjacency matrix, then a 
single loop should be added at each joint, but if it is treated as A + I, then no addi-
tion is needed and the graph can still be considered as a simple one. 
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With a rectangular matrix E, a bipartite graph S = (A, M, B) can be associated. 
With each row of E, a node of A is associated and with each column of E a node of 
B is associated. Two nodes of A and B are connected with a member of S if eij is 
non-zero. An example of this is shown in Figure A.19. 

0 0
0

0 0

∗ ∗ 
 = ∗ ∗ ∗ 
 ∗ ∗ 

E  1

2

3
4

1

2

3

 
Fig. A.19 A rectangular matrix and its associated bipartite graph. 

A.7 PLANAR GRAPHS; EULER´S POLYHEDRON FORMULA 

Graph theory and properties of planar graphs were first discovered by Euler in 
1736. After 190 years, Kuratowski found a criterion for a graph to be planar. 
Whitney developed some important properties of embedding graphs in the plane. 
MacLane expressed the planarity of a graph in terms of its cycle basis. In this sec-
tion, some of these criteria are studied, and Euler´s polyhedron formula is proved.  

A.7.1 PLANAR GRAPHS  

A graph S is called planar if it can be drawn (embedded) in the plane in such a 
way that no two members cross each other. For example, a complete graph K4, 
shown in Figure A.20, is planar since it can be drawn in the plane as shown. 

 
 (a) K4 (b) Planar drawings of K4. 

Fig. A.20 K4 and two of its drawings. 

On the other hand K5, shown in Figure A.21, is not planar, since every drawing of 
K5 contains at least one crossing. 
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 (a) K5 (b) Two drawings of K5 with one crossing. 

Fig. A.21 K5 and two of its drawings. 

Similarly, K3,3 is not planar, as illustrated in Figure A.22. 

 
 (a) K3,3 (b) Two drawings of K3,3 with one crossing. 

Fig. A.22 K3,3 and its drawings. 

A planar graph S drawn in the plane divides the plane into regions that are all 
bounded except one. If S is drawn on a sphere, all the regions will be bounded; 
however, the number of regions will not change. The cycle bounding a region is 
called a regional cycle. Obviously, the sum of the lengths of regional cycles is 
twice the number of members of the graph. 

There is an outstanding formula that relates the number of regions, members and 
nodes of a planar graph, in the form 

R(S) − M(S) + N(S) = 2,  

where R(S), M(S) and N(S) are the numbers of regions, members and nodes of pla-
nar graph S. This formula shows that, for different drawings of S in the plane, R(S) 
remains constant. 

Originally, the above relationship was given for polyhedra, in which R(S), M(S) 
and N(S) correspond to faces, edges and corners of a polyhedron, respectively. 
However, the theorem can easily be expressed in graph-theoretical terms as fol-
lows: 
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Theorem (Euler [42]): Let S be a connected planar graph. Then,  

 R(S) − M(S) + N(S) = 2. (A-36) 

Proof: For a proof, S is re-formed in two stages. In the first stage, a spanning tree 
T of S is considered in the plane for which R(T) − M(T) + N(T) = 2. This is true, 
since R(T) = 1 and M(T) = N(T) − 1. In the second stage, chords are added one at a 
time. Addition of a chord increases the number of members and regions each by 
unity, leaving the left-hand side of Eq. (A-36) unchanged during the entire proc-
ess, and the result follows. 

A.7.2 THEOREMS FOR PLANARITY  

To check the planarity of a graph, different approaches are available that are based 
on the following theorems. These theorems are only stated and the reader may 
refer to textbooks on graph theory for proofs.  

Theorem (Kuratowski [143]): A graph is planar if and only if it does not contain a 
subgraph that has K5 or K3,3 as a contraction. 

For contracting a member, one of its nodes is brought closer to the other end node 
until the two ends coincide. Then multiple members are replaced by a single mem-
ber, as in Figure A.23(a). A contraction of a graph is the result of a sequence of 
member contractions; see Figure A.23(b). 

k m 
 

(a) Contraction of a member mk.  

  
(b) Contraction of the Petersen graph to K5. 

Fig. A.23 Contraction of a member and a graph. 
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Theorem (MacLane [159]): A connected graph is planar if and only if every block of S 
with at least three nodes has a cycle basis C1, C2, ... , 1 ( )b SC  and one additional cycle C0 
such that every member is contained in exactly two of these b1(S) + 1 cycles. 

A block is a maximal non-separable graph, and a non-separable graph is a graph 
that has no cut-points. A cut-point is a node whose removal increases the number 
of components, and a bridge is a member with the same property.  

Theorem (Whitney [229]): A graph is planar if and only if it has a combinatorial 
dual. 

For a connected planar graph S, the dual graph S* is constructed as follows: 

To each region ri of S there is a corresponding node ir
∗  of S* and to each member 

mj of S there is a corresponding member jm∗  in S* such that, if member mj occurs 

on the boundary of two regions r1 and r2, then the member jm∗  joins the corre-

sponding nodes 1r
∗  and 2r

∗  in S*; see Figure A.24. 

 
 (a) A planar graph S. (b) The dual graph of S. 

Fig. A.24 A planar graph and its dual. 

A.8 MAXIMAL MATCHING IN BIPARTITE GRAPHS 

A.8.1 DEFINITIONS 

As defined before, a graph is bipartite if its set of nodes can be partitioned into two 
sets A and B such that every member of the graph has one end node in A and the 
other in B. Such a graph is denoted by S = (A, B). A set of members of S is called a 
matching if no two members have a common node. The size of any largest match-
ing in S is called the matching number of S, denoted by ψ(S). A subset N '(S) ⊆ 
N(S) is the node cover of S if each member of S has at least one end node in N’(S). 
The cardinality of any smallest node cover, denoted by τ(S), is known as the node 
covering number of S. 
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A.8.2 THEOREMS ON MATCHING 

The following three theorems are stated, and the proofs may be found in the book 
by Lovász and Plumner [155]:  

Theorem 1 (König [140]): For a bipartite graph S, the matching number Ψ(S) is 
equal to the node covering number τ(S). 

Theorem 2 (Hall [72]): Let S = (A, B) be a bipartite graph. Then S has a complete 
matching of A into B if and only if |Γ(X) | ≥ |X| for all X ⊆ A. 

Γ(X) is the image of X, that is, those elements of B that are connected to the ele-
ments of X in S. Figure A.25(a) shows a bipartite graph for which matching exists 
and Figure A.26(b) illustrates a case in which matching does not exist, because X = 
(a1, a2) are matched to b1, that is, |Γ(X)| ≤ |X|: 

A B A B 

a 
a 

b 1 
1 
2 

 
 (a) (b) 

Fig. A.25 Matching in bipartite graphs. 

A perfect matching is a matching that covers all nodes of S. 

Theorem 3 (Frobenius [53]): A bipartite graph S = (A, B) has a perfect matching if 
and only if |A| = |B| and for each X ⊆ A, |X| ≤ |Γ(X)|. 

Therefore, Frobenius´s theorem characterizes those bipartite graphs that have a 
perfect matching. Hall´s theorem characterizes those bipartite graphs that have a 
matching of A into B. König´s theorem gives a formula for the matching number of 
a bipartite graph. 

A.8.3 MAXIMUM MATCHING 

Let M be any matching in a bipartite graph S = (A, B). A path P is called an alter-
nating path with respect to M or an M-alternating path if its members (edges) are 
alternately chosen from the matching M and outside M. A node is exposed  
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(unmatched, not covered) with respect to matching M if no member of M is inci-
dent with that node. An alternating tree relative to the matching is a tree that 
satisfies the following two conditions: first, the tree contains exactly one exposed 
node from A, which is called its root, and second, all paths between the root and 
any other node in the tree are alternating paths. 

An M-alternating path joining two exposed nodes is called an M-augmenting path. 
For every such path, the corresponding matching can be made larger by discarding 
the members of P ∩ M and adding those of P − M, where P is an M-alternating 
path b2a1b1a3b3a4; see Figure A.26(b). Thus, if S contains any M-alternating path P 
joining two exposed nodes, then M cannot be a maximum matching, for one can 
readily obtain a larger matching M´ by discarding the members of P ∩ M and add-
ing those of P − M.  

 
 (a) (b) 

Fig. A.26 M-alternating path. 

Theorem 4 (Berge [12]): Let M be a matching in a graph S. Then M is a maximum 
matching if and only if there exists no augmenting path in S relative to M. 

The above result provides a method for finding a maximum matching in S. The 
computational procedure for the construction of a maximum matching begins with 
considering any feasible matching, possibly the empty matching. Each exposed 
node of A is made the root of an alternating tree, and nodes and members are 
added to the trees by means of a labelling technique. Eventually, the following two 
cases must occur: either an exposed node in B is added to one of the trees or else it 
is not possible to add more nodes and members to any of the trees. In the former 
case, the matching is augmented and the formation of trees is repeated with respect 
to the new matching. In the latter case, the trees are said to be Hungarian and the 
process is terminated. 

There are many efficient algorithms for bipartite matching, and the reader may 
refer Kaveh [94], or to the original paper of Hopcroft and Karp [82], or to the ex-
cellent book by Lawler [148]. 



 

 

APPENDIX B 

Greedy Algorithm 
and its Applications 

  

In this appendix, the Greedy Algorithm developed by Edmonds [41] for selecting 
an optimal base of a matroid is described. This is a powerful method for most 
combinatorial optimisation problems, and has found many applications in struc-
tural optimisation. Some applications of this algorithm in structural mechanics are 
briefly discussed. 

B.1 AXIOM SYSTEMS FOR A MATROID 

A matroid may be defined in different interrelated forms, several of which were 
described in Whitney’s original paper [230]. Here the definitions in terms of the 
concepts of independence, bases and circuits are presented. 

DEFINITION IN TERMS OF INDEPENDENCE 

A matroid M is a set of elements S = {s1, s2, ..., sm} and a collection F of subsets of 
S (called independent sets) such that  

7(I1) ∅ ∈ F, where ∅ is the empty set.  
(I2) If X ∈ F and Y ⊆ X, then Y ∈ F. 
(I3) If X ∈ F and Y ∈ F with | X | = | Y |+1, then there exists s ∈ X − Y such that
 Y + s ∈ F.  

Here, | X | and | Y | denote the cardinalities of the sets X and Y, respectively. 
_________________________________ 
Optimal Structural Analysis A. Kaveh 
© 2006 Research Studies Press Limited 
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For a matroid M = (S,F), those subsets of S belonging to F are called independ-
ent and those that do not belong to F are known as dependent. A maximal 
independent subset of a matroid is known as a base of M. 

DEFINITION IN TERMS OF BASES  

M(S,F) is a matroid if the collection of bases of M, denoted by B, satisfies the fol-
lowing conditions:  

(B1) B ≠ ∅.  
(B2) | B1 | = | B2 | for every B1, B2 ∈ B. 
(B3) If B1, B2 ∈ B and s1 ∈ B1, then there exists a s2 ∈ B2 such that (B1 − s1 + s2) 

∈ B.  

A circuit of a matroid M is a minimal dependent set of S. 

DEFINITION IN TERMS OF CIRCUITS  

M(S,F) is a matroid if the collection of circuits of M, denoted by C, satisfies the 
following postulates: 

(C1) No proper subset of a circuit is a circuit.  
(C2) If C1 and C2 are distinct circuits of C and s ∈ C1 ∩ C2, then there exists a 
 circuit C3 of C such that C3 ⊆ (C1 ∪ C2) − s.  

Corresponding to each subset Fi, a number r(Fi) ∈ Z is defined, which is known as 
the rank of Fi, as follows:  

 r(Fi) = Max {|X|: X ⊆ Fi , X ∈ F }. (B-1) 

Now it is obvious that knowledge of the bases, or circuits, or rank functions is suf-
ficient to uniquely determine the corresponding matroid. 

Example 1: Consider the following matrix: 

         1 2 3 4 5
1 0 0 1 1
0 1 0 0 1

 
=  

 
A

  

over the field  of real numbers. The column set {1,2,3,4,5} of A and its inde-
pendent subsets form a matroid M(A). The set of independent subsets of this 
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matroid is obtained as I = {∅, {1}, {2}, {4}, {5}, {1,2}, {2,4}, {2,5}, {4,5}} and 
the set of its circuits is C = {{3}, {1,4}, {1,2,5}, {2,4,5}}.  

Example 2: Let S be the graph as shown in Figure B.1. Consider a matroid M(S), 
formed on the members {m1,m2,m3,m4,m5} of S with circuit set as 

C = {{m3},{m1,m4},{m1,m2,m5},{m2,m4,m5}}. This matroid is known as the cycle 
matroid of the graph S, as defined in the next section.  

1

2

3

4

5mm

m

m

m

 
Fig. B.1 A planar graph S  

Now compare M(S) with M(A) in Example 1. It is seen that, under bijection Ψ from 
{1,2,3,4,5} to {m1,m2,m3,m4,m5} defined by Ψ(i) = mi , a set X is a circuit in M(A) 
if and only if Ψ(X) is a circuit in M(S). Equivalently, a set Y is independent in M(A) 
if and only if Ψ(Y) is independent in M(S). Thus, matroids M(A) and M(S) have the 
same structure or are isomorphic. A matroid that is isomorphic to the cycle matroid 
of a graph is called graphic. Therefore, the matroid M(A) in Example 1 is graphic. 

B.2 MATROIDS APPLIED TO STRUCTURAL MECHANICS 

Matroids have been applied to some problems in structural analysis and the study 
of the rigidity of skeletal structures. In this section, examples of such matroids are 
considered, and the properties associated with each one are discussed.  

A BASIS FOR A FINITE VECTOR SPACE  

A conceptual study of structural analysis using vector spaces has been made by 
Maunder [162]. One can easily obtain a matroidal version of this study by con-
structing matroids of the following kind. 
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Let V be a finite vector space and F be the collection of linearly independent sub-
sets of vectors of V. Then, M = (V,F) forms a matroid. The rank function of this 
matroid is the dimension of V, and its base forms a basis of the vector space. 

Although a finite vector space always constitutes a matroid, not all matroids are 
realisable as vector spaces. 

A BASIS FOR CYCLE SPACE OF A GRAPH 

A cycle basis of a graph is defined in Appendix A, and its application for the for-
mation of a statical basis of a structure is described in Chapter 3. In this section, a 
cycle space and its bases are formulated in terms of matroids. 

Let C contain all simple cycles of a graph S, and F be the collection of mod 2 in-
dependent cycles of S. Then (C,F) forms a matroid, defined as cycle space matroid 
Ms(S) of S. A base of Ms(S) is a cycle basis of S, and its rank is M(S) − N(S) + b0(S). 

The above matroid can be defined using the member-cycle incidence matrix of a 
graph. Each row of this matrix corresponds to a member, and each column repre-
sents a cycle; see Kaveh [94,96,112]. 

The columns of a member-cycle incidence matrix are either dependent or inde-
pendent. Take the columns of the matrix as elements of C, and independent subsets 
of columns as elements of F. Then, (C,F) forms a cycle space matroid Ms(S) of S.  

Example: Consider a graph S as shown in Figure B.2. This graph contains 3 cy-
cles C = {C1,C2,C3} and F = {(C1),(C2),(C3),(C1,C2),(C2,C3),(C1,C2,C3)}. The rank 
of Ms(S) = 8 − 6+1 = 3, and {C1,C2} is a typical base of this matroid.  

1 2 3 C C C 
  

Fig. B.2 A graph S and its cycles.  

A BASIS FOR CUTSET SPACE OF A GRAPH  

A cutset space of a graph is defined in Chapter 1, and its application for the forma-
tion of a kinematical basis of a structure when the displacement method is used is 
described in Chapter 4. In this section, a cutset space and its bases are defined in 
terms of matroids. 
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Let C* contain all cutsets of a graph S, and F be the collection of mod 2 independ-
ent cutsets of S. Then (C*,F) forms a matroid, defined as cutset space matroid 
Mc(S) of S. A base of Mc(S) is a cutset basis of S and its rank is given by N(S) − 
b0(S). This matroid can also be defined using the member-cutset incidence matrix 
of S. The rows and columns of this matrix correspond to members and cutsets, 
respectively. The columns of this matrix are either dependent or independent. Take 
the columns of the matrix as elements of C*, and independent subsets of columns 
as elements of F. Then, (C*,F) forms a cutset space matroid Mc(S) of S.  

Example: Consider a graph as shown in Figure B.3. The set C* contains 4 cutsets 
{ 1C∗ , 2C∗ , 3C∗ , 4C∗ } and F = {( 1C∗ ), ( 2C∗ ), ( 3C∗ ), ( 4C∗ ), ( 1C∗ , 2C∗ ), ( 1C∗ , 3C∗ ), 
( 2C∗ , 3C∗ ), ( 1C∗ , 4C∗ ), ... , ( 2C∗ , 3C∗ , 4C∗ )}. A typical base of the cutset space matroid, 
can be taken as B1 = { 1C∗ , 2C∗ , 4C∗ }.  

1 

3 

2 
4 C 

C 

C 
C * 

* 
* 

* 
 

Fig. B.3 A graph and its cutsets. 

CYCLE MATROID OF A GRAPH 

Spanning trees of a connected graph (spanning forest when S is not connected) 
have various applications. Some of its applications in structural engineering are 
described in Chapters 3, 5 and 6. In the following text, a cycle matroid is defined 
in different interrelated forms, a base of which is a spanning tree of S. 

Let S be a graph. Consider S as the set of members of S and let X ∈ F if and only if 
X does not contain a cycle of S, that is, it is a cycle-free subgraph (subtree if S is 
connected and subforest if it is disconnected). Then F is a collection of independ-
ent sets of a matroid in S, known as the cycle matroid of S, denoted by M(S). This 
matroid is also known as a polygon matroid. 

Alternatively, let S be a graph and consider the set of all spanning forests of S as B. 
It can easily be shown that B is a base set of a matroid M = (S,F) on member set 
M(S) of S, known as the cycle matroid of S. 
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Similarly, let C denote the set of simple cycles of a graph S, then C is the set of 
circuits of a matroid M on member set M(S), called a cycle matroid of S. The rank 
of M(S) is N(S) − b0(S) and for a connected graph it is N(S) − 1. 

Example: Consider a graph as shown in Figure B.4(a) . The sets S and F for the 
cycle matroid of S are as follows: 

S = {m1,m2,m3,...,m7} and F = {(m1), (m2), ...,(m7), (m1,m2), (m2,m3), ..., (m1,m2, 
m4), ...,(m5,m6,m7) , ..., (m1,m2,m4,m5)}. 

A typical base of M(S) may be considered as B1 = {m1,m2,m4,m5} and a typical cir-
cuit of M(S) can be taken as {m1,m2,m3} or {m1,m2,m5,m6}. 

2 4 
m m m m m m 

m m m m 

m 
1 1 5 5 7 3 

2 

8 

4  
 (a) A graph S. (b) A typical base of M(S). 

Fig. B.4 A graph S and a typical base of its cycle matroid. 

B.3 COCYCLE MATROID OF A GRAPH 

Let S be a graph and let C* denote the set of cutsets of S. Then C* is the set of cir-
cuits of a matroid on M(S), called a cocycle or cutset matroid of S, denoted by 
M*(S). Obviously, a set X of members of S is a base of the cocycle matroid M*(S), 
if and only if M(S) − X is a spanning forest of S. For a connected graph, the mem-
bers of M(S) − T are known as cotrees of S. The rank of M*(S) is given as r(M*(S)) 
= M(S) − N(S) + b0(S). 

Definition: Let M be a matroid on S, whose bases are Bi. The collection of sets  
S − Bi are bases of another matroid M* on S, known as the dual matroid of M. This 
dual matroid is unique for an M, and the dual of a dual matroid is M itself. Circuits 
of M are called cocircuits or cutsets of M*. 

By definition, it follows that the cycle matroid M(S) is the dual of the cocycle ma-
troid M*(S) of a graph S.  
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Example: Let S be a connected graph as shown in Figure B.5. 

1 

3 
m 

m 
m 

m 
2 4 

  
Fig. B.5 A connected graph S.  

The circuits of M(S) and M*(S) are as follows:  

C (S) = {m2,m3,m4}, 

and C*(S) = {(m1),(m2,m4),(m3,m4),(m2,m3)}. 

B.4 MATROID FOR NULL BASIS OF A MATRIX 

Matroids are employed in combinatorial approaches to the force method of struc-
tural analysis, as described in Section B.6. Matroids are also used in algebraic 
force methods [75], a brief description of which is given here.  

Let Ax = b be the equilibrium equations of a structure, where x and b are the vec-
tors of internal forces and applied loads. For a statically indeterminate structure, A 
is an m × n rectangular matrix with n < m and rank A = m. 

Take the columns of A as the elements of S of a matroid M = (S,F) whose inde-
pendent subsets are linearly independent subsets of the columns of A. A circuit is a 
minimal dependent subset of columns. Generate all such circuits and consider it as 
C = {C1,C2,...,Cr}. Now form another matroid Mn = {C,Fn}, where Fn consists of 
subsets of independent circuits of C. A base of Mn is a null basis of A, that is col-
umns of a matrix B1 such that AB1 = 0.  

For an efficient analysis, special null bases are required, which correspond to 
sparse flexibility matrices. The formation of such bases becomes feasible using the 
combinatorial optimisation method of Section B.5.  
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B.5 COMBINATORIAL OPTIMISATION: THE GREEDY ALGORITHM 

In 1926, Boruvka solved the following problem:  

 Given a matrix of order n, having distinct positive real coefficients with 

 Aii = 0 and Aij = Aji, it is possible to find a set of coefficients such that: 

 1. There exist two randomly natural numbers k1, k2 (≤ n) belonging to  

 the set of the form Ak1h2, Ah2h3, ..., Ah–2q-1, Ahq–1k2. 

 2. The sum of the terms of this set is minimal. 

In graph-theoretical terms, the above problem can be stated as follows: 

For a connected graph with distinct positive real numbers assigned to its members, 
there is a shortest spanning tree, where the length of the tree is the sum of the num-
bers assigned to its branches. 

After 30 years, Kruskal [142] in 1956 stated the above problem and gave three 
interrelated efficient algorithms for the selection of a shortest spanning tree of a 
connected graph. The uniqueness of the existence of such a tree was also proved in 
his paper. One of these methods is summarised as follows: 

Let {mi; i = 1,2, ..., M(S)}be the member set of a graph S. Perform the expansion,  

 m1 → m1 ∪ m2 → ... → T, (B-2) 

where mi+1 is chosen such that it has the smallest weight and does not form a cycle 
with m1 ∪ m2 ∪ ... ∪ mi. A shortest spanning tree will then be obtained. 

This method formed a basis for the Greedy Algorithm for matroids, independently 
proved by three different authors [41,54,227].  

GREEDY ALGORITHM 

Let M = (S,F) be a matroid. Assign positive values to each element of S, denoted 
by W(s), s ∈ S. For a subset X ∈ F , define a weight function as  

 W(X) = ΣW(si), (B-3)  

where summation is taken over all elements si of X ⊆ S. 
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The problem is finding a subset Xopt of S such that Xopt ∈ F and W(Xopt) is mini-
mum (or maximum) over all elements of S. The Greedy Algorithm proceeds as 
follows:  

Select an element s1 of minimal (maximal) measure (weight) from S, and let F1 = 
{s1}. Form F2 from F1 by adding an element s2 of minimal (maximal) measure 
such that F2 is an independent set from S − {s1}, and let F2 = F1+{s2}. Subse-
quently choose si+1 of minimal (maximal) measure from S − {s1,s2,...,si} such that 
Fi+1 is still an independent set. This process is clearly finite, and the finally se-
lected set is a base of minimal (maximal) measure for M. 

An elegant proof of the minimality of the selected base may be found in Welsh 
[227].  

Example: Consider a graph S as shown in Figure B.6(a), with some positive 
weights assigned to its members. A base of minimal measure for cycle matroid 
M(S), which is a spanning tree of minimal weight, is selected as depicted in Figure 
B.6(b) . 

7

4 3

15 8

2

 
(a) A graph S. 

  
(b) Expansion process of the Greedy Algorithm. 

Fig. B.6 A graph and the selected minimal base for its M (S) matroid. 

B.6 APPLICATION OF THE GREEDY ALGORITHM 

In Chapter 3, it is shown that, for an efficient force method, the sparsity of the 
flexibility matrix of a structure, which is pattern equivalent to the generalised cycle 
adjacency matrix of its graph model, should be maximised. This can be achieved 
by the use of a generalised cycle basis of minimal measure, where the weight of a 
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γ-cycle is taken as its length (the number of its members). The Greedy Algorithm 
is a powerful means for this purpose. However, its application engenders certain 
difficulties, which are discussed in the following text. 

Let a γ-cycle of a graph S be defined as a minimal subgraph Ci of S, which is rigid, 
and γ(Ci) = a. A maximal set of independent γ-cycles of S is known as a general-
ised cycle basis of S, the dimension of which is equal to η(S) = γ(S)/a. The integer 
“a” is defined in Table 2.1. 

The set of all γ-cycles of S, together with F containing independent subsets of γ-
cycles, form a matroid Mgc(S), called the generalised cycle space matroid. A base 
of this matroid is a generalised cycle basis of S. Therefore, the Greedy Algorithm 
selects a minimal generalised cycle basis of S.  

Algorithm: Let the weight of a γ-cycle be measured by the number of its mem-
bers. Select all γ-cycles of S, denoted by C, and proceed as follows:  

Step 1. Select the first γ-cycle of minimal length from C. 

Step 2. Take the second independent γ-cycle of minimal length from C − {C1}. 

Step k. Subsequently choose a γ-cycle Ck of the least length from C − { C1, C2, ..., 
Ck-1}, which is independent of the previously selected γ-cycles. Continue the proc-
ess until η(S) of γ-cycles, forming a minimal generalised cycle basis, is generated. 

Simple proof for the minimality of selected basis by the above procedure can be 
found in Kaveh [98,114]. 

B.7 FORMATION OF SPARSE NULL BASES  

The bipartite graph B(A) of a matrix A can be constructed by associating one row-
node with each row i and one column-node with each column j if the correspond-
ing entry aij of A is non-zero. For example, the matrix A and the corresponding 
bipartite graph B(A), together with a matching in A and its graph, are shown in 
Figure B.7. 
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Fig. B.7 A rectangular matrix A and its bipartite graph B(A). 

It can be proved that a matrix A has complete matching if and only if it has the 
Hall property; that is if subsets of its rows have non-zeros in at least as many col-
umns. It has also been proved that the matching number of a matrix is greater than 
or equal to its rank. Therefore, a matrix with full rank has a complete matching.  

Null Bases Formation: A complete matching of B(A) partitions the columns of A 
into the set of matched columns M and a set of unmatched columns U. For exam-
ple in Figure B.7, {b1, b2, b3} are matched and {b4, b5} are unmatched columns. It 
is shown that for a column u ∈ U, a circuit can be constructed using an alternating 
path algorithm (see Appendix A). 

An M-alternating path is a path whose members are alternately from the matching 
M and outside M. For example, in Figure B.7, {b5, a1, b1, a3, b2} is an M-
alternating path in A. We say b5 is reachable from b1 and b3, and show it with  
b5 → b1 and b5 → b2. An augmenting path is an alternating path that begins and 
ends with unmatched nodes. The size of corresponding matching can be increased 
by making the members in the matching unmatched and vice versa. 

For a member u ∈ U, a dependent set n(u) containing u can be considered, which 
is a circuit if A has the Weak Haar Property (WHP). A matrix has WHP if every 
set of columns C satisfies rank(C) = Ψ(C), where Ψ(C) is the matching number. 
This property ensures that n(u) will be a circuit for all numeric values of the col-
umns of A. For a particular set of numeric values of the non-zero entries of A, 
numerical cancellation may occur, in which case the set n(u) will contain a circuit. 

Therefore, for finding a circuit of a matrix with WHP, a complete matching M 
should be constructed and an unmatched column u should be selected. A circuit 
n(u) is formed by following all M-alternating paths from u and adding columns 
visited to n(u), that is, n(u) = u + {v ∈ M: u → v}. For example, two circuits  
n(b4) = {b4,b2,b1} and n(b5) = {b5,b3,b2,b1} can easily be formed. However, if n(u) 
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does not have WHP, then it contains a circuit, which should be identified by nu-
merical factorisation.  

Once the formation of a circuit becomes possible, different algorithms can be de-
signed for the formation of a null basis. Two such algorithms are given by 
Coleman and Pothen [28, 29], and in the following text, an algorithm for the for-
mation of a fundamental null basis is briefly discussed.  

Let N be the empty set. Find a complete matching M of A, partitioning the col-
umns of A as A = [M U]. Then, for each u ∈ U, construct a circuit n(u). Augment 
the null basis N with the computed null vector. This process should be repeated for 
all members of U to obtain a fundamental null basis of A with WHP. When A does 
not have WHP, then a fundamental basis can be computed only when M has full 
rank. Therefore, one should choose M by a matching, but should ensure that M has 
full rank while factoring it to compute the null vectors. When it is rank deficient, 
the dependent columns in M should be rejected, and a new maximum matching 
should be found. This will ensure the formation of a basis and will always succeed 
when A has full row rank. 
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Banded rectangular matrix, 260 
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Basis, 383 

fundamental cutset, 465–66 
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statical, 55 

Beam element, 163–65 
Berge’s theorem, 482 
Betti number, first, 70, 74 
Betti number, zero, 464 
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Bipartite graph, 45, 46, 48, 462 

matching, 45 
Bisection algorithm width, 353 
Block, 480 
Boolean operation, 404 
Boundary conditions, 168–69 
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Breadth-first-algorithm, 460 
Breadth-first-search algorithm, 198 
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Cartesian product, 404–7, 411–14 

examples for, 426–30 
Castigliano´s theorem, 14, 150–52 
Characteristic polynomial, 274, 467 
Chord, 460 
Circuit, 484–85 
Closed trail, 459 

walk, 459 
Cocircuit, 488 
Cocycle, 459 
Cocycle basis, 176 
Cocycle matroid, 488 
Combinatorial optimisation, 490–91 
Communication number, 379 
Compact adjacency list, 435 
Compatibility, 5, 60–64, 157 

matrix, 157 
Complementary Laplacian, 284 

solution, 55 
solution space, 57 
strain energy, 13 
work, 12 

Complete bipartite 
graph, 462 
matching, 45–47 

Complexity analysis, 206, 214, 220, 
252, 310–12, 323–25 

Component, 459 
Computational procedure, 176–80 
Condition number, 98–101 
Conditioning, 97–115 
Connected, 458 
Connectivity, 456 

member, 50 
node, 50 

Constant matrix, 42 
Constant stress triangular element, 125 
Contour, 196 
Contraction, 479 
Contragradient principle, 18–19 
Coordinate system, local, 142, 143 

global, 142, 143 

Cotree, 460 
Covering subgraph, 44 
Crossing, 36 
Crossing number, 36 
Cut-point, 480 
Cutset, 459 
Cutset adjacency matrix, 472 

basis, 465–66 
basis incidence matrix, 472 
matroid, 488 
rank, 465 
space, 464 
space matroid, 486–88 

Cutset space of S, 463 
Cycle, 459 
Cycle adjacency matrix, 470 

admissible, 75 
basis, 91–93 
basis incidence matrix, 470 
exchange, 107 
graph, 91 
length number, 82 
matroid, 485 
regional, 102 
set vector, 463 
space, 463 
space matroid, 487–88 

Cycle basis, 464 
Cycle length number (CLN), 82 
Cycle set vector, 463 
Cycle space, 463 
 
D 
 
Datum node, 468 
Decomposition, 134, 136 

Method, 47–48 
Degree, 456 
Degree of kinematical indeterminacy 

(DKI), 24, 27, 142 
matrix, 5, 279 
of statical indeterminacy, 27–33 

Degrees of freedom, 24, 42, 142 
Design, structure, 4 
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Diagonal storage, 194 
Diameter, 198 
Digraph, 476 
Dimension, 117, 120 
Direct product, 409–10, 417–19 

examples for, 431–33 
Directed graph, 474–76 
Displacement function, 174 

method, 5, 166–73 
Distance, 458 
Distance number, 257–58 
DKI. See Degree of kinematical 

indeterminacy (DKI) 
Domain decomposition, 305–30, 393, 

404 
Drawing, 35 
Drawing, admissible, 35–37 

optimal, 36 
DSI, 24, 27 
Dual graph, 480 
Dummy load method, 15–17 

displacement method, 17 
displacement theorem, 17 

Dynamic analysis, 336–47 
equation, 338–42 

 
E 
 
Eccentricity, 198 
Edge connectivity, 281 
Eigenvalue, 98, 273, 274, 372, 410, 

419–20 
cycle, 421–26 
path, 421–26 

Eigenvector, 410 
Element adjacency list, 243 

clique graph, 204–5, 230 
ordering, 241–56 
star graph, 208–9 
wheel graph, 461 

Elementary subgraph, 115 
adjacency list, 316 

Elimination graph, 267 
Energy, 11–13, 150 

Engineering based method, 316–17 
Equilibrium, 4, 54–57, 142, 156 
Equilibrium approach, 5 
Equilibrium matrix, 156 
Equivalent loads, 171 
Euler’s polyhedra formula, 477–80 
Euler’s theorem, 33, 479 
Exchange, 107 
Expansion process, 28–29 
Exposed node, 481 
Extreme eigenvalues, 98 
 
F 
 
Factorisation, 133, 136 
F-admissible, 101 
Fiedler vector, 282, 389–401, 403 
Fill-ins, 202, 249 
Finite element models, 264 
Finite element ordering, 203–41 
First Betti number, 70, 74, 464 
Flexibility matrices, 256 
Flexibility, method, 5 

member, 57–60 
unassembled, 131 

Force method, 5, 53, 69, 70, 119,  
125–38 

Forest, 109, 459, 460 
Frequency, 337 
Frobenius, 481 
Front matrix, 249 
Frontal method, 249 
Frontwidth, 226 
Frontwidth reduction, 241–56 
Fully triangulated, 120, 122 
Function, unifying, 28 
Fundamental cutset, 465 
Fundamental cutset basis, 465–66 
Fundamental γ-cycle, 117 
Fundamental cycle basis, 464 
Fundamental generalised cycle basis, 117 
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G 
 
Gaussian elimination, 192, 193, 195, 

266–68, 267 
Gauss-Jordan, 132 
General loading, 67, 169–73 
Generalised cycle basis (GCB), 117 
Generalized cycle adjacency matrix, 

118 
cycle basis, 118 
cycle basis incidence matrix, 119 

Generators, 73, 404, 405 
Generic independence, 44, 45 

rigidity matroid, 485 
Generically independent, 44 
Genre structure, 316 
Global coordinate system, 142, 143 
Graph based method, 307–9 
Graph matrices 

eigen values of, 410–20 
Graph products 

definitions, 404–10 
second eigen values for, 419–20 

Graph, abstract, 456 
associate, 119–22 
bipartite, 462 
bsection, 364–68 
coarsening, 392–93 
complete, 461 
complete bipartite, 462 
cycle, 461 
directed, 474–76 
dual, 480 
element clique, 204–5 
element star, 208–9 
element wheel, 209–10 
incidence, 217–18 
line, 462 
natural associate, 214–17 
null, 461 
partially triangulated, 211–12 
path, 461 
planar, 477–80 
regular, 462 

representative, 218–20 
simple, 456 
skeleton, 206–7 
star, 461 
triangulated, 212–14 
trisection, 381–86 
wheel, 461 

Graphic, 485 
Greedy Algorithm, 490–91 
Grid, 2 
Grid-form truss, 48–49 
Ground node, 25, 110 

tree, 25 
 
H 
 
Haar property, 493 
Hall’s theorem, 481 
Heeled SRT ( 0HSRTn

c ), 242 
Height, 197 
Hinged cycle, 459 
Homeomorphic, 457 
Hooke’s law, 8 
Hungarian, 482 
Hybrid method, 284–90, 300 
 
I 
 
Ill-conditioned, 97 
Image, 35 
Improved spectral bisection, 371 
IN, 82 
Inactive status, 228 
Incidence, 456 

graph, 217–18 
matrix, 468 
number, 82 

Independence, 483 
control, 74 

Index vector, 316 
Infinitesimal displacement, 42 
Influence matrix. See Overall 

flexibility matrix 
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Integrated force method, 54 
Interior boundary, 305 
Internal node, 33 
Intersection, 457 
Intersection theorem, 29–30 
Isomorphic, 485 
Isomorphism, 470 
Isoperimetric number, 353 
 
K 
 
Kaveh’s theorem, 29 
King’s algorithm, 227 
König’s theorem, 481 
Kronecker product, 409, 410–11 
K-total graph, 260, 261, 264 
Kuratowski´s theorem, 479 
 
L 
 
Labelled graph, 404 
Laman’s theorem, 44 
Lanczos, 354–59 
Laplacian matrix, 279–84, 350, 414 
Laplacian of regular models 

computing λ2 for, 424–25 
algorithm, 425 

Length, 457 
Length, cycle, 116 

shortest route tree, 198 
Level structure, 194, 243, 316 

tree, 316 
tree separator, 294 

Linear stress element, 129 
Link, 459 
Local coordinate system, 142, 143 
Longest SRT, 197 
Loop, 456 
Lovazs and Yemini´s theorem, 47, 50 
LU-factorisation, 134, 135, 136 
 
 
 

M 
 
M-alternating path, 482 
M-augmenting path, 482 
MacLane’s theorem, 480 
Mass matrix, 336 
Matching, 480–82 

complete, 481 
maximal, 480–82 
number, 480, 481 
perfect, 481 

Mathematical model, 25 
Matrix, constant, 42 

cutset adjacency, 472 
cutset basis incidence, 475 
cycle adjacency, 470 
cycle basis incidence, 470 
degree, 279 
equilibrium, 220 
GCB incidence, 119 
Laplacian, 279, 382 
Mass, 336 
node adjacency, 279 
node-member incidence, 467–68 
null basis, 131 
overall flexibility, 64, 131 
self-stress, 131 
transfer, 338–39 

Matroid, 79, 122, 483 
Matroid, cocycle, 488 

cutset, 488 
cutset space, 486–87 
cycle, 487 
cycle space, 487–88 
dual, 488 
Gen. cycle space, 491 
polygon, 487 

Member connectivity, 50 
displacements, 6, 146 
flexibility matrix, 7, 8–11 
forces, 6, 146 
list, 468–69 
stiffness matrix, 7, 8–11 

Members, 456 
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Method, displacement, 5, 166–73 
force, 5, 125–38 

Minimal base, 491 
Minimal cycle, 72, 73 
Minimal cycle basis, 71–79 

cycle, 71 
GCB, 118–19, 122 

Mixed method, 39 
Mode shapes, 337 
Multiple member, 456 
Multiple root SRT, 242, 251 
 
N 
 
Narrowest SRT, 197 
Nash-William’s theorem, 47 
Natural associate graph, 214–17 

forces, 129 
frequency, 337 

Neighbouring nodes, 242 
NEPS (non-compact extended p-sum), 

435 
Nested dissection, 294 
Nodal decomposition, 201 

ordering, 284–90 
Node adjacency matrix, 466–67 

connectivity, 281 
cover, 351 
covering number, 480 
datum, 468 
element list, 316 
exposed, 481 
ground, 110 

Node connectivity, 281 
Node-element list, 317 
Node-member incidence matrix, 467 
Nodes, 456 
Non-compact extended p-sum, 435–36 
Non-separable, 480 
NP-hard, 354 
Null basis, 131, 489, 492–94 

basis matrix, 131 
graph, 461 
vector, 131 

Nullity, 464 
Number, Betti, 24, 464 

condition, 98–101 
crossing, 36 
cycle length, 82 
distance, 257–58 
incidence, 82 
width, 197 

 
O 
 
Optimal cycle basis, 71, 81–84 

Displacement method, 141–86 
drawing, 36 
force method, 69 
transversal, 201 

Optimally conditioned cutset basis, 
180–86, 181 

Optimally conditioned cycle basis, 101–3 
Ordering, 191–268, 202, 203, 224, 278 
Orientation coefficient, 110, 112 
Oriented graph, 350 
Orthogonality, 464 
Overall flexibility matrix, 132 

stiffness matrix, 159 
 
P 
 
Partially triangulated graph, 211–12 
Particular solution, 55 
Particular solution space, 55 
Partitioning, 352 
Passive node, 215 
Path, 457–59, 457 
Path, alternating, 481 

augmenting, 482 
M-alternating, 482 
shortest, 458 

Pattern equivalence, 70, 192, 262 
Perfect matching, 481 
Perron-Frobenious theorem theorem, 92 
Planar drawing 

graph, 477–79 
truss, 38–39 
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Planting, 158, 160 
Polygon matroid, 487 
Positive definite, 154 
Post-active status, 228 
Potential energy, 131 
Pre-active status, 228 
Primary structure, 54, 68 
Prime cutest, 459 
Principle of virtual work, 15–17 
Priority, 215, 218, 230 

queue, 227, 228, 229 
Profile optimisation, 224–41, 433–34 
Profile reduction, 226 

spectral method for, 433–34 
Pseudo-peripheral node, 194, 199, 

228, 246, 274 
determination of, 391 
diameter, 199 
peripheral node, 199, 274 

 

Q 
 
QR factorisation, 136, 137 
 
R 
 
Rank, 465 
Rayleigh quotient, 420 
Rayleigh’s Quotient, 100, 419 
Reachable, 493 
Reciprocal theorem, 19–20 
Rectangular element, 129 

matrices, 260–66 
Recursive spectral, 359–63 

sequential-cut partitioning, 362 
two-way partitioning, 362 

Reduced stiffness matrix, 154, 168 
Redundancy, 27 
Redundants, 5, 54, 55, 57 
Regional cycle, 102, 478 
Regular structures 

decomposition and nodal 
ordering using graph products, 
403–36 

Released structure, 54 

Removable subgraph, 116 
Representative graph, 218–20 
Reverse Cuthill-McKee, 224 
Rigid, 42, 43 
Rigidity, 41–49 
Ring sum, 457 
Ritz vector, 284, 290, 389–401 
Root selection, 246–49 
Root-mean-square, 226, 244, 250 
Rotation, 143, 144 
 

S 
 
S-admissible, 101 
Self-equilibrating stress systems 

(SESs), 55 
Self-stress matrix, 131 
Set of modal force equations, 341 
Shortest path, 458 

route tree, 194, 196–97, 459–61 
Shortest root tree (

0
SRTn ), 242 

Simple graph, 456 
Skeletal structures, 2 

mathematical model of, 25 
Skeleton graph, 206–7 
Skyline scheme, 224 
Skyline storage, 226 
Space structures, 35–41 
Space 

frame, 37 
truss, 38 

Space, cutset 
cycle, 464 
vector, 464 

Spanning tree, 193, 242, 459–61, 459 
Forest, 47, 109 

Sparse, 71 
Sparsity coefficient, 71 
Spectral bisection, 371–78 

trisection, 378–89 
Spectral radius, 275 
Spectrum, 274, 467 
SRT. See Shortest path, route tree 
Start column, 136 
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Starting node, 196, 198, 277 
Statical basis, 55, 70 
Statical indeterminacy, 70 
Stiff, 43, 44 
Stiffness, matrix, 146, 153–58, 153, 

158, 159, 160 
matrix, 153–58 
method, 5 
reduced, 154, 168 
of the structure, 164 
unassembled, 153 

Strain energy, 13, 152 
Strong Cartesian product, 407–9, 414–16 
Structural analysis, 4 

design, 4 
examples for, 430–31 
steps of, 4 

Structural design, 4 
Structure 

continua, 3 
definition, 1, 54 
flexibility matrix of, 64 
skeletal, 2 

Sturm, 355 
Subcontour, 242 
Subdomaining, 350–71 

engineering based, 316–17 
graph based method, 307–9 
mixed method, 364–68 

Subgraph, 457 
elementary, 115 

Subminimal cycle basis, 71 
GCB, 118, 123–25 

Suboptimal, cycle basis, 72–79, 72–79, 
81–84 
GCB, 119–22 

Suboptimally conditioned cutest basis, 
182–83 
conditioned cycle basis, 104–7 

Substructuring direct method, 298–99 
displacement method, 296–98 
dynamic analysis, 336–47 
force method, 330–36 
hybrid method, 300 
iterative method, 299–300 

Sugihara, 46 
Symmetry, 151 
 
T 
 
Theorem, Berge, 482 

Castigliano, 14 
Euler, 479 
Frobinuis, 481 
Hall, 481 
Intersection, 29–30 
Kaveh, 29 
König, 481 
Kuratowski, 479 
Laman, 25 
Lovazs and Yemini, 47, 50 
MacLane, 480 
Nash-Williams, 47 
Reciprocal, 19–20 
Sugihara, 46 
Whitney, 477 

Topological force method, 54, 71 
properties, 23, 24, 35 

Total graph, 260, 261 
degrees of freedom, 42 

Trail, 457–59 
Transfer matrix, 338–39 
Transformation, 142–46 
Transversal, 201, 277–78 

minimal, 201 
optimal, 201 

Tree, shortest route, 194, 196–97, 460 
length, 198 
spanning, 459–61 
width, 197 

Triangular element, 173–76 
Triangulated graph, 212–14 
Truss, 2, 5 
Turn-back, 87, 136, 137 
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U 
 
Unassembled flexibility matrix, 130 

stiffness matrix, 153 
Unifying function, 28 
Union, 457 
Union-intersection method, 30 
Unit displacement method, 17 
Unit load method, 15, 16 
 
V 
 
Valency, 456 
Variable banded form, 224 
Vector space, 463–66 
Vertices, 203 
Virtual work, principle, 15–17 
 
W 
 
Walk, 457–59 
Wavefront, 226 
Weak Haar, 493 
Weight, 82, 83, 101, 102, 103, 305 
Weighted adjacency matrix, 91 

associate graph, 375 
graph, 101, 371–78 
incidence graph, 380–81, 390 
Laplacian, 390 

Weighted associate graph, 257 
Weighted incidence graph, 380 
Well-conditioned, 69 
Whitney’s theorem, 480 
Width, 197 
Width number, 197 
Work, 11–13, 157 
 
 
 
 
 
 

Z 
 
Zero Betti number, 464 
 
γ-chord, 116 
γ-cotree, 116 
γ-cycle, 116, 117 
γ-path, 116 
γ-tree, 115 





 

 

Index of Symbols 
 

The important symbols, their definitions and the page upon which each symbol 
occurs are listed in the following. 
 

A  node adjacency matrix 466 

A* weighted adjacency matrix 91 

a, b, c integer coefficients 28 

Ai  
1 ∩i-

i= S S
 29, 31 

AL adjacency list 469 

B  node-member incidence matrix 467 

b(A) bandwidth of matrix A 196 

B(S) bipartite graph of S 48 

B(S) =  
(A, E, B) 

bipartite graph with node sets A and B and member 
set E 

45 

B collection of bases of a matroid M 484 

B incidence matrix equilibrium matrix 137, 156, 468, 
471, 474 

b0(S) zero Betti number of S 464 

B0p particular solution 55 

b1(S) first Betti number of S 464 
 
_________________________________ 
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B1q complementary solution 55 

c(S p) crossing number of a planar drawing S p of S 36, 37 

C* collection of cocycles of a matroid 488 

C* cutset basis incidence matrix 472 

C collection of circuits of a matroid 484 

C cycle basis incidence matrix 470, 471 

*C  
cutset-member incidence matrix 472 

ijc
 

entry of C
 

469 

C  cycle-member incidence matrix 469 

Ci cycle 464 

Ck cycle graph with k nodes 461 

d(ni, nj) distance between two nodes ni and nj 198 

D(S) degree matrix of a graph S 279 

D* cutset adjacency matrix 473 

D cycle adjacency matrix 470 

deg(ni) degree of a node ni 279, 456 

e(ni) eccentricity of ni 198 

e(S) member connectivity 50 

E elastic modulus 163 

f(S) degree of freedom 42 

F collection of independent subsets 487 

FEA fixed end action 67 

fm member flexibility 7 
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Fm, f  unassembled flexibility matrix of a structure 60 

Fmax, Wmax maximum frontwidth 226, 244 

G overall flexibility matrix of a structure 69, 70, 131 

G shear modulus 60 

H constant matrix 42 

I unit matrix 7 

, CLNc
jkI

 
cycle length number of the member jk 82 

Ijk, IN incidence number of the member jk 82 

J Saint-Venant torsion constant 60 

k
 

stiffness matrix of an element in its local coordinate 
system 

152 

K stiffness matrix of the structure 153 

k unassembled stiffness matrix 153 

Kff reduced stiffness matrix 168 

ki stiffness matrix of element i 249 

kij stiffness coefficient 151, 153 

km member stiffness 7 

KN complete graph with N nodes 461 

Kr,s bipartite graph 462 

K-T(S) K-total graph 261 

L(C) total length of the cycles (generalized cycles) of a 
basis 

71, 79, 80, 118 

L(Pk) length of the path Pk 458 

L Laplacian matrix 279, 280 
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Lc complementary Laplacian matrix 284 

M matroid 483 

M(S) cycle matroid of S 487 

M(S),M number of members of S 27, 28, 41 

M(S,F) matroid 484 

M(Si) number of members of Si 457 

M*(S) dual matroid of M(S) 488 

Mc(S) cutset space matroid of S 487 

Mc(S) number of members for triangulation of S 33 

Mc(S p) number of members for full triangulation 38, 39 

ML  member list 468 

Ms(S) cycle space matroid of S 486 

N(S),N number of nodes of S 27, 28, 41 

N(Si) number of nodes of Si 457 

Ni(S) number of internal nodes of S 33 

ni node 456 

Nk null graph with k nodes 461 

NP-complete  196 

P,Q permutation matrices, transformation matrix 192 

p joint load vector 55 

P vector of pointers, external forces 15, 150, 469 

P,Pi path 458 

Pk path graph 461 
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q redundants vector 54, 131 

R(S) number of regions of embedded graph S 478 

R member forces 15, 18 

r  element force vector in local coordinate system 145 

r, rm member (element) force vector in global coordinate 
system 

58, 59, 128 

Ri(S) number of internal regions 35 

S graph model of a structure 24, 25 

S
 

covering subgraph 44 

S set of elements of a matroid 483  

Si  subgraph of S 457 

1=
= ∪

k
k

i
i

S S
 

that is, union of k subgraphs 457 

Sk elimination graph 267 

S p planar drawing of S 37 

SRT shortest route tree 460 

T* cotree 460, 465 

t trail 457 

T transformation matrix 145 

T tree 459, 460 

Tij coefficient of the transformation matrix T 162 

u  element distortion vector in local coordinate system 163 

U* complementary strain energy 13 

u, um member distortion vector in global coordinate 
system 

7, 15, 18 
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U strain energy 13 

V degree (valency) matrix 468 

V finite vector space 486 

v joint displacement vector 153 

v2 Fiedler vector 285 

vc  relative displacements of cuts 61 

W(mi)  weight of member mi 101 

W* complementary work 12, 13 

w a walk in S 457 

W work done by external loads 12 

Wk  wheel graph 461 

|X| cardinality of X 44 

x, y, z global coordinate system 143 

xyz  local coordinate system 143 

Z2 integers modulo 2, denoted by GF(2) 70 

Greek Symbols 
 

α integer equal to 3 or 6 27 

γ(S), DSI  degree of statical indeterminacy 27 

γ0(S) number of components 28 

( )iγ A
 

= aM(Ai) + bN(Ai) + c 29, 30 

µS(S) −γ(S) for planar trusses 44 

ρS(X) rank of a submatrix of H corresponding to the 
members of X 

44 
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χ sparsity coefficient 71 

σi(C) intersection coefficient 72, 118 

γ(S) unifying linear function, node connectivity 28 

λmax , λmin largest and smallest eigenvalues of a matrix 98 

η(S), DKI degree of kinematical indeterminacy 142 

β degrees of freedom of a node 192 

δ(S) diameter of S 198 

λ2 = α(S) algebraic connectivity, second eigenvalue 281 

φ
 

an approximation to the Fiedler vector 284 

ρ(S) rank of the graph S 464, 465, 472 

Γ(X) image of X 481 

τ(S) node covering number 480 

Ψ(S) matching number 481 

Logical symbols 
 

{ } a vector or a set 6 

[ ]t Transposition of a matrix 6 

|.| cardinality 44 

⊆ containment symbol: a subset of a set 43 

→ expansion 29 

× Cartesian product 405 

 strong Cartesian product 407 

* direct product 409 
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⊗ Kronecker product 410 

⊕ ring sum 457 

∪ union 29, 457 

∩ intersection 29, 457 
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